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Abstract

Proportional hazards models are among the most popular regression models in survival

analysis. Multi-state models generalise them in the sense of jointly considering different

types of events along with their interrelations, whereas frailty models introduce random

effects to account for unobserved risk factors, possibly shared by groups of subjects.

The integration of frailty and multi-state methodology is interesting to control for

unobserved heterogeneity in presence of complex event history structures, particularly

appealing in multicenter clinical trials applications.

In the present thesis we propose the incorporation of nested frailties in the transition-

specific hazard function; then, we develop and evaluate both parametric and semi-

parametric inference. Simulation studies, performed thanks to an innovative method

for generating dependent multi-state survival data, show that parametric inference is

correct but extremely imprecise, whilst semiparametric methods are very competitive

to evaluate the effect of covariates.

Two case studies are presented, relative to cancer multicenter clinical trials. The

multi-state nature of the models allows to study the treatment effect taking into account

intermediate events, while the presence of frailties reduces the attenuation effect due to

clustering.

Finally, we present two new software tools, one to fit parametric frailty models

with up to twenty possible combinations of baseline and frailty distributions, and one

implementing semiparametric inference for multilevel frailty models, essential to fit the

new nested frailty multi-state models.
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Résumé

Les modèles à risques proportionnels sont parmi les modèles de régression les plus

célèbres de l’analyse de survie. Les modèles multi-états constituent une généralisation de

ceux-ci qui prend simultanément en considération différents types d’événements et leurs

interrelations ; les modèles de type frailty, quant à eux, utilisent des effets aléatoires pour

tenir compte de facteurs de risque qui ne sont pas observés, éventuellement partagés

par des groupes de sujets. L’intégration des méthodologies multi-états et frailty peut

s’avérer très intéressante afin de contrôler l’hétérogénéité non observée en présence

de structures complexes d’événements, ce qui est particulièrement attractif dans les

applications cliniques d’études multicentriques.

Dans cette thèse on propose d’intégrer des frailties imbriqués dans la fonction

de risque transition-spécifique ; on développe et on évalue des méthodes d’inférence

paramétrique et semi-paramétrique. Par le biais d’une étude de simulation, effectuée

grâce à une méthode innovante pour générer des données multi-états dépendantes, on

montre que l’inférence paramétrique est correcte mais extrêmement imprécise, alors

que les méthodes semi-paramétriques sont très compétitives pour évaluer l’effet des

covariables.

Deux cas d’étude sont présentés concernant des études cliniques multicentriques en

oncologie. La nature multi-états de ces modèles permet d’étudier l’effet du traitement

en tenant compte des événements intermédiaires. La présence des frailties réduit l’effet

d’atténuation en tenant compte de la corrélation due au regroupement.

Enfin, on présente deux nouveaux outils informatiques, le premier pour estimer

des modèles frailty paramétriques avec jusqu’à vingt combinaisons possibles entre la

distribution de la fonction baseline et celle des frailties ; le deuxième implémente des

méthodes d’inférence semi-paramétrique pour des modèles frailty multiniveaux, ce qui

est très utile pour estimer les nouveaux modèles multi-états avec frailties imbriqués.
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Riassunto

I modelli a rischi proporzionali sono tra i modelli di regressione più conosciuti ed utilizzati

in analisi di sopravvivenza. In modelli multi-stato sono una loro generalizzazione che

permette di considerare congiuntamente diversi tipi di eventi e le loro interrelazioni,

mentre i modelli di tipo frailty introducono effetti casuali per tenere conto di fattori

di rischio non osservati, eventualmente in comune tra soggetti appartenenti allo stesso

gruppo. L’integrazione dei modelli multi-stato e dei modelli frailty è interessante al fine

di controllare l’eterogeneità non osservata in presenza di strutture complesse di eventi,

particolarmente interessante nel caso di studi clinici multicentro.

In questa tesi proponiamo di incorporare frailty annidati nella funzione di rischio

transizione-specifica, quindi sviluppiamo e valutiamo metodi di inferenza sia parametrica

che semiparametrica. Studi di simulazione, effettuati grazie a un metodo innovativo

per generare dati di sopravvivenza multi-stato dipendenti, mostrano che l’inferenza

parametrica è corretta ma estremamente imprecisa, mentre i metodi semiparametrici

sono molto competitivi per valutare l’effetto delle covariate.

Due casi-studio relativi a studi clinici multicento in oncologia vengono quindi pre-

sentati. La natura multi-stato dei modelli permette di studiare l’effetto del trattamento

tenendo conto degli eventi intermedi, mentre la presenza di frailty riduce l’effetto di

attenuazione dovuto ai gruppi di pazienti.

Infine, presentiamo due nuovi strumenti software, uno per stimare modelli frailty

parametrici con fino a venti possibili combinazioni di distribuzioni baseline e frailty,

e un altro che implementa metodi di inferenza semiparametrica per modelli frailty

multilivello, essenziali per stimare i nuovi modelli multi-stato con frailty annidati.
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Definitions and notation

Definitions are given for the nested frailty multi-state model (Ch. 5), with indexes

h = 1, . . . ,H the cluster

n1, . . . , nH the cluster sizes, with n =
∑H
h=1 nh the total number of subjects

i = 1, . . . , nh the subject within the cluster h

q = 1, . . . , Q the transition type

For multi-state models and for shared and nested frailty models the indexes can be deduced

straightforwardly and are given in Chapter 3.

1(·) the indicator function which is 1 if its argument is true and 0 otherwise

E[·] the expected value

V[·] the variance

Cov[·, ·] the covariance

tqhi the event time

cqhi the right censoring time

yqhi the observed event or censoring time: min(tqhi, cqhi)

δqhi the event/censoring indicator: 1(tqhi ≤ cqhi)
dqh the number of events of type q in cluster h:

∑nh
i=1 δqhi

dh the total number of events of any type in cluster h:
∑nh
i=1

∑Q
q=1 δqhi =∑Q

q=1 dqh

τqhi the left truncation time

τ the Kendall’s Tau

xqhi the covariates

βq the regression parameters for transition q

Uqh the cluster–transition frailty term: VhWqh

Vh the cluster level random term

Wqh the cluster–transition level random term

fU (·;θ) the distribution of the frailty U

fV (·;θV ) the distribution of Vh, ∀h



xviii Definitions and notation

fW (·;θq) the distribution of Wq

θ the frailty parameters (θV , θ1, . . . , θQ)>

θV the frailty parameter for Vh, ∀h
θq the frailty parameter for Wq

ξq the baseline hazard parameters for transition q

ζ the vector of all the parameters:
(
ξ>,θ>,β>

)>
λq0(·; ξq) the baseline hazard function for transition q, sometimes simply λq0(·)
λqhi(· | uqh) the conditional hazard (5.1), also λqhi(· | vh, wqh)

Λq0(·; ξq) the cumulative baseline hazard function for transition q, sometimes

simply Λq0(·)
Γ(·) the gamma function

L(·) the Laplace transform

L(·) the full likelihood function

LC(·) the conditional likelihood function

LM(·) the marginal likelihood function

LPM(·) the penalised marginal likelihood function

LP(·) the partial likelihood function

LPP(·) the penalised partial likelihood function

`···(·) the · · · loglikelihood: logL···(·)
Gam the gamma distribution

PS the positive stable distribution

IG the inverse Gaussian distribution

PVF the power variance function distribution

CP the compound Poisson distribution

LN the lognormal distribution

C(·) the copula function

ϑ the copula dependence parameter

S the states set

T the transitions set

C(·) the children set of a state

#(·) the size of a set

Q a set of transition types

Ω·,· polynomial functions as defined by Equations 3.102

Table 1 – Definitions and notation.



Chapter 1

Introduction

1.1 Overview

Survival analysis techniques have an important role in biostatistics, as they allow an evaluation

of the effect of different treatments and risk factors on the natural course of a disease. Survival

data, also known as time-to-event or duration data, are measures of the time elapsed since an origin

event until an event of interest. Their peculiarity relies in the fact that the times of those events

which have not occurred yet are not completely missing data, but partial data: even though their

true values are unknown, they are necessary greater than the value at the present moment. This

partial information on the lower bound of missing values is called right censoring and is practically

unavoidable for duration data.

The proportional hazards model, popularised by Cox (1972), is certainly one of the most

widespread, used and studied regression models for time-to-event data. Frailty models and multi-

state models are two broad families of survival models, extending proportional hazards models in

two different directions to deal with distinct issues.

The problem of heterogeneity due to unobserved risk factors was first addressed by Clayton

(1978) and Vaupel et al. (1979). They proposed to account for it by means of random effects, giving

origin to a vast literature on what is now known as the frailty model or mixed proportional hazards

model. If these effects are subject-specific, unobserved heterogeneity stands for overdispersion and

the model is called univariate frailty model (Wienke, 2010, Ch. 3). On the contrary, in the case

they are shared by groups of subjects, a clustering effect is there, i.e. observations belonging to

the same group are dependent. This is the case of the so-called shared frailty models (Ch. 7–9 of

Hougaard, 2000; Duchateau and Janssen, 2008).

On the other hand, multi-state models, widely investigated by Hougaard (2000, Ch. 5–6),

Andersen and Keiding (2002) and Putter et al. (2007), are an appreciated tool to study the whole

event history of subjects. They provide a framework to jointly model the hazards of many types

of event, the occurrence of each can have an impact on the risk of the others. Most of the times,

the Markov assumption is made, which allows estimation and prediction to be feasible in a very

general and simple way (Hougaard, 1999a). This assumption seems to be a sensible approximation

in many cases and it can be easily relaxed, giving the semi-Markov (or Markov extended) models.

The integration of frailty and multi-state models can provide powerful survival models to study
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the risk of many interrelated events while accounting for dependence between grouped subjects.

Many practical situations can be thought of in which such integration is of interest. The main

problem motivating our research consists in answering clinical questions arising from multicenter

cancer trials, while taking into account both the dependence between subjects and that between

events. Typically, the focus is on the effect of the therapy on many different endpoints: death,

local relapses, progression and distant metastases. The times to these events can be of different

importance according to the context, but usually each one plays a role in changing the risk of the

other ones. At the same time, patients recruited in the same hospital will arguably share some

unobserved risk factors due to underlying features of the center, the population, the country and

so on.

1.2 Main contributions of the thesis

The work presented in this thesis contributes to research in survival analysis from different

points of view: modelling methodology and applications, simulation techniques, software availability.

Up to now, there existed no a general method in multi-state research for simulating data

according to a given scenario. In this respect, the first major contribution of the present work is a

simulation model for multi-state data (Rotolo et al., 2012a). Dependence can be added between

time variables of grouped subjects, to study the effect of clustering. One of the main assets of

the proposed method is a numerical procedure, minimising a criterion function, which permits

to choose simulation parameters in order to mimic information from real data. Moreover, the

simulation method is able to introduce, thanks to copulas, dependence between times of different

transitions while fixing the marginal distributions according to a given scenario. This is a useful

tool to study, for instance, the robustness of (frailty) multi-state models with respect to departures

from the Markov assumption.

The main contribution to modelling methodology consists in proposing multi-state models with

two nested frailties, one to account for the global effect of unobserved group-specific factors, and

a second one to deal with their effect on each event of interest. This model turns out to be a

generalisation of what has been proposed so far in literature, i.e. models based on either shared

or independent frailties. So, the nested frailty multi-state model is more flexible and requires less

assumptions. It is very suited to describe the two-level dependence which links the times to different

events within subjects which can share common unobserved risk factors.

Two estimation approaches have been developed and investigated in the thesis: a parametric and

a semiparametric approach. First, fully parametric inference, based on maximum marginal likelihood,

is considered. In this context double integration is needed to obtain the marginal likelihood; explicit

integration is not possible in that case, and asymptotic or numerical approximation is needed.

Simulation studies put in light that this approach is not much robust for small datasets, notably if

few events are observed. Then, a semiparametric estimation approach, based on maximum penalised

partial likelihood, is proposed and investigated (Rotolo and Legrand, 2012; Rotolo et al., 2012b).

We employed in this new context the EM-PL estimation algorithm, proposed by Horny (2009) for

multilevel frailty models; this procedure alternates the EM and the PPL estimation methods at the

two clustering levels. Two examples of applications are provided for phase III multicenter clinical

trials: one to investigate the effect of further intravescical treatment after transurethral resection
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in bladder cancer patients, and one to compare the efficacy of cabazitaxel versus mitoxantrone for

metastatic progressive prostate cancer.

The third contribution of the present work is the implementation of frailty models in R (R

Development Core Team, 2012) as ready-usable package. The parfm package (Rotolo and Munda,

2012) represents an effort to provide a user-friendly tool to fit parametric frailty models, with

a wide range of baseline hazard functions and frailty distributions (Munda et al., 2012). The

importance of parfm is due to the fact that, even though parametric frailty models are largely used

in literature, there existed no software offering a unified framework to deal with them. Finally, in a

semiparametric context, we implemented in the mlfm package (Rotolo and Horny, 2012) the EM-PL

estimation method proposed by Horny (2009) for multilevel frailty models. This can be used under

mild conditions to fit in a semiparametric way the multi-state model with nested frailties.

1.3 Structure of the thesis

In Chapter 2 we introduce the motivating problem from a clinical point of view and its statistical

implications. Then, we review the main literature on frailty models and multi-state models in

Chapter 3. The simulation procedure for clustered multi-state data is provided in Chapter 4,

whereas in Chapter 5 we propose the incorporation of correlated frailties into multi-state models,

with the estimation methodology and we show a simulation study. Two case studies can be found

in Chapter 6, with applications in multicenter bladder and prostate cancer clinical trials. Finally,

Chapter 7 proposes two new software packages contributing to the research in frailty and multi-state

research.
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Chapter 2

The problem

2.1 The clinical motivating problem

Multicenter clinical trials are studies conducted collaboratively by many hospitals, according

to a unique protocol. Even though they require a great organisational effort, they are more and

more common in clinical research, and specifically in oncology, since they allow to reach the needed

sample size in a shorter time (Fleiss, 1982; Knatterud et al., 1998; Senn, 2007). This is a crucial

asset when the effect to detect is expected to be small or when the endpoint of interest is relatively

rare. In these cases, the time required for a single centre to collect a sufficient amount of data

could be too long for the study to be useful in practice.

Another advantage of multicenter clinical trials is that the patients are sampled from a broader,

and arguably less specific, population: they will come from a larger geographical area, have more

heterogeneous genetics, lifestyles, nutritional habits and so on. This is supposed to make the

results more generalisable to a wider population (Buyse et al., 1984); nevertheless, this approach

is sometimes criticized as most of the times centres are not randomly selected, (Yamaguchi and

Ohashi, 1999).

Although the focus of many clinical trials is usually on the time to an event of interest, the

study of the entire event-history of the subjects yields a sharper comprehension of the medical

phenomenon (Andersen and Keiding, 2002; Aalen et al., 2008). Event-history analysis allows to

detect the effect of the occurrence of intermediate events on the risk of the following ones, as well

as to separate the net effect of risk factors on the hazard of many competing events. The joint

study of many events is of first importance in cancer research, the times to relapse, to progression

or to metastases being of interest both per se and in relation to the time to death.

Multicenter clinical trials with different endpoints could benefit from the collaborative recruit-

ment while taking advantage of the availability of a very complete picture of the evolution of the

disease. Then, the study of event-histories of cancer patients in multicenter trials can offer, in

reasonably short times, a deep insight into the dynamics of the disease.
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2.2 The statistical challenge

If multicenter trials are very useful for recruiting a higher number of patients in shorter times,

they give origin to the problem of clustering (Hougaard, 1995; Rodr̀ıguez, 2005). Indeed, usually not

all the important risk factors can be measured and it is reasonable to assume that at least some of

them are shared by patients treated in the same hospital. Factors linked to the population (genetics

and biology, behaviours, diet habits, lifestyles, etc.) add up to others due to socio-geography

(environment, climate, healthcare systems and policies, etc.) and to the efficacy and quality of the

whole patient care in each hospital. These shared latent factors make the level of risk vary across

the groups, inducing dependence between observations belonging to the same cluster.

In survival analysis there exists two main approaches to deal with clustering (Glidden and

Vittinghoff, 2004). Marginal modelling (Wei et al., 1989; Lee et al., 1992; Lin, 1994) aims at

estimating the average effect of covariates in a given population, whereas shared frailty models

(Duchateau and Janssen, 2008; Wienke, 2010) their conditional effect, given the reference risk

level of the subpopulation to which a subject belongs. Frailty models are essentially proportional

hazard models with a random effect shared by all the subjects in each group. Frailty models are

getting more and more popular as they allow to model survival data by reducing inconsistency of

regression parameter estimators in the case of common unobserved risk factors, and are naturally

suited for multicenter trials (Ha et al., 2011). In addition, they are a valuable tool to investigate the

source and the type of dependence between clustered observations. Finally, they allow to correct

the selection effect (Vaupel and Yashin, 1985b): if subjects have different baseline risk levels, the

ones with higher risk will leave the study earlier and the risk at late times will be estimated based

mostly on those with lower risk, so it will be underestimated (see Sec. 3.3, Fig. 3.4).

Though, frailty models are conceived for the time to a single event, while the interest in many

contexts is in the joint study of the times to different endpoints and in the relations between them.

Multi-state models (Hougaard, 1999b; Andersen and Keiding, 2002; Putter et al., 2007) serve this

aim, extending survival models for stochastic processes with more than the two classical states:

“alive” and “dead”. They are particularly suited for cancer trials, where the occurrence of local

relapses, progression or distant metastases is of strong interest, as well as the death time. On

the other hand, inference for multi-state models is based on the assumption of independent and

identically distributed observations, which does not hold in presence of clustering.

The incorporation of frailties into multi-state models is a primary aim of present research in

survival analysis. In recent years, some first publications addressing this problem have appeared

(e. g. Bhattacharyya and Klein, 2005; Yen et al., 2010; Ma et al., 2010; Liquet et al., 2012), proposing

some partial solutions. The main weakness of the present solutions is the dependence structure,

as the frailties have been assumed to be shared by times to any transition or to be shared only

by times to each transition, but independent across event types. These assumptions are done to

keep the models simple and manageable, but they seem to be quite restrictive with respect to

their meaning in biological terms. The use of correlated frailties, a midway between shared and

independent, would be the most reasonable description of the reality. A possible way to obtain

them is represented by the use of nested multiplicative frailties (Sastry, 1997; Rondeau et al., 2006).

The applicability of this solution to a multi-state framework raises more problems due to the link

between different transitions within the same subject. The presence of several distinct events also
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increases the parameter space size and requires the presence of sufficient information to recover the

features of each transition.
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Chapter 3

Background

3.1 Survival analysis

Survival analysis is an important field of statistics dealing with time-to-event, or duration, data

which receives much attention in the literature: in addition to continuously appearing papers, many

outstanding authors dedicated entire textbooks to this subject, exploiting different approaches and

at levels of accessibility (Andersen et al., 1993; Hougaard, 2000; Therneau and Grambsch, 2000;

Kalbfleisch and Prentice, 2002; Klein and Moeschberger, 2003; Collett, 2003; Aalen et al., 2008).

Durations are typically measured as the amount of time elapsed since a so-called origin event until

an event of interest. The first and most natural example is the time since birth to death, which

gave origin to the name “survival data”. Many examples exist in several research fields such as

demography, industry and socio-economic sciences. We will concentrate on applications in clinical

research, with particular attention to oncology. Then, typical endpoints are the occurrence of local

relapse, progression, remission, distant metastasis or death since the diagnosis, the randomisation,

the end of the therapy, surgery, etcetera.

Such kind of data are described by non-negative random variables. We will consider only the

case of continuous measures; the problem of discrete times is usually tackled by interval censoring

techniques, assuming that what is recorded is in fact a discrete measure of a continuous value. The

peculiarity of duration data is the fact that unobserved times are not completely missing data, but

partial data: if at a given moment t the event of interest has not occurred yet, then the value of T

is missing but we know for sure that T > t. This partial information on the lower bound of missing

values is called right censoring and is practically unavoidable for duration data.

Throughout this thesis, we will consider data collected on a sample of n subjects; for the generic

i-th one, the couple of random variables (Yi, δi) is observed, with Yi = min(Ti, Ci) the minimum

between the event time Ti and the censoring time Ci, and δi = 1(Ti ≤ Ci) the event/censoring

indicator which is 1 if the event time is observed and 0 if it is censored.

Another aspect of the same problem is the updating, or conditioning, process: as the data are

collected along time, more and more information is available. This is not only the observation of

new events, for which the time values become known, but also for those subjects which are still at

risk for the event of interest: the knowledge that an amount of time has passed and the event has

not occurred yet is not a totally missing data, but a valuable information to take into account.
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From a mathematical point of view, the updating process means that, instead of considering the

probability density function f(t) of the time variable T , it is worth focusing on its hazard function

h(t) = lim
∆t↘0

P(t ≤ T < t+ ∆t | T ≥ t)
∆t

=
f(t)

S(t)
, (3.1)

which is the instantaneous probability for the event to occur, conditional on not having occurred yet.

S(t) = 1− F (t) is called survival function, since it is the probability of not having experienced the

event of interest yet, i.e. of having survived until time t in a time-to-death framework. According to

the context, it can be useful to express the relation between hazard function and survival function

as one of the following:

h(t) = − d

dt
logS(t), (3.2)

S(t) = exp
{
− Λ(t)

}
, (3.3)

where Λ(t) =
∫ t

0
λ(s)ds is the cumulative hazard function.

3.1.1 Proportional hazard models

Two main approaches exist to model the impact of a set of covariates x = (x1, . . . , xp)
> on the

risk of the event of interest. On one hand , accelerated failure time models (Wei, 1992) are based on

a linear relation with the logarithm of the event times. On the other hand, the proportional hazard

model, the popularity of which is mainly due to Cox (1972), is undoubtedly the most known, used,

widespread and studied regression model for survival data. This model relies on the assumption

that the hazard, given explanatory variables, is proportional to a given baseline hazard function

λ0(t):

λ(t; x) = λ0(t) exp
{
β>x

}
, (3.4)

where λ0(t) is the hazard in the case x = (0, . . . , 0)>.

The ratio between the hazard of two subjects is

h(t; xi)

h(t; xi′)
= exp

{
β>(xi − xi′)

}
(3.5)

which is constant over time; so the hazard functions of different subjects are proportional to each

other. As a consequence, each coefficient βj is the log-hazard ratio for two subjects for which the

xj is the only covariate which differs, and the difference is 1. Indeed, in this case, we have

h(t; xi)

h(t; xi′)
= exp

{
βj (xij − (xij − 1))

}
= exp {βj} . (3.6)

The main contribution given by Cox (1972) is the semiparametric estimation approach for

the regression parameters. The baseline hazard function can be estimated non-parametrically and

profiled out of the likelihood. Regression parameters β can then be estimated via maximisation of

the partial likelihood

LP(β) =

n∏
i=1

(
exp

{
β>xi

}∑
i′∈R(yi)

exp
{
β>xi′

})δi , (3.7)
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where R(y) = {i′ | yi′ ≥ y} is the risk set, i.e. the set of subjects still at risk, at time y.

3.2 Multi-state models

In survival analysis, the time of an event of interest is usually assumed to be either observed or

censored in an uninformative way. Most often, censoring is due to different causes, some of which

are independent of the event of interest, while some others are not. Furthermore, some events can

occur before the one of interest, changing its risk. Finally, more than one event can be of interest

and the occurrence of one of them can preclude or be necessary for the occurrence of others.

Such complex sequences of events, called event-histories, can be thought of as sequences of

transitions between some states. Then, a graphical representation is possible in terms of states

(nodes) and admissible transitions (arrows).

NED De

LR

DM

LR+DM

Figure 3.1 – Cancer model. NED: No Evidence of new Disease, De: Dead, LR: Local Relapse, DM:
Distant Metastases. Transitions which represent analogous events are represented by arrows with
the same line type.

Figure 3.1 shows an example, which is typical of cancer studies; the main endpoint is the time to

death, but the local relapse (LR) and/or distant metastases (DM) can occur before. It is interesting

to study the three risks jointly and the effect of the occurrence of intermediate adverse events on

the risk of death.

Some typical state structures (Fig. 3.2) are reviewed by (Hougaard, 2000, Ch. 5): recurrent

events, competing risks, alternating states, disability model, mortality model, bivariate model.

The problem of recurrent events (Cook and Lawless, 2002; Rondeau et al., 2010) can mainly

be dealt with frailty models (Sec. 3.3). Methods which are specific for competing risks have been

developed, notably since the works by Gray (1988) and Fine and Gray (1999). A complete review
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Recurrent Events Model

...

●

Competing Risks Model

...

Alternating States Model

●

Disability Model

Mortality Model

●

Bivariate Model

Figure 3.2 – Common multi-state structures (Hougaard, 2000, Ch. 5).

is the book by Pintilie (2006). The mortality model setting corresponds to the classical survival

problem, which is largely debated in the literature.

Multi-state models represent the so called life-history (or event-history) approach to longitudinal

data modelling (Andersen and Keiding, 2002), characterized by different types of possible events

and event-related risk dependence.

In the context of multi-state models, the possible events are several and the risk is different

for each one. The risk of entering the state l at time t, given all the history Ht until time t is the

transition-specific hazard

λl(t | Ht−) = lim
∆t↘0

P
[
S(t+ ∆t) = l | Ht−

]
∆t

, (3.8)

with S(t) the state at time t and Ht− =
{
S(t′), t′ ∈ [0, t)

}
.

For each subject i = 1, . . . , n, the observed data are the last time at which the subject is

observed, Ci, and a set of couples (ti,j , si,j), j = 1, . . . , Ji, concerning the Ji observed transitions

at times ti,j to states si,j . Then, each subject i contributes to the likelihood by the hazard

λsi,j (ti,j | Ht−i,j ) at transition times, and by the survival function exp
(
−
∫ ti,j
ti,j−1

λsi,j (u | Hu−)du
)

,

with λsi,j (t | Ht−) =
∑
s6=si,j λs(t | Ht−), for the sojourns periods. Hence, the likelihood function
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is in general (Hougaard, 2000, Sec. 4)

L =

n∏
i=1


Ji∏
j=1

λsi,j (ti,j | Ht−i,j ) exp

− ti,j∫
ti,j−1

λsi,j (u | Hu−)du




exp

− Ci∫
ti,Ji

λsi,j (u | Hu−)du


 , (3.9)

with ti,0 = 0,∀i,. This likelihood is the product of the hazard functions at observed transition times

and the survival functions on the sojourn periods, here included the one between the last observed

transition and the last observation time Ci.

Often, the focus of interest in medical research is the biological understanding of the influence

of risk factors and past history on the hazards. The clinical practice, on its side, needs forecasting

tools based on probabilities of future events, given all the information available until the present

moment. The transition probability at time t into state l, given information available until time u,

is defined as

Pl (u, t) = P
[
S(t) = l | Hu

]
. (3.10)

If u ≥ t, then Pl (u, t) is either 0 or 1 because the past is known. Thus, it only makes sense to

compute transition probabilities for u < t.

A general analysis approach is not available for multi-state survival data; nevertheless, mild

assumptions allow to hugely simplify the problem and to obtain very general and powerful analysis

tools. In the following we concentrate on these particular cases, reviewed in details by Hougaard

(2000, Ch. 5–6), notably on Markov models. First, we need some definitions.

Definition 1 (Parents and children of a state). For each state s, (i) the set of its parents is

the set of states from which a direct transition into s is possible and (ii) the set of its children is

the set of states to which a direct transition from s exists.

Definition 2 (Initial, transient and absorbing states). A state is called (i) initial if its parents

set is empty, (ii) absorbing (or final) if its children set is empty, (iii) transient (or intermediate) if

both its parents and children sets are non-empty. States which are both initial and absorbing are

necessarily isolated, so of no interest.

Progressive models. A multi-state model is progressive if the size of the parents set of each

state is at most 1. In other words only one possible incoming transition is possible for each state. In

this case, the knowledge on the current state also implies the knowledge about the whole previous

path, i.e. the ordered list of the states visited in the past. Among the examples in Figure 3.2, the

recurrent events, the competing risks and the mortality models are progressive.

The interest in progressive multi-state models is that the transition probabilities can be expressed

in terms of multiple integrals instead of differential equations. Indeed, the probability (3.10) for a
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NED

LR

DM

LR>DM

DM>LR

LR>DM>De

LR>De

De

DM>De

DM>LR>De

Figure 3.3 – Progressive form of cancer model (Fig. 3.1). NED: No Evidence of Disease, De: Dead,
LR: Local Relapse, DM: Distant Metastes, LR>DM: Local Relapse then Distant Metastases , LR>De:
Local Relapse then Dead, LR>DM>De: Local Relapse then Distant Metastases then Dead, DM>LR:
Distant Metastases then Local Relapse, DM>De: Distant Metastases then Dead, DM>LR>De:
Distant Metastases then Local Relapse then Dead.

progressive model is

Pl (u, t) =

t∫
u

t∫
u1

· · ·
t∫

uk−1

k∏
j=1

λlj (uj | Hu−j ) exp

−
uj∫

uj−1

λlj (v | Hv−)dv




exp

−
t∫

uk

λlj (v | Hv−)dv

duk . . . du1, (3.11)

with l1, . . . , lk−1 the states in the path between S(u) and l, k − 1 their number, u0 = u and lk = l

(Putter et al., 2006, Sec. 4.5).

In many cases a non-progressive model can be transformed into a progressive one by splitting

the states with more than one parent. For instance, the non-progressive cancer model in Figure 3.1

can be made progressive as shown in Figure 3.3. It is clear that, in order to obtain a progressive

form, the number of states and of possible transitions rapidly grows. For complex multi-state

structure this is unfeasible in practice, or not convenient at least.

Markov, semi-Markov and Markov extension models. According to the general formula-

tion of the transition-specific hazard (3.8), the risk of leaving the present state depends on the past

history Ht− . Under Markov assumption

λl(t | Ht−) = λl
(
t | S(t−)

)
. (3.12)
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This means that, conditionally on the present state, the past has no influence on the risk. As a

consequence, the hazards of transitions between each couple of states can be defined much simplier

as

λml(t) = λl
(
t | S(t−) = m

)
. (3.13)

Semi-Markov models are similar to Markov ones because the risk depends on past history

through the present state and time. The difference is that semi-Markov models take into account,

too, the time since last transition, that is since entry into the present state. This difference can

also be linked to the choice of time scale: in the so called “clock-reset approach” (Putter et al.,

2007) or “gap time representation” (Duchateau and Janssen, 2008), the time is reset to 0 at each

transition; on the other hand in the “clock-forward approach” or “calendar time representation”

the time origin is only one and left censoring is used to separate the at-risk from the not-at-risk

periods for each subject.

Markov-extension models relax the Markov and semi-Markov assumptions in several possible

ways. The most common relaxation consists in allowing hazards to depend also on the time to

previous events or on which states have been visited before. This information can be incorporated

by means of time-dependent covariates.

Under the Markov assumption, the likelihood function (3.9) can be factorized into

L =
∏
m

∏
l

n∏
i=1

Ji∏
j=1

(λml(ti,j))δml(i,j) exp

−δm(i, j)

ti,j∫
ti,j−1

λml(u)du


 , (3.14)

with δml(i, j) the indicator for the j-th transition of subject i being from state m to state l and

δm(i, j) =
∑
l 6=m δml(i, j) the indicator for the j-th transition of subject i starting from state m.

Analogous but more complex expressions are attainable for semi-Markov and Markov-extension

models, with appropriate expressions of hazard functions.

The hazard of each transition can then be modelled separately if each one has different

parameters. Constraints can be imposed in order to account for similarities of some events and to

simplify the problem. In the example in Figure 3.1, for instance, proportionality of baseline hazards

and common regression parameters can be assumed for analogous transitions like all those going

into state De. In these cases, the transitions with common baseline and/or common regression

parameters must be considered together in estimation procedures, as illustrated in details by

de Wreede et al. (2011). In particular, common baseline hazards are treated as a unique transition

type while dummy indicators are created to distinguish transitions and model their hazard ratios.

Common regression parameters are modelled by a stratified model, with strata corresponding to

transition types.

A counting process formulation of the likelihood quantities (Andersen et al., 1993; de Wreede

et al., 2010) is sometimes convenient. In this representation, transitions are recorded as changes of

the value of a stochastic process.

Let us denote by q ∈ {1, . . . , Q} all the ordered couples (m, l) of states between which a direct

transition is possible. Let then Nqi(t) be the counting process for transitions of type q for subject

i ∈ {1, . . . , n}. Analogously, Yqi(t) is defined as the at-risk stochastic process for transitions of

type q for subject i, being 1 if the subject is at risk of event q at time t−, 0 otherwise. Let further
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Nq(t) =
∑n
i=1 Nqi(t) and Yq(t) =

∑n
i=1 Yqi(t) be the aggregated processes for transitions of type q

for the whole sample. Then, the likelihood function (3.14) can be expressed as

L =

Q∏
q=1

n∏
i=1

exp


∞∫

0

log λq(t)dNqi(t)−
∞∫

0

λq(t)Yqi(t)dt

 (3.15)

(Kalbfleisch and Prentice, 2002, Eq. 8.30).

3.2.1 Inference

Summarising details by Andersen et al. (1993, Sec. VII.2) and de Wreede et al. (2010, Sec. 2.3.2),

we consider a proportional hazards regression model for the transition-specific hazard

λqi(t; xi) = λq0(t) exp
{
β>xqi(t)

}
, (3.16)

with q = 1, . . . , Q the transition type, i = 1, . . . , n the subject, λq0(t) the baseline hazard for

transitions of type q, β the vector of the stacked transition-specific coefficient vectors βq, and xqi(t)

a vector of transition-specific covariates, possibly time-dependent, derived from xi.

The way xqi(t) is obtained from xi is linked to the data transformation from wide to long

format (Putter, 2011; de Wreede et al., 2011). This transformation allows, for instance, to include

different covariates for different transitions or to leave the same covariate have different coefficients

in different transitions; further, it is needed to include informations concerning past transitions.

Finally, proportionality of hazards of different transitions can be specified by using the same

baseline and by inserting a dummy variable into xqi(t). A small explicative example is shown in

Appendix B.1.

The full loglikelihood of the model (3.16) is (App. A.1)

`
(
β,λ0(·)

)
=

Q∑
q=1

n∑
i=1


∞∫

0

log λqi(t)dNqi(t)−
∞∫

0

λqi(t)Yqi(t)dt

 , (3.17)

with λ0(·) = (λ10(t), . . . , λQ0(t))
>

the vector of the baseline hazard functions.

If a parametric form λq0(·; ξq) is assumed for the baseline hazards λ0(t), the full loglikelihood

(3.17) can be maximised with respect to all the parameters
(
ξ>,β>

)>
.

In a semiparametric framework, instead, the regression parameters can be estimated like in the

case of a Cox model stratified by transition type q. The partial loglikelihood for the model (3.16) is

`P(β) =

Q∑
q=1

n∑
i=1

∞∫
0

[
β>xqi(t)− logY(0)

q (β, t)
]

dNqi(t), (3.18)

with

Y(0)
q (β, t) =

n∑
i=1

exp
{
β>xqi(t)

}
Yqi(t) (3.19)

the weighted risk set.
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The Fisher information matrix is

I(β) =

Q∑
q=0

∞∫
0

Vq(β, t)dNq(t), (3.20)

with

Vq(β, t) =
Y(2)
q (β, t)

Y(0)
q (β, t)

− Eq(β, t)E
>
q (β, t), (3.21)

Eq(β, t) =
Y(1)
q (β, t)

Y(0)
q (β, t)

, (3.22)

Y(1)
q (β, t) =

n∑
i=1

xqi(t) exp
{
β>xqi(t)

}
Yqi(t), (3.23)

Y(2)
q (β, t) =

n∑
i=1

xqi(t)x
>
qi(t) exp

{
β>xqi(t)

}
Yqi(t). (3.24)

Nonparametric estimation of baseline hazards. The Nelson–Aalen estimator (Nelson, 1969;

Aalen, 1976) gives an estimate of the hazard function for independent and identically distributed

observations, without accounting for covariates effect. The estimator of the transition-specific

hazard is

λ̂q(t) =
dNq(t)

Yq(t)
, (3.25)

with dNq(t) the number of transitions of type q at time t. Two (pointwise) variance estimators

exist: the Aalen estimator

V̂(λ̂q(t)) =
dNq(t)

Y2
q(t)

=
λ̂q(t)

Yq(t)
(3.26)

and the Greenwood (1926) estimator

V̂(λ̂q(t)) =
dNq(t)(Yq(t)− dNq(t))

Y3
q(t)

=
λ̂q(t)(1− λ̂q(t))

Yq(t)
· (3.27)

In a regression context, the Nelson–Aalen estimator is replaced by a weighted version, the

Breslow (1972) estimator for the baseline hazard functions

λ̂q0(t; β̂) =
dNq(t)

Y(0)
q (β̂, t)

, (3.28)

with Y(0)
q (β̂, t) computed by plugging into (3.19) the regression parameters estimates β̂ obtained

by semiparametric inference.

Once the estimates of both the regression parameters β̂ and the baseline hazards λ̂q0(t; β̂) are

obtained, the cumulative hazards for a given patient with covariates x∗ are estimated as

Λ̂q(t; β̂,x
∗) = exp(β̂>x∗q)

t∫
0

λ̂q0(u; β̂)dNq(u), q = 1, . . . , Q, (3.29)
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with x∗q the expanded covariates for transition q. They can be collected into the square matrix

Λ̂(t; β̂; x), with lines corresponding to origin states and columns to arrival states. Diagonal elements

are minus the sum of the other elements in the line.

3.2.2 Transition probabilities

Under Markov assumption, the transition probabilities (3.10) are

Pml(u, t) = P
[
S(t) = l | S(u) = m

]
(3.30)

and they are the solution of a set of differential equations (Andersen et al., 1993, p. 93)

d

dt
P (u, t) = G(t)>P (u, t), (3.31)

with P (u, t) = {Pml(u, t)}m,l and G(t) a matrix with off diagonal elements Gml(t) = λml(t) and

diagonal elements Gmm(t) = −
∑
l 6=m λml(t).

Even though the equations

d

dt
Pml(u, t) =

∑
k

Pmk(u, t)λkl(t) (3.32)

in (3.31) are not solvable due to the non-constancy over time of the matrix G(t), the transition

probabilities are directly attainable, under Markov assumption, by the hazards as product integral

(Gill, 2001)

P (u, t) = Πt
u

(
I + dΛ(v)

)
, (3.33)

with I the identity matrix and Λ(v) the matrix with off-diagonal elements Λml(v) =
∫ v

0
λml(s)ds

and diagonal elements Λmm(v) = −
∑
l 6=m Λml(v) (Andersen et al., 1993). The corresponding

Aalen-Johansen-type estimator based on the estimated cumulative hazards matrix is

P̂ (s, t; x) = Πt
s

(
I + dΛ̂(u; β̂,x)

)
. (3.34)

The transition probabilities can be used for two types of prediction: forward and fixed horizon

(Putter et al., 2006, Sec. 4.5; de Wreede et al., 2010, Sec. 2.3.3). In the former case, the time of

prediction s is fixed and the time for prediction t varies, i.e. at a given time s the probabilities

of possible future events are evaluated for varying time horizons t. In the latter case, once the

time horizon t is fixed, prediction is made from several timepoints s, i.e. the interest is in making

prediction for a chosen time t, assuming that something has or has not happened at different

moments s.

In both cases, pointwise confidence intervals can be built by means of Aalen-type and Greenwood-

type estimators of the variance-covariance matrix of P̂ (s, t; x). de Wreede et al. (2010) give both

the direct and the recursive expressions for these estimators, in Equations 17–22. The authors also

provide a bootstrap method for the computation of cumulative hazards and transition probabilities

for semi-Markov and Markov-extension models.
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Figure 3.4 – Selection effect. The solid line is the conditional hazard, given the unobserved risk
factors, then without the effect of unobserved heterogeneity. The dashed line is the marginal hazard,
affected by the selection at late times.

3.3 Frailty models

Inference for proportional hazard models is usually based on the assumption of independent and

identically distributed samples. If it does not hold, the estimation of regression coefficients is not

consistent in general (Andersen et al., 1999, Duchateau and Janssen, 2008, Sec. 3.4.2; Hougaard,

2000, Sec. 13.2). There exist, indeed, many situations in which it is more sensible to expect that

subjects present different levels of risk, even conditionally on observed covariates. This is mainly

due to the fact that not all the relevant risk factors are measured. Unobserved risk factors can be

subject-specific or common to groups like families, communities, geographical areas and so on. The

most important consequence of heterogeneous baseline hazards is the selection effect: on average

the highest-risk subjects fail earlier, thus the hazard at late times is estimated on the basis of the

lowest-risk ones (Vaupel and Yashin, 1985b). Figure 3.4 shows an example of the selection effect

which results in a spurious reduction of the marginal risk at late times, if unobserved risk factors

are not taken into account.

Moving from ideas similar to those of generalised linear mixed models (GLMM, McCulloch

et al., 2008), frailty models extend proportional hazard models by means of random effects to deal

with differences in baselines. In a GLMM perspective, an unobserved random effect w can be added

on the log-hazard scale as

log
{
λ(t; x | w)

}
= log

{
λ0(t)

}
+ w + β>x, (3.35)

with λ0(t) the baseline hazard function, and x the vector of covariates. Usually, the frailty model



20 Background

is rather expressed on the hazard scale, so that (3.35) is

λ(t; x | u) = λ0(t)u exp
{
β>x

}
, (3.36)

with u = ew. Vaupel et al. (1979) first named it frailty term because it is a multiplicative factor

which increases or decreases the risk level at all times, describing the different predisposition to the

event of interest. Its distribution fU (u) determines many features of the unobserved heterogeneity

effect. In Section 3.3.4 we present many possibilities and we discuss their main characteristics.

Note that, despite this is an extension of the proportional hazard model, hazards are not

marginally proportional, at least in general. According to model (3.36), the ratio between the

hazards of two subjects is

λi(t | ui)
λj(t | uj)

=
ui exp

{
β>xi

}
uj exp

{
β>xj

} 6= exp
{
β>xi

}
exp

{
β>xj

} , (3.37)

except in the case of ui = uj . Therefore, the hazards are proportional conditionally on the frailty

terms, but not in general. Then, the regression coefficients β can no longer be directly interpreted

in terms of hazard ratios; their values represent the log-hazard ratios only conditionally on the

frailty, i.e. between two subjects sharing frailty term u.

Univariate frailty models. It may happen that important risk factors are not included in the

set of measured covariates x. Thus, the baseline hazard varies across subjects, so time variables of

different patients are not identically distributed, even conditionally on observed covariates. This

causes the overdispersion phenomenon, that is an increased variability of the parameter estimates,

caused by the uncertainty due to missing information in addition to variability of data.

The univariate frailty model, treated in details by Wienke (2010, Ch. 3), embodies the effect of

all the relevant unobserved risk factors in a subject-specific frailty. The conditional hazard function

(3.36) is then

λi(t | ui) = λ0(t)ui exp
{
β>xi

}
, (3.38)

with λi(t | ui) the hazard function of the i-th subject, λ0(t) the baseline hazard, xi the vector of

covariates and ui its frailty.

In the context of univariate frailty models, the regression coefficients still represent log-hazard

ratios conditional on the frailty value, but the fact that each subject has a different frailty term

does not allow any direct one-to-one comparison between subjects.

Shared frailty models. The other important cause of violation of the independence assumption

is the so-called clustering : the presence of groups of subjects which have common unobserved risk

factors. A common example is given by multicenter clinical trials: patients in the same hospital

have arguably more similar risk levels than patients in different centres (Duchateau et al., 2002;

Ha et al., 2011). Other examples of clustered data are repeated measures on the same patient or

recurrent events (Duchateau et al., 2003; Rondeau, 2010), paired organs from the same organism

(Hougaard, 1995; Xue and Ding, 1999), patients who are relatives, etc.

Because of clustering, the baseline risks of different clusters are different, which induces

dependence between their survival times. Common solutions to this problem (O’Quigley and Stare,
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2002; Glidden and Vittinghoff, 2004) are the stratified model and the fixed effects model. By means

of stratification, the baseline risk of each group is modelled separately, either parametrically or

not. This approach is very flexible but not all information is used and interpretation is restricted

to participating centers. This yields very inaccurate estimates in case of small size groups. The

fixed effects model, on the contrary, requires the assumption of proportionality of baselines of

different clusters but is easily readable in terms of hazard ratios. Fixed effects models have the big

disadvantage of requiring as many parameters as the number of groups minus one.

Shared frailty models account for different risk levels of clusters by means of group-specific

random effects. Only few parameters — typically only one — are needed and estimation is based

on all the observations. Most interesting, the estimate of the variability of the random effect has

a strong interpretation in terms of heterogeneity: it provides a measure of how much groups are

different.

The name shared frailty models is due the fact that subjects in the same cluster share the same

frailty factor. These are the most used and studied frailty models in literature (Hougaard, 2000;

Duchateau and Janssen, 2008).

The conditional hazard (3.36) for the shared frailty model is

λhi(t | uh) = λ0(t)uh exp
{
β>xhi

}
(3.39)

for subject i = 1, . . . , nh in group h = 1, . . . ,H, with λ0(t) the baseline hazard function, xhi the

vector of covariates and uh the frailty of the cluster h.

In shared frailty models, the time variables Thi are independent conditionally on the frailty

values, that is for fixed realisations of the Uh’s random variables. Then, the regression coefficients

β are the log-hazard ratios between two patients belonging to the same group.

Finally, note that in the case that all groups are of unit size, the shared frailty model (3.39)

reduces to a univariate frailty model (3.38). Therefore, from a technical point of view, the univariate

model is only a particular case of the shared frailty model. Nevertheless the interpretation is quite

different in terms of unobserved information: the frailty variance is interpreted as the strength of

dependence in case of shared information, whereas it is an index of overdispersion in the univariate

case.

Correlated frailty models. A more general class of models is that of correlated frailty models

(Wienke, 2010, Ch. 5; Duchateau and Janssen, 2008, Sec.’s 6.2 and 7.2), that account for correlation

between observations in the same cluster through distinct but dependent frailty terms. This makes

the dependence more flexible and allows to consider more complex dependence structures. Each

subject has his own frailty Uhi and independence across clusters is still assumed

Uhi ⊥⊥ Uh′i′ ⇐ h 6= h′, (3.40)

while the dependence within the vector of frailties within each group Uh = (Uh1, . . . , Uhnh) is

modelled by assuming a joint distribution according to the nature of the phenomenon. These models

are more suited for accounting for both common and individual risks, but no general estimation

method exists for any choice of the joint frailties distribution. Ad hoc solutions exist for specific

situations (Wienke, 2010, Ch. 5).
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Shared frailty models are a particular case of correlated frailty models, with frailties of grouped

subjects which are totally dependent:

Uhi = Uhi′ , ∀i, i′ ∈ {1, . . . , nh}. (3.41)

On their turn, correlated frailty models are a particular case of the multivariate frailty models

(Hougaard, 2000, Ch. 10), accounting in a more general way for correlation between grouped

observations.

Nested frailty models. A very interesting way of obtaining correlated frailties is by means of

nested frailties (Wienke, 2010, Sec. 7.3): the advantages include both straightforward interpretability

and analytical convenience.

The underlying idea is that the frailties of subjects in the same group depend on unobserved

factors, some of which are shared and some are subject-specific. Consequently, as the level of risk

is the combination of a group and a subject factor, the time variables are distinct but positively

dependent.

First publications on this subject were oriented towards additive frailties (Vaupel and Yashin,

1985a; Parner, 1998; Petersen, 1998; Hougaard, 2000, Sec. 10.5) but, since Sastry’s paper in 1997,

the multiplicative approach has become largely predominant (Yau, 2001; Rondeau et al., 2006;

Horny, 2009; Shih and Lu, 2009) as it allows factorisation, useful in marginalising the conditional

likelihood.

If we consider subjects clustered in groups and subgroups, then the conditional hazard (3.36)

becomes

λ(t | vh, whj) = λ0(t)vhwhj exp
{
β>xhji

}
, (3.42)

for subject i = 1, . . . , nhj in subgroup j = 1, . . . , Jh of group h = 1, . . . ,H, with xhi the vector of

covariates, vh the group frailty and whj the subgroup frailty.

Let Uhj = VhWhj be the (multiplicative) group-subgroup frailty and assume that the frailties

V1, . . . , VH ,W11, . . . ,WHJH are mutually independent. Then, we have independence across clusters,

Uhj ⊥⊥ Uh′j′ ⇐ h 6= h′, (3.43)

and positive dependence across subclusters,

Cov(Uhj , Uhj′) = E(V 2
hWhjWhj′)− E(VhWhj)E(VhWhj′)

= V(Vh)E(Whj)E(Whj′) > 0. (3.44)

3.3.1 Notation

Definition 3 (Conditional hazard). Consider a generic frailty model. As mentioned above

(Eq. 3.36), we define the conditional hazard for a subject with covariate vector x as

λ(t | u) = λ0(t)u exp
{
β>x

}
. (3.45)

It is called conditional hazard as it is conditional on the value u of the frailty term U .
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Definition 4 (Conditional survival function). The survival function associated to the hazard

(3.45) is

S(t | u) = exp
{
− Λ(t | u)

}
, (3.46)

with

Λ(t | u) =

t∫
0

λ(s | u)ds

= uΛ0(t) exp
{
β>x

}
(3.47)

the conditional cumulative hazard and where Λ0(t) =
∫ t

0
λ0(s)ds is the cumulative baseline hazard.

Definition 5 (Population survival function). The marginal survival function, called population

survival function, is

S(t) =

∞∫
0

S(t | u)fU (u)du

= L
(

Λ0(t) exp
{
β>x

})
, (3.48)

with fU (u) the frailty distribution and L(s) = E
[

exp
{
− Us

}]
its Laplace transform. The

population survival function is marginalised with respect to the frailty distribution, so it is somehow

representative of the entire population, given covariates values x. In addition, the frailty values are

unknown and unobservable, so Equation 3.48 is particularly useful for estimation (see Sec. 3.3.3).

Definition 6 (Joint conditional survival function). Thanks to conditional independence, the

joint conditional survival function of all the subjects within a cluster h is the product of the

subject-specific ones:

Sh(t | u) =

nh∏
i=1

Shi(ti | u)

= exp

{
−u

nh∑
i=1

Λ0(ti) exp
{
β>xhi

}}
, (3.49)

with t = (t1, . . . , tnh)> and nh the dimension of cluster h.

Definition 7 (Joint survival function). As the frailties are not observable, the distribution

marginalised with respect to the frailty distribution is used for inference procedures: the joint

survival function of subjects in cluster h is

Sh(t) =

∞∫
0

Sh(t | u)fU (u)du

= L

(
nh∑
i=1

Λ0(ti) exp
{
β>xhi

})
. (3.50)

Definition 8 (Joint density). It is easy to derive from Equation 3.50 the joint density for cluster
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h

fh(t) = (−1)nh

(
nh∏
i=1

λ0(ti) exp
{
β>xhi

})
L(nh)

(
nh∑
i=1

Λ0(ti) exp
{
β>xhi

})
, (3.51)

with

L(k)(s) =
dk

dsk
L(s) = (−1)kE

[
Uk exp(−Us)

]
. (3.52)

All the quantities defined in this section are summarised in Table 3.1, together with their

probability interpretation.

3.3.2 Likelihood

Shared frailties. In the shared frailty model (3.39) the frailties uh are unobservable realisations

of random variables which are assumed to be independent and identically distributed, with a

common frailty distribution:

Uh
iid∼ fU (u; θ), h = 1, . . . ,H. (3.53)

Many different distributions have been proposed in the literature (Hougaard, 2000, Ch. 7; Duchateau

and Janssen, 2008, Ch. 4; Wienke, 2010, Ch.’s 3–4) with different consequences on the dependence

structure within clusters (cf. Sec. 3.3.4). Due to identifiability issues, the mean of the frailty

distribution is usually fixed to 1, so that the baseline hazard λ0(t) represents the risk level with

average frailty. Thus, in most cases, the remaining parameter is the frailty variance, which is a

measure of the heterogeneity between clusters and, at the same time, of dependence within clusters.

Thanks to assumptions (3.53), the full likelihood can be obtained as a product over clusters:

L(ζ) =

H∏
h=1

LC,h(ξ,β | uh)fU (uh; θ) (3.54)

with ζ =
(
ξ>, θ,β>

)>
and where ξ is either the baseline hazard parameters or the baseline hazard

function itself, and θ the frailty distribution parameter. LC,h(ξ,β | uh) is the contribution of cluster

h to the conditional likelihood, given the frailty value,

LC(ξ,β | u) =

H∏
h=1

LC,h(ξ,β | uh)

=

H∏
h=1

nh∏
i=1

(
λhi(yhi | uh)

)δhi
Shi(yhi | uh), (3.55)

with u = (u1, . . . , uH)> the vector of the frailties.

As the frailties are not observable, the likelihood (3.54) is not evaluable. Therefore, in some
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cases it is marginalised with respect to U: the so-obtained marginal likelihood is

LM(ζ) =

H∏
h=1

LM,h(ζ)

=

H∏
h=1


∞∫

0

LC,h(ξ,β | uh)fU (uh; θ)duh


=

H∏
h=1

{[
nh∏
i=1

(
λ0(yhi) exp

{
β>xhi

})δhi]

(−1)dhL(dh)

(
nh∑
i=1

Λ0(yhi) exp
{
β>xhi

})}
, (3.56)

with dh =
∑nh
i=1 δhi the number of events in cluster h.

In other cases, the baseline hazard is estimated non parametrically and profiled out of the

conditional likelihood (3.55). This profiled likelihood is called partial likelihood and is given by

LP(β | u) =

H∏
h=1

nh∏
i=1

{
uh exp

{
β>xhi

}∑
(h′,i′)∈R(yhi)

uh′ exp{β>xh′i′}

}δhi
, (3.57)

with R(y) =
{

(h′, i′) | yh′i′ ≥ y
}

the risk set at time y.

Of course, the likelihoods (3.54)–(3.57) for the shared frailty model (3.39) are still valid for the

univariate frailty model (3.38) whenever nh = 1, ∀h = 1, . . . ,H.

Nested frailties. The nested frailty model (3.42) is more general and likelihood expressions get

more complex. Usual distributive assumptions on the frailties are

Vh
iid∼ fV (v; θV ), h = 1, . . . ,H,

Whj
iid∼ fW (w; θW ), h = 1, . . . ,H, j = 1, . . . , Jh,

Vh ⊥⊥ Whj , ∀(h, j).
(3.58)

In the common case that the distributions fv(v) and fW (w) have unit mean and variances θV

and θW respectively, then the correlated frailties Uhj = VhWhj have unit mean and variance

V(Uhj) = (θV + 1)(θW + 1)− 1 (3.59)

(App. A.2). Figure 3.5 shows the contour plot for the variance on frailties Uhj as a function of θV

and θW .

Similarly to shared frailty models, the full likelihood for model (3.42) is

L(ζ) =

H∏
h=1

fV (vh; θV )

Jh∏
j=1

LC,hj(ξ,β | vh, whj)fW (wqh; θW )

 (3.60)

with ζ =
(
ξ>,θ>,β>

)>
, θ = (θV , θW )>.

LC,hj(ξ,β | vh, whj) is the contribution of subgroup j in group h to the conditional likelihood,
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Figure 3.5 – Variance of nested frailties as function of the frailty variances (Eq. 3.59).

given the frailty values,

LC(ξ,β | v,w) =

H∏
h=1

Jh∏
j=1

LC,hj(ξ,β | vh, whj)

=

H∏
h=1

Jh∏
j=1

nhj∏
i=1

(
λhji(yhji | uh, whj)

)δhji
Shji(yhji | uh, whj), (3.61)

with v = (v1, . . . , vH) and w = (w11, . . . , wHJH ).

Once the frailties V and W have been integrated out, the marginal likelihood is

LM(ζ) =

H∏
h=1

LM,h(ξ,β)

=

H∏
h=1

{ Jh∏
j=1

nh∏
i=1

(
λ0(yhi) exp

{
β>xhi

})δhi
∞∫

0

vdhh (−1)dh
Jh∏
j=1

L(dhj)
W

(nhj∑
i=1

Λ0(yhji) exp
{
β>xhji

})
fV (vh; θV )dvh

}
, (3.62)

with dhj =
∑nhj
i=1 δhji, dh =

∑Jh
j=1 dhj =

∑Jh
j=1

∑nhj
i=1 δhji, and LW (·)(k) the k-th derivative of the

Laplace transform of the distribution of Whj .

The partial likelihood, obtained by profiling the baseline hazard out of the conditional likelihood
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Distribution Hazard function λ0(t; ξ) Parameters ξ

exponential λ λ > 0

Weibull λρtρ−1 λ, ρ > 0

Gompertz λeγt γ, λ > 0

lognormal
exp

{
− 1

2γ (log t− µ)2
}

(
t
√

2πγ
) (

1− φ
(

log t−µ√
γ

)) µ ∈ R, γ > 0

loglogistic
eακtκ−1

1 + eαtκ
α ∈ R, κ > 0

Table 3.2 – Parametric models for the baseline hazard function.

(3.61), is

LP(β | v,w) =

H∏
h=1

Jh∏
j=1

nhj∏
i=1

{
vhwhj exp

{
β>xhji

}∑
(h′,j′,i′)∈R(yhji)

vh′wh′j′ exp{β>xh′j′i′}

}δhji
, (3.63)

with R(y) =
{

(h′, j′, i′) | yh′j′i′ ≥ y
}

the risk set at time y.

3.3.3 Inference

As in the case of proportional hazard models, two main estimation approaches, the parametric

and the semiparametric, are available for frailty models. The two approaches differ in the way they

deal with baseline risks and on the likelihood function maximised for estimation.

Parametric approach

The conceptually simplest approach for parameter estimation consists is making distributional

assumptions on the form of the baseline hazard function:

λ0(t) ∈
{
λ0(t; ξ), ξ ∈ Ξ ⊆ Rk

}
, (3.64)

with k the dimension of the vector ξ. The most common distributions for baseline hazards are

exponential, Weibull, Gompertz, lognormal and loglogistic; their hazard functions are shown in

Table 3.2.

For these parametric frailty models (Duchateau and Janssen, 2008, Ch. 2), the marginal

likelihood (Eq. 3.56 or Eq. 3.62) is completely specified and can be maximised to estimate the full

set of parameters ζ =
(
ξ>,θ>,β>

)>
.
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An alternative to the fully parametric approach is the maximum penalised likelihood estimation

proposed by Rondeau et al. (2003) and Rondeau and Gonzalez (2005) for gamma frailty models.

The authors propose to approximate the baseline hazard by cubic M-splines, by a compromise

between goodness of fit and smoothness of the approximation. Parameters are then estimated by

maximising the penalised marginal loglikelihood

`PM(λ0(·),β,θ) = `M(λ0(·),β,θ)− κ
∞∫

0

λ′′0(t)dt, (3.65)

with `M(λ0(·),β,θ) = logLM(λ0(·),β,θ) the log-marginal likelihood, κ > 0 a positive smoothing

parameter and λ′′0(t) the second derivative of the baseline hazard, measuring its roughness.

Strictly speaking, these are parametric models, since splines are parametric functions. Nev-

ertheless, no probability distribution lies behind and their flexibility is much more similar to

semiparametric models; for these reasons, they are considered sort of a midway between the

parametric and semiparametric ones. Hirsch and Wienke (2011), indeed, classify them as “quasi-

semiparametric”.

Semiparametric approach

Many situations exist in which the research interest is mainly in evaluating how covariates, e.g.

treatment, change the risk, regardless of the baseline level. Furthermore, it can happen that the

available knowledge of the phenomenon under study is not sufficient to make meaningful parametric

assumptions on the baseline hazard. In these situations, the baseline risk is left unspecified, so the

conditional likelihood (Eq. 3.55 or Eq. 3.61) is not completely defined. Extending ideas by Cox

(1972), this likelihood is profiled by estimating the baseline hazard non parametrically (Duchateau

and Janssen, 2008, Ch. 5).

If the profiled version of the conditional likelihood (Eq. 3.55 or Eq. 3.61) is the partial likelihood

(Eq. 3.57 or Eq. 3.63), the profiled version of the full (log)likelihood (Eq. 3.54 or Eq. 3.60) is the

penalised partial loglikelihood

`PP(β,θ) = `P(β | u) + log fU(u;θ), (3.66)

where U (and its realisation u) has to be intended as
(
V>,W>)> when working with nested

frailties.

Different estimation approaches based on partial likelihoods have been developed, notably for

lognormal frailties (Cortiñas Abrahantes et al., 2007), but the two most general and used estimation

approaches are the expectation-maximization (EM) and the maximum penalised partial likelihood

(PPL) algorithms (Duchateau et al., 2002; Duchateau and Janssen, 2008, Sec.’s 5.1–5.2).

EM algorithm. The expectation-maximisation algorithm (Dempster et al., 1977) was first

introduced in survival analysis by Klein (1992) and then Nielsen et al. (1992) proposed a valuable

modification to speed it up. Dempster et al. (1977) showed that even though the maximisation of the

‘observed data’ loglikelihood `M
(
ζ; (y, δ)

)
is problematic because of integration, the same estimates

can be obtained by maximising the conditional expectation of ‘augmented data’ loglikelihood
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`
(
ζ; (y, δ),u

)
, given the observed data (y, δ). More specifically, at iteration step k this expectation

is

Q
(
ζ | ζ(k−1)

)
=

∫
`
(
ζ; (y, δ),u

)
fU

(
u; ζ(k−1) | (y, δ)

)
du

=

∫
`C
(
β, λ0(·); (y, δ) | u

)
fU

(
u; ζ(k−1) | (y, δ)

)
du

+

∫
log fU (u;θ) fU

(
u; ζ(k−1) | (y, δ)

)
du,

(3.67)

given provisional estimates of the parameters ζ(k−1). Nielsen et al. (1992) suggested to maximise

(3.67) only with respect to the regression parameters β, while estimating θ in an outer loop, for

instance via golden section search. Thus, the function to maximise is only the first line of (3.67),

with

`C
(
β, λ0(·); (y, δ) | u

)
=

H∑
h=1

nh∑
i=1

{
δhi

[
log λ0(yhi) +���log uh + β>xhi

]
− Λ0(yhi)uh exp

{
β>xhi

}}
, (3.68)

where terms log uh can be dropped as they are additive constants with respect to parameters.

Then, estimation is performed by iterating until convergence the two following steps.

E: In the expectation step, for provisional estimates of the parameters ζ(k−1), the conditional

expectation of Equation 3.68,

E
[
`C (β, λ0(·); (y, δ) | u) | (y, δ), ζ(k−1)

]
, (3.69)

has to be computed. Thanks to the enhancement provided by Nielsen et al. (1992), one

actually needs only the predictions

ũ
(k)
h =E

[
Uh | (y, δ), ζ(k−1)

]
=−

L(di+1)
(∑nh

i=1 Λ
(k−1)
0 (yhi) exp

{
β(k−1)>xhi

})
L(di)

(∑nh
i=1 Λ

(k−1)
0 (yhi) exp

{
β(k−1)>xhi

}) , (3.70)

where L(j)(·), j ∈ N, is the j-th derivative of the Laplace transform of the frailty distribution

and with Λ
(k−1)
0 (yhi) =

∑
yh′i′≤yhi

λ̂
(k−1)
0 (yh′i′), where λ̂

(k−1)
0 (·) is the non-parametric Nelson

(1969) and Aalen (1976) estimator. Duchateau et al. (2002) show details for gamma frailties,

Cortiñas Abrahantes et al. (2007) for lognormal ones, Wang et al. (1995) for the positive stable

case, while Munda et al. (2012) provide, as an aside, expressions for the inverse Gaussian

distribution. A detailed overview of these results is available in Section 3.3.4.

M: In the maximisation step, for provisional predictions of the frailties ũ
(k)
h , new regression

parameter estimates are looked for as

β(k) = argmax
β

Q
(
β | ζ(k−1)

)
, (3.71)
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which is equivalent to maximise

H∑
h=1

nh∑
i=1

{
δhi

[
log λ0(yhi) + log ũ

(k)
h + β>xhi

]
− Λ0(yhi)ũ

(k)
h exp

{
β>xhi

}}
, (3.72)

as the second term of Q
(
ζ | ζ(k−1)

)
is constant with respect to β. Equation 3.72 corresponds

to the conditional loglikelihood of a Cox model with offsets ũ
(k)
h ; therefore, estimation of the

regression parameters can be done by maximisation of the Cox’s partial loglikelihood

H∑
h=1

nh∑
i=1

δhi

{
log ũ

(k)
h + β>xhi − log

 ∑
(h′,i′)∈R(yhi)

ũ
(k)
h′ exp

{
β>xh′i′

}} (3.73)

with offsets ũ
(k)
h , and R(yhi) =

{
(h′, i′) | yh′,i′ ≥ yhi

}
the risk set at time yhi.

PPL algorithm. McGilchrist and Aisbett (1991), McGilchrist (1993) and McGilchrist (1994)

first proposed to use best linear unbiased predictors (BLUP) and restricted maximum likelihood

(REML) estimators for lognormal frailty models. Laplace approximation of the marginal (posterior)

distribution has been suggested in a Bayesian context by Ducrocq and Casella (1996) and in a

frequentist one by Ripatti and Palmgren (2000), extending results for the generalised linear mixed

models with Gaussian random effects by Breslow and Clayton (1993). Finally, Therneau et al.

(2003) proved that in the case of gamma frailties — which is largely the most common — the PPL

algorithm leads to the same estimates as the EM algorithm and Therneau (2012b) implemented it

in the very popular R package survival.

Let us consider for the moment the random effects wh = log uh, then the penalised partial

loglikelihood

`PP(β,θ) = `P(β | w) + `pen(θ; w) (3.74)

is the sum of the (conditional) partial loglikelihood

`P(β | w) =

H∑
h=1

nh∑
i=1

δhi

{
logwh + β>xhi − log

 ∑
(h′,i′)∈R(yhi)

uh′ exp
{
β>xh′i′

}} (3.75)

and the logarithm of the distribution of the random effects

`pen(θ; w) = −
H∑
h=1

log fW (wh;θ) (3.76)

which is considered as a penalty term: if the value of wh is far away from its mean, then log fW (wh;θ)

will be very small and `pen(θ; w) very big, lowering the likelihood value.

Maximisation of (3.65) is performed by iteration over an outer and an inner loop, as follows.

IN: At outer step l, a Newton–Raphson iterative procedure indexed by k is used to maximise

`PP(β,θ) for a given provisional estimate of the frailty parameter θ(k−1). The BLUPs for β
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and w at step k are[
β(l,k)

w(l,k)

]
=

[
β(l,k−1)

w(l,k−1)

]
−V

[
0

(θ(l))−1w(l,k−1)

]
+ V

[
X Z

]> d`P(β | w)

dη
, (3.77)

with η the vector of linear predictors with generic element wh + β>xhi, Z the design matrix

of the random effects, and where

V =

[
V11 V12

V21 V22

]
(3.78)

is the inverse of the square (p+H)-dimensional matrix

A =

[
X>

Z>

](
−d2`P(β | w)

dη dη>

)[
X Z

]
+

[
0p×p 0p×H

0H×p (θ(l))−1IH

]
, (3.79)

where 0·×· are null matrices, IH is the identity matrix, H the number of clusters and p the

length of β. The asymptotic variance of the regression parameters (McGilchrist and Aisbett,

1991) is V̂(β) = V11.

OUT: Once the inner loop has converged to estimates β(l) and w(l), the frailty parameter is

estimated via REML in the outer loop, indexed by l, as

θ(l) =

∑H
h=1

(
w

(l)
h

)2

H − trace(V22)/θ(l−1)
· (3.80)

The asymptotic variance (McGilchrist, 1993) is

V̂(θ) =
2θ2

H − 2trace(V22)/θ(l−1) + trace(V2
22)/θ(l−1)

· (3.81)

3.3.4 Frailty distributions

The use of random frailties in proportional hazards models can serve mainly two purposes: it

allows to estimate more precisely the regression parameters and it is a good means of studying the

dependence between time variables in each cluster. Some recent studies suggest that regression

parameters estimation is improved by frailty models, without strong importance of the frailty

distribution family. On the contrary, the frailty distribution fU (u) is very important in determining

the characteristics of the dependence structure. As a consequence, if investigating this dependence

is the main interest of the study, the choice of the parametric form of fU (u) is crucial. The form of

the frailty distribution is decisive, too, in determining the analytical tractability of the marginal

likelihood (3.56) and of the penalized partial likelihood (3.74) functions.

As discussed at the beginning of this Section 3.3, the selection effect is one of the most interesting

aspects of the survival data: as time goes, high-risk individuals tend to experience the event first,

thereby causing the selection of the more robust ones. To study this selection effect, it is useful

to consider the updated (or conditional) frailty distribution for a given cluster (Duchateau and

Janssen, 2008, Section 4.1.3), i.e. the distribution of the frailty term Uh, taking into account the
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information collected until a given time t ≥ 0.

Updated frailty distribution. Let D(t) =
{(
y̆hi(t), δhi(t)

)
;h = 1, . . . ,H, i = 1, . . . , nh

}
be

the data collected until time t, with y̆hi(t) = min(yhi, t) the event or censoring time at t and

δhi(t) = δhi1
(
yhi ≤ t

)
the event/censoring indicator. In the following, the likelihood quantities have

to be intended as computed at values y̆’s instead of usual y’s. Then, the updated, or conditional,

frailty distribution of Uh at time t is

fUh
(
u; ξ | D(t)

)
=
P[D(t);β, ζ | Uh = u]

P[D(t); ξ]
fU (u;θ)

=
LC,h(β, ζ;u)

LM,h(ξ)
fU (u;θ)

=
exp

{
− u

∑nh
i=1 Λ0

(
y̆hi(t)

)
exp

{
β>xhi

}}
(−1)dh(t)L(dh(t))

(∑nh
i=1 Λ0

(
y̆hi(t)

)
exp

{
β>xhi

})udh(t)fU (u;θ), (3.82)

u > 0, with dh(t) =
∑nh
i=1 δhi(t).

For ease of notation, in the following, we drop the dependence on parameters whenever this

does not induce confusion and we denote just by L(dt+j) the derivatives of the Laplace transform

L(dh(t)+j)
(∑nh

i=1 Λ0

(
y̆hi(t)

)
exp

{
β>xhi

})
, with dt = dh(t).

Note that the updated frailty distribution is in general different from the marginal frailty

distribution fU (u) = fUh
(
u | D(0)

)
and that the updated distributions fUh

(
u | D(t)

)
are different

to each other as different information is available for each cluster.

To understand how the updating process impacts on clustering, we now consider the updated

mean, variance and skewness as functions of the time.

Updated mean. The updated mean of the frailty Uh at time t is

E
[
Uh | D(t)

]
=

∞∫
0

ufUh
(
u | D(t)

)
du

=

∞∫
0

exp
{
− u

∑nh
i=1 Λ0

(
y̆hi(t)

)
exp

{
β>xhi

}}
udt+1fU (u)du

(−1)dtL(dt)

= −L
(dt+1)

L(dt)
· (3.83)

Updated Variance. The variance of the frailty term, when accounting for data collected until

time t, is

V
[
Uh | D(t)

]
=

∞∫
0

u2fUh
(
u | D(t)

)
du− E

[
Uh | D(t)

]2
=
L(dt)L(dt+2) −

[
L(dt+1)

]2[
L(dt)

]2 > 0, (3.84)

positive by definition of variance.
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Updated Skewness. The frailty variable has conditional skewness (Proof A.3)

A
[
Uh | D(t)

]
=

3L(dt)L(dt+1)L(dt+2) −
[
L(dt)

]2L(dt+3) − 2
[
L(dt+1)

]3(
L(dt)L(dt+2) −

[
L(dt+1)

]2)3/2
· (3.85)

Properties. The definition of the derivatives of the Laplace transform (3.52) implies that

E
[
Uh | D(t)

]
> 0, (3.86)

that is coherent with the fact that the frailty term can assume only positive values marginally, so a

fortiori conditionally.

Furthermore, if the updated mean is considered as function of the time t, its derivative is

d

dt
E
[
Uh | D(t)

]
=−

L(dt)L(dt+2) −
[
L(dt+1)

]2[
L(dt)

]2
d

dt

[
nh∑
i=1

Λ0

(
y̆hi(t)

)
exp

{
β>xhi

}]

=− V
[
Uh | T > t

] [ nh∑
i=1

1(yhi ≥ t)λ0

(
y̆hi(t)

)
exp

{
β>xhi

}]
≤ 0. (3.87)

This means that, as time passes and new information is available, the (conditional) expected value

of the frailty decreases for those subjects who are still at risk.

As time passes and the event of interest does not occur, also the conditional variance varies.

One can show that the conditional variance decreases if and only if the conditional frailty density

is positively skewed for any t > 0 (Proof A.4). Now the most frequently used frailty distributions

are illustrated. For each one, we give the distribution, the Laplace transform and its derivatives —

useful for computing the marginal likelihood — and the Kendall’s Tau (Kendall, 1938; Duchateau

and Janssen, 2008, Sec. 4.1.4). This is a measure of dependence that can be computed in general

as

τ = 4

∫ ∞
0

sL(s)L(s)(2)ds− 1, (3.88)

originally developed as a concordance measure for bivariate clusters, defined as

τ = E
[
sign

(
(Th1 − Tk1)(Th2 − Tk2)

)]
, (3.89)

for any two clusters h and k, with

sign(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

(3.90)

In addition, we provide the updated distribution is given, too. The closure property, i.e. the

fact that the updated frailty distribution belongs to the same family of the marginal distribution,
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is appealing in some contexts: for instance Economou and Caroni (2005) developed diagnostic plots

to test for the appropriateness of frailty distributions that benefit from the closure property. See

Appendix B.2 for a summary table.

Gamma

The one-parameter gamma distribution (Gam*), with density

fU (u; θ) =
u1/θ−1 exp(−u/θ)

Γ(1/θ)θθ
, (3.91)

with θ > 0, is the most popular frailty distribution as long as most computations can be done

analytically (unconditional survival, cumulative hazard and hazard function). This is due to the

simplicity of its Laplace transform

L(s) = (1 + θs)−1/θ (3.92)

and of its derivatives

L(k)(s) = (−1)k (1 + θs)
−k

[
k−1∏
l=0

(1 + lθ)

]
L(s). (3.93)

The gamma frailty typically models late dependence (Duchateau and Janssen, 2008, Fig. 4.8)

and, despite there is no biological reason to use it, it is far the most used one due to its mathematical

properties.

The updated distribution comes out to be a gamma distribution (Gam) with shape parameter

1/θ and scale parameter

(
θ +

nh∑
i=1

Λhi(y̆(t))

)−1

.

The Kendall’s τ , measuring the overall dependence, becomes

τ = θ/(θ + 2) ∈ [0, 1). (3.94)

Inverse Gaussian

The one-parameter inverse Gaussian (IG*) distribution, has density

fU (u; θ) = (2θπ)−1/2u−3/2 exp

{
− (u− 1)2

2uθ

}
, (3.95)

with θ > 0 and it is a special case of the PVF* distribution (see below, pg. 37), when ν = 1/2.

The Laplace transform for the IG* distribution is

L(s) = exp
[{

1− (1 + 2θs)1/2
}/

θ
]

(3.96)
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Figure 3.6 – Updated frailty mean for gamma and inverse Gaussian distributions. Univariate case
with baseline hazard λ0(t) = 1 and no covariates.

with derivatives

L(k)(s) = (−1)k (2θs+ 1)
−k2

Kk−(1/2)

(√
2θ−1(s+ 1

2θ )
)

K1/2

(√
2θ−1(s+ 1

2θ )
) L(s), (3.97)

where K(·) is the modified Bessel function of the second kind (Hougaard, 2000, Section A.4.2)

Kγ(ω) =
1

2

∫ ∞
0

tγ−1 exp

{
−ω

2

(
t+

1

t

)}
dt, γ ∈ R, ω > 0.

The updated distribution fU (u | D(t)) is a PVF with location parameter (1 + 2θΛhi(y̆(t)))−1/2,

scale parameter θ(1+2θΛhi(y̆(t)))−1/2 and shape parameter 1/2. It belongs, too, to the Generalized

Inverse Gaussian family (Hougaard, 2000, pg. 243 and Appendix A.3.6).

Figure 3.6 shows an example of the behaviour of the updated frailty mean for the gamma and

the inverse Gaussian distributions. The univariate case is considered, without covariates and with

constant baseline hazard.

The Kendall’s τ is

τ =
1

2
− 1

θ
+ 2

e2/θ

θ2

∞∫
2/θ

u−1e−udu, (3.98)

which implies that τ ∈ (0, 1/2) (Duchateau and Janssen, 2008, pg. 161).

The IG* frailty depicts a type of dependence which is, for a fixed Kendall’s τ , between the early

(PS*) and the late (Gam*) ones (Duchateau and Janssen, 2008, Fig. 4.17).

Positive stable

The one-parameter positive stable (PS*) distribution has density

fU (u; θ) = − 1

πu

∞∑
k=1

Γ(kθ + 1)

k!

(
−u−θ

)k
sin(θkπ), (3.99)
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with θ ∈ (0, 1). It has a very simple Laplace transform

L(s) = exp
(
−sθ

)
(3.100)

with derivatives

L(k)(s) = (−1)k
(
θsθ−1

)k [ k−1∑
m=0

Ωk,ms
−mθ

]
L(s), (3.101)

where the Ωk,m’s are polynomials of degree m, given recursively by

Ωk,0 = 1,

Ωk,m = Ωk−1,m + Ωk−1,m−1

{
k − 1

θ
− (k −m)

}
, m = 1, . . . , k − 2,

Ωk,k−1 = θ1−kΓ(k − θ)
Γ(1− θ)

·

(3.102)

The PS* distribution has infinite mean and therefore undetermined variance; this implies that

the heterogeneity parameter is independent of the covariates (Hougaard, 1986; Duchateau and

Janssen, 2008, Sec. 4.4.1) and that the updated distribution fU (u | D(t)) belongs to the PVF family.

An important feature of PS* frailties is that population hazards are still proportional.

The Kendall’s τ is

τ = 1− θ. (3.103)

The PS frailty is best suited for modelling early dependence (Duchateau and Janssen, 2008,

Fig. 4.25).

Power variance function

The two-parameter power variance Function (PVF*) distribution has density

fU (u; θ, ν) = exp

{
−ν
θ

(
u+

1

ν − 1

)}
1

πu
(3.104)

×
∞∑
k=1

(ν/θ)kνuk(ν−1)Γ{1− k(ν − 1)} sin{πk(ν − 1)}
k!(ν − 1)k

,

with θ > 0 and ν ∈ (0, 1]. It is a very important family, as it includes the inverse Gaussian (ν = 1/2,

µ = 1) model as particular case, and the one-parameter gamma is its natural extension at the

boundary of its parametric space.

Furthermore, the CP* (see below) and PS* models have important links to it, which will be

showed later on.

The Laplace transform of the PVF* distribution is

L(s) = exp

[
ν

θ(1− ν)

{
1−

(
1 +

θs

ν

)1−ν
}]

. (3.105)

The updated distribution is a three-parameter power variance function distribution (PVF)

with location parameter (1 + θΛhi(y̆(t))/ν)−ν , scale parameter θ(1 + θΛhi(y̆(t))/ν)ν−1 and shape
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parameter ν.

The Kendall’s τ , measuring the overall dependence (Duchateau and Janssen, 2008, Sec. 4.5.5),

becomes

τ = ν − 2
ν

θ
+

4ν2

θ2(1− ν)
exp

(
2

ν

θ(1− ν)

) ∞∫
1

t−ν/(1−ν) exp

(
−2

νt

θ(1− ν)

)
dt. (3.106)

Compound Poisson

The two-parameter compound Poisson (CP*, Aalen, 1992) is a mixture distribution with

P[U = 0; θ, ν] = exp

{
−ν

θ(ν − 1)

}
fU (u; θ, ν) = exp

{
−ν
θ

(
u+

1

ν − 1

)}
1

πu

×
∞∑
k=1

(ν/θ)kνuk(ν−1)Γ{1− k(ν − 1)} sin{πk(ν − 1)}
k!(ν − 1)k

(3.107)

with θ > 0 and ν > 1. Its Laplace transform is

L(s) = exp

[
ν

θ(1− ν)

{
1−

(
1 +

θs

ν

)1−ν
}]

. (3.108)

The updated distribution comes out to be a three-parameter compound Poisson distribution

(CP) with location parameter (1 + θΛhi(y̆(t))/ν)−ν , scale parameter θ(1 + θΛhi(y̆(t))/ν)ν−1 and

shape parameter ν.

The CP* frailty gives non-null probability to the event that the risk is constantly 0, i.e. that a

cluster is totally out of risk. This is useful, for instance, in the case that clusters are patients and

we suppose that they can be totally cured with some probability.

Lognormal

The one-parameter lognormal (LN) distribution, with density

fU (u;σ) =
1

u
√

2πσ2
exp

{
− (log u)2

2σ2

}
, (3.109)

with σ > 0, is used to link the frailty models to the widespread GLMMs, which use zero-mean

Normal errors.

In this case, the mean is E(U) = eσ
2/2, the variance V(U) = exp{2σ2} − exp{σ2} but the

Laplace transform is not available in an explicit form. Consequently, both the updated distribution

and the Kendall’s τ are not straightforwardly attainable.

Other distributions

Some other possibilities exist, but they are rarely used. In Sec. 3.9–3.11 of Wienke (2010) a brief

review and some references on the quadratic hazard, the log-Student t, and the Lévy distribution
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can be found.

Table 3.3 resumes the probability density functions and the associated Laplace transforms for

all the frailty distributions reviewed in this Section 3.3.4. Figure 3.7 shows the relations linking the

main frailty families; note that the three-parameter PVF family can be obtained by left truncation

of a PS* distribution (Hougaard, 2000, Sec. 7.5).
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Chapter 4

Simulation of clustered multi-state

data

Simulation studies are a powerful means to evaluate the performance of analysis methods

(Burton et al., 2006) and they are particularly useful when developing new models. To this aim,

generating survival data from proportional hazards models is quite simple (Bender et al., 2005).

Simulated data from frailty models can be obtained by first generating the frailty terms from their

distribution and then by using a Cox model, conditionally on them (Cortiñas Abrahantes et al.,

2007, Sec. 5). In the context of competing risks, Beyersmann et al. (2009) developed a method

based on the cause-specific hazards (Gray, 1988), which they claim could be extended to multi-state

models. It is very appealing, but in general the probabilities of competing events and any location

measure of time variables cannot be analytically expressed in terms of the simulation parameters.

So there is no direct way to choose these latter in order to obtain data with given features.

Simulation of multi-state data raises more problems and most of the examples in the literature

are based on real data (Putter et al., 2007; Commenges, 1999; de Wreede et al., 2010, e.g.). In

some cases data are simulated by assuming independence between times of different transitions of

the same subject (Meira-Machado et al., 2006, e.g.). Farlie-Gumbel-Morgenstern copula models

(Farlie, 1960) are suited for bivariate models (de Uña-Álvarez and Meira-Machado, 2008; Amorim

et al., 2011) but, if extended to K > 2 events, they give times which are (K − 1)-wise independent.

Ad hoc solutions can be obtained for simple structures (Van Keilegom et al., 2011, Sec. 4, e.g.),

but with a lack of generality.

We propose (Rotolo et al., 2012a) a general simulation procedure for clustered multi-state

survival data based on a copula model for each group of competing events. Thanks to it, any

parametric form can be chosen for the marginal distributions, whereas dependence is induced by the

copula. This structure allows to introduce and tune many features; the most important ones are (i)

the dependence between times of competing events, (ii) the dependence between times of successive

events, (iii) the dependence between times of clustered subjects and (iv) the event-specific covariate

effects. Frailties and covariates are inserted in a proportional-hazards way, as assumed by most

parametric regression models. Both random and fixed censoring can be added, too.

This procedure to simulate data can be used with any user-defined values of the parameters.
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However, we also propose an additional numerical procedure that can be used to find appropriate

values of parameters to simulate data according to given requirements. The researcher can fix

parameters to obtain chosen target values for clinically meaningful quantities such as median times

and probabilities of censoring and of competing events.

4.1 Simulation model

Consider a general acyclic multi-state structure, with N states and Q possible transitions

between them; let S = {s1, . . . , sN} be the set of the states and T = {T1, . . . , TQ} be the set of

the transition time variables. As stated in Section 3.2, for each state si, the set of its children

C(si) ⊂ S is defined as the set of the states to which a direct transition from si is possible. As

an example, consider the multi-state structure in Figure 4.1, corresponding to the possible event

history of patients in a cancer study. The set of states is S = {NED, LR,DM,De}, corresponding

to no evidence of new disease, occurrence of local relapse, occurrence of distant metastases and

death, respectively. The children sets of the four states are C(NED) = {LR,DM,De}, C(LR) = {De},
C(DM) = {De} and C(De) = ∅. We only consider the occurrence of one intermediate adverse event

(LR or DM) as, once one of them has occurred, the occurrence of the second does not further worsen

prognosis appreciably.

For each continuous transition time variable Tq, let Fq(t) be an arbitrarily chosen distribution,

with fq(t) the corresponding density function. The associated survival function is then Sq(t) =

1− Fq(t). The joint survival function of a given set of transition times {Tq}q∈Q ⊆ T is denoted

by SQ(tQ) = P
[
∩q∈Q (Tq > tq)

]
, with tQ = (tq, q ∈ Q). Except under independence, this joint

survival function is not uniquely determined by the marginal ones. To combine them together into

a joint survival function, a copula (Nelsen, 2006) can be used. Copulas are multivariate distribution

functions with uniform margins, that are used to express multivariate distribution functions, or

survival functions, in terms of their one-dimensional margins.

We define a competing risks (or events) block as the set of the transitions into all the children

of a state. In the example, three competing events blocks are present: {T1, T2, T3}, {T4} and {T5}.
The two latter ones are degenerate competing risks blocks, as they both contain only one element.

The proposed simulation method adopts a copula model for each competing risks block.

First transitions. Consider first {Tq}q∈Q0
, the competing risks block of transitions from the

starting state. A copula is used to combine the marginal survival functions into the joint survival

function

SQ0
(tQ0

) = Cϑ

(
Sq(tq), q ∈ Q0

)
, tQ0

= (tq, q ∈ Q0) (4.1)

with Cϑ(·) the copula and ϑ the dependence parameter.

Within the block Q0, the joint survival function of the first k times (the order has no importance)

is SQ0

(
t(1), . . . , t(k), 0, . . . 0

)
, with (q) the order indices. The conditional survival function of the

k-th time, given the k − 1 previous ones, is

S(k)|(1),...,(k−1)

(
t(k) | t(1), . . . , t(k−1)

)
=

∂k−1

∂t(1)···∂t(k−1)
SQ0

(
t(1), . . . , t(k), 0, . . . , 0

)
∂k−1

∂t(1)···∂t(k−1)
SQ0

(
t(1), . . . , t(k−1), 0, . . . , 0

) (4.2)
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NED

LR

DM

De

T1
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Figure 4.1 – Reduced cancer model. NED: No Evidence of new Disease, LR: Local Relapse, DM:
Distant Metastases, De: Dead.

for k = 2, . . . ,#(Q0) with #(Q0) the size of Q0.

Without loss of generality, consider for ease of notation and of presentation the example of

Figure 4.1, where Q0 = {1, 2, 3}, with a Clayton copula (Clayton, 1978). In this case (4.1) is

SQ0
(tQ0

) =

1 +
∑
q∈Q0

[
Sq(tq)

−ϑ − 1
]−1/ϑ

, Q0 = (1, 2, 3), (4.3)

with ϑ > 0 and one can easily show by induction (App. A.5) that the derivatives are of the form

∂k

∂t(1) · · · ∂t(k)
SQ0

(tQ0
) =

(−1)k
k∏
h=1

[
(1 + (h− 1)ϑ) (Sh(th))

−ϑ−1
fh(th)

]
(SQ0

(tQ0
))

1+kϑ
. (4.4)

Therefore (4.2) becomes

S(k)|(1),...,(k−1)

(
t(k) | t(1), . . . , t(k−1)

)
=

(
1 +

Sk(tk)−ϑ − 1

1 +
∑k−1
q=1(Sq(tq)−ϑ − 1)

)1−k− 1
ϑ

(4.5)

for k = 2, 3.

The survival functions S1(t1), S2|1(t2 | t1) and S3|1,2(t3 | t1, t2) can be used in sequence to
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simulate the times in Q0 from their joint survival function (4.3).

Second and following transitions. Once a subject has moved to another state, another copula

model can be adopted for the incoming transition and all the competing events from the new

present state. In our example, we use again the copula (4.3) for {1} ∪ Q1, with Q1 = {4}, and

for {2} ∪ Q2, with Q2 = {5}. Thus we have S{1,4}(t{1,4}) =
(
S1(t1)−ϑ + S4(t4)−ϑ − 1

)−1/ϑ
and

S{2,5}(t{2,5}) =
(
S2(t2)−ϑ + S5(t5)−ϑ − 1

)−1/ϑ
, which gives

S4|1(t4 | t1) =

[
1 +

(
S1(t1)

S4(t4)

)ϑ
− S1(t1)ϑ

]−1/ϑ−1

(4.6)

and

S5|2(t5 | t2) =

[
1 +

(
S2(t2)

S5(t5)

)ϑ
− S2(t2)ϑ

]−1/ϑ−1

. (4.7)

If the multi-state structure had other further transitions, the same approach should be replicated.

Time scale. Time values originated by Sq′|q(t | tq) range from 0 to ∞ (Fig. 4.2).
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Figure 4.2 – Survival function used for clock-reset simulations.

As time until tq has already elapsed, the simulation of the additional time from Sq′|q(t)

corresponds to the clock-reset approach (Putter et al., 2007, Sec. 4.2.2) and must be added to tq.

In the case the ‘clock forward’ approach is more appropriate, the truncated survival function

Sq′|q(t | tq;Tq′ > tq) = P(Tq′ > t | Tq = tq, Tq′ > tq)

=
P(Tq′ > t, Tq′ > tq | Tq = tq)

P(Tq′ > tq | Tq = tq)

=
Sq′|q(t | tq)

[Sq′|q(tq′ | tq)]
, t > tq, (4.8)

(Fig. 4.3) must be used.

The values of Tq′ , which are necessary greater than tq, do not have to be added to those of the

first transition.
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Figure 4.3 – Survival function used for clock-forward simulations.

4.1.1 Simulation Algorithm

We illustrate below the algorithm which implements the simulation model for the considered

example. The adaptation to a different setup is trivial. The expression S−1
q (·) is used to denote the

inverse of a marginal survival function Sq(·). The variables Uq are assumed to be i.i.d. uniform on

[0, 1].

1 I Generate a value for T1 from its marginal survival function

T1 = S−1
1 (U1). (4.9)

2 I Conditionally on T1 = t1, generate T2 from (4.5) with k = 2:

T2 | t1 = S−1
2|1(U2 | t1)

= S−1
2

({[
U−

ϑ
1+ϑ

2 − 1

]
S1(t1)−ϑ + 1

}−1/ϑ
)
.

(4.10)

3 I Conditionally on T1 = t1, T2 = t2, generate T3 from (4.5) with k = 3:

T3 | t1, t2 = S−1
3|12(U3 | t1, t2)

= S−1
3

({[
U−

ϑ
1+2ϑ

3 − 1

] [
S1(t1)−ϑ + S2(t2)−ϑ − 1

]
+ 1

}−1/ϑ
)
. (4.11)

4 I Generate a censoring time TC0 from an arbitrary distribution FC0(·) and compute Y0 =

min(TC0 , T1, T2, T3) which is the observed time of censoring or transition from state NED; it

will also give the information on the possible arrival state.

5 I If transition into state LR or DM is observed, generate T4 or T5 respectively, from (4.6) or
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(4.7):

T4 | (y0 = t1) = S−1
4|1(U4 | t1)

= S−1
4

({[
U−

ϑ
1+ϑ

4 − 1

]
S1(t1)−ϑ + 1

}−1/ϑ
)
,

(4.12)

T5 | (y0 = t2) = S−1
5|2(U5 | t2)

= S−1
5

({[
U−

ϑ
1+ϑ

5 − 1

]
S2(t2)−ϑ + 1

}−1/ϑ
)
,

(4.13)

a censoring time TC1
or TC2

from an arbitrary distribution FC1
(·) or FC2

(·) and compute

Y1 = min(TC1
, T4) or Y2 = min(TC2

, T5). Note that if the ‘clock forward’ approach is adopted,

it is sufficient to use Tq′ | tq = S−1
q′|q(Uq′Sq′|q(tq | tq) | tq) instead of Tq′ | tq = S−1

q′|q(Uq′ | tq).

4.1.2 Frailty terms and covariates

The proposed model can easily accommodate the effect of clustering and of simulated covariates,

in a proportional-hazards way.

Let U = (U1, . . . , UQ)> be the vector of the frailty terms for the Q transitions. Let FU (u;θ) be

its multivariate distribution. Let finally X ∼ FX(x) be the (possibly multidimensional) covariate.

For each time variable Tq a parametric form is chosen for the baseline hazard λq0(t) corresponding to

x = 0 and uq = 1; the associated baseline survival function is Sq0(t) = exp
{
−
∫ t

0
λq0(u)du

}
. The con-

ditional cumulative hazard, given the values of Uq and X, is Λq(t | uq,x) = uq exp
{
β>q x

} ∫ t
0
λ0(u)du,

with βq the transition-specific vector of the regression coefficients. Then, conditional on (Uq =

uq,X = x), the marginal survival function of each Tq is

Sq(t | uq,x) = exp
{
− Λq(t | uq,x)

}
= Sq0(t)uq exp

{
β>q x
}
. (4.14)

Note that, unlike in the frailty literature, in this context “marginal” has to be understood with

respect to the set of all the transition times and not to the frailty term.

The conditional distributions (4.2) are unchanged, except that in the final expressions (like

(4.5)–(4.7) of the example) each Sq(tq) is replaced by Sq(tq | uq,x). As a consequence, in the case of

clustering and/or covariates, the algorithm in Section 4.1.1 can be used conditionally on previously

simulated X and U without need of modifications.

4.2 Tuning simulation parameters

When the researcher designs a simulation study, he typically wants to reproduce some precise

situations. In the context of multi-state data, what one would like to control are the probabilities

of competing events and some location measure of transition times. The median would be a natural

choice, but it cannot be estimated in the case that too many observations are censored. For this

reason we use the median of uncensored times, always observable, but any other location measure

can be used without consequences on the rest of the procedure.

The quantities to control depend on the choice of Π, the set of the parameters of the marginal
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distributions of transition and censoring times. Since no general way exists to express them as a

function of the target values, a trial-and-error procedure is needed. Let pq and mq (q = 1, . . . , Q)

be the target values of the probabilities of competing events and of the median of uncensored

times of each transition. Let p̂q(Π) and m̂q(Π) be their observed values in a dataset simulated with

parameters Π. The censoring probability is not considered, as it directly follows from the other

probabilities as one minus their sum.

The parameters in Π must be chosen in such a way that the ratios pq/p̂q(Π) and mq/m̂q(Π)

(q = 1, . . . , Q) are as close as possible to 1, that is equivalent to require that the quantities[
log
(
pq/p̂q(Π)

)]2
and

[
log
(
mq/m̂q(Π)

)]2
are as small as possible. This transformation has the

good property that, for any arbitrary k, the values of the parameters such that p̂q(Π) = pq × k
and p̂q(Π) = pq/k (and analogously with m̂q(Π) and mq) give the same contribution (log k)2, i.e.

they are considered as deviations of the same amplitude from the target. Therefore we propose the

criterion function

Υ(Π) =

Q∑
q=1

{[
log

pq
p̂q(Π)

]2

+

[
log

mq

m̂q(Π)

]2
}

(4.15)

to be minimized over the space of Π. Note that the criterion function (4.15) is the sum of non-

negative terms, and each term is a function of only the parameters of one competing events block:

Υ(Π) =
∑
Qk

∑
q∈Qk

{[
log

pq
p̂q(ΠQk)

]2

+

[
log

mq

m̂q(ΠQk)

]2
}

=
∑
Qk

ΥQk(ΠQk),

(4.16)

with Qk the blocks. In the example of Figure 4.1 these are Q0 = {1, 2, 3}, Q1 = {4} and Q2 = {5}.
Thanks to decomposition (4.16), the optimization of Υ over Π can be done by first minimizing

ΥQ0 over ΠQ0 and then the following ones, conditionally on parameters chosen for the previous

transitions. In the example of Section 4.3, for instance, the minimization over the space of Π, of

size 13, can be split into subproblems of sizes 7, 3 and 3, which are much simpler.

The criterion function Υ uses empirical estimates p̂q(Π)’s and m̂q(Π)’s based on a random

dataset simulated with the present candidate parameter values. Then, the minimization procedure

deals with a function that is not deterministic. However, this is not really a problem as the interest

is not in finding its exact minimum but only reasonable values for simulating data sufficiently

similar to requirements.

4.3 Case study

We consider a dataset from a multicenter study concerning patients treated with radiotherapy

for head and neck cancer in five Italian hospitals (Grillo Ruggieri et al., 2005). The data contain

the times to the occurrence, after the beginning of the therapy, of LR, DM and De. The multi-state

structure is shown in Figure 4.4, together with the observed frequencies. It is clear that, even though

the structure of these data is very interesting, the number of patients, 44, is a strong limitation.

Nevertheless the information provided by these data can be valuable for correctly building a
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Tot: 44

Figure 4.4 – States and transitions structure of real data. NED: No Evidence of new Disease, LR:
Local Relapse, DM: Distant Metastases, De: Dead. The numbers on the arrows are the frequencies
of each transition; those in the boxes are the numbers of patients ending the study in each state.
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simulation study. Observed frequencies of competing events and median times of uncensored

transitions can serve as benchmark to generate realistic data.

We want to generate a dataset of size 3000, with dependence between patients belonging to

the same hospital. The number of hospitals is fixed to 40, whereas their dimensions are randomly

generated. A one-parameter gamma frailty at the level of the hospital is used, with dispersion

parameter θ = 0.5, corresponding to Kendall’s τ = 0.2, i.e. a moderately high dependence.

We choose Weibull marginals Wei(λq, ρq), each with its own shape ρq and location λq parame-

ters. This assumption, which also includes the exponential case, is very common for parametric

proportional hazards models and has the main advantage that the expressions of the conditional

distributions (4.2) are particularly simple. Indeed, the expressions for variables (4.9)–(4.11) simplify

to

T1 = [− log(U1)/λ1]
1/ρ1 ,

T2|t1 =
(

log
{(
U−1/2

2 − 1
)

exp{λ1t
ρ1
1 }+ 1

}
λ2

)1/ρ2
, (4.17)

T3|t1, t2 =
(

log
{(
U−1/3

3 − 1
)

(exp{λ1t
ρ1
1 }+ exp{λ2t

ρ2
2 } − 1) + 1

}
λ3

)1/ρ3
,

and those for variables (4.12)–(4.13) are analogous to (4.17). Clustering is simulated by means of

an exponential variable for each competing events block Exp(λCk).

Two covariates are simulated: a dichotomous one, Treat ∼ Bin(0.5), and a continuous one,

Age ∼ N(60, 7). Regression coefficients are fixed to log(0.3) (q = 1), 0 (q = 2) and log(1.2)

(q = 3, 4, 5) for Treat and log(0.8)/10 (q = 1), log(0.9)/10 (q = 2) and log(1.2)/10 (q = 3, 4, 5) for

Age. These values represent a treatment, as can be the case of radiotherapy, which reduces by 70%

the hazard of LR, increases by 20% the risk of De and does not affect that of DM. Concerning

the age, 10 more years of age reduce by 20% and 10% the hazard of LR and DM respectively and

increase by 20% the risk of De.

Based on the real dataset, we want to simulate data with the following features. Starting from

state NED: 50% of probability of censoring, 34% of LR occurrence, 9% of DM occurrence and 7%

of dying; median uncensored times for LR, DM and De of 6, 10 and 3 months respectively. Starting

from state LR: 53% of probability of censoring and 47% of dying; median uncensored De times of

3.25 additional months. Starting from state DM: 5% of probability of censoring and 95% of dying;

median uncensored De times of 0.5 additional month. In the real data, the patients experiencing

DM are only 4 and all of them die during the study. Nevertheless, a patient is not necessarily

prevented from having the De time censored after DM, so the frequency 0 for transition DM→ De

is only accidental and its risk has to be considered strictly positive.

Results. The minimization of Υ should be done over the space of

Π = {λCk}k=1,2,3 ∪ {λq, ρq, q ∈ Qk}k=1,2,3, (4.18)

of size 13, but it can be decomposed into subproblems concerning ΥQ0
, ΥQ1

and ΥQ2
of sizes 7, 3

and 3 respectively, which are much more affordable. First, the parameters of the transitions times

{Tq}q∈Q0
, Q0 = {1, 2, 3}, are chosen by minimizing ΥQ0

, conditionally on the frailties and the

covariates. Each substep of the tuning procedure is iterated 10000 times with datasets of size 10000.
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T1 T2 T3 C0 T4 C1 T5 C2

Location λ 0.276 0.019 0.013 0.031 0.029 0.099 0.192 0.039
Shape ρ 0.851 1.076 0.569 — 1.078 — 1.000 —

Table 4.1 – Values of simulation parameters chosen by the tuning procedure.

pi mi

LR DM De C LR DM De

Target 0.34 0.09 0.07 0.50 6.00 10.00 3.00

2.5% 0.26 0.09 0.07 0.44 5.31 7.45 1.93
Simulated
size 3000

50% 0.31 0.11 0.08 0.50 6.32 9.19 2.67

97.5% 0.35 0.12 0.10 0.57 7.53 11.26 3.69

2.5% 0.24 0.07 0.05 0.42 4.21 5.07 0.95
Simulated
size 300

50% 0.31 0.11 0.08 0.50 6.32 9.19 2.69

97.5% 0.37 0.15 0.12 0.59 9.28 15.65 6.26

Table 4.2 – Values of the median of the uncensored times and of the probabilities of competing
events. First competing events block Q0 = {T1, T2, T3}. Target values and 2.5th, 50th and 97.5th
percentiles of values observed in 10000 datasets of sizes 3000 and 300.

In our case, the procedure takes several hours. Then, for simulated patients passed to LR or DM,

the two following degenerate blocks Q1 = {T4} and Q2 = {T5} are considered for optimization of

ΥQ1
and ΥQ2

, respectively. This tuning procedure takes several hours, but has of course to be run

only once for each setting. Table 4.1 shows the chosen values for the parameters.

To provide a comparison between target values and the ones observed in datasets simulated

with chosen parameters, we show them together with boxplots containing 95% of the values within

10000 datasets (Fig. 4.5, Tab. 4.2–4.4). We consider two scenarios, one with datasets of size 3000

and one of size 300.

Initial values of the parameters were fixed to 1; further simulations (not presented here), with

initial values ranging from exp(−2) ≈ 0.14 to exp(2) ≈ 7.39, showed that these results are quite

pi mi

De C De

Target 0.47 0.53 3.25

2.5% 0.41 0.50 3.04
Simulated
size 3000

50% 0.45 0.55 3.57

97.5% 0.50 0.59 4.21

2.5% 0.35 0.44 2.22
Simulated
size 300

50% 0.45 0.55 3.57

97.5% 0.56 0.65 5.46

Table 4.3 – Values of the median of the uncensored times and of the probabilities of competing
events. Degenerate competing events block Q1 = {T4}. Target values and 2.5th, 50th and 97.5th
percentiles of values observed in 10000 datasets of sizes 3000 and 300.
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Figure 4.5 – Probabilities of competing events ([a]–[c]) and median uncensored times ([d]–[f]) for
transitions from state NED ([a], [d]), LR ([b], [e]) and DM ([c], [f]). Comparison between target
values (×) and boxplots containing the 95% of the data over 104 simulations. Black boxplots are
referred to datasets of size 3000, grey ones to datasets of size 300.
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pi mi

De C De

Target 0.95 0.05 0.50

2.5% 0.93 0.02 0.44
Simulated
size 3000

50% 0.96 0.04 0.58

97.5% 0.98 0.07 0.77

2.5% 0.88 0.00 0.32
Simulated
size 300

50% 0.97 0.03 0.58

97.5% 1.00 0.12 1.05

Table 4.4 – Values of the median of the uncensored times and of the probabilities of competing
events. Degenerate competing events block Q2 = {T5}. Target values and 2.5th, 50th and 97.5th
percentiles of values observed in 10000 datasets of sizes 3000 and 300.

robust with respect to the initial values of the parameters.



Chapter 5

Frailty multi-state models

The inclusion of frailties into multi-state models can provide complex survival models accounting

for dependence between grouped subjects as well as between times to events of different types within

the same group. For this reason, despite the challenge is quite complex, some works addressing this

problem have begun to appear in recent years in applied statistics, while investigation of theoretical

aspects is still moving its first steps.

Bhattacharyya and Klein (2005), for instance, considered progressive multi-state models with

exponential baselines. They introduced frailties correlated within subjects, obtained by summing

independent gamma random variables as suggested by Yashin et al. (1995) for correlated frailty

models.

Putter and van Houwelingen (2011) critically discussed some aspects of more general multi-state

models with dependent frailties within subjects, again. These models account for association

between transition intensities of the same subject, while they consider event times of different

subjects as independent. So, these models are more in the spirit of univariate frailty models, each

subject having a different risk level due to his own unobserved factors. In such a context the bigger

the frailty variances, the higher the heterogeneity between subjects and the dependence between

event times of different types for each subject. No clustering effect can be accounted for by this

approach.

On the other hand, Yen et al. (2010) studied models with gamma or binomial frailties, inde-

pendent between transitions but shared by grouped subjects. Their application to large bowel

adenoma–carcinoma natural history is focused on transition probabilities. In the same year, Ma

et al. (2010) presented in a working paper a similar model with gamma frailties, for time-use

pattern analysis, explicitly formulated in terms of transition-specific hazards. Both the models

assume frailties which are independent for different transitions, but shared by groups of subjects:

these assumptions are more in the spirit of shared frailty models, as they can account for clustering,

even though not for dependence between transitions.

Both of these approaches — the shared-like and univariate-like frailty multi-state models —

are used with quasi-semiparametric inference and prediction by Liquet et al. (2012), who show an

application to intensive care units.

These two approaches move from two assumptions which can hold, but which seem quite strong

in general: the independence between times of different subjects for the univariate-like models and
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the independence between times of different transitions for the shared-like ones. Here, we propose

the use of correlated frailties which can account for both between-subjects and between-transitions

dependence. This approach extends and includes as limit cases the two above-mentioned ones.

First, the parametric estimation approach based on the maximization of the marginal likelihood

is presented in Section 5.2.1. Quasi-semiparametric estimation, based on maximum penalized

likelihood, raises computational problems which are briefly discussed. Then, in Section 5.2.2 we

propose and discuss semiparametric estimation based on the EM-PL algorithm (Horny, 2009) for

the maximisation of the penalized partial likelihood.

5.1 Nested frailty multi-state models

The addition of frailties into Markov multi-state models can account for heterogeneity across

groups in the risk levels of different kinds of transition. In such cases, it is sensible to assume that,

due to unobserved common risk factors, the risk for subjects varies across groups. Furthermore,

we expect that variations for different transition types within the same group are different but

somehow dependent. Indeed, if patients in a given group perform better or worse than the global

population, they will do so with respect to all types of events, on average.

To model this kind of dependence, we borrow ideas coming from correlated frailty models and

we exploit them in a multi-state framework. We define the frailty multi-state model by means of

the conditional transition-specific hazard

λqhi(t | uqh) = λq0(t)uqh exp
{
β>q xqhi

}
, (5.1)

for transition of type q = 1, . . . , Q of subject i = 1, . . . , nh in group h = 1, . . . ,H. In Equation 5.1,

λq0(t) is the transition-specific baseline hazard, βq the vector of transition-specific regression

parameters, and xqhi the vector of transition-specific covariates.

In order to obtain frailties which are different but correlated across transitions in the same

cluster, the use of multiplicative nested frailties (Sastry, 1997) is chosen, thanks to its analytical

flexibility and straightforward interpretation. Hence, the frailty term uqh for transitions of type q

of subjects in cluster h is assumed to be the unobservable realisation of the random variable

Uqh = VhWqh, (5.2)

with

Vh
iid∼ fV (v; θV ), h = 1, . . . ,H,

Wqh
iid∼ fW (w; θq), q = 1, . . . , Q, h = 1, . . . ,H,

Vh ⊥⊥ Wqh, ∀(h, q).
(5.3)

Then, the model given by equations (5.1)–(5.3) has a random variable, Vh, which accounts

for the global effect of the group and another one, Wqh, for that of the interaction between the

transition type and the group.

Note that we speak of “nested frailties” just to be consistent with the terminology of the

methodology used to obtain correlated frailties. In the original publications, the second-level

frailties Wqh are associated to a subsample of unities (families) contained in the first-level ones
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(communities), to which are referred the terms Vh. The analogy with nested frailty multi-state

models is essentially technical: the interactions Wqh are a random sample just because the hospitals

are a random sample, but the transitions within each hospitals are not randomly selected from a

larger set.

In the context of all adverse (or all favourable) events — as in the example of the cancer model

in Figure 3.1 — it is natural to assume positive dependence between cluster–transition frailties

Uqh within the same cluster, and independence across clusters. For frailties associated to different

groups we have that

Uqh ⊥⊥ Uq′h′ , h 6= h′, (5.4)

trivially follows from assumptions (5.3). On the other hand, if we consider the Pearson correlation

coefficient as measure of (linear) dependence, then we have that within a given cluster

Cor(Uqh, Uq′h′) ∈ [0, 1], h = h′ (5.5)

(App. A.6).

The limit cases of these assumptions are two interesting particular cases. When Vh ≡ 1,∀h, the

model reduces to that with Cor(Uqh, Uq′h) = 0, similar to those by Yen et al. (2010) and Ma et al.

(2010), where Uqh ⊥⊥ Uq′h. This assumption of independent frailties within clusters seems to be

too strong in general because it ignores the interrelation of different events influenced by the same

latent factors.

On the contrary, shared frailties are obtained if the Wqh are degenerated random variables

Wqh ≡ 1, ∀q, giving Uqh = Uq′h = Vh, i.e. Cor(Uqh, Uq′h) = 1. The univariate version of this model

has been considered by Putter and van Houwelingen (2011) to study the effect of subject-specific

unobserved risk factors on multi-state models inference and prediction. Nevertheless assuming that

the effect of unobserved risk factors is exactly the same on the risk of different types of events seems

to be a little bit too rigid and correlated frailties are a reasonable relaxation of this constraint.

The use of correlated frailties can flexibly model situations which are between, and have as

limit cases, the models with shared and independent frailties. Moreover, the use of nested frailties

allows to obtain positive dependence, while dealing with independent random variables, which

permits easier computations for the following inference methods.

5.2 Inference

Notation. We consider data collected from n subjects grouped into H clusters of sizes n1, . . . , nH ,

with
∑H
h=1 nh = n. For each subject, Q possible types of transitions are possible, according to

the multi-state structure. The type-q transition time tqhi for subject i in group h can be censored

at time cqhi. So, the observable data are the event or censoring times yqhi = min(tqhi, cqhi) and

the event/censoring indicators δqhi = 1(tqhi ≤ cqhi). As a result of the multi-state nature of the

problem, subjects are at risk of each type of event only since the time at which they enter the

associated starting state. These are recorded as left-truncation times τqhi, corresponding to the

time of the previous transition. If a subject has never been at risk for a given transition type, the

left truncation time is set to infinity.

The frailty distributions fV (·; θV ) and fW (·; θq) in (5.3) are assumed to be one-parameter
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densities on the positive real line, with expectation fixed to 1 for identifiability reasons. The vector

of all the frailty parameters is denoted by θ = (θV , θ1, . . . , θQ)>. Analogously, the stacked vector of

all the regression parameters is denoted by β =
(
β>1 , . . . ,β

>
Q

)>
, the vector of the baseline hazard

functions by λ0(·) =
(
λ10(·), . . . , λQ0(·)

)>
and that of their parameters by ξ =

(
ξ>1 , . . . , ξ

>
Q

)>
.

Finally, let Λq0(t) =
∫ t

0
λq0(s)ds be the cumulative baseline hazard function for transitions of type

q.

Likelihood. Thanks to the conditional independence given by assumptions (5.3), the conditional

likelihood for the nested frailty multi-state model (5.1)–(5.2) can be obtained as the product over

the groups and over the subjects of the contributions of only the transitions for which the subject

has ever been at risk, i.e. those with finite left truncation time τqhi <∞:

LC(ξ,β) =

H∏
h=1

LC,h(ξ,β)

=

H∏
h=1

nh∏
i=1

Q∏
q=1

[{
λqhi(yqhi | vhwqh)

}δqhi S(yqhi | vhwqh)

S(τqhi | vhwqh)

]
1(τqhi<∞)

=

H∏
h=1

nh∏
i=1

Q∏
q=1

[{
vhwqhλq0(yqhi)e

β>q xqhi
}δqhi

exp
{
−vhwqh (Λq0(yqhi)− Λq0(τqhi)) e

β>q xqhi
}]1(τqhi<∞)

. (5.6)

The conditional likelihood cannot be maximised because it is function of unobservable quantities,

the frailty terms. In analogy to most common practices in frailty modelling, we propose two

estimation approaches to tackle this problem: a fully parametric one which maximises the marginal

likelihood and a semiparametric one based on maximum pensalised partial likelihood.

5.2.1 Parametric inference

In a parametric context, the unobserved frailties can be integrated out of the conditional

likelihood (5.6), so that the marginal likelihood of the observed data is obtained. This is a sort of

“averaged” likelihood over the frailty distribution, this last incorporating all the information linked

to unobserved quantities:

LM(ζ) =

∫
RH(Q+1)
+

LC(β, ξ)fV ,W

(
v,w; ζ | {Yqhi > τqhi}qhi

)

dw11 · · · dwQ1 · · · dw1H · · · dwQH dv1 · · · dvH . (5.7)

Thanks to independence between frailties given by assumptions (5.3), marginalising the condi-

tional likelihood with respect to the frailties can be done cluster by cluster
(
LM(ζ) =

∏H
h=1 LM,h(ζ)

)
,
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and the contribution of each cluster is

LM,h(ζ) =

∫
RQ+1
+

LC,h(β, ξ)fVh,Wh

(
vh,wh; ζ | {Yqhi > τqhi}qi

)
dw1h · · · dwQh dvh, (5.8)

with Wh = (W1h, . . . ,WQh)> the vector of the cluster-by-transition interactions for cluster h, and

wh the vector of their realisations. The joint conditional frailty distribution used in this integration

is

fVh,Wh

(
vh,wh; ζ | {Yqhi > τqhi}qi

)
=∏

qi|τqhi<∞

exp
{
−vhwqhΛq0(τqhi)e

β>q xqhi
}
fVh,Wh

(
vh,wh;θ

)[∫
R+

∏
qi|τqhi<∞

exp
{
−vhwqhΛq0(τqhi)e

β>q xqhi
}

fVh,Wh

(
vh,wh;θ

)
dw1h · · · dwQh dvh

]−1
(5.9)

(see App. A.7), with

fVh,Wh

(
vh,wh;θ

)
= fV (vh; θV )

Q∏
q=1

fW (wqh; θq) (5.10)

the joint marginal frailty distribution, because of independence assumptions (5.3).

Hence, by Equations 5.6, 5.8 and following, the marginal loglikelihood can be expressed as

`M(ζ) =

H∑
h=1

{
∑

qi|τqhi<∞

δqhi

{
log λq0(yqhi) + β>q xqhi

}

+ log

∫ ∞

0

vdhh

∏
q∈Qh

(−1)dqhL(dqh)
q

vh ∑
i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

 fV (vh; θV )dvh

− log

∫ ∞

0

∏
q∈Qh

Lq

vh ∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

 fV (vh; θV )dvh

}
(5.11)

(App. A.8), with dqh =
∑nh
i=1 δqhi the number of events of type q in cluster h, dh =

∑nh
i=1

∑Q
q=1 δqhi

the number of all events in cluster h, L(k)
q (s) the k-th derivative with respect to s of the Laplace

transform (Eq. 3.52) and where Qh =
{
q |
∑nh
i=1 1(τqhi < ∞) > 0

}
is the set of transitions for

which there exists in group h at least one subject who has ever been at risk.

This loglikelihood can accommodate any frailty distribution with derivatives of the Laplace
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transform available in an explicit form (cf. Sec. 3.3.4). If we make the standard choice of unit mean

gamma distributions in (5.3), then the marginal loglikelihood (5.11) is

`M(ζ) =

H∑
h=1

{
∑

qi|τqhi<∞

δqhi

{
log λq0(yqhi) + β>q xqhi

}

+ log

∫ ∞

0

v
1/θV +dh−1
h exp (−vh/θV )∏

q∈Qh

(
1 + θqvh

∑
i|τqhi<∞ Λq0(yqhi)e

β>q xqhi
)1/θq+dqh

dvh

− log

∫ ∞

0

v
1/θV −1
h exp (−vh/θV )∏

q∈Qh

(
1 + θqvh

∑
i|τqhi<∞ Λq0(τqhi)e

β>q xqhi
)1/θq

dvh

+
∑
q∈Qh

1(dqh > 1)

dqh−1∑
l=0

log(1 + lθq)


}

(5.12)

(App. A.9).

More generally, provided that an appropriate frailty distribution has been fixed, the marginal

loglikelihood (5.11) can be maximised in a fully parametric way. To this aim a parametric form

is assumed for the Q baseline hazard functions so that the marginal loglikelihood `M(ζ) can be

maximised over the parameters vector ζ =
(
ξ>,β>,θ>

)>
. The most common distributions for the

baseline hazard are shown in Table 3.2: exponential, Weibull, Gompertz, lognormal and loglogistic.

In order to obtain the marginal loglikelihood (5.11), integration at two levels is needed. If

integration with respect to the interactions wqh can be done analytically and is expressed through

the derivatives of the Laplace transform of their distribution, this is no longer possible for the

group frailties vh. Another approach is thus needed to integrate them out, based on a numerical or

analytical approximation. In our study, we use a saddlepoint approximation (Goutis and Casella,

1999) to compute integrals in Equation 5.12 (see App. A.10).

It is worth noting that the marginal loglikelihood with gamma distributed frailties (5.12) is

analogous to that given by Rondeau et al. (2006, Eq. 2) in the context of nested frailty models for

left-truncated (and right-censored) data, but with the addition of stratification. In their paper,

the authors approximate the baseline hazard by means of cubic M-splines; this is equivalent to

leave the baseline hazard unspecified and to use a measure of its roughness as a penalisation

when maximising the marginal loglikelihood (see Sec. 3.3.3, pg. 29). This approach is much more

flexible than the fully parametric one, but splines demand a considerable number of parameters. In

addition, our model has stratification, i.e. a different baseline function for each transition type. The

use of one spline for each of them would increase the number of parameters excessively, making

estimation prohibitive.

From a practical point of view, the frailtypack package (Gonzalez et al., 2012, v. 2.2-23) can

fit nested frailty models in R via maximum penalised marginal likelihood. Parametric inference is

possible, too, with Weibull baselines. It can manage stratification, but only with two levels, so it is

not straightforwardly usable for multi-state models, to date. Nevertheless, authors are working to
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raise up to three or five the accepted number of strata in future releases of the package. For the

examples shown in this thesis, ad hoc R code has been produced.

5.2.2 Semiparametric inference

In a semiparametric context, employing the ideas by Cox (1972), the conditional likelihood can

be profiled out with respect to the baseline hazards, obtaining the (conditional) partial likelihood.

The conditional likelihood (5.6) can be seen as the full likelihood of a multi-state model where the

logarithm of the frailties act as offsets. Then, profiling out the baseline hazards comes out to be

the same as for multi-state models (Andersen et al., 1993; de Wreede et al., 2010) with log-frailties

as offsets. Then, conditionally on the frailties, the partial loglikelihood is

`P(β) =

H∑
h=1

{
dh log vh +

Q∑
q=1

[
dqh logwqh+

nh∑
i=1

(
δqhiβ

>
q xqhi − log

∑
h′i′∈Rq(yqhi)

vh′wh′i′ exp
{
β>q xqh′i′

})]}
, (5.13)

with Rq(y) =
{

(h′, i′) | y ∈ [τqh′i′ , yqh′i′ ]
}

the risk set for transitions of type q at time y (App. A.11).

Consequently, the profiled version of the full loglikelihood `(ζ) = `C(ξ,β) + log fV,W (v,w;θ) is

`PP(β,θ) = `P(β) + log fV,W (v,w;θ), (5.14)

which we call penalised partial loglikelihood by analogy to the PPL approach for semiparametric

frailty models (Sec. 3.3.3). Under the constraint that all the cluster-by-transition interactions Wqh

have the same variance (θW := θ1 = · · · = θQ), the penalised partial likelihood (5.14) can be

maximised thanks to the EM-PL algorithm proposed by Horny (2009) for multilevel frailty models

(Rotolo and Legrand, 2012). The algorithm is shown in details in Section 7.2 and, for the nested

frailty multi-state model, it is the following.

Expectation step

ṽh= maxvh `PP(β̂, θV ) with offsets log w̃

w̃qh= maxwqh `PP(β̂, θW ) with offsets log ṽ

Maximisation step

β̂= maxβ `P(β; ṽ, w̃)

θ̂= maxθ log fV ,W (ṽ, w̃;θ)

The algorithm iterates until convergence between an E-step and an M-step. First, at the

expectation step (the name is held for analogy with the classical EM algorithm) previsions for

the frailties are obtained via BLUPs: for each of the two frailty variables, a semiparametric frailty

model is fitted via maximum PPL, with offsets given by the log-frailties of the other variable and

the linear predictors with fixed provisional β̂. Then, estimates for regression and frailty parameters

are updated, by maximisation of the two factors of the penalised partial likelihood, given present

guesses for the frailty terms.
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As a PPL estimation method is used at the E-step, only lognormal and gamma distributions

can be used for the frailties (Sec. 3.3.3).

5.3 Simulation study

We present here a simulation study to investigate how the incorporation of nested frailties into

multi-state models can improve parameter estimation. Simulation of clustered multi-state data is

done thanks to the model presented in Chapter 4.

The multi-state structure of Figure 4.1 is chosen and three main scenarios (Tab. 5.1) are

reproduced, with different number of clusters of different sizes. In scenario A only 10 groups of size

Scenario A B C

Number of clusters 10 20 40
Number of subjects per cluster 20 50 125

Total number of subjects 200 1000 5000

Table 5.1 – Simulation scenarios.

20 are considered. Scenario B depicts a more favourable framework, with 1000 subjects clustered

into 20 groups of size 50. Finally, scenario C considers 40 groups of 125 subjects. For each scenario,

simulations are replicated 500 times. The data, expressed in months, are simulated as coming from

a study lasting fifteen years, five of which of recruiting: censoring times are simulated as uniform

random variables between 120 months (15− 5 = 10 years) and 180 months (15 years). The effect

of a binary treatment is added, with strong effect on local relapse (LR) occurrence, mild effect

on distant metastases (DM) hazard, no effect on direct death (De), and strong negative effect on

death after adverse events (Tab. 5.2). These values are not necessarily all close to the reality, but

allow to cover different situations: null coefficients and small and big effects in both directions.

Transition HR βTreat

NED→LR 0.25 -1.39
NED→DM 0.9 -0.11
NED→De 1 0
LR→De 3 1.10
DM→De 5 1.61

Table 5.2 – Hazard ratios (HR) and regression parameters (βTreat = logHR) chosen to simulate the
treatment effect on different events.

Clustering is generated by means of two one-parameter gamma frailties: one (Vh) for the global

hospital effect with small variance and one (Wqh) for hospital–by-transition interaction with greater

heterogeneity, equal for all the transition types:

θV = 0.5,

θW := θ1 = . . . = θ5 = 1.
(5.15)
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The total variability of the frailties (see Eq. 3.59) is then

V[Uqh] = (θV + 1)(θW + 1)− 1 = 2. (5.16)

Weibull baselines hazards are used with parameters (Tab. 5.3) chosen in such a way that realistic

proportions of competing events are obtained. See, for instance, those for Scenario C in Table 5.4.

(q) Transition λq ρq

(1) NED→LR 3.47×10−2 0.8
(2) NED→DM 1.00×10−3 1.3
(3) NED→De 3.33×10−4 1.4
(4) LR→De 6.67×10−3 1.4
(5) DM→De 3.33×10−2 1.7

Table 5.3 – Baseline hazards parameters chosen for simulations.

to
from LR DM De Cens

NED 0.30–0.51 0.15–0.31 0.08–0.14 0.17–0.32
LR 0.76–0.96 0.04–0.24
DM 0.95–1.00 0.00–0.05

Table 5.4 – Relative frequencies (by line, i.e. by starting state) of transitions into possible arrival
state under Markov assumption, Scenario C. Minima and maxima over 500 replications.

In order to investigate the robustness of models with respect to the Markov assumption,

simulations are replicated adding further dependence between event times of each subject, by

means of a Clayton copula (see Sec. 4.1). So, in addition to the situation of no further dependence

(ϑ = 0), simulations are performed with two degrees of dependence: ϑ = 0.5 (Kendall’s τ = 0.2)

and ϑ = 1.5 (Kendall’s τ ' 0.43).

5.3.1 Parametric models

As the implementation of parametric models is computationally much more demanding than in

the semiparametric approach, we consider in this Section only two families of models:

MSM: a multi-state model without any frailty term,

NFM: our multi-state model with nested frailties.

Due to long computation times, we compare these models only in the case that the Markov

assumption is true (ϑ = 0). Moreover, results in this Section 5.3.1 correspond to simulation

parameters which are slightly different from those presented above, but substantially similar, and

which correspond to earlier choices (β5 = β4 = β3 = 0 and θW = 1.5). We opted for also positive

betas (β5 and β4) and smaller heterogeneity (θW ) in a second moment, but we decided not to

replicate simulations for the parametric models with these small variations because of demand of

computational resources and little difference in parameters.



64 Frailty multi-state models

Tables in Appendix B.3 (Sec. B.3.1) report the detailed results of the study, comparing the mean

and the standard error of the parameter estimates, together with the mean estimated standard

error. Figures 5.1 and 5.2 compare the true simulation parameters to boxplots containing the 95%

of the estimates over the 500 replications, and their medians.

These results clearly show that regression parameters are correctly estimated, on average, but

their variability across datasets is in general largely higher than in the case of multi-state models

without any frailty. This fact suggests that the Laplace approximation employed to approximate

integrals in the marginal loglikelihood (5.12) is not that precise, even though correct. Indeed it is

supposed to be a valid approximation whenever dh is big, which is not always the case.

As for the frailty parameters (Fig. 5.2), the estimates are so widespread that the value given

by the analysis of a single dataset cannot be really trusted, notably that for the group θ̂V .

Nevertheless, the comparison of the three scenarios suggests that if we could consider more and

larger clusters—from a computational point of view and in real clinical trials—the estimation of

frailty parameters would probably converge to acceptable values, even though more slowly than for

regression parameters.

Concerning the baseline hazards, the shape parameters (ρq) are estimated with very small bias

and great precision, even for small datasets (scenario A). The scale parameters (λq), instead, are

often overestimated by nested frailty multi-state models and those models without frailties perform

at best in this regard. Shared frailty models encounter serious computational problems with large

datasets.
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Figure 5.1 – Results of simulations for parametric models. Regression parameters (β). Boxplots
containing 95% of the values over 500 replications.
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Figure 5.2 – Results of simulations for parametric models. Baseline (ξ) and frailty (θ) parameters,
on a log10 scale. Boxplots containing 95% of the values over 500 replications.
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5.3.2 Semiparametric models

For each combination of scenarios (A, B and C) and extra-Markov dependence (ϑ ∈ {0, 0.5, 1.5}),
we evaluate the performance of the semiparametric nested frailty multi-state model by comparing

three families of models:

MSM: a multi-state model without any frailty term,

SFM: a multi-state model with a shared frailty accounting for hospital effect,

NFM: our multi-state model with nested frailties.

The models are fitted on the 500 simulated datasets for each of the nine scenario–dependence

combinations.

An example of the results is given in Table 5.5 for the most robust situation, i.e. with the largest

number and size of groups (scenario C) and no departure from the Markov assumption (ϑ = 0).

The complete results are provided in Appendix B.3 (Sec. B.3.2). For each estimated parameter we

provide the mean of the estimates (MEAN), empirical standard error (eSE), the mean estimated

standard error (mSE). Figures 5.3 (ϑ = 0), 5.4 (ϑ = 0.5) and 5.5 (ϑ = 1.5) show box-plots of the

estimates over the 500 replications.

The first evidence is that in scenario A all the models perform quite poorly, whereas results are

acceptable in scenario B and are really satisfactory in scenario C (note the different axis scale of

the first scenario as compared to the two others).

A very good general result is that the violation of the Markov assumption does not affect

results dramatically, most of them being comparable in all scenarios. This has a strong impact on

multi-state modelling, as the Markov assumption is usually done just for mathematical convenience;

indeed, many estimation and prevision methods are much simpler or exist only for Markov models

(see Sec. 3.2).

Now, let us consider the estimation of regression parameters, which is typically the main

interest in a clinical study. Multi-state models (MSM), which ignore the clustering, underestimate

the treatment effect in all situations; this is coherent with previous results in survival analysis

literature (Bretagnolle and Huber-Carol, 1988; Andersen et al., 1999), showing that uncontrolled

heterogeneity yields an attenuation of the covariates effect. The addition of nested frailties (NFM)

proves to be able to reduce both the bias and the variability of regression parameter estimates,

notably in the case of big datasets (Scenario C).

The coverage probabilities of the confidence intervals for regression parameters, obtained over

the 500 replications, are showed in Figure 5.6. The well-known problem of underestimation of the

variability of the estimators is reflected by the undercoverage from which all the considered methods

suffer. Under the Markov assumption, the nested frailty model is uniformly the best performing

one, with coverage probabilities very close to the nominal value. Nevertheless, this model seems

to suffer more than the others from departures from the Markov assumption. A surprising result

is given by the performance of all models and with all values of ϑ worse in scenario C than in

scenario A, with intermediate behaviour in scenario B. A possible explanation might be related to

underestimation of standard errors.

Estimation of the frailty parameters is more problematic. In general, the model with shared

frailties is able to recover the cluster heterogeneity θV properly, but it cannot account for the
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Figure 5.3 – Results of simulations for semiparametric models, with ϑ = 0. Each box contains the
95% of the values over 500 replications; the vertical line within it is the median; the extreme ticks
are the minimum and the maximum.
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Figure 5.4 – Results of simulations for semiparametric models, with ϑ = 0.5. Each box contains
the 95% of the values over 500 replications; the vertical line within it is the median; the extreme
ticks are the minimum and the maximum.
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Figure 5.5 – Results of simulations for semiparametric models, with ϑ = 1.5. Each box contains
the 95% of the values over 500 replications; the vertical line within it is the median; the extreme
ticks are the minimum and the maximum.
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Figure 5.6 – Results of simulations for semiparametric models. Coverage probabilities for regression
parameters. The horizontal line is the nominal value of the confidence intervals: 0.95.
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Scenario C and ϑ = 0

True MSM SFM NFM
value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.08 (0.07 | 0.05) -1.19 (0.06 | 0.05) -1.43 (0.05 | 0.05)
β2 -0.22 -0.18 (0.08 | 0.06) -0.33 (0.09 | 0.06) -0.21 (0.06 | 0.06)
β3 0.00 0.01 (0.09 | 0.08) -0.14 (0.09 | 0.08) 0.02 (0.08 | 0.08)
β4 1.10 0.84 (0.12 | 0.05) 0.91 (0.09 | 0.05) 1.10 (0.05 | 0.05)
β5 1.61 1.44 (0.26 | 0.07) 1.44 (0.16 | 0.07) 1.61 (0.08 | 0.07)

True SFM NFM
value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 9.38e-01 (4.73e-02) 3.22e-02 (9.39e-02)
θW 1.00 ( ) 3.71e+00 (2.24e-01)

Table 5.5 – Results of simulations for scenario C and ϑ = 0. MSM: multi-state model without
frailties. SFM: multi-state model with shared frailties. NFM: multi-state model with nested frailties.
MEAN, eSE and mSE: mean estimates, empirical standard errors and mean estimated standard
errors over 500 repetitions.

differences between transitions. On the other hand, the nested frailty model can account for both of

them but with heavy and systematic bias: the cluster effect variance is underestimated, whereas that

of the cluster-by-transition interactions is underestimated, whatever the context. In Appendix B.3.2

we show box-plots for the heterogeneity parameter estimates for this simulation study and for a

second one with much higher heterogeneity (θV = θW = 2, i.e. V[U ] = 8). Results are analogous

to the present setting, meaning that apparently the size of the θ’s is not the reason for them to

be recovered poorly. This is an evidence of an identification problem for the frailty parameters:

the inferential process can account for unobserved heterogeneity to correctly estimate regression

parameters, but it is not able to properly discriminate the contribution of each clustering level.

This result should induce the researcher to be very sceptic in using these models to investigate

unobserved heterogeneity and to study its sources, but to be very confident on their results to

evaluate the effect of risk factors.



Chapter 6

Case studies

6.1 A pooled database of seven phase III bladder cancer

clinical trials

One of the most common urological malignancies is bladder cancer, about 70-80% of which are

superficial (stage Ta-T1). Standard treatment typically consists of transurethral resection (TUR)

conducted with the aim of removing all tumours. However, a high proportion of patients experience

recurrence or progression to muscle invasive disease, even after complete resection, because of

residual tumour cells. Therefore, randomised phase III trials have been conducted over the last

decades to investigate the use of prophylactic treatment following TUR. The objective of such

treatment is to both remove residual, unresectable lesions and to prevent recurrence after complete

resection.

In this study, we considered the data of 2649 eligible bladder cancer patients randomised

by 63 European centers in seven consecutive phase III randomised clinical trials conducted by

the Genito-Urinary Group of the European Organization for Research and Treatment of Cancer

(EORTC trials 30781, 30782, 30791, 30831, 30832, 30845 and 30863; Newling et al., 1995; Bouffioux

et al., 1992; Kurth et al., 1984; Bouffioux et al., 1995; Witjes et al., 1998; Oosterlinck et al., 1993).

Among all these patients, the 2596 ones with stage Ta-T1 cancer were considered, approximately

half with primary bladder cancer and half with recurrent disease. Other eleven patients were

excluded for missing information about the time to some of the endpoints of interest. Eventually, 62

others were dropped as they had some important risk factors missing: 2523 patients are then used

for our analyses. Within the context of these trials, patients in each of these participating centers

were treated with or without further intravesical treatment after TUR. In total, 1368 patients

(54.2%) received it, while 1155 patients (45.8%) did not.

The patients, 509 females and 2014 males aged between 12 and 92 years (median: 65 years),

were recruited from 63 hospitals in 11 countries (Fig. 6.1).

Patients were followed up starting from the date of randomisation and the times to the first

bladder recurrence (Rec), the first progression (Prog, increase to stage T2 or higher disease in the

bladder), and to the date of death (De) were recorded. When censoring occurs, the most recent

information is available at the date of the last follow-up cytoscopy.
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AUT, BEL, CHE, CZE, DEU, FRA, GBR, ITA, PRT, NLD, TUR

Partecipating countries in the EORTC bladder cancer clinical trial

Figure 6.1 – Countries (with ISO 3166-1 alpha-3 codes) involved in the EORTC bladder cancer study:
Austria, Belgium, Czech Republic, France, Germany, Italy, Portugal, Switzerland, Netherlands,
Turkey, United Kingdom.

A total of 1179 (46.7%) recurrences were recorded with overall median time of 2.78 years, with

significantly longer times in the intravesical treatment group (HR: 0.87, 95% CI: 0.77–0.97, p-value:

0.015). Fewer progressions, 276 (10.9%), were observed, with no significant difference between the

two treatment groups (p-value: 0.701). During the study, 829 (32.9%) subjects died, with a median

survival time of 10.8 years. Overall survival was significantly worse in the intravesical treatment

group (HR: 1.15, 95% CI: 1.001–1.320, p-value: 0.048).

As concerns the multi-state nature of the problem, patients were followed since the randomisation

moment and they could die during the study; during this period, they could have a recurrence

or a progression or both of them. In 227 out the 231 cases of both adverse events, progression

occurred not before a recurrence; hence we have chosen to consider as inadmissible the occurrence

of a recurrence after a progression. Figure 6.2 shows the multi-state structure which reflects this

framework. Finally, recurrence and progression were recorded at the same time for 64 patients. In

these cases, the less relevant event — the recurrence — has been dropped; the number of remaining

recurrences is then 1116.

6.1.1 Models

We consider and compare five semiparametric models for the bladder cancer data, fitted

according to the multi-state structure in Figure 6.2.

MS: a simple multi-state model

ST: a multi-state model, stratified by center

SF1: a multi-state model with shared gamma frailties for the center effect
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Rand

Rec

Prog

De
935

91

668

829

108

1116

364

168

185

280

Tot: 2523

Figure 6.2 – States and transitions for the bladder cancer data. Rand: Randomisation, De: Dead,
Rec: Recurrence, Prog: Progression. The number of observed transitions are showed on the arrows,
whereas the number of patients ending the study in each state are in the boxes.
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Effect on
of Rec Prog De

Tumour size • • ◦
Number of tumours • • ◦
Recurrent disease • • ◦
Age ◦ • •
Sex ◦ ◦ •

Table 6.1 – Bladder cancer study. Covariates included in the models, based on previous model
selection for partial endopoints. A black bullet means that the covariate (row) is included for the
hazard of the event (column); an empty circle means that the effect is not included.

SF2: a multi-state model with shared gamma frailties for the center-by-transition interaction

effect

NF: a multi-state model with nested gamma frailties, one for the center effect and one for the

center-by-transition interaction

A model with fixed effects for the center is not feasible, as this would require (63− 1)× 6 = 186

parameters just to keep under control the group effect.

Preliminary investigation on models MS, ST, SF1 and SF2 led to select some important factors

to take into account. Namely, we decided to account for the effect on the recurrence and progression

risks of the tumour size, of the number of tumours and of having a recurrent disease; the effect of

the age on the risks of death and of progression; the effect of the sex on the risk of death (Tab. 6.1).

The effect of the treatment is estimated separately for each of the six transitions, as it is the

focus of interest and as it is possible thanks to a sufficient number of observed events and at-risk

subjects.

According to the results shown in Figure 6.3 and presented in details in Appendix B.4, the

treatment has a protective effect against recurrences in all models, with an estimated reduction of

risk ranging from 13.7% (NF) to 22.6% (MS). No model detects a statistically significant effect of

further intravesical treatment after TUR on the rate of progression, neither directly nor after a

recurrence.

The significant increase of death risk previously detected by the Cox model on the single

endpoint, can be investigated in more details now. No effect of the treatment is present on overall

survival without any intermediate event, whereas an increased risk is there for patients having

a bladder cancer recurrence: HR estimate of the nested frailty model is 1.47, with p-value for

the Wald test less than 0.002 against the hypothesis of no effect. This phenomenon, even though

puzzling at a first glance, can be explained by the fact that patients with a recurrence are weaker

and can suffer from undergoing further therapy, with benefits compensated and overtaken by the

side effects. On the other hand, the most seriously ill patients, i.e. having a progression, show a

beneficial effect of further treatment on survival (HR: 0.73, 95% CI: 0.54–0.99) but with borderline

significance (p-value: 0.040).

As an aside, it results that the risk of death is about 70% higher for men than for women and

that ten more years of age imply more than the double of risk.
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Figure 6.3 – Bladder cancer study. Hazard ratios, with approximate 95% confidence intervals for
the treatment effect on the hazards of the six transitions. MS: multi-state model; ST: multi-state
model stratified by hospitals; SF1: shared-frailty multi-state model for hospital; SF2: shared-frailty
multi-state model for center-by-transition; NF: nested-frailty multi-state model. The black-coloured
estimates are significantly different from 1, the grey ones are not.



78 Case studies

6.2 A randomised trial for metastatic castration-resistant

prostate cancer progressing after treatment

Prostate cancer is one of the first causes of death in men in occidental countries. Metastatic

prostate cancers are treated via androgen suppression therapy, which improves survival but does

not inhibit the disease progression. Docetaxel in combination with prednisone is administered for

metastatic castration-resistant prostate cancer but, in case of still resistant diseases, no therapy

has been approved by the US Food and Drug Administration. Mitoxantrone is used to improve

patients’ quality of life, but without survival benefit. The Sanofi–Aventis phase III clinical trial

TROPIC (#EFC6193) showed that cabazitaxel plus prednisone improved survival of patients as

compared to mitoxantrone plus prednisone, with an overall reduction of about 30% of death risk

(de Bono et al., 2010). Figure 6.4 resumes the disease and therapy history until randomisation.

Metast
PC

Progr

No more
Progr

Still
Progr

mitoxantrone
+

prednisone

cabazitaxel
+

prednisone

androgen
deprivation

docetaxel
+

prednisone

randomization

Figure 6.4 – Prostate cancer study. Pre-randomisation disease and therapy history.

The open-label trial was performed collaboratively by 132 hospitals in 26 countries (Fig. 6.5).

Data are available on 755 men aged between 46 and 92 years (median: 67 years), randomly assigned

to the cabazitaxel (378 pt.’s) or the mitoxantrone (377 pt.’s) treatment arms.

The survival time since randomisation is the primary endpoint, but also the time to tumour

progression and Prostate-Specific Antigen (PSA) progression are recorded. A total of 513 (67.95%)

deaths were recorded, with overall survival time of 13.93 months and significantly longer times of

the experimental treatment arm (HR: 0.69, 95% CI: 0.58–0.82, p-value < 0.001). If progression-free

survival is considered, 731 (96.82%) events are observed, with overall median time of 2.07 months;

again, a strongly significant treatment effect is detected, with hazard ratio 0.75 (95% CI: 0.64–0.86,

p-value < 0.001). Moreover, 504 (68.2%) PSA progressions (median time of 4.83 months) and

348 (46.09%) tumour progressions (median time of 7.23 months) were recorded. The effect of the

treatment is also significant for the time to both PSA and tumour progression, with hazard ratios

equal to 0.75 (95% CI: 0.63–0.89, p-value: 0.001) and 0.63 (95% CI: 0.51–0.78, p-value < 0.001),

respectively. Figure 6.6 provides the survival curves estimated via the Kaplan–Meier method for

the four endpoints, showing the general improvement of patients performances for the experimental
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ARG, BEL, BRA, CAN, CHL, CZE, DEU, DNK, ESP, FIN, FRA, GBR, HUN, IND, ITA, KOR, MEX, NLD, RUS, SGP, SVK, SWE, TUR, TWN, USA, ZAF

Participating countries in the Sanofi−Aventis TROPIC (EFC6193) clinical trial

Figure 6.5 – Countries (with ISO 3166-1 alpha-3 codes) involved in the Sanofi–Aventis prostate
cancer study: Argentine, Belgium, Brazil, Canada, Chile, Czech Republic, Denmark, Finland,
France, Germany, Hungary, India, Italy, Republic of Korea, Mexico, Netherlands, Russia, Singapore,
Slovakia, South Africa, Spain, Sweden, Taiwan, Turkey, United Kingdom, United States of America.

therapy arm.

The primary objective of the clinical trial was the evaluation of the effect of the therapy,

cabazitaxel plus prednisone, as compared to mitoxantrone plus prednisone, on overall survival

(de Bono et al., 2010). Frailty multi-state models can provide a deeper insight in the comprehension

of the disease and of the action of cabazitaxel, mainly in two ways. First, the use of frailties can

account for dependence due to unobserved risk factors, shared by patients recruited in the same

country. Secondly, the use of a multi-state structure can dynamically account for the effect of

intermediate events, namely PSA progression and tumour progression, on the risk of death.

To this aim, we will consider three families of models

– two separate models for overall survival, one with intermediate PSA progression and one

with tumour progression

– a model for progression-free survival, with intermediate PSA progression

– a model for overall survival, with intermediate events PSA progression and tumour progression

and, for each of them, we compare

MS: a multi-state model without any frailty,

ST: a multi-state model, stratified on the country,

SF1: a multi-state model with shared frailties for the country,

SF2: a multi-state model with shared frailties for the country-by-transition interac-

tion,

NF: a multi-state model with nested frailties, accounting for both the country effect

and the country-by-transition interaction,

fitted via semiparametric inference. In this trial patients are recruited from a very wide

geographical area, so that country differences are supposed to be explicative enough of differences

in risks. For this reason clustering in considered at country rather than at hospital level.
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Figure 6.6 – Prostate cancer study. Kaplan–Meier curves for time to PSA progression, tumour
progression, overall survival and progression-free survival, by treatment arm.
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Figure 6.7 – States and transitions for the prostate cancer study. Separate models for overall survival
with PSA and tumour progressions. Rand: Randomisation, De: Dead, PSAp: PSA progression,
TUMp: Tumour progression. The number of observed transitions are showed on the arrows, whereas
the number of patients ending the study in each state are in the boxes.

6.2.1 Separate models for overall survival

Let us first consider the effect of disease progression on the death risk. Progression was measured

at two levels: tumour progression was assessed by Response Evaluation Criteria in Solid Tumour

(RECST, Therasse et al., 2000) with at least one visceral or soft-tissue metastasis, whereas diseases

were classified as PSA progressive if an increase of at least 25% of nadir PSA was observed in

non-respondent patients with at least 5 µg/L PSA increase and for responders with an increase

of at least 50% of nadir PSA. This latter criterion is expected to be able to detect progressive

diseases earlier, whilst the former one at a more advanced stage.

Two separate models are fitted for overall survival, one with intermediate PSA progression and

one with tumour progression (Fig. 6.7). More progressions are measured by PSA increase (504)

than by RECST (348), since the first method detects progressive diseases earlier, when progression
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is not physically visible, yet. Indeed, estimated median event time are 4.83 months for PSAp, 7.23

months for TUMp.

Results from the model with PSA progression (Fig. 6.8 , App. B.5.1) show that patients treated

with cabazitaxel plus prednisone have a significantly reduced risk of progression (HR: 0.79, 95% CI:

0.67–0.95) and of death, both before progression (HR: 0.63, 95% CI: 0.46–0.86) and after it (HR:

0.70, 95% CI: 0.56–0.88). The occurrence of PSA progression does not turn out to have significant

impact on death risk (p-value: 0.211).

If the progression is assessed by the RECST (Fig. 6.9, App. B.5.1), the new treatment has a

significantly protective action against death, both before progression (HR: 0.66, 95% CI: 0.51–0.85)

and after it (HR: 0.67, 95% CI: 0.52–0.87). Notice that the size of the hazard reduction is of the

same magnitude as in the model with PSAp, about 30-40%.

The reduction of the progression hazard due to the new treatment (HR: 0.82, 95% CI: 0.67–1.02)

is not significant but borderline (p-value: 0.071).

6.2.2 Models for progression-free survival

Then, we consider a model for progression-free survival, instead of overall survival, where the

endpoint is either death or tumour progression, whilst PSA progression is a possible intermediate

event (Fig. 6.10).

On the basis of these analyses (Fig. 6.11, App. B.5.2), the new treatment has a significant

beneficial effect on the PSA progression (HR: 0.69, 95% CI: 0.57–0.83), coherently to results of the

overall survival model with intermediate PSA progression. Consistently with models in Section 6.2.1,

patients who undergone cabazitaxel therapy show a significant reduction of the hazard of dying or

having tumour progression (HR: 0.71, 95% CI: 0.56–0.91). No treatment effect on progression-free

survival is observed after having already had a PSA progression (p-value: 0.405). The occurrence

of a PSA progression seems to increase the risk of death or tumour progression (HR: 1.17, 95% CI:

0.93–1.49) but this effect is not statistically significant (p-value: 0.187).

6.2.3 Global models for overall survival

Finally, a model for overall survival is considered with possible intermediate PSA and tumour

progressions, and where a tumour progression is possible after PSA progression (Fig. 6.12). 447

patients had PSA progression as first event and 159 of them died, then. Tumour progression was

observed in 348 men, 185 of which after a PSA progression; 247 of them died successively during

the trial. Death without any clinical evidence of progression occurred for 107 patients. No event

was recorded for 38 men.

The effect of the new therapy is estimated separately for each of the six transitions, by means of

five variables treat.1, . . . , treat.6. Three different baseline hazards are assumed for PSA progression,

tumour progression, and death. The baseline hazard functions of the three transitions into the

state De are assumed to be proportional to each other, with hazard ratios estimated by means of

two artificially time-dependent indicator variables (PSAp.OS and TUMp.OS) recording whether

each type of progression has been already observed or not. Analogously, proportionality is assumed

for the hazards of the two transitions into TUMp, with log-proportionality estimated thanks to

the time-dependent indicator PSAp.TUMp. The results, provided in details in Appendix B.5.3 and



6.2 Clinical trial for metastatic prostate cancer 83

0.0 1.0 2.0

Transition from Rand 
to PSAp

HR

[

[

[

[

[

●

●

●

●

●

]

]

]

]

]

MS

ST

SF1

SF2

NF

0.0 1.0 2.0

Transition from Rand 
to De

HR

[

[

[

[

[

●

●

●

●

●

]

]

]

]

]

MS

ST

SF1

SF2

NF

0.0 1.0 2.0

Transition from PSAp 
to De

HR

[

[

[

[

[

●

●

●

●

●

]

]

]

]

]

MS

ST

SF1

SF2

NF

0.0 1.0 2.0

Effect of PSAp 
on De

HR

[

[

[

[

[

●

●

●

●

●

]

]

]

]

]

MS

ST

SF1

SF2

NF

Figure 6.8 – Prostate cancer study. Models for overall survival with intermediate PSA progression.
Estimated hazard, with approximate 95% confidence intervals. The first three graphs refer to the
effect of the experimental treatment on the risk of each transition; the last one refers to the increase
of death risk due to the occurrence of PSA progression (PSAp). The black-coloured estimates are
significantly different from 1, the grey ones are not.
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Figure 6.9 – Prostate cancer study. Models for overall survival with intermediate tumour progression.
Estimated hazard, with approximate 95% confidence intervals. The first three graphs refer to the
effect of the experimental treatment on the risk of each transition; the last one refers to the increase
of death risk due to the occurrence of tumour progression (TUMp). The black-coloured estimates
are significantly different from 1, the grey ones are not.
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Figure 6.10 – States and transitions for the prostate cancer study. Model for progression-free
survival with PSA progression. Rand: Randomisation, PSAp: PSA progression, De/TUMp: Dead or
Tumour progression. The number of observed transitions are showed on the arrows, whereas the
number of patients ending the study in each state are in the boxes.

resumed in Figure 6.13, show that cabazitaxel plus prednisone strongly reduces the risk of PSA

progression (HR: 0.68, 95% CI: 0.57–0.83) with respect to mitoxantrone plus prednisone. If all

the models suggest a reduction of tumour progression, too, only after controlling for unobserved

heterogeneity at both levels (NF model) the reduction turns out to be significant (HR: 0.73, 95%

CI: 0.53–0.99, p-value: 0.042).

The multi-state nature of the models is valuable in putting in evidence that the benefit of

cabazitaxel on survival performance that de Bono et al. (2010) found — see also the top-left plot

in Fig. 6.6 — is different according to intermediate events. The effect is strong and significant for

patients without progression (HR: 0.60, 95% CI: 0.39–0.93) and for those having tumour progression

(HR: 0.73, 95% CI: 0.57–0.94). On the other hand, the hazard reduction is less important and not

significant after a PSA progression (HR: 0.79, 95% CI: 0.57–1.10, p-value: 0.160), revealing that

the effect detected by the first models in Section 6.2.1 is spurious and is mainly due to patients

with successive tumour progressions, ignored by those models.

The occurrence of a PSA progression strongly increases the death hazard (HR: 1.83, 95% CI:

1.27–2.65, p-value: 0.001) and the tumour progression hazard (HR: 2.01, 95% CI: 1.40–2.89, p-value

< 0.001). Finally, as one can expect, the occurrence of a tumour progression increases the death

risk even more than PSA progression (HR: 2.27, 95% CI: 1.60–3.22, p-value: < 0.001).
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Figure 6.11 – Prostate cancer study. Models for overall survival with intermediate PSA progression.
Estimated hazard, with approximate 95% confidence intervals. The first three graphs refer to the
effect of the experimental treatment on the risk of each transition; the last one refers to the increase
of death risk due to the occurrence of PSA progression (PSAp). The black-coloured estimates are
significantly different from 1, the grey ones are not.
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Figure 6.12 – States and transitions for the prostate cancer study. Rand: Randomisation, De: Dead,
PSAp: PSA progression, TUMp: Tumour progression. The number of observed transitions are
showed on the arrows, whereas the number of patients ending the study in each state are in the
boxes.
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Figure 6.13 – Prostate cancer study. Estimated hazard ratios, with approximate 95% confidence
intervals. Global models for overall survival. The first six graphs refer to the effect of the experimental
treatment on the risk of each transition; the last three refer to the increase of the risk of of TUMp
or death, due to the occurrence of PSAp and TUMp. The black-coloured estimates are significantly
different from 1, the grey ones are not.



Chapter 7

Software

Many statistical software packages are available nowadays which range from more user-friendly

graphical interfaces to powerful programming languages. Among them, SAS (SAS Institute Inc.,

2011) and R (R Development Core Team, 2012) are the two most popular ones; the former one

is mostly used in the industry as offers well-reviewed routines, is very fast and can deal with

very large datasets. On the other hand, the latter one is particularly appreciated by the academic

statistical scientific community, as the packages system allows everybody to contribute by providing

ready-to-use functions implementing the most recent and advanced statistical tools.

R is a statistical programming language for high level computation and graphics; it is derived

by S and offers interfaces to other languages, such as C or FORTRAN. The R language looks similar

to C, but it is actually a functional programming language, allowing computing on the language.

Many packages exist for survival analysis and the survival one by Therneau (2012b) is certainly

a sine qua non, offering a bunch of tools for descriptive statistics, two-sample tests, parametric

accelerated failure models, Cox models, etc. It also allows to fit semiparametric frailty models

with gamma, lognormal and log-t frailties. Two other packages, coxme by Therneau (2012a) and

phmm by Donohue and Xu (2012), fit semiparametric lognormal models with other estimation

algorithms than the PPL. Parametric proportional hazards models can be fitted by means of the

eha (Broström, 2012) package. Finally, the frailtypack package Gonzalez et al. (2012) fit gamma

frailty models with the baseline hazard function approximated by cubic M-splines.

Multi-state models can be fitted as fixed effects proportional hazard models (survival and

eha packages, for instance), once data are recoded into long format (de Wreede et al., 2011; Putter,

2011). Putter et al. (2012) provide in the mstate package a set of valuable functions for such data

preparation process.

In the following Sections 7.1–7.2 we present two new R packages, parfm (Rotolo and Munda,

2012) and mlfm (Rotolo and Horny, 2012), that we developed to fit parametric frailty models

(Munda et al., 2012) and multilevel frailty models for our research and which are now publicly

available.
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7.1 parfm package: parametric frailty models in R

Slowly but surely, a variety of estimation procedures for frailty models becomes available in

standard statistical software. In R, the coxph() function from the survival package (Therneau,

2012b) handles the semiparametric model with gamma and lognormal frailties. Important options

supported by coxph() and its output are described in details by Therneau and Grambsch (2000,

Chapter 9). Recently, the frailtypack package (Gonzalez et al., 2012) by Rondeau and Gonzalez

(2005) and Rondeau et al. (2012) has been updated and it stands now for gamma frailty models

with a quasi-semiparametric estimation but also with a parametric approach using the Weibull

baseline hazard. Other R packages include coxme (Therneau, 2012a) and phmm (Donohue and Xu,

2012). These two perform semiparametric estimation in the lognormal frailty model. SAS also deals

with the lognormal distribution. On the one hand, proc phreg can now fit the semiparametric

lognormal frailty model. On the other hand, proc nlmixed deals with the parametric version by

using Gaussian quadrature to approach the marginal likelihood; see, e.g., Duchateau and Janssen

(2008, Example 4.16). In the parametric setting, STATA (StataCorp, 2011) provides some flexibility.

The streg command (Gutierrez, 2002) is able to perform maximum likelihood estimation with

various choices of baselines: exponential, Weibull, Gompertz, lognormal, loglogistic, and generalised

gamma. Take notice, however, that STATA fits the accelerated failure time model. Still, with

exponential or Weibull baselines, both the proportional hazards and the accelerated failure time

representations are allowed. As for the frailty distribution, the gamma and the inverse Gaussian are

the only two that are supported. On a side note, Bayesian analyses can be conducted in WinBUGS

(Spiegelhalter et al., 2003); see, e.g., Duchateau and Janssen (2008, Example 6.4). For a deeper

overview of what supports what, and for a comparison of some of the aforementioned functions,

see Hirsch and Wienke (2011).

The new parfm package (Rotolo and Munda, 2012) fits the gamma, the inverse Gaussian, the

positive stable and the lognormal proportional hazards frailty models with either exponential,

Weibull, Gompertz, lognormal, or loglogistic baseline. The parfm package is flexible and easy to

use. Parameter estimation is done by maximising the marginal log-likelihood; the optim() function

is employed, and its method option is passed to parfm() (with method="BFGS" by default). If not

specified in the inip option, initial values for all but the heterogeneity parameter are obtained

by fitting an unadjusted (i.e., without frailty) parametric proportional hazards model using the

phreg() function from the eha package (Broström, 2012). The initial heterogeneity parameter can

also be specified by the user via the iniFpar option; otherwise it is set to 1 when frailties follow a

gamma, lognormal or an inverse Gaussian distribution, or to 1/2 when they follow the positive

stable distribution.

Additionally, when frailty="none", parfm() fits the unadjusted parametric proportional

hazards model, similar to survreg() (from the survival package) or to phreg(). However,

survreg() returns the parameter estimates in the log-linear model and phreg() uses yet another

parametrisation (see the documentation). Often, the user has then to transform back the parameters

and to employ the delta method in order to get estimates for the standard errors. The parfm()

function directly uses the proportional hazards representation.

Nonetheless, parfm might reach its limits when at least one dh, the number of events in the h-th

cluster, h ∈ {1, . . . ,H}, is very large. First, consider the positive stable distribution and observe



7.1 parfm package: parametric frailty models in R 91

that, for a fixed value of m ∈ {1, . . . , k − 1}, Ωk,m rapidly grows as k increases (Eq. 3.102). At

the extreme, some of them might exceed the largest representable number in R. These are then

stored as Inf. This, in turn, prevents the marginal log-likelihood (7.1) to be evaluated and hence

maximised. As a side note, also the SAS macro ps frail that implements the EM algorithm to fit

the semi-parametric positive stable frailty model has analogous difficulties when the number of

events is large or even moderate. The following ad-hoc solution is implemented in parfm: in order

to keep the polynomials Ωk,m’s reasonably small, they are divided by some factor 10K which does

not change the marginal log-likelihood except for an additive constant, equal to s×K × log(10).

The value of K is specified via the correct option (default is correct=0, i.e., no correction)

and parfm() returns the re-adjusted log-likelihood value. That solution serves the purpose for

moderately large values of dh (say up to about 200 events per cluster according to our experience,

but it depends on the data, on the other parameters, and on the hardware characteristics). With

the inverse Gaussian distribution, the Bessel function Kk−1/2(z) in Equation 7.4 raises the same

problem. Indeed, it explodes when z is small relative to k (see Fig. 7.1). Currently, that distribution

should, therefore, preferably be avoided when there are very large values of dh (say above 200

events per cluster according to our experience, but, again, it depends on the data, on the other

parameters and on the hardware characteristics). Moreover, Kk−1/2(z) rapidly goes to zero as z

increases. So, in case of very small apparent heterogeneity, θ → 0 which implies z →∞, Kk−1/2(z)

might be stored as 0 in R and hence log(Kk−1/2(z)) cannot be computed. However, as this problem

occurs in the case of very small heterogeneity, this would rather suggest to fit the model with

frailty="none". When frailties are gamma or lognormal distributed, which is by far the most
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Figure 7.1 – The logarithm of the Bessel function, log(Kγ(ω)), versus ω for different values of γ.
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popular assumption in common practice, the quantities involved in Equations 7.2 and 7.5 do not

raise any worry. In practice, even when dealing with datasets with huge numbers of events per

cluster, there is no real risk of exceeding the range of floating-point numbers.

7.1.1 Model estimation

From a modelling point of view, the multivariate model includes the univariate. We then refer

to the shared frailty model (3.39) with any of the baseline hazard functions in Table 3.2.

Even though various frailty distributions exist (Sec. 3.3.4), we shall focus hereinafter on the

gamma, the positive stable, the inverse Gaussian, and the lognormal. In all of these four, a single

heterogeneity parameter indexes the degree of dependence.

For right-censored clustered survival data, the observation for subject i ∈ {1, . . . , nh} from

cluster h ∈ {1, . . . ,H} is the couple (yhi, δhi), where yhi = min(thi, chi) is the minimum between

the survival time thi and the censoring time chi, and where δhi = I(thi ≤ chi) is the event indicator.

Covariate information may also have been collected; in this case the observed data are the triplets

(yhi, δhi,xhi), where xhi denote the vector of covariates for the hi-th observation. Further, if

left-truncation is also present, truncation times τhi are gathered in the vector τ .

Under assumptions of non-informative right-censoring and of independence between the censoring

time and the survival time random variables, given the covariate information, the marginal

(log)likelihood (3.56) can be written as (van den Berg and Drepper, 2012)

`M(ξ) =

H∑
h=1

{[
nh∑
i=1

δhi
(
log(λ0(yhi)) + β>xhi

)]

+ log

[
(−1)dhL(dh)

(
nh∑
i=1

Λ0(yhi) exp(β>xhi)

)]

− log

[
L

(
nh∑
i=1

Λ0(τhi) exp(β>xhi)

)]}
. (7.1)

Estimates of ξ are obtained by maximising the marginal loglikelihood (7.1); this can easily

be done if one is able to compute higher order derivatives L(k)(·) of the Laplace transform up

to k = max{d1, . . . , dH}. Symbolic differentiation might be performed in R, but is impractical

here, mainly because this is very time consuming. Therefore, explicit formulas are rather desirable.

Further, they will be used in the calculation of predictions as shown below.

The expression log
(
(−1)kL(k)(s)

)
in Equation 7.1 depends on the parametric form of the frailty

distribution. For the gamma distribution it is

−
(
k +

1

θ

)
log(1 + θs) +

k−1∑
l=0

log(1 + lθ), (7.2)

for the positive stable

k (log(1− θ)− θ log(s)) + log

[
k−1∑
m=0

Ωk,ms
−m(1−θ)

]
− s1−θ, (7.3)
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and for inverse Gaussian (cf. Sec. 3.3.4)

−k
2

log(2θs+ 1) + log
(
Kk−(1/2)(z)

)
−
[

1

2

(
log
( π

2z

))
− z
]

+
1

θ

(
1−
√

1 + 2θs
)
, (7.4)

with z =
√

2θ−1(s+ 1
2θ ). In the case of lognormal frailties, the derivatives of the Laplace transform

do not exist in an explicit form, but the quantities log
(
(−1)kL(k)(s)

)
are computed as

kw̃ − exp(w̃)s− w̃2

2γ
− 1

2
log
(
γ exp(w̃)s+ 1

)
, (7.5)

with w̃ = maxw g(w; k, s, γ), where g(w; k, s, θ) = kw − exp(w)s− w2/(2γ) (App. A.12).

Prediction. Besides parameter estimates, prediction of frailties are sometimes desirable. As an

aside, they are needed at each expectation step of the EM algorithm that fits the semi-parametric

frailty model.

The frailty term uh can be predicted by ũh = E
(
U | xh,yh, τh; ξ̂

)
, with xh, yh, and τh the

data and the truncation times of the h-th cluster. This conditional expectation can be achieved as

E
(
U | xh,yh, τh; ξ̂

)
= −
L(dh+1)

(∑nh
i=1 Λ0(yhi) exp

{
β>xhi

})
L(dh)

(∑nh
i=1 Λ0(yhi) exp

{
β>xhi

}) , (7.6)

which can be seen from Appendix A.13, together with

E
[
Uk exp(−Us)

]
= (−1)kL(k)(s). (7.7)

7.1.2 Case study

We illustrate the parfm package with the very well-known kidney dataset that contains the

recurrence times to kidney infection for 38 patients using portable dialysis equipment (McGilchrist

and Aisbett, 1991).

R> R.Version()[["version.string"]]

[1] "R version 2.15.2 (2012-10-26)"

R> library("parfm")

R> packageDescription("parfm", fields="Version")

[1] "2.5.2"

The dataset is available in parfm via the command data("kidney") and it looks like the following:

R> head(kidney)

id time status age sex disease frail

1 1 8 1 28 1 Other 2.3

2 1 16 1 28 1 Other 2.3
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3 2 23 1 48 2 GN 1.9

4 2 13 0 48 2 GN 1.9

5 3 22 1 32 1 Other 1.2

6 3 28 1 32 1 Other 1.2

Each observation corresponds to a kidney, the variable id being the patient’s code. The time

from insertion of the catheter to infection or censoring is stored in time while status is 1 when

infection has occurred and 0 for censored observations (catheters may be removed for reasons other

than infection). Three covariates are available: age, the age of the patient in years, sex, being 1 for

males and 2 for females, and disease, the disease type (GN, AN, PKD or Other). Finally frail is

the frailty prediction from the original paper which fits a semi-parametric lognormal frailty model.

First and foremost, sex is recoded as a 0–1 indicator for ease of interpretation:

R> kidney$sex <- kidney$sex - 1

The hazard of infection will be modelled as a function of the patient’s age and sex. Clearly,

kidneys from the same patient cannot be considered independent. Therefore, the use of a shared

frailty model is advisable, with clusters of size 2 corresponding to patients.

The parfm() function must have the following inputs. formula: a formula with an object of

class Surv on the left-hand side; cluster: the cluster variable’s name; data: the dataset; dist: the

baseline hazard, either exponential, weibull, gompertz, lognormal or loglogistic; frailty:

the frailty distribution, either none, gamma, possta or ingau.

Model estimation. The model with exponential baseline hazard and gamma frailty distribution

is first fitted.

R> mod <- parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney,

+ dist="exponential", frailty="gamma")

R> mod

Execution time: 1.15 second(s)

Frailty distribution: Gamma

Baseline hazard distribution: Exponential

Loglikelihood: -333.248

ESTIMATE SE p-val

theta 0.301 0.157

lambda 0.025 0.015

sex -1.485 0.398 0.000 ***

age 0.005 0.011 0.663

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Kendall’s Tau: 0.131
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Standard errors are computed as the square roots of the diagonal elements of the observed

information matrix. According to this model, sex has a significant impact on the hazard of infection

while it is not affected by age. Conditional on the patient’s frailty and on the age, the hazard of

infection for a female at any time t is estimated to be exp(−1.485) ≈ 0.227 times that of a male,

with Wald confidence interval

> ci.parfm(mod, level=0.05)["sex", ]

low up

0.104 0.495

Estimated hazard ratios can be plotted with their 95% confidence interval, simply as plot(mod),

with black graphs for HRs significantly different from 1 and grey for those which are not (Fig. 7.2).

As for the heterogeneity parameter, it is estimated to be 0.301 which corresponds to a Kendall’s

tau equal to 0.131.
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Figure 7.2 – Estimated hazard ratios can be plotted with 95% confidence interval for the kidney
dataset. Parametric gamma–exponential shared frailty model.

Frailty prediction. Prediction of frailties can be obtained via the predict() function, with

the parametric frailty model object as unique argument. For instance, the predictions for the

gamma–exponential model, mod, are obtained via the command

R> u <- predict(mod)
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which returns an object of class predict.parfm. These predictions can easily be plotted (Figure 7.3)

with the command plot(u, sort="i").
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Figure 7.3 – Prediction of frailties for the kidney dataset. Parametric gamma–exponential shared
frailty model.

Comparison of different models. In some circumstances, it might be useful to easily obtain

AIC and BIC values for a series of candidate models. This can be done using the select.parfm()

function. Its use is similar to that of the parfm() function, but the dist and frailty values are

vectors that contain all the alternatives to try.

R> kidney.parfm <-

+ select.parfm(Surv(time, status) ~ sex + age,

+ cluster="id", data=kidney,

+ dist=c("exponential", "weibull", "gompertz",

+ "loglogistic", "lognormal"),

+ frailty=c("gamma", "ingau",

+ "possta", "lognormal"))

R> kidney.parfm

gamma ingau possta lognor

exponential 674.496 675.699 682.264 675.212

weibull 674.376 676.627 682.315 675.726

gompertz 676.496 677.699 684.264 677.212
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Figure 7.4 – AIC and BIC values of parfm models for the kidney dataset.

loglogistic 685.184 685.274 685.699 684.818

lognormal 678.849 679.196 680.467 678.882

BIC:

gamma ingau possta lognor

exponential 683.819 685.022 691.587 684.535

weibull 686.029 688.281 693.969 687.379

gompertz 688.150 689.353 695.918 688.866

loglogistic 696.837 696.927 697.353 696.472

lognormal 690.502 690.850 692.121 690.536

The results can be plotted (Figure 7.4) via the command plot(kidney.parfm). In this particular

example, the exponential baseline seems to be a good candidate.

As a comparison, the model with inverse Gaussian distributed frailties is fitted by changing the

frailty argument into ‘ingau’.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="ingau")

Execution time: 1.15 second(s)
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Frailty distribution: Inverse Gaussian

Baseline hazard distribution: Exponential

Loglikelihood: -333.85

ESTIMATE SE p-val

theta 0.375 0.259

lambda 0.022 0.013

sex -1.310 0.373 0.000 ***

age 0.004 0.011 0.694

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Kendall’s Tau: 0.125

In this case, the conclusions drawn from the previous two models are essentially analogous.

Consider now the model with the positive stable frailty distribution. In this example, it converges

to a solution which is not valid (ν = 0, where ν denotes θ for the positive stable model in parfm)

with the default settings.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta")

Execution time: 1.16 second(s)

Frailty distribution: Positive Stable

Baseline hazard distribution: Exponential

Loglikelihood: -337.132

ESTIMATE SE p-val

nu 0.000

lambda 0.012

sex -0.885

age 0.004

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Kendall’s Tau: 0

Warning message:

In parfm(Surv(time, status) ~ sex + age, cluster = "id",

data = kidney, :

Error in solve.default(res$hessian) :

Lapack routine dgesv: system is exactly singular

The default initial value for ν is 1/2 in the case of positive stable frailties; it can be changed by

means of the iniFpar option in parfm(). Let us try with ν = 0.25.
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R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta",

+ iniFpar=0.25)

Execution time: 1.71 second(s)

Frailty distribution: Positive Stable

Baseline hazard distribution: Exponential

Loglikelihood: -336.182

ESTIMATE SE p-val

nu 0.112 0.084

lambda 0.014 0.008

sex -0.951 0.348 0.006 **

age 0.004 0.011 0.698

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Kendall’s Tau: 0.112

The problem might also be fixed by changing the optimisation method (see optim()). By

default it is set to ‘BFGS’, but it can be changed through the method option.

R> parfm(Surv(time, status) ~ sex + age, cluster="id",

+ data=kidney, dist="exponential", frailty="possta",

+ method="Nelder-Mead")

Execution time: 1.51 second(s)

Frailty distribution: Positive Stable

Baseline hazard distribution: Exponential

Loglikelihood: -336.182

ESTIMATE SE p-val

nu 0.112 0.084

lambda 0.014 0.008

sex -0.951 0.348 0.006 **

age 0.004 0.011 0.694

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Kendall’s Tau: 0.112

In this example, the results obtained by changing the optimisation method are the same as

those obtained by changing the initial value of ν. When convergence problems occur, using different
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starting values and/or different optimisation methods is generally sufficient to find the global

maximum of the marginal likelihood function.

Notice that, as results can be slightly different with different initial parameter values, this could

influence models comparison based on AIC and BIC values. In general, once the most interesting

models are selected, finer comparisons should be done with several different starting values for

parameters.

Finally, we provide a comparison with the semi-parametric model. As an example, we fit the

semi-parametric model with gamma frailties via the coxph() function.

R> coxph(Surv(time, status) ~ sex + age +

+ frailty(id, distribution="gamma", eps=1e-11),

+ outer.max=15, data=kidney)

coef se(coef) se2 Chisq DF p

sex -1.58323 0.4594 0.3515 11.88 1.0 0.00057

age 0.00522 0.0119 0.0088 0.19 1.0 0.66000

frailty 22.96 12.9 0.04100

Variance of random effect= 0.408 I-likelihood = -181.6

Estimates of regression parameters are quite similar to those of the exponential–gamma model,

while the frailty variance is sensibly different, arguably because of the difference in how the baseline

hazard is treated.

7.2 mlfm package: multilevel frailty models in R

Frailty models account for unobserved risk factors, common to all subjects belonging to groups,

such as hospitals, families, countries. Sometimes, several grouping criteria play a role in generating

unobserved heterogeneity. For instance, in multicenter clinical trials one could suspect that, due to

different national health care systems, clustering at country level should be taken into account in

addition to that at hospital level. In this case, one grouping criterion — the hospital — is nested

within the other one — the country. In other situations, different criteria can cross each other,

without a hierarchy; in meta-analysis of multicenter studies, there can be the need of accounting

for clustering generated by both the trial and the hospital. In this case, each study involves many

centers, but each center can enter several studies.

Multilevel frailty models are proportional hazard models with many random effects, accounting

for different grouping criteria. Two levels models are considered in discrete time by Manda and

Meyer (2005), whereas Yau (2001) and Sastry (1997) studied two nested random effects with log-

normal and gamma mixing distributions, respectively. Horny (2009) proposes the EM-PL procedure,

alternating an EM and a PPL algorithm, to fit semiparametric proportional hazard models with

any number K of grouping criteria, which is valid for any frailty distribution admitting a Laplace

transform.
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7.2.1 Model estimation

The conditional hazard of a general multilevel frailty model is

λ
(
t | u(1), . . . , u(K)

)
= λ0(t)

(
K∏
k=1

u(k)

)
exp

{
β>x

}
, (7.8)

where K is the total number of grouping criteria and u(k) is the frailty term for criterion k.

The algorithm. The EM-PL algorithm that Horny (2009) proposed for model (7.8) is imple-

mented for gamma frailties in the new mlfm package (Rotolo and Horny, 2012) as follows.

Initialisation:

– regression parameters β are initialized to estimates of a Cox model without frailties;

– for each level k = 1, . . . ,K, the frailty variance θk is estimated via a semiparametric shared

frailty model, with only one clustering level. Previsions for frailties u
(k)
h are stored as initial

values as well;

EM iteration:

E: for each level k = 1, . . . ,K, previsions ũ
(k)
h for frailties are obtained by a semiparametric

frailty model, fitted via PPL algorithm, with a frailty for level k; frailties for other levels are

fixed to their provisional values and introduced in the model as (log)offsets;

M: – regression parameters β are estimated via a Cox model with previsions of frailties as

(log)offsets;

– frailty parameters θ are estimated by maximising the frailty distribution as evaluated in

the provisional values ũ
(k)
h .

Standard errors. As the EM-PL algorithm does not provide an estimate of the information

matrix, Horny (2009) proposes to recover it using Louis’ (1982) methodology. Nevertheless, this

approach is difficult to implement in a general way. The well-known coxph() function, (survival

package, Therneau, 2012b), estimates standard errors for the shared frailty model by fixing the

frailty parameter. In the case of multilevel frailties, BLUPs cannot be obtained for the model with

all the frailties at the same time, so the mlfm() function computes standard errors by fixing the

frailties themselves at their predicted values. Since this approach leads to slightly underestimated

standard errors (Therneau and Grambsch, 2000, Sec. 9.5.2), Massonnet (2008, Ch. 3) proposed and

studied in details bootstrap methods for the shared frailty model. An analogous approach for the

multilevel frailty model is not straightforward, and it would be an interesting subject for further

research.

To give an idea of the effect of this estimation bias, we consider a small simulation example.

Five hundred datasets of size 2000 are simulated with baseline hazard Wei(λ = 4, ρ = 1.2) and four

frailty terms, with total variance 1.2. The effect of two covariates is added: a dichotomous treatment

Treat ∼ B(0.5) with regression parameter βTreat = 0.5, and the patient age Age ∼ N(µ = 60, σ = 4)

with βAge = log(1.2)/10 ' 0.02. Censoring is added at fixed time 1.5.

Results shown in Table 7.1 confirm that the standard errors are underestimated: ŜE(β̂) < ESE(β̂).



102 Software

No censoring

True β Mean β̂ Mean ŜE(β̂) Emp. SE(β̂)

Treat 0.5000 0.5049 0.0454 0.0515
Age 0.0182 0.0181 0.0056 0.0064

30% of censoring

True β Mean β̂ Mean ŜE(β̂) Emp. SE(β̂)

Treat 0.5000 0.4963 0.0591 0.0631
Age 0.0182 0.0176 0.0073 0.0083

60% of censoring

True β Mean β̂ Mean ŜE(β̂) Emp. SE(β̂)

Treat 0.5000 0.5014 0.0503 0.0547
Age 0.0182 0.0178 0.0063 0.0069

Table 7.1 – Evaluation of performance of SE estimation in mlfm(). Mean estimated regression
parameters as compared to true values, and average standard errors as compared to empirical
standard errors. 500 simulations of datasets of size 2000 with 0%, 30% and 60% of censored data.

Nominal No cens. 30% cens. 60% cens.

Treat
95%

92.0% 95.2% 93.0%
Age 92.4% 91.2% 92.4%

Table 7.2 – Evaluation of performance of SE estimation in mlfm(). Coverage probabilities. 500
simulations of datasets of size 2000 with 0%, 30% and 60% of censored data.

Nevertheless, the size of the error is very small and can be accepted, alongside the awareness of the

issue.

The underestimated standard errors give origin to confidence intervals whose coverage proba-

bilities at nominal level of 95% are shown in Table 7.2. Under the assumption that the coverage

probability is correct (0.95), the approximated 95% confidence interval for its estimator over 500

replications is [93.4%, 96.6%]. Therefore, underestimation of SEs is significant in all but one case.

For this latter, there is no evidence of departure from the nominal probability.

7.2.2 Case study

The bladder cancer dataset presented in Section 6.1 contains data from seven different multicenter

clinical trials (EORTC trials 30781, 30782, 30791, 30831, 30832, 30845, 30863) recruiting 2523

patients from 63 hospitals.

Hospitals recruited 1 to 219 patients, with median size of 30 patients. Studies consist of 266 to

450 observations, with a median of 373 patients.

Each study is a multicenter trial, so collects information from many hospitals. Conversely, many

of the hospitals participated to several trials. As an example, we show here the number of patients

for some hospitals, grouped by trial.
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> head(table(bladder$center, bladder$studyN))

30781 30782 30791 30831 30832 30845 30863

A 0903 0 0 20 13 0 6 2

B 0101 0 0 0 0 0 0 1

B 0104 0 31 0 41 0 12 17

B 0107 0 0 0 0 0 0 17

B 0108 0 28 5 71 0 0 11

B 0109 0 28 0 5 0 0 0

> tail(table(bladder$center, bladder$studyN))

30781 30782 30791 30831 30832 30845 30863

UK 0615 15 0 0 0 0 0 0

UK 0621 11 0 0 0 0 0 0

UK 0623 22 0 0 0 0 0 0

UK 0629 0 0 0 0 0 2 8

UK 0630 3 0 0 0 0 0 0

UK 0649 0 0 0 13 0 0 0

On the basis of preliminary analyses, not shown here, and biological considerations three

covariates other than treatment (treat) are retained in the model: an indicator of the tumour size

being more than 1 cm (tSize), an indicator of the number of tumours being more than 1 (tNum),

and an indicator for recurrent diseases (tStat). Two simple frailty models accounting separately

for the center and the study effect are first fitted.

> coxph(Surv(tRec / 12, Rec) ~ treat + tSize + tNum + tStat +

+ frailty(center), eps=1e-10, data=bladder)

coef se(coef) se2 Chisq DF p

treatTRUE -0.194 0.0666 0.0642 8.48 1.0 3.6e-03

tSize(1, 9] cm 0.255 0.0651 0.0643 15.38 1.0 8.8e-05

tNum>1 0.571 0.0666 0.0659 73.54 1.0 0.0e+00

tStatRecurrent 0.367 0.0729 0.0713 25.32 1.0 4.9e-07

frailty(center) 111.65 33.7 2.8e-10

Variance of random effect= 0.114 I-likelihood = -8484.2

> coxph(Surv(tRec / 12, Rec) ~ treat + tSize + tNum + tStat +

+ frailty(studyN), eps=1e-10, data=bladder)

coef se(coef) se2 Chisq DF p

treatTRUE -0.0249 0.1900 0.1077 0.02 1.00 9.0e-01
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tSize(1, 9] cm 0.2507 0.0624 0.0624 16.13 1.00 5.9e-05

tNum>1 0.5764 0.0698 0.0689 68.25 1.00 1.1e-16

tStatRecurrent 0.4218 0.0761 0.0752 30.75 1.00 2.9e-08

frailty(studyN) 21.85 5.79 1.1e-03

Variance of random effect= 0.095 I-likelihood = -8496.9

These two models give similar results, except for the treatment effect. It is significantly effective

according to the first model, whereas no evidence of benefit is present when only the study

heterogeneity is accounted for. To take into account both sources of heterogeneity simultaneously,

a model (Model_1) with two frailties is fitted for time to death, one for the trial id (studyN) and

another for the cluster id (center).

> library(mlfm)

> packageDescription("mlfm")$Version

[1] "1.2-2"

> Model_1 <- mlfm(Surv(tRec / 12, Rec) ~ treat + tSize + tNum + tStat +

+ frailty(center) + frailty(studyN),

+ maxit=100, eps=1e-10, data=bladder)

Execution time: 18.24 secs

> Model_1

coef se p

treatTRUE -0.157 0.0596 8.65e-03

tSize(1, 9] cm 0.258 0.0626 3.68e-05

tNum>1 0.567 0.0642 9.99e-19

tStatRecurrent 0.396 0.0673 3.89e-09

Iterations: 41 EM, 1195 outer, 3160 Newton-Raphson

Variances of random effects

center 0.0909

studyN 0.0117

Total frailty variance: 0.104

On the basis of this model, multiple tumours have the strongest impact on the death hazard,

with an increase which can range from 55% to 100% at a 5% level.

> signif(t(mapply(function(be, se) {

+ exp(be + qnorm(.025) * se * c("lower95%ci" = 1, HR = 0, "upper95%ci" = -1))

+ }, be = Model_1$beta, se = Model_1$ses)), digits = 3)

lower95%ci HR upper95%ci

treatTRUE 0.761 0.855 0.961
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tSize(1, 9] cm 1.150 1.290 1.460

tNum>1 1.550 1.760 2.000

tStatRecurrent 1.300 1.490 1.700

Recurrent diseases and big tumours also play an analogous role, but at a lower degree. On the

other side, the treatment has a significantly beneficial effect with an estimated reduction of almost

15% of death risk.

The total unobserved dependence is estimated as a total frailty variance of 0.104, corresponding

to τ = 0.049. This unobserved heterogeneity is mainly due to differences between hospital, as the

frailty variance for center effect is about 7.8 times that for trial effect. It is interesting to compare

this model with the one with only the treatment as covariate.

> Model_2 <- mlfm(Surv(tRec / 12, Rec) ~ treat +

+ frailty(center) + frailty(studyN),

+ maxit=100, eps=1e-10, data=bladder)

Execution time: 15.56 secs

> signif(rbind(Model1 = Model_1$theta,

+ Model2 = Model_2$theta), digits = 2)

center studyN

Model1 0.091 0.012

Model2 0.100 0.033

The frailty variance for center effect is substantially unchanged, whereas the one for the trial

effect is almost three times the one for Model_1. This suggests that the populations of the different

studies are quite different in terms of cancer features — size, number and state — and this has an

important impact on mortality. On the contrary, the populations of different hospitals seem to be

quite homogeneous and the small residual unobserved heterogeneity probably depends on other

factors which are completely unavailable in the dataset at hand.
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Chapter 8

Conclusions

Even though multicenter clinical trials are quite common in cancer research, usually the potential

of jointly studying event histories remains largely unexploited and the problem of unobserved

heterogeneity in survival data is often ignored. Nevertheless, interest in statistical methods for

controlling dependence due to interrelated events and to clustering is continuously increasing.

Multi-state and frailty models have been receiving more and more attention by both methodological

and applied research, and a growing literature on these subjects is rapidly emerging.

The main objectives of this thesis were to explore the problem of between-events and between-

subjects dependence in survival data, to provide useful tools to deal with them, and to propose a

solution to take advantage of both multi-state and frailty methodologies jointly.

First, a simulation procedure has been proposed to generate multi-state survival data, possibly

with unobserved heterogeneity and extra-Markov dependence. A tuning algorithm for simulation

parameters allows to generate real-like data even for non-trivial multi-state structures and in

presence of different risk factors. Simulation studies, missing in multi-state literature up to now,

have been provided in this thesis, showing two main results: multi-state models are very robust

with respect to the Markov assumption and, like simple proportional hazards models, they suffer

from the attenuation effect of regression parameters in the case of unobserved heterogeneity.

Two new R packages for frailty modelling have been presented. The first one (parfm) offers a

unified framework for parametric frailty models. They are quite common in literature, but the

new package is the first one providing inference for a wide range of parametric families for both

the baseline hazard function (five) and the frailty distribution (four), including the very popular

gamma and lognormal. The package offers a number of flexible tools for inference, prediction, results

plotting and models comparison. The second package (mlfm) implements the EM-PL estimation

method for semiparametric multilevel frailty models, which is an essential tool to fit multi-state

models with nested frailties, studied in this thesis. The estimation algorithm has been previously

proposed and discussed in literature, but no publicly available software implemented it for users.

The problem of incorporating frailties into multi-state models is of primary interest both from a

methodological and an applied point of view; though, research on this topic is just moving its first

steps. This is still a budding research field, open to broad-range possibilities and presenting many

unexplored issues. We have reviewed the (quite limited) literature concerning possible solutions

responding to the need of accounting for unobserved heterogeneity in multi-state survival data
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and we have proposed a model including frailties correlated between events of different types

within the same cluster. The use of a nested hierarchy of random effects allows to obtain positive

dependence, while keeping the structure of the hazard simple enough to make inference feasible.

We have considered two estimation approaches, a parametric and a semiparametric one, and we

have investigated their performances via simulation studies. Parametric methods turned out to

reduce estimators bias, but approximation of integrals needed to marginalise the likelihood was

not precise at all, so that the variability of the estimates was too large. Semiparametric inference,

on the contrary, performed well and proved to be a competitive candidate to consistently estimate

regression parameters, which is usually the main focus of interest in clinical trials comparing

different treatments. Estimation of heterogeneity parameters is the weak point of these models, as

the use of two multiplicative frailty terms seems to generate a sort of identification issue: multi-state

models with nested frailties can catch and control for unobserved heterogeneity at the two levels,

but they encounter serious problems in assigning to each level the correct portion of variability.

Hence, the researcher should be aware that such models are a good tool to consistently estimate

the effect of covariates in presence of clustering, but he should avoid to employ them to investigate

the possible sources of dependence and to ascribe the influence of such sources either to the group

effect or to its interaction with the transition type.

Two applications, to a bladder and a prostate cancer multicenter clinical trials, have been

presented, in which nested frailty multi-state models provide new and more detailed results with

respect to previous publications. The use of a multi-state structure has allowed to study the

treatment effect on death, taking into account and evaluating the effect of intermediate events.

At the same time, the presence of frailties has allowed to reduce the attenuation effect due to

clustering, typical of collaborative studies.
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Appendix A

Mathematical results

A.1 Full loglikelihood of Markov multi-state models

Proof. Let τqi and tqi be the left truncation time and event/censoring time, respectively, for the

qi-th subject. Then, we have

Yqi(t) =

1, t ∈ [τqi, tqi)

0, t /∈ [τqi, tqi),
(A.1)

so

dYqi(t) =


1, t = τqi,

−1 t = tqi,

0, otherwise.

(A.2)

By omitting the explicit dependence on the baseline hazard functions λq0(·), we have that

−
∞∫

0

logSqi(t)dYqi(t) =

∞∫
0

Λqi(t)dYqi(t)

= Λqi(τqi)× (1) + Λqi(tqi)× (−1)

= Λqi(τqi)− Λqi(tqi)

= −

 tqi∫
0

λqi(t)dt−
τqi∫
0

λqi(t)dt


= −

tqi∫
τqi

λqi(t)dt

= −
∞∫

0

λqi(t)Yqi(t)dt. (A.3)
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Therefore, the full likelihood (3.17) is

`
(
β,λq0(·)

)
=

Q∑
q=1

n∑
i=1


∞∫

0

log λqi(t)dNqi(t)−
∞∫

0

logSqi(t)dYqi(t)


=

Q∑
q=1

n∑
i=1


∞∫

0

log λqi(t)dNqi(t)−
∞∫

0

λqi(t)Yqi(t)dt

 . (A.4)

A.2 Variance of nested frailties

Proof. For the nested frailty model (3.58), the variance of the frailties is

V(Uhj) = E
[
V 2
hW

2
hj

]
− E[VhWhj ]

2

= E
[
V 2
h

]
E
[
W 2
hj

]
− E[Vh]2E[Whj ]

2

=
(
V [Vh] + E[Vh]2

) (
V [Whj ] + E[Whj ]

2
)
− E[Vh]2E[Whj ]

2

= (θV + 1)(θW + 1)− 1. (A.5)

A.3 Updated skewness of the frailty term

Proof. Consider the random variable Uh | D(t). Its first three raw moments µ′i = E[U ih | D(t)] are

µ′1 = −L
(d+1)

L(d)
= E[Uh | D(t)] (⇒ Eq. 3.83), (A.6)

µ′2 =
L(d+2)

L(d)
, (A.7)

µ′3 = −L
(d+3)

L(d)
· (A.8)

The associated central moments µi = E[(Uh − µ′1)i | D(t)] are

µ1 = 0, (A.9)

µ2 = µ′2 − µ′1
2

=
L(d)L(d+2) − [L(d+1)]2

[L(d)]2
= V[Uh | D(t)] (⇒ Eq. 3.84), (A.10)

µ3 = 2µ′1
3 − 3µ′1µ

′
2 + µ′3

=
3L(d)L(d+1)L(d+2) − [L(d)]2L(d+3) − 2[L(d+1)]3

[L(d)]3
· (A.11)
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The skewness of Uh | D(t), which is its standardised central moment γi = E

(Uh − µ′1
µ

1/2
2

)i
| D(t)


of order three, is

γ3 =
3L(d)L(d+1)L(d+2) − [L(d)]2L(d+3) − 2[L(d+1)]3(

L(d)L(d+2) − [L(d+1)]2
)3/2

= A[Uh | D(t)] (⇒ Eq. 3.85). (A.12)

A.4 Derivative of the conditional frailty variance

Proof. Consider the derivative of the conditional variance (3.84)

d

dt
V[Uh|T > t] =

{[
L(dt)

]2 (
L(dt)L(dt+3) − L(dt+1)L(dt+2)

)
−2L(dt)L(dt+1)

(
L(dt)L(dt+2) −

[
L(dt+1)

]2)}[
L(dt)

]−4

d

dt

[
nh∑
i=1

Λ0

(
y̆hi(t)

)
exp

{
β>xhi

}]

=

[
L(dt)

]2 L(dt+3) − 3L(dt)L(dt+1)L(dt+2) + 2
[
L(dt+1)

]3[
L(dt)

]3[
nh∑
i=1

1(yhi ≥ t)λ0

(
y̆hi(t)

)
exp

{
β>xhi

}]
=− V[Uh|T > t]

3
2A[Uh|T > t][

nh∑
i=1

1(yhi ≥ t)λ0

(
y̆hi(t)

)
exp

{
β>xhi

}]
, (A.13)

which is negative if and only if A[U |T > t] > 0.

A.5 Derivatives of the joint survival function for a Clayton

copula model

If

∂k

∂t(1) · · · ∂t(k)
SQ0

(tQ0
) =

(−1)k
k∏
h=1

[
(1 + (h− 1)ϑ) (Sh(th))

−ϑ−1
fh(th)

]
(SQ0

(tQ0
))

1+kϑ
, (A.14)
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holds, hence

∂k+1

∂t(1) · · · ∂t(k+1)
SQ0

(tQ0
) =

∂

∂t(k+1)

[
∂k

∂t(1) · · · ∂t(k)
SQ0

(tQ0
)

]

= (−1)k
k∏
h=1

[
(1 + (h− 1)ϑ) (Sh(th))

−ϑ−1
fh(th)

]
(−1)(1 + kθ) (Sk+1(tk+1))

−ϑ−1
fk+1(tk+1) (SQ0(tQ0))

1+(k+1)ϑ

= (−1)k+1
k+1∏
h=1

[
(1 + (h− 1)ϑ) (Sh(th))

−ϑ−1
fh(th)

]
(SQ0(tQ0))

1+(k+1)ϑ

(A.15)

which is the same as (A.14) computed in k + 1 instead of k.

Now, let consider the first derivative

∂

∂t(1)
SQ0

(tQ0
) = −

[
(S1(t1))

−ϑ−1
f1(t1)

]
(SQ0

(tQ0
))

1+ϑ
, (A.16)

which is (A.14) computed in k = 1.

Finally, since (A.14)⇒(A.15) and (A.14) holds for k = 1 (Eq. A.16), we can conclude by

induction that Equation A.14 holds for any k ∈ N.

A.6 Covariance of nested frailties

Proof. If h = h′, then the following holds:

Cov(Uqh, Uq′h) = E(UqhUq′h)− E(Uqh)E(Uq′h)

= E(VhWqhVhWq′h)− E(VhWqh)E(VhWq′h)

= E(V 2
h )E(Wqh)E(Wq′h)− E(Vh)2E(Wqh)E(Wq′h)

= V(Vh)
[
E(Wqh)E(Wq′h)

]
> 0. (A.17)

Therefore, as Cor(Uqh, Uq′h) = Cov(Uqh, Uq′h)/(V(Uqh)V(Uq′h)) and the variances at the denomina-

tor are necessarily positive, then Cor(Uqh, Uq′h) > 0.
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A.7 Joint conditional frailty distribution of nested frailties

Proof. Let us consider the joint density function of the frailties of a given cluster h, conditionally

on left truncation times. This is

fVh,Wh

(
vh,wh; ζ | {Yqhi > τqhi}qi

)
=

P
(
∩qi {Yqhi > τqhi};β, ξ | Vh = vh, {Wqh = wqh}q

)
P
(
∩qi {Yqhi > τqhi}; ζ

)
× ∂Q+1

∂vh∂w1h · · · ∂wQh
P
(
Vh ≤ vh, {Wqh ≤ wqh}q;θ

)

=
Sh

(
{τqhi}qi;β, ξ | Vh = vh, {Wqh = wqh}q

)
Sh

(
{τqhi}qi; ζ

)
× fVh,Wh

(
vh,wh;θ

)
. (A.18)

The numerator and the denominator are, respectively, the joint conditional survival function

Sh

(
{τqhi}qi;β, ξ | Vh = vh, {Wqh = wqh}q

)
= ∏
qi|τqhi<∞

exp
{
−vhwqhΛq0(τqhi)e

β>q xqhi
}
, (A.19)

and the joint marginal survival function

Sh

(
{τqhi}qi; ζ

)
=

∫
RQ+1
+

∏
qi|τqhi<∞

exp
{
−vhwqhΛq0(τqhi)e

β>q xqhi
}

fVh,Wh

(
vh,wh;θ

)
dw1h · · · dwQh dvh (A.20)

of left truncation times in cluster h. Let define as Qh =
{
q |
∑nh
i=1 1(τqhi < ∞) > 0

}
the set of

transitions for which there exists in group h at least one subject who has ever been at risk. It

immediately follows that the joint conditional frailty distribution of nested frailties in a cluster is

given by Equation 5.9.
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A.8 Marginal likelihood of nested frailties multi-state mod-

els

Proof. Under assumptions (5.3), the joint marginal survival function (A.20) is

Sh

(
{τqhi}qi; ζ

)

=

∫
R+

∏
q∈Qh


∫
R+

exp

−vhwqh ∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

 fW

(
wqh; θq

)
dwqh

 fV (vh; θV

)
dvh

=

∫
R+

∏
q∈Qh

Lq

vh ∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

 fV

(
vh; θV

)
dvh, (A.21)

with Lq(s) the Laplace transform of fW (·; θq). Then, the contribution (5.8) of a cluster to the

marginal likelihood is

LM,h(ζ) =

∫
R+

∏
q∈Qh

{∫
R+

∏
i|τqhi<∞

[{
vhwqhλq0(yqhi)e

β>q xqhi
}δqhi

exp
{
−vhwqhΛq0(yqhi)e

β>q xqhi
}

exp
{
−vhwqhΛq0(τqhi)e

β>q xqhi
}
]

∏
i|τqhi<∞ exp

{
−vhwqhΛq0(τqhi)e

β>q xqhi
}

∫
R+

∏
q∈Qh Lq

(
vh

∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

)
fV

(
vh; θV

)
dvh

fW (wqh; θq

)
dwqh

}
fV

(
vh; θV

)
dvh (A.22)

which simplifies to

LM,h(ζ) =
∏

qi|τqhi<∞

{
λq0(yqhi)e

β>q xqhi
}δqhi

×

∫
R+

vdhh
∏
q∈Qh(−1)dqhL(dqh)

q

(
vh

∑
i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

)
fV

(
vh; θV

)
dvh

∫
R+

∏
q∈Qh Lq

(
vh

∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

)
fV

(
vh; θV

)
dvh

, (A.23)

with L(k)
q (s) the k-th derivative with respect to s of the Laplace transform of fW (·; θq). Hence, the

marginal loglikelihood of the nested frailty multi-state model (5.1)–(5.3) is given by Equation 5.11.
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A.9 Marginal likelihood of gamma nested frailties multi-

state models

Proof. The marginal loglikelihood (5.11) depends on the frailty distributions through two quantities:

the distribution of the Vh’s and the derivatives of the Laplace transform of the distribution of the

Wqh’s. In the case of unit mean gamma distributions, we have

fV (vh; θV ) =
v

1/θV −1
h exp(−vh/θV )

Γ(1/θV )θθVV
(A.24)

and

L(dqh)
q

vh ∑
i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

 = (−1)dqh

dqh−1∏
l=0

(1 + lθq)

1(dqh>1)

1 + θqvh
∑

i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

−dqh−1/θq

. (A.25)

Hence, the second and third lines in Equation 5.11 get respectively

log

 ∏
q∈Qh

dqh−1∏
l=0

(1 + lθq)

− log
[
Γ(1/θV )θθVV

]

+ log

∫ ∞

0

v
1/θV +dh−1
h

∏
q∈Qh

1 + θqvh
∑

i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

−dqh−1/θq

exp(−vh/θV )dvh (A.26)

and

log
[
Γ(1/θV )θθVV

]
− log

∫ ∞

0

v
1/θV −1
h

∏
q∈Qh

1 + θqvh
∑

i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

−1/θq

exp(−vh/θV )dvh (A.27)

which immediately gives that the marginal loglikelihood is (5.12).
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A.10 Saddlepoint approximation of integrals in nested frailty

multi-state models

In Equation 5.12, we need to compute log-integrals of the form

log Ih = log

∫ ∞

0

v
1/θV +dh−1
h exp (−vh/θV )∏
q∈Qh (1 + θqvhΛqh)

1/θq+dqh
dvh, (A.28)

where the notation

Λqh =
∑

i|τqhi<∞

Λq0(yqhi)e
β>q xqhi

is used for ease of presentation.

The log-integral (A.28) can be expressed as

log Ih = log

∫ ∞

0

exp
{
g(vh)

}
dvh, (A.29)

with

g(vh) = log vh

(
1

θV
+ dh − 1

)
− vh
θV

−
∑
q∈Qh

(
1

θq
+ dqh

)
log (1 + θqvhΛqh) , (A.30)

g′(vh) =
1

vh

(
1

θV
+ dh − 1

)
− 1

θV

−
∑
q∈Qh

(
1

θq
+ dqh

)
1

vh + (θqΛqh)−1
, (A.31)

g′′(vh) =− 1

v2
h

(
1

θV
+ dh − 1

)
+
∑
q∈Qh

(
1

θq
+ dqh

)
1

(vh + (θqΛqh)−1)
2 · (A.32)

We call v̂ = max(0,∞) g(vh), found by numerical optimisation; then, the integral Ih can be

approximated via the saddlepoint method, giving

log Ih ≈g(v̂) +
1

2
log

(
2π

−g′′(v̂)

)
= log v̂

(
1

θV
+ dh − 1

)
− v̂

θV
−
∑
q∈Qh

(
1

θq
+ dqh

)
log (1 + θq v̂Λqh)

+
1

2

[
log 2π − log

(
1

v̂2

(
1

θV
+ dh − 1

)

−
∑
q∈Qh

(
1

θq
+ dqh

)
1

(v̂ + (θqΛqh)−1)
2

)]
. (A.33)
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Analogously, for left censoring times, the log-integral

logJ = log

∫ ∞

0

v
1/θV −1
h exp (−vh/θV )∏
q∈Qh

(
1 + θqvhΛ?

qh

)1/θq
dvh, (A.34)

with

Λ?
qh =

∑
i|τqhi<∞

Λq0(τqhi)e
β>q xqhi

can be approximated via the saddlepoint method as

logJh ≈ log v̂?
(

1

θV
− 1

)
− v̂?

θV
−
∑
q∈Qh

1

θq
log (1 + θq v̂

?Λqh)

+
1

2

[
log 2π − log

(
1

(v̂?)
2

(
1

θV
− 1

)

−
∑
q∈Qh

1

θq

1

(v̂? + (θqΛqh)−1)
2

)]
(A.35)

with

v̂? = max
(0,∞)

− 1

v2
h

(
1

θV
− 1

)
+
∑
q∈Qh

1

θq

1

(vh + (θqΛqh)−1)
2

 . (A.36)

A.11 Partial likelihood of nested frailty multi-state models

Proof. In the transition-specific conditional hazard (Eq. 5.1–5.2) the log-frailties can be considered

as fixed offsets:

λqhi(t | vh, wqh) = λq0(t) exp
{

log vh + logwqh + β>q xqhi
}
. (A.37)

This corresponds to the transition-specific hazard of a fixed-effects multi-state model, with the

addition of log-frailties in the linear predictors. Hence, the profile version of the conditional

likelihood (5.6) reduces to the partial likelihood of a multi-state model with offsets:

LP(β) =

H∏
h=1

nh∏
i=1

Q∏
q=1

 exp
{

log vh + logwqh + β>q xqhi
}∑

h′i′∈Rq(yqhi)
exp

{
log vh′ + logwqh′ + β>q xqh′i′

}

δqhi

=

H∏
h=1

{
vdhh

Q∏
q=1

[
w
dqh
qh

nh∏
i=1

 exp
{
β>q xqhi

}∑
h′i′∈Rq(yqhi)

vh′wqh′ exp
{
β>q xqh′i′

}

δqhi

]}
, (A.38)

with Rq(y) =
{

(h′, i′) | y ∈ [τqh′i′ , yqh′i′ ]
}

the risk set for transitions of type q at time y, which

takes into account the information given by the left truncation times τqhi. Therefore, the conditional

partial loglikelihood of the nested frailty multi-state model (5.1)–(5.2) is given by Equation 5.13.
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A.12 Saddlepoint approximation for lognormal frailties

Proof. If the frailties follow a lognormal distribution with variance θ = e2γ − eγ (see Sec. 3.3.4,

pg. 3.3.4), then we have in Equation 7.1 that

(−1)kL(k)(s) =

∫ ∞
0

uk exp−usfU (u; γ)du

=

∫ ∞
0

uk
1√
2πγ

exp

{
−us− (log u)2

2γ

}
du

u

=

∫ ∞
−∞

1√
2πγ

exp

{
kw − exp(w)s− w2

2γ

}
dw, (A.39)

with w = log u. This integral cannot be computed analytically, but saddlepoint approximation

(Goutis and Casella, 1999) can be used with

g(w; s, k, γ) = kw − exp(w)s− w2

2γ
, (A.40)

g′(w; s, k, γ) = k − exp(w)s− w

γ
, (A.41)

g′′(w; s, k, γ) = − exp(w)s− 1

γ
· (A.42)

Note that the second derivative (A.42) is always negative, so the maximum point w̃ of g(w; s, k, γ)

can be numerically looked for, without problems of local maxima.

Then, the logarithm of the quantity (A.39) can be approximated as

log
(

(−1)kL(k)(s)
)

= log

(∫ ∞
−∞

1√
2πγ

exp {g(w; s, k, γ)}dw

)
'g(w̃; s, k, γ)

+ log

(∫ ∞
−∞

1√
2πγ

exp

{
(w − w̃)2

2
g′′(w; s, k, γ)

}
dw

)
=g(w̃; s, k, γ)− 1

2
log
(
−γg′′(w̃; s, k, γ)

)
=kw̃ − exp(w̃)s− w̃2

2γ
− 1

2
log
(
γ exp(w̃)s+ 1

)
. (A.43)

A.13 Conditional expectation of frailty terms

For ease of notation, let Λi·,c(yh) denote
∑nh
i=1 Λ0(yhi) exp

{
β>xhi

}
. For any frailty distribution

f(uh; θ) and for any α ∈ N, we have
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E
(
Uα; ξ̂ | xh,yh, τh

)
=

∞∫
0

uαhfUh

(
uh; ξ̂ | xh,yh, τh

)
duh (A.44)

=

∞∫
0

uαh
LC,h (ζ,β | uh) fUh (uh; θ | τh)

LM,h (ζ,β, θ)
duh, (A.45)

with

LC,h (ζ,β | uh) =

[
nh∏
i=1

(
λ0(yhi)uh exp

{
β>xhi

})δhi]
× exp

{
− uhΛi·,c(yh)

}
exp

{
uhΛi·,c(τh)

}
,

fUh (uh; θ | τh) =
exp (−uhΛi·,c(τh))

L (Λi·,c(τh))
fU (ui; θ),

LM,h (ζ,β, θ) =

∞∫
0

LC,h (ζ,β | uh) fUh (uh; θ | τh) duh.

Thus,

E
(
Uα; ξ̂ | xh,yh, τh

)
=

∞∫
0

udh+α
h exp

{
− uhΛi·,c(yh)

}
fUh(uh; θ)duh

∞∫
0

udhh exp
{
− uhΛi·,c(yh)

}
fUh(uh; θ)duh

=
E
[
Udh+α exp

{
− UΛi·,c(yh)

}]
E
[
Udh exp

{
− UΛi·,c(yh)

}] ·
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Appendix B

Further material

B.1 Wide to long format for multi-state data

The transformation from wide to long format is crucial for multi-state modelling, as well as for

frailty multi-state models. We give here a small example with the following data

> cdata

Hospital Gender Age LR.time LR.status DM.time DM.status De.time De.status

1 Ferrara M 59 8 0 8 0 8 0

2 Bologna F 57 7 0 7 1 14 1

3 Ancona M 53 2 1 2 0 17 0

referred to the multi-state structure in Figure 4.1. There are three patients, two males and a female,

coming from three hospitals. For each of them the times of the possible events are reported in the

variables event.time, whereas the variables event.status are 0 if the time is censored or 1 if

observed.

Thanks to the mstate library, the transition matrix is built, with the possible transitions,

denoted by progressive natural numbers.

> library(mstate)

> tmat <- transMat(list( 2:4, 4, 4, c()),

+ c("AliveNED", "LR", "DM", "De"))

> tmat

to

from AliveNED LR DM De

AliveNED NA 1 2 3

LR NA NA NA 4

DM NA NA NA 5

De NA NA NA NA

The data cdata are transformed into long format data cdata.ms by means of the msprep()

function (Putter, 2011).

> cdata.ms <- msprep(time = c(NA, paste(c("LR", "DM", "De"), "time",
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+ sep=".")),

+ status = c(NA, paste(c("LR", "DM", "De"), "status",

+ sep=".")),

+ keep = c("Hospital", "Gender", "Age",

+ "LR.time", "DM.time"),

+ trans = tmat,

+ data = cdata)

>

> cdata.ms

An object of class ’msdata’

Data:

id from to trans Tstart Tstop time status Hospital Gender Age LR.time DM.time

1 1 1 2 1 0 8 8 0 Ferrara M 59 8 8

2 1 1 3 2 0 8 8 0 Ferrara M 59 8 8

3 1 1 4 3 0 8 8 0 Ferrara M 59 8 8

4 2 1 2 1 0 7 7 0 Bologna F 57 7 7

5 2 1 3 2 0 7 7 1 Bologna F 57 7 7

6 2 1 4 3 0 7 7 0 Bologna F 57 7 7

7 2 3 4 5 7 14 7 1 Bologna F 57 7 7

8 3 1 2 1 0 2 2 1 Ancona M 53 2 2

9 3 1 3 2 0 2 2 0 Ancona M 53 2 2

10 3 1 4 3 0 2 2 0 Ancona M 53 2 2

11 3 2 4 4 2 17 15 0 Ancona M 53 2 2

Each observation has been split into one line for each transition for which the patient has been

at risk, with

id the number of the original record in the dataset cdata,

trans the transition number as referred to in the tmat matrix,

from the associated starting state,

to the associated arrival state,

Tstart the left-truncation time,

Tstop the event or censoring times,

time the gap between them,

status the event–censoring indicator.

The times of the intermediate events (LR.time and DM.time) have been kept in order to possibly

use them as covariates for transitions 4 and 5 in Markov-extended models.

If we assume that a given covariate has different effects for different events, transition-specific

variables can be easily derived thanks to the expand.covs() function. To create, for instance, such

dummy variables for age we type

> expand.covs(cdata.ms, "Age")

id from to trans ... Age ... Age.1 Age.2 Age.3 Age.4 Age.5

1 1 1 2 1 ... 59 ... 59 0 0 0 0
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2 1 1 3 2 ... 59 ... 0 59 0 0 0

3 1 1 4 3 ... 59 ... 0 0 59 0 0

4 2 1 2 1 ... 57 ... 57 0 0 0 0

5 2 1 3 2 ... 57 ... 0 57 0 0 0

6 2 1 4 3 ... 57 ... 0 0 57 0 0

7 2 3 4 5 ... 57 ... 0 0 0 0 57

8 3 1 2 1 ... 53 ... 53 0 0 0 0

9 3 1 3 2 ... 53 ... 0 53 0 0 0

10 3 1 4 3 ... 53 ... 0 0 53 0 0

11 3 2 4 4 ... 53 ... 0 0 0 53 0

We obtain one more variable for each possible transition. Each dummy variable has the age value

only for lines corresponding to the associated transition; it is 0 otherwise. When used in regression

models, their regression coefficients will be interpretable as the ratio between the transition-specific

hazards of two patients with one year of difference.

In addition, the effect of the covariate can be estimated only for some of the transitions. If, for

example, we assume that the age has influence only on death risks (AliveNED→De, LR→De and

DM→De), the regression model will be like

> coxph(Surv(Tstart, Tstop, status)~Age.3 + Age.4 + Age.5 +

+ strata(trans), data=cdata.ms)

Finally, the baselines of different transitions can be modelled as proportional to each other. For

example, for the three transitions to death we can do

> cdata.ms <- msprep(time = c(NA, paste(c("LR", "DM", "De"),

+ "time", sep=".")),

+ status = c(NA, paste(c("LR", "DM", "De"),

+ "status", sep=".")),

+ keep = c("Hospital", "Gender", "Age",

+ "LR.time", "DM.time",

+ #### for proportionality ####

+ "LR.status", "DM.status"),

+ #############################

+ trans = tmat,

+ data = cdata)

> cdata.ms$strata <- cdata.ms$trans

> cdata.ms[cdata.ms$trans %in% c(3, 4, 5), "strata"] <- 3

> cdata.ms

An object of class ’msdata’

Data:

id from to trans ... strata LR.status DM.status

1 1 1 2 1 ... 1 0 0

2 1 1 3 2 ... 2 0 0
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3 1 1 4 3 ... 3 0 0

4 2 1 2 1 ... 1 0 1

5 2 1 3 2 ... 2 0 1

6 2 1 4 3 ... 3 0 1

7 2 3 4 5 ... 3 0 1

8 3 1 2 1 ... 1 1 0

9 3 1 3 2 ... 2 1 0

10 3 1 4 3 ... 3 1 0

11 3 2 4 4 ... 3 1 0

> coxph(Surv(Tstart, Tstop, status)~LR.status + DM.status +

+ strata(strata), data=cdata.ms)

In such a model, a common baseline is estimated for transitions 3, 4 and 5, and the coefficients

of the dummy regressors LR.status and DM.status are the log-ratios between their risks.

B.2 Updated frailty distributions

Frailty distribution

Marginal Updated

fU (u) fUh(u | Th > t)

Gam*(θ) Gam

(
1

1 + θΛ(t)
, θ

)
IG*(θ) PVF

(
(1 + 2θΛ(t))

− 1
2 , θ (1 + 2θΛ(t))

− 1
2 ,

1

2

)
PS*(ν) PVF

(
(1− ν) (Λ(t))

−ν
,

ν

1− ν
(Λ(t))

ν−1
, ν

)
PVF*(θ, ν) PVF

((
1 +

θΛ(t)

ν

)−ν
, θ

(
1 +

θΛ(t)

ν

)ν−1

, ν

)

CP*(θ, ν) CP

((
1 +

θΛ(t)

ν

)−ν
, θ

(
1 +

θΛ(t)

ν

)ν−1

, ν

)

Table B.1 – Updated frailty distributions in the univariate case, given that the event of interest

has not occurred at present time t. Λ(t) =
nh∑
i=1

Λhi(y̆(t)).
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B.3 Detailed results of the simulation study on nested frail-

ties multi-state models

Detailed results are here provided for the simulation study discussed in Section 5.3.

Three families of models are considered and they are denoted as follows:

MSM: multi-state model without frailties

SFM: multi-state model with shared frailties

NFM: multi-state model with nested frailties

The following tables show

MEAN the mean of the parameter estimates

eSE the empirical standard error, i.e. the standard error of the parameter

mSE the mean standard error, i.e. the mean of the estimated standard error of the

parameter estimates
over 200 repetitions.
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B.3.1 Parametric models

Scenario A and ϑ = 0

True MSM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE)

λ1 0.03 3.69e-02 (1.44e-02 | 2.75e+02) 4.19e+00 (2.03e+01 | 5.75e+01)

λ2 0.00 1.28e-03 (1.30e-03 | 8.15e+00) 4.86e+00 (6.00e+01 | 3.92e+00)

λ3 0.00 4.87e-04 (6.91e-04 | 4.07e-03) 2.20e+02 (2.91e+03 | 4.09e+00)

λ4 0.01 1.63e-02 (1.87e-02 | 3.95e+01) 2.57e+43 (3.41e+44 | 1.54e+22)

λ5 0.03 6.14e-01 (2.68e+00 | 5.66e+02) 2.01e+25 (2.59e+26 | 6.89e+24)

ρ1 0.80 7.41e-01 (9.13e-02 | 8.44e-02) 7.78e-01 (1.24e-01 | 8.47e-02)

ρ2 1.30 1.35e+00 (2.85e-01 | 2.85e-01) 1.17e+00 (4.97e-01 | 2.48e-01)

ρ3 1.40 1.51e+00 (4.24e-01 | 4.45e-01) 1.13e+00 (1.07e+00 | 3.22e-01)

ρ4 1.40 1.25e+00 (2.76e-01 | 2.77e-01) 1.46e+00 (6.46e-01 | 2.78e-01)

ρ5 1.70 1.54e+00 (5.95e-01 | 4.92e-01) 3.11e+00 (3.03e+00 | 8.09e-01)

β1 -0.69 -5.86e-01 (2.38e-01 | 2.56e-01) -6.18e-01 (4.44e-01 | 2.61e-01)

β2 -0.11 -1.38e-01 (5.64e-01 | 7.73e-09) 7.63e-02 (1.50e+00 | 7.02e-01)

β3 0.00 -6.62e-02 (2.83e+00 | 4.38e-04) 3.12e-01 (2.06e+00 | 1.25e+00)

β4 0.00 2.16e-03 (3.44e-01 | 2.85e-09) 6.53e-02 (8.74e-01 | 4.15e-01)

β5 0.00 -4.22e-02 (9.15e-01 | 2.35e-07) 1.05e+00 (3.66e+00 | 1.47e+02)

θV 0.50 ( | ) 3.22e+17 (4.19e+18 | 1.39e+21)

θW 1.50 ( | ) 1.49e+00 (1.94e+00 | 9.92e-02)

Scenario B and ϑ = 0

True MSM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE)

λ1 0.03 3.64e-02 (9.18e-03 | 5.39e-03) 2.76e+01 (1.91e+02 | 2.23e+02)

λ2 0.00 1.10e-03 (5.02e-04 | 4.81e-04) 1.61e+01 (1.34e+02 | 9.31e+01)

λ3 0.00 4.32e-04 (3.31e-04 | 2.62e-04) 6.63e+01 (6.36e+02 | 1.63e+02)

λ4 0.01 1.33e-02 (7.74e-03 | 6.34e-03) 4.73e+16 (5.40e+17 | 4.95e+15)

λ5 0.03 1.11e-01 (2.57e-01 | 8.14e-02) 4.42e+18 (6.22e+19 | 3.94e+18)

ρ1 0.80 7.38e-01 (4.06e-02 | 3.68e-02) 7.92e-01 (7.31e-02 | 3.84e-02)

ρ2 1.30 1.27e+00 (1.16e-01 | 1.20e-01) 1.17e+00 (3.36e-01 | 1.09e-01)

ρ3 1.40 1.38e+00 (1.77e-01 | 1.74e-01) 1.13e+00 (5.14e-01 | 1.44e-01)

ρ4 1.40 1.19e+00 (1.41e-01 | 1.19e-01) 1.73e+00 (3.93e-01 | 1.24e-01)

ρ5 1.70 1.38e+00 (2.87e-01 | 1.83e-01) 2.26e+00 (4.55e-01 | 2.14e-01)

β1 -0.69 -5.99e-01 (1.19e-01 | 1.12e-01) -6.69e-01 (3.10e-01 | 1.14e-01)

β2 -0.11 -9.78e-02 (2.22e-01 | 3.15e-09) -1.09e-01 (8.25e-01 | 2.33e-01)

β3 0.00 9.23e-03 (3.33e-01 | 4.03e-09) 2.21e-01 (1.57e+00 | 4.21e-01)

β4 0.00 3.46e-03 (1.77e-01 | 1.51e-09) -3.80e-02 (4.50e-01 | 1.67e-01)

β5 0.00 1.56e-02 (3.45e-01 | 2.39e-09) 7.78e-02 (1.23e+00 | 3.01e-01)

θV 0.50 ( | ) 5.05e+21 (7.15e+22 | 2.04e+14)

θW 1.50 ( | ) 2.54e+00 (2.10e+00 | 2.48e-02)
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Scenario C and ϑ = 0

True MSM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE)

λ1 0.03 3.55e-02 (5.23e-03 | 2.37e-03) 5.31e+02 (4.66e+03 | 1.76e+03)

λ2 0.00 1.09e-03 (2.58e-04 | 2.16e-04) 5.28e+03 (7.41e+04 | 7.00e+02)

λ3 0.00 3.73e-04 (1.19e-04 | 1.08e-04) 6.30e+03 (7.24e+04 | 7.24e+03)

λ4 0.01 1.29e-02 (4.35e-03 | 2.75e-03) 2.98e+20 (4.21e+21 | 5.22e+20)

λ5 0.03 7.08e-02 (3.98e-02 | 2.17e-02) 1.57e+17 (2.21e+18 | 1.73e+20)

ρ1 0.80 7.36e-01 (2.10e-02 | 1.65e-02) 7.96e-01 (3.15e-02 | 1.73e-02)

ρ2 1.30 1.27e+00 (5.14e-02 | 5.20e-02) 1.25e+00 (1.36e-01 | 5.09e-02)

ρ3 1.40 1.37e+00 (7.42e-02 | 7.67e-02) 1.25e+00 (2.29e-01 | 6.99e-02)

ρ4 1.40 1.17e+00 (7.49e-02 | 5.24e-02) 1.87e+00 (1.43e-01 | 5.41e-02)

ρ5 1.70 1.34e+00 (1.56e-01 | 7.77e-02) 2.10e+00 (1.75e-01 | 8.23e-02)

β1 -0.69 -6.04e-01 (5.51e-02 | 5.02e-02) -6.84e-01 (1.27e-01 | 5.05e-02)

β2 -0.11 -1.04e-01 (8.85e-02 | 2.05e-09) -7.88e-02 (2.82e-01 | 9.42e-02)

β3 0.00 1.23e-02 (1.30e-01 | 2.78e-09) 9.52e-02 (6.12e-01 | 1.34e-01)

β4 0.00 1.02e-02 (7.07e-02 | 1.04e-09) -9.19e-02 (2.10e-01 | 7.13e-02)

β5 0.00 2.12e-02 (1.62e-01 | 1.04e-09) -4.76e-02 (4.14e-01 | 1.07e-01)

θV 0.50 ( | ) 3.19e+16 (4.50e+17 | 8.34e+16)

θW 1.50 ( | ) 4.50e+00 (1.87e+00 | 1.83e-02)
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B.3.2 Semiparametric models

Scenario A and ϑ = 0

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.10 (0.26 | 0.25) -1.21 (0.26 | 0.25) -1.45 (0.29 | 0.25)

β2 -0.22 -0.19 (0.33 | 0.32) -0.33 (0.35 | 0.33) -0.23 (0.33 | 0.32)

β3 0.00 0.02 (0.47 | 0.43) -0.13 (0.48 | 0.43) 0.01 (0.48 | 0.43)

β4 1.10 0.91 (0.39 | 0.27) 0.92 (0.36 | 0.28) 1.11 (0.32 | 0.29)

β5 1.61 3.44 (5.72 | 281.35) 3.76 (14.70 | 1244.54) 1.74 (2.53 | 42.92)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 3.30e-01 (1.94e-01) 2.53e-09 (2.42e-10)

θW 1.00 ( ) 3.41e+00 (1.07e+00)

Scenario B and ϑ = 0

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.11 (0.13 | 0.11) -1.21 (0.12 | 0.11) -1.45 (0.13 | 0.11)

β2 -0.22 -0.18 (0.15 | 0.14) -0.33 (0.15 | 0.14) -0.22 (0.14 | 0.14)

β3 0.00 0.01 (0.21 | 0.18) -0.15 (0.22 | 0.18) -0.01 (0.20 | 0.18)

β4 1.10 0.86 (0.21 | 0.12) 0.92 (0.17 | 0.12) 1.11 (0.13 | 0.12)

β5 1.61 1.43 (0.46 | 0.19) 1.41 (0.39 | 0.20) 1.58 (0.25 | 0.22)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 6.69e-01 (1.38e-01) 1.02e-09 (7.40e-11)

θW 1.00 ( ) 3.69e+00 (3.79e-01)

Scenario C and ϑ = 0

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.08 (0.07 | 0.05) -1.19 (0.06 | 0.05) -1.43 (0.05 | 0.05)

β2 -0.22 -0.18 (0.08 | 0.06) -0.33 (0.09 | 0.06) -0.21 (0.06 | 0.06)

β3 0.00 0.01 (0.09 | 0.08) -0.14 (0.09 | 0.08) 0.02 (0.08 | 0.08)

β4 1.10 0.84 (0.12 | 0.05) 0.91 (0.09 | 0.05) 1.10 (0.05 | 0.05)

β5 1.61 1.44 (0.26 | 0.07) 1.44 (0.16 | 0.07) 1.61 (0.08 | 0.07)
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True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 9.38e-01 (4.73e-02) 3.22e-02 (9.39e-02)

θW 1.00 ( ) 3.71e+00 (2.24e-01)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario A

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario B

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario C

●

●log(θV)

log(θW)

ϑ = 0

●

I
I
I

True values
Multi−state without frailties
Multi−state with shared frailty
Multi−state with nested frailties



142 Further material

Scenario A and ϑ = 0.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.13 (0.30 | 0.25) -1.23 (0.29 | 0.26) -1.47 (0.31 | 0.26)

β2 -0.22 -0.09 (0.38 | 0.35) -0.21 (0.39 | 0.35) -0.10 (0.35 | 0.33)

β3 0.00 0.11 (0.52 | 0.46) -0.02 (0.53 | 0.46) 0.10 (0.52 | 0.45)

β4 1.10 1.00 (0.42 | 0.28) 1.05 (0.36 | 0.29) 1.28 (0.36 | 0.31)

β5 1.61 4.49 (7.38 | 487.79) 5.10 (11.49 | 2688.83) 1.96 (3.63 | 108.67)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 3.26e-01 (1.95e-01) 2.59e-09 (3.09e-10)

θW 1.00 ( ) 3.83e+00 (1.31e+00)

Scenario B and ϑ = 0.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.12 (0.13 | 0.11) -1.21 (0.12 | 0.11) -1.46 (0.12 | 0.11)

β2 -0.22 -0.10 (0.17 | 0.15) -0.23 (0.17 | 0.15) -0.10 (0.15 | 0.15)

β3 0.00 0.12 (0.23 | 0.19) -0.01 (0.24 | 0.19) 0.15 (0.21 | 0.19)

β4 1.10 0.95 (0.23 | 0.12) 1.05 (0.18 | 0.12) 1.25 (0.13 | 0.12)

β5 1.61 1.17 (0.55 | 0.21) 1.11 (0.52 | 0.22) 1.44 (0.38 | 0.24)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 6.31e-01 (1.48e-01) 1.05e-09 (6.51e-11)

θW 1.00 ( ) 3.94e+00 (3.83e-01)

Scenario C and ϑ = 0.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.11 (0.07 | 0.05) -1.20 (0.06 | 0.05) -1.44 (0.05 | 0.05)

β2 -0.22 -0.11 (0.09 | 0.06) -0.23 (0.09 | 0.07) -0.09 (0.07 | 0.06)

β3 0.00 0.11 (0.10 | 0.08) -0.01 (0.11 | 0.08) 0.16 (0.09 | 0.08)

β4 1.10 0.92 (0.13 | 0.05) 1.04 (0.10 | 0.05) 1.23 (0.05 | 0.05)

β5 1.61 1.16 (0.32 | 0.07) 1.13 (0.24 | 0.08) 1.43 (0.14 | 0.08)
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True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 9.14e-01 (5.66e-02) 6.53e-03 (5.09e-02)

θW 1.00 ( ) 3.91e+00 (2.00e-01)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario A

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario B

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario C

●

●log(θV)

log(θW)

ϑ = 0.5

●

I
I
I

True values
Multi−state without frailties
Multi−state with shared frailty
Multi−state with nested frailties
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Scenario A and ϑ = 1.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.18 (0.28 | 0.25) -1.48 (4.54 | 0.26) -1.54 (0.31 | 0.26)

β2 -0.22 0.02 (0.40 | 0.37) -3246.71 (72013.21 | 0.37) 0.03 (0.39 | 0.35)

β3 0.00 0.56 (1.98 | 28.08) 0.34 (1.80 | 225.87) 0.39 (0.60 | 0.53)

β4 1.10 1.13 (0.48 | 0.29) 1.18 (0.40 | 0.31) 1.43 (0.39 | 0.33)

β5 1.61 -1.19 (8.55 | 515.42) 5.75 (118.98 | 2419.26) -0.06 (4.43 | 162.43)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 3.18e-01 (1.99e-01) 2.59e-09 (3.81e-10)

θW 1.00 ( ) 5.16e+00 (3.88e+00)

Scenario B and ϑ = 1.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.15 (0.14 | 0.11) -1.24 (0.13 | 0.11) -1.48 (0.12 | 0.11)

β2 -0.22 -0.01 (0.19 | 0.16) -0.12 (0.20 | 0.16) 0.05 (0.18 | 0.15)

β3 0.00 0.27 (0.27 | 0.22) 0.15 (0.28 | 0.22) 0.34 (0.23 | 0.21)

β4 1.10 1.06 (0.28 | 0.12) 1.20 (0.19 | 0.12) 1.36 (0.15 | 0.12)

β5 1.61 -0.06 (0.74 | 0.24) -0.13 (0.74 | 0.25) 0.60 (0.75 | 0.26)

True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 6.42e-01 (1.41e-01) 1.05e-09 (6.62e-11)

θW 1.00 ( ) 4.25e+00 (5.09e-01)

Scenario C and ϑ = 1.5

True MSM SFM NFM

value MEAN (eSE | mSE) MEAN (eSE | mSE) MEAN (eSE | mSE)

β1 -1.39 -1.15 (0.08 | 0.05) -1.23 (0.07 | 0.05) -1.48 (0.05 | 0.05)

β2 -0.22 -0.02 (0.11 | 0.07) -0.13 (0.11 | 0.07) 0.04 (0.08 | 0.07)

β3 0.00 0.26 (0.14 | 0.09) 0.15 (0.15 | 0.09) 0.36 (0.12 | 0.09)

β4 1.10 1.04 (0.17 | 0.05) 1.21 (0.10 | 0.05) 1.36 (0.07 | 0.05)

β5 1.61 0.23 (0.41 | 0.09) 0.18 (0.38 | 0.09) 0.88 (0.29 | 0.09)
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True SFM NFM

value MEAN ( eSE ) MEAN ( eSE )

θV 0.50 9.01e-01 (5.33e-02) 1.92e-02 (7.82e-02)

θW 1.00 ( ) 3.91e+00 (2.43e-01)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario A

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario B

●

●log(θV)

log(θW)

1e−15 1e−11 1e−07 1e−03 1e+01

Scenario C

●

●log(θV)

log(θW)

ϑ = 1.5

●

I
I
I

True values
Multi−state without frailties
Multi−state with shared frailty
Multi−state with nested frailties



146 Further material

Strong heterogeneity

The following graphs show the results of a simulation study analogous to that in Section 5.3,

expect for the heterogeneity parameters, now set to

θV = 2,

θW := θ1 = . . . = θ5 = 2.
(B.1)

These values give a total frailty variance of V[Uqh] = 8, that is much bigger than the previous study

and is much bigger than one can except in real studies. This serves the only purpose of showing

that small heterogeneity is not the reason for the poor estimation of the frailty parameters.
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B.4 Detailed results for the bladder cancer study

Note: treat.1, . . . , treat.6 are the regression coefficients for treatment effect on the six transitions,

with transitions numbered as
1 from Rand to Rec

2 from Rand to Prog

3 from Rand to De

4 from Rec to Prog

5 from Rec to De

6 from Prog to De

Furthermore, BigT is a binary variable for big against small tumours; RecT a binary variable

for recurrent against non-recurrent tumours; AGEdev a continuous variable for age, in decades,
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so that the regression parameter estimates the log-hazard ratio for a 10-year difference in age;

SEXMale a binary variable for males against females. Their effect is evaluated on the risk of all

transitions to a recurrent state (.Rec), all transitions to a progressive state (.Prog), all transitions

to death (.De), or transitions to progression separately from randomisation (.RandProg) or from

recurrent state (.RecProg).

MS - Simple multi-state model

estim HR se(estim) p-val

treat.1 −0.2561 0.7741 0.0607 < 0.001

treat.2 −0.1742 0.8401 0.1954 0.373

treat.3 0.1488 1.1605 0.1108 0.179

treat.4 0.0458 1.0469 0.1574 0.771

treat.5 0.3250 1.3840 0.1248 0.009

treat.6 −0.3343 0.7159 0.1514 0.027

BigT.Rec 0.1588 1.1721 0.0643 0.013

BigT.Prog 0.5544 1.7408 0.1247 < 0.001

ManyT.Rec 0.5225 1.6863 0.0652 < 0.001

ManyT.Prog 0.6021 1.8259 0.1295 < 0.001

RecT.Rec 0.3145 1.3696 0.0684 < 0.001

RecT.RandProg 0.8570 2.3560 0.2092 < 0.001

AGEdec.De 0.7545 2.1266 0.0426 < 0.001

AGEdec.RecProg 0.2656 1.3042 0.0816 0.001

SEXMale.De 0.4969 1.6437 0.0969 < 0.001

ST - Stratified multi-state model

estim HR se(estim) p-val

treat.1 −0.1512 0.8597 0.0729 0.038

treat.2 −0.0270 0.9734 0.2351 0.909

treat.3 0.0688 1.0712 0.1356 0.612

treat.4 0.0626 1.0646 0.1939 0.747

treat.5 0.3070 1.3593 0.1581 0.052

treat.6 −0.1309 0.8773 0.2344 0.577

BigT.Rec 0.1840 1.2020 0.0691 0.008

BigT.Prog 0.5299 1.6988 0.1362 < 0.001

ManyT.Rec 0.5517 1.7362 0.0705 < 0.001

ManyT.Prog 0.6078 1.8363 0.1422 < 0.001

RecT.Rec 0.3047 1.3563 0.0775 < 0.001

RecT.RandProg 0.5979 1.8184 0.2400 0.013

AGEdec.De 0.8044 2.2354 0.0492 < 0.001

AGEdec.RecProg 0.2681 1.3075 0.0893 0.003

SEXMale.De 0.6206 1.8600 0.1125 < 0.001
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SF1 - Shared-frailty multi-state model (hospital)

estim HR se(estim) p-val

treat.1 −0.2190 0.8034 0.0640 < 0.001

treat.2 −0.1478 0.8626 0.1969 0.453

treat.3 0.1925 1.2122 0.1127 0.088

treat.4 0.1054 1.1112 0.1593 0.508

treat.5 0.4095 1.5061 0.1276 0.001

treat.6 −0.2650 0.7672 0.1549 0.087

BigT.Rec 0.1641 1.1783 0.0654 0.012

BigT.Prog 0.5498 1.7329 0.1251 < 0.001

ManyT.Rec 0.5318 1.7019 0.0667 < 0.001

ManyT.Prog 0.6097 1.8398 0.1308 < 0.001

RecT.Rec 0.3231 1.3815 0.0711 < 0.001

RecT.RandProg 0.8616 2.3670 0.2105 < 0.001

AGEdec.De 0.7628 2.1442 0.0430 < 0.001

AGEdec.RecProg 0.2698 1.3097 0.0828 0.001

SEXMale.De 0.5454 1.7253 0.0979 < 0.001

θV 0.049

SF2 - Shared-frailty multi-state model (hospital×transition)

estim HR se(estim) p-val

treat.1 −0.1988 0.8197 0.0676 0.003

treat.2 −0.1086 0.8971 0.2018 0.591

treat.3 0.1650 1.1794 0.1181 0.162

treat.4 0.0423 1.0432 0.1655 0.798

treat.5 0.3043 1.3556 0.1354 0.025

treat.6 −0.2817 0.7545 0.1677 0.093

BigT.Rec 0.1879 1.2067 0.0670 0.005

BigT.Prog 0.5482 1.7301 0.1264 < 0.001

ManyT.Rec 0.5370 1.7109 0.0682 < 0.001

ManyT.Prog 0.6134 1.8467 0.1319 < 0.001

RecT.Rec 0.3347 1.3975 0.0744 < 0.001

RecT.RandProg 0.8045 2.2355 0.2148 < 0.001

AGEdec.De 0.7705 2.1609 0.0439 < 0.001

AGEdec.RecProg 0.2763 1.3182 0.0830 < 0.001

SEXMale.De 0.5376 1.7119 0.0995 < 0.001

θW 0.110
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NF - Nested-frailty multi-state model

estim HR se(estim) p-val

treat.1 −0.1469 0.8634 0.06124 0.016

treat.2 0.0128 1.013 0.1946 0.948

treat.3 0.1726 1.188 0.1106 0.119

treat.4 −0.0004 0.9996 0.1582 0.998

treat.5 0.3881 1.474 0.1243 0.002

treat.6 −0.3143 0.7303 0.1537 0.041

BigT.Rec 0.2100 1.234 0.06478 0.001

BigT.Prog 0.5393 1.715 0.1244 < 0.001

ManyT.Rec 0.5405 1.717 0.06609 < 0.001

ManyT.Prog 0.6199 1.859 0.1298 < 0.001

RecT.Rec 0.3358 1.399 0.0696 < 0.001

RecT.RandProg 0.7024 2.019 0.209 < 0.001

AGEdec.De 0.8045 2.236 0.04294 < 0.001

AGEdec.RecProg 0.2871 1.333 0.08538 < 0.001

SEXMale.De 0.6164 1.852 0.09725 < 0.001

θV 4.192× 10−10

θW 4.629

B.5 Detailed results for the prostate cancer study

B.5.1 Separate models for overall survival

Models with intermediate PSA progression

Note: treat1, . . . , treat3 are the regression coefficients for treatment effect on the three transitions,

with transitions numbered as

1 from Rand to PSAp

2 from Rand to De

3 from PSAp to De

Multi-state model

estim HR se(estim) p-val

treat.1 −0.21 0.81 0.09 0.023

treat.2 −0.47 0.63 0.16 0.003

treat.3 −0.36 0.70 0.11 0.002

PSAp.OS −0.16 0.86 0.13 0.245
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Stratified multi-state model

estim HR se(estim) p-val

treat.1 −0.25 0.78 0.09 0.007

treat.2 −0.47 0.63 0.16 0.004

treat.3 −0.40 0.67 0.12 < 0.001

PSAp.OS −0.15 0.86 0.14 0.282

Shared frailty (for country) multi-state model

estim HR se(estim) p-val

treat.1 −0.21 0.81 0.09 0.022

treat.2 −0.47 0.62 0.16 0.003

treat.3 −0.36 0.70 0.11 0.002

PSAp.OS −0.16 0.85 0.13 0.232

θV 0.004

Shared frailty (for transition-by-country) multi-state model

estim HR se(estim) p-val

treat.1 −0.21 0.81 0.09 0.023

treat.2 −0.47 0.63 0.16 0.003

treat.3 −0.36 0.70 0.11 0.002

PSAp.OS −0.16 0.86 0.13 0.245

θW 5× 10−7

Nested frailty multi-state model

estim HR se(estim) p-val

treat.1 −0.23 0.79 0.09 0.011

treat.2 −0.46 0.63 0.16 0.004

treat.3 −0.35 0.70 0.11 0.002

PSAp.OS −0.17 0.85 0.13 0.211

θV 5× 10−7

θW 0.16

Models with intermediate tumour progression

Note: treat1, . . . , treat3 are the regression coefficients for treatment effect on the three transitions,

with transitions numbered as

1 from Rand to TUMp

2 from Rand to De

3 from TUMp to De
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Multi-state model

estim HR se(estim) p-val

treat.1 −0.20 0.82 0.11 0.069

treat.2 −0.42 0.66 0.13 0.002

treat.3 −0.40 0.67 0.13 0.002

TUMp.OS 0.04 1.05 0.13 0.721

Stratified multi-state model

estim HR se(estim) p-val

treat.1 −0.18 0.83 0.11 0.099

treat.2 −0.42 0.66 0.14 0.003

treat.3 −0.36 0.70 0.14 0.009

TUMp.OS 0.16 1.18 0.14 0.231

Shared frailty (for country) multi-state model

estim HR se(estim) p-val

treat.1 −0.20 0.82 0.11 0.069

treat.2 −0.42 0.66 0.13 0.002

treat.3 −0.40 0.67 0.13 0.002

TUMp.OS 0.04 1.05 0.13 0.721

θV 5× 10−7

Shared frailty (for transition-by-country) multi-state model

estim HR se(estim) p-val

treat.1 −0.20 0.82 0.11 0.069

treat.2 −0.42 0.66 0.13 0.002

treat.3 −0.40 0.67 0.13 0.002

TUMp.OS 0.05 1.05 0.13 0.711

θW 0.003



154 Further material

Nested frailty multi-state model

estim HR se(estim) p-val

treat.1 −0.19 0.82 0.11 0.071

treat.2 −0.42 0.66 0.13 0.001

treat.3 −0.40 0.67 0.13 0.002

TUMp.OS 0.06 1.06 0.13 0.655

θV 4× 10−10

θW 0.02

B.5.2 Model for progression-free survival

Note: treat1, . . . , treat3 are the regression coefficients for treatment effect on the three transitions,

with transitions numbered as

1 from Rand to PSAp

2 from Rand to De/TUMp

3 from PSAp to De/TUMp

Multi-state model

estim HR se(estim) p-val

treat.1 −0.36 0.70 0.10 < 0.001

treat.2 −0.34 0.71 0.13 0.007

treat.3 −0.09 0.92 0.11 0.437

PSAp.PFS 0.15 1.17 0.12 0.202

Stratified multi-state model

estim HR se(estim) p-val

treat.1 −0.42 0.66 0.10 < 0.001

treat.2 −0.30 0.74 0.13 0.019

treat.3 −0.13 0.87 0.12 0.256

PSAp.PFS 0.19 1.20 0.13 0.140

Shared frailty (for country) multi-state model

estim HR se(estim) p-val

treat.1 −0.36 0.70 0.10 < 0.001

treat.2 −0.34 0.71 0.13 0.007

treat.3 −0.09 0.92 0.11 0.437

PSAp.PFS 0.15 1.17 0.12 0.202

θV 2× 10−5
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Shared frailty (for transition-by-country) multi-state model

estim HR se(estim) p-val

treat.1 −0.36 0.70 0.10 < 0.001

treat.2 −0.34 0.71 0.13 0.007

treat.3 −0.09 0.92 0.11 0.437

PSAp.PFS 0.15 1.17 0.12 0.202

θW 5× 10−7

Nested frailty multi-state model

estim HR se(estim) p-val

treat.1 −0.37 0.69 0.10 < 0.001

treat.2 −0.34 0.71 0.13 0.006

treat.3 −0.09 0.91 0.11 0.405

PSAp.PFS 0.16 1.17 0.12 0.187

θV 3× 10−10

θW 0.060

B.5.3 Global models for overall survival

Note: treat1, . . . , treat5 are the regression coefficients for treatment effect on the five transitions,

with transitions numbered as

1 from Rand to PSAp

2 from Rand to TUMp

3 from Rand to De

4 from PSAp to TUMp

5 from PSAp to De

6 from TUMp to De

Multi-state model

estim HR se(estim) p-val

treat.1 −0.35 0.71 0.10 < 0.001

treat.2 −0.30 0.74 0.16 0.061

treat.3 −0.52 0.60 0.22 0.020

treat.4 −0.08 0.92 0.15 0.599

treat.5 −0.22 0.80 0.17 0.187

treat.6 −0.31 0.74 0.13 0.018

PSAp.TUMp 0.68 1.97 0.18 < 0.001

PSAp.OS 0.59 1.80 0.19 0.002

TUMp.OS 0.82 2.27 0.18 < 0.001
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Stratified multi-state model

estim HR se(estim) p-val

treat.1 −0.41 0.66 0.10 < 0.001

treat.2 −0.32 0.72 0.17 0.055

treat.3 −0.53 0.59 0.23 0.020

treat.4 −0.06 0.94 0.16 0.681

treat.5 −0.20 0.82 0.17 0.242

treat.6 −0.32 0.73 0.14 0.019

PSAp.TUMp 0.63 1.88 0.19 0.001

PSAp.OS 0.53 1.71 0.19 0.005

TUMp.OS 0.83 2.28 0.18 < 0.001

Shared frailty (for country) multi-state model

estim HR se(estim) p-val

treat.1 −0.35 0.71 0.10 < 0.001

treat.2 −0.30 0.74 0.16 0.061

treat.3 −0.52 0.60 0.22 0.020

treat.4 −0.08 0.92 0.15 0.599

treat.5 −0.22 0.80 0.17 0.187

treat.6 −0.31 0.74 0.13 0.018

PSAp.TUMp 0.68 1.97 0.18 < 0.001

PSAp.OS 0.59 1.80 0.19 0.002

TUMp.OS 0.82 2.27 0.18 < 0.001

θV 3× 10−5

Shared frailty (for transition-by-country) multi-state model

estim HR se(estim) p-val

treat.1 −0.35 0.71 0.10 < 0.001

treat.2 −0.30 0.74 0.16 0.061

treat.3 −0.52 0.60 0.22 0.020

treat.4 −0.08 0.92 0.15 0.599

treat.5 −0.22 0.80 0.17 0.187

treat.6 −0.31 0.74 0.13 0.018

PSAp.TUMp 0.68 1.97 0.18 < 0.001

PSAp.OS 0.59 1.80 0.19 0.002

TUMp.OS 0.82 2.27 0.18 < 0.001

θW 5× 10−7
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Nested frailty multi-state model

estim HR se(estim) p-val

treat.1 −0.38 0.68 0.10 < 0.001

treat.2 −0.32 0.73 0.16 0.042

treat.3 −0.51 0.60 0.22 0.023

treat.4 −0.09 0.91 0.15 0.533

treat.5 −0.23 0.79 0.17 0.159

treat.6 −0.32 0.73 0.13 0.015

PSAp.TUMp 0.70 2.01 0.18 < 0.001

PSAp.OS 0.61 1.83 0.19 0.001

TUMp.OS 0.82 2.27 0.18 < 0.001

θV 5× 10−7

θW 0.35
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