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ABSTRACT

Swing contracts are structured products mostly traded on energy and gas
markets, tailor-made to handle simultaneously price and volume risk aris-
ing from the modern liberalized markets. This thesis deals with some spe-
cific swing contracts relevant for the gas market.

In gas market, swing contracts are also known as take or pay. They are
long-term supply contracts which allow flexibility of delivery: the holder
of such a contract has multiple exercise rights and can decide the amount
exercised as well, hedging the volume risk caused by a frequent demand
fluctuation which in practice is impossible to foresee in the long period.
Moreover, such type of contracts can be also seen as a strip of spread op-
tions on gas market spot price and the contractual price (called strike): in
this view, they can be used to hedge the price fluctuation risk. On the other
hand, even if the holder can exercise the option with a volume control, such
control has however to satisfy some upper and lower limits at all times as
well as a total volume, so the given flexibility need to be optimised, i.e. one
must know the optimal execution of this flexibility.

Today, the correct valuation of these type of contracts is important both
for trading purposes as well as for portfolio optimization. In fact, after
the recent liberalization, the price of such contracts is negotiated between
agents and no more set by regulators. On the other hand, the embedded
flexibilities may be used not only to manage demand fluctuation, but also
to make profit against local market price.

In this thesis we model, in a continuous time framework, a gas swing
contract in the spirit of [6], with one additional state variable corresponding
to a stochastic strike price. Since, in real contracts, the strike is a market in-
dex which is updated monthly, this results in a mixed discrete/continuous
stochastic control problem that we reduce to the usual continuous time sit-
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uation by adding another state variable, corresponding to an index rolled-
over in continuous time. The price of a swing contract is then equal to the
value function of one sequence of Markov control problems, each one corre-
sponding to a period between two consecutive changing dates of the index.
After that, we prove that the value function of the corresponding control
problem is the unique viscosity solution of the resulting Hamilton-Jacobi-
Bellman (HJB) equation, and that the value function is smooth enough to
ensure the existence of an optimal strategy, that we find out. Briefly spoken,
this is the content of the first two chapters of this thesis where, after hav-
ing framed the valuation problem as a stochastic optimal control problem,
an introductory part on viscosity solutions is then applied to the particular
problem at hand. This entails in some new results in the theory of viscos-
ity solutions for parabolic nonlinear equations stemming from these swing
options.

After having found the HJB equations, which become nonlinear partial
differential equations, the problem is then to solve them. To do this, in the
third chapter we present a finite difference (FD) method for solving the HJB
equations numerically. We derive explicitly the boundary conditions for a
particular model, when both gas and strike price are supposed to be in
the class of the one-factor Schwartz-Smith dynamics. More in detail, we
suppose that the log-prices follow Ornstein-Uhlenbeck processes driven
by two correlated Brownian motions. Also, the third chapter presents the
popular Least Square Monte Carlo (LSMC) algorithm, originally developed
by Longstaff-Schwartz for valuing American options and here extended to
the present problem. This algorithm is based on the backward solution of
the discrete-time version of the control problem. It regresses the continua-
tion value in the Bellman equation to the current available information, ob-
tained using Monte Carlo simulations. Two critical steps using the LSMC
algorithm are the choice of both type and number of the basis functions
used in the regression; we approach this problem adapting to our case the
radial basis function approximation introduced in [11] for storage struc-
tured products, which seems very appropriate and interesting for such ap-
plications. Several comparison examples are then numerically analysed,
in particular the effect that the number of basis functions and the number
of simulated paths have on the solution of LSMC as well as the efficiency
of the FD method. Some conclusion on the comparison between the two
algorithms ends the chapter.

The last chapter is from the published paper [17] and deals with the so-
called make-up clauses, which extend the swing option previously stud-
ied by allowing to the holder of the contract more flexibility among years.
From a technical point of view, a swing contract with an embedded make-
up clause can not be any more split into yearly contracts, but one must
consider the whole contract at once, typically lasting over several years
(usually from 3 to 5). To approach the complexity of such problem, an-



other numerical method popular among practitioners is introduced for the
purpose of pricing, namely lattice of trees. After having presented the al-
gorithm and analysed its computational cost, the fourth chapter ends with
many numerical examples testing for the swing option price’s dependency
on various crucial parameters.





SOMMARIO

I contratti swing nei mercati dell’energia e del gas sono prodotti strutturati
creati su misura per gli operatori al fine di gestire contemporaneamente il
rischio derivante dalle variazioni del prezzo di mercato e dall’incertezza
volumetrica dovuta alla continua e imprevedibile fluttuazione della do-
manda. La presente tesi si occupa di un particolare tipo di contratto swing,
frequentemente scambiato tra grossi operatori del mercato del gas naturale.

I contratti swing nei mercati del gas sono noti anche come take-or-pay e
sono contratti di fornitura a lungo termine che permettono flessibilità nel
ritiro del gas: l’acquirente possiede infatti la possibilità (ma non l’obbligo)
di decidere sia quando sia quanto gas ritirare, essendo tuttavia obbligato a
soddisfare dei vincoli di quantità minima e massima sia su ciascun peri-
odo di ritiro (solitamente il giorno) sia complessivamente sull’anno. Da un
lato, tale flessibilità volumetrica ben si adatta a soddisfare una domanda
altalenante e imprevedibile. Dall’altro lato, un contratto swing può sem-
plicisticamente essere visto come una strip di opzioni sullo spread tra il
prezzo del gas di mercato e il prezzo contrattuale di ritiro: in quest’ottica,
esso diventa un ottimo strumento di gestione del rischio derivante dalle
fluttuazioni di prezzo nel breve periodo, permettendo di non esercitare, o
di esercitare il minimo possibile, nei momenti avversi.

La corretta valutazione di simili contratti è oggi di grande importanza
sia per ragioni di trading, essendo il prezzo di tali opzioni contrattato diret-
tamente tra i players del mercato e non più imposto come durante il regime
regolamentato, sia per ragioni di ottimizzazione di portafoglio, poiché le
flessibilità volumetriche offerte possono potenzialmente essere usate anche
per generare puri profitti.

Partendo da quanto esposto in [6] per i mercati energy, in questa tesi
si descrive e risolve, a tempo continuo, il problema del pricing di un con-
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tratto swing tipico dei mercati gas, in cui sia il prezzo di mercato quanto
il prezzo contrattuale (prezzo strike, o indice) sono aleatori. In pratica, il
prezzo strike viene aggiornato mensilmente, mentre il prezzo di mercato
cambia con granularità almeno giornaliera: tecnicamente questo origina un
problema di controllo ottimo stocastico in cui una variabile è discreta, men-
tre tutte le altre sono continue. Per superare questa difficoltà, e ridurre il
problema ad uno classico a solo tempo continuo, si introduce una variabile
di stato ad hoc, corrispondente alla dinamica a tempo continuo dell’indice.
Tale variabile continua verrà successivamente campionata ad opportuni in-
tervalli di tempo per ottenere la reale successione discreta di strikes contrat-
tuali. Dopodiché, si dimostra che il prezzo del contratto è dato da una serie
di problemi di controllo ottimo, ciascuno dei quali viene risolto all’interno
di un periodo tra due cambi consecutivi dello strike. Si dimostra quindi che
le funzioni valore di tali problemi di controllo ottimo sono l’unica soluzione
di viscosità delle equazioni di Hamilton-Jacobi-Bellman (HJB) associate a
ciascun problema, e che tali soluzioni sono sufficientemente regolari da
garantire l’esistenza del controllo ottimo. Sommariamente, questo è il con-
tenuto dei primi due capitoli, nei quali, dopo aver richiamato la nozione
e i principali risultati noti sulle soluzioni di viscosità per i problemi di
controllo ottimo, la teoria classica viene estesa ed applicata al problema
in oggetto, portando ad alcuni nuovi risultati per le soluzioni di viscosità
di equazioni paraboliche non lineari.

Il terzo capitolo è dedicato ai metodi numerici. Dopo aver ricavato
l’equazione HJB il problema si sposta alla soluzione della stessa. A tal
fine, si introduce uno schema di soluzione numerica basato sulle differenze
finite. Tale algoritmo necessita di condizioni al contorno sui domini di
soluzione, che vengono ricavate analiticamente nell’ipotesi in cui la di-
namica dei prezzi di gas e indice segua un caso particolare del modello
di Schwartz-Smith ad un fattore, cioè quando si suppone che il logaritmo
dei prezzi sia un processo di Ornstein-Uhlenbeck guidato da due moti
Browniani correlati. Uno studio empirico, attraverso un caso numerico,
sulla stabilità dell’algoritmo FD al variare della discretizzazione del do-
minio temporale e spaziale completa la parte analitica. Al fine di con-
frontare i risultati ottenuti con la best practice in uso nelle aziende, il popo-
lare algoritmo noto come Least Square Monte Carlo, originariamente svilup-
pato da Longstaff e Schwartz per valutare opzioni di tipo americano, viene
adattato al problema del pricing di contratti swing. Questo algoritmo,
molto usato tra i practitioners, risolve un’approssimazione a tempo dis-
creto del problema originale usando la ricorsione all’indietro. Ad ogni iter-
azione dell’algoritmo, il valore di continuazione nell’equazione di Bellman
a tempo discreto viene regredito sull’informazione presente a quell’istante,
ottenuta tramite delle simulazioni Monte Carlo. Due punti in questo tipo
di algoritmo risultano essere particolarmente critici: la scelta del tipo e del
numero di funzioni di base usate nella regressione, nonchè il numero di



simulazioni Monte Carlo adottate. Per quanto riguarda la scelta del tipo
di funzioni, seguendo e adattando al caso presente quanto sviluppato in
[11], viene introdotto un metodo di regressione basato su funzioni radiali di
base, che sembra ben adattarsi a problemi di pricing di contratti strutturati.
Riguardo invece l’effetto della scelta del numero di basi e del numero di
simulazioni usate nell’algoritmo LSMC, viene presentato uno studio em-
pirico attraverso casi numerici.

L’ultimo capitolo riprende quanto già pubblicato in [17] ed estende la
valutazione di contratti swing in cui è presente una clausola chiamata di
make-up, che in pratica permette più flessibilità nel ritiro del gas abbassando
il livello minimo di ritiro di un certo anno, e forzando in uno o più anni suc-
cessivi il richiamo del gas non preso. Tecnicamente, quando tale clausola è
presente, non è più possibile separare il problema di valutazione sugli anni,
ma è necessario considerare l’intero intervallo temporale su cui è scritta la
clausola di make-up (solitamente da 3 a 5 anni). Per affrontare la comp-
lessità del pricing di un tale contratto nel capitolo si introduce un algoritmo
basato su alberi, noto come lattice of trees. Dopo un’accurata descrizione di
tale algoritmo, anche da un punto di vista di complessità computazionale,
il quarto capitolo termina con un’applicazione reale dell’algoritmo di pric-
ing volto ad esaminare l’impatto di vari fattori di mercato e parametri con-
trattuali sul prezzo di un ipotetico contratto swing.
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Chapter 1

PROBLEM FRAMEWORK

1.1 Introduction

Europe is among the largest consumer of natural gas in the world, mainly
used for heating and power generation. During the last thirty years natural
gas has gradually replaced almost everywhere fuel oil for heating purposes
and is actually competing with coal as main fuel source for electric power
generation. Hence, long term trend of natural gas demand has been histor-
ically upward sloping. The economic crisis of 2008 has strongly impacted
this tendency: global gas demand fell sharply by 3% between 2008 and
2009. However, as reported in Table 1.1, the International Energy Agency
(IEA) forecasts that OECD1 gas demand would recover slowly with con-
sumption returning to the 2008 levels by 2012 or 2013, depending on the
region. In addition, recent events concerning nuclear power generation,
post Fukushima’s accident, are expected to provide new strength to the
long term up-growing tendency of natural gas global demand. In fact, in
the medium to long term, many countries are expected to reduce their nu-

1Current membership of OECD: Australia, Austria, Belgium, Canada, Chile, Czech Re-
public, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway,
Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United
Kingdom, United States.
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clear ambitions and the fuel of choice to compensate for lower nuclear will
reasonably be natural gas.

2008 2009 2010 2011 2012 2013
Europe 557 527 544 533 540 548

North America 814 800 804 803 820 835
Pacific 175 169 180 182 189 195

Total 1546 1496 1528 1518 1549 1578

Table 1.1: OECD Natural Gas Demand by Region in billion cubic meters
per year. Datas for 2008-2009 are historical, for 2010 estimated, and for
2011-2013 forecasted [35].

Despite its significant consumption, Europe (meant either as OECD or
European Union (EU)), has only a limited inner production compared to
its consumption and the excess demand is covered by massive natural gas
imports from producer countries like Russia and Algeria, as shown in Table
1.2 where the Natural Gas Imports for the EU-272 countries is reported.

Natural gas imports are physically delivered via pipelines or, recently,
via LNG (Liquified Natural Gas) cargoes. In any case, in order both to
guarantee the security of supply of such an important energy commodity
whose storability is limited and fulfill the complex customers’ patterns of
consumption, lot of supply contracts allow flexibility of delivery. In partic-
ular, in gas markets many long-terms contracts (for 10 years or more) are
embedded with options known as swing or take-or-pay. Such contracts allow
the option holder to withdraw every day a quantity of gas subject to daily,
as well as periodic (usually monthly or annual), minimum and maximum
constraints. As mentioned, this flexibility addresses the need to hedge a
frequent demand fluctuation which in practice is impossible to foresee in
the long period, being linked to exogenous variable such as weather, eco-
nomic scenario, changes in heating technology and power production and

2EU-27: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxemburg,
Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and
the United Kingdom.

Russia Norway Algeria Netherlands Others Total

TJ/y 4’524’090 4’055’038 1’868’376 1’691’445 3’619’020 15’757’969

% 28.7% 25.7% 11.9% 10.7% 23% 100.0%

Table 1.2: EU-27 Natural Gas Imports 2009 by Country of Origin. Source:
EUROSTAT, last update 15/06/2011



so on.
The correct valuation of these type of contracts is important for at least

two reasons: first of all, thanks to the liberalization of energy markets, the
price of such contracts is no more set by regulators under the assumption
of cost recovery, as in the old regulated markets, but it is negotiated be-
tween agents and it is mainly related to the financial risks underlying the
contracts. On the other hand, most of the existing contracts include rene-
gotiation clauses which permits to adjust the contract according to devel-
opments in the markets. So it is very important for both contract parties
to have methodologies to understand which impact contract’s parameters
have on the price. Finally, from the point of view of a profit maximizing
agent, the flexibilities embedded in the contract, i.e. the possibility to de-
cide how much quantity of gas to withdraw every day, should be used
not only to manage demand fluctuation, but also if possible to make profit
against local market price.

The structure of long term gas agreements is pretty standardized in Eu-
rope. The strike price, which is the price paid by the owner of the con-
tract to the seller of the commodity, typically depends upon a basket of
crude and refined oil products, which is averaged through time in order
to smooth undesired volatility effects; for more details we refer the inter-
ested reader to [1, Section 3.1]. Since oil products are traded in US dollars,
oil related indexes are also expressed in US dollars, thus typical market
risk factors perceived by European importers are represented both by US-
D/EUR exchange risk, and price differential between import cost in Euros
It and local market prices Pt settled daily by local gas market exchanges.
We however emphasize that USD/EUR exchange rate volatility is compar-
atively low compared with typical spot gas price volatility (Figure 1.1).

Clearly, the future prices It and Pt are not known when pricing the con-
tract so they have to be assumed as stochastic variables. It is also natural
to assume that the optimal withdrawn quantity should be also linked in
some way to prices, or at least to their expected future value. Thus, pricing
and hedging of swing contracts has to be performed dynamically through
time, has to take into account the stochastic dynamics of both market and
strike index prices and volume constraints and has to suggest an optimal
withdrawal policy which should maximise the expected revenues of the
contract. This is exactly the practical description of a so-called stochastic
optimal control problem.

In the recent years swing options received vast treatment in the lit-
erature (see for instance [4, 26] and references therein for what concerns
gas markets, and references in [3, 2, 6, 22] for swing options in more gen-
eral markets). The scope of this work is to investigate the stochastic opti-
mal control problem from a mathematical point of view. We formalize the
mathematical problem taking into account both the stochastic nature and
the monthly structure also of the strike price as well as local market price.
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Figure 1.1: TTF (Title Transfer Facility - Netherlands gas hub) and FX (EU-
R/USD exchange rate) volatilities. TTF volatility is 3 to 10 times larger than
that of FX

Then, by using the theory of viscosity solution, we find out some proper-
ties of the value function such as existence, uniqueness and smoothness.
We then apply numerical schemes to find out the price of some typical con-
tracts.

The rest of the Chapter is organized as follows. We dedicate Section 1.2
to the description of how the strike price of a swing contract is made in
practice, and how we can model it from a mathematical point of view. In
Section 1.3 we model the pricing problem of a swing contract as a stochastic
control problem, introducing the notations and the basic definitions used
in the rest of the thesis.

1.2 Index price modelling

Let (Ω,F , {Ft}t,P) be a filtered probability space and W1, W2 two corre-
lated Brownian motions with correlation ρ defined on Ω. Let [0, T ] be a
fixed interval on which the swing contract is defined. This interval is then
divided into subperiod {[Tmn−1, T

m
n ]}m=1,...,D

n=1,...,12 , where [Tmn−1, T
m
n ] represents

the interval covered by month n of year m. We will suppress the super-
script m when not necessary.

Managing a swing contract basically leads to deal with, at least, two
prices: one is the so called contract price, which is the price the buyer of



the swing option pays to the seller for the withdrawal of a unitary quantity
of gas. Let this price be I(t). The second one is the gas spot price that the
buyer can use to sell the gas to the market. Let us denote this price with
P (t). In practice, the owner of a swing contract can buy gas at the price
I(t) and then, eventually, sell this gas at the price P (t), realizing a profit (or
loss) equal to P (t)− I(t) for each unitary quantity of gas withdrawn.

Before approaching the modelling of price dynamics, a short descrip-
tion of how contract price behaves could be explanatory.

The price the buyer of the swing option pays to the seller typically de-
pends upon a basket of crude and refined oil products traded every day in
the market. This oil-linked pricing scheme is pretty typical for European
gas markets since most of the gas arriving to Europe is a complementary
output of oil extraction; this feature is not typical in the US gas market,
since American gas production is almost totally disjoint from oil one.

Typically, the price of this basket of oil related products is averaged
through time in order to smooth undesired volatility effects. The averag-
ing rule is related to a triplet of numbers (ξ1, ξ2, ξ3) respectively denoting
the number of months composing the backward looking average of prices,
the number of months prior to delivery that should not be included in the
averaging process and the number of months between one index calcula-
tion and the following (almost always equal to one, but also three and six
are common). More formally, if we denote by I(t) the price of the index at
time t, we have that I(t) is a piecewise constant function on the intervals
[Tn, Tn+k) for some n, with a jump at time Tn+k. If B(t) = (B1(t) . . . Bb(t))
denotes the vector whose components are the price at time t of the oil-
related products in the basket, α is a vector of weights, and we define the
set I(ξ) ⊆ N as

I(ξ) = {k|k = ν · ξ, ν ∈ N, k + ξ 6 12}

we can express the index price I(t) as the weighted average

I(t) = (Tn−ξ2−Tn−ξ2−ξ1)−1

∫ Tn−ξ2

Tn−ξ2−ξ1

αB(s)ds, ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3)

(1.1)
Notice that the following relationship holds:

I(t) ≡ I(Tn), ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3) (1.2)

It follows that the index price I(t) could be modelled in two ways. The
first obvious way, given the identity in Eq. (1.2), is to model the sequence
of monthly prices {ITmn }mn as a discrete sequence of random variables. The
second way is a little more sophisticated. We can assume that the index
price has itself a spot continuous time dynamics. If we use a different
parametrization of the couple (ξ1, ξ2) by introducing `1, `2 which represent



the length of the averaging window and the length prior to delivery on
which this window ends, we can rewrite Eq. (1.1) as

I(t) = `−1
1

∫ Tn−`2

Tn−`1−`2
αB(s)ds, ∀t ∈ [Tn, Tn+ξ3),∀n ∈ I(ξ3)

We may take into account that `1, `2 should be functions of Tn because the
length of the month is not equal for every month. This is barely an im-
provement and to avoid huge notations we don’t care about this. Now we
can re-define the index price I(t) using its spot value

I(t) = `−1
1

∫ t−`2

t−`1−`2
αB(s)ds (1.3)

Notice that Eq. (1.1) and Eq. (1.3) give the same value at the points
{Tmn }mn , but have different values for others t. We then use this index spot
value in this way: at the beginning of every month n, at time Tn, we fix the
strike price for the swing contract as the realixed index price ITn = î. This
will be the fixed index price paid by the buyer of the contract for month n,
coerently with the behaviour of Eq. (1.1); on the other hand for the instants
t ∈ [0, T ] \ {Tmn }mn we have a dynamics coherent with the one in Eq. (1.3)
and not a constant one as in Eq. (1.1).

Unfortunately, the definition in (1.3) is clearly non-Markovian, being an
average on past values of B(t). Here we make the following assumption:
the dynamics in (1.3) can be approximated by a new markovian one, solu-
tion of the following SDE

dI(t) = µi(t, I(t))dt+ σi(t, I(t))dWi(t) (1.4)

for some functions µi, σi : [0, T ]×R→ R.
In contrast with the contract index price, the spot price P (t) is directly

traded on local market and it changes (at least) once a day, depending on
the liquidity of the local market. So we make the following (continuous
time) assumption for the dynamics of the spot price P (t):

dP (t) = µp(t, P (t))dt+ σp(t, P (t))dWp(t) (1.5)

for some functions µp, σp : [0, T ]×R→ R.
We will specify other assumptions on the functions µp, µi, σp, σi later.

1.3 One year problem

In this and in the following sections we deal with the problem of finding
the value of a one year contract. For a standard swing contract, this is
not a restriction or a simplification of our problem: even if the contract is



written over a longer period of time, in the absence of constraints between
two different years (such as make-up, carry forward, . . . ) the problem of
pricing and manage the contract is independent for every year. In fact,
ordinary swing contract permits to the owner to buy in every sub-period
a quantity of gas, which we denote by u(t), bounded between a minimum
(mDQ) and maximum (MDQ) level which usually reflect physical effective
transportation capacity limitations; thus for every instant t

mDQ 6 u(t) 6 MDQ ∀t ∈ [0, T ] (1.6)

In addition, for every contractual year, minimum and maximum quantities
are also established, called respectively minimum annual quantity (mAQ)
and annual contract quantity (ACQ). If we introduce the cumulated quan-
tity zm(t) for year m, at time t

Zm(t) =

∫ t∧Tm12

Tm0

u(s)ds

we have the constraints

mAQ 6 Zm(Tm12) 6 ACQ ∀m = 1, . . . , D

but also the relationship

Zm(Tm0 ) = 0 ∀m = 1, . . . , D (1.7)

Thus the admissible area for the control u(t) is exactly the same for every
year, and it is given by

Am = {u ∈ [mDQ,MDQ] s.t. mAQ 6 Zm(Tm12) 6 ACQ} ∀m = 1, . . . , D

Sometimes the bounds on mAQ and ACQ can be overridden, but a penalty
is paid (see for example [4]). In this case

Am = {u ∈ [mDQ,MDQ]} ∀m = 1, . . . , D

We will concentrate on the last case. In both cases, if no other inter-temporal
constraints are imposed to the problem (for instance make-up clauses, see
Chapter 4), this fact and Equation (1.7) lead to notice that the pricing prob-
lem is exactly the same in every year, and can be faced separately year by
year. So, from now on, we focus on a one-year problem.

Let [0, T ] be the reference interval of the year and let {[Tn−1, Tn]}n=1,...,12

be the sequence of intervals describing every month, with T0 = 0 and T12 =
T .

We notice that Eq. (1.6) forces the buyer of the contract to buy, during
a year, at least the quantity mDQ · T . This quantity, called the take-or-pay
quantity, has to be paid, and may safely not be taken in consideration in



our optimization, i.e. we can always consider a decomposition of a swing
contract in the same spirit of [2, Section 2]. We let

u(t) ∈ U = [0, ū], ū = MDQ−mDQ (1.8)

To keep a general view, we also let

Z(t) =

∫ t

0
u(s)ds (1.9)

Z(T ) ∈
[
M, M̄

]
, M = mAQ, M̄ = ACQ (1.10)

Penalties are often imposed if the constraints in (1.10) is not satisfied. An
example of such penalties can be given by the function

Ψ(z) =





p ·M z ∈ (−∞, 0)

p ·
[
(z − M̄)+ + (M − z)+] z ∈ [0, ūT ]

p · (ūT − M̄) z ∈ (ūT,+∞)

(1.11)

where p > 0 is a proportional amount paid if the yearly constraints are
not satisfied. Other kinds of penalty functions can be considered, but in
any case, from a mathematical point of view, we can not assume that those
functions are neither C2 or C1. A more realistic assumption that we make
in this thesis could be the continuity and the polynomial growth of the
function Ψ, given the following definition:

Definition 1 We say that a function f(x) and its derivatives until the k-th order
have polynomial growth, and we indicate it with f ∈ Ckp (Rn), if for all i =
1, . . . , k there exist C,m such that:

|f (i)(x)| 6 C(1 + |x|m) ∀x ∈ Rn

Finally, notice that the piecewise definition is only a mathematical trick
used to have a continuous and bounded function on the whole space R.
This will be an important assumption for Theorem 6. In practice, thanks
to the physical constraint ut ∈ [0, ū], at any time t ∈ [0, T ] the cumulated
quantity z always lies in the interval [0, ūT ] and so the maximal possible
final penalty is given by p ·

[
(z − M̄)+ + (M − z)+].

By introducing the function

ϕ(t) = max{Tn|Tn 6 t}
and defining

Î(t) = I(ϕ(t)) (1.12)

we can now write our value function: we want to maximize the expected
value of the discounted profit and loss i.e. we are interested in finding the
contract value V 1(0, X0) at the beginning of the year

V 1(0, X0) = sup
u∈A

E

[∫ T

0
e−rs(Ps − Îs)usds+ e−rTΨ(ZT )

]
(1.13)



where, for the sake of notation, we write the states as a four dimensional
vector Xt:

Xt =
(
Pt, It, Ît, Zt

)T
∈ R4

where the superscript T stands for the transposed. For a fixed interval
t ∈ (Tn−1, Tn] the dynamics of Xt is

dXt = f(t,Xt, ut)dt+ Σ(t,Xt, ut)dW (t) =

=




µp(t, Pt)
µi(t, It)

0
u(t)


 dt+




σp(t, Pt) 0

σi(t, It)ρ σi(t, It)
√

1− ρ2

0 0
0 0



(
dW1(t)
dW2(t)

)

(1.14)

where W1, W2 are two uncorrelated Brownian motion, linked to Wp, Wi by
the relationship

{
Wp(t) = Wi(t)
Wi(t) = ρW1(t) +

√
1− ρW2(t)

The contract value at terminal time T is the penalty function

V 13(t, x) ≡ Ψ(z)

Remark 1 The function V requires two separate arguments for the index
part. The first argument It represents the index spot value. This price is nei-
ther traded nor really used in the contract, but it becomes useful to predict
the future strike price ITn using the (assumed) Markov property of It. The
second argument Ît, represents the present (traded) value at time t of the in-
dex, that is the strike price of the swing option for month n. This is the
realized price of the index at the beginning of the month.

We now use the dynamic programming principle on months. Taking
into account that the realized value of the index for month n is Iψ(t) =

ITn = î and it is known for t > Tn, we can define in every month n a value
function V n(t, x) which represents contract’s value during month n, when
the index strike price î is known and fixed. Let us define:

V 13(t, x) = Ψ(z) ∀(t, x) ∈ [0, T ]× S

V n(t, x) = sup
u∈A

Et,x

[∫ Tn

t
e−r(s−Tn−1)(Ps − î)usds

+e−r(Tn−Tn−1)V n+1(Tn, PTn , ITn , ITn , ZTn)
] n = 1, . . . , 12

t ∈ [Tn−1, Tn]

(1.15)



where in Et,x[·] is the expectation with respect to Pt,x which is the prob-
ability under which X has the dynamics given by Eq. (1.14) with initial
condition Xt = x. Formally

Et,x[φ(X(s))] =

∫

Rn

φ(y)Pt,x(s, dy)

where
Pt,x(s,B) = P(X(s) ∈ B|X(t) = x)

for every measurable function φ and every B in the σ-algebra of Borel sets
of Rn.

We notice that
V n(Tn, ·) = V n+1(Tn, ·)

At this stage we have no hint about the smoothness of the functions V n.
For every n = 1, . . . , 12 we introduce the following notations:

Ln(t, x, u) = −e−r(t−Tn−1)(p− î)u, s ∈ [Tn−1, Tn] (1.16)

ψn(x) = −e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

and substitute them in the function V n , rewriting Eq. (1.15) as

V 13(t, x) = 0 ∀(t, x) ∈ [0, T ]× S

V n(t, x) = − inf
u∈A

Et,x

[∫ Tn

t
−e−r(s−Tn−1)(Ps − î)usds

−e−r(Tn−Tn−1)V n+1(Tn, PTn , ITn , ITn , ZTn)
]

=

(1.17)

= − inf
u∈A

Jn(t, x;u)

having defined the functions Jn(t, x;u) as

Jn(t, x;u) = Et,x

[∫ Tn

t
Ln(s,Xs, us)ds+ ψn(XTn)

]
(1.18)

From now on in this section, we mainly apply, and when necessary extend,
the results of [20]. There, the general problem faced has as value function
of the form

V (t, x) = inf
u∈A

J(t, x;u) (1.19)

We should introduce a new sequence of value functions Vn(t, x) = −V n(t, x)
for which the results in [20] hold or, as an alternative, take always into ac-
count the negative sign. To avoid involved notation we will still write V n

instead of−V n and when necessary we will come back to the original prob-
lem by doing the sign substitution.



Chapter 2

VISCOSITY SOLUTION FOR SWING
CONTRACTS

The method of dynamic programming provides a powerful tool for ap-
proaching the problem in Eq. (1.19). When the value function V (t, x) of
the problem is smooth enough, it can be proved that it is a solution of
a non-linear equation, known as the dynamic programming equation or
Hamilton-Jacobi Bellman equation (see for example [8, Chapter 19]). How-
ever, in general (and in particular in our case) the value function is not
smooth enough to satisfy the HJB equation in the classical sense, or we
have no hints, at this stage, that the value function is smooth. A weaker
formulation of solution to this equation is necessary if we want to pursue
the method of dynamic programming. Crandall and Lions provided in [15]
such a weak formulation which they called viscosity solution.

Following [20], in Section 2.1 and in its subsections, we introduce the
theory of such a solution and in some cases we extend the classical results
in order to be able to apply the general theory to our case. Assumptions,
definitions, notation used in this chapter are presented together with some
classical and ah-hoc extended results: existence, uniqueness and smooth-
ness is proved for the case when the final condition of the problem is notC2.
Section 2.2, where the theory developed is applied to the one-year problem
presented Section 1.3, concludes the chapter.
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2.1 Main theoretical results about viscosity solution

This section is devoted to the definition of viscosity solutions of a general
class of partial differential equation; here we prove some general results
which will be used in the rest of this work. We end the section showing the
links between viscosity solution and stochastic optimal control problems.

Let O be an open subset of Rn and define

Q = [0, T )×O, Q = [0, T ]× Ō, Q0 = [0, T )×Rn, Q0 = [0, T ]×Rn

Let

• C(Q) be the set of continuous real valued functions defined on Q

• C1,2(Q) be the set of all real valued functions on Q which are once
continuously differentiable in the first variable and twice continu-
ously differentiable in their second argument

• Cp(Q) be the set of all real valued function on Q with polynomial
growth.

Consider an equation of the kind

− Vt(t, x) +H(t, x,DxV (t, x), D2
xV (t, x)) = 0 (2.1)

withH a continuous real valued function defined on the spaceQ×Rn×Sn
(here Sn is the set of all n× n symmetric matrices) such that

H(t, x, p, A+B) 6 H(t, x, p, A)

for all (t, x) ∈ Q, p ∈ Rn,A,B ∈ Sn withB > 0. We introduce the following
definition of viscosity solution:

Definition 2 We say that a function V̄ ∈ C
(
Q
)

is

• a viscosity subsolution of Eq. (2.1) if for each v ∈ C1,2(Q)

−vt(t̄, x̄) +H(t, x,Dxv(t̄, x̄), D2
x(t̄, x̄)) 6 0

at every (t̄, x̄) ∈ Q which is a local maximum of V̄ − v on Q

• a viscosity supersolution of Eq. (2.1) if for each v ∈ C1,2(Q)

−vt(t̄, x̄) +H(t, x,Dxv(t̄, x̄), D2
x(t̄, x̄)) > 0

at every (t̄, x̄) ∈ Q which is a local minimum of V̄ − v on Q

• a viscosity solution of Eq. (2.1) if it is both a viscosity subsolution and a
viscosity supersolution of Eq. (2.1) in Q



We call reference probability system ν a 4-uple ν = (Ω, (Fs)s∈[t,T ],P,W )
where (Ω,FT ,P) is a probability space, andW is a Brownian motion adapted
to the filtration (Fs)s∈[t,T ]. Given a compact set U ⊆ Rn1 , we denote by

At,ν = {u s.t. u is a progressively measurable U -valued process defined on ν}

We then suppose thatX is aRn-valued process governed by the stochas-
tic differential equation

dXs = f(s,Xs, us)dt+ Σ(s,Xs, us)dWs, s ∈ [t, T ] (2.2)

given the initial condition X(t) = x and with u ∈ At,ν . We make the fol-
lowing

Assumption 1 We assume that:

a) U is compact

b) f,Σ are continuous on Q0×U and f(·, ·, u) and σ(·, ·, u) are of class C1
(
Q0

)

for each u ∈ U ;

c) f , Σ are itz with respect to their second argument, i.e. there exists a constant
L > 0 such that for all t ∈ [0, T ] and for all u ∈ U the following hold:

|f(t, x, u)− f(t, y, u)| 6 L|x− y|
|σ(t, x, u)− σ(t, y, u)| 6 L|x− y|

d) for suitable C1, C2

|ft|+ |Dxf | 6 C1, |σt|+ |Dxσ| 6 C1

|f(t, 0, u)|+ |σ(t, 0, u)| 6 C2, ∀u ∈ U

Remark 2 Assumption 1(c) and 1(d) lead to (both for f and Σ):

|f(t, x, u)| 6 |f(t, 0, u)|+ |f(t, x, u)− f(t, 0, u)| 6 C2 + C|x| 6 Ĉ(1 + |x|)

for a suitable constant Ĉ, i.e. the drift and the volatility have linear growth
in x.

Let us consider the following general optimal control problem. We want
to choose a control ũ ∈ At,ν which minimize the function

J(t, x;u) = E
ν
t,x

[∫ T

t
L(s,Xs, u)ds+ ψ(XT )

]

where Eνt,x is the expectation with respect to Pνt,x which is the probability
under which X has the dynamics given by Eq. (2.2) with initial condition



Xt = x and L and ψ are continuous functions with polinomial growth, i.e.
such that

|L(t, x, u)| 6 C3(1 + |x|m) (2.3)
|ψ(x)| 6 C3(1 + |x|m) (2.4)

for suitable constants C3 > 0 and m > 0. Then we consider, for a fixed
probability system ν, the infimum of J among all u ∈ At,ν :

Vν(t, x) = inf
u∈At,ν

J(t, x;u) (2.5)

and finally we define the value function as:

V (t, x) = inf
ν
Vν(t, x) (2.6)

This problem is linked, and in this section we will detail this link, to a
partial differential equation of the kind of Eq. (2.1), called dynamic program-
ming equation or Hamilton-Jacobi-Bellman equation (HJB equation), obtained
by imposing

H(t, x, p, A) = sup
u∈U

{
−f(t, x, u) · p− 1

2
tr(A · (ΣΣ′)(t, x, u))− L(t, x, u)

}

(2.7)
and the boundary condition

V (T, x) = ψ(x) ∀x ∈ Rn

One important tool in proving that V is a viscosity solution of Eq. (2.1),
withH as in Eq. (2.7), is the so called dynamic programming property for the
value function.

Definition 3 We say that a function V̄ has property (DP) (dynamic program-
ming) if for every reference probability system ν, for every control u ∈ At,ν and
every stopping time θ taking values in [t, T ] we have

V̄ (t, x) 6 Et,x

[∫ θ

t
L(s,Xs, us)ds+ V̄ (θ,Xθ)

]

and for every δ > 0 there exists a ν and a control u ∈ At,ν such that

V̄ (t, x) + δ > Et,x

[∫ θ

t
L(s,Xs, us)ds+ V̄ (θ,Xθ)

]

for every stopping time θ taking values in [t, T ].



2.1.1 Existence

The next result shows the links between the notion of viscosity solution of
HJB equation and the corresponding stochastic optimal control problem.

Theorem 1 If Assumption 1 holds, Q and the control set U are bounded and

i. ψ ∈ C2(Rn), i.e. the final condition ψ is a continuous function, twicely
continuously differentiable on Rn

ii. the running cost L is a continuous function on Q0 × U and has polynomial
growth on its second argument, i.e.

|L(t, x, u)| 6 C3(1 + |x|m) ∀(t, u) ∈ [0, T ]× U

for some C3 > 0,m > 0

then:

a) V ∈ C(Q̄o), i.e. the value function V (t, x) defined in Eq. (2.6) is a continuous
function on Q̄0

b) property (DP) holds for the value function V (t, x) defined in Eq. (2.6)

c) V = Vν for every reference probability system ν

d) V is a viscosity solution of Eq. (2.1), withH defined in Eq. (2.7), in Q0

Proof For (a-c) see [20, Theorem 7.1 pag. 178]. For (d) see [20, Corollary 3.1
pag. 209]. �

Summing up, under the hypothesis of Theorem 1, the PDE (2.1) can
be used to find out a solution of our problem. Unfortunately, in our case
(and in a lot of other cases arising from financial application) the functions
V n(t, x), which are both the value function for month n but also the final
condition for the problem at month n − 1, are far from being bounded,
mainly because the spreadPt−It is not bounded. In this case we can not use
Theorem 1. What we want to do in the following is to prove an extension of
Theorem 1, which uses only the polynomial growth of the final condition.

Theorem 2 If Assumption 1 holds and ψ ∈ Cp(Q0), then V is a viscosity solu-
tion Eq. (2.1), with H defined in Eq. (2.7). Moreover, V = Vν for every reference
probability system ν.

In order to prove this theorem, we state and prove two intermediate
results. The first one states that if the value function has property (DP)
and it is a continuous function with polynomial growth, then it is a viscos-
ity solution of the HJB equation. Let us remark that the weak condition
ψ ∈ Cp(Q0) ensures (in the same way of the next Proposition 1) only the
polynomial growth of V and nor the property (DP) nor the continuity.



Theorem 3 If property (DP) holds for the value function V and V ∈ Cp(Q0)
then V is a viscosity solution of Eq. (2.1), withH defined in Eq. (2.7), in Q0.

Proof See [20, Theorem 5.1, pag 72] �

Lemma 1 If ψ ∈ Cp(Rn), then there exists a sequence (ψm)m∈N inC2
p(Rn) such

that ψm → ψ uniformly on compact sets. Moreover, there exists C, k > 0 such
that

|ψm(x)| 6 C(1 + |x|k)
uniformly with respect to m.

Proof For m ∈ N, let us define the sequence of functions (ρm)m∈N ⊆
C∞(Rn) such that ρm > 0, ρm(y) = 0 if |y| > 1

m and
∫

Rn

ρm(y)dy = 1

Now introduce the sequence (ψm)m∈N as

ψm(x) = (ψ ∗ ρm)(x) =

∫

Rn

ψ(y)ρm(x− y)dy

Then ψm ∈ C∞(Rn). Moreover, being ψ ∈ Cp(R
n) then ψ is uniformly

continuous on each compact set K: for all ε > 0 there exists δ > 0 (which
depends on ε and K) such that

|ψ(x− y)− ψ(x)| < ε, ∀x ∈ K, |y| 6 δ
Then for all x ∈ K, m > 1

δ

|ψm(x)− ψ(x)| =
∣∣∣∣
∫

Rn

ψ(x− y)ρm(y)dy − ψ(x)

∣∣∣∣ =

=

∣∣∣∣
∫

Rn

(ψ(x− y)− ψ(x))ρm(y)dy

∣∣∣∣ 6

6
∫

|y|6 1
m

|(ψ(x− y)− ψ(x))|ρm(y)dy 6

6 ε
∫

|y|6 1
m

ρm(y)dy = ε

So ψm → ψ uniformly on compact sets. Moreover because ψ ∈ Cp(Rn)

|ψm(x)| 6
∫

|y|6 1
m

|ψ(x− y)|ρm(y)dy 6

6
∫

|y|6 1
m

C(1 + (|x|+ |y|)k)|ρm(y)dy 6

6 C(1 + (|x|+ 1

m
)k)

∫

|y|6 1
m

ρm(y)dy 6 C(1 + (|x|+ 1)k)



so also ψm has polynomial growth and the uniform estimate holds. �

Let us now recall that in [20, Appendix D] the following inequality is
proved:

Et,x[‖X·‖m∞] =6 ξm(1 + |x|m) (2.8)

which holds ∀m > 0, with ξm constant depending only on T − t and on
C1, C2 of Assumption 1. Finally, using the Markov inequality we get

Pt,x{‖X‖∞ >M} 6
ς

M
(1 + |x|) (2.9)

We can now prove Theorem 2.
Proof We would like to use the result of Theorem 1 applied to the value
function V . In order to do this, we need to prove that V is a continuous
function with property (DP).

Let (ψm)m∈N be a sequence in C2
p(Rn) such that ψm → ψ uniformly on

compact sets, as described in Lemma 1. Let Vm,ν and Vm the corresponding
value functions, i.e. the value functions of stochastic optimal control prob-
lems with final conditions ψm. Let V the value function with final condition
ψ.

Thanks to Theorem 1 we know that Vm,ν = Vm for every reference prob-
ability system, property (DP) holds for Vm and Vm are continuous func-
tions.

We now prove that Vm → V uniformly on compact sets and so that V
is continuous. By definition of V and Vm, for each δ > 0 there exists ν and
u ∈ At,ν such that

V (t, x) + δ − V (t, x) 6

Et,x

[∫ T

t
L(s,Xs, u)ds+ ψm(XT )

]
− V (t, x) 6

6 Et,x[ψm(XT )− ψ(XT )] =

= Et,x[(ψm(XT )− ψ(XT ))(1|XT |6M + 1|XT |>M )] 6

6 ‖ψm − ψ‖B(0,M)︸ ︷︷ ︸
=I1

+Et,x[(ψm(XT )− ψ(XT ))1|XT |>M ]
︸ ︷︷ ︸

=I2

where ‖·‖B(0,M) denotes the sup norm inB(0,M). An analogous inequality
holds for V (t, x)− Vm(t, x) + δ.

We have that, for all M > 0, I1 → 0 as m → ∞ thanks to the uniform
convergence of (ψm)m∈N on compact sets. Since ψ and ψm have polynomial
growth, using Jensen’s inequality, the well known inequality 2xy 6 x2 + y2



and the ones in Eq. (2.8 - 2.9), we obtain:

I2 = Et,x[(ψm(XT )− ψ(XT ))1|XT |>M ] 6

6 Et,x[|ψm(XT )|+ |ψ(XT )|1|XT |>M ]

6 Et,x[2C(1 + |XT |k)1|XT |>M ]) 6

6 (Et,x[4C2(1 + |XT |k)2]Et,x[1|XT |>M ]) =

= (Et,x[4C2(1 + |XT |k)2]Pt,x{|XT | > M}) 6
6 (4C2

Et,x[1 + 2‖X·‖k∞ + ‖X·‖2k∞]Pt,x{‖X·‖∞ > M}) 6
6
(

8C2(1 +Et,x[‖X·‖2k∞])
ς

M
(1 + |x|)

)
6

6

(
C1

M
(1 + |x|2k)(1 + |x|)

) 1
2

6
C2

M
(1 + |x|k+1)

so I2 can be made arbitrarily small by choosing a suitable M . This imply
that Vm → V on compact sets, hence V is continuous.

We now prove that property (DP) holds for V . Given an arbitrary stop-
ping time θ

∣∣∣∣Et,x
[∫ θ

t
L(s,Xs, us)ds+ V (θ,Xθ)−

∫ θ

t
L(s,Xs, us)ds− Vm(θ,Xθ)

]∣∣∣∣ 6

6 |Et,x[V (θ,Xθ)− Vm(θ,Xθ)]| 6
6 Et,x[(1|Xθ|6M + 1|Xθ|>M )|V (θ,Xθ)− Vm(θ,Xθ)|] 6
6 ‖V − Vm‖B(0,M)︸ ︷︷ ︸

=I3

+Et,x[1|Xθ|>M |V (θ,Xθ)− Vm(θ,Xθ)|)︸ ︷︷ ︸
=I4

We just proved that that I3 → 0 as m → ∞. Let us remember that we are
assuming that the running cost L and the final condition ψ has polynomial
growth in x. This implies that, by its definition, also V has polynomial
growth in its second argument. Combined with the results in Lemma 1
and using the same strategy used for I2, we get:

I4 = Et,x[1|Xθ|>M |V (θ,Xθ)− Vm(θ,Xθ)|) 6
6 (Pt,x[|Xθ| > M ]Et,x[4C2(1 + |Xθ|k)2]) 6

6 (Pt,x[‖X·‖∞ > M ]C1(1 +Et,x[‖X·‖2∞])) 6
C2

M
(1 + |x|k+1)

also I4 can be made arbitrarily small by choosing a suitable M and x in a
given compact set. Summing up, for each δ > 0 there exist M and m such
that I3 < and I4 <. Finally, thanks to property (DP) of Vm, there exists a ν
and a control u ∈ At,ν such that

Vm(t, x) +
δ

3
> Et,x

[∫ θ

t
L(s,Xs, us)ds+ Vm(θ,Xθ)

]



for every stopping time θ taking values in [t, T ]. By putting together these
three inequalities, we obtain property (DP) for V .

In conclusion, we have proved that V is continuous, has polynomial
growth, and has property (DP). From Theorem 1 we can conclude. �

2.1.2 Uniqueness

Theorem 4 Let us assume the hypothesis in Assumption 1 and in addition that

i. the running cost L(t, x, u) and the final condition ψ(x) are continuous func-
tions with quadratic growth, i.e. m 6 2 in Eq. (2.3) and (2.4)

Let V1, V2 be two viscosity solution of problem (2.1), with H as in Eq. (2.7) and
the final condition V (T, x) = ψ(x), having quadratic growth, i.e.

|Vi(t, x)| 6 C(1 + |x|2) ∀(t, x) ∈ Q0, i = 1, 2

Then V1 = V2.

Proof The proofs follows from Theorem 2.1, Corollary 2.1 and Remark
2.2(iii) in [16]. �

2.1.3 First Derivative

In this subsection we present a general result which gives the existence of
the first derivative for a general control problem. We continue to assume
Assumption 1 and the result found in Eq. (2.12). In addition, we need the
following stronger assumption on Ln and ψn:

Assumption 2 We assume that:

i. Ln is continuous on Q0 × U , Ln(·, ·, u) ∈ C1(Q̄0) for each u ∈ U and:

|Lnt |+ |Lnx| 6 C4(1 + |x|`) (2.10)

ii. ψn is locally Lipschitz

Let us now introduce the definition of different quotients ∆h
ξV

n, which
is fundamental in this section because in order to prove existence and smooth-
ness of V n(t, x), we first need bounds for those quotients, and then a gen-
eral result allows to conclude the existence of the derivatives V n

x (t, x) =
DxV

n ∈ Lploc for p > 1.

Definition 4 We call difference quotients of the function f(t, x) of size h and
direction ξ the quantities:

∆h
ξ f(t, x) =

f(t, x+ hξ)− f(t, x)

h

where ξ ∈ Rn is a direction, i.e. it is such that |ξ| = 1.



As for the existence of the solution, a lot of results on the existence of the
derivatives are available for the case ψ ∈ C2(Rn), for instance [20, Lemma
8.1, pag 183], but this is not our case. So we now extend the results to the
case where ψ ∈ C0

p(Rn) and it is also locally Lipschitz. This result can be
used in a straightforward manner for n = 12 using the piecewise linear
definition of Ψ(x) and needs to be adapted by induction for n = 1, . . . , 11.
We state the lemma for a generic ψ and L.

Lemma 2 If Assumptions 1 and 2 hold and the first derivative of the final condi-
tion ψx(x) exists a.s. and has polynomial growth

|ψx| 6 C4(1 + |x|k) (2.11)

then there exists M1 which depends on C1, C2, C4, k, T such that for all directions
ξ

|∆h
ξJ | 6M1(1 + |x|k)

for every h ∈ (0, 1].

Proof Given (t, x0) ∈ Q0, let (Xz)z∈[t,T ] be the solution of

dXs = f(s,Xs, us)dt+ σ(s,Xs, us)dWs, s ∈ [t, T ]

with the initial condition Xt = x0 and (Xh
s )s∈[t,T ] the solution with initial

condition Xt = x0 + hξ. Also, let ∆hXs = Xh
s−Xs
h . Since L and ψ are

Lipschitz, then their restriction to each line segment {Xλ
s |Xλ

s = (1−λ)Xs+
λXh

s , λ ∈ [0, 1]} is absolutely continuous and the Fundamental Theorem of
Calculus holds (see [21, pag. 102]), so we have

∆h
ξJ(t, x;u) = E

[
1

h

∫ T

t
(L(s,Xh

s , us)− L(s,Xs, us))ds+
1

h
(ψ(XT )− ψ(Xh

T ))

]
=

= E

[∫ T

t

∫ 1

0
Lx(s,Xλ

s , us) ·∆hXsdλ

]
+E

[∫ 1

0
ψx(Xλ

T ) ·∆hXTdλ

]

By Equation (2.10)
∣∣∣∣
∫ 1

0
Lx(s,Xλ

s , us)

∣∣∣∣ 6
∫ 1

0
C4(1 + |Xλ

s |k)dλ 6M(1 + |Xs|k + |Xh
s |k)

By Equation (2.11)
∣∣∣∣
∫ 1

0
ψx(Xλ

T )dλ

∣∣∣∣ 6
∫ 1

0
C4(1 + |Xλ

T |k)dλ 6M(1 + |XT |k + |Xh
T |k)

By Cauchy-Schwartz

|∆h
ξJ | 6 2M

(
E

[∫ T

t
(1 + |XT |k + |Xh

T |k)2

])
(E[|∆Xh

T |2])



We bound the first term on the right hand side using (2.8) with m = 2k
and x = x0, x0 + hξ. We also have that E[|∆Xh

T |2] 6 B (see [20], Appendix
D) where B depends on bounds for |fx| and |σx| and the costant C1 on
Assumption 1. Since |ξ| = 1 and 0 < h 6 1

1 + |x|2k + |x+ hξ|2k 6 Ck(1 + |x|2k)

for suitable Ck. �

The following Theorem gives the existence of Vx(t, x) and it is stated for
generic final condition ψ and running cost L.

Theorem 5 If Assumption 1, 2 and Equation (2.11) hold, then Vx(t, x) exists and
it is in Lploc(Q0) for every p ∈ (1,∞]. Moreover

|Vx(t, x)| 6M1(1 + |x|k)

for almost every (t, x) ∈ Q0, where M1 depends on C1, C2, C3, C4, k, T .

Proof We take a generic open bounded set B. Then by Lemma 2 we have

|∆h
ξJ(t, x, u)| 6M1(1 + |x|k) ∀(t, x) ∈ B

Since these bounds are the same for all controls u, we obtain that

|∆h
ξV (t, x)| 6M1(1 + |x|k)

Then we take p > 1 and an open set A such that B ⊆ A and dist(B, ∂A) <
min{1, T} and we have that ∆h

ξV (t, x) ∈ Lp(B) and

‖∆h
xV ‖Lp(B) 6M3‖1 + |x|k‖Lp(B)

for all h ∈ (0,min{1, T}), where M3 depends on M1 and M2. This implies
(see [18], pag 246-248) that Vx(t, x) ∈ Lp(B) and ‖Vx‖Lp(B) 6 ‖M3(1 +

|x|k)‖Lp(B). Moreover, Vx(t, x) is also the derivative in the Sobolev sense.
In fact, for each ϕ ∈ C∞0 ((0, T )×Rn)
∫
ϕVi =

∫
lim
h→0

ϕ∆h
i V = lim

h→0

∫
ϕ∆h

i V = − lim
h→0

∫
V∆h

i ϕ = −
∫
V ϕi

and the conclusion follows. �

2.2 Viscosity solution for swing contracts

In this section we apply results in Section 2.1 to the one year problem pre-
sented in Section 1.3. We continue to make the hypothesis in Assumption
1. Recall that, in this case, the contract value at month n is represented by
−V n, n = 1, . . . , 13.



2.2.1 Existence

First of all, we notice that the functions Ln(t, x, u) as defined is Eq. (1.16),
being a linear function of p and î, has polynomial growth in its second
argument x, i.e.

|Ln(t, x, u)| 6 C3(1 + |x|m) ∀t ∈ [0, T ], ∀u ∈ U,∀n = 1, . . . , 12 (2.12)

In particular, beingLn(t, x, u) a linear function of x, we can assume quadratic
growth, i.e. m 6 2. The same for Ψ(x) defined in Eq. (1.11). As a conse-
quence, also the functions V n(t, x) has quadratic growth, as proved by the
following proposition.

Proposition 1 The functions V n(t, x), as defined in formula (1.17), have quadratic
growth for all n = 1, . . . , 13.

Proof By backward induction. V 13(t, x) = Ψ(z) has quadratic growth.
Now assume that V n+1(t, x) has quadratic growth, i.e. for some con-

stants Bn+1 and mn+1 6 2 we have

|V n+1(t, x)| 6 Bn+1(1 + |x|mn+1) (2.13)

Using notation in Eq. (1.16), the result in Eq. (2.12), the inductive hy-
pothesis in Eq. (2.13) and the inequalities (2.8) we get:

|Jn(t, x, u)| =
∣∣∣∣Et,x

[∫ Tn

t
Ln(s,Xs, us)ds+ ψn(XTn)

]∣∣∣∣ 6

6 Et,x

[∫ Tn

t
|Ln(Xs, us)ds|+

∣∣V n+1(Tn,XTn)
∣∣
]
6

6 Et,x

[∫ Tn

t
C3(1 + |Xs|m)ds+Bn+1(1 + |XTn |mn+1)

]
6

6 Et,x

[∫ Tn

t
C3(1 + ||X·||m∞)ds+Bn+1(1 + ||X·||mn+1∞ )

]
=

= C3(Tn+1 − t)(1 +Et[||X·||m∞]) +Bn+1(1 +Et[||X·||mn+1∞ ]) 6

6 ς + ξm(1 + |x|m) +Bn+1Bmn+1(1 + |x|mn+1) 6 (2.14)
6 Bn(1 + |x|mn)

with mn = max{m,mn+1} 6 2 being both m 6 2 (see Eq. (2.12)) and
mn+1 6 2 (inductive hypothesis). Bn is a suitable constant which depends
only on Tn − t, C3, Bn+1. �

In the following theorem we prove that V 12 is continuous and has prop-
erty (DP). Then by induction we will extend the same results also to other
functions V n for n = 1, . . . , 11



Theorem 6 If Assumptions 1 hold, then V 12(t, x) ∈ C([T11, T ] × R3) and has
property (DP). Moreover, V 12 = V 12

ν for every reference probability system.

Proof Being Ψ(z) a bounded and uniformly continuous function, we can
apply Corollary 7.1, pag 181, in [20].

Alternatively, we can use the same idea in the proof of Theorem 2 since
Ψ(z) has polynomial growth. �

Now the main result for V 12(t, x).

Theorem 7 The function V 12(t, x) is a viscosity solution of the dynamic pro-
gramming equation:

− V 12
t +H(t, x,DxV

12, D2
xV

12) = 0 (2.15)

in [T11, T )×R4, whereH in this case reads:

H(t, x,DxV
12, D2

xV
12) =

−1
2σ

2
pV

12
pp − ρσpσiVpi12 − 1

2σ
2
i V

12
ii − µpV 12

p − µiV 12
i

+ sup
u∈U

{(
e−r(t−T11)(p− î)− V 12

z

)
u
}

= 0
(2.16)

and Eq. (2.15) reads:

V 12
t + 1

2σ
2
pV

12
pp + ρσpσiVpi12 + 1

2σ
2
i V

12
ii + µpV

12
p + µiV

12
i

− sup
u∈U

{(
e−r(t−T11)(p− î)− V 12

z

)
u
}

= 0 (2.17)

Proof See [20, Corollary 3.1, pag 209]. Alternatively, we can use Theorem
2 since Ψ(z) has polynomial growth. �

We now extend the results for V 12(t, x) also to the other value functions
V n for n = 1, . . . , 11.

Theorem 8 For every n = 1, . . . , 12 the function V n is a viscosity solution of
the HJB equation (2.17) in [Tn, T ) × R4, with V replaced by V n, and with final
condition:

V n(Tn, x) = ψn(x) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

Moreover, V n = V n
ν for every reference probability system.

Proof Going backward in time, by induction, Theorem 7 states that V 12(t, x)
is a viscosity solution of Eq. (2.17). Let us suppose that V n+1(t, x) is a vis-
cosity solution of Eq. (2.17). Thanks to Proposition 1, V n+1(t, x) ∈ Cp(Q0).
By Theorem 2, the functionV (t, x) = V n(t, x) is the solution of

−Vt +H(t, x,DV,D2V ) = 0

with boundary condition

V n(Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

�



2.2.2 Uniqueness

We want to apply Theorem 4 to our problem. To do this, we notice that the
control set U is bounded, the running cost functions Ln(t, x, u) are contin-
uous with quadratic growth in x and thanks to Proposition 1 and Theorem
6 the final conditions

ψn(p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

are also continuous functions with quadratic growth in x. Assumptions (1)
are supposed to be satisfied. We can apply Theorem 4.

2.2.3 First derivative

In this section we prove that the first derivatives of our value functions, V n
x ,

exist.
We notice that condition (i) of Assumption 2 is verified for all n =

1, . . . , 12 in our case, that is when Ln is the one in Equation (1.16). Also
condition (ii) can be easily proved:

Proposition 2 For every n = 1, . . . , 12, the value functions V n(t, x) are Lips-
chitz.

Proof For all u ∈ U , Ln(t, x, u) are Lipschitz for every n = 1, . . . , 12:

|Ln(t, x1, u)− Ln(t, x2, u)| =
= | − e−r(t−Tn−1)(p1 − î1)u+ e−r(t−Tn−1)(p2 − î2)u| 6
6 |(p2 − p1) + (̂i2 − î1)|ū 6
6 (|p2 − p1|+ |̂i2 − î1|)ū 6
6 ‖x1 − x2‖1ū

Starting from n = 12, the final condition Ψ defined in Eq. (1.11) is a piece-
wise linear function and so it is Lipschitz. This implies that for all control u
also J12(t, x;u) is Lipschitz and so V 12(t, x) is Lipschitz. Backward induc-
tion on n completes the proof. �

The main result of this section is the following theorem.

Theorem 9 For every n = 1, . . . , 12, if Assumptions 1 and 2 hold, then the
derivatives V n

x (t, x) exist, they are in Lploc(Q0) for every p ∈ (1,+∞] and for
almost every (t, x) ∈ Q0 we have

|V n
x (t, x)| 6M1(1 + |x|`)

where M1 depends on C1, C2, C3, C4, k, T .



Moreover, we prove that also the derivatives have polynomial growth.
Again, backward induction is the key to prove that the value function has
a first derivative. We start with two corollaries.

Corollary 1 There exists M1 which depends on C1, C2, C4, k, T such that for all
directions ξ

|∆h
ξJ

12| 6M1(1 + |x|k)
for every h ∈ (0, 1].

Proof Apply Lemma 2 with the final condition Ψ(x) defined in Eq. (1.11)
which is a piecewise linear Lipschitz function with Ψx(x) piecewise con-
stant defined almost everywhere. �

Corollary 2 The first derivative V 12
x exists and it is in Lploc(Q0) for every p ∈

(1,∞]. Moreover
|V 12
x (t, x)| 6M1(1 + |x|k)

for almost every (t, x) ∈ Q0, where M1 depends on C1, C2, C3, C4, k, T .

Proof Thanks to the result of Corollary 1 we can apply Theorem 5 to
V 12(t, x) with the final condition Ψ(x). �

Now we prove the main result of this section, i.e. Theorem 9.
Proof We know that ψn(x) are Lipschitz thanks to Proposition 2. Let us
suppose that for n 6 11 the derivatives ψnx exists and satisfies

|ψnx(x)| = |V n+1
x (Tn, x)| 6M1(1 + |x|`) (2.18)

This is true for n = 11, as proved in Corollary 2. We recursively apply
Lemma 2 to bound the difference quotients

|∆h
ξJ

n(t, x;u)| 6 M̃(1 + |x|`)

and then apply Theorem 5 to obtain the existence of V n
x (t, x) ∈ Lploc and its

polinomyal growth:
|V n
x (t, x)| 6Mn(1 + |x|`)

This completes the proof. �

Remark 3 We now come back to our original problem with the right minus
sign by substituting the function V with −V in Eq. (2.17). Thus the correct
equation satisfied by the value function in formula (1.17) is:

V n
t +

1

2
σ2
pV

n
pp + ρσpσiV

n
pi +

1

2
σ2
i V

n
ii + µpV

n
p + µiV

n
i +

+ sup
u∈U

{(
e−r(t−Tn−1)(p− î) + V n

z

)
u
}

= 0 t ∈ [Tn−1, Tn] (2.19)

V n(Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)



By substituting the discounted value function Ṽ (t, x) = e−r(t−Tn−1)V (t, x)
in Eq. (2.19) we obtain an equation analogous to the one in [6]:

Vt−rV +
1

2
σ2
pVpp+ρσpσiVpi+

1

2
σ2
i Vii+µpVp+µiVi+ sup

u∈U
{(p− î+Vz)u} = 0

Existence of the optimal control

We proved that the first derivatives V n
x exists. Coming back to our HJB

equation in (2.19), we can state that also a candidate for the optimal control
is a.s. well defined. In fact, a straight calculation leads from (2.19) to:

u∗ = u∗(t, x, Tn−1) =

{
0 if e−r(t−Tn−1)(p− î) + Vz(t, x) 6 0

ū if e−r(t−Tn−1)(p− î) + Vz(t, x) > 0
(2.20)

Remark 4 As observed in [6], the candidate optimal control in Eq. (2.20)
has a nice economical interpretation. In fact, the marginal value Vz says
how much the contract value falls down if we increase the cumulated with-
drawn quantity z, i.e. if we decide to exercise the swing option (i.e. to buy
gas). What this control says is that we have to exercise the option only if
the spread payoff p− î (which is the marginal profit we face if we exercise)
dominates the lost option value Vz .

By inserting the candidate optimal control (2.20) into the HJB Equation
(2.19), for each fixed z and î we obtain the linear partial differential equa-
tion

V ∗t +
1

2
σ2
pV
∗
pp + ρσpσiV

∗
pi +

1

2
σ2
i V
∗
ii + µpV

∗
p + µiV

∗
i +

+ sup
u∈U

{(
e−r(t−Tn−1)(p− î) + V ∗z

)
u
}

= 0 t ∈ [Tn−1, Tn]

V ∗(Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

for which V ∗ = V n is a viscosity solution. However, being this a uniformly
parabolic linear PDE in (t, p, i) for almost every z, î, it has a unique classical
solution that coincides with V n, i.e. V n(·, ·, ·, î, z) ∈ C1,2 ([0, T ]× R× R) for
almost every z, î (see, for instance, [32]).



Chapter 3

NUMERICAL METHODS

This chapter focuses on numerical methods to find the price of swing con-
tracts. First of all, in Section 3.1 we introduce a more concrete dynamics
for the prices: we use particular cases of the model in [38] which are rather
standard models for energy prices (see for example [23, Chapter 23.3] and
[26]). In Section 3.2 a finite difference method for Eq. (2.19) is presented.
Section 3.3 deals with a popular method used among practitioners: Least
Square Monte Carlo, which works on a discrete version of the value func-
tion in Eq. (1.13), and does not use the HJB equation. This method is not
accurate as finite differences, but it is easy to implement, even if it suffers
of some drawbacks that we will discuss later.

All the algorithms we present work in discrete time. In the whole chap-
ter we assume that the time intervals [0, T ] and [Tn, Tn+1] are discretized
into appropriate sequences which will be defined time by time when nec-
essary. For the finite difference algorithm, also the intervals on which the
prices lie has to be bounded and discretized, while the other method takes
advantage from Monte Carlo simulations of path prices.

27



3.1 Price dynamics

We assume that the log-prices of the spot gas price Pt = logPt and spot
index price It = log It follow the mean reverting dynamics

dP(t) = θp(µp − P(t))dt+ σpdWp(t)

dI(t) = θi(µi − I(t))dt+ σidWi(t)

whose solutions at time s, given the states P(t) and I(t) at time t < s, are

P(s) = (P(t)− µp)e−θp(s−t) + µp + σp

∫ s

t
eθp(u−s)dWp(u) (3.1)

I(s) = (I(t)− µp)e−θi(s−t) + µi + σi

∫ s

t
eθi(u−s)dWi(u) (3.2)

The processes Wp and Wi are two Brownian motions with mutual correla-
tion ρ. The realizations of the log-prices are defined using the notation:

pt = log(pt) = log(Pt(ω)) = Pt(ω)

it = log(it) = log(It(ω)) = It(ω)

We suppress the subscript t when clear from the context.
The conditional mean and variance for the log-processes P(t) and I(t)

can be derived from Equations (3.1-3.2)

mp(t, p, s) = Et,x[P(s)] = (P(t)− µp)e−θp(s−t) + µp = (p− µp)e−θp(s−t) + µp

νp(t, s) = Vart,x[P(s)] = σ2
p

∫ s

t
e2θp(u−s)du =

σ2
p

2θp
(1− e2θp(t−s))

mi(t, i, s) = Et,x[I(s)] = (I(t)− µi)e−θi(s−t) + µi = (i− µi)e−θi(s−t) + µi

νi(t, s) = Vart,x[I(s)] = σ2
i

∫ s

t
e2θi(u−s)du =

σ2
i

2θi
(1− e2θi(t−s))

For the price processes P (t) and I(t) we obtain:

dPt = d exp{P(t)} = Pt

((
θp(µp − log(Pt)) +

1

2
σ2
p

)
dt+ σpdWp(t)

)
=

= µ̃p(t, Pt)dt+ σ̃p(t, Pt)dWp(t) (3.3)

dIt = d exp{I(t)} = It

((
θi(µi − log(It)) +

1

2
σ2
i

)
dt+ σidWi(t)

)

= µ̃i(t, It)dt+ σ̃i(t, It)dWi(t) (3.4)



and

Et,x[P (s)] = Et,x[eP(s)] =

= exp

{
Et,x[P(s)] +

1

2
Vart,x[P(s)]

}
=

= exp

{
mp(t, p, s) +

1

2
νp(t, s)

}
=

= exp

{
(log(pt)− µp)e−θp(s−t) + µp +

σ2
p

4θp
[1− e2θp(t−s)]

}

Finally, we calculate the conditional joint density fP,I of the log-price
random vector (P, I) at time t given the realization p and i

gP(p; t, x, s) =
p−mp(t, p, s)

νp(t, s)

gI(i; t, x, s) =
i−mi(t, i, s)

νi(t, s)

fP,I(p, i; t, x, s) =
e

−1

2(1−ρ2) ((gP (p;t,x,s))2+(gI(i;t,x,s))2−2ρgP (p;t,x,s)gI(i;t,x,s))

2πνp(t, s)νi(t, s)
√

1− ρ2
(3.5)

3.2 Finite difference algorithm

Finite difference methods are numerical methods for approximating the so-
lutions to differential equations, which use finite differences to approxi-
mate derivatives. In our case, to find out an approximation of the value
functions V n, we build a numerical scheme using a finite difference method
for the HJB equation (2.19)

V n
t +

1

2
σ̃2
pV

n
pp + ρσ̃pσ̃iV

n
pi +

1

2
σ̃2
i V

n
ii + µ̃pV

n
p + µ̃iV

n
i +

+
(
e−r(t−Tn−1)(p− î) + V n

z

)
u∗(t, x, Tn−1) = 0 t ∈ [Tn−1, Tn]

V n(Tn, x) = e−r(Tn−Tn−1)V n+1(Tn, x)

where the coefficients σ̃p, µ̃p, σ̃p, µ̃i are as in Formulas (3.3-3.4) and the op-
timal control u∗(t, x, Tn−1) has been defined in Equation (2.20).

The first step to build such an algorithm is to bound and discretize all
the intervals on which the arguments of V n lie. This methology requires
bounds also in the price dimensions, so we assume that we have chosen
appropriate intervals P = [pmin, pmax] and I = [imin, imax] such that the
processes Pt and It are unlikely to be outside that intervals. This can be a
reasonable assumption if we use, for instance, processes such as the ones



in Eq. (3.1-3.2) which exibits mean reversion: we can assume that pmin, imin

are so small that the dominating behavior of the log-price process until the
time of maturity T is to increase due to mean reversion, while pmax, imax

are so large that the process is dominated by a decreasing behavior. Let us
introduce the notation used.

Tn = [Tn−1, Tn] → Tn−1 = t1 < . . . < tν < . . . < tNt = Tn δt = tν+1 − tn
P = [pmin, pmax] → pmin = p1 < . . . < pm < . . . < pNp = pmax δp = pm+1 − pm
I = [imin, imax] → imin = i1 < . . . < il < . . . < iNi = imax δi = im+1 − im
Z = [0, ūT ] → 0 = z1 < . . . < zr < . . . < zNz = ūT δz = zr+1 − zr = ū

We notice that, having choosen such compact intervals P and I, Assump-
tions 1 are satisfied also for the price processes (3.1-3.2).

The covariance matrix A(t, x) = (ΣΣ′)(t, x) is given by:

A(t,Xt) = (Aij(t,Xt))i,j∈{1,...,4} =




σ̃2
p(t, Pt) σ̃i(t, It)σ̃p(t, Pt)ρ 0 0

σ̃i(t, It)σ̃p(t, Pt)ρ σ̃2
i (t, It) 0 0

0 0 0 0
0 0 0 0




where σ̃p and σ̃i are as in Formulas (3.3-3.4).

Let we follow the finite difference approximation in [29, Section 5.3.1]
(let us refer to this approximation as Kushner scheme) and use the notation
V n
ν (m, l, l̂, r) for the approximation of V n(tν , pm, il, il̂, zr). We suppress the



superscript n when not needed.

Vt(t, x)→ Ṽt :=
1

δt
[Vν+1(m, l, l̂, r)− Vν(m, l, l̂, r)]

Vp(t, x)→ Ṽp :=
1

δp

{
Vν+1(m+ 1, l, l̂, r)− Vν+1(m, l, l̂, r) if µ̃p(t, x) ≥ 0

Vν+1(m, l, l̂, r)− Vν+1(m− 1, l, l̂, r) if µ̃p(t, x) < 0

Vpp(t, x)→ Ṽpp :=
1

δ2
p

[Vν+1(m+ 1, l, l̂, r)− 2Vν+1(m, l, l̂, r) + Vν+1(m− 1, l, l̂, r)]

Vi(t, x)→ Ṽi :=
1

δi

{
Vν+1(m, l + 1, l̂, r)− Vν+1(m, l, l̂, r) if µ̃i(t, x) ≥ 0

Vν+1(m, l, l̂, r)− Vν+1(m, l − 1, l̂, r) if µ̃i(t, x) < 0

Vii(t, x)→ Ṽii :=
1

δ2
i

[Vν+1(m, l + 1, l̂, r)− 2Vν+1(m, l, l̂, r) + Vν+1(m, l − 1, l̂, r)]

Vpi(t, x)→ Ṽpi :=
1

2δiδp





if A1,2(t, x) ≥ 0 :

Vν+1(m+ 1, l + 1, l̂, r) + Vν+1(m− 1, l − 1, l̂, r)

+2Vν+1(m, l, l̂, r)− Vν+1(m+ 1, l, l̂, r)− Vν+1(m− 1, l, l̂, r)

−Vν+1(m, l + 1, l̂, r)− Vν+1(m, l − 1, l̂, r)]
if A1,2(t, x) < 0 :

−Vν+1(m+ 1, l − 1, l̂, r)− Vν+1(m− 1, l + 1, l̂, r)

−2Vν+1(m, l, l̂, r) + Vν+1(m+ 1, l, l̂, r) + Vν+1(m− 1, l, l̂, r)

+Vν+1(m, l + 1, l̂, r)− Vν+1(m, l − 1, l̂, r)]

Vz(t, x)→ Ṽz :=
1

δz
[Vν+1(m, l, l̂, r + 1)− Vν+1(m, l, l̂, r)]

Using such approximations we get an explicit scheme for Vν(m, l, l̂, r)
which lead us to rewrite the HJB equation in (2.19) as:

−Ṽt =
1

2
σ̃2
pṼpp + ρσ̃pσ̃iṼpi +

1

2
σ̃2
i Ṽii + µ̃pṼp + µ̃iṼi

+ e−r(t−Tn−1)(p− î+ Ṽz)u
∗(t, x, Tn−1)

Vν(m, l, l̂, r) = δt

(
1

2
σ̃2
pṼpp + ρσ̃pσ̃iṼpi +

1

2
σ̃2
i Ṽii + µ̃pṼp + µ̃iṼi

+ e−r(t−Tn−1)(p− î+ Ṽz)u
∗(t, x, Tn−1) +

1

δt
Vν+1(m, l, l̂, r)

)

(3.6)

Remark 5 An important feature of the Kushner scheme we presented in
(3.6) is that the discretized HJB equation is itself the dynamic program-
ming equation for a suitable defined stochastic control problem for Markov
chains. This fact is used in [29] to prove the convergence of the discrete
value function to V n(t, x). Another proof, which make use of the viscosity
solution, can be found in [20, Chapter IX, Sections 4-5].



3.2.1 Boundary conditions

In order to implement the numerical scheme in (3.6), we need some addi-
tional boundary conditions. The key point of subsection is the remark that
the spot index price I , that is an average on past values, has a mean rever-
sion whose speed should be significantly lower than the mean reversion of
the spot price P .

Boundary conditions on P and I. Regarding the boundary conditions
on p and î, the key idea is to use the mean-reversion behaviour of prices to
determine how the holder will optimally use her optionality, i.e., determine
the optimal control u∗s.

When p = pmax, being the mean reversion of the spot P higher than the
mean reversion of the index I , we can assume that in the future this spread
is likely to decrease. In view of this, even if pmax − î < 0, the optimal oper-
ational behavior should be to use as much of the swing option as possible
until z 6M . If we denote

τ1 = τ1(t, z) = min

{
t+

M − z
u

, Tn

}

then we can assume the boundary condition

V n(t, pmax, i, î, z) =

= u1z<M̄Et,x

[∫ τ1

t
e−r(s−Tn−1)(Ps − î)ds

]
(3.7)

+Et,x

[
e−r(Tn−Tn−1)V n+1

(
Tn, PTn , ITn , ITn , z + u(τ1 − t)1z<M̄

)]

When p = pmin the spread p− î is expected to increase. This implies that
the optimal operational behavior when p = pmin should be to wait as long
as possible before exercise. Then, by introducing

τ2 = τ2(t, z) = max

{
t, T − M − z

u

}

and using the convention
∫ b
a f(x)dx = 0 if a > b, we can assume

V n(t, pmin, i, î, z) =

= u1z<M̄Et,x

[∫ Tn

τ2

e−r(s−Tn−1)(Ps − î)ds
]

(3.8)

+Et,x

[
e−r(Tn−Tn−1)V n+1

(
Tn, PTn , ITn , ITn , z + 1z<M̄

∫ Tn

τ2

uds

)]



We next calculate the stochastic integrals (3.7-3.8) defined by the bound-
ary conditions on the truncated boundary. We have, for a 6 b

Et,x

[∫
b

a
e−r(s−Tn−1)Psds

]
=

=

∫ b

a
e−r(s−Tn−1)

Et,x[Ps]ds =

=

∫ b

a
exp

{
−r(s− Tn−1) + (P(t)− µp)e−θp(s−t) + µp +

σ2
p

4θp
[1− e2θp(t−s)]

}
ds =

= exp

{
µp +

σ2
p

4θp
+ rTn−1

}∫ b

a
exp

{
−rs+ (P(t)− µp)e−θp(s−t) −

σ2
p

4θp
e2θp(t−s)

]}
ds =

= g(a, b,P(t), t)

Let us define for any a, b ∈ R the function:

E(a, b, p, î, t) = Et,x

[∫ b

a
e−r(s−Tn−1)(Ps − î)ds

]

= 1a6b

(
g(a, b, log(p), t)− î

∫ b

a
e−r(s−Tn−1)ds

)

= 1a6b

(
g(a, b, log(p), t) +

î

r
erTn−1(e−rb − e−ra)

)

For the boundaries on I, as a first approximation, we take a linear interpo-
lation, i.e. we set:

V n(t, p, imin, î, z) = V n(t, pmin, imin, î, z)+

+
V n(t, pmax, imin, î, z)− V n(t, pmin, imin, î, z)

pmax − pmin
(p− pmin)

V n(t, p, imax, î, z) = V n(t, pmin, imax, î, z)+

+
V n(t, pmax, imax, î, z)− V n(t, pmin, imax, î, z)

pmax − pmin
(p− pmin)

Boundary conditions on Tn. The terminal condition at time Tn is well
known:

V n(Tn, Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, i, z)

Boundary conditions on Z. The only boundary condition on the set [0, ūT ]
needed for our numerical scheme is on the right boundary ūT . This quan-
tity can be reached only at the end of the year and in this case the contract
value is given by Ψ(ūT ). This implies

V n(t, p, i, î, ūT ) = Ψ(ūT )



Notice that, in principle, the feasible support for the variable z depends
on the month n. In particular, we can restrict the solution of V n to the
interval z ∈ [0, ūTn], but we have no hint about the boundary condition
V n(t, p, i, î, ūTn). To avoid this problem, we let Z be the same for every n.

Example 1 Let us give a first example for n = 12. We have, for the relevant
functions needed:

V 12(T12, p, i, î, z) = e−r(T12−T11)Ψ(z)

V 12(t, p, i, î, uT ) = e−r(T12−T11)Ψ(ūT )

V 12(t, pmax, i, î, z) = ū1z<M̄E(t, τ1, pmax, î, t)+

+ e−r(T12−T11)Ψ(z + 1z<M̄ (τ1 − t)ū)

V 12(t, pmin, i, î, z) = ū1z<M̄E(τ2, T12, pmin, î, t)+

+ e−r(T12−T11)Ψ(z + 1z<M̄1τ2<T12(T12 − τ2)ū)

Notice that, in this case, V 12(t, pmax, i, î, z) and V 12(t, pmax, i, î, z) do not
depend on i. This is intuitive, because during the last month the knowledge
of the spot index value give no extra information from the market.

We can now use the numerical scheme in (3.6) to find out an approxi-
mation of V 12.

Example 2 Once V n+1(t, p, i, î, z) is known, the relevant boundary condi-
tions on V n reads

V n(Tn, p, i, î, z) = e−r(Tn−Tn−1)V n+1(Tn, p, i, î, z)

V n(t, p, i, î, uT ) = e−r(Tn−Tn−1)Ψ(ūT )

V n(t, pmax, i, î, z) = ū1z<M̄E(t, τ1, pmax, î, t)+

+ e−r(Tn−Tn−1)
Et,x[V n+1(Tn, PTn , ITn , ITn , ZTn)] =

= ū1z<M̄E(t, τ1, pmax, î, t) + e−r(Tn−Tn−1)

·Et,x[V n+1(Tn, PTn , ITn , ITn , z + 1z<M̄ (τ1 − t)ū)]

= ū1z<M̄E(t, τ1, pmax, î, t)+

+

∫

R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄ (τ1 − t)ū)

· fP,I(x, y; t, x, Tn)dxdy (3.9)

V n(t, pmin, i, î, z) = ū1z<M̄E(τ2, Tn, pmin, î, t) + e−r(Tn−Tn−1)

·Et,x[V n+1(Tn, PTn , ITn , ITn , z + 1z<M̄1τ2<Tn(Tn − τ2)ū)] =

= ū1z<M̄E(τ2, Tn, pmin, î, t)

+

∫

R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄1τ2<Tn(Tn − τ2)ū)

· fP,I(x, y; t, x, Tn)dxdy (3.10)



We can use the approximated values V n+1
1 found with finite difference at

iteration n+ 1 to calculate the integrals in (3.9-3.10) in this way:

∫

R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄ (τ1 − t)ū)fP,I(x, y; t, x, Tn)dxdy '

'
Np∑

m=1

Ni∑

l=1

[
V n+1

1

(
m, l, l, r +

⌈
τ1 − tν
ū

⌉
1zr<M̄

)
·

fP,I(pm, il; tν , (pNp , il), Tn) · (pm+1 − pm)(il+1 − il)

]

∫

R2

V n+1(Tn, e
x, ey, ey, z + 1z<M̄1τ2<Tn(Tn − τ2)ū)fP,I(x, y; t, x, Tn)dxdy '

'
Np∑

m=1

Ni∑

l=1

[
V n+1

1

(
m, `, `, r +

⌈
Tn − τ2

ū

⌉
1zr<M̄1τ2<Tn

)
·

fP,I(pm, il; tν , (pNp , il), Tn) · (pm+1 − pm)(il+1 − il)

]

The roundings
⌈
τ1−tν
ū

⌉
and

⌈
Tn−τ2
ū

⌉
are due to the fact that, in general,

τ1− tνand Tn− τ2 may not be integer multiples of ū. This would imply that
zr + 1zr<M̄ (τ1 − tν)ū /∈ Z or zr + 1z<M̄1τ2<Tn(Tn − τ2)ū /∈ Z, leading to the
need of use some interpolation for V .

3.3 A Least Square Monte Carlo algorithm

The Least Square Monte Carlo (LSMC) approach was originally developed
by Longstaff and Schwartz [31] for valuing American options. Today, it is
widely used also in the energy field to evaluate structured products, see for
instance [9],[10] and [14] for application of LSMC to Virtual Storage struc-
tured products and [39] for applications to Virtual Power Plant structured
products. A summary of existing research on swing option valuation can
be found in [30].

The Least Square Monte Carlo works with a discrete time version of the
problem (1.13), which we present in the next Eq. (3.14). To reduce dimen-
sionality, it does not take care about the spot index price It, and works only
with the traded price Ît with monthly granularity, eventually stretched to
daily granularity as we did in Formula (1.1), if the time step of the algo-
rithm is one day. In practice, Least Square Monte Carlo is losing the infor-
mation given every day about the knowledge of the index spot price. As
a consequence, the algorithm does not need to distinguish value functions
among months, as done before.



To avoid a cumbersome notation, in this section we set the risk free r to
be 0.

Assumption 3 In this section, the notation V n stands for the value function cal-
culated for path number n in a Monte Carlo environment, where N paths for the
stochastic dynamics have been simulated.

The LSMC method is based on the intuition that conditional expecta-
tions in the dynamic programming pricing algorithm can be replaced by
its orthogonal projection on some space generated by set of basis func-
tions of the present state, obtained using Monte Carlo simulations and
least-squares regressions to estimate numerically said orthogonal projec-
tion. Let us introduce the key idea in whole generality, and then focus on
the swing problem. Time interval [0, T ] is now discretized into a sequence
{tj}j=0,...,NT with

0 = t0 < t2 < . . . < tNT = T

and where tj+1−tj represents one day. IfX is the state process (underlying
the general control problem) adapted to the filtration {Ft}t, given the real-
ization at time tj denoted by Xtj = xj , the key idea of the LSMC algorithm
is to replace in the dynamic programmig equation in discrete time

V (tj , xj) = sup
uj
{L(tj , xj , uj) +E[V (tj+1, Xj+1)|Ftj ]}

Xj+1 = f(xj , uj ,Wj+1)

the conditional expectation E[V (tj+1, Xj+1)|Ftj ] with

E[V (tj+1, Xj+1)|Ftj ] =
+∞∑

ξ=1

αj+1
ξ fξ(xj , uj) (3.11)

where fξ are functions taken from a basis of a functional space (polynomials
of degree ξ, Laguerre polynomials, radial basis functions, ...) and αj+1

ξ ∈ R.
From a computational point of view, we can not work with infinite sums

and so a first choice need to be done on the number of basis function we
want to use. Let Nξ be this number, and so in practice we make use of

E[V (tj+1, Xj+1)|Ftj ] '
+Nξ∑

ξ=1

αj+1
ξ fξ(xj , uj) (3.12)

3.3.1 Least Square Monte Carlo for swing problem

Let us now focus on a swing problem. As said, here we consider only the
spot gas price P (t) and monthly index price Î(t). The value function in



discrete time for this problem is (see [17])

V (tj , xj) = sup
u
Etj ,xj



NT∑

k=j

(Pk − Îk)uk + Ψ(ZT )


 (3.13)

where now xj =
(
pj , îj , zj

)
.

Using the dynamic programming principle, which states that if a con-
trol is optimal on a whole sequence of periods than it has to be optimal on
every single period, we obtain in discrete time:

V (tj , p, î, z) = sup
uj ,...,uNT

Ej



NT∑

k=j

(Pk − Îk)uk + Ψ(ZNT )


 =

= sup
uj ,...,uNT

Ej


(Pj − Îj)uj +

NT∑

k=j+1

(Pk − Îk)uk + Ψ(ZNT )


 =

= sup
uj ,...,uNT



(p− î)uj +Ej


Ej+1




NT∑

k=j+1

(Pk − Îk)uk + Ψ(ZNT )







 =

= sup
uj



(p− î)uj +Ej


 sup
uj+1...uNT

Ej+1




NT∑

k=j+1

(Pk − Îk)uk + Ψ(ZNT )









= sup
uj
{(p− î)uj +Ej [V (tj+1, Pj+1, Îj+1, Zj+1)]} =

= sup
uj
{(p− î)uj +Ej [V (tj+1, Pj+1, Îj+1, z + uj)]} (3.14)

where the notation Ej stands for Etj ,xj [·].
The Dynamic Programming Principle in (3.14) and the least square re-

gression are now used as follows by the LSMC algorithm. After having
simulated N paths for the price dynamics {pn(tj), î

n(tj)}i=1,...,N
j=1,...,NT

, which
we will denote with pnj and înj , the algorithm goes backward in time.
Algorithm 1

For every t = T, T − 1, . . . , 1:

→ if tj = T (i.e. j = NT ), set for every path n

V n(T, pnNT , î
n
NT
, z) = Ψ(z), ∀i = 1, . . . ,N

→ if tj < T find out the optimal control ũnj and the value function V n

for every path n = 1, . . . ,N with the maximization

V n(tj , p
n
j , î

n
j , z) = sup

u



(pnj − înj )u+

Nξ∑

ξ=1

αj+1
ξ fξ(p

n
j , î

n
j , z + u)





(3.15)



→ if tj > 0, calculate the coefficients αjξ by minimizing the norm

min
{αnξ }ξ=1,...,Nξ

⊂R

N∑

n=1

∥∥∥∥∥∥
V n(tj , p

n
j , î

n
j , z)−

Nξ∑

ξ=1

αjξfξ(p
n
j−1, î

n
j−1, z)

∥∥∥∥∥∥
(3.16)

→ if tj = 0 then V 1(0, p1
0, î

1
0, 0) is the contract value

While the LSMC algorithm is very flexible, it may, on the other hand,
be influenced by many user’s choices which are capable of influencing the
pricing procedure. For instance, choices regarding the type and the number
Nξ of basis functions as well as the number N of Monte Carlo simulations
used. These choices can be critical: as shown in [34], while for some type of
derivatives (such as the American put) the LSMC approach is very robust,
for more complex derivatives the number and the type of basis functions
can slightly affect option prices.

3.3.2 Radial Basis Functions Approximation

In general, from Formula (3.16) it is evident that fξ shoud be of the form
fξ : R3 → R for a general swing problem. A 3-dimensional fitting may
be computationally challenging. In order to speed up the algorithm, some-
times we can simplify this point. We notice that, in absence of any particu-
lar constraints linked to single price path, the spread Pj − Îj is, in practice,
the key quantity on which decisions are taken. We can define a new ran-
dom variable

Sj = Pj − Îj
and write the problem (3.14) as:

V (tj , s, z) = sup
uj
{suj +Ej [V (tj+1, Sj+1, z + uj)]} (3.17)

From a numerical point of view, we have reduced our state space to a 2-
dimensional one, and now for every tj a surface has to be fitted.

To avoid dimension problems, a good general idea can be to adopt nu-
merical methods based on radial basis functions. They are well known for
their dimensional blindness, which potentially allows to use them for solv-
ing very high dimensional problems. This dimensional blindness comes
directly from the definition of RBF.

A new approach based on radial basis function approximation applied
to Least Square Monte Carlo problems has been recently proposed in [11].
This approach may be very promising in solving the curse of dimensional-
ity arising from the pricing of energy structured products. In this subsec-
tion we apply exactly the same ideas of [11] to swing contract. Our final



aim is to compare the finite difference scheme presented in Section 3.2 with
a more practitioner algorithm as the LSMC ones, in order to deduce if they
give similar results or if one perform better than the other in terms of com-
putational time and accuracy of the solution.

For the convenience of the readers, to fix notation, definitions, and gen-
eral ideas, we briefly re-propose in what follows the problem of interpola-
tion and approximation with RBF exactly as done in [11]. Next we apply
the RBF approximation to our swing problem and present the algorithm in
two dimensions. This algorithm is the basic framework of more sophisti-
cated algorithms, where additional state dimensions may included, or dif-
ferent strategies to sampling centres can be used, as proposed in [11]. It
gives the idea of the features of radial basis approach. Finally, next Subsec-
tion 3.3.3 presents a particular case when the two dimensional regression
can be replaced by a simple one-dimensional regression jointly with the use
of a proper quantization of the cumulated quantity space.

Definition 5 A function Φc : Rn → R is called radial provided there exists a
univariate real valued function φ : [0,+∞) → R whose value depends only on
the distance from some point c, called centre, so that:

Φc(x) = φ(‖x− c‖)

The norm is usually the Euclidean norm, although other distance functions are
also possible.

There are a lot of different choices for the radial functions φ. Some are glob-
ally supported like the Gaussian and the generalized multiquadratic while
others are compactly supported, such as the family of Wendland functions.
Throughout this paper we use the same RBF proposed in [11], i.e. a spe-
cific kind of this type of Wendland functions defined in R3, which have
smoothness of order 2 and can be used in problems up to and including
three dimensions. The functional form of such radial function is

φ(r) = ((1− εr)+)4(4εr + 1) (3.18)

This choice is given, first of all, by the property of those functions, which are
sufficiently smooth for our problem, but not too smooth. As noted in [11],
with a higher order of smoothness we would risk to over-fit the problem,
and with globally supported functions, like Gaussians (which are infinitely
smooth) the regression matrices would have very large conditioning num-
bers, and would be harder to invert. Finally, those functions have given
good results for storage structured products: it is straightforward to use
them as first benchmark also for swing.



Interpolation and approximation with RBF: introduction. The problem
of RBF interpolation and approximation is posed as follows. Let {cj}j=1,...,M ⊂
R
n a chosen set of centers for our basis function φ and let f : Rn ⊇ Ω→ R

be the function we want to interpolate/approximate. Let us suppose we
have measured the sequence {yi}i=1,...,N ⊂ Rwhose values are realizations
of f at a set of N distinct locations {xi}i=1,...,N ⊂ Ω

yi = f(xi) ∀i = 1, . . . , N (3.19)

We want to find a function sf : Ω→ R who has a RBF expansion such as

sf (x) =
M∑

j=1

αjΦcj (x) =
M∑

j=1

αjφ(‖x− cj‖) x ∈ Rn (3.20)

where {αj}j=1,...,M ⊂ R are the regressor coefficients and φ is a RBF applied
to the center points cj and locations xi. We force the conditions

sf (xi) = f(xi) ∀i = 1, . . . , N

which can be rewritten using Equations (3.19) and (3.20) as

yi =

M∑

j=1

αjφ(‖xi − cj‖) ∀i = 1, . . . , N (3.21)

Formula (3.21) is a system of linear equalities with N equations (one for
every measure (xi, yi)) and M unknowns (the coefficients αj) that can be
expressed in matrix notation

Y = Φα (3.22)

where Y ∈ RN is the vector of observations Y = (y1, . . . , yN )T , α ∈ RM is
the vector of interpolation coefficients α = (α1, . . . , αM )T and Φ ∈ RN×M

is a matrix resulting from applying the RBF φ to every entry of the distance
matrix D, whose entries are the Euclidean norm of the data sites against
the center points

D = (dij)i,j =




‖x1 − c1‖ · · · ‖x1 − cj‖ · · · ‖x1 − cM‖
...

...
...

‖xi − c1‖ · · · ‖xi − cj‖ · · · ‖xi − cM‖
...

...
...

‖xN − c1‖ · · · ‖xN − cj‖ · · · ‖xN − cM‖




and Φ = (φ(dij))i,j .
It is clear that, whenever N = M , the matrix Φ is square and we can

perform an interpolation while when N > M the system in Eq. (3.22) is
over-determined. Being D generated by a set of distinct center points, it is



always of full column rank M . If (3.22) is over-determined, we can solve it
by means of linear least square minimization, i.e. find the solution α∗ such
that

α∗ = arg min
α
‖Y −Φα‖ (3.23)

From linear algebra, a possible solution to (3.23) can be found using the
Moore-Penrose inverse Φ+ of the matrix Φ, which in this case can be com-
puted as Φ+ =

(
ΦTΦ

)−1
ΦT (see [36]), which leads to

α∗ = Φ+Y

Application to the swing problem. Coming back to our swing problem,
the RBF approximation can be used in Algorithm 3.3.1 to find out the coef-
ficients in Eq. (3.16). The algorithm rewrites as
Algorithm 2

Let [0, ūT ] be discretized into a sequence {zk}k=1,...,Nz . Let {cξ}ξ=1,...,M ⊂
R

2 be the sequence of centers we have chosen1 for the Radial Basis
Functions.
For every j = NT , NT − 1, . . . , 1:

→ if tj = T set ∀n = 1, . . . ,N and ∀k = 1, . . . , Nz

V n(T, snNT , zk) = Ψ(zk)

→ if tj < T find out the optimal control ũnj and the value function
V n for every path n and for every2 k = 1, . . . , Nz with a numerical
maximization

V n(tj , s
n
j , zk) = max

u



s

n
j u+

Nξ∑

ξ=1

αξj+1φ

(∥∥∥∥
(

snj
zk + u

)
− cξ

∥∥∥∥
)


(3.24)

1Notice that we need centers both in the spread dimension as well as in the cumulated
quantity dimension, i.e. every center cξ takes the form cξ = (c1ξ, c

2
ξ)
T . A first choice for

c1 can be chosen using the simulated path as an equispaced grid with M1 points in the
interval [minn,j{pnj },maxn,j{pnj }] while for c2 we can choose an equispaced grid of M2

points in [0, ūT ], resulting in a total of M = M1 ·M2 centers. Other choices are possible, in
particular for the cumulated quantity. As an example, in [11], a non equispaced grid with
higher density of points on the boundaries is used. Also time-dependent centers can be
used, at the expense of an increased effort in programming.

2We may restrict the calculation only to the values zk feasible at time tj , i.e. zk 6 ūtj



→ if tj > 0 define the vector Yj and the matrix Φj−1 as

Φj−1 =




∥∥∥∥
(
s1
j−1

z1

)
− c1

∥∥∥∥ · · ·
∥∥∥∥
(
s1
j−1

z1

)
− cM

∥∥∥∥
...

...∥∥∥∥
(
sNj−1

z1

)
− c1

∥∥∥∥ · · ·
∥∥∥∥
(
sNj−1

z1

)
− cM

∥∥∥∥∥∥∥∥
(
s1
j−1

z2

)
− c1

∥∥∥∥
∥∥∥∥
(
s1
j−1

z2

)
− cM

∥∥∥∥
...

...∥∥∥∥
(
sNj−1

z2

)
− c1

∥∥∥∥ · · ·
∥∥∥∥
(
sNj−1

z2

)
− cM

∥∥∥∥
...

...∥∥∥∥
(
snj−1

zk

)
− c1

∥∥∥∥
∥∥∥∥
(
snj−1

zk

)
− cM

∥∥∥∥
...

...∥∥∥∥
(
sNj−1

zNk

)
− c1

∥∥∥∥
∥∥∥∥
(
sNj−1

zNk

)
− cM

∥∥∥∥




(3.25)

Yj =




V 1(tj , s
1
j , z1)

...
V N (tj , s

N
j , z1)

V 1(tj , s
1
j , z2)

...
V N (tj , s

N
j , z2)

...
V N (tj , s

n
j , zk)

...
V N (tj , s

N
j , zNk)




(3.26)

and calculate the regression coefficients αj = (α1
j , . . . , α

M
j )T by

solving the over-determined system

Yj = Φj−1αj (3.27)

For instance, you can use the Moore-Penrose pseudoinverse of Φj−1

and compute

αj = arg min
α
‖Yj −Φj−1αj‖ = Φ+

j−1Yj (3.28)

→ if tj = 0 the contract value is V 1(0, p1
0, î

1
0, 0)



3.3.3 Reduction to one dimension: cumulated quantity discretiza-
tion

Even though the system of equations (3.27) should not require a long so-
lution time, we have to notice that Algorithm 3.3.2 requires NT · N · Nz

numerical maximizations (non-linear most of the times, and sometimes in-
teger), coming out from Formula (3.24). They may require a not negligible
amount of time. With some stronger assumptions, or by means of some
approximation of our problem, the maximization in (3.24) can be avoided.
The key result is the following.

Theorem 10 Let us consider a general swing problem in discrete time defined on
the interval [0, T ] and with the constraints

uj ∈ [u, ū]

zT ∈
[
M,M

]

If the quantity

K =
M −M
ū− u (3.29)

is an integer number, then there exists an optimal bang-bang Markovian control
u∗j , i.e. for all j = 1, . . . , NT we have u∗j = u or u∗j = u.

Proof See [2]. �

Thanks to Theorem 10, when assumption in Eq. (3.29) is satisfied, we
can focus our attention only to bang-bang optimal controls of the form
u∗j ∈ {0, ū}. In other words, we can discretize in a suitable way the inter-
val [0, ūT ] on which zj lies. This leads to a binomial tree for the cumulated
quantity because the optimal values for z have the form:

z = au+ bu a, b ∈ N

Let us suppose we have such tree, i.e. we have a suitable sequence {zk}k
of values for the cumulated quantity. For instance, if u = 0, at a first glance
we can define zk = kū. Then the maximization in (3.24) becomes a max-
imization between only two possible values, and the two dimensional re-
gression falls into a one dimensional regression. Algorithm 3.3.2 changes
in this way. Having lost one dimension, now the centers {cξ}ξ=1,...,M of our
RBF lie in R and the vector Yj in (3.26) and the matrix Φj in (3.25) read as

Φj =




Φ1
j

...
Φn
j

...
ΦN
j




=



|s1
j − c1| · · · |s1

j − cM |
... |snj − cξ|

...
|sNj − c1| · · · |sNj − cM |






Y k
j =




V 1(tj , s
1
j , zk)

...
V N (tj , s

N
j , zk)




where Φn
j stands for n-th row vector of matrix Φj . Notice that Φj does not

depend on k, while Yj does it. Also the coefficients αj now depend on k,
and for them we use the notation αkj and compute them in the same way of
Formula (3.28)

αkj = arg min
α
‖Y k

j −Φj−1α
k
j ‖ = Φ+

j−1Y
k
j

Formula (3.24) can now be rewritten. Being Φj independent from k, we can
calculate it only one time for every time step: at time tj+1 we compute Φj ,
and then we re-use its rows at time tj being

V n(tj , s
n
j , zk) = max{snj ū+Ej [V (tj+1, Sj+1, zk+1)],Ej [V (tj+1, Sj+1, zk)]}

= max
u
{snj ū+ Φn

j α
k+1
j+1 , Φn

j α
k
j+1} (3.30)

3.4 Naı̈ve Monte Carlo with Linear Programming

Naı̈ve Monte Carlo is probably the easiest way of considering both the
stochastic nature of price dynamics and the codependence embedded in
the optimal exercise of a swing contract. The idea behind the NMC algo-
rithm is to use in a convenient way the deterministic optimization. Monte
Carlo algorithm proceeds as follow:

1. Discretize the time interval [0, T ] into a sequence {tj}j=1,...,NT with
0 = t1 < t2 < . . . < tNT = T and simulate N paths for the price
dynamics {Pn(tj), Î

n(tj)}n=1,...,N
j=1,...,NT

2. Use a deterministic algorithm to solve an optimization problem for ev-
ery simulated path. This deterministic algorithm finds out the opti-
mal contract’s value for every path. Let this value be V n(0)

3. Determine the contract value as the average over the N simulated
paths:

V opt =

∑N
n=1 V

n(0)

N

Regarding point 2. the deterministic algorithm can be, for instance, both
a linear optimization problem or a deterministic dynamic programming
algorithm. In the first case, a swing contract may be modeled as this linear
problem.
Algorithm 1. Having defined the final penalty function Ψ(z) as in Eq. (1.11),
the linear programming problem solving the deterministic valuation of a
swing contract is:



V n(0) = max
u1,...,uNT

NT∑
j=1

(Pn(tj)− În(tj))uj + p(x1 + x2)

s.t. zNT =
∑NT

j=1 uj

x1 ≥ zNT − M̄
x2 ≥M − zNT
x1, x2 ≥ 0

uj ∈ [0, ū] ∀j = 1, . . . , NT

The clear advantage of such a model is its adaptability: a lot of con-
straint from a wide class of swing contract can be included by adding the
relative constraints. In practice, swing contracts are often characterized
also by bounds on the cumulated quantity in subperiod different from the
year (such as months or quarters) as well as minimum/maximum with-
drawable quantity profiled for every time step j. Also different kinds of
penalties and other complex clauses as carry forward and make-up can be
included.

This kind of optimization is also simple to understand, fast to be solved
and provides N realizations of the contract value V i(0) which in practice
can be used (throught its density) to derive risk measureas such as PaR as
well as optimal hedging strategies such as the minimum variance one.

On the other hand, this approach has a serious drawback: it suffers of
perfect foresight in every path. In other words, for every simulated path this
approach suppose an excess of information: the decision-maker knows in
advance the price realization for every future istant tj and he does not take
his decision under an uncertainity environment. This, in conclusion, leads
to an overestimation of contract’s value which in practice is always used as
an upper bound for the real contract price.

3.5 Numerical Experiments

In the previous sections we presented three algorithms to price a swing
contract. Now we put the algorithm at work and compare the results ob-



tained. When not variables, the parameters used in this section are:

T = 365 δt = 1
4

µp = log(60) σp = 0.6
365

µi = log(40) σi = 0.1
365

p0 = log(51) i0 = log(40)
ρ = 0.1 p = −1000

mDQ = 0 ū = MDQ = 1
ACQ = 20 mAQ = 10

[pmin, pmax] = [1, 300] δp = 5
[imin, imax] = [20, 60] δi = 5
[zmin, zmax] = [0, 365] δz = 1

4

(3.31)

The first part of this section focuses on a sort of toy contract of 1 month
length. In other words, we decided to study the behaviours and the con-
vergence of the three algorithms with a very short (and very unlikely!) con-
tract. This choice was dictated by the need of exagerate some characteristic
parameter of every numerical algorithm without exploding execution time.
As an example, if we consider the finite difference algorithm, we may be
interested in how the choice of δt and δi influences the valuation; for the
LSMC, as said, the number of simulations and regression functions may af-
fect contract price. After having optimized the specific behaviour of every
algorithm, we focus our attention on a full 12-months contract.

Regarding the parameters choice, they have not been calibrated, but
chosen in a reasonable way. A more accurate calibration will be done in
next Section 4.4. Even not calibrated, those parameters are not far from
real market, and in particular reflects some relationships: the gas spot price
exhibits a higher volatility σp with respect to the index one σi which is an
average; at the beginning of the year the contract is in the money (p0 > i0);
the index is not expected to grow up (i0 = µi), contrary to the spot, resulting
in a positive contract value with some exercise opportunity. The penalty is
big enough compared to every possible spread level, and this ensure that
it has its weight on the pricing procedure. Regarding contract quantities,
they are realistic provided the correct unit of measure (typically, millions of
cubic meters) and are such that one is forced to exercise at least 10 times,
but can not exercise every day.

3.5.1 Some topics on Least Square Monte Carlo

Number of basis functions

The scope of this analysis is to understand how the number Nξ of basis
functions used in the regression formula 3.12 affects the valuation. For
a fixed set of price path simulation, with N = 105, we let Nξ taking the
values from 40 to 200 with a step size of 20 and we calculate with LSMC



algorithm the contract value. Figure 3.1 reports the results. We can see that,
in general, the higher is Nξ the higher is the contract value, even if the im-
provement in the pricing process is very small compared to contract value.
When Nξ = 100, 120 the contract price is more or less the same, showing a
sort of stationary behaviour of the algorithm. We can consider one of those
number as a good choice forNξ. A number of basis function of more or less
100 is also reasonable compared to the high number of simulations used.
We may not forget that, even if, in general, the higher is the number of basis
the higher is the contract value, with a very large number of basis function
the regression tends to be an interpolation of the data V n. In the limiting
case when N = Nξ, the simulated V n are perfectly interpolated. In the
LSMC area, a perfect interpolation is equivalent to the perfect foresight case,
i.e. the case when in every scenario we know the future price value, and we
use directly the continuation value on that path rather that an approxima-
tion of the expected continuation value, such as in the Naı̈ve Monte Carlo.
This is not the objective we want to pursue, but given our choices Nξ = 120
and N = 105, we are sure that the interpolation is not our case. Taking into
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Figure 3.1: Contract value with respect to the number of basis function Nξ.
On the x axis we have the number of basis functions, while on the left y
axis, in blue, we put the contract value. The y right axes, in red with dotted
line, represents execution time

account also that with a higher number of basis function we have a sensible
deterioration of execution times, we definitely choose

Nξ = 120



Number of simulations

The scope of this analysis is to understand how the number N of simulated
price paths affects the valuation. We expect that larger number of simu-
lated paths lead to more stable results, in the sense that when the num-
ber of paths is higher, different samples lead to the same contract value.
To analyse this behaviour, we let N taking the values in the set {10n} for
n = 3, 4, 5, 6. For every fixed n, we make 10 contract valuation, every time
simulating new price scenarios. Figure 3.2(a) reports the results. As ex-
pected, when N is large, different run of the simulations lead, more or less,
to the same contract value. We can affirm that the best value for N should
be greater or equal to 106. Unfortunately, 106 may be a very large number
when dealing with longer contracts: a lot of memory is required to store the
simulation, and calculation times are very long especially with large num-
ber of basis functions. We know that Monte Carlo algorithms are based
on the convergence of the sampled average to the mathematical one, this is
the reason why with larger set of simulated path lead to more stable results.
However, the same applies if we perform some independent evaluation of
the swing contract and take the average of them. In other words, our sug-
gestion is to perform a lot of contract evaluation, say K, but with a low
number of simulated path. Then fix the contract value as the average of the
K values obtained. This idea is based on the fact that execution time does
not perfectly grows up linearly whit the number of simulation, as shown
in Figure 3.2(b), but is is faster with a few number of simulations. If we
want to be more precise, with an application of the central limit theorem,
we can also construct a confidence interval for the sampled contract value
(with few simulations). If X̄ is the average of the sampled valued, and sX
their standard deviation, then we may state with a confidence level α that
the true contract value lies in the interval X̄ ± Q(1 − α

2 )sX , where Q(·) is
the quantile of the normal distribution N (0, 1).

To have an idea of how this trick can help execution time, the average
of the 10 contract values sampled with 106 price paths we see in Figure
3.2(a) is 230.90. Every value has been obtained with an average effort of
15 minutes. On the other side, using only 104 price path simulation, we
can obtain 40 samples in 8 minutes (12 secs for every evaluation) and the
average of the 40 calculated contract value is 231.10, very near to 230.90!

3.5.2 Finite difference

The aim of this section is to put at work the finite difference algorithm and
to compare the results with the ones of the LSMC and Naı̈ve Monte Carlo
for the short 1-month contract.

First of all, let us have a look at the behaviour of the solution with re-
spect to the discretion of the intervals T and Z, i.e. with respect to the length
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Figure 3.2: Some sensitivities of LSMC algorithm

of δt and δz . We expect that for smaller value of such values the algorithm
tends to a better value for the contract. Following [6], we know that we
have to satisfy the Courant-Friedrichs-Lewy (CFL) condition

δtū 6 δz

required for the numerical scheme to be stable. So we parametrize the steps
δt = δz = 1

k and let k varying from 1 to 10. Being ū = 1, in this way the CFL
condition is satisfied. Figure 3.3 shows how the valuation is affected by
those choices. We can see that the smaller is the step, the higher is contract’s
value, even if the changes are negligible for k ≥ 4. On the other hand,
the time required to find the solution grows up exponentially for smaller
values of δt and δz , and also the memory required to store matrices into
RAM becomes considerable. For the same reason, we decided not to study
in a programmatically and empirical way, how the discretization on prices
(δp and δi) affect the valuation: resources and time required were too big,
and while the discretization on δz strongly affect the optimal control, the
derivatives on prices are not crucial in the same way.

Table 3.1 summarizes the results found for the one-month contract. We
can observe that the results provided by the LSMC and FD algorithms are
very close each other, while the execution time is in favour of the FD algo-
rithm. The perfect foresight behaviour of the NMC is clear: it overestimates
the contract value, but on the other side it has the lowest execution time be-
tween the three algorithms.



1 2 3 4 5 6 7 8 9 10
231.05

231.1

231.15

231.2

231.25

231.3

231.35

231.4

231.45

231.5

C
on

tr
ac

t V
al

ue
 [E

ur
]

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

T
im

e 
[s

]

δ
t
−1 = δ

z
−1

Finite Difference with δ
t
 → 0

Figure 3.3: Contract value and execution time with finite differences with
the relationship δt = δz = 1

k for k = 1, . . . , 10.

Algorithm Contract Value [Eur] Execution Time [s]
NMC (104 sim) 264.73 130

FD 231.45 180
LSMC (105 sim) 230.90 320

Table 3.1: Summary of the main results of the three algorithms presented
in this Chapter for a one-month contract.

3.5.3 One year contract

After having investigated the behaviour of the algorithms with respect to
some of their characteristic parameters, now we switch our attention to a
full contract of length one year. For this contract we used the following
parameters, the other being fixed as in Eq. (3.31):

mDQ = 0 ū = MDQ = 1
ACQ = 200 mAQ = 100
Nξ = 120 N = 104

Regarding the choice of pmax and imax, they can be chosen according to a
probabilistic methodology, by solving P{PT ∈ [pmin, pmax]} 6 0.99. How-
ever, we prefer to adapt an empiric point of view. Having done a lot of
Monte Carlo simulations for the LSMC algorithm, we may simply have a
look to a plot of them, and find the upper bounds as the maximum value
under which all the simulated paths lie. From figure 3.4, we may conclude
that the spot price is unlikely to be over a value of 300, while the monthly
index price is bounded between 20 and 60. Another empirical trial when
dealing with the FD algorithm, is to perform the valuation twice, where in
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Figure 3.4: 105 simulations of daily spot price and monthly index price

Algorithm Contract Value [Eur] Execution Time [s]
NMC (104 sim) 5087 266

FD 4168 2480
LSMC (104 sim) 4032 320
LSMC (105 sim) 3958 3670

Table 3.2: Summary of the main results of the three algorithms presented
in this Chapter for a one-year contract.

the second valuation we increase the value of pmax and imax chosen for the
first run. If, after the second valuation the contract price is the same as in
the first, we can conclude that the support for p and i is large enough.

Table 3.2 shows results similar to the ones in Table 3.1, and the conclu-
sions may be pretty much the same: the NMC overestimates contract value,
but it is the fastest, while the results of the FD and LSMC are very close each
other. The execution time is in favour of the FD algorithm compared to a
LSMC valuation with a high number of simulation, while LSMC performs
very fast with a lower number of simulated paths.

3.6 Conclusions

This chapter has been devoted to the study and implementation of three
numerical methods to find the price of a swing contract. The first one,
called Finite Differences (FD), is a numerical algorithm which find an ap-
proximation to the solution of the HJB equation 2.19. It is well known that,
for more than three or four state variables, numerical methods such as FD



may face several difficulties being not the optimal practical choice in terms
of both time of execution and implementation. In some cases, Monte Carlo
methods converge to the solution more quickly than other numerical meth-
ods, require less memory and are easier to program. Is this our case? To an-
swer this question, we developed other two methods, very popular among
practitioners, based on Monte Carlo simulations. One is the so-called Least
Square Monte Carlo (LSMC) which is based on backward solution of the
control problem (1.13); the other one is called Naı̈ve Monte Carlo: it is
the deterministic version of the problem (1.13) repeated multiple time on
Monte Carlo simulations of price paths. We have then analysed several nu-
merical comparison examples in order to study both the performance and
the accuracy of all the three methods and to find an answer to our question.

Performance

Regarding the performance, from Tables 3.1 and 3.2 we can conclude that
the FD algorithm is competitive both in time and accuracy with LSMC,
when one uses 105 path simulations. But, when used with a lower num-
ber of simulation, such as 104, the LSMC performs more or less 8 times
faster compared to FD on longer contract, without giving up the accurancy
(which in any case can be refined by repeating multiple times the valuation,
as did in Figure 3.2(b)).

Practical Comparison

From a practical point of view, LSMC is independent of price dynamics: sim-
ulated price paths are only an input of the LSMC algorithm. For the FD
method this is not true: the choice of the price dynamics strongly affect,
for instance, boundary conditions (see Section 3.2.1). From a practitioners’
point of view, an algorithm which is independent on price dynamics is re-
ally an advantage for at least two reasons:

1. it can be used to evaluate the same contract with any sophisticated
models; for instance, one may want to use multi-factor models, such
as the one presented in [28] where every forward/spot price is driven
by two correlated Brownian motions, or introduce jumps as in [33].
With the LSMC algorithm, the only step required to implement such
models is the simulations of the dynamics. No additional calculations
are needed;

2. an algorithm independent of the dynamics can be easily plugged into
a more complex system already existing. This is the typical situation
of a big firm which already has its own models for risk management
purposes, derivatives evaluation and hedging, portfolio representa-
tion and optimization. In such cases, the use of independent price



models for the same portfolio is not recommended, especially when
all the prices in this portfolio have some common dependencies (such
as correlation or co-integration) which can not be reproduced using
different dynamics. This is always the case of energy structured prod-
ucts, being such prices both correlated and co-integrated (see [19,
Chapter 4]).

One may object that the LSMC algorithm strongly depends on some
user choices. We have (empirically) proved that for swing contracts the use
of RBF as basis functions for regression together with a number of simula-
tion greater that 104 are good choices that can offer a compromise between
speed and accuracy, also when compared to FD. Concluding, in author’s
opinion, for the swing contracts presented in Section 1.3, the LSMC is not
worse that a FD algorithm, and can be used in favour of FD at least when
the stochastic model driving price dynamics does not allow an easy calcu-
lation of the boundary conditions.

Regarding the NMC algorithm, it is definitely the fastest algorithm and
also the one which requires less programming effort. But, as expected,
it overestimates the contract value (of about 25%), giving only an upper
bound of it. In practice, when feasible, the NMC algorithm should be
avoided in favour of LSMC, or FD. On the other hand, there exists some
contract for which the NMC seems to be the only viable way of pricing,
because of the complexity given by the constraints on quantity and penalty
structure. As an example, in next chapter we will face a contract with an
additional quantity constraint between years. Because of this clause, we
cannot split the contract year by year (as did in Section 1.3) and we need
to considered it at once. To evaluate such contract, we will be able to make
use of a numerical approach named lattice of trees only thanks to the as-
sumptions that minimum and maximum quantity constraints are imposed
on months instead of days. However, if the constrains had been written
on the days, probably NCM would have been the only viable way to price
such a contract in a reasonable amount of time. In any case, when NMC is
needed by the complexity of the problem, one has to keep in mind that the
results of the valuation process is only an overestimation of the real value.

Optimal Control

Let us come back to the one-month example in order to deduce some (easy
to understand) conclusions on the optimal control obtained by the three
algorithms.

Regarding the FD algorithm, we obtain from the algorithm a numerical
approximation to Equation (2.20), which by its nature depends on time,
on the whole states of the system, x = (p, i, î, z), and also on the quantity
Vz(t, x). We have plotted an example of it in Figure 3.5, where we can see
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that u∗ looks like exactly as one expects: the optimal control is to exercise
every time the spread is sufficiently favorable, taking into account also the
constraint on mAQ, i.e. if we are arrived in t = 15 having exercised only
one time (blue line, z = 1), then the optimal control is to wait to exercise
every time the spread level between gas and index is less or equal to −14.
Otherwise, if we see a spread greater or equal to −9, we may exercise the
swing option. On the other case, that is when we are arrived in t = 15
having exercised two times (red line, z = 2), we can wait to withdraw even
when the spread is −9, and withdraw if the spread is greater or equal to
−4. In both cases (being δp = 5) nothing is said for spread values lying
between the jumps, i.e. when the spread is in (−14,−9) for the case z = 1,
or (−9,−4) for the case z = 2.

Regarding the controls coming out from the two methods based on
Monte Carlo simulations, we do not have directly an approximation of the
optimal controls as a function, but we obtain a lot of samples of such func-
tion. It follows that we need to re-construct the functional form of them,
when feasible, or we may treat the output with some statistical method-
ology. Let us start using an example from NMC algorithm analysed us-
ing statistical methodology. Having N simulated and optimized paths, we
also have N optimal choices for every time t. If we assume that for any
fixed t this optimal control is a function of the spread level s and the cu-
mulated quantity z (which is an approximation of the real form of the op-
timal control), we can group the N optimized controls in classes, where
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Figure 3.6: Analysis of the NMC output (optimal control and cumulated
quantity at the end of contract life)

each class refers to a single value for the cumulated quantity at time t.
For instance, at a given time, we may have z = 10, 15, 10, 12 for the first
four simulations. We then collect the respectively optimal control in the
three classes (10, 12, 15), and put in the first class both the optimal choice
of the first and third simulation). Next, we may expect that, for a fixed
class, we should be able to express the optimal simulated controls as a
function of the spread. Unfortunately, this is not completely true, but it
is still useful; let us consider Figure 3.6(a) where this situation is plotted for
N = 104, t = 15, z = 14, i.e. we have plotted the optimal control of the 4149
paths (among 104) where z = 14 at time 15. From that figure we can only
infer that:

1. when the spread is negative, the optimal control is to wait

2. when the spread is bigger than 20, the optimal control is to withdraw

and nothing is well defined for the simulations when the spread lies in
(0, 20): we can observe paradoxical cases when we have both controls (0
and 1) for almost the same spread level (rounded to two decimals). Why?
Because, by its nature, in the NMC the optimization is done considering the
whole price path during the whole year, so the punctual level of the spread
at a given point in time is meaningless if not seen inside its whole trajec-
tory, from the beginning to the end of the year. On the other hand, the
conclusions at points 1-2 can be read as a confirmation of the assumptions
made in Subsection 3.2.1 for the boundary conditions, i.e. every time the
spread is favourable (i.e. p is very high) the optimal control is to withdraw
as much as possible, if ACQ has not been reached.



Moreover, we can infer some other statistical informations from the
NMC outputs. First, we can construct, for any time, an histogram of the
frequency of the cumulated quantity: this helps us to understand how good
is the contract at any time, in particular at the end of its life. Figure 3.6(b)
shows the histogram of the frequency for our example. In such case, we
can confirm that the contract is, for sure, in-the-money, the quantity ACQ
being the most frequent final vale for z. The optimal choices during the life
of the contract were to withdraw a lot of gas. Second, we can construct sta-
tistical indicators such as the average withdrawn quantity for every month,
useful to build static hedging strategies with forwards, as explained in [19,
Chapter 5].

Regarding the LSMC output, an interesting use of them may be related,
once again, to the boundary conditions evinced for the FD algorithm. In
some sense, we can use the LSMC optimal controls (as did with the NMC
ones) to validate the choices done in Section 3.2.1. By applying to u∗ the
same regression argument done for the value function in Equation (3.12), at
every time t the N optimal controls obtained with LSMC can be expressed
as a function. This is coherent with the theoretical assumption that the
control is an adapted process, i.e. the decision is taken given the current
information available at time t from the market. In formula, we can assume
that

u∗(tj , s, z) '
+Nξ∑

ξ=1

νjξuξ(s, z) (3.32)

where uξ are some basis function and s is the spread level. The coefficients
νjξ are obtained with a least-square regression, using the N sampled opti-
mal decision from the maximization in Eq. (3.15) or (3.30). We then use the
optimal control obtained with Eq. (3.32) to test the hypothesis done for the
boundary conditions. For instance, for the one on pmax, we can plot the
graph of u∗(s̃, z) for some fixed z and an appropriate high level of s̃. Figure
3.7(c) shows the optimal control for a one-month contract with z = 1 (this
choice allows to have a value for the optimal control for any time t > 1)
and s̃ = 15 (which is a sufficient high value for the spread whose starting
market value at time 0 is s0 = ep0 − ei0 = 11). We can see that the optimal
approximated control is an increasing function of time. In particular, we
can read the plot in this way: at the beginning of the month, when t = 1, 2,
a spread level of 15 is not big enough to suggest the withdrawal of gas.
For t > 9 the optimal control, if we arrive at that time with a cumulated
quantity equal to 1, is to withdraw (because we need to reach mAQ in order
not to pay penalty). For intermediate times, we can affirm that the optimal
control is also to withdraw (at least for t > 5), even if the approximated
optimal control is not exactly equal to 1: this is a consequence of the ap-
proximation procedure of a 0 − 1 optimal control with smooth functions,
as shown in Figure 3.7(a). Luckily, the approximation is not so bad for the



−10 0 10 20 30 40 50

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Optimal control when t=27 and z=17

(a) Optimal control in LSMC: simulated and
regressed. To draw a 2-d plot, we put the
spread in the x axis and the optimal control
in the y axis.

−10 0 10 20 30 40 50
−20

0

20

40

60

80

100

120

140
Optimal value when t=27 and z=17

(b) Value function in LSMC: simulated and re-
gressed. To draw a 2-d plot, we put the
spread in the x axis and the optimal con-
trol in the y axis.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

op
tim

al
 c

on
tr

ol

Optimal control (as LSMC approximation) when p=15 and z=1

(c) Optimal control for a fixed p = p̃ and z = 1

Figure 3.7: Analysis of the LSMC output



value function, as presented in Figure 3.7(b).
Summing up, we conclude that:

i. the optimal sequence of decisions coming out from the NMC optimiza-
tion process can be managed only with statistical methods. They are
not any numerical approximation of the optimal policy of the problem,
because they are obtained taking into account the full knowledge of the
simulated path;

ii. the optimal control from the LSMC can be reduced to an approxima-
tion of the optimal policy using least square arguments as done for the
continuation value (in the LSMC algorithm, the optimal controls come
out from the Bellman equation, so they are effectively obtained using
the dynamic programming principle);

iii. the optimal control obtained with FD algorithm is a numerical approx-
imation of the real optimal policy.

Point iii is the most powerful feature of the FD algorithm, which is able
to find the best numerical approximation of the optimal control, compared
to LSMC. In addition, FD algorithm has another advantage compared to
LSMC: it works with the solution of the problem in continuous time (in con-
trast to LSMC which works in discrete time) taking into account also the dy-
namics of the index between two subsequent months. This extra-information
makes the contract’s holder able to predict the month-ahead strike more
and more accurately as time goes on, and nor the NMC nor the LSMC are
able to reproduce this particular behaviour of the indexed strike.



Chapter 4

PRICING MAKE-UP CLAUSE IN
DISCRETE TIME

Until now, we have focused our attention to a classical swing contract,
where classical stands for the fact that the structure presented in Section 1.3
can be seen as the pillar of every traded swin contract, which however in
practice may contain more clauses, constraints and variants. Among those
clauses, the make-up has become very important in last years. On the other
hand, in Chapter 3 we have omitted a pricing technique very used among
practitioners: the lattice of trees. As an extension of the results obtained so
far, in this chapter we focus our attention to swing contracts with an em-
bedded make-up clause and we use numerical schemes based on trees to
evaluate them.

The chapter is organized as follows. In Section 4.1 we describe the
make-up clause from an economical and qualitative point of view. In Sec-
tion 4.2 we formulate the valuation problem of a generic gas swing contract
in discrete time, while in Subsection 4.2.3 we introduce a particular instance
of make-up clause, which will be the subject of next Section 4.3, where we
mathematically frame the problem and indicate an algorithm for its solu-
tion, describing analytically both its formal representation and the various
steps for the solution. We discuss the computational cost of our approach
in Subsection 4.3.1 obtaining a quadratic cost with respect to the duration
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in years of the make-up clause and in Subsection 4.3.2 we extend our ap-
proach to another form of make-up clause as well as to some instances of
carry-forward clause. After having calibrated two mean-reverting trino-
mial models to market data, as explained in Section 4.4, in Section 4.5 we
present a detailed example for a 3-years make-up clause. In particular, in
Subsection 4.5.2 we use this contract to perform a sensitivity analysis in or-
der to outline the key drivers for optimization and value protection given
the current market scenario. Concluding remarks in Section 4.6 end the
Chapter.

The results of this chapter have been published in [17].

4.1 Introduction to make-up clauses

As presented in Section 1.1, long term gas contracts in Europe have been
traditionally priced using oil-linked pricing formulas as presented in Sec-
tion (while, for instance, in the United States gas-to-gas competition has
historically determined most of natural gas wholesale transactions). This
oil indexation has its origins in the early European gas market of the 1970s,
when the greatest sources of gas were the wastes of oil extraction. Since that
time, sources of gas have increased, making gas markets and infrastructure
much denser and open to competion. In addition, from 2008 onwards this
traditional market framework has significantly changed especially for what
concerns the oil-to-gas price relationship. Actually, the demand drop fol-
lowing the financial crisis with the subsequent economic recession associ-
ated to the significant increase in LNG (Liquefied Natural Gas) and uncon-
ventional gas supply sources flowing to Europe generated a consistent and
pretty persistent oil decoupling of European gas market prices: since 2008,
European gas markets are pricing systematically and significantly below
indexes usually used for the strike price I (see Figure 4.1), so the spread
P − I has become negative.

Obviously, this market phenomenon has determined a panic situation
for all the owners of classical long term gas supply contracts. Significant
losses have been faced at present by pipeline importers due to this kind
of oil-to-gas price decoupling; moreover, the structural market change de-
termined an increased sense of uncertainty about European gas market fu-
ture development. Interested readers may refer to [27] for a detailed and
updated analysis of oil-to-gas decoupling. This new market scenario has
induced many long term importers to engage a renegotiation process with
their suppliers together with a more focused attention towards optimiza-
tion and hedging possibilities which are naturally embedded in the current
contracts. As a result, traditionally long term forward gas contracts are to-
day often equipped with some additional volumetric flexibilities. Among
those, in this market situation a new and particular importance arose for
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the so-called make-up and carry forward clauses, which flank traditional con-
straints as minimum and maximum withdrawal quantity established for
every contract year and every contract sub-period (day or month). Basi-
cally, these clauses allow the buyer of the contract to delay or anticipate
respectively the withdrawal of gas from one year to another within the full
respect of sub-period capacity constraints. In particular, the introduction of
make-up clauses has become very important for European long term con-
tracts holders: in fact, in the recent oil-to-gas price decoupling situation,
contracts holders were induced to delay as much as possible the gas de-
livery for the sake of loss minimization. Once exercised, make-up clause
allows to modify the global annual minimum constraint for the year we
decide to nominate the make-up, and the maximum constraint for the year
we decide to call it back. With a make-up clause, contract holders can effec-
tively postpone the delivery of gas when it is too expensive with respect to
market prices, hoping that future gas prices will rise up and the exercise of
the contract rights becomes again profitable.

From a mathematical point of view, the presence of make-up clauses
further complicate things and introduces more complexity. Surprisingly,
the quantitative literature on this topic appears scarce: in the authors’ opin-
ion, this is due to the fact that a make-up clause is worth more in a mar-
ket where price decoupling is high, and the need to study such markets
arose only in the last years. At a qualitative level, for instance, the make-



up clause is described in [30, 37]. An algorithm to evaluate a swing con-
tract with the carry-forward clause using the Least Square Monte Carlo
approach is presented in [22], where the authors claim that the make-up
can be evaluated similarly: this is true only for make-up clauses with a sin-
gle final installment, i.e. when the make-up gas is to be paid only when
it is called back (which corresponds to letting α = 0 in Rule 4 of Section
4.2.3). However, typical make-up clauses have a double-installment mech-
anism, i.e. the make-up gas has to be paid when nominated with a price
proportion α > 0 and when called back with a price proportion 1 − α (as
an example, [30] report α ∈ (0.85, 1] as typical proportions). To the authors’
knowledge, an algorithm to properly price (and find out optimal policy) a
swing contract with such a general double-installment make-up clause and
where both the market and strike price are stochastic variables has never
been presented so far. The aim of this Chapter is exactly to fill this literature
gap, at least in the discrete time case. In particular, in this Chapter we will
describe, frame and solve in discrete time the optimization issues related to
the presence of make-up clauses in long term swing contracts. Finally, we
use the algorithm in order to explore the value of the contract with respect
to the peculiar constraints introduced by the make-up.

4.2 Problem framework

As already mentioned, the complexity introduced in the pricing problem
by the make-up clause is remarkable. In practice, we will see in next Sec-
tion 4.2.3 that the make-up clause led to co-dependence in exercise among
years. As a result, we can not focus our attention to a one-year problem,
but we are forced to adopt a larger view on the full life of the make-up
clause, which in general spans from 3 to 5 years. An additional state needs
to be introduced, which links one year to the following ones. Given this
preamble, it is clear that the approach used in Chapter 1 fails, at least from
the computational point of view of Section 3.2: with the make-up clause we
should consider a five-dimensional state running with daily granularity for
some years! We need to do some other approximation to our problem. The
idea now is to abandon the daily nature of the problem, and treat it with
a monthly granularity. From the point of view of the strike price process
Î , this assumption is equivalent to model it as a discrete sequence of ran-
dom variable, as introduced in Eq. (1.2), losing the information given by the
moving average. From the point of view of the market gas price P (t), this
may be a strong restriction to our problem: we are losing all the flexibility
given by daily changes to the price. But if our aim is to focus the attention
on the make-up clause and to obtain a pricing in a reasonable time, this ap-
proximation is a rational way to mitigate accuracy and feasibility. So, from
now on, we do not take care about the moving average I(t) and we will



focus directly on a monthly indexed strike.

4.2.1 Time structure and admissible strategies

Ordinary swing contract schemes are normally defined dividing each one
of the D yearly delivery periods {[Tj−1, Tj)}j=1,...,D, into N sub-periods

{[tj,i−1, tj,i)}j=1,...,D
i=1,...,N obtaining the sequence {tj,i} such that

0 = T0 = t1,0 < t1,2 < . . . < t1,N = T1 = t2,0 < t2,1 < . . .

. . . < tj,i < . . . < tj,N = Tj = tj+1,0 < . . . < tD,N = TD

In particular, in every year [Tj−1, Tj ] we have the N + 1 points (tj,i)i=0,...,N

such that tj,0 = Tj and tj,N = Tj+1.
We are also assuming thatN is also the number of exercise swing rights

the holder has in every year, which can be exercised exactly at the points
tj,i, for i = 0, . . . , N − 1 i.e. at the beginning of every sub-period. For
example, in our simplified case, the decisions are taken month by month,
at the beginning of every month, and so N = 12.

Denote by uj,i the quantity of gas the holder decides to buy in the sub-
period [tj,i, tj,i+1), i = 0, . . . , N − 1, and by zj,j the cumulated gas quantity
at time tj,i. In particular we set zj,0 = 0 for all j = 1, . . . , D and

zj,i+1 =
i∑

k=0

uj,k = zj,i + uj,i ∀i ∈ {0, . . . , N − 1} (4.1)

As in the continuous time case, over each one of the N sub-periods, min-
imum (mDQ) and maximum (MDQ) delivery quantities are established in
the contract, which usually reflect physical effective transportation capac-
ity limitations: thus, the quantities uj,i are constrained by

mDQ 6 uj,i 6 MDQ ∀i = 0, . . . , (N − 1), ∀j = 1, . . . , D (4.2)

which is the analogous of Equation (1.6). Also in this case, for every contrac-
tual year, minimum and maximum quantities are also established, called
respectively minimum annual quantity (mAQ) and annual contract quan-
tity (ACQ). Two key quantities in modeling the make-up are respectively
the difference between the maximum gas that the holder could physically
take and his contract right, given by

M := N ·MDQ− ACQ (4.3)

and the difference between the minimum gas that the holder must take by
contract and the minimum which he could physically take, given by

M := mAQ−mDQ ·N (4.4)



We have always non-trivial volume constraints, in the sense that

M > 0, M > 0 (4.5)

Thus, in the light of the discussion above, without any additional clauses
and with non-trivial constraints we have

N ·mDQ < mAQ 6 zj,N 6 ACQ < N ·MDQ ∀j = 1, . . . , D

To maintain a practical point of view, in this chapter we do not to use
the standard decomposition as did in (1.8, 1.10), working directly with con-
tractual quantities.

Penalty payments can be imposed if the volume constraints are ex-
ceeded in order to stimulate the buyer to respect the volumetric limits im-
posed as did in Equation 1.11. For the sake of notation and exposition, in
this chapter we do not take into account these penalties: we take Ψ(z) ≡ 0.

The difference between swing contracts with trivial and non-trivial vol-
ume constraints is extremely important in the pricing and hedging of the
contract itself. In fact, with non-trivial volume constraints the holder must
take into account, at time tj,i, not only the quantity uj,i which would be
optimal for that period, but also the effects of this quantity on the future
decisions that he will be allowed to take after.

This brings to model the space of controls in the following way. For a
given year j = 1, . . . , D, assume that we have a final constraint zj,N ∈ [z, z]
for some 0 ≤ z < z. We may have z = mAQ, z̄ = ACQ exactly as in
Equation (1.10), but here we keep a general view: those bounds will be
strongly affected by the make-up clause. So, in general, at a given time tj,i,
the space of controls A (tj,i, zj,i, [z, z]) will depend on time tj,i, cumulated
quantity zj,i and [z, z].

By the constraints (4.2) and construction of zj,i, at time tj,i we can restrict
our attention to the case when zj,i satisfies the constraints

mDQ · i 6 zj,i 6 MDQ · i ∀i = 0, . . . , N

The problem of determining the setAj,i is non-trivial when Eq. (4.5) holds,
which translates in

N ·mDQ < z 6 z < N ·MDQ

(otherwise we can always reach the values in [N ·mDQ, N ·MDQ]). In
this non trivial case, we are not allowed to take uj,i = mDQ for all i =
0, . . . , N − 1: in fact, there exists a time τ1 such that, if we have always took
this minimum for t 6 τ1, then for t > τ1 we have to switch to uj,i = MDQ in
order to reach z. This point τ1 is the common point between the two lines



z = mDQ(t − tj,0) and z = MDQ (t− tj,N ) + z, ∀t ∈ [tj,0, tj,N ]. A simple
calculation leads to

zj,i > rmin(tj,i, z) = max {mDQ (tj,i − tj,0) ,MDQ (tj,i − tj,N ) + z}

Similarly, we are not allowed to take always uj,i = MDQ either: in fact,
there exists a time τ2 such that, if we have always took this maximum for
t 6 τ2, then for t > τ2 we have to switch to uj,i = mDQ in order to reach,
and not exceed, z. The boundary for zj,i in this case is

zj,i 6 rmax(tj,i, z) = min {MDQ (tj,i − tj,0) ,mDQ (tj,i − tj,N ) + z}

Figure 4.2 shows an example of the admissible area.

Tj−1
τ1 tj,N = Tj = tj+1,0

N ·mDQ

N ·MDQ

z

τ2

zj,i ∈
[
max{mDQ(tj,i − tj,0),MDQ(tj,i − tj,N ) + z}, min{MDQ(tj,i − tj,0),mDQ(tj,i − tj,N ) + z}

]

z

tj,1 tj,i

z

z

ttj,i+1

z + MDQ

z + mDQ

Figure 4.2: Typical admissible area for one year. Here z < z, leaving some
optionality for the total intake zj,N . If z = z (typical of years when some
make-up gas is nominated or called back), we have the constraint zj,N =
z = z and the admissible region is like those in Figure 4.

In conclusion, the correct form of the space of controls A(tj,i, z, [z, z])
at time tj,i, given the constraint zj,N ∈ [z, z] and the cumulated quantity
zj,i = z, is given by

A(tj,i, z, [z, z]) := {uj,i ∈ [mDQ,MDQ] | z + uj,i ∈ [rmin(tj,i+1, z), rmax(tj,i+1, z)]}
(4.6)

which appears implicitly in [3, Equation 7] and is also a discretized version
of the one in [6].



4.2.2 The price of a standard swing contract in discrete time

Let Pj,i and Ij,i be respectively the prices of gas and index in year j =
1, . . . , D, sub-period [tj,i, tj,i+1), i = 0, . . . , N − 1: the contract holder has
to buy the gas at the price Ij,i and can sell it at the price Pj,i: of course
with this notation we have (Pj,N , Ij,N ) = (Pj+1,0, Ij+1,0) for each year j =
1, . . . , D − 1. Even if I = (Ij,i)j=1,...,D,i=0,...,N is a time average on sev-
eral subperiod and thus has relevant memory effects, in the following we
make the same assumption done in the continuous time case, i.e. that
(Pj,i, Ij,i)j=1,...,D,i=0,...,N evolves as a two-dimensional Markov process un-
der a pricing measure P, which is used in all the mathematical expectations
that follow, while the numerical implementation that we use for the analy-
sis of the next section will make use of the particular specification that we
describe in Section 4.4. We also assume the non-arbitrage conditions

E[e−rtj,iPj,i] = FPj,i < +∞, E[e−rtj,iIj,i] = F Ij,i < +∞ (4.7)

where FPj,i, F
I
j,i represent the forward prices of P and of I , respectively, for

the delivery month i of year j.

Remark 6 Given the relative illiquidity of some new markets, the assump-
tion that we can observe a complete forward curve for every month, as
postulated by the Equation (4.7), may be very restrictive. When this is not
possible, we can for instance use some extrapolation procedure to build
forward curves coherently with market information and historical obser-
vation (seasonality). An elegant and useful way to obtain such a forward
curve may be the one presented in [5, Chapter 7].

The objective of contract’s holder is the same as in Equation (1.13), i.e.
to maximize the discounted global margin of the contract (i.e. minimize the
total loss), i.e. we want to calculate the value of

V (0, p1,0, ι1,0, 0) = sup
u∈A

E

[
D∑

j=1

N−1∑

i=0

e−rtj,iuj,i (Pj,i − Ij,i)
]

In the absence of codependent constraints through years (i.e. without make-
up), with the same arguments of Section 1.3, or also by noting that zj,0 = 0
for all j = 1, . . . , D, we may write:

V (0, p1,0, ι1,0, 0) =
D∑

j=1

sup
u∈A

E

[
N−1∑

i=0

e−rtj,iuj,i (Pj,i − Ij,i)
]

(4.8)

where the set A of admissible controls is defined by

A := {(uj,i)j,i adapted to (Pj,i, Ij,i)j,i and s.t. uj,i ∈ A(tj,i, zj,i, [mAQ,ACQ])}



where r ≥ 0 is the risk-free annual interest rate.
It is a standard result (see e.g. [3, 4, 26]), and it will also follow as a

particular case of our results in Section 4.3, that this maximisation problem
can be solved by the use of the Dynamic Programming: for each year j =
1, . . . , D, define the deterministic functions

Vj(N, p, ι, z) := 0 (4.9)
Vj(i, p, ι, z) := max

u∈A(tj,i,z,[mAQ,ACQ])
E
p,ι
j,i

[
e−rtj,iu (p− ι) +

+Vj(i+ 1, Pj,i+1, Ij,i+1, z + u)] ∀i < N (4.10)

where Ep,ιj,i indicates the expectation conditional to Pj,i = p and Ij,i = ι (re-
call that, as these are Markov processes, these values are a sufficient statis-
tics for the whole information up to subperiod i of year j). Then the original
problem in Equation (4.8) is brought back to calculating

V (0, p1,0, ι1,0, 0) = E




D∑

j=1

Vj(0, Pj,0, Ij,0, 0)




4.2.3 Modeling the make-up clause

This subsection is devoted to the analytical representation of the make-up
clause and its constraints. While long term contracts may have a length of
10-30 years, make-up clauses are typically written on a limited period of
the contract life, often from 3 to 5 years. Given the fact that, as explained
in Section 4.2.2, a contract without make-up clause can be evaluated as the
sum of some yearly contract one independent from the other, we can split
a contract with make-up written only on a subperiod of the whole contract
life in two parts: the first part is a swing contract with a make-up clause
with length equal to the original make-up clause, while the other part cov-
ers all the years when the make-up is not written. Thus, without loss of
generality we can assume that the make-up clause is written on the whole
contract’s length, D years.

For each year j = 1, . . . , D, call Mj the make-up gas nominated and Uj
the make-up gas called back in year j. With this notation, we assume that
the precise structure of the make-up clause follows these rules.

1. For each year j = 1, . . . , D−1, the contract holder is allowed to take zj,N <
mAQ, provided uj,i ≥ mDQ for all i = 0, . . . , N − 1.

Thus, the make-up gas nominated in year j is

Mj := (mAQ− zj,N )+ and must satisfy Mj ∈ [0,M] (4.11)



where x+ := max(x, 0) andM, defined in Equation (4.4), is also the maxi-
mum quantity of make-up gas that can be physically nominated in a given
year.

2. The make-up Mj nominated in year j can be called back in one or more
subsequent years (the quantity Mj can be splitted and called back in more
than one year). This is possible only if the ACQ quantity has been reached in
that year, and of course in that year we still have to satisfy uj,i ≤ MDQ for
all i = 1, . . . , N .

Thus, the make-up gas called back in year j = 2, . . . , D is

Uj := (zj,N − ACQ)+ and is such that Uj ∈ [0,M] (4.12)

whereM, defined in Equation (4.3), is also the maximum quantity of make-
up gas that can physically called back in a given year.

3. It is not possible to call back make-up gas before having nominated it, and at
year D all the nominated make-up gas must have been called back.

Thus, if we define the cumulated gas debt at year j, i.e. the make-up gas
not yet called back, as

M j =

j∑

k=1

Mk −
j∑

k=2

Uk =

j∑

k=1

(Mk − Uk), (4.13)

then U1 = MD = 0, M j > 0 for all j = 1, . . . , D−1 and MD = 0. Moreover,

M j+1 = M j +Mj − Uj = M j + (mAQ− zj,N )+ − (zj,N − ACQ)+

Notice that conditions 2. and 3. imply, for example, that if at the beginning
of the last contract year of the make-up clause we have some make-up gas
not called back, i.e. MD−1 > 0, in year d we necessarily have to reach the
quantity ACQ + MD−1.

Remark 7 More in general, for all years j = 1, . . . , D, the definition of M j

implies that M j ≤ j · M and M j ≤ (D − j) · M. By combining these two
constraints, the maximum gas debt is possible at year

j :=
DM
M+M (4.14)

if j is integer, and at one of the two nearest years if j is not integer. In
particular, the gas debt M j can increase without constraints for j < j̄ and
must possibly be decreased for j > j̄.



4. The price of the make-up quantity nominated in year j and called back in
year k, subperiod i, is defined as the weighted sum of two components re-
spectively paid at two different times:

a) at time tj,N (i.e. at the end of year j when Mj becomes known) the buyer
pays the make-up gas at the price αΓj for some α ∈ (0, 1) defined in the
contract, where Γj is the average index price observed in year j;

b) at time of withdrawal tk,i, the price paid is (1− α)Ik,i.

The price of make-up gas, as defined above, is associated to the gas
volume uk,i physically delivered at time tk,i. This means that the part αΓj
in (a) of the price needs to be capitalized from time Tj = tj,N up to time tk,i:
thus, the price Ij,k,i at time tk,i of the make-up gas nominated in year j and
called back in year k, month i is

Ij,k,i = αΓje
r(tk,i−tj,N) + (1− α)Ik,i (4.15)

By discounting at time T0 = 0 the price of make-up gas called back at time
tk,i, we have

e−rtk,iIj,k,i = αΓje
−rtj,N + (1− α)Ik,ie

−rtk,i

It follows that, in a year j = 1, . . . , D where the make-up clause is
exercised to nominate or call back gas, the residual value of the swing
contract at month i = 0, . . . , N − 1 for that year with the control policy
uj := (uj,i)i=0,...,N−1 is given by

Jj(i, p, ι, zj,i;uj) := E
p,ι
j,i

[
N−1∑

k=i

e−rtj,kuj,k (Pj,k −Aα(uj,k, zj,k)Ij,k)−e−rtj,NαΓjMj

]

(4.16)
where

Aα(u, z) := 1− α
(

1− ACQ− z
u

)+

1{ACQ−MDQ<z≤ACQ} − α1{z>ACQ}

is a pricing coefficient in the interval [1−α, 1] for Ij,k to accomodate the
gas quality (ordinary below ACQ, called back from previous years above).
Here, the main apparent difference with respect to the case when no make-
up is exercised is that we can end up a year with a non-null position in
the make-up gas, i.e. with Mj − Uj 6= 0 (notice that this notation is not
ambiguous as Mj and Uj cannot be both different from zero), where the
quantity Mj − Uj is by definition a deterministic function of zj,N , thus of
uj . Notice that this generalizes the payoff to be maximised in Equation



(4.8), which is reobtained for zj,N ∈ [mAQ,ACQ], i.e. Mj = Uj = 0, and
setting zj,0 = 0.

As a result, the total value of the swing option with the make-up clause
described above is given by

sup
u∈A

E

[
D∑

j=1

Jj(0, pj,0, ιj,0, 0;uj)

]
(4.17)

where u = (uj,i)j=1,...,D,i=0,...,N−1 must now belong to the set

A :=

{
(uj,i)j,i adapted to (Pj,i, Ij,i)j,i s.t. uj,i ∈ [mDQ,MDQ],

U1 = MD = 0,M j ≥ 0 ∀j = 1, . . . , D,MD = 0

}

and the functions Jj are given by Equation (4.16). Here, the constraints on
U and M induce constraints on (uj,i)j,i, which will be treated in detail in
the next subsection.

4.3 The price of swing contracts with make-up clauses

We just saw that the set of admissible strategies for (uji)ji for a given year
j = 1, . . . , D now depend on the gas debt M j−1 arriving from the previous
years. For this reason, this quantity has to be explicitly taken into account
in the evaluation of the swing contract for that year. More in detail, now
we define the value function as

Vj(i, p, ι, z,M j−1) := sup
u∈A

E
p,ι
j,i

[
Jj(i, p, ι, z;uj) +

D∑

k=j+1

Jk(0, Pk,0, Ik,0, 0;uk)

]

(4.18)
We now build a Dynamic Programming algorithm as in [4, 26]: for each
year j = 1, . . . , D, define the deterministic functions:

• if j = D, then MD = 0 and UD = MD−1 (recall that MD ≡ 0), so we
let

z := mAQ1{MD−1=0}+(ACQ+MD−1)1{MD−1>0}, z := ACQ+MD−1

(4.19)



and define

Vj(N, p, ι, z,M j−1) := 0, (4.20)

Vj(i, p, ι, z,M j−1) := max
u∈A(tj,i,z,[z,z])

E
p,ι
j,i

[
e−rtj,iu (p−Aα(u, z)ι) +

+Vj(i+ 1, Pj,i+1, Ij,i+1, z + u,M j−1)

]
(4.21)

Notice that the functions Vj depend on M j−1 through [z, z].

• for j = 1, . . . , D − 1 the key quantity is M j−1 which is known at the
beginning of the year. Assume that M j−1 ≤ (D − j + 1)M. For the
lower bound we have two cases.

– If M j−1 is admissible also for year j, i.e. if M j−1 ≤ (D − j)M,
then we can nominate some other make-up gas Mj as long as

M j = M j−1 +Mj ≤ (D − j)M⇒Mj ≤ (D − j)M−M j−1

Taking into account the mDQ constraints, the lower bound for
zj,N is:

z := mAQ−min
{

(D − j)M−M j−1,M
}

(4.22)

– If M j−1 is not admissible for year j, i.e. if M j−1 > (D − j)M,
then we must call back some make-up gas in order to obtain a
final cumulated quantity M j admissible for year j, i.e.

M j = M j−1 − Uj ≤ (D − j)M⇒ Uj ≥M j−1 − (D − j)M

So the lower bound for zj,N is now

z := ACQ + M j−1 − (D − j)M (4.23)

For the upper bound z, we do not need to distinguish between the
two previous cases and let

z := ACQ + min
{
M j−1,M

}
(4.24)

Finally, define

Vj(N, p, ι, z,M j−1) := Vj+1(0, p, ι, 0,M j−1 + (mAQ− z)+ − (z − ACQ)+) +

+e−rtj,NαΓj(mAQ− z)+, (4.25)

and for i = N − 1, . . . , 0 define Vj(i, ·, ·, ·, ·) exactly as in Equation
(4.21).



Remark 8 Thanks to the fact that we are assuming the admissibility
of M j−1 for year j − 1, we can not take care about the possibility of
having an infeasible problem with zj,N > MDQ ·N . In fact, using the
admissibility and Equation (4.3), we obtain:

ACQ + M j−1 − (D − j)M≤
≤ ACQ + (D − j + 1)M− (D − j)M =

= ACQ +M = MDQ ·N

As a consequence, the final cumulated make-up quantity M j defined
as

M j = M j−1 +Mj − Uj (4.26)

is admissible for year j.

The following theorem assures the theoretical validity of the algorithm
presented so far, proving that it can find out exactly the contract price as
defined in (4.17). The second interesting point of the theorem is the fact
that, under some conditions, we can restrict our attention only to the so
called bang-bang controls.

Theorem 11 The following hold:

1. The deterministic functions Vj(·, ·, ·, ·, ·), defined by the dynamic program-
ming equations (4.20), (4.21) and (4.25) are such that V1(0, P1,0, I1,0, 0, 0)
coincides with the value of the swing option with the make-up clause in
Equation (4.17).

2. There exists an optimal Markovian consumption u∗j,i = u(tj,i, Pj,i, Ij,i, zj,i,M j−1),
where u(·, ·, ·, ·, ·) is given by the maximum argument in the dynamic pro-
gramming equation (4.21).

3. If the quantities

K :=
M

MDQ−mDQ
and K :=

M
MDQ−mDQ

, (4.27)

are integer, then there exists an optimal bang-bang Markovian consumption
u∗j,i, i.e. u∗j,i = mDQ or u∗j,i = MDQ for all j = 1, . . . , D, i = 0, . . . , N−1.
Moreover, M j turns out to be an integer multiple of MDQ − mDQ for all
j = 1, . . . , d.

Proof We proceed in analogy with [4] and [2].

1. As 0 ≤ tj,i ≤ T , 0 ≤ z ≤ N · MDQ, M ≤ D · M and E[Pj,i] =
FPj,i < +∞, E[Ij,i] = F Ij,i < +∞, then the assumptions (F+, F−) in [7,
Proposition 8.5] are satistied, so the argument follows.



2. The right-hand side of Equation (4.21) is continuous in u andA(tj,i, z, [z, z])
is a compact set contained in [mDQ,MDQ], thus the maximum is at-
tained for u ∈ A(tj,i, z, [z, z]) again by applying [7, Proposition 8.5].

3. As in [2], it can be proved that the functions Vj(i, ·, ·, ·, ·), j = 1, . . . , D,
i = 0, . . . , N−1 are continuous and concave on z and piecewise affine
on the intervals

[k ·mDQ+(i−k)·MDQ, (k+1)·mDQ+(i−k−1)·MDQ], k = 1, . . . , i.
(4.28)

We now prove the claim by induction on j = 1, . . . , D. If j = 1, then
M0 = 0 by definition. For a given year j = 1, . . . , D, assume for now
that M j−1 is an integer multiple of MDQ−mDQ. Then this, together
with the condition K,K ∈ N ensures that [rmin(tj,i, z), rmax(tj,i, z̄)] is
exactly the union of suitable intervals of the kind of Equation (4.28).
Thus, if z = k · mDQ + (i − k) · MDQ for some k = 0, . . . , i, then
the function to be maximised in Equation (4.21) is affine on u, thus
its maximum point is u∗j,i = mDQ or u∗j,i = MDQ. It can then be
proved by induction that, since zj,0 = 0, the optimal u∗j,i is such that
zj,i = k ·mDQ + (i− k) ·MDQ for some k = 0, . . . , i: this also implies
that M j will be also an integer multiple of MDQ − mDQ, and the
conclusion follows.

�

Remark 9 Part 3. of the theorem above is essentially a consequence of the
linear structure of the payoff function in Equations (4.16–4.17): the result
is that in every year j, subperiod i, the optimal quantity uj,i can be safely
chosen to be either the maximum (MDQ) or the minimum (mDQ) admissi-
ble for that substep. This kind of control is called of bang-bang type, and it
was already found in [4] with smoother payoffs, and studied in deep de-
tail in [2]. Qualitatively, this is due to the fact that, if the withdrawal is
profitable in the subperiod, then the better choice is the maximum quantity
we can take; conversely, if the withdrawal is not profitable, then the better
choice is to take the minimum quantity we can.

From a computational point of view, this point is very interesting be-
cause permits to overcome the numerical maximization in the HJB equation
by using a binomial tree on the cumulated quantity, as done in next Section
4.5, where at each time step i the feasible optimal cumulated quantity zi
can be either zi−1 + mDQ or zi−1 + MDQ.

4.3.1 Computational cost

As we have seen, the pricing problem for a swing option with make-up
clause boils down to maximize the problem in Equation (4.18). Unfortu-
nately, this maximization cannot be carried out by analytic means, as a



closed form for Vj is not known even in the simplest case of a standard
swing option without make-up clause. Thus, this maximization must be
carried out via numerical methods.

The most efficient way to do this is to assume that the quantities K and
K in Equation (4.27) are integer, so that the results of Theorem 11 hold.
This induces a quantization in the candidate optimal make-up gas debt
(M j)j=1,...,D: in fact, since this process at optimality has values which are
multiple integers of MDQ − mDQ, we obtain that the resulting candidate
optimal quantities for M j , j = 1, . . . , D, are a finite number. More in detail,
the sequence (M j)j=1,...,D is bound to have a finite number of nonnegative
values in each year j = 1, . . . , D − 1, with −M ≤ M j −M j−1 ≤ M, i.e.
the increments can have at most K +K + 1 distinct values, corresponding
respectively to the cases when Mj > 0, Uj > 0 and Mj = Uj = 0.

With this in mind, we can calculate the computational cost needed to
price a D-year swing option with make-up clause, and we do this by the
same backward recursion used in the Dynamic Programming algorithm
used in Section 2.4. In the D-th year, we can start with MD−1 taking at
most K + 1 different values, each one of this leading to a different opti-
mization problem: since also the values of (zj,i)j,i are quantized via the
bang-bang optimal process (uj,i)j,i, for each one of this optimization prob-
lem we have a total of O(N2) states which can be assumed by (zj,i)j,i at
optimality1. Having solved the K + 1 problems for the last year, we can at-
tach the value functions thus obtained to the terminal nodes of year D − 1:
notice that also in this case, as now MD−2 can assume at most 2K + 1
distinct values, we will have to model and solve at most 2K + 1 distinct
optimization problem, each one having as terminal condition the values of
the K + 1 problems of year D. These numbers do not multiply, because
once that we obtain the values for the K + 1 problems of year D for each
possible starting state (PD−1,N , ID−1,N ) = (PD,0, ID,0), we can take these
values as terminal values to use in the computation for year D − 1.

With this spirit, we are now ready for a result on the computational cost
of the pricing of a swing option with make-up clause.

Theorem 12 If the quantities K and K, defined in Equation (4.27), are integer,
then the order of distinct subproblems to be solved is O(N2D2).

Proof First of all consider the 2-dimensional process (j,M j)j=1,...,D: then
the distinct states that this process can assume, at optimality, is in 1-1 cor-
respondence with the integer solutions (x, y) of the system





x ≥ 0,

x ≤ K(D − y).
x ≤ Ky,

(4.29)

1precisely≤ N(N+1)
2

, which is the number of nodes of a complete recombining binomial
tree.



In fact, if (x, y) is such a solution, then Mx = (MDQ−mDQ)y is a possible
value, at time x, of an optimal path for M by Theorem 11. Conversely, by
the same theorem, if K and K are integer then Mx is a integer multiple
of MDQ − mDQ. Since for each of these possible states we must solve a
separate optimization problem for the corresponding year, the number of
optimization subproblems for all the values of (zj,i)j,i are of order O(N2),
and their total number is the sum of these, the proof boils down to find the
total number N of integer solutions of the system (4.29). By recalling the
definition of j̄ in Equation (4.14) and the discussion below, first of all we
rewrite j̄ as

j̄ =
DK

K +K

Now, the region of the solutions of the system (4.29) is the union of the
two triangular regions {(x, y) ∈ N2 | x ≥ 0, x ≤ Ky, y ≤ j̄} and {(x, y) ∈
N2 | x ≥ 0, x ≤ K(D − y), y > j̄}. It is then easy to see that

N =

[j̄]∑

`=0

(1 +K`) +
D∑

`=[j̄]+1

(1 +K(D − `)) = D + 1 +K

[j̄]∑

`=1

`+K
D−1∑

`=[j̄]+1

(D − `) =

= D + 1 +K
[j̄] · [j̄ + 1]

2
+K

[D − j̄ − 1] · [D − j̄]
2

where [x] denotes the integer part of x. By noticing that for all x > 0 we
have D[x] ≤ [Dx] and that

K · j̄ =
DKK

K +K
= K(D − j̄)

then we have

N ≤ D + 1 +
1

2

[
DKK

K +K

]
([j̄ + 1] + [D − j̄ − 1]) ≤ 1

2

KK

K +K
D2 +D + 1

i.e. N = O(D2). By multiplying this forO(N2) (the number of subproblems
for given year j = 1, . . . , D and state of make-up debt M j , we obtain that
the computational cost is of order O(N2D2), as desired �

We show in Figure 4.3 an illustration of these numbers for D = 2, 3, 4,
by making the simplifying assumption that K = K =: K.

We also present a numerical test which validates our result of a quadratic
cost in the number of years. By taking the same parameters as in Section 5,
we implemented the method on a Intel i7 workstation at 3.4GHz with 8GB
RAM, with the following execution times.
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Figure 4.3: In subfigure (a), we can only obtain M1(= M1 = U2) among
K + 1 distinct values, and the orresponding value function is then used in
the final values of the optimization problem of year 1, so the total number
of optimization problems to be solved is K + 1. In subfigure (b) we can
obtain M2(= U3) among K+ 1 distinct values and then M1(= M1) among
K+ 1 distinct values, so the number of optimization problems to be solved
in sequence is 2K+2. In subfigure (c) we can obtain M3(= U4) amongK+1
different values, M2 among 2K+1 different values, and finally M1(= M1)
among K + 1 distinct values: so the number of optimization problems to
be solved in sequence is now 4K + 3.

Duration D of the make-up clause (years) 1 2 3 5 10 15
time (seconds) 0.06 0.12 0.31 1.25 7.60 23.65

Table 4.1: Execution times, in seconds, on a Intel i7 workstation at 3.4GHz
with 8GB RAM. Notice that with 1 year there is no possibility de facto to
exercise the make-up clause.

4.3.2 Extensions of the model

This section is devoted to show some extensions of the algorithm proposed
so far in two directions. The first one is towards other forms of make-up
clause, while the second one is directed to a possible application to carry-
forward clauses. In this section we refer to ethe genral algorithm as to the
one presented in Section 4.3, but in the following we may introduce new
definitions for some quantities defined so far. These definitions will be
valid only for this section.



4.3.3 Other forms of make-up clause

While different contracts may have several slightly different definition of
the make-up clause, up to authors’ knowledge the most negotiated variants
to the make-up clause presented in Section 4.2.3 are obtained as in [30] by
modifying Rule 2 as follows:

1. the make-up gas must be called back as soon as mAQ has been reached
instead of after having exceeded ACQ. In this case every time that
at the beginning of the year the cumulated make-up quantity M j−1

is positive then all the quantity exceeding mAQ is considered to be
make-up gas called back;

2. the make-up nominated in year j can be called back only in (one or
more) the subsequent ξ years, and not until the end of the contract.
In this case, the nominated make-up of year j is lost if not called back
before year j + ξ + 1. Notice that at the end of year j we have also
paid this quantity with the sum MjαΓ̄j , so in this case this amount
becomes a sort of penalty.

First case. Because we can call back the make-up as soon as mAQ is reached,
for this case we suppose that the quantity ACQ can not be overloaded, i.e.
we can never reach at the end of the year the quantity MDQ · N . The case
when also MDQ · N can be reached is analogous. The maximum make-up
quantity we are allowed to call back every year is now

M = ACQ−mAQ

and again we can call it back only if M j−1 > 0.
The algorithm for this specification of the make-up clause is similar to

the one presented in Section (4.3), provided we redefine some of the quan-
tities. Precisely, redefine

Uj := 1{Mj−1>0} (zj,N −mAQ)

which must be such that Uj ∈ [0,M], where the maximum make-up quan-
tity which can be called back in a given year is now defined as M :=
ACQ − mAQ. This of course modifies the payoff in Equation (4.16), which
now becomes

Jj(i, p, ι, zj,i;uj) := E
p,ι
j,i

[
N−1∑

k=i

e−rtj,kuj,k
(
Pj,k − Āα(uj,k, zj,k)Ij,k

)
−e−rtj,NαΓjMj

]

where

Āα(u, z) := 1−α
(

1− mAQ− z
u

)+

1{mAQ−MDQ<z≤mAQ,Mj−1>0}−α1{z>mAQ,Mj−1>0}



is a coefficient in [1− α, 1] analogous to Aα of Section 2.3.
The Dynamic Programming algorithm has to be modified as follows.

Substitute Equation (4.19) with

z := mAQ+MD−1, z := ACQ1{MD−1=0}+ (mAQ+MD−1)1{MD−1>0},

Equation (4.21) with

Vj(i, p, ι, z,M j−1) := max
u∈A(tj,i,z,[z,z])

E
p,ι
j,i

[
e−rtj,iu(p− Āα(u, z)ι) +

+Vj(i+ 1, Pj,i+1, Ij,i+1, z + u,M j−1)

]
,

Equation (4.23) with z := mAQ + M j−1 − (D − j)M, Equation (4.24) with
z := ACQ, and finally Equation (4.25) with

Vj(N, p, ι, z,M j−1) :=

Vj+1

(
0, p, ι, 0,M j−1 + (mAQ− z)+ − (z −mAQ)+1{Mj−1>0}

)
+

+ e−rtj,NαΓj(mAQ− z)+.

With these substitutions, Theorem 11 still applies to this case.

Second case. In this case the key quantity M j−1 at the beginning of every
year is no more sufficient. In each year we have to keep memory of all the
past nominated quantities. The recursive algorithm proceeds as follows.
Suppose that at the beginning of year j we know from the previous years
the following vector:

xj−1 = [xj−ξ, xj−ξ+1, . . . , xj−1] (4.30)

This vector represents the residual cumulated quantity of make-up nominated
at every year. How to obtain this vector will be clear at the end of this
section, with formula (4.31). Given this vector, the cumulated make-up
quantity not yet called back (useful to generate the tree) M j−1 is the sum
of the components of the vector xj−1, which is the scalar product:

M j−1 = xj · 1 =

ξ∑

ν=1

xj−ν

With M j−1 we can proceed to generate the new trees quantity for year j
as described in the general algorithm. Now remember that, in the general
algorithm, for each final node of this tree we have a couple (Mj , Uj) as
defined in Equations (4.11) and (4.3). The modified algorithm is obtained
by substituting these couple of quantities with the new vector xj obtained
as a function of the original (Mj , Uj):



• if Mj > 0 we are nominating some new make-up and we loose the
make-up gas nominated in year j − ξ. The vector xj is then simply
given by:

xj = [xj−ξ+1, xj−ξ+2, . . . , xj−1,Mj ]

• if Uj > 0 then we are calling back some make-up. If we not call back
all the quantity xj−ξ we will loose the (positive) quantity (xj−ξ − Uj).
If we are calling back more that the quantity xj−ξ we have to update
also the other residual nominated make-up quantities. By defining
z = (z1, . . . zk) ∈ Rk and ∀u ∈ R the vector function gu : Rk → R

k

defined component-wise recursively by gu(z) = (z̄1, . . . , z̄k) with:
{
z̄1 = z1

z̄n = zn + min {z̄n−1 − u, 0}

we have that the new vector of residual cumulated make-up quantity
can be given by:

xj = gUj (x) (4.31)

With this new vector we can start the algorithm for year j + 1.

4.3.4 Carry forward clauses

The approach used in this paper can also price another clause related to
swing contracts, namely some instances of the carry-forward clause as de-
scribed in [22]. In general, the carry-forward (CF) right gives the holder of
the option the possibility to reduce mAQ (up to a contractual amount ACF
called annual carry-forward) in one year if in at least one of the previous d
years the total volume taken was above mAQ, while the maximum quantity
which can be taken every year remains ACQ.

With a slight modification of the algorithm presented in this paper we
are able to price two particular instances of the carry-forward clause pre-
sented in [22], namely when the CF rights must be used in the following
year (corresponding to d = 1, and when CF rights do not have a deadline,
this clause being called unlimited duration carry-forward (UDCF): in this
latter case there is a maximum on the CF rights one can obtain in a given
year, given by ν · ACF, where ν > 1 is a contractual constant.

We now present how to price a CF clause with d = 1. First of all, define
the gas credit Uj at year j = 1, . . . , D as

Uj := (zj,12 −mAQ)+

and U0 := 0, and the minimum and maximum cumulated quantities for
year j = 1, . . . , D as

z := mAQ−min(Uj−1,ACF), z := ACQ (4.32)



Then the Dynamic Programming algorithm can be built as follows: for the
last year D define

VD(N, p, ι, z, UD−1) := 0, (4.33)

VD(i, p, ι, z, UD−1) := max
u∈A(tj,i,z,[z,z])

E
p,ι
j,i

[
e−rtj,iu (p− ι) +

+VD(i+ 1, Pj,i+1, Ij,i+1, z + u, UD−1)

]
(4.34)

while for j = 1, . . . , D − 1 define

Vj(N, p, ι, z, Uj−1) := Vj+1(0, p, ι, 0, (z −mAQ)+), (4.35)

and for i = N − 1, . . . , 0 define Vj(i, ·, ·, ·, ·) exactly as in Equation (4.34).
Then V1(0, p, ι, 0, 0) gives exactly the value of the CF contract with d = 1.

We now present how to price a UDCF contract. First of all, redefine the
cumulated gas credit Uj at year j = 1, . . . , D as

Uj := Uj−1 + min(ν · ACF, zj,12 −mAQ)

with U0 := 0: with this new definition, the gas credit Uj at the end of year j
increases only if we exceed mAQ and decreases every time we do not reach
mAQ. Redefine also the minimum and maximum cumulated quantities for
year j = 1, . . . , D as in Equation (4.32). Then the Dynamic Programming
algorithm can be built as follows: for the last year D define the value func-
tion VD exactly as in Equations (4.33–4.34), while for j = 1, . . . , D−1 define

Vj(N, p, ι, z, Uj−1) := Vj+1(0, p, ι, 0, Uj−1+min(ν ·ACF, zj,12−mAQ)), (4.36)

and for i = N − 1, . . . , 0 define Vj(i, ·, ·, ·, ·) exactly as in Equation (4.34).
Then V1(0, p, ι, 0, 0) gives now exactly the value of the UDCF contract.

Remark 10 In principle, it would be possible to price also CF clauses with
d > 1 by introducing other state variables, but this goes beyond the scope
of this paper, which is focused on make-up clauses. Also, here the com-
putational burden could be reduced by modelling the difference process
P − I = (Pj,i− Ij,i)j,i as a single state variable as in [22]. Unfortunately, this
is not possible with the make-up clause because of the delayed payment
structure of the make-up gas.

4.4 Tree Prices

As in Chapter 3, we assume that the log-prices Pj,i := logPj,i and Ij,i :=
log Ij,i follow the discretized version of the mean-reverting dynamics

dPt =
(
θPt − aPXt

)
dt+ σPdWP

t

dIt =
(
θIt − aIYt

)
dt+ σIdW I

t



where WP
t and W I

t are two Brownian motions with mutual correlation ρ:
these processes are particular cases of the model in [38] and are rather stan-
dard models for energy prices (see for example [23, Chapter 23.3].

In the discretized version, both Xj,i and Yj,i change at the beginning
of every sub-period (i.e. at the beginning of every month). This is exactly
what happens for the index I , and it is an acceptable simplification for the
gas price P . In particular, we discretize the prices (Pj,i)j,i and (Ij,i)j,i by
building two trinomial trees with the procedure explained in [13, 23] and
here summarized.

The first step is to build trinomial trees for X and Y by discretizing the
dynamics of processes

dX∗t = −aX∗t dt+ σdWt, X∗0 = 0 (4.37)

with (a, σ) = (aP , σP ), or (a, σ) = (aI , σI) in the analogous specification for
Y ∗. The trees for these processes are symmetric around 0 and their nodes
are evenly spaced in time and value at intervals of predetermined length
∆t and ∆X∗ = σ

√
3∆t.

As usual, we denote by (i, j) the node xi,j in the tree for which xi,j =
X∗t with t = i∆t and X∗i∆t = j∆X∗2. Hull and White proved [24, 25]
that the probabilities to switch from node (i, j) to node (i+ 1, k) are always
nonnegative if −j 6 j 6 j, where j is the smallest integer greater than
0.184/(a∆t). This means that at every time step i = 0, . . . , N we have a
finite number of nodes (i, j) placed at points j∆X∗ for every integer j ∈
{−j∗, . . . , 0, . . . , j∗}, with j∗ := min

{
j, 2i− 1

}
. Thus, the total width of the

tree depends on a, σ and ∆t.

Type (a) Type (b) Type (c)

p1

p2

p3

p1

p2

p3

p1

p2

p3

Figure 4.4: Possible branches for a tree with mean reversion.

There are three possible form of branches for a tree that include mean
reversion; they are presented in Figure 4.4. The first form, type (a), (up
two/up one/straigth alone) is used at the nodes such that j = −j; the third
form, type (c), (down two/down one/straigth alone) is used at the nodes
such that j = j; the standard one, type (b), (up/straight alone/down) is the
one used in all the other cases, i.e. whenever j 6= ±j.

2Notice that in this Section the notation (i, j) is not referred to the notation “year j,
month i” used until now in the thesis. Here we not distinguish between year and months,
having a unique time index i that varies between 0 and N ·D. However, for sake of notation,
in this section we suppose that i = 0, . . . , N , being N the appropriate number.



Branch type (a) Branch type (b) Branch type (c)
p1

1
6 + a2j2∆t2+aj∆t

2
1
6 + a2j2∆t2−aj∆t

2
7
6 + a2j2∆t2−3aj∆t

2
p2 −1

3 − a2j2∆t2 − 2aj∆t −2
3 − a2j2∆t2 −1

3 − a2j2∆t2 + 2aj∆t

p3
7
6 + a2j2∆t2+3aj∆t

2
1
6 + a2j2∆t2+aj∆t

2
1
6 + a2j2∆t2−aj∆t

2

Table 4.2: Probabilities on the edges for every type of branch

For every kind of branch there are different probabilities p1, p2, p3 on the
edges. The pedices 1, 2, 3 refers to a clockwise enumeration of the of edges
as in Figure 4.4. The probabilities are obtained matching the theoretical
conditional expectation and variance and for every kind of branch they are
given by the one in Table 4.2. This complete the first step, and leads to a
symmetric tree around 0.

The second step is to put together the two trinomial trees in a 2-dimensional
tree for (X∗, Y ∗): this is done at each node in such a way to preserve the
marginal distributions of X∗ and Y ∗ and the covariance structure induced
by the correlated Brownian motions WP and W I , as in [13, Appendix F] or
as in [23].

The third step is aimed to calibrate the previous symmetric tree to the
term structure Fi one has, Fi standing for the value of the forward with
maturity i∆t: this step is used to incorporate into the tree mean reversion
to levels different from zero, and in particular can be used here to introduce
seasonality effects. This is obtained by adding a quantity αi to the value xi,j
of all nodes (i, j). For every step i we have a value for αi such that:

∑

j

Qi,je
αi+xi,j = Fi

that leads to

αi = log(Fi)− log


∑

j

Qi,je
xi,j




having denoting with Qi,j the probability to reach the node (i, j) starting
from the node (0, 0). Once we have the values for αi we obtain the final tree
which has, at step i, the nodes with value eαi+xi,j .

An example of two possible final results for the two trees, obtained for
some values of a and σ, is plotted in Figure 4.5. Notice that the higher aI

(or aP ) is, the less nodes the respective tree have.
In order to calibrate for the parameters of Equation (4.37), we use a

procedure inspired by [12].
The main idea is to use the discrete time version of the solution of Equa-

tion (4.37):

X∗(t) = X∗(s)e−a(t−s) + σe−at
∫ t

s
eaudWu, 0 6 s < t, (4.38)
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(a) Strong mean reversion, low volatility:
aP = 3, aI = 10, σP = 0.3, σI = 0.1
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aP = 0.1, aI = 0.1, σP = 0.7, σI = 0.2

Figure 4.5: Trees for prices for different values of parameters. Notice that
the higher aI and aI are, the less nodes the respective trees have: in subfig-
ure (a) we have trees obtained with high aI , aP and few nodes in both the
trees, while in subfigure (b) we have the converse situation.

which gives
x(ti) = bx(ti−1) + δε (ti) (4.39)

with

b = e−a∆t, δ = σ

√
1− e−2a∆t

2a
(4.40)

and ε is a Gaussian white noise (ε(ti) ∼ N(0, 1) for all i). Then, in order to
provide the maximum likelihood estimator for the parameters b and δ, per-
form a least squares regression of the time series x(ti) on its lagged value
x (ti−1), as in Equation (4.39). Once we have b and δ, we can invert Equation
(4.40) and derive the original parameter a and σ.

4.5 Three years example

In the following we describe and analyze the case of a three years contract,
i.e. the case D = 3 and N = 12. Although, as seen in Subsection 2.5, the
complexity of the different kinds of control problems to be solved grows
quadratically with D, we have decided to present a three years contract as
an example is due to fact that the distinct qualitative combinations of years
where we can nominate and/or call back make-up gas, as D grows, lead
to more and more intricate combinatorical considerations, which would
deviate the attention from the modelization. Thus, while a 2-year contract
is not a very interesting example from a modellistic point of view, as at
the end of the first year the make-up quantity is known and is exactly the
quantity called back in the second year, on the other hand we think that



D = 3 gives the right compromise between succeeding to follow exactly
what goes on in the different years and significance of the combinatorial
problem.

While a longer duration of the make-up clause would not be a com-
putational problem with our approach (see Table 4.1 above), we have to
remark that typical make-up clauses are not alive during all the life of the
contract, but are typically written on small sub-period spanning from 3 to
5 years. At a first glance, this choice may seem strange considering the fact
that swing contracts usually have longer maturity, from 10 to 30 years. The
main reason why make-up clauses have significantly shorter duration is
that no seller takes the risk of giving the opportunity to move huge quan-
tities of gas between decades. In addition, European gas market illiquidity
does not allow to obtain realistic forecast of forward prices. As an exam-
ple, the longest traded maturity on a very liquid market as the TTF is the
3-year ahead forward, and for longer maturities oil-related instruments are
used with much fewer granularity, so the long term gas term structure is
pretty flat. In such situation the decoupling is less marked and the make-
up clause loses a bit its importance. For these reasons the market practice is
that, if need arises for the buyer, a new make-up clause can be renegotiated
in future years, so the problem of valuing make-up clauses can be split into
separate problems.

Let us now concentrate on our 3-year example. Once the make-up
quantity of the first year is known, in the second year there are many op-
portunities: one can call back some (or all) the make-up of the first year or
can nominate, if possible, some other make-up that will be called back in
the third year.

4.5.1 Trees quantity

First Year. By Remark 7, we must end the year with

0 ≤M1 = M1 ≤ min(M, 2M)

In fact, in the first year the maximum make-up quantity we can nominate
has to be less than or equal to the maximum quantity we can call back in
the following two years, that is 2M, as well as to the maximum quantity
we can nominate in a single year. In terms of z and z, this means that
z = mAQ−min(M, 2M), while z = ACQ, because we can not call back any
previous year make-up, so we have

z1,12 ∈
[
mAQ−min(M, 2M),ACQ

]

Notice that this is in agreement with Equations (4.22) and (4.24). Figure 4.6
shows the possible actions we can perform in the first year.
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Figure 4.6: Tree quantities for the first year. In the final states where
z1,12 < mAQ, some make-up is nominated and has to be called back in
the subsequent 2 years.

Second Year. Notice that in this year M1 = M1: this value strongly influ-
ences the possible actions we can take in the second year:

• If (0 6)M1 6Mwe can do one of the following:

i. nominate some other make-up gas in the second year, in such
a way that we are able to call back all the make-up in the third
year, that is

M1 +M2 ≤M⇒M2 ≤M−M1

ii. call back some make-up gas nominated in the first year: the max-
imum quantity we can call back is, obviously, M1;

iii. take a quantity of gas between mAQ and ACQ, not nominating
or calling back any make-up gas.

Summarizing, the constraints for z2,12 in this case are

z2,12 ∈
[
mAQ−

(
M−M1

)
,ACQ + M1

]

which are again in agreement with Equations (4.22) and (4.24). Figure
4.7(b) shows this case.



• ifM <M1

(
6 2M

)
we must instead call back some make-up gas U2,

otherwise we are not able to arrive in T3 having called back the whole
quantity M1. In this case the minimum U2 we have to call back must
be such that the final make-up cumulated quantity can be called back
in the third year, i.e. M2 6M, which leads to:

M2 = M1 − U2 6M⇒ U2 >M1 −M

Thus, the following constraints for z2,12 hold:

z2,12 ∈
[
ACQ + M1 −M,ACQ + M1

]

which now are in agreement with Equations (4.23) and (4.24). Figure
4.7(a) shows this case.
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Figure 4.7: Possible tree quantities for the second year. In subfigure (a), the
first-year make-up gas is so much that has to be called back in both second
and third year: thus, we are forced to end with z2,12 > ACQ. In subfigure
(b), the first-year make-up gas can be called back in a single year, so we
have the choice among calling back some quantity (z2,12 > ACQ), respect
the constraints (z2,12 ∈ [mAQ,ACQ]) or nominate some other make-up gas
(z2,12 < mAQ).

Third year. The key quantity now is the residual make-up we have to call
back, if any. This quantity, that is exactly M2 as defined in Equation (4.13),
is the residual make-up quantity we must call back in the third year, being
this the last year contract (remember we have to call back all the nominated
make-up, as seen in Subsection 4.2.3).

So there are two cases for this year:



• if M2 > 0 then we have to call back the whole make-up quantity
accumulated in the first two years and we have no choice for z3,12:

z3,12 = ACQ + M2

This case is shown in Figure 4.8(a)

• if M2 = 0 then, as we can not nominate any make-up, the constraints
for z3,12 are given by:

z3,12 ∈ [mAQ,ACQ]

This case is shown in Figure 4.8(b)

Both the cases agree with Equation (4.19).
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(a) M2 = U3 > 0

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
x 10

6 Possible States for Z
n

i

Z
t i

 

 

ACQ
MDQ ⋅ T
mAQ
mDQ ⋅ T

(b) M2 = U3 = 0

Figure 4.8: Possible tree quantities for the third year: here the kind of tree
totally depends on the cumulated make-up residual quantity M2 from the
previous years. If M2 > 0, we are forced to put U3 = M2 and consume
z3,12 = ACQ+U3 > ACQ, ending up with a tree as subfigure (a). If M2 = 0,
we are forced to satisfy the constraints and consume z3,12 ∈ [mAQ,ACQ],
ending up with the tree in subfigure (b).

4.5.2 Sensitivity analysis of a three years contract with make-up
clause

A swing contract is a derivative product whose value depends on two main
classes of factor, namely market and volumetric. As previously explained
in this paper, this kind of derivative shows an optionality value linke d to
the market price dynamics of the underlying commodity (exercise or not)
and an optionality value linked to the volumetric structure of the product
itself (how much to allocate with the make-up clause among the years and



how much to withdraw in each subperiod). After having explained how
to price a swing product on gas and how to determine the optimal exercise
policy, it is now interesting to use the algorithm in order to explore and
map the value of the contract with respect to some peculiar parameters of
the contract and to market factors.

More in detail, we specify a trinomial dynamics for both the price P
and the index I which approximates a geometric mean-reverting Ornstein-
Uhlenbeck process as described in Section 4.4, and calibrate these models
following [12], using historical data on TTF prices for the gas price P and
the ENIGR07 formula3 for the index price I . For ease of implementation,
the average index price Γj of year j which appears in Equation (4.25) is
substituted with the average of forward prices for that year. When not
variable, the parameters used in this section are the ones in Table 4.3.

Parameter Value Parameter Value
ACQ = 7.00 · 106 σP = 0.6
mAQ = 6.00 · 106 aP = 2.95
MDQ = 8.75 · 105 σI = 0.1
mDQ = 3.75 · 105 aI = 19.04

α = 0.75 S = 0
r = 0.05 ρ = 0

Table 4.3: Values of the parameters used for the analysis (when not vari-
able).

We here present three analyses: the first one with respect to the volatil-
ity level σP of gas price, to the MDQ contract parameter, and to the level of
market price decoupling. The second one is done with respect to the level
of decoupling of the price term structure and to interest rates level. Finally,
the third one is done with respect to correlation between P and I and level
of decoupling.

The choice of these analyses have been done considering the aim of
what we are pursuing, that is to analyse the flexibility given by the make-
up clause in a decoupled market scenario. In view of this, we decided to
change the parameters we believe to be more impactive on the value of the
make-up clause. The volatility σP is representative of market uncertainty:
in fact, σP is often much greater than σI , as the index I is calculated as a
time average of a basket; as mentioned in the Introduction, this averaging
is used to reduce the volatility of the index and leads also to a pretty stable
value for σI , so changes in σP are likely to influence the price more than
ones in σI . The choice of MDQ is explained by the fact that this quantity
is strictly linked with the maximum make-up M the owner of the con-

3The ENIGR07 (ENI Gas Release 2007) index is a 9-months time average of a basket of
three oil-related indexes, computed as in [1, Equation (1)] or in [22, Equation (1)]



tract can call back in every year. In fact, the bigger MDQ is, the bigger
M becomes, and higher the possibility of the owner becomes to postici-
pate the calling back of the nominated make-up gas. This flexibility should
increase the contract value, in particular when price decoupling is strong.
We have decided not to move the minimum quantities. On one hand we set
the minimum annual quantity and the minimum period quantity in such
a way that the possible make-up one can nominate every year is very high
(1.5 · 106), so the stronger constraints are on M. On the other hand, we
imposed the values of K,K to be integer and we used values for MDQ in
Table 4.4. The underlying idea is that any possible increase in the callable
make-up quantityM = mAQ − N · mDQ is worthless if the upper bound
of gas withdrawal per year M is not enough to call back the nominated
make-up quantity. Thus, we map the contract value for MDQ in the range
between ACQ

N = 7·106

12 ' 5.83 · 105, which reduces to the case of a standard
contract without make-up clause4, and a value big enough to ensure the
withdrawal in the third year of the possible make-up gas nominated in the
first and second year, i.e. bigger than ACQ+2(mAQ−N ·mDQ)

N ' 8.3 · 105 and
such that K,K are integers.

MDQ M M Description
5.83 · 105 0 1.5 · 106 No make up
6.25 · 105 5 · 105 1.5 · 106 Low flexibility
8.75 · 105 3.5 · 106 1.5 · 106 High flexibility

Table 4.4: Values of MDQ used in the analysis. All the other parameters,
when not variable, are set as in Table 4.3.

The choice of changing MDQ and not other parameters is also a conse-
quence of the practice: we think that the minimum annual quantity and the
minimum period quantity are less negotiated than the maximum ones: the
seller of the contract will never be willing to sell too much flexibility at the
expense of its profits (he want to sell the physical gas), and the buyer will
not pay too much for some flexibility he will probably not use in the future
(he need the physical gas).

The second and third analyses mainly focus on market factors. As al-
ready stated, the make-up clause becomes profitable for the buyer of the
contract only if the spread between market and index price Pt − It is ex-
pected to be lower in the future than in the present. On the other hand, the
make-up gas is paid in two different times and its price is affected by the
interest rate, as seen in Eq. (4.15). Consequently, the benefits of the decou-
pling could be affected by high levels of interest rates, which potentially

4in fact, if if MDQ = ACQ
N

then, being not possible to call back any make-up gas be-
fore having reached ACQ, we are never able to call back any make-up gas, thus it is also
impossible to nominate some.



may vanish the power of make-up clause. This is the focus of the second
analysis. Also the correlation could potentially affect the benefits given by
the decoupling: in principle, the decoupling should be enforced by nega-
tive correlation and weakened by positive one. This is the subject of the
third analysis.

First Analysis. The first analysis studies how the contract value depends
on the volatility level σP , on the MDQ contract parameter and on the level
of decoupling. The latter is obtained by varying the initial forward prices
used to calibrate the tree prices (see Section 4.4), subtracting a level S from
the forward prices FP for the first year and adding the same quantity to
the forward prices for the third year, as shown in Figure 4.11. Then we let
S be a parameter and see how the swing price depends on it.

We expect the swing contract value to be increasing in σP , with a higher
dependence when there is no flexibility given either by the absence of a
make-up clause or by small values of MDQ. Figure 4.9 shows exactly these
qualitative intuitions. The contract value is increasing with respect to σP

also for high values of MDQ, but the range in y axes in the figure is so
large that we may not appreciate the monotonicity of the curves. This also
evidences the fact that the rights given by make-up reduce the risk given
by market uncertainty.
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Figure 4.9: Sensitivity with respect to σP for three values of MDQ.

The dependence between contract value and decoupling parameter S



is presented in Figure 4.10: make-up rights are useful when market de-
coupling is high. In these situations, we can nominate make-up gas at the
beginning of the contract life and call it back in the future, when a positive
market scenario shows up.
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Figure 4.10: Sensitivity with respect to the decoupling S and three values
of MDQ, from no make-up rights to very large flexibility. As expected, de-
coupling enforces make-up value.

Second Analysis. The second analysis is performed by mapping the swing
value with respect to the decoupling parameter S and the interest rate r and
reporting the corresponding prices in Figure 4.12.

The spirit of this analysis is that the make-up clause is exercised when a
negative market scenario (typically, contractual price I higher than spot gas
price P ) is expected to change or disappear in the following years through
a change in the slope of the index and the gas price forward term struc-
ture. On the other hand, as we saw in Subsection 4.2.3, the make-up gas
nominated is paid partly immediately, and partly when the gas is with-
drawn; this temporal mismatch implies a cash flow effects whose impact
obviously depends also on the interest rate level: for higher interest rate
levels, the benefit of the make-up clause is absorbed by the capitalization
of the cost substained from the end of make-up nomination’s year up to the
withdrawal period. Conversely, in a standard contract without make-up
clause, a higher interest rate in a market scenario with a low level of decou-
pling may lead to a higher contract value: in fact, if the decoupling is low,
the present value of the contract in the long term, where the swing option
is at or out of the money, is lower than the value in the short term, where
the option is in the money. Figure 4.12 shows how any positive change in
S is negatively compensated by an increase in the interest rates level.
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(a) Low decoupling, swing option at the
money in all the 3 years.
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(b) High decoupling, swing option out of the
money in the first year, at the money in the
second year and in the money in the third
year.

Figure 4.11: Scenarios for the term structure of gas and index prices for
two levels of decoupling. In subfigure (a) make-up rights are typically not
exercised, and prices are not decoupled, while in subfigure (b) typically
make-up gas is declared in the first year and called back in the third year
thanks to the decoupling.
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Figure 4.12: Sensitivities with respect to r and level of decoupling S in the
forward prices of P . The first three cases on the top are with make-up, the
last three in the bottom without.



Third Analysis. The third analysis maps the contract value with respect
to the correlation ρ between the two prices P and I , and the level of decou-
pling S. In Figure 4.13(a) we see that decoupling knocks out correlation: in
fact, the swing price’s dependence on S is much greater than that on ρ, en-
forcing once again a strong dependence of the swing price on decoupling
levels. Only a deeper analisys, performed for fixed values of decoupling,
allows a better understanding of the impact of correlation: negative values
of ρ leads to higher values of the contract. This is not a surprise: when ρ
is negative the decoupling between prices is expected to be stronger (if P
rises up then I falls down thanks to ρ < 0) and this increases the value of
the contract. However, the changes due to correlation are still smaller than
the changes due to decoupling, even for small values of S.
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Figure 4.13: Contract value with respect to correlation ρ and level of decou-
pling. In Figure (a) the shift S vanquishes the effect of the correlation: in
fact by varying ρ we obtain almost indistinguishable curves, both with or
without make-up. In order to see the differences betwen curves, in Figure
(b) the shift S is fixed and here we can see how correlation affecs contract
value with make-up: negative values of ρ lead to higher contract values
(negative ρ supports decoupling), but the stronger influence of the decou-
pling S is always evident.

4.6 Conclusions

The oil-to-gas price decoupling of the latest years, especially since the 2008
financial crisis onwards, made the make-up clause a very important fea-
ture embedded in most of long term gas swing deals. In this paper we
describe, frame and solve the optimization issue related to the presence of
a make-up clause in a swing option. As for a standard swing contract, we
show that it is possible to reduce the pricing of a swing option with make-



up clause to a stochastic control problem, which can be solved using in a
suitable way the Dynamic Programming algorithm. The key idea is to in-
troduce the make-up gas debt as new state variable and incorporating it
in the annual constraints on the state space. The dynamic programming
is used both on every sub-period of the contract and year by year, by tak-
ing into account the gas debt at the beginning of every year. It turns out
that, under some not very restrictive assumptions, the optimal withdrawal
in all the single sub-periods is of bang-bang type, i.e. it is always optimal
to choose in every sub-period between the minimum (mDQ) or the maxi-
mum (MDQ) possible withdrawal quantity. This induces a quantization on
the number of distinct sequences of the different optimization problems we
have to solve in every year, and this number is shown to be dependent on
the range MDQ − mDQ and on the annual upper and lower bounds (ACQ
and mAQ, respecively). We prove that the total number of optimization
problems to solve is quadratic with respect to the product of the duration
D of the contract in years and the numberN of considered sub-periods. Af-
ter having described the full algorithm for a generic number of yearsD, we
extend this algorithm to another form of make-up clause, as well as to an-
other clause possibly present in swing contracts, namely the carry-forward.

The algorithm and its extensions are followed by a detailed descrip-
tion of a 3-years contract, which shows how the algorithm works in every
year and how the problem is potentially complex even for small values of
D. The algorithm of Section 2 is implemented on this 3-years contract, by
choosing as the dynamics of P and I a suitable trinomial model with mean-
reverting properties, which is calibrated to market data (in particular, TTF
for the price P and ENIGR07 for the index I) as explained in Section 4.4.
This implementation is then used to perform a sensitivity analisys of the
price with respect to MDQ and some other market parameters, namely the
volatility of the spot price σP , the correlation between spot price and mar-
ket index ρ, the interest rates level r, and the possible decoupling of gas and
index prices induced by the term structure of forward prices, introduced as
a perturbation modulated by a parameter S (see Figure 4.11).

The first conclusion is that the market uncertainty given by volatility
can be decreased using make-up rights: high levels of make-up rights leads
to a less marked dependence in contract value in contrast with the case of
a standard contract, where the dependence is more pronunciated.

The main conclusion is however that the decoupling induced by for-
ward prices is crucial in assessing whether the make-up clause is a signif-
icant component in the price of the swing option. Figure 4.10 is clear: the
higher is the value of the make-up rights, the higher is the dependence of
the price on the decoupling. The slope of the contract value changes com-
pletely with high make-up rights, turning the decoupling into a favourable
market behaviour. Large values of decoupling S also increase the depen-
dence of the swing price on interest rates: in Figure 4.13 we show how the



make-up is sensible to high values of the risk free rate r. The benefits of
the decoupling may be in contrast with high rates and make-up, but also
in this cases a contract with make-up is always worth more than a contract
without. Finally, we investigate the dependence of contract value with re-
spect to correlation ρ. It turns out that contract value remains more or less
unchanged when correlation changes, so this dependence is much less sig-
nificant than the dependence on decoupling.

In conclusion, make-up clauses are a powerful tool to manage primary
the new market scenario induced by decoupling and also the uncertainty
given by prices. We expect that such type of contracts will be traded more
frequently in the future, and here we presented a fast algorithm to price
them.

Future work should mainly aim to properly take into account the dis-
crete nature of the index price I , as opposed to the continuous evolution
of gas price P , as well as the implicit non-Markovianity of I (being it a
time average based on several months, its evolution has relevant memory
effects).
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[37] A. Pokorná. Pricing of gas swing options. Master’s thesis, Charles
University, Prague, 2009.



[38] E. S. Schwartz and J. E. Smith. Short-term variations and long-term
dynamics in commodity prices. Manage. Sci., 46(7):893–911, July 2000.

[39] C. Tseng and G. Barz. Short-term generation asset valuation: a real
options approach. Operations Research, 50:297–310, 2002.



(SOME) MATLAB CODE

Due to industrial privacy, we can not report the full code used in the whole
thesis.

Finite Difference

%% Finite difference algorithm
% start finite difference
V = NaN(Nt, Np, Ni,Ni, Nz);
p mesh = zeros(1,Np,Ni,Ni,Nz);
i mesh = zeros(1,Np,Ni,Ni,Nz);
ihat mesh = zeros(1,Np,Ni,Ni,Nz);
for m=1:Np

p mesh(:,m,:,:,:) = p int(m);
end
for l=1:Ni

i mesh(:,:,l,:,:) = i int(l);
ihat mesh(:,:,:,l,:) = i int(l);

end

% boundary conditions
R = exp(−rate*T);
Tn U = T;
Tn L = 1;
tau1 = @(t,z)min(t+(M overline−z)/u bar, Tn U);
tau2 = @(t,z)max(t, T−(M underline−z)/u bar);
g integrand = @(s,p,t)exp(−rate*s+(p−mu p)*... % p is the LOG price!

exp(−theta p*(s−t))−sigma pˆ2*exp(2*theta p*(t−s))/(4*theta p));
g = @(a,b,p,t)exp(mu p−sigma pˆ2/(4*theta p)+rate*Tn L)*...

quad(@(x)g integrand(x,p,t),a,b); % p is the LOG price!
if rate==0

E = @(a,b,p,i,t)((a<=b)*(g(a,b,log(p),t)−i*(b−a))); % p is THE price!
else

E = @(a,b,p,i,t)((a<=b)*(g(a,b,log(p),t)−...
(i/rate)*exp(rate*Tn L)*(exp(−rate*b)−exp(−rate*a)))); % p is THE price!
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end

h = waitbar(0,'Finite diff.', 'Name','Finite diff...', ...
'CreateCancelBtn', 'setappdata(gcbf,''canceling'',1)');

setappdata(h,'canceling',0)

% finite difference
p ms = p mesh(:,2:end−1,2:end−1,:,1:end−1);
i ms = i mesh(:,2:end−1,2:end−1,:,1:end−1);
ihat ms = ihat mesh(:,2:end−1,2:end−1,:,1:end−1);
mu p tilde = p ms.*(theta p*(mu p−log(p ms))+.5*sigma pˆ2);
sigma p tilde = p ms.*sigma p;
mu i tilde = i ms.*(theta i*(mu i−log(i ms))+.5*sigma iˆ2);
sigma i tilde = i ms.*sigma i;

tic
% boundary u bar*T
V(:, :,:,:,end) = R*PSI(z max);

% boundary final time
V(end, :,:,:,:) = permute(repmat(R*PSI(z int(:)), ...

[1, Np, Ni, Ni, 1]), [5, 2, 3, 4, 1]);
for nu=Nt−1:−1:1

for r=1:Nz
for lhat=1:Ni

if getappdata(h,'canceling'); break; end
t = t int(nu);
ihat = i int(lhat);
z = z int(r); ind=z<M overline;
V(nu, end, :, lhat,r) = ...

u bar*ind*E(t,tau1(t,z), p max,ihat,t) + ...
R*PSI(z+ind*(tau1(t,z)−t)*u bar);

V(nu, 1, :, lhat,r) = ...
u bar*ind*E(tau2(t,z),Tn U, p min,ihat,t) + ...
R*PSI(z+ind*(tau2(t,z)<Tn U)*(Tn U−tau2(t,z))*u bar);

end
end

% boundary on I − linear interpolation
for m=1:Np

p = p int(m);
V(nu,m,1,:,:) = V(nu,1,1,:,:) + ...

(V(nu, end,1, :,:)−V(nu,1,1,:,:))*(p−p min)/(p min−p max);
V(nu,m,end,:,:) = V(nu,1,end,:,:) + ...

(V(nu, end,end, :,:)−V(nu,1,end,:,:))*(p−p min)/(p min−p max);
end

if nu<Nt
if getappdata(h,'canceling'); break; end
t = t int(nu);
V = V(nu+1, 2:end−1, 2:end−1, :, 1:end−1);
V p fw = (V(nu+1, 3:end, 2:end−1, :, 1:end−1)−V )/dp;
V i fw = (V(nu+1, 2:end−1, 3:end, :, 1:end−1)−V )/di;



V p bk = (−V(nu+1, 1:end−2, 2:end−1, :, 1:end−1)+V )/dp;
V i bk = (V(nu+1, 2:end−1, 1:end−2, :, 1:end−1)+V )/di;
V p = (sigma p tilde>=0).*V p fw + (sigma p tilde<0).*V p bk;
V i = (sigma i tilde>=0).*V i fw + (sigma i tilde<0).*V i bk;
V pp = (V(nu+1, 3:end, 2:end−1, :, 1:end−1) − 2*V + ...

V(nu+1, 1:end−2, 2:end−1, :, 1:end−1))/(dpˆ2);
V ii = (V(nu+1, 2:end−1, 3:end, :, 1:end−1) − 2*V + ...

V(nu+1, 2:end−1, 1:end−2, :, 1:end−1))/(diˆ2);
V pi = ( (V(nu+1, 3:end, 3:end, :, 1:end−1) + ...

V(nu+1, 1:end−2, 1:end−2, :, 1:end−1)) − ...
(V(nu+1, 1:end−2, 3:end, :, 1:end−1) + ...
V(nu+1, 3:end, 1:end−2, :, 1:end−1)))/(4*di*dp);

V z = (V(nu+1, 2:end−1, 2:end−1, :, 2:end)−V )/dz;

V(nu, 2:end−1, 2:end−1, :, 1:end−1) = ...
dt*(.5*sigma p tilde.ˆ2.*V pp + .5*sigma i tilde.ˆ2.*V ii + ...
rho*sigma p tilde.*sigma i tilde.*V pi + ...
mu p tilde.*V p + mu i tilde.*V i + ...
(exp(−rate*(t−Tn L))*(p ms−ihat ms)+V z).*u opt(exp(−rate*(t−Tn L))*(p ms−ihat ms)+V z) + V /dt);

avzmnt=(Nt+1−nu)/Nt; waitbar(avzmnt,h,['Finite difference at: ' sprintf('%2.0f',100*avzmnt) '%']);

if sum(sum(sum(sum(isnan(V(nu, 2:end−1, 2:end−1, :, 1:end−1))))))
error('NaN')

end
end

end
delete(h)

% valore contratto sui dati iniziali
[˜,i val min] = min(abs(i int−exp(i0)));
[˜,p val min] = min(abs(p int−exp(p0)));
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(['P(0)=' num2str(p int(p val min)) ', I(0)=' num2str(i int(i val min))])
disp(['dp = ' num2str(dp) ' −−> [p min, p max] = [' num2str(p int(1)) ', ' num2str(p int(end)) ']'; ])
disp(['di = ' num2str(di) ' −−> [i min, i max] = [' num2str(i int(1)) ', ' num2str(i int(end)) ']'])
disp(['dz = ' num2str(dz) ' −−> [z min, z max] = [' num2str(z int(1)) ', ' num2str(z int(end)) ']'])
disp(['dt = ' num2str(dt) ' −−> T = ' num2str(T) ';'])
value fd= V(1,p val min,i val min,i val min,1);
disp(['Valore contratto con FD: ' separatethousands(value fd,'''',2)])
disp(['Tempo impiegato: ' separatethousands(toc,'''',2)])

Price Simulations

%% price simulation MC
sim lp = p0*ones(nsim,T);
sim li = i0*ones(nsim,T);
for i=2:T

prev p = sim lp(:,i−1);
prev i = sim li(:,i−1);
ep1 = randn(nsim,1);



ep2 = rho*ep1 + sqrt(1−rhoˆ2)*randn(nsim,1);
sim lp(:,i) = prev p + theta p*(mu p−prev p)*dt + sigma p*ep1*sqrt(dt);
sim li(:,i) = prev i + theta i*(mu i−prev i)*dt + sigma i*ep2*sqrt(dt);

end
sim p = exp(sim lp);
sim i = exp(sim li);
clear sim lp sim li

% index sampling (1 month = 30 days)
inizio mese = 1:30:T;
inizio mese(end) = T;
nmesi = length(inizio mese);
for i = 1:nmesi−1

supp = inizio mese(i):inizio mese(i+1)−1;
sim i(:,supp)=repmat(sim i(:,supp(1)), 1,length(supp));

end

Naı̈ve Monte Carlo

%% naive monte carlo
SP = sim p−sim i;
SP = [mean(SP); SP];
OB = zeros(nsim+1,1);EX=OB;
U = zeros(nsim+1,T);
X = zeros(nsim+1,2);
CUMFIN = zeros(nsim,1);
h = waitbar(0,'NMC', 'Name','Naive MC is running');
tic
OPT = optimset;
OPT.Display = 'none';
for i=1:nsim+1

f = −[SP(i,:) 0 penalty penalty];
A = [zeros(1,T) 1 −1 0; ...

zeros(1,T) −1 0 −1];
b = [M overline; −M underline];
Aeq = [ones(1,T) −1 0 0];
beq = 0;
LB = [mDQ*ones(T,1); −inf; 0; 0];
UB = [MDQ*ones(T,1); +inf; +inf; +inf];
[u, obj, exit] = linprog(f,A,b,Aeq,beq,LB,UB,[],OPT);
OB(i)=−obj;U(i,:)=u(1:T);EX(i)=exit;
CUMFIN(i)=u(T+1);X(i,:)=u(end−1:end);
avzmnt = i/nsim; waitbar(avzmnt,h,['NMC is at: ' sprintf('%2.2f',100*avzmnt) '%']);

end
tempo naive = toc;
close(h)
p = profile('info');
time = max([p.FunctionTable.TotalTime]);
memory = max([p.FunctionTable.PeakMem])/(1024*1024);
disp('−−−−−−−−−−−−−−−−−−−−−')
disp('− NAIVE MC −')
disp(['Valore EXTRINSIC: ' separatethousands(mean(OB),'''',2) '. Tempo: ' separatethousands(tempo naive,'''',2)])



disp(['Valore INTRINSIC: ' separatethousands(OB(1),'''',2)])

Least Square Monte Carlo

%% LEAST SQUARE MC 1d
nx=max([qt.nnodi]);
V = zeros(nsim,nx);
V prev = V;
EPSI = .001;
Xc = linspace(floor(min(SP(:,end))), ceil(max(SP(:,end))), ncentersTot);
rbf = @(r)(max(1−EPSI*r ,0).ˆ4).*(4*EPSI*r−1);
Vrg = zeros(ncentersTot, nx);
Vrg prev = Vrg;
P = NaN(nsim,ncentersTot);
Pp = P;
h = waitbar(0,'LSMC', 'Name',['LSMC 1d is running − ' num2str(ncentersTot) ' centers']);
tic
U = NaN(nsim,nx);
for t=T:−1:1

SSc = SP(:,t);
if t>1

SSp = SP(:,t−1);
DM = abs(repmat(SSp,1,ncentersTot) − repmat(Xc,nsim,1));
P = rbf(DM);
Pi = pinv(P);

end

for i=1:qt(t).nnodi
z n = qt(t).nd(i).vl;
if t==T

V(:,i) = PSI(z n); %condizione finale
else

zup = qt(t).nd(i).follower(1);
if numel(qt(t).nd(i).follower)==2

zdw = qt(t).nd(i).follower(2);
else

zdw=zup;
end
q up = qt(t+1).nd(zup).vl−z n;
q dw = qt(t+1).nd(zdw).vl−z n;
Vcont up = SSc*q up + Pp*Vrg prev(:, zup);
Vcont dw = SSc*q dw + Pp*Vrg prev(:, zdw);
[a,b] = max([Vcont up, Vcont dw], [], 2);
V(:,i) = a;
U(:,i) = double(b==1);

if ˜exist('FIG','var'); FIG=0; end
if FIG
figure(1), clf, hold on
plot(SSp, U(:,i), 'o');
plot(SSp, P*(Pi*U(:,i)), '.r');
title(['Optimal control when t=' num2str(t) ' and z=' num2str(z n)])



ylim([−.3, 1.3]); grid on

figure(2), clf, hold on
plot(SSp, V(:,i), 'o');
plot(SSp, P*(Pi*V(:,i)), '.r');
grid on
title(['Optimal value when t=' num2str(t) ' and z=' num2str(z n)])
end

end

if t>1
Vrg(:,i) = Pi*V(:,i);
Uregress{t,i} = Pi*U(:,i);

end
end
Pp = P;
Vrg prev = Vrg;

avzmnt = (T−t)/T; waitbar(avzmnt,h,['LSMC 1d is at: ' sprintf('%2.2f',100*avzmnt) '% − ' num2str(t)]);
end
close(h)
Vopt 1d = full(mean(V(:,1)));
tempo 1d = toc;
disp('−−−−−−−−−−−−−−−−−−−−−')
disp('− LSMC EXTRINSIC −')
disp(['Numero di centri totali: ' num2str(ncentersTot)])
disp(['Valore con RBF 1d: ' separatethousands(Vopt 1d,'''',2) '. Tempo: ' separatethousands(tempo 1d,'''',2)])
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