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Propagazione dell’incertezza tramite schemi
multi-risoluzione a base ridondante

Sommario

Metodi non intrusivi basati sull’espansione della risposta di un dato sistema nello spazio dei parametri
(Chaos expansion methods) consentono di risolvere equazioni differenziali stocastiche con un numero
di soluzioni deterministiche minori rispetto ad approcci tradizionali alla Monte Carlo con campiona-
mento classico o stratificato.

In tale ambito gli sforzi di ricerca odierni sono volti allo sviluppo di metodologie atte alla riduzione
del costo computazionale in problemi caratterizzati da alta dimensionalitá (numero significativo di
variabili aleatorie in input) ed al trattamento di problemi con risposta discontinua nello spazio dei
parametri.

La ricerca condotta si é concentrata sull’utilizzo di recenti tecniche di Compressive Sampling per
la minimizzazione del numero di soluzioni deterministiche necessarie alla ricostruzione di risposte
dotate di sparsitá secondo un pre-definito dizionario di basi. Inoltre, tecniche di approssimazione
multi-risoluzione sono state estese a metodologie non intrusive di propagazione dell’incertezza. In-
fine, tecniche di Importance Sampling sono state utilizzate per determinare in modo adattativo
l’ubicazione di nuovi samples al fine di cogliere le scale maggiormente importanti nelle risposte
approssimate.

Le metodologie approfondite ed implementate nell’ambito della ricerca svolta sono state applicate
ad un insieme di funzioni analitiche, sistemi descritti da equazioni differenziali stocastiche, sistemi
dinamici con risposte caratterizzate da elevati gradienti o discontinuitá, problemi ingegneristici con
particolare riferimento all’ottimizzazione robusta della performance aerodinamica di profili per pale
eoliche e sistemi passivi di smorzamento delle vibrazioni operanti sotto incertezza.

Vengono inoltre presentate metodologie atte a ripristinare doti di conservazione di massa in flussi
numerici e sperimentali.

Parole chiave

Quantificazione dell’incertezza, Metodi non intrusivi di propagazione dell’incertezza, Alpert multi-
wavelets, Campionamento per importanza, Compressed Sensing, Approssimazioni multirisoluzione,
Espansioni secondo chaos polinomiale, Equazioni differenziali stochastiche, Stochastic Collocation,
filtri a divergenza nulla.
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Redundant Multiresolution Uncertainty Propagation

Abstract
Stochastic partial differential equations can be efficiently solved using collocation approaches com-
bined with polynomial expansion in parameter space. Estimators based on these concepts show
smaller variance than traditional or stratified Monte Carlo approaches under mild dimensionality.

Research efforts in this context are focused on improving the efficiency of these methodologies
for high dimensional problems (increasing number of input random variables) or for problems with
discontinuous response in parameter space.

In the present work, we use Compressive Sampling in order to minimize the number of deterministic
computations needed to evaluate expansion coefficients for stochastic responses which are sparse
in selected dictionaries of basis. Moreover, multiresolution approximation techniques are extended
in the context of non-intrusive uncertainty propagation. Finally, an adaptive Importance Sampling
strategy is used where samples are iteratively added to locations containing relevant features of
increasingly smaller size.

Applications are presented for analytical functions, stochastic differential equations, dynamical sys-
tems whose response is discontinuous or characterized by large gradients. Engineering problems
involving robust optimization of windmill airfoils and passive damping of structures under uncer-
tainty are also discussed.

The last Chapter is devoted to methodologies aiming to restore element conservativeness for nu-
merical and experimental velocity fields.

Keywords
Uncertainty quantification, Non intrusive uncertainty propagation, Alpert multiwavelets, Impor-
tance Sampling, Compressed Sensing, Multiresolution approximation, Polynomial Chaos expansion,
Stochastic partial differential equations, Stochastic Collocation, divergence-free filtering.
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Chapter 1

Introduction and Background

1.1 Uncertainty in engineering systems

It appears clear even to the youngest engineer how calculations and modeling are inevitably affected
by uncertainty. Example in this regard are: insufficient availability of data, approximation in estimat-
ing physical quantities of interest, dispersion of sampling in experimental results, lack of knowledge
of the basic mechanisms of a physical system and approximation in evaluating th correct boundary
conditions. The reduction of uncertainty in judgment through experience or systematic application
of rigorous principles of mathematical physics is therefore the primary challenge of a professional
engineer. Understanding the possible implications of working with quantities that are not always
fully known in advance is of paramount importance in design, verification and manufacturing.

First of all, an engineering design should be robust, meaning that it should have the best possible
performance across a range of possible variabilities in the operating conditions. This simple statement
allows us to introduce two new concepts, namely an average performance over an ensemble of
possible system’s states and the variance, i.e. the sensitivity, to changes in this conditions. Therefore,
probabilistic concepts like average value or variance are naturally introduced when uncertainty is
embraced and measures associated to quantities of interest (e.g. performance) become important
to formulate educated engineering judgments.

The same concepts above apply when verifying selected designs. Note that this can happen many
years after the original design was formulated and the same properties of the system, once accurately
known, may become uncertain. Even if widely used in verification codes, heuristic factors accounting
for lack of knowledge in the geometry or material properties might fail to appropriately quantify the
reliability of a given system. Probabilistic descriptions of loads or operating conditions also allow
to mitigate the effect of rare events by accounting for their probability of occurrence. Estimates of
expected life can be therefore formulated in a much more informative way, resulting in significant
cost reduction.

As a last example, it is important to highlight the role played by uncertainty in manufacturing and
experimental testing. A low dispersion in the properties of products is a key aspect of series produc-
tion and the possibility of obtaining two identical realization of the same experiment is practically
zero even for the most careful setup.

Due to its fundamental role in engineering, an effort is required to foster the systematic quantifi-
cation of uncertainty in design, through accessible methodologies and tools providing a broader
understanding on how it affects physical phenomena.

21
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1.2 Motivation

To motivate the present work, we fist define the problem we are trying to solve, together with the
associated assumptions; “Uncertainty quantification” is in addition a general term and it is used for
a wide range of problems.

Even a complex engineering system can be schematically visualized through an input-output map-
ping. This representation is valid both for systems responding through simple analytical formulae
or described by a system of coupled partial differential equations (PDE). Uncertainty permeates
every aspect of the problem, from quantifying the distribution and correlation of the input random
variables/processes/fields or system’s coefficients (e.g. conductivity, elasticity, etc.), to the problem
of efficiently propagating the latter input quantities to the system’s outcome. In particular, this
last problem is traditionally addresses as uncertainty propagation (UP); it spans from evaluating the
statistical moments of a function of random variables to solving a system of stochastic differential
equations.

In the present study, we are mainly interested in the uncertainty propagation from input data to
output responses. In the following, we therefore assume all input variables and system coefficients to
be completely defined in probability, space and time. In case of correlation for the above variables,
we also assume this to be completely known.

The widely used Monte Carlo approach can be considered as a reference methodology for UP. It is
a fair blend of simplicity and robustness. It is easy to implement and it naturally handles systems
characterized by discontinuous stochastic responses. Besides, its convergence is proportional to
the squared root of the number of samples but it does not depend, in general, on the number of
uncertain input parameters, becoming of great appeal for high dimensional stochastic problems.

Various approaches have been developed in literature with the aim of improving the rate of conver-
gence of the Monte Carlo method. For example, approaches based on polynomial chaos approxi-
mations, lead to improvements in the convergence rate for sufficiently smooth responses, failing to
do so if applied to discontinuous problems. On the other hand, given a fixed approximation order,
the number of terms needed for polynomial expansions grows significantly with the dimensionality
of the problem.

Our efforts are therefore in the direction of developing methodologies performing better than Monte
Carlo strategies and at the same time applicable to both discontinuous and high dimensional prob-
lems. To do so, statistical regression is tackled in two separate contexts. In the first (expansion) a
dictionary of basis is selected providing sparse representation for piecewise smooth signals. In the
second (reconstruction), the Compressive Sampling paradigm is used to minimize the number of
samples needed for accurately approximate stochastic responses.

1.3 Types of Uncertainty

Before introducing more rigorous concepts and methodologies to handle uncertainty related to en-
gineering applications, we must ask ourself what “uncertainty” is and about the possible ways in
which it affects our problems. We therefore identify two types of uncertainty which are relevant in
the present developments, i.e., aleatoric and epistemic uncertainty.

Aleatoric uncertainty relates to the complexity and intrinsic variability of nature. As an example, it
is almost impossible to obtain exactly the same result by successive repetitions of the same physical
experiment. This leads to the statistical characterization of quantities popular in engineering where,
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for example, material strength, elastic modulus, wind forces, external vibrations are all associated to
a given probability distribution typically deduced from experimental data or field measurements.

Other examples of Aleatory uncertainty are natural randomness, value diversity, behavioral variability,
social randomness, technological surprise.

Epistemic or systematic uncertainty is typically introduced by engineering surrogates (i.e. numerical
models, indirect measurements, etc.) trying to quantify a physical phenomenon.

Other examples of Epistemic uncertainty are inexactness, lack of observation, conflicting evidence,
ignorance, indeterminacy.

While our developments mainly focus on Aleatoric uncertainty, it is worth noting that interactions
between these two aspects might be observed. As an example, an analytic approximation of a given
law of nature might not have the same accuracy over the whole parameter space. This means that,
for different ranges of parameters, the contribution of Aleatoric and Epistemic uncertainty might be
different. This might require a careful selection of the propagation methodology, as non-intrusive or
Monte Carlo-like approaches might not always work in this case.

1.4 Road map

The present document is organized as follows:

The first chapter offers a general introduction and motivation on the subject of uncertainty quan-
tification, presenting the main ideas and discussing the assumptions that will hold throughout. It
also introduces some basic concepts of probability theory and statistical inference as Monte Carlo
estimation with associated sampling techniques. Spectral expansion techniques are introduced in
Chapter 2, where polynomial chaos expansion is first illustrated in the context of functional expec-
tation and successively applied to the solution of stochastic PDEs (sPDEs). Intrusive uncertainty
propagation methodologies based on stochastic Galerkin projection are discussed for the solution of
a transport equation with random wave speed. Sparse grid and regression techniques are presented
in the context of non-intrusive uncertainty propagation. The last part of the Chapter is entirely
devoted to a multiresolution generalization of a Fourier-Legendre expansion particularly well suited
for interpolating piecewise continuous responses. Compressive sampling (CS) is presented in Chapter
3 as a way to approximate sparse stochastic responses using the least possible number of samples.
The combination of CS with adaptive Importance sampling is also discussed, in an attempt of im-
prove convergence to the output statistics for responses exhibiting sharp gradients or discontinuities.
Sparsity-undersampling phase diagrams are built for various basis systems and sampling strategies.
In Chapter 4 and 5, emphasis is given to the application of the proposed methodologies to real
engineering problems.

1.5 Rudiments of Probability Theory

Basic concepts are presented next, that will act as a reference for the developments in later Chapters.
In particular we define probability spaces, random variables, convergence of r.v. and expectation,
focusing on events generated from subspaces of Rd.
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1.5.1 Elements of measure theory in probability

First, a sample space Ω is the set of all possible outcomes ypiq P Ω with i P N.

We also define the event space F containing all possible sets of outcomes. In particular, if 2Ω is
defined as the set of all possible subset of Ω, then F � 2Ω. The structure of a σ-algebra is assigned
to F on the sample space Ω. Note that this extends the concept of an algebra closed respect
to the union, intersection and complement operations, accounting for the union of infinitely many
partitions of Ω. The complement of A � Ω in Ω is also defined as Ac � ΩzA.
Definition 1 (σ-algebra). F � 2Ω is a σ-algebra of Ω, if

1. Ω P F
2. If A P F , then Ac P F .
3. If Ai P F for i � 1, 2, . . . , then

�8
i�1Ai P F .

In other words, a σ-algebra over a set Ω is a nonempty collection F of subsets of Ω (including Ω
itself) that is closed under the complement and countable unions of its members. This concept
allow us to define a measurable space as follows:

Definition 2 (Measurable space). A measurable space is a pair pΩ,Fq where F is a σ-algebra of
subsets of Ω.

Before introducing the concept of a probability measure we recall that Ai � Ω, i � 1, 2, . . . are
disjoint sets if Ai

�
Aj � t0u, @i � j.

Definition 3 (Probability measure). A probability measure P is a function P : F Ñ r0, 1s with the
following properties:

1. PpAq P r0, 1s, @A P F .
2. PpΩq � 1.

3. PpAq � °8
i�1 PpAiq whenever A � �8

i�1Ai is a countable union of disjoint sets Ai P F .

We have now all the tools for the definition of a probability space.

Definition 4 (Probability space). A probability space is a triplet pΩ,F ,Pq, with P a probability
measure on the measurable space pΩ,Fq.

We conclude the current section by introducing the concepts of generated σ-fields and Borel σ-fields
in R.

Definition 5 (Generated σ-fields). Given a collection of subset of Aα � Ω, where α P Γ is a not
necessarily countable index set, we define σptAαuq as the smallest σ-field F such that Aα P F . We
call σptAαuq the σ-field generated by the collection tAαu.

An example of generated σ-field is the Borel σ-field in R defined as B � σptpa, bq : a, b P Ruq.
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1.5.2 Random Variables

As a preliminary concept, we introduce the image of a function y defined over a measurable space
(Ω,F) as imgpyq � typωq : ω P Ωu.
Definition 6 (Random Variable). A random variable (r.v.) is an F -measurable function y : Ω Ñ R
over the measurable space (Ω,F), that is:

tω : ypωq P Bu P F @B P R

The indicator function IApωq can be considered as the simplest example of a r.v.:

IApωq �
"

1, ω P A
0, ω R A (1.1)

if we apply the definition above, we see that:

tω : ypωq P Bu �
$&
%
A, if B ¥ 1
Ac, if 0 ¤ B   1
t0u, if B   0

P F (1.2)

We also introduce the concept of a simple function S which is a finite linear combination of indicator
functions defined over subsets of F . In other words:

Spωq �
Ņ

n�1

cn IAnpωq (1.3)

It can be shown that for every r.v. ypωq there exists a sequence of simple functions ynpωq such that
ynpωq Ñ ypωq as nÑ 8, for each fixed ω P Ω.

A this point, it is worthwhile to introduce the concept of convergence for r.v.s, in particular almost
sure (a.s.), almost everywhere (a.e.) convergence as well as convergence with probability 1 (w.p.1)
that prevail through probability theory. They will be used interchangeably.

Definition 7 (Almost surely). We say that the r.v. y and z defined over the same probability space
(Ω,F ,P) are almost surely the same if Ppω : txpωq � ypωquq � 0.

The mathematical expectation of a random variable xpωq, indicated with Etxu is a key concept in
probability theory and is introduced as follows:

Definition 8 (Mathematical expectation). Let’s assume xk,n � k2�n and the intervals In,k �
pxk,n, xk�1,ns. For k � 0, 1, . . . we define the mathematical expectation of the random variable
ypωq ¥ 0 as:

Etyu � lim
nÑ8

8̧

k�0

xk,nPptω : ypωq P Ik,nuq (1.4)

When the range of ypωq is countable, the definition above reduces to the elementary definition of
expectation Etyu � °

i y
piqpi, where pi � Pptω : ypωq � ypiquq. Another important case where

the expectation can be explicitly computed is when a r.v. is associated to a probability distribution
function.
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Definition 9 (pdf associated to r.v.). A r.v. ypωq is associated with a probability density function
(pdf) fy if Ppta ¤ y ¤ buq � ³b

a
fypyq dy for every a ¤ b P R. Such function fy must be not

negative and
³
R y fypyq dy � 1.

Therefore, for a non-negative r.v. y with an uncountable range associated to a pdf fy the given
definition of expectation coincides with the elementary formula Epyq � ³8

0
y fy dy. This could be

also referred to as the Lebesgue integral respect to the probability measure P. We also note that a
random variable y of arbitrary sign can be decomposed into the difference of two non-negative r.v.s
y� � maxpy, 0q and y� � �minp0, yq, i.e. y � y� � y�. In this case we say that the r.v. y is
integrable if

³�8
�8 |y|fy dy   8 and in such a case we have that Etyu � ³�8

�8 y fy dy.

We conclude this section by recalling the properties of expectation, together with some inequalities
used to bound probabilities and expected values.

The following properties hold for the expectation operator:

1. EtIAu � PpAq @A P F .
2. If ypωq � °N

n�1 cnIAn is a simple function, then Etyu � °N
n�1 cnPpAnq.

3. For integrable r.v.s y, z the expectation is a linear operator, i.e. Etαy�βzu � αEtyu�βEtzu.
4. Etyu � c if ypωq � c with probability 1.

5. If y ¥ z a.s., then Epyq ¥ Epzq. Further, if y ¥ z a.s. and Epyq � Epzq, then y � z a.s.

Theorem 1 (Markov’s inequality). Suppose f is a non-descreasing, Borel measurable function with
fpxq ¡ 0 for any x ¡ 0. Then, for any random variable y and all ε ¡ 0,

Pp|ypωq| ¥ εq ¤ 1

fpεqEtfp|y|qu. (1.5)

Markov’s inequality is often useful in connecting probabilities with expectations. We show two
possible applications of this inequality with fpxq � x and with fpxq � x2, y � z�Etzu, respectively.
In the first case, for a given constant a ¡ 0, we have:

Pp|y| ¥ aq ¤ Et|y|u
a

. (1.6)

which gives us a loose upper bound on the CDF of y. As an example, consider the case where
a � Etyu. The expression above simply tells us that Pp|y| ¥ Etyuq ¤ 1. We could use the second
case to estimate the distance of a given random variable from its mean value:

Pp|z � Etzu| ¥ aq ¤ Et|z � Etzu|2u
a2

� V artzu
a2

. (1.7)

A sharper estimate in this regard, is provided by the McDiarmid’s inequality.

Theorem 2 (McDiarmid’s inequality). Let y � ty1, . . . , ynu, z � tz1, . . . , znu be vectors of inde-
pendent r.v.s. which differ only for the i-th component, i.e. yj � zj @j � 1, . . . , n, j � i. Suppose
that g : Rn Ñ R to be a function with associated coefficients ci, i � 1, . . . , n such that:

sup
y,z

|gpyq � gpzq| ¤ ci for i � 1, . . . , n. (1.8)

Then

P pgpyq � Etgpyqu ¥ εq ¤ exp
"
� 2ε2°n

i�1 c
2
i

*
(1.9)
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The following inequality provides bounds on expected values.

Theorem 3 (Schwarz inequality). Suppose y, z P Ω and both Ety2u,Ety2u   8, then

Et|yz|u ¤
a
Ety2uEtz2u (1.10)

1.5.3 Convergence of Random Variables

As asymptotic behavior (i.e. for sufficiently large samples) is a key issue in probability, the present
section focuses on the most common notions of convergence for r.v.s and how they relate. Since
the concept of convergence is closely related to that of limit, we need to make sure that limits
of sequence of r.v.s are also random variables. We therefore introduce the concept of complete
probability space and assume this property to be true in our developments hereafter.

Definition 10 (Complete probability space). We say that pΩ,F ,Pq is a complete probability space
if any subset S of A P F such that PpAq � 0 is also in F .

Note that a σ-field is made complete by adding to it all the subset of sets of zero probability.

A strong form of convergence, i.e., point-wise convergence is presented first.

Definition 11 (Pointwise Convergence). Given a sequence of r.v. yipωq for i � 1, 2, . . . , we say
that it converges pointwise to the variable ypωq and we write limiÑ8 yipωq � ypωq or yipωq Ñ ypωq
if the latter expression is true for all ω P Ω.

Pointwise convergence is usually not very useful as it is defined irrespectively from the measure or
probability of the single values of ω. A slightly weaker but way more used form of convergence is
the following.

Definition 12 (Almost sure convergence). Given a probability space pΩ,F ,Pq, we say the the
sequence yi of r.v.s converge to y almost surely (and we write yi

a.s.ÝÝÑ y) if Ppyi Ñ yq � 1.

Almost sure convergence (as pointwise convergence) is invariant under the application of a continu-
ous map. In other words, if yi

a.s.ÝÝÑ y and f : RÑ R is a continuous function, then fpyiq a.s.ÝÝÑ fpyq.
The weaker notion of converge in probability is defined next.

Definition 13 (Convergence in probability). We say that yi converges to y in probability and write
yi

pÝÑ y if Pptω : |yipωq � ypωq| ¡ 0uq Ñ 0 as iÑ 8, for any fixed ε ¡ 0.

The following relationships between convergence a.s. and convergence in probability hold:

• If yi
a.s.ÝÝÑ y then yi

pÝÑ y

• If yi
pÝÑ y then there exists a subsequence ik such that yik

a.s.ÝÝÑ y for k Ñ 8.

We generalize the idea of convergence in probability by introducing the concepts of Lq spaces and
convergence in q-mean.

Definition 14 (Lq space). For a fix 1 ¤ q   8 we denote as LqpΩ,F ,Pq, or simply Lq the
collection of r.v.s y defined over the measurable space pΩ,Fq such that Et|y|qu   8
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Examples in this regard are L1, i.e., the space of integrable r.v.s and L2, i.e., the space of square
integrable r.v.s.

Definition 15 (Convergence in q-mean). We say that yn converges to y in q-mean or in Lq sense,
and we write yn

q.m.ÝÝÑ y, if yn, y P Lq and }yn � y}q Ñ 0 for nÑ 8, that is, Et|yn � y|qu Ñ 0 for
nÑ 8.

An equivalence between convergence in q-mean and in probability can be stated as follows: if
yn

q.m.ÝÝÑ y then yn
pÝÑ y.

The notions of distribution and independence are responsible for the difference between measure
theory and probability theory; they are addressed next.

We start by the concept of law of a r.v. and associated convergence. This is actually the weaker
form of convergence we have explored so far.

Definition 16 (Law of a r.v.). The law of a random variable y, denoted Py is the probability
measure on pR,Bq such that PypAq � Pptω : ypωq P Auq for any Borel set A.

In other words, the law of a r.v. associates probabilities to subsets of the sample space Ω.

Definition 17 (Probability distribution function). The probability distribution function Fy of a real
valued r.v. is defined as:

Fypαq � Pptω : ypωq ¤ αuq � Pypp�8, αsq (1.11)

It is worthwhile to point out that the knowledge of the cumulative distribution function Fy uniquely
determines Py. A measure of convergence different from the ones defined above can be introduced
at this point:

Definition 18 (Convergence in law). We say the a random variable yn converges in law (or weakly,
or in distribution) to y and we write yn

LÝÑ y if Fynpαq Ñ Fypαq as nÑ 8 for each α where Fypαq
is continuous.

We shall now introduce another important concept in probability, i.e., independence. We say that
two events A,B P F are P-mutually independent if PpAXBq � PpAqPpBq. This concept can be
easily extended to any set of events Ai P F of finite size. In particular, we can write

PpAi1 X Ai2 X � � � X AiLq �
L¹
k�1

PpAikq where L   8. (1.12)

Independence for random variables and random vectors can be derived from the concepts above,
passing through the associated σ-fields.

Definition 19 (P-independent σ-fields). Two σ-fields H,G � F are P-independent if

PpGXHq � PpGqPpHq, @G P G, @H P H. (1.13)

The random vectors py1, y2, . . . , ynq and pz1, z2, . . . , zmq are independent if the corresponding σ-
fields σpy1, y2, . . . , ynq, σpz1, z2, . . . , zmq are independent.

Definition 20 (Uncorrelated r.v.s). Two r.v.s y, z P L2pΩ,F ,Pq, i.e., defined on the same proba-
bility space, are called uncorrelated if Etyzu � EtyuEtzu.

It follows that any two independent r.v.s y, z P L2pΩ,F ,Pq are also uncorrelated.
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1.6 Monte Carlo estimation

Monte Carlo estimation solves, using sampling methods, the problem of calculating expectations of
complicated multi-dimensional functions of vectors of random variables characterized by complicated
distribution functions. Consider a function gpyq : R Ñ R of a singled-valued random variable y,
characterized by a pdf fy and a cdf Fy. If we assume we can generate samples from Fy, i.e., n
realizations of the r.v. ypjq, then we can approximate the quantity I � Etgpyqu using the following
expression:

IM � 1

M

M̧

j�1

gpypjqq (1.14)

We can alternatively refer to a new random variable IMpyq � IMpy1, y2, . . . , yMq � 1
M

°M
j�1 gpyjq

as a Monte Carlo estimator of I. The notation above uses ypjq as realizations of the r.v. y, while
yj is the j-th random variable in the domain of IMpyq. Note that IMpyq : RM Ñ R is an unbiased
estimator of I:

EtIMpyqu �
»

Ω

�
1

M

M̧

j�1

gpyjq
�
fy dy � 1

M

M̧

j�1

»
Ω

gpyjq fy dy � Etgpyqu � I, (1.15)

with variance equal to:

V artIMpyqu � E

$&
%
�

1

M

M̧

j�1

gpyjq � I

�2
,.
- � E

#
1

M2

M̧

j�1

pgpyjq � Iq2
+
� 1

M
V artgpyqu,

(1.16)
and the following relationship can be established for the standard deviation of IMpyq:

σtIMpyqu � 1?
M

σtgpyqu (1.17)

Note that in equation (1.16) we used the fact that pgpyiq� Iq and pgpyjq� Iq are two independent,
zero average random variables. They are also uncorrelated, therefore Etpgpyiq � Iqpgpyjq � Iqu �
Etpgpyiq � IquEtpgpyjq � Iqu � 0.

Equation (1.17) is at the core of the Monte Carlo method and states that the deviation of the
estimate reduces proportionally to

?
M . The convergence rate above might appear slow if compared

to some of the results obtained using Polynomial Chaos (see next Chapter) where exponential
(proportional to e�M) rates are observed under conditions. However, note that the variance of the
Monte Carlo estimator depends only on the number of samples, and not on the number of r.v.s
considered for g. Moreover, the only required assumption is that of y P L2pΩ,F ,Pq, i.e., the r.v. y
has finite variance.

1.7 Variance reduction in Monte Carlo estimation

In this section, we briefly review two well known strategies to obtain Monte Carlo estimators of
reduced variance. In particular, we introduce Importance Sampling as it will be used in later chapters
combined with information extracted from a wavelet representation.
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1.7.1 Stratified Sampling

A stratified sampling estimator assumes the sample space to be partitioned into r disjoint subsets
tΓ1, . . .Γru associated with known probabilities ps � Prty P Γsu, s � 1, . . . , r. By the total
probability law, the exact expectation can be written as

Etgpyqu � I �
ŗ

s�1

psEtgpyq|y P Γsu. (1.18)

Similarly, the stratified sampling estimator of I is

Is �
ŗ

s�1

ps

�
1

Ms

Mş

j�1

gpysj q
�
�

ŗ

s�1

ps IM,s (1.19)

where ysj P Γs are r.v.s drawn from the conditional probability density fypy|y P Γsq, IM,s is a Monte
Carlo estimator restricted to a single strata and

°r
s�1Ms � M . If we evaluate the variance of the

stratified sampling estimator we have:

σ2
stIspyqu �

ŗ

s�1

p2
s

σ2
M,s

Ms

(1.20)

We can now define αs � Ms{M as the fraction of the samples in stratum s, with the constraint°r
s�1 αs � 1. The set α � tαs, s � 1, . . . , ru contains probability masses that parametrize the

sampling across subset of the entire domain. The problem of finding the best distribution of samples
across strata, translates in a constrained minimization problem:

find α� � arg min
α

F � arg min
α

�
σM,spαq � λ

�
ŗ

s�1

αs

��
(1.21)

By taking the first derivative of F , we have:

BF
Bαs � � 1

M
p2
s

σ2
M,s

α2
s

� λ Ñ α�s �
ps σM,s?
Mλ

(1.22)

We can also check that the optimal solution is a minimum, in fact:

B2F

Bα2
s

� 2 p2
s σ

2
M,s

M α3
s

¡ 0 (1.23)

Substitution in the constraint
°r
s�1 αs � 1 gives:

λ � 1

M

�
ŗ

s�1

psσM,s

�2

and αs � ps σM,s°r
j�1 pj σM,j

(1.24)

In other words, the optimal sampling size should account not only for the probability to generate
samples within a given Γs, but also on the variance associated to the same interval. More samples
should be therefore located in areas characterized by a bigger variance.
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1.7.2 Importance Sampling

Importance sampling is used when the probability density function fy of the chosen r.v. y is not very
well suited to represent the function g whose statistics are sought. This is the case, for example,
when fy and g have little overlap or when the product gpyqfypyq is small. Samples associated
to a pdf fy might also not be able to capture important features of the function g. The main
idea in importance sampling is to sample according to a modified pdf, i.e., f̃ypyq and to define a
preconditioner as follows:

P pyq � f̃ypyq
fypyq , (1.25)

such that:

Ẽ
"
gpyq
P pyq

*
�
»

Ω

gpyqfypyq
f̃ypyq

f̃ypyq dy �
»

Ω

gpyqfypyq dy � Etgpyqu � I (1.26)

We can now generate an unbiased Importance Sampling estimator, IpM , using i.i.d. r.v.s ỹj, j �
1, . . . ,M defined over a different probability space pΩ̃, F̃ , P̃q endowed with the modified pdf f̃ypyq.
We have that

IpM � 1

M

M̧

j�1

gpỹjq
P pỹjq . (1.27)

The variance of the new estimator is:

σ̃2tIpMu � Ẽ

#�
gpyq
P pyq


2
+
� Ẽ2

"
gpyq
P pyq

*
�
»

Ω̃

g2pyqf
2
y pyq
f̃ypyq

dy � I2. (1.28)

Our purpose is to find the best possible measure f̃y such to minimize σ̃2tIpnu. Assuming g positive,
the best possible choice would be as follows:

f̃y � gpyqfypyq
Etgpyqu . (1.29)

It is easy to see that, for this case, σ̃2tIpnu � 0. In practice, equation (1.29) cannot be used as
it is, due to the fact that the quantity Etgpyqu is not known in advance and actually is the very
quantity we are trying to estimate. A simple alternative uses approximations of Etgpyqu based on
the trapezoidal rule.

f̃y �
°
j gpy�j qfypy�j qIpxj�1,xjs°

j gpy�j qfypy�j qpxj � xj�1q , (1.30)

where y�j P pxj�1, xjq and IA is the indicator function for set A.

The ideal case expressed in (1.29) suggests that, when we have |gfy� If̃y| � 0, i.e., f̃y proportional
to gfy, this results in the best possible choice for f̃y. It can be noticed that this is not always
true and, in practice, attention should be paid to the tail of the selected f̃y to have a reduction in
variance respect to the Monte Carlo approach. If we set r � gfy � Etguf̃y � gfy � If̃y, we have:

σ̃2tIpMu �
»

Ω̃

pgfyq2
f̃y

dỹ � I2 �
»

Ω̃

pr � If̃yq2
f̃y

dỹ � I2 �
»

Ω̃

r2

f̃y
dỹ (1.31)

If f̃y ! r2 in some not degenerated subset of the domain, we could have a very big increase in
σ̃2tIpnu.
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A remedy is to use a blend of the new density f̃y and some heavy tailed distribution as a margin
against the explosion of r2{f̃y. We can, for example, have that:

f̃αy � α � p1� αqf̃y, (1.32)

where α is the weight assigned to the uniform distribution.

So far, we have considered a modified measure f̃y which is constant throughout the simulation. We
might point out that, by progressively sampling the unknown function g, we know more information
about it as we proceed with the iterations. Therefore, it makes sense to slightly change our approach
by refining our estimation of f̃y as part of the Monte Carlo iteration process. This defines an adaptive
importance sampling methodology where a new measure is calculated as part of the estimation
method itself.



Chapter 2

Spectral expansion methods for
uncertainty propagation

2.1 From sampling based estimation to spectral expan-
sion

In the previous chapter, we have shown how the variance of Monte Carlo-based estimators is re-
lated to the number of samples. In practice, while the speed of convergence for the Monte Carlo
approach is proportional to

?
M with M the total number of samples, stratified sampling with only

1 sample in every stratum (i.e., the so called Latin Hypercube Sampling) results in a convergence
rate proportional to M .

The question in this case is: can we do better than this? To answer this question affirmatively, we
start from a theorem formulated by Cameron and Martin in 1947 [20] which is based on Wiener’s
Homogeneous Chaos. Consider a complete probability space pΩ,F ,Pq and denote by C the space of
real functionals gpyq of the r.v. y associated with the distribution function fy which are continuous
and have finite variance, i.e., gpyq P L2pΩ,F ,Pq or,»

Ω

g2pyq fy dy   8 (2.1)

The following theorem can be stated:

Theorem 4 (Cameron and Martin). The Fourier-Hermite series of any (real or complex) functional
gpyq P L2pCq converges in the L2pCq sense to gpyq.

We can therefore use a Fourier-Hermite expansion with an infinite number of terms to describe every
function gpyq of random variables with finite variance as follows:

gpyq �
8̧

i�1

aiΨipyq (2.2)

If, for the sake of simplicity, we focus on the one-dimensional case where Ψipyq : R Ñ R, the
Hermite polynomial of order i� 1 can be determined using the following recursive relation:

Ψi�1pyq � yΨipyq � iΨi�1pyq (2.3)

33
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We should now consider the orthogonality properties of the Hermite polynomials respect to the inner
product structure associated with the selected probability space. In practice, the product between
two Hermite polynomials in a space L2pΩ,F ,Pq is

xΨipyq,ΨjpyqyL2pΩ,F ,Pq �
»

Ω

ΨipyqΨjpyq fy dy (2.4)

The latter relationship assumes a very convenient form if the r.v. y is associated to the probability
distribution function fypyq � 1?

2π
e�y

2{2, i.e., the standard Gaussian distribution. In the latter case
we have: »

Ω

ΨipyqΨjpyq fy dy � δi,j (2.5)

as it is well know that the Hermite polynomials are orthogonal respect to the standard Gaussian
probability measure.

An alternative to the Monte Carlo strategy for evaluating the expectation of gpyq consists in ex-
panding g using Hermite polynomials as follows:

gpyq �
P̧

i�1

ai Ψipyq (2.6)

And then computing its expectation as:

Etgpyqu �
»

Ω

�
P̧

i�1

ai Ψipyq
�
fy dy � a1. (2.7)

The above expression is obtained as xΨipyq, 1y � 0 for i � 2, 3, . . . but clearly xΨ1pyq, 1y � 1 as
Ψ1pyq � 1. Moreover, higher moments of the function gpyq can be computed with similar formulae
from coefficients, i.e.,

Etg2pyqu �
P̧

i�1

a2
i . (2.8)

The expectation of the function gpyq can be found by computing the coefficients of the Hermite
expansion (2.6). Such coefficients are evaluated through simple integrals, using the orthogonality
properties of the Hermite polynomials. First, we write the residual of (2.6) as follows:

Rpyq � gpyq �
P̧

i�1

ai Ψipyq (2.9)

and then we impose the orthogonality of the above residual respect to all the Hermite polynomials.
As the latter family is a basis of L2pΩ,F ,Pq it follows that xRpyq,Ψjpyqy � 0 for j � 1, 2, . . .
implies Rpyq � 0. This leads to

xRpyq,Ψjpyqy � xgpyq �
P̧

i�1

ai Ψipyq,Ψjpyqy � xgpyq,Ψjpyqy �
P̧

i�1

aixΨipyq,Ψjpyqy

� xgpyq,Ψjpyqy � ai }Ψipyq}2 � xgpyq,Ψjpyqy � ai � 0.

(2.10)

Therefore:
ai � xgpyq,Ψjpyqy �

»
Ω

gpyqΨjpyq fy dy. (2.11)
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The evaluation of the Fourier-like coefficients amounts to computing integrals. A number of numer-
ical integration formulae can be found in literature that can be used for this purpose. The choice of
the best integration formula to use, typically results from a compromise between accuracy and prior
knowledge of the function whose expectation is sought. Two popular choices in this regard are the
Gauss and the Clenshaw-Curtis integration formulae. The first is usually preferred when evaluating
expectations of smooth functions due to the fact that ng Gauss points give exact quadrature of
a polynomial with order up to 2ng � 1. On the other hand, the uniform convergence properties
of the Chebyshev approximants allow comparable performance for the Clenshaw-Curtis quadrature
for cases of non polynomial integrand. Moreover, the Clenshaw-Curtis formula can be implemented
effortlessly by the FFT algorithm. A detailed discussion about the difference of the above quadrature
rules is presented in [87].

The computation of Etgpyqu becomes:

Etgpyqu �
»

Ω

gpyq fypyq dy �
ng¸
i�1

gpypiqq fypypiqqwi (2.12)

where the deterministic samples ypiq are located at the ng integration locations of the chosen formula
and wi are the associated weights.

2.2 Multidimensional case

We now consider the generalization of Hermite expansion or Gauss-Hermite integration of a function
of several random variables, i.e., the vector y P Ω, where y � ry1, y2, . . . , yds and Ω � r�8,�8sd.
The expectation of gpyq : Rd Ñ R now becomes:

Etgpyqu �
»

Ω

gpyqfy1,y2,...,yd dy. (2.13)

where fy1,y2,...,yd is the joint probability distribution function of the r.v.s ty1, y2, . . . , ydu. A straight-
forward generalization of the developments discussed above for the one-dimensional case results if
we assume that y consists of a set of i.i.d. (independent, identically distributed) random variables.
In this case the joint probability distribution can be written as:

fy1,y2,...,yd � fy1fy2 . . . fyd (2.14)

A tensor product of Hermite polynomials is used for multivariate spectral expansion. We give a
simple example in the two-dimensional case, where we want to expand the function gpy1, y2q using
a maximum polynomial degree equal to 2 (linear approximation):

gpy1, y2q � a1 pΨ1py1qΨ1py2qq � a2 pΨ1py1qΨ2py2qq�
a3 pΨ2py1qΨ1py2qq � a4 pΨ2py1qΨ2py2qq.

(2.15)

Note that, by using a full tensorization, the maximum approximation order is now 4 instead of the
second order specified for each yi, i � 1, . . . , d. In general, if mi, i � 1, 2, . . . , d is the polynomial
order in each dimension, the total number of terms in a full tensor expansion is m1m2 . . . md.
Instead of a full tensorization, a reduced expansion can be performed such that the maximum
polynomial order is preserved. In this case, and assuming the same polynomial order m for all
dimensions, the number of terms in the expansion is:

gpyq �
P̧

i�1

ai Ψipyq where P � pd�mq!
d!m!

. (2.16)
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The construction above allows to extend to more than one dimension the orthogonality properties
of the Hermite system.

By looking at (2.16) it can be noticed the fast grow rate in the number of terms in the spectral
expansion for an increasing number of input random variables. This effect is known as the curse of
dimensionality, meaning that the number of terms needed for expanding a given functional is subject
to a dramatic increase with the number of input random variables.

The numerical integration rules used in one-dimension can be extended to the multivariate case. In
practice, the expectation of gpyq : Rd Ñ R becomes:

Etgpyqu �
»

Ω

gpyq fy1,y2,...,ydpyq dy

�
ng¸
i�1

gpypiq1 , y
piq
2 , . . . , y

piq
d q fy1,y2,...,ydpypiq1 , y

piq
2 , . . . , y

piq
d qwiy1wiy2 . . . wiyd

(2.17)

where ypiq � pypiq1 , y
piq
2 , . . . , y

piq
d q, i � 1, . . . , ng is the set of quadrature points and wiyj is the

weight associated to the i-th integration location for variable yj. It is clear at this point that the
computational cost of evaluating the expectation of g is primarily related to evaluating the functional
for the ensemble of multivariate quadrature points, i.e., evaluate gpypiqq � gpypiq1 , y

piq
2 , . . . , y

piq
d q. If

full tensorization is used for quadrature locations ypiq, their number will also grow exponentially
with the number of input dimensions. Two techniques are used to keep as limited as possible the
computational cost of evaluating g for the multivariate case, i.e., using a nested quadrature rule and
trying to mitigate the curse of dimensionality using sparse grids.

2.3 Nested univariate quadrature and multivariate Sparse
Grids

Nested quadrature is designed to maximize sampling re-use. Assume an integration grid Il �
typ1q,yp2q, . . . ,ypnlqu is built for the selected approximation order l. We would like to build a series
of nested quadrature integration grids such that Il�1 � Il for all l ¥ 1. This means that we could
increase the accuracy of the expectation of g by using all the functional evaluations computed so far.
This property relates on the one-dimensional quadrature rule adopted; for example, Newton-Cotes
formulae have this property, as shown in Figure 2.1a as a result of their dichotomic subdivision
strategy.

Clenshaw-Curtis quadrature points located at the zeros of Chebyshev polynomials can also be used
to generate nested quadrature formulae. The location of the latter points is:

ypiq � cos
i π

l
where 0 ¤ i ¤ l, (2.18)

If we introduce a new parameter s for the integration order, the above formula is modified as follows:

ypiq � cos
i π

2s
where 0 ¤ i ¤ 2s and s � 1, 2, 3, . . . , (2.19)

with the special case ypiq � 0 for s � 0. It can be seen that we have Is�1 � Is is this case and the
above formula is nested. Note that the number of sampling locations practically doubles going from
s to s� 1.
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(a) (b)

Figure 2.1: Nested quadrature formula for Newton-Cotes integration (a) and two-dimensional
demonstration of partial tensorization of one-dimensional quadrature grids (b).

An other very useful idea is to exploit partial tensorization o one-dimensional integration formulae
similarly to what discussed above for multivariate Hermite polynomials. In other words, the order
of accuracy for full-tensor multivariate quadrature is not consistent to that of the one-dimensional
integration formulae. As a starting point, we introduce the following notation in the context of
one-dimensional integration:»

Ω

hpyqfy dy �
»

Ω

gpyq dy � Ql g �
nļ

i�1

gpypiql qwil . (2.20)

where, in this case, we use gpyq � hpyqfy. If we also define Q0 g � 0, then we can introduce the
following difference formula:

∆l g � pQl �Ql�1qg where l � 1, 2, . . . . (2.21)

A d-dimensional difference formula can be derived by tensorization of one-dimensional formulae, by
introducing the vector l � tl1, l2, . . . , ldu, as follows:

∆l g � p∆l1 b∆l2 b � � � b∆ldqg (2.22)

The approach suggested by Smolyak [82] for integration of g is therefore:»
Ω

hpyqfy dy �
»

Ω

gpyq dy � Qd
l g �

¸
|k|¤l�d�1

∆k g, (2.23)

where k � tk1, k2, . . . , kdu and we define |k| � °d
i�1 ki. Note the the factor l � d � 1 depends

linearly on d, the number of dimension over which the summation is evaluated. An example is
provided in Figure 2.1b showing a comparison between full and partial tensor grids obtained by
non-nested one-dimensional Newton-Cotes quadrature.

The Smolyak approach is characterized by the expression |k| ¤ l � d � 1 which is valid for an
homogeneous approximation order over the various dimensions. A graphical representation of the
Smolyak two-dimensional difference formulae and associated sparse grid can be found in Figure 2.2a
and 2.2b. Figure 2.2c and 2.2d show a possible modification of the previous multivariate quadrature
strategy which accounts for the possibility that a higher order is needed along one of the considered
dimensions. In this case, the above constraint needs to be modified as follows:

|k| ¤ lpkq � d� 1 (2.24)
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(a) (b)

(c) (d)

(e)

Figure 2.2: Graphical representation of the single two-dimensional quadrature formulae used for the
Smolyak formula of order 4 (a) and associated quadrature points (b). Multivariate anisotropic sparse
quadrature formulae (c) and associated grid (d). Concept of adaptive sparse grid (e).
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Case Probability Distribution Askey Chaos Support

Continuous

Gaussian Hermite Chaos (-8,+8)
Gamma Laguerre Chaos [0,8)
Beta Jacobi Chaos [a, b]

Uniform Legendre Chaos [a, b]

Discrete

Poisson Charlier Chaos {0, 1, 2,. . . }
Binomial Krawtchouk Chaos {0, 1, 2,. . . ,N}

Negative binomial Meixner Chaos {0, 1, 2,. . . }
Hypergeometric Hahn Chaos {0, 1, 2,. . . ,N}

Table 2.1: Probabilistic measures associated to orthogonal polynomials within the Wiener-Askey
Scheme.

and lpkq is a multi-linear function in k.

For cases where nested one-dimensional quadrature rules are used, it is also possible to generalize
the above concepts within an adaptive framework where multivariate difference grids (in practice,
they provide the building block of our quadrature formula) can be progressively evaluated based on
the function evaluations already computed. A sketch is provided in Figure 2.2e showing this concept
iteratively, where red difference formulae are evaluated at the current iteration, gray difference
formulae have been previously evaluated and the next one to come are highlighted using a transparent
effect.

2.4 Generalized polynomial chaos

Consider the case where both gpyq and the i.i.d. r.v.s y have Gaussian distribution. Note that this
is true if the function g is a linear map g : Rd Ñ R. In the latter case the statistics evaluated using
a polynomial chaos expansion converge exponentially fast.

This is not true in general, meaning that the convergence rate to expectations of g with expansions in
terms of Hermite polynomials, is largely dependent on g itself. However, it is important to highlight
the following important similarity. Consider a family of polynomials Ψipxq, i � 1, 2, . . . with x P R.
The usual product in L2pRq between two polynomials of the same family is extended by including a
function wpxq : RÑ R, as follows:

xΨipxqΨjpxqyw �
»
R

ΨipxqΨjpxqwpxq dx (2.25)

A family of orthogonal polynomials respect to the measure wpxq is defined as:

xΨipxqΨjpxqyw � 0 @i � j (2.26)

Many families of polynomials have been developed in literature which are orthogonal to known wpxq.
Moreover, for many of the latter cases the weight functions w are formally identical to probability
measures used in applications. Table 2.1 summarizes polynomial families of hypergeometric or basic
hypergeometric type which can be organized into a hierarchy using the Askey scheme [10].

This leads to an exponential convergence of the error, when evaluating expectations using polyno-
mials othogonal to the probability distribution of the quantities of interest. In practice, a precise
statistical quantification of g is not known a priori as it is the result of the estimation process.
Nevertheless, for i.i.d. input random variables whose probability density function can be assimilated
to the ones shown in Table 2.1 using an appropriate family of orthogonal polynomials gives a starting
point that leads to an exponential convergence of the error under linearity of g.
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2.5 Spectral coefficient extraction as an algebraic prob-
lem

In the previous Sections, using the orthogonality of the selected family of polynomials, we used
numerical integration to extract spectral expansion coefficients. In the present Section, we formulate
the problem of finding the expansion coefficients as an algebraic problem and we discuss possible
solution strategies. We start by suggesting a truncated expansion for the functional gpyq, y P Rd

gpyq �
P̧

i�1

αi Ψipyq (2.27)

note that in this case the multivariate functions Ψipyq are tensor product of orthogonal polynomials.
Assume g is sampled at M locations ypiq � typiq1 , y

piq
2 , . . . , y

piq
d u, i � 1, . . . ,M . Expression (2.27)

can be written for every sample location, resulting in the following linear system of equations:

g � Ψα (2.28)

where g � �
gpyp1qq, gpyp2qq, . . . , gpypMqq�T is the sample vector, Ψ � rΨ1,Ψ2, . . . ,ΨP s is a matrix

whose columns are the member of the orthogonal polynomial family evaluated at the sampling
points, and α � rα1, α2, . . . , αP s.
The system matrix Ψ is in general not symmetric, and various techniques can be used to solve for
the coefficients, mainly related to the total number of samples M and the selected basis cardinality
P . For example, when M " P , least squares techniques can be used to solve 2.28. For cases where
M � P and the matrix Ψ is reasonably well conditioned, direct and iterative unsymmetric system
solvers can be used instead. Finally, we stress the fact that for our case a major computational
effort could be devoted to evaluate the right hand side g. Assume we are computing expectations
of a quantity resulting from a complex system of non-linear differential equations. In this case,
every sample evaluation would require the solution of a time consuming numerical simulation. This
suggests that, in general, we would prefer to solve the caseM ! P as computing the basis functions
at the samples locations is significantly less expensive than computing gpypiqq, i � 1, . . . ,M . A way
to solve system (2.28) for the underdetermined case using techniques proper of the Compressive
Sampling paradigm, will be explained in the following Chapters.

2.6 Application to Stochastic PDEs

In the previous Sections spectral expansion techniques are employed to compute expectations of
functionals. This Section shows how to extend the latter methodology to compute statistics of
solutions for partial differential equations.

Consider a probability space pΩ,F ,Pq in which Ω is the set of elementary event, F is the σ-algebra
of events, and P defines a probability measure on F . A vector of independent and identically
distributed random variables with joint probability density function ρpyq : Rd Ñ R¥0 is indicated by
y � py1, . . . , ydq with yi : Ω Ñ R, i � 1, . . . , d, and d P N.

We define a spatial domain D � Rn with boundary BD and time t P r0, T s.
We state our problem as follows: find a solution upx, t,yq : D� r0, T s �Ω Ñ Rq, q P N, such that

Lpx, t,y,uq � fpx, t,yq on D,
Bpx, t,y,uq � u0px, t,yq on BD (2.29)
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hold P-a.s. in Ω. Here we assume the well-posedness (in P-a.s. sense) of (2.29) with respect to
the choices of the forcing and boundary functions f and u0, respectively.

We want to build a multiresolution representation of upx, t,yq at a fixed location in space xa P
D and time ta P r0, T s by using samples tupxa, ta,ypkqq : k � 1, . . . ,Mu corresponding to M
realizations typkq : k � 1, . . . ,Mu of the random inputs y. To simplify the notation and presentation,
we henceforth drop the space and time variables xa, ta and describe our approach for a scalar,
multivariate solution upyq, i.e., with q � 1 and arbitrary d.

Note that, in the context of a discretized solution of system (2.29), the set of locations (grid points)
in space and time where u is available extends the concept of sampling to the variables x and t.
Therefore, within the proposed non intrusive approach, space and time can be treated as further
random variables associated to uniform probability measures where the pre-determined sampling set
depends on the adopted numerical discretization.

Under the above assumptions, system 2.29 becomes:

Lpy, uq � fpyq on D,
Bpy, uq � u0pyq on BD (2.30)

The solution u is expanded as follows:

upyq �
P̧

i�1

ai Ψipyq (2.31)

The coefficients ai are determined by projecting the residual on spantΦi, i � 1, . . . , P u. If we set
aside the treatment of boundary conditions, we can formulate P equations, where the j-th reads:

E

#�
L

�
y,

P̧

i�1

ai Ψipyq
�
� fpyq

�
Φjpyq

+
� 0 @j � 1, . . . , P. (2.32)

The solution strategy greatly depends on the selected family Φi, i � 1, . . . , P . Depending on this
choice, two possible strategies, intrusive and non intrusive, are derived to solve stochastic partial
differential equations. These two methodologies are described with more detail in the following
Sections.

2.7 Intrusive Approach

A possible strategy to solve equation (2.32), which extends a well known approach for deterministic
PDEs, uses Φi � Ψi, i � 1, . . . , P . This approaches is know as Galerkin projection and gives rise
to the family of intrusive methodologies. To better understand how intrusive methodologies work,
we focus on the 1D scalar transport equation with stochastic weave speed.

2.7.1 1D Scalar Trasport with stochastic wave speed

Assume D � r�1, 1s is a one-dimensional interval and the time parameter is defined as t P r0,�8q.
Consider a r.v. y P pΩ,F ,Pq defined over a complete probability space, and associated with the
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probability density function ρpyq. We are interested in the solution of the following hyperbolic
equation:

Bupx, t, yq
Bt � cpyqBupx, t, yqBx (2.33)

with initial conditions:
upx, 0, tq � u0px, yq (2.34)

Due to the hyperbolic nature of equation (2.33), boundary conditions depend on the sign of the
scalar wave speed: #

up�1, t, yq � uLpt, yq for c ¡ 0

up1, t, yq � uRpt, yq for c   0
(2.35)

2.7.2 Numerical solution

The convection operator is discretized using a 1D first order upwind finite volume approximation
in space. The following approximation can be written with reference to a single finite volume, see
Figure 2.3:

c
Bu
Bx �

pcuqe � pcuqw
∆x

(2.36)

If we insert F � c
∆x

, the previous equation becomes:

c
Bu
Bx � Feue � Fwuw (2.37)

For c ¡ 0, the convected variables at e, w are:#
ue � uP

uw � uW ,
(2.38)

while for c   0: #
ue � uE

uw � uP
(2.39)

Vector u � tu1, u2, . . . , unu stores the main problem unknowns, located at the center of the n cells.
The discretized one-dimensional first order upwind operator is:

c
Bu
Bx � Cu (2.40)

The matrix C is, in general, an unsymmetric tri-diagonal matrix whose i-th row stores the following
components: $'&

'%
Ci,i�1 � cw � �maxpFw, 0q
Ci,i � ce � cw � pFe � Fwq
Ci,i�1 � ce � �maxp0,�Feq

(2.41)

Please note that the above discretized operator C is non linear:

Cp�cq � �Cpcq (2.42)
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Figure 2.3: Subset of one-dimensional finite volume mesh.

2.7.3 Spectral expansion

Both the main solution upx, t, yq and the random wave speed cpyq are expanded in probability space.
The solution of (2.33) becomes:

upx, t, yq �
�8̧

i�0

uipx, tqψipyq �
Ņ

i�0

uipx, tqψipyq (2.43)

The same approach can be used for the random wave speed:

cpyq �
�8̧

i�0

ciψipyq �
Ņ

i�0

ciψipyq (2.44)

Using the expressions above, expectation of c can be evaluated as follows:

Etcpyqu � µc �
»

Ω

� Ņ

i�0

ciψipyq
�
ρpyq dy

�
Ņ

i�0

cixψ0, ψipyqy �
Ņ

i�0

ciδ0,i � c0 since ψ0 � 1

(2.45)

and similarly:

σ2tcpyqu �
»

Ω

�
Ņ

i�0

ciψipyq � µc

�2

ρpyq dy �
Ņ

i�0

c2
i . (2.46)

2.7.4 Stochastic Galerkin approach for the 1D trasport equation

First of all, we replace the correct solution u and the random wave speed c with their truncated
approximations in probability space, û and ĉ, respectively. The truncation operation results in a non
zero residual:

Rpx, t, yq � Bû
Bt � ĉ

Bû
Bx (2.47)

A discrete upwind convection operator is applied:

Rpx, t, yq � Bû
Bt �Cpyqû (2.48)
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where bold quantities are used to represent vectors storing values of u at cells centers. The residual
is made orthogonal to the same basis used to expand the main unknown and wave speed.

EtRψju � xR, ψjy � 0

x
Ņ

i�0

Bui

Bt ψi �
Ņ

i�0

Cpyqui ψi, ψjy � 0

Ņ

i�0

Bui

Bt xψi, ψjy �
Ņ

i�0

xCpyqψi, ψjyui � 0

A
Bv
Bt �D v � 0

(2.49)

Where v is a discretization in both space and probability of the unknown u. The matrix A is defined
as:

Ai,j � xψi, ψjy, (2.50)

while matrix C is commonly known as the multiplication tensor :

Ci,j �
Ņ

k�0

ckxψk ψi, ψjy (2.51)

It can be easily seen that the matrix C is symmetric.

The scheme is completed by a discretization in time of Bv
Bt . For example, a first-order explicit

discretization can be accomplished by using the Euler method. Finally, we remark how the intrusive
uncertainty quantification developments above require a substantial modification of the deterministic
finite volume solver. A non-intrusive way to handle the propagation of uncertainty is presented next.

2.8 Stochastic collocation for non-intrusive UP

Instead of using a Galerkin approach in building a residual formulation, we use a Dirac delta function:

Φjpyq � δpy � ypjqq where j � 1, . . . ,M. (2.52)

In practice, this function is such that»
Ω

fpyqδpy � ypjqq dΩ � fpypjqq. (2.53)

When applied to equation (2.32), we have that:

L

�
ypjq,

P̧

i�1

ai Ψipypjqq
�
� fpypjqq @j � 1, . . . ,M, (2.54)

meaning that deterministic partial differential equations must hold for all M parameter realizations.

Moreover, note that this approach allows a complete decoupling between space-time discretization
and computation of response statistics. Two possible strategies, affecting the locations ypjq, can be
used in this context:

• Cubature grid approaches. Samples are drawn according to cubature grids, therefore evaluating
expectations using numerical integration rules.
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• Regression approaches. The stochastic response at the sampling points is first fitted using a
system of basis functions. At a second stage, expectations are evaluated using the approximate
response.

This study focuses on the last approach. An intuitive graphical representation of a regression
methodology is schematically depicted in Figure 2.4, where the stochastic response in the whole
sample space is approximated from that at the sampling locations.

A few interesting properties result from this non-intrusive approach. Unlike methodologies based
on cubature grids, samples can be drawn at random if adaptivity is disregarded. This fact gives
more flexibility for example, when existing libraries of responses are available. Moreover, a great
advantage of non intrusive methodologies is that they don’t require any change to be applied to
existing deterministic solvers. This fact increases significantly the applicability of the presented
uncertainty quantification framework to real engineering problems. However, it must be noted that
accuracy of the deterministic solutions is assumed to be uniform in parameter space. In other words,
the solver must be able to handle, with comparable accuracy the computation of the solution for
all realizations of the parameters.

Figure 2.4: Schematic representation of a non-intrusive regression approach.

2.9 Multiresolution and Multiwavelets

Approximation in probability using orthogonal polynomial systems fails in providing sufficient accu-
racy for non-smooth stochastic responses. One on the challenges of modern uncertainty propagation
methodologies is to develop approximation frameworks that work well both in the continuous and
discontinuous cases. Our contribution follows this direction, using multiresolution approximations in
the context of non-intrusive regression.

2.9.1 Multiresolution Analysis

A multiresolution approximation of L2pr0, 1sq is expressed by means of a nested sequence of closed
subspaces V0 � V1 � � � � � Vj � � � � � L2pr0, 1sq, where each Vj � spantφj,kpyq : k �
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0, . . . , 2j � 1u and
φj,kpyq � 2j{2φp2jy � kq (2.55)

are generated by dilations and translations of a scaling function φpyq : r0, 1s Ñ R. The scaling
function φpyq is such that the closure of the union of Vj, i.e.,

�8
k�1 Vk, is dense in L2pr0, 1sq. Let

the wavelet subspace Wj denote the orthogonal complement of Vj in Vj�1, that is Vj�1 � Vj`Wj

and VjKWj. It can be shown that Wj � spantϕj,kpyq : k � 0, . . . , 2j � 1u where ϕj,kpyq is
generated from dilation and translation of a mother wavelet function ϕpyq : r0, 1s Ñ R, i.e.,

ϕj,kpyq � 2j{2ϕp2jy � kq. (2.56)

By the construction of the wavelet spaces Wj, it is straightforward to see that Vj � V0 `
pÀj

k�0 Wkq, and consequently V0 `
�À8

k�0 Wk

� � L2pr0, 1sq. Therefore, any function upyq P
L2pr0, 1sq admits an orthogonal decomposition of the form

upyq � α̃0,0φ0,0pyq �
8̧

j�0

2j�1̧

k�0

αj,kϕj,kpyq, (2.57)

where α̃0,0 � xu, φ0,0yL2pr0,1sq and αj,k � xu, ϕj,kyL2pr0,1sq. To simplify the notation, we rewrite
(2.57) in the form

upyq �
8̧

i�1

αiψipyq, (2.58)

in which we establish a one-to-one correspondence between elements of the basis sets tψi : i �
0, . . . ,8u and tφ0,0, ϕj,k : k � 0, . . . , 2j � 1, j � 0, . . . ,8u.

2.9.2 Multiwavelet Approximation

In the present study we adopt the slightly more complicated multiresolution of Alpert [8] where
multiple scaling functions tφipyq : i � 0, . . . ,m � 1u are used to construct V0. Specifically, we
choose φipyq as the Legendre polynomial of degree i defined on the interval r0, 1s. An orthonormal
basis tϕipyq : i � 0, . . . ,m � 1u for W0 is also established. More precisely, let Um � tupyq P
L2pr0, 1sq :

³
r0,1s upyq ym dy � 0u represent the subspace of functions in L2pr0, 1sq with m vanishing

moments. We then construct ϕi P Uj, j � 0, . . . , i �m � 1, with the orthonormality constraint
xϕi, ϕjyL2rp0,1qs � δij, i, j � 0, . . . ,m� 1, where δij is the Kronecker delta. The multiwavelet basis
functions ϕj,k are then generated by dilations and translations of tϕipyq : i � 0, . . . ,m� 1u.
The resulting basis is unique (up to the sign) and provides a generalization of Legendre and Haar
representations. In particular, Legendre polynomials can be obtained by stopping the expansion
at the resolution j � 0, while Haar wavelets are obtained for m � 0. If expanded in the Alpert
multiwavelet basis, sparse representations are likely to be observed for piecewise smooth functions.
Sharp gradients, bifurcations or discontinuities, for example in hyperbolic problems, motivate the
use of such dictionaries as multiwavelet with the ability of capturing these local features for which
global polynomials may not be adequate, see, e.g., [64]. In addition to several numerical advantages,
the orthogonality property of Alpert multiwavelets is also desirable allowing first and second order
statistics of u to be evaluated directly from the expansion coefficients. We refer the interested reader
to [8] for an in-depth derivation of the Alpert multiwavelet basis.

In an effort to provide a self-contained exposition on the proposed methodology, the derivation of
1D Alpert Multiwavelet basis is reported in the appendix.
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Examples of 1D Alpert Multiwavelets
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Figure 2.5: Examples of Alpert Multiwavelets with 3 and 4 vanishing moments, respectively.

Construction for arbitrary dimensionality

The construction of multiwavelet bases for L2pr0, 1sdq is presented in two successive stages. Some
intuition is developed first for the two dimensional case, followed by the construction for arbitrary d.

A modified notation is introduced where Vm
0 � V0 is the one-dimensional subspace generated by

tφipyq : i � 0, . . . ,m � 1u. For multiple dimensions, the vector m � tm1, . . . ,mdu is introduced
such that Vm

0 � Vm1
0 b � � � bVmd

0 is a product space spanned by tensorizations of one dimensional
Legendre polynomials. Any function u1py1, y2q P Vm

0 , m � tm1,m2u can be therefore expressed
as:

upy1, y2q �
m1�1¸
i�0

m2�1¸
j�0

δi,j φipy1qφjpy2q (2.59)

Note that the full tensor product space is needed in (2.59), resulting in a total number of terms equal
to m � m1m2. This relates to the fact that one dimensional Alpert Multiwavelets are piecewise
polynomial functions of maximum degree mi.

We now seek a space Wm
0 K Vm

0 containing continuous polynomials defined on the four quadrants
of r0, 1s2, respectively. Any function u2py1, y2q P Wm

0 can be expressed as:

u2py1, y2q �
m1�1¸
i�0

m2�1¸
j�0

αi,j φipy1qϕjpy2q �
m1�1¸
i�0

m2�1¸
j�0

βi,j φipy1qϕjpy2q�

m1�1¸
i�0

m2�1¸
j�0

γi,j φipy1qϕjpy2q.
(2.60)

By the orthogonality of the Legendre polynomials (rescaled on r0, 1s) respect to the uniform measure
and for the properties of the multiwavelet basis, we have:»

r0,1s2
u1py1, y2qu2py1, y2q dΩ � 0 @u1 P Vm

0 and @u2 P Wm
0 (2.61)

which implies orthogonality of the two spaces. We finally note that any function f of maximum
degree pm1 � 1qpm2 � 1q, continuous on the four quadrants of the unitary square, can be uniquely
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determined by 4m1m2 constants. If we expand this function according to the following expression:

fpy1, y2q �
m1�1¸
i�0

m2�1¸
j�0

δi,jφipy1qφjpy2q �
m1�1¸
i�0

m2�1¸
j�0

αi,jφipy1qϕjpy2q�

m1�1¸
i�0

m2�1¸
j�0

βi,jϕipy1qφjpy2q �
m1�1¸
i�0

m2�1¸
j�0

γi,jϕipy1qϕjpy2q.
(2.62)

We can see that exactly m1m2 constant are needed for each of the δ, α, β, γ families of coefficients.
So every function in Vm

1 can be uniquely determined as a combination of Vm
0 � spantφipy1q b

φjpy2q, i � 0, . . . ,m1�1, j � 0, . . . ,m2�1u and Wm
0 � spantφipy1qbϕjpy2q`ϕipy1qbφjpy2q`

ϕipy1q b ϕjpy2q, i � 0, . . . ,m1 � 1, j � 0, . . . ,m2 � 1u. Basis of Wm
j are obtained as usual, by

scaling and shifting operations.

For arbitrary dimensionality d the above procedure is generalized, providing basis for Vm
0 and Wm

0 ,
where m � tm1, . . . ,mdu. We first introduce an index set i � ti1, i2, . . . , id : 0 ¤ ij   mj, j �
1, . . . , du and define a single d-dimensional scaling function as:

φipy1, y2, . . . , ydq � φi1py1q . . . φidpydq. (2.63)

The complete set of scaling function Sd0 is given by:

Sd0 �
¤
iPI
φipy1, y2, . . . , ydq, (2.64)

where the set I contains all the
±d

j�1 mj possible combinations of index sets i. Before writing the
expression for the wavelet function we introduce the following notation:

ψ0
i � φi, ψ1

i � ϕi, ψki py1, y2, . . . , ydq � ψk1i1 py1q . . . ψkdid pydq where k � tk1, . . . , kdu.
(2.65)

We also define the set kq as the binary representation of q with d digits. The set Wd
0 of functions

spanning Wm
0 is defined as follows:

Wd
0 �

¤
iPI

¤
q�1,...,2d

ψk
q

i py1, y2, . . . , ydq. (2.66)

Similarly to the one-dimensional case, scaled and shifted analogues of the mother multiwavelets in
Wd

0 are used to generate approximation spaces of increasing resolutions. In particular, we use the
notationWd

0 pi, qq to identify single basis inWd
0 , as they are uniquely determined by the multi-index

i and permutation index q. At resolutions j ¡ 0 we also need to identify which of the 2jd uniform
subdivisions of r0, 1sd contains the given basis. To this aim, the coordinate vector s � ts1, . . . , sdu,
0 ¤ s1, . . . , sd   2j, is used. It follows that:

Wd
j pi, q, sq � ψk

q

i,spy1, y2, . . . , ydq � 2jd{2 ψk1i1 p2jy1 � s1q . . . ψkdid p2jyd � sdq. (2.67)

To conclude the present section, a simple example of approximation of a 2D function is illustrated
in figure 2.6, using order m � t0, 0u (Haar) and order m � t1, 1u multiwavelets with maximum
resolution level set to j � 3 (8x8 subdivisions of the unit square).
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Function to Approximate
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Figure 2.6: Examples of 2D Multiresolution approximation of a given function for m � t0, 0u and
m � t1, 1u.

Approximation Error in Multiwavelet Basis for deterministic sampling

Theoretical error bounds and decay rates for Multiwavelet approximation are also provided in [8].
For the one-dimensional case, consider a function f : r0, 1s Ñ R to be m-times differentiable, that
is, fpxq P Cmpr0, 1sq. We define Pm

j fpxq as the approximation of the function f at resolution j,
obtained using a multiwavelet dictionary with m vanishing moments. Interpolation with Chebyshev
polynomials of order m, gives:

}Pm
j fpxq � fpxq} ¤ 2�jm

2

4mm!
sup
xPr0,1s

|f pmqpxq| (2.68)

The rate of convergence (see, e.g. [55]) is hence m for the one dimensional case and generalize to
m{d for d dimensions. These are only a reference in our case as they assume all important scales
are included at the selected finer resolution. Note also that sampling is random in the proposed
framework as opposed to the Chebyshev points employed in the estimates above.

Remark 1 (Implementation details). Expression (2.67) can be used to derive software representa-
tions allowing efficient compression and reconstruction. It shows that five quantities are needed to
identify single multi-dimensional multiwavelet basis, namely αi (the expansion coefficient), j, i, q, s.
In practice i is determined by constructing multi-indexes, thus defining a one-to-one map between
the first

±d
i�1 mi numbers in N and the permuations of d indexes ik where 0 ¤ ik   mk. Similarly,

s is identified associating the set t0, . . . , 2jd � 1u to coordinate vectors in Rd.

Remark 2 (Numerical evaluation of 1D Alpert Multiwavelet Basis). A carefully selected numerical
integration scheme should be selected when constructing multiwavelet bases for Wm

0 ; such functions
are in fact discontinuous in x � 1{2. In our case, a separate numerical integration in r0, 1{2q and
r1{2, 1s, respectively, was implemented using a Clenshaw-Curtis rule. Numerical integration loops
are thus retained but with double quadrature points and weights modified accordingly.

2.10 Construction of Alpert Multiwavelets

B. Alpert [9] introduced a Multiwavelets basis which lead to the sparse representation of smooth
integral operators on a finite interval. We benefit from the Multiresolution analysis framework
discussed above and define the following indexes:
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• j is the resolution (or scale) index.

• k is the translation (or shift) index.

• m is the order index.

Consider Pm � L2pRq as the space of polynomials with order less than k. Furthermore, we define
the interval Sj,k as

Sj,k � p2jk, 2jpk � 1qq (2.69)

We then define:
Vm
j � tfpxq : if gpxq P Pm ñ fpxq � IpSj,kqgpxqu (2.70)

where IpSj,kq is the indicator function for the interval Sj,k. In other words, Vm
j is the space of

polynomials with order less than k, restricted to the interval Sj,k. A nested sequence of these spaces
can be defined as follows:

Vm
0 � Vm

1 � � � � � Vm
rmax � . . .

If we consider fpxq P V m
j as the scaling functions of a multiresolution approximation, the Alpert

Multiwavelets can be constructed as the basis of the associated detail space. In [8] a procedure is
reported to build a basis for the space Om

0 , the orthogonal complement of Vm
0 in Vm

1 . A typical
decomposition of Vm

j , which will be used in the schemes developed in the following sections, is:

Vm
j � Vm

0 `Om
0 `Om

1 ` � � � `Om
2j�1 (2.71)

In other words, we employ the Legendre Basis only at the coarser level (the full r0, 1s support)
expressing finer approximations in terms of Multiwavelet basis associated with detail spaces.

As a first step, the functions f1, . . . , fm are constructed with support in r�1, 1s, with given properties.
A basis ψ1, . . . , ψm for Om

0 , is then produced by squeezing the functions fi on a unitary r0, 1s support.

2.10.1 Properties of the function set F

A family of functions fi are build according to the following properties:

1. The set F � tfi : i � 1, . . . ,mu contains one dimensional real functions defined in r�1, 1s.
2. The restriction of fi to the interval r0, 1q is a polynomial of degree m� 1.

3. The function fi is extended to the interval r�1, 0s as an even or odd function according to
the parity of i� k � 1.

4. The functions in F satisfy the following orthonormality conditions:» 1

�1

fipxqfjpxq dx � xfi, fjy � δi,j, i, j � 1, . . . ,m. (2.72)

5. A function fj P F has the following vanishing moments:» 1

�1

fjpxqxi dx � 0, i � 0, 1, . . . , j � k � 2. (2.73)

The properties 2 and 3 define m2 degrees of freedom in the choice of the set F , while 4 and 5
provide m2 non trivial constraints, see [8].
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2.10.2 Incremental Construction from Basis Properties

The original scheme proposed by Alpert, provide a methodology in four steps to build the Mul-
tiwavelet function vector ψ � tψi, i � 0, . . . ,m � 1u. In the present paragraph we repeat that
construction to provide a unitary description of our UP framework. The functions f 1

1 , f
1
2 , f

1
3 , . . . , f

1
m

are defined as:

f 1
i pxq �

$'&
'%
xi�1, x P p0, 1s,
�xi�1, x P r�1, 0s,
0 otherwise

(2.74)

1. Gram-Schmidt orthogonalization is performed for functions f 1
i with respect to 1, x, . . . , xm�1,

to generate the set tf 2
i , i � 1, . . . ,mu.

2. The next steps yield m�1 functions orthogonal to xm, of which m�2 funtions are orthogonal
to xm�1, down to 1 function which is orthogonal to x2m�2. First, if at least one of f 2

i is not
orthogonal to xm, we reorder the functions such that it appears first, xf 2

1 , x
my � 0. We

then define f 3
i � f 2

i � ai f
2
0 where aj is chosen so xf 3

i , x
my � 0 for i � 2, . . . ,m, achieving

orthogonality to xm. Similarly, we orthogonalize to xm�1, . . . , x2m�2, each in turn, to obtain
f 2

1 , f
3
2 , f

4
3 , . . . , f

m�1
m , such that xf i�1

i , xjy � 0 for i ¤ j �m� 2.

3. Gram-Schmidt orthogonalization is performed on the functions fk�1
k , fkk�1, . . . , f

2
1 .

4. A normalization operation yields to the family fm, fm � 1, . . . , f1.

A set of basis for Om
0 , defined on r0, 1s, is then obtained by the following expression:

ψipxq � 21{2 fip2x� 1q, i � 1, . . . ,m. (2.75)

Please note that Alpert multiwavelet basis are unique (up to sign). Similar methodologies could
also be employed to build orthonormal bases resulting orthogonal to the monomials with degree less
than m. For example, the procedure reported in [64] is similar to that suggested by Alpert, the main
difference being step 5 in the definition of fi (or step 2 above), where both indexes are defined as
i, j � 0, . . . , k � 1. A graphical representation of the one dimensional Alper Multiwavelet basis for
Om

0 is illustrated in figure 2.5 for m � 3 and m � 4 respectively.



52 CHAPTER 2. SPECTRAL EXPANSION METHODS FOR UNCERTAINTY PROPAGATION



Chapter 3

A Compressed Sensing Approach to
Uncertainty Propagation

3.1 Rudiments of Compressive Sampling

Compressive Sampling (CS) is a new direction in signal processing that breaks the traditional limits
of the Shannon-Nyquist sampling rate for reconstruction of sparse signals. Consider a vector of
measurements u � pupyp1qq, . . . , upypMqqqT P RM of u P L2pr0, 1sq. Assuming that u admits a
multiwavelet expansion of the form (2.58) with some finite m and resolution j, u can be represented
as u � Ψα, where the so-called measurement matrix Ψ P RM�P contains the realization of the
multiwavelet basis tψipyqu corresponding to u and α P RP is the vector of unknown expansion
coefficients. Here, P is the cardinality of the truncated multiwavelet basis. Then u has a sparse
multiwavelet representation if }α}0 � #tαi : αi � 0u ! P . For a sufficiently sparse u, CS recovers
u exactly using some M ! P measurements by solving an optimization problem of the form

min
αPRP

}α}s subject to u � Ψα. (Ps)

The sparsest solution α to (Ps) corresponds to s � 0, i.e., minimizing the `0 semi-norm }α}0,
which is generally NP-hard to compute. To break this complexity several heuristics based on greedy
pursuit, e.g., Orthogonal Matching Pursuit (OMP), and convex relaxation via `1-minimization, i.e.,
s � 1, have been proposed, among other approaches. Moreover, several metrics such as the mutual
coherence, [19], or the restricted isometry property, [21], have been introduced to provide guarantees
on the uniqueness of the sparsest solution to (Ps) as well as the ability of the heuristic approaches
in recovering the solution. In particular, the mutual coherence of Ψ (e.g., see [19]) is defined as

µpΨq � max
i�j

|ψT
i ψj|

}ψi}2 }ψj}2 , (3.1)

where ψi P RM is the i-th column of Ψ. Note that µpΨq P r0, 1s in general, and that it is
strictly positive for M   P . Depending on the sparsity level }α}0„ the mutual coherence provides a
sufficient condition on the number M of measurements for a successful recovery of α from Ps, as
shown in [19].

Finally, for cases of signals which are nearly sparse of affected by errors, a noise-tolerant version of
pPsq can be written as:

min
αPRP

}α}s subject to }u�Ψα}2 ¤ ε. (Ps,ε)

53
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3.2 Sparse Reconstruction Algorithms

3.2.1 Semi-norm Relaxations and Greedy Pursuits

Sections 3.2.2 and 3.2.3 have been explicitly devoted to discuss the OMP and TOMP strategies,
employed in our numerical investigations. As a large body of literature exists on methodologies
providing linear representations of signals according to redundant dictionaries of functions (sometimes
addressed as waveforms or atoms), we here discuss some of the main available alternatives.

The matching pursuit algorithm (MP) [67] naturally opens our discussion, as it provides ground for
many signal recovery techniques. It provides a sensing mechanism where coefficients are progressively
chosen based on their correlation with the current residual vector. An implementation is suggested
in [67], where an initial dictionary is selected and new atoms are progressively added based on local
maximum correlations. A recursive update procedure is also discussed for the residual which makes
the algorithm appealing for large problems as demonstrated with examples adopting time-frequency,
Gabor and wavepacket dictionaries. Note that the residual vector produced by MP is only orthogonal
to the last selected waveform. This might lead to slow convergence even if the selected atoms form
a basis for the underlying vector space.

CoSaMP [73] and StOMP [35] are greedy heuristics built on top of the OMP algorithm. Both
approaches use the quantity ΨT rk (referred as signal proxy and matched filter, respectively) to
select atoms associated with significant expansion coefficients. They accommodate fast matrix-
vector products, both for extracting the above correlations and for iteratively solve of least squares
problem. As a consequence of including multiple atoms in the support set, speed ups are obtained
respect to a standard OMP implementation. Thresholding and pruning operations are implemented
differently for the two algorithms. Convergence results are provided for uniform spherical, uniform
random and Gaussian matrix ensembles or for matrices associated with bounded restricted isometry
constants.

Reference sparsity-undersampling tradeoffs are obtained using l1 relaxations of the l0 seminorm.
These can be obtained by linear programming techniques such as Simplex or Interior Point methods,
see [25]. The computational cost associated to solving large scale problems can however be a concern
for these approaches.

Iterative thresholding techniques solve linear inverse problems by minimizing l1 regularized convex
problems of the form:

min
xPRP

tfpαq � λ}α}1u where λ P R¥0, fpxq � }Ψα� u}2 (3.2)

Due to the separability of the l1 norm, a typical ISTA (Iterative Shrinkage-Thresholding Algorithm)
iteration is expressed as:

xk � TλtkpGpxk�1qq � Tλtkpxk�1 � tk∇fpxk�1qq � Tλtkpxk�1 � 2 tkΨ
T pΨ xk � uqq (3.3)

where Tα : RP Ñ RP is the thresholding operator, tk ¡ 0 is a suitable step parameter and G
a gradient operator. Iteration (3.3) is computationally appealing. The main cost relates to mul-
tiplications with matrices ΨT and Ψ and can be efficiently implemented with fast matrix-vector
operators available in many cases, while component-wise thresholding is relatively inexpensive. Un-
fortunately ISTA converges slowly only at a sublinear global rate. Successful attempts to improve
this convergence rate to almost quadratic were explored in [14] resulting in the FISTA approach,
with modified iteration of the form xk � TλtkpGpyk�1qq. Even with improved convergence rates,
FISTA still shows sparsity-undersampling tradeoffs which are significantly worse than obtained with
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Linear Programming optimizations. Improved tradeoffs for sparse signal recovery are obtained with
the Approximate Message Passing (AMP) algorithm [37].

An optimization approach is followed in the development of the spgl1 algorithm [90], tracing the
Pareto curve between least squares fit and l1 norm of the solution. This algorithm scales well to
large problems, requiring only matrix-vector multiplications.

The use of Iteratively re-weighted least squares minimization techniques (IRLS) for sparse recovery
is investigated in [32]. Minimum lp, p P p0, 1s norm solutions are obtained by weighted surrogates
of the l2 norm. A possible implementation is discussed in [24].

Finally, we mention re-weighted l1 minimization strategies, developed in [22]. In [41] it is shown that
a careful choice of weighted l1 norms might result in better reconstructions of a piecewise smooth
signal respect to the TMP or TOMP heuristics.

Note that sparsity and affordable maximum resolution are two inter-related concepts. In theory, one
can always obtain sparse representations of a piecewise smooth response with a sufficiently large
dictionary. In practice, one can afford only dictionaries where a solution of the associated P0 problem
can be computed in a reasonable time. This means that, for a general response, computational con-
straints might lead us to violate the assumption of sparsity resulting in less favorable undersampling
for accurate reconstruction. Nonetheless, OMP heuristics were developed before recent trends in CS
and adopted to solve linear inverse problems with general waveforms. This motivates our preference
for greedy MP-based heuristics.

3.2.2 OMP Algorithm

The orthogonal matching pursuit algorithm (OMP) is a widely used strategy for the solution of P0.
It improves on the matching pursuing heuristics by computing a residual vector which is orthogonal
to all the atoms included in the index set. This can be seen considering ΨIk , the restriction of the
measurement matrix to the index set at the current iteration and writing:

ΨT
Ik rk � ΨT

Ik pu�ΨIkαkq � ΨT
Ik u�ΨT

Ik ΨIkαk. (3.4)

If an approximate solution αk is evaluated using least squares, i.e. αk � pΨT
IkΨIkq�1ΨT

Ik u, then
ΨT

Ik rk � 0, demonstrating the properties of the algorithm.

For each iteration, only one atom (normalized measurement columns are assumed here) is incre-
mentally added to the support set, based on the correlations |xψi, rky|.
Given the localized nature of the employed multiresolution dictionary and as a result of undersam-
pling, it can happen that ψi� � 0 for some i� P t1, . . . , P u. A degenerate atom thus results. In
this case, βpi�q � 0 (see Algorithm 1) is set, avoiding i� to be inserted in the index set I. Once all
columns with ψi� � 0 have been added to the support set, OMP must therefore terminate. Finally,
we use the LSMR algorithm [44] to solve for least squares at every iteration.

3.2.3 TOMP Algorithm

The observation that piecewise smooth functions are characterized by a connected subtree repre-
sentation in Wavelet space leads to modified implementations of the OMP algorithm, as described
in [60, 59, 40]. Atoms are progressively inserted in the support set together with their ancestors,
in an effort to perpetuate their connected subtree structure. As already discussed for the CoSaMP
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Algorithm 1 Orthogonal Matching Pursuit Algorithm - OMP
Inputs:

Measurement Matrix Ψ.
RHS Vector u.
Maximum allowable iterations kmax.
Convergence Tolerance δ.

Outputs:
Solution Vector α.

Initialize:
Iteration Count k Ð 0.
Initial Solution α0 Ð 0.
Initial Residual r0 Ð u.
Initial Support set I Ð t0u.
W Ð diagp}ψi}2q
Set to unitary columns Ψ̃ Ð Ψ W.

while }rk}2 ¡ δ And k   kmax do
(Sweep)
for all i R Ik do

βpiq � |ψ̃T
i rk|.

end for
k Ð k � 1.
(Update Support Set) Ik � Ik�1

�targ maxi βpiqu.
(Solve with LS) Ψ̃k � tψ̃1, . . . , ψ̃ku @ i P Ik. Solve Ψ̃T

k Ψ̃kαk � Ψ̃T
ku.

(Update Residual) rk � u� Ψ̃αk.
end while
Return:

W�1αk
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Algorithm 2 Tree-based Orthogonal Matching Pursuit Algorithm - TOMP
Inputs:

The number of samples M , basis cardinality P .
Matrix Ψ
Vector u
Maximum allowable iterations kmax
Tolerance δ.
Coefficients γ, ρ

Outputs:
Solution Vector α.

Initialize:
k Ð 0.
Initialize Residual r0 Ð u.
Initialize index set I0 Ð t0u.
W Ð diagp}ψi}2q
Set to unitary columns Ψ̃ Ð Ψ W.
Define I as the set of all columns of Ψ̃.

while }rk}2 ¡ δ And k   kmax And cardpIkq   ρM do
cik � |ψ̃T

i rk�1| where i P IzIk�1

ci,Max
k � maxitcik : i P IzIk�1u
Sk � ti : cik ¥ γ ci,Max

k u
for all i P Sk do

Fi Ð Ancpiq.
Assemble Ψ̃k with Ik�1 Y Fi.
αi � pΨ̃T

k Ψ̃kq�1Ψ̃T
ku

rpiq � }u� Ψ̃kαi}2
end for
ik � arg miniPSk rpiq
Ik � Ik�1 Y Fik .
rk � rik .

end while
Return:

W�1αk
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and StOMP algorithms, faster execution times result by sensing more than one index per iteration
respect to OMP. Two slightly different approaches have been recently proposed in the literature.

We start by clarifying some common notation. Atoms in a multiresolution representation are naturally
associated to a scale index j and shift index k P t0, . . . , 2j � 1u. As wavelets satisfy a two-scale
refinement equation and as the number of atoms at successive resolution increase by a factor of two,
the representation is isomorphic to a binary tree pT q. In this Section, we denote atom i with scale
and shift pi, jq. An atom pi, jq P T is the father of pi � 1, 2jq and pi � 1, 2j � 1q; the ancestors
of pi, jq are denoted by Ancpi, jq and are obtained by recursively including fathers up to the root.
Note that pi, jq P Ancpi, jq. Similarly, the descendants of pi, jq, Descpi, jq or Descpi, jqb result
from including all the children of pi, jq up to the maximum available scale index, or a specific limit
i � b. A binary tree is connected if pi, jq P T implies Ancpi, jq P T . An atom is a leaf for T if
Ancpi, jq P T while Descpi, jq R T .
In [40] a b-TMP procedure is proposed where two index sets are iteratively updated. At iteration k,
Sk contains the indexes already in the support, while Ck contains the possible candidates. Once an
index i with maximum correlation is found in Sk Y Ck then it is added to Sk, while Ck is updated
with Descpi, jqb. In other words, b is used as a look ahead parameter which allows to progressively
include atoms which conform to the connected tree structure.

In [60, 59], the sensing step leads to a set Sk of candidate leaves with cardinality |Sk|. In practice,
all atoms with cik ¥ γ ci,Max

k are inserted in Sk. For all i P Sk, a set Fi is formed containing node
i together with Ancpi, jq. The node i generating the minimum residual from |Sk| least squares
problems is now added to the support set. For a given number of samples M , the iterations are
stop whether |Sk| ¡ ρM . Optimal values of γ � 0.975 and ρ � 2.0 are suggested in [60, 59].

Our implementation follows this second approach which, in our opinion, gives somehow more flexi-
bility in the sensing stage, though this may results in a limited computational overhead.

The above algorithms were developed for scalar tree representations; vector Multiwavelets trees are
used in our case. While all the other steps remain practically unchanged, the selection of the ancestor
set can be implemented in different flavors. For example, in case a leaf is selected whose basis has
m vanishing moments, we might wonder how many vanishing moments should be allowed for the
basis to be included in the ancestor set. In our implementation, we choose to include multiwavelet
with all vanishing moments.

Finally, we remark that the efficiency of the signal reconstruction procedure is usually dependent on
the noise parameter δ. An excessively small value of δ might result in missing the recovery of a suf-
ficiently close sparse approximation of the response, while larger values of δ might tolerate excessive
noise. In [39, 17] a procedure based on cross validation is proposed to find an optimal value for the
noise tolerance. This technique is surely effective in reducing the number of parameters involved
but requires multiple solutions of smaller-size problems, which may affect the overall reconstruction
time, in particular for large measurements setups.

3.3 Recovery Performance of Multiwavelet Measurements

Phase diagrams [33] offer intuitive representations of sparsity-undersampling tradeoffs for CS re-
covery. In the present study, they are employed to compare between selected matrix ensembles.
Gaussian, multiwavelets and measurements matrices assembled from preconditioned bounded or-
thonormal systems [79] are used in our examples. Parameters have been selected as shown in tables
3.1 and 3.2. An average mutual coherence is also computed from the repeated reconstructions for
every point in the diagrams.
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Parameter Value

Steps along the δ axis 40
Steps along the ρ axis 40
Number of repetitions for every single reconstruction 100
Solution matching tolerance (relative l2 error norm) 10�3

Solver tolerance on the residual norm relative to the RHS 10�5

Maximum number of iterations 3000

Table 3.1: Parameters for Phase Diagram generation

Case Matrix Type Sampling Dim m rmax P Figure

1 Gaussian - - - - 200 Fig. 3.1
2 Rescaled Legendre Uniform 5 3 - 252 Fig. 3.2
3 Rescaled Legendre Chebyshev 5 3 - 252 Fig. 3.3
4 Multiwavelet Uniform 3 2 0 216 Fig. 3.4
5 Multiwavelet Chebyshev 3 2 0 216 Fig. 3.5
6 Multiwavelet Uniform 2 2 1 144 Fig. 3.6

Table 3.2: Generated Phase Diagrams

Figure 3.1, generated using Gaussian random measurements produces the expected sharp transition.
Tradeoffs for random Legendre ensembles confirm that Chebyshev sampling is optimal for such
orthogonal system. Smaller mutual coherences and higher success rates are obtained using Chebyshev
sampling (with associated preconditioner), as expected. Uniform and Chebyshev sampling have also
been compared for random multiwavelet ensembles with lowest resolution atoms. Opposite trends
can be observed compared to Legendre case. This suggests that optimality of the Chebyshev
measure cannot be easily extended to multiresolution orthogonal systems. Furthermore, we focus
our attention to random multiwavelet dictionaries with atoms at maximum resolutions 0 and 1,
respectively. Results from uniform sampling show how the coherence of this basis set increases by
including higher resolutions. This leads to less favorable transitions.

Finally, note that magnitudes of exact solution coefficients are drawn from a standard normal dis-
tribution in our tests, while the support is obtained by successive scrambling. This may alter our
perception for performances associated to real stochastic responses.

3.4 Sampling Strategies for CS-MW

A natural way to obtain the measurements u is to generate random realizations of the input y and
evaluate the corresponding solution upyq. However, for situation where u exhibits, for instance,
sharp gradients or discontinuities, such sampling strategy may not necessarily lead to accurate
approximation, using CS with a limited number of realizations. This is because the higher resolution
basis functions needed to capture the local structure of u may not be sampled enough to constitute
a well-conditioned measurement matrix Ψ.

In [79], for example, the optimality of Chebyshev sampling is discussed for a large class of orthogonal
polynomial systems. We therefore start by a comparison between Chebyshev and Uniform sampling
for multiresolution dictionaries. An Importance Sampling approach is discussed next, allowing local
accumulation of samples.



60CHAPTER 3. A COMPRESSED SENSING APPROACH TO UNCERTAINTY PROPAGATION

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

ρ
=

 k
/n

s

δ = ns/P

Gaussian Matrix Phase Diagram

0

0.2

0.4

0.6

0.8

1

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

ρ
=

 k
/n

s

δ = ns/P

Gaussian Matrix Mutual Coherence

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Phase Diagram for Gaussian Matrix
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Figure 3.2: Phase Diagram for a Legendre Measurement Matrix - Uniform Sampling

3.4.1 Optimality of Chebyshev Sampling for MRA

The Chebyshev probability measure on r0, 1s is defined as ρCpyq � 2.0{pπa1� p2y � 1q2q. A
uniform random variable y P r0, 1s can be mapped to a random variable ŷ P r0, 1s with Chebyshev
distribution using ŷ � psinrπpy�0.5qs�1q{2. The family of rescaled Legendre polynomials on r0, 1s
is denoted as Lipyq : Ω Ñ R, where y P Ω is a random variable associate with distribution ρpyq
and i P N is the degree of every member. In [79] it is observed that a signal which is s-sparse in a
Legendre basis Lipyq, i � t0, . . . , P �1u, not affected by noise, can be reconstructed exactly solving
P1 on a number of Chebyshev distributed random sampling points equal toM ¥ C s log4pP q, where
C is a constant. The function gpyq � a

ρCpyq provides a square-integrable envelope function for
Lipyq and therefore measurement matrices with atoms Lipyq{gpyq will exhibit bounded restricted
isometry constants consistent with that of a uniformly bounded, orthogonal systems.

In an effort to extend the previous argument to MRA, we note that, at the coarsest resolution,
φipyq � Lipyq and therefore the Chebyshev measure is optimal for the global scaling family. However,
multiwavelet analogues ϕipyq are discontinuous with unbounded values at t0, 1{2, 1u, for increasing i.
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Figure 3.3: Phase Diagram for a Legendre Measurement Matrix - Chebyshev Sampling
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Figure 3.4: Phase Diagram for a Multiwavelet Measurement Matrix with no details - Uniform
Sampling

As gp1{2q � 1, it follows that ϕip1{2q{gp1{2q is not bounded for increasing i. This is also suggested
by the fact that Vj ` Wj � Vj�1, and what happens in t0, 1u with Lipyq simply translates to�
k�0,...,2j�1t2�j k, 2�j pk�1qu for arbitrary j. While a simple extension applies multiple Chebyshev

measures within every partition at the finer resolution, we won’t explore further this possibility in
the present work.

Our arguments are also supported by numerical experiments. A subset of the phase diagram results
for cases 2,3,4,5 (table 3.2) are extracted to facilitate an immediate comparison. Figure 4.3 con-
tains the results obtained for the Legendre and Multiwavelet ensembles. Cumulative distributions
of mutual coherence are determined for fixed sparsity-undersampling ratios. The best results are
observed for the Chebyshev-Legendre and Uniform-multiwavelet matches.

Next, a different sampling strategy is proposed which might further improve on uniform sampling.
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Figure 3.5: Phase Diagram for a Multiwavelet Measurement Matrix with no details - Chebyshev
Sampling

3.4.2 Importance Sampling

Importance Sampling is a well known variance reduction methodology in Monte Carlo estimations.
Sampling is performed according to a modified distribution, which promotes the important regions
of the input variables and the quantity of interest whose expectation is sought.

An insight on the typical wavelet structure of piecewise smooth functions is given in [40]. In
particular, the wavelet coefficients of piecewise smooth functions tend to form connected subtrees
within wavelet trees. Additionally, a large wavelet coefficient (in magnitude) generally indicates
the presence of a local singularity or sharp gradient. The above considerations form the basis of
our sampling strategy. The idea is to concentrate samples at locations where large multiwavelet
coefficients are observed while preconditioning the basis to maintain orthogonality. The proposed
importance sampling consists of a number of steps that are applied iteratively:

1. A multiwavelet approximation up to a given m and resolution j is obtained by solving pP0q.

2. The coefficients αi are sorted in decreasing order, based on the quantity |αi|{|supppψiq|, where
|supppψiq| is the size of the support of ψi.

3. A sample is drawn in supppαiq according to a uniform distribution only if |αi| ¡ αtol (αtol �
1.0� 10�3 is used in the present study).

3.4.3 Preconditioning

Assuming y is uniformly distributed on r0, 1s, i.e., ρpyq : r0, 1s Ñ 1, the direct application
of the above modified sampling leads to measurement matrices Ψ with large mutual coherence
µpΨq. This is because the multiwavelets are orthogonal with respect to the measure ρpyq, i.e.³1

0
ψipyqψjpyq dy � δij. A correction, therefore, is needed to retain orthogonality for sufficiently

large M . Let γpyq : r0, 1s Ñ R¥0 denote the density function according to which the (independent)
modified samples ypkq, k � 1, . . . ,M , are distributed and ψ̂ipyq � ψipyq{

a
γpyq be the scaled
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Figure 3.6: Phase Diagram for a Multiwavelet Measurement Matrix where first order details have
been included - Uniform Sampling
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Figure 3.7: Mutual coherence distribution for random Legendre (a) and Multiwavelets (b) matrix
ensambles

multiwavelet basis. Then,

1

M

M̧

k�1

ψ̂ipypkqq ψ̂jpypkqq a.s.ÝÝÑ
» 1

0

ψipyqa
γpyq

ψjpyqa
γpyq γpyq dy � δij, (3.5)

as a result of the strong law of large numbers.

In the CS framework, this translates in sampling according to γpyq and using a modified measurement
matrix Ψ̂ � WΨ and the data û � Wu with the preconditioner matrix W � diagp1{

a
γpypiqqq ,

i � 1, . . . ,M .

We now discuss how a piecewise constant measure γpyq can be defined on partitions of r0, 1s
associated with a (truncated) multiwavelet representation. We focus on establishing a one-to-one
relationship between a scalar wavelet tree and a partition of r0, 1s. Vector trees (whose vertices
are arrays of numbers) are used to store multiwavelet representations while scalar trees are usually
adopted for wavelets. A partition of r0, 1s is build by first forming a scalar connected subtree T ,
obtained by pruning all vertices with coefficients αi with |αi|   αtol. The leaves (L in total) of T
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are identified, their supports form a set of disjoint intervals tBi : i � 1, . . . , Lu which result in the
desired partition of r0, 1s.
Using the coefficient-driven sampling discussed above, γpyq is defined as a piecewise constant dis-
tribution. In particular, a set of probability masses pi � 2�jpMi{Mq for every box Bi is considered
in which Mi is the number of samples within the interval Bi (with |Bi| � 2�j), j is the resolution
level of the associated leaf, and M is the total number of available samples.

Marked

Marked to restore a 
connected subtree

Unmarked

Leaves

Figure 3.8: Identification of leaves on Multiwavelet tree

3.4.4 Numerical tests

To conclude this Chapter, we present two numerical examples. In the first example we consider two
multiwavelet atoms with nested support and show the effect of importance sampling and precon-
ditioning on their inner product. The second example, a sparse piecewise smooth signal of known
tree representation is approximated by solving (P0) with OMP, TOMP, uniform and Importance
Sampling.

Multiwavelet Basis Product

In the present section, φi1j1,k1 and φi2j2,k2 are used to indicate two multiwavelet atoms with resolution
j1, j2, translated by k1, k2 and with i1, i2 vanishing moments. In practice, we choose j1 � 0, k1 � 0,
i1 � 2 and j2 � 3, k2 � 7, i2 � 2 respectively. A scalar tree with two leaves is associated to the
resulting dictionary; therefore, B1 � r0.0, 0.875q while B2 � r0.875, 1.0s. The samples are drawn
proportionally to the two interval of the refinement, that is:

r1 � |B2|{p|B1| � |B2|q, r2 � |B1|{p|B1| � |B2|q, M1 � tM, r1u, M2 �M �M1. (3.6)

A preconditioner is derived by p1 and p2 which determine a piecewise constant measure over r0, 1s,
as follows

|B1| p1 � |B2| p2 � 1, p1{p2 �M1{M2 � c, p1 � c p2, p2 � 1{p|B1| c� |B2|q. (3.7)

Figure 3.9 shows the results in terms of inner product vs. number of samples. The basis product
convergence faster to zero adopting importance sampling together with dictionary preconditioning.
Note that preconditioning is essential to restore asymptotic orthogonality.
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MW Basis product vs. Number Of Samples
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Figure 3.9: Basis product vs. Number of samples for Uniform and Importance Sampling

Reconstruction of sparse signals with known tree representation

As a second numerical experiment, we study the successful recovery rates for two piecewise smooth
sparse signals as a result of adopting different sampling strategies and greedy heuristics (i.e. OMP,
TOMP).

Before discussing our numerical experiments, we define the `p, `8 norms we use to quantify the
distance of discretely sampled signals.

`p �
�

1

M

M̧

i�1

|uapproxpypiqq � uexpypiqq|p

1{p

, `8 � max
i�0,...,M

|uapproxpypiqq � uexpypiqq| (3.8)

We choose two functions, f1 and f2, as follows:

f1 �
"

sinp40yq if y   0.25
10 sinp15yq otherwise f2 �

"
1 if y   0.75
10 sinp15yq otherwise (3.9)

A one dimensional multiwavelet basis with j P t0, . . . , 7u and m � 2 (2 vanishing moments) is also
selected, resulting in a dictionary with cardinality equal to 768.
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Figure 3.10: Adopted Piecewise smooth signal for reconstruction tests

Figure 3.10 shows the selected signals together with the associated envelope scalar trees. Note that
both signals exhibit a connected scalar tree representation.
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Tests are performed as follows: an increasing number of samples is drawn from 10 to 694 with
increments of 36 samples. They are placed uniformly at random or using an Importance Sampling
approach as highlighted in Section . Reconstructions are performed using OMP and TOMP to solve
(P0,ε) 500 times. The relative `2 errors on 1000 randomly samples points is plotted in Figure 3.11
against the number of samples.
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Figure 3.11: Relative reconstruction errors vs. number of samples at 1000 random locations.

Different choices of ε are necessary to compare optimal performances of OMP and TOMP. Fig-
ure 3.12 shows the `2 residual norm versus index set cardinality produced by the OMP and TOMP
algorithm, respectively. A fixed tolerance on the residual norm clearly translates in two different
cardinalities. OMP performs a careful selection of one support location per iteration while a larger
connected subtree index set is used by TOMP.

To establish a fair comparison between the two algorithms, we employ cross validation, i.e., we run
every reconstruction using 11 noise levels from 10�1 to 10�5 and using the results which produce
the minimum residual over a subset of the total samples. In practice, we maintain a training/testing
ratio of 3{4 throughout the simulation.

From Figure 3.11, it can be seen how TOMP and Importance Sampling result in the best performance
in particular when a limited number of samples are used. For an increasing number of samples OMP
eventually provides the best relative reconstruction errors.
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Chapter 4

Benchmarks and Applications

4.1 Remarks on implementations of CS-MW UQ

In the present Section, all previous discussions on approximation dictionary, sparse reconstruction
algorithms and sampling strategies are assembled into a framework for uncertainty propagation. As

Algorithm 3 CSMW algorithm
Inputs:
The number vanishing moments m.
The maximum resolution level jmax.
The maximum number of samples together with their increment M,∆M .
Algorithm:
InitMWTree() � Initialize Multiwavelet tree structure.
for all l � 1 ÑM do

AddSamples() � Add samples uniformly or based on Importance Sampling.
EvalModelResponse() � Perform deterministic simulations.
BuildMWMatrix() � Build MW Measurement Matrix.
if Importance Sampling then

AssembleCompactCoeffVector() � Shrink Coefficient Vector to envelope scalar wavelet.
RestoreCompactTreeConnectivity() � Restore the connectivity in the envelope scalar tree.
BuildHyperCubeRefinement() � Build Hypercube Refinement.
AddSamplesToRefinement() � Add Samples To refinements.
BuildSamplePreconditioner() � Build Preconditioner.
ApplyPreconditioner() � Apply preconditioner to Matrix and RHS.

end if
SolveSparseRecovery() � Solve with OMP, TOMP etc.
EvalStatistics() � Evaluate statistics from expansion coefficients.
CheckConvergence() � Evaluate convergence to global statistics.

end for

presented in algorithm 3, adaptivity is considered only from a sampling perspective. In other words,
it is used as a strategy to place samples at locations where important features are expected for the
response at increasingly finer scales. Alternatively, approximants might also be parameterized by
the number of vanishing moments, affecting the cardinality of the Legendre father wavelet family.
Moreover, an adaptive procedure based on local resolution increments could also be also conceived.

For practical applications it is also important to provide an error estimation methodology, allowing
the iterative procedure to be stopped when a sufficiently close approximation of the stochastic
response is reached. Methodologies based on cross validation look promising in this regard, where
reconstructions are performed over a subset of the available samples while the remaining ones are
used for error evaluation.

Remark 3 (Multi-Element Generalization). A straightforward generalization of the proposed frame-
work can be obtained by subdividing the unitary hypercube in smaller elements, using the CS-MW

69
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methodology within each subdomain. Two significant advantages will immediately results: an uncou-
pled propagation step will result for all subdomains and local approximations will promote sparsity.
As a consequence, parallel implementations could produce significant speed ups, and recovery pro-
cedures will be more effective in producing accurate representations.

4.2 Transformation to Gaussian measure

We use CSMW to evaluate the statistics of a r.v. ŷ associated to standard normal distribution. As
multiwavelets form an orthonormal dictionary in L2pRq respect to the uniform measure, we need
to transform ŷ to a variable which is Upr0, 1sq. We therefore project it onto the standard normal
cumulative distribution. If ŷ P p�8,�8q, then its cumulative distribution P pŷ ¤ ŷiq is defined as
P pŷq : RÑ r0, 1s which provides the sought transformation. We have:

ŷ � P�1pyq, µpŷq �
» 1

0

ŷ 1 dy �
» 1

0

P�1pyq 1 dy. (4.1)

A graphical representation of the function to integrate is illustrated in Figure 4.1a. As a result of
the transformation from an infinite to a finite support, we have that P�1pyq Ñ �8 for y Ñ 0 and
P�1pyq Ñ �8 for y Ñ 1. Asymptotes in t0, 1u are difficult to interpolate for modest resolutions
and convergence to the final statistics is consequently slowed down.
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Figure 4.1: Inverse cumulative mapping with tree represetation (a). The distribution of samples is
also shown, generated by Importance Sampling using only coefficient magnitudes (b) and divided by
the support size (c)

A straightforward remedy which is naturally applied in practical applications, is to perform a trunca-
tion of the standard normal distribution. A truncation level is selected in our case which corresponds
to a total probability of 2.0� 10�4.

Convergence profiles are shown in figure 4.2; faster convergence is obtained for the CSMW approach
respect to the MCS and LHMCS methods. It is also shown that convergence can be further improved
by increasing the maximum resolution level of the multiwavelet approximant.
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Convergence for Truncated Gaussian Mapping
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Figure 4.2: Convergence for Truncated Gaussian Mapping

4.3 Non smooth approximation from Agarwal et al.

A non smooth function is prosed in [2] as follows:

uexpξ1, ξ2q �
#

0, if ξ1 ¡ α1, ξ2 ¡ α2

sinpπξ1qsinpπξ2q, otherwise
(4.2)

with α1 � 0.5 α2 � 0.5. A graphical representation of the function is shown in figure 4.3a.
Its support is only defined in the third quadrant of the unitary plane r0, 1s2. As a result, global
approximation methods offer poor approximations due to the discontinuities located at y1 � 1{2
and y2 � 1{2. Note that it is instead particularly well suited for our multiresolution framework giving
rise to a sparse expansion in the employed dictionary, as shown by the envelope scalar multiwavelet
tree in figure 4.3c. A 2D representation of the scalar wavelet tree leaves and associated coefficients
is depicted in figure 4.3b.
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Figure 4.3: Probability of successful reconstruction (a) and mutual coherence distribution (b) for
random Legendre matrix

Figure 4.4 shows the convergence profiles in terms of `1, `2, `8 norms based on 103 random
locations. Convergence rates are compared for two independent runs of the OMP and TOMP
solvers with Importance Sampling. It is clear how TOMP performs better than OMP in this case
requiring nearly half of the samples.
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Figure 4.4: Convergence `1, `2, `8 norms for non smooth function from Agarwal et al.

4.4 Kraichnan-Orszag (K-O) Problem

The Kraichnan-Orszag (KO) problem is derived from simplified inviscid Navier-Stokes equations
[58], and is expressed as a coupled system of non-linear ODEs. We here adopt a rotated version of
the original KO problem

du1

dt
� u1 u3,

du2

dt
� �u2 u3,

du3

dt
� �u2

1 � u2
2, (4.3)

with initial conditions specified below.

In [93], the KO problem is used as a benchmark and analytical solutions are provided in terms
of Jacobi’s elliptic functions. If the set of initial conditions is chosen such that the bifurcation
point pu1, u2, u3q � p?2, 0, 1q is consistently crossed, it is shown that the accuracy of the global
polynomial approximations (at the stochastic level) deteriorates rapidly with time.

4.4.1 Results for 1D KO Problem.

Initial conditions for (4.3) are assumed to be uncertain and specified as

u1pt � 0q � 1 ; u2pt � 0q � 0.2 y � 0.1 ; u3pt � 0q � 0, (4.4)

where y is uniformly distributed on r0, 1s. The stochastic response is evaluated at t � 20s and
t � 30s using a multiwavelet dictionary with m � 3 and a resolution up to j � 7. The OMP
solver was used with a relative tolerance ε � 1.0� 10�4. The time history of the standard deviation
for variable u1 together with the reconstructed response at t � 30s and convergence graphs are
illustrated in Figure ??. The error metric εrel � |σCSMW � σ̂|{σ̂ is also evaluated where σCSMW is
the estimate for the standard deviation calculated with the CS-based multiwavelet expansion and σ̂
the corresponding exact value.

4.4.2 Results for 2D KO Problem at t � 10s.

The initial conditions of the Kraichnan-Orszag problem are again assumed to be uncertain but this
time are functions of two random variables

u1pt � 0q � 1 ; u2pt � 0q � 0.2 y1 � 0.1 ; u3pt � 0q � 2 y2 � 1, (4.5)
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MonteCarlo Simulation of the KO 1D Problem
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Figure 4.6: Stochastic Response Reconstruction for the 1D KO Problem

where y1 and y2 are independent and uniformly distributed on r0, 1s. A two dimensional multiwavelet
measurement matrix is generated with m � 2 and resolution up to j � 4, resulting in a basis of
cardinality P � 9216. Figure 4.8 shows results in terms of sampling distribution and multiwavelet
coefficients. Convergence to standard deviation of the system’s response is also shown in Figure
4.10. The expansion coefficients produced by the proposed strategy with about M � 2400 samples
is comparable to those obtained using a multiwavelet least squares approximation (where coefficients
are evaluated as αLS � pΨTΨq�1ΨTu with 9 � 104 samples, demonstrating the efficiency of the
CS-based reconstruction.

4.5 Application: Passive vibration control under uncer-
tainty using TMD devices

Vibrations produced by harmonic or stochastic excitations may produce excessive acceleration levels
in structures with significant impact on serviceability. Periodic vibrations might be produced in a
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Figure 4.8: Stochastic response reconstruction for progressively increasing number of samples.

floor structure by walking of the occupants while the action of the wind on high rise buildings offers
a typical example of stochastic excitation. If resonance occur, the effects of the latter forces might
be significantly amplified; the available system damping plays, in this case, a crucial role for the
response of the system. Excessive accelerations are perceived by humans as loss of comfort; levels
higher than 0.5% of g (the gravitational acceleration) might be perceived by the occupants of a
given structural system, while 5% of g can be considered an upper bound for serviceability related to
human perception. Passive vibration control may provide a cost effective remedy against excessive
vibration levels in structures mainly due to the absence of expensive active control systems and the
minimal required maintenance. Tuned Mass Dampers (TMD) devices are one of the typical choices
for vibration reduction. Their introduction follows from a relatively simple observation applied to
a 2 degrees of freedom (d.o.f.) spring-mass system: the steady state undamped response of the
principal mass subject to an harmonic excitation can be minimized by applying a TMD device tuned
to the same frequency (see Section 4.5.1). The efficiency of the installed TMD can be defined,
in this case, based on the reduction achieved in the peak acceleration response. Perfect (infinite)
efficiency is achieved in the theoretical case. However, practical efficiency of TMDs is limited by the
following factors:

• Real loads can be characterized by broad frequency spectra and multiple spatial components.

• External excitations might have limited time duration such that a steady state might be difficult
to reach in practice.

• Real structures as well as TMD devices always exhibit damping which might be difficult to
measure in practice. It is in fact well known that natural frequencies might be affected by
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damping, even if modest differences are usually observed for typical elastic damping. Further-
more, suspended or cable stayed structure might experience a modification of their stiffness
as a result of relaxation phenomena. As a result, tuning of TMD devices might be difficult to
achieve or may deteriorate with time.

• Finally, real structures are continuous systems characterized by an infinite frequency content.
Therefore, a TMD device designed for a particular frequency could be, in general, ineffective
to prevent vibration for a number of different modes.

Various factors affect the performance of TMD devices. In the present study, we deal with these
factors as uncertainties and consider a parametrization in probability. Our objective is to use un-
certainty propagation methodologies to efficiently and systematically derive statistical surrogates for
better assessing TMD efficiency.
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4.5.1 Two dof systems with passive vibration control

A simple 2 dof system is represented in Figure 4.11.

m1

m2

k1

k2
c2

c1

TMD

Figure 4.11: Schematic representation of a two dof dynamical system characterized by a principal
system (“1”) and an attached TMD device (“2”).

The motion of the system can be completely characterized by the two triplets p:x1ptq, 9x1ptq, x1ptqq
and p:x2ptq, 9x2ptq, x2ptqq providing the evolution in time of the principal and TMD mass, respectively.
Assuming a linear elastic material and that small oscillations are produced in the system, a linear
system of ODEs can be written, as follows:

M :x�C 9x�Kx � F ptq (4.6)

where:
:xT � r:x1, :x2s, 9xT � r 9x1, 9x2s, xT � rx1, x2s, F ptqT � rF1ptq, F2ptqs (4.7)

and:

M �
�
m1 0
0 m2

�
, C �

�
c1 � c2 �c2

�c2 c2

�
, K �

�
k1 � k2 �k2

�k2 k2

�
. (4.8)

A characterization of damping in terms of damping ratios, ξ1 and ξ2, is usually more convenient.
The following expressions can therefore be used:

c1 � ξ1c1,cr � ξ1 2
a
m1 k1 c2 � ξ2c2,cr � ξ2 2

a
m2 k2 (4.9)

where typical values of the structural system damping are ξ1 � 0.01�0.05, depending on construction
material, type of beam-column and beam-beam connection as well as resistance mechanism.

4.5.2 Numerical solution for the 2 dof system with TMD

The Newmark beta method is employed to numerically solve system (4.6). If we consider a generic
time interval In � rn∆t, pn � 1q∆ts with n P N, n ¥ 0 and ∆t a selected time step, it assumes a
linear variation of the acceleration in In, as follows:

:x
pn,n�1q
β � p1� βq :xpnq � β :xpn�1q. (4.10)

The following expression are derived for the velocity and displacement vectors at instant pn� 1q:
9xpn�1q � 9xpnq �∆t :x

pn,n�1q
β � 9xpnq �∆t p1� βq :xpnq �∆t β :xpn�1q

xpn�1q � xpnq �∆t 9xpnq �∆t2
��

1

2
� α



:xpnq � α :xpn�1q

�
.

(4.11)
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The values of acceleration and velocity at pn � 1q can also be obtained in terms of quantities
evaluated at instant pnq and only the displacement at pn� 1q as follows:

:xpn�1q � 1

α∆t2
xpn�1q � 1

α∆t2
xpnq � 1

α∆t
9xpnq �

�
1

2α
� 1



:xpnq

9xpn�1q � β

α∆t
xpn�1q � β

α∆t
xpnq �

�
1� β

α



9xpnq �∆t

�
1� β

2α



:xpnq.

(4.12)

Finally, the equilibrium equation is enforced at instant pn� 1q (implicit time integration):

M :xpn�1q �C 9xpn�1q �Kxpn�1q � F pn�1q. (4.13)

A dynamic right-hand side is defined with all the terms at instant pnq:

F̂ pn�1q � F pn�1q �M
�

1

α∆t2
xpnq � 1

α∆t
9xpnq �

�
1

2α
� 1



:xpnq

�
�

�C
�

β

α∆t
xpnq �

�
1� β

α



9xpnq �∆t

�
1� β

2α



:xpnq

�
,

(4.14)

leading to the final algebraic system:�
1

α∆t2
M � β

α∆t
C �K

�
xpn�1q � F̂ pn�1q (4.15)

Typical values for pα, βq are p0.25, 0.5q; they minimize numerical damping for the Newmark scheme.

A preliminary numerical simulation is performed to show how a TMD usually produces an attenuation
in the response of the host system. Note that the international unit system (SI) is used throughout.
The following parameter set is adopted:

m1 � 20.0 kg, ξ1 � 1 %, k1 � 19739.2N{m, f1 � 5.0Hz,

m2 � 1.0 kg, ξ2 � 5 %, k2 � 986.96N{m, f2 � 5.0Hz,

∆t � 1.0� 10�3 s, Ttot � 4.0 s,

(4.16)

with the following initial conditions:

xpt � 0qT � r0, 0s, 9xpt � 0qT � r0, 0s, :xpt � 0qT � r0, 0s. (4.17)

A step-shaped load is applied as follows:"
F ptqT � r0, 0s, if t   t�

F ptqT � rF �, 0s, if t ¥ t�
(4.18)

with t� � 0.5 s and F � � 100N

The results in terms of displacements, velocities and accelerations of both principal and TMD systems
are illustrated in Figure 4.13. A reduction is observed in the response of the system with the TMD
device installed, as expected.

4.5.3 Typical efficiency of TMD passive vibration control devices

A better understanding of the attenuation mechanism of TMD devices can be captured by looking
at the frequency domain. Consider the same dynamical system highlighted in the previous Section
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Figure 4.12: Results of a transient dynamic simulation showing reduction in the principal system
response after installation of a TMD device.

where the integration in time has been extended to Ttot � 10.0 s. A family of harmonic external
excitations is considered here, as a function of frequency f .

F ptqT � rF �sinp2πfq, 0s, f � 4.0� 0.6Hz (4.19)

A graph of the maximum acceleration in the principal system versus the external excitation frequency
is depicted in figure 4.13 for the following configurations:

• Undamped principal system with no TMD device installed.

• Undamped principal system with undamped TMD device installed.

• 1% damped principal system with undamped TMD device installed.

• 1% damped principal system with 10% TMD device installed.

A single-peak infinite acceleration response typical of a resonant sdof system (with linear ampli-
fication in time) is replaced by two nearby peaks of lower magnitude after installing the TMD
device. Note that maximum values of acceleration shown in Figure 4.13 are obtained from transient
responses integrated over a limited time duration (10.0 s). The effect of a 1% damping in the
principal system also results in significant reduction in the acceleration response relative to the new
peaks, as expected for resonant conditions. An increased dissipation (10% damping ratio) in the
TMD device has the effect of further reducing the peak acceleration response.

4.5.4 Uncertainty Quantification of passive damping efficiency

When designing a TMD device for a given structural system, some of the quantities maybe difficult
to estimate or the actual structure may be under construction leaving the engineer only with possible
ranges of design variables. Some of the sources of uncertainty can be eliminated by adjustable TMD
devices where stiffness, frequency or damping can be tuned on site and even modified at later stages.
Others, like frequencies of external forces, are inherently random and should be accounted as such
within the whole design process. We provide an example where uncertainties are injected directly
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Figure 4.13: Acceleration response of 2 dofs dynamic system with and without the TMD device
installed, for a range of forcing frequencies. The effect of variations in the damping raio of the
principal system and TMD device are also explored.

in system (4.6) not only as far as the forcing term is concerned, but also for some of the system
parameters. As a result, (4.6) becomes a system of stochastic ODEs; collocation in probability is
used resulting in a non-intrusive approach leading to the characterization of the system’s output
based on repeated deterministic simulations. Even if a simple 2 dof system is analyzed here, the
proposed procedure is general and can be applied to multiple degrees of freedom systems (mdof)
with an arbitrary number of TMD devices. Note that for such configurations, the transient dynamic
deterministic solution of the full system can be a computationally intensive task. Therefore, a
propagation methodology aiming to be efficient for designers should keep to a minimum the required
number of deterministic solutions.

For our numerical experiment two sources of uncertainty are injected into system (4.6), namely the
forcing frequency and the damping ratio of the principal system ξ1. Randomness in the forcing
frequency might results from environmental or anthropic actions; damping of the main structure
could be difficult to measure in practice or the device could be designed to actually account for a range
of possible damping ratios. The first is parametrized as f � 4.0� 2.0 y1 by a uniformly distributed
random variable y1 P Upr0, 1sq; the second as ξ1 � 0.01 � 0.05 y2 where again y2 P Upr0, 1sq. For
every couple of parameters (y1,y2), the response of the system is evaluated in terms of efficiency e,
as follows:

e � :x1,max{:̃x1,max � 1, (4.20)

where :x1,max is the maximum acceleration of the principal system in the time interval r0, 10 ss
without any vibration control device, while :̃x1,max is the corresponding value with the TMD device
installed. Note that when e � 0 no reduction in the maximum acceleration is provided by the
device, while positive values are desirable. The cumulative distribution function for TMD efficiency
is computed as a result of the stochastic problem formulated above. This curves show the probability
of occurrence for efficiencies that are lower than a selected value.

Two methodologies are compared. First of all, 105 Monte Carlo simulations are performed to
compute a reference CDF of e. A reasonable number of runs (200) is then selected which can
normally be afforded even for transient simulations of full dynamical systems (e.g. a complete
multi-storey building or mechanical assembly). Finally, the efficiency CDF curves computed with the
same 200 runs are compared for the Monte Carlo method and the proposed CS-MW approach and
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illustrated in Figure 4.14. A surface plot of the TMD efficiency for py1, y2q P r0, 1s2 is illustrated in
Figure 4.14a. Note that areas of steep gradients close to resonance can be observed, as expected.
Finally, it can be seen how the CDF curve computed by the CS-MW methodology is practically
superimposed to the one requiring 105 Monte Carlo runs and offers a fair accuracy for design
purposes. Furthermore, Monte Carlo estimation with 200 samples would result in higher probabilities
for lower values of TMD efficiency, thus underestimating the capabilities of the passive vibration
control device.
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Figure 4.14: (a) Representation of the stochastic response in term of efficiency for the 2 dofs system.
(b) Resulting efficiency CDFs computed with the Monte Carlo and CS-MW approaches.

4.6 Application of non-intrusive UP: robust design of wind-
mill airfoil sections

Recently, wind power generation is drawing attentions as a way of making use of natural energy. It is
the process to generate electric power by conversion of wind energy into propeller rotation. Crucial
to the technology is the ability to achieve high conversion efficiency under constantly changing wind
conditions. The velocity triangle of a windmill airfoil section is illustrated in Figure 4.15. It can
be seen how the change in wind velocity Va results in changes in the angle of attack and inflow
velocity relative to the airfoil section. Under such conditions, optimization should guarantee a stable
performance while maximizing the rotation thrust or, in other words, should be formulated as a
robust process. However, due to the significant computational cost associated to traditional Monte
Carlo-like strategies used in conjunction with CFD simulations, design optimization is often carried
out for specific environmental conditions. The objective of this study is two-fold:

1. to investigate and show the increase in computational cost involved in the transition from
traditional to robust optimization for windmill airfoil section profiles and

2. to explore efficient optimization methods.
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Figure 4.15: Schematic representation of velocity triangle
for a windmill airfoil section.

4.6.1 Problem formulation

Two optimization problems are analyzed in the present study. A traditional optimization strategy is
firstly approached, where no variation of inflow wind conditions is considered. It is formulated as a
single objective optimization, maximizing a measure of aerodynamic efficiency, i.e. the lift to drag
coefficient ratio CL{CD.
Robust optimization is successively investigated, where the disturbances in the inflow angle and Mach
number are associated to uniformly distributed random variables α andM , respectively. The average
performance is thus maximized over a range of wind conditions, while minimizing the associated
variance, i.e. the sensitivity to the stochastic environmental changes.

Incompressible flow conditions are assumed throughout; the flow field is computed using a RANS
solver at constant Reynolds number, once the airfoil geometry and wind conditions are determined
by realizations of the parameters. Assume the airfoil cross section geometry is determined by a
vector ξ P D of parameters, where ξ � tξ1, . . . , ξnpu, ξli ¤ ξi ¤ ξui and D is the compact space
of feasible airfoil configurations; ξli, ξ

u
i are the lower and upper bound respectively for the generic

parameter ξi. Moreover, consider a probability space pΩ,F ,Pq in which Ω is the set of elementary
event, F is the σ-algebra of events, and P defines a probability measure on F . A vector of
two independent and identically distributed random variables with joint probability density function
ρpyq � ραpαqρMpMq : R2 Ñ R¥0 is indicated by y � pα,Mq with α,M : Ω Ñ R. Realization of
the stochastic vector y are denoted by ypiq � pαpiq,M piqq, i � 1, . . . , nl. Consider f : D � Ω Ñ R
a function mapping design and stochastic parameters into lift to drag coefficient ratios. We also
stress that every evaluation of f requires prior sampling of design parameters ξ and environmental
variables ypiq � pαpiq,M piqq followed by a solution of a RANS simulation. Design optimization can
be formulated using two different approaches:

1. Without including the uncertainty in wind conditions (traditional optimization). Find ξ� P D
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such that:
ξ� � arg max

ξPD
fpξ,ypiqq (4.21)

2. Including the environmental uncertainty (robust approach). Find ξ� P D such that:

M pEtfpξ�,yqu, σtfpξ�,yquq ¡M pEtfpξ,yqu, σtfpξ,yquq @ξ P D (4.22)

where Et�u and σt�u denote the expectation and standard deviation operator, expressed as:

Etfpξ,yqu �
» Mu

Ml

» αu

αl

fpξ,yqραpαqρMpMq dα dM (4.23)

σtfpξ,yqu �
�» Mu

Ml

» αu

αl

�
f 2pξ,yq � pEtfpξ,yquq2� ραpαqρMpMq dα dM


1{2
, (4.24)

and M : R2 Ñ R is a multi-objective decision criteria. In other words, the solution of the robust
optimization problem maximizes the mean lift-drag ratio across variables environmental conditions
while minimizing the associated standard deviation, i.e. the sensitivity of the airfoil efficiency to
alterations in the angle of attack and Mach number. Here rαl, αus and rMl,Mus are elementary
event intervals associated to the inflow angle α and Mach number M , respectively. In practice, we
adopt:

rαl, αus � rα0 � 2, α0 � 2s with α0 � 10 (4.25)

rMl,Mus � rM0 � 0.05,M0 � 0.05s with M0 � 0.25. (4.26)

As formulated in equation (4.22), the problem is essentially a multi-objective optimization whose
solution is generated with a trade-off between the two objective functions, i.e. the average per-
formance and sensitivity to environmental conditions. Note that different choices of M lead to
different optimal solutions. For example, given two objectives o1, o2 P R,Mpo1, o2q � o1 generates
the solution with the maximum average efficiency,Mpo1, o2q � �o2 that with minimum sensitivity,
whileMpo1, o2q �

a
o2

1 � o2
2 might be chosen as a compromise.

4.6.2 Airfoil representation

The PARSEC [83] representation is used to define a parametric airfoil profile. In this representation,
the upper and the lower section curves are expressed by polynomials of the following form:

z �
6̧

i�1

ai x
pi�1{2q, (4.27)

where the section is defined in the (x,z) plane. The coefficients ai are determined from the geometric
parameters ξ P D (design variables), illustrated in Figure 4.16. Eleven design variables are selected:
leading edge radius, upper and lower crest locations and curvatures, trailing edge coordinates (at
x=1), thickness, direction angle and wedge angle. Design variables and corresponding ranges are
represented in Table 4.1. As PARSEC tries to minimize the number of parameters needed to generate
wing profiles of practical interest in applications, it is useful to consider the possible interaction
between some of these parameters. An example is illustrated in Figure 4.17, where different values
are applied to the parameters zTE and zlo � zup, repsectively.
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ID Descr. ξl ξu ID Descr. ξl ξu

rle Radius of LE 0.005 0.02 zxx,lo Curv. of lower surf. 0.3 0.9
xup X at crest of upper surf. 0.3 0.7 zTE Y at TE -0.01 0.05
zup Y at crest of upper surf. 0.12 0.18 αTE Camber gradient at TE -13.0 -3.0
zxx,up Curv. of upper surf. -0.4 0.0 ∆ZTE Thickness at TE 0.0 0.0
xlo X at crest of lower surf. 0.2 0.6 βTE Wedge angle at TE 4.0 8.0
zlo Y at crest of lower surf. -0.07 0.02 M Mach number 0.2 0.3
α Angle of attack 8.0 12.0

Table 4.1: List of parameters used in PARSEC [83]

Figure 4.16: Graphical representation of the in-
put parameters for PARSEC [83].
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Figure 4.18: Unconstrained optimal airfoil design
for certain wind conditions.

Figure 4.19: Constrained optimal airfoil design
for certain wind conditions.

4.6.3 Computation of lift and drag, preliminary optimizations

Once the airfoil profile is determined by the parameter set ξ, the solution of the two-dimensional
incompressible Navier-Stokes equation is sought using a fixed Reynolds number equal to 105. An
automatic meshing procedure is first carried out starting from the profile generated by PARSEC.
The CFD solver, developed internally by Honda, uses a delta form implicit finite difference method.
A 3rd order Chakravarthy-Osher TVD limiter is also used for advection together with Menter’s k-ω
SST fully transitional turbulence model.

As a first, preliminary step, the windmill profile was optimized under known wind conditions. The
resultant shape is shown in Figure 4.18. A very thin airfoil is generated, as expected, exhibiting
a pronounced curvature of the leading edge in the direction of the selected angle of attack. This
solution, although being characterized by very high levels of aerodynamic efficiency, shows an insuf-
ficient section modulus thus suffering from a lack of structural strength. An alteration to the initial
design parameter space D is thus required to fulfill both aerodynamic and structural feasibility. The
modified constrained optimal solution is represented in Figure 4.19.

4.6.4 Robust Optimization methods

Shape optimization of windmill airfoils is performed by means of Genetic Algorithms (GA). This
family of methodologies seeks optimal solutions by selectively creating successive generations of in-
dividuals. Each individual represents a design configuration with chromosomes ξ, i.e. the 11 section
design parameters. Each individual is also associated to a set of environmental conditions, that is,
realizations of angle of attach and Mach number pαpiq,M piqq, i � 0, . . . , nl. These locations are
carefully selected to facilitate the computation of statistics via multivariate quadrature. This differ-
entiate a robust approach from traditional optimization where a single evaluation of f is sufficient
for every individual in the population.
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Now we assume that fpξ�,yq takes the form:

fpξ�,yq �
P̧

i�0

αipξ�qφipyq (4.28)

as a finite linear combination of tensor product orthogonal polynomials of the random vector y
(polynomial chaos expansion). The quantities Etfpξ�,yqu and σtfpξ�,yqu can be computed by
numerical integration as follows:

Etfpξ�,yqu �
nļ

j�1

wj f
�
ξ�,ypjq

�
(4.29)

σtfpξ�,yqu �
nļ

j�1

wj

�
f
�
ξ�,ypjq

�2 � E
 
f
�
ξ�,ypjq

�(2
�

(4.30)

where
°nl
j�1wj � 1. Here the nl quadrature locations are the zeros of the selected tensor product

polynomial family φipyq. Is is well known [99], that optimal convergence to the statistics of suffi-
ciently smooth stochastic responses is obtained by employing polynomial families orthogonal to the
input probability measures. Our choice of adopting Clenshaw-Curtis quadrature locations translates
in expanding f using Chebyshev polynomials. For applications where f is not known in advance and
arbitrary input probability measures could be specified, we feel that the good convergence properties
of Chebyshev approximants give us a good compromise to be implemented in a general framework.
For every computed generation, the steps performed by GA are highlighted in algorithm 4.

Algorithm 4 Genetic Algorithm
Step 1 � Make the initial population of individuals at random.

Select PARSEC parameters ξ� uniformly within the design space.
Select quadrature locations for Angle of attach and Mach number.

Step 2 � Evaluate the fitness of each individual in that population.
Calculate Etfpξ�,yqu, σtfpξ�,yqu for each individual.

Step 3 � Repeat on this generation until termination.
Select the best-fit individuals for reproduction.
Breed new individuals through crossover and mutation, to give birth to offspring.
Evaluate the individual fitness of new individuals.
Replace least-fit population with new individuals.

It is a known fact that the computational cost of evaluating multivariate integrals, like Etfpξ,yqu,
with given accuracy leads to a dramatic increase of polynomial terms (or numerical integration
points) for a corresponding increase in the number of stochastic input variables. This fact is generally
addressed as the curse of dimensionality ; a typical trend is shown in Table 4.2. We also stress that
every evaluation of fpξ�,ypiqq requires the complete solution of a RANS fluid dynamic simulation.
It is therefore clear how the number of deterministic realizations must be kept to a minimum if
robust optimization is to be performed in a reasonable time. In this study, we adopt a Smolyak
sparse grid approach together with nested Clenshaw-Curtis quadrature as a possible mitigation of
this phenomenon. A two-dimensional Smolyak sparse grid with 13 points is used in the present
study. Approximation order 0, 1 and 2 are thus recovered with 1, 5 and 13 quadrature points,
respectively, allowing rough estimates of convergence and accuracy to be computed. Figure 4.20
shows the location of the selected quadrature locations in the α-M plane. Finally, we note that this
study employs a non-intrusive approach which uses an unmodified deterministic CFD solver even if
stochasticity has been injected into the equations. This approach is justified by the fact that the
accuracy of the RANS solution is constant for the selected parameter ranges.
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Dimension 1 2 3 4 5 d

Full Grid 5 25 125 625 3125 5d

Smolyak Sparse Grid 5 13 33 89 253 3d � 2d

Table 4.2: Increase in multivariate quadrature points with dimensionality for fixed one-dimensional
polynomial accuracy
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4.6.5 Optimal windmill airfoils

At a first stage, a sensitivity analysis is performed to assess how the optimal design is influenced by
some of the GA parameters, i.e. population size, cross probability, flip probability. This is performed
for fixed environmental conditions pα,Mq � p10, 0.25q; results are illustrated in Table 4.3. For a
sufficient population size, the sensitivity to the GA parameters has a limited effect on the optimal
solution.

Two optimization tasks are then carried out denominated traditional and robust, generating optimal
designs ξ�T and ξ�R, respectively. The location of the traditional optimal design in the pCD, 1{CLq
plane is highlighted in Figure 4.21. After the set of parameters ξ�T is found giving the maximum
CL{CD ratio for fixed environmental conditions pα,Mq � p10, 0.25q, an uncertainty propagation
analysis is carried out leading to Etfpξ�T ,yqu � 30.46 and σtfpξ�T ,yqu � 2.53 (Table 4.4).

Some of the generations produced by robust optimization are also shown in Figure 4.22. Optimal
designs have been reported which correspond to various metrics M, i.e. maximum expected effi-
ciency, minimum standard deviation and best compromise. Values of Etfpξ�R,yqu and σtfpξ�R,yqu
for designs selected according to the above metrics are also reported in Table 4.4.

Note that first, second and also third order statistics have been included in the analysis. Moreover,
a negative skewness is observed for most reported designs, showing an asymmetry of the pdf of f
with a longer tail towards values of smaller efficiency. This provides an even stronger motivation for
including variance minimization as a further optimization objective.
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Population size 20 50 100 Optimal CL{CD 38.20 37.70 39.22
Cross probability 0.2 0.4 0.6 Optimal CL{CD 37.94 39.23 39.22
Flip probability 0.002 0.004 0.02 Optimal CL{CD 39.22 39.58 38.22

Table 4.3: Sensitivity of optimal design to GA parameters
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Robust optimal designs with minimum standard deviation and best compromise metrics are much less
sensible to the environmental conditions than traditional optima. However, the average performance
is also significantly smaller in this case.

The robust design maximizing the expected efficiency metric results, as expected, in better average
performance across environmental conditions than the traditional optimal solution. As a result of
the explicit inclusion of the variance minimization in the optimization task, the robust optimal is
also less sensitive to changes of wind conditions.

In concluding, the proposed robust optimization framework has proven successful in improving the
efficiency of a traditional optimum across a spectrum of uncertain wind conditions.

Design Statistic Value Design Statistic Value

Max CL{CD
Mean 30.46

Min Distance
Mean 15.96

SD 2.53 SD 0.24
SK �0.45 SK �0.04

Max Expected Value
Mean 32.68

Min Standard Deviation
Mean 2.35

SD 1.64 SD 0.10
SK �0.40 SK 0.12

Table 4.4: Comparison of results for traditional and robust optimizations.



88 CHAPTER 4. BENCHMARKS AND APPLICATIONS

4.6.6 Conclusion

A robust optimization framework has been assembled using Genetic Algorithms with uncertainty
propagation techniques and applied to maximize the efficiency of a windmill airfoil over a spectrum
of environmental scenarios.

A Smolyak sparse tensor grid of nested Clenshaw-Curtis one-dimensional quadrature rules is used to
mitigate the curse of dimensionality, of special interest for the presented application, where airfoil
efficiency is evaluated by solving a complete RANS simulation for any realization in the parameter
space and given wind conditions.

Robust optimization has proven successful in providing designs performing better than traditional
optima over a range of uncertain wind conditions, thus leading to savings in manufacturing resources
and increasing the generated power.

This technique is particularly appealing in the development of industrial products which perform
under variable environmental conditions. If quantities of interest exhibit sufficiently smooth variations
in response to parameter changes, then sparse grid approaches can be used to minimize the number
of deterministic solutions needed, thus reducing the overall computation cost.

Moreover, robust optimization provides a systematic and theoretically sound way to account for
aleatoric uncertainty in engineering design.



Chapter 5

Velocity correction

5.1 Introduction

A Galerkin projection onto the space of linear iso-parametric simplicial elements is a common ap-
proach to find numerical solutions for the steady state diffusion equation. Piecewise constant ve-
locities (product of scalar diffusivity and gradient) computed with this approach are not continuous
across neighbor elements. Moreover, velocities with non zero components orthogonal to zero flux
boundaries are also observed. A streamline representation of the product between diffusivity and
gradient helps in highlighting the above inaccuracies. Various schemes are available in literature to
compute streamlines of a vector field. For example, the Euler or second order Runge-Kutta methods
have been widely implemented in commercial fluid dynamics visualization tools. In this article, a
Euler approach is used with constant element velocities.

Figure 5.1 shows a typical streamline representation resulting from P1 Galerkin, which highlights the
inaccuracies discussed above. Blue streamlines correctly flow through the domain from Dirichlet to
Dirichlet boundaries; red streamlines violate zero flux boundaries while green ones terminate over
edges where convergent velocities occur for neighbor elements.

To improve accuracy in the computed gradients, approaches are available in literature which conserve
fluxes across elements. In particular, edge gradients are elevated to main problem unknowns for
Mixed-Hybrid (MH in the following) finite elements (see, i.e., [18]). Although both the theory and
implementation of MH introduce complications respect to P1 Galerkin, it produces the best results
in terms of streamlines and will be considered a reference throughout. Therefore, we investigate
post-processing strategies to improve on P1 Galerkin fluxes in order to match MH results.

These strategies are inspired by research developed during the 80’s and 90’s in the context of error
estimation and adaptivity for the finite element method. The first contribution can be found in [56]
in the context of finding a self-equilibrated configuration of the residual for second order elliptic
problems. It forms the basis for a complementary a posteriori energy overestimation of the finite
element discretization error. Generalizations were provided in [4, 3, 5] where local problems on
element stars (clusters of elements sharing the same node) were addressed for the first time. The
proposed approach is suitable for arbitrary dimensionality and can be used on both conforming and
non conforming meshes.

In [61] the above ideas are applied to restore an element-wise conservative flux from P1 Galerkin
velocities. Both a global (with piecewise constant egde corrections) and a parallel (with piecewise
linear corrections) local star-based algorithms have been presented, together with numerical tests
assessing existence, uniqueness and convergence. Note that, in the latter tests, a uniform diffusivity

89
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Figure 5.1: An example of steady state diffusion streamlines, as resulting from P1 Galerkin.

is assumed throughout the computational domain. Of the two strategies proposed in [61], the local
LN algorithm is computationally more appealing. In fact the solution of small algebraic systems
(one for every star) is more efficient than solving a bigger system for the whole mesh and velocity
corrections for each star can be evaluated independently leading to parallel, more efficient code.

Applications of the LN correction algorithm in the context of variably saturated groundwater flow
have been proposed in [54]. Conforming and nonconforming finite element formulations for the
solution of the Richards’ equation are compared in this study. Note that, diffusivity ranges were
limited to one order of magnitude in the proposed numerical examples.

Our study focuses instead on the LN strategy applied to cases where diffusivity ranges of several order
of magnitudes are specified between adjacent elements. For relatively coarse meshes and especially
for areas where streamlines exhibit high curvatures, we show that LN overestimates velocities in
regions of low diffusivity. An inexpensive correction of the LN methodology is therefore suggested
(MLN) which restores correct velocities across regions of high jumps in diffusivity.

In section 5.2 the LN post-processing algorithm is highlighted within the framework of steady state
diffusion. Section 5.3 proposes a modification of the LN scheme which improve solutions with
large diffusivity gradients. The lowest order Raviart-Thomas (RT0) interpolation is discussed in
Section 5.3.3 for cases where a non-zero source is applied. Examples of 2D trajectories are reported
in section 5.3.4. The convergence rate of various algorithms is investigated in section 5.4 together
with a comparison between MLN, LN and MH resultant steady state trajectories.

5.2 The heterogeneous flow problem

The general steady state diffusion equation can be written as:$&
%
�∇ � pK∇pq � fpxq in Ω

ppxq � gpxq on ΓD

K∇p � ~n � qpxq on ΓN
(5.1)
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defined on a domain Ω � Rd (with d � 2 or 3), a bounded and nonempty open set with Lipschitz
continuous boundary Γ � BΩ � ΓD Y ΓN , where ΓD is the Dirichlet boundary, ΓN the Neumann
boundary satisfying ΓDXΓN � H and ΓD having positive measure. We assume sufficient regularity
properties for fpxq, gpxq and qpxq. We consider a non degenerate scalar diffusion coefficient, such
that Kpxq ¥ γ ¡ 0 a.e. in Ω can vary abruptly within Ω. The velocity field ~vpxq is given by:

~v � �Kpxq∇p. (5.2)

Note that the name velocity is chosen to match the physical meaning this quantity has in some
applications (i.e., seepage). We also use the term flux to indicate the normal velocity integrated over
mesh edges or faces. The solution ppxq of (5.1) is continuous and smooth on Ω; in order to match
physical requirements on interfaces where jumps in the diffusion coefficient occur, the gradient ∇p is
assumed to be discontinuous, while the velocity vector has continuous normal derivative. Moreover,
if fpxq � 0, ppxq satisfies the maximum principle, i.e., no local maxima/minima occur in the interior
of Ω. This property reflects the standard regularity properties of the velocity field vpxq, the so called
divergence-free property.

In the present work, we focus on two possible strategies for the numerical solution of (5.1), namely
the P1 Galerkin and lowest order Mixed-Hybrid finite element methods. For simplicity, all develop-
ments will be formulated in two dimensions (d � 2). The results illustrated in the following sections
can be readily extended to the d � 3 case.

Let ThpΩq � tTe, e � 1, . . . ,mτu be a triangulation of Ω, with diameter h, featuring mτ triangles,
mε edges, and mν nodes.

The P1 Galerkin method evaluates the discrete pressure field phpxq as:

phpxq �
mν̧

i�1

piNipxq, (5.3)

where Nipxq is the piecewise linear basis function on ThpΩq such that Nipxjq � δij for i, j �
1, . . . ,mν and δij is the Kronecker delta. The coefficients pi are the solution of the linear system»

Ω

K∇ph∇Nj dΩ �
»

Ω

fNj dΩ j � 1, 2 . . . ,mν . (5.4)

The P1 velocity is evaluated on every triangle Te as:

∇ph,Te �
¸
kPnTe

pk∇Nk, (5.5)

where nTe is the index set of the three vertices in Te. The ensuing discrete velocity field on Te is

~vh,Te � �K∇ph,Te . (5.6)

Let us recall here some relevant properties of the P1 numerical solution pph, ~vhq [78]

• ph is continuous, piecewise linear;

• ~vh is elementwise constant;

• the tangential component of the gradient ∇ph � ~tε is continuous across each edge ε (~tε is the
unit tangent to edge ε);
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Figure 5.2: Typical element star, centered at node C. Local element (circles) and edge (squares)
numbers are shown.

• the normal flux ~vh � ~nε is discontinuous across every internal edge ε (~nε is the outward unit
normal to edge ε).

For comparison purposes, we also consider lowest order Raviart-Thomas space with hybridization
(MH), see [18] for details. Let us recall some relevant properties of the MH solution, p1h, and the
velocity field ~v1h [57, 77].

• p1h is piecewise linear, and discontinuous across element edges;

• when evaluated on triangle centroids, ~v1h yields an element-by-element piecewise constant field;

• continuity of the gradient tangential component across edges is not assured;

• the normal flux is continuous across every internal edge.

The last property ensures elementwise mass conservation (see, i.e., [77]). In an attempt to provide
a self contained exposition, the next section reviews the post-processing method proposed in [61].

5.2.1 Larson-Niklasson post-processing

Let us denote by ΩC a star of elements centered on node C (i.e., the set of all triangles sharing
node C). Figure 5.2 shows a typical configuration. LN initially requires a trial velocity vector, ~σε, to
be assembled at every edge ε. A reasonable initial guess for ~σε is the arithmetic average of the P1

Galerkin velocities for the two triangles sharing edge ε. However, the algorithm is robust to different
choices in this regard; for example, similar corrections are produced using velocities with minimum
or maximum magnitude. Let εl and εr denote the elements to the left (l) and right (r) of edge ε.
The quantities UC,Te are velocity corrections associated to each element Te of the star. Let UC,εl and
UC,εr be the flux corrections associated to the element to the left, and to the right of ε, respectively
and let NCpxq be the P1 basis function assigned to node C.

If we consider a partial Galerkin P1 projection using only the shape function NCpxq and we apply
the Green’s lemma, the following residual for element Te P ΩC is obtained.

¸
εPBTeXΓI

»
ε

~σε � ~nεNC ds�
»
Te

K∇ph �∇NC dΩ

�
»
Te

f NC dΩ�
»
BTeXΓN

qpNqNC ds � Rpphq
(5.7)
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where ΓI is the set of internal mesh edges, ΓD, ΓN are the set of Dirichlet and Neumann boundary
edges, respectively and qpNq is the prescribed Neumann flux. The local LN strategy modifies (5.7)
in order to generate a null residual on each element of the star. This is accomplished, for every
ε P ΓI by first adding the correction δuε � pUC,εl~nεl �UC,εr~nεrq �~nl for end C, and then using linear
interpolation between the two end nodes of ε. Note that ~nl is arbitrarily chosen as the positive flux
direction for edge ε. The following balance equation for element Te is formulated:

¸
εPBTeXΓI

»
ε

rpUC,εl � UC,εrq~npTeqε � ~nlsNC ds �
¸

εPBTeXΓI

»
ε

~σε � ~npTeqε NC ds�
»
Te

K∇ph �∇NC dΩ

�
»
Te

f NC dΩ�
»
BTeXΓN

qpNqNC ds

(5.8)

Equation (5.8) is written for each element of the star, yielding a symmetric positive semi-definite
algebraic system of equations in the form By � c. With reference to the star sketched in Figure 5.2,
we have:

B �

�
�������

l6 � l1 �l1 0 0 0 �l6
�l1 l1 � l2 �l2 0 0 0
0 �l2 l2 � l3 �l3 0 0
0 0 �l3 l3 � l4 �l4 0
0 0 0 �l4 l4 � l5 �l5
�l6 0 0 0 �l5 l6 � l5

�
�������

(5.9)

y �

�
�������

UC,1
UC,2
UC,3
UC,4
UC,5
UC,6

�
�������

c �

�
�������

�~σ6 � ~n1
6l6 � ~σ1 � ~n1

1l1 � 2G1

�~σ1 � ~n2
1l1 � ~σ2 � ~n2

2l2 � 2G2

�~σ2 � ~n3
2l2 � ~σ3 � ~n3

3l3 � 2G3

�~σ3 � ~n4
3l3 � ~σ4 � ~n4

4l4 � 2G4

�~σ4 � ~n5
4l4 � ~σ5 � ~n5

5l5 � 2G5

�~σ5 � ~n6
5l5 � ~σ6 � ~n6

6l6 � 2G6

�
�������
, (5.10)

where lε is the length of edge ε. Recall that ~npTeqε is a unit normal to edge ε pointing outward of
element Te. Moreover, GTe is the Galerkin residual flux for element Te, i.e.

GTe �
»
Te

f NC dΩ�
»
Te

K∇ph �∇NC dΩ. (5.11)

For internal stars (where all edges sharing node C are in ΓI), the above linear system exhibits the
following properties:

1. Since the elements of the right hand side vector are P1 Galerkin flux residuals on the elements
of the star, they add up to zero;

2. Matrix B is singular as constant vectors span its null space. One can therefore arbitrarily
assign a zero value to the fist unknown, i.e., UC,1 � 0.

For every edge ε and node C a correction is computed δUC,ε � UC,εl � UC,εr for the initial velocity
estimate ~σε. If a parametrization of edge ε (defined from node N1 to N2) is introduced through a
scalar parameter ψ P r0, 1s, corrected normal velocities on ε are obtained as U 1

ε � ~σε�p1�ψqδUN1,ε�
ψδUN2,ε. The post-processed LN edge velocities U 1

ε fulfill integral counterparts of divergence-free
requirements. Associated fluxes can be interpolated using the lowest order Raviart Thomas RT0

finite element space (see, i.e., [80]), thus providing a velocity field on ThpΩq.
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(a) Test case 1 (b) Test case 2

Figure 5.3: Test cases 1 and 2 with associated geometries, underlying Delaunay triangulations and
boundary conditions.

We analyze streamline flow patterns solving (5.1) on two heterogeneous test cases using the LN and
MH techniques, similarly to what proposed in [77]. We assume Ω � r0, 1s2 with inflow from the left
side, i.e., where a ph � 1 Dirichlet boundary condition is imposed. Outflow on a central portion of
the right boundary is set, where ph � 0 is imposed. Zero flux Neumann boundary conditions are
set elsewhere. The scalar, homogeneous diffusivity K changes abruptly on two internal fins, whose
scalar diffusivity is K1 � 10�6 � K. Figure 5.3 shows all relevant details. The second test case
involves the same domain and boundary conditions; six low diffusivity fins, shown in Figure 5.3, are
inserted. Each fin has diffusivity K1 � 10�6 �K.

As in [77], both streamlines terminating exactly on nodes (where the velocity field is non unique)
and trajectories exiting from zero flux boundaries, are identified. Figure 5.4 shows a comparison
between streamlines obtained either by LN post-processing or MH approach. At a first glance, the
two sets of streamlines look very similar. Both velocity fields are conservative, with differences
concentrated at the corner elements of the fins. In particular, unlike in the MH approach, LN
streamlines cross low diffusivity fins. This behaviour can be observed only on a limited number
of stars on areas becoming smaller with mesh refinement. Nonetheless, with particular reference
to coarse discretizations, advection of quantities are negatively affected at those locations. In the
following sections, we propose a modification of the LN technique which aims at minimizing such
situations.

5.3 Modified LN scheme

In the algorithm discussed in section 5.2.1, velocity corrections are not influenced by element dif-
fusivities. The final algebraic system is in fact formulated merely on flux balance arguments. The
present section proposes an extension to account for such an information. We need to understand,
in first place, how to evaluate a reference flux magnitude that can be used for this purpose. To
develop some intuition, we use the patch examples shown in Figure 5.5. Our purpose is to find a
methodology to identify the node stars where overestimated velocities result from the LN procedure.
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(a) (b)

(c) (d)

Figure 5.4: Streamlines computed for test cases 1 (a,b) and 2 (c,d) are shown. The LN (a,c), and
MH (b,d) approaches are used.

Figure 5.5: Element patches selected for numerical tests. Dirichlet boundary conditions are imposed
on all boundary edges.
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Figure 5.6: Velocity errors in patch tests computed for increasing diffusivity ratios.

(a) (b) (c)

Figure 5.7: Red elements are located where the error estimate Eh,Te exceeds 105% (a), 104% (b)
and 103% (c), respectively.

5.3.1 Error identification

As the P1 Galerkin velocity magnitudes are readily available at the beginning of the post-processing
stage, we investigate if they can be used as a reference. Assume we solve problem (5.1) on a square,
by using either one of the meshes shown in Figure 5.5. We use two different patch configurations in
order to assess the sensitivity of the computed corrections to the number of low diffusivity elements
in the central star (one and two, respectively). Dirichlet conditions are imposed all around the
patch; p � 1 is applied on the left side, p � 0 on the right side and a linear variation is assumed
at the bottom and top boundary edges. A K2 diffusivity is applied on hatched elements, while
K1 � 1 is considered for all others. Numerical simulations are performed for the following values of
K2 � K1 � 10�k, k � 0, 1, 2, 3, 4. The global P1 Galerkin algebraic system reduces to a single scalar
equation with p5 as the only unknown.

We focus, in particular, to the velocity magnitude as corrected by the LN method at the centroid
of triangle 1. A reference solution, in this regard, is computed via P1 Galerkin, using a mesh
(obtained by uniform refinements) with diameter equal to h � 4.42 � 10�2. Relative error results
are summarized in Figure 5.6, where the relative velocity error is plotted against the diffusivity
ratio, in log-log scale. Unlike errors for both P1 Galerkin and MH that are practically unaffected
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by diffusivity ratios, errors in LN velocities increase significantly. Hence, ratios between original P1

Galerkin and post-processed velocities can be used in the LN approach as an error marker. Results
obtained with the proposed MLN correction method are also shown in Figure 5.6.

We therefore define an error estimate, as follows:

Eh,Te �
}~vpLNqh,Te

} � }~vpP1q
h,Te

}
}~vpP1q
h,Te

}
(5.12)

Once a suitable tolerance value τh is selected, elements where Eh,Te ¡ τh are identified. Smaller
values of τh lead to larger number of elements needing corrections, as shown for test case 1 in
Figure 5.7.

5.3.2 Error correction

Given a node C, Let Σh,C be the subset of elements in the star exceeding threshold τh, i.e.

Σh,C � tTe P Th,C : Eh,Te ¡ τhu
For each element Te P Σh,C we add the following constraint to the LN linear system (written in
terms of the Lagrange multiplier λ):

λ

"»
ε

�pUC,Te � UC,T̃eq~npTeqε � ~nl
�
NC ds �

»
ε

p~vpLNqε � ~npTeqε qNC ds

�
»
ε

p~vpP1q
ε � ~npTeqε qNC ds

*
� 0,

(5.13)

where element T̃e shares edge ε with element Te, ~v
pLNq
ε is the linear velocity profile on edge ε

reconstructed with LN and ~vpP1q
ε is the P1 Galerkin velocity distribution at edge ε. In other words,

equation (5.13) restores the flux on ε to the value computed with P1 Galerkin.

After the LN post-processing is performed, a new correction step is applied in the MLN strategy
only for the stars with elements in Σh,C . The following modified equation set is assembled:�

B AT

A 0

� �
y
λ

�
�
�
c
d

�

where B is the matrix given by eq. (5.9), A and d are the matrix and right hand side, respectively,
obtained by discretizing eq. (5.13), y our correction array, λ is the Lagrange multiplier vector and c
is the right-hand side in eq. (5.10).

The following issues deserve attention:

• Our modified linear system is symmetric and singular, as in the LN formulation;

• A source term CpTeqλ is added to Te P Σh,C and to their neighbors;

• The procedure above can easily be extended to higher dimensional problems, and arbitrary
polygonal meshes;

• The following limit in the number of Lagrangian equations nλ is also adopted:

nλ ¤ nΣc � 1,

where nΣh,C is Σh,C cardinality;
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Figure 5.8: Selected 2D mesh (top) with boundary conditions for the proposed Poisson problem,
with detail of elements 3 and 4 (bottom).

Our technique follows the same steps as in LN, therefore edge fluxes need to be interpolated using
RT0, in order to extract velocities on elements. Unlike LN, a source term now appears in MLN and
the RT0 interpolation strategy needs to be applied to elements with unbalanced edge fluxes. This
needs special treatment, as discussed in the next section.

5.3.3 RT0 interpolation and source terms

Let ~wpTeq
i , i � 1, 2, 3, the RT0 vector basis functions associated with a local edge numbering system.

Edge flux interpolation can be written as

~v
pTeq
h px1, x2q �

3̧

ε�1

qε � ~wpTeq
ε , where qε �

»
ε

~v
pTeq
h � ~nε ds. (5.14)

The adopted vector basis functions RT0 are (see, i.e., [70])

~wpTeq
ε � 1

2|Te|
�
~x� ~xpεq

�
, (5.15)

~xpεq being the vertex in Te which does not belong to edge ε.

Note that, when source terms are included, spurious velocity components may be introduced by RT0

interpolation. This can be easily seen in Figure 5.8 where a one-dimensional solution is simulated
using a two-dimensional triangular grid. Dirichelet boundary conditions, ul and ur are applied to
the left and to the right edge of the domain, respectively. A constant, non zero source term f is
also applied to all triangles. The two triangles T3 and T4 are extracted as shown in the lower part
of Figure 5.8. Flux conservation for element T3 amounts to

Q1 �Q3 � f |T3|. (5.16)

Let ~xpOq � p~xpOq1 , ~x
pOq
2 q be the centroid of Te. The velocity vector ~vpT3q � pvpT3q1 , v

pT3q
2 q on T3 is

�
v1

v2

�pT3q
�

�
��

1

2|T3|
��
x
pOq
1 � x

p1q
1

	
�Q1 �

�
x
pOq
1 � x

p3q
1

	
�Q3

�
1

2|T3|
��
x
pOq
2 � x

p1q
2

	
�Q1 �

�
x
pOq
2 � x

p3q
2

	
�Q3

�
�
�� . (5.17)
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Figure 5.9: Computed trajectories. Points 4 and 6 at outflow are closer than points 1 and 3 at
inflow.

This results in:
v
p3q
2 � f

2

�
x
pOq
2 � x

p1q
2

	
and v

p4q
2 � f

2

�
x
pOq
2 � x

p2q
2

	
. (5.18)

Figure 5.9 shows what happens to streamlines in triangles 3 and 4, where distance between stream-
lines descreases along x. Note that the this fact is invariant to edge swapping.

Source terms are added to locations close to edges where original Galerkin fluxes are restored.
Moreover, at those locations, flux direction has already a significant component alog the diffusivity
jump. Using these observations as a starting point, we propose a modification of the standard RT0

interpolation which accounts for source terms. Using the local edge numbering in Figure 5.8, mass
balance reads

Q1�Q2 �Q3 � f |Te|
vp~xq � 1

2|Te|
�
Q1p~xpOq � ~x1q � Q2p~xpOq � ~x2q �Q3p~xpOq � ~x3q

�

� 1

2|Te|
�
Q1p~x3 � ~x1q �Q2p~x3 � ~x2q � f |Te|p~xpOq � ~x3q

� (5.19)

Let i be the index of the edge where absolute maximum flux is evaluated, i.e. Qi � maxεP1,2,3 |Qε|.
The proposed correction is:

∆vcorr � fp~xpOq � ~xiq
2

signpQiq. (5.20)

For boundary triangles, all Dirichlet edges must be considered in (5.20).

We tested the proposed RT0 interpolation on a problem defined over a square, with exact solution
equal to a constant horizontal velocity field. Figure 5.10a shows the streamlines computed using the
standard RT0 velocity field while the effects of the proposed modified interpolation on a structured
and unstructured grid are shown in Figure 5.10b and 5.10c, respectively. It can be seen how the
proposed modified RT0 interpolation produces streamlines much closer to the expected solution.

5.3.4 Corrected 2D trajectories

Streamlines calculated using MH, LN and MLN are compared in the present Section for test cases 1
and 2, respectively. Centroid velocities result from the lower order Raviart-Thomas shape functions
(RT0) for both LN and MH schemes, while the proposed modification of the RT0 interpolation is
employed in MLN. A permeability ratio K2 � 10�6 �K1 is set in both cases. It can be seen how
the proposed MLN correction restores physical velocities in areas of large diffusivity gradients. This
improves advection in these areas especially in cases where a coarse discretization is needed. In
practice, no streamline enters in areas of low diffusivity.
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(a) (b) (c)

Figure 5.10: Streamlines computed from a 2D simulation of a 1D Poisson problem. Results are
illustrated for RT0 (a), together with the proposed approach both for a uniform (b) and non-uniform
(c) mesh configuration.

(a) (b) (c)

(d) (e) (f)

Figure 5.11: LN (a,d), MLN (b,e) and MH (c,f) streamlines computed for the proposed test cases.
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Refinement level Elements Nodes Edges Max edge size EpSGqp

I 98 64 161 0.217365 6.312� 10�03

II 392 225 616 0.108682 1.548� 10�03

III 1568 841 2408 0.054341 3.834� 10�04

IV 6272 3249 9520 0.027171 9.630� 10�05

Table 5.1: Mesh statistics

Local LN Global LN MLN
Mesh Edge Size Velocity error Rate Velocity error Rate Velocity error Rate

I 2.174� 10�01 1.583� 10�00 � 1.617� 10�00 � 2.934� 10�00 �
II 1.087� 10�01 8.411� 10�01 1.0955 8.645� 10�01 1.1074 1.730� 10�00 1.3116
III 5.434� 10�02 4.337� 10�01 1.0464 4.383� 10�01 1.0204 9.405� 10�01 1.1379
IV 2.717� 10�02 2.170� 10�01 1.0012 2.179� 10�01 0.9917 4.991� 10�01 1.0937

Table 5.2: Errors for centroid velocity magnitudes. Local LN, Global LN and Modified LN (MLN)
approaches are considered.

5.4 Convergence analysis

This section discusses how the schemes mentioned in the previous sections (P1 Galerkin, Local LN,
Global LN, MH and MLN) converge to an analytical solution by successive mesh refinements. A
reference solution is chosen for system (5.1) where Ω � r0, 1s2 with Dirichlet boundary conditions
consistent with the potential:

ppx, yq � sin2p2πxq � cos2p2πyq � x� y � 5. (5.21)

The corresponding source term is therefore equal to

fpx, yq � �16π2pcos2p2πxq � pcos2p2πyqq, (5.22)

and the exact velocity field is

Vxpx, yq � �4π sinp2πxq cosp2πxq � 1

Vypx, yq � 4π sinp2πyq cosp2πyq � 1.

Convergence rates are computed for velocity magnitudes and angle at element centroid as well as
for edge fluxes. Let ũ be the computed numerical approximation of the latter quantities and be u
the associated exact solution of (5.1). The numerical error is evaluated as:

E �
�

Ņ

i�1

|Ei|pui � ũiq2
� 1

2

� }u� ũ}L2 . (5.23)

where |Ei| is the area of the i-th element or the length of edge i, respectively.

MH SG
Mesh Edge Size Velocity error Rate Velocity error Rate

I 2.174� 10�01 2.246� 10�00 � 1.635� 10�00 �
II 1.087� 10�01 8.645� 10�01 0.7260 6.495� 10�01 0.7509
III 5.434� 10�02 4.569� 10�01 1.0870 2.943� 10�01 0.8755
IV 2.717� 10�02 2.199� 10�01 0.9477 1.446� 10�01 0.9758

Table 5.3: Velocity errors for MH and P1 Galerkin.
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Local LN Global LN MLN
Mesh Subdivisions FLUX Error Rate FLUX Error Rate FLUX Error Rate

I 364 4.310� 10�00 � 4.337� 10�00 � 4.251� 10�00 �
II 230 3.005� 10�00 1.9211 3.022� 10�00 1.9190 3.005� 10�00 1.9971
III 140 1.841� 10�00 1.4156 1.844� 10�00 1.4028 1.841� 10�00 1.4156
IV 80 1.255� 10�00 1.8067 1.255� 10�00 1.8017 1.255� 10�00 1.8067

Table 5.4: Edge flux errors. Local LN, Global LN and Modified LN (MLN) approaches are considered.

MH SG
Mesh Subdivisions FLUX Error Rate FLUX Error Rate

I 364 4.328� 10�00 � 3.710� 10�00 �
II 230 2.896� 10�00 1.7252 2.841� 10�00 2.5981
III 140 1.816� 10�00 1.4842 1.804� 10�00 1.5271
IV 80 1.250� 10�00 1.8553 1.247� 10�00 1.8778

Table 5.5: Flux errors for MH and P1 Galerkin.

Local LN Global LN MLN
Mesh Edge Size Angle error Rate Angle error Rate Angle error Rate

I 2.174� 10�01 2.129� 10�01 � 2.085� 10�01 � 3.976� 10�01 �
II 1.087� 10�01 1.393� 10�01 1.6355 1.402� 10�01 1.7469 2.672� 10�01 1.7448
III 5.434� 10�02 6.862� 10�00 0.9786 7.123� 10�00 1.0234 1.408� 10�01 1.0820
IV 2.717� 10�02 4.284� 10�00 1.4717 4.221� 10�00 1.3246 7.395� 10�00 1.0759

Table 5.6: Velocity angle errors. Local LN, Global LN and Modified LN (MLN) approaches are
considered.

MH SG
Mesh Edge Size Angle error Rate Angle error Rate

I 2.174� 10�01 2.996� 10�01 � 2.451� 10�01 �
II 1.087� 10�01 1.402� 10�01 0.9131 9.422� 10�00 0.7250
III 5.434� 10�02 7.526� 10�00 1.1139 7.800� 10�00 3.6695
IV 2.717� 10�02 4.251� 10�00 1.2133 3.308� 10�00 0.8079

Table 5.7: Velocity angle errors for MH and P1 Galerkin.
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Figure 5.12: Convergence profiles for velocity magnitudes (a) and angles (b).
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Figure 5.13: Convergence profiles for edge fluxes.

Table 5.1 reports all relevant mesh statistics, while Tables 5.2 and 5.3 show values of E for element
velocities. Error estimates for velocity angles are summarized in Tables 5.6 and 5.7. The proposed
MLN method produces higher errors, while convergence rates are very similar compared to the other
schemes. We stress that, altough larger errors are produced respect to the LN correction, velocities
are consistent with large diffusivity gradients and do not enter in areas of negligible diffusivity.
Higher errors are therefore compensated by improved advection properties of the MLN velocities.
All velocities used in the error estimation above are inevitably affected by interpolation. Therefore,
convergence on edge fluxes is also investigated, as it is independent on interpolation and shown in
Tables 5.4 and 5.5. Analytical fluxes are evaluated by numerical integration of exact normal velocities
using a trapezoidal rule and a relative tolerance equal to 1.0� 10�8. All methods show very similar
errors and convergence rates according to edge fluxes. It can be deduced how the modified RT0

interpolation strategy is responsible for a large part of the errors in the velocities computed with
MLN.
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5.5 Conclusions

This study focuses on applications of the Larson-Niklasson post-processing algorithm, to the solution
of the diffusion equation. This technique is used to post-process P1 Galerkin velocities restoring
elementwise conservativeness; it can be used both in 2D and 3D, with conforming and not conforming
meshes. The performance of the LN scheme is investigated for situations where large diffusivity
gradients are specified throughout the computational domain. Two-dimensional streamlines are
used to provide graphical intuition on the quality of the velocity field produced by various schemes.
Both Local and Global formulations are investigated for the LN approach, while a Mixed-Hybrid finite
element implementation is used as a reference. Using numerical benchmarks, we show that velocities
in areas where large diffusivity gradients and streamlines curvature occur are overestimated by LN, if
compared to P1 Galerkin and MH approximations. We therefore propose a modified strategy (MLN),
where LN velocities are compared with P1 Galerkin estimates; this identifies areas where a further
correction is needed. Modified algebraic systems are formulated for element stars exhibiting excessive
errors and local P1 Galerkin fluxes are restored using Lagrange multipliers. Finally, a modified RT0
interpolation scheme is used to compute element velocities for cases where additional source terms
are present. The convergence properties of all schemes (P1 Galerkin, Local LN, Global LN, MH,
and MLN) are assessed both for velocities and fluxes, resulting in similar convergence rates. The
proposed approach restores physically meaningful velocities in areas of large diffusivity gradients and
prevents streamlines for entering subdomains of negligible diffusivity.



Chapter 6

Conclusion

A novel framework for non-intrusive Uncertainty Propagation is proposed in this work.

It combines the ability of a multiresolution approximation in capturing piecewise smooth stochastic
responses of physical systems, with the recent advances in signal processing and compression. Using
greedy recovery algorithms, responses are reconstructed keeping to a minimum the number of de-
terministic solutions needed. Importance driven sampling strategies are also applied to the proposed
framework in order to further improve converge rates for responses exhibiting sharp gradients and
even discontinuities.

It has been also applied to a number of benchmark problems as well as to application of passive
control of dynamical systems under uncertainty. The resulting convergence rates to first-order
and second-order statistics have been compared to more traditional approaches, resulting in very
promising results.

However, further research is required with regards to the size of the Alpert basis for high dimensional
stochastic problems together with more efficient algorithms to compute the reconstruction coeffi-
cients able to benefit from implementations on massively parallel architectures as well as capable
of exploiting the incremental nature of the adaptive sampling process. The highly coherent nature
of the adopted multiresolution basis set is also of concern as it affects the convergence to a unique
sparse representation of a given stochastic response.
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