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Dipartimento di Matematica

Scuola di dottorato di ricerca in: Scienze Matematiche.
Indirizzo: Matematica.

Ciclo: XXV

Equivalences of additive categories

Direttore della scuola: Ch.mo Prof. Paolo Dai Pra

Coordnatore d’indirizzo: Ch.mo Prof. Franco Cardin

Supervisore: Ch.ma Prof.ssa Silvana Bazzoni

Dottoranda: Alice Pavarin



Contents

i

Introduction iii

Part 1. Recollements of triangulated categories 1

Chapter 1. Triangulated categories, recollements and TTF triples 3
1. Localizations in triangulated categories 3
2. TTF triples and recollements 9
3. Recollements of compactly generated triangulated categories 14

Chapter 2. Recollements of derived categories of dg algebras 19
1. Derived categories of dg algebras 19
2. Recollements from compact objects 23
3. Homological epimorphisms 26
4. Partial tilting complexes 32
5. Tilting and partial tilting modules 35

Chapter 3. Recollements of derived categories of rings 41
1. Bireflective subcategories and ring epimorphisms 41
2. Generalized universal localization 47
3. Examples 50

Appendix A 57

Part 2. Equivalences of monoidal categories and bosonization for
dual quasi-bialgebras 63

Chapter 4. Dual quasi-bialgebras and monoidal categories 65
1. Monoidal categories 65
2. An adjunction between HMH

H and HM 68
3. The notion of preantipode 69
4. Yetter-Drinfeld modules over a dual quasi-bialgebra 73
5. Monoidal equivalences 82

Chapter 5. The main results and some applications 91
1. The bosonization of R by H 91
2. Dual quasi-bialgebras with a projection 95
3. Applications 100

Appendix B 105

i



ii CONTENTS

Bibliography 109



Abstract
In the first part of the thesis, after an introduction of the concept of recollement
and TTF triple in a triangulated category, we consider recollements of derived cat-
egories of differential graded algebras induced by self-orthogonal compact objects
obtaining a generalization of Rickard’s Theorem. Specializing to the case of partial
tilting modules over a ring, we extend the results on triangle equivalences proved
in [B] and [BMT]. After that we focus on the connection between recollements
of derived categories of rings, bireflective subcategories and “generalized universal
localizations”. In the second part of the thesis we give some results in the setting
of monoidal categories and dual qausi-bialgebras. To every dual quasi-bialgebra H
and every bialgebra R in the category of Yetter-Drinfeld modules over H, one can
associate a dual quasi-bialgebra, called bosonization. In this thesis, using the fun-
damental theorem, we characterize as bosonizations the dual quasi-bialgebras with
a projection onto a dual quasi-bialgebra with a preantipode. As an application we
investigate the structure of the graded coalgebra grA associated to a dual quasi-
bialgebra A with the dual Chevalley property (e.g. A is pointed).

Sommario
Nella prima parte della tesi, dopo aver introdotto il concetto di incollamento e
di triple TTF in una categoria triangolata, si considerano incollamenti di cate-
gorie derivate di algebre differenziali graduate indotti da oggetti compatti e auto-
ortogonali, ottenendo una generalizzazione del teorema di Rickard. Considerando
il caso particolare del moduli partial tilting, estendiamo i risultati sulle equivalenze
tra categorie triangolate ottenute in [B] e [BMT]. Segue una parte focalizzata
sulla connessione tra incollamenti di categorie derivate di anelli, sottocategorie bir-
iflessive e localizzazioni universali generalizzate. Nella seconda parte della tesi ven-
gono dati alcuni risultati nell’ambito di categorie monoidali e dual quasi-bialgebre.
Ad ogni dual quasi-bialgebra H e ad ogni bialgebra R nella categoria dei mod-
uli di Yetter-Drinfeld su H, è possibile associare una dual quasi-bialgebra, chiamata
bosonizzazione. In questa tesi, usando il teorema fondamentale, si caratterizza come
bosonizzazione ogni dual quasi-bialgebra con proiezione su una dual quasi-bialgebra
con preantipode. Come applicazione si studia la struttura della coalgebra graduata
grA associata ad una dual quasi-bialgebra A con la proprietà di Chevalley duale (si
vedrà che A è puntata).
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Introduction

This thesis is a collection of results obtained during the three years of my Ph.D.
studies. In the first year I worked on monoidal categories and Hopf algebras (with
the support of A. Ardizzoni). The “product” of this year is presented in the second
part of this thesis. I spent the other two years doing researches on triangulated
category and tilting theory (first part of this thesis, with the support of S. Bazzoni).
The thesis is structured as follows: the first part of the introduction and the first
three chapters are dedicated to my research on triangulated category and tilting
theory, while the second part of the introduction and the other two chapters are
about monoidal categories and Hopf algebras.

Tilting theory owes its origin to Bernstein, Gelfand and Ponomarev (see [BGP])
who invented reflection functors (reformulated, some years later, by Auslander,
Platzeck and Reiten in [APR]). The first definition of tilting module is due to
Brenner and Butler (see [BRB]), but the most common one, is due to Happel and
Ringel (see [HR]). Tilting theory was born in the same philosophy as ”Morita the-
ory of equivalence”, to simplify the study of the module category of an algebra A,
by replacing A with another simpler algebra B. A tilting module over an algebra A
is a finitely generated module of projective dimension one, such that Ext1

A(T, T ) = 0
and there exists a short exact sequence 0→ A→ T0 → T1 → 0 with T0 and T1 in
Add T (the class of all direct summands of set index coproducts of T ). So tilting
modules can be viewed as the generalization of progenerators (finitely generated
projective modules in the category of finitely generated modules A-mod). The dif-
ference between tilting theory and Morita theory is that, given a tilting module T
over a finite dimensional algebra A and indicated with B its endomorphism alge-
bra, the functors HomA(T,−) and T ⊗B − do not provide and equivalence between
A-mod and B-mod, but just between two pairs of subcategories (the torsion pairs
(Ker(HomA(AT,−),Ker(Ext1

A(AT,−)) and (Ker(T ⊗B −),Ker(TorB1 (TB,−))). This
result, proved by Brenner and Butler ([BRB]), was generalized by Miyaishita in
[Mi]. In fact he considered tilting modules of projective dimension n ≥ 1 (n-tilting
modules) and he proved that, given the classes

KEi(T ) = {M ∈ A-Mod | ExtjA(T,M) = 0 ∀ 0 ≤ j 6= i}

KTi(T ) = {N ∈ B-Mod | TorBj (T,M) = 0 ∀ 0 ≤ j 6= i}

the functors ExtiA(T,−) and TorBi (T,−) induce equivalences between the classes
KEi(T ) and KTi(T ). In the late 80’s the study of infinitely generated tilting mod-
ules started. An infinitely generated tilting module T over a ring R is an infinitely
generated module of projective dimension one, such that Ext1

R(T, T (I)) = 0 for every

iii



iv INTRODUCTION

set I and such that there are two modules T0 and T1 in Add T and a short exact
sequence 0→ R→ T0 → T1 → 0. From now on infinitely generated tilting modules
will be called just tilting modules, while finitely generated tilting modules will be
called classical tilting modules. The study of infinitely generated tilting modules
started for different reasons. In representation theory (in particular for Tame alge-
bras) infinitely generated modules bring a better understanding of the behavior of
finitely generated modules. For example, “generic modules” permit to parametrize
families of finitely generated modules ([CB, Introduction]). Tilting modules over
a ring R are strongly linked to approximation theory (preenvelopes and precovers),
while such approximations may not be available working only with finitely generated
modules (e.g. [Tr]). Tilting modules are involved also in the finitistic dimension
conjecture (as shown in [AT]).
In 1988 Facchini ([F], [F2]) proved that, over a commutative domain S, the divis-
ible module ∂ introduced by Fuchs ([Fu]) is an infinitely generated tilting modules
and it provides a pair of equivalences between two subcategories of S-Mod and
EndS(∂)-Mod.

An important result in this direction was given by Colpi and Trlifaj ([CT])
who studied infinitely generated tilting modules over arbitrary rings and proved a
Brenner Butler type Theorem.
In the same years works by several authors showed that a natural setting to interpret
equivalences induced by classical tilting modules was that of derived categories. The
first result in this direction was proved by Happel:

Theorem ([H]). Let A be a finite dimensional algebra, T a finitely generated
tilting module over A and set B := EndA(AT ). Then there is an equivalence:

Db(A)
RHomA(AT,−)

// Db(B)

T
L
⊗B−

{{

between the bounded derived categories of A and B respectively.

This result was generalized by Cline, Parshall and Scott (they removed the as-
sumption of the finite global dimension) and then it was given in the unbounded
derived categories by Rickard and Keller. In this case the equivalence arises from a
generic “tilting object” as will be defined below. In order to restate Rickard-Keller
Theorem we need to recall that a compact object, in a triangulated category D with
set index coproducts, is an object M such that the functor HomD(M,−) commutes
with coproducts. Let A be a ring and D(A) its unbounded derived category. A
complex in D(A) is called perfect if it is a bounded complex of finitely generated
projective A-modules.

Theorem. [Ke6] Let k be a commutative ring, A and B be k-algebras which
are flat as modules over k. The following are equivalent:

(1) There is a k-linear triangle equivalence F : D(A)→ D(B).
(2) There is a complex of Aop −B modules X such that the functor

X
L
⊗A − : D(A)→ D(B)
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is an equivalence.
(3) There is a complex T of B-modules such that the following conditions hold:

i) T is perfect.
ii) T generates D(B) as a triangulated category closed under small co-

products.
iii) T is self-orthogonal and HomD(B)(T, T ) = A.

A complex T satisfying the conditions in (3) is called tilting complex. If T is a

tilting module overA, with endomorphism ringB, the pair (G,H) := (T
L
⊗B −,RHomA(AT,−))

is no more an equivalence. Bazzoni proved that H induces an equivalence with the
quotient between D(A) and D(B) modulo the kernel of G. This result was general-
ized to the n-dimensional case by Bazzoni, Mantese e Tonolo in [BMT] and later,
in the more general setting of dg categories, by Yang in [Y]. In [BMT], denoted by
i the inclusion functor of KerG in D(B), the equivalence of D(A) with D(B)/KerG
can be expressed by the following diagram

KerG
i // D(B)``

}} j∗ // D(B)/KerG ' D(A)

j∗

ff

j!

xx

This diagram is an example of recollement of derived categories. A recollement of a
triangulated category T can be defined as a diagram

T ′ i∗ // T
i!

cc

i∗
yy j∗ // T ′′

j∗

cc

j!
zz

where the six functors involved are the derived version of Grothendieck’s functors.
In particular, they are paired in two adjoint triples, i∗ is fully faithful and T ′′

is equivalent to a quotient category of T via j∗ so that the straight arrows can
be interpreted as an exact sequence of categories. The notion of recollements was
introduced by Beilinson-Bernstein-Deligne [BBD] in a geometric context, where
stratifications of varieties induce recollements of derived categories of constructible
sheaves. The algebraic aspect of recollements has become more and more apparent.
Equivalence classes of recollements of triangulated categories are in bijection with
torsion-torsion-free triples, that is triples (X ,Y ,Z) of full triangulated subcategories
of the central term T of a recollement, where (X ,Y) and (Y ,Z) are torsion pairs
([N2, Section 9.2]). Torsion pairs in triangulated categories allow to regard a trian-
gulated category as glued together from two other triangulated categories (Y ,Z) or
(Y ,X ). Particular example of recollements are the recollements of derived categories
of module categories (that are generated by a single compact object). The notion
of recollement in compactly generated triangulated categories is strongly linked to
tilting theory. A first result in this direction was proved by König in [K] where nec-
essary and sufficient conditions are given to express the bounded derived category



vi INTRODUCTION

of a ring as recollement. This result was generalized by Nicolas and Saorin in [NS]
and by Angeleri, König and Liu in [AKL]. In [NS] is proved the following theorem:

Theorem. [NS, Proposition 3.4] The following assertions are equivalent:

(1) D is a recollement of triangulated categories generated by a single compact
object.

(2) There are objects P and Q of D such that:
i) P is compact.

ii) Q is self-compact.
iii) HomD(P [n], Q) = 0 for each n ∈ Z.
iv) {P,Q} generates D.

(3) There is a compact object P such that Tria (P )⊥ is generated by a compact
object in Tria (P )⊥.

A non compact version of the same result is proved in [AKL].
Thanks to Keller theorem, which states that every triangulated category generated
by a compact object is the derived category of a differential graded algebra (a grad-
uated algebra endowed with a differential map that satisfies the Leibniz rule), the
left and right terms of the recollement in the above theorem are derived categories of
suitable differential graded algebra (dg algebra). In the setting of derived categories
a compact object induces a recollement of derived categories of dg algebras. Explicit
instances of this situation are considered by Jørgensen in [J]. There, starting from
results in [DG], [Mi] and [N], recollements of derived categories of dg algebras are
characterized in terms of derived functors associated to two objects, one compact
and the other self-compact. Moreover, in [NS] is proved that, for every dg category
A, flat over a field k, there is a bijection among TTF triples in D(A), recollements
of D(A) and homological epimorphisms of dg categories F : A → B, for a suitable
dg-category B. It is remarkable that in the connection between tilting theory and
recollement there is a natural “involvement” of dg-theory, at least at the level of dg
algebras, otherwise it may not be possible to express recollements induced by tilting
objects as recollements of derived categories of some abelian categories. Let us note
that, establishing the correspondence between tilting modules and recollements, two
different approaches can be found. In [AKL] they start with a tilting module over
a ring A and then construct a recollement of D(A). Another approach consists in
starting from a (good) tilting module over a ring A and then construct a recollement
of D(EndA(T )) (instances of this situation can be found in the work of Chen and Xi
[CX] and Yang [Y]). An infinitely generated (good) n-tilting module T over a ring
A with endomorphism ring B becomes a classical partial n-tilting module over B
(see [Mi]), that is a module with a finite projective resolution consisting of finitely
generated projective modules of projective dimension n, such that ExtiB(T, T ) = 0
for every integer i > 0. Hence, in particular, regarded in the derived category, it is
isomorphic to a compact and self-orthogonal complex (partial tilting complex).

One of the results in this thesis can be viewed as a generalization of the Morita-
type theorem proved by Rickard in [R] (see Theorem 2.4.6) from tilting complexes
to partial tilting complexes. In fact, using a quasi-isomorphism between the endo-
morphism ring A of a partial tilting dg-module PB (that is a complex of abelian
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groups such that the differential is compatible with the action of B) and the dg-

endomorphism ring D of P , we show that the functor P
L
⊗
B
− induces an equivalence

between the quotient of D(B) modulo the full triangulated subcategory Ker(P
L
⊗
B
−)

and the derived category D(A), that is there is the following recollement:

(1) Ker(P ⊗B −)
i∗ // D(B)

i!

gg

i∗

ww
j∗ // D(A)

j∗

ee

j!

yy

If P is moreover a tilting complex over a ring B with endomorphism ring A, then

Ker(P
L
⊗
B
−) is zero and we recover Rickard’s Theorem. In particular we consider

applications to the case of a classical partial tilting right module T over a ring B.
As examples of this case we start with a possibly infinitely generated left module

AT over a ring A, which is self-orthogonal and such that A ∈ tria T (that is A is in
the smallest triangulated category containing T and closed under finite coproducts
and direct summands). Under these assumptions, T , viewed as a right module
over its endomorphism ring B, is a faithfully balanced classical partial n-tilting
module and applying Theorem 2.5.6 we obtain a generalization of the result proved
in [BMT] where the stronger assumption that AT was a “good n-tilting module”
was assumed. Moreover, this setting provides an instance of the situation considered
in [Y]. Finally, we analyze in more details the left end term of a recollement induced
by a classical partial tilting module. It is proved, that under certain hypotheses,
the kernel of the derived functor of T ⊗B − is the derived category of a dg algebra
concentrated in degree zero, that is a ring, linked to B via a homological ring
epimorphism. The problem is connected with the study of the following subcategory
of B- modules:

E := {M ∈ B-Mod | TorBi (T,M) = 0 i ≥ 0}.

If T is a 1-good tilting module over A, then the left term of the recollement (1) is
the derived category of the universal localization of B at the projective resolution of
TB. We generalize this situation and we prove that, for a partial n-tilting modules,
if the kernel of the derived functor of the tensor product is equivalent to the derived
category of a ring via a homological ring epimorphism, then this is the generalized
universal localization of B at the projective resolution of T . Generalized universal
localizations were introduced by Krause in [Kr] under the name of homological
localization:

Definition. Let B be a ring and Σ a set of compact objects P ∈ D(B). A ring
S is a “generalized universal localization” of B at the set Σ if:

(1) there is a ring homomorphism λ : B → S such that P
L
⊗
B
S is acyclic;
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(2) for every ring homomorphism µ : B → R such that P
L
⊗
B
R is acyclic, there

exists a unique ring homomorphism ν : S → R such that ν ◦ λ = µ.

The first part of the thesis is structured as follows.
In Chapter 1 some results concerning recollements of triangulated categories, in par-
ticular for the compactly generated ones, are presented. We give the definition of
triangulated category, the notion of Verdier localization and Bousfield localization.
We recall the definition of recollements and TTF triple in a triangulated category
and the bijection between them.

In chapter 2 we recall the construction of the derived category of an abelian
category, and, in particular, we focus on the derived category of a dg algebra. Then
we present some results on recollements from compact objects in this category.
After that we specialize the situation to the case of partial tilting complexes. When
P is a partial tilting right dg-module over a dg algebra B and (X ,Y ,Z) is the
torsion-torsion-free triple connected to the recollement induced by P , we have that Y
coincides with Ker(P

L
⊗
B
−), X is the full triangulated subcategory of D(B) generated

by the dual RHomB(P,B) of P and Z is equivalent to the derived category of
the endomorphism ring of P (see Theorem 2.4.6). In this setting the following
generalization of Rickard theorem is proved:

Theorem. Let B be a dg algebra and let P be a partial tilting right dg B-module.
Let A = HomD(Bop)(P, P ), Q = RHomBop(P,B). Then there exists a dg algebra E
and a recollement:

D(E)
i∗(B)⊗L

E− // D(B)

RHomB(i∗(B),−)

ee

i∗

yy
j∗ // D(A)

j∗

ee

j!

yy

where, letting D = RHomBop(P, P ) there is a triangle equivalence ρ : D(D)→ D(A)
such that:

(1) j! = (Q
L
⊗
D
−) ◦ ρ−1;

(2) j∗ = ρ ◦ (P
L
⊗
B
−);

(3) j∗ = RHomD(P,−) ◦ ρ−1 is fully faithful;
(4) if Y = Ker (j∗) and Z = Im j∗, then (Tria Q,Y ,Z) is a TTF TRIPLE in
D(B) and Y is the essential image of F∗;

(5) D(A) is triangle equivalent to D(B)/Ker (j∗).

In particular, if P is a tilting right dg B-module, then Y vanishes and

ρ ◦ (P
L
⊗
B
−) : D(B)→ D(A)

is a triangle equivalence with inverse RHomD(P,−) ◦ ρ−1.
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A particular example of a partial tilting complex is given by a classical partial
tilting module over a ring B. In this case the following theorem is proved.

Theorem. Let B be a ring and let TB be a classical partial n-tilting module with
endomorphism ring A. There is a dg algebra E and a recollement

D(E)
i∗(B)

L
⊗E− // D(B)

RHomB(i∗(B),−)

ee

i∗

yy
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

ee

j!

yy

where:

(1) j∗ = RHomA(T,−) is fully faithful;

(2) D(A) is triangle equivalent to D(B)/Ker (T
L
⊗
B
−).

The above theorem can be viewed as a generalization of the result in [BMT].
Moreover the concept of homological epimorphism of dg algebras is recalled and it is
shown explicitly (see Proposition 2.3.9) how to exhibit a homological epimorphism
of dg algebras B → C such that the left end term of the recollement induced by
a compact object is the derived category D(C) (this result is an instance of the
more general theorem proved in [NS]). Anyway, in Corollary 2.2.6 we prove that,
without flatness conditions on B, D(B) is still a recollement of dg algebras, but not
necessarily associated to a homological epimorphism.

In Chapter 3, given a classical partial tilting module TB over a ring B, we look

for conditions under which the class Y = Ker(T
L
⊗
B
−) is equivalent to the derived

category of a ring S for which there is a homological ring epimorphism λ : B → S.
We show that this happens if and only if the perpendicular subcategory E consisting
of the left B-modules N such that TorBi (T,N) = 0 for every i ≥ 0, is bireflective
and every object of Y is quasi-isomorphic to a complex with terms in E .

Results in [GL] and [GP] show that a full subcategory of a module category
B-Mod is bireflective if and only if it is equivalent to a module category over a ring
S linked to B via a ring epimorphism λ : B → S. In the favorable case in which the
left term of the recollement induced by a partial tilting module TB is the derived
category of a ring, we prove that λ is moreover a homological ring epimorphism and
S is isomorphic to the endomorphism ring of the left adjoint L(B). Moreover, S is
the generalized universal localization of B with respect to a projective resolution of
TB.

Proposition. Let B be a ring and let TB be a classical partial n-tilting module

with endomorphism ring A. Let Y = Ker(T
L
⊗
B
−), L the left adjoint of the inclusion

i : Y → D(B) and E the subcategory of B-Mod defined above.
Then the following conditions are equivalent:

(1) H i(L(B)) = 0 for every 0 6= i ∈ Z.
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(2) there is a ring S and a homological ring epimorphism λ : B → S inducing
a recollement:

D(S)
λ∗ // D(B)

i!=RHomB(S,−)

ee

i∗=S
L
⊗
B
−

yy
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

ee

j!

yy

(3) Every N ∈ Y is quasi-isomorphic to a complex with terms in E and E is a
bireflective subcategory of B-Mod.

(4) Every N ∈ Y is quasi-isomorphic to a complex with terms in E and the
homologies of N belong to E.

Later, some properties of the “generalized universal localization” are proved in
the following proposition:

Proposition. Let P be a compact complex in D(B). Assume that λ : B → S
is a generalized universal localization of B at {P}. Let EP = {N ∈ B-Mod |
P ⊗

B
N is acyclic }. Then, the following hold:

(1) λ∗(S-Mod) ⊆ EP .
(2) λ∗(S-Mod) = EP if and only if EP is a bireflective subcategory of B-Mod.

The situation illustrated above is a generalization of a recent article by Chen
and Xi ( [CX]). In fact, in [CX], completing the results proved in [B] for “good”
1-tilting modules T over a ring A with endomorphism ting B, it is shown that the
derived category D(B) is the central term of a recollement with right term D(A)
and left term the derived category of a ring S which is a universal localization
of the differential of the projective resolution of TB. We note that our setting is
different since we fix a ring B and we obtain recollements of D(B) for every choice
of partial tilting modules over B, while, starting with an infinitely generated good
tilting module AT over a ring A, one obtains a recollement whose central term is
the derived category of the endomorphism ring B of AT and B might be very large
and difficult to handle. Instead, thanks to our approach, we can choose algebras of
finite representation type and classical partial n-tilting modules (with n > 1) over
them, and define a homological ring epimorphism λ : B → S.

Let us set Y := Ker(T
L
⊗B −). The following examples are given:

i) A class of classical partial 2-tilting modules such that the class E is bire-
flective and Y is equivalent to the derived category of a ring (Example
1).

ii) A classical partial 2-tilting module such that E is not bireflective (Example
2).

iii) A classical partial 2-tilting module such that E is bireflective but Y is not
equivalent to the derived category of a ring via a homological ring epimor-
phism (Example 3).
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iv) A classical partial n-tilting module that is also a good tilting module over
its endomorphism ring, such that Y is not equivalent to the derived category
of a ring (Example 4).

v) A classical partial n-tilting module that is also a good tilting module over
its endomorphism ring, such that Y is equivalent to the derived category of
a ring (Example 5).

The first three mentioned examples of classical partial n-tilting right modules T are
not arising from good n-tilting modules with endomorphism ring B. The problem
to decide when a recollement induced by a good n-tilting module over a ring A cor-
responds to a homological epimorphism of rings remains open. In the case of good
n tilting module Chen and Xi in [CX2] give some equivalent conditions in terms of
the functor ExtiA(T,−).

In the Appendix we regard the generator M of Ker(T
L
⊗B −) as a Milnor colimit

(see [AKL]) and we make some computations on the homologies of the dg algebra
RHomB(M,M) as an attempt to prove that only a finite number of homologies are
different from zero.

The second part of the thesis is a collection of results in the setting of monoidal
categories and Hopf algebras. Let H be a bialgebra. Consider the functor T :=
(−) ⊗ H : M → MH

H from the category of vector spaces to the category of right
Hopf modules. It is well-known that T determines an equivalence if and only if H
has an antipode i.e. it is a Hopf algebra. The fact that T is an equivalence is the
so-called fundamental (or structure) theorem for Hopf modules, which is due, in the
finite-dimensional case, to Larson and Sweedler, see [Ls, Proposition 1, page 82].
This result is crucial in characterizing the structure of bialgebras with a projection as
Radford-Majid bosonizations (see [Ra]). Recall that a bialgebra A has a projection
onto a Hopf algebra H if there exist bialgebra maps σ : H → A and π : A → H
such that π ◦ σ = IdH . Essentially using the fundamental theorem, one proves
that A is isomorphic, as a vector space, to the tensor product R ⊗ H where R is
some bialgebra in the category H

HYD of Yetter-Drinfeld modules over H. This way
R ⊗ H inherits, from A, a bialgebra structure which is called the Radford-Majid
bosonization of R by H and denoted by R#H. It is remarkable that the graded
coalgebra grA associated to a pointed Hopf algebra A (here ”pointed” means that
all simple subcoalgebras of A are one-dimensional) always admits a projection onto
its coradical. This is the main ingredient in the so-called lifting method for the
classification of finite dimensional pointed Hopf algebras (see [AS]).

In 1989 Drinfeld introduced the concept of quasi-bialgebra in connection with
the Knizhnik-Zamolodchikov system of partial differential equations. The axioms
defining a quasi-bialgebra are a translation of monoidality of its representation cat-
egory with respect to the diagonal tensor product. In [Dr], the antipode for a
quasi-bialgebra (whence the concept of quasi-Hopf algebra) is introduced in order
to make the category of its flat right modules rigid. If we draw our attention to the
category of co-representations of H, we get the concepts of dual quasi-bialgebra and
of dual quasi-Hopf algebra. These notions have been introduced in [Maj3] in order
to prove a Tannaka-Krein type Theorem for quasi-Hopf algebras.
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A fundamental theorem for dual quasi-Hopf algebras was proved by Schauen-
burg in [Sch4] but dual quasi-Hopf algebras do not exhaust the class of dual quasi-
bialgebras satisfying the fundamental theorem. It is remarkable that the functor
T giving the fundamental theorem in the case of ordinary Hopf algebras must be
substituted, in the “quasi“ case, by the functor F := (−) ⊗ H between the cat-
egory HM of left H-comodules and the category HMH

H of right dual quasi-Hopf
H-bicomodules (essentially this is due to the fact that, unlike the classical case, a
dual quasi-bialgebra H is not an algebra in the category of right H-comodules but
it is still an algebra in the category of H-bicomodules). In [AP, Theorem 3.9], it
is showed that, for a dual quasi-bialgebra H, the functor F is an equivalence if and
only if there exists a suitable map S : H → H that we called a preantipode for H.
Moreover for any dual quasi-bialgebra with antipode (i.e. a dual quasi-Hopf alge-
bra) it is constructed a specific preantipode, see [AP, Theorem 3.10]. It is worth
to notice that, by [Sch5, Example 4.5.1], there is a dual quasi-bialgebra H which is
not a dual quasi-Hopf algebra and such that it satisfies the fundamental theorem.
Then we get that H has a preantipode (cf. Theorem 4.3.7).

In this thesis we introduce and investigate the notion of bosonization in the set-
ting of dual quasi-bialgebras. Explicitly, we associate a dual quasi-bialgebra R#H
(that we call bosonization of R by H) to every dual quasi-bialgebra H and bialgebra
R in H

HYD. Then, using the fundamental theorem, we characterize as bosonizations
the dual quasi-bialgebras with a projection onto a dual quasi-bialgebra with a pre-
antipode. As an application, for any dual quasi-bialgebra A with the dual Chevalley
property (i.e. such that the coradical of A is a dual quasi-subbialgebra of A), un-
der the further hypothesis that the coradical H of A has a preantipode, we prove
that there is a bialgebra R in H

HYD such that grA is isomorphic to R#H as a dual
quasi-bialgebra. In particular, if A is a pointed dual quasi-Hopf algebra, then grA
comes out to be isomorphic to R#kG (A) as dual quasi-bialgebra where R is the
diagram of A and G (A) is the set of grouplike elements in A. We point out that
the results are obtained without assuming that the dual quasi-bialgebra considered
are finite-dimensional.

The second part of the thesis is structured as follows.
Chapter 4 contains preliminary results needed in the next sections. Moreover

in Theorem 4.3.10, we investigate cocommutative dual quasi-bialgebras with a pre-
antipode and we provide a Cartier-Gabriel-Kostant type theorem for dual quasi-
bialgebras with a preantipode in the following corollary:

Corollary. Let H be a dual quasi-bialgebra with a preantipode over a field k
of characteristic zero. If H is cocommutative and pointed, then H is an ordinary
Hopf algebra isomorphic to the biproduct U (P (H)) #kG (H) , where P (H) denotes
the Lie algebra of primitive elements in H.

In the connected case such a result was achieved in [Hu, Theorem 4.3].
The central part of this chapter is devoted to the study of the category H

HYD
of Yetter-Drinfeld modules over a dual quasi-bialgebra H. Explicitly, we consider
the pre-braided monoidal category

(
H
HYD,⊗,k

)
of Yetter-Drinfeld modules over

a dual quasi-bialgebra H and we prove that the functor F , as above, induces a
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functor F : HHYD → H
HM

H
H (that is an equivalence in case H has a preantipode, see

Proposition 4.4.9).
In the end this chapter we prove that the equivalence between the categories

H
HM

H
H and H

HYD becomes monoidal if we equip H
HM

H
H with the tensor product ⊗H

(or �H) and unit H (see Lemma 4.5.5 and Lemma 4.5.9). As a by-product, in
Lemma 4.5.12, we produce a monoidal equivalence between (HHM

H
H ,⊗H , H) and

(HHM
H
H ,�H , H).

Chapter 5 contains the main results of this part of the thesis. In the following
theorem (Theorem 5.1.1), to every dual quasi-bialgebra H and bialgebra R in H

HYD
we associate a dual quasi-bialgebra structure on the tensor product R⊗H that we
call the bosonization of R by H and denote by R#H.

Theorem. Let (H,mH , uH ,∆H , εH , ωH) be a dual quasi-bialgebra.
Let (R, µR, ρR,∆R, εR,mR, uR) be a bialgebra in H

HYD.
Let us consider on B := F (R) = R⊗H the following structures:

mB[(r ⊗ h)⊗ (s⊗ k)] =

 ω−1
H (r−2 ⊗ h1 ⊗ s−2k1)ωH(h2 ⊗ s−1 ⊗ k2)

ω−1
H [(h3 B s0)−2 ⊗ h4 ⊗ k3]ωH(r−1 ⊗ (h3 B s0)−1 ⊗ h5k4)

r0 ·R (h3 B s0)0 ⊗ h6k5


uB(k) = k1R ⊗ 1H

∆B(r ⊗ h) = ω−1
H (r1

−1 ⊗ r2
−2 ⊗ h1)r1

0 ⊗ r2
−1h2 ⊗ r2

0 ⊗ h3

εB(r ⊗ h) = εR(r)εH(h)

ωB((r ⊗ h)⊗ (s⊗ k)⊗ (t⊗ l)) = εR(r)εR(s)εR(t)ωH(h⊗ k ⊗ l).
Then (B,∆B, εB,mB, uB, ωB) is a dual quasi-bialgebra.

Now, let (A,H, σ, π) be a dual quasi-bialgebra with projection and assume that
H has a preantipode S. In Lemma 5.2.3, we prove that such an A is an object in
the category H

HM
H
H . Therefore the fundamental theorem describes A as the tensor

product R ⊗H of some vector space R by H. Indeed, in Theorem 5.2.4, we prove
that the dual quasi-bialgebra structure inherited by R ⊗ H through the claimed
isomorphism is exactly the bosonization of R by H.

Theorem. Let (A,mA, uA,∆A, εA, ωA) and (H,mH , uH ,∆H , εH , ωH) be dual quasi-
bialgebras such that (A,H, σ, π) is a dual quasi-bialgebra with projection onto H.
Assume that H has a preantipode S. For all a, b ∈ A, we set a1 ⊗ a2 := ∆A (a) and
ab = mA (a⊗ b). Then, for all a ∈ A we have

τ(a) := ωA[a1 ⊗ σSπ(a3)1 ⊗ a4]a2σSπ(a3)2

and R := G (A) is a bialgebra ((R, µR, ρR) ,mR, uR,∆R, εR, ωR) in H
HYD where, for

all r, s ∈ R, h ∈ H, k ∈ k,we have

h B r := µR (h⊗ r) := τ [σ (h) r] , r−1 ⊗ r0 := ρR (r) := π (r1)⊗ r2,

mR (r ⊗ s) := rs, uR (k) := k1A,

r1 ⊗ r2 := ∆R (r) := τ (r1)⊗ τ (r2) , εR (r) := εA (r) .

Moreover there is a dual quasi-bialgebra isomorphism εA : R#H → A given by

εA (r ⊗ h) = rσ (h) , ε−1
A (a) = τ (a1)⊗ π (a2) .
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The analogue of this result for quasi-Hopf algebras, anything but trivial, has
been established by Bulacu and Nauwelaerts in [BN], but their proof can not be
adapted to dual quasi-bialgebras with a preantipode.

In the end of the chapter we collect some applications of our results. Let A be
a dual quasi-bialgebra with the dual Chevalley property and coradical H. Since A
is an ordinary coalgebra, we can consider the associated graded coalgebra grA. In
Proposition 5.3.2, we prove that grA fits into a dual quasi-bialgebra with projection
onto H. As a consequence, in Corollary 5.3.3, under the further assumption that
H has a preantipode, we show that there is a bialgebra R in H

HYD such that grA is
isomorphic to R#H as a dual quasi-bialgebra. When A is a pointed dual quasi-Hopf
algebra it is in particular a dual quasi-bialgebra with the dual Chevalley property
and its coradical has a preantipode. Using this fact, in Theorem 5.3.9 we obtain
that grA is of the form R#kG (A) as dual quasi-bialgebra, where R is the so-called
diagram of A.
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CHAPTER 1

Triangulated categories, recollements and TTF triples

This chapter aims to be a presentation of some tools in the context of triangulated
categories, that will be useful later on. Some results on recollements and torsion-
torsion free triple are proved; in particular we will focus on compactly generated
triangulated categories.

1. Localizations in triangulated categories

In this section we define a triangulated category and we briefly present the two
main approaches to localization in triangulated categories: the Verdier localization
and the Bousfield localization. Moreover we illustrate the strict connection between
them. We will follows the exposition of [N2] and [Kr2].

Definition 1.1.1. Let C be an additive category and [1] : C −→ C an additive
automorphism. A candidate triangle in C (with respect to [1]) is a diagram of the
form

X
u−→ Y

v−→ Z
w−→ X[1]

such that the composites v◦u, w◦v and u[1]◦w are zero. A morphism Φ := (f, g, h)
of candidate triangles is a commutative diagram

X

f

��

u // Y

g

��

v // Z

h
��

w // X[1]

f [1]
��

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

.

This defines the category of candidate triangles in C (with respect to [1]).

Definition 1.1.2. A pretriangulated category is an additive category T together
with an additive automorphism [1] called shift functor, and a class of candidate
triangles (with respect to [1]) called distinguished triangles, satisfying the following
axioms:

[TR0 ] Any candidate triangle which is isomorphic to a distinguished triangle is
a distinguished triangle. For any object X the candidate triangle

X
Id−→ X

0−→ 0 −→ X[1]

is distinguished.
[TR1 ] For any morphism f : X −→ Y in T there exists a distinguished triangle

of the form

X
f−→ Y −→ Z −→ X[1]

3
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[TR2 ] (The “rotation axiom”) Suppose we have a distinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

Then the following two candidate triangles are also distinguished

X
u−→ Y

v−→ X[1]
−u[1]−→ Y [1]

Z[−1]
−w[−1]−→ X

−u−→ Y
−v−→ Z

[TR3 ] For any commutative diagram of the form

X

f

��

u // Y

g

��

v // Z
w // X[1]

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

.

where the rows are distinguished triangles, there is a morphism h : Z −→
Z ′, not necessarily unique, which makes the following diagram commute

X

f

��

u // Y

g

��

v // Z

h
��

w // X[1]

f [1]

��
X ′

u′ // Y ′
v′ // Z ′

w′ // X ′[1]

.

Notations 1.1.3. Let (T , [1]) be a pretriangulated category.

• In what follows, distinguished triangles will be called just ”triangles”.
• The opposite category T op is a pretriangulated category with shift functor

[−1] := [1]−1.
• [n] will indicate the composition [1]n for each n ∈ Z.

The functor [1], being an equivalence, preserves arbitrary products and coprod-
ucts (whenever they exist in T ).

Definition 1.1.4. Let (T , [1]) be a pretriangulated category and
H : T −→ A a covariant functor from T to some abelian category A. H is called
homological if, for every triangle

X
u−→ Y

v−→ Z
w−→ X[1]

the sequence

H(X)
H(u)−→ H(Y )

H(v)−→ H(Z)

is exact in A. The definition of cohomological functor is given dually.

Definition 1.1.5. Let (T , [1]) be a pretriangulated category. Given a morphism
φ of candidate triangles

X

f

��

u // Y

g

��

v // Z

h
��

w // X[1]

f [1]

��
X ′

u′ // Y ′
v′ // Z ′

w′ // X ′[1]
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the mapping cone of φ is the candidate triangle

Y ⊕X ′

−v 0
g v′


−→ Z ⊕ Y ′

−w 0
h v′


−→ X[1]⊕ Z ′

−u[1] 0
f [1] w′


−→ Y [1]⊕X[1]′

Definition 1.1.6. A triangulated category is a pretriangulated category (T , [1])
satisfying the extra axiom:
[TR4′] Given any commutative diagram in which the rows are triangles

X

f

��

u // Y

g

��

v // Z
w // X[1]

f [1]
��

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

the morphism h : Z −→ Z ′ making the diagram commute, given by axiom [TR3],
may be chosen so that the mapping cone of the morphism Φ := (f, g, h) is a triangle.

Remark 1.1.7. [TR4′] can be substituted by the Octahedral Axiom, that is,
given a pretriangulated category (T , [1]), T is triangulated if the following holds:
[TR4] For each composable morphisms f : X −→ Y and g : Y −→ Y ′,there is a
commutative diagram:

X

1

��

f // Y

g

��

// Z

��

// X[1]

1
��

X

��

gf // Y ′

��

// Z ′

��

// X[1]

��
0

��

// Y ′′

��

1 // Y ′′

��

// 0

��
X[1]

f [1]
// Y [1] // Z[1] // X[2]

where every row and column is a triangle.

Definition 1.1.8. A triangulated subcategory T of a triangulated category D is
a subcategory such that:

• M [n] ∈ T , for all M ∈ T .
• Every object C such that there is a triangle in D, A → B → C → A[1]

with A,B ∈ T , is in T .

In particular T is a triangulated category with the structures inherited by D

Definition 1.1.9. A functor F : T1 −→ T2 between two triangulated categories
is a triangulated functor if there is an isomorphism

ΦX : F (X[1]) ' F (X)[1]

and, for every distinguished triangle in T1

X
u−→ Y

v−→ Z
w−→ X[1],
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F (X)
F (u)−→ F (Y )

F (v)−→ F (Z)
ΦX◦F (w)−→ F (X[1])

is a distinguished triangle in T2.

Definition 1.1.10. Let F : T −→ D be a triangulated functor. The kernel of
F is defined to be the full subcategory C of T whose objects are mapped to 0 by F .

Remark 1.1.11. It turns out that, for every triangulated functor
F : T −→ D, Ker F is a triangulated subcategory of T .

Definition 1.1.12. A subcategory C of a triangulated category T is called thick
if it is triangulated and closed under direct summands.

In what follows we need the concept of localizing subcategory and the connection
with perpendicular subcategories and recollement. We are working in the setting
of triangulated categories, therefore we will give definitions and results in this par-
ticular context, even if some of them could be given also more generally. At this
step we will ignore set-theoretic issues. From now on D will indicate a triangulated
category with the shift functor indicated by [−].

1.1. Verdier localization. The notion of localization of triangulated cate-
gories was introduced by Grothendieck, and then axiomatised by Verdier in [V].
Here we will follows the presentation of [Kr2].

Definition 1.1.13. [Kr2, Section 2.2] Let Σ be a set of morphisms of D. Con-
sider the category of fractions D[Σ−1], whose objects are the same of D and mor-
phisms are defined as follows (note that, at this stage, we ignore set-theoretic issues,
that is, the morphisms between two objects of D[Σ−1] need not to form a small set).
Let us consider the quiver where the vertices are the objects of D and the class
of arrows is made by the disjoint union (MorD) ∪ Σ−1. Let C be the set of finite
sequences of composable arrows (with the composition that is the concatenation of
paths indicated with ◦C). Then MorD[Σ−1] is the quotient of C modulo the following
relations:

(1) The composition of paths in C coincide with the composition in D.
(2) idCX = idDX for each X ∈ D.
(3) σ−1 ◦C σ = idCX and σ ◦C σ−1 = idCY , for each σ : X −→ Y in Σ.

The associated quotient functor

QΣ : D −→ D[Σ−1]

is such that:

(Q1) QΣ makes the morphisms in Σ invertible, that is QΣ−1(f) is invertible in
D[Σ] for each f ∈ Σ.

(Q2) If a functor F : D −→ B makes the morphisms in Σ invertible in B, then

there is a unique functor
−
F : D[Σ−1] −→ B such that F =

−
F ◦QΣ.

The description of the morphisms in D[Σ−1] is particularly nice when Σ satisfies the
conditions illustrated below. In this case it is said that Σ admits a “Calculus of frac-
tions”. The techniques arising generalize the Ore localization for non commutative
rings. In the categorical setting, this concept was introduced by Grothendieck and
developed also by Gabriel and Zisman in [GZ].
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Definition 1.1.14. Let Σ be a set of morphisms in D. Then we say that Σ
admits a calculus of left fractions if the following hold:

(LF1) Σ is closed under the composition of morphisms (whenever it exists) and,
for all M ∈ D, IdM ∈ Σ.

(LF2) Each pair of morphisms X ′
f←− X

g−→ Y with f ∈ Σ can be completed to
a commutative square

X

f
��

g // Y

f ′

��
X ′

g′ // Y ′

such that f ′ ∈ Σ.
(LF3) Let α, β : X −→ Y morphisms in D. If there is a morphism σ : X ′ −→ X

in Σ with α ◦ σ = β ◦ σ, then there exists a morphism τ : Y −→ Y ′ in Σ
with τ ◦ α = τ ◦ β.

Remark 1.1.15. Dually, we say that Σ admits a calculus of right fractions if it
satisfies (LF1) and the dual of (LF2) and (LF3). If Σ admits a calculus of left and
right fractions we say that it is a multiplicative system.

Definition 1.1.16. A multiplicative system Σ of a triangulated category is said
to be compatible with triangulation if

• given σ in Σ, the morphisms σ[n] is in Σ for all n ∈ Z.
• Given a morphism of triangles (f, g, h) with f, g ∈ Σ then there is also a

morphism between the same triangles given by (f, g, h′) with h′ ∈ Σ.

Proposition 1.1.17. Let Σ be a multiplicative system compatible with trian-
gulation. Then D[Σ−1] is a triangulated category such that the quotient functor is
triangulated.

The following theorem defines Verdier localization and gives the connection with
the calculus of fractions. Verdier proved this result in [V] for thick subcategories
of a triangulated category, and Neeman generalized it in [N2, Theorem 2.1.8], for
every triangulated subcategory.

Theorem 1.1.18. [V] Let T ⊂ D be a triangulated subcategory. Then there is
a universal functor F : D −→ C with T ⊆ Ker(F ). In other words, there exists a
triangulated category denoted by D/T and a triangulated functor Funiv : D −→ D/T
such that T is in the kernel of Funiv and Funiv is universal with respect to this prop-
erty, that is, if G : D −→ C is a triangulated functor such that T ⊂ Ker(F ), then
G factors uniquely as

D
G
��

Funiv // D/T

yyC

Remark 1.1.19. [Kr2, 4.6.1 and 4.6.2] With the same notations as in the the-
orem, let us denote by Σ(T ) the set of morphisms X −→ Y in D which fit into
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a triangle X −→ Y −→ Z −→ X[1] with Z ∈ T . Then Σ(T ) is a multiplicative
system compatible with the triangulation. Then the quotient D/T can be defined
as D/T = D[Σ(T )−1] (see [V, 2.2.10]).

Let us recall this key result of Gabriel and Zisman that connects pair of adjoint
functors with the category of fractions.

Proposition 1.1.20. [GZ, Proposition I.1.3] Let (F,G) a pair of triangulated
adjoint functors, between two additive categories C and D, and denote by Σ the set
of morphisms in C, such that F (σ) is invertible in D for every σ ∈ Σ. Then the
following are equivalent:

(1) The functor G is fully faithful.
(2) The counit of the adjunction ε : FG→ IdD is invertible.
(3) The functor F : C[Σ−1]→ D satisfying F = F ◦QΣ is an equivalence.

Dually, let us set Γ the set of morphisms in D such that G(γ) is invertible in C for
every γ ∈ Γ. Then the following are equivalent:

(1’) The functor F is fully faithful.
(2’) The unit of the adjunction η : IdC → GF is invertible.
(3’) The functor G : D[Γ−1]→ C satisfying G = G ◦QΓ is an equivalence.

1.2. Bousfield localization.

Definition 1.1.21. A triangulated functor L : D −→ D is a localization functor
if there exists a morphism η : IdD −→ L with Lη : L −→ L2 being invertible and,
for each M ∈ D, LηM = ηL(M).
Dually, a triangulated functor G : D −→ D is a colocalization functor if the opposite
functor Gop : Dop −→ Dop is a localization functor.

Let us note that to every pair of triangulated adjoint functor (F,G) between two
triangulated categories C and D such that G is fully faithful (or F is fully faithful),
it is possible to associate a localization functor (or a colocalization functor).

Proposition 1.1.22. Let F : C → D a triangulated functor and G its right
adjoint, then:

(1) if G is fully faithful then the functor L := GF is a localization functor.
(2) If F is fully faithful then the functor H := FG is a colocalization functor.

Proof. (1) The morphism η of the definition of localization functor is given
by the unit of the adjunction: η : IdC → GF . Now we conclude using
proposition 1.1.20.

(2) The pair (Gop, F op) is and adjoint pair between Dop and Cop and F op is fully
faithful, then by point (1) we conclude.

�

We illustrate now the connection between localization functors and orthogonal
classes.

Notations 1.1.23. Let C be a class of object in D. We define respectively the
right and the left orthogonal subcategories of C in the following way:

C⊥ = {X ∈ D | HomD(C[n], X) = 0 for all C ∈ C, for all n ∈ Z};
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⊥C = {X ∈ D | HomD(X,C[n]) = 0for all C ∈ C, for all n ∈ Z}.

Proposition 1.1.24. [Kr2, Proposition 4.9.1] Let C be a thick subcategory of
D. Then the following are equivalent:

(1) There exist a localization functor L : D −→ D with KerL = C.
(2) The inclusion functor iC : C ↪→ D admits a right adjoint.
(3) For each X in D there exists an exact triangle X ′ −→ X −→ X ′′ −→ X ′′[1]

with X ′ ∈ C and X ′′ ∈ C⊥.
(4) The quotient functor Q : D −→ D/C admits a right adjoint.

(5) The composite C⊥
iC⊥
↪→ D Q−→ D/C is an equivalence.

(6) The inclusion functor C⊥ ↪→ D admits a left adjoint and ⊥(C⊥) = C.

2. TTF triples and recollements

The important notion of t-structure in a triangulated category was introduced by
Beilinson, Bernstein and Deligne in the celebrated paper [BBD]. We will recall the
definition and its connection with the localization theory. Let D be a triangulated
category with shift functor [−].

Definition 1.2.1. A t-structure on D is a pair (A,B) of full subcategories of D
that satisfies the following conditions:

(1) If A ∈ A and B ∈ B then HomD(A,B) = 0.
(2) A[1] ∈ A, for all A ∈ A and B[−1] ∈ B for all B ∈ B.
(3) For each M ∈ D there exists a triangle

(2) AM −→M −→ BM −→ AM [1]

with AM ∈ A and BM ∈ B[−1].

Remark 1.2.2. From the definition it turns out that A and B are maximal with
respect to property (1).

Proposition 1.2.3. [BBD, 1.3.3] For each n ∈ Z the inclusion functor of A[n]
in D admits a right adjoint RA[n] and the inclusion functor of B[−n] admits a left
adjoint LB[n].

A[n]
iA[n] // D
RA[n]

ii

B[n]
iB[n]

// D

LB[n]

uu

Moreover, for each M ∈ D there is a unique morphism d ∈ (HomD(LB[−1](M), RA(M)[1])
such that there is a triangle

RA(M) −→M −→ LB[−1](M)
d−→ RA(M)[1],

that is isomorphic to (2).
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Remark 1.2.4. So, given a t-structure (A,B) in D, for each M ∈ D the associ-
ated triangle has the form

RA(M) −→M −→ LB[−1](M) −→ RA(M)[1]

Definition 1.2.5. A torsion pair in D is a pair (X ,Y) of full subcategories of
D, closed under isomorphisms, satisfying the following conditions:

1) HomD(X ,Y) = 0.
2) X[1] ∈ X and Y [−1] ∈ Y for each X ∈ X and Y ∈ Y ;
3) for each object M ∈ D, there is a triangle

XM −→ C −→ YM −→ XM [1]

in D with XM ∈ X and YM ∈ Y .
In this case X is called a torsion class and Y a torsion free class. If X is trian-

gulated then (X ,Y) is called heditary.

Remark 1.2.6. From the definition it turns out that X and Y are maximal with
respect to property 1) that is X = ⊥Y and Y = X⊥. Hence they are thick and we
can apply Proposition 1.1.24, to conclude that

X ' D/Y and Y ' D/X

The following Proposition shows that in a triangulated categories t-structures
and torsion pairs are in bijection.

Proposition 1.2.7 ([BR], [Ke5]). Given a torsion pair (X ,Y) the pair (X ,Y [1])
is a t-structure. Conversely given a t-structure (A,B), the pair (A,B[−1]) is a tor-
sion pair.

Definition 1.2.8. A torsion torsion-free triple (TTF triple) in D is a triple
(X ,Y ,Z) of full subcategories of D, where (X ,Y) and (Y ,Z) are torsion pairs.

Remark 1.2.9. Let us note that (X ,Y ,Z) = (⊥Y ,Y ,Y⊥). Moreover (X ,Y) and
(Y ,Z) are hereditary.

In what follows we will consider triangulated categories closed under set-indexed
products and coproducts, that is, using Neeman’s notations, satisfying the axiom
[TR5].
From 1.2.3 and 1.2.7 we have the following pairs of adjoint functors:

X iX // D
RX

gg

Y
iY // D
RY

gg

LY

ww

Z iZ // D
LZ

ww
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Definitions 1.2.10. A localizing (colocalizing) subcategory of D is a triangu-
lated subcategory of D closed under coproducts (or products). An aisle (coaisle) in
D is a full triangulated subcategory of D such that the inclusion functor admits a
right (left) adjoint.
A strictly localizing (strictly colocalizing) subcategory is an aisle (coaisle) that is
also closed under coproducts (products).

Since, by definition, every localizing subcategory of D is closed under coproducts,
then it is thick (see [R]).

Proposition 1.2.11. ([BR, Corollary 2.9]) If (X ,Y ,Z) is a TTF triple in D,
then:

(1) X and Y are closed under coproducts and Y and Z are closed under prod-
ucts. Moreover X is a strictly localizing subcategory, Z is strictly colocaliz-
ing and Y is strictly localizing and strictly colocalizing.

(2) The pairs of adjoint functors (RX , iX ), (LY , iY), (RY , iY), (LZ , iZ) are such
that:

i) RX iX = IdX , LYiY = IdY = RYiY and LZiZ = IdZ .
ii) If we consider the Verdier quotient D/Y we have the equivalences
X −→ D/Y ←− Z that are explicitly given by the functors

X
LZ iX

'' Z
RX iZ

gg

iii) The functors iY , iX and iZLZiX are fully faithful.

Proof. (1) Since X = KerHomD(−,Y) and Y = KerHomD(−,Z) then X
and Y are closed under coproducts , so they are localizing. Dually Z and
Y are colocalizing. Moreover (X ,Y [1]) and (Y ,Z[1]) are t-structures, then
by Proposition 1.2.3 we conclude.

(2) i) Let us prove that, for each X ∈ X , RX iX (X) = X. Indeed, by Propo-
sition 1.2.3 and part (1), for each M ∈ D, and in particular for X, we
have a triangle

RX (X)→ X
f→ LY(X)→ RX (X)[1].

Since X ∈ X , then f = 0 and RX (X) ' X ⊕ LY(X)[1]. But LY(X)[1]
is in Y then RX (X) ' X. In the same way it can be proved that
LYiY = IdY = RYiY and LZiZ = IdZ .

ii) See [BR][Corollary 2.9]
iii) RX iX = IdX implies that the counit of the adjunction (RX , iX ) is

invertible. Then iX is fully faithful by Proposition 1.1.20. The same
holds for iY and iZ . Now it remains to prove that iZLZiX is fully
faithful. But, for the previous point, LZiX is an equivalence, then we
can conclude.

�

Corollary 1.2.12. The functors iXRX , iYRY are localization functors and iYLY , iZLZ
are colocalization functors.
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Proof. See Propositions 1.2.11 and 1.1.22. �

Corollary 1.2.13. There is a bijection between strictly localizing subcategories,
hereditary t-structures and hereditary torsion pairs:

X → (X ,X⊥)→ (X ,X⊥)

(X ,Y)→ (X ,Y)→ X .

Proof. If X is a strictly localizing subcategory then X and X⊥ are closed under
shifts and by proposition 1.1.24 there exists a localization functor L : D → D such
that X = KerL. Moreover, for every M ∈ D, there exists a triangle XM → M →
YM → XM with XM ∈ X and YM ∈ X⊥. Hence (X , X⊥) is a t-structure. By
Proposition 1.2.7 we conclude. In particular if (X ,Y) is a hereditary torsion pair if
and only it is a hereditary t-structure. �

From the proof of Proposition 1.2.11 we have the following.

Corollary 1.2.14.

LYiX (X) = RX iY(Y ) = RYiZ(Z) = LZiY(Y ) = 0

for each X ∈ X , Y ∈ Y and Z ∈ Z.

Let us recall the concept of recollement.

Definition 1.2.15. [BBD] Let D, D′ and D′′ be triangulated categories. D is
said to be a recollement of D′ and D′′, expressed by the diagram

(3) D′′ i∗=i! // D

i!

ee

i∗

yy j!=j∗ // D′

j∗

ee

j!

yy

if there are six triangle functors satisfying the following conditions:
i) (i∗, i∗), (i!, i

!), (j!, j
!) and (j∗, j∗) are adjoint pairs;

ii) i∗, j∗ and j! are fully faithful functors;
iii) j!i! = 0 (and thus also i!j∗ = 0 and i∗j! = 0);
iv) for each object C ∈ D, there are two triangles in D :

i!i
!(C) −→ C −→ j∗j

∗(C) −→ i!i
!(C)[1],(4)

j!j
!(C) −→ C −→ i∗i

∗(C) −→ j!j
!(C)[1].(5)

The notion of recollements was introduced by Beilinson-Bernstein-Deligne (see
[BBD]) in a geometric context, where stratifications of varieties induce recollements
of derived categories of constructible sheaves. They can be seen as “short exact
sequences” of triangulated categories, in the sense that the first and the third terms
are triangle equivalent respectively to a subcategory and to a quotient category of
the central one. Indeed i∗ is fully faithful then D′′ ' Imi∗ and, from j∗i∗ = 0 and i∗
fully faithful, we have D′ ' D/i∗(D′′).
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Definition 1.2.16. Two recollements defined by the data
(D, D′,D′′, i∗, i∗, i!, j!, j!, j∗) and (D, T ′, T ′′, i′∗, i′∗, i′!, j′!, j′! , j′∗) are said to be equiva-
lent if the following equality between essential images holds :

(im(j!), im(i∗), im(j∗)) = (im(j′!), im(i′∗), im(j′∗)).

Proposition 1.2.17. Let D be a triangulated category. Then there is a bijection
between TTF triples and equivalence classes of recollements.

Proof. Let (X ,Y ,Z) be a TTF triple in D. Let us use notations as in Propo-
sition 1.2.11. Then the following diagram is a recollement:

Y
iY // D

RY

ee

LY

yy RX // X

iZLZ iX

ee

iX

yy

Indeed, the third property of recollements is verified thanks to Corollary 1.2.14.
Moreover, by Proposition 1.2.11, the functors iY , iX , iZLZiX are fully faithful. We
have also that the pairs of functors (LY , iY), (iX , RX ) and (iY , RY) are adjoint pairs.
Let us prove that (RX , iZLZiX ) is and adjoint pair too. For each M ∈ D, apply the
functor RX to the triangle

iYRY(M)→M → iZLZ(M)→ iYRY(M)[1].

Then we haveRX (M) ' RX iZLZ(M), sinceRX iYRY(M) = 0. Hence HomD(M, iZLZiX (X)) =
HomZ(LZ(M), LZiX (X)). Recall now that the pair (RX iZ , LZiX ) is an equivalence
between Z and X . Then
HomZ(LZ(M), LZiX (X)) = HomX (RX iZLZ(M), X) = HomX (RX (M), X), for each
X ∈ X .
Conversely, given a recollement as in (3) the triple

(j!(D′), i∗(D′′), j∗(D′))

is a TTF triple. In fact, let us set (j!(D′), i∗(D′′), j∗(D′)) = (X ,Y ,Z), then X ,Y
and Z are triangulated subcategories, because j!, i∗ and j∗ are triangulated functors.
Moreover HomD(j!(M), i∗(N)) = HomD′(M, j!i∗(N)) = 0 (for each M,N ∈ D), that
is HomD(X ,Y) = 0. In the same way it can be proved that HomD(Y ,Z) = 0.
Finally, using the fourth property of recollements, we have that, for each M ∈ D
there are two triangles of the form

XM →M → YM and Y ′M →M → ZM

with XM ∈ X , YM , Y
′
M ∈ Y and ZM ∈ Z. �
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Remark 1.2.18. Note that, to a TTF triple (X ,Y ,Z) are associated two equiv-
alent recollements, expressed by the diagrams:

Y
iY // D

RY

ee

LY

yy RX // X

iZLZ iX

ee

iX

yy

Y
iY // D

RY

ee

LY

yy LZ // Z

iZ

ee

iXRX iZ

yy

3. Recollements of compactly generated triangulated categories

Let D be a triangulated category with set indexed coproducts (i.e. satisfying
axiom [TR5]).
We want to focus on recollements of compactly generated triangulated categories.
In this setting there are useful results by [NS] and [AKL] that allow us to construct
a correspondence between set of compact objects in the category and recollements
(and then, also TTF triples).

Definition 1.3.1. D is said to be generated by a set of objects P of D if, given
X ∈ D, HomD(P [n], X) = 0 for each n ∈ Z and P ∈ P implies X = 0.

Given a class C of objects in D there are two triangulated subcategories of D
associated to this class.

Definition 1.3.2. (1) Tria C denotes the smallest full triangulated subcat-
egory of D containing C and closed under set indexed coproducts.

(2) tria C denotes the smallest full triangulated subcategory of D containing C
and closed under finite coproducts and direct summands.

Remark 1.3.3. Note that, by [R], Tria C, being closed under coproducts, is
thick.

Definition 1.3.4. X ∈ D is called compact if the functor HomD(X,−) com-
mutes with set indexed coproducts. M in D is called self-compact if M is compact
in Tria M .

Definition 1.3.5. D is said compactly generated if it is generated by a set of
compact objects. A TTF triple (X ,Y ,Z) in D is compactly generated if so is X as
a triangulated category.

Definition 1.3.6. Let C be a class of objects in D. We say that D satisfies the
principle of infinite devissage with respect to C if D = Tria (C).

Lemma 1.3.7. [NS, Lemma 2.2]
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(1) Let D be a triangulated category and D′ be a full triangulated subcategory
generated by a class of objects C. If Tria (C) is an aisle in D contained in
D′, then D′ = Tria (C).

(2) Let D be a triangulated category and let (X ,Y) be a t-structure on D such
that X is triangulated. Let LY be the left adjoint of the inclusion functor of
Y in D. Then

i) If C is a class of generators of D then LY(C) is a class of generators
of Y.

ii) A class C of objects of X generates X if an only if the objects of Y are
precisely those which are right orthogonal to all the shifts of objects of
C.

Proof. (1) By Proposition 1.1.24, for each M ∈ D′ there exists a triangle

QM →M → QM → QM [1]

with QM ∈ Tria (C) and QM ∈ Tria (C)⊥. Moreover, D′ is triangulated,
then also QM is in D′. But C generates D′ so HomD(C[n], QM) = 0, for all
C ∈ C and for every integer n, implies QM = 0 then M ∈ Tria (C).

(2) Let (X ,Y) be a t-structure such that X is triangulated.
i) Let C be a class of generators of D and C ∈ C. Let Y ∈ Y . Then

HomD(LY(C)[n], Y ) = HomY(LY(C)[n], Y ) = HomD(C[n], iY(Y )),

where the last equality is given by the adjunction. Then HomY(LY(C)[n], Y ) =
0 if and only if HomD(C, iY(Y )[n]) = 0 for every n and for every C ∈ C,
if and only if Y = 0. So HomY(LY(C)[n], Y ) = 0 if and only if Y = 0,
that is, LY(C) is a class of generators of Y .

ii) If C is a class of generators of X let us set
A := {M ∈ D | HomD(C[n],M) = 0,∀n ∈ Z, for each C in C}. Then
it is clear that Y is contained in A. On the other hand, let M ∈ A.
Then we have the triangle

XM →M → YM → XM [1]

with XM ∈ X and YM ∈ Y . Let C ∈ C. If we apply Hom(C[n],−) to
the above triangle we obtain
HomD(C[n], XM) = 0, for all C ∈ C and n ∈ Z, then XM = 0 and
M ∈ Y .
Conversely, if Y = A then, for each X in X such that
HomD(C,X[n]) = 0 for each integer n and for each C in C, we have
X ∈ Y , that is X = 0.

�

From now on D will denote a triangulated category compactly generated.

Lemma 1.3.8. A full triangulated subcategory Y of D is closed under small co-
products if and only if the inclusion functor of Y in D admits a right adjoint. That
is, in D every localizing subcategory is strictly localizing.
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Proof. By the dual of [Kr2, Corollary 10.2], we have that the inclusion functor
of Y preserves small coproducts (that is Y is closed under small coproducts) if and
only it has a right adjoint. �

Definition 1.3.9. [BNE],[Kr] A subcategory C of D is called smashing if it is
the kernel of a localization functor L : D → D which preserves small coproducts.

Remark 1.3.10. If X is a localizing subcategory then it is smashing if and only if
X⊥ is closed under coproducts. Indeed if X is localizing, then, by [Kr2, Proposition
4.9.1] there exists a localization functor L, such that X = KerL and ImL = X⊥. It
is clear that X is smashing if and only if ImL is closed under coproducts.

The following result shows that smashing subcategories can be constructed start-
ing from sets of compact objects.

Theorem 1.3.11. [TLS, 4.5] Let C be a set of objects in D. Then Tria C is
a localizing subcategory of D. If C is consists of compact objects then Tria C is a
smashing subcategory.

Proof. By definition, for each set of objects C in D, Tria C is localizing. Sup-
pose now that C is a set of compact objects. Then Tria C is a localizing sub-
category by the first part of the statement. We want to prove that C⊥ is closed
under coproducts. Let I be a set, and (Yi)i∈I a family of objects in C⊥. Then,
by Proposition 1.3.7,

∐
i∈I Yi ∈ C⊥ if and only if HomD(C[n],

∐
i∈I Yi) = 0 for ev-

ery C ∈ C, n ∈ Z. But now, for the compactness of the objects in C, we have:
HomD(C[n],

∐
i∈I Yi) =

∐
i HomD(C[n], Yi) = 0. Hence

∐
i∈I Yi ∈ C⊥. �

Proposition 1.3.12. [Ni, Proposition 4.4.3] Let X be a triangulated subcategory
of D, then the following are equivalent:

(1) X is a smashing subcategory.
(2) X is closed under small coproducts and the quotient functor

Q : D → D/X admits a right adjoint that preserves small coproducts.
(3) X is the first class of the TTF triple (X ,X⊥,X⊥⊥).

Proof. 1)⇒ 2) X = KerL and L preserves small coproducts, then X is closed
under small coproducts. Let us set Y := D/X = X⊥. We claim that the in-
clusion functor i : Y −→ D is the right adjoint of Q. We want to prove that
HomY(Q(M), Y ) = HomD(M, i(Y )) for each M ∈ D and Y ∈ Y . By Remark 1.2.13
we have that (X ,Y [1]) = (X ,Y) is a torsion pair. Then there is a triangle in D:

XM →M → YM → XM [1]

with XM in X and YM in Y . Applying the functor Q to the triangle, we get
Q(M) ' YM . Apply now the functor HomD(−, Y ) to the triangle

XM →M → Q(M)→ X[1],

recalling that Y = X⊥ we obtain HomY(Q(M), Y ) = HomD(M,Y ). So Q is the left
adjoint of the inclusion functor of Y and, by [Kr2, Proposition 3.5.1] it preserves
coproducts. Moreover, thank to [NS, Lemma 2.3] Q preserves compact objects.
Now we use [Kr2, Lemma 11.2] to conclude that iY preserves coproducts.
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2)⇒ 3) Set Y := D/X . From the proof of 1)⇒ 2) we can argue that (X ,Y) is a
torsion pair. Moreover Y is closed under small coproducts, then by [Be, Proposition
5.14], we can conclude that there exists a triangulated subcategory Z such that
(X ,Y ,Z) is a TTF triple.
3) ⇒ 1) Given the TTF triple (X ,Y ,Z), one has X = Ker(iYLY) and it is easy to
see that iYLY is a localization functor. Moreover LY has a right adjoint (iY) then
it preserves coproducts. So X is the kernel of a localization functor that preserves
coproducts (see Proposition 1.3.8).

�

The following result illustrates a connection between compact objects in D and
compact and self-compact objects in the classes of a TTF triple.

Proposition 1.3.13. [NS] Let (X ,Y ,Z) be a TTF triple in D. Then:

(1) If M is compact in D then LY(M) is compact in Y. In particular, if Y =
Tria (LY(M)) then LY(M) is self-compact.

(2) If N is compact in X then M is compact in D.

Proof. (1) [NS, Lemma 2.4]
(2) Let (Mi)i∈I a family of objects in D and, for each i let

Xi →Mi → Yi

be the triangle for the Mi associated to the torsion pair (X ,Y). Then the co-
product of these triangles

∐
iXi →

∐
iMi →

∐
i Yi is the triangle for

∐
iMi

with respect to the torsion pair (X ,Y). If we apply the homological functor
HomD(N,−) to both triangles, from Y = X⊥, Y closed under coproducts,
and N compact in X , we obtain HomD(N,

∐
iMi) '

∐
i HomD(N,Mi).

�

In what follows we will focus on recollements of derived categories of dg algebras
(or rings), which are particular cases of recollements of triangulated categories gen-
erated by a single objects. So we recall some well known results on singly generated
triangulated categories.

Definition 1.3.14. An object X ∈ D is called self-orthogonal if

HomD(X,X[n]) = 0, for every 0 6= n ∈ Z.

Theorem 1.3.15. [NS, Proposition 3.4] The following assertions are equivalent:

(1) D is a recollement of triangulated categories generated by a single compact
object.

(2) There are objects P and Q of D such that:
i) P is compact.

ii) Q is self-compact.
iii) HomD(P [n], Q) = 0 for each n ∈ Z.
iv) {P,Q} generates D.

(3) There is a compact object P such that Tria (P )⊥ is generated by a compact
object in Tria (P )⊥.
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Proof. 1)⇒ 2) Consider a recollement of D as (3), then we have a TTF triple
(X ,Y ,Z) = (j!(D), i∗(D′′), j∗(D′)) and set P for the compact generators of X and
Q for the compact generator of Y . Then, Q is self-compact and by Proposition
1.3.13, part (2), P is compact in D. Then we have points i) and ii). Point iii) is
obvious since P ∈ X and Q ∈ Y . Let us prove point iv). Let M ∈ D such that
HomD(P [n],M) = 0 = HomD(Q[n],M) for every integer n. Thus, since X = Tria P
and Y = Tria Q, by Proposition, 1.3.7 M ∈ Y ∩ Z, so M = 0.
2) ⇒ 3) Let us set (X ,Y) := (Tria P,Tria P⊥). Then, by Proposition 1.3.7
{LY(P ), LY(Q)} is a class of generators of Y . Now, LY(P ) = 0 and, using again
Proposition 1.3.7, Q is in Tria P⊥, then LY(Q) = Q. Moreover Tria Q is an aisle in
Y , then by Proposition 1.3.7, Y = Tria Q.
3) ⇒ 1) We have that Tria (P ) is a smashing subcategory by Proposition 1.3.11,
and the TTF triple associated is (Tria P,Tria P⊥,Tria P⊥⊥) where Tria P⊥ is gen-
erated by a single object that is compact in Tria P⊥. Then by Proposition 1.2.17
there is a recollement where the first and the third terms are triangulated categories
generated by a single, compact object. �

Remark 1.3.16. In Theorem 1.3.15, if we assume, in point 1), 2) or 3) that the
compact objects are self-orthogonal, then they will be self-orthogonal also in the
other points.

In a similar way, using the characterization of smashing subcategories in a com-
pactly generated triangulated category, an alternative version of the above theorem
can be proved in a “non compact” version.

Theorem 1.3.17. [AKL, Theorem 1.6] The following assertions are equivalent:

(1) D is a recollement of triangulated categories generated by a single compact
object.

(2) There is an object P such that Tria (P ) is a smashing subcategory of D.
(3) There is an object P in D such that KerHomD(Tria (P ),−) is closed under

coproducts.
(4) There are objects P and Q of D such that:

i) KerHomD(Tria (P ),−) is closed under coproducts.
ii) Q is self-compact.

iii) HomD(P [n], Q) = 0 for each n ∈ Z.
iv) {P,Q} generates D.



CHAPTER 2

Recollements of derived categories of dg algebras

In this chapter we want to introduce the well known concept of derived category
of an abelian category, in particular the derived category of a ring and of a dg
algebra.

1. Derived categories of dg algebras

Definition 2.1.1. Let A be an abelian category. Let us denote by C(A) the
category of cochains of objects of A

...→ Xn dn→ Xn+1 dn+1→ Xn+2 → ...

where the morphisms are the chain maps.
The homotopy category H(A) is the category whose objects are complexes in A and
whose morphisms are homotopy equivalence classes of morphisms of complexes.

Theorem 2.1.2. [W, Section 10.9] In the additive category H(A) it can be de-
fined a class of distinguished triangles such that (H(A), [1]) is a triangulated category
where [1] is the shift of complexes.

Remark 2.1.3. For any n in Z the additive cohomology functor

Hn : C(A) −→ A

induces an additive functorH(A) −→ A which we also denote Hn. If we set H = H0

then it is easy to check that Hn = H ◦ [n] for any n ∈ Z.

Definition 2.1.4. A morphism of complexes f : X −→ Y is a quasi-isomorphism
if the morphism Hn(f) : Hn(X) −→ Hn(Y ) is an isomorphism in A for every n ∈ Z.
Since this property is stable under homotopy equivalence, it makes sense to say that
a morphism in H(A) is a quasi-isomorphism.

Proposition 2.1.5. A morphism of complexes f : X −→ Y is a quasi-isomorphism
if and only its mapping cone is exact.

Remark 2.1.6. The exact complexes form a thick triangulated subcategory Z
of H(A) where the morphisms are the quasi-isomorphisms in H(A). In particular,
if we denote by Σ the class of quasi-isomorphisms in H(A), then every σ ∈ Σ has
its mapping cone in Z, so, by definition, we have H(A)/Z = H(A)[Σ−1].

Definition 2.1.7. Let A be an abelian category. The derived category of A is
the Verdier quotient D(A) := H(A)/Z = H(A)[Σ−1] with the canonical triangulated
functor H(A) −→ H(A)/Z = D(A)

19
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A classical example of derived category is given by the derived category of a
module category. We start from a ring R, then we consider the abelian category of
its left (or right) modules R-Mod, then the category of R-complexes and we quotient
the homotopic category H(R) by the class of quasi-isomorphisms.

Now we briefly introduce the concept of dg categories, dg functors and we focus
on derived categories of dg algebras.
Let k be a commutative ring.

Definitions 2.1.8. A graded category A is a k-linear category whose morphisms
spaces are Z-graded modules. A graded functor is a functor of graded categories
F : A → B such that the map

Φ(M,N) : A(M,N)→ B(F (M), F (N)), f 7→ F (f)

is homogeneous of degree 0.
A differential graded category (dg category) is a graded categoryA whose morphisms
spaces are complexes of k-modules, that is they are endowed with a differential such
that, for each M,N,P ∈ A, f : N → P, g : M → N we have:

d(fg) = (df)g + (−1)pf(dg)

where f is homogeneous of degree p.

The simplest dg category is the dg category A with one object ∗ and space of
endomorphism B := HomA(∗, ∗). Then B is not just a complex of k-modules but it
has also a ”multiplicative structure”. It is an example of differential graded algebra
over k.

Definition 2.1.9. A differential graded algebra over k (dg algebra) is a Z-graded
k-algebra B = ⊕

p∈Z
Bp endowed with a differential d of degree one, satisfying the

Leibniz rule:
d(ab) = d(a)b+ (−1)pad(b)

for all a ∈ Bp, b ∈ B.
In particular, a ring is a dg Z-algebra concentrated in degree 0.

Definition 2.1.10. Let B be a dg algebra over k with differential dB. A differen-
tial graded (left) B-module (dg B-module) is a Z-graded (left) B-moduleM = ⊕

p∈Z
Mp

endowed with a differential dM of degree 1 such that

dM(bm) = bdM(m) + (−1)pdB(b)m

for all m ∈Mp, b ∈ B.
In the sequel we will simply talk about a dg algebra without mentioning the

ground ring k.

Notations 2.1.11. We denote by Bop the opposite dg algebra of B. Thus, dg
right B-modules will be identified with left dg Bop-modules. Also D(Bop) will denote
the derived category of right dg B-modules.

M is a B-A dg-bimodule if it is a left dg B-module and a left dg Aop-module,
with compatible B and Aop module structure. In this case we also write BMA.
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Definition 2.1.12. A morphism between dg B-modules is a morphism of the
underlying graded B-modules, homogeneous of degree zero and commuting with
the differentials.
A morphism f : M → N of dg B-modules is said to be null-homotopic if there exists
a morphism of graded modules s : M → N of degree −1 such that f = sdM + dNs.

The category of left dg B-modules is abelian and it will be denoted by C(B). If
B is concentrated in degree zero, then C(B) is the usual category of complexes over
the algebra B.

Remark 2.1.13. (1) The homotopy category H(B) is the category with
the same objects as C(B) and with morphisms the equivalence classes of
morphisms in C(B) modulo the null-homotopic ones. The derived category
D(B) is the localization of H(B) with respect to quasi-isomorphisms, that
is morphisms in C(B) inducing isomorphisms in homology.

(2) H(B) and D(B), as in the case of rings, are triangulated categories with
shift functor [1] (the usual shift of complexes).

(3) D(B) is a compactly generated triangulated category generated by the sin-
gle object B.

Definition 2.1.14. Cdg(B) denotes the category of dg B-modules where the
morphism space HomCdg(B)(M,N) between dg B-modules M,N is the complex
HomB(M,N) with [HomB(M,N)]n = HomB(M,N [n]) (here HomB(M,N) denotes
the group of morphisms of graded B-modules, homogeneous of degree zero) and
differential defined, for each f ∈ HomB(M,N),

d(f) = dN ◦ f − (−1)|f |f ◦ dM .

Observe that, if X is a dg B-module, then HomB(X,X) is a dg algebra called
the dg-endomorphism ring of X.

Definition 2.1.15. A dg B-module is acyclic if it has zero homology.

Remark 2.1.16. Let Z0Cdg(B) and H0(Cdg(B)) the categories having exactly the
same objects as C(B) and morphisms, for each f : M −→ N in Cdg(B), respectively
Z0(f) and H0(f). Then the following equalities hold:

Z0Cdg(B) = C(B) and H0(Cdg(B)) = H(B).

Definition 2.1.17. Hp(B) indicates the category of the H-projective modules,
that is a full subcategory of H(B) consisting of the dg modules M such that
HomH(B)(M,N) = 0 for each acyclic module N . Dually we define the category
Hi(A) of the H-injective modules as the full subcategory of H(B) of all modules I
such that HomH(B)(N, I) = 0 for each I ∈ Hi(B) and for each acyclic module N .

Proposition 2.1.18. [Ke2, Theorem 3.1] Let us denote by incp and inci re-
spectively the inclusion of Hp(B) and Hi(B) in H(B), then there are two pairs of
adjoint functors

Hp(B)
p

�
incp

H(B) and Hi(B)
i

�
inci

H(B)
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such that p ◦ incp = IdHp(B) and i ◦ inci = IdHi(B). Moreover there are two triangle
equivalences

Hp(B)
p−→ H(B) −→ D(B) and Hi(B)

i−→ H(B) −→ D(B).

Remark 2.1.19. For each M inH(B), pM and iM will indicate theH-projective
andH-injective resolution of M . Proposition 2.1.18 tells us that for each M in D(B)
projective and injective resolutions always exist and we have the quasi-isomorphisms:

pM 'M ' iM.

Definition 2.1.20. Let A and B two dg algebras over k and

F : C(A) −→ C(B)

an additive functor. Then F induces a functor on the homotopy category which we
still denote by F . It also induces a functor between Cdg(A) −→ Cdg(B). With abuse
of notations we denote by F the functor induced at the level of homotopic categories.
We recall the definition of the total right derived functor of F , RF : D(A) −→ D(B)
as RF (X) = F (iX) and of the total left derived functor of F , LF : D(A) −→ D(B)
as LF (X) = F (pX), for every X in D(A).

Notations 2.1.21. (1) Let M be an A-Bop bimodule, then the total right
derived functor of HomA(M,−) is denoted by RHomA(M,−) and it is de-
fined by:

RHomA(M,N) = HomA(M, iN) = HomA(pM,N).

(2) the following equalities hold, for each M,N in D(A):

Hn(RHomA(M,N)) = Hn(HomA(M, iN)) =

= H0(HomA(M, iN [n])) = HomH(A)(M, iN [n]) = HomD(A)(M,N [n]).

(3) Let T be a left B dg-modules with dg-endomorphism ring A. The total left

derived functor of T ⊗B − is denoted by T
L
⊗B − and, for every N in D(B)

T
L
⊗
B
N = T ⊗

B
pN in D(A).

Definition 2.1.22. (see [Ke1, Sec 2.6]) Let A be a dg algebra. A dg A-module
X is called perfect if it is H-projective and compact in D(A). The full subcategory
of H(A) consisting of perfect dg A-modules is denoted by per A; it coincides with
the subcategory tria A of H(A).

By Ravenel-Neeman’s result, an object of D(A) is compact if and only if it is
quasi-isomorphic to a perfect dg B-module.

If A is an ordinary algebra, then the perfect complexes are the bounded com-
plexes with finitely generated projective terms, that is Hb

p(A).

Let us recall that if we take a compact object Q in the derived category D(A) of
a dg algebra A, then the triangulated subcategory Tria Q is a smashing subcategory
by Proposition 1.3.11. We want to recall a fundamental result proved by Keller (in
the more general setting of dg-categories in [Ke2, Theorem 4.3]) that establishes
a triangle equivalence between Tria Q and the derived category of a suitable dg
algebra.
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Theorem 2.1.23. [Ke1, Theorem 3.3] Let A be a dg algebra and Q be a self-
compact and H-projective object in D(A). Set B := RHomA(Q,Q), then there is a
triangle equivalence

F : D(B) −→ Tria Q

with Hn(B) ' HomD(A)(Q,Q[n]).

Proof. Let us set Y := Tria Q. Then Y is a triangulated category. Consider
the functor

F1 : Y → C(B) : M 7→ HomA(Q,M).

Set F for the composition of F1 with the quotient functor C(B)→ D(B). We want
to prove that F is an equivalence. First of all we can see that F commutes with
coproducts, indeed, for every set of objects (Mj)j∈J of Y we have:

HomA(Q,
∐
j

Mj) =
∐
j

HomA(Q,Mj)

since Q is compact in Y and H-projective in H(A). Moreover F (Q) = B and

HomD(B)(F (Q), F (Q[n])) = HomD(B)(B,B[n]) = Hn(B) =

= HnF (Q) = HomD(A)(Q,Q[n]) = HomY(Q,Q[n]).

Then F commutes with coproducts, sends a generator of Y in a generator of D(B)
and it is fully faithful on the compact objects of Y . Thanks to [Ke2, Lemma 4.2],
we can conclude that F is an equivalence. �

Remark 2.1.24. Let us note that, if Q is perfect in D(A) then it is in particular
H-projective, then RHomA(Q,Q) = HomA(Q,Q).

2. Recollements from compact objects

Now we have all the necessary notions to explain some results on the construction
of recollements of derived categories of dg algebras arising from compact objects.
Our approach follows the exposition in [J] which generalizes to dg algebras the
situation considered in [DG] for derived categories of rings.

Let B be a dg algebra and let Q be a perfect left dg B-module. Consider the
dg-endomorphism ring D of Q, that is D = HomB(Q,Q); then Q becomes a B-D dg-
bimodule and, by Theorem 2.1.23, Tria Q ' D(D). Let P = Q∗ = RHomB(Q,B),
then P is a D-B dg-bimodule.

Remark 2.2.1. Let Q be a perfect left dg B-module with dg-endomorphism ring
D and P = Q∗ = RHomB(Q,B). Then P is a perfect right dg B-module and the
following hold

(1) ([DG, Sec 2.5] or [J, Sec 2.1]) The functors

H = RHomB(Q,−), G = P
L
⊗
B
− : D(B)→ D(D).

are isomorphic.
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(2) The functor HomB(−, B) induces an equivalence

HomB(−, B) : per B → per Bop

with inverse HomBop(−, B). Thus, P ∗ = RHomB(P,B) is isomorphic to
Q. Moreover, it follows that the functor HomB(−, B) : C(B) → C(Bop)
induces a quasi-isomorphism between the dg algebras HomB(Q,Q) and
HomBop(P, P ). So we can identify HomBop(P, P ) with D.

Remark 2.2.2. By Proposition 1.3.11, given a compact objectQ inD(B), Tria Q
is a smashing subcategory of D(B) and so (Tria Q,Q⊥, Q⊥⊥) is a TTF triple. Hence
there is the recollement:

Y
iY // D(B)

RY

ee

LY

yy RX // X

iZLZ iX

gg

iX

ww

Thank’s to Keller theorem and to some observations on derived functors we
can rewrite the above recollement in a different way. The following result appears
in different forms in papers by Dwyer and Greenless [DG, Sec. 2], Miyachi [Mi,
Proposition 2.7] and Jørgensen [J, Proposition 3.2]. We restate it and give an
alternative proof following the arguments used by Yang in the proof of [Y, Theorem
1].

Proposition 2.2.3. Let B be a dg algebra and let Q be a perfect left dg B-module.
Let D = HomB(Q,Q) and P = RHomB(Q,B). Then the following diagram is a
recollement:

Q⊥
i∗=inc // D(B)

i!

ff

i∗

xx RHomB(Q,−)∼=P
L
⊗B− // D(D)

RHomD(P,−)

gg

Q
L
⊗
D
−

ww

Proof. We first show that the functor j! = Q
L
⊗
D
− is fully faithful.

By construction we have that Q
L
⊗
D
− induces an equivalence between tria D →

tria Q. In other words the pair (D, BQD) is a standard lift (see [Ke2, Sec.7]).
The functor j! commutes with set index coproducts, its restriction to tria D is fully
faithful and j!(D) = Q is a compact object. Thus by [Ke2, Lemma 4.2 b] we
conclude that j! is fully faithful, since D is a generator of D(D).

So the functor RHomB(Q,−) ∼= (P
L
⊗
D
−) has a fully faithful left adjoint and a

right adjoint RHomD(P,−). By [Mi, Proposition 2.7], the functor RHomD(P,−) is
fully faithful, so the right part of the diagram in the statement can be completed to
a recollement with left term the kernel of the functor RHomB(Q,−), which coincides
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with the category BQ
⊥, since Q is a compact object. Moreover we have that this

recollement is equivalent to the one in Remark 2.2.2 so Q⊥ = Y and i∗ = LY and
i! = RY . �

Corollary 2.2.4. In the same notations as in Proposition 2.2.3 the following
hold:

(1) Q⊥ = Ker(P
L
⊗
B
−);

(2) The functor P
L
⊗
B
− induces an equivalence

D(B)/Ker(P
L
⊗
B
−)→ D(D);

(3)
(
Tria Q, Q⊥, Im RHomD(P,−)

)
is the same TTF triple in D(B) shown in

Remark 2.2.2.

Proof. (1) It follows by well known results about recollements [BBD, Propo-
sition 1.4.5]). Let M ∈ Q⊥, that is HomD(B)(Q,M [n]) = 0 for all integer n. Now,

P
L
⊗
B
M ' RHomB(Q,M) and H i(RHomB(Q,M)) = HomD(B)(Q,M [i]) = 0 for all

integer i, that is P
L
⊗
B
M ' 0 in D(D).

On the other side, if P
L
⊗
B
M ' RHomB(Q,M) ' 0, then H i(RHomB(Q,M)) =

HomD(B)(Q,M [i]) = 0 for all integer i, i.e. M ∈ Q⊥.
(2) and (3) As recalled in Proposition 1.2.17, if

D′ i∗ // D
i!

cc

i∗
yy j∗ // D′′

j∗

cc

j!
zz

gives D as a recollement of D′and D′′, then the data (j!(D′′), i∗(D), j∗(D′′)) is a
TTF triple on D .

Thus to conclude the proof of (2) and (3) it remains to show that Tria Q is the

essential image of the functor j! = Q
L
⊗
D
−. This follows from the facts that the fully

faithful functor Q
L
⊗
D
− is a triangle functor which commutes with coproducts and

sends the generator D of the category D(D) to the object Q of D(B), hence its image

is Tria Q. Then, from 1.2.11, we have that the Verdier quotient D(B)/Ker(P
L
⊗
B
−)

is equivalent to Tria Q, that is triangle equivalent, by 2.1.23, to D(D). We conclude
that the recollements in Remark 2.2.2 and in Proposition 2.2.3 are equivalent then
the TTF triples associated are the same. �

Remark 2.2.5. From the proof of Theorem 1.3.15 we have that the central class
Y is generated by the self-compact and H-projective object LY(B). Let us write
simply L for LY , then, if we set E := RHomB(L(B), L(B)), by Keller’s Theorem
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there is a derived equivalence D(E) ' Y ; moreover, from [J, Theorem 1.6], there is
an adjoint pair of functors:

D(E)

L(B)
L
⊗E−

''
D(B)

RHomB(L(B),−)

gg

whose restriction to Y gives the equivalence D(E) ' Y

Keeping the same notation for the restriction and the corestriction to Y of the
adjoint pair and composing with the functors in the recollement of Proposition 2.2.3,
we deduce the following corollary.

Corollary 2.2.6. In the same setting as in Corollary 2.2.4 and Remark 2.2.5
there is a recollement

D(E)
iY◦(L(B)

L
⊗E−)

// D(B)

RHomB(L(B),−)◦R

gg

RHomB(L(B),−)◦L

ww RHomB(Q,−)∼=P
L
⊗B− // D(D)

RHomD(P,−)

gg

Q
L
⊗
D
−

ww

3. Homological epimorphisms

Let B be a dg algebra and D(B) its derived category. From the previous section
we know that, given a compact object in D(B) we have a TTF triple (X ,Y ,Z)
where the central class Y is equivalent to the derived category of a dg algebra. In
this section we prove that if B is a k-flat dg algebra every TTF triple gives rise
to a homological epimorphism F : B → C for a suitable dg algebra C. The main
theorem of this section can be viewed as a generalization of [J, Theorem 3.3] (in the
case of k-flat dg algebras), since it characterizes the left term of the recollement as
the derived category of a dg algebra obtained by a homological epimorphism.
We recall the notions of homological epimorphisms of rings and dg algebras.

Definition 2.3.1. A morphism f : R −→ S between two rings is called a ring
epimorphism if, for every morphisms g, h : S −→ T of rings such that gf = hf,
one has g = h. Equivalently ([GL, Theorem 4.4]), f is a ring epimorphism if and
only if the multiplication map S ⊗R S −→ S is an isomorphism of S right, S left
bimodules.

Definition 2.3.2. Two ring epimorphisms f : R −→ S and g : R −→ S ′ are
said to be equivalent if there exists an isomorphism of rings h : S −→ S ′ such that
hf = g.

Definition 2.3.3. [GL, Section 4] Let f : R −→ S be a ring epimorphism, then
f is said to be homological if one of the following equivalent conditions holds:

1) S
L
⊗R S = S in D(R);
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2) for all Sop-modules N and all S-modules M , the canonical map N
L
⊗RM −→

N
L
⊗S M is an isomorphism;
3) for all S-modulesM,M ′, the canonical map RHomS(SM,SM

′) −→ RHomR(RM,RM
′)

is an isomorphism;
4) the induced functor f∗ : D(S) −→ D(R) is a full embedding of derived

categories.

Definition 2.3.4. Two homological epimorphisms of rings f : R −→ S and
g : R −→ S ′ are said to be equivalent if they are equivalent as ring epimorphisms.

The concept of homological epimorphism of rings can be “naturally” generalized
to the setting of dg algebras ([P]) and to the more general setting of dg categories
([NS]). Here we give the definition of homological epimorphism of dg algebras and
its characterization at the level of derived categories.

Theorem 2.3.5. [P, Theorem 3.9] Let C and D be dg k-algebras and F : C −→
D a morphism of dg algebras. Then the following are equivalent:

1) there is an isomorphism DD
L
⊗C D −→ DDD given by the canonical map;

2) for all dg D-C module M, the canonical map DD
L
⊗C M −→ DM is an iso-

morphism;
3) for all dg right D-modules N and all left dg D-modules M , the canonical map

NC

L
⊗C CM −→ N

L
⊗D M is an isomorphism;

4) for all dg D-C modules M, the canonical map DM −→ RHomC(CDD, CM)
is an isomorphism;

5) for all dg D-modules M, M ′, the canonical map RHomD(DM,DM
′) −→

RHomC(CM, CM
′) is an isomorphism;

6) the induced functor F ∗ : D(D) −→ D(C) is a full embedding of derived
categories.

Proof. 1)⇒ 2)

DM = DD
L
⊗D M ' (DD

L
⊗C DD)

L
⊗D M 'D D

L
⊗C (DD

L
⊗D M) ' DD

L
⊗C M

2)⇒ 3)

ND

L
⊗D M ' N

L
⊗D (DD

L
⊗C M) ' (N

L
⊗D DC)

L
⊗C M ' NC

L
⊗C M

3)⇒ 1)

DC

L
⊗C D ' D

L
⊗D D ' DDD

1)⇒ 4) Let us note that there is an adjoint pair (DD
L
⊗C −,RHomD(D,−)):

D(D)
RHomD(D,−)

// D(C)

DD
L
⊗C−

||

Then:

DM ' RHomD(DDD,CM) ' RHomD(DD
L
⊗C DD,DM) '
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' RHomC(CDD,RHomD(DDC ,DM)) ' RHomC(CDD, CM).

4)⇒ 5) Let us note that there is an adjoint pair (CD
L
⊗D −,RHomC(CD,−)):

D(C)
RHomC(C,−)

// D(D)

CD
L
⊗D−

||

Then:
RHomD(DM,DM

′) ' RHomD(DM,RHomC(CDD, CM
′)) '

' RHomC(CD
L
⊗D M, CM

′) ' RHomC(CMD,CM
′).

5)⇒ 6) the assertion in 5) is a reformulation of the fact that F∗ = D
L
⊗D − is a

full embedding.

6)⇒ 4) If F∗ is fully faithful, then, for each D-C module M :

RHomC(CDD, CM) ' RHomD(F∗(CDD), F∗(DM)) '

' RHomD(DDD,DM) ' DM.

5) ⇒ 1) Recall that (CD
L
⊗D −,RHomC(CD,−)) is an adjoint pair, hence we

have, for each C-D module M :

RHomD(DD,DM) ' RHomC(CD, CM) '

RHomC(CD,RHomD(CDD,DM)) ' RHomD(DD
L
⊗C CDD,DM).

So, for each D-module M , RHomD(D,M) ' RHomD(D
L
⊗C D,M) then DDD '

D
L
⊗D. �

Definition 2.3.6. A morphism of dg algebras F : C → D is a said to be a
homological epimorphism if it satisfies one of the equivalent conditions of Theorem
2.3.5.

Definition 2.3.7. Two homological epimorphisms of dg k-algebras F : C −→ D
and G : C −→ D′ are said to be equivalent if there exists an isomorphism of dg
k-algebras H : D −→ D′ such that HF = G.

Remark 2.3.8. From the definition it is clear that a homological epimorphism
of rings is exactly a homological epimorphism of dg algebras over Z concentrated in
degree 0.

In [NS, Theorem 5] it is proved that for a flat small dg-category B there are
bijections between equivalence classes of recollements of D(B), TTF triples on D(B)
and equivalence classes of homological epimorphisms of dg-categories F : B → C.

Moreover, in [NS, Lemma 5] it is observed that every derived category of a small
dg-category is triangle equivalent to the derived category of a small flat dg-category.
To achieve this last result ones uses the construction of a model structure on the
category of all small dg-categories defined by Tabuada (see [T].)
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We now state [NS, Theorem 4] for the case of a flat dg k-algebra and we give a
proof, since in this case the construction of the homological epimorphism becomes
more explicit and it will also be used later on in Theorem 3.1.13.

Proposition 2.3.9. Let B be a dg algebra flat as k-module and (X ,Y ,Z) be a
TTF triple in D(B). Then there is a dg algebra C and a homological epimorphism
F : B → C such that Y is the essential image of the restriction of scalars functor
F∗ : D(C) −→ D(B).

Proof. Since (X ,Y ,Z) is a TTF triple in D(B) there exists a triangle

(6) X −→ B
ϕB−→ Y −→ X[1], with X ∈ X and Y ∈ Y .

where ϕB is the unit morphism of the adjunction. Without loss of generality, we
may assume that Y is an H-injective left dg B-module and that ϕB is a morphism
in C(B).

Let E = RHomB(Y, Y ) = HomB(Y, Y ), then BYE is a dg B-E-bimodule. Apply-
ing the functor RHomB(−, Y ) to the triangle (6) we obtain a triangle in the derived
category D(Eop):

RHomB(X[1], Y ) −→ RHomB(Y, Y )
β−→ RHomB(B, Y ) −→ RHomB(X, Y ).

where β = RHomB(ϕB, Y ) = ϕ∗. Since X ∈ X , Y ∈ Y and Y is H-injective, we
have, for each i, n ∈ Z:

HnRHomB(X[i], Y ) ∼= HomD(B)(X[i], Y [n]) = 0

Therefore we deduce that β is a quasi-isomorphism, so we have

(7) E = RHomB(Y, Y )
β
' RHomB(B, Y )

γ
'Y in D(Eop).

Let ξ : Y → Y ′ be a quasi isomorphism of dg B-E-bimodules such that Y ′

is an H-injective resolution of Y as a dg B-E-bimodule. Since B is assumed to
be k-flat, we have that the restriction functor from dg B-E-bimodules to dg E-
modules preserves H-injectivity. In fact, its left adjoint B ⊗k − preserves acyclic-
ity. Then, Y ′E is an H-injective right dg E-module. Consider the dg algebra
C = HomEop(BY

′
E, BY

′
E) = RHomEop(BY

′
E, BY

′
E) and a morphism of dg algebras

defined by:

F : B −→ C

b 7−→ F (b) : y′|b||y
′|by′,

where | · | denotes the degree.
Since Y ′E is H-injective we have quasi-isomorphisms:

C = RHomEop(BY
′
E, BY

′
E)

ξ∗→ RHomEop(BYE, BY
′
E)

β∗→ RHomEop(E, BY
′
E) ∼= Y ′.

We regard C as a dg B-B-bimodule with the action induced by F , so F is also
a morphism of dg B-B-bimodules and the morphism β∗ ◦ ξ∗ : C → Y ′ is a quasi-
isomorphism of left dg B-modules; moreover, ξ ◦ ϕB = β∗ ◦ ξ∗ ◦ F . Now define the
morphism ε := ξ−1 ◦ β∗ ◦ ξ∗ : C → Y in D(B). Then ε is a quasi isomorphism of left
dg B-modules such that ε ◦ F = ϕ and we get an isomorphism of triangles:
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X // B
F // C

ε

��

// X[1]

X // B
ϕB // Y // X[1]

.

Consider the restriction of scalars functor F∗ : D(C) −→ D(B). F∗ is a triangu-
lated functor admitting a right adjoint, hence it commutes with small coproducts.
Moreover, F∗(C) = BC ∼= Y ′ ∼= Y ∈ Y , hence F∗(Tria C) = F∗(D(C)) is a sub-
category of Y , closed under coproducts and containing the generator BY . Now we
notice that, F being a morphism of dg B-B-bimodules, one has a triangle of B-B
bimodules:

(8) X −→ B
F−→ C −→ X[1].

Consider the adjunction:

D(C)
F ∗

// D(B)

C
L
⊗
B
−

tt

and let M ∈ X and N in D(C), then

HomD(C)(C
L
⊗
B
M,N) ∼= HomD(B)(M,F ∗(N)) = 0

since F ∗(N) ∈ Y . Then C
L
⊗
B
M = 0 for each M ∈ X . Hence, applying the functor

C
L
⊗
B
− to the triangle (8), we obtain

C
L
⊗
B
B ∼= C

L
⊗
B
C,

which shows that F is a homological epimorphism of dg algebras. In particular,
Im F∗ is a triangulated subcategory of Y , hence Im F∗ = Y , by the principle of
infinite dévissage. �

Theorem 2.3.10. [NS, 5.4.4] Let B be a k-flat dg algebra then there exists a
bijection between:

(1) Smashing subcategories X of D(B).
(2) TTF triples (X ,Y ,Z) on D(B).
(3) Equivalence classes of recollements of D(B).
(4) Equivalence classes of homological epimorphisms of dg algebras of the form

F : B −→ C.

Proof. The bijection between recollements, TTF triples and smashing subcat-
egories in D(B) is given by Theorem 1.2.17 and Proposition 1.3.12. Moreover, given
a homological epimorphism F : B → C, we have that F∗(D(C)) is a localizing and a
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colocalizing subcategory of D(B) closed under products and coproducts. Then it is
the central class of a TTF triple. On the other hand, given a recollement of D(B):

Y i∗ // D(B)

i!

ee

i∗

yy
// X

hh

vv

we have that M := i∗(B) is a self-compact generator of Y and, by Proposition 2.3.9,
since ϕB(B) = i∗i

∗(B) ' i∗(B), there exists a dg algebra C and a homological
epimorphism F : B → C, such that Y ' D(C).

�

Remark 2.3.11. Is it possible to prove the same result as in the above theorem
without assuming that B is flat over k? In the particular case in which B is a ring
the answer might be yes, as proved in the following proposition by Angeleri, König,
Liu.

Proposition 2.3.12. [AKL, Proposition 1.7] Let B be a ring. Then there is a
bijection between the equivalence classes of homological epimorphisms starting in R
and the equivalence classes of recollements such that i∗(B) is a self-orthogonal object
of Y.

Proof. If F : B −→ C is a homological epimorphism of rings then we have the
recollement:

D(C)
F ∗ // D(B)

RHomB(C,−)

bb

i∗=C
L
⊗
B
−

||
// X

``

~~

Moreover i∗(B) ' C that is exceptional in D(C).
Conversely, let us take the recollement

Y i∗ // D(B)

i!

__

i∗

~~
// X

``

~~

such that Y := i∗(B) is self-orthogonal in Y . Thus, by Keller’s Theorem 2.1.23, we
have Y ' D(E), where E := RHomB(Y, Y ) has homology concentrated in degree
zero and H0(E) ∼= HomD(B)(Y, Y ).

Consider a triangle

(9) X −→ B
ϕB−→ Y −→ X[1], with X ∈ ⊥Y .

where ϕB is the unit of the adjunction morphism and set C = HomD(B)(Y, Y ). Let

us define a ring homomorphism λ : B → C by λ(b) = L(ḃ), where ḃ denotes the
right multiplication by b on B. We have BC = HomD(B)(Y, Y ) ∼= HomD(B)(B, Y ) ∼=
H0(Y ) ∼= Y . So we have a quasi-isomorphism
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ε : BC → BY and from the definition one sees that ε ◦ λ = ϕB. Thus we have an
isomorphism of triangles:

X // B
λ // C

ε

��

// X[1]

X // B
ϕB // Y // X[1]

.

Now we can continue arguing as in the last part of the proof of Proposition 2.3.9
to conclude that λ is a homological epimorphism and that Y is the essential image
of λ∗.

�

Combining the previous results we can state the main theorem of this section.

Theorem 2.3.13. Let B be a k-flat dg algebra and let Q be a perfect left dg B-
module. Let D = HomB(Q,Q) and P = RHomB(Q,B). Then there is a homological
epimorphism of dg algebras F : B → C and a recollement:

D(C)
F∗ // D(B)

i!=RHomB(C,−)

gg

i∗=C
L
⊗
B
−

ww RHomB(Q,−)∼=P
L
⊗B− // D(D)

RHomD(P,−)

gg

Q
L
⊗
D
−

ww

Moreover, the following hold:

(1) The triple (Tria Q,Y ,Z) with Y = Ker (P
L
⊗
B
−) and Z = Im (RHomD(P,−))

is a TTF triple in D(B);
(2) the essential image of F∗ is Y;
(3) the functor RHomD(P,−) is fully faithful;

(4) D(D) is triangle equivalent to D(B)/Ker (P
L
⊗
B
−).

In particular, if B ∈ tria Q, then Y vanishes and the functor RHomD(P,−) induces

an equivalence between D(D) and D(B) with inverse P
L
⊗
B
−.

Proof. (1) See Corollary 2.2.4.
(2) See the last part of the proof of Proposition 2.3.10.
(3) and (4) follow by definition of recollement. �

4. Partial tilting complexes

In this section we specialize the situation illustrated by Theorem 2.3.13 to the
case of self-orthogonal compact objects.

Our next result, Theorem 2.4.6, can be viewed as a generalization of the Morita-
type theorem proved by Rickard in [R] in the sense that we consider partial tilting
complexes instead of tilting complexes and dg algebras instead of algebras.
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Remark 2.4.1. Note that some generalizations were obtained also by König
in [K] in the case of right bounded derived categories of rings. One of the tools
used by König is the following: for bounded derived category, there is the following
characterization of perfect objects ([R, Proof of Proposition 8.1]): let A be a ring and
D−(A) its right bounded derived category. Then X in D−(A) is a perfect object
if and only if, for each Y in D−(A), there exists a natural number N such that
HomD−(A)(X, Y [n]) = 0 for each n ≥ N . Unfortunately, in the case of unbounded
derived category this criterion is no more valid.

By Remark 2.2.1 we have that if BQ is a partial tilting left dg B-module, then
P = RHomB(Q,B) is a partial tilting right dg B-module and P ∗ = RHomBop(P,B)
is isomorphic to Q. Moreover, D = RHomB(BQ,B Q) ∼= RHomBop(PB, PB).

Let us recall the important result proved by Rickard and then by Keller and try
to ”generalize” it using the considerations above.

Theorem 2.4.2. [Ke6] Let k be a commutative ring, A and B be k-algebras
which are flat as modules over k. The following are equivalent:

(1) There is a k-linear triangle equivalence F : D(A)→ D(B).
(2) There a complex of Aop −B modules X such that the functor

X
L
⊗A − : D(A)→ D(B)

is an equivalence.
(3) There is a complex T of B-modules such that the following conditions hold:

i) T is perfect.
ii) T generates D(B) as a triangulated category closed under small co-

products.
iii) T is self-orthogonal and HomD(B)(T, T ) = A.

The hypotheses of flatness is essential to prove that the complex BT is isomorphic
in D(B) to a complex of Aop-B bimodule. In fact the action of A is global on the
complex, not on the terms. Thus we need the flatness condition.

Remark 2.4.3. Rickard’s Theorem states that if B is a flat k-algebra over a
commutative ring k and PB is a tilting complex of right B-modules with endomor-
phism ring A, then there is a complex AXB, with terms that are A-B bimodules,

isomorphic to PB in D(B), and such that X
L
⊗
B
− : D(B) → D(A) is an equiva-

lence with inverse the functor RHomA(X,−). Equivalences of this form are called
standard equivalences (see [Ke1, Sec. 1.4]). It is still an open problem to decide
if all triangle equivalences between derived categories of rings (or dg algebras) are
isomorphic to standard equivalence (see [Ke4, Sec.6.1]).

In the same assumptions as in Rickard’s Theorem, but without any flatness
condition on B, our next Theorem 2.4.6 provides an equivalence between D(B) and
D(A). An analysis of the way in which this equivalence is constructed, shows that

it is induced by the composite derived functor A
L
⊗
D−

(D−P
L
⊗
B
−) where D− = τ≤0(D)

and P is viewed as a dg D−-B-bimodule. Let us note that, without the flatness
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assumption (or, in particular, without assuming that k is a field, as in Yang’s paper,
see [Y]), we cannot conclude that there is an A-B dg-bimodule AXB such that

A
L
⊗
D−

(D−P
L
⊗
B
−) = AXB

L
⊗
B
−. In fact, in general, the notation A

L
⊗
D−

D−PB may not be

regarded as an A-B dg-bimodule, because to have it we would need an H-projective
resolution of A (or of P ) as A-B bimodule that is also an H-projective resolution
just as B-module. But without flatness condition this H-projective resolution may
not exist.

Definition 2.4.4. Let B be a dg algebra. A right (left) dg B-module P is called
partial tilting if it is perfect and self-orthogonal. A right (left) dg B-module P is
called tilting if it is partial tilting and Bop ∈ tria P (B ∈ tria P ).

Notations 2.4.5. Let P be a partial tilting right dg B module. Let D =
RHomBop(PB, PB) and A = HomD(Bop)(P, P ). Then, Hn(D) ∼= HomD(Bop)(P, P [n]) =
0, for every 0 6= n ∈ Z, hence the dg algebra D has homology concentrated in de-
gree zero and H0(D) ∼= A. Thus, by [Ke4, Sec. 8.4] there is a triangle equivalence
ρ : D(D) → D(A). For later purposes we give explicitly the functors defining this
equivalence and its inverse.

Stalk algebras
Let τ≤0 be the truncation functor and consider the subalgebra D− = τ≤0(D).

Then the inclusion f : D− → D and π : D− → H0(D) = A are quasi-isomorphisms
of dg algebras, inducing equivalences f∗ and π∗ between the corresponding derived
categories. Thus we have the following diagrams:

D(D)
f∗ // D(D−)

RHomD− (D,−)

bb

D
L
⊗
D−
−

||
D(D−)

A
L
⊗
D−
−

""

RHomD− (A,−)

<<
D(A)π∗

oo

So ρ = (A
L
⊗
D−
−) ◦ f∗ (with its inverse ρ−1 = (D

L
⊗
D−
−) ◦ π∗) is an equivalence

between D(D) and D(A).

Note that f∗ ∼= D−D
L
⊗
D
− and π∗ ∼= D−A

L
⊗
A
−

Theorem 2.4.6. Let B be a dg algebra and let P be a partial tilting right dg
B-module. Let A = HomD(Bop)(P, P ), Q = RHomBop(P,B). Then there exists a dg
algebra E and a recollement:

D(E)
L(B)⊗L

E− // D(B)

RHomB(L(B),−)

ee

i∗

yy
j∗ // D(A)

j∗

ee

j!

yy
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where, letting D = RHomBop(P, P ) there is a triangle equivalence ρ : D(D)→ D(A)
such that:

(1) j! = (Q
L
⊗
D
−) ◦ ρ−1;

(2) j∗ = ρ ◦ (P
L
⊗
B
−);

(3) j∗ = RHomD(P,−) ◦ ρ−1 is fully faithful;
(4) if Y = Ker (j∗) and Z = Im j∗, then (Tria Q,Y ,Z) is a TTF triple in
D(B) and Y is the essential image of F∗;

(5) D(A) is triangle equivalent to D(B)/Ker (j∗).
(6) Moreover, if B is k-flat there exists a homological epimorphism of dg alge-

bras F : B −→ C such that the above recollement becomes:

D(C)
F∗ // D(B)

i!=RHomB(C,−)

gg

i∗=C
L
⊗
B
−

ww
j∗ // D(A)

j∗

gg

j!

ww

(7) In particular, if P is a tilting right dg B-module, then Y vanishes and

ρ ◦ (P
L
⊗
B
−) : D(B)→ D(A)

is a triangle equivalence with inverse RHomD(P,−) ◦ ρ−1.

Proof. By Remark 2.2.1 we can identify P with RHomB(Q,B) and RHomBop(P, P )
with RHomB(Q,Q).

By Stalk algebras 2.4.5 there is an equivalence ρ : D(D) → D(A) given by ρ =

(A
L
⊗
D−
−) ◦ f∗, with inverse ρ−1 = (D

L
⊗
D−
−) ◦ π∗. Hence, if we compose the functor

in the right side of the recollement ( 2.3.13 we get the functors j! = (Q
L
⊗
D
−) ◦ ρ−1,

j∗ = ρ ◦ (P
L
⊗
B
−) and j∗ = RHomD(P,−) ◦ ρ−1 (that is fully faithful since it is the

composition of two fully faithful functors). So points (1), (2), (3) are proved. Now,
an application of Corollary 2.2.6 proves points (4) while point (5) derives from the
properties of recollements. Finally, if B is k-flat we use Theorem 2.3.13 to prove
point (6).
Finally, if P is tilting, then Y vanishes. In fact, assume that there exists M ∈ D(B),

such that M ∈ Y . Then, since B ∈ triaP , B
L
⊗BM = 0, that is M = 0 in D(B). �

5. Tilting and partial tilting modules

In this section we concentrate on the connection between recollements and tilt-
ing (or partial tilting) modules. Indeed, using the results of the previous sections
we characterize recollements induced by partial n-tilting modules. Moreover we
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recall results in [AKL] that show the correspondence between tilting objects and
recollements.

We recall the definition of (partial) tilting modules over a ring R by using the
canonical embedding of the category of R-modules into the derived category D(R)
and we restate the various definitions using the terminology of derived categories
theory.

Definition 2.5.1. Let R be a ring and T an R-module. Consider the following
conditions on T viewed as an object of D(R) under the canonical embedding:

(T1) T is isomorphic to a bounded complex with projective terms;
(T1’) T is a compact object of D(R);
(T2) T is orthogonal to coproducts of copies of T , that is HomD(R)(T, T

(α)[n]) = 0
for every 0 6= n ∈ Z and every set α.

(T2’) T is self-orthogonal, that is HomD(R)(T, T [n]) = 0 for every 0 6= n ∈ Z.
(T3) R ∈ Tria T .

(T3’) R ∈ tria T .

If the projective dimension of T is at most n, then T is called a classical n-tilting
module if it satisfies (T1’), (T2’) and (T3’), and a classical partial n-tilting module
if it satisfies (T1’) and (T2’). T is called an n-tilting module (possibly infinitely
generated), if it satisfies (T1), (T2) and (T3) and it is called a good n-tilting module
if it satisfies (T1), (T2) and (T3’).

In [H] and [CPS] it was shown that a classical n-tilting module over an artin
algebra A with endomorphism algebra B induces a triangle equivalence between
D(A) and D(B).

The following theorem shows the construction of a recollement in the derived
category of the ring A, starting from an infinitely generated 1-tilting module on A.

Remark 2.5.2. Let T be a 1-tilting module over a ring A. Then there is a short
exact sequence: 0 → A → T0 → T1 → 0 with T0, T1 ∈ Add T . It is well known,
by results in [BH], that to every 1-tilting module AT in A-Mod is associated a
class C of finitely presented modules of projective dimension one (in particular C
consists of perfect objects) such that C⊥ = GenT . Then in [AA] it is proved that
C⊥ = GenT = KerExt1

A(T1,−). So Tria C is a smashing subcategory of D(A) and
C⊥ = KerExt1

A(T1,−).

Theorem 2.5.3. [AKL, Theorem 4.8] Let A be a ring and T a 1-tilting A-
module. Then there is a class C of finitely presented modules of projective dimension
one and a module T1 ∈ Add (T ) such that, there is a recollement:

Y
iY // D(A)__

LY

~~
// X

``

iX

~~

where Y = KerExt1
A(T1,−) and X = Tria C.

Proof. See Remark 2.5.2 and Proposition 1.2.17. �
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Infinitely generated tilting modules do not provide equivalences between derived
categories of rings, but Bazzoni proved in [B] that, if T is a good 1-tilting module

over a ring A with endomorphism ring B, then the total left derived functor T
L
⊗
B
−

induces an equivalence between D(B)/Ker(T
L
⊗
B
−) and D(A). This result has been

generalized in [BMT] to the case of good n-tilting modules and in [Y] in the more
general setting of dg categories. Let us note that, in [AKL] the recollement is given
in D(A), with T tilting over A. In [BMT] they start with a good n-tilting module
T over A, and they exhibit a TTF triple in D(EndA(T )).

Theorem 2.5.4. [BMT] Let AT be a good n-tilting module and B := End(AT ).
Then the following hold:

(1) The counit of the adjunction morphism

(TB
L
⊗−) ◦ RHomA(AT,−) −→ IdD(A)

is invertible.

(2) Let us set Y := Ker(TB
L
⊗−). Then there is a triangle equivalence

D(B)/Y −→ D(A).

Proof. (1) We prove that TB
L
⊗RHomA(AT,M) ' AM for all M ∈ D(A).

Let iM a H-injective resolution of M in D(A), then:

TB
L
⊗ RHomA(AT,M) = TB ⊗B HomA(AT, iM).

Now, by [Mi, Lemma 1.8], for each integer n there is a natural isomorphism:
TB ⊗B HomA(AT, (iM)n) ' (iM)n. Hence TB ⊗B HomA(AT, iM) ' iM .

(2) By point (1) and [GZ, Proposition 1.3].
�

Corollary 2.5.5. Let AT be a good n-tilting module and B := End(AT ). Let

us set Y = Ker(TB
L
⊗−). Then there is a recollement of the form:

Y // D(B)__

iY

~~ j∗ // D(B)/Y ' D(A)

j∗

ee

j!

yy

Proof. We have that Y is the central class of a TTF triple (⊥Y ,Y ,Y⊥), where
⊥Y ' D(B)/Y , then, by Proposition 1.2.17, we can conclude. �

We will prove now the same result as in the previous theorem, but with weaker
hypotheses, namely without asking that it is a good n-tilting A-module, but only
that it satisfies conditions (T2’) and (T3’). In our approach, indeed, we can fix a
ring B and obtain recollements of D(B) for every choice of classical partial tilting
modules.



38 2. RECOLLEMENTS OF DERIVED CATEGORIES OF DG ALGEBRAS

Moreover we want to point out that the disadvantage of starting with an infinitely
generated n-tilting module AT over a ring A, is that a good n-tilting module T ′

equivalent to AT is obtained as a summand of a possibly infinite direct sum of
copies of T and this procedure produces a very large endomorphism ring B of T ′.
So the recollement induced by T ′ concerns the derived category of a ring which
is hardly under control. More precisely an instance of Theorem 2.4.6 yields the
following generalization of Theorem 2.5.4.

Theorem 2.5.6. Let B be a ring and let TB be a classical partial n-tilting module
with endomorphism ring A. There is a dg algebra E and a recollement

D(E)
L(B)

L
⊗E− // D(B)

RHomB(L(B),−)

ee

i∗

yy
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

ee

j!

yy

where:

(1) j∗ = RHomA(T,−) is fully faithful;

(2) D(A) is triangle equivalent to D(B)/Ker (T
L
⊗
B
−).

Moreover, if B is k-flat, there is a homological epimorphism of dg algebras F : B →
C and the recollement above becomes

D(C)
F∗ // D(B)

i!=RHomB(C,−)

gg

i∗=C
L
⊗
B
−

ww
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

gg

j!

ww

Proof. Let P be a projective resolution of the module T in Mod-B. Then P is
a partial tilting complex of D(Bop) so that we may apply Theorem 2.4.6 which states
that there is a triangle equivalence ρ : D(D)→ D(A) where D = RHomBop(P, P ).

As shown in Stalk algebras 2.4.5 we have:

ρ = (A
L
⊗
D−
−) ◦ f∗.

where f∗ : D(D) → D(A) is the restriction of scalar functors induced by the quasi-
isomorphism of dg algebras f : D− → D

To conclude the proof we must show that

(a) ρ ◦ (P
L
⊗
B
−) ∼= T

L
⊗
B
−,

(b) RHomD(P,−) ◦ ρ−1 ∼= RHomA(T,−).

We first prove (a).
Let σ : PB → TB be a morphism of complexes inducing a quasi-isomorphsm in

D(B). From the dg algebra morphisms f : D− → D and π : D− → A we have that P
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and T are left dg D−-modules. Checking the action of the dg algebra D− on P and
T we see that σ is a morphism of dg D−-modules. Thus, σ is a quasi isomorphism
between P and T as dg D−-B-bimodules.

This implies that the functors P
L
⊗
B
− and T

L
⊗
B
− from D(B) to D(D−) are

isomorphic (see [Ke2, Lemma 6.1 b]). Consequently, , in the notations of Stalk
algebras 2.4.5, we have:

j∗ = ρ ◦ (P
L
⊗
B
−) = (A

L
⊗
D−
−) ◦ f∗ ◦ (P

L
⊗
B
−) ∼= (A

L
⊗
D−
−) ◦ (D−P

L
⊗
B
−) ∼=

∼= ((A
L
⊗
D−
−) ◦ (D−T

L
⊗
B
−) ∼= (A

L
⊗
D−
−) ◦ π∗ ◦ (AT

L
⊗
B
−).

Since (A
L
⊗
D−
−) ◦ π∗ is isomorphic to the identity of D(A), we conclude that j∗ ∼=A

T
L
⊗
B
−.

Next, from the uniqueness of right adjoint up to isomorphisms, we also get

RHomD(P,−) ◦ ρ−1
∗
∼= RHomA(T,−).

�

Note 2.5.7. In the assumption of Theorem 2.5.6 if we let Q = RHomBop(P,B),

then, by Remark 2.2.1 (1) we have RHomB(Q,−) ∼= P
L
⊗
B
−, hence also

f∗ ◦ RHomB(Q,−) ∼= f∗ ◦ (P
L
⊗
B
−) ∼= AT

L
⊗
B
−.

We translate now the recollement of Theorem 2.5.6 in terms of its associated
TTF triple.

Corollary 2.5.8. Let B be a ring and let TB be a classical partial n-tilting
module with endomorphism ring A. Let Q = RHomB(T,B). The triple:

(X ,Y ,Z) =

(
Tria Q, Q⊥ = Ker(T

L
⊗
B
−), Im RHomA(T,−)

)
is a TTF triple in D(B) and the left adjoint of the inclusion functor of Z in D(B)

is given by LZ = HG where H = RHomA(T,−) and G = T
L
⊗
B
−.

Proof. Follows by Corollary 2.2.4, Theorem 2.5.6 and the properties of recolle-
ments.

�

Let us conclude this section with the result by Angeleri, König and Liu on
the possibility to construct tilting objects, starting from recollements of derived
categories. These results cover and generalize the concept of Bongartz complement
([Bo]).

Recall that an object T in D(B) is called tilting if it is perfect, self-orthogonal
and B ∈ Tria T .
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Remark 2.5.9. A tilting object concentrated in degree zero is a finitely generated
tilting module over a ring B.

Theorem 2.5.10. [AKL, Theorem 2.4] Let D be a triangulated category with
small coproducts, admitting a TTF triple (X ,Y ,Z) and so a recollement of the form:

Y
iY // D

RY

bb

LY

|| RX // X

iZLZ iX

bb

iX

||

Suppose, moreover, that there exists a self-orthogonal generator Q of X and a tilting
object P in Y such that HomD(P,Q[n]) = 0 for every integer n 6= 0, 1. Set I :=
HomD(P,Q[1]). Consider the map f : P (I) → Q[1] and let

Q→ T → P (I) f→ Q[1]

be the triangle determined by f in D. Then T ⊕ P is a self-orthogonal generator of
D.

Remark 2.5.11. The condition HomD(P,Q[n]) = 0, for every integer n 6= 0, 1,
is a generalization of the projective dimension one of a tilting module.



CHAPTER 3

Recollements of derived categories of rings

In this chapter we are interested in characterizing the case in which the subcat-
egory Y := Q⊥ in the TTF triple of Lemma 2.5.8 is the derived category of a ring.
The problem is related to the notion of bireflective and perpendicular categories.
In particular we will prove that, if Y ' D(S) for a ring S via a homological ring
epimorphism, then S is the “generalized universal localization” of B at P , where P
is the projective resolution of TB.

1. Bireflective subcategories and ring epimorphisms

In this section we will recall the notion and the characterization of bireflective
subcategories and the well known bijection existing between equivalence classes of
ring epimorphisms and bireflective subcategories of module categories.

Definition 3.1.1. Let E be a full subcategory of R-Mod. A morphism f :
M −→ E, with E in E , is called an E-reflection if for every map g : M −→ E ′, with
E ′ in E , there is a unique map h : E −→ E ′ such that hf = g. A subcategory E
of R-Mod is said to be reflective if every R-module X admits an E-reflection. The
definition of coreflective subcategory is given dually. A subcategory that is both
reflective and coreflective is called bireflective.

Remark 3.1.2. It is clear that a full subcategory E of R-Mod is reflective if and
only if the inclusion functor i : E −→ R-Mod admits a left adjoint

E i // R-Mod

l

~~

Moreover, in this case, l(R) is a generator of E (i.e. every object M in E can be seen
as the image of a homomorphism l(R)(I) →M). Indeed, for every Y ∈ E :

HomE(l(R), Y ) = HomR(R, i(Y )) = 0

if and only if Y = 0. Dually, a subcategory X is coreflecting if and only if the
inclusion functor j : X −→ R-Mod admits a right adjoint:

X j // R-Mod

r

``

Proposition 3.1.3. ([GL] and [GP]) Let E be a full subcategory of B-Mod.
The following assertions are equivalent:

1) E is a bireflective subcategory of B-Mod;

41
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2) there is a ring epimorphism f : B −→ S such that E is the essential image of
the restriction of scalars functor f∗ : S-Mod→ B-Mod.

3) E is closed under isomorphic images, direct sums, direct products, kernels and
cokernels.

In particular there is a bijection between the bireflective subcategory of B-Mod
and the equivalence classes of ring epimorphisms starting from B. Moreover the
map f : B −→ S as in 2) is an E-reflection.

Proof. 1) ⇒ 2) Set l : B-Mod → E the left adjoint of the inclusion functor
of E in B-Mod. Then HomB(B,M) = HomB(l(B),M) = HomE(l(B),M) for every
M ∈ E . Thus l(B) is a progenerator of E , that is a finitely generated projective
module in E and every object N ∈ E can be seen as the image of an homomorphism
f : l(B)(I) → N for some set I. Set S := EndB(l(B)). Then there is an equivalence
between E and S-Mod:

E
HomB(l(B),−)

// S-Mod

l(B)⊗B−

~~

Let us regard B as EndB(B) and denote by ḃ the multiplication by the element
b ∈ B. We want to prove that the ring homomorphism
f : B → S : ḃ 7→ l(ḃ) is a ring epimorphism. In particular we have to prove
that the restriction of scalars functor is fully faithful f∗ = l(B) ⊗S −, that is:
HomS(M,N) = HomB(f∗(M), f∗(N)) for every M,N ∈ S-Mod. We have:

HomB(l(B)⊗SM, l(B)⊗SN) = HomS(M,HomB(l(B), l(B)⊗SN)) = HomS(M,N)

where we have used that (l(B)⊗S −,HomB(l(B),−)) is an equivalence.

2)⇒ 3) Since f∗ is fully faithful, f∗(S-Mod) is an abelian subcategory of B-Mod.
3)⇒ 1) See [GP].

�

Theorem 3.1.4. [Sc] Let Σ be a set of morphisms between finitely generated
projective left B-modules. Then there are a ring BΣ and a morphism of rings f :
B → BΣ such that:

(1) f is Σ inverting, that is if g : M → N is in Σ, then

g ⊗B IdBΣ
: BΣ ⊗B M → BΣ ⊗B N

is an isomorphism of left BΣ-modules.
(2) f is universal with respect to this property, that is if S is a ring such that

there exists a Σ-inverting morphism φ : B → S, then there exists a unique
morphism of rings ψ : BΣ → S such that ψf = φ.

Remark 3.1.5. The ring BΣ is called universal localization of B at Σ and the
morphism f is a ring epimorphism. If Σ is a set of maps between finitely generated
projective B-modules, let us set C the set of these objects. Then BΣ will also be
denoted by BC and we call it the universal localization of B with respect to C. If
E is a class of finitely presented B-module of projective dimension one, then, for

every M in E , we have a projective resolution 0 → P0M
dM→ P1M → M → 0 with
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P0M and P1M finitely generated projective modules. Then we can regard E as the
class of maps dM between the projective modules P0M , P1M , with M in E , and thus
it makes sense to consider the universal localization BE .

Notations 3.1.6. Let C be a class of left B-modules. We denote with C⊥ the
subcategory of B-Mod

C⊥ = {M ∈ B-Mod | HomB(C,M) = ExtiB(C,M) = 0, ∀ C ∈ C}.

Proposition 3.1.7. [AA, Proposition 1.7] Let C be a set of finitely presented
left B-modules of projective dimension at most 1. Then C⊥ coincides with the es-
sential image of the restriction functor BC-Mod→ B-Mod induced by the universal
localization at C. In particular C⊥ is bireflective.

Corollary 3.1.8. If the subcategory E of Lemma 3.1.3 is the perpendicular
subcategory of a class C of finitely presented B-modules of projective dimension
one, then E coincides with the essential image of the restriction functor BC-Mod→
B-Mod .

Let us recall the following result that connects recollements of triangulated cat-
egories with universal localization.

Proposition 3.1.9. ([CX, Proposition 3.5]) With the same notations as in
Corollary 3.1.8, let us denote by f : B → BC the ring epimorphism defining the
universal localization and set

Y = {M ∈ D | Hn(M) ∈ C⊥, ∀ n ∈ Z}.
Then there is a recollement:

Y
iY // D(B)cc

LY

{{
// Tria C

ee

yy

such that LY is the left adjoint of the inclusion functor iY . Moreover the following
are equivalent:

(1) f : B → BC is homological.
(2) f determines an equivalence f∗ : D(BC)→ Y.
(3) L(B) ' BC in D(B).
(4) L(B) is quasi-isomorphic in D(B) to a complex with terms in E.

Remark 3.1.10. Under the same hypotheses as in Proposition 3.1.9, the recolle-
ment 3.1.9 of D(B) is equivalent to:

D(BC)
f∗ // D(B)

RHomB(BC ,−)

ee

BC
L
⊗B−

yy
// Tria C

ee

yy
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Let us take now a classical partial n-tilting module TB and set A := EndB(TB).
How can we use these results on bireflective subcategories and homological epimor-
phisms to study the recollement induced by TB? Associated to TB we can define the
following full subcategory of B-Mod (consider the canonical embedding of B-Mod
in D(B)):

E = {N ∈ B-Mod | N ∈ Y} = {N ∈ B-Mod | T
L
⊗
B
N = 0}

Then, E = {N ∈ B-Mod | TorBi (T,N) = 0 for all i ≥ 0}.

Remark 3.1.11. Note that E is closed under extensions, direct sums and direct
products (since T is a perfect object in D(B)). So E is bireflective if and only if
it is closed under kernel and/or cokernels. Moreover, if n = 1, then E is always
bireflective. Indeed, for every morphism f : M → N in E , if we apply the functor
(TB ⊗B −) to the short exact sequences

0→ Kerf →M → Imf → 0

0→ Imf → N → Cokerf → 0

we have that Kerf and Cokerf are in E .

In the case of n = 1, if AT is a good 1-tilting module, we have the following

important result proved in [CX] that characterizes Ker(TB
L
⊗B−) in terms of E and

prove that the left term of the recollement induced by TB is the derived category of
a ring.

Proposition 3.1.12. [CX, Proposition 4.6, Theorem 1.1] Let AT be a good
1-tilting module over a ring A, with endomorphism ring B. Then:

Y := Ker(TB
L
⊗B −) = {Y ′ ∈ D(B) | Y ′ ' Y such that Y n ∈ E ∀n ∈ Z}.

Moreover there is a ring S := EndB(L(B), L(B)) and a homological ring epimor-
phism

F : S → B

that gives the recollement

D(S)
F ∗ // D(B)

i!=RHomB(S,−)

ee

i∗=S
L
⊗
B
−

yy
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

ee

j!

yy

Moreover S is the universal localization of B at the projective resolution P of TB.

We partially generalize these results to a classical partial n-tilting module TB
(with n possibly grater than one). When n > 1 the problem is that E may not
be bireflective (indeed for the non vanishing of TorB2 (T,−) the techniques used in
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Remark 3.1.11 are now not sufficient). In the last section we will present some
examples of this situation.

Theorem 3.1.13. Let B be a ring and let TB be a classical partial n-tilting

module with endomorphism ring A. Let Y = Ker(T
L
⊗
B
−), L the left adjoint of the

inclusion i : Y → D(B) and E the subcategory of B-Mod defined above.
Then the following conditions are equivalent:

(1) H i(L(B)) = 0 for every 0 6= i ∈ Z.
(2) there is a ring S and a homological ring epimorphism λ : B → S inducing

a recollement:

D(S)
λ∗ // D(B)

i!=RHomB(S,−)

ee

i∗=S
L
⊗
B
−

yy
j∗=T

L
⊗B− // D(A)

j∗=RHomA(T,−)

ee

j!

yy

(3) Every N ∈ Y is quasi-isomorphic to a complex with terms in E and E is a
bireflective subcategory of B-Mod.

(4) Every N ∈ Y is quasi-isomorphic to a complex with terms in E and the
homologies of N belong to E.

Proof. Note that the equivalence between (1) and (2) was somehow known to
topologists, as shown for instance in [D].
(1)⇒ (2) Let Y = L(B). First note that, by adjunction, we have HomD(B)(Y, Y [i]) ∼=
HomD(B)(B, Y [i]) ∼= H i(Y ). Thus, by [Ke4, Theorem 8.7], condition (1) implies that
the dg algebra E = RHomB(Y, Y ) has homology concentrated in degree zero and
H0(E) ∼= HomD(B)(Y, Y ).

Consider a triangle

(10) X −→ B
ϕB−→ Y −→ X[1], with X ∈⊥ Y .

where ϕB is the unit of the adjunction morphism and set S = HomD(B)(Y, Y ). As

in [AKL, Proposition 1.7], define a ring homomorphism λ : B → S by λ(b) = L(ḃ),

where ḃ denotes the right multiplication by b on B. We have BS = HomD(B)(Y, Y ) ∼=
HomD(B)(B, Y ) ∼= H0(Y ) ∼= Y . So we have a quasi-isomorphism ε : BS →B Y and
from the definition one sees that ε ◦ λ = ϕB. Thus we have an isomorphism of
triangles:

X // B
λ // S

ε

��

// X[1]

X // B
ϕB // Y // X[1]

.

Now we can continue arguing as in the last part of the proof of Proposition 2.3.9
to conclude that λ is a homological epimorphism and that Y is the essential image
of λ∗. So condition (2) follows.
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(2) ⇒ (3) Y = Ker(T
L
⊗
B
−) is the essential image of the functor λ∗, hence the

image of S-Mod under λ∗ is the category E . Every object in Y is quasi-isomorphic to
a complex with S-modules terms, hence in E . Moreover, since λ is an epimorphism
of rings, the differentials are S-module morphisms. Hence, Lemma 3.1.3 tells us that
E is bireflective.

(3) ⇒ (4) Clear from the fact that E is closed under kernel and cokernels.
(4)⇒ (1) We first show that condition (4) implies that E is bireflective. Indeed,

let E0
f→ E1 be a morphism in E . Then, the complex E ′ = . . . 0 → E0

f→ E1 →
0→ . . . has (T⊗

B
−)-acyclic terms so T

L
⊗
B
E ′ = T⊗

B
E ′ = 0. By (4) the kernel and the

cokernel of f belong to E . Thus E is bireflective by Remark 3.1.11. By Lemma 3.1.3
there is a ring S and a ring epimorphism λ : R→ S such that E = λ∗(S-Mod) where
λ∗ : S-Mod→ B-Mod is the restriction functor.

We show now that L(B) ∼= λ∗(S).
To this aim we follows the arguments used in [CX, Proposition 3.6]. Let Y0 be

a complex in Y with terms in E and quasi-isomorphic to L(B). Let B
ϕ→ Y0 be the

unit adjunction morphism associated to the adjoint pair (L, i). Since S viewed as a
left B-module belongs to Y we have that HomY(Y0, S) ∼= HomD(B)(B, S), so there
is a unique morphism f : Y0 → S such that λ = f ◦ ϕ.

We have HomH(B)(S, Y0) ∼= H0(HomB(S, Y0)) and, since λ : B → S is a ring
epimorphism, HomB(S, Y0) = HomS(S, Y0), and the terms of Y0 are S-modules.
Thus, HomH(B)(S, Y0) ∼= H0(Y0) ∼= HomH(B)(B, Y0). Now, every morphism in
HomD(B)(S, Y0) is the image under the canonical quotient functor of a morphism in
HomH(B)(S, Y0), hence going through the construction of the above isomorphisms,
we conclude that there is g ∈ HomD(B)(S, Y0) such that g ◦ λ = ϕ. Consequently,
g ◦ f ◦ ϕ = ϕ and λ = f ◦ g ◦ λ. Since λ is an E-reflection of B and ϕ is the unit
morphism of the adjunction, we conclude that f ◦ g = idS and g ◦ f = idY0 . So
S ∼= Y0

∼= L(B), hence (1) follows.
�

Remark 3.1.14. Note that if condition (2) of Proposition 3.1.13 holds, then
there is a homological ring epimorphism λ : B → S even without the assumption of
flatness on B. The key point is the existence of a quasi-isomorphism between the
ring S and L(B) (compare with Remark 2.3.11).

We add another property related to the situation considered above.

Proposition 3.1.15. In the notations of Theorem 3.1.13 consider the following
condition:

(a) a complex of D(B) belongs to Y if and only if all its homologies belong to
E.

(b) E is bireflective.
(c) There is a ring R and a ring epimorphism µ : B → R such that BR ∈ E and
Y is contained in the essential image of the restriction functor µ∗ : D(R)→
D(B).
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Then (a) implies (b) and (a) together with (c) is equivalent to any one of the
conditions in Theorem 3.1.13.

In particular, if AT is a good n-tilting module with endomorphism ring B, then
(a) is equivalent to any one of the conditions in Theorem 3.1.13 .

Proof. Assume that condition (a) holds. Arguing as in the first part of the
proof of (4) ⇒ (1) in Theorem 3.1.13, we see that E is bireflective.

Condition (c) imply µ∗(R-Mod) ⊆ E , hence every complex in Y is quasi-isomorphic
to a complex with terms in E . Thus, assuming both (a) and (c), we have that con-
dition (4) in Theorem 3.1.13 is satisfied.

Conversely, if condition (2) of Theorem 3.1.13 is satisfied, then by [AKL, Lemma
4.6] (a) holds; moreover, (c) is satisfied by choosing the ring epimorphism λ : B → S.

To prove the last statement it is enough to show that, if AT is a good n-tilting
module then condition (c) holds. This follows as in the proof of [CX, Proposition
4.6], which is stated for the case of 1-good tilting module, but the argument used
there works also in case of higher projective dimension.

�

2. Generalized universal localization

As recalled in the previous section, Chen and Xi in [CX] consider the case of a
good 1-tilting module AT with endomorphism ring B. In particular TB becomes a

classical partial 1-tilting module over B. They show that Ker(TB
L
⊗B−) is equivalent

to the derived category of the universal localization of B at the projective resolution
P of TB (see Theorem 3.1.12).

If S is a universal localization for a morphism P1
f→ P0 between finitely generated

projective right modules, then the morphism f ⊗B S is an isomorphism, hence the
complex

. . .→ 0→ P1 ⊗
B
S

f⊗BS→ P0 ⊗
B
S → 0→ . . .

is acyclic.
Inspired by the above interpretation of universal localization, there is a natural

way to generalize this notion as follows. We define the concept, which was first
introduced by Krause under the name “homological localization”. This notion was
given in connection with the Chain map lifting problem, presented by Neeman and
Ranicki in [NR].

Definition 3.2.1. (See [Kr, Section 15]) Let B be a ring and Σ be a set of
perfect complexes P ∈ H(B). A ring S is a generalized universal localization of B
at the set Σ if:

(1) there is a ring homomorphism λ : B → S such that P ⊗
B
S is acyclic;

(2) for every ring homomorphism µ : B → R such that P ⊗
B
R is acyclic, there

exists a unique ring homomorphism ν : S → R such that ν ◦ λ = µ.

Lemma 3.2.2. If λ : B → S is a “generalized universal localization” of B at a
set Σ of perfect objects P of D(B), then λ is a ring epimorphism.
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Proof. Let δ : S → R be a ring homomorphism. Then, for every P ∈ Σ we
have:

P ⊗
B
R = (P ⊗

B
S)⊗

S
R.

Now P ⊗
B
S is split acyclic (that is null-homotopic, see [W, pag. 17]) and since its

terms are finitely generated projective right S-modules, the complex (P ⊗
B
S)⊗

S
R is

still split acyclic. By the universal property satisfied by S we conclude that δ is the
only possible ring homomorphism extending µ = δ ◦ λ. �

Now we can relate the result stated in Theorem 3.1.13 with the notion of “gen-
eralized universal localization”.

Proposition 3.2.3. Let B be a ring and let TB be a classical partial n-tilting
module with endomorphism ring A. Let P be a projective resolution of TB in D(B).

If condition (2) in Theorem 3.1.13 is satisfied, then λ : B → S is a “generalized
universal localization” of B at the set {P}.

Proof. As usual let Y = Ker(T
L
⊗
B
−). By assumptions λ∗(S) ∈ Y , thus T

L
⊗
B
S =

0, so P⊗
B
S is acyclic. Moreover, Y ∩ B-Mod = E is bireflective and, by [GL,

Proposition 3.8], we have that λ∗(S) = l(B), where l : B-Mod→ E is the left adjoin
of the inclusion of i : E → B-Mod. Let µ : B → S ′ be a ring homomorphism such

that P⊗
B
S ′ is acyclic, then also T

L
⊗
B
S ′ = 0, hence S ′ ∈ E . Thus, HomB(l(B), S ′) ∼=

HomB(B, S ′), hence there is a unique morphism ρ : l(B) → S ′ of right B-modules
such that ρ ◦ ηB = µ, where ηB : B → l(B) is the unit morphism of the adjunction.
Using the fact that S = EndB(l(B)) and the naturality of the maps induced by the
adjunction (l, j), it is not hard to see that ρ induces a unique ring homomorphism
ν : S → S ′ such that ν ◦ λ = µ. �

Remark 3.2.4. Note that the converse of the above statement does not hold in
general. In fact, as shown in [AKL, Example 5.4] even in the case of a classical
1-tilting module over an algebra, the universal localization does not give rise to a
homological epimorphism.

We now illustrate another property of the “generalized universal localization” .

Proposition 3.2.5. Let P be a perfect complex in D(B). Assume that λ : B → S
is a “generalized universal localization” of B at {P}. Let EP = {N ∈ B-Mod |
P ⊗

B
N is acyclic }. Then, the following hold:

(1) λ∗(S-Mod) ⊆ EP .
(2) λ∗(S-Mod) = EP if and only if EP is a bireflective subcategory of B-Mod.

Proof. (1) Let BM ∈ λ∗(S-Mod). We have

P ⊗
B
M ∼= P ⊗

B
(S ⊗

S
M) ∼= (P ⊗

B
S)⊗

S
M
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and (P ⊗
B
S) is a complex in D(S) whose terms are finitely generated projective right

S-modules and by assumption it is acyclic. Thus, P ⊗
B
M is acyclic too, so M ∈ EP .

(2) By Lemma 3.2.2, λ is a ring epimorphism, hence, if λ∗(S-Mod) = EP , then
EP is bireflective, by Lemma 3.1.3.

Conversely, assume that EP is bireflective. By Lemma 3.1.3, there is a ring R
and a ring epimorphism µ : B → R such that µ∗(R-Mod) = EP . In particular,
µ∗(R) ∈ EP , hence P ⊗

B
R is an acyclic complex. Thus, by the universal property

satisfied by S, there is a unique ring homomorphism ν : S → R such that ν ◦ λ = µ.
By Lemma 3.1.3, µ : B → R is an EP -reflection of B and S ∈ EP by part (1). We
infer that there is a unique morphism ρ : R → S such that ρ ◦ µ = λ. By the
unicity of the rings homomorphisms ν and ρ it follows that they are inverse to each
other. �

Let A be a ring and AT be a good n-tilting module with n ≥ 2 and denote by
B its endomorphism ring. Then Xi and Chen give the following characterization of

the fact that Y := Ker(TB
L
⊗B −) is equivalent to the derived category of a ring.

Theorem 3.2.6. [CX2, Theorem 1.1] Let A be a ring and AT be a good n-tilting
module with n ≥ 2 and denote by B its endomorphism ring. Set

E := {Y ∈ D(B) | TorBi (T, Y ) = 0 for all i ≥ 0}

and

M := 0→Mn → ...→M1
σ→M0

π→ T → 0

the projective resolution of AT . Then the following are equivalent:

(1) there exists a ring S such that Y := Ker(TB
L
⊗B −) ' D(S).

(2) E is bireflective.
(3) Hm(HomA(M,A)⊗A TB) = 0 for all m ≥ 2.
(4) Let us regard ATB as HomA(A, T ) and set, for i = 0, 1:

ϕi : HomA(Mi, A)⊗A HomA(A, T )→ HomA(Mi, A) : f ⊗ t 7→ t ◦ f.

Consider the map

ψ : Coker(ϕ0) −→ Coker(ϕ1)

induced by σ : M1 →M0. Then the kernel K of ψ satisfies

ExtiBop(T,K) = 0

for i ≥ 0.

In particular, if n = 2 then (1) holds if an only if Ext2
A(T,A)⊗A T = 0.

Corollary 3.2.7. [CX2, Corollary 1.2] With the hypotheses of the previous
theorem, the following statement are true:

(1) if AT decomposes into M ⊕N such that the projective dimension of AM is
at most 1 and the first syzygy of AN is finitely generated, then the category
Y is equivalent to the derived category of a ring.



50 3. RECOLLEMENTS OF DERIVED CATEGORIES OF RINGS

(2) If A is commutative and HomA(Ti+1, Ti) = 0 for all Ti as in (T3′) with
1 ≤ i ≤ n− 1, then Y is equivalent to the derived category of a ring if and
only if the projective dimension of AT is at most 1, that is AT is a 1-tilting
module.

3. Examples

Using the notations of the previous section, we give some examples of different
behavior of n-partial tilting modules with respect to the class E . In what follows k
will indicate an algebraically closed field.

Example 1. We exhibit a class of examples of classical partial tilting modules
T of projective dimension two over an artin algebra B such that there exists a “gen-
eralized universal localization” S of B at the projective resolution of TB and the
class Y is triangle equivalent to D(S).

Consider a representation-finite type algebra Λ := kQ/I of an acyclic connected
quiver Q (with n > 1 vertices) with a unique sink j and the category of its finite
dimensional right modules mod-Λ. Let TΛ = τ−1(S(j))⊕(

⊕
i 6=j

P (i)) be an APR tilting

module over Λ (see [APR]). Then pdTΛ = 1 and its projective resolution is given
by

0 −→ S(j) −→ (
⊕
i 6=j

P (i))⊕ E −→ TΛ −→ 0

where
0 −→ S(j) −→ E −→ τ−1(S(j)) −→ 0

is an almost split exact sequence with E a projective Λ-module. Let S(j)d :=

Homk(S(j), k) and consider B :=

(
k 0

S(j)d Λ

)
the one point coextension of Λ by

the non injective simple S(j)Λ (see [ASS]). In particular B ' kQ′/J where Q′ is
exactly Q with the adjoint of a sink ∗ and of an arrow j −→ ∗. Let I(∗) and S(∗)
be respectively the indecomposable injective B-module and the simple B-module

at the vertex ∗, then I(∗) =
j
∗ and letting P (∗) = I(∗)d = Homk(I(∗), k) be the

indecomposable projective at the vertex ∗ ( regarded as right module on Bop), then

P (∗) =
∗
j

.

Every Λ-module can be regarded as a B-module via the natural embedding
ϕ : mod-Λ ↪→ mod-B.

Proposition 3.3.1. The following hold:

(1) TB has projective dimension 2.
(2) TB is self-orthogonal.
(3) EΛ = {M ∈ Λ-Mod | TorΛ

i (T,M) = 0, ∀i ≥ 0} = 0 and

EB = {M ∈ B-Mod | TorBi (T,M) = 0 ∀i ≥ 0} = Add I(∗)d = Add P (∗)
where for every module M , Add M denotes the class of all direct summands
of arbitrary direct sums of copies of M .
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Proof. (1) We have that S(j) regarded as B-module is non projective and
its projective cover is given by

I(∗) −→ S(j) −→ 0.

Hence a projective resolution of TB is

0 −→ S(∗) −→ I(∗) −→ (
⊕
i 6=j

P (i))⊕ E −→ τ−1(S(j))⊕ (
⊕
i 6=j

P (i)) −→ 0.

(2) To prove the self-orthogonality of TB we can observe that mod-Λ is equiva-
lent to the class mod-B

⋂
KerHomB(−, I(∗)), then, in particular, it is closed

under extensions in mod-B. Then it is clear that

Ext1
B(TB, TB) ' Ext1

Λ(TΛ, TΛ) = 0.

Moreover

Ext2
B(TB, TB) = Ext1

B(S(j)B, TB) = Ext1
Λ(S(j), TΛ) = 0.

(3) EΛ = 0 because TΛ is a tilting module. Now, ind-B\ind-Λ = {I(∗), S(∗)}

and I(∗) =
j
∗ . We want to compute the class

EB = {M ∈ B-Mod such that TorBi (T,M) = 0 for each i ≥ 0}
= {M ∈ Mod-Bop such that ExtiBop(M,T d) = 0 for each i ≥ 0}

where T dB := Homk(TB, k). We can regard B-Mod as Mod-Bop and Bop is
the one point extension of Λop by the simple S(j)d = S(j). Let P (∗) be
the indecomposable projective at the vertex ∗ (the dual of I(∗), regarded
as right module on Bop), then we claim that EB = Add (P (∗)). Note that,

as in the previous case, ind-Bop\ind-Λop = {P (∗), S(∗)} and P (∗) =
∗
j

.

From the fact that EΛ = 0 and that every Λ-module can be regarded as a
B-module, only Add {P (∗), S(∗)} could be contained in EB.

We prove that S(∗) /∈ KerExt2
B(−, T dB). Since S(j) is the first cosyzygy

of the injective resolution of T dΛ = τ−1(S(j))d ⊕ (
⊕
i 6=j

I(i)), we show that

S(∗) /∈ KerExt1
B(−, S(j)). Indeed there is the non split short exact sequence

0 −→ S(j) −→ ∗
j
−→ S(∗) −→ 0.

Hence S(∗) /∈ EB. To show that P (∗) ∈ EB we only have to check that
HomBop(P (∗), T dB) = 0, since P (∗) is projective. It is true from the fact
that topP (∗) = S(∗) does not belongs to any composition series of T dB.
Then EB = Add (P (∗)).

�

Set now A := EndB(TB) = EndΛ(TΛ), then Λ = EndA(AT ) because TΛ is tilting
(hence balanced) over Λ. So AT is 1-tilting but EndA(AT ) 6= B. Let E = EB.
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Lemma 3.3.2. For each projective left B-module P the unit morphism of the
adjunction (T ⊗B −,HomA(AT,−))

ηP : P −→ HomA(T, T ⊗B P )

is surjective and KerηP ∈ E = Add (P (∗)).

Proof. Let us note that we can regard

ηB : B −→ HomA(AT, TB ⊗B B) ' Λ

as the projection π : B −→ Λ ' B/Be∗B, hence it is surjective and the kernel is
the annihilator of TB as right B-module, that is KerηP is the projective B-module
P (∗). Now, since E is closed under direct summand, we can prove the statement
just for free modules. Let α be a cardinal, then the map

ηB(α) : B(α) −→ HomA(T, T ⊗B B(α)) = Λ(α)

is exactly π(α) and the kernel of ηB(α) is P (∗)(α). �

Proposition 3.3.3. There is a homological ring epimorphism

λ : B −→ S

with n = dimk P (∗) and S = End(P (∗)⊕n).

Proof. E being bireflective, there exists an object M ∈ E such that S :=
EndB(M) 'M as B-modules and E ' S-Mod. If n = dimk P (∗), then M = P (∗)⊕n
and S ' Mn(k) and there exists a ring epimorphism λ : B −→ S. We now prove
that λ is homological. In view of Theorem 3.1.13 we have just to prove that every

object in Y = Ker(T
L
⊗B −) is quasi-isomorphic to a complex with terms in E . Set

H = RHomA(ATB,−) and G = ATB
L
⊗B −and consider the triangle

B
ηB−→ HG(B) −→ Y −→ B[1].

We have

HG(B) = RHomA(ATB,A TB
L
⊗B B) = RHomA(ATB,A TB) = HomA(ATB,A TB) = Λ

(because TB ' TΛ that is self-orthogonal in A-Mod, hence HomA(AT,−)-acyclic).
Then ηB = ηB and, considering the long exact sequence of the homologies, we can
conclude that Y is quasi-isomorphic to the stalk complex KerηB[1], that is P (∗)[1].
We now follow [CX, Prop. 4.6]. Let M be an object in D(B), then there is the
triangle

(11) M
ηM−→ HG(M) −→ YM −→M [1]

where

HG(M) = RHomA(ATB,A TB
L
⊗B M) = HomA(ATB,A TB⊗BW )

withW aH-projective resolution of the complexM . Therefore HomA(ATB,A TB⊗BW )
has terms of the form HomA(T, Ti) with Ti ∈ Add (AT ). AT being finitely generated,
we have that the module HomA(T, Ti) is in Add (ΛΛ). Regard the triangle in (11)
as the triangle

(12) W
ηM−→ Hom(T, T •) −→ YM −→ W [1]
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where T • is the complex (ATB ⊗BW ). Therefore the morphism nM can be regarded
in C(B) as the family (ηi)i∈Z with ηi : W i −→ HomA(T, Ti). Then for Lemma 3.3.2,
noting that (KerηM)i = Kerηi ∈ E , we can conclude that YM ' KerηM [1] has terms
in E . Now, for every Y in Y , there is the triangle

Y
ηY−→ 0 −→ Y −→ Y [1]

then Y is exactly KerηY that has terms in E . �

Let us show a particular instance of the situation just described. Using the same
notations, set Λ equal to the path algebra of the quiver ◦

1

a−→ ◦
2
. Then B is the path

algebra of the quiver: ◦
1

a−→ ◦
2

b−→ ◦
3

with the relation ab = 0. So

TΛ =
1
2

and

TB =
1
2
⊕ 1

Moreover

E = Add

{
3
2

}
⊆ B-Mod,

S = M2(k) and we can express B as the matrixk 0 0
k k 0
k k k

 .

Then there exists a homological ring epimorphism λ : B → S defined by, for all
a, b, c, d, e, f ∈ k,

λ

a 0 0
b c 0
d e f

 =

(
c 0
e f

)
.

Moreover, since TΛ is classical tilting over Λ we have that the functor RHomA(AT,−) : D(A)→ D(Λ)
is an equivalence. Let us express Λ as the triangular matrix(

k 0
k k

)
and consider the natural projection of B over Λ,

π :

k 0 0
k k 0
k k k

→ (
k 0
k k

)
.

π is a ring epimorphism and the restriction of scalars functor π∗ : D(Λ)→ D(B) is
fully faithful. Then the composition π∗ ◦ RHomA(AT,−) : D(A) → D(B) is fully
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faithful and we have the following recollement:

D(S)
λ∗ // D(B)

i!=RHomB(S,−)

ee

i∗=S
L
⊗
B
−

yy
j∗=T

L
⊗B− // D(A)

π∗◦RHomA(T,−)

ee

j!

yy

Remark 3.3.4. The previous example can be generalized considering a situation
similar to [Mi, Corollary 5.5]. Let us point out the key steps used in the previous
Example 1. Assume that I is a non-zero projective, idempotent two-sided ideal of
an ordinary k-algebra B. Then the projective dimension of Λ, viewed as a right
B-module, is one. By [NS, Example in Section 4] the canonical projection π :
B → Λ := B/I is a homological ring epimorphism and ΛB is self-orthogonal. Let
now TΛ be a classical n-tilting module over Λ and view T as a right B-module
via π. Then I is the annihilator of TB (and of ΛB) and TB is a classical n + 1-
partial tilting module, since proj.dim(TΛ) ≤ proj.dim(TB) ≤ proj.dim(TΛ) + 1.
Set A := EndΛ(TΛ) = EndB(TB) (where the last equality holds since π is a ring

epimorphism). The functor AT
L
⊗Λ − : D(Λ)→ D(A) is a triangle equivalence, since

TΛ is a classical n-tilting module. Moreover the functor AT
L
⊗B − : D(B) → D(Λ)

is given by the composition of functors (AT
L
⊗Λ −) ◦ (ΛΛ

L
⊗B −), so the kernel of

AT
L
⊗B − is exactly the kernel of (ΛΛ

L
⊗B −). Thus, Ker(AT

L
⊗B −) is equivalent to

the derived category of a ring via a homological ring epimorphism if and only so is

Ker(ΛΛ
L
⊗B −). But, ΛB is a classical 1-partial tilting module with EndB(Λ) = Λ,

so the class E = Ker(ΛΛ
L
⊗B −) ∩ B-Mod is bireflective. Now, similarly to the

proof of Proposition 2, we let G = (ΛΛ
L
⊗B −) and H = RHomΛ(ΛΛB,−). Then,

a complex Y ∈ Ker(ΛΛ
L
⊗B −) if and only if Y is quasi isomorphic to HG(Y ).

Computing HG(Y ) by means of an H-projective resolution of Y in D(B) we obtain
that HG(Y ) is a direct summand of complex with terms of the form Λ(I) for some set
I, viewed as left B-modules, hence in the class E . By Theorem 3.1.13, we conclude

that the kernel of the functor AT
L
⊗B − is triangle equivalent to the derived category

of a ring via the homological epimorphism π.

Example 2. Now we give a simple example of a finitely generated partial
tilting module T over a finite dimensional algebra B, such that the class E =
∩
i≥0

KerTorBi (T,−) is not bireflective (in particular there are no homological ring

epimorphisms B → S such that Ker(T
L
⊗B −) ' D(S)).

Let us take the quiver ◦
1

a−→ ◦
2

b−→ ◦
3

with relation ab = 0 and the right mod-

ules over its path algebra B. Consider the simple injective right module S1. The
projective dimension of S1 is two and its projective resolution is given by:

0 −→ P3 −→ P2 −→ P1 −→ S1 −→ 0
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It is easy to see that S1 is partial tilting over B. A calculation shows that the class

E = Add

{
2
1
,

3
2

}
is not bireflective. In fact there is a morphism

f :
2
1
−→ 3

2

such that the kernel is not in E .

Example 3. Let us consider the quiver

◦
1

a // ◦
2

b
~~

with relation ab = 0 and consider the partial tilting module
1
2

of projective

dimension 2. Here, as shown in [B2, Example 1], E = 0 then it is bireflective but,
obviously, the complexes in Y don’t have terms in E .

Example 4. [CX2, Section 7.1] The following is an example of a good n-tilting

module AT with B = EndA(AT ), such that Ker(TB
L
⊗B −) is not triangle equivalent

to the derived category of a ring via a homological ring epimorphism.
Let A be a commutative n-Gorestein ring and consider a minimal injective res-

olution of the regular module AA of the form:

0→ A→
⊕
p∈P0

E(A/p)→ . . .→
⊕
p∈Pn

E(A/p)→ 0

where Pi is the set of all prime ideals of A of height i (see [Bas, Theorem 1, Theorem
6.2]). Then, the module

AT :=
⊕

0≤i≤n

⊕
p∈Pi

E(A/p)

is an n-tilting module by [GT, Example 5.16] and it is moreover good. Set, for all
0 ≤ i ≤ n, Ti :=

⊕
p∈PiE(A/p), then we have HomA(Tj, Ti) = 0 for all 0 ≤ i ≤ j ≤ n.

Assume that n ≥ 2 and that the injective dimension of A is exactly n; then T
has projective dimension n (see [B2, Proposition 3.5]). Note that Ti 6= 0 for every

2 ≤ i ≤ n so T satisfies the hypotheses of [CX2, Corollary 1.2], hence Ker(TB
L
⊗B−)

cannot be realized as the derived category D(S) of a ring S linked to B via a
homological ring epimorphism B → S.

Example 5. [CX2, Section 5] An easy application of Corollary 3.2.7 leads to the
construction of a class of good n-tilting modules such that the Kernel of the tensor
functor is equivalent to the derived category of a ring. Let us take T a classical
n-tilting module over a ring A with endomorphism ring B, such that T = M ⊕ N
with M a nonzero A-module of projective dimension at most one. Let J be an
infinite set and take T1 := M (I) ⊕ N . Then T1 is a good n-tilting module and, by

Corollary 3.2.7, there exists a ring R such that Ker(T1

L
⊗B −) ' D(R).





Appendix A

Recall that, if TB is an n-partial tilting module, of projective resolution P and
with endomorphisms ring A, then Q := RHomBop(P,B

op) is a perfect and self-
orthogonal object of D(B) (see Theorem 2.4.6) and moreover, by Proposition 2.5.8,
there is a TTF triple

(X ,Y ,Z) = (Tria Q,Ker(TB
L
⊗B −), ImRHomA(AT,−)).

Let us denote by L the left adjoint of the inclusion functor i : Y → D(B). Then,
by Theorem 2.1.23, the central class Y is triangle equivalent to D(E) where E =
RHomB(L(B), L(B)) and H i(E) = H i(L(B)). If TB is a classical partial 1-tilting
module then E ' H0(L(B)), that is L(B) is concentrated in degree zero and it can
be expressed directly as a universal localization as Chen Xi shows in [CX, proof of
Proposition 3.9]. If the projective dimension of TB is greater than one, in [AKL,
Appendix] is proved that L(B) is a Milnor colimit of a sequence of morphisms in
D(B). In what follows we adapt the results in [AKL] to our case and we present
some computations on the homologies of L(B) in order to understand when it is
quasi-isomorphic to a bounded complex.

Definition 3.3.5. [N2, Definition 1.6.4] Let D be a triangulated category and
let

M0
f0−→M1

f1−→M2
f2−→ ...

be a sequence of morphisms of D such that the coproduct
∐

i∈NMi exists in D. The
Milnor colimit (or homotopy colimit) of this sequence, denoted by McolimMn, is
given, up to non-unique isomorphism, by the triangle∐

i∈N

Mi
1−σ−→

∐
i∈N

Mi
π−→ McolimMn −→

∐
i∈N

Mi[1]

where the morphism σ has components

Mn
fn−→Mn+1

can−→
∐
i∈N

Mi

We specialize the situation of Lemma A.2 in [AKL] to the case of the perfect
self-orthogonal object Q.

Proposition 3.3.6. [AKL, Lemma A.2] Given a partial tilting module TB, there
exists a sequence of maps in D(B)

(13) B0 := B
σ0→ B1

σ1→ ...→ Bn
σn→ Bn+1 → ...

such that:

(1) HomD(B)(Q[i], Bn) = 0 for every i 6= n.

57
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(2) L(B) is isomorphic to the homotopy colimit B∞ of the sequence (Bn)n∈N⊕
n∈N

Bn
I−σ−→

⊕
n∈N

Bn
π−→ B∞(14)

where (I− σ)(b0, ..., bk) 7−→ (b0, b1 − σ0b0, b2 − σ1b1, ...,−σkbk).

Proof. Thank’s to Lemma A.2 in [AKL] the only thing that remained to prove
in this particular case is that HomD(B)(Q[i], Bn) = 0 for every i 6= n. Let us prove
it by induction. Let n = 0 and set I0 = HomD(B)(Q,B). The sequence (13) is
constructed recursively, starting from the triangle

Q(I0) α0→ B
σ0→ B1 → Q(I0)[1]

Apply HomD(B)(Q[i],−) to get the long exact sequence

..→ HomD(B)(Q[i], Q(I0))→ HomD(B)(Q[i], B)→ HomD(B)(Q[i], B1)→ HomD(B)(Q[i], Q(I0)[1])→ ...

Now we have: HomD(B)(Q[i], B) = 0 for every i 6= 0, HomD(B)(Q[i], Q(I0)[j]) = 0 for

every i 6= j and moreover the map HomD(B)(Q[i], Q(I0))
α0→ HomD(B)(Q[i], B) is an

epimorphism. Then HomD(B)(Q,B1) = 0 for every i 6= 1.
n⇒ n+ 1
Set In := HomD(B)(Q[n], Bn) and apply the functor HomD(B)(Q[i],−) to the triangle

Q(In) → Bn
σn→ Bn+1 → Q(In).

Analogously to the zero step of the induction we can conclude that HomD(B)(Q[i], Bn) = 0
for every i 6= n. �

Lemma 3.3.7. With notation as in the previous proposition, we have:

H i(B∞) = lim
−→
n∈N

H i(Bn), for each n ∈ Z.

Proof. For each i ∈ Z there is the following long exact sequence

... −→ ⊕
n∈N

H i(Bn)
I−σn−→ ⊕

n∈N
H i(Bn+1) −→ lim

−→
n∈N

H i(Bn)→ ⊕
n∈N

H i+1(Bn) −→ ...

Now, for each fixed i ∈ Z, the map

⊕
n∈N

H i(Bn)
I−σn−→ ⊕

n∈N
H i(Bn+1)

is a monomorphism since {H i(Bn), H i(σn)} is a countable direct system, thus, from
the long exact sequence in homology from the triangle (14), we have the following
short exact sequence:

0 −→ ⊕
n∈N

H i(Bn)
I−σn−→ ⊕

n∈N
H i(Bn+1) −→ H i(B∞) −→ 0.

Therefore:

H i(B∞) ' lim
−→
n∈N

H i(Bn), for each i ∈ Z.

�
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Let us suppose now that T , seen as left module over A, is a good n-tilting module.
Then there exists the exact sequence:

0→ T0 → T1 → ...→ Tn → 0

with Ti ∈ add AT . In this case the projective resolution of TB is given by the complex
obtained applying the contravariant functor HomA(−, T ) to the sequence above.
Then, indicated with P the projective resolution of TB, one has: P−i = HomA(Ti, T )
for each 0 ≤ i ≤ n. Then, for each 0 ≤ j ≤ n we have Qn = RHomBop(P,B) =
HomA(AT, Ti) and RHomA(AT,A) = Q.

Notations 3.3.8. Set k0 := HomA(A, T ). Regarding T as e left A-module we
have the following short exact sequences:

0 −→ k1 −→ A(T ) −→ T −→ 0;

0 −→ k2 −→ A(HomA(A,k1)) −→ k1 −→ 0;

...

0 −→ km −→ A(HomA(A,km−1)) −→ km−1 −→ 0.

When m ≥ n we have that km is projective as A-module.

Proposition 3.3.9. There is the following isomorphism of abelian groups:

HomD(B)(Q[n], Bn) = kn for n ≥ 0

Proof. Let us prove it by induction. Since P−i = HomA(Ti, T ), then HomD(B)(Q,B) = H0(P ) = HomA(A, T ) = k0.
Set HomH(B)(Q[n], Bn) = kn. Let us apply the functor RHomB(Q,−) to the triangle

(15) Q[n](kn) αn−→ Bn −→ Bn+1 −→ Q[n+ 1](kn).

Looking at the long exact sequence of the homologies we obtain

HomH(B)(Q[n], Q[n])(kn) −→ kn −→ HomH(B)(Q[n], Bn+1) −→ HomH(B)(Q[n], Q[n+1])(kn)

We know that HomH(B)(Q[n], Bn+1) = 0, hence

(16) 0 −→ HomH(B)(Q[n], Bn+1[−1]) −→ HomH(B)(Q[n], Q[n])(kn) −→ kn −→ 0.

Moreover HomH(B)(Q,Q) = A, that is (16) becomes

0 −→ HomH(B)(Q[n], Bn+1[−1]) −→ A(kn) −→ kn −→ 0.

�

Lemma 3.3.10. Denote by G the functor T
L
⊗B −. For every n, the map G(αn)

induced by G(αn) in homology is surjective.

Proof. Apply G to the triangle (15) and consider the long exact sequence in

homology. Using the isomorphisms of the functors RHomB(Q,−) and G = T
L
⊗B −

(see Remark 2.2.1) we have:

(17) 0 −→ HomH(B)(Q[n], Bn+1[−1]) −→ HomH(B)(Q[n], Q(kn)[n])

RHomB(Q,αn)−→ HomH(B)(Q[n], Bn) −→ HomH(B)(Q[n], Bn+1) −→ 0.

But we have proved that HomD(B)(Q[n], Bn+1) = 0 then we can conclude that

RHomB(Qαn) = G(αn) is surjective. �
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Proposition 3.3.11. we have

G(Bn) ' kn[n] for each n ≥ 0.

Proof. For n = 0 it is obvious.
Suppose G(Bn) = kn[n]. Since H is fully faithful, the counit of the adjunction

(G,H) an isomorphism (see Theorem 2.5.6), then G(Q[n](kn)) = G(Q[n])(kn) '
A[n](kn). Consider the long exact sequence

0 −→ H−nG(Bn+1)[−1] −→ H−nA[n](kn) G(αn)−→ kn[n] −→ H−nG(Bn+1) −→ 0.

From the previous Lemma we have that G(αn) is surjective, than H−nG(Bn+1) = 0
and H−nG(Bn+1)[−1] = kn+1[n+ 1]. �

Corollary 3.3.12. From the triangle above we obtain the short exact sequence

0 −→ kn+1 −→ A(kn) G(αn)−→ kn −→ 0.

We make now some computations in order to try to understand when it may
happen that L(B) has bounded homologies. We suppose that AT is a good 2-tilting
module. It is possible to consider also the general case n ≥ 2 but in order to simplify
the index notation we show the calculations just in the case n = 2.

Remark 3.3.13. By construction we have, for each i ≥ −1:

i) B−i∞ = B−i2−i.
ii) H−i(B∞) = H−i(B3−i).

Notations 3.3.14. Let δ−i∞ , δ
−i
n be the differentials of the complex B∞, Bn re-

spectively. For every n ≥ 2 consider the exact sequence of complexes

(∗) 0→ τ≤2−n(Bn)→ Bn → Bn → 0.

By Remark 3.3.13 we have δ2−n
∞ = δ2−n

n so

Bn =
B∞

τ≤2−n(B∞)
.

Thus we also have a short exact sequence of complexes:

(a) 0→ τ≤2−n(B∞)→ B∞ → Bn → 0.

In general

a For every n ≥ 2, Bn is quasi-isomorphic to the complex

0→ Cokerδ2−n
n → B4−n

n → . . .→ B0
n → B1

n → 0

in degrees 3− n, 4− n, . . . ,−1, 0, 1..
b Let Xn = 0→ B4−n

n → . . .→ B0
n → B1

n → 0
in degrees 4− n, . . . ,−1, 0, 1.
Xn has projective terms so G(Xn) ∼= T ⊗B Xn.

c H−i(G(Xn)) = 0, for every −i ≤ 3− n (i.e. i ≥ n− 3).
d We have a triangle

(b) Cokerδ2−n
n [n− 4]→ Xn → Bn →

Lemma 3.3.15. In the previous notations the following hold true for every n ≥ 2.
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(1) H−i(G(Bn)) = 0 for every i 6= n− 1.
(2) H1−n(G(Bn)) ∼= TorB2 (T,Cokerδ2−n

n ).
(3) H2−n(G(Bn)) ∼= TorB1 (T,Cokerδ2−n

n ) = 0

Proof. (1) We have that τ≤2−n(B∞) has terms in degrees≤ 2−n, soHj(G(τ≤2−n(B∞))) =
0 for every j > 2−n; and Hj(G(B∞)) = 0, for every j. From sequence (a) we obtain
the exact sequence

0→ Hj(G(Bn))→ Hj+1(G(τ≤2−n(Bn)))→ 0

so we conclude that Hj(G(Bn)) = 0, for every j ≥ 2− n.
Secondly, we show that H−i(G(Bn)) = 0 for every i ≥ n.
From the triangle (b) we obtain the exact sequence

H−i(G(Xn))→ H−i(G(Bn))→ H−i+1(G(Cokerδ2−n
n )[n− 4])

and H−i+1(G(Cokerδ2−n
n )[n − 4]) = H−i+n−3(G(Cokerδ2−n

n )) = 0, for every i ≥ n
since Torj(T,−) = 0, for every j ≥ 3. Moreover, we already noticed in 3 that
H−i(G(Xn)) = 0 for every i ≥ n− 3.

In conclusion, H−i(G(Bn)) = 0 for every i ≥ n and i ≤ n − 2, so G(Bn) has
cohomology at most in degree 1− n.

(2) From triangle (b) we have

H1−n(G(Xn))→ H1−n(G(Bn))→ H1−n+n−3(G(Cokerδ2−n
n ))→ H2−n(G(Xn))

where H1−n(G(Xn)) = 0 = H2−n(G(Xn)) and

H−2(G(Cokerδ2−n
n )) ∼= Tor2(T,Cokerδ2−n

n ).

(3) From triangle (b) we also have

0 = H2−n(G(Xn)→ H2−n(G(Bn))→ H−1(G(Cokerδ2−n
n ))→ H3−n(G(Xn)) = 0

so H2−n(G(Bn)) ∼= H−1(G(Cokerδ2−n
n )) and by part (2) they are zero.

�

Lemma 3.3.16. In the previous notations the following hold true.

(1) Tor2(T,H3−n(Bn)) ∼= Tor2(T,Cokerδ2−n
n ) ∼= Tor1(T, Im δ2−n

n ).
(2) Tor1(T,H3−n(Bn)) ∼= Tor1(T,Cokerδ2−n

n ) = 0.

Proof. (1) Note that TorB2 (T, Im δin) = 0, for every i ≤ 0, since Im δin is a sub-
module of a projective module and Tor3(T,−) = 0. Thus, from the exact sequences:

0→ H3−n(Bn)→ Cokerδ2−n
n → Im δ3−n

n → 0,

0→ Im δ2−n
n → B3−n

n → Cokerδ2−n
n → 0,

we obtain
0→ Tor2(T,H3−n(Bn)) ∼= Tor2(T,Cokerδ2−n

n )→ 0,

0→ Tor2(T,Cokerδ2−n
n ) ∼= Tor1(T, Im δ2−n

n )→ 0.

(2) From the above exact sequences we obtain also

0→ Tor1(T,H3−n(Bn))→ Tor1(T,Cokerδ2−n
n ),

and Tor1(T,Cokerδ2−n
n ) = 0 by Lemma 3.3.16 (2).

�
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Lemma 3.3.17. If BN ∈ B-Mod, then

TorB2 (T,N) ∼= HomB(H2(Q), N).

Proof. We have TorB2 (T,N) ∼= H−2(G(N)) ∼= H−2(
HomB(Q,N) = Ker(
HomB(d1

Q, N) ∼=
HomB(H2(Q), N). �

Remark 3.3.18. If B∞ has bounded cohomology, let’s say H−i(B∞) = 0 for

every −i ≤ 2− n, then B∞ is quasi-isomorphic to
B∞

τ≤2−n(B∞)
∼= Bn.

So necessarily TorB2 (T,Cokerδ2−n
n ) = 0 for some n.



Part 2

Equivalences of monoidal categories and
bosonization for dual quasi-bialgebras





CHAPTER 4

Dual quasi-bialgebras and monoidal categories

In this chapter we recall the definitions and results that will be needed later on.

1. Monoidal categories

Notations 4.1.1. Let k be a field. All vector spaces will be defined over k.
The unadorned tensor product ⊗ will denote the tensor product over k if not stated
otherwise.

Definition 4.1.2. Recall that (see [Ka, Chap. XI]) a monoidal category is a
categoryM endowed with an object 1 ∈M (called unit), a functor ⊗ :M×M→
M (called tensor product), and functorial isomorphisms aX,Y,Z : (X ⊗ Y ) ⊗ Z →
X⊗(Y ⊗Z), lX : 1⊗X → X, rX : X⊗1→ X, for every X, Y, Z inM. The functorial
morphism a is called the associativity constraint and satisfies the Pentagon Axiom,
that is the equality

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X
holds true, for every U, V,W,X in M. The morphisms l and r are called the unit
constraints and they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV,1,W = rV ⊗W ,
for every V,W in M.

The notions of algebra, module over an algebra, coalgebra and comodule over a
coalgebra can be introduced in the general setting of monoidal categories.

Definition 4.1.3. Let (M,⊗,1, a, l, r) be a monoidal category. An (associative)
algebra in M is a tern (A,m, u) where A is an object in the category, and

m : A⊗ A→ A (multiplication)
u : 1→ A (unit)
are morphisms in M obeying the associativity and unity axioms:

(A⊗ A)⊗ A
αA,A,A//

m⊗A
yy

A⊗ (A⊗ A))

A⊗m
%%

A⊗ A
m

**

A⊗ A
m

ttA

1⊗ A

u⊗A %%

lA // A A⊗ 1
rAoo

A⊗uyy
A⊗ A

m

OO

Remark 4.1.4. In a dual way is define the concept of coalgebra in a monoidal
category.

65
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Definition 4.1.5. Given an algebra A inM one can define the categories AM,
MA and AMA of left, right and two-sided modules over A respectively. Given an
object V ∈ AM, the associativity of the left action ρ of A over V is expressed by
the diagram:

(A⊗ A)⊗ V
αA,A,A//

m⊗V
yy

A⊗ (A⊗ V )

A⊗ρ
%%

A⊗ V
ρ

**

A⊗ V
ρ

ttV

Similarly, given a coalgebra C in M, one can define the categories of C-comodules
CM,MC , CMC . For more details, the reader is refereed to [Ka].

Remark 4.1.6. LetM be a monoidal category. Assume thatM is abelian and
both the functors X⊗(−) :M→M and (−)⊗X :M→M are additive and right
exact, for any X ∈ M. Given an algebra A in M, there exists a suitable functor
⊗A : AMA × AMA → AMA and constraints that make the category (AMA,⊗A, A)
monoidal, see [AMS1, 1.11]. The tensor product over A inM of a right A-module
(V, µrV ) and a left A-module (W,µlW ) is defined to be the coequalizer:

(V ⊗ A)⊗W
µrV ⊗W //

aV,A,W ((

V ⊗W AχV,W // V ⊗AW // 0

V ⊗ (A⊗W )
V⊗µlW

77

Note that, since ⊗ preserves coequalizers, then V ⊗A W is also an A-bimodule,
whenever V and W are A-bimodules.

Dually, given a coalgebra (C,∆, ε) in a monoidal categoryM, abelian and with addi-
tive and left exact tensor functors, there exist a suitable functor�C : CMC × CMC → CMC

and constraints that make the category (CMC ,�C , C) monoidal. The cotensor prod-
uct over C in M of a right C-comodule (V, ρrV ) and a left C-comodule (W, ρlW ) is
defined to be the equalizer:

0 // V�CW
CςV,W // V ⊗W

V⊗ρlW //

ρrV ⊗W ''

V ⊗ (C ⊗W )

(V ⊗ C)⊗W
aV,C,W

66

Note that, since ⊗ preserves equalizers, then V�CW is also a C-bicomodule, when-
ever V and W are C-bicomodules.

Definition 4.1.7. A dual quasi-bialgebra is a datum (H,m, u,∆, ε, ω) where

• (H,∆, ε) is a coassociative coalgebra;
• m : H ⊗H → H and u : k → H are coalgebra maps called multiplication

and unit respectively; we set 1H := u(1k);
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• ω : H ⊗ H ⊗ H → k is a unital 3-cocycle i.e. it is convolution invertible
and satisfies

(18)

ω (H ⊗H ⊗m) ∗ ω (m⊗H ⊗H) = mk (ε⊗ ω) ∗ ω (H ⊗m⊗H) ∗mk (ω ⊗ ε)
and ω (h⊗ k ⊗ l) = ε (h) ε (k) ε (l) whenever 1H ∈ {h, k, l};(19)

• m is quasi-associative and unitary i.e. it satisfies

m (H ⊗m) ∗ ω = ω ∗m (m⊗H) ,(20)

m (1H ⊗ h) = h, for all h ∈ H,(21)

m (h⊗ 1H) = h, for all h ∈ H.(22)

ω is called the reassociator of the dual quasi-bialgebra.

A morphism of dual quasi-bialgebras (see e.g. [Sch1, Section 2])

α : (H,m, u,∆, ε, ω)→ (H ′,m′, u′,∆′, ε′, ω′)

is a coalgebra homomorphism α : (H,∆, ε)→ (H ′,∆′, ε′) such that

m′(α⊗ α) = αm, αu = u′, ω′ (α⊗ α⊗ α) = ω.

It is an isomorphism of quasi-bialgebras if, in addition, it is invertible.
A dual quasi-subbialgebra of a dual quasi-bialgebra (H ′,m′, u′,∆′, ε′, ω′) is a

quasi-bialgebra (H,m, u,∆, ε, ω) such that H is a vector subspace of H ′ and the
canonical inclusion α : H → H ′ yields a morphism of dual quasi-bialgebras.

We shall see examples of dual quasi-bialgebras that are not ordinary bialgebras.
In order to do it let us introduce the following concepts.

Definition 4.1.8. For any coalgebra C and algebra A we set Reg(C,A) :=
U(Homk(C,A)), i.e. the group of units in the monoid (Homk(C,A), ∗, uε). Here, *
denotes the convolution product which is defined as follows:

(f ∗ g)(c) =
∑

f(c1) ·A g(c2).

A Gauge transformation γ on H is an element of Reg(H ⊗H, k) that is unital.

Theorem 4.1.9. Let (H,m, u,∆, ε) be a dual quasi bialgebra and γ a Gauge
transformation on H. Let us define the maps mγ : (H ⊗ H) ⊗ H → H and ωγ :
(H ⊗H)⊗H → k as:

mγ(z) := γ(z1)m(z2)γ−1(z3), for all z ∈ H⊗3;

ωγ := mk(ε⊗ γ) ∗ γ(H ⊗m) ∗ ω ∗ γ−1(m⊗H) ∗mk(γ
−1 ⊗ ε).

Then (H,mγ, u,∆, ε, ωγ) is a dual quasi-bialgebra, that is said to be equivalent to
H.

Theorem 4.1.10. Let (H,m, u,∆, ε) be a dual quasi-bialgebra. The following
assertions are equivalent.

(1) (H,M, u,∆, ε, ω) is equivalent to a dual quasi bialgebra with trivial reasso-
ciator (that is an ordinary bialgebra).

(2) ω = γ−1(H ⊗ m) ∗ mk(ε ⊗ γ−1) ∗ mk(γ ⊗ ε) ∗ γ(m ⊗ H) for some Gauge
transformation γ on H.
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Remark 4.1.11. It can be proved that the situation of Theorem 4.1.10 does
not always occur, i.e. there are non trivial dual quasi-bialgebras (for more details
consider the dual situation in [Ka, XV, Sections 1,2,3]).

Let us introduce now the category of bicomodules for a dual quasi-bialgebras.
Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. It is well-known that the cate-

gory MH of right H-comodules becomes a monoidal category as follows. Given a
right H-comodule V , we denote by ρ = ρrV : V → V ⊗H, ρ(v) = v0⊗v1, its right H-
coaction. The tensor product of two right H-comodules V and W is a comodule via
diagonal coaction i.e. ρ (v ⊗ w) = v0⊗w0⊗v1w1. The unit is k, which is regarded as
a right H-comodule via the trivial coaction i.e. ρ (k) = k⊗1H . The associativity and
unit constraints are defined, for all U, V,W ∈MH and u ∈ U, v ∈ V,w ∈ W,k ∈ k,
by

aHU,V,W ((u⊗ v)⊗ w) := u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1),

lU(k ⊗ u) := ku and rU(u⊗ k) := uk.

The monoidal category we have just described will be denoted by (MH ,⊗, k, aH , l, r).
Similarly, the monoidal categories (HM,⊗,k,Ha, l, r) and (HMH ,⊗,k,HaH , l, r)

are introduced. We just point out that
HaU,V,W ((u⊗ v)⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0),

HaHU,V,W ((u⊗ v)⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1).

Remark 4.1.12. We know that, if (H,m, u,∆, ε, ω) is a dual quasi-bialgebra,
we cannot construct the category MH , because H is not an algebra in this category.
MoreoverH is not an algebra in MH or in HM.On the other hand ((H, ρlH , ρ

r
H),m, u)

is an algebra in the monoidal category (HMH ,⊗,k,HaH , l, r) with ρlH = ρrH = ∆.
Thus, the only way to construct the category HMH

H is to consider the right H-
modules in HMH . Hence, we can set

HMH
H := (HMH)H .

The category HMH
H is the so-called category of right dual quasi-Hopf H-bicomodules

[BC, Remark 2.3].

Remark 4.1.13. Let (A,m, u) be an algebra in a given monoidal category
(M,⊗, 1, a, l, r). Then the assignments M 7−→ (M ⊗ A, (M ⊗ m) ◦ aA,A,A) and
f 7−→ f ⊗ A define a functor T : M → MA. Moreover the forgetful functor
U :MA →M is a right adjoint of T .

2. An adjunction between HMH
H and HM

We are going to construct an adjunction between HMH
H and HM that will be

crucial afterwards.

Remark 4.2.1. Consider the functor L : HM → HMH defined on objects by
L(•V ) := •V ◦ where the upper empty dot denotes the trivial right coaction while
the upper full dot denotes the given left H-coaction of V. The functor L has a
right adjoint R : HMH → HM defined on objects by R(•M•) := •M coH , where
M coH := {m ∈M | m0⊗m1 = m⊗1H} is the space of right H-coinvariant elements
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in M . Indeed, since L(V ) has the trivial right coaction, each f : L(V )→ W ∈ HMH

can be regarded as a morphism from V to G(W ) in HM. On the other side, every
morphism g : V → G(W ) ∈ HM is also right H-colinear with respect to the trivial
coaction, that is g can be regarded as a morphism from L(V ) to W in HMH .
Moreover, by Remark 4.1.13, the forgetful functor U : HMH

H → HMH , U (•M•
• ) :=

•M• has a right adjoint, namely the functor T : HMH → HMH
H , T (•M•) := •M• ⊗

•H•• . Here the upper dots indicate on which tensor factors we have a codiagonal
coaction and the lower dot indicates where the action takes place. Explicitly, the
structure of T (•M•) is given as follows:

ρlM⊗H(m⊗ h) : = m−1h1 ⊗ (m0 ⊗ h2),

ρrM⊗H(m⊗ h) : = (m0 ⊗ h1)⊗m1h2,

µrM⊗H [(m⊗ h)⊗ l] = (m⊗ h)l := ω−1(m−1 ⊗ h1 ⊗ l1)m0 ⊗ h2l2ω(m1 ⊗ h3 ⊗ l3).

Define the functors F := TL : HM→ HMH
H and G := RU : HMH

H → HM. Explicitly
G (•M•

• ) = •M coH and F (•V ) := •V ◦ ⊗ •H•• so that, for every v ∈ V, h, l ∈ H,

ρlV⊗H(v ⊗ h) = v−1h1 ⊗ (v0 ⊗ h2),

ρrV⊗H(v ⊗ h) = (v ⊗ h1)⊗ h2,

µrV⊗H [(v ⊗ h)⊗ l] = (v ⊗ h)l = ω−1(v−1 ⊗ h1 ⊗ l1)v0 ⊗ h2l2.

Remark 4.2.2. By the right-hand version of [Sch4, Lemma 2.1], the functor
F : HM → HMH

H is a left adjoint of the functor G, where the counit and the unit
of the adjunction are given respectively by εM : FG(M)→M, εM(x⊗ h) := xh and
by ηN : N → GF (N), ηN (n) := n ⊗ 1H , for every M ∈ HMH

H , N ∈ HM. Moreover
ηN is an isomorphism for any N ∈ HM. In particular the functor F is fully faithful.

3. The notion of preantipode

In what follows we will show that, for a dual quasi-bialgebra H, the functor F is
an equivalence if and only if there exists a suitable map S : H → H that we called
a preantipode for H. Moreover for any dual quasi-bialgebra with antipode (i.e. a
dual quasi-Hopf algebra) we constructed a specific preantipode, see [AP, Theorem
3.10].

Remark 4.3.1. It is worth to notice that, by [Sch5, Example 4.5.1], there is a
dual quasi-bialgebra H which is not a dual quasi-Hopf algebra and such that the
category HMf of finite-dimensional left H-comodules is left and right rigid so that,
by the right-handed version of [Sch4, Theorem 3.1], we get that H has a prean-
tipode. Nevertheless, for a finite-dimensional dual quasi-bialgebra, the existence of
an antipode is equivalent to the existence of a preantipode. This follows by dual-
ity in view of [Sch4, Theorem 3.1]. Next result characterizes when the adjunction
(F,G) is an equivalence of categories in term of the existence of a suitable map τ .

Proposition 4.3.2. [AP, Proposition 3.3] Let (H,m, u,∆, ε, ω) be a dual quasi-
bialgebra. The following assertions are equivalent.

(i) The adjunction (F,G) is an equivalence.
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(ii) For each M ∈ HMH
H , there exists a k-linear map τ : M →M coH such that:

τ(mh) = ω−1[τ(m0)−1 ⊗m1 ⊗ h]τ(m0)0, for all h ∈ H,m ∈M,(23)

m−1 ⊗ τ(m0) = τ(m0)−1m1 ⊗ τ(m0)0, for all m ∈M,(24)

τ(m0)m1 = m ∀m ∈M.(25)

(iii) For each M ∈ HMH
H , there exists a k-linear map τ : M → M coH such that

(25) holds and

(26) τ(mh) = mε(h), for all h ∈ H,m ∈M coH .

Remark 4.3.3. Let τ : M → M coH be a k-linear map such that (25) holds. By
[AP, Remark 3.4], the map τ fulfills (26) if and only if it fulfills (23) and (24).

Definition 4.3.4. Following [AP, Definition 3.6] we will say that a preantipode
for a dual quasi-bialgebra (H,m, u,∆, ε, ω) is a k-linear map S : H → H such that,
for all h ∈ H,

S(h1)1h2 ⊗ S(h1)2 = 1H ⊗ S(h),(27)

S(h2)1 ⊗ h1S(h2)2 = S(h)⊗ 1H ,(28)

ω(h1 ⊗ S(h2)⊗ h3) = ε(h).(29)

Remark 4.3.5. [AP, Remark 3.7] Let (H,m, u,∆, ε, ω, S) be a dual quasi-
bialgebra with a preantipode. Then the following equalities hold

(30) h1S(h2) = εS(h)1H = S(h1)h2 for all h ∈ H.

Lemma 4.3.6. [AP, Lemma 3.8] Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra
with a preantipode. For any M ∈ HMH

H and m ∈M , set

(31) τ(m) := ω[m−1 ⊗ S(m1)1 ⊗m2]m0S(m1)2.

Then (31) defines a map τ : M →M coH which fulfills (23), (24) and (25).

Theorem 4.3.7. [AP, Theorem 3.9] For a dual quasi-bialgebra (H,m, u,∆, ε, ω)
the following are equivalent.

(i) The adjunction (F,G) of Remark 4.2.2 is an equivalence of categories.
(ii) There exists a preantipode.

We include here some new results that will be needed later on.

Lemma 4.3.8. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a prean-
tipode. Then

(32) ω−1 [S (h1)⊗ h2 ⊗ S (h3)] = εS (h) , for all h ∈ H.

Proof. Set α := ω (H ⊗H ⊗m) ∗ ω (m⊗H ⊗H) ∗ mk (ω−1 ⊗ ε) and β =
mk (ε⊗ ω) ∗ ω (H ⊗m⊗H) . Fix h ∈ H. We have

α (S (h1)⊗ h2 ⊗ S (h3)⊗ h4)

= ω
[
S (h1)1 ⊗ h2 ⊗ S (h5)(1) h6

]
ω
[
S (h1)2 h3 ⊗ S (h5)(2) ⊗ h7

]
ω−1

[
S (h1)3 ⊗ h4 ⊗ S (h5)(3)

]
(27)
= ω [S (h1)1 ⊗ h2 ⊗ 1H ]ω

[
S (h1)2 h3 ⊗ S (h5)(1) ⊗ h6

]
ω−1

[
S (h1)3 ⊗ h4 ⊗ S (h5)(2)

]
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= ω
[
S (h1)1 h2 ⊗ S (h4)(1) ⊗ h5

]
ω−1

[
S (h1)2 ⊗ h3 ⊗ S (h4)(2)

]
(27)
= ω

[
1H ⊗ S (h4)(1) ⊗ h5

]
ω−1

[
S (h1)⊗ h3 ⊗ S (h4)(2)

]
= ω−1 [S (h1)⊗ h2 ⊗ S (h3)] ,

and

β (S (h1)⊗ h2 ⊗ S (h3)⊗ h4)

= ω
[
h2 ⊗ S (h4)(1) ⊗ h5

]
ω
[
S (h1)⊗ h3S (h4)(2) ⊗ h6

]
(28)
= ω [h2 ⊗ S (h3)⊗ h4]ω [S (h1)⊗ 1H ⊗ h5]

= ω [h2 ⊗ S (h3)⊗ h4] εS (h1)
(29)
= εS (h) .

By the cocycle condition we have α = β. �

Definition 4.3.9. [Maj1, page 66] A dual quasi-Hopf algebra (H,m, u,∆, ε, ω, s, α, β)
is a dual quasi-bialgebra (H,m, u,∆, ε, ω) endowed with a coalgebra anti-homomorphism

s : H → H

and two maps α, β in H∗, such that, for all h ∈ H:

h1β(h2)s(h3) = β(h)1H ,(33)

s(h1)α(h2)h3 = α(h)1H ,(34)

ω(h1 ⊗ β(h2)s(h3)α(h4)⊗ h5) = ε(h) = ω−1(s(h1)⊗ α(h2)h3β(h4)⊗ s(h5)).(35)

In [AP, Theorem 3.10], we proved that any dual quasi-Hopf algebra has a pre-
antipode, but the converse, as pointed out in Remark 4.3.1, in general is not true.
The following result proves that the converse holds true whenever H is also cocom-
mutative.

Theorem 4.3.10. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a pre-
antipode. If H is cocommutative, then (H,m, u,∆, ε, s) is an ordinary Hopf algebra,
where, for all h ∈ H,

s (h) := S (h3)1 ω [h1 ⊗ S (h3)2 ⊗ h2] .

Furthermore (H,m, u,∆, ε, ω, α, β, s) is a dual quasi-Hopf algebra, where α := ε and
β := εS. Moreover one has S = β ∗ s.

Proof. By (20), cocommutativity and convolution invertibility of ω, we get that
(hk)l = h(kl) for all h, k, l ∈ H. Therefore m is associative and hence (H,m, u,∆, ε)
is an ordinary bialgebra. Let us check that s is an antipode for H. Using cocommu-
tativity, (27) and (29) one proves that s (h1)h2 = 1Hε (h) for all h ∈ H. Similarly
one gets h1s(h2) = 1Hε (h) for all h ∈ H. Hence (H,m, u,∆, ε, s) is an ordinary
Hopf algebra. Note that, for all h ∈ H,

(36) S(h) = S(h1) [h2s(h3)] = [S(h1)h2] s(h3)
(30)
= εS(h1)s(h2) = β (h1) s(h2).
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Let us check that (H,m, u,∆, ε, ω, α, β, s) is a dual quasi-Hopf algebra. For all
h ∈ H,

h1β (h2) s (h3)
(36)
= h1S(h2)

(30)
= 1HεS(h),

s(h1)α(h2)h3 = s(h1)h2 = 1Hε (h) = 1Hα (h) ,

ω [h1 ⊗ β (h2) s (h3)α (h4)⊗ h5]
(36)
= ω [h1 ⊗ S (h2)⊗ h3]

(29)
= 1Hε (h) .

Now, since (H,m, u,∆, ε, s) is an ordinary Hopf algebra, we have that s is an anti-
coalgebra map. Thus

S (h)1 ⊗ S (h)2

(36)
= β (h1) s (h2)1 ⊗ s (h2)2 = β (h1) s (h3)⊗ s (h2)

cocom.
= β (h1) s (h2)⊗ s (h3)

(36)
= S(h1)⊗ s (h2)

so that

ω−1 [s (h1)⊗ α (h2)h3β (h4)⊗ s (h5)]
(36)
= ω−1 [s (h1)⊗ h2 ⊗ S (h3)]

= ω−1 [S (h3)1 ⊗ h4 ⊗ S (h5)]ω [h1 ⊗ S (h3)2 ⊗ h2]

= ω−1 [S (h3)⊗ h5 ⊗ S (h6)]ω [h1 ⊗ s (h4)⊗ h2]
cocom.

= ω−1 [S (h2)⊗ h3 ⊗ S (h4)]ω [h1 ⊗ s (h5)⊗ h6]
(32)
= εS (h2)ω [h1 ⊗ s (h3)⊗ h4]

(36)
= ω [h1 ⊗ S (h2)⊗ h3]

(29)
= 1Hε (h) .

�

Definition 4.3.11. A dual quasi-bialgebra (A,m, u,∆, ε, ω) is called pointed
if the underlying coalgebra is pointed, i.e. all its simple subcoalgebras are one
dimensional.

Definition 4.3.12. Let (A,m, u,∆, ε, ω) be a dual quasi-bialgebra. The set

G (A) = {a ∈ A | ∆(a) = a⊗ a and ε(a) = 1}
is called the set of the grouplike elements of A.

Remark 4.3.13. Let A be a pointed dual quasi-bialgebra. We know that the
1-dimensional subcoalgebras of A are exactly those of the form kg for g ∈ G ([Sw,
page 57]). Thus the coradical of A is A0 =

∑
g∈G kg = kG (A) .

The following results extends the so-called “Cartier-Gabriel-Kostant” to dual
quasi-bialgebras with a preantipode. In the connected case such a result was achieved
in [Hu, Theorem 4.3].

Corollary 4.3.14. Let H be a dual quasi-bialgebra with a preantipode over
a field k of characteristic zero. If H is cocommutative and pointed, then H is an
ordinary Hopf algebra isomorphic to the biproduct U (P (H)) #kG (H) , where P (H)
denotes the Lie algebra of primitive elements in H.

Proof. By Theorem 4.3.10, H is an ordinary Hopf algebra. By [Sw, Section
13.1, page 279], we conclude (see also [Mo, page 79]). �
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4. Yetter-Drinfeld modules over a dual quasi-bialgebra

The main aim of this section is to restrict the equivalence between HMH
H and

HM of Theorem 4.3.7, to an equivalence between H
HM

H
H and H

HYD (the category of
Yetter-Drinfeld modules over H) for any dual quasi-bialgebra H with a preantipode.

4.1. Yetter-Drinfeld modules.

Definition 4.4.1. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The category
H
HYD of Yetter-Drinfeld modules over H, is defined as follows. An object in H

HYD
is a tern (V, ρV ,B) , where

• (V, ρ) is an object in HM
• B: H ⊗ V → V is a k-linear map such that, for all h, l ∈ L and v ∈ V

(37) (hl) B v =

[
ω−1 (h1 ⊗ l1 ⊗ v−1)ω

(
h2 ⊗ (l2 B v0)−1 ⊗ l3

)
ω−1 ((h3 B (l2 B v0)0)−1 ⊗ h4 ⊗ l4) (h3 B (l2 B v0)0)0

]
,

(38) 1H B v = v and

(39) (h1 B v)−1 h2 ⊗ (h1 B v)0 = h1v−1 ⊗ (h2 B v0)

A morphism f : (V, ρ,B) → (V ′, ρ′,B′) in H
HYD is a morphism f : (V, ρ) →

(V ′, ρ′) in HM such that f(h B v) = h B′ f(v).

Definition 4.4.2. Let us recall that a prebraided monoidal category A, is a
monoidal category, such that, for all X, Y ∈ A, there is a natural morphism

cX,Y : X ⊗ Y → Y ⊗X
such that the following equalities hold true for all X, Y, Z,∈ A:

(cX,Z ⊗ Y )(X ⊗ cY,Z) = cX⊗Y,Z ;

(Y ⊗ cX,Z)(cX,Y ⊗ Z) = cX,Y⊗Z .

A is said braided if cX,Y is invertible for all X, Y ∈ A.

Remark 4.4.3. The category H
HYD is isomorphic to the weak right center of

HM (regarded as a monoidal category as at the beginning of this Chapter 4, see
Theorem 5.3.11). As a consequence H

HYD has a pre-braided monoidal structure
given as follows. The unit is k regarded as an object in H

HYD via trivial structures
i.e. ρk (k) = 1H ⊗ k and h B k = ε (h) k. The tensor product is defined by

(V, ρV ,B)⊗ (W, ρW ,B) = (V ⊗W, ρV⊗W ,B)

where ρV⊗W (v ⊗ w) = v−1w−1 ⊗ v0 ⊗ w0 and
(40)

h B (v ⊗ w) =

[
ω (h1 ⊗ v−1 ⊗ w−2)ω−1

(
(h2 B v0)−2 ⊗ h3 ⊗ w−1

)
ω
(
(h2 B v0)−1 ⊗ (h4 B w0)−1 ⊗ h5

)
(h2 B v0)0 ⊗ (h4 B w0)0

]
.

The constraints are the same of HM viewed as morphisms in H
HYD. The braiding

cV,W : V ⊗W → W ⊗ V is given by

(41) cV,W (v ⊗ w) = (v−1 B w)⊗ v0.
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Remark 4.4.4. It is easily checked that condition (37) holds for all h, l ∈ L and
v ∈ V if and only if

cH⊗H,V = HaV,H,H ◦ (cH,V ⊗H) ◦ Ha−1
H,V,H ◦ (H ⊗ cH,V ) ◦ HaH,H,V ,

where Ha is the associativity constraint in HM. Now, the displayed equality above,
can be written as

Ha−1
V,H,H ◦ cH⊗H,V ◦

Ha−1
H,H,V = (cH,V ⊗H) ◦ Ha−1

H,V,H ◦ (H ⊗ cH,V ) .

One easily checks that this is equivalent to ask that

ω (h1 ⊗ l1 ⊗ v−1)ω
(
((h2l2) B v0)−1 ⊗ h3 ⊗ l3

)
((h2l2) B v0)0

= ω(h1 ⊗ (l1 B v)−1 ⊗ l2)h3 B (l1 B v)0

holds for all h, l ∈ L and v ∈ V. This equation is the left-handed version of [Ba,
(3.3)]. In conclusion, the axioms defining the category H

HYD are the left-handed
version of the ones appearing in [Ba, Definition 3.1].

4.2. The restriction of the equivalence (F,G). Let H be a dual quasi-
bialgebra. From Theorem 4.3.7, we know that the adjunction (F,G) of Remark
4.2.2 is an equivalence of categories when H has a preantipode.
Next aim is to prove that (F,G) restricts to an equivalence between the categories
H
HYD and H

HM
H
H , where H

HM
H
H =H (HMH)H is the subcategory of HMH given by the

objects that are also bimodules over H.
Inspired by [Sch4, page 541] we get the following result.

Lemma 4.4.5. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. For all U ∈ HM
and M ∈ H

HM
H
H , we have a map

ξU,M : F (U)⊗H M → U ⊗M,

ξU,M ((u⊗ h)⊗H m) = ω−1 (u−1 ⊗ h1 ⊗m−1)u0 ⊗ h2m0

which is a k-linear natural isomorphism with inverse given by ξ−1
U,M (u⊗m) = (u⊗ 1H)⊗H

m. Moreover:

1) the map ξU,M is a natural isomorphism in HMH
H where U ⊗ M has the

following structures:

ρlU⊗M (u⊗m) = u−1m−1 ⊗ (u0 ⊗m0),

ρrU⊗M (u⊗m) = (u⊗m0)⊗m1,

µrU⊗M((u⊗m)⊗ h) = ω−1(u−1 ⊗m−1 ⊗ h1)u0 ⊗m0h2;

2) if U ∈ H
HYD, the map ξU,M is a natural isomorphism in H

HM
H
H where U⊗M

has the structures above along with the following left module structure:

µlU⊗M(h⊗(u⊗m)) = ω (h1 ⊗ u−1 ⊗m−2)ω−1
(
(h2 B u0)−1 ⊗ h3 ⊗m−1

)
(h2 B u0)0⊗h4m0.

Proof. Clearly U ⊗M ∈ HMH via ρlU⊗M and ρrU⊗M . Let ξ′U,M : F (U)⊗M →
U ⊗M be defined by ξ′U,M ((u⊗ h)⊗m) = ω−1 (u−1 ⊗ h1 ⊗m−1)u0 ⊗ h2m0.

Using the quasi-associativity condition (20), one easily checks that ξ′U,M is in
HMH .
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Let us check that ξ′U,M is balanced in HMH i.e. that it equalizes the maps

(F (U)⊗H)⊗M
µr
F (U)

⊗M
//

(F (U)⊗µlM)◦HaHF (U),H,M

// F (U)⊗M

We have

ξ′U,M
(
µrF (U) ⊗M

)
(((u⊗ h)⊗ l)⊗m)

= ω−1 (u−1 ⊗ h1 ⊗ l1) ξ′U,M ((u0 ⊗ h2l2)⊗m)

= ω−1 (u−2 ⊗ h1 ⊗ l1)ω−1 (u−1 ⊗ h2l2 ⊗m−1)u0 ⊗ (h3l3)m0

=

[
ω−1 (u−2 ⊗ h1 ⊗ l1)ω−1 (u−1 ⊗ h2l2 ⊗m−2)ω−1 (h3 ⊗ l3 ⊗m−1)

u0 ⊗ h4 (l4m0)ω (h5 ⊗ l5 ⊗m1)

]
(18)
= ω−1 (u−2h1 ⊗ l1 ⊗m−2)ω−1 (u−1 ⊗ h2 ⊗ l2m−1)u0 ⊗ h3 (l3m0)ω (h4 ⊗ l4 ⊗m1)

= ω−1 (u−1h1 ⊗ l1 ⊗m−2) ξ′U,M
(
F (U)⊗ µlM

)
((u0 ⊗ h2)⊗ (l2 ⊗m0))ω (h3 ⊗ l3 ⊗m1)

= ξ′U,M
(
F (U)⊗ µlM

)
HaHF (U),H,M (((u⊗ h)⊗ l)⊗m) .

Hence there exists a unique morphism ξU,M : F (U) ⊗H M → U ⊗ M in HMH

such that ξU,M ((u⊗ h)⊗H m) = ξ′U,M ((u⊗ h)⊗m) . This proves that ξU,M is well-
defined.

We now check that ξU,M is invertible. Define

ξU,M : U ⊗M → F (U)⊗H M, ξU,M (u⊗m) = (u⊗ 1H)⊗H m.

We have ξU,M ◦ ξU,M = IdU⊗M and

ξU,MξU,M ((u⊗ h)⊗H m)

= ω−1 (u−1 ⊗ h1 ⊗m−1) (u0 ⊗ 1H)⊗H h2m0

def ⊗H=

[
ω−1 (u−1 ⊗ h1 ⊗m−2)ω

(
(u0 ⊗ 1H)−1 ⊗ h2 ⊗m−1

)
(u0 ⊗ 1H)0 h3 ⊗H m0ω

−1 ((u0 ⊗ 1H)1 ⊗ h2 ⊗m1)

]
=

[
ω−1 (u−2 ⊗ h1 ⊗m−2)ω (u−1 ⊗ h2 ⊗m−1)
(u0 ⊗ 1H)h3 ⊗H m0ω

−1 (1H ⊗ h4 ⊗m1)

]
= (u⊗ 1H)h⊗H m = (u⊗ h)⊗H m.

The proof that ξ−1
U,M := ξU,M is natural in U and M is straightforward.

1) In order to have that ξU,M is in HMH
H , it suffices to prove that ξ′U,M is in HMH

H .

Clearly, ξ′U,M is in HMH being an inverse of ξU,M .

The map ξ′U,M is right H-linear in HMH :

ξ′U,M [((u⊗ h)⊗m) l]

= ω−1
(
(u⊗ h)−1 ⊗m−1 ⊗ l1

)
ξ′U,M [(u⊗ h)0 ⊗m0l2]ω ((u⊗ h)1 ⊗m1 ⊗ l3)

= ω−1 (u−1h1 ⊗m−1 ⊗ l1) ξ′U,M [(u0 ⊗ h2)⊗m0l2]ω (h3 ⊗m1 ⊗ l3)

=

[
ω−1 (u−2h1 ⊗m−2 ⊗ l1)ω−1 (u−1 ⊗ h2 ⊗m−1l2)

u0 ⊗ h3 (m0l3)ω (h4 ⊗m1 ⊗ l4)

]
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(20)
=

[
ω−1 (u−2h1 ⊗m−3 ⊗ l1)ω−1 (u−1 ⊗ h2 ⊗m−2l2)ω (h3 ⊗m−1 ⊗ l3)

u0 ⊗ (h4m0)l4

]
(18)
= ω−1 (u−2 ⊗ h1 ⊗m−2)ω−1 (u−1 ⊗ h2m−1 ⊗ l1)u0 ⊗ (h3m0)l2

= ω−1 (u−1 ⊗ h1 ⊗m−1) (u0 ⊗ h2m0) l

= ξ′U,M ((u⊗ h)⊗m) l

2) ξ′U,M is left H-linear in HMH :

ξ′U,M [l ((u⊗ h)⊗m)]

= ω
(
l1 ⊗ (u⊗ h)−1 ⊗m−1

)
ξ′U,M [l2 (u⊗ h)0 ⊗m0]ω−1 (l3 ⊗ (u⊗ h)1 ⊗m1)

= ω (l1 ⊗ u−1h1 ⊗m−1) ξ′U,M [l2 (u0 ⊗ h2)⊗m0]ω−1 (l3 ⊗ h3 ⊗m1)

=

[
ω (l1 ⊗ u−2h1 ⊗m−1)ω(l2 ⊗ u−1 ⊗ h2)ω−1((l3 B u0)−1 ⊗ l4 ⊗ h3)

ξ′U,M [{(l3 B u0)0 ⊗ l5h4} ⊗m0]ω−1 (l6 ⊗ h5 ⊗m1)

]
=

[
ω (l1 ⊗ u−2h1 ⊗m−2)ω(l2 ⊗ u−1 ⊗ h2)ω−1((l3 B u0)−2 ⊗ l4 ⊗ h3)

ω−1 ((l3 B u0)−1 ⊗ l5h4 ⊗m−1) (l3 B u0)0 ⊗ (l6h5)m0ω
−1 (l7 ⊗ h6 ⊗m1)

]
(20)
=

[
ω (l1 ⊗ u−2h1 ⊗m−3)ω(l2 ⊗ u−1 ⊗ h2)ω−1((l3 B u0)−2 ⊗ l4 ⊗ h3)

ω−1 ((l3 B u0)−1 ⊗ l5h4 ⊗m−2)ω−1 (l6 ⊗ h5 ⊗m−1) (l3 B u0)0 ⊗ l7(h6m0)

]
(18)
=

[
ω (l1 ⊗ u−2h1 ⊗m−3)ω(l2 ⊗ u−1 ⊗ h2)ω−1 ((l3 B u0)−2l4 ⊗ h3 ⊗m−2)

ω−1 ((l3 B u0)−1 ⊗ l5 ⊗ h4m−1) (l3 B u0)0 ⊗ l6(h5m0)

]
(39)
=

[
ω (l1 ⊗ u−3h1 ⊗m−3)ω(l2 ⊗ u−2 ⊗ h2)ω−1 (l3u−1 ⊗ h3 ⊗m−2)

ω−1
(
(l4 B u0)−1 ⊗ l5 ⊗ h4m−1

)
(l4 B u0)0 ⊗ l6(h5m0)

]
(18)
=

[
ω−1 (u−2 ⊗ h1 ⊗m−3)ω (l1 ⊗ u−1 ⊗ h2m−2)

ω−1
(
(l2 B u0)−1 ⊗ l3 ⊗ h3m−1

)
(l2 B u0)0 ⊗ l4(h4m0)

]
= ω−1 (u−1 ⊗ h1 ⊗m−1) l [u0 ⊗ h2m0] = lξ′U,M ((u⊗ h)⊗m) .

�

Lemma 4.4.6. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. For all U, V ∈
HM, consider the map

αU,V : U ⊗ (V ⊗H)→ (U ⊗ V )⊗H
αU,V (u⊗ (v ⊗ k)) = ω (u−1 ⊗ v−1 ⊗ k1) (u0 ⊗ v0)⊗ k2.

1) The map αU,V : U⊗F (V )→ F (U ⊗ V ) is a natural isomorphism in HMH
H ,

where U⊗F (V ) has the structure described in Lemma 4.4.5 for M = F (V ) .
2) If U, V ∈ H

HYD, then αU,V : U ⊗ F (V ) → F (U ⊗ V ) is a natural isomor-
phism in H

HM
H
H , where U ⊗ F (V ) has the structure described in Lemma

4.4.5 for M = F (V ) .

Proof. Note that αU,V =
(
HaU,V,H

)−1
so that αU,V ∈ HM and it is invertible.

1) Let us check that αU,V : U ⊗ F (V ) → F (U ⊗ V ) is a morphism in HMH
H ,

where U ⊗ F (V ) has the structure described in Lemma 4.4.5 for M = F (V ) .
Let us check that αU,V is right H-colinear.

αU,V [(u⊗ (v ⊗ k))0]⊗ (u⊗ (v ⊗ k))1
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= αU,V [u⊗ (v ⊗ k)0]⊗ (v ⊗ k)1

= αU,V [u⊗ (v ⊗ k1)]⊗ k2

= ω (u−1 ⊗ v−1 ⊗ k1) (u0 ⊗ v0)⊗ k2 ⊗ k3

= ρrF (U⊗V ) [ω (u−1 ⊗ v−1 ⊗ k1) (u0 ⊗ v0)⊗ k2]

= ρrF (U⊗V )αU,V (u⊗ (v ⊗ k)) .

Moreover the 3-cocycle condition (18) yields that αU,V is right H-linear in HMH ,
i.e. that αU,V is a morphism in HMH

H .
2) Let us check that αU,V is left H-linear in HMH . On the one hand we have

αU,V [h (u⊗ (v ⊗ k))] =

[
ω
(
h1 ⊗ u−1 ⊗ (v ⊗ k)−2

)
ω−1

(
(h2 B u0)−1 ⊗ h3 ⊗ (v ⊗ k)−1

)
αU,V [(h2 B u0)0 ⊗ h4 (v ⊗ k)0]

]
=

[
ω (h1 ⊗ u−1 ⊗ v−2k1)

ω−1
(
(h2 B u0)−1 ⊗ h3 ⊗ v−1k2

)
αU,V [(h2 B u0)0 ⊗ h4 (v0 ⊗ k3)]

]

=

 ω (h1 ⊗ u−1 ⊗ v−3k1)
ω−1

(
(h2 B u0)−1 ⊗ h3 ⊗ v−2k2

)
ω(h4 ⊗ v−1 ⊗ k3)

ω−1((h5 B v0)−1 ⊗ h6 ⊗ k4)αU,V [(h2 B u0)0 ⊗ [(h5 B v0)0 ⊗ h7k5]]



=


ω (h1 ⊗ u−1 ⊗ v−3k1)

ω−1
(
(h2 B u0)−2 ⊗ h3 ⊗ v−2k2

)
ω(h4 ⊗ v−1 ⊗ k3)

ω−1((h5 B v0)−2 ⊗ h6 ⊗ k4)ω
(
(h2 B u0)−1 ⊗ (h5 B v0)−1 ⊗ h7k5

)
[(h2 B u0)0 ⊗ (h5 B v0)0]⊗ h8k6


On the other hand

hαU,V (u⊗ (v ⊗ k)) = ω (u−1 ⊗ v−1 ⊗ k1)h [(u0 ⊗ v0)⊗ k2]

=

[
ω (u−1 ⊗ v−1 ⊗ k1)ω(h1 ⊗ (u0 ⊗ v0)−1 ⊗ k2)

ω−1((h2 B (u0 ⊗ v0)0)−1 ⊗ h3 ⊗ k3)(h2 B (u0 ⊗ v0)0)0 ⊗ h4k4

]
=

[
ω (u−2 ⊗ v−2 ⊗ k1)ω(h1 ⊗ u−1v−1 ⊗ k2)

ω−1((h2 B (u0 ⊗ v0))−1 ⊗ h3 ⊗ k3)(h2 B (u0 ⊗ v0))0 ⊗ h4k4

]

(40)
=


ω (u−2 ⊗ v−2 ⊗ k1)ω(h1 ⊗ u−1v−1 ⊗ k2)

ω
(
(h2)1 ⊗ (u0)−1 ⊗ (v0)−2

)
ω−1

(
((h2)2 B (u0)0)−2 ⊗ (h2)3 ⊗ (v0)−1

)
ω
(
((h2)2 B (u0)0)−1 ⊗ ((h2)4 B (v0)0)−1 ⊗ (h2)5

)
ω−1([((h2)2 B (u0)0)0 ⊗ ((h2)4 B (v0)0)0]−1 ⊗ h3 ⊗ k3)[

((h2)2 B (u0)0)0 ⊗ ((h2)4 B (v0)0)0

]
0
⊗ h4k4



=


ω (u−3 ⊗ v−4 ⊗ k1)ω(h1 ⊗ u−2v−3 ⊗ k2)ω (h2 ⊗ u−1 ⊗ v−2)

ω−1
(
(h3 B u0)−2 ⊗ h4 ⊗ v−1

)
ω
(
(h3 B u0)−1 ⊗ (h5 B v0)−1 ⊗ h6

)
ω−1(((h3 B u0)0 ⊗ (h5 B v0)0)−1 ⊗ h7 ⊗ k3)

((h3 B u0)0 ⊗ (h5 B v0)0)0 ⊗ h8k4


(18)
=

 ω(h1 ⊗ u−2 ⊗ v−3k1)ω(h2u−1 ⊗ v−2 ⊗ k2)ω−1
(
(h3 B u0)−2 ⊗ h4 ⊗ v−1

)
ω
(
(h3 B u0)−1 ⊗ (h5 B v0)−1 ⊗ h6

)
ω−1(((h3 B u0)0 ⊗ (h5 B v0)0)−1 ⊗ h7 ⊗ k3)

((h3 B u0)0 ⊗ (h5 B v0)0)0 ⊗ h8k4
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=

 ω(h1 ⊗ u−2 ⊗ v−3k1)ω(h2u−1 ⊗ v−2 ⊗ k2)ω−1
(
(h3 B u0)−3 ⊗ h4 ⊗ v−1

)
ω
(
(h3 B u0)−2 ⊗ (h5 B v0)−2 ⊗ h6

)
ω−1((h3 B u0)−1 (h5 B v0)−1 ⊗ h7 ⊗ k3)

((h3 B u0)0 ⊗ (h5 B v0)0)⊗ h8k4


(18)
=

 ω(h1 ⊗ u−2 ⊗ v−3k1)ω(h2u−1 ⊗ v−2 ⊗ k2)ω−1
(
(h3 B u0)−3 ⊗ h4 ⊗ v−1

)
ω−1((h3 B u0)−2 ⊗ (h5 B v0)−3 h6 ⊗ k3)ω−1((h5 B v0)−2 ⊗ h7 ⊗ k4)
ω((h3 B u0)−1 ⊗ (h5 B v0)−1 ⊗ h8k5)((h3 B u0)0 ⊗ (h5 B v0)0)⊗ h9k6


(39)
=

 ω(h1 ⊗ u−2 ⊗ v−4k1)ω(h2u−1 ⊗ v−3 ⊗ k2)ω−1
(
(h3 B u0)−3 ⊗ h4 ⊗ v−2

)
ω−1((h3 B u0)−2 ⊗ h5v−1 ⊗ k3)ω−1((h6 B v0)−2 ⊗ h7 ⊗ k4)

ω((h3 B u0)−1 ⊗ (h6 B v0)−1 ⊗ h8k5)((h3 B u0)0 ⊗ (h6 B v0)0)⊗ h9k6


(18)
=

 ω(h1 ⊗ u−2 ⊗ v−5k1)ω(h2u−1 ⊗ v−4 ⊗ k2)ω−1((h3 B u0)−3 h4 ⊗ v−3 ⊗ k3)
ω−1((h3 B u0)−2 ⊗ h5 ⊗ v−2k4)ω(h6 ⊗ v−1 ⊗ k5)ω−1((h7 B v0)−2 ⊗ h8 ⊗ k6)
ω((h3 B u0)−1 ⊗ (h7 B v0)−1 ⊗ h9k7)((h3 B u0)0 ⊗ (h7 B v0)0)⊗ h10k8


(39)
=

 ω(h1 ⊗ u−3 ⊗ v−5k1)ω(h2u−2 ⊗ v−4 ⊗ k2)ω−1(h3u−1 ⊗ v−3 ⊗ k3)
ω−1((h4 B u0)−2 ⊗ h5 ⊗ v−2k4)ω(h6 ⊗ v−1 ⊗ k5)ω−1((h7 B v0)−2 ⊗ h8 ⊗ k6)
ω((h4 B u0)−1 ⊗ (h7 B v0)−1 ⊗ h9k7)((h4 B u0)0 ⊗ (h7 B v0)0)⊗ h10k8


=

 ω(h1 ⊗ u−1 ⊗ v−3k1)ω−1((h2 B u0)−2 ⊗ h3 ⊗ v−2k2)ω(h4 ⊗ v−1 ⊗ k3)
ω−1((h5 B v0)−2 ⊗ h6 ⊗ k4)ω((h2 B u0)−1 ⊗ (h5 B v0)−1 ⊗ h7k5)

((h2 B u0)0 ⊗ (h5 B v0)0)⊗ h8k6

 .
Summing up, we have proved that αU,V : U ⊗ F (V )→ F (U ⊗ V ) is an isomor-

phism in H
HM

H
H . Now, since αU,V =

(
HaU,V,H

)−1
, we have that αU,V is natural in

U, V for all morphisms in HM (in particular in H
HYD). �

Lemma 4.4.7. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The functor F :
(−) ⊗ H : HM → HMH

H of 4.2.1. induces a functor F : HHYD → H
HM

H
H . Explicitly

F (M) ∈ H
HM

H
H with the following structures, for all m ∈M,h, l ∈ H,

µlM⊗H [l ⊗ (m⊗ h)] := l · (m⊗ h)(42)

l · (m⊗ h) := ω(l1 ⊗m−1 ⊗ h1)(l2 B m0 ⊗ l3) · h2

= ω(l1 ⊗m−1 ⊗ h1)ω−1((l2 B m0)−1 ⊗ l3 ⊗ h2)(l2 B m0)0 ⊗ l4h3

µrM⊗H [(m⊗ h)⊗ l] := (m⊗ h) · l(43)

(m⊗ h) · l := ω−1(m−1 ⊗ h1 ⊗ l1)m0 ⊗ h2l2,

ρlM⊗H (m⊗ h) := m−1h1 ⊗ (m0 ⊗ h2),

ρrM⊗H (m⊗ h) := (m⊗ h1)⊗ h2,

Proof. Let M ∈ H
HYD. Consider H ⊗M as an object in HMH via

ρrH⊗M (h⊗m) : = (h1 ⊗m)⊗ h2,

ρlH⊗M (h⊗m) : = h1m−1 ⊗ (h2 ⊗m0) .

Since (H⊗M,ρlH⊗M) ∈ HM, by Lemma 4.4.6, the map αH,M : H ⊗ F (M)→ F (H ⊗M)
is a natural isomorphism in HMH

H , where H ⊗F (M) has the structure described in
Lemma 4.4.5 for ”M” = F (M), i.e. for all h ∈ H, x ∈M ⊗H

ρlH⊗F (M) (h⊗ x) = h1x−1 ⊗ (h2 ⊗ x0),
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ρrH⊗F (M) (h⊗ x) = (h⊗ x0)⊗ x1,

µrH⊗F (M)((h⊗ x)⊗ k) = ω−1(h1 ⊗ x−1 ⊗ k1)h2 ⊗ x0k2.

In particular, we have

ρlT (H⊗M)αH,M = ρlF (H⊗M)αH,M = (H ⊗ αH,M) ρlH⊗F (M)

where T : HMH → HMH
H , T (•M•) := •M• ⊗ •H•• is the functor of 4.2.1. Now,

consider on H ⊗ F (M) the following new structures

ρ̃lH⊗F (M) (h⊗ x) = h1x−1 ⊗ (h2 ⊗ x0),

ρ̃rH⊗F (M) (h⊗ x) = (h1 ⊗ x0)⊗ h2x1,

µ̃rH⊗F (M)((h⊗ x)⊗ k) = ω−1(h1 ⊗ x−1 ⊗ k1)h2 ⊗ x0k2ω(h3 ⊗ x1 ⊗ k3),

note that µ̃rH⊗F (M) =
(
H ⊗ µrF (M)

)
◦ HaHH,F (M),H . Moreover one gets

ρrT (H⊗M)αH,M = (αH,M ⊗H) ρ̃rH⊗F (M)

and

µrT (H⊗M) (αH,M ⊗H) ([h⊗ (m⊗ k)]⊗ l)
= ω (h1 ⊗m−2 ⊗ k1)ω−1 (h2m−1 ⊗ k2 ⊗ l1) (h3 ⊗m0)⊗ k3l2ω (h4 ⊗ k4 ⊗ l3)

= µrF (H⊗M) (αH,M ⊗H) [(h1 ⊗ (m⊗ k1)0)⊗ l1]ω(h2 ⊗ (m⊗ k1)1 ⊗ l2)

= αH,Mµ
r
H⊗F (M) [(h1 ⊗ (m⊗ k1)0)⊗ l1]ω(h2 ⊗ (m⊗ k1)1 ⊗ l2)

= ω−1(h1 ⊗ (m⊗ k)−1 ⊗ l1)αH,M [h2 ⊗ (m⊗ k1)0 · l2]ω(h3 ⊗ (m⊗ k1)1 ⊗ l3)

= αH,M µ̃
r
H⊗F (M) ([h⊗ (m⊗ k)]⊗ l)

We have so proved that αH,M can be regarded as a morphism in HMH
H from H ⊗

F (M) to T (H ⊗M), whereH⊗F (M) has structures ρ̃lH⊗F (M), ρ̃
r
H⊗F (M) and µ̃rH⊗F (M).

Consider the map cH,M : H ⊗ M → M ⊗ H, as in (41) i.e. cH,M (h⊗m) =
(h1 B m)⊗ h2.

Using (39) one can prove that cH,M : H ⊗M → F (M) is a morphism in HMH

(where H ⊗M is regarded as an object in HMH as at the beginning of this proof)
whence T (cH,M) is in HMH

H (note that we do not know that H is in H
HYD so that

we cannot say that cH,M is in H
HYD directly).

Now, consider the morphism µrF (M) : F (M) ⊗ H → F (M). Clearly µrF (M) can

be regarded as a morphism in HMH
H from TF (M) to F (M). Summing up we can

consider in HMH
H the composition

µlM⊗H :=

(
H ⊗ F (M)

αH,M−→ T (H ⊗M)
T(cH,M)
−→ TF (M)

µr
F (M)−→ F (M)

)
where H ⊗ F (M) has structures ρ̃lH⊗F (M), ρ̃

r
H⊗F (M) and µ̃rH⊗F (M). Thus µlM⊗H is a

morphism in HMH such that

(44) µrM⊗H ◦
(
µlM⊗H ⊗H

)
= µlM⊗H ◦

(
H ⊗ µrM⊗H

)
◦ HaHH,M⊗H,H .
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It remains to prove that
(
M ⊗H,µlM⊗H

)
is a left H-module in HMH . Let us prove

that

(45) µlM⊗H ◦
(
H ⊗ µlM⊗H

)
◦ HaHH,H,M⊗H = µlM⊗H ◦ [m⊗ (M ⊗H)] .

First note that, using (44) and (18) one checks that

µlM⊗H
(
H ⊗ µlM⊗H

)
HaHH,H,M⊗H [(h⊗ k)⊗ (m⊗ l)]

= ω(h1k1 ⊗m−1 ⊗ l1)
[
µlM⊗H

(
H ⊗ µlM⊗H

)
HaHH,H,M⊗H [(h2 ⊗ k2)⊗ (m0 ⊗ 1H)]

]
l2

and

µlM⊗H [m⊗ (M ⊗H)] [(h⊗ k)⊗ (m⊗ l)]
(44)
= ω(h1k1 ⊗m−1 ⊗ l1) [(h2k2) (m0 ⊗ 1H)] l2

= ω(h1k1 ⊗m−1 ⊗ l1)µlM⊗H [m⊗ (M ⊗H)] [(h2 ⊗ k2)⊗ (m0 ⊗ 1H)] l2

Thus we have to prove that (45) holds on elements of the form (h⊗ k)⊗ (m⊗ 1H).
We have

µlM⊗H
(
H ⊗ µlM⊗H

)
HaHH,H,M⊗H [(h⊗ k)⊗ (m⊗ 1H)]

=

[
ω−1(h1 ⊗ k1 ⊗m−1)ω(h2 ⊗ (k2 B m0)−1 ⊗ k3)

[h3 B (k2 B m0)0 ⊗ h4]k4

]
=

[
ω−1(h1 ⊗ k1 ⊗m−1)ω(h2 ⊗ (k2 B m0)−1 ⊗ k3)

ω−1((h3 B (k2 B m0)0)−1 ⊗ h4 ⊗ k4)(h3 B (k2 B m0)0)0 ⊗ h5k5

]
(37)
= h1k1 B m⊗ h2k2 = (hk) (m⊗ 1H) = µlM⊗H [m⊗ (M ⊗H)] [(h⊗ k)⊗ (m⊗ 1H)] .

Finally one checks that, for each morphism f : M → N in H
HYD, we have

F (f) := f ⊗H ∈ H
HM

H
H .

�

Lemma 4.4.8. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a prean-

tipode. The functor G : (−)coH : HMH
H → HM of 4.2.1 induces a functor G :

H
HM

H
H → H

HYD. Explicitly G (M) ∈ H
HYD with the following structures, for all

m ∈M coH , h ∈ H,

ρlMcoH (m) : = ρlM(m),

µlMcoH (h⊗m) : = h B m := τ(hm) = ω[h1m−1 ⊗ S(h3)1 ⊗ h4] (h2m0)S(h3)2.

Proof. Let M ∈ H
HM

H
H . We already know that G(M) ∈ HM. In order to prove

that G(M) is in H
HYD, we consider the canonical isomorphism εM : FG (M) → M

of Remark 4.2.2. A priori, this is a morphism in HMH
H . Since M is in H

HM
H
H , we can

endow FG (M) with a left H-module structure as follows

l · (m⊗ h) := ε−1
M (lεM(m⊗ h)) = ε−1

M (l(mh)) = τ [l1(m0h1)]⊗ l2(m1h2)

= τ [l1(mh1)]⊗ l2h2 = l1 B (mh1)⊗ l2h2

so that

(46) l · (m⊗ h) = l1 B (mh1)⊗ l2h2, for all m ∈M coH , h ∈ H.
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By associativity we have

(lk) · (m⊗ h) = ω−1 (l1 ⊗ k1 ⊗m−1h1) l2 (k2 (m0 ⊗ h2))ω (l3 ⊗ k3 ⊗ h3)

i.e., for h = 1H ,

(lk) · (m⊗ 1H) = ω−1 (l1 ⊗ k1 ⊗m−1) l2 (k2 (m0 ⊗ 1H)) .

The first term is

(lk) · (m⊗ 1H)
(46)
= (l1k1) B m⊗ l2k2.

The second term is

ω−1 (l1 ⊗ k1 ⊗m−1) l2 (k2 (m0 ⊗ 1H))
(46)
= ω−1 (l1 ⊗ k1 ⊗m−1) l2 (k2 B m0 ⊗ k3)

(46)
= ω−1 (l1 ⊗ k1 ⊗m−1) l2 B ((k2 B m0) k3)⊗ l3k4

= ω−1 (l1 ⊗ k1 ⊗m−1) τ [l2((k2 B m0) k3)]⊗ l3k4

= ω−1 (l1 ⊗ k1 ⊗m−1)ω
(
l2 ⊗ (k2 B m0)−1 ⊗ k3

)
τ [(l3 (k2 B m0)0) k4]⊗ l4k5

=

[
ω−1 (l1 ⊗ k1 ⊗m−1)ω

(
l2 ⊗ (k2 B m0)−1 ⊗ k3

)
ω−1 ((l3 B (k2 B m0)0)−1 ⊗ l4 ⊗ k4) (l3 B (k2 B m0)0)0 ⊗ l5k5

]
Hence, we obtain

(l1k1) B m⊗l2k2 =

[
ω−1 (l1 ⊗ k1 ⊗m−1)ω

(
l2 ⊗ (k2 B m0)−1 ⊗ k3

)
ω−1 ((l3 B (k2 B m0)0)−1 ⊗ l4 ⊗ k4) (l3 B (k2 B m0)0)0 ⊗ l5k5

]
.

By applying M ⊗ εH on both sides, we arrive at (37). Moreover, by (26), we have
1H B m = τ (m) = m and

(h1 B m)−1 h2 ⊗ (h1 B m)0 = τ (h1m)−1 h2 ⊗ τ (h1m)0 = τ ((hm)0)−1 (hm)1 ⊗ τ ((hm)0)0

(24)
= (hm)−1 ⊗ τ ((hm)0) = h1m−1 ⊗ τ (h2m0) = h1m−1 ⊗ (h2 B m0) .

We have so proved that G(M) ∈ H
HYD. Now it is easy to verify that for every

g : M → N ∈ H
HM

H
H , we have that G(g) : M coH → N coH ∈ H

HYD. �

Proposition 4.4.9. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a
preantipode. (F,G) is an equivalence between H

HM
H
H and H

HYD, i.e. the morphisms
εM and ηN of Remark 4.2.2 are in H

HM
H
H and in H

HYD respectively, for each M ∈
H
HM

H
H , N ∈ H

HYD.

Proof. We already know that εM ∈ HMH
H . Let us check that εM is left H-linear.

εMµMcoH⊗H(h⊗m⊗ k) = εM(h · (m⊗ k))
(4.4.7)

= εM [ω(h1 ⊗m−1 ⊗ k1)(h2 B m0 ⊗ h3)k2]

εM right lin
= ω(h1 ⊗m−1 ⊗ k1)εM [(h2 B m0 ⊗ h3)]k2 = ω(h1 ⊗m−1 ⊗ k1)[(h2 B m0)h3]k2

= ω(h1 ⊗m−1 ⊗ k1)[τ(h2m0)h3]k2 = ω(h1 ⊗m−1 ⊗ k1)[τ(h2m0)(h3m1)]k2

(25)
= ω(h1 ⊗m−1 ⊗ k1)(h2m0)k2

(20)
= h1(m0k1)ω(h2 ⊗m1 ⊗ k2) = h(mk) = µM(H ⊗ εM)(h⊗m⊗ k).

Now let us check the compatibility of η with B . For N ∈ H
HYD and n ∈ N,[

µl
(N⊗H)coH

◦ HaH,N,H ◦ (H ⊗ ηN)
]

(h⊗ n) =
[
µl

(N⊗H)coH
◦ HaH,N,H

]
(h⊗ (n⊗ 1H))
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= ω−1(h1 ⊗ n−1 ⊗ 1H)µl
(N⊗H)coH

(h2 ⊗ (n0 ⊗ 1H)) = µl
(N⊗H)coH

(h⊗ (n⊗ 1H)) = τ(h (n⊗ 1H))

(4.4.7)
= τ(h1 B n⊗ h2)

(43)
= τ((h1 B n⊗ 1H)h2) = τ(ηN(h1 B n)h2)

(26)
= ηN(h1 B n)εH (h2) = ηN(h B n).

So ηN ∈ H
HYD, for each N ∈ H

HYD. �

5. Monoidal equivalences

In this section we prove that the equivalence between the categories H
HM

H
H and

H
HYD becomes monoidal if we equip H

HM
H
H with the tensor product ⊗H (or �H) and

unit H. As a by-product we produce a monoidal equivalence between (HHM
H
H ,⊗H , H)

and (HHM
H
H ,�H , H).

Lemma 4.5.1. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The category
(HHM

H
H ,⊗H , H) is monoidal with respect to the following constraints:

aU,V,W ((u⊗H v)⊗H w) = ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗H (v0 ⊗H w0)ω(u1 ⊗ v1 ⊗ w1)

lU(h⊗H u) = hu

rU(u⊗H h) = uh

Proof. See e.g. [AMS1, Theorem 1.12]. �

Lemma 4.5.2. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. Let U ∈ HMH , V ∈
HMH

H . Then (U ⊗ V, ρl, ρr, µ) ∈ HMH
H with the following structures:

ρlU⊗V (u⊗ v) = u−1v−1 ⊗ (u0 ⊗ v0)

ρrU⊗V (u⊗ v) = (u0 ⊗ v0)⊗ u1v1

µrU⊗V ((u⊗ v)⊗ h) = ω−1(u−1 ⊗ v−1 ⊗ h1)u0 ⊗ v0h2ω(u1 ⊗ v1 ⊗ h3).

Proof. It is left to the reader. �

Definition 4.5.3. We recall that a lax monoidal functor

(F, φ0, φ2) : (M,⊗,1, a, l, r)→ (M′,⊗′,1′, a′, l′, r′)
between two monoidal categories consists of

• a functor F :M→M′,
• a natural transformation φ2(U, V ) : F (U) ⊗′ F (V ) → F (U ⊗ V ), with
U, V ∈M, and
• a natural transformation φ0 : 1′ → F (1) such that the diagram

(47)

(F (U)⊗′ F (V ))⊗′ F (W )

a′
F (U),F (V ),F (W )

��

φ2(U,V )⊗′F (W )
// F (U ⊗ V )⊗′ F (W )

φ2(U⊗V,W )
// F ((U ⊗ V )⊗W )

F (aU,V,W )

��
F (U)⊗′ (F (V )⊗′ F (W ))

F (U)⊗′φ2(V,W )
// F (U)⊗′ F (V ⊗W )

φ2(U,V⊗W )
// F (U ⊗ (V ⊗W ))

commutes and the following conditions are satisfied:

F (lU) ◦ φ2(1, U) ◦ (φ0 ⊗ F (U)) = l′F (U),(48)

F (rU) ◦ φ2(U,1) ◦ (F (U)⊗ φ0) = r′F (U).(49)
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The morphisms φ2(U, V ) and φ0 are called structure morphisms.
Colax monoidal functors are defined similarly but with the directions of the

structure morphisms reversed. A strong monoidal functor or simply a monoidal
functor is a lax monoidal functor with invertible structure morphisms.

Examples of lax and colax functors that are not monoidal are given in the nex
Lemma.

Lemma 4.5.4. Let (M,⊗,1) be a monoidal category which is abelian.

(1) Let A be an algebra in M. Assume that the tensor functors are additive
and right exact (see [AMS1, Theorem 1.12]). Then the forgetful functor

D : (AMA ,⊗A, A) −→ (M,⊗,1)

is a lax monoidal functor with structure morphisms

ζ2(M,N) : D(M)⊗D(N)→ D(M ⊗A N) and ζ0 : 1→ D(A),

where ζ2 is the canonical epimorphism and ζ0 is the unity of A.
(2) Let C be a coalgebra in M. Assume that the tensor functors are additive

and left exact. Then the forgetful functor

D : (CMC ,�C , C) −→ (M,⊗,1)

is a colax monoidal functor with structure morphisms

ζ2(M,N) : D(M�CN)→ D(M)⊗D(N) and ζ0 : D(C)→ 1,

where ζ2 is the canonical monomorphism and ζ0 is the counit of C.

Proof. 1) From [AMS1, 1.11], for all M,N, S ∈ AMA, we deduce

D
(
AaAM,N,S

)
◦ ζ2(M ⊗A N,S) ◦ [ζ2(M,N)⊗D (S)]

= ζ2(M,N ⊗A S) ◦ [D (M)⊗ ζ2(N,S)] ◦ aM,N,S.

Moreover, for all M ∈ AMA, we have

D
(
AlAM

)
◦ ζ2(A,M) ◦ [ζ0 ⊗D (M)] = AlAM ◦ ζ2(A,M) ◦ (ζ0 ⊗M)

= µlM ◦ (uA ⊗M) = lM .

Similarly D
(
ArAM

)
◦ ζ2(M,A) ◦ [D (M)⊗ ζ0] = rM . We have so proved that D is a

lax monoidal functor.
2) It follows by dual arguments. �

Lemma 4.5.5. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The functor F :
H
HYD → H

HM
H
H defines a monoidal functor F : (HHYD,⊗,k) → (HHM

H
H ,⊗H , H). For

U, V ∈ H
HYD, the structure morphisms are

ϕ2(U, V ) : F (U)⊗H F (V )→ F (U ⊗ V ) and ϕ0 : H → F (k)

which are defined, for every u ∈ U, v ∈ V, h, k ∈ H, by

ϕ2(U, V )[(u⊗h)⊗H(v⊗k)] :=

 ω−1 (u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)
ω−1((h3 B v0)−2 ⊗ h4 ⊗ k3)ω (u−1 ⊗ (h3 B v0)−1 ⊗ h5k4))

(u0 ⊗ (h3 B v0)0)⊗ h6k5
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and
ϕ0(h) := 1k ⊗ h.

Moreover

ϕ2(U, V )−1 ((u⊗ v)⊗ k) = ω−1 (u−1 ⊗ v−1 ⊗ k1) (u0 ⊗ 1H)⊗H (v0 ⊗ k2) .

Proof. Let us check that ϕ0 is a morphism in H
HM

H
H . Since ϕ0 = l−1

H : H →
k⊗H, i.e. the inverse of the left unit constraint in HMH , then ϕ0 is in HMH and it
is invertible. It is easy to check it is H-bilinear in HMH .

Let us consider now ϕ2(U, V ).
By Lemma 4.4.5, for all U, V ∈ H

HYD, the map ξU,F (V ) : F (U) ⊗H F (V ) →
U⊗F (V ) , is a natural isomorphism in H

HM
H
H . By Lemma 4.4.6, αU,V : U⊗F (V )→

F (U ⊗ V ) is a natural isomorphism in H
HM

H
H , where U ⊗ F (V ) has the structure

described in Lemma 4.4.5 for M = F (V ) .
Thus αU,V ξU,F (V ) : F (U) ⊗H F (V ) → F (U ⊗ V ) is a natural isomorphism in

H
HM

H
H . A direct computation shows that ϕ2(U, V ) = αU,V ξU,F (V ) and hence ϕ2(U, V )

is a well-defined isomorphism in H
HM

H
H . Moreover ϕ2(U, V )−1 = ξ−1

U,F (V )α
−1
U,V fulfills

(4.5.5).
In order to check the commutativity of the diagram (47) it suffices to prove the

following equality:

[ϕ−1
2 (U, V )⊗HF (W )]ϕ−1

2 (U⊗V,W )F (a−1
U,V,W ) = a−1

F (U),F (V ),F (W )[F (U)⊗Hϕ−1
2 (V,W )]ϕ−1

2 (U, V⊗W )

Since these maps are right H-linear, it suffices to check this equality on elements
of the form (u⊗ (v ⊗ w))⊗ 1H , where u ∈ U, v ∈ V,w ∈ W . This computation and
the ones of (48) and (49) are straightforward. �

We now compute explicitly the braiding induced on H
HM

H
H through the functor

F in Lemma 4.5.5 in case F comes out to be an equivalence i.e. when H has a
preantipode.

Lemma 4.5.6. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a prean-
tipode. Through the monoidal equivalence (F,G) we have that (HHM

H
H ,⊗H , H) be-

comes a pre-braided monoidal category, with braiding defined as follows:

cM,N(m⊗H n) = ω(m−2 ⊗ τ(n0)−1 ⊗ n1)(m−1 B τ(n0)0 ⊗H m0) · n2,

where M,N ∈ H
HM

H
H and m ∈M,n ∈ N.

Proof. First of all, for any U, V ∈ H
HYD, let us consider the following compo-

sition:

λU,V :=

(
F (U)⊗H F (V )

ϕ2(U,V )−→ F (U ⊗ V )
F (cU,V )
−→ F (V ⊗ U)

ϕ−1
2 (V,U)
−→ F (V )⊗H F (U)

)
.

This map is right H-linear, so, if we compute

λU,V [(u⊗ h)⊗H (v ⊗ 1H)]

=

[
ω−1 (u−4 ⊗ h1 ⊗ v−1)ω (u−3 ⊗ (h2 B v0)−1 ⊗ h3))

ω−1
(
(u−2 B (h2 B v0)0)−1 ⊗ u−1 ⊗ h4

)
((u−2 B (h2 B v0)0)0 ⊗ 1H)⊗H u0 ⊗ h5

]
(37)
= ((u−1h1) B v ⊗ 1H)⊗H (u0 ⊗ h2),



5. MONOIDAL EQUIVALENCES 85

we obtain

λU,V [(u⊗ h)⊗H (v ⊗ k)]

= λU,V [(u⊗ h)⊗H (v ⊗ 1H) · k]

= ω(u−1h1 ⊗ v−1 ⊗ k1)λU,V [[(u0 ⊗ h2)⊗H (v0 ⊗ 1H)] · k2]ω−1(h3 ⊗ 1H ⊗ k3)

= ω(u−1h1 ⊗ v−1 ⊗ k1)λU,V [[(u0 ⊗ h2)⊗H (v0 ⊗ 1H)] · k2]

= ω(u−1h1 ⊗ v−1 ⊗ k1)λU,V [(u0 ⊗ h2)⊗H (v0 ⊗ 1H)] · k2

= ω(u−2h1 ⊗ v−1 ⊗ k1)[(u−1h2) B v0 ⊗ 1H)⊗H (u0 ⊗ h3)] · k2.

Now, using the map λU,V , we construct the braiding of HHM
H
H in this way:

M⊗HN
ε−1
M ⊗Hε

−1
N−→ FG(M)⊗H FG(N)

λG(M),G(N)−→ FG(N)⊗H FG(M)
εN⊗HεM−→ N⊗HM.

Therefore

(εN ⊗H εM)λG(M),G(N)(ε
−1
M ⊗H ε

−1
N )(m⊗H n)

= (εN ⊗H εM)λG(M),G(N) {[τ(m0)⊗m1]⊗H [τ(n0)⊗ n1]}

=

[
ω(τ(m0)−2m1 ⊗ τ(n0)−1 ⊗ n1)

(εN ⊗H εM) {[(τ(m0)−1m2) B τ(n0)0 ⊗ 1H)⊗H (τ(m0)0 ⊗m3)] · n2}

]
(24)
=

[
ω(m−2 ⊗ τ(n0)−1 ⊗ n1)

(εN ⊗H εM)[(m−1 B τ(n0)0 ⊗ 1H)⊗H (τ(m0)⊗m1)] · n2

]
= ω(m−2 ⊗ τ(n0)−1 ⊗ n1)[(m−1 B τ(n0)0 ⊗H τ(m0)m1] · n2

(25)
= ω(m−2 ⊗ τ(n0)−1 ⊗ n1)[(m−1 B τ(n0)0 ⊗H m0] · n2.

�

Next aim is to prove that the equivalence between the categories HHM
H
H and H

HYD
becomes monoidal if we equip H

HM
H
H with the tensor product �H (see Remark 4.1.6)

and unit H.

Remark 4.5.7. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. Note that, since
H is an ordinary coalgebra, we have that

(
HMH ,�H , H, b, r, l

)
is a monoidal cate-

gory with constraints defined, for all L,M,N ∈ HMH , by

bL,M,N : (L�HM)�HN → L�H(M�HN) : (l�Hm)�Hn 7→ l�H(m�Hn),

rM : M�HH −→M : m�Hh 7→ mεH(h),

lM : H�HM −→M : h�Hm 7→ εH(h)m.

where, for sake of brevity we just wrotem�Hn in place of the more precise
∑

im
i�Hni.

We want to endow H
HM

H
H with a monoidal structure, following the dual version

of [HN] (see also [Sch3, Definition 3.2]). The definition of the structure is given
in such a way that the forgetful functor H

HM
H
H → HMH is a strict monoidal functor.

Hence the constraints are induced by the ones of HMH (i.e. bL,M,N ,lM and rM), and
the tensor product is given by M�HN with structures

ρlM�HN(m�Hn) = m−1 ⊗ (m0�Hn),

ρrM�HN(m�Hn) = (m�Hn0)⊗ n1,
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µlM�HN [h⊗ (m�Hn)] = h · (m�Hn) = h1m�Hh2n,

µrM�HN [(m�Hn)⊗ h] = (m�Hn) · h = mh1�Hnh2.

The unit of the category is H endowed with the following structures:

ρlH(h) = h1 ⊗ h2, ρrH(h) = h1 ⊗ h2,

h · l = hl, l · h = lh.

The following result is similar to 2) in Lemma 4.4.5.

Lemma 4.5.8. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. For all V ∈ H
HYD

and M ∈ H
HM

H
H , the map

βV,M : F (V )�HM −→ V ⊗M : (v ⊗ h)�Hm 7→ vε(h)⊗m

is a natural isomorphism in H
HM

H
H where V ⊗M has the structures as in Lemma

4.4.5. The inverse of βV,M is given by

β−1
V,M : V ⊗M −→ (V ⊗H)�HM : v ⊗m 7→ (v ⊗m−1)�Hm0.

Proof. The proof is straightforward and is based on the fact that (v ⊗ h)�Hm ∈
(V ⊗H)�HM implies

(50) (v ⊗ h)⊗m = (vε (h)⊗m−1)⊗m0.

�

Lemma 4.5.9. (cf. [Sch3, Proposition 3.6]) Let (H,m, u,∆, ε, ω) be a dual
quasi-bialgebra. The functor F : H

HYD → H
HM

H
H defines a monoidal functor F :

(HHYD,⊗,k)→ (HHM
H
H ,�H , H). For U, V ∈ H

HYD, the structure morphisms are

ψ2(U, V ) : F (U)�HF (V )→ F (U ⊗ V ) and ψ0 : H → F (k)

which are defined, for every u ∈ U, v ∈ V, h, k ∈ H, by

(51) ψ2(U, V )[(u⊗ h)⊗ (v ⊗ k)] := ω(u−1 ⊗ v−1 ⊗ k1)u0ε(h)⊗ v0 ⊗ k2

and

ψ0(h) := 1k ⊗ h.
Moreover

(52) ψ2(U, V )−1 ((u⊗ v)⊗ h) = ω−1(u−1 ⊗ v−2 ⊗ h1)(u0 ⊗ v−1h2)⊗ (v0 ⊗ h3).

Proof. Since ψ0 = ϕ0 as in Lemma 4.5.5, we already know that ψ0 is an
isomorphism in H

HM
H
H . Let us deal with ψ2(U, V ). By Lemma 4.4.6, the map αU,V :

U ⊗ F (V ) → F (U ⊗ V ) is a natural isomorphism in H
HM

H
H , where U ⊗ F (V )

has the structure described in Lemma 4.4.5 for M = F (V ) . By Lemma 4.5.8,
βU,F (V ) = β : F (U)�HF (V ) −→ U⊗F (V ) is a natural isomorphism in H

HM
H
H , where

U ⊗ F (V ) has the structure described in Lemma 4.4.5 for M = F (V ) . Hence it
makes sense to consider the composition ψ2(U, V ) := αU,V ◦ βU,V⊗H . Then ψ2(U, V )
fulfills (51). It is clear that ψ2(U, V ) : F (U)�HF (V ) → F (U ⊗ V ) is a natural
isomorphism in H

HM
H
H with inverse given by ψ2(U, V )−1 := β−1

U,V⊗H ◦ α
−1
U,V . Moreover

ψ2(U, V )−1 satisfies (52).
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In order to check the commutativity of the diagram (47) it suffices to prove the
following equality:

(ψ2(U, V )−1 ⊗ F (W ))ψ2(U ⊗ V,W )−1F (a−1
U,V,W )[(u⊗ (v ⊗ w))⊗ h]

= b−1
F (U),F (V ).F (W )[F (U)⊗ ψ2(V,W )−1]ψ2(U, V ⊗W )−1[(u⊗ (v ⊗ w))⊗ h].

By right H-linearity, it suffices to check the displayed equality for h = 1H . The
proof of this fact and of (48) and (49) is straightforward. �

If H has a preantipode, the functor F of Lemma 4.5.9 is an equivalence. As a
consequence, its adjoint G is monoidal too. For future reference we include here its
explicit monoidal structure.

Lemma 4.5.10. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a prean-
tipode. The right adjoint G : H

HM
H
H → H

HYD of the functor F , defines a monoidal
functor G : (HHM

H
H ,�H , H) → (HHYD,⊗,k). For M,N ∈ H

HM
H
H , the structure mor-

phisms are

ψG2 (M,N) : G(M)⊗G(N)→ G(M�HN) and ψG0 : k→ G(H)

which are defined, for every m ∈M,n ∈ N, k ∈ H, by

ψG2 (M,N) (m⊗ n) = mn−1�Hn0 and ψG0 (k) := k1H .

Moreover, for all m ∈M,n ∈ N,

ψG2 (M,N)−1 (m�Hn) = τ (m)⊗ τ (n) .

Proof. Apply [Sch6, Section 2] and [SR, Proposition 4.4.2] to the functor F .
Then G is monoidal with structure morphisms

ψG2 (M,N) : = G (εM�HεM) ◦G
(
ψ2(GM,GN)−1

)
◦ ηGM⊗GN ,

ψG0 : = G
(
ψ−1

0

)
◦ ηk

A direct computation shows that they are the desired maps.
The inverse of ψG2 (M,N) can be computed by

ψG2 (M,N)−1 := η−1
GM⊗GN ◦G (ψ2(GM,GN)) ◦G

(
ε−1
M �Hε

−1
M

)
�

Remark 4.5.11. Consider the composition

κ = κ(U, V ) := ψ2(U, V )−1◦ϕ2(U, V ) : (U⊗H)⊗H (V ⊗H) −→ (U⊗H)�H(V ⊗H).

We have

κ(U, V ) [(u⊗ h)⊗H (v ⊗ k)]

= ψ2(U, V )−1ϕ2(U, V ) [(u⊗ h)⊗H (v ⊗ k)]

=

 ω−1 (u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)
ω−1((h3 B v0)−2 ⊗ h4 ⊗ k3)ω (u−1 ⊗ (h3 B v0)−1 ⊗ h5k4))

ψ2(U, V )−1[(u0 ⊗ (h3 B v0)0)⊗ (h6k5)]
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=


ω−1 (u−2 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

ω−1((h3 B v0)−2 ⊗ h4 ⊗ k3)ω (u−1 ⊗ (h3 B v0)−1 ⊗ h5k4))
ω−1(u0−1 ⊗ (h3 B v0)0−2 ⊗ (h6k5)1)

(u00 ⊗ (h3 B v0)0−1(h6k5)2)�H((h3 B v0)00 ⊗ (h6k5)3)


=

 ω−1 (u−3 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)
ω−1((h3 B v0)−4 ⊗ h4 ⊗ k3)ω(u−2 ⊗ (h3 B v0)−3 ⊗ h5k4)

ω−1(u−1 ⊗ (h3 B v0)−2 ⊗ h6k5)(u0 ⊗ (h3 B v0)−1(h7k6))�H((h3 B v0)0 ⊗ h8k7)


=

 ω−1 (u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)
ω−1((h3 B v0)−2 ⊗ h4 ⊗ k3)

(u0 ⊗ (h3 B v0)−1(h5k4))�H((h3 B v0)0 ⊗ h6k5)


(20)
=

 ω−1 (u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)
(u0 ⊗ ((h3 B v0)−2h4)k3))

ω−1((h3 B v0)−1 ⊗ h5 ⊗ k4)�H((h3 B v0)0 ⊗ h6k5)


=

[
ω−1 (u−1 ⊗ h1 ⊗ v−2k1)ω(h2 ⊗ v−1 ⊗ k2)

(u0 ⊗ ((h3 B v0)−1h4)k3))�H((h3 B v0)0 ⊗ h5) · k4)

]
(39)
=

[
ω−1 (u−1 ⊗ h1 ⊗ v−3k1)ω(h2 ⊗ v−2 ⊗ k2)

(u0 ⊗ ((h3v−1)k3))�H((h4 B v0)⊗ h5) · k4)

]
(20)
=

 ω−1 (u−1 ⊗ h1 ⊗ v−3k1)
(u0 ⊗ (h2(v−2k2))

ω(h3 ⊗ v−1 ⊗ k3)�H((h4 B v0)⊗ h5) · k4)


(4.4.7)

= ω−1 (u−1 ⊗ h1 ⊗ v−2k1) (u0 ⊗ (h2(v−1k2))�H(h3 · (v0 ⊗ k3))

= (u0 ⊗ h1) · (v−1k1)�Hh3 · (v0 ⊗ k3)

= (u⊗ h)0 · (v ⊗ k)−1�H(u⊗ h)1 · (v ⊗ k)0.

so that

κ(U, V ) [(u⊗ h)⊗H (v ⊗ k)] = (u⊗ h)0 · (v ⊗ k)−1�H(u⊗ h)1 · (v ⊗ k)0.

Thus, for M,N ∈ H
HM

H
H ,, using that the counit ε is in H

HM
H
H , one gets[

(εM�HεN) ◦ κ(M coH , N coH) ◦
(
ε−1
M ⊗H ε

−1
N

)]
(m⊗H n) = m0n−1�Hm1n0.

We can also compute κ(U, V )−1 := ϕ2(U, V )−1 ◦ ψ2(U, V ). We have:

κ(U, V )−1((u⊗ h)�H(v ⊗ k)) = (uε(h)⊗ 1H)⊗H (v ⊗ k).

We are now able to provide a monoidal equivalence between (HHM
H
H ,⊗H , H) and

(HHM
H
H ,�H , H). This result is similar to [Sch2, Corollary 6.1].

Lemma 4.5.12. Let (H,m, u,∆, ε, ω, S) be a dual quasi-bialgebra with a prean-
tipode. The identity functor on H

HM
H
H defines a monoidal functor E : (HHM

H
H ,⊗H , H)→

(HHM
H
H ,�H , H). For M,N ∈ H

HM
H
H , the structure morphisms are

ϑ2(M,N) : E(M)�HE(V )→ E(M ⊗H N) and ϑ0 : H → E(H) = H

which are defined, for every m ∈M,n ∈ N, h ∈ H, by

ϑ2(M,N)(m�Hn) := τ(m)⊗H n and ϑ0(h) := h.
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Moreover

ϑ2(M,N)−1 (m⊗H n) = m0n−1�Hm1n0,(53)

ϑ2(FU, FV ) = ϕ2(U, V )−1 ◦ ψ2(U, V ).(54)

Proof. Using the map κ of Remark 4.5.11, for each M , N ∈ H
HM

H
H , we set

ϑ2(M,N) := (εM ⊗H εN) ◦ κ(M coH , N coH)−1 ◦
(
ε−1
M �Hε

−1
N

)
.

Clearly, by Remark 4.5.11, ϑ2(M,N)−1 fulfills (53). Moreover, using (25), one gets

ϑ2(M,N)(m�Hn) = τ(m)⊗H n.
It is straightforward to check that ϑ−1

2 makes commutative the diagram (47) and
that (48) and (49) hold. Let us check that (54) holds:

ϑ2(FU, FV ) = (εFU ⊗H εFV ) ◦ κ(GFU,GFV )−1 ◦
(
ε−1
FU�Hε

−1
FV

)
= (εFU ⊗H εFV ) ◦ ϕ2(GFU,GFV )−1 ◦ ψ2(GFU,GFV ) ◦

(
ε−1
FU�Hε

−1
FV

)
=

[
(εFU ⊗H εFV ) ◦ ϕ2(GFU,GFV )−1 ◦ F (ηU ⊗ ηV )
F
(
η−1
U ⊗ η

−1
V

)
◦ ψ2(GFU,GFV ) ◦

(
ε−1
FU�Hε

−1
FV

) ]
=

[
(εFU ⊗H εFV ) ◦ (FηU ⊗ FηV ) ◦ ϕ2(U, V )−1

ψ2(U, V ) ◦
(
Fη−1

U ⊗ Fη
−1
V

)
◦
(
ε−1
FU�Hε

−1
FV

) ] = ϕ2(U, V )−1 ◦ ψ2(U, V ).

�

The following result is similar to [Sch3, Proposition 3.11].

Corollary 4.5.13. Let (H,m, u,∆, ε, ω) be a dual quasi-bialgebra. The identity
functor on H

HM
H
H defines a monoidal functor Ξ : (HHM

H
H ,�H , H) → (HHM

H
H ,⊗H , H).

For M,N ∈ H
HM

H
H , the structure morphisms are

γ2(M,N) : Ξ(M)⊗H Ξ(V )→ Ξ(M�HN) and γ0 : H → Ξ(H)

which are defined by γ2(M,N) := ϑ−1
2 (M,N) and γ0 := ϑ−1

0 using Lemma 4.5.12.

Proof. It follows by [Sch6, Section 2] and [SR, Proposition 4.4.2]. �





CHAPTER 5

The main results and some applications

Let H be a Hopf algebra, let A be a bialgebra and let σ : H → A and π : A→ H
be morphisms of bialgebras such that πσ = IH . In this case A is called a bialgebra
with projection onto H and A ∈ H

HM
H
H through

ρr(a) = a1 ⊗ π(a2), ρl(a) = π(a1)⊗ a2,

µr(a⊗ h) = aσ(h), µl(h⊗ a) = σ(h)a.

Define now the map τ : A→ A : a 7−→ a1σS(a2). It can be proved that Imτ = AcoH =: R
and, when H is the coradical of A, that R is connected. Indeed it is well-known
that R becomes a connected bialgebra in the pre-braided monoidal category H

HYD
of Yetter-Drinfeld modules over H (cf. [Ra]).

Now, from the fact that (F,G) is an equivalence we know that εA : R⊗H → A
is an isomorphism. Conversely, it can be proved that, given a Hopf algebra H and
a braided bialgebra R in H

HYD, we can endow R ⊗ H with a bialgebra structure
and define two bialgebras morphisms σ and π such that πσ = IdH , see ([Ra]).
This bialgebra is called Radford-Majid Bosonization (or Radford biproduct) and
permits to classify different kinds of bialgebras as ”compositions” (crossed product)
of different objects in the same category.

The main aim of this chapter is to extend the results above to the setting of dual
quasi-bialgebras and to give some applications of it.

1. The bosonization of R by H

Theorem 5.1.1. Let (H,mH , uH ,∆H , εH , ωH) be a dual quasi-bialgebra.
Let (R, µR, ρR,∆R, εR,mR, uR) be a bialgebra in H

HYD and use the following no-
tations

h B r : = µR (h⊗ r) , r−1 ⊗ r0 := ρR (r) ,

r ·R s : = mR (r ⊗ s) , 1R := uR (1k) ,

r1 ⊗ r2 : = ∆R (r) .

Let us consider on B := F (R) = R⊗H the following structures:

mB[(r ⊗ h)⊗ (s⊗ k)] =

 ω−1
H (r−2 ⊗ h1 ⊗ s−2k1)ωH(h2 ⊗ s−1 ⊗ k2)

ω−1
H [(h3 B s0)−2 ⊗ h4 ⊗ k3]ωH(r−1 ⊗ (h3 B s0)−1 ⊗ h5k4)

r0 ·R (h3 B s0)0 ⊗ h6k5


uB(k) = k1R ⊗ 1H

∆B(r ⊗ h) = ω−1
H (r1

−1 ⊗ r2
−2 ⊗ h1)r1

0 ⊗ r2
−1h2 ⊗ r2

0 ⊗ h3

91
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εB(r ⊗ h) = εR(r)εH(h)

ωB((r ⊗ h)⊗ (s⊗ k)⊗ (t⊗ l)) = εR(r)εR(s)εR(t)ωH(h⊗ k ⊗ l).

Then (B,∆B, εB,mB, uB, ωB) is a dual quasi-bialgebra.

Proof. The following proof is the dual version of [BN, Lemma 3.1]. Recall
that, by Lemma 4.5.5, the functor F : HHYD → H

HM
H
H defines a monoidal functor

F : (HHYD,⊗,k)→ (HHM
H
H ,⊗H , H) where, for U, V ∈ H

HYD, the structure morphisms
are given by ϕ2(U, V ), ϕ0. Directly by the definition we have that (B,m′B, u

′
B) is an

algebra in (HHM
H
H ,⊗H , H) where

m′B := F (mR) ◦ ϕ2(R,R), u′B := F (uR) ◦ ϕ0.

Explicitly we have

m′B ((r ⊗ h)⊗H (s⊗ k)) =

 ω−1
H (r−2 ⊗ h1 ⊗ s−2k1)ωH(h2 ⊗ s−1 ⊗ k2)

ω−1
H ((h3 B s0)−2 ⊗ h4 ⊗ k3)ωH (r−1 ⊗ (h3 B s0)−1 ⊗ h5k4))

r0 ·R (h3 B s0)0 ⊗ h6k5


= mB[(r ⊗ h)⊗ (s⊗ k)],

u′B (h) = uR (1k)⊗ h = 1R ⊗ h.
Since m′B is associative in (HHM

H
H ,⊗H , H), we have that

m′B ◦ (m′B ⊗H B) = m′B ◦ (B ⊗H m′B) ◦ aB,B,B
where aB,B,B is the one defined in Lemma 4.5.1. Let π : B → H be defined by
π (r ⊗ h) := εR (r)h. Then

(55) ωH (π ⊗ π ⊗ π) = ωB.

One easily gets that

(56) π (x1)⊗ x2 ⊗ π (x3) = x−1 ⊗ x0 ⊗ x1, for all x ∈ B.

Let x, y, z ∈ B, then

m′B (m′B ⊗H B) ((x⊗H y)⊗H z) = mB (mB ⊗B) ((x⊗ y)⊗ z)

and

m′B (B ⊗H m′B) aB,B,B ((x⊗H y)⊗H z)

= ω−1
H (x−1 ⊗ y−1 ⊗ z−1)m′B (B ⊗H m′B) (x0 ⊗H (y0 ⊗H z0))ωH (x1 ⊗ y1 ⊗ z1)

= ω−1
H (x−1 ⊗ y−1 ⊗ z−1)mB (B ⊗mB) (x0 ⊗ (y0 ⊗ z0))ωH (x1 ⊗ y1 ⊗ z1)

(56)
= ω−1

H (π (x1)⊗ π (y1)⊗ π (z1))mB (B ⊗mB) (x2 ⊗ (y2 ⊗ z2))ωH (π (x3)⊗ π (y3)⊗ π (z3))
(55)
= ω−1

B (x1 ⊗ y1 ⊗ z1)mB (B ⊗mB) (x2 ⊗ (y2 ⊗ z2))ωB (x3 ⊗ y3 ⊗ z3)

=
[
ω−1
B ∗ [mB (B ⊗mB)] ∗ ωB

]
((x⊗ y)⊗ z)

so that mB (mB ⊗B) = ω−1
B ∗ [mB (B ⊗mB)] ∗ ωB.

Since m′B is unitary in (HHM
H
H ,⊗H , H), we have that m′B (u′B ⊗H B) = lB. From

this equality, we get mB (uB ⊗B) = lB. Similarly mB (B ⊗ uB) = rB. Let us recall
that, by Lemma 4.5.9, the functor F : HHYD → H

HM
H
H defines a monoidal functor
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F : (HHYD,⊗,k) → (HHM
H
H ,�H , H) , with structure morphisms ψ2(U, V ), ψ0, with

U, V ∈ H
HYD. We have that

(
B,∆B, εB

)
is a coalgebra in (HHM

H
H ,�H , H) where

∆B := ψ2(R,R)−1 ◦ F (∆R) , εB := ψ−1
0 ◦ F (εR) .

Explicitly we have

∆B (r ⊗ h) = ψ2(R,R)−1
((
r1 ⊗ r2

)
⊗ h
)

= ω−1(r1
−1 ⊗ r2

−2 ⊗ h1)(r1
0 ⊗ r2

−1h2)�H(r2
0 ⊗ h3)

= ∆B(r ⊗ h),

and

εB (r ⊗ h) = ψ−1
0 (εR (r)⊗ h) = εR (r)h.

From the fact that
(
B,∆B, εB

)
is a coalgebra in (HHM

H
H ,�H , H) one easily gets that

(B,∆B, εB) is an ordinary coalgebra.
It is straightforward to prove that π is multiplicative, comultiplicative, counitary

and unitary i.e.

(57) πmB = mH (π ⊗ π) , (π ⊗ π) ∆B = ∆Hπ, εB = εHπ, πuB = uH .

Using these equalities plus (55), one easily gets that the cocycle and unitary condi-
tions for ωB follow from the ones of ωH .

Now we want to prove that mB is a morphism of coalgebras. It is counitary as

εBmB
(57)
= εHπmB

(57)
= εHmH (π ⊗ π) = mk (εH ⊗ εH) (π ⊗ π)

(57)
= mk (εB ⊗ εB) .

Hence we just have to prove that

∆B[(r ⊗ h) ·B (s⊗ k)] = (r ⊗ h)1 ·B (s⊗ k)1 ⊗ (r ⊗ h)2 ·B (s⊗ k)2,

where x ·B y := mB (x⊗ y) and x1⊗ x2 := ∆B (x) , for all x, y ∈ B. Equivalently we
will prove that

∆BmB = (mB ⊗mB) ∆B⊗B.

Since H
HYD is a pre-braided monoidal category and (R,∆R, εR) is a coalgebra in

this category, then we can define two morphisms ∆R⊗R and εR⊗R in H
HYD such that

(R⊗R,∆R⊗R, εR⊗R) is a coalgebra in H
HYD too. We have:

∆R⊗R : = a−1
R,R,R⊗R ◦ (R⊗ aR,R,R) ◦ (R⊗ (cR,R ⊗R)) ◦ (R⊗ a−1

R,R,R) ◦ aR,R,R⊗R ◦ (∆R ⊗∆R),

εR⊗R : = εR ⊗ εR.

Explicitly we obtain

∆R⊗R(r ⊗ s) =


ω−1(r1

−2 ⊗ r2
−5 ⊗ s1

−2s
2
−4)ω(r2

−4 ⊗ s1
−1 ⊗ s2

−3)
ω−1[(r2

−3 B s1
0)−2 ⊗ r2

−2 ⊗ s2
−2)

ω(r1
−1 ⊗ (r2

−3 B s1
0)−1 ⊗ r2

−1s
2
−1)[

r1
0 ⊗ (r2

−3 B s1
0)0

]
⊗ (r2

0 ⊗ s2
0)

 ,(58)

εR⊗R(r ⊗ s) : = εR (r) εR (s) .

Consider the canonical maps

jM,N : M�HN →M ⊗N and χM,N : M ⊗N →M ⊗H N,
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for all M,N ∈ H
HM

H
H . Set

∆̂RmR : = jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F (∆RmR) ◦ ϕ2 (R,R) ◦ χF (R),F (R),

∆̂R : = jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F (∆R) ,

m̂R : = F (mR) ◦ ϕ2 (R,R) ◦ χF (R),F (R),

̂(mR ⊗mR) ∆R⊗R : = jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F ((mR ⊗mR) ∆R⊗R) ◦ ϕ2 (R,R) ◦ χF (R),F (R).

We have

∆̂RmR = jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F (∆R) ◦ F (mR) ◦ ϕ2 (R,R) ◦ χF (R),F (R)

= ∆̂R ◦ m̂R.

Moreover

∆̂R = jF (R),F (R) ◦∆B = ∆B,

m̂R = m′B ◦ χF (R),F (R) = mB,

so that, since (mR ⊗mR) ∆R⊗R = ∆RmR, we obtain

(59) ̂(mR ⊗mR) ∆R⊗R = ∆̂RmR = ∆BmB.

It remains to prove that

(60) ̂(mR ⊗mR) ∆R⊗R = (mB ⊗mB) ∆B⊗B.

First, one checks that (mB ⊗mB) ∆B⊗B is H-balanced. Hence there is a unique
map ζ : B ⊗H B → B ⊗B such that

ζ ◦ χF (R),F (R) = (mB ⊗mB) ∆B⊗B.

Our aim is to prove that (60) holds i.e. that

jF (R),F (R)◦ψ2 (R,R)−1◦F ((mR ⊗mR) ∆R⊗R)◦ϕ2 (R,R)◦χF (R),F (R) = ζ ◦χF (R),F (R).

Since χF (R),F (R) is an epimorphism, the latter displayed equality is equivalent to

(61) jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F ((mR ⊗mR) ∆R⊗R) = ζ ◦ ϕ2 (R,R)−1 .

Now

ζ (x⊗H y) = ζ ◦ χF (R),F (R) (x⊗ y) = (mB ⊗mB) ∆B⊗B (x⊗ y)

= x1 ·B y1 ⊗ x2 ·B y2.

One proves that ζ (x⊗H y) ∈ B�HB. Then there is a unique map ζ ′ : B ⊗H B →
B�HB such that jF (R),F (R) ◦ ζ ′ = ζ. Hence (61) is equivalent to

jF (R),F (R) ◦ ψ2 (R,R)−1 ◦ F ((mR ⊗mR) ∆R⊗R) = jF (R),F (R) ◦ ζ ′ ◦ ϕ2 (R,R)−1

i.e. to

(62) F ((mR ⊗mR) ∆R⊗R) = ψ2 (R,R) ◦ ζ ′ ◦ ϕ2 (R,R)−1 .

By construction

ζ ′ (x⊗H y) = x1 ·B y1�Hx2 ·B y2.
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It is straightforward to prove that ζ ′ is right H-linear. Thus it suffices to check
that (62) holds on elements of the form (r ⊗ s)⊗ 1H . Thus, for r, s ∈ R, h ∈ H[

ψ2 (R,R) ◦ ζ ′ ◦ ϕ2 (R,R)−1] ((r ⊗ s)⊗ 1H)

= ψ2 (R,R) [(r ⊗ 1H)1 ·B (s⊗ 1H)1�H (r ⊗ 1H)2 ·B (s⊗ 1H)2]

= ψ2 (R,R)
[(
r1 ⊗ r2

−1

)
·B
(
s1 ⊗ s2

−1

)
⊗
(
r2

0 ⊗ 1H
)
·B
(
s2

0 ⊗ 1H
)]

= ψ2 (R,R)
[(
r1 ⊗ r2

−1

)
·B
(
s1 ⊗ s2

−1

)
⊗
(
r2

0 ·R s2
0 ⊗ 1H

)]
=


ω−1
H ((r1)−2 ⊗

(
r2
−1

)
1
⊗ (s1)−2

(
s2
−1

)
1
)ωH(

(
r2
−1

)
2
⊗ (s1)−1 ⊗

(
s2
−1

)
2
)

ω−1
H [(

(
r2
−1

)
3
B (s1)0)−2 ⊗

(
r2
−1

)
4
⊗
(
s2
−1

)
3
]

ωH((r1)−1 ⊗ (
(
r2
−1

)
3
B (s1)0)−1 ⊗

(
r2
−1

)
5

(
s2
−1

)
4
)

ψ2 (R,R)
[
(r1)0 ·R (

(
r2
−1

)
3
B (s1)0)0 ⊗

(
r2
−1

)
6

(
s2
−1

)
5
⊗ (r2

0 ·R s2
0 ⊗ 1H)

]


=


ω−1
H ((r1)−2 ⊗

(
r2
−1

)
1
⊗ (s1)−2

(
s2
−1

)
1
)ωH(

(
r2
−1

)
2
⊗ (s1)−1 ⊗

(
s2
−1

)
2
)

ω−1
H [(

(
r2
−1

)
3
B (s1)0)−2 ⊗

(
r2
−1

)
4
⊗
(
s2
−1

)
3
]

ωH((r1)−1 ⊗ (
(
r2
−1

)
3
B (s1)0)−1 ⊗

(
r2
−1

)
5

(
s2
−1

)
4
)[

(r1)0 ·R (
(
r2
−1

)
3
B (s1)0)0 ⊗ (r2

0 ·R s2
0 ⊗ 1H)

]


=


ω−1
H (r1

−2 ⊗ r2
−5 ⊗ s1

−2s
2
−4)ωH(r2

−4 ⊗ s1
−1 ⊗ s2

−3)
ω−1
H [(r2

−3 B s1
0)−2 ⊗ r2

−2 ⊗ s2
−2]

ωH(r1
−1 ⊗ (r2

−3 B s1
0)−1 ⊗ r2

−1s
2
−1)[

r1
0 ·R (r2

−3 B s1
0)0 ⊗ (r2

0 ·R s2
0 ⊗ 1H)

]


= [(mR ⊗mR) ∆R⊗R (r ⊗ s)]⊗ 1H

= F ((mR ⊗mR) ∆R⊗R) ((r ⊗ s)⊗ 1H) .

Hence we have proved that (62) holds and hence (60) is fulfilled. Thus, from (59),
we can conclude that mB is a coalgebra morphism. Finally, it is easy to prove that
uB is a coalgebra map. �

Remark 5.1.2. Let us point out that the coalgebra structure of F (R) in the
previous result is a smash coproduct one, see [BN1, Definition 3.4].

Definition 5.1.3. With hypotheses and notations as in Theorem 5.1.1, the
bialgebra B will be called the bosonization of R by H and denoted by R#H.

2. Dual quasi-bialgebras with a projection

Definition 5.2.1. Let (H,m, u,∆, ε, ω) and (A,mA, uA,∆A, εA, ωA) be dual
quasi-bialgebras, and suppose there exist morphisms of dual quasi-bialgebras

σ : H → A and π : A→ H

such that πσ = IdH . Then (A,H, σ, π) is called a dual quasi-bialgebra with a projec-
tion onto H.

Proposition 5.2.2. Keep the hypotheses and notations of Theorem 5.1.1. Then
(R#H,H, σ, π) is a dual quasi-bialgebra with projection onto H where

σ : H → R#H, σ (h) := 1R#h, π : R#H → H, π (r#h) := εR (r)h.
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Proof. The proof that σ is a morphism of dual quasi-bialgebras is straightfor-
ward.

The map π is a morphism of dual quasi-bialgebras in view of (55) and (57).
Finally, we have πσ (h) = π (1R#h) = εR (1R)h = h. �

Next aim is to characterize dual quasi-bialgebras with a projection onto a dual
quasi-bialgebra with a preantipode as bosonizations.

Lemma 5.2.3. Let (A,mA, uA,∆A, εA, ωA) and (H,mH , uH ,∆H , εH , ωH) be dual
quasi-bialgebras such that (A,H, σ, π) is a dual quasi-bialgebra with a projection onto
H. Then A is an object in H

HM
H
H through

ρrA(a) = a1 ⊗ π(a2), ρlA(a) = π(a1)⊗ a2,

µrA(a⊗ h) = aσ(h), µlA (h⊗ a) = σ (h) a.

Proof. It is straightforward. �

Theorem 5.2.4. Let (A,mA, uA,∆A, εA, ωA) and (H,mH , uH ,∆H , εH , ωH) be
dual quasi-bialgebras such that (A,H, σ, π) is a dual quasi-bialgebra with projec-
tion onto H. Assume that H has a preantipode S. For all a, b ∈ A, we set
a1 ⊗ a2 := ∆A (a) and ab = mA (a⊗ b). Then, for all a ∈ A we have

τ(a) := ωA[a1 ⊗ σSπ(a3)1 ⊗ a4]a2σSπ(a3)2

and R := G (A) is a bialgebra ((R, µR, ρR) ,mR, uR,∆R, εR, ωR) in H
HYD where, for

all r, s ∈ R, h ∈ H, k ∈ k,we have

h B r := µR (h⊗ r) := τ [σ (h) r] , r−1 ⊗ r0 := ρR (r) := π (r1)⊗ r2,

mR (r ⊗ s) := rs, uR (k) := k1A,

r1 ⊗ r2 := ∆R (r) := τ (r1)⊗ τ (r2) , εR (r) := εA (r) .

Moreover there is a dual quasi-bialgebra isomorphism εA : R#H → A given by

εA (r ⊗ h) = rσ (h) , ε−1
A (a) = τ (a1)⊗ π (a2) .

Proof. We have

ρrA (a1)⊗ a2 = a1 ⊗ π(a2)⊗ a3 = a1 ⊗ ρlA(a2)

so that ∆A (a) ∈ A�HA for all a ∈ A. Let ∆A : A→ A�HA be the corestriction of
∆A to A�HA. Using that ωH = ωA (π ⊗ π ⊗ π) , we obtain

mA ◦
(
A⊗ µlA

)
◦ HaHA,H,A = mA ◦ (µrA ⊗ A) .

Denote by χX,Y : X ⊗ Y → X ⊗H Y the canonical projection, for all X, Y objects
in H

HM
H
H .

Since (A⊗H A,χA,A) is the coequalizer of
((
A⊗ µlA

)
HaHA,H,A, (µ

r
A ⊗ A)

)
, we get

that mA factors through to a map m′A : A ⊗H A → A such that m′A ◦ χA,A = mA.
Consider the canonical map ϑ2(M,N) : M�HN →M⊗HN of Lemma 4.5.12 defined
by ϑ2(M,N)(m�Hn) := τ(m)⊗H n and let mA := m′A ◦ ϑ2(A,A). Then

mA (a�Hb) = m′A (τ(a)⊗H b) = τ(a)b.

Note that, by Lemma 4.3.6, the map τ : A→ AcoH is defined, for all a ∈ A, by

τ(a) = ωH [a−1 ⊗ S(a1)1 ⊗ a2]a0S(a1)2
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= ωH [π (a1)⊗ Sπ(a3)1 ⊗ π (a4)]a2σ [Sπ(a3)2]

= ωH [π (a1)⊗ πσ [Sπ(a3)1]⊗ π (a4)]a2σ [Sπ(a3)2]

= ωA[a1 ⊗ σ [Sπ(a3)1]⊗ a4]a2σ [Sπ(a3)2]

= ωA[a1 ⊗ σSπ(a3)1 ⊗ a4]a2σSπ(a3)2.

It is straightforward to prove that
(
A,∆A, εA := π

)
is a coalgebra in (HHM

H
H ,�H , H).

One checks that (A,m′A, σ) is an algebra in (HHM
H
H ,⊗H , H).

Now, given the monoidal functor E : (HHM
H
H ,⊗H , H) → (HHM

H
H ,�H , H) of

Lemma 4.5.12 we have that
(
E (A) ,mE(A), uE(A)

)
is an algebra in (HHM

H
H ,�H , H)

where

mE(A) = E (m′A) ◦ ϑ2(A,A) and uE(A) = E (σ) ◦ ϑ0.

It is clear that
(
E (A) ,mE(A), uE(A)

)
= (A,mA, uA = σ). Thus (A,mA, uA) is an

algebra in (HHM
H
H ,�H , H).

Now, we apply [AMS2, Proposition 1.5] to the functor G : H
HM

H
H → H

HYD of
Lemma 4.5.10. Set R := G (A) = AcoH . Then R is both an algebra and a coalgebra
in H

HYD through

mR : = G (mA) ◦ ψG2 (A,A), uR := G (uA) ◦ ψG0 ,
∆R : = ψG2 (A,A)−1 ◦G

(
∆A

)
, εR :=

(
ψG0
)−1 ◦G (εA) .

Explicitly, for all r, s ∈ R, k ∈ k

mR (r ⊗ s) = τ (rs−1) s0
(26)
= rεH (s−1) s0 = rs,

uR (k) = G (uA)ψG0 (k) = uA (k1H) = kσ (1H) = k1A,

∆R (r) = τ (r1)⊗ τ (r2) ,

εR (r) =
(
ψG0
)−1

G (εA) (r) =
(
ψG0
)−1

π (r) = π (r) = εA (r1) π (r2) = εA (r0) r1 = εA (r) 1H .

We will use the following notations for all r, s ∈ R,

r ·R s := mR (r ⊗ s) , 1R := uR (1k) .

Now, by [AMS2, Corollary 1.7], we have that εA : FG (A) → A is an algebra and
a coalgebra isomorphism in (HHM

H
H ,�H , H). Let us write the algebra and coalgebra

structure of FG (A) = R⊗H. By construction, we have

mF (R) : = F (mR) ◦ ψ2(R,R) : F (R)�HF (R)→ F (R) ,

uF (R) : = F (uR) ◦ ψ0 : H → F (R) ,

∆F (R) : = ψ2(R,R)−1 ◦ F (∆R) : F (R)→ F (R)�HF (R) ,

εF (R) : = ψ−1
0 ◦ F (εR) : F (R)→ H.

Explicitly we have

mF (R) ((r ⊗ h)�H (s⊗ k)) = ω(r−1 ⊗ s−1 ⊗ k1)r0ε(h) ·R s0 ⊗ k2,

uF (R) (h) = F (uR)ψ0 (h) = 1R ⊗ h,
∆F (R) (r ⊗ h) = ω−1(r1

−1 ⊗ r2
−2 ⊗ h1)(r1

0 ⊗ r2
−1h2)�H(r2

0 ⊗ h3),

εF (R) (r ⊗ h) = ψ−1
0 F (εR) (r ⊗ h) = ψ−1

0 (εR (r)⊗ h) = εR (r)h.
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In view of 4.5.7, the forgetful functor (HHM
H
H ,�H , H)→(HMH ,�H , H) is a strict

monoidal functor. εA : (F (R) ,∆F (R), εF (R)) → (A,∆A, εA = π) being a coal-

gebra morphism in (HHM
H
H ,�H , H), we have that εA : (F (R) ,∆F (R), εF (R)) →

(A,∆A, εA = π) is a coalgebra morphism in (HMH ,�H , H). Apply Lemma 4.5.4
to the case (M,⊗,1) = (M,⊗,k) and C = H. Let jX,Y : X�HY → X ⊗ Y be
the canonical map. Then εA : (F (R) , jF (R),F (R) ◦ ∆F (R), εH ◦ εF (R)) → (A, jA,A ◦
∆A, εH ◦ εA) is a coalgebra morphism in (M,⊗,k). In other words it is an or-
dinary coalgebra morphism. Note that (A, jA,A ◦ ∆A, εH ◦ εA) = (A,∆A, εA). Set
(∆F (R), εF (R)) := (jF (R),F (R) ◦ ∆F (R), εH ◦ εF (R)). Let us compute explicitly these
maps. We have

∆F (R) (r ⊗ h) =
(
jF (R),F (R) ◦∆F (R)

)
(r ⊗ h) = ω−1(r1

−1 ⊗ r2
−2 ⊗ h1)(r1

0 ⊗ r2
−1h2)⊗ (r2

0 ⊗ h3),

εF (R) (r ⊗ h) =
(
εH ◦ εF (R)

)
(r ⊗ h) = εR (r) εH (h) .

Thus εA : (F (R) ,∆F (R), εF (R)) → (A,∆A, εA) is an ordinary coalgebra morphism.
εA : (F (R) ,mF (R), uF (R))→ (A,mA, uA = σ) being an algebra morphism in (HHM

H
H ,�H , H),

then, in view of Lemma 4.5.12,

εA : (F (R) ,Ξ
(
mF (R)

)
◦γ2(F (R) , F (R)),Ξ

(
uF (R)

)
◦γ0)→ (A,Ξ (mA)◦γ2(A,A),Ξ (uA)◦γ0)

is an algebra morphism in (HHM
H
H ,⊗H , H). Note that

Ξ (mA) ◦ γ2(A,A) = mA ◦ ϑ−1
2 (A,A) = m′A,

Ξ (uA) ◦ γ0 = uA = σ

so that

(A,Ξ (mA) ◦ γ2(A,A),Ξ (uA) ◦ γ0) = (A,m′A, σ) .

Set
(
m′F (R), u

′
F (R)

)
:=
(
Ξ
(
mF (R)

)
◦ γ2(F (R) , F (R)),Ξ

(
uF (R)

)
◦ γ0

)
. We have

m′F (R) ((r ⊗ h)⊗H (s⊗ k))

=
[
Ξ
(
mF (R)

)
◦ γ2(F (R) , F (R))

]
((r ⊗ h)⊗H (s⊗ k))

= mF (R)

[
(r ⊗ h)0 (s⊗ k)−1 ⊗H (r ⊗ h)1 (s⊗ k)0

]
= mF (R) [(r ⊗ h1) (s−1k1)⊗H h2 (s0 ⊗ k2)]

= ω−1 [r−1 ⊗ h1 ⊗ s−2k1]mF (R) [r0 ⊗ [h2 (s−1k2)]⊗H h3 (s0 ⊗ k3)]

=

[
ω−1 [r−1 ⊗ h1 ⊗ s−3k1]ω(h3 ⊗ s−1 ⊗ k3)ω−1((h4 B s0)−1 ⊗ h5 ⊗ k4)

mF (R) [r0 ⊗ [h2 (s−2k2)]⊗H [(h4 B s0)0 ⊗ h6k5]

]
=

[
ω−1 [r−2 ⊗ h1 ⊗ s−3k1]ω(h3 ⊗ s−1 ⊗ k3)ω−1((h4 B s0)−2 ⊗ h5 ⊗ k4)
ω(r−1 ⊗ (h4 B s0)−1 ⊗ h6k5)r0εH [h2 (s−2k2)] ·R (h4 B s0)0 ⊗ h7k6

]

=

 ω−1 [r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)
ω−1((h3 B s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 B s0)−1 ⊗ h5k4)

r0 ·R (h3 B s0)0 ⊗ h6k5


so that

m′F (R) ((r ⊗ h)⊗H (s⊗ k))
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=

 ω−1 [r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)
ω−1((h3 B s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 B s0)−1 ⊗ h5k4)

r0 ·R (h3 B s0)0 ⊗ h6k5

 .
Moreover

u′F (R) (h) =
[
Ξ
(
uF (R)

)
◦ γ0

]
(h) = uF (R) (h) = 1R ⊗ h.

Apply Lemma 4.5.4 to the case (M,⊗,1) = (HMH ,⊗, k) and A = H. Then

εA : (F (R) ,m′F (R) ◦ χF (R),F (R), u
′
F (R) ◦ uH)→ (A,m′A ◦ χA,A, σ ◦ uH)

is an algebra homomorphism in (HMH ,⊗,k). Note that (A,m′A ◦ χA,A, σ ◦ uH) =
(A,mA, uA). Moreover, if we set (mF (R), uF (R)) := (m′F (R) ◦ χF (R),F (R), u

′
F (R) ◦ uH),

we get

mF (R) ((r ⊗ h)⊗ (s⊗ k))

=

 ω−1 [r−2 ⊗ h1 ⊗ s−2k1]ω(h2 ⊗ s−1 ⊗ k2)
ω−1((h3 B s0)−2 ⊗ h4 ⊗ k3)ω(r−1 ⊗ (h3 B s0)−1 ⊗ h5k4)

r0 ·R (h3 B s0)0 ⊗ h6k5

 .
Moreover

uF (R) (k) = 1R ⊗ k.
Thus εA : (F (R) ,mF (R), uF (R))→ (A,mA, uA) is an algebra isomorphism in (HMH ,⊗,k)
and εA : (F (R) ,∆F (R), εF (R))→ (A,∆A, εA) is an ordinary coalgebra isomorphism.
Thus

mA ◦ (εA ⊗ εA) = εA ◦mF (R), εA ◦ uF (R) = uA,

(εA ⊗ εA) ◦∆F (R) = ∆A ◦ εA, εA ◦ εA = εF (R),

so thatmF (R), uF (R),∆F (R), εF (R) are exactly the morphisms induced bymA, uA,∆A, εA
via the vector space isomorphism εA : F (R)→ A. Let ωF (R) be the map induced by
ωA via the vector space isomorphism εA i.e.

ωF (R) := ωA ◦ (εA ⊗ εA ⊗ εA) : F (R)⊗ F (R)⊗ F (R)→ k.

Then εA :
(
F (R) ,∆F (R), εF (R),mF (R), uF (R), ωF (R)

)
→ (A,mA, uA,∆A, εA, ωA) is

clearly an isomorphism of dual quasi-bialgebras. Since, for all r ∈ R, we have
π (r) = εA (r1) π (r2) = εA (r) 1H , then, for r, s, t ∈ R, h, k, l ∈ H, we get

ωF (R) [(r ⊗ h)⊗ (s⊗ k)⊗ (t⊗ l)] = ωA (rσ (h)⊗ sσ (k)⊗ tσ (l))

= ωH [π (rσ (h))⊗ π (sσ (k))⊗ π (tσ (l))] = ωH [π (r)h⊗ π (s) k ⊗ π (t) l]

= ωH [εA (r)h⊗ εA (s) k ⊗ εA (t) l] = εA (r) εA (t) εA (s)ωH (h⊗ k ⊗ l)

so that

ωF (R) [(r ⊗ h)⊗ (s⊗ k)⊗ (t⊗ l)] = εA (r) εA (t) εA (s)ωH (h⊗ k ⊗ l) .

Note that
(
F (R) ,∆F (R), εF (R),mF (R), uF (R), ωF (R)

)
= R#H once proved that (R,mR, uR,∆R, εR)

is a bialgebra in the monoidal category
(
H
HYD,⊗,k

)
. It remains to prove that mR

and uR are coalgebra maps. Since H
HYD is a pre-braided monoidal category and

(R,∆R, εR) is a coalgebra in this category, then we can define two morphisms ∆R⊗R
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and εR⊗R in H
HYD such that (R ⊗ R,∆R⊗R, εR⊗R) is a coalgebra in H

HYD too. We
have

∆R⊗R : = a−1
R,R,R⊗R ◦ (R⊗ aR,R,R) ◦ (R⊗ cR,R ⊗R) ◦ (R⊗ a−1

R,R,R) ◦ aR,R,R⊗R ◦ (∆R ⊗∆R),

εR⊗R : = εR ⊗ εR.

Explicitly ∆R⊗R satisfies (58). In order to prove that mR is a morphism of coalgebras
in H

HYD, we have to check the following equality

(mR ⊗mR)∆R⊗R = ∆RmR.

Since we already obtained that B := F (R) is a dual quasi-bialgebra, we know that

∆B[(r ⊗ 1H) ·B (s⊗ 1H)] = (r ⊗ 1H)1 ·B (s⊗ 1H)1 ⊗ (r ⊗ 1H)2 ·B (s⊗ 1H)2.

By applying R⊗ εH ⊗R⊗ εH on both sides we get:

(r ·R s)1 ⊗ (r ·R s)2

=


ω−1((r1)−2 ⊗ (r2

−1)1 ⊗ (s1)−2

(
s2
−1

)
1
)

ω(
(
r2
−1

)
2
⊗ (s1)−1 ⊗

(
s2
−1

)
2
)

ω−1[(
(
r2
−1

)
3
B (s1)0)−2 ⊗

(
r2
−1

)
4
⊗
(
s2
−1

)
3
]

ω((r1)−1 ⊗ (
(
r2
−1

)
3
B (s1)0)−1 ⊗

(
r2
−1

)
5

(
s2
−1

)
4
)

(r1)0 ·R (
(
r2
−1

)
3
B (s1)0)0

⊗ (r2
0 ·R s2

0)

=


ω−1(r1

−2 ⊗ r2
−5 ⊗ s1

−2s
2
−4)ω(r2

−4 ⊗ s1
−1 ⊗ s2

−3)
ω−1[(r2

−3 B s1
0)−2 ⊗ r2

−2 ⊗ s2
−2]

ω(r1
−1 ⊗ (r2

−3 B s1
0)−1 ⊗ r2

−1s
2
−1)

r1
0 ·R (r2

−3 B s1
0)0 ⊗ (r2

0 ·R s2
0)


= (mR ⊗mR)∆R⊗R(r ⊗ s).

The compatibility of mR with εR and the fact that uR is a coalgebra morphism can
be easily proved. �

3. Applications

Here we collect some applications of the results of the results just exposed.

3.1. The associated graded coalgebra.

Example 6. Let (A,mA, uA,∆A, εA, ωA) be a dual quasi-bialgebra with the dual
Chevalley property i.e. such that the coradical H of A is a dual quasi-subbialgebra of
A. Since A is an ordinary coalgebra, we can consider the associated graded coalgebra

grA :=
⊕
n∈N

grnA where grnA :=
An
An−1

.

Here A−1 := {0} and, for all n ≥ 0, An is the nth term of the coradical filtration of
A. The coalgebra structure of grA is given as follows. The nth graded component of
the counit is the map εngrA : An/An−1 → k defined by setting

εngrA(x+ An−1) = δn,0εA(x).
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The nth graded component of comultiplication is the map

∆n
grA : gra+bA→

⊕
a+b=n,a,b≥0

graA⊗ grbA

defined as the diagonal map of the family (∆a,b
grA)a+b=n,a,b≥0 where

∆a,b
grA : gra+bA→ graA⊗ grbA,∆a,b

grA(x+ Aa+b−1) = (x1 + Aa−1)⊗ (x2 + Ab−1).

Proposition 5.3.1. Let A be a dual quasi-bialgebra with the dual Chevalley
property. Then

(grA,mgrA, ugrA,∆grA, εgrA, ωgrA)

is a dual quasi-bialgebra where the graded components of the structure maps are
given by the maps

ma,b
grA : graA⊗ grbA→ gra+bA, ungrA : k→ grnA,

∆a,b
grA : gra+bA→ graA⊗ grbA, εngrA : grnA→ k,

ωa,b,cgrA : graA⊗ grbA⊗ grcA→ k,
defined by

ma,b
grA [(x+ Aa−1)⊗ (y + Ab−1)] := xy + Aa+b−1, ungrA (k) := δn,01A + A−1 = δn,01A,

∆a,b
grA(x+ Aa+b−1) := (x1 + Aa−1)⊗ (x2 + Ab−1), εngrA(x+ An−1) := δn,0εA(x),

ωa,b,cgrA [(x+ Aa−1)⊗ (y + Ab−1)⊗ (z + Ac−1)] := δa,0δb,0δc,0ωA(x⊗ y ⊗ z).

Here δi,j denotes the Kronecker delta.

Proof. The proof of the facts that mgrA and ugrA are well-defined, are coalgebra
maps and that mgrA is unitary is analogous to the classical case, and depend on
the fact that the coradical filtration is an algebra filtration. This can be proved
mimicking [Mo, Lemma 5.2.8]. The cocycle condition and the quasi-associativity of
mgrA are straightforward.

�

Proposition 5.3.2. Let A be a dual quasi-bialgebra with the dual Chevalley prop-
erty and coradical H. Then (grA,H, σ, π) is a dual quasi-bialgebra with projection
onto H, where

σ : H −→ grA : h 7−→ h+ A−1,

π : grA −→ H : a+ An−1 7−→ δn,0a, for all a ∈ An.

Proof. It is straightforward. �

Corollary 5.3.3. Let A be a dual quasi-bialgebra with the dual Chevalley prop-
erty and coradical H. Assume that H has a preantipode. Then there is a bialgebra
R in H

HYD such that grA is isomorphic to R#H a dual quasi-bialgebra.

Proof. It follows by Proposition 5.3.2 and Theorem 5.2.4. �

Definition 5.3.4. Following [AS, Definition, page 659], the bialgebra R in H
HYD

of Corollary 5.3.3, is called the diagram of A.
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3.2. On pointed dual quasi-bialgebras. We conclude this chapter consider-
ing the pointed case.

Lemma 5.3.5. Let G be a monoid and consider the monoid algebra H := kG.
Suppose there is a map ω ∈ (H⊗H⊗H)∗ such that (H,ω) is a dual quasi-bialgebra.
Then (H,ω) has a preantipode S if and only if G is a group. In this case

S(g) = [ω(g ⊗ g−1 ⊗ g)]−1g−1.

Proof. Suppose that S is a preantipode for (H,ω). Since H is a cocommutative
ordinary bialgebra, by Theorem 4.3.10, we have that kG is an ordinary Hopf algebra,
where the antipode is defined, for all g ∈ G, by

s (g) := S (g)1 ω [g ⊗ S (g)2 ⊗ g] .

Moreover one has S = εS ∗ s. Now, since kG is a Hopf algebra, one has that the set
of grouplike elements in kG, namely G itself, form a group, where g−1 := s(g), for
all g ∈ G.

Now, since s is an anti-coalgebra map, we have

S (g)1 ⊗ S (g)2 = εS(g)s (g)1 ⊗ s (g)2 = εS(g)s (g)⊗ s (g) = S(g)⊗ g−1

so that s (g) = S (g)1 ω [g ⊗ S (g)2 ⊗ g] = S(g)ω (g ⊗ g−1 ⊗ g) . Hence S(g) = [ω(g⊗
g−1 ⊗ g)]−1g−1.

The other implication is trivial (see [AP, Example 3.14]). �

The motivation for the previous result is Corollary 5.3.8 below.

Proposition 5.3.6. Let (A,m, u,∆, ε, ω) be a dual quasi-bialgebra. Then the
set of grouplike elements G (A) of A is a monoid and the monoid algebra kG (A) is
a dual quasi-subbialgebra of A.

Proof. It is straightforward. �

Corollary 5.3.7. Let (A,m, u,∆, ε, ω) be a pointed dual quasi-bialgebra. Then
A0 = kG (A) is a dual quasi-subbialgebra of A.

Proof. By Remark 4.3.13, A0 = kG (A) . In view of Proposition 5.3.6, we
conclude. �

Corollary 5.3.8. Let (A,m, u,∆, ε, ω, s, α, β) be a pointed dual quasi-Hopf al-
gebra. Then G (A) is a group and A0 = kG (A) is a dual quasi-Hopf algebra with
respect to the induced structures.

Proof. SetG := G (A). By Corollary 5.3.7, A0 = kG is a dual quasi-subbialgebra
of A. It remains to check that the antipode on A induces an antipode on A0. We
have

∆s(g) = s(g2)⊗ s(g1) = s(g)⊗ s(g),

εs(g) = ε(g) = 1,

i.e. s(g) ∈ G, for any g ∈ G. Let s0, α0, β0, ω0,m0, u0,∆0, ε0 be the induced
maps from s, α, β, ω,m, u,∆, ε, respectively. It is then clear from the definition that
A0, with respect to these structures, is a dual quasi-Hopf algebra. Since any dual
quasi-Hopf algebra has a preantipode, by Lemma 5.3.5, G is a group. �
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Pointed dual quasi-Hopf algebras have been investigated also in [Hu, page 2]
under the name of pointed Majid algebras. In view of Corollary 5.3.8, which seems
to be implicitly assumed in [Hu, page 2], we can apply Corollary 5.3.3 to obtain the
following result.

Theorem 5.3.9. Let A be a pointed dual quasi-Hopf algebra. Then grA is iso-
morphic to R#kG (A) as dual quasi-bialgebra where R is the diagram of A.





Appendix B

Definition 5.3.10. [BCP, Section 1.5] Let (M,⊗,1, a, l, r) be a monoidal cat-
egory. The weak right center Wr (M) of M is a category defined as follows. The
objects in Wr (M) are all the objects V of M such that there exists an associated
class of morphisms c−,V (cX,V : X ⊗ V → V ⊗ X, for any object X in M), which
are natural in the first entry and satisfying, for all X, Y ∈M:

(63) a−1
V,X,Y ◦ cX⊗Y,V ◦ a

−1
X,Y,V = (cX,V ⊗ Y ) ◦ a−1

X,V,Y ◦ (X ⊗ cY,V )

and such that rV ◦ c1,V = lV . A morphism f : (V, c−,V )→ (W, c−,W ) is a morphism
f : V → W in M such that, for each X ∈M we have

(f ⊗X) ◦ cX,V = cX,W ◦ (X ⊗ f) .

Wr (M) becomes a monoidal category with unit (1, l−1 ◦ r) and tensor product

(V, c−,V )⊗ (W, c−,W ) = (V ⊗W, c−,V⊗W )

where, for all X ∈ M, the morphism cX,V⊗W : X ⊗ (V ⊗W ) → (V ⊗W ) ⊗ X is
defined by

cX,V⊗W := a−1
V,W,X ◦ (V ⊗ cX,W ) ◦ aV,X,W ◦ (cX,V ⊗W ) ◦ a−1

X,V,W .

The constraints are the same ofM viewed as morphisms in Wr (M). Moreover the
monoidal category Wr (M) is pre-braided, with braiding

c(V,c−,V ),(W,c−,W ) : (V, c−,V )⊗ (W, c−,W )→ (W, c−,W )⊗ (V, c−,V )

given by cV,W .

Theorem 5.3.11. Let H be a dual quasi-bialgebra. The categoriesWr

(
HM

)
and

H
HYD are isomorphic, where HM is regarded as a monoidal category as in Chapter
4.

Proof. The proof is analogue to [Ba, Theorem 3.5].
�

Remark 5.3.12. Let us point out that, by [Ba, Theorem 3.3], given a dual quasi
Hopf algebra H with a bijective antipode, the weak right center Wr(

HM) coincides
with the common center of HM.

Example : the group algebra
We now investigate the category of Yetter-Drinfeld modules over a particular

dual quasi-Hopf algebra.

105
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Let G be a group. Let θ : G×G×G→ k∗ := k\ {0} be a normalized 3-cocycle
on the group G in the sense of [Maj1, Example 2.3.2, page 54] i.e. a map such that,
for all g, h, k, l ∈ H

θ (g, 1G, h) = 1

θ (h, k, l) θ (g, hk, l) θ (g, h, k) = θ (g, h, kl) θ (gh, k, l) .

Then θ can be extended by linearity to a reassociator ω : kG⊗kG⊗kG→ k making
kG a dual quasi-bialgebra with usual underlying algebra and coalgebra structures.
This dual quasi-bialgebra is denoted by kθG. Note that in particular kθG is an
ordinary bialgebra but with nontrivial reassociator. In particular it is associative as
an algebra. Let us investigate the category kθG

kθGYD of Yetter-Drinfeld module over
kθG.

Definition 5.3.13. Let θ : G × G × G → k∗ be a normalized 3-cocycle on a
group G. The category of cocycle crossed left G-modules (G, θ)-Mod is defined as
follows. An object in (G, θ)-Mod is a pair (V,I) , where V = ⊕g∈GVg is a G-graded
vector space endowed with a map I: G× V → V such that, for all g, h, l ∈ H and
v ∈ V, we have

(64) h I Vg ∈ Vhgh−1 ,

(65) h I (l I v) =
θ (hlgl−1h−1, h, l) θ (h, l, g)

θ (h, lgl−1, l)
(hl) I v,

(66) 1H I v = v.

A morphism f : (V,I) → (V ′,I′) in (G, θ)-Mod is a morphism f : V → V ′ of G-
graded vector spaces such that, for all h ∈ H, v ∈ V, we have f(h I v) = h I′ f(v).

The following result is inspired by [Maj2, Proposition 3.2].

Proposition 5.3.14. Let θ : G × G × G → k∗ be a normalized 3-cocycle on a
group G. Then the category kθG

kθGYD is isomorphic to (G, θ)-Mod.

Proof. Set H := kθG and let (V, ρV ,B) ∈ H
HYD. Then (V, ρV ) is an object in

kGM. Hence, see e.g. [Mo, Example 1.6.7], we have that V = ⊕g∈GVg where Vg =
{v ∈ V | ρV (v) = g ⊗ v}. Define the map I: G×V → V, by setting g I v := g B v.
It is easy to prove that the assignments

(V, ρV ,B) 7→ (V = ⊕g∈GVg,I) f 7→ f

define a functor L : H
HYD → (G, θ)-Mod. Conversely, let (V = ⊕g∈GVg,I) be an

object in (G, θ)-Mod. Then I can be extended by linearity to a map B: kG⊗V → V.
Define ρV : V → kG ⊗ V, by setting ρV (v) = g ⊗ v for all v ∈ Vg. Therefore, the
assignments

(V = ⊕g∈GVg,I) 7→ (V, ρV ,B) f 7→ f

define a functor R : (G, θ) -Mod→ H
HYD. It is clear that LR = Id and RL = Id.

�
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Remark 5.3.15. As a consequence of the previous result, the pre-braided monoidal
structure on kθG

kθGYD induces a pre-braided monoidal structure on (G, θ)-Mod as fol-
lows. The unit is k regarded as a G-graded vector space whose homogeneous compo-
nents are all zero excepted the one corresponding to 1G. Moreover h I k = εH (h) k
for all h ∈ H, k ∈ k. The tensor product is defined by

(V,I)⊗ (W,I) = (V ⊗W,I)

where
(V ⊗W )g = ⊕h∈H(Vh ⊗Wh−1g)

and, for all v ∈ Vg, w ∈ Wl, we have

h I (v ⊗ w) =
θ (hgh−1, hlh−1, h) θ (h, g, l)

θ (hgh−1, h, l)
(h I v)⊗ (h I w) .

The constraints are the same of HM viewed as morphisms in H
HYD.

The braiding cV,W : V ⊗W → W ⊗ V is given, for all v ∈ Vg, w ∈ Wl, by

cV,W (v ⊗ w) = (g I w)⊗ v.
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