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Abstract

Today massively parallel DNA sequencing platforms are become widely
available, reducing the costs and the time of DNA sequencing.
Next Generation Sequencers (NGSs) allow to obtain large amount of data
and they open new perspectives in fields like genomic and medical research.
One of the most promising application in medical research and in diagnostic
is the exome sequencing,a specific targeted re-sequencing of the known exons.
There are two advantage in sequencing the exome:

e The human exome is the 1% of the total genome (about 30Mbp) and
it is so possible to obtain high coverage with low costs.

e Several variations in exome cause diseases.

These two features make the exome sequencing very interesting and increas-
ingly used by scientists. There are several strategies for exome sequencing
but, we considered Illumina and SOLiD approaches.

In details, we analyzed 6 patients affected by arrhythomogenic cardiomy-
opathy. Genetic variations in these patients were already characterized with
Sanger technologies so we could compare different variant detections algo-
rithm with SOLiD reads and with Illumina reads.

Results confirmed the key role of coverage in detecting variants.
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Abstract - ITALIANO

Attualmente le tecnologie di sequenziamento massivo del DNA sono di-
ventate ampiamente disponibili e hanno ridotto sia i costi che i tempi di
sequenziamento.

I sequenziatori di nuova generazione (NGS) permettono di ottenere grosse
moli di dati e hanno aperto nuove prospettive nel campo della genomica e
della ricerca medica.

Tra le applicazioni pitt promettenti nel campo della ricerca medica e della
diagnostica spicca il sequenziamento dell’esoma definibile come uno specifico
targeted resequencing degli esoni noti. Ci sono due vantaggi nel sequenziare
I’esoma:

e [’esoma umano é circa '1% del totale del genoma (circa 30 Mbp) per
cui é possibile ottenere alte coperture con costi ridotti.

e Mutazioni a livello esonico sono alla base di molte patologie.

Queste caratteristiche rendono il sequenziamento dell’esoma molto interes-
sante e sempre piu utilizzato dagli studiosi. Esistono molte strategie per il
sequenziamento dell’esoma, ma in questa tesi verranno considerati gli approci
tramite Illumina e SOLiD. Nel dettaglio verranno analizzati 6 pazienti af-
fetti da cardiomiopatia aritmogenica. Le varianti generiche in questi pazienti
sono gia state caratterizzate con tecnologia Sanger e si vogliono comparare
diversi algoritmi di ricerca delle varianti con le sequenze Illumina e SOLiD.
I risultati confermano 'importanza del coverage di sequenza.
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Introduction

In this PHD thesis, I take into consideration a specific application of Next
Generation Sequencers (NGSs): the human exome resequencing. Sequencing
an exome (specifically the human exome) was unthinkable few years ago but,
today it is only one of the applications of NGSs.

Untill NGS, in the genomic field the problems were to obtain sufficient data
reducing the costs and time: sequencing an eukaryotic genome could take
several years and lot of scientist efforts. Currently, the same goal can be
obtained in few weeks with a biologist, a bioinformatics, and a Next Gener-
ation Sequencer.

In this scenario, it could seem that NGSs solve the major part of problems of
the -omics sciences. But this is not true. NGSs solved the problem of "how
to obtain the data'" but they do not solve the problem of "how to manage
and analyse the data".

NGSs changed the role of bioinformatic that is became a fundamental fig-
ure in every laboratory which has or have had data from NGSs. The ma-
jor problems today are computational power, informatics space and capable
bioinformatics.

In this thesis the first 2 chapters are general consideration about NGSs and
their principal applications. Chapters 3 is a deepening in exome resequenc-
ing. Chapter 4 and 5 are bioinformatical deeping in aligning and SNP calling.
Chapter 6 is the application of exome resequencing on the arrhythomogenic
cardiomyopathy both for diagnostic and research. I considered 6 patients,
already characterized with Sanger technology, and I investigated about the
different algorithms.

The aim of this PHD thesis is to understand the limits and the capability of
exome sequencing to identify SNPs and INDELs. I analyzed different sam-
ples with different coverages and in one case with different technologies. In
this scenario, I could understand when a variant can be considered reliable
or not, that is very important for using the exome sequencing in diagnostic
and in research fields.
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Next Generation Sequencing
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1.1 Introduction

With Next Generation Sequencing (NGS), we consider all sequence tech-
nologies where:

e Bacterial cloning phase is by-passed.
e Sequencing is performed at the same time over all DNA fragments

These two improvements allowed to reduce time and costs of sequencing and
an increasingly number of laboratories has today access to sequencing tech-
nologies.

The bottle-neck is still the data analyses[14] bacause the large amount of
data produced by NGS is difficult to manage and analyze.

1.2 Roche 454 sequencer

454 was the first next generation system commercialized by Roche. This
sequencer is based on pyrosequencing technology|[1] that depends on the de-
tection of pyrophosphate released during nucleotide incorporation.
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Figure 1.1: 454 Pyrosequencing workflow[44]

The DNA is fragmented with physical methods and specifical adaptors were
ligated to the end. The DNA is captured by beads and then it is amplified
with an emulsion PCR. Beads are then deposited on a picotiter plate (PTP)
with all necessary sequencing enzymes.

Sequencer let flow one of ANTP in a controlled series and the pyrophosphate,
released by an incorporation, become substrate of sulfurylase, luciferase and
luciferin and there is emission of light[33].

The order of nucleotides allow to know the sequence of the reads, and the
light intensity the number of incorporated nucleotides.

The read length of Roche 454 is now around 600/800 bases and the through-
put is around 1 Gbpl|2| but, 454 throughput is less than the SOLiD or IL-
LUMINA one, so 454 is not used for exome resequencing. Costs should be
too high.

The most outstanding advantage of Roche is its speed and the reads length.
One run takes 24 hours and the reads have a length similar to Sanger tech-
nology ones.

1.3 Illumina HiSeq sequencer

[lumina sequencers are based on sequencing by synthesis (very similar to
Sanger technology). The DNA is broken is small fragment (around 400/600
bases), ligated to specific adaptors and, then placed in a particular flowcell
with fixed primers. On the flowcell the DNA is amplified by bridge amplifi-
cation to create clusters of clonal molecules.

Sequencing is performed by synthesis adding nucleotides containing fluores-
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Figure 1.2: Illumina workflow[44]

cent dye; the signal is captured by a CCD camera.

There are several versions of Illumina sequencer, for example HiSeq 1000 pro-
duces 300 Gbp per run in 8 days[3]. The reads are from 50 to 150 nucleotides
depending on sequencer version and sequencing kit used.

1.4 Applied Biosystem SOLiD sequencer

SOLiD is acronym of Sequencing by Oligo Ligation Detection and its
sequencing method is based on ligation. The sequencer adopts the technology
of two-base sequencing based on ligation sequencing.

DNA is amplified by emulsion PCR (similar to 454) and then it is placed
on flowcell. Sequencing is performed by adding 8 base-probe ligation which
contains ligation site (the first base), cleavage site (the fifth base), and 4
different fluorescent dyes (linked to the last base)[44]. Every fluorescent
dyes represents 2 bases.

Whit SOLiD technology every base is sequenced two times and the output
is in color space format. Color space is different from base space (Illumina,
454 and Sanger output) and it needs of dedicated software.

SOLiD throughput is similar to Illumina one and reads length varies from
35 to 75 base pairs.
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Figure 1.3: SOLiD workflow|44]

1.5 Other Sequencers

Beyond the three sequencers 454, Illumina and SOLiD, there are other
next generation sequencers that start to be establish in the NGS market.
Among them, Ton Proton and Ton Torrent (both of Applied Biosystem) are
the most known. Both sequencers use a sequencing strategy similar to 454,
but they do not measure the light intensity of pyrophosphate but the H*
variation.

1.6 NGS impact on genetic research

New sequencers allowed to obtain large amount of data in very few time.
Costs are also reduced (see figure 1.4), so, much more scientists than in the
past, have today access to genomic or transcriptomic data. The problem
today is not obtain the data but it is the manegment of these data and their
processing. One run of SOLiD or ILLUMINA can produce up to 300 Gbp
and their processing can double or triple the data.

To manage this data it is necessary to have clusters of hard disk and, anal-
ysis can be performed only if it is available big computers, or clusters, with
a large number of CPU and lot of RAM.

These problems are often underestimated and scientists have difficult to an-
alyze their data for their researches.

All these troubles can be solved buying hardware or using clouds system such
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Sequencer | Read throughput | Sequencing Output
length method Format

454 up to 800 | up to 1Gbp | Pyrosequencing | sff format
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Figure 1.4: Costs of sequencing per base against time

as Amazon (http://aws.amazon.com/ec2/) but this is only a partial solution
because these data have to be sent to the remote computer and net transfers
can be a real bottle-neck: transferring an Illumina run can take up to 10 or

20 days.

At the same time, having hardware is not always the solution. In fact, bioin-

formatic capabilities are obligatory to perform the analysis.

In this scenario, the bioinformatic became a figure very important in every
laboratories which manage NGS experiments.
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NGS Applications
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2.1 Introduction

NGSs opened new perspective in genomic research. Often the unique
limit is the costs. Currently NGSs are used for:

e DeNovo Sequencing

Resequencing

RNA-seq and DeNovo transcriptomic sequencing
o Metagenomics

Theorically all the NGSs could be used for these applications but, often
the choise is taken considering: costs, bioinformatic analysis, read lengths
and read quality.

2.2 DeNovo Sequencing

The term "DeNovo Sequencing" is often confuse with "DeNovo sequence
assembly". Even if these two terms seem synonyms, they are very different.
NGSs allow today to perform the "DeNovo Sequencing" with low costs (than
the past) and with reduced time, but the "DeNovo sequence assembly" re-
mains a challenging tasks. DeNovo Sequencing is the process with which we
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obtain a series of read that potentially cover all the genome of an organism.
Generally a DeNovo sequencing is measured by coverage:

AVG _ Coverage = < Sequenced__bases >

Genome_ Size

Where AVG_Coverage is the average coverage, Sequenced bases are the
number of bases obtained by sequencing and Genome_Size is the size of se-
quenced genome in bases.

"De Novo Sequencing assembly" is the process whereby we merge together
individual sequence reads to form long contiguos sequences (contig) sharing
the same nucleotide sequence reads were derived[43]. De Novo Sequencing
assembly is a challenge and, currently there is not a single algorithm or soft-
ware that perform this tasks. The assembly results are linked to the coverage
of the sequencing, the lenght of reads and, the genomic structure of the an-
alyzed organism.[43]. Among the software used for assembly the most know
are: Newbler[4], ABYSS[30], CLC[5], SOAPdenovo[23], and Velvet[35].
Generally, for a De Novo sequencing it is requested a coverage from 30X
to 50X coverage. Currently these coverages can be obtained with low costs
thanks to NGSs. The most used sequencers for this aim are 454 and ILLU-
MINA.

2.3 Resequencing

Resequencing is very similar to DeNovo Sequencing but, the genome of
the analyzed organism is known. The scope of a resequencing is to find
variations that can be linked to particular phenotypes. Resequencing can
be done over all genome or only in selected regions (amplicons, targeted
resequencing and exomes)[44]. In all cases the coverage is the key of the
experiments; mutation discovery generally needs a 20X coverage, but studies
in amplicons for tumor characterization need very high coverage such us
1000X or 5000X.

In a resequencing project, the first operation to do is to map the reads against
the reference admitting mismatches and gaps. Currently there are lots of
software to map the reads and the most used are: PASS[18], BOWTIE|[41],
Newbler[4], Soap[23], BWA[38] and CLCJ5].

Output of these programs is an alignment, and the standard output is the
SAM/BAM format|[6].

These output file are input for SNP calling softwares. Chapter 4 and chapter
5 are a deepening of alignments and SNP callers.
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2.4 RNA-Seq and DeNovo transcriptomic sequenc-
ing

RNA-Seq is a recently developed approach to transcriptome profiling that

uses NGS technologies. Studies using this method have already altered the
view of the extent and complexity of eukaryotic transcriptomes[47]. RNA-
Seq is generally performed by Illumina or SOLiD and it is requested a refer-
ence (genome or transcriptome) where aligning the reads against.
Once reads have been obtained, the first task of data analysis is to map the
short reads from RNA-Seq to the reference genome the same software viewed
in Resequencing Chapter. The alignment is very important and not trivial,
outputs need to be then analyzed with dedicated statistical tools. The major
problems of the RNA-Seq alignment are:

e reads that match multiple locations.
e gap openings for spliced alignments.

Despite the problems described above, the advantages of RNA-Seq have en-
abled to generate an unprecedented global view of the transcriptome and its
organization.

454 is generally not used for RNA-Seq but, it is prefered for De Novo tran-
script assembly. Thanks to the long reads of 454 it is possible to identify
transcritps of non model species. The best software to assembly transcrip-
tome is Newbler[4].

Often, for novel organism where the genome sequence is not known, 454 and
RNA-Seq are combined to obtain the transcriptional profile and the tran-
scriptional differeces in different condition or tissue of the new organism.

2.5 Metagenomics

The term Metagenomics is very ambiguous because lots of differents ex-

periment can be classified like metagenomics. All cases Metagenomics is tool
for studying the diversity and metabolic potential of environmental microbes,
whose bulk is as yet non-cultivable[32]. In this scenario we can perform sev-
eral different experiments focused on the characterisation of bacteria or fungi
in a sample, and call them metagenomics.
One of the most used technique for characterizing the bacterial diversity of a
sample is the 16S (for fungi ITS) amplicon analysis. In this case, it is used a
set of primers for amplifying the variable 16S region. There are several tools
to compute this data: CLOTU[7], MOTHURJ8| and QIIMEI9].
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3.1 Introduction

Exome resequencing is a special application of the targeted resequencing
and has become a powerful new approach for identifying genes that underlie
Mendelian disorders[16][26]. The exome can be defined as the sum of all
coding sequencing regions (CDS).

3.2 Why sequencing the human exome?

Despite human exome is only a small part of the entire genome, it con-
tains all the information of the genes and several diseases are related to
variations on genes|15].

We can consider three points to give an answer to the question "Why se-
quencing the human exome":

e Positional cloning studies focused on protein-coding sequences have
proved to be highly successful at identifying variants for monogenic
diseases[45].
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Figure 3.1: Exome Capturing methods: A - Solid-phase. B - Liquid-
phase.[20]

e Many Mendelian disorders are caused by disruption of protein-coding
sequences|31].

e A large fraction of variant such as missense or nonsense single-base
substitutions or small insertion—deletions (indels) in gene coding se-
quence are predicted to have functional consequences and/or to be
deleterious[22].

3.3 Capture Methods

There are 2 principal methods for capturing the exome: Solid-phase hi-
bridization and Liquid-phase hibridization[20].
Solid-phase hibridization utilize probes complementary to sequences of inter-
est fixed to a solid support (microarray or filters). The non-targeted regions
are washed out and the regions of interest remains on the support.
Liquid-phase hibridization, at contrary, uses biotinylated probes and the re-
gions of interest are then recovered with magnetic streptavidin beads. Figure
3.1 shows the two principal methods for capturing the exome. Currently the
most used method is the Liquid-phase hibridization.

Commercial kits now target, at a minimum, all of the RefSeq collection
and an increasingly large number of hypothetical proteins. Nevertheless, all
existing targets have limitations. First, the knowledge of all truly protein-
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coding exons in the genome is still incomplete, so current capture probes can
only target exons that have been identified so far. Second, the efficiency of
capture probes varies considerably, and some sequences fail to be targeted by
capture probe design altogether[15]. In this thesis I take into consideration
only two commercial kits: the SOLiD and the [llumina kits.

The workflow for the exome enrichment is showed on figure 3.2.

3.3.1 Illumina exome enrichment kit

Illumina exome enrichment kit is called TruSeq Exome Enrichment Kit.
It is based on hybrid selection(Fig.3.1),and allows to select 201071 different
regions for a total of 62 Mbp and 20846 genes. The probes capture also
Untraslated Regions (UTRs).

3.3.2 SOLiD exome enrichment kit

SOLiD exome enrichment kit is called New Target Enrichment Kit. It is
based on hybrid selection (Fig.3.1), the kit allows to select 195282 different
regions. This kit covers 37 Mbp and 19911 genes.

3.3.3 Comparison of exome enrichment kits

The SOLiD and the ILLUMINA kit are different because of they cover
in many cases different regions. More precisely:

e Overlapping regions are 186048 bp.

e 33 Mbp are in common
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Sample| % Reads on target % Reads on target +500 | Platform

12 55,7% 72,1% ILLUMINA
T4 56,6% 74.3% TLLUMINA
I5 53,6% 69.4% ILLUMINA
16 48,4% 61,8% ILLUMINA
17 48,6% 62,6% ILLUMINA
12 | 552% 73.1% ILLUMINA

Table 3.1: Percentage of reads on target in the six patients we analysed
exome with Illumina technology.

o ILLUMINA has 29 Mbp exclusive and SOLiD 4Mbp
e The extra regions of ILLUMINA kit are generally UTRs

These differences show also that the definition of exome is not globally ac-
cepted.

Another important thing to take into consideration is that these kits capture
not only the targeted regions but, often we can find mithocondrial DNA and
regions flanking the target:

e Mithocondrial DNA (we found over all samples with high coverage) is
very usefull to check the sample before and after sequencing to avoid
errors (sample exchange). In fact we can sequence the hypervariable
regions (HVR1 and HVR2) before the enrichment and then checking
them after the sequencing with NGS. If they are equal we can be sure
that there is no sample exchange.

e Flanking regions are also very important. Several mutations can be on
these region and they can have damaging effects.

In the table 3.1 are reported the percentage of reads aligned against the
target regions and against the target regions plus 500 bp (at 3’ and 5’) of
the six patients we analysed the exome with ILLUMINA technology.

3.4 Application of Exome sequencing

Human Exome sequencing has several application both in diagnostic and
in reseach fields. We can find 3 principal applications [20]:

e Medical field
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e Human Evolution

e Biological field

3.4.1 Medical Field

In the medical field, human exome sequencing finds a lot of applica-
tions. Several disease are associated with DNA variations in exomic re-
gions (mendelian diseases or other well characterized diseases)and exome
resequencing can be used for diagnostic purpuses. For example Ng et al[25]
sequenced 12 human exome from patients with Freeman-Sheldon disease that
is a rare syndrome classified like dominantly inherited rare Mendelian disor-
der. In the study, researchers were able to find the variations causative of
the disease.

Many other studies was performed for mendelian diseases (autosomal re-
cessive ataxia[l9], papillorenal syndrome[29]) and, in several cases human
exome resequencing allowed to find the causative mutations.

These studies demostrated that exome resequencing can be used for diag-
nostics purpuses and in this thesis I investigated about the application of
exome resequencing for the diagnosis of arrhythmogenic cardiomyopathy.
At the same time it is very important to consider that having the exome
means also to have lots of data that can be useful for future studies. In
fact whith exome resequencing we have a photo of all the variations of an
individual that can be useful for research purpuses. For example if we are in-
vestigating about an unknown disease we can analyse all the canditated mu-
tations filtered with common mutations from unrelated patients sequenced
for other reasons.

3.4.2 Human Evolution

Like specified in the last subsection, having the exome of an individual
means to have a photo of all variants of this individual. These allow to
perform comparisons beetween different persons from different populations
and extract candidates mutations that can explain the different phenotypes.
A similar study has been performed by Yi et al[34], where it was compared
exomes from high-altitude and low-altitude populations to identify possible
differences in allele frequencies that can explain different adaptations.

In this study, there were found a discrete number of genes possible candidated
for the high altitude adaptation.

3.4.3 Biological Field

Copy number variations (CNVs) and genomic structural variations are
large variations that have been considered in the last few years. CNVs are
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insertions, deletions or duplications of genes or other regions of the genome
while, genomic structural variations are generally inversions or translocations
of pieces of genome.

Both variations are in some cases linked to diseases and they can be detected

also by exome sequencing[21][42].
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4.1 Introduction

The first step after the sequencing of an exome is the alignment. We are
considering the human exome so the alignment have to be performed against
the human genome. There are several software to align short reads against
a reference but in every case we have to align admitting mismatches and
indels. Even if it may be seem a simple task, align short reads is not trivial,
there are several software available based on different algorithms.

Mapping results influence the results of SNP Calling software, so it is very
important to choose a good aligner with the best parameters.

Mapping the reads against a reference means finding the position of the
sequenced piece of genome on the reference taking into considerations se-
quencing errors and variations.

There are two major problems when we consider the mapping and the NGS
output: the first problem is the amount of data and the time necessary to
align; the second one is the reads that seem to have multiple solutions[17].
Both problems are very important and they can be connected.

Align billions of reads can be very time consuming and currently algorithms
tried to be as faster as possible. The problem of multiple mapping reads is
connected to the read length and it is important to consider 2 properties of
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a mapped reads:

e The best hit.

e The unique hit.

The best hit is the best position of the reads onto the genome indipendently
by the number of mismatches or indels. Generally, every alignment has a
score and the best hit is the alignment with the best score. Sometimes, a
read can have multiple best hit, so we can map this read in different position
and we don’t known what is the real position of this read onto the genome.
When a reads has only one best hist, it is called unique best hit. Read lenght
is stricly correlated to the unique best hit, short reads tend to have several
best hit only for statistical questions.

To understand the relation between read lenght and unique hit, we have to
consider that a read with length N has N* possible combinations (we have
4 nucleotides).

If N is equal to 10, the possible combinations are 10000, so the probability of
find our string is 1/10000. The human genome is 3Gbp and we can calculate
the number of 10 length strings: it is 3000000000 - 10 + 1, so we expect at
least 300000 strings equal to our one. (We consider the human genome like
a random string composed by 4 letters).

If N increase, the probabilty of find the same string decrease. This is true if
the human genome is a random string, but this not the case of genomes. In
addition, genomes have repetitive regions of different lengths that increase
the probability to find multiple hits for short reads.

The different algorithms used for mapping short reads can choose 3 different
solutions for multiple hit:

e [gnore the multiple hits.
e Consider only a part of all the hits.

e Consider all the hits.

The last solution can increase markedly the processing time for mapping.

4.2 Mapping strategies

Several algorithms had been developped to map reads against a reference;

the goal is always find the real position of the reads onto the reference limiting
processing time and hardware equipments. In all cases the principal problems
are the reads lengths and the number of reads to align.
The most used software are bases on indexing strategies: some software
prefers to index the reads, other ones prefer to index the reference. Indexing
can take several time and can create large files used then for the alignments.
In this thesis I take into consideration 5 different software:
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e Pass.
e Bowtie.
e DBfast.

e CLC.

I don’t talk about the alignment algorithms, but, I consider only the principal
characterystics of the mapping software.

4.2.1 PASS

Pass[18] is a mapping software developped at CRIBI (University of Padua).
PASS can align short reads in bases space (Illumina) and in color space
(SOLID), and it uses a very fast algorithm based on genome indexing. PASS
uses short words for placing the reads on the genome and then refines the
alignment using a sort of Smith-Watermann algorithm. In my project PASS
was used to align SOLiD data.

4.2.2 BOWTIE

Bowtie[41] is based on Burrow-Wheeler transform. Bowtie is very fast
but it takes several time to construct the indexes (on the genomes). Another
advantage of BOWTIE is the hardware request: BOWTIE can align against
the human genome using a laptop, it requires few Giga of RAM. In the thesis
BOWTIE had been used to align ILLUMINA reads.

4.2.3 BWA

BWA (Burrows-Wheeler Aligner)[37][36] is an efficient program that aligns
short sequences against a long reference sequence such as the human genome.
It implements two algorithms, bwa-short and bwa-sw. The former works for
query sequences shorter than 200bp and the latter for longer sequences up
to around 100kbp. Both algorithms do gapped alignment. BWA needs to
index the reference and this operation can take several time. Like BOWTIE
it is based on Burrow-Wheeler transform.

4.2.4 CLC

CLC[10] is a commercial suite that offer several tools for genomics and
transcriptomics analyses.
CLC mapper is based on a seeding approach. The algorithm iterates over
input reads and maps each read individually by applying the following pro-
cedure: seeding sequences of 30 nucleotides each are sampled from each third
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position of the input read. These seeds are looked up in the index and re-
sulting candidate alignment locations are examined using a banded Smith
Waterman.

4.3 Mapper Evaluation

It is very difficult to evaluate the results of a mapper because we can take

into consideration different parameters. The best way should be to have a
set of reads with known position and with known mismatches.
In my PHD thesis, I take into consideration real data so it is not known the
real position of each read. So, the evaluations has been made taking into
consideration the number of aligned reads. Results are report in the chapter
6. For all software I used default parameters.
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5.1 Introduction

SNP Callers are a series of tools that extract variants from an alignment.
The problems, in SNP Callers, are the high error rate of the base calling and
the errors in alignments. Under such circumstances, accurate SNP calling
are difficult and there is often considerable uncertainty associated with the
result[28].

The problem of error rate associated to the NGSs can be by-passed with
high coverage; the alignment problems otherwise can be solved only using a
good mapper.

In this PHD thesis I take into consideration 2 SNP Caller: CLC Variant
Probabilistic caller and GATK][24].

5.1.1 GATK:Genome Analysis ToolKit

GATK is a suite designed to enable rapid development of efficient and
robust analysis tools for next-generation DNA sequencers. This is the most
used tools and one of the most citated.

GATK includes a series of analysis for variant calling and it accepts a BAM
file in input.

There are several workflow for GATK; in this thesis I used the workflow
described in figure 5.1.
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Figure 5.1: GATK Workflow

Realigner Target Creator and Realignment

With this tool, GATK suite performs a realignment of some intervals

using Smith-Watermann algorithm[46]. To speed up this operation, GATK
in a first phase find the candidate regions analysing the BAM file; then only
these regions are realigned using Smith-Waterman.
The idea is to minimize the number of mismatches especially in those regions
where there are indels. In general, a large percent of regions requiring local
realignment are due to the presence of an insertion or deletion in the individ-
ual’s genome with respect to the reference genome. Such alignment artifacts
result in many bases mismatching the reference near the misalignment, which
are easily mistaken as SNPs.

Quality Recalibration

In this phase, GATK performs a correction of the quality score of the
reads in the BAM file. To recalibrate the quality score, GATK analyse three
parameters:

e The reported quality score.
e The position of the nucleotide in the reads.

e The preceding and current nucleotide.
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Using these 3 parameters, GATK is able to correct the quality score of the
bases.

SNP Calling

After BAM correction, GATK can perform the SNP calling. GATK is de-
signed also for multiple samples using a Bayesian genotype likelihood model
to estimate simultaneously the most likely genotypes and allele frequency in
a population of N samples.

SNP calling is performed observing mismatches and indels in the alignment
file and taking into consideration the coverage, the frequency of the varia-
tions and the strand of the aligned reads.

At the same time GATK gives a score for each variant called (Variant Recal-
ibration and Variant Filtration). Each variant has also a sort of comment to
better indentifying problematic result (such as low coverage or strand bias
that can create artifacts).

5.1.2 CLC Probabilistic Variant Caller

CLC Probabilistic Variant Caller[11] is a tool of the commercial CLC
suite. Probabilistic Variant Caller has been designed for calling variants
in haploid (bacteria), diploid (human) and polyploid genomes (cancer or
plants). The tool is very simple to use and it take as input a CLC align-
ments file. The alignment can be performed using CLC or using also other
mapper, the result BAM file can be uploaded in CLC Workspace.

The CLC Variant Caller algorithm combines a Maximum Likelyhood ap-
proach with a Bayesian model to call the variants and to give to each one a
score that represent the probability of the variant.

More precisely it is first calculated a prior probability using only the

alignment. The starting parameters are shown in figure 5.2.
These parameters are updated using an Expected Maximization approach.

At the same time it is calculated an error probability taking into consider-
ation also the quality score of the aligned reads, and for each quality score
it is calculated a different error probability table.
After the prior and the error probability have been estimated the Variant
Caller give in output the most probable allele for each position.

CLC output is a table of variants with several parameters like coverage,
forward /reverse reads and probability of the variant.
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Site Type Prior probability
ASA 0.2475
A/C 0.001
A/G 0.001
A/T 0.001
T/C 0.001
T/G 0.001
/T 0.2475
G/C 0.001
c/C 0.2475
G/G 0.2475
G/- 0.001
Af- 0.001
C/- 0.001
T/- 0.001

Figure 5.2: Initial probability of CLC Variant Caller
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6.1 Introduction

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inher-
ited myocardial disease associated with significant genotype and phenotype
heterogeneity. The structural features of ARVC consist of progressive fibro-
fatty replacement of myocytes and, clinically, the disease has been associated
with ventricular arrhythmias at risk of sudden cardiac death[27].

In my thesys I take into consideration 6 patients with ARCV disease already
characterized with Sanger. The exome of the 6 patientshas been enriched
and sequenced using Illumina and SOLiD strategy.

6.2 Results

6.2.1 Mapping Results

After sequencing, reads were aligned against the human genome using
CLC, PASS, BOWTIE and BWA using default parameters. BOWTIE and
BWA required a preliminary indexing of the reference that take several hours.
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Sample | Number of reads | Technology

2 17.250.274 ILLUMINA

6S 49.719.032 SOLID

4 81.382.994 ILLUMINA

5 70.603.922 ILLUMINA

6 48.166.720 ILLUMINA

7 52.233.528 ILLUMINA

12 33.786.456 ILLUMINA

Table 6.1: Number of reads sequenced per sample.

Sample | # of Reads | PASS CLC | BOWTIE | BWA

2 17.250.274 | 75,97% | 87,18% | 81,81% | 86,89%

6S 49.719.032 | 67,18% | 75,61% - -

6 48.166.720 | 80,64% | 86,75% | 62,19% | 76,90%

12 33.786.456 | 83,88% | 86,75% | 86,01% | 93,91%

Table 6.2: % of reads aligned with PASS, CLC, BOWTIE and BWA.

CLC and PASS did not required this indexing.

The fastest software was CLC followed by BWA, BOWTIE and PASS. For
all the software I take into consideration the number of unique aligned reads
admitting 2 mismatches and gaps. For SOLiD reads I used only PASS, CL.C
and BFAST [12][40][39] (BFASTA uses an algorythm vary similar to PASS).
The sequencing of six patients produced different number of reads and for the
software evaluation I considered only the 3 patients with the lowest number
of reads. This choise has been made for minimize the processing time for the
alignments. In the table 6.1 there is reported the number of reads produced
by the sequencers.

The samples chosen for the mapper evaluation was the samples 12, 2 and 6
for llumina and the sample 6S for SOLID. In the table 6.2 are reported the
results obtained with the 4 mappers.

Table 6.2 shows that the mapper with the higher number of unique best hit
is CLC; so, we choose CLC like principal software for the alignments. CLC
is also the simpliest software to use thanks to its graphical interface.

In table 6.3, there are showed the results of the alignments of all samples
and the average coverage of the exome. Like specified in Chapter 3, Illumina
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Sample | # of Reads | % aligned (unique) | Avg Exome Coverage
2 17.250.274 87,18% 9,24X
6S 49.719.032 75,61% 40,01X
4 81.382.994 84,79% 51,65X
) 70.603.922 85,32% 41,53X
6 48.166.720 86,75% 25,07X
7 52.233.528 85,91% 27,36X
12 33.786.456 86,75% 20,04X

Table 6.3: % of reads aligned with CLC over all samples.

Sample | Technology | % reads on target | % reference not covered | % reference over 20X
4 ILLUMINA 56,6% 3,96% 81,03%
5 ILLUMINA 53,6% 3,73% 75,08%
7 ILLUMINA 48,62% 4,84% 53,52%
6 ILLUMINA 48,24% 5,76% 48,35%
12 ILLUMINA 55,21% 7,83% 38,65%
2 ILLUMINA 55,76% 22,14% 11,07%
65 SOLiD 70,11% 9,56% 60,27%

Table 6.4: Table with coverage data of 6 patients. Reads has been aligned
with CLC.

and SOLiD have different kits. The average coverage is calculated like:

total nucleotide aligned _on_the exome

total nucleotide _of the exome

Exome sequencing is a targeted resequencing, and beyond the average cover-
age there are other parameters that have to be considered for understanding
the differences in the sample. These parameters are reported in table 6.4.

Reads on target are all the reads that maps on the exome. With illumina
kit, we have the 50% of reads that maps on the target while, with SOLiD
kit we had the 70%. If we consider the targeted regions plus 500 bp in 5’
and in 3’, the percentage of reads on target increase of 20%. These confirm
that also these regions are covered and we can consider also the variations
calculated for these extra-regions. Like expected the other data in table 6.4
(% reference not covered and % of reference over 20X) are stricly related
to the average coverage of the samples. I reported also the percentage of
reference over 20X coverage because, like explained later, at this coverage
we have the best result for variation calling.
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Sample | Gene | Chr | Position | Sanger GATK CLC | CASAVA
4 DSG2 | 18 | 29104698 | C/T Cc/T Cc/T C/T
4 | DSG2 | 18 | 20125854 | A/G A/G A/G A/G
4 DSG2 | 18 | 29126670 | T/C | Not found | T/C | Not found
4 DSP 6 7542149 -/A Not found -/A Not found
4 DSP 6 7563983 G G G G
4 DSP 6 7572262 G G G G
4 DSP 6 7572026 | A/T A/T A/T | Not found
4 DSP 6 7576527 A A A A
4 DSP 6 7584617 | C/T Cc/T Cc/T C/T
4 DSP 6 7585967 A A A A
5 PKP2 | 12 | 32948970 | GT/A | Not found A Not found
5 | PKP2 | 12 | 32045721 | C/A C/A C/A | Not found
5 PKP2 | 12 | 32945769 | C/G C/G C/G | Not found
) DSG2 | 18 | 28666526 | +TAA | +TTAA | +TAA | Not found
5 DSP 6 7567970 T T T Not found
5 DSP 6 7572026 A A A Not found
5 DSP 6 7559633 A A A Not found
5 JUP | 17 | 39914070 | A/C A/C A/C | Not found
5 JUP | 17 | 39913645 | A/G A/G A/G | Not found

Table 6.5: Table with Variant of Samples 4 and 5. There is reported the
Sanger result and the output of CLC, GATK and CASAVA.

6.2.2 SNP Caller Results - Illumina Data

After alignments we performed the SNP Calling. SNP Callers take as
input BAM files that are the binary format of SAM, the standard alignment
output. We considered GATK and CLC Variant Probabilistic caller.
GATK required lots of step to produce the output and the pipeline took also
lots of time (more or less one day per sample).

To evaluate the variant callers I focused my attention on the best samples,
the samples 4 and 5 that are the ones with the highest coverage for Illumina
sequencing. For SOLiD sequence I used the sample 6S that was the unique
avaliable.

Sample 4 and 5 was analyzed using GATK, CLC and CASAVA. CASAVA is
the standard suite for Illumina data analyses and performs alignment (with
ELAND) and SNP/DIP Calling. Software evaluation was performed con-
sidering a series of known variant previously characterized using SANGER
Technology. For each variant we checked the SANGER sequence quality and
we checked the presence in the variant caller outputs.
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Sample | Gene | Chr | Position | Exome position | Coverage
4 DSG2 | 18 | 29104698 IN 64
4 DSG2 | 18 | 29125854 IN 92
4 DSG2 | 18 | 29126670 IN 62
4 DSP 6 7542149 IN 9
4 DSP 6 7563983 IN 67
4 DSP 6 7572262 IN 39
4 DSP 6 7572026 ouT 32
4 DSP 6 7576527 IN 36
4 DSP 6 7584617 IN 74
4 DSP 6 7585967 IN 37
5 PKP2 | 12 | 32948970 ouT 8
5 PKP2 | 12 | 32945721 ouT 17
5 PKP2 | 12 | 32945769 ouT 10
5 DSG2 | 18 | 28666526 ouT 18
5 DSP 6 7567970 ouT 14
5 DSP 6 7572026 ouT 14
5 DSP 6 7559633 IN 5
5 JUP 17 | 39914070 ouT 12
5 JUP 17 | 39913645 ouT 30

Table 6.6: Positions of variants respect the enriched regions

Table 6.5 shows the results. In this table CASAVA seems to be the worst
software but we have to consider that CASAVA extracts variants limited to
the enriched regions. Lot of the position reported for samples 4 and 5 are
out of the enriched regions (see table 6.6). CASAVA was discarded for its
inability to find variants out of enriched regions.

At contrary, GATK and CLC are able to detect variants in all covered re-
gions even if these regions are out of the exome.The performances of GATK
and CLC are very similar but observing the table 6.5 we can see that GATK
had some difficulties in detect indels (indel -/A in position 7542149 chromo-
some 6 for the sample 4 and indel -/TAA in position 28666526 chromosome
18 for the sample 5). The unique problem with CLC is the variant in posi-
tion 32948970 chromosome 12 in the sample 5: here CLC called a variant in
omozygosis but SANGER sequences found the same variant in eterozygosis.
For better understanding this results I take into consideration also the cov-
erage. Like reported in table 6.6 this variation has a low coverage (8X).
These results suggested that the most reliable software is CLC Variant Prob-
abilistic Detector and I analyzed all the other samples with CLC. In the table
6.7 are reported the results.
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Sample | Average Coverage | # of variant from Sanger | # of variant correct from CLC
4 51,65X 10 10
5 41,53X 10 9
6 25,07X 9 7
7 27,36X 10 10
2 9,24X 12 5
12 20,04X 9 6

Table 6.7: Number of variants found by Sanger compared with the CLC
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Figure 6.1: % of correct outputs of CLC divided by coverage

Analysing these data, it is clear that there is a stricly relationship among the
coverage and the performance of the SNP caller, but the average coverage
can be only an approximate parameter. More interesting is the relation
among the result of CLC and the coverage of every variant. In the figure 6.1
I considered all the variants indipendently from the sample; I divided the
coverage in 5 class and I considered the corrected prediction of CLC against
the total of variants. Observing the figure 6.1, it appears that the minimum
coverage for having reliable results is 20X. The total results divided per
sample are reported in the supplementary materials.

6.2.3 SNP Caller Results - SOLiD Data

For the SOLiID data, we had only one sample (6S) and it is very difficult
to extract some statistics having only one sample. For SOLiD data I take
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Position | Chr | SANGER CLC PASS/GATK | BFAST/GATK
32974422 | 12 G/- G/- NotFound NotFound
7558318 6 T/C T/C T/C T/C
7578819 6 G G/A G G
7578823 6 A A/G A A
7584617 6 Cc/T C/T Cc/T Cc/T
7585967 6 C NotFound NotFound C
28673760 | 18 | No Coverage | No Coverage | No Coverage No Coverage
28672067 | 18 T/C T/C T/C T/C
Table 6.8: Results of SOLiD Data
Algorithm Total variants found | Variants annotated with dbSNP
CLC 115.681 52.283
BFAST/GATK 48.097 42.213
PASS/GATK 79.478 51.970

Table 6.9: Results of Variant Caller on SOLiD Data

into consideration CLC and GATK.

CLC was used starting from CLC mapping, while GATK was used starting
from aligments obtained with PASS and BFAST[12][40][39].

Results are reported in table 6.8. Unlike with [llumina Data, CLC does
not perfom very well, probably color space is more complex to align and
specialized software like PASS and BFAST perform better.

It is important to consider that 50% of known variants are out of the enriched
regions and one has no coverage. The total number of variants called by the
three elaborations of sample 6S are reported in table 6.9.

The three algoritms found 34.305 common variants.

These data are very difficult to interpretate. Theoretically within the same
sample we should obtain same data. Probably color space is very difficult to
trait and the result can vary.

6.2.4 SNP Analyses

The table 6.10 reports the total number of variants called by CLC and
the variants that are known according to DBSNP[13]. I considered only the
samples sequenced with Illumina.
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Sample | Total Number of Variants | Variants with DBSNP code
2 99.600 54.648
4 286.124 165.948
5 320.178 159.853
6 254.541 124.628
7 276.340 134.968
12 195.672 110.996

Table 6.10: Total number of Variant per sample and total number of known
variants according to DBSNP

The 50% of called variants are known with a DBSNP code and the number

of variant is stricly correlated to the coverage: samples with higher coverage
have more variants called; probably the number of false positive increase
with the coverage. The six samples share 30.028 variants and 18.374 are
known in DBSNP.

Sample 6 and 6S are the same sample sequenced with Illumina(6) and SOLiD(6S).
Comparing the variants called with CLC we see that they shared 47.957
variants (Sample 6S has 115.681 variants called using CLC variant caller).
Practically all variants found by BFAST and GATK are in common with the
PASS/GATK and the CLC ones.

6.2.5 Discussion

Currently, exome sequencing is one of the most challenge approach used
to characterize human disease. Results depends on two factor: the mapping
and the snp calling algorithms. Moreover results of mapping influence the
snp calling results. We saw that changing alignment algorithm, change also
the output of snp caller. The most difficult task is to understand the real
position of a read on the reference taking into consideration sequencing er-
rors and real differences. On the other hand, SNP caller must to be able
to consider different level of coverage and differences in the quality of reads
to right assign a variation in a particular coordinate of the reference. At
the moment there is not a standard approach to calculate the variants of an
exome sequencing, but, in this thesis I observed that CLC suite perform bet-
ter than the other pipelines using illumina data. With SOLiD data CLC do
not perform very well, GATK, using PASS or BFAST alignments, perfomed
better.

GATK had problems in deletion/insertion recognization.

CLC performs very well when the coverage is >20X. Observing the table
6.4 we can say that the minumun average coverage for having a reliable snp
calling result is at least 70X. At this average coverage we have at least the
80/90% of the exome covered with at least 20 indipendent reads and the
results are very robust.
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Additionally, CLC is very simple to use and it can be used also by biologists
that do not have bioinformatics competences. It is very fast and can be run
on laptop computer.

Using the Sanger sequences I tried also to calculate false positive and false
negative. I analysed 7.989 nucleotides and I found only 2 false negative re-
sults. Observing the coverage I saw that the 2 false negative results is under
the 20X coverage (the first is 8X, and the second is 1X), and the rest of
nucleotides has very high coverage. These data confim the key role of the
coverage in the snp calling results. In the 7.989 nucleotides analized I don’t
find any false positive results. These don’t means that there aren’t false
positive, I belive that false posivite are present and that these false positive
are stricly correlated to the coverage.

Filtering the data by coverage, the number of variants decrease drastically
(see table 7.7 in supplementary data); probably also the number of false
positive decrease.
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Sample | Position | Chr | SANGER | CLC | Coverage
4 29104698 | 18 C/T C/T 64
4 | 29125854 | 18 A/G | A/G 92
4 29126670 | 18 C/T C/T 62
4 7542149 6 -/A -/A 9
4 7563983 6 G G 67
4 7572262 6 G G 39
4 7572026 6 T/A T/A 32
4 7576527 6 A A 36
4 7584617 6 C/T C/T 74
4 7585967 6 C C 37

Table 7.1: Tllumina Sample 4 Results

37
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Sample Position Chr | SANGER | CLC | Coverage
5 32948970 — 71 | 12 T/AC AC 8
5 32945721 12 C/A C/A 17
5 32945769 12 G/C G/C 10
5 28666526 18 -/TAA | -/TAA 15
5 7567970 6 T T 14
5 7572026 6 A A 14
5 7559633 6 A A 5
5 39914070 17 G/T G/T 12
5 39913645 17 T/C T/C 30

Table 7.2: Illumina Sample 5 Results

Sample | Position | Chr | SANGER CLC Coverage
6 | 32974422 | 12 G/- G/- 18
6 7558318 6 T/C NotFound 11
6 7578819 6 G G 10
6 7578823 6 A A 10
6 7584617 6 C/T Cc/T 28
6 7585967 6 C C 10
6 28673760 | 18 G/A NotFound 1
6 28672067 | 18 T/C T/C 12

Table 7.3: Illumina Sample 6 Results

Sample | Position | Chr | SANGER | CLC | Coverage
7 7567970 6 C/T Cc/T 8
7 7572262 6 A/G A/G 20
7 7572026 6 T/A T/A 11
7 7578189 6 G/A G/A 28
7 7578816 6 G G 15
7 7578823 6 A A 12
7 29104714 | 18 A/G A/G 37
7 39913645 | 17 T/C T/C 11
7 39912145 | 17 A/T A/T 10
7 39911771 | 17 G/A G/A 34
7 7585967 6 C C 20

Table 7.4: Tllumina Sample 7 Results
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Sample | Position | Chr | SANGER CLC Coverage
2 7542149 6 A/+A | No Coverage 0
2 7563983 6 G G 5
2 7565227 6 A/T No Coverage 0
2 7576527 | 6 G/A NotFound 7
2 7584617 6 T/C T/C 7
2 28649057 | 18 G NotFound 2
2 32994007 | 12 G/- NotFound 3
2 32977104 | 12 -/A -/A 5
2 29104553 | 18 T/C T/C 10
2 29104569 | 18 A/G A/G 11
Table 7.5: Tllumina Sample 2 Results
Sample | Position | Chr | SANGER CLC Coverage
12 33030802 | 12 A/G NotFound 4
12 30049475 | 12 G/A No Coverage 0
12 32949029 | 12 G G 11
12 33021819 | 12 C NotFound 2
12 28669496 | 18 C C 8
12 7563983 6 G G 25
12 7572262 6 G G 15
12 7576527 6 A A 13
12 7584617 6 C/T C/T 31
Table 7.6: Illumina Sample 12 Results
Sample | Number of variants with coverage > 20X | Total Number of variants
2 22.009 99.600
4 140.088 289.124
5 127.290 320.178
6 78.117 254.541
7 84.979 276.340
12 57.555 195.672

Table 7.7: Variants with a coverage higher than 20X
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