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Abstra
tToday massively parallel DNA sequen
ing platforms are be
ome widelyavailable, redu
ing the 
osts and the time of DNA sequen
ing.Next Generation Sequen
ers (NGSs) allow to obtain large amount of dataand they open new perspe
tives in �elds like genomi
 and medi
al resear
h.One of the most promising appli
ation in medi
al resear
h and in diagnosti
is the exome sequen
ing,a spe
i�
 targeted re-sequen
ing of the known exons.There are two advantage in sequen
ing the exome:
• The human exome is the 1% of the total genome (about 30Mbp) andit is so possible to obtain high 
overage with low 
osts.
• Several variations in exome 
ause diseases.These two features make the exome sequen
ing very interesting and in
reas-ingly used by s
ientists. There are several strategies for exome sequen
ingbut, we 
onsidered Illumina and SOLiD approa
hes.In details, we analyzed 6 patients a�e
ted by arrhythomogeni
 
ardiomy-opathy. Geneti
 variations in these patients were already 
hara
terized withSanger te
hnologies so we 
ould 
ompare di�erent variant dete
tions algo-rithm with SOLiD reads and with Illumina reads.Results 
on�rmed the key role of 
overage in dete
ting variants.
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Abstra
t - ITALIANOAttualmente le te
nologie di sequenziamento massivo del DNA sono di-ventate ampiamente disponibili e hanno ridotto sia i 
osti 
he i tempi disequenziamento.I sequenziatori di nuova generazione (NGS) permettono di ottenere grossemoli di dati e hanno aperto nuove prospettive nel 
ampo della genomi
a edella ri
er
a medi
a.Tra le appli
azioni più promettenti nel 
ampo della ri
er
a medi
a e delladiagnosti
a spi

a il sequenziamento dell'esoma de�nibile 
ome uno spe
i�
otargeted resequen
ing degli esoni noti. Ci sono due vantaggi nel sequenziarel'esoma:
• L'esoma umano è 
ir
a l'1% del totale del genoma (
ir
a 30 Mbp) per
ui è possibile ottenere alte 
operture 
on 
osti ridotti.
• Mutazioni a livello esoni
o sono alla base di molte patologie.Queste 
aratteristi
he rendono il sequenziamento dell'esoma molto interes-sante e sempre più utilizzato dagli studiosi. Esistono molte strategie per ilsequenziamento dell'esoma, ma in questa tesi verranno 
onsiderati gli appro
itramite Illumina e SOLiD. Nel dettaglio verranno analizzati 6 pazienti af-fetti da 
ardiomiopatia aritmogeni
a. Le varianti generi
he in questi pazientisono già state 
aratterizzate 
on te
nologia Sanger e si vogliono 
ompararediversi algoritmi di ri
er
a delle varianti 
on le sequenze Illumina e SOLiD.I risultati 
onfermano l'importanza del 
overage di sequenza.
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Introdu
tionIn this PHD thesis, I take into 
onsideration a spe
i�
 appli
ation of NextGeneration Sequen
ers (NGSs): the human exome resequen
ing. Sequen
ingan exome (spe
i�
ally the human exome) was unthinkable few years ago but,today it is only one of the appli
ations of NGSs.Untill NGS, in the genomi
 �eld the problems were to obtain su�
ient dataredu
ing the 
osts and time: sequen
ing an eukaryoti
 genome 
ould takeseveral years and lot of s
ientist e�orts. Currently, the same goal 
an beobtained in few weeks with a biologist, a bioinformati
s, and a Next Gener-ation Sequen
er.In this s
enario, it 
ould seem that NGSs solve the major part of problems ofthe -omi
s s
ien
es. But this is not true. NGSs solved the problem of "howto obtain the data" but they do not solve the problem of "how to manageand analyse the data".NGSs 
hanged the role of bioinformati
 that is be
ame a fundamental �g-ure in every laboratory whi
h has or have had data from NGSs. The ma-jor problems today are 
omputational power, informati
s spa
e and 
apablebioinformati
s.In this thesis the �rst 2 
hapters are general 
onsideration about NGSs andtheir prin
ipal appli
ations. Chapters 3 is a deepening in exome resequen
-ing. Chapter 4 and 5 are bioinformati
al deeping in aligning and SNP 
alling.Chapter 6 is the appli
ation of exome resequen
ing on the arrhythomogeni

ardiomyopathy both for diagnosti
 and resear
h. I 
onsidered 6 patients,already 
hara
terized with Sanger te
hnology, and I investigated about thedi�erent algorithms.The aim of this PHD thesis is to understand the limits and the 
apability ofexome sequen
ing to identify SNPs and INDELs. I analyzed di�erent sam-ples with di�erent 
overages and in one 
ase with di�erent te
hnologies. Inthis s
enario, I 
ould understand when a variant 
an be 
onsidered reliableor not, that is very important for using the exome sequen
ing in diagnosti
and in resear
h �elds.
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Chapter 1Next Generation Sequen
ing
Contents1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . 31.2 Ro
he 454 sequen
er . . . . . . . . . . . . . . . . 31.3 Illumina HiSeq sequen
er . . . . . . . . . . . . . 41.4 Applied Biosystem SOLiD sequen
er . . . . . . . 51.5 Other Sequen
ers . . . . . . . . . . . . . . . . . . 61.6 NGS impa
t on geneti
 resear
h . . . . . . . . . 61.1 Introdu
tionWith Next Generation Sequen
ing (NGS), we 
onsider all sequen
e te
h-nologies where:

• Ba
terial 
loning phase is by-passed.
• Sequen
ing is performed at the same time over all DNA fragmentsThese two improvements allowed to redu
e time and 
osts of sequen
ing andan in
reasingly number of laboratories has today a

ess to sequen
ing te
h-nologies.The bottle-ne
k is still the data analyses[14℄ ba
ause the large amount ofdata produ
ed by NGS is di�
ult to manage and analyze.1.2 Ro
he 454 sequen
er454 was the �rst next generation system 
ommer
ialized by Ro
he. Thissequen
er is based on pyrosequen
ing te
hnology[1℄ that depends on the de-te
tion of pyrophosphate released during nu
leotide in
orporation.
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Figure 1.1: 454 Pyrosequen
ing work�ow[44℄The DNA is fragmented with physi
al methods and spe
i�
al adaptors wereligated to the end. The DNA is 
aptured by beads and then it is ampli�edwith an emulsion PCR. Beads are then deposited on a pi
otiter plate (PTP)with all ne
essary sequen
ing enzymes.Sequen
er let �ow one of dNTP in a 
ontrolled series and the pyrophosphate,released by an in
orporation, be
ome substrate of sulfurylase, lu
iferase andlu
iferin and there is emission of light[33℄.The order of nu
leotides allow to know the sequen
e of the reads, and thelight intensity the number of in
orporated nu
leotides.The read length of Ro
he 454 is now around 600/800 bases and the through-put is around 1 Gbp[2℄ but, 454 throughput is less than the SOLiD or IL-LUMINA one, so 454 is not used for exome resequen
ing. Costs should betoo high.The most outstanding advantage of Ro
he is its speed and the reads length.One run takes 24 hours and the reads have a length similar to Sanger te
h-nology ones.1.3 Illumina HiSeq sequen
erIllumina sequen
ers are based on sequen
ing by synthesis (very similar toSanger te
hnology). The DNA is broken is small fragment (around 400/600bases), ligated to spe
i�
 adaptors and, then pla
ed in a parti
ular �ow
ellwith �xed primers. On the �ow
ell the DNA is ampli�ed by bridge ampli�-
ation to 
reate 
lusters of 
lonal mole
ules.Sequen
ing is performed by synthesis adding nu
leotides 
ontaining �uores-
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Figure 1.2: Illumina work�ow[44℄
ent dye; the signal is 
aptured by a CCD 
amera.There are several versions of Illumina sequen
er, for example HiSeq 1000 pro-du
es 300 Gbp per run in 8 days[3℄. The reads are from 50 to 150 nu
leotidesdepending on sequen
er version and sequen
ing kit used.1.4 Applied Biosystem SOLiD sequen
erSOLiD is a
ronym of Sequen
ing by Oligo Ligation Dete
tion and itssequen
ing method is based on ligation. The sequen
er adopts the te
hnologyof two-base sequen
ing based on ligation sequen
ing.DNA is ampli�ed by emulsion PCR (similar to 454) and then it is pla
edon �ow
ell. Sequen
ing is performed by adding 8 base-probe ligation whi
h
ontains ligation site (the �rst base), 
leavage site (the �fth base), and 4di�erent �uores
ent dyes (linked to the last base)[44℄. Every �uores
entdyes represents 2 bases.Whit SOLiD te
hnology every base is sequen
ed two times and the outputis in 
olor spa
e format. Color spa
e is di�erent from base spa
e (Illumina,454 and Sanger output) and it needs of dedi
ated software.SOLiD throughput is similar to Illumina one and reads length varies from35 to 75 base pairs.
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Figure 1.3: SOLiD work�ow[44℄1.5 Other Sequen
ersBeyond the three sequen
ers 454, Illumina and SOLiD, there are othernext generation sequen
ers that start to be establish in the NGS market.Among them, Ion Proton and Ion Torrent (both of Applied Biosystem) arethe most known. Both sequen
ers use a sequen
ing strategy similar to 454,but they do not measure the light intensity of pyrophosphate but the H+variation.1.6 NGS impa
t on geneti
 resear
hNew sequen
ers allowed to obtain large amount of data in very few time.Costs are also redu
ed (see �gure 1.4), so, mu
h more s
ientists than in thepast, have today a

ess to genomi
 or trans
riptomi
 data. The problemtoday is not obtain the data but it is the manegment of these data and theirpro
essing. One run of SOLiD or ILLUMINA 
an produ
e up to 300 Gbpand their pro
essing 
an double or triple the data.To manage this data it is ne
essary to have 
lusters of hard disk and, anal-ysis 
an be performed only if it is available big 
omputers, or 
lusters, witha large number of CPU and lot of RAM.These problems are often underestimated and s
ientists have di�
ult to an-alyze their data for their resear
hes.All these troubles 
an be solved buying hardware or using 
louds system su
h



1.6. NGS IMPACT ON GENETIC RESEARCH 7Sequen
er Readlength throughput Sequen
ingmethod OutputFormat454 up to 800bp up to 1Gbp Pyrosequen
ing s� formatIllumina from 50 to150 bp up to 300Gbp Sequen
ing bysinthesis fastq for-matSOLiD from 35 to75 up to 200Gbp Sequen
ing byligation 
olor spa
eformatTable 1.1: Table of prin
ipal NGSs and their output

Figure 1.4: Costs of sequen
ing per base against timeas Amazon (http://aws.amazon.
om/e
2/) but this is only a partial solutionbe
ause these data have to be sent to the remote 
omputer and net transfers
an be a real bottle-ne
k: transferring an Illumina run 
an take up to 10 or20 days.At the same time, having hardware is not always the solution. In fa
t, bioin-formati
 
apabilities are obligatory to perform the analysis.In this s
enario, the bioinformati
 be
ame a �gure very important in everylaboratories whi
h manage NGS experiments.
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Chapter 2NGS Appli
ations
Contents2.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . 92.2 DeNovo Sequen
ing . . . . . . . . . . . . . . . . . 92.3 Resequen
ing . . . . . . . . . . . . . . . . . . . . . 102.4 RNA-Seq and DeNovo trans
riptomi
 sequen
ing 112.5 Metagenomi
s . . . . . . . . . . . . . . . . . . . . 112.1 Introdu
tionNGSs opened new perspe
tive in genomi
 resear
h. Often the uniquelimit is the 
osts. Currently NGSs are used for:

• DeNovo Sequen
ing
• Resequen
ing
• RNA-seq and DeNovo trans
riptomi
 sequen
ing
• Metagenomi
sTheori
ally all the NGSs 
ould be used for these appli
ations but, oftenthe 
hoise is taken 
onsidering: 
osts, bioinformati
 analysis, read lengthsand read quality.2.2 DeNovo Sequen
ingThe term "DeNovo Sequen
ing" is often 
onfuse with "DeNovo sequen
eassembly". Even if these two terms seem synonyms, they are very di�erent.NGSs allow today to perform the "DeNovo Sequen
ing" with low 
osts (thanthe past) and with redu
ed time, but the "DeNovo sequen
e assembly" re-mains a 
hallenging tasks. DeNovo Sequen
ing is the pro
ess with whi
h we



10 CHAPTER 2. NGS APPLICATIONSobtain a series of read that potentially 
over all the genome of an organism.Generally a DeNovo sequen
ing is measured by 
overage:
AV G_Coverage =

(

Sequenced_bases

Genome_Size

)

Where AVG_Coverage is the average 
overage, Sequen
ed_bases are thenumber of bases obtained by sequen
ing and Genome_Size is the size of se-quen
ed genome in bases."De Novo Sequen
ing assembly" is the pro
ess whereby we merge togetherindividual sequen
e reads to form long 
ontiguos sequen
es (
ontig) sharingthe same nu
leotide sequen
e reads were derived[43℄. De Novo Sequen
ingassembly is a 
hallenge and, 
urrently there is not a single algorithm or soft-ware that perform this tasks. The assembly results are linked to the 
overageof the sequen
ing, the lenght of reads and, the genomi
 stru
ture of the an-alyzed organism.[43℄. Among the software used for assembly the most knoware: Newbler[4℄, ABYSS[30℄, CLC[5℄, SOAPdenovo[23℄, and Velvet[35℄.Generally, for a De Novo sequen
ing it is requested a 
overage from 30Xto 50X 
overage. Currently these 
overages 
an be obtained with low 
oststhanks to NGSs. The most used sequen
ers for this aim are 454 and ILLU-MINA.2.3 Resequen
ingResequen
ing is very similar to DeNovo Sequen
ing but, the genome ofthe analyzed organism is known. The s
ope of a resequen
ing is to �ndvariations that 
an be linked to parti
ular phenotypes. Resequen
ing 
anbe done over all genome or only in sele
ted regions (ampli
ons, targetedresequen
ing and exomes)[44℄. In all 
ases the 
overage is the key of theexperiments; mutation dis
overy generally needs a 20X 
overage, but studiesin ampli
ons for tumor 
hara
terization need very high 
overage su
h us1000X or 5000X.In a resequen
ing proje
t, the �rst operation to do is to map the reads againstthe referen
e admitting mismat
hes and gaps. Currently there are lots ofsoftware to map the reads and the most used are: PASS[18℄, BOWTIE[41℄,Newbler[4℄, Soap[23℄, BWA[38℄ and CLC[5℄.Output of these programs is an alignment, and the standard output is theSAM/BAM format[6℄.These output �le are input for SNP 
alling softwares. Chapter 4 and 
hapter5 are a deepening of alignments and SNP 
allers.



2.4. RNA-SEQ AND DENOVO TRANSCRIPTOMIC SEQUENCING 112.4 RNA-Seq and DeNovo trans
riptomi
 sequen
-ingRNA-Seq is a re
ently developed approa
h to trans
riptome pro�ling thatuses NGS te
hnologies. Studies using this method have already altered theview of the extent and 
omplexity of eukaryoti
 trans
riptomes[47℄. RNA-Seq is generally performed by Illumina or SOLiD and it is requested a refer-en
e (genome or trans
riptome) where aligning the reads against.On
e reads have been obtained, the �rst task of data analysis is to map theshort reads from RNA-Seq to the referen
e genome the same software viewedin Resequen
ing Chapter. The alignment is very important and not trivial,outputs need to be then analyzed with dedi
ated statisti
al tools. The majorproblems of the RNA-Seq alignment are:
• reads that mat
h multiple lo
ations.
• gap openings for spli
ed alignments.Despite the problems des
ribed above, the advantages of RNA-Seq have en-abled to generate an unpre
edented global view of the trans
riptome and itsorganization.454 is generally not used for RNA-Seq but, it is prefered for De Novo tran-s
ript assembly. Thanks to the long reads of 454 it is possible to identifytrans
ritps of non model spe
ies. The best software to assembly trans
rip-tome is Newbler[4℄.Often, for novel organism where the genome sequen
e is not known, 454 andRNA-Seq are 
ombined to obtain the trans
riptional pro�le and the tran-s
riptional di�ere
es in di�erent 
ondition or tissue of the new organism.2.5 Metagenomi
sThe term Metagenomi
s is very ambiguous be
ause lots of di�erents ex-periment 
an be 
lassi�ed like metagenomi
s. All 
ases Metagenomi
s is toolfor studying the diversity and metaboli
 potential of environmental mi
robes,whose bulk is as yet non-
ultivable[32℄. In this s
enario we 
an perform sev-eral di�erent experiments fo
used on the 
hara
terisation of ba
teria or fungiin a sample, and 
all them metagenomi
s.One of the most used te
hnique for 
hara
terizing the ba
terial diversity of asample is the 16S (for fungi ITS) ampli
on analysis. In this 
ase, it is used aset of primers for amplifying the variable 16S region. There are several toolsto 
ompute this data: CLOTU[7℄, MOTHUR[8℄ and QIIME[9℄.
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Chapter 3Exome Resequen
ing
Contents3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . 133.2 Why sequen
ing the human exome? . . . . . . . 133.3 Capture Methods . . . . . . . . . . . . . . . . . . 143.3.1 Illumina exome enri
hment kit . . . . . . . . . . . 153.3.2 SOLiD exome enri
hment kit . . . . . . . . . . . . 153.3.3 Comparison of exome enri
hment kits . . . . . . . 153.4 Appli
ation of Exome sequen
ing . . . . . . . . . 163.4.1 Medi
al Field . . . . . . . . . . . . . . . . . . . . . 173.4.2 Human Evolution . . . . . . . . . . . . . . . . . . . 173.4.3 Biologi
al Field . . . . . . . . . . . . . . . . . . . . 173.1 Introdu
tionExome resequen
ing is a spe
ial appli
ation of the targeted resequen
ingand has be
ome a powerful new approa
h for identifying genes that underlieMendelian disorders[16℄[26℄. The exome 
an be de�ned as the sum of all
oding sequen
ing regions (CDS).3.2 Why sequen
ing the human exome?Despite human exome is only a small part of the entire genome, it 
on-tains all the information of the genes and several diseases are related tovariations on genes[15℄.We 
an 
onsider three points to give an answer to the question "Why se-quen
ing the human exome":

• Positional 
loning studies fo
used on protein-
oding sequen
es haveproved to be highly su

essful at identifying variants for monogeni
diseases[45℄.
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Figure 3.1: Exome Capturing methods: A - Solid-phase. B - Liquid-phase.[20℄
• Many Mendelian disorders are 
aused by disruption of protein-
odingsequen
es[31℄.
• A large fra
tion of variant su
h as missense or nonsense single-basesubstitutions or small insertion�deletions (indels) in gene 
oding se-quen
e are predi
ted to have fun
tional 
onsequen
es and/or to bedeleterious[22℄.3.3 Capture MethodsThere are 2 prin
ipal methods for 
apturing the exome: Solid-phase hi-bridization and Liquid-phase hibridization[20℄.Solid-phase hibridization utilize probes 
omplementary to sequen
es of inter-est �xed to a solid support (mi
roarray or �lters). The non-targeted regionsare washed out and the regions of interest remains on the support.Liquid-phase hibridization, at 
ontrary, uses biotinylated probes and the re-gions of interest are then re
overed with magneti
 streptavidin beads. Figure3.1 shows the two prin
ipal methods for 
apturing the exome. Currently themost used method is the Liquid-phase hibridization.Commer
ial kits now target, at a minimum, all of the RefSeq 
olle
tionand an in
reasingly large number of hypotheti
al proteins. Nevertheless, allexisting targets have limitations. First, the knowledge of all truly protein-
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Figure 3.2: Exome Capturing work�ow[15℄
oding exons in the genome is still in
omplete, so 
urrent 
apture probes 
anonly target exons that have been identi�ed so far. Se
ond, the e�
ien
y of
apture probes varies 
onsiderably, and some sequen
es fail to be targeted by
apture probe design altogether[15℄. In this thesis I take into 
onsiderationonly two 
ommer
ial kits: the SOLiD and the Illumina kits.The work�ow for the exome enri
hment is showed on �gure 3.2.3.3.1 Illumina exome enri
hment kitIllumina exome enri
hment kit is 
alled TruSeq Exome Enri
hment Kit.It is based on hybrid sele
tion(Fig.3.1),and allows to sele
t 201071 di�erentregions for a total of 62 Mbp and 20846 genes. The probes 
apture alsoUntraslated Regions (UTRs).3.3.2 SOLiD exome enri
hment kitSOLiD exome enri
hment kit is 
alled New Target Enri
hment Kit. It isbased on hybrid sele
tion (Fig.3.1), the kit allows to sele
t 195282 di�erentregions. This kit 
overs 37 Mbp and 19911 genes.3.3.3 Comparison of exome enri
hment kitsThe SOLiD and the ILLUMINA kit are di�erent be
ause of they 
overin many 
ases di�erent regions. More pre
isely:
• Overlapping regions are 186048 bp.
• 33 Mbp are in 
ommon



16 CHAPTER 3. EXOME RESEQUENCINGSample % Reads on target % Reads on target +500 PlatformI2 55,7% 72,1% ILLUMINAI4 56,6% 74,3% ILLUMINAI5 53,6% 69.4% ILLUMINAI6 48,4% 61,8% ILLUMINAI7 48,6% 62,6% ILLUMINAI12 55,2% 73,1% ILLUMINATable 3.1: Per
entage of reads on target in the six patients we analysedexome with Illumina te
hnology.
• ILLUMINA has 29 Mbp ex
lusive and SOLiD 4Mbp
• The extra regions of ILLUMINA kit are generally UTRsThese di�eren
es show also that the de�nition of exome is not globally a
-
epted.Another important thing to take into 
onsideration is that these kits 
apturenot only the targeted regions but, often we 
an �nd mitho
ondrial DNA andregions �anking the target:
• Mitho
ondrial DNA (we found over all samples with high 
overage) isvery usefull to 
he
k the sample before and after sequen
ing to avoiderrors (sample ex
hange). In fa
t we 
an sequen
e the hypervariableregions (HVR1 and HVR2) before the enri
hment and then 
he
kingthem after the sequen
ing with NGS. If they are equal we 
an be surethat there is no sample ex
hange.
• Flanking regions are also very important. Several mutations 
an be onthese region and they 
an have damaging e�e
ts.In the table 3.1 are reported the per
entage of reads aligned against thetarget regions and against the target regions plus 500 bp (at 3' and 5') ofthe six patients we analysed the exome with ILLUMINA te
hnology.

3.4 Appli
ation of Exome sequen
ingHuman Exome sequen
ing has several appli
ation both in diagnosti
 andin resea
h �elds. We 
an �nd 3 prin
ipal appli
ations [20℄:
• Medi
al �eld
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• Human Evolution
• Biologi
al �eld3.4.1 Medi
al FieldIn the medi
al �eld, human exome sequen
ing �nds a lot of appli
a-tions. Several disease are asso
iated with DNA variations in exomi
 re-gions (mendelian diseases or other well 
hara
terized diseases)and exomeresequen
ing 
an be used for diagnosti
 purpuses. For example Ng et al[25℄sequen
ed 12 human exome from patients with Freeman-Sheldon disease thatis a rare syndrome 
lassi�ed like dominantly inherited rare Mendelian disor-der. In the study, resear
hers were able to �nd the variations 
ausative ofthe disease.Many other studies was performed for mendelian diseases (autosomal re-
essive ataxia[19℄, papillorenal syndrome[29℄) and, in several 
ases humanexome resequen
ing allowed to �nd the 
ausative mutations.These studies demostrated that exome resequen
ing 
an be used for diag-nosti
s purpuses and in this thesis I investigated about the appli
ation ofexome resequen
ing for the diagnosis of arrhythmogeni
 
ardiomyopathy.At the same time it is very important to 
onsider that having the exomemeans also to have lots of data that 
an be useful for future studies. Infa
t whith exome resequen
ing we have a photo of all the variations of anindividual that 
an be useful for resear
h purpuses. For example if we are in-vestigating about an unknown disease we 
an analyse all the 
anditated mu-tations �ltered with 
ommon mutations from unrelated patients sequen
edfor other reasons.3.4.2 Human EvolutionLike spe
i�ed in the last subse
tion, having the exome of an individualmeans to have a photo of all variants of this individual. These allow toperform 
omparisons beetween di�erent persons from di�erent populationsand extra
t 
andidates mutations that 
an explain the di�erent phenotypes.A similar study has been performed by Yi et al[34℄, where it was 
omparedexomes from high-altitude and low-altitude populations to identify possibledi�eren
es in allele frequen
ies that 
an explain di�erent adaptations.In this study, there were found a dis
rete number of genes possible 
andidatedfor the high altitude adaptation.3.4.3 Biologi
al FieldCopy number variations (CNVs) and genomi
 stru
tural variations arelarge variations that have been 
onsidered in the last few years. CNVs are



18 CHAPTER 3. EXOME RESEQUENCINGinsertions, deletions or dupli
ations of genes or other regions of the genomewhile, genomi
 stru
tural variations are generally inversions or translo
ationsof pie
es of genome.Both variations are in some 
ases linked to diseases and they 
an be dete
tedalso by exome sequen
ing[21℄[42℄.



Chapter 4Alignment
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tion . . . . . . . . . . . . . . . . . . . . . 194.2 Mapping strategies . . . . . . . . . . . . . . . . . 204.2.1 PASS . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.2 BOWTIE . . . . . . . . . . . . . . . . . . . . . . . 214.2.3 BWA . . . . . . . . . . . . . . . . . . . . . . . . . 214.2.4 CLC . . . . . . . . . . . . . . . . . . . . . . . . . . 214.3 Mapper Evaluation . . . . . . . . . . . . . . . . . 224.1 Introdu
tionThe �rst step after the sequen
ing of an exome is the alignment. We are
onsidering the human exome so the alignment have to be performed againstthe human genome. There are several software to align short reads againsta referen
e but in every 
ase we have to align admitting mismat
hes andindels. Even if it may be seem a simple task, align short reads is not trivial,there are several software available based on di�erent algorithms.Mapping results in�uen
e the results of SNP Calling software, so it is veryimportant to 
hoose a good aligner with the best parameters.Mapping the reads against a referen
e means �nding the position of thesequen
ed pie
e of genome on the referen
e taking into 
onsiderations se-quen
ing errors and variations.There are two major problems when we 
onsider the mapping and the NGSoutput: the �rst problem is the amount of data and the time ne
essary toalign; the se
ond one is the reads that seem to have multiple solutions[17℄.Both problems are very important and they 
an be 
onne
ted.Align billions of reads 
an be very time 
onsuming and 
urrently algorithmstried to be as faster as possible. The problem of multiple mapping reads is
onne
ted to the read length and it is important to 
onsider 2 properties of



20 CHAPTER 4. ALIGNMENTa mapped reads:
• The best hit.
• The unique hit.The best hit is the best position of the reads onto the genome indipendentlyby the number of mismat
hes or indels. Generally, every alignment has as
ore and the best hit is the alignment with the best s
ore. Sometimes, aread 
an have multiple best hit, so we 
an map this read in di�erent positionand we don't known what is the real position of this read onto the genome.When a reads has only one best hist, it is 
alled unique best hit. Read lenghtis stri
ly 
orrelated to the unique best hit, short reads tend to have severalbest hit only for statisti
al questions.To understand the relation between read lenght and unique hit, we have to
onsider that a read with length N has N4 possible 
ombinations (we have4 nu
leotides).If N is equal to 10, the possible 
ombinations are 10000, so the probability of�nd our string is 1/10000. The human genome is 3Gbp and we 
an 
al
ulatethe number of 10 length strings: it is 3000000000 - 10 + 1, so we expe
t atleast 300000 strings equal to our one. (We 
onsider the human genome likea random string 
omposed by 4 letters).If N in
rease, the probabilty of �nd the same string de
rease. This is true ifthe human genome is a random string, but this not the 
ase of genomes. Inaddition, genomes have repetitive regions of di�erent lengths that in
reasethe probability to �nd multiple hits for short reads.The di�erent algorithms used for mapping short reads 
an 
hoose 3 di�erentsolutions for multiple hit:
• Ignore the multiple hits.
• Consider only a part of all the hits.
• Consider all the hits.The last solution 
an in
rease markedly the pro
essing time for mapping.4.2 Mapping strategiesSeveral algorithms had been developped to map reads against a referen
e;the goal is always �nd the real position of the reads onto the referen
e limitingpro
essing time and hardware equipments. In all 
ases the prin
ipal problemsare the reads lengths and the number of reads to align.The most used software are bases on indexing strategies: some softwareprefers to index the reads, other ones prefer to index the referen
e. Indexing
an take several time and 
an 
reate large �les used then for the alignments.In this thesis I take into 
onsideration 5 di�erent software:
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• Pass.
• Bowtie.
• Bfast.
• CLC.I don't talk about the alignment algorithms, but, I 
onsider only the prin
ipal
hara
terysti
s of the mapping software.4.2.1 PASSPass[18℄ is a mapping software developped at CRIBI (University of Padua).PASS 
an align short reads in bases spa
e (Illumina) and in 
olor spa
e(SOLiD), and it uses a very fast algorithm based on genome indexing. PASSuses short words for pla
ing the reads on the genome and then re�nes thealignment using a sort of Smith-Watermann algorithm. In my proje
t PASSwas used to align SOLiD data.4.2.2 BOWTIEBowtie[41℄ is based on Burrow-Wheeler transform. Bowtie is very fastbut it takes several time to 
onstru
t the indexes (on the genomes). Anotheradvantage of BOWTIE is the hardware request: BOWTIE 
an align againstthe human genome using a laptop, it requires few Giga of RAM. In the thesisBOWTIE had been used to align ILLUMINA reads.4.2.3 BWABWA (Burrows-Wheeler Aligner)[37℄[36℄ is an e�
ient program that alignsshort sequen
es against a long referen
e sequen
e su
h as the human genome.It implements two algorithms, bwa-short and bwa-sw. The former works forquery sequen
es shorter than 200bp and the latter for longer sequen
es upto around 100kbp. Both algorithms do gapped alignment. BWA needs toindex the referen
e and this operation 
an take several time. Like BOWTIEit is based on Burrow-Wheeler transform.4.2.4 CLCCLC[10℄ is a 
ommer
ial suite that o�er several tools for genomi
s andtrans
riptomi
s analyses.CLC mapper is based on a seeding approa
h. The algorithm iterates overinput reads and maps ea
h read individually by applying the following pro-
edure: seeding sequen
es of 30 nu
leotides ea
h are sampled from ea
h third



22 CHAPTER 4. ALIGNMENTposition of the input read. These seeds are looked up in the index and re-sulting 
andidate alignment lo
ations are examined using a banded SmithWaterman.4.3 Mapper EvaluationIt is very di�
ult to evaluate the results of a mapper be
ause we 
an takeinto 
onsideration di�erent parameters. The best way should be to have aset of reads with known position and with known mismat
hes.In my PHD thesis, I take into 
onsideration real data so it is not known thereal position of ea
h read. So, the evaluations has been made taking into
onsideration the number of aligned reads. Results are report in the 
hapter6. For all software I used default parameters.



Chapter 5SNP Caller
Contents5.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . 235.1.1 GATK:Genome Analysis ToolKit . . . . . . . . . . 235.1.2 CLC Probabilisti
 Variant Caller . . . . . . . . . . 255.1 Introdu
tionSNP Callers are a series of tools that extra
t variants from an alignment.The problems, in SNP Callers, are the high error rate of the base 
alling andthe errors in alignments. Under su
h 
ir
umstan
es, a

urate SNP 
allingare di�
ult and there is often 
onsiderable un
ertainty asso
iated with theresult[28℄.The problem of error rate asso
iated to the NGSs 
an be by-passed withhigh 
overage; the alignment problems otherwise 
an be solved only using agood mapper.In this PHD thesis I take into 
onsideration 2 SNP Caller: CLC VariantProbabilisti
 
aller and GATK[24℄.5.1.1 GATK:Genome Analysis ToolKitGATK is a suite designed to enable rapid development of e�
ient androbust analysis tools for next-generation DNA sequen
ers. This is the mostused tools and one of the most 
itated.GATK in
ludes a series of analysis for variant 
alling and it a

epts a BAM�le in input.There are several work�ow for GATK; in this thesis I used the work�owdes
ribed in �gure 5.1.
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Figure 5.1: GATK Work�owRealigner Target Creator and RealignmentWith this tool, GATK suite performs a realignment of some intervalsusing Smith-Watermann algorithm[46℄. To speed up this operation, GATKin a �rst phase �nd the 
andidate regions analysing the BAM �le; then onlythese regions are realigned using Smith-Waterman.The idea is to minimize the number of mismat
hes espe
ially in those regionswhere there are indels. In general, a large per
ent of regions requiring lo
alrealignment are due to the presen
e of an insertion or deletion in the individ-ual's genome with respe
t to the referen
e genome. Su
h alignment artifa
tsresult in many bases mismat
hing the referen
e near the misalignment, whi
hare easily mistaken as SNPs.Quality Re
alibrationIn this phase, GATK performs a 
orre
tion of the quality s
ore of thereads in the BAM �le. To re
alibrate the quality s
ore, GATK analyse threeparameters:
• The reported quality s
ore.
• The position of the nu
leotide in the reads.
• The pre
eding and 
urrent nu
leotide.



5.1. INTRODUCTION 25Using these 3 parameters, GATK is able to 
orre
t the quality s
ore of thebases.SNP CallingAfter BAM 
orre
tion, GATK 
an perform the SNP 
alling. GATK is de-signed also for multiple samples using a Bayesian genotype likelihood modelto estimate simultaneously the most likely genotypes and allele frequen
y ina population of N samples.SNP 
alling is performed observing mismat
hes and indels in the alignment�le and taking into 
onsideration the 
overage, the frequen
y of the varia-tions and the strand of the aligned reads.At the same time GATK gives a s
ore for ea
h variant 
alled (Variant Re
al-ibration and Variant Filtration). Ea
h variant has also a sort of 
omment tobetter indentifying problemati
 result (su
h as low 
overage or strand biasthat 
an 
reate artifa
ts).5.1.2 CLC Probabilisti
 Variant CallerCLC Probabilisti
 Variant Caller[11℄ is a tool of the 
ommer
ial CLCsuite. Probabilisti
 Variant Caller has been designed for 
alling variantsin haploid (ba
teria), diploid (human) and polyploid genomes (
an
er orplants). The tool is very simple to use and it take as input a CLC align-ments �le. The alignment 
an be performed using CLC or using also othermapper, the result BAM �le 
an be uploaded in CLC Workspa
e.The CLC Variant Caller algorithm 
ombines a Maximum Likelyhood ap-proa
h with a Bayesian model to 
all the variants and to give to ea
h one as
ore that represent the probability of the variant.More pre
isely it is �rst 
al
ulated a prior probability using only thealignment. The starting parameters are shown in �gure 5.2.These parameters are updated using an Expe
ted Maximization approa
h.At the same time it is 
al
ulated an error probability taking into 
onsider-ation also the quality s
ore of the aligned reads, and for ea
h quality s
oreit is 
al
ulated a di�erent error probability table.After the prior and the error probability have been estimated the VariantCaller give in output the most probable allele for ea
h position.CLC output is a table of variants with several parameters like 
overage,forward/reverse reads and probability of the variant.
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Figure 5.2: Initial probability of CLC Variant Caller



Chapter 6Arrhythomogeni
Cardiomyopathy
Contents6.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . 276.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 276.2.1 Mapping Results . . . . . . . . . . . . . . . . . . . 276.2.2 SNP Caller Results - Illumina Data . . . . . . . . 306.2.3 SNP Caller Results - SOLiD Data . . . . . . . . . 326.2.4 SNP Analyses . . . . . . . . . . . . . . . . . . . . . 336.2.5 Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . 346.1 Introdu
tionArrhythmogeni
 right ventri
ular 
ardiomyopathy (ARVC) is an inher-ited myo
ardial disease asso
iated with signi�
ant genotype and phenotypeheterogeneity. The stru
tural features of ARVC 
onsist of progressive �bro-fatty repla
ement of myo
ytes and, 
lini
ally, the disease has been asso
iatedwith ventri
ular arrhythmias at risk of sudden 
ardia
 death[27℄.In my thesys I take into 
onsideration 6 patients with ARCV disease already
hara
terized with Sanger. The exome of the 6 patientshas been enri
hedand sequen
ed using Illumina and SOLiD strategy.6.2 Results6.2.1 Mapping ResultsAfter sequen
ing, reads were aligned against the human genome usingCLC, PASS, BOWTIE and BWA using default parameters. BOWTIE andBWA required a preliminary indexing of the referen
e that take several hours.



28 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Number of reads Te
hnology2 17.250.274 ILLUMINA6S 49.719.032 SOLID4 81.382.994 ILLUMINA5 70.603.922 ILLUMINA6 48.166.720 ILLUMINA7 52.233.528 ILLUMINA12 33.786.456 ILLUMINATable 6.1: Number of reads sequen
ed per sample.Sample # of Reads PASS CLC BOWTIE BWA2 17.250.274 75,97% 87,18% 81,81% 86,89%6S 49.719.032 67,18% 75,61% - -6 48.166.720 80,64% 86,75% 62,19% 76,90%12 33.786.456 83,88% 86,75% 86,01% 93,91%Table 6.2: % of reads aligned with PASS, CLC, BOWTIE and BWA.CLC and PASS did not required this indexing.The fastest software was CLC followed by BWA, BOWTIE and PASS. Forall the software I take into 
onsideration the number of unique aligned readsadmitting 2 mismat
hes and gaps. For SOLiD reads I used only PASS, CLCand BFAST [12℄[40℄[39℄ (BFASTA uses an algorythm vary similar to PASS).The sequen
ing of six patients produ
ed di�erent number of reads and for thesoftware evaluation I 
onsidered only the 3 patients with the lowest numberof reads. This 
hoise has been made for minimize the pro
essing time for thealignments. In the table 6.1 there is reported the number of reads produ
edby the sequen
ers.The samples 
hosen for the mapper evaluation was the samples 12, 2 and 6for Illumina and the sample 6S for SOLiD. In the table 6.2 are reported theresults obtained with the 4 mappers.Table 6.2 shows that the mapper with the higher number of unique best hitis CLC; so, we 
hoose CLC like prin
ipal software for the alignments. CLCis also the simpliest software to use thanks to its graphi
al interfa
e.In table 6.3, there are showed the results of the alignments of all samplesand the average 
overage of the exome. Like spe
i�ed in Chapter 3, Illumina



6.2. RESULTS 29Sample # of Reads % aligned (unique) Avg Exome Coverage2 17.250.274 87,18% 9,24X6S 49.719.032 75,61% 40,01X4 81.382.994 84,79% 51,65X5 70.603.922 85,32% 41,53X6 48.166.720 86,75% 25,07X7 52.233.528 85,91% 27,36X12 33.786.456 86,75% 20,04XTable 6.3: % of reads aligned with CLC over all samples.Sample Te
hnology % reads on target % referen
e not 
overed % referen
e over 20X4 ILLUMINA 56,6% 3,96% 81,03%5 ILLUMINA 53,6% 3,73% 75,08%7 ILLUMINA 48,62% 4,84% 53,52%6 ILLUMINA 48,24% 5,76% 48,35%12 ILLUMINA 55,21% 7,83% 38,65%2 ILLUMINA 55,76% 22,14% 11,07%6S SOLiD 70,11% 9,56% 60,27%Table 6.4: Table with 
overage data of 6 patients. Reads has been alignedwith CLC.and SOLiD have di�erent kits. The average 
overage is 
al
ulated like:
total_nucleotide_aligned_on_the_exome

total_nucleotide_of_the_exomeExome sequen
ing is a targeted resequen
ing, and beyond the average 
over-age there are other parameters that have to be 
onsidered for understandingthe di�eren
es in the sample. These parameters are reported in table 6.4.Reads on target are all the reads that maps on the exome. With illuminakit, we have the 50% of reads that maps on the target while, with SOLiDkit we had the 70%. If we 
onsider the targeted regions plus 500 bp in 5'and in 3', the per
entage of reads on target in
rease of 20%. These 
on�rmthat also these regions are 
overed and we 
an 
onsider also the variations
al
ulated for these extra-regions. Like expe
ted the other data in table 6.4(% referen
e not 
overed and % of referen
e over 20X ) are stri
ly relatedto the average 
overage of the samples. I reported also the per
entage ofreferen
e over 20X 
overage be
ause, like explained later, at this 
overagewe have the best result for variation 
alling.



30 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Gene Chr Position Sanger GATK CLC CASAVA4 DSG2 18 29104698 C/T C/T C/T C/T4 DSG2 18 29125854 A/G A/G A/G A/G4 DSG2 18 29126670 T/C Not found T/C Not found4 DSP 6 7542149 -/A Not found -/A Not found4 DSP 6 7563983 G G G G4 DSP 6 7572262 G G G G4 DSP 6 7572026 A/T A/T A/T Not found4 DSP 6 7576527 A A A A4 DSP 6 7584617 C/T C/T C/T C/T4 DSP 6 7585967 A A A A5 PKP2 12 32948970 GT/A Not found A Not found5 PKP2 12 32945721 C/A C/A C/A Not found5 PKP2 12 32945769 C/G C/G C/G Not found5 DSG2 18 28666526 +TAA +TTAA +TAA Not found5 DSP 6 7567970 T T T Not found5 DSP 6 7572026 A A A Not found5 DSP 6 7559633 A A A Not found5 JUP 17 39914070 A/C A/C A/C Not found5 JUP 17 39913645 A/G A/G A/G Not foundTable 6.5: Table with Variant of Samples 4 and 5. There is reported theSanger result and the output of CLC, GATK and CASAVA.6.2.2 SNP Caller Results - Illumina DataAfter alignments we performed the SNP Calling. SNP Callers take asinput BAM �les that are the binary format of SAM, the standard alignmentoutput. We 
onsidered GATK and CLC Variant Probabilisti
 
aller.GATK required lots of step to produ
e the output and the pipeline took alsolots of time (more or less one day per sample).To evaluate the variant 
allers I fo
used my attention on the best samples,the samples 4 and 5 that are the ones with the highest 
overage for Illuminasequen
ing. For SOLiD sequen
e I used the sample 6S that was the uniqueavaliable.Sample 4 and 5 was analyzed using GATK, CLC and CASAVA. CASAVA isthe standard suite for Illumina data analyses and performs alignment (withELAND) and SNP/DIP Calling. Software evaluation was performed 
on-sidering a series of known variant previously 
hara
terized using SANGERTe
hnology. For ea
h variant we 
he
ked the SANGER sequen
e quality andwe 
he
ked the presen
e in the variant 
aller outputs.



6.2. RESULTS 31Sample Gene Chr Position Exome position Coverage4 DSG2 18 29104698 IN 644 DSG2 18 29125854 IN 924 DSG2 18 29126670 IN 624 DSP 6 7542149 IN 94 DSP 6 7563983 IN 674 DSP 6 7572262 IN 394 DSP 6 7572026 OUT 324 DSP 6 7576527 IN 364 DSP 6 7584617 IN 744 DSP 6 7585967 IN 375 PKP2 12 32948970 OUT 85 PKP2 12 32945721 OUT 175 PKP2 12 32945769 OUT 105 DSG2 18 28666526 OUT 185 DSP 6 7567970 OUT 145 DSP 6 7572026 OUT 145 DSP 6 7559633 IN 55 JUP 17 39914070 OUT 125 JUP 17 39913645 OUT 30Table 6.6: Positions of variants respe
t the enri
hed regionsTable 6.5 shows the results. In this table CASAVA seems to be the worstsoftware but we have to 
onsider that CASAVA extra
ts variants limited tothe enri
hed regions. Lot of the position reported for samples 4 and 5 areout of the enri
hed regions (see table 6.6). CASAVA was dis
arded for itsinability to �nd variants out of enri
hed regions.At 
ontrary, GATK and CLC are able to dete
t variants in all 
overed re-gions even if these regions are out of the exome.The performan
es of GATKand CLC are very similar but observing the table 6.5 we 
an see that GATKhad some di�
ulties in dete
t indels (indel -/A in position 7542149 
hromo-some 6 for the sample 4 and indel -/TAA in position 28666526 
hromosome18 for the sample 5). The unique problem with CLC is the variant in posi-tion 32948970 
hromosome 12 in the sample 5: here CLC 
alled a variant inomozygosis but SANGER sequen
es found the same variant in eterozygosis.For better understanding this results I take into 
onsideration also the 
ov-erage. Like reported in table 6.6 this variation has a low 
overage (8X).These results suggested that the most reliable software is CLC Variant Prob-abilisti
 Dete
tor and I analyzed all the other samples with CLC. In the table6.7 are reported the results.



32 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Average Coverage # of variant from Sanger # of variant 
orre
t from CLC4 51,65X 10 105 41,53X 10 96 25,07X 9 77 27,36X 10 102 9,24X 12 512 20,04X 9 6Table 6.7: Number of variants found by Sanger 
ompared with the CLCoutput

Figure 6.1: % of 
orre
t outputs of CLC divided by 
overageAnalysing these data, it is 
lear that there is a stri
ly relationship among the
overage and the performan
e of the SNP 
aller, but the average 
overage
an be only an approximate parameter. More interesting is the relationamong the result of CLC and the 
overage of every variant. In the �gure 6.1I 
onsidered all the variants indipendently from the sample; I divided the
overage in 5 
lass and I 
onsidered the 
orre
ted predi
tion of CLC againstthe total of variants. Observing the �gure 6.1, it appears that the minimum
overage for having reliable results is 20X. The total results divided persample are reported in the supplementary materials.6.2.3 SNP Caller Results - SOLiD DataFor the SOLiD data, we had only one sample (6S) and it is very di�
ultto extra
t some statisti
s having only one sample. For SOLiD data I take



6.2. RESULTS 33Position Chr SANGER CLC PASS/GATK BFAST/GATK32974422 12 G/- G/- NotFound NotFound7558318 6 T/C T/C T/C T/C7578819 6 G G/A G G7578823 6 A A/G A A7584617 6 C/T C/T C/T C/T7585967 6 C NotFound NotFound C28673760 18 No Coverage No Coverage No Coverage No Coverage28672067 18 T/C T/C T/C T/CTable 6.8: Results of SOLiD DataAlgorithm Total variants found Variants annotated with dbSNPCLC 115.681 52.283BFAST/GATK 48.097 42.213PASS/GATK 79.478 51.970Table 6.9: Results of Variant Caller on SOLiD Datainto 
onsideration CLC and GATK.CLC was used starting from CLC mapping, while GATK was used startingfrom aligments obtained with PASS and BFAST[12℄[40℄[39℄.Results are reported in table 6.8. Unlike with Illumina Data, CLC doesnot perfom very well, probably 
olor spa
e is more 
omplex to align andspe
ialized software like PASS and BFAST perform better.It is important to 
onsider that 50% of known variants are out of the enri
hedregions and one has no 
overage. The total number of variants 
alled by thethree elaborations of sample 6S are reported in table 6.9.The three algoritms found 34.305 
ommon variants.These data are very di�
ult to interpretate. Theoreti
ally within the samesample we should obtain same data. Probably 
olor spa
e is very di�
ult totrait and the result 
an vary.6.2.4 SNP AnalysesThe table 6.10 reports the total number of variants 
alled by CLC andthe variants that are known a

ording to DBSNP[13℄. I 
onsidered only thesamples sequen
ed with Illumina.



34 CHAPTER 6. ARRHYTHOMOGENIC CARDIOMYOPATHYSample Total Number of Variants Variants with DBSNP 
ode2 99.600 54.6484 286.124 165.9485 320.178 159.8536 254.541 124.6287 276.340 134.96812 195.672 110.996Table 6.10: Total number of Variant per sample and total number of knownvariants a

ording to DBSNPThe 50% of 
alled variants are known with a DBSNP 
ode and the numberof variant is stri
ly 
orrelated to the 
overage: samples with higher 
overagehave more variants 
alled; probably the number of false positive in
reasewith the 
overage. The six samples share 30.028 variants and 18.374 areknown in DBSNP.Sample 6 and 6S are the same sample sequen
ed with Illumina(6) and SOLiD(6S).Comparing the variants 
alled with CLC we see that they shared 47.957variants (Sample 6S has 115.681 variants 
alled using CLC variant 
aller).Pra
ti
ally all variants found by BFAST and GATK are in 
ommon with thePASS/GATK and the CLC ones.6.2.5 Dis
ussionCurrently, exome sequen
ing is one of the most 
hallenge approa
h usedto 
hara
terize human disease. Results depends on two fa
tor: the mappingand the snp 
alling algorithms. Moreover results of mapping in�uen
e thesnp 
alling results. We saw that 
hanging alignment algorithm, 
hange alsothe output of snp 
aller. The most di�
ult task is to understand the realposition of a read on the referen
e taking into 
onsideration sequen
ing er-rors and real di�eren
es. On the other hand, SNP 
aller must to be ableto 
onsider di�erent level of 
overage and di�eren
es in the quality of readsto right assign a variation in a parti
ular 
oordinate of the referen
e. Atthe moment there is not a standard approa
h to 
al
ulate the variants of anexome sequen
ing, but, in this thesis I observed that CLC suite perform bet-ter than the other pipelines using illumina data. With SOLiD data CLC donot perform very well, GATK, using PASS or BFAST alignments, perfomedbetter.GATK had problems in deletion/insertion re
ognization.CLC performs very well when the 
overage is >20X. Observing the table6.4 we 
an say that the minumun average 
overage for having a reliable snp
alling result is at least 70X. At this average 
overage we have at least the80/90% of the exome 
overed with at least 20 indipendent reads and theresults are very robust.



6.2. RESULTS 35Additionally, CLC is very simple to use and it 
an be used also by biologiststhat do not have bioinformati
s 
ompeten
es. It is very fast and 
an be runon laptop 
omputer.Using the Sanger sequen
es I tried also to 
al
ulate false positive and falsenegative. I analysed 7.989 nu
leotides and I found only 2 false negative re-sults. Observing the 
overage I saw that the 2 false negative results is underthe 20X 
overage (the �rst is 8X, and the se
ond is 1X), and the rest ofnu
leotides has very high 
overage. These data 
on�m the key role of the
overage in the snp 
alling results. In the 7.989 nu
leotides analized I don't�nd any false positive results. These don't means that there aren't falsepositive, I belive that false posivite are present and that these false positiveare stri
ly 
orrelated to the 
overage.Filtering the data by 
overage, the number of variants de
rease drasti
ally(see table 7.7 in supplementary data); probably also the number of falsepositive de
rease.
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Chapter 7Supplementary Material

Sample Position Chr SANGER CLC Coverage4 29104698 18 C/T C/T 644 29125854 18 A/G A/G 924 29126670 18 C/T C/T 624 7542149 6 -/A -/A 94 7563983 6 G G 674 7572262 6 G G 394 7572026 6 T/A T/A 324 7576527 6 A A 364 7584617 6 C/T C/T 744 7585967 6 C C 37Table 7.1: Illumina Sample 4 Results37



38 CHAPTER 7. SUPPLEMENTARY MATERIALSample Position Chr SANGER CLC Coverage5 32948970 � 71 12 T/AC AC 85 32945721 12 C/A C/A 175 32945769 12 G/C G/C 105 28666526 18 -/TAA -/TAA 155 7567970 6 T T 145 7572026 6 A A 145 7559633 6 A A 55 39914070 17 G/T G/T 125 39913645 17 T/C T/C 30Table 7.2: Illumina Sample 5 ResultsSample Position Chr SANGER CLC Coverage6 32974422 12 G/- G/- 186 7558318 6 T/C NotFound 116 7578819 6 G G 106 7578823 6 A A 106 7584617 6 C/T C/T 286 7585967 6 C C 106 28673760 18 G/A NotFound 16 28672067 18 T/C T/C 12Table 7.3: Illumina Sample 6 ResultsSample Position Chr SANGER CLC Coverage7 7567970 6 C/T C/T 87 7572262 6 A/G A/G 207 7572026 6 T/A T/A 117 7578189 6 G/A G/A 287 7578816 6 G G 157 7578823 6 A A 127 29104714 18 A/G A/G 377 39913645 17 T/C T/C 117 39912145 17 A/T A/T 107 39911771 17 G/A G/A 347 7585967 6 C C 20Table 7.4: Illumina Sample 7 Results



39Sample Position Chr SANGER CLC Coverage2 7542149 6 A/+A No Coverage 02 7563983 6 G G 52 7565227 6 A/T No Coverage 02 7576527 6 G/A NotFound 72 7584617 6 T/C T/C 72 28649057 18 G NotFound 22 32994007 12 G/- NotFound 32 32977104 12 -/A -/A 52 29104553 18 T/C T/C 102 29104569 18 A/G A/G 11Table 7.5: Illumina Sample 2 Results
Sample Position Chr SANGER CLC Coverage12 33030802 12 A/G NotFound 412 30049475 12 G/A No Coverage 012 32949029 12 G G 1112 33021819 12 C NotFound 212 28669496 18 C C 812 7563983 6 G G 2512 7572262 6 G G 1512 7576527 6 A A 1312 7584617 6 C/T C/T 31Table 7.6: Illumina Sample 12 Results
Sample Number of variants with 
overage > 20X Total Number of variants2 22.009 99.6004 140.088 289.1245 127.290 320.1786 78.117 254.5417 84.979 276.34012 57.555 195.672Table 7.7: Variants with a 
overage higher than 20X
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