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Abstract 

 

Intentionally designed or accidentally caused, notches, cracks or defects are 

inevitably present in engineering components and can induce high stress gradients 

when a far field loading is applied. Then, structural strength assessments are often 

based on the local stress and strain state in the close neighbourhood of the stress 

raisers. 

The present PhD thesis, focused on the application of local approaches to 

fracture and fatigue problems, is divided into six Chapters corresponding to 

different research topics, all related to new applications of the averaged strain 

energy density criterion and other widely employed local approaches to notched 

or cracked structural components. 

In the first Chapter, the adopted local approaches, namely the Notch Stress 

Intensity Factor-based approach (NSIF), the averaged Strain Energy Density 

(SED) criterion and the Peak Stress Method (PSM), are briefly introduced and 

described along with their theoretical frameworks. 

The second Chapter deals with brittle fracture under mixed mode static 

loading. A wide experimental campaign has been carried out on PMMA 

specimens weakened by blunt notches and subjected to in-plane mixed mode I+II 

loading, as well as on graphite specimens weakened by blunt notches and on 

PMMA cracked specimens subjected to out-of-plane mixed mode I+III loading. 

Then, all experimental results have been reanalysed by means of the SED 

approach obtaining a very good accuracy in the assessment of the static critical 

loads. In particular two different criterion formulations have been proposed to 

address the problem of out-of-plane mixed mode loading.  

The third Chapter deals with multiaxial fatigue loadings. First, the fatigue 

strength of severely notched titanium grade 5 alloy, Ti-6Al-4V, has been 

investigated. The results of experimental tests under combined tension and torsion 

loading, both in-phase and out-of-phase, have been summarised in terms of the 

linear elastic SED. Then, the SED criterion has been applied for the first time to 

an industrial case study, that is the multiaxial fatigue strength assessment of steel 
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welded rollers produced by Rulmeca S.p.a with failures at the weld root. The 

investigation has been performed by means of 3D FE analyses and experimental 

tests. Finally, some remarks about the phase angle effect on sharp V-notched 

components under multiaxial fatigue have been drawn on the basis of a proposed 

analytical frame, based on the maximum value of the shear stress averaged over a 

fatigue cycle. 

The fourth Chapter addresses the numerical study of 3D effects in notched and 

cracked components. Initially, the attention has been focused on coupled modes 

and on the effect of different boundary conditions in 3D cracked discs and plates 

subjected to nominal mode III or mode II loading. The intensity of the local 

through-the-thickness stress and strain state has been evaluated by means of the 

averaged SED, which allows to combine the influence of the applied mode with 

the induced fracture modes. Then, the presence of three-dimensional effects has 

been investigated both theoretically and numerically in blunt notched components 

under cyclic plasticity conditions. Two different approaches have been 

considered: the first one is an incremental procedure, which combines a material 

elastic-plastic model with an approximate method to estimate the elastic-plastic 

stress and strain components from the linear-elastic ones; the second approach, 

instead, is based on cyclic elastic-plastic FE analyses. The theoretical estimations 

have been compared with the numerical results considering several case studies 

under uniaxial and multiaxial cyclic loading. Finally a link between the elastic-

plastic SED averaged over a control volume and the area inside the hysteresis 

loops at the notch tip has been derived. 

The fifth Chapter, instead, is related to the comparison between different 

fracture criteria. The SED approach and that based on the Finite Fracture 

Mechanics (FFM) have been compared considering sharp V-notches under pure 

mode I or mode II loading. Dealing with mode II loading, a new expression of the 

control radius for SED evaluation has been successfully proposed. The criteria 

have been compared first analytically and then considering several experimental 

data taken from the literature and related to different brittle materials.  

Finally the sixth Chapter address the link between the SED approach and the 

Peak Stress Method (PSM). First, cracks under in-plane mixed mode I+II loading 
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have been investigated. A method to rapidly calculate the averaged SED based on 

the peak stresses evaluated at the crack tip has been proposed for both long and 

short cracks. On the basis of the derived link, a practical application related to the 

fatigue strength assessment of aluminium and steel butt welded joints has been 

carried out. Then, also the case of cracks subjected to out-of-plane mixed mode 

I+III loading has been addressed. Also in this case, a method to rapidly evaluate 

the averaged SED based on the peak stresses at the crack tip has been proposed. 

The obtained link has been adopted in a structural problem related to the fatigue 

strength assessment of tube-to-flange steel welded joints under torsion loading. 
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Sommario 

 

Variazioni geometriche, come intagli, cricche o difetti in generale, sono 

comunemente presenti nella maggior parte dei componenti meccanici e possono 

indurre elevati gradienti di tensione per effetto dei carichi esterni. La valutazione 

della resistenza strutturale dei componenti meccanici è perciò generalmente basata 

sullo stato di tensione e deformazione locale nelle adiacenze di tali variazioni 

geometriche. 

La presente tesi di dottorato, focalizzata sull’applicazione di approcci locali per 

la previsione della resistenza statica ed a fatica, è divisa in sei Capitoli 

corrispondenti a diversi argomenti di ricerca, tutti relativi a nuove applicazioni del 

criterio basato sulla densità di energia di deformazione mediata (SED) e di altri 

importanti approcci locali a componenti strutturali intagliati o criccati. 

Nel primo Capitolo, sono brevemente introdotti e descritti gli approcci locali 

adottati, cioè l’approccio basato sul Notch Stress Intensity Factor (NSIF), il 

criterio basato sulla densità di energia di deformazione mediata (SED) e il Peak 

Stress Method (PSM), assieme alle loro basi teorico-analitiche. 

Il secondo Capitolo si occupa della frattura fragile sotto carichi statici di modo 

misto. Una campagna sperimentale è stata eseguita su provini in PMMA indeboliti 

da intagli blandi e soggetti a carichi di modo misto nel piano I+II, così come su 

provini in grafite indeboliti da intagli blandi e su provini in PMMA criccati 

soggetti a carichi di modo misto fuori piano I+III. In seguito, tutti i dati 

sperimentali sono stati rianalizzati per mezzo dell’approccio SED, ottenendo 

un’ottima accuratezza nella stima dei carichi critici statici. In particolare, per 

trattare in maniera più efficace il caso di carichi di modo misto fuori piano I+III 

sono state proposte due diverse formulazioni del criterio. 

Il terzo Capitolo tratta il tema della fatica multiassiale. Inizialmente, è stata 

investigata la resistenza a fatica di una lega di titanio grado 5, Ti-6Al-4V, 

severamente intagliata. I risultati dei test sperimentali sotto carichi di trazione e 

torsione combinati, sia in fase che fuori fase, sono stati riassunti in termini di SED 

lineare elastico. In seguito, il criterio SED è stato applicato per la prima volta ad 
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un caso studio di interesse industriale: la valutazione della resistenza a fatica 

multiassiale di rulli saldati in acciaio, prodotti da Rulmeca S.p.a. e caratterizzati 

da cedimenti alla radice del cordone di saldatura. Lo studio è stato eseguito per 

mezzo di analisi FEM 3D e test sperimentali a fatica. Infine, prendendo in esame 

componenti indeboliti da intagli a V acuti soggetti a carichi di fatica multiassiale, 

sono state tratte alcune osservazioni sull’effetto dell’angolo di fase, sulla base di 

un nuovo approccio analitico basato sul valore massimo della tensione tangenziale 

mediata su un ciclo di fatica. 

Il quarto Capitolo tratta lo studio numerico e teorico degli effetti 3D in 

componenti intagliati e criccati. Inizialmente, l’attenzione è stata focalizzata sui 

modi accoppiati e sull’effetto di diverse condizioni al contorno in dischi e piastre 

criccate, tridimensionali e soggette ad un carico nominale di modo III o modo II. 

L’intensità dello stato di tensione e deformazione locale è stata valutata attraverso 

lo spessore per mezzo del SED mediato, che consente di combinare l’effetto del 

modo di carico applicato e dei modi di frattura indotti. Infine la presenza di effetti 

3D è stata investigata sia dal punto di vista teorico che numerico in componenti 

indeboliti da intagli blandi e in condizioni di plasticità ciclica. Sono stati 

considerati due diversi approcci: il primo è una procedura incrementale, che 

combina un modello elasto-plastico del materiale con un metodo approssimato per 

stimare le componenti di tensione e deformazione elasto-plastiche a partire da 

quelle lineari elastiche; il secondo approccio, invece, è basato su analisi FEM 

elasto-plastiche cicliche. Le stime teoriche sono state confrontate con i risultati 

numerici considerando diversi casi studio soggetti a carichi ciclici sia monoassiali 

che multiassiali. Infine è stato ricavato un legame tra il SED mediato elasto-

plastico e l’area all’interno del ciclo di isteresi all’apice dell’intaglio. 

Il quinto Capitolo, invece, è relativo al confronto tra diversi criteri di 

cedimento. Sono stati confrontati l’approccio SED e quello basato sulla teoria 

della Finite Fracture Mechanics (FFM), considerando intagli a V acuti soggetti a 

puro modo I o puro modo II. Con riferimento a carichi di puro modo II, è stata 

proposta con successo una nuova espressione del raggio di controllo per il calcolo 

del SED. I criteri sono stati confrontati prima analiticamente e in seguito 
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considerando dati sperimentali tratti dalla letteratura e relativi a diversi materiali 

fragili.  

Infine, nel sesto Capitolo è stato investigato un legame tra il criterio SED ed il 

Peak Stress Method (PSM). Prima di tutto sono stati considerati componenti 

strutturali criccati soggetti a carichi di modo misto nel piano I+II. È stato proposto 

un metodo, valido sia per cricche lunghe che corte, per calcolare rapidamente il 

SED a partire dalle tensioni di picco valutate all’apice di cricca. Il legame ottenuto 

tra PSM e SED è stato poi impiegato nella stima della resistenza a fatica di giunti 

saldati testa a testa in acciaio ed alluminio. In seguito, è stato trattato anche il caso 

di componenti criccati soggetti a carichi di modo misto fuori piano I+III. Anche in 

questo caso, è stato proposto un metodo per valutare rapidamente il SED a partire 

dalle tensioni di picco all’apice di cricca. Sulla base del legame tra PSM e SED, è 

stata stimata la resistenza a fatica di giunti saldati tubo-su-flangia in acciaio 

sottoposti a carichi torsionali. 
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1.1 Introduction 

In the next chapters, some of the most important and widely employed local 

approaches will be adopted in fracture and fatigue problems of notched and 

cracked structural components, with particular attention to eventual three-

dimensional effects. The considered local approaches will also be compared with 

other fundamental criteria proposed in the literature and the link between different 

methods will be investigated. 

In this chapter, the above local approaches, namely the notch stress intensity 

factor-based approach (NSIF), the averaged strain energy density (SED) criterion 

and the peak stress method (PSM), will be briefly described along with their 

theoretical frameworks. For a most comprehensive description of the above local 

approaches the reader can refer to the recent reviews by Radaj focused on the 

NSIF approach [1] and on the local SED concept and its relation to the PSM [2]. 

The SED criterion and its applications to fracture and fatigue problems have been 

recently reviewed also by Berto and Lazzarin [3,4]. 

In the following the description of the above approaches will be subdivided into 

two sections focused on structural components weakened by sharp V-notches 

(which include the crack case) and blunt V-notches. 

 

1.2 Sharp V-notches 

1.2.1 Local stress fields and Notch Stress Intensity Factors 

The stress intensity factor (SIF) concept has originally been developed in the 

context of fracture mechanics. For fracture phenomena, both brittle fracture and 

fatigue failure, the asymptotic singular stress field at the pointed crack or slit tip is 

most important. The stress level around the singularity is described by the SIF, 

possibly superimposed by the crack-parallel non-singular T-stress. The local 

three-dimensional stress singularity at a definite point of the crack or slit front can 

generally be described by superimposition of three two-dimensional stress 

singularities corresponding to three independent loading or opening modes of the 

crack tip: transverse tensile loading (mode I), in-plane shear loading (mode II) and 

out-of-plane shear loading (mode III). The appertaining SIFs are KI, KII and KIII. 
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Non-singular stresses may be superimposed: crack-parallel stresses (the T-stress) 

as well as normal stresses and symmetric shear stresses in the crack front 

direction. 

The well-known concept of SIFs describing the stress singularity at crack tips or 

slit tips under linear–elastic material conditions can be transferred to pointed re-

entrant corner notches (e.g. V-notches, stepped bars and weld toe notches). The 

SIF concept has been substantially extended since Williams’ basic contribution 

(1952) on stress fields at angular corners [5].  

Whereas the asymptotic stress drop from the singularity at the crack tip is 

described by the inverse square root of the radial distance r from the crack tip (the 

exponent is minus 0.5), a smaller, notch-angle-dependent exponent occurs in the 

case of corner notches, which means that the degree of the singularity is reduced 

[5]. The stress field close to corner notches (just as the stress field close to crack 

tips) can be described by stress intensity factors [6]. These are named ‘notch stress 

intensity factors’ as distinguished from the conventional SIFs of crack tips. The 

singular in-plane and out-of-plane stress fields at pointed corner notches can be 

specified by three notch loading modes (in analogy to the crack opening modes) 

related to the bisector plane of the notch: symmetric in-plane stresses (mode 1), 

anti-metric in-plane stresses (mode 2) and out-of-plane shear stresses (mode 3). 

The corresponding notch loading modes are in-plane tensile loading, in-plane 

shear loading and out-of-plane shear loading. The three basic loading modes with 

singular stresses at the notch tip produce the following asymptotic stress 

distribution (stress tensor σij and σkz) around the notch tip, restricted to the first-

order terms (Figs. 1.2.1 and 1.2.2) [5,7]:  
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Figure 1.2.1. Sharp V-notch: generic three-dimensional stress field in a polar reference system. 

 

 

 

Figure 1.2.2. Sharp V-notch: in-plane stress field in (a) Cartesian and (b) polar reference systems. 

 

σij =
1

√2π
[K1 ∙ r

λ1−1 ∙ f1,ij(θ) + K2 ∙ r
λ2−1 ∙ f2,ij(θ)]      

with i, j = x, y or i, j = r, θ                                                                   (1.2.1) 
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σkz =
1

√2π
K3 ∙ r

λ3−1 ∙ f3,kz(θ)    with k = x, y or k = r, θ                               (1.2.2) 

The NSIFs K1, K2 and K3 depend on the magnitude of the load, the notch depth a, 

the notch opening angle 2α and further geometric parameters of the considered 

configuration. The angular functions f1,ij, f2,ij and f3,kz describe the angular 

distribution of the stress close to the notch tip. The aforementioned relationship is 

strictly valid for r → 0 and approximately valid for values of r, which are small in 

relation to the notch depth and other geometrical parameters of the configuration. 

Just as with the crack problem (2α = 0), the complete solution comprises 

additional non-singular higher-order terms. Williams’ solution for the in-plane 

stress field is based on the Airy stress function in polar coordinates in the 

following form, which comprises a symmetrical component and an anti-metrical 

component [5]: 

F(r, θ) = rλ+1 ∙ f(θ)                                                                                                   (1.2.3) 

where the values of λ have to be determined as part of the solution. The angular 

functions have to comply with the boundary conditions on the load-free faces of 

the V-notch. The stress can now be expressed in terms of r, λ and f(θ). Application 

of the boundary conditions produces a system of four simultaneous equations for 

four unknown constants. This system can be separated into two independent sets 

of equations related to the symmetrical and anti-metrical stress fields. A non-

trivial solution can be obtained only if the determinants of the coefficient matrices 

are equal to zero each. From this requirement, the condition follows: 

sin λ(2π − 2α) = ±λ ∙ sin(2π − 2α)                                                                   (1.2.4) 

Because the notch opening angle 2α is a fixed parameter for a specific wedge or 

notch, Eq. (1.2.4) provides the values λ1 and λ2, called ‘eigenvalues’, necessary to 

ensure a nontrivial solution. Williams’ solution has been widely used under the 

name ‘eigenfunction expansion method’. Another, more versatile function-

analytical approach for solving the problem of the in-plane loaded blunt V-notch 

comprising the sharp V-notch as a special case has been applied by Lazzarin and 

Tovo [8,9], Lazzarin et al. [10] and Atzori et al. [11]: the Kolosov–Muskhelishvili 
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complex stress function method. The principal mathematical steps remain the 

same as in the Airy stress function method. The stress field analysis for the V-

notch subjected to out-of-plane shear loading (mode 3) is easier to perform, 

because the governing equation in terms of the out-of-plane displacements is a 

potential function substituting the bi-potential stress function in the case of the in-

plane stresses. Performing similar mathematical steps as before, the following 

eigenvalue equation is found [7]: 

sin λ3(2π − 2α) = 0                                                                                                  (1.2.5) 

The smallest positive eigenvalues λ1, λ2 and λ3 defining the degree of the stress 

singularity at the notch tip depend solely on the notch opening angle 2α (Fig. 

1.2.3). The eigenvalue 0.5 is related to crack tips, 2α = 0, and the eigenvalue 1.0 

(no singularity) to straight edges, 2α = π (but only for modes 1 and 3). The 

eigenvalues for mode 1 loading are slightly smaller than those for mode 3 loading. 

They are substantially smaller in relation to mode 2 loading, thus designating 

severer singularities. The stress singularity in mode 2 loading is weaker and 

vanishes completely for 2α ≥ 102.6° [12]. The characteristic stress components in 

the bisector plane (θ = 0) have the following simple form: 

σθθ(r, 0) =
1

√2π
K1 ∙ r

λ1−1                                                                                       (1.2.6) 

τrθ(r, 0) =
1

√2π
K2 ∙ r

λ2−1                                                                                        (1.2.7) 

τθz(r, 0) =
1

√2π
K3 ∙ r

λ3−1                                                                                        (1.2.8) 
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Figure 1.2.3. Eigenvalues λ1, λ2 and λ3 defining the degree of stress singularity at sharp V-notches 

subjected to modes 1, 2 and 3 loading conditions, dependent on notch opening angle 2α (Lazzarin 

et al. [12]). 

 

The NSIFs K1, K2 and K3 may be evaluated on the basis of the aforementioned 

characteristic stress components considering the limit values for r→0 [6]: 

K1 = lim
r→0

√2π ∙ r1−λ1 ∙ σθθ(r, 0)                                                                             (1.2.9) 

K2 = lim
r→0

√2π ∙ r1−λ2 ∙ τrθ(r, 0)                                                                           (1.2.10) 

K3 = lim
r→0

√2π ∙ r1−λ3 ∙ τθz(r, 0)                                                                           (1.2.11) 

The dimensions of K1, K2 and K3 are MPa·mm
1-λ1

 ; MPa·mm
1-λ2

 and MPa·mm
1-λ3

.  

It should be noted that the elastic notch stress intensity factors are used to describe 

the fatigue strength of fillet-welded attachment joints, moreover the fracture 

toughness of brittle materials may also be evaluated on this basis. The numerical 

values of K1, K2 and K3 can be set into comparison, e.g. as failure criteria, 
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provided their dimension is identical, i.e. only under the condition of an identical 

notch angle besides an identical loading mode.  

The NSIFs K1, K2 and K3 of V-notches or re-entrant corners can easily be 

analysed on the basis of the FEM using a very fine mesh near the sharp notch tip. 

 

1.2.2 Averaged Strain Energy Density approach 

It is not the elastic maximum notch stress that controls static, dynamic or cyclic 

crack initiation at notches of structural members, but rather the notch stresses 

averaged over a definite finite volume of the material at the notch root, which is 

assumed as homogeneous. This idea goes back to Neuber [13,14] who formulated 

the hypothesis of an ‘elementary material volume’ or ‘microstructural support 

length’ for this purpose. Determining the average value of the partly multiaxial 

and singular notch stresses in a finite volume around the notch tip needs further 

sophistication. On this track, the local SED approach has been proposed and 

analytically developed by Lazzarin and Zambardi [15]. In the case of sharp notch 

tips, not only the stresses at the notch tip tend towards infinity but also the SED. 

Contrary to this, the averaged SED in a local finite volume around the notch (or 

crack) tip has a finite value. This value is considered to be the material parameter 

that describes the initiation of brittle fracture or fatigue failure. The proposal to 

use the SED as a strength parameter goes back to Beltrami (1885) [16]. In the 

following, the local SED concept for sharp V-notches is presented: the basic 

relationships for the total local SED are derived and the applications to the brittle 

fracture strength and to the high-cycle fatigue strength are demonstrated. 

The question is, what shape and size the finite volume around the notch tip should 

have. It is conceived as a sector-shaped cylinder of radius R along the notch tip 

line, termed ‘control volume’.  

For simplicity, in the following a structural component weakened by a sharp V-

notch and subjected to in-plane mixed mode I+II will be referred to. The 

analytical frame of the local SED approach refers to the stress conditions in the 

cross-sectional plane, Fig. 1.2.4b. The polar coordinate system is brought into line 

with the notch bisector (θ = 0), Fig. 1.2.4a. The material is assumed to be isotropic 

and linear-elastic. The first analysis step consists of defining the stresses σij(r,θ) 
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and strains εij(r,θ) in terms of the mode-related notch stress intensity factors K1 

and K2 [6] and Williams’ eigenvalues λ1 and λ2 [5]. Therefore, the SED W(r,θ) is 

derived consisting of the components W1, W2 and W12 related to the mode 1, 

mode 2 and mixed mode stress and strain fields. The component W12 is not further 

needed, because its contribution to the averaged SED vanishes for symmetric 

sector areas. The component W2 may be neglected for 2α ≥ 102.6°, which 

produces a non-singular stress field. The second analysis step is to determine the 

averaged SED within a sector area of radius R around the notch tip. The radius R 

should be small enough, so that the sector area remains within the range of 

validity of the one-term stress expansion resulting in the NSIF. 

 

 

Figure 1.2.4. Polar coordinate system centred at the V-notch tip (a) and control volume (area) of 

radius R surrounding the V-notch tip (b) (Lazzarin and Zambardi [15]). 

 

In more detail, according to Beltrami [16], the total strain energy density (SED) is 

equal to the total work done by the system and it is given by Eq. (1.2.12), 

expressed in terms of the principal stresses in a given reference system.  

W(r, θ) =
1

2E
[σ1
2 + σ2

2 + σ3
2 − 2ν(σ1σ2 + σ1σ3 + σ2σ3)]                            (1.2.12) 

In the case of a V-notch under mixed mode I+II loading, when only the 

contribution of the first singular terms is significant, the SED can be directly 

2 
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linked to the NSIFs, K1 and K2, by substituting into Eq. (1.2.12) the singular stress 

field given by Eq. (1.2.1). The strain energy density, averaged in a circular sector 

of radius R surrounding the notch tip (Fig. 1.2.4b), is given by the ratio between 

the elastic strain energy E(R) and the area of the circular sector A(R). The sector 

area of radius R, over which the averaged SED is determined, is given by: 

A(R) = ∫ ∫ rdrdθ
+γ

−γ

R

0

= R2 ∙ γ                                                                            (1.2.13) 

By integration of W(r,θ) over the symmetric sector area and division by A(R), the 

averaged local SED turns out to be: 

W̅(R) =
E(R)

A(R)
=
∫ WdA
A

∫ dA
A

=
∫ ∫ W(r, θ)

+γ

−γ
r drdθ

𝑅

0

∫ ∫ r drdθ
+γ

−γ

𝑅

0

 

=
1

E
e1 ∙ K1

2 ∙ R2(λ1−1)  +
1

E
e2 ∙ K2

2 ∙ R2(λ2−1)                                     (1.2.14) 

e1(γ) =
I1(γ)

4λ1γ
,   e2(γ) =

I2(γ)

4λ2γ
                                                                             (1.2.15) 

I1(γ) = ∫ f1(θ)dθ
+γ

−γ

,      I2(γ) = ∫ f2(θ)dθ
+γ

−γ

                                                  (1.2.16) 

The internal notch angle 2γ being linked to the notch opening angle 2α = 2π – 2γ, 

the total SED coefficients e1 and e2 can be plotted dependent on the notch opening 

angle 2α, Fig. 1.2.5 (for plane strain conditions). For sufficiently small values of 

2α, the value of e2 is substantially larger than that of e1. Even for 2α ≥ 102.6°, 

where the SED field is non-singular, e1 and e2 have approximately the same value. 

This is not an indication that the SED values are approximately the same. 

Actually, W̅2 << W̅1 because of the missing singularity in the stress and strain 

field of mode 2 loading. 

For the sake of completeness, out-of-plane shear loading (mode 3) has also been 

considered [12]. The local averaged SED turns out to be: 
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W̅3(R) =
1

E
e3 ∙ K3

2 ∙ R2(λ3−1)                                                                               (1.2.17) 

e3(γ) =
(1 + 𝜈) ∙ I3(γ)

6λ3γ
                                                                                          (1.2.18) 

I3(γ) = ∫ f3(θ)dθ
+γ

−γ

                                                                                               (1.2.19) 

The energy coefficient e3 is dependent on the notch opening angle 2α as 

supplemented in Fig. 1.2.5. It should be noted that the values of e3 are larger than 

those of e2 and e1. 

 

 

Figure 1.2.5. Total SED coefficients e1, e2 and e3 dependent on notch opening angle 2α under 

plane strain conditions (Lazzarin and Zambardi [15]). 
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1.2.2.1 Static loading 

The characteristic feature of brittle fracture is that it occurs under elastic stress 

field conditions, either without any plastic deformation (glass and ceramics) or 

without deformation on a macroscale (brittle technical metals). The SED concept 

is applicable to sharp V-notches made of brittle materials in the following form 

proposed by Lazzarin and Zambardi [15]. Brittle fracture at sharp V-notches may 

be assumed to occur when the averaged local SED W̅ within the control volume 

reaches a critical value Wc independent of the notch opening angle and 

independent of the loading type (tensile or in-plane shear loading). This 

corresponds to the Beltrami failure criterion [16]. The material parameter Wc may 

be determined from the ultimate tensile strength σc of unnotched specimens: 

W̅ ≤ Wc,           Wc =
σc
2

2E
                                                                                         (1.2.20) 

The radius R0 of the control volume (termed ‘critical distance Rc’ by the first 

authors [15]), where the critical local SED value Wc occurs, may be determined 

from the plane strain fracture toughness KIc. It is considered to be a material 

parameter. When the mode 2 SED W̅2 is zero (symmetric geometry and loading) 

or negligibly small (large notch opening angle with vanishing mode 2 singularity), 

the NSIF K1 can be correlated with the averaged local SED W̅1 according to Eq. 

(1.2.14): 

K1 = √
4Eλ1γ

I1(γ)
W̅1R0

(1−λ1)                                                                                      (1.2.21) 

The critical condition is expressed by introducing W̅1 = Wc = σc
2
/2E from Eq. 

(1.2.20): 

K1c = √
2λ1γ

I1(γ)
σcR0

(1−λ1) = f1(2α)σcR0
(1−λ1)                                                  (1.2.22) 
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where the intensity coefficient f1(2α) should not be confused with f1(θ) in Eq. 

(1.2.16). When the V-notch becomes a crack (2α = 0), K1c coincides with the 

fracture toughness KIc: 

KIc = f1(0)σc√R0                                                                                                    (1.2.23) 

Thus, the control volume radius R0 turns out to be: 

R0 = (
KIc

f1(0)σc
)
2

=
I1(π)

π
(
KIc
σc
)
2

                                                                         (1.2.24) 

or in an explicit form related to plane strain conditions [17]: 

R0 =
(1 + ν)(5 − 8ν)

4π
(
KIc
σc
)
2

                                                                              (1.2.24) 

The corresponding expression for plane stress conditions reads with Kc 

(depending on plate thickness t) substituting KIc [18]: 

R0 =
5 − 3ν

4π
(
Kc
σc
)
2

                                                                                                  (1.2.24) 

The control volume radius R0 depends on the material. Its value decreases with 

rising brittleness. It does not depend on the notch opening angle per definition. 

The described analytical approach referring to the total SED has been validated on 

the basis of experimental data reported in the literature [4,15]. 

 

1.2.2.2 Fatigue loading 

The total fatigue life of notched components or welded joints quantified by 

number of cycles up to total failure consists of the crack initiation and crack 

propagation portions. The crack initiation life is terminated by a technical surface 

crack of about 0.25 mm depth. The relation of the crack initiation to the crack 

propagation portion varies considerably. The crack initiation life portion is larger 

in the high-cycle than in the low-cycle fatigue range, it is larger for high-strength 

steels and it is prevailing in unnotched or mildly notched members. It has been 
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shown that the NSIF is a parameter that controls the crack initiation phase in 

members with sharp notches, especially too in welded joints. It can also be used 

for expressing the total fatigue life of welded joints. A necessary condition is that 

the dimension of the relevant NSIF does not vary, which means that the notch 

opening angle must be the same for the evaluated specimens. The restriction to 

only one notch opening angle is removed by evaluating the averaged local SED 

instead of the NSIF. 

In the following, the specific application of the SED approach to welded joints 

under fatigue loading is described, however the general considerations remain 

valid for a generic component weakened by a sharp V-notch and subjected to 

fatigue loading conditions. 

The averaged local SED at the notch tip of the weld toe is evaluated for linear-

elastic material behaviour which is an appropriate approximation in the high-cycle 

fatigue range (N ≥ 5 · 10
5
 cycles). It is also used in the medium-cycle fatigue 

range (10
4
 ≤ N ≤ 5 · 10

5
 cycles) where plastic deformations occur. The plastic 

zone may even be larger than the control volume with radius R0 ≈ 0.3 mm for 

steels or 0.1 mm for aluminium alloys. The justification to use the linear-elastic 

strain energy under small-scale yielding conditions is provided by the ‘equivalent 

strain energy density approach’ according to Glinka [19]. Following this 

approach, which works well under plane strain conditions, the elastic-plastic SED 

at the root of a rounded notch is set equal to the SED determined under purely 

elastic conditions. This concept is not directly applicable to sharp V-notches 

because the SED at the notch tip tends towards infinity both for linear-elastic and 

power law elastic-plastic material behaviour. If applied to the averaged SED in the 

control volume at the notch tip, this problem is removed [20]. The elastic SED 

concept is thus applicable over the whole medium-cycle and high-cycle fatigue 

range. The first step in the local SED approach is the determination of the control 

volume radius R0 for the specimens under investigation. It depends on the 

material and on the multiaxial failure criterion. This task is more complicated for 

welded joints under cyclic loading producing fatigue failure than for specimens 

under static loading producing brittle fracture. In the former case, the material is 

locally inhomogeneous in the as-welded condition and the cracking phenomena 
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change to some extent with the cyclic load level or the endured load cycles. The 

control volume radius R0 is determined for fillet-welded joints (2α = 135°) with 

experimental data gained in the high-cycle fatigue range. Only the mode 1 

averaged local SED W̅1 is evaluated whereas the mode 2 component W̅2 remains 

negligibly small. Plane strain conditions are assumed together with the Beltrami 

total strain energy criterion [16]. The control volume radius R0 is then given by 

the following expression proposed by Lazzarin and Zambardi [15] in analogy to 

Eq. (1.2.24): 

R0 = (
ΔKI,A
f1ΔσA

)

1
1−λ1

= (
√2e1ΔKI,A
ΔσA

)

1
1−λ1

                                                            (1.2.25) 

where λ1 and f1 depend on the notch opening angle 2α, while ΔK1A is the 

reference value of the endurable NSIF range for the fillet-welded joints and ΔσA is 

the reference value of the endurable stress range at a flush ground butt weld, 

which simulates the material behaviour at the weld toe or root. The reference 

values ΔK1A and ΔσA are mean values (PS = 50%) at NA = 2 · 10
6
 cycles (IIW 

design recommendations [21]) or 5 · 10
6
 cycles (other authors) with load ratio R = 

0. With the usual inverse slope exponent k = 3 for welded joints of steel, the factor 

1.36 occurs between the fatigue strength at 2 · 10
6
 compared with the fatigue 

strength at 5 · 10
6
 cycles. With the common scatter range index, the factor 1.37 

occurs between the data for PS = 50% compared with those for PS = 2.3%. For 2α 

= 135°, the parameters in Eq. (1.2.25) are f1 = 2.065 and λ1 = 0.674, whereas for 

2α = 0°, f1 = 1.936 and λ1 = 0.5. Recommended parameter values for welded 

joints of carbon steels with toe failure (2α = 135°) are [22]: 

 

 R0 = 0.28 mm, ΔK1A = 211 MPa·mm
0.326

, ΔσA = 155 MPa (PS = 50%, N = 

5·10
6
 cycles)  

 

The relevant data for welded joints of aluminium alloys are [22]: 

 

 R0 = 0.12 mm, ΔK1A = 100 MPa·mm
0.326

, ΔσA = 96 MPa (PS = 50%, N= 

5·10
6
 cycles) 
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Different values of R0 may be appropriate under mode 1 and mode 3 loading 

conditions. A uniform material-dependent value of R0 is used for evaluating test 

data not only in the high-cycle fatigue range but also in the medium-cycle and 

low-cycle fatigue range [3,4,15,22]. This is a simplification appropriate for 

engineers, considering that under small-scale yielding conditions, the elastic-

plastic SED matches the elastic SED under plane strain conditions. Thinking 

‘more physically’, the control radius should be dependent on the endured number 

of cycles to some extent, R0 = R0(N). 

It should be noted that the local SED concept for sharp V-notches (which include 

also welded joints) can be applied also to generic multiaxial loading conditions 

(modes 1, 2, 3 superimposed). The relevant expression for the averaged total SED 

W̅ reads as follows, compare Eqs. (1.2.14) and (1.2.17) [12]: 

cWΔW̅ = cW [
e1
E
∙ (

ΔK1

R0
(1−λ1)

)

2

 +
e2
E
∙ (

ΔK2

R0
(1−λ2)

)

2

+
e3
E
∙ (

ΔK3

R0
(1−λ3)

)

2

  ]  (1.2.26) 

The coefficient cW in Eq. (1.2.26), which must be applied for the SED calculation 

dealing with fatigue loading conditions, takes the influence of the nominal load 

ratio R into account, cW = 1.0 for R = 0 and cW = 0.5 for R = –1, according to Eq. 

(1.2.27) which has been plotted also in Fig. 1.2.6.  

cW =

{
 
 
 

 
 
 
1 + R2

(1 − R)2
           for       − ∞ ≤ R < 0 

1                         for          R = 0    
       

1 − R2

(1 − R)2
           for         0 < R ≤ 1    

                                                             (1.2.27) 



1 - Introduction – Sharp V-notches 

 

 

 
18 

 

 

 

 

 

 

Figure 1.2.6. Coefficient cw as a function of the nominal load ratio R: (a) -1 ≤ R < 1 (most 

interesting cases), (b) -∞ < R < 1 (Lazzarin et al. [12][15][15][15]).  
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The above expression of the weighting factor cW as a function of the nominal load 

ratio (R = σmin/σmax) is based on mere algebraic considerations, which will be 

described in detail below. 

The case of a nominal load ratio R = 0, for which the stress range coincides with 

the maximum stress value, is considered as the reference one. In this case, the 

SED range ∆WR=0 can be properly evaluated with the area of a triangle as 

following (see Fig. 1.2.7a): 

∆WR=0 =
∆σ2

2E
=
(σmax − σmin)

2

2E
=
σmax

2 ∙ (1 − R)2

2E
                                   (1.2.28) 

In the case of a positive nominal load ratio 0 < R < 1, the SED range ∆WR can be 

evaluated by means of the following expression based on Fig. 1.2.7b: 

∆WR =
σmax

2

2E
−
σmin

2

2E
=
σmax

2 ∙ (1 − R2)

2E
                                                      (1.2.29) 

Now, it can be defined the ratio cW between the actual SED range ∆WR and the 

fictitious one ∆WR=0 calculated as if the nominal load ratio were zero, i.e. by 

means of the area of a triangle. The expression reported in Eq. (1.2.27) is 

obtained: 

cW =
∆WR

∆WR=0
=

1 − R2

(1 − R)2
                                                                                      (1.2.30) 

The same consideration can be applied also to the case of a negative nominal load 

ratio, -∞ < R < 0 see Fig. 1.2.7c. The following expressions can be obtained: 

∆WR =
σmax

2

2E
+
σmin

2

2E
=
σmax

2 ∙ (1 + R2)

2E
                                                      (1.2.31) 

cW =
∆WR

∆WR=0
=

1 + R2

(1 − R)2
                                                                                      (1.2.32) 
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Figure 1.2.7. SED definition as a function of the nominal load ratio R: (a) R = 0 (reference case), 

(b) 0 < R < 1, (c) -∞ < R < 0, (d) R = -∞ (Lazzarin et al. [12][15][15][15]). 
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In particular, for welded joints under fatigue loading in the as-welded condition, 

cW = 1.0 is appropriate, independently of R, because of the tensile residual 

stresses produced by welding. The value cW = 0.5 should be used for welded 

joints with a stress relief treatment when tested for R = –1.  

 

1.2.2.3 Coarse mesh option 

The coarse mesh option for the FE analysis of sharp V-notches comprises two 

different procedures, the SED-based coarse mesh evaluation and the peak stress 

method. The SED-based coarse mesh evaluation benefits from the fact that the 

requirements on mesh refinement for an accurate determination of the local strain 

energy are much lower than the corresponding requirements in the case of stress 

field evaluations.  

The averaged local SED at sharp or rounded notches can be evaluated with high 

accuracy based on coarse FE meshes. The NSIF or maximum notch stress values, 

respectively, derived therefrom are sufficiently accurate for engineering 

applications. The extremely fine meshes required for determining the NSIF values 

based on the usual limit value r→0 procedure are avoided, as well as the 

correspondingly fine meshes for an accurate maximum stress analysis. 

The reason for the excellent performance of SED evaluations within the widely 

used displacement (or stiffness) method of finite element analysis is the fact that 

the nodal point displacements of the FE structural system are the primary 

unknown parameters that are determined based on a variational formulation of the 

potential Π leading to the principle of virtual work. Within this approach, the 

element strains are fully compatible whereas the stresses are not equilibrated at 

the element boundaries. Therefore, the evaluation of the strain energy from the 

nodal point displacements is superior to its evaluation from the element stresses. 

The procedural steps in terms of FE analysis are readily available [23,24]. 

 

1.2.3 Peak Stress Method 

The peak stress method is a simplified, FE-based method to approximate the 

NSIFs at sharp V-notches inclusive of slits or cracks. 
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The PSM takes its origins by a numerical technique proposed by Nisitani and 

Teranishi [25,26] to rapidly estimate by FEM the SIF of a crack emanating from 

an ellipsoidal cavity. Such a procedure is based on the usefulness of the linear 

elastic peak stress σpeak calculated at the crack tip by means of FE analyses 

characterized by a mesh pattern having a constant element size. In particular, 

Nisitani and Teranishi [25,26] were able to show that the ratio KI/σpeak depends 

only on the element size, such that σpeak can be used to rapidly estimate KI, 

provided that the adopted mesh pattern has previously been calibrated on 

geometries for which the exact KI values are known. A theoretical justification to 

the PSM has been provided later on and the method has been extended also to 

sharp and open V-notches in order to rapidly evaluate the mode 1 Notch Stress 

Intensity Factor (NSIF) [27]. Subsequently, the PSM has been formalised to 

include also cracked components under mode 2 loading conditions [28] and open 

V-notches subjected to pure mode 3 (anti-plane) stresses [29].  

In more detail, the PSM enables to rapidly estimate the NSIFs K1, K2 and K3 (Eqs. 

(1.2.9)-(1.2.11)) from the notch tip singular, linear elastic, opening, sliding and 

tearing FE peak stresses σyy,peak, τxy,peak and τyz,peak, respectively, which are referred 

to the notch bisector line according to Fig. 1.2.8. The peak stresses are defined as 

the maximum linear elastic stresses in the considered crack tip or notch tip nodal 

point of the mesh. Each nodal point stress results as the arithmetic mean of the 

stress components in the two (2α > 90°, as described in detail below) or four 

elements (2α < 90°) meeting in the nodal point.  

The element size required to evaluate K1, K2 and K3 from σyy,peak, τxy,peak and 

τyz,peak, respectively, is several orders of magnitude greater than that required to 

evaluate the entire local stress field. The second advantage of using σyy,peak, τxy,peak 

and τyz,peak is that a single stress value is sufficient to estimate K1, K2 and K3, 

respectively, instead of a number of stress FE data, as is usually made by applying 

definitions (1.2.9)-(1.2.11).  
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Figure 1.2.8. Definition of the notch tip singular, linear elastic, opening, sliding and tearing FE 

peak stresses σyy,peak, τxy,peak and τyz,peak, respectively, which are referred to the bisector line 

according to PSM. 

 

More precisely, the following expressions are valid [27–29]: 

KFE
∗ =

K1
σyy,peak ∙ d1−λ1

≅ 1.38                                                                              (1.2.33) 

KFE
∗∗ =

K2
τxy,peak ∙ d1−λ2

≅ 3.38                                                                               (1.2.34) 

KFE
∗∗∗ =

K3
τyz,peak ∙ d1−λ3

≅ 1.93                                                                              (1.2.35) 

where d is the so-called ‘global element size’ parameter to input in Ansys
®

 FE 

code, i.e. the average FE size adopted by the free mesh generation algorithm 

available in the FE code. It is proven that the above ratios depend mainly on the 

element size and type, modified solely by the stress singularity exponent λi (i = 1, 

2 and 3) which depends on the notch opening angle 2α. 
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Eqs. (1.2.33)-(1.2.35) were derived using particular 2D or 3D finite element types 

and sizes, so that a range of applicability exists, which has been presented in detail 

in previous contributions [27–29].  

More precisely, Eqs. (1.2.33)-(1.2.35) are valid under the following conditions: 

 

 concerning Eqs. (1.2.33) and (1.2.34) related to mode 1 and mode 2 

loadings, respectively, use of 4-node quadrilateral finite elements with 

linear shape functions, as implemented in ANSYS
®
 numerical software 

(PLANE 42 of the Ansys
®
 element library or alternatively PLANE 182 

with K-option 1 set to 3, which corresponds to a simplified enhanced 

strain formulation of the finite elements). Concerning instead Eq. (1.2.35) 

related to mode 3 loading, use of two-dimensional, harmonic, 4-node 

linear quadrilateral elements, as implemented in ANSYS
®
 numerical code 

(PLANE 25 of Ansys® element library). Finally, the use of three-

dimensional, eight-node brick elements (SOLID 45 of Ansys® element 

library or equivalently SOLID 185 with K-option 2 set to 3) is allowed for 

all loading modes, i.e. for Eqs. (1.2.33)-(1.2.35); 

 the pattern of finite elements around a notch or crack tip must be that 

shown in Fig. 1.2.9 (see also [27–29]); in particular, four elements share 

the node located at the notch tip if the notch opening angle 2  is lower 

than 90°, while two elements share the node at notch tip when the notch 

opening angle is 2  90°, as shown in Fig. 1.2.9 taking advantage of the 

geometrical symmetry; 

 concerning Eqs. (1.2.33) and (1.2.35) related to mode 1 and mode 3 

loadings, respectively, V-notches are characterised by an opening angle 2 

ranging from 0° to 135°; while it should be remembered that calibration 

for mode 2 loading is restricted to 2α = 0 (crack case); 

 for mode 1 loading (Eq. (1.2.33)) the mesh density ratio a/d that can be 

adopted in numerical analyses must be a/d  3 to obtain KFE
∗ = 1.38 ±

3%, a being the minimum between the notch depth (or crack length) and 

the ligament lengths; for mode 2 loading (Eq. (1.2.34)) more refined 

meshes are required, the mesh density ratio a/d having to satisfy a/d  14 
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to obtain KFE
∗∗ = 3.38 ± 3%; finally, in case of mode 3 loading (Eq. 

(1.2.35)) the condition a/d  3 must again be satisfied to obtain KFE
∗∗∗ =

1.93 ± 3%. 

 

 

 

Figure 1.2.9. Mesh patterns according to PSM. The automatic free mesh generator available in 

ANSYS code was used and the global element size d was set equal to 1 mm (Meneghetti and 

Lazzarin [27]). 

 

It should be noted that different stress extrapolation rules from the integration 

points to the nodal points lead to different values of the peak stresses, moreover 

finite element analyses performed using higher-order elements or significantly 

different FE patterns imply that coefficients of Eqs. (1.2.33)-(1.2.35) should be 

recalculated. 

Based on the NSIFs and the appertaining locally averaged ∆W̅ values, the fatigue 

strength of welded joints can be given in terms of weighted peak stresses. The 

method was originally based on two-dimensional FE models. Recently, the PSM 

has also been combined with 3D numerical models and eight-node brick elements 

to assess the fatigue strength of steel-welded joints having complex geometry and 

characterised by toe as well as root cracking
 
[30,31].  
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1.3 Blunt V-notches 

 

1.3.1 Local stress fields and Generalised Notch Stress Intensity Factors 

The NSIF concept referring to sharp V-notch tips with inclusion of the 

conventional SIF approach referring to pointed crack tips has been extended also 

to the generalised NSIF concept referring to rounded notches with crack shape or 

V-notch shape in two variants: parabolic, elliptic or hyperbolic notches (‘blunt 

notches’) on the one hand and root hole notches (‘keyholes’ when considering 

crack shapes) on the other hand. 

Notch rounding changes the stresses at the V-notch or crack tip substantially 

insofar as the stress singularity is removed. This means that the notch stresses 

remain finite, but their angular and radial distribution is linked to that of the 

corresponding sharp notches. Indeed, the stress distribution connected with the 

singularity remains widely unchanged at distances from the notch root larger than 

one half of the notch radius ρ, provided the radius is sufficiently small in relation 

to the notch depth or crack length (sharp notches).  

It is shown that the stress distribution at sharply rounded notches subjected to the 

loading modes 1, 2 and 3 can be described by the generalised NSIFs K1ρ, K2ρ and 

K3ρ as the governing field parameters. These NSIFs are related to the maximum 

notch stresses σmax, τmax and τ*max, which constitute the conventional stress 

concentration factors (SCFs). In contrast to the SCFs, the generalised NSIFs 

describe not only the maximum stress at one point but also the whole stress field 

in the vicinity of the notch root. In consequence, notched components scaled in 

geometrical proportion have the same value of the SCF Kt but different values of 

the NSIF. The field information provided by the NSIFs is needed for assessing 

failure processes such as crack initiation and propagation or microstructural 

damaging phenomena. In the following, the stress field equations for blunt V-

notches subjected to the three basic loading modes are shortly discussed. 

A general solution for the stress field at sharply rounded (blunt) V-notches, 

subjected to in-plane tensile and shear loading, is available in the literature 

[8,32,33]. The reference nomenclature is shown in Fig. 1.3.1. The theoretical 

frame, namely Kolosov–Muskhelishvili’s complex stress function method 
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combined with Neuber’s auxiliary system of curvilinear coordinates, has already 

been mentioned when considering sharp V-notches. Here, the improved solution 

by Filippi is evaluated with respect to blunt V-notches. The solution provides a 

second singular term perturbating the one-term sharp notch solution (exponents -

0.5 and -1.5 in the case of 2α = 0). The singularity is outside of the physical 

domain for blunt notches.  

 

 

Figure 1.3.1. Coordinate systems, symbols and in-plane notch stress components at (a) sharp V-

notch and at (b) the corresponding rounded V-notch; with r0 = ρ(q-1)/q; (Lazzarin et al. [8,32,33]). 

 

Referring to the auxiliary system of curvilinear coordinates (conformal mapping 

function z = w
q
), the following relationships apply: 

q =
2π − 2α

π
                                                                                                                (1.3.1) 

r0 =
q − 1

q
∙ ρ                                                                                                               (1.3.2) 

with radius ρ of notch root curvature and distance r0 between the origin of the x–y 

coordinate system and the notch root. Only for the parabolic notch (2α = 0, q = 2), 

the simple relationship r0 = ρ/2 is valid.  

The characteristic stress components in the bisector plane (θ = 0) of the blunt V-

notches are found proportional to K1 or K2, the first term being identical with that 
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in Eq. (1.2.1) for sharp V-notches, the additive non-singular term being related to 

r/r0. In the considered early solutions [8,32], the conventional NSIFs K1 and K2 of 

the corresponding sharp V-notch have been used. In accordance with the further 

development of the theory [33], the generalised NSIFs substitute the simple NSIFs 

in the stress field equations.  

Within the more general theoretical frame, the generalised NSIFs K1ρ, K2ρ and 

also K3ρ may be found by evaluating the corresponding maximum stresses in the 

bisector plane of the rounded notch or crack as limit values for r→r0 (or r→r0
+
, 

the position of τrθmax in mode 2 loading). The procedure may be combined with 

averaging these NSIFs over a small distance ahead of the notch root. The 

following formulae are applicable to V-notches inclusive of cracks [33,34]: 

K1ρ = lim
r→r0

√2π ∙ r1−λ1 ∙ σθθ(r, 0)

1 + ω̃1 (
r
r0
)
μ1−λ1

=
√2π ∙ r0

1−λ1 ∙ σθθ(r0, 0)

1 + ω̃1
                       (1.3.3) 

K2ρ = lim
r→r0+

√2π ∙ r1−λ2 ∙ τrθ(r, 0)

1 + ω̃2 (
r
r0
)
μ2−λ2

=
√2π ∙ r0

1−λ2 ∙ τrθ(r0
+, 0)

1 − (
r0+

r0
)
μ2−λ2

                    (1.3.4) 

K3ρ = lim
r→r0

√2π ∙ r1−λ3 ∙ τθz(r, 0) = √2π ∙ r0
1−λ3 ∙ τθz(r0, 0)                         (1.3.5) 

The value ω̃2 = -1 in Eq. (1.3.4) is part of the stress field solution. The limit value 

r→r0
+
 instead of r→r0 in mode 2 loading is proposed by Radaj in [1] in order to 

avoid numerical problems when introducing r = r0. 

The generalised NSIFs K1ρ, K2ρ and also K3ρ differ from the conventional NSIFs 

K1, K2 and also K3 for finite values of ρ. They are slightly larger than K1, K2 and 

K3, in particular their values increase with enlarged notch radii ρ. The following 

relationship should be true, since r0 ∝ ρ: 

Ki = lim
ρ→0

Kiρ             with i = 1, 2, 3                                                                      (1.3.6) 
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1.3.2 Averaged Strain Energy Density approach 

The local averaged SED concept, first proposed by Lazzarin and Zambardi  

dealing with sharp V-notches [15], has been later extended by Lazzarin and Berto 

[35] to blunt V-notches inclusive of U-notches and circle-arc V-notches. Tensile 

loading (mode 1) has been considered first in the analytic derivations [35], which 

are then transferred to mixed mode 1+2 loading conditions based on a semi-

empirical, but numerically confirmed procedure [36]. The determining 

geometrical parameters of the crescent-shaped control volume area at blunt V-

notches in comparison to the sharp notch situation are shown in Fig. 1.3.2. The 

area A of the averaged local SED has the circular notch edge with radius ρ as the 

boundary on one side and a circle arc with radius R0 + r0 as the boundary on the 

other side. The two radii are differently centred. The centre of the radius ρ is 

geometrically given. The centre of the radius R0 + r0 is identical with the centre of 

the polar coordinate system in the analytical solution for the corresponding blunt 

V-notch problem (see previous Section 1.3.1). The parameter r0 depends on the 

notch opening angle 2α according to Eq. (1.3.2). It is r0 = ρ/2 for 2α = 0 and r0 → 

0 for 2α → π, that is, the considered centre of the polar coordinates moves closer 

to the notch root for larger notch opening angles. The control volume radius R0 is 

introduced as a material parameter, which is independent of the notch geometry.  

 

 

R0 R0 

2 

R2=R0+r0 

 

R0 

r0 

(a) (b) (c) 

2 2=0 

 

 

 

 

Figure 1.3.2. Geometrical parameters of the control volume area used for averaging the SED in 

the close vicinity of the notch root: (a) crack, (b) sharp V-notch and (b) blunt V-notch; (Lazzarin 

and Berto [35]). 
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The elastic local averaged SED under mode 1 loading is expressed in the 

following form [35]: 

W̅1 = F(2α) ∙ H (2α,
R0
ρ
) ∙
σmax
2

E
                                                                             (1.3.7) 

By introducing the generalised NSIF K1ρ together with the notch radius ρ instead 

of the maximum notch stress σmax, a more compact form of Eq. (1.3.7) is gained: 

W̅1 = H(2α,
R0
ρ
) ∙
K1ρ
2

E
∙ ρ2(λ1−1)                                                                             (1.3.8) 

In cases of superimposed tensile and shear loading (mixed mode 1+2), the 

procedure above, developed for tensile loading can be transferred on a semi-

empirical, but numerically confirmed basis.  

 

 

 

Figure 1.3.3. Geometrical parameters of the control volume area used for averaging the SED in 

the close vicinity of a U-notch root under (a) mode I and (b) mixed mode I+II loading conditions; 

(Berto et al. [36]). 

 

Under in-plane mixed mode 1+2 conditions, the maximum principal stress does 

not occur at the notch root in the bisector plane but it is shifted to a notch edge 

point out of the bisector plane. It has been proven numerically (by means of FE 

analyses) that correct averaged SED values are gained, if the crescent-shaped 

control volume and the appertaining base point of r0 are rotated by the polar angle 

θ* around the base point of ρ into the direction of the point of maximum stress, 
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assuming a circle arc [36] as it is shown in Fig. 1.3.3b. The angle θ*, which 

denotes simultaneously the crack initiation point and the crack propagation 

direction, depends on the ratio of tensile to shear loads. 

It should be noted that for blunt V-notches under in-plane mixed mode 1+2, as 

well as under pure modes 2 or 3 loading conditions, there are no theoretical 

formulations in the literature similar to that reported in Eq. (1.3.8) for pure mode 

1 loading, which allow to calculate analytically the SED averaged over the control 

volume. However, Lazzarin and co-workers [24] provided evidence that it is 

possible to evaluate numerically the SED parameter directly from the results of 

FE analyses, W̅FEM, by summing up the strain energies WFEM,i calculated for the i-

th finite element located inside the control volume (SENE in ANSYS
®
 numerical 

software) and subsequently by dividing by the total volume (A in Fig. 1.2.4, 

VOLU in ANSYS
®
 numerical software): 

W̅FEM =
∑ WFEM,iA

A
=
∑ SENEA

∑ VOLUA
    (for application in ANSYS®)                   (1.3.9) 

Equation (1.3.9) defines the so-called direct approach to evaluate the SED 

parameter. Additionally, it has been shown that the adopted FE meshes can be 

very coarse inside the control volume having radius R0 [24], as discussed also in 

previous Section 1.2.2.3. 

Finally, it is important to underline that the averaged SED approach can be 

successfully applied also to fracture and fatigue problems of structural 

components weakened by blunt notches, according to the same procedures and 

considerations previously described with reference to sharp notches and which are 

not recalled here for the sake of brevity. Some of the most recent applications of 

the averaged SED concept to blunt notches can be found in the comprehensive 

review by Berto and Lazzarin [4]. 
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CHAPTER 2 

 

 

BRITTLE FRACTURE UNDER 

MIXED MODE STATIC LOADING 
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2.1. Brittle fracture of blunt notched components made of 

PMMA under mixed mode I+II loading 
(*) 

 

 

Nomenclature 

d  slit length 

D   disk diameter 

E   Young’s modulus  

KIc  fracture toughness 

P  fracture load 

Pav  average fracture load 

r0   distance between notch tip and origin of the reference system 

Rc   control radius 

 SED measured over the control volumes 

Wc critical SED value of the considered material 

 

Symbols 

   notch opening angle 

  loading angle 

  Poisson's ratio 

   notch tip radius 

t    ultimate tensile strength  

 

 

(*) See also: 

 

 Torabi, A. R.; Campagnolo, A.; Berto, F. Investigation of mixed mode brittle fracture in 

key-hole notches using the local energy. Acta Mechanica; 226 (7): 2313-2322 (2015); 

 

 Torabi, A. R.; Campagnolo, A.; Berto, F. Static strength of V-notches with end holes 

under combined tension-shear loading: Experimental measurement by the disk test and 

theoretical prediction by the local energy. ASTM Journal of Testing and Evaluation (In 

press). 

W
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2.1.1. Introduction  

About two decades ago, a new branch was born inside the classic fracture 

mechanics (FM), called the notch fracture mechanics (NFM), which investigates 

failure of notched domains made of brittle and ductile materials. Most of the 

investigations in the NFM concentrate on the static and monotonic failure of 

notched members. The modes of loading for a notched member is completely the 

same with those for a cracked member, namely the opening mode (i.e. mode I), 

the in-plane shear mode (i.e. mode II), the out-of-plane shear mode (i.e. mode III), 

and any combinations of these modes, so called mixed mode loading. The 

fundamental failure concepts in the NFM are also the same with those in the 

classic fracture mechanics. For example, the cohesive zone model (CZM) [1–4], 

the maximum tangential stress (MTS) and the mean stress (MS) [5–20], the J-

integral [21–27], the finite fracture mechanics (FFM) [28,29], the theory of 

critical distances (TCD) [30] and the strain energy density (SED) [31–42] are the 

names a few. 

Brittle fracture has been certainly the most important topic in the context of NFM 

because of its catastrophic nature. This failure mode usually takes place suddenly 

in brittle and quasi-brittle materials like ceramics, brittle polymers, rocks, 

graphite, high-strength metals and alloys etc. Due to simplicity, most of brittle 

fracture investigations in NFM have been performed under mode I loading. Mixed 

mode I+II notch investigations are much more complicated than mode I ones from 

the viewpoints of both experiment and theory. During the past few years, mixed 

mode I+II brittle fracture assessment of notched components has been accelerated 

by the researchers, aiming to measure experimentally the notch fracture toughness 

(NFT) and to predict the experimentally obtained NFT values by means of 

appropriate brittle fracture criteria. This is because mixed mode I+II loading is 

widely present in real engineering applications and it is complicated to be 

investigated.  

As mentioned earlier, various failure concepts have been previously proposed in 

the literature to predict brittle fracture in notched domains. One of the most well 

established criteria in the field of brittle fracture is certainly the strain energy 

density (SED) criterion. Sih [43] proposed the strain energy density factor (SEDF) 
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for cracked elements by taking into consideration simultaneously both the strain 

energy density (SED) and the critical distance measured from the crack tip. 

According to Sih’s criterion, brittle fracture happens in a cracked brittle 

component when the SEDF reaches to its critical value [43]. By setting a 

minimum condition on the SEDF, the direction of crack propagation could also be 

determined [43]. Although Sih’s point-wise criterion was proposed for cracked 

bodies, it became the start point for the other researchers who extended the SED 

concept to sharp and round-tip notches (sharp and blunt V-notches, U-notches 

etc.) by averaging SED over a specified control volume which embraces the notch 

edge, in order to predict brittle fracture in notched domains under various loading 

conditions [31,32,34–37,44]. The SED predictions have been frequently verified 

by means of the experimental results obtained from testing various materials, 

specimens, and notches under different loading conditions including mode I, 

mode II and mixed mode I+II etc. [31,32,34–37,41,44]. Some recent works on the 

fracture analysis of blunt notches by means of SED are those published in Refs. 

[40,45–48]. The SED criterion has been utilized to estimate the maximum load 

that U-notched Brazilian disk (UNBD) specimens made of coarse-grained 

polycrystalline graphite could sustain under pure mode I [45], pure mode II [46] 

and mixed mode I+II [47] loadings. Mode I fracture of blunt V-notches 

introduced in three different test specimens made of graphite has been also 

analyzed by means of SED [48]. In some recent researches, the SED criterion has 

also been extended successfully to torsion [38] and compression [39] loadings. 

Other than SED, a few failure concepts have also been suggested and utilized for 

predicting fracture in notched components. For instance, the point-stress (with 

different names e.g. the maximum tangential stress; MTS) and the mean-stress 

concepts have been frequently employed to predict fracture in V- and U-notches 

under mode I [5–11], mode II [12,13] and mixed mode I+II [14–20] loading 

conditions. Moreover, the cohesive zone model [1–4], the finite fracture 

mechanics [28,29], the theory of critical distances [49], and the J-integral [21–27] 

have been employed for theoretical fracture assessment of sharp and blunt 

notches. 
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Some notch features are not fundamentally original, but they are resulted from 

applying a repairing method to the original notch shapes weakened by crack(s) 

and damage(s) emanating from the notch border. For example, consider a U- or V-

notch damaged by a crack in its border (see Fig. 2.1.1). The most common 

repairing method for this damaged notch is to remove the crack by drilling a hole 

with the radius of normally equal to the crack length. If the crack length is small 

and larger than the notch tip radius, a key-hole notch or a V-notch with end hole 

(VO-notch), respectively, will be obtained from the repairing process. Since the 

notch feature after repair (key-hole or VO-notch) is different from the original U- 

or V-shape, the stress distribution and the stress gradient at the neighborhood of 

the new notch are different from those of the original notch needing necessarily a 

new fracture assessment.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1.1. (a) Key-hole notch resulted from removing a small crack from a U-notch border. (b) 

V-notch with end hole (VO-notch) resulted from removing a small crack from a V-notch border. 
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In this research, the Brazilian disk specimen weakened by keyholes, called Key-

BD specimen, and that weakened by V-notches with end holes, called VO-BD 

specimen, made of PMMA was utilized to perform brittle fracture tests at room 

temperature under mixed mode I+II loading. The experimentally recorded fracture 

loads were theoretically predicted by means of the SED criterion. A very good 

agreement was shown to exist between the experimental and theoretical results for 

various notch angles and different notch radii.   

 

2.1.2. Experiments 

A large bulk of new experimental results was provided in this study on key-hole 

notched and on recently proposed [50] VO-notched disk-type specimens under 

mixed mode I+II loading. The experimental program is elaborated in the next 

subsections.  

 

2.1.2.1. Material 

The material utilized in the experiments was Polymethyl-metacrylate (PMMA). 

PMMA is widely used in typical brittle fracture tests because it is cheap compared 

to the other brittle materials. Most of PMMAs exhibit quasi-brittle behavior at 

room temperature and brittle behavior at low temperatures (usually below -60 
o
C). 

The type of PMMA in this study was completely the same with that reported in 

Refs. [15,18]. Some of the mechanical properties of the tested PMMA at room 

temperature are presented in Table 2.1.1 [15,18].   

 

Table 2.1.1. Some of the mechanical properties of PMMA at room temperature [15,18]. 

 

Material property Value 

Elastic modulus, E (GPa) 2.96 

Poisson’s ratio,  0.38 

Ultimate tensile strength (MPa) 70.5 

Plane-strain fracture toughness (MPa m
0.5

) 1.96 
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2.1.2.2. Tested Specimen 

2.1.2.2.1 Keyhole notched specimens 

The Brazilian disk specimen containing a central dumbbell-shaped slit with two 

key-ends (Key-BD specimen) was utilized in the present study for testing under 

mixed mode I+II loading (see Fig. 2.1.2). According to Fig. 2.1.2, as the loading 

angle  (i.e. the angle between the slit bisector line and the loading direction) 

increases from zero to larger values, various in-plane loading conditions between 

pure mode I and pure mode II can be achieved. In order to perform fracture 

experiments under mixed mode I+II loading, the loading angle corresponding to 

pure mode II loading (II) should first be determined. For this purpose, finite 

element (FE) stress analysis was performed. Details of determining II are briefly 

described herein. 

For , the key-ends encounter opening and hence, they experience pure mode 

I loading. In this state, the notch bisector line at the vicinity of the notch 

experiences only the tensile stress. As  increase gradually from zero, the value of 

tensile stress decreases and conversely, that of the shear stress increases. For a 

specific  value, called II, the tensile stress on the notch bisector line becomes 

zero meaning that the notch does not experience opening. Trivially, this means 

pure mode II loading. In other words, to obtain II, one should increase   from 

zero till the tensile stresses at the notch bisector line becomes equal to zero.    
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Figure 2.1.2. The Key-BD specimen subjected to mixed mode I+II loading. 

 

The disk diameter (D) and the thickness were equal to 80 mm and 10 mm, 

respectively. The slit length (d) was considered to be equal to 24 mm and 40 mm 

(the relative notch length ratio (RNL) d/D was equal to 0.3 and 0.5, respectively). 

To produce the Key-BD specimens, a PMMA plate of 10 mm thick was first 

provided and then, the drawing of each specimen was submitted to a high-

precision 2-D CNC water-jet cutting machine for fabrication. Finally, the cut 

surfaces were accurately polished by means of fine abrasive papers. For the 

specimens with d/D = 0.3, three notch radii of 1, 2 and 4 mm were considered 

while for d/D=0.5, four radii of 1, 2, 4 and 6 mm. The tests were conducted under 

mixed mode I+II loading conditions. Since II values were obtained from FE 

analysis to be equal to approximately 31 (deg.) and 26 (deg.) for d/D = 0.3 and 

d/D = 0.5, respectively, four loading angles of  = 0, 10, 20 and 31 (deg.) and   = 

0, 10, 15 and 26 (deg.) were considered in the tests for the above mentioned d/D 

values, respectively. Each test was repeated three times in order to check the 
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repeatability of the tests. All in all, 84 tests were performed in the present 

investigation. In order to provide monotonic loading conditions, the test speed 

was set to be equal to 0.3 mm/min. Figs. 2.1.3 and 2.1.4 represent several Key-BD 

specimens during and after fracture tests, respectively.  

 

 

Figure 2.1.3. A Key-BD specimen under mixed mode I+II fracture test. 

 

 

Figure 2.1.4. A few Key-BD specimens after fracture. 

 

2.1.2.2.2 VO-notched specimens 

A new version of the well-known Brazilian disk specimen weakened by central V-

notches with end holes, called VO-BD specimen, which has been recently 
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proposed [50], was utilized in this study to conduct mixed mode I+II fracture 

experiments on VO-notches. Fig. 2.1.5 clearly shows that various in-plane loading 

conditions can be achieved for the VO-notch by changing the loading angle  (i.e. 

the angle between the loading direction and the slit bisector line) from zero (for 

pure mode I loading) to larger values (for mixed mode I+II loading). In other 

words, different  values mean different mode mixities; i.e. various contributions 

of tensile and shear stresses at the notch tip vicinity.  

 

 

Figure 2.1.5. The VO-BD specimen subjected to mixed mode I+II loading. 

 

The disk diameter (D), the overall slit length (d), and the disk thickness were 

equal to 80 mm, 40 mm and 10 mm, respectively. For producing the VO-BD 

specimens, a PMMA plate of 10 mm thick was first provided. Then, the drawing 

of each specimen was given to a high-precision 2-D CNC water-jet cutting 

machine for fabrication. Three notch angles of 30, 60 and 90 (deg.) and four notch 

radii of 0.5, 1, 2 and 4 mm were considered in the tests meaning twelve different 

VO-notch geometries.  
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Four various loading angles  have also been examined for each notch geometry 

providing different mode mixities. In order to select appropriate  angles, the  

value for which pure mode II loading is resulted () is essentially needed. It 

was found by the finite element (FE) stress analysis that  depends considerably 

upon the notch angle and slightly on the notch radius ( values were obtained to 

be approximately equal to 25, 28, and 33 (deg.) for the notch angles 30, 60, and 90 

(deg.), respectively). For notch angles 30, 60 and 90 (deg.), the loading angles  

were considered to be (0, 10, 15, 25), (0, 10, 20, 28) and (0, 10, 20, 33), 

respectively. Each test was repeated three times in order to check the repeatability 

of the tests. All in all, 144 new fracture tests were performed in this study. The 

method of determining  is briefly described in the next paragraph.  

For , the VO-ends of the central slit encounter opening and thus, they 

experience pure mode I loading. In this state, the notch bisector line at the 

neighborhood of the notch experiences only the tensile stresses. As  increases 

gradually from zero, the value of tensile stress decreases and conversely, that of 

the shear stress increases. For a specific  value, called II, the tensile stress on the 

notch bisector line becomes zero meaning that the notch does not experience 

opening. This means trivially pure mode II loading. In other words, to achieve II, 

one should increase  from zero till the tensile stresses at the notch bisector line 

becomes equal to zero.  

Figure 2.1.6 represents a VO-BD specimen subjected to mixed mode I+II loading 

inside the test machine. Some VO-BD specimens after fracture are also shown in 

Fig. 2.1.7. The test speed was set to be 0.5 mm/min providing monotonic loading 

conditions. 
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Figure 2.1.6. A VO-BD specimen subjected to mixed mode I+II loading inside the test machine. 

 

 

Figure 2.1.7. Some VO-BD specimens after fracture. 

 

2.1.2.3. Test results 

2.1.2.3.1 Keyhole notched specimens 

Table 2.1.2 summarizes the experimentally recorded fracture loads for different 

notch radii and various values of the RNL ratio. Each specimen is denoted by a 

specific index X-Y-Z where X, Y and Z denote the RNL, the notch radius and the 

loading angle , respectively. For instance, the index 0.3-1-10 identifies the Key-

BD specimen with d/D = 0.3 having the notch radius of 1 mm loaded under  = 10 
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(deg.). Meanwhile, Pi (i = 1, 2, 3) denotes the fracture loads for the three tests 

repeated.  

 

Table 2.1.2. The experimental fracture loads of the Key-BD specimens. 

Specimen index P1 (N) P2 (N) P3 (N) Pav. (N) 

0.3-1-0 9391 9080 9302 9258 

0.3-1-10 8573 7967 8935 8492 

0.3-1-20 8510 8439 8369 8440 

0.3-1-31 7288 7333 7220 7280 

0.3-2-0 8664 9361 9691 9239 

0.3-2-10 10669 9868 10268 10268 

0.3-2-20 9423 9631 9480 9511 

0.3-2-31 7900 8295 8690 8295 

0.3-4-0 10891 10635 10768 10765 

0.3-4-10 9212 9510 9808 9510 

0.3-4-20 8599 7965 7332 7966 

0.3-4-31 9987 8671 7356 8671 

0.5-1-0 6928 6859 6748 6845 

0.5-1-10 6010 5921 5685 5872 

0.5-1-15 5171 5023 5538 5244 

0.5-1-26 4873 5054 4486 4804 

0.5-2-0 7015 6991 7040 7015 

0.5-2-10 6991 6835 6679 6835 

0.5-2-15 6719 6737 6755 6737 

0.5-2-26 5388 5250 5113 5250 

0.5-4-0 6889 5992 6441 6441 

0.5-4-10 7177 7422 7299 7299 

0.5-4-15 7109 7109 7109 7109 

0.5-4-26 6427 6478 6499 6468 

0.5-6-0 7173 6608 5957 6579 

0.5-6-10 6928 6991 5219 6379 

0.5-6-15 6093 5759 6427 6093 

0.5-6-26 4665 4409 4369 4481 

 



2 - Static loadings - PMMA under mixed mode I+II loading 

 

 

51 

 

The experimental observations confirmed that the load-displacement plots for the 

Key-BD specimens were linear up to final breakage. No evidences of large 

deformations around the notch and abrupt fall of the load from a maximum to zero 

confirmed sudden fracture of the specimens. Thus, using brittle fracture criteria 

for predicting the experimental results is fundamentally permissible. In the 

forthcoming sections, the SED averaged over a specified control volume which 

embraces the notch edge is employed to predict the experimental fracture loads of 

the Key-BD specimens presented in Table 2.1.2.   

  

2.1.2.3.2 VO-notched specimens 

Table 2.1.3 summarizes the experimental fracture loads of the VO-BD PMMA 

specimens for various notch angles and different notch radii. Each specimen is 

identified by an index (see the first column of Table 2.1.3) consisting of three 

numbers like X-Y-Z in which X, Y and Z associate with the notch angle, the notch 

radius and, the loading angle, respectively. For example, the index 60-1-20 

belongs to a VO-notch with 60 (deg.) angle and 1 mm radius subjected to a 

compressive load with deg.Note that P1, P2 and P3 denote the fracture 

loads in the repeated tests. The average fracture loads are also presented in the last 

column. 
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Table 2.1.3. The experimental fracture loads of the VO-BD PMMA specimens subjected to mixed 

mode loading. 

 

2α=30 (deg.) 

Specimen   

index 
P1 (N) P2 (N) P3 (N) Pav. (N) 

30-0.5-0 5635 5277 5724 5545.3 

30-0.5-10 4754 4332 4707 4597.6 

30-0.5-15 4395 4650 5203 4749.3 

30-0.5-25 3982 3988 4267 4079 

30-1-0 5203 5612 5128 5314.3 

30-1-10 4395 5505 4651 4850.3 

30-1-15 4127 4533 4949 4536.3 

30-1-25 4479 4589 4369 4479 

30-2-0 6497 6081 6389 6322.3 

30-2-10 6699 6082 6427 6402.6 

30-2-15 5203 4815 5308 5108.6 

30-2-25 5276 4904 5579 5253 

30-4-0 6997 6530 6730 6752.3 

30-4-10 6261 6156 6208 6208.3 

30-4-15 5742 5456 6156 5784.6 

30-4-25 6369 6118 5203 5896.6 

 

2α=60 (deg.) 

Specimen   

index 
P1 (N) P2 (N) P3 (N) Pav. (N) 

60-0.5-0 3857 3790 3566 3737.6 

60-0.5-10 3857 3834 3620 3770.3 

60-0.5-20 3734 3935 3834 3834.3 

60-0.5-28 5008 4815 4755 4859.3 

60-1-0 4073 4089 4533 4231.6 

60-1-10 4395 3834 4280 4169.6 

60-1-20 4357 4318 4280 4318.3 

60-1-28 4395 4345 3857 4199 

60-2-0 5325 5440 4754 5173 

60-2-10 4874 4993 4844 4903.6 
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60-2-20 4228 4561 4693 4494 

60-2-28 5038 4859 4829 4908.6 

60-4-0 5793 5866 5939 5866 

60-4-10 5758 5305 5686 5583 

60-4-20 5399 5686 5488 5524.3 

60-4-28 5776 5776 5054 5535.3 

 

2α=90 (deg.) 

Specimen   

index 
P1 (N) P2 (N) P3 (N) Pav. (N) 

90-0.5-0 2290 2481 2360 2377 

90-0.5-10 2371 2353 2609 2444.3 

90-0.5-20 2738 3013 2886 2879 

90-0.5-34 4622 5901 6226 5583 

90-1-0 2570 2473 2385 2476 

90-1-10 2722 2915 2907 2848 

90-1-20 3279 3279 2969 3175.6 

90-1-34 5159 5187 5173 5173 

90-2-0 2827 3013 3013 2951 

90-2-10 3359 2862 2916 3045.6 

90-2-20 3319 3439 3445 3401 

90-2-34 5039 5309 4919 5089 

90-4-0 3779 3947 3971 3899 

90-4-10 3700 3911 3947 3852.6 

90-4-20 3745 4071 3900 3905.3 

90-4-31 4485 5054 5171 4903.3 

 

 

It was found from the experiments that the load-displacement curves of the VO-

BD specimens were linear up to final breakage (see an instance in Fig. 2.1.8). The 

recorded curves were in a good consistency with the experimental observations 

from which no considerable plastic deformations were obtained at the notch tip 

vicinity. Sudden fall of the load from a maximum (i.e. the fracture load) to zero in 

Fig. 2.1.8 suggests sudden fracture of the VO-BD specimen. Experimental 

observations confirmed the curve since fracture took place suddenly without a 
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precaution, e.g. a crack initiation etc. From the statements above, it is concluded 

that brittle fracture has taken place in VO-BD PMMA specimens in the linear-

elastic regime. Thus, different brittle fracture criteria in the area of the linear 

elastic notch fracture mechanics (LENFM), e.g. the SED criterion, could be used 

for predicting the experimental results. 
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Figure 2.1.8. A sample load–displacement plot for a VO-BD PMMA specimen at room 

temperature. 

 

In the next section, the experimental fracture loads of the VO-BD specimens 

presented in Table 2.1.3 are theoretically predicted by means of the average strain 

energy (SED) criterion.   

 

2.1.3. Fracture criterion based on the Strain Energy Density averaged over a 

control volume 

With the aim of estimating the critical loads of PMMA components weakened by 

cracks or notches, designers need appropriate fracture criteria which take into 

account the local behaviour of material around the stress concentrators. In the 
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present section a criterion based on the local strain energy and useful for the 

theoretical estimation of the fracture loads of notched components is described. 

Different from Sih’s criterion [43], which is a point-wise criterion, the averaged 

strain energy density criterion (SED), as presented in Ref. [31], states that brittle 

failure occurs when the mean value of the strain energy density over a given 

control volume is equal to a critical value, Wc. This critical value varies for 

different materials but it does not depend on the notch geometry and sharpness. 

The control volume is thought of as dependent on the ultimate tensile strength t 

and the fracture toughness, KIc, in the case of brittle or quasi-brittle materials 

subjected to static loads.  

This approach was first proposed in the literature for sharp V-notched components 

subjected to mode I or mixed I+II loading conditions [31] and then formulated 

also for blunt notched components [44].  

In the case of components weakened by cracks, the control volume becomes a 

circle centered at the tip and characterized by a radius Rc [31]. With reference to a 

state of plane strain, the size of the control volume, Rc, can be estimated by means 

of the expression [31,44]: 

2

t

Ic
c

σ

K

4π

)8ν)(5(1
R














        (2.1.1) 

where KIc is the fracture toughness,  the Poisson’s ratio and t the ultimate 

tensile strength of a plain specimen that obeys a linear elastic behavior. 
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Figure 2.1.9. Control volume under (a) mode I and (b) mixed mode I+II loading for key-hole 

notched specimens. θ0 represents the angular position of the point where the principal stress 

reaches its maximum value, with respect to the notch bisector line. 
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Figure 2.1.10. Control volume (a) mode I and (b) mixed mode I+II loading for VO-notched 

specimens. θ0 represents the angular position of the point where the principal stress reaches its 

maximum value, with respect to the notch bisector line. 

 

In the case of components weakened by blunt notches and subjected to Mode I 

loading condition, the control volume assumes a crescent shape [51], where Rc 

represents the size evaluated along the bisector line. The control volume (Fig. 

2.1.9a-10a) is characterized by an outer radius that equals Rc + r0. The parameter 

r0 is a function of the opening angle (2) and of the notch tip radius (ρ) as 

highlighted by the following relationship: 





q

1q
r0           (2.1.2) 

with q defined as: 
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Under mixed mode loading, the critical volume is no longer centered on the notch 

tip (see Figure 2.1.9b-10b), but rather on the point where the principal stress 

reaches its maximum value along the edge of the notch [34]. It is assumed that the 

crescent shape volume rotates rigidly under mixed mode, with no change in shape 

and size. This is the governing idea of the ‘equivalent local mode I’ approach, as 

has been proposed and applied to U and V-notches by Lazzarin and Elices 

together with their co-authors [34].  

As it is discussed above, the idea of the ‘equivalent local mode I’ approach, as 

proposed and applied to plates made of PMMA and weakened by U-notches and 

V-notches [34,44], is used here dealing with Brazilian disk specimens weakened 

by key-hole notches and V-notches with end-holes under mixed mode I+II 

loading. With this aim two models are created for each geometry. The first model 

is mainly oriented to the determination of the point where the maximum principal 

stress and the maximum SED are located; the second model is characterized by an 

accurate definition of the control volume where the strain energy density should 

be averaged.  

The values of the strain energy density averaged over the control volume have 

been evaluated by means of finite element analyses performed in ANSYS, version 

14.5. All the analyses are carried out by using eight-node elements under the 

hypothesis of plane strain conditions. The procedure for building the two models 

to determine the SED in the rotated volume can be easily automated by simply 

writing an APDL (ANSYS Parametric Design Language) subroutine which 

permits the direct evaluation of the SED in the control volume. 

One of the most important advantages of the mean SED approach is the mesh 

independency [52]. As widely documented in [52], refined meshes are not 

necessary, because the mean value of the SED on the control volume can be 

directly determined via the nodal displacements, without involving their 

derivatives. As soon as the average SED is known, the notch stress intensity 

factors (NSIFs) can be calculated a posteriori on the basis of very simple 

expressions linking the local SED and the relevant NSIFs. This holds true also for 

the stress concentration factors (SCFs), at least when the local stress distributions 

ahead of the blunt notch are available for the plane problem. An example is shown 
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in Figure 2.1.11 depicting a typical mesh (Fig. 2.1.11a) together with the principal 

stress (Fig. 2.1.11b) and SED (Fig. 2.1.11c) contour lines. 
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Figure 2.1.11. Typical mesh used to evaluate the SED under mode I loading. Mesh (a), principal 

stress contour lines (b) and SED contour lines (c). 

 

2.1.4. SED approach in fracture analysis of the tested PMMA specimens 

The fracture criterion described in the previous section is employed here to 

estimate the fracture loads obtained from the experiments conducted on the 

PMMA specimens weakened by key-holes and V-notches with end holes under 

mixed mode I+II loading. The SED values have been evaluated by means of a FE 

model of each specimen. The averaged strain energy density criterion (SED) 

states that failure occurs when the mean value of the strain energy density over a 

control volume, �̅�, is equal to a critical value, Wc, which depends on the material 

but not on notch geometry [31,32,34,44]. This critical value can be determined 

from the ultimate tensile strength t according to Beltrami’s expression:  

2E

σ
W

2
t

c            (2.1.4) 



2 - Static loadings - PMMA under mixed mode I+II loading 

 

 

61 

 

In parallel, the control volume definition via the control radius Rc needs the 

knowledge of the fracture toughness, KIc, and the Poisson’s ratio, see Eq. 

(2.1.1).The critical load that is sustainable by a notched component can be 

estimated by imposing �̅� equal to the critical value Wc. This critical value is 

considered here constant under mode I, mode II and in-plane mixed-mode 

conditions. This assumption has extensively been verified for a number of 

different brittle and quasi-brittle materials [44].  

As it is mentioned earlier, the properties of the PMMA considered in the present 

investigation are:t  = 70.5 MPa, KIc = 1.96 mMPa , Poisson’s ratio = 0.38. As 

a result, the critical SED for the tested PMMA is Wc = 0.839 MJ/m
3
, whereas the 

radius of the control volume is Rc = 0.166 mm for plane strain conditions.  

 

2.1.4.1 Keyhole notched specimens 

Table 2.1.4 summarizes the outlines of the experimental, numerical and 

theoretical findings for the tested PMMA specimens, re-analyzed here by means 

of SED concepts. In particular, the table summarizes the experimental loads to 

failure (P) for each notch radius compared with the theoretical values (Pth) 

based on the SED evaluation. The table also gives us the SED value as obtained 

directly from the FE models of the PMMA specimens by applying to the model 

the average experimental load Pav.  
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Table 2.1.4. Experimental fracture loads compared with theoretical loads evaluated by means of 

SED. The SED in the Table has been evaluated applying in the numerical model a load 

corresponding to the average experimental value, being P=Pav. 

 

Specimen 

index 
d/2 

P1 

(N) 

P2  

(N) 

P3  

(N) 

Pav. 

(N) 

SED 

(MJ/m
3
) 

Pth  

(N) 





 

 

0.3-1-0 12 9391 9080 9302 9258 0.873 9076 -3.35 -0.04 -2.43 

0.3-1-10 12 8573 7967 8935 8492 0.944 8010 -6.57 0.54 -10.35 

0.3-1-20 12 8510 8439 8369 8439 0.969 7858 -7.66 -6.88 -6.11 

0.3-1-31 12 7288 7333 7220 7280 0.895 7052 -3.24 -3.83 -2.33 

0.3-2-0 12 8664 9361 9691 9239 0.718 9989 15.29 6.71 3.08 

0.3-2-10 12 10669 9868 10268 10268 0.965 9582 -10.19 -2.90 -6.68 

0.3-2-20 12 9423 9631 9480 9511 0.990 8762 -7.01 -9.02 -7.57 

0.3-2-31 12 7900 8295 8690 8295 0.755 8746 10.71 5.44 0.64 

0.3-4-0 12 10891 10635 10768 10765 0.842 10744 -1.35 1.02 -0.22 

0.3-4-10 12 9212 9510 9808 9510 1.127 8209 -10.89 -13.68 -16.30 

0.3-4-20 12 8599 7965 7332 7965 1.317 6361 -26.03 -20.14 -13.24 

0.3-4-31 12 9987 8671 7356 8671 0.614 10136 1.49 16.90 37.79 

0.5-1-0 20 6928 6859 6748 6845 1.055 6103 -11.91 -11.02 -9.56 

0.5-1-10 20 6010 5921 5685 5872 0.987 5416 -9.88 -8.53 -4.73 

0.5-1-15 20 5171 5023 5538 5244 0.990 4829 -6.61 -3.86 -12.80 

0.5-1-26 20 4873 5054 4486 4804 0.993 4417 -9.36 -12.60 -1.54 

0.5-2-0 20 7015 6991 7040 7015 0.895 6794 -3.15 -2.82 -3.49 

0.5-2-10 20 6991 6835 6679 6835 0.952 6420 -8.17 -6.07 -3.88 

0.5-2-15 20 6719 6737 6755 6737 0.917 6447 -4.05 -4.30 -4.56 

0.5-2-26 20 5388 5250 5113 5250 0.772 5476 1.63 4.30 7.10 

0.5-4-0 20 6889 5992 6441 6441 0.660 7262 5.41 21.19 12.75 

0.5-4-10 20 7177 7422 7299 7299 0.972 6786 -5.45 -8.57 -7.03 

0.5-4-15 20 7109 7109 7109 7109 0.966 6628 -6.77 -6.77 -6.77 

0.5-4-26 20 6427 6478 6499 6468 0.865 6372 -0.86 -1.64 -1.95 

0.5-6-0 20 7173 6608 5957 6579 0.709 7155 -0.25 8.28 20.11 

0.5-6-10 20 6928 6991 5219 6379 1.115 5537 -20.08 -20.80 6.09 

0.5-6-15 20 6093 5759 6427 6093 1.133 5245 -13.92 -8.93 -18.39 

0.5-6-26 20 4665 4409 4369 4481 0.650 5093 9.17 15.51 16.57 

 

The last columns of Table 2.1.4 reports the relative deviations between 

experimental and theoretical loads (= (Pth – P)·100/P). As it is widely 
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discussed in Ref. [44], acceptable engineering values range between -20% and 

+20%, being this scatter slightly higher under mixed mode loading or pure mode 

II loading [34]. As can be noticed from the table, this range is satisfied for the 

majority of the present data with only few exceptions falling outside the range 

from -20% and +20%. 

The results are given also in graphical form in Figs. 2.1.12-2.1.15 where the 

experimental values of the critical loads (open dots) are compared with the 

theoretical predictions based on the constancy of the SED in the control volume 

(solid line). The plots are given for the notched PMMA specimens as a function of 

the notch tip radius The trend of the theoretically predicted loads is in good 

agreement with the experimental ones.  

A synthesis in terms of the square root value of the local energy averaged over the 

control volume (of radius Rc), normalized with respect to the critical energy of the 

material as a function of the notch tip radius is shown in Fig. 2.1.16. The plotted 

parameter is proportional to the fracture load. The new data are plotted together 

independent of the notch geometries and specimens shape. The aim is to 

investigate the influence of the notch tip radius on the fracture assessment based 

on SED. From the figure, it is clear that the scatter of the data is very limited and 

almost independent of the notch radius. Most of the values fall inside a scatter 

ranging from 0.80 to 1.20, with the great majority of the data inside 0.85 to 1.15. 

The synthesis confirms also the choice of the control volume which seems to be 

suitable to characterize the material behaviour under mixed mode I+II loading. 

The scatter of the experimental data presented here is in good agreement with the 

recent database in terms of SED reported in Refs. [34,44]. 
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Figure 2.1.12. Fracture assessment by means of SED for the case d/D=0.5 and =0° 

 

Figure 2.1.13. Fracture assessment by means of SED for the case d/D=0.5 and =10° 
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Figure 2.1.14. Fracture assessment by means of SED for the case d/D=0.5 and =15° 

 

Figure 2.1.15. Fracture assessment by means of SED for the case d/D=0.5 and =26° 
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Figure 2.1.16. Synthesis of brittle failure data from PMMA specimens. 
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Table 2.1.5. Experimental fracture loads compared with theoretical loads evaluated by means of 

SED. The SED in the Table has been evaluated applying in the numerical model a load 

corresponding to the average experimental value, being P=Pav. 

 

Specimen 

index 

P1 

(N) 

P2 

(N) 

P3 

(N) 

Pav. 

(N) 

SED 

(MJ/m
3
) 

Pth 

(N) 

 





 

30-0.5-0 5635 5277 5724 5545 0.86 5468 -2.96 3.62 -4.47 

30-0.5-10 4754 4332 4707 4597.7 0.74 4893 2.92 12.95 3.95 

30-0.5-15 4395 4650 5203 4749.3 0.87 4645 5.69 -0.11 -10.72 

30-0.5-25 3982 3988 4267 4079 0.86 4224 6.08 5.92 -1.01 

30-1-0 5203 5612 5128 5314 0.67 5956 14.47 6.13 16.15 

30-1-10 4395 5505 4651 4850.3 0.65 5501 25.16 -0.07 18.28 

30-1-15 4127 4533 4949 4536.3 0.63 5227 26.65 15.31 5.62 

30-1-25 4479 4589 4369 4479 0.67 4611 2.95 0.48 5.54 

30-2-0 6497 6081 6389 6322 0.75 6679 2.80 9.83 4.54 

30-2-10 6699 6082 6427 6402.7 0.85 6355 -5.14 4.49 -1.12 

30-2-15 5203 4815 5308 5108.7 0.59 6075 16.76 26.17 14.45 

30-2-25 5276 4904 5579 5253 0.75 5508 4.40 12.32 -1.27 

30-4-0 6997 6530 6730 6752 0.72 7305 4.40 11.87 8.54 

30-4-10 6261 6156 6208 6208.3 0.65 7050 12.60 14.52 13.56 

30-4-15 5742 5456 6156 5784.7 0.63 6668 16.13 22.21 8.32 

30-4-25 6369 6118 5203 5897 0.72 6462 1.46 5.62 24.20 

60-0.5-0 3857 3790 3566 3738 0.83 3767 -2.33 -0.61 5.64 

60-0.5-10 3857 3834 3620 3770.3 0.89 3651 -5.34 -4.77 0.86 

60-0.5-20 3734 3935 3834 3834.3 0.83 3840 2.84 -2.41 0.16 

60-0.5-28 5008 4815 4755 4859 0.83 4406 -12.02 -8.49 -7.34 

60-1-0 4073 4089 4533 4232 0.77 4410 8.27 7.85 -2.71 

60-1-10 4395 3834 4280 4169.7 0.81 4222 -3.94 10.12 -1.36 

60-1-20 4357 4318 4280 4318.3 0.88 4215 -3.26 -2.39 -1.52 

60-1-28 4395 4345 3857 4199 0.77 4470 1.71 2.88 15.89 

60-2-0 5325 5440 4754 5173 0.77 5397 1.35 -0.79 13.53 

60-2-10 4874 4993 4844 4903.7 0.80 4999 2.56 0.12 3.20 

60-2-20 4228 4561 4693 4494.0 0.69 4953 17.15 8.59 5.54 

60-2-28 5038 4859 4829 4909 0.77 5026 -0.24 3.44 4.08 

60-4-0 5793 5866 5939 5866 0.68 6539 12.88 11.47 10.10 

60-4-10 5758 5305 5686 5583.0 0.73 5978 3.82 12.69 5.14 

60-4-20 5399 5686 5488 5524.3 0.67 6163 14.15 8.39 12.30 

60-4-28 5776 5776 5054 5535 0.68 5993 3.76 3.76 18.58 

90-0.5-0 2290 2481 2360 2377 0.99 2185 -4.59 -11.93 -7.42 

90-0.5-10 2371 2353 2609 2444.3 0.90 2348 -0.97 -0.21 -10.00 
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90-0.5-20 2738 3013 2886 2879.0 0.77 3003 9.68 -0.33 4.05 

90-0.5-34 4622 5901 6226 5583 0.99 5968 29.12 1.14 -4.14 

90-1-0 2570 2473 2385 2476 0.74 2644 2.88 6.91 10.86 

90-1-10 2722 2915 2907 2848.0 0.89 2763 1.51 -5.21 -4.95 

90-1-20 3279 3279 2969 3175.7 0.82 3207 -2.20 -2.20 8.02 

90-1-34 5159 5187 5173 5173 0.74 5175 0.31 -0.23 0.04 

90-2-0 2827 3013 3013 2951 0.60 3486 23.31 15.70 15.70 

90-2-10 3359 2862 2916 3045.7 0.61 3559 5.95 24.35 22.05 

90-2-20 3319 3439 3445 3401.0 0.66 3835 15.55 11.51 11.32 

90-2-34 5039 5309 4919 5089 0.60 5102 1.25 -3.90 3.72 

90-4-0 3779 3947 3971 3899 0.54 4840 28.08 22.62 21.88 

90-4-10 3700 3911 3947 3852.7 0.51 4904 32.54 25.39 24.25 

90-4-20 3745 4071 3900 3905.3 0.51 4969 32.68 22.06 27.41 

90-4-31 4485 5054 5171 4903 0.54 5493 22.47 8.69 6.23 

 

The table also shows the percentage deviation (= (Pth – P)·100/P) between the 

theoretical estimation of the fracture load and each of the three experimental 

values, with reference to all geometries considered. As highlighted in other 

contributions [33,44], acceptable values from the engineering point of view are 

between -20% and +20%. It can be easily observed from Table 2.1.3 that this 

range is satisfied for the great majority of the present data with only a few 

exceptions falling outside the range from -20% and +20%. 

The results reported in the table are also represented in the diagrams of Figs 

2.1.17-19, in which the fracture loads experimentally determined (open dots) are 

compared with the theoretical estimations obtained according to the SED 

approach (solid line), with reference to a notch opening angle 2 equal to 30°, 60° 

and 90°, respectively. In particular the abscissa axis of the figures reports the 

value of the notch root radius ρ of each specimen. The figures show clearly a good 

agreement between theoretical predictions and experimental data, for all the 

different notch opening angles (2α) and loading angles (β) taken into 

consideration in this work.  
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Figure 2.1.17. Comparison between theoretical fracture loads obtained by SED and experimental 

data for 2 = 30°. (a) = 10° and (b) = 15°. 
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Figure 2.1.18. Comparison between theoretical fracture loads obtained by SED and experimental 

data for 2 = 60°. (a) = 10° and (b) = 20°. 
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Figure 2.1.19. Comparison between theoretical fracture loads obtained by SED and experimental 

data for 2 = 90°. (a) = 10° and (b) = 20°. 
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Figure 2.1.20. Synthesis of brittle failure data from PMMA specimens under mixed mode I+II 

loading. 

 

Figure 2.1.20 shows the square root value of the ratio between the SED averaged 

over the control volume of radius Rc and the constant value of the critical energy 

of the material (0.839 MJ/m
3
) as a function of the notch radius . Being the strain 

energy density proportional to the square of the applied load, the plotted 

parameter results to be proportional to the ratio between the experimental and the 

theoretical loads. The purpose is to evaluate the influence of the notch root radius 

and of the opening angle on the estimation of the critical loads according to the 

SED approach. From the diagram, it results to be clear that the scatter of the new 

data is very limited and almost independent of the notch geometries. In fact, the 

great majority of the experimental values obtained from the PMMA notched 

specimens fall inside a scatterband ranging from 0.8 to 1.2 with only a few values 

outside this range. One should also note that the majority of the results are inside a 

scatter ranging from 0.9 to 1.1. 

These considerations along with the final synthesis diagram, reported in Fig. 

2.1.21, underline the very good accuracy of the SED approach for the fracture 

assessment of notched components made of PMMA under mixed mode I+II 

loading conditions, once the control volume has been properly modeled. 
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Figure 2.1.21. Synthesis of all brittle failure data from PMMA Key-BD and VO-BD specimens 

under mixed mode I+II loading. 
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represents the deviation between the experimental loads and the theoretical ones, 

was found to be very limited (within ± 20%) as a demonstration of the 

effectiveness of the SED approach.  

From the synthesis based on SED criterion, it can be inferred that the choice of the 

crescent shape for the control volume is appropriate to characterize the PMMA 

behaviour under mixed mode I+II loading, and also that the critical SED Wc and 

the control radius Rc are both constant material properties. 
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2.2. Brittle Fracture of blunt notched components made of 

isostatic graphite under mixed mode I+III loading
 (*)

 

 

Nomenclature 

E   Young’s modulus  

G   Shear modulus  

KIc  fracture toughness 

K3c   Mode III critical notch stress intensity factor 

Kt   linear elastic stress concentration factor  

M   mode mixity ratio 

p  notch depth 

r0   distance between notch tip and origin of the reference system 

R1c   control radius under tensile loading 

R3c   control radius under torsion loading 

W̅ SED averaged over the control volumes 

W1c critical SED value of the considered material under tensile loading 

W3c critical SED value of the considered material under torsion loading 

 

Symbols 

   notch opening angle 

  Poisson's ratio 

   notch tip radius 

nom   nominal tensile stress 

t    ultimate tensile strength  

nom   nominal torsion stress 

t    ultimate torsion strength 

 

 

(*) See also: 

 

Berto, F.; Campagnolo, A.; Ayatollahi, M. Brittle fracture of rounded V-notches in isostatic 

graphite under static multiaxial loading. Physical Mesomechanics; 18: 283-297 (2015) 
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2.2.1. Introduction 

Isostatic graphite can be used in many industrial applications due to the good 

compromise between thermal and mechanical properties. The design of industrial 

products made of graphite is not focused only to structural applications. However, 

the large majority of components, although not thought as structural ones, is 

subjected to loads transferred by the other parts of the structure. For this reason, 

many studies in the past have been devoted to the investigation of the fracture 

strength of graphite. Brittle fracture is a typical behaviour for this material and 

usually happens after the initiation of micro-cracks in the most stressed parts of 

the structure, combined in some cases with a very limited amount of plasticity 

[53].  

The majority of the studies focused on structural integrity of graphite components 

have been devoted to the investigation of cracked components by quantifying the 

fracture toughness under prevalent mode I loading [54–59]. Dealing with isotropic 

graphite, innovative techniques have been proposed with this aim [60,61]. Some 

researchers have also studied the fracture behaviour of composite materials 

reinforced by graphite fibres at room temperature [62–65]. The problem related to 

the mechanical behaviour at elevate temperature of graphite in presence of cracks 

is also a topic of active research [66–69]. Although the problem of brittle fracture 

of graphite components has been studied continuously for many years, only few 

predictive models have been proposed for the fracture assessment of cracked 

components. Some models are based on the microstructural properties [70–73]. A 

stress based  criteria [74] has been recently proposed as an extension of the 

maximum tensile stress (MTS) criterion originally proposed in a pioneering study 

by Erdogan and Sih [75].  

The papers briefly recalled in the first part of this introduction refer to the 

behaviour of graphite in the presence of cracks. A review of the recent and past 

literature shows that only very few papers are focused to the study of the notch 

sensitivity of graphite components. It is worth of mentioning here the pioneering 

study conducted by Bazaj and Cox [76] and Kawakami [77]. Only in the last years 

the topic of the fracture behaviour of blunt notches has been faced by other 
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researchers, who have investigated the case of pure mode I loading and in-plane 

mixed mode loading [6,31,32,35,36,39,51]. 

Dealing with static failure of notches under out-of-plane loading (i.e. pure torsion) 

the literature is very limited. There are few papers dealing with tension/torsion 

(mixed mode I/III) fracture in some other types of ceramics like Al2O3 [78] and 

inorganic glass [79].  

Very recently Ayatollahi and Saboori [80] have proposed a new fixture for 

fracture tests under mixed mode I/III loading setting it with some PMMA 

specimens weakened by cracks. 

Only one recent contribution by Berto et al. deals with V-notched specimens 

under pure torsion loading [38] while the case of static multiaxial loading (I+III) 

has never been investigated until now and no data are available for isostatic 

graphite. Due to this complete lack in the literature, the main aim of this research 

program is to systematically investigate the static behaviour of isostatic graphite 

subjected to multiaxial loadings obtained as a combination of tension and torsion 

with different values of the mode mixity ratio (i.e. the ratio between the nominal 

stress due to tension and that due to torsion loading): 0.40, 0.50 and 1.00. A new 

complete set of experimental data from cylindrical specimens subjected to 

combined tension and torsion loads is provided here, considering a large variety of 

geometrical configurations obtained by varying the notch opening angle and notch 

depth. More than 40 new data from graphite specimens are summarised here with 

reference to different geometric configurations and various notch acuities. The 

notch radius has been varied from 0.3 to 2 mm and the notch opening angle from 

30° to 120°. 

A fracture model based on the strain energy density (SED) averaged over a 

control volume is used for the first time for the fracture assessment of notched 

samples subjected to the multiaxial static loading case of tension and torsion 

applied in combination.  

The SED based approach allows a sound fracture assessment of the critical load 

for the specific material under investigation and it can be potentially extended to 

other types of graphite subjected to different combinations of mode I and mode III 

loading conditions. 
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This paragraph is divided in two parts: in the first one the experimental activity is 

presented (sample geometry, test setting, details of experimental data). While the 

second part deals with the formulation and application of the  averaged strain 

energy density criterion on the new data. 

 

2.2.2. Fracture Experiments 

The details of the graphite material, the test specimens and the fracture 

experiments are presented in this section.  

 

2.2.2.1. Material properties of EG022A 

The fracture tests were conducted on a grade of isostatic polycrystalline graphite 

with commercial name of EG022A. The basic material properties of the tested 

graphite are listed in Table 2.2.1: the mean grain size is of 300 m, the porosity of 

15%, the bulk density of 1830 kg/m
3
, the mean tensile strength of 30 MPa, the 

Young’s modulus of 8.00 GPa and the shear modulus of 3.30 GPa.  

Nonlinear deformation sometimes is observed in the mechanical behaviour of 

graphites, which makes the determination of Young’s modulus rather complicated 

[81,82]. However, for simplicity the Young’s modulus was obtained in this 

research from load-displacement graphs recorded by a universal tension-

compression machine. The deviation observed from linear behaviour was less than 

0.01% at failure for the specimen used in the test. Young’s modulus has been 

measured at a load where the deviation from linear behaviour was less than 

0.005%. The mean grain size was given in the material certify and  measured by 

using the SEM technique while the density of the material was determined from 

the buoyancy method, submerging the tested graphite in a liquid of known 

density.  
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Table 2.2.1. Material properties. 

Material property Value 

Elastic Modulus E [MPa] 8000 

Shear Modulus G [MPa] 3300 

Poisson's Ratio  0.2 

Ultimate Tensile Strength [MPa] 30 

Ultimate Torsion Strength [MPa] 37 

Hardening [Shore] 53 

Density [Kg/dm
3
] 1.83 

Average grain size [m] 300 

Resistivity [ohm∙m] 10.8 

Thermal Conductivity [W/(m∙K)] 119 

 

All tests were performed under displacement control on a servo-controlled MTS 

bi-axial testing device (100 kN/ 1100 Nm,  75 mm/ 55°). The load was 

measured by a MTS cell with ± 0.5 % error at full scale. A MTS strain gauge axial 

extensometer (MTS 632.85F-14), with a gage length equal to 25 mm was used for 

measuring the tensile elastic properties on plain specimens while a multi-axis 

extensometer MTS 632.80F-04 (with a gage length equal to 25 mm) was used for 

measuring the torsional elastic properties on unnotched specimens.  

Some load-displacement curves were recorded to obtain the Young’s modulus (E) 

of the graphite using an axial extensometer. The tensile strength (t) was 

measured by means of axis-symmetric specimens with a net diameter equal to 

12.5 mm on the net section and a diameter of 20 mm on the gross section (see 

Figure 2.2.1a). Due to the presence of a root radius equal to 40 mm, the theoretical 

stress concentration factor is less than 1.03. 
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The torque-angle graphs recorded by the MTS device were employed together 

with the bi-axis extensometer to obtain the shear modulus (G) and to measure the 

torsion strength (t) of the tested graphite. The ultimate shear strength t was 

found to be equal to 37 MPa.  
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(b) 

 

 

Figure 2.2.1. Geometry of plain (a) and notched (b) specimens used in the experimental tests. 

 

2.2.2.2. Test specimens  

As shown in Figure 2.2.1, different round bar specimens were used for multiaxial 

(tension and torsion) static tests: unnotched specimens (Fig. 2.2.1a) and 

cylindrical specimens with V-notches (Fig. 2.2.1b). This allows us to explore the 

influence of a large variety of notch shapes in the experiments. 

 

In more details: 

 For V-notched graphite specimens with a notch opening angle 2= 120°  (Fig. 

2.2.1b), notches with four different notch root radii were tested;  = 0.3, 0.5, 1 

and 2.0 mm. The effect of net section area was studied by changing the notch 

depth p. Two values were used, p = 3 and 5 mm, while keeping the gross 

diameter constant (20 mm).  

 For V-notched graphite specimens with a notch opening angle 2= 60° (Fig. 

2.2.1b), four different notch root radii were considered in the experiments:  = 
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0.3, 0.5, 1.0 and 2.0 mm. With a constant gross diameter (20 mm), also the net 

section area was kept constant, such that p = 5 mm. 

 For V-notched graphite specimens with a notch opening angle 2= 30° (Fig. 

2.2.1b), three different notch root radii were considered in the experiments:  = 

0.5, 1.0 and 2.0 mm keeping constant the notch depth p = 5 mm. 

 

At least three samples were prepared for each of the 15 specimen geometries 

described above, with a total number of 45 specimens. Figure 2.2.2a shows some 

samples used in the tension-torsion tests, whereas Figure 2.2.2b shows a typical 

fracture surface of a notched graphite component after failure under combined 

tension and torsion loading. 

 

 

 

V-notch, 2= 30
o
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V-notch, 2= 120
o
 

(a) 

 

(b) 

 

Figure 2.2.2. (a) Notched specimens used in combined tension-torsion tests and (b) a sample 

specimen broken after a combined tension-torsion test. 
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In order to prepare the specimens, first several thick plates were cut from a 

graphite block. Then, the specimens were precisely manufactured by using a 2-D 

CNC cutting machine. Before conducting the experiments, the cut surfaces of the 

graphite specimens were polished by using a fine abrasive paper to remove any 

possible local stress concentrations due to surface roughness.  

The tests were conducted under three different combinations between the tensile 

and the torsional stresses, with the nominal mode mixity ratios of nom/nom = 0.4, 

0.5 and 1. The details of applied loads are given in Table 2.2.2 as well as the stress 

concentration factors of each specimen under tension and torsion loading 

conditions, obtained by means of FE analyses adopting very refined meshes. 

Different nominal mode mixity ratios have been achieved by properly setting the 

torsional loading rate with respect to the tensile loading rate. In particular the 

tensile loading rate was varied keeping constant the rotation control conditions 

with a loading rate of 1°/min. 

Fig. 2.2.3 shows two example of load-angle (torque versus ) diagrams 

corresponding to some V-notched specimens characterized by the same notch 

radius and different values of the notch depth (p = 3 mm, Fig. 2.2.3a and p = 5 

mm, Fig. 2.2.3b). The load-angle curves recorded during the tests always 

exhibited an approximately linear trend up to the final failure, which occurred 

suddenly. Therefore, the use of a fracture criterion based on a linear elastic 

hypothesis for the material law is realistic. The same trend has been observed for 

the tensile curves plotting the load as a function of the axial displacement. 
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Figure 2.2.3. Torque-angle curves related to V-notched graphite specimens with a notch depth 

equal to (a) p = 3 mm and (b) p = 5 mm. 
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Table 2.2.2. Geometrical parameters of the graphite specimens used in the tests. 

 

All loads to failure (tensile load and torque) are reported in Tables 2.2.3-2.2.5 for 

each notch configuration and loading conditions. In particular Table 2.2.3 reports 

the data for nom/nom = 1 while Tables 2.2.4 and 2.2.5 summarize the data for the 

two ratios 0.4 and 0.5, respectively. As visible from the tables the imposed mode 

mixity ratio is almost fulfilled with a variation of approximately ±10% with 

respect to the imposed value. 

The variability of the loads to failure as a function of the notch opening angle is 

weak although not negligible.  For a constant notch radius, the fracture load 

slightly increases for larger notch opening angles, although this effect is very low. 

The main conclusion is that the stress concentration factors reported in Table 2.2.2 

are not able to control the failure conditions due to a low notch sensitivity 

exhibited by the graphite specimens under combined tension and torsion loads.  

 

 

 

 

Notch opening 

angle 

2α (°) 

Notch 

depth 

p (mm) 

Notch radius 

ρ (mm) 

Kt 

tension 

Kt 

torsion 
nom/nom 

120 

3 0.3 4.29 2.09 0.5 

 0.5 3.54 1.85 0.5 

 1 2.75 1.59 0.5 

 2 2.14 1.38 0.5 

5 0.3 3.83 1.93 1 

 0.5 3.15 1.72 1 

 1 2.45 1.48 1 

 2 1.91 1.30 1 

60 

5 0.3 4.46 2.25 1 

 0.5 3.52 1.90 0.4 

 1 2.59 1.55 0.4 

 2 1.96 1.32 0.4 

30 

5 0.5 3.53 1.94 1 

 1 2.60 1.56 1 

 2 1.95 1.32 1 
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Table 2.2.3. Experimental results in the case of nom/nom = 1.0; notch depth p = 5 mm. 

Specimen 

code 

Notch 

opening 

angle 2 

(°) 

Notch 

radius  

(mm) 

Tensile 

Load (N) 

Torque 

(N mm) 
σnom  

(MPa) 
τnom 

(MPa) 
nom/nom 

1-01 120° 0.3 1193 2659 15.19 13.54 1.12 

1-02   1025 2280 13.05 11.61 1.12 

1-03   1114 2500 14.18 12.73 1.11 

2-01  0.5 1190 2690 15.15 13.69 1.10 

2-02   1234 2631 15.71 13.40 1.17 

2-03   1200 2694 15.28 13.72 1.11 

3-01  1 1302 2873 16.58 14.63 1.13 

3-02   1251 2673 15.93 13.61 1.17 

3-03   1283 2845 16.34 14.49 1.13 

4-01  2 1497 3798 19.06 19.35 0.98 

4-02   1451 3634 18.47 18.51 1.00 

4-03   1532 3710 19.51 18.89 1.03 

5-01 60° 0.3 1073 2632 13.66 13.40 1.02 

5-02   1037 2867 13.20 14.60 0.90 

5-03   1125 2883 14.32 14.68 0.98 

6-01 30° 0.5 1097 2852 13.97 14.53 0.96 

6-02   1157 2704 14.73 13.75 1.07 

6-03   1213 2917 15.44 14.86 1.04 

7-01  1 1178 3038 15.00 15.47 0.97 

7-02   1112 2972 14.16 15.14 0.94 

7-03   1214 3248 15.46 16.54 0.93 

8-01  2 1302 3102 16.55 15.80 1.05 

8-02   1319 3386 16.79 17.24 0.97 

8-03   1486 3489 18.92 17.77 1.06 
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Table 2.2.4. Experimental results in the case of nom/nom = 0.4; notch depth p = 5 mm. 

 

Specimen 

code 

Notch 

opening 

angle 2 

Notch 

radius 

 (mm) 

Tensile 

load 

(N) 

Torque 

(N mm) 

σnom  

(MPa) 
τnom 

(MPa) 
nom/nom 

9-01 60 0.5 636 3923 8.10 19.98 0.41 

9-02   600 4010 7.64 20.42 0.38 

9-03   630 4009 8.02 20.42 0.39 

10-01  1 645 4449 8.21 22.66 0.36 

10-02   660 4634 8.40 23.60 0.36 

10-03   631 4326 8.03 22.03 0.36 

11-01  2 895 5164 11.40 26.30 0.43 

11-02   811 5259 10.33 26.78 0.39 

11-03   750 4700 9.55 23.94 0.40 

 
Table 2.2.5. Experimental results in the case of nom/nom = 0.5; notch depth p = 3 mm. 

 

Specimen 

code 

Notch 

opening 

angle 2 

Notch 

radius 

 (mm) 

Tensile load 

(N) 

Torque 

(N mm) 

σnom  

(MPa) 
τnom 

(MPa) 
nom/nom 

12-01 120 0.3 1482 11606 9.63 21.54 0.45 

12-02   1324 9657 8.60 17.92 0.48 

12-03   1768 12129 11.49 22.51 0.51 

13-01  0.5 1701 11768 11.05 21.84 0.51 

13-02   1619 11196 10.52 20.78 0.51 

13-03   1657 12005 10.76 22.28 0.48 

14-01  1 1739 12150 11.30 22.55 0.50 

14-02   1788 12756 11.62 23.68 0.49 

14-03   1816 12611 11.80 23.41 0.50 

15-01  2 2034 13891 13.21 25.78 0.51 

15-02   1756 12500 11.41 23.20 0.49 

15-03   1931 13452 12.54 24.97 0.50 
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2.2.3. Strain Energy Density averaged over a control volume: the fracture 

criterion 

With the aim to assess the fracture load in notched graphite components, an 

appropriate fracture criterion is required which has to be based on the mechanical 

behaviour of material around the notch tip. In this section, a criterion proposed by 

Lazzarin and co-authors [31,32] based on the strain energy density (SED) is 

briefly described.  

Dealing with cracked components, the strain energy density factor S was defined 

first by Sih in a pioneering contribution [43] as the product of the strain energy 

density by a critical distance from the point of singularity. Failure was suggested 

to be controlled by a critical value of S, whereas the direction of crack propagation 

was determined by imposing a minimum condition on S. 

Different from Sih’s criterion, which is a point-wise approach, the averaged strain 

energy density criterion (SED) as presented in Refs. [31–33,44] states that brittle 

failure occurs when the mean value of the strain energy density over a given 

control volume is equal to a critical value Wc. This critical value varies from 

material to material but it does not depend on the notch geometry and sharpness. 

The control volume, reminiscent of Neuber’s concept of elementary structural 

volume [83], is considered to be dependent on the ultimate tensile strength σt and 

the fracture toughness KIc in the case of brittle or quasi-brittle materials subjected 

to static loads.  

The method based on the averaged SED was formalised and applied first to sharp 

(zero radius) V-notches under mode I and mixed mode I+II loading [31] and later 

extended to blunt U- and V-notches [32,42,84–86]. Some recent developments 

and applications are summarized in Refs. [44,87–92] with some considerations 

also to three-dimensional effects [93–96], which have been widely discussed in 

Refs. [97,98].  

When dealing with cracks, the control volume is a circle of radius Rc centred at 

the crack tip (Fig. 2.2.4a). Under plane strain conditions, the radius Rc can be 

evaluated according to the following expression [99]: 
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         (2.2.1) 

where KIc is the fracture toughness, the Poisson’s ratio and t the ultimate tensile 

stress of a plain specimen. 

For a sharp V-notch, the critical volume becomes a circular sector of radius Rc 

centred at the notch tip (Fig. 2.2.4b). When only failure data from open V-notches 

are available, Rc can be determined on the basis of some relationships reported in 

[36], where KIc is substituted by the critical value of the notch stress intensity 

factors (NSIFs) as determined at failure from sharp V-notches.  

Dealing here with sharp notches under torsion loading, the control radius R3c can 

be estimated by means of the following equation [100]: 
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                    (2.2.2) 

where K3c is the Mode III critical notch stress intensity factor and t is the ultimate 

torsion strength of  the unnotched material. Moreover, e3 is the parameter that 

quantifies the influence of all stresses and strains over the control volume and (1-

3) is the degree of singularity of the linear elastic stress fields [101], which 

depends on the notch opening angle. Values of e3 and 3 are 0.4138 and 0.5 for the 

crack case (2= 0°). 

For a blunt V-notch under mode I or mode III loading, the volume is assumed to 

be of a crescent shape shown in Fig. 2.2.4c, where Rc is the depth measured along 

the notch bisector line. The outer radius of the crescent shape is equal to Rc+r0, 

being r0 the distance between the notch tip and the origin of the local coordinate 

system (Fig. 2.2.4c). Such a distance depends on the V-notch opening angle 2, 

according to the expression [33,44]: 

)22(

)2(
r0




          (2.2.3) 
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For the sake of simplicity, complex theoretical derivations have deliberately been 

avoided in the present work and the SED values have been determined directly 

from the FE models. 

 

 

Rc 
Rc 

2

R2=Rc+r0 



Rc 

r0 

(a) (b) (c) 

22=0

 



 

 

Figure 2.2.4. Control volume for (a) crack, (b) sharp V-notch and (c)  blunt V-notch, under mixed 

mode I/III loading. Distance )22/()2(r0  . 

 

2.2.4. SED approach in fracture analysis of the tested graphite specimens 

The fracture criterion described in the previous section is employed here to 

estimate the fracture loads obtained from the experiments conducted on the 

graphite specimens. In order to determine the SED values, first a finite element 

model of each graphite specimen was generated. A typical mesh used in the 

numerical analyses is shown in Fig. 2.2.5a. In addition, Fig. 2.2.5b shows the 

typical SED contour lines under combined tension and torsion loading condition. 

As originally thought for pure modes of loading the averaged strain energy 

density criterion (SED) states that failure occurs when the mean value of the strain 

energy density over a control volume, 



W , reaches a critical value Wc, which 

depends on the material but not on the notch geometry.  

Under tension loads, this critical value can be determined from the ultimate tensile 

strength t according to Beltrami’s expression for the unnotched material: 

2E
W

2

t
1c


           (2.2.4) 
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By using the values of t = 30 MPa and E = 8000 MPa, the critical SED for the 

tested graphite is W1c = 0.05625 MJ/m
3
. 

Under torsion loads, this critical value can be determined from the ultimate shear 

strength t according to Beltrami’s expression for the unnotched material: 

2G
W

2

t
3c


              (2.2.5) 

By using the values of t = 37 MPa and G = 3300 MPa, the critical SED for the 

tested graphite is W3c = 0.2074 MJ/m
3
. 

 

 

(a) 
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(b) 

 

Figure 2.2.5. Typical mesh used to evaluate the averaged SED for a V-notched specimen with 2α 

= 120°, ρ = 1 mm, p = 5 mm, Rc = 0.4 mm. (a) FE mesh and (b) SED contour lines under 

combined tension and torsion loading. 

 

In parallel, the control volume definition via the control radius Rc needs the 

knowledge of the mode I and mode III critical notch stress intensity factor K1c and 

K3c and the Poisson’s ratio see Eqs. (2.2.1) and (2.2.2). For the considered 

material K1c and K3c have been obtained from specimens weakened by sharp V-

notches with an opening angle 2 = 10° and a notch radius less than 0.1 mm. A 

pre-crack was also generated with a razor blade at the notch tip. The resulting 

values are K1c = 1.06 MPa m
0.5

 and K3c =  1.26 MPa m
0.5

 which provide the 

control radii R1c = 0.405 mm and R3c = 0.409 mm, under pure tension and pure 

torsion, respectively. For the sake of simplicity, a single value of the control 

radius was kept for the synthesis in terms of SED setting Rc = R1c = R3c. As 

discussed in previous papers [33,44,102], the control radii under tension and 

torsion can be very different and this is particularly true when the material 

behaviour differs from a brittle behaviour: the difference is higher for materials 
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obeying a ductile behaviour. For this specific case, the values are so close to each 

other that a single value can be employed for the final synthesis. The SED 

criterion has been applied here for the first time to mixed mode I/III loading 

conditions. Two different methodologies have been proposed. The two procedures 

will be described below. 

 

2.2.4.1 Total critical energy: criterion 1 

The first proposal for the application of the local SED approach to the case of 

mixed mode I/III loading is based on the idea that the total critical SED, Wc, is a 

function of the nominal mode mixity ratio nom/nom and it can be evaluated 

according to the following equation valid for both unnotched and notched 

components: 

  31c,nomc,nomc WWW  f       (2.2.6) 

For unnotched specimens Eq. (2.2.6) can be re-written as follows: 

2G2E
W

2

cnom,

2

cnom,

c





          (2.2.7) 

where nom,c and nom,c are the nominal critical stresses referred to the net area 

corresponding to different values of the mode mixity ratio. Then in this first 

criterion Wc is a function of the mode mixity ratio nom/nom. 

Some tests on unnotched specimens have been made as a function of the nominal 

mode mixity ratio, Figure 2.2.6 reports the trend of the critical SED as obtained 

experimentally from plain specimens as a function of the nominal mode mixity 

ratio. When nom/nom = 0, the case of pure torsion is achieved while when nom 

tends to zero (nom/nom tends to +∞) the case of pure tension is obtained. These 

two limits correspond to the left and right hand side limits of the diagram. By 

considering the critical energy as a function of the mode mixity  ratio M = 

2/arctan(nom/nom), as reported in Figure 2.2.6, and numerically evaluating the 

SED for the notched graphite specimens tested in the present work, Table 2.2.6 

was finally obtained. The values of the critical SED as a function the mode mixity  
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ratio are respectively 0.0833, 0.1173 and 0.1510 MJ/m
3
 for nom/nom = 1.0, 0.5 

and 0.4, respectively as indicated in Fig. 2.2.6. 

The SED has been calculated numerically by using the FE code ANSYS 14.5


. 

All the analyses have been carried out by using eight-node harmonic elements 

(PLANE 83) under axis-symmetric conditions. Only one quarter of the geometry 

has been modelled in the positive quadrant. Being the SED value mesh 

independent [52,103], a free mesh was used for all models. Due to the fact that the 

SED is mesh insensitive, the similarity between the mesh patterns used to model 

different geometries would be unnecessary. The only point to consider is the 

correct definition of the control volume according to Figure 2.2.4b and 2.2.5. As 

stated above the size of the control volume is Rc = 0.4 mm for both tension and 

torsion loadings. 

 

 

Figure 2.2.6. Trend of the critical SED as obtained experimentally from plain specimens as a 

function of the nominal mode mixity ratio. 

 

Table 2.2.6 summarizes for each case, the contributions to SED due to mode I and 

due to mode III. The total SED as obtained by the simple sum of the two 

contributions has been reported in the tenth column of the table. The last column 
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presents the total SED normalized by its critical value, as obtained from plain 

specimens for a specific nominal mode mixity ratio nom/nom (Figure 2.2.6). The 

normalised values have been given in the form of the square root (SED/Wc)
0.5

 

being this ratio proportional to the values of the critical loads. This representation 

has been used by the same authors also in the past [44]. 

As it can be seen in Table 2.2.6 for the tested graphite samples, the agreement 

between the experimentally obtained critical loads and the theoretical values 

based on the constant value of the averaged SED, is satisfactory; with the relative 

deviation ranging from -15% to +15 %. However, for very few test data, the 

deviation is slightly higher than 15% but still comparable with previous findings 

under in plane mixed mode loading, where the acceptable scatter was about 

±20%.  

The most significant results have also been given in graphical form in Figs. 2.2.7 

and 2.2.8 where the experimental values of the critical loads (open dots) have 

been compared with the theoretical  predictions based on the constancy of SED in 

the control volume (solid line). The plots of Figs. 2.2.7a,b are given for the 

notched graphite specimens as a function of the notch radius  for V-notches with 

2= 30° and p = 5 mm both for the critical tensile load (Fig. 2.2.7a) and for the 

critical torque (Fig. 2.2.7b). The theoretically predicted loads are in good 

agreement with the experimental results. This holds true also for the other 

specimens. The same plots are presented in Figs. 2.2.8a,b dealing with V-notches 

with 2 = 120° and p = 3 mm again divided in Figs. 2.2.8a and 2.2.8b with the 

aim to show the tensile fracture load and critical torque. 

Fig. 2.2.9 shows a synthesis in terms of the square root value of the local energy 

averaged over the control volume of radius Rc, normalised with respect to the 

critical energy (as obtained from Figure 2.2.6) as a function of the notch radius . 

Indeed, the ratio on the vertical axis is proportional to the fracture loads. The aim 

in this figure is to investigate the range of accuracy of all SED-based fracture 

assessments for the tested graphite specimens. It is clear that the scatter of the data 

is very limited and almost independent of the notch opening angle. All the 

experimental values fall inside a scatterband ranging from 0.80 to 1.20. Note that 

many of the results are inside a scatterband ranging from 0.85 to 1.15, which was 
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also typical for the notched graphite specimens tested under in-plane mixed 

tension-shear loading [36,51]. 

 

 

 

Figure 2.2.7. Comparison between experimental data and theoretical assessment for the graphite 

specimens V-shaped notches with 2= 30° and p = 5 mm. Control radius Rc = 0.4 mm. (a) Tensile 

load and (b) torsion load. 
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Figure 2.2.8. Comparison between experimental data and theoretical assessment for the graphite 

specimens V-shaped notches with 2= 120° and p = 3 mm. Control radius Rc = 0.4 mm. 

(a) Tensile load and (b) torsion load. 
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Table 2.2.6. Experimental results: overview of the data by using the method 1. 

 

p 

(mm) 
2 

(°) 
 

(mm) 

Tensile 

loading 

(N) 

Torque 

(N 

mm) 

W1 

(MJ/m
3
) 

W3 

(MJ/m
3
) 

SED 

W1 + W3 

(MJ/m
3
) 

Wc 

(MJ/m
3
) 

(SED/Wc)
0.5

 

5 120 

0.3 1193 2659 0.041 0.040 0.081 0.083 0.985 

0.3 1025 2280 0.030 0.029 0.060 0.083 0.846 

0.3 1114 2500 0.036 0.035 0.071 0.083 0.923 

5 120 

0.5 1190 2690 0.040 0.040 0.080 0.083 0.981 

0.5 1234 2631 0.043 0.038 0.082 0.083 0.989 

0.5 1200 2694 0.041 0.040 0.081 0.083 0.986 

5 120 

1 1302 2873 0.045 0.044 0.089 0.083 1.035 

1 1251 2673 0.042 0.038 0.080 0.083 0.979 

1 1283 2845 0.044 0.043 0.087 0.083 1.022 

5 120 

2 1497 3800 0.046 0.072 0.118 0.083 1.192 

2 1451 3634 0.043 0.066 0.109 0.083 1.145 

2 1532 3710 0.048 0.069 0.117 0.083 1.185 

5 60 

0.3 1073 2632 0.038 0.043 0.082 0.083 0.989 

0.3 1037 2867 0.036 0.051 0.087 0.083 1.023 

0.3 1125 2883 0.042 0.052 0.094 0.083 1.062 

5 30 

0.5 1097 2852 0.030 0.050 0.080 0.083 0.980 

0.5 1157 2700 0.034 0.045 0.078 0.083 0.969 

0.5 1213 2917 0.037 0.052 0.089 0.083 1.034 

5 30 

1 1178 3038 0.040 0.052 0.093 0.083 1.057 

1 1112 2972 0.036 0.050 0.086 0.083 1.018 

1 1214 3248 0.043 0.060 0.103 0.083 1.112 

5 30 

2 1300 3102 0.041 0.047 0.087 0.083 1.023 

2 1319 3386 0.042 0.056 0.097 0.083 1.081 

2 1486 3489 0.053 0.059 0.112 0.083 1.160 

5 60 
0.5 636 3923 0.011 0.097 0.108 0.151 0.845 

0.5 600 4010 0.010 0.101 0.111 0.151 0.857 

    0.5 630 4009 0.011 0.101 0.112 0.151 0.861 

5 60 

1 645 4449 0.011 0.107 0.118 0.151 0.885 

1 660 4634 0.012 0.116 0.128 0.151 0.920 

1 631 4326 0.011 0.101 0.112 0.151 0.861 

5 60 

2 895 5164 0.020 0.132 0.152 0.151 1.005 

2 811 5259 0.017 0.137 0.154 0.151 1.009 

2 750 4700 0.014 0.110 0.124 0.151 0.905 

3 120 

0.3 1482 11606 0.021 0.118 0.139 0.117 1.089 

0.3 1324 9657 0.017 0.082 0.099 0.117 0.917 

0.3 1768 12129 0.030 0.129 0.159 0.117 1.164 

3 120 

0.5 1701 11768 0.027 0.120 0.148 0.117 1.121 

0.5 1619 11196 0.025 0.109 0.134 0.117 1.067 

0.5 1657 12005 0.026 0.125 0.151 0.117 1.135 

3 120 

1 1739 12150 0.027 0.124 0.151 0.117 1.134 

1 1788 12756 0.028 0.137 0.165 0.117 1.187 

1 1816 12611 0.029 0.134 0.163 0.117 1.179 

3 120 

2 2034 13891 0.027 0.156 0.182 0.117 1.247 

2 1756 12500 0.020 0.126 0.146 0.117 1.115 

2 1931 13452 0.024 0.146 0.170 0.117 1.200 
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Figure 2.2.9. Synthesis based on SED of the results from combined tension and torsion tests: 

Method 1. 

 

2.2.4.2 Normalized critical energies: criterion 2 

The second proposed approach is a reminiscent of the work by Gough and Pollard 

[104] who proposed a stress-based expression able to summarize together the 

results obtained from bending and torsion. The criterion was extended in [105] in 

terms of the local SED to V-notches under fatigue loading in the presence of 

combined tension and torsion. 

In agreement with [105] and extending the method to the static case, the following 

elliptic expression: 

1
W

W

W

W

c3

3

1c

1                       (2.2.8) 

is obtained. In Eq. (2.2.8) W1c and W3c are the critical values of SED under pure 

tension and pure torsion. For the considered graphite, W1c = 0.05625 MJ/m
3
 and 

W3c = 0. 2074 MJ/m
3
. The values of W1 and W3 have, instead, to be calculated as a 

function of the notch geometry and of the applied mode mixity ratio. Each 

specimen reaches its critical energy when the sum of the weighted contributions 
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of Mode I and Mode III is equal to 1, which represents the complete damage of 

the specimen. 

The detailed calculations employing this second criterion are reported in Table 

2.2.7. The square root of the left-hand side term of Eq. (2.2.8), which is, in fact, 

proportional to the critical load, is given in the last column of this table. 

A synthesis in terms of the square root value of the considered parameter, that is 

the sum of the weighted energy contributions related to Mode I and Mode III 

loading, is shown in Figure 2.2.10 as a function of the notch root radius he 

obtained trend is very similar to that shown in Figure 2.2.9.  

 

 

 

Figure 2.2.10. Synthesis based on SED of the results from combined tension and torsion tests: 

Method 2. 
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Table 2.2.7. Experimental results: overview of the data by using the method 2. 

 

p 

(mm) 
2 

(°) 
 

(mm) 

Tensile 

loading 

(N) 

Torque 

(N 

mm) 

W1 

(MJ/m
3
) 

W3 

(MJ/m
3
) 

W1/W1c+W3/W3c (W1/W1c+W3/W3c)
0.5

 

5 120 

0.3 1193 2659 0.041 0.039 0.935 0.967 

0.3 1025 2280 0.030 0.029 0.690 0.831 

0.3 1114 2500 0.036 0.035 0.818 0.904 

5 120 

0.5 1190 2690 0.040 0.040 0.919 0.959 

0.5 1234 2631 0.043 0.038 0.965 0.982 

0.5 1200 2694 0.041 0.040 0.932 0.965 

5 120 

1 1302 2873 0.045 0.044 1.028 1.014 

1 1251 2673 0.042 0.038 0.937 0.968 

1 1283 2845 0.044 0.043 1.001 1.000 

5 120 

2 1497 3800 0.046 0.072 1.181 1.087 

2 1451 3634 0.043 0.066 1.101 1.049 

2 1532 3710 0.048 0.069 1.203 1.097 

5 60 

0.3 1073 2632 0.038 0.043 0.899 0.948 

0.3 1037 2867 0.036 0.051 0.894 0.946 

0.3 1125 2883 0.042 0.052 1.010 1.005 

5 30 

0.5 1097 2852 0.030 0.050 0.789 0.888 

0.5 1157 2700 0.034 0.045 0.824 0.908 

0.5 1213 2917 0.037 0.052 0.921 0.960 

5 30 

1 1178 3038 0.040 0.052 0.985 0.993 

1 1112 2972 0.036 0.050 0.895 0.946 

1 1214 3248 0.043 0.060 1.068 1.033 

5 30 

2 1300 3102 0.041 0.047 0.958 0.979 

2 1319 3386 0.042 0.056 1.023 1.012 

2 1486 3489 0.053 0.059 1.241 1.114 

5 60 
0.5 636 3923 0.011 0.097 0.684 0.827 

0.5 600 4010 0.010 0.101 0.683 0.827 

    0.5 630 4009 0.011 0.101 0.701 0.838 

5 60 

1 645 4449 0.011 0.107 0.739 0.860 

1 660 4634 0.012 0.116 0.794 0.891 

1 631 4326 0.011 0.101 0.701 0.838 

5 60 

2 895 5164 0.020 0.132 1.020 1.010 

2 811 5259 0.017 0.137 0.981 0.990 

2 750 4700 0.014 0.110 0.800 0.894 

3 120 

0.3 1482 11606 0.021 0.118 0.967 0.983 

0.3 1324 9657 0.017 0.082 0.709 0.842 

0.3 1768 12129 0.030 0.129 1.181 1.087 

3 120 

0.5 1701 11768 0.027 0.120 1.090 1.044 

0.5 1619 11196 0.025 0.109 0.987 0.993 

0.5 1657 12005 0.026 0.125 1.089 1.044 

3 120 

1 1739 12150 0.027 0.124 1.097 1.047 

1 1788 12756 0.028 0.137 1.188 1.090 

1 1816 12611 0.029 0.134 1.187 1.091 

3 120 

2 2034 13891 0.027 0.156 1.254 1.120 

2 1756 12500 0.020 0.126 0.985 0.992 

2 1931 13452 0.024 0.146 1.159 1.076 
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Many of the results are inside a scatterband ranging from 0.9 to 1.1 with only few 

exceptions. This second criterion is surely more advantageous with respect to the 

first one because for its application only the critical values W1c and W3c for the 

simpler cases of pure tension and pure torsion from plain specimens are required. 

The first criterion requires, instead, the knowledge of the total critical energy  

from  unnotched specimens as a function of the mode mixity ratio.  

The fracture models proposed here can be used for predicting the onset of brittle 

fracture in notched graphite components which are subjected to a combination of 

tension and torsion loading. Such criteria would be very useful for designers and 

engineers who should explore the safe performance of graphite components 

particularly under complex loading conditions.  

 

2.2.5. Discussion 

Brittle fracture in V-notched polycrystalline graphite specimens was investigated 

both experimentally and theoretically under combined tension and torsion loading. 

Fracture tests were conducted on notched round bar graphite specimens. Different 

notch depths, notch radii and opening angles were considered in the test 

specimens as well as different combinations of the mode mixity ratio nom/nom. 

The new set of data provided here is unique because no previous papers have been 

devoted to similar topics dealing with graphite components.  

The SED criterion was used for the first time in order to estimate the fracture load 

of notched graphite components under mixed mode I/III static loading. Two 

different approaches of the SED criterion were proposed showing the capabilities 

of the suggested methods to assess the fracture behaviour of polycrystalline 

graphite under the considered loading conditions. 

The results estimated by the SED approach were found to be in good agreement 

with the experimental results. The second criterion based on the elliptic 

expression described above seems to be very advantageous because it requires, as 

experimental parameters, only the critical energies from unnotched graphite 

specimens under pure tension and pure torsion. 
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2.3. Brittle fracture of PMMA cracked components under mixed 

mode I+III loading 
(*)

 

 

Nomenclature 

a   crack length  

E   Young’s modulus  

G   Shear modulus  

KIc  Mode I fracture toughness 

KIf  Mode I critical stress intensity factor measured experimentally 

KIIIc  Mode III fracture toughness 

KIIIf   Mode III critical stress intensity factor measured experimentally 

M   mode mixity  ratio 

Pc  fracture load 

R1c   control radius under tensile loading 

R3c   control radius under torsion loading 

W̅ SED averaged over the control volumes 

WIc critical SED value of the considered material under tensile loading 

WIIIc critical SED value of the considered material under torsion loading 

 

Symbols 

   loading angle 

  Poisson's ratio 

t    ultimate tensile strength  

t    ultimate torsion strength 

 

 

 

(*) See also: 

 

Berto, F.; Ayatollahi, M.; Campagnolo, A. Fracture tests under mixed mode I/III loading: an 

assessment based on the local energy. International Journal of Damage Mechanics (Accepted);  
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2.3.1. Introduction 

A large bulk of work has been dedicated to study brittle and ductile fracture under 

mixed mode loading both experimentally and theoretically. Numerous test 

specimens have been used by researchers for mixed mode I/II fracture 

experiments[85,106–111]. More recently other researchers have explored the 

same problem using different approaches[13,34,112–116]. 

However, there are relatively fewer results presented for experimental study of 

mixed mode I/III fracture[49,117–127]. By using different test configurations 

some results have been obtained in the past. In particular, the compact tension 

(CT) specimen with an angled crack[117–119], the three-point bend specimen 

with inclined crack through the thickness[120], the plate with an angled crack 

under a uniform far field tension[121], the three-point bend specimen with 

asymmetrically oriented crack[122], the circumferentially notched round bar[123], 

the loading fixture developed for thin sheets[124], the single edge cracked 

specimen[125,126] and the traditional CT specimen[127] subjected to combined 

tension-torsion are some of the specimens employed in the past for mixed mode 

I/III fracture tests on different engineering materials like metals, polymers and 

ceramics. Dealing with the specific case of blunt notches the only experimental 

results for PMMA samples under mixed mode (I + III) loading are provided in a 

work by Susmel and Taylor[49]. V-notched bars with a constant value of the 

opening angle (2 = 60°) and a root radius ranging from 0.2 to 1.2 mm have been 

considered. Some results from semicircular notches with a larger notch root radius 

(4.0 mm) have been also provided in that contribution. 

In a recent paper[80], a new useful loading fixture was suggested for mixed mode 

I/III fracture experiments and a new set of data from mixed mode fracture tests 

conducted on PMMA was also provided. The mode mixity ratio ranged from pure 

mode I to pure mode III loading. 

A fracture model based on the strain energy density (SED) averaged over a 

control volume is used for the first time for the fracture assessment of cracked 

samples made of PMMA subjected to the multiaxial static loading case of tension 

and torsion applied in combination. In previous studies the criterion has been 

applied to pure modes of loading and in particular to mode III[38,44,128,129] but 
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never extended to combined mode I+III loading conditions. The present work is 

aimed to partially fill this lack. The SED based approach is extended here to 

multiaxial static loading and this allows a sound fracture assessment of the critical 

load for the specific material under investigation. The criterion can be potentially 

extended to other types of materials subjected to different combinations of mode I 

and mode III loading conditions. 

The paragraph is divided into two parts: in the first one the experimental activity 

is briefly re-called (sample geometry, test setting, details of experimental data). 

While the second part deals with the re-formulation and application of the 

averaged strain energy density criterion to the specific case of mode I and mode 

III loading applied in combination. 

 

2.3.2. Mixed mode fracture experiments 

The experimental activity performed in a recent contribution[80] is briefly 

recalled in this section. 

 

2.3.2.1. Loading fixture and test configuration 

The geometry of the loading fixture first proposed in a work by Ayatollahi and 

Saboori[80] and its test specimen used for mixed mode I/III fracture tests are 

shown schematically in Figs. 2.3.1 and 2.3.2. The test specimen is a plate of 

rectangular shape with an edge crack of length a. The loading fixture consists of 

two identical segments. There are five loading holes in each half of the loading 

fixture as shown in Fig. 2.3.1. The loading angle can be changed with respect to 

the crack plane by choosing proper holes on the loading fixture. The positions of 

loading holes on each half of the fixture are determined in a way to achieve an 

appropriate distribution of mixed modes between pure mode I and pure mode III. 

Depending on the loading angle α (see Fig. 2.3.1), pure mode I (0°), pure mode III 

(90°) and three intermediate mixed mode loading can be provided. The geometry 

and dimensions of the test specimen, shown in Fig. 2.3.2, are adopted according to 

the recommendations of the ASTM-E399-90 standard[130]. As presented in Fig. 
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2.3.1, the test specimen is fixed to the loading fixture through two devised holes 

(shown in Fig. 2.3.2) by bolt and nut.  

 

 

 

Figure 2.3.1. Test specimen and loading fixture for mixed mode I/III fracture experiments.  

 

A review of the test specimens and loading fixtures suggested in the past for 

conducting mixed mode I/III fracture experiments shows that some of them can be 

utilized only for pure mode I fracture tests and some limited mixed mode I/III 

ones. The compact tension (CT) test specimen with an angled crack, the three-

point bend specimen with inclined crack through the thickness, the angled cracked 

plate under tension and the three-point bend specimen with asymmetrically 

oriented crack can provide only limited combinations of the fracture modes I and 

III while mode I is predominant. In particular, they cannot be used for pure mode 

III tests. Moreover, to conduct the fracture test in each specific fracture mode by 

some of the mentioned specimens, an angled crack with a different orientation 

should be created. However, in the test configuration proposed by Ayatollahi and 

Saboori[80] the crack doesn’t need to be slanted. Another advantage of the fixture 

suggested[80] is that it can exert the required load to the test specimen just by 

using the conventional uniaxial tension machines. Because of the advantages 
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elaborated above, the proposed loading fixture and its associated test specimen 

can be recommended as a favorite test set-up for conducting mixed mode I/III 

fracture experiments on various engineering materials.  

 

 

Figure 2.3.2. The test specimen containing an edge crack (dimensions in mm, thickness: 8mm). 

 

2.3.2.2. Mixed mode fracture experiments 

A series of fracture tests on polymethyl-metacrylate (PMMA) were conducted by 

Ayatollahi and Saboori[80] to investigate and evaluate the applicability and 

efficiency of the proposed loading fixture for mixed mode I/III fracture 

experiments. As a transparent thermoplastic polymer, PMMA is relatively 

homogeneous and isotropic at room temperature and ambient pressure, and 

deforms with a linear elastic behavior[85]. According to ASTM-E399 

standard[130], it is recommended replicating each fracture test at least three times. 

Consequently, a total number of 15 test specimens were manufactured with the 

specifications given in Fig. 2.3.2, from a PMMA sheet of 8 mm thickness for the 

five considered loading modes. A laser cutting machine was utilized to cut the 

specimens from the PMMA sheet, to prepare the two connection holes and to 

generate a notch in the middle of specimen (with the initial depth slightly less than 

10 mm). Based on the measurement by an optical microscope, the width of 
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created notches didn’t exceed 0.4 mm in all the specimens. Then, a sharp pre-

crack was introduced by pressing a razor blade carefully to the notch tip. The 

depth of this pre-crack was also measured by the microscope for determining the 

total crack length of each specimen (given in Table 2.3.1). Fig. 2.3.3a illustrates a 

sample PMMA specimen prepared for the test while Fig. 2.3.3b shows a 

sharpened notch tip magnified under the microscope.   

 

 

 

 

(a) (b) 

 

Figure 2.3.3. The PMMA test specimen with a single edge crack (a). A sample sharpened notch 

tip under an optical microscope (scale: 0.1 mm) (b). 
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Table 2.3.1. Summary of mixed mode I/III fracture tests conducted on PMMA specimens. 

 

KIf KIIIf Pc a Loading Mode 

(MPa·m
0.5

) (MPa·m
0.5

) (N) (mm)  

1.673 0.0007 451.3 10.4 α = 0 (Mode I) 

1.713 0.0007 502.8 10.0 α = 0 (Mode I) 

1.777 0.0007 505.2 10.2 α = 0 (Mode I) 

1.816 0.397 488.0 10.2 α = 40 

1.785 0.393 480.4 10.2 α = 40 

1.570 0.366 443.9 10.0 α = 40 

1.838 1.066 597.1 10.1 α = 65 

1.817 1.060 577.5 10.3 α = 65 

1.700 1.020 571.6 10.0 α = 65 

0.882 1.617 656.1 10.3 α = 78 

0.879 1.615 661.1 10.2 α = 78 

0.924 1.662 693.7 10.0 α = 78 

0.013 1.893 741.9 10.0 α = 90 (Mode III) 

0.012 1.766 686.7 10.1 α = 90 (Mode III) 

0.014 1.993 781.1 10.0 α = 90 (Mode III) 

 

 

Figure 2.3.4. The test configuration used for fracture tests on PMMA. 

 

The test specimens were loaded at a constant rate of 0.4 mm/min up to its final 

fracture. The experiments were conducted by means of a screw-driven tensile test 

machine having a capacity of 150 kN (Figure 2.3.4). The load and displacement 

data were recorded during the tests. All the tested PMMA specimens fractured 

suddenly from the crack tip and with negligible non-linear deformation showing a 
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brittle fracture behavior (see the example in Figure 2.3.5). Figure 2.3.5 reports a 

typical load–displacement curve obtained for a PMMA specimen fractured under 

pure mode III loading.  

 

Figure 2.3.5. A sample load–displacement curve obtained for a PMMA sample fractured under 

pure mode III loading. 

 

The fracture load obtained from each specimen was used to calculate its critical 

stress intensity factors. Since there are no analytical equations to calculate KIf and 

KIIIf of the tested samples, the fracture parameters were obtained from a series of 

finite element (FE) analyses. In the FE analyses, the elastic material properties of 

PMMA were considered as E = 2.95 GPa and ν = 0.34. The details of test results 

including the fracture loads and the critical stress intensity factors are listed in 

Table 2.3.1. The fracture patterns of all the specimens fractured under different 

mixed mode I/III loading conditions can be observed in Fig. 2.3.6.  
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Figure 2.3.6. PMMA specimens fractured under different combinations of mode I and mode III 

loading. 

 

The average value of mode I fracture toughness (KIc) obtained from the specimens 

tested at α = 0° is 1.72 MPa·m
0.5

. This magnitude is in the range of 1 ÷ 2 

MPa·m
0.5

 reported in previous papers for fracture toughness of 

PMMA[34,85,110,112]. The average value of mode III fracture toughness (KIIIc) 

obtained from pure mode III tests is 1.88 MPa·m
0.5

 which is about 10% higher 
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than KIc. The ultimate tensile strength of the material, t is equal to 70 MPa while 

under torsion the critical value of the shear stress, t is equal to 43 MPa. 

The tested specimens can be classified in terms of a mixity parameter M defined 

as: 











I

III

K

K
arctan

π

2
M       (2.3.1) 

Based on the above definition, M varies between 0 (for pure mode I loading) and 

1 (for pure mode III loading).  

 

2.3.3. Strain Energy Density averaged over a control volume: the fracture 

criterion 

With the aim to assess the fracture load in notched or cracked components, an 

appropriate fracture criterion is required which has to be based on the mechanical 

behaviour of material around the notch/crack tip. In this section, a criterion 

proposed by Lazzarin and co-authors[31] based on the averaged strain energy 

density (SED) is briefly described.  

Dealing with cracked components, the strain energy density factor S was defined 

first by Sih in a pioneering contribution[43] as the product of the strain energy 

density by a critical distance from the point of singularity. Failure was suggested 

to be controlled by a critical value of S, whereas the direction of crack propagation 

was determined by imposing a minimum condition on S. 

Different from Sih’s criterion, which is a point-wise approach, the averaged strain 

energy density criterion[31] (SED) states that brittle failure occurs when the mean 

value of the strain energy density over a given control volume is equal to a critical 

value Wc. This critical value varies from material to material but it does not 

depend on the notch geometry and sharpness.  

The method based on the averaged SED was formalised and applied first to sharp 

(zero radius) V-notches under mode I and mixed mode I+II loading[31] and later 

extended to blunt U- and V-notches[32,33,87,131].  

When dealing with cracks, the control volume is a circle of radius Rc centred at 
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the crack tip (Fig. 2.3.7a). Under plane strain conditions, the radius Rc can be 

evaluated according to the following expression: 

2

t

Ic
1c

σ

K

4π

)ν8ν)(5(1
R 








         (2.3.2) 

where KIc is the mode I fracture toughness, the Poisson’s ratio and t the ultimate 

tensile stress of a plain specimen. 

For a sharp V-notch, the critical volume becomes a circular sector of radius Rc 

centred at the notch tip (Fig. 2.3.7b). When only failure data from open V-notches 

are available, Rc can be determined on the basis of some relationships reported in 

previous contributions[32,33,88], where KIc is substituted by the critical value of 

the notch stress intensity factors (NSIFs) as determined at failure from sharp V-

notches.  

Dealing here with cracks under torsion loading, the control radius R3c can be 

estimated by means of the following equation[38,128,129]: 

2

t

cIII3
c3

τ

K

ν1

e
R 











           (2.3.3) 

where KIIIc is the mode III fracture toughness and t is the ultimate torsion strength 

of  the unnotched material. Moreover, e3 is the parameter that quantifies the 

influence of all stresses and strains over the control volume. The value of e3 is 

0.4138 for the case of a sharp crack (2= 0°). 
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Rc 
Rc 

2

R2=Rc+r0 



Rc 

r0 

(a) (b) (c) 

22=0

 



 

Figure 2.3.7. Control volume for (a) crack, (b) sharp V-notch and (c)  blunt V-notch, under mixed 

mode I/III loading. Distance )22/()2(r0  . 

 

 

2.3.4. SED approach in fracture analysis of the tested specimens 

The fracture criterion described in the previous section is employed here to 

estimate the fracture loads obtained from the experiments conducted on the 

PMMA specimens. As originally thought for pure modes of loading, the averaged 

strain energy density criterion (SED) states that failure occurs when the mean 

value of the strain energy density over a control volume, 



W , reaches a critical 

value Wc, which depends on the material but not on the notch geometry.  

Under tension loads, this critical value can be determined from the ultimate tensile 

strength t according to Beltrami’s expression for the unnotched material: 

2E

σ
W

2

t
Ic            (2.3.4) 

By using the values of t = 70 MPa and E = 2950 MPa, the critical SED under 

mode I for the tested PMMA is WIc = 0.8305 MJ/m
3
. 

Under torsion loads, this critical value can be determined from the ultimate shear 

strength t according to Beltrami’s expression for the unnotched material: 

2G

τ
W

2

t
IIIc                       (2.3.5) 
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By using the values of t = 43 MPa and G = 1100 MPa, the critical SED under 

mode III for the tested PMMA is WIIIc = 0.8481MJ/m
3
. 

In parallel, the control volume definition via the control radius Rc needs the 

knowledge of the mode I and mode III fracture toughness KIc and KIIIc and the 

Poisson’s ratio see Eqs. (2.3.2) and (2.3.3). The resulting values are KIc = 1.72 

MPa m
0.5

 and KIIIc =  1.88 MPa m
0.5

 which provide the control radii R1c = 0.147 

mm and R3c = 0.590 mm, under pure tension and pure torsion, respectively. The 

SED criterion has been applied here to mixed mode I/III loading conditions.  

The proposed approach is a reminiscent of the work by Gough and Pollard[104] 

who proposed a stress-based expression able to summarize together the results 

obtained from bending and torsion loading. The criterion was extended by 

Lazzarin et al. [105] in terms of the local SED to V-notches under fatigue loading 

in the presence of combined tension and torsion. 

In agreement with Lazzarin et al. [105] and extending the method to the static 

case, the following elliptic expression is obtained: 

1
W

W

W

W

IIIc

III

Ic

I            (2.3.6) 

In Eq. (2.3.6), WIc and WIIIc are the critical values of SED under pure tension and 

pure torsion. For the considered PMMA, WIc = 0.8305 MJ/m
3
and WIIIc = 0.8481 

MJ/m
3
. The values of WI and WIII have, instead, to be calculated as a function of 

the applied load and of the mode mixity ratio M. Each specimen reaches its 

critical energy when the sum of the weighted contributions of mode I and mode 

III is equal to 1, which represents the complete damage of the specimen. 

WI and WIII can be expressed as functions of the stress intensity factors of mode I 

and mode III accordingly to the following expressions: 

E

K

R

e
W

2

I

c1

1
I           (2.3.7) 

E

K

R

e
W

2

III

c3

3
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Functions e1 and e3 are 0.119 and 0.414, respectively, for 2= 0° and = 0.34. 

The detailed calculations employing this criterion are reported in Table 2.3.2.  

A synthesis in terms of the square root value of the considered parameter, that is 

the sum of the weighted energy contributions related to mode I and mode III 

loading, is shown in Figure 2.3.8 as a function of the mode mixity ratio M

Many of the results are inside a scatterband ranging from 0.9 to 1.1 with only few 

exceptions. This criterion is surely advantageous because for its application, only 

the critical values WIc and WIIIc for the simplest cases of pure tension and pure 

torsion from plain specimens are required.  

The fracture model proposed here can be used for predicting the onset of brittle 

fracture in notched and cracked components which are subjected to a combination 

of tension and torsion loadings. Such criterion would be very useful for designers 

and engineers who should explore the safe performance of cracked and notched 

components particularly under complex loading conditions.  

 

Table 2.3.2. Overview of the main results applying the SED criterion 

M KI KIII WI WIII WI/WIc+WIII/WIIIc (WI/WIc+WIII/WIIIc)
0.5

 

 (MPa·m
0.5

) (MPa·m
0.5

) (MJ/m
3
) (MJ/m

3
)   

0.0003 1.673 0.001 0.766 0.000 0.923 0.961 

0.0003 1.713 0.001 0.803 0.000 0.967 0.984 

0.0003 1.777 0.001 0.864 0.000 1.041 1.020 

0.1371 1.816 0.397 0.903 0.038 1.132 1.064 

0.1380 1.785 0.393 0.872 0.037 1.094 1.046 

0.1459 1.570 0.366 0.675 0.032 0.850 0.922 

0.3348 1.838 1.066 0.925 0.273 1.435 1.198 

0.3364 1.817 1.060 0.904 0.270 1.406 1.186 

0.3442 1.700 1.020 0.791 0.250 1.247 1.117 

0.6825 0.882 1.617 0.213 0.627 0.996 0.998 

0.6830 0.879 1.615 0.212 0.626 0.993 0.996 

0.6773 0.924 1.662 0.234 0.663 1.063 1.031 

0.9961 0.013 1.893 0.000 0.860 1.014 1.007 

0.9962 0.012 1.766 0.000 0.748 0.882 0.939 

0.9960 0.014 1.993 0.000 0.953 1.124 1.060 
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Fig. 2.3.8. Synthesis of the data obtained for PMMA by means of the SED approach. 

 

 

2.3.5. Discussion 

Brittle fracture in cracked PMMA specimens was investigated both 

experimentally and theoretically under combined tension and torsion loadings. A 

recent series of mixed mode I/III fracture tests carried out by means of pre-

cracked specimens made of PMMA was re-analysed here. A loading fixture was 

employed for mixed mode I/III fracture studies. Fracture loads and out-of-plane 

fracture angles were briefly described. The set of data is unique because only few 

previous papers have been devoted to similar topics dealing with PMMA 

components. By taking advantage of this complete set of data ranging from pure 

mode I to pure mode III it has been possible to propose and validate a criterion for 

the specific case of tension and torsion loadings applied in combination. 

The SED criterion has been used here for the first time in order to estimate the 

fracture load of cracked PMMA components under mixed mode I/III static 

loading. The criterion is based on an elliptic expression that is reminiscent of 

Gough and Pollard criterion for multiaxial fatigue loading. The capabilities to 

assess the fracture behaviour of PMMA cracked components under the considered 

loading conditions have been investigated. The results estimated by the SED 
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approach have been found to be in good agreement with the experimental results. 

The proposed fracture criterion seems to be very advantageous because it requires, 

as experimental parameters, only the critical energies from unnotched PMMA 

specimens under pure tension and pure torsion. 
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3.1 Notched components made of Ti-6Al-4V under multiaxial 

loading
 (*)

 

 

Nomenclature 

e1, e3  Angular functions for the SED evaluation 

k    Wohler’s curve inverse slope  

K1, K3  Notch Stress Intensity Factors (NSIFs) referred to tension and 

torsion loadings 

N  Counting of loading cycles  

R  Load ratio applied nominally 

R1, R3  Size of the Mode I and Mode III control volumes  

T   Scatter index for the normal stress  

T  Scatter index for shear stresses  

TW   SED scatter index  

 SED measured over the control volumes 

 

Symbols 

   Opening angle for V-notches 

   Angle of phase between tension and torsion loadings

   ominal ratio between the stress amplitudes, a/a

   Eigenvalue for Mode I loading

   Eigenvalue for ode loading 

   Radius at the notch apex 

a  Nominal tensile stress referred to the net area 

a  Nominal torsion stress referred to the net area 

, A    Fatigue strength at NA
 
loading cycles  

 

 

(*) See also: 

 

Berto, F.; Campagnolo, A.; Lazzarin, P. Fatigue strength of severely notched specimens made of 

Ti–6Al–4V under multiaxial loading. Fatigue and Fracture of Engineering Materials and 

Structures; 38: 503-517 (2015); 

W
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3.1.1 Introduction  

Multiaxial fatigue of metallic materials is a topic of active research. For a 

comparison between different criteria here the recent overview by Fatemi and 

Shamsaei [1] and the report by Sonsino and Nieslony [2] based on a large body of 

experimental data from notched specimens are mentioned. A central position is 

occupied by the critical plane approach as formulated by Fatemi, Socie and 

Kurath [3,4] and by some interesting variants [5–7].  

In this ambit, energy-based criteria find important applications [8]. Recently it has 

been proposed a multiaxial fatigue criterion based on a frequency-domain 

formulation of a stress invariant, called “Projection by Projection” (PbP) approach
 

[9]. A frequency-domain formulation of the critical plane-based C-S criterion has 

recently been presented [10]. 

In 1923 Jasper [11] first used an energy-based parameter to analyse fatigue 

strength under tension–compression loadings. Afterwards dealing with multiaxial 

fatigue loading Ellyin [12,13] proposed an approach based on the combination of 

both the plastic and elastic strain work. A wide review of energy-based multiaxial 

fatigue life formulations was carried out in the past [14].  

Theoretical and experimental problems tied to multiaxial fatigue were discussed 

by several researchers [15–21]. The mechanisms inducing shielding effects during 

fatigue crack propagation were classified by Ritchie
 
[18]. Some other pioneering 

contributions are due to Yu et al.
 
[19] and Tanaka et al.

 
[20]. A mathematical 

model able to describe the stresses near the crack tip, which considers the effects 

of plasticity and shielding effects on the applied elastic field, was developed by 

Christopher et al.
 
[22–24]. Ravi-Chandar et al.

 
[25] have recently shown that the 

cracks propagate through an abrupt fragmentation or segmentation of the crack 

front. 

The deviatoric strain energy density (SED) evaluated at the notch tip was used by 

Park and Nelson [26] to assess the fatigue behavior under multi-axial stresses of 

specimens weakened by blunt notches. That point-wise criterion cannot be applied 

to sharp notches. With the aim to overcome this problem, a volume-based SED 

approach originally proposed for sharp V-notches and cracks [27] has been 

extended to multiaxial fatigue loading [28–34].  
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With reference to different combinations of multiaxial loading, the average SED 

was used [30] to summarize about 300 fatigue data from sharply notched axis-

symmetric specimens made of C40 steel as well as more than 120 fatigue data 

from notched specimens made of 40CrMoV13.9 steel [33]. The control volume 

under tensile and torsion loading was assumed constant for both materials. This 

assumption was found to be not valid for the 39NiCrMo3 steel weakened by 

circumferential quasi-sharp V-notches [28]. In that case strong dissipative 

phenomena occurred due to torsion loads even in the high-cycle fatigue regime. It 

was possible to draw a single SED-based scatterband only by using two different 

control volumes for tension and torsion, respectively. The volume-based SED 

approach was used also to 13 series of fatigue data from plain and notched 

specimens made of AISI 416 [32] and to 10 series of fatigue data from severely 

notched specimens made of the cast iron EN-GJS400 [34]. Also for these two 

materials, two distinct radii, one for each type of loading, of the control volume 

were used under torsion and tension loading due to presence of strong non-linear 

effects. The SED was named ‘apparent linear elastic SED’ to make evident that 

the evaluation of the strain energy was carried out in two different volumes (for 

tension and torsion, as determined from experimental data). This simplified 

procedure allows us to overcome the problem tied to shielding mechanisms by 

employing a linear elastic model [35].  

Ti-6Al-4V alloy under combined tension and torsion loadings is investigated in 

the present work. This titanium alloy is widely used for advanced military, civil 

aerospace and naval applications. The in-service conditions are usually 

characterized by a complex stress state combined with aggressive environments. 

The Ti-6Al-4V titanium alloy has very good static and fatigue properties, an high 

strength-to-mass ratio, with an excellent wear resistance, also at high temperature 

and in corrosive environments. The uniaxial fatigue resistance of smooth and 

notched specimens made of Ti-6Al-4V has been extensively investigated in the 

recent literature  [36–46].  

The effects of high frequencies as well as those of increased specimen 

temperature due to internal damping on the tensile fatigue behavior of Ti-6Al-4V 

titanium alloy have been investigated considering smooth specimens tested under 
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various nominal load ratios R [36,37], and also considering both smooth and 0.3 

mm-hole-notched specimens under different heat treatments [38].  

The fatigue behavior of Ti-6Al-4V in the presence of notch effects has been 

extensively investigated by Nicholas et al. [39–42], also with reference to the 

fretting fatigue performance of this titanium alloy [43]. In particular, the notch 

effect on high-cycle fatigue with different nominal load ratios R has been 

investigated [39,40] considering, respectively, cylindrical V-notched and notched 

flat dog-bone specimens characterized by an opening angle equal to 60 degrees 

and by a notch tip radius ranging between 0.127 and 0.432 mm. All the tests were 

conducted under pure tensile loading. 

Considering the same specimen geometry and nominal load ratios R of the 

previous works, also the effects of combined low-cycle fatigue (LCF) and high-

cycle fatigue (HCF) loading have been investigated [41]. In particular the fatigue 

limit at 10
7
 cycles after LCF loading was established using a step loading 

technique. A weak influence of the LCF loading on the subsequent HCF fatigue 

limit has been observed. 

The effect of microstructure on pulsating four point bending fatigue of Ti-6Al-4V 

has been studied considering prismatic specimens with a central hole and double-

edge-notched specimens [44,45]. The importance of the microstructure (phases 

 on the material damage was highlighted and correlated to the crack growth 

rate. Fatigue crack initiation of Ti-6Al-4V titanium alloy has been studied using 

plane specimens under pure bending [46].  

With regard to multiaxial loading, the low-cycle fatigue behaviour of tubular 

specimens made of Ti-6Al-4V has been investigated by Hoshide et al. [47], 

focusing the analyses on proportional loading and the effect of microstructure, and 

by Nakamura et al. [48], who analysed the effect of out-of-phase loading. 

Regarding the high-cycle fatigue, the resistance of smooth specimens made of Ti-

6Al-4V under multiaxial loading, both proportional and non-proportional, has 

been studied by Kallmeyer et al. [49], who have also compared various multiaxial 

fatigue models to verify their suitability at estimating fatigue damage in this 

titanium alloy. The multiaxial fatigue behaviour of smooth and notched specimens 

under proportional loading has been investigated in a recent contribution [50] 
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where the Lemaitre and Chaboche’s model [51] was applied for fatigue life 

assessments. 

A complete set of data from sharply V-notched specimens under torsion and 

combined tension and torsion loadings, both in-phase and out-of-phase, is not 

available in the literature for Ti-6Al-4V. With the aim to fill this lack, a complete 

set of experimental data from a severely notched titanium alloy under multiaxial 

loading is provided. The actual research program is mainly focused on the 

definition of a methodology applicable for the fatigue design of severely notched 

structural components made of Ti-6Al-4V subjected to multiaxial fatigue 

loadings. The results from multiaxial tests are discussed in the following together 

with those obtained under pure tension and pure torsion loading from un-notched 

and V-notched specimens tested under different nominal load ratios. 

The approach based on the Strain Energy Density (SED) averaged on a control 

volume embracing the highly stressed region is employed to summarise all the 

data in a single scatterband. This volume is found to be dependent on the loading 

mode, in agreement with previous works dealing with multiaxial fatigue 

behaviour of structural steel and cast iron components [28,32,34]. 

 

3.1.2 Material properties and geometry of the specimens  

The material under investigation is a grade 5 titanium alloy, also known as Ti-

6Al-4V. The mean values of the elastic and strength material properties 

determined by static tensile tests are listed in Table 3.1.1 whereas the chemical 

composition is shown in Table 3.1.2. The geometries of the un-notched and V-

notched specimens are shown in Figure 3.1.1 together with some details of the 

notch tip. 
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Table 3.1.1. Mechanical properties of Ti6Al4V. 

Ultimate tensile 

strength [MPa] 

Yield stress 

[MPa] 

Elongation to 

fracture [%] 

Reduction of area 

[%] 

978 894 16 36 

 

 

Table 3.1.2. Chemical composition wt.%, balance Ti. 

 

 

 

 

 

 

 

 

 

d = 6 mm = 0.1 mm 

24 

90° 

= 100 mm 

24 

150 mm 
 

 
(a) 

Fe O C N H Al V 

0.057 0.15 0.015 0.021 0.001 6.06 4.18 
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(b) 

 

Figure 3.1.1. Geometry of un-notched and V-notched specimens (a) and details of the notch tip 

(b). 

 

The hourglass un-notched specimens (Figure 3.1.1a) were characterized by a 

diameter of the net transverse area equal to 12 mm and by a connecting radius ( 

= 100 mm) between the net and gross sections large enough to avoid any effect of 

stress concentration. 

The cylindrical notched specimens (Figure 3.1.1b) were characterized by a V-

notch depth d = 6 mm and an opening angle equal to 90 degrees, whereas the 

notch root radius, , was always lower than 0.1 mm. The experimental 

measurements of the notch tip radius, carried out by means of an optical 

microscope and the dedicate software LAS (Leica Application Suite), have 

provided a mean value equal to 0.09 mm with a very reduced scatter. The 

precision ensured by the employed procedure is ± 5% of the measured quantity. 

The typical notch geometry constituted by two rectilinear flanks tangent to the 

notch tip radius is shown in Figure 3.1.2, for one of the V-notched specimens. 
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Figure 3.1.2. Measure of the notch tip radius. 

 

  

  
 

Figure 3.1.3. Wave forms for each multiaxial loading pattern. (a) in-phase loading at R=-1 and 

=0.6; (b) in-phase loading at R=0 and =0.6; (c) out-of-phase loading at R=-1 and =0.6; (d) out-

of-phase loading at R=0 and =0.6. 

 

 

(a) 
(b) 

(c) (d) 
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The experimental tests have been performed on a MTS 809 servo-hydraulic bi-

axial testing device (± 100 kN, ± 1100 Nm, ± 75mm/± 55°) under load control. A 

MTS load cell with ± 0.5 % error at full scale has been used to measure the 

applied load. Altogether 15 different fatigue test series have been performed 

according to the parameters described below: 

 

 Four series from plain and V-notched specimens under pure tension and 

pure torsion fatigue loading at R = -1; 

 Four series from plain and V-notched specimens under pure torsion fatigue 

loading at R = 0 and 0.5; 

 Three series from plain specimens under pure torsion fatigue loading at R 

= 0.25, -2 and -3; 

 Four series from V-notched specimens under multiaxial loading, with a 

biaxiality ratio = 0.6. Two nominal load ratios, R = 0 and R = -1, and 

two phase angles, = 0° (in-phase loading) and = 90° (out-of-phase 

loading), have been adopted in these tests. 

 

The time evolution of the different multiaxial loading conditions employed in the 

experimental tests is shown in Figure 3.1.3. 

 

3.1.3 Results from the fatigue tests 

All specimens have been polished with the aim of removing surface scratches and 

processing marks, before performing the tests. A MTS 809 servo-hydraulic biaxial 

machine with a 100 kN axial load cell and a torsion load cell of 1100 Nm has 

been used for fatigue tests. All tests have been conducted under load control at a 

frequency between 10 and 15 Hz as a function of the applied load. 

The statistical analyses have been performed assuming a log-normal distribution. 

All data obtained from specimens characterized by fatigue life between 10
4
 and 

2·10
6
 have been taken into account in the statistical analyses, excluding the run-

outs. The nominal stress amplitudes for a probability of survival Ps = 50% at 

different number of loading cycles, NA = 10
6
 and 2·10

6
, the inverse slope k of 

Wöhler curves and the scatter index T, which provides the width of the 
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scatterband between the curves with 10% and 90% probabilities of survival (with 

a confidence level equal to 95%) are shown in Table 3.1.3. 

All fatigue strength data are shown in Figures 3.1.4-7, in terms of nominal stress 

amplitudes evaluated on to the net transverse area of the specimens. Fig. 3.1.4 

shows the fatigue data from un-notched and V-notched specimens tested under 

pure tension at the same load ratio, R = -1. The reduction of the fatigue strength 

due to the notch effect is not so different in the low- and high-cycle fatigue 

regime; the slope of the two curves changes from 9.25 (smooth specimens) to 6.26 

(notched specimens). At 2·10
6
 loading cycles, the ratio between the mean stress 

amplitudes for un-notched and V-notched specimens is 4.75, see Table 3.1.3.  

Figure 3.1.5 shows the fatigue data from un-notched and V-notched specimens 

tested under pure torsion considering two different values of load ratio (R = -1 and 

R = 0). There is an evident reduction of the fatigue strength as the load ratio 

increases from R = -1 to R = 0. At 2·10
6
 loading cycles, the ratio between the 

mean stress amplitudes (Ps = 50%), related to the R = -1 and R = 0 cases, is 1.35 

for the un-notched specimens, 1.17 for the V-notched specimens (Table 3.1.3). 

For the same nominal load ratio R, it can be observed a reduction of the fatigue 

strength due to the stress concentration effect; at 2·10
6
 loading cycles, the ratio 

between the mean stress amplitudes for smooth and V-notched specimens is found 

to be 1.34 for R = -1, reduced to 1.16 for R = 0. 

Figure 3.1.6 shows the fatigue data from un-notched and V-notched specimens 

tested under pure torsion at different nominal load ratios. R ranges from 0.5 to 3 

for the un-notched specimens, whereas R is 0.5 for the V-notched ones. With 

regard to the smooth specimens, the fatigue strength decreases when the load ratio 

increases from the minimum value, R = -3, to the maximum one,  R = 0.5. At 

2·10
6
 loading cycles to failure, the maximum ratio between the stress amplitudes 

both for R = -3 and R = 0.5 is equal to 1.98. It is interesting to observe that, 

contrary to what was expected, the nominal load ratio R = -2 is found to be 

slightly beneficial with respect to R = -3 at the high-cycle regime (with the ratio 

between the mean stress amplitudes equal to 1.14 at 2·10
6
 cycles), whereas the 

fatigue strength is almost the same at the low-cycle regime. With reference to the 

nominal load ratio R = 0.5, it can be observed that the fatigue strength reduction 
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due to the stress concentration effect induced by the V-notch effect is almost 

negligible, being the ratio at 2·10
6
 loading cycles between the mean stress 

amplitudes relating to smooth and V-notched specimens equal to 1.06. Also the 

slope of all the curves is almost the same, see Table 3.1.3. 

The fatigue data from V-notched specimens tested under combined tension and 

torsion loadings, both in-phase (= 0°) and out-of-phase (= 90°), are shown in 

Figures 3.1.7a,b considering two different values of the load ratio (R = 1 and R = 

0). The corresponding shear stress amplitudes can be immediately derived from 

the biaxiality ratio a = a, with constant and equal to 0.6. The four mean 

Wöhler curves at Ps = 50% related to multiaxial loadings are compared with the 

curve from pure tension (R = -1). 

It is evident that the application of a multiaxial loading reduces the fatigue life 

compared to the pure tension loading case, with reference to the same normal 

stress amplitude (Fig. 3.1.7a), but the reduction is quite limited for the specific  

value. Stronger is the reduction of the multiaxial fatigue strength due to the 

nominal load ratio R. At 2·10
6
 loading cycles the mean stress amplitudes for R = -

1 and R = 0 are characterised by a ratio equal to 1.39 for the in-phase loading 

conditions and 1.21 for the out-of-phase ones. 

The phase angle effect is found to be weak for R = -1, being the mean values of 

the normal stress amplitude about the same at 2·10
6 

loading cycles: 96 MPa for 

out-of-phase loading, 94 MPa for in-phase loading.  

More clear is the effect of the phase angle when R = 0; in this case the mean value 

of the normal stress amplitude increases from 68 MPa for in-phase loads to 80 

MPa for out-of-phase loads. Then, for R = 0,  the out-of-phase loading is slightly 

beneficial with respect to in-phase loading at high-cycle fatigue regime, whereas 

the fatigue strength is almost the same at low-cycle regime.  

In conclusion, Figures 3.1.7a,b and Table 3.1.3 show that the sensitivity of this 

titanium alloy under multiaxial fatigue loading to the phase angle effect is quite 

limited, being lower than +15 percent for the R = 0 case, negligible for the R = -1 

case. Some considerations on the effect of non-proportional loading on the fatigue 

behaviour of different structural steels can be found in a recent contribution [52].  
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Finally, the multiaxial fatigue data have shown that the influence of the nominal 

load ratio R on fatigue life is strong, confirming the trend found in both pure 

tension and pure torsion. A clear variation of the inverse slope k also occurredfor 

R = 0 in the cases = 0° and = 90°, whereas no evident change of slope 

occurred in the R = -1 case. 

 

 

Figure 3.1.4. Data from un-notched and V-notched specimens under pure tension (R = -1). 
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Figure 3.1.5. Data from un-notched and V-notched specimens under pure torsion (R = -1 and R = 

0). 

 

Figure 3.1.6. Data from un-notched and V-notched specimens under pure torsion (R ranging from 

0.5 to -3). 

150

1.0E+04 1.0E+05 1.0E+06 1.0E+07

S
tr

es
s 

am
p

li
tu

d
e 
 a

, 
[M

P
a]

 

Cycles to failure, N 

Torsion, R=-1 Torsion, R=-1

Torsion, R=0 Torsion, R=0

Un-notched 

specimens 

V-notched 

specimens 

Ti6Al4V 
 

45 data  

55

45

30

60

600

1.0E+04 1.0E+05 1.0E+06 1.0E+07

S
tr

es
s 

am
p

li
tu

d
e 

τ a
, 
[M

P
a]

 

Cycles to failure, N 

Torsion, R=0.5

Torsion, R=0.25 Torsion, R=0.5

Torsion, R=-2

Torsion, R=-3

V-notched 

specimens 

Un-notched 

specimens 

Ti6Al4V 
 

42 data  



3 - Fatigue loadings – Titanium alloy under multiaxial loading 

 

 
144 

 

 

 

 

 

Figure 3.1.7. Data from V-notched specimens under multiaxial loading (=0.6) with R = -1 (a) 

and R = 0 (b). Comparison with pure tension. 
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Table 3.1.3. Results from fatigue tests. Mean values, Ps=50%. Stresses referred to the net area. 

 

 

 

 

 

Series Load N 
 

k Tσ or Tτ 
σa or τa 

 10
6
 2 · 10

6
 

1 Tension R = -1 12 σ 9.25 1.120 512.76 475.74 

2 Torsion R = -1 16 τ 22.13 1.205 400.60 388.25 

3 Torsion R = 0 9 τ 15.03 1.322 300.78 287.22 

4 
Tension R = -1,  

V-notch 2α = 90° 
15 σ 6.26 1.133 112.70 100.89 

5 
Torsion R = -1,  

V-notch 2α = 90° 
9 τ 14.59 1.229 303.39 289.31 

6 
Torsion R = 0,  

V-notch 2α = 90° 
11 τ 13.82 1.159 259.87 247.16 

7 
Torsion R = 0.5,  

V-notch 2α = 90° 
7 τ 19.91 1.080 175.91 169.89 

8 

Multiaxial R = -1, = 0°, 

= 0.6,  

V-notch 2α = 90° 

13 

σ 

6.82 1.197 

104.03 93.89 

τ 62.42 56.39 

9 

Multiaxial R = -1, = 90°, 

= 0.6,  

V-notch 2α = 90° 

10 

σ 

7.84 1.124 

104.99 96.11 

τ 63.00 57.67 

10 

Multiaxial R = 0, = 0°, 

= 0.6,  

V-notch 2α = 90° 

12 

σ 

8.09 1.159 

73.80 67.74 

τ 44.28 40.64 

11 

Multiaxial R = 0, = 90°, 

= 0.6,  

V-notch 2α = 90° 

12 

σ 

10.43 1.158 

85.12 79.65 

τ 51.07 47.79 

12 Torsion R = 0.5 12 τ 21.19 1.134 186.74 180.73 

13 Torsion R = 0.25 8 τ 25.67 1.078 275.46 268.12 

14 Torsion R = -3 7 τ 16.25 1.178 373.13 357.55 

15 Torsion R = -2 8 τ 21.32 1.042 422.53 409.01 
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3.1.4 Fracture surface analysis 

After each fatigue test, the fracture surfaces of the specimen or the unbroken 

external surface have been analysed. Figure 3.1.8 shows a typical failure occurred 

in a plain specimen under torsion loading. It is characterized by micro-cracking in 

the longitudinal direction, in the central zone of the specimen corresponding to the 

minimum value of the transversal sectional area.  

 

 

 

Figure 3.1.8. Typical crack propagating from an un-notched specimen under torsion 

loading. 

 

Fracture surfaces of some V-notched specimens tested under torsion with nominal 

load ratios R = 0 and R = 0.5 are shown in Figure 3.1.9a and 3.1.9b, respectively. 

The outer diameter of the fracture surface is almost flat, particularly for R = 0.5. 

For both R values, the classical Mode I ‘factory roof’ morphology is also evident 

in large areas of the centre of the fracture surface where the effects due to abrasion 

are also clear. Generally, a limited but distinguishable quantity of debris and 

powder was emanated from the notch tip when a visible crack started to 

propagate. 

Fracture surfaces of some specimens tested under multiaxial conditions with R = -

1 are shown in Figure 3.1.10a and 3.1.10b considering low and high-cycle fatigue, 

respectively. These specimens were all tested with the same phase angle, = 0°, 

and the same biaxiality ratio = 0.6. Clear is the presence of the ‘factory roof’ 

6 mm 
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morphology, characterized by an inclination angle lower than 45°, extending from 

the initial notch tip. An analogous behaviour can be observed on the failure 

surfaces of the specimens tested under in-phase multiaxial loading with R = 0, as 

is shown in Figure 3.1.11(a,b) for low- and high-cycle fatigue, respectively.  

As regards to out-of-phase multiaxial loading, the fracture surfaces of the 

specimens tested with a nominal load ratio R equal to -1 and 0 are shown in 

Figure 3.1.12a and 3.1.12b, respectively. The fracture surface morphology seem 

to be affected by the phase angle. Some signs of micro abrasions could be 

observed on all fracture surfaces and the extent to which the rubbing occurred 

depends on phase angle. Most visible is the abrasion for = 90° resulting in a 

smooth featureless fracture topography.  

In the zone of crack initiation, micro-fusion zones due to the interference between 

the cracks surfaces are visible near the notch tip.  During the tests, in fact, the two 

surfaces of the cracks scrape each other emanating some powder from the notch 

tip.  

 

  

Pure torsion R=0, N=464382, a=260 MPa 

(a) 

Pure torsion R=0.5, N=422750, a=180 MPa 

(b) 

Figure 3.1.9. Fracture surfaces from V-notched specimens under pure torsion for R=0 (a) and 

R=0.5 (b). 

 

 

3 mm 3 mm 
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Multiaxial fatigue, N=12668, a=190 MPa 

(a)  

Multiaxial fatigue, N=640874, a=110 MPa 

(b) 

Figure 3.1.10. Fracture surfaces from V-notched specimens under in-phase multiaxial loading : 

R=-1, =0.6 and =0°. Low (a) and high (b) cycle fatigue. 

 

  

Multiaxial fatigue, N=27588, a=110 MPa 

(a)  

Multiaxial fatigue, N=577884, a=80 MPa 

(b) 

Figure 3.1.11. Fracture surfaces from V-notched specimens under in-phase multiaxial loading: 

R=0, =0.6 and =0°. Low (a) and high (b) cycle fatigue. 

 

3 mm 3 mm 

3 mm 3 mm 
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Multiaxial fatigue, N=74178, a=140 MPa, R=-1 

(a) 

Multiaxial fatigue, N=37370, a=110 MPa, R=0 

(b) 

Figure 3.1.12. Fracture surfaces from V-notched specimens under out-of-phase multiaxial fatigue: 

=0.6 and =90°. R=-1 (a) and R=0 (b). 

 

3.1.5 A synthesis in terms of linear elastic SED averaged over a control 

volume 

With regard to smooth specimens, all the experimental data are summarised here 

in terms of the strain energy density, which can be expressed under linear elastic 

hypothesis according to Beltrami’s expression [53]. Under pure tension, it holds: 

∆W =
∆σnom

2

2E
                                                                                                             (3.1.1) 

while under pure torsion it results: 

∆W = (1 + ν)
∆τnom

2

E
                                                                                               (3.1.2) 

where ∆σnom and ∆τnom represent the range of the nominal stress components. 

For Ti-6Al-4V titanium alloy, the Young’s modulus E is equal to 110 Gpa, while 

the Poisson’s ratio ν is 0.3.  

Also the experimental data related to V-notched specimens are summarised 

hereafter in terms of linear elastic strain energy density, but the SED calculation 

in this case is based on the local stress and strain state in a control volume 

3 mm 3 mm 
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surrounding the notch tip. Being the radius at the notch tip very small (ρ less than 

0.1 mm), the Mode I and Mode III notch stress intensity factors K1 and K3 can be 

used to re-analyse the fatigue strength data related to V-notched specimens in 

terms of SED. 

 

 

 

Figure 3.1.13. Polar coordinate system for V-shaped notches, with z normal to the plane; Mode I 

NSIF linked to the stress component  evaluated along the notch bisector line (=0); under mode 

III the shear stress component z is oriented as . 

 

These field parameters were calculated by means of linear elastic FE analysis 

considering a sharp V-notch with = 0, see Figure 3.1.13. In particular, 

considering a cylindrical coordinate system (r, θ, z) centered at the notch apex, 

where r is the radial coordinate,  is the angle between a particular point and the 

notch bisector line while z is the longitudinal axis of the specimens, the Mode I 

and Mode III Notch Stress Intensity Factors (NSIFs) can be defined according to 

the following expressions [54,55]: 

K1 = √2π lim
r→0+

r1−λ1σθθ(r, θ = 0)                                                                        (3.1.3) 

K3 = √2π lim
r→0+

r1−λ3τθz(r, θ = 0)                                                                         (3.1.4) 

  

 2 

 

 

  

 

r 

r 
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In the case of a V-notch opening angle equal to 90 degrees, the eigenvalues 1 and 

3 are equal to 0.545 and 0.667, respectively. On the other hand, in conditions of 

linear elasticity, the NSIFs can be linked to the nominal stress components 

according to the following expressions [29,55]: 

∆K1 = k1d
1−λ1∆σnom                                                                                             (3.1.5a) 

∆K3 = k3d
1−λ3∆τnom                                                                                             (3.1.5b) 

where d is the notch depth (d = 6.0 mm) while k1 and k3 are non-dimensional 

factors derived from FE analysis. They simply represent the shape factors, in 

analogy with the representation of Linear Elastic Fracture Mechanics.  

The harmonic element solid plane 83 of the Ansys code has been used in the 

finite element analysis. Taking advantage of the geometric and loading symmetry, 

it is possible to model only one quarter of the specimen. From the FE models, k1 = 

1.000 and k3 = 1.154 have been obtained. 

The trend of the Mode III shear stress field, normalized with respect to the 

nominal shear stress and plotted along the notch bisector line, is shown in Fig. 

3.1.14 as a function of the distance from the notch tip. From this figure, it is 

evident that the stress field is controlled by the first singular term (NSIF) up to a 

distance from the notch tip equal to about 1.0 mm. 
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Figure 3.1.14. Local shear stress field along the notch bisector line (Mode III loading). 

 

Substituting the notch depth of the specimens examined here, d = 6 mm, in Eqs 

(3.1.5a) and (3.1.5b), one can obtain: 

∆K1 = 2.260 ∙ ∆σnom            (in MPa ∙ mm
0.445)                                             (3.1.6a) 

∆K3 = 2.096 ∙ ∆τnom            (in MPa ∙ mm
0.333)                                             (3.1.6b) 

Taking into account the range of the nominal stresses at NA = 2·10
6
 loading cycles 

relating to V-notched specimens tested under pure tension and pure torsion with a 

nominal load ratio R = -1 (Table 3) and substituting them into the Eqs (3.1.6a) and 

(3.1.6b), it can be obtained: 

∆K1A = 2.260 ∙ 200 = 452 MPa ∙ mm0.445                                                      (3.1.7a) 

∆K3A = 2.096 ∙ 580 = 1216 MPa ∙ mm0.333                                                   (3.1.7b) 

In the case of a component weakened by a sharp V-notch and in conditions of 

linear elasticity, the SED averaged over a control volume, which embraces the 

notch tip, can be calculated by means of the following expression [29,30]: 

0.1
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∆W =
1

E
[e1 ∙

∆K1
2

R1
2(1−λ1)

+ e3 ∙
∆K3

2

R3
2(1−λ3)

]                                                                 (3.1.8) 

where K1 and K3 represent the Mode I and Mode III NSIF ranges, R1 and R3 are 

the radii of the control volume related to Mode I and Mode III loadings, while e1 

and e3 are two parameters that summarize the dependence on the V-notch 

geometry [27,29,31].  

These parameters are directly linked to the integrals of the angular functions over 

the control volume, and they can be determined a priori by means of closed-form 

expressions once known the V-notch opening angle. Since the specimens 

examined here are characterized by a notch opening angle 2 equal to90 degrees, 

e1 and e3 are equal 0.146 and 0.310, respectively, with the Poisson’s ratio  = 0.3.  

The use of refined meshes in the close neighborhood of the stress singularity is 

necessary in the calculation of NSIFs. On the other hand, the SED averaged over a 

control volume is insensitive to the mesh refinement, and it can be accurately 

evaluated also by means of coarse meshes because it directly depends on nodal 

displacements [56,57].  

It is possible to estimate the control volume radii described in Figure 3.1.15, R1 

and R3, considering separately the loading conditions of Mode I and Mode III. 

These radii are functions of the high-cycle fatigue strength of smooth specimens, 

1A = 950 MPa,3A = 776 MPa, and of the mean values of the NSIFS, K1A 

and K3A, all referred to the same number of loading cycles, NA = 2·10
6
: 

R1 = (√2e1 ∙
∆K1A
∆σ1A

)

1
1−λ1

                                                                                       (3.1.9a) 

R3 = (√
e3
1 + ν

∙
∆K3A
∆τ3A

)

1
1−λ3

                                                                                  (3.1.9b) 

Eqs 9a and 9b provide as a result: R1 = 0.051 mm and R3 = 0.837 mm. The 

obtained values are used to summarise all fatigue strength data by means of the 

averaged SED. 
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R1c 

= 

0.045 

2  

R3c 

 

 

Figure 3.1.15. Control volumes for V-shaped notches under tension and torsion loading. 

 

The expressions for estimating the control radii, thought of as material properties, 

have been obtained imposing (at NA loading cycles) the constancy of the SED 

from smooth and V-notched specimens, which depends on the notch stress 

intensity factors and the radius of the control volume. Considering instead cracked 

specimens, the critical NSIFs should be replaced by the threshold values of the 

stress intensity factors. 

In particular, a control volume of radius R1 is used to evaluate the averaged 

contribution to local stress and strains due to tensile loading, whereas a radius R3 

is used to assess the averaged contribution due to torsion loading. The size of R3 

radius is highly influenced by the presence of larger plasticity under torsion 

loading with respect to tensile loading and by friction and rubbing between the 

crack surfaces, as was discussed extensively for different materials [19,28,34] and 

more recently investigated under linear elasticity by means of FE analyses taking 

advantage of free-clamped boundary conditions [58].  

With the aim to unify in a single diagram the fatigue data related to different 

values of the nominal load ratio R, it is necessary to introduce a weighting factor 

cw on the basis of mere algebraic considerations. The result of these observations 

[29,31] provides as master cases cw = 1.0 for R = 0 and cw = 0.5 for R = 1. The 
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expression of cw as a function of the nominal load ratio R is: 

{
 
 
 

 
 
 
1 + R2

(1 − R)2
           for       − ∞ ≤ R < 0 

1                         for          R = 0    
       

1 − R2

(1 − R)2
           for         0 < R ≤ 1    

                                                               (3.1.10) 

By applying the weighting factor cw, the expressions for calculating the strain 

energy density under linear elasticity, for un-notched specimens (Eqs (3.1.1, 

3.1.2)) and for V-notched ones (Eq. (3.1.8)), become: 

SED = cw ∙ ∆W

=

{
 
 
 
 
 

 
 
 
 
 cw ∙

∆σnom
2

2E
                                                       un − notched specimens

                                                                         pure tension

cw ∙ (1 + ν)
∆τnom

2

E
                                         un − notched specimens

                                                                         pure torsion

cw
E
[e1 ∙

∆K1
2

R1
2(1−λ1)

+ e3 ∙
∆K3

2

R3
2(1−λ3)

]                 V − notched specimens  

                                                                              multiaxial loading

   (3.1.11) 

Figures 3.1.16 and 3.1.17 show the synthesis by means of local SED of all the 

experimental data from the fatigue tests at a nominal load ratio R = 0 and R = 1, 

respectively. The control radii are R1 = 0.051 mm and R3 = 0.837 mm. The 

scatterbands have been defined considering the range 10 to 90% for the 

probability of survival. It can be observed that the inverse slope k equals 5.44 for 

R = 0 case and 5.25 for R = -1 case, while the corresponding values of the strain 

energy density at 2·10
6
 loading cycles are 2.72 MJ/m

3
 and 2.60 MJ/m

3
. The SED-

based scatter index TW is 1.76 for R = 0 and 2.25 for R = -1 case, which would 

become equal to 1.33 and 1.50, respectively, once reconverted a posteriori into 

equivalent stress-based scatter indexes T, by simply making the square root of 

the SED values. The values of the equivalent scatter index are satisfactory for 

engineering strength assessment, considering that each synthesis is performed on 
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fatigue data from un-notched and V-notched specimens under pure tension, pure 

torsion or combined tension-torsion loading, both in phase and out-of-phase.  

Figures 3.1.18 and 3.1.19 show instead the synthesis by means of average SED of 

all the experimental data from the fatigue tests of un-notched specimens under 

pure torsion and V-notched samples, respectively. In the case of V-notches two 

control radii equal to R1 = 0.051 mm and R3 = 0.837 mm respectively have been 

used. It can be observed that the inverse slope k of the scatterbands equals 11.10 

for un-notched specimens under pure torsion and 5.86 for V-notched ones, while 

the values of the strain energy density at 2·10
6
 cycles are equal to 3.95 MJ/m

3
 and 

3.09 MJ/m
3
, respectively. In this case TW equals 1.82 for un-notched specimens 

under pure torsion and 2.20 for V-notched ones, which would give 1.35 and 1.48, 

respectively, once reconverted a posteriori into equivalent stress-based scatter 

indexes T. Also in this case the values of the scatter index are very satisfactory, 

given that each synthesis is based on fatigue data respectively from un-notched 

specimens under pure torsion with different values of the load ratio and from V-

notched specimens under pure tension, pure torsion or combined tension-torsion 

loading, with different values both of the load ratio and the phase angle. 

Finally, Figure 3.1.20 shows the synthesis in terms of SED of all the fatigue 

strength data presented here. Again two different control radii equal to R1 = 0.051 

mm and R3 = 0.837 mm respectively have been adopted. The scatterband includes 

all the data from un-notched and V-notched specimens under pure tension, pure 

torsion and multiaxial loading, regardless of the load ratio and the phase angle. It 

is also characterized by an inverse slope k equal to 5.90, a scatter index TW = 2.5 

and a value of the strain energy density at the reference number of loading cycles, 

NA = 2·10
6
, that equals 3.08 MJ/m

3
. The equivalent stress-based scatter index T 

results to be 1.58, that is comparable with that observed in the Haibach 

scatterband (T= 1.50). 

From the comparison between Figure 3.1.20 and Figures 3.1.4-3.1.7, based on 

nominal stresses at the net area, the unifying capacity of the SED approach can 

easily be observed, in fact, it is capable of synthesize all the fatigue strength data 

in a single quite-narrow scatterband regardless of the loading mode and the 

specimens geometry. 
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Figure 3.1.16. Synthesis by means of local SED of series data with R = 0. 

 

 

Figure 3.1.17. Synthesis by means of local SED of series data with R = -1. 
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Figure 3.1.18. Synthesis by means of local SED of un-notched specimens data under pure torsion. 

 

 

Figure 3.1.19. Synthesis by means of local SED of V-notched specimens data. 
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Figure 3.1.20. Synthesis by means of local SED of un-notched and V-notched specimens data. 

 

 

3.1.6 Discussion 

A complete experimental program has been carried out providing a large number 

of fatigue data referred to axis-symmetric V-notched specimens made of titanium 

alloy (Ti-6Al-4V, grade 5). The tests have been performed under combined Mode 

I and Mode III loadings with a proportional and non-proportional loading path. 

They have been compared with data from plain and V-notched samples under 

pure tension and pure torsion loading.  

A total of over 160 new fatigue data (15 Wöhler curves) have been reported and 

discussed. First, all fatigue data have been plotted as a function of the nominal 

stress amplitudes and then reanalysed by using the local SED measured over a 

control volume embracing the notch flanks. For the titanium alloy Ti-6Al-4V, a 

different size of the control volume under Mode I and Mode III loadings has been 

found to be suitable to summarise the fatigue data. 
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The synthesis based on the local SED allows us to get a quite limited scatter-band 

(TW = 2.5) considering all the data from V-notched and smooth samples under 

pure Mode I, pure Mode III and combined Mode I+III loadings, independent of 

the ratio, R, and the phase angle . 
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3.2 Fatigue strength of welded joints – Industrial case study: 

steel rollers 
 (*)

 

 

Nomenclature 

c   length of the lack of penetration 

e1, e2, e3 parameters for the determination of the strain energy density 

(SED) 

E   elastic modulus 

k     inverse slope of the fatigue curves 

N

1K , 
N

2K , 
N

3K  mode I, mode II and mode III Notch Stress Intensity Factors 

(NSIFs) 

N

A1K  
NSIF-based fatigue strength of transverse non-load carrying 

fillet welded joints with 2 = 135 degrees at the weld toe 

NA   reference number of cycles 

Nf   number of cycles to failure 

R load ratio (ratio between the minimum and the maximum 

applied load) 

Rc radius of the structural volume where local stresses are 

averaged 

r,   polar coordinates 

TW  strain energy-based scatter index (for 2.3-97.7% 

probabilities of survival) 

 Average Strain Energy Density (SED) over the control 

volumes 

 

Symbols 

    V-notch opening angle 

   range of the considered quantity

1, 2,  mode I, mode II and mode III eigenvalues  

                    Poisson's ratio 

W
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   fatigue strength of butt ground welded joints at NA
 
cycles to 

failure  

r  normal and shear stress components in the polar frame of 

reference 

y    yield strength 

zzr   mode III stress components in the polar frame of reference 

  radius at the weld root or toe 

   parameters for mode I and mode II stress distributions 

 

(*) See also: 

 

Berto, F.; Campagnolo, A.; Chebat, F.; Cincera, M.; Santini, M. Fatigue strength of steel rollers 

with failure occurring at the weld root based on the local strain energy values: modelling and 

fatigue assessment. International Journal of Fatigue; 82:643-657 (2016); 

 

 

3.2.1. Introduction 

Weld bead geometry cannot be precisely defined mainly because parameters such 

as bead shape, toe or root radius and length of lack of penetration vary from joint 

to joint even in well-controlled manufacturing operations [59,60]. It is, in fact 

well known that, the weld toe radius decreases with the local heat concentration of 

the welding process, i.e. it is extremely small for automated high-power 

processes, especially for laser beam welding. Since also conventional arc welding 

techniques result in small values of toe radius [61], in the Notch Stress Intensity 

Factor (NSIF) approach the weld toe region is modelled as a sharp notch and local 

stresses are given on the basis of the relevant mode I and mode II NSIFs [61,62]. 

When the opening angle at the weld toe is large enough to result in a non-singular 

contribution for stress components due to the mode II the fatigue behaviour can be 

correlated only to mode I NSIF [62]. A comparison among different steel welded 

joints can be performed on the basis of the relevant theoretical stress 

concentration factors, after having imposed a fictitious notch radius f = 1.0 mm. 

This value is valid only if the real radius at the weld toes and roots is thought of as 

zero [55]. Fatigue failure is generally characterized by the nucleation and growth 
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of cracks. As widely discussed in the previous literature, the differentiation of two 

stages is “qualitatively distinguishable but quantitatively ambiguous” [63]. In this 

context NSIFs are adequate to describe crack initiation at sharp corner notches, as 

stress intensity factors (SIFs) do at crack-like notches. However, it was observed 

experimentally that NSIFs can also be used to correlate the total fatigue life [64–

67], due to cracks traversing the plate thickness of small size welded details. This 

is explained by the fact that a large amount of the fatigue life is spent for the 

initiation of a short crack in a zone governed by the V-notch singularity at the 

weld toe or root. Different set of experimental data proved this behaviour. Dealing 

with transverse non-load-carrying fillet welded joints Lassen [68] demonstrated 

that for various welding procedures, up to 40 percent of fatigue life was spent to 

nucleate a crack having a length of just 0.1 mm. Singh et al. [69,70] showed by 

testing load-carrying fillet joints in AISI 304L that the number of cycles required 

for the crack to grow by 0.5 mm in excess of the original lack of penetration 

reached 70 percent of the total life.  

 

 

Figure 3.2.1. Fatigue strength of  welded joints as a function of the averaged local strain energy 

density; R is the nominal load ratio.  

 

From a theoretical point of view the NSIF-based approach cannot be applied to 
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joints characterized by weld flank angles very different from 135 degrees or for 

comparing failures at the weld root (2= 0°) or weld toe (2= 135°). That is 

simply because units for mode I NSIF are MPa(m)

, where the exponent  

depends on the V-notch angle, according to the expression   = 1- ,  being 

Williams’ eigenvalue [71]. This problem has been overcome by Lazzarin and co-

authors in some recent papers [27,29,72] by using the mean value of the strain 

energy density range (SER) present in a control volume of radius Rc surrounding 

the weld toe or the weld root (see Figure 3.2.1). SER was given in closed form as 

a function of the relevant NSIFs, whereas Rc was thought of as dependent on 

welded material properties. The approach, reminiscent of Neuber “elementary 

volume” concept, was later applied to welded joints under multiaxial load 

conditions [29].  
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Figure 3.2.2. Geometrical parameters and critical volume (area) at the weld toes or roots. 

 

The simple volume shown in Figure 3.2.2 is not so different from that already 

drawn by Sheppard [73] while proposing a volume criterion based on local 
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stresses to predict fatigue limits of notched components. Some analogies exist also 

with the highly stressed volume (the region where 90% of the maximum notch 

stress is exceeded) proposed by Sonsino dealing with high cycle strength of 

welded joints [74]. Finally it is useful to remember that the Theory of Critical 

Distances (TCDs) encloses some approaches, widely used in the literature and 

based again on Neuber “elementary volume” concept by using a characteristic 

material length parameter when performing fracture assessments on any kind of 

stress risers. The origins and the basis of the TCD can be found in Refs. [75–81]. 

Recently Susmel and Taylor have suggested and applied some critical distance 

methods, the ‘point method’, the ‘line method’ and the ‘area method’ for 

predicting high cycle fatigue of welded joints [60,82–85]. The three methods are 

to be seen as simplifications of a more generalized volume method, which 

coincides with the area method in plane problems. In the ‘area method’, Taylor 

uses the average stress in an area of circular form surrounding the point of 

maximum stress. With reference to welds fabricated from a low carbon steel, the 

local radius, evaluated experimentally by Taylor et al. [60], was 0.43 mm. For a 

given nominal load ratio, such a radius does depend only on the material. 

The same based on energy approach has been employed here for the fatigue 

assessment of rollers (see for example Fig. 3.2.3) made by Rulmeca with failure 

occurring at the weld root.  

 

 

 

Figure 3.2.3. Typical roller assembly 
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The rollers considered in the present investigation belong to the category PSV 

which is particularly suited to conveyors that operate in very difficult conditions, 

where working loads are high, and large lump size material is conveyed; and yet, 

despite these characteristics, they require minimal maintenance. The bearing 

housings of the PSV series are welded to the tube body using auto-centralising 

automatic welding machines utilizing a continuous wire feed. 

From the point of view of the fatigue behavior under load, the weakest point of 

the entire structure is the lack of penetration of the weld root. Therefore, if the 

roller is loaded well above its declared nominal admitted load [86] it would 

experience fatigue failure starting at the level of the weld root. 

The aims of the present work are: 

 to describe the procedure for modelling the roller by using the finite 

element method combined with three-dimensional analyses; the 

procedure will be shown in detail for a particular roller geometry named 

PSV4; 

 to show the procedure for evaluating the local parameters in the zone 

close to the lack of penetration at the weld root; 

 to describe the sensitivity of the model to the length of the lack of 

penetration; 

 to show the procedure for evaluating the SED in a control volume 

surrounding the crack tip in a real component describing the trend of 

the SED in a three-dimensional model; 

 to verify if a scatter band W̅-N (strain energy range – number of 

cycles to failure) summarising about 1200 fatigue data from welded 

joints with the majority of failures originated from the weld toes can be 

applied also to welded joints with failures from the weld roots and in 

particular to the considered rollers; 

 with reference to the just mentioned point some preliminary fatigue 

tests from two different geometries belonging to the family of rollers 

called PSV4 and characterized by a different length, have been carried 

out and summarised here by means of local SED. 
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The main novelty of this work is related to the application of the SED approach to 

welded joints of small thickness, indeed the scatterband in terms of local strain 

energy density (SED) for welded joints made of structural steel, Fig. 3.2.1, has 

been calibrated in some previous works by fitting experimental data taken from 

the literature and relevant mainly to thick welded joints (thickness greater than 5 

mm). Some new fatigue tests have been conducted on two different geometries of 

rollers, in order to compare the experimental results with the theoretical 

predictions based on the proposed SED approach. 

 

3.2.2. Approach based on the local SED: analytical preliminaries 

The degree of the singularity of the stress fields due to re-entrant corners was 

established by Williams both for mode I and mode II loading [71]. When the weld 

toe radius  is set to zero, NSIFs quantify the intensity of the asymptotic stress 

distributions in the close neighbourhood of the notch tip. By using a polar 

coordinate system ),r(   having its origin located at the sharp notch tip, the NSIFs 

related to mode I and mode II stress distribution are [54] 

)0,r(rlim2K 11

0r

N

1  



 
                                                                   (3.2.1) 

)0,r(rlim2K r

1

0r

N

2
2  



 
  (3.2.2) 

where the stress components  and r have to be evaluated along the notch 

bisector (= 0).  

Dealing with mode III loading an extension of the definition proposed by Gross 

and Mendelson [54] has been carried out in [87,88]: 

)0,r(rlim2K z

1

0r

N

3
3  



 
                    (3.2.3) 

By means of Eqs. (3.2.1, 3.2.2), it is possible to present Williams’ formulae for 

stress components as explicit  functions of the NSIFs. Then, mode I stress 

distribution is [89]: 
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Mode II stress distribution is: 
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Mode III stress distribution is:  
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  (3.2.6) 

With reference to some typical V-notch angles, Table 3.2.1 gives the parameters 

and  for mode I and mode II stress distributions [89]. Table 3.2.2 provides the 

main parameters [90] for the application of Eq. (3.2.6). 
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Table 3.2.1. Parameters as functions of the V-notch angle. Coefficients e1 and e2 for plane strain 

conditions and Poisson’s ratio =0.3. 

 

2  Mode I   Mode II  

[rad] 1 1 e1 2 2 e2 

0 0.500 1.000 0.133 0.500 1.000 0.340 

/6 0.501 1.071 0.147 0.598 0.921 0.274 

/4 0.505 1.166 0.150 0.660 0.814 0.244 

/3 0.512 1.312 0.151 0.731 0.658 0.217 

/2 0.544 1.841 0.145 0.909 0.219 0.168 

2/3 0.616 3.003 0.129 1.149 -0.314 0.128 

3/4 0.674 4.153 0.118 1.302 -0.569 0.111 

5/6 0.752 6.362 0.104 1.486 -0.787 0.096 

 

 
Table 3.2.2. Parameters as functions of the V-notch angle. Coefficients e3 for axis-symmetric 

components. 

 

2  3 e3   

[rad] [rad]   

0  0.5000 0.41380 

/12 23/24 0.5217 0.39659 

/6 11/12  0.5455 0.37929 

/3 5/6  0.6000 0.34484 

/2 3/4  0.6667 0.31034 

2/3 2/3  0.7500 0.27587 

3/4  5/8  0.8000 0.25863 

 

All stress and strain components in the highly stressed region are correlated to 

mode I, mode II and mode III NSIFs. Under plane strain hypothesis, the strain 

energy included in a semicircular sector shown in Figure 3.2.2 is [27,91]: 

2

1

c

N

33

2

1

c

N

22

2

1

c

N

11

321 R

K

E

e

R

K

E

e

R

K

E

e
W 







 








 








 



 (3.2.7) 

where Rc is the radius of the semicircular sector and e1, e2 are functions that depend 

on the opening angle 2 and on the Poisson’s ratio while e3 depends only on the 

notch opening angle  (see Tables 3.2.1 and 3.2.2). A rapid calculation, with  = 0.3, 

can be made for e1 and e2 by using the following expressions [27]: 
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1330.0)2(10151.6)2(10373.5e 426

1  
                                      (3.2.8) 

3400.0)2(10346.2)2(10809.4e 326

2  
                                       (3.2.9) 

where 2 is in degrees.  

Dealing with failures originated at the crack tip (i.e. weld root) Eq. (3.2.7) can be 

simplified as follows: 
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The material parameter Rc can be estimated by using the fatigue strength A of 

the butt ground welded joints (in order to quantify the influence of the welding 

process, in the absence of any stress concentration effect) and the NSIF-based 

fatigue strength of welded joints having a V-notch angle at the weld toe constant 

and large enough to ensure the non singularity of mode II stress distributions.  

A convenient expression is [27]: 
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                                                                                   (3.2.11) 

where  both 1 and e1 depend on the V-notch angle. Eq. (3.2.11) will be applied in 

the next sections taking into account the experimental value N
A1K  at 5 million 

cycles related to transverse non-load carrying fillet welded joints with 2 = 135 

degrees at the weld toe.  

The hypothesis of constancy of Rc under mixed mode loads had been validated by 

Lazzarin and Zambardi [27] by using experimental data mainly provided by 

Seweryn et al. [92] and Kihara and Yoshii [93]. 

From a theoretical point of view the material properties in the vicinity of the weld 

toes and the weld roots depend on a number of parameters as residual stresses and 

distortions,  heterogeneous metallurgical micro-structures, weld thermal cycles, 

heat source characteristics, load histories and so on. To device a model capable of 

predicting Rc and fatigue life of welded components on the basis of all these 
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parameters is really a task too complex. Thus, the spirit of this approach is to give 

a simplified method able to summarise the fatigue life of components only on the 

basis of geometrical information, treating all the other effects only in statistical 

terms, with reference to a well-defined group of welded materials and, for the time 

being, to arc welding processes. Eq. (3.2.11) makes it possible to estimate the Rc 

value as soon as N
A1

K  and  A are known.  

At NA = 510
6
 cycles and in the presence of a nominal load ratio R equal to zero, a 

mean value N
A1

K  equal to 211 MPa mm
0.326

 can be assumed [72]. For butt ground 

welds made of ferritic steels Atzori and Dattoma [94] found a mean value A = 

155 MPa (at NA = 510
6
 cycles, with R = 0). That value is in very good agreement 

with A =153 MPa recently obtained by Taylor at al. [60] by testing butt ground 

welds fabricated of a low carbon steel. Then, by introducing the above mentioned 

value into Eq. (3.2.11), one obtains for steel welded joints with failures from the 

weld toe Rc = 0.28 mm. The choice of 5 million cycles as a reference value is due 

mainly to the fact that, according to Eurocode 3, nominal stress ranges 

corresponding to 5 million cycles can be considered as fatigue limits under 

constant amplitude load histories. It is worth noting that the simplified hypothesis 

of a semicircular core of radius Rc led to the assessment of a fatigue scatter band 

that exactly agreed with that of Haibach’s normalised S-N band [95]. 

In the case 2= 0 and fatigue crack initiation at the weld root Eq. (3.2.11) gives 

Rc = 0.36 mm, by neglecting the mode II contribution and using e1 = 0.133, Eq. 

(3.2.8), N
A1

K = 180 MPa mm
0.5

 and, once again,  A = 155 MPa. There is a 

small difference with respect to the value previously determined, Rc = 0.28 mm. 

However, in the safe direction, the proposal is to use Rc = 0.28 mm also for the 

welded joints with failures from the weld roots which is the case considered here. 

As opposed to the direct evaluation of the NSIFs, which needs very refined 

meshes, the mean value of the elastic SED on the control volume can be 

determined with high accuracy by using coarse meshes [56,57,96] and directly 

takes into account the three-dimensional effects well described in [97–100]. Very 

refined meshes are necessary to directly determined the NSIFs from the local 

stress distributions. Refined meshes are not necessary when the aim of the finite 
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element analysis is to determine the mean value of the local strain energy density 

on a control volume surrounding the points of stress singularity. The SED in fact 

can be derived directly from nodal displacements, so that also coarse meshes are 

able to give sufficiently accurate values for it. Some recent contributions 

document the weak variability of the SED as determined from very refined 

meshes and coarse meshes, considering some typical welded joint geometries and  

provide a theoretical justification to the weak dependence exhibited by the mean 

value of the local SED when evaluated over a control volume centred at the weld 

root or the weld toe. On the contrary singular stress distributions are strongly 

mesh dependent. This is a strong advantage of the SED approach in comparison 

with stress based criteria in particular when real three-dimensional structures have 

to be modeled.  

 

3.2.3. Modelling of the rollers and evaluation of the local SED 

3.2.3.1 Description of the rollers 

The rollers considered in the present investigation belong to the series PSV which 

offer the highest quality and the maximum load capacity of Rulmeca’s production 

(see Figure 3.2.3) [86]. 

Rollers PSV are particularly suited to conveyors that operate in very difficult 

conditions, where working loads are high, and large lump size material is 

conveyed; and yet, despite these characteristics, they require minimal 

maintenance. Typical types of application are: mines, caves, cement works, coal-

fired electric utilities and dock installations. The effectiveness of the PSV roller 

sealing system provides the solution to the environmental challenges of dust, dirt, 

water, low and high temperatures. 

Roller is made of the following main components: 

 A mantel, constituted by a tube cut and machined using automatic 

numerically controlled machines, that guarantee and maintain the 

tolerances and the precision of the square cut. 
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 Two bearing housing made by a steel monolithic structure (in agreement 

with UNI EN 10111 characterized by a yield strength 170<y<330 MPa), 

deep drawn and sized to a forced fixed tolerance (ISO M7) at the bearing 

position. The thickness of the housings is proportional to the spindle 

diameter and to the bearing type, with thicknesses that are up to 5 mm, to 

guarantee the maximum strength for each application, including the 

heaviest. 

 A spindle which sustains the roller when it is assembled into the troughing 

set supports. It is made from drawn steel, cut and machined by automatic 

numerically controlled machines. The spindle is ground to a precision 

tolerance, to guarantee a perfect match of bearings, seals. Spindle 

tolerance, together with bearing housing tolerances, functionally 

guarantees the autoalignment of the internal and outer bearing rings of the 

ball race resulting in a good performance even when the spindle deflection 

is extreme due to overloading. 

 The seals components, which are meant to protect the bearing from 

harmful elements that may impinge from the outside or the inside of the 

roller, made of three main sections: 

1) external section: made of an external stone guard, a lip ring 

made from soft anti-abrasive rubber with a large contact 

surface onto a metal cover cap; that forms a self-cleaning stage 

of seal in that it centrifugally repels water and dust naturally 

towards the outside; 

2) outward bearing protection: triple lip labyrinth in nylon PA6 

greased to give further bearing protection; 

3) inward bearing protection, made of a sealing ring in nylon PA6 

is positioned that provides an ample grease reservoir and also 

retains the grease near to the bearing even when there is a 

depression due to an abrupt change in temperature (pumping 

effect).  
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 Locking system: provided by means of the correctly located cir-clip, 

which is the most effective and the strongest system implemented in heavy 

rollers for belt conveyors. 

 

3.2.3.2 Feature and geometry under investigation 

The feature under investigation is the joint between tube and bearing housing. 

The bearing housings of the PSV rollers are welded to the tube body using 

autocentralising automatic welding machines utilising a continuous wire feed. The 

weldments have been executed by applying the metal-arc inert gas (MIG) welding 

process with the shielding gas Ar + 8% CO2. As filler material a 0.8 mm diameter 

wire has been used with an average wire feed rate equal to 18 mm/min. The 

welding voltage and the welding current have been set equal to 23 V and 240 A, 

respectively. 

Tube and bearing housing form a monolithic structure of exceptional strength 

which itself reduces to the minimum any imbalance in the roller. This guarantees 

the alignment and concentricity with respect to the external diameter of the 

component parts of the sealing system. The optimum balance and concentricity 

thus obtained allows these rollers to be used at the highest speeds, eliminating 

harmful vibration to the conveyor structure and the “hammer effect” on the 

bearings of the rollers.  

From the point of view of the fatigue behavior under loading, the weakest point of 

the entire structure is the lack of penetration of the weld root. Therefore, if the 

roller is loaded well above its declared nominal admitted load [86] it would 

experience fatigue failure starting at the level of the weld root. A detail of the 

weld root is shown in Figure 3.2.4, where the lack of penetration length is 

indicated as c. 
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Figure 3.2.4. Scheme showing the main geometrical parameters at the weld root 

 

The load on top of the roller is modelled typically as a uniformly distributed load 

on the longitudinal line of the roller [101], as reported in Figure 3.2.4.  

Two geometries have been considered here and the details of the geometrical 

parameters are reported in Figure 3.2.5a and 3.2.5b for the two cases, named in 

the following as PSV4 133 315 and PSV4 159 530. For sake of brevity the 

modeling will be described step by step only for the first geometry.  
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(b) 

 

Figure 3.2.5: Geometry of the rollers: PSV4 133 315 (a) PSV4 159 530 (b) 

 

3.2.3.3 Finite element modelling 

The analysis of the stress fields in these welded details needed 3D models, 

because of their variability along the circular path described by the weld root. The 

two considered geometries reported in Figure 3.2.5 have been modelled by means 

of 20-node 3D hexahedral finite elements (SOLID 186) implemented in the FE 

code ANSYS. The material has been assumed as linear elastic and isotropic. The 

values of Poisson’s ratio ν and Young’s modulus E typical for steels have been 

adopted in all FE analyses: accordingly ν and E have been set equal to 0.30 and 

206 GPa, respectively. No other material property has been given as input to the 

FE code, indeed in the FE model the different zones of the welded joint (base 

material, heat-affected zone, weld metal) have been considered as made of a 

unique material with homogeneous mechanical properties. 

Due to the symmetry of geometry and loading only one quarter of the geometry 

has been considered. The bearing has been considered of infinite stiffness and all 

the nodes of the bearing housing have been connected by means of rigid elements 

(links) to a master node. This special node has been placed on the symmetrical 

longitudinal axis of the roller in correspondence of the instantaneous rotation 

centre of the bearing. The rotation about the axis Z and the longitudinal 

displacement (direction Y in Figure 3.2.4) have been left unconstrained while all 
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the other displacements and rotations of the master node have been constrained. 

The load has been distributed along the longitudinal line as shown in Figure 3.2.6  

[101]. 

 

 

Figure 3.2.6. Typical boundary conditions applied in the numerical models. 

 

For each geometry two models were created: the first was mainly oriented to the 

determination of the point where the maximum principal stress and the maximum 

value of the strain energy density were located. Due to the complex geometry of 

the bearing housing in fact the point varies as a function of the geometry. In this 

case a regular fine mesh has been used with the aim also to determine the SIFs at 

the weld root (see Figure 3.2.7). 

The second model was characterized by a coarse mesh but by an accurate 

definition of the control volume where the strain energy density should be 

averaged. As just stated the mesh used in that case was coarse with a regular 

increasing spacing ratio in the direction of the position of the control volume (see 

Figure 3.2.8) mainly aimed to a correct positioning of the volume itself in the 

Symmetric boundary 
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Bearing boundary 
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most critical region. All the analyses have been carried out by means of 20-node 

finite elements under linear-elastic hypotheses. A detail of the deformed shape (to 

which has been applied a displacement scaling factor to improve understanding) 

of the roller under the applied load and of the SED in the control volume around 

the most critical zone is shown in Figure 3.2.9a and 3.2.9b,c, respectively. The 

steps of the analyses will be shown here for sake of brevity only for the roller PSV 

133 315 for which also the local SIFS have been determined. 

 

 

(a) 
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(b) 

Figure 3.2.7. Fine mesh for SIFs determination, global model (a) and detail at the weld root (b). 

 

 

Figure 3.2.8. Relatively coarse mesh for SED determination. 

Rc = 0.28 mm 
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(a) 

 

 

 

(b) 
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(c) 

 

Figure 3.2.9. Deformed shape (a), mesh in the control volume (b) and SED contour lines (c). 

 

 

3.2.3.4 Local parameters determination 

By using the first model with a regular and very fine mesh the SED has been 

evaluated circumferentially all around the roller in the zone surrounding the weld 

root. The maximum SED value occurs outside the line of the application of the 

load. The angle of rotation is strongly dependent on the geometry of the bearing 

housing. In the case of the roller PSV 133 315 the maximum SED occurs at about 

30 degrees from the line of load application as shown in Figure 3.2.10. In that 

point all the modes of failure are contemporary present as will be discussed in the 

following. 
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Figure 3.2.10. Angular distribution of the SED. 

 

For this specific model an analysis of sensitivity of SED as a function of the 

length of the lack of penetration c has been carried out. From a micrographic 

analysis conducted on a large amount of welded rollers c has been found to vary 

in the range between 0.6 and 1.0 mm. A typical image of the weld root is shown 

in Figure 3.2.11a while Figure 3.2.11b shows a typical failure starting from the 

lack of penetration. Figure 3.2.11c shows the crack propagation through the 

weldment until the final failure of the roller. Finally Figure 3.2.11d reports a 

comparison between the real local geometry and the one considered in FE model, 

showing a very good agreement. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

Figure 3.2.11. Lack of penetration at the weld root (a), typical structure failure (test load >> 

nominal admitted load on the roller) (b) and a detail of the crack through the welded zone (c). 

Comparison between the real local geometry and the one considered in FE model (d). 

 

 

The sensitivity analysis has been made varying the length of the lack of 

penetration and evaluating the SED in a control volume of radius Rc = 0.28 mm. 

The case considered corresponds to that reported in Table 3.2.3 for the roller 

PSV133 315. As visible from Figure 3.2.12 the variation of the SED is very 

limited in the range of c considered. The SED varies from 0.31 MJ/m
3
 to 0.35 

MJ/m
3
 for a value of c corresponding to 0.6 and 1.0, respectively. 
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Figure 3.2.12. Sensitivity of the SED with respect to the lack of penetration. 

 

Considering the low variation of the SED as a function of the initial lack of 

penetration, the length c = 1 mm has been set in all the analyses. This choice is in 

the safe direction because the worst configuration has been considered. In the 

specific case of the roller PSV 133, the first model, aimed to evaluate the angular 

position of the critical point with respect to the line of the loading application, has 

been very refined near the weld root with a high value of the spacing ratio as 

shown in Figure 3.2.7b. The mesh was also very refined but with a constant value 

of the spacing ratio circumferentially around the bearing housing, as shown in 

Figure 3.2.7a. The mesh employed allows not only to evaluate the SED but also 

the local stress field near the weld root in the most critical circumferential point 

determined by means of Figure 3.2.10. Figure 3.2.13 shows the local stress 

components plotted as a function of the distance from the crack tip. From the 

figure it is visible that, as anticipated before, the non-zero stress components 

confirm the presence not only of Mode I loading (opening mode) but also of 

Mode II (in-plane shear) and Mode III (out-of-plane shear) loadings. This is 

mainly due to the position of the point where the maximum SED occurs with 

SED range = 0.1293 c + 0.2278 
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respect to the loading line which generates a complete three-dimensional stress 

field near the lack of penetration. The intensity of the stress components for the 

three different Modes is comparable although the prevalent mode is the opening 

one. By means of the local stress field determined in Figure 3.2.13 the stress 

intensity factor ranges have been determined as shown in Figure 3.2.14. The 

calculated values obtained for the loading case summarising in Table 3.2.3 for the 

roller PSV 133 315 are as following: 

 

Mode I  KI = 260 MPa mm
0.5 

Mode II KII = 65 MPa mm
0.5 

Mode III KIII = 134 MPa mm
0.5 

 

 

Figure 3.2.13. Stress field at the weld root tip. 
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Figure 3.2.14. Typical trend of the stress intensity factors at the weld root. 

 

Table 3.2.3. Main data of the two rollers considered in the present investigation 

Reference load [N] 16300 12380 

Model name PSV4 133 315 PSV4 159 530 

Length of the roller [mm] 315 530 

Diameter of the roller [mm] 133 159 

Tube thickness / Bearing housing thickness 

[mm] 
4/3.5 4/3.5 

Length of lack of penetration [mm] 1 1 
 

By using Eq. (3.2.10) for a critical radius Rc = 0.28 mm and considering the 

values e1 = 0.13449, e2 = 0.34139 and e3 = 0.41380 (see Tables 3.2.1 and 3.2.2) the 

SED range results to be 0.32 MJ/m
3
 which is very close to that directly derived 

from the second FE model (0.34 MJ/m
3
) where a ‘clever’ guided coarse mesh has 

been employed and the volume of radius Rc = 0.28 and of the same height (see 

Figure 3.2.9b,c) has been specifically modelled at the most critical point, 

previously determined with the first refined model. As visible from Figure 3.2.12, 

the SED evaluated from a very refined mesh was found to be 0.35 MJ/m
3
. The 

comparison between the values of SED obtained by using a coarse and a fine 
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mesh confirms the possibility to use a coarse mesh for the SED evaluation. 

Refined meshes are in fact not necessary when the aim of the finite element 

analysis is to determine the mean value of the local strain energy density on a 

control volume surrounding the points of stress singularity. The SED in fact can 

be derived directly from nodal displacements, so that also coarse meshes are able 

to give sufficiently accurate values for it. For this reason it is possible to avoid the 

direct evaluation of the stress intensity factor ranges which is a strong advantage 

from a computational point of view. After the deep preliminary analysis dedicated 

to the case study PSV133 315 the suggestion for implementing the SED approach 

to the other roller geometries is to employ two different models. The first is a 

coarse model only aimed to identify the most critical point along the bearing 

housing, the second is a ‘clever’ coarse model with the volume place at the weld 

root in the most critical circumferential position determined by using the first 

model. The second model allows to determine the SED with a coarse mesh and 

with a degree of accuracy surely appropriate for practical applications. 

 

3.2.4. Fatigue strength in terms of strain energy density averaged in a finite 

size volume 

Some fatigue tests have been conducted on the two rollers shown in Figure 3.2.5. 

A test system has been created for reproducing the service conditions on the 

roller. Figure 3.2.15 shows a typical configuration of a test. The load has been 

applied by means of an external counter-roll which press with a constant pressure 

the tested roller which rotates with a regular speed. Altogether 22 new tests have 

been carried out considering the two investigated geometries, under as-welded 

conditions. The details of the two fatigue series are reported in Tables 3.2.4 and 

3.2.5 for the roller PSV 4 133 315 and PSV4 159 530, respectively. The 

experimental tests have been interrupted at about 10
7
 cycles, accordingly the run-

out specimens have been specified in the tables and in the diagram reported in 

Fig. 3.2.16. The new results reconverted in terms of the local SED have been 

compared with the scatterband proposed for structural welded steels [72]. That 

band, already reported in Figure 3.2.1, is shown in Figure 3.2.16 together with the 

new data. It is evident that the previous scatter band can be satisfactorily applied 
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also to the new data from failure at the weld root of rollers tested at different load 

levels. 

Table 3.2.4. Fatigue data for the roller PSV4 133 315 

 

Sample 
Load 

[kg] 
RPM Cycles Notes 

Testing 

Time [h] 

SED 

[Nmm/mm
3
] 

PSV4 133 315 1 1700 617 110000 - 2 0.439 

 2 1675 617 155500 - 2 0.426 

 3 1245 643 1680000 - 55 0.235 

 4 1245 643 521658 - 14 0.235 

 5 813 638 3687621 - 96 0.104 

 6 752 638 13484745 runout 352 0.089 

 7 760 638 10728361 runout 280 0.091 

 8 752 638 10685583 runout 279 0.089 

 9 713 638 10440417 runout 273 0.080 

 10 647 638 10164948 runout 266 0.066 

 11 610 638 11055235 runout 289 0.059 

 12 553 646 10479312 runout 270 0.048 

 13 510 646 10615367 runout 274 0.041 

 14 404 646 11446934 runout 295 0.026 

 

 
Table 3.2.5. Fatigue data for the roller PSV4 159 530 

 

Sample 
Load 

[kg] 
RPM Cycles Notes 

Testing 

Time [h] 

SED 

[Nmm/mm
3
] 

PSV4 159 530 1 1262 541 363234 - 11 0.251 

 2 1251 541 370432 - 11 0.247 

 3 990 541 619344 - 19 0.155 

 4 992 541 747548 - 23 0.155 

 5 994 541 677279 - 21 0.156 

 6 991 541 598390 - 18 0.155 

 7 523 545 9962179 - 305 0.043 

 8 708 545 2749333 - 84 0.079 
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(a) 

 

 
(b) 

 
Figure 3.2.15. Testing device for fatigue loading (a) and a detail of the roller during the test (b). 
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Figure 3.2.16. Synthesis of new data in terms of local SED and comparison with the scatterband 

shown in Figure 1.  

 

3.2.5. Discussion 

The present paragraph deals with a local energy based approach employed for the 

fatigue assessment of rollers with failure occurring at the weld root. The rollers 

considered in the present investigation are particularly suited to conveyors that 

operate in very difficult conditions, where working loads are high, and large lump 

size material is conveyed; and yet, despite these characteristics, they require 

minimal maintenance. The bearing housings are welded to the tube body using 

auto-centralising automatic welding machines utilizing a continuous wire feed. 

From the point of view of the fatigue behavior under loading, the weakest point of 

the entire structure is the lack of penetration of the weld root. Therefore, if the 

roller is loaded well above its declared nominal admitted load (RULMECA Bulk 

Catalogue, 2015), it would experience fatigue failure starting at the level of the 

weld root. A detail of the weld root is shown in Figure 3.2.4, where the lack of 

penetration length is indicated as c. 

The rollers have been modelled by using the finite element method combined with 
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three-dimensional analyses. The procedure for evaluating the local parameters in 

the zone close to the lack of penetration at the weld root has been described here 

showing the low sensitivity of the model to the length of the lack of penetration. 

The detailed procedure for evaluating the SED in the control volume surrounding 

the crack tip in the weakest point of the roller has been summarised. Some fatigue 

tests from two different geometries belonging to the family of rollers called PSV4 

from Rulmeca production have been carried out and summarised here by means of 

local SED. It has been proved that the scatter band W-N (strain energy range – 

number of cycles to failure), summarising about 1200 fatigue data from welded 

joints with the majority of failures originated from the weld toes, can be 

successfully applied also to welded joints with failures from the weld roots and in 

particular to the considered rollers geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 - Fatigue loadings - Analytical investigation of the phase angle effect 

 

 
193 

 

3.3 Sharp V-notches under multiaxial fatigue: analytical 

investigation of the phase angle effect
 (*)

 

 

Nomenclature 

I1, I2, I3 Stress invariants 

k1, k2, k3 Shape factors associated to the NSIFs 

K1, K2, K3
  

Mode I, mode II and mode III notch stress intensity factors (NSIFs) 

p, q  Auxiliary parameters used in Cardano's formulation 

r  Radial coordinate 

R  Load ratio 

Sa  Nominal tensile amplitude 

Snom  Nominal sinusoidal tensile stress applied to the specimen 

Ta  Nominal torsion amplitude 

Tnom  Nominal sinusoidal torsion stress applied to the specimen 

u, v, w  Auxiliary parameters used in Cardano's formulation 

 

Symbols 

2  V-notch opening angle 

  Machine angle 

1, 2  Parameters used to describe the mode I and mode II stress fields 

  Phase angle 

  Auxiliary parameter used in Cardano's formulation 

1, 2, 3 Eigenvalues related to Mode I, II and III respectively 

  Biaxiality ratio  

  Poisson's ratio 

  Angular coordinate 

, ,  Principal stress 

   Maximum shear stress averaged over a loading cycle 

max
  Maximum value of   by varying the phase angle and the biaxiality 

ratio 
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321 ,,   First, second and third shear stresses averaged over a loading cycle 

1, 2, 3   Principal shear stresses 

  Auxiliary parameter used in Cardano's formulation 

 

(*) See also: 

 

Marangon, C.; Lazzarin, P.; Berto, F.; Campagnolo, A. Some analytical remarks on the influence 

of phase angle on stress fields ahead of sharp V-notches under tension and torsion loads. 

Theoretical and Applied Fracture Mechanics; 74:64-72 (2014). 

 

3.3.1. Introduction 

3.3.1.1 A brief review of some criteria for multiaxial fatigue loading  

Several criteria have been proposed to assess the behaviour of unnotched or 

bluntly notched components subjected to multiaxial fatigue. It is well known that 

this type of loading condition induces the formation of surface cracks that usually 

nucleate on the plane characterized by the maximum shear.  

After the pioneering works by Ewing and Humfrey [102] and Forsyth [103], many 

criteria take into account stress and strain components acting on the plane 

experiencing the maximum shear. The so called "critical plane approaches" use 

different damage parameters depending on the components of stress/strain thought 

of as critical on the maximum shear plane. Smith, Watson and Topper [104] 

considered the critical plane where the maximum principal strain acts, Brown and 

Miller considered both the shear and the normal strain acting on the critical plane 

[105]. Fatemi and Socie took in consideration the shear strain and the stress acting 

normal to the crack flanks [3]. Fatemi–Socie critical plane parameter [3] in terms 

of uniaxial fatigue properties was also used to correlate constant amplitude fatigue 

data [4]. The critical plane approach has been reviewed and modified by 

Carpinteri et al. [6,106], who correlated the critical plane orientation with the 

weighted mean principal stress directions. Accordingly, the fatigue failure 

assessment is performed considering a nonlinear combination of the maximum 

normal stress and the shear stress amplitude acting on the critical plane. 
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Developments of the Carpinteri-Spagnoli approach have been documented in a 

recent work [7]. 

The effects of multiaxial loading paths on the cyclic deformation behaviour, crack 

initiation and crack path have been investigated by Reis et al. in [107] considering 

plain specimens made of three structural steels (Ck45, medium carbon steel, 

42CrMo4, low alloy steel and the AISI 303 stainless steel). Theoretical 

predictions of the damage plane were performed using some critical plane 

approaches, based on stress analysis or strain analysis (Findley, Smith–Watson–

Topper, Fatemi–Socie, Wang–Brown–Miller, etc). Comparisons of the predicted 

crack orientation based on the critical plane approaches with the experimental 

observations were shown and discussed. Results showed the applicability of the 

critical plane approaches to predict the fatigue life and crack initial orientation in 

structural steels.  

Some energy-based criteria have been also developed to face the problem of 

multiaxial loadings [108–111] on the basis of the strain energy density combined 

with a critical plane. Liu [108], Chu et al. [109], Glinka et al. [110] and Jiang 

[111]. Liu [108] considered two different energy failure modes and the collapse of 

the component was expected on the plane where the maximum virtual strain 

energy was reached. Chu et al. [109] used a similar approach in order to relate the 

work of shear and normal stress and strain components. Glinka et al. [110] 

modified Chu's criterion in order to better consider the effect of the mean stress in 

the case of non-proportional loading. Jiang [111] developed another multiaxial 

fatigue approach based on the cyclic plasticity and the plastic strain energy 

concept. 

A wide review of the main multiaxial fatigue criteria is carried out in Refs [112–

114]. It was shown in [114] that the effect of phase angle on the fatigue strength is 

still an open problem also dealing with plain specimens resulting in a non-

conservative fatigue design rules. 

To evaluate the different sensitivity of the unnotched materials to non-

proportional cyclic loading, the non-proportional cyclic hardening coefficient is 

commonly employed [1,115]. This coefficient depends on the material 

microstructure and hardness level and has been related to uni-axial monotonic and 



3 - Fatigue loadings - Analytical investigation of the phase angle effect 

 

 
196 

 

cyclic deformation properties by means of an empirical relationship. The exact 

determination would require as input data the in-phase equivalent stress amplitude 

and a second parameter from non-proportional tests, the out-of-phase equivalent 

stress amplitude at the same strain amplitude level.  

 

3.3.1.2 Notched components under combined loadings: V-notches and holes 

While these concepts are well consolidated for plain materials, the extension of 

the same concepts to sharp V-notches remains an open problem. In this case an 

additional complication is due to the fact that out-of-phase effect might be 

influenced by the microstructural properties of the material near the notch tip and 

by the shielding effects occurring during the initial crack propagation which are 

different under proportional and non-proportional loading.  

The notch effect has been examined in some recent contributions dealing with 

blunt and sharp notches [28,30,32–34]. Different criteria have been used, which 

involve the strain energy density over a control volume when the notch tip radius 

is very small (0.1 mm), the J2 invariant with stresses and strains at the notch root 

[116] or stress and strains at a given distance from it [117–119].  

In the presence of blunt notches, the Fatemi–Socie critical plane parameter has 

been employed by Gladskyi and Fatemi for the fatigue strength assessment of 

tubular specimens made of a carbon steel, with or without a through thickness 

circular hole, subjected to axial and torsional loads [120].  

Hertel and Vormwald [121] determined the fatigue lives of tubular and round 

shafts with blunt shoulder fillets (notch root radius equal to 1.4 mm) under 

combined tension/compression and torsion. A short crack model originally 

proposed for multiaxial constant amplitude loading is extended and applied to 

multiaxial variable amplitude loading [122]. The comparison between theoretical 

assessment and experimental results reveals that the proposed approach enables 

accurate estimations. 

Shielding effects were accurately analysed by Tanaka et al. [20] who derived an 

elliptic equation for the threshold condition under mixed modes I and III. A novel 

mathematical model of the stresses around the tip of a fatigue crack was 

developed by Christopher et al. [22,23]. The model includes the T-stress and 
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considers the effects of plasticity through an analysis of their shielding effects on 

the applied elastic field. The ability of the CJP model to characterize plasticity-

induced effects of cyclic loading on the elastic stress fields was demonstrated 

using full field photoelasticity. The CJP model can be seen as a modified linear 

elastic approach, to be applied outside the zone where nonlinear effects are 

prevailing. Two logarithmic terms are added to the Williams’ solution and three 

new stress intensity factors KF, KR and KS were proposed to quantify shielding 

effects ahead of the crack tip and on its back. 

Recently Ohkawa I. and Ohkawa C. [123] investigated the notch effect under 

cyclic torsion with and without static tension using circumferentially severely 

notched solid round specimens of austenitic stainless and a low carbon steel. For 

the stainless steel they found that notched specimens had longer life than smooth 

specimens under torsion (with stresses referred to the net transverse area of the 

specimens). Tanaka [124] found independently the same results by investigating 

circumferentially notched bars of austenitic stainless and carbon steels with three 

different notch-tip radii subjected to cyclic torsion with and without static tension. 

The notch-strengthening behavior to delayed crack growth along the notch root 

due to rubbing or sliding contact of serrated factory-roof type crack faces under 

torsion and combined tension and torsion, both in-phase and out-of phase, was 

documented also by Berto et al. in [28] for 39NiCrMo3 steel and in [34] for cast 

iron. 

 

3.3.1.3 Non proportional loadings in sharp V-notches  

One of the more intriguing problems dealing with sharp notches is how to take 

into account the effect of non-proportional loading in the multiaxial fatigue 

strength assessment. The problem is really very complex because the sensitivity to 

the phase angle varies not only as a function of the material but also as a function 

of the notch acuity.  

Dealing with welded joints, for example, it was shown that the out-of-phase 

loading results in a significant decrease of fatigue life of the steel joints [74,125], 

which is well known from investigations also with not welded ductile steels; 

conversely the non-proportional loading renders an indifferent (neutral) behaviour 
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of the welded aluminium connections [126], analogous to the behaviour exhibited 

by semi-ductile un-welded aluminium alloys. 

Being conscious of the just above mentioned problems related to shielding effects, 

which are material dependent and being aware of the update literature dealing 

with non-proportional loadings, the main aim of the present investigation is to 

provide a simple linear elastic analytical frame applied to sharp, zero tip radius, 

V-notches. The proposed frame is based on the local maximum shear stress 

averaged over a single fatigue cycle evaluated at a certain distance from the notch 

tip. The model, which is based on Cardano’s analytical formulation [127], is able 

to take into account not only the effect of the phase angle but also the effect of the 

notch opening angle, the nominal load ratio and the biaxiality ratio. The only 

analogy of the present model with the critical plane approaches is the 

consideration of a shear stress as a critical parameter. On the other hand 

substantial differences exist between the present approach and those based on 

critical planes. The main difference is due to the fact that only sharp notches are 

considered and for this reason the critical point and direction are not known a 

priori. Its determination is based on the maximization of the critical parameter. By 

applying the proposed frame to sharp V-notches under different loading 

configurations some interesting observations can be drawn and a possible 

explanation of the fatigue life reduction in sharply V-notched components due to 

phase angle can be provided. 

 

3.3.2. Analytical frame 

The aim of the present work is to analyze under linear elastic conditions the effect 

of the phase angle on axis-symmetric sharp V-notched components subjected to 

multiaxial loading. A schematic representation of a typical circumferentially V-

notched specimen is shown in Figure 3.3.1. The attention is focused on the role 

played by the notch opening angle, the phase angle and the applied loads on the 

stress field.  

The stress field ahead of the notch tip will be given in the polar coordinate system 

shown in Figure 3.3.1b. The origin is centered at the notch tip. The radial 
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coordinate is r while  is the angle between a particular point and the notch 

bisector line.  

 

 

  

 

Figure 3.3.1. Component weakened by a sharp V-shaped notch subjected to multi-axial loading 

conditions (a). The centre of the polar coordinate system is located at the V-notch tip (b). 

 

As it is well known the presence of a sharp V-notch and the application of a 

multiaxial loading induce a singular state of stress in the vicinity of the notch tip. 

Consider first the stress components linked to the Mode I and Mode II loading 

conditions [71,89]: 
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The out-of-plane stress component z of the stress field can be written by 

assuming plane strain conditions. This engineering approximation is generally 

well aligned with the real stress field near the notch tip in the case of axis-

symmetric components weakened by sharp V-notches: 

  rrzz          (3.3.4) 

In parallel the Mode III loading can be split in two tangential components as a 

function of the corresponding NSIF [90,128]: 
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Parameters 1K , 2K  and 
3K  in Eqs. (3.3.1-3, 3.3.5, 3.3.6) are the Notch Stress 

Intensity Factors (NSIFs) related to Mode I, Mode II and Mode III stress 

distributions respectively,1 and 2 are Williams’ eigenvalues [71], 3 is the 

Mode III eigenvalue [90,128] and, finally, 1 and 2 are auxiliary parameters 

which depend on the notch opening angle [89]. For example, when the V-notch 

opening angle is equal to 90°, the eigenvalues are 1 = 0.5445, 2 = 0.9085 and 3 

= 0.6667  for Mode I, Mode II and Mode III respectively; in parallel, 1 = 1.841 

and 2 = 0.219. 

In order to better describe the behavior of every singular stress component during 

the cyclic loading, the notch stress intensity factors can be re-written in the form: 

nom

λ1

11 SdkK 1 
            (3.3.7)  

nom

λ1

22 SdkK 2 
            (3.3.8) 

nom

λ1

33 TdkK 3 
            (3.3.9) 

Here d is the V-notch depth (10 mm), k1, k2 and k3 are the shape factors, which 

can be obtained by a finite element analysis for a specific geometry. In the 

following, due to the applied loads and the polar symmetry conditions, k2 can be 

set equal to zero. By means of a finite element analysis of the considered 

geometry (Fig. 3.3.1), the values of k1 and k3 resulted to be 5.40 and 5.88, 

respectively. Snom and Tnom are the remote applied tension and torsion stresses 

(Fig. 3.3.1). Separating the stress amplitudes from the mean values, one obtains: 

 
R1

R1
SβsinSS aanom




          (3.3.10) 
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R1
TβsinTT aanom




         

(3.3.11) 

Sa and Ta are the nominal stress amplitude tied to the applied loads,  is the 

machine angle ranging from 0° and 360° to complete one cyclic loading, R is the 

nominal load ratio and  is the phase angle. The ratio between Ta and Sa is the 

biaxiality ratio and it is named  . 

In the following, due to singular stress field, the critical plane of maximum shear 

has not been determined, but the point outside a characteristic core region where 

the maximum shear stress averaged over one cycle of fatigue loading acts. The 

point is located to a given distance from the V-notch tip, thought of as a material’s 

property at the conventional fatigue limit. In the volume-based strain energy 

density approach [27] the radius of the control volume varies from material to 

material and cannot be considered independent on the loading mode 

[29,33,64,129,130]. Here, for the sake of simplicity the distance r will be set equal 

to 0.28 mm, which matches the radius of the control volume used for high cycle 

fatigue assessments of steel welded joints, or 0.028 mm, which matches instead 

the radius typically used for high cycle fatigue assessments of high strength steels. 

By substituting Eqs. (3.3.7-3.3.9) into Eqs. (3.3.1-3.3.6) the trend of each stress 

component in a fatigue cycle can be obtained. The aim now is to find out the 

values of the three principal stresses acting during the cyclic loading and the 

values of the maximum shear stresses at a specific distance from V-notch tip. In 

the following the radial distance from the notch tip will be constant and equal to r 

= 0.28 mm or 0.028 mm, thought of as materials’ characteristic lengths. Also the 

notch opening angle and the load ratio will be constant and equal to 2α = 30, 90 or 

135 degrees and to R = -1 or 0 respectively. Doing so, the stress components 

depend on the machine angle , the polar coordinate  and the phase angle . 

The stress tensor at point P can be written as follows: 
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The secular equation giving the principal stresses is: 

0III 32

2

1

3          (3.3.13) 

where I1, I2 and I3 are the stress invariants: 

zzrr1I            (3.3.14)  
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Following Cardano's formulation [127], suitable for solving a generic cubic 

equation, the principal stresses, i.e. the stress tensor eigenvalues, assume the 

following form: 
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Parameters u and v of Eqs. (3.3.17-3.3.19) are linked to the invariants I1, I2 and I3 

via the auxiliary parameters p and q:  
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where p and q are: 
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         (3.3.23) 

Being the stress tensor  PT  symmetrical (Eq. 3.3.12), due to the algebra’s 

spectral theorem, the principal stresses (Eqs. 3.3.17-3.3.19) are always real. 

Consequently the following condition is always verified: 

0
27

p

4

q 32

             (3.3.24) 

By operating now the following substitutions inside Eqs. (3.3.20, 3.3.21): 

2

q
           (3.3.25) 

27

p

4

q 32

          (3.3.26) 

it is possible to re-write the parameters u and v in the form: 

  3/13/1
wiu           (3.3.27) 

  3/13/1
wiv           (3.3.28) 

By using some well-known properties of complex variables, u and v become: 
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where: 
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22 ξηw            (3.3.31) 
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The final expressions of the principal stresses are: 
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Once known the principal stresses, it is straightforward to obtain the three related 

shear stresses: 
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           (3.3.37) 
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           (3.3.38) 

Kept constant the notch opening angle 2α, the load ratio R  and the distance r from 

the notch tip, the maximum shear stresses depend again on the polar coordinate  

the machine angle  and the phase angle . 

Now it is possible to determine the point, located along a circumferential path at a 

distance r from the notch tip, see Figure 3.3.2, where the integrals in one loading 

cycle of the three different shear stress functions reach their maximum values. As 

soon as the values of the three different integrals are known, the averaged values 
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of the three shear stresses can be calculated for a complete loading cycle. Finally, 

it has to be selected the maximum between the three averaged shear stresses, that 

corresponds to the maximum shear stress averaged on a loading cycle. The three 

averaged values of the shear stresses are obtainable as follows: 
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The maximum value between the three averaged shear stresses is finally called  (

  321 ,,max  ). 

                                    

 

Figure 3.3.2. Definition of the circumferential path used to discover the critical point where the 

maximum averaged shear stress reaches its maximum value. 

 

Once fixed the notch opening angle 2α, the load ratio R and the distance r from 

r =0.028, 0.28 mm 
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the notch tip, the maximum value in each analysis has been compared considering 

different values of the phase angle  and the biaxiality ratio 
a

a

S

T


 

(Eqs 3.3.10, 

3.3.11). This analysis permits to understand if these two variables induce 

significant effects on the averaged shear stress and thus on the strength of a sharp 

V-notched component. 

 

3.3.3. Results and discussions 

In order to provide the value of the maximum shear stress averaged on a 

multiaxial fatigue cycle a dedicated software has been implemented on Wolfram 

Mathematica
®
. This software permits to compute   for different angles  and to 

search the critical angle on which the maximum value of the averaged shear stress 

is reached. The angle  has been varied between 0 and 180-α degrees, being 2α 

the notch opening angle, with incremental steps of 1°.  

All in all, considering all the varied parameters, more than 24000 different 

analyses have been carried out in order to investigate the effect of the phase angle. 

Only the most significant results are reported below. 

Two different distances, r = 0.28 mm and r = 0.028 mm and three different notch 

opening angles, 2α = 30°, 90° and 135°, have been considered. Then two different 

load ratios have been used, R = 0 and R = -1, while the biaxiality ratio has been 

set equal to 1/√3, 0.6, 1, 1.6 and √3 and finally the phase angles taken into account 

were three: 0° (in phase loading), 45°, 90°. 

The behavior of the maximum averaged shear stress along the circumferential 

path matching the increment of  is investigated in Figures 3.3.3-3.3.4. Not all the 

studied cases are shown in the figures because a similar trend has been detected in 

the other cases. 

Figure 3.3.3 shows the behavior of   normalized by the nominal tensile stress in 

the case of a notch opening angle 2α = 90°, a load ratio R equal to -1, a distance r 

= 0.28 mm and a biaxiality ratio equal to 1/√3 for all the different phase angles. 

From the figure it can be seen that the averaged maximum shear stress assumes 

higher values moving from the in phase configuration to the out of phase 
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configuration (90°) for the whole circumferential path. The three curves tend to 

reach the maximum value in a range between 70° and 90° (see Table 3.3.1). This 

means that, according to the present analytical frame, the critical point for a V-

notched specimen subjected to multiaxial loading is far from the notch bisector 

line. However it is worth mentioning that also on the notch bisector line the out of 

phase loading is more damaging.  

 

 

Figure 3.3.3. Behaviour of the averaged maximum tangential stress varying the polar coordinate  

and the phase displacement in the particular case of 2α=90°, =1/√3, R=-1 and r=0.28 mm. 

 

The same diagram is provided also in the case of a load ratio R = 0. From Figure 

3.3.4 it is evident that the results are close to those obtained in the case of R = -1. 

Also for this load ratio the maximum value is reached far from the notch bisector 

line at an inclination ranging from 70 to 90°. 

The same behavior is noticed by varying the notch opening angle 2α, the distance 

r or the biaxiality ratio .  

In Table 3.3.1 all the values of the critical angle,  where the averaged shear 

stress reaches its maximum value are shown in the case of a notch opening angle 

2α = 90° and a distance r=0.28 mm. It can be observed that the critical angle 
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increases reaching the maximum value for = 90° both for R = -1 and for R = 0. 

Moreover, from all the analyses carried out, it is visible that at a fixed phase 

angle, the critical angle decreases when the biaxiality ratio increases (see again 

Table 3.3.1). These observations are also valid for the other values of the notch 

opening angle 2α and the distance r. 

 

Figure 3.3.4. Behaviour of the averaged maximum tangential stress varying the polar coordinate  

and the phase displacement in the particular case of 2α=90°, =1/√3, R=0 and r=0.28 mm. 

 

 

Table 3.3.1. Critical angles  where the averaged maximum tangential stress is reached, in the 

case of 2α = 90° and r = 0.28 mm. 

Load ratio, R Phase angle, ϕ [°] 
Biaxiality ratio,  

1/√3 0.6 1 1.6 √3 

-1 

0 80° 79° 73° 71° 71° 

45 85° 85° 82° 79° 79° 

90 87° 87° 84° 83° 82° 

0 
0 80° 79° 73° 71° 71° 

45 84° 84° 80° 77° 77° 
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90 87° 87° 85° 84° 83° 

Figures 3.3.3-3.3.4 just commented above make it evident the trend of the 

averaged maximum shear stress by varying the polar coordinate . Figures 3.3.5-

3.3.6 can justify that trend (of  ) by investigating the changing of the maximum 

shear stress over a single multiaxial fatigue cycle. The maximum shear stress, 

max, which is the maximum of the three different principal shear stresses, has 

been computed at the critical angle on which   reaches its maximum value. 

Figure 3.3.5 plots max/Snom in the case of a notch opening angle 2α = 90°, a load 

ratio R equal to -1, a distance r = 0.28 mm and a biaxiality ratio equal to 1/√3 

for all the different phase angles. It can be noted that an in phase loading 

condition generates a maximum shear stress ranging between zero and an absolute 

maximum value. By increasing the phase angle from 0° to 90° it can be seen that 

the peak tends to decrease but, at the same time, the minimum assumes a value 

not much far from the maximum one, becoming almost constant in the case of a 

phase angle = 90°. This consideration leads to the conclusion that the mean 

effect just described is more effective by moving the phase angle from 0° to 90°.  
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Figure 3.3.5. Variation of the maximum tangential stress on the critical coordinate  during an 

entire loading cycle for different phase displacements. Case 2α=90°, =1/√3, R=-1 and r=0.28 

mm. 

In the case of a load ratio R equal to 0 (Figure 3.3.6), the maximum normalized 

shear stress for = 0°, ranges, once again, between 0 and an absolute maximum. 

By increasing the phase angle from 0° to 90°, the maximum value decreases and 

the minimum one increases. Unlike the previous case, however, it can be observed 

that the difference between the maximum value and the minimum one remains 

high also increasing the phase angle. Also for this load ratio, the phase angle 

generates a mean effect in terms of the averaged shear stress. This effect could be 

detrimental for the multiaxial fatigue strength of the component.  

 

 

Figure 3.3.6. Variation of the maximum tangential stress on the critical coordinate  during an 

entire loading cycle for different phase displacements. Case 2α=90°, =1/√3, R=0 and r=0.28 mm. 

 

The same trends can be observed also for the other values of the notch opening 

angle 2α, the distance r and the biaxiality ratio. The plots are not reported herein 

for sake of brevity. 

Figures 3.3.7-3.3.11 represent the summary diagrams with the aim of quantifying 

the damaging effect due to the phase angle on a sharply V-notched component 
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subjected to multiaxial fatigue loading, by changing the notch opening angle 2α, 

the load ratio R and the distance from the notch tip r.  

 

Figure 3.3.7. Summary of the phase angle effect for different biaxiality ratios in the case of 

2α=30°, R=-1 and r=0.28 mm. 

 

 

 

Figure 3.3.8. Summary of the phase angle effect for different biaxiality ratios in the case of 

2α=90°, R=-1 and r=0.28 mm. 
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Figure 3.3.9. Summary of the phase angle effect for different biaxiality ratios in the case of 

2α=135°, R=-1 and r=0.28 mm. 

 

 

Figure 3.3.10. Summary of the phase angle effect for different biaxiality ratios in the case of 

2α=90°, R=0 and r=0.28 mm. 
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Figure 3.3.11. Summary of the phase angle effect for different biaxiality ratios in the case of 

2α=90°, R=-1 and r=0.028 mm. 

 

Regarding the dependence on the notch opening angle, Figures 3.3.7-3.3.9 show 

the averaged maximum shear stress normalized by the maximum value computed 

for a fixed biaxiality ratio, in the case of three different notch opening angles, 2α 

= 30°, 90° and 135° respectively, a load ratio R = -1 and a distance r = 0.28 mm 

from the notch tip for all the different biaxiality ratios. It can be seen that for all 

the five considered biaxiality ratios the critical configuration is reached for = 

90°, independently from the notch opening angle. The in phase loading is always 

the less damaging configuration, however it becomes comparable to the case = 

90° when the biaxiality ratio increases. In the cases corresponding to lower values 

of  the in phase loading is about 10, 13 and 16% less damaging with respect to 

the case = 90° for a notch opening angle equal to 2α = 30°, 90° and 135° 

respectively. The difference between in phase and out of phase loading reduces to 

4, 6 and 7% respectively for higher values of the biaxiality ratio.  According to the 

results it can be observed that the effect of the phase angle is weakly dependent on 

the notch opening angle, and this is more true for high values of the biaxiality 

ratio. 

Figure 3.3.10, together with Figure 3.3.8, shows the effect of different load ratios 
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R, in the case of a notch opening angle 2α = 90° and a distance r = 0.28 mm from 

the notch tip for all the different biaxiality ratios. Dealing with a load ratio equal 

to 0, the critical phase angle, as visible from Figure 3.3.10, corresponds to the out 

of phase configuration (= 90°) while the in phase loading is about 15% less 

damaging in the case of low biaxiality ratios. The difference between in phase and 

out of phase loading reduces to 7% for higher values of . Moving from = 0° to 

= 90° the effect of the phase angle becomes less detrimental but not negligible. 

The same trend can be observed for the other values of the notch opening angle 

considered herein. According to the results it can be observed that a variation of 

the load ratio R may induce only a modification of the concavity of the curves that 

slightly modify the normalized values of the averaged maximum shear stress. 

Finally Figure 3.3.11, together with Figure 3.3.8, shows the effect of different 

distances r from the notch tip, in the case of a notch opening angle 2α = 90° and a 

load ratio R = -1 for all the different biaxiality ratios. Also considering a distance 

from the notch tip equal to 0.028 mm the critical phase angle, as visible from 

Figure 3.3.11, corresponds to the out of phase configuration (= 90°) while the in 

phase loading is about 12% less damaging in the case of low biaxiality ratios. The 

difference between in phase and out of phase loading reduces to 8% for higher 

values of . The same trend has been observed for the other notch opening angles 

and load ratios considered herein. A variation of the distance r does not change 

substantially the trend but slightly modify the normalized values of the averaged 

maximum shear stress making the curves less spaced. It can be concluded that the 

effect of the phase angle is weakly sensitive to the material characteristic length. 

 

3.3.4. Some experimental evidences 

Being conscious that the out-of-phase loading is still an open problem in fatigue 

design, and that the proposed analytical frame is only a simplified method 

developed under linear elastic hypotheses, there are some recent experimental 

results which confirm the slight penalizing effect at least for severely notched 

specimens under multiaxial loading [28,32,33]. When the notch becomes blunt 

(see Refs [33]) the effect of out-of-phase is negligible. As explained above this is 
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a general tendency that could be influenced by the mechanical/fatigue properties 

of the tested material, by many non-linear effects which could be important in the 

crack nucleation and propagation under non-proportional loadings and also by the 

material characteristic length or control volume size with respect to the notch 

radius.  

 

 

Figure 3.3.12. In-phase and out-of-phase fatigue data taken from Ref. [21]. The solid and dashed 

lines represent the Wohler curve (linear regression) with Ps = 50% relating to each data series. 

 

Figures 3.3.12 and 3.3.13 report two examples taken from Refs [28] and [33], 

respectively. In Figure 3.3.12 data from 39NiCrMo3 steel under in-phase and out-

of-phase loadings are summarized [28]. The notch tip radius was equal to 0.1 mm. 

In Figure 3.3.13 data from 40CrMoV13.9 notched specimens are summarized 

[33]. The notch tip radius was constant and equal to 1 mm, while the notch 

opening angle was equal to 90°. For both materials the penalizing effect due to 

out-of-phase loading is evident. It is also clear that for the same material the effect 

due to non-proportional loadings is affected by the nominal load ratio as well as 

by the biaxiality ratio () in agreement with the analytical frame proposed 

here. These effects can be also different at low and high cycle fatigue due to the 

influence of the non-linear effects occurring during the tests and not considered in 

the proposed analytical formulation. From Figure 3.3.12 it is evident that the 
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effect of out-of-phase loading is more pronounced for R = 0 than for R = -1. This 

is in agreement with Figures 3.3.8 and 3.3.10 derived by using the analytical 

findings of the present work. 

 

 

Figure 3.3.13. In-phase and out-of-phase fatigue data taken from Ref. [23]. The solid and dashed 

lines represent the Wohler curve (linear regression) with Ps = 50% relating to each data series. 

  

To conclude, it can be also said that the complex fatigue response of metallic 

materials to multiaxial loading paths requires for calibration some information 

which can be obtained only by running the appropriate experiments [114]. 

Unfortunately, because of a lack of both time and resources, very often, structural 

engineers are requested to perform the multiaxial fatigue assessment by guessing 

the necessary fatigue properties. In this complex scenario, initially, the nowadays 

available empirical rules suitable for estimating fatigue strength under both pure 

axial and pure torsional fatigue loading have been reviewed. Under proportional 

loading, the empirical rules reviewed in [114] can confidently be used to perform 

the multiaxial fatigue assessment, this holding true in the presence of both zero 

and non-zero superimposed static stresses. On the contrary, under non-

proportional loading, the use of such rules can result in a non-conservative fatigue 

design. Taking into account all these important considerations, this work is a first 
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trial to face the problem of non-proportional loadings dealing with pointed 

notches which is still a challenging and open problem. 

 

3.3.5. Discussion 

The present work deals with the investigation of the effect of the phase angle on 

sharp V-notched components subjected to multiaxial fatigue loading. The possible 

detrimental influence of the phase angle is often related to the arising of non-

linear effects contemplated in the cyclic plasticity theory, as suggested by many 

papers in the literature.  

Being conscious of the material dependent non-linear effects just mentioned and 

the simplified assumptions of the proposed frame, this work tries to explain the 

phase angle effect only focusing on the linear elastic stress field ahead of a 

pointed notch (i.e. notch radius equal to zero). The parameter considered as 

critical in the present study is the maximum shear stress averaged over an entire 

loading cycle. The analogy of the proposed approach with the critical plane 

approaches is only the consideration of a shear stress as a critical parameter. On 

the other hand substantial differences exist between the present approach and 

those based on critical planes. The main difference is that the present work is 

focused on sharp notches and the critical point is not known a priori being its 

determination based on the maximization of the chosen critical parameter.  

All in all more than 24000 different analyses have been carried out considering 

different notch opening angles, load ratios, biaxiality ratios and phase angles. 

Different distances r have been considered, as well. 

A dedicated software has been implemented in order to compute the averaged 

maximum shear stress on different inclinations with respect to the notch bisector 

line. It has been found that the location on which the averaged parameter reaches 

its maximum value is far from the notch bisector line and it acts at a 

circumferential coordinate ranging between 70° and 90° depending on the loading 

conditions. Considering an entire cycle on the critical angle, the maximum shear 

stress ranges from a value equal to zero to an absolute maximum in the case of in-

phase loading. When the phase angle is different from zero it has been noted that 

the peak values decrease while the valley values increase, resulting in a mean 
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effect more damaging for the component. 

In more detail, it has been shown that in the case of a fully reversed multiaxial 

fatigue loading the most damaging configuration is the 90° out-of-phase loading 

with a decreasing of the fatigue strength between 6 and 13% with respect to the 

in-phase loading, in the case of 2= 90°. The influence of the phase angle is more 

pronounced for lower values of the biaxiality ratio. A similar behavior has been 

observed for a load ratio equal to 0 being, also in this case, the most damaging 

configuration at = 90°. The reduction of the fatigue strength has been estimated 

between 7 and 15%, again for the master case 2= 90°. Also in this case, the 

influence of the phase angle is more pronounced for lower values of the biaxiality 

ratio. 

In addition it has been observed that the effect of the phase angle depends weakly 

on the notch opening angle and on the material characteristic length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 - Fatigue loadings - Analytical investigation of the phase angle effect 

 

 
220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 - Fatigue loadings 

 

 
221 

 

References 

 

[1]  Fatemi A, Shamsaei N. Multiaxial fatigue: An overview and some 

approximation models for life estimation. Int J Fatigue 2011;33:948–58.  

[2]  Nieslony A, Sonsino CM. Comparison of some selected multiaxial fatigue 

assessment criteria. 2008. 

[3]  Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage 

including out-of-phase loading. Fatigue Fract Eng Mater Struct 

1988;11:149–65.  

[4]  Fatemi A, Kurath P. Multiaxial Fatigue Life Predictions Under the 

Influence of Mean-Stresses. J Eng Mater Technol 1988;110:380.  

[5]  Lagoda T, Macha E, Bedkowski W. A critical plane approach based on 

energy concepts: application to biaxial random tension-compression high-

cycle fatigue regime. Int J Fatigue 1999;21:431–43.  

[6]  Carpinteri A, Spagnoli A. Multiaxial high-cycle fatigue criterion for hard 

metals. Int J Fatigue 2001;23:135–45.  

[7]  Carpinteri A, Spagnoli A, Vantadori S, Bagni C. Structural integrity 

assessment of metallic components under multiaxial fatigue: the C-S 

criterion and its evolution. Fatigue Fract Eng Mater Struct 2013;36:870–83.  

[8]  Ye D, Hertel O, Vormwald M. A unified expression of elastic–plastic notch 

stress–strain calculation in bodies subjected to multiaxial cyclic loading. Int 

J Solids Struct 2008;45:6177–89.  

[9]  Cristofori A, Benasciutti D, Tovo R. A stress invariant based spectral 

method to estimate fatigue life under multiaxial random loading. Int J 

Fatigue 2011;33:887–99.  

[10]  Carpinteri A, Spagnoli A, Vantadori S. Reformulation in the frequency 

domain of a critical plane-based multiaxial fatigue criterion. Int J Fatigue 

2014;67:55–61. 

[11]  Jasper TM. The value of the energy relation in the testing of ferrous metals 

at varying ranges of stress and at intermediate and high temperatures. Philos 

Mag Ser 6 1923;46:609–27.  

[12]  Ellyin F. Cyclic strain energy density as a criterion for multiaxial fatigue 

failure. Biaxial an. London: EGF Publication; 1989. 

[13]  Ellyin F. Fatigue damage, crack growth and life prediction. 1997. 

[14]  Macha E, Sonsino CM. Energy criteria of multiaxial fatigue failure. Fatigue 

Fract Eng Mater Struct 1999;22:1053–70. 

[15]  Pook LP, Sharples JK. The mode III fatigue crack growth threshold for 

mild steel. Int J Fract 1979;15:R223–6.  

[16]  Pook LP. The fatigue crack direction and threshold behaviour of mild steel 

under mixed mode I and III loading. Int J Fatigue 1985;7:21–30.  

[17]  Tong J, Yates JR, Brown MW. Some aspects of fatigue thresholds under 



3 - Fatigue loadings 

 

 
222 

 

mode III and mixed mode III and I loadings. Int J Fatigue 1996;18:279–85.  

[18]  Ritchie RO. Mechanisms of fatigue crack propagation in metals, ceramics 

and composites: Role of crack tip shielding. Mater Sci Eng A 1988;103:15–

28.  

[19]  Yu H, Tanaka K, Akiniwa Y. Estimation of torsional fatigue strength of 

medium carbon steel bars with a circumferential crack by the cyclic 

resistance-curve method. Fatigue Fract Eng Mater Struct 1998;21:1067–76.  

[20]  Tanaka K, Akiniwa Y, Yu H. The propagation of a circumferential fatigue 

crack in medium-carbon steel bars under combined torsional and axial 

loadings. In: Mixed-Mode Crack Behaviou. In: Miller K, McDowell D, 

editors. Mix. Crack Behav. ASTM 1359, PA: West Conshohocked; 1999, p. 

295–311. 

[21]  Pippan R, Zelger C, Gach E, Bichler C, Weinhandl H. On the mechanism 

of fatigue crack propagation in ductile metallic materials. Fatigue Fract Eng 

Mater Struct 2011;34:1–16. 

[22]  Christopher CJ, James MN, Patterson EA, Tee KF. Towards a new model 

of crack tip stress fields. Int J Fract 2007;148:361–71.  

[23]  Christopher CJ, James MN, Patterson EA, Tee KF. A quantitative 

evaluation of fatigue crack shielding forces using photoelasticity. Eng Fract 

Mech 2008;75:4190–9.  

[24]  James MN, Christopher CJ, Lu Y, Patterson EA. Local crack plasticity and 

its influences on the global elastic stress field. Int J Fatigue 2013;46:4–15.  

[25]  Lin B, Mear ME, Ravi-Chandar K. Criterion for initiation of cracks under 

mixed-mode I + III loading. Int J Fract 2010;165:175–88.  

[26]  Park J, Nelson D. Evaluation of an energy-based approach and a critical 

plane approach for predicting constant amplitude multiaxial fatigue life. Int 

J Fatigue 2000;22:23–39.  

[27]  Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict 

the static and fatigue behavior of components with sharp V-shaped notches. 

Int J Fract 2001;112:275–98.  

[28]  Berto F, Lazzarin P, Yates JR. Multiaxial fatigue of V-notched steel 

specimens: A non-conventional application of the local energy method. 

Fatigue Fract Eng Mater Struct 2011;34:921–43.  

[29]  Lazzarin P, Sonsino CM, Zambardi R. A notch stress intensity approach to 

assess the multiaxial fatigue strength of welded tube-to-flange joints 

subjected to combined loadings. Fatigue Fract Eng Mater Struct 

2004;27:127–40.  

[30]  Atzori B, Berto F, Lazzarin P, Quaresimin M. Multi-axial fatigue behaviour 

of a severely notched carbon steel. Int J Fatigue 2006;28:485–93.  

[31]  Lazzarin P, Livieri P, Berto F, Zappalorto M. Local strain energy density 

and fatigue strength of welded joints under uniaxial and multiaxial loading. 

Eng Fract Mech 2008;75:1875–89.  



3 - Fatigue loadings 

 

 
223 

 

[32]  Berto F, Lazzarin P. Fatigue strength of structural components under multi-

axial loading in terms of local energy density averaged on a control volume. 

Int J Fatigue 2011;33:1055–65.  

[33]  Berto F, Lazzarin P, Marangon C. Fatigue strength of notched specimens 

made of 40CrMoV13.9 under multiaxial loading. Mater Des 2014;54:57–66.  

[34]  Berto F, Lazzarin P, Tovo R. Multiaxial fatigue strength of severely 

notched cast iron specimens. Int J Fatigue 2014;67:15–27.  

[35]  Lazzarin P, Berto F. Control volumes and strain energy density under small 

and large scale yielding due to tension and torsion loading. Fatigue Fract 

Eng Mater Struct 2008;31:95–107.  

[36]  Morrissey R, McDowell DL, Nicholas T. Frequency and stress ratio effects 

in high cycle fatigue of Ti-6Al-4V. Int J Fatigue 1999;21:679–85.  

[37]  Morrissey R, Nicholas T. Fatigue strength of Ti–6Al–4V at very long lives. 

Int J Fatigue 2005;27:1608–12.  

[38]  Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. The effect of frequency 

on the giga-cycle fatigue properties of a Ti-6Al-4V alloy. Fatigue Fract Eng 

Mater Struct 2008;31:599–605.  

[39]  Haritos G, Nicholas T, Lanning DB. Notch size effects in HCF behavior of 

Ti–6Al–4V. Int J Fatigue 1999;21:643–52. 

[40]  Lanning D, Haritos GK, Nicholas T. Influence of stress state on high cycle 

fatigue of notched Ti-6Al-4V specimens. Int J Fatigue 1999;21:87–95.  

[41]  Lanning D, Haritos GK, Nicholas T, Maxwell DC. Low-cycle fatigue/high-

cycle fatigue interactions in notched Ti-6Al-4V. Fatigue Fract Eng Mater 

Struct 2001;24:565–77.  

[42]  Nicholas T. Step loading for very high cycle fatigue. Fatigue Fract Eng 

Mater Struct 2002;25:861–9.  

[43]  Golden PJ, Nicholas T. The effect of angle on dovetail fretting experiments 

in Ti-6Al-4V. Fatigue Fract Eng Mater Struct 2005;28:1169–75.  

[44]  Benedetti M, Bertini L, Fontanari V. Behaviour of fatigue cracks emanating 

from circular notches in Ti-6Al-4V under bending. Fatigue Fract Eng Mater 

Struct 2004;27:111–25.  

[45]  Benedetti M, Fontanari V. The effect of bi-modal and lamellar 

microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating 

from edge-notches. Fatigue Fract Eng Mater Struct 2004;27:1073–89.  

[46]  Le Biavant K, Pommier S, Prioul C. Local texture and fatigue crack 

initiation in a Ti-6Al-4V titanium alloy. Fatigue Fract Eng Mater Struct 

2002;25:527–45.. 

[47]  Hoshide T, Kakiuchi E, Hirota T. Microstructural effect on low cycle 

fatigue behaviour in Ti-alloys under biaxial loading. Fatigue Fract Eng 

Mater Struct 1997;20:941–50. 

[48]  Nakamura H, Takanashi M, Itoh T, Wu M, Shimizu Y. Fatigue crack 



3 - Fatigue loadings 

 

 
224 

 

initiation and growth behavior of Ti–6Al–4V under non-proportional 

multiaxial loading. Int J Fatigue 2011;33:842–8.  

[49]  Kallmeyer AR, Krgo A, Kurath P. Evaluation of Multiaxial Fatigue Life 

Prediction Methodologies for Ti-6Al-4V. J Eng Mater Technol 

2002;124:229.  

[50]  Marmi AK, Habraken AM, Duchene L. Multiaxial fatigue damage 

modelling at macro scale of Ti–6Al–4V alloy. Int J Fatigue 2009;31:2031–

40. 

[51]  Lemaitre J, Chaboche J-L. Mechanics of solid materials. New ed. 

Cambridge University Press; 1994. 

[52]  Marangon C, Lazzarin P, Berto F, Campagnolo A. Some analytical remarks 

on the influence of phase angle on stress fields ahead of sharp V-notches 

under tension and torsion loads. Theor Appl Fract Mech 2014;74:64–72.  

[53]  Beltrami E. Sulle condizioni di resistenza dei corpi elastici. Il Nuovo 

Cimento 18 (in Italian); 1885. 

[54]  Gross B, Mendelson A. Plane elastostatic analysis of V-notched plates. Int J 

Fract Mech 1972;8:267–76.  

[55]  Lazzarin P, Tovo R. A notch intensity factor approach to the stress analysis 

of welds. Fatigue Fract Eng Mater Struct 1998;21:1089–103.  

[56]  Lazzarin P, Berto F, Zappalorto M. Rapid calculations of notch stress 

intensity factors based on averaged strain energy density from coarse 

meshes: Theoretical bases and applications. Int J Fatigue 2010;32:1559–67.  

[57]  Lazzarin P, Berto F, Gomez F, Zappalorto M. Some advantages derived 

from the use of the strain energy density over a control volume in fatigue 

strength assessments of welded joints. Int J Fatigue 2008;30:1345–57.  

[58]  Campagnolo A, Berto F, Lazzarin P. The effects of different boundary 

conditions on three-dimensional cracked discs under anti-plane loading. Eur 

J Mech - A/Solids 2015;50:76–86.  

[59]  Radaj D. Design and Analysis of Fatigue Resistant Welded Structures. 

Cambridge: Abington Publishing; 1990. 

[60]  Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue 

in welded joints. Int J Fatigue 2002;24:509–18.  

[61]  Yakubovskii V V., Valteris IJI. Geometrical parameters of butt and fillet 

welds and their influence on the welded joints fatigue life. 1989. 

[62]  Dunn ML, Suwito W, Cunningham S. Fracture initiation at sharp notches: 

Correlation using critical stress intensities. Int J Solids Struct 

1997;34:3873–83.  

[63]  Jiang Y, Feng M. Modeling of Fatigue Crack Propagation. J Eng Mater 

Technol 2004;126:77.  

[64]  Berto F, Lazzarin P. Recent developments in brittle and quasi-brittle failure 

assessment of engineering materials by means of local approaches. Mater 



3 - Fatigue loadings 

 

 
225 

 

Sci Eng R Reports 2014;75:1–48.  

[65]  Ferro P. The local strain energy density approach applied to pre-stressed 

components subjected to cyclic load. Fatigue Fract Eng Mater Struct 

2014;37:1268–80.  

[66]  Radaj D. State-of-the-art review on extended stress intensity factor 

concepts. Fatigue Fract Eng Mater Struct 2014;37:1–28.  

[67]  Radaj D. State-of-the-art review on the local strain energy density concept 

and its relation to the J -integral and peak stress method. Fatigue Fract Eng 

Mater Struct 2015;38:2–28.  

[68]  Lassen T. The effect of the welding process on the fatigue crack growth. 

Weld Res Suppl 1990;69:75S – 81S. 

[69]  Singh PJ, Achar DRG, Guha B, Nordberg H. Fatigue life prediction of gas 

tungsten arc welded AISI 304L cruciform joints with different LOP sizes. 

Int J Fatigue 2003;25:1–7. 

[70]  Singh PJ, Guha B, Achar DR. Fatigue life improvement of AISI 304L 

cruciform welded joints by cryogenic treatment. Eng Fail Anal 2003;10:1–

12.  

[71]  Williams ML. Stress singularities resulting from various boundary 

conditions in angular corners of plates in tension. J Appl Mech 

1952;19:526–8. 

[72]  Livieri P, Lazzarin P. Fatigue strength of steel and aluminium welded joints 

based on generalised stress intensity factors and local strain energy values. 

Int J Fract 2005;133:247–76.  

[73]  Sheppard SD. Field Effects in Fatigue Crack Initiation: Long Life Fatigue 

Strength. J Mech Des 1991;113:188.  

[74]  Sonsino C. Multiaxial fatigue of welded joints under in-phase and out-of-

phase local strains and stresses. Int J Fatigue 1995;17:55–70.  

[75]  Neuber H. Zur Theorie der technischen Formzahl. Forsch Ing Wes 

1936;7:271–4. 

[76]  Neuber H. Theory of Notch Stresses. Berlin: Springer-Verlag; 1958. 

[77]  Peterson RE. Notch sensitivity. New York (USA): Metal fatigue, McGraw 

Hill; 1959. 

[78]  Tanaka K. Engineering formulae for fatigue strength reduction due to 

crack-like notches. Int J Fract 1983;22:R39–46. 

[79]  Lazzarin P, Tovo R, Meneghetti G. Fatigue crack initiation and propagation 

phases near notches in metals with low notch sensitivity. Int J Fatigue 

1997;19:647–57.  

[80]  Taylor D. Geometrical effects in fatigue: a unifying theoretical model. Int J 

Fatigue 1999;21:413–20. 

[81]  Susmel L, Taylor D. Fatigue design in the presence of stress concentrations. 

J Strain Anal Eng Des 2003;38:443–52.  



3 - Fatigue loadings 

 

 
226 

 

[82]  Crupi G, Crupi V, Guglielmino E, Taylor D. Fatigue assessment of welded 

joints using critical distance and other methods. Eng Fail Anal 

2005;12:129–42.  

[83]  Susmel L. The theory of critical distances: a review of its applications in 

fatigue. Eng Fract Mech 2008;75:1706–24.  

[84]  Susmel L. Modified Wöhler curve method, theory of critical distances and 

Eurocode 3: A novel engineering procedure to predict the lifetime of steel 

welded joints subjected to both uniaxial and multiaxial fatigue loading. Int J 

Fatigue 2008;30:888–907.  

[85]  Susmel L. The Modified Wöhler Curve Method calibrated by using 

standard fatigue curves and applied in conjunction with the Theory of 

Critical Distances to estimate fatigue lifetime of aluminium weldments. Int J 

Fatigue 2009;31:197–212.  

[86] Rulmeca Bulk Catalogue 2015. 

http://www.rulmeca.it/en/products_bulk/catalogue/1/trasporto_a_nastro/1/ro

llers. 

[87]  Hasebe N, Kutanda Y. Calculation of stress intensity factor from stress 

concentration factor. Eng Fract Mech 1978;10:215–21. 

[88]  Zappalorto M, Lazzarin P, Yates JR. Elastic stress distributions for 

hyperbolic and parabolic notches in round shafts under torsion and uniform 

antiplane shear loadings. Int J Solids Struct 2008;45:4879–901.  

[89]  Lazzarin P, Tovo R. A unified approach to the evaluation of linear elastic 

stress fields in the neighborhood of cracks and notches. Int J Fract 

1996;78:3–19. 

[90]  Qian J, Hasebe N. Property of eigenvalues and eigenfunctions for an 

interface V-notch in antiplane elasticity. Eng Fract Mech 1997;56:729–34.  

[91]  Berto F, Campagnolo A, Lazzarin P. Fatigue strength of severely notched 

specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract Eng 

Mater Struct 2015;38:503–17. 

[92]  Seweryn A, Poskrobko Sł, Mróz Z. Brittle Fracture in Plane Elements with 

Sharp Notches under Mixed-Mode Loading. J Eng Mech 1997;123:535–43.  

[93]  Kihara S, Yoshii A. A strength evaluation method of a sharply notched 

structure by a new parameter, “the equivalent stress intensity factor”. JSME 

Int J 1991;34:70–5. 

[94]  Atzori B, Dattoma V. A comparison of the fatigue behaviour of welded 

joints in steels and in aluminium alloys. IIW Doc XXXIII-1089-1983 1983. 

[95]  Haibach E. Service Fatigue-Strength – Methods and data for structural 

analysis. Berlin: Springer Verlag; 2002. 

[96]  Meneghetti G, Campagnolo A, Berto F, Atzori B. Averaged strain energy 

density evaluated rapidly from the singular peak stresses by FEM: cracked 

components under mixed-mode (I+II) loading. Theor Appl Fract Mech 

2015;79:113–24. 



3 - Fatigue loadings 

 

 
227 

 

[97]  He Z, Kotousov A, Berto F. Effect of vertex singularities on stress 

intensities near plate free surfaces. Fatigue Fract Eng Mater Struct 2015:n/a 

– n/a.  

[98]  Pook LP. A 50 year retrospective review of three-dimensional effects at 

cracks and sharp notches. Fatigue Fract Eng Mater Struct 2013;36:699–723.  

[99]  Pook LP, Berto F, Campagnolo A, Lazzarin P. Coupled fracture mode of a 

cracked disc under anti-plane loading. Eng Fract Mech 2014;128:22–36.  

[100]  Marangon C, Campagnolo A, Berto F. Three-dimensional effects at the tip 

of rounded notches subjected to mode-I loading under cyclic plasticity. J 

Strain Anal Eng Des 2015;50:299–313.  

[101]  Grabner K, Grimmer KJ, Kessler F. Research into normal-forces between 

belt and idlers at critical locations on the belt conveyor track. Bulk Solids 

Handl 1993;13:727–34. 

[102]  Ewing JA, Humfrey JCW. The Fracture of Metals under Repeated 

Alternations of Stress. Philos Trans R Soc A Math Phys Eng Sci 

1903;200:241–50.  

[103]  Forsyth P. A two stage process of fatigue crack growth. Crack Propag. 

Symp. - Cranf. Coll. Aeronaut., 1961, p. 76–94. 

[104]  Smith R, Watson P, Topper T. A stress–strain function for the fatigue of 

metal. J Mater 1970;5:767–78. 

[105]  Brown M, Miller K. A theory for fatigue under multiaxial stress–strain 

conditions. Proc Inst Mech Eng 1973;187:745–56. 

[106]  Carpinteri A, Spagnoli A, Vantadori S. Multiaxial fatigue assessment using 

a simplified critical plane-based criterion. Int J Fatigue 2011;33:969–76.  

[107]  Reis L, Li B, de Freitas M. Crack initiation and growth path under 

multiaxial fatigue loading in structural steels. Int J Fatigue 2009;31:1660–8.  

[108]  Liu K. A Method Based on Virtual Strain-Energy Parameters for Multiaxial 

Fatigue Life Prediction. Adv. Multiaxial Fatigue, ASTM STP 1191, 100 

Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: 

ASTM International; 1993, p. 67–84.  

[109]  Chu C-C. Fatigue Damage Calculation Using the Critical Plane Approach. J 

Eng Mater Technol 1995;117:41.  

[110]  Glinka G, Wang G, Plumtree A. Mean stress effects in multiaxial fatigue. 

Fatigue Fract Eng Mater Struct 2007;18:755–64.  

[111]  Jiang Y. A fatigue criterion for general multiaxial loading. Fatigue Fract 

Eng Mater Struct 2000;23:19–32.. 

[112]  Gladskyi M, Fatemi A. Load sequence effects on fatigue crack growth in 

notched tubular specimens subjected to axial and torsion loadings. Theor 

Appl Fract Mech 2014;69:63–70.  

[113]  Socie D, Marquis G. Multiaxial fatigue. Warrendale (PA): Society of 

Automotive Engineers; 2000. 



3 - Fatigue loadings 

 

 
228 

 

[114]  Susmel L. On the estimation of the material fatigue properties required to 

perform the multiaxial fatigue assessment. Fatigue Fract Eng Mater Struct 

2013;36:565–85.  

[115]  Shamsaei N, Fatemi A. Effect of microstructure and hardness on non-

proportional cyclic hardening coefficient and predictions. Mater Sci Eng A 

2010;527:3015–24.  

[116]  Capetta S, Tovo R, Taylor D, Livieri P. Numerical evaluation of fatigue 

strength on mechanical notched components under multiaxial loadings. Int J 

Fatigue 2011;33:661–71.  

[117]  Susmel L. Multiaxial notch fatigue. Cambridge: Woodhead publishing; 

2009. 

[118]  Susmel L, Taylor D. A critical distance/plane method to estimate finite life 

of notched components under variable amplitude uniaxial/multiaxial fatigue 

loading. Int J Fatigue 2012;38:7–24.  

[119]  Susmel L. Estimating fatigue lifetime of steel weldments locally damaged 

by variable amplitude multiaxial stress fields. Int J Fatigue 2010;32:1057–

80.  

[120]  Gladskyi M, Fatemi A. Notched fatigue behavior including load sequence 

effects under axial and torsional loadings. Int J Fatigue 2013;55:43–53.  

[121]  Hertel O, Vormwald M. Short-crack-growth-based fatigue assessment of 

notched components under multiaxial variable amplitude loading. Eng Fract 

Mech 2011;78:1614–27. 

[122]  Doring R, Hoffmeyer J, Seeger T, Vormwald M. Short fatigue crack 

growth under nonproportional multiaxial elastic–plastic strains. Int J Fatigue 

2006;28:972–82.  

[123]  Ohkawa C, Ohkawa I. Notch effect on torsional fatigue of austenitic 

stainless steel: Comparison with low carbon steel. Eng Fract Mech 

2011;78:1577–89.  

[124]  Tanaka K. Crack initiation and propagation in torsional fatigue of 

circumferentially notched steel bars. Int J Fatigue 2014;58:114–25.  

[125]  Sonsino CM, Kueppers M. Multiaxial fatigue of welded joints under 

constant and variable amplitude loadings. Fatigue Fract Eng Mater Struct 

2001;24:309–27.  

[126]  SONSINO C. Multiaxial fatigue assessment of welded joints – 

Recommendations for design codes. Int J Fatigue 2009;31:173–87.  

[127]  Cardano G. Artis magnae sive de regulis algebraicis, liber unus. Translated. 

Nuremberg: 1545. 

[128]  Seweryn A, Molski K. Elastic stress singularities and corresponding 

generalized stress intensity factors for angular corners under various 

boundary conditions. Eng Fract Mech 1996;55:529–56.  

[129]  Berto F, Lazzarin P. A review of the volume-based strain energy density 

approach applied to V-notches and welded structures. Theor Appl Fract 



3 - Fatigue loadings 

 

 
229 

 

Mech 2009;52:183–94. 

[130]  Lazzarin P, Berto F, Atzori B. A synthesis of data from steel spot welded 

joints of reduced thickness by means of local SED. Theor Appl Fract Mech 

2013;63-64:32–9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 - Fatigue loadings 

 

 
230 

 

 



 

 

 

 

 

 

 

CHAPTER 4 

 

 

 

THREE-DIMENSIONAL EFFECTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 - Three-dimensional effects – Cracked discs and plates 

 

 
233 

 

4.1 Three-dimensional effects on cracked components
 (*) 

 

 

Nomenclature 

a crack length 

h control volume height 

K  stress intensity factor, subscripts I, II, III denote mode, superscript c 

indicates a coupled mode 

K stress intensity measure 

p a given constant 

R0 control volume radius 

r radius of K-dominated region 

r, θ polar coordinates 

r, θ,  spherical coordinates 

s distance from surface 

t thickness 

U displacement subscripts x, y, z denote direction 

x, y, z Cartesian coordinates 

 

Symbols 

β crack surface intersection angle 

γ crack front intersection angle 

λ parameter defining stress intensity measure 

ν Poisson’s ratio 

ρ profile tip radius 

σ stress, subscripts x, y, z denote direction 

τ shear stress, subscripts xy, yz, xz denote direction 

 

(*) See also: 

 

Pook, L. P.; Campagnolo, A.; Berto, F. Coupled fracture modes of discs and plates under anti-plane 

loading and a disc under in-plane shear loading. Fatigue and Fracture of Engineering Materials and 

Structures (In press); 
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4.1.1. Introduction 

Displacements are of fundamental importance in the understanding of the 

mechanics of materials in general [1–5]. In fracture mechanics the interest is in 

what happens in the vicinity of the crack tip, so it is sometimes referred to as 

crack tip surface displacement [1]. Notation used is shown in Figure 4.1.1. If a 

load is applied to a cracked body, then the crack surfaces move relative to each 

other. For points on opposing crack surfaces that were initially in contact there are 

three possible modes of crack surface displacement (mode I, mode II, mode III). 

By superimposing the three modes, it is possible to describe the most general case 

of crack tip surface displacement. 

 

Figure 4.1.1. Notation for crack tip stress field. 

 

If a crack surface is considered as consisting of points then the three modes of 

crack surface displacement provide an adequate description of the movements of 

crack surfaces when a load is applied. However, if the surface is regarded as 

consisting of infinitesimal elements, then element rotations must also be 

described, and Volterra distorsioni (distortions) are appropriate [6,7]. The crack 
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surfaces may be moved relative to each other in 6 different ways, so there are 6 

distinct Volterra distorsioni. These are summarised in Table 4.1.1. Elements A 

and B are on opposite surfaces of a crack and are connected by a ring element 

around the crack tip (Figure 4.1.2). Modes I, II and III Volterra dislocations 

correspond to modes I, II and III crack tip surface displacements. The three 

Volterra disclinations are relative crack surface rotations. 

 

 

Figure 4.1.2. Ring element around crack tip. 

 

Table 4.1.1. Volterra distorsioni. 

 

Volterra distorsione Relative motion of elements A and B 

Mode I dislocation 

Mode II dislocation 

Mode III dislocation 

Mode I disclination 

Mode II disclination 

Mode III disclination 

Along y axis 

Along x axis 

Along z axis 

Rotation about y axis 

Rotation about x axis 

Rotation about z axis 

 

Crack tip surface displacements in the vicinity of a corner point in which a crack 

front intersects a surface are often of practical interest. Assuming that Poisson’s 

ratio, v > 0, for the special case in which the crack surface intersection angle, γ 

(Figure 4.1.3) and the crack front intersection angle, β (Figure 4.1.4) are both 90 

 

element B 

element A 
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then kinematics considerations for an antisymmetric loading [8–11] show that 

modes II and III crack tip surface displacements cannot exist in isolation [12,13]. 

Mode II induces mode III
c
 and mode III induces mode II

c
. These induced modes 

are sometimes called coupled modes, indicated by the superscript c. 

 

Figure 4.1.3. Definition of crack surface intersection angle, γ. 

 

Figure 4.1.4. Definition of crack front intersection angle, β. 

 

Within the framework of linear elastic fracture mechanics [1] the stress field in the 

vicinity of a crack tip is dominated by the leading term of a series expansion of 

the stress field [14]. This leading term is the stress intensity factor, K. A particular 

type of elastic crack tip stress field is associated with each mode of crack tip 

  

Free surface 

Crack front 

 

Intersection angle 
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surface displacement [15] and subscripts I, II and III are used to denote mode. 

Individual stress components are proportional to rK /  where r is the distance 

from the crack tip (Figure 4.1.1). Displacements are proportional to rK . A 

stress intensity factor provides a reasonable description of the crack tip stress field 

in a K–dominated region at the crack tip, radius r  a/10 where a is crack length, 

[1] as shown in Figure 4.1.5. 

 

Figure 4.1.5. K-dominated  region and core region at a crack tip. 

 

Simplifying assumptions have become conventional in much present day linear 

elastic fracture mechanics, for example see Reference 2, and these are satisfactory 

for many purposes. The material is assumed to be a homogeneous isotropic 

continuum, and its behaviour is assumed to be linearly elastic. Crack surfaces are 

assumed to be smooth, although on a microscopic scale they are generally very 

irregular. Modifications are made to basic linear elastic fracture mechanics theory 

to allow for the actual behaviour of real materials. In considering practical aspects 

of linear elastic fracture mechanics, scales of observation need to be taken into 

account since the scale chosen can make a considerable difference to the 

appearance of an object [16]. Scales of observation for metallic materials [6,17,18] 

 

Crack length a 
Core region 

radius << r 

K-dominated region 

radius r 
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are summarised in Table 4.1.2. The three largest are usually described as 

macroscopic, and the smaller scales as microscopic. 

 

Table 4.1.2. Scales of observation for metallic materials. 

 

Scale (mm) Feature 

10
-6

 

10
-5

 

10
-4

 

10
-3

 

10
-2

 

10
-1

 

1 

10 

Ions, electron cloud 

Dislocations 

Subgrain boundary precipitates 

Subgrain slip bands 

Grains, inclusions, voids 

Large plastic strains 

Stress intensity factor 

Component, test piece 

 

 

An apparent objection to the use of the stress intensity factor approach is the 

violation, in the immediate vicinity of the crack tip, of the initial linear elastic 

assumptions, in that strains and distortions are not small. However, as the 

assumptions are violated only in a small core region the general character of the 

K-dominated region is, to a reasonable approximation, unaffected. Similarly, by 

this small scale argument, small scale non-linear effects due to crack tip yielding, 

microstructural irregularities, internal stresses, irregularities in the crack surface, 

the actual fracture process, etc, may be regarded as within the core region. The 

idea of a core region within a K-dominated region was first used by Irwin in his 

analysis of crack tip plasticity [19]. The idea is the basis of the successful 

application of stress intensity factors to a wide range of practical engineering 

problems. 

The existence of three-dimensional effects at cracks has been known for many 

years [4–6], but understanding has been limited, and for some situations still is. 

Understanding improved when the existence of corner point singularities [20] and 

their implications became known [21]. Despite increased understanding, three-

dimensional effects are sometimes ignored in situations where they may be 
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important. Discussion here is restricted to cases in which the crack surface 

intersection angle,   (Figure 4.1.3) and the crack front intersection angle  (Figure 

4.1.4) are both 90. 

In three dimensional geometries, the derivation of stress intensity factors makes 

the implicit assumption that a crack front is continuous. This is not the case in the 

vicinity of a corner point, and the nature of the crack tip singularity changes. The 

resulting corner point singularities were described in detail in 1979 by Bažant and 

Estenssoro [20]. Some additional results were given by Benthem in 1980 [22]. For 

corner point singularities, the polar coordinates in Figure 4.1.1 are replaced by 

spherical coordinates (r, , ) with origin at the corner point. The angle  is 

measured from the crack front. 

 

 

Figure 4.1.6. K-dominated region, corner point singularity dominated region and 

core region at a surface plane. 

 

There do not appear to be any exact analytic solutions for corner point 

singularities. In their analysis Bažant and Estenssoro [20] assumed that all three 

modes of crack tip surface displacement are of the form r
λ
ρ

p
F(θ, ), where ρ is 

distance from the crack tip, and p is a given constant. They then calculated λ 

 

Crack length a 
Core region at 

crack tip 

K-dominated 

region  

 

Corner point 

singularity 

dominated region  
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numerically for a range of situations: λ is a function of Poisson’s ratio, υ. For the 

antisymmetric mode, λ = 0.598 for υ = 0.3. Benthem [22] made an equivalent 

assumption but used a different numerical method to calculate . The stress 

intensity measure, K, may be used to characterise corner point singularities, where 

 can be regarded as a parameter defining the corner point singularity. However, 

expressions for numerical values of K, and associated stress and displacement 

fields, do not appear to be available. It follows from the initial assumption that 

stresses are proportional to K/r

 and displacements to Kr

1 – 
, where r is measured 

from the corner point. Hence, stress and displacement plots are straight lines when 

plotted using logarithmic scales, and such plots obtained from finite element 

analysis can be used to determine values of λ. At the present state of the art the 

extent of a corner point singularity dominated region has to be determined 

numerically. However, it is usually small and at a surface plane can often be 

regarded as lying within a K-dominated region, as shown in Figure 4.1.6 [23]. 

When  =0.5 stress intensity factors are recovered. 

At a corner point stresses are a singularity. They must be either infinite or zero,  

is indeterminate, and it is reasonable to speak of stress intensity factors in an 

asymptotic sense [4,5]. In the limit, as a crack front is approached, displacement 

fields must be those of a stress intensity factor [22]. Hence, there is an 

infinitesimal K-dominated region within the core region of a corner point 

singularity. The stress intensity factors are proportional to s
0.5 - λ

 where s is 

distance from the surface along the z axis [22]. Hence, for the antisymmetric 

mode KII and KIII both tend to infinity as a corner point is approached. Further, as 

a corner point the ratio KIII/KII tends to a limiting value which is a function of v. 

For v = 0.3 the limiting ratio is 0.5 [22]. Benthem points out that KII and KIII lose 

their meaning at a corner point [22]. Dhondt suggests that modes II
c
 and III

c
 might 

not be singular [24]. The predicted tendency to infinity is reasonable for KII since 

relevant stresses are in plane and disclinations are zero [4,5]. From a linear elastic 

viewpoint the predicted tendency of KIII to infinity cannot be correct [6]. At a 

surface shear stresses perpendicular to the surface are zero, which implies that KIII 

tends to zero as the surface is approached. Mode III is a torsion problem [15]. 

Under mode III (anti-plane) loading initially plane cross sections, including the 
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surface at a corner point, do not remain plane under load [6,7] and disclinations 

appear. It is well known that serious error can arise if warping of non circular 

cross sections under torsion is not taken into account in stress analyses [3]. 

Warping of the surface under mode III means that τyz at the surface does not have 

to be zero, and finite values of KIII are possible. The implication is that the non 

linearities cannot be regarded as being in a core region within a corner point 

singularity dominated region and that Bažant and Estenssoro’s prediction that KIII 

tends to infinity as a corner point is correct. The alternative view, which is 

supported by a large body of evidence [6], is that apparent values of KIII decrease 

towards the surface in the z direction. This implies that KIII tends to zero as a 

corner point is approached, which is intuitively correct. It also implies that non 

linearities can be regarded as being within a core region, but does not explain why 

Bažant and Estenssoro’s analysis does not give the correct limit. Nevertheless, 

this alternative view may well be adequate when considering practical 

implications. This paradox needs to be resolved so that the results of finite 

element analysis can be interpreted correctly. 

The nature of finite element analysis means that stress intensity factors have to be 

calculated indirectly, and possible methods have been described by Hellen [25]. 

Finite element analysis of three dimensional configurations started in the late 

1980 and confirmed the existence of coupled modes. However, results for KIII 

were erratic: sometimes KIII appeared to tend to infinity as a corner point was 

approached and sometimes appeared to tend to zero. For some time these erratic 

results were ascribed to the use of meshes that were too coarse [26]. Resolution of 

the paradox of the value of KIII at a corner point reduces to determining the correct 

method of proceeding to the limit as the corner point is approached. 

There does not appear to have been a systematic investigation of the extent to 

which Bažant and Estenssoro’s initial assumption is justified. Their assumption 

does appear to be satisfactory for the symmetric mode (mode I) in that their 

analysis leads to useful results [6].  

Due to the uncertainties in the definition of the stress intensity factors on the free 

surfaces, as stated above, the strain energy averaged in a control volume (SED) 

[27] has been employed in the present investigation to quantify the stress intensity 
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through the thickness of the plate. For a review of  the SED the reader can refer to 

[28,29]. This parameter has been successfully used by Lazzarin and co-authors to 

assess the fracture strength of a large bulk of materials, characterized by different 

control volumes, subjected to wide combinations of static loading [30–32] and the 

fatigue strength of welded joints [33] and notched components [34,35]. As 

described in [29] an intrinsic advantage of the SED approach is that it permits 

automatically to take into account higher order terms and three-dimensional 

effects. The parameter is easy to calculate in comparison with other well-defined 

and suitable 3D parameters [36,37] and can be directly obtained by using coarse 

meshes [29,38]. Another advantage of the SED is that it is possible to easily 

understand whether the through-the-thickness effects are important or not in the 

fracture assessment for a specific material characterized by a control volume 

depending on the material properties. Some brittle materials are characterized by 

very small values of the control radius and are very sensitive to stress gradients 

also in a small volume of material [29]. On the other hand more ductile materials 

have the capability of stress averaging in a larger volume and for this reason are 

less sensitive to the variations of the stress field through the thickness of the plate. 

The SED, once the control volume is properly modeled through the thickness of 

the plate, is able to quantify the 3D effects in comparison with the sensitivity of the 

specific material so providing precious information for the fracture assessment. 

Although only the crack case is considered here the SED could be easily applied 

also to V-notches.  

 

4.1.2. Finite element modelling 

4.1.2.1. Cracked discs under nominal Mode III loading 

Stresses, stress intensity factors and displacements are examined in detail for 100 

mm diameter discs of various thicknesses under anti-plane (nominal mode III) 

loading [4]. One half of the disc geometry used is shown in Figure 4.1.7a. The disc 

radius, r, is 50 mm, and the thickness is t. A through thickness crack has its tip at 

the centre of the disc, so its length, a, is 50 mm. Calculations are carried out using 

ANSYS 11 for t/a = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75 and 3. One 
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quarter of the disc is modelled. An overall view of the finite element mesh is 

shown in Figure 4.1.8a. Details of the mesh at the outer surface and crack tip are 

shown in Figures 4.1.8b and 4.1.8c. The crack tip element size in a radial direction, 

and the thicknesses of surface layers of elements are shown in Table 4.1.3.  

The scale of the crack tip elements is of the same order as subgrain slip bands 

(Table 4.1.1), and the scale of surface layer thicknesses is of the same order as 

grains, inclusions and voids. Poisson’s ratio is taken as 0.3 and Young’s modulus 

as 200 GPa. Displacements corresponding to KIII = 1 MPam
0.5

 (31.62 N·mm
0.5

) 

are applied to the cylindrical surface. These boundary conditions mean that the disc 

is a core region within a virtual K-dominated region. Stress intensity factors are 

calculated from stresses on the crack surface near the crack tip using standard 

equations [1,15]. The strain energy density is calculated from a control volume at 

the crack tip. 

 

4.1.2.2. Cracked plates under nominal Mode III loading 

In the present calculations, stresses, stress intensity factors and displacements are 

examined in detail for 100 mm square plates of various thicknesses under anti-

plane (nominal mode III) loading [5]. One half of the plate geometry used is shown 

in Figure 4.1.7b. The thickness is t. A through thickness crack has its tip at the 

centre of the plate, so its length, a, is 50 mm. Calculations are carried out using 

ANSYS 11 for t/a = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75 and 3. 

Poisson’s ratio is taken as 0.3 and Young’s modulus as 200 GPa. A displacement 

of 10
-3

 mm is applied to the edge of the plate. Stress intensity factors are calculated 

from stresses on the crack surface near the crack tip using standard equations 

[1,15]. The strain energy density is calculated from a control volume at the crack 

tip. One quarter of the plate is modelled. An overall view of the finite element 

mesh is shown in Figure 4.1.8a. Details of the mesh at the outer surface and crack 

tip are shown in Figures 4.1.8b and 4.1.8c. The crack tip element size in a radial 

direction, and the thicknesses of surface layers of elements are shown in Table 

4.1.3. The scale of the crack tip elements is of the same order as subgrain slip 

bands (Table 4.1.1), and the scale of surface layer thicknesses is of the same order 

as grains, inclusions and voids.  
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Figure 4.1.7. (a) Disc and (b) plate geometry. 
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4.1.2.3. Cracked discs under nominal Mode II loading 

Stresses, stress intensity factors and displacements were examined in detail also for 

100 mm diameter discs of various thicknesses under nominal mode II loading, 

Figure 4.1.7a and 4.1.8. In plane displacements were applied on the cylindrical 

surface, corresponding to a nominal mode II stress intensity factor KII = 1 

MPam
0.5

 (31.62 MPa·mm
0.5

). With these conditions the disc represents a core 

region completely dominated by the leading terms linked to the stress intensity 

factors. 

 

Table 4.1.3. Element sizes. 

 

t/a Crack tip element size 

in radial direction 

(mm) 

Surface layer thickness 

(mm) 

0.25 10
-3

 1.11 · 10
-2

 

0.50 10
-3

 1.46 · 10
-2

 

0.75 10
-3

 1.75 · 10
-2

 

1.00 10
-3

 1.94 · 10
-2

 

1.25 10
-3

 2.15 · 10
-2

 

1.50 10
-3

 2.29 · 10
-2

 

1.75 10
-3

 2.47 · 10
-2

 

2.00 10
-3

 2.59 · 10
-2

 

2.25 10
-3

 2.74 · 10
-2

 

2.50 10
-3

 2.82 · 10
-2

 

2.75 10
-3

 2.93 ·  10
-2

 

3.00 10
-3

 3.03 ·  10
-2

 

 

 



4 - Three-dimensional effects – Cracked discs and plates  
 

 
246 
 

 
 

Figure 4.1.8. (a) Overall view of finite element mesh. (b) Detail of finite element mesh at outer 

surface. (c) Detail of finite element mesh at crack tip. 

 

4.1.3. Results 

4.1.3.1. Cracked discs under nominal Mode III loading 

Crack surface stresses, τyz and τxy were extracted from the finite element results at 

distances, s, from the disc surfaces of 0 mm, 0.25 mm, 1 mm and 2 mm. Results 

for t/a = 1, plotted on logarithmic scales, are shown in Figures 4.1.9-4.1.12. 

Results for other values of t/a are generally similar, but with some differences in 

detail. When the plot is a straight line its slope is -λ. Values of λ taken from straight 

line plots are shown in Tables 4.1.4 and 4.1.5. Where no value is shown the plot 

could not be regarded as a straight line. 

(a) 

(b) (c) 
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For s = 0.25 mm, 1 mm and 2 mm λ calculated from τxy is close to the theoretical 

value of 0.5 for a stress intensity factor singularity. Hence, realistic values of KII 

can be calculated. For s = 0 mm λ is close to 0.5 for t/a = 0.25, and a realistic value 

of KII can be calculated. However, λ increases with t/a to a maximum of 0.559 at 

t/a = 2.25, and then decreases slightly. The values of λ are all significantly less 

than the theoretical value of 0.598 for a corner point singularity. For t/a > 0.25 

realistic values of KII cannot be calculated. 

Realistic values of KIII can be calculated from τyz for s = 1 mm and 2 mm. For s = 

0.25 mm there is a straight line portion, parallel to the τxy plot, extending up a 

distance x = 0.004 mm from the crack tip. This suggests that realistic values of KIII 

can only be calculated for x < 0.004 mm, which is within the microscopic range. In 

other words there is a K-dominated region, radius  4 mm within the core region of 

the corner point singularity. The results for s = 0 show that τyz is slightly lower 

than τxy for small x, and decreases as x increases. The corresponding stress 

intensity factor plot (Figure 4.1.13) shows that the apparent value of KIII is a strong 

function of x. Realistic values of KIII cannot be calculated. The presence of 

apparent values of KIII is due to finite values of τyz. These appear because of the 

appearance of mode I disclinations, which are rotations about the y axis. 

Differentiating the expression for Uz gives the amount of this rotation which 

increases towards the crack tip, with a concomitant increase in τyz at a surface. This 

accounts qualitatively for the observed distributions of τyz at a surface. 

Through thickness distributions of KII and KIII for t/a = 0.25, 0.5, 1 2 and 3 are 

shown in Figures 4.1.14-4.1.18. From Tables 4.1.4 and 4.1.5 the values of KII are 

not realistic for s < 0.25 mm and the values of KIII are not realistic for s < 1 mm. 

Maximum values of KIII are at the centreline. For t/a > 1 these correspond to KIII 

for the applied displacements. The influence of plate bending means that maxima 

steadily decrease as t/a decreases. Maximum values of KIII tend to zero as t/a tends 

to zero. This is to be expected because KIII is not possible in two dimensions. For 

the thicker discs KIII is nearly constant for s > 50 mm, and then decreases steadily 

towards the surface, with an abrupt drop close to the surface. However, this is 

within the region where calculated KIII values are not realistic. For thinner discs 
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behaviour is similar except that there is no constant KIII region. Hence, there is 

clear evidence of an end effect. 

Plate bending theory [10] suggests that KII should be zero on the centre line, with a 

linear increase towards a surface. For the thicker discs KII is essentially zero for s > 

40 mm. This shows that there is no significant plate bending effect, and is further 

evidence of an end effect, although its size does not quite match that deduced from 

the KIII values. The influence of plate bending increases as t/a decreases, and for 

t/a = 0.25 the distribution of KII is nearly linear with a greater increase towards the 

surface (Figure 4.1.14). Intermediate values of t/a show intermediate behaviour 

(Figures 4.1.15-4.1.17). Maximum values of KII are at the surface (Figure 4.1.13). 

This is within the region where calculated KII values are not realistic so caution is 

needed in the interpretation of results. 

The effect of plate bending means that a mixed mode loading is being applied. 

Hence, at a surface, both KIII and KII are to be expected, even before coupled 

modes are considered in which KII
c
 is induced by KIII and vice versa. At the present 

state of the art it is impossible to separate the coupled modes from the applied 

modes. 

The through thickness distributions of displacements in the z direction, Uz, for x = 

0.3 mm are shown in Figure 4.1.19. Values of KIII calculated from displacements at 

disc centre lines coincide with those calculated from stresses. The plots are on 

logarithmic scales, and for s up to about 4 mm they are of similar shape. The 

increasing effect of plate bending for t/a < 1 is to shift the curves downwards 

without significant change of shape. The curves all show clear minima at s  1.5 

mm. This is evidence that the change in the nature of the singularity from a stress 

intensity factor singularity to a corner point singularity is a boundary layer effect. 

The only available characteristic dimension is the crack length, a. A standard 

equation shows that KIII is proportional to Uz so corresponding KIII plots would 

have corresponding minima. These do not appear in KIII plots calculated using τyz. 

This is confirmation that KIII values for s < 2 mm are not realistic. The form of the 

curves suggests that a curve is the sum of two different distributions, one 

corresponding to a stress intensity factor singularity, and the other to a corner point 

singularity. 
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Figure 4.1.9. Stresses τyz and τxy on crack surface at s = 0 mm from disc surface, t/a =1. 

 

 

 

Figure 4.1.10. Stresses τyz and τxy on crack surface at s = 0.25 mm from disc surface, t/a =1. 
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Figure 4.1.11. Stresses τyz and τxy on crack surface at s = 1 mm from disc surface, t/a =1. 

 

 

 

Figure 4.1.12. Stresses τyz and τxy on crack surface at s = 2 mm from disc surface, t/a =1. 
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Figure 4.1.13. KII and KIII at s = 0 mm from disc surface, t/a =1. 

 

 

 

Figure 4.1.14. Through thickness distribution of KII and KIII for t/a = 0.25, x = 0.05 mm. 
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Figure 4.1.15. Through thickness distribution of KII and KIII for t/a = 0.5, x = 0.05 mm. 

 

 

 

Figure 4.1.16. Through thickness distribution of KII and KIII for t/a = 1, x = 0.05 mm. 
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Figure 4.1.17. Through thickness distribution of KII and KIII for t/a = 2, x = 0.05 mm. 

 

 

 

Figure 4.1.18. Through thickness distribution of KII and KIII for t/a = 3, x = 0.05 mm. 
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Figure 4.1.19. Through thickness distribution of Uz for x = 0.3 mm. 

 

 

4.1.3.2. Cracked plates under nominal Mode III loading 

Crack surface stresses, τyz and τxy were extracted from the finite element results at 

distances, s, from the plate surfaces of 0 mm, 0.25 mm, 1 mm and 2 mm. Results 

for t/a = 1, plotted on logarithmic scales, are shown in Figures 4.1.20-4.1.23. 

Results for other values of t/a are generally similar, but with some differences in 

detail. When the plot is a straight line its slope is -λ. Values of λ taken from straight 

line plots are shown in Tables 4.1.4 and 4.1.5. Where no value is shown the plot 

could not be regarded as a straight line. 

Results are generally similar to those obtained for the discs. For s = 0.25 mm, 1 

mm and 2 mm λ calculated from τxy is close to the theoretical value of 0.5 for a 

stress intensity factor singularity. Hence, realistic values of KII can be calculated. 

For s = 0 λ has a maximum for t/a = 0.25, and decreases as t/a increases. The 

values of λ are all significantly less than the theoretical value of 0.598 for a corner 

point singularity. Realistic values of KII can probably be calculated for t/a > 2. The 
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results are in contrast to the disc results where λ increases as t/a increases. Realistic 

values of KIII can be calculated from τyz for s = 1 mm and 2 mm. 

The results for s = 0 (Figure 4.1.20) show that τyz is slightly lower than τxy for 

small x, and decreases as x increases. The corresponding stress intensity factor plot 

(Figure 4.1.24) shows that the apparent value of KIII is a strong function of x. 

Realistic values of KIII cannot be calculated. The presence of apparent values of 

KIII is due to finite values of τyz. These appear because of the appearance of mode I 

disclinations, which are rotations about the y axis. Differentiating the expression 

for Uz gives the amount of this rotation which increases towards the crack tip, with 

a concomitant increase in τyz at a surface. This accounts qualitatively for the 

observed distributions of τyz at a surface. 

Through thickness distributions of KII and KIII for t/a = 0.25, 0.5, 1, 2 and 3 are 

shown in Figures 4.1.25-4.1.29. From Tables 4.1.4 and 4.1.5 the values of KII are 

not realistic for s < 0.25 mm and the values of KIII are not realistic for s < 1 mm.  

The distributions of KIII are significantly different from those for disc results. There 

are maxima at the centre line but KIII then remains nearly constant for about half 

the distance to the plate surface. The influence of plate bending again means that 

maxima steadily decrease as t/a decreases. As a surface is approached KIII first 

decreases slightly then increases to a maximum at about 0.15 mm from the surface. 

There is then an abrupt drop which is within the region where realistic values of 

KIII cannot be calculated. 

Plate bending theory [10] suggests that KII should be zero on the centre line, with a 

linear increase towards a surface. For t/a = 0.25 KII does indeed increase linearly 

for much of the thickness with a greater increase as the surface is approached. This 

is within the region where realistic values of KII cannot be calculated. The extent of 

the linear portion, in terms of plate thickness, decreases as t/a increases but is still 

present when t/a = 3. This is in contrast with the disc results where linear portions 

are less extensive and KII becomes essentially zero for s > 40 mm. Maximum 

values of KII are at the surface. This is within the region where calculated KII 

values are not realistic so caution is needed in the interpretation of results. 

The effect of plate bending means that a mixed mode loading is being applied. 

Hence, at a surface, both KIII and KII are to be expected, even before coupled 
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modes are considered in which KII
c
 is induced by KIII and vice versa. At the present 

state of the art it is impossible to separate the coupled modes from the applied 

modes. 

The through thickness distributions of displacements in the z direction, Uz, for x = 

-0.3 mm are shown in Figure 4.1.30. The plots are on logarithmic scales, and they 

are of similar shape. Unlike the disc results there are no pronounced minima 

indicating the change in the nature of the singularity from a stress intensity factor 

singularity to a corner point singularity. 

 

 

 

Figure 4.1.20. Stresses τyz and τxy on crack surface at s = 0 mm from plate surface, t/a =1. 
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Figure 4.1.21. Stresses τyz and τxy on crack surface at s = 0.25 mm from plate surface, t/a =1. 

 

 

Figure 4.1.22. Stresses τyz and τxy on crack surface at s = 1 mm from plate surface, t/a =1. 
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Figure 4.1.23. Stresses τyz and τxy on crack surface at s = 2 mm from plate surface, t/a =1. 

 

 

 

Figure 4.1.24. KII and KIII at s = 0 mm from plate surface, t/a =1. 
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Figure 4.1.25. Through thickness distribution of KII and KIII for t/a = 0.25, x = 0.05 mm. 

 

 

 

Figure 4.1.26. Through thickness distribution of KII and KIII for t/a = 0.50, x = 0.05 mm. 
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Figure 4.1.27. Through thickness distribution of KII and KIII for t/a = 1, x = 0.05 mm. 

 

 

 

Figure 4.1.28. Through thickness distribution of KII and KIII for t/a = 2, x = 0.05 mm. 
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Figure 4.1.29. Through thickness distribution of KII and KIII for t/a = 3, x = 0.05 mm. 

 

 

 

Figure 4.1.30. Through the thickness distribution of Uz for x = -0.3 mm. 
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Table 4.1.4. Values of λ for τxy, s is the distance from the surface in the z direction. 

 

t/a s = 0 mm s = 0.25 mm s = 1 mm 

 disc plate disc plate disc plate 

0.25 0.505 0.538 0.497 0.498 0.497 0.497 

0.50 0.520 0.527 0.497 0.498 0.497 0.497 

0.75 0.530 0.523 0.497 0.498 0.497 0.497 

1.00 0.538 0.520 0.497 0.498 0.497 0.497 

1.25 0.544 0.517 0.497 0.498 0.497 0.497 

1.50 0.549 0.515 0.497 0.498 0.497 0.497 

1.75 0.553 0.513 0.497 0.498 0.497 0.497 

2.00 0.556 0.512 0.497 0.498 0.497 0.497 

2.25 0.559 0.510 0.497 0.498 0.497 0.497 

2.50 0.542 0.510 0.497 0.498 0.497 0.497 

2.75 0.545 0.509 0.497 0.498 0.497 0.497 

3.00 0.547 0.508 0.497 0.498 0.497 0.497 

 

 
Table 4.1.5. Values of λ for τyz, s is the distance from the surface in the z direction. 

 

t/a s = 0 mm s = 0.25 mm s = 1 mm 

 disc plate disc plate disc plate 

0.25 - - - - 0.508 0.507 

0.50 - - - - 0.506 0.506 

0.75 - - - - 0.507 0.506 

1.00 - - - - 0.507 0.506 

1.25 - - - - 0.506 0.506 

1.50 - - - - 0.506 0.506 

1.75 - - - - 0.506 0.506 

2.00 - - - - 0.506 0.506 

2.25 - - - - 0.507 0.506 

2.50 - - - - 0.506 0.505 

2.75 - - - - 0.506 0.506 

3.00 - - - - 0.507 0.506 
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4.1.3.3. Cracked discs under nominal Mode II loading 

Stresses τyz and τxy on the crack surface at s = 0 mm from the disc surface are 

shown in Figure 4.1.31. These are similar to the stress distributions for nominal 

mode III loading, shown in Figure 4.1.9. The value of λ calculated from τxy, i.e. 

0.541, is virtually the same as for nominal mode III loading. 

Stresses τyz and τxy on the crack surface at s = 1 mm from the disc surface are 

shown in Figure 4.1.32. These are similar to the stress distributions for nominal 

mode III loading, shown in Figure 4.1.11. Values of λ, calculated from τxy and τyz, 

are 0.499 and 0.506, in excellent agreement with the nominal mode III results. 

Similarly, stresses τyz and τxy on the crack surface at s = 2 mm from the disc 

surface, shown in Figure 4.1.33, are similar to the stress distributions for nominal 

mode III loading, shown in Figure 4.1.12. Values of λ are in excellent agreement. 

 

 

 

 

Figure 4.1.31. Stresses τyz and τxy on crack surface at s = 0 mm from disc surface, t/a =1. 
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Figure 4.1.32. Stresses τyz and τxy on crack surface at s = 1 mm from disc surface, t/a =1. 

 

 

 

Figure 4.1.33. Stresses τyz and τxy on crack surface at s = 2 mm from disc surface, t/a =1. 

y = 13.76 x-0.499 

y = 4.98 x-0.506 

1

10

100

1000

0.000 0.001 0.010 0.100 1.000

τ y
z,

 τ
x
y,

 [
M

P
a]

 

Distance from the crack tip, [mm] 

XY

YZ

Poisson's ratio ν = 0.3 

 

t/a = 1.00 

 

Applied KII = 1 MPa · m0.5 

xy 

 

yz 

y = 13.37 x-0.498 

y = 4.30 x-0.502 

1

10

100

1000

0.0001 0.0010 0.0100 0.1000 1.0000

τ y
z,

 τ
x
y,

 [
M

P
a]

 

Distance from the crack tip, [mm] 

XY

YZ

Poisson's ratio ν = 0.3 

 

t/a = 1.00 

 

Applied KII = 1 MPa · m0.5 

xy 

 

yz 



4 - Three-dimensional effects – Cracked discs and plates 

 

 
265 

 

 

 

Figure 4.1.34. KII and KIII at s = 0 mm from disc surface, t/a =1. 

 

 

 

Figure 4.1.35. Through-thickness distribution of KII and KIII for disc with t/a = 1, x = 0.05 mm. 
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Figure 4.1.34 shows that distributions of KII and KIII at s = 0 mm from the disc 

surface are similar to those for nominal mode III loading, shown in Figure 4.1.13. 

However, through the thickness distribution of KII and KIII, shown in Figure 4.1.35, 

differ from those for nominal mode III loading, shown in Figure 4.1.16. This 

difference is because the use of nominal mode II loading has eliminated disc 

bending. 

 

4.1.4. Discussion 

It is possible to base a linear elastic analysis of the stress field at a corner point on 

the following four ideas [4,5]. First, the corner point stress field can be expanded 

as a series in which the leading term is the stress intensity measure, K, which is a 

singularity that dominates the stress field in the vicinity of the corner point. Higher 

order terms are non singular. This is not a new idea. The effect of the second term 

is discussed briefly by Glushkov et al [39]. Second, corner point stress fields are of 

two types corresponding to symmetric and antisymmetric modes of crack tip 

surface displacement. Third, there is a core region within a K-dominated region in 

which non linearities can be neglected. In the present analysis elements at the 

corner point are small enough to be regarded as being within the core region. 

Fourth, the overall stress field for a crack tip which terminates in corner points is 

the sum of stress fields defined by stress intensity factors and stress intensity 

measures. Similarly, displacement fields are the sum of displacement fields defined 

by stress intensity factors and stress intensity measures. Use of these ideas means 

that previous difficulties in interpretation of results [6] can be avoided. 

There has been a lot of discussion on whether KIII tends to zero or infinity as a 

corner point is approached [4,5]. When apparent KIII values are calculated from 

stresses at a constant distance from the crack tip then KIII appears to tend to zero as 

the model surface is approached (Figures 4.1.14-4.1.18, 4.1.25-4.1.29 and 4.1.35), 

in accordance with the linear elastic prediction. However, apparent values of KIII at 

the surface increase strongly as the distance from the crack tip at which they are 

calculated decreases (Figures 4.1.13, 4.1.24 and 4.1.34). These results can be 

interpreted as indicating that KIII tends to infinity at a corner point in accordance 

with Bažant and Estenssoro’s prediction. The results in Figures 4.1.14-4.1.18, 
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4.1.25-4.1.29 and 4.1.35 also show that KII does appear to tend to infinity as the 

surface is approached, in accordance with Bažant and Estenssoro’s prediction. The 

discussion is futile because, as pointed out by Benthem [22], KIII is meaningless at 

a corner point and there is no paradox.  

For s ≥ 0.2 mm λ calculated from τxy is close to the theoretical value of 0.5 for a 

stress intensity factor singularity so KII provides a reasonable description of the 

crack tip stress field. Similarly, KIII provides a reasonable description of the crack 

tip stress field for s ≥ 1 mm. At the surface values of λ obtained from τxy are always 

less than the theoretical value for a corner point singularity. The distribution of τyz 

at the surface (Figures 4.1.13, 4.1.24 and 4.1.34) cannot be accounted for on the 

basis of Bažant and Estenssoro’s analysis. There is clear evidence of a boundary 

layer effect whose extent is independent of the thickness. The only available 

characteristic dimension controlling the boundary layer thickness is the crack 

length, a.  

Non linearities occur in the region close to the corner point for the following 

reasons. Under an anti-plane loading the distribution of mode III dislocations (Uz) 

at the intersection of the crack surface and model surface is approximately 

parabolic. Differentiating the distribution of Uz gives the distribution of mode I 

disclinations at the model surface: these are rotations about the y axis. The amount 

of rotation increases as the crack tip is approached. The limiting value is 90 at the 

crack tip. The shear stresses perpendicular to the rotated surface must be zero, but 

finite values of τyz appear, which means that finite values of apparent KIII appear. 

The distribution of finite values of τyz is the reason why apparent values of KIII 

increase as the distance from the crack tip at which they are calculated is reduced.  

Despite the very small elements in the vicinity of a corner point the present results 

do not confirm the existence of a corner point singularity dominated region within 

a K-dominated region. It appears that a new field parameter, probably a 

singularity, is needed to describe the stresses at the disc surfaces. The situation in 

the vicinity of the surface is clearly more complicated than predicted by Bažant 

and Estenssoro’s analysis of corner point singularities. A possible alternative 

approach would be to take higher order terms need to be taken into account, in 

addition to the corner point singularity. It has to be concluded that, while Bažant 
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and Estenssoro’s analysis works well for the symmetric mode (mode I) it is 

incomplete for the asymmetric mode (a combination of modes II and III). This 

unexpected finding suggested that further analysis was needed. Accordingly, the 

strain energy density was calculated for a control volume at the crack tip as 

described in the next section. 

 

4.1.5. Strain energy density through the thickness 

The intensity of the local stress and strain state through the plate thickness can be 

easily evaluated by using the strain energy density (SED) averaged over a control 

volume embracing the crack tip (see Ref. [28,29] for a review of the SED 

approach). The main advantage with respect to the local stress-based parameters is 

that it does not need very refined meshes in the close neighbourhood of the stress 

singularity [38]. In fact, contrary to some stress parameters integrated in the local 

criteria (e.g. maximum principal stress, hydrostatic stress, deviatoric stress), 

which are mesh-dependent, the SED averaged over a control volume is insensitive 

to the mesh refinement. The averaged SED can be accurately evaluated also by 

means of coarse meshes [38] because it directly depends on nodal displacements. 

As soon as the average SED is known, the notch stress intensity factors (NSIFs) 

quantifying the asymptotic stress distributions can be calculated a posteriori on 

the basis of very simple expressions linking the local SED and the relevant NSIFs. 

Furthermore the SED has been considered as a parameter able to control fracture 

and fatigue in some previous contributions [31–35] and can easily take into 

account also coupled three-dimensional effects [4,5].  

With the aim to provide some numerical assessment of the contribution of the 

three-dimensional effects, specifically the coupled fracture mode, KII, the local 

energy density through the thickness is evaluated and discussed in this section. 

Figures 4.1.36-4.1.38 show the local SED variation across the plate averaged over 

a cylindrical volume having radius R0 and height h, with h about equal to R0. In 

Refs [28–35] R0 was thought of as a material property which varies under static 

and fatigue loading but here, for the sake of simplicity, R0 and h are simply set 

equal to 1.0 mm, only to quantify the three-dimensional effects through the disc 

thickness.  
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4.1.5.1. Cracked discs under nominal Mode III loading 

The influence of the applied mode III loading combined with the induced singular 

mode II loading is shown in Figure 4.1.36. It is evident that the position of the 

maximum SED changes from case to case. It is close to the lateral surface (where 

the maximum intensity of the mode II takes place) for the two cases t/a=0.5 and 

1.0. For larger thicknesses, corresponding to the cases t/a=2 and 3, the maximum 

value of the SED is at the mid-plane and its value is about 1.5 times the value at 

the lateral surface. The SED reaches a minimum under the free surface, due to the 

opposite trend exhibited by mode II and mode III. The change in the nature of the 

singularity just shown in Figure 4.1.19 is another possible reason of the minimum 

condition, at least for the cases with t/a ≥2. 

 

 

 

Figure 4.1.36. Through the thickness SED distribution for t/a = 0.50, 1, 2, 3. Control radius R0 = 

1.00 mm. 
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4.1.5.2. Cracked plates under nominal Mode III loading 

The influence of the applied mode III loading combined with the induced singular 

mode II loading is shown in Figure 4.1.37. It is evident that the position of the 

maximum SED is the same in all cases. It is close to the lateral surface, where the 

maximum intensity of the coupled mode II takes place, both for thin plates, 

t/a=0.5 and 1.0, and for thick ones, t/a=2 and 3. In fact, as can be seen from 

Figures 4.1.25-4.1.29 for the plate results the maximum contribution of the 

coupled mode II, at the lateral surface, is significantly higher (about 4 times) 

compared to the maximum contribution of the applied mode III, at the mid plane. 

For the disc results indeed the ratio between the maximum values of KII and KIII 

was lower (about 2) as can be seen from Figures 4.1.14-4.1.18, so that the 

maximum contributions were not significantly different and the position of the 

maximum SED results to be a function of disc thickness.  

 

 

 

Figure 4.1.37. Through the thickness SED distribution for t/a = 0.50, 1, 2, 3. Control radius R0 = 

1.00 mm. 
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4.1.5.3. Cracked discs under nominal Mode II loading 

Finally, Figure 4.1.38, compared with Figure 4.1.36, shows that through the 

thickness SED distributions, for t/a = 0.50, 1, 2 and 3, have been altered by the 

elimination of disc bending. 

The results show that the change of loading mode from nominal mode III to 

nominal mode II has had no effect on the distributions of τyz and τxy on and near the 

crack surface, but has significantly changed the through thickness distributions of 

KII, KIII and SED. 

 

 

 

Figure 4.1.38. Through-the-thickness SED distribution for t/a = 0.50, 1, 2, 3. Control radius R0 = 

1.00 mm. 
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discs under a different type of anti-plane loading. In particular, it is confirmed that 

mode III does induce coupled mode II
c
. 

The influence of plate bending is increasingly important as plate thickness 

decreases. The anti-plane loading used is a nominal mode III loading. For thin 

plate it is a mixed modes III and II loading, in which mode III induces mode II
c
 

and vice versa. At the present state of the art it is not possible to separate the 

coupled modes from the applied modes. 

Bažant and Estenssoro’s analysis works well for the symmetric mode (mode I), but 

it is incomplete for the asymmetric mode (a combination of modes II and III). 

Discussion on whether KIII tends to zero or infinity as a corner point is approached 

is futile because, as pointed out by Benthem, KIII is meaningless at a corner point. 

Despite the very small elements in the vicinity of a corner point the present results 

do not confirm the existence of a corner point singularity dominated region within 

a K-dominated region. It appears that a new field parameter, probably a singularity, 

is needed to describe the stresses at the disc surfaces. 

Calculation of the strain energy density (SED) in a control volume at the crack tip 

shows that the position of the maximum SED is independent of plate thickness, 

contrary to disc results. Both for thin plates and for thick ones the maximum SED 

is close to the lateral surface, where the maximum intensity of the coupled mode II 

takes place.  

SED is promising as a means of characterizing the crack tip stress field under anti-

plane loading, but the use of a control volume radius smaller than that adopted in 

the present work (1 mm) would be preferable. 

Under the anti-plane loading used theoretical understanding of the stress field in 

the vicinity of a corner point is still incomplete. 
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4.2 Three-dimensional effects on cracked components: 

influence of boundary conditions 
 (*)

 

 

Nomenclature 

2α  notch opening angle 

E Young’s modulus 

G shear modulus 

K  stress intensity factor, subscripts I, II, III denote mode, subscript F-F 

indicates free-free, while F-C denotes free-clamped  

R0  control volume radius, subscripts I, II, III denote mode, subscript F-

F indicates free-free, while F-C denotes free-clamped  

r   disc radius  

r, θ, z cylindrical coordinates 

s distance from surface 

u displacement, subscripts x, y, z denote direction 

x, y, z Cartesian coordinates 

Wc material critical strain energy density 

  Averaged Strain Energy Density (SED) 

 

Symbols 

3  Mode III eigenvalue under free-clamped boundary condition 

λ3 Mode III eigenvalue under free-free boundary condition 

ν Poisson’s ratio 

σ stress, subscripts x, y, z or r, θ, z denote normal stresses 

 subscripts xy, yz, xz or rθ, θz, rz denote shear stresses 

c shear strength of the material 

 

 

(*) See also: 

 

Campagnolo, A.; Berto, F.; Lazzarin, P. The effects of different boundary conditions on three-

dimensional cracked discs under anti-plane loading. European Journal of Mechanics - A/Solids; 

50:76-86 (2015); 

W
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4.2.1. Introduction 

Microscopic effects may play a significant role on the macroscopic behavior of 

materials as recently highlighted by Tang and Wei [40]. This is particularly true 

for micro electro mechanical systems [41,42] and not only under mechanical 

loading but also when the component is subjected to heat fluxes [43]. It is 

therefore pertinent to have a model that can couple the microscopic effects to 

those at the macroscopic scale. Examined, in particular, are the inhomogeneities at 

the microscale arising from uneven stiffness of the material microstructures which 

can vary the constraints on the micro-crack. These inhomogeneities are simulated 

by the free–free, fixed–fixed and free–fixed boundary conditions  [44–46]. 

Dealing with the material microstructure an analytical multi-scale model has 

recently been developed by Tang and Sih [44]. Physically, the different orders of 

the stress singularities are related to the different constraints associated with the 

defect thought as a micro V-notch at the tip of the main crack. Irregularities of the 

material microstructure tend to torture the crack tip being the free-clamped 

boundary conditions the more realistic for a general representation of what occurs 

on the micro V-notch [44]. The approach by Tang and Sih [44] allows to 

overcome under linear elastic properties the problem tied to plasticity by 

considering different eigenvalues at different material scales. A multiscale 

damage model valid for anti-plane loading has been proposed by using the 

singularity representation method derived for plates under in-plane extension 

[44,45]. Different orders and strengths of singularity are uniquely associated with 

the boundary conditions, loadings and geometries of the defects under 

consideration. The stress and strain fields in the proximity of V-notch placed at 

the main crack tip are very complex. Some experimental and theoretical studies 

have been recently carried out on the fracture behavior of V-notches making clear 

the interest on this topic among the scientific community [47–51]. The degree of 

complexity usually arises if the complete three-dimensional elastic problem is 

investigated. For this reason it is of interest to study the behavior of a V-notch 

under a nominal anti-plane shear loading and the induced modes automatically 

generated near the notch tip due to different boundary conditions in a three-

dimensional component. The problem of coupled modes generated by a primary 
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nominal applied mode has been extensively studied mainly dealing with cracks 

[10,11,52–55] but also with pointed and sharply radiused V-notches 

[7,12,13,21,56,57]. In those references it was shown that at a corner point Mode II 

and Mode III cannot exist in isolation. If one of these modes is applied then the 

other is always automatically induced. Moreover, if the free-clamped boundary 

conditions are applied to the edges of the notch, Mode I and II are always coupled 

each other also in a plane problem [44,45,58]. Their intensities are influenced by 

the shape of the notch and by the externally applied loads [44]. As explained 

above in three-dimensional pointed notches with free-clamped edges under 

nominal anti-plane shear loading all the Modes are locally present [44,46]. The 

degree of singularity of the different Modes is strongly influenced by the 

boundary conditions applied on the notch edges. Take for example the crack case 

that is generally characterized by a degree of singularity equal to 0.5 regardless of 

the loading mode according to Linear Elastic Fracture Mechanics. When the crack 

edges are characterized by free-clamped conditions different singularities can 

arise, depending on the considered loading Mode. This generates an odd 

dimensionality between the Stress Intensity Factors which are not directly 

comparable. Moreover there are some uncertainties in the definition of the stress 

intensity factors on the free surfaces, due to the corner point singularity generated 

by the intersection of the crack with the free surfaces of the model [4–6,22,24]. 

At the light of these considerations the present work is twofold. First some 

analytical expressions of the strain energy density (SED) averaged over a control 

volume embracing the V-notch tip with a generic opening angle 2 are derived in 

the case of Mode III loading, as a function of different boundary conditions on the 

notch edges. In particular free-free and free-clamped conditions are considered 

here combining the expressions of SED derived here for Mode III loading with 

those for coupled Modes obtained by extending to the specific case some 

previously derived expressions [27]. 

In the second part of the paragraph the specific case of three-dimensional cracked 

discs characterized by different thicknesses is investigated numerically. Free-free 

and free-clamped boundary conditions are applied to the FE models. The complex 

stress field is accurately investigated and the SED through the thickness of the 
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disc obtained by numerical analyses is compared with the theoretical trend 

derived by using the developed analytical frame. Due to the uncertainties in the 

definition of the stress intensity factors on the free surfaces, mentioned above, and 

the odd dimensionality of the SIFs due to the applied boundary conditions the 

strain energy averaged in a control volume (SED) is employed in the present 

investigation to quantify the stress intensity through the thickness of the disc. For 

a review of the SED the reader can refer to a recent paper [29]. This parameter has 

been successfully used by Lazzarin and co-authors to assess the fracture strength 

of a large bulk materials, characterized by different control volumes, subjected to 

wide combinations of static loading [27,29,31,32] and the fatigue strength of 

welded joints [33,59,60] and notched components [34,35,61]. As shown by 

Lazzarin et al. [62,38] an intrinsic advantage of the SED approach is that it 

permits automatically to take into account higher order terms and it is easy to 

calculate by using coarse meshes.  

In the present work a careful comparison is carried out between free-free and free-

clamped constraint conditions along the edges of the notch. Although the only aim 

of this work is to investigate the crack case, as visible from the developed 

analytical frame, the SED can be easily applied also to point V-notches and a 

direct comparison can be directly drawn between the crack case and the V-notch 

cases. This will be the subject of future works.  

 

4.2.2. Analytical framework: stress and displacement fields under Mode III 

This section summarises the analytical frame giving the expressions of the 

singular stress and displacement fields in the proximity of the V-notch tip. A 

Mode III loading condition is treated, by varying the boundary conditions of the 

notch edges. An isotropic and homogeneous material under linear elastic 

conditions is taken into account.  
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Figure 4.2.1. Cylindrical reference system for stress field. 

 

4.2.2.1 Free-Free  

In the presence of a sharp V-notch with stress free surfaces, named the free-free 

condition hereafter, the stress distributions due to anti-plane loading (Mode III) 

are [45,63,64]: 
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where G is the shear modulus, E the Young’s modulus and ν the Poisson’s ratio. 

The stress and displacement fields are given in a cylindrical coordinate system 

centered at the notch tip (Fig. 4.2.1); r is the radial coordinate,   is the angle 

measured from the notch bisector line and z is the out-of-plane coordinate.  

The parameter K3,F-F represents the Mode III Notch Stress Intensity Factor (NSIF), 

thought of as the natural extension of the Mode I and Mode II NSIFs first defined 

by Gross and Mendelson [65]. The degree of stress singularity depends on the 

Mode III eigenvalue λ3, which varies as a function of the notch opening angle 2α 

[45,66]. Under the free-free boundary condition, λ3 is the lowest real eigenvalue of 

the following eigen-equation: 

0cos 3                 with                





2
3        (4.2.3) 

where γ = π - α. 

 

4.2.2.2 Free-Clamped 

In the presence of a sharp V-notch with one edge free and the other fixed from 

moving, named the  free-clamped condition hereafter, the stress distributions due 

to an anti-plane loading (Mode III) are [45,66]: 
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The only displacement component different from zero is: 
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 (4.2.5) 

Also in this case the stress and displacement fields are given according to the 

polar coordinate system shown in Fig. 4.2.1.  
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The parameter K3,F-C represents again the Mode III Notch Stress Intensity Factor 

(NSIF) while 3 is the Mode III eigenvalue dependent on the notch opening angle 

2α [45]. For the free-clamped condition, 3 is the lowest real eigenvalue of the 

following eigen-equation: 

02cos 3                   with                





4
3        (4.2.6) 

4.2.3. Strain energy density (SED) under Mode III 

According to Beltrami [67], the total strain energy density W is equal to the total 

work done by the system. For a three-dimensional stress state the equation for W 

is:  
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Under pure Mode III loading conditions, only σrz and σθz stress components are 

different from zero and Eq. (4.2.7) becomes: 
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Figure 4.2.2. Control volume for sharp V-notches (a) and cracks (b). 
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4.2.3.1 SED for Free-Free boundary conditions 

In the case of free-free V-notched components subjected to Mode III loading 

condition, the elastic energy E(R0) in a circular sector of radius R0 surrounding the 

notch tip (Fig. 4.2.2) can be calculated by inserting Eqs (4.2.1a,b) into Eq. (4.2.8). 

Doing so, one obtains: 
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      (4.2.9) 

The average SED is simply given by the ratio between the elastic energy E(R0) 

and the area of the circular sector A(R0). Then: 
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               (4.2.10) 

According to Lazzarin and Zambardi [27] the brittle fracture of the material 

occurs when the average value of the strain energy density, calculated on a control 

volume of radius R0 surrounding the notch tip (Fig. 4.2.2), is equal to the material 

critical value Wc. After Beltrami, Schleicher [68] was the first to consider Wc 

dependent not only on the material but also on the loading conditions. Under 

Mode III loading, it can be obtained: 
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          (4.2.11) 

where c is the shear strength of the material. 

Under linear elastic conditions, by imposing at failure 
c3 WW  , Eq. (4.2.10) and 

Eq. (4.2.11) in combination give: 
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Finally, by solving Eq. (4.2.12), the control radius R0 for the free-free condition 

results to be: 
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When the V-notch becomes a crack (2 = 0, λ3 = 0.5), the value of K3c,F-F 

coincides with the Mode III fracture toughness and the control radius becomes: 
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4.2.3.2 SED for Free-Clamped boundary conditions 

In the case of free-clamped V-notches under Mode III, the elastic energy E(R0) in 

a circular sector of radius R0 surrounding the notch tip (Fig. 4.2.2) can be 

calculated by Eq. (4.2.8) and Eqs (4.2.4a,b): 
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Also in this case, the average strain energy density is given by the ratio between 

the elastic energy E(R0) and the area of the circular sector A(R0). Then: 
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                       (4.2.16) 

As said above, according to the average SED approach [27], the fracture of the 

material under linear elastic conditions occurs when the average value of the SED, 

as calculated on a control volume of radius R0 surrounding the notch tip (Fig. 

4.2.2), is equal to the material critical value Wc (see Eq. 4.2.11). By imposing at 

failure 
c3 WW  , Eq. (4.2.16) and Eq. (4.2.11) in combination give: 
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Finally the control radius R0 for the free-clamped condition results in: 
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         (4.2.18) 

When the V-notch becomes a crack (2 = 0, 3 = 0.25), the value of K3c,F-C is that 

for the crack case and the control radius becomes: 
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The developed analytical frame will be used in following for the crack case (2 = 

0), which will be analyzed also by a number of numerical analyses.  

 

4.2.4. Finite element analysis of three-dimensional cracked discs 

As anticipated in the introduction, to evaluate the effects of the boundary 

conditions the particular case corresponding to discs weakened by a crack (2 = 

0) is considered in the present work. Cracked discs subjected to anti-plane, 

nominal Mode III, loading have been modelled by using ANSYS code (version 

14.5). Due to the out-of-plane uz displacements, Eqs (4.2.2, 4.2.5), a three-

dimensional FEM analysis has been carried out.  

Stresses and stress intensity factors were determined for 100 mm diameter discs of 

varying thickness. The disc geometry is shown in Fig. 4.2.3a where the disc radius 

is constant, r = 50 mm, whereas the thickness t varies from case to case. The tip of 

the through-the-thickness crack is located at the centre of the disc, and its length, 

a, was set equal to 50 mm. Numerical models are characterised by a ratio t/a = 

0.5, 1, 2 and 4. The Poisson’s ratio and the Young’s modulus are kept constant 

and equal to 0.3 and 206 GPa, respectively. 
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Figure 4.2.3. (a) Disc geometry. (b) Overall view of the finite element mesh. The number of 

elements used is equal to 360000, which corresponds to more than 4 · 10
6
 degrees of freedom. (c) 

Detail of finite element mesh sectioned at crack tip. The minimum element size in radial direction is 

equal to 1.80 · 10
-4

 mm while in z direction (along the disc thickness) is equal to 1.50 · 10
-4

 mm. 

 

 

In the case of free-free cracked elements one quarter of the disc was modelled, 

taking advantage of the antisymmetric boundary conditions with respect to the X-

Y and X-Z planes (both crack edges are free). Conversely, in the case of free-

clamped cracked components, one half of the disc was modelled, taking 

advantage of the antisymmetric boundary conditions with respect to the X-Y 

plane. With respect to the X-Z plane, in fact, there is no antisymmetric boundary 

condition, because one crack edge is free whereas the other is constrained in the z 

direction (Mode III-fixed with uz = 0). An overall view of the finite element mesh 

used for modelling one half of the disc is shown in Fig. 4.2.3b; a detail of the 

mesh at the crack tip is shown in Fig. 4.2.3c. In the free-free case the mesh used is 

the same, with the only difference that one quarter of the disc was modelled 
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instead of one half of the disc. In both cases 20-node brick elements (BRICK 186) 

were used. 

Taking advantage of Eq. (4.2.2) for the free-free case, and Eq. (4.2.5) for the free-

clamped case, Mode III displacements have been applied to the cylindrical surface 

of the FE models as a function of the angular coordinate θ. The values of the 

applied stress intensity factors were K3,F-F  = 1 MPa  m
0.5

 for the free-free case 

and K3,F-C = 0.67 MPa  m
0.75

 for the free-fixed case. Note that these values 

correspond to the same displacement range Δuz = 4.50  10
-3

 mm, as measured 

with respect to the angular coordinates θ = 180 and +180 degrees, as shown in 

Fig. 4.2.4. Thanks to these boundary conditions, the disc can be thought of as a K-

dominated core region. 

 

 

 

 

Figure 4.2.4. Applied displacement uz as a function of the angular coordinate θ. Free-Free and 

Free-Clamped cases. 
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4.2.5. Results 

Due to local three-dimensional effects, widely discussed by Pook [7,21] and Berto 

et al. [56,57], the application of a nominal Mode III loading condition via nodal 

displacements at a convenient distance from the crack tip results in induced 

modes, which depend on the boundary conditions. The induced modes are 

discussed in detail on the basis of the FE results. 

 

4.2.5.1 Stress fields and Stress Intensity Factors 

The stresses and the Stress Intensity Factors related to Mode I, II and III loading 

were extracted from the finite element results at the crack bisector line at distances 

s from the disc surfaces of 0, 0.25, 0.50, 1 and 2 mm. It can be observed that for 

the nodes belonging to the crack bisector line the cylindrical reference system r-θ-

z coincides with the Cartesian system x-y-z, therefore σθ = σy (Mode I), τrθ = τxy 

(Mode II) and τθz = τyz (Mode III).  

Results for t/a = 2, with stress fields plotted on double logarithmic scales, are 

shown in Figs 4.2.5-7 for the free-free cases, in Figs 4.2.9-11 for the free-clamped 

cases. When the plot is according to a straight line, the slope will be reported 

explicitly. Otherwise no value of slope is shown. Plots for values of t/a different 

from 2.0 are analogous, with some differences in detail. Plots for t/a ranging from 

0.5 to 4.0 will be presented only with reference to the average SED. 

 

4.2.5.1.1 Stress analysis for Free-Free cases 

In this case the stress components different from zero on the crack bisector line 

are τxy and τyz; this means that in the free-free case the application of a nominal 

Mode III loading induces Mode II stress components. 

Figure 4.2.5 shows that λ2 calculated from τxy at the distance s = 2 mm from the 

crack tip coincides with the theoretical value of 0.50 [69,70]. This holds true also 

when this distance decreases to s = 0.50 mm, as shown in Fig. 4.2.6. Hence, 

realistic values of KII can be calculated. For s = 0 mm, instead, λ2 is found to 

depend on t/a. It decreases with t/a, to a minimum of 0.44 at t/a = 2.00 (Fig. 4.2.7) 

and then increases slightly. The values of λ2 are all significantly greater than the 
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theoretical value of 0.40 due to the corner point singularity effect well described 

by Bazant and Estenssoro [20]. This means that exact values of KII cannot be 

calculated. 

Also λ3 calculated from τyz matches or is very close to the theoretical value of 

0.50, Eq. (4.2.3), both for s = 2 mm (Fig. 4.2.5) and for s = 0.50 mm (Fig. 4.2.6). 

Small variations of the slope have been detected at s = 0.25 mm, with 1 -  = 

0.53. Hence, in all models with s ≥ 0.25 mm realistic values of KIII can be 

calculated from the τyz stress component. For s = 0 mm (see again Fig. 4.2.7) τyz 

has not a linear trend as a function of the distance x from the crack tip. Then it is 

not possible to exactly define the stress intensity factor KIII. 

 

 

 

Figure 4.2.5. Free-Free: stresses τxy and τyz on crack surface at s = 2 mm from disc surface. 
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Figure 4.2.6. Free-Free: stresses τxy and τyz on crack surface at s = 0.50 mm from disc surface. 

 

 

 

Figure 4.2.7. Free-Free: stresses τxy and τyz on crack surface at s = 0 mm from disc surface. 
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On the basis of the obtained results it is evident that only at a given distance from 

the free surfaces the slopes of the applied (τyz) and induced (τxy) stress 

distributions are consistent with those of the stress fields related to the free-free 

boundary conditions, which correspond to λ2 = λ3 = 0.50 ([14,69,70] and Eq. 

(4.2.3) respectively). For s ≥ 0.25 mm, the stress intensity factors KII and KIII can 

be directly calculated by means of the stresses evaluated at a small distance x from 

the crack tip, so that: 

5.0
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In our calculation a value of 0.05 mm has been used for x, since it falls within the 

region in which the SIFs can be defined and also it is the most convenient for the 

particular FE mesh adopted, being a node present at such a distance from the 

crack tip. 

 

 

Figure 4.2.8. Free-Free: through thickness distribution of KII and KIII for t/a = 2, x = 0.05 mm. 
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The through-the-thickness plots of KII and KIII are shown in Figure 4.2.8 for t/a = 

2; the values of KII and KIII are not realistic for s < 0.25 mm due to the corner 

point singularity and for this reason are excluded.  

For what concern the applied loading mode, the maximum value of KIII is at the 

centreline. For t/a > 1 this corresponds to KIII for the applied displacements (Eq. 

(4.2.2)). The influence of plate bending means that maxima steadily decrease as 

t/a decreases: maximum values of KIII tend to zero as the ratio t/a tends to zero, 

this is to be expected because KIII is not possible in two dimensions.  

 

4.2.5.1.2 Stress analysis for Free-Clamped cases 

In the presence of the free-clamped boundary conditions, the application of a 

nominal Mode III loading case induces in the vicinity of the crack tip not only 

Mode II but also Mode I local stress fields. In this case the stresses different from 

zero on the crack bisector line are σy, τxy and τyz. 

Figures 4.2.9 and 4.2.10 show that for distances s = 2 mm and s = 0.50 mm, the 

eigenvalues λ1 and λ2, calculated from σy and τxy, respectively, match the 

theoretical values of 0.50 [14,69,70]. In these cases realistic values of KI and KII 

can be calculated. For s = 0 mm, instead, λ1 and λ2 are found to be 0.31 and 0.44, 

respectively, as shown in Fig. 4.2.11. FE analyses showed that λ1 and λ2 decrease 

with t/a to the minimum values of 0.28 and 0.39 at t/a = 1.00 and then increase 

slightly with t/a. Realistic values of KI and KII cannot be calculated for s = 0 mm. 

Also λ3 calculated from τyz is close to the theoretical value of 0.25 given by Eq. 

(4.2.6), as shown in Fig. 4.2.9 for s = 2 mm and in Fig. 4.2.10 for s = 0.50 mm. 

Small variations of 3 have been detected for s = 0.25 mm (0.23 against 0.25). 

Then for distances s ≥ 0.25 mm, realistic values of KIII can be calculated from the 

τyz shear stress component. The results for s = 0, Fig. 4.2.11, show that τyz is close 

to τxy for small x values, but shows a stronger reduction as x increases. In the 

double logarithmic diagram, τyz has not a linear trend as a function of the distance 

x from the crack tip and therefore it is not possible to identify the stress intensity 

factor KIII.  
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Figure 4.2.9. Free-Clamped: stresses σy, τxy and τyz on crack surface at s = 2 mm from disc surface. 

 

 

Figure 4.2.10. Free-Clamped: stresses σy, τxy and τyz on crack surface at s = 0.50 mm from surface. 
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Figure 4.2.11. Free-Clamped: stresses σy, τxy and τyz on crack surface at s = 0 mm from disc 

surface. 

 

It can be observed that at a convenient distance from free surfaces, the slopes of 

the applied (τyz) and induced (σy, τxy) stress fields are consistent with the boundary 

conditions applied to the crack edges: free-clamped for Mode III, that is λ3 =  = 

0.25 (Eq. (4.2.6)), and free-free for Mode I and II, that is λ1 = λ2 = 0.5 [14,69,70].  

The through-the-thickness distributions of KI, KII and KIII for t/a = 2 are shown in 

Figure 4.2.12, where the values not realistic determined for s < 0.25 mm are 

excluded. The SIFs KI, KII and KIII were calculated according to the relationships:  
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where the distance x from the crack was set constant and equal to 0.05 mm. 
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Figure 4.2.12. Free-Clamped: through thickness distribution of KI, KII and KIII for t/a = 2.00. 

 

 

 

Figure 4.2.13. Free-Clamped: through thickness distribution of KI, KII and KIII for t/a = 0.50. 
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As far as the applied mode of loading is concerned, the maximum value of KIII is 

at the centreline. For t/a > 1 it tends to KIII corresponding to the applied 

displacements, see Eq. (4.2.5). Also in this case the influence of plate bending 

means that maxima steadily decrease as t/a decreases: maximum values of KIII 

tend to zero as t/a tends to zero. There is a constant KIII region for s > 1 mm in the 

thinner discs (see the example reported in Figure 4.2.13) and for s > 5 mm in the 

thicker ones (see the example reported in Figure 4.2.12), then KIII decreases 

steadily towards the surface, with an abrupt drop close to the surface.  

As regards the induced modes of loading, both KI and KII are zero on the centre 

line, with an increase towards the surface. For all the considered geometries the 

distribution of KI is nearly linear with a greater increase towards the surface, 

reaching very high values if compared to KII (KI,max/KII,max ≈ 3) and KIII, but in the 

last case it is impossible to define a ratio because of the different units. On the 

other hand for the thicker discs (see Figure 4.2.12) KII is essentially zero for s > 40 

mm, this means that there is no significant plate bending effect. The influence of 

plate bending increases as t/a decreases, and for t/a = 0.50 (see Figure 4.2.13) the 

distribution of KII is nearly linear with a greater increase towards the surface. 

Intermediate values of t/a show intermediate behaviour. Maximum values of both 

KI and KII are at the surface, but it is within the region where calculated KI and KII 

values are not realistic so caution is needed in the interpretation of results. 

 

4.2.5.2 Strain energy density through the disc thickness 

Due to the uncertainties in the definition of the stress intensity factors on the free 

surfaces discussed in the previous sections, the strain energy density (SED) 

averaged in a control volume embracing the crack tip has been employed in the 

following to quantify the intensity of overall stress state through the thickness of 

the disc. The strain energy density plays a crucial role in the fracture process [71] 

and influences also the crack propagation under mode I [72] and mixed-mode 

(I+II) loadings [73]. 

Considering three-dimensional FE models, unlike Section 4.2.3 in which 

calculations involved a semicircular sector described by plane elements, the 

control volume is given by a cylinder with radius R0 and height h, with h being 
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about equal to R0 (Fig. 4.2.2). R0 was thought of as a material property which 

varies under static and fatigue loading [27,29] but here, for the sake of simplicity, 

R0 and h are simply set equal to 1.0 mm, small enough to quantify three-

dimensional effects through the disc thickness.  

The average SED, in contrast to the point-wise SED, can be easily calculated by 

using coarse meshes [38,62], because it directly depends on nodal displacements. 

Moreover, as soon as the average SED is known, the notch stress intensity factors 

(NSIFs) quantifying the asymptotic stress distributions can be calculated a 

posteriori on the basis of very simple expressions linking the local SED and the 

relevant NSIFs [38,62].  

An advantage of the SED approach is that it is possible to easily understand 

whether the through-the-thickness effects are important or not in the fracture 

assessment of a specific material. Some brittle materials are characterized by very 

small control radius and then the stress gradient sensitivity is very strong. On the 

other hand more ductile materials have the capability of stress averaging in a 

larger volume and for this reason are less sensitive to any variation of the stress 

field through the thickness of the disc. The SED, once the control volume is 

properly modeled through the thickness of the disc, is able to quantify the 3D 

effects in comparison with the sensitivity of the specific material so providing 

precious information for fracture assessments. Another very fundamental point is 

that the SED is automatically sensitive to the different applied boundary 

conditions. 

Although only the crack case is considered in this work, the SED-based approach 

can be easily applied also to pointed V-notches and a direct comparison can be 

directly drawn between the crack case and the V-notch cases. The SED is 

sensitive to the constraint variation on the crack or V-notch edges and some 

interesting conclusions can be drawn by observing the SED variation along the 

disc thickness when different boundary conditions are applied. This point will be 

investigated in the three following sub-sections. 

With the aim to provide some numerical assessment of the contribution of the 

three-dimensional effects, specifically the induced fracture modes KI and KII, the 

local energy density through the disc thickness has been evaluated and discussed 
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in this section. The effect of different boundary conditions on strain energy 

density will be discussed in detail. 

 

4.2.5.2.1 Three dimensional SED variations for Free-Free boundary 

conditions 

The strain energy density averaged over a cylindrical volume embracing the crack 

tip was extracted from the finite element models of the free-free cracked discs. 

Figures 4.2.14-4.2.17 show the local SED variation through the disc thickness for 

t/a = 0.5, 1, 2 and 4.  

The influence of the applied Mode III loading combined with the induced singular 

Mode II loading is shown in the figures. It is evident that the position of the 

maximum SED changes from case to case. In thinner discs, that is for t/a = 0.5 

and 1.0, the maximum SED is close to the lateral surface, where the maximum 

intensity of the induced Mode II takes place. For larger thicknesses, 

corresponding to the cases t/a = 2 and 4, the maximum value of the SED is at the 

mid-plane and its value is about 1.5 times the value at the lateral surface; 

moreover in these cases the SED reaches a minimum under the free surface, due 

to the opposite trend exhibited by Mode II and Mode III.  

The local SED variation through the disc thickness obtained by FEM analysis can 

be compared with the theoretical estimations obtained by adding the Mode II and 

III contributions. For what concern the contribution given by Mode III, it is 

possible to use the Eq. (4.2.10) derived for a free-free Mode III loading. The 

Mode II contribution, instead, can be approximately calculated following the 

expression of 2W  for cracked components reported by Lazzarin and Zambardi 

[27] being the stress field τxy consistent with a free-free boundary condition (λ2 = 

0.50), except for a small region close to the surface. The theoretical value of the 

SED averaged over a control volume having radius R0 = 1 mm (Fig. 4.2.2), can be 

calculated as a function of KII and KIII values through the disc thickness according 

to the following expression: 
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where I2 is the integral of the angular stress functions, which depends on the notch 

opening angle 2α and the Poisson's ratio ν. For ν = 0.3 and 2α = 0, it results I2 = 

2.145. 

It can be seen from Figs 4.2.14-4.2.17 that FE results, represented by markers, are 

in good agreement with the theoretical prediction, represented by a solid line. It 

can be concluded that the expressions proposed for Mode III loading conditions 

(Eq. 4.2.10) coupled with the expressions for the induced modes [27] enable to 

predict well the three-dimensional effects and the position of the maximum 

values, which may be critical for the mechanical strength of the cracked 

components. 

 

4.2.5.2.2 Three dimensional SED variations for Free-Clamped boundary 

conditions 

As for the previous case, the strain energy density averaged over a cylindrical 

volume embracing the crack tip was extracted from the finite element models of 

the free-clamped cracked discs. Figures 4.2.14-4.2.17 show the local SED 

variation through the disc thickness for t/a = 0.5, 1, 2 and 4.  

The influence of the applied Mode III loading combined with the induced singular 

Modes I and II loading is shown in the figures. It is evident that the position of the 

maximum SED is the same for all the cases. Both for thinner and thicker discs the 

maximum SED is close to the lateral surface, where the maximum intensity of the 

induced Modes I and II takes place. Differently from the free-free case, in the 

thicker discs there is not a minimum of SED under the free surface.  

Also in this case, the local SED variation through the thickness of the disc 

obtained by FEM analysis can be compared with the theoretical estimations 

obtained by adding the Mode I, II and III contributions. For what concern the 

contribution given by Mode III, it is possible to use Eq. (4.2.16) derived for a 

free-clamped Mode III loading. The Mode I and II contributions, instead, can be 

approximately calculated following the expressions of 1W  and 2W  for cracked 

components reported by Lazzarin and Zambardi [27], being the stress fields σy and 

τxy consistent with a free-free boundary condition (λ1 = λ2 = 0.50), except for a 

small region close to the surface. The theoretical value of the SED averaged over 
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a control volume having radius R0 = 1 mm (Fig. 4.2.2), can be calculated as a 

function of KI, KII and KIII values through the thickness of the disc according to 

the following expression: 
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where I1 and I2 are the integrals of the angular stress functions, which depend on 

the notch opening angle 2α and the Poisson's ratio ν. For ν = 0.3 and 2α = 0, I1 = 

0.845 and I2 = 2.145. 

It can be seen from Figs 4.2.14-4.2.17 that FE results, represented by markers, are 

in good agreement with the theoretical prediction, represented by a solid line. It 

can be concluded that the expressions proposed for Mode III loading conditions 

(Eq. 4.2.16) coupled with the expressions for the induced modes, extending here 

what previously made by Lazzarin and Zambardi [27], enable to predict well the 

three-dimensional effects and the position of the maximum values, which may be 

critical for the mechanical strength of the cracked components. 

In addition from Figs 4.2.14-4.2.17 it can be observed that the SED in the free-

clamped case is always higher than the SED in the free-free case. In fact the ratio 

SEDmax,F-C/SEDmax,F-F increases with increasing t/a. The position of the maximum 

values of the SED as well as the ratio SEDmax,F-C/SEDmax,F-F are summarized in 

Table 4.2.1. The ratio ranges between 9 and 15 for all the cases investigated. This 

means that in order to obtain the same value of the critical energy, thought as a 

material parameter, with an equal nominal applied displacement range, Δuz, it is 

necessary to adopt a larger control radius in the free-clamped case. It is worth 

mentioning that for the crack case under free-free conditions all the SED 

contributions tied to Mode I, II and III are proportional to 1/R0  (Eq. 4.2.25) while 

under free-clamped conditions the contribution of SED tied to Mode III is 

proportional to   1/(R0)
3/2

,  Eq. (4.2.26). The ratio between the control radii R0,F-

C/R0,F-F is of the same order of the ratio SEDmax,F-C/SEDmax,F-F, that can be 

observed in Figs 4.2.14-4.2.17 and in Tab. 1 where R0,F-C = R0,F-F = 1 mm. For this 

reason very different values of the control radius are possible for free-free and 

free-clamped boundary conditions also for the same material. Under linear elastic 
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hypothesis and free-free conditions the same control radius, thought as an intrinsic 

characteristic of the material, is expected independently of the loading mode (I, II 

and III) resulting in RI,F-F = RII,F-F = RIII,F-F. Free-clamped conditions are usually 

achieved because of friction between the scratching surfaces or local plasticity 

that occurs in a non-negligible zone inside the control volume. This behaviour can 

sometimes be observed under torsion loading as described by Berto et al. [34,35] 

where very different values of the volume size were found to be necessary to 

uniform data from pure tension (thought as free-free) and pure torsion (thought as 

free-clamped) in terms of SED. Under free-free conditions the employed radius 

was RI,F-F = 0.32 mm, whereas under free-clamped conditions RIII,F-C was found to 

be 1.42 mm. At the light of the observations above, different local boundary 

conditions allow us to justify very different values of the control radius for the 

same material, as a function of the loading mode and of the specific local 

behaviour of the material depending on the external load. In fact different control 

volumes, for some specific materials characterized by a linear elastic behaviour 

under tension and a plastic or non-linear behaviour under torsion, make possible 

to re-compact the data in terms of a single SED scatterband. 

 

 

Figure 4.2.14. Through the thickness SED distribution for t/a = 0.50. Control radius R0 = 1.00 

mm. DOF stands for degrees of freedom in the FE model (displacement ux, uy, uz). 
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Figure 4.2.15. Through the thickness SED distribution for t/a = 1. Control radius R0 = 1.00 mm. 

DOF stands for degrees of freedom in the FE model (displacement ux, uy, uz). 

 

Figure 4.2.16. Through the thickness SED distribution for t/a = 2. Control radius R0 = 1.00 mm. 

DOF stands for degrees of freedom in the FE model (displacement ux, uy, uz). 
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Figure 4.2.17. Through the thickness SED distribution for t/a = 4. Control radius R0 = 1.00 mm. 

DOF stands for degrees of freedom in the FE model (displacement ux, uy, uz). 
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instead, the Mode I and Mode II displacements (uy and ux), a free-free condition 

(uy ≠ 0 and ux ≠ 0 for both the crack edges) was considered in all cases. For 

completeness, the aim here is to examine the local SED variation through the disc 

thickness when one crack edge is free (uz ≠ 0, uy ≠ 0 and ux ≠ 0) whereas the other 

edge has all the displacements clamped (uz = uy = ux = 0), this represents a 

complete free-clamped condition.  

The geometry described in Section 4.2.4 has been considered and the Mode III 

displacements corresponding to a free-clamped condition (Eq. 4.2.5 with K3,F-C = 

0.67 MPa  m
0.75

) have been applied to the FE models. 

As already observed in Section 4.2.5.1.2, the stresses different from zero on the 

crack bisector line are σy, τxy and τyz. For the sake of brevity, only the case s = 1 

mm is shown in Fig. 4.2.18. The values of λ1 and λ2, calculated from σy and τxy, 

are respectively greater and lower than the theoretical value of 0.25 [58] 

associated to the in-plane solution; this means that realistic values of KI and KII 

cannot be calculated. As regards, instead, the Mode III eigenvalue, λ3 calculated 

from the shear stress component  τyz is close to the theoretical value of 0.25 (Eq. 

4.2.6). Hence, realistic values of KIII can be calculated from τyz.  

 

Figure 4.2.18. Free-Clamped all DOF: stresses σy, τxy and τyz on crack surface at s = 1 mm from 

disc surface, t/a = 2. DOF stands for degrees of freedom in the FE model (displacement ux, uy, uz). 
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In this case the uncertainties in the definition of the stress intensity factors are 

even more marked, therefore the average strain energy density (SED) becomes a 

parameter necessary for quantifying the intensity of the local stress and strain state 

through the disc thickness. For this purpose the strain energy density averaged 

over a cylindrical control volume embracing the crack tip was extracted from the 

finite element models. Figures 4.2.14-4.2.17 show the local SED variation 

through the disc thickness for t/a = 0.5, 1, 2 and 4. The figures show that for all 

the values of t/a considered in the present investigation, the local SED variation 

through the disc thickness in the complete free-clamped condition is nearly 

coincident with the SED variation in the Mode III free-clamped condition. In the 

thinner discs the maximum deviation occurs in the mid-plane of the disc. As t/a 

increases, it moves toward the lateral surface. In all cases the deviation is less than 

15%, so it can be concluded that the different boundary conditions, free-free or 

free-clamped, applied to the Mode I and Mode II displacements have a limited 

effect on the average strain energy density. 

Therefore the conclusions drawn in the previous section in regard to the control 

radius can be extended to the case of cracked elements subjected to Mode III 

loading in the presence of a complete free-clamped condition. 

 

4.2.6. Discussion 

Dealing with the local damage and the out-of-plane loading (Mode III), an 

analytical multi-scale model has recently been developed by Sih and Tang. 

Physically, the different orders of the stress singularities were linked to the 

different constraints associated with a micro-V-notch at the tip of the main crack. 

Starting from Sih and Tang’s model, in the present work some analytical 

expressions have been proposed for the calculation of the strain energy density 

(SED) averaged over a control volume embracing the V-notch tip. The 

expressions vary as a function of the different boundary conditions. 

The results from the analytical frame have been compared with those determined 

numerically under linear-elastic conditions, by applying the boundary conditions 

to the through-the-thickness crack edges in three dimensional discs. Free-free and 

free-clamped boundary conditions were applied to the crack displacements. For 
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the sake of simplicity, only the case of a cracked element has been examined, but 

the procedure drawn here can be easily extended to any notch opening angle 2α.  

Due to three-dimensional effects, the application of a nominal Mode III loading 

results in induced modes, depending on the boundary conditions. In the free-free 

case the applied Mode III induces only Mode II, whereas in the free-clamped case 

it induces Mode II and Mode I in combination. 

The Stress Intensity Factors related to Mode I, II and III stress distributions have 

been determined on the basis of the FE data. In a small region near the lateral 

surface of the disk, the eigenvalues λ are found to be significantly different from 

the theoretical values, this means that realistic values of K cannot be calculated. 

The strain energy density (SED) averaged in a control volume embracing the 

crack tip has been employed to quantify the local stress and strain state through 

the thickness of the disc. The effect of different boundary conditions on strain 

energy density has been discussed in detail.  

Results obtained by FE analysis have been compared with the theoretical 

predictions obtaining a good agreement. Calculation of the strain energy density 

(SED) shows that the position of the maximum SED is a function of the boundary 

condition on the crack edges and the disc thickness.  

It was observed that the SED in the free-clamped case is always higher than the 

SED in the free-free case. This means that to have the same value of the critical 

energy, it is necessary to adopt a larger control radius in the free-clamped 

condition. This result is usually achieved because of friction between the 

scratching surfaces or local plasticity that occurs inside the control volume.  

For completeness the local SED variation has been examined also in the case of a 

complete free-clamped condition. It was observed that the local SED variation in 

the complete free-clamped condition is nearly coincident with the SED variation 

in the Mode III free-clamped condition.  
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4.3 Three-dimensional effects on notched components under 

cyclic plasticity
 (*)

 

 

Nomenclature 

Cq   Energy dissipation coefficient 

c
(i)

, r
(i)

, 
(i)

  Material coefficients related to Jiang-Sehitoglu model 

Ci, i  Material coefficients related to Ansys
®
 kinematic hardening 

material model, based on Chaboche plasticity model 

E   Young’s modulus  

G   Shear modulus  

h   Plastic modulus function  

k   Yield stress in simple shear  

Kt   Theoretical (elastic) stress concentration factor  

K’  Parameter of Ramberg-Osgood representation of the material 

stabilized cyclic curve 

n’   Strain hardening exponent  

nij   Unit exterior normal to the yield surface 

Sij   Deviatoric stress 

Wq   Dissipated energy during one loading cycle 

Wp   Total plastic strain energy density during one loading cycle 

Rc  Control radius for SED evaluation 

 

Symbols 

ij   Deviatoric backstress (center of the yield surface) 

nom, nom  Remotely applied nominal stress and strain ranges  

,   Notch-tip elastic plastic stress and strain ranges 


e
, 

e
  Hypothetical notch-tip stress and strain ranges   

   Small but finite increment in incremental cyclic plasticity 

ij   Kronecker delta  

p   Equivalent plastic strain increment 

kk   Sum of the normal stress components 
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Yield stress 

   Poisson’s ratio 

 

(*) See also: 

 

 Campagnolo, A.; Berto, F.; Marangon, C. Cyclic plasticity in three-dimensional notched 

components under in-phase multiaxial loading at R=-1. Theoretical and Applied Fracture 

Mechanics; 81: 76-88 (2016); 

 Marangon, C.; Campagnolo, A.; Berto, F. Three-dimensional effects at the tip of rounded 

notches subjected to mode-I loading under cyclic plasticity. The Journal of Strain 

Analysis for Engineering Design; 50: 299-313 (2015); 

 

4.3.1. Introduction 

Failure of engineering components under fatigue loading is often related to the 

presence of stress raisers like defects, cracks or different shaped notches. It is well 

known that the stress arising in the proximity of these points may exceed the 

yielding limit of the material. The full elastic-plastic stress and strain fields ahead 

of notches can be assessed by using complex non-linear finite element analyses 

that, however, are heavy in terms of time and resources required by engineers and 

industries.  

For these reasons, simplified methods that approximate the actual elastic–plastic 

notch-tip material behaviour are frequently preferred in practical engineering 

applications. In a pioneering work Hardrath and Ohman [74] applied a 

generalisation of Stowell’s relation [75] for the plastic stress concentration factor 

at notches in aluminium-alloy-sheet specimens obtaining a good agreement with 

experimental results. One of the most important works on the evaluation of the 

elastic-plastic stress state at the tip of a notch is due to Neuber [76], who proposed 

a general rule able to obtain the stress-strain concentration factors for uniaxial 

static and cyclic loading. Dealing with energy-based assumptions, Molski and 

Glinka [77] stated that the strain energy density distribution in the plastic zone 

ahead of a notch tip is the same as that determined under a pure elastic stress–

strain solution, adopting this as the basis of the ESED criterion. During the last 

years extensions of the above mentioned criteria have been developed in order to 
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refine the assessment of the actual state of stress and strain ahead of a notch under 

simple and complex loading configurations, the most widely used approaches are: 

the modified Neuber’s rules proposed in [78–80], the modified ESED methods 

[81–83], and new approaches reported in [84–86]. Other widely used methods are 

the stress field intensity model proposed by Weixing [87], the local stress-strain 

field intensity approach suggested by Shang et al. [88] and the volumetric 

approach based on the total strain energy density per cycle proposed by 

Bentachfine et al. [89]. 

In particular Ye et al. [86,90], making use of thermodynamics assumptions, 

considered the influence of the stored energy during a loading history as a 

fundamental parameter for the calculation of the actual stress-strain at the tip of a 

notch. With this aim a new modified approach, which confines the two 

milestones, Neuber’s rule [76] and Molski-Glinka’s approach [77], as limiting 

cases of the same problem, has been presented. Ye [90] proved that the two above 

mentioned methods turn out to be coincident when considering the plastic strain 

energy density as a negligible parameter.  

A computational model for multiaxial stress-strain notch analysis has been 

recently proposed by Ince and Glinka [83] to evaluate the elasto-plastic notch-tip 

stress-strains by using results from linear elastic finite element analyses. The 

model has been applied and validated by comparing model-based results with 

experimental data of a steel notched shaft subjected to several loading conditions, 

obtaining good accuracy. The proposed model allows to estimate the fatigue life 

and fatigue damage in an efficient manner, in a simpler way compared to more 

complex and time-consuming elasto-plastic FE analyses. 

Uniaxial and multiaxial fatigue loads generate a variable complex state of stress at 

the tip of a rounded notch. In order to take into account this effect, incremental 

approximate formulations [81,82,85,86,90] have been developed on the basis of 

energy equilibrium conditions between the  stress and strain components acting at 

the notch tip.  

The incremental approximate procedures make use of constitutive relations of the 

cyclic incremental plasticity theory that is composed of three main parts: 1) the 

von Mises yield criterion; 2) the flow rule (or normality condition) presented by 
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Drucker [91] which is used to combine the increment of plastic strain with the 

related increment of stress; 3) the hardening rule which specifies changes in the 

yield condition as a consequence of the applied load under elastic-plastic 

conditions. In the case of fatigue problems the kinematic hardening is the most 

used rule because of the inner ability to simulate the Bauschinger effect during 

cyclic loading. Prager [92] proposed the first linear hardening formulation able to 

take into account the above mentioned effect. This rule allows the yield surface to 

move into the stress space without changing in shape or size. Armstrong and 

Frederick [93] presented the first non-linear relation (A-F rule) introducing a 

recovery term associated to a strain memory effect. Different extensions of the A-

F rule have been proposed in the last years (see among the others Bower [94], 

Bower and Johnson [95], Ohno-Wang [96]). Chaboche [97,98] expressed for the 

first time a non-linear kinematic hardening rule in the form of an expansion of  M  

backstress parts, each one following the Armstrong-Frederick relation. Chaboche 

model has been adopted by many finite element codes in order to obtain the actual 

behaviour of the material subjected to fatigue loading. A new A-F type model has 

been presented by Jiang and Sehitoglu [99,100] aiming to account for the 

ratchetting effect during an asymmetric loading cycle.  

Many contributions dealing with fatigue problems under plasticity conditions 

have been developed in the last years addressing different fields of applications. 

Jiang and Xu [101] studied the problem of a plate with a central hole and a shaft 

with a circumferential groove subjected to proportional and non-proportional 

loading, implementing an approximate incremental method and comparing the 

results with some cyclic FE analyses. Ye et al. [86,90] made use of an incremental 

procedure in order to develop a unified expression for elastic-plastic notch stress-

strain calculations. The new approach was first calibrated with experimental 

results obtained by uniaxial fatigue tests on flat specimens weakened by different 

notch geometries [90] and then extended to the multiaxial fatigue of notched 

components [86]. Qiu et al. [102] made use of an incremental procedure in order 

to investigate the non-Masing behaviour of 16MnR steel. An accurate method for 

strain calculation of a notched specimen under axial-torsion loading was proposed 

by Firat in [103,104]. The method used a cyclic plasticity model aiming to obtain 
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the actual stress and strain state at the focal points of the components in exam. 

Gao et al. [105] conducted tension–compression, torsional, and axial-torsional 

fatigue experiments on notched shaft specimens made of 16MnR steel comparing 

the fatigue lives with those obtained by predictive analyses based on incremental 

cyclic plasticity. 

As already mentioned, the incremental cyclic plasticity has been used in order to 

address plane or axis-symmetric problems but it has never been coupled with 

three dimensional effects arising at the tip of a notched component. An extended 

review on the 3D linear elastic stress distribution ahead of the notch tip can be 

found in a recent contribution [106] in which the developments leading up to the 

current state of the art are described. All the loading modes (I, II and III) have 

been addressed concluding that three-dimensional effects are sometimes ignored 

in situations where they might be important for the strength of components. In 

particular, the application of a nominal mode II loading to a notched component 

induces at the notch tip a coupled mode III, also known as mode O (out-of-plane), 

as highlighted by Harding et al. [9]. Those authors investigated the parameters 

influencing the intensity of this new singularity and demonstrated the relevance of 

this new singular mode to practical problems, as for example in welded lap joints. 

Dealing with rounded notches, Zappalorto and Lazzarin [12], Berto et al. [58] and 

Berto and Marangon [107], demonstrated that also when the notch root radius is 

different from zero, the out-of-plane mode still exists, and its intensity depends on 

the notch radius and the plate thickness. Some important aspects in bi-material 

notches were investigated in [108,109] highlighting the importance of higher 

order terms. 

The main aim of the present work is to relate the incremental cyclic plasticity to 

three-dimensional effects arising in the close neighbourhood of the notch tip. The 

paragraph first focuses on the calibration of the incremental cyclic plasticity with 

bi-dimensional problems of notched members subjected to uniaxial,  torsional and 

multiaxial (tension-torsion) in-phase cyclic loadings. Subsequently, the procedure 

will be extended for the first time to the investigation of in-plane and out-of-plane 

three-dimensional effects arising at the tip of a rounded notch by considering the 

presence of a small scale yielded area ahead of the notch tip. Three-dimensional 
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flat specimens weakened by different notch geometries and subjected to cyclic 

mode I loading as well as cyclic mode II loading will be investigated by 

comparing the analytical results obtained from a modification of the incremental 

routine with those obtained by means of cyclic elastic-plastic FE analyses. 

Finally, a link between the averaged strain energy density (SED) criterion [27,29] 

and the area inside the hysteresis loops tied to the different stress-strain 

components acting at the notch tip, obtained by the incremental cyclic plasticity 

theory, has been investigated. The criterion based on the strain energy density 

averaged over a control volume surrounding the tip of a sharp or rounded notch 

has been successfully used to assess the fracture strength of a large bulk of 

materials subjected to wide combinations of static loading [32,110–112] and the 

fatigue strength of notched components [35,113], also under high-temperature 

conditions [114], as well as welded joints [115].  

The control volume for SED evaluation adapts itself as a function of the notch 

geometry, in particular of the notch root radius  and the notch opening angle 2. 

The control radius Rc, which is the size of the control volume, is thought of as 

dependent only on the material properties and not on the notch geometry [29]. 

As described in some recent contributions [4,5,116] an intrinsic advantage of the 

SED approach is that it permits automatically to take into account higher order 

terms and three-dimensional effects, moreover it can be directly obtained by using 

coarse meshes [29]. 

Several notched geometries subjected to different nominal load amplitudes have 

been analysed in order to evaluate the evolution of the ratio between the averaged 

SED and the area of the hysteresis loop acting at the notch tip (Ahl), which 

represents the plastic strain hysteretic energy, considered to be an index for 

fatigue damage in the literature [117–119]. 
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4.3.2. Analytical frame 

4.3.2.1 Unified expression for elastic-plastic stress-strain estimation 

Recently Ye et al. [90] proposed a unified expression to estimate the elastic-

plastic stress-strain state at the tip of a rounded notch both in the case of static and 

cyclic uniaxial loading. The general expression can be written as follows: 

),(WK qnomnom

2

t          (4.3.1) 

where Kt is the theoretical (elastic) stress concentration factor, nom and nom 

are the remotely applied nominal stress and strain ranges, while  and  denote 

the notch-tip elastic-plastic stress and strain ranges. Wq is, instead, the dissipated 

energy during one loading cycle. The approach considers the energy stored within 

the specimen during the loading as a damaging parameter. Ye et al. [86] also 

introduced the so called “energy dissipation coefficient” in order to obtain a 

physical relationship between the plastic strain energy density and the dissipated 

energy during one loading cycle: 
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            (4.3.2) 

where Wp is the total plastic strain energy density during one loading cycle and 

n’ is the strain hardening exponent of the material took into account. The 

Neuber’s rule [76] and the ESED approach [77] provide the bound limits of the 

above mentioned criterion, namely when the “energy dissipation coefficient” Cq is 

equal to 0 and 1, respectively. As highlighted by Ye et al. [86], the method of 

estimating the stored energy based on Eq. (4.3.2) is acceptable for engineering 

approximate calculations. 

Moving from a uniaxial to a multiaxial state of stress-strain, the use of Kt is no 

longer sufficient because it is linked only to the normal stress component acting at 

the notch tip, thus a more general formulation of Eq. (4.3.1) is needed [86]. This 

problem can be overcome by introducing the “hypothetical notch tip stress and 
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strain” σ
e
 and ε

e
, which can be obtained in the case of a perfect linear-elastic 

material [82,85]. The governing equation is: 

 



3

1j,i

ijijpqijij

3

1j,i

e

ij

e

ij ),(WC        (4.3.3) 

The subscripts “ij” denote the different stress and strain components involved in 

the problem. 

When the proposed expression is applied to estimate the notch-tip stress and strain 

due to a generic cyclic loading a proper incremental form should be developed. 

By substituting also the expression of  ΔWp [86], the following simplified 

equation can be obtained: 
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The prefix  denotes a small but finite increment.  

Then assuming that the relative contribution of each elastic-plastic stress and 

strain component to the total SED and to Wq at the notch tip is the same as the 

relative contribution of the analogous linear-elastic stress and strain components 

to the total SED at the notch tip, it is possible to define a unified expression for 

each stress-strain component acting at the tip of a rounded notch:  
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This assumption has been verified in the case of in-phase and out-of-phase 

multiaxial loadings [81,82]. Gao et al. [105] modified Eq. (4.3.5) by introducing, 

within the formulation, the reference state parameter defined by Chu [120]: 
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(4.3.6) 

The superscripts “0” indicate the reference state of the particular component of 

stress-strain. When a reversal point of a component occurs, the reference states of 
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the components are updated to the corresponding stress and strain at the reversal 

point. 

For the sake of simplicity, in the present work, all the equations taking the form of 

Eq. (4.3.6) will be named “energy equations”. Once the linear elastic stress and 

strain components are known, each energy equation presents two unknowns: the 

elastic-plastic stress component and the related elastic-plastic strain component. 

Thus each energy equation has to be coupled with the corresponding material 

constitutive equations. 

According to the theory of small deformations, an incremental strain component 

can be written as the sum of an elastic part (ij,el) and a plastic contribution 

(ij,pl) as follows:  

pl,ijel,ijij            (4.3.7) 

The elastic part of strain is governed by the well-known Hooke’s law: 

ijkk

ij

el,ij
EG2







           (4.3.8) 

where G is the shear modulus, E is the Young’s modulus,  the Poisson’s ratio, ij 

the Kronecker delta and kk is the sum of the normal stress components. 

 

4.3.2.2 Material constitutive model under cyclic plasticity 

The incremental plastic part of strain can be described by using the cyclic 

plasticity theory which can be comprehensively described by the introduction of a 

proper yield criterion, a flow rule and a hardening rule. In the following A
~

 

represents a second order Cartesian tensor, ijA  its components and A
~  the 

Frobenius matrix norm defined as 
ij

3

1j,i

ij AAA
~

 


, finally “:” represents the 

inner product between tensors. 

The yield function represents the locus of points that divides the linear-elastic 

behaviour (within the boundary) and the elastic-plastic behaviour (boundary 
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surface). In the case of cyclic loading the von Mises yield criterion is the most 

widely used in the literature [86,99,105]. The material is thought to follow the 

elastic behaviour with totally absence of plastic deformation until the stress 

components satisfy the yield condition: 

    0k2SSk2~S
~

f
3

1j,i

ijijijij  


      (4.3.9) 

where Sij is a deviatoric stress component, ij is the pertinent deviatoric backstress 

component (center of the yield surface) and k is the yield strength in simple shear.  

When the yield condition, Eq. (4.3.9), is satisfied, the normality flow rule, Eq. 

(4.3.10), has to be applied in order to describe the increment of plastic strain 

during a loading cycle.  
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Where the symbol “< >” denotes the McCauley brackets (i.e.   2/xxx  ), h 

is the plastic modulus function that will be described later, while nij represents the 

unit exterior normal to the yield surface calculated using the following expression: 
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Finally, the hardening rule deals with the definition of the translation/expansion of 

the boundary yield surface within the stress space. In engineering practice the 

kinematic hardening rule is the most used in the case of cyclic loading, being able 

to account for the Bauschinger effect. In particular, in the generic case of a 

multiaxial state of stress-strain, the non-linear kinematic hardening rule gives the 

most accurate results [93]. In this case, the yield surface is allowed only to move 

within the stress space but not to homotetically expand or contract. In this 

investigation the Jiang-Sehitoglu’s [99] non-linear kinematic hardening rule has 

been adopted in the implementation of the incremental routine for the 
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determination of the elastic-plastic state of stress-strain. The formulation of the 

plastic modulus function and of the increment of the i-th part of the backstress can 

be written as follows: 
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      (4.3.13) 

where p is the equivalent plastic strain increment which can be computed as: 
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Parameters c
(i)

, r
(i)

 and 
(i)

 are “ad-hoc” material coefficients. The superscript “i” 

on α denotes the i-th part of the incremental backstress. In fact, according to 

Chaboche [97], the total backstress can be thought of as composed by M additive 

parts: 





M

1i
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          (4.3.15) 

The Jiang-Sehitoglu’s model is able to take into account the non-constant 

ratchetting rate during an asymmetric cyclic loading [99,100]. In the case of cyclic 

loading with load ratio R = -1, taken into consideration in all the analyses, this 

phenomenon has been neglected being the applied load balanced as highlighted in 

previous works [99,100]. Thus the parameters 
(i)

 in Eqs. (4.3.12) and (4.3.13), 

which control the non-constant ratchetting rate effect, can be set equal to zero 

[121]. This allows to obtain the initial Chaboche model [97] (which results in a 

constant ratchetting rate decay) by means of Jiang-Sehitoglu coefficients [122]. 
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The procedure for the determination of the material coefficients c
(i)

, r
(i)

 and 
(i)

 is 

extensively described in previous contributions [100,121]. In particular the 

determination of  c
(i)

 and r
(i)

 is based on a multi-linearization of the plastic part of 

the material stabilised cyclic curve (SCC). When M couples of (,pl) on the SCC 

are known, the evaluation of the i-th material parameters is straightforward and in 

accordance with the following expressions: 
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4.3.3. Case studies 

Many contributions on this topic deal with axis-symmetric components weakened 

by circumferential rounded notches and subjected to a multiaxial remote loading 

[86,103–105], while few contributions deal with plane 2D specimens weakened 

by rounded notches [90,123].  

In this work, the use of the incremental cyclic plasticity theory combined with the 

“energy equations” will be first calibrated considering bi-dimensional problems of 

notched members subjected to uniaxial, torsional and multiaxial (tension-torsion) 

in-phase cyclic loadings, and then extended to the evaluation of three-dimensional 

effects at the tip of rounded notches.  

The new applied procedure will be used to analyse these phenomena under cyclic 

elastic-plastic behaviour, providing different hysteresis loops moving through-the-

thickness of the specimen. 
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Six different groups of case studies have been taken into examination in the 

present work. In the following the elastic-plastic systems of equations, to be 

solved in order to obtain the full stress-strain state at the tip of a rounded notch 

during one loading cycle, are reported in detail. 

 

4.3.3.1 Tensile loading – Plane stress 

Consider the Cartesian coordinate system centred at the tip of a rounded notch 

(Fig. 4.3.1). In the case of a remote tensile loading applied to a very thin plate, 

four equations (three constitutive equation and one “energy equation”) are needed 

for the determination of the elastic-plastic stress-strain state at the tip of the notch: 
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  (4.3.19) 

 

4.3.3.2 Tensile loading – Plane strain 

In the case of plane strain conditions, the following four relations are needed for 

the determination of the elastic plastic stress-strain state:  
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(4.3.20) 

Where pl is equal to 0.5 and it is named plastic Poisson’s ratio.  
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Figure 4.3.1. Specimens subjected to a tension-compression fatigue loading and weakened by: a) a 

circular hole, b) double symmetrical blunt U-notches and c) double symmetrical rounded V-

notches (2 = 90°). 
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Figure 4.3.2. Cylindrical specimen subjected to torsion (Mode III) and tension-torsion (Mode 

I+III) in-phase fatigue loading and weakened by a blunt U-notch (radius ρ and depth p). Diameter 

of the net section d = 20 mm. F = tensile loading, Mt = torsion loading. 

 

 

Figure 4.3.3. 3D specimen subjected to in-plane shear (Mode II) fatigue loading and weakened by 

double symmetrical rounded V-notch (2 = 120°, radius ρ and depth p). W = 200 mm, 2t = 40 

mm. The origin of the Oxyz referential system is at the notch tip at the mid-plane. 
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4.3.3.3 Pure torsional loading – Axis-symmetric specimen 

Consider the Cartesian coordinate system centred at the tip of a rounded notch 

(Fig. 4.3.2). In the case of a pure torsional loading applied to an axis-symmetric 

specimen (Fig. 4.3.2), two different equations (Eq. (4.3.21): one constitutive 

equation and one “energy equation”) are needed for the determination of the 

elastic-plastic stress-strain state at the tip of the notch. In fact, at the notch tip, 

only the “yz” component of stress-strain acts.  
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(4.3.21) 

In this case the Cartesian coordinate system has been hold in order to simplify the 

calculation. It has been assumed that the notch tip belongs to the x-y plane. 

 

 

4.3.3.4 Multiaxial loading – Axis-symmetric specimen 

The general case of an axis-symmetric specimen subjected to multiaxial loading 

has been faced by many researchers [86,105]. In this case (Fig. 4.3.2), seven 

unknowns are present at the notch tip: three stress components (yy, zz and yz) 

and four strain components (xx, yy, zz and yz), thus seven different equations are 

needed. For the sake of completeness the governing equations will be presented. 

In the following the shear stress tied to torsion loading will be indicated with yz 

instead of yz, with the aim to simplify and to make the equations uniform. 
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 (4.3.22) 

 

4.3.3.5 Tensile loading – Three dimensional plates 

In the case of a flat specimen with finite thickness and weakened by a rounded 

notch (Fig. 4.3.1), five unknowns are present at the notch tip, two components of 

stress (yy and zz) and three components of strain (xx, yy, zz), thus five different 

equations should be used. In the present work the behaviour of each stress-strain 

component through the thickness of the plate has been evaluated, by providing the 

trend of the stress concentration factor Kt along the z coordinate (see Fig. 4.3.4) as 

input of the incremental procedure. In the case of 3D flat specimens subjected to 

tensile loading it is well known that the stress concentration factor decreases 

moving through the thickness of the specimen [124,125]. 

The problem is governed by the following equations: 
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 (4.3.23) 

In Eq. (4.3.23), the subscript (z) denotes the dependence of the stress and strain 

components on the through-the-thickness Cartesian coordinate. 
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Figure 4.3.4. Example of Kt trend through the plate thickness for a blunt U-notch, =4 mm and 

p=15 mm. 

 

4.3.3.6 Shear in-plane loading – Three dimensional V-notched plate 

Consider the Cartesian coordinate system centred at the tip of a rounded notch at 

the mid-plane (Fig. 4.3.3). The application of a remote in-plane shear loading 

(τnom = σxy) causes, at the notch tip, the presence of a non-negligible out-of-plane 

stress component (σyz) due to three-dimensional effects [9,106,107]. With the aim 

to emphasise this effect, in this work a flat specimen with finite thickness, 

weakened by double symmetrical rounded notches characterised by an opening 

angle equal to 120°, will be analysed. In the present work the behaviour of each 

stress-strain component through-the-thickness of the plate has been evaluated, by 

providing the trend of the stress concentration factor related to the O-mode (Kt,yz) 

along the z coordinate (see Fig. 4.3.5) as input of the incremental cyclic plasticity 

procedure.  
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Figure 4.3.5. 3D specimen subjected to in-plane shear (Mode II) fatigue loading and weakened by 

double symmetrical rounded V-notch (2 = 120°,  = 4 mm, p =15 mm): trend of the stress 

concentration factors Kt,ij as functions of the normalized through-the-thickness coordinate. 

 

The problem is governed by the following equations: 
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(4.3.24) 

where the subscripts (z) denote the dependence of the stress and strain 

components on the through-the-thickness Cartesian coordinate. 
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4.3.4. Incremental cyclic plasticity procedure  

In order to represent the local behaviour of the stress-strain components acting at 

the tip of a rounded notch during one loading cycle, a numerical procedure based 

on the incremental cyclic plasticity has been implemented in Wolfram 

Mathematica
®
. The applied procedure accurately follows the chart presented by 

Gao et al. [105]. In the following only the fundamental steps are quoted: 

 

 First of all, it is necessary to evaluate the material’s parameters, c
(i)

 and r
(i)

, 

on the basis of Eqs. (4.3.16-4.3.18) once known the material constitutive 

law (see the next Section for more details); 

 Then obtain the hypothetical linear-elastic stresses-strains at the notch tip 

at step i-th, σ
e
 and ε

e
, by knowing the stress concentration factors Kt,ij and 

the nominally applied loads; 

 Get the increment of hypothetical linear-elastic stress-strain components, 

δσ
e
 and δε

e
, between step i-th and i+1-th. The increments have to be small 

enough to well model the stress-strain behavior but at the same time a 

compromise has to be searched avoiding too much computational efforts. 

In the present investigation each loading cycle has been divided into N = 

1000 steps, in order to obtain very small values of stress and strain 

increments without increasing too much the computational time; 

 Evaluate the “energy dissipation coefficient” Cq on the basis of Eq. (4.3.2), 

once known the strain hardening exponent n’ of the material taken into 

account; 

 Obtain the tentative stresses and strains at the notch tip at step i+1-th by 

means of Eqs. (4.3.19-4.3.24) (depending on the case study), assuming no 

plastic deformations as a first attempt, that is el,ijpl,ijel,ijij  ; 

 Check the yield condition, f = 0 (Eq. (4.3.9)), and the occurrence of a 

positive plastic strain increment, 0pl,ij   (Eq. (4.3.10)); 

 Even if only one of the conditions is not satisfied, the tentative stresses and 

strains will be the true stresses and strains at the notch tip; the obtained 

solutions will be the i-th quantities at the next incremental step; 
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 If, instead, both the conditions are satisfied, plastic deformations will be 

induced at the notch tip; 

 Compute the plastic modulus function h (Eq. (4.3.12)); 

 Compute the true stress-strain components by solving the elastic-plastic 

system of equations depending on the case studied (Eqs. (4.3.19-4.3.24)), 

the obtained solutions will be the i-th quantities at the next incremental 

step; 

 Calculate the increment of equivalent plastic deformation p  (Eq. 

(4.3.14)) and then the tensor describing the incremental deviatoric 

backstress )i(~  (Eq. (4.3.13)); 

 Update the input values of the M backstress parts on the basis of the 

incremental deviatoric backstress previously evaluated:  

)i()i()i( ~~~  ; 

 Return to begin and start the next step. 

 

4.3.5. Finite Element modelling 

The case studies presented in Section 4.3.3 will be analysed by means of the 

incremental cyclic plasticity procedure and the obtained results will be compared 

with a bulk of elastic-plastic numerical analyses carried out with the FE code 

Ansys
®
 14.5.  

The Ansys
®
 kinematic hardening material model, which is based on the Chaboche 

cyclic plasticity model [126], has been adopted in order to simulate the material 

cyclic behaviour (see the next Section for more details).  

Then, aiming to simulate the cyclic fatigue loading applied to a specimen, a 

dedicated APDL routine has been implemented. This procedure permits to obtain 

also the stress-strain components acting at the notch tip that will be compared 

with the results obtained from the incremental cyclic plasticity frame. 

In order to investigate the accuracy of the results obtained from the incremental 

cyclic plasticity procedure [86,105], several 2D and 3D FE analyses have been 

carried out with the software Ansys
® 

14.5, by using four node solid elements 

(PLANE 182) for 2D analyses with uniaxial loading, four node axisymmetric-
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harmonic solid elements (PLANE 25) for 2D analyses with torsional or multiaxial 

loading and eight node solid elements (SOLID 185) for 3D models. 

In more detail, the following notched geometries have been studied: 

 

 2D flat specimens weakened by a circular hole and by double symmetrical 

blunt U-notches subjected to tension-compression fatigue loading, both 

under plain stress and plain strain conditions (see Figs. 4.3.1a,b); 

 an axis-symmetric specimen weakened by a circumferential semi-circular 

notch subjected to pure torsional and to multiaxial (tension-torsion) in-

phase fatigue loading (Fig. 4.3.2); 

 a flat specimen of finite thickness (3D analysis) weakened by a circular 

hole, by double symmetrical blunt U-notches and by double symmetrical 

rounded V-notches (2α = 90°) subjected to tension-compression fatigue 

loading (Figs. 4.3.1a,b,c); 

 a flat specimen of finite thickness (3D analysis) weakened by double 

symmetrical rounded V-notches (2α = 120°) subjected to nominal in-plane 

shear (τnom = σxy) fatigue loading (Fig. 4.3.3). 

 

The nominal stress components have been applied to FE models by means of 

proper forces applied to the cross section of the specimens, far from the notch 

stress concentration zone. Then, the local elastic-plastic stress-strain components, 

which act at the notch tip and define the hysteresis loops compared in the 

following Sections, have been obtained directly from FE results. 

 

4.3.6. Material parameters 

The material parameters, required to simulate the cyclic material behaviour both 

in the incremental cyclic plasticity procedure (Section 4.3.4) and in the elastic-

plastic FE analyses (Section 4.3.5), can be evaluated from the material mechanical 

properties on the basis of simple expressions. 

The values of the mechanical properties of the material taken into account, an 

AISI 304L steel, are taken from a recent contribution by Meneghetti and Ricotta 

[127] and are given in Table 4.3.1. The stress defining the upper limit of purely 
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elastic strains on the material cyclic curve, based on the results of strain controlled 

fatigue tests, is named * and it is equal to 160 MPa. Knowing this value, the 

quantification of the yield strength in simple shear, k, is straightforward. On the 

basis of the von Mises criterion, adopted in agreement with what was done in the 

cyclic plasticity model (see Eq. (4.3.9)), it can be obtained: 

MPa4.92
3

*
k 


         (4.3.25) 

In the case of cyclic loading the von Mises yield criterion is the most widely used 

in the literature as highlighted in [86,99,105]. However other yield criteria could 

be applied, defining accordingly also the yield function in the cyclic plasticity 

model (see Section 4.3.2.2). 

As highlighted in Section 4.3.2.2, the knowledge of the stabilized cyclic curve 

(SCC) is required in order to obtain the necessary parameters for the application 

of the cyclic plasticity models. The aim of the present work is to compare the 

stabilized hysteresis loops obtained from the FE code (Ansys®) with those 

directly derived by means of a cyclic plasticity-based incremental procedure. No 

attention was paid here to initial material softening or hardening. In that case, 

mandatorily, the material monotonic curve should be the input both of FE 

analyses (Ansys® models) and of the incremental procedure implemented in 

Mathematica®.  

The material under consideration has been thought to obey to a linear elastic 

behaviour up to * and then to a Ramberg-Osgood representation (Fig. 4.3.6). 

Accordingly the stabilized cyclic curve (SCC) can be defined as: 




















 









*when
'K

*

E

*when
E

'n

1       (4.3.26) 

The Ramberg-Osgood’s parameters, reported in Table 4.3.1, have been 

determined in [127] by fitting the apex points of the hysteresis loops measured 

experimentally at 50% of the total fatigue life for different applied strain 
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amplitudes. Different constitutive formulations could be considered. In principle 

the method could be applied with similar accuracy also adopting other constitutive 

laws by setting the appropriate material parameters. 

 

Table 4.3.1. Material properties of AISI 304L [127]. 

 

E ν K’ n’ σ* k 

MPa  MPa  MPa MPa 

194700 0.3 2250 0.337 160 92.4 

 

 

 

Figure 4.3.6. Plastic part of the stabilised cyclic curve related to AISI 304L [127]. Comparison 

between Ramberg-Osgood, Jiang-Sehitoglu’s multi-linearization and Chaboche’s multi-parametric 

function. 

 

In the case of the incremental cyclic plasticity model (see Sections 4.3.2 and 

4.3.4), the characterisation of the material behaviour is based on the parameters 

c
(i)

 and r
(i)

. The procedure for calculating them consists on a multi-linearization of 

the plastic part of the SCC (Fig. 4.3.6), following the guidelines explained by 
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Jiang and Sehitoglu [100] and by Jiang and Kurath [128]. The Jiang-Sehitoglu’s 

material parameters (Table 4.3.2) have been determined using Eqs. (4.3.16-

4.3.18), by means of M = 10 couples (,pl) on the stabilised cyclic curve. As 

already remarked, the parameters 
(i)

 have been set equal to zero, thus neglecting 

a priori variations of ratchetting rate decay.  

In the case of the elastic-plastic FE analyses, instead, the Ansys
®
 kinematic 

hardening material model, based on Chaboche plasticity model, has been adopted 

in order to simulate the material cyclic behaviour. Different from the incremental 

cyclic plasticity procedure, in this case the plastic part of the material SCC needs 

to be described using a multi-parametric function (Fig. 4.3.6) according to the 

following expression [129–131]:  

 






j

1i

pli

i

i tanh
C

*         (4.3.27) 

where Ci and i (Table 4.3.3) are material parameters to be obtained by means of a 

dedicated fitting routine, applied to the plot of the material Ramberg-Osgood 

formulation (Eq. (4.3.26)). In this work, thirteen different parameters (j = 5) have 

been furnished to the FE software, namely five couples (Ci, i), the Young’s 

modulus E, the Poisson’s ratio ν and the yield strength *.  

In both cases the simplified material curves accurately match the actual behaviour 

of the considered material. All the parameters employed in the analyses are listed 

in Tables 4.3.2 and 4.3.3. 

 

 

Table 4.3.2. Jiang-Sehitoglu’s material parameters. 

 

i 1 2 3 4 5 6 7 8 9 10 

ci 127408 9783 2523 930 441 223 123 71 43 27 

ri 29 33 32 33 35 39 43 48 51 220 
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Table 4.3.3. Material parameters employed in the Ansys® kinematic hardening routine, based on 

Chaboche plasticity model. 

 

i 1 2 3 4 5 

Ci 1398000 69860 13820 6002 600 

γi 11000 449.6 60 10 0.5 

 

 

4.3.7. Results and discussions 

The aim of the present work is to estimate, by means of a cyclic plasticity-based 

incremental procedure, the hysteresis loops to which the material is subjected at 

the critical point when a fatigue loading is applied to a notched component, given 

the proper material stabilized cyclic curve (SCC), the geometry of the component 

and the nominally applied loading condition. 

The different hysteresis loops obtained from the incremental cyclic plasticity 

procedure and from the cyclic elastic-plastic FE analyses will be compared 

hereafter, considering the two-dimensional cases above mentioned. Finally the 

three-dimensional stress and strain distribution effects arising at the tip of a 

rounded notch in a thick plate subjected to uniaxial and in-plane shear fatigue 

loadings will be investigated. The influence of the increase of the stress 

concentration factor and of the diminishing of the notch root radius, as well as the 

effects of the notch angle and depth on the accuracy of the method would be 

surely worth of investigation. However, due to the weight of numerical and 

computational efforts the present analysis has been limited to some specific 

geometries, characterized by blunt notches. To extend the procedure to 

sharp/pointed V-notches a new formulation would be required. 

The applied nominal load amplitudes have been chosen in order to guarantee a 

state of small scale yielding on the neighbourhood of the notch tip. This condition 

is necessary to ensure the validity of the incremental procedure based on cyclic 

plasticity, being one of its basic hypothesis [86,90].  

The load ratio R has been set equal to -1 for all the processed analyses. The 

method is able to take into account also non-zero mean stresses once defined the 
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material properties 
(i)

 able to take into account the ratcheting effect. The 

complete set of material properties employed here [127] does not report 

parameters for different values of the nominal load ratio, not allowing thus to 

determine the parameters (
(i)

 in accordance with the procedure described in 

[100]) necessary to analyse asymmetric cyclic loading. 

 

4.3.7.1. Stress-strain state at the tip of a rounded notch considering plane 

stress conditions 

The attention has been initially focused on the case of a very thin flat specimen 

weakened by a circular hole or by double symmetrical blunt U notches (plane 

stress conditions). 

For first a circular hole with diameter, d, equal to 10 mm in a plate of ligament W 

= 200 mm has been taken into account (see Fig. 4.3.1a). The nominal stress 

amplitude σa,nom of the tension-compression loading cycle has been chosen equal 

to 0.8 times *, namely 128 MPa. 

In this case only one hysteresis loop, related to yy and yy, can be used as a term 

of comparison (see Fig. 4.3.7). From Fig. 4.3.7 it can be seen a very satisfactory 

agreement between the analytical incremental procedure and FE cyclic analyses. 

The transient behaviour of the material is substantially identical for both the cases, 

whereas an almost negligible distinction between the two curves can be observed 

on the lower and higher bounds of the hysteresis loops. This slight deviation can 

be thought of as due to a numerical inaccuracy of the incremental cyclic procedure 

induced by an increment of the hypothetical elastic stresses and strains not small 

enough. 
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Figure 4.3.7. 2D flat specimen weakened by a circular hole subjected to a tension-compression 

fatigue loading under plane stress condition. Comparison between the hysteresis loops at the notch 

tip, obtained from the incremental procedure and the cyclic FE analyses. a,nom = 0.8 *. 

 

In order to investigate the effect of the local notch geometry on the accuracy of 

the results, a flat specimen weakened by double symmetrical U-notches with 

different notch root radii (Fig. 4.3.1b) have been analysed ( = 4 and 1 mm). The 

notch depth, p, has been kept constant and equal to 15 mm.  

As it can be seen from Fig. 4.3.8a, the agreement between analytical and 

numerical results is very satisfactory for a nominal stress amplitude equal to 0.8 

*. Obviously, moving towards a sharper configuration ( = 1 mm), identical 

loading conditions result in an increase of the plastic zone ahead of the notch tip, 

the deviation between the results based on the two considered procedures slightly 

increases (Fig. 4.3.8b) because the small scale yielding conditions is no longer 

satisfied. 
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Figure 4.3.8. 2D flat specimen weakened by double symmetrical U-notches subjected to a tension-

compression fatigue loading under plane stress condition. Comparison between the hysteresis 

loops at the notch tip, obtained from the incremental procedure and the cyclic FE analyses. (a)  = 

4 mm; (b)  = 1 mm. 
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4.3.7.2. Stress-strain state at the tip of a rounded notch considering plane 

strain conditions 

It is well known that under plane strain conditions the amount of plasticity at the 

notch tip neighbours is less pronounced than under plane stress. Accordingly, in 

this section the same geometries studied under plane stress have been analysed 

under plane strain conditions. The incremental system of equations (Eq. (4.3.20)) 

has been used in order to obtain the results from the incremental procedure. 

Results are presented in Figs. 4.3.9 and 4.3.10.  

 

 

 

Figure 4.3.9. 2D flat specimen weakened by a circular hole subjected to a tension-compression 

fatigue loading under plane strain condition. Comparison between the hysteresis loops at the notch 

tip, obtained from the incremental procedure and the cyclic FE analyses. a,nom = 0.8 *. 
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Figure 4.3.10. 2D flat specimen weakened by double symmetrical U-notches subjected to a 

tension-compression fatigue loading under plane strain condition. Comparison between the 

hysteresis loops at the notch tip, obtained from the incremental procedure and the cyclic FE 

analyses. (a)  = 4 mm; (b)  = 1 mm. 
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As it can be seen from Figs. 4.3.9 and 4.3.10a, the agreement between analytical 

and numerical results is very satisfactory for a nominal load stress amplitude 

equal to 0.8 *, being the deviation substantially zero also at the lower and higher 

bounds of the hysteresis loops. Also in the case of plane strain conditions, taking 

into consideration a sharper notch geometry ( = 1 mm), the deviation between 

the results becomes higher (Fig. 4.3.10b). Moreover it is worth to be underlined 

that, with respect to the plane stress conditions, in this case the plastic hysteretic 

energies are slightly lower. 

 

4.3.7.3. Stress-strain state at the tip of a rounded notch subjected to pure 

torsional fatigue loading 

The attention has been initially focused on the case of an axis-symmetric 

specimen weakened by a circumferential semi-circular notch with  = p = 4 mm 

and with a net section characterized by a diameter d = 20 mm. The overall 

geometry of the specimen is shown in Fig. 4.3.2. 

The nominal stress amplitude remotely applied to the specimen has been set equal 

to 0.5 times the yield strength in simple shear, k. This choice is tied to the arising 

of a more extended plastic area ahead of the notch tip with respect to a tension-

compression cyclic loading. 

With reference to the Cartesian coordinate system shown in Fig. 4.3.2, only one 

hysteresis loop acts at the notch tip, that is tied to the “yz” stress and strain 

components. Dealing with the incremental plasticity procedure, the system of 

equations defined by Eq. (4.3.21) has been solved. 

From Fig. 4.3.11 it can be observed a very satisfactory agreement between the 

results obtained from the analytical incremental cyclic plasticity procedure and 

those based on FE cyclic analyses, being the percentage deviation lower than 5% 

both for the stress range (Δσ, Δ% = 3.70%) and the strain one (Δγ, Δ% = 4.05%). 

The material transient behaviour is substantially identical for both the cases, 

whereas an almost negligible distinction between the two curves can be observed 

on the lower and higher bounds of the hysteresis loops. This slight deviation can 

be thought as being caused by a numerical inaccuracy of the incremental cyclic 
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procedure induced by an increment of the hypothetical elastic stresses and strains 

not small enough.  

 

 

 

Figure 4.3.11. Cylindrical specimen weakened by a semi-circular notch (ρ = p = 4 mm, diameter 

of the net section d = 20 mm) subjected to torsion (Mode III) fatigue loading. Comparison between 

the hysteresis loop obtained from the incremental cyclic plasticity procedure and the cyclic FE 

analyses. Also the stress-strain curve obtained by perfectly elastic FE model has been reported for 

comparison. 

 

4.3.7.4. Stress-strain state at the tip of a rounded notch subjected to 

multiaxial fatigue loading 

The same specimen’s geometry considered in the previous case and subjected to a 

multiaxial tension-torsion in-phase loading has been taken into examination. 

Considering the Cartesian coordinate system shown in Fig. 4.3.2 three different 

hysteresis loops act at the notch tip: in fact the normal components “yy” and “zz” 

of stress-strain act simultaneously in addition to the shear “yz” component. 

However, the “zz” component is negligible and it has not been taken into 
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consideration. The nominal tensile stress amplitude and the torsional stress 

amplitude have been set equal to 0.5∙* and 0.38∙k respectively. This choice 

ensures a small scale yielding condition at the notch tip.  

The system of incremental equations (Eq. (4.3.22)) has been solved in order to 

obtain the results from the incremental cyclic plasticity procedure. The results are 

shown in Figs. 4.3.12a and 4.3.12b. 

As it can be seen from Figs. 4.3.12a and 4.3.12b, the agreement between 

analytical and numerical results is very satisfactory. In particular in the case of the 

hysteresis loop tied to the normal stress yy (Fig. 4.3.12b), the percentage 

deviation is very low both for the stress range (Δσ, Δ% = 2.20%) and the strain 

one (Δε, Δ% = 0.35%), while higher values have been obtained in the case of the 

hysteresis loop related to the shear stress component yz (Fig. 4.3.12a), both for the 

stress range (Δσ, Δ% = 6.68%) and the strain one (Δγ, Δ% = 5.46%). 

Dealing with the computational time, the incremental cyclic plasticity procedure 

proved to be about 10 times faster than an elastic-plastic cyclic FE analysis with 

an average level of accuracy. 
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Figure 4.3.12. Cylindrical specimen weakened by a semi-circular notch (ρ = p = 4 mm, diameter 

of the net section d = 20 mm) subjected to tension-torsion (Mode I+III) in-phase fatigue loading. 

Comparison between the hysteresis loops obtained from the incremental cyclic plasticity procedure 

and the cyclic FE analyses. 

 

4.3.7.5. Stress-strain state at the tip of a rounded notch subjected to a 

uniaxial tension-compression loading considering a 3D analysis 

Dealing with a three-dimensional thick plate weakened by different rounded 

notches and subjected to a cyclic tension-compression loading (Figs. 4.3.1a,b,c), a 

biaxial state of stress-strain is induced at the notch tip. In particular, through the 

plate thickness the stress concentration factors related to the acting stress 

components reduce while moving from the mid plane to the free surface (for 

example see Fig. 4.3.4 for the case of a blunt U-notch).  

As stated above, in fact, the incremental procedure based on the cyclic plasticity 

theory has been extended for the first time in the present work with the aim to 

investigate the three dimensional effects arising at the notch tip. Starting from the 

through-the-thickness variations of the “yy” and “zz” linear-elastic stress 
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concentration factors Kt (obtainable with a 3D linear-elastic FE analysis), the new 

incremental routine allows us to obtain the whole elastic-plastic stress-strain state 

at the tip of the notch.  

As a first case study, a three-dimensional flat specimen weakened by a circular 

hole has been considered, with d = 10 mm, W = 200 mm and thickness 2t equal to 

40 mm (Fig. 4.3.1a). The applied nominal stress related to the uniaxial fatigue 

loading has been set equal to 0.8 times *, in order to guarantee a small scale 

yielding condition at the notch tip. Figs. 4.3.13a-b show the “yy” hysteresis loop 

at different coordinates along the thickness: at the mid plane, at a coordinate z/2t 

= 0.25 mm and on the free surface of the specimen. A comparison has been 

performed with the results obtained from a 3D cyclic FE analysis as already done 

for the problems investigated in the previous sections. As expected, the hysteresis 

loop tends to become smaller moving from the mid plane to the free surface of the 

specimen, following the behaviour of the related stress concentration factor. The 

hysteresis loop tied to the “zz” component has not reported, being it negligible. As 

it can be seen from Figs. 4.3.13a-b, the agreement between analytical and 

numerical results is very satisfactory, being the deviation substantially zero with 

reference to all the different coordinates along the thickness of the plate. 
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Figure 4.3.13. 3D specimen weakened by a circular hole subjected to a tension-compression 

fatigue loading. Comparison between the hysteresis loops at the notch tip, obtained from the 

incremental procedure and the cyclic FE analyses with reference to (a) mid plane; (b) free surface. 

a,nom = 0.8 *. 

 

The second case taken into consideration is a flat specimen with a thickness 2t 

equal to 40 mm weakened by double symmetrical blunt U-notches characterised 

by a notch tip radius equal to 4 mm and a notch depth of 15 mm (Fig. 4.3.1b). The 

load is the same applied in the previous investigation. Once again Figs. 4.3.14a-b 

demonstrate that the hysteresis loop related to “yy” component, follows the stress 

concentration factor behaviour. Also in this case a very good correlation has been 

obtained between analytical and numerical FE results. 
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Figure 4.3.14. 3D specimen weakened by double symmetrical U-notches ( = 4 mm) subjected to 

a tension-compression fatigue loading. Comparison between the hysteresis loops at the notch tip, 

obtained from the incremental procedure and the cyclic FE analyses with reference to (a) mid 

plane, (b) free surface. a,nom = 0.8 *. 
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Figure 4.3.15. 3D specimen weakened by double symmetrical rounded V-notches ( = 4 mm, 2 

= 90°) subjected to a tension-compression fatigue loading. Comparison between the hysteresis 

loops at the notch tip, obtained from the incremental procedure and the cyclic FE analyses with 

reference to (a) mid plane, (b) free surface. a,nom = 0.8 *. 
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Finally, a flat specimen weakened by double symmetrical rounded V-notches with 

an opening angle 2 = 90°, a notch root radius  = 4 mm and a notch depth p = 15 

mm has been studied (Fig. 4.3.1c). The specimen has been loaded with a uniaxial 

fatigue loading characterised by a nominal stress amplitude equal to 0.8 times *. 

As in the previous cases, only the hysteresis loop tied to the prevailing component 

of stress and strain has been taken into account. Figs. 4.3.15a-b show, once again, 

a very good correlation between analytical results and cyclic FE analyses on 

different normalised “z” coordinates, in fact, approaching the free surface of the 

specimen the hysteresis loop becomes smaller than that related to the mid plane. 

 

4.3.7.6. Stress-strain state at the tip of a rounded notch subjected to in-plane 

shear fatigue loading considering a 3D analysis 

A three-dimensional thick plate weakened by double symmetrical rounded V-

notches (2 = 120°), characterized by a notch root radius  = 4 mm and a notch 

depth p = 15 mm, and subjected to in-plane shear fatigue loading (Fig. 4.3.3) has 

been considered in order to extend the incremental procedure, based on the cyclic 

plasticity theory, to the study of the out-of-plane effects.  

As already explained in the Introduction, if a notched component of finite 

thickness is subjected to a nominal mode II loading, an out-of-plane stress 

component (comparable to a mode III stress component) arises at the notch tip 

(for example see Fig. 4.3.5 for the case of a blunt V-notch). This effect is strictly 

related to the contraction/expansion of the specimen due to the Poisson’s ratio [9].  

The so-called O-mode follows the through-the-thickness trend shown in Fig. 

4.3.5. In particular, the out-of-plane effect (Kt,yz) does not act on the mid plane 

and on the free surface of the specimen, while it increases its intensity moving 

towards the free surface, reaching its maximum value at a normalized through-

the-thickness coordinate z/2t = 0.46 (for the case taken into account) and then it 

drops to zero. The theoretical stress concentration factor Kt,yz has been defined as 

the ratio between the stress component induced by the out-of-plane effect (σyz) 

through the plate thickness and the nominal in-plane shear stress applied to the 

model (τnom). Values of Kt lower than 1 have been obtained because they are 

linked to induced stresses. 
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In order to obtain a non-negligible yielded area at the notch tip, a very high 

nominal in-plane shear stress amplitude has been applied. As it can be noted from 

Fig. 4.3.5, the maximum intensity of the out-of-plane effect is close to 0.55 times 

the nominally applied load in a plane close to the free surface. For this reason the 

nominal in-plane shear stress amplitude has been set equal to 5∙k, with the aim to 

amplify the three-dimensional effect. 

Starting from the through-the-thickness variation of the “yz” linear-elastic stress 

concentration factor Kt (obtainable with a 3D linear-elastic FE analysis), the new 

incremental routine allows us to obtain the whole elastic-plastic stress-strain state 

at the notch tip.  

In particular, three different through-the-thickness normalized coordinates (z/2t) 

have been chosen to compare the results obtained by means of the incremental 

cyclic plasticity procedure and by means of 3D FE cyclic elastic-plastic analyses, 

as already done for the problems investigated in the previous sections. As it can 

be seen from Figs. 4.3.16a-c, the agreement between analytical and numerical 

results is very satisfactory, being the deviation limited with reference to all the 

different coordinates along the thickness of the plate. In particular in the case z/2t 

= 0.25 (Fig. 4.3.16a), the percentage deviation is good both for the stress range 

(Δσ, Δ% = 6.12%) and the strain one (Δγ, Δ% = 8.18%), while values even lower 

have been obtained in the case z/2t = 0.46 (Fig. 4.3.16b), both for the stress range 

(Δσ, Δ% = 1.88%) and the strain one (Δγ, Δ% = 4.39%), and also in the case z/2t 

= 0.49 (Fig. 4.3.16c), both for the stress range (Δσ, Δ% = 1.94%) and the strain 

one (Δγ, Δ% = 1.18%). 

Fig. 4.3.16a shows the “yz” hysteresis loop at a coordinate z/2t = 0.25, in the 

increasing branch of the curve (Fig. 4.3.5) representing the through-the-thickness 

trend of the out-of-plane stress concentration factor Kt,yz. It is worth noting that, in 

this particular case, the yield condition has been just satisfied and the plastic 

strains are still very low.  

Moving from the mid plane to the free surface, the Kt,yz reaches its maximum 

value at a normalized coordinate z/2t = 0.46 (see Fig. 4.3.5). In this case (Fig. 

4.3.16b) a very dilated hysteresis loop is obtained, confirming the presence of a 
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more extended yielded area close to the notch tip. The agreement between 

analytical and numerical results remains very satisfactory. 

Approaching the free surface, the out-of-plane stress concentration factor 

decreases, equating zero at z/2t = 0.50 (see Fig. 4.3.5). Accordingly, the area 

inside the “yz” hysteresis loop quickly decreases, as it can be observed from the 

comparison between Fig. 4.3.16b (z/2t = 0.46) and Fig. 4.3.16c (z/2t = 0.49), up to 

vanishing on the free surface.  

On the basis of the obtained results, it can be stated that the modified incremental 

cyclic plasticity procedure is sensitive to the three-dimensional effects induced by 

the application of an in-plane cyclic shear loading. 

The obtained results confirm what has already been observed in a recent 

contribution [132], in which the case of notched components subjected to uniaxial 

loadings has been analysed. 
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Figure 4.3.16. 3D specimen weakened by double symmetrical rounded V-notch ( = 4 mm, 2 = 

120°) subjected to in-plane shear (Mode II) fatigue loading. Comparison between the hysteresis 

loops obtained from the incremental cyclic plasticity procedure and the cyclic FE analyses with 

reference to (a) z/2t = 0.25, (b) z/2t = 0.46 and (c) z/2t = 0.49. a,nom = 5 k. 
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4.3.8. A link between cyclic plasticity and the averaged strain energy density 

criterion 

In this section the link between the strain energy density (SED) averaged over a 

control volume surrounding the notch tip [27] and the area inside the hysteresis 

loops will be investigated. In the past, the SED criterion has been already used in 

order to find a correspondence between linear elastic and elastic-plastic behaviour. 

In this context the relation between linear elastic and elastic-plastic notch stress 

intensity factors has been obtained under plane stress and plane strain conditions 

[27]. 

 

 

 

 

Figure 4.3.17. Control volume under multiaxial loading (tension and torsion) for specimens 

weakened by rounded V-notches; r0 = (q1)/q and q = (2-2)/ 
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The strain energy density, averaged over the control volume shown in Fig. 4.3.17, 

has been evaluated with some static FE elastic-plastic analyses performed in 

Ansys
®
. In all the cases taken into account the static applied load has been set 

equal to the nominal amplitude of the cyclic loading adopted in the incremental 

cyclic plasticity procedure. The values of the averaged SED have been obtained 

for three different control radius (Rc = 0.1, 0.2 and 0.3 mm) in order to investigate 

the influence of this fundamental parameter on the outputs and in addition to 

ensure the stability of the comparison. In the case of blunt V-notches [29], the 

control volume assumes the crescent shape shown in Fig. 4.3.17, where Rc is the 

size of the volume measured along the notch bisector line starting from the notch 

tip. The outer radius of the crescent shape is equal to Rc + r0, where r0 depends on 

the notch opening angle 2 and on the notch radius ρ according to the following 

expression [29]: 





q

1q
r0           (4.3.28) 

with q defined as: 






22
q           (4.3.29) 

The elastic-plastic averaged SED is defined as the ratio between the total elastic-

plastic strain energy (E), related to the material inside the control volume, and the 

area of the control volume (A), both evaluated directly from the FE code: 

A

E
SED            (4.3.30) 

The area inside the hysteresis loops related to one loading cycle (Ahl) is defined by 

Eq. (4.3.31) and it has been evaluated by means of a numerical integration routine 

applied to the hysteresis loops obtained by means of the incremental cyclic 

plasticity procedure (see Figs. 4.3.7-4.3.16 for some examples). 

  dAhl           (4.3.31) 
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In the present investigation, it has been thought that only the synergetic presence 

of a stress component with the related strain component causes a damaging effect. 

For instance this hypothesis leads to neglect the action of the “xx” strain 

component. In fact, because of equilibrium conditions, the related stress 

component holds zero value at the tip of a rounded notch (see Figs. 4.3.1-4.3.3). 

In order to obtain a correlation between the averaged SED and the area inside the 

acting hysteresis loops, four different analyses have been performed. In particular, 

the problem of cyclic tension-compression loading under plain stress, plain strain 

and generic three-dimensional conditions as well as the problem of a cyclic 

multiaxial in-phase tension-torsion loading have been addressed. In the first case 

studies, a specimen weakened by double symmetrical blunt U-notches with a 

radius at the notch tip () equal to 1 mm has been considered. The notch depth p 

was set equal to 15 mm (see Fig. 4.3.1b). In the last case study, instead, an axis-

symmetric specimen weakened by a circumferential blunt U-notch with a notch 

tip radius  equal to 1 mm has been considered. The notch depth p was set equal 

to 6 mm (see Fig. 4.3.2). The load ratio R has been taken always equal to -1. The 

material taken into account is the same used for the analyses in Section 4.3.6, 

namely AISI 304L steel [127]. 

Several analyses have been carried out by applying different nominal load 

amplitudes to the notched component, in order to evaluate the trend of the ratio 

SED/Ahl, defined as Cm, between the value of the averaged SED and the area 

inside the hysteresis loop acting at the notch tip (Ahl). 

Initially the problem of a 2D flat specimen weakened by double symmetrical blunt 

U-notches and subjected to cyclic tension-compression loading has been 

addressed. The obtained results are shown in Fig. 4.3.18, with reference only to a 

plane strain state for the sake of brevity. From the figure it is evident that, for high 

values of the nominal applied stress, the parameter Cm tends to an asymptotic 

constant value. For low loads, instead, the link between the SED and the area 

inside the hysteresis loop is more complex. Accordingly, for high loads, the area 

inside the hysteresis loop can be directly determined from the SED value through 

a multiplicative factor. This behaviour holds true for all the three considered 

control volumes and, as it can be seen from Fig. 4.3.18, the ratio decreases with 
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increasing the value of the critical radius. Thus, by adopting the control radius Rc 

related to the properties of the material taken into account, the plastic strain 

hysteretic energy, considered to be an index for fatigue damage [117–119], can be 

easily estimated by means of a static FE analysis. The same analyses have been 

carried out for a very thin plate (plane stress conditions). Also in this case a 

plateau value exists at high applied loads, namely when a non-negligible amount 

of plasticity is present at the notch tip. This value, as expected, is similar to that 

obtained from the plane strain analysis. 

 

 

Figure 4.3.18. 2D specimen weakened by double symmetrical U-notches ( = 1 mm) subjected to 

a tension-compression fatigue loading. Ratio between the elastic-plastic averaged SED and the 

area inside the hysteresis loop at the notch tip. Under plane strain conditions. 

 

Since plane stress and plane strain conditions are only “plane idealisations”, the 

investigation has been extended to the 3D problem of a thick plate weakened by 

double symmetrical U-shaped notches and subjected to a tension-compression 

cyclic loading (Fig. 4.3.1b). At the notch tip, two different couples of stress and 

strain components ((yy, yy) and (zz, zz)) act. However, only the hysteresis loop 

area tied to the “yy” component has been taken into account, being that related to 

the “zz” component almost negligible (less than 1%).  
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Figure 4.3.19. 3D specimen weakened by double symmetrical U-notches ( = 1 mm) subjected to 

a tension-compression fatigue loading. Ratio between the elastic-plastic averaged SED and the 

area inside the hysteresis loop at the notch tip, with reference to (a) mid plane and (b) free surface. 
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It is worth mentioning again that, in a thick plate weakened by a blunt notch, the 

maximum notch tip stress varies as a function of the through-the-thickness 

coordinate, as a result a variation of the ratio SED/Ahl might be present, as well. 

Accordingly, the correlation factor Cm has been determined on the mid plane (z/2t 

= 0) and on the free surface of the specimen (z/2t = 0.5), see Fig. 4.3.19a and 

4.3.19b respectively. Also in this case, it is confirmed that the parameter Cm 

reaches an asymptotic value for high nominal applied stresses, in both locations 

taken into consideration.  

It is also interesting to discuss the through-the-thickness variation of the 

correlation factor Cm with reference to a control radius Rc equal to 0.3 mm (Fig. 

4.3.20). It can be observed that the parameter holds an almost constant value 

moving from the mid plane to the free surface of the specimen for all the different 

nominal applied loads. 

 

 

 

Figure 4.3.20. 3D specimen weakened by double symmetrical U-notches ( = 1 mm) subjected to 

a tension-compression fatigue loading. Through the thickness variability of the ratio between the 

elastic-plastic averaged SED and the area inside the hysteresis loop at the notch tip. 
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Finally the problem of an axis-symmetric specimen weakened by a 

circumferential blunt U-notch and subjected to cyclic multiaxial in-phase tension-

torsion loading has been addressed (Fig. 4.3.2). Three couples of stress-strain 

components act at the notch tip, in particular the normal components “yy” and 

“zz” and the shear component “yz”. Being the hysteresis loop areas comparable, 

the total area has been thought as the sum of them. The obtained results are shown 

in Fig. 4.3.21 for different nominally applied loads, where eq is the nominal 

equivalent von Mises stress. It is evident that, for high values of the nominally 

applied stress, the parameter Cm tends to an asymptotic constant value. 

 

 

 

Figure 4.3.21. Cylindrical specimen weakened by a circumferential blunt U-notch ( = 1 mm and 

p =6 mm) and subjected to multiaxial (Mode I+III) in-phase fatigue loading. Ratio between the 

elastic-plastic averaged SED and the area inside the hysteresis loop. 

 

The presence of a plateau creates an interesting link between the hysteresis area 

and the SED averaged in the control volume, which could not be predicted a 

priori. In the case of low applied loads, instead, the link between the averaged 

SED and the area of the hysteresis loop is more complex. Accordingly, for high 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.20 0.40 0.60 0.80 1.00

Rc=0.1 mm

Rc=0.2 mm

Rc=0.3 mm

S
E

D
/A

h
l,

 C
m

 

eq, nom/* 

Blunt U-Notches 

 = 1 mm; p = 6 mm 

* = 160 MPa 

Multiaxial Loading 

Rc = 0.1 mm 
 

Rc = 0.2 mm 
 

Rc = 0.3 mm 



4 - Three-dimensional effects - Notched components under cyclic plasticity 

 

 
357 

 

loads, the total area inside the hysteresis loops can be directly determined by 

means of the averaged SED via a multiplicative factor. This behaviour holds true 

for all the three considered control volumes and, as it can be seen from Fig. 

4.3.21, the ratio decreases with increasing the size of the control radius. Thus, by 

adopting the proper control radius Rc related to the mechanical properties of the 

material taken into account, the plastic strain hysteretic energy, considered to be 

an index for fatigue damage in the literature [117–119], can be easily estimated by 

means of a static FE analysis. 

 

4.3.9. Discussion 

In this work, the incremental cyclic plasticity procedure has been extended with 

the aim to investigate the three-dimensional effects arising at the tip of a rounded 

notch subjected to in-plane shear fatigue loading. The incremental cyclic plasticity 

procedure has been initially validated with a number of bi-dimensional analyses, 

considering torsional and multiaxial (tension-torsion) in-phase loading conditions. 

In both cases the theoretical predictions have been compared with FE elastic-

plastic analyses showing a very good agreement.  

Subsequently, the approach has been extended with the aim of studying three-

dimensional effects arising at the notch tip considering plates of finite thickness 

subjected to in-plane shear fatigue loading and weakened by double symmetrical 

rounded V-shaped notches.  

The through-the-thickness variation of the stress concentration factors, as obtained 

by a linear-elastic static FE analysis, has been included into the incremental cyclic 

procedure in order to consider the triaxial nature of the problem. By doing so, the 

actual stress-strain state on different through-the-thickness coordinates has been 

evaluated and compared with three-dimensional elastic-plastic FE analyses, 

obtaining a very good agreement. The results demonstrate that 3D effects related 

to the presence of a finite thickness in a notched component cannot be neglected a 

priori either in linear-elastic problems or in the presence of a yielded region ahead 

of the notch tip. 

Finally, a link between the averaged strain energy density (SED) criterion and the 

area inside the hysteresis loops tied to the different stress and strain components 
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acting at the notch tip has been investigated. Several analyses have been carried 

out by applying different nominal stress amplitudes in order to evaluate the 

evolution of the ratio between the averaged SED and the area of the hysteresis 

loops acting at the notch tip. For high values of the nominally applied stress, the 

ratio tends to an asymptotic constant value. Accordingly, the plastic strain 

hysteretic energy, considered in the literature to be a parameter linked to the 

fatigue damage, can be directly determined by means of the averaged SED, 

obtained from a static FE analysis, via a multiplicative factor (Cm).  

The results obtained with reference to notched components subjected to multiaxial 

loadings confirm those obtained in the case of uniaxial loadings. 
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5.1 Comparison among energy-based criteria for fracture 

assessment of sharp V-notched components under Mode I 

loading 
(*)

 

 

Nomenclature 

E   Young’s modulus  

G   Strain Energy Release Rate 

K  scale factor dependent on the local geometry and the direction of 

fracture 

K1   Mode I Notch Stress Intensity Factor 

k1   NSIF according to Leguillon’s definition 

KI
*
  NSIF according to Carpinteri’s definition 

K1c   Mode I Notch Stress Intensity Factor at failure 

KIc  fracture toughness 

lc   length of the incremental crack according to Leguillon 

r, θ polar coordinates 

Rc   control radius for averaged SED evaluation 

W̅ SED averaged over the control volume 

Wc critical SED value of the considered material under tensile loading 

 

Symbols 

2   notch opening angle 

ΔSE    length of the crack nucleated at the notch tip according to 

Carpinteri 

λ1    Mode I Williams’ eigenvalue 

  Poisson's ratio 

θ̅c   fracture direction  

σ stress, subscripts rr, θθ, zz denote normal stresses 

 subscript rθ denote shear stresses 

c    ultimate tensile strength 
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(*) See also: 

 

Lazzarin, P; Campagnolo, A.; Berto, F. A comparison among some recent energy- and stress-

based criteria for the fracture assessment of sharp V-notched components under Mode I loading. 

Theoretical and Applied Fracture Mechanics; 71:21-30 (2014); 

 

5.1.1. Introduction 

A key issue in fracture mechanics is associated with the formulation of a 

sufficiently simple and accurate criterion for crack nucleation and propagation in 

structural elements under static and fatigue loading. For what concern structural 

elements weakened by cracks, the fracture initiation is generally determined by a 

critical value of the mode I stress intensity factor KI, associated with the opening 

crack mode loading: under plane strain conditions the critical value to failure is 

the material fracture toughness KIc. This fracture criterion has been first 

formalised by Irwin [1]. For cracked elements subjected to mode I loading, a well-

known link exists between the Irwin criterion and the Griffith criterion [2]. The 

latter assumes that failure occurs when the strain energy release rate G, defined as 

the derivative of the potential energy with respect to the crack surface area, 

reaches the critical value Gc, a material dependent parameter, which represents the 

energy needed to create a unit crack surface area. 

Criteria able to assess the brittle failure of sharply notched components, with the 

notch tip radius being zero or close to zero, have received much interest in the last 

decades. To state a sufficiently simple and reliable condition to predict failure 

initiation in cases involving points of stress singularity remains a topic of active 

research. At such points local stresses tend to infinity under linear elastic 

hypotheses so that, in analogy to the crack case, it is necessary to introduce a 

stress field parameter, the notch stress intensity factor (NSIF), which depends on 

the loading mode, the notch opening angle and the geometry of the component. In 

the linear elastic Notch Mechanics, NSIFs are generally used to assess the static 

failure of brittle components weakened by sharp V-notches [3–11]. Among these 

references it is notable the investigation carried out by Leicester [3] who 

emphasized the scale effect in wood structures with V-notches in the ambit of a 

project financed by the Australian Forest Production Laboratory. Dealing with the 
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fatigue crack initiation conditions of components with V-notches other references 

are also available [12–15]. When fatigue life is consumed as microcrack initiation 

and propagation inside the zone governed by the V-notch singularity, NSIFs can 

be used also for total fatigue life assessments, as documented for welded joints 

[16–18]. 

For a better understanding of the V-notch problem, it is useful to remember some 

stress-based criteria proposed in the last twenty years. Starting from a previous 

work due to Novozhilov [19], Seweryn proposed a brittle fracture criterion based 

on the assumption that crack nucleation or propagation occurs when the mean 

value of normal stress over a specified segment d0 reaches a limit value for the 

material (Seweryn, 1994 [7]). Afterwards, this criterion has been extended and 

applied also to structural elements subjected to mixed mode loading ([20,21]) by 

introducing a non local failure function combining normal and shear stress 

components, both normalized with respect to the relevant critical stresses of the 

material. 

A group of methodologies is represented by the Theory of Critical Distances 

(TCD) [22,23], according to which a characteristic material length parameter has 

to be used when performing fracture assessments on any kind of stress risers. The 

TCD assumes as a fracture parameter the normal stress calculated on a point at a 

specified distance from the notch tip (Point-Method) or the same stress averaged 

over a specified segment (Line-Method).  

By proceeding on parallel tracks, critical distance and line dimensions for notched 

components under fatigue limit conditions were correlated in [24,25] to the El-

Haddad parameter a0 [26]. The idea of stress averaging is the basis of Neuber’s 

fictitious notch rounding (FNR) approach [27]. Recently, the influence of plane 

stress or plane strain conditions on the multiaxiality factor, s, was highlighted in 

Ref. [28,29], as well as the essential role played by the V-notch opening angle.  

Worth mentioning is also the Cohesive Zone Model (CZM) sometimes called 

‘fictitious crack model’. First proposed for concrete, the CZM was later 

successfully extended to a number of brittle or quasi-brittle materials [30,31]. In 

these works both sharp and blunt U and V-notches were considered, under 

different loading conditions. 
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Finally, concluding this short review, some criteria based on the extension of J-

integral to notches [32,33] and on the modified Maximum Tangential Stress 

criterion [34,35] able to take into account singular and non-singular stress terms 

of Williams’ solution are mentioned. 

In the present investigation, two recent failure criteria involving energy-based 

calculations are discussed in detail with reference to sharp V-notches, that based 

on the averaged SED [36–39] and that called Finite Fracture Mechanics criterion, 

according to two different version, the former due to Leguillon [40,41], the latter 

due to Carpinteri et al. [42], as extension to V-notches of the crack case solution 

[43]. Extensions to in-plane mixed mode loading have been reported in the recent 

literature [44,45].  

The averaged SED criterion was first proposed in [36] and is based on the idea 

that the critical parameter for the material is the mean value of strain energy 

density evaluated over a control volume surrounding the notch tip. The method is 

reminiscent of Neuber’s concept of elementary structural volume [27] and Sih’s 

criterion based on factor S, which gives the strain energy density multiplied by a 

convenient distance from the crack or the V-notch tip [46,47]. It is obvious that 

any strain energy density approach cannot be used at the tip of a sharp V-notch 

since not only do stresses tend toward infinite but so does the strain energy 

density. On the contrary, in a small but finite volume of material close to the 

notch tip the energy always has a finite value and the main question is rather that 

of estimating the size of this characteristic volume as a function of the material 

and loading conditions [38,39].  

The major advantage of the averaged SED approach with respect to the local 

stress-based criteria is the mesh independency. While some parameters integrated 

in the local criteria (e.g. maximum principal stress, hydrostatic stress, deviatoric 

stress) require the accurate stress field determination, the SED averaged over a 

control volume is substantially insensitive to the mesh refinement [48,49] and can 

easily take into account also coupled three-dimensional effects [50,51]. Other 

advantages of the total strain energy density have been underlined by other 

researchers. In [52], extending previous analyses [48,49], the SED approach has 

been used in combination with two separate volumes, located over and below the 
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crack or the V-notch bisector line, to compute the stress intensity factors (SIFs) 

and NSIFs for isotropic homogeneous and bi-material plates containing cracks 

and notches under mode I, II and III loading conditions. In [53] a novel 

contribution of an energy-based method has been provided for simulating 3D 

crack evolution on the basis of the first-order variation of energy release rate with 

respect to crack advance.  

In the framework of Finite Fracture Mechanics, the criteria by Leguillon [40,41] 

and Carpinteri et al. [42] require the simultaneous verification of two separate 

conditions, the former based on stresses, the latter on an energy balance. Each 

condition is necessary but not sufficient to guarantee the fracture. When both 

conditions are simultaneously satisfied it is possible to get a sufficient condition 

for fracture. The governing idea is that at failure a finite incremental crack (or a 

finite crack advance) occurs at the notch tip. 

Leguillon [40,41] proposed a failure criterion for components weakened by sharp 

V-notches based on a combination of the Griffith criterion (in the incremental 

form) and the stress criterion, in order to determine the incremental crack length 

and the critical value of the Notch Stress Intensity Factor as a function of the 

material properties and the V-notch opening angle. Also Carpinteri et al. [42], in 

analogy to Leguillon, proposed a fracture criterion based on a combination of the 

energy criterion (critical strain energy release rate) and the averaged stress 

criterion, which enables to determine the incremental crack length and the critical 

value of the Notch Stress Intensity Factor. One should note that the two criteria 

are based on the same energy balance calculated considering a finite incremental 

crack, the difference being in the stress calculations: the first involves a point-

wise stress condition, the second considers an average stress condition. 

After having briefly summarized the analytical frame in terms of singular stress 

fields at V-notch tip, strain energy density averaged in a finite size volume and 

strain energy release rate, the three published brittle fracture criteria are compared. 

The analytical comparison is performed on the basis of the different expressions 

proposed for the critical Notch Stress Intensity Factor. 

Finally, the considered criteria are applied to components weakened by sharp V-

notches under mode I loading conditions in order to investigate the predictive 
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capability of each approach. The comparison involves a number of experimental 

data taken from the literature and related to different materials. 

 

5.1.2. Analytical frame 

With the aim of clarifying the bases of the failure criteria analysed in this work, 

this section summarises the analytical frame giving the expressions of the singular 

stress fields at V-notch tip, the SED averaged in the control volume and the strain 

energy release rate. Only Mode I loading conditions are taken into account, 

considering an isotropic and homogeneous material under linear elastic 

conditions.  

 

5.1.2.1. Singular stress fields at V-notch tip 

In the presence of a sharp (zero notch tip radius) V-notch, the stress distributions 

(Fig. 5.1.1a) due to a symmetric loading with respect to the notch bisector (Mode 

I) are [54,55]: 

{

σθθ
σrr
σrθ

}

=
K1 ∙ r

λ1−1

√2π

1

(1 + λ1) + χ1(1 − λ1)
[{

(1 + λ1) cos(1 − λ1)θ
(3 − λ1) cos(1 − λ1)θ
(1 − λ1) sin(1 − λ1)θ

}                      (5.1.1)

+ χ1(1 − λ1) {

cos(1 + λ1)θ

−cos(1 + λ1)θ

sin(1 + λ1)θ

}] =
K1 ∙ r

λ1−1

√2π
{

σ̃θθ
(1)

σ̃rr
(1)

σ̃rθ
(1)

} 

 

where the parameter K1 represents the Mode I Notch Stress Intensity Factor 

(NSIF) according to Gross and Mendelson’s definition [56], λ1 is the Mode I 

Williams’ eigenvalue [54], χ1 is an auxiliary parameter dependent on the notch 

opening angle 2α [55] while σ̃θθ
(1)

, σ̃rr
(1)

 and σ̃rθ
(1)

 represent the angular stress 
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functions for Mode I loading. Plane stress and plane strain conditions result in 

σzz = 0 and σzz = ν(σθθ + σrr), respectively. 

 

5.1.2.2. Strain energy density  

According to Beltrami [57], the total strain energy density (SED) is equal to the 

total work done by the system and is given by the Eq. (5.1.2). For a three 

dimensional state of stress:  

W(r, θ) =
1

2E
[σ11
2 + σ22

2 + σ33
2 − 2ν(σ11σ22 + σ11σ33 + σ22σ33)]              (5.1.2) 

where 11, 22 and 33 are the principal stresses in a given reference system. 

In the case of V-notched plate in Mode I , when only the contribution of the first 

singular term is significant, the SED can be directly linked to the NSIF, K1,  by 

substituting into Eq. (5.1.2) the singular stress field given by Eq. (5.1.1): 

W1(r, θ) =
1

2E
r2(λ1−1)K1

2 [σ̃θθ
(1)2

+ σ̃rr
(1)2

+ σ̃zz
(1)2

− 2ν(σ̃θθ
(1)σ̃rr

(1) + σ̃θθ
(1)σ̃zz

(1) + σ̃rr
(1)σ̃zz

(1))                                         (5.1.3)

+ 2(1 + ν)σ̃rθ
(1)2

] 

The strain energy density, averaged in a circular sector of radius Rc surrounding 

the notch tip (Fig. 5.1.1b), is given by the ratio between the elastic strain energy 

E(Rc) and the area of the circular sector A(Rc): 

W̅ =
E(Rc)

A(Rc)
=
∫ WdA
A

∫ dA
A

=
∫ ∫ W1(r, θ)

+γ

−γ
r drdθ

Rc
0

∫ ∫ r drdθ
+γ

−γ

Rc

0

=

1
E
I1(γ)
4λ1

K1
2Rc

2λ1

Rc2γ

=
1

E
e1K1

2Rc
2(λ1−1)                                                                         (5.1.4) 
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Figure 5.1.1 Polar coordinate system centred at the notch tip (a) and control volume (area) of 

radius Rc surrounding the V-notch tip. 

 

where I1 is the integral of the angular stress functions, which depends on the notch 

opening angle, 2α = 22, and the Poisson's ratio ν. I1 changes under plane 

stress or plane strain conditions. Finally, e1 is the parameter that summarizes the 

dependence from the notch geometry: 

I1(γ) = ∫ (σ̃θθ
(1)2

+ σ̃rr
(1)2

+ σ̃zz
(1)2

+γ

−γ

− 2ν(σ̃θθ
(1)
σ̃rr
(1)
+ σ̃θθ

(1)
σ̃zz
(1)
+ σ̃rr

(1)
σ̃zz
(1)
)                                         (5.1.5)

+ 2(1 + ν)σ̃rθ
(1)2

) dθ 

e1(2α) =
I1(γ)

4λ1γ
                                                                                                           (5.1.6) 

Values of e1 for plane strain conditions are given in Table 5.1.1 as a function of 

the V-notch opening angle [38,39]. The averaged value of the strain energy 

density needs the evaluation of a control radius value, which depends on the 

material, and varies under static and high cycle fatigue conditions loading [38,39].  
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Table 5.1.1 Values of the function e1(2α,ν). 

2α 

(degrees) 
λ e1 (ν = 0.2) e1 (ν = 0.3) e1 (ν = 0.4) 

0 0.5000 0.1623 0.1345 0.1003 

15 0.5002 0.1687 0.1400 0.1046 

20 0.5004 0.1706 0.1417 0.1061 

30 0.5014 0.1739 0.1448 0.1091 

40 0.5035 0.1764 0.1475 0.1119 

45 0.5050 0.1772 0.1485 0.1131 

60 0.5122 0.1780 0.1504 0.1162 

75 0.5247 0.1806 0.1498 0.1179 

80 0.5304 0.1739 0.1490 0.1179 

90 0.5445 0.1693 0.1462 0.1174 

100 0.5628 0.1631 0.1421 0.1158 

105 0.5739 0.1593 0.1394 0.1145 

120 0.6157 0.1459 0.1296 0.1090 

135 0.6736 0.1298 0.1172 0.1010 

140 0.6972 0.1241 0.1127 0.0979 

150 0.7520 0.1122 0.1030 0.0909 

160 0.8187 0.1002 0.0930 0.0834 

170 0.9000 0.0882 0.0828 0.0758 

180 1.0000 0.0771 0.0730 0.0673 
 

 

5.1.2.3. Strain energy release rate 

Consider a loaded body initially in an equilibrium state: it is characterized by a 

potential energy Wp and a kinetic energy Wk = 0. After the nucleation of a new 

crack, or the propagation of a pre-existing crack, there is a change in the potential 

and kinetic energy of the body. A balance between the internal and external work 

gives: 

dWint = dU + dWk + dWs = dWext           ⇒          

 d(U −Wext) + dWk + dWs = 0                                                                            (5.1.7) 

dWp + dWk + GcdS = 0                                                                                           (5.1.8) 
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where U is the elastic strain energy contained in the body, Wext is the work done 

by the external forces, and Wp and Wk are the potential and kinetic energy, 

respectively. Ws represents indeed the energy available for crack formation, which 

can be expressed as a function of the new crack surface dS and fracture energy per 

unit surface Gc.  

A condition for fracture can be derived from Eq. (5.1.8), being the kinetic energy 

always positive (dWk ≥ 0): 

dWp

dS
+ Gc ≤ 0         ⇒         G = −

dWp

dS
≥ Gc                                                 (5.1.9) 

The inequality obtained can be taken as a fracture criterion, in which G represents 

the Strain Energy Release Rate (SERR). When the equality is verified the change 

in kinetic energy is negligible (dWk → 0) and the crack propagation is stable; 

instead if G exceeds the critical value Gc then the crack propagation is unstable 

because the extra energy is transformed into kinetic energy of the crack itself 

(dWk ≠ 0). 

For two-dimensional problems a relationship between the Strain Energy Release 

Rate (G) and the Mode I Stress Intensity Factor (KI) has been demonstrated by 

Irwin [1]: 

{
 

 G =
KI
2

E
                                  plane stress 

G = (1 − ν2) ∙
KI
2

E
              plane strain

                                                           (5.1.10) 

Equation (5.1.9) represents the differential form of the Griffith fracture criterion 

[2], obtained by considering an infinitesimal increment of the crack surface 

δS → 0. Considering indeed a finite increment of the crack surface δS, Leguillon 

[40,41] obtained the incremental form of the fracture criterion: 

δWp

δS
+ Gc ≤ 0         ⇒         G = −

δWp

δS
≥ Gc                                                    (5.1.11) 

This is the governing idea of the Finite Fracture Mechanics (FFM). 
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5.1.3. Failure criteria for sharp V-notches 

In the literature the problem of the fracture assessment of components weakened 

by V-notches is typically treated with stress-based or energy-based approaches. In 

the present investigation, three different criteria are considered, in order of 

publication they are: the Strain Energy Density criterion (2001) [36], the 

Leguillon’s criterion (2001) [40,41] and the Carpinteri et al. criterion (2008) [42]. 

 

5.1.3.1. Strain energy density (SED) criterion 

According to Lazzarin-Zambardi [36] the brittle fracture of the material occurs 

when the average value of the strain energy density, calculated on a control 

volume of radius Rc surrounding the notch tip (Fig. 5.1.1b), is equal to the critical 

value Wc (Eq. (5.1.12)). According to Beltrami’s hypothesis, it can be obtained: 

Wc =
σc
2

2E
                                                                                                                     (5.1.12) 

where σc is the ultimate tensile strength and E the Young's modulus. 

Under Mode I loading, by imposing  W = Wc , and combining Eq. (5.1.4) and Eq. 

(5.1.12) one obtains: 

e1
E
∙

K1c
2

Rc
2(1−λ1)

=
σc
2

2E
                                                                                                    (5.1.13) 

The critical value of the Notch Stress Intensity Factor at failure, K1c, becomes: 

K1c =
1

√2e1
∙ σc ∙ Rc

(1−λ1)                                                                                       (5.1.14) 

The radius Rc can be easily determined by using a set of experimental data giving 

the critical value of the NSIF from a specific V-notch angle. If the notch opening 

angle is zero, one can use the fracture toughness KIc, as made by Yosibash et al. 

[58], the final expression is: 
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Rc =
(1 + ν) ∙ (5 − 8ν)

4π
∙ (
KIc
σc
)
2

                                                                         (5.1.15) 

Substitution of Eq. (5.1.15) into Eq. (5.1.14) gives the NSIF at failure K1c (Eq. 

(5.1.17)) in the form: 

K1c = [(
(1 + ν) ∙ (5 − 8ν)

4π
)

(1−λ1)

∙
1

√2e1
] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1                (5.1.16) 

 

5.1.3.2. Leguillon’s criterion 

Leguillon [40,41] proposed a fracture criterion for components weakened by 

sharp V-notches based on the Finite Fracture Mechanics concept: at failure an 

incremental crack of length lc nucleates at the notch tip. 

According to Leguillon’s criterion, two necessary conditions can be stated on 

stress and energy, but neither the one nor the other, taken separately, are 

sufficient. Only when they are simultaneously satisfied it is possible to get a 

condition sufficient for fracture. 

According to the stress criterion the V-notched element failure occurs when the 

singular stress component normal to the fracture direction θ̅c exceeds the material 

tensile strength σc at a distance lc from the notch tip, that is at the tip of the 

incremental crack. 

According to the energy criterion, instead, the component failure occurs when the 

strain energy release rate G, that is the ratio between the potential energy variation 

in correspondence of the crack nucleation (δWp) and the new crack surface 

created (δS), exceeds the critical material value Gc. 

Therefore the simultaneous verification of the conditions formalized in Eqs. 

(5.1.17) and (5.1.18) provides a general criterion for the fracture of components 

weakened by sharp V-notches. 

Stress criterion :                        σθ(lc, θ̅c) = k1 ∙ lc
λ1−1 ∙ sθ(θ̅c) ≥ σc             (5.1.17) 
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Energy criterion :            G = −
δWp

δS
=
k1
2 ∙ K(2α, θ̅c) ∙ lc

2λ1 ∙ d

lc ∙ d
≥ Gc         (5.1.18) 

 

 


lc 

r 

c 

2 

 

Figure 5.1.2 Leguillon’s coordinate system, with incremental crack of length lc. 

 

In Eqs. (5.1.17, 5.1.18) lc is the length of the incremental crack nucleated at the 

notch tip (see Fig. 5.1.2), λ1 is the Mode I Williams’ eigenvalue tied to the V-

notch angle 2α, sθ is a function of the angular coordinate θ̅, d is the thickness of 

the component. Finally, K(2α,θ̅c) is a scale factor dependent on the local 

geometry (2α) and the direction of fracture (θ̅c). 

The parameter k1 represents the NSIF according to Leguillon’s definition, which 

is linked to Gross and Mendelson’s definition [56] by means of Eq. (5.1.19). 

k1 = lim
r→0

σθ ∙ r
1−λ1 =

lim
r→0

σθ ∙ √2π ∙ r
1−λ1

√2π
=

K1

√2π
                                          (5.1.19) 

In the following the lowercase letter will be used for the NSIFs defined according 

to Leguillon, capital letter instead for the NSIFs defined according to Gross and 

Mendelson. 
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The conditions (17) and (18) must be simultaneously satisfied. Solving the system 

in two unknowns, lc and k1, it is possible to determine the length of the 

incremental crack: 

lc =
Gc ∙  sθ(θ̅c)

2

K(2α, θ̅c) ∙ σc2
                                                                                                   (5.1.20) 

As soon as the incremental crack length lc is introduced into Eq. (5.1.17) or Eq. 

(5.1.18), it is possible to give the failure criterion in terms of the classic Irwin’s 

expression, KI ≥ KIc. Since the fracture direction for a V-notched component in a 

homogeneous and isotropic material subjected to a symmetric load (Mode 1) is 

known a priori, θ̅c = π - α, the critical value of the Notch Stress Intensity Factor 

k1c can be defined as a function of the material mechanical properties (σc and Gc) 

and of the notch opening angle 2α, through K(2α) and λ1. Normalizing the angular 

function in such a way that sθ(θ̅c) = 1, one obtains: 

k1 ≥ (
Gc   

K(2α)
)
1−λ1

∙ σc
2λ1−1 = k1c                                                                      (5.1.21) 

Under plane strain conditions Gc can be linked to the critical value kIc in the 

following form: 

Gc =  2π ∙ kIc
2 ∙
1 − ν2

E
                                                                                             (5.1.22) 

The value of the scale factor K for the crack case (2α = 0, λ1 = 0.5) can be 

obtained from Eqs. (5.1.21) and (22) considering that k1c = kIc. In order to 

simplify the involved expressions, the dependence of k1c on the notch opening 

angle can be given defining a universal function γ(2α), calculated using an 

integration procedure described in [11]. Doing so, the general expression for the 

scale factor K(2α) is: 

K(2α) = K(2α = 0) ∙
1

γ(2α)
1

1−λ1

 = 2π ∙
1 − ν2

E
∙

1

γ(2α)
1

1−λ1

                       (5.1.23) 
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The universal function γ(2α) is plotted in Fig. 5.1.3 and its values listed in Table 

5.1.2 [11]. 

 

Table 5.1.2 Values of the function γ(2α). 

2α 

(degrees) 
γ (2α) 

2α 

(degrees) 
γ (2α) 

0 1.00 95 1.10 

5 1.00 100 1.11 

10 1.00 105 1.12 

15 1.00 110 1.14 

20 1.00 115 1.15 

25 1.01 120 1.16 

30 1.01 125 1.17 

35 1.01 130 1.18 

40 1.02 135 1.19 

45 1.02 140 1.20 

50 1.03 145 1.20 

55 1.03 150 1.19 

60 1.04 155 1.19 

65 1.04 160 1.17 

70 1.05 165 1.14 

75 1.06 170 1.11 

80 1.07 175 1.06 

85 1.08 180 1.00 

90 1.09   
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Figure 5.1.3 Leguillon’s universal function γ(2α). 

 

A simpler expression of the critical NSIF k1c, as a function of the ‘fracture 

toughness’ kIc (defined according to Leguillon) and the material ultimate tensile 

strength σc, can be obtained substituting expressions (22) and (23) into Eq. 

(5.1.21). As a result:  

k1c = γ(2α) ∙ kIc
2(1−λ1) ∙ σc

2λ1−1                                                                        (5.1.24) 

A slightly different formulation of the criterion can be obtained by using Gross 

and Mendelson’s  definition for the critical NSIF K1c and the fracture toughness 

KIc according to Eq. (5.1.19). 

K1c = [(2π)(λ1−
1
2
) ∙ γ(2α)] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1                                             (5.1.25) 

 

5.1.3.3. Carpinteri’s formulation 

Similarly to Leguillon, Carpinteri et al. [42] proposed a fracture criterion for 

components weakened by sharp V-notches based on Finite Fracture Mechanics 
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concept: at failure a crack of length ΔSE nucleates at the notch tip. Also in this 

formulation,  it is possible to obtain a sufficient condition for the fracture by 

satisfying simultaneously a stress criterion and an energy criterion. 

According to the averaged stress criterion the V-notched element failure occurs 

when the notch singular stress component normal to the crack faces, averaged 

over the crack length ΔSE, exceeds the material tensile strength σc. 

According to the energy criterion, instead, the component failure occurs when the 

strain energy released at the nucleation of a crack of length ΔSE exceeds the 

critical value of the material, which depends on Gc. A simplified formulation can 

be obtained by expressing the strain energy release rate G as a function of the 

Stress Intensity Factor KI according to Irwin’s relation valid under plane strain 

conditions. 

Therefore the simultaneous verification of the conditions formalized in Eq. 

(5.1.26) and (5.1.27) provides a general criterion for the fracture of components 

weakened by sharp V-notches. 

Averaged stress criterion : 

∫ σy(x) dx
∆SE

0

= ∫
KI
∗

(2πx)1−λ1
 dx

∆SE

0

≥ σc ∙ ∆SE                                               (5.1.26) 

Energy criterion : 

∫ −
dWp

da
 da

∆SE

0

= ∫ G(a) da
∆SE

0

≥ Gc ∙ ∆SE                                                       (5.1.27) 

∫ KI
2(a) da

∆SE

0

= ∫ [ψ(2α) ∙
KI
∗

(2π)1−λ1
∙ aλ1−

1
2]

2

 da
∆SE

0

≥ KIc
2 ∙ ∆SE  

where ΔSE is the length of the crack nucleated at the notch tip (Fig. 5.1.4), λ1 the 

Mode I Williams’ eigenvalue [54], x the coordinate along the notch bisector line 

and a the generic crack length. 
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Figure 5.1.4 Carpinteri’s coordinate system with crack of length a. 

 

The parameter KI
*
 represents again the NSIF according to Carpinteri’s definition, 

which is slightly different from that given by Gross and Mendelson. In particular: 

KI
∗ = lim

x→0
σy ∙ (2πx)

1−λ1 =
lim
x→0

σy ∙ √2π ∙ x
1−λ1

(2π)λ1−
1
2

=
K1

(2π)λ1−
1
2

                       (5.1.28) 

In order to apply the energy criterion it is necessary to know the Stress Intensity 

Factor KI of the crack nucleated at V-notch tip, as a function of the crack length a. 

For this purpose it is possible to use the expression by Tada et al. [59], which 

provides the SIF KI as a function of the crack length a, the notch opening angle 2α 

and the NSIF KI
*
. 

KI(a) = ψ(2α) ∙
KI
∗

(2π)1−λ1
∙ aλ1−

1
2                                                                        (5.1.29) 

According to Carpinteri’s criterion the failure of a V-notched component occurs 

when the stress and energy criteria given by Eqs. (5.1.26, 5.1.27) are both 

satisfied. Solving the system, it is possible to determine the length of the 

nucleated crack ΔSE (Eq. (5.1.30)) and the critical NSIF KIc
*
 (Eq. (5.1.31)). 
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∆SE=
2

λ1 ∙ ψ2
∙ (
KIc
σc
)
2

                                                                                              (5.1.30) 

KI
∗ ≥ [λ1

λ1 ∙ (
4π

ψ2
)
1−λ1

] ∙ KIc
2(1−λ1) ∙ σc

2λ1−1 = 

= [ξ(2α)] ∙ KIc
2(1−λ1) ∙ σc

2λ1−1 = KIc
∗                                                       (5.1.31) 

The values of the auxiliary function ξ(2α) are plotted in Fig. 5.1.5 and listed in 

Table 5.1.3. 

 

 

Figure 5.1.5 Plot of the function ξ(2α), according to Carpinteri et al. [42]. 
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Table 5.1.3 Values of the functions (2α) e ξ(2α). 

2α 

(degrees) 
 (2α) ξ (2α) 

0 2.5068 1.000 

15 2.5192 0.995 

20 2.5232 0.993 

30 2.5306 0.990 

40 2.5364 0.987 

45 2.5384 0.986 

60 2.5401 0.983 

75 2.5326 0.981 

80 2.5275 0.982 

90 2.5127 0.983 

100 2.4910 0.985 

105 2.4771 0.987 

120 2.4233 0.994 

135 2.3486 1.003 

140 2.3189 1.006 

150 2.2516 1.011 

160 2.1739 1.014 

170 2.0863 1.011 

180 1.9869 1.000 
 

 

 

By using for the critical NSIF, K1c, the definition of Gross and Mendelson [56], 

see Eq. (5.1.28), the final result is: 

K1c = [(2π)
(λ1−

1
2
) ∙ ξ(2α)] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1                                             (5.1.32) 

 

5.1.4. Analytical comparison 

Considering the three different formulations, it is possible to compare the final 

relationships of the critical NSIF according to Gross and Mendelson’s definition: 

SED:                                
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K1c = [(
(1 + ν) ∙ (5 − 8ν)

4π
)

(1−λ1)

∙
1

√2e1
] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1      (5.1.33) 

Leguillon:                      

K1c = [(2π)
(λ1−

1
2
) ∙ γ(2α)] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1                          (5.1.34) 

Carpinteri et al.:            

K1c = [(2π)
(λ1−

1
2
) ∙ ξ(2α)] ∙ KIc

2(1−λ1) ∙ σc
2λ1−1                (5.1.35) 

It can be observed that the three criteria give the same proportionality relation: 

K1c  ∝  KIc
2(1−λ1) ∙ σc

2λ1−1                                                                                    (5.1.36) 

The difference is given only by the proportionality factor. This factor depends 

only on the notch opening angle (2α) in Leguillon’s and Carpinteri’s criteria. In 

the SED criterion, instead, the proportionality factor depends on the opening angle 

2α and the Poisson's ratio ν, as shown in Fig. 5.1.6. 

The proportionality factors do not differ significantly in their trends, with the 

values of Leguillon’s factor being always slightly greater than those assumed by 

the other two criteria for the same notch opening angle (2α), as shown in Fig. 

5.1.7 and in Table 5.1.4. For 2=0° and 180° Leguillon’s and Carpinteri’s criteria 

give the same proportionality factor, 1.0 and 2.507, respectively. The factor based 

on SED matches that of the other two criteria only for 2=0°, due to its 

dependence on the Poisson’s ratio. However, Fig. 5.1.7 shows that the values of 

proportionality factors as a function of the notch opening angle (2α) are very 

similar for the SED and the Carpinteri’s criterion, despite the different initial 

assumptions. 
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Figure 5.1.6 Variability of proportionality factor in the SED criterion, Eq. (5.1.33), as a function 

of the Poisson’s ratio. 

 

Figure 5.1.7 Comparison among proportionality factors given by Eqs. (5.1.33,5.1.34,5.1.35) 
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Table 5.1.4 Proportionality factors in Eqs. (5.1.33,5.1.34,5.1.35) 

2α 

(degrees) 
λ SED (ν = 0.3) Leguillon Carpinteri et al. 

0 0.5000 1.000 1.000 1.000 

15 0.5002 0.981 1.000 0.995 

20 0.5004 0.975 1.003 0.994 

30 0.5014 0.965 1.013 0.993 

40 0.5035 0.959 1.024 0.993 

45 0.5050 0.958 1.029 0.995 

60 0.5122 0.961 1.062 1.005 

75 0.5247 0.979 1.109 1.027 

80 0.5304 0.989 1.130 1.038 

90 0.5445 1.017 1.183 1.066 

100 0.5628 1.056 1.247 1.106 

105 0.5739 1.082 1.283 1.130 

120 0.6157 1.186 1.434 1.229 

135 0.6736 1.345 1.637 1.379 

140 0.6972 1.416 1.715 1.444 

150 0.7520 1.591 1.891 1.606 

160 0.8187 1.828 2.099 1.821 

170 0.9000 2.156 2.316 2.109 

180 1.0000 2.616 2.507 2.507 
 

 

5.1.5. Experimental validation  

The predictive capability of the three different approaches is assessed by using a 

good number of experimental data taken from the literature. The analysed data are 

referred to V-notched specimens made of two materials: the polymer PMMA and 

the aluminium alloy Duraluminum. The mechanical properties of each tested 

material as well as the experimental procedures adopted are described below. 

The comparison between the experimental data and the theoretical estimations 

based on Eqs. (5.1.33-5.1.35) is performed in terms of Notch Stress Intensity 

Factor K1c to failure as a function of the V-notch opening angle 2α. When not 

directly available, the values of the critical NSIF to failure K1c have been obtained 

by two-dimensional FEM analyses, by introducing into the models the 

experimental fracture loads. The finite element code ANSYS, version 14.5, has 

been used. In particular, the critical NSIF to failure K1c coincides with the Notch 
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Stress Intensity Factor K1 calculated along the notch bisector line (K1 = σθ ∙

√2π ∙ r1−λ1 with r → 0) when the final load to failure is applied to the FE model. 

 

The first set of experimental data (Gomez and Elices [31]) was obtained from 

three-point bending and traction tests performed on PMMA V-notched specimens.  

The samples geometry was characterized by a length l = 196 mm for the traction 

specimens (SEN) and l = 112 mm for the three-point-bending specimens (TPB), 

width D = 28 mm, notch depth a = 14 mm and thickness t = 14 mm. Four values 

of the notch opening angle 2α = 60°, 90°, 120°, 150° in the case of SEN 

specimens and six values 2α = 15°, 30°, 60°, 90°, 120°, 150° in the case of TPB 

specimens have been considered. 

The material properties were: Young’s modulus E = 3000 MPa, Poisson’s ratio ν 

= 0.4, fracture toughness KIc = 1 MPa m
0.5

. Furthermore the true curve σ–ε of 

unnotched specimens exhibited a non-linear behaviour whereas the notched 

specimens presented a brittle behaviour, with a linear trend up to the critical load, 

followed by a sudden failure. Under these circumstances the critical stress c 

should be substituted by “the maximum normal stress existing at the edge at the 

moment preceding the cracking”, as underlined in Ref. [7] where it is also 

recommended to use tensile specimens with semicircular notches. Hence in order 

to apply the analysed criteria, the critical loads obtained experimentally on the 

specimens with the maximum notch root radius (ρ = 2 mm) have been used to 

estimate the critical strength σc. The value of the ‘critical tensile stress’ at the 

notch root was 136 MPa, in good agreement with other values reported in the 

literature for PMMA: for example Carpinteri [5] and Dunn et al. [9,10] gave 130 

and 124 MPa, respectively.  

The experimental values of the Notch Stress Intensity Factor K1c to failure are 

plotted for each specimen in Fig. 5.1.8 (SEN specimens) and Fig. 5.1.9 (TPB 

specimens) as a function of the notch opening angle 2α. In the same figures the 

theoretical curves of K1c obtained applying the three different formulations are 

given for comparison. 
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The second set of experimental data is due to Seweryn [7], who performed 

traction tests on specimens made of PMMA and Duraluminum.  

The specimens geometry was characterized by a length l = 192 mm, width W = 

109 mm and a notch depth a = 27 mm. The thickness of PMMA specimens was t 

= 4 mm, whereas the thickness of Duraluminum specimens was t = 5 mm. Nine 

values of the notch opening angle, 2α = 0°, 20°, 40°, 60°, 80°, 120°, 140°, 160°, 

180° have been considered. Three PMMA and two Duraluminum specimens were 

tested for each opening angle. 

The mechanical properties of PMMA were: Young’s modulus E = 3000 MPa, 

Poisson’s ratio ν = 0.3, fracture toughness KIc = 1.86 MPa m
0.5

 and tensile strength 

σc = 104.90 MPa. In the case of Duraluminum, instead, the properties were: 

Young’s modulus E = 70000 MPa, Poisson’s ratio ν = 0.3, fracture toughness KIc 

= 50.56 MPa m
0.5

 and tensile strength σc = 705.27 MPa. 

The experimental values of the Notch Stress Intensity Factor K1c to failure are 

reported for each specimen in Fig. 5.1.10 for PMMA and in Fig. 5.1.11 for 

Duraluminum. In the same figures the theoretical curves of K1c as a function of 

the notch opening angle 2α are reported for comparison. 

 

The third set of experimental data (Carpinteri [5]) was obtained from three-point 

bending tests performed on PMMA V-notched specimens.  

The specimens geometry was characterized by a length l = 190 mm, width b = 50 

mm and thickness t = 50 mm. Two values of the notch depth a = 10, 20 mm and 

six values of the notch opening angle 2α = 0°, 45°, 90°, 120°, 150°, 180° have 

been considered. A total number of 36 specimens were tested, three specimens for 

each geometry. 

The material properties were: Young’s modulus E = 3000 MPa, Poisson’s ratio ν 

= 0.3, fracture toughness KIc = 1.89 MPa m
0.5

 and tensile strength σc = 130.30 

MPa. 

The experimental values of the Notch Stress Intensity Factor K1c to failure are 

shown for each specimen in Fig. 5.1.12 as a function of the notch opening angle 

2α and the notch depth a.  
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Figure 5.1.8 Plots of the NSIF to failure K1c (Log-scale) and comparison with the experimental 

data (mean values) from SEN specimens made of PMMA tested by Gomez and Elices [31]. 

 

Figure 5.1.9 Plots of the NSIF to failure K1c (Log-scale) and comparison with the experimental 

data (mean values) from TPB specimens made of PMMA tested by Gomez and Elices [31]. 
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Figure 5.1.10 Plots of the NSIF to failure K1c (Log-scale) and comparison with the experimental 

data (mean values) from PMMA specimens tested by Seweryn [7]. 

 

Figure 5.1.11 Plots of the NSIF to failure K1c (Log-scale) and comparison with the experimental 

data (mean values) from Duraluminum specimens tested by Seweryn [7]. 
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Figure 5.1.12 Plots of the NSIF to failure K1c (Log-scale) and comparison with the experimental 

data from PMMA specimens tested by Carpinteri [5]. 

 

The plots of Figs. 5.1.8-5.1.12 shown that the agreement between the theoretical 

estimates and the experimental values of Notch Stress Intensity Factor K1c to 

failure is good in all cases. For notch opening angles greater than 120°, the 

minimum deviation seems to be slightly reduced in the case of the averaged SED 

and the Carpinteri’s criterion, which are substantially coincident although based 

on different assumptions. Furthermore it can be observed that theoretical 

assessments based on the averaged SED and the Carpinteri’s criterion are always 

conservative with respect to those obtained by applying the Leguillon’s criterion. 

 

5.1.6. Discussion 
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K1c and two fundamental mechanical properties of the material: the fracture toughness KIc 

and the ultimate tensile strength σc. The difference is given by a proportionality factor, 

which depends only on the V-notch opening angle in Leguillon and Carpinteri’s criteria, 

whereas it depends on the opening angle and the Poisson's ratio in the SED approach. The 

variability of the proportionality factors has been examined in detail. 

Finally, the three criteria have been applied to components weakened by sharp V-notches 

under Mode I loading conditions in order to investigate the predictive capability of each 

approach. A number of experimental data taken from the literature have been used for the 

comparison. A good agreement in terms of critical values of the NSIF K1c has been found 

in all cases. It was observed that the static strength assessment based on the SED and the 

Carpinteri’s criteria is always conservative with respect to the theoretical prediction based 

on the Leguillon’s criterion. 
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5.2 Comparison among energy-based criteria for fracture 

assessment of sharp V-notched components under Mode II 

loading 
(*)

 

 

Nomenclature 

E   Young’s modulus 

G  shear modulus 

Gc   critical value of the Strain Energy Release Rate 

H22
∗  geometrical factor dependent on the local geometry and the 

direction of fracture 

KI   Mode I Stress Intensity Factor 

KIc  Mode I fracture toughness 

K2   Mode II Notch Stress Intensity Factor 

k2   NSIF according to Leguillon’s definition 

KII
*
  NSIF according to Carpinteri’s definition 

K2c   Mode II Notch Stress Intensity Factor at failure 

KII   Mode II Stress Intensity Factor 

KIIc  Mode II fracture toughness 

lc   length of the incremental crack according to Leguillon 

r, θ polar coordinates 

Rc   control radius for averaged SED evaluation, subscripts I, II denote 

mode 

W̅ SED averaged over the control volume 

Wc critical SED value of the considered material under shear loading 

 

Symbols 

2   notch opening angle 

Δ    length of the crack nucleated at the notch tip according to 

Carpinteri 

ϕ   ratio between shear and tensile ultimate strength 
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λ2    Mode II Williams’ eigenvalue 

  Poisson's ratio 

θ̅c   fracture direction  

σ stress, subscripts rr, θθ, zz denote normal stresses 

 subscript rθ denote shear stresses 

c    ultimate tensile strength  

c    ultimate shear strength  

 

(*) See also: 

 

Campagnolo, A.; Berto, F; Leguillon, D. Mode II loading in sharp V-notched components: a 

comparison among some recent criteria. Theoretical and Applied Fracture Mechanics (under 

review); 

 

 

5.2.1. Introduction 

The formulation of a sufficiently simple and accurate criterion able to assess crack 

nucleation and propagation in structural components under static and fatigue 

loading is a key issue in fracture mechanics. Dealing with cracked components the 

fracture initiation phase is generally governed by a critical value of the Mode I 

stress intensity factor KI that under plane strain conditions has to be compared 

with the material fracture toughness KIc. This fracture criterion has been first 

formalised by Irwin in his pioneering contribution [1]. A sound link exists 

between the Irwin criterion and the Griffith criterion [2] dealing with cracked 

elements subjected to Mode I loading. Griffith criterion considers as critical 

parameter the strain energy release rate G, defined as the derivative of the 

potential energy with respect to the crack surface area. This parameter becomes 

critical when it reaches the material critical value Gc, which represents the energy 

needed to create a unit crack surface area.  

Dealing with sharply notched components, with the notch tip radius being zero or 

close to zero, several criteria have been proposed in the last decades. The 

definition of simple and reliable criteria to assess failures initiated at points of 

stress singularity is surely an active topic of research. Under linear elastic 
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hypotheses stresses tend to infinity at such points. For this reason, similarly to the 

crack case, the introduction of a stress field parameter is required. In the linear 

elastic Notch Mechanics, notch stress intensity factors (NSIFs) are generally used 

to assess the static failure of brittle components weakened by pointed V-notches 

[3–10]. Among these references it is surely worth of mentioning the investigation 

by Leicester [3] who studied the scale effect in wood components weakened by 

V-notches.  

Sharp notches under fatigue loading have been investigated widely in [12,13,15]. 

When the fatigue life is mainly spent in the formation of micro-cracks and 

propagation inside the zone governed by the V-notch singularity, NSIFs can be 

used not only to predict the fatigue initiation life [60] but also for total fatigue life 

assessments [17]. 

For a better overview of the V-notch problem, it is useful here to mention some 

fundamental stress-based criteria developed by many researchers around the world 

in the last twenty years. Starting from a fundamental and pioneering work by 

Novozhilov [19], a brittle fracture criterion based on the mean value of normal 

stress over a material dependent parameter d0 was proposed by Seweryn [7]. That 

criterion has been also successfully extended and applied to structural components 

under mixed mode loading [20,21]. A non-local failure function has been 

introduced which combines normal and shear stress components, both normalized 

with respect to the relevant critical stresses of the material. 

The Theory of Critical Distances (TCD) [22,23], applicable to any kind of stress 

risers, has been developed due to the fundamental contribution by Taylor and 

Susmel. Neuber’s fictitious notch rounding (FNR) approach [27] is also based on 

the idea of stress averaging. Recent studies have highlighted the influence of 

plane stress or plane strain conditions on the multiaxiality factor, s, as well as the 

influence of the V-notch opening angle [61]. 

Another worth mentioning approach is surely the Cohesive Zone Model (CZM) 

sometimes called ‘fictitious crack model’. Initially proposed for concrete, the 

CZM was later successfully extended to a number of brittle or quasi-brittle 

materials [30,62].  
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To conclude this short review, some criteria based on the extension of J-integral to 

notches can be mentioned [32,33,63] as well as the modified Maximum 

Tangential Stress criterion [35,64], which is able to take into account singular and 

non-singular stress terms of Williams’ solution. 

In a recent contribution dealing with sharp V-notches under Mode I loading [65], 

two recent criteria involving energy-based calculations have been discussed in 

detail: that based on the averaged strain energy density (SED) [36,38,39] and that 

called Finite Fracture Mechanics (FFM) criterion, according to two different 

version, the former due to Leguillon [40,41], the latter due to Carpinteri et al. 

[42].  

The main aim of the present investigation is to extend the comparison, performed 

in the previous work [65], also to pure Mode II loading. Dealing with the FFM 

criteria, the extensions to in-plane mixed mode and prevalent Mode II loading 

reported in the recent literature [44,45,66] will be taken into account. Instead, with 

reference to the SED criterion, a new expression for estimating the control radius 

under pure Mode II loading will be proposed and discussed in comparison with 

the expression valid for pure Mode I.  

The averaged SED criterion [36] is reminiscent of Neuber’s concept of elementary 

structural volume [27] and Sih’s criterion based on factor S, which gives the strain 

energy density multiplied by a convenient distance from the crack or the V-notch 

tip [46]. The approach is based on the SED averaged over a material-dependent 

control volume surrounding the notch tip. The major advantage of the averaged 

SED approach with respect to the local stress-based criteria is the mesh 

independency [49,67] and that it can easily take into account also coupled three-

dimensional effects [51,68,69].  

In the framework of Finite Fracture Mechanics, the criteria by Leguillon et al. 

[41,44] and Carpinteri et al. [42,45,66] require the simultaneous verification of 

two separate conditions, the former based on stresses, the latter on an energy 

balance. Each condition is necessary but not sufficient to guarantee the fracture. 

When both conditions are simultaneously satisfied it is possible to get a sufficient 

condition for fracture. The governing idea is that at failure a finite incremental 

crack (or a finite crack advance) occurs at the notch tip. The two criteria are based 
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on the same energy balance calculated considering a finite incremental crack, the 

difference being in the stress calculations: the first involves a point-wise stress 

condition, the second considers an average stress condition. 

Under mixed mode I+II loading providing a suitable fracture criterion is more 

complex than under Mode I loading because the crack path is out of the notch 

bisector line and its direction varies as a function of Mode I to Mode II stress 

distributions. For this reason, the problem of brittle or quasi-brittle fracture of 

notched components loaded under mixed mode (I+II) or prevalent Mode II 

loading requires further investigations. Another important reason is the scarcity of 

experimental results available in the literature, in particular dealing with V-

notches under prevalent Mode II loading and, then, the possibility to set up an 

approach for the fracture assessment under the above mentioned conditions.  

The proposal of Mode I dominance was first suggested by Erdogan and Sih 

(1963), when dealing with cracked plates under plane loading and transverse 

shear, where the crack grows in the direction almost perpendicular to the 

maximum tangential stress in radial direction from its tip [70]. Several criteria 

have been applied mainly to sharp V-notched samples but also to U-notches under 

mixed mode loading [36,44,45,66,71–75], showing a different degree of accuracy 

with respect to experimental results. The SED criterion, firstly proposed in [36] 

for sharp notches under Mode I and mixed mode I+II loading, has been extended 

also to rounded notches [71]. Seweryn and Lucaszewicz [76] reviewed the main 

criteria available under mixed mode loading. The Finite Fracture Mechanics 

criterion at re-entrant corners in brittle elastic materials validated for Mode I 

loading in [41,42] was extended to mixed mode loading and validated by 

experimental observations [44,45,72]. Chen and Ozaki [73] provided some 

interesting results under mixed mode loading, however, the prevalent mode during 

the test was Mode I.  

After having briefly summarized the analytical frame in terms of singular stress 

fields at V-notch tip, strain energy density averaged in a finite size volume and 

strain energy release rate, the three published brittle fracture criteria [36,44,45,66] 

are compared considering Mode II loading conditions. The analytical comparison 
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is performed on the basis of the different expressions proposed for the critical 

Notch Stress Intensity Factor. 

Finally, the considered criteria are applied to components weakened by sharp V-

notches under pure Mode II loading in order to investigate the predictive 

capability of each approach. The comparison involves a number of experimental 

data taken from the literature and related to different materials. 

 

5.2.2. Analytical frame 

With the aim of clarifying the bases of the failure criteria analysed in this work, 

this section summarises the analytical frame giving the expressions of the singular 

stress fields at V-notch tip, the SED averaged in the control volume and the strain 

energy release rate. Only Mode II loading conditions are taken into account, 

considering an isotropic and homogeneous material under linear elastic 

conditions.  

 

5.2.2.1. Mode II singular stress fields at V-notch tip 

In the presence of a sharp (zero notch tip radius) V-notch, the stress distributions 

(Fig. 5.2.1a) due to a skew-symmetric loading with respect to the notch bisector 

line (Mode II) are [54,55]: 

{

σθθ
σrr
σrθ

}

=
K2 ∙ r

λ2−1

√2π

1

(1 − λ2) + χ2(1 + λ2)
[{

(1 + λ2) sin(1 − λ2)θ
(3 − λ2) sin(1 − λ2)θ
(1 − λ2) cos(1 − λ2)θ

}                     (5.2.1)

+ χ2(1 + λ2) {−

sin(1 + λ2)θ

sin(1 + λ2)θ

cos(1 + λ2)θ

}] =
K2 ∙ r

λ2−1

√2π
{

σ̃θθ
(2)

σ̃rr
(2)

σ̃rθ
(2)

} 

where the parameter K2 represents the Mode II Notch Stress Intensity Factor 

(NSIF) according to Gross and Mendelson’s definition [56], λ2 is the Mode II 
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Williams’ eigenvalue [54], χ2 is an auxiliary parameter dependent on the notch 

opening angle 2α [55], while σ̃θθ
(2)

, σ̃rr
(2)

 and σ̃rθ
(2)

 represent the angular stress 

functions for Mode II loading. Plane stress and plane strain conditions result in 

σzz = 0 and σzz = ν(σθθ + σrr), respectively.  

It should be noted that the V-notch tip stress singularity (1-λ2), tied to Mode II 

loading, disappears for opening angles higher than 102°, according to Williams 

[54]. Therefore, in the following, only notch opening angles 2α included between 

0° and about 100° will be taken into consideration. 

 

5.2.2.2. Strain energy density  

According to Beltrami [57], the total strain energy density (SED) is equal to the 

total work done by the system and it is given by Eq. (5.2.2). For a three 

dimensional state of stress:  

W(r, θ) =
1

2E
[σ1
2 + σ2

2 + σ3
2 − 2ν(σ1σ2 + σ1σ3 + σ2σ3)]                              (5.2.2) 

where 1, 2 and 3 are the principal stresses in a given reference system. 

In the case of a V-notched plate under Mode II loading, when only the 

contribution of the first singular term is significant, the SED can be directly linked 

to the NSIF, K2, by substituting into Eq. (5.2.2) the singular stress field given by 

Eq. (5.2.1): 

W2(r, θ) =
1

2E
r2(λ2−1)K2

2 [σ̃θθ
(2)2

+ σ̃rr
(2)2

+ σ̃zz
(2)2

− 2ν(σ̃θθ
(2)σ̃rr

(2) + σ̃θθ
(2)σ̃zz

(2) + σ̃rr
(2)σ̃zz

(2))                                         (5.2.3)

+ 2(1 + ν)σ̃rθ
(2)2

] 

The strain energy density, averaged in a circular sector of radius Rc surrounding 

the notch tip (Fig. 5.2.1b), is given by the ratio between the elastic strain energy 

E(Rc) and the area of the circular sector A(Rc): 
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W̅ =
E(Rc)

A(Rc)
=
∫ WdA
A

∫ dA
A

=
∫ ∫ W2(r, θ)

+γ

−γ
r drdθ

Rc
0

∫ ∫ r drdθ
+γ

−γ

Rc

0

=

1
E
I2(γ)
4λ2

K2
2Rc

2λ2

Rc2γ

=
1

E
e2K2

2Rc
2(λ2−1)                                                                         (5.2.4) 

 

 

 

Figure 5.2.1. Polar coordinate system centred at the notch tip (a) and control volume (area) of 

radius Rc surrounding the V-notch tip. 

 

where I2 is the integral of the angular stress functions, which depends on the notch 

opening angle, 2α = 22, and the Poisson's ratio ν. I2 changes under plane 

stress or plane strain conditions. Finally, e2 is the parameter that summarizes the 

dependence from the notch geometry: 

I2(γ) = ∫ (σ̃θθ
(2)2

+ σ̃rr
(2)2

+ σ̃zz
(2)2

+γ

−γ

− 2ν(σ̃θθ
(2)σ̃rr

(2) + σ̃θθ
(2)σ̃zz

(2) + σ̃rr
(2)σ̃zz

(2))                                         (5.2.5)

+ 2(1 + ν)σ̃rθ
(2)2

) dθ 

2 
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e2(2α) =
I2(γ)

4λ2γ
                                                                                                           (5.2.6) 

Values of e2 for plane strain conditions are given in Table 5.2.1 as a function of 

the V-notch opening angle [38,39]. The averaged value of the strain energy 

density needs the evaluation of a control radius value, which depends on the 

material, and varies under static and high cycle fatigue loading conditions [38,39].  

 

Table 5.2.1. Values of the function e2(2α,ν). 

2α 

(degrees) 
λ2 e2 (ν = 0.2) e2 (ν = 0.3) e2 (ν = 0.38) 

0 0.5000 0.3533 0.3414 0.3273 

20 0.5620 0.3007 0.2946 0.2863 

30 0.5982 0.2768 0.2730 0.2670 

40 0.6382 0.2545 0.2525 0.2484 

45 0.6597 0.2439 0.2428 0.2395 

50 0.6823 0.2337 0.2333 0.2308 

60 0.7309 0.2145 0.2153 0.2140 

70 0.7844 0.1967 0.1984 0.1982 

80 0.8434 0.1802 0.1827 0.1832 

90 0.9085 0.1650 0.1679 0.1691 

100 0.9805 0.1508 0.1542 0.1558 

102.4 1.0000 0.1474 0.1508 0.1526 

 

 

5.2.2.3. Strain energy release rate 

Consider a loaded body initially in an equilibrium state: it is characterized by a 

potential energy Wp and a kinetic energy Wk = 0. After the nucleation of a new 

crack, or the propagation of a pre-existing crack, there is a change in the potential 

and kinetic energy of the body. A balance between the internal and external work 

gives: 

dWint = dU + dWk + dWs = dWext           ⇒           
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d(U −Wext) + dWk + dWs = 0                                                                             (5.2.7) 

dWp + dWk + GcdS = 0                                                                                           (5.2.8) 

where U is the elastic strain energy contained in the body, Wext is the work done 

by the external forces, and Wp and Wk are the potential and kinetic energy, 

respectively. Ws represents indeed the energy necessary for crack formation, 

which can be expressed as a function of the new crack surface dS and fracture 

energy per unit surface Gc.  

A condition for fracture can be derived from Eq. (5.2.8), being the kinetic energy 

always positive (dWk ≥ 0): 

dWp

dS
+ Gc ≤ 0         ⇒         G = −

dWp

dS
≥ Gc                                                      (5.2.9) 

The inequality obtained can be taken as a fracture criterion, in which G represents 

the Strain Energy Release Rate (SERR). When the equality is verified the change 

in kinetic energy is negligible (dWk → 0) and the crack propagation is stable; 

instead if G exceeds the critical value Gc then the crack propagation is unstable 

because the extra energy is transformed into kinetic energy of the crack itself 

(dWk ≠ 0). 

For two-dimensional problems a relationship between the Strain Energy Release 

Rate (G) and the Stress Intensity Factors (KI and KII) can be derived [77] for a 

straight crack propagation: 

{
 

 G =
KI
2

E
+
KII
2

E
                                                    plane stress 

G = (1 − ν2) ∙
KI
2

E
+ (1 − ν2) ∙

KII
2

E
              plane strain 

                              (5.2.10) 

Under critical conditions, a relationship between the critical Strain Energy 

Release Rate (Gc) and the Mode I fracture toughness (KIc) can be derived 

according to Irwin [1]: 
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{
 

 Gc =
KIc
2

E
                                  plane stress 

Gc = (1 − ν2) ∙
KIc
2

E
              plane strain 

                                                         (5.2.11) 

Equation (5.2.9) represents the differential form of the Griffith fracture criterion 

[2], obtained by considering an infinitesimal increment of the crack surface 

dS → 0. Considering indeed a finite increment of the crack surface δS, Leguillon 

[40,41] obtained the incremental form of the fracture criterion: 

δWp

δS
+ Gc ≤ 0         ⇒         G̃ = −

δWp

δS
≥ Gc                                                    (5.2.12) 

This is the governing idea of the Finite Fracture Mechanics (FFM). 

 

5.2.3. Failure criteria for sharp V-notches under pure Mode II loading 

In the literature the problem of the fracture assessment of components weakened 

by V-notches is typically treated with stress-based or energy-based approaches. In 

the present investigation, three different criteria are considered, in order of 

publication they are: the Strain Energy Density criterion (2001) [36], the 

Leguillon et al. criterion (2002) [41,44] and the Carpinteri et al. criterion (2008) 

[42,45,66]. 

 

5.2.3.1. Strain energy density (SED) criterion 

According to Lazzarin-Zambardi [36] the brittle fracture of the material occurs 

when the average value of the strain energy density, calculated on a control 

volume of radius Rc surrounding the notch tip (Fig. 5.2.1b), is equal to the critical 

value Wc (Eq. 5.2.13). In the case of a smooth component under nominal shear 

loading condition, according to Beltrami’s hypothesis, it can be obtained: 

Wc =
τc
2

2G
=
(1 + ν) ∙ τc

2

E
                                                                                         (5.2.13) 
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where c is the ultimate shear strength, G the shear modulus and E the Young's 

modulus, while ν represents the Poisson’s ratio. 

Considering a V-notched plate subjected to nominal pure Mode II loading, the 

relationship W = Wc is verified under critical conditions. Therefore combining 

Eq. (5.2.4) and Eq. (5.2.13) one obtains: 

e2
E
∙

K2c
2

Rc
2(1−λ2)

=
(1 + ν) ∙ τc

2

E
                                                                                   (5.2.14) 

The critical value of the Notch Stress Intensity Factor at failure, K2c, becomes: 

K2c = √
(1 + ν)

e2
∙ τc ∙ Rc

(1−λ2)                                                                                (5.2.15) 

The control radius Rc can be easily determined by using a set of experimental data 

giving the critical value of the NSIF from a specific V-notch angle. If the notch 

opening angle is zero (2 = 0, λ2 = 0.5), the case of a cracked specimen under 

nominal pure Mode II loading is considered, so that under critical conditions K2c 

coincides with the Mode II fracture toughness KIIc. Then, taking advantage of Eq. 

(5.2.14), with K2c ≡ KIIc, and following the same procedure proposed by Yosibash 

et al. [58] for obtaining the control radius under Mode I loading condition, the 

final expression turns out to be: 

Rc,II =
e2(2α = 0)

(1 + ν)
∙ (
KIIc
τc
)
2

=
(1 + ν)(9 − 8ν)

4 ∙ 2π ∙ (1 + ν)
∙ (
KIIc
τc
)
2

=
(9 − 8ν)

8π
∙ (
KIIc
τc
)
2

                                                                    (5.2.16) 

Substitution of Eq. (5.2.16) into Eq. (5.2.15) gives the NSIF at failure K2c (Eq. 

(5.2.17)) in the form: 

K2c = [√
1 + ν

e2
∙ (
9 − 8ν

8π
)
(1−λ2)

] ∙ KIIc
2(1−λ2) ∙ τc

2λ2−1                                  (5.2.17) 
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It is useful to express the NSIF at failure K2c as a function of the Mode I material 

properties (KIc and c), which are simpler to determine or to find in the literature 

than Mode II material properties. For this purpose, it is possible to approximately 

estimate the Mode II fracture toughness (KIIc) as a function of KIc, according for 

example to Richard et al. [78]: 

KIIc ≅
√3

2
KIc                                                                                                             (5.2.18) 

In the same manner, it is possible to approximately estimate the ultimate shear 

strength (c) as a function of the tensile one (c). Several failure criteria are shown 

in the literature (Guest-Tresca, von Mises and Beltrami among the others), but 

with reference to brittle materials with linear elastic behavior (as for example 

polymethylmethacrylate, graphite,…), it has been observed experimentally [39] 

that the most appropriate criterion is that of Galileo-Rankine: 

τc = ϕ ∙ σc          with          ϕ = 1                                                                         (5.2.19) 

Indeed, on the basis of experimental results on PMMA and graphite specimens 

[39], it has been observed that the ratio ϕ = c/c varies a limited range, between 

0.80 and 1.00. In the case of materials that exhibit a different behaviour, the 

criterion is still applicable once calibrated the value of the ratio ϕ. Finally, 

substitution of Eqs. (5.2.18) and (5.2.19) into Eq. (5.2.17) gives the NSIF at 

failure K2c in a more useful form: 

K2c = [√
1 + ν

e2
∙ (
3

4
∙
9 − 8ν

8π
)

(1−λ2)

∙ ϕ2λ2−1] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1            (5.2.20) 

It should be noted that the control radius Rc could be in principle different under 

Mode I and Mode II loading condition, this means that it depends on the material 

properties but also on the loading conditions, as recently highlighted in [79,80]. 

However, in previous contributions [81–84], the SED approach has been applied 

to notched components under mixed mode I+II and prevalent Mode II loading 

conditions, by adopting the control radius Rc,I derived under Mode I loading [58]. 
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This was possible mainly for two reasons: 1) the SED approach has been 

combined with the ‘equivalent local mode I’ concept [71], according to which 

under mixed mode loading the control volume is no longer centered at the notch 

tip, but rather at the point where the principal stress reaches its maximum value 

along the edge of the notch, following the Mode I dominance proposed by 

Erdogan and Sih [70]; 2) the application of SED approach has mostly involved 

blunt V-notched components, in which Mode II stresses are negligible in the close 

neighborhood of the notch tip compared to Mode I stresses.   

Concerning instead sharp V-notched components under pure Mode II loading the 

‘equivalent local mode I’ concept is not applicable and in addition Mode II 

stresses are singular at the notch tip, hence the need to adopt the proper control 

radius Rc,II (Eq. 5.2.16). 

Once known the expressions of Rc,I [58] and Rc,II (Eq. 5.2.16), it is possible to 

evaluate the ratio between the control radii Rc,I/Rc,II, adopting the approximate 

expressions (5.2.18) and (5.2.19) one obtains: 

Rc,I
Rc,II

=
8 ∙ (1 + ν) ∙ (5 − 8ν)

3 ∙ (9 − 8ν)
∙ ϕ2                                                                         (5.2.21) 

The trend of the ratio Rc,I/Rc,II, as a function of Poisson’s ratio ν, has been reported 

in Fig. 5.2.2. In the particular case of a material for which the expressions (18) 

and (19) result approximately verified (with ϕ = ), it can be observed from Fig. 

5.2.2 that Rc,I and Rc,II are coincident for a Poisson's ratio ν about equal to 0.45. 

Finally, it should be noted that the SED criterion does not allow to predict the 

fracture direction (θc), since the expression of K2c reported in Eq. (5.2.17) is 

constant for a given notch opening angle and does not depend on the polar 

coordinate θ (Fig. 5.2.1).  

Moreover, it is important to underline that according to SED criterion [36] only 

the nominal Mode II loading condition has been taken into account in Eq. 

(5.2.12), with reference to the ultimate strength c of smooth specimens, and in 

Eqs. (5.2.14)-(5.2.16), with reference to the critical NSIF K2c and to the fracture 

toughness KIIc of notched and cracked components, respectively. This 

differentiates the SED criterion from the following FFM-based approaches, which 
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instead take into account that, even if the nominally applied load is Mode II, from 

the local point of view the crack initiates and grows in a direction such that it 

opens, in accordance with the concept of Mode I dominance proposed by Erdogan 

and Sih [70]. 

 

 

Figure 5.2.2. Trend of the ratio Rc,I/Rc,II, as a function of the Poisson’s ratio ν, Eq. (5.2.21). 

 

5.2.3.2. FFM: Leguillon’s criterion 

Leguillon et al. [41,44] proposed a fracture criterion for components weakened by 

sharp V-notches based on the Finite Fracture Mechanics concept: at failure an 

incremental crack of length lc nucleates at the notch tip. 

According to Leguillon’s criterion, two necessary conditions can be stated on 

stress and energy, but neither the one nor the other, taken separately, are 

sufficient. Only when they are simultaneously satisfied it is possible to get a 

condition sufficient for fracture. 

According to the stress criterion the V-notched element failure occurs when the 

singular stress component normal to the fracture direction θ̅c exceeds the material 

tensile strength σc all along the crack with length lc just prior to fracture. It 
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amounts to a point-stress condition at a distance lc since the tensile stress is a 

decreasing function of the distance to the notch root. 

According to the energy criterion, instead, the component failure occurs when the 

strain energy release rate G̃, that is the ratio between the potential energy variation 

in correspondence of the crack nucleation (δWp) and the new crack surface 

created (δS), exceeds the critical material value Gc. 

Therefore the simultaneous verification of the conditions formalized in Eqs. 

(5.2.22) and (5.2.23) provides a general criterion for the fracture of components 

weakened by sharp V-notches. 

Stress criterion :                 σθθ(lc, θ̅c) = k2 ∙ lc
λ2−1 ∙ σ̃θθ

(2)(θ̅c) ≥ σc              (5.2.22) 

Energy criterion :          G̃ = −
δWp

δS
=
k2
2 ∙ H22

∗ (2α, θ̅c) ∙ lc
2λ2 ∙ d

lc ∙ d
≥ Gc       (5.2.23) 

 

 

Figure 5.2.3. Leguillon’s coordinate system [41,44], with incremental crack of length lc. 
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In Eqs. (5.2.22, 5.2.23) lc is the length of the incremental crack nucleated at the 

notch tip (see Fig. 5.2.3), λ2 is the Mode II Williams’ eigenvalue [54] tied to the 

V-notch angle 2α, σ̃θθ
(2)(θ̅) is a function of the angular coordinate θ̅, d is the 

thickness of the component. Finally, H22
∗ (2α, θ̅c) is a “geometrical factor” 

dependent on the local geometry (2α) and the direction of fracture (θ̅c). 

The parameter k2 represents the NSIF according to Leguillon’s definition, which 

is linked to Gross and Mendelson’s definition [56] by means of Eq. (5.2.24). 

k2 = lim
r→0

σrθ ∙ r
1−λ2 =

lim
r→0

σrθ ∙ √2π ∙ r
1−λ2

√2π
=

K2

√2π
                                       (5.2.24) 

In the following the lowercase letter will be used for the NSIFs defined according 

to Leguillon, capital letter instead for the NSIFs defined according to Gross and 

Mendelson. 

The conditions (22) and (23) must be simultaneously satisfied. Solving the system 

in two unknowns, lc and k2, it is possible to determine the length of the 

incremental crack: 

lc =
Gc

H22
∗ (2α, θ̅c)

∙  (
σ̃θθ
(2)(θ̅c)

σc
)

2

                                                                           (5.2.25) 

As soon as the incremental crack length lc is introduced into Eq. (5.2.22) or Eq. 

(5.2.23), it is possible to give the failure criterion in terms of the classic Irwin’s 

expression, KI ≥ KIc. The critical value of the Notch Stress Intensity Factor k2c can 

be defined as a function of the material mechanical properties (σc and Gc), the 

notch opening angle 2α and the critical crack propagation angle θ̅c.  

k2 ≥ (
Gc   

H22
∗ (2α, θ̅c)

)

1−λ2

∙ (
σc

σ̃
θθ

(2)(θ̅c)
)

2λ2−1

= k2c                                           (5.2.26) 

Under plane strain conditions Gc can be linked to the material fracture toughness 

KIc in the following form (see Eq. (5.2.11)): 
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Gc = KIc
2 ∙
1 − ν2

E
                                                                                                    (5.2.27) 

Yosibash et al. [44] have computed the function H22 for a range of values of the 

notch opening angle 2α and of the fracture direction θ̅c, taking into account a 

material characterized by a Young’s modulus E = 1 MPa and a Poisson’s ratio ν = 

0.36. The function H22
∗  for any other Young’s modulus E and Poisson’s ratio ν can 

be easily obtained according to the following expression: 

H22
∗ (2α, θ̅c)  = H22(2α, θ̅c) ∙

1 − ν2

E
∙

1

1 − 0.362
                                              (5.2.28) 

The values of H22 can be found in [44], with reference only to certain values of 2α 

and θ̅c, or they can be evaluated according to the procedure described in the same 

contribution. 

A simpler expression of the critical NSIF k2c, as a function of the material fracture 

toughness KIc and the ultimate tensile strength σc, can be obtained substituting 

expressions (27) and (28) into Eq. (5.2.26). As a result:  

k2c = [(
1 − 0.362

H22(2α, θ̅c)
)

1−λ2

∙ (
1

σ̃
θθ

(2)(θ̅c)
)

2λ2−1

] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1          (5.2.29) 

The fracture direction θ̅c, corresponding to the minimum failure load (i.e. the 

minimum value of k2c), can be obtained by setting the θ̅-derivative of k2c equal to 

0: 

d

dθ̅
[(H22(2α, θ̅))

1−λ2
∙ (σ̃θθ

(2)(θ̅))
2λ2−1

] = 0                                                     (5.2.30) 

The condition (30) provides the critical crack propagation angle θ̅c for each notch 

opening angle 2α. Different values of θ̅c for 0° ≤ 2α ≤ 100° are reported in 

Table 5.2.2. Once known the fracture direction θ̅c as a function of the notch 

opening angle 2α, from Eq. (5.2.30), the expression of the critical NSIF k2c
 
can be 

simplified as follow: 
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k2c = hk(2α) ∙ KIc
2(1−λ2) ∙ σc

2λ2−1                                                                     (5.2.31) 

A slightly different formulation of the criterion can be obtained by using Gross 

and Mendelson’s  definition for the critical NSIF K2c according to Eq. (5.2.24). 

K2c = [√2π ∙ hk(2α)] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1                                                      (5.2.32) 

5.2.3.3. FFM: Carpinteri’s formulation 

Similarly to Leguillon, Carpinteri et al. [42,45,66] proposed a fracture criterion 

for components weakened by sharp V-notches based on Finite Fracture Mechanics 

concept: at failure a crack of length Δ nucleates at the notch tip. Also in this 

formulation, it is possible to obtain a sufficient condition for the fracture by 

satisfying simultaneously a stress criterion and an energy criterion. 

According to the averaged stress criterion the V-notched element failure occurs 

when the notch singular stress component normal to the crack faces, averaged 

over the crack length Δ, exceeds the material tensile strength σc. 

According to the energy criterion, instead, the component failure occurs when the 

strain energy released at the nucleation of a crack of length Δ exceeds the critical 

value of the material, which depends on Gc. A simplified formulation can be 

obtained by expressing the strain energy release rate G as a function of the Stress 

Intensity Factors KI and KII according to Eq. (5.2.10) valid under plane strain 

conditions for a straight crack propagation. 

Therefore the simultaneous verification of the conditions formalized in Eq. 

(5.2.33) and (5.2.34) provides a general criterion for the fracture of components 

weakened by sharp V-notches. 

Averaged stress criterion :         

∫ σθθ(r, θc) dr
∆

0

= ∫
KII
∗

(2πr)1−λ2
σ̃θθ
(2)(θc) dr

∆

0

≥ σc ∙ ∆                                    (5.2.33) 

Energy criterion :                          
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∫ −
dWp

da
 da

∆

0

= ∫ G(a, θc) da
∆

0

≥ Gc ∙ ∆                                                            (5.2.34) 

∫ [KI
2(a, θc) + KII

2 (a, θc)] da
∆

0

= ∫ [KII
∗ 2 ∙ a2λ2−1 ∙ (β12

2(2α, θc) + β22
2(2α, θc))]  da

∆

0

≥ KIc
2 ∙ ∆  

where Δ is the length of the crack nucleated at the notch tip (Fig. 5.2.4), λ2 the 

Mode II Williams’ eigenvalue [54], (r,θ) the polar coordinate system centred at 

the notch tip and a the generic crack length. The βij’s are defined later in Eq. 

(5.2.36). 

 

Figure 5.2.4. Carpinteri’s coordinate system [42,45,66], with crack of length . 

 

The parameter KII
*
 represents again the NSIF according to Carpinteri’s definition, 

which is slightly different from that given by Gross and Mendelson [56]. In 

particular: 

2 

c
r 

   

 

notch 

bisector 
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KII
∗ = lim

r→0
σrθ ∙ (2πr)

1−λ2 =
lim
r→0

σrθ ∙ √2π ∙ r
1−λ2

(2π)λ2−
1
2

=
K2

(2π)λ2−
1
2

                    (5.2.35) 

In order to apply the energy criterion it is necessary to know the Stress Intensity 

Factors KI and KII of the tilted crack nucleated at V-notch tip, as a function of the 

crack length a. For this purpose it is possible to use the expressions of the SIFs KI 

and KII as a function of the crack length a, the notch opening angle 2α, the 

direction of fracture θc and the NSIF KII
* 

derived by Beghini et al. [85], on the 

basis of approximate analytical weight functions. 

KI(a, θ) = β12(2α, θ) ∙ KII
∗ ∙ aλ2−

1
2                                                                      (5.2.36a) 

KII(a, θ) = β22(2α, θ) ∙ KII
∗ ∙ aλ2−

1
2                                                                    (5.2.36b) 

The functions βij can be evaluated from the best fit expressions provided in Melin 

[86] for 2α = 0° and in Beghini et al. [85] for 2α > 18°. It is useful to introduce a 

simplified notation according to Eq. (5.2.37), in which the relationship between 

the parameter β̅22 according to Sapora et al. [66] and the parameter H22 according 

to Yosibash et al. [44] is shown, as highlighted also in [45]. 

β̅22(2α, θ) =  
β12

2(2α, θ) + β22
2(2α, θ)

2λ2
=  

H22(2α, θ) ∙ (2π)
2λ2−2

1 − 0.362
        (5.2.37) 

According to Carpinteri’s criterion the failure of a V-notched component occurs 

when the stress and energy criteria given by Eqs. (5.2.33, 5.2.34) are both 

satisfied. Solving the system, it is possible to determine the length of the 

nucleated crack Δ (Eq. (5.2.38)) and the critical NSIF KIIc
*
 (Eq. (5.2.39)). 

∆= [(
1

β̅22(2α, θc)
) ∙ (

σ̃θθ
(2)
(θc)

λ2 ∙ (2π)1−λ2
)

2

] ∙ (
KIc
σc
)
2

                                             (5.2.38) 
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KII
∗ ≥ [(

1

β̅22(2α, θc)
)

1−λ2

∙ (
λ2 ∙ (2π)

1−λ2

σ̃θθ
(2)(θc)

)

2λ2−1

] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1

= KIIc
∗                                                                                                (5.2.39) 

Following the procedure presented in the case of Leguillon et al. criterion, the 

fracture direction θc, corresponding to the minimum failure load (i.e. the 

minimum value of KIIc
∗ ), can be obtained by setting the θ-derivative of KIIc

∗  equal 

to 0: 

d

dθ
[(β̅22(2α, θ))

1−λ2
∙ (σ̃θθ

(2)(θ))
2λ2−1

] = 0                                                      (5.2.40) 

The condition (40) provides the critical crack propagation angle θc for each notch 

opening angle 2α. Different values of θc for 0° ≤ 2α ≤ 100° are reported in 

Table 5.2.2. Once known the fracture direction θc as a function of the notch 

opening angle 2α, from Eq. (5.2.40), the expression of the critical NSIF KIIc
* 

can 

be simplified as follow: 

KIIc
∗ = gk(2α) ∙ KIc

2(1−λ2) ∙ σc
2λ2−1                                                                     (5.2.41) 

Then, by using for the critical NSIF, K2c, the definition of Gross and Mendelson 

[56], see Eq. (5.2.35), the final result is: 

K2c = [(2π)(λ2−
1
2
) ∙ gk(2α)] ∙ KIc

2(1−λ2) ∙ σc
2λ2−1                                          (5.2.42) 
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Table 5.2.2. Crack propagation angles estimated according to Leguillon et al. criterion [41,44] and 

to Carpinteri et al. criterion [42,45,66], as a function of the notch opening angle 2. 

 

2α 

(degrees) 

Crack propagation angle (degrees) 

Leguillon et al. Carpinteri et al. 

0 75 76 

20 71 71 

30 68 68 

40 66 66 

50 64 63 

60 61 61 

70 59 59 

80 57 56 

90 54 54 

100 52 52 

 

 

 

5.2.4. Analytical comparison 

Considering the three different formulations, it is possible to compare the final 

relationships of the critical NSIF according to Gross and Mendelson’s definition: 

SED:                        

K2c = [√
1 + ν

e2
∙ (
3 ∙ (9 − 8ν)

32π
)

(1−λ2)

∙ ϕ2λ2−1] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1   (5.2.43) 

Leguillon et al.:          

K2c = [√2π ∙ hk(2α)] ∙ KIc
2(1−λ2) ∙ σc

2λ2−1                                                 (5.2.44) 

Carpinteri et al.:         
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K2c = [(2π)
(λ2−

1
2
) ∙ gk(2α)] ∙ KIc

2(1−λ2) ∙ σc
2λ2−1                                     (5.2.45) 

It can be observed that the three criteria give the same proportionality relation: 

K2c  ∝  KIc
2(1−λ2) ∙ σc

2λ2−1                                                                                    (5.2.46) 

The difference is given only by the proportionality factor. This factor depends 

only on the notch opening angle (2α) in Leguillon’s and Carpinteri’s criteria. In 

the SED criterion, instead, the proportionality factor depends on the opening angle 

2α and the Poisson's ratio ν, as shown in Fig. 5.2.5. As pointed out above, the V-

notch tip singularity (1-λ2), tied to Mode II loading, disappears for opening angles 

higher than 102°, according to Williams [54]. Therefore the analytical comparison 

of Eqs. (5.2.43-5.2.45) has been carried out for notch opening angles 2α between 

0° and about 100°.  

 

 

 

Figure 5.2.5. Variability of proportionality factor in the SED criterion, Eq. (5.2.43), as a function 

of the Poisson’s ratio ν. 
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Table 5.2.3. Proportionality factors in Eqs. (5.2.43,5.2.44,5.2.45). 

2α 

(degrees) 
λ2 SED (ν = 0.3) Leguillon et al. Carpinteri et al. 

0 0.5000 0.866 0.875 0.811 

20 0.5620 1.003 1.059 0.937 

30 0.5982 1.087 1.169 1.027 

40 0.6382 1.185 1.291 1.128 

45 0.6597 1.240 1.356 1.183 

50 0.6823 1.299 1.425 1.245 

60 0.7309 1.432 1.571 1.378 

70 0.7844 1.588 1.729 1.531 

80 0.8434 1.774 1.899 1.709 

90 0.9085 1.998 2.081 1.918 

100 0.9805 2.270 2.275 2.165 

 

 

Figure 5.2.6. Comparison among proportionality factors given by Eqs. (5.2.43,5.2.44,5.2.45). 

 

The proportionality factors do not differ significantly in their trends, with the 

values of Leguillon’s factor being always slightly greater than those assumed by 
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the other two criteria for the same notch opening angle (2α), as shown in Fig. 

5.2.6 and in Table 5.2.3. For 2= 0° and 100° Leguillon’s and SED criteria give 

the same proportionality factor, 0.87 and 2.27, respectively. The factor based on 

Carpinteri’s criterion, instead, does not match that of the other two criteria for any 

value of 2.  

 

5.2.5. Experimental validation  

The predictive capability of the three different approaches is assessed by using a 

good number of experimental data taken from the literature. The analysed data are 

referred to V-notched specimens made of two materials: polymethylmethacrylate 

(PMMA) and graphite. The mechanical properties of each tested material as well 

as the experimental procedures adopted are described below. 

The comparison between the experimental data and the theoretical estimations 

based on Eqs. (5.2.43-5.2.45) is performed in terms of Notch Stress Intensity 

Factor K2c to failure as a function of the V-notch opening angle 2α. When not 

directly available, the values of the critical NSIF to failure K2c have been obtained 

by two-dimensional FEM analyses, by introducing into the models the 

experimental fracture loads. The finite element code ANSYS®, version 14.5, has 

been used. In particular, the critical NSIF to failure K2c coincides with the Notch 

Stress Intensity Factor K2 calculated along the notch bisector line (K2 = σrθ ∙

√2π ∙ r1−λ2 with r → 0) when the final load to failure is applied to the FE model. 

The first set of experimental data is due to Ayatollahi and Torabi [87], who 

performed fracture tests on V-notched Brasilian disc (V-BD) made of graphite.  

The specimens geometry was characterized by a disc diameter D = 60 mm, a 

notch depth a = 15 mm and a thickness t = 8 mm. Three values of the notch 

opening angle, 2α = 30°, 60° and 90°, have been considered, being the loading 

angle to obtain pure Mode II loading equal to βII = 25°, 30° and 35° [87], 

respectively. Three graphite specimens were tested for each opening angle 2α. 

The mechanical properties of the tested graphite were: Young’s modulus E = 8050 

MPa, Poisson’s ratio ν = 0.20, fracture toughness KIc = 1.00 MPa m
0.5

 and tensile 

strength σc = 27.50 MPa.  



5 - Comparison between fracture criteria – Sharp V-notches under Mode II 

 

 

 
427 

 

The experimental values of the Notch Stress Intensity Factor K2c to failure are 

reported for each specimen in Fig. 5.2.7 as a function of the notch opening angle 

2α. In the same figure the theoretical curves of K2c as a function of the notch 

opening angle 2α are reported for comparison. 

 

The second set of experimental data (Seweryn et al. [21]) was obtained from 

Arcan tests performed on PMMA double V-notched specimens.  

The samples geometry was characterized by a length l = 200 mm, width w = 100 

mm, notch depth a = 25 mm and thickness t = 5 mm. Four values of the notch 

opening angle, 2α = 20°, 40°, 60° and 80°, have been considered, being the 

loading angle to obtain pure Mode II loading equal to ψ = 90° [21]. Three PMMA 

specimens were tested for each opening angle. 

The material properties were: Young’s modulus E = 3000 MPa, Poisson’s ratio ν 

= 0.30 and fracture toughness KIc = 1.37 MPa m
0.5

. Furthermore the true curve σ–ε 

of unnotched specimens exhibited a non-linear behaviour whereas the notched 

specimens presented a brittle behaviour, with a linear trend up to the critical load, 

followed by a sudden failure. This is because the notch sufficiently weakens the 

specimens so that the experiments remain within the linear initial stage. Under 

these circumstances the critical stress c should be substituted by “the maximum 

normal stress existing at the notch edge at the moment preceding the cracking”, as 

underlined in Ref. [7] where it is also recommended to use tensile specimens with 

semicircular notches. Hence the critical loads obtained experimentally from 

tensile specimens characterized by semicircular notches with a root radius ρ = 25 

mm have been used to estimate the critical strength σc. According to Seweryn et 

al. [21], the value of the ‘critical tensile stress’ at the notch root was 115 MPa, in 

fairly good agreement with other values reported in the literature for PMMA: for 

example Carpinteri [5] and Dunn et al. [9,10] gave 130 and 124 MPa, 

respectively.  

The experimental values of the Notch Stress Intensity Factor K2c to failure are 

plotted for each specimen in Fig. 5.2.8 as a function of the notch opening angle 

2α. In the same figure the theoretical curves of K2c obtained applying the three 

different formulations are given for comparison. 
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The third set of experimental data (Ayatollahi et al. [88]) was obtained from 

fracture tests conducted on V-notched Brasilian disc (V-BD) made of PMMA.  

The specimens geometry was characterized by a disc diameter D = 80 mm, a 

notch depth a = 20 mm and a thickness t = 10 mm. Three values of the notch 

opening angle, 2α = 30°, 60° and 90°, have been considered, being the loading 

angle to obtain pure Mode II loading equal to βII = 22.5°, 30.5° and 35° [88], 

respectively. A total number of 9 specimens were tested, three specimens for each 

geometry. 

The material properties were: Young’s modulus E = 2960 MPa, Poisson’s ratio ν 

= 0.38, fracture toughness KIc = 1.96 MPa m
0.5

 and tensile strength σc = 70.5 MPa. 

The experimental values of the Notch Stress Intensity Factor K2c to failure are 

shown for each specimen in Fig. 5.2.9 as a function of the notch opening angle 2α. 

In the same figure the theoretical curves of K2c as a function of the notch opening 

angle 2α are reported for comparison. 

 

 

 

Figure 5.2.7. Plots of the NSIF to failure K2c (Log-scale) and comparison with the experimental 

data from V-notched Brasilian disc (V-BD) specimens made of graphite tested by Ayatollahi and 

Torabi [87]. 
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Figure 5.2.8. Plots of the NSIF to failure K2c (Log-scale) and comparison with the experimental 

data from PMMA double V-notched specimens tested by Seweryn [21]. 

 

Figure 5.2.9. Plots of the NSIF to failure K2c (Log-scale) and comparison with the experimental 

data from V-notched Brasilian disc (V-BD) specimens made of PMMA tested by Ayatollahi et al. 

[88]. 

 

0

1

10

100

1000

0 20 40 60 80 100

N
S

IF
 t

o
 f

ai
lu

re
 K

2
c,

 [
M

P
a 

m
 (1

-λ
2

) 
] 

Notch opening angle 2α, [°] 

Experimental data

SED

Leguillon et al.

Carpinteri et al.

0

1

10

100

1000

0 20 40 60 80 100

N
S

IF
 t

o
 f

ai
lu

re
 K

2
c,

 [
M

P
a 

m
 (1

-λ
2

) 
] 

Notch opening angle 2α, [°] 

Experimental data

SED

Leguillon et al.

Carpinteri et al.



5 - Comparison between fracture criteria – Sharp V-notches under Mode II 

 

 

 
430 

 

The plots of Figs. 5.2.7-5.2.9 show that the agreement between the theoretical 

estimates and the experimental values of Notch Stress Intensity Factor K2c to 

failure is very good in all cases. It can be observed that theoretical assessments 

based on the averaged SED and the Carpinteri’s criterion are always fairly 

conservative with respect to those obtained by applying the Leguillon’s criterion. 

 

5.2.6. Discussion 

A comparison between different fracture criteria for brittle components weakened 

by sharp V-notches has been presented considering Mode II loading conditions. 

The comparison has considered the averaged SED criterion, and two different 

formulations of the Finite Fracture Mechanics theory, according to Leguillon and 

to Carpinteri et alii. 

With reference to the criterion based on the averaged SED, a new expression for 

estimating the control radius Rc under pure Mode II loading has been proposed 

and discussed in comparison with the expression valid for pure Mode I. 

The analytical comparison has been performed on the basis of the different 

expressions for the critical value of the NSIF K2c. The same proportionality 

relation exists between K2c and two fundamental mechanical properties of the 

material: the fracture toughness KIc and the ultimate tensile strength σc. The 

difference is given by a proportionality factor, which depends only on the V-notch 

opening angle in Leguillon and Carpinteri’s criteria, whereas it depends on the 

opening angle and the Poisson's ratio in the SED approach. The variability of the 

proportionality factors has been examined in detail. 

Finally, the three criteria have been applied to components weakened by sharp V-

notches under Mode II loading conditions in order to investigate the predictive 

capability of each approach. A number of experimental data taken from the 

literature have been used for the comparison. A very good agreement in terms of 

critical values of the NSIF K2c has been found in all cases.  

 

 

 



5 - Comparison between fracture criteria 

 

 
431 

 

References 

[1]  Irwin GR. Analysis of stresses and strains near the end of a crack traversing a 

plate. J Appl Mech 1957;24:361–4. 

[2]  Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc 

London A 1921;221:163–98. 

[3]  Leicester RH. Effect of size on the strength of structures. 1973. 

[4]  Gradin A. A Fracture Criterion for Edge-Bonded Bimaterial Bodies. J Compos 

Mater 1982;16:448–56.  

[5]  Carpinteri A. Stress-singularity and generalized fracture toughness at the vertex 

of re-entrant corners. Eng Fract Mech 1987. 

[6]  Knesl Z. A criterion of V-notch stability. Int J Fract 1991;48:R79–83.  

[7]  Seweryn A. Brittle fracture criterion for structures with sharp notches. Eng Fract 

Mech 1994;47:673–81.  

[8]  Nui LS, Chehimi C, Pluvinage G. Stress field near a large blunted tip V-notch and 

application of the concept of the critical notch stress intensity factor (NSIF) to the 

fracture toughness of very brittle materials. Eng Fract Mech 1994;49:325–35.  

[9]  Dunn ML, Suwito W, Cunningham S. Fracture initiation at sharp notches: 

Correlation using critical stress intensities. Int J Solids Struct 1997;34:3873–83.  

[10]  Dunn ML, Suwito W, Cunningham S, May CW. Fracture initiation at sharp 

notches under mode I, mode II, and mild mixed mode loading. Int J Fract 

1997;84:367–81.  

[11]  Leguillon D, Yosibash Z. Crack onset at a v-notch. Influence of the notch tip 

radius. Int J Fract 2003;122:1–21.  

[12]  Atzori B. Fracture mechanics or notch effect for fatigue design. XIII Natl. Congr. 

Ital. Soc. Strain Anal. (Edited by AIAS), Bergamo Italy (in Italian): 1985. 

[13]  Boukharouba T, Tamine T, Niu L, Chehimi C, Pluvinage G. The use of notch 

stress intensity factor as a fatigue crack initiation parameter. Eng Fract Mech 

1995;52:503–12.  

[14]  Verreman Y, Nie B. Early development of fatigue cracking at manual fillet welds. 

Fatigue Fract Eng Mater Struct 1996;19:669–81.  

[15]  Pluvinage G. Rupture and fatigue initiated from notches. Application of the notch 

intensity factor. Rev Fr Mec (in French) 1997:53–61. 

[16]  Lazzarin P, Tovo R. A notch intensity factor approach to the stress analysis of 

welds. Fatigue Fract Eng Mater Struct 1998;21:1089–103.  

[17]  Atzori B, Lazzarin P, Tovo R. From a local stress approach to fracture mechanics: 

a comprehensive evaluation of the fatigue strength of welded joints. Fatigue Fract 

Eng Mater Struct 1999;22:369–81.  

[18]  Atzori B, Lazzarin P, Tovo R. Stress field parameters to predict the fatigue 

strength of notched components. J Strain Anal Eng Des 1999;34:437–53.  

[19]  Novozhilov V. On a necessary and sufficient criterion for brittle strength. J Appl 

Math Mech (Translation PMM) 1969;33:201–10. 

[20]  Seweryn A, Mróz Z. A non-local stress failure condition for structural elements 



5 - Comparison between fracture criteria 

 

 

 

 
432 

 

under multiaxial loading. Eng Fract Mech 1995;51:955–73.  

[21]  Seweryn A, Poskrobko Sł, Mróz Z. Brittle Fracture in Plane Elements with Sharp 

Notches under Mixed-Mode Loading. J Eng Mech 1997;123:535–43.  

[22]  Taylor D. Geometrical effects in fatigue: a unifying theoretical model. Int J 

Fatigue 1999;21:413–20.  

[23]  Susmel L, Taylor D. The theory of critical distances to predict static strength of 

notched brittle components subjected to mixed-mode loading. Eng Fract Mech 

2008;75:534–50. 

[24]  Tanaka K. Engineering formulae for fatigue strength reduction due to crack-like 

notches. Int J Fract 1983;22:R39–46.  

[25]  Lazzarin P, Tovo R, Meneghetti G. Fatigue crack initiation and propagation 

phases near notches in metals with low notch sensitivity. Int J Fatigue 

1997;19:647–57.  

[26]  El Haddad MH, Topper TH, Smith KN. Prediction of non propagating cracks. 

Eng Fract Mech 1979;11:573–84.  

[27]  Neuber H. Theory of Notch Stresses. Berlin: Springer-Verlag; 1958. 

[28]  Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to sharp 

V-notches: Evaluation of the microstructural support factor for different failure 

hypotheses. Part I: Basic stress equations. Eng Fract Mech 2008;75:3060–72.  

[29]  Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to sharp 

V-notches: Evaluation of the microstructural support factor for different failure 

hypotheses. Eng Fract Mech 2009;76:1151–75.  

[30]  Elices M, Guinea GV, Gómez J, Planas J, Elices M, G J. The cohesive zone 

model: advantages, limitations and challenges. Eng Fract Mech 2002;69:137–63.  

[31]  Gómez FJ, Elices M. Fracture of components with V-shaped notches. Eng Fract 

Mech 2003;70:1913–27.  

[32]  Livieri P. Use of J-integral to predict static failures in sharp V-notches and 

rounded U-notches. Eng Fract Mech 2008;75:1779–93.  

[33]  Barati E, Aghazadeh Mohandesi J, Alizadeh Y. The effect of notch depth on J-

integral and critical fracture load in plates made of functionally graded aluminum–

silicone carbide composite with U-notches under bending. Mater Des 

2010;31:4686–92. 

[34]  Ayatollahi MR, Aliha MRM. Mixed mode fracture analysis of polycrystalline 

graphite – A modified MTS criterion. Carbon N Y 2008;46:1302–8.  

[35]  Saghafi H, Ayatollahi MR, Sistaninia M. A modified MTS criterion (MMTS) for 

mixed-mode fracture toughness assessment of brittle materials. Mater Sci Eng A 

2010;527:5624–30.  

[36]  Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the 

static and fatigue behavior of components with sharp V-shaped notches. Int J Fract 

2001;112:275–98.  

[37]  Lazzarin P, Berto F, Elices M, Gòmez J. Brittle failures from U- and V-notches in 

mode I and mixed, I + II, mode: a synthesis based on the strain energy density 

averaged on finite-size volumes. Fatigue Fract Eng Mater Struct 2009;32:671–84.  

[38]  Berto F, Lazzarin P. A review of the volume-based strain energy density 



5 - Comparison between fracture criteria 

 

 
433 

 

approach applied to V-notches and welded structures. Theor Appl Fract Mech 

2009;52:183–94.  

[39]  Berto F, Lazzarin P. Recent developments in brittle and quasi-brittle failure 

assessment of engineering materials by means of local approaches. Mater Sci Eng 

R Reports 2014;75:1–48.  

[40]  Leguillon D. A criterion for crack nucleation at a notch in homogeneous 

materials. Comptes Rendus l’Académie Des Sci - Ser IIB - Mech 2001;329:97–

102.  

[41]  Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J 

Mech - A/Solids 2002;21:61–72.  

[42]  Carpinteri A, Cornetti P, Pugno N, Sapora A, Taylor D. A finite fracture 

mechanics approach to structures with sharp V-notches. Eng Fract Mech 

2008;75:1736–52. 

[43]  Cornetti P, Pugno N, Carpinteri A, Taylor D. Finite fracture mechanics: A 

coupled stress and energy failure criterion. Eng Fract Mech 2006;73:2021–33.  

[44]  Yosibash Z, Priel E, Leguillon D. A failure criterion for brittle elastic materials 

under mixed-mode loading. Int J Fract 2006;141:291–312.  

[45]  Sapora A, Cornetti P, Carpinteri A. A Finite Fracture Mechanics approach to V-

notched elements subjected to mixed-mode loading. Eng Fract Mech 

2013;97:216–26.  

[46]  Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J 

Fract 1974;10:305–21.  

[47]  Sih GC. Mechanics of Fracture Initiation and Propagation. Dordrecht: Springer 

Netherlands; 1991.  

[48]  Lazzarin P, Berto F, Gomez F, Zappalorto M. Some advantages derived from the 

use of the strain energy density over a control volume in fatigue strength 

assessments of welded joints. Int J Fatigue 2008;30:1345–57.  

[49]  Lazzarin P, Berto F, Zappalorto M. Rapid calculations of notch stress intensity 

factors based on averaged strain energy density from coarse meshes: Theoretical 

bases and applications. Int J Fatigue 2010;32:1559–67.  

[50]  Berto F, Lazzarin P, Kotousov A, Pook LP. Induced out-of-plane mode at the tip 

of blunt lateral notches and holes under in-plane shear loading. Fatigue Fract Eng 

Mater Struct 2012;35:538–55.  

[51]  Pook LP, Campagnolo A, Berto F, Lazzarin P. Coupled fracture mode of a 

cracked plate under anti-plane loading. Eng Fract Mech 2015;134:391–403.  

[52]  Treifi M, Oyadiji SO. Strain energy approach to compute stress intensity factors 

for isotropic homogeneous and bi-material V-notches. Int J Solids Struct 

2013;50:2196–212.  

[53]  Davis BR, Wawrzynek PA, Ingraffea AR. 3-D simulation of arbitrary crack 

growth using an energy-based formulation – Part I: Planar growth. Eng Fract 

Mech 2014;115:204–20.  

[54]  Williams ML. Stress singularities resulting from various boundary conditions in 

angular corners of plates in tension. J Appl Mech 1952;19:526–8. 

[55]  Lazzarin P, Tovo R. A unified approach to the evaluation of linear elastic stress 

fields in the neighborhood of cracks and notches. Int J Fract 1996;78:3–19.  



5 - Comparison between fracture criteria 

 

 

 

 
434 

 

[56]  Gross B, Mendelson A. Plane elastostatic analysis of V-notched plates. Int J Fract 

Mech 1972;8:267–76.  

[57]  Beltrami E. Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento 18 

(in Italian); 1885. 

[58]  Yosibash Z, Bussiba A, Gilad I. Failure criteria for brittle elastic materials. Int J 

Fract 2004:307–33.  

[59]  Tada H, Paris P, Irwin G. The stress analysis of cracks, Handbook. St Louis MO 

(USA): Paris Productions Incorporated; 1985. 

[60]  Leguillon D, Murer S. Fatigue crack nucleation at a stress concentration point. 4th 

Int. Conf. Crack Paths (CP2012), Gaeta, Italy, Sept. 19-21, 2012. 

[61]  Radaj D, Lazzarin P, Berto F. Generalised Neuber concept of fictitious notch 

rounding. Int J Fatigue 2013;51:105–15.  

[62]  Planas J, Elices M, Guinea G., Gómez F., Cendón D., Arbilla I. Generalizations 

and specializations of cohesive crack models. Eng Fract Mech 2003;70:1759–76.  

[63]  Berto F, Lazzarin P, Matvienko YG. J-integral evaluation for U- and V-blunt 

notches under Mode I loading and materials obeying a power hardening law. Int J 

Fract 2007;146:33–51. 

[64]  Aliha MRM, Ayatollahi MR. Analysis of fracture initiation angle in some cracked 

ceramics using the generalized maximum tangential stress criterion. Int J Solids 

Struct 2012;49:1877–83.  

[65]  Lazzarin P, Campagnolo A, Berto F. A comparison among some recent energy- 

and stress-based criteria for the fracture assessment of sharp V-notched 

components under Mode I loading. Theor Appl Fract Mech 2014;71:21–30.  

[66]  Sapora A, Cornetti P, Carpinteri A. V-notched elements under mode II loading 

conditions. Struct Eng Mech 2014;49:499–508.  

[67]  Meneghetti G, Campagnolo A, Berto F, Atzori B. Averaged strain energy density 

evaluated rapidly from the singular peak stresses by FEM: cracked components 

under mixed-mode (I+II) loading. Theor Appl Fract Mech 2015;79:113–24.  

[68]  Marangon C, Campagnolo A, Berto F. Three-dimensional effects at the tip of 

rounded notches subjected to mode-I loading under cyclic plasticity. J Strain Anal 

Eng Des 2015;50:299–313.  

[69]  Campagnolo A, Berto F, Marangon C. Cyclic plasticity in three-dimensional 

notched components under in-phase multiaxial loading at R=−1. Theor Appl Fract 

Mech 2015.  

[70]  Erdogan F, Sih GC. On the Crack Extension in Plates Under Plane Loading and 

Transverse Shear. J Basic Eng 1963;85:519.  

[71]  Gómez FJ, Elices M, Berto F, Lazzarin P. Local strain energy to assess the static 

failure of U-notches in plates under mixed mode loading. Int J Fract 2007;145:29–

45.  

[72]  Priel E, Yosibash Z, Leguillon D. Failure initiation at a blunt V-notch tip under 

mixed mode loading. Int J Fract 2008;149:143–73.  

[73]  Chen DH, Ozaki S. Investigation of failure criteria for a sharp notch. Int J Fract 

2008;152:63–74.  

[74]  Tran V-X, Leguillon D, Krishnan A, Xu LR. Interface crack initiation at V-



5 - Comparison between fracture criteria 

 

 
435 

 

notches along adhesive bonding in weakly bonded polymers subjected to mixed-

mode loading. Int J Fract 2012;176:65–79.  

[75]  García IG, Leguillon D. Mixed-mode crack initiation at a v-notch in presence of 

an adhesive joint. Int J Solids Struct 2012;49:2138–49.  

[76]  Seweryn A, Łukaszewicz A. Verification of brittle fracture criteria for elements 

with V-shaped notches. Eng Fract Mech 2002;69:1487–510.  

[77]  Anderson TL. Fracture Mechanics, Fundamentals and Applications. 2nd ed. Boca 

Raton: CRC Press LLC; 1994. 

[78]  Richard HA, Fulland M, Sander M. Theoretical crack path prediction. Fatigue 

Fract Eng Mater Struct 2005;28:3–12.  

[79]  Berto F, Campagnolo A, Lazzarin P. Fatigue strength of severely notched 

specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract Eng Mater 

Struct 2015;38:503–17. 

[80]  Campagnolo A, Berto F, Lazzarin P. The effects of different boundary conditions 

on three-dimensional cracked discs under anti-plane loading. Eur J Mech - 

A/Solids 2015;50:76–86.  

[81]  Torabi AR, Campagnolo A, Berto F. Experimental and theoretical investigation 

of brittle fracture in key-hole notches under mixed mode I/II loading. Acta Mech 

2015;226:2313–22.  

[82]  Torabi ARR, Campagnolo A, Berto F. Tensile fracture analysis of V-notches with 

end holes by means of the local energy. Phys Mesomech 2015;18:194–202.  

[83]  Torabi AR, Campagnolo A, Berto F. Mode II Brittle Fracture Assessment of Key-

Hole Notches by Means of the Local Energy. J Test Eval 2016;44.  

[84]  Berto F, Campagnolo A, Gallo P. Brittle Failure of Graphite Weakened by V-

Notches: A Review of Some Recent Results Under Different Loading Modes. 

Strength Mater 2015;47:488–506.  

[85]  Beghini M, Bertini L, Di Lello R, Fontanari V. A general weight function for 

inclined cracks at sharp V-notches. Eng Fract Mech 2007;74:602–11.  

[86]  Melin S. Accurate Data for Stress Intensity Factors at Infinitesimal Kinks. J Appl 

Mech 1994;61:467.  

[87]  Ayatollahi MRR, Torabi ARR. Failure assessment of notched polycrystalline 

graphite under tensile-shear loading. Mater Sci Eng A 2011;528:5685–95.  

[88]  Ayatollahi MR, Torabi ARR, Azizi P. Experimental and Theoretical Assessment 

of Brittle Fracture in Engineering Components Containing a Sharp V-Notch. Exp 

Mech 2010;51:919–32.  

 

 

 

 

 

 

 



5 - Comparison between fracture criteria 

 

 

 

 
436 

 

 



 

                                                       
 

 

 

 

 

 

 

 

CHAPTER 6 

 

 

LINK BETWEEN PEAK STRESS 
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6.1 Link between the Peak Stress Method (PSM) and the 

averaged Strain Energy Density (SED): long cracks under 

mixed mode (I+II) loading 
(*)

 

 

Nomenclature 

2a  crack length 

d  mean size of a finite element 

e1, e2  parameters for averaged SED evaluation 

E  elastic modulus 

fI, fII  fitting functions for K
*

FE and K
**

FE convergence curves 

KI, KII   mode I and II SIFs 

*
FEK , **

FEK  non-dimensional KI and KII relevant to the peak stress method 

MM  mode mixity ratio 

R0  radius of the control volume for the averaged SED evaluation 

r,  polar coordinates 

ANW  analytical, closed-form expression of the averaged SED, taking into 

account only SIFs contributions 

FEMW  averaged SED calculated by FEM using very refined meshes 

(direct approach) 

coarse,FEMW  averaged SED calculated by FEM using coarse meshes (direct 

approach with coarse mesh option) 

PSMW  averaged SED calculated according to the PSM (only SIFs 

contributions are taken into account) 

 

Symbols 

2  opening angle 

                 Poisson's ratio 

nom  nominal tensile stress 
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peak singular, linear elastic opening peak stress evaluated at the crack tip 

by FEM using the PSM 

σI,peak  maximum elastic principal stress evaluated at the crack tip by FEM 

using the PSM 

rrr  normal and shear stress components in the polar frame of reference 

peak singular, linear elastic sliding peak stress evaluated at the crack tip 

by FEM using the PSM 

Abbreviations 

FE  Finite element 

FEM  Finite element method 

NSIFs  Notch stress intensity factors 

PSM  Peak stress method 

SED  Strain energy density 

SIFs  Stress intensity factors 

 

 

(*) See also: 

 

Meneghetti, G.; Campagnolo, A.; Berto, F.; Atzori, B. Averaged strain energy density evaluated 

rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) 

loading. Theoretical and Applied Fracture Mechanics; 79: 113-124 (2015). 
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6.1.1. Introduction 

Notch stress intensity factors (NSIFs) allow to quantify the intensity of the local 

stress distributions ahead of stress raisers. Nowadays, the analysis of the local 

stress distributions ahead of cracks and notches by means of  numerical methods 

is widely adopted by engineers focused on safe designing of structural 

components against fracture and fatigue. A major drawback of numerical 

modelling stress concentration regions is that refined or extremely refined meshes 

are required to obtain reliable results in terms of local stresses and strains. Cracks 

can be modelled by special quarter-point elements which contain the crack tip 

stress singularity [1,2] and permit to obtain accurate results despite of the adopted 

relatively coarse meshes. Special singular finite elements and boundary elements 

have been developed to account for the appropriate singularity (see for example 

[3,4]) and to facilitate the evaluation of the generalized stress intensity factors 

[5,6]. Among the special finite elements, additional and commonly used 

numerical techniques include degenerated asymptotic finite elements [7,8], hybrid 

(or enriched) finite elements [9,10], extended finite element [11,12] and analytical 

finite elements [13]. 

Karihaloo and Xiao extended the hybrid crack element (HCE) originally 

introduced by Tong et al. [14] to calculate directly not only the SIF but also the 

coefficients of the higher-order terms of the crack tip asymptotic field [15]. 

Extensive studies have proved the versatility and accuracy of the element for pure 

mode I problems, but also for mode II and mixed mode cracks [16].  

Special finite elements were presented in the literature also to capture the 

asymptotic nature of other stress singularities, like those arising from pointed V-

shaped notches, see for example [17,18], but they are not available in commercial 

softwares. No special element exists for severe notches where the notch root is 

very small but different from zero. 

Notch stress intensity factors (NSIFs) have a fundamental role in static strength 

estimation of V-notched structural elements made of brittle or quasi-brittle 

materials [19–23]. This also holds true for components made of structural 

materials undergoing high-cycle fatigue loading [23–25]. A valuable example of 

application of the NSIF approach to a practical problem is the fatigue design of 
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welded joints [26–29]. Local approaches based on N-SIFs extend the concepts of 

Linear Elastic Fracture Mechanics (LEFM), and play the same role the SIFs have 

in strength evaluations of cracked components.  

In plane problems, the mode I and mode II NSIFs for sharp V-notches, which 

quantify the intensity of the asymptotic stress distributions in the close 

neighbourhood of the notch tip, can be expressed by means of the Gross and 

Mendelson definitions [30]: 

  11

0
0r

1 rlim2K





        (6.1.1) 
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Figure 6.1.1: (a) Polar coordinate system centred at the notch tip. (b) Strain energy density 

averaged over a control volume (area) of radius R0 surrounding the V-notch tip, 
A

W
W  . 

 

where (r,θ) is a polar coordinate system centred at the notch tip (Fig. 6.1.1a), σθθ 

and τrθ are the stress components according to the above coordinate system, and λ1 

and λ2 are the mode I and mode II first eigenvalues in William’s equations [31], 

respectively. The condition θ = 0 identifies the notch bisector line. When the V-

notch angle 2α is equal to zero, λ1 and λ2 equal 0.5, and K1 and K2 match the 

conventional stress intensity factors, KI and KII, of a crack according to LEFM. 



 

                                                       
 

6 - Link between PSM and SED – Long cracks under mixed mode I+II loading 

 

 
443 

 

Structural strength problems of V-notches (with arbitrary opening angle 2) 

subjected to mixed-mode loading can be treated using the linear elastic strain 

energy density averaged over a material-dependent structural volume (the SED 

parameter), which was idealised as a circular sector of radius R0, as illustrated in 

Fig. 6.1.1b, according to Lazzarin and Zambardi [23]. The SED approach has 

been extensively applied in static [23,32,33] as well as fatigue [23,29,34,35] 

strength assessments. With reference to plane strain conditions, the SED value can 

be evaluated analytically as a function of the NSIFs: 

2

1

0

22

2

1

0

11
AN

21 R

K

E

e

R

K

E

e
W 




















       (6.1.3) 

where e1 and e2 are two parameters that depend on the notch opening angle 2α and 

the Poisson’s ratio ν [23]. Equation (6.1.3) is valid when the influence of the 

higher-order, non-singular terms can be neglected inside the control volume. 

Therefore, taking as an example the case of short cracks or thin welded lap joints, 

Eq. (6.1.3) is incomplete because the T-stress must be included in the local SED 

evaluation [36]. The main disadvantage in the practical application of Eq. (6.1.3) 

combined with (6.1.1) and (6.1.2) is that very refined meshes are needed to 

calculate the NSIFs by means of definitions (6.1.1) and (6.1.2) applied to the 

results of linear elastic finite element analyses. The reason is that the complete 

local stress distributions must be calculated accurately. The modelling procedure 

becomes particularly time-consuming for components that cannot be analysed by 

means of two-dimensional models and instead require three-dimensional FE 

analyses.  

However, Lazzarin and co-workers [37] provided evidence that it is convenient to 

evaluate the SED parameter directly from the results of FE analyses, FEMW , by 

summing up the strain energies WFEM,i calculated for the i-th finite element 

located inside the control volume and subsequently by dividing by the total 

volume (A in Fig. 6.1.1b): 

A

W
W A i,FEM

FEM


         (6.1.4) 
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Figure 6.1.2: SED parameter evaluated according to the direct approach (Eq. (6.1.4)) with coarse 

mesh option, W̅FEM,coarse [37]; (a) geometry and loading condition (2w = 200 mm). Coarse FE 

mesh (second order plane elements, PLANE 183 of Ansys Element Library) producing a 10% 

error in the cases: (b) ϕ = 30°,  2a = 46.19 mm and (c) ϕ = 0°, 2a = 40 mm. Control radius R0 = 0.1 

mm. 
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Equation (6.1.4) defines the so-called direct approach to evaluate the SED 

parameter. Additionally, it has been shown that the adopted FE meshes can be 

very coarse inside the control volume having radius R0 [37]. More precisely, 

Figure 6.1.2a shows the required geometrical model, and Figures 6.1.2b and 

6.1.2c report two examples of FE meshes (second order plane elements, PLANE 

183 of the Ansys
®
 element library) adopted to analyse a mixed-mode (I+II) and a 

pure mode I crack problem, respectively, according to the direct approach with 

coarse mesh option [37]. Figure 6.1.2 shows that only eight finite elements are 

generated inside the control volume, two concentric rings consisting of eight 

elements each are generated outside the control volume in the circular sector R0 < 

r < 10·R0, while a free mesh of elements having an average size d is generated 

outside. The average element size d must be input in Ansys
®
 before running the 

free mesh generation algorithm. The FE meshes shown in Figures 6.1.2b and 

6.1.2c are as coarse as possible to fulfil 0.9 ≤ W̅FEM,coarse/W̅FEM ≤ 1.1, 

coarse,FEMW  and FEMW  being evaluated from Eq. (6.1.4) by using the coarse mesh 

option and a very refined mesh (approximately 500 FE inside the control volume), 

respectively. Due to the adopted mesh refinement, 
FEMW  represents the ‘exact’ 

reference value throughout the present paragraph.  

A peculiar feature of the local SED is that it is able to capture three-dimensional 

effects of crack tip fields through the plate thickness that, in some cases, may play 

a significant role in fracture processes [38–40]. While it is not the aim of the 

present investigation to discuss this point in more detail, it is important to 

underline that such three-dimensional effects have to be considered case-by-case 

to understand their incidence on the simplifications adopted in fracture 

assessments.  
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Figure 6.1.3: SED parameter evaluated according to the peak stress approach (Eq. (6.1.7)); 

geometry and loading condition (2w = 200 mm): (a) mixed mode (ϕ > 0°) and (c) pure mode I (ϕ = 

0°) loading. Coarse FE mesh (first order plane elements, PLANE 182 with K-option 1 set to 3) 

producing a 10% error in the cases: (b) ϕ = 30°, 2a = 46.19 mm and (d) ϕ = 0°,  2a = 40 mm.  
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The numerical efficiency of the direct approach with the coarse mesh option has 

been illustrated in [37] and can be appreciated from Figure 6.1.2. Nonetheless, an 

alternative approach is put forward in the present paragraph, where modelling the 

circular sector-shaped structural volume is no longer necessary and the coarse 

mesh option is maintained. The method is referred to as the peak stress approach 

(PSM, Peak Stress Method) and the analysis technique is sketched in Figure 6.1.3, 

which reports the same crack problems examined in Figure 6.1.2. In particular, 

Figures 6.1.3b and 6.1.3d show the coarsest FE meshes (first-order plane 

elements, PLANE 182 of the Ansys
®
 element library with K-option 1 set to 3) that 

can be adopted to comply with the conditions of applicability of the method. The 

level of mesh coarseness that can be adopted using the PSM depends on the crack 

length and mode mixity, such that more refined meshes are required if the crack 

size is reduced and the mode mixity is increased, as  explained in the next section. 

The free mesh generation algorithm is again employed in Figures 6.1.3b and 

6.1.3d by imposing an average element size d.  

The PSM is briefly reviewed in the next section; here, it is important to underline  

that the method dates back to the technique introduced by Nisitani and Teranishi 

[41,42], who presented a new numerical procedure suitable to estimate KI for a 

crack emanating from an ellipsoidal cavity. Such a procedure is based on the 

usefulness of the linear elastic peak stress σpeak calculated at the crack tip by 

means of FE analyses characterized by a mesh pattern having a constant element 

size. In particular, Nisitani and Teranishi [41,42] were able to show that the ratio 

KI/σpeak depends only on the element size, such that σpeak can be used to rapidly 

estimate KI, provided that the adopted mesh pattern has previously been calibrated 

on geometries for which the exact KI values are known. This approach has been 

theoretically justified and also extended to sharp V-shaped notches subject to 

mode I loading [43], giving rise to the Peak Stress Method, i.e., an approximate 

FE-based method to estimate the NSIFs. Later on, the PSM was extended to 

cracks subjected to mode I as well as mode II stresses [44]. The element size 

required to evaluate K1 and K2 from σpeak and τpeak, respectively, is several orders 

of magnitude greater than that required to evaluate the entire local stress field. The 

second advantage of using σpeak and τpeak is that a single stress value is sufficient 
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to estimate K1 and K2, respectively, instead of a number of stress FE data, as is 

usually made by applying definitions (6.1.1) and (6.1.2).  

Aims of the present investigation are as follows: 

 

 to recall the fundamental concepts of the Peak Stress Method for pure 

modes of loading; 

 to present the PSM applied to mixed mode (I+II) loading cases; 

 to formulate the peak stress approach to calculate the SED parameter in the 

case of mixed mode (I+II) loading.  

 

6.1.2. The Peak Stress Method for pure modes of loading 

The PSM is a simplified numerical method to estimate the NSIFs parameters. It 

was originally formulated for cases where only mode I singular stresses exist (i.e., 

K2 = 0 or mode II stresses are negligible). It has been based on a link between the 

exact value of the mode I NSIF K1 (see Eq. (6.1.1)) and the linear elastic opening 

peak stress σpeak calculated at the V-notch tip according to the following 

expression [43]: 

38.1
dσ

K
K

1λ1

peak

1*

FE 





        (6.1.5) 

The PSM according to Eq. (6.1.5) was applied to correlate the fatigue strength of 

fillet- and full-penetration-welded joints subjected to mode I loading [45,46]. 

Recently, the Peak Stress Method has also been extended to mode II crack 

problems, linking the exact value of the mode II NSIF K2 (Eq. (6.1.2) with 2 = 

0° and 2 = 0.5) and the linear elastic sliding peak stress τpeak calculated at the 

crack tip according to the following expression [44]: 

 38.3
dτ

K
K

2λ1

peak

2**

FE 





        (6.1.6) 

In Eqs. (6.1.5) and (6.1.6), d is the so-called ‘global element size’ input when 

using the free mesh generation algorithm available in Ansys
®

 numerical software. 
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Such a parameter controls the average element size of the FE pattern, as is 

reported for the example in Figs. 6.1.3b and d and then in Figs. 6.1.11a and b. 

There are no additional parameters to input or actions the FE analyst must take to 

generate the FE mesh according to the PSM. When Eqs. (6.1.5) and (6.1.6) were 

calibrated, K1 and K2 were obtained by using very refined FE mesh patterns in the 

numerical analyses and applying definitions (6.1.1) and (6.1.2) to the numerical 

results [43,44]. It is worth noting that FE sizes on the order of 10
-5

 mm were 

adopted; such refined meshes can hardly be adopted in practical design situations. 

Eqs. (6.1.5) and (6.1.6) are useful in practical applications because, if the mean 

element size d is kept constant, then the K1/σpeak and K2/τpeak ratios are also 

constant. Eqs. (6.1.5) and (6.1.6) are valid under the following conditions: 

 

 use of 4-node quadrilateral finite elements with linear shape functions, as 

implemented in ANSYS
®
 numerical software (PLANE 42 of the Ansys

®
 

element library or alternatively PLANE 182 with K-option 1 set to 3, 

which corresponds to a simplified enhanced strain formulation of the finite 

elements); 

 the pattern of finite elements around a crack tip must be that shown in 

Figs. 6.1.3b and d (see also [43,44] when dealing with open V-notches); in 

particular, four elements share the node located at the crack tip; 

 concerning Eq. (6.1.5), V-notches are characterised by an opening angle 

2 ranging from 0° to 135°; 

 the ratio a/d must be greater than 3 to obtain %338.1K*

FE  , with a 

being the semi-crack length (or the notch depth when dealing with open V-

notches). When mode II (sliding) stresses are of interest, meshes must be 

more refined such that the ratio a/d must be greater than 14 to obtain 

%338.3K **

FE  . 

 

Recently, the PSM has also been combined with 3D numerical models and eight-

node brick elements to assess the fatigue strength of steel-welded joints having 

complex geometry and characterised by toe as well as root cracking
 
[47,48]. Finite 

element analyses performed using higher-order elements or significantly different 
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FE patterns imply that coefficients of Eqs. (6.1.5) and (6.1.6) should be 

recalculated. 

 

6.1.3. The Peak Stress Method for mixed mode (I+II) loading 

In the present Section, the Peak Stress Method is extended to mixed mode (I+II) 

crack problems. Consider a crack (2α = 0°) centred in a plate having the geometry 

reported in Figs. 6.1.3a and c and subjected to tensile loading. By varying the 

inclination angle ϕ of the crack, it is possible to obtain different mode mixities, 

from pure mode I (ϕ = 0°) to mixed mode I+II (ϕ > 0°) loading. Different 

geometrical combinations are considered, varying the crack length 2a (from 5 to 

160 mm) and the inclination ϕ (0°, 10°, 30°, 45° and 60°). The average size of the 

finite elements d (0.5, 1, 2, 5 and 10 mm) is also varied, with the aim of 

investigating to what extent the PSM holds true. Finite element analyses have 

been performed via the commercial software Ansys
®
 and 4-node quadrilateral 

elements (PLANE 42 or equivalently PLANE 182 with K-option 1 set to 3). The 

free mesh algorithm has been used in all numerical analyses, and the sole control 

parameter set to generate the mesh has been the so-called ‘global element size’, 

which controls the mean size of the finite elements. To obtain a pattern of finite 

elements oriented along the crack bisector line (see Figs. 6.1.3b and d), the 

geometry of the plate has been divided into six areas such that each crack tip is 

shared by four areas, as shown in Fig. 6.1.3a. By doing so, four elements (each 

one belonging to a different area) share the node located at the crack tip, and the 

relevant condition of applicability of the PSM is satisfied. 

For the cracked geometries under analysis, K1 = KI, K2 = KII and λ1 = λ2 = 0.5, 

while σpeak and τpeak are the maximum linear elastic normal (opening) and shear 

(sliding) nodal stresses referred to the bisector line and are evaluated at the crack 

tip according to Fig. 6.1.3a, c. The exact values of the mode I and mode II SIFs, 

KI and KII, have been evaluated by means of dedicated finite element analyses 

performed on the same geometries, but adopting very refined meshes (the smallest 

element size being on the order of 10
-5

 mm) in the close neighbourhood of the 

crack tip. 
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Figure 6.1.4 plots the results of the numerical analyses in terms of the non-

dimensional SIFs K
*

FE and K
**

FE defined in Eqs. (6.1.5) and (6.1.6), respectively, 

for inclined cracks with ϕ = 10°, 30°, 45° and 60°. The parameters K
*

FE and K
**

FE 

are seen to converge to the values 1.38 [43] and 3.38 [44], respectively, within a 

scatter band of the numerical results of ±3%, according to the values previously 

calibrated for pure modes of loading. Convergence is guaranteed for a ratio a/d 

greater than a value between 3 and 6 for mode I loading and between 12 and 21 

for mode II loading. It can be observed that the minimum mesh density ratio a/d 

values to assure applicability of the PSM under mixed mode (I+II) loading are 

only slightly greater than those obtained in [43] in the case of pure mode I (a/d  

3), and reported in [44] for pure mode II (a/d  14). Moreover, it should be noted 

that mode II loading is more demanding to analyse with the PSM than mode I 

loading, i.e., it requires more refined finite element mesh patterns [44].  
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Figure 6.1.4: Calibration of the PSM for a crack (2α = 0°) under mixed mode (I+II) loading: (a) ϕ 

= 10°; (b) ϕ = 30°; (c) ϕ = 45° and (d) ϕ = 60°. Non-dimensional SIFs related to mode I and mode 

II. 

 

 

6.1.4. The peak stress approach to estimate the SED parameter for mixed 

mode (I+II) loading 

6.1.4.1 Standard approach 

In the present section, a link between the SED parameter [23] and the peak 

stresses [43,44] in the case of cracks subjected to mixed mode (I+II) loading is 

investigated. By substituting the peak stress-based relationships (Eqs. (6.1.5) and 

(6.1.6)) in the closed-form expression of the SED (Eq. (6.1.3)), the latter can be 

estimated by means of the elastic peak stresses evaluated at the crack tip with 

coarse meshes σpeak and τpeak: 
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where e1 and e2 are equal to 0.133 and 0.340, respectively, in the case of a notch 

opening angle 2α = 0° (crack case) and Poisson’s ratio ν = 0.3 [23]. 

To validate the peak stress approach according to Eq. (6.1.7), FE analyses have 

been carried out on the same cracked plates and the same pattern of elements 

taken into consideration in the previous Section with reference to Figure 6.1.3. In 

all cases, the ‘exact’ numerical values of the SED parameter have been calculated 

with the direct approach and adopting very refined meshes (approximately 500 FE 

inside the control volume), W̅FEM (Eq. (6.1.4)). The radius of the control volume 

R0 has been kept constant and equal to 0.1 mm, which is relevant to aluminium 

alloys [29]. The mode mixity ratio (MM) has been evaluated according to the 

following definition: 

III

II

KK

K
MM


              (6.1.8) 

For an inclined crack in an infinitely wide plate, MM can be calculated as a 

function of the crack inclination angle (ϕ in Figure 6.1.3a) by substituting the 

theoretical expressions of KI and KII, according to [49], into Eq. (6.1.8): 

   
     




2coscossin

cossin
MM . Eq. (6.1.8) provides, as a master case, MM = 0 for 

pure mode I with ϕ = 0°, MM = 0.5 for mixed mode with ϕ = 45° and MM = 1 for 

pure mode II loading. 

Before validating the peak stress approach, the SED parameter has also been 

evaluated according to Eq. (6.1.3), W̅AN, with the exact SIFs evaluated from 

dedicated very refined FE analyses, where the element size close to the crack tip 

has been reduced to 10
-5

 mm. The maximum difference between W̅AN (Eq. 

(6.1.3)) and W̅FEM (Eq. (6.1.4)) resulted in approximately 5% for the minimum 

crack length 2a = 10 mm and crack inclination angle ϕ = 60°. This means that the 

influence of higher order terms, such as the T-stress, can be neglected in the 

present analyses, at least from an engineering point of view, and Eqs (6.1.3) and 

(6.1.7) are fully applicable. 

The ratio between the SED calculated with the peak stress (W̅PSM, Eq. (6.1.7)) and 

the direct (W̅FEM, Eq. (6.1.4)) approaches is reported in Fig. 6.1.5 for each crack 
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inclination angle ϕ. It can be observed that the ratio W̅PSM/W̅FEM converges to 

unity within a scatter band of ±10% for all different mode mixities taken into 

consideration. More precisely, convergence occurs for a mesh density ratio a/d 

greater than 3 for MM = 0 (ϕ = 0°), 6 for MM = 0.15 (ϕ = 10°), 8.50 for MM = 

0.37 (ϕ = 30°), 11 for MM = 0.50 (ϕ = 45°) and 16 for MM = 0.63 (ϕ = 60°). As 

was expected, the minimum a/d ratio to assure the validity of the proposed 

method increases as the mode mixity ratio (MM) defined by Eq. (6.1.8) increases. 

In fact, Figure 6.1.4 shows that mode II loading is more demanding than mode I in 

terms of mesh density to estimate the NSIFs using the PSM [44]. 
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Figure 6.1.5: Ratio between approximated and exact SED parameter versus the mesh density 

ratio. W̅PSM according to the peak stress approach, Eq. (6.1.7); W̅FEM according to the direct 

approach, Eq. (6.1.4). Crack (2α = 0°) under mixed mode (I+II) loading: (a) ϕ = 0° (MM = 0), (b) 

ϕ = 10° (MM = 0.15), (c) ϕ = 30° (MM = 0.37), (d) ϕ = 45° (MM = 0.50) and (e) ϕ = 60° (MM = 

0.63). 
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It might be interesting to compare the mesh density requirements to apply the 

peak stress approach and the direct approach with coarse mesh option. By limiting 

the analysis to pure mode I loading (=0°, MM=0), the ratio between the SEDs 

evaluated with the direct approaches (W̅FEM,coarse/W̅FEM, each quantity being 

evaluated according to Eq. (6.1.4)) has been reported in Fig. 6.1.6 as a function of 

a/d. Figure 6.1.6 should be compared with Figure 6.1.5a. It can be observed that 

the ratio W̅FEM,coarse/W̅FEM converges to unity within a scatter band of ±10% if 

a/d is greater than 5. However, considering only low crack size to plate width 

ratios (2a/w < 0.25), such that the plate free edge is very far from the control 

volume, it should be observed that the minimum mesh density ratio a/d reduces to 

3, in agreement with the applicability analysis of the peak stress approach reported 

in Figure 6.1.5a. Even if a comparison for mixed mode cases has not been 

performed, Figures 6.1.2b and 3b nonetheless compare the most coarse FE meshes 

which can be used with the direct method and the peak stress method, 

respectively, for a crack inclination angle =30°. Outside the circles having radii 

R0 and 10·R0, the direct approach allows a more coarse mesh to be defined. 

However, it should be noted that quadratic finite elements are used in the direct 

approach (Figure 6.1.2b) [37], while linear finite elements are used in the peak 

stress approach (Figure 6.1.3b). Therefore, eight FE nodes for each element 

contribute to increase the size of the stiffness matrix in the former case, while only 

four nodes for each element contribute in the latter case. 
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Figure 6.1.6: Minimum mesh density ratio a/d required to estimate the SED parameter according 

to the direct approach with coarse mesh option (W̅FEM,coarse, Eq. (6.1.4)) for a crack (2α = 0°) 

under pure mode I loading (ϕ = 0°, MM = 0). d is the average element size outside the control 

volume according to Fig. 6.1.2.  

 

6.1.4.2 Minimum mesh density ratio a/d  

The results of the numerical analyses reported in Fig. 6.1.4 suggest that proper 

convergence curves of the non-dimensional SIFs K
*

FE and K
**

FE against the mesh 

density ratio a/d may be fitted through numerical results. K
*

FE and K
**

FE are seen 

to be independent of the mode mixity ratio MM according to Figs. 6.1.7a and b, 

which report also the fitting functions fI and fII calculated by means of 

MATLAB
®
:  
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If the ratio a/d increases, then functions fI and fII tend to unity and parameters 

K
*

FE and K
**

FE converge to the values 1.38 [43] and 3.38 [44], respectively, that 

were calibrated previously. 

Figure 6.1.7b shows that some K
**

FE values, related to a crack inclination angle ϕ 

equal to 10°, significantly deviate from Eq. (6.1.10). This is due to a distortion of 

the FE mesh close to the crack tip, resulting in a pattern of finite elements 

different from that shown in Figs. 6.1.3b, d. The FE distortion mostly influences 

the mode II non-dimensional SIF (K
**

FE), which is more sensitive to the shape of 

the finite elements as compared to the mode I SIF (K
*

FE). 

Taking advantage of Eqs. (6.1.9) and (6.1.10), the mode I and mode II SIFs can be 

estimated as follows: 
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                  (6.1.12) 

By substituting Eqs. (6.1.11) and (6.1.12) into Eq. (6.1.3) and taking into account 

definition (6.1.8), the ratio between the SED according to the peak stress method 

(W̅PSM) and that evaluated analytically (W̅AN) can be written as a function of the 

mesh density parameter a/d and of the mode mixity ratio MM: 
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Figure 6.1.7: Non-dimensional SIFs and best fitting curves related to a crack (2α = 0°) under 

mixed mode (I+II) loading, as functions of the mesh density ratio a/d: (a) mode I and (b) mode II. 
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Figure 6.1.8: Minimum mesh density ratio a/d for the applicability of the peak stress approach 

under different mode mixities MM, according to Eq. (6.1.13). 

 

It is worth recalling that, in the analyses performed here, it has been verified that 

W̅AN  W̅FEM. The above equation allows for estimating the minimum mesh 

density ratio a/d and for assuring the applicability of the PSM (Eq. (6.1.7)) once 

the mode mixity ratio MM of a given problem is known and the accepted level of 

approximation is fixed.  

Figure 6.1.8 plots the ratio W̅PSM/W̅AN as a function of a/d for different mode 

mixities, according to Eq. (6.1.13). It can be observed that the ratio W̅PSM/W̅AN 

converges to  unity within a scatter band of ±10% for a minimum ratio a/d that 

depends on the mode mixity ratio: it equals 3 for the case MM = 0 (pure mode I), 

11 for MM = 0.50 (mixed mode I+II), and 16 for MM = 1 (pure mode II), 

according to the behaviour observed in Fig. 6.1.5. 

A further analysis of the peak stress approach is performed in the following two 

Sections. 
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6.1.4.3 The peak stress approach using the elastic maximum principal stress 

Taking advantage of Eq. (6.1.7), the SED parameter in cases of prevailing mode I 

stresses might be estimated using only the maximum elastic principal stress 

evaluated at the crack tip, σI,peak: 
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                 (6.1.14) 

Eq. (6.1.14) shows that only one stress value needs to be evaluated by means of an 

FE analysis. The ratio between the SED based on the maximum elastic principal 

stress (W̅PSM, Eq. (6.1.14)) and the SED calculated using the direct approach 

(W̅FEM, Eq. (6.1.4)) have been reported in Fig. 6.1.9, with reference to a crack 

inclination angle ϕ equal to 0° and 10°. It can be observed that the ratio W̅PSM/

W̅FEM converges to unity within a scatter band of ±10% for a ratio a/d greater than 

3 for the case MM = 0 (ϕ = 0°) and 3.5 for MM = 0.15 (ϕ = 10°). On the basis of 

the FE results obtained here, it has been verified that Eq. (6.1.14) can be applied 

for MM lower than or equal to 0.15, i.e.,  10°. 
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Figure 6.1.9: Ratio between approximated and exact SED parameter versus the mesh density 

ratio. W̅PSM from the maximum elastic principal stress, Eq. (6.1.14); W̅FEM according to the direct 

approach, Eq. (6.1.4). Crack (2α = 0°) under mixed mode (I+II) loading: (a) ϕ = 0° (MM = 0), (b) 

ϕ = 10° (MM = 0.15). 

 

6.1.4.4 The peak stress approach coarsening the mesh further  

Given the fitting functions Eqs. (6.1.9) and (6.1.10), the averaged SED might be 

estimated by means of the peak stresses calculated using an arbitrary finite 

element size d, thus removing the minimum mesh density requirements (given by 

the minimum a/d ratio shown in Figure 6.1.5). By updating Eq. (6.1.7) using Eqs. 

(6.1.9) and (6.1.10), the following equation is obtained: 
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(6.1.15) 

The ratio between the SED based on Eq. (6.1.15) and that calculated using the 

direct approach (W̅FEM, Eq. (6.1.4)) has been reported in Fig. 6.1.10 for different 
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crack inclination angles ϕ. Figure 6.1.10 (from (a) to (e)) should be compared with 

the corresponding Figure 6.1.5 (from (a) to (e)) to observe that, making use of Eq. 

(6.1.15), the ratio W̅PSM/W̅FEM converges to unity within a scatter band of ±10% 

for all mesh density ratios a/d, down to the minimum feasible a/d equal to 1.  

Although Eq. (6.1.15) results from a fitting exercise according to Fig. 6.1.7, it 

nevertheless extends the validity of the PSM to more coarse meshes than 

considered previously and therefore may be advantageous from a practical point 

of view. 
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Figure 6.1.10: Ratio between approximated and exact SED parameter versus the mesh density 

ratio. W̅PSM according to the peak stress approach, Eq. (6.1.15); W̅FEM according to the direct 

approach, Eq. (6.1.4). Crack (2α = 0°) under mixed mode (I+II) loading: (a) ϕ = 0° (MM = 0), (b) 

ϕ = 10° (MM = 0.15), (c) ϕ = 30° (MM = 0.37), (d) ϕ = 45° (MM = 0.50) and (e) ϕ = 60° (MM = 

0.63). 
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6.1.5. An example of a practical application 

The high cycle fatigue failure can be considered a brittle failure mode and usually 

occurs in the linear elastic regime. Keeping  this in mind, the mean value of the 

strain energy density (SED) in a circular sector of radius R0 located at the fatigue 

crack initiation sites has been used to summarize fatigue strength data from steel 

and aluminium welded joints [29]. Local strain energy density averaged in a finite 

size volume surrounding weld toes and roots  is a scalar quantity that  can be 

given as a function of mode I+II NSIFs in plane problems and mode I+II+III 

NSIFs in three dimensional problems. As to the structural volume size R0, it is 

thought of as a material property resulting from the welding process [29]. It was 

calibrated by combining two experimental data, namely the high-cycle  fatigue 

strength A (typically at 2 million cycles) of the butt ground welded joints (in 

order to quantify the influence of the welding process, in the absence of any stress 

concentration effect) and the high-cycle NSIF-based fatigue strength of welded 

joints, 
A1KΔ , having a V-notch angle at the weld toe large enough to ensure that 

mode II stresses are non-singular. By equaling the SED parameter evaluated in the 

two experimental situations, a convenient expression was derived [23,29]: 

1λ1

1

A

A11

0
σΔ

KΔe2
R
















                                                                                    (6.1.16) 

where both 1 and e1 depend on the V-notch angle. For aluminium welded joints a 

radius R0 = 0.12 mm was obtained [29].  

An example of application is presented here, that is relevant to the fatigue strength 

assessment of butt-welded joints made of aluminium alloys in terms of the 

averaged local strain energy density ∆W̅. 

For the sake of brevity, only one experimental series due to Sonsino et al. has 

been considered
 
[50,51], referring to 25-mm-thick, partial-penetration butt-welded 

joints with root failures. Welded joints were tested in the stress-relieved 

conditions by applying pulsating (R = 0, with R being the load ratio defined as the 

ratio between the minimum and the maximum applied loads) or completely 
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reversed (R = -1) axial fatigue loadings. More details can be found in a recent 

contribution [52]. 

 

 

 

 

 

 

Figure 6.1.11: FE mesh adopted to evaluate the peak stress peak at the weld root of 25-mm-thick 

partial-penetration butt welded joints made of aluminum alloys. SED evaluated according to the 

peak stress approach (a) Eq. (6.1.14) with a/d = 3 and (b) Eq. (6.1.15) with a/d = 1. 

 

Due to the loading conditions, only mode I stresses are present at the weld root 

(pure mode I according to Fig. 6.1.11). Therefore, the mode mixity ratio MM (Eq. 

6.1.8) is equal to 0, and Eq. (6.1.14) can be employed. Through Eq. (6.1.13), it is 

possible to estimate the minimum mesh density ratio a/d for the applicability of 

the peak stress approach. In the case MM = 0 and a chosen level of approximation 
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W̅PSM/W̅AN  1.10, it results in (a/d)min = 3, with a being the semi-crack length 

(2a is the lack of penetration). Because 2a = 7.5 mm, the maximum element size 

is dmax = 3.75/3 = 1.25 mm.  

A free mesh pattern of quadrilateral, four-node PLANE 42 elements having a 

‘global element size’ d = 1.25 mm was generated. By doing so, a 2D FE mesh of 

the type shown in Fig. 6.1.11a was obtained. After having evaluated the range of 

the elastic principal stress ΔσI,peak at the node located at the weld root, Eq. (6.1.14) 

has been applied to estimate the range of the averaged strain energy density 

∆W̅PSM by using e1 = 0.125, E = 70000 MPa and R0 = 0.12 mm relevant to 

aluminium alloys [29,52]. Because the welded specimens have been tested in the 

stress-relieved conditions, the nominal load ratio R has been taken into account by 

means of a proper multiplicative factor defined in [53]. Thanks to the FE analysis 

according to the PSM sketched in Fig. 6.1.11a, the original fatigue test results 

given in terms of the nominal stress range have been re-converted into the range 

of the averaged strain energy density evaluated at the weld root. If Eq. (6.1.7) had 

been used instead of Eq. (6.1.14), the results would have been the same, with peak 

 I,peak and peak  0 at the weld root of the joints under examination. The 

experimental results in terms of ∆W̅PSM are reported in Fig. 6.1.12 using filled 

markers.  

Taking advantage of Eq. (6.1.15), the SED parameter may also be estimated using 

a coarser FE mesh as compared to that reported in Fig. 6.1.11a. By adopting the 

minimum feasible mesh density a/d equal to 1, a free mesh pattern of quadrilateral 

four-node PLANE 42 elements having a ‘global element size’ d = 3.75 mm was 

generated, resulting in the 2D FE mesh shown in Fig. 6.1.11b. When applying Eq. 

(6.1.15), it should be kept in mind again that peak  I,peak and peak  0 for the 

joints under analysis. The results have been reported in Fig. 6.1.12 with open 

markers.  

All results are compared with the SED-based design scatter band, which was 

calibrated previously using several experimental results taken from the literature 

(see Ref. [29]). A good agreement between experimental results and the SED-

based design scatter band is seen in Fig. 6.1.12; however, the validation exercise 

of the SED approach in fatigue problems is not primarily the focus of the present 



 

                                                       
 

6 - Link between PSM and SED – Long cracks under mixed mode I+II loading 

 

 
471 

 

investigation. The fundamental conclusion that can be drawn is that the same level 

of correlation between experimental results and the SED-based design scatter 

band shown in Fig. 6.1.12 was also reported in [54], where the SED parameter 

had been evaluated using the direct approach according to Eq. (6.1.4) combined 

with very refined meshes. The relevant results have been reported in Fig. 6.1.12. 

 

 

 

Figure 6.1.12: Fatigue strength of aluminum butt welded joints in terms of the averaged local 

strain energy density (SED parameter). Design scatter-band according to reference [29]. 

Comparison of approximate ∆W̅PSM values (Eq. (6.1.14) adopting a/d = 3 or Eq. (6.1.15) adopting 

a/d = 1) with exact ∆W̅FEM according to Eq. (6.1.4). 

 

From an engineering point of view, the PSM according to Eqs. (6.1.7), (6.1.14) or 

(6.1.15) is a useful, FE-oriented tool to readily calculate the SED parameter in 

practical design problems by virtue of (i) the coarse pattern of finite elements that 

can be adopted, as shown in Figures 6.1.3b and d and 6.1.11; (ii) the use of just 

the singular nodal stresses picked up at the stress singularity point where an FE 

node always exists, so that interpolation of nodal stresses or analysis of stress-
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distance data is unnecessary; and (iii) the simplified geometrical model to deal 

with because the structural volume is removed. 

 

6.1.6. Discussion 

The peak stress method (PSM) to estimate the strain energy density averaged in a 

structural volume (i.e., the SED parameter) has been formulated and applied in the 

case of two-dimensional cracks subjected to mixed mode (I+II) loading. In its 

original formulation, the PSM is a simplified, FE-oriented numerical method to 

estimate the SIFs using much coarser meshes than those required to post-process 

the local linear elastic stress fields evaluated close to the crack tip. The following 

conclusions can be drawn: 

 

 Because the normal (opening) and shear (sliding) linear elastic peak 

stresses evaluated at the crack tip by FEM using coarse meshes are 

proportional to the mode I and mode II SIFs, respectively, a link can 

immediately be established with the SED parameter by means of Eqs. 

(6.1.3), (6.1.5) and (6.1.6). As a result, the SED parameter can be 

estimated by means of the elastic peak stresses evaluated at the crack tip 

(Eqs. (6.1.7) and (6.1.14)). 

 To apply the PSM with coarse meshes, it has been found that the mesh 

density must be increased as the mode mixity ratio (MM) increases; as a 

guideline, the minimum ratio between the semi-crack length a and the 

mean element size d adopted in FE analyses is equal to 3 for MM = 0 

(pure mode I loading) and 16 for MM = 0.63 (mixed mode (I+II) loading).   

 Once the mode mixity ratio MM of a given problem can be estimated, the 

minimum mesh density a/d which ensures the applicability of the PSM can 

be estimated by means of Eq. (6.1.13) for a chosen level of approximation. 

 By using proper correction functions fitted over the numerical results, 

applicability of the PSM to estimate the SED parameter can be extended to 

more coarse meshes according to Eq. (6.1.15), where the mesh density a/d 

can be reduced to unity. Eq. (6.1.15) may be advantageous from a practical 

point of view; as an application example, fatigue strength assessments of 
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butt-welded joints made of aluminium alloys have been performed by 

estimating the SED parameter using Eq. (6.1.14) as well as Eq. (6.1.15). 

 The usefulness of the PSM to estimate the SED parameter is that (i) only 

the elastic peak stresses numerically evaluated at the crack tip are needed; 

because an FE node always exists at the stress singularity point, 

independently of the pattern of finite elements adopted, an FE analyst can 

easily pick up the design stresses in the post-processor environment of a 

commercial software program; (ii) the (small) control volume inside which 

the strain energy is to be averaged does not have to be included in the 

numerical model; and (iii) the employed meshes are coarse, such that, in 

the most wild application of the PSM performed here (Eq. (6.1.15)), the 

maximum finite element size adopted has been set equal to the crack size. 
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6.2 Link between the Peak Stress Method (PSM) and the 

averaged Strain Energy Density (SED): short cracks under 

mixed mode (I+II) loading with inclusion of T-stress 

contribution 
(*)

 

 

Nomenclature 

2a  crack length 

a0  El Haddad-Smith-Topper length parameter of the material 

d  mean size of a finite element 

thKΔ  
threshold value of the SIF range for long cracks under mode I 

loading conditions 

e1, e2  parameters for averaged SED evaluation 

E  elastic modulus 

fI, fII  fitting functions for K
*

FE and K
**

FE convergence curves 

KI, KII   mode I and II SIFs 

*
FEK , **

FEK  non-dimensional KI and KII relevant to the peak stress method 

MM  mode mixity ratio 

Nodal-T  T-stress estimated by FEM using selected nodal stresses 

R0  radius of the control volume for the averaged SED evaluation 

r,  polar coordinates 

T  slit-parallel tensile or compressive stress, T-stress 

ANW  analytical, closed-form expression of the averaged SED including 

both SIFs and T-stress contributions 

III,ANW   analytical, closed-form expression of the averaged SED, taking into 

account only SIFs contributions 

FEMW  averaged SED calculated by FEM using very refined meshes 

(direct approach) 

coarse,FEMW  averaged SED calculated by FEM using coarse meshes (direct 

approach with coarse mesh option) 
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NSW  averaged SED calculated by FEM according to the nodal stress 

approach:  
TnodalIII,PSMNS WWW    

III,PSMW   averaged SED calculated according to the existing PSM (only SIFs 

contributions are taken into account) 

TnodalW   T-stress contribution to the averaged SED estimated using selected 

FE nodal stresses 

Symbols 

2  opening angle 

0   plain material fatigue limit in terms of stress range 

                  Poisson's ratio 

nom  nominal tensile stress 

peak singular, linear elastic opening peak stress evaluated at the crack tip 

by FEM using the PSM 

rrr  normal and shear stress components in the polar frame of reference 

nom  nominal shear stress  

peak singular, linear elastic sliding peak stress evaluated at the crack tip 

by FEM using the PSM 

 

 

 

(*) See also: 

 

Campagnolo, A.; Meneghetti, G.; Berto, F. Rapid evaluation by FEM of the averaged strain energy 

density of mixed-mode (I+II) crack tip fields including the T-stress contribution. Fatigue and 

Fracture of Engineering Materials and Structures (under review). 
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6.2.1 Introduction 

As formerly highlighted in the literature first by Brahtz [55] in 1933, stresses in 

the close neighborhood of sharp corners are characterized by a singular behavior. 

In the context of a broader analysis concerning plates weakened by sharp notches 

[31], the particular case of a zero notch opening angle, i.e. a crack, was deeply 

investigated by Williams [56] complementing some previous studies carried out 

by Griffith [57], Westergaard [58] and Irwin [59]. With regard to the crack case, 

Williams showed that the stress field can be formulated as a series expansion, 

whose coefficients are unknown and depend on the geometry and on the mode of 

loading. According to Williams [56], the stress field expressed in a polar 

coordinate system (r,θ) centred at the crack tip (Fig. 6.2.1a), as a function of the 

mode I and mode II stress intensity factors (SIFs), KI and KII, and of T-stress, T, is 

as follows:  
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Figure 6.2.1: (a) Polar coordinate system centred at the crack tip. (b) Strain energy density 

averaged over a control volume (area) of radius R0 surrounding the crack tip, 
A

W
W  . 
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(6.2.1) 

 

Gross and Mendelson [30] proposed a method to evaluate the mode I and mode II 

SIFs by adopting a boundary collocation technique. This procedure has been 
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employed also by Carpenter [60] to derive the coefficients related to singular and 

non-singular terms. According to Gross and Mendelson the mode I and mode II 

SIFs can be defined by means of Eqs. (6.2.2) and (6.2.3), reported below: 

  5.0

0θθθ
0r

I rσlimπ2K 



        (6.2.2) 

  5.0

0θθr
0r

II rτlimπ2K 



        (6.2.3) 

In the case of an infinite cracked plate under mixed mode I+II loading (Fig. 

6.2.1a), the following engineering formulas can be used: 

aπσK nomI            (6.2.4) 

aπτK nomII           (6.2.5) 

The constant term T which is a slit-parallel tensile or compressive stress, named 

“T-stress” by Larsson and Carlsson [61], can be defined according to the 

following equation: 

    
00rr

0r
limT




         (6.2.6) 

where the condition θ = 0 identifies the crack bisector line. In particular, in the 

case of an infinite cracked plate under uniaxial tension loading, Radaj [62] 

reported the following simplified expression: 

nomσT            (6.2.7) 

Because T = 0 under pure mode II loading (according to definition (6.2.6) and Eq. 

(6.2.1)), T = -nom in all mixed mode (I+II) problems analysed here. 

In the context of fracture mechanics it is largely assumed that the stress field in 

the close neighborhood of the crack tip can be properly characterized by means of 

the coefficients of the leading order terms, i.e. the SIFs. However, detailed 

analyses reported in the literature have highlighted the fundamental role of the T-

stress in defining the stress state close to the crack tip [61,63–68]. Larsson and 
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Carlson [61] and later Rice [63] argued on the effect of T-stress on the plastic 

zone ahead of the crack tip in materials characterized by elastic–plastic behaviour. 

The influence of T-stress on failure mechanisms of brittle materials was 

investigated by Ayatollahi et al. [64,67,68] and Fett and Munz [66], who 

employed a modified maximum tangential stress approach (MTS [69]), taking 

into account mode I and mode II SIFs, T-stress and a material-dependent length 

parameter. Some recent studies have been devoted to the investigation of the T-

stress effect in lap welded joints characterized by different thicknesses [62,70].  

Several methods for T-stress determination have been reported in the recent 

literature. Chen et al. [71] proposed a procedure based on the complex potentials 

and expressed the T-stress dependence on the load conditions by means of the 

Dirac delta function properties. Different approaches based on weight functions 

have been presented [72,73]. Moreover, T-stresses for small notch-emanating 

cracks, such as a circular hole centered in a large plate and a U-notch in a finite 

thickness plate, were derived by Wang et al. [74]. 

Furthermore, the effects of higher order non-singular terms are still an open issue. 

Ramesh et al. [75,76] proposed an over-deterministic least squares approach 

coupled with the photoelasticity method with the purpose of deriving the mixed 

mode I+II multiparametric stress field. More recently a procedure for rapid 

evaluation of the unknown coefficients on the basis of the displacement fields 

directly obtained from finite element (FE) results has been developed by 

Ayatollahi and Nejati [77]. Xiao et al. [16,78] presented an approach with the aim 

to directly determine the SIFs and the higher order terms by using a hybrid crack 

element, which can be efficiently used also dealing with in-plane mixed mode 

crack problems.  

The combined effects of SIFs and T-stress on structural strength problems of 

cracked components under mixed mode I+II loadings can be easily evaluated by 

means of the strain energy density (SED) averaged over a control volume, thought 

of as dependent only on material properties and modelled as a circular sector of 

radius R0, as shown in Fig. 6.2.1b, according to Lazzarin and Zambardi [23]. The 

averaged SED criterion has been widely adopted in the recent literature for static 

[32,33,79,80] and fatigue [29,34,81] strength assessments. The control radius R0 
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for fatigue strength assessment of notched components has been defined by 

combining two material properties [29,82]: the plain material fatigue limit (or the 

high-cycle fatigue strength of smooth specimens) and the threshold value of the 

SIF range for long cracks under mode I loading conditions, 
thKΔ . By imposing 

the equality of the averaged SED,  evaluated in the two considered cases (smooth 

and cracked component, respectively), the following expression has been derived 

[29,82]: 

  
2

0

th

2

0

th
10

K

4

851K
e2R 






























                                               (6.2.8) 

For welded construction steels  a radius R0 = 0.28 mm was obtained [29] and has 

been adopted in the present investigation as a reference value. Using a Poisson’s 

coefficient = 0.3, Eq. (6.2.8) can be re-written as follows [29,82]: 

0

2

0

th
0 a85.0

K1
85.0R 















             (6.2.9) 

Therefore, R0 in Fig. 6.2.1b is on the order of the El Haddad-Smith-Topper length 

parameter [83]. 

Dealing with mixed mode crack problems under plane strain conditions, the 

averaged SED can be expressed in closed-form as a function of the stress intensity 

factors (SIFs), KI and KII, and of the T-stress, T, according to the following 

analytical expression [36,70]: 
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        (6.2.10a) 

In the above equation, e1 and e2 are two known parameters dependent on the 

opening angle of a general pointed V-notch and of the Poisson’s ratio ν [23] (see 

Table 6.2.1), while E is the Young’s modulus of the considered material. As an 

example, Lazzarin et al. [36,70] adopted Eq. (6.2.10a) to evaluate successfully the 

SED values relevant to thin welded lap-joints having thicknesses ranging from 1 
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to 5 mm. When the T-stress contribution is negligible, only KI and KII contributes 

to the averaged SED and Eq. (6.2.10a) simplifies to: 

0

2

II2

0

2

I1
III,AN

R

K

E

e

R

K

E

e
W                            (6.2.10b) 

Table 6.2.1: Parameters for averaged SED evaluation in the crack case (2 = 0) as a function of 

the Poisson’s ratio ν. 

 

2(deg) 2
ν = 0.3 

 
ν = 0.33 

e1 e2 e1 e2 

0 0.500 0.133 0.340  0.125 0.337 

 

 

Making use of Eqs (6.2.4), (6.2.5) and (6.2.7) into Eqs (6.2.10a) and (6.2.10b), the 

following ratio can be calculated: 
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where MM is the mode mixity ratio, defined as: 

III

II

KK

K
MM


                                                  (6.2.12a) 

In Eq. (6.2.11), the mode mixity has been expressed for the particular case of the 

centrally cracked plate shown in Figure 6.2.1, for which expressions (6.2.4) and 

(6.2.5) can be substituted in definition (6.2.12a): 

nom
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τ

σ
1

1
MM



                   (6.2.12b) 
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Figure 6.2.2: Ratio between exact and approximated averaged SED values according to Eq. 

(6.2.11) with = 0.3, e1 = 0.133 and e2 = 0.340. 

 

Figure 6.2.2 plots Eq. (6.2.11) for three MM values 0 (pure mode I, nom = 0), 0.5 

and 0.8. The figure highlights that for a crack size equal to radius of the material 

dependent control volume (a/R0 = 1) and pure mode I loading (MM = 0) the error 

in the averaged SED estimation is about 70% if the T-stress contribution is 

neglected, i.e. Eq. (6.2.10b) is used in place of Eq. (6.2.10a). However, for the 

same crack size to control radius ratio, the error is decreased to 20% if MM = 0.5 

and further reduced to only 1.7% if MM = 0.8. 

In a previous paper [84], long cracks in the range 25  a/R0  800 and mode 

mixities 0  MM  0.63 had been considered. Therefore, in light of Fig. 6.2.2, Eq. 

(6.2.10b) had been used. In the present investigation, small cracks spanning in the 

range 1.8  a/R0  9 and the full range of mode mixities between 0 and 1 will be 

considered. Therefore, due to the reduced crack size to control radius ratios 

considered here, an approach consistent with Eq. (6.2.10a) which include the T-

stress must be followed. 
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The use of Eq. (6.2.10) combined with (6.2.2), (6.2.3) and (6.2.6) in engineering 

problems presents a major drawback, since very refined meshes are required to 

evaluate the SIFs and the T-stress on the basis of definitions (6.2.2), (6.2.3) and 

(6.2.6), respectively, applied to a number of stress-distance FE data. This is due to 

the fact that the whole local stress field must be determined accurately. The 

practical application is even more time-consuming in the case of 3D FE models. 

However, the averaged SED can be evaluated directly from the FE results, FEMW , 

by summing the strain-energies WFEM,i calculated for each i-th finite element 

belonging to the control volume and by dividing by the volume (A in Fig. 6.2.1b): 

A

W
W A i,FEM

FEM


                   (6.2.13) 

Equation (6.2.13) represents the so-called direct approach to calculate the 

averaged SED. According to a recent contribution of Lazzarin et al. [37] very 

coarse FE meshes can be used within the control volume A.  The required 

geometric model to apply the direct approach with coarse mesh option is reported 

in Figure 6.2.3a, while Figure 6.2.3b shows the coarse FE mesh (second order 

plane elements, PLANE 183 of the Ansys
®
 element library) that can be adopted to 

analyse an in-plane mixed mode crack problem [37]. Figure 6.2.3b shows that 

eight finite elements have been generated inside the control volume, while two 

concentric rings, each of one  made up of eight elements, have been located 

outside the reference volume in the annulus R0 < r < 10·R0; finally a free FE mesh 

characterized by a mean element size d has been adopted outside. The mesh 

reported in Figure 6.2.3b is as coarse as possible in order to obtain a deviation 

between coarse,FEMW  and 
FEMW  lower than 10%, where coarse,FEMW  and 

FEMW  are the 

averaged SED derived on the basis of Eq. (6.2.13) by adopting coarse meshes and 

very refined meshes (about 500 finite elements within the reference volume), 

respectively. Due to the highly increased mesh refinement, 
FEMW  is interpreted as 

the exact value. 
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Figure 6.2.3: Averaged SED evaluated according to the direct approach (Eq. (6.2.13)) with coarse 

mesh option, W̅FEM,coarse [37]; (a) geometry and loading conditions. (b) Coarse FE mesh (second 

order plane elements, PLANE 183 of Ansys Element Library) producing a reduced error of 3% in 

the case 2a = 3 mm and MM = 0.50. Control radius R0 = 0.28 mm. 
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Recently the peak stress method (PSM) has been proposed to rapidly calculate the 

averaged SED by means of the singular, linear elastic peak stresses evaluated 

from FE analyses at the tip of cracks under in-plane mixed mode loading [84]. 

The PSM allows to avoid the control volume modelling while keeping the coarse 

mesh option. Essentially, the PSM estimates the SIFs using coarse FE meshes 

rapidly. Having in hands the SIFs, the averaged SED can also be estimated, 

provided that the T-stress contribution is negligible. Such intrinsic limitation of 

the PSM rules out the case of short cracks. 

The purpose of the present work is exactly to extend the PSM to estimate the 

averaged SED also in the case of cracks that are small as compared to the control 

radius R0, or, alternatively stated, in cases where the stress fields within the 

control volume (A in Fig. 6.2.1b) are no longer governed solely by the SIFs, but 

also by higher order terms and primarily the T-stress. The proposed FE-based 

approach is referred to as nodal stress approach: it combines the singular crack tip 

stresses to account for the SIFs contribution (according to the previous PSM [84]) 

with the nodal stresses at a selected location of the crack free edges to include the 

T-stress contribution.  

The peak stress method to calculate KI and KII with coarse meshes is shortly 

recalled in the following Section. After that, the contents of the present paragraph 

are as follows:  

 to present the nodal stress approach, i.e. a numerical approach based on 

appropriate nodal stresses calculated with coarse FE analyses to rapidly 

estimate the averaged SED of mixed-mode (I+II) crack tip fields including 

the T-stress contribution;  

 to validate the nodal stress approach by analysing infinite plates weakened 

by short cracks, while varying (i) the crack lengths, (ii) the mode mixity 

and (iii) the finite element size adopted in the numerical analyses. 

 

6.2.2. The Peak Stress Method to rapidly evaluate KI and KII  

The Peak Stress Method (PSM) is an approximate numerical technique to evaluate 

the SIFs as well as the NSIFs. The approach is based on the numerical procedure 

proposed in the pioneering works by Nisitani and Teranishi [41,42] oriented to 
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rapidly evaluate the mode I SIF KI of a crack emanating from an ellipsoidal 

cavity. This technique takes advantage of the singular, linear elastic opening peak 

stress σpeak calculated at the crack tip from a FE analysis in which a finite element 

mesh with a constant element size is adopted. According to Nisitani and Teranishi 

[41,42] the ratio KI/σpeak is a function only of the FE size, in such a way that σpeak 

can be employed to rapidly evaluate the stress intensity factor KI, on condition 

that the mesh pattern was formerly calibrated on crack problems characterized by 

known SIF values. A theoretical justification to such technique has been provided 

subsequently and it has been shown that the above method can be extended also to 

sharp V-notches where only mode I singular stresses are present [43] (i.e., K2 = 0 

or mode II stresses are negligible), allowing to evaluate the mode I notch stress 

intensity factor (NSIF) approximately. Later on, the peak stress approach has been 

extended also to cracked components under mode II loading conditions [44].  

The PSM allows to rapidly estimate the mode I and mode II SIFs KI and KII (Eqs. 

(6.2.2) and (6.2.3)) from the crack tip singular, linear elastic opening and sliding 

peak stresses σpeak and τpeak, respectively, referred to the bisector line according to 

Fig. 6.2.4a evaluated by FEM with coarse meshes. More precisely, the following 

expressions are valid [43,44]: 

38.1
d

K
K

5.0

peak

I*

FE 


                  (6.2.14) 

38.3
d

K
K

5.0

peak

II**

FE 


                  (6.2.15) 

where d is the so-called ‘global element size’ parameter to input in Ansys FE 

code, i.e. the average FE size adopted by the free mesh generation algorithm 

available in the software. As an example, Fig. 6.2.4b shows a free mesh where d = 

0.15 mm was input in Ansys software. More precisely, the mesh pattern shown in 

Fig. 6.2.4b  is as coarse as possible to estimate the averaged SED with a 10% 

error. However, a proper guideline to choose the coarsest mesh for a selected 

maximum acceptable error will be the subject of a next section. Here it is 

important to underline that no additional input parameters other than d or 
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additional special settings are required to the FE analyst to generate a FE mesh 

according to the PSM. It should be noted that Eqs. (6.2.14) and (6.2.15) have been 

calibrated by using KI and KII evaluated from definitions (6.2.2) and (6.2.3) 

applied to FE results of numerical analyses characterized by very refined meshes 

[43,44], where the element size close to the crack tip was reduced to 10
-5

 mm. 

Eqs. (6.2.14) and (6.2.15) are valid when the following conditions are met: 

 use of 4-node quadrilateral finite elements characterized by linear shape 

functions, available in ANSYS
®
 (PLANE 42 of the Ansys

®
 element library 

or equivalently PLANE 182 with K-option 1 set to 3); 

 the FE mesh pattern close to the crack tip must be that reported in Fig. 

6.2.4b, where four elements share the node at the crack tip. It is worth 

recognizing that the mesh pattern of Fig. 6.2.4 is automatically generated 

by the free mesh generation algorithm available in Ansys, so that only the 

global element size parameter d must be input by the FE analyst. The 

standard FE mesh patterns adopted in the case of sharp V-notches can be 

found in recent contributions [43,44]; 

 the mesh density ratio a/d must exceed 3 in order to have 

%338.1K*

FE  , where a is the semi-crack length. In the case of mode II 

loading conditions, more refined FE meshes are required, in fact the ratio 

a/d must exceed 14 to have %338.3K **

FE  .  

 

The FE size required to estimate KI and KII from σpeak and τpeak, respectively, is 

some orders of magnitude larger than that needed to directly calculate the local 

stress fields. Moreover, differently from the application of Eqs. (6.2.2) and (6.2.3), 

which require a number of stress-distance numerical results, an additional 

advantage of the PSM is that only a single stress value allows to evaluate KI and 

KII, respectively. The PSM according to Eqs. (6.2.14) and (6.2.15) made possible 

to assess weld root failures welded joints characterized by two-dimensional 

[44,52] as well as three-dimensional geometries [47,48]. It should be noted that 

Eqs. (6.2.14) and (6.2.15) should be recalibrated in the case of FE meshes 
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consisting of higher-order elements or characterized by significantly different 

mesh patterns as compared to the reference one reported in Fig. 6.2.4b. 

To illustrate the PSM, KI and KII have been estimated using Eqs. (6.2.14) and 

(6.2.15) for a number of crack sizes, that will be considered also later on for the 

averaged SED evaluations, where the work is focussed on. An infinite plate 

weakened by a central crack and subjected to in-plane mixed mode loading was 

considered according to Fig. 6.2.4a. Several crack lengths 2a (from 1 to 5 mm) 

have been considered, while width W and length L of the plate were set both 

equal to 10 times the crack length.  

The mean FE size d to evaluate peak and peak in Eqs. (6.2.14) and (6.2.15) was 

varied from 0.0125 to 1.25 mm. All different geometrical and loading parameters 

taken into account here are listed in Table 6.2.2, that highlights the range of 

(small) crack size to control radius ratios analysed, i.e. 1.8  a/R0  8.9. According 

to the PSM, FE analyses have been carried out by using Ansys
®
 software and by 

adopting free mesh patterns consisting of 4-node quadrilateral elements (PLANE 

182 with K-option 1 set to 3).  

The exact mode I and mode II stress intensity factors, KI and KII, to input in Eqs. 

(6.2.14) and (6.2.15) were evaluated from Eqs. (6.2.4) and (6.2.5), respectively. 
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Figure 6.2.4: Averaged SED evaluated according to the nodal stress approach (Eq. (6.2.20)); (a) 

geometry and loading conditions. (b) Coarsest FE mesh (first order plane elements, PLANE 182 of 

Ansys element library with K-option 1 set to 3) to obtain a reduced error of 10% in the case 2a = 3 

mm and MM = 0.50. 
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Results are reported in Fig. 6.2.5, in terms of non-dimensional stress intensity 

factors K
*

FE and K
**

FE according to Eqs. (6.2.14) and (6.2.15), respectively. For 

the sake of brevity, only the results for selected mode mixity ratios MM = 0, 0.4, 

0.5, 0.6 and 1 are shown. It can be observed that K
*

FE and K
**

FE converge to the 

values 1.38 and 3.38, respectively, inside a scatter-band of ±3%, in accordance 

with the results previously obtained for longer cracks under mixed mode I+II 

loading [84]. As expected from previous contributions [43,44], convergence is 

assured when the ratio a/d is greater than 3 for pure mode I and 14 for pure mode 

II loading. According to previous results [44,84], mode II loading is more 

demanding in terms of mesh density ratio a/d than mode I loading . 

 

 

Table 6.2.2: Geometrical and loading parameters taken into consideration in the present 

investigation. All combinations have been analysed, provided that the ratio a/d was greater than 

the minimum feasible one, i.e. a/d = 1.  

 

Parameter Values 

2a [mm] 1, 1.5, 2…4.5, 5 

d [mm] 0.0125, 0.03125, 0.05, 0.125, 0.25, 0.5, 1, 1.25 

MM 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1 

R0 [mm] 0.28 
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Figure 6.2.5: Convergence  of the PSM applied to cracks (2α = 0°) under mixed mode I+II 

loading: (a) MM = 0; (b) MM = 0.40; (c) MM = 0.50; (d) MM = 0.60 and (e) MM = 1.00. Non-

dimensional SIFs according to Eqs (6.2.14) and (6.2.15). 
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             (6.2.16) 

which can be used to estimate the averaged SED for long cracks according to the 

PSM. Equation (6.2.16) has been proposed and validated in a previous paper [84]. 
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6.2.3. A FE-based technique to evaluate rapidly the T-stress 

The analytical expressions of the radial stresses σrr along the crack free edges 

[36], obtained substituting the polar coordinate θ = +π and –π in Eq. (6.2.1), are 

given in Eqs. (6.2.17a) and (6.2.17b), respectively: 

  )r(OT
r2

K2 2/1II
rr 





                        (6.2.17a) 

  )r(OT
r2

K2 2/1II
rr 





                         (6.2.17b) 

Therefore, the T-stress contribution can be derived according to Eq. (6.2.18), as 

previously highlighted by Ayatollahi et al. [64] and also by Radaj [62]: 

   
2

T rrrr 


                   (6.2.18) 

 

 

Figure 6.2.6: Distributions of the radial stresses rr (Eq. 6.2.17) and of the T-stress (Eq. 6.2.18) 

along the crack free edges [36]. 
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Figure 6.2.7: T-stress evaluated according to the nodal stress approach (Eq. (6.2.19)); (a) FE 

coarse mesh. FE radial stresses rr along the crack free edges by adopting a mesh density ratio (b) 

a/d = 5 and (c) a/d = 2. 2a = 3 mm and MM = 0.50.  

 
 

 

Eqs. (6.2.17) and (6.2.18) are plotted in Fig. 6.2.6 and suggest to evaluate the T-

stress numerically using the nodal stresses illustrated in Fig. 6.2.7a. The obtained 

results are shown in Figs 6.2.7b and 6.2.7c for two different mesh density ratios 

a/d = 5 and a/d = 2, respectively, applied to the same crack problem of previous 

Fig. 6.2.4a. Figs. 6.2.7b and 6.2.7c show that due to numerical errors caused by 

the crack tip singularity, Eq. (6.2.18) based on FE results is satisfied with a 

reduced error lower than 3% only at a distance from the crack tip r ≥ 2d. 

Moreover it is interesting to note from Fig. 6.2.7c that the minimum feasible mesh 

density ratio a/d = 2 to be able to generate a node located at r = 2d is sufficient to 

evaluate accurately the T-stress exactly at that FE node. On the basis of the 

obtained results, a FE-based technique to rapidly evaluate the T-stress can be 

defined according to the following expression: 
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2

σσ
stressTNodal

d2r,πθθθd2r,πθrr 


                (6.2.19) 

To verify the applicability of Eq. (6.2.19) to the small cracks subjected to mixed 

mode I+II loading analysed in the present investigation the ratio between the T-

stress according to Eq. (6.2.19) and the exact T-stress, T = -nom according to Eq. 

(6.2.7), is shown in Fig. 6.2.8 for a selection of mode mixity ratios. Fig. 6.2.8 

shows that in all cases the minimum feasible mesh density ratio a/d = 2 assures 

the applicability of Eq. (6.2.19), because all numerical results fall within a 

restricted scatter-band of ±3%.  
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Figure 6.2.8: Ratio between approximated and exact T-stress versus the mesh density ratio. 

Nodal T − stress according to the nodal stress approach, Eq. (6.2.19); T − stress according to the 

analytical expression (Eq. (6.2.7)). Short cracks (2α = 0°) under mixed mode I+II loading: (a) MM 

= 0; (b) MM = 0.40; (c) MM = 0.50; (d) MM = 0.60 and (e) MM = 1.00.  
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6.2.4. The nodal stress approach to rapidly estimate the averaged SED with 

inclusion of the T-stress 

6.2.4.1 Standard approach 

In this Section, the PSM to estimate the averaged SED for long cracks (Eq. 

(6.2.16) [84]), is extended to the case of short cracks under mixed mode I+II 

loading, where the T-stress cannot be neglected. The technique is referred to as 

the nodal stress approach, that can immediately be formalized by substituting Eqs. 

(6.2.14), (6.2.15) and (6.2.19) into the analytical SED formulation Eq. (6.2.10a): 
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(6.2.20) 

Equation (6.2.20) shows that only few selected nodal stresses calculated from 

coarse FE mesh patterns can be used to estimate the averaged SED. Figure 6.2.9 

shows a sketch of the four nodal stresses involved in Eq. (6.2.20): the crack tip, 

linear elastic opening (peak) and sliding (peak) peak stresses referred to the crack 

bisector line evaluated by FEM using coarse FE mesh patterns with an average FE 

size equal to d; and the linear elastic radial stresses evaluated at the FE nodes 

located along the crack free edges at r = 2d.  
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Figure 6.2.9: Selected FE nodal stresses to rapidly evaluate the averaged SED according to the 

nodal stress approach (Eq. (6.2.20)). 

 

To validate the nodal stress approach based on Eq. (6.2.20), numerical analyses 

were performed by considering again the crack problem shown in Fig. 6.2.4a and 

by adopting the standard FE mesh patterns according to previous Figs. 6.2.4b and 

6.2.9. All considered geometrical and loading parameters are reported in Table 

6.2.2. Exact values of the averaged SED, W̅FEM (Eq. (6.2.13)), have been 

evaluated by adopting the direct approach with very refined meshes (patterns with 

about 500 FE within the reference volume).  

Before comparing NSW  (Eq. (6.2.20)) with FEMW  (Eq. (6.2.13)), the averaged 

SED was calculated from Eq. (6.2.10a), W̅AN, by means of the exact SIFs KI and 

KII and the exact T-stress, analytically calculated according to Eqs. (6.2.4), (6.2.5) 

and (6.2.7), respectively. The analytical SED, W̅AN (Eq. (6.2.10a)), deviated from 

the exact value, W̅FEM (Eq. (6.2.13)), by less than 5% in the case of the minimum 

considered crack length 2a = 1 mm for all analysed MMs. Therefore, the 

contribution of stress terms having order higher than the T-stress is negligible 

from an engineering point of view and Eq. (6.2.10a) as well as its numerical 

implementation Eq. (6.2.20) are applicable to the analysed crack problems. 

Furthermore, Eq. (6.2.11) and Fig. 6.2.2 demonstrated that the maximum T-stress 

contribution to the averaged SED is approximately 30% in the case of the 
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minimum considered crack length 2a = 1 mm under pure mode I loading (MM = 

0). 

Figure 6.2.10 reports the ratio between approximate ( NSW , nodal stress approach 

Eq. (6.2.20)) and exact ( FEMW , direct approach Eq. (6.2.13)) averaged SED values 

for selected mode mixity ratios MM. The ratio W̅NS/W̅FEM is seen to converge to 

unity inside a ±10% scatter-band for all considered MMs. In particular, Fig. 6.2.10 

shows that convergence occurs for mesh density ratios a/d greater than 2.5 for 

MM = 0, 10 for MM = 0.50 and 14 for MM = 1. The obtained results show that 

the minimum mesh density ratio a/d to apply the nodal stress approach increases 

with increasing the mode mixity ratio MM. 
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Figure 6.2.10: Ratio between approximated (W̅NS) and exact (W̅FEM) averaged SED versus the 

mesh density ratio. W̅NS according to the nodal stress approach, Eq. (6.2.20); W̅FEM according to 

the direct approach, Eq. (6.2.13). Short cracks under mixed mode I+II loading: (a) MM = 0; (b) 

MM = 0.40; (c) MM = 0.50; (d) MM = 0.60 and (e) MM = 1.00.  
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The minimum mesh density ratios a/d, reported in Fig. 6.2.10, are about the same 

previously found [84] dealing with long cracks under mixed mode I+II loading 

and they are also in agreement with that highlighted in previous Fig. 6.2.5, as far 

as pure modes of loading are concerned. The reason is that the minimum mesh 

density ratio a/d for each MM is driven by KI (a/d  3) and KII (a/d  14) 

contributions to the averaged SED, being the requirement of the TnodalW   

contribution in Eq. (6.2.20) (a/d  2) less demanding than that of the 
III,PSMW 

 

term.  

 

6.2.4.2 Minimum mesh density ratio a/d  

Figure 6.2.10 shows that the minimum mesh density ratio a/d depends on the 

mode mixity. Therefore, a criterion to choose the mesh density would be 

desirable. In the previous contribution [84] related to long cracks under mixed 

mode I+II loading, such criterion was expressed as follows: 
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where III,PSMW   is the approximate averaged SED, and III,ANW   is the exact 

expression. 

fI and fII appearing in Eq. (6.2.21) are two functions fitting the numerical results 

collected when validating the PSM expressions (6.2.14) e (6.2.15) [84] : 
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Figure 6.2.11 shows the present results (reported in previous Fig. 6.2.5) and the 

fitting functions fI and fII [84] and highlights their applicability also in the present 

short crack problem.  

Equation (6.2.21) was introduced to evaluate the minimum mesh density ratio a/d 

that can be adopted to apply Eq. (6.2.16), as soon as the ratio MM of the 

considered crack problem is known and the accepted degree of approximation in 

terms of 
III,AN

III,PSM

W

W




 is defined. Equation (6.2.21) is plotted in Fig. 6.2.12. In 

particular, the ratio W̅PSM,I+II/W̅AN,I+II is seen to converge to a unit value inside a 

scatter-band of ±10% when the adopted mesh density ratio a/d is greater than a 

minimum value that depends on the mode mixity ratio: approximate values 

reported in Fig. 6.2.12 are 3 for MM = 0 (pure mode I loading), 11 for MM = 0.50 

(mixed mode I+II), and 16 for MM = 1 (pure mode II). 
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Figure 6.2.11: Comparison between non-dimensional SIFs calculated in previous Fig. 6.2.5 and 

best fitting functions, Eqs. (6.2.22) and (6.2.23) derived in ref. [84]: (a) mode I and (b) mode II. 
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Figure 6.2.12: Estimation of the minimum mesh density ratio a/d for the applicability of the nodal 

stress approach under different mode mixities MM, according to Eq. (6.2.21). 

 

Such results are in fairly good agreement with Fig. 6.2.10. That is not surprising 

because it should be remembered that the T-stress contribution in Eq. (6.2.20), 

TnodalW  , is less demanding in terms of mesh density (a/d  2) than the SIFs 

contribution, 
III,PSMW 

 (a/d  3). Therefore, it is proposed that Eq. (6.2.21) and 

Fig. 6.2.12 are applied also to the present short crack problems, i.e. to estimate the 

minimum mesh density ratio that can be adopted to apply the nodal stress 

approach (Eq. (6.2.20)), although they were originally derived only for long 

cracks, where the PSM (Eq. (6.2.16)) can be applied. Moreover, by making the 

crack shorter and shorter, the T-stress contribution TnodalW   to the averaged SED 

becomes increasingly significant as compared to the SIFs contribution 
III,PSMW 

, 

in such a way that  decreasing the crack size Eq. (6.2.21) delivers mesh density 

ratios a/d more and more on the safe side. 
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6.2.4.3 The nodal stress approach coarsening the mesh further 

Making use of the fitting function fI and fII, the validity of the non-dimensional 

SIFs expressions (6.2.14) and (6.2.15) can be extended to much coarser FE 

meshes according to Fig. 6.2.11. By substituting fI and fII, Eqs. (6.2.22) and 

(6.2.23), into Eq. (6.2.20), the following expression can be written: 
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(6.2.24) 

Where the minimum mesh density ratios required to estimate the SIFs 

contribution 
III,PSMW 

 in Eq. (6.2.20) and illustrated in previous Fig. 6.2.12 are 

now removed, the sole requirement a/d  2, relevant to the estimation of TnodalW   

in Eq. (6.2.20), being now valid. 

The ratio between the approximate averaged SED according to Eq. (6.2.24) and 

the exact value according to the direct approach (W̅FEM, Eq. (6.2.13)) is reported 

in Fig. 6.2.13 for selected mode mixity ratios along with an error band of ±10%. 

Fig. 6.2.13 should be compared with the previous Fig. 6.2.10 to appreciate the 

relaxation of the mesh density requirements introduced by Eq. (6.2.24) as 

compared to previous Eq. (6.2.20). Fig. 6.2.13 shows that a mesh density ratio a/d 

= 2 can be adopted for engineering estimations of the averaged SED, in agreement 

with previous results [84] relevant to long cracks under mixed mode I+II loading.  
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Figure 6.2.13: Ratio between approximate (W̅NS) and exact (W̅FEM) averaged SED versus the 

mesh density ratio. W̅NS according to the nodal stress approach, Eq. (6.2.24); W̅FEM according to 

the direct approach, Eq. (6.2.13). Short cracks under mixed mode I+II loading: (a) MM = 0; (b) 

MM = 0.40; (c) MM = 0.50; (d) MM = 0.60 and (e) MM = 1.00.  
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T-stress contribution. The conclusions can be summarised as follows: 

 Taking advantage of the closed-form expression of the averaged SED (Eq. 

6.2.10a), the nodal stress approach can be expressed by means of Eq. 
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(6.2.20); depending on the mode mixity (MM) ratio, the minimum mesh 

density ratio to apply Eq. (6.2.20) with a given level of approximation can 

be determined by means of Eq. (6.2.21) or Figure 6.2.12. 

 More refined FE mesh patterns are required, the higher the mode mixity 

ratio MM is. In particular, the minimum ratio a/d between the semi-crack 

length a and the average FE size d is found to be equal to 2.5 in the case of 

pure mode I (MM = 0), 10 in the case of mixed mode I+II with MM = 0.50 

and 14 for pure mode II loading (MM = 1).   

 The use of proper fitting functions allows to extend the validity of the 

proposed nodal stress approach to coarser FE meshes according to Eq. 

(6.2.24), where a minimum mesh density ratio, a/d = 2, can be adopted. 

Because of the increased admissible mesh coarseness, Eq. (6.2.24) might 

be advantageous from an engineering point of view. 

 Even though it has been recognised that the averaged SED can be 

evaluated directly by means of FE analyses using coarse meshes inside the 

control volume and including automatically the T-stress contribution, 

nonetheless some additional advantages of the nodal stress approach to 

estimate the averaged SED can be singled out: (i) only the linear elastic 

nodal stresses calculated at selected FE nodes are necessary; (ii) 

geometrical modelling the control volume in FE models is no longer 

necessary, while the coarse mesh option is maintained in the nodal stress 

approach. 
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6.3 Link between the PSM and the averaged SED - example of 

practical application: fatigue strength assessment of butt 

welded joints under mode I loading 
(*)

 

 

Nomenclature 

2a  length of the lack of penetration 

cw  parameter which accounts the influence of the nominal load ratio 

d  mean size of a finite element 

e1, e2  parameters for the determination of the strain energy density (SED) 

E  elastic modulus 

fw1, fw2  weight parameters of the peak stresses  

h  bead height 

k  inverse slope of the design scatter band 

K1, K2   mode I and II notch stress intensity factors (NSIFs) 

*
FEK   normalised K1 in the application of the peak stress method 

**
FEK   normalised K2 in the application of the peak stress method 

NA  reference number of cycles 

Nf  number of cycles to failure 

R  load ratio (ratio between the minimum and the maximum applied 

load in a fatigue test) 

R0  radius of the structural volume where local stresses are averaged 

r,  polar coordinates 

T  scatter index of the design scatter band 

t  thickness of the welded plate 

W   strain energy density averaged over the control volume 

wtoe  bead width 

 

Symbols 

2  notch opening angle 

  range of the considered quantity
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1, 2  mode I, mode II eigenvalues in Williams’ equation 

                   Poisson's ratio 

11,peak linear elastic maximum principal stress evaluated at a V-notch tip 

(the weld toe or the weld root) by the finite element method using 

the mesh according to the PSM 

A,50%  fatigue strength at the reference number of cycles for a probability 

of survival equal to 50%  

b  nominal stress relevant to secondary bending loading 

eq,peak linear elastic equivalent peak stress evaluated at a V-notch tip (the 

weld toe or the weld root) 

nom  nominal stress relevant to axial loading

r  normal and shear stress components in the polar frame of reference 

 radius at the weld root or toe 

Abbreviations 

EBM  Electron beam welding 

MAG  Metal active gas welding 

MAW  Metal arc welding 

SAW  Submerged arc welding 

TIG  Tungsten inert gas welding 

 

(*) See also: 

 

Meneghetti, G.; Campagnolo, A.; Berto, F. Fatigue strength assessment of partial and full 

penetration steel and aluminium butt welded joints according to the peak stress method. Fatigue 

and Fracture of Engineering Materials and Structures; 38: 1419-1431 (2015). 
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6.3.1. Introduction 

In the notch stress intensity factor approach to the fatigue assessment of welded 

joints, the toe and the root side are modelled as sharp V-notches,  = 0 (worst case 

condition), and local stress distributions in plane configurations are given on the 

basis of the relevant mode I and mode II notch stress intensity factors (NSIFs). 

These factors quantify the magnitude of the asymptotic stress distribution obeying 

Williams’ solution [31]. Figure 6.3.1 illustrates the geometrical assumptions of 

the NSIF approach to the fatigue analysis of welded joints. 
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Figure 6.3.1: Definition of peak stresses evaluated by means of a linear elastic finite element 

analysis  at the weld toe and the weld root of a partial-penetration butt joint. The V-notch opening 

angle 2 is typically 0° at the weld root. For the partially-penetrated butt joint shown in the figure, 

the sliding peak stress τrθ,θ=0,peak at the weld root is negligible, being the root subjected to nearly 

pure mode I loading. 

 

NSIFs are adequate to describe crack initiation at sharp corner notches, as stress 

intensity factors (SIFs) do at crack-like notches. However, it was observed 

experimentally that NSIFs can also be used to correlate the total fatigue life due to 

cracks traversing the plate thickness of small size laboratory welded details. This 

is explained by the fact that a large amount of the fatigue life is spent to initiate a 

short crack in a zone governed by the V-notch singularity.  

The degree of singularity of the stress field ahead of sharp V-notches depends on 

the notch opening angle
 
[31] and the magnitude of asymptotic stress distribution 

in plane problems is quantified by means of the mode I and mode II NSIFs. By 
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using a polar coordinate system (r,) having its origin located at the sharp notch 

tip, Fig. 6.3.1, the NSIFs are defined according to Gross and Mendelson [30]: 

                   rlim2K 11

0,
0r

1






         (6.3.1) 

                   rlim2K 21

0,r
0r

2






         (6.3.2) 

where 1 and 2 are Williams’ eigenvalues
 
[31], which depend on the notch 

opening angle 2(see Figure 6.3.1), while the normal  and shear rstress 

components are evaluated in the polar coordinate system (r,) centred at the V-

notch tip along the notch bisector line =0. When the V-notch angle 2 is greater 

than 102.6 degrees, the mode II stress distribution is no longer singular and 

therefore it is usually neglected in fatigue strength assessments [27]. As far as a 

constant weld toe angle can be assumed and this angle is large enough to make the 

mode II contribution non-singular, the mode I NSIF can directly be used to 

correlate the fatigue strength of fillet welded joints having different geometries 

and absolute dimensions [27].  

Practical application of the NSIF approach may be restricted because variations of 

the V-notch opening angle destroy the direct comparability of the NSIFs, due to 

the exponents appearing in definitions (6.3.1) and (6.3.2). Comparability can be 

re-established by using the strain energy density (SED) averaged over a control 

volume surrounding the weld root or the weld toe as fatigue relevant parameter. In 

some previous papers by Lazzarin et al. [23,29,85], the SED parameter was given 

in closed form on the basis of the relevant NSIFs, and the radius R0 of the 

averaging zone was carefully identified with reference to conventional arc 

welding processes and uniaxial loading. In particular R0 for welded joints made of 

structural steel and aluminium alloy was found to be 0.28 mm and 0.12 mm, 

respectively [29,85]. The two different values for R0 suggest that welded joints 

made of construction steels are less notch sensitive under cyclic loading than 

those made of aluminium alloys. 

Under plane strain conditions, the strain energy density averaged over the control 

volume shown in Fig. 6.3.1 can be given as follows [23]: 
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       (6.3.3) 

 

Table 6.3.1: Values of parameter fw1 according to Eq. (6.3.10). 

2(deg) 1 
(a)
 e1 

(b)
 

R0 = 0.28 mm 
e1

 (c)
 

R0 = 0.12 mm 

fw1,d=0.5mm
(b)

 fw1,d=1mm
(b)

 fw1,d=0.5mm
(c)

 fw1,d=1mm
(c)

 

0 0.500 0.133 0.997 1.410 0.125 1.491 2.109 

90 0.544 0.145 1.015 1.392 0.138 1.472 2.019 

110 0.586 0.136 0.959 1.278 0.130 1.345 1.792 

120 0.616 0.129 0.918 1.198 0.124 1.259 1.644 

125 0.633 0.126 0.898 1.159 0.120 1.211 1.562 

130 0.652 0.122 0.873 1.111 0.117 1.160 1.476 

135 0.674 0.118 0.849 1.064 0.113 1.106 1.387 

140 0.697 0.113 0.818 1.010 0.109 1.050 1.295 

145 0.723 0.109 0.793 0.961 0.104 0.991 1.200 

150 0.752 0.104 0.762 0.905 0.100 0.930 1.105 

155 0.784 0.098 0.726 0.844 0.095 0.868 1.009 

160 0.819 0.093 0.693 0.786 0.090 0.805 0.913 

(a): values from previous contributions [23,29] 
(b): values calculated with = 0.3, 

*

FEK =1.38 

(c): values calculated with = 0.33, *

FEK =1.38 

 

Table 6.3.2: Values of parameter fw2 according to Eq. (6.3.11). 

2(deg) 2 
(a)
 e2 

(b)
 

R0 = 0.28 mm 
e2

 (c)
 

R0 = 0.12 mm 

fw2,d=0.5mm
(b)

 fw2,d=1mm
(b)

 fw2,d=0.5mm
(c)

 fw2,d=1mm
(c)

 

0 0.500 0.340 3.904 5.522 0.337 5.996 8.480 

(a): value from previous contributions  [23,29] 
(b): values calculated with = 0.3, 

**

FEK = 3.38 

(c): values calculated with = 0.33, 
**

FEK = 3.38 

 

where R0 represents the control radius (see Figure 6.3.1), K1 and K2 are the 

ranges of the relevant NSIFs, E is the Young's modulus while e1 and e2 are known 
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parameters depending on the notch opening angle 2and the Poisson’s ratio , 

see Tables 6.3.1, 6.3.2 [23,29].  

In the case of stress-relieved welded joints, it is possible to take into account the 

influence of the nominal load ratio, R (defined as the ratio between the minimum 

and the maximum applied load), by using the following expression:  
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where parameter cw is defined as follows [53]: 
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The coefficient cw is equal to 1 for R = 0 and to 0.5 for R = 1 when considering 

the stress-relieved condition. One should note that the corresponding equivalent 

local stress varies according to the ratio 71.05.0  . Such coefficient is in good 

agreement with the IIW Recommendations [86], which suggest a ratio of the 

fatigue classes 1.2/1.6 = 0.75 for the cases R = 0 and R = 1. Conversely, in the 

case of welded joints under as-welded conditions, cw is always set equal to 1, 

independently on the load ratio R. In fact, in the presence of high tensile residual 

stresses, the fatigue strength of welded joints depends only slightly on the load 

ratio, particularly in the case of full size structures.  

A disadvantage in practical application of the NSIF-based approach is that very 

refined meshes are needed to calculate the NSIFs by means of definitions (6.3.1) 

and (6.3.2). The modelling procedure becomes particularly time-consuming for 

components that cannot be analysed by means of two-dimensional models. 

However, it has been shown that WΔ  can be estimated directly from FE analyses 

using coarse meshes inside the structural volume having radius R0 [37]. Modelling 

the circular sector-shaped structural volume can be avoided and coarse FE meshes 
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can be used thanks to the Peak Stress Method, which is summarised in the 

following. 

Nisitani and Teranishi [41,42] presented a new technique to estimate KI for a 

crack emanating from an ellipsoidal cavity. Such a procedure is based on the 

usefulness of the linear elastic stress σθθ,θ=0,peak calculated at the crack tip by 

means of FE analyses characterized by a mesh pattern having a constant element 

size (see Figure 6.3.1). In particular Nisitani and Teranishi [41,42] were able to 

show that the ratio KI/σθθ,θ=0,peak depends only on the element size, if the adopted 

element type is the same. Therefore the σθθ,θ=0,peak value can be used to rapidly 

estimate KI, provided that the adopted mesh pattern has been previously calibrated 

on geometries for which the exact value of KI is known. It has been shown that 

such a criterion can be extended also to sharp V-notches subject to mode I loading 

[43] giving rise to the so-called Peak Stress Method (PSM), which can be 

regarded as an approximate FE-based method to estimate the NSIF. Later on, the 

PSM has been extended to cracks subject to mode I as well as mode II stresses 

[44]. The element size required to evaluate K1 and K2 from σθθ,θ=0,peak and 

τrθ,θ=0,peak, respectively, is several orders of magnitude greater than that required to 

evaluate accurately the local stress field. The second advantage using σθθ,θ=0,peak 

and τrθ,θ=0,peak is that only a single stress value is sufficient to estimate K1 and K2, 

respectively, instead of a number of stress-distance FE data, as usually required in 

order to apply definitions (6.3.1) and (6.3.2). Originally, the PSM was formulated 

for cases where only mode I singular stresses exist (i.e. K2 = 0 or mode II stresses 

are negligible) and it has been based on a link between the exact value of mode I 

NSIF K1, see Eq. (6.3.1), and the linear elastic opening peak stress σθθ,θ=0,peak 

calculated at the V-notch tip [43].  

38.1
d

K
K

11

peak,0,

1*

FE 







       (6.3.6) 

The PSM according to Eq. (6.3.6) has been applied extensively to correlate the 

fatigue strength of fillet- and full penetration welded joints subjected to mode I 

loading [45,46,87]. 
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Later on, the PSM was extended to mode II crack problems with reference to weld 

root failures with  significant opening as well as sliding stresses applied at the 

crack tip. A link between the exact value of mode II NSIF K2, see Eq. (6.3.2) with 

2= 0° and 2 = 0.5 (i.e. the crack case), and the linear elastic sliding peak stress 

τrθ,θ=0,peak calculated at the crack tip was established according to Eq. (6.3.7) [44]. 

38.3
d

K
K

21

peak,0,r

2**

FE 







       (6.3.7) 

In Eqs. (6.3.6) and (6.3.7) d is the mean finite element size adopted when using 

the free mesh generation algorithm available in Ansys numerical code, while 

“exact NSIF values” for K1 and K2 must be meant as the values obtained by 

applying definitions (6.3.1) and (6.3.2) to the stress-distance numerical results 

calculated from very refined FE mesh patterns (the size of the smallest element 

close to the V-notch tip is often in the order of 10
-5

 mm). Eqs. (6.3.6) and (6.3.7) 

are useful in practical applications because given the adopted average element size 

d, then also K1/σθθ,θ=0,peak and K2/τrθ,θ=0,peak ratios are constants.  

Values of 1.38 and 3.38 given by Eqs. (6.3.6) and (6.3.7), respectively, were 

derived under the following conditions [43,44]: 

 

 use of 4-node linear quadrilateral elements, as implemented in 

ANSYS
®
 numerical code (PLANE 42 of Ansys element library or 

alternatively PLANE 182 with K-option 1 set to 3); 

 pattern of finite elements around the V-notch tip as shown in Fig. 6.3.2 

(see also [43,44]): in particular, two elements share the node located at 

the weld toe (where 2 135°), while four elements share the node 

located at the weld root (where 2= 0°); 

 concerning Eq. (6.3.6), V-notches characterised by an opening angle 2 

ranging from 0° to 135°;  

 concerning mode I loading, the ratio a/d must be greater than 3 in order 

to obtain *

FEK 1.38±3%: when assessing the root side, a is the 

minimum value between the semi-crack length (crack is due to the lack 
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of penetration) and the ligament length, while a represents the plate 

thickness t when the toe side is taken into consideration; when also 

mode II (sliding) stresses are of interest at the root side, meshes must be 

more refined such that the ratio a/d must be greater than 14 in order to 

obtain **

FEK 3.38±3%. 

  

 nom 

toe 

root 

d 

FE nodes where peak stresses are taken 

 

 

Figure 6.3.2: Typical 2D free mesh [43–46,87]
 
to assess the fatigue strength according to the peak 

stress method (PSM) referred to a partial-penetration butt welded joint. The mean finite element 

size d is the sole parameter adopted to drive the free mesh generation algorithm in Ansys code.  

 

It should be noted that the FE patterns according to the PSM, like that  reported in 

Fig. 6.3.2, are readily and easily obtained by running the free mesh algorithm 

available in Ansys® numerical code, where d must be input as the so-called 

‘global element size’ parameter required by the software. There are not additional 

parameters to input in order to generate the mesh. Moreover, it is not necessary to 

create the structural volume in the FE model. 

Recently the PSM has been combined also with 3D FE models and eight-node 

brick elements to assess the fatigue strength of steel welded joints having complex 

geometry and characterised by toe as well as root cracking [47,48]. Finite element 

analyses performed using higher order elements or significantly different FE 

patterns would lead to different results, so that the coefficients of Eqs. (6.3.6) and 

(6.3.7) should be recalculated. The notch stress intensity factor approach [88] as 
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well as the local strain energy density concept and its relation to the peak stress 

method [89] have been recently reviewed thoroughly. 

By substituting Eqs. (6.3.6) and (6.3.7) into Eq. (6.3.4), the SED expression can 

be rewritten as a function of the linear elastic peak stresses σθθ,θ=0,peak and 

τrθ,θ=0,peak. Then an equivalent peak stress under plain strain conditions can be 

derived according to the following relationship: 
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(6.3.8) 

Finally it is obtained: 

 2

peak,0,r

2

2w

2

peak,0,

2

1wwpeak,eq ffc                    (6.3.9) 

The parameters fw1 and fw2 weight the peak stresses both around the V-notch (θ 

direction in Fig. 6.3.1) and along the radial direction (r direction in Fig. 6.3.1). 

The coefficient fw1 turns out to be [87]: 
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                  (6.3.10) 

while fw2 is defined as [44]: 
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                 (6.3.11) 

Values of fw1 and fw2 according to Eqs. (6.3.10) and (6.3.11) are reported in 

Tables 6.3.1 and 6.3.2, respectively, with reference to two values of the mean FE 

size d, namely d = 1 mm and 0.50 mm, and two sizes of the control volume for 
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SED evaluation, R0 = 0.28 mm (structural steels) and 0.12 mm (aluminium alloys) 

[29,85].  

When stress components tied to mode II loading are null (for example: pure 

opening stresses applied to the weld root) or non-singular (for example: at the 

weld toe as far as 2> 102°), Eq. (6.3.9) can be simplified as: 

peak,111wwpeak,eq fc                  (6.3.12) 

where 11,peak is the maximum principal stress evaluated at the V-notch tip (see 

Figure 6.3.1).  

It should be noted that in the case of as-welded joints Eq. (6.3.12) simplifies to 

[44,48,87]: 

peak,111wpeak,eq f                   (6.3.13) 

In the context of the PSM, aim of the present work is to apply for the first time the 

PSM to transverse butt welded joints in aluminium alloys as well as structural 

steel. 

 

6.3.2. Joint geometries and FE stress analyses according to the Peak Stress 

Method 

6.3.2.1. Butt-welded joints made of aluminium alloy 

Three different series of experimental fatigue data concerning butt welded joints 

made of AlMg4.5Mn aluminium alloy have been taken from the literature. 

Original data are due to Sonsino et al. [50,51]. Table 6.3.3 summarizes the 

material, welding process and testing conditions taken into consideration. All 

main local geometrical parameters (i.e. bead width wtoe, toe opening angle 2 and 

bead height h as well as the length of the lack of penetration zone 2a, if 

applicable) are taken from the original references and reported in Table 6.3.4 

along with fatigue test details. The bead width wtoe and the bead height h have 

been obtained from the published geometrical parameters, if they were missing in 

the original papers. 
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The data refer to partial penetration butt welded joints (Model 1 in Table 6.3.7) 

and full penetration butt welded joints (Model 2 in Table 6.3.7). All joints 

consisted of 5- or 25-mm-thick gas metal arc-welded (GMAW) plates. Pulsating 

(R = 0) or completely reversed (R = -1) axial fatigue loadings were applied in the 

experimental tests. In the original papers, the number of cycles to obtain complete 

failure of the joints was reported and it has been considered as fatigue life in the 

present investigation. 

 

 

Table 6.3.3: Material, welding process and testing conditions of aluminium joints. 

Ref. Material 

Yield 

strength 

[MPa] 

Ultimate 

strength 

[MPa] 

Welding 

process 

Testing 

condition 

Sonsino et al.
 

[50,51] 

AlMg4.5Mn 175÷195 303 GMAW Stress-relieved 

 

Table 6.3.4: Fatigue test details of aluminium joints
 
[50,51] 

(joint geometries are reported in Table 6.3.7). 

Joint 

geometry 

Load 

ratio  

R 

Failure 

location 

t  

[mm] 

h  

[mm] 

2  

[°] 

wtoe 

[mm] 

2a  

[mm] 
σ11peak,root/σnom σ11peak,toe/σnom σb/σnom 

1 -1 Weld 

root 

5 1.5 129 6.25 2.5 2.690
(a)

 2.424
(a)

 - 

1 0 Weld 

root 

5 1.5 129 6.25 2.5 2.690
(a)

 2.424
(a)

 - 

1 -1 Weld 

root 

25 4.5 137 23.04 7.5 2.529
(b)

 2.174
(b)

 - 

1 0 Weld 

root 

25 4.5 137 23.04 7.5 2.529
(b)

 2.174
(b)

 - 

2 -1 Weld 

toe 

5 1.5 148 10.39 - - 1.586
(c)

 0.29 

2 0 Weld 

toe 

5 1.5 148 10.39 - - 1.586
(c)

 0.29 

(a): values calculated adopting a FE global size d= 0.25 mm. 
(b): values calculated adopting a FE global size d= 1.00 mm. 

(c): values calculated adopting a FE global size d= 0.50 mm. 
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Table 6.3.7 lists the joint geometries and summarises the details of the stress 

analyses according to the PSM. Two-dimensional, plane strain FE models were 

defined in order to convert the original experimental data from the nominal stress 

approach to the equivalent peak stress parameter. For sake of simplicity, the actual 

geometry of the weld bead has been approximated in the FE models with a 

trapezoidal shape (see Table 6.3.7), defined as a function of the bead height h, 

width wtoe and inclination angle 2 derived from the original papers. Furthermore, 

being the notch tip radius ρ at the weld toe lower than 2 mm in all cases under 

investigation, the assumption of the worst case condition, ρ = 0, might be 

considered acceptable in the FE analyses
 
[54]. For this reason the weld toe and the 

weld root were modelled as sharp notches (V-shaped or crack-like) in all 

considered cases. Only one quarter of each welded joint was modelled (see Table 

6.3.7), taking advantage of the double symmetry. A free mesh pattern of 

quadrilateral four-node PLANE 42 elements having a ‘global element size’ equal 

to d was generated. By doing so, a 2D FE mesh of the type shown in Fig. 6.3.2 

was obtained. The mesh size d was chosen in the range from 0.25 mm to 1 mm in 

order to comply with the conditions of applicability of Eq. (6.3.6). More precisely, 

the mesh requirement a/d > 3 applies as follows: for partial penetration joints 2a is 

the lack of penetration (provided it is lower than or equal to the ligament length), 

while for the fully penetrated joint geometry a is the main plate thickness. 

Since all welded joints were stress-relieved, the influence of the nominal load 

ratio R was taken into account by applying the PSM through Eq. (6.3.12), which 

includes the correction parameter cw defined in Eq. (6.3.5). Moreover, at the weld 

root of partial-penetration joints mode II stresses are negligible and at the weld toe 

mode II stresses are non-singular (all geometries considered here are characterised 

by 210). Therefore Eq. (6.3.12) with fw1 relevant to R0 = 0.12 mm (Table 

6.3.1), was used to calculate the equivalent peak stress at the points of crack 

initiation. It is interesting to note that in partial-penetration welded joints, fatigue 

crack initiation always occurred at the weld root whilst in full-penetration welded 

joints the critical point  was the weld toe. Table 6.3.4 shows that crack initiation 

location for partial-penetration joints (Model 1 in Table 6.3.7) is correctly 

estimated by means of the PSM, being the maximum principal stress 11,peak 
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always higher at the weld root than at the weld toe. Therefore the equivalent peak 

stress will be even higher at the weld root, by virtue of fw values to use in Eq. 

(6.3.12).  

The presence of a secondary bending effect in the full-penetration butt welded 

joints, due to an angular distortion about equal to 1°, has been taken into account 

to evaluate the equivalent peak stress (see the ratio b/nom in Tab. 6.3.4). The 

stress increase caused by secondary bending was computed according to Brandt et 

al. [90], who re-analysed the data reported by Sonsino et al. [50,51]. The 

correction factor, (b +nom)/nom, was found to be 1.29 for joints with plate 

thicknesses of 5 mm [90]. It is worth noting that the ratios between the peak stress 

and the applied nominal stress reported in Table 6.3.4 were obtained under pure 

axial loading. Since the stress concentration effects are different under axial and 

bending loadings, an additional FE analysis was performed for joint Model 2 

(Table 6.3.7) in order to account for the secondary bending contribution to the 

peak stress. Finally, Eq. (6.3.14) has been applied to compute the peak stress at 

the points of crack initiation. 

b

bendb

peak,11

nom

axialnom

peak,11

peak,11 σΔ
σ

σ
σΔ

σ

σ
σΔ 





























               (6.3.14) 

In the previous expression, Δnom and Δb are the nominal stress ranges taken 

from the original references and relevant to axial and secondary bending loadings, 

respectively, while the ratios (11,peak/nom)axial and (11,peak/b)bend have been 

evaluated by means of 2D FE analyses using the mesh according to the PSM. 

 

6.3.2.2. Butt-welded joints made of structural steels 

A number of experimental fatigue data related to butt welded joints made of 

structural steels have been taken from the literature. Original data are due to 

Petershagen et al. [91], Hentschel et al. [92] and Yakubovskii and Valteris [93]. 

The materials taken into consideration, the welding processes and testing 

conditions are reported in Table 6.3.5. All relevant local geometrical parameters 

(i.e. bead width wtoe, toe opening angle 2 and bead height h) were obtained from 



 

                                                       
 

6 - Link between PSM and SED - Fatigue strength assessment of butt welded joints 

 

 

529 

the original references and are reported in Table 6.3.6 along with fatigue test 

details. Similarly to Table 6.3.4, the bead width wtoe and the bead height h have 

been obtained from the published geometrical parameters, if they were missing in 

the original papers.  

The data refer to full penetration two-sided butt welded joints (Model 2 in Table 

6.3.7) and one-sided butt welded joints (Model 3 in Table 6.3.7), while the plate 

thickness ranged between 10 and 20 mm. Axial fatigue loadings were applied in 

the experimental tests considering different nominal load ratios, namely R = 0, 0.2 

and -1. In the original papers, the number of cycles to obtain a complete failure of 

the welded joints was reported and it has been considered as fatigue life in the 

present investigation. The fatigue crack initiation always occurred at the weld toe 

in all joints under investigation, because of the fully penetrated welding execution. 

 

Table 6.3.5: Steel materials, welding processes and testing conditions. 

Ref. Material 
Welding 

process 

Testing 

condition 

Petershagen et al.
 
[91] St 52-3 SAW As-welded 

Hentschel et al.
 
[92] (C) St 38 MAG As-welded 

Hentschel et al.
 
[92] (F) St 38 MAW As-welded 

Hentschel et al.
 
[92] (W) St 38 SAW, TIG As-welded 

Yakubovskii and Valteris [93] (A) St 3 MAW As-welded 

Yakubovskii and Valteris
 
[93] (B) 15 HSND EBW As-welded 

Yakubovskii and Valteris
 
[93] (C) 15G2AFD MAW As-welded 

 

Joint geometries and details of the stress analyses according to the PSM are 

reported in Table 6.3.7. The original experimental data expressed in terms of 

nominal stress have been converted to equivalent peak stress by means of two-

dimensional FE models, under plane strain conditions. Again the actual geometry 

of the weld bead has been approximated in the FE models with a trapezoidal 

shape (see Table 6.3.7), defined by the bead height h, width wtoe and inclination 

angle 2 derived from the original contributions. The assumption of the worst 

case condition, notch tip radius ρ = 0, has been adopted in the FE analyses by 

modelling the weld toe as a sharp V-notch. This assumption is acceptable [54] 
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being ρ at the weld toe lower than 2 mm in all the examined cases. In the case of 

full penetration two-sided welded joints (Model 2 in Table 6.3.7) only one quarter 

of each joint has been modelled (see Table 6.3.7), taking advantage of the double 

symmetry, while in the case of one-sided butt joints (Model 3 in Table 6.3.7) one 

half has been modelled (see Table 6.3.7). 

 

Table 6.3.6: Fatigue test details of welded joints in steel  

(joint geometries are reported in Table 6.3.7). 

Ref. 
Joint 

geometry 

Load 

ratio  

R 

t  

[mm] 

h  

[mm] 
2  

[°] 

wtoe 

[mm] 
σ11peak,toe/σnom σb/σnom 

Petershagen et al.
 
[91] 

(2) 

2 -1 20 1.226 138 17.04 1.519
(a)

 0.72÷0.76 

Petershagen et al.
 
[91] 

(2) 

2 0 20 1.226 138 17.04 1.519
(a)

 0.48÷0.80 

Petershagen et al.
 
[91] 

(3) 

2 -1 20 1.226 138 17.50 1.520
(a)

 0.71 

Petershagen et al.
 
[91] 

(3) 

2 0 20 1.226 138 17.50 1.520
(a)

 0.71÷0.72 

Petershagen et al.
 
[91] 

(5) 

2 -1 20 1.226 150 20.52 1.455
(a)

 0.57 

Petershagen et al.
 
[91] 

(5) 

2 0 20 1.226 150 20.52 1.455
(a)

 0.60 

Petershagen et al. [91] 

(10) 

2 0 20 1.226 133 17.00 1.537
(a)

 0.68÷0.74 

Hentschel et al.
 
[92] 

(C) 

3 0.2 20 3 140 16.48 1.292
(b)

 - 

Hentschel et al. [92]  

(F) 

2 0.2 10 3 148 20.92 1.565
(a)

 - 

Hentschel et al. [92]  

(W) 

2 0.2 20 3 160 34.03 1.376
(b)

 - 

Yakubovskii and 

Valteris
 
[93] (A) 

2 0 16 4 146 26.17 1.475
(b)

 - 

Yakubovskii and 

Valteris
 
[93] (B) 

2 0 16 3 155 27.06 1.596
(a)

 - 

Yakubovskii and 

Valteris
 
[93] (C) 

2 0 16 4 146 26.17 1.475
(b)

 - 

(a): values calculated adopting a FE global size d= 1.00 mm. 
(b): values calculated adopting a FE global size d= 2.00 mm. 

 

The FE analyses were performed adopting a free mesh pattern (see Fig. 6.3.2) of 

quadrilateral four-node PLANE 42 elements having a ‘global element size’ equal 

to d. The mesh size d was selected in the range between 1 mm and 2 mm to satisfy 

the conditions of applicability of the PSM, i.e. t/d greater than 3 when assessing 

the toe side with negligible mode II stresses and pattern of elements as shown in 

Figure 6.3.2. Similarly to the FE analysis procedure applied to Model 2 of Table 
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6.3.4, the ratios between the peak stress and the applied nominal stress reported in 

Table 6.3.6 were calculated under pure axial loading; therefore, the contribution 

of secondary bending stress b to the peak stress 11,peak,toe was taken into account 

by means of a dedicated FE analysis and subsequently by applying Eq. (6.3.14). 

Since all welded joints were in the as-welded conditions, the influence of the 

nominal load ratio R was not taken into account; moreover, mode II stresses are 

non-singular being the toe opening angle 2greater than 10in all joints 

reported in Table 6.3.6. Therefore, the PSM has been applied according to Eq. 

(6.3.13), where fw1 is related to R0 = 0.28 mm (Table 6.3.1). 

 

Table 6.3.7:  Joint geometries and FE analyses for fatigue strength assessment according to the 

PSM. 

Model 
Joint Geometry –  

Loading Conditions 

FE analyses  

according to PSM 

Model 

1 

 

Actual geometry: 

 

 

CRACK INITIATION POINT 

 

 

 

Example: t = 25 mm, 2a = 7.5 mm,  

d ≅ 1 mm 

 

SYMMETRY B.C. 

 

 

 

 

 

Simplified geometry:  

 

 

 

  

Y 

X 
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Model 

2 

 

Actual geometry: 

CRACK INITIATION POINT 

 

 

Example: t = 16 mm, d ≅ 2 mm 

SYMMETRY B.C. 

 

 

Simplified geometry:  

 

 

 
 

Model 

3 

 

Actual geometry: 

CRACK INITIATION POINT 

 

 

Example: t = 20 mm, d ≅ 2 mm 

SYMMETRY B.C. 

 

 

Simplified geometry:  

 

 

  

 

 

Y 

X 

Y 

X 
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In the following, specific comments concerning the analysis procedure of each 

test series are reported.  

 

Data from Petershagen et al. [91]: 

All welded joints tested by Petershagen et al. [91] show a significant secondary 

bending effect due to an angular distortion between 2° and 4° (see the ratio 

b/nom in Tab. 6.3.6). The increase of the stresses caused by secondary bending 

was quantified in the original paper by means of a correction factor, that is (b 

+nom)/nom, which varied between 1.48 and 1.80 according to the original work 

[91].  

 

Data from Hentschel et al. [92]: 

The series C tested by Hentschel et al. [92] is related to full penetration one-sided 

butt joints (Model 3 in Table 6.3.7), while series F and W consist of two-sided 

welded joints (Model 2 in Table 6.3.7). 

 

Data from Yakubovskii and Valteris [93]: 

The test series B reported by Yakubovskii and Valteris [93] was manufactured by 

means of electron beam welding (EBW). The original paper does not report all 

local geometrical parameters for series B; therefore, the values of the bead height 

h and the bead width w were assumed equal to those reported by Yakubovskii and 

Valteris [93] for a test series made of metal-arc welding (MAW) SM50B steel, 

which has not been considered here. The same assumption was made by Lazzarin 

et al. in a previous contribution [54]. Concerning test series A and C reported in 

Table 6.3.6, the original paper [93] reports all geometrical parameters of the weld 

bead. 
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6.3.3. Assessment of weld toe and weld root fatigue failures 

After analysing the welded joint geometries using the peak stress method, the 

original fatigue test results expressed in terms of range of nominal stress could be 

re-converted in terms of range of the linear elastic equivalent peak stress 

evaluated at the point of crack initiation of each joint using Eq. (6.3.12) for stress-

relieved welded joints and Eq. (6.3.13) for as-welded ones. 

Experimental results related to butt welded joints made of aluminium alloy are 

compared in Fig. 6.3.3 with the design scatter band, which has been calibrated 

previously [43] by fitting about 90 experimental data taken from the literature and 

relevant only to weld toe failures (2 ≅ 135°). Such data were generated by 

testing laboratory specimens in the as-welded conditions with a nominal load ratio 

close to zero. The specimens were T- or cruciform load-carrying as well as non-

load-carrying fillet-welded joints with main plate thickness ranging from 3 to 24 

mm and were manufactured by aluminium alloy sheets belonging to the 5000 and 

6000 series with a yield stress varying between 250 and 304 MPa [43]. All fatigue 

failures started from the weld toe (2 ≅ 135°). While the design scatter band 

reported in ref. [43] was expressed in terms of range of the linear elastic peak 

stress evaluated by the finite element method at the weld toe with an average 

element size d = 1 mm, the one reported in Fig. 6.3.3 has been converted to 

equivalent peak stress using Eq. (6.3.13) and with fw1 value reported in Table 

6.3.1 (R0 = 0.12 mm, d = 1 mm, fw1 = 1.387). By so doing, either weld toe and 

weld root failures can be assessed in Fig. 6.3.3, which shows a very good 

agreement between theoretical estimations and experimental data. 

Fig. 6.3.4 compares the experimental data obtained from butt welded joints made 

of structural steels with the design scatter band, which has been calibrated 

previously [87] by using about 180 experimental results taken from the literature 

relevant only to weld toe failures (2 ≅ 135°). Such data were obtained by testing 

laboratory specimens in the as-welded conditions with a nominal load ratio R 

close to zero. The main plate thickness varied between 6 and 100 mm and the 

joints were made of structural steels characterized by a yield stress ranging from 

250 to 690 MPa. T- as well as cruciform fillet-welded joints subject to axial or 

bending fatigue loading were included in the analysis. A good agreement between 
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estimations according to the PSM and experimental data has been obtained, as it 

can be observed from Fig. 6.3.4. 

 

 

 

Figure 6.3.3: Fatigue assessment of butt welded joints made of aluminium alloy according to the 

PSM. Comparison between the design scatter band from refs. [43,45]
 
and experimental results 

[50,51] analysed here. 

 

The number of cycles reported in Figs. 6.3.3 and 6.3.4 refers to complete failure 

of the specimens. It should be noted that the NSIF-based approach is expected to 

correlate the fatigue life related to initiation and short crack propagation inside the 

small volume where local stresses are governed by the NSIF leading terms. 

However, as far as small scale laboratory specimens are considered, the total 

fatigue life is correlated fairly well by the NSIF-based approach [23,27,29,85]. 

Conversely, in order to analyse the total fatigue life of full size structures, where 

very long crack propagation paths may exist, the crack  propagation life should be 

analysed separately from the crack initiation life by means of Linear Elastic 

Fracture Mechanics (LEFM) approach. 
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Figure 6.3.4: Fatigue assessment of butt welded joints made of structural steels according to the 

PSM. Comparison between the design scatter band reported in refs. [44,48,87] and experimental 

results [91–93] analysed here. 

 

6.3.4. Discussion 

The peak stress method (PSM) has been applied to estimate the fatigue strength of 

butt welded joints made of aluminium alloys and structural steels with toe and 

root failures. 

From a practical point of view, the PSM is an engineering FE-oriented application 

of the NSIF approach, which basically assumes that the weld toe profile is a sharp 

V-notch having a tip radius equal to zero, while the root side is a pre-crack in the 

structure. It takes advantage of the elastic peak stresses evaluated from FE 

analyses carried out by using a given mesh pattern, where the element type is kept 

constant and the element size can be chosen arbitrarily within the applicability 

range of the method.  

A properly defined equivalent peak stress based on the strain energy density 

enables one to estimate the failure location (either the weld toe or the weld root) 
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and secondly to correlate the fatigue strength of butt welded joints of different 

thickness and local weld bead geometry. The design scatter bands in terms of 

equivalent peak stress, which had been calibrated originally by means of 

experimental results generated from fillet welded joints with toe failures only, 

have been successfully adopted here to assess the fatigue strength of aluminium 

and steel butt welded joints, respectively, with toe and root failures.  

The comparison between the theoretical estimations and the experimental fatigue 

test results was satisfactory both for aluminium and for steel welded joints. 

Because of the simplicity of a point-like method combined with the robustness of 

the NSIF approach, it is believed that the PSM may be useful in the design 

practice of industrial application. 
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6.4 Link between the Peak Stress Method (PSM) and the 

averaged Strain Energy Density (SED): cracked bars 

under mixed mode (I+III) loading 
(*)

 

 

Nomenclature 

a   crack length 

a0   El Haddad-Smith-Topper length parameter of the material 

d   mean size of a finite element 

th,IK  
threshold value of the SIF range for long cracks under mode 

I loading conditions 

th,IIIK
 

threshold value of the SIF range for long cracks under mode 

III loading conditions 

e1, e2, e3  parameters for averaged SED evaluation 

E   elastic modulus 

KI, KII, KIII   mode I, mode II and mode III SIFs 

*
FEK , **

FEK , ***

FEK  non-dimensional KI, KII and KIII relevant to the peak stress 

method (constant parameters) 

MM   mode mixity ratio 

R0 radius of the control volume for the averaged SED 

evaluation  

R0,I radius of the control volume for the averaged SED 

evaluation under mode I loading 

R0,III radius of the control volume for the averaged SED 

evaluation under mode III loading 

r,   polar coordinates 

T   slit-parallel tensile or compressive stress, T-stress 

ANW  analytical, closed-form expression of the averaged SED, 

taking into account only SIFs contributions  

FEMW  averaged SED calculated by FEM using very refined 

meshes (direct approach) 
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coarse,FEMW  averaged SED calculated by FEM using coarse meshes 

(direct approach with coarse mesh option) 

III,PSMW   averaged SED calculated according to the PSM (only mode 

I and II SIFs contributions are taken into account) 

IIII,PSMW   averaged SED calculated according to the PSM (only mode 

I and III SIFs contributions are taken into account) 

x,y,z Cartesian coordinates 

 

Symbols 

2   opening angle 

0    plain material axial fatigue limit in terms of stress range 

0    plain material torsion fatigue limit in terms of stress range 

              Poisson's ratio 

nom   nominal direct stress  

xxyyxy   normal and shear stress components in the Cartesian frame 

of reference 

yy,peak singular, linear elastic, opening peak stress evaluated at the 

crack tip by FEM using the PSM 

xy,peak singular, linear elastic, sliding peak stress evaluated at the 

crack tip by FEM using the PSM 

xz yz anti-plane shear stress components in the Cartesian frame of 

reference 

yz,peak singular, linear elastic, anti-plane peak stress evaluated at 

the crack tip by FEM using the PSM 

 

Abbreviations 

PSM   Peak stress method 

SED   Strain energy density 

SIFs   Stress intensity factors 
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(*) See also: 

 

Meneghetti, G.; Campagnolo, A; Berto, F. Averaged strain energy density estimated rapidly from 

the singular peak stresses by FEM: cracked bars under mixed-mode (I+III) loading. Engineering 

Fracture Mechanics (Under review). 

 

6.4.1 Introduction 

The strain energy density (SED) averaged over a control volume, thought of as a 

material property and modelled as a circular sector of radius R0 according to 

Lazzarin and Zambardi [23] (see Fig. 6.4.1a), proved to efficiently account for 

notch effects both in static [32,79,94,95] and fatigue [29,34,81,96–98] structural 

strength problems. The idea is reminiscent of the stress averaging to perform 

inside a material dependent structural volume, according to the approach proposed 

by Neuber [99–101]. The control radius R0 for fatigue strength assessment of 

notched components has been defined by equaling the averaged SED in two 

situations, i.e. the fatigue limit of un-notched and cracked specimens, respectively 

[29,81,82]. Therefore R0 combines  two material properties: the plain material 

fatigue limit (or the high-cycle fatigue strength of smooth specimens) and the 

threshold value of the SIF range for long cracks. The following expressions have 

been derived [29,81,82]: 

  
2

0

th,I

2

0

th,I

1I,0

K

4

851K
e2R 






























                                           (6.4.1) 

2

0

th,III3

III,0

K

1

e
R 

















                                                                  (6.4.2) 

It should be noted that, in principle, the control radius R0 could assume different 

values under mode I and mode III, so that the energy contributions related to the 

two different loading conditions should be averaged in control volumes of 

different size. The idea of a control volume size dependent on the loading mode 

has been proposed for the first time in [81] dealing with the multiaxial fatigue 

strength assessment of notched specimens made of 39NiCrMo3 steel, then it has 

been successfully applied also for the fatigue strength assessment of notched 
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components made of AISI 416 [96], cast iron EN-GJS400 [97] and titanium grade 

5 alloy Ti-6Al-4V [34] subjected to combined tension and torsional loading. In 

particular, for welded construction steels a single radius R0 = 0.28 mm was 

assumed [29] and is adopted here as a reference value. It is important to underline 

that using a Poisson’s coefficient = 0.30, Eq. (6.4.1) (being valid under plain 

strain hypothesis) can be re-written as follows [29,82]: 

0

2

0

th,I

I,0 a85.0
K1

85.0R 














            (6.4.3) 

Therefore, R0 in Fig. 6.4.1a results on the order of the El Haddad-Smith-Topper 

length parameter [83]. 

Dealing with a general mixed mode crack problem, the averaged SED was 

expressed in closed-form as a function of the stress intensity factors (SIFs), KI, KII 

and KIII, according to the following analytical expression [102]: 

0

2

III3

0

2

II2

0

2

I1
AN

R

K

E

e

R

K

E

e

R

K

E

e
W                        (6.4.4) 

In the above equation, e1, e2 and e3 are known parameters dependent on the 

opening angle of a general sharp V-notch (2) and of the Poisson’s ratio ν 

[23,102] (see Table 6.4.1), while E is the Young’s modulus of the considered 

material. Equation (6.4.4) is valid when the influence of the higher-order, non-

singular terms can be neglected inside the control volume. The mode I and mode 

II SIFs can be defined according to Gross and Mendelson [30] by means of Eqs. 

(6.4.5) and (6.4.6), respectively.  

  5.0

0yy
0r

I rlim2K 


        (6.4.5) 

  5.0

0xy
0r

II rlim2K 


        (6.4.6) 

Similarly, by extending previous definitions, the mode III SIF can be defined by 

means of Eq. (6.4.7). 
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  5.0

0yz
0r

III rlim2K 


        (6.4.7) 

The above equations, (6.4.5), (6.4.6) and (6.4.7), are referred to the Cartesian 

stress components expressed as functions of the polar coordinates (r,), with 

origin at the crack tip (see Fig. 6.4.1b); however, it should be noted that along the 

crack bisector line the polar reference system (r,) coincides with the Cartesian 

one (x,y), so that σθθ = σyy, τrθ = τxy and τθz = τyz. 

 

 

 

 

 

a 

D = 10 ·a 

L = D 

(a) Mt 

a 

20 

M
t
 

F 

F 

R
0
 

R
0



 

W 

 

 



 

 

 
6 - Link between PSM and SED - Cracked bars under mixed mode I+III loading 

 

 

544 

 

 

 

Figure 6.4.1: Out-of-plane mixed mode I+III crack problem: (a) Strain energy density averaged 

over a control volume (area) of radius R0 surrounding the crack tip, 
A

W
W  . (b) Cartesian stress 

components and polar coordinates with origin at the crack tip. F and Mt are the axial and torsion 

loadings, respectively. 

 

Table 6.4.1: Parameters for averaged SED evaluation in the crack case (2 = 0°) for a Poisson’s 

ratio ν = 0.30. 

2(deg) λ1, λ2, λ3 
ν = 0.30 

e1 
(a)

 e2 
(a)

 e3 
(b)

 

0 0.500 0.133 0.340 0.414 

(a)
 values under plane strain conditions [23] 

(b)
 values under axis-symmetric conditions [102] 

 

 

The use of Eq. (6.4.4) in engineering applications presents a major drawback, 

because the entire local stress field must be determined accurately to evaluate the 

SIFs according to definitions (6.4.5), (6.4.6) and (6.4.7); therefore, very refined 
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meshes are required. Mesh preparation and solving the model is even more time-

consuming in the case of 3D FE models.  

Despite this, the averaged SED can also be evaluated directly from the FE results, 

FEMW , by summation of the strain-energies WFEM,i calculated for each i-th finite 

element belonging to the control area and by dividing by the area (A in Fig. 

6.4.1a): 

A

W
W A i,FEM

FEM


          (6.4.8) 
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Figure 6.4.2: Out-of-plane mixed mode I+III crack problem: averaged SED evaluated according 

to the direct approach (Eq. (6.4.8)) with coarse mesh option, W̅FEM,coarse [37]; (a) geometry and 

loading conditions; (b) and (c) coarsest FE mesh (second order harmonic plane elements, PLANE 

83 of the Ansys
®
 element library) producing a reduced error of 5% in the cases a = 3 mm and a = 

15 mm with MM = 0.50. Control radius R0 = 0.28 mm. 

 

Equation (6.4.8) represents the so-called direct approach to calculate the averaged 

SED. According to a recent contribution of  Lazzarin et al. [37], very coarse FE 

meshes within the control volume A can be used. The required geometric model 

to apply the direct approach with coarse mesh option [37] is reported in Figure 

6.4.2a with reference to an axisymmetric mixed mode (I+III) problem, while 

Figures 6.4.2b and 6.4.2c show two examples of the coarsest FE meshes that can 

be adopted.  

The adopted finite element is the second order harmonic plane element, PLANE 

83 of the Ansys® element library. Figures 6.4.2b,c show that eight finite elements 

have been generated inside the control volume, while two concentric rings, each 

one made up of eight elements, have been located outside the reference volume 

and, precisely, in the annulus R0 < r < 10·R0; finally a free FE mesh characterized 

R0 = 0.28 mm 

10∙R0 

(b) 

R0 = 0.28 mm 

10∙R0 

d ≅ 5 mm d ≅ 10 mm 

(c) 

a = 3 mm a = 15 mm 
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by a mean element size d has been adopted in the external region r > 10·R0. The 

FE meshes reported in Figures 6.4.2b and 6.4.2c are as coarse as possible in order 

to obtain a deviation between coarse,FEMW  and 
FEMW  lower than 5% in the case of a 

mode mixity ratio MM equal to 0.5. The mode mixity MM is defined according to 

Eq. (6.4.9):  

IIII

III

KK

K
MM


              (6.4.9) 

while coarse,FEMW  and 
FEMW  are the averaged SED calculated using Eq. (6.4.8) and 

by adopting the coarse mesh and a very refined mesh (about 500 finite elements 

inside the control volume), respectively. Due to the very refined FE mesh 

employed, 
FEMW  is considered the exact value.  

Recently, the peak stress method (PSM) has been proposed to rapidly calculate the 

averaged SED using  the singular, linear elastic peak stresses evaluated at the tip 

of cracks with FE analyses and coarse meshes. The PSM allows to avoid 

modeling the control volume, while keeping the coarse mesh option. Strictly 

speaking, the PSM rapidly estimates the SIFs using coarse FE meshes, but thanks 

to Eq. (6.4.4) the averaged SED can also be estimated, provided that the 

contribution of higher-order, non-singular terms (which are not included in Eq. 

(6.4.4)) is negligible.  The PSM takes its origins by a numerical technique 

proposed by Nisitani and Teranishi [41,42] to rapidly estimate by FEM the SIF of 

a crack emanating from an ellipsoidal cavity. A theoretical justification to the 

PSM has been provided later on and the method has been extended also to sharp 

and open V-notches in order  to rapidly evaluate the mode I Notch Stress Intensity 

Factor (NSIF) [43]. Subsequently, the PSM has been formalised to include also 

cracked components under mode II loading conditions [44] and open V-notches 

subjected to pure mode III (anti-plane) stresses [103]. The local strain energy 

density concept and its relation to the peak stress method have been recently 

reviewed thoroughly by Radaj [89]. 

In more detail, the PSM enables to rapidly estimate the SIFs KI, KII and KIII (Eqs. 

(6.4.5)-( 6.4.7)) from the crack tip singular, linear elastic, opening, sliding and 



 

 

 
6 - Link between PSM and SED - Cracked bars under mixed mode I+III loading 

 

 

548 

 

tearing FE peak stresses σyy,peak, τxy,peak and τyz,peak, respectively, which are referred 

to the bisector line according to Fig. 6.4.3, concerning the in-plane stress 

components, and Fig. 6.4.4a, as to the out-of-plane stress component. More 

precisely, the following expressions are valid [43,44,103]: 

38.1
d

K
K

5.0

peak,yy
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FE 


                             (6.4.10) 
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                  (6.4.12) 

where d is the so-called ‘global element size’ parameter to input in Ansys
®

 FE 

code, i.e. the average FE size adopted by the free mesh generation algorithm 

available in the FE code. Eqs. (6.4.10)-( 6.4.12) were derived using particular 2D 

or 3D finite element types and sizes, so that a range of applicability exists, which 

has been presented in detail in previous contributions [43,44,103], to which the 

reader is referred. Here it is worth recalling that for mode I loading (Eq. (6.4.10)) 

the mesh density ratio a/d that can be adopted in numerical analyses must be a/d  

3, a being the minimum between the crack and the ligament lengths; for mode II 

loading (Eq. (6.4.11)) more refined meshes are required, the mesh density ratio 

a/d having to satisfy a/d  14; in case of mode III loading (Eq. (6.4.12)) the 

condition a/d  3 must again be satisfied, as it will be presented in the next 

section.  

As an example, Fig. 6.4.4b shows a free mesh where the average FE size d to 

input in Ansys
®
 software, is in constant proportion with the crack length a, a/d = 

3. The mesh pattern shown in Fig. 6.4.4b is as coarse as possible to estimate the 

averaged SED with a 10% error using next Eq. (6.4.13). It is important to 

underline that no additional input parameters other than d and no additional 

special settings are required to generate an FE mesh according to the PSM. When 

Eqs. (6.4.10)-(6.4.12) were calibrated [43,44,103], the ‘exact’ KI, KII and KIII SIFs 
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were evaluated using  definitions (6.4.5)-(6.4.7), respectively, applied to FE 

results of numerical analyses characterized by very refined meshes, where the 

element size close to the crack tip was reduced to about 10
-5

 mm. Therefore, the 

FE size required to estimate KI, KII and KIII from σyy,peak, τxy,peak and τyz,peak, 

respectively, is likely to be some orders of magnitude larger than that needed to 

directly calculate the local stress fields in order to apply definitions (6.4.5)-( 

6.4.7). Moreover, while Eqs. (6.4.5)-(6.4.7) require to process a number of stress-

distance numerical results, the PSM requires a single stress value to evaluate the 

SIFs.  

 

 

 

Figure 6.4.3: In-plane mixed mode I+II loading: averaged SED evaluated according to the peak 

stress approach (Eq. (6.4.14)) [84,104]. Geometry and loading conditions. 
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Figure 6.4.4: Mixed mode I+III crack problem: averaged SED evaluated according to the peak 

stress approach (Eq. (6.4.13)); (a) geometry and loading conditions. (b) Coarsest FE mesh (first 

order harmonic plane elements, PLANE 25 of Ansys
®
 element library) to obtain a reduced error of 

10%, for any  mode mixity ratio MM and crack length a.  
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The novelties of the present investigation can be summarised as follows:  

 to present the peak stress approach to rapidly estimate the averaged SED 

of out-of-plane mixed mode I+III crack tip fields and discuss the range of 

applicability of the method;  

 to validate the peak stress approach by analysing circumferentially cracked 

bars, while varying (i) the crack length, (ii) the mode mixity and (iii) the 

average finite element size adopted in the numerical analyses. 

 

6.4.2 The peak stress approach to estimate the averaged SED under mixed 

mode I+III loading 

To illustrate the PSM applied to cracks under out-of-plane mixed mode loading, 

KI and KIII have been estimated using Eqs. (6.4.10) and (6.4.12) for a number of 

crack sizes, that will be considered also later on for the averaged SED 

calculations. A bar weakened by a circumferential outer crack and subjected to 

out-of-plane mixed mode I+III loading was considered according to Fig. 6.4.1. 

Several crack lengths a (from 3 to 50 mm) have been considered, while diameter 

D and length L of the bar were set both equal to 10 times the crack length. The 

mode mixity ratio MM, defined according to Eq. (6.4.9), has been varied from 

pure mode I (MM = 0) to pure mode III (MM = 1) loading conditions. 

The average FE size d to evaluate the peak stresses σyy,peak and τyz,peak (see Fig. 

6.4.4a) in Eqs. (6.4.10) and (6.4.12) was varied from 0.05 to 10 mm. All different 

geometrical and loading parameters taken into account in the present investigation 

are listed in Table 6.4.2. According to the PSM, FE analyses have been carried out 

by means of Ansys
®
 software and by adopting free mesh patterns consisting of 

two-dimensional, harmonic, 4-node linear quadrilateral elements (PLANE 25 of 

Ansys
®
 element library). The adopted finite element enables to analyse axis-

symmetric components subjected to external loads that can be expressed 

according to a Fourier series expansion. Therefore, it can be employed for 

modelling three-dimensional axis-symmetric components under axial, bending or 

torsional loadings, keeping the advantage of treating two-dimensional FE 

analyses. After setting the chosen d value as the ‘global element size’ in Ansys® 
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meshing environment, the free mesh generation algorithm was run and mesh 

patterns like that reported in Fig. 6.4.4b were obtained. Finally the nodal peak 

stresses σyy,peak and τyz,peak at the crack tip were taken. The exact mode I and mode 

III stress intensity factors, KI and KIII, to input in Eqs. (6.4.10) and (6.4.12), were 

evaluated by means of definitions (6.4.5) and (6.4.7) applied to the results of 

dedicated FE analyses with very refined FE meshes (the smallest adopted element 

size being on the order of 10
-5

 mm) in the close neighbourhood of the crack tip.  

 

Table 6.4.2: Geometrical and loading parameters taken into consideration in the present 

investigation. All combinations have been analysed, provided that the ratio a/d was greater than or 

equal to the minimum feasible one, i.e. a/d = 1.  

Parameter Values 

a [mm] 3, 4, 6, 8, 10, 15…45, 50 

d [mm] 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 10 

MM 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1 

R0 [mm] 0.28 

 

The obtained results are reported in Fig. 6.4.5, in terms of non-dimensional stress 

intensity factors K
*

FE and K
***

FE according to Eqs. (6.4.10) and (6.4.12), 

respectively. It should be noted that the results shown in Fig. 6.4.5 are valid for all 

considered mode mixity ratios MM, since mode I and mode III stress fields are 

always mutually independent. It can be observed that K
*

FE and K
***

FE converge to 

the values 1.38 and 1.93, respectively, inside a scatter-band of ±3%, in accordance 

with the results previously obtained for pure mode I [22] and pure mode III 

[43,103]. Convergence is assured when the ratio a/d is greater than 3 for both 

mode I and mode III contributions. While the minimum mesh density ratio a/d = 3 

(required to have K
*

FE  1.38) is in agreement with that obtained in previous 

contributions [43,84,104,105], it had been found a/d > 12 in order to have K
***

FE 

 1.93 in ref. [103]. Such difference in the case of mode III loading is justified 

because in the present contribution a is the crack depth, while in [103], dealing 

with the weld root side of tube-to-flange welded joints, a was the tube thickness. 
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Figure 6.4.5: Convergence of the PSM applied to cracks (2α = 0°) under out-of-plane mixed mode 

I+III loading (0  MM  1): (a) mode I and (b) mode III non-dimensional SIFs according to Eqs. 

(6.4.10) and (6.4.12). 
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Provided that the minimum mesh density requirements to apply Eqs. (6.4.10) and 

(6.4.12) are satisfied, substitution into Eq. (6.4.4) particularized for mixed mode 

I+III loading (KII = 0), immediately delivers the following expression: 
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        (6.4.13) 

which can be employed to rapidly estimate the averaged SED according to the 

PSM.  

A similar expression had been derived under in-plane mixed mode I+II loading 

(see Fig. 6.4.3 [84,104]).  
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            (6.4.14) 

Afterwards, Eq. (6.4.14) has been corrected to include the case of small cracks, 

i.e. cracks  that are small if compared to the control radius R0, or, alternatively 

stated, cracks where the stress fields within the control volume (A in Fig. 6.4.1a) 

are no longer governed solely by the leading order terms, but also by higher order 

terms and primarily the T-stress [105]. Similarly, Eq. (6.4.4) contains only the 

leading order terms. Therefore its range of applicability must be checked. 

 

6.4.3. Range of applicability of the SED expression (6.4.4)  

The range of applicability of Eq. (6.4.4), which Eq. (6.4.13) is based on, is 

analysed in the present section. In view of this, the same geometry described in 

the previous Section has been considered (see Fig. 6.4.1), but a new set of crack 

depths has been considered with respect to that reported in Table 6.4.2, a having 

being varied between 1 and 50 mm . The control radius R0 was varied between 

0.01 and 50 mm, provided that the ratio a/R0 was always greater than or equal to 

1. The averaged SED was first evaluated from Eq. (6.4.4), W̅AN, particularized for 

mixed mode I+III loading (KII = 0) and using the exact SIFs KI and KIII evaluated 

from very refined FE analyses according to Eqs. (6.4.5) and (6.4.7), respectively. 

Secondly, the exact averaged SED values were calculated using the direct 
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approach, W̅FEM, according to Eq. (6.4.8) (with about 500 finite elements inside 

the control volume). 

Figure 6.4.6 plots the ratio between analytical (W̅AN, Eq. (6.4.4)) and exact (

FEMW , direct approach Eq. (6.4.8)) averaged SED values for pure mode I (MM = 

0) and pure mode III (MM = 1) loading. The figure highlights that for a crack size 

equal to radius of the material dependent control volume (a/R0 = 1) the error in the 

averaged SED estimation is about -15% for pure mode I loading (MM = 0), while 

it increases to about +30% for pure mode III loading (MM = 1). These deviations 

are due to the contribution of higher-order, non-singular terms, which is 

disregarded in the analytical expression, Eq. (6.4.4). These effects can be better 

understood by analysing separately the local stress fields tied to mode I and mode 

III loading conditions. 

 

 

 

 

Figure 6.4.6: Out-of-plane mixed mode I+III crack problem: ratio between analytical and exact 

averaged SED values according to Eqs. (6.4.4) ( ANW ) and (6.4.8) ( FEMW ), respectively. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 10 100

W
A

N
/W

F
E

M
 

a/R0 

MM = 0

MM = 1
5%

5%

2 = 0° 
 

1 mm ≤ a ≤ 50 mm 
 

0.01 mm ≤ R0 ≤ 50 mm 

 



 

 

 
6 - Link between PSM and SED - Cracked bars under mixed mode I+III loading 

 

 

556 

 

According to Williams [56], the mode I local stress fields expressed in terms of 

Cartesian stress components as functions of the polar coordinates (r,θ), with origin 

at the crack tip (Fig. 6.4.1b), can be written in the following convenient form:  
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               (6.4.15) 

The constant term T is a slit-parallel tensile or compressive stress, named “T-

stress” by Larsson and Carlsson [61], and can be defined according to the 

following equation: 

    
0yy0xx

0r
limT




                  (6.4.16) 

where θ = 0 identifies the crack bisector line.  

In a recent contribution [105] dealing with centrally cracked infinite plates 

subjected to mixed I+II loading, it has been highlighted that the T-stress 

contribution must be included in the SED calculation when the crack size to 

control radius ratio a/R0 is reduced. In particular, it was observed that for a crack 

size equal to the control radius (a/R0 = 1) and pure mode I loading the error in the 

averaged SED estimation was about 70% if the T-stress contribution was 

neglected. However, it should be noted that in the present case the deviation 

between SED values is significantly lower (about 15% for a/R0 = 1). This is 

consistent with the much lower T-stress contribution to the averaged SED of the 

present case as compared to the previous one [105]. Indeed, for the centrally 

cracked infinite plates analysed in [105] the T-stress to nominal stress ratio 

(T/nom) is equal to -1 according to Radaj [62], while for the cylindrical bar 

weakened by a circumferential outer crack, with a/D = 0.10 according to Fig. 

6.4.1, Sherry et al. [106] reported the following approximate expression, based on 

numerical analyses: 
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5.0
T

nom




                   (6.4.17) 

The T-stress contribution being neglected, Eq. (6.4.4) underestimates the averaged 

SED as shown in Fig. 6.4.6. However, if only KI and T-stress contributions were 

taken into account to evaluate the averaged SED, an error would still exist. In fact, 

it should be noted that the stress components xx must be zero at the bar’s free 

edge due to equilibrium conditions. Conversely, if only KI and T-stress 

contributions  were considered in Eq. (6.4.15), xx evaluated at θ = π would  result 

constant and equal to T. Therefore, further higher order terms, O(r
1/2

) in Eq. 

(6.4.15), are needed to account for the free-edge boundary conditions. One might 

note that fortunately the stress component  xx evaluated at θ = π is not singular at 

the crack tip (being xx = T   -0.5·nom as r approaches zero) and it is zero at 

the bar’s free edge. Therefore, neglecting either the T- and the O(r
1/2

) stress 

contributions in Eq. (6.4.4) is of relatively little consequence in the averaged SED 

evaluation. This is not the case for mode III loading, as presented in the following.  

With reference to cracks under mode III loading conditions, the asymptotic, 

singular stress distributions have been determined by Qian and Hasebe [107], 

following Williams’ procedure [56]. The local stress field in terms of Cartesian 

stress components as functions of the polar coordinates (r,θ), with origin at the 

crack tip (Fig. 6.4.1b), is the following:  
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                (6.4.18) 

It should be noted that, in this case, the constant term T is zero [107], so that the 

discrepancy between analytical and exact averaged SED values under mode III 

loading shown in Fig. 6.4.6 should be ascribed to the contribution of higher-order, 

non-singular O(r
1/2

) terms in Eq. (6.4.18). The leading order term of the stress 

component xz is singular if evaluated at θ = π (the crack free surface (see Fig. 

6.4.1b)), the analytical expression being equal to 
r2

K III


 according to Eq. (6.4.18). 
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This means that the contribution 
r2

K III


 evaluated along the crack free surface is 

increasingly significant, the closer the crack tip approaches  the bar’s free edge; 

but the stress component xz must be zero at the bar’s free edge, due to 

equilibrium conditions. Therefore, such fictitious contribution brought by xz in 

Eq. (6.4.4) leads to an over-estimation of the averaged SED, as illustrated in Fig. 

6.4.6. Again, if  higher-order, non-singular terms, O(r
1/2

) in Eq. (6.4.18) were 

taken into account, the effect of the bar’s free edge on the xz distribution would 

be correctly accounted for and consequently the averaged SED would be correctly 

calculated.  

It should be reminded that recently the T-stress contribution to the averaged SED 

has been successfully included both in the analytical [36,70] and in the 

approximate [105] formulations; on the other hand averaged SED expressions 

which account for the contribution of further higher-order, non-singular terms, 

O(r
1/2

) in Eqs. (6.4.15) and (6.4.18), are not currently available in the literature.  

That said, it can be observed from Fig. 6.4.6 that the analytical SED, W̅AN (Eq. 

(6.4.4)), deviates from the exact value, W̅FEM (Eq. (6.4.8)), by less than 5% for a 

ratio a/R0 ≥ 10. Under this condition, the contribution of higher-order, non-

singular terms are believed to be negligible from an engineering point of view, so 

that Eq. (6.4.4) as well as its numerical implementation Eq. (6.4.13), are 

applicable. Therefore, cracks characterised by a/R0 >10 will be analysed in the 

following, in order to comply with the range of applicability of Eq. (6.4.4), 

according to results shown in Fig. 6.4.6. 

 

6.4.4. Validation of the peak stress method to estimate the averaged SED 

under mixed mode (I+III) loading 

To validate the peak stress approach based on Eq. (6.4.13), numerical analyses 

have been  performed by considering again the out-of-plane mixed mode I+III 

crack problem shown in Fig. 6.4.1. All considered geometrical and loading 

parameters are reported in Table 6.4.2. Exact values of the averaged SED, W̅FEM 

(Eq. (6.4.8)), have been evaluated by adopting the direct approach with very 
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refined meshes. Peak stresses were already available from the analyses described 

in previous Section 6.4.2 and presented in Fig. 6.4.5. 
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Figure 6.4.7: Out-of-plane mixed mode I+III crack problem: ratio between approximate 

(W̅PSM,I+III) and exact (W̅FEM) averaged SED versus the mesh density ratio (a/d). W̅PSM,I+III 

according to the peak stress approach, Eq. (6.4.13); W̅FEM according to the direct approach, Eq. 

(6.4.8). (a) MM = 0; (b) MM = 0.50 and (c) MM = 1.00.  

 

Figure 6.4.7 reports the ratio between approximate (W̅PSM,I+III, peak stress 

approach Eq. (6.4.13)) and exact (
FEMW , direct approach Eq. (6.4.8)) averaged 

SED values for selected mode mixity ratios MM. The ratio W̅PSM,I+III/W̅FEM is 

seen to converge to unity inside a ±10% scatter-band for all considered MMs. In 

particular, Fig. 6.4.7 shows that convergence occurs for a mesh density ratio a/d 

greater than 3 for all mode mixity ratios MM taken into account. The obtained 

results show that the minimum crack size to FE size ratio a/d to apply the peak 

stress approach (Eq. (6.4.13)) remains constant regardless of the mode mixity 

ratio MM. This differs from what was obtained in previous contributions 

[84,104,105] dealing with cracks subjected to in-plane mixed mode I+II loading, 

for which the minimum mesh density ratio a/d to apply the peak stress approach 

(Eq. (6.4.14)) increased with increasing the mode mixity ratio MM, since mode II 
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loading is more demanding in terms of mesh density ratio a/d than mode I 

loading. The minimum ratio a/d reported in Fig. 6.4.7 is in agreement with that 

obtained in previous Fig. 6.4.5.  

 

6.4.5. The peak stress approach coarsening the mesh further 

Figure 6.4.7 shows the ratio between the approximate averaged SED according to 

the PSM (W̅PSM,I+III, Eq. (6.4.13)) and the exact value according to the direct 

approach (W̅FEM, Eq. (6.4.8)) along with an error band of ±10% and suggests that 

the validity of peak stress approach (Eq. (6.4.13)) could be extended to coarser FE 

meshes (i.e. a/d < 3), by accepting a somewhat higher level of approximation. In 

particular, the maximum adoptable finite element size d could equal the crack size 

a, if the acceptable error was increased to approximately 20%. Letting a/d be 

equal to or greater than 1 removes any mesh density requirement, since a/d = 1 is 

the minimum feasible crack size to FE size ratio when generating the FE mesh, 

and might be useful in practical design situations. 

The above extension is made possible thanks to the flat convergence of the non-

dimensional SIFs expressions (6.4.10) and (6.4.12), as shown in Fig. 6.4.5. In 

previous contributions [84,105] dealing with cracks subjected to in-plane mixed 

mode I+II loading, it had also been possible to extend the validity of the mode I 

and mode II non-dimensional SIFs expressions to coarser FE meshes than those 

required for convergence of the PSM. However, in refs. [84,105] proper fitting 

functions had to be used due to the steeper convergence trends of K
*

FE and K
**

FE 

as compared to the trends shown in Fig. 6.4.5. 

 

6.4.6 Discussion 

The peak stress method (PSM) to estimate the strain energy density (SED) 

averaged in a structural control volume has been extended here to the case of out-

of-plane mixed-mode (I+III) crack tip fields of cylindrical bars with external 

circumferential cracks. Essentially, the PSM is a simplified, FE-oriented 

numerical technique to estimate rapidly the Stress Intensity Factors (SIFs) on the 

basis of the linear elastic, crack tip peak stresses calculated with coarse FE 
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meshes. By knowing the approximate SIFs values, the averaged SED can also be 

estimated. The following conclusions can be drawn: 

 

 Taking advantage of the closed-form expression of the averaged SED (Eq. 

(6.4.4)), the peak stress approach has been formalised according to Eq. 

(6.4.13). Crack size to control radius ratios equal to or greater than 10 have 

been analysed in order to comply with the condition of applicability of Eq. 

(6.4.4) to the analysed geometries. 

 The minimum mesh density ratio a/d to apply the peak stress approach 

(Eq. (6.4.13)) with a level of approximation equal to 10% is equal to 3, 

independent of the mode mixity. 

 The advantages of the peak stress approach to estimate the averaged SED 

can be singled out as follows: (i) the sole linear elastic peak stresses 

calculated at the crack tip from FE analyses are needed; because an FE 

node always exists at the stress singularity point, an FE analyst can easily 

pick up the design stresses in the post-processor environment of a 

commercial FE code; (ii) geometrical modelling the material dependent 

structural volume, inside which the SED is to be averaged, is no longer 

necessary; (iii) the adopted FE meshes are coarse, such that the maximum 

adoptable FE size could equal the crack size if the acceptable level of 

approximation was approximately 20%. 
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6.5 Link between the PSM and the averaged SED - example of 

practical application: fatigue strength assessment of tube-

to-flange steel welded joints under mode III loading 
(*)

 

 
Nomenclature 

cw  parameter which accounts the influence of the nominal load ratio 

d  mean size of a finite element 

e3  parameter for the determination of the strain energy density (SED) 

E  elastic modulus 

fw3  weight parameter of the peak stress 

k  inverse slope of the design scatter band 

K3   mode III notch stress intensity factor (NSIF) 

***

FEK   normalised K3 in the application of the peak stress method 

NA  reference number of cycles 

Nbt   number of cycles to break-through 

Nf  number of cycles to failure 

R  load ratio (ratio between the minimum and the maximum applied 

load in a fatigue test) 

R0  radius of the structural volume where local stresses are averaged 

r,  polar coordinates 

T  scatter index of the design scatter band 

t  thickness of the welded tube 

W   strain energy density averaged over the control volume 

 

Symbols 

2  notch opening angle 

  range of the considered quantity

3  mode III eigenvalue in Qian-Hasebe equation 

                 Poisson's ratio 



 

 

 
6 - Link between PSM and SED - Fatigue strength assessment of tube-to-flange welded joints 

 

 

 

564 

 

A,50% fatigue strength at the reference number of cycles for a probability 

of survival equal to 50%  

eq,peak linear elastic equivalent peak stress evaluated at a V-notch tip (the 

weld toe or the weld root) 

nom  nominal stress relevant to torsion loading 

z,=0,peak linear elastic maximum principal stress evaluated at a V-notch tip 

(the weld toe or the weld root) by the finite element method using 

the mesh according to the PSM 

zrz   normal and shear stress components in the polar frame of reference 

 

 

(*) See also: 

 

Meneghetti, G.; De Marchi, A.; Campagnolo, A. Fatigue strength assessment of tube-to-flange 

welded joints under torsion loading according to the peak stress method. Theoretical and Applied 

Fracture Mechanics (under review); 
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6.5.1. Introduction: theoretical background 

In the fatigue design of welded joints according to the local approach based on the 

notch stress intensity factors (NSIFs), the weld toe and the weld root profiles are 

assumed as sharp V-notches, having a notch tip radius  = 0 and notch opening 

angle greater than zero (typically 135°) and equal to zero, respectively, as 

depicted in Fig. 6.5.1 [27,88,89,108].  

 

 

Figure 6.5.1: Assumptions of the NSIF-based approach in the fatigue design of welded joints. 

Geometrical model of a tube-to-flange fillet-welded joint. The sharp V-notch opening angle 2 is 

typically 0° at the weld root and 135° at the weld toe. 

 

The assumption of notch tip radius equal to zero either at the weld toe and at the 

weld root is consistent with the reduced radii made by conventional arc-welding 

technologies and with the hypothesis of un-machined welds; moreover, the 

assumption represents also a worst case condition. Under these assumptions, the 

local, linear elastic stress fields in the vicinity of the notch tip can be expressed as 

functions of the relevant NSIFs, which quantify the magnitude of the asymptotic 

singular stress distributions. NSIFs are used to correlate the medium and the high 
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cycle fatigue strength of sharp V-notches [25,26,109], because they play the same 

role that stress intensity factors (SIFs) do at crack-like notches [110–112]. Since 

NSIFs are local stress parameters, they are by nature prone to estimate fatigue life 

including initiation and short crack propagation inside the (small) material volume 

where stresses are governed by the NSIFs. In other words, fatigue life up to a 

technical crack initiation is estimated by the NSIF approach. Nevertheless, there is 

sufficient experimental evidence that NSIFs do correlate the total fatigue life of 

small size laboratory specimens, and in particular of welded joints. This is due to 

the large amount of the total fatigue life which is spent for nucleation and short 

crack propagation in a region close to the notch tip governed by stress singularity.  

Let us consider the NSIF approach to a typical welded joint geometry under 

torsion loading, as depicted in Figure 6.5.2. While the figure illustrates the 

stresses only at the toe side, anti-plane shear stresses tied to mode III act also at 

the root. The asymptotic, singular stress distributions ahead of sharp V-notches 

under mode III loading have been determined by Qian and Hasebe [107], similarly 

to Williams [31], who instead derived the mode I and mode II local stress fields 

along with their degree of singularity dealing with plane problems. The local 

stress distributions for mode III loading referred to a polar reference system (r,) 

centred at the V-notch tip are the following (see Fig. 6.5.2): 
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        (6.5.1) 

The mode III NSIF, K3, quantifies the magnitude of the local stress fields and it 

can be defined by extending the definitions of mode I and II NSIFs previously 

proposed by Gross and Mendelson [30]:  

                   rτlimπ2K 3λ1

0θ,zθ
0r

3






                    (6.5.2) 

where 3 is the stress singularity exponent [107], which depends on the notch 

opening angle 2γπαaccording to Eq. (6.5.3)  
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2

3



          (6.5.3) 

while the out-of-plane shearstress component z is calculated along the notch 

bisector line, defined by the angular coordinate =0.  

 

 

 

Figure 6.5.2: Polar reference system centred at the weld toe of a typical tube-to-flange welded 

joint geometry subjected to torsional loading. 

 

When mode III NSIFs are adopted to assess the fatigue strength, their direct 

comparability is not possible if notches having different opening angles 2 are 

taken into consideration, since the exponent appearing in Eq. (6.5.2) changes the 

NSIF units. To restore comparability, Lazzarin and co-workers [23,29,85] 

suggested the use of the strain energy density (SED) averaged over a structural 

volume surrounding the V-notch tip . The idea is reminiscent of the stress 

averaging to perform inside a material dependent structural volume, according to 

the approach proposed by Neuber [100]. Lazzarin et al. [23,29,85] assumed a 

circular shape of the structural volume having radius R0 as shown in Fig. 6.5.1 

and provided the closed-form expression of the averaged SED parameter as a 
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function of the relevant NSIFs. Under pure torsion loading, the strain energy 

density averaged over the control volume can be expressed as follows [102]: 

2

λ1

0

33

3R

KΔ

E

e
WΔ 











         (6.5.4) 

In the previous expression, E is the modulus of elasticity, e3 is a known parameter 

which depends on the notch opening angle 2and the Poisson’s ratio , and K3 

is the range of the mode III NSIF (maximum value minus minimum value). Table 

6.5.1 reports the values of 3 and e3 for a range of the notch opening angles 2 

and with reference to a Poisson’s ratio = 0.3 [102].  

 
Table 6.5.1: Values of parameter fw3 according to Eq. (6.5.10). 

 

2(deg) 3 
(a)

 e3 
(a)

 fw3,d=0.5mm
(b)

 fw3,d=1mm
(b)

 

0 0.500 0.414 2.460 3.478 

90 0.667 0.310 1.934 2.436 

120 0.750 0.276 1.737 2.066 

135 0.800 0.259 1.634 1.877 
(a)

: values from a previous contribution [102] 
(b)

: values calculated with R0 = 0.28 mm,= 0.3, ***

FEK =1.93 

 

Dealing with welded joints, the control radius R0 was calibrated on experimental 

results by equalling the high cycle averaged SED (typically at 2 million cycles) of 

butt-welded laboratory specimens with weld caps ground flush and of fillet-

welded specimens manufactured with conventional arc-welding processes, tested 

in the as-welded conditions and subjected to uniaxial fatigue loading with nominal 

load ratio close to zero. For welded construction steels a radius R0 = 0.28 mm was 

obtained [29,85]. 

Equation (6.5.4) is valid in the case of a nominal load ratio equal to zero (R = 0); 

in the case of nominal load ratios different from zero, the expression of the 

averaged SED must be corrected as follows:  
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       (6.5.5) 

where the coefficient cw depends on the nominal load ratio R according to the 

following expression [53]: 
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As an example, the parameter cw equals 0.5 for R = 1. In fatigue design of stress-

relieved welded joints, Eq. (6.5.5) should be used, because the influence of mean 

stresses must be taken into account, according to Design Standards [86,113]. 

However, when  as-welded joints are concerned, Eq. (6.5.4) should be used, the 

influence of the load ratio being negligible in this case. 

Evaluating the NSIF to input in Eqs. (6.5.4) and (6.5.5) presents a major 

drawback, because very refined FE meshes are needed in order to evaluate the 

NSIF using definition (6.5.2). In the case of three-dimensional components, the 

FE analyses and the post-processing of the numerical results become even more 

time-consuming. Alternatively, the averaged SED can be directly estimated using 

FE analyses, where Lazzarin and co-workers showed that coarse meshes can be 

used inside the control volume having radius R0 [37]. Keeping or even enhancing 

the coarse mesh option in FE analyses,  the Peak Stress Method (PSM) allows to 

rapidly evaluate the mode III NSIF to input in Eq. (6.5.4) or (6.5.5) avoiding to 

model the control volume. Moreover, the PSM requires only the singular, linear 

elastic peak stress evaluated at the V-notch tip, instead of a number of stress-

distance FE results, as application of definition (6.5.2) would require. 

Therefore the plan of the present investigation is as follows:  

 

 to introduce  the Peak Stress Method for pure mode III loading and present 

an existing fatigue design curve valid for torsional fatigue of arc-welded 

steel joints with toe and root failure; 
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 to present new experimental fatigue test results relevant to tube-to-flange 

fillet-welded steel joints under torsional loading with weld root failures; 

 to assess the fatigue strength using the peak stress method. 

 

6.5.2. Peak Stress Method for mode III loading 

The PSM was inspired by a numerical procedure proposed by Nisitani and 

Teranishi [41,42] to rapidly evaluate by FEM the SIF of a crack emanating from 

an ellipsoidal cavity. Following the track adopted to formalise the Peak Stress 

Method (PSM) in the case of mode I [43] and mode II [44] loading conditions, in 

a previous contribution [103] a link has been established between the exact value 

of mode III NSIF K3, see Eq. (6.5.2), and the singular, linear elastic, anti-plane 

shear stress evaluated by FEM in the plane of the V-notch bisector at the notch 

tip, τθz,θ=0,peak, according to the following expression: 

93.1
dτ

K
K

3λ1

peak,0θ,zθ

3***

FE 







        (6.5.7) 

where d is the so-called ‘global element size’ parameter to input in Ansys® FE 

code, i.e. the average FE size adopted by the free mesh generation algorithm 

available in the software. It should be noted that the ‘exact’ K3 value in Eq. (6.5.7) 

must be meant as the value obtained from definition (6.5.2) applied to the stress-

distance numerical results calculated from very refined FE mesh patterns (the size 

of the smallest element close to the V-notch tip is often in the order of 10
-5

 mm). 

Equation (6.5.7) was calibrated in Ref. [103] by considering the weld toe as well 

as the weld root side of a number of joint geometries taken from the technical 

literature [114–121], consisting of tube-to-flange specimens, which were arc-

welded with full-penetration or fillet-welds.  

The average value of 1.93 provided by Eq. (6.5.7) has been obtained under the 

following conditions [103]: 

 use of two-dimensional, harmonic, four-node linear quadrilateral 

elements, as implemented in ANSYS
®
 numerical code (PLANE 25 of 

Ansys® element library) or three-dimensional, eight-node brick elements 
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(SOLID 45 of Ansys® element library or equivalently SOLID 185 with 

K-option 2 set to 3); 

 the FE mesh pattern close to the weld toe must be that reported in Fig. 

6.5.3 (see also [103]), where two elements share the node at the weld toe 

(2 135°), while four elements share the node at the weld root (2= 

0°), as shown in next Fig. 6.5.10. It is worth recognizing that the mesh 

patterns according to the PSM, like that reported in Fig. 6.5.3 and in next 

Fig. 6.5.10, are automatically generated by the free mesh generation 

algorithm available in Ansys®, so that only the ‘global element size’ 

parameter d must be input by the FE analyst. There are not additional 

parameters or special settings to input in order to generate the mesh. 

 V-notches characterised by an opening angle 2 equal to 0° (typical for 

the weld root side) or 135° (typical for the weld toe side); as an example, 

Figure 6.5.3 shows the 135°-V-notch at the toe side of a full penetration 

welded joint; 

 the mesh density ratio a/d must be equal to or greater than 3 at the weld 

toe (where 2 135°) and 12 at the root side (where 2= 0°) in order to 

obtain ***

FEK 1.93 ± 3%: when assessing the root side, a is the minimum 

value between the crack length (crack is due to the lack of penetration) 

and the ligament length [48], while a represents the tube thickness t when 

the toe side is considered. As an example, for the full-penetration joint 

shown in Fig. 6.5.3, the mesh density ratio t/d = 10/2.5   4 satisfies the 

condition of applicability at the toe side. For the fillet-welded joint 

shown in next Fig. 6.5.10, the minimum between the crack length (t) and 

the ligament length (z) is z, therefore the mesh density ratio z/d = 9/0.7  

12 is appropriate to apply Eq. (6.5.7) either at the root and at the toe side.  

Equation (6.5.7) is useful for a design engineer to rapidly estimate the NSIF K3 

using the FE nodal peak stress τθz,θ=0,peak. It should be noted that Eq. (6.5.7) should 

be recalibrated in the case of FE meshes consisting of higher-order elements or 

characterized by significantly different mesh patterns as compared to the reference 

ones reported in Figs. 6.5.3 and 6.5.10. 
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Figure 6.5.3: Typical 2D FE mesh adopted in [103] to apply the PSM according to Eq. (9); the 

example reported in the figure shows a full penetration tube-to-flange welded joint [114]. The 

four-node, quadrilateral, harmonic PLANE 25 elements available in Ansys Element Library were 

adopted to generate the free mesh shown in the figure. The Y-axis coincides with the axis of the 

tube. 
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6.5.3. Defining a SED-based design stress using the PSM 

Taking advantage of the PSM (Eq. (6.5.7)), the averaged SED, Eq. (6.5.5), can be 

rewritten as a function of the linear elastic anti-plane peak stress τθz,θ=0,peak. Then, 

by using the equality   E2/1W 2

peak,eq

2   valid under plane strain conditions, 

an equivalent peak stress, eq,peak, can be defined as follows [103]: 

2

peak,eq

2

2

0

peak,0,z

***

FE
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w
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e
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3λ1
































     (6.5.8) 

After all, the following expression is obtained: 

peak,0θ,zθ3wwpeak,eq τΔfcσΔ          (6.5.9) 

The correction coefficient fw3 weights the linear elastic anti-plane peak stress both 

around the notch tip (θ coordinate in Fig. 6.5.2) and along the radial direction (r 

coordinate in Fig. 6.5.2). The parameter fw3 is given by: 

3λ1
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2

3***

FE3w
R

d

ν1

e2
Kf














                  (6.5.10) 

Values of fw3 according to Eq. (6.5.10) are listed in Table 6.5.1, considering two 

values of the average finite element size d, namely d = 0.50 mm and 1 mm, 

different notch opening angles 2 and the value R0 = 0.28 mm [29,85]. In the case 

of as-welded joints tested at any load ratio, Eq. (6.5.9) simplifies to [53]: 

peak,0θ,zθ3wpeak,eq τΔfσΔ                   (6.5.11) 

being the correction factor cw equal to 1. It should be noted that while both the 

parameter fw3 and the peak stress depend on the employed FE size d, the 

equivalent peak stress, defined by Eqs. (6.5.9) and (6.5.11), does not. 

It has been demonstrated that the equivalent peak stress, according to Eqs. (6.5.9) 

or (6.5.11), can be used to correlate the fatigue strength of tube-to-flange 

structural steel welded joints subjected to torsional loading. Figure 6.5.4 reports a 
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previous synthesis [103] of about 50 experimental data taken from the literature 

[114–118,120] relevant to full penetration or fillet-welded tube-to-flange 

structural steel specimens with un-machined welds, tested in the stress-relieved 

condition under a nominal load ratio equal to -1. Weld toe as well as weld root 

failures were reported in the original papers.  

 

 

 

Figure 6.5.4: Correlation of experimental data relevant to weld toe and weld root failures 

according to the peak stress method (from [103]). Experimental data generated from full 

penetration or fillet-welded tube-to-flange structural steel specimens tested in the stress-relieved 

condition under a nominal load ratio equal to -1 [114–118,120].  

 

The tube thickness ranged from 7.7 to 10 mm while the employed structural steels 

had a yield stress varying between 240 and 552 MPa. The reader is referred to 

Ref. [103] for additional details about materials, joint geometries and testing 

conditions. The scatter band reported in Fig. 6.5.4 has been calibrated on the 

experimental results [114–117,120] relevant only from weld toe failures (2α ≅ 

135°).  It is noteworthy that a variety of experimental fatigue test results generated 

from joint geometries involving either toe and root cracking is included in the 
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same scatter band with good accuracy. It should also be noted that the scatter 

index of the 10% and 90% survival probability curves plotted in Figure 6.5.4 

equals T= 1.50, which is typical of single test series [122]. In the present 

investigation new experimental results have been generated by testing tube-to-

flange structural steel welded joints under torsional fatigue loading and results 

have been analysed according to the PSM. 

 

6.5.4. Torsional fatigue tests on tube-to-flange steel welded joints 

Torsional fatigue tests have been performed on tube-to-flange fillet-welded 

specimens in structural steel. Table 6.5.2 provides details of the material, welding 

process and testing conditions. All main geometrical parameters of the joints are 

reported in Fig. 6.5.5a, while a specimen after manufacturing is shown in Fig. 

6.5.5b. Table 6.5.2 shows that most specimens were stress-relieved prior to testing 

by means of a post-welding heat treatment (600 °C for 2 to 4 hours followed by a 

slow cooling down to 300÷350 °C), while few ones were tested in the as-welded 

conditions.  
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Figure 6.5.5: (a) Geometry and nominal dimensions of tube-to-flange structural steel welded 

joints used in the experimental tests under torsion loading. The specimens were arc-welded with 

fillet-welds. (b) An example of tube-to-flange specimen. 
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Figure 6.5.6: (a) Test rig for pure torsion fatigue loading. (b) Pneumatic system used to monitor 

the number of cycles to break through. (c) A detail of the connecting rod between the servo-

hydraulic actuator and the lever arm. 

 

Table 6.5.2: Material, welding process and testing conditions. 

Material Yield strength 

[MPa] 

Ultimate 

strength [MPa] 

Welding 

process 

Testing condition 

S355JR 355 510 MIG Stress-relieved 
(a)

 

As-welded 
(b)

 

(a): 16 specimens 
(b): 4 specimens 

 

Figure 6.5.6 illustrates the test rig. One specimen’s flange is bolted to a vertical 

support, as shown in Figs. 6.5.6a,b, the other one being bolted to a lever arm, that 

is loaded at its extremities by means of two servo-hydraulic actuators, 

respectively, equipped with 10 kN load cells (see Fig. 6.5.6a). The flange has a 

threaded central hole, where a tube delivering pressurized air at 0.8 MPa is 

connected.   

(c) 

connecting rod 

load cell 
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Since the backing plate of each actuator is fixed to the ground and in order to 

allow for the arc-shaped trajectory of the lever arm extremities caused by the 

torsional rotation, a connecting rod was employed between each servo-hydraulic 

cylinder and the lever arm, as reported in Fig. 6.5.6c. 

 

 

 

Figure 6.5.7: Force system applied to the tube-to-flange joints (see Eq. (6.5.12)). 

 

Pure torsion was applied by running the hydraulic cylinders with equal in 

magnitude and opposite forces (see Fig. 6.5.7). By doing so, the resulting torsion 

moment is as follows:  

    btFtM t                               (6.5.12) 

where b is the moment arm of force couple shown in Fig. 6.5.7, while F is the 

load exerted by each actuator. Given the torque, the torsion shear stress in the tube 

can be expressed as: 

F F 
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being the section modulus Wt defined as: 
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                  (6.5.14) 

where de is the tube outer diameter and t is the tube thickness, as reported in Fig. 

6.5.5a. Before starting the experimental campaign, the applied shear stress and the 

absence of undesired bending loadings in the tested specimens have been 

successfully verified by using a strain rosette fixed on the tube of a specimen, 

consisting of three strain gauges oriented at -45°, 0° and 45°, respectively.  

Tests were carried out at constant amplitude under pulsating (R = 0) or completely 

reversed (R = -1) torsion fatigue loadings. All fatigue tests were run under closed-

loop load control by using a MTS Flex Test GT60 digital controller in standard 

laboratory environment.  

In order to determine the number of cycles to break-through, the specimen’s 

flange at the lever arm side was connected to a pneumatic circuit operating at 

about 0.8 MPa, see Figs. 6.5.6a,b. A sudden pressure drop in the tube occurred 

when root cracks became through the thickness. The number of cycles to break-

through (Nbt) was determined from the known load test frequency and from the 

time elapsed from the beginning of the test, which was provided by an hour meter 

equipped with a digital input to trigger the stoppage of time counting as soon as a 

pressure drop of 0.4 MPa was detected by the pressure switch (see Fig. 6.5.6b). 

The number of cycles to break-through was assumed as failure criterion according 

to [114–116,121]. Eventually tests were interrupted at the complete stiffness loss 

or at 2∙10
6
 cycles (runouts), if no failure was detected. 

After each fatigue test, the real geometry of the tube-to-flange welded joints has 

been carefully checked. In particular the actual weld leg length has been measured 

and it ranged between 8.50 and 9.50 mm. 

Table 6.5.3 reports the crack initiation location for all different series of tested 

specimens. In the as-welded joints, fatigue crack initiation always occurred at the 
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weld root, as shown in the examples reported in Figs. 6.5.8a-c. As to the stress-

relieved joints, the critical point remained the weld root in most cases (see Fig. 

6.5.8d); however, some specimens failed in the tube, as shown in Figs. 6.5.8e,f. In 

one case fatigue crack initiation occurred at the weld toe.  

 

Table 6.5.3: Fatigue test details. 

 

Load 

ratio R 

Tube 

thickness 

[mm] 

Failure 

criterion 

N of fatigue test 

results 

Failure 

location 

Range of 

cycles 

-1 10 Through 

crack 

14 stress-relieved 

 

 

 

3 as-welded 

10 weld root 

1 weld toe 

3 tube 

 

weld root 

 

6∙10
3
 ÷ 2∙10

6
 

0 10 Through 

crack 

2 stress-relieved 

1 as-welded 

weld root 6∙10
5
 ÷ 2∙10

6
 

 

 

 
 

(a) 
(b) 
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Figure 6.5.8: Examples of failures under pure torsion fatigue loading; weld root failures of as-

welded joints: (a) and (b) obtained with R = 0, Δτnom = 190 MPa (Nbt = 697815, Nf = 1135497), (c) 

obtained with R = -1, Δτnom = 300 MPa (Nbt = 45246, Nf = 46858); (d) weld root failure of a stress 

relieved joint (R = -1, Δτnom = 300 MPa, Nbt = 125226, Nf = 133448); (e) and (f) failure in the tube 

of a stress relieved joint (R = -1, Δτnom = 350 MPa, Nbt = 32519, Nf = 32616). 

 

 

6.5.5. Fatigue test results in terms of nominal stress 

Figure 6.5.9 reports the number of cycles as a function of the applied nominal 

shear stress range (defined as maximum value minus minimum value) in the tube 

evaluated using Eq. (6.5.14), for all performed fatigue tests. For each tested 

specimen the figure reports the number of cycles to break-through (Nbt), 

determined on the basis of the air pressure drop, and the number of cycles to 

failure (Nf), based on the complete stiffness loss . It should be noted that the ratio 

between the number of cycles to break-through and the total fatigue life, Nbt/Nf, of 

each tested specimen is between 60 and 99%, with the great majority of 

experimental data characterized by a ratio greater than 90%.  

(c) (d) 

(e) (f) 
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Figure 6.5.9: Experimental results of pure torsion fatigue tests; the nominal shear stress range 

evaluated in the tube (Eq. (6.5.13)). Open markers refer to the fatigue life Nbt to break through (air 

pressure drop inside the tube), while filled markers refer to the total fatigue life Nf (complete 

stiffness loss).  

 

On the basis of Fig. 6.5.9, a reduced influence of the post-welding heat treatment 

on the fatigue strength was observed. According to the available data, the 

experimental results for as-welded and stress-relieved joints seem to fall in the 

same scatter. As far as stress-relieved joints are concerned, the specimen tested at 

Δτnom = 200 MPa under R = 0 exhibited a fatigue life of Nbt = 1.87∙10
6
 cycles, 

which seems to indicate a certain reduction in the fatigue strength if compared to 

stress-relieved specimens tested at R = -1. 

 

6.5.6. Analysis of experimental data using the equivalent peak stress 

To calculate the equivalent peak stress, Eq. (6.5.9) was adopted for stress-relieved 

joints (cw = 1 for R = 0, and cw = 0.5 for R = -1), while Eq. (6.5.11) was adopted 

for as-welded joints. Figure 6.5.5 reports the joint geometry, while Fig. 6.5.10 

60

600

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Δ
τ n

o
m

 (
M

P
a)

 

Number of cycles  

Stress relieved, R = -1

Stress relieved, R = 0

As welded, R = -1

As welded, R = 0 Un-broken specimens  

T   Failure in the tube 

*    Failure at the weld toe 

*

   

T

   

T

   
T

   
360 

240 

120 



 

                                                       
 

6 - Link between PSM and SED - Fatigue strength assessment of tube-to-flange welded joints  

 

 

583 

 

shows the two-dimensional, axis-symmetric FE model employed to calculate the 

singular, linear elastic, shear peak stress z,=0,peak either at the weld root and at 

the weld toe. The mesh density ratio a/d was chosen to comply with the most 

demanding condition of applicability of the PSM presented in a previous section, 

i.e. the ratio between the ligament length z and average FE size d must be equal to 

or greater than 12: therefore the mesh density ratio z/d = 9/0.7   12.8 shown in 

Fig. 6.5.10 is adequate to apply the PSM either at the root and at the toe side.  On 

the basis of the joint’s geometry reported in Fig. 6.5.8, the weld toe reinforcement 

angle was assumed 45°, which corresponds to a V-notch opening angle 2 = 135°. 

Furthermore, all welded joints being tested in the un-machined conditions, the 

worst case ρ = 0 has been taken into consideration in the numerical analyses, so 

that the weld toe and the weld root have been modelled as a sharp open V-notch 

and a crack, respectively. The average value of the measured weld leg lengths, 

namely z = 9 mm (see Fig. 6.5.5a), has been adopted in the FE model. 

A free mesh pattern of quadrilateral four-node harmonic elements PLANE 25 of 

the Ansys® element library having a ‘global element size’ equal to d was 

authomatically generated by the software. The adopted PLANE 25 finite element 

allows to analyse axis-symmetric components subjected to non axis-symmetric 

external loads, but expressible as a Fourier series expansion. Therefore, it can be 

employed for modelling three-dimensional axis-symmetric components under 

bending or torsion loads, keeping the advantage of treating two-dimensional FE 

analyses, as shown in Fig. 6.5.10. 
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Figure 6.5.10: 2D FE mesh adopted to calculate the equivalent peak stress (Eq. (6.5.9)) at the toe 

and root sides of tube to flange fillet-welded joints. The four-node, quadrilateral, harmonic 

PLANE 25 elements of the Ansys® element library were adopted to generate the free mesh shown 

in the figure. The Y-axis coincides with the axis of the tube. 
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After having analysed the welded joint geometry according to the PSM, the 

experimental fatigue data expressed in terms of range of nominal shear stress 

could be converted in terms of range of the linear elastic equivalent peak stress 

calculated at the crack initiation site. It should be noted that the ratio between the 

equivalent peak stress (Eq. (6.5.11)) and the nominal shear stress (Eq. (6.5.13)), 

σeq,peak/τnom, results 2.96 at the weld toe and 2.55 at weld root. Therefore, 

according to the PSM, the weld toe is somehow more critical than the weld root, 

being the equivalent peak stress 16% higher. Nevertheless, cracks initiated more 

frequently in the root than at the toe. According to a previous investigation [44], it 

has been verified that reduced differences of the equivalent peak stress (on the 

order of ±20%) can hardly anticipate the cracking location. Conversely, much 

more successfully predictions of the crack initiation location have been performed 

when more pronouced differences are calculated [44,48]. Additional difficulties in 

estimating the crack initiation location, when multiple sites are in competition in 

the same joints, arise in presence of highly non-uniform residual stress fields, 

which the equivalent peak stress does not account for [48]. 

The experimental fatigue results are reported in Fig. 6.5.11 and compared with the 

design scatter band, calibrated in a previous contribution [103] and presented 

previously in Fig. 6.5.4. Figure 6.5.11 highlights a good agreement between 

theoretical estimations and the experimental results, where it should be recalled 

that the design fatigue curves shown in the figure have been calibrated on 

experimental data relevant to weld toe failures only. Few tests have also been 

conducted on as-welded specimens under completely reversed torsion. The 

relevant results are also reported in Fig. 6.5.11 and seem to indicate a slight 

increase of the fatigue strength. A similar behaviour has been noted by Young and 

Lawrence [119], who measured high compressive residual stresses close to the 

weld both in the longitudinal and in the circumferential directions. 
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Figure 6.5.11: Fatigue assessment of root failures in tube-to-flange structural steel welded joints 

under torsional loading according to the PSM. The design scatter band was calibrated in Ref. [103] 

considering only weld toe failures. 

 

6.5.7. Discussion 

The peak stress method (PSM) has been applied to assess weld root failures in 

tube-to-flange structural steel welded joints tested under torsional loading. The 

method is based on the notch stress intensity factors, which assumes a sharp V-

notch existing at the weld toe and a pre-crack at the weld root. The design stress 

(the so-called equivalent peak stress) is the singular, linear elastic, anti-plane shear 

stress evaluated at toe and at the root tip by using automatically generated FE 

meshes, multiplied by a known coefficient dependent primarily on the V-notch 

opening angle. Physically, the equivalent peak stress expresses a strain energy 

density averaged inside a structural volume surrounding the V-notch tip. When 

multiple crack initiation sites are in competition in the same joint, comparison 

among the equivalent peak stresses allows to single out the most critical one, out 
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of a range of sensitivity which can be estimated as 20%. The effect of non-

uniform residual stresses distributed among the competing failure locations 

complicates the scenario, reducing the significance of the comparison among the 

equivalent peak stresses, which, in turn, take into account only the notch effect. 

Most of the tested joints were tested in the stress-relieved conditions under 

completely reversed torsion. A design scatter band previously calibrated on 

experimental fatigue test results including only weld toe failures, has been 

satisfactorily applied here to correlate weld root failures.  
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Conclusions 

 

In this PhD thesis, some of the most important and widely employed local 

approaches have been adopted in fracture and fatigue problems of notched and 

cracked structural components, with particular attention to eventual three-

dimensional effects. The considered local approaches have also been compared 

with other fundamental criteria proposed in the literature and the link between 

different methods have been investigated. 

Dealing with brittle fracture under mixed mode static loading, it has been 

highlighted that the strain energy density (SED) approach allowed to assess the 

static critical loads with excellent accuracy also in the case of complex loading 

conditions. 

With regard to multiaxial fatigue, the SED approach allowed to assess the 

fatigue strength of severely notched titanium grade 5 alloy, Ti-6Al-4V, under 

combined tension and torsion loading, both in-phase and out-of-phase. In 

particular, a single narrow scatter band including all experimental data regardless 

of the nominal load ratio and the phase angle has been proposed for the multiaxial 

fatigue design of titanium notched components. Then, the SED criterion has been 

applied for the multiaxial fatigue strength assessment of steel welded rollers 

produced by Rulmeca S.p.a. It has been shown that the scatter band proposed in 

the literature for structural welded steels can be satisfactorily applied also to the 

fatigue strength assessment of the considered rollers. Finally, some observations 

about the phase angle effect on sharp V-notched components under multiaxial 

fatigue, which have been drawn on the basis of a new proposed analytical frame, 

have been qualitatively compared also with experimental results. 

Dealing with 3D effects in notched and cracked components, it has been 

highlighted that the SED parameter is able to quantify the 3D effects in 

comparison with the sensitivity of the specific material so providing precious 

information for the fracture assessment. Then, dealing with notched components 

under cyclic plasticity conditions, it has been demonstrate that 3D effects related 

to the presence of a finite thickness in a notched component cannot be neglected a 
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priori either in linear-elastic problems or in the presence of a yielded region ahead 

of the notch tip. Moreover, it has been shown that the plastic strain hysteretic 

energy, considered in the literature to be a parameter linked to the fatigue damage, 

can be directly determined by means of the averaged SED, obtained from a static 

FE analysis, via a multiplicative factor. 

Then, dealing with the comparison between the SED approach and that based 

on the Finite Fracture Mechanics, it has been shown that for all considered criteria 

the same proportionality relation exists between the critical value of the notch 

stress intensity factor (NSIF) and two mechanical properties of the material: the 

fracture toughness and the ultimate tensile strength. Moreover, a new expression 

for estimating the control radius under pure Mode II loading has been proposed 

and discussed in comparison with that valid for pure Mode I. The experimental 

comparison has shown that the agreement between the theoretical estimates and 

the experimental values of the critical value of the NSIF is very good in all cases. 

Finally, a link between the SED approach and the Peak Stress Method (PSM) 

has been investigated. Cracks under in-plane mixed mode I+II and out-of-plane 

mixed mode I+III loading have been considered. A method to rapidly evaluate the 

averaged SED based on the peak stresses at the crack tip has been proposed. On 

the basis of the derived link, some practical applications related to the fatigue 

strength assessment of aluminium and steel butt welded joints and of tube-to-

flange steel welded joints have been successfully carried out. 

In conclusion, the effectiveness and potentialities of the considered local 

approaches, and in particular of the SED approach, in the fracture and fatigue 

assessment of structural components characterized by different geometries and 

subjected to complex loading conditions have been proved both theoretically and 

experimentally. 
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