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Summary 

 

 

The decrease of sleep quality highly compromises the physical and mental 
well-being of the human body and is a common disorder affecting a large seg-
ment of world’s population. The quality of nocturnal sleep is determined by its 
internal structure, i.e. the pattern through different physiological conditions of 
the body during the night. This structure, called ‘sleep architecture’, can be 
expressed by different stages (awake, stage 1 and 2 of light sleep, slow-wave 
sleep and REM sleep) and the transitions between them during nighttime, and 
can be modified through drugs for insomnia treatment. The sequence of sleep 
stages, objectively assessed every 30 seconds through polysomnography 
(PSG), constitute the so-called ‘PSG signal’ and can be seen as a finite succes-
sion of categorical, nominal (i.e., non-ordered) data. 

In the context of modeling of drug effects (pharmacodynamic, PD) and 
correlations between drug exposure (pharmacokinetics, PK) and drug effect, 
the analysis of categorical nominal polychotomous data has been explored on-
ly recently. The interest on the subject has strongly grown, also because many 
other pharmacodynamic data provided by clinical studies during drug devel-
opment share the same characteristics. PK-PD modelling of categorical data 
requires specific methodologies. When dealing with nominal polychotomous 
data, the most interesting approach is the use of mixed-effect non-
homogeneous Markov-chain models, whose parameters are related to the evo-
lution of the probabilities of transitioning between different states of the chain 
for increasing values of the independent variable. Despite their relevance, 
such models present many aspects which have only been partially investi-
gated in the literature so far. 

This thesis is dedicated to the introduction of multinomial logistic func-
tions as link functions for describing transition probabilities in the Markov-
chains with more than two states. Binary logistic functions have previously 
been used, instead. A new model for sleep architecture is therefore imple-
mented and evaluated, using PSG placebo data obtained from a clinical study 
in patients affected by primary insomnia. Parameter estimation is accom-
plished through maximization of Laplace-approximated likelihood, using 
NONMEM VI. Model evaluation is performed through standard techniques, like 
inspection of goodness-of-fit plots, bootstrap and simplified posterior predic-
tive check. 

Later on in the thesis, the new multinomial Markov-chain model is further 
developed by combining the strengths of other existing models, and by adding 
additional components. The major investigated features are the predictors of 
the multinomial logits, the model parameterization, the relevance of the vari-
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ous stages and transitions, and the description of the inter-individual variabili-
ty. 

The final model is internally evaluated through simplified posterior pre-
dictive check and two other diagnostics based on Monte Carlo simulation: vis-
ual predictive check, implemented not only on stage frequencies (as done in 
the literature) but also on transition frequencies along the night; and visual 
estimation check, introduced here for the first time in the context of PK-PD 
mixed-effect modeling. This tool aims to evaluating the capability of accurately 
and precisely estimating model parameters through a graphic description of 
accuracy and precision on the estimation of transition probabilities time-
course. The three diagnostics show an overall good performance of the devel-
oped multinomial Markov-chain model in describing and reproducing the da-
ta, and of the employed estimation technique in producing robust estimates of 
the model parameters. 

The final model is also externally evaluated, using data from a new clinical 
study in patients with the same conditions as the original study. The evalua-
tion is mainly performed looking at minimized objective function values and 
at new simplified posterior predictive checks. The new proposed model is 
shown to adequately describe also the new data. 

In the last part of the thesis, stepwise covariate modeling is adopted for 
investigating the appropriate structural form of a second stage model in which 
age, body mass index and gender effects are integrated in the base model. The 
statistical relevance of these covariate effects is computed on the original in-
somniac population, together with the entity of the effects themselves. Inter-
esting and novel results are shown, depicting how each of the three covariates 
affects some of the transition probabilities of the multinomial Markov-chain 
model, during specific nighttime intervals. 
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Sommario 

 

 

La riduzione della qualità del sonno compromette considerevolmente il 
benessere psico-fisico del corpo umano ed è un disturbo comune ad un’ampia 
fetta della popolazione mondiale. La qualità del sonno notturno è determinata 
dalla sua struttura interna, ossia il percorso attraverso diverse condizioni 
fisiologiche dell’individuo nella notte. Tale struttura, chiamata ‘architettura 
del sonno’, può essere espressa attraverso diversi stadi (veglia, stadi 1 e 2 del 
sonno leggero, sonno profondo e sonno REM) e le transizioni tra di essi 
durante la notte, e può essere modificata da farmaci preposti al trattamento 
dell’insonnia. La sequenza di stadi del sonno, oggettivamente determinabili 
ogni 30 secondi attraverso polisonnografia, costituisce il cosiddetto ‘segnale 
PSG’ e può essere vista come una successione finita di dati categoriali nominali 
(cioè, non ordinati). 

Nel contesto della modellistica degli effetti farmacologici 
(farmacodinamica, PD) e delle correlazioni tra esposizione al farmaco 
(farmacocinetica, PK) ed effetti farmacologici, l’analisi di dati categoriali 
nominali policotomi è stata esplorata solo recentemente. L’interesse su di essa 
è cresciuto fortemente, anche perchè molti altri dati farmacodinamici 
provenienti da studi clinici fatti per sviluppare nuovi farmaci condividono le 
stesse caratteristiche. La modellistica PK-PD di dati categoriali richiede 
metodologie specifiche. Quando i dati sono nominali policotomi, l’approccio 
più interessante è l’utilizzo di modelli ad effetti misti a catena di Markov non 
omogenea, i cui parametri sono legati all’evolversi delle probabilità di 
transizione tra i diversi stati della catena al variare della variabile 
indipendente. Questi modelli però hanno presentato fin’ora molti aspetti 
specifici che in letteratura sono stati sviscerati solo parzialmente. 

Questa tesi è dedicata all’introduzione delle funzioni logistiche 
multinomiali come funzioni link in grado di descrivere le probabilità di 
transizione nelle catene di Markov con più di due stati. Precedentemente 
invece, erano state utilizzate funzioni logistiche binarie. Nella tesi viene quindi 
implementato e validato un nuovo modello dell’architettura del sonno, 
facendo uso di dati PSG ottenuti da uno studio clinico in soggetti con diagnosi 
di insonnia primaria, ai quali era stato somministrato placebo. La stima 
parametrica viene effettuata tramite massimizzazione della verosomiglianza 
approssimata con metodo di Laplace, utilizzando NONMEM VI. La validazione 
del modello avviene tramite tecniche consolidate, come l’ispezione dei 
goodness-of-fit plot, il bootstrap ed il simplified posterior predicitve check. 

Nel prosieguo della tesi il nuovo modello multinomiale a catena di Markov 
viene ulteriormente sviluppato fondendo i punti di forza di altri modelli 
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esistenti nell’ambito considerato, ed aggiungendo nuovi elementi. I predittori 
delle funzioni logit multinomiali, la parametrizzazione del modello, la 
rilevanza di transizioni e stadi diversi, la descrizione della variabilità 
interindividuale sono i principali ambiti di analisi. 

Il modello finale viene validato internamente attraverso simplified 
posterior predictive check e due altri metodi diagnostici basati su simulazione 
Monte Carlo: il visual predictive check, implementato non solo sulle frequenze 
degli stadi (come fatto in letteratura), ma anche sulle frequenze delle 
transizioni nel corso della notte; ed il visual estimation check, introdotto qui 
per la prima volta nel contesto della modellistica PK-PD ad effetti misti. Questo 
strumento ha l’obiettivo di validare la capacità di stimare i parametri del 
modello in modo preciso ed accurato attraverso una descrizione grafica 
dell’accuratezza e della precisione nella stima delle probabilità di transizione 
nel corso della notte. I tre strumenti diagnostici mostrano una buona 
performance nel descrivere e riprodurre i dati, per quanto riguarda il modello 
multinomiale a catena di Markov sviluppato, e nel produrre stime robuste dei 
parametri del modello, per quanto concerne il metodo di stima adottato. 

Il modello finale viene validato anche esternamente, con dati ottenuti da 
un nuovo studio clinico in pazienti con condizioni uguali a quelle dei pazienti 
dello studio originale. La validazione viene effettuata valutando 
principalmente i valori minimizzati della funzione obiettivo ed i nuovi 
simplified posterior predictive check. I suoi risultati mostrano che il nuovo 
modello proposto è in grado di descrivere adeguatamente anche i nuovi dati. 

Nell’ultima parte della tesi, il processo di stepwise covariate modeling 
viene usato allo scopo di scegliere la forma strutturale appropriata di un 
modello del secondo stadio in cui gli effetti di età, indice di massa corporea e 
sesso vengono integrati nel modello base. La significatività statistica di tali 
effetti viene quindi calcolata sulla popolazione originaria di soggetti insonni, 
insieme all’entità degli effetti stessi. Gli innovativi ed interessanti risultati di 
questa analisi mostrano come ciascuna covariata influenza alcune probabilità 
di transizione del modello multinomiale a catena di Markov, durante specifici 
intervalli della notte. 
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BIC Bayesian Information Criterion 

BMI Body Mass Index 

BSV Between-Subject Variability 

CV Coefficient of Variation 

dof degrees of freedom 

EBE Empirical Bayes Estimate 
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LLR Log-Likelihood Ratio test 

LPS Latency to Persistent Sleep 

ML Maximum Likelihood 

NLME Non-Linear Mixed Effects 

OFV Objective Function Value 

PK Pharmacokinetics 

PD Pharmacodynamics 

PSG Polysomnography 

REM Rapid Eyes Movement sleep 

RUV Residual Unexplained Variability 

sPPC simplified Posterior Predictive Check 

ST1 STage 1 sleep 

ST2 STage 2 sleep 

SWS Slow-Wave Sleep 

TST Total Sleep Time 

VEC Visual Estimation Check 

VPC Visual Predictive Check 
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Chapter 1  

Introduction 

 

 

Sleep is the natural state of bodily rest. Sleep disorders affect a large por-
tion of world-wide population –prevalence is thought to be approximately 
10% (Mai & Buysse, 2008)– and their effects are far-reaching: medical, psy-
chiatric, personal and societal spheres are all substantially involved. Among 
other things, sleep pathologies affect quality of life because of comorbid condi-
tions and impaired interpersonal relationships (Mai & Buysse, 2008). 

The appropriate diagnosis and treatment of these disorders still represent 
great challenges for clinicians and pharmaceutical companies. The latter have 
made large investments in this research field, trying to develop safer and more 
effective drugs able to regulate the sleep-wake alternation. However, sleep is 
not a homogeneous state of unconsciousness, but it is characterized by an in-
ternal structure, called ‘sleep architecture’, defined by different stages and the 
transitions between them. Such architecture determines the sleep quality and, 
therefore, the physical and mental well-being and performance of the human 
being(Roth & Reehrs, 2003; Walsh, 2004; Avidan, 2003). Therefore, in case of 
sleep disturbances, it is of particular importance that the therapeutic interven-
tions maintain or restore the physiological sleep internal structure (Gimenez, 
Clos, Romero, Grasa, Morte, & Barbanoj, 2007; Penzel & Kesper, 2006; Stanley, 
2005; Burgess, Holmes, & Dawson, 2001). 

Sleep stages are typically assessed using polysomnography, which in-
cludes electroencephalography (assessment of brain activity), electrooculo-
graphy (assessment of eye movements) and electromyographic measure-
ments (determination of skeletal muscle activity). Based on the combination 
of these techniques, different stages can be recognized: wake, light sleep 
(stage 1 and 2), deep sleep (stage 3 and 4), and Rapid Eyes Movement (REM) 
sleep (Rechtschaffen & Kales, 1968). 

The times spent in the different phases are typically aggregated over 
nighttime, resulting in pharmacodynamic endpoints with recognized clinical 
relevance, such as sleep onset (Latency to Persistent Sleep, LPS), sleep main-
tenance (Wake After Sleep Onset, WASO), and Total Sleep Time (TST) (Roth, 
Walsh, Krystal, Wessel, & Roehrs, 2005; Erman, Seiden, Zammit, Sainati, & 
Zhang, 2006). These metrics, however, do not preserve information on the 
sleep internal structure. Mathematical models are needed, instead, for charac-
terizing sleep architecture and, since the sleep stages during nighttime can be 
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described as a sequence of correlated discrete random variables, Markov-
chain models represent a valuable methodology to analyze these data. 

In two recent works (Karlsson, et al., 2000; Kjellsson, Ouellet, Corrigan, & 
Karlsson, 2008) sleep data were modeled through mixed-effect Markov-chain 
models, and the transition probabilities were described as binary logistic 
piecewise linear functions. The choice of binary logistic functions as links be-
tween transition probabilities and model parameters brings to a long and ela-
borate model building process and resorts to a parameterization which is not 
completely physiological and robust. Instead, multinomial logistic functions 
are more suited to the nature of the described data and can simplify the model 
structure. 

Therefore, the first aim of this work is the implementation of a mixed-
effect Markov-chain model with multinomial logistic functions for describing 
sleep data obtained in patients suffering from primary insomnia and treated 
with placebo. More detailed features on the model parameterization, the pre-
dictors of the parameters, the description of the inter-individual variability on 
model parameters, the model structure able to ease the later inclusion of po-
tential covariate and drug effects will also be investigated. 

For a mixed-effect model used in the pharmaceutical field, the evaluation 
of adequacy to data is very important (Karlsson & Savic, 2007). For example, it 
is relevant to evaluate the reliability of the subsequent clinical trial simula-
tions performed with the developed model itself. Literature is still lacking in 
assessed methodologies for a complete model evaluation when categorical 
(nominal) data are involved. The second aim of this thesis is to introduce, im-
plement and discuss consolidated and innovative techniques for evaluating 
the proposed Markov-chain model, by means of the learning dataset, datasets 
created via Monte Carlo simulation and a further set of real data, used as vali-
dation dataset.   

Despite the frequency with which sleep stage data are used in the evalua-
tion of patients with sleep disorders or daytime sleepiness, only few times the 
heterogeneity of sleep architecture among individuals has been described. 
Most previous studies have included small samples, representing a limited 
range of demographic conditions (Redline, Kirchner, Quan, Gottlieb, Kapur, & 
Newman, 2004). Published studies with large sample size, instead, never in-
vestigated the effect of covariates like gender, weight, race, etc., on the internal 
structure of sleep, but only on aggregated pharmacodynamics endpoints 
which contains just part of the information available. With the model illus-
trated here, this analysis becomes instead possible. One further aim of this 
work is therefore to perform a covariate analysis on the developed multino-
mial Markov-chain model, using gender, body mass index (BMI) and age as 
potential covariates. Besides the clinical importance of the results, also the 
identification of the appropriate structural form of a second stage model for 
defining the covariate effects will deserve attention, considering the specificity 
of the modeled data. 
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The thesis is organized as follows. Chapter 2 and Chapter 3 provide some 
background to the topics of this work, i.e., the characterization of sleep and the 
use of PK-PD models for describing categorical data. Chapter 4 describes the 
Markov-chain model with multinomial functions proposed here to model 
sleep data. A base model and its development are discussed in sequence, and 
the results of the application to real data from a clinical study with insomniac 
subjects are shown. Chapter 5 presents internal and external evaluation of the 
final model, through partially new diagnostics. Finally, a second-stage model 
taking into account the effects of age, sex and BMI on the parameters is devel-
oped and estimated in Chapter 6. 
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Chapter 2  

Fundamentals of sleep and in-

somnia 

 

 

The cyclic repetition of sleep and wakefulness states is essential to the ba-
sic functioning of all higher animals, including humans. As understanding of 
the neurobiology of sleep increases, clinicians no longer view it as a passive 
state (i.e., as absence of wakefulness). Sleep is an active neurobehavioral state 
that is maintained through a highly organized interaction of neurons and 
neural circuits in the central nervous system (CNS). 

Moreover, sleep is not a homogeneous state of unconsciousness but it is 
characterized by an internal structure, called ‘sleep architecture’ and defined 
by different stages and the transitions between them. It has been demonstrat-
ed that the maintenance of such architecture is fundamental to determine 
sleep quality and, therefore, the physical and mental well-being. On the other 
hand, disorders in the natural pattern of sleep may lead to adverse conse-
quences and may seriously affect patients’ health, productivity and life quality 
(Roth & Reehrs, 2003; Walsh, 2004; Avidan, 2003). 

The prevalence of sleep disturbances indicates that it is a very common 
problem affecting both men and women, elderly and young population. The 
causes of sleep problems are different and often are related to other clinical 
pathologies. For these reasons, the appropriate diagnosis and the treatment of 
sleep disorders is becoming more and more relevant. However, the mechan-
isms regulating sleep and their purposes are not completely clear and the 
deep understanding of sleep architecture and patterns represents a great chal-
lenge to clinicians and pharmaceutical companies, which are leading an in-
tense research in this field. 

This chapter aims, first of all, at providing the basics of physiology, neu-
roanatomy and regulation of sleep. Then, it introduces the physiological rea-
sons for which we sleep, the consequences of sleep disturbances and the 
available pharmaceutical treatments to manage them. 
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2.1 Sleep 

 

 

The first attempt to describe the pattern of human sleep was made in 1930 
by Berger, the father of electroencephalography (Berger, 1930). He obtained 
the first sleep recording and noted that the alpha rhythm disappeared when 
his subject fell asleep. A second important achievement was made in 1937 
when Loomis et al. (Loomis, Harvey, & Hobart, 1937) published the first con-
tinuous overnight EEG sleep recording in humans and proposed a scheme, the 
so called ‘sleep staging’, to summarize the EEG recording in a reduced dataset. 
They proposed a classification of the EEG activity recorded during sleep into 5 
stages: A, B, C, D and E, on the basis of the predominant EEG rhythm in a fixed 
time interval. 

In 1953 Aserinsky and Kleitmain (Aserinsky & Kleitman, 1953) discovered 
episodic electro-oculagraphic (EOG) activity occurring during sleep stage B 
every 90-120 minutes. Initially this activity was supposed to be an artifact due 
to instrumentation, but subsequent studies demonstrated that these episodes 
were actually occurring. These events were called ‘Rapid Eye Movements’ 
(REMs). 

The authors tried also to establish the relation existing between REM stage 
and dreaming.  It was noted that dreaming happened in 20 of the 27 instances 
after the awakening from REM sleep stage. In 1957 Dement and Kleitman 
(Dement & Kleitman, 1957) suggested a new classification for sleep stages: 
sleep stages were divided into four Non-REM (NREM) stages and a REM stage. 

The next major milestone on understanding sleep architecture was made 
in 1959, when Jouvet (Jouvet, Michel, & Courjon, 1959) observed by the elec-
tromyography (EMG) technique muscular atonia related to the REM stage. He 
also introduced the concept that REM stage was a state in which the brain was 
‘active’. 

The staging criteria were standardized in 1968, when Rechtschaffen and 
Kales developed and published ‘A Manual of Standardized Terminology, Tech-
niques and Scoring System for Sleep Stages of Human Subjects’ (Rechtschaffen 
& Kales, 1968), establishing the major rules for classifying sleep stages during 
a standardized sleep recording. This manual, generally reported as the ‘R & K 
Manual’, received a general consensus and became a gold standard in sleep 
measurements. In the ‘R & K Manual’, NREM sleep was divided into four stages 
(stages 1, 2, 3, 4), with slow-wave sleep or deep sleep comprising stages 3 and 
4 and, in contrast, light-sleep comprising stages 1 and 2. REM sleep was some-
times reported as stage 5. 

In 2004, the American Academy of Sleep Medicine (AASM) proposed sev-
eral changes in the scoring system indicated by the ‘R & K standard’, the most 



Fundamentals of sleep and insomnia 

7 

significant being the combination of stages 3 and 4 into a unique stage, called 
Stage N3. These proposed changes were published in 2007 in ‘The AASM Ma-
nual for the Scoring of Sleep and Associated Events’ (Iber, Ancoli-Israel, 
Chesson, & Quan, 2007).  

 

 

2.1.1 Sleep stages and architecture 

 

 

Sleep physicians define human sleep on the basis of an individual’s ob-
served behavior and accompanying physiologic changes in the brain’s elec-
trical activity as the brain transitions between wakefulness and sleep. Behavi-
orally, human sleep is characterized by reclined position, closed eyes, de-
creased movement, and decreased responsivity to internal and external envi-
ronment. 

 

Polysomnography  

Physiologically, sleep consists of two strikingly different states, rapid-eye-
movement (REM) sleep and non-REM (NREM) sleep. NREM sleep can be sub-
divided further into four stages. Polysomnography is the ‘gold standard’ tech-
nique that simultaneously records the three physiologic measures that define 
the main stages of sleep and wakefulness. These measures include muscle 
tone, recorded through electromyogram (EMG); eye movements, recorded 
through electro-oculogram (EOG); and brain activity, recorded through elec-
troencephalogram (EEG). The clinical polysomnogram, the purpose of which is 
to detect findings that are characteristic of certain sleep disorders, includes, in 
addition to these three variables, the following: monitors for airflow at the 
nose and mouth, respiratory effort strain gauges placed around the chest and 
abdomen, and noninvasive oxygen saturation monitors that function by intro-
ducing a beam of light through the skin. Other parameters include the electro-
cardiogram and EMG of the anterior tibialis muscles, which are intended to 
detect periodic leg movements. Finally, a patient’s gross body movements are 
monitored continuously by audiovisual means. 

 

Stage classification 

To classify sleep, recommendations have been introduced in 1968 by a 
committee chaired by Rechtschaffen and Kales (Rechtschaffen & Kales, 1968). 
They introduced discrete sleep stages based on the observed EEG waves and 
patterns as well as EOG patterns and mental or submental muscle tone de-
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rived by EMG (see Figure 2.1 and Figure 2.2). The EEG, EOG, and EMG elec-
trodes are attached at well standardized positions. Sleep recording is classi-
fied into epochs of 30 s duration. 

The EEG pattern of drowsy wakefulness consists of low-voltage rhythmic 
alpha activity (8–13 Hz). In stage 1 of NREM sleep, the low-voltage mixed fre-
quency theta waves (4–8 Hz) replace alpha rhythm of wakefulness. Slow asyn-
chronous eye movements are seen on the EOG in the beginning of stage 1 
sleep and disappear in a few minutes. The muscle activity is highest during 
wakefulness and diminishes as sleep approaches. Individuals with behavioral 
characteristics of sleep and polysomnographic characteristics of stage 1 sleep 
may or may not perceive themselves as sleeping. Stage 1 is viewed as a ‘shal-
low’ sleep, during which an individual can be easily aroused. 

With transition to stage 2, EEG patterns called ‘sleep spindles’ and ‘K com-
plexes’ appear on the EEG. Sleep spindles are 12-14 Hz synchronized EEG 
waveforms with duration of 1.5 seconds. Sleep spindle waves arise as a result 
of synchronization of groups of thalamic neurons by the GABAergic thalamic 
spindle pacemaker. The origin of K complexes is unknown. With the onset of 
stage 2, the arousal threshold increases, and a more intense stimulus is 
needed to arouse a sleeper. 

Stages 3 and 4 of NREM sleep are defined by synchronized high-amplitude 
(>75 µV) and slow (0.5–2 Hz) delta wave EEG pattern. Stages 3 and 4 collec-
tively are referred as ‘deep sleep’, ‘delta sleep’, or ‘slow-wave sleep’. By defini-
tion, delta waves account for 20% to 50% of EEG activity during stage 3 and 
greater than 50% of EEG activity during stage 4 of sleep. Slow-wave sleep is 
associated with a higher arousal threshold than ‘lighter’ stages of NREM sleep. 
No eye movements are detected on the EOG during stages 2, 3, and 4 of NREM 
sleep. The EMG tracks continued muscle tone decline as NREM sleep ‘deepens’ 
from stages 1 to 4. 

The cortical EEG pattern of REM sleep is characterized by low voltage and 
fast frequencies (alpha or 8–13 Hz). This EEG pattern is referred as activated 
or desynchronized and also is seen in the state of relaxed wakefulness (with 
eyes closed). Activated refers to an active mind (dreams) and the EEG pattern 
characteristic of wakefulness. Paradoxically, individuals in REM sleep, al-
though activated, are behaviorally less responsive than during the wake state 
(Siegel, 2005). Desynchronized refers to the random-appearing wave pattern 
seen on the REM sleep EEG, which is contrasted with the synchronized uni-
form wave pattern seen on the NREM sleep EEG (Siegel, 2005). To be scored 
as REM sleep, a polysomnographic tracing must contain an activated EEG pat-
tern and muscle atonia (EMG) and the presence of rapid eye movements 
(EOG). REM sleep can be subdivided further into two stages: tonic and phasic. 
The tonic stage is continuous and shows muscle atonia and desynchronized 
EEG as two main features. Superimposed on the tonic stage of REM are inter-
mittent phasic events, which include bursts of rapid eye movements and irre-
gularities of respiration and heart rate. 
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Sleep architecture 

The sequence of sleep stages across the night is called ‘sleep architecture’. 
Figure 2.3 depicts how such internal structure looks like in a healthy person. 
Sleep typically begins with a ‘shallow’ stage 1 of NREM sleep and ‘deepens’ to 
NREM sleep stages 2, 3, and 4, which are followed by the first brief episode of 
REM sleep in approximately 90 minutes. After the first sleep cycle, NREM and 
REM sleep continue to alternate in a predictable fashion, each NREM-REM 
cycle lasting approximately 90 to 120 minutes (Sinton & McCarley, 2004). In 
the course of the night, sleep cycles recur three to seven times. 

 Stage 1 of NREM sleep, which lasts only a few minutes, serves as a transi-
tion from wakefulness to sleep and later during sleep it serves as a transition 
between REM-NREM sleep cycles. Typically, stage 1 constitutes 2% to 5% of 
total sleep time. An increase in the amount or percentage of stage 1 sleep may 
be a sign of sleep disruption. 

The brief first period of stage 1 NREM sleep is followed by ‘deeper’ stage 2, 
which lasts approximately 10 to 20 minutes. Stage 2 sleep normally consti-
tutes 45% to 55% of the total sleep time. 

Stage 2 sleep progresses to stages 3 (lasting a few minutes) and 4 (lasting 
40 minutes). Stage 3 constitutes 5% to 8% of the total sleep time, and stage 4 
constitutes 10% to 15% of the total sleep time. Stages 3 and 4 of NREM sleep 
predominate during the first third of the night. 

The first REM period is brief and occurs approximately 90 minutes after 
sleep onset; subsequent REM cycles occur approximately 90 to 120 minutes 
apart. REM sleep episodes become longer as the night progresses, and the 
longest REM periods are found in the last third of the night (Carskadon & 
Dement, 2005). NREM sleep accounts for 75% to 80% and REM sleep accounts 
for 20% to 25% of the total sleep time (Sinton & McCarley, 2004; Siegel, 
2005). These proportions commonly vary with age. 

 

Key summary statistics of sleep 

Some important characteristics of sleep can be derived from plysomno-
graphic data. Such characteristics are used in the clinical practice for quantify-
ing both the severity of sleep disorders and hypnotics efficiency. These pa-
rameters are called ‘aggregated parameters’ because they reflect the overall 
trend of sleep during the night. The following definitions of sleep parameters 
are listed for reference: 

• total recording time (TRT): the duration of time from the start to the 
end of a recording, usually 8 hours; 

• time in bed (TIB): the duration of time from ‘light off’ to final awaken-
ing; 
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• sleep onset (SO): the first epoch followed by 19 epochs of ‘non awake’ 
stages; 

• sleep period time (SPT): the duration of time from SO to final awaken-
ing; 

• latency to persistent sleep (LPS): the duration of time from ‘light off’ to 
SO; 

• wake after sleep onset (WASO): the total time spent awake during SPT; 

• total sleep time (TST): the amount of actual sleep time in a recording; 

• sleep efficiency (SE): the percentage ratio of total sleep time to time in 
bed, i.e. TST/TIB*100; 

• time spent in each of the sleep stages (tAW, tST1, tST2, tST3, tST4, 
tREM); 

• number of transition to each stage (nAW, nST1, nST2, nST3, nST4, 
nREM); 

• mean extension of each stage (meanAW, meanST1, meanST2, 
meanST3, meanST4, meanREM). 

 

 

2.1.2 Neuroanatomy and regulation of sleep 

 

 

All human physiological functions are embedded in the circadian day-
night cycle. The sleep-wake cycle is closely linked to the circadian cycle and 
both influence each other. The circadian system is well described and an ana-
tomical circadian clock has been identified: the suprachiasmatic nucleus in the 
anterior hypothalamus controls the timing of most circadian rhythms in 
mammals. In contrast, no single neural system identified so far is responsible 
for the generation of sleep or wakefulness (Jones, Basic mechanisms of sleep-
wake states, 2000). 

Most neuroanatomical aspects of sleep are obtained by the observation of 
the effects of lesions in particular regions. Wakefulness is maintained by mul-
tiple neural systems that extend from the brainstem reticular formation into 
the thalamus and through the posterior hypothalamus up to the basal fore-
brain. Sleep is promoted by neurons in the lower brainstem and upper fore-
brain that inhibit wake-generating neurons to dampen cortical activation and 
behavioral arousal (Jones, 2004). 
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The arousal system involved in wake generation utilizes a number of dif-
ferent neurotransmitters such as glutamate, noradrenaline, acetylcholine, do-
pamine, glutamic acid, histamine and orexine. Slow-wave sleep occurs through 
the inhibition of the arousal systems. The key neurotransmitters involved in 
sleep generation are instead adenosine, GABA, acetylcholine during REM 
sleep, glycine and some immune modulators (Krueger & Majde, 2003). 

 

Regulation of sleep and wakefulness 

According to the so-called ‘two-process model’, the occurrence, duration, 
intensity and internal structure of sleep are determined by two oscillatory 
processes called process ‘S’ or sleep homeostasis and process ‘C’ or circadian 
rhythm. The timing of sleep is determined by process C, which is strongly in-
fluenced by the light-dark cycle. Process S is homeostatic and increases during 
wakefulness until it reaches a circadian upper threshold and sleep is initiated. 

Both processes interact closely and can be related to neural activities. The 
circadian rhythm in particular is determined by the rhythmic activity of the 
suprachiasmatic nuclei, being primarily responsible for changes in body tem-
perature and endocrine secretions (mostly melatonin). This means that these 
variables vary closely with the circadian rhythm and vice versa, i.e., changes in 
body temperature and melatonin influence the circadian rhythm. The latter 
produces two ‘opening windows’ for sleep occurrence. The main window 
‘opens’ in the late evening, accompanied by a drop in body temperature. The 
other one, less pronounced, ‘opens’ in the early afternoon. Important zeitgeber 
for the circadian clock are light, as mentioned already, but also ambient tem-
perature changes, noise, nutrition, and social contacts. 

The intrinsic circadian rhythm is a little bit longer than 24 h, on average by 
15 min. The duration of REM sleep is strongly linked to the circadian sleep 
process, and the longest REM sleep in bedrest studies is found roughly 1–2 h 
after the body temperature has reached its minimum (Dijk & Czeisler, 1995).  

From the results of circadian research it is evident that the homeostatic 
sleep regulation and the circadian process interact strongly with each other 
and influence each other. A clear experience of these interactions can be ob-
served at flights across several time zones during intercontinental flights. 

 

Biologic functions of sleep 

Many theories attempt to explain the biologic function of sleep, without a 
clear winner. One such theory posits that sleep serves a restorative function 
for the brain and body. Normal sleep is subjectively associated with feeling 
refreshed on awakening. REM sleep is associated with increased CNS synthe-
sis of proteins and is crucial for the CNS development of infants and young 
humans and animals. Growth hormone secretion is increased, while cortisol 
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secretion is decreased during sleep. All these can be used to support the res-
torative theory of sleep (Chokroverty, 2003). 

Another theory of sleep function proposes that sleep has a central role in 
reinforcement and consolidation of memory. Sleep deprivation experiments 
have highlighted the important role of REM sleep in memory function 
(Chokroverty, 2003). Another theory suggests that sleep is important for 
thermoregulatory function. Experiments have shown that total sleep depriva-
tion results in thermoregulatory abnormalities, NREM sleep maintains ther-
moregulatory function, and REM sleep is associated with impaired thermore-
gulatory responses (e.g., shivering and sweating) (Chokroverty, 2003). 

Since the middle 1950s, when REM sleep was identified, sleep research 
has focused on understanding the physiology of dreams. Most dreams (about 
80%) occur during REM sleep; the remainder occurs during NREM sleep. REM 
sleep dreams are more complex, have more emotional valence, can be bizarre, 
and are easier to recall. NREM sleep dreams are more logical and realistic, but 
more difficult to recall possibly because awakening from NREM sleep leaves a 
person feeling more confused and disoriented than awakening from REM 
sleep. During REM sleep, neuronal signals originating from the brainstem are 
transmitted to the cerebral hemispheres and stimulate the cortical association 
areas to produce images that compose dreams (Chokroverty, 2003). 
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2.2 Sleep disorders 

 

 

Disruptions in the correct maintenance of sleep architecture and sleep-
wake balance may lead to serious consequences for individuals and society in 
general, compromising both productivity and wellness. Sleep disorders are 
very common complaints affecting a large segment of world’s population. 
Sleep disorders consequences represent a substantial economic burden and, 
for this reason, it is a major objective for clinicians properly diagnosing and 
treating this kind of pathology.  

The guidelines for diagnosing sleep disorders are listed in the ‘Diagnostic 
and Statistical Manual of Mental Disorders-Fourth Edition-Text Revision’ 
(DSM-IV-TR) (American Psychiatric Association, 2000). Pharmaceutical com-
panies have invested a lot of resources to develop new hypnotic drugs with a 
more safe and effective profile for the treatment of insomnia. 

 

 

2.2.1 Classification 

 

 

According to the ‘Diagnostic and Statistical Manual of Mental Disorders-
Fourth Edition-Text Revision’ (DSM-IV-TR) (American Psychiatric Association, 
2000), sleep disorders can be divided into two main categories. 

• The first one, but less frequent, is made of disorders characterized by 
excessive sleepiness and, as its consequences, extreme daytime fatigue 
and the natural tendency of the individual to fall asleep at inappropri-
ate times. An example of such disorders is narcolepsy, often confused 
with insomnia since the subject usually experiences disturbed noctur-
nal sleep and an abnormal daytime sleep pattern. 

• The second category is insomnia, defined as difficulty in initiating or 
maintaining sleep or non-restorative sleep. Insomnia can be transient 
(i.e., lasting 2 to 3 days), short-term (i.e., lasting fewer than 3 weeks), 
or chronic (i.e., lasting at least 1 month) (Sateia, Doghramji, & Hauri, 
Evaluation of chronic insomnia, 2000). Transient and short-term in-
somnia are more likely to be precipitated by acute environmental 
events (e.g., being dismissed from a job, having a death in the family) 
than is chronic insomnia. Transient and short-term insomnia typically 
remit upon removal of or adaptation to the precipitating stressor.  
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The causes of insomnia are various. The major diagnostic classification 
scheme for sleep disorders (American Psychiatric Association, 2000) catego-
rizes insomnia into primary and secondary forms.  

• Primary insomnia is the difficulty in initiating or maintaining sleep in 
the absence of known comorbidities and other factors to which the 
sleep disturbance potentially could be attributed.  

• Secondary insomnia is related to a psychiatric disorder such as de-
pression, to an organic factor such as a medical condition, or to a sub-
stance use or abuse.  

For a diagnosis of insomnia, at least one of the following forms of daytime 
impairment related to the nighttime sleep difficulty needs to be reported by 
the patient: 

• fatigue or malaise; 

• attention, concentration, or memory impairment; 

• social or vocational dysfunction or poor school performance; 

• mood disturbance or irritability; 

• daytime sleepiness; 

• motivation, energy, or initiative reduction; 

• proneness for errors or accidents at work or while driving; 

• tension, headaches, or gastrointestinal symptoms in response to sleep 
loss; 

• concerns or worries about sleep. 

 

 

2.2.2 Insomnia prevalence and comorbities 

 

 

It is estimated that approximately 20% to 30% of adults worldwide have 
insomnia but that only approximately half of those having insomnia are diag-
nosed (Zisapel, 2004). In epidemiologic studies, prevalence estimates for in-
somnia range from approximately 5% to 35% (Sateia & Nowell, Insomnia, 
2004). The variability in results of epidemiologic studies has been attributed 
to between-study differences in descriptors of insomnia, in age groups stu-
died, and in degrees of severity and chronicity required to meet the definition 
of insomnia.  
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The prevalence of insomnia increases with age. In community-based re-
search, more than half of non-institutionalized elderly patients were found to 
have chronic insomnia (Foley, Monjan, & Brown, 1995). Furthermore, insom-
nia is more common in women than in men. Women are approximately 1.5 
times more likely than men to suffer from insomnia (Walsh, 2004).  

Insomnia also appears to be more common among individuals with medi-
cal comorbidities (e.g., chronic somatic pain) or psychiatric comorbidities (e.g., 
depression) than among individuals not having comorbidities (Walsh, 2004). 
The nature of the relationship between insomnia and these comorbidities can 
be difficult to determine. Insomnia could contribute to causing the comorbidi-
ties or be caused by them (or both), or insomnia might simply be correlated 
with specific comorbidities in the absence of a causal relationship. Insomnia is 
a common feature of psychiatric disorders including depression, anxiety, schi-
zophrenia, and eating disorders (Benca, 2005). 

Insomnia is associated with adverse personal and economic consequences. 
Across several studies, insomnia has been shown to impair mood and cogni-
tion and to reduce functional ability (Pilcher & Huffcutt, 1996). Excessive day-
time sleepiness can impair physical, mental, and psychosocial functioning. In-
somnia has also been linked to impairments in physical, psychological, and 
social dimensions of health-related quality of life, to increased work absentee-
ism and to more frequent on-the-job accidents (Leger, 2000).  

 

 

2.2.3 Insomnia treatment 

 

 

The purpose of any insomnia treatment is the improvement of the pa-
tient’s quality of life, through the identification and removal of any existing 
problem that may cause insomnia. This goal is usually reached through both 
pharmacologic therapy and educational and behavioural aid.  

In the past, bromides, barbiturates, paraldehyde and methaqualone have 
been used as hypnotics, but although they have proved sedating properties, 
they also are cause of significant toxicity problems. Consequently, their use is 
no more recommended. Current hypnotic drugs indicated in treating insomnia 
include traditional benzodiazepines and non-benzodiazepines. The non-
benzodiazepines are positive allosteric modulators of the GABA-A receptor. 
Like the benzodiazepines, they exert their effects by binding to and activating 
the benzodiazepine site of the receptor complex. 

Benzodiazepines bind to a specific site (the benzodiazepine site) on the 
GABA-A receptor complex to open chloride channels that span neuronal 
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membranes (Sullivan, Petroski, & Verge, 2004). The entry into neurons of ne-
gatively charged chloride hyperpolarizes the cells with a resultant decrease in 
excitability. As GABA receptors are present at 40% of neuronal synapses, the 
decrease in excitability is widespread. This mechanism is responsible for the 
anxiolytic, muscle relaxant, and anticonvulsant properties of benzodiazepines 
as well as their hypnotic effects. Traditional benzodiazepines have been avail-
able since the 1960s. These types of medications vary significantly in their 
elimination half-lives, ranging from few hours to few days. This is the major 
concern about their use, since long half-life time values produce daytime un-
desired effects, like daytime impairment and higher risk of accidents and falls. 
Among the benzodiazepines approved for the treatment of insomnia, the ones 
with shorter half-lives, such as estazolam, triazolam, and temazepam, are rec-
ommended. Longer-acting benzodiazepines such as nitrazepam and diazepam 
have residual effects that may persist into the next day and are, in general, not 
recommended.  

The side effects and the risks of tolerance and dependence with benzodia-
zepines and other older sleep aids motivated a search for sleep aids with im-
proved risk/benefit ratios. This search resulted in the introduction of the first 
generation of nonbenzodiazepine hypnotics, including zolpidem, zopiclone, 
eszopiclone, and zaleplon, available since the 1990s. These medications are at 
least as effective as the benzodiazepines but have better safety and tolerability 
profiles. The sleep-promoting effects of these nonbenzodiazepine hypnotics, 
like those of the benzodiazepines, are attributed to interaction of the drugs 
with portions of the GABA-A receptor complex. Their advantages appear to 
come from their more selective mode of interaction with the GABA-A receptor 
combined with a reduced duration of action compared with the benzodiaze-
pines (Foster, Pelleymounter, & Cullen, 2004). The shorter half-life time (1-2 
hours), reduces the risk of morning residual effects. Moreover, the nonbenzo-
diazepine action implies a rapid sleep onset, so that the patient can take them 
just before going to bed. The short term safety and efficacy of these new hyp-
notics have been well proved and clinical experience supports safety during 
long-term intermittent use. Continuous long term use is instead not recom-
mended as tolerance, dependence and addiction can occur. 

Pharmaceutical companies are currently looking for new mechanisms and 
molecules with potential hypnotic effect. Melatonin analogs are an example, 
even if results of clinical studies of effects of exogenous melatonin on sleep are 
inconsistent so far (Turek & Gillette, 2004). Tricyclic antidepressants could 
also contribute to sleep-modulating effects, but their mechanism of action in 
insomnia is not known and has not been systematically assessed 
(Baldessarini, 2001). 5HT2 receptor antagonists are in development for in-
somnia as well. The limited results available to date suggest that 5HT2 anta-
gonists may be effective for sleep maintenance but not for sleep induction. Fi-
nally, several lines of evidence point to an integral role of orexins (also known 
as hypocretins) in regulating sleep and wakefulness. Several compounds that 
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antagonize one or both orexin receptors have been synthesized (Nishino, 
2007) or are being investigated for the treatment of insomnia in humans. 
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2.3 Conclusions 

 

 

This chapter has highlighted that sleep is a phenomenon with high degree 
of complexity. Many mechanisms are involved in the neuroanatomy of sleep, 
as well as in the regulation of the wake-sleep alternation. Available drugs 
against insomnia are still far from completely restoring the quality of sleep in 
insomnia patients. With the growing evidence of the importance to maintain a 
physiological pattern in the sleep architecture, there is still room to find better 
treatments to insomnia. For example, hypnotic medications currently in use 
are especially demonstrated to positively influence the Latency to Persistent 
Sleep (LPS) (Elie, Ruther, & Farr, 1999; Hajak & Bandelow, 1998; Stone, et al., 
2002). But the capability of the different drugs of restoring the normal sleep 
architecture has not been fully investigated. The internal structure can be eas-
ily registered obtaining a large amount of information in terms of the se-
quence of sleep stages recognizable at each 30-second interval. If such infor-
mation is not aggregated but entirely used, deeper knowledge can be gained 
on both sleep physiology and hypnotics efficacy. This is the roadmap that 
pharmaceutical companies are now undertaking in their new investigations. 

Hence, robust new methods need to be developed to fully describe data 
obtained from undergoing clinical studies in insomnia and for informing drug 
development strategies and decision making. In this context, mixed-effect 
pharmacokinetic-pharmacodynamic models are promoted by industry, aca-
demia and regulatory agencies (Miller, Ewy, Corrigan, Ouellet, Hermann, & 
Kowalski, 2005; Administration, 1999): they allow the characterization of the 
observed data, the prediction of drug effects under alternative dosing strate-
gies, and the understanding of the physiological system. 

The development of a new mixed-effect model for describing sleep archi-
tecture is the primary aim of this thesis, since models previous developed suf-
fer from some important faults. This model will be widely evaluated for as-
sessing how reliable it can be in describing real data or forecasting new scena-
rios. It will be used for describing data registered on insomniac patients taking 
placebo, for which age, gender and body mass index values are available. 

In summary, the application of this model can help to better understand 
sleep physiology in primary insomnia, including the effect of insomniac indi-
vidual’s covariates on the internal sleep structure (not only the sleep aggre-
gated parameters, as done before). Finally the developed model can be applied 
to assess sleep differences after drug and placebo intake, especially with re-
spect to sleep architecture, a fundamental feature to understand the restora-
tive or non restorative properties of a hypnotic. 
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2.4 Figures 

 

 

Figure 2.1 Typical EEG, EOG and EMG activities related to the awake, stage 1, 
and stage 2 sleep. 
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Figure 2.2 Typical EEG, EOG and EMG activities related to the stage 3, stage 4 
and REM sleep. 
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Figure 2.3 Normal sleep pattern. On the left a normal sequence of sleep stages 
during the night. On the right a diagram showing the total time spent in each 
stage. 
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Chapter 3  

Mixed-effect PK-PD modeling 

and categorical data modeling 

 

 

Data can be considered as continuous or categorical. Continuous data con-
sist of variables with an infinite number of values, while categorical data con-
sist of variables taking values in a finite set and can therefore be placed into 
mutually exclusive categories. Categorical data can be further divided into 
nominal or ordinal. The nominal ones are non-ordered and can be classified 
by ‘names’, while the ordinal ones have a natural order and can be organized 
into ‘levels’, even if the exact distance between the levels is generally un-
known. Examples of nominal categorical variables are race or sex, while ex-
amples of ordinal categorical variables are age, patient compliance, values 
from sedation scales, scoring rating scales (e.g., HAMD in depression, Barthel 
in stroke, WOMAC in osteoporosis, ACR in rheumatoid arthritis) or pain inten-
sity scales (e.g., absent, mild, moderate, severe). 

As described in Chapter 1, the main objective of this work is the develop-
ment, evaluation and application of a model able to describe polisomnography 
data (or ‘sleep data’). These data can be considered as categorical: information 
derived from PSG recordings are ‘categorized’ into 6 mutually exclusive cate-
gories (AW, ST1, ST2, ST3, ST4, REM), according to the criteria illustrated in 
Paragraph 2.1.1. Such categories do not have a recognized natural order, 
therefore they can be considered as nominal categorical data. Moreover, the 
categories are more than two, so data are polychotomous (vs. dichotomous or 
binary). 

An important aspect of clinical trials is to determine the pharmacokinetics 
(PK) of a drug, describing the time course of the systemic exposure following a 
given dose (Peck, et al., 1992). Even more essential is to investigate whether a 
drug has an effect and how this effect varies with the systemic exposure: that 
is, the pharmacodynamics (PD) of the drug. To assess PD, categorical data are 
commonly measured repeatedly within the same patient in clinical trials for 
describing both disease symptoms (through evaluation of clinical scores) and 
drug effects (through evaluation of clinical efficacy and adverse event severi-
ty).  

Traditionally, when analyzing data from a confirmatory clinical study, the 
observations are analyzed by performing statistical testing, using for example 
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t-test or Wilcoxon signed-rank test, which compare the measurements before 
and after drug administration at a certain time point. Another approach is to 
perform statistical testing on the measurements for the active and the placebo 
arm in the study. This type of analysis, even though commonly used, answers 
only a narrow question. Mixed-effect analysis, the method used in PK-PD 
modeling, is instead more appealing from a learning perspective (Sheiner, 
Beal, & Dunne, 1997) as it provides the opportunity to explore the time course 
of the effect using all measurements obtained at different times within the 
same individual. Moreover, it allows the modeler to establish both population 
mean and individual responses, which is the key objective of any modeling 
analysis since the drug under development has to be effective and safe for the 
whole population. 

The first part of this chapter briefly illustrates the ‘mixed-effect modeling 
approach’. Then it recalls the basics on the usual software platform used for 
implementing this approach, NONMEM (ICON Development Solutions) (Beal & 
Sheiner, 1998). This tool is capable of estimating non-linear mixed-effect 
models through the likelihood maximization. It provides three estimation me-
thods for the likelihood estimation, namely ‘First Order’, ‘First Order Condi-
tional Estimation’ and ‘Laplace’. Only the latter can be applied when data to 
model are categorical, therefore only Laplace is presented here. Various me-
thods and diagnostics are implemented when developing a model in order to 
select between different alternatives and evaluate the final model. The main 
method for model selection (log-likelihood ratio test) is introduced in this 
chapter. 

The specificities of nominal categorical data modeling are discussed in the 
second part of the chapter. First of all, a specific expression for the likelihood 
is presented. Such expression requires that the model describes the probabili-
ty distributions of the potential outcomes instead of the outcome values them-
selves. That is, the model to develop needs to be a ‘probability model’. 

When assuming that the probability of a category is function of only exter-
nal predictors, like drug exposure, covariates, time, etc., we exclude that ob-
servations in a specific subject can be dependent on each other. This cannot be 
the case for sleep stages. Therefore, instead of implementing a probability 
model, we need to develop a so-called ‘transition model’. The specific transi-
tion model adopted in this work is the Markov-chain model. 

In the context of mixed-effect modeling, it becomes useful to mathemati-
cally transform the probability values to be described through the so-called 
‘link functions’, in order to better estimate the probability distributions of the 
individual values of the parameters. Works published so far in the context of 
population PK-PD modeling used link functions only as transformations of bi-
nomial probabilities, even if polychotomous data were involved. 

The concepts of probability and transition models, some fundamentals on 
Markov chains, a brief review on link functions and the disadvantages of mod-
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eling binomial probabilities even when data are polychotomous are intro-
duced in the second part of this chapter. 
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3.1 Mixed-effect models 

 

 

Let the gathered data arise from M subjects participating in a certain clini-
cal study and let X be the data matrix, where each row contains individual data 
on N different times (i.e., data are ‘longitudinal’, or ‘repeated-measure’): 

 � � ���
�������	�
� ���

 � � ������	�
�
������	�
�

…………
������	�
�

�. [4.1] 

Suppose such data need to be described through a mathematical model. 
Classical approaches, e.g. Least Squares (LS), Weighted Least Squares (WLS), 
Maximum Likelihood (ML) estimate, Bayesian approach, etc., are generally 
designed for individual fitting: 

 �� � ����, ��� � �� , [4.2] 

where ��  are the individual data, ��  the corresponding model prediction, z 
the independent variable, ��  the individual parameters and �� the vector of 
the random error affecting individual data. The random error is generally due 
to measurement errors and noise and it is supposed to be drawn from a Gaus-
sian distribution with zero mean and covariance matrix equal to Σ: 

 ��~��0,  �. [4.3] 

These approaches present some identification problems in case of noisy or 
sparse individual data: individual estimates in certain cases may be not accu-
rate or impossible to obtain. Furthermore, information at the mean and indi-
vidual levels is often needed. Consequently, when working in similar contexts, 
it is suitable to build models and identify the corresponding parameters using 
the so called ‘population approaches’, or ‘mixed-effect approaches’.  

Let the individual parameters of the population under examination belong 
to a certain distribution (gaussian, lognormal, etc.), characterized by mean ! 
and covariance Ω: 

 ��~"#$%&�!, Ω�. [4.4] 

It is then possible to think that individual predictions from the model are 
obtained using the realizations of such distribution as individual parameters. 
The population approach allows to investigate, with varying levels of preci-
sion, both the mean parameter and the variability in the population, i.e. the 
first two moments of the parameters distribution, ' � �!, Ω�. 

Mixed-effect approaches can be implemented in various ways: starting 
from the ones with more limitations and less informative power, the naїve av-
erage data approach, the naїve pooled data approach, the standard two-stage 
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approach, the iterative two-stage approach, and the ‘Non-Linear Mixed-Effect 
(NLME) approach’. The latter is one of the most interesting for population 
analysis, and it is particularly well suited for biological and medical data, 
which display heterogeneity of responses to stimuli and treatments. NLME 
was used in this work and is introduced in the next paragraphs. 

 

 

3.1.1 Non-linear mixed-effect modeling: theory 

 

 

The non-linear mixed-effect approach is based on the assumption that the 
(unknown) process to be described is characterized by a typical behaviour 
which is common to the whole population and by some sources of variability 
that make the individual behaviours differ from the typical one. The latter is 
determined by the so called ‘fixed effects’, while the identified sources of vari-
ability are of two (or more) different types and are called ‘random effects’. The 
first usual source of variability is the intrinsic difference that exists among 
subjects: one individual is obviously different from another one. This is called 
‘inter-individual’ or ‘between-subject’ variability (IIV and BSV, respectively). 
Mostly in the medical field, to understand the variability between subjects is 
as important as to understand the characteristics of the typical individual. The 
second usual source of variability is the ‘residual error’ (also called ‘noise or 
‘intra-individual error’): this is the difference between the predictions of the 
model for the observations measured in the same individual. It is also called 
‘intra-individual’ or ‘within-subject’ or ‘residual unexplained’ variability 
(RUV). For taking into account all of these assumptions, the NLME approach 
specifies the model in a hierarchical fashion, integrating an ‘individual’ model 
and a ‘population’ one. In this way, it allows to estimate both the vector of 
population characteristics, ' � �!, Ω�, and the individual parameters, �� . 

 

Individual model  

The individual model is aimed to describe individual data specifying the 
relationship between the dependent variables, independent variables and in-
dividual parameters.  

Let � be the independent variable, for example ‘time’ in a time series; �( be the t-th value of the independent variable, t = 1, …, N; ��( be the t-th observation of the i-th individual, t = 1, …, N and i = 1, …, M; 
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��  be the vector of model parameters of subject i.  

Each individual measure, ��(, can be described by the individual model in 
this way: 

 ��( � ����( , ��� � ��( ,     *% � 1, … , �, [4.5] 

where ����( , ��� is the individual model prediction and ��( is the residual 
error.  

Using a vector notation: 

 �������	���
� � �� � ����, ��� � �� � ������, ��������, ���	����� , ���� � �������	���

�. [4.6] 

The residual errors ��( are classically assumed independently normally 
distributed with 

 ,-��|��/ � 0, [4.7] 

 01����|��� � 2���� , 3�, [4.8] 

where 2� is a diagonal matrix depending on 3 (a constant characteristic 
across individuals) and possibly on the individual parameters (according to 
the error model structure). Therefore,  

 ��~�40, 2����, 3�5. [4.9] 

 

Population model 

A model for ��  is also needed in order to account for inter-individual vari-
ability among the �� ’s. In particular, the population model relates the individ-
ual parameters to the covariate vector, the fixed effects and the inter-
individual random effects.  

Let 6�  be the covariate vector, i.e. the set of individual values for weight, age, 
etc., 7�  be the vector of inter-individual random effects associated with the 
subject i, ! be the vector of fixed effects. 

A general population model is given by 

 �� � 8�!, 7�, 6��, [4.10] 

where 8 is a multi-dimensional function, and 7�  are supposed to be drawn 
from a normal distribution having zero mean and Ω covariance matrix, i.e., 

 7�~��0, Ω�. [4.11] 
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Eventually, the model can be expressed as follows: 

 �� � ����, 8�!, 7�, 6��� � �� ,  7�~��0, Ω�,  ��~�40, 2���� , 3�5. [4.12] 

Most of the non-linear mixed-effect modelling methods estimate the pa-
rameters using a Maximum Likelihood (ML) approach: the data probability is 
given by a function of the model parameters and parameter estimates are cho-
sen to maximize this probability. 

The overall likelihood is the product of all individual likelihoods 9� and 
since the likelihood must account for the random effects on the individual 
level, the individual likelihood is expressed as the integral over all possible 
values of 7� : 

 9�θ, Ω� � : 9�



�;� � : < =���|!, 7� , 6��>�7�|Ω�87�



�;� , [4.13] 

where > is a multivariate normal density function with zero mean and co-
variance matrix ?. 

The population parameters ' � �!, Ω� can be estimated by maximizing 9�!, Ω� or, similarly, minimizing the following Objective Function Value (OFV): 

 OFV � C2 log4L�θ, Ω�5. [4.14] 

Each time the likelihood is computed, during the maximization process, 
individual parameters φI can be derived. In particular, the inter-individual 

random effects are estimated with a ‘Maximum A Posteriori’ (MAP) approach 
using as prior for the their distribution 

 ηI~N40, ΩK5, [4.15] 

where ΩK is the previously estimated population variability. 

In particular, calling RI4φI, ξ5 � RI, the ηI estimates are obtained through 

the minimization 

 ηMI � argminηSTXI C fIWd4θY, ηI, aI5Z[\RI]�TXI C fIWd4θY, ηI, aI5Z[� ηI\ΩK]�
ηI, [4.16] 

and called ‘Empirical Bayes Estimates’ (EBE’s). Once the inter-individual 
random effects are computed, the individual parameters can be obtained ac-
cording to the population model 

 φ̂I � d4θY, ηMI, aI5, [4.17] 

and are called ‘Post-hoc estimates’. 
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3.1.2 Non-linear mixed-effect modeling: 

NONMEM 

 

 

NONMEM version VI (Icon Development Solutions) (Beal & Sheiner, 1998) 
is a software platform that allows to perform population analysis through the 
non-linear mixed-effect approach and whose name stands for ‘NON linear 
Mixed Effect Modeling’.  

The basic steps for running NONMEM are: 

(a) to organize data input, 
(b) to write the control file, which specifies the mixed-effect model, 
(c) to run the model and obtain model parameter estimates. 
  

(a) NONMEM needs ‘data input’ files organized into records with some 
pre-defined items as follows. The subject number, called ‘ID’, is the first item 
in each record. The records appear in subject order and, within a subject, they 
are organized by time if a time series is being analyzed. Time specification, 
called ‘TIME’, is usually the second item in each record. The dependent vari-
able, called ‘DV’, is the third one. Additional items can be added if the model 
requires so, for example subject covariates, such as weight, height, gender, etc.  

 

(b) Once data are organized, the model is specified in the ‘control file’, or 
‘control stream’, which for an estimation problem with categorical data typi-
cally contains the following control elements. 

 

$PROB States a name for the problem being solved. 

$DATA Specifies the name of the data file. 

$INPUT 
List the names of the data records in the input file, in 

the exact order of the data file columns. 

$PRED 
Describes the routine predicting the observations. It 

is the main part of the control stream and it specifies the 
mixed-effect model. 

$THETA 
Lists the initial estimates of the fixed-effect parame-

ters.  

$OMEGA 
Lists the initial estimates of the variance-covariance 

matrix for the inter-individual random effects. 

$SIGMA Lists the initial estimates of the variance of the intra-
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individual random effects. 

$EST 

Provides the parameters that control the estimation 
process. Typically includes: METHOD (indicating which 
estimation method has to be applied), MAX (maximum 
number of iterations), LIKELIHOOD (indicating whether 
the likelihood is defined by the modeller; this option is 
necessary in case of categorical data modelling). 

$COV 
Implies the estimation of the full variance-covariance 

matrix of the parameter estimates. This step is useful to 
get standard errors of the estimated parameters. 

$TABLE Produces an output table of the results. 

 

One-line comments can be specified after typing a semicolon. NONMEM 
needs specific keywords for each feature of a mixed-effect model, in particu-
lar: 

(i) THETA is a fixed effect parameter, i.e. an element of !.; 
(ii) ETA is an inter-individual random effects, i.e. an occurrence of 7�; 
(iii) EPS is an intra-individual random errors, i.e. an occurrence of ��; 
(iv) Y is an observation, ��( , or the correspondent user-defined likeli-

hood (if LIKELIHOOD is specified in $EST). 

 

(c) NONMEM estimates model parameters with a ML approach. The likeli-
hood of non-linear mixed-effect models, Equation [4.13], is often difficult to 
compute exactly because of non-linearity of the model in the random effects. 
To deal with this problem, three approximation methods have been imple-
mented in NONMEM: the ‘First Order’, the ‘First Order Conditional Estimation’ 
and the ‘Laplace’ methods, with high, medium and low levels of approxima-
tion, respectively. Within NONMEM, the Laplace method is the only one appli-
cable with categorical data. Therefore only this likelihood approximation is 
introduced in the following paragraph. 

 

 

3.1.3 Laplace approximation 

 

 

The Laplace method is based on the Laplacian approximation of the exact 
marginal (i.e., individual) likelihood specified by the hierarchical non-linear 
model (Equation [4.13]). Given a complex integral, _ `���8�, `��� can be re-



Chapter 3 

32 

expressed as abcde�f� � ad�f� and g��� can be approximated by a second-
order Taylor expansion around a point �h as: 

 g��� i g��h� � �� C �h�gj��h� � �� C �h��2! gjj��h�. [4.18] 

The approximated integration is called a first order Laplacian approxima-
tion to the true integration and is the following: 

 < `���8� � < ad�f�8� l < ad�fm�n�f]fm�do�fm�n�f]fm�p�! doo�fm�8�. [4.19] 

When considering 7� as � and therefore =���|!, 7� , 6��>�7�|Ω� as `���, this 
approximation allows to compute the approximated likelihood in closed form. 
The Taylor expansion is computed around the conditional estimates of 7� . 
Other details on how to derive the closed form and how NONMEM implements 
the likelihood maximization can be found in (Wang, 2007). 

 

 

3.1.4 Model selection 

 

 

When deciding to include a parameter in a model, objective measurements 
are needed to verify that the inclusion is relevant. Relevance can be defined as 
physiological plausibility, clinical impact or statistical significance. A combina-
tion of all these is usually used in combination with the assessment of the pre-
dictive performance of the model. Physiological plausibility as well as clinical 
impact are depending on the drug and disease and are therefore decided 
based on subject-matter information (Sheiner & Wakefield, 1999). Criteria for 
a parameter inclusion based on physiological plausibility and clinical impact 
need to be defined pre-analysis in order to make these measurements objec-
tive. 

 

Statistical significance 

The most commonly used test within PK-PD modeling to assess statistical 
significance is the Log-Likelihood Ratio (LLR) test. The ratio between the like-
lihood of the model with the new parameter included (the full model) or ex-
cluded (the reduced model), given that the models are nested, is assumed to 
be χ2-distributed with the number of differing parameters between the models 
as the degrees of freedom (dof). Models are nested if the full model can col-
lapse into the reduced model. The parameter can thus be included in the 
model based on a statistical significance level. This level is corresponding to 
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the type I error, i.e., the risk of including a parameter that does not belong to 
the model. The usual threshold on the level of significance for parameter in-
clusion-exclusion is p=0.05.  

The objective function value calculated by NONMEM is proportional to the 
OFV presented in Equation [4.14], and the difference in OFV between two 
models is then the likelihood ratio. Thus, the OFV can be used to perform sta-
tistical testing between nested models. A number of studies have been per-
formed to assess the robustness of the LLR test (Wahlby, Jonsson, & Karlsson, 
2001; Wahlby, Bouw, Jonsson, & Karlsson, 2002), but only one has been per-
formed with categorical data (Wahlby, Matolcsi, Karlsson, & Jonsson, 2004). 
The investigated data in this study was ordinal, originating from and analyzed 
with the proportional odds model. It was concluded that the LLR test performs 
well, with type I errors equal to or lower than expected. 
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3.2 Categorical data modeling 

 

 

As a starting point, the simplest case of modeling independent binary 
pooled data is considered. That is, data are observed once per individual (or if 
repeated measures are taken, they are considered as independent), take two 
values only (e.g., DV=1 or DV=0, i.e. response or no-response) and are consi-
dered as belonging to one unique individual. In this case the easiest way to 
model the data is to define the likelihood of each DV as its probability p if 
DV=1 and 1-p if DV=0. The value of π needs to be estimated in order to maxim-
ize the overall likelihood, defined as 

 9�q� � rs�1 C r�t]s, [4.20] 

where k is the occurrence of DV=1 and m is the number of observations. In 
this case the NONMEM control stream would look like this: 

$PROB Probability model for independent binary pooled data  

$DATA data  

$INPUT ID TIME DV 

$PRED 

   PROB = THETA(1) 

   IF(DV.EQ.1) Y = PROB 

   IF(DV.EQ.0) Y = 1-PROB  

$THETA (0,.5,1) ; fixed effect constrained between 0 and 1 

$EST LIKE  

The control element for the model estimation ($EST) states that the entity 
to model (Y) is in this case a user-defined likelihood, not an observation like it 
usually happens in PK-PD modeling. As seen with Equation [4.20], the likelih-
ood can be expressed in an exact closed form, therefore no approximation me-
thods are adopted in this case. Moreover, since the probability of a certain 
outcome, rather than the values of the outcome itself, is modeled, no residual 
error is defined in the model. 

If we want to consider that data come from different individuals with dif-
ferent characteristics, the naïve pooled approach needs to be replaced with a 
population one, and the best one, as already seen, is the non-linear mixed-
effect approach. In this case the individual probability pi deviates from the typ-
ical individual probability but still needs to be constrained between 0 and 1. 
This characterization can be obtained considering a new individual variable 
with values in (-∞, +∞), called gi and defined as the sum of the typical value g 
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and the random deviation ηi from g taken from a normal distribution with ze-
ro mean: 

 g� � g � 7� ,       7�~��0, Ω�. [4.21] 

The functions able to transform values in the non-bounded scale (-∞, +∞) 
back to values in the probability scale (0, 1) are called ‘link functions’ and are 
introduced in Paragraph 3.2.2. The most used ones are the ‘logistic’ functions. 
The models implementing this approach are called ‘logistic models’, regard-
less of the type of link function used (logistic or not). 

The NONMEM code becomes similar to the following: 

$PROB Mixed-effect probability model for independent binary data  

$DATA data  

$INPUT ID TIME DV 

$PRED 

   G = THETA(1)+ETA(1) 

   PROB = ... ; the link function of G is inserted here 

   IF(DV.EQ.1) Y = PROB 

   IF(DV.EQ.0) Y = 1-PROB  

$THETA .1 ; non-constrained fixed effect 

$OMEGA .5 

$EST LIKE METHOD=1 LAPLACE 

The ETA’s are therefore included in the model within a link function, 
which is always highly non-linear, hence the likelihood becomes intractable 
again (see Equation [4.13]). Among the estimation methods available in 
NONMEM VI, Laplace is the one introducing a lower level of approximation, 
since it uses a second order Taylor expansion instead of a first order one for 
linearizing the model about the ETA’s. Anyway, NONMEM does not allow First 
Order and First Order Conditional Estimation when the option LIKE is used, 
thus the choice of the Laplace approximation is compulsory. This choice is ex-
pressed by adding ’METHOD=1 LAPLACE’ in the $EST record. Other methods 
not implemented in NONMEM, such as the Gaussian Quadrature, have been 
shown to perform somewhat better in some situations, but often with stability 
issues (Jonsson, Kjellsson, & Karlsson, 2004; Plan, Maloney, Traconiz, & 
Karlsson, 2008). 

Let me consider now that more outcomes xit can be registered for a unique 
subject i at different values for the independent variable zt (time for example), 
i.e. data are longitudinal. In this general case the mixed-effect model for inde-
pendent binary data becomes 

 g�( � �v���( , 8�!, 7�, 6���,       7�~��0, Ω�, [4.22] 



Chapter 3 

36 

where the covariate effects are also included and �v is the individual model 
prediction in the scale (-∞, +∞). But the probability r�(  of a certain outcome 
for the i-th subject at time �( is given by a link function of g�( , hence the final 
probability model can be written as the following: 

 r�( � ����( , 8�!, 7� , 6���,       7�~��0, Ω�. [4.23] 

This equation is similar to Equation [4.12], and can be used as a user-
defined model for each observation likelihood when DV=1 (1-r�(  is used when 
DV=0). Consequently, the likelihood =���|!, 7� , 6�� of Equation [4.13] can be 
expressed by the product of the modeled probabilities of the outcomes. 

Similar considerations can be derived for polychotomous longitudinal 
data. Therefore, the two major differences between models for continuous and 
categorical data when the non-linear population approach is applied can be 
summarized as follows: 

• the likelihood or probability of a certain observation is used for the pa-
rameters estimation (instead of the observation itself); 

• the residual error is not considered. 

Categorical data can be modeled in many different ways, according to their 
specificities: data can be dichotomous or polycothomous, nominal or ordinal, 
and correlation (dependence) can be considered or not when data are repeat-
edly measured in a subject. Count and time-to-event data are other specific 
kinds of categorical data: examples of count data are the numbers of acid ref-
luxes, emetic episodes or epilepsy seizures per time interval; examples of 
time-to-event data are time until cardiovascular death, until AIDS for HIV pa-
tients, or until a side-effect like nausea. 

Models that have been recently widely used in population PK-PD modeling 
of categorical data (mostly for the PD part of it) are specified in Table 3.1 for 
the respective data type involved. The focus of this work is on models on poly-
chotomous longitudinal nominal data considering the correlation between the 
repeated measures. 

 

 

3.2.1 Markov-chain models 

 

 

Markov-chain mixed-effect models have been used for modeling of drug 
compliance (Girard, Blaschke, Kastrissios, & Sheiner, 2002), spontaneously 
reported side effects (Zingmark, Kagedal, & Karlsson, 2005), and sleep stages 
(Karlsson, et al., 2000). Compared to other models for categorical data, these 
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ones can be called ‘transition models’, since they describe the probabilities of 
transitioning between categories instead of the probabilities of the categories 
themselves. To model transitions between states means taking into considera-
tion that the states may be correlated. 

In fact, if observations in a subject show serial correlation, considering 
them as independent may bring to both modeling and simulation misspecifica-
tions. In the modeling process the information content may be overestimated, 
the time-course of dependence (correlation) would be ignored and inter-
individual variability may be overestimated. In the simulation process realistic 
time courses of the PD variable would be hardly produced. 

Sleep architecture provides us with a good example of how correlation 
may be fundamental in describing the data. Even if the only awake and asleep 
states are considered, the reader can easily understand that during nighttime 
their correlation is high: after moving from wake to sleep, many observations 
of sleep can be registered before observing wake again, and vice versa. If cor-
relation is not modeled, i.e. the probabilities of the two states are modeled in-
stead of the transitions between them, this feature will not be caught. 

The NONMEM control stream for a simple model of sleep/wake data could 
look like the following (not considering inter-individual variability for simplic-
ity): 

$PROB Transition probabilities between sleep and wake 

$DATA data  

$INPUT DV PDV  

;PDV = Value of immediately preceding observation 

$PRED 

   P10 = THETA(1) 

   P01 = THETA(2) 

   IF(PDV.EQ.0.AND.DV.EQ.1) Y=P10 

   IF(PDV.EQ.0.AND.DV.EQ.0) Y=1-P10  

   IF(PDV.EQ.1.AND.DV.EQ.0) Y=P01  

   IF(PDV.EQ.1.AND.DV.EQ.1) Y=1-P01  

$THETA  (0,.1,1)     ; PROB AWAKE GIVEN ASLEEP 

$THETA  (0,.1,1)     ; PROB ASLEEP GIVEN AWAKE 

$ESTIM LIKE 

 

In the model above, correlation is considered only between states occur-
ring at two consecutive time points. In other words, a first-order Markov-
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chain model is implemented, as next paragraph will define more formally. 
However, the probability of being in a specific state at time t can generally de-
pend on a longer history of the chain. Moreover, each transition probability 
can be described as time-independent (‘homogeneous’) or time-dependent 
(‘non-homogeneous’). In the latter case a functional form of the time depen-
dence needs to be chosen. 

 

 

3.2.2 Basic theory on Markov chains 

 

 

Let a random process be a finite sequence � � w�(x(y� � w��, ��, … x of 
random variables taking values in a discrete set z. The elements of z are called 
‘states’ of the system and thus z the ‘state space’. 

The index t of �( is usually thought as a ‘time index’, even though it is not 
necessarily related to the concept of time, but rather expressing the ordered 
evolution of the process. Consequently, �( represents the state of the process 
at ‘time’ �(, where � is the ‘time’ vector. 

The process � � w��, ��, … x is called ‘Markov chain’ if it satisfies the 
‘Markov property’: 

 {��(n� � �(n�  | �( � �( ,  �(]� � �(]� , … ,  �� � ���� {��(n� � �(n� | �( � �(�, [4.24] 

for every sequence ��, … , �( , �(n�  of elements of z and for every % | 1. 

This property states that the probability of an event one step into the fu-
ture conditioned on the entire past up to the present time t is equal to the 
conditional probability of the future event given just the present one. In par-
ticular, a sequence of such random variables is said to be a ‘first-order Mar-
kov-chain process’ because each outcome depends exclusively on the previous 
state.  

The process � is an ‘Nth-order Markov-chain process’ if the dependency 
between the random variables constituting the process involves N successive 
steps in the sequence, i.e., if the probability of the future outcome is condi-
tioned on the N previous states: 

 {��(n� � �(n�  | �( � �( , … ,  �� � ���� {��(n� � �(n� | �( � �( , … ,  �(]�� �(]��. [4.25] 

Given a first-order Markov-chain process � � w��, ��, … x  with k and m in 
its state space z, the conditional probability 
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 rst�%� � {��(n� � } | �( � ~� | 0 [4.26] 

is called the ‘transition probability’ from k to m at time zt. If the transition 
probabilities do not depend on time, i.e. rst�%� � rst�% � >� � rst, *% ��n, *> � �n , the Markov chain is said to be ‘time-homogeneous’.  

Assuming a finite state space z, that is z � w0, 1, … , �x, it is useful to collect 
the transition probabilities from/to the states of z in a matrix: 

 {�%� � �rhh�%� rh��%�r�h�%� r���%� � rh��%�� r���%�	 	r�h�%� r���%� 	 	� r���%��, [4.27] 

which is called ‘transition probability matrix’. Each row of {�%� represents 
all the transition probabilities from a single state of z: therefore, the probabili-
ties in each row must sum up to 1: 

 � rst�%� � 1�
t;h , * # � z. [4.28] 

Assuming to observe M independent realizations of the process of the 
same length N: 

 ���� � w���, ���, ���, … , ���x ���� � w���, ���, ���, … , ���x … … ��
� � w�
�, �
�, �
�, … , �
�x, 
[4.29] 

it is possible to define some statistics depending on the data: 

• N�� � number of transitions from state k to state m in all the realiza-
tions, 

• N� � number of transition from state k, 

• TR � total number of transitions in the data, 

• SO� � number of occurrences of state k in the data. 

Once these statistics are available, the frequency of occurrence of each 
stage is computed as 

 �Ms � ��s∑ ��s�s;h , * ~ � z, [4.30] 

and the 'transition frequencies' between stages are calculated as 

 ��st � �st�s , * ~, } � z . [4.31] 
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Every single realization of the process can be considered as a path in time 
through the state space, and its probability 

 {����, … , �(� � ���, … , �(�� [4.32] 

is the joint probability of ���, … , �(�. 

For a Markov chain � and for any path w��, ��, ��, … , �(x, the conditional 
probability of the path conditioned on the first value is the product of the 
transition probabilities between successive states of the path: 

 {4���, … , �(� � ���, … , �(���� � ���� rf�fprfpf� � rf���f� , [4.33] 

and consequently the probability of the path is: 

 {4���, … , �(� � ���, … , �(�5� {��� � ��� rf�fprfpf� � rf���f� . [4.34] 

 

 

3.2.3 Link functions 

 

 

Different link functions (Agresti, 2002) are used to ensure that the proba-
bility of an event ranges from zero to one, while the estimated parameter 
ranges from –infinity to infinity. The ‘logit’ or ‘log of odds’ transformation is by 
far the most used transformation of categorical data, possibly for its mathe-
matical tractability. The cumulative distribution of the observations is as-
sumed to be logistically distributed and it is defined as 

 g�r� � logit�r� � ln r1 C r. [4.35] 

The link function which transforms back the logit values into probability 
values is the so-called ’logistic’ function: 

 r�g� � exp�g�
1+exp�g�. [4.36] 

Other transformations are also possible, for example the ‘probit’ one. This 
transformation assumes that the cumulative distribution of the observations 
is the inverse of the cumulative normal distribution: 

 g�r� � probit�r� � Φ]��r�, r�g� � Φ�g�. [4.37] 

The ‘log-log’ transformation assumes instead that 
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 g�r� � log-log�r� � ln�C ln�r��,  r�g� � exp4Cexp�g�5. [4.38] 

Another quite common transformation is the ‘complementary log-log’, 
which assumes that the cumulative distribution is the Gumbel distribution: 

 g�r� � complementary log-log�r� � ln ln�1 C r�,  r�g� � 1 C exp4Cexp�g�5. [4.39] 

The different transformations give rise to slightly different cumulative 
probability distributions, schematically depicted in 3). Notable is that both the 
logit and the probit transformations are symmetric while the complementary 
log-log is not. The largest differences are also seen at the tails of the distribu-
tions. 

The major drawback of using link functions in a model is that once we 
model a logit, for example, the parameters used to relate the chosen predictors 
of the logit to the logit itself loose their direct physiological meaning. If, for 
instance, a logit is modeled as function of dose (the predictor) through a linear 
model 

 g � �6$a=#�a � �=1ra · "1$a, [4.40] 

than the meaning of the parameter Slope with respect to the  probability 
outcome is lost: the diagram of the relation between dose and g is a straight 
line, while the diagram of the relation between dose and probability is not. 

Another drawback comes from the definition of the uncertainties on the 
parameter estimates through standard errors (se) and relative standard er-
rors (rse). The same standard error (se � 0.2) on two estimates of a logit pa-
rameter, gM � 0 and gM � 2, for example, reflects a certain uncertainty on the 
estimated probability value r̂ � 0.50  (i.e. r � -0.45,0.55/) and lower uncer-
tainty on the estimated probability value r̂ � 0.88 (i.e. r � -0.86,0.90/), re-
spectively. Relative standard errors, instead, cannot be used at all: if a logit 
estimate is close to zero, this measure explodes. 

Each of the link functions introduced above is defined on probabilities of 
binary events. No other link functions have been implemented in the literature 
within mixed-effect modeling. Nevertheless, two published works handled po-
lychotomous nominal data with population models (Karlsson, et al., 2000; 
Kjellsson, Ouellet, Corrigan, & Karlsson, 2008), in particular sleep data with 
more than two categories. The solution they provided was to consider each 
transition as a binary event, i.e. an event with only two possible outcomes: 

• moving to one specific sleep stage S; 

• moving to a sleep stage other than S. 

In Karlsson’s work (Karlsson, et al., 2000), six different stages were consi-
dered, hence a total of 30 transitions from one stage to another were possible. 
Not every transition was equally likely though, and certain transitions hardly 
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ever occurred in practice. Therefore, 17 transitions were modeled at the end. 
In Kjellsson’s work (Kjellsson, Ouellet, Corrigan, & Karlsson, 2008) 16 transi-
tions were modeled instead. As no parameters were shared between the dif-
ferent transitions, all transitions were modeled separately. It is evident that 
working with 17 or 16 models causes a very extensive work. Moreover, the 
reader needs to consider that the frequent sampling of sleep contributes to the 
complexity of the model building as most software for mixed-effect modeling 
has an upper limit for the number of observations allowed per individual. In 
addition, the run-times of the models increase rapidly with increasing number 
of observations. 

With polychotomous data (in a mixed-effect transition model), the sum of 
all probabilities of transitions starting from a certain state needs to be equal to 
1, both for the individuals in the population and for the typical individual. In 
the binary-logit approach this constrain is enforced from estimating one tran-
sition probability as 1 minus the sum of all the other previously estimated 
transition probabilities from the same state (Karlsson, et al., 2000). But this 
strategy does not provide precise information on the inter-individual distribu-
tion for the parameters involved in the description of the lastly modeled tran-
sition. 
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3.3 Conclusions 

 

 

This chapter provided an introduction to the estimation approach and 
software platform which will be adopted for modeling sleep data. It also pre-
sented the specificities of models dealing with categorical data. When model 
estimation is based on the maximization of categorical data likelihood, the 
main conclusions are the following: 

• the likelihood or probability of the observations need to be used for 
parameter estimation, instead of the observations themselves; 

• the residual error cannot be considered. 

Sleep data are categorical polychotomous longitudinal data and have al-
ready been modeled twice within the non-linear mixed-effect approach 
(Karlsson, et al., 2000; Kjellsson, Ouellet, Corrigan, & Karlsson, 2008). In both 
cases the link functions adopted were logit functions and the events to model 
were dichotomized. This strategy presents some drawbacks, which this thesis 
aims to remove. Next chapter will propose new link functions, the so-called 
‘multinomial logistic functions’, as the appropriate tool to parameterize sleep 
data models. 
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3.4 Tables and figures 

 

 

Table 3.1 Different relevant types of categorical data, with examples of the 
respective models used in the literature for their description in the population 
PK-PD modeling context. 

 

Correlation 

considered 
Data Model 

no 

binary data logistic models (Zeger & Liang, 1992) 

ordinal data 

proportional (Sheiner L. B., 1994) or differential odds 
models (Kjellsson, Zingmark, Jonsson, & Karlsson, 
2008), 
models for continuous data, 
models for binary data (Armstrong & Sloan, 1989; 
Stromberg, 1996; Sankey & Weissfeld, 1998) 

count data Poisson models (Snoeck & Stockis, 2007) 

yes/no 

[repeated] time - to - 
[categorical] event 
data, 
repeated categorical 
events per time inter-
val 

time-to-event models (Cox, Veyrat-Follet, Beal, Fuseau, 
Kenkare, & Sheiner, 1999; Spruance, Reid, Grace, & 
Samore, 2004; Plan, Karlsson, & Karlsson, 2010) 

yes 

binary data 
logistic models with Markov features (Gallop, Ten 
Have, & Crits-Christoph, 2006) 

ordinal data 
proportional odds models with Markov features 
(Zingmark, Kagedal, & Karlsson, 2005; Ito, Hutmacher, 
Liu, Qiu, Frame, & Miller, 2008; Henin, et al., 2009) 

count data 
Poisson models with Markov features (Traconiz, Plan, 
Miller, & Karlsson, 2009) 

nominal data 
compartmental chains (Bergstrand, Soderlind, 
Weitschies, & Karlsson, 2009) 
Markov-chain models (Karlsson, et al., 2000) 
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Figure 3.1 The cumulative probability distributions obtained with different 
link functions used for transforming categorical data: the logit, the probit, the 
log-log and the complementary log-log. 
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Chapter 4  

Multinomial logistic functions in 

a Markov-chain model of sleep 

architecture 

 

 

Some attempts to apply a Markov-chain model for describing sleep data 
are reported in the literature: in 2002 Gregory and Cabeza (Gregory & Cabeza, 
2002) used this approach for describing the internal architecture of sleep in 
rats. However, they modeled sleep as a two-state process, considering only 
REM and non-REM sleep. Kemp et al. (Kemp & Kamphuisen, 1986) modeled 
rates of transition among the various sleep stages, but either assumed con-
stant rates throughout the night or estimated their dynamics by smoothing 
observed transition frequencies by hand. More recently, Karlsson et al. 
(Karlsson, et al., 2000) and Kjellsson et al. (Kjellsson, Ouellet, Corrigan, & 
Karlsson, 2008) proposed a Markov-chain model using a mixed-effect ap-
proach and modeling the transition probabilities among different stages as 
binary logistic functions. 

Building models for sleep data using data from a clinical study is more 
demanding than most categorical data analyses. The most recent and interest-
ing model choice for sleep data is the Markov-chain model, as measuring sleep 
each 30-second generates data where the observations are dependent on pre-
vious observations. The quite large number of categories, the many observa-
tions and the potential numerous study arms in a clinical study all adds to the 
complexity of the model building, apart from the complexity the data itself 
adds. 

This chapter investigates the development of a mixed-effect Markov-chain 
model in which binary logistic functions are replaced by multinomial logistic 
functions, in order to strongly reduce the model building process. By the way, 
the new functions are also more suited to the polychotomous nature of the 
data to describe, as already introduced in Paragraph 3.2.2. Paragraph 4.1 de-
scribes the clinical study providing the learning dataset of this analysis, and 
the characteristics of the insomniac subjects involved. Paragraph 4.2 describes 
a base first-order Markov-chain model in which the new link functions are ap-
plied. Its performance in describing the data is also analyzed. This model and 
its evaluation have been recently published by the author of this thesis and 
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coauthors (Bizzotto, Zamuner, De Nicolao, Karlsson, & Gomeni, 2010). The 
model is then further developed removing the first-order assumption on the 
Markov structure and investigating several other features, some of which 
were already discussed by the authors of previously published sleep models. 
The evaluation of the final model and its use for covariate analysis are left to 
Chapter 5 and Chapter 6. 
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4.1 Materials 

 

 

Data were obtained from a polysomnograghic (PSG) multi-centre, random-
ized, double-blind, placebo-controlled, parallel group study designed to inves-
tigate a new candidate drug (Figure 4.1). Male and female subjects diagnosed 
with primary insomnia were chosen as feasible candidates for the study. The 
eligibility of the subjects was determined on the basis of specific PSG variables 
(e.g., LPS, WASO) obtained after a screening period consisting of a first clinical 
screening visit followed by a 2-night PSG recording in a sleep laboratory. After 
a week of daily placebo administration, subjects were randomized in the 
study, each arm assuming placebo or two different doses of the drug for 28 
days before bedtime. PSG was recorded in three occasions in two consecutive 
days (1-2, 13-14 and 27-28) for each arm of the study. 

Subjects taking part in the selection for this study had a diagnosis of pri-
mary insomnia and insomnia symptoms for at least three months, according to 
the 'Diagnostic and Statistical Manual of Mental Disorders - Fourth Edition - 
Text Revision (DSM - IV - TR)' (American Psychiatric Association, 2000), crite-
ria 307.42. For being included in the study, the mean of PSG variables ob-
tained after the two screening nights had to fall within the following ranges: 

• mean TST: between 240 and 390 minutes; 

• mean LPS: at least 30 minutes and not less than 20 minutes on either 
night; 

• mean WASO: 60 minutes or more and neither night less than 45 min-
utes. 

The model described in this chapter is developed based only on the first 
night of the double-blind treatment nights, from M=116 patients treated with 
placebo. Since few epochs of stages 3 and 4 were reported, they were merged 
in a single stage called ‘slow-wave sleep’ stage. Hence, the stages considered 
are the awake stage (AW), stage 1 sleep (ST1), stage 2 sleep (ST2), slow-wave 
sleep (SWS) and REM sleep (REM), and the state space is z = {AW, ST1, ST2, 
SWS, REM}. 

The sequence of sleep stages can be described as in Equation [4.29], where 
N = 960 is the number of samples for each subject and M = 116 is the number 
of subjects. In fact, PSG signals are recorded for 8 hours along the night and 
they are translated into sleep stages at each 30-second time interval, called 
‘epoch’. 

Age, gender and body mass index (BMI) were available for each patient. 
Demographic statistics are reported in Table 4.1.  
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4.2 A new Markov-chain model 

 

 

This section is aimed at developing a new mixed-effect Markov-chain 
model for the data described above. The innovative element in this model is 
the introduction of multinomial logistic functions in place of the binary ones 
adopted in previous analysis of sleep data (Karlsson, et al., 2000; Kjellsson, 
Ouellet, Corrigan, & Karlsson, 2008). 

 

 

4.2.1 Methods 

 

 

Multinomial logistic functions 

Let ��( represent the state (i.e. the sleep stage) of the i-th patient at epoch t 

and let each single realization of the process (i.e. each patient’s sequence) 
obey to a first-order Markov-chain. 

Let then the binary variable ��st( represent the transition of the i-th indi-
vidual from state k at epoch (t-1) to state m at epoch t, that is: 

 ��st( � �1 if ���(]�� � ~ and ��( � }, with ~, } � z0  otherwise
  [5.1] 

Then, for given values of k � z (i.e. the starting state of a transition) and 
for a given time t � {1, 2, … , N}, the vector 

 �¡�s( � -��s¢£( , ��s���( , … , ��s¤¥
(/� [5.2] 

is a multinomial random variable representing all the possible transitions 
from state k at time t. This multinomial random variable is characterized by its 
probability vector: 

 r¦�s�%� � -r�s¢£�%�, r�s����%�, … , r�s¤¥
�%�/� , [5.3] 

where r�st�%� � {���( � }|���(]�� � ~� | 0 is the probability of moving 

from k to m at time t. Since r¦�s�%� is the k-th row of the transition probability 
matrix characterizing the process at time t, than 

 � r�st�%�t�z � 1. [5.4] 
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The model for the transition from the state k of the chain is therefore 

 ��¡�s(|r¦�s�%�� § ¨©=%#�1}#6=�r¦�s�%��. [5.5] 

In our context, the transition probabilities represent the model parame-
ters to be estimated according to the sleep data. To avoid estimates con-
strained between 0 and 1, such parameters are described through link func-
tions. The natural way to identify parameters of a multinomial distribution is 
to transform them into multinomial logit functions, which can be defined as 

the following for all i ∈ {1, …, M}, k, m and r ∈ z, and t ∈ {1, …, N}: 

 g�st_«�%� � log r�st�%�r�s«�%� . [5.6] 

For each triple (i, k, t), a certain value of r - called ‘reference state’ - is tak-
en from z, and all the values in z are taken for m. In such a way, 5 different 
logit functions are defined, one of which results to be equal to zero. Using the 
different logits and recalling that the sum of the probabilities conditional on 
xi,t-1 = k is equal to one, the transition probabilities  r�st�%� are expressed as 
‘generalized logistic functions’ for the triple (i, k, t) and all the values of m in z: 

 r�st�%� � exp ¯g�st_«�%�°∑ exp ¯g�st_«�%�°t�z . [5.7] 

Hence, instead of the probability vectors r¦�s�%� defined in Equation [5.3], 
the parameters of the model are the corresponding logit vectors: 

 g¦�s_«�%� � Tg�s¢£_«�%�, g�s���_«�%�, … , g�s¤¥
_«�%�[� ,~ � z, i � w1, … , ¨x, % � w1, … , �x, [5.8] 

which fully characterize the model. Note that if no correlation is assumed 
between logits with different values for k, i.e. for different stages of departure, 
the model can be divided into five different smaller models. Each sub-model, 
referred to as ’sub-model k’, describes the transitions from a specific sleep 
stage and its parameters can be identified separately from the others. 

Each sub-model is estimated using a non-linear mixed-effect approach for 
taking the variability of the population into consideration. That is, each indi-
vidual logit g�st_«�%� is thought to be normally distributed around its typical 

value: 

 g�st_«�%�~� ¯gst_«�%�, ±�st_«�%�°, [5.9] 

where gst�%� is the typical value for the logit and ±�st�%� is the variance 
of the inter-individual distribution. Considering the vector-matrix notation 

 g¦�s_«�%�~� ¯g¦s_«�%�, Ωs_«�%�°, [5.10] 
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where g¦�s_«�%� is the vector of Equation [5.8] and is assumed normally dis-

tributed around the vector of population values for the logit functions g¦s_«�%� with covariance matrix Ωs_«�%�. 

 

Nighttime as a predictor of logits 

The model parameters are assumed time-varying considering the Markov-
chain model as non-homogeneous. Temporal dependence are implemented 
assuming that parameters are piecewise linear functions of nighttime as sug-
gested by (Karlsson, et al., 2000). In order to choose the nighttime values of 
the knots (called ‘break-points’) between the different line segments, Karlsson 
et al. proposed two different criteria: 

• equally spaced break-points; 

• equi-informative break-points such that all intervals contain the same 
amount of data. 

The data available for this project were initially modeled with a Markov-
chain model parameterized as in Karlsson et al. (Bizzotto, Zamuner, Nucci, 
Cobelli, & Gomeni, 2008), i.e. using binary logistic functions instead of the mul-
tinomial ones. In that context, it was found that the selection of equi-
informative break-points guaranteed better convergence properties as well as 
a more accurate description of night dynamics. Accordingly, six equi-
informative nighttime values for the break-points, collected in the vector 

 �{ � -�{², �{�, �{0, �{", �{,, �{³/� , [5.11] 

are fixed in the model. 

The typical individual logits at the break-points can be expressed with the 
vector: 

  ¦  _ � T   _  ,    _  ,    _  ,    _  ,    _«¥, gst_«´[� , [5.12] 

where gst_«¢ , gst_«µ , gst_«¶,gst_«·, gst_«¥  and gst_«´ are the typical in-

dividual values of the logit km at times BP. The individual logits at the break-
points can be expressed with the vector: 

 g¦�st_«� Tg�st_«¢, g�st_«µ , g�st_«¶ , g�st_«· , g�st_«¥ , g�st_«´[�� T4gst«_¢ � gM�st_«5, 4gst«_µ � gM�st_«5, 4 gst_«¶� gM�st_«�, 4gst_«· � gM�st_«5, 4gst_«¥ � gM�st_«5, 4 gst_«´� gM�st_«�[� , 
[5.13] 

where gM�st_« is the individual deviation from the logit km and is an Empir-

ical Bayes Estimate (EBE) (Equation [4.16]). It is implicit in this equation that 
the individual deviations of logit functions from the typical values are con-
strained to be constant at the different break-points, meaning that 
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 Ωs_«�%� � Ωs_«      *% � �{. [5.14] 

Moreover, a diagonal Ωs_«  is assumed. These hypothesis were formulated 

in order to avoid over-parameterization and the consequent over-fitting of 
experimental data. In the end, the parameters to be identified are g¦st_«  and Ωs_«, * k, m ∈ z. 

 

Other model features 

Each individual is assumed to be awake in the first epoch of the night. No 
correlations are assumed between parameters with different values for k (i.e. 
regarding transitions from different sleep stages), so that each sub-model k, k 

∈ z, can be identified separately from the others. 

The reference state r in the definitions of the logit functions (Equation 
[5.6]) is different from one sub-model to the other. Considering a generic sub-
model k, we choose as reference state the sleep stage r in z such that yikrt 
equals 1 less frequently across t and i. In such a way, we avoid identifying lo-
garithmic functions with nearly zero arguments, whose sensitivity is high, the-
reby obtaining more robust estimates of fixed and random components of the 
logits. 

Each sub-model is identified using a maximum likelihood approach. Con-
sidering sub-model k, the likelihood contribution from individual i is given by 

 9�s_« � < ¸ : r�st�(� ¯g¦�s_«�%�°(:fº�����;s » >�7�|?s_«�87�. [5.15] 

where h is a multivariate normal density with zero mean and covariance 
matrix Ωs_«. 

The overall likelihood function Lk_r for sub-model k is then the product of 
the contributions from all the individuals. The likelihood Lk_r is maximized us-
ing the Laplacian method in NONMEM version VI (ICON Development Solu-
tions) (Beal & Sheiner, 1998), with the centering option. 

 

Model evaluation 

During model development, each sub-model is evaluated through inspec-
tion of the objective function value (OFV), which provides a statistic indicator 
of the relevance of inclusion of new parameters in a model (see Paragraph 
3.1.4). Precision of parameter estimates is checked looking at the variance-
covariance matrix of the parameter estimates. 

Goodness-of-fit inspection is then performed by comparing the observed 

transition frequencies ��st, * ~, } � zz (Equation [4.31]) when all data are 
merged and grouped by time with the average of individual transition proba-
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bility estimates merged and grouped in the same manner. Since observed fre-

quencies of transitions ��st from stage k to m at epoch t is computed just on 

subjects which are in stage k at time t-1, the transition frequencies ��st¼ are 

evaluated over time periods, indexed by j, each covering one tenth of night 
time; the average of individual transition probability estimates is computed on 
the same time intervals and the same subjects. The choice of 10 intervals of 
equal width (48 minutes) is based on two key features: to adequately follow 
sleep physiological variations across the night and to include a significant 
amount of data in each interval for computing confident frequencies. 

In order to provide precision on estimated transition frequencies, the 90% 
confidence intervals are computed as 

 ��st¼ ½ 1.645¾��st¼41 C ��st¼5��s¼ , [5.16] 

where ��s¼ is the total number of observations of stage k in the time pe-

riod j across all subjects (Bland, 2000). However, this evaluation ensures only 
the agreement between naïve pooled means of predictions and observations. 
It cannot be used, instead, for evaluating the goodness of population parame-
ter estimates. 

A further evaluation of sub-model performance after its estimation is 
achieved comparing the distributions of individual posterior estimates with 
the estimated between-subject variability. To this end, p-values for the null 
hypothesis that the gM�st_« values are distributed around the components of g¦st_«  are computed * ~, } � z and checked. Moreover, the η-shrinkage �st_« 

(Karlsson & Savic, 2007) is computed * ~, } � z as follows: 

 �st_« � 1 C �"4gM�st_«5±s_«t , [5.17] 

where SD is a standard deviation and ±s_«t  are the square roots of the di-

agonal elements of Ωk_r. 

Once all the sub-models are assessed, identified, and evaluated, they are 
merged together in a unique model. This is used to produce, through Monte-
Carlo simulation, 100 new datasets with the same number of individuals as 
the original one. 

The model performance in the prediction of the sleep aggregated parame-
ters (WASO, LPS, etc.) is then tested through the implementation of the ‘sim-
plified Posterior Predictive Check’ (sPPC), as suggested by (Karlsson, et al., 
2000). Since sleep aggregated parameters (or at least some of them) are usual-
ly considered as the ‘efficacy endpoints’ of clinical studies aimed to test effica-
cy of hypnotic drugs, this term will also be used as synonymous of ‘aggregated 
parameters’. The individual values of each of these parameters, derived from 
the observed data, are compared to the corresponding values computed from 
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the simulated data. In particular, for any given parameter, the median of the 
individual values is computed in each dataset (observed or simulated) and the 
relative deviations of medians are calculated as follows: 2a=6%#�a"a�#6%#1�� ¨a8#6�,�8r1#�%¿�tÀbÁ(ÂÃ C ¨a8#6�,�8r1#�%ce¿Â«ÄÂÃ¨a8#6�,�8r1#�%ce¿Â«ÄÂÃ . [5.18] 

For each endpoint, the distribution of relative deviations is computed and 
plotted in box-whisker plots. Simulations and goodness-of-fit plots are pro-
duced using the R package (R 2.10.1 from the R Development Core, 2009). The 
considered parameters of interest are the following: 

• Latency to Persistent Sleep (LPS), 

• Wake After Sleep Onset (WASO), 

• Total Sleep Time (TST), 

• time spent in each stage (tAW, tST1, tST2, tSWS, tREM), 

• time spent in non-REM sleep (tNREM), 

• sleep efficiency in 0-2 hours of bed time (SE1), 

• 2-4 hours of bed time (SE2), 

• 4-6 hours of bed time (SE3), 

• 6-8 hours of bed time (SE4), 

• mean extension of each sleep stage (meanAW, meanST1, meanST2, 
meanSWS, meanREM),  

• number of transitions to each stage (nAW, nST1, nST2, nSWS, nREM). 

 

 

4.2.2 Results 

 

 

The 5 specified sub-models are identified according to the assumptions 
described above. For 4 of them, NONMEM is unable to compute the variance-
covariance matrix of the parameter estimates due to numerical problems in 
the estimate of the Hessian matrix. Therefore bootstrap analysis is performed 
for each sub-model, producing the results shown in Table 4.1, where popula-
tion value estimates and their 90% confidence intervals are reported. The 
same information is used to build plots in Figure 4.2, showing the 5 time-
profiles of the transition probabilities from a specific sleep stage. These plots 
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highlight the property enjoyed by Markov-chain models built on multinomial 
logistic functions: by construction, probabilities sum up to one. Moreover, the 
reliability of likelihood maximization is confirmed by non-zero gradient values 
for the likelihood surface in the maxima and the narrow confidence intervals. 
The narrowest intervals are obtained from the model describing transitions 
from stage 2 (ST2) and REM sleep, while the largest ones are obtained when 
considering transitions from slow-wave-sleep stage (SWS), for which less data 
were available. 

In most cases there is no need for zero diagonal elements of Ωk_r, as shown 
in Table 4.3, where values are reported together with their confidence inter-
vals. Such values are used to simulate the distribution of individual probability 
temporal profiles, which are shown in Figure 4.3 for some transitions chosen 
as examples. In the same plots, other information is shown with the aim of 
performing the goodness-of-fit inspection previously described in the ‘Model 
evaluation’ section above. A very good match is obtained between mean ob-
served frequencies and mean post-hoc estimates, which lay inside the fre-
quency confidence interval with very few exceptions. The p-values for the null 
hypothesis that the means of the gM�st_« values, computed * ~, } � z, are null 

are close to 1. The estimated η-shrinkage parameters are reported in Table 
4.4: their magnitude is high, i.e. >25%, in 4 cases out of 16. The transitions 
mostly affected by shrinkage are the ones leaving SWS: shrinkage results 
greater than 40% for the logit value defined on the ratio between the proba-
bility of staying in SWS and the probability to move to REM sleep. 

Simplified Posterior Predictive Check indicates a good agreement between 
simulated and observed efficacy endpoints in most cases (Figure 4.4). Only 3 
out of 23 median aggregated parameters computed from the real study falls 
outside the ranges of the median values for the simulated studies: each of 
them, i.e. median time spent in SWS (tSWS), median number of awakenings 
(nAW) and median number of transitions to SWS (nSWS), is under-predicted. 
Figure 4.5 splits night time into 10 consecutive intervals: in each of them the 
median relative frequency of the various sleep stages is represented for both 
the simulated datasets and the observed one. Such representation gives some 
hints on how the deviations observed for the efficacy endpoints result from a 
precise temporal dynamics. In particular, in the first 48 minutes it shows an 
under-prediction of wake time covered by SWS, while thereafter a constant 
slight over-prediction of wake time is covered by a little under-prediction of 
SWS, sooner, and ST2, later. 
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4.2.3 Discussion 

 

 

This is the first time multinomial logistic functions have been employed in 
the implementation of mixed-effect Markov-chain models for analyzing no-
minal polychotomous pharmacodynamic data. 

Two main assumptions are adopted. The first one is the definition of a 
unique time-independent inter-individual source of variability in the specifica-
tion of each logit function. In this way, for what concerns between-subject va-
riability identification, time frames where more raw data are observed carry 
their informative content to frames featuring fewer data. Moreover, for a spe-
cific subject, time frames where most observations are reported play a major 
role in the definition of the post-hoc estimate of the corresponding logit time-
profile, which is constrained to be parallel to the typical profile. 

The second assumption is the description of the sequence of sleep stages 
as a first-order Markov chain. The validity of this assumption is assessed via a 
simulation-based approach: in fact, sPPC generally shows good adherence be-
tween simulations and observations. However, the observed discrepancies 
between predictions and the real dataset suggest that the model may be fur-
ther improved. Focusing, for example, on the awake stage, the short predicted 
median time spent in this stage is likely due to the lack of at least one long pe-
riod of such stage during the night. Also, very short periods of continuous 
wake (even one epoch only) are less easily predicted, causing an under predic-
tion of the number of awakenings. These aspects can be highlighted also for 
slow-wave sleep and, even to a certain extent, for stage 2 and stage 1 sleep. In 
this regard, previous works on Markov-chain models for sleep architecture 
(Karlsson, et al., 2000; Kjellsson, Ouellet, Corrigan, & Karlsson, 2008) found a 
significant stage time influence on most transition descriptions, where stage 
time was defined as the time elapsed since last change in sleep stage. Keeping 
into account stage times could reduce the deviations described above, in par-
ticular if transition probabilities are longer for shorter stage times and shorter 
for longer ones. Although alternative models may deserve consideration, the 
first-order Markov chain considered here allows us to perform a first evalua-
tion of multinomial logistic functions in the mixed-effect Markov approach. 
Also, it produces realistic transition probability descriptions which are imme-
diately interpretable by clinicians and sleep specialists at either estimation or 
prediction level. 

The analysis of the identification steps for the different sub-models reveals 
that the proposed approach is generally robust provided that an adequate 
sample size is guaranteed. In this respect, the sub-model SWS, the least sup-
ported by data (especially in the second part of the night), exhibits the worst 
parameter uncertainty and shrinkage; moreover, large between-subject varia-
bility is estimated, together with a strong deviation between the typical prob-
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ability profile and the observed transition frequency. It is not easy to under-
stand whether these outcomes are entirely due to physiological reasons, but I 
conjecture that the proposed constrains on variability of logit functions is still 
insufficient to avoid over-fitting. In such a case, the reduction of the number of 
break points and sources of variability may lead to some improvement. Im-
provements could also be obtained by including more PSG night records in the 
dataset, which is possibly one of the first steps for a further development of 
the proposed modeling approach. 

The proposed implementation of multinomial logistic functions reduces 
the number of sub-models to be identified: from 20 sub-models using the bi-
nary-logit approach (Karlsson, et al., 2000) to 5 sub-models in the new ap-
proach (one for each sleep stage). The total number of parameters to be esti-
mated with the two approaches is the same for both typical and random ef-
fects. Despite longer run-times, the reduced number of sub-models strongly 
simplifies model building. Moreover, multinomial logistic functions ensure 
that the sum of all probabilities of transitions starting from a certain stage is 
equal to one, both at the individual and the typical subject level. In the binary-
logit approach such a constraint was enforced from estimating one transition 
probability as 1 minus the sum of all the previously estimated transition prob-
abilities from the same sleep stage (Karlsson, et al., 2000): however, it is not 
generally true that this can be always done and such a methodology does not 
provide precise information on the shape of the individual profile distribution 
for the lastly estimated transition probability. 
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4.3 The final Markov-chain model 

 

 

Different models have been proposed to characterize the time-course of 
sleep stages in groups of individuals, in particular those by Karlsson et al. 
(Karlsson, et al., 2000), Kjellsson et al. (Kjellsson, Ouellet, Corrigan, & 
Karlsson, 2008) and Bizzotto et al. (Bizzotto, Zamuner, De Nicolao, Karlsson, & 
Gomeni, 2010). The latter is the one described in Paragraph 4.2. All of them 
used Markov chains for describing the time-course of transition probabilities 
between sleep stages in insomnia patients. Karlsson et al. introduced Markov-
chain models as tools for describing sleep data, included the so-called ‘stage 
time effects’ and parameterized the models through binary logistic functions. 
The model presented above as ‘base model’ introduced multinomial logistic 
functions instead of the binary ones, without including stage time effect. 
Kjellsson et al. described initial sleeplessness as a new sleep stage, and esti-
mated the knots of the piece-wise linear binary logits instead of fixing them. 
These are, briefly, the strengths of the existing models for the time-course of 
sleep stages, which will be clarified in Paragraph 4.3.1. 

 The objective of the following part of the chapter is therefore to build 
on and combine these features and add possible additional components, in 
order to improve the base multinomial Markov-chain model previously pro-
posed. The improvement will be directed to facilitate the assessment of cova-
riate and drug effects and to reduce potential model biases. 

 

 

4.3.1 Methods 

 

 

Each step in model development is tested through sPPC (described above 
in Paragraph 4.2.1, section ‘Model evaluation’) and through parsimony crite-
ria, i.e., log-likelihood ratio (LLR) test, with hierarchical structures, and Baye-
sian information criterion (BIC), with non hierarchical structures. Consistency 
between sub-models is always preferred when these criteria are suggesting 
slightly different developments in the different sub-models. 

Model reduction is attempted by decreasing the number of knots (break-
points) in the piecewise logit functions and zeroing some transition probabili-
ties. Removal of model biases is instead pursued acting on different model fea-
tures, first of all the value of the reference state r to be used for each triple (i, 
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k, t) in Equation [5.6]. Then, significance of values different from zero is tested 
for each variance-covariance element in the full Ωs_«�%�. Since internal evalua-

tion showed some misspecifications related to SWS (see Paragraph 4.3.2), and 
SWS epochs often follow or precede ST2 epochs, a new sub-model is intro-
duced by merging sub-models ST2 and SWS: in this new sub-model correla-
tion terms are tested between individual values of logits defined on ST2 and 
SWS leaving stages. Finally, in order to convey a more physiological characte-
rization of sleep architecture, two model features implemented by Karlsson et 
al. (Karlsson, et al., 2000) and Kjellsson et al. (Kjellsson, Ouellet, Corrigan, & 
Karlsson, 2008) in their Markov-chain models with binary logit functions are 
introduced in this model (with multinomial logit functions) and tested on our 
data. The main purpose of such features is to relax the first-order assumption 
made on the Markov chain. The first feature is letting the logits depend also on 
other variables, in addition to nighttime: both time elapsed since the last 
change in sleep stage (‘stage time’) and time elapsed in a sleep stage since the 
nighttime beginning (the latter never tested in the literature) are attempted. 
The second feature is the differentiation of the model behavior between initial 
sleeplessness and rest of nighttime. 

The identification of the sub-models is performed again using NONMEM VI 
(ICON Development Solutions) (Beal & Sheiner, 1998). 

 

 

4.3.2 Results 

 

 

Reference stage 

The exploration of the value of the reference state r to be used in g�st_«�%� 

brings to the choice of the same value used for k. Accordingly, r disappears 
from the logit notation, and Equation [5.6] can be rewritten as 

 g�st�%� � =1g r�st�%�r�ss�%� , [5.19] 

and Equation [5.8] becomes 

 g¦�s�%�~�4g¦s�%�, Ωs�%�5. [5.20] 

 

Transition probabilities fixed to zero 

Transitions for which probability can be fixed to zero are chosen accord-

ing to their observed frequency ��st(Equation [4.31]). The chosen frequency 
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threshold is 0.1%. Consequently, the number of logits in each sub-model is 
reduced as reported in Table 4.5.  

 

Nighttime break-points 

The number of break-points in the piecewise linear logit functions of 
nighttime is reduced from 6 to 3, BPA, BPB and BPC: BPA and BPC are placed at 
the nighttime beginning (epoch 2) and end (epoch 960), respectively, BPB is 
estimated in each sub-model as a new parameter (with no inter-individual va-
riability), as suggested in (Kjellsson, Ouellet, Corrigan, & Karlsson, 2008) for 
binary logit functions. Consequently, the individual logits at the break-points 
can be expressed with the vector: 

 g¦�st � -g�st¢ , g�stµ , g�st¶  /� 

         � -�gst¢ � gM�st�, �gstµ � gM�st�, � gst¶ �gM�st�/� , [5.21] 

where gst¢, gstµ , gst¶  are the typical individual values of the logit km at 
times BP = [BPA, BPB, BPC] and gM�st is the individual deviation from this logit. 

Once nighttime break-points are introduced, the matrices Ωs�%�, ~ � z, in 
Equation [5.20] are replaced by Ωs, with elements 

 ±�stÅ � Æ1��gM�st, gM�sÅ�,       }, � � zs. [5.22] 

 

Inter-individual variability 

The search for triples (k, m, n) bringing to values of ±�stÅ statistically dif-
ferent from zero in the full Ωs brings to the use of the following variance-
covariance matrices: 

 

Ω¢£ � ¸±�¢£������±�¢£������0   ±�¢£������±�¢£������0   00±�¢£¤¥
¤¥
», 

Ω��� � ¸ ±����¢£¢£±�������¢£±����¤¥
¢£
  ±����¢£���±����������±����¤¥
���

  ±����¢£¤¥
±�������¢£±����¤¥
¤¥

», 

Ω��� �
�±����¢£¢£000   0±����������00   00±�����£��£�0

000±����¤¥
¤¥

�, 

Ω�£� � Ç±��£�¢£¢£00   0±��£�������0   00±��£�������È, 

[5.23] 
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Ω¤¥
 � Ç   000    0±�¤¥
������0   00±�¤¥
������È. 

No significant improvements are achieved by introducing correlation 
terms between individual logits in sub-model ST2-SWS (unification of sub-
models ST2 and SWS): therefore, these parameters are not included in the fi-
nal model. 

 

Stage time effect  

Stage time ts is assumed to modify each logit at its three nighttime break-
points according to an additive piecewise linear model. Three break-points for 
each sub-model k are again chosen for the stage time effect, $st�%¿�: BPsa at ts 
= 1 epoch (the minimum stage time that can be observed), BPsc at the maxi-
mum observed time elapsed since the last change in state k, and BPsb consi-
dered as a model parameter constrained in the interval (BPsa, BPsc). There-
fore, the vector of individual logits at the nighttime break-points (Equation 
[5.21]) becomes function of ts: 

 É¦�st�%¿� � -É�st¢�%¿�, É�stµ�%¿�, É�st¶�%¿� /  

                � -�gst¢ � gM�st � $st�%¿��, �gstµ � gM�st �$st�%¿��, � gst¶ � gM�st � $st�%¿��/. 

[5.24] 

The introduction of time elapsed in a sleep stage since nighttime beginning 
does not produce significant improvements: therefore, this predictor is not 
included in the final model. 

 

Initial sleeplessness  

In sub-model AW, the 8-hour nighttime is divided into 2 parts: the first 
part ranges from the beginning of nighttime to t = IS, where IS is the first 
epoch of the night in which a non-awake state is observed in a specific subject, 
and the second one covers the remaining part of the night. In the second time 
interval the logits are modeled as previously described changing only the posi-
tion of the first nighttime break-point: BPA = IS. During initial sleeplessness 
new logits are modeled, again as piecewise linear functions, but without inter-
individual variability or stage time effects. In particular, three additional 
break-points are defined: BP1 at nighttime beginning (epoch 2), BP3 at the 
maximum IS observed in the data for the specific sub-model, and the central 
BP2 considered as a model parameter. The feasibility of using IS as the first 
epoch of persistent sleep is also tested, but it is not supported by the data. 

A final model file, the one for estimating sub-model AW, is shown in Ap-
pendix A as an example, and some lines of the data file used for that control 
stream are shown in Appendix B. Condition numbers for the final sub-models 
are in the range 6.9 – 25.8 (they were not available for the base sub-models 



Multinomial logistic functions in a Markov-chain model 
of sleep architecture 

63 

(Paragraph 4.2.1) since the R matrix, i.e. the inverse Hessian, cannot be com-
puted in those cases). 

The estimated parameter values are shown in Table 4.6. Eight parameters, 
involved in the computation of logits defined on ratios close to zero in sub-
model AW, are fixed to -10, a value which is close enough to zero in terms of 
probability ratios. When these parameters were not considered fixed, they had 
high CVs and likelihood minimization by NONMEM was rarely successful. 
However, they cannot be discarded because they are involved in limited time 
intervals (nighttime or stage time), and the piecewise linear functions of time 
needs to be defined in their entire domain. 

Transition probability profiles are computed from the estimated parame-
ters and are shown in Figure 4.6. Estimated stage time effects are shown in 
Figure 4.7. 

In each sub-model, an important reduction in OFV is achieved, with re-
spect to the base model (see Table 4.7). Most of OFV reduction is due to the 
introduction of stage time effect: in cases where covariance elements and ini-
tial sleeplessness differentiation still had to be introduced, the implementa-
tion of stage time effect produced in the sub-models AW, ST2, SWS, ST1 and 
REM reductions of 5110, 1275, 874, 88 and 61 points, respectively. The de-
crease of OFVs amounts to some tens when introducing the final reference 
state for the logits (Equation [5.19]), covariance elements for inter-individual 
variability (Equation [5.23]) and initial sleeplessness differentiation for the 
logits in sub-model AW. Similar outcomes are obtained using BIC. It is not 
possible to evaluate the effect of fixing one transition probability to zero (in 
each sub-model, ST2 excluded) with either OFVs or BIC, since the few observa-
tions for which transitions assumed impossible actually happened had to be 
removed. 

 

 

4.3.3 Discussion 

 

 

The work just presented (Paragraph 4.3) is dedicated at combining the 
best features of similar models available in the literature for the development 
of a Markov-chain model able to describe transitions between sleep stages 
through multinomial logistic functions. One of these models is the one pre-
viously described (Paragraph 4.2), published in 2010 (Bizzotto, Zamuner, De 
Nicolao, Karlsson, & Gomeni, 2010) and used here as a base for model devel-
opment. The aim of the new analysis is to improve the model predictive per-
formance while preserving model simplicity, according to the principle of par-



Chapter 4 

64 

simony. The latter is instrumental to developing second stage models account-
ing for covariate and drug effects. 

The major change adopted during the model development process, with 
respect to the base model, is the introduction of stage time (time elapsed since 
the last change in sleep stage) as a predictor of logit values, in addition to 
nighttime. Its multiplicative effects on ratios of transition probabilities are 
found to change greatly during stage time, so that the sensitivity of the logits 
to stage time is comparable or even higher than the sensitivity to nighttime. 
For this reason, the degrees of freedom in the parameterization of the rela-
tionship between logit functions and nighttime can be set as equal to the de-
grees of freedom in the relationship with stage time (break points number in 
piecewise linear functions of nighttime lowers from 6 to 3). And, for the same 
reason, it would be interesting to test if the inclusion of inter-individual varia-
bility (IIV) and covariates effects can significantly modify the individual pro-
files of stage time effects, besides the individual profiles of nighttime effects. 

The choice to select the sleep stage recorded at epoch t-1 as the reference 
stage in the definition of logits at epoch t allows an easy interpretation of plots 
of stage time effects vs. stage time: increasing values in the profiles indicate 
higher probability to exit from the current sleep stage, and vice versa. These 
profiles result to be approximately L-shaped in many cases, meaning that 
transitions to new states happen with higher probability in the first minutes 
than later on. However, high early transition probabilities may be partially 
related to sleep scoring difficulties when sleep stages are changing (Karlsson, 
et al., 2000). As exceptions to the ‘L-shape rule’, there are transitions which 
become likely again (U-shape) when stage time reaches high values: this is the 
case for transitions from ST1 and ST2 to REM, from SWS to AW and from REM 
to ST2. 

Since it is shown that median ST1 time (1 epoch only) anticipates the de-
cline in ST1 time effect, and that ST1 is the stage with higher probability of 
transitioning to other stages during nighttime, it can be claimed that stage 1 
sleep is a state of ‘fast transition’ towards other more stable sleep states 
(Carskadon & Dement, 1989). Another way to explain this is thinking that the 
separation of the physiological stages of sleep in 5 states (AW, ST1, ST2, SWS 
and REM) is the discretization of a continuum done with some degree of 
grossness. SWS, for example, is already explicitly used as a state in which cha-
racteristics of stage 3 sleep and stage 4 sleep are aggregated together 
(Rechtschaffen & Kales, 1968). Similarly, each of the five labels used for the 
recorded sleep stages likely aggregates an interval of different characteristics 
changing on a continuous domain. The recorded sleep stages can be thought 
as refractory aggregated states, or as observable discrete states on the top of a 
layer of hidden continuous (or at least more refined) states. A more refined 
discretization of sleep states (and of nighttime) would probably make unne-
cessary the use of stage time effects (i.e., semi-Markov models). According to 
this hypothesis, the degree of aggregation of underling more refined states 
seems lower in ST1 than in other states. The same can be thought about REM 
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sleep, since in this case stage time effect was estimated to be quite flat over 
stage time. In fact, the removal of the first order assumption on our Markov-
chain model was less important for ST1 and REM, as confirmed by the small 
values of OFV drop in the two sub-models.  

Inclusion of stage time effect and of the other features described in the re-
sults section produces an improvement of model predictive performance, 
which is shown in the chapter dedicated to model evaluation (see Paragraph 
5.1.3). Among the others, the introduction of specific parameters for initial 
sleeplessness results to be important. Incidentally, initial sleeplessness can be 
thought as a sixth sleep stage (Kjellsson, Ouellet, Corrigan, & Karlsson, 2008), 
which cannot be observed after the first epoch of sleep occurs (the AW state, 
instead, can be seen thereafter). 

As part of model development, significant correlations between logits 
from a specific sleep stage are also investigated: the results highlight that di-
agonal variance-covariance matrices are not optimal in sub-models where the 
probability of staying in a state is not clearly dominating on the probabilities 
of transitioning to other states. Moreover, correlations between individual lo-
gits of sub-models ST2 and SWS are tested, since aggregated sleep parameters 
related to SWS are predicted with some bias (see sPPC, Figure 5.1). No im-
provements are obtained when including such correlations, but the bias can 
be justified as well, as specified later in Paragraph 5.1.3. 
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4.4 Tables and figures 

 

 

Table 4.1 Statistics on age, BMI and gender. 

 

Agea BMIa # M # F 

44 
(18; 64) 

26.9 
(17.0; 33.8) 

38 78 

a Values are reported as median (min, max). 
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Table 4.2 Estimates of typical probabilities with 90% confidence intervals 
from bootstrap (base model). 

 

Leav-

ing 

stage k 

Time 

t 

(min) 

Typical probability valuesa 

pkAW(t) pkST1(t) pkST2(t) pkSWS(t) pkREM(t) 

AW 

1 
0.98 

(0.96; 0.99) 
0.02 

(0.01; 0.04) 
0.00 

(0.00; 0.00) 
0.00 

(0.00; 0.00) 
0.00 

(0.00; 0.00) 

33 
0.90 

(0.87; 0.92) 
0.08 

(0.06; 0.11) 
0.02 

(0.01; 0.03) 
0.00 

(0.00; 0.00) 
0.00 

(0.00; 0.00) 

109.5 
0.72 

(0.65; 0.67) 
0.21 

(0.17; 0.26) 
0.05 

(0.03; 0.08) 
0.00 

(0.00; 0.01) 
0.01 

(0.01; 0.02) 

246.5 
0.73 

(0.65; 0.79) 
0.19 

(0.14; 0.23) 
0.06 

(0.04; 0.08) 
0.00 

(0.00; 0.00) 
0.02 

(0.02; 0.04) 

386.5 
0.73 

(0.68; 0.78) 
0.21 

(0.17; 0.25) 
0.03 

(0.02; 0.05) 
0.00 

(0.00; 0.00) 
0.03 

(0.02; 0.05) 

480 
0.85 

(0.79; 0.89) 
0.13 

(0.10; 0.18) 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.00) 
0.01 

(0.01; 0.02) 

ST1 

1 
0.26 

(0.21; 0.31) 
0.42 

(0.36; 0.46) 
0.32 

(0.27; 0.38) 
0.00 

(0.00; 0.01) 
0.00 

(0.00; 0.01) 

119 
0.12 

(0.10; 0.14) 
0.32 

(0.29; 0.36) 
0.47 

(0.44; 0.51) 
0.00 

(0.00; 0.00) 
0.09 

(0.07; 0.11) 

221 
0.11 

(0.09; 0.14) 
0.35 

(0.32; 0.38) 
0.43 

(0.38; 0.47) 
0.00 

(0.00; 0.00) 
0.11 

(0.09; 0.14) 

321.5 
0.10 

(0.08; 0.13) 
0.41 

(0.38; 0.45) 
0.37 

(0.31; 0.40) 
0.00 

(0.00; 0.00) 
0.12 

(0.10; 0.14) 

406 
0.12 

(0.10; 0.14) 
0.40 

(0.36; 0.43) 
0.36 

(0.34; 0.41) 
0.00 

(0.00; 0.00) 
0.12 

(0.10; 0.15) 

480 
0.16 

(0.14; 0.20) 
0.48 

(0.43; 0.53) 
0.27 

(0.22; 0.31) 
0.00 

 (0.00; 0.00) 
0.09 

(0.05; 0.11) 

ST2 

1 
0.04 

(0.04; 0.05) 
0.03 

(0.02; 0.04) 
0.85 

(0.83; 0.87) 
0.07 

(0.06; 0.09) 
0.00 

(0.00; 0.00) 

120.5 
0.04 

(0.04; 0.05) 
0.03 

(0.03; 0.04) 
0.85 

(0.84; 0.87) 
0.06 

(0.05; 0.07) 
0.02 

(0.01; 0.02) 

212 
0.04 

(0.03; 0.04) 
0.03 

(0.03; 0.04) 
0.89 

(0.88; 0.90) 
0.03 

(0.02; 0.04) 
0.01 

(0.01; 0.01) 

291.5 
0.03 

(0.03; 0.04) 
0.02 

(0.02; 0.03) 
0.91 

(0.89; 0.92) 
0.02 

(0.02; 0.03) 
0.01 

(0.01; 0.01) 

380 
0.04 

(0.03; 0.05) 
0.03 

(0.03; 0.04) 
0.90 

(0.89; 0.91) 
0.01 

(0.01; 0.01) 
0.01 

(0.01; 0.02) 

480 
0.05 

(0.05; 0.06) 
0.04 

(0.03; 0.05) 
0.88 

(0.87; 0.90) 
0.00 

(0.00; 0.01) 
0.02 

(0.02; 0.03) 

SWS 

1 
0.01 

(0.00; 0.03) 
0.00 

(0.00; 0.02) 
0.29 

(0.11; 0.48) 
0.69 

(0.27; 0.77) 
0.00 

(0.00; 0.41) 

74 
0.02 

(0.01; 0.03) 
0.01 

(0.00; 0.01) 
0.15 

(0.11; 0.20) 
0.82 

(0.77; 0.87) 
0.00 

(0.00; 0.00) 

125 
0.02 

(0.02; 0.03) 
0.00 

(0.00; 0.01) 
0.19 

(0.13; 0.28) 
0.78 

(0.70; 0.84) 
0.00 

(0.00; 0.00) 

187.5 
0.02 

(0.01; 0.03) 
0.00 

(0.00; 0.01) 
0.16 

(0.11; 0.24) 
0.82 

(0.69; 0.86) 
0.00 

(0.00; 0.02) 

274.5 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.01) 
0.33 

(0.26; 0.46) 
0.66 

(0.45; 0.72) 
0.00 

(0.00; 0.00) 

480 
0.04 

(0.03; 0.07) 
0.00 

(0.00; 0.03) 
0.38 

(0.22; 0.51) 
0.57 

(0.39; 0.71) 
0.00 

(0.00; 0.01) 
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REM 

1 
0.04 

(0.03; 0.06) 
0.04 

(0.02; 0.08) 
0.05 

(0.02; 0.13) 
0.00 

(0.00; 0.00) 
0.86 

(0.79; 0.90) 

180 
0.04 

(0.04; 0.06) 
0.04 

(0.03; 0.05) 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.00) 
0.90 

(0.88; 0.91) 

276 
0.04 

(0.03; 0.05) 
0.04 

(0.03; 0.05) 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.00) 
0.90 

(0.89; 0.92) 

346 
0.05 

(0.04; 0.06) 
0.04 

(0.03; 0.05) 
0.01 

(0.00; 0.01) 
0.00 

(0.00; 0.00) 
0.90 

(0.90; 0.92) 

414.5 
0.05 

(0.04; 0.07) 
0.04 

(0.03; 0.05) 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.00) 
0.89 

(0.88; 0.91) 

480 
0.05 

(0.04; 0.08) 
0.04 

(0.02; 0.06) 
0.01 

(0.01; 0.02) 
0.00 

(0.00; 0.00) 
0.90 

(0.86; 0.92) 
a Values have been rounded to the second decimal place. 
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Table 4.3 Estimates of inter-individual variability with 90% confidence inter-
vals from bootstrap (base model). Reference states for the definition of logit 
functions are also reported. 

 

Leav-

ing 

stage k 

Refer-

ence 

state r 

Inter-individual variability of logit valuesa 

(ωAW
k_r)2 (ωST1

k_r)2 (ωST2
k_r)2 (ωSWS

k_r)2 (ωREM
k_r)2 

AW SWS 
1.04 

(0.69; 1.31) 
0.53 

(0.34; 0.74) 
0.93 

(0.66; 1.30) 
 0 FIX 

ST1 SWS 
0.21 

(0.09; 0.35) 
0.21 

(0.11; 0.28) 
0.18 

(0.11; 0.28) 
 

0.41 
(0.23; 0.56) 

ST2 REM 
0.18 

(0.11; 0.24) 
0.57 

(0.38; 0.79) 
0.12 

(0.07; 0.16) 
0.76 

(0.55; 1.00) 
 

SWS REM 0 FIX 0 FIX 
3.78 

(2.68; 4.78) 
0.21 

(0.10; 0.49) 
 

REM SWS 
0.66 

(0.41; 0.99) 
0.83 

(0.60; 1.14) 
0 FIX  

0.24 
(0.10; 0.36) 

a No values are defined in correspondence of logits equal to zero by definition (see Equation [5.6]). 
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Table 4.4 Shrinkage values for the inter-individual variability parameters of 
the five estimated sub-models (base model). 

 

Leaving 

stage k 

Shrinkage values (%)a 

SkAW_r SkST1_r SkST2_r SkSWS_r SkREM_r 

AW 10 20 20  n. d. 

ST1 30 24 27  22 

ST2 24 12 25 11  

SWS n. d. n. d. 9 47  

REM 21 20 n. d.  32 

a No values are defined in correspondence of logits equal to zero by definition (see Equation [5.6]). 
‘n. d.’ values are reported when inter-individual variability is fixed to zero. 
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Table 4.5 Logits for the different sub-models (final model). 

 

AW ST1 ST2 SWS REM 

0 1: g����¢£�%� 1: g����¢£�%� 1: g��£�¢£�%� 1: g�¤¥
¢£�%� 

1: g�¢£����%� 0 2: g��������%� 2: g��£�����%� 2: g�¤¥
����%� 

2: g�¢£����%� 2: g��������%� 0 3: g��£�����%� 3: g�¤¥
����%� 

- - 3: g�����£��%� 0 - 

3: g�¢£¤¥
�%� 3: g����¤¥
�%� 4: g����¤¥
�%� - 0 
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Table 4.6 Model parameter values (final model). 

 

Sub-

model 

Parame-

ters 
Parameter labels and values 

AW 

logits at 
nighttime 

break-
points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-0.251 -2.66 -10 FIX -0.209 -1.01 -2.86 

TVG1C TVG2C TVG3C    

-0.203 -2.08 -2.1    

logits at 
initial 

sleepless-
ness break-

points 

TVG11 TVG21 TVG31 TVG12 TVG22 TVG32 

-5.76 -10 FIX -10 FIX -3.93 -7.63 -10 FIX 

TVG13 TVG23 TVG33    

-4.86 -10 FIX -10 FIX    

stage time 
effects at 

STa break-
points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-2.49 -3.59 -5.67 -6.63 -10 FIX -10 FIX 

break-
points 

bBPA BPB bBPC bBPsa BPsb bBPsc 

cIS d0.0679 960 FIX 1 FIX 7.32 265 FIX 

bBP1 BP2 bBP3    

2 FIX 13.00 371 FIX    

variance-
covariance 

for IIV 

G1i OMEGA(2,1) G2i G3i   

0.134 -0.142 0.831 1.07   

ST1 

logits at 
nighttime 

break-
points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-0.321 -0.0716 -4.15 -1.07 0.492 -1.01 

TVG1C TVG2C TVG3C    

-1.05 -0.251 -1.24    

stage time 
effects at 

STa break-
points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-0.447 -0.52 -0.463 -0.634 -0.246 -3.31 

break-
points 

bBPA BPB bBPC bBPsa BPsb bBPsc 

2 FIX 268 960 FIX 1 FIX 3.24 20 FIX 

variance-
covariance 

for IIV 

G1i OMEGA(2,1) G2i OMEGA(3,1) OMEGA(3,2) G3i 

0.318 0.18 0.389 -0.0637 0.138 0.398 

ST2 

logits at 
nighttime 

break-
points 

TVG1A TVG2A TVG3A TVG4A TVG1B TVG2B 

-2.46 -2.52 -1.71 -4.07 -2.57 -2.6 

TVG3B TVG4B TVG1C TVG2C TVG3C TVG4C 

-3.33 -3.34 -2.13 -2.33 -4.59 -3.16 

stage time 
effects at 

STa break-
points 

STE1b STE2b STE3b STE4b   

-0.905 -0.894 -1.19 -0.993   

STE1c STE2c STE3c STE4c   

-1.79 -6.44 0.927 -6.75   

break- bBPA BPB bBPC bBPsa BPsb bBPsc 
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points 2 FIX 676 960 FIX 1 FIX 5.62 143 FIX 

variance-
covariance 

for IIV 

G1i G2i G3i G4i   

0.152 0.456 0.786 0.239   

SWS 

logits at 
nighttime 

break-
points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-3.22 -4.83 -0.526 -3.31 -5.13 0.142 

TVG1C TVG2C TVG3C    

-1.65 -4.55 0.389    

stage time 
effects at 

STa break-
points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-0.999 -0.939 -2.5 0.761 -3.53 -3.73 

break-
points 

bBPA BPB bBPC bBPsa BPsb bBPsc 

2 FIX 715 960 FIX 1 FIX 5.9 103 FIX 

variance-
covariance 

for IIV 

G1i G2i G3i    

0 FIX 1.4 1.35    

REM 

logits at 
nighttime 

break-
points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-3.12 -2.87 -3.11 -3.25 -3.02 -4.6 

TVG1C TVG2C TVG3C    

-2.96 -2.98 -4.56    

stage time 
effects at 

STa break-
points 

STE1b STE2b STE3b STE1c STE2c STE3c 

0.351 -0.238 -1.22 0.566 -1.22 1.8 

break-
points 

bBPA BPB bBPC bBPsa BPsb bBPsc 

2 FIX 640 960 FIX 1 FIX 13.6 100 FIX 

variance-
covariance 

for IIV 

G1i G2i G3i    

0.584 0.849 1.1    

a ST stands for stage time.  
b This parameter can be directly used as a constant in the abbreviated code of the $PRED routine (as shown 
in the NONMEM model file in Appendix A). 
c IS is the individual initial sleeplessness length. 
d Here BPB = IS + (960-IS) * 0.0679. 
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Table 4.7 OFVs for the 5 sub-models (base and final models). 

 

Sub-model Base model Final model 
AW 26983 21662 
ST1 24264 24086 
ST2 49984 48733 
SWS 9341 8380 
REM 14798 14687 
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Figure 4.1 Clinical study protocol. 
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Figure 4.2 Estimated time course of typical transition probabilities with 90% 
confidence intervals from bootstrap (base model); each panel shows the tran-
sition probabilities from a specific sleep stage. 
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Figure 4.3 Observed time profiles of transition frequencies with 90% confi-
dence intervals; distribution of post-hoc estimates (as mean and 5th-95th per-
centile); estimated profile of typical transition probability and 5th-95th per-
centile of the distribution of individual profiles (base model). 
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Figure 4.4 Results from posterior predictive check (base model): relative dev-
iations of median efficacy endpoints in 100 simulated clinical studies from pa-
rameter medians in the real study. 
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Figure 4.5 Relative frequency of each sleep stage during ten consecutive night 
periods in the simulated studies and in the observed one: median values are 
computed for each of 100 simulated studies and their medians are compared 
to the median value of the real population (base model). 
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Figure 4.6 Probability profiles for all the transitions between sleep stages (fi-
nal model). Their computation is done for the median stage times over the 
nighttime and the whole patient population. 
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Figure 4.7 Stage time effects estimated in the different sub-models (final 
model). Exp(stage time effect) is used in order to visualize multiplicative ef-
fects on probabilities ratios, instead of additive effects on logits (less intui-
tive). Median stage times over the nighttime and the whole patient population 
are also reported in each plot. 
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Chapter 5  

Model evaluation 

 

 

Mixed-effect models are increasingly used in the pharmaceutical field to 
analyze and interpret clinical data in a population framework and to perform 
clinical trial simulations (CTS). In fact the application of CTS during drug de-
velopment can help to achieve greater efficiency and dosage optimization. 
Specifically, CTS facilitates the decision making in drug development by as-
sessing uncertainty of predicted trial performance and outcomes in planning 
of prospective trials (Kimko & Peck, 2011). 

One of the major scopes in the development of the Markov-chain model 
presented in Chapter 4 was to provide a useful tool for clinical trial simula-
tions. This goal is reached when the model capability of describing the data 
and, therefore, the underlying system is proved. This capability, referred to as 
‘model adequacy’, needs to be thoroughly investigated during both model de-
velopment and final model selection, in order to avoid the risk that adequate 
models are rejected and inadequate models are accepted (Karlsson & Savic, 
2007). 

The first objective of this chapter is therefore to investigate the adequacy 
of the final Markov-chain model with multinomial logistic functions. The anal-
ysis aims to check if the proposed model adequately interprets the underlying 
process, provides precise predictions for the parameters of interest and 
avoids biased estimates. 

Model evaluation is already described above for the base Markov-chain 
model with multinomial logistic functions. Paragraph 4.2, especially the sec-
tion ‘Model evaluation’ of Paragraph 4.2.1, introduces some evaluation meth-
ods for this specific kind of model, i.e.: 

• inspection of objective function value (OFV); 

• estimation of variance-covariance matrix of the parameter estimates 
or, equivalently, bootstrap performance; 

• comparison between observations and individual model predictions; 

• comparison between distribution of individual model predictions and 
estimated between-subject variability; 

• simplified posterior predictive check (sPPC). 
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A basic form of model evaluation is described above also for the final 
Markov-chain model of this thesis: in Paragraph 4.3.1 it is stated that model 
development was guided by sPPC and parsimony criteria (LLR test and BIC), 
at each step of each sub-model improvement. This chapter aims to provide a 
more thorough model evaluation for the final Markov-chain model, using 
partly new diagnostic methods. In fact, model diagnostics have never been 
systematically investigated and discussed when Markov-chains and, more 
generically, categorical nominal data are involved. The model evaluation will 
be performed here using two approaches, referred to as internal and external 
evaluation. The latter differs from the former because it also uses a new set of 
real observations, not used for model building or for parameter estimation, 
and called ‘validation dataset’. On the contrary, the data used for model devel-
opment are called ‘learning dataset’. 

Internal evaluation is introduced and discussed in Paragraph 5.1. It is pre-
sented for the final model developed within this work. Therefore, considera-
tions on the OFV evaluation are avoided in this chapter and left to Paragraph 
4.3, since they are useful for guiding model development and not for assessing 
the final model adequacy. External evaluation is introduced and discussed in 
Paragraph 5.2, again for the final model. 
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5.1 Internal evaluation 

 

 

Statistical theory indicates several diagnostic methods to evaluate model 
adequacy, most of them involving graphics. The work by Karlsson & Savic 
(Karlsson & Savic, 2007) presents a detailed overview of the different model 
diagnostics to be used in the context of mixed-effect modeling, highlighting for 
each of them pros and cons. The authors divide such methods into five catego-
ries: 

(a) typical individual prediction-based methods, 

(b) individual parameter estimates-based methods, 

(c) residual-based diagnostics, 

(d) numerical diagnostics, 

(e) simulation-based diagnostics. 

The (a) and (b) methods are essentially based on graphics: their aim is to 
visually evaluate whether there is agreement between the dependent variable 
(DV), i.e. the observations to describe, and population or individual model 
predictions, respectively. The first method can be misleading when applied to 
non-linear mixed-effect models and often indicates misspecified models even 
when they are adequate. The second one suffers from the opposite drawback: 
in case of sparse information in the individual data, it becomes difficult to rec-
ognize misspecified models since excellent predictions are usually produced 
(‘perfect fit’ phenomenon). The residual based diagnostics (c), consisting in 
checking population or individual residuals, are strictly connected to the latter 
methods and substantially have the same flaws.  

Methods (a), (b) and (c), often referred to as 'goodness-of-fit inspection 
methods’, are easily implementable but hardly applicable in the categorical 
data context, in which only probability of observations is estimated and, con-
sequently, residuals are not considered. In fact, only the (b) method was ap-
plied in this work, for evaluating the sub-models of the base Markov-chain 
model (see section ‘Model evaluation’ of Paragraph 4.2.1 and Figure 4.3). But, 
as already mentioned, this method is rather poor and not powerful. 

Several types of numerical diagnostics (d) can be implemented for check-
ing models adequacy in case of categorical data. These methods are of essen-
tial importance for model comparison (e.g., LLR test) and for the evaluation of 
model robustness and the detection of possible over-fit (bootstrap and va-
riance-covariance matrix of the parameter estimates). As mentioned in this 
chapter introduction, LLR test and BIC are not useful for evaluating the final 
model during the model development process. Bootstrap and variance-
covariance matrix of the parameter estimates were not adopted for the final 
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Markov-chain model of this thesis, since other diagnostics, described below, 
were considered more appealing and appropriate. 

Finally, the simulation-based methods (e) are considered the most inter-
esting tools when dealing with categorical data. These methods appear very 
attractive because they preserve the same pros of the classical goodness-of-fit 
inspection methods without being affected by their cons. Such diagnostics 
consist in comparing a desired statistic derived from raw data with a refer-
ence distribution obtained trough stochastic simulation (Monte Carlo simula-
tion). They are useful for showing potential model misspecifications, since si-
mulations mimic real data behavior only when a model is adequate. 

In the context of sleep data modeling, applying stochastic simulation-
based methods becomes useful to check the model capabilities in predicting 
the sleep aggregated parameters (WASO, LPS, etc.) used in the clinical practice 
for quantifying the severity of sleep disorders, but mainly to evaluate the 
model predictability of sleep physiological patterns whose maintenance has 
been demonstrated to be relevant. The two inspections are performed here 
through the implementation of simplified Posterior Predictive Check (sPPC) 
on the aggregated parameters (Karlsson, et al., 2000) and ’Visual Predictive 
Check‘ (VPC) on two specific statistics derived from the data: the transition 
frequencies (never used before, to my knowledge) and the stage frequencies 
(Bergstrand, Hooker, & Karlsson, 2009).  

However, bias and imprecision in the predictions may depend not only on 
possible model misspecifications but also on non robust estimation methods. 
In case of the Markov-chain model with multinomial logistic functions, which 
is highly non-linear and dealing with categorical data, this issue may be very 
relevant. 

For this reason, a recent approach(Duval & Karlsson, 2002; Jonsson, 
Kjellsson, & Karlsson, 2004) for checking both the model adequacy and the 
estimation method performance is implemented here: the ‘Stochastic Simula-
tions followed by Estimation’ (SSE) based diagnostics. SSE is used here for the 
visual comparison between the transition probabilities estimated from raw 
data and the confidence intervals on the correspondent transition probabili-
ties estimated during SSE procedure. To my knowledge, this kind of visual 
comparison was never implemented before. I propose to call it ‘Visual Estima-
tion Check’ (VEC), in order to emphasize the similarity with ‘VPC’ and high-
light the focus on the evaluation of the estimation procedure. 
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5.1.1 Simulation-based methods 

 

 

Once each different sub-model (awake, stage1, stage2, sws and rem) is 
identified using the maximum likelihood (ML) approach implemented in 
NONMEM VI, a set of population parameters, including both typical parame-
ters (!) and inter-individual variance-covariance (Ω), is available for the simu-
lation step, to be repeated n times (n is chosen equal to 100).  

The aim of this procedure is to generate from the developed model and its 
estimated parameters new datasets, each made of the PSG outcomes for M = 
116 (as in the observed dataset) new patients. A model that includes all the 5 
sub-models is therefore needed in order to produce a new sequence of sleep 
stages for each potential patient. This model is written for NONMEM VI and its 
code is presented in Appendix C. The code can be summarized through the 
following procedure. 

1) The AW state is assumed at the beginning of the night for subject i: ��(= AW, with t = 1 epoch, and starting state k = AW. 

2) t is increased by 1 and a sub-model, sm, is chosen according to the k 
value (sm = awake if k = AW, stage1 if k = ST1, stage2 if k = ST2, sws if k 
= SWS, rem if k = REM). 

3) The transition probabilities at time t are simulated through the sub-
model sm: the ML estimates obtained from the estimation step on sub-
model sm are used to sample and re-construct the individual logits at 
time t and thereafter the corresponding individual transition probabil-
ities (pAW, pST1, pST2, pSWS and pREM).  

4) The 5 transition probabilities are placed side by side in a probability 
scale ranging from 0 to 1. 

5) A random variable, called R, is drawn from a uniform distribution in 
[0, 1] and used to decide which of the 5 possible transitions occurs. If, 
for example, the transition to ST1 is chosen, than  ��st( � 1, with m = 
ST1, and consequently ��( = ST1. 

6) Variables providing stage times for each sleep stage and initial sleep-
lessness length (if a non-awake state has already occurred) are up-
dated according to the value of ��( . 

7) k assumes the value of ��( . 

8) Steps 2 to 7 are repeated until t = 960 epochs. 

9) Steps 1 to 8 are repeated for i in [1, …, M]. 
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Dataset for simulation 

A brief explanation of the datasets used as input files for the simulation 
model is provided here. 

Each dataset (real and simulated) is initially formed of four columns 
(Table 5.1) indicating the subject identification number (ID), the PSG record-
ing visit (Visit), the night time expressed in epochs (Time) and the corres-
ponding sleep stage (STAGE), taking values in {0, 1, 2, 3, 5} (0 for AW, 1 for 
ST1, 2 for ST2, 3 for SWS, 5 for REM). Each column length is therefore M x N = 
116 x 960. 

During simulation, five more columns called MDV0, MDV1, MDV2, MDV3 
and MDV5 (‘MDV’ stands for ‘missing data value’), indicating whether the pre-
vious stage is 0, 1, 2, 3, 5 or not, are added to the dataset. For example, MDV0 
is equal to 0 if the previous state is AW, and 1 otherwise. Furthermore, five 
binary columns called AW, ST1, ST2, ST3 and REM are added for indicating if 
the current state is 0, 1, 2, 3 or 5, respectively. For example, AW is equal to 1 if 
the current state is AW, and 0 otherwise. 

These columns are useful during the estimation step for extracting rele-
vant data for each single sub-model, and during the evaluation process for eas-
ily computing the statistics of interest. Furthermore, a column counting for the 
individual stage time (the number of epochs since the last transition) is added 
and called STT. Finally, due to the introduction of the Initial Sleeplessness fea-
ture for the awake sub-model, two more columns are needed: a binary column 
called SL (’sleep’), which is 1 from the epoch of first non-awake state up to the 
last epoch for each subject, and one called IS (’Initial Sleeplessness’), that re-
ports the number of awake epochs before the first episode of non-awake (IS 
includes also the first non-awake epoch). 

 

sPPC 

sPPC is performed to assess the model capability in describing and simu-
lating aggregated characteristics of PSG data in the population. This technique 
is used during the whole model development process and is described in the 
section ‘Model assessment’ of Paragraph 4.2.1.  

 

VPC 

The final model capability in describing the physiological evolution of the 
sleep stages and transitions along nighttime is tested through visual predictive 
check (VPC) (Holford, 2005). Two statistics computed on observed data to-
gether with the corresponding confidence interval derived from simulations 
(the ones used for sPPC) are plotted against nighttime t. These statistics are 
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• the frequencies of occurrence of each sleep stage, as proposed in 
(Bergstrand, Hooker, & Karlsson, 2009) for categorical data (Equation 
[4.30]); 

• the transition frequencies between stages, never used before to my 
knowledge (Equation [4.31]). 

Each statistic was computed for each of ten equal intervals in the night-
time (48 minutes each). 

 

VEC 

Visual estimation check (VEC) is a novel approach to assess robustness 
and precision of parameter estimates in a mixed-effect model in terms of tran-
sition probabilities time-course, and it is introduced in this work. It relies on 
the combination of stochastic simulation & re-estimation (SSE)(Duval & 
Karlsson, 2002; Jonsson, Kjellsson, & Karlsson, 2004) and computation. Specif-
ically, all of the 100 simulated datasets are re-identified, using the developed 
Markov sub-models. From each of the original and the simulated datasets, the 
estimated parameter values are used for computing the temporal profiles of 
typical transition probabilities, and for drawing and computing the temporal 
profiles of individual transition probabilities, from which 5th and 95th percen-
tiles were derived. Consequently, an observed and 100 simulated profiles are 
obtained to evaluate three statistics: the typical transition probabilities and 
the 5th and 95th percentiles on inter-individual variability. At the end, the 95% 
confidence intervals for each statistic-profile derived from simulation are 
computed and visually compared with each observed statistic-profile. 

 

 

5.1.2 Results 

 

 

sPPC 

sPPC outcome for the final model is presented in Figure 5.1 and indicates a 
good agreement between simulated and observed efficacy endpoints in most 
cases. Only 1 out of 23 median aggregated parameters computed from the real 
study falls outside the range of median values computed from the simulated 
studies. This parameter is the time spent in SWS (tSWS), which results under-
predicted. Other sPPC plots are produced considering statistics different from 
the median (not reported here) and they corroborate the overall goodness of 
the model predictive performance, in terms of both typical outcomes and va-
riability extent in the population.  
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VPC 

Figure 5.2 shows the results of VPC implementation on transition frequen-

cies, ��st, and stage frequencies, �Ms . The plots show a general very good 
agreement between observed and simulated statistics. A slight bias can be de-
tected on transitions from ST2 to REM, from REM to ST2 and from REM to 
REM, only in the very first period after light off. Simulation-based confidence 
intervals are generally narrow. The largest ones are observed for transitions 
from AW to AW and to ST1, from SWS to ST2 and to SWS (especially in the last 
hours of the night), and from REM to all sleep stages, only in the first hour 

 

VEC 

Figure 5.3 illustrates the results from VEC performed on the time-course 
of transition probabilities. In general, a very good agreement between profiles 
estimated from raw and simulated data is shown in these plots, with the ex-
ception of the transitions from REM to ST2 and from REM to REM at the be-
ginning of the night. Probability confidence intervals on transitions from AW, 
SWS and REM are larger compared to the other ones and they vary according 
to the amount of available information (depicted in the last row of Figure 5.2). 

 

 

5.1.3 Discussion 

 

 

The Markov-chain model is internally evaluated through three comple-
mentary visual diagnostics on categorical data. 

sPPC assesses the model capability in predicting overall sleep parameters 
(usually considered as efficacy endpoints in clinical studies) close to the ob-
served ones. 

Visual predictive check (VPC) focuses on the accuracy of sleep description 
along the independent variable (nighttime is tested here, stage time was not 
considered): since data are categorical, stage frequencies and transition fre-
quencies, and the uncertainty on their prediction, are considered. 

Visual estimation check (VEC) is introduced in this work as a new tool able 
to validate the capability of estimating accurate and precise model parameters 
through a graphic description of accuracy and precision on transition proba-
bilities time-courses. The name ‘visual estimation check’ is chosen because the 
effect (during nighttime) of possible weaknesses in the estimation method can 
be visually checked, even if not easily distinguished from the effects of poten-
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tial model misspecifications; however, the simultaneous use of VPC and VEC is 
recommended to overcome this kind of issue. 

sPPC, VPC and VEC show that the employed model slightly suffers in a 
couple of scenarios: 

• statistics with high variability despite similar sleep patterns are pre-
dicted with some bias (see, for example, the aggregated sleep parame-
ters related to SWS); 

• small amount of observations for a specific sleep stage determines 
small bias (if in the Markov-chain departure) or inflated uncertainty in 
the VPC and VEC outcomes. 

Since outcomes from VPC and VEC are mostly similar, it can be claimed 
that slight bias and uncertainty in VEC are mostly due to the imperfection of 
model structure rather than to the estimation of its parameter values. Despite 
the slight bias just mentioned, the three diagnostic tools show an overall good 
performance of the developed Markov-chain model in describing the data, and 
of the employed estimation technique. The maximum likelihood estimator, 
with Laplacian approximation as implemented in NONMEM VI, is shown in the 
literature to suffer in case of high η-shrinkage (Kjellsson, 2008). In this work, 
despite 3 out of 15 values of η-shrinkage being greater than 25%, it reveals 
instead to be robust. 

Comparing the base model and the final model in terms of sPPC (Figure 
4.4 vs. Figure 5.1), a general refinement of the predictive performance on 
overall sleep parameters is depicted. The most significant improvements are 
obtained on latency to persistent sleep (LPS), number of transitions to AW 
(nAW) and to ST1 (nST1), and time spent in ST1 (tST1). The introduction of 
specific parameters for initial sleeplessness is particularly important for the 
improvement on LPS, while other improvements in the model predictive per-
formance are likely connected mostly with inclusion of stage time effect. 
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5.2 External evaluation 

 

 

External model evaluation is useful for understanding if a model built and 
evaluated on a certain learning dataset can be adopted for modeling other da-
tasets with similar features. If so, the modeler can rely on the fact that the 
model is suitable for the data used to build the model itself, but also for the 
physiological process which produces those data and other potential data in 
similar conditions. 

Moreover, this methodology allows to assess if the model misspecifica-
tions, or bias or imprecision in the parameter estimates, reported after esti-
mation on the learning dataset, are likely due to a specific dataset or to a sys-
tematic issue intrinsic in the model. 

Finally, external model evaluation can be applied for checking how the pa-
rameter estimates gained from the learning dataset can be different among 
different datasets. 

The literature is quite poor with respect to external evaluation of mixed-
effect models, especially when data are categorical. Therefore, the following 
analysis is considered innovative and experimental. More work will be useful 
to define a best practice in the external model evaluation procedure. 

 

 

5.2.1 Materials 

 

 

Data for external evaluation are obtained again from the placebo arm of a 
polysomnographic (PSG) multi-centre, randomized, double-blind, placebo-
controlled, parallel group study designed to investigate a new candidate drug. 
The study and the candidate drug are different from those involved in model 
development and internal evaluation. The new study is called here ‘study B’, 
while the other one is called ‘study A’. 

Study B followed a design similar to the one reported above (Paragraph 
4.1) for study A. The only difference was in the inclusion criteria for the PSG 
parameters, described as follows. The mean sleep parameter values obtained 
in the two screening PSGs (with single-blinded placebo administration) had to 
fall within the following ranges:  
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• mean TST: between 240 and 390 minutes in study A and between 240 
and 420 minutes in study B; 

• mean LPS: at least 30 minutes and not less than 20 minutes on either 
night (study A), vs. at least 20 minutes, and not less than 15 minutes 
on either night (study B); 

• mean WASO: 60 minutes or more and neither night less than 45 min-
utes (both studies). 

As done for model development, only data from the first night of the dou-
ble-blind treatment nights are used. The number of subjects involved, treated 
again with placebo, is now M = 81. Age, gender and body mass index (BMI) are 
available also for each patient from study B. Demographic statistics are re-
ported in Table 5.1. 

 

 

5.2.2 Methods 

 

 

The external evaluation of the final model is performed applying the 
model to data from study B and looking at objective function values (OFVs), 
distributions of empirical Bayes estimates (EBEs), parameter values and sPPC. 
OFVs and EBEs distributions are computed for dataset B using each of the 5 
sub-models in two different scenarios: using parameter values estimated from 
study A and using parameter values estimated from study B. sPPC is per-
formed comparing aggregated parameters computed on study B with corre-
sponding aggregated parameters computed on 100 datasets simulated from 
parameter values estimated on study B. 

 

 

5.2.3 Results 

 

 

The 5 final sub-models are successfully identified using dataset B. The last 
two columns of Table 5.4 show the estimated OFVs using parameter values 
estimated from study A and using parameter values estimated from study B. 
Distributions of EBEs in the two scenarios are not shown here, since η-
shrinkage (Equation [5.17]) is high in most occasions (greater than 25%). 



Chapter 5 

94 

Final parameter estimates from study B are shown in Table 5.5. They are 
used to compute typical probability profiles along nighttime, at stage time = 1 
epoch and at median stage time. These profiles are not shown here, as only 
few small differences can be detected in comparison with previously com-
puted profiles. When using dataset B, variance estimates for inter-individual 
variability are instead strongly reduced: averages of variances on the logits 
are reduced by 75%, 39%, 34%, 24%, 18% in sub-models SWS, ST1, REM, AW, 
and ST2, respectively. 

 sPPC on median aggregated parameters from the new study is visua-
lized in Figure 5.1. The performance looks very similar to the one shown in 
Figure 5.1 on data from study A. WASO, tAW and tSWS are even slightly better 
predicted. The simultaneous comparison with median efficacy endpoints 
computed from dataset A (Figure 5.1, red dots) highlights a reduced predictive 
performance for the aggregated parameters which are highly variable in the 
two studies (see tST1, tSWS, meanAW, meanSWS and nREM). 

 

 

5.2.4 Discussion 

 

 

The final Markov-chain model is evaluated on a dataset (from study B) 
which was not used in the model development procedure. The validation da-
taset includes less subjects (81 vs 116), whose characteristics are similar to 
those of the original dataset (from study A). Ten subjects from study B would 
have been excluded from study A according to its inclusion criteria: these sub-
jects would not have been severe enough, since  their TST and LPS values were 
roughly 5 minutes above and 5 minutes below, respectively, compared with 
the inclusion criteria of study A. 

Nevertheless, the Results paragraph (5.2.3) shows that the proposed mod-
el can adequately describe also the new data: the parameters estimated in the 
two datasets are similar, and the OFVs differ of maximum 300 when using 
study B with parameter estimates from likelihood maximization on study A or 
on study B. The new final parameter estimates for the typical individual are 
used to compute typical probability profiles along nighttime (plots not 
shown). Few typical probabilities of staying in the different sleep stages are 
just slightly different compared to the corresponding probabilities estimated 
from the original dataset: 

• transitioning from AW to ST1 is slightly more likely, at about 1-2 hours 
from light off and short AW stage time; 

• moving from ST1 to ST2 is less likely during all nighttime; 
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• transitioning from ST2 to AW is more likely, in the last hour before 
light on; 

• moving from SWS to ST2 is more likely during all night, at low SWS 
stage time. 

The last difference likely impacts on lower time spent in SWS (tSWS) and 
mean extension of SWS (meanSWS), detected through sPPC. 
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5.3 Tables and figures 

 

 

Table 5.1 Dataset for simulation. 

 

ID Visit Time STAGE 

1 3 1 0 

1 3 2 0 

1 3 3 1 

	 	 	 	 

1 3 960 3 

2 3 1 0 
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Table 5.2 Dataset after simulation. 

 

ID Time 
STA
GE 

MDV
0 

MDV
1 

… 
MDV

5 
AW ST1 … REM STT SL IS 

1 1 0 1 1  1 1 0  0 0 0 4 

1 2 0 0 1 … 1 1 0 … 0 1 0 4 

1 3 1 0 1  1 0 1  0 2 1 4 

1 4 0 1 0  1 1 0  0 1 1 4 

	        	     	 
2 1 0 1 1  1 1 0  0 0 0 30 
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Table 5.3 Statistics on age, BMI and gender (study A vs. study B). 

 

Study Agea BMIa # M # F 

A 
44 

(18; 64) 
26.9 

(17.0; 33.8) 
38 78 

B 
45 

(19; 65)) 
24.8 

(18.7; 34.0) 
33 48 

a Values are reported as median (min, max). 
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Table 5.4 OFVs for the 5 sub-models, using data from study B. 

 

Sub-model 

Using parameter 

values from 

estimation on study A 
After parameter 

estimation on study B 
AW 11627 11434 
ST1 19752 19511 
ST2 33772 33441 
SWS 5299 5214 
REM 8906 8811 
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Table 5.5 Model parameter values (study B). 

 

Sub-

model 
Parameters Parameter labels and values 

AW 

logits at 
nighttime 

break-points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-0.304 -4.16 -10 FIX 0.0194 -2.26 -3.01 

TVG1C TVG2C TVG3C    

-0.23 -3.71 -1.95    

logits at 
initial sleep-

lessness 
break-points 

TVG11 TVG21 TVG31 TVG12 TVG22 TVG32 

-5.62 -10 FIX -10 FIX -3.97 -354 -10 FIX 

TVG13 TVG23 TVG33    

-4.53 -10 FIX -10 FIX    

stage time 
effects at STa 
break-points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-2.68 -4.15 -8.35 -6.62 -10 FIX -10 FIX 

break-points 

aBPA BPB aBPC aBPsa BPsb aBPsc 

aIS b0.164 960 FIX 1 FIX 7.47 265 FIX 

aBP1 BP2 aBP3    

2 FIX 36.76 371 FIX    

variance-
covariance 

for IIV 

G1i OMEGA(2,1) G2i G3i   

0.0457 0.0266 1.1 0.657   

ST1 

logits at 
nighttime 

break-points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-1.01 -1.02 -5.77 -1.68 0.0468 -1.94 

TVG1C TVG2C TVG3C    

-1.16 -0.484 -1.69    

stage time 
effects at STa 
break-points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-0.342 -0.18 -0.513 -1.48 -1.28 -0.146 

break-points 
aBPA BPB aBPC aBPsa BPsb aBPsc 

2 FIX 240 960 FIX 1 FIX 3 20 FIX 

variance-
covariance 

for IIV 

G1i OMEGA(2,1) G2i OMEGA(3,1) OMEGA(3,2) G3i 

0.118 0.0338 0.146 -0.0612 0.0724 0.426 

ST2 

logits at 
nighttime 

break-points 

TVG1A TVG2A TVG3A TVG4A TVG1B TVG2B 

-2.81 -1.96 -2.03 -4.24 -2.67 -1.94 

TVG3B TVG4B TVG1C TVG2C TVG3C TVG4C 

-3.47 -3.32 -0.735 -1.51 -2.7 -2.32 

stage time 
effects at STa 
break-points 

STE1b STE2b STE3b STE4b   

-1.12 -1.24 -1.44 -0.94   

STE1c STE2c STE3c STE4c   

-2.86 -4.21 1.13 -3.95   

break-points 
aBPA BPB aBPC aBPsa BPsb aBPsc 

2 FIX 889 960 FIX 1 FIX 6.35 143 FIX 
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variance-
covariance 

for IIV 

G1i G2i G3i G4i   

0.109 0.18 1.22 0.144   

SWS 

logits at 
nighttime 

break-points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-3.97 -5.28 -0.0835 -2.19 -4.31 0.92 

TVG1C TVG2C TVG3C    

-5.48 -19.7 0.894    

stage time 
effects at STa 
break-points 

STE1b STE2b STE3b STE1c STE2c STE3c 

-1.14 -0.639 -2.57 -0.657 -0.24 -4.21 

break-points 
aBPA BPB aBPC aBPsa BPsb aBPsc 

2 FIX 1370 960 FIX 1 FIX 518 103 FIX 

variance-
covariance 

for IIV 

G1i G2i G3i    

0 FIX 0.256 0.423    

REM 

logits at 
nighttime 

break-points 

TVG1A TVG2A TVG3A TVG1B TVG2B TVG3B 

-3.87 -2.68 -2.24 -3.84 -3.12 -4.3 

TVG1C TVG2C TVG3C    

-2.89 -3.21 -4.06    

stage time 
effects at STa 
break-points 

STE1b STE2b STE3b STE1c STE2c STE3c 

0.29 -0.244 -2.06 1.12 -0.0565 -0.381 

break-points 
aBPA BPB aBPC aBPsa BPsb aBPsc 

2 FIX 657 960 FIX 1 FIX 8.99 100 FIX 

variance-
covariance 

for IIV 

G1i G2i G3i    

0.391 0.466 0.807    

a ST stands for stage time.  
b This parameter can be directly used as a constant in the abbreviated code of the $PRED routine (as shown 
in the NONMEM model file in Appendix A). 
c IS is the individual initial sleeplessness length. 
d Here BPB = IS + (960-IS) * 0.164. 
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Figure 5.1 Results from posterior predictive check (final model): relative dev-
iations of median efficacy endpoints in 100 simulated clinical studies from pa-
rameter medians in the real study. 
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Figure 5.2 Results from visual predictive check (final model) on frequency of 
transitions (first 5 rows) and stage frequencies (last row). Note that range of 
y-axis values is larger in plots at positions (4, 3), (4, 4), (6, 1) and (6, 3). 
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Figure 5.3 Results from visual estimation check on transition probabilities 
(final model). Note that two different scales are used for y-axis in the different 
plots. Note also that mixed-color (violet) areas come from the superimposition 
of pink and blue confidence intervals (see the typical and 5th and/or 95th con-
fidence intervals for sub-models AW, SWS and REM). 
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Figure 5.4 Results from sPPC on dataset B: median aggregated parameters 
computed on dataset B are compared with corresponding median aggregated 
parameters computed on 100 datasets simulated from parameter values esti-
mated on dataset B. Comparison is shown in terms of relative deviation. 
Represented parameters are described in the section ‘Model evaluation’ of Pa-
ragraph 4.2.1. Red dots are depicted for visualizing the relative deviation of 
median values computed from study A, from median values computed from 
study B. 
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Chapter 6  

Covariate analysis 

 

 

It is often useful to explain the variability in a parameter using a covariate 
model that describes the relations between covariates and parameters. A co-
variate model can be used for identification of patient subpopulations. In fact, 
in addition to reduce the unexplained variability, a major advantage of the de-
velopment of a covariate model is to limit potential risks of sub-therapeutic or 
undesirable effects by individualizing the treatment and the initial dosage re-
gimen in the different subpopulations. Furthermore, such a model is useful for 
identifying the need for and aiding the design of new studies in the drug de-
velopment process. If the identified covariate relationships are in line with the 
literature or prior expectations, the covariate model supports the structure of 
the other parts of the model. Thus, the development of a covariate model may 
also be viewed as a component of the model evaluation (Ribbing, 2007). 

In an exploratory analysis, there are often a large number of covariates 
available which would be interesting to test on one or more population model 
parameters (see Equation [4.10] for the definition of population model). A 
subset of the potential covariate relations is often selected for the final model. 
The actual selection of which relations to include can be made after investigat-
ing the results of including each of them in the model. These procedures are 
collectively called ‘selection within NONMEM’. Alternatively, the outcomes of 
the different relations can be investigated outside NONMEM, after which one 
or several selected models are investigated within NONMEM. The latter alter-
native is called ‘selection outside NONMEM’. 

The main advantage of selecting the covariate model outside NONMEM is 
that an investigation within NONMEM is computer intensive, resulting in long 
computer run-times and/or high demands on a computer grid. Therefore, a 
seemingly appealing approach is to perform graphical inspections of the rela-
tions between covariates and the EBE’s of individual parameters to find the 
relevant relations. However, if data are sparse, this may lead to shrinkage of 
the EBE towards the typical parameter value so that a clinically relevant rela-
tion may become distorted in its shape or appear as unimportant or falsely 
important (Wade, Edholm, & Salmonson, 2005; Savic, Wilkins, & Karlsson, 
2006). 

A statistical evaluation of a relation can be used to pick up even weak 
trends that may be invisible in a graphical inspection. This is commonly used 
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for identifying the covariate model using generalized-additive modeling 
(GAM) (Mandema, Verotta, & Sheiner, 1992). Also in this case, the issue of 
shrinkage is problematic unless the data contain rich information on the in-
vestigated individual parameters. A modest correlation between the popula-
tion model parameters can result in a false correlation between the individual 
parameters. Thus, a relation between a covariate and one parameter may in-
duce a false relation between the covariate and several other parameters.  

A completely different approach performing the covariate selection out-
side NONMEM is to use Wald’s approximation to the likelihood ratio test 
(WAM) (Kowalski & Hutmacher, 2001). This method requires the point esti-
mates and the covariance matrix of the estimates from a full model fit includ-
ing all covariate relations of interest. 

In the development of the multinomial Markov-chain model proposed 
with this thesis, estimating a full model with all the covariate relations of in-
terest was not possible. Moreover, the shrinkage computed for the different 
sub-models was not generally low and correlation between the population 
model parameters was high. For these reasons, covariates selection outside 
NONMEM was not performed. 
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6.1 Methods 

 

 

Covariates are often selected within NONMEM in a stepwise manner, e.g. 
using the procedure stepwise covariate modeling (SCM) (Jonsson & Karlsson, 
1998). Stepwise-selection procedures currently dominate model selection in 
non-linear mixed-effect modeling, not only for the elaboration of the second-
stage model, i.e. the model with covariate effects included. This approach can 
be implemented according to three different algorithms. 

In ‘forward selection’, the model complexity (model size) is increased from 
a ‘base model’ (the model with no covariate effects included). The features of 
interest that can be fitted are evaluated by including them one at a time into 
the model. The feature that performs best according to the p-value is included 
into the model if it is statistically significant. Subsequently, all other model fea-
tures are re-evaluated in the new model and a second feature is included if it is 
significant. The procedure stops at the full-forward model when no further 
model features are statistically significant. An alternative approach is ‘back-
ward elimination’. The starting point is a model that initially includes all fea-
tures of interest, called the ‘full model’. Elimination is performed until only 
statistically significant features remain. When this approach is possible, the 
end result is often as good as an all-subset selection, which investigates all 
combinations of the different model features of interest. This is not always the 
case with forward selection (Sauerbrei, 1999). However, the presence of fea-
tures that are mutually exclusive or inestimable in combination due to correla-
tions between the estimates often prevents the use of backward elimination 
techniques. Further, many ideas that are generated during an exploratory 
analysis cannot be included in the initial model. Because of this, backward 
elimination can only be used for part of the model-building procedure. Anoth-
er alternative is to use forward selection with a less strict (i.e. a higher) p-
value. The full forward model obtained in this manner is then refined by 
backward elimination using the same or a stricter p-value. This procedure is 
called ‘forward inclusion and backward elimination’ and is commonly applied 
in the selection of a covariate model (Jonsson & Karlsson, 1998). 

The stepwise procedures have been extensively investigated in traditional 
statistics and a few of the associated problems are outlined below. 

SCM often uses a p-value as an indicator of when to halt inclusion or dele-
tion of further covariate coefficients, i.e. as a stopping rule. In general, several 
covariates are investigated, possibly on a number of structural model parame-
ters and in several different functional forms. Therefore, the overall type-I er-
ror rate (i.e. the probability of including one or more false covariate coeffi-
cients into the model) is much higher than indicated by the required p-value. 
This type of problem is related to multiple comparisons (O'Neill & Wetherill, 
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1971). To correct for this, a stricter p-value is often used in the selection, al-
though this can in turn result in omitting relations that are actually important. 
Furthermore, correction of the p-value is only approximate or even arbitrary. 
Because of correlations, finding the value that corresponds to the overall type-
I error rate is very computer intensive. Thus, although the p-value is used as a 
criterion for selection based on the ideas of hypothesis testing, the actual 
strength by which the null hypothesis has been rejected is unknown in case of 
multiple comparisons.  

The coefficients selected by SCM are exaggerated because of selection bias. 
A relation that seems important is often statistically significant whereas one 
which by random chance seems less important is left out. In this manner, the 
selected relations are on average more important than they would have been 
if the full model had been estimated without selection. A systematic difference 
is called ‘bias’. In this context it is called ‘selection bias’ since it is caused by 
two elements in the selection procedure: the requirement of statistical signi-
ficance and the competition between correlated covariates (Miller A. J., 1984). 

Associated with selection bias, SCM is categorical when selecting cova-
riates. A relation is either included or completely excluded from the model. 
This categorical selection leads to highly variable estimates and reduces the 
predictive performance of the model.  

Compared to all-subset selection, the stepwise approach may not come 
across the optimal combination of predictors in its search path. This can espe-
cially occur when forward selection is used on a set of predictors that perform 
well together but poorly alone (Berk, 1978). This problem can be overcome by 
starting a backward elimination of the full covariate model (Sauerbrei, 1999). 
However, with many covariates to investigate, or many different functional 
relations or parameters on which effects are possible, this approach becomes 
impossible or at least very time consuming. 

In case of multinomial Markov-chain modeling, five different sub-models 
need to be analyzed for covariates inclusion. In each of them there are several 
population parameters which are potentially affected by covariates. Since this 
type of analysis was never performed before, at least on transition probabili-
ties during nighttime, there are no relevant priors on covariate effects on 
these parameters. As already pointed out in this chapter introduction, a poten-
tial explanatory analysis or, more generally, an investigation done outside 
NONMEM may be unreliable. In our specific case, an exploratory covariate 
analysis was considered time consuming and was not performed. Therefore, 
although the stepwise procedures suffers from some drawbacks, as described 
above, they are adopted here as the statistic tool for estimation of parameter-
covariate relations. The large number of relations to test implies the choice of 
forward inclusion and backward elimination as the algorithm to implement. 
The discriminating p-values for covariate effect inclusion (forward search) 
and exclusion (backward search) are chosen to be 0.05 and 0.01, respectively. 
Each time a relation is tested on a specific sub-model, the covariate effect is 
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added to a specific logit at a specific nighttime break-point, as done for stage 
time effect. By analogy with the characterization of the stage time effect itself, 
the piecewise linear relation between covariate and parameter is investigated, 
using the covariate median as independent variable value at which the slope 
of the effect can change. However, also the linear additive effect is tested as a 
simpler model with a smaller OFV drop to be considered significant (using p-
value=0.05, one added parameter requires a minimum increase in OFV equal 
to 3.84, while two added parameters require 5.99). Different effects at differ-
ent break-points are allowed. 

 The stepwise procedure is implemented using PsN© (Lindbom, Pihlgren, 
& Jonsson, 2005). This software can aid the use of NONMEM in many different 
ways, in this particular case by automating the whole process of forward in-
clusion and backward elimination. To do this, a configuration file needs to be 
defined assessing the specifics of the process, i.e. the parameters and cova-
riates, their types, the combinations to be tested and the modifications to be 
made to the NONMEM model file written for the base model. Moreover, the 
latter needs to be organized according to some specific rules. 

The available potential covariates are age, gender and body mass index 
(BMI). Their distribution is summarized in Table 4.1. As covered in the Discus-
sion paragraph, all of them are shown in the literature to potential influence 
sleep, therefore they all are investigated here for statistical significance on the 
model parameters. 
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6.2 Results 

 

 

Stepwise covariate modeling brings to OFV reduction in all sub-models, 
SWS excluded, as indicated in Table 6.1. All of the three analyzed covariates 
(age, gender and BMI) are included, linearly affecting various model parame-
ters in different night sections. A visual representation of such effects is pro-
vided by Figure 6.1, where typical individual probability profiles are shown 
for different covariates values. Reduction in inter-individual variability is gen-
erally not achieved. The application of sPPC to the obtained full model does 
not show any relevant improvement in the model performance. 
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6.3 Discussion 

 

 

Age, gender and BMI are found to be statistically significant predictors of 
transition probabilities profiles during nighttime in the considered population 
of insomniac subjects under placebo. However, the predictive performance of 
the model and the explanation of inter-individual variability are not improved 
by their inclusion. Each covariate significantly influences specific transitions, 
in specific nighttime intervals: therefore, the multiple covariate effects could 
be diluted if evaluated on aggregated sleep parameters. The choice of the co-
variate-parameter relations to include or exclude in the model is based on p-
values which need to be interpreted with caution, since multiple comparisons 
are involved (Ribbing & Jonsson, Power, selection bias and predictive 
performance of the population pharmacokinetic covariate model, 2004). 

To my knowledge, this is the first analysis where age, BMI and gender are 
considered potential covariates with respect to transitions between sleep 
stages. Moreover, transitions are considered here in terms of transition prob-
abilities rather than transition frequencies. In addition, the nature of this 
model allows understanding in which part of nighttime the effect is significant. 

If age increases, probability is found 

• to increase for transitions to AW, and to decrease for transitions to 
ST2 and SWS, in the first hours;  

• to increase for the transition from REM to AW, during intermediate 
hours;  

• to increase for transitions to AW, in the last hours. 

These effects are consistent with previous findings from the literature 
(Van Cauter, Leproult, & Plat, 2000; Redline, Kirchner, Quan, Gottlieb, Kapur, & 
Newman, 2004; Vitiello, 2006; Sahlin, Franklin, Stenlund, & Lindberg, 2009), 
described in terms of sleep stage percentages, arousal index, sleep efficiency, 
total sleep time and time spent awake after falling asleep. 

Gender is found to affect transition probabilities only in the last part of the 
night: transitions from AW to ST2 and from REM to AW appear more likely in 
women. In the literature, it has been reported that females have higher sleep 
efficiency, higher SWS percentage and lower light sleep (ST1 & ST2) percen-
tage (Redline, Kirchner, Quan, Gottlieb, Kapur, & Newman, 2004), compared 
with males. Therefore, in this case linking our findings with the ones reported 
in literature becomes challenging. 

Finally, high BMI values translate into a reduction of the following transi-
tions probabilities: 
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• from ST1 to ST2, ST1 to REM and ST2 to SWS, in the intermediate night 
hours, 

• and from ST2 to REM, in the last hours. 

These effects are compatible with lower SWS percentage (Rao, Blackwell, 
Redline, Stefanick, Ancoli-Israel, & Stone, 2009; Kohatsu, et al., 2006), arousal 
index (Redline, Kirchner, Quan, Gottlieb, Kapur, & Newman, 2004) and sleep 
duration(Van Cauter & Knutson, 2008; Kohatsu, et al., 2006) reported in the 
literature. 

It is important to notice that the covariate analysis is performed on in-
somniac subjects treated with placebo. Although the considered covariates do 
not appear to be relevant in terms of model predictive performance when in-
cluding or excluding their effects, their relevance cannot be excluded in a pa-
tient population with a wider range of severity. In fact, it is likely that the ef-
fect of age, gender and BMI on sleep architecture is highly masked by the in-
somnia severity. Further applications of this model in different patient popula-
tions or healthy subjects are recommended to better characterize and possibly 
differentiate physiological and patho-physiological sleep architecture. 
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6.4 Tables and figures 

 

 

Table 6.1 OFVs for the 5 sub-models before and after inclusion of parameter-
covariate relationships (study A). 

 

Sub-model Before inclusion After inclusiona 
AW 21662 21605 (7) 
ST1 24086 24070 (2) 
ST2 48733 48705 (3) 
SWS 8380 - 
REM 14687 14668 (2) 

a The number of included covariate effects is indicated between parenthesis. 
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Figure 6.1 Covariate effects on the typical individual profiles of some transi-
tion probabilities. The computation of probability values is done for covariate 
values chosen as follows: in both the males and females populations of study 
A, the 5th and 95th percentiles for age and BMI values are computed and used 
in each of their 4 combinations. Stage times and length of initial sleeplessness 
are chosen as the median values in the whole population. Effects are shown 
only on the transitions for which maximum changes in the probability values 
using the 4 combinations are greater than 0.01. 
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Chapter 7  

Conclusions 

 

 

Drug development in the insomnia field calls for a better understanding of 
sleep physiology in order to improve and differentiate novel medicines for the 
treatment of sleep disorders. On this basis, a proper evaluation of polysomno-
graphic (PSG) data collected in clinical trials conducted to explore clinical effi-
cacy of novel hypnotic compounds should include the assessment of sleep ar-
chitecture and its drug-induced changes. 

PSG data are nominal (non-ordered) correlated data with five different 
categories. One of the most interesting approaches for modelling this kind of 
data is the implementation of mixed-effect Markov-chain non-homogeneous 
models. The latter were previously parameterized using binary logistic func-
tions, which allow a mixed-effect description of transition probabilities be-
tween sleep stages. 

This work introduces instead the use of multinomial logistic functions as 
an integrated modelling framework to identify physiologically meaningful pa-
rameters. The first aim of this thesis was therefore the implementation of a 
mixed-effect Markov-chain non-homogeneous model with multinomial logistic 
functions, and its evaluation based on a few consolidated techniques generally 
applied for this purpose. The second aim was the improvement of the pro-
posed model through the inclusion of new features or elements already dis-
cussed in the literature. The third objective was the assessment and applica-
tion of a more thorough model evaluation on the final model, by means of the 
learning dataset, datasets created via Monte Carlo simulation and a further set 
of real data, used as validation dataset. Finally the thesis aimed at the analysis 
of the covariates affecting the model parameters and of the functional rela-
tions describing these effects. 

The learning dataset was obtained from one-night polysomnography 
measurements on insomniac patients treated with placebo. The inclusion of 
multinomial logistic functions simplified the model building process and 
brought to a model structure more suited to this type of data. The evaluation 
of the base proposed model produced an overall good judgement of the model 
adequacy, but some observed discrepancies between model predictions and 
the real dataset suggested that the model could be further improved. The fol-
lowing model development brought to some modifications, mostly in terms of 
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parameterization of both the population and the individual model, and of in-
clusion of new predictors for the multinomial logits. 

When evaluating the final model, consolidated and innovative diagnostics 
were discussed and implemented. In particular, visual estimation check (VEC) 
and visual prediction check (VPC) on transition frequencies were introduced 
here for the first time in the context of mixed-effect PK-PD modeling. Evalua-
tion through comparison between learning dataset and simulated data (inter-
nal evaluation) shown that the maximum likelihood estimator, with Laplacian 
approximation as implemented in NONMEM VI, is robust enough for this 
analysis and that the overall performance of the model in both describing and 
simulating the data is very good. Also the evaluation performed using a new 
validation dataset (external evaluation) produced good results, suggesting 
that the model may be adopted on other datasets with similar features and 
that the parameter estimates gained from the learning dataset may be used as 
good initial estimates or priors when dealing with new sleep data from similar 
studies. It was also highlighted that reduced predictive performance may arise 
mostly for sleep aggregated parameters with high variability in different stu-
dies. 

Finally, covariate analysis produced interesting novel results on how age, 
gender and body mass index affect the transition probabilities between sleep 
stages. The effects could be estimated building a second stage model where 
covariate-parameter relations were included only when statistically signifi-
cant, on the basis of a forward inclusion and backward elimination stepwise 
procedure. Each covariate was found to influence some specific transition 
probabilities at specific nighttime intervals. These findings are generally in 
agreement with literature consideration on sleep covariate. However, from 
this analysis, it appears that the true effect of the considered covariates on the 
sleep architecture may be highly masked by the insomnia severity of the stud-
ied population. 

In summary, the model developed and evaluated in this thesis is the first 
mixed-effect Markov-chain model of nominal polychotomous pharmacody-
namic data using multinomial logistic functions. The proposed approach can 
be considered a robust modeling framework for describing and predicting 
sleep architecture. Herein, it was applied to data from a population of insom-
niac patients treated with placebo, but it can be easily extended to account 
also for drug effect on the transition probabilities and to compare sleep archi-
tecture in healthy volunteers and patients. In fact, this model may help to 
identify the key sleep patterns differentiating the mechanism of action of dif-
ferent hypnotic compounds; in addition it may help to thoroughly diagnose 
the presence, the absence and the grade of severity of various sleep disorders. 

Finally, the proposed framework can be applied to other research areas 
where non-ordered polychotomous data are used to characterize phase tran-
sitions (e.g., in the gastrointestinal tract) or clinical scores (e.g., patient com-
pliance, adverse event severity, disease progression, clinical efficacy). These 
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models can be clearly applied to a variety of pharmacokinetic-
pharmacodynamic applications, such as quantification of drug responses in 
the study population, identification of covariates, predictions into untried re-
gimens, and simulations of hypothetical trials during a drug development pro-
gram. 
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Appendix A 

 

 

NONMEM model file for sub-model AW: 

 

 

$PROB trAW 

 

 

$INPUT ID TIME DV=STAG MDV0 MDV STT SL IS 

  ; TIME = epoch number (between 1 and 960) 

  ; MDV0 = 0 if previous stage==AW, 1 otherwise 

  ; STT = stage time 

  ; SL = 0 if first sleep stage has not occurred yet, 1 otherwise 

  ; has not occurred yet, 1 otherwise 

  ; IS = first epoch with SL==1 

 

 

$DATA data.csv IGNORE=@ 

  IGNORE=(MDV0.EQ.1) 

  IGNORE=(STAG.GT.5) 

  IGNORE=(STAG.EQ.3) 

 

 

$PRED         ;LOGIT: G1, G2, G3 

              ;BP: BPA, BPB, BPC: nighttime break-points 

              ;BPs: BPsa, BPsb, BPsc: stage time break-points 

              ;BPi: BP1, BP2, BP3: initial sleeplessness break-points 

              ;STE: stage time effect 

 

  BPA=IS 

  BPC=960 

  BPB=(BPC-BPA)*THETA(16)+BPA 

 

  BPsa=1 

  BPsb=THETA(17) 

  BPsc=265              

 

  BP1=2 

  BP3=371             ;max(IS)-1 

  BP2=(BP3-BP1)*THETA(18)+BP1 

 

 

  STE1b=THETA(10) 

  STE2b=THETA(11) 

  STE3b=THETA(12) 

  STE1c=THETA(13) 

  STE2c=THETA(14) 

  STE3c=THETA(15) 

 

  TVG1A=THETA(1) 

  TVG2A=THETA(2) 

  TVG3A=THETA(3) 

  TVG1B=THETA(4) 

  TVG2B=THETA(5) 
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  TVG3B=THETA(6) 

  TVG1C=THETA(7) 

  TVG2C=THETA(8) 

  TVG3C=THETA(9) 

 

  TVG11=THETA(19) 

  TVG21=THETA(20) 

  TVG31=THETA(21) 

  TVG12=THETA(22) 

  TVG22=THETA(23) 

  TVG32=THETA(24) 

  TVG13=THETA(25) 

  TVG23=THETA(26) 

  TVG33=THETA(27) 

 

  IF (STT.LE.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1A+ETA(1)+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2A=(TVG2A+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2A+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3A=(TVG3A+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3A+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1B=(TVG1B+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1B+ETA(1)+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2B=(TVG2B+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2B+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3B=(TVG3B+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3B+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1C=(TVG1C+ETA(1))*(BPsb-STT)/(BPsb-BPsa)+(TVG1C+ETA(1)+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2C=(TVG2C+ETA(2))*(BPsb-STT)/(BPsb-BPsa)+(TVG2C+ETA(2)+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3C=(TVG3C+ETA(3))*(BPsb-STT)/(BPsb-BPsa)+(TVG3C+ETA(3)+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

  ENDIF 

  IF (STT.GT.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1A+ETA(1)+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2A=(TVG2A+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2A+ETA(2)+STE2c)*(STT-BPsb)/(BPsc-BPsb) 

    G3A=(TVG3A+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3A+ETA(3)+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

 

    G1B=(TVG1B+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1B+ETA(1)+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2B=(TVG2B+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2B+ETA(2)+STE2c)*(STT-BPsb)/(BPsc-BPsb) 

    G3B=(TVG3B+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3B+ETA(3)+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

 

    G1C=(TVG1C+ETA(1)+STE1b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG1C+ETA(1)+STE1c)*(STT-BPsb)/(BPsc-BPsb) 

    G2C=(TVG2C+ETA(2)+STE2b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG2C+ETA(2)+STE2c)*(STT-BPsb)/(BPsc-BPsb) 

    G3C=(TVG3C+ETA(3)+STE3b)*(BPsc-STT)/(BPsc-

BPsb)+(TVG3C+ETA(3)+STE3c)*(STT-BPsb)/(BPsc-BPsb) 

  ENDIF 

 

  IF (TIME.GE.BPA.AND.TIME.LE.BPB.AND.SL.EQ.1) THEN 

    G1=G1A*(BPB-TIME)/(BPB-BPA)+G1B*(TIME-BPA)/(BPB-BPA) 

    G2=G2A*(BPB-TIME)/(BPB-BPA)+G2B*(TIME-BPA)/(BPB-BPA) 

    G3=G3A*(BPB-TIME)/(BPB-BPA)+G3B*(TIME-BPA)/(BPB-BPA) 

  ENDIF 

  IF (TIME.GT.BPB.AND.TIME.LE.BPC.AND.SL.EQ.1) THEN 



Appendix A 

123 

    G1=G1B*(BPC-TIME)/(BPC-BPB)+G1C*(TIME-BPB)/(BPC-BPB) 

    G2=G2B*(BPC-TIME)/(BPC-BPB)+G2C*(TIME-BPB)/(BPC-BPB) 

    G3=G3B*(BPC-TIME)/(BPC-BPB)+G3C*(TIME-BPB)/(BPC-BPB) 

  ENDIF 

 

 

  IF (TIME.GE.BP1.AND.TIME.LE.BP2.AND.SL.EQ.0) THEN 

    G1=(TVG11+ETA(4))*(BP2-TIME)/(BP2-BP1)+(TVG12+ETA(4))*(TIME-BP1)/(BP2-

BP1) 

    G2=(TVG21+ETA(5))*(BP2-TIME)/(BP2-BP1)+(TVG22+ETA(5))*(TIME-BP1)/(BP2-

BP1) 

    G3=(TVG31+ETA(6))*(BP2-TIME)/(BP2-BP1)+(TVG32+ETA(6))*(TIME-BP1)/(BP2-

BP1) 

  ENDIF 

  IF (TIME.GT.BP2.AND.TIME.LE.BP3.AND.SL.EQ.0) THEN 

    G1=(TVG12+ETA(4))*(BP3-TIME)/(BP3-BP2)+(TVG13+ETA(4))*(TIME-BP2)/(BP3-

BP2) 

    G2=(TVG22+ETA(5))*(BP3-TIME)/(BP3-BP2)+(TVG23+ETA(5))*(TIME-BP2)/(BP3-

BP2) 

    G3=(TVG32+ETA(6))*(BP3-TIME)/(BP3-BP2)+(TVG33+ETA(6))*(TIME-BP2)/(BP3-

BP2) 

  ENDIF 

 

  PAWp=1/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P1p=EXP(G1p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P2p=EXP(G2p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

  P3p=0 

  PRp=EXP(G3p)/(1+EXP(G1p)+EXP(G2p)+EXP(G3p)) 

 

  Y=0 

  IF (STAG.EQ.0) Y=PAW 

  IF (STAG.EQ.1) Y=P1 

  IF (STAG.EQ.2) Y=P2 

  IF (STAG.EQ.5) Y=PR 

 

 

$THETA                

 

  -1; TVG1A 

  -5; TVG2A 

  -10 FIX; TVG3A 

 

  -1; TVG1B 

  -1; TVG2B 

  -4; TVG3B 

 

  -.1; TVG1C 

  -2; TVG2C 

  -2; TVG3C 

 

  -2; STE1b 

  -3; STE2b 

  -5; STE3b 

 

  -5; STE1c 

  -10 FIX; STE2c 

  -10 FIX; STE3c 

 

  (0,.1,1); REL BPB 

 

  (1,10,265); BPsb      

  (0,.4,1); REL BP2      

 

  -5; TVG11 

  -10 FIX; TVG21 

  -10 FIX; TVG31 
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  -5; TVG12 

  -5; TVG22 

  -10 FIX; TVG32 

 

  -1; TVG13 

  -10 FIX; TVG23 

  -10 FIX; TVG33 

 

 

$OMEGA BLOCK(2) 

 

  .1 ;G1i 

  -.02 .5 ;G2i 

 

$OMEGA 

 

  .5 ;G3i 

 

 

$ESTIMATION METHOD=COND LAPLACE LIKE MSFO=msf1 

 

 

$COVARIANCE MATRIX=R PRINT=E 
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Appendix B 

 

 

Some lines from the dataset used with sub-model AW: 

 

 

ID TIME STAG MDV0 MDV STT SL IS 

 

142  52  0 0 0 51 0 55 

142  53 0  0 0 52  0 55 

142 54  1 0 0 53  0  55  

142  55  1  1 0  1 1  55 

142  56 1 1 0  2 1  55 

… 

126 343 2  1 0 10 1 71 

126 344 2  1 0  11 1 71 

126  345 0 1 0 12 1 71 

126 346 1  0 0 1 1 71 

126 347 0  1 0 1 1 71 

126  348 1 0  0  1 1 71  

126  349 1 1 0 1  1 71 
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Appendix C 

 

 

NONMEM control file for the simulation of new datasets: 

 

 

$PROB simulator 

 

$INPUT ID DV=VIS TIME STAGE 

  ; TIME = epoch number (between 1 and 960) 

 

$DATA data1.csv IGNORE=@ 

 

$ABBREVIATED DERIV2=NO 

 

$PRED         ;LOGIT: G1, G2, G3 

              ;BP: BPA, BPB, BPC: nighttime break-points 

              ;BPs: BPsa, BPsb, BPsc: stage time break-points 

              ;BPi: BP1, BP2, BP3: initial sleeplessness break-points 

              ;STE: stage time effect 

              ;STT: stage time     

 

  REP=IREP 

 

  AA=THETA(1)+ETA(1)+ETA(2)+ETA(3)+ETA(4)+ETA(5)+ETA(6)+ETA(7)+ETA(8) 

  AA=AA+ETA(9)+ETA(10)+ETA(11)+ETA(12)+ETA(13)+ETA(14)+ETA(15)+ETA(16) 

   

  MDV0=1 

  MDV1=1 

  MDV2=1 

  MDV3=1 

  MDV5=1 

 

  IF (TIME.EQ.1) THEN 

    PST=-1                     ;previous stage 

    PSTT=-10                   ;previous stage time 

    PSL=0                      ;previous sleep 

    SL=0                       ;sleep 

    IS=0                       ;first epoch with SL==1 

  ENDIF 

   

  SL=0 

  IF (PSL.EQ.0.AND.PST.GT.0) SL=1 

  IF (PSL.EQ.1) SL=1 

  IF (PSL.EQ.0.AND.SL.EQ.1) IS=TIME 

 

  STT=PSTT+1       

         

  IF (PST.EQ.0) MDV0=0 

  IF (PST.EQ.1) MDV1=0 

  IF (PST.EQ.2) MDV2=0 

  IF (PST.EQ.3) MDV3=0 

  IF (PST.EQ.5) MDV5=0 

 

  ; break-points 

  BPA=2 



Appendix C 

128 

  BPB=960 

  BPC=960 

  BPsa=1 

  BP1=1 

  BP2=2 

  BP3=1 

 

  ; stage time effect 

  STE4b=1 

  STE4c=1 

   

  ; for stage2 sub-model 

  TVG4A=1 

  TVG4B=1 

  TVG4C=1 

  DEV4=1 

 

  ; for awake sub-model 

  TVG11=1 

  TVG21=1 

  TVG31=1 

  TVG12=1 

  TVG22=1 

  TVG32=1 

  TVG13=1 

  TVG23=1 

  TVG33=1 

    

  ;------------------------------------------------------------- 

  ;  initialization using the previously estimated THETAs 

  ;------------------------------------------------------------- 

 

  ; awake sub-model 

  IF (MDV0.EQ.0) THEN 

    BPA=IS                        ;first epoch with SL==1 

    BPB=(BPC-BPA)*0.0679+BPA 

    BPsc=265                      ;max stage time           

    BPsb=(BPsc-BPsa)*0.024+BPsa 

     

 

    BP1=2 

    BP3=371                       ;MAX initial sleeplessness  

    BP2=(BP3-BP1)*0.0298+BP1 

 

    STE1b=-2.49 

    STE2b=-3.59 

    STE3b=-5.67 

 

    STE1c=-6.63 

    STE2c=-10 

    STE3c=-10 

 

    TVG1A=-0.251 

    TVG2A=-2.66 

    TVG3A=-10 

    TVG1B=-0.209 

    TVG2B=-1.01 

    TVG3B=-2.86 

    TVG1C=-0.203 

    TVG2C=-2.08 

    TVG3C=-2.1 

 

    TVG11=-5.76 

    TVG21=-10 

    TVG31=-10 

    TVG12=-3.93 
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    TVG22=-7.63 

    TVG32=-10 

    TVG13=-4.86 

    TVG23=-10 

    TVG33=-10 

 

    DEV1=ETA(1) 

    DEV2=ETA(2) 

    DEV3=ETA(3) 

  ENDIF  

 

  ; stage1 sub-model 

  IF (MDV1.EQ.0) THEN 

    BPB=268         

    BPsb=3.24 

    BPsc=20               

 

    STE1b=-0.447 

    STE2b=-0.52 

    STE3b=-0.463 

 

    STE1c=-0.634 

    STE2c=-0.246 

    STE3c=-3.31 

 

    TVG1A=-0.321 

    TVG2A=-0.0716 

    TVG3A=-4.15 

    TVG1B=-1.07 

    TVG2B=0.492 

    TVG3B=-1.01 

    TVG1C=-1.05 

    TVG2C=-0.251 

    TVG3C=-1.24 

 

    DEV1=ETA(4) 

    DEV2=ETA(5) 

    DEV3=ETA(6) 

  ENDIF   

 

  ; stage2 sub-model 

  IF (MDV2.EQ.0) THEN 

    BPB=676 

    BPsb=5.62 

    BPsc=143                

 

    STE1b=-0.905 

    STE2b=-0.894 

    STE3b=-1.19 

    STE4b=-0.993 

 

    STE1c=-1.79 

    STE2c=-6.44 

    STE3c=0.927 

    STE4c=-6.75 

 

    TVG1A=-2.46 

    TVG2A=-2.52 

    TVG3A=-1.71 

    TVG4A=-4.07 

    TVG1B=-2.57 

    TVG2B=-2.6 

    TVG3B=-3.33 

    TVG4B=-3.34 

    TVG1C=-2.13 

    TVG2C=-2.33 
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    TVG3C=-4.59 

    TVG4C=-3.16 

 

    DEV1=ETA(7) 

    DEV2=ETA(8) 

    DEV3=ETA(9) 

    DEV4=ETA(10) 

  ENDIF  

 

  ; sws sub-model 

  IF (MDV3.EQ.0) THEN 

    BPB=715 

    BPsb=5.9 

    BPsc=103              

 

    STE1b=-0.999 

    STE2b=-0.939 

    STE3b=-2.5 

 

    STE1c=0.761 

    STE2c=-3.53 

    STE3c=-3.73 

 

    TVG1A=-3.22 

    TVG2A=-4.83 

    TVG3A=-0.526 

    TVG1B=-3.31 

    TVG2B=-5.13 

    TVG3B=0.142 

    TVG1C=-1.65 

    TVG2C=-4.55 

    TVG3C=0.389 

 

    DEV1=ETA(11) 

    DEV2=ETA(12) 

    DEV3=ETA(13) 

  ENDIF  

 

  ; rem sub-model 

  IF (MDV5.EQ.0) THEN 

    BPB=640 

    BPsb=13.6 

    BPsc=100              

 

    STE1b=0.351 

    STE2b=-0.238 

    STE3b=-1.22 

 

    STE1c=0.566 

    STE2c=-1.22 

    STE3c=1.8 

 

    TVG1A=-3.12 

    TVG2A=-2.87 

    TVG3A=-3.11 

    TVG1B=-3.25 

    TVG2B=-3.02 

    TVG3B=-4.6 

    TVG1C=-2.96 

    TVG2C=-2.98 

    TVG3C=-4.56 

 

    DEV1=ETA(14) 

    DEV2=ETA(15) 

    DEV3=ETA(16) 

  ENDIF  
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  G1A=0 

  G2A=0 

  G3A=0 

  G4A=0 

 

  ;-------------------------------- 

  ; stage time effect interpolation 

  ;-------------------------------- 

 

  IF (STT.GE.0.AND.STT.LE.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1A+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2A=(TVG2A+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2A+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3A=(TVG3A+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3A+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4A=(TVG4A+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4A+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1B=(TVG1B+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1B+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2B=(TVG2B+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2B+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3B=(TVG3B+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3B+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4B=(TVG4B+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4B+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

 

    G1C=(TVG1C+DEV1)*(BPsb-STT)/(BPsb-BPsa)+(TVG1C+DEV1+STE1b)*(STT-

BPsa)/(BPsb-BPsa) 

    G2C=(TVG2C+DEV2)*(BPsb-STT)/(BPsb-BPsa)+(TVG2C+DEV2+STE2b)*(STT-

BPsa)/(BPsb-BPsa) 

    G3C=(TVG3C+DEV3)*(BPsb-STT)/(BPsb-BPsa)+(TVG3C+DEV3+STE3b)*(STT-

BPsa)/(BPsb-BPsa) 

    G4C=(TVG4C+DEV4)*(BPsb-STT)/(BPsb-BPsa)+(TVG4C+DEV4+STE4b)*(STT-

BPsa)/(BPsb-BPsa) 

  ENDIF 

 

  IF (STT.GT.BPsb.AND.SL.EQ.1) THEN 

    G1A=(TVG1A+DEV1+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1A+DEV1+STE1c)*(STT-

BPsb)/(BPsc-BPsb) 

    G2A=(TVG2A+DEV2+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2A+DEV2+STE2c)*(STT-

BPsb)/(BPsc-BPsb) 

    G3A=(TVG3A+DEV3+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3A+DEV3+STE3c)*(STT-

BPsb)/(BPsc-BPsb) 

    G4A=(TVG4A+DEV4+STE4b)*(BPsc-STT)/(BPsc-BPsb)+(TVG4A+DEV4+STE4c)*(STT-

BPsb)/(BPsc-BPsb) 

 

    G1B=(TVG1B+DEV1+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1B+DEV1+STE1c)*(STT-

BPsb)/(BPsc-BPsb) 

    G2B=(TVG2B+DEV2+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2B+DEV2+STE2c)*(STT-

BPsb)/(BPsc-BPsb) 

    G3B=(TVG3B+DEV3+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3B+DEV3+STE3c)*(STT-

BPsb)/(BPsc-BPsb) 

    G4B=(TVG4B+DEV4+STE4b)*(BPsc-STT)/(BPsc-BPsb)+(TVG4B+DEV4+STE4c)*(STT-

BPsb)/(BPsc-BPsb) 

 

    G1C=(TVG1C+DEV1+STE1b)*(BPsc-STT)/(BPsc-BPsb)+(TVG1C+DEV1+STE1c)*(STT-

BPsb)/(BPsc-BPsb) 

    G2C=(TVG2C+DEV2+STE2b)*(BPsc-STT)/(BPsc-BPsb)+(TVG2C+DEV2+STE2c)*(STT-

BPsb)/(BPsc-BPsb) 

    G3C=(TVG3C+DEV3+STE3b)*(BPsc-STT)/(BPsc-BPsb)+(TVG3C+DEV3+STE3c)*(STT-

BPsb)/(BPsc-BPsb) 

    G4C=(TVG4C+DEV4+STE4b)*(BPsc-STT)/(BPsc-BPsb)+(TVG4C+DEV4+STE4c)*(STT-

BPsb)/(BPsc-BPsb) 
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  ENDIF 

 

;-------------------------------- 

; logits interpolation 

;-------------------------------- 

 

  G1=G1A 

  G2=G2A 

  G3=G3A 

  G4=G4A 

 

  IF (TIME.GE.BPA.AND.TIME.LE.BPB.AND.SL.EQ.1) THEN 

    G1=G1A*(BPB-TIME)/(BPB-BPA)+G1B*(TIME-BPA)/(BPB-BPA) 

    G2=G2A*(BPB-TIME)/(BPB-BPA)+G2B*(TIME-BPA)/(BPB-BPA) 

    G3=G3A*(BPB-TIME)/(BPB-BPA)+G3B*(TIME-BPA)/(BPB-BPA) 

    G4=G4A*(BPB-TIME)/(BPB-BPA)+G4B*(TIME-BPA)/(BPB-BPA) 

  ENDIF 

  IF (TIME.GT.BPB.AND.TIME.LE.BPC.AND.SL.EQ.1) THEN 

    G1=G1B*(BPC-TIME)/(BPC-BPB)+G1C*(TIME-BPB)/(BPC-BPB) 

    G2=G2B*(BPC-TIME)/(BPC-BPB)+G2C*(TIME-BPB)/(BPC-BPB) 

    G3=G3B*(BPC-TIME)/(BPC-BPB)+G3C*(TIME-BPB)/(BPC-BPB) 

    G4=G4B*(BPC-TIME)/(BPC-BPB)+G4C*(TIME-BPB)/(BPC-BPB) 

  ENDIF 

 

  IF (TIME.GE.BP1.AND.TIME.LE.BP2.AND.SL.EQ.0) THEN 

    G1=(TVG11+DEV1)*(BP2-TIME)/(BP2-BP1)+(TVG12+DEV1)*(TIME-BP1)/(BP2-BP1) 

    G2=(TVG21+DEV2)*(BP2-TIME)/(BP2-BP1)+(TVG22+DEV2)*(TIME-BP1)/(BP2-BP1) 

    G3=(TVG31+DEV3)*(BP2-TIME)/(BP2-BP1)+(TVG32+DEV3)*(TIME-BP1)/(BP2-BP1) 

  ENDIF 

  IF (TIME.GT.BP2.AND.SL.EQ.0) THEN 

    G1=(TVG12+DEV1)*(BP3-TIME)/(BP3-BP2)+(TVG13+DEV1)*(TIME-BP2)/(BP3-BP2) 

    G2=(TVG22+DEV2)*(BP3-TIME)/(BP3-BP2)+(TVG23+DEV2)*(TIME-BP2)/(BP3-BP2) 

    G3=(TVG32+DEV3)*(BP3-TIME)/(BP3-BP2)+(TVG33+DEV3)*(TIME-BP2)/(BP3-BP2) 

  ENDIF 

 

  ;---------------------------------------- 

  ; transition probabilities as anti-logits 

  ;---------------------------------------- 

 

  PAW=2 

  P1=0 

  P2=0 

  P3=0 

   

  ; awake 

  IF (MDV0.EQ.0) THEN 

    PAW=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

 

  ; stage1 

  IF (MDV1.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

 

  ; stage2 

  IF (MDV2.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 
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    P2=1/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    P3=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

    PR=EXP(G4)/(1+EXP(G1)+EXP(G2)+EXP(G3)+EXP(G4)) 

  ENDIF 

 

  ; sws 

  IF (MDV3.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    PR=0 

  ENDIF 

 

  ; rem 

  IF (MDV5.EQ.0) THEN 

    PAW=EXP(G1)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P1=EXP(G2)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P2=EXP(G3)/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

    P3=0 

    PR=1/(1+EXP(G1)+EXP(G2)+EXP(G3)) 

  ENDIF 

   

  ; probability scale 

  DEV1=PAW+P1 

  DEV2=DEV1+P2 

  DEV3=DEV2+P3 

 

  ; Initialization of stage ST - first epoch is awake  

  ST=0                         

 

  AW=0 

  ST1=0 

  ST2=0 

  ST3=0 

  REM=0 

 

  ; random call for the simulation step 

  IF (ICALL.EQ.4) THEN 

    CALL RANDOM (2,R) 

 

    ; if R<PAW transition to AW is taken into account 

    ; and the following stage is AW(0) 

    IF (R.LT.PAW) THEN 

      ST=0 

      AW=1 

 

    ; if PAW<=R<PAW+P1 transition to ST1 is taken into account 

    ; and the following stage is ST1(1) 

    ELSEIF (R.LT.DEV1.AND.R.GE.PAW) THEN 

      ST=1 

      ST1=1 

 

    ; if PAW+P1<=R<PAW+P1+P2 transition to ST2 is taken into account 

    ; and the following stage is ST2(2) 

    ELSEIF (R.LT.DEV2.AND.R.GE.DEV1) THEN 

      ST=2 

      ST2=1 

 

    ; if PAW+P1+P2<=R<PAW+P1+P2+P3 transition to SWS is  

    ; taken into account and the following stage is SWS(3) 

    ELSEIF (R.LT.DEV3.AND.R.GE.DEV2) THEN 

      ST=3 

      ST3=1 

 

    ; if R>=PAW+P1+P2+P3 transition to REM is  
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    ; taken into account and the following stage is REM(5) 

    ELSE 

      ST=5 

      REM=1 

    ENDIF 

  ENDIF 

 

  CH=1                             ;change 

  IF (ST.EQ.PST) CH=0              ;no change 

  PSTT=STT*(CH-1)**2 

 

  IF (TIME.EQ.1) STT=0 

  PSL=SL 

  PST=ST 

 

$THETA 1 

 

;AW 

$OMEGA BLOCK(2) .134 -0.142 .831 

$OMEGA 1.07 

;ST1 

$OMEGA BLOCK(3) .318 .18 .389 -0.0637 .138 .398 

;ST2 

$OMEGA .152 .456 .786 .239 

;ST3 

$OMEGA (0 FIX) 1.4 1.35 

;REM 

$OMEGA .584 .849 1.1 

 

$SIM (123456) (123 UNIFORM) ONLY SUBPROBS=100 NOPREDICTION 

 

$TAB ID TIME ST MDV0 MDV1 MDV2 MDV3 MDV5 MDV 

     AW ST1 ST2 ST3 REM STT SL IS REP 

     ONEHEADER NOPRINT NOAPPEND FILE=simul 
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