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Sommario

L’evoluzione delle tecnologie CMOS ha portato a molte sfide per i designer di
circuiti analogici. La riduzione delle dimensioni dei transistor ha un grande impatto
sul design del circuito analogico, in quanto ne degrada in modo considerevole le per-
formance. Ad esempio, la ridotta tensione di alimentazione e la degradazione delle
caratteristiche dei dispositivi sono problemi inevitabili per i designer di dispositivi
CMOS. In quanto interfaccia tra i circuiti analogici e quelli digitali, il convertitore
Analogico Digitale (ADC) si sta muovendo verso tecnologie CMOS ultra-scalate al
fine di godere dei vantaggi che lo scaling tecnologico porta sulla circuiteria digitale.
Questo pone una crescente difficoltà nel design degli ADC.
I convertitori Sigma-Delta (Σ∆) sono dei promettenti candidati per la conversione
analogico-digitale (A/D). La ragione di ciò è duplice. Da un lato, a differenza degli
altri convertitori che necessitano di elementi molto performanti per ottenere risolu-
zioni elevate, i convertitori Σ∆ mostrano una elevata robustezza alle imperfezioni
dei blocchi che li compongono. Questo è ottenuto grazie ad un esteso utilizzo di
cricuiteria digitale, che nelle tecnologie CMOS scalate risulta preferibile grazie al
suo basso consumo di potenza e all’elevata densità. D’altra parte, anche il numero
di applicazioni industriali è cresciuto. Infatti, a cominciare dalle prime applicazioni
in campo audio, possiamo trovare convertitori Σ∆ in una gran varietà di interfacce
A/D, come strumentazioni biomediche fino al campo delle comunicazioni.
Nonostante l’architettura Σ∆ sia un soggetto ormai maturo, ci sono tutt’ora diverse
questioni irrisolte. A causa della presenza di un elemento fortemente non lineare, il
quantizzatore, all’interno del loop di feedback, l’analisi esatta della modulazione
Σ∆ risulta complicata. In questa tesi, un approccio a livello circuitale e a livello di
sistema viene presentato per il design di un convertitore ADC a bassa potenza e
a bassa tensione di alimentazione in tecnologia nanometrica CMOS. Nella prima
parte di questo lavoro, viene introdotta una particolare topologia Σ∆ adatta al
design di convertitori in tecnologia nanometrica. La caratteristica piú importante di
questa topologia è la funzione di trasferimento tra ingresso e uscita unitaria. Viene
presentata un’analisi dettagliata, portando alla scelta ottimizata di parametri di
sistema. Viene inoltre presentata una nuova circuiteria digitale per estendere l’uso
del modulatore Σ∆ a bande più elevate.
La seconda parte di questa tesi è dedicata al design circuitale. Il principale raggiun-
gimento di questo lavoro è un modulatore Σ∆ in tecnologia 65nm con un range
dinamico di 94dB. Il consumo di potenza è 407µW in un banda di 500kHz con
una tensione di alimentazione di 1.2V. Questo design dimostra che la topologia Σ∆
feedforward è una scelta eccellente per il design di ADC a bassa potenza, elevata
banda ed elevata risoluzione in tecnologie nanometriche CMOS.
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Abstract

The evolution of the CMOS technology brings many challenges to analog designers.
The scaling-down of the transistor feature size has a big impact on analog circuit
design, because it considerably degrades the performance of an analog circuit. For
instance, the reduced supply voltage and the degraded device characteristics are
inevitable problems for CMOS designers. As an interface between the analog circuit
and the digital circuit, the Analog-to-Digital Converter (ADC) is moving into scaled
nanometer CMOS technologies due to the advantages for the digital circuit. This
put increasingly difficult demands on the design ADCs.
Sigma-Delta (Σ∆) ADCs are promising candidates for the Analog-To-Digital (A/D)
conversion. The reason for that is twofold. One the one hand, unlike the other
converters that need accurate building blocks to obtain high resolution, Σ∆ con-
verters show low sensitivity to the imperfections of their building blocks. This is
achieved thanks to the extensive use of digital circuitry, which is preferred in CMOS
technologies due to their low power and high density characteristics. On the other
hand, the number of applications with industrial interest has also grown. In fact,
starting from the earliest in the audio band, we can find Σ∆ converters in a large
variety of A/D interfaces, ranging from instrumentation to communications.
Despite the fact that Σ∆ is a mature subject, there are still many unanswered
questions. Due to the incorporation of a highly non-linear element (the quantizer)
in the feedback loop, the exact analysis of Σ∆ modulation is a very challenging task.
In this thesis the circuit level approach and the system level approach are presented
for low-power, low-voltage Σ∆ ADC design in nanometer CMOS technologies. In
the first part of this work, a full-feedforward Σ∆ topology suitable for the Σ∆
ADC design in nanometer CMOS technologies is introduced. The most important
feature of this topology is that the signal transfer function is unity, which is fairly
indipendent of the building block characteristics. A detailed analysis is presented
in this text, leading to optimized system-level parameters. Also a new digital
circuitry is presented in order to extend the usage of Σ∆ modulators at higher
signal bandwidths.
The second part of the thesis is dedicated to the circuital design. The main achieve-
ment is a 65nm CMOS Σ∆ modulator with 94dB Dynamic Range (DR). The
power dissipation is 407µW in a 500kHz signal bandwidth under a 1.2V power
supply voltage. This design proves that the feedforward Σ∆ topology is an excellent
topology for low-power, high bandwidth and high resolution Σ∆ ADC designs in
nanometer CMOS technologies.
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Chapter 1

Introduction

1.1 Motivations

Silicon integrated circuit technology, including transistors and other electronic
components, are dependent on micro and nanoelectronic technologies. Regarding
to the cost of transistor fabrication and high-volume production, integrated circuits
are highly demanded in various applications in human activities such as telecom-
munication, medical, education and others.
Though our world has an analog nature, nowadays information is very often stored,
transferred and processed digitally. The advantage is obvious: digital signals are
much more immune to noise than their analog counterparts. Noise and distortion
will accumulate during the transfer or copy of an analog signal, while a digital signal
can be losslessly copied or transferred as long as the noise and distortion are lower
than the threshold which changes the digital value. Moreover signal processing
circuits can be implemented more easily, accurately and economically in digital
domain thanks to the fast and continuous development of CMOS process.
Driven by the speed demand of digital circuits, the CMOS technology is continu-
ously scaling-down. It is worth mentioning that shrinking the size of MOSFETs not
only increases the performance speed, by decreasing the parasitic capacitors of the
devices and the interconnections, but also decreases the energy consumption of the
device. In the last years, due to well-developed techniques in deposition, pattering
and characterization, the size of electronic components has been decreasing from
above 100nm to about 20nm today. There is a significant improvement in node
technology in last decades as the 10µm technology node reached the 22nm in 2011,
as shown in Figure 1.1.
It is apparent in Figure 1.1 that the evolution of technology nodes follows the well
known Moore’s law [1], which states that the number of component for integrated
circuits doubles every year. Although there is enough motivation for shrinking the
size of the transistors, as the higher integration of the devices, some issues should be
addressed before reaching the limit. Obviously a limiting factor is the economical
issues since the cost of fabrication for integrated circuits increases strongly by
reducing the size of the components. However, from the designer point of view, the
major problem is that the reduction of the size of transistors has led at the same
time also to the reduction of the supply voltage. Moreover, portable electronics
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Figure 1.1: Evolution of technology nodes in semiconductor manufacturing processes.

with low-voltage operation and, therefore, long life battery find big markets. All
these factors have made the low-voltage circuit design a hot topic recently.
However, the low supply voltage constraint makes the analog design challenging
due to the reduced signal swing. On the other hand, the scaling-down of the
CMOS technology results into the degradation of the device characteristics, making
the analog Integrated Circuit (IC) design in nanometer CMOS technologies more
challenging. As previously mentioned, the digital circuitry is a crucial point in the
majority of applications. In order to transform the analog information into digital
information an Analog-to-Digital Converter (ADC) is used. Being an interface
between the analog world to the digital circuit, the ADC is implemented with the
same technology as the digital circuit. As a result, the reduction of the power
supply voltage of the ADC is inevitable.
Figure 1.2 shows the voltage supplies reported for CMOS Analog-to-Digital (A/D)
converters reported in scientific publications [2,3]. Observing the hystorical trend
of Figure 1.2, fitting to the state-of-the-art data from 1985–2007, yields that the
lowest reported VDD was scaled by ∼2× every five years during this period. It is
also evident from the number of papers published in the last years the increasing
attention for sub-1V supply voltage [4], in line with the increasingly stringent
requirements of the industry with regard to low-power applications. The reduction
of the supply voltage, combined with the reduction of the parasitic capacitance,
brings to a reduction of the power consumption of the circuit. For a CMOS logic
gate, e.g. an inverter, the static and dynamic power consumption can be expressed
as:

Pstatic = VDD · I (1.1)

Pdynamic = CL · V 2
DD · f. (1.2)
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Figure 1.2: Supply voltages used for scientifically reported CMOS ADCs over time
(black points). Data points (blue diamonds), representing the evolution
of low-voltage state-of-the-art, have been highlighted. Trend line fit to
1985-2007 data.

In these equations VDD plays a fundamental role in the reduction of the overall power
consumption. However this reduction in the power consumption has drawbacks.
In fact the decrease of the supply voltage obviously results into a performance
degradation of the ADC. Generally speaking, to maintain the same dynamic range
in a system, the noise floor should be lowered while the signal swing is reduced.
Moreover the distortion problem tends to be more severe with the reduction of the
supply voltage reduction [5].

1.2 System Overview
Among different ADCs, the Sigma-Delta (Σ∆) ADC is most suitable for high-
resolution applications due to its high linearity feature. Compared to other kinds
of ADCs, Σ∆ modulators cover the widest conversion region of the resolution-
versus-bandwidth plane, being the most efficient solution to digitize very diverse
types of signals in an increasing number of application scenarios, which span from
high-resolution low-bandwidth data conversion (like digital audio, sensor interfaces,
and instrumentation) to ultra-low power biomedical systems and medium-resolution
broadband wireless communications. This versatility, together with their robustness
and their simplicity in many practical situations, has motivated that more and
more engineers today consider Σ∆ as a first choice for their research projects and
their industrial products. The first idea underlying the operation of Σ∆ modulators
was patented by Cutler in 1960 [6], although its application to the construction of
data converters was first reported in the published literature by Inose in 1962 [7].
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Figure 1.3: General blocks of a Σ∆ ADC.

The general architecture of a Σ∆ modulator is reported in Figure 1.3. The funda-
mental principle behind Σ∆ modulators is based on the combination of two signal
processing techniques, namely oversampling and quantization noise shaping. The
former consists of taking the signal samples at a higher rate than the one dictated by
the Nyquist sampling theorem. These samples are commonly quantized with a large
error by using a low-resolution quantizer. The resulting oversampled quantization
error is filtered in the modulator feedback loop, so that its frequency spectrum
is shaped in such a way that a large portion of its power is pushed out of the
signal band, where it is removed by a digital filter. The outcome of the combined
action of oversampling and noise shaping allows Σ∆ modulators to achieve a high
precision digitization by using a low-resolution coarse quantizer. Therefore, unlike
other kinds of ADC architectures that require high-precision analog circuits, Σ∆
modulators trade the accuracy of their analog circuitry by the speed of digital
signal processing, thus achieving a higher degree of insensitivity to circuit error
mechanisms and potentially benefiting from CMOS technology evolution towards
the nanometer scale.
However, in order to increase the resolution of the Σ∆ modulator, the designers
generally increase the oversampling value. Therefore the Σ∆ modulators were
generally relegated to low-bandwidth applications [8]. In order to extend the usage
of Σ∆ modulation into the wide-band applications the designers start to think
to other solutions. One possibility is to increase the sampling frequency, which
however is not recommended since it limits the settling of the amplifiers, how it will
be more clear in Chapter 2. Moreover, as reported in Equation (1.2), increasing
the sampling frequency brings to an increase of the dynamic power consumption.
Another solution is to increase the noise-shaping power by increasing the number
of integration stages. The main concern of this solution is the stability problem,
and therefore the order of Σ∆ modulators is generally small.
The most interesting solution is to increase the resolution of the internal quantizer.
Using an N bit quantizer instead of 1 bit quantizer can reduce the quantization error
by a factor of 2N , thus increase the resolution by 6.02NdB. This resolution increase
is not related to the oversampling ratio. Moreover, since the multi-bit quantizer
gives a more accurate prediction of the current input than a 1 bit quantizer does,
the input to the integrators is smaller. In fact, as apparent from Figure 1.3, the
output of the quantizer is fed-back to the input of the Low Pass (LP) filter, namely
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Figure 1.4: On the left a two-level DAC with the output values versus its two possible
input values. On the right a multi-level DAC.

the integrator. As a result the integrator has lower possibility to saturate and
the stability is improved. Furthermore this helps in the context of low-voltage
applications since it reduces the swing values needed for the amplifier to work in
its linear region.

1.3 System Challenges
For a multi-bit Sigma Delta modulator the biggest problem that has to be solved is
the multi-bit Digital-to-Analog converter (DAC) non-linearity, which is not noise-
shaped. This is evident in Figure 1.4. The Σ∆ ADC is often only 1 bit, taking
the advantage that a 1 bit DAC is inherently linear since it has only two output
levels. Adding even only one level to the DAC breaks the intrinsic linearity of the
two-levels DAC, since three points are not always connected by a straight line [9].
In order to solve the non-linearity problem of a single-stage multi-bit modulator,
one method is to use digital corrections as Dynamic Element Matching (DEM)
circuits. A DEM circuit can randomize or noise-shape the DAC non-linearity. This
method does not need calibration, but the DEM is not free of limitations. In
fact the DEM algorithm needs a digital circuitry that can ruin the stability of
the overall modulator. Moreover, as it will be demonstrated in this thesis and in
particular in Chapter 3, the DEM algorithm suffers of a non-linear behavior when
the oversampling ratio (OSR) is low.
Despite the already mentioned advantages of the multi-bit architecture regarding
the low-voltage supply range applications, the design in this field is not free from
issues. In fact, the decreasing feature size of the modern CMOS process gives
rise to the scaling of the threshold voltage (VT H), but not in proportion to the
reduction of the supply voltage, as shown in Figure 1.5. This figure shows also
that for deeper technology (from 45nm), the VT H inverts the decreasing trend of
the last steps in order to reduce leakage current and short channel effects. The



6 CHAPTER 1. INTRODUCTION

050100150200250300350400

Technology Node [nm]

0

0.5

1

1.5

2

2.5

3

3.5

T
h

re
s
h

o
ld

 a
n

d
 S

u
p

p
ly

 V
o

lt
a
g

e
 [

V
]

Nominal VDD 

Vth

Figure 1.5: Threshold and supply voltages versus technology node

fact that the downsizing of VT H is decelerated implies that the overdrive voltage
(VOV = VDD − VT H) is reduced, and therefore the design of analog blocks becomes
even more difficult [10]. Since the technology scaling implies the reduction of the
overdrive voltage VOV , an increase of the transconductance gm of the transistor is
obtained. In fact, the transconductance of the transistor in strong inversion and
subthreshold region is given by the following expression:

gm = 2ID

VOV

, (1.3)

therefore reducing the overdrive voltage leads to an increase of the transconductance
of the transistor. However, this does not ensure a higher DC-gain of the MOS. In
fact, the intrinsic gain of a MOS transistor is defined as:

A0 = gm

gds

= gmr0, (1.4)

where gds = 1/r0 is the output conductance of the active MOS transistor. The
intrinsic gain is actually the maximum gain that a transistor can reach. It is the
amplification ability of a MOS transistor. Even though MOS transistor transconduc-
tance tends to be larger when the scaling down increases, as expressed in Equation
(1.3), the output resistance r0 drop is so high that the transistor intrinsic gain
decreases. In fact, due to short-channel effects related with CMOS shrinking, the
output conductance is increased strongly. This fact is clearly shown in Figure 1.6.
The result shown in Figure 1.6 implies a big problem for the design of operational
amplifiers. In fact, the reduction of the intrinsic gain of the transistor results in a
reduction of the DC-gain of the amplifier. In particular the finite opamp gain in
Σ∆ modulator can produce the well known effect of dead zones. In fact, for certain
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input signals, the input may not be properly encoded by the Σ∆ modulator. That
is, there is a range of input for which the modulator may produce the same average
output value. This range is known as a dead zone. This effect is strongly related
to limit cycles in that the output is an endlessly repeating bitstream. As it will
become more clear in the following Chapters, a low DC-gain of the amplifier leads
therefore to a significant issue in Σ∆ modulator designs.
Solution as transistor cascoding can be applied in order to increase the gain.



8 CHAPTER 1. INTRODUCTION

However, insufficient voltage headroom makes stacking of transistors no longer
efficient. In Figure 1.7 two output stages and corresponding signal swings are
shown: a cascoded output stage on the left and a rail-to-rail output stage on the
right. For proper operation the transistors have to be in saturation, which requires
the drain-source voltage to be at least equal to the saturation voltage Vdsat, which
depends on the current level and technology line width. In typical opamp designs
the values are some hundreds of millivolts. In practice, in addition to the Vdsat, some
extra voltage margin has to be reserved to achieve robustness against inaccurate
biasing and to get a decent output impedance. The reduction in signal swing in the
cascode stage is twice that in the rail-to-rail stage. It is obvious that as the supply
voltage gets lower the margin eats an increasing portion of signal range. Therefore,
at lower power supply voltages, a multistage amplifier is preferable to achieve high
DC-gain. In fact, the multistage amplifier ensures a rail-to-rail output. However,
these amplifiers require large compensation capacitor for stability, consume more
current, require multifeedback loop for controlling common-mode voltage of the
intermediate node and are noisier than a single stage cascode amplifier.
A possible solution to increase the gain is to force the MOS to operate in the sub-
threshold region (VGS < VT H). In fact, as indicated in Equation (1.3), decreasing
the overdrive voltage brings to a greater transconductance. In this region the
MOS presents some useful advantages, such as, minimum overdrive, small gate
capacitance and large gain. On the contrary, the device has low speed. Moreover,
it is worth to notice that the mismatch of a transistor with a normal distribution
with mean µ and standard deviation σ, defined as

σVT H
= AVT H√

WL
(1.5)

where AVT H
is a technology constant, is greater in a sub-threshold biased transistor,

since the term AVT H
is three times higher than the value in saturation [11], leading

to a mismatch and consequently input offset, which requires a compensation scheme
to be removed. Therefore having MOS in subthreshold region is usually not
recommended. Furthermore, it is worth to notice that generally the models of the
subthreshold region used in the software for transistor design are not well defined
and generally their behavior in the real world is different from their behavior in
simulations.

1.4 Conclusions and Thesis Outline
The considerations made so far indicate different problems in the design of ADC
in scaled CMOS technologies. On the one hand nanometric technologies generally
lead to reductions in power consumption, on the other make more difficult to design
ADCs. Moreover the industries demand for wide-band applications has brought
the designers to consider the multi-bit quantizer world. However Σ∆ modulators
hide several challenges with the multi-bit quantizer approach.
This work is devoted to the design of wide-bandwidth and low power Σ∆ ADC in
65nm technology.
The outline of the presented work is as follows.
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Chapter 2 gives a brief introduction of some important features of the Σ∆ ADC.
The basics concepts of oversampling and noise shaping are introduced. The struc-
ture of discrete-time (DT) Σ∆ will be analyzed in detail.
Chapter 3 illustrates the system analysis of the proposed modulator. The topology
used for this design is described, comparing it with the standard topology. Also
a strategy in the choice of the main system parameters is presented. A MAT-
LAB/Simulink model including the main non-linearities is described. An in-depth
description of the characteristics of the DEM algorithms in the literature is pre-
sented, describing also an innovative algorithm that unifies efficiency with simple
hardware implementation.
Chapter 4 moves further down from the system-level description given in previous
chapters to the circuit and physical level. The circuital implementation takes
into account the considerations at system level, as in a standard top-down design
strategy. Some innovative design solutions are also presented in this Chapter. In
this Chapter also the Cadence Spectre simulations are presented. All the blocks
of the modulator are simulated with the foundry models. The Simulink model is
validated, in this Chapter, by the circuital simulations.
Chapter 5 presents some solutions in the measurement setup for a high resolution
ADC. Two different possibilities in order to generate high resolution sine wave to
test the modulator are described.
Chapter 6 summarizes some conclusions.





Chapter 2

Sigma-Delta Overview

2.1 Introduction
The ADC is a fundamental building block in modern electronic systems. As a
bridge between the analog to digital world, the ADC functions as a translator from
an analog quantity to a digital code. There are many types of ADCs and each of
them has its own advantages and shortages. Among them the Σ∆ ADC features
high resolution without requirement of high-precision devices, making it a popular
choice of high resolution ADCs in cheap CMOS technologies.
This Chapter presents the principle of the ADC firstly. Then the Σ∆ ADC is
introduced and it is explained how oversampling and noise shaping are used in ADCs
to improve the resolution of the ADC. Starting with the principle of oversampling
technique, the concept of noise shaping is introduced, as a more powerful mean of
moving the quantization noise power out of the signal band. Then the suppression
of the quantization noise with the digital filtering is explained.
The second part of this Chapter analyzes the main non-ideal mechanisms affecting
the performance of Σ∆ modulators. Although it is commonly accepted that Σ∆
ADCs are less sensitive to non-idealities in the analog circuitry than other conversion
techniques, their impact will be larger the more demanding the ADC specifications.
Therefore, the influence of these errors on the modulator performance must be
carefully considered during early design phases. The effect of the non-idealities
are explained in this Chapter. System-level considerations, behavioral models, and
closed-form expressions are obtained for the influence of each non-ideality. From
them, estimable guidelines for the design of Σ∆ modulators can be extracted. Some
details about the differences between Discrete-Time (DT) Σ∆ and Continuous-Time
(CT) Σ∆ are explained. Also some circuital levels considerations are given.

2.2 Fundamental of Sigma Delta Modulation
In order to properly interface the analog world (composed of continuous-time,
continuous-amplitude signals) with the digital world (composed of discrete-time,
discrete-amplitude signals), ADCs require some additional signal processing building
blocks. Figure 2.1 illustrates the general block diagram of an ADC intended for
the conversion of low-pass (LP) signals. First, the bandwidth of the input signal

11
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Antialiasing filter Quantizer

S/H yd(n)

Figure 2.1: General block diagram of an A/D converter. A Nyquist-rate ADC is
assumed.

xa(t) must be limited to half of the sampling rate (Nyquist theorem). Otherwise,
undesired higher frequency components will alias into the band of interest, and
combine with the desired signal. Therefore a properly named anti-alias filter (AAF)
must precede any sampling operation. Also the input signal x(t) must be blocked
for sufficient time, so that its amplitude can be determined. For that reason, the
ADC is also often preceded by a sample-and-hold (S/H) block.
Finally, the values of xs(n) are quantized using N bits, so that each continuous-
valued input sample is mapped into the closer discrete-valued level out of the 2N

that cover the input range, yielding the converter digital output yd(n).

2.2.1 Oversampling
The sampling process performs the continuous-to-discrete transformation of the
input signal in time. According to the Nyquist theorem, to prevent information
loss, x(t) must be sampled at a minimum rate of fN = 2Bw, often referred to as the
Nyquist frequency. On the basis of this criterion, the ADCs, in which the analog
input signal is sampled at the minimum rate fs = fN , are called Nyquist-rate ADCs.
Conversely, Σ∆ modulators are called oversampling ADCs, in which fs > fN . How
much faster than required the input signal is sampled is expressed in terms of OSR,
defined as

OSR = fs

2Bw

. (2.1)

Whether oversampling is used or not in an ADC has a noticeable influence on
the requirements of its AAF. In fact in Nyquist-rate ADCs, where the input
signal bandwidth Bw coincides with fs/2, aliasing will occur if there are frequency
components above fs/2. Therefore high-order analog AAFs are thus required to
implement sharp transition bands capable of removing out-of-band components
with no significant attenuation of the signal band, as shown in Figure 2.2(a).
Conversely, in oversampling ADCs, the replicas of the input signal spectrum are
farther apart than in Nyquist-rate ADCs. As illustrated in Figure 2.2(b) the order
required for the AAF is greatly relaxed since fs is much greater than the signal
bandwidth.
Furthermore the strategy of oversampling reduces also the quantization noise. In
fact, while performing the continuous-to-discrete transformation of the input signal,
inevitably a quantization error is introduced [12-14]. Figure 2.3(a) depicts the I/O
characteristic of a quantizer. Continuous input amplitudes are discretized into
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Figure 2.2: Antialiasing filter for (a) Nyquist-rate ADCs and (b) oversampling ADCs.
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Figure 2.3: Illustration of the quantization process for a multi-bit quantizer. In (a) the
I/O characteristic of the quantizer is depicted, while in (b) the multi-bit
quantization error is shown.

discrete output values. Assuming an uniform quantizer, as the one in Figure 2.3(a),
the separation between adjacent output levels is defined as the quantization step:

∆ = YF S

2N − 1 (2.2)

where YF S stands for the full-scale output range. Also in Figure 2.3(a) the gain of
the quantizer kq is shown. This gain can be defined as the ratio between the mean
square value of the quantizer output and that of its input. As shown in Figure
2.3(b), the quantizer operation generates a rounding error that is a non-linear
function of the input, namely the quantization error. Assuming that the output
error e(n) is completely unconrrelated with the quantizer input q(n), we can see
the quantization error as a random process with a uniform probability distribution
in the range [−∆/2, +∆/2]. Note that this assumption is not strictly valid, but
it is commonly accepted in the ADC design [15]. However, the larger the number
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Figure 2.4: Quantization noise for (a) Nyquist-rate ADCs and (b) oversampling ADCs.

bits in the quantizer, the better is the approximation. This assumption is known
as the additive white noise approximation of the quantization error, allowing to
linearize the non-linear quantizer with the equation y(n) = kqq(n) + e(n). The
power associated to the quantization error can be computed as

ē2 = σ2
e =

∫ +∞

−∞
e2PDF(e)de =

∫ +∆/2

−∆/2
e2de = ∆2

12 (2.3)

where PDF is the probability density function which, for the assumption of uniform
white noise made before, is equal to one. Therefore the power spectral density
(PSD) of the quantization error in the range [−∆/2, +∆/2] is

SE = ē2

fs

= ∆2

12fs

. (2.4)

For a full-scale sine wave (XF S/2 = YF S/2) the maximum Signal-to-Quantization
Noise ratio (SQNR) is given by

SQNR = Psig

Pqnoise

= (YF S/2)2/2
∆2/12 ≈ (YF S/2)2/2

(YF S/2N)2/12 = 3
222N (2.5)

where Psig is the signal power and Pqnoise is the power of the quantization noise.
Expressed in dB, this becomes Equation (2.6), which is widely used to assess the
performance of data converters

SQNR [dB] = 6.02N + 1.76. (2.6)

For a Nyquist ADC all the quantization noise power falls inside the signal band
and passes to the ADC output as a part of the input signal itself, as illustrated in
Figure 2.4(a). Conversely, if an oversampled signal is quantized, because fs > 2Bw,
only a fraction of the total quantization noise power lies within the signal band, as
illustrated in Figure 2.4(b). We define the in-band noise power (IBN) as the noise
inside the signal bandwidth. Since the ADC is oversampled the IBN is given by
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Figure 2.5: Quantization noise shaping: (a) conceptual block diagram and (b) effect on
the in-band noise of an oversampling noise-shaping ADC.

IBN =
∫ +Bw

−Bw

SE(f)df =
∫ +Bw

−Bw

∆2

12fs

df = ∆2

12 · OSR (2.7)

where Equation (2.1) and Equation (2.4) are used in the last step. As apparent
from Equation (2.7) the larger is the OSR, the smaller is the IBN. We can evaluate
the SQNR also in the case of oversampled converters. Using the same principle of
Equation (2.5) the SQNR of an ideal oversampled ADC is obtained in dB as

SQNR [dB] = 6.02N + 1.76 + 10 log(OSR). (2.8)

2.2.2 Noise Shaping
As previously stated, the oversampling can be used to trade speed for resolution.
However speed is a limited resource and at a rate of 3dB/octave, as can be
easily derived from Equation (2.8), plain oversampling provides only moderates
improvements. It will be shown below that there are better ways to use oversampling.
In Figure 2.4 the quantization noise had a flat power spectral density. A more
efficient way to use oversampling is to shape the spectral density such that most of
the quantization noise power is outside the desired signal band.
This is illustrated in Figure 2.5(a), where the quantization noise is conceptually
obtained by subtracting the quantizer input signal q(n) from its output y(n) and
then passes through a filter transfer function, usually called the Noise Transfer
Function (NTF).
For quantizers working on LP signals, the NTF is of high-pass type and can be
easily obtained from a differentiator filter, with a Z-domain transfer function given
by

NTF(z) = (1 − z−1)L (2.9)
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Figure 2.6: Main blocks of a DT Σ∆ modulator.

where L stands for the filter order. To calculate the SQNR it is first necessary to find
the squared magnitudes of this transfer function, obtained for z = ejω = ej2πf/fs .
Therefore, Equation (2.9) can be approximated for low frequencies as

|NTF(z)|L = |1 − e−j2πf/fs|L =
[
2 sin

(
πf

fs

)]L

≈
(

2πf

fs

)L

(2.10)

so that the power due to shaped quantization noise that lies within the signal band
(Figure 2.5(b)) yields

IBN =
∫ +Bw

−Bw

SE(f)|NTF(f)|2df ≈ ∆2

12
π2L

(2L + 1)OSR(2L+1) . (2.11)

Repeating the operations made in Equation (2.5), by simply substituting the power
of the quantization noise with the IBN evaluated in Equation (2.11) a new SQNR
is obtained

SQNR [dB] = 6.02N + 1.76 + 10 log
(2L + 1

π2L

)
+ (2L + 1)10 log(OSR). (2.12)

This expression shows two important results: for a first-order modulator, namely
L = 1, SQNR improves with OSR at a rate of 9dB/octave. As expected, by shaping
the quantization error, a higher effective resolution can be obtained. However it
is worth to notice that the total noise power at the output (for full bandwidth) is
higher than that of a Nyquist rate converter. Thus for very small oversampling
ratio the performance becomes worse than for unshaped oversampled converters
[15]. Thus there is a lower limit in the OSR, below which Σ∆ converters do not
provide any benefits.

2.2.3 Topology of Σ∆ ADCs
Figure 2.6 illustrates the basic block diagram of a Σ∆ ADC [16] intended for the
conversion of LP signals, which consists of the following:

• Antialiasing filter, which band limits the analog input signal to avoid
aliasing during its subsequent sampling. As already discussed the principle of
oversampling relaxes the requirements of AAF.
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Figure 2.7: Σ∆ modulator: (a) block diagram and (b) ideal linearized model.

• Sigma Delta modulator, in which the oversampling and quantization of
the band-limited analog signal take place. The quantization noise of the
embedded N -bit quantizer is shaped in the frequency domain by placing an
appropriate loop filter H(z) before it and closing a negative feedback loop
around them. In this Chapter the 1-bit quantizer case is considered.

• Decimation filter, in which a high-selectivity digital filter sharply removes
the out-of-band spectral content of Σ∆ modulator output and thus most of
the shaped quantization noise. The decimator also reduces the data from fs

down to the Nyquist frequency, while increasing the word length from N to
B bits to preserve resolution.

Using the linearized model for the quantizer and assuming and ideal D/A converter,
the linearized model of the modulator depicted in Figure 2.7(a) is shown in Figure
2.7(b).
The linear model contains two inputs: the input signal x(n) and the quantization
error e(n). The output can be represented in the Z-domain as

Y (z) = Hx(z)X(z) + He(z)E(z) (2.13)

where X(z) and E(z) are respectively the Z-transform of the input and of the
quantization error. The signal and noise transfer functions can be respectively
calculated as

Hx(z) = H(z)kq

1 + H(z)kq

(2.14)

He(z) = 1
1 + H(z)kq

. (2.15)

Equations (2.14) and (2.15) are respectively called Signal Transfer Function (STF)
and the already defined NTF.
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Figure 2.8: Illustration of a typical output spectrum of a Σ∆ modulator and its main
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From these relations, the operation of the Σ∆ converter becomes obvious. The loop-
filter is designed to have a large gain inside the signal band and a small gain outside
the band. Note that, if the loop filter is designed such that |H(f)| ≫ 1 within the
signal band then |STF (f)| ≈ 1 and |NTF (f)| ≪ 1; that is, the quantization noise
is ideally canceled while the input signal is perfectly transferred to the output.
As an example, a first-order low-pass Σ∆ converter is considered where the loop-filter
H(z) consists of an integrator,

H(z) = z−1

1 − z−1 (2.16)

that, in combination with an embedded quantizer with kq = 1, leads to a Σ∆
modulator whose output is given by

Y (z) = z−1X(z) + (1 − z−1)E(z). (2.17)

2.2.4 Definition of Performance Metrics for a Σ∆ ADC
Contrary to Nyquist-rate ADCs, whose performance is mainly characterized by
static performance metrics, that is, monotonicity, gain and offset errors, differential
non-linearity (DNL) and integral non-linearity (INL), Σ∆ ADCs characteristics are
typically measured using dynamic performance metrics, which are obtained from
the frequency-domain representation of the output sequence.
Figure 2.8 illustrates an exemplary spectrum of a Σ∆ modulator output when a
sinusoidal signal with frequency fin is applied. This figure shows the Spurious-
Free-Dynamic Range (SFDR) that is the ratio of the signal power to the strongest
spectral tone.
Noise power metrics are derived from the Σ∆ output spectra by integration over
the signal bandwidth Bw. Some other important specifications are discussed here.
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Figure 2.9: Illustration of the performance metrics of a Σ∆ modulator on a typical
SNR-SNDR curve.

• Signal to Noise Ratio (SNR), which is the ratio of the input signal power to
the noise power measured at the output of the converter. Unlike the already
defined SQNR the noise here should include not only the quantization noise
but also all the circuit noise.

• Signal to Noise and Distortion Ratio (SNDR), which is the ratio of the input
signal power to the power of distortion components and noise measured at
the output of the converter. As illustrated in Figure 2.9, accounting for the
harmonics at the modulator output, makes a typical SNDR curve to deviate
from the SNR curve only for large input amplitudes. In fact for large input
the distortion becomes noticeable.

• Dynamic Range (DR), which is defined as the difference between the input
amplitude that corresponds to the SNDRpeak, namely Xmax, and the amplitude
for which SNDR = 0dB, namely Xmin.

• Effective Number of Bits (ENOB), which is the number of bits of the modulator
and it strictly connected to the DR by the Equation (2.18)

ENOB [bit] = DR [dB] − 1.76
6.02 . (2.18)

2.2.5 Higher Order Σ∆ ADC
The output of an ideal LP Lth-order Σ∆ modulator in the Z-domain can be
considered to be

Y (z) = z−LX(z) + (1 − z−1)LE(z). (2.19)
As apparent from Equation (2.12) increasing the order L of the modulator improves
the increment of SQNR when the OSR is doubled. In fact, with L = 1 the SQNR
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Figure 2.10: Root locus in Z-plane for a second-order modulator and a third-order
modulator.

improves with OSR at a rate of 9dB/octave, with L = 2 at a rate of 15dB/octave
and with L = 3 at a rate of 21dB/octave. In general the SQNR will improve with
the OSR at a rate of (6L + 3)dB/octave.
However, increasing the order of the modulator presents some side-effects. These
issues are related to the quantizer gain, previously defined as kq. For first and
second-order modulator loops, variations in the gain of the quantizer do not cause
problems, other than a temporary reduction of performance. However, for higher-
order modulators, there are forbidden values of kq. If reached, they will cause the
modulator to become unstable.
The Figure 2.10 shows the z-plane root-locus representation of the NTF’s poles and
zeros.
For both the second-order and third-order noise transfer functions, the zeros are
located at DC, namely z = 1. For normal operation the gain of the quantizer is
equal to 1, kq = 1, in which case both NTFs have their poles at z = 0. As the
quantizer gain kq changes between 1 and 0, the poles of the second-order NTF
remain always inside the unit circle, satisfying the condition for stability. However,
for the third-order NTF, the poles fall outside the circle for part of the root locus,
causing the instability of the overall modulator.

2.2.6 Digital Filter

In order to remove the quantization noise outside the bandwidth a Digital Filtering
action is needed. The decimation filter takes the 1 bit modulator output as its
input and filters the out-of-band quantization noise and decreases the sampling
frequency to a value closer to twice the highest frequency of interest. The most
common used decimator for Σ∆ modulators is based on a sinc filter, which can
be efficiently realized as a Cascaded Integrator and Comb (CIC) filter [17]. The
transfer function of the CIC filter is
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HCIC(z) =
(

1
OSR · 1 − z−OSR

1 − z−1

)M

=
(

1
OSR

OSR−1∑
x=0

z−x

)M

(2.20)

where M is the sinc filter order. For Σ∆ converters it is generally recommended to
choose the order of the sinc filter M equal to the modulator order L plus one [18-19].
One possible drawback of the CIC filter is the in-band attenuation, which usually
requires proper compensation in some applications. The effect of a CIC filter on
the output spectrum of the Σ∆ is depicted in Figure 2.11. The effectiveness of
the CIC filter in removing the shaped quantization noise is apparent. Furthermore
the CIC filter is attenuating some noise at the edge of the conversion bandwidth,
which in this case does not give a disadvantage, since the frequency input signal is
significantly lower than the Bandwidth, but indeed gives a 2dB gain in terms of
SNR with respect to an ideal step filter.

2.3 Non-idealities in Discrete Time Σ∆ Modula-
tors

Figure 2.12 shows the circuital implementation of a first-order DT Σ∆ modulator
with a single bit quantizer.
The integrator is realized with a classical switched-capacitor (SC) integrator, imple-
menting the the transfer function of Equation (2.16). The single bit quantizer is
realized with a simple comparator, which gives as output Vref− or Vref+, namely
0 or VDD. There are a number of circuit non-idealities and non-linearities that
degrade the performance of the analog modulator blocks. The way in which these
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Figure 2.12: Fully-differential implementation of a first-order DT Σ∆ modulator.
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Figure 2.13: Main non-idealities affecting the performance of SC Σ∆ modulators.

non-idealities affect the performance of Σ∆ modulators depends on many different
factors.
In the case of SC implementation, the main non-ideal effects can be grouped as
illustrated in Figure 2.13.
The influence of non-idealities on the performance of the Σ∆ modulators strongly
depends on the location of the corresponding noise source in the modulator [20-21].
According to these criteria, the above errors can be classified into two main families:

• Errors that modify the modulator NTF such as the finite amplifier gain
and gain-bandwidth product and capacitor mismatch.

• Errors that can be modeled as additive noise at the modulator
input and, hence, are not in-band attenuated by the noise shaping. Among
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other, some errors belonging to this family are clock jitter, circuit noise, and
distortion caused by circuit non-linearities

The issues generated by the non-idealities of Figure 2.13 are described below.
However, some non-idealities such as the effects of the mismatch between the
capacitors, the non-linearity of the switches and the multi-bit ADC errors will be
explained in Chapter 3 and in Chapter 4.

2.3.1 Effect of Finite Amplifier DC-gain
As already stated, the ideal transfer function of the integrator is given by

HIT F (z) = z−1

1 − z−1 . (2.21)

If the finite amplifier gain Av and the parasitic capacitor Cx at the amplifier
summing node is accounted for in the charge transfer of an SC integrator, as shown
in Figure 2.14, its difference equation can be written as [21]:

vo(nT ) =
1 +

(
1 + Cx

CF

)
1

AV

1 +
(

1 + Cx

CF
+

N∑
i=1

CSi

CF

)
1

AV

vo[(n − 1)T ] +

+

N∑
i=1

CSi

CF
vi[(n − 1)T ]

1 +
(

1 + Cx

CF
+

N∑
i=1

CSi

CF

)
1

AV

.

(2.22)

Transforming Equation (2.22) to the Z-domain it is possible to obtain the filter
transfer function including the limited gain effect (HLG(z))
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HLG(z) = 1

1 +
(

1 + Cx

CF
+

N∑
i=1

CSi

CF

)
1

AV

· z−1

1 − z−1

⎡⎢⎢⎣ 1+
(

1+ Cx
CF

)
1

AV

1+
(

1+ Cx
CF

+
N∑

i=1

CSi
CF

) 1
AV

⎤⎥⎥⎦
. (2.23)

Therefore, if compared with the ideal case HIT F (z), amplifier finite gain introduces
a gain error in the transfer function ad a shift of its pole from its ideal position
ad DC (z = 1). Neglecting the gain error, which is actually negligible in a Σ∆
modulator thanks to the feedback loop, Equation (2.23) can be re-written as

HLG(z) ≈ z−1

1 − z−1

(
1 − 1

AV

N∑
i=1

CSi

CF

) . (2.24)

The result is known as lossy integration since only a part of the integrator output in
the previous period is added to the new input [21]. Including the transfer function
of Equation (2.24) yields:

STF(z, µ) = 1
1 + µ

≈ 1 − µ (2.25)

NTF(z, µ) = 1 − z−1 + µz−1

1 + µ
= (1 − µ)(1 − z−1) + µz−1 (2.26)

with µ = 1
AV

∑N
i=1

CSi

CF
. So, on the one hand, a small error in the modulator gain is

produced and, additionally, a change in the quantization noise shaping function
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due to a displacement of the zero from its nominal position in DC. Note that, if
µ = 0, namely AV → ∞, Equations (2.25) and (2.26) are reduced to the ideal case.
The increase in the quantization noise power can be calculated as

IBN = ∆2

12

(
µ2

OSR + π2

3OSR3

)
. (2.27)

Equation (2.27) has a term proportional to the squared leakage factor µ, and
inversely proportional to OSR, which, for high oversampling ratio or small amplifier
DC-gain, can dominate the total noise power. A generic expression can be obtained
for the in-band quantization noise power, valid for an arbitrary-order single-loop
modulator.

IBNLG = ∆2

12

[
µ2π2L−2L

(2L − 1)OSR2L−1 + π2L

(2L + 1)OSR2L+1

]
. (2.28)

The number of extra error terms, namely those that depend on µ, grows with
the modulator order. Nevertheless, for usual values of the oversampling ratio and
amplifiers DC-gain, the dominant error for a Lth-order modulator is inversely
proportional to OSR2L−1. Note that the DC gain of the amplifiers should be in the
range of the oversampling ratio (µ ∝ 1/Av = 1/OSR) in order to keep the terms
of Equation (2.28) proportional to the (2L + 1)-th power of OSR and retain the
ideal noise shaping. Figure 2.15 shows the effect of the finite DC gain of amplifiers
on a Σ∆ modulator. The in-band noise is plotted also according with Equation
(2.28). Note that the simulated results are in good accordance with the closed-form
expression of Equation (2.28).

2.3.2 Integrator Settling Error
Speed limitations in SC integrators due to the limited dynamic response of amplifiers
cause errors in the charge transfer [22]. The impact of the resulting error in the
integrator output voltage settling error on the modulator performance will be higher,
the higher the sampling frequency. This is one of the reason why increasing the
sampling frequency in a Σ∆ modulator is not recommended. Let consider the circuit
of Figure 2.16 with a SC integrator consisting in N input branches and another SC
integrator acting as a load. The amplifier is modeled with the equivalent circuit of
Figure 2.17.
The equivalent capacitive load at the amplifier output node is given by

Ceq,Φ1 = Cx +
(

CL +
N∑

i=1
CSi

)(
1 + Cx

CF

)

Ceq,Φ2 = Cx +
N∑

i=1
CSi + CL

1
β

,

(2.29)

where β is the feedback factor and it is given by

β = CF

CF +
N∑

i=1
CSi + Cx

. (2.30)
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Figure 2.16: Multi-input path SC integrator followed by a loading multi-input path SC
integrator.
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Figure 2.17: Amplifier single-pole model.

The settling mode is analyzed during a complete clock cycle, namely during the
sampling (Φ1) and integration phase (Φ2), considering the different possibilities for
the amplifier dynamic operation, linearly or in slew, and keeping track of the voltage
at both the integrator output vo and the amplifier summation node va. Therefore,
the error in the integrator output voltage at the end of one sampling-integration
process can be accurately obtained.
Let va[(n − 1/2)T ] and vo[(n − 1/2)T ] be the respective amplifier input and output
voltages at the end of an integration phase, which will serve as initial conditions to
derive of the integrator evolution during a complete clock cycle. The voltage at the
amplifier summation node at the end of the next sampling phase, at t = nT can be
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accurately obtained as

va(nT ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
va0,Φ1e

−gm
Ceq,Φ1

T
2 , if |va0,Φ1| ≤ I0

gm

I0
gm

sgn(va0,Φ1)e
−gm

Ceq,Φ1
( T

2 −t0,Φ1 )
, if |va0,Φ1| > I0

gm
, t0,Φ1 ≤ T

2
va0,Φ1 − I0

Ceq,Φ1
sgn(va0,Φ1)T

2 , if |va0,Φ1| > I0
gm

, t0,Φ1 > T
2

(2.31)

where I0 is the maximum output current, to account for the limited Slew Rate (SR),
t0,Φ1 is the duration of the SR-limited integrator settling (relative to T/2) given by

t0,Φ1 = Ceq,Φ1

gm

(
gm|va0,Φ1|

I0
− 1

)
, (2.32)

where sgn(·) is the sign function and va0,Φ1 represents the value of va at the beginning
of the sampling phase, which can be computed as

va0,Φ1 = va[(n − 1/2)T ] −
N∑

i=1

CSi

Ceq,Φ1

{vo[(n − 1/2)T ] − vCSi
[(n − 1/2)T ]} (2.33)

where vCSi
is the voltage across capacitor CSi.

The integrator output voltage at the end of sampling phase can be obtained as

vo(nT ) = vo[(n − 1/2)T ] +
(

1 + Cx

CF

)
{va(nT ) − va[(n − 1/2)T ]} (2.34)

as opposed to the ideal situation in which v0(nT ) = vo[(n − 1/2)T ].
Note from Equations (2.31) and (2.34) that, for the integrator model in Figure 2.16,
the amplifier gain-bandwidth product (GBW) and output SR during sampling are
obtained as:

GBWΦ1 [rad/s] = gm

Ceq,Φ1

,

SRΦ1 [V/s] = I0

βCeq,Φ1

.
(2.35)

During the integration phase, the incomplete settling model is evaluated proceeding
in a similar way done for the sampling phase. Thus, at the end of the subsequent
integration phase, that is at t = (n + 1/2)T , the value of va is given by

va[(n+1/2)T ] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
va0,Φ2e

−gm
Ceq,Φ2

T
2 , if |va0,Φ2| ≤ I0

gm

I0
gm

sgn(va0,Φ2)e
−gm

Ceq,Φ2
( T

2 −t0,Φ2 )
, if |va0,Φ2| > I0

gm
, t0,Φ2 ≤ T

2
va0,Φ2 − I0

Ceq,Φ2
sgn(va0,Φ2)T

2 , if |va0,Φ2| > I0
gm

, t0,Φ2 > T
2

(2.36)

where t0,Φ2 is the duration of the SR-limited integrator settling (relative to T/2)
given by
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t0,Φ2 = Ceq,Φ2

gm

(
gm|va0,Φ2|

I0
− 1

)
, (2.37)

and va0,Φ2 represents the value of va at the beginning of the integration phase. The
latter can be computed as

va0,Φ2 = 1
Ceq,Φ2

(
1 + CL

CF

) N∑
i=1

CSi{vi2(nT ) − vi1[(n − 1/2)T ]} +

+ C⋆

Ceq,Φ2

va(nT )
(2.38)

where vi1, vi2 are the voltages connected to the input of the ith SC branch during
Φ1, Φ2, respectively, and C⋆ represents

C⋆ = Cx + CL

(
1 + Cx

CF

)
. (2.39)

The integrator output voltage at the end of the integration phase can be obtained
as

vo[(n + 1/2)T ] = vo(nT ) +
N∑

i=1

CSi

CF

{vi1[(n − 1/2)T ] − vi2(nT )} −

−
(

1 + Cx

CF

)
va(nT ) + 1

β
va[(n + 1/2)T ]

(2.40)

as opposed to the ideal integration process with no dynamic limitations, in which
the last two terms in Equation (2.40) are zero.
The amplifier GBW and output SR during this phase can be obtained similarly as
for the sampling phase to be

GBWΦ2 [rad/s] = gm

Ceq,Φ2

,

SRΦ2 [V/s] = I0

βCeq,Φ1

.
(2.41)

2.3.3 Effect of Finite Amplifier GBW
The model for the transient response of SC integrators described can be easily
incorporated into behavioral simulations for SC Σ∆ modulators to accurately
quantify the influence of settling errors on the modulator performance. Besides this
behavioral model, it is often useful to work with closed-form expressions which can
help to gain insight of the influence of settling parameters on different modulator
topologies. For this purpose, a linear transient response will be assumed for SC
integrators now, in order to exclude the effect of SR.
The finite difference equation of an SC integrator can be obtained from Equations
(2.31), (2.34), (2.36), (2.40)
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Figure 2.18: Simulation results for the influence of amplifier GBW on the in-band noise
of SC Σ∆ modulators.

vo[(n+1/2)T ] ≈ vo[(n−1)T ]+ CS

CF

(1− ϵST ){v1[(n−1)T ]−v2[(n−1/2)T ]} (2.42)

where only one input branch is considered for simplicity. The settling error associated
with the linearly limited response is represented by ϵST , which thus contain terms
in e−GBWΦ1 T/2 and in e−GBWΦ2 T/2. If settling errors associated with integration
dominate on the overall defective settling over those originated during sampling,
the linear settling can be simply reduced to

ϵST ≈ e−GBWΦ2 T/2. (2.43)

Transforming Equation (2.43) to the Z-domain, the integrator output results in

vo(z) ≈ CS

CF

(1 − ϵST )z−1v1(z) − z−1/2v2(z)
1 − z−1 (2.44)

so that, under the assumptions made earlier, settling error translates into a gain
error in the ideal filter transfer function HIT F (z), whose effect on the IBN can be
computed as in the finite-gain amplifier case as

IBN ≈ ∆2

12
π2L

(2L + 1)OSR2L+1

L∏
i=1

(1 + ϵST )2 (2.45)

Figure 2.18 illustrates the effect of the finite GBW on single-loop SC. As also
apparent from Figure 2.18 the mathematical modeling proposed in Equation (2.45)
follows well the simulated results.
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Figure 2.19: Simulation results for the influence of amplifier SR on the output spectrum
of SC Σ∆ modulators.

2.3.4 Effect of Finite Amplifier SR
Contrary to errors arising from finite amplifier GBW, finite amplifier SR caused by
limited output current I0 capability has a purely non-linear effect on the performance
of Σ∆ modulators, generating distortion and an increase in the noise floor.
For the case of a general SC Σ∆ modulators, SR-limited integrator dynamics
basically translate into distortion. Figure 2.19 illustrates the impact of amplifier SR
on a single bit second-order Σ∆ modulator operating with an oversampling ratio of
64. It is worth to notice that SR-limited integrator dynamic is a non-linear signal-
dependent phenomenon whose occurrence frequency during the modulator operation
is directly determined by the signal level at the integrators inputs. Therefore, the
way to reduce SR requirements on a SC Σ∆ modulator is to exploit the multi-bit
internal quantization, as it will be explained in Chapter 3.

2.3.5 Effect of Circuit Noise
Electronic noise generated in transistors and resistors is present in any circuit
implementation and imposes an ultimate limit to the resolution of ADCs.
As previously stated, the influence of nonidealities on the IBN of Σ∆ modulators
is mainly determined by the location of the corresponding noise source in the
modulator. With respect to circuit noise, all SC integrators in a Σ∆ modulator add
noise in the modulator pass-band, but the role of the front-end integrator is indeed
dominant. In fact, when referred to the modulator input, noise power contributed
by the remaining integrators is divided by the gain of preceding integrators within
the modulator pass-band, so their influence strongly diminishes while moving from
front-end to back-end integrators. However, no shaping takes place at the modulator
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Figure 2.20: Equivalent circuit model for integration, with noise sources due to switches
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input and first integrator, therefore the design of this block is generally critical.
In a SC integrator the main elements that generate noise are the switches and
the amplifier. A model of the SC integrator that highlights the noise sources is
depicted in Figure 2.20. The noise generated by the switch is generated by the finite
conductive resistance Ron. In Figure 2.20 the noise source of the switches is modeled
as a source voltage vsw in series with the resistors. The PSD of each of these noise
sources in a single-sided frequency representation is thus Ssw = 4kT · 2Ron where
k is the Boltzmann’s constant and T is the absolute temperature. Each of the
noise sources generates a sample-and-held noise component in the corresponding
capacitor voltage given by the well-known kT/C expression [23-25]

Ssw,CSi
(f) ≈ 2kT

CSifs

sinc2(πf/fs). (2.46)

On the other hand, a single-pole model is assumed in Figure 2.20 for the amplifier
and its equivalent input noise is modeled by vamp at the positive input terminal.
The amplifier noise is basically determined by a broadband thermal component and
a narrow-band flicker component, so that

Samp(f) ≈ Samp,th(f) + Samp,1/f (f) ≈ Samp,th

(
1 + fcr

f

)
(2.47)

where Samp,th(f) represents the amplifier thermal noise PSD referred to its input and
fcr represents the amplifier corner frequency, namely the cross frequency between
the 1/f noise and the white noise.
Adding up the former circuit noise components in the SC integrator, the total input
referred noise PSD yields

Snoise,in(f) ≈ 8kT

CS1fs

(
1 + CS2

CS1

)
+ Samp,th

(
GBWΦ2

2fs

+ fcr

f

)(
1 + CS2

CS1

)2
. (2.48)

The input-referred IBN of an SC Σ∆ modulator due to circuit noise can be easily
obtained by integrating the former expression over the input signal bandwidth, so
that
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IBNnoise = 4kT

CS1OSR

(
1 + CS2

CS1

)
+

+ Samp,th

[
GBWΦ2

4OSR + fcrln
(

Bw

f0

)](
1 + CS2

CS1

)2
,

(2.49)

in which the 1/f noise component has been integrated from a frequency f0 > 0 to
exclude DC due to its logarithmic nature. Therefore some practical issues can be
deducted:

• For a given OSR, to reduce the contribution of the switches thermal noise
the size of the sampling capacitors at the modulator input must be increased,
which however results in larger speed requirements for the amplifier and thus
in larger power consumption.

• For a given OSR, in order to reduce the contribution of the amplifier ther-
mal noise, its GBW must be reduced as much as the integrator settling
requirements allow.

• To reduce the flicker contribution the amplifier corner frequency must be kept
low. This can be obtained by increasing the size of the input differential pair.
Otherwise techniques as chopper are often used to reduce the 1/f component
[26].

2.3.6 Effect of Clock Jitter
Discrete-time Σ∆ modulators are affected in practice by timing uncertainties6
in the clock phase that control the SC operation. However, they exhibit larger
tolerance to clock jitter than Nyquist converters, because jitter sensitivity is reduced
by the modulator OSR [27]. The effect of clock jitter in SC-Σ∆ modulators is
mainly limited to a sampling uncertainty of the modulator input signal. Timing
uncertainties during the integration phase only cause an extra error to be added to
the integrator settling and their influence can be neglected in practice, whereas the
contributions of other integrators than the front-end one will be reduced by noise
shaping.
Sampling time uncertainty causes a non-uniform sampling of the modulator input
signal that results in an increase of the in-band error power [27].
Under the assumption of white jitter, the power of this modulated error distributes
uniformly, so that only a fraction is located within the pass-band. The in-band
noise due to clock jitter can thus be easily obtained as

IBNj =
∫ Bw

−Bw

A2
in

2
(2πfinσj)2

fs

df = A2
in

2
(2πfinσj)2

OSR (2.50)

where σj represents the standard deviation of the timing uncertainty. Taking into
account that Ain ≤ ∆/2 and fin ≤ fs/(2OSR), an upper bound can be calculated
for Equation (2.50)
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Figure 2.21: General block diagram of a continuous-time Σ∆ ADC. A low pass modu-
lator is assumed.

IBNj ≤ ∆2

8
(πfsσj)2

OSR3 (2.51)

showing that the sensitivity of SC Σ∆ modulators to clock jitter is reduced by
OSR−3.

2.4 Continuous Time Σ∆ Modulators
The majority of Σ∆ modulators reported up to recent years were implemented
using DT circuit techniques, mostly based on SC circuits. However, the increasing
demand for even faster ADCs in broadband communication system has raised the
interest in CT Σ∆ modulators over the past years, as they are able to operate at
higher sampling rates with lower power consumption than their DT counterparts
[20,28].
Figure 2.21 illustrates the general block diagram of a CT Σ∆ modulator for the
case of LP input signals.
Looking at the differences between the DT and CT implementations, the most
significant one is related to the location of the sampling operation, which moves
from the modulator input in DT Σ∆ modulators to the point before the quantizer in
CT Σ∆ modulators. The loop filter can thus be realized using CT circuit techniques,
but, given that the modulator output is a DT signal and the modulator input is a
CT signal, a discrete-to-continuous time transformation is required. The CT Σ∆
modulator presents some pros compared to the DT implementation:

• Errors associated to the sampling process have less impact on the modulator
performance [29]. As the sampling operation takes place before the quantizer,
the resulting errors attenuate in a similar way as the quantization error does.

• There is no settling error associated to the loop filter circuitry.

• They are not affected by kT/C noise as SC Σ∆ modulators do.

Despite the advantages could lead to consider a better solution the CT Σ∆ modu-
lators, SC implementations have several advantages:
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• Intrinsically lower parameter variations, as most circuit parameters are defined
by capacitor ratios, instead of absolute parameter values as in the case of CT
Σ∆ modulators.

• The DT Σ∆ is less affected by timing uncertainties [30]. Even though, in CT
Σ∆ modulators, sampling time uncertainties occur at the quantizer input,
where the jitter-induced error is strongly suppressed by the noise shaping,
errors resulting from timing uncertainties in the DAC feedback signal add
directly to the modulator input with no suppression, hence being the dominant
jitter effect and limiting the overall modulator performance. It can be easily
demonstrated that the jitter noise for a CT Σ∆ modulator is reduced by only
OSR−1.

• For the DT ADC, the STF for the analog portion is generally flat and
dominated by the magnitude response of the decimation filter. The STF is
not flat for a CT ADC. This is especially detrimental because it limits the
useful input signal range for the ADC. In communications applications, with
large out-of-band interferers, it can cause the ADC to become unstable. For
these applications, it may be necessary to filter the interferers or sacrifice
some of the ADC’s dynamic range.

2.5 Conclusion
As described in this Chapter, Σ∆ modulators represents an interesting choice for
high-resolution ADC. In order to achieve high-resolution the designers usually
increase the oversampling ratio, with the result of decreasing the signal bandwidth,
or they increase the modulator order, with the significant drawback on the stability
issue of the modulator.
Therefore the Σ∆ is actually an ADC relegated in the low bandwidth application.
Moreover, despite the Σ∆ is considered a topology with high robustness to the
circuital non-idealities, when the modulator has to achieve high performance, some
non-idealities can ruin the dynamic range of the modulator reducing consequently
the resolution.
In the following Chapter a way to extend the modulator usage into high-bandwidth
application is explained. Furthermore, as it will be explained, this method guaran-
tees a higher robustness to the modulator non-idealities.



Chapter 3

System Analysis

The analysis of the non-ideal effects described in Chapter 2 allows deriving precise
equivalent circuits and models for the different Σ∆ building blocks. This Chapter
focuses its attention on a Σ∆ topology, namely the Feed-Forward (FF), which
exploits a feed-forward loop in order to increase the linearity of the overall modulator
[31]. Such topology is well-known in the literature of Σ∆ modulators, however some
details are not well explained and, furthermore, some advantages of this particular
topology are not always exploited.
A brief introduction to the Σ∆ FF topology is given and a comparison with the
standard, or Feed-Back (FB) topology, is shown. Moreover a description of the
main techniques to avoid the non-linearity of a multi-level DAC is given.
In the second part of this Chapter the System-Level Analysis of the design presented
in this thesis is described. In order to evaluate all the system parameters, a strategy
for the minimization of the overall power consumption is given.

3.1 Introduction to Feed-Forward Topology

With the continuing advancement of technology, oversampled data conversion
is becoming attractive for use in wide-band applications. However, at very low
oversampling ratio required for such applications, these ADCs are increasingly
sensitive to circuit imperfections, and require high-quality analogue components.
For instance, as described previously, the effects of limited DC-gain and finite
bandwidth are less attenuated with a low OSR. Moreover, the advancement in
technology scaling has brought several problems in the design of high-quality
analogue components due to the low supply voltage.
Figure 3.1(a) shows the traditional topology described in the previous Chapter.
Since the transfer function of the filter is the classical integrator

H(z) = z−1

1 − z−1 , (3.1)

it is easy to shown that the STF is just a delay of a single clock cycle. Therefore,
the input signal of the integrator X1(z) is given by

35
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Figure 3.1: Σ∆ topologies: (a) the traditional FB topology; (b) the FF reduced distor-
tion topology.

X1(z) = X(z)− (STF(z)X(z) + E(z)NTF(z)) = X(z)(1−z−1)− VF S

2N − 1(1−z−1),
(3.2)

where E(z) is the quantization noise. Therefore, increasing the number of bits N
of the internal quantizer decreases the input E(z) of the integrator. However, the
delay introduced by the STF causes X1 to contain a high-pass filtered version of
the input signal X, which is restored to its full amplitude by the integrator. As
already stated in the previous Chapter, because of non-linear effect of the amplifier,
harmonic components of the input signal are created at the output of the modulator.
As already stated these effects can be mitigated by increasing the OSR, however
this solution is impractical in wide-band applications.
This non-linearity problem can be solved by canceling the delay in the STF between
X and Y . This is achieved by the topology of Figure 3.1(b). In this case the STF is

STF(z) = Y

X
= 1. (3.3)

It is easy to demonstrate that the noise transfer function is unaffected, but the
integrators will now process quantization noise only. In fact Equation (3.2) is
changed into
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Figure 3.2: Second-order FF Σ∆ modulator.

X1(z) = X(z) − (STF(z)X(z) + E(z)NTF(z)) = − VF S

2N − 1(1 − z−1), (3.4)

therefore the integrator is processing the quantization noise only.
The described concept can be extended to noise shaping of any order.
For istance in Figure 3.2 a second-order FF Σ∆ modulator is depicted. The main
transfer functions of this modulator are

STF(z) = 1,

NTF(z) = (1 − z−1)2.
(3.5)

The removal of the input signal component reduces the swing at the internal nodes
which relaxes the headroom requirements. In fact, as described in Chapter 1.3,
one of the main challenges in scaled nanometric technology is the reduced supply
voltage which implies also a reduction in the available output headroom voltage.
In Figure 3.3 the output swing voltage of the first and of the second integrator is
shown.
The output of the two integrators is given by

X2(z) = X1(z)
(

z−1

1 − z−1

)
= −E(z)z−1(1 − z−1) = − VF S

2N − 1z−1(1 − z−1),

X3(z) = X1(z)
(

z−1

1 − z−1

)2

= −E(z)z−2 = − VF S

2N − 1z−2.

(3.6)

Equation (3.6) shows that both the integrators do not process the input, but only
the quantization noise. In fact the output swing of the integrators is not related
to the input voltage, but to the quantization noise, and, therefore, to the number
of bits of the internal quantizer N . It is significant to notice that if a single bit
quantizer is used the advantage of the reduced input swing is not exploited [32]. In
fact, the signal processed by the integrators is still not related to the modulator
input, however the output swing is given by the full scale voltage VF S. This does
not reduce the headroom voltage, therefore the unitary STF does not ensure itself
the high linearity.
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Figure 3.4: Second-order FB Σ∆ modulator.

3.2 FF and FB Σ∆ - Comparison
In order to highlight the advantages of the FF Σ∆ topology, some differences with
the standard topology are drawn below. In Figure 3.4 a second-order traditional
Σ∆ is depicted.

3.2.1 Single Loop
The first noticeable difference with the modulator of Figure 3.2 is the single
feedback loop. In fact, regardless of the modulator order, the FF topology has
a single feedback loop, while the number of loops in a FB Σ∆ is equal to the
modulator order L. This not only increases the area occupied by the modulator,
but furthermore increases the power consumption of the first integrator. In fact,
since the capacitor size of the second integrator is not critical in terms of thermal
noise, usually a small capacitor is used in order to decrease the capacitor load of
the first integrator. However, in a multi feed-back loop, the feedback loop into
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Figure 3.5: Loading SC Integrator for Σ∆ modulators: (a) Integrator Load for a FB
Σ∆, (b) Integrator Load for a FF Σ∆.

the second integrator implies to realize the DAC embedded not only in the first
integrator, but also in the second integrator. In Figure 3.5(a) the second integrator
for a standard Σ∆ topology is depicted. In general, for a N multi-bit quantizer, a
M = 2N paths integrator has to be designed. Since the coefficient transfer function
is realized by the ratio of the capacitors ∑M

i=1 CSi/CF , where CSi are the sampling
capacitors of the M paths and CF is the feedback capacitor, the size of the total
sampling capacitor CS = ∑M

i=1 CSi is limited by the factory minimum size. In fact,
defining Cmin as the minimum size of the capacitor guaranteed by the factory rules,
the minimum size of the sampling capacitor must be M · Cmin. Conversely, as
shown in Figure 3.5(b), there is no need in the FF topology of splitting up the
sampling capacitor, therefore it is possible to use a much smaller capacitor.

3.2.2 Lower Distortion
As shown in Equations (3.4) and (3.6) in the FF topology the integrators do not
process the input signal, but only the quantization noise. Combined with a multi-bit
quantizer this property can greatly reduce the output swing of the integrators,
avoiding the distortion due to headroom saturation. In fact, when a full-swing
signal is applied as input of the modulator, since the signal processed by the
integrators is not related to the input, the SNDR does not degrade. Conversely, in
the FB topology, when a large input is applied, the harmonics at the output of the
integrators become noticeable and the SNDR starts to deviate from the SNR curve.
This fact is appreciable in Figure 3.7.
Figure 3.7 reports the simulated SNDR as a function of the input signal amplitude
(normalized to the ADC full-scale voltage) for both architectures. It is worth to
stress out that these simulations include the thermal noise, that in fact is the
dominant noise source in the conversion bandwidth. Therefore the two architectures
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Figure 3.6: Behavioral simulation of the otuput SNDR: (a) in FB topology; (b) in FF
topology. Thermal noise is included in this simulation.

exhibit the same noise floor, although the forward architecture actually has a much
lower quantization noise level, being a multi-bit modulator. As a consequence, the
SNDR graphs for low input level are very similar. Observing the estimated SNDR
at high input level, it is apparent that in the FB architecture the amplifier distortion
and limited swing make the SNDR gradually fall down and in fact the peak SNDR
is achieved at an input level of -11dB. Conversely in the forward architecture these
impairments are absent and the SNDR can increase with the input level approaching
almost the full-scale voltage. This translates into the forward architecture having a
11dB larger DR [33]. Since the DR is generally higher in the FF topology, in order
to reach the same resolution with a FB topology it is necessary to increase the OSR.
This explains why this topology becomes famous for wide-band applications.

3.2.3 Amplifier Requirements
Besides the higher linearity, we can appreciate how much the forward architecture
is outperforming the feedback one, only estimating the required performance of
the amplifiers. The required output swing for the forward architecture is obviously
greatly reduced, as already explained. The combination of a forward architecture
with a multi-bit quantizer allows to use single-stage amplifiers, instead of multi-
stage rail-to-rail amplifiers. This obviously translates into a much lower power
consumption, since there is no need of additional load capacitors to stabilize the
amplifier. In Table 3.1 a comparison between the most common Operational
Transconductance Amplifier (OTA) topologies is presented. The multi-stage OTA
is an attractive solution, since it joins a high output swing with high gain. However
the output capacitor is higher if related to other OTA topologies, since a Miller
capacitor CM is needed in order to stabilize the amplifier. Since in FF architecture
the voltage swing is not a real issue, low power amplifier OTAs can be used. One
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Single-Stage OTA Multi-Stage OTA

Topology Telescopic OTA Folded Cascode Miller OTA

out swing VDD − 5Vdsat − vin,cm VDD − 4Vdsat VDD − 2Vdsat

out capacitor Co Co Co + CM

gain medium medium high

power consumption low low medium

Table 3.1: Comparison between Single-Stage OTAs and the Miller OTA.

could point out that the DC-gain of single-stage OTA is not comparable with the
multi-stage one. However this is not a problem in the FF architecture. Since
the ADC input signal is no longer processed by the integrators a less demanding
amplifier in term of DC-gain can be used. As already discussed in Chapter 2.3.1,
the effect of limited DC-gain is to increase the in-band quantization noise power.
This is generated by the fact that a fraction of the previous sample out of the
integrator is added to the sample input. The integrator leakage is given by

vo(nT ) − αvi[(n − 1)T ] =
1 +

(
1 + Cx

CF

)
1

Av

1 +
(

1 + Cx

CF
+

N∑
i=1

CSi

CF

)
1

Av

vo[(n − 1)T ], (3.7)

where α is the gain error defined in Equation (2.23). However, since vo[(n − 1)T ] is
the amplified version of the small voltage at the inverting input of the amplifier,
namely va[(n − 1)T ], the integrator leakage is negligible.
In Figure 3.7 the SNR is plotted as a function of the DC-gain Av of the first
integrator. After the crossing point between the solid line, which represents the
limited DC-gain amplifier, and the dashed line, which represents the ideal SNR,
the effect of the limited DC-gain amplifier becomes neglectable. It is apparent from
Figure 3.7 that the gain needed for the FF architecture to achieve the ideal SNR
is much lower than the gain in the FB topology. Therefore, not only the output
swing of the amplifier is greatly reduced, but also a significant reduction in the
required gain is obtained. This gives the possibility to use the single-stage OTA of
Table 3.1, even though their DC-gain is not high, especially when compared with
multi-stage OTA.
Furthermore, the swing reduction also implies a significant reduction in the minimum
slew-rate. In fact, the slot time t0 in which the amplifier is in slewing is given by

t0 = Avβ

1 + Avβ

Vin

SR . (3.8)

Equation (3.8) implies that if the input signal Vin is small, also the slewing-time t0
is reduced. This fact is even more clear by looking at the source of the SR issue.
In fact an amplifier shows a linear settling, instead of an exponential settling, if
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the differential input is completely unbalanced, which happens when Vin >
√

2Vov.
Therefore, if a small input differential voltage Vin is applied, the differential couple
is never unbalanced. Since the ADC input signal is no longer processed by the
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integrators, a less accurate settling is tolerated, and hence a less demanding amplifier
of bandwidth can be used.
It is possible to reconduct the amplifier GBW and output SR to the bias current
Ibias

GBW [Hz] = gm

2πCeq

= gm

2πCeq

Ibias

Ibias

= Ibias

4πCeq

· gm

ID

,

SR [V/s] = Ibias

βCeq

,

(3.9)

where ID = Ibias/2 and gm/ID is a technology parameter. Therefore a similar graph
as the one for DC-gain of Figure 3.7 can be plotted. In Figure 3.8 the effect of
limited SR and GBW becomes negligible when the solid line reaches the dashed line,
which represents the ideal case. It is apparent that the crossing point is reached for
lower values of Ibias in the FF topology, which implies a lower power consumption,
but furthermore implies lower GBW and lower SR, since they are both proportional
to Ibias.

3.2.4 Multi-bit Quantization

The several benefits described previously, guaranteed by the combination of the
unitary STF and the multi-bit embedded quantizer, lead to an optimized design
in terms of power consumption, high linearity and high bandwidth. However
multi-bit quantizers also have an important drawback that may counter the former
advantages. In fact, contrary to 1 bit quantizers, which are intrinsically linear
because only two levels are used for quantization, multi-bit quantizers exhibit in
practice some non-linearities in their transfer characteristic, mostly due to device
mismatching, which significantly influence the Σ∆ modulator performance.
When a multi-bit quantizer is used, also a multi-level DAC in the feedback loop
is needed. Errors related to the multi-level DAC are injected in the feedback
path, and, therefore, they directly add to the Σ∆ modulator input signal and
pass to the Σ∆ modulator output as part of the input signal itself. Consequently,
the linearity of a multi-bit Σ∆ modulator will be no better than that of the
multi-bit embedded DAC, and the latter must be designed to achieve the linearity
target for the whole Σ∆ ADC, what may be challenging under the influence of
component mismatching. Figure 3.9 illustrates the architecture that is typically
used for the multi-bit quantizer. The N bit ADC consists of a bank of M = 2N − 1
comparators that digitizes the loop filter output into thermometer code, which will
be subsequently coded into binary. The DAC employs M unit elements, namely
capacitors in SC implementation, to reconstruct the analog feedback signal using
2N levels. The i-th analog output level is generated by activating i unit elements
and adding their outputs. DAC errors are caused by the mismatching between
its unit elements, which makes the DAC output levels deviate from their nominal
values. Assuming that the actual value of each unit element follows a Gaussian
distribution, the worst-case relative error in the DAC output yDAC can be estimated
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Figure 3.9: Topology of a typical multi-bit quantizer embedded in a Σ∆ modulator.

from the derivative of the variance of the mismatch between the unit elements as

σ

(
∆yDAC

yDAC

)
= 1

2
√

2N
· σ

(
∆U

U

)
, (3.10)

where σ (∆U/U) stands for the relative error in the value of the unit element.
Equation will be analytically demonstrated in Appendix A.1. Obviously, the DAC
accuracy increases with the number of unit elements, as stated by the weak law
of large numbers. In fact, for a large numbers of identically distributed random
variables, it can be demonstrated that the probability that the nominal value differs
from the mean value of an arbitrary positive ϵ tends to zero. However, for a Σ∆
with a 4 bit embedded quantizer in order to achieve a 16 bit linearity a matching
better than 0.01% is needed. Device matching achieved in present-day CMOS
processes is nevertheless in the range of 0.1% (10 bits). This means that achieving
linearities better than 12 or 13 bits in multi-bit Σ∆ modulator by means of relying
only on standard device matching usually leads to prohibitive area occupation.
A direct method to improve the standard device matching is laser trimming, which
can sometimes be done at the foundry, but at the expense of additional fabrication
and measurement steps and increased cost. Calibration and correction schemes
have also been proposed, either in analog or digital domain, but they are often
expensive to implement.
Among the different alternatives that have been developed through the years for
achieving high-linear multi-bit Σ∆, the DEM technique prevail because of the
modest component matching required.

3.3 Dynamic Element Matching
In Figure 3.10 the effect of a non-linear DAC is shown. As previously discussed,
mismatches among the unit elements cause DAC non-linearities that generate
harmonic distortion in Σ∆ modulator. This distortion does not take advantage of
any noise shaping, since it is generated in the feedback loop.
For a multi-bit DAC as the one of Figure 3.9, there is an univocal correspondence
between the thermometric code input y and the respective error of the DAC output
yDAC , because the same unit elements are always used for generating a given DAC
output level. The operation principle of DEM consists in breaking this direct
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Figure 3.10: No DEM: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.
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Figure 3.11: Topology of a typical multi-bit feedback DAC in a Σ∆ modulator with
DEM algorithm.

corrispondence by varying over time the set of elements that are employed for
generating a given DAC level, thus transforming its fixed error into a time-varying
one [34,35]. To that purpose, as conceptually shown in Figure 3.11, a digital block
is incorporated, which controls the selection of unit elements at each clock cycle
according to an algorithm that tries to null the average error in each DAC level
over time.
To realize a noise shaping DEM, there are many choices with their own trade-offs
between performance and complexity. For any DEM algorithm it can be estimated
the Signal to Mismatch Noise Ratio (SMNR)

SMNR [dB] = 10 · log

⎛⎜⎜⎜⎜⎜⎝
2N

2σ2
w(1 − 2−N)2

π/OSR∫
−π/OSR

|HDEM(ω)|2dω

⎞⎟⎟⎟⎟⎟⎠ (3.11)

where HDEM is the mismatch spectral shaping function of the DEM algorithm and
σw is the mismatch between unit elements, as it will be demonstrated in Appendix
A.3.
The general goal of DEM is to modify the distortion terms, hence signal-dependent
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Figure 3.12: Randomization of the selection of unity elements with a butterfly random-
izer with three bit control.

errors, to become signal-independent. Therefore, by using DEM, the idea is to
reduce the SFDR.

3.3.1 Butterfly Randomization

A first approach to use DEM in a Σ∆ was introduced by Carley in [36] and by
Leung [37]. The element selection logic performs a randomization.
The selection of the unity element is defined by the randomizer that receives the
thermometric code out of 2N input lines and generates a scrambled set of 2N

controls.
Notice that the number of possible scrambled outputs is (2N)! which is a very
large number even for a relatively small number of levels. Such a large number
of connections is difficult to code but also all these connections are not strictly
necessary for obtaining a random result. What is actually necessary is avoiding
frequent repetitions of the same or similar code which would produce tones and not
noise-like spectra.
It is typically enough to randomize the elements with a subset of possible con-
nection. A very effective solution is shown in Figure 3.12 known as the butterfly
randomization, consisting of a series of butterfly switches coupling inputs to outputs.
This kind of randomizer cannot generate all the possible connections, however the
use of log2(2N ) butterfly stages, as done by the scheme of Figure 3.12, ensures that
any input can be connected to any output. The control of the butterfly switches
can be done using log2(2N ) bits. More simply the control can be done by successive
divisions by 2 of the clock.
Figure 3.13 shows the simulation results for a second-order Σ∆ FF converter when
randomization is used for the selection of the DAC elements. As a result of the
randomization a white-noise floor for low frequencies is shown. For high frequencies
the second-order noise shaping is still present. Since no harmonic distortion compo-
nents are visible, the SNDR is significantly better if compared to the simulations of
Figure 3.10.
It can be demonstrated that the SNR determined by just the mismatch error and
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Figure 3.13: Butterfly DEM: Montecarlo simulation for (a) low OSR case and for (b)
high OSR case in a second-order FF modulator. A mismatch of σw = 0.1%
is considered for these simulations.

an OSR oversampling results

SNR = 3 · 2N · OSR
σ2

w

. (3.12)

The mathematical demonstration of Equation (3.12) is described in Appendix A.2.
This equation has been also validated by Montecarlo simulations. In Figure 3.14
the simulated SNR is compared with the mathematical modeling of Equation (3.12).
It is apparent that the benefit given by the butterfly randomization is just 3dB
per octave, as it happens for a plain oversampling architecture. Instead, for Σ∆
converters it would be profitable to have, in addition to the quantization noise
shaping, a shaping of the mismatch error.

3.3.2 Individual Level Averaging (ILA)
The individual level averaging (ILA) approach aims to excercising each unity element
with equal probability for each digital input code [37,38]. The algorithm uses a
register of indexes, one index Ik(i) for each possible input code k. The elements
that are used when code k is applied are Ik(i), Ik(i) + 1..., Ik(i) + k − 1, where i
represents the time index. When the index exceeds the number of elements, then
the selection wraps around and the first element is used.
The result is that successive occurrences of the same code leads to the use of all
the unity elements of the array. As mentioned, this method requires using indexes,
as shown in Figure 3.15, for remembering the used set of elements for converting a
given code so a different set is used at the next occurrence of the input code. In
this way, after a few conversions of the same input, all the elements of the DAC are
employed, and the mismatch is averaged out.
There are two methods for selecting elements: the rotation approach and the
addition approach. The rotation approach, shown in Figure 3.15(a), increases the
index of the code k, Ik, by one each time the code k occurs. The addition method
increases by k the index Ik modulo 2N all the times an input whose value is k
occurs.
In order to better understand the algorithm in Figure 3.15 an input sequence



48 CHAPTER 3. SYSTEM ANALYSIS

16 32 64 128 256 512 1024 2048 4096 8192

OSR

60

70

80

90

100

110

120

S
N

R
 [

d
B

]
Mismatch level 0.1%

Mismatch level 0.5%

Mismatch level 1%

Mismatch level 2%

SNR =
3 · 2

N 
· OSR

σ
2
w

Figure 3.14: SNR as a function of the OSR and of the mismatch among unit elements
when Butterfly randomization is applied. The solid line represents the
simulated results, while the dashed line represents the mathematical
modeling.
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Figure 3.15: Operation principle of the (a) rotation approach and of the (b) addition
approach of ILA. The shaded boxex indicate which unit elements contribute
positive for a 3 bit DAC employing ILA.

example made by [2 3 6 5 4 5 6 7 5] is considered. Initially all the indexes are
equal to 1. Then, when the input is equal to 5, the index I5 is updated to 2 in the
rotation approach, while it is updated to 6 in the addition approach. The next time
the input is 5, the selected unit elements start from the element 2 in the rotation
approach, while from the element 6 in the addition approach.
Figure 3.16 shows the effect of both the ILA approaches in a second-order FF
modulator. For low frequencies, a first-order shaping of the DAC-error can be
observed. Due to this noise shaping, the DAC-error is smaller than for Butterfly
algorithm at low frequencies. Therefore, the performance will be significantly better
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Figure 3.16: ILA DEM: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in the rotation approach, and for low OSR case (c) and high
OSR case (d) in the addition approach. A second-order FF modulator is
considered. A mismatch of σw = 0.1% is considered for these simulations.

for large oversampling ratios. It is worth to notice that this shaping is not present
for higher frequencies.

3.3.3 Data Weighted Averaging (DWA)
Data weighted averaging (DWA) was introduced in [39] and resembles ILA quite
closely, but it is less complex. Instead of using a separate register for each possible
input code, DWA uses only one register which is common to all input codes.
The advantage of DWA methos is that the rotation cycle is fast thanks to the
update of the only index every clock period [40]. The update logic of DWA is shown
in Figure 3.17. For each phase the index is increased by the value of the input.
The register always points to the first unused unit element. DWA rotates through
all the elements such that all the elements are used at the maximum possible rate
and each element is used the same number of times. This ensures that the errors
introduced by DAC quickly average to zero.
It is relatively easy to show that DWA method determines a first-order shaping of
the mismatch error [41]. With the aim to demonstrate the first-order shaping of
the distortion generated by the mismatch among the capacitors, Umean is defined
as the mean between the unit elements of the DAC, namely

Umean = 1
2N

2N∑
i=1

Ui. (3.13)
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Figure 3.17: Operation principle of the rotation of DWA. The shaded boxex indicate
which unit elements contribute positive for a 3 bit DAC employing DWA.

Let y(k) the input of the DWA, yDAC(k) the output of the DWA and I(k) the index
of DWA at time k. Under the hypothesis that I(k − 1) < I(k) − 1, the output of
the DWA for a general input y(k) can be written as follows:

yDAC(k) =
I(k)−1∑

i=I(k−1)
Ui =

I(k)−1∑
i=I(k−1)

(Umean + δUi)

= Umean · y(k) +
I(k)−1∑

i=I(k−1)
δUi

= Umean · y(k) + ϵ(k).

(3.14)

Equation (3.14) can be easily translated into

ϵ(k) =
I(k)−1∑

i=I(k−1)
Ui − y(k) · Umean

=
I(k)−1∑

i=I(k−1)
Ui − [I(k) − 1 − I(k − 1) + 1] Umean

=
I(k)−1∑

i=1
Ui − [I(k) − 1]Umean −

I(k−1)−1∑
i=1

Ui + [I(k − 1) − 1]Umean

(3.15)

where ϵ(k) is the mismatch contribution.
Defining the Integral Mismatch function IM(I(k)) as the sum between the differ-
ences of the actual unit elements with the mean among all the elements, namely

IM(I(k)) =
I(k)∑
i=1

(Ui − Umean) =
I(k)∑
i=1

Ui − I(k) · Umean (3.16)

it is possible to modify Equation (3.15) as

ϵ(k) = IM(I(k)) − IM(I(k − 1)) (3.17)



3.3. DYNAMIC ELEMENT MATCHING 51

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-200

-150

-100

-50

0

P
S

D
 [

d
B

]
OSR = 16

Algorithm = DWA

SNR (worst case) = 71.1dB

SNR (best case) = 71.3dB

SFDR (worst case) = 89.1dB

SFDR (best case) = 94.9dB

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-250

-200

-150

-100

-50

0

P
S

D
 [

d
B

]

OSR = 8192

Algorithm = DWA

SNR (worst case) = 187.5dB

SNR (best case) = 194.0dB

SFDR (worst case) = 192.5dB

SFDR (best case) = 200.3dB

(b)

Figure 3.18: DWA: Montecarlo simulation for (a) low OSR case and for (b) high OSR
case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.

which is, in the Z-domain

E(Z) = (1 − z−1)IM(I) = H(z) · IM(I), (3.18)

showing that, as already stated, the mismatch among the unit elements is shaped by
a first-order noise shaping function. It is worth to notice that the Integral mismatch
function has actually the same definition of the INL, but applied to the mismatch
between the unit elements.
The SNR that can be obtained with DWA is given by

SNR = 3 · 2N · OSR3

4π2σ2
w · (1 − 2−N)2 (3.19)

as it will be demonstrated analytically in Appendix A.4. It is interesting to notice
from Equation (3.19) that increasing the number of bits of the internal quantizer
leads to a higher SNR. This is motivated by the fact that the effect of the mismatch
between the unit elements is reduced when the number of bits is increased, as
apparent also from Equation (3.2.4).
Figure 3.18 shows simulation with DWA. The graphs clearly show that DWA
performs significantly better than the previously discussed DEM techniques, and it
is proven also by simulations that DWA provides first-order shaping of the DAC error.
However, Figure 3.18(a) shows that the DAC error contains harmonic distortion
components and tones. This problem is very well known in the literature and it is
generated by the cyclic nature of selection of DAC units in the DWA algorithm.
This logic may generate tones in the modulator output spectrum that may be folded
back into the signal band. Supposing a constant input value of the DAC YDAC , it
is easy to see that DWA ends a complete rotation in 2N/[gcd(YDAC , 2N)], where
gcd(YDAC , 2N) is the greatest common divisor between the input and the number
of elements. As a result we have a period sequence in the mismatch error

⎧⎨⎩
YDAC∑

i=1
ϵi ;

2·YDAC∑
i=YDAC+1

ϵi ...
2N∑

i=2N −YDAC+1
ϵi ...

⎫⎬⎭ . (3.20)
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Figure 3.19: SNR as a function of the OSR and of the mismatch among unit elements
when DWA is applied. The solid line represents the simulated results,
while the dashed line represents the mathematical modeling.

From Equation (3.20) it results that the position of the tone is given by ftone =
[gcd(YDAC , 2N)]/2N · fs · n with n = 1, 2, 3.... Imposing that the inter-modulation
between tones generated by DWA and harmonics of the input signal falls outside
the signal bandwidth we obtain:

fs

2N
− fs · n

2 · OSR >
fs

2 · OSR −→ OSR >
2N · (n + 1)

2 . (3.21)

Equation (3.21) points out that greater is the value of N , greater is the value of
OSR needed to avoid the distortion generated by DWA. Moreover, by increasing
N to big values, it can become necessary to use a segmented feedback path as in
[42], with a significant drawback of a more complex hardware implementation. The
fact that at low OSR the efficiency of DWA starts to degrade with respect to the
nominal situation, namely the one that satisfies Equation (3.21), it is even more
clear in Figure 3.19, where the dashed line represents the SNDR calculated from
the simulated spectrum that includes the distortion term due to the harmonics
generated by the algorithm, while the solid line represents the SNR of Equation
(3.19). It is clear that the mathematical modeling is not adequate for low OSR
value. In fact, in this situation, the power of the spurious tones due to the algorithm
cyclicity is the dominant term limiting the SNDR. Conversely, the SNR calculated
in Equation (3.19) only accounts for the noise floor the input signal harmonics were
translated into by means of the DEM algorithm.
Several ways to overcome these degradations have been proposed. They are discussed
next.
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(a) (b)

Figure 3.20: Updating rule for a second-order DWA. The input sequence 1 − 6 is
considered respectively in (a) and (b).

3.3.4 DWA Second-Order (DWA2)
By changing the update rule is possible to obtain an arbitrary noise shaping.
In Equation (3.18) it has been stated that the Z-transform mismatch error can
be expressed as a function of a general transfer function H(z) and the Integral
Mismatch

E(z) = H(z) · IM(I(z)). (3.22)
For example, a second-order low-pass DEM technique can be found in [43,44]. For
H(z) = (1 − z−1)2 we obtain by the inverse Z-transform

ϵ(k) = IM(I(k)) − 2 · IM(I(k − 1)) + IM(I(k − 2)). (3.23)

This behavior can be obtained in three steps:

1. Define three thermometric vectors t0, t1, t2. Each vector has an index,
respectively I(k − 2), I(k − 1) and I(k), which represent the number of “ones”
in the vector.

2. Values of I(k − 2) and I(k − 1) are well known from the previous cycle. The
I(k) index can be found rearranging the Equation (3.23) as

I(k) = y(k) + 2 · I(k − 1) − I(k − 2), (3.24)

where y(k) is the output value of the modulator.

3. The DAC unit element control vector will be

CTRL = t2 − 2 · t1 + t0 (3.25)

In the next cycle I(k − 2)new = I(k − 1) and I(k − 1)new = I(k).

In Figure 3.20 an example of conversion in a second-order DWA is depicted. The
first step is shown in Figure 3.20(a) with a conversion of y(k) = 1. Assuming an
initial I(k − 2) = 2 (t0) and I(k − 1) = 4 (t1) Equation (3.24) yields I(k) = 7
(t2). In Figure 3.20(a) t0 is defined assigning to the first two elements the value
+1, −2t1 is defined assigning to the first four elements the value −2, which implies
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Figure 3.21: DWA2: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.
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Figure 3.22: Comparison between common DEM algorithms in terms of SNDR as a
function of the OSR.

a total value −8 and similarly it is defined the vector t2. The sum of the tree
vectors gives the thermometric code that controls the unit elements of the DAC.
The thermometric code is realized assigning at each element the sum of the values in
the column. For instance the first value is given by the sum of +1,−2 and +1 which
is 0. In the following step I(k − 1)new = I(k) = 7 and I(k)new = 4. In the following
step a conversion of y(k) = 6 is considered and shown in Figure 3.20(b). From
Equation (3.24) yields I(k) = 16. In the following step I(k − 1)new = I(k) = 16
and I(k)new = 7.
In Figure 3.21 the efficiency of the second-order DWA is depicted. It is apparent
that the DWA2 does not contain any harmonics for low OSR. Besides that, DWA2
offers better performance even at high OSR.
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Figure 3.23: Comparison between DWA and DWA2 in presence of thermal noise. Several
sizes of sampling capacitors are considered.

This is even more clear in Figure 3.22. In fact the SNDR guaranteed by the
second-order DWA is always greater than the SNDR of the other algorithms. This
SNDR is extremely close to the curve of an ideal Σ∆ converter. For low OSR the
SNDR of DWA2 is similar to the one of DWA, since at low OSR the first-order
shaping and the second-order shaping are similar. However, the SFDR of DWA2 is
significantly better than the one of DWA.
Although the second-order DWA offers better performance with respect to the
first-order one, it is worth to take into consideration two important points in order
to select the most appropriate DEM algorithm. First of all, the DEM performance
has to be evaluated in the context of the whole ADC: as explained in Chapter 2
in the conversion band the thermal noise floor will largely dominate the shaped
quantization noise, as well as the noise resulting from the DEM averaging. Therefore
the thermal noise will actually hide the second-order performance gain. This is clear
in Figure 3.23. Only when the size of the sampling capacitor reaches values such
that the thermal noise level is lower than the quantization noise of DWA, but greater
of quantization noise of DWA2, there is an advantage in using the second-order
DWA. However, such values are impossible to be realized in an integrated circuit,
for instance 400pF. Furthermore, the SNR of DWA2 is greater than the SNR of
DWA only for a small set of OSR values. Otherwise, the SNR of the two algorithms
coincides.
The second important point to consider is the hardware implementation, as it will
be discussed in Chapter 4.
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Figure 3.24: Operation principle of the rotation of RnDWA. The shaded boxex indicate
which unit elements contribute positive for a 3 bit DAC employing RnDWA.
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Figure 3.25: RnDWA: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.

3.3.5 Randomized DWA (RnDWA)

Another possibility in order to avoid the in-band distortion for low OSR is described
in [45] with Randomized Data Weighted Averaging (RnDWA). The distortion will
be masked by the white noise introduced by randomization. This is accompanied
with some increase in in-band noise and lower SNR. The main idea of this algorithm
is that no unit element should be re-selected before all others have been selected.
This algorithm adds randomization to the cyclic process of DWA.
In Figure 3.24 it is described RnDWA in a 8 elements DAC: when DWA ends a
complete rotation a random new start point is selected, in this example I = 5 and
the pointer I1 is increased to this location (without choosing the units in between).
The new starting index IST is updated to the new value given by randomization.
We continue selecting units until we reach this same start point again. Montecarlo
simulations of RnDWA are presented in Figure 3.25 and, as apparent, the tones
generated by DWA are masked by increasing of the noise floor. The noise shaping
behavior is preserved.



3.3. DYNAMIC ELEMENT MATCHING 57

Figure 3.26: Operation principle of the rotation of PDWA. The shaded boxex indicate
which unit elements contribute positive for a three-bit DAC employing
PDWA.
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Figure 3.27: PDWA: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.

3.3.6 Partitioned DWA (PDWA)

Partitioned Data Weighted Averaging (PDWA) is another approach to avoid the
tones generated in DWA [46]. The principle of this algorithm is related with
Equation (3.21): if the number of elements is reduced, also the least value of OSR,
such that the inter-modulation between tones generated by DWA and harmonics
of the input signal will not fall in the signal bandwidth, is reduced. The DAC is
divided in two parts which both use DWA. The input of DAC is divided in two
parts. The quotient, or in other words the floor value of the input divided by two,
is the input to the first part, while the sum of the quotient and the remainder,
the ceiling value of the input divided by two, is the input of the second part. In
Figure 3.26 the indexes I1 and I2 are updated like in standard DWA but with half
elements. In contrast to DWA the DAC error is no longer first-order noise-shaped
and so it performs significantly worse than the previous algorithm, as depicted in
Figure 3.27.
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Figure 3.28: Operation principle of the rotation of BiDWA. The shaded boxex indicate
which unit elements contribute positive for a 3 bit DAC employing BiDWA.
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Figure 3.29: BiDWA: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.

3.3.7 Bi-Directional DWA (BiDWA)
Instead of adding randomization we can break the cyclic nature of DWA in a
deterministic way. Bi-Directional Data Weighted Averaging (BiDWA) is proposed
in [47]. A practical example of BiDWA is described in Figure 3.28. Two pointers,
IE for the even phases of the clock and IO for the odd phases of the clock, are used.
While during the odd clock cycles the elements are selected like in standard DWA,
during the even clock cycles the selection logic is reversed in the other direction.
The pointer logic update is described in (3.26) distinguishing the even, IE, from
the odd phases, IO:⎧⎨⎩IO(k + 1) = (IO(k − 1) + y(k − 1)) mod 2N

IE(k + 2) = (IE(k) − y(k)) mod 2N .
(3.26)
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SNR (min) SNR (max) SFDR (min) SFDR (max)

Butterfly 70.1 71.1 95.1 99.4

ILA (rotation) 68.9 71.2 95.9 98.6

ILA (addition) 71.0 71.2 94.6 99.3

DWA 71.1 71.3 89.1 94.9

DWA2 71.2 71.2 96.4 98

RnDWA 71.0 71.3 96.3 99

PDWA 71.1 71.3 96.6 100

BiDWA 71.1 71.3 99.7 104.5

Table 3.2: Comparison of the main DEM algorithms at OSR = 16 in terms of SNR and
SFDR.

It can be analytically demonstrated that also BiDWA takes advantage of a first-order
noise shaping behavior, that is

H(z) = (1 − z−2). (3.27)

Equation (3.27) at low frequencies can be reconducted with the Taylor series to the
first order noise shaping. However, the two indexes break the cyclic behavior of
DWA, reducing therefore the spurious tones in the signal bandwidth. Simulations
of Figure 3.29 proves that the BiDWA preserves the first-order noise shaping.
Table 3.2 proves that BiDWA is the best algorithm to be used in low OSR appli-
cations. This is motivated by the fact that the nature of the BiDWA relies on
a deterministic approach, instead of a randomized selection as in the RnDWA.
This implies that BiDWA is a more robust modified version of DWA than the
other solutions. However, intuitively, the hardware implementation of BiDWA is
more complex than the DWA implementation, since the logic should be able to
shift in two directions. Furthermore two indexes are needed in BiDWA, instead
of a single index as in DWA. This difference in terms of hardware implementation
hides another important figure of merit for the DEM algorithm, which is the time
delay introduced by DEM. The influence of time delay in a FF Σ∆ modulator will
be explained in Chapter 4, when the circuital implementation of the modulator
presented in this thesis will be described. Since the interest of this work is on
wide-band Σ∆ modulator, the behavior of DEM algorithms at low OSR takes a
great importance. However, when moving to high OSR, it has been observed that
the second-order DWA is out-performing the other algorithms, as apparent in Table
3.3. It is worth to notice in Table 3.3 that again the BiDWA approach shows a
small variance in the SFDR distribution if compared with the other algorithms.
Also in this case, as already stated in Chapter 3.3.4, the circuital implementation
is the most important drawback.
All the algorithms described until now solves the DAC non-linearity in a digital
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SNR (min) SNR (max) SFDR (min) SFDR (max)

Butterfly 104.5 118.0 112.6 126.8

ILA (rotation) 127.8 145.7 135.6 155.7

ILA (addition) 139.5 150.2 147.2 160.8

DWA 187.5 194.0 192.5 200.3

DWA2 204.8 205.9 208.7 209.9

RnDWA 166.6 177.4 171.6 186.7

PDWA 124.7 147.6 134.1 155.9

BiDWA 179.8 188.4 192.1 195.5

Table 3.3: Comparison of the main DEM algorithms at OSR = 8192 in terms of SNR
and SFDR.

way, which is preferable for the designers since it takes advantages of the fast scaled
CMOS technology, make it possible to exploit the multi-bit quantization in a FF
Σ∆ modulator. In the following part the system-level description of the design of
this thesis will be presented.

3.4 System-Level Design

In Figure 3.30 the topology used for this design is shown. The supply voltage for
this design is VDD = 1.2V in a 65nm CMOS technology. As apparent from Figure
3.30 a modulator order L = 2 is chosen. This is due to stability problems, since, as
already explained in Chapter 2.2.5, the second-order modulator is inherently stable,
while a greater order would lead to instability for high input voltage. Moreover,
since a multi-bit quantizer is used, increasing L will not give us advantages [48].
This is due to the fact that the noise floor is given by thermal noise and, thanks
to the multi-bit quantizer, the thermal noise is several decibels higher than the
quantization noise. For this reason having third-order shaping will not increase in
a sensible way the resolution of the modulator. If a third-order modulator L = 3 is
chosen, the same resolution is achieved, but with a higher complexity, higher power
consumption and stability’s problems.
With the aid of a behavioral simulator developed in MATLAB/Simulink that
accounts for the main circuit non-idealities, namely finite gain and bandwidth and
slew-rate of the amplifiers, thermal noise from the switches and the amplifiers, clock
jitter and the mismatch between the sampling capacitors, a second-order modulator
has been designed using the architecture of Figure 3.30.
The sampling frequency is fs = 50MHz with an OSR = 50. This choice was made
in order to realize a relatively wide-band Σ∆ modulator, namely
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Figure 3.30: The topology of the Σ∆ modulator used for this design.

Bw = fs

2OSR = 500kHz, (3.28)

which is a large conversion bandwidth for a Σ∆ topology. In fact, usually, the Σ∆
ADCs signal bandwidth is not greater than 100kHz [49].
The OSR is a key modulator parameter. In fact, the fraction of the switches thermal
noise falling into the conversion bandwidth is given by

Pthermal ∝ kT

Cs · OSR (3.29)

where CS is the value of the capacitor in the integrator input branch. In a properly
designed Σ∆ converter the thermal noise is the dominant noise source. With OSR
= 50, considering the need to keep the size of the capacitor CS small enough to
keep low the power consumption, but in order to meet a DR of at least 90dB with
a 1.2V supply voltage, a sampling capacitor CS = 600fF is chosen.
In order to completely characterize the overall modulator, the number of bits of
the internal quantizer must be chosen. In the following a strategy with the aim of
a power consumption minimization is described in order to choose the number of
bits of the embedded quantizer.

3.4.1 Power Consumption Minimization
The most important components used in the Σ∆ ADC are comparators and
amplifiers [50]. The impact of these components in terms of power consumption
will now be discussed.
In particular a minimum in the total power consumption can be found with respect
to N , the number of bit of internal quantizer. In fact, increasing the number of bits
N leads to a smaller input swing of the integrators, which implies a reduction of
the specifications of the amplifiers as DC-gain, SR and GBW. However increasing
N leads to an increment of the power consumption of the internal quantizer.
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3.4.2 Quantizer Power Consumption
Defining PC the power consumed by a single comparator in the quantizer it is
possible to evaluate the power of the overall quantizer (PQ) as

PQ = PC ·
(
2N − 1

)
. (3.30)

The speed of the comparator is controlled by its time constant τc = CLC/gm, where
CLC is the load capacitor of the comparator and gm is the transconductance of the
comparator.
Since the comparator must be able to detect a voltage of Vfs/2N in a decision time
Td then

Vfs

2N
· e(Td/τc) = Vfs. (3.31)

Assuming Td = 1/2fs (where fs is the oversampling frequency) it is possible to
evaluate the minimum gm and, therefore, the minimum supply current IC , recalling
that IC = gmVeff with Veff essentially a technology’s parameter.
After some calculation the PC is characterized as

PC = Vfs · [2N · ln(2) · fsCLCVeff ] . (3.32)

According to (3.30) and (3.32)

PQ = Vfs · [2N · ln(2) · fsCLCVeff ] ·
(
2N − 1

)
. (3.33)

3.4.3 Amplifier Power Consumption
Thanks to Noise-Shaping and also to a smaller input amplitude, the power consump-
tion of the amplifiers is mainly determined by the first amplifier in the cascade of SC
integrators which realize the loop of the modulator. For this reason in the following
analysis the power consumption of the other amplifiers is neglected. Furthermore
the gain of the OTA is assumed to be adequate to neglect the gain errors with
a single stage OTA, otherwise an additional supply current should be required
to ensure a good phase margin (PM) in a two stage OTA with Miller capacitor.
The power dissipation of the amplifier can be expressed by estimating the supply
current under the constraint of the SC integrator settling Tex + Tls = Ts, where Tex

is the exponential settling time, Tls is the time of linear evolution due slew-rate
and Ts is the total available time. Considering the time constant of the amplifier
τa = CLA/(gmβ), where β is the feedback factor of the OTA, as defined in Equation
(2.30) and for this design is β = 0.43, ϵD is the dynamic error of the OTA integrator,
CLA is the total load capacitor of the amplifier and gm is the transconductance of
the OTA we obtain

Ts = gmr0β

1 + gmr0β
· Vin

SR − τa [1 + ln(ϵD)] . (3.34)

By substituting Ts = 1/2fs, SR = IA/CLA into Equation (3.34) and recalling that
the input of the amplifier in the feed-forward topology is given by the quantization
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Figure 3.31: The power consumption in the Σ∆ modulator with respect to the number
of bits of the internal quantizer.

error ∆ = Vfs/(2N − 1) and solving for IA, the power dissipation can be expressed,
using PA = IAVDD = IAVfs, as

PA = 2fs · Vfs

[
Vfs

2N − 1 · CLA − 2Veff · CLA

β
(1 + ln(ϵD))

]
. (3.35)

The analysis made on the power consumption in this Chapter implies some results:
Veff is a very important parameter and it favors deep-submicrometer MOS process.
In fact scaled technologies bring lower Veff as well as inherently smaller minimum
capacitors, which also helps in lower power dissipation. Furthermore both Equations
(3.32) and (3.35) are function of the number of bits of the internal quantizer N .
Using the parameters estimated with the behavioral simulations in MATLAB the
total power consumption with respect to N has been plotted in Figure 3.31.
Figure 3.31 highlights the existence of a minimum in the total power consumption
and suggests an optimal value for N . With the parameters of the design proposed
in this thesis, an optimal value for the number of bits of internal quantizer has
been found between N = 4 and N = 5. After further analysis the solution with a 5
bit embedded quantizer has been chosen. This choice is motivated by the need to
simplify the design of the first integrator in terms of the minimum specifications to
make negligible the effects of non-idealities.
It is apparent in Figure 3.32 that with a N = 5 embedded quantizer a lower gain
of the first integrator is needed, with respect to the 4 bit case. Furthermore, as
depicted in Figure 3.33, the bias current needed to neglect SR and GBW non-ideal
effects is clearly reduced in the 5 bit case.
However it should be taken into account that the number of bits of internal quantizer
can lead into difficulties in the digital algorithm needed to remove the non-linearity
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Figure 3.32: SNR as a function of the gain of the first integrator in a FF topology with
a 4 bit embedded quantizer and with a 5 bit embedded quantizer. Dashed
line represents the ideal case.
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Figure 3.33: SNR as a function of the bias current Ibias of the first integrator in a FF
topology with a 4 bit embedded quantizer and with a 5 bit embedded
quantizer. Dashed line represents the ideal case.

of the DAC. In fact, as already described previously with Equation (3.21), increasing
the number of bits of internal quantizer, leads to a higher minimum value of OSR
in order to avoid the tonal behavior of DWA. In the following section a new DEM
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(a)

(b)

Figure 3.34: Operation principle of the rotation of (a) BiDWA and (b) NewDWA. The
shaded boxex indicate which unit elements contribute positive for a 3 bit
DAC.

algorithm that solves the DWA harmonic issue is presented, with the efficiency of
BiDWA but with an easier hardware implementation.

3.4.4 Proposed DWA (NewDWA)
As previously stated, in Table 3.2, the BiDWA is one of the most promising
algorithm in terms of mismatch canceling.
The use of BiDWA is however limited because its hardware implementation is not
efficient in terms of power and area consumption and may often result too slow, as
it will be highlighted in Chapter 4.
The proposed algorithm is obtained with the aim of obtaining the same transfer
function of the classical BiDWA, that can be expressed as

HBiDW A(z) = (1 − z−2). (3.36)

In Figure 3.34(a) the selection scheme of BiDWA is recalled. Considering the odd
phases, under the hypotesis that I(k − 2) < I(k) − 1, the output of the BiDWA for
a general input y(k) can be written as follows:
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yDAC(k) =
I(k)−1∑

i=I(k−2)
Ui =

I(k)−1∑
i=I(k−2)

(Umean + δUi)

= Umean · y(k) +
I(k)−1∑

i=I(k−2)
δUi

= Umean · y(k) + ϵ(k).

(3.37)

Equation (3.37) can be easily translated into

ϵ(k) =
I(k)−1∑

i=I(k−2)
Ui − y(k) · Umean

=
I(k)−1∑

i=I(k−2)
Ui − [I(k) − 1 − I(k − 2) + 1] Umean

=
I(k)−1∑

i=1
Ui − [I(k) − 1]Umean −

I(k−2)−1∑
i=1

Ui + [I(k − 2) − 1]Umean.

(3.38)

Therefore, as in DWA, using the definition of Integral Mismatch function IM(I(k))
of Equation (3.16) it is possible to modify Equation (3.38) as

ϵ(k) = IM(I(k)) − IM(I(k − 2)) (3.39)
which is, in the Z-domain

E(z) = (1 − z−2)IM(I). (3.40)
Let’s now consider the even phases, in which the direction rotation is reversed.
Under the hypotesis that I(k + 1) < I(k − 1) − 1, the output of the BiDWA
yDAC(k + 1) for a general input y(k + 1) can be written as follows:

yDAC(k + 1) =
I(k−1)−1∑
i=I(k+1)

Ui =
I(k−1)−1∑
i=I(k+1)

(Umean + δUi)

= Umean · y(k + 1) +
I(k−1)−1∑
i=I(k+1)

δUi

= Umean · y(k + 1) + ϵ(k + 1).

(3.41)

Equation (3.41) can be modified with a variable substitution, namely k + 1 = t,
which yields

yDAC(t) =
I(t−2)−1∑

i=I(t)
Ui =

I(t−2)−1∑
i=I(t)

(Umean + δUi) =

= Umean · y(t) +
I(t−2)−1∑

i=I(t)
δUi =

= Umean · y(t) + ϵ(t).

(3.42)
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Figure 3.35: NewDWA: Montecarlo simulation for (a) low OSR case and for (b) high
OSR case in a second-order FF modulator. A mismatch of σw = 0.1% is
considered for these simulations.

Equation (3.42) can be easily translated into

ϵ(t) =
I(t−2)−1∑

i=I(t)
Ui − y(t) · Umean

=
I(t−2)−1∑

i=I(t)
Ui − [I(t − 2) − 1 − I(t) + 1] Umean

=
I(t−2)−1∑

i=1
Ui − [I(t − 2) − 1]Umean −

I(t)−1∑
i=1

Ui + [I(t) − 1]Umean.

(3.43)

Therefore, using the definition of Integral Mismatch function IM(I(k)) of Equation
(3.16) it is possible to modify Equation (3.43) as

ϵ(t) = IM(I(t − 2)) − IM(I(t)) (3.44)

which is, in the Z-domain

E(z) = (z−2 − 1)IM(I) = −(1 − z−2)IM(I). (3.45)

Equation (3.45) proves that the rotation in the opposite direction does not change
the absolute value of the transfer function, therefore it does not change the power of
shaping the mismatch error, as apparent in Equation (3.11). This implies that the
change of rotation does not give any real advantage. In fact the only real necessary
condition in order to obtain the transfer function (1 − z−1)2 is to have concordant
direction of rotation between phase k and phase k + 2, for all k.
In Figure 3.34(b) an example of evolution during time of the two pointers and the
corresponding set of the selected elements in the DAC is reported. Two indexes,
IE and IO, are stored in two separate registers. In the even phases the rotation is
controlled by the actual value IE, which is updated for the next even phase with
the actual input value, while IO remains unchanged. In the odd phases the rotation
is controlled by the actual value of IO, which is updated for the next odd phase
with the actual input value, while IE remains unchanged.
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Figure 3.36: SFDR of BiDWA and NewDWA for a FF Σ∆ second-order modulator as
a function of the OSR. A σw = 2% is considered for this simulation.
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Figure 3.37: Output spectra of a FF Σ∆ second-order modulator with a 5 bit internal
quantizer when DWA is applied and when NewDWA is applied.

Intuitively, the implementation of the DEM as expressed in Figure 3.34 can be
realized in a simpler way with respect to the original BiDWA, because the rotation
in two opposite directions is no more required. However, the NewDWA still requires
to use two pointers to be used alternatively. As it will be clear in Chapter 4, this is
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Figure 3.38: Analog Adder implementation: (a) Summing using Charge Sharing, (b)
Summing using an Active Adder

not a real problem.
In Figure 3.35 the Montecarlo simulations of the NewDWA with a 5 bit internal
quantizer are shown. It is apparent, from a comparison with the simulations of
BiDWA, as the one depicted in Figure 3.29, that the efficiency of the two algorithms
is the same. This fact was to be expected considering that the two algorithms share
the same mismatch transfer function. This is even more clear by looking at the
result of Figure 3.39. In fact it is apparent that the SFDR for these two algorithms
is the same, regardless of the OSR, proving again the same efficiency of the two
algorithms.
The efficiency of NewDWA in terms of removing the tonal behavior of DWA is
shown in Figure 3.37.

3.4.5 Analog Adder
The architecture of Figure 3.30, besides the integrator and the comparator, has
the need of an element able to sum all the input branches input signals before
the quantizer, namely the input signal and the output of the two integrators.
Conventionally there are two ways to implement the required summing function
[51].
The first possibility is to generate the sum signal using charge sharing. This



70 CHAPTER 3. SYSTEM ANALYSIS

CS1i
CF 1 CS2 CF 2 CS3 CF 3

Capacitor Size 20fF 600fF 100fF 100fF 50fF 50fF

Table 3.4: Sizing of the capacitors of the proposed design.

approach is shown in Figure 3.38(a). Although this approach does not increase
the overall power consumption, it has several drawbacks. First, the comparator
input signal is attenuated, which makes it more vulnerable to the comparator offset
voltages. In fact the input of the quantizer is given by

Xq = X + 2X2 + X3 − Vref

3 . (3.46)

Since three input signals are summed, the input signal of the quantizer is attenuated
by 3×. In order to maintain the quantizer monotonicity the comparator must make
the correct decision for a ∆/2 input signal in the presence of a comparator offset
voltage:

∆
2
3 − Vos ≥ 0 =⇒ Vos ≤ ∆

6 . (3.47)

From Equation (3.47) it is determined that for a 5 bit quantizer with a supply
voltage of 1.2V in deep-sub-micron CMOS, the comparator offset voltage must
be less than 6mV. This stringent offset requirement necessitates the use of offset
cancellation techniques with an attendant power penalty. Moreover, with this
solution, the first and the second integrator, during their integration phase, have to
drive the input capacitor of the 31 quantizers. This substantial load capacitance
requires the use of relatively large power consumption in the first integrator stage.
The second possibility is to use a switched-capacitor amplifier to sum the three
signals, as in Figure 3.38(b). This adds power consumption and design complexity
to the ADC. Moreover, since this amplifier has to process the input signal X, a
rail-to-rail output stage has to been designed.
Both the solutions were assessed and it was observed that the solution with the
analog adder requires a total power consumption lower than the solution based on
charge sharing. In fact, the charge sharing solution increases the power consumption
of the first integrator and of the comparator. Furthermore, the solution based on
charge sharing is not reliable since the charge-sharing effect is not a phenomenon easy
to control, on the contrary it is usually an undesirable signal integrity phenomenon.
Moreover, has it will be shown in the followings, the requirements of the adder
amplifier does not require to design a two-stage Miller OTA, therefore an efficient
solution in terms of power-consumption can be chosen.

3.4.6 OTAs Requirements
In Figure 3.39 the circuit used for this design is depicted. The capacitors have
been sized in order to achieve the −94dB floor noise requirements. The size of the
capacitors is given in Table 3.4.
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Figure 3.39: The Σ∆ modulator circuit used for this design.

The sampling capacitor of the first integrator has been splitted into 31 capacitors
CS1i

, with i = 1, 2, ...31, which can be connected separately to either Vref+ or
Vref−. This allows the implementation of the multi-bit feedback without additional
capacitances, thereby avoiding additional kT/C noise and capacitive loading of
the integrator. Notice that the power consumption remains the same as for a
single bit implementation with a sampling capacitor ∑31

i=1 CS1i
= CS and also the

die size is comparable. Although this topology imposes tough requirements on
the reference buffers, this implementation is preferred due to the good power and
settling characteristics. Moreover, since the use of each unit capacitor can be
directly controlled, this implementation is very well suited for dynamic element
matching techniques.
The size of the capacitors has been minimized in order to have a low power
consumption. The size of the capacitor of the first integrator has been chosen in
order to meet the noise requirements, while the other capacitors can be chosen of
smaller size, since the effect of the second integrator and of the analog adder on
the thermal noise floor is reduced by respectively a first-order and a second-order
noise-shaping.
The specifications of the three OTAs, namely the two integrators and the analog
adder, have been summarized in Table 3.5.
It is worth to notice that the specifications of the amplifier which realizes the
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First Integrator Second Integrator Adder

Av 46dB 40dB 38dB

Output swing Vfs/20 Vfs/40 Vfs

GBW 120MHz 90MHz 160MHz

SR 60V/µs 40V/µs 80V/µs

Table 3.5: Minimum specifications of the analog blocks of the modulator.
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Figure 3.40: Output spectrum of second-order FF Σ∆ modulator: (a) not performing
adder amplifier compared with an ideal adder; (b) performing adder
amplifier compared with and ideal adder.

analog adder are more stringent than the specifications of the first integrator. In
particular, the output of the analog adder is equal to the full-scale voltage Vfs.
This is motivated by the fact that one of the input branch of the adder processes
the input of the modulator. Therefore also the specifications in terms of GBW and
SR are more stringent. Although this block has more severe requirements, it takes
advantage of a second-order noise shaping, since it sees the same transfer function
of the quantization noise. Thanks to the effect of second-order noise shaping the
non-linearities of the analog adder are reduced.
In Figure 3.40(a) the effect of a not performing real amplifier is shown. The effect
is an increase in the in-band noise with the addition of several harmonics that
degrade the SNDR. In fact, even though the adder amplifier takes advantage of
second-order noise shaping, it must be sufficiently fast to be able to follow the
changes of the input signal. When the specifications of Table 3.5 are achieved in
the output spectrum, as in Figure 3.40(b), the harmonics are no longer present.
Also the noise floor is not increased, unlike Figure 3.40(a), and the output spectrum
is comparable with the ideal adder case.
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Figure 3.41: Dynamic Range of the proposed design.

fs 50MHz

OSR 50

Bandwidth 500kHz

Modulator Order 2

Bit Quantizer 5

DR 94dB

Table 3.6: System-Level parameters of the proposed design.

3.5 Conclusion
In Figure 3.41 the SNDR in function of the input amplitude of the modulator
is shown. A Dynamic Range of 94dB is obtained with a sine wave input signal
with a frequency such that all the main harmonics fall inside the signal bandwidth,
namely fsin = 8.6kHz. In fact, with a signal bandwidth of 500kHz, all the main
harmonic components of fsin fall inside the band, and thus the robustness of the FF
topology against the harmonic distortion is proved. As apparent from Figure 3.41
the maximum SNDR is reached for an input value very close to the full scale input
signal, which is one of the main features of the FF topology. The minimum SNDR
is given by the thermal noise floor. It is worth to notice that in this simulation
the mismatch between the capacitors of the DAC is included, but it is shaped by
the DEM algorithm described in this Chapter. Thanks to the NewDWA approach
the SNDR is not reduced by the harmonic distortion produced by the common
DWA algorithm, and thus a higher linearity is obtained. It is worth to notice
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that, including all the non-linear effects as the limited DC-gain of the amplifier
and the mismatch among the unit elements of the DAC, the SQNR is close to
100dB, therefore doubling the value of the sampling capacitor does not give any
real advantage in the dynamic of the modulator, instead it would double the power
consumption of the overall ADC. In Table 3.6 the system-level parameters of the
modulator are summarized. In the following Chapter the transistor-level design of
the overall modulator will be described, with the aim of validating the behavioral
model explained in this Chapter.



Chapter 4

Design and Simulation

In this Chapter the design of the Σ∆ modulator is described. After the system
analysis the transistor level is studied, as in a classical top-down design strategy.
The behavioral model described in Chapter 3 will be validated through simulations
using the CMOS 65nm foundry model. All the simulations have been performed
with Cadence and Virtuoso Spectre Simulator.

4.1 First Integrator
Figure 4.1 shows the implementation of the First Integrator. The DAC has been
embedded into the first integrator. The sampling capacitor has been split up into 31
capacitors such that ∑31

i=1 CS1i = CF 1. During the phase Φ1 the input Vin is sampled
into the 31 sampling capacitors. The bottom plate of the sampling capacitors is
connected to the common mode voltage. It must be ensured that the output of the
quantizer becomes available before the start of the integration phase Φ2. In fact,
when the integration phase starts, the thermometric code of the quantizer must be
stable in order to detect which switches are connected to Vref− and which ones to
Vref+. During this phase the charge is moved into the feedback capacitor CF 1.

4.1.1 Switches
The switches have been implemented using transistor MOS. An ideal switch has
infinite resistance when it is open and zero resistance when it is closed. At high
supply voltages (5V and higher), a MOS transistor is a good enough approximation
of that. If RON is the on-resistance of a single switch the finite on-resistance of the
switches translates into a gain error in the ideal transfer function of the integrator.
Moreover the finite resistance can cause problems when the supply voltage is scaled
down.
The on-resistance of a MOS switch can be written as

RON = L

WµCox(VGS − VT ) . (4.1)

Equation (4.1) is valid when VGS ≥ VT , with smaller gate-source voltages the
resistance is infinite. In general, the value RON can be reduced by increasing

75
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Figure 4.1: Implementation of the First Integrator with the embedded multi-bit DAC.

the aspect ratio (W/L) of the transistors in the CMOS switch, as apparent from
Equation (4.1). However, this increases the transistors area, and consequently
their associated drain/source capacitances, with the subsequent penalty in the
transient response and integrators dynamics degradation. Therefore, there is
a trade-off between the maximum value of RON that can be tolerated and the
drain/source parasitic capacitances associated with the CMOS switch that are in
turn on conditioned by the value of capacitors used in the SC branches. Furthermore,
there is another problem connected to the MOS switches implementation. In fact,
a single-transistor switch cannot conduct over the whole rail-to-rail signal range,
since, for example, an nMOS switch, whose gate is tied to VDD, cuts off when the
signal level is raised within a threshold voltage of VDD. This is illustrated in Figure
4.2(a), where the inverse of the on-resistance is plotted against the signal level.
The whole range can be covered by putting an nMOS and a pMOS in parallel to
form a CMOS switch or a transmission gate (Figure 4.2(b)). Switches in SC Σ∆
modulators are usually implemented as CMOS transmission gates, so that, at least,
either the nMOS or the pMOS transistors are on for a given voltage level to be
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Figure 4.2: Inverse of the switch on-resistance as a function of the signal voltage for (a)
an nMOS switch, (b) a CMOS switch with high supply voltage and (c) a
CMOS switch with low supply voltage.

transmitted. The resistance in the triode region of the nMOS and pMOS can be
approximated to

RON,N = LN

WNµCox(VDD − VT N − Vin) ,

RON,P = LP

WP µCox(Vin − |VT P |) .

(4.2)

The on-resistance of the CMOS transmission gate is thus obtained as RON =
RON,P ||RON,N , warranting a rail-to-rail operation of the switch as long as VDD >
VT N + |VT P |. In Figure 4.2(b) the supply voltage is much larger than the sum of
the two threshold voltages. Therefore, in this case, it is relatively easy to achieve
a large conductance from rail to rail for Vin. However, when VDD is less than the
sum of the two threshold voltages, as in Figure 4.2(c) there is a large range of Vin

for which the switch will not conduct. In the feed-forward circuit the majority of
transistor sees a small signal swing, thanks to the unitary STF. For instance, as
depicted in Figure 4.1, the transistors with one of their terminals connected to the
reference voltages Vref− and Vref+, namely 0 and VDD are realized respectively with
a simple nMOS or a pMOS. This is explained by the fact that the nMOS conducts
well the digital 0, while the pMOS conducts well the digital 1. The transistors
with one of their terminal connected to the common mode Vcm are realized with
a transmission gate, since the drain-source voltage is independent from the input
signal. In this case the drain-source voltage does not change much over the clock
periods. However, the transistors connected to the input signal Vin must be realized
with a different strategy, since a rail-to-rail input signal is applied at the source of
the transistor and the drain is not connected to a constant voltage. Combined with
a low-supply voltage this implies the condition depicted in Figure 4.2(c).
In order to solve the problem of this non-conducting gap a bootstrap voltage solution
has been chosen [52]. The schematic of the actual bootstrap circuit is depicted in
Figure 4.3. It operates on a single phase clock Φ that turns the switch M0 on and
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Figure 4.3: Implementation of bootstrap circuit and switching device.

off. During the off phase, Φ is low. Devices M9 and M10 discharge the gate of M0
to ground. At the same time, VDD is applied across capacitor C2 by M3 and M4.
This capacitor will act as a battery across the gate and the source during the on
phase. M7 and M11 isolate the switch from C2 while it is charging.
When Φ goes high, M5 pulls down the gate of M7, allowing charge from the battery
capacitor C2 to flow onto the gate of M0. This turns on both M11 and M0. M11
enables the gate to track the input voltage S shifted by VDD, keeping the gate-source
voltage constant regardless of the input signal. For example, if the source S is at
VDD, then the gate of M0 is at 2VDD, however, VGS = VDD. Because the body
(nwell) of M7 is tied to its the source, latch-up is suppressed. In Figure 4.1 this
circuit is represented by the Bootstrap block. Two devices in Figure 4.3 are not
functionally necessary but improve the circuit reliability. Device M9 reduces the
VDS and VGD experienced by device M10 when Φ = 0. The channel length of M9
can be increased to further improve its punch-trough voltage. Device M8 ensures
that VGS,7 does not exceed VDD. Figure 4.4 shows a simulation of the bootstrap
circuit with VDD = 1.2V. When the clock is high, the gate voltage of the switch is
greater than the analog input signal by a fixed difference VDD. This ensures the
switch is operated in a manner consistent with the reliability constraints. Therefore
rail-to-rail signals can be used without a degradation for the switch linearity.
The design of the bootstrap circuit of Figure 4.3 follows these rules: the capacitor
value is a trade-off between the area considerations and the ability to charge the
load to the desired voltage level. In particular C2 must be sufficiently large to supply
charge to the gate of the switching device in addition to all parasitic capacitances
in the charging path; M3 and M4 are large in order to quickly charge C2 during the
phase Φ = 0; C1 is large enough so that the boosted voltage at the gate of M3 and
M1 is sufficient to turn M3 and M1 on; M7 and M11 aspect ratio is large in order
to decrease the rise time of the boosted clock.
In all the switches, in order to reduce charge injection effects and clock feed-through,
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Figure 4.4: Simulation of the bootstrap circuit.

bottom plate sampling strategy is used. With bottom plate sampling the switches
connected to the common mode voltages, or to the reference voltages, are opened
slightly earlier compared to the switches connected to the input. In this way there
is no charge injection on the sampling capacitor.

4.1.2 Amplifier
The amplifier is realized in order to achieve the specifications of Table 3.5, namely
DC-gain Av = 46dB, GBW = 120MHz and SR = 60V/µs. Since the output swing
is small, a cascode output stage can be used [53]. Between the Folded cascode and
the Telescopic cascode, the second topology is chosen. In fact, even though the
telescopic topology offers a lower output swing, which for this design is not a real
issue, the folded cascode is noisier.
The telescopic OTA shown in Figure 4.5 combines a small power consumption with
a high GBW. The basic characteristics of a Telescopic OTA are summarized in
Table 4.1, where the evaluated noise is the equivalent noise reported to the input of
the amplifier.
It is worth to notice that the transistors M9, M10 and M11 are part of the biasing
circuitry. In fact the transistor M9 copies the current of M8 in order to generate the
correct bias for M3 and M4 through the transistors M10 and M11. The current that
is flowing into this branch is a scaled copy of the current of the actual amplifier
stage, in order to minimize the overall power consumption. Since the SR is given
by SR = Ibias/CL where Ibias is the total current and CL is loading capacitor of the
OTA, including the output parasitic capacitor of the OTA, it is possible to find the
biasing current needed for the OTA. The first integrator load is given not only by
the sampling capacitor of the second integrator, but also by the sampling capacitor
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Figure 4.5: Telescopic OTA.

Av Rout BW GBW Noise

gm1Rout
1
2r01gm2r02

1
2πRoutCL

gm1
2πCL

2
[
v2

n1 + (gm7
gm1

)2v2
n7

]
Table 4.1: Characteristics of the Telescopic Cascode topology.

of the adder since there is one path bringing the output of the first integrator into
the analog adder, therefore

CL = Co + CS2 + 2CS3 + CF 1(1 − β) (4.3)

where Co is the output parasitic capacitor of the OTA, CS2 is the sampling capacitor
of the second integrator, CS3 is the sampling capacitor of the adder and CF 1(1 − β)
is the feedback capacitor reported at the output for the Miller effect [54]. With
Ibias = 150µA the simulated transfer function of the Telescopic OTA is reported in
Figure 4.6.
As apparent from Figure 4.6 the GBW and the DC-gain satisfy with a good margin
the specifications found by the behavioral model. Moreover also process corner and
Montecarlo simulations have been performed in order to ensure the reliability of
the amplifier. The process corner simulations are performed in all the five possible
process corners, namely the nominal corner, the fast-fast (FF) corner, the slow-slow
(SS) corner, the fast-slow (FS) corner and the slow-fast (SF) corner. The process
corner simulation is depicted in Figure 4.7, while the Montecarlo simulation is shown
in Figure 4.8. As apparent from both the figures the minimum specifications are
always achieved. The simulated power consumption of the amplifier is P = 180µW.
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Figure 4.6: Bode diagram of the transfer function of the Telescopic OTA realizing the
first integrator.
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Figure 4.7: Simulation of the the transfer function of the Telescopic OTA realizing the
first integrator in all the process corners (Nominal, FF, FS, SF, SS).

4.1.3 Biasing and CMFB
The biasing of the Telescopic OTA is shown in Figure 4.9. A high-swing cascode
current mirror topology is used. This current mirror generates the biasing for the
pMOS transistors, namely the transistors acting as a load, of the Telescopic OTA.
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Figure 4.8: Montecarlo simulation of the transfer function of the Telescopic OTA realiz-
ing the first integrator.

Figure 4.9: Biasing of the Telescopic OTA.

The current consumption of this stage has been minimized in order to minimize
the overall power consumption.
Since the overall design is based on a fully differential implementation, a circuit to
control the output common mode of the amplifier is necessary. A common mode
feedback loop (CMFB) [55] has been implemented with switched capacitors as
depicted in Figure 4.11.
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Figure 4.10: Switched Capacitor CMFB.

The control voltage vctrl is applied into the gate of a transistor in parallel to the
transistor generating the bias current of the OTA. The reference voltage vref is
generated by transistor connected as a diode. Practical considerations need to be
taken into account when designing fully differential OTAs that use SC-CMFB. The
most critical parameters for a good design are the open loop CMFB gain Acm and
the bandwidth BW. Acm needs to be as high as possible for better accuracy when
Vcm reaches the steady state. On the other hand, the CMFB BW should be as large
as the differential mode BW in order to track fast CM variations. The challenge is
to obtain the highest CMFB gain while having the required BW and still maintain
the OTA required specifications.
When designing the SC-CMFB network the parameters under control in the circuit
are the sizes of the capacitor and the size of the switching transistors. The
capacitance ratio C1/C2 has an effect over the vcm settling time. For high values
of C1/C2 the DC CM voltage settles faster after start-up. This suggests that C2
should be as small as possible and C1 as large as possible. However, having a slow
start-up for the DC CM output voltage is not a real problem in a Σ∆ modulator.
Nevertheless it is recommended to keep C2 small as possible since a small C2 implies
that also the BW of the OTA increases, due to the fact that C2 is part of the OTA
loading capacitor. It is worth to notice that C1 can not be too large because it
would require larger switches to keep the CMFB network RC constant low. The use
of larger switches increases the charge injection error and requires more chip area.
Furthermore, by increasing the size of the switches also the size of the parasitic
capacitors is increased. Table 4.2 summarizes how changing the parameters Acm,
BWcm, C1, C2 and Wswitch improves the OTA and CMFB performance. In this
design C1 = 80fF and C2 = 20fF.
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Effect Acm BWcm C1 C2 Wswitch

DC Vcm Settling time ↓ - ↑ ↑ ↓ ↑

Vcm accuracy ↑ ↑ - ↑ - ↓

OTA BW ↓ - ↑ - ↓ -

Charge injection error ↓ - - ↓ - ↓

Table 4.2: Effect of parameters variation in CMFB network.
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Figure 4.11: Implementation of the Second Integrator.

4.2 Second Integrator
The implementation of the second integrator is shown in Figure 4.11. As already
discussed, one of the advantages of the FF topology is that there is only one
feedback loop, therefore there is no need of embedding a DAC also in this integrator.
All the switches are realized with a transmission gate logic. There is no need
of bootstrapping switches since the voltage swing in the nodes of this stage is
independent of the input signal, but it is related only to the quantization noise.

4.2.1 Amplifier
The amplifier is realized in order to achieve the specifications of Table 3.5, namely
DC-gain Av = 40dB, GBW = 90MHz and SR = 40V/µs. Since the output swing is
small, a cascode output stage can be used. As for the first integrator, a telescopic
cascode topology is used (as the one in Figure 4.5).
Since the SR is given by SR = Ibias/CL where Ibias is the total current and CL is
loading capacitor of the OTA, it is possible to find the biasing current needed for
the OTA. The second integrator load is given by only the adder, therefore
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Figure 4.12: Bode diagram of the transfer function of the Telescopic OTA realizing the
second integrator.

CL = Co + CS3 + CF 2(1 − β), (4.4)

where Co is the output parasitic capacitor of the OTA, CS3 is the sampling capacitor
of the adder and CF 2(1 − β) is the feedback capacitor reported at the output for
the Miller effect. Since the thermal noise is dominated by the first stage, the size of
these capacitors is reduced. The combination of a reduced specification in terms of
SR and GBW, with a reduced load capacitor, expressed in Equation (4.4), yields
Ibias = 15µA. The simulated transfer function of the Telescopic OTA is reported in
Figure 4.12.
As apparent from Figure 4.12 the GBW and the DC-gain satisfy with a good margin
the specifications found by the behavioral model. Moreover also process corner
and Montecarlo simulations have been performed in order to ensure the reliability
of the amplifier. The process corner simulation is depicted in Figure 4.13, while
the Montecarlo simulation is shown in Figure 4.14. As apparent from both the
figures the minimum specifications are always achieved. The same biasing circuit
of the first integrator OTA has been used in order to generate the correct biasing
of the pMOS load transistors. The simulated power consumption of the amplifier is
P = 20µW.
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Figure 4.13: Simulation of the the transfer function of the Telescopic OTA realizing the
second integrator in all the process corners (Nominal, FF, FS, SF, SS).
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Figure 4.14: Montecarlo simulation of the transfer function of the Telescopic OTA
realizing the second integrator.

4.3 Analog Adder
The implementation of the analog adder is shown in Figure 4.15. The majority of
the switches of this stage is realized with a transmission gate. The only exception
is represented by switches with one of their terminals connected to the input signal.
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Figure 4.15: Implementation of the analog adder.

In fact these switches, that are located on the feed-forward branch, have a full signal
swing and, therefore, are realized as bootstrapped switches. The implementation of
a SC adder is similar to an integrator. During the phase Φ1 the charge is move into
the sampling capacitors and into the feedback capacitor CF 3. During this phase
the output voltage Vo is given by

Vo = −
[
−
(

CS3

CF 2
Vin + 2CS3

CF 2
V2 + CS3

CF 2
V3

)]
. (4.5)

It is worth to notice that Equation (4.5) is the result of an inverting summing
amplifier circuit, which motivates the minus sign inside the square brackets. However,
since at the output of the analog adder the signs are swapped, in Equation (4.5)
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Figure 4.16: OTA topology used for the analog adder.

there is another negative contribution. In this way the input-output transfer
function is mainly positive. During the Φ2 phase the charge in the capacitors is
setted to zero, making the capacitors available for a new summation in the next Φ1
phase.

4.3.1 Amplifier
The amplifier is realized in order to achieve the specifications of Table 3.5, namely
DC-gain Av = 38dB, GBW = 160MHz and SR = 80V/µs. The problem of this
stage is that the the output swing is rail-to-rail, since one of the branches of the
adder process the input signal, therefore a cascode output stage cannot be used
otherwise distortion due to headroom saturation will appear at the output of the
adder. The specification on the DC-gain makes it impossible to use a single-stage
rail-to-rail amplifier in a 65nm technology. Therefore, in order to achieve the gain of
Av = 38dB, a two stage amplifier must be used. However, the multi-stage amplifier,
which spends power on driving the compensation capacitances, is not competitive
compared with the single-stage amplifier in terms of power efficiency. In order to
avoid a Miller OTA, which would lead to a Miller compensation capacitor and
therefore to a large power consumption, a new amplifier topology has been studied.
The topology of the amplifier is shown in Figure 4.16. Transistors M3 and M4 act
as two current sources placed in parallel with the diode-connected transistors, M5
and M6, and shunt part of the current from these transistors. Assuming that

(W/L)7

(W/L)5
= (W/L)13

(W/L)11
= B

(W/L)3

(W/L)5
= k

1 − k
(4.6)

the output current that is flowing into M7 is given by

ID7 = B(1 − k)Ibias

2 = B(1 − k)ID1. (4.7)
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Figure 4.17: Parasitic capacitance and internal pole in the proposed OTA.

The gain of the OTA is given by

Av = gm1

gm5
gm7r07 = gm1B r07 = 2ID1

(VGS1 − VT )
B

λ7ID7
(4.8)

where λ is the channel length modulation coefficient. The gain of the OTA can be
expressed substituting Equation (4.7) into Equation (4.8) yielding

Av = 1
1 − k

2
(VGS1 − VT )λ7

. (4.9)

From Equation (4.9) it can be seen that the OTA gain is enhanced 1/(1 − k) times.
As apparent, the gain enhancement can be adjusted by changing the k factor.
Practically, the gain enhancement is restricted by several factors.
The main concern is the frequency response. Using this technique will result in an
increased impedance of the internal node, namely the impedance on the gate of
M5. The non-dominant pole frequency will be pulled down and the phase will be
reduced too. Shown in Figure 4.17, the total parasitic capacitance associated to the
gate of M5 is represented by CC while the total capacitor associated to the output,
including the parasitic capacitor, is represented by CL.
The non dominant pole is given by

Pnd = gm5

2πCC

= 2ID5

2πCC(VGS5 − VT ) = 2(1 − k)ID1

2πCC(VGS5 − VT ) . (4.10)

As apparent from Equation (4.10) increasing the capacitor CC will lead to a smaller
non-dominant pole, which can lead to instability. The GBW of the OTA can be
expressed as
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Av Rout BW GBW Noise

gm1B Rout r07
1

2πRoutCL

B gm1
2πCL

2v2
n1

[
1

gm1
+ gm3

g2
m1

(
1 + 1

B

)
+ gm13

B2g2
m1

]
Table 4.3: Characteristics of the proposed OTA topology.

GBW = B gm1

2πCL

= 2B ID1

2πCL(VGS1 − VT ) . (4.11)

To maintain a reasonably safe phase margin, the non-dominate pole has to be placed
at least more than 3 times of the GBW. Assuming that the overdrive voltages of
the transistors are the same, then the following criteria can be drown:

k ≤ 1 − 3B
CC

CL

. (4.12)

Equation (4.12) implies that a maximum gain enhancement can be achieved,
without affecting the linearity of the OTA. The smaller CC/CL ratio, the more gain
enhancement can be achieved. The larger the capacitance load is, the higher gain
can be reached. However having a large capacitance load leads to a small bandwidth
of the modulator, therefore is not advisable to increase the load capacitor of the
OTA. Finally the SR of this topology is given by

SR = 2B(1 − k)Ibias

CL

. (4.13)

Summarizing the results, the OTA depicted in Figure 4.16 achieves quite high
DC-gain by increasing the factor k. Moreover a quite large GBW can be obtained
by increasing the factor B. However there is a trade-off between the choice of the
parameters B and k and the stability of the modulator. In fact if B is too large,
from Equation (4.12), the maximum factor k in order to stabilize the amplifier is
small and therefore a small gain enhancement 1/(1 − k) is achieved. On the other
hand, choosing a large value for k in order to achieve a large gain enhancement, will
lead to a reduction of B and therefore a reduction of the GBW. The characteristics
of this OTA are summarized in Table 4.3
An interesting feature of this topology is the high GBW and high SR. This fact
is important because the adder must achieve more stringent specifications with
respect to the integrator. Furthermore the loading capacitor of the OTA is mainly
given by the input capacitors of the the 31 comparators, which is actually a large
capacitor. With Ibias = 70µA the simulated transfer function of the proposed OTA
is reported in Figure 4.6.
As apparent from Figure 4.18 the GBW and the DC-gain satisfy with a good margin
the specifications found by the behavioral model. Moreover also process corner and
Montecarlo simulations have been performed in order to ensure the reliability of
the amplifier. The process corner simulation is depicted in Figure 4.19, while the
Montecarlo simulation is shown in Figure 4.20. As apparent from both the figures
the minimum specifications are always achieved.
Also the loop gain of the OTA has been simulated, as shown in Figure 4.21. As
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Figure 4.18: Bode diagram of the transfer function of the OTA realizing the analog
adder.
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Figure 4.19: Simulation of the the transfer function of the OTA realizing the analog
adder in all the process corners (Nominal, FF, FS, SF, SS).

apparent from Figure 4.21 the phase margin (PM) of the amplifier is PM = 78◦,
which ensures a good stability for the amplifier. The simulated power consumption
of the amplifier is P = 100µW.
The biasing of the OTA of Figure 4.16 is depicted in Figure 4.22. The CMFB
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Figure 4.20: Montecarlo simulation of the transfer function of OTA realizing the analog
adder.
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Figure 4.21: Simulation of the loop gain of the OTA realizing the analog adder.

circuit has been realized as in the Telescopic OTA with the difference that the
control voltage vcmref is placed in the output branch of the OTA.



4.4. COMPARATOR 93

��

��

���

���	


���	


��

Figure 4.22: Biasing of the OTA realizing the analog adder.

4.4 Comparator

4.4.1 Background
The comparator is a circuit that compares an analog signal with another analog
signal, or reference, and yields as output a binary signal based on the comparison.
The idea is to amplify the input signal in order to saturate the output of the
comparator to VDD or 0, depending on the sign of the input difference. In order to
have a correct behavior, the minimum difference between the input signal and the
reference that the comparator must be able to solve is equal to the less significant
bit [56].
Architecture of modern high speed comparator essentially consists of a pre-amplifier
stage and a latch stage. The pre-amplifier stage amplifies the input signal to
improve the comparator sensitivity and it also isolates the input of the comparator
from switching noise coming from the positive feedback stage [57]. The second
stage is a latch stage which is used to determine the larger input signal and thus
need to have high gain. Usually, in order to achieve high gain and fast response, a
positive feedback is used.
In Figure 4.23 a classical comparator with pre-amplifier is shown [58]. The pre-
amplifier amplifies the difference between the differential input voltage (vi+ − vi−)
and the differential reference voltage (vrp − vrn), according to:

vo− = A [((vrp − vi+) − (vrn − vi−)]
vo+ = A [((vrn − vi−) − (vrp − vi+)]

(4.14)

where A is the DC-gain. It is worth to notice that the nMOS differential pair is
loaded with pMOS diodes and pMOS cross-coupled latch, namely transistors M5,
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Figure 4.23: Comparator with pre-amplifier topology.

M6, M7 and M8. This ensures high gain and there is no need of CMFB to control
the output common mode. The DC-gain of the amplifier is given by

A = −gm1

[
1

gm5
||
(

− 1
gm6

)
||r01||r05||r06

]
≈ −gm1r01

3 . (4.15)

The pre-amplifier output difference (vo+ − vo−) is then passed to the latch, which,
on the positive edge of the clock, determines the digital output signals, depending
on its input. The pre-amplifier is the most commonly uses solution placed in front
of the comparator for two main advantages.
The first reason is the reduction of the input-referred offset. In fact, due to mismatch
between input transistors, the circuit exhibits a DC offset of different values. This
value of DC offsets depends on the mismatch of input and output voltages. The
offset can limit the performance of comparator and can make the system non-linear.
The total input-referred comparator offset is given by

V 2
os = V 2

os,1;2;3;4 + Vos,9;12

A2 . (4.16)

As apparent from Equation (4.16), the input-referred latch offset is divided by the
gain of the pre-amplifier. This also motivates why it is important to have a large
gain in the pre-amplifier, as the one of Equation (4.15). In fact the gain of the
pre-amplifier reduces the offset of the second stage. However it should be noticed
that the offset of the pre-amplifier is not reduced, therefore the size of the transistor
M1 − M4, namely the differential pair of the pre-amplifier, must be chosen correctly
in order to limit its offset.
The second reason is the reduction of the kickback noise effect. In order to show
the effect of the kickback noise a common structure of a latched comparator is
shown in Figure 4.24 for the sake of clarity. During the regeneration process the
latched comparator uses the two cross-coupled inverters implementing a positive
feedback mechanism to scale the digital level. The large voltage variations on the
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Figure 4.24: Effect of kickback noise.

regeneration nodes are coupled, through the parasitic capacitances of the transistors,
to the inputs. Since the circuit preceding does not have zero output impedance,
the input voltage is disturbed, which may degrade the accuracy of the converter.
Since the pre-amplifier isolates the latch from the input voltage, the kickback noise
effect is reduced.
Besides the advantages that the solution including the pre-amplifier stage ensures,
the main problem of this kind of solution is the increase in the power consumption.

4.4.2 Dynamic Comparator
Conventionally, to decrease the offset voltage, a pre-amplifier has been utilized
prior to the regenerative latch stage, which is able to amplify a small input signal
to a large output signal to achieve a low latch offset voltage and a low kickback
noise. Nevertheless, a pre-amplifier based comparator performance is affected from
large static power dissipation. Therefore, a dynamic latch comparator without
pre-amplifier is very much enviable for high speed and low power applications.
The comparator shown in Figure 4.25 is called a resistive divider comparator, and
it is proposed in [59]. The main advantage of this design is the zero DC power
dissipation and built-in circuitry to adjust the threshold voltage as in Equation (4.17)

vi+ − vi− = µnCoxW1/L1

µnCoxW3/L3
(vrp − vrn). (4.17)

In Figure 4.25, to adjust the threshold voltage, transistors M1 − M4 are utilized as
the adjustment circuitry. In order to adjust the threshold voltage is necessary to
change the size ratio between the two differential pairs. On the other hand, latch
circuit is composed with the transistors M5 − M12. When Φ = 0, transistors M9
and M12 are in conducting mode, M7 and M8 go to cut off region. As a result both
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Figure 4.25: Resistive divider dynamic comparator.

the differential outputs become VDD and there is no current passes between the
supply voltage and ground. Concurrently, M10 and M11 are in cut off region while
M5 and M6 are in conducting mode. On the other hand, when Φ = VDD both
the transistor M7 and M8 turns on but keeps M5 and M6 transistors in saturation
region as both of these transistors gates still hold the value VDD, since VDD is the
output during the previous phase, namely the reset phase. The inputs of the left
and right branches formed by M1 − M4 determines whether the output holds the
value VDD or 0V. Since M1 − M4 are in deep linear region, while M5 and M6 are in
the saturation region, the input-referred offset is sensitive to the device mismatch
of M1 − M4 and especially M5 − M6. The offset can reach hundreds of millivolts,
which is unbearable in a multi-bit quantizer.
Another fully differential dynamic comparator is depicted in Figure 4.26 [60]. The
comparator consists of two cross coupled differential pairs with inverter latch at
the top. All of the differential pairs and current source transistors are in the
saturation region at the regeneration time, which makes the offset insensitive to
device mismatch. The trip point of the comparator depends on the imbalance
between the differential pairs and the switch controlled current sources. However,
several drawbacks compromise its application. If there are any non-idealities or
mismatches present, the two inverter tail currents will not be same and will result
in large offset for the comparator. The second problem is related to the inputs of
the differential pairs. A large difference between the two inputs to a differential pair
will result in the turning off one of the differential pair transistor and all the tail
current will be drawn into the other transistor. Hence, the comparator will be only
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Figure 4.26: Differential pair comparator.

comparing vi+ with vrp (or vi− with vrn) rather than a comparison of differential vi

with differential vr.

4.4.3 Proposed Comparator
To overcome the drawbacks of the two dynamic comparators mentioned above
and to exploit their advantages, some improvements are introduced to make the
proposed comparator not only insensitive to device mismatch but also capable of
operating at lower supply voltage and larger input swing. The proposed comparator
is shown in Figure 4.27.
One key point in designing this comparator is the aspect ratio of the switches
M5 and M6 which should be designed large enough in order to make the delay
introduced by the comparator as small as possible. In fact, by increasing the size of
the current source transistors, the time constant connected to the charging of the
output capacitor will be smaller, and, therefore, a faster switching activity between
the two supply voltages takes place. The effect of increasing the size of transistors
M5 and M6 on the comparator output of Figure 4.27 is shown in Figure 4.28.
The operation of the comparator is as follows. When the comparator is in the reset
phase, namely Φ = 0, M5 and M6 are in cut-off region. There is no static current
from VDD to ground, as in the resistive divider dynamic comparator. During this
phase M9 and M12 are in conducting mode. The nodes vo+ and vo− are pulled up
to VDD, therefore the output voltage voutp and voutn is pulled down to 0.
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Figure 4.27: Proposed dynamic comparator.
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Figure 4.28: Positive output of the proposed dynamic comparator in function of the
size of the switches M5 and M6.
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Figure 4.29: Positive output of the proposed dynamic comparator.

Once Φ goes high, the sources of the differential pairs are pulled down by switches
M5 and M6, while the drain of the differential pairs are still close to VDD because
of no transient current from VDD to ground at the start of the regeneration phase.
Therefore transistors M1 − M4 are in the saturation region at this moment. In
the meantime, the comparator begins to compare the input voltage and reference
voltage. As in the resistive divider comparator the ratio of the sizes of the input
transistors determines the trip point, as in Equation (4.17). However, in this case,
unlike the resistive divider case, the input transistors are operating in the saturation
region. Few modifications have been made to this structure if compared to the
differential dynamic comparator. The most important modification is related to
the input signals. As pointed out in the typical differential pair comparator, one of
the input transistors will be turned off if there is a large input differential and will
result in the comparison of two signals rather than comparison of two differential
signals. To address this problem vi+ and vrp (and vi− and vrn) are combined in one
differential pair. Transistors M13 and M14 are included to reduce the effect of the
mismatch of M7 and M8 on the input-referred offset. In fact at the end of the reset
phase the sources of M7 and M8 are connected to VDD. Since also vo− and vo+ are
pulled up to VDD, transistors M7 and M8 are in the linear region. Therefore their
mismatch becomes much less important. It is worth to notice that, during the reset
phase, the sources of M7 and M8 are shorted for the purpose of eliminating the
effect of last comparing result to the next decision, namely the recovery-time issue.
The functional performance of the proposed dynamic comparator is shown in Figure
4.29.
As apparent from Figure 4.29 when the differential reference is greater than the
differential input the positive output is 0, regardless of the clock phase. When the
differential input becomes greater than the differential reference the output is 0
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Figure 4.30: Output of the Set-Reset Latch after the comparator.

during the reset phase, while during the regeneration phase is equal to VDD.
In order to generate the thermometric code, a Set-Reset Latch has been used to
hold the correct output value for the entire clock cycle. The effect of the Set-Reset
Latch is shown in Figure 4.30.
In order to evaluate the comparator offset and hysteresis a slow ramp-waveform
input signal is applied to the comparator, with a Montecarlo approach. The
simulation is depicted in Figure 4.31.
From Figure 4.31 it is possible to evaluate the offset and the hysteresis of the
comparator.

vos = vi1 + vi2

2 − vth = 0.5411 + 0.4768
2 − 0.5 = 0.009V

vh = vi1 − vi2

2 = 0.5411 − 0.4768
2 = 0.03V

(4.18)

The offset of the comparator has been evaluated also with an histogram, as shown
in Figure 4.32.
As apparent from Figure 4.31 and Figure 4.32 this topology effectively ensures a
very low offset.
The simulation regarding the overall quantizer is depicted in Figure 4.33. As for
the offset evaluation, this simulation is performed with a slow ramp-waveform
input signal. As apparent, the differential non-linearity coincides with DNL = 0
LSB, which ensures a monotonic transfer function with no missing codes. The
simulated INL for the quantizer is INL = 0 LSB. Even looking at the Montecarlo
simulation, as in Figure 4.34, the DNL is low enough to ensure the monotonicity of
the quantizer. Since it would be impossible to perform a Montecarlo simulation of
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Figure 4.31: Montecarlo simulation of the output transient response of the comparator.
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Figure 4.32: Histogram of the offset of the comparator.

the overall Σ∆ modulator, the non-linearity of the 5 bit flash quantizer has been
integrated into the MATLAB model, with the aim of evaluating the effects of this
non-linearity on the output SNDR. These effects do not degrade the performance
of the overall modulator, as expected since this element takes advantage of the
second-order noise shaping and therefore its performances are relaxed.
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Figure 4.33: Input/Output Characteristic of the 5 bit embedded quantizer.
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Figure 4.34: Montecarlo simulation of the input/output characteristic of the 5 bit
embedded quantizer.

Also the overall power consumption has been simulated and the power consumption
of the overall quantizer is P = 72µW.
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Figure 4.35: Voltage reference glitch caused by kickback noise.

4.4.4 Reference Voltage Generation
Besides the offset, the major problem of a general dynamic comparator is the already
mentioned kickback noise effect. Without a pre-amplifier that isolates the switching
activity of the latch from the input voltage, the comparator works wrong because of
the input reference glitch. The effect of the kickback noise on the reference voltage
is shown in Figure 4.35.
As apparent from Figure 4.35 the reference voltage has a large variation with respect
to its nominal value, namely for this simulation case Vref = 0.75V. Furthermore,
this voltage variation exceeds the LSB, which for a 5 bit internal quantizer with a
reference voltage of 1.2V is only 75mV. This implies that the comparator output
gives an incorrect digital value and, therefore, the overall system makes a mistake
much larger than the LSB.
A way to solve this problem is by paralleling a small capacitor with the differential
pair. Hence, the glitch caused by the kickback noise effect is reduces effectively.
Therefore, the generation of the reference voltages for the flash ADC includes,
beside the classical resistive ladder, 31 capacitors for each reference voltage. The
reference voltage generation is shown in Figure 4.36. In order to reduce the current
consumption of the resistive ladder a high resistor, namely R = 31kΩ is used.
Therefore a current consumption on the resistive ladder of 1.2µA is obtained. The
capacitor size has been chosen in order to reduce the kickback noise leading to
C = 180fF. As apparent from Figure 4.37, the proposed solution to reduce the
kickback noise is effective, since a sensible reduction of the voltage variation over
the reference voltage is obtained. As shown in Figure 4.37 the disturbance on the
reference voltage is reduced to only 3mV.
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Figure 4.36: Reference voltage generation for the 5 bit internal quantizer.
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Figure 4.37: Reduced voltage reference glitch caused by kickback noise with the capaci-
tor solution.
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Figure 4.38: An optimized implementation of the first-order DWA algorithm.

4.5 Digital Circuitry

4.5.1 DWA
As already discussed in Chapter 3, the DWA algorithm is one of the most used
DEM algorithm thanks to its simplicity. In Figure 4.38 an optimized physical
implementation for the first-order DWA is proposed. The 31 bits of the thermometer
code generated by the Σ∆ flash ADC, Therm-Code, can be permutated by means
of a simple logarithmic shifter [61], using the proper value of the pointer.

4.5.2 Logarithmic Shifter
The implementation of the logarithmic shifter is shown in Figure 4.39. For the
sake of clarity a three bits logarithmic shifter is depicted, while in the design a
5 bit shifter is actually used. Depending on the value of the pointer, ptr, the
input thermometer code is shuffled, so that the shuffled code is shifted of (ptr)10,
where (ptr)10 is the decimal representation of the code ptr [61]. An example of the
operation of the barrel shifter is shown in Figure 4.40, where the thermometer code
is shifted of (101)10 = 5 positions. As it will become more clear below, this block is
a key element for the hardware implementation of the DWA and it must be ensured
that the time delay introduced by the logarithmic shifter is minimized.

4.5.3 Binary Encoder
The pointer value is converted from a thermometer code into a binary one with
an encoder [62]. The implementation of the Binary encoder is depicted in Figure
4.41. For the sake of clarity a three bits encoder is depicted, while in the design
a 5 bit encoder is used. The encoder implementation is based on multiplexers
(MUX). The main idea behind this design of the proposed MUX based encoder is
to group the results of smaller length MUX-based encoders to form a larger encoder
for thermometer to binary conversion. Consider the example of Figure 4.42. The
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Figure 4.39: Three-stage multiplexer based logarithmic shifter.

Figure 4.40: An example of the basic operation of a three-stage logarithmic shifter.

thermometer code is given by 0000111. Since the Y4 signal is 0 all the bits to the
left side of Y4, namely Y1,2,3, are 0, therefore the MSB of the binary code is equal
to 0. The LSB bits YLSB and YLSB+1 are now defined by the number of 1 present
in the right side of Y4, which is equal to three. This now represents the LSB bits
of the final binary code. Since the basic operation of the proposed MUX based
decoder needs a bubble correction circuit for correcting the bubble errors, an array
of OR logic ports is used in order to correct a possible single bubble error.
Among the existing thermometer-to-binary encoders the proposed design offers the
smallest power consumption and the smallest area [62].
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Figure 4.41: Three bits MUX based encoder.

Figure 4.42: An example of the basic operation of a MUX based encoder.

4.5.4 Full Adder

In order to update the pointer value a 5 bit adder must be used [63,64]. In the
DWA algorithm the pointer value is updated according to Equation (4.19)

ptr(k) = (ptr(k − 1) + y(k − 1)) mod 2N . (4.19)

The design of the adder is depicted in Figure 4.43. It has 16 transistors and it
is based on the 4-transistor implementations of the XOR and NXOR functions
presented in [63].
It is easy to verify that the nodes X, Y, Z implement the following functions
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Figure 4.43: Single cell 5 bit full adder.

Figure 4.44: An example of the basic operation of the single-cell full adder.

X = A XOR B
Y = Ā XOR B
Z = X XOR Cin

(4.20)

From Equation (4.20) it yields
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Figure 4.45: First-order FF Σ∆ modulator with input feedforward and its timing
diagram.

SUM = (A XOR B) XOR Cin

Cout = A · B + Cin · (A XOR B)
(4.21)

which is actually the 1 bit full-adder functionality. An example of how this full
adder works is depicted in Figure 4.44.

4.5.5 Timing Requirements
One of the challenges in the implementation of the Σ∆ architecture is the timing of
the feedback loop path [65]. Considering the architecture of the design proposed in
this thesis, it must be ensured that the output of the quantizer becomes available
before the start of the integration phase of the first amplifier, as already mentioned.
This constraint is due to the need of having a delay-free signal transfer function
and, as a result, a removal of the input signal component which allows to use more
efficient opamp architectures. This problem becomes worse with the use of DEM
algorithms [66]. To understand this timing limitation the implementation of a
first-order FF modulator and its timing diagram is depicted in Figure 4.45.
The quantizer output thermometer code y becomes available at the end of clock
phase Φ1, being Φ1 and Φ2 the two non-overlapping clocks of the switched-capacitor
integrators included in the Σ∆ modulator. The shuffled version of this code drives
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Figure 4.46: Physical implementation of the circuit used to generate the two non-
overlapping phases.

the modulator DAC and must be stable at the beginning of Φ2, when the integration
phase of the first amplifier starts. Therefore the permutation of y(k) bits must
be performed within the non-overlapping time of the clock phases, tn−o. In the
literature several solutions to avoid this timing delay issue are proposed, however
they are often based on a modification of the analog part that involves a substantial
increase of the power consumption [67,68].
Given that the timing issue in the cancellation logic may be critical, the selection
of the most adequate DEM algorithm must also consider the hardware implementa-
tion, with particular emphasis on the time requested for the permutation of the
thermometer code bits [69].
As highlighted in the timing diagram of Figure 4.38 the propagation through the
shifter starts at the end of phase Φ1 and must be completed within the rising edge
of phase Φ2, when the DAC must provide a stable signal to the modulator. The
shifter propagation time corresponds in the worst case to the delay of the cascade
of five transmission gates.
Assuming that the two non-overlapping clock phases are generated with the circuit
reported in Figure 4.46, the non-overlapping period, tn−o, is equal to the propaga-
tion time through the two delay chains td1 and td2. When such delay chains are
realized cascading few CMOS inverters it is easily obtained that the propagation
delay through the five transmission gates of the shifter is slightly lower than tn−o.
When a new value of Therm-Code(k), or equivalently y(k) as depicted in the time
diagram of Figure 4.38, is generated on the falling edge of Φ1 it also triggers an up-
date of the pointer ptr. Such a new value of ptr is actually used for the permutation
of the next value of the input code Therm-Code(k+1), therefore all the hardware
blocks in the lower part of Figure 4.38 have a much relaxed time constraint. In
particular, in the proposed realization, the 5 bit adder must provide a stable signal
to the following master-slave register at the falling edge of Φ2: hence a time span
as long as half the clock period is available. This proves that in the case of the
DWA algorithm, the time criticality is limited to some simple digital blocks and
hence it can be easily managed [70].
Conversely, for instance, a second-order DWA suffers of a more complex hardware
implementation: in fact this algorithm requires that some unit elements contribute
multiple times in one clock cycle. This implies that the clock period is divided into
sub-periods and in each of these sub-periods, a specific unit element can have either
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Figure 4.47: Transient simulation of the 11th bit of signals Therm-Code and Shuff-Code
and of the 2nd bit of signals Enc-Code, ptr, and next-ptr ; the time axis
is divided in two sets, in order to zoom around the rising and the falling
edge of phase Φ2, respectively.

a positive, negative or zero contribution. This strategy degrades the maximum clock
speed of the converter and in particular it becomes almost impossible to satisfy
that all the necessary operations are performed within the tn−o period. This fact
motivates why the second-order DWA, despite being the most performing solution
among all the DEM algorithms, is not commonly used in the literature.
The 5 bit adder and the thermometric encoder, being outside the critical path, can
be designed with the target of area and power consumption saving, as previously
explained.
Some transistor-level simulation results using the foundry models are presented in
Figure 4.47. At time 50ns an update of Therm-Code occurs due to the high-low
commutation of phase Φ1. As shown, the signal Shuff-Code converges to its new
value well before the next rising edge of Φ2, as required by the critical timing
schedule. Then it remains constant until a new value of Therm-Code will arrive.
Signals Enc-Code, ptr, and next-ptr are also plotted in the lower part of Figure 4.47.
Signals Enc-Code, and next-ptr are updated as a consequence of the Therm-Code
variation with no timing issues at all, since ptr will be sampled by the index pointer
register at the falling edge of Φ2, which occurs in the right side graphs of Figure
4.47. After this latter event, the new value of ptr is available (after the rising edge
of Φ1). The same bit permutation has been simulated with a multiplexer in the
barrel shifter realized with a nMOS pass transistor logic, followed by a level restorer
in order to restore the high logical level. However, with this kind of solution, the
delay time is increased in the signal path as apparent in Figure 4.48.
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Figure 4.48: Transient simulation of the delay introduced by DWA when the logarithmic
shifter is implemented with pass transistor or transmission gate logic.

4.5.6 BiDWA

As already discussed, the main drawback of DWA is the presence of spurious tones in
the signal bandwidth for low OSR. The most efficient solution to solve the harmonic
behavior of DWA is the BiDWA. The critical point of BiDWA is, however, its
hardware implementation. In fact the need to implement the two pointers requires
to double the hardware with respect to DWA, allowing the barrel-shifter to shift in
two directions. Beyond the power and area increase due to the larger number of
logic gates, the circuit of Figure 4.49 can easily become critical in terms of timing.
Considering the critical signal path from the quantizer output, y, to the DAC input,
it is worth to observe that, with respect to the circuit solution of Figure 4.38, the
extrinsic load of the first latch has been doubled and a multiplexer at the end of the
signal path has been added. This results in a significant increase of the propagation
delay that, as stated earlier, must be lower than the non-overlapping period of
the clock phases Φ1 and Φ2. In Figure 4.50 simulations at the transistor level are
performed order to compare the delay in the signal path for the BiDWA and the
DWA algorithms.
It is apparent that the delay introduced by the BiDWA algorithm is larger than
the DWA solution.
This fact is justified by two elements. Firstly, the additive multiplexer increases the
time propagation. The effect of this additive multiplexer becomes even more evident
when a large number of bits N is used. In fact the time propagation through a
sequence of N transmission gates is given by

tp = 0.69 · C · Req
N(N + 1)

2 , (4.22)
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Figure 4.49: Implementation of the BiDWA algorithm.
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Figure 4.50: Feedback delay introduced by DWA and BiDWA algorithm.

which shows that there is a quadratic dependence between the propagation time
and the number N of elements in the barrel shifter. Secondly the load seen by the
5 bit quantizer increases in the BiDWA. One may argue that the load seen by the 5
bit quantizer can be reduced with a demultiplexer before the two barrel shifters.
However this solution has been investigated and leads to a further increase of the
delay in the signal path.
This problem in the time delay, combined with the area and power consumption,
has in fact made the BiDWA a rarely used algorithm in the literature.
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Figure 4.51: Implementation of the NewDWA algorithm.

4.5.7 NewDWA

As explained in Chapter 3.3.4 the NewDWA has the same efficiency of the BiDWA
and, therefore, can be considered as a good solution for the low OSR applications.
It was also already shown how intuitively the proposed algorithm has an easier
hardware implementation in comparison with the BiDWA algorithm. The details of
the hardware implementation of the NewDWA are given below and the time delay
introduced by this algorithm is compared with the one of DWA and BiDWA.
The implementation of the proposed algorithm is shown in Figure 4.51.
The scrambling operation is performed with the classical logarithmic shifter. The 5
bit adder sums ptr with the encoded thermometric code. During ΦE−O the output
of the adder passes through the out1 path of the demultiplexer as the next ptrE.
The pointer is stored in the master stage of the 5 bit index pointer register of the
even pointer path, while the output of the slave latch is locked, ensuring a stable
pointer ptr to the logarithmic shifter. It should be noted that in this phase the
master stage of the register of the odd pointer is disabled, therefore the odd pointer
is not modified during this phase. During Φ̄E−O the slave stage of the register
of the even pointer is enabled and captures the signal stored in the master stage.
This ensures that next-ptrE is stable and available unchanged for the next ΦE−O

phase, when the multiplexer selects the path in1. The behavior of the odd path is
similar. In this case it is needed to ensure a stable pointer during Φ̄E−O, therefore
the phases of the master-slave registers of the odd pointer path are reversed. The
afore mentioned timing criticality still involves the logarithmic shifter only.
For the sake of clarity the critical path of NewDWA and BiDWA have been depicted
respectively in Figure 4.52(a) and in Figure 4.52(b).
It is clear that the critical path of the BiDWA algorithm includes an additional
multiplexer, which selects the correct scrambled thermometric code depending on
the ΦE−O phase. Moreover the capacitive load Cx seen by the latch in the BiDWA
solution is greater than the capacitive load seen by the latch in this modified version,
due to the presence of the other logarithmic shifter. Therefore the usage of BiDWA
not only consists of a mere duplication in a parallel path, but it also affects the
critical path. It is worth to notice that the implementation of the NewDWA is
actually very similar to the basic DWA, with the only difference of the pointer
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(a) (b)

Figure 4.52: Critical path for a single bit line of the (a) NewDWA algorithm and of
the (b) BiDWA algorithm.
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Figure 4.53: Feedback delay introduced by NewDWA and BiDWA algorithm.

register. As a consequence the hardware complexity of the proposed algorithm is
very similar to the one of a standard DWA and, more importantly, the gates in the
critical path are almost identical, leading to a similar capacitive load. Conversely
in the case of a BiDWA all the updating logic must be doubled, because the update
rule of the two pointers is different. Furthermore, the number of gates and the
parasitic loads in the critical path increase, exacerbating the timing criticality.
Figure 4.53 reports the worst case propagation delay through the critical signal
path for the circuit of Figure 4.51 and of a standard BiDWA. Using a BiDWA
would imply an increase of 23% in the propagation delay through the critical path.
Similar considerations can be drawn with respect to power and area consumption,
as summarized in Table 4.4. The proposed design includes the possibility to change
the algorithm between the DWA and the NewDWA with a digital input code. This
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DWA BiDWA NewDWA

Time Delay (ps) 74 96 75

Power Consumption (µW) 0.15 0.24 0.18

Area (normalized to DWA area) 1 2.12 1.25

Table 4.4: Comparison of DWA, BiDWA and the proposed algorithm in terms of time
delay, power consumption and area.
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Figure 4.54: Validation of the behavioral model with a transistor-level simulation.

gives the possibility of having a performing Σ∆ modulator also for high OSR values.
Moreover the possibility of disabling the DEM completely is included.

4.6 Conclusion
The overall design has been implemented in a 65nm technology with a 1.2V power
supply. A transient simulation has been performed in order to validate the behavioral
model and the result is depicted in Figure 4.54. As apparent the behavioral model
follows well the transistor simulation. Also in Figure 4.54 a behavioral simulation
including the thermal noise is reported.
In Figure 4.55 the time evolution of the 5 bit output signal when a CIC filter is
applied is depicted. This simulation has been performed in Cadence assuming an
ideal CIC filter. As shown in Figure 4.55, assuming a constant input as input of the
modulator, the filtered output signal is enclosed between ±LSB/2, where LSB is
the least significant bit value relative to the 94dB dynamic range, coherently with
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Figure 4.55: Time response of the Σ∆ output filtered by the CIC filter.

Figure 4.56: Pie chart of the power consumption of the proposed design.

the result obtained in the behavioral model.
In Figure 4.56 a pie chart of the power consumption of the system is depicted. The
overall power consumption is P = 407µW. Considering the Figure of Merit (FOM)
defined by Walden which is defined as

FOM [J/conv] = P

2ENOB · 2Bw

(4.23)

for this design a FOM = 8.7fJ/conversion is estimated.





Chapter 5

Measurement Setup

In this Chapter the measurement setup of a Σ∆ modulator is described. Besides
a computer-based ADC-output to read the converter’s output and to perform
the Fourier transform on the modulator output, the main element of an ADC
measurement setup is the input generator. The major problem with high resolution
ADC is that the measurement setup requires a sine-wave generator with a very low
residual distortion. The purity of the sine-wave must be higher than the resolution
of the ADC, otherwise it will be impossible to verify the effective performance in
terms of ENOB of the ADC. In this Chapter low-distortion and low-noise oscillator
designs are described in order to verify the performance of the proposed design and
in order to provide a general strategy for the testing of high-resolution ADC.

5.1 Background
The system’s oscillator is the most difficult to design part of the measurement
setup. Linearity testing of ADCs can be very challenging because it requires a
signal generator substantially more linear than the ADC under test. The oscillator
must have transcendentally low levels of impurity to meaningfully test 16 bit ADCs.
Commercially available wave generators offer many functions, but the cost is high
and furthermore the linearity and the noise floor are not sufficient to test the
performance of the ADC.
Figure 5.1 shows the spectrum of a sine-wave generated by the arbitrary waveform
generator HP33250A. This kind of generator can generate several types of waveforms,
but with a limited linearity. In fact, as apparent from Figure 5.1, the noise generated
by the instrument is too high and, therefore, a limited dynamic of DR = 60dB
can be measured. The spectrum of Figure 5.1 has been measured with a Spectrum
Analyzer Agilent E4407B with a Resolution BandWidth RBW = 10Hz. Also the
Total Harmonic Distortion (THD), defined as the ratio of the sum of the powers
of all harmonic components to the power of the fundamental frequency, has been
measured yielding THD = -59dB.
The major problems of this generator are the noise floor and the linearity.
Firstly the high noise floor at the input is reported at the output of the modulator
without any noise-shaping and, therefore, it becomes the dominant noise source
of the modulator. It is worth to notice that this solution includes also a high
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Figure 5.1: Spectrum of the sine-wave generated by a common laboratory instrument
as the HP33250A.

phase noise. The phase noise is the frequency domain representation of random
fluctuations in the phase of the waveform. The effect of the phase noise on the
spectrum is to spread the power of the signal to adjacent frequencies, resulting in
noise side-bands.
Secondly the distortion at the input is reported at the output, and then feed-back
at the input inter-modulating with the harmonics at the input yielding other
harmonics.
In the following two possible solutions to create a pure sine-wave are described.

5.2 Fixed-Frequency Solution
A first possible solution is to low-pass filtering the signal generated by the input.
Since the signal generated by the signal generator of Figure 5.1 has a high noise
floor also for low frequencies and it is moreover characterized by a significant phase
noise, a high selectivity band-pass filter should be used. The design of this kind of
filter can be challenging, therefore an alternative solution must be chosen.
A solution with lower noise and lower phase noise is represented by a crystal quartz
oscillator. A crystal oscillator is a basic element used to create an electrical signal
with a precise frequency. Quartz crystals are manufactured for frequencies from a
few tens of kilohertz to hundreds of megahertz, however in this case design, for a
signal bandwidth of 500kHz, a crystal oscillator with a fixed frequency of 32.768kHz
is used.
In Figure 5.2 the spectrum of the signal generated by the crystal quartz is depicted.
As apparent the noise floor is reduced, while the distortion is increased. This is
motivated by the fact that the crystal quartz generates a square-wave and, therefore,
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Figure 5.2: Spectrum of the wave generated by a crystal quartz oscillator.

Figure 5.3: Low-pass filtering of the crystal quartz oscillation.

there is a high distortion.
In order to reduce the distortion produced by the crystal quartz a system as the
one depicted in Figure 5.3 is used.
Three 5th-order ladder filters are used in order to clean the signal efficiently.
The ladder filter has been designed taking as bandwidth frequency the oscillation
frequency of the crystal quartz oscillator. In order to get maximally flat pass-band
a Butterworth filter has been designed.
One of the characteristics of the ladder filter is the high insensibility to the variation
of the parameters. This is an important feature since the discrete components
are usually defined with a tolerance of ±20%, and, as a consequence, the signal



122 CHAPTER 5. MEASUREMENT SETUP

1 2 3 4 5 6 7 8 9 10 11 12

Frequency [Hz] ×10
4

-160

-140

-120

-100

-80

-60

-40

-20

0

P
S

D
 [

d
B

m
]

NoiseLevel = -150dBm

RBW = 10Hz

SNR = 104dB

THD = -120dB

Figure 5.4: Spectrum of the filtered wave produced by the crystal quartz oscillator.

bandwidth may change with the variation of the values of inductors and capacitors.
The effect of the low pass filtering of the 15th-order ladder filter on the square-wave
produced by the crystal quartz oscillator is depicted in Figure 5.4.
From Figure 5.4 it is apparent the profile of the low pass filtering near the sine-wave
peak. The noise floor for high frequencies is given by the noise of the spectrum
analyzer, therefore a higher SNR is actually obtained. This solution provides a
sufficient SNR for the design proposed in this thesis, however with this kind of
solution only a single frequency can be tested, namely fin = 32.768kHz. In the
following a variable-frequency solution is described.

5.3 Variable-Frequency Solution
Among the variable-frequency sine-wave oscillators the Wien-Bridge network re-
mains the most popular since the basic circuit can be very simple in form.
The basic circuit for an oscillator of this form, using a single operational amplifier
as the gain block, is shown in Figure 5.5.
The loop gain of the basic Wien network is given by

T =
(

sCR

1 + s3RC + s2R2C2 − R2

R1 + R2

)
. (5.1)

The Barkhausen condition, namely when the loop gain |T | = 1, is satisfied for an
oscillation frequency f

f = 1
2πRC

. (5.2)

The condition to start the oscillation is given by
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Figure 5.5: Basic Wien-bridge oscillator circuit.

|T | > 1 =⇒ R2 > 2R1. (5.3)

With a loop gain greater than one, the oscillator will start. The conventional
oscillator circuit is designed so that it will start oscillating and then, when the am-
plitude reaches a certain value, the loop gain will be stabilized to the unitary value.
The amplitude control, commonly known as Amplitude Gain Control (AGC), is a
closed-loop feedback regulating circuit, with the purpose of restoring the condition
|T | = 1 when a certain amplitude is reached. The AGC network can be realized
in several ways, such as diodes, thermistors, field effect transistors or photocells.
Depending on the type of AGC network used, different distortions are applied
and, therefore, the linearity of the oscillator strongly depends on the type of AGC
network used.
However, in the form shown in Figure 5.5, a significant problem exists in that
the transmission of a normal Wien network, at the operating frequency given by
Equation (5.2), is only 1/3, which means that an inconveniently large proportion
of the output signal voltage appears at the input of the amplifier, and will lead to
non-linearities.
However, it is not implicit, in the use of a Wien network as the frequency-control
method, that the configuration shown in Figure 5.5, in which the output of the
network is taken to the non-inverting input of the amplifier and the amplitude
controlling negative-feedback signal is taken to the other, is the only circuit config-
uration which can be employed.
In Figure 5.6(a) the classical Wien-Bridge network is shown. In this classical
solution the signal at the inverting input of the amplifier is attenuated of only 1/3.
If, instead of the network of Figure 5.6(a) being connected between a signal source
Ex and the 0V line, it was connected between two signal sources Ex and −Ey,
where these are sinusoidal and identical in frequency and the negative sign implies
phase opposition, as shown in Figure 5.6(b), then a small, in-phase signal would
exist at the point X, at the frequency of maximum transmission f , if Ex is slightly
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(a)

�

�

(b)

Figure 5.6: (a) Classical Wien-Bridge network and (b) rearranged Wien network.

Figure 5.7: Low distortion oscillator based on the Wien-Bridge topology.

greater than −2Ey.
In order to generate the −Ey signal an amplifier acting as an inverter can be used,
as the one in Figure 5.7.
Instead of using equal values for R and C the Wien-Bridge of Figure 5.7 uses 2R, C,
R and 2C in order to avoid the inverting amplifier with a gain of -2. The amplitude
stabilization is reached with the feedback network shown in Figure 5.7 consisting in
a Filter and in a Voltage Controlled Amplifier (VCA).
The complete oscillator circuit is shown in Figure 5.8. IC1 and IC2 are low noise,
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Figure 5.8: Ultra low distortion oscillator used for the ADC test.

high linearity LME49710 amplifiers. These amplifiers have non-linearity below
0.1ppm with a relative large bandwidth. IC1 acts as an inverter with gain -1. IC2,
in conjunction with R1, R2, R3, C1, C2, C3 forms a band-pass filter that sets the
oscillator’s resonant frequency. Therefore, the frequency of the oscillation can be
tuned by changing the values of these resistors and capacitors. The GBW of the
selected amplifier ensures a good linearity and low noise performances over the
bandwidth of interest, namely 0 − 500kHz. For higher frequencies the distortion of
the LME49710 increases and, therefore, other type of integrated circuits should be
chosen. The simulated output referred noise is reported in Figure 5.9. As apparent
the output noise is low enough to ensure a good SNR for all the frequencies inside
the signal bandwidth.
For the amplitude stabilization, the oscillator’s AGC circuit consists of a full-wave
rectifier with high input impedance (IC3A, IC3B), integrator IC4 and an opto-
coupler. The optocoupler has been chosen in order to avoid a high non-linearity in
the AGC circuit.
The performances of this low distortion oscillator has been validated over the
bandwidth of interest and a spectrum example is reported in Figure 5.10.
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Figure 5.9: Output noise of the proposed oscillator versus the oscillation frequency.
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Figure 5.10: Output spectrum of the low distortion oscillator used for the ADC test.



Chapter 6

Conclusion

The chip has been fully designed in 65nm technology. The layout of the chip is
depicted in Figure 6.1. The top view of the circuit includes all the main blocks of
the modulator described in Chapter 4.

Figure 6.1: Layout of the proposed design of the Σ∆ modulator.

Input-to-Output buffers are designed in order to take the five output digital signals
from the core of the chip to the pad ring. Also the clock is taken out from the core
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of the chip in order to synchronize the digital output stream without an external
clock. Output-to-Input buffers are also designed in order to take several signals,
namely the master clock and some digital programming signals, from the pad ring
to the core of the chip. These buffers have a different power supply with respect
to the power supply of the core of the chip. The supply voltage of the buffers is
VDD = 2.5V.
Decoupling capacitors are placed between the pad ring and the core of the chip in
order to stabilize the constant signal like the references of the DAC, the common
modes and the supply voltages coming from outside of the chip. The size of these
capacitors is in the order of hundreds of pF. Furthermore, in order to achieve
good quality voltage references, additional by-pass capacitors are added outside
of the chip on the printed circuit board (PCB). The size of the core of the chip is
400µm×400µm, while the size of the overall chip including the by-pass capacitors
and the pad ring is 1mm×1mm. An additive PCB has been designed in order to
generate the pure sine-wave signal, as explained in Chapter 5.
The photo of the die is depicted in Figure 6.2

Figure 6.2: Photo of the die.

The chip has been firstly measured with the waveform generator HP33250A yielding
the result depicted in Figure 6.3.
The floor noise and the several harmonics existing in this measured output spectrum
are motivated by the spectrum of the signal generated by the arbitrary waveform
generator, proving that the modulator is actually measuring the linearity of the
arbitrary waveform generator. However, due to ESD (electrostatic discharge) the
diode protections of the pad of the chip have been damaged and it has not been
possible to perform other measurements on the same version of the chip. Other
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Figure 6.3: Measured output spectrum of the proposed design.

version of the same chip coming from the same fabrication run has been measured,
but with unsuccessful results. This event has been motivated as a process related
issue. This hypotesis has been validated also with Montecarlo simulations on
Cadence. In fact some issues have been found in the comparator and in particular
the Montecarlo simulations have showed that, for some instances, the output of
the 31 comparators was 0 or VDD, regardless of the sign of the input. This was
motivated by the fact that the dynamic comparator of this design, depicted in
Figure 4.27, was in its first version realized with a single transistor bias, and not
two separate biases M5 and M6 as in the new version of the design, with all the
sources of the nMOS M1 −M4 shorted. Even with a little unbalance of the matching
properties between the transistor of the differential pairs the output generated was
uncorrect. However, as shown in the simulation of Figure 4.31, this problem has
been solved The new chip should have a maximum SNDR value at −3dBfs and a
minimum SNDR value at −97dBfs which yields a dynamic range of 94dB.
The following step in the validation of the work presented in this thesis is to wait
the silicon coming from the foundry and then measuring the new version of the
chip. However this step takes generally a lot of time and it was not possible to
measure the new version of the chip before the ending of the PhD activity. However
the simulation results, both at transistor level and system level, in addition with
the strict mathematical modeling used for the all the main blocks of the design are
encouraging for a validation of the design even with the silicon measurements.





Appendix A

Error estimation in DEM

A.1 Worst-Case DAC Mismatch Effect
In this section the effect of the mismatch between the unit elements on the output
voltage of the DAC is evaluated. Assuming that all the elements values are drawn
from an identical Gaussian probability distribution having a mean U and a standard
deviation of ∆U , the standard deviation of the output voltage for a digital code
word K can be expressed as

∆yDAC = (∆U)
√

K. (A.1)

For an N bit internal DAC, there will be M = 2N individual unit elements and the
full scale output will be M · U . The standard deviation of the output voltage can
be expressed as a fraction of the full-scale voltage:

∆yDAC

yDAC

= (∆U)
√

K

U · M
. (A.2)

The greatest error comes for the largest value of K, which is M . Assuming that
the zero output and the full-scale output M · U define the line from which the error
at each output code will be measured, the deviation from this line is given by

∆yDAC(K) =
(

K∑
i=1

Ui

)
−
(

− K

M

M∑
i=1

Ui

)
, (A.3)

which can be expressed also as

∆yDAC(K) = M − K

M

(
K∑

i=1
Ui

)
−

⎛⎝− K

M

M∑
i=K+1

Ui

⎞⎠ . (A.4)

Recalling that Equation (3.10) has to be demonstrated, the standard deviation of
the normalized output, that is σ(∆yDAC/yDAC), can be expressed by dividing the
terms on the right of the equation for the nominal value of the full scale voltage
U · M , while the term on the left is divided by yDAC , as defined in Equation (A.2):

∆yDAC(K)
yDAC(M) = M − K

M2

(
K∑

i=1

∆Ui

U

)
−

⎛⎝− K

M2

M∑
i=K+1

∆Ui

U

⎞⎠ . (A.5)
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Under the assumption that all of the element values are independent samples of a
normal probability density, the variance of the output voltage, as a fraction of the
nominal full-scale output voltage, is given by

σ2
[

∆yDAC(K)
yDAC(M)

]
=
(

M − K

M2

)2
·K ·σ2

[
∆U

U

]
+
(

K

M2

)2
(M −K)·σ2

[
∆U

U

]
. (A.6)

This expression can be simplified to get the gain between the standard deviation of
the element fractional mismatch and the standard deviation of the internal DAC’s
output as a fraction of nominal full scale:

σ

[
∆yDAC(K)
yDAC(M)

]
=
√

1
M

K

M

M − K

M
σ

[
∆U

U

]
. (A.7)

It is worth to notice that the variance of the output voltage is a parabolic function
of the digital input code. It goes to zero at both zero output and full-scale output,
since it chosen the straight line between those two points as reference for measuring
errors. The maximum of Equation (A.7) is reached when K = M/2. Therefore by
substituting K = M/2 in Equation (A.7) it yields

σ

(
∆yDAC

yDAC

)
= 1

2
√

2N
· σ

(
∆U

U

)
(A.8)

what was to be demonstrated.

A.2 SNR Butterfly Algorithm
In this section the resolution for the randomization Butterfly algorithm is evaluated.
Let Ui the unit elements of the DAC and y(k) the input of the Butterfly Algorithm.
As already defined in Equation (3.15) the mismatch contribution is given by

ϵ(k) =
y(k)∑
i=1

Ui − y(k) · Umean. (A.9)

To simplify the evaluation of the noise contribution of the randomization, it’s
assumed that:

• All the combination of selected unit elements have the same probability.

• The unit elements Ui are random variables with expectation E(Ui) = 1 and
variance σ2

w.

• The unit elements Ui and Uj are independent variables for i ̸= j.

As all the cells have the same probability density function, the variance of the
mismatch is independent on the selected unit elements. Therefore the variance can
be found as
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E(ϵ2) = E

⎡⎢⎣
⎛⎝y(k)∑

i=1
Ui − y(k) · Umean

⎞⎠2
⎤⎥⎦ =

= E

⎡⎢⎣
⎛⎝y(k)∑

i=1
Ui − y(k)

2N

2N∑
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Ui

⎞⎠2
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=
(

y − y2

2N

)
U2

meanσ2
w.

(A.10)

where, in the last step of Equation (A.10) it has been exploited that the general unit
element Ui can be written as Ui = Umean + δUi where δUi is a random variable with
variance Umeanσ2

w. This formula shows that the power of the mismatch error with
the Butterfly algorithm is modulated by the value of the input code y. This noise
power cancels at the extremities of the range, for y = 0, as no element is selected,
and for y = 2N , as all the elements are selected. The noise power is maximum in
the middle of the range, for y = 2N−1. The power of the noise can be found by
integration for all possible input y as

Pnoise =
y=2N∫
y=0

(
y − y2

2N

)
U2

meanσ2
wdy = U2

mean · 2N · σ2
w

6 . (A.11)

The peak-to-peak output is given by 2N · Umean therefore the signal power is given
by Psig = 22N · U2

mean/2. Assuming that the mismatch error is white between 0 and
fs/2 it yields

SNR = 3 · 2N · OSR

σ2
w

. (A.12)

A.3 SNR General DEM
In this section it will be demonstrated that for a general DEM the SMNR can be
estimated as

SMNR [dB] = 10 · log

⎛⎜⎜⎜⎜⎜⎝
2N

2σ2
w(1 − 2−N)2

π/OSR∫
−π/OSR

|HDEM(ω)|2dω

⎞⎟⎟⎟⎟⎟⎠ . (A.13)

For a general Σ∆ with NTF(z) = (1 − z−1)L it has already been shown that the
in-band quantization noise is given by

IBN =
∫ +BW

−BW

SE(f)|NTF(f)|2df ≈ ∆2

12
π2L

(2L + 1)OSR(2L+1) . (A.14)
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However, for a general user-defined NTF the in-band quantization noise can be
written as

IBN =
∫ +BW

−BW

SE(f)|NTF(f)|2df = fs

2π

∫ + π
OSR

− π
OSR

∆2

12fs

|NTF(ω)|2dω (A.15)

where the angular frequency is ω = 2πf/fs. The power of the sinusoidal input is
given by

Psig = (YF S/2)2

2 = Y 2
F S

8 = ∆2 · (2N)2

8 . (A.16)

Therefore it is possible to estimate the SNR from Equations (A.15) and (A.16):

SNR [dB] = 10 · log

⎛⎜⎜⎜⎜⎜⎝
22N

1
3π

π/OSR∫
−π/OSR

|NTF(ω)|2dω

⎞⎟⎟⎟⎟⎟⎠ . (A.17)

Let’s now consider the DEM and the SMNR for a general DEM algorithm. We will
demonstrate that an equivalent equation as Equation (A.17) can be obtained by
studying the DEM algorithms. In Chapter 3.3.3, Equation (3.18) the Z-transform
of a general mismatch error has been defined as

E(z) = HDEM(z)IM(I), (A.18)

where HDEM is the mismatch-shaping transfer function of the general DEM algo-
rithm and IM(I) is the Integral Mismatch function of the index I. To derive the
output spectrum analytically would require exact knowledge of the PSD of the
index I. It is not trivial to find the general PSD pointer function.
Recalling the result of Equation (3.16) the Integral Mismatch function is defined as

IM(I(k)) =
I(k)∑
i=1

Ui − I(k)Umean =
I(k)∑
i=1

Ui − 1
2N

2N∑
i=1

I(k) · Ui. (A.19)

However the index I(k) can be written using the very well known arithmetic series∑n
k=1 k = k(k + 1)/2 as

I(k) = 1
2N

2N∑
i=1

(
I(k) + 2N + 1

2 − i

)
(A.20)

which yields

IM(I(k)) =
I(k)∑
i=1

Ui − I(k)Umean =
I(k)∑
i=1

Ui + 1
2N

2N∑
i=1

(
i − 2N + 1

2 − I(k)
)

Ui. (A.21)

Assuming two different indexes, I1 and I2, it is possible to compute the self-
correlation function of the mismatch noise. The self-correlation will be used to



A.4. SNR DWA 135

evaluate the noise power. After some calculation and using the result obtained in
Equation (A.21) it turns out that

E [IM(I1) · IM(I2)] = σ2
w

2N

{
23N − 2N

12 − 2N

2 (I2 − I1) ·
[
2N − (I2 − I1)

]}
. (A.22)

This expression will be used in order to compute the self-correlation of the mismatch
noise, which is given by

Ψ(p) = E[IM(Ik) · IM(Ik+p)]. (A.23)

Assuming that all the input values of the input code have the same probability and
considering a worst-case scenario it is easy from Equation (A.22) to obtain

Ψ(p) = σ2
w(1 − 1/2N)2 · 2N

12 . (A.24)

As stated by the Wiener-Khinchin theorem the self-correlation function of a wide-
stationary random process has a spectral decomposition given by the power spectrum
of that process. In other words, assuming S(f) as the power spectral density of the
integral mismatch function and Ψ(p) the self-correlation function of the mismatch
noise for the Wiener-Khinchin it holds that

S(f) =
∞∑

p=−∞
Ψ(p)e−j(2πf)p. (A.25)

Therefore the Wiener-Khinchin theorem can be used to find the mismatch error’s
PSD. From Equation (A.24) using the equivalence given in Equation (A.25) it
yields:

Sϵ = ∆2σ2
w(1 − 1/2N)2 · 2N

4 . (A.26)

Therefore, using the signal power estimated in Equation (A.16) and the noise power
estimated in Equation (A.26) the estimated SNR for a general DEM with mismatch
transfer function HDEM(z) is

SMNR [dB] = 10 · log

⎛⎜⎜⎜⎜⎜⎝
2N

2σ2
w(1 − 2−N)2

π/OSR∫
−π/OSR

|HDEM(ω)|2dω

⎞⎟⎟⎟⎟⎟⎠ , (A.27)

what was to be demonstrated.

A.4 SNR DWA
It is relatively easy to otbatin the SNR of the DWA, knowing that the Equation
(A.27) is valid for a general DEM algorithm. In order to obtain the SNR of the
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DWA algorithm the result demonstrated on the previous Section of Equation (A.19)
is used. For the DWA case the HDEM = (1 − z−1) is the already demonstrated
first-order high-pass transfer function. Therefore

π/OSR∫
−π/OSR

|HDEM(ω)|2dω = 2π2

3OSR3 . (A.28)

By substituting the result of Equation (A.28) into Equation (A.27) it yields

SNR = 3 · 2N · OSR3

4π2σ2
w · (1 − 2−N)2 . (A.29)

which is the result obtained in Chapter 3.3.3.
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