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Abstract

Extrapolative methods like Lee-Carter and its later variants are widely accepted for

forecasting mortality in industrial countries due to simplicity, both for single population

forecasting and coherent forecasting. This model assumes an invariant age component

and a linear time component for forecasting. The latter requires a second level estimation

to increase forecast accuracy. We propose to apply the Lee-Carter method on smoothed

mortality rates obtained by LASSO type regularization and hence to partially adjust

the time component to match the observed lifespan disparity (e†0). Smoothing by lasso

produces less error during fitting period compared to other spline based smoothing

techniques. Also matching with e†0 – a more informative indicator of longevity than e0,

made the time component more reflective of countries’ mortality patterns. We further

extend this methodology for coherent forecasting as well. In this setting, choosing the

appropriate reference population remains an arbitrary process. We propose to obtain

the reference population on the basis of closest ē†0. Hence the common factor of coherent

model is estimated utilizing only a subset of the available years (the best fitting period),

and these same years are considered as country-specific fitting period as well. Both of the

proposed methods have been found to be more accurate during out-of-sample evaluation

compared to corresponding existing models and provide more optimistic forecasts.





Sommario

I metodi estrapolativi come quello proposto da Lee-Carter e le sue varianti successive

sono ampiamente accettate per la previsione della mortalità nei paesi industriali a cau-

sa della semplicità, sia per la previsione della popolazione singola che per le previsioni

coerenti. Questo modello assume una componente per l’età fissa nel tempo e una com-

ponente temporale lineare per la previsione. Quest’ultima richiede una stima di secondo

livello per aumentare l’accuratezza della previsione. Si propone di applicare il metodo

Lee-Carter sui tassi di mortalità uniformi ottenuti dalla regolarizzazione del tipo LASSO

e quindi di correggere parzialmente la componente temporale in modo che corrisponda

alla disparità di durata della vita osservata (e†0). Il lisciamento con il lasso produce meno

errori durante il periodo di adattamento rispetto ad altre tecniche basate sulle spline.

Anche il matching con e†0 – un indicatore più informativo della longevità rispetto e0 –

permette che la componente temporale rifletta meglio del miglioramento della mortalità

degli ultimi anni. Estendiamo ulteriormente questa metodologia anche per le previsioni

coerenti. In quest’ambito, la scelta delle popolazioni di riferimento appropriate rimane

un processo arbitrario. Proponiamo di ottenere la popolazione di riferimento sulla base

del più vicino ē†0. Quindi, si stima il fattore comune del modello coerente utilizzando

solamente un sottoinsieme degli anni disponibili (il periodo di adattamento migliore),

lo stesso periodo viene considerato anche per la stima del modello specifico per il paese.

Entrambi i metodi proposti risultano essere più accurati durante la valutazione out-of-

sample, rispetto al corrispondente modello esistente ed entrambi forniscono previsioni

più ottimistiche.
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Chapter 1

Introduction

Improved mortality has been observed globally during the twentieth century and is al-

ways considered a positive change for the socio-economic advancement of a country. In

many developed countries, social security systems (including disability and survivor-

ship benefits), medical care for elderly are affected by mortality trends, especially given

increased longevity (Brouhns et al., 2002). This improvement have different patterns

across countries, however its elementary structure is preserved. To analyze and un-

derstand mortality, life table is the main instrument to statistically study the different

aspects of mortality. Life table illustrates the distribution of death for a group of indi-

viduals. The period life table represents the mortality conditions at a specific moment

in time. The core component of a life table is the mortality rates of that particular

population and all other components indicating stochasticity of the death process or

remaining life expectancy are also estimated based on the observed mortality rates. For

a period life table, age-specific mortality rates are defined as

mx =
Dx

Px
, (1.1)

where Dx are the observed death counts in a calendar year and Px is the mid year

population of that year for age group x. The mortality measures may refer to overall

mortality or be decomposed by cause of death as well (Booth and Tickle, 2008). Beside

improvement of socio-economical background and technologies, changes in mortality

rates are also attributable to changes in population composition arising from subgroup

heterogeneity as per equation 1.1. Hence understanding the mortality pattern requires

clear definition of underlying model (Booth and Tickle, 2008). Three core components

for measuring demographic events, namely age, period (or time) and cohort, are usually

employed to classify the underlying model. The simple most model considers mortality

1



2 Overview

rates as a function of age. To illustrate one-to-one relation among age-specific deaths,

the post-war Swedish female mortality rates are plotted in Figure 1.1.
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Figure 1.1: Swedish female mortality rates (1950-2016). Data are taken from Human
Mortality Database (HMD, 2018). Years are plotted using a rainbow palette so the
earlier years are shown in red, followed by orange, yellow, green, blue and indigo with
the most recent years plotted in violet.

Among all the countries, Sweden has the longest time series data for mortality start-

ing from 1751 (HMD, 2018). Due to demographic transition, changes occurred in the

population structure with slow pace of change until the first half of the last century

(Canudas-Romo, 2008). Two trends dominated the mortality decline in last century:

the first one was a reduction in mortality caused by infectious diseases affecting mainly

young ages, particularly in the first half of the century; the second was decreasing

mortality from chronic diseases particularly affecting older ages (Booth et al., 2002).

Similar to Sweden, mortality is concentrating at older ages in most of the industrialized

countries (Canudas-Romo, 2008). This rapid aging of the industrialized countries thus

turned into a growing concern for the governments and societies. Policymakers greatly

rely on mortality projection to determine appropriate pension benefits and to under-

stand the costing of different economic assumptions and invent regulations regarding

the retirement age. As a result, accurate forecasts of mortality and life expectancy be-

came core requirement for decision making in social, health-care and financial sectors.

Stochastic modeling of mortality forecasting are particularly gaining rapid recognition
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in this context, United Nations and several industrialized countries already adapted

stochastic forecasting techniques (Booth and Tickle, 2008).

1.1 Overview: Development of mortality forecast-

ing techniques

Although modeling mortality has a very long history, the boost in research on mortal-

ity forecasting is more recent (Booth and Tickle, 2008). Mortality forecasting became

necessary since aging became common in industrialized countries. Population aging is a

common phenomenon of second demographic transition as a consequence of low fertility

and low mortality (Sobotka, 2008). This is reflected in increasing trend of life expectancy

for most of the industrialized countries, Oeppen and Vaupel (2002) observed liner trend

of increase in record high life expectancy for over 160 years. The term population aging

was always conceptualized as higher proportion of older people in population structure,

however, now it is more rationalized as the members of populations are living longer

lives (Lutz et al., 2008). This shifting or postponement of mortality thus brought new

requirements for population forecasting, requiring more in depth information regarding

improvement of mortality in each ages (Vaupel, 2010).

The preliminary question for making forecast is the mortality measure used to be

forecast and it highly depends on the purpose of the forecast and data availability. Mor-

tality forecasting generally involves the specification of an underlying model of the data

and a model for forecasting. Age and sex-specific mortality rates (or probabilities) are of

primary interest for most of the industrialized countries, along with derived life tables.

For countries with limited data resources, the major interest for forecasting is the life

expectancy at birth (Booth and Tickle, 2008). Another major challenge for forecasting

age-specific mortality is the dimensionality problem. Dimensionality refers to the total

number of data ‘cells’ which are modelled, equal to the product of the numbers of cate-

gories for the factors classifying the data (Booth and Tickle, 2008). Models with lower

dimensionality problem is hence preferred as they can represent the data more parsi-

moniously. Parsimonious models for mortality forecasting avoid over-parametrization

which may avoid the problems of correlated model parameters and associated compli-

cations (Booth and Tickle, 2008). Consequences due to dimensionality problem unable

the Gompertz law or other widely used mortality models for mortality forecasting as
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most of these models have highly correlated parameters.

Several parametric and nonparametric methods have been proposed over the years

in order to forecast age-specific mortality rates and life expectancy. The simplest way

for parametric forecasting is to parameterize the available series of life table and hence

to extrapolate each of the parameters separately for obtaining the forecast from the as-

sumed model (Keyfitz, 1991). In addition to different subjective approaches, the ground

breaking approach on probabilistic forecasting was proposed by Lee and Carter (1992).

The advantages of Lee-Carter (LC) method include its simplicity as it has fewer param-

eters with straightforward explanation and robustness in situations where age-specific

log mortality rates have linear trends (Booth et al., 2002). To increase the precision

of LC method in presence of irregular mortality schedule, later studies restricted the

fitting period to post-war years along with other modifications (Lee and Miller, 2001).

More generally, Booth et al. (2002) noticed the length of fitting period might greatly

affect point forecast accuracy.

Application of smoothing technique is also getting popular for improving mortality

forecast (Booth and Tickle, 2008). Smoothing can effectively reduce the noises of the

observed data to overcome outlier problem and can effectively increase forecast accuracy

for LC variants (Girosi and King, 2006). De Jong and Tickle (2006) combined spline

smoothing and estimation via the Kalman filter to fit a generalized version of the Lee-

Carter model, whereas Hyndman and Ullah (2007) proposed smoothing the mortality

curves for each year using constrained regression splines prior to fitting a model using

principal components decomposition following the functional data paradigm. Later two

dimensional smoothing is proposed by Camarda et al. (2012) which considers both the

age and period effect on mortality following the work of Currie et al. (2006). Hyndman

and Ullah (2007) introduced nonparametric approaches of mortality forecasting where

they used functional data analysis on smoothed mortality rates obtained from one di-

mensional smoothing. These nonparametric methods were found to be more robust as

they are more efficient than other LC variants even in presence of outliers and provide

more accurate forecasts (Shang et al., 2011).

Numerous other methods were proposed later for mortality forecasting, although

many of them were somehow extensions of basic LC method. Renshaw and Haberman

(2000) considered the concept of Generalized Linear Model to model mortality reduc-

tion factors and identified the conditions under which the underlying structure of the
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proposed model is identical to that of the LC method. A further extension by Renshaw

and Haberman (2003) also accounts for the cohort effect. Other stochastic models have

been also introduced to integrate the cohort dimension in mortality by Cairns et al.

(2011). Besides several LC variants we find

• Application of Bayesian framework on LC methodology (see Wísniowski et al.,

2015, for example)

• Different distribution of causes of deaths (see Booth and Tickle, 2008, for example)

• Consideration of risk factors and behavioral impact (see Janssen et al., 2013, for

an example on smoking status)

• Different approaches than LC framework. For example, mortality forecasting from

distribution of death (De Beer et al., 2017) or using a Relational model both for

smoothing and projecting mortlaity De Beer (2012).

Nevertheless, many of these approaches are newer and still LC variants are most

applied techniques for mortality forecasting (Bohk-Ewald and Rau, 2017). Most of

these studies have focused on mortality forecasting of single population. Lately multi-

population forecasting is getting more widespread as it seeks to ensure that the fore-

casts for related populations hold certain structural relationship based on past pattern

of mortality and theoretical understanding. Li and Lee (2005) modified the traditional

LC method for forecasting mortality as the sum of a common trend and the population

specific rates converging toward that trend in future. Later Hyndman et al. (2013) ex-

tended nonparametric approach of Hyndman and Ullah (2007) for coherent forecasting;

Ahmadi and Li (2014) considered generalized linear modeling and Bergeron-Boucher

et al. (2017) considered compositional data analysis on distribution of death for coher-

ent forecasting. In another approach, Janssen et al. (2013) considered smoking epidemic

for coherent forecasting.

Given the existence of so many forecasting methods, it becomes particularly useful

to assess which model is the most useful in specific context. This assessment has been

done by Shang et al. (2011) even though only a specific context has been considered,

i.e. industrialized countries characterized by low mortality, high life expectancies, lower

adult and early senescence mortality, stable pattern of mortality transition over time

and high quality mortality data. Similarly only low mortality, industrialized countries

were always considered for coherent forecasting (see Seligman et al., 2016, for example).

Lee and Carter (1992) remained the main method for comparison due to its wide acces-

sibility. Several of these studies concluded that none of the methods are uniquely best
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for all low mortality countries (see Shang et al., 2011; Shang, 2012, for example). As

most of the methods are based on Lee and Carter (1992), there is still scope of research

to develop it to improve the forecast. For instance, application of different smoothing

technique than that used by Hyndman and Ullah (2007) may produce different results

which is still subject to analyze. New techniques to estimate the parameters of LC

method may also improve the forecast accuracy.

In addition, few forecasting attempts have been made considering high mortality

countries from Central and Eastern European (CEE) region or large number of different

mortality forecasting methods (see Bohk and Rau, 2015, for example). Even though the

mortality pattern is still different from that of Western European countries (see Vallin

and Meslé, 2001), there are also some similarities (Bálint and Kovács, 2015) including

increasing population aging (see Gavrilova and Gavrilov, 2009). Bohk and Rau (2015)

compared and contrast forecasting techniques on countries to evaluate impact of recent

financial crisis for some of the high mortality countries and mentioned irregular mortal-

ity developments are particularly difficult to forecast due to major changes in long-term

trends. Therefore, the Eastern European and Central European countries would also

get benefit from an accurate mortality forecasting by comparing the outcomes of dif-

ferent forecasting techniques. Moreover, comparison of mortality forecasting techniques

on high mortality countries may guide to understand adequately the further scope of

developing mortality forecasting models.

1.2 Main contributions of the thesis

I proposed two new mortality forecasting techniques by modifying the existing Lee-

Carter methodology: one for single population and the other one for coherent forecast-

ing. Instead of widely used spline based smoothing techniques, LASSO type regular-

ization have been used to smooth mortality rates prior to model fitting in both of the

proposed methods. In addition, I incorporate lifespan disparity during parameter esti-

mation of the models and to our knowledge, the present study is the first attempt to

consider lifespan disparity in ground of mortality forecasting. Finally I proposed a way

for choosing reference population which is applicable for all existing coherent forecasting

techniques as well and considered best fitting period in order to make coherent forecasts

ensure the most of the interactions among the populations in reference group.
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This thesis consists of 7 chapters. In chapter 2, I mention the source of mortality

data used in this study and briefly review some of the existing methods which I consider

later for comparison with proposed methods. The evaluation procedure for mortality

forecasting methods used in this study are also placed in this chapter. In chapter 3, I

assess the performances of the existing methods for some comparatively high-mortality

countries. The proposed methodology for single population mortality forecasting are

placed in chapter 4. Here I illustrate the application of Lasso for smoothing mortality

rates prior to model fitting and adjustment of the time component of LC model accord-

ing to lifespan disparity. I extend this proposed methodology for coherent forecasting

in chapter 5. Besides the proposed estimation technique for coherent setup, I also show

a new scheme for choosing best reference population in this chapter. Both for chapter

4 and 5, I consider only low mortality industrialized countries for developing and illus-

trating the methodologies. Following up the results of chapter 3, I apply the proposed

methodology to comparatively high mortality countries in chapter 6. The concluding

remarks are placed in chapter 7. Here I discuss the findings and possibility of further

extension.





Chapter 2

Data and Methodology

2.1 Data

The data used in this study came from Human Mortality Database (HMD, 2018). The

Human Mortality Database (HMD) provides detailed mortality and population data

for the available countries with an open access policy. The database is maintained by

Department of Demography at the University of California, Berkeley, USA, and the

Max Planck Institute for Demographic Research in Rostock, Germany. HMD provides

original estimates of death rates and life tables for national populations (countries or ar-

eas), as well as the input data used in constructing those tables. The input data consist

of death counts from vital statistics, plus census counts, birth counts, and population

estimates from country-specific statistics offices or other reliable sources (HMD, 2018).

I have considered male and female populations separately for the following 20 low mor-

tality countries to illustrate the new forecasting techniques for single population and

coherent setting: Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN),

Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Ireland (IRL), Italy

(ITA), Japan (JPN), The Netherlands (NLD), New Zealand (NZL), Norway (NOR),

Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom

(UK) and USA (USA). The data of Germany is not available before 1990, therefore, I

combined the data of East and West Germany together for getting longer time series

data. Total populations instead of smaller subpopulations are considered for France,

New Zealand and United Kingdom. For single country forecasting, individual available

data and age groups are considered. I started fitting the models from 1950 for all the

countries except for Germany (started from 1956 due to data unavailability from 1950).

HMD covers the period of 1956 to 2011 for all of these countries, which is considered

for coherent forecasting.

9
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In context of high mortality regime, nine Central and Eastern European (CEE) coun-

tries have been considered: Belarus (BLR), Bulgaria (BGR), Estonia (EST), Hungary

(HUN), Latvia (LVA), Lithuania (LTU), Russia (RSU), Slovakia (SVK) and Ukraine

(UKR). These countries have comparatively higher mortality regime compare to West-

ern Europe. The data I used for these countries and their last observed life expectancy

at birth are given below in Table 2.1. For most of them, the life table started from

1950; only Bulgaria has available data from 1947. However, I did not utilize the whole

available data for several countries due to lower data quality, an issue mentioned by the

HMD (HMD, 2018).

Table 2.1: Fitting periods for the CEE countries and life expectancy at birth (HMD,
2018).

Country Starting year End Year e0 (Female) e0 (Male)

Belarus 1970 2014 78.43 67.81
Bulgaria 1950 2010 77.25 70.31
Estonia 1959 2013 81.33 72.72
Hungary 1960 2014 79.24 72.26
Latvia 1970 2013 78.73 69.26

Lithuania 1959 2013 79.37 68.52
Russia 1970 2014 76.48 65.26

Slovakia 1962 2014 80.32 73.25
Ukraine 1970 2013 76.21 66.31

2.2 Existing mortality forecasting techniques

I considered 7 different variants of the Lee-Carter (LC) method along with a coher-

ent mortality forecasting method and the Bayesian Hierarchical Model used by United

Nations (Raftery et al., 2013) for producing probabilistic forecasts. Among them, 4

parametric LC variants including Lee and Carter (1992); Lee and Miller (2001); Booth

et al. (2002); Brouhns et al. (2002) and 3 non-parametric variants of Hyndman-Ullah

method, Robust Hyndman-Ullah method and Weighted Hyndman-Ullah method (Hyn-

dman and Ullah, 2007) are considered.

2.2.1 Lee-Carter Method (1992) and variants

Since its development, Lee-Carter (LC) method has been one of the most applicable

methods till now. Use of principal components for mortality forecasting came to practice
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through the work of Lee and Carter (1992). The two-factor LC model is given below,

lnmx,t = ax + bxkt + εx,t. (2.1)

Here, mx,t is the central mortality rate at age x for year t; ax represents the average of

log-mortality at age x over time; bx is the first principal component capturing relative

change in the log mortality rate at each age x; kt represents the overall level of mortality

in year t; and ex,t is the model residual. The constraints of the model are;

p∑
x=0

bx = 1 and,
n∑
t=1

kt = 0

Singular Value Decomposition (SVD) is done on Zx,t = [ln(mx,t)− âx] to obtain the

Ordinary Least Square (OLS) estimate of LC model. SVD decomposes the Zx,t into the

product of three matrices. Symbolically,

SVD(Zx,t) = ULV ′ = L1Ux1Vt1 + . . . LnUxnVtn .

For estimation of the age and time component Lee and Carter (1992) considered the

rank-1 approximation only as it explains most of the variance. Then the estimates of

model parameters are,

k̂t = L1Vt1 and, b̂x = Ux1 .

Lee-Carter method makes a second stage estimate of kt by finding the value of kt

which, for a given population age distribution and previously estimated ax and bx pro-

duces exactly the observed number of total deaths for the fitting period of the model

(Lee and Carter, 1992). An ARIMA(0,1,0) with drift is then fitted for adjusted k̂t, and

used to forecast future mortality. Later Lee and Miller (2001) proposed three modifica-

tions on the basic LC model; (i) the fitting period is restricted from 1950 and onward

to reduce structural shifts, (ii) adjustment of kt is done by matching life expectancy,

and (iii) ‘jump-off error’ is eliminated by forecasting forward from observed (rather than

fitted) rates.

Lee-Carter model can be extended by including higher order terms also instead of

rank-1 approximation considered in earlier two approaches. Higher order terms were

modeled by Booth et al. (2002) and forecasts were later developed by using univari-

ate ARIMA processes (Renshaw and Haberman, 2003). The key modifications of this

method are: (i) the fitting period is determined by a statistical ‘goodness of fit’ criterion,
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under the assumption that kt is linear; and (ii) the adjustment of kt involves fitting to

the age distribution of deaths rather than to the total number of deaths in the basic LC

model. This model is a significant development in the research of forecasting mortality

as it slightly eliminates a shortcoming of LC model, which assumes invariant bx whereas

evidence of substantial age-time interaction is common (Shang, 2012).

Brouhns et al. (2002) considered the underlying deaths are distributed in a Poisson

regression and assumed to have following log-bilinear form of the mortality rates.

Dx,t ∼ Poisson {Ex,tmx,t} with mx,t = exp(ax + bxkt);

where Ex,t are the population exposed for death at age x in time t. The constraints

of the basic LC model also holds for this method. One of the main advantages of using

this approach is that it allows to have maximum likelihood estimation of the model

parameters instead of OLS or Gauss-Newton algorithm (Brouhns et al., 2002). This

shows some further development scope to utilize Bayesian approach on LC methods.

2.2.2 Nonparametric Approaches: Hyndman and Ullah (2007)

methods

To address the problem of lack of across-age smoothness, heterogeneity of deaths over

long time period (Girosi and King, 2006) and consideration of only first principal compo-

nent in LC variants, Hyndman and Ullah (2007) proposed a functional data model that

utilizes second and higher order principal components to capture additional variation

in mortality rates. This technique uses a penalized regression spline with partial mono-

tonic constraint to smooth the log mortality rates prior to model fitting. The spline

based smoothing techniques are discussed in following section prior to model fitting.

2.2.2.1 Spline based smoothing techniques

For the nonparametric approach, Hyndman and Ullah (2007) applied weighted penalized

regression splines independently for each year. This one dimensional smoothing involves

calculating a vector β which minimizes the following:

|w(y)−Xβ|2 + λ2βTDβ. (2.2)
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Here, y is a vector of observations (mortality rates); X is a matrix representing linear

spline bases; D = diag(0, 0, 1, 1, . . . 1) is a diagonal matrix; w is a vector of weights; and

λ is the smoothing parameter. For smoothing mortality rates, observations in year t

are given by yi = mxi,t for age group xi years old (where i = 0, . . . , 110+). The weights

wi are taken as the inverse of the estimated variances of yi. Assuming the life table

deaths follow a Poisson distribution, Hyndman and Ullah (2007) estimated the variance

of yi as σ2 ≈ (Exi,tMxi,t)
−1 by Taylor series approximation. Here Exi,t is the mid-year

population of people aged xi years in year t. Moreover these splines are constrained to

ensure that the resulting function f(x) is monotonically increasing for x > c for some c

(for example, 60 years). Hyndman and Ullah (2007) proposed to use a modified version

of the method described by Wood (1994) to implement this constraint.

Another widely used smoothing technique is the two dimensional splines (Camarda

et al., 2012). Although, this method is not utilized for forecasting, I compared findings

from one dimensional smoothing and Lasso with two dimensional technique in Chap-

ter 4 for sake of best smoothing technique in terms of accuracy. This method fits a

two-dimensional P-spline model with equally-spaced B-splines along X and Y axes (age

and calendar year respectively). The response variables must be a matrix of Poisson

distributed death counts in this approach. For this splines offset can be provided, else

all weights are assumed to be unity. In a Poisson regression setting applied to actual

death counts, the offset will be the logarithm of the matrix of exposure population.

To smooth the mortality rates, this method utilizes a smoothing function which is the

Kronecker product of B-spline basis over the two axes and includes a discrete penaliza-

tion directly on the differences of the B-splines coefficients. The smoothing parameters

λ are mainly used to tune the smoothness/accuracy of the fitted values (Currie et al.,

2006). For optimizing the smoothing parameters, both AIC or BIC can be considered.

2.2.2.2 Model fitting

The following continuous smooth function ft(x) is assumed for discrete ages.

lnmt(xi) = ft(xi) + σt(xi)εt,i; i = 1, . . . , p; t = 1, . . . , n; (2.3)

where mt(xi) represents mortality rates for each age xi in time t; σt(xi) is the noise
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component and εt,i is i.i.d. standard normal variable. Hyndman and Ullah (2007) pro-

posed to use weighted penalized regression splines to estimate ft(x). This weighting

controls for heterogeneity due to σt(x) and a monotonic constraint for upper ages can

lead to better estimates. In this study, equal weights are applied to the approximate

inverse variances wx,t = mx,tEx,t, and used weighted penalized regression splines to es-

timate the curve ft(x) for each year (Hyndman and Ullah, 2007). Weighted penalized

regression splines are preferable in terms of computational time and allow monotonicity

constraints (Hyndman and Ullah, 2007). Details of estimation procedure of interval

forecast are given elsewhere (Hyndman and Ullah, 2007). Functional principal compo-

nent analysis utilizes a set of continuous functions and is decomposed into functional

principal components and their associated scores. Symbolically,

ft(x) = a(x) +
J∑
j=1

bj(x)kt,j + et(x); t = 1, . . . , n;

where a(x) is the mean function
(
= 1

n

∑n
t=1 ft(x)

)
, bj(x) are set of first J functional

principal components, kt,j are set of uncorrelated principal component scores, et(x) is

the residual function. It should be noted that J < n is considered for optimal number

of functional principal components. ARIMA model is suggested to forecast principal

component scores as they have minimum AIC of the fitted model, however, almost every

suitable time series model can be applied as well (Shang, 2012). Two more version of HU

method were also proposed for special situations. The first one is generally referred to as

robust Hyndman and Ullah method (HUR), proposed to forecast in presence of outliers.

This approach investigates the integrated squared error for each year by calculating

following measures of accuracy for the functional principal component approximation

of the functional data.∫
xp

x−1

(
ft(x)− a(x)−

J∑
j=1

bj(x)kt,j

)2

dx.

After assigning zero weight to outliers, the HUR fits the mortality rates from which

forecasts of age-specific life expectancies can be estimated without affect of prospective

outliers. The second one is another weighted version of HU where recent years get more

weight during model fitting than years from distant past. The new method can be

showed symbolically as follows,
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ft(x) = â∗(x) +
J∑
j=1

b∗j(x)kt,j + et(x); (2.4)

where, a∗(x) is the weighted functional mean such as,

â∗(x) =
n∑
t=1

wtft(x),
n∑
t=1

wt = 1, where, wt = κ(1− κ)n−t; t = 1, . . . , n.

This wt is the new weights defined by Hyndman and Ullah (2007) for 0 < κ <

1; a geometrically decaying weight parameter. The optimal value of κ is chosen by

minimizing an overall forecast error measure within the validation data set among a set

of possible candidates. Details of the methods can be found in (Hyndman and Shang,

2009).

2.2.3 Coherent mortality forecasting

In recent years, coherent or multi-population forecasting methods are getting more pop-

ular as these approaches try to capture the influence of global improvement of health,

communication, science on a specific population. The standard Lee and Carter (1992)

model and its variants are defined for forecasting single population and often used for

females and males independently. Li and Lee (2005) modified the standard LC model

to forecast mortality for countries by taking into account their membership in a group,

rather than forecasting individually. To do that, Li and Lee (2005) first identified the

central tendencies within a group of countries, addressing a common factor and hence

adopted the historical particularities of each country as their due weight in projecting

individual-country trends for forecasting mortality. Thus, in the short term, inter-

country mortality differences in trends may be preserved, but ultimately age-specific

death rates within the group of countries are constrained to maintain a constant ratio

with one another (Li and Lee, 2005). This extended model can be formulated as,

lnmx,t,i = ax,i +BxKt + bx,ikt,i + εx,t,i; (2.5)

where i stands for specific country in the group, ax,i is the country specific average

log mortality rate. The term Bx and Kt are the relative speed of change in mortality at

each age x and a mortality index capturing the main time trend for the reference popu-

lation respectively. Li and Lee (2005) mentioned the term BxKt as common factor since

this quantity is common for all the countries of the group. The error term of equation

2.5 is the country specific estimate of error. To obtain the country-specific estimates
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of Li-Lee model, at first Lee and Miller (2001) model is fitted on reference population,

may refereed to as common factor model. The reference group is constructed by adding

all the populations of the group from which the common factor is extracted to use in

the country level mortality forecasting mentioned in equation 2.5. Both for Kt and

kt,i, random walk with drift is used for forecasting. Following Lee and Miller (2001),

actual data is used for mortality forecasting (rather than fitted data) to avoid jump-off

error. Choosing reference population remains one of the biggest problem in coherent

forecasting. Several approaches tried different strategies for using particular countries

as reference population considering geographic, economic similarities, and other criteria

(Kjærgaard et al., 2016). For high-mortality countries, all populations are combined

together as reference population for each of these countries. Li and Lee (2005) also

considered a group of low-mortality countries as reference for making coherent forecast

for high mortality countries with the optimistic assumption that these countries will

catch-up the low mortality countries in future.

Besides these above mentioned variants of LC and HU method, there are other ap-

proaches for mortality forecasting. Most these techniques are highly based on original

LC method. For example, Tuljaparker et al (2000) used the Lee-Carter model without

any adjustment on time component and start fitting from 1950; Girosi and King (2006)

considered more than one component in Lee-Carter model and later in another study

they extended the Lee-Carter model to incorporate age-period-cohort effects. Using the

parameter estimation technique of Brouhns et al. (2002), later several approaches have

been proposed on Bayesian framework. For simplicity of findings and wide applicability,

only LC and HU variants are considered for comparison in this study.

2.2.4 Bayesian Probabilistic Projections (UN life expectancy

forecast)

Several mortality forecasting technique have been proposed in Bayesian framework to

overcome invariant mortality improvement of LC variants (for example, Cairns et al.,

2011; Wísniowski et al., 2015; Bohk-Ewald and Rau, 2017). Moreover, one of the major

shortcomings of all the above mentioned variants of LC model is that these methods

require age-specific death rates for at least three decades to fit the model; certainly

such detailed data are no available for many developing countries (Raftery et al., 2013).

Instead of forecasting mortality rates in Bayesian framework, Raftery et al. (2013) pro-

posed an alternative approach to forecast life expectancy at birth using Bayesian frame-

work. They applied a Bayesian Hierarchical Model to forecast period life expectancy
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directly using a random walk model with drift. The newly defined drift term is a non-

linear function of current life expectancy and reflects the fact that life expectancy which

tends to changes more slowly for the countries with the lowest and highest life ex-

pectancies, and more quickly for the countries in the middle. The United Nations (UN)

produces estimates of age-specific mortality and period life expectancy at birth for all

member countries and updates in every two years in UN World Population Prospects

(UN, 2013). The UN projects life expectancy in the next time period deterministically

using the equation

`c,t+1 = `c,t + g(`c,t). (2.6)

Forecast of life expectancy is done by a double-logistic function of the current level

of life expectancy. Symbolically,

g(`c,t|θc) =
kc

1 + exp
(
−A1

∆c
2
(`ct −∆c

1 − A2∆c
2)
)

+
zc − kc

1 + exp
(
−A1

∆c
4

(
`ct −

∑3
i=1 ∆c

i − A2∆c
4

)) . (2.7)

∆c
1,∆

c
2,∆

c
3,∆

c
4, k

c, zc are the six parameters of the double logistic function for country

c at time t. The estimation technique changed since World Population Prospect 2012

(UN, 2013) as the UN Population Division used a probabilistic model for the first time

to forecast life expectancy at birth using the methods of Raftery et al. (2013). They

utilized the following hierarchical model to turned the old deterministic model into a

probabilistic one (with uncertainty) and hence adopted a Bayesian approach to estimate

the model parameters. Hence the hierarchical model become,

`c,t+1 = `c,t + g
(
`c,t|θ(c)

)
+ εc,t+1. (2.8)

Raftery et al. (2013) defined proper prior for all 13 parameters of the model in such a

way that the prior distributions are more diffuse than the posterior distributions. Thus,

the above-mentioned hierarchical model turned into a Bayesian Hierarchical Model. This

method has one advantage over any other parametric or non-parametric methods: it is

flexible on choosing prior to get fast, slow or medium pace for change in life expectancy

level. The UN method has been proposed to forecast life expectancy using data of

World Population Prospects or similar format. As a consequence, one of the major

disadvantages of this method is that it does not forecast considering whole life tables

like the previous methods. This makes it complicated to compare the outcomes with

LC variants. This method takes single value of life expectancy for each five years
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and also return the forecast as a median of five (calendar) years period utilizing a

Bayesian Hierarchical Model. I considered this method only for high mortality countries

to evaluate whether it can provide more optimistic forecast of life expectancy at birth

than LC or HU variants or coherent forecasting.

2.3 Assessing the performance of the mortality fore-

casting techniques

To evaluate a forecast technique, I considered two criteria: how optimistic the forecast is

in long run and hence the accuracy level during out-of-sample evaluation period (except

for UN method). Pessimistic forecast of life expectancy is a common case for many high

mortality countries. With a jagged pattern of mortality improvement over the years,

it is possible that forecast could be lower than last observed life expectancy (Booth

et al., 2002). I considered it as failure of the model to capture mortality trend for that

particular country because a forecast showing future decline in mortality pattern are

contrary to the basic assumption of the models regarding future mortality improvement

(Lee and Miller, 2001). Moreover, lower estimates of life expectancy may occur due to

a seasonal jump of life expectancy during out-of-sample evaluation period or short run

which is not the case for long forecast horizon (Shang, 2012). I consider the following

two measures for checking the forecast accuracy of mortality rates:

Mean absolute forecast error,

MAE =
1

(p+ 1)q

q∑
j=1

p∑
x=0

∣∣yx,j − ŷx,j|j−h∣∣ ; (2.9)

mean squared forecast error,

MSE =
1

(p+ 1)q

q∑
j=1

p∑
x=0

(
yx,j − ŷx,j|j−h

)2
; (2.10)

and for life expectancy at birth, I consider the mean error of life expectancy,

ME =
1

q

q∑
j=1

(e0,j − ê0,j) . (2.11)

Here yx,j represents the observed mortality rate for age x in year j and ŷx,j represents
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the forecast; e0,j represents the observed life expectancy at birth in year j and ê0,j rep-

resents the forecast. Unlike Shang et al. (2011) or Shang (2012), I choose mean squared

forecast error over mean forecast error as measure of forecast accuracy. Mean forecast

error could be misleading most of the times as it may conceal forecast inaccuracy due

to the offsetting effect of large positive and negative forecast errors or very low error

in forecasting (actual). From the available mortality data, I kept the data of last 10

years for out-of-sample evaluation of the forecasting technique. Using the data in the

fitting period, I made the one-step-ahead and ten-step-ahead point forecasts, and de-

termine the forecast accuracy by comparing the forecasts with the holdout data in the

out-of-sample evaluation period. The analysis performed in this thesis can be imple-

mented by “Demography”package of R for all existing LC and HU variants along with

one-dimensional smoothing. Two-dimensional smoothing is done using the R package

“MortalitySmooth”; Lasso are performed using “smoothAPC”; Kannisto models are

fitted using “MortalityLaws”and the R package “bayesLife”is utilized for Bayesian fore-

cast. The proposed methods are implemented by modifying the existing functions in

“Demography”and are attached in appendix.

2.4 Prediction interval of forecast

To compare the interval forecast of e0, I applied the existing semi-parametric bootstrap-

ping technique proposed by (Hyndman and Booth, 2008). In this technique, the fitted

mortality rates from forecasting technique are simulated a large number of times to add

disturbance in time component of the model. Life expectancies are then estimated for

each set of the simulated log mortality rates. Prediction interval are then constructed

by 80% or 95% percentile of the simulated sets of the life expectancies.





Chapter 3

Findings from (Comparatively)

High Mortality Countries

The aim of this chapter is to assess the performance of selected forecasting methods for

countries characterized by a higher mortality regime vis-à-vis Western countries. I com-

pared and contrasted the performance of the mortality forecasting models for nine CEE

countries- Belarus, Bulgaria, Estonia, Hungary, Latvia, Lithuania, Russia, Slovakia and

Ukraine. The selected CEE countries differ from Western European and other non-

Eastern European countries in five ways: a) higher mortality, b) irregular mortality

trends, c) increasing mortality differences between countries over time (the divergence

of mortality regime), d) shorter time series data and e) lower quality mortality data.

A jagged, inconsistent pattern of mortality improvement over the years are responsible

for this irregularity in the mortality pattern of these countries. Age- and sex-specific

difference among males and females mortality are higher also in these countries which is

highly attributable to different distribution of causes-of-deaths. Following Shang et al.

(2011), I limited the main interest on LC variants. Moreover, I considered two more ap-

proaches for comparison—coherent mortality forecasting and life expectancy forecasting

using a Bayesian Hierarchical model adapted by the United Nations (UN). I extended

this comparison to a coherent setup because in opposition to the concept of coherent

mortality forecasting, these countries have diverging mortality patterns compared to

those of low-mortality countries (Li and Lee, 2005). Thus, this extension can provide

more insight regarding the assessment of coherent mortality forecasting. UN projections

are widely accepted even for countries with limited data. Since these CEE countries have

a lower quality of mortality data, therefore, I extended the comparison to include this

technique. Overall, this sort of comparison of mortality forecasting for high-mortality

countries may help us to better understand the scope of developing mortality forecasting

21
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models and may help policymakers in terms of policy implications relating to age- and

cause-specific mortality. Unlike the study by Shang (2012), comparing and contrasting

on the above mentioned comparatively high mortality countries may give us better in-

sight regarding the impact of recent mortality improvements on future mortality.

3.1 Comparison of mortality projection models for

the nine selected CEE countries

Point forecasts of life expectancy at birth in 2050 obtained using all the Lee-Carter (LC)

variants along with UN forecasts are given in Table 3.1. The results of the different types

of models are discussed later. Here, LC stands for the basic Lee and Carter (1992); LCP

stands for the model with a Poisson regression (Brouhns et al., 2002); LM stands for the

modified LC model proposed by Lee and Miller (2001); BMS stands for the modified

LC model proposed by Booth et al. (2002); HU stands for the non-parametric approach

proposed by Hyndman and Ullah (2007); HUR stands for the robust Hyndman and Ul-

lah (2007); HUW stands for the weighted Hyndman and Ullah (2007); LL stands for the

coherent mortality forecast proposed by Li and Lee (2005) and UN stands for the UN

life expectancy forecast using a Bayesian hierarchical model (Raftery et al., 2013).

Table 3.1: Forecast of life expectancy at birth in 2050 for selected CEE countries.

Country e0 LC LCP LM BMS HU HUR HUW LL UN

Belarus 78.43 68.68 75.92 78.43 76.82 75.68 77.50 80.55 75.60 79.95
Bulgaria 77.25 82.16 79.77 80.24 79.76 78.49 80.83 82.61 77.55 80.63
Estonia 81.33 85.67 85.58 85.75 90.30 84.20 82.75 84.95 84.71 85.70
Hungary 79.24 82.77 82.66 83.27 85.40 84.19 82.44 87.09 82.60 83.54
Latvia 78.73 81.66 81.54 81.68 85.83 81.10 81.34 82.06 80.10 82.43
Lithuania 79.37 82.17 80.92 81.77 84.82 80.24 79.63 82.42 81.63 82.76
Russia 76.48 73.62 73.12 76.24 72.93 73.54 78.45 76.43 74.73 79.08
Slovakia 80.32 84.52 84.26 84.27 85.75 83.59 83.12 83.73 82.37 84.44
Ukraine 76.21 70.90 74.05 76.20 73.67 73.37 80.03 78.47 74.60 79.24

Results are shown for females only.
e0 is the last observed life expectancy during the fitting period from HMD (Table 2.1).
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3.1.1 LC and HU variants

BMS produced the most optimistic forecast of life expectancy for three Baltic countries

and Slovakia. HUR produced the highest forecast for the Ukraine; the UN forecast was

the highest for Russia and for rest of the countries HUW produced the most optimistic

point forecast of life expectancy. In addition to other exceptional cases, all the models

produced lower forecasts than the last observed life expectancy for Belarus, Russia and

the Ukraine, the countries with the highest mortality levels. Only HUW could produce

a higher forecast of life expectancy than the last observed e0 for Belarus; all other

methods extrapolated lower or almost equal future life expectancy. For Russia and the

Ukraine, the HUR method was appropriate in this sense (for the Ukraine, HUW was also

appropriate). The results of HU variants show a better fit than these models. This is

attributable to smoothing and the implications of more than one principal component

to explain the higher variation (Hyndman and Ullah, 2007). HUR is proposed to give

a better fit and optimistic forecast in presence of outliers during fitting period, which

is very common for all these countries. For illustration, the observed female mortality

rates for Russia and the Ukraine are given below for the fitting period (Figure 3.1).

Figure 3.1: Observed mortality rates of female Russia (1970-2014) and Ukraine
(1970-2013). Years are plotted using a rainbow palette so the earlier years are shown
in red, followed by orange, yellow, green, blue and indigo with the most recent years
plotted in violet.

Although HUW produced an optimistic forecast for Belarus and Ukraine, still the

results are subject to analyze. HUW is employed for countries with long time series

data; which was not the case for these countries and there were severe mortality crisis
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during mid 1990s in both of the countries (Shkolnikov et al., 1998). Similarly, despite

providing more optimistic forecasts and greater forecast accuracy than the other meth-

ods, forecasts using HUR are affected by unusual improvements in age-specific mortality

patterns more than forecasts using the other two HU variants (see the country-specific

example of Hungary for more details). It should be noted that although I tried to uti-

lize all available data from the HMD; it was not possible for all these countries. Due

to caution notes from the HMD, I started the fitting period only from the best avail-

able years mentioned in the HMD (Table 2.1), making data quality a restriction for

the application of the models. BMS also has some flaws regardless of providing the

optimistic forecast for the Baltic counties. BMS considers only the best fitting period

instead of taking into account all the observed data. For all nine countries, the data

of the last 20 years was found to be more significant for forecasting during model fitting.

To determine the forecast accuracy of the methods (except for the UN forecast), I

analyzed the MAE, MSE and ME(e0) during the out-of-sample evaluation period. The

comparison of these measures between the models are given below in Table 3.2, 3.3 and

3.4, respectively. As mentioned previously, the models failing to forecast e0 higher than

the last observed e0 of corresponding fitting periods (Table 3.1) are omitted. In terms of

MAE and MSE, the lowest errors were found for HUW. For high-mortality contexts, the

lowest MAE and MSE were not always obtained using the identical method for a coun-

try. Most of the times, all the models overestimated the mortality rates and produced

lower life expectancy as a consequence. The basic LC method returned a high MAE for

Estonia and Lithuania. Some values of MSE indicate over-fitting of corresponding mod-

els. Forecast accuracies were close for the basic LC variants, except for BMS. Contrary

to the optimistic forecast obtained for all three Baltic countries and Slovakia; BMS was

not the best forecast technique in term of MAE or MSE. The different results of the LC

variants imply the influence of different adjusting techniques for the time component of

the model. The LC method without any adjustment for the time component produced

different results than those of the existing LC variants. During out-of-sample evaluation

all the methods severely underestimated the life expectancies except for LC in case of

Lithuania. Nevertheless, in terms of forecast accuracy or an optimistic forecast, it was

not possible to declare a particular model unquestionably and uniquely best for all of

these countries. For the developed countries, almost the same situations were observed,

prompting the conclusion that no model performed uniquely well for all countries (Shang

et al., 2011; Shang, 2012).
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Table 3.2: Comparison of MAE from different methods during out-of-sample evalu-
ation period.

Country LC LCP LM BMS HU HUR HUW LL

Belarus - - 0.238 - - - 0.123 -
Bulgaria 0.198 0.178 0.178 0.180 0.173 0.164 0.150 0.191
Estonia 0.351 0.347 0.369 0.347 0.365 0.422 0.346 0.378
Hungary 0.235 0.231 0.183 0.170 0.180 0.171 0.156 0.184
Latvia 0.244 0.244 0.268 0.245 0.252 0.310 0.256 0.205
Lithuania 0.390 0.217 0.228 0.225 0.199 0.200 0.187 0.210
Russia - - - - - 0.219 - -
Slovakia 0.192 0.189 0.230 0.182 0.200 0.189 0.185 0.228
Ukraine - - - - - 0.168 0.171 -

A blank place means the forecast of e0 was lower than the last observed value of e0.

Table 3.3: Comparison of MSE from different methods during out-of-sample evalu-
ation period.

Country LC LCP LM BMS HU HUR HUW LL

Belarus - - 0.109 - - - 0.038 -
Bulgaria 0.068 0.057 0.067 0.067 0.061 0.059 0.052 0.074
Estonia 0.215 0.206 0.272 0.210 0.214 0.277 0.206 0.275
Hungary 0.117 0.112 0.081 0.077 0.085 0.081 0.070 0.076
Latvia 0.143 0.143 0.180 0.142 0.142 0.194 0.162 0.116
Lithuania 0.347 0.104 0.135 0.118 0.090 0.097 0.092 0.115
Russia - - - - - 0.072 - -
Slovakia 0.084 0.080 0.121 0.083 0.096 0.096 0.094 0.138
Ukraine - - - - - 0.046 0.050 -

A blank place means the forecast of e0 was lower than the last observed value of e0.

Table 3.4: Comparison of ME(e0) from different methods during out-of-sample eval-
uation period.

Country LC LCP LM BMS HU HUR HUW LL

Belarus - - -1.888 - - - -1.981 -
Bulgaria -0.443 -0.725 -0.820 -1.143 -1.064 -1.182 -0.464 -1.225
Estonia -2.017 -2.179 -2.012 -2.143 -3.181 -3.865 -2.740 -2.206
Hungary -0.896 -1.179 -0.514 -0.224 -0.887 -0.710 -0.582 -0.845
Latvia -1.393 -1.400 -1.388 -1.398 -1.712 -2.249 -1.481 -0.748
Lithuania 0.680 -0.436 -0.078 -0.890 -0.622 -0.465 -0.155 -0.124
Russia - - - - - -2.587 - -
Slovakia -0.440 -0.638 -0.544 -0.199 -1.074 -0.798 -0.665 -0.363
Ukraine - - - - - -1.085 -1.450 -

A blank place means the forecast of e0 was lower than the last observed value of e0.
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3.1.2 Coherent forecasting

I consider the reference group for coherent forecast only from the countries of inter-

est, so only the high-mortality CEE countries instead of combining with countries from

low-mortality regimes (Li and Lee, 2005). The models are fitted from 1970 to 2010 for

coherent forecasting due to data problems in earlier years and ended with Bulgarian

mortality data for 2010. The coherent mortality forecast could not produce more op-

timistic results than the LC and HU variants for any of the countries. However, LL

was the most accurate method for Latvia in terms of MAE and MSE and for Slovakia

in terms of MSE. The scope of coherent mortality forecasting for these comparatively

high-mortality countries became restricted due to the lack of long time series data. The

results of coherent mortality forecasting for theses countries are shown in Table 3.1.

LL produced the most pessimistic forecast among all methods for Bulgaria, Hungary,

Latvia and Slovakia. For the sake of comparability, the same fitting period (1970-2010)

is used for different LC and HU variants, which results are shown in Table 3.5.

Table 3.5: Forecast of life expectancy in 2050 by different methods considering
harmonized fitting period (1970:2010).

Country e0 LC LCP LM BMS HU HUR HUW LL

Belarus 76.49 75.12 74.20 77.41 75.20 73.18 73.35 78.58 75.60
Bulgaria 77.25 79.92 80.09 79.95 80.09 76.92 79.17 77.43 77.55
Estonia 80.55 84.73 84.66 84.82 88.23 79.91 79.93 80.57 84.71
Hungary 78.34 82.30 82.42 82.78 84.79 85.71 86.42 86.44 82.60
Latvia 77.39 80.28 79.60 79.70 79.75 78.62 78.35 79.83 80.10
Lithuania 78.73 80.96 79.76 80.52 79.66 79.41 78.96 81.45 81.63
Russia 74.86 71.75 72.39 75.94 71.14 72.97 73.14 74.89 74.73
Slovakia 79.15 83.50 83.45 83.49 84.67 82.69 82.67 83.45 82.37
Ukraine 75.19 74.45 73.36 75.70 73.00 72.52 74.46 78.90 74.60

Results are shown for females only.
e0 is life expectancy at birth of 2010 from the HMD (Table 2.1).

The performance of the coherent mortality forecast was greatly affected by three

aspects: (i) combining mortality rates of a population with large exposure to mortality

rates of a population with comparatively smaller exposure size; (ii) high adult male

mortality for several of these countries and (iii) irregular trend of life expectancy of

joint mortality data because of (i) and (ii). The observed joint mortality rates and

fitted parameters of first stage LC models are illustrated in Figure 3.2 and 3.3 for more

details.
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Figure 3.2: Observed log mortality rates for combined mortality data of (compara-
tively) high mortality countries (1970:2010). Years are plotted using a rainbow palette
so the earlier years are shown in red, followed by orange, yellow, green, blue and indigo
with the most recent years plotted in violet. Mortality crisis in recent period is more
visible than previous trend specially for adult and later senescence age groups.

Figure 3.3: Estimated parameters of first stage LC modeling on joint mortality data
(1970:2010). Irregular trend of e0 in joint mortality data is reflected on kt.
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Although LL performed reasonably well for most of these high-mortality countries, it

failed to do so for Belarus, Russia and the Ukraine. During estimation of the common

factor, countries with high mortality dominated the comparatively low-mortality coun-

tries. This might be due to mixing large exposure with smaller exposure or combining

mortality rates of populations with different age- and cause-specific mortality patterns.

Because country-level mortality has two parts, common factor from the reference pop-

ulation and country-specific estimate of bx,ikt,i, the country-specific forecast is affected

because the common factor of the reference population greatly affects completely dif-

ferent mortality patterns. This is another consequence of using coherent forecasting

for population groups with increasing mortality differences over time (mortality diver-

gence). LL adjusts the time component of the common factor according to the estimated

life expectancy of combined mortality data. The estimated life expectancy for these

high-mortality countries has irregular trend that is different than the country-specific

individual trend of life expectancy in most of the cases.

Coherent forecasting of current study also indicates necessity of a rigid assumption

for choosing a similar group of countries (Kjærgaard et al., 2016). The six countries

for which the coherent mortality forecast of life expectancies is higher than the last ob-

served life expectancies are all currently member states of the European Union. In the

current methodology of coherent forecasting, the fitting period of combined mortality

data might be shorter for individual countries with longer time series data; this may

affect the forecast as well.

The problem of a shorter fitting period for all LC and HU variants are re-discovered

during the analysis of the forecasts with a harmonized, shortened fitting period. In

addition to the coherent mortality forecasting, previous methods also suffered for short-

ened fitting periods. Using the harmonized fitting period for Bulgaria and Estonia, the

HU model failed to produce a higher forecast than the last observed life expectancy;

HUR failed to do so for Estonia and Russia. It was mentioned in earlier studies that

long time series is preferable for the fitting of these models, however, that condition

could not be held for many of these countries due to data problems (Booth et al., 2002).

As the HMD mentioned, there was lower data quality for some of the years for a few

of these countries due to the data source; I tried to fit the models by both including

and excluding those years. The forecasts obtained by considering those years during

the fitting period were misleading. However, it was not possible to fit the models for

Estonia and Lithuania by excluding the problematic years, as they are almost in the
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middle of the fitting period for Estonia, and exclusion could make the fitting period too

short for the forecasts in the case of Lithuania. In several cases, particular models failed

to produce higher estimates of life expectancies than the last observed one; estimates

obtained considering all available data for model fitting differed.

3.1.3 UN forecasting

I extend the comparison of the mortality forecasting models with probabilistic forecast-

ing obtained through a Bayesian framework (UN forecast) only for the CEE countries

as LC variants could not perform well for several of them. It should be noted that the

UN life expectancy forecasts shown in Table 3.1 refer to years 2050-55, as this technique

uses 5 calendar years. For the nine countries considered in this study, I utilized the

life expectancy at birth in five-year intervals from the HMD instead of using the UN

data. I project the life expectancy at birth up to year 2100; to compare with the LC

and HU variants the results are shown up to 2050. In addition to the data from HMD,

I also used the data from the World Population Prospects (UN, 2013), the comparison

between these two different data sources is given in the appendix. The simulation was

done with 160,000 iterations (10,000 burn-in), the thinning interval was 10, and the

number of chains was three. It was already mentioned in the previous section that an

irregular trend in mortality is visible in the case of several of these countries. The trend

of life expectancies computed on a five-year basis was also similar to that; fluctuations

in the trend for life expectancies remained for Belarus, Russia and the Ukraine during

the fitting period. Like HMD, a similar pattern was also observed in case of data from

World Population Prospects. Nevertheless, UN forecasts showed an increasing trend for

life expectancy at birth for all these countries (both for HMD and World Population

Prospects). Unlike several LC variants and coherent forecasting, the forecast of life ex-

pectancies was higher than the last observed one for Belarus, Russia and the Ukraine.

For all other countries, the forecast produced using the UN forecast technique fell be-

tween the other forecast methods. Of all the forecast methods, the UN forecast were

lowest for Hungary and Latvia among all the methods. The forecast of life expectancies

(with prediction intervals) are attached in appendix.

One shortcoming of the UN forecasting technique is that it is not based on life table

like the previous LC or HU variants. This prevents age-specific mortality forecasting

and comparing forecast accuracy in out-of-sample evaluation period, as done before for

the LC and HU variants or for the coherent forecasting.
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3.2 Country-specific illustration: Hungary

3.2.1 Past mortality trends

I assessed all the models in the previous section without focusing on a specific country

to get an overall view of mortality forecasting in a high-mortality context. To illus-

trate the performance of different mortality forecasting models in a more detailed way,

Hungary is considered in this section as a representative of these countries. Hungary is

chosen because it has a high-mortality regime similar to many other countries in East-

ern Europe. The common features of the mortality scenario of these countries can be

characterized by the presence of a high level of mortality from Cardiovascular diseases

and several external causes of deaths (Bálint and Kovács, 2015). In the beginning of the

1990s, life expectancy of the Hungarian population was among the lowest in Europe.

The recent gains in longevity are related to specific causes of death. Decomposition

of life expectancy at birth showed that the seven-year gain in male life expectancy be-

tween 1990 and 2013 was mainly attributable to a decline in cardiovascular mortality,

which corresponds to 40% of the total gain in longevity (Bálint and Kovács, 2015). The

decline in mortality due to external causes of deaths has resulted in an increase in life

expectancy of 1.7 years. The trend of life expectancy at birth of Hungary is plotted

below in Figure 3.4.

Figure 3.4: Observed life expectancy at birth of Hungary (1960-2014).

The main source of gain in female life expectancy was the result of the decline in

adult and senescence mortality for some particular causes of deaths. Previous studies
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revealed the contribution of the female population aged 64 years and over was more

substantial on increasing life expectancy than that of middle-aged females those were

also affected by the economic crisis in past (Bálint and Kovács, 2015; Bohk and Rau,

2015). The log mortality rates for Hungarian Males and Females from the HMD are

given below (Figure 3.5). The irregular patterns in mortality are visible in the young

and senescence age groups along with gender gap in different age groups.

Figure 3.5: Observed log mortality rates of Hungary (1960-2014). Years are plotted
using a rainbow palette as Figure 3.1.

3.2.2 Forecast of life expectancies

To compare the different methods more precisely in a high-mortality context, I com-

pared the forecasts for all the LC and HU variants and coherent forecasting for males

and females separately for Hungary. The results are given below in Table 3.6. I ex-

trapolated the results for 20, 30 and 40 years ahead (24, 34, 44 years for LL) to see

any possible convergence of the forecasts using different methods. Life expectancy at

birth was 72.26 and 79.24 years, respectively, for males and females in 2014; while for

coherent forecasting, it was 70.59 and 78.34 years, respectively, in 2010. Except for LC,

LCP and BMS, all the models produced a higher forecast of life expectancy than the

last observed e0 of Hungarian males. For females, all the models produced an optimistic

forecast. I also forecast life expectancy at age 65 to see the performance of the life

expectancy forecasting in later ages and extrapolated for 20, 30 and 40 years ahead

(Table 3.7). Life expectancy at age 65 was 14.56 years and 18.40 years, respectively, for

males and female in 2014, while it was 13.94 years and 17.88 years, respectively, in 2010
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for coherent forecasting. Although LC and BMS failed to produce optimistic forecasts

of life expectancies at birth, the forecast of e65 was higher than the last observed e65 for

both of the methods; which was not the case for LCP. This better performance in later

ages are rather acceptable compare to the pessimistic forecast of life expectancy at birth

which is more sensitive on change of mortality in different part of life span. In the other

cases, all the models performed well, although higher forecasts are observed from HUW

for females compared to the other methods. Moderate improvements in the mortality

of people aged 65 years or over were observed in previous studies as well, unlike the

pattern observed for the middle-aged population (Bálint and Kovács, 2015).

Table 3.6: Forecast of life expectancies at birth for Hungarian males and females.

Forecast period LC LCP LM BMS HU HUR HUW LL

Male, 2034 70.56 70.14 73.93 70.14 77.35 77.53 77.96 73.19
Female, 2034 81.17 81.06 81.58 82.90 82.22 80.85 83.86 80.96
Male, 2044 70.31 70.34 74.42 70.34 79.33 79.70 80.42 74.23
Female, 2044 82.18 82.07 82.65 84.50 83.47 81.94 85.91 82.00
Male, 2054 69.99 70.50 74.82 70.50 81.03 81.63 82.97 75.24
Female, 2054 83.16 83.05 83.68 85.98 84.64 82.99 87.81 83.01

Table 3.7: Forecast of remaining life expectancies at age 65 for Hungarian males
and females.

Forecast period LC LCP LM BMS HU HUR HUW LL

Male, 2034 21.04 14.75 17.14 14.77 16.65 17.29 17.42 15.21
Female, 2034 20.29 20.19 20.26 20.93 20.59 19.35 21.72 19.49
Male, 2044 22.84 15.24 18.61 15.26 17.71 18.49 19.10 15.77
Female, 2044 21.15 21.06 21.18 22.12 21.52 20.07 23.35 20.17
Male, 2054 25.02 15.73 20.27 15.76 18.73 19.67 21.10 16.35
Female, 2054 22.00 21.91 22.08 23.27 22.41 20.82 24.90 20.87

3.2.3 Forecast of mortality rates

Besides optimistic forecast of life expectancies and accuracy during out-of-sample evalu-

ation period, I examined more deeply the ability of the methods to capture the mortality

improvement over the life span in this section. It should be noted that some methods

have different performances for different stages of lifespan (Table-3.6 & 3.7). The fitted

parameters of the LC model with a forecast of parameter kt and the observed and fitted

log mortality rates for females are presented below (Figures 3.6 and 3.7). As discussed

before, the parameter kt is used for the forecast and the blue spread of kt in Figure 3.6
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may be implemented for interval forecasting as well (Hyndman and Ullah, 2007).
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Figure 3.6: Fitted components of basic LC method for females of Hungary
(1960:2014). The blue area of the parameter kt presents spread of the parameter
under a random walk with drift which is used to make forecast.
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Figure 3.7: Observed (1960:2014) and forecast (2015:2050) of log mortality rates for
females of Hungary by basic LC method. Years are plotted using a rainbow palette
as before. Observed mortality rates are plotted using dotted line whereas forecast are
plotted with regular line.
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Figure 3.8 shows the forecast of log mortality rates till 2050 for Hungarian Females

using different methods.
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Figure 3.8: Comparison of forecast of log mortality rates till 2050 for females of
Hungary. Years are plotted using a rainbow palette as before.
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Except for HU and HUW, all other methods are affected by the recent short-run im-

provement of early-aged mortality around age 5 to 15. For Hungarian female mortality,

this improvement occurred only for a few of the very recent years (Figure 3.5) which

highly affects the forecasts of BMS, HUR and LL. All LC variants suffered from reduc-

tion in variability over years in senescence and old ages. This is a clear consequence of

the estimated bx in current LC methodology. However, this feature is mitigated with

the coherent forecasting since part of the information about rate-of-change in LL is

shared among different countries with diverging mortality patterns. Besides, combined

mortality rates of the reference population were higher across the life span compares to

observed female mortality rates for Hungary. As a consequence, the coherent forecasts

for the Hungarian Females are more pessimistic than those of the other methods (Table

3.6 and 3.7). This has been already mentioned as a drawback of current settings for

choosing reference population in coherent forecasting. Clearly, the increasing mortality

differences over time between the countries of the reference group have high impact

on individual country-specific forecasts. Forecasts of senescence mortality are virtually

similar for all methods except for coherent forecasting due to this reason.





Chapter 4

A Modified Lee-Carter Method

with LASSO type Smoothing and

Adjusting for Lifespan Disparity

Here it is proposed to fit the Lee-Carter model over smoothed mortality rates and to

partially adjust the fitted time component of Lee-Carter method according to observed

lifespan disparity, e†0 (Vaupel and Canudas-Romo, 2003; Zhang and Vaupel, 2009). In-

stead of spline based smoothing techniques I smoothed the observed mortality rates

using LASSO type regularization (Dokumentov et al., 2018). The rational behind these

modifications and details of the estimation procedure are explained in the following

sections.

4.1 Application of smoothing technique

Application of smoothing technique is common to improve mortality forecast (Booth

and Tickle, 2008; Hyndman and Booth, 2008). Smoothing techniques are widely used

for extrapolation and reducing noises of the observed data to overcome outliers problem

which is quit common for mortality data (see Hyndman and Ullah, 2007, for exam-

ple). Smoothing is particularly useful in Lee-Carter framework for another particular

reason. From equation 2.1, Lee-Carter (LC) type model estimates the product of time

component (kt) and age component (bx) obtained from singular value decomposition of

mortality matrix and then add it with observed and invariant ax. Although LC method

assumes linear trend of kt, still this is not completely linear even after all proposed

adjustment policies. Similarly, the estimated bx have irregular trend in different parts of

the life span. The product of these two parameters with irregular trends become more

37
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jagged over time which affects the estimated log mortality rates obtained using equation

2.1 (Girosi and King, 2006). To illustrate this, the product of bx and kt for Swedish

Females are plotted below. Typical estimate of ax for LC variants can be seen in Figure

3.6 or Figure 4.7.

Figure 4.1: Product of time component and age component for Swedish Females
(1950:2016) using LC (Lee and Carter, 1992). Irregular trends are visible in earlier
and later part of lifespan.

To overcome this problem, different smoothing techniques can be applied in three

different ways: (a) smoothing the observed mortality rates first and then fitting the

model for forecasting; (b) smoothing over the fitted parameters and to make the fore-

cast by standard time series techniques or, (c) applying smoothing on fitted/forecasted

rates by the model. Following Hyndman and Ullah (2007), I also applied the smoothing

prior to model fitting. Although spline based smoothing techniques are widely used for

mortality, I used LASSO type regularization to smooth the mortality curves. One of

the shortcomings of these spline-based smoothing techniques is, they might over-smooth

the mortality curves which thus reduces the accuracy of smoothed data to be used for
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model fitting. This is observed when we compared the smoothing techniques on different

countries, having countries of high-mortality regime suffered more than low-mortality

ones. To address this problem, a smoothing technique need to find an optimal balance

between reducing noise and keeping accuracy of the observed data, particularly for mor-

tality forecasting. Spline based smoothing techniques are already discussed in Chapter

2. The methodology of Lasso is discussed in following section.

4.1.1 Smoothing by LASSO

For the proposed modifications in LC methodology, first I smooth the mortality rates

using LASSO type regularization. Dokumentov et al. (2018) defined the Lasso derived

from a two-dimensional thin plate spline which is used to smooth the mortality rates

considering age and period effects. For observed mortality rates y, age x and year t, the

two dimensional thin plate spline is defined as a function f(x, t) which minimizes the

following:

J ({yi}ni=i, f) =
n∑
i=1

(yi − f(xi, ti))
2 + λ

∫ [
δ2f

δx2
+ 2

δ2f

δxδt
+
δ2f

δt2

]
dxdt. (4.1)

Here, λ > 0 is the smoothing parameter with (xi, ti)
n
i=1 knots (following, Wood,

2006). The expression in equation 4.1 can be approximated by a sum if the knots form

a regular grid. In that case, the second partial derivatives can be approximated also as

linear combinations of function values at nearby knots. Denoting the mortality rates

as a vector y as before (which is a two dimensional data packed as vector) and letting

{f(xi, ti)}ni=1 as vector z, the expression of 4.1 can be re-written as,

J (y, z) ≈ ||y − z||2L2
+
λ

n

(
||Dxxz||2L2

+ ||Dxtz||2L2
+ ||Dttz||2L2

)
, (4.2)

where,

Dxx =

{
δ2

δx2
f(xi, ti)

}n
i=1

, Dxt =

{
δ2

δxδt
f(xi, ti)

}n
i=1

and Dtt =

{
δ2

δt2
f(xi, ti)

}n
i=1

.

This expression of equation 4.2 can be approximated with thin plate spline computed

in its knots taking the points of z for which right side of 4.2 is minimized. Following

Schuette (1978), Dokumentov et al. (2018) replaced the L2 norm by a L1 norm to smooth

with quintile Lasso. Schuette (1978) showed that L1 norm is more robust than L2 norm

in presence of outliers, which occurs very often in case of mortality data. (Schuette, 1978)
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proposed to use different λ coefficients before every derivative to adjust the influence of

each derivative distinctly on smoothing. Hence the smoothing can be defined as,

Q(y) = arg min
z

{K(y, z)} , (4.3)

where, K(y, z) = ||y −Mz||L1
+ λxx ||Dxxz||L1

+ λxt ||Dxtz||L1
+ λtt ||Dttz||L1

.

Here, M will be an identity matrix as same number of knots and data points are

considered which are positioned at same places (Dokumentov et al., 2018). Following

Wood (2006), Dokumentov et al. (2018) stacked matrices M , λxxDxx, λxtDxt, λttDtt on

top of each other to give

R = [M ′, λxxD
′
xx′ , λxtD

′
xt′ , λttD

′
tt]
′
=


I I I

λxxDxx 0 0

λxtDxt 0 0

λttDtt 0 0

 . (4.4)

In next step, the data vector y is extended by zeros until its length is equal to the

number of rows in R. So, the extended y became: yext = [y′, 0′]′. The right hand side of

4.3 is then replaced with the equivalent expression,

K(y, z) = ||yext −Rz||L1
. (4.5)

Obtaining Q(y) is then a quantile regression problem. Like spline based smoothing

techniques, the smoothing from Lasso also depends on values of λxx (controls the flexi-

bility of the smooth surface in age direction), λxt (controls the flexibility of the smooth

surface in age and time direction) and λtt (controls the flexibility of the smooth sur-

face in time direction). A subsequent problem to utilize quantile Lasso is to optimize

λxx, λxt and λtt, because the smoothness of the obtained mortality curves depend on

these three parameters (also accuracy of Lasso). It is possible to have many local min-

ima while dealing with mortality data. To overcome this problem, Dokumentov et al.

(2018) used “Nelder–Mead”optimization to get the global minima of the function.

4.2 Definition of lifespan disparity

The second proposed modification on traditional LC method is to partially adjust the

fitted time component of LC model according to the observed lifespan disparity instead
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of total number of deaths or life expectancy at birth or age distribution of deaths. Lifes-

pan disparity illustrates the variation in the lifespan distribution which is the differences

in the length of life across members of a population. In this study, I utilize the defini-

tion of Vaupel and Canudas-Romo (2003) and Zhang and Vaupel (2009) where lifespan

disparity is defined as average number of life years lost at birth. Symbolically,

e†0 =

∫ ω

0

exdx dx

l0
≈

ω∑
0

exlxmx

l0
(4.6)

Here, ω is the maximum attainable age, dx is the distribution of death and lx is the

number of people alive at age x (l0 is the life table radix). Thus estimation of e†0 is

simple and straightforward. It can be easily implemented by the above expression with

the assumption that deaths are Poisson distributed.

There are several benefits of considering e†0 as an alternative measure of longevity.

First, it is a robust indicator of mortality improvement as it considers distribution of

deaths along with remaining life expectancies (equation 4.6). Unlike life expectancy

at birth, e†0 provides more information about shrinking/expansion of mortality and it

can be utilized also to get information on mortality shifting (Zhang and Vaupel, 2009).

An extension of e†0 can be also used to derive threshold age between premature and

senescence mortality for a population (Zhang and Vaupel, 2009). Like life expectancy,

the lifespan disparity measure has the property that it can be additively decomposed

at any age such that the components before and after this age sum to the total life

disparity (Vaupel and Canudas-Romo, 2003). Vaupel et al. (2011) analyzed the trend

of e†0 for 40 different countries from different regions considering long time period data.

They observed high correlation between e†0 and e0 among countries and concluded that

progress in reducing premature deaths reduces variation in lifespan, whereas progress

in reducing deaths at older ages increases variation in lifespan. Due to its stability

over time, previous study considered e†0 to evaluate forecast performances of different

forecasting techniques rather than just considering the fitted mortality rates or life

expectancy (Bohk-Ewald et al., 2017). It should be noted that, there are several other

definition of lifespan disparity including classic statistical variability measures (standard

deviation or the interquartile range) or common equality measures (for example, Gini

coefficient) and others (Bohk-Ewald et al., 2017). As all these measures are highly

correlated, it is expected that their impact on the results would be minor (Vaupel et al.,

2011; Bohk-Ewald et al., 2017).
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4.3 Model fitting and forecasting

After obtaining the smoothed mortality rates by Lasso, I followed the standard Lee-

carter methodology to obtain the initial estimate of the age and time component from

the smoothed mortality data. The Lee-Carter model mentioned before is given below

for recall,

ln(mx,t) = ax + bxkt + εx,t, (4.7)

with same constraints mentioned by Lee and Carter (1992). To imply the proposed

methodology, modification on time component begins with estimation of the observed

e†0 (obtained from observed, non-smoothed mortality rates). It should be noted that e†0

is less sensitive to smoothing performed by Lasso.

The procedure to estimate the model parameters are same as mentioned before in

2.2.1 except for everything is done on smoothed mortality rates. For estimation of the

age and time component rank-1 approximation is considered only as it explains most of

the variance (Lee and Carter, 1992; Booth et al., 2002). The initial estimates of model

parameters are same as mentioned in 2.2.1. For recall,

k̂t = L1Vt1 and, b̂x = Ux1 .

Lee and Carter (1992) proposed to conduct a second stage estimate of kt by finding

the value of kt which, for a given population age distribution and previously estimated

ax and bx produces exactly the observed number of total deaths for the fitting period

of the model. I propose the adjustment of the estimated kt by partially matching with

observed e†0. This is done by solving the following equation:

e†0 observed =
ω∑
0

exp(âx + b̂x.kt adj)exlx/l0. (4.8)

The ex and lx of equation 4.8 are obtained from life table estimated from fitted data.

An ARIMA(0,1,0) with drift is then fitted for adjusted k̂t, from which forecast are done.

k̂t = c+ k̂t−1 + ξt (4.9)

Here c is the drift term and ξt is the model residual. Previous studies applied different

econometric models for forecasting but the best output was obtained for Random Walk

with Drift (Hyndman and Ullah, 2007). Following Lee and Miller (2001), I used the

actual data for forecasting to avoid jump-off error; which is found to be more accurate
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during out-of-sample evaluation than that of fitted data. Also the forecast are more

optimistic for actual data than that of fitted data.

4.3.1 Errors in the mortality forecast

The mortality curves obtained from Lasso are the closest to observed ones compared to

spline based techniques for all countries considered in this study. Still, it is necessary to

incorporate the smoothing error while estimating the forecast variance. Following Lee

and Carter (1992), the forecast error for h year ahead forecast from base period t will

be,

Ex,t+h = αx + (b̂x + βx)ut+h + βxk̂t+h + εx,t+h + εs (4.10)

Lee and Carter (1992) defined αx and βx as errors in estimating the model parameters

ax and bx respectively whereas u contains the errors due to innovations and errors in es-

timating the drift. For the proposed model; αx, βx and u will contain the individual level

of error due to smoothing as well. I estimated the model parameters without smoothing

the data and observed the slight effect of smoothing on trend of estimated parameters

(with newly adjusted k̂t). Lee and Carter (1992) mentioned that the elements in 4.10

are uncorrelated from the results obtained by bootstrapping and informal experiments.

Same concept is applicable for smoothing because the smoothing errors are very low

and it is independently done before model fitting. For the error unexplained from the

estimated parameters are attributable to smoothing effect, that is why I added the last

term as error from smoothing which is independent from other sources of errors to es-

timate the model. This error term is different than that of nonparametric approaches

as those methods considered the smoothed mortality rates as functional form of age

implied through smoothing (Hyndman and Ullah, 2007). Consequently Lasso and the

proposed adjustment on kt reduce the overall variance of the forecast. The variance of

the forecast for modified Lee-Carter will be,

σ2
Ex,t+h

= σ2
αx

+ b̂2
xσ

2
ut+h

+ σ2
βx

(
k̂2
t+h + σ2

ut+h

)
+ σ2

Ex,t+h
+ σ2

s (4.11)

During the estimation, the obtained variance for adjusted k̂t found to be lower than

previous model and smoothing also produced lower error.
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4.4 Results

4.4.1 Smoothing techniques

For model validation, I considered only the low mortality countries in this chapter. Since

I smoothed the mortality rates first before model fitting, so I compared the smoothing

techniques before checking the model fitting. I compared the smoothed mortality rates

by Lasso (Dokumentov et al., 2018) with one dimensional spline (Hyndman and Ul-

lah, 2007) and two dimensional spline (Camarda et al., 2012). Accuracy of smoothing

techniques has been evaluated in terms of lowest mean absolute error (MAE) and mean

squared error (MSE). I compared the results for all the low-mortality countries men-

tioned in chapter 2 and for all of these Lasso provided most accurate mortality curves

(with lowest errors). For illustration, the smoothed mortality rates from all three tech-

niques for US Females are given below (Figure 4.2).

Observed mortality rates

Age

Lo
g 

de
at

h 
ra

te

−
10

−
8

−
6

−
4

−
2

0

One dimensional spline

Age

Lo
g 

de
at

h 
ra

te

0 20 40 60 80 100

−
10

−
8

−
6

−
4

−
2

0

Two dimensional spline

Age

Lo
g 

de
at

h 
ra

te

LASSO

Age

Lo
g 

de
at

h 
ra

te

0 20 40 60 80 100

Age

Lo
g 

de
at

h 
ra

te

Figure 4.2: Comparison of smoothing techniques for US Female mortality
(1950:2016). Years are plotted using a rainbow palette so the earlier years are shown
in red, followed by orange, yellow, green, blue and indigo with the most recent years
plotted in violet.



Chapter 4 - Modified Lee-Carter Method 45

The mortality trends are regular for almost all the low-mortality countries, so the

smoothing techniques also performed well for those countries. USA is considered here

because the trend of mortality is slightly different than other countries. US data is

characterized by presence of distinct accidental hump and high centenarian mortality

rates in earlier era are. To date, USA is one of the most populous countries having

the lowest observed life expectancy at birth among the G-7 countries (HMD, 2018),

which is highly attributable to particular cause-specific deaths (Tuljapurkar et al., 2000).

Compared to spline based smoothing techniques, Lasso provided less smoothed mortality

surface for US Females; same pattern is observed for other lower mortality countries

as well. For US Females (and many other countries), an unexplainable second drop

of mortality is visible in earlier life span in case of two dimensional spline. Previous

study mentioned that smoothing with two dimensional technique could be misleading

for earlier life as it might produce biased result for earlier part of life (Dokumentov

et al., 2018). This bias for infant and child mortality can be avoided by starting the

smoothing from age 10 or later but this is not so convenient for mortality forecasting as

most jagged pattern of bx is observed in earlier and later part of life. The transformed

error for all three smoothing techniques are illustrated for US Females in Figure 4.3.
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Figure 4.3: Errors of smoothing techniques for female mortality of USA(1950:2016).
Years are plotted using a rainbow palette as before.
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The surfaces of the smoothed death rates along with errors are plotted in Figure

4.4 for the smoothing techniques. The standardized residuals are presented in two

dimensional plots in Figure 4.5.
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Figure 4.4: Mortality surfaces and corresponding errors from difference smoothing
techniques for US Females (1950:2016).
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Figure 4.5: Standardized residuals of the smoothing techniques for US Females
(1950:2016). Difference scale of colors are used due to different distribution of errors.

Standardized residuals in Figure 4.4 and 4.5 have different patterns than that ob-

served before in Figure 4.3. Due to different distributions of errors over the ages and
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time, it is quite difficult to compare the residuals among these three techniques from Fig-

ure 4.5. To illustrate the aspects of Figure 4.5 more clearly, the standardized residuals

for some specific years are plotted in Figure 4.6.
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Figure 4.6: Standardized residuals of the smoothing techniques for US Females in
the years 1950, 1980 and 2016.

Unlike two dimensional smoothing, Lasso and one dimensional smoothing technique

performed well for earlier part of life. Presence of accidental hump was well-captured

by Lasso compared to spline based techniques. Spline based smoothing are less affective

for older ages. One dimensional smoothing could not capture the high centenarian

mortality in beginning of 1950s due to monotonic constraint, whereas two dimensional

smoothing over-fitted that part. The accuracy of smoothing for US female mortality by

these three techniques are summarized in following table (Table 4.1).

Table 4.1: Accuracy of smoothing techniques for US Females (1950:2016).

Measure of accuracy 1 dim Smoothing 2 dim Smoothing LASSO

MAE(mx)×100 3.170 4.817 1.909
MSE(mx)×100 0.953 1.162 0.215
ME(e0) -0.154 0.139 0.950
MAE(e0) 0.002 0.087 0.016
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The errors for mortality rates are magnified by 100 times to show the comparison

more precisely. For both absolute and squared errors, Lasso is more accurate than other

two smoothing techniques. Following Dokumentov et al. (2018), I also compared the

accuracy of smoothing from MAE and MSE. I did not consider BIC or other measure

of goodness of fit as BIC requires a clearly defined likelihood function. I further recon-

structed the life tables from smoothed mortality rates and from that I compared the

fitted life expectancy at birth with observed one. Although two dimensional smoothing

was most accurate in terms of ME(e0), still it is questionable due to unexplainable drop

of mortality curves. Considering the sign of the errors, Lasso overestimated the life

expectancies for most of the years whereas one dimensional smoothing underestimated

for most of the years. Due to different pattern of outcome obtained from ME(e0), I

also examined the mean absolute error of life expectancy for more insight. The re-

sults showed highest accuracy for one dimensional smoothing followed by lasso and two

dimensional smoothing. I did not consider MAE(e0) to evaluate forecasting in later

sections as ME(e0) is more robust indicator for forecast accuracy which also provides

information regarding underestimation or overestimation of life expectancies. Better ac-

curacy for Lasso can be explained from the context of smoothing. Lasso is more a fitting

technique with higher emphasize to keeping the fitted values close to observed one. As

a result, although the surface is less smoothed for Lasso, still it provides less error for

fitting the mortality curves; which is not the case for spline based smoothing techniques.

4.4.2 Model fitting and forecast accuracy

The proposed methodology performs better than all 4 LC variants and 3 HU variants

for several countries during out-of-sample evaluation. I denoted the proposed method

by LCe†0
all over this section. For existing models I use the same notation of previous

chapter: LC stands for the basic Lee and Carter (1992); LCP stands for Lee-Carter

model with Poisson regression (Brouhns et al., 2002); LM stands for modified Lee-Carter

model proposed by Lee and Miller (2001); BMS stands for modified Lee-Carter model

proposed by Booth et al. (2002); HU stands for the non-parametric approach proposed

by Hyndman and Ullah (2007); HUR stands for robust Hyndman and Ullah (2007);

HUW stands for weighted Hyndman and Ullah (2007). As non-parametric approaches

are different than that of LC variants and the proposed methodology is more close

to those, I compared the individual parameters of LCe†0
with LC variants only. For

illustration of the characteristics of the proposed methodology, I consider the Swedish

female mortality in this section. Following the illustration of Figure 4.1, I considered
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Sweden again for its consistent and stable trend of mortality improvement since long. In

addition, Sweden has the longest time series data for mortality starting from 1751 and

well known for mortality data with highest quality (HMD, 2018). Following previous

chapters, models are fitted from 1950 and afterward to avoid war and epidemic during

demographic transition. The estimated ax and bx from LC variants and LCe†0
are plotted

in Figure 4.7. For same estimation technique, these two parameters are same for all four

LC variants.
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Figure 4.7: Estimated ax and bx for Swedish Females (1950:2016) from LC variants
and LC

e†0
. The estimated parameters from LC

e†0
slightly different than that of LC

variants due to application of smoothing technique prior to model fitting.

It can be noticed that the estimates and forecasts from kt are different for all of these

variants due to different adjustment methods and jump-off policy. Sweden has long and

steady trend of mortality improvement which is also reflected after adjusting for lifespan

disparity. The newly adjusted k̂t has more regular and linear trend than estimates from

earlier Lee-Carter methods. The trend of adjusted k̂t along with forecast till 2050 by an

ARIMA (0,1,0) for Swedish female is presented below in Figure 4.8. The regularity of

new k̂t is attributable to both smoothing technique and new adjustment policy for kt.
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Compare to the previous LC variants, the proposed k̂t have less standard error which

also consequently creates narrower confidence bound for forecast intervals.
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Figure 4.8: Random walk with drift on estimated kt of Swedish Females (1950:2016)
for LC variants and LC

e†0
.

For Swedish female mortality I used the life tables constructed up to age 103 years

due to missing values at older ages. For the trend of kt shown in Figure 4.8, the model

was fitted in the years 1950 to 2016 (the last available year during this analysis). Al-

though I plotted the trend for 1950 to 2016, the best fitting period obtained for BMS

was 1978 to 2016. The product of b̂x (obtained from smoothed mortality rates) with

more regular k̂t ultimately produce more smoothed surface than that observed for LC

(Figure 4.1). The other LC variants also shown almost similar surface like basic LC

(Lee and Carter, 1992). The new smooth surface of the product of b̂x and k̂t are given

below in Figure 4.9, which can explain more variation as well. For Swedish Females, LC

can explain 77.4% of observed variation whereas both LCe†0
and HU variants can explain

97.7% of that. Variance explained by the models for all the countries are attached in

appendix. It should be noted that unlike rank-1 approximation in LC variants and LCe†0
,



52 Section 4.4 - Results

the HU variants are estimated considering 3 components.

(a) LC (b) LC
e
†
0

Figure 4.9: Product of time component and age component for Swedish Females
(1950:2016) using (a) LC (Lee and Carter, 1992) and (b) proposed LC

e†0
. (a) is

illustrated with larger interface in Figure 4.1.

Next, I compared the forecast accuracy for all different versions of LC method. For

out-of-sample evaluation of the methods, I fitted the model for all the available time

period except the last 10 years to compare with the forecast obtained by fitted model

with respect to observed mortality rates. The forecast accuracy of all 8 models (LCe†0
, 4

LC variants and 3 HU variants) for the females of 20 low-mortality countries are given

below in Table 4.2, 4.3 and 4.4. Table 4.2 showed the accuracy in terms of mean absolute

errors (MAE) for mortality rates, Table 4.3 for mean squared errors (MSE) for mortality

rates and mean error of obtained life expectancy at birth (ME(e0)) are summarized in

Table 4.4. Country-specific highest forecast accuracy (lowest error) are marked using

bold texts in all of these tables. The proposed modified version of Lee-Carter method

(LCe†0
) generated less forecast error for many of these low-mortality countries, both in

terms of absolute and squared errors. For MAE and MSE, the models with lowest errors

can be identified by bold texts in values. For ME(e0), a value close to zero are shown

in bold text to indicate lowest error. I skipped the results of HUW method for case

of US Females both for out-of-sample evaluation as it showed decreasing trend of life

expectancy forecast for US Females.
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Among all of these 20 low-mortality female populations, LCe†0
produced lowest fore-

cast errors in terms of MAE for 10 of them. LM also produced same value of MAE

as LCe†0
for US Females. In terms of MSE, LCe†0

produced lowest forecast errors for

11 countries. To obtain ME(e0), I reconstructed the life tables from the forecast of

mortality rates during out-of-sample evaluation period and compared the mean error

of obtained life expectancy at birth. As for mean errors of obtained life expectancy at

birth LCe†0
was most accurate for 5 countries followed by LC for 4 countries. LM was

most accurate for Austria only while HU was most accurate for Germany only. Previous

studies also mentioned that none of the methods were uniquely best for all countries

(Shang, 2012). Comparatively better performance of LCe†0
are attributable to both of

the proposed modifications. Beside application of Lasso as a more accurate smoothing

technique, adjustment of time component according to lifespan disparity reflects more

insight of the mortality trend of a population rather than total number of deaths or life

expectancy at birth. From the definition of e†0, it contains information of both remain-

ing life expectancies and corresponding distribution of death, which is found to be more

affective to obtain accurate forecast.

Table 4.2: MAE of the forecast methods during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LC
e†0

Australia 0.132 0.132 0.117 0.124 0.093 0.130 0.114 0.109
Austria 0.193 0.189 0.195 0.170 0.181 0.200 0.172 0.166
Belgium 0.152 0.152 0.169 0.150 0.154 0.147 0.141 0.152
Canada 0.091 0.090 0.089 0.091 0.093 0.103 0.087 0.079
Denmark 0.255 0.260 0.249 0.245 0.233 0.252 0.211 0.208
Finland 0.247 0.247 0.251 0.236 0.227 0.239 0.213 0.185
France 0.117 0.117 0.092 0.106 0.087 0.091 0.076 0.081
Germany 0.097 0.097 0.093 0.098 0.089 0.110 0.085 0.085
Ireland 0.351 0.319 0.242 0.227 0.225 0.243 0.195 0.230
Italy 0.140 0.126 0.107 0.107 0.087 0.092 0.080 0.091
Japan 0.428 0.391 0.133 0.310 0.085 0.100 0.087 0.119
Netherlands 0.134 0.132 0.143 0.144 0.132 0.135 0.132 0.137
New Zealand 0.209 0.209 0.236 0.203 0.204 0.202 0.184 0.180
Norway 0.192 0.192 0.236 0.196 0.217 0.224 0.211 0.206
Portugal 0.177 0.178 0.192 0.193 0.178 0.181 0.160 0.185
Spain 0.204 0.164 0.118 0.151 0.133 0.156 0.102 0.113
Sweden 0.170 0.170 0.193 0.174 0.160 0.171 0.148 0.152
Switzerland 0.212 0.211 0.246 0.206 0.215 0.218 0.215 0.199
United Kingdom 0.123 0.122 0.082 0.097 0.095 0.121 0.094 0.071
USA 0.100 0.100 0.070 0.117 0.100 0.082 - 0.070
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Table 4.3: MSE of the forecast methods during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LC
e†0

Australia 0.033 0.033 0.033 0.032 0.030 0.035 0.023 0.030
Austria 0.093 0.089 0.106 0.072 0.072 0.080 0.087 0.079
Belgium 0.055 0.054 0.076 0.055 0.062 0.058 0.057 0.060
Canada 0.020 0.020 0.019 0.019 0.019 0.022 0.019 0.015
Denmark 0.131 0.137 0.144 0.130 0.119 0.134 0.107 0.104
Finland 0.130 0.130 0.172 0.120 0.128 0.135 0.122 0.094
France 0.026 0.027 0.018 0.020 0.014 0.015 0.012 0.013
Germany 0.018 0.017 0.020 0.019 0.017 0.022 0.017 0.017
Ireland 0.248 0.200 0.140 0.116 0.112 0.128 0.102 0.131
Italy 0.046 0.040 0.029 0.022 0.019 0.020 0.019 0.019
Japan 0.293 0.249 0.110 0.146 0.016 0.022 0.016 0.027
Netherlands 0.048 0.047 0.055 0.053 0.045 0.043 0.044 0.050
New Zealand 0.094 0.095 0.138 0.094 0.111 0.103 0.093 0.077
Norway 0.095 0.094 0.142 0.099 0.129 0.124 0.129 0.127
Portugal 0.071 0.069 0.083 0.093 0.074 0.077 0.067 0.074
Spain 0.073 0.047 0.033 0.040 0.031 0.039 0.022 0.031
Sweden 0.077 0.077 0.113 0.084 0.072 0.075 0.068 0.067
Switzerland 0.121 0.122 0.166 0.116 0.135 0.134 0.135 0.116
United Kingdom 0.027 0.026 0.016 0.017 0.016 0.024 0.016 0.011
USA 0.019 0.019 0.012 0.023 0.015 0.013 - 0.011

Table 4.4: ME(e0) of the forecast methods during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LC
e†0

Australia 0.007 0.038 0.010 0.207 -0.083 -0.124 0.001 0.054
Austria 0.288 0.195 0.003 0.235 -0.585 -1.148 -0.018 -0.033
Belgium 0.050 0.110 0.062 0.144 -0.189 -0.194 0.155 0.132
Canada -0.109 -0.040 -0.014 -0.041 -0.042 -0.116 -0.236 0.039
Denmark -0.955 -1.119 -0.608 -1.067 -0.808 -0.819 -0.727 -0.575
Finland 0.456 0.448 -0.016 0.421 -0.581 -0.757 -0.452 -0.013
France 0.165 0.157 0.101 0.161 0.055 0.073 0.048 0.171
Germany 0.135 0.193 0.183 0.310 0.003 -0.414 0.159 0.215
Ireland -0.115 -0.586 -0.452 -0.414 -1.054 -1.307 -0.400 -0.551
Italy 0.657 0.542 0.413 0.551 0.164 -0.142 0.379 0.420
Japan 1.232 1.006 0.768 0.956 0.306 0.115 0.469 0.674
Netherlands -0.329 -0.294 -0.220 -0.389 -0.437 -0.625 -0.437 -0.191
New Zealand -0.429 -0.335 -0.293 -0.111 -0.309 -0.576 -0.283 -0.249
Norway 0.064 0.027 -0.111 -0.103 -0.487 -0.855 -0.569 -0.155
Portugal -0.580 -0.764 -0.795 -0.697 -0.981 -0.836 -0.561 -0.775
Spain 0.347 -0.046 -0.053 -0.074 -0.473 -0.824 -0.472 -0.088
Sweden 0.062 0.111 0.105 0.063 -0.151 -0.089 -0.114 0.167
Switzerland 0.300 0.233 0.197 0.167 0.095 0.073 0.094 0.308
United Kingdom -0.120 -0.150 -0.158 -0.082 -0.669 -0.961 -0.669 -0.118
USA -0.072 -0.054 -0.037 -0.233 -0.258 -0.174 - -0.001

To explain the accuracy more precisely, the mortality surface of the fitted models for
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Swedish Females are plotted in Figure 4.10 during the fitted period. The more smoothed

surface for LCe†0
are attributed to both the smoothing and new adjustment policy.
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Figure 4.10: Mortality surface of the fitted models for Swedish Females (1950:2016).
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4.4.3 Forecast of life expectancy

I compared and contrasted the forecast of life expectancy at birth in 2050 by all these

forecasting techniques for the low-mortality countries. The forecast of life expectancy at

birth till 2050 for these low-mortality countries are given below in Table 4.5. Country-

specific highest forecast are marked using bold texts.

Table 4.5: Forecast of female life expectancy at birth in 2050 for 20 low mortality
countries.

Country LC LCP LM BMS HU HUR HUW LCe†0

Australia 89.24 89.26 89.24 89.65 89.28 88.66 89.42 89.43
Austria 88.95 88.88 88.92 89.65 88.56 89.07 88.51 88.95
Belgium 87.83 87.90 88.02 87.94 88.42 88.30 88.31 88.25
Canada 88.86 88.79 88.78 88.62 88.39 88.47 89.19 88.82
Denmark 86.81 86.78 86.95 86.51 85.91 86.93 86.21 86.75
Finland 89.25 89.36 89.51 88.96 88.01 88.43 89.22 89.99
France 90.26 90.34 90.45 90.54 90.61 90.55 90.13 90.74
Germany 87.59 87.76 87.74 88.37 87.87 87.28 87.53 87.82
Ireland 88.23 87.88 88.36 88.79 89.75 88.61 89.82 88.05
Italy 90.26 90.28 90.30 90.80 90.40 90.12 90.30 90.42
Japan 93.72 93.71 93.67 93.60 91.29 90.57 90.07 93.63
Netherlands 86.87 86.86 86.93 86.86 86.95 86.90 86.96 87.22
New Zealand 87.96 87.92 88.05 88.65 87.93 87.95 87.93 88.15
Norway 88.04 87.98 88.14 88.11 88.42 88.50 88.42 88.55
Portugal 88.41 88.50 88.43 89.40 86.24 90.22 86.24 88.60
Spain 90.66 90.27 90.57 90.22 89.93 89.81 91.47 90.53
Sweden 88.19 88.15 88.23 87.79 87.95 87.87 88.09 88.38
Switzerland 89.83 89.73 89.87 89.56 89.87 88.85 89.21 90.06
United Kingdom 87.12 87.16 87.16 87.54 88.06 87.13 87.67 87.36
USA 85.68 85.42 85.30 84.66 84.08 84.15 80.88 85.12

LCe†0
was the forecasting technique producing the most optimistic forecasts of life

expectancy at birth for 6 countries followed by BMS for 5 countries. The difference

between most optimistic forecast and forecast produced by LCe†0
were very low for

Canada and Japan. Despite of remarkable performance during out-of-sample evaluation

for several countries, HUW produced lower forecast of life expectancy at 2050 for US

Females (which is indicated by blanc space in Table 4.5). To illustrate the forecast of

life expectancy at birth, the forecast of mortality rates and prediction interval of e0 till

2050 are plotted below for Swedish Females in Figure 4.11 and 4.12 respectively.
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Figure 4.11: Forecast of Swedish female mortality rates till 2050. Years are plotted
using a rainbow palette so the earlier years are shown in red, followed by orange,
yellow, green, blue and indigo with the most recent years plotted in violet.
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The forecasts of LCe†0
are smoother than other LC variants but less smoothed than

HU variants. I already showed that Lasso smoothed mortality rates more accurately

than one dimensional smoothing (Figure 4.2 and 4.3). Although, HUW was more ac-

curate than LCe†0
for Swedish Females during out-of-sample evaluation, the mortality

forecast for Swedish Females were more optimistic from LCe†0
than HUW (Table 4.5).

Due to different techniques used in HU variants, the forecasts are also different for each

of them. For mortality forecasting, LCe†0
and LM consider actual data, whereas other

methods utilize the fitted data. Due to lack of smoothing and different adjusting of time

component, the forecast of LM have more jagged pattern than any other methods.

To compare the interval forecast of life expectancy at birth, I applied the exist-

ing semi-parametric bootstrapping technique proposed by Hyndman and Booth (2008).

This technique was mainly designed for non-parametric forecasting obtained from func-

tional data analysis (Hyndman and Ullah, 2007). Following Hyndman and Booth (2008),

simulated forecasts of log mortality rates are obtained by adding disturbances to the

forecast of k̂t which are then multiplied by the fixed age component b̂x. Hence the life

expectancies are estimated for each set of simulated log mortality rates. Prediction

intervals are then constructed from the percentiles of the simulated life expectancies.

Due to lower standard error obtained for newly adjusted k̂t, the interval forecast ob-

tained from LCe†0
are narrower than previous LC variants. Previous studies mentioned

this problem of interval forecasting that the prediction intervals of the Lee-Carter type

models are too narrow and may lead to underestimate the coverage probability (see Lee

and Carter, 1992; Shang, 2012, for example). Interval forecasting thus remained as a

common issue for Lee-Carter type models that has room for improvement. The predic-

tion intervals obtained from LCe†0
for female populations of low mortality countries are

attached in appendix.





Chapter 5

Extending the Proposed Lee-Carter

Method for Coherent Mortality

Forecasting

In this chapter I extend the proposed methodology (LCe†0
) for multi-population forecast-

ing along with other modifications. Multi-population or coherent forecasting is getting

more focus in recent era as it seeks to ensure that the forecasts for related population

holds certain structural relationship based on past pattern of mortality and theoretical

understanding. The concept of coherent mortality forecasting was introduced by Li and

Lee (2005) as an extended hierarchical interface of the Lee-Carter (LC) method. One

of the core problems for coherent forecasting is to choose appropriate reference popula-

tion for a particular population. Adding a low-mortality population with comparatively

high-mortality regime might show better accuracy during out-of-sample evaluation or

most optimistic forecast for population with higher mortality but question remained

about validity of choosing these populations. Another issue concerns the gap between

male and female mortality throughout the lifespan. This issue also involves the choice

of reference populations (see Li and Lee, 2005, for example). Nevertheless, many of the

coherent approaches used males and females of the same country together for coherent

forecasting with assumption of convergence in future mortality (for example, Li and

Lee, 2005). Some studies gave priority to choose the reference population on the basis

of environmental or geo-social issues, however these approaches could not explain the

pattern of coherence in all cases (Kjærgaard et al., 2016; Ahcan et al., 2014). Kjærgaard

et al. (2016) find that a reference population made of small number of countries tend to

perform better than that of larger group in term of forecast accuracy, whereas choosing

countries with closest life expectancy found to be better strategy for several countries.

61
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Instead of life expectancy or geographical or socio-cultural aspects, choosing reference

populations according to closest mortality pattern over time is more preferable in this

sense. Since the second half of the last century, each of the populations have different

pattern of mortality improvement over time which has great impact on country-specific

mortality forecasting as the common factor obtained from reference group depends on it.

To illustrate this, the parameter bx obtained from individual LC for all 20 low-mortality

countries is plotted in Figure 5.1. Recall from 2.1 that bx is the first principal component

capturing relative change in the log mortality rate at each age x.
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Figure 5.1: Estimated bx from fitted Lee-Carter model for females of 20 low mortal-
ity countries (1956:2011). The bold black line is the mean trend of bx for comparing
the countries.

From Figure 5.1, it is clearly visible that each of the countries have their own dis-

tinct characteristics of mortality trend translated from different pattern of age of death

distribution. Thus, the best reference populations characterized by closest age of death

distribution or equivalent measure may perform well to explain the group’s mean trend

of mortality improvement. Another issue is that none of the previous approaches con-

sider period effect on coherent forecasting. Period effect may be reflected by a deviation

of usual mortality pattern since a particular calendar year which may be results of new

intervention or a change in international relations. For example, old-age mortality was

considerably higher in East Germany than West Germany prior to reunification, but it
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converged quickly afterward (Vogt and Missov, 2017). Before reunification, the diffu-

sion of longevity process were different in East Germany, but after that, adaptation of

new health care policies make the convergence faster. Similarly, rapid increase in life

expectancy may be observed for Portugal after joining European Union. Considering

full fitting period in case of coherent forecasting will be thus misleading because clearly

the relation between the populations will not have high impact on mortality before a

certain threshold point of time (period effect).

5.1 Extended method

5.1.1 Choice of reference population

The reference group of a particular country is chosen on the basis of nearest lifespan

disparity (e†0). The notations and practical implementation are the same as equation 4.6.

For a particular population I consider only those populations for which the difference

between observed e†0 is lowest. For a particular population i, another population j will

be in reference group if: ∣∣∣ē†0i − ē†0j∣∣∣ = min, (5.1)

compared to other available populations. To implement this, I estimate the e†0 for all

populations under consideration over the common fitting period and from that I estimate

the population specific ē†0. For m years of available mortality rates and p populations,

the estimates can be presented in the following matrix notation:

Y ear Pop1 Pop2 . . . Popp



t1 e†0(t1,1) e†0(t1,2) . . . e†0(t1,p)

t2 e†0(t2,1) e†0(t2,2) . . . e†0(t2,p)

...
...

...
...

...

tm−1 e†0(tm−1,1) e†0(tm−1,2) . . . e†0(tm−1,p)

tm e†0(tm,1) e†0(tm,2) . . . e†0(tm,p)

ē†0(.,1) ē†0(.,2) . . . ē†0(.,p).
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For a particular population i, I sort all ē†0(t,j) in ascending order. Populations j for

which ē†0(t,j) is closest to ē†0(t,i) will be considered in reference group for population i. The

trend of sorted ē†0(i,j) obtained over time may show inconsistent pattern for full fitting

period. For low-mortality populations considered in this study, I found the consistent

pattern of sorted ē†0(i,j) starting from the period of 1982 as the sorted ē†0(i,j) have almost

same pattern since then. It should be noted that the number of populations and required

gap between ē†0(t,i) and ē†0(t,j) may very in reference group as not all the populations have

symmetric distance of ē†0 between each other.

5.1.2 Coherent forecast of mortality rates

Let us recall the Li and Lee (2005) again from equation 2.5,

lnmx,t,i = ax,i +BxKt + bx,ikt,i + εx,t,i, (5.2)

where i stands for specific country in the group, ax,i is the country specific average log

mortality rate. The term Bx is relative speed of change in mortality at each age x and

mortality index Kt captures the main time trend for the reference group respectively.

The term BxKt is known as common factor as this quantity is common for all the coun-

tries of the group.

To extend the proposed methodology (LCe†0
), first I obtain the smoothed mortality

rates by using Lasso for each population. I added the populations in reference group

according to closest ē†0 mentioned before. The standard Lee-carter methodology is ap-

plied to obtain the initial estimate of the age and time component from the combined

smoothed mortality data. From the experience of high-mortality countries (Section

3.1.2), in this chapter I applied same weight on all populations to overcome problem of

combining larger exposures with smaller ones.

mx,t =
1

p

p∑
i=1

mx,i,t. (5.3)

As these mx,i,t are observed and comes from life table, it has almost null influence of

population size. I used same weight for fitting Li and Lee (2005) also in this chapter.

In this stage, fitted two-factor Lee-Carter model over combined mortality rates will be,

ln(m̂x,t) = âx + B̂xK̂t. (5.4)
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Following Lee and Miller (2001), Li and Lee (2005) made a second stage estimate

of Kt by finding the value of Kt which, for a given population age distribution and

previously estimated ax and bx produces exactly the observed life expectancy for the

fitting period of the model. Following the proposed methodology (LCe†0
), I adjusted

the estimated Kt by partially matching with observed e†0 of the combined smoothed

mortality rates. It is done by solving the following equation:

e†0 observed =
ω∑
0

exp(âx + B̂x.Kt adj)exlx/l0. (5.5)

The ex and lx of equation 5.5 are obtained from life table estimated from fitted

data of combined mortality rates. After obtaining the adjusted K̂t, I identified the most

appropriate period for which this common factor should be estimated using equation 5.4.

The concept of best fitting period comes from the assumption of linear trend of k̂t

in Lee-Carter type models (Booth et al., 2002). For departure of k̂t from linear trend,

the linear fit of k̂t can be improved by proper restriction of the fitting period. Booth

et al. (2002) defined the starting of the fitting period by means of statistical measure

of relative lack of fit of the model. For getting the best fitting period, first I obtain the

close approximation of deviance(t) which is equal to χ2(t) statistic of the lack of fit in

observed distribution of death Dx,t,

χ2(t) =
∑
x

[
Dx,t −D′x,t

]2
D′x,t

. (5.6)

Here D′x,t are fitted deaths which can be obtained from observed exposure Nx,t as

follow:

D′x,t = Nx,t

[
exp(âx + B̂x.Kt adj)

]
. (5.7)

I denote the starting year of the best fitting period by S, whereas the end will be the

last year of the available data for model fitting. Following Booth et al. (2002), the total

lack of fit to the log-linear model comes from two different sources: (i) the base lack

of fit from log-additive model and the adjustment of K̂t and the additional lack of fit

from the imposition of the ARIMA model on K̂t adj. The base lack of fit for the period

S years prior to last observed data is measured by

χ2
logadd(S) =

∑
t

χ2
logadd(t).
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Here the D′x,t are derived from K̂t adj. The total lack of fit to the log-linear model is

χ2
loglin(S) =

∑
t

χ2
loglin(t).

Here the D′x,t are derived from the linear fit of K̂t adj. This total lack of fit will be

greater than or equal to base lack of fit. In order to compare χ2
loglin(S) with χ2

logadd(S)

they are divided by corresponding degrees of freedom (df) to produce mean-χ2 statistic.

For n age groups and m years in the fitting period, the df for χ2
loglin(S) is n(m− 2) and

df for χ2
logadd(S) is (n− 1)(m− 1). The choice of best fitting period S is determined by

the extent of the additional lack of fit relative to the total lack of fit. The additional

lack of fit will be small in case of good fit of the ARIMA model. Additional lack of fit

is defined as ratio of total to base lack of fit,

R(S) =
χ2

loglin(S)/[n(m− 2)]

χ2
logadd(S)/[(n− 1)(m− 2)]

. (5.8)

Marginal effect of including each additional years in S can be obtained from ratio of

the differences in total and base mean-χ2 statistics for S and S + 1,

RD(S) =

[
χ2

loglin(S)− χ2
loglin(S + 1)

]
/n[

χ2
logadd(S)− χ2

logadd(S + 1)
]
/(n− 1)

. (5.9)

Booth et al. (2002) mentioned small values of R(S) and RD(S) indicate that the

additional lack of fit is relatively small. To choose best fitting period, a value of S

for which R(S) and RD(S) are substantially smaller than corresponding statistics for

preceding values of S. Thus, the smallest value obtained for a particular S indicates

that the inclusion of year S − 1 (and preceding years) in the fitting period results in a

relatively large reduction in goodness of fit of the ARIMA model (Booth et al, 2002).

For getting country level coherent forecast, basic LC model is then fitted on country-

specific mortality rates without the common factor. To obtain the country-specific

ordinary least square estimates of bx,i and kt,i, SVD is performed on the following ex-

pression

Zx,i,t = ln(mx,i,t)− âx,i − B̂xk̂t adj (5.10)

The estimation procedure are as before. However, in this stage the LC is fitted

without any adjustment for country-specific kt,i and it is fitted for the best fitting period

obtained during estimation of common factor. A random walk with drift is then fitted
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for both K̂t adj and k̂t,i. To eliminate jump-off error, I use the actual data to get the

forecast.

5.1.3 Data

I have considered male and female populations for the previously used 20 low-mortality

countries in this chapter. Unlike high-mortality countries or LCe†0
in previous chapter, I

considered life table constructed up to age 110 for all the populations in case of coherent

forecasting. This inclusion is important for mortality forecasting of aging societies in

coherent settings as centenarians supposed to be benefited from other populations of

reference group. Due to presence of zero deaths and also missing death rates after

age 100 for several years, I replaced all the mortality rates for age 100 to 110+ by

extrapolated values obtained from Kannisto model (Thatcher et al., 1998). Details of

Kannisto model are attached in Appendix.

5.2 Results

5.2.1 Best reference population

The sorted ē†0 for all the 40 populations from 20 low-mortality countries are given below

in Table 5.1. I estimated ē†0 considering different starting year, the pattern obtained

in Table 5.1 remained steady since 1982. Any starting year after 1982 produces dif-

ferent values of population-specific ē†0, but the pattern among populations remained

unchanged.

Table 5.1: Sorted ē†0 over the period 1982:2011 for the 20 low-mortality countries.

Population ESPF CHEF JPNF SWEF FINF ITAF AUTF NORF

ē†0 9.888 9.922 9.933 9.969 10.011 10.043 10.101 10.150

Population DEUF NLDF FRAF BELF AUSF IRLF PRTF UKF

ē†0 10.246 10.326 10.378 10.454 10.467 10.493 10.618 10.791

Population CANF SWEM NLDM NZLF DNKF JPNM NORM IRLM

ē†0 10.881 10.911 11.039 11.100 11.103 11.310 11.340 11.341

Population CHEM UKM ITAM AUSM DEUM BELM USAF DNKM

ē†0 11.464 11.495 11.547 11.648 11.717 11.800 11.802 11.831

Population CANM AUTM ESPM NZLM FINM FRAM PRTM USAM

ē†0 11.857 11.949 11.990 11.999 12.154 12.516 12.808 13.127

Country codes are same as mentioned in section 2.1. M and F stands for males and females respectively.
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Although future convergence for male-female mortality is assumed, the sorted ē†0 are

ranked naturally with lowest values for females followed by males except for some over-

lapping. This steady pattern from beginning of 1980s can be explained by the impact

of changes in risk factors during end of 1970s for many industrialized countries which

lead to significant decline in cardiovascular diseases (Ouellette et al., 2014). Previous

research suggests that decline in mortality from diseases of the cardiovascular system in

high-income countries is attributable to changes in major risk factors (including smok-

ing), and to innovation of specific treatments (see Capewell et al., 2010, for an example).

A more modest turning point in all-cause mortality was observed in beginning of 1980s

due to change in cancer mortality trends in the 1980s for many of these countries (Ouel-

lette et al., 2014).

The closest populations for a particular one can be obtained using the equation 5.1

on Table 5.1. To illustrate, I applied the equation 5.1 for French Females and sorted

the results. The closest populations for French Females to be use in reference group are

given below in Table 5.2.

Table 5.2: Reference population for French Females based on closest difference in
ē†0 during 1982:2011.

Population FRAF NLDF BELF AUSF IRLF DEUF NORF PRTF∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ - 0.051 0.076 0.088 0.115 0.131 0.227 0.240

Population AUTF ITAF FINF SWEF UKF JPNF CHEF ESPF∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 0.276 0.334 0.367 0.408 0.412 0.444 0.455 0.489

Population CANF SWEM NLDM NZLF DNKF JPNM NORM IRLM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 0.502 0.533 0.660 0.721 0.725 0.932 0.962 0.963

Population CHEM UKM ITAM AUSM DEUM BELM USAF DNKM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 1.086 1.117 1.169 1.270 1.339 1.421 1.424 1.453

Population CANM AUTM ESPM NZLM FINM FRAM PRTM USAM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 1.478 1.571 1.612 1.620 1.776 2.137 2.430 2.749

Country codes are same as mentioned in section 2.1. M and F stands for males and females
respectively.

Unlike previous studies, I did not fix the number of populations in best reference

group (Kjærgaard et al., 2016). Based on existing research, two assumptions are con-

sidered for choosing best reference group: 1) smaller number of countries are preferable

for a persimmons model (for computational purpose) and 2) future convergence in male-

female mortality pattern. For both Li and Lee (2005) and the proposed method, the

best reference group is hence determined from the analysis of forecast accuracy during
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out-of-sample evaluation period. As reference group, a combination of countries pro-

ducing lowest forecast error during out-of-sample evaluation is chosen. The proposed

method of coherent forecasting is denoted by LLe†0
and previous one of Li and Lee (2005)

by LL as before. Details of forecast accuracies for proposed methods are discussed in

next section, here I discuss the findings for French Females only for illustration. I added

populations one at a time in reference group with previous combination for both LLe†0
and LL and used same weight for both methods as mentioned in equation 5.3. The

forecast accuracy for French Female during out-of-sample evaluation is plotted below in

Figure 5.2.
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Figure 5.2: Forecast accuracies for French Females during out-of-sample evaluation
period (2002:2011) considering different sizes of reference group.

For all three measures of forecast accuracy there is a distinct fall (rise) on accuracy

(error) level after adding some certain countries using LLe†0
. LL did not show sharp

threshold like LLe†0
for mean error of e0. All three measures indicated same best reference

population for French female in case of LLe†0
. For LL, MAE and MSE indicates same best

reference group, whereas best reference populations indicated by ME(e0) were different.

Different combination of populations as best reference group from different measures
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of forecast accuracies are observed for many other populations as well. However, this

threshold in level of forecast accuracy is important, because it clearly shows which is

the best reference group. For several other populations, I observed that mean error of

e0 in coherent forecast diminishes after adding lots of populations even though those

populations are not so close to that of interest in terms of observed mortality level.

Adding these populations with huge gap in level of population-specific ē†0 does not have

high impact on MAE or MSE during out-of-sample evaluation (Figure 5.2). The best

reference populations obtained for French Females according to distance of ē†0 with other

population is plotted below in Figure 5.3.
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Figure 5.3: The best reference populations for French Females according to different
measures of forecast accuracy. The blue points are for those populations which are in
best reference group. The black line represents French Females.

For French Females, the ME(e0) showed a sharp rise after adding Italian Females

in reference group. The ē†0 for French Females were closer to populations added in

reference group prior to Italian Females (Table 5.2). The observed e0 of French and

Italian Females along with forecast of e0 from both LL and LLe†0
are plotted below in

Figure 5.4. Both for LL and LLe†0
, the reference group consists of 10 populations which

includes up to Austrian Females (Table 5.2). The observed life expectancies for both of

the populations were close to each other till 2004. Irregular divergence is visible after-

wards and French e0 was more close to forecast of LL than that obtained from proposed

LLe†0
. Clearly, the adjustment policy considered in LLe†0

made this difference for the

populations considered to obtain the best reference group. To get more insight of the
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reference populations for French females, the trend of the e†0 is plotted in Figure 5.5 for

some of the populations of the possible best reference group.
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Figure 5.4: Observed and forecast of e0 for French Females (2002:2011). Observed
Italian Females e0 are also added for comparison.
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Figure 5.5: Trend of e†0 for French Females and some other populations (1956:2001).
The populations in blue lines are in the best reference group for French Females and
red are for those populations which are not in the best reference group.

For Italian Females, recent trend of e†0 is close to other populations in best reference

group seen for French Females. The past trend was quite different compare to those
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which are in the best reference group. This trend also explain the rise in forecast ac-

curacy after adding many populations. For instance, Belgian Males are ranked as 29

th closest population for French Females and the level of mortality is much higher for

them compare to French Females. Merging lots of these divergent populations together

in reference group finally increase accuracy level. Although adding these huge number

of countries increase level of accuracy for life expectancy, but it does not decrease MAE

or MSE than that observed for smaller number of populations in reference group.

5.2.2 Optimal size of best reference group

Unlike previous approaches, I did not restrict the number of populations in best reference

group (Kjærgaard et al., 2016). From empirical analysis, I find different results for LL

and LLe†0
. The best reference groups obtained from LL and LLe†0

for all 40 populations

are attached in appendix. The distribution of number of countries in best reference

group according to difference in
∣∣∣ē†0i − ē†0j∣∣∣ is plotted below in Figure 5.6.
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Figure 5.6: Distribution of countries obtaining reference population according to

difference in
∣∣∣ē†0i − ē†0j

∣∣∣.
Since different measures of forecast accuracy provides different combinations of pop-

ulations as best reference group, I considered all three measures of forecast accuracy

together for the distribution obtained in Figure 5.6. In case of same accuracy level

for two or more combinations, the combination having smaller number of countries is

chosen as best reference group for a parsimonious model. The optimal number of pop-

ulations in reference group and corresponding differences in
∣∣∣ē†0i − ē†0j∣∣∣ considering all
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forecast errors are summarized below in Table 5.3. The errors are considered separately

for males, females and both sexes together.

Table 5.3: Summary statistics for best reference group.

Summary LL
e†0

LL

statistics Male Female All Male Female All

Number Mean 5 5 5 5 5 5
of Median 5 5 5 4 4 4
populations IQR 6 4 5 4 4 4

Difference Mean 0.25 0.16 0.21 0.28 0.19 0.24
in Median 0.15 0.14 0.15 0.15 0.09 0.12∣∣∣ē†0i − ē†0j

∣∣∣ IQR 0.26 0.20 0.24 0.26 0.20 0.25

5.2.3 Forecast accuracy

LLe†0
returns lower MAE and MSE than LL during out-of-sample evaluation for all

combinations of reference population (except for coherent forecast of US Females). The

forecast accuracy for French Females are given below in Table 5.4.

Table 5.4: Comparison of forecast accuracy for French Females during out of sample
evaluation period (2002-2011).

Reference MAE MSE ME(e0) Best fitting
population LL LLe†0

LL LLe†0
LL LLe†0

period (LLe†0
)

FRAF+NLDF 0.103 0.093 0.024 0.019 -0.282 -0.167 1956:2001
Above+BELF 0.105 0.094 0.025 0.020 -0.222 -0.161 1956:2001
Above+AUSF 0.105 0.094 0.025 0.018 -0.235 -0.137 1979:2001
Above+IRLF 0.103 0.098 0.024 0.020 -0.144 -0.129 1979:2001
Above+DEUF 0.102 0.093 0.024 0.018 -0.165 -0.123 1977:2001
Above+NORF 0.102 0.095 0.024 0.018 -0.138 -0.120 1979:2001
Above+PRTF 0.101 0.091 0.024 0.018 -0.127 -0.116 1974:2001
Above+AUTF 0.101 0.089 0.023 0.017 -0.124 -0.105 1974:2001
Above+ITAF 0.101 0.093 0.024 0.019 -0.123 -0.250 1964:2001
Above+FINF 0.101 0.092 0.024 0.019 -0.133 -0.261 1960:2001
Above+SWEF 0.102 0.093 0.024 0.019 -0.141 -0.264 1960:2001
Above+UKF 0.102 0.093 0.024 0.019 -0.139 -0.267 1960:2001
Above+JPNF 0.100 0.093 0.023 0.019 -0.138 -0.212 1957:2001
Above+CHEF 0.101 0.093 0.024 0.019 -0.144 -0.208 1957:2001
Above+ESPF 0.101 0.095 0.024 0.019 -0.138 -0.201 1957:2001
...

...
...

...
...

...
...

...

Blue texts are used for showing the lowest errors obtained by LLe†0
, while red texts are used for

showing lowest error obtained by LL.
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It has been already mentioned before that different measures of forecast accuracy

often leads to different best reference groups. For all combinations of reference group

for French Females, the lowest forecast errors were obtained from LLe†0
. The mortality

surface of the fitted model for French Females are illustrated in Figure 5.7 for explain

the results more closely. The surface obtained from LLe†0
is slightly more smoothed than

LL. Due to use of same weight (Equation 5.3), the effect of smoothing diminishes slowly

with increase in number of populations in reference group.
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Figure 5.7: Mortality surface of fitted coherent models for French Females
(1956:2011).

For LL, the lowest MAE and MSE were obtained from same combination of reference

group while the lowest ME(e0) were obtained from a combination of less number of

populations in the reference group (Table 5.4 ). One important feature of the proposed

LLe†0
is the concept of best fitting period. I did not find best fitting period for all of

the combinations (Table 5.4). The best reference group obtained for French Females

consists of 9 populations and it has the best fitting period for 1974 to 2001. However,

this best fitting period slowly shifts to full fitting period eventually after adding more

countries. A reference group consists of all 40 low-mortality populations consider full

observed period (1956:2001) as best fitting period with 97.3% explained variation. The

comparison of different measures of forecast accuracy during out-of-sample evaluation

period is given below in Table 5.5.
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Table 5.5: Comparison of minimum values of different measures of forecast accuracy
for female populations of 20 countries during out-of-sample evaluation period (2002-
2011).

MAE MSE ME(e0)
Country LL LLe†0

LL LLe†0
LL LLe†0

Australia 0.121 0.096 0.038 0.022 -0.011 -0.004
Austria 0.193 0.156 0.100 0.066 0.007 0.003
Belgium 0.153 0.135 0.070 0.053 0.002 -0.009
Canada 0.080 0.068 0.016 0.013 -0.042 -0.041
Denmark 0.231 0.200 0.129 0.102 -0.672 -0.542
Finland 0.223 0.199 0.125 0.080 -0.017 -0.072
France 0.100 0.089 0.023 0.017 -0.123 -0.106
Germany 0.087 0.082 0.017 0.014 0.049 0.082
Ireland 0.251 0.242 0.143 0.130 -0.998 -1.063
Italy 0.085 0.078 0.019 0.015 -0.005 -0.032
Japan 0.120 0.116 0.034 0.031 0.431 0.465
The Netherlands 0.149 0.138 0.068 0.056 -0.516 0.514
New Zealand 0.224 0.184 0.118 0.838 -0.298 -0.301
Norway 0.230 0.188 0.150 0.100 -0.036 -0.217
Portugal 0.174 0.140 0.074 0.047 -0.597 -0.281
Spain 0.100 0.096 0.023 0.021 0.008 0.011
Sweden 0.169 0.149 0.079 0.063 -0.037 -0.012
Switzerland 0.222 0.165 0.161 0.074 0.105 0.105
United Kingdom 0.079 0.069 0.014 0.010 -0.343 -0.331
USA 0.054 0.054 0.005 0.005 -0.156 -0.221

Since LLe†0
produces lower error than LL for all combinations, the population-specific

lowest forecast error for both LLe†0
and LL are shown in Table 5.5. For several countries,

forecast errors decrease or return to same level of lowest observed error after adding 30

or more populations in reference group. Nevertheless, as mentioned before, I considered

the reference group consists of lower number of populations. LLe†0
and LL produced same

level of MAE and MSE for US Females. For mean error of life expectancy, LL performed

better than that of LLe†0
; LL produced lower error for 11 populations. Unusual rise in

ME(e0) is observed in case of LLe†0
for several other countries, for all of them I noticed

same pattern as discussed before in the section of best reference group. Best fitting

period observed for corresponding best reference group are attached in appendix and

it is given for all three measures of forecast accuracies. The variance explained by the

fitted coherent models are also attached in appendix.
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5.2.4 Forecast of life expectancy

The forecast of female life expectancy at birth for all 20 low-mortality countries are

plotted below in Figure 5.8 and forecast in 2050 are presented in Table 5.6. For both

of the methods, I checked forecast accuracy during out-of-sample evaluation and from

three possible combinations of best reference group I considered the one having lower

number of populations to make coherent forecast.

Figure 5.8: Observed (1956:2011) and forecast (2012:2050) of female life expectancy
at birth for 20 low-mortality countries.

Table 5.6: Comparison of coherent forecast of life expectancy at birth in 2050 for
female populations of 20 low-mortality countries.

Country LL LLe†0
Country LL LLe†0

Australia 89.719 89.382 Japan 92.636 92.777
Austria 89.216 89.382 The Netherlands 87.721 88.009
Belgium 88.538 88.184 New Zealand 87.159 87.432
Canada 88.166 88.166 Norway 87.662 87.636
Denmark 85.943 85.813 Portugal 88.692 90.537
Finland 89.665 89.668 Spain 90.567 90.278
France 90.730 90.824 Sweden 88.327 89.535
Germany 88.154 88.851 Switzerland 90.557 90.194
Ireland 87.934 87.649 United Kingdom 87.571 87.802
Italy 90.082 90.887 USA 85.235 85.237
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Except for Australia, Belgium, Denmark, Ireland, Norway, Spain and Switzerland,

the forecast of life expectancy were higher for LLe†0
than that of LL. To get more insight

of the obtained results I identified the populations for which LLe†0
was most optimistic

and least optimistic than that of LL. For Portugal and Sweden the forecast obtained

from LLe†0
have highest positive difference with that of LL whereas the highest nega-

tive difference were observed for Belgium and Switzerland. The forecast of these four

countries are plotted below in Figure 5.9.

Figure 5.9: Observed (1956:2011) and forecast (2012:2050) of female life expectancy
at birth for Portugal, Sweden, Switzerland and Belgium. For Portugal and Sweden the
positive difference of forecast were highest in 2050 while highest negative difference of
forecast were observed for Switzerland and Belgium.

Among these four countries, Portugal is mentioned before for remarkable improve-

ment in health status and rapid increase of life expectancy (Van Oyen et al., 2013).

Between 2000 and 2015 the female life expectancy increased by almost four years for

Portugal, almost 5 years for males (HMD, 2018). However, these improvements have not

been followed at the same pace for different income groups and disparities exist for other

important dimensions of health. Cardiovascular diseases and cancer are the largest con-

tributors to mortality(Van Oyen et al., 2013). This asymmetry in distribution of death

is reflected also in trend of e†0 (Table 5.1). Portuguese Females ranked 15th in terms

of sorted ē†0 (Table 5.1). Unlike Portugal, Sweden and Switzerland have almost steady

pattern of mortality improvement since beginning. However, this scenario is different

for Danish Females. During the past decades, the life expectancy of Danish women
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has lagged behind that of women in neighboring Western European countries (Jacob-

sen et al., 2002). Among various causes-of-deaths, ischaemic heart diseases followed by

lung cancer are responsible for lower life expectancy of Danish Females. Danish female

mortality is mentioned before for having distinct pattern of remarkable middle-aged

mortality (Juel et al., 2000).

5.2.5 Prediction interval of forecast

I followed the same methodology for prediction interval as mentioned before in section

2.4. The practical implication is slightly different for coherent forecasting for hierarchi-

cal structure of the model than that done before for single population forecasting. Also,

for the proposed method it became more complicated due to best fitting period. From

equation 5.2, it is clear the possible sources of variation are the common factor and the

country-specific product of bx,i and kt,i. Assuming independence for both common factor

and bx,ikt,i during estimation procedure, large number of future deaths are simulated

from both of the estimated model for reference group and country-specific model sepa-

rately and finally the simulated common factor is added with country-specific model to

obtain simulated future death rates using equation 5.2. To avoid computational com-

plexity and to keeping country-specific bx,ikt,i independent from common factor obtained

from the reference group, I considered full fitting period instead of best fitting period for

constructing the prediction intervals. Following the results of forecast of life expectancy

till 2050, the prediction interval of e0 is plotted below in Figure 5.10 for Portugal, Swe-

den, Switzerland and Belgian Females. For Sweden and Belgium, the prediction interval

of the LLe†0
is slightly wider than that of LL, whereas prediction interval from LL are

slightly wider for Portugal and Switzerland. The prediction intervals using LLe†0
for all

female populations of the low mortality countries are attached in appendix.



Chapter 5 - Modified Coherent LC Method 79

LLe0
† Portugal

65
70

75
80

85
90

LL

LLe0
† Sweden

75
80

85
90

LL

LLe0
† Switzerland

75
80

85
90

LL

LLe0
†

1960 1980 2000 2020 2040

75
80

85

Belgium LL

1960 1980 2000 2020 2040

year

e 0

Figure 5.10: Prediction interval of Portuguese, Swedish, Swiss and Belgian female
e0 till 2050. The blue are represents 80% prediction interval and red lines are for 95%
prediction interval.





Chapter 6

Application of Proposed Methods

on (Comparatively) High Mortality

Countries

In this chapter the proposed methods (LCe†0
and LLe†0

) are applied on nine CEE countries-

Belarus, Bulgaria, Estonia, Hungary, Latvia, Lithuania, Russia, Slovakia and Ukraine.

The findings of the existing models on these countries are already illustrated in Chapter

3. Like low-mortality countries, none of the existing models performed uniquely well for

these countries and performances of some models were also subject to further analysis.

This chapter consists of two parts. In first part I compared the LCe†0
with the existing

single population forecasting methods (LC variants) and in second part I compared the

findings of LLe†0
with LL only.

6.1 Findings from LC
e
†
0

6.1.1 Application of LASSO

I compared Lasso with spline based techniques for all of these CEE populations and

Lasso found to be most accurate one for all of these countries as well in terms of mean

absolute error (MAE) and mean squared error (MSE) of the mortality rates. The

smoothed mortality rate for Hungarian Females are plotted below in Figure 6.1. Similar

to low-mortality countries, smoothing by Lasso seems less smoothed than that of other

two methods. The surfaces of the smoothed mortality rates are plotted in Figure 6.2.

81
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Figure 6.1: Comparison of smoothing techniques for Hungarian Female mortality
(1960:2014). Years are plotted using a rainbow palette so the earlier years are shown
in red, followed by orange, yellow, green, blue and indigo with the most recent years
plotted in violet.
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Figure 6.2: Mortality surfaces from difference smoothing techniques for Hungarian
Females (1960:2014).
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The corresponding errors of all three smoothing techniques are plotted below in

Figure 6.3. All three methods produce errors in earlier part of life span and it was highest

for two dimensional smoothing (also for senescence mortality). The accuracy measures

of all these smoothing techniques are given below in Table 6.1. Lasso smooths the

mortality rates with highest level of accuracy. In terms of mean error of life expectancy

at birth, two dimensional smoothing seems more accurate. However, it is also the least

accurate one in terms of MAE and MSE of mortality rates, followed by one dimensional

smoothing.

Table 6.1: Accuracy of smoothing techniques for Hungarian Females (1960:2014).

Measure of accuracy 1 dim Smoothing 2 dim Smoothing LASSO

MAE(mx)×100 8.721 9.705 7.393
MSE(mx)×100 2.503 2.772 1.977
ME(e0) -0.032 -0.019 0.036
MAE(e0) 0.032 0.157 0.052
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Figure 6.3: Errors of smoothing techniques for female mortality of Hun-
gary(1960:2014). Years are plotted using a rainbow palette as before.
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6.1.2 Forecast accuracy

Forecast accuracy in terms of MAE, MSE and ME(e0) for all of these methods during

out-of-sample evaluation are summarized below in Table 6.2, 6.3 and 6.4 respectively.

Table 6.2: Comparison of MAE during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LCe†0

Belarus - - 0.238 - - - 0.123 -
Bulgaria 0.198 0.178 0.178 0.180 0.173 0.164 0.150 0.168
Estonia 0.351 0.347 0.369 0.347 0.365 0.422 0.346 0.314
Hungary 0.235 0.231 0.183 0.170 0.180 0.171 0.156 0.170
Latvia 0.244 0.244 0.268 0.245 0.252 0.310 0.256 0.249
Lithuania 0.390 0.217 0.228 0.225 0.199 0.200 0.187 0.193
Russia - - - - - 0.219 - -
Slovakia 0.192 0.189 0.230 0.182 0.200 0.189 0.185 0.169
Ukraine - - - - - 0.168 0.171 -

A blank place means the forecast of e0 was lower than the last observed value of e0.

Table 6.3: Comparison of MSE during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LCe†0

Belarus - - 0.109 - - - 0.038 -
Bulgaria 0.068 0.057 0.067 0.067 0.061 0.059 0.052 0.057
Estonia 0.215 0.206 0.272 0.210 0.214 0.277 0.206 0.177
Hungary 0.117 0.112 0.081 0.077 0.085 0.081 0.070 0.072
Latvia 0.143 0.143 0.180 0.142 0.142 0.194 0.162 0.153
Lithuania 0.347 0.104 0.135 0.118 0.090 0.097 0.092 0.092
Russia - - - - - 0.072 - -
Slovakia 0.084 0.080 0.121 0.083 0.096 0.096 0.094 0.071
Ukraine - - - - - 0.046 0.050 -

A blank place means the forecast of e0 was lower than the last observed value of e0.

The country-specific highest forecast accuracy are marked with bold texts. The

methods failed to make optimistic forecast of life expectancy in 2050 are omitted for

comparison of forecast accuracy during out-of-sample evaluation. In terms of MAE and

MSE, LCe†0
found to be the most accurate method to forecast mortality rates for Estonia

and Slovakia. Both of these countries have better mortality scenario than other CEE

countries. For mean error of life expectancy, LCe†0
found to be the most accurate method

for Estonia, Hungary and Latvia. Although LCe†0
was not the most accurate method

for majority of these countries, still it produced low ME(e0) for several of them.
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Table 6.4: Comparison of ME(e0) during out-of-sample evaluation period.

Country LC LCP LM BMS HU HUR HUW LCe†0

Belarus - - -1.888 - - - -1.981 -
Bulgaria -0.443 -0.725 -0.820 -1.143 -1.064 -1.182 -0.464 -0.786
Estonia -2.017 -2.179 -2.012 -2.143 -3.181 -3.865 -2.740 -1.977
Hungary -0.896 -1.179 -0.514 -0.224 -0.887 -0.710 -0.582 -0.536
Latvia -1.393 -1.400 -1.388 -1.398 -1.712 -2.249 -1.481 -1.381
Lithuania 0.680 -0.436 -0.078 -0.890 -0.622 -0.465 -0.155 -0.179
Russia - - - - - -2.587 - -
Slovakia -0.440 -0.638 -0.544 -0.199 -1.074 -0.798 -0.665 -0.595
Ukraine - - - - - -1.085 -1.450 -

A blank place means the forecast of e0 was lower than the last observed value of e0.

The benefit of using Lasso and new adjustment technique for k̂t is already illustrated

before for low-mortality countries (see Figure 4.9 for example). The product of bx

(obtained in LCe†0
) and kt for Hungarian Females are plotted below in Figure 6.4. The

surface obtained for LCe†0
is smoother than ordinary LC. This also increases the goodness

of fit, the ordinary LC explained 70.4% variation during fitting period whereas LCe†0

explained 85.9% for Hungarian Females.

(a) LC (b) LC
e
†
0

Figure 6.4: Product of time component and age component for Hungarian Females
(1960:2014) using LC (Lee and Carter, 1992) and proposed LC

e†0
.

The variance explained by the fitted models for the high-mortality countries are at-

tached in appendix. The mortality surface of the fitted models for Hungarian Females

are illustrated in Figure 6.5.
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6.1.3 Forecast of life expectancy at birth

Forecast of female life expectancy at birth from different models are given below in

Table 6.5 for all these nine CEE countries. Similar to most of the LC variants, LCe†0

also failed to produce optimistic forecast for Belarus, Russia and the Ukraine. Unlike

low-mortality countries, LCe†0
did not produce most optimistic forecast of life expectancy

for any of these CEE countries.

Table 6.5: Forecast of female life expectancy at birth in 2050 for selected CEE
countries.

Country e0 LC LCP LM BMS HU HUR HUW LC
e†0

Belarus 78.43 68.68 75.92 78.43 76.82 75.68 77.50 80.55 78.16
Bulgaria 77.25 82.16 79.77 80.24 79.76 78.49 80.83 82.61 79.90
Estonia 81.33 85.67 85.58 85.75 90.30 84.20 82.75 84.95 86.15
Hungary 79.24 82.77 82.66 83.27 85.40 84.19 82.44 87.09 83.40
Latvia 78.73 81.66 81.54 81.68 85.83 81.10 81.34 82.06 81.69
Lithuania 79.37 82.17 80.92 81.77 84.82 80.24 79.63 82.42 81.00
Russia 76.48 73.62 73.12 76.24 72.93 73.54 78.45 76.43 75.95
Slovakia 80.32 84.52 84.26 84.27 85.75 83.59 83.12 83.73 83.62
Ukraine 76.21 70.90 74.05 76.20 73.67 73.37 80.03 78.47 75.76

e0 is the last observed life expectancy during the fitting period from HMD (Table 2.1).

The forecast from LC and HU variants in Table 6.5 are same as presented earlier in

chapter 3 (Table 3.1). The proposed LCe†0
could not overcome the problem of a lower

and pessimistic estimate of future life expectancies for Belarus, Russia and Ukraine.

The interval forecast of life expectancy at birth for all these methods are illustrated

below in Figure 6.6 for Hungarian Females. LC and HUW produced unusually wider

prediction interval compare to other method.
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6.2 Findings from LL
e
†
0

6.2.1 Best reference population

The common time frame for the CEE countries is shorter than the low-mortality coun-

tries. Another complexity is due to severe mortality crisis during mid 1990s, some of the

populations suffered from it till early 2000s. Thus, in absence of any stable combination,

the pattern starting from 2001 is considered. The sorted ē†0 of the CEE populations over

the period 2001:2010 are given below in Table 6.6. Except for some populations this is

the most stable pattern observed for these countries. The combination of sorted closest

populations are different for each different starting year. Similar to the low-mortality

countries, life table constructed up to age 110 year are considered also for these countries.

All the mortality rates for age 100 to 110+ are replaced/extrapolated using Kannisto

model (Thatcher et al., 1998). For country-specific illustration, I applied the equation

5.1 for Hungarian Females. The closest populations for Hungarian Females to be use in

reference group are given below in Table 6.7.

Table 6.6: Sorted ē†0 over the period 2001:2010 for the high-mortality CEE countries.

Population SVKF BGRF ESTF HUNF LTUF BLRF

ē†0 10.373 10.887 11.116 11.193 11.487 11.598

Population LVAF UKRF SVKM RUSF BGRM HUNM

ē†0 11.717 12.101 12.596 12.722 13.062 13.192

Population ESTM BLRM LVAM LTUM UKRM RUSM

ē†0 14.125 14.485 14.536 15.051 15.116 15.799

Country codes are same as mentioned in section 2.1.
M and F stands for males and females respectively.

Table 6.7: Reference population for Hungarian Females based on closest difference
in ē†0 during 2001:2010.

Population HUNF ESTF LTUF BGRF BLRF LVAF∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ - 0.078 0.294 0.307 0.405 0.524

Population SVKF UKRF SVKM RUSF BGRM HUNM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 0.820 0.908 1.403 1.528 1.869 1.998

Population ESTM BLRM LVAM LTUM UKRM RUSM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 2.931 3.291 3.343 3.858 3.923 4.605

Country codes are same as mentioned in section 2.1.
M and F stands for males and females respectively.
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Although these populations are mentioned for divergent mortality pattern, still the

sorted ē†0 are ranked naturally with lowest values for females followed by males except

for some overlapping.

6.2.2 Optimal size of best reference group

To obtain the best reference group for a particular population, I checked the forecast

accuracy during out-of-sample evaluation. Similar to the low-mortality countries, for

all three measures of forecast accuracy there is a clear fall (rise) on accuracy (error)

level after adding some certain countries using LLe†0
; LL also have the same criterion.

Different combination of populations are obtained as best reference group from different

measures of forecast accuracies for the CEE countries also. The distribution of number

of CEE countries in best reference group according to difference in
∣∣∣ē†0i − ē†0j∣∣∣ is plotted

below in Figure 6.7.
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Figure 6.7: Distribution of CEE countries obtaining reference population according

to difference in
∣∣∣ē†0i − ē†0j

∣∣∣.
For some CEE populations, the reference group was larger and this made the distri-

butions more widespread than that observed before for low-mortality countries (Figure

5.6). Diverging mortality pattern between the countries are responsible for this wide

distribution of
∣∣∣ē†0i − ē†0j∣∣∣ in case of CEE countries. For instance, best reference group

of Lithuanian Males obtained from LLe†0
contains 14 populations (including Lithuanian

Males) with difference in ē†0 of 3.564. The optimal number of populations in reference
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group and corresponding differences in
∣∣∣ē†0i − ē†0j∣∣∣ considering all forecast errors are sum-

marized below in Table 6.8. The errors are considered separately for males, females and

both sexes together.

Table 6.8: Summary statistics for best reference group.

Summary LL
e†0

LL

statistics Male Female All Male Female All

Number Mean 5 4 5 2 4 3
of Median 6 3 4 3 3 2
populations IQR 9 3 6 2 3 4

Difference Mean 1.60 0.64 1.05 0.84 0.88 0.87
in Median 1.51 0.51 0.88 0.13 0.96 0.74∣∣∣ē†0i − ē†0j

∣∣∣ IQR 0.82 0.55 0.66 1.34 0.57 1.10

I could not obtain best reference group for several of these CEE populations as the

corresponding models failed to produce optimistic forecast in 2050. More discussion

about the forecast accuracy will be given in next section. Mortality divergence of these

populations are strongly reflected in the summary statistics obtained for the best ref-

erence group. The trend of e†0 for all of these populations are plotted below in Figure

6.8.
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Figure 6.8: Trend of e†0 for the high-mortality CEE countries (1970:2010). The bold
black, blue and yellow line represents Belarus, Russia and the Ukraine.
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In Figure 6.8, the bold black, blue and yellow lines represent Belarus, Russia and the

Ukraine respectively. These countries are mentioned before for highest mortality levels.

Except for Hungary and Slovakia (represented by thin blue and gray line respectively

in Figure 6.8) all of these populations suffered from mortality crisis during mid 1990s

and it was severe for Belarus, Russia and the Ukraine; specially for males (Shkolnikov

et al., 1998). To illustrate the divergence of mortality for these CEE countries, the

fitted bx from individual LC model is plotted below in Figure 6.9 for all the females

populations of the CEE countries. In addition to high-mortality regime, the mortality

improvement over the years are too divergent for obtaining any coherent forecast from

these populations compare to that observed for low-mortality countries (Figure 5.1).
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Figure 6.9: Estimated bx from fitted Lee-Carter model for females of nine CEE
countries (1970:2010). The bold black line is the mean trend of bx for comparing the
countries.

6.2.3 Forecast accuracy

The Comparison of minimum values of different measures of forecast accuracy for female

populations of CEE countries during out-of-sample evaluation period are given below in

Table 6.9. LLe†0
is omitted from this comparison for Belarus as LLe†0

failed to produce

optimistic forecast of life expectancy for Belarus. Except for Russia and the Ukraine,

LLe†0
was most accurate method during out-of-sample evaluation in terms of MAE and

MSE for mortality rates. It was not the case for mean error of life expectancy; LLe†0
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found to be most accurate for Hungary only. Moreover, best fitting period for all of

these populations are observed in case of LLe†0
. Details about the reference populations

according to forecast accuracy and best fitting period are attached in Appendix.

Table 6.9: Comparison of minimum values of different measures of forecast accuracy
for female populations of CEE countries during out-of-sample evaluation period (2001-
2010).

MAE MSE ME(e0)
Country LL LLe†0

LL LLe†0
LL LLe†0

Belarus 0.159 - 0.058 - -0.772 -
Bulgaria 0.187 0.173 0.070 0.057 -0.971 -1.066
Estonia 0.335 0.292 0.236 0.180 -1.819 -1.940
Hungary 0.175 0.137 0.070 0.050 -0.909 -0.663
Latvia 0.180 0.174 0.100 0.090 0.394 -0.577
Lithuania 0.204 0.170 0.100 0.072 -0.117 -0.192
Russia 0.122 0.135 0.025 0.031 -0.866 -1.264
Slovakia 0.211 0.157 0.128 0.066 -0.225 -0.352
Ukraine 0.111 0.113 0.023 0.023 -0.343 -0.667

A blank place means forecast of e0 in 2050 was lower than the observed e0 of 2010.

The mortality surface of the fitted model for Hungarian Females are illustrated in

Figure 6.10 to illustrate the findings more closely. The surface obtained from LLe†0
is

more smoothed than LL.
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Figure 6.10: Mortality surfaces of the fitted coherent models for Hungarian Females
(1970:2010).
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As of Figure 6.10, the effect of smoothing is highly visible for all of these high-

mortality countries unlike that observed for low-mortality countries. The variance ex-

plained by the fitted models for females of high-mortality countries are attached in

appendix.

6.2.4 Forecast of life expectancy

The forecast of female life expectancy at birth in 2050 for all nine CEE countries are

given below in Table 6.10.

Table 6.10: Comparison of coherent forecast of life expectancy at birth in 2050 for
female populations of selected CEE countries.

Country e0 LL LLe†0

Belarus 76.49 77.01 76.37
Bulgaria 77.25 80.15 79.96
Estonia 80.55 84.82 85.43
Hungary 78.34 82.96 82.59
Latvia 77.39 80.78 81.40
Lithuania 78.73 80.51 82.35
Russia 74.86 75.70 75.05
Slovakia 79.15 83.16 83.21
Ukraine 75.19 75.90 76.83

e0 is life expectancy at birth of 2010 from the HMD.

For both of the methods, I checked forecast accuracy during out-of-sample evaluation

and from three possible combinations of best reference group I considered the one having

lower number of populations to make coherent forecast. LLe†0
produced the most opti-

mistic forecast in 2050 for three Baltic countries, Slovakia and the Ukraine. However,

it failed to produce optimistic forecast for Belarus. The methodology of Hyndman and

Booth (2008) is followed to construct the prediction interval as before. The prediction

interval obtained from LLe†0
found to be wider than that of LL in case of Hungarian

Females. The interval forecast of life expectancy at birth for the coherent forecasts are

illustrated below in Figure 6.11 for Hungarian Females.
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Figure 6.11: Prediction interval of Hungarian female e0 by coherent forecast till
2050. The blue area represents 80% prediction interval and red lines are for 95%
prediction interval.





Chapter 7

Conclusions

7.1 Discussion

The Lee-Carter method and its later variants are widely accepted probabilistic ap-

proaches for mortality and life expectancy forecast in many industrial countries. In

this line of research on Lee-Carter framework, I introduced two new mortality forecast-

ing techniques in this thesis: one for single population and another one for coherent

forecasting. Application of Lasso type smoothing prior to fitting the model overcome

the problem of a jagged trend of age-component over the lifespan. I incorporate lifes-

pan disparity during parameter estimation of the existing Lee-Carter model and to our

knowledge, the present study is the first attempt to consider lifespan disparity in ground

of mortality forecasting. Both of these modifications increase the precision of the fore-

casts. Moreover the modifications are further applied for coherent forecasting, along

with introducing a scheme for choosing the reference population is provided. Choosing

the appropriate reference group is an old puzzle for coherent forecasting and different

reference populations bring about quite different results. I addressed this problem by

proposing a robust definition of reference population based on closest trend of lifespan

disparity. This definition is found to be applicable for existing coherent forecasting

techniques as well. Last but not least, consideration of best fitting period also found

to be an adequate addition for conducting coherent forecast; both in terms of forecast

accuracy during out-of-sample evaluation and more optimistic forecast.

Although the results are promising for both of the methods, there are still many open

questions that deserve further investigation. I outline some of them, which are closely

related to the work presented in the thesis.

1. Interval forecast of life expectancy at birth is narrow for several of the populations,
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this narrow prediction interval is more notable in case of LCe†0
than LLe†0

. This is

an old criticism regarding Lee-Carter variants (including Li and Lee, 2005). In the

proposed model it happened due to application of smoothing and new adjustment

technique which made the time component more linear. As a consequence it

reduced the variance of the ARIMA model. In addition, variance of the model is

lower in the proposed method, which also affects the interval forecast.

2. I considered only rank-1 approximation for model fitting. This proposed modi-

fications generated almost similar level of explained variation as of higher order

approximation. Therefore, I did not consider higher order term to avoid compu-

tational complexity. It should be noted that, the higher order terms are also not

free from invariance problem and thus those model also contain constraints for

parameter estimation (see Hyndman and Ullah, 2007, for example).

3. In the proposed definition of reference population, I considered both genders to-

gether. Although several approaches considered males and females together for

coherent forecasting, still, consideration of males and females together in reference

group is a topic of debate due to different pattern of mortality over the lifespan.

There are two responses regarding this issue. First, during sorting out the clos-

est populations, males and females were separated naturally from the value of ē†0.

Getting best reference population from opposite gender did not happen very often

except for few populations. Second, most of these countries consider same policy

for both genders regarding old health care system, as aging is common issue for

both genders. Thus, practical implementation is not a big problem.

4. For coherent forecasting, I applied equal weight on mortality rates of all popula-

tions to construct joint mortality matrix (both for LLe†0
and LL in chapter 5 and

6). This step solves the problem of mixing population with large exposure with

smaller one (for example, Figure 3.6). However, consideration of equal weight

has a consequence. Different mortality patterns from different populations are

result of both the exposure size and distinct distribution of causes-of-deaths. Ap-

plication of same weight underestimate these patterns in joint mortality matrix.

Defining an appropriate population-specific weight to adjust the problem of dif-

ferent distribution of causes-of-deaths will be complicated because different data

sources will be needed to obtain harmonized data for causes-of-death. Although

the low-mortality countries are converging in terms of aging, still, each of these

populations are distinct in terms of distribution of deaths (see Figure 5.1 and

Figure 6.9 for example).
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5. Consideration of life tables with longer lifespan are preferable in coherent settings.

As most of the populations do not have data after age 100 for several years, I

replaced/extrapolated the mortality rates of age 100:110+ using Kannisto model.

In this way, the missing mortality rates might be imputed (keeping the fitted rates

closest to the observed data), but on the other hand it reduces the variability for

centenarian mortality (see Figure 5.1 for an example).

6. Clearly, smoothing can significantly improve the forecast accuracy. For coherent

forecasting, I smoothed each of the populations separately using Lasso and then

combined them in common factor model. Instead of smoothing prior to combine

the mortality rates, applying Lasso after combining populations may produce dif-

ferent results. However, smoothing after combining populations will create com-

putational complexity because in this way smoothing will be needed every time a

new population is added in the reference group.

7. One important auxiliary outcome of this thesis is to verify the performances of

the existing Lee-Carter variants on high-mortality regime. I applied the proposed

methods on these countries also and the performance of the proposed methods

were promising for several of these countries. Nevertheless, most of the models

(including the proposed methods) failed to capture mortality pattern for some

particular populations. Irregular mortality patterns followed by a severe mortality

crisis in later part of fitting period are responsible for pessimistic forecasts of life

expectancies. Unlike the low-mortality countries, the performance of LCe†0
was

not very optimistic in case of CEE countries. It happened because e†0 explains

the mortality trend of a population better than other contemporary longevity

indicators and thus it suffered from the severe mortality crisis of several of these

CEE countries. Therefore, the newly adjusted time component contains the effect

of irregular mortality trend and produces pessimistic forecasts of life expectancies.

In addition to all of these issues, I did not compare the forecast-accuracy or forecast

by bringing two classes of models together (single and coherent). I am leaving this issue

for personal subjective opinion of getting the forecast independently for a particular

population or from a coherent point of view. It should be noted that I considered few

types of time series models for forecasting and finally considered only RWD in both

of the models. Hyndman and Ullah (2007) also tried different time series model for

forecasting and obtained the best results using RWD.
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7.2 Future directions of research

Based on the results and limitations of the current research, I might point out some

future scope of research on mortality forecasting. The first issue will be to overcome

to problem of invariant bx in Lee-carter framework. One possible solution to do that

is to adopt Bayesian approaches on parameter estimation. Secondly, adaptation of co-

hort effect might get more insight of the mortality scenario of a population. Thirdly, I

introduced a new systematic approach to obtain best reference group for a population.

Although e†0 better reflects the distribution of death for a population, further research

on this field may produce better results than proposed method. Fourthly, although

Lasso is found to be more effective smoothing technique for our data, it is a slightly

time consuming method. Faster algorithm for getting optimal results for Lasso will be

helpful. Fifthly, all these techniques are based on series life tables. In new age of big

data revolution, there will be plenty more opportunity than current life table based

mortality forecasting. Some countries already started register based database, so it will

be a complete new ground of research for mortality forecasting.

There are two more possible methodological issues which are closely related to mor-

tality forecasting. For sake of coherent forecasting, it is wise to consider life table of

longer time series and longer life span. New method on the ground of Mathematical

Demography for defining the life span will be helpful for future research on mortality

forecasting. Another innovation in ground of Formal Demography will be helpful for

any research using life expectancy at birth. Despite of being widely accepted measure

of longevity, life expectancy at birth is not free from age-specific bias. Revision of its

definition may change the current limitation.

As final statement of this thesis, like many other approaches on mortality forecast,

the proposed methods are also in same framework of Lee and Carter (1992). Further

researches may consider a fresh start leaving this circle behind.



Appendix A

Old Age Mortality

Kannisto model

Mortality rates are not available for some of the later age-groups for the whole fitting

period. Considering shifting mortality of almost all the populations, I fitted Kannisto’s

model at later age group for coherent forecasting. For ages x = 80, 81, . . . 110+, let

the observed death counts are noted as Dx and exposure as Ex. Mortality rates for

later age groups are then extrapolated by fitting the Kannisto’s model (Thatcher et al.,

1998) of old age mortality on observed death ratesMx to estimate the underlying hazards

function µx as,

µx,(a,b) =
aeb(x−80)

1 + aeb(x−80)
; a, b ≥ 0.

Sensitivity of e†0 due to Kannisto fitted mortality rates

I tried different combinations of fitting period and then added different combination

of smoothed data with observed data. In this analysis I used the data obtained from

fitting period at age 80:100 and adding the smoothed data of age 100:100+ with observed

data till age 99. Among various combinations I tried, this combination was the closest

to real data and the difference of estimated and observed e†0 during the fitting period

(1956-2011) were lowest for this combination.
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Appendix B

Variance Explained by the Fitted

Models

Table B.1: Variance explained by the fitted single population forecasting models for
the low mortality countries.

Country LC LCP LM BMS HU HUR HUW LCe†0

Australia 0.890 0.890 0.890 0.795 0.986 0.880 0.994 0.956
Austria 0.854 0.854 0.854 0.542 0.983 0.836 0.993 0.975
Belgium 0.831 0.831 0.831 0.549 0.983 0.813 0.992 0.922
Canada 0.901 0.901 0.901 0.888 0.988 0.889 0.994 0.980
Denmark 0.681 0.681 0.681 0.644 0.971 0.640 0.989 0.942
Finland 0.774 0.774 0.774 0.355 0.977 0.748 0.990 0.958
France 0.939 0.939 0.939 0.938 0.992 0.956 0.996 0.960
Germany 0.957 0.957 0.957 0.934 0.983 0.952 0.997 0.972
Ireland 0.735 0.735 0.735 0.560 0.984 0.703 0.993 0.909
Italy 0.955 0.955 0.955 0.925 0.994 0.957 0.996 0.977
Japan 0.955 0.955 0.955 0.955 0.997 0.976 0.996 0.965
Netherlands 0.870 0.870 0.870 0.870 0.983 0.874 0.983 0.929
New Zealand 0.639 0.639 0.639 0.447 0.959 0.548 0.959 0.942
Norway 0.654 0.654 0.654 0.349 0.943 0.600 0.943 0.906
Portugal 0.905 0.905 0.905 0.852 0.992 0.906 0.992 0.946
Spain 0.915 0.915 0.915 0.910 0.991 0.886 0.996 0.945
Sweden 0.774 0.774 0.774 0.774 0.977 0.712 0.990 0.977
Switzerland 0.791 0.791 0.791 0.613 0.985 0.778 0.994 0.942
United Kingdom 0.920 0.920 0.920 0.888 0.987 0.915 0.995 0.965
USA 0.916 0.916 0.916 0.863 0.985 0.862 0.993 0.941

Note: Country-specific available years and age-groups are considered for model fitting.
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Table B.2: Variance explained by the fitted single population forecasting models for
the high mortality CEE countries.

Country LC LCP LM BMS HU HUR HUW LCe†0

Belarus 0.465 0.465 0.465 0.423 0.904 0.915 0.944 0.592
Bulgaria 0.712 0.712 0.712 0.300 0.970 0.783 0.982 0.861
Estonia 0.312 0.312 0.312 0.349 0.899 0.814 0.955 0.862
Hungary 0.703 0.703 0.703 0.679 0.975 0.693 0.989 0.859
Latvia 0.420 0.420 0.420 0.419 0.877 0.405 0.934 0.659
Lithuania 0.483 0.483 0.483 0.414 0.898 0.429 0.952 0.877
Russia 0.529 0.529 0.529 0.506 0.964 0.773 0.978 0.513
Slovakia 0.567 0.567 0.567 0.413 0.964 0.478 0.984 0.959
Ukraine 0.583 0.583 0.583 0.518 0.965 0.750 0.980 0.647

Note: Country-specific available years and age-groups are considered for model fitting.

Table B.3: Variance explained by the fitted coherent forecasting models for the low
mortality countries (1956:2011).

Country LL LLe†0
Country LL LLe†0

Australia 0.888 0.886 Japan 0.964 0.961
Austria 0.820 0.810 The Netherlands 0.832 0.834
Belgium 0.806 0.801 New Zealand 0.607 0.600
Canada 0.912 0.917 Norway 0.594 0.583
Denmark 0.594 0.570 Portugal 0.906 0.902
Finland 0.722 0.706 Spain 0.945 0.961
France 0.940 0.957 Sweden 0.723 0.713
Germany 0.949 0.978 Switzerland 0.749 0.742
Ireland 0.688 0.678 United Kingdom 0.925 0.926
Italy 0.960 0.952 USA 0.931 0.931

Table B.4: Variance explained by the fitted coherent forecasting models for the high
mortality CEE countries (1970:2010).

Country LL LLe†0
Country LL LLe†0

Country LL LLe†0

Belarus 0.511 0.485 Hungary 0.648 0.827 Russia 0.341 0.824
Bulgaria 0.406 0.687 Latvia 0.357 0.620 Slovakia 0.450 0.819
Estonia 0.779 0.745 Lithuania 0.429 0.663 Ukraine 0.637 0.705



Appendix C

Prediction Interval for Forecast of

Life Expectancy at Birth

The interval forecast of the female e0 till 2050 are plotted in this section for low-mortality

countries using the proposed methods.
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Figure C.1: Prediction interval of female e0 for Australia, Austria, Belgium and
Canada till 2050 using LC

e†0
. The blue are represents 80% prediction interval and red

lines are for 95% prediction interval.
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Figure C.2: Prediction interval of female e0 for Denmark, Finland, France, Germany,
Ireland, Italy, Japan and the Netherlands till 2050 using LC

e†0
. The blue are represents

80% prediction interval and red lines are for 95% prediction interval.
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Figure C.3: Prediction interval of female e0 for New Zealand, Norway, Portugal,
Spain, Sweden, Switzerland, United Kingdom and USA till 2050 using LC

e†0
. The blue

are represents 80% prediction interval and red lines are for 95% prediction interval.
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Figure C.4: Prediction interval of female e0 for Australia, Austria, Belgium, Canada,
Denmark, Finland, France and Germany till 2050 using LL

e†0
. The blue are represents

80% prediction interval and red lines are for 95% prediction interval.
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Figure C.5: Prediction interval of female e0 for Ireland, Italy, Japan, the Nether-
lands, New Zealand, Norway, Portugal and Spain till 2050 using LL

e†0
. The blue are

represents 80% prediction interval and red lines are for 95% prediction interval.
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Figure C.6: Prediction interval of female e0 for Sweden, Switzerland, United King-
dom and USA till 2050 using LL

e†0
. The blue are represents 80% prediction interval

and red lines are for 95% prediction interval.



Appendix D

Best Reference Group for Coherent

Forecasting

The best reference groups obtained from LL and LLe†0
according to different measures

of forecast accuracy during out-of-sample evaluations are summarized in this section.

The combinations without mentioning best fitting period utilized the full available time

frame in case of LLe†0
. German male forecast accuracies were increasing indefinitely, so

it is omitted for LL. For CEE countries, models failed to produce optimistic forecasts

from any combination of reference group are omitted in this section.

Table D.1: Best reference group for males of low-mortality countries according to
lowest MAE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM 0.15
Canada 10 populations 0.30
Denmark CANM 0.025
Finland NZLM,ESPM,AUTM 0.204
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM 0.00048
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM 0.12
New Zealand ESPM,AUTM 0.049
Norway IRLM 0.0004
Portugal FRAM,USAM,FINM,NZLM,ESPM,AUTM 0.858
Spain NZLM,AUTM,CANM 0.13
Sweden CANM 0.03
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM 0.184
UK CHEM, ITAM,AUSM, IRLM,NORM, JPNM,DEUM,BELM 0.335
USA PRTM 0.31
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Table D.2: Best reference group for males of low-mortality countries according to
lowest MSE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM 0.15
Canada DNKM,USAF,BELM,AUTM,ESPM,DEUM,NZLF,AUSM,FINM 0.29
Denmark CANM 0.029
Finland NZLM,ESPM,AUTM,CANM 0.29
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM,DEUM, IRLM 0.20
Japan NORM, IRLM,CHEM,UKM,DNKM 0.206
Netherlands NZLM,DNKF,SWEM,CANF 0.15
New Zealand ESPM,AUTM,CANM,FINM,DNKM,USAF,BELM 0.199
Norway IRLM 0.0004
Portugal FRAM,USAM,FINM,NZLM,ESPM,AUTM,CANM 0.95
Spain 13 populations 0.52
Sweden CANM 0.03
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM,DEUM 0.25
UK CHEM, ITAM,AUSM, IRLM,NORM, JPNM,DEUM 0.304
USA PRTM 0.31

Table D.3: Best reference group for males of low-mortality countries according to
lowest ME(e0) in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM, ITAM 0.10
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM,ESPM 0.19
Canada 10 populations 0.30
Denmark CANM,USAF 0.029
Finland NZLM,ESPM,AUTM 0.204
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM 0.12
New Zealand ESPM 0.008
Norway IRLM 0.004
Portugal FRAM 0.29
Spain NZLM,AUTM 0.04
Sweden CANM,UKM,NLDM 0.127
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM 0.184
UK CHEM 0.03
USA PRTM,FRAM 0.61
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Table D.4: Best reference group for females of low-mortality countries according to
lowest MAE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria 13 populations 0.39
Belgium AUSF, IRLF,NLDF 0.12
Canada SWEM,UKF,NLDF 0.15
Denmark NZLF,NLDM 0.06
Finland ITAF,SWEF, JPNF,CHEF,AUTF,ESPF,NORF,DEUF,NLDF,FRAF 0.36
France 13 populations 0.44
Germany - -
Ireland AUSF,BELF 0.03
Italy FINF,AUTF,SWEF,NORF, JPNF,CHEF,ESPF 0.15
Japan CHEF,SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF,NLDM,SWEM 0.06
Norway AUTF 0.048
Portugal IRLF,AUSF 0.151
Spain CHEF, JPNF,SWEF 0.08
Sweden JPNF,FINF,CHEF 0.046
Switzerland JPNF,ESPF,SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.403
UK CANF,SWEM,PRTF,NLDM, IRLF 0.297
USA BELM 0.002

Table D.5: Best reference group for females of low-mortality countries according to
lowest MSE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria 13 populations 0.39
Belgium AUSF, IRLF,NLDF 0.12
Canada SWEM,UKF,NLDF,NZLF,DNKF 0.22
Denmark NZLF,NLDM 0.06
Finland 13 populations 0.44
France 13 populations 0.44
Germany 11 populations 0.31
Ireland AUSF,BELF 0.03
Italy FINF,AUTF,SWEF,NORF, JPNF 0.11
Japan CHEF,SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF 0.003
Norway AUTF,DEUF 0.09
Portugal IRLF,AUSF 0.151
Spain CHEF, JPNF,SWEF 0.08
Sweden JPNF,FINF,CHEF, ITAF 0.07
Switzerland JPNF,ESPF,SWEF,FINF 0.088
UK CANF,SWEM,PRTF,NLDM 0.248
USA BELM 0.002
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Table D.6: Best reference group for females of low-mortality countries according to
lowest ME(e0) in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF,NLDF,PRTF,DEUF 0.22
Austria NORF, ITAF,FINF,SWEF,DEUF, JPNF,CHEF 0.17
Belgium AUSF, IRLF,NLDF,PRTF 0.16
Canada SWEM 0.03
Denmark NZLF,NLDM 0.06
Finland ITAF,SWEF, JPNF,CHEF 0.04
France NLDF,BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF, ITAF 0.33
Germany NLDF 0.079
Ireland AUSF 0.02
Italy FINF 0.03
Japan CHEF,SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF,NLDF,SWEM, JPNM,CANF,NORM, IRLM 0.241
Norway AUTF 0.048
Portugal IRLF,AUSF,BELF,UKF,FRAF 0.24
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.43
Sweden JPNF,FINF 0.041
Switzerland JPNF,ESPF,SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.403
UK CANF,SWEM 0.12
USA BELM,DNKM,CANF,DEUM 0.084

Table D.7: Best reference group for males of low-mortality countries according to
lowest MAE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium 9 populations 0.199
Canada 10 populations 0.30
Denmark CANM,USAF,BELM 0.03
Finland NZLM,ESPM,AUTM 0.204
France PRTM 0.29
Germany 12 populations 0.376
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM 0.0004
Portugal 9 populations (1965:) 1.00
Spain NZLM,AUTM,CANM,CANM 0.13
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM,ESPM,AUTM (1965:) 1.17

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.
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Table D.8: Best reference group for males of low-mortality countries according to
lowest MSE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM,ESPM 0.19
Canada DNKM,USAF,BELM,AUTM,ESPM,DEUM,NZLF,AUSM,FINM 0.29
Denmark CANM,USAF,BELM,DEUM 0.11
Finland NZLM,ESPM,AUTM,CANM 0.29
France PRTM 0.29
Germany 13 populations 0.377
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM,DEUM 0.16
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM, JPNM,CHEM,UKM 0.15
Portugal 9 populations (1965:) 1.00
Spain 13 populations 0.52
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM,ESPM,AUTM,DEUM (1965:) 1.40

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.

Table D.9: Best reference group for males of low-mortality countries according to
lowest ME(e0) in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM, ITAM 0.10
Austria ESPM 0.04
Belgium 9 populations 0.25
Canada 10 populations 0.30
Denmark CANM,USAF,BELM 0.03
Finland NZLM,ESPM,AUTM,DNKM,USAF (1964:) 0.35
France PRTM 0.29
Germany 12 populations 0.376
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM 0.004
Portugal FRAM,USAM,FINM,NZLM (1965:) 1.00
Spain NZLM,AUTM 0.04
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM (1965:) 1.12

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.



116 Appendix

Table D.10: Best reference group for females of low-mortality countries according
to lowest MAE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria NORF, ITAF,FINF,SWEF,DEUF, JPNF,CHEF,ESPF,NLDF (1957:) 0.22
Belgium AUSF, IRLF,NLDF,PRTF,DEUF,NORF (1974:) 0.30
Canada SWEM,UKF,NLDF,NZLF 0.21
Denmark NZLF,NLDM,SWEM 0.19
Finland ITAF,SWEF, JPNF,CHEF 0.08
France NLDF, BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF (1974:) 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF 0.20
Ireland AUSF,BELF 0.03
Italy FINF,AUTF,SWEF,NORF, JPNF,CHEF,ESPF,DEUF (1957:) 0.20
Japan CHEF,SWEF,ESPF,FINF 0.07
Netherlands FRAF,DEUF,BELF,AUSF (1977:) 0.14
New Zealand DNKF,NLDM,SWEM, JPNM,CANF,NORM (1976:) 0.24
Norway AUTF 0.048
Portugal IRLF,AUSF,BELF,UKF,FRAF (1966:) 0.24
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 13 populations (1958:) 0.57
UK CANF (1972:) 0.08
USA BELM 0.002

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.

Table D.11: Best reference group for females of low-mortality countries according
to lowest MSE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF 0.012
Austria NORF, ITAF,FINF,SWEF 0.13
Belgium AUSF, IRLF,NLDF,PRTF,DEUF,NORF (1974:) 0.30
Canada SWEM,UKF,NLDF,NZLF 0.21
Denmark NZLF,NLDM,SWEM 0.19
Finland ITAF,SWEF, JPNF,CHEF 0.08
France NLDF, NELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF (1974:) 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF,BELF,AUSF (1977:) 0.22
Ireland AUSF,BELF 0.03
Italy FINF,AUTF,SWEF,NORF, JPNF,CHEF,ESPF,DEUF,NLDF 0.28
Japan CHEF,SWEF,ESPF,FINF 0.07
Netherlands FRAF,DEUF,BELF,AUSF (1977:) 0.14
New Zealand DNKF,NLDM, ,SWEM, JPNM,CANF,NORM (1976:) 0.24
Norway AUTF 0.04
Portugal IRLF,AUSF,BELF,UKF,FRAF (1966:) 0.24
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 10 populations (1957:) 0.45
UK CANF (1972:) 0.08
USA BELM 0.002

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.
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Table D.12: Best reference group for females of low-mortality countries according
to lowest ME(e0) in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria NORF 0.04
Belgium AUSF 0.012
Canada SWEM,UKF,NLDF,NZLF,DNKF 0.22
Denmark NZLF,NLDM,SWEM 0.19
Finland ITAF,SWEF, JPNF,CHEF 0.08
France NLDF,BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF 0.20
Ireland AUSF,BELF,FRAF 0.11
Italy FINF 0.03
Japan CHEF,SWEF,ESPF,FINF 0.07
Netherlands FRAF 0.05
New Zealand DNKF 0.003
Norway AUTF 0.04
Portugal IRLF,AUSF,BELF,UKF,FRAF,CANF,NLDF,SWEM,DEUF (1966:) 0.37
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 13 populations 0.57
UK CANF (1972:) 0.08
USA BELM 0.002

Note: Combinations without mentioning the best fitting period have best fit for 1956 to 2001.

Table D.13: Best reference group for males of CEE countries according to lowest
MAE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM 0.129
Estonia 12 populations 2.526
Hungary BGRM 0.129
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM 1.473
Lithuania - -
Russia - -
Slovakia RUSF 0.125
Ukraine - -
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Table D.14: Best reference group for males of CEE countries according to lowest
MSE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM 0.129
Estonia 10 populations 2.023
Hungary BGRM 0.129
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM 1.473
Lithuania - -
Russia - -
Slovakia RUSF 0.125
Ukraine - -

Table D.15: Best reference group for males of CEE countries according to lowest
ME(e0) in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM 0.129
Estonia 12 populations 2.526
Hungary BGRM 0.129
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM 1.473
Lithuania - -
Russia - -
Slovakia RUSF 0.125
Ukraine - -

Table D.16: Best reference group for females of CEE countries according to lowest
MAE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus LTUF,LVAF,HUNF,ESTF,UKRF,BGRF,SVKM,RUSF 1.123
Bulgaria ESTF,HUNF,SVKF,LTUF 0.600
Estonia HUNF,BGRF,LTUF 0.372
Hungary ESTF,LTUF,BGRF,BLRF 0.405
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM,RUSF,SVKF 1.344
Lithuania BLRF,LVAF,HUNF,ESTF,BGRF,UKRF,SVKM 1.109
Russia 11 populations 1.763
Slovakia BGRF,ESTF 0.743
Ukraine LVAF,SVKM,BLRF,LTUF,RUSF,HUNF,BGRM 0.961
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Table D.17: Best reference group for females of CEE countries according to lowest
MSE in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus LTUF,HUNF,ESTF,UKRF,BGRF,SVKM,RUSF 1.123
Bulgaria ESTF,HUNF,SVKF,LTUF,BLRF,LVAF,UKRF 1.214
Estonia HUNF,BGRF,LTUF,BLRF,LVAF 0.601
Hungary ESTF,LTUF,BGRF,BLRF,LVAF,SVKF,UKRF,SVKM 1.403
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM,RUSF,SVKF 1.344
Lithuania BLRF,LVAF,HUNF 0.294
Russia SVKM,BGRM,HUNM,UKRF,LVAF,BLRF 1.123
Slovakia BGRF,ESTF 0.743
Ukraine LVAF 0.384

Table D.18: Best reference group for females of CEE countries according to lowest
ME(e0) in LL.

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus LTUF,HUNF,ESTF,UKRF,BGRF,SVKM,RUSF 1.123
Bulgaria ESTF,HUNF,SVKF,LTUF 0.600
Estonia HUNF,BGRF,LTUF,SVKF 0.743
Hungary ESTF 0.078
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM,RUSF,SVKF 1.344
Lithuania BLRF,LVAF 0.230
Russia SVKM,BGRM,HUNM,UKRF,LVAF,BLRF 1.123
Slovakia BGRF,ESTF,HUNF,LTUF,BLRF,LVAF 1.344
Ukraine LVAF,SVKM,BLRF,LTUF,RUSF 0.621

Table D.19: Best reference group for males of CEE countries according to lowest
MAE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM,RUSF,SVKM,UKRF,ESTM,LVAF (1974:) 1.345
Estonia 9 populations (1975:) 1.674
Hungary BGRM,RUSF (1974:) 0.470
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM,RUSF (1975:) 1.814
Lithuania 13 populations (1975:) 3.564
Russia - -
Slovakia RUSF,BGRM,UKRF,HUNM,LVAF,BLRF (1974:) 0.998
Ukraine - -

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.
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Table D.20: Best reference group for males of CEE countries according to lowest
MSE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM,RUSF,SVKM,UKRF,ESTM (1974:) 1.062
Estonia 9 populations (1975:) 1.674
Hungary BGRM,RUSF (1974:) 0.470
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM,RUSF (1975:) 1.814
Lithuania 13 populations (1975:) 3.564
Russia - -
Slovakia RUSF,BGRM,UKRF,HUNM,LVAF,BLRF(1974:) 0.998
Ukraine - -

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.

Table D.21: Best reference group for males of CEE countries according to lowest
ME(e0) in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria HUNM,RUSF,SVKM (1976:) 0.466
Estonia 10 populations (1975:) 2.024
Hungary BGRM,RUSF (1974:) 0.470
Latvia BLRM,ESTM,LTUM,UKRM,RUSM,HUNM,BGRM,RUSF (1975:) 1.814
Lithuania 13 populations (1975:) 3.564
Russia - -
Slovakia RUSF,BGRM,UKRF,HUNM,LVAF,BLRF(1974:) 0.998
Ukraine - -

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.

Table D.22: Best reference group for females of CEE countries according to lowest
MAE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria ESTF,HUNF,SVKF 0.513
Estonia HUNF,BGRF 0.229
Hungary ESTF,LTUF,BGRF 0.307
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM (1971:) 0.879
Lithuania BLRF,LVAF,HUNF,ESTF,BGRF,UKRF,SVKM (1971:) 1.109
Russia SVKM (1973:) 0.125
Slovakia BGRF 0.514
Ukraine LVAF (1975:) 0.384

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.
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Table D.23: Best reference group for females of CEE countries according to lowest
MSE in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria ESTF,HUNF,SVKF 0.513
Estonia HUNF,BGRF,LTUF 0.372
Hungary ESTF,LTUF,BGRF 0.307
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM (1971:) 0.879
Lithuania BLRF,LVAF,HUNF,ESTF,BGRF,UKRF,SVKM (1971:) 1.109
Russia SVKM (1973:) 0.125
Slovakia BGRF 0.514
Ukraine LVAF (1975:) 0.384

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.

Table D.24: Best reference group for females of CEE countries according to lowest
ME(e0) in LL

e†0
.

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Belarus - -
Bulgaria ESTF,HUNF,SVKF 0.513
Estonia HUNF 0.078
Hungary ESTF,LTUF,BGRF,BLRF (1971:) 0.405
Latvia BLRF,LTUF,UKRF,HUNF,ESTF,BGRF,SVKM (1971:) 0.879
Lithuania BLRF,LVAF,HUNF,ESTF,BGRF,UKRF,SVKM,SVKF (1971:) 1.114
Russia SVKM (1973:) 0.125
Slovakia BGRF 0.514
Ukraine LVAF (1975:) 0.384

Note: Combinations without mentioning the best fitting period have best fit for 1970 to 2000.
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UN Forecasting for CEE Countries

Table E.1: Forecast of life expectancies at birth for high-mortality CEE countries
using UN forecast for HMD-2018 and WPP-2012†.

Data &
Forecast year Belarus Bulgaria Estonia Hungary Latvia Lithuania Russia Slovakia Ukraine

HMD, 2034 78.672 78.901 83.381 81.165 80.361 80.938 77.463 82.109 77.507
WPP, 2034 77.225 78.914 81.395 80.600 78.960 79.807 76.223 81.071 75.621
HMD, 2044 79.370 79.740 84.528 82.311 81.384 81.851 78.265 83.273 78.371
WPP, 2044 78.022 79.858 82.371 81.592 79.724 80.645 77.204 82.057 76.219
HMD, 2054 79.952 80.633 85.703 83.539 82.432 82.763 79.079 84.436 79.243
WPP, 2054 78.812 80.729 83.315 82.707 80.564 81.428 77.991 83.053 76.906

†For WPP-2012 data, the life expectancies were available from 1873 to 2015. The results are shown
for females only.
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Figure E.1: Forecast of life expectancy at birth for (comparatively) high mortal-
ity countries by UN forecast with 95% prediction interval (HMD-2018). Results are
showed for females only.
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R codes for the proposed methods

library(forecast)

library(ftsa)

library(demography)

library(smoothAPC)

library(MortalitySmooth)

library(MortalityLaws)

#loading the pre-smoothed mortality rates (by lasso)#

load("forecast_40years_ll_edag.RData")

#adding exposure population one by one for creating demogdata object#

# pop1 is for population of interest#

Ext2 <- pop1+pop2+....+pop40

#adding mortality rates one by one for creating demogdata object#

# rate1 is for population of interest#

Dxxt2 <- rate1+rate2+....+rate40

ages <- 0:110

years <- 1956:2011

Dx2 <- matrix(Dxxt2/n, #n is the total number of population added in Dxxt2#

ncol = length(years),

nrow = length(ages))
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Nx2 <- matrix(Ext2,

ncol = length(years),

nrow = length(ages))

#jmdata2 is the demogdata object containing joint mortality rates#

jmdata2 <- demogdata(data = Dx2, pop = Nx2, ages = ages, years = years,

type = "mortality", label = "JMD", name = "Combined Mortality data")

plot(jmdata2)

#Estimating life tables for obtaining e-dagger#

ltjd<-print(lifetable(jmdata2, max.age = 110))

eddgg<-sapply(ltjd, FUN = function(x) sum(x$ex*x$lx*x$mx))

overall_edgr <- cbind.data.frame("years"=years,"edagger"=eddgg)

#estimation of observed e-dagger#

#basic LC model in demography without no adjustment for k(t)#

ln.female <- lca(jmdata2, max.age= max(jmdata2$age), adjust = "none",

interpolate=TRUE)

a1j<-ln.female$ax

b1j<-ln.female$bx

k1j<-ln.female$kt

length(a1j)

length(b1j)

length(k1j)

mx1j<-exp(b1j*k1j[1]+a1j)

# for getting fitted mortality rates from estimated parameters of LC model#

fitmx <- function (kt,ax,bx,transform=FALSE)

{
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clogratesfit <- outer(kt, bx)

logratesfit <- sweep(clogratesfit,2,ax,"+")

if(transform)

return(logratesfit)

else

return(exp(logratesfit))

}

wwmxj<-fitmx(k1j,a1j,b1j)

wmxj<-t(wwmxj)

plot(wmxj)

ages1 <- jmdata2$age

years1 <- jmdata2$year

fDx1 <- matrix(wmxj,

ncol = length(years1),

nrow = length(ages1))

fNx1 <- Nx2

lcfdata1 <- demogdata(data = fDx1, pop = fNx1, ages = ages1, years = years1,

type = "mortality", label = "JMLC", name = "joint")

plot(lcfdata1)

#extracting component of e-dagger from fitted Lee-carter to use in later codes#

fitswed <- print(lifetable(lcfdata1,years = jmdata2$year,

ages = ages1,max.age = max(jmdata2$age)),type = c("period"))

years<-1956:2011

fitted_edgr <- sapply(fitswed, FUN = function(x) sum(x$ex*x$lx*x$mx))

#extracting lx, ex from life table obtained from fitted LC #
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llxx <- matrix(unlist(lapply(fitswed, FUN = function(x) x[, "lx"])),

nrow = length(years), ncol = length(ages1), byrow = TRUE)

eexx <- matrix(unlist(lapply(fitswed, FUN = function(x) x[, "ex"])),

nrow = length(years), ncol = length(ages1), byrow = TRUE)

mmxx <- matrix(unlist(lapply(fitswed, FUN = function(x) x[, "mx"])),

nrow = length(years), ncol = length(ages1), byrow = TRUE)

#the function for matching k_t with observed e-dagger#

# for lc-edaggger it is performed to match with e-dagger obtained from observed,#

#unsmoothed data#

#same function is used for first order modeling of ll-edagger, where matching is#

#done with e-dagger obtained from observed (smoothed) data#

lcadagger<-function (data, series = names(data$rate)[1], years = data$year,

ages = data$age, max.age = max(data$age), adjust = c("edagger", "none"),

chooseperiod = FALSE, minperiod = 20, breakmethod = c("bai", "bms"),

scale = FALSE, restype = c("logrates", "rates", "deaths"),

interpolate = TRUE)

{

if (class(data) != "demogdata") {

stop("Not demography data")

}

if (!any(data$type == c("mortality", "fertility"))) {

stop("Neither mortality nor fertility data")

}

is.el <- function(el,set)

{

is.element(toupper(el),toupper(set))

}

# Compute expected age from single year mortality rates
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get.e0 <- function(x,agegroup,sex,startage=0)

{

lt(x, startage, agegroup, sex)$ex[1]

}

# Replace zeros with interpolated values

fill.zero <- function(x,method="constant")

{

tt <- 1:length(x)

zeros <- abs(x) < 1e-9

xx <- x[!zeros]

tt <- tt[!zeros]

x <- stats::approx(tt,xx,1:length(x),method=method,f=0.5,rule=2)

return(x$y)

}

adjust <- match.arg(adjust)

restype <- match.arg(restype)

breakmethod <- match.arg(breakmethod)

data <- extract.ages(data, ages, combine.upper = FALSE)

if (max.age < max(ages))

data <- extract.ages(data, min(ages):max.age, combine.upper = TRUE)

startage <- min(data$age)

get.series <- function(data,series)

{

if(!is.el(series,names(data)))

stop(paste("Series",series,"not found"))

i <- match(toupper(series),toupper(names(data)))

return(as.matrix(data[[i]]))

}

mx <- get.series(data$rate, series)

pop <- get.series(data$pop, series)

startyear <- min(years)
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stopyear <- max(years)

if (startyear > max(data$year) | stopyear < min(data$year))

stop("Year not found")

startyear <- max(startyear, min(data$year))

if (!is.null(stopyear))

stopyear <- min(stopyear, max(data$year))

else stopyear <- max(data$year)

id2 <- stats::na.omit(match(startyear:stopyear, data$year))

mx <- mx[, id2]

pop <- pop[, id2]

year <- data$year[id2]

deltat <- year[2] - year[1]

ages <- data$age

n <- length(ages)

m <- sum(id2 > 0)

edgr<-overall_edgr$edagger

mx <- matrix(mx, nrow = n, ncol = m)

if (interpolate) {

mx[is.na(mx)] <- 0

if (sum(abs(mx) < 1e-09, na.rm = TRUE) > 0) {

warning("Replacing zero values with estimates")

for (i in 1:n) mx[i, ] <- fill.zero(mx[i, ])

}

}

mx <- t(mx)

mx[mx == 0] <- NA

logrates <- log(mx)

pop <- t(pop)

deaths <- pop * mx

ax <- apply(logrates, 2, mean, na.rm = TRUE)

if (sum(ax < -1e+09) > 0)

stop(sprintf("Some %s rates are zero.\n Try reducing the maximum age

or setting interpolate=TRUE.",

data$type))

clogrates <- sweep(logrates, 2, ax)

svd.mx <- svd(clogrates)
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sumv <- sum(svd.mx$v[, 1])

bx <- svd.mx$v[, 1]/sumv

kt <- svd.mx$d[1] * svd.mx$u[, 1] * sumv

ktadj <- rep(0, m)

logdeathsadj <- matrix(NA, n, m)

z <- log(t(pop)) + ax

x <- 1:m

ktse <- stats::predict(stats::lm(kt ~ x), se.fit = TRUE)$se.fit

ktse[is.na(ktse)] <- 1

agegroup = ages[4] - ages[3]

edgr<-overall_edgr$edagger

fitmx <- function (kt,ax,bx,transform=FALSE)

{

# Derives mortality rates from kt mortality index,

# per Lee-Carter method

clogratesfit <- outer(kt, bx)

logratesfit <- sweep(clogratesfit,2,ax,"+")

if(transform)

return(logratesfit)

else

return(exp(logratesfit))

}

#the following function is taken from demography package#

findroot <- function(FUN,guess,margin,try=1,...)

{

# First try in successively larger intervals around best guess

for(i in 1:5)

{

rooti <- try(stats::uniroot(FUN,interval=guess+i*margin/3*c(-1,1),...),

silent=TRUE)

if(class(rooti) != "try-error")

return(rooti$root)

}

# No luck. Try really big intervals
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rooti <- try(stats::uniroot(FUN,interval=guess+10*margin*c(-1,1),...),

silent=TRUE)

if(class(rooti) != "try-error")

return(rooti$root)

# Still no luck. Try guessing root using quadratic approximation

if(try<3)

{

root <- try(quadroot(FUN,guess,10*margin,...),silent=TRUE)

if(class(root)!="try-error")

return(findroot(FUN,root,margin,try+1,...))

root <- try(quadroot(FUN,guess,20*margin,...),silent=TRUE)

if(class(root)!="try-error")

return(findroot(FUN,root,margin,try+1,...))

}

# Finally try optimization

root <- try(newroot(FUN,guess,...),silent=TRUE)

if(class(root)!="try-error")

return(root)

else

root <- try(newroot(FUN,guess-margin,...),silent=TRUE)

if(class(root)!="try-error")

return(root)

else

root <- try(newroot(FUN,guess+margin,...),silent=TRUE)

if(class(root)!="try-error")

return(root)

else

stop("Unable to find root")

}

quadroot <- function(FUN,guess,margin,...)

{

x1 <- guess-margin

x2 <- guess+margin
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y1 <- FUN(x1,...)

y2 <- FUN(x2,...)

y0 <- FUN(guess,...)

if(is.na(y1) | is.na(y2) | is.na(y0))

stop("Function not defined on interval")

b <- 0.5*(y2-y1)/margin

a <- (0.5*(y1+y2)-y0)/(margin^2)

tmp <- b^2 - 4*a*y0

if(tmp < 0)

stop("No real root")

tmp <- sqrt(tmp)

r1 <- 0.5*(tmp-b)/a

r2 <- 0.5*(-tmp-b)/a

if(abs(r1) < abs(r2))

root <- guess+r1

else

root <- guess+r2

return(root)

}

# Try finding root using minimization

newroot <- function(FUN,guess,...)

{

fred <- function(x,...){(FUN(x,...)^2)}

junk <- stats::nlm(fred,guess,...)

if(abs(junk$minimum)/fred(guess,...) > 1e-6)

warning("No root exists. Returning closest")

return(junk$estimate)

}

if (adjust == "edagger") {

Fundg<-function(p,bx,ax,edgr,llxxi,eexxi){

edgr - sum(exp(ax + bx*p)*llxxi*eexxi)

}

for (i in 1:m) {
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if (i == 1)

guess <- kt[1]

else guess <- mean(c(ktadj[i - 1], kt[i]))

ktadj[i] <- findroot(Fundg, guess = guess, margin = 3 *

ktse[i], edgr=edgr[i] , llxxi=llxx[i,],

eexxi=eexx[i,],ax = ax, bx = bx)

logdeathsadj[,i]<-z[,i]+bx*ktadj[i]

}

}

else if (adjust == "none")

ktadj <- kt

else stop("Unknown adjustment method")

kt <- ktadj

if (chooseperiod) {

if (breakmethod == "bai") {

x <- 1:m

bp <- strucchange::breakpoints(kt ~ x)$breakpoints

bp <- bp[bp <= (m - minperiod)]

bestbreak <- max(bp)

return(lca(data, series, year[(bestbreak + 1):m],

ages = ages, max.age = max.age, adjust = adjust,

interpolate = interpolate, chooseperiod = FALSE,

scale = scale))

}

else {

RS <- devlin <- devadd <- numeric(m - 2)

for (i in 1:(m - 2)) {

tmp <- lcadagger(data, series, year[i:m], ages = ages,

max.age = max.age, adjust = adjust,

chooseperiod = FALSE,

interpolate = interpolate, scale = scale)

devlin[i] <- tmp$mdev[2]

devadd[i] <- tmp$mdev[1]

RS[i] <- (tmp$mdev[2]/tmp$mdev[1])

}

bestbreak <- order(RS[1:(m - minperiod)])[1] - 1
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out <- lcadagger(data, series, year[(bestbreak + 1):m],

ages = ages, max.age = max.age, adjust = adjust,

chooseperiod = FALSE, interpolate = interpolate,

scale = scale)

out$mdevs <- ts(cbind(devlin, devadd, RS), start = startyear,

deltat = deltat)

dimnames(out$mdevs)[[2]] <- c("Mean deviance total",

"Mean deviance base", "Mean deviance ratio")

return(out)

}

}

logfit <- fitmx(kt, ax, bx, transform = TRUE)

if (restype == "logrates") {

fit <- logfit

res <- logrates - fit

}

else if (restype == "rates") {

fit <- exp(logfit)

res <- exp(logrates) - fit

}

else if (restype == "deaths") {

fit <- exp(logfit) * pop

res <- deaths - fit

}

residuals <- fts(ages, t(res), frequency = 1/deltat, start = years[1],

xname = "Age", yname = paste("Residuals", data$type,

"rate"))

fitted <- fts(ages, t(fit), frequency = 1/deltat, start = years[1],

xname = "Age", yname = paste("Fitted", data$type, "rate"))

names(ax) <- names(bx) <- ages

if (scale) {

avdiffk <- -mean(diff(kt))

bx <- bx * avdiffk

kt <- kt/avdiffk

}

deathsadjfit <- exp(logfit) * pop
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drift <- mean(diff(kt))

ktlinfit <- mean(kt) + drift * (1:m - (m + 1)/2)

deathslinfit <- fitmx(ktlinfit, ax, bx, transform = FALSE) *

pop

dflogadd <- (m - 2) * (n - 1)

mdevlogadd <- 2/dflogadd * sum(deaths * log(deaths/deathsadjfit) -

(deaths - deathsadjfit))

dfloglin <- (m - 2) * n

mdevloglin <- 2/dfloglin * sum(deaths * log(deaths/deathslinfit) -

(deaths - deathslinfit))

mdev <- c(mdevlogadd, mdevloglin)

output <- list(label = data$label, age = ages, year = year,

mx = t(mx), ax = ax, bx = bx, kt = ts(kt, start = startyear,

deltat = deltat), residuals = residuals, fitted = fitted,

varprop = svd.mx$d[1]^2/sum(svd.mx$d^2), y = fts(ages,

t(mx), start = years[1], frequency = 1/deltat, xname = "Age",

yname = ifelse(data$type == "mortality", "Mortality",

"Fertility")), mdev = mdev)

names(output)[4] <- series

output$call <- match.call()

names(output$mdev) <- c("Mean deviance base", "Mean deviance total")

output$adjust <- adjust

output$type <- data$type

return(structure(output, class = "lca"))

}

#fisrt stage modeling of Li-Lee; LC with adjustment for K_t according#

#to observed (estimated) e(0)#

# the minimum period for model fitting is 20 or more

funmod2 <- lcadagger(jmdata2, ages=0:110,max.age = max(jmdata2$age),

adjust = "edagger", interpolate=TRUE,

breakmethod = "bms", minperiod = k, chooseperiod = TRUE)
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funmod2

plot(funmod2)

plot(funmod2$fitted, main="fitted mortality rates from

first stage model (1956:2011)")

dim(funmod2$fitted$y)

ax12<-funmod2$ax

bx12<-funmod2$bx

Kt12<-funmod2$kt

mx12<-exp(bx12*Kt12[1]+ax12)

fitmx <- function (kt,ax,bx,transform=FALSE)

{

clogratesfit <- outer(kt, bx)

logratesfit <- sweep(clogratesfit,2,ax,"+")

if(transform)

return(logratesfit)

else

return(exp(logratesfit))

}

wwmx2<-fitmx(Kt12,ax12,bx12)

wmx2<-t(wwmx2)

Dxll12 <- matrix(wmx2,

ncol = length(funmod2$year),

nrow = length(ages))

jmdatall12 <- demogdata(data = Dxll12, pop = Nx2, ages = ages,

years = funmod2$year, type = "mortality", label = "JMD",

name = "Joint Mortality Data")

plot(jmdatall12)

thyr<-outer(Kt12, bx12) # extracting the common factor#
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dim(thyr)

#second level modeling for coherent forecast#

#Lee-Carter (1992) model on country-specific data (mortality data without "THYR")#

liLee<-function(data, series = names(data$rate)[1], years = data$year,

ages = data$age, max.age = max(data$age), adjust = c("dt", "dxt",

"e0", "none"), chooseperiod = FALSE, minperiod = 20,

breakmethod = c("bai", "bms"), scale = FALSE,

restype = c("logrates", "rates", "deaths"), interpolate = FALSE)

{

if (class(data) != "demogdata") {

stop("Not demography data")

}

if (!any(data$type == c("mortality", "fertility"))) {

stop("Neither mortality nor fertility data")

}

is.el <- function(el,set)

{

is.element(toupper(el),toupper(set))

}

get.series <- function(data,series)

{

if(!is.el(series,names(data)))

stop(paste("Series",series,"not found"))

i <- match(toupper(series),toupper(names(data)))

return(as.matrix(data[[i]]))

}

fitmx <- function (kt,ax,bx,transform=FALSE)

{

clogratesfit <- outer(kt, bx)

logratesfit <- sweep(clogratesfit,2,ax,"+" )

if(transform)
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return(logratesfit)

else

return(exp(logratesfit))

}

adjust <- match.arg(adjust)

restype <- match.arg(restype)

breakmethod <- match.arg(breakmethod)

data <- extract.ages(data, ages, combine.upper = FALSE)

if (max.age < max(ages))

data <- extract.ages(data, min(ages):max.age, combine.upper = TRUE)

startage <- min(data$age)

mx <- get.series(data$rate, series)

pop <- get.series(data$pop, series)

startyear <- min(years)

stopyear <- max(years)

if (startyear > max(data$year) | stopyear < min(data$year))

stop("Year not found")

startyear <- max(startyear, min(data$year))

if (!is.null(stopyear))

stopyear <- min(stopyear, max(data$year))

else stopyear <- max(data$year)

id2 <- stats::na.omit(match(startyear:stopyear, data$year))

mx <- mx[, id2]

pop <- pop[, id2]

year <- data$year[id2]

deltat <- year[2] - year[1]

ages <- data$age

n <- length(ages)

m <- sum(id2 > 0)

mx <- matrix(mx, nrow = n, ncol = m)

if (interpolate) {

mx[is.na(mx)] <- 0

if (sum(abs(mx) < 1e-09, na.rm = TRUE) > 0) {

warning("Replacing zero values with estimates")

for (i in 1:n) mx[i, ] <- fill.zero(mx[i, ])
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}

}

mx <- t(mx)

mx[mx == 0] <- NA

logrates <- log(mx)

pop <- t(pop)

deaths <- pop * mx

ax <- apply(logrates, 2, mean, na.rm = TRUE)

tgy<-ax+thyr

if (sum(ax < -1e+09) > 0)

stop(sprintf("Some %s rates are zero.\n Try reducing the maximum age

or setting interpolate=TRUE.",

data$type))

corates<-sweep(logrates,2,ax)

colgrates<-corates-thyr

svd.mx <- svd(colgrates)

sumv <- sum(svd.mx$v[, 1])

bx <- svd.mx$v[, 1]/sumv

kt <- svd.mx$d[1] * svd.mx$u[, 1] * sumv

ktadj <- rep(0, m)

logdeathsadj <- matrix(NA, n, m)

z <- log(t(pop)) + ax

x <- 1:m

ktse <- stats::predict(stats::lm(kt ~ x), se.fit = TRUE)$se.fit

ktse[is.na(ktse)] <- 1

agegroup = ages[4] - ages[3]

if (adjust == "dxt") {

options(warn = -1)

for (i in 1:m) {

y <- as.numeric(deaths[i, ])

zi <- as.numeric(z[, i])

weight <- as.numeric(zi > -1e-08)

yearglm <- stats::glm(y ~ offset(zi) - 1 + bx, family = stats::poisson,

weights = weight)

ktadj[i] <- yearglm$coef[1]

logdeathsadj[, i] <- z[, i] + bx * ktadj[i]
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}

options(warn = 0)

}

else if (adjust == "dt") {

FUN <- function(p, Dt, bx, ax, popi) {

Dt - sum(exp(p * bx + ax) * popi)

}

for (i in 1:m) {

if (i == 1)

guess <- kt[1]

else guess <- mean(c(ktadj[i - 1], kt[i]))

ktadj[i] <- findroot(FUN, guess = guess, margin = 3 *

ktse[i], ax = ax, bx = bx, popi = pop[i, ],

Dt = sum(as.numeric(deaths[i,])))

logdeathsadj[, i] <- z[, i] + bx * ktadj[i]

}

}

else if (adjust == "e0") {

e0 <- apply(mx, 1, get.e0, agegroup = agegroup, sex = series,

startage = startage)

FUN2 <- function(p, e0i, ax, bx, agegroup, series, startage) {

e0i - estimate.e0(p, ax, bx, agegroup, series, startage)

}

for (i in 1:m) {

if (i == 1)

guess <- kt[1]

else guess <- mean(c(ktadj[i - 1], kt[i]))

ktadj[i] <- findroot(FUN2, guess = guess, margin = 3 *

ktse[i], e0i = e0[i], ax = ax, bx = bx,

agegroup = agegroup,

series = series, startage = startage)

}

}

else if (adjust == "none")

ktadj <- kt

else stop("Unknown adjustment method")
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kt <- ktadj

if (chooseperiod) {

if (breakmethod == "bai") {

x <- 1:m

bp <- strucchange::breakpoints(kt ~ x)$breakpoints

bp <- bp[bp <= (m - minperiod)]

bestbreak <- max(bp)

return(lca(data, series, year[(bestbreak + 1):m],

ages = ages, max.age = max.age, adjust = adjust,

interpolate = interpolate, chooseperiod = FALSE,

scale = scale))

}

else {

RS <- devlin <- devadd <- numeric(m - 2)

for (i in 1:(m - 2)) {

tmp <- lca(data, series, year[i:m], ages = ages,

max.age = max.age, adjust = adjust, chooseperiod = FALSE,

interpolate = interpolate, scale = scale)

devlin[i] <- tmp$mdev[2]

devadd[i] <- tmp$mdev[1]

RS[i] <- (tmp$mdev[2]/tmp$mdev[1])

}

bestbreak <- order(RS[1:(m - minperiod)])[1] - 1

out <- lca(data, series, year[(bestbreak + 1):m],

ages = ages, max.age = max.age, adjust = adjust,

chooseperiod = FALSE, interpolate = interpolate,

scale = scale)

out$mdevs <- ts(cbind(devlin, devadd, RS), start = startyear,

deltat = deltat)

dimnames(out$mdevs)[[2]] <- c("Mean deviance total",

"Mean deviance base", "Mean deviance ratio")

return(out)

}

}

logfit <- fitmx(kt, ax, bx, transform = TRUE)

if (restype == "logrates") {
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fit <- logfit

res <- logrates - fit

}

else if (restype == "rates") {

fit <- exp(logfit)

res <- exp(logrates) - fit

}

else if (restype == "deaths") {

fit <- exp(logfit) * pop

res <- deaths - fit

}

residuals <- fts(ages, t(res), frequency = 1/deltat, start = years[1],

xname = "Age", yname = paste("Residuals", data$type,

"rate"))

fitted <- fts(ages, t(fit), frequency = 1/deltat, start = years[1],

xname = "Age", yname = paste("Fitted", data$type, "rate"))

names(ax) <- names(bx) <- ages

if (scale) {

avdiffk <- -mean(diff(kt))

bx <- bx * avdiffk

kt <- kt/avdiffk

}

deathsadjfit <- exp(logfit) * pop

drift <- mean(diff(kt))

ktlinfit <- mean(kt) + drift * (1:m - (m + 1)/2)

deathslinfit <- fitmx(ktlinfit, ax, bx, transform = FALSE) *

pop

dflogadd <- (m - 2) * (n - 1)

mdevlogadd <- 2/dflogadd * sum(deaths * log(deaths/deathsadjfit) -

(deaths - deathsadjfit))

dfloglin <- (m - 2) * n

mdevloglin <- 2/dfloglin * sum(deaths * log(deaths/deathslinfit) -

(deaths - deathslinfit))

mdev <- c(mdevlogadd, mdevloglin)

output <- list(label = data$label, age = ages, year = year,

mx = t(mx), ax = ax, bx = bx, kt = ts(kt, start = startyear,
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deltat = deltat), residuals = residuals, fitted = fitted,

varprop = svd.mx$d[1]^2/sum(svd.mx$d^2), y = fts(ages, t(mx),

start = years[1], frequency = 1/deltat, xname = "Age",

yname = ifelse(data$type == "mortality", "Mortality",

"Fertility")), mdev = mdev)

names(output)[4] <- series

output$call <- match.call()

names(output$mdev) <- c("Mean deviance base", "Mean deviance total")

output$adjust <- adjust

output$type <- data$type

return(structure(output, class = "lca"))

}

#country specific model fitting with demogdata object "country"#

llcountry <- liLee(country, years = 1956:2011, max.age = 110, adjust = "none",

interpolate = TRUE)

axicountry<-llcountry$ax

bxicountry<-llcountry$bx

Kticountry<-llcountry$kt

#We need to add the common factor now with the fitted rate from #

#country-specific model#

fitttmx <- function (kt,ax,bx,thyr,transform=FALSE)

{

clogratesfit <- outer(kt, bx)

logratesfitt <- sweep(clogratesfit,2,ax,"+")

logratesfit <- logratesfitt+thyr

if(transform)

return(logratesfit)

else

return(exp(logratesfit))
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}

augfitllcountry<-fitttmx(Kticountry,axicountry,bxicountry, thyr)

augfittllcountry<-t(augfitllcountry)

#creating demogdata object of the fitted rate#

Dxfitllcountry <- matrix(augfittllcountry,

ncol = length(years),

nrow = length(ages))

Nxllcountry <- matrix(countryfor$pop$Female,

ncol = length(years),

nrow = length(ages))

countryfit <- demogdata(data = Dxfitllcountry, pop = Nxllcountry, ages = ages,

years = years, type = "mortality", label = "LABEL", name = "GENDER")

plot(countryfit)

# forecasting of common factor (39 years) to add with country-specific model#

forrthyrcountry<-forecast(funmod2,h=39,jumpchoice = "actual")

dim(forrthyrcountry)

life.expectancy(forecast(funmod2,h=39))

#forcast of common factor#

lioncountry<-outer(forrthyrcountry$kt.f$mean,funmod2$bx)

dim(lioncountry)

#adding the common factor with forecast#

althundercountry<-log(thundercountry$rate$Female)

llthundercountry<-exp(althundercountry+t(lioncountry))
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#extracting previous population as dummy for constructing demogdata object for forecast#

countrycom<-extract.years(country, years = 1973:2011)

#creating demogdata for getting forecast#

#ages <- belarus$age

yearsth <- 2012:2050

Dxthcountry <- matrix(llthundercountry,

ncol = length(yearsth),

nrow = length(ages))

Nxforcountry <- matrix(countrycom$pop$Female,

ncol = length(yearsth),

nrow = length(ages))

countryllthunder <- demogdata(data = Dxthcountry, pop = Nxforcountry,

ages = ages, years = yearsth, type = "mortality", label = "LABEL",

name = "GENDER")

plot(countryllthunder)

compare.demogdata(countrycom,countryllthunder, series = "Female")

## prediction intervavl ##

part1<-e0(forrthyrcountry, PI=TRUE)

part2<-e0(thundercountry, PI=TRUE)

#simulation of future life expectancy for augmented model#

llflife.expectancy<-function (data, series = NULL, e0level, years = data$year,

type = c("period", "cohort"), age, max.age = NULL, PI = FALSE, ...)

{

type <- match.arg(type)

if (is.element("fmforecast", class(data))) {

if (data$type != "mortality")

stop("data not a mortality object")
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hdata <- list(year = data$model$year, age = data$model$age,

type = data$type, label = data$model$label,

lambda = data$lambda)

hdata$rate <- list(data$model[[4]])

if (min(hdata$rate[[1]], na.rm = TRUE) < 0 | !is.null(data$model$ratio))

hdata$rate <- list(InvBoxCox(hdata$rate[[1]], data$lambda))

if (type == "cohort") {

hdata$year <- c(hdata$year, data$year)

hdata$rate <- list(cbind(hdata$rate[[1]], data$rate[[1]]))

}

names(hdata$rate) <- names(data$model)[4]

if (!is.null(data$model$pop)) {

hdata$pop = list(data$model$pop)

names(hdata$pop) <- names(hdata$rate)

if (type == "cohort") {

n <- ncol(hdata$pop[[1]])

h <- length(hdata$year) - n

hdata$pop[[1]] <- cbind(hdata$pop[[1]], matrix(rep(hdata$pop[[1]][,

n], h), nrow = nrow(hdata$pop[[1]]), ncol = h))

}

}

class(hdata) <- "demogdata"

hdata$rate[[1]][is.na(hdata$rate[[1]])] <- 1 - 1e-05

if (is.null(max.age))

max.age <- max(data$age)

if (missing(age))

age <- min(hdata$age)

x <- stats::window(life.expectancy(hdata, type = type,

age = age, max.age = max.age),

end = max(data$model$year))

xf <- life.expectancy(data, years = years, type = type,

age = age, max.age = max.age)

if (type == "cohort") {

xf <- ts(c(stats::window(x, start = max(data$model$year) -

max.age + age + 1, extend = TRUE), xf),

end = max(time(xf)))
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if (sum(!is.na(xf)) > 0)

xf <- stats::na.omit(xf)

else xf <- stop("Not enough data to continue")

if (min(time(x)) > max(data$model$year) - max.age +

age)

x <- NULL

else x <- stats::window(x, end = max(data$model$year) -

max.age + age)

}

out <- structure(list(x = x, mean = xf, method = "FDM model"),

class = "forecast")

if (is.element("lca", class(data$model)))

out$method = "Coherent LC model"

else if (!is.null(data$product))

out$method = "Coherent FDM model"

if (PI) {

e0calc <- (!is.element("product", names(data$rate)) &

!is.element("ratio", names(data$rate)) & is.null(data$model$ratio))

if (is.null(data$product) & is.null(data$var) & is.null(data$kt.f))

warning("Incomplete information. Possibly this is from a coherent\n

model and you need to pass the entire object.")

else {

sim <- newsimdata

if (e0calc) {

e0sim <- matrix(NA, dim(sim)[2], dim(sim)[3])

simdata <- data

if (type == "cohort")

simdata$year <- min(time(out$mean)) - 1 +

1:dim(sim)[2]

for (i in 1:dim(sim)[3]) {

simdata$rate <- list(as.matrix(sim[, , i]))

names(simdata$rate) <- names(data$rate)[1]

e0sim[, i] <- life.expectancy(simdata, type = type,

age = age, max.age = max.age)

}

e0sim <- e0sim[1:length(xf), , drop = FALSE]
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if (is.element("lca", class(data$model)))

out$level <- e0level

out$lower <- ts(apply(e0sim, 1, quantile, prob = 0.5 -

out$level/200, na.rm = TRUE))

out$upper <- ts(apply(e0sim, 1, quantile, prob = 0.5 +

out$level/200, na.rm = TRUE))

stats::tsp(out$lower) <- stats::tsp(out$upper) <- stats::tsp(out$mean)

}

out$sim <- sim

}

}

return(out)

}

else {

if (!is.element("demogdata", class(data)))

stop("data must be a demogdata object")

if (data$type != "mortality")

stop("data must be a mortality object")

if (is.null(series))

series <- names(data$rate)[1]

if (missing(age))

age <- min(data$age)

return(life.expectancy(data, series = series, years = years,

type = type, age = age, max.age = max.age))

}

}

#for 80% prediciton interval#

Fe0dag80<-llflife.expectancy(thundercountry, e0level=80, age=0, PI=TRUE)

#for 95% prediciton interval#

Fe0dag95<-llflife.expectancy(thundercountry, e0level=95, age=0, PI=TRUE)

## variance explained ##



# for lc-edagger#

funmod2$varprop

# for coherent method#

numataus<-(log(country$rate$Female) - log(countryfit$rate$Female))^2

denomataus<-(sweep(log(country$rate$Female), 1, llcountry$ax))^2

varexpl <- 1-sum(numataus)/sum(denomataus)
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