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Abstract

Test equating is a statistical procedure to ensure that scores from different test forms
are comparable and can be used interchangeably (González and Wiberg, 2017). There
are several methodologies available to perform equating, some of which are based on
the Classical Test Theory (CTT) framework and others are based on the Item Response
Theory (IRT) framework.

After a short overview of latent trait models and test equating on Chapter 1, Chapter 2
of this thesis proposes a procedure to compare equating transformations originated from
different frameworks. As example, we have compared Item Response Theory Observed-
Score Equating (IRTOSE), Kernel Equating (KE) and IRT Kernel Equating (IRTKE)
under different scenarios. Our results suggest that IRT methods tend to provide better
results than KE even when the data are not generated from IRT processes. KE can
provide satisfactory results if a proper pre-smoothing solution can be found, while also
being much faster than IRT methods. For daily applications, we recommend observing
the sensibility of the results to the equating method, minding the importance of good
model fit and meeting the assumptions of the framework.

Within the IRT framework, if the statistical modeling of the scores from each test form
is performed independently, their respective parameters will be on different scales and
thus incomparable. Equating solves this problem by transforming item parameters so
they are all on the same scale. Popular IRT methods for equating pairs of test forms
include the mean-sigma, mean-mean, Stocking–Lord and Haebara (Kolen and Brennan,
2014). For multiple forms, it might be necessary to employ more elaborate methods
which take into account all the relationships between the forms.

Chapter 3 addresses this issue, as we propose a new statistical methodology that simul-
taneously equates a large number of test forms. Our proposal differentiates itself from
the current state of the art by using the likelihood function of the true item parameters
and the equating coefficients to perform the simultaneous estimation of all equating
coefficients and by taking into account the heteroskedasticity of the item parameter



estimates as well as the correlations between those estimates on each test form. Such
innovations give this new method the potential to yield equating coefficient estimates
which are more efficient than what is currently available in the literature, albeit at a
computational cost due to its increased complexity. This is indeed what has been ob-
served in some of the simulations performed. Greater estimation efficiency is especially
important in situations involving item parameters with extreme values.



Sommario

La procedura statistica di equating di un test viene utilizzata per garantire che i pun-
teggi di diverse versioni di un test siano comparabili e possano essere usati in modo
intercambiabile (González and Wiberg, 2017). Esistono diverse metodologie disponibili
per eseguire l’equating, alcune delle quali sono basate sulla teoria classica dei test e altre
sono basate sulla Item Response Theory (IRT).

Dopo una breve panoramica sui modelli per variabili latenti e sull’equating nel Capi-
tolo 1, nel Capitolo 2 di questa tesi si propone una procedura per confrontare le conver-
sioni originate da diversi metodi di equating. Ad esempio, abbiamo confrontato i metodi
Item Response Theory Observed-Score Equating (IRTOSE), Kernel Equating (KE) e
IRT Kernel Equating (IRTKE) in diversi scenari. I nostri risultati suggeriscono che i
metodi IRT tendono a fornire risultati migliori rispetto a KE anche quando i dati non
sono generati da processi IRT. KE può fornire risultati soddisfacenti se si può trovare
un buon modello, pur essendo molto più veloce dei metodi IRT. Per le applicazioni
quotidiane, raccomandiamo di osservare la sensibilità dei risultati al metodo di equat-
ing, prestando attenzione all’importanza della bontà di adattamento del modello e del
soddisfacendo le ipotesi alla base del metodo.

All’interno dell’approccio IRT, se la modellazione statistica delle diverse versioni di un
test viene eseguita in modo indipendente, i rispettivi parametri saranno su scale diverse
e quindi incomparabili. Il processo di equating risolve questo problema trasformando i
parametri degli item in modo che siano tutti sulla stessa scala. I metodi IRT più usati
nel caso di due versioni di un test includono il mean-sigma, mean-mean, Stocking–Lord
e Haebara (Kolen and Brennan, 2014). Per più di due versioni di un test, potrebbe
essere necessario utilizzare metodi più elaborati che tengano conto di tutte le relazioni
tra di esse.

Il Capitolo 3 affronta questo problema, in quanto proponiamo una nuova metodologia
statistica che esegue l’equating simultaneamente su un gran numero di versioni di un
test. La nostra proposta si differenzia dallo stato attuale dell’arte usando la funzione di



verosimiglianza dei veri parametri degli item e dei coefficienti di equating per eseguire la
stima simultanea di tutti i coefficienti di equating, tenendo conto dell’eteroschedasticità
delle stime dei parametri degli item e della correlazione tra di essi. Tali innovazioni
danno a questo nuovo metodo il potenziale di fornire stime di coefficienti di equating
più efficienti di quanto attualmente disponibile in letteratura, sebbene a un costo com-
putazionale dovuto alla sua maggiore complessità. Questo è effettivamente ciò che è
stato osservato in alcune delle simulazioni eseguite. Una maggiore efficienza di stima è
particolarmente importante in situazioni che coinvolgono parametri degli item con valori
estremi.
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Chapter 1

Introduction

1.1 An overview of latent trait models

In his seminal work, Lord (1953) considered the perils of using the “raw score”—the
addition of the scores across all items in a test—as an estimate of the underlying
characteristic—also called the “latent trait” or “ability”—of an individual. The esti-
mation of latent traits through the application of tests is at the heart of Classical Test
Theory (CTT) and Item Response Theory (IRT), two popular statistical frameworks
for addressing measurement problems in fields such as psychology and education. The
basic difference between these two frameworks is how one focuses on total test scores
and the other focuses on the responses to the individual items.

1.1.1 Classical Test Theory

In CTT, the observed score (X) of an individual in a test is composed of their true score
(T ) and a residual error score (E). Since only X is observed, the equation X = T + E

is unsolvable unless some assumptions are made. Thus, we assume that:

1. T and E are uncorrelated;

2. the average E in the population of examinees is zero;

3. the Es between two parallel tests—those that measure the same content and for
which examinees have the same true score—are uncorrelated.

Under these assumptions, T is the expected value of an examinee’s observed score across
a large number of repeated (e.g. parallel) testings (Crocker and Algina, 2008).

1



2 Section 1.1 - An overview of latent trait models

Over the years, several measurement models have used CTT as a basis, either revising,
expanding or weakening the basic assumptions laid above. Lord and Novick (1967) note
that CTT models may be also referred to as “weak models” due to how easy it is for
data to meet their assumptions.

1.1.2 Item Response Theory

Like CTT, IRT targets the estimation of a subject’s latent trait by measuring their
performance in a test. Unlike CTT, though, IRT focuses on the individual answers to
the items that compose the test. There is great flexibility in the characteristics of the
item responses—they can be discrete, continuous, dichotomous, polytomous, ordered,
unordered—, and the latent trait under measurement can have just one or multiple
dimensions. The most common cases, however, deal with the measurement of a single,
unidimensional ability through the administration of dichotomous items. The rela-
tionship between those items and the ability is typically modeled by a one-, two- or
three-parameter logistic model, the latter of which is described below.

Let θi ∈ R be the latent trait under measurement on individual i and Xij = {0, 1} the
score of i in item j. Moreover, let aj > 0, bj ∈ R and cj ∈ [0, 1) be three parameters
associated with item j, respectively known as the item discrimination, difficulty and
pseudo-guessing probability. The probability of Xij = 1 given θi, aj, bj and cj can be
expressed as

Pr(Xij = 1|θi; aj, bj, cj) = cj +
1− cj

1 + exp [−aj(θi − bj)]
, (1.1)

which is also called the Item Characteristic Function (ICF). If we fix the item parameters,
then the relation between Pr(Xij = 1) and θi can be represented by a shape akin to the
one on Fig. 1.1, which is called the Item Characteristic Curve (ICC). On that particular
example, we have set aj = 1, bj = 0, and cj = 0.2. This can be verified by checking
the position of the inflection point of the curve (located at (0, 0.6), i.e. the point where
θ = bj = 0 and Pr(Si = 1) is in the middle of the 0.2–1.0 range), its inclination on
that point (given by aj = 1) and the limit of the curve as θi approaches −∞ (given by
cj = 0.2).

The model above is called the three-parameter logistic model, or 3PL, due to the exis-
tence of three different item parameters and to how they model the relationship between
the probability of scoring 1 on this item and an ability θ through a logistic curve. Alter-
native formulations of Eq. (1.1) consider the inclusion of a constant D that multiplies
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Figure 1.1: Item Characteristic Curve for a = 1, b = 0 and c = 0.2.

the parameter aj. On this work, we consider D = 1 for simplicity, but it is also com-
mon to define D = 1.7 to make the ICC better approximate the Normal cumulative
distribution function (CDF).

An alternative to ICFs derived from the logistic curve are those based on the standard
Normal CDF, which results in models such as the 3PNO, or three-parameter Normal
ogive model. The 3PNO may be similarly-shaped, but it is functionally different from
the 3PL shown in Eq. (1.1). Due to their rarity, Normally-distributed IRT models will
not be considered in this work.

The higher complexity of IRT models when compared with CTT models also make them
potentially more informative. In particular, Hambleton and Jones (1993) note that since
the item parameters can be interpreted on the same scale as the ability, one can easily
determine the ability range where an item works best. In addition, they cite another
feature of IRT models being the existence of item and test information functions, which
can show the contribution of each particular item to the assessment of the latent trait
and help measure the estimation errors of θ.



4 Section 1.2 - Test equating

IRT may be focused on the item level, but the ICF for all the items in a test can be
accumulated, resulting in the Test Characteristic Function (TCF). The TCF can be
used to predict the total score of an examinee given their ability θ.

Another characteristic of IRT models is that they have stronger assumptions than CTT
models. This means that CTT has the potential to be suitable to more cases than IRT.
However, item and person parameters from an IRT model that properly fits the data will
have sample invariance, meaning that the item parameters will not depend on the ability
distribution of the examinees and the person parameters will not depend on the set of
test items (Hambleton et al., 1991, Ch. 2). This is not the case with CTT models, whose
parameters can be sample-dependent. While advances on the original CTT framework
saw the introduction of item statistics to represent their difficulty and discriminating
power, those statistics are not sample-invariant like their parameter counterparts in IRT,
meaning their usefulness decreases when the examinee sample differs in some unknown
way from the population (Hambleton and Jones, 1993).

1.2 Test equating

Achievement tests are of interest to agents operating at different levels of a society.
Individuals and institutions rely on these tests for certification and admission purposes;
governments use them to implement and monitor the public policies they create.

In many cases, a test intent on measuring some latent trait of an individual—or a group
of individuals—needs to be administered at different moments, so that the evolution of
this measure over time can be observed. To have test results which are as authentic as
possible, the test administrator may be interested in keeping the contents of the test in
secrecy. One way to achieve this is by keeping access to the content on a must-know basis,
which can be difficult and costly to implement. A more sensible approach consists of
separating the population into groups—organized, for instance, by date and/or location
of administration—and giving each group a slightly different test. Each of these versions
of the test is called a “test form”, and even though this may solve the aforementioned
security concerns, it raises a different issue: how can different versions of a test be
compared? For instance, if one test form is—accidentally or otherwise—generally more
difficult than another, then a person with a certain score on the harder test should be
considered of higher ability than another person with the same score on the easier test.
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This is where test equating comes in handy. According to Kolen and Brennan (2014),
equating is a statistical procedure that adjusts the scores on test forms so that those
scores can be used interchangeably.

A variety of designs can be used to collect data for equating, and choosing one in
particular is a matter of satisfying both practical and statistical demands (Kolen and
Brennan, 2014). One popular data collection design is called the Non-Equivalent group
with Anchor Test, or NEAT (von Davier et al., 2004, section 2.4). Its structure is
summarized on Figure 1.2 and formally described below.

Let P and Q be two independent populations of examinees of which samples of size
IP and IQ are taken. Let X and Y be two unique sets of test forms, respectively
containing JX and JY items, and A be a common test form containing JA items. Test
form X+ = {X,A} will be administered to the sample of population P, and test form
Y+ = {Y,A} will be administered to the sample of population Q. This notation will
come in handy in Ch. 2, when the NEAT designed is mentioned again.

With regard to the number of items on each form, let J be the collective item pool,
i.e., J = {JX, JY, JA}. Notice how, since X, Y and A have no items in common,
J = JX + JY + JA. In other words, J =

∑
t Jt for non-communicating test forms

t = {X,Y,A}. From set theory, we also have J = (JX+ +JY+)−JA, where JX+ and JY+

are the number of items of test forms X+ and Y+, respectively. The latter notation may
seem cumbersome, but it is useful to keep in mind for situations where anchor items are
internal, which is the case for the datasets in Ch. 3. In these cases, the administered
test forms are identified as X+ and Y+, or simply as X and Y, with no explicit reference
to anchor test form A. Consequently, this means that J <

∑
t Jt.

To equate tests X+ and Y+, we need to know not only the data collection design, but
also the equating method used (von Davier et al., 2004). In the NEAT data collection
design, there are different ways of using the information provided by the anchor test
forms to equate two tests (von Davier and Chen, 2013). Kolen and Brennan (2014)
divide them into linear methods and equipercentile methods, with notable examples
of the former being the Tucker method (Gulliksen, 1950), the Levine observed score
method (Levine, 1955; Kolen and Brennan, 2014) and the Levine true score method
(Levine, 1955); among the equipercentile methods, the frequency estimation method
(Angoff, 1971; Braun and Holland, 1982) is highlighted.

In this work, we only consider the method of frequency estimation for equipercentile
equating. Reasons for this include the fact that the linear methods cited above either
require distributional assumptions that prevent their universal application or they are
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  X   Y  A   A
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+

Figure 1.2: Structure of the Non-Equivalent groups with Anchor Test design. Group
1 and Group 2 come from populations P and Q, respectively, and may not have the
same size. Test forms X, Y and A have no items in common, but the composed test
forms X+ = {X,A} and Y+ = {Y,A} do.

tied to CTT, impairing their direct application to IRT-modeled data. In any case, all
these methods can be used as part of larger equating structures which cover the entire
spectrum of the equating procedure, from treating the observed test data to obtaining
the equated scores.

In this thesis, we shall call the aforementioned equating structures “equating frame-
works” or simply “frameworks”, which belong to but should not be confused with the
two latent-trait frameworks of CTT and IRT. Two of these equating frameworks, namely
Kernel Equating and IRT equating, are introduced in the following subsections. It
should be noted, finally, that these equating frameworks are not inflexible: they contain
parameters which can be tweaked, and each of those tweaks creates what we shall call
a different “method” of that particular framework.

1.2.1 Kernel Equating

Kernel Equating (KE, von Davier et al., 2004) is a framework comprising of several
methods which have five steps in common: pre-smoothing, estimation of score proba-
bilities, continuization of discrete distributions, equating, and calculation of evaluation
measures.

On the first step, a statistical model—usually of polynomial log-linear form (Hanson,
1996)—is fitted to the observed data (raw scores per individual). Together with a
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Figure 1.3: Workflow of the IRT observed-score equating process. Each row corre-
sponds to a test form, and the colored part highlights the most critical part of the
equating process, which is the transformation of the item parameter estimates.

design function, the pre-smoothed data is then used to estimate score probabilities.
On the third step, a kernel function is used to transform those score estimations from
a discrete to a continuous scale. Once the cumulated score probability distributions
have been made continuous, the test forms can be equated by finding the scores that
share a percentile, a straightforward process called “equipercentile equating” (Braun and
Holland, 1982). Finally, accuracy measures such as the standard error of equating (SEE)
can be calculated.

Since KE uses only the information regarding the total test scores, it can be seen as
a CTT-based equating framework. This means it inherits all the advantages and dis-
advantages of CTT models we have discussed previously. For more details on how KE
works and how it compares to other methodologies, see Ch. 2.

1.2.2 IRT equating

Just like KE, IRT equating (IRTE, Lord, 1980) comprises a set of methods based on the
IRT framework. One clear difference between these two frameworks is that, unlike KE
methods and their free-form models to estimate test score probabilities, IRTE usually
deploys models with a well-defined form—see Eq. (1.1) back on page 2—to estimate
item score probabilities.

Nonetheless, modeling is just the first step of the whole equating process in IRTE and
KE. For IRT and the particular case of separate calibration—which is further discussed
on Ch. 3—, the equating workflow is illustrated in Fig. 1.3 and briefly described below.
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After modeling the item responses, one test form must be chosen to be the base form.
As long as the symmetry property of equating is satisfied, it does not matter which form
is the base (Lord, 1980). The item parameters of this base form will not change, but
those of the other forms will be transformed so that the person and item parameters of
those forms are on the same scale of the base form. This is essentially what happens in
the colored part of Fig. 1.3, with the arrows leading to the “transformed parameters” box
highlighting that the item parameters on the equated form are transformed based on
the parameters of the items it has in common with the base form. The transformation
equations can be found on Kolen and Brennan (2014, Sec. 6.2.1) and in Sec. 3.1.1 of
this thesis.

If a test is scored using estimated IRT abilities, there is no need to go further than the
transformation of the item parameters and person abilities, as these transformations
mark the end of the IRT equating process (Kolen and Brennan, 2014). However, to
make a parallel with KE, let us consider that one is interested in converting abilities—
which are unbounded numbers along the R line—to something comparable to the raw
scores, which are often non-negative, rational numbers.

By definition, IRT models are applied at the item level. Hence, it is necessary to find a
way to eventually aggregate those individual item probabilities so a probability distri-
bution of the test scores can be determined. This is usually done using the compound
binomial distribution (Birnbaum, 1968) or an iterative process derived from it (Lord
and Wingersky, 1984).

At this point, we are still dealing with discrete score distributions, which are made
continuous so methods like equipercentile equating can be optimally implemented. In
IRTE, this continuization is usually done through simple linear interpolation. After that,
equating two forms is basically a matter of comparing scores on equivalent percentiles
on the CDF of each test form score. Algebraically, the equipercentile transformation
is given by Eq. (2.1) on page 11. Chapters 2 and 3 readdress and further explore the
process behind IRT equating.

1.3 Main contributions of the thesis

The wide array of equating frameworks and methods currently available has naturally
created the necessity to compare and choose the best one for a certain situation. This
process can be challenging, especially if the equating methods under scrutiny belong
to different frameworks, but it is still a possible and worthwhile endeavor if proper



Chapter 1 - Introduction 9

assumptions are made (Wiberg and González, 2016). On the next chapter, we propose a
procedure to compare equating transformations from different frameworks, particularly
between methods from KE and IRTE—introduced above—, as well as IRTKE, a hybrid
of the previous two. Our novel proposal expands on the work of Wiberg and González
(2016), who developed a methodology to compare equating methods from a common
framework. This technology has immediate application in situations where KE and
IRTE methods are being considered, which by itself contributes to the discussion of
whether CTT or IRT is the most proper framework for a particular scenario.

Another innovation we have pursued in this thesis involves the equating of a large
number of test forms. This is a common problem in large-scale assessment tests, often
administered by governments and large institutions to measure educational quality at
country and worldwide levels, usually with the intent of monitoring and improving
education-related public policies.

The final part of this thesis aims to contribute to the development of equating in this
top-level, high-stakes scenario. In Ch. 3, we propose a new statistical methodology to
simultaneously equate test forms in any scenario within the NEAT design, especially
those involving a large number of test forms. Our proposal differentiates itself from the
current state-of-the-art works of Haberman (2009); Battauz (2013, 2017a) by using the
likelihood function of the true item parameters and the equating coefficients to perform
the simultaneous estimation of all equating coefficients and by taking into account the
heteroskedasticity of the item parameter estimates as well as the correlations between
these estimates on each test form. These innovations should yield equating coefficient
estimates which are more efficient than what is currently available in the literature. This
is especially important in situations involving item parameters with extreme values.





Chapter 2

Evaluating equating transformations in
IRT observed-score and kernel
equating methods

2.1 Introduction

Equating methods are used to ensure that scores from different test forms are comparable
and can be used interchangeably (Kolen and Brennan, 2014; González and Wiberg,
2017). To obtain comparability, an equating transformation is used to map scores from
one test form onto the scale of the other test form. Let X and Y denote the scores from
test forms X and Y, respectively. We are interested in transforming X to the scale of
Y . The general transformation function for comparing two samples or distributions of
random variables is defined as

ϕ(x) = F−1Y [FX(x)], (2.1)

an equation commonly referred to as the equipercentile transformation (Braun and
Holland, 1982). Different equating methods have been developed depending on the
data collection design and the assumptions placed on the data. Examples of equating
methods are traditional equating methods (Kolen and Brennan, 2014), observed-score
kernel equating methods (von Davier et al., 2004), Item Response Theory (IRT) methods
(Lord, 1980), local equating methods (van der Linden, 2011), as well as mixtures of them
as for example local kernel IRT equating (Wiberg et al., 2014).

Recently, Wiberg and González (2016) used a statistical approach to show how one can
compare equating transformations within a particular framework. They illustrated their

11
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approach within the Kernel Equating (KE) framework and discussed how it could be
done within IRT Observed-Score Equating (IRTOSE) and local equating. To propose
how to evaluate an equating transformation within an equating framework was thus an
important step although relatively straightforward.

A remaining problem pointed out by Wiberg and González (2016) was how to evaluate
equating transformations between different equating frameworks. This chapter concen-
trates on this problem, aiming to propose how to evaluate equating transformations
which come from different frameworks. In particular, this chapter will focus on how to
evaluate equating transformations from IRTOSE (Lord, 1980), KE (von Davier et al.,
2004), and IRT Observed-Score Kernel Equating (IRTKE, von Davier, 2010; Wiberg
et al., 2014; Andersson and Wiberg, 2017). Both simulated and real data will be used
to conduct this study.

There are a number of equating methods and the underlying equating estimator can be
parametric, semiparametric or nonparametric (González and von Davier, 2013; González
and Wiberg, 2017). To evaluate which equating estimators should be used in different
situations, statistical tools are needed. A common practice has been to use equating-
specific measures to evaluate an equating transformation. Thus, depending on which
equating framework is used, different measures have been employed to evaluate the
equating transformation. A common feature of equating-specific evaluation measures is
that they target different parts of the equating process and thus aim to evaluate the
equating based on different but specific aspects.

An example of an equating-specific measure in KE is the percent relative error (PRE),
which compares the moments in the observed and equated score distributions (Jiang
et al., 2012; von Davier et al., 2004). In traditional methods it has been common to
use the difference that matters (DTM), which was originally defined as the difference
between equated scores and scale scores that are larger than half of a reported score
unit (Dorans and Feigenbaum, 1994).

Summary indices as described in Han et al. (1997) have also been used. The summary
measures typically use one particular equating transformation as standard and compare
other equating transformations against it. The idea is to measure discrepancies between
equivalent scores for two different equating methods. Both Harris and Crouse (1993)
and Kolen and Brennan (2014) summarize traditional equating evaluation criteria as
well as describe implementations of them. It is important to point out that even though
equating transformations and different evaluation criteria exist there is no single criterion
which is overall preferable (Harris and Crouse, 1993; Kolen and Brennan, 2014; Wiberg
and González, 2016).
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To provide a fair comparison of equating transformations from different frameworks,
the most important part is to set up the comparison so it does not favor any particular
framework. This is challenging, as small decisions made at each step of the equating
process could in the end favor one of the frameworks unintentionally. For example, a
common practice for test constructors is to model test items with IRT models to examine
the item characteristics. Obviously the fit to a specific IRT model can vary between
the items and this may ultimately have an impact on the equating of the test. In KE,
on the other hand, the pre-smoothing step typically involves log-linear modeling of the
item score probabilities.

An interesting question is whether KE works better than IRTOSE if the data is not
generated from an IRT model. Another interesting question is how to generate item
responses in a simulation study if we do not want to assume a particular underlying
IRT model as that might affect the equating results. A possible approach to handling
these problems, which is used in this chapter, is to implement multiple data-generating
methods to attempt making a comparison which is as fair as possible to the different
frameworks.

The rest of this chapter is structured as follows. In the next section, the equating
methods used are described. Then, statistical evaluation criteria are presented, with
the chosen equating parameters being described. The fourth section exhibits the char-
acteristics of the real and the simulated data used to implement the equating methods
under study. The results are given in the fifth section, and the last section contains
some concluding remarks.

2.2 Methodology

2.2.1 The NEAT equating design

To perform observed-score equating, two components must be known: the data collection
design and the equating method used (von Davier et al., 2004). Let P and Q be two
independent populations of examinees of which samples of size IP and IQ are taken. Let
X and Y be two unique sets of test forms, respectively containing JX and JY items, and A

be a common test form containing JA items. Test form X+ = {X,A} will be administered
to the sample of population P, and test form Y+ = {Y,A} will be administered to the
sample of population Q. This data collecting design is called non-equivalent groups with
anchor test (NEAT, von Davier et al., 2004, section 2.4).
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Figure 2.1: Simplified overview of three equating frameworks: IRTOSE, KE and
IRTKE.

What follows is a brief description of the three equating frameworks studied in this
chapter. To facilitate the methodological comparison between them, please refer to
Fig. 2.1.

Differently from Fig. 1.3, here all the test forms to be equated are contained within
one box for simplification. The workflow for all forms are identical in the steps shown
and the difference between the base and non-base forms within a framework has been
covered in Fig. 1.3 for IRTOSE; for KE and IRTKE, the workflow is the same for base
and non-base forms.

Comparing the three frameworks in more general terms, what changes from one method
to another are the input data needed, the statistical model applied to estimate the
probability distribution of the test scores and the method for making such distribution
continuous. After the continuous cumulative density function (CDF) of each test form
is obtained, equipercentile equating is used to equate the observed scores.
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2.2.2 IRT Observed-Score Equating (IRTOSE)

Let the observed data be composed of a matrix for each test form to be equated. Each
one of those matrices is composed of I rows and J columns, where I is the number of
examinees and J is the number of items on that same test form. Within those matrices
we find dichotomous (correct/incorrect) answers to each one of those I×J combinations.

The application of IRTOSE begins with fitting an IRT model to the observed data.
Let Xij = {0, 1} be the score of examinee i on item j. An IRT model calculates the
probability of Xij = 1 given the examinee’s ability (θi) as well as some item parameters
such as its discrimination (aj) and difficulty (bj). One of such models is the two-
parameter logistic IRT model (2PL), which is defined as

Pr(Xij = 1|aj, bj; θi) = pij =
1

1 + exp[−aj(θi − bj)]
. (2.2)

Let Xi be the number-correct score (or simply “score”) of examinee i, i.e.,

Xi =

JX∑
j=1

Xij (2.3)

and Xi ∈ {0, . . . , JX}. A common way to calculate score probabilities is through a
compound binomial model, here defined as

Pr(Xi = x|θi) =
∑

∑
xij=x

[
JX∏
j=1

p
xij
ij (1− pij)1−xij

]
. (2.4)

The compound binomial was derived by Birnbaum (1968); in practice, calculation is
often performed through an iterative process described by Lord and Wingersky (1984),
although other alternatives exist (González et al., 2016).

The test score probabilities in Eq. (2.4) are still dependent on the abilities, so they
must be marginalized over the sample to produce the probability distribution of the
scores—P (Xi = x)—for a particular form. Since we are dealing with discrete score
distributions, finding equivalent percentiles between two test forms will likely result in
multiple solutions. Hence, these probability distributions are often made continuous.
This is done by linear interpolation in IRTOSE. After continuization, equating two test
forms is straightforward by applying Eq. (2.1) and thus finding the values on both forms
that represent the same percentile.
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IRTOSE is a flexible equating method which can be used with any data equating design,
provided that the two test forms jointly fit an IRT model (Wiberg, 2016). On the flip
side, its use of linear interpolation has a drawback: as pointed out by Andersson and
Wiberg (2017), it does not provide an everywhere differentiable equating function, which
is needed for the calculation of standard errors through response functions, as described
by Ogasawara (2001).

2.2.3 Kernel Equating (KE)

KE is a framework comprised of the following five steps:

1. Pre-smoothing;

2. Estimation of score probabilities;

3. Continuization of discrete distributions;

4. Equating;

5. Calculating evaluation measures.

The goal of pre-smoothing is to fit a model to observed integer scores so that design
functions can be better used to calculate the score probabilities. An especially useful
family of pre-smoothing models are the log-linear models described in Rosenbaum and
Thayer (1987) and Holland and Thayer (1987, 2000): they are well-behaved, relatively
easy to estimate and flexible enough to fit the types of score distributions that arise
in practice (von Davier et al., 2004). Following Andersson et al. (2014), we will use a
log-linear model fit through a Generalized Linear Model (GLM) for Poisson responses
to model our data.

Once the observed distributions have been pre-smoothed, the scores of the two forms
need to be linked. This can be done through chain equating (CE) or post-stratification
equating (PSE). Choosing between the two methods is still largely an open research
topic, but differences between their results tend to be negligible when the populations P

and Q have similar distributions to the anchor test form A or when A correlates highly
with both X and Y (von Davier et al., 2004, section 11.8). In any case, the estimation of
score probabilities is done by using a design function to transform the smoothed score
distributions into marginal distributions for the populations.
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In the third step, continuization of the discrete score distribution, KE uses a kernel—
typically Gaussian, but also logistic, uniform or other—instead of linear interpolation.
As with IRTOSE, once the cumulated score probability distributions have been made
continuous, the two test forms can be equated by finding the scores located at the same
percentile. Finally, accuracy measures such as the standard error of equating (SEE) can
be calculated.

When compared to IRTOSE, KE offers the advantage of skipping the necessity to have
the response matrix and to estimate parameters at the item level, not to mention the
discussion about the most appropriate IRT model to use. Hence, KE has the potential
to be less computationally intensive and more applicable than IRTOSE. On the other
hand, it involves choosing (or not) a log-linear model to smooth the data, which arguably
involves dealing with a greater range of possibilities than what IRT currently provides.
Moreover, continuization requires selecting a kernel function as well as a smoothing pa-
rameter, which greatly increases the number of available methods. As for the statistical
properties of KE and IRT, Meng (2012) observes that, under some conditions, KE seems
more stable but not as accurate as IRT equating.

2.2.4 IRT Observed-Score Kernel Equating (IRTKE)

IRTKE, described by Andersson and Wiberg (2017), uses score probabilities derived
from an IRT model as input for kernel continuization. It can be seen as a compromise
between the typical IRTOSE and KE procedures.

Since this method uses the IRT models from Eqs. (2.2) and (2.4) on the pre-smoothing
part of KE, it requires access to the item responses at the examinee level so that the
model can be fit. When compared with CTT-based pre-smoothing models which only
take into account the total test score of each individual, item-level models are more
complex and consequently add computational overhead to the method.

As this framework uses a continuous and differentiable kernel instead of linear in-
terpolation for continuization of the score distribution, it bypasses the issue of non-
differentiability that can occur in IRTOSE methods. Andersson and Wiberg (2017)
noticed that IRTKE works well for sample sizes as low as 1 000, as long as the 2PL
model is used.
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2.2.5 Choices for the simulation and real data study

Performing equating in one particular framework implies making several choices which
result in one specific method within that framework. Picking only one method within
each of the three frameworks under study is a decision that makes the number of com-
parisons manageable. One could argue that a fairer comparison between frameworks
would require the evaluation of several methods for each framework, but our experience
has been that the only case where changing the method gave wildly different final results
was when a particular method generated blatantly unexpected equating results. This
is usually a consequence of a model that clearly does not fit the data or simply fails to
converge to a unique solution.

For IRTOSE and IRTKE, a 2PL model was fit to the item answers. When compared with
alternative IRT models, the 2PL offers a good compromise between the simplicity of the
1PL and the flexibility of the 3PL. The flip side of simplicity is the potential of failure to
capture important characteristics of the items; on the other hand, flexible models with
many parameters may have problems with convergence, not to mention that the linking
equations of the 2PL and the 3PL are identical. Since IRT is performed on each test form
separately, the estimated item parameters and abilities are on incomparable scales that
do not reflect the relationship between the test forms they model. The Stocking–Lord
method (Stocking and Lord, 1983) was used to transform these item parameters.

To perform KE, several log-linear models were considered, ranging from simple func-
tions containing only the scores of the main and anchor tests as covariates to complex
ones containing several powers of the partial scores, the interactions between them, and
dummy variables for low-frequency scores. The best model was then chosen by a step-
wise method, which selected the model with the lowest Akaike Information Criterion
(AIC). The linkage between the scores of the two forms was done through CE, and
continuization was achieved with a Gaussian kernel. The same choices were made for
IRTKE.

The performance of a particular equating framework can be affected not only by the
method parameters set, but also by how the data behaves. Hence, we evaluated IRTOSE,
KE and IRTKE on four different data-generating scenarios: a Swedish college admissions
test, a Brazilian school assessment test, a simulated test generated from IRT parameters
and another simulation with scores generated from Beta distributions.

All statistical procedures were performed in R (R Core Team, 2018), with ltm (Rizopou-
los, 2006) being used to fit IRT models to the data and glm handling the log-linear
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models. IRTOSE was performed by equateIRT (Battauz, 2015); KE and IRTKE were
done in kequate (Andersson et al., 2013).

2.3 Evaluating equating transformations

The most common way to compare the performance of two equating transformations
within a particular framework is through equating-specific evaluation measures (Wiberg
and González, 2016). Two popular examples of those are the DTM, often used in
traditional equating methods, and the PRE, which was specifically developed for KE
but could be adapted to methods using linear interpolation (Jiang et al., 2012). These
measures could be adapted to compare equating transformations from different methods,
but they are not examined further here.

In contrast to equating-specific measures, we could consider an equating transformation
as a form of statistical estimator and calculate measures such as bias, standard error
and mean square error (MSE). The advantage of this method is the familiarity of such
measures, and their application to a between-framework scenario seems straightforward.

From Wiberg and González (2016), we respectively define the bias and MSE for an
equated value ϕ(x) of score x over R replications as

bias[ϕ̂(x)] =
1

R

R∑
r=1

[
ϕ̂(r)(x)− ϕ(x)

]
(2.5)

and

MSE[ϕ̂(x)] =
1

R

R∑
r=1

[
ϕ̂(r)(x)− ϕ(x)

]2
, (2.6)

where ϕ̂(r)(x) is the estimated equated score for the r-th replication.

The equations above make it clear that to calculate such measures we must have access
to the true equating transformation ϕ(x), which is not directly observable in real and
even simulated data. There are, however, some ways to circumvent this limitation,
one of which is to define one equating transformation as the true one and compare the
others against it, something Wiberg and González (2016) did within KE. This chapter
uses different approaches depending on whether we were dealing with real or simulated
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data. These procedures are summarized in the following subsections, and the complete
code can be obtained upon request.

It is fair to assume that in certain situations a fast algorithm is preferable, even if it
offers more bias and/or variance. Hence, runtimes of different equating frameworks are
also confronted.

2.3.1 Choices for the real data

In order to calculate evaluation measures for the real data, we used the same approach
employed by Lord (1977, p. 132), which basically consists of having test forms X and Y

consist of the same items, while still having the computer handle them as being different.
This procedure is summarized as follows:

1. The I × JX matrix containing the items and examinee answers for test form X

was horizontally split into two matrices. The new matrices had half the number
of examinees and the same number of items;

2. One of the resulting matrices was reassigned as test form Y;

3. Since X and Y are the same test form, equated scores should not change, i.e.,
ϕ(x) = x.

It should be noted that even if ϕ(x) is expected to equal x, the observed differences will
be different from zero not only due to bias, but also due to sample variability. Hence,
for the real data, calling the measure ϕ̂(x) − ϕ(x) simply “bias” fails to recognize the
effect of sampling error. For that reason, this error measure for the real data studies
will be referred by the more comprehensive term “error”. Moreover, since each real
data scenario represents only one sample, the MSE would be simply the squared error
calculated over one sample, which is improper and thus not calculated.

2.3.2 Choices for the simulated data

The advantage of working with computer simulations is that they give the user control
over the parameters of the process that generates the data. The true equating scores are
not explicitly defined by the data-generating parameters, but they can be obtained from
them. Referring back to Fig. 2.1 on page 14, as long as the data-generating parameters
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allow the calculation of the expected CDFs of each test form, equipercentile equating
can be performed.

For IRT-generated data, observations are generated by the true parameter values (aj
and bj) and the true examinee skills (θi). Given these parameters, the score probability
CDFs and the real score equating transformations ϕ(x) were calculated as follows:

1. Eq. (2.2) was applied to calculate the probability of correctly answering an item,
Pr(Xj = 1|aj, bj; θ);

2. These probabilities were used in the compound binomial distribution to calculate
the probability distribution of the test scores given the ability, Pr(X = x|θ);

3. By integrating θ out of the probability above, one obtains the unconditional score
probabilities Pr(X = x), which can be cumulated to form the (discrete) CDF for
one form.

4. Once the CDFs for forms X and Y are calculated, the equivalent scores between
them are found through equipercentile equating.

It is worth noting that the method above applies equipercentile equating on the discrete
CDFs of the test forms, thus bypassing the continuization step to avoid favoring one
method over another. This is possible because the basic requirement for finding per-
centiles is that the dataset can be ordered. Hence, for a set of discrete scores X, the
k-th percentile will be a value Pk such that at most k % of the data are smaller in value
than Pk and at most (100− k) % of the data are larger (Johnson and Kuby, 2008, Sec.
2.6). As a consequence, equivalent scores will always be integers. This is done to avoid
favoring one method over another, but ends up producing equivalent scores which are
always integers.

For the Beta-generated data, each test score is drawn from a random number between
0 and 1 in a Beta(α, β), which is then multiplied by the number of items in that test
form. The result is a continuous, Beta-shaped probability distribution of the scores
which can be cumulated to form the corresponding CDFs. This is done for both forms,
and equipercentile equating is applied to the resulting CDFs to obtain ϕ(x).

Unlike what happens with the real data, the procedures above allows us to obtain all the
elements necessary for calculating bias and MSE as described on 2.5 and 2.6. On this
study, R was set at 200, which was sufficient to give the results satisfactory consistency.
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2.4 Real data application and simulation study

2.4.1 Real data application

For the real data application we used data from two administrations of the Swedish
Scholastic Assessment Test (SweSAT) and the Brazilian National Assessment of Basic
Education (Aneb). In both cases, the common items are administered together with the
unique ones.

The SweSAT is a high-stakes, large-scale college admissions test which is given twice a
year and is used for selection to higher education in Sweden. The test results are valid
for five years and the examinees can retake the test as many times as they wish. Only
their highest score is used when applying to colleges and universities. It is a multiple-
choice, paper-and-pencil test consisting of a quantitative and a verbal section with 80
items each. The two sections are equated separately using anchor tests with 40 items
each and equipercentile equating. This study only uses the quantitative section so that
a unidimensional model can be used.

Aneb stands for Avaliação Nacional da Educação Básica, in Portuguese; it aims to
gauge the overall quality of the country’s school system and can thus be considered a
low-stakes test from the point of view of the examinees (the students), even though it is a
decisive metric for the government. Every two years since 1995, this test is administered
to students from a national sample of public and private schools. Results are equated
using IRTOSE between administrations and grades. This equating structure makes
sense since the focus of this evaluation is on the school- and grade-level results, but
microdata is publicly available at the student level, allowing us to equate the student
results within a given year. Students from the 5th, 9th and 12th grades take part in
Aneb. The test for 12th-graders is composed of 52 multiple-choice questions equally
divided into a Math and a reading section. To obtain parallel information with the
SweSAT and maintain the adequability of the chosen IRT model, this study analyzed
the 26-item (13 unique, 13 common) Math test given to the 12th graders.

2.4.2 Simulation study

To the extent of our knowledge, IRT models have typically been used in the literature
to randomly generate test answers even when there was no intention of fitting an IRT
model afterwards. At the same time, the real world is not lacking examples of datasets
which do not have the necessary assumptions for IRT modeling. We believe differences
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in the data-generating process can affect the performance of the equating methods.
Ergo, the methods in this chapter were compared under scenarios containing data with
largely different score distributions, which suggest different data-generating processes.

The simulated data is composed of four different tests: two with answers generated
from randomly-drawn IRT parameters and two with answers generated from a Beta
distribution. Each data-generating process contains one small test, consisting of 13
unique items and 13 common items, and one large test, with 80 unique and 40 common
items. These test sizes were determined to mimic the real data study.

The simulation begins by setting IP = IQ = I = 1 000 and generating a random vector
of 1 000 examinee abilities for each we one of the two tests. Following the setup of
Ogasawara (2003), we have θX+ ∼ N(0, 1) and θY+ ∼ N(0.5, 1.2).

For the IRT data, we took inspiration from Andersson and Wiberg (2017) and generated
aj from an U(0.5, 2) and bj as N(0, 1). Given these true item parameters as well as the
previously-mentioned true skills, test answers were generated for the test forms X, Y

and A.

As an attempt to create a dataset that, at least in theory, should not fit an IRT model,
a second group of tests scores was generated from a Beta distribution. In particular, a
Beta(2, 5) was used to generate scores for test form X, a Beta(3, 6) was used for Y, and
a Beta(2.5, 5.5) was used for A. Moreover, varying degrees of correlation between the
scores on each form were determined. Specifically, the 13-item test had a correlation of
0.53 between the main test (X or Y) and the respective anchor test A; for the 80-item
test, the correlation was 0.84. These values were picked to be close to those found on
the real datasets of similar size: Aneb and the SweSAT had correlations around 0.54
and 0.83, respectively.

The shape parameters for the beta distributions were selected to give the test scores
positive skewness, uncommon in IRT-generated data and yet present in several assess-
ment tests in the real world, such as Aneb. Since the Beta distribution always yields
values between 0 and 1, the result was multiplied by the number of items (J) in that
particular test form to obtain a value between 0 and J .

Having the test scores is enough to perform KE, but to fit an IRT model, we must
generate answers to each item. This is achieved by generating, for each examinee, a
vector containing xi correct answers (1) and JX − xi incorrect answers (0). Notice,
however, that the order in which those 0s and 1s are generated will affect the latent test
parameters, which will eventually be estimated by an IRT model. Simply generating, for
each examinee, a sequence of 1s followed by a sequence of 0s will, once those vectors are
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Table 2.1: Descriptive statistics for the real and simulated data. Bars represent aver-
ages, ρ are correlations and numbers in parenthesis correspond to standard deviations.
Results for the simulated cases are averaged over 200 samples.

Statistic SweSAT Aneb IRT 80 IRT 13 Beta 80 Beta 13
X̄+ 58.4 (17.6) 8.1 (3.9) 60.7 (23.5) 12.6 (5.8) 35.4 (18.3) 7.8 (3.6)
Ȳ + 56.5 (19.0) 8.3 (4.0) 71.9 (26.5) 13.3 (6.5) 39.2 (17.5) 8.4 (3.5)
ĀX 16.7 (6.4) 4.0 (2.2) 21.5 (8.1) 5.6 (3.0) 12.5 (6.2) 4.1 (2.0)
ĀY 16.6 (6.6) 4.5 (2.3) 24.5 (9.1) 6.7 (3.4) 12.5 (6.2) 4.1 (2.0)
ρ(X,AX) 0.82 0.53 0.92 0.77 0.84 0.53
ρ(Y,AY) 0.84 0.54 0.95 0.82 0.85 0.53

stacked to form the answer matrix for all examinees, create many items which everyone
answered correctly and many others on which no one was able to get a score. On
the opposite end, randomly scrambling those 0s and 1s will generate a uniform answer
matrix with no items standing out as particularly easy or difficult. Both these extreme
cases seem unrealistic, so a compromise was found by permutating each answer vector
using hand-picked probability weights which would generate reasonable distributions of
items according to difficulty.

2.5 Results

Some descriptive statistics about the real and simulated test data can be found in
Tab. 2.1, where it is also shown how IRT 80 and Beta 13 were fairly successful in
respectively replicating the SweSAT and the Aneb data, particularly with respect to
the average scores. The other simulated cases, Beta 80 and IRT 13, present largely
different average scores when compared to their similarly-sized empirical counterparts,
but are nonetheless valid and realistic cases worth being analyzed.

The distribution of the observed scores for both the real and the simulated data can
be seen in Fig. 2.2. The score distributions of the anchor tests were omitted, as their
similarity to the respective X and Y test forms make them redundant.

The shapes of the score distributions in Fig. 2.2 can be grouped into two categories:
strongly skewed distributions (Aneb and Beta), and symmetric or weakly-skewed distri-
butions (SweSAT and IRT), with the IRT data being more platykurtic than the SweSAT.
For the simulated data, examinees for test form Y have a slightly higher average ability
than those for X, although that is barely visible from the plots in Fig. 2.2. This apparent
similarity of distributions of X and Y can also be seen on the real data applications,
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Figure 2.2: Distribution of observed test scores. For simulated data, values corre-
spond to the theoretical score probabilities/densities.



26 Section 2.5 - Results

Table 2.2: Bias/error per score for the simulation study and real data application
with 13 items.

Score Aneb IRT JX,Y = 13 Beta JX,Y = 13
IRTOSE KE IRTKE IRTOSE KE IRTKE IRTOSE KE IRTKE

0 -0.122 -0.199 -0.128 -0.187 -0.333 -0.274 0.635 0.757 0.555
1 -0.165 -0.384 -0.166 -0.376 -0.578 -0.479 0.060 0.041 0.020
3 -0.152 -0.741 -0.148 -0.079 -0.107 -0.079 -0.018 -0.048 -0.021
5 -0.057 -0.957 -0.066 -0.639 -0.598 -0.631 -0.020 0.039 0.030
7 0.047 -0.945 0.034 -0.947 -0.885 -0.930 -0.001 0.054 0.064
9 0.122 -0.602 0.129 -0.878 -0.842 -0.856 -0.010 0.030 0.052
11 0.162 -0.529 0.202 -0.351 -0.365 -0.349 -0.108 -0.387 -0.013
12 0.176 -0.462 0.228 -0.928 -1.002 -0.974 -0.177 -0.712 -0.074
13 0.194 -0.262 0.238 -0.537 -0.692 -0.602 -0.421 -0.952 -0.298

Avg. abs. bias 0.123 0.629 0.135 0.608 0.639 0.624 0.111 0.231 0.093
Avg. MSE 0.018 0.459 0.022 0.463 0.498 0.476 0.085 0.313 0.074

perhaps with the exception of the SweSAT, where test form Y seems to have a slightly
lower average than test form X.

Information regarding the quality of the equating transformations can be seen in Figs. 2.3
and 2.4, respectively presenting the bias/error and MSE per score, data and method.
These statistics were calculated according to Eqs. (2.5) and (2.6). The figures show
similar patterns for IRTOSE and IRTKE, which is expected since these methods only
differ by their continuization algorithm as well as by how IRTOSE transforms the item
parameter estimates of the non-base forms—as shown in Fig. 1.3 and further detailed in
Sec. 3.1.1 ahead—, whereas IRTKE does not use them under CE. On the other hand, the
behavior of KE presents itself with more distinction, particularly on Aneb, the SweSAT
and the Beta-generated data with 80 items.

Tables 2.2 and 2.3 supplement the graphical information provided by Fig. 2.3. They
summarize the numerical results for the bias/errors, facilitating comparisons between
data with the same number of items. Some scores on those tables were omitted for
brevity, but were still included in the averages. Moreover, they include the average ab-
solute bias and the average MSE, which aid in the comparison of the equating methods.

Corroborating what was observed in Fig. 2.3 and using the absolute value of the average
bias as the evaluation criterion, the tables show IRTOSE and IRTKE performing slightly
better than KE in all but one of the scenarios studied. For Beta 80, KE offered less
average bias than IRTOSE, but it did so at the cost of more average MSE. Nonetheless,
it must be noted that the lack of a significance threshold on this kind of evaluation
criteria paired with how the results from these tables often differ by less than one unit
make it difficult to point out a clear, universal winner.
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Figure 2.3: Bias/error per score.
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Figure 2.4: MSE per score.

Table 2.3: Bias/error per score for the simulation study and real data application
with 80 items.

Score SweSAT IRT JX,Y = 80 Beta JX,Y = 80
IRTOSE KE IRTKE IRTOSE KE IRTKE IRTOSE KE IRTKE

0 -0.226 -0.159 -0.151 -0.551 -0.910 -0.810 1.698 0.839 1.723
10 -0.321 -0.431 -0.287 0.012 -0.331 -0.102 0.019 0.182 -0.049
20 -0.191 -1.656 -0.207 -0.034 -0.005 -0.078 0.029 -0.226 0.046
30 -0.017 -2.469 -0.006 -0.208 0.091 -0.158 -0.084 -0.090 0.038
40 0.119 -1.986 0.288 -0.026 -0.009 0.126 -0.225 0.171 -0.013
50 0.202 -1.194 0.590 -0.400 -0.252 -0.167 -0.407 0.281 -0.151
60 0.266 -0.210 0.766 -0.051 0.372 0.172 -0.668 0.234 -0.432
70 0.318 1.122 0.719 0.095 -0.084 0.278 -0.864 -0.329 -0.636
80 0.252 -0.257 0.335 0.114 -0.110 0.579 -0.936 -1.422 -0.883

Avg. abs. bias 0.215 1.138 0.402 0.408 0.486 0.361 0.353 0.316 0.237
Avg. MSE 0.055 1.903 0.221 0.381 0.929 0.351 0.715 2.291 0.648
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On an Intel i5-2467M CPU with 4 GB of RAM, the IRT-simulated data took around 5
seconds to perform IRTOSE, 1 s to perform KE and 6 s to perform IRTKE on the 13-
item tests. For the larger test, those times were around 65 s, 22 s and 83 s, respectively.
Time accounted for all the steps depicted in Fig. 2.1. Numbers were similar for the
Beta-generated data, which suggest little to no extra overhead to fitting an IRT model
to highly-skewed data. For the SweSAT, respective runtimes for IRTOSE, KE and
IRTKE were 85 s, 28 s and 103 s; for Aneb, they clocked around 10 s, 2 s and 12 s.
These results are within the expected values, given the size of each dataset as well as
the particularities of each equating method.

2.6 Discussion

This chapter expands on the work of Wiberg and González (2016), achieving its aim
of suggesting a method of comparing equating transformations from different frame-
works. It also advances the work of Leôncio and Wiberg (2018) by introducing and
implementing a framework for conducting computer simulations to evaluate the equat-
ing transformations under study. In addition to traditional IRT methods to generate
data, this study derived a method to generate item responses without relying on IRT
parameters so that comparisons between IRT and non-IRT equating methods can be
done on fair grounds.

Most of the observed scenarios suggested that IRTOSE and IRTKE outperform KE
with respect to bias and MSE. Half of those scenarios have results that favor IRTOSE
over IRTKE, but the differences are often so small that the results could have been the
opposite under slightly different conditions.

These results are in line with those from Meng (2012), for whom IRT equating showed
more accuracy than KE, even though he also observed that KE shows more stability
than IRTOSE, which we could not confirm in our scenarios. Our preliminary tests have
indicated, however, that much of the performance of KE seems to rely on how well the
analyst can find a reasonable pre-smoothing model for the observed score distributions,
particularly when the score distribution contains scores with few observations. KE can
also be proven quite useful when speed is a priority, since it does not require calculations
at the item level and can offer results at a fraction of time compared with IRT methods.
Moreover, even though IRT-based equating methods may not suffer from as high a
degree of dependence on model fit as KE, they do require more assumptions to be
implemented. As a matter of fact, it is pointless to try to fit a model if the data does



30 Section 2.6 - Discussion

not meet a framework’s basic assumptions in the first place. Thus, KE may offer a
suitable alternative on instances where IRT frameworks should not be applied.

The results can also be studied by grouping the scenarios according to two characteris-
tics: skewness of the score distribution and test size. Before confronting results between
real data and simulated data, it is important to keep in mind that, unlike the single
samples provided by each of the real datasets, the simulated data results are composed
of an average over hundreds of replications, which gives more stability and confidence
to the results.

IRTOSE and IRTKE performed well both in fairly symmetric and asymmetric score
distributions. KE, on the other hand, seems to have its performance mostly bound to
the quality of the pre-smoothing model.

The continuity breaks observed on the bias and MSE curves for the IRT data—which
are present in both test sizes but are more evident in the 80-items case—are caused
by our decision to have all ϕ(x) be integers for the IRT-generated data. Specifically,
the breaks coincide with the scores where the magnitude of the difference between the
equated scores changes. Any method of continuization could smooth those breaks, but
would have favored a particular framework.

The comparison between short tests and long tests does not seem to suggest a correlation
between test size and error, with all scenarios containing most of the bias between -1
and 1.

It is important to keep in mind that the outcome of all the equating methods studied
is a result of several choices of models and parameters. Depending on the decisions
taken at each step of the equating, we can observe variations in the output that could
ultimately turn the decision in favor a particular method over another. The discussion
about how to create the best environment possible to allow fair comparisons remains
open, but we believe our contribution has helped shed some light into the debate.

An important characteristic of a fair comparison is its independence from subjectivity.
This motivated our decision to take a hands-free approach to pre-smoothing, in which
a stepwise procedure chose a model instead of having a human manually checking the
goodness-of-fit of countless model for each of our hundreds of samples. The day-to-
day usage, however, often contains only one dataset and several methods to choose
from. Under these conditions, we recommend careful experimentation and observation
of the sensitivity of the results to the different alternatives. This attention is especially
important when dealing with high-stakes tests such as admissions tests, where the choice
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of a particular method can mean the difference between accepting an examinee into a
university program or not.

Regarding the construction of a test booklet, we believe that focus should be put on
the quality of the test items instead of their quantity. This is especially important if
IRT models are expected to be used, although the efficacy of pre-smoothing methods
for KE can also be harmed by the presence of items that are too difficult, easy, tricky
or confusing.

Further studies should focus not only on the application of the methods developed here
to other data and with other simulation and equating parameters but also its gener-
alization to more than two test forms, internal anchor items and equating frameworks
such as those mentioned in Section 2.1. In particular, it would be interesting to see
the development of other methods for working with real data; the method applied here
was pointed out by Harris and Crouse (1993) as having some shortcomings such as the
dependency on which form was taken as the base, but they still take it as useful for
checking the adequacy of an equating method or data collection design.

Some authors tend to refer to the equating procedure used here—equating a test form
to itself—as “circular equating”, but we chose to avoid this nomenclature due to it not
being universal. For example, Wang et al. (2000) found circular equating to be generally
invalid for evaluating the adequacy of equating. However, they define circular equating
as “equating a test for to itself through a chain of equating”. The case studied in this
chapter differs from the ones studied in Wang et al. (2000) due to the absence of a
chained structure, so their conclusions might not apply to the case under study but
do instigate further investigation into better ways to generate expected equated score
distributions for empirical data.

We chose well-known summary indices to evaluate the equating transformations, which
leaves the creation of suitable equating-specific measures for future studies. For instance,
the DTM can be easily applied to bias calculations, but more complex indices like the
PRE might need adjustments before they can be applied to cross-framework compar-
isons. Future studies of these summary indices could also address other issues pointed
out by Harris and Crouse (1993), such as the choice of the associated loss function.

Finally, we highlight the importance of further research comparing different equating
frameworks, even if it is unlikely that an unambiguous choice will surface from such
studies (Kolen and Brennan, 2014). Future studies should also analyse the sensitivity
of the results to changes in the number of items and replications of each simulation
scenario.





Chapter 3

A likelihood approach to IRT equating
of multiple forms

3.1 Introduction

Let us consider an achievement test being administered using the NEAT (non-equivalent
groups with anchor test, von Davier et al., 2004) data-collection design. To estimate the
ability of the subjects under examination, IRT models are fit to the test data generated
by those examinees. Often, different models are independently fit to each test form.
This usually happens when each form is administered in a different point in time, but
can also occur in simultaneously-delivered forms, due to the advantages of separate item
calibration when compared with simultaneous calibration detailed below.

When fitting an IRT model to test data, the most common estimation method used is
the maximization of the marginal likelihood function (Bock and Aitkin, 1981), which
assumes the abilities to have a Normal distribution. This is a problem whenever the
groups taking each form are not equivalent, which is an assumption of the NEAT data
collection design. There are two common ways to solve this issue:

1. observe the differences in the parameter estimates for the items in common be-
tween two forms and replicate those differences to the rest of the items;

2. (re-)estimate all the parameters for all the forms simultaneously.

At first sight, the first alternative—called “separate calibration”—may sound cumber-
some, with the second—known as “concurrent calibration”—being the most sensible

33
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solution. However, as Kolen and Brennan (2014) have pointed out, separate calibration
seems to be the safest option of the two. Concurrent calibration might indeed provide
better IRT estimates under certain situations, but separate calibration is more robust to
IRT violations. Moreover, concurrent calibration tends to provide less accurate results
when there are few common items (Kim and Cohen, 1998) and might be computationally
unfeasible if there are so many test forms that the aggregate number of items involved
in equating is in the thousands (Haberman, 2009).

3.1.1 Parameter transformation in the 2PL

From a statistical point of view, the problem of independent IRT scales introduced by
separate calibration is solved by realizing that the probability of correctly answering an
item in the 2PL model is invariant to linear transformations of the parameters (Bar-
tolucci et al., 2016, Sec. 3.4). In other words, if one particular 2PL model fits the data,
then any linear transformation of the parameters in that model will fit that data just
as well.

Let the following two-parameter logistic model (2PL) be used to estimate the proba-
bility that individual i taking test t correctly answers a dichotomous item j given the
person’s ability (θit ∈ R) and the item’s discrimination (ajt > 0) and difficulty (bjt ∈ R).
Algebraically, we have

Pr(Xijt = 1|θit; ajt, bjt) =
1

1 + exp [−ajt(θit − bjt)]
. (3.1)

Before we can proceed with transforming item parameters across test forms, we must
set some constraints to θ. This is necessary because the IRT model above will otherwise
not be identifiable. To prove this, let us consider the following linear transformations:

θiY = AθiX +B

bjY = AbjX +B

ajY = ajX/A

(3.2)
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Considering that jX and jY correspond to the same item j that is common to both test
forms X and Y, we use the parameters above on Eq. (3.1) and obtain

Pr(XijY = 1|θiY; ajY, bjY) =
1

1 + exp [−ajY(θiY − bjY)]

=
1

1 + exp
[
−ajX

A
(AθiX +B − AbjX −B)

]
=

1

1 + exp [−ajX(θiX − bjX)]

= Pr(XijX = 1|θiX; ajX, bjX).

This means that both {θiX, ajX, bjX} and {θiY, ajY, bjY} give the same probability of
correctly answering item j, and the result is the same for any value of A and B. In other
words, there are infinite parameters that will give two people with different ability levels
the same probability to correctly answer an item, thus making this model unidentifiable.

Let us now impose a couple of constraints to the latent trait θ. Specifically, let θ ∼
N(0, 1), which means that µθ = 0 and σθ = 1. Not only is this an obvious way to
remove the indeterminacy of the θ scale, but also the only reason for the necessity of
eventually transforming the person and item parameters (van der Linden and Barrett,
2016). After all, if X and Y are test forms administered to samples from potentially
different populations, they will have their own distribution parameters of the latent
trait instead of the common N(0, 1) metric. Nonetheless, conversion to and from the
standard Normal distribution is trivial. The implications of such standardization on the
item parameter estimates, however, needs to be further examined.

Consider the part of the denominator of Eq. (3.1) which contains the item and person
parameters, i.e., ajt(θt − bjt) (the person index i was dropped here for visual simplifi-
cation, but does not influence the result of the operations). For t = X, we perform the
following operation:

ajX(θX − bjX) =
ajXσθX
σθX

(θX − bjX + µθX − µθX)

= ajXσθX

(
θX − µθX
σθX

− bjX − µθX
σθX

)
.

(3.3)

This shows that when the abilities are standardized so that θX has mean zero and
unitary standard deviation, the item parameters are also transformed, with ajt and bjt
respectively becoming ajXσθX and (bjX−µθX)/σθX . The same will happen to form Y when
standardizing θY, yielding ajYσθY and (bjY−µθY)/σθY . Together, these transformations
allow us to convert the item parameters of one form directly to the scale of the other.
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For example, if we were to go from form Y to form X, we would like the item difficulties
in Y to be transformed like those at the end of Eq. (3.3), i.e.,

bjY − µθX
σθX

.

In other words, the item difficulties in form Y are being standardized using the mean
and standard deviation of the abilities in form X. Going backwards from the desired
result, consider the following operation:

bjY − µθX
σθX

=

(
bjY−µθY
σθY

σθY + µθY

)
− µθX

σθX

=
bjY − µθY

σθY

σθY
σθX

+
µθY − µθX

σθX

=
bjY − µθY

σθY
AYX +BYX.

(3.4)

We let AYX = σθY/σθX and BYX = (µθY − µθX)/σθX above so that we could define AYX

and BYX as the equating coefficients that convert the item parameters from the scale of
form Y to that of form X.

Conveniently, by transforming the difficulty parameters we also obtain everything we
need to convert the item discriminations: in this example, we want the parameters ajY
to be on the scale of form X, which means performing the following transformation:

ajYσθX = ajYσθX
σθY
σθY

= ajYσθY
σθX
σθY

= ajYσθY
1

AYX

.

The equating coefficients derived above correspond to the A and B parameters in the
transformations from (3.2). Perhaps more important than transforming the item pa-
rameters, we can now transform the abilities from one form to another, thus allowing the
direct comparison of abilities of two groups who took different versions of a test. The
equating procedure is complete at this point, but for practical purposes one can pro-
ceed to convert abilities into test scores, which are usually bounded and non-negative,
therefore easier for a layman to interpret. Since this extra step is performed after the
estimation of the equating coefficients, it will not be considered in this chapter.
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3.1.2 Pairwise and multiple form transformation methods

In practical applications, the equating coefficients cannot be directly calculated be-
cause their building blocks—the means and variances of the abilities of each group—are
unknown. However, they can be estimated using the data available from the test admin-
istrations. Transformation methods for equating a pair of test forms include moment-
based approaches like the mean-sigma (Marco, 1977) and the mean-mean (Loyd and
Hoover, 1980) as well as solutions based on the item characteristic curves such as the
Haebara (Haebara, 1980) and the Stocking–Lord (Stocking and Lord, 1982) methods.

These methods are very useful for equating a pair of test forms, but they do not correctly
generalize to the scenario where more than two forms are to be equated. Theoretically,
one could chain pairwise equating transformations to equate a large number of forms,
but this would mean that only one of the links of a particular form will be taken into
account when calculating the equating parameters. To equate multiple forms, it is better
to deploy methods that take into account the linkage plan as a whole, calculating all
equating coefficients simultaneously and considering all the links between the test forms.

Multiple equating methods are not new in the literature, with Haberman (2009) propos-
ing a linear regression method, Battauz (2013) presenting chain and average equating
coefficients and Battauz (2017a) introducing the generalization of some well-known pair-
wise methods such as those mentioned above. One basic difference between pairwise and
multiple form transformation methods concerns the calculation of the equating coeffi-
cients. Instead of defining A and B as per Eq. (3.4), which always involves parameters
from two forms, one must now consider all forms simultaneously.

In practice, the estimation of the equating coefficients At and Bt for a certain form t will
involve the item parameters for that form—(ajt, bjt)—as well as a set of item parameters
(a∗j , b

∗
j) that represent a common metric for item j across all test forms. These relations

are illustrated on Eq. (3.5) below:

a∗j = ajt/At

b∗j = Atbjt +Bt

. (3.5)

As meaningful as the contributions from the works by Haberman (2009); Battauz
(2017a) were, they rely on a couple of assumptions that should be addressed to am-
plify the applicability of multiple-form equating methods: they assume independence
between the item parameter estimates and homoskedasticity of those estimates, when
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parameter estimates of the same item are actually always correlated and heteroskedas-
ticity can be expected in tests containing some items with extreme parameter values.
The next section presents a new method for multiple-form equating that addresses these
issues.

3.2 Methodology of likelihood equating

According to Reise and Revicki (2015), the non-linearity of IRT models imply that
direct, analytical solutions are impossible, and iterative algorithms must be employed.
Bartolucci et al. (2016) list three main approaches to estimate IRT parameters: the
conditional maximum likelihood (CML), the joint maximum likelihood (JML), and the
marginal maximum likelihood (MML).

The CML is restricted to Rasch-type models, so it is of no use to the 2PL model family
considered in this thesis. As for JML and MML, the most important difference between
them is how each one treats the latent abilities θ. In JML, θ is considered a parameter,
just like the item parameters a, b and c. In effect, the JML—and the CML, for that
matter—formulates the IRT model as fixed effects. MML, conversely, treats θ as a ran-
dom variable, thus making the 2PL a random-effects model (Bartolucci et al., 2016). In
practice, the MML procedure begins with the specification of a probability distribution
for θ—usually standard Normal, as mentioned before—followed by the estimation of the
item parameters given the distribution of θ.

On this thesis, we assume estimation is always done using MML, due to its estimators
being consistent, unlike those provided by JML (Bock and Aitkin, 1981; van der Linden
and Hambleton, 1998).

3.2.1 The likelihood function

Let (ajt, bjt) be the true item parameters of item j in form t and (âjt, b̂jt) be their
estimates obtained through MML. From Eq. (3.5), we know that ajt = Ata

∗
j and bjt =

(b∗j −Bt)/At. Hence, their estimates can be modeled as

âjt = ajt + εajt = Ata
∗
j + εajt

b̂jt = bjt + εbjt =
b∗j −Bt

At
+ εbjt.

(3.6)
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Since the item parameters are estimated using the maximum likelihood method, we
know that both εajt and εbjt are asymptotically-distributed as a zero-mean Normal, and
the item parameter estimates are also normally-distributed as follows:

âjt
a∼ N

(
Ata

∗
j , σ

2
ajt

)
b̂jt

a∼ N

(
b∗j −Bt

At
, σ2

bjt

)
.

(3.7)

We begin by assuming the simplest case of independence and homoskedasticity of the
item parameter estimates. Explicitly, the independence condition gives us f(âjt, b̂jt) =

f(âjt)f(b̂jt), where f(·) is the probability density function (PDF) of the Normal distri-
bution and â and b̂ are vectors of all item parameters across all forms. For homoskedas-
ticity, we have that σ2

ajt
= σ2

a and σ2
bjt

= σ2
b for all j = 1, . . . , Jt and t = 1, . . . , T .

For convenience, the range of test forms is hereupon represented by numbers instead of
letters. Altogether, the likelihood function under these conditions is given by

L
(
A,B, a∗,b∗, σ2

a, σ
2
b ; â, b̂

)
=

T∏
t=1

Jt∏
j=1

f(âjt)f(b̂jt), (3.8)

where T is the total number of test forms to be equated and Jt is the number of items
in form t. A and B are vectors respectively containing At and Bt for all t; a∗, b∗, â and
b̂ are also vectors containing the similarly-named objects referenced in Eq. (3.7). The
maximization of L yields the estimates of A, B, a∗, b∗, σ2

a, and σ2
b .

3.2.2 The profile likelihood function

When dealing with large-scale assessments, often composed of several test forms with
dozens or hundreds of items each, the number of parameters to be estimated can quickly
become a concern. After all, each new item adds at least one IRT parameter to the
likelihood function (two in the 2PL model), and any additional test form can introduce
several new items as well as two mandatory equating coefficients. This can easily make
using the full likelihood too overwhelming from a computational perspective.

One way to overcome this problem is by using the profile likelihood function to reduce
the number of parameters to be estimated. Fortunately, the case under study is a great
candidate for this type of procedure. In effect, out of all the parameters to be estimated
in the likelihood function depicted in Eq. (3.8), the equating coefficients At and Bt

are the ones of utmost interest. Arguably, the item parameter variances σ2
ajt

and σ2
bjt

can also be considered of interest, due to their usefulness in practical applications as
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indicators of potential problems in the IRT model fitting which could propagate into
the equating procedures. All other parameters—namely, a∗ and b∗—can be considered
nuisance parameters. It is of great interest to eliminate these from the optimization
procedure, given their potentially large size.

In order to calculate the profile likelihood of the equating coefficients A and B, first
we need to find the maximum likelihood estimators (MLE) of the nuisance parameters.
The step-by-step calculations are presented on Appendix A, and the final results for the
independent and homoskedasticity case are

â∗j =

∑
t
âjt
At
A2
t∑

tA
2
t

b̂∗j =

∑
t
b̂jtAt+Bt

A2
t∑

t
1
A2
t

. (3.9)

Once the nuisance parameters are defined as functions of the parameters of interest
and the data, the vectors of a∗j and b∗j can be replaced by their MLEs, thus reducing
the number of parameters to be estimated by 2J . As a result, instead of working with
L(A,B, a∗,b∗, σ2

a, σ
2
b ; â, b̂), we can now use the more parsimonious Lp(A,B, σ2

a, σ
2
b ; â, b̂).

3.2.3 Accounting for dependence and heteroskedasticity

The likelihood function introduced in Eq. (3.8) assumes the independence between âjt
and b̂jt for all j = 1, . . . , Jt and t = 1, . . . , T . The same goes for the MLEs presented
in Eq. (3.9) above. Moreover, it was then assumed that the variances of the item
parameter estimates were homoskedastic, i.e., σ2

ajt
= σ2

a and σ2
bjt

= σ2
b . Let us now

consider the consequences of assuming the existence of correlations between the item
parameter estimates as well as the possibility of item-individualized variances.

If there is correlation between the item parameters, one must consider the joint distri-
bution of âjt and b̂jt, as opposed to what was defined on Eq. (3.7). Specifically, now we
have to assume a joint distribution for the 2Jt vector of all item parameter estimates in
form t, i.e., (

ât

b̂t

)
a∼ N

((
at

bt

)
,Σt

)
. (3.10)

This joint distribution is contained within one test form t because the parameters for
different items pertaining to separate forms are assumed to be independent. Here, ât

is the vector of all item discrimination estimates âjt for one form t, b̂t is the analogous
vector for the difficulty parameters and Σt is the covariance matrix. The likelihood
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function in this case differs from the one in Eq. (3.8) and is now formulated as

L
(
A,B, a∗,b∗, σ2

ajt
, σ2

bjt
; â, b̂

)
=

T∏
t=1

f(ât, b̂t), (3.11)

where f(·) is the PDF of the multivariate Normal distribution with parameters given
in Eq. (3.10). Akin to the case depicted in Eq. (3.7), the parameters A, B, a∗, b∗,
σ2
ajt

and σ2
bjt

enter the equation as part of the distribution parameters (mean vector and
covariate matrix) of the underlying probability distribution of ât and b̂t.

To estimate the equating coefficients that maximize the likelihood function in this new
scenario, once again we are faced with the issue of dealing with nuisance parameters.
However, we can no longer use the MLEs from Eq. (3.9) to generate a profile likelihood
where a∗ and b∗ are no longer part of the equation; those MLEs were calculated assuming
independence between the item parameters, which is no longer an assumption hereupon.
Moreover, the presence of a potentially-dense Σt means that a Generalized Least Squares
(GLS, Aitkin, 1935) approach would be more appropriate to define an estimator for the
nuisance parameters a∗ and b∗ as part of the maximum profile likelihood procedure for
estimating the equating coefficients in Eq. (3.11). This requires the reformulation of the
equations in (3.6), which gives us 1

At
ât = a∗ + 1

At
εat

Atb̂t +Bt = b∗ + Atε
b
t

.

The equations in the system above jointly have the form Y = Xβ+ ε, where Y, β and ε
vectors are juxtaposing the elements from both rows in the equation above. In extended
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form, the model will look as follows:

Y = X · β + ε

â11/A1

...
âJ11/A1

...
â1T/AT

...
âJTT/AT

A1b̂11 +B1

...
A1b̂J11 +B1

...
AT b̂1T +BT

...
AT b̂JTT +BT



=



1 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 1 0 · · · 0

0 · · · 0 1 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 1



·



a∗1
...
a∗J
b∗1
...
b∗J


+



εa11/A1

...
εaJ11/A1

...
εaJT/AT

...
εaJTT/AT

A1ε
b
11

...
A1ε

b
J11
...

AT ε
b
JTT
...

AT ε
b
JTT



With respect to their sizes, Y and ε are vectors with 2
∑

t Jt elements. β has length 2J

and X is a 2
∑

t Jt × 2J binary design matrix. In accordance with what was explained
in Sec. 1.2, page 4, due to the existence of common items between forms, the number
of different items administered in the test, J , is smaller than the sum of the number of
items administered across all forms,

∑
t Jt.

The GLS procedure allows the estimation of β as a function of the design matrix, the
response vector Y and the covariance matrix of the regression residuals Ω as

β̂ =
(
XTΩ−1X

)−1
XTΩ−1Y. (3.12)

Since only items being administered on the same form are correlated, i.e., ρ(ajtbj′t′) = 0

for all t 6= t′, the covariances between the residuals of those items parameter estimates
are also zero. We can then represent Ω as the following block diagonal matrix:

Ω =


Ω1 0 · · · 0

0 Ω2
. . . ...

... . . . . . . 0

0 · · · 0 ΩT


2
∑
t Jt×2

∑
t Jt

.
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Here, the blocks contain the covariance matrices of the residuals of the parameter esti-
mates for items belonging to the same test form. Explicitly:

Ωt =



σεa1εa1/A
2
t · · · σεa1εaJt

/A2
t σεa1εb1 · · · σεa1εbJt... . . . ...

... . . . ...
σεaJt εa1

/A2
t · · · σεaJt εaJt

/A2
t σεaJt εb1

· · · σεaJt εbJt
σεb1εa1 · · · σεb1εaJt

σεb1εb1A
2
t · · · σεb1εbJt

A2
t

... . . . ...
... . . . ...

σεbJt εa1
· · · σεbJt εaJt

σεbJt εb1
A2
t · · · σεbJt εbJ

A2
t


2Jt×2Jt

.

Unfortunately, Eq. (3.12) cannot be directly calculated because Ω is unknown. How-
ever, we can implement an iterative version of GLS similar to Feasible Generalized Least
Squares (FGLS, Greene, 2003) to estimate β. A similar approach was used by Battauz
and Bellio (2011), where the covariance matrix was computed on the basis of the in-
formation matrix for the estimated abilities. This procedure starts by using an initial
estimate β̂ to calculate Ω̂, which can then be used to update β̂ through GLS. This
back-and-forth then continues until convergence of both β̂ and Ω̂.

In theory, any reasonable initial estimates for a∗ and b∗ can be used to kick-start the
FGLS procedure. In practice, though, it is a good idea to either use commonly-observed
values such as a∗j = 1 and b∗j = 0 ∀j or even estimates given by a simpler equating
procedure, such as those provided by the equateMultiple R package (Battauz, 2017b),
which implements the methods from Battauz (2017a).

With those initial estimates, an initial Ω can be computed; the explicit form for each of
its blocks, Ωt, can be found on Appendix B. Nevertheless, it has been our observation
that the correlations between parameter estimates pertaining to different items are very
close to zero. In these cases, a great deal of computational effort can be saved by
estimating Ω as per Thissen and Wainer (1982), which ignores the correlations between
parameters from different items and performs calculations based on the joint maximum
likelihood. This simplification comes to no observable penalty to the final estimation
of β. Once an optimal solution for (a∗,b∗) is obtained, the equating coefficients are
estimated through maximization of the likelihood function in Eq. (3.11).

3.2.4 Calculating the standard errors of the equating coefficients

Since the point estimates of the equating coefficients are obtained by maximizing the
likelihood function, we can apply standard asymptotic theory to estimate the standard
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errors (SE) of those coefficients (Bock and Aitkin, 1981; Bock and Lieberman, 1970).
Based on that, Ogasawara (2001) worked out the explicit calculations the SEs of IRT
equating coefficients using the delta method. This is also the method Battauz (2013,
2017a) used to obtain the covariance matrix of the equating coefficients and the synthetic
item parameters.

Let (ÂT , B̂T ) be the vector containing the equating coefficient estimates and γ be the
vector of the IRT-estimated parameters for all the items. Using the delta method, the
asymptotic variance-covariance matrix for Â and B̂ is given by

acov
[
(ÂT , B̂T )T

]
=

[
∂(AT ,BT )

∂γ

]T
acov(γ̂)

∂(AT ,BT )

∂γ
.

The asymptotic covariance matrix of the item parameter estimates, acov(γ̂), has dimen-
sion 2

∑
t Jt; ∂(ÂT , B̂T )/∂γ has size 2

∑
t Jt × 2T .

Since the likelihood function does not provide an explicit form for the equating co-
efficients, these partial derivatives are not directly obtainable. However, they can be
retrieved indirectly using the formula for partial derivatives in implicit functions,[

∂(AT ,BT )

∂γ

]T
= −

[
∂S

∂(AT ,BT )

]−1
∂S

∂γT
. (3.13)

Here, S is the gradient of the log-likelihood function, lp, with respect to (A,B), i.e.:

S =

[
∂lp(A,B)

∂(AT ,BT )T

]
= 0.

Since S is the first derivative of lp, its second derivative, ∂S/∂(AT ,BT ), will be the
numerically-obtainable Hessian matrix

∂S

∂(AT ,BT )
=

∂2lp(A,B)

∂(AT ,BT )T∂(AT ,BT )
.

Likewise, the second term of Eq. (3.13), ∂S/∂γT , will also correspond to a numerically-
obtainable matrix of second derivatives. Specifically,

∂S

∂γT
=

∂2lp(A,B)

∂(AT ,BT )T∂γT
.
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Table 3.1: Simulation scenarios. Those with multiple numbers of examinees (i.e.,
sc2 and sc4) perform a rotation in the number of examinees per form, with I1 = 2000,
I2 = 1000, I3 = 500, I4 = 2000 again and so on.

Scenario Test forms (T ) Items per form (Jt) Examinees per form (It)
sc1 10 40 1 000
sc2 10 40 2 000, 1 000, 500
sc3 20 40 1 000
sc4 20 40 2 000, 1 000, 500

3.3 Simulation study and results

In order to study the properties of the proposed method, simulations were performed un-
der different scenarios. The characteristics of each scenario are summarized on Tab. 3.1,
and all software created and used to generate the data presented here are available upon
request. The proposed method was developed in R (R Core Team, 2018) and C++
(Stroustrup, 2000) with the help of the following R packages, listed in no particular
order: mirt (Chalmers, 2012), equateIRT (Battauz, 2015), equateMultiple (Battauz,
2017b), Rcpp (Eddelbuettel and Balamuta, 2017), statmod (Giner and Smyth, 2016),
mvtnorm (Genz et al., 2018; Genz and Bretz, 2009), Matrix (Bates and Maechler, 2018)
and numDeriv (Gilbert and Varadhan, 2016), as well as parallel and stats (R Core
Team, 2018).

All scenarios share the same distributional properties for the person and item parame-
ters. The abilities were generated from Normal distributions, with the first form having
θ ∼ N(0, 1) and the last form having θ ∼ N(0.5, 1.32). The parameters for the interme-
diate forms were picked from an equally-spaced vector of size T ranging from 0 and 0.5
for the mean and 1 and 1.3 for the standard deviations. As for the item parameters, we
have discriminations uniformly-distributed in the [0.5, 2] interval; the difficulty param-
eters come from a truncated standard Normal distribution, with b ∼ TN (0, 1,−2, 2).

The linkage plan was setup so that all forms would be linked to their four closest
neighbors by having 5 items in common with them. The exceptions are the first and
last two forms, which have less than four neighbors each. As an example, the linkage plan
for sc1 is illustrated in Fig. 3.1, but the extension to the larger cases is straightforward.
Likewise, Tab. 3.2 explicits the number of items in common between the test form in
the row and the test form in the column. Again, extension to scenarios with more than
10 forms is straightforward.

The number of items per form was fixed at 40 because different numbers do not do much
more than change the precision of the parameter estimates in all methods. In fact, during
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Figure 3.1: Linkage plan for scenario sc1. Each circle represents one test form; forms
connected by a line have 5 items in common.

Table 3.2: Linkage plan for scenario sc1. Cells contain the quantity of items in
common between the test form in the row and the one in the column.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
t1 40 5 5 - - - - - - -
t2 5 40 5 5 - - - - - -
t3 5 5 40 5 5 - - - - -
t4 - 5 5 40 5 5 - - - -
t5 - - 5 5 40 5 5 - - -
t6 - - - 5 5 40 5 5 - -
t7 - - - - 5 5 40 5 5 -
t8 - - - - - 5 5 40 5 5
t9 - - - - - - 5 5 40 5
t10 - - - - - - - 5 5 40

pretesting, using different values for Jt did not interfere with the conclusions regarding
the comparison of the different equating methods.

Table 3.3 shows the bias and Root Mean Squared Error (RMSE) of the proposed method
for each scenario. Figs. 3.2 to 3.5 compare the estimates, bias and RMSE of the proposed
method with those observed by applying Multiple Mean-Mean (MM-M) and the Multiple
Item Response Function (MIRF) from Battauz (2017a) to the same data. Each point
in the top-row plots represents the estimate of one of the equating coefficients for one
particular run of that scenario. Since A1 = 1 and B1 = 0 by definition, each plot will
contain (T − 1) × 2 × R points, where R = 200 runs of that scenario. Regarding the
bias and RMSE of the equating coefficients, each point represents the average of At—or
Bt—for a particular test form t across R runs of that scenario.

For the cases with variable It (sc2 and sc4), Fig. 3.6 presents scatterplots of the bias
and RMSE for the estimates of a∗ and b∗. As before, the proposed method is laid
horizontally against MM-M and MIRF. All unique items have been excluded. This
figure might help highlight the differences in how each method calculates (a∗j , b

∗
j), which

could accentuate the differences in the equating coefficients.
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(a) Equating coefficient estimates. Likelihood equating vs. MM-M and MIRF.

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010

0.
00

0
0.

00
5

0.
01

0

Likelihood Equating

M
M

−
M

● A
B

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Likelihood Equating

M
IR

F

● A
B

(b) Equating coefficient bias. Likelihood equating vs. MM-M and MIRF.
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(c) Equating coefficient RMSE. Likelihood equating vs. MM-M and MIRF.

Figure 3.2: Estimates, bias and RMSE of the equating coefficient estimates from
likelihood equating against MM-M and MIRF. Scenario 1.
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(a) Equating coefficient estimates. Likelihood equating vs. MM-M and MIRF.
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(b) Equating coefficient bias. Likelihood equating vs. MM-M and MIRF.
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(c) Equating coefficient RMSE. Likelihood equating vs. MM-M and MIRF.

Figure 3.3: Estimates, bias and RMSE of the equating coefficient estimates from
likelihood equating against MM-M and MIRF. Scenario 2.
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(a) Equating coefficient estimates. Likelihood equating vs. MM-M and MIRF.
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(b) Equating coefficient bias. Likelihood equating vs. MM-M and MIRF.
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(c) Equating coefficient RMSE. Likelihood equating vs. MM-M and MIRF.

Figure 3.4: Estimates, bias and RMSE of the equating coefficient estimates from
likelihood equating against MM-M and MIRF. Scenario 3.
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(a) Equating coefficient estimates. Likelihood equating vs. MM-M and MIRF.
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(b) Equating coefficient bias. Likelihood equating vs. MM-M and MIRF.
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(c) Equating coefficient RMSE. Likelihood equating vs. MM-M and MIRF.

Figure 3.5: Estimates, bias and RMSE of the equating coefficient estimates from
likelihood equating against MM-M and MIRF. Scenario 4.
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Figure 3.6: Bias and RMSE of â∗ and b̂∗ for common items. Likelihood equating
(LE) against MM-M and MIRF. Scenarios 2 and 4.
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Table 3.3: Bias and RMSE of likelihood equating per equating coefficient.

Scenario Bias RMSE
A B A B

sc1 0.002489 0.006015 0.078315 0.072334
sc2 0.008083 0.002579 0.079615 0.068411
sc3 0.005466 0.003059 0.098780 0.085207
sc4 0.007821 0.004962 0.103501 0.081292
Overall 0.005965 0.004154 0.090053 0.076811

3.4 Discussion

The results from Tab. 3.3 suggest that the proposed method—likelihood equating, or
LE for short—introduces a small amount of bias to the estimation of the equating coeffi-
cients. However, these values are arguably negligible, and were obtained on simulations
of only 200 replications and samples of no more than 2 000 examinees, indicating good
converging performance of LE.

The proposed method is also compared with two benchmark methods from Battauz
(2017a), namely the Multiple Mean-Mean (MM-M) and the Multiple Item Response
Function (MIRF) on Figs. 3.2 to 3.5 and 3.6. All scenarios show that the LE estimates
have, in general, no more bias than MM-M or MIRF.

The RMSE plots on Figs. 3.2 to 3.5 are where the methodological innovation of LE
begins to show its effects. Since LE accounts for some item properties that the state of
the art does not, it is expected that RMSE plots favor LE over MM-M and MIRF. In
effect, all scenarios showed that MM-M had higher RMSE for all equating coefficients.
When compared to MIRF, the efficiency gain of LE is much less pronounced, perhaps
even nonexistent in sc3. However, the gain in efficiency is quite small and does not
increase with the number of test forms. Additionally, the equating coefficient estimates
on subfigures (a) of the referred figures show that the equating coefficient estimates for
LE and MIRF are much closer to each other than those for LE and MM-M, further
reinforcing the similar performance between LE and MIRF.

Scenarios 1 and 3 respectively differ from 2 and 4 by how the even-numbered ones vary
the number of examinees per form. This is done to introduce heteroskedasticity in the
item parameter estimates. However, no discernible difference in method performance
has been observed between them and the odd-numbered scenarios. These results defy
the expectation that since both MM-M and MIRF assume homoskedasticity of item
parameter estimates, scenarios where the number of examinees varies across the test
forms should result in item parameter estimates with differing degrees of variance—i.e.,
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heteroskedasticity—, which would make methods like LE perform noticeably better.
Tests have been performed with scenarios containing a wider range of It, but those
changes had little to no effect on the conclusions obtained from observing only the four
scenarios published in this study.

Another explanation for the difference in behavior of LE when compared to MM-M
and MIRF can be observed in Fig. 3.6, where the quality of the estimates of a∗ and
b∗ for the common items is assessed. Once again, no discernible difference can be
seen between the three methods regarding bias; when it comes to RMSE, though, LE
performs distinctively better than MM-M, but also slightly better than MIRF. This can
be attributed to the FGLS-like method implemented inside the LE procedure, which
yielded more efficient synthetic parameter estimates than the closed-form solutions of
the benchmark methods from Battauz (2017a), albeit at a computation cost. In the case
of LE vs. MIRF, however, these already shy efficiency gains do not seem to translate
into relevant differences in the equating coefficient estimates.

Equating parallel forms requires attention to aspects like differences in test difficulty
or information function. We believe that the item parameter transformations through
equating coefficients solves the problem of forms not being at the same difficulty level.
The information function, however, is expected to have an impact on the standard
errors.

In essence, LE provides a method for multiple-form equating based on a solid theoretical
foundation. The statistical errors observed in the simulations are small and arguably
innocuous, and LE can be a good alternative to state-of-the-art methods such as those
proposed by Haberman (2009); Battauz (2013, 2017a), offering the potential of slightly
higher efficiency without adding bias. Thus, this study succeeds in developing and im-
plementing a new, statistically advantageous approach to multiple test equating. Never-
theless, the biggest practical cost of LE is its noticeably higher computational overhead.
Using current, mid-tier technology, scenarios involving 50 forms with 100 items each
often take hours to converge to an LE estimate for the equating coefficients, whereas
methods like the MM-M and MIRF as implemented on equateMultiple usually take
only a few seconds to perform their calculations. This is usually not a significant issue
in practical applications, where the method only needs to be run once per administra-
tion, but it can become problematic in simulation scenarios, where methods are applied
hundreds or even thousands of times over different samples.

All things considered, this novel foray into a multiple equating method that takes depen-
dence and heteroskedasticity of item parameter estimates into consideration was shown
to be insightful and rewarding. The scenarios studied contained the same number of
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total and common items, so future studies should study the sensitivity of the results
to changes in those settings. New research efforts into the matter are also welcome,
particularly investigations that (1) compare LE with other multiple equating methods
under other simulation scenarios and real data applications or (2) attempt to further
improve MML convergence speed. Aside from the velocity gains naturally obtained by
the progress of computer hardware technology, speedier evolutions of LE can be devel-
oped by exploring alternative likelihood functions or better methods for estimating the
synthetic parameters. The use of an iterative method (FGLS) to estimate parameters
inside another iterative method (ML) can easily lead to computational bottlenecks, so
perhaps the most promising immediate alternatives to LE can be discovered by ap-
plying different statistical methodologies, as opposed to attempting to achieve higher
computational efficiency.



Appendix A

MLEs of a∗j and b∗j

Let us consider the likelihood function from Eq. (3.8). For one item j, we have the
specific case

L = L
(
A,B, a∗,b∗, σ2

a, σ
2
b ; â, b̂

)
=

T∏
t=1

f(âjt)f(b̂jt), (A.1)

where A and B are vectors respectively containing the equating coefficients At and Bt for
all t = 1, . . . , T test forms. Likewise, a∗ = {a1, . . . , aj, . . . , aJ}, b∗ = {b1, . . . , bj, . . . , bJ},
â = {â11, . . . , âjt, . . . , âJT} and b̂ = {b̂11, . . . , b̂jt, . . . , b̂JT}.

Our goal is to find the maximum likelihood estimators of a∗j and b∗j in that function, i.e.,
the values of â∗j and b̂∗j that maximize the value of L.

Since âjt and b̂jt are independent from each other, finding the values of â∗j and b̂∗j that
maximize L is a simple matter of finding the maximum of L with respect to each one
of those parameters and then rewriting L as a function of them. To facilitate this
derivation, we shall consider the one-to-one transformation below:

l = log(L) = log

[
T∏
t=1

f(âjt)f(b̂jt)

]
=

T∑
t=1

log [f(âjt)] +
T∑
t=1

log
[
f(b̂jt)

]
(A.2)

From Eq. (3.6), we know the distributional properties of f(âjt) and f(b̂jt). Specifically,
we know that âjt

a∼ N(Ata
∗
j , σ

2
a) and b̂jt

a∼ N((b∗j−Bt)/At, σ
2
b ), where the variances were
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simplified due to the assumption of homoskedasticity. This means that

log [f(âjt)] = log

{
1√

2πσa
exp

[
−1

2

(
âjt − Ata∗j

σa

)2
]}

(A.3)

= log

(
1√

2πσa

)
− 1

2

(
âjt − Ata∗j

σa

)2

(A.4)

and

log
[
f(b̂jt)

]
= log

 1√
2πσb

exp

−1

2

(
b̂jt − (b∗j −Bt)/At

σb

)2
 (A.5)

= log

(
1√

2πσa

)
− 1

2

(
b̂jtAt − b∗j +Bt

Atσb

)2

. (A.6)

The equations above tell us that l is composed by three different types of terms, but only
one of those contains a∗j and only one of them has b∗j . This means that when deriving l
with respect to those variables, we only have to deal with one simple sum in each case.
Explicitly, we have that

∂l

∂a∗j
=

∂

∂a∗j

T∑
t=1

[
−1

2

(
âjt − Ata∗j

σa

)2
]

(A.7)

=
T∑
t=1

[
−2

2

(
âjt − Ata∗j

σa

)(−At
σa

)]
(A.8)

=
T∑
t=1

(
âjtAt − A2

ta
∗
j

σa

)
, (A.9)
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which gives us the MLE of a∗j from the following operation:

∂l

∂a∗j
= 0 (A.10)

T∑
t=1

âjtAt − A2
t â
∗
j

σa
= 0 (A.11)

T∑
t=1

(
âjtAt − A2

t â
∗
j

)
= 0 (A.12)

T∑
t=1

âjtAt −
T∑
t=1

A2
t â
∗
j = 0 (A.13)

T∑
t=1

âjtAt =
T∑
t=1

A2
t â
∗
j (A.14)

T∑
t=1

âjtAt = â∗j

T∑
t=1

A2
t (A.15)∑T

t=1 âjtAt∑T
t=1A

2
t

= â∗j (A.16)

For b∗j , we have

∂l

∂b∗j
=

∂

∂b∗j

T∑
t=1

−1

2

(
b̂jtAt − b∗j +Bt

Atσb

)2
 (A.17)

=
T∑
t=1

[
−2

2

(
b̂jtAt − b∗j +Bt

Atσb

)( −1

Atσb

)]
(A.18)

=
T∑
t=1

(
b̂jtAt − b∗j +Bt

A2
tσ

2
b

)
, (A.19)
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which allows us to calculate the MLE b̂∗j as follows:

∂l

∂b∗j
= 0 (A.20)

T∑
t=1

(
b̂jtAt − b̂∗j +Bt

A2
tσ

2
b

)
= 0 (A.21)

T∑
t=1

(
b̂jtAt − b̂∗j +Bt

A2
t

)
= 0 (A.22)

T∑
t=1

b̂jtAt +Bt

A2
t

−
T∑
t=1

b̂∗j
A2
t

= 0 (A.23)

T∑
t=1

b̂jtAt +Bt

A2
t

=
T∑
t=1

b̂∗j
A2
t

(A.24)

T∑
t=1

b̂jtAt +Bt

A2
t

= b̂∗j

T∑
t=1

1

A2
t

(A.25)

∑T
t=1

b̂jtAt+Bt
A2
t∑T

t=1
1
A2
t

= b̂∗j (A.26)

After some straightforward rearrangements, equations (A.16) and (A.26) give us

â∗j =

∑T
t
âjt
At
A2
t∑

tA
2
t

(A.27)

and

b̂∗j =

∑T
t
b̂jtAt+Bt

A2
t∑T

t
1
A2
t

. (A.28)



Appendix B

Covariance matrix for the item
parameter estimates

B.1 Introduction

Let the function L(a,b; x) determine the likelihood of the item and person parameter
estimates given the test answers. For the Jt items in a particular form t, a = {a1, . . . , aJt}
and b = {b1, . . . , bJt} are the vectors of the Jt item parameters and x is an I×Jt matrix
containing the dichotomous item answers for I test takers. For the sake of readability,
let J = Jt for the rest of this section. The functional form of L in this context is

L = L(a,b; x) =
I∏
i=1

∫ ∞
−∞

J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθi, (B.1)

where Pij is equivalent to Pr(Xijt = 1|θit; ajt, bjt) from Eq.(3.1) with t fixed and thus
dropped out of the equation, θ being integrated out and a, b and x being vectorized.
Moreover, Qij = 1 − Pij and, since θ is assumed to be normally-distributed, f(θi) is
known and well-defined.

Let Σ be the covariance matrix of the IRT item parameter estimations âjt and b̂jt.
According to Kendall and Stuart (1966), the asymptotic Σ is given by the inverse of the
negative expected value of the Hessian matrix of the log-likelihood function.
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Let l be the logarithm of the likelihood function from Eq. (B.1). Moreover, let H be
the Hessian matrix

H =



∂2l/∂a1∂a1 · · · ∂2l/∂a1∂aJ ∂2l/∂a1∂b1 · · · ∂2l/∂a1∂bJ
... . . . ...

... . . . ...
∂2l/∂aJ∂a1 · · · ∂2l/∂aJ∂aJ ∂2l/∂aJ∂b1 · · · ∂2l/∂aJ∂bJ

∂2l/∂b1∂a1 · · · ∂2l/∂b1∂aJ ∂2l/∂b1∂b1 · · · ∂2l/∂b1∂bJ
... . . . ...

... . . . ...
∂2l/∂bJ∂a1 · · · ∂2l/∂bJ∂aJ ∂2l/∂bJ∂b1 · · · ∂2l/∂bJ∂bJ


. (B.2)

Once all the second derivatives and their expected values have been calculated, the
covariance matrix of the item parameter estimates is assembled as

Σ = −E(H). (B.3)

The individual elements of H are calculated in the following sections.

B.2 First derivatives

Let the item parameters ak and bk for some k = 1, . . . , J be represented by a generic
parameter ξk. The first derivative of l with respect to ξk is given by

∂l

∂ξk
=

∂

∂ξk

I∑
i=1

log

∫ ∞
−∞

J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθ (B.4)

=
I∑
i=1

∂

∂ξk
log

∫ ∞
−∞

J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθ. (B.5)

Let us name the integral above,
∫∞
−∞
∏J

j=1 P
xij
ij Q

1−xij
ij f(θi)dθ, as a certain function g.

Then we have:

∂l

∂ξk
=

I∑
i=1

∂

∂ξk
log

∫ ∞
−∞

J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθ (B.6)

=
I∑
i=1

∂

∂ξk
log g. (B.7)

=
I∑
i=1

1

g

∂g

∂ξk
. (B.8)
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Developing ∂g/∂ξk, considering
∫
≡
∫∞
−∞ from now on for convenience:

∂g

∂ξk
=

∂

∂ξk

∫ J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθ (B.9)

=

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ, (B.10)

It is useful to separately define ∂P xik
ik Q1−xik

ik /∂ξk, which the product rule of differentiation
allows us to equate it to

xik

(
Pik
Qik

)xik−1 ∂Pik
∂ξk
− (1− xik)

(
Pik
Qik

)xik ∂Pik
∂ξk

. (B.11)

Remembering that xik = {0, 1} for all i = 1, . . . , I and k = 1, . . . , J , we can greatly
simplify the equation above. For xik = 1:

∂

∂ξk
P xik
ik Q1−xik

ik =

[
1

(
Pik
Qik

)0
∂Pik
∂ξk
− 0

(
Pik
Qik

)1
∂Pik
∂ξk

]
=
∂Pik
∂ξk

. (B.12)

Likewise, xik = 0 gives us

∂

∂ξk
P xik
ik Q1−xik

ik =

[
0

(
Pik
Qik

)1
∂Pik
∂ξk
− 1

(
Pik
Qik

)0
∂Pik
∂ξk

]
= −∂Pik

∂ξk
. (B.13)

Joining equations (B.12) and (B.13) with the signaling term (2xik − 1), we have:

∂

∂ξk
P xik
ik Q1−xik

ik = (2xik − 1)
∂Pik
∂ξk

. (B.14)

Finally, we put equations (B.8), (B.10) and (B.14) together to obtain the first derivatives
of the likelihood function in Eq. (B.1) with respect to the generic item parameter ξk:

∂l

∂ξk
=

I∑
i=1

∫ (∏
j 6=k P

xij
ij Q

1−xij
ij

) [
(2xik − 1)∂Pik

∂ξk

]
f(θi)dθ∫ ∏J

j=1 P
xij
ij Q

1−xij
ij f(θi)dθ

. (B.15)

The functional form of the partial derivative ∂Pik/∂ξk seen above depends on whether
ξk corresponds to the discrimination or the difficulty parameter. They were derived in
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Thissen and Wainer (1982), but can be verified without much effort.

ξk ≡ ak =⇒ ∂Pik
∂ak

= PikQik(θi − bk) (B.16)

ξk ≡ bk =⇒ ∂Pik
∂ak

= PikQik(−ak). (B.17)

B.3 Second derivatives

Let ηh be a second representation of a generic parameter of item h; h can be equal or
different from k from the previous section. This allows us to generalize all the second
derivatives composing the Hessian matrix on Eq. (B.2) as ∂l/(∂ξk∂ηh), remembering
that this is equivalent to ∂l/(∂ηh∂ξk). Since Eq. (B.8) gives ∂l/∂ξk = 1/g · (∂g/∂ξk),

∂2l

∂ξk∂ηh
=

∂l

∂ηh

∂l

∂ξk
=

∂l

∂ηh

I∑
i=1

1

g

∂g

∂ξk
=

I∑
i=1

1

g2

(
g

∂2g

∂ηh∂ξk
− ∂g

∂ξk

∂g

∂ηh

)
. (B.18)

It should be noted that where ∂g/ξk and g are respectively the numerator and denomi-
nator from Eq. (B.15). Moreover, ∂g/∂ηh has already been defined in Eq. (B.10), and it
works for ηh equal to ξk or different from it because both are actually just placeholders
for the item parameters aj and bj. Therefore, the only piece left for development on
Eq. (B.18) is ∂2g/(∂ηh∂ξk). We begin by expanding it:

∂2g

∂ηh∂ξk
=

∂

∂ηh

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ. (B.19)

Further expansion of the equation above depends on whether h is equal to k or not. We
will begin with the arguably simpler case of h 6= k:

∂2g

∂ηh∂ξk
=

∂

∂ηh

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ = (B.20)

∫
∂

∂ηh

(∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ = (B.21)

∫
∂

∂ηh

(∏
j 6=k

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂Pik
∂ξk

]
f(θi)dθ = (B.22)

∫ ( ∏
j 6=k 6=h

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂Pik
∂ξk

] [
(2xih − 1)

∂Pih
∂ηh

]
f(θi)dθ, (B.23)
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For the case of h = k, we have ηh = ηk, which does not necessarily imply that ηk = ξk

because each one can be referring to a different parameter of the same item k.

∂2g

∂ηh∂ξk
=

∂

∂ηk

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ = (B.24)

∫
∂

∂ηk

(∏
j 6=k

P
xij
ij Q

1−xij
ij

)(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ = (B.25)

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)
∂

∂ηk

(
∂

∂ξk
P xik
ik Q1−xik

ik

)
f(θi)dθ = (B.26)

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)
∂

∂ηk

[
(2xih − 1)

∂Pih
∂ηk

]
= (B.27)

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂2Pik
∂ξk∂ηk

]
f(θi)dθ (B.28)

From Eq. (B.16), we know that ∂2Pik/(∂ξk∂ηk) will be equal to zero whenever ξk and ηh
are referring to different item parameters, i.e., one is the discrimination and the other
is the difficulty. Moreover, that equation shows that if they refer to the same item
parameter, then

∂2Pik
∂ξk∂ηk

= −PikQik. (B.29)

Now we can finally assemble the second derivatives of the log-likelihood function. Equa-
tions (B.18), (B.23) and (B.28) give us

∂2l

∂ξk∂ηh
=

I∑
i=1

1

g2

(
g

∂2g

∂ηh∂ξk
− ∂g

∂ξk

∂g

∂ηh

)
, (B.30)
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where

g =

∫ ∞
−∞

J∏
j=1

P
xij
ij Q

1−xij
ij f(θi)dθ (B.31)

∂g

ξk
=

∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂Pik
∂ξk

]
f(θi)dθ (B.32)

∂2g

∂ηh∂ξk
=



∫ (∏
j 6=k

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂2Pik
∂ξk∂ηk

]
f(θi)dθ h = k

∫ ( ∏
j 6=k 6=h

P
xij
ij Q

1−xij
ij

)[
(2xik − 1)

∂Pik
∂ξk

]
[
(2xih − 1)

∂Pih
∂ηh

]
f(θi)dθ h 6= k

(B.33)

∂g

∂ηh
=

∫ (∏
j 6=h

P
xij
ij Q

1−xij
ij

)[
(2xih − 1)

∂Pih
∂ηh

]
f(θi)dθ (B.34)

B.4 Expected values

In their work, Thissen and Wainer (1982) worked with a log-likelihood function defined
as

J∑
j=1

I∑
i=1

xij log(Pij) + (1− xij) log(Qij). (B.35)

This is a linear function of the item response xij, which makes the calculation of the
expected value of the Hessian matrix straightforward. However, when we marginalize
θ, the result is a non-linear log-likelihood function. Nonetheless, E(H) can still be
calculated.

Let (xi1, . . . , xiJ) be the set of binary responses given by person i in a test. Also, let
m(xi1, . . . , xiJ) be the second derivative of the log-likelihood function with respect to
the item parameter estimates for that person i, i.e.,

m(xi1, . . . , xiJ) =
∂2l

∂ξk∂ηh
. (B.36)

Then, the expected value of H can be defined as

E(H) = nE[m(xi1, . . . , xiJ)] (B.37)

= n
∑
xi1

· · ·
∑
xiJ

[m(xi1, . . . , xiJ) Pr(xi1, . . . , xiJ)] . (B.38)
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