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Abstract

This thesis collects the key research results on wireless networking developed during the three

years of the PhD. The approach that underlies all work has been the analysis and design of wireless

network protocols together with their physical layer. The former have been created keeping in mind

the features of the adopted physical layer techniques and, conversely, the physical layer has been

chosen according to the employed MAC/routing and its necessities. The results focus on three main

areas.

In the first branch, MIMO signal processing is applied in order to optimize broadcast in a wire-

less MIMO network, to improve the robustness of Network Coding to the vagaries of the wireless

environment and finally to design cooperative protocols that reward nodes which help each other. In

all these cases, great emphasis has been placed on signal processing and on its actual algorithmic

implementation.

In the second part, Carrier Sense optimization for radio networks is studied. First a special type

of carrier sense system for MIMO ad hoc networks is described. Then, attention is focused on single

antenna terminals, and an analytical model for carrier sense optimization in static networks (i.e.,

topology is known) is developed so as to find the carrier sensethreshold that maximizes aggregate

throughput. Moreover, specific algorithms have been created also for dynamic networks (i.e., nodes

are mobile or the topology is not known beforehand). In addition, the analytical model for static

networks is applied also to design a low-complexity, high-performance scheduler for mesh networks.

In any case, interference analysis and the characteristicsof the propagation environment play a key

role to study this problem.

In the last portion of this thesis, a more theoretical approach is undertaken: the performance of

an Aloha multihop wireless network in terms of throughput and delay is analyzed, under saturation

conditions or not. The impact of a variety of physical layer parameters (like rate, path-loss exponent

or SNR decoding threshold) on network performance is analyzed, and we establish how certain pa-

rameters (e.g., transmission probability, rate, route length, admission control) must be tuned in order

to optimize performance.

xi





Sommario

In questa tesi si riunisce il cuore della ricerca svolta nei tre anni del dottorato nell’ambito delle

reti wireless. L’approccio che accomuna tutti i risultati `e stato lo studio di protocolli per reti wireless

in congiunzione al livello fisico. Si è cercato di progettare i primi tenendo conto delle peculiarità del

livello fisico adottato e viceversa si è scelto il tipo di livello fisico in funzione del protocollo di livello

MAC/routing impiegato. I risultati si concentrano in tre grosse aree tematiche.

Nel primo filone, si studia come il signal processing MIMO possa essere impiegato per ottimiz-

zare la disseminazione dati in una rete MIMO, per migliorarela robustezza del Network Coding in

un ambiente wireless e infine per progettare protocolli cooperativi che ricompensino l’aiuto reciproco

fra nodi tipico di questo approccio. In tutti questi casi, sipone una grossa enfasi sull’elaborazione del

segnale e sulla implementazione effettiva degli algoritmi.

Nella seconda sezione, si analizza come il meccanismo del Carrier Sense possa essere ottimiz-

zato in reti radio. Si sono costruiti algoritmi per trovare la soglia di carrier sense che massimizza il

throughput aggregato in reti statiche (ovvero, la topologia è fissa e nota) ma anche quando la topolo-

gia è dinamica o non è nota a priori. Inoltre, il modello d’interferenza sviluppato per reti statiche

è utilizzato per produrre uno scheduler per reti mesh a bassa complessità computazionale e ad alte

prestazioni. In ogni caso, l’analisi dell’interferenza e le caratteristiche dell’ambiente di propagazione

assumono un ruolo centrale nello studio del problema.

Nell’ultima parte, si intraprende un approccio più teorico e si analizza in forma chiusa la perfor-

mance di una rete wireless Aloha multihop in termini di throughput e ritardo, in saturazione o meno.

Si analizza l’influenza di una varietà di parametri di livello fisico (come il rate, path-loss o l’SNR min-

imo di decodifica) sulle prestazioni della rete, stabilendocome debbano essere regolati certi parametri

di progetto (per esempio, la probabilità che un nodo trasmetta in un certo slot, il rate, la lunghezza

della rotta, l’admission control) di modo da ottimizzare leperformance.

xiii





Chapter 1
Introduction

Presently, all practical wireless networks mimic many aspects of their wired counterparts. For

instance, a common design guideline is to decouple layers asmuch as possible. The physical layer

(PHY) is indeed the best example, since any wired networks essentially consider the physical layer

a reliable bitpipe. Any problem with wired networks arise and are dealt with at the upper layers,

for instance congestion, presence of different traffic classes or security. As far as physical and MAC

layers are concerned, the ethernet and optical fibers are effectively regarded asde factostandards for

local networks and long distance communications, respectively.

However, the special features of wireless networks have disputed the foundations of such a strictly

layered approach and especially whether PHY and the rest of the protocol stack should ignore each

other’s peculiarities. For instance, the broadcast natureof the radio propagation environment implies

that the same packet is simultaneously sent to and received by many terminals at the same time. This

is in stark constrast with wired networks, where signals areconfined by the cable/optical fiber. This

broadcast property has been object of much attention. It is naturally useful for multicast traffic but

can also provide spatial diversity. However, it is also the fundamental cause of interference, which

can be rather detrimental if proper care is not exercised.

Much effort has been put in so called cross-layer design, i.e., the idea of having the layers in-

teract with each other so as to optimize performance. Like every ground-breaking idea, it has its

positive and challenging elements. Among the former, cross-layer optimization has questioned many

assumptions in the wireless world and has led to a whole rangeof new protocols and design issues. In

addition, important performance improvements have been proved, in some cases also in testbeds. The

chief consideration to oppose cross-layer design is that coupling different layers implies to reduce

modularity among different protocols.

Being aware of these two points, the main idea that has led theresearch during the PhD has been

to deal with wireless networking by keeping in mind that physical layer and the upper layers cannot

be oblivious of each other. This does not mean that protocolsat different points in the stack must be

jointly optimized. Instead we mean that the physical layer must be tuned according to the purpose of

the message it is carrying. Or, on the other hand, the upper layers must be aware of the capabilities of

1



2 Chapter 1. Introduction

the underlying physical level. An important example has been MIMO networking. This field, which

has emerged in the past 5-6 years, focuses on the design of MACand routing protocols for networks

with multiple antennas. The new degrees of freedom brought by this hardware and the huge capacity

gains of MIMO cannot be harnessed in a wireless network without proper MAC protocols, since also

from an information theoretic point of view, multiuser MIMOis indeed different from point to point

MIMO, and any protocol that wants to achieve a meaningful share of the MIMO gains must bear this

in mind. This has been recognized by many researchers and there have been efforts in this direction.

For instance, a fundamental result in point-to-point MIMO is that if transmitter and receiver haveN

antennas each, the ergodic capacity is proportional toNW log(1+Λ), whereW is the bandwidth and

Λ is the Signal to Noise Ratio. This capacity can be achieved byreal-world architectures (i.e., spatial

multiplexing at the transmitter and MMSE V-BLAST at the receiver). However, some data streams

must propagate through poor channels and therefore they will be the detection bottleneck. Instead,

in a multiuser setting, it is possible to improve the channelmatrix properties by multiuser diversity,

e.g., it is possible to select the users to transmit to and hence the channel matrix. This leads to more

benign propagation channels where no data stream/user has to face a channel with low SNR.

This thesis reports the results developed in the three main areas that have been explored during

the PhD. All these three areas have kept in mind the above mindframe, as the rest of the thesis will

show:

• In the first area, the usage of MIMO signal processing for MAC protocols has been studied. In

some cases, nodes may have multiple antennas, but in other cases they may not. We show that

this type of physical layer techniques can be useful in a variety of environments. For instance,

to efficiently distribute control packets, to improve the performance of Network Coding and

finally to design innovative cooperative protocols. Work inthis field is reported in Chapter 2.

• Carrier sense is the focus of the second part (Chapter 3). This technique is the foundation for all

Carrier Sense Multiple Access (CSMA) MAC protocols. We havestudied how this mechanism

can be tuned, taking into considerations the properties of the wireless medium. Moreover, also

carrier sense for MIMO networks is analyzed and discussed, with a specific proposal for these

systems. Finally, an effective scheduler for mesh networksbased on our algorithms is proposed.

• While the previous sections focus on algorithms and practical design of protocols, the last part

(Chapter 4) analyzes the performance of a generic wireless network by means of tools taken

from stochastic geometry. Again, physical layer does play its part, since the underlying model

takes into account the properties of radio propagation and interference. The importance of this

Chapter lies in its generality and in the design insight thatcan be gained by the simple analytical

formulae that can be derived.

The thesis ends with Chapter 5, which draws the conclusions of this research project, and the list

of all published and submitted papers to date (Appendix A).

In conclusion, this document deals with a variety of topics (MIMO ad hoc networks, mesh net-
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works, network coding, carrier sense, stochastic geometry), but in all cases special attention has been

devoted to the interactions between physical layer and MAC/routing.





Chapter 2
MIMO signal processing for ad hoc

network MAC protocols
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2.1 Introduction

Since a decade ago, the discovery of the huge capacity gains achievable by means of multiple an-

tennas has spurred an unprecedented activity to harness thedegrees of freedom in these systems [1–5].

So far, the attention devoted to point-to-point multiple-input multiple-output (MIMO) links has been

extraordinary (see, for example, the tutorial paper [6] andthe book [3] for an introduction on the mat-

ter). Multiple antennas can provide spatial diversity (by means of space time coding at the transmitter

and signal combining at the receiver), power gain (if the transmitter or the receiver have some kind

of channel state information), interference suppression (by means of directional transmissions) and

finally spatial multiplexing (i.e., the ability to transmitmultiple data streams at the same time). IfN

is the number of antennas at each node, it is possible to achieve anN -fold capacity increase, a power

gain of20 log10(N) dB or a diversity order ofN2. These gains cannot be simultaneously achieved,

as [7] has argued.

However, not so much attention has been dedicated to the interaction between MIMO and the

upper layers [8]. On the one hand, the studies for the cellular case have achieved a relatively mature

status [9–11], but on the other hand work on MIMO ad hoc networks is still incomplete. While some

important efforts have been devoted to this area [11, 12, 14], there is not yet wide consensus on how

to use these degrees of freedom in an interference limited environment without infrastructure like ad

hoc networks.

One of the most important problems is the definition of the MACprotocol. Since the Distributed

Coordination Function of the IEEE 802.11 is thede-factostandard MAC protocol for ad hoc net-

works [15], it has been taken as the basis for most MAC protocols in the context of MIMO ad hoc

networks. This has been the case for terminals with directional antennas [16–21] but also for MIMO

ad hoc networks. However, some studies [10–12] challenge this view and propose other schemes,

more reliant on scheduling rather than carrier sense. Incidentally, work on routing, transport and

upper layers for MIMO networks is still scanty [14,23,24].

A common problem to many papers (especially those on directional antennas) is the usage of some

very simplified propagation and antenna models, e.g., cone–sphere models, with the main antenna

lobe having constant amplitude over a certain angular extension, with negligible or even no side lobes.

This may not be always the case, especially when performing array processing, i.e., when obtaining

directivity through the superposition of omnidirectionalsignals sent from the array elements. Even

if some beamforming technique is available that can steer a main beam of predefined width, and

still guarantee secondary lobes to be under a given threshold [25], they may still radiate a significant

amount of power, potentially reducing the accuracy of simplified models. A study by Takaiet al. [26]

has also highlighted the need to account for realistic physical layer models when evaluating ad hoc

networks with multiple antennas.

The first part of this chapter deals with a modification of the IEEE 802.11 for MIMO ad hoc

networks. In this section, it is investigated which physical layer can be most beneficial for broadcast

packets. The goal is to distribute these vital packets as faras possible, but delay must be kept as short

as possible at the same time. In addition, also unicast handshake packets (like RTS/CTS) fit into this
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description, since they should be received by as many nodes as possible in the neighborhood of the

transmitter. While the initial part of this work was developed during the Master Thesis, the second

part (which evaluates the network performance) has been carried out during the PhD, and hence is

reported here.

In the second part, we design a new physical layer for NetworkCoding [27], called MIMONC,

which exploits MIMO signal processing to make Network Coding more robust to the heavy packet

losses of the wireless propagation channel. Even though nodes are assumed to have just a single

antenna, MIMO signal processing is fundamental, since MIMONC employs a parallel between Net-

work Coding and MIMO to overcome the fragility of the former to packet losses. This scheme is

tested in multiple access, multihop networks and compared against standard network coding.

In the third and final portion, MIMONC is used to build a highly efficient cooperative protocol.

A key problem of cooperative protocols is the necessity of having a node (the relay) that devotes its

own resources to help another node, without having a direct benefit. MIMO NC is the key building

block to solve this issue, since it allows the relay to transmit its own data along with the retransmitted

packet. Such a feature is helpful in single hop networks (because it encourages cooperation) but it

is even more important in multihop networks: the ability to recover a packet loss without wasting

resources for ARQ can effectively reduce the congestion at bottlenecks.

2.2 A low-delay MAC solution for MIMO Ad Hoc Networks

Beamforming [28] has been the main ingredient of many multiantenna ad hoc network MAC

protocols [12, 16, 18, 21, 29, 30]. Unicast data packets especially benefit from its ability to increase

coverage and reduce interference. On the other hand, control packets (like RTS/CTS frames) or mul-

ticast/broadcast transmissions (such as routing information) need to be distributed omnidirectionally

and with increased range, in order to reach as many neighborsas possible. If these packets are trans-

mitted directionally, coordination between nodes can become very poor [21], [31]. This asymmetry

between the possibility to achieve a high (but directional)gain and the need for an omnidirectional

transmission has been called the gain asymmetry and, if not properly addressed, may lead to poor

performance at the MAC layer, where directional transmission of data packets and omnidirectional

transmission of control packets coexist [18,21,29,30]. One of the main ideas to solve this issue so far

has been the concept of Circular RTS (C-RTS),1 where a control packet is successively beamformed

in adjacent sectors, so that the whole horizon is swept by means of multiple transmissions. This ap-

proach extends the transmission range while also retainingomnidirectionality, but comes at the price

of additional delay. A longer handshake increases the contention time, thus reducing the efficiency

of the handshake itself and the overall performance. Finally, the usage of multiple packets increases

interference and energy consumption.

Moreover, a closely related problem is that the majority of the proposed MAC protocols for

1The technique of C-RTS was originally proposed in [18] and later extended (under the name of Circular RTS and

CTS MAC, CRCM) in [30]. While our comparisons refer to the latter and more advanced version, we will use both terms

(CRCM and C-RTS) interchangeably.
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MANET with smart antennas [16, 18, 21, 31], as well as the studies of broadcast techniques [32, 33],

assume that omnidirectional reception must have unit gain,so that the transmitter-receiver pair is ef-

fectively turned into a MISO (rather than MIMO) system. Thisis due to the erroneous belief that

there is always a trade-off between beamforming gain and beamwidth. While this is certainly true at

thetransmitter, where sending on two beams simultaneously requires twice the power and is therefore

impossible in the presence of a power constraint, at thereceiverthis is not the case, because starting

from the baseband samples at the output of the antennas it is possible to form as many receiving

beams as desired by just using signal processing (i.e., no additional power is needed to implement

more beams, as long as the processing power consumption can be considered as negligible). This mis-

interpretation of the beamforming process at the receiver has led some authors to designing schemes

that take into account a constraint that does not exist.

While the asymmetry in gain has been identified and addressedfor directional antennas [18, 21,

29, 30], protocols designed for MIMO networks do not deal with it [12, 34, 35]; these papers explore

the interaction between MIMO PHY and MAC, and they assume that the coverage of directional and

omnidirectional communications is the same, because the network is geographically small. Or in

some other cases [35] unicast and broadcast packets are transmitted by the same space time archi-

tectures (STBC in that case). This approach is suboptimal, because it does not consider the possible

directionality inherent in antenna arrays even when it could be useful. On the other hand, studies for

broadcast in multiantenna networks [32,33] focus on designing MAC protocols that exploit directiv-

ity, but again directional and omnidirectional transmission ranges are the same, because the power for

directional communications is lowered.

The problem that we want to solve is to employ a known MIMO technique for packets that have

to be processed by all neighbors, such that it 1) achieves thesame performance as [18] in terms of

increased coverage, 2) provides a major reduction of the delay (sending the packet as few times as

possible), 3) is an open loop technique, and 4) is not applicable to directional data transmissions.

The last condition can be motivated as follows. A solution suitable for transmission of both control

(omnidirectional) and data (directional), such as for example traditional channel coding or TCM,

would benefit them equally and hence would not reduce the asymmetry. Therefore our goal has been

to design an efficient protocol component by means of existing PHY techniques.

The contribution of this part is a novel control packet exchange method that provides extended

as well as omnidirectional coverage while not suffering from the long delays incurred by C-RTS,

and the design and performance evaluation of a new MAC protocol based on it. Our goal is not to

propose a new MIMO technique, but rather to use existing multiantenna schemes in the design of

high-performance protocols which exploit the opportunities offered by antenna arrays. Our scheme

includes for the first time some MIMO techniques that, while well established in the PHY community,

have not yet been considered in theprotocol designfor MIMO ad hoc networks [12,34,35]. We show

that some existing and well studied MIMO techniques are sufficient to overcome the asymmetry in

gain. The upshot is a 40% delay reduction and 15% throughput improvement over state-of-the-art

protocols.
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2.2.1 Antenna and Channel Models

In this Section, plain letters (i.e.,x) denote scalars, overlines (i.e.,x) denote column vectors and

capital bold letters with an overline (i.e.,X) denote matrices.

The MIMO channel is regarded as Ricean flat fading, slowly varying in time. The baseband (com-

plex) channel gain from theα-th input to theβ-th output is denoted byhα,β, α, β ∈ {1, 2, ..., N},

whereN is the number of antennas at each node. We consider here a Space-Time Block Code

(STBC) model [4], in which a block ofK complex data symbols (arranged in the vectorx =

(x1, x2, ..., xK)T , xi = x r
i + jx i

i) is transmitted inL ≥ K symbol intervals (K/L is the code

rate). In theℓ-th interval of eachL-symbol group, theN antennas send linear combinations of the

K data symbols, computed according to two weighingN × K matrices:W r
ℓ for the real part and

W i
ℓ for the imaginary part. The output of the baseband equivalent of the receiver antennas in theℓ-th

symbol interval (neglecting interference from other users) can be written as:

r(t) = H
(
W r

ℓ x
r + jW i

ℓ x
i
)

+ n(t) (2.1)

wheren(t) is a zero-mean, spatially and temporally white Gaussian noise. A set of complex ma-

tricesW r
ℓ ,W

i
ℓ, ℓ = 1, . . . , L defines an STBC. For instance, for the Alamouti code [5] and QAM

modulation, two data symbols are transmitted every two symbol intervals, so thatK = L = 2 and

W r
1 =

[
1 0

0 1

]
, W r

2 =

[
0 1

−1 0

]
, W i

1 =

[
1 0

0 −1

]
, W i

2 =

[
0 1

1 0

]
.

Finally, the Ricean statistics describes each channel gainby a constant coefficient and a complex

circularly symmetric Gaussian random variable:

H =

√
κ

κ+ 1
HLoS +

√
1

κ+ 1
Hw =

√
κ

κ+ 1
Ga(θt)a(θr)

T +

√
1

κ+ 1
Hw (2.2)

whereκ is the Rice parameter, andθt andθr are respectively the direction of the receiver with respect

to the line perpendicular to the transmitter’s array and viceversa. The first part is the LOS component.

The coefficientsa(θt) anda(θr) can be derived by geometric reasoning ( [28], [9], Section 2.2.2)

and depend only on the array geometry and the transmission/reception directions.Hw is a matrix

composed by complex circularly symmetric Gaussian random variables, and models fading.

We assume that the receiver has perfect Channel State Information (CSI, e.g., obtained by training

based estimation), while the transmitter only knows the functiona(θt) (which depends only onθt and

requires no feedback from any receiver). This asymmetry is due to the fact that in multicast it is

typically impossible for the transmitter to have CSI for allthe receivers (whose number and identity

may even be unknown).

2.2.2 Protocol Model

In the following we outline our protocol and a modified CRCM that is more robust to fading.
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STBC based broadcast

In our previous research [1], we showed that (in agreement with other results from array pro-

cessing theory [28] or information theory [1]) in a MISO setting the asymmetry in gain cannot be

eliminated, because there is an intrinsic tradeoff betweencoverage and packet delivery delay. Thus

the receiver’s degrees of freedom must also be used in order to overcome this impairment. The per-

formance gap with respect to CRCM can be bridged using Maximum Ratio Combining (MRC) at the

receiver and a space time block code [4] with full rate (to keep the delay as short as possible) and

full diversity (to improve the outage behavior of the scheme). These features can be found in the

STBC proposed in [37] (called ABBA), refined by constellation rotations [38], which also provides

some coding gain. The decoding is performed by a twice iterated MMSE-PIC. That is to say, all

symbols are first decoded by an MMSE filter, then each stream isdecoded after the contribution from

the other symbols is cancelled. The computational complexity is about twice as large as that of linear

MMSE detection, but the performance in terms of BER vs SNR is close to optimal. We opted for an

already existing coding strategy, because our purpose is touse known PHY solutions to enhance a

MAC protocol, rather than to advance space time processing theory itself.

Therefore, our proposal is to employ this class of STBC to transmit control packets; we prove

by Bit Error Rate (BER) simulations (reported at the end of this Section) that a suitable MIMO

technique (the ABBA code properly enhanced) can provide thesame performance as the beamforming

technique of [30] in terms of range extension and omnidirectionality, without the delay and energy

costs associated to multiple transmissions. Thus, a brief description of the protocol is as follows:

• Medium access is controlled by conventional carrier sense;

• RTS/CTS packets are transmitted by means of the ABBA STBC. The CTS includes the channel

right eigenvector corresponding to the largest singular value;

• Unicast packets (data/ACK) are sent by closed loop beamforming. The weight vector was

included in the CTS;

• If no feedback is received (i.e, CTS or ACK), another attemptis performed after a binary

exponential backoff, or the packet is discarded if the maximum number of retransmissions has

been reached.

Unicast packets may employ spatial multiplexing or beamforming. While an application of the

former is, for example, [34], we focus on the latter. In conclusion, we study CSMA/CA where control

packets use the ABBA STBC, and evaluate the network performance benefits provided by this space

time architecture.

Modified CRCM

The original CRCM [30] would follow the same protocol model outlined in the previous subsec-

tion, except for the transmission scheme for RTS/CTS packets. In [30] an RTS/CTS frame would be
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sent by a sweep of directional communications in order to emulate a broadcast transmission, while

the Data/ACK exchange is directional. The radiation pattern adopted in studying CRCM followed

the pie-slice model, and selection diversity was assumed atthe receiver [18]. While this might be

quite realistic for LOS conditions, the presence of a highlyscattering medium would break the reg-

ularity of the pattern, so that CRCM would present unacceptable performance. Instead, one of the

desirable features of our system is that it offers robust performance with respect to the degree of fad-

ing. Therefore it is a suitable choice for both LOS environments and Rayleigh fading conditions.2

Therefore, for a fair comparison, we have modified the schemein [30] by the inclusion of an STBC.3

In addition, the required method must be flexible enough to reduce to a conventional beamforming

scheme if CSI is available at the transmitter. The scheme proposed in [40] associates the Alamouti

STBC [5] with equal gain combining in a frequency flat environment, and has been chosen because of

its simplicity and effectiveness. The difference between the modified CRCM and our scheme lies in

the type of STBC and in the number of transmissions for each RTS. In its original form, the scheme

is designed for a system with 2 transmit antennas, but it can be readily generalized to encompass

any numberN of antennas. In this type of STBC, the transmitter is assumedto know the phase

difference between the channel coefficients, so as to perform equal gain combining beamforming.

In [40] this quantity is fed back by the receiver. However, ina broadcast environment this kind of

information is not available, thus the transmitter simply assumes the channel vector(h1 h2 ... hN )

towards directionθt (with respect to the direction orthogonal to the array axis)to be proportional to

(ĥ1 ĥ2 ... ĥN ) = (1, ejφ, e2jφ, ..., ej(N−1)φ)T whereφ = πd sinθ/ℓ, which are the coefficients of

classic linear beamforming schemes [28] (d is the array pitch,ℓ is the carrier wavelength,θ is the

actual direction of the receiver with respect to the transmitter). The choice ofθt is exactly the same as

in [18]: 2πk/M , whereM is the total number of control packets needed to sweep the whole horizon

andk is the number of control packets sent so far in the sweep. Thusalso this scheme is open-loop.

Since the ABBA code does not require any feedback from the receiver, both systems are open-loop.

Moreover, the original scheme in [40] includes a parameter,λ, which is a distribution coefficient

for allocating power between the two transmitted symbols. The choice of this parameter should mirror

the correlation between the estimated and the actual coefficients. In our case, the closer the scenario to

the LOS condition, the higher the correlation. Since the power of the LOS component is proportional

to κ/(κ+ 1), λ is taken to be equal to1− κ/(κ+ 1). Provided that the Rice constant is known,4 the

beamforming matrix can be built as follows:

(
1 0

v
√

1 − λ
√
λ

)

wherev is equal toe−j·arg(h2h∗
1), that is to say the phase difference between the first and the second

2Most of the cited protocols work in LOS conditions only. However, there are some protocols designed for highly

scattering conditions, e.g., [12]- [39]
3We remark that our previous work [1] simulated C-RTS by a highly idealized model, where the transmitter had perfect

CSI toward any receiver. The modified version here is a more realistic implementation of C-RTS for a fading channel.
4It may be estimated by averaging the channel coefficients in time and space, because the channel statistics is assumed

to be time invariant in both dimensions.
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columns of the channel matrix. In a broadcast scenario, this(unknown) information is replaced by

e−j·arg(ĥ2ĥ∗
1). If perfect CSI were available at the receiver, this scheme would yield an equal gain

combining beamforming. Therefore, for a circular broadcast of RTS/CTS packets, each time a certain

direction is taken as reference and the channel coefficientsare estimated according to that bearing.

ForN > 2 antennas at the transmitter, the system can be generalized as follows. The STBC is

still Alamouti, but each symbol is sent by a block ofN/2 contiguous antennas. Finally, this system

could be extended to include a higher diversity STBC, but it would lose orthogonality and that would

entail more complicated signal processing.

A brief comparison of the BERs achieved by the two systems is reported in Fig. 2.1 when both

transmitter and receiver have 4 antennas. Fig. 2.1 shows that the usage of the ABBA STBC with

MRC does provide enough coding gain to overcome the asymmetry in gain. The powerful ABBA

code yields a very robust behavior with respect to differentchannel variabilities (the two curves for

STBC basically overlap). Even in the AWGN case (the scenarioCRCM is designed for) STBC

outperforms CRTS. The reason is as follows: the performancewould be very close if the receiver

were always at the center of the main beam. However, this may not be the case, since its position is

random inside the beam. Therefore, the C-RTS may not always provide as high a gain as possible,

and this causes the 1 dB performance loss observed in Fig. 2.1for the AWGN case. The STBC does

not rely on any LOS component or directionality, and this offers a smooth performance with respect

to the transmitter-receiver mutual position.5 These BER simulations show that the STBC method

achieves at least the same coverage as CRCM for the shown array sizes, since for the same SNR

BERSTBC ≤BERCRCM . For even larger array sizes (10 antennas or more) the beamforming array

gain cannot be provided by modified STBC. In this case, the packet has to be transmitted twice or

more to match the power gain. However, these large arrays arenot of practical importance for ad hoc

networks. In our setting, a single transmission is enough toprovide as good a coverage as CRCM.

In conclusion, the main differences between our scheme and CRCM are:

• Our scheme uses STBC ABBA, CRCM employs beamforming (hybridSTBC/beamforming in

its modified version);

• Our scheme needs to transmit a packet only once for moderate array sizesN , CRCM needs at

leastN transmissions;

• Our scheme is completely open loop, CRCM needs to estimate the Rice constant.

• Our scheme uses the ABBA STBC, while CRCM employs beamforming (or hybrid STBC/

beamforming in its more advanced version) for handshake packets;

• Our scheme manages to broadcast a packet in a single transmission for moderate array sizes,

CRCM needs at leastN transmissions;

5The value of about 1 dB may be predicted by computing the average gain of a 4 antenna linear uniform array in

broadside configuration inside its 3 dB beamwidth. This integral mean is equal to 3.24, which corresponds to a loss of 0.91

dB with respect to the peak value (equal to 4).
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Figure 2.1. BER Comparison for CRCM and STBC

• Our scheme is completely open loop, modified CRCM needs to estimate the Ricean constant.

2.2.3 Performance Evaluation

The two schemes in Section III can be employed in modified IEEE802.11 MAC protocols, where

the control packets are sent according to one of these two methods and the data packets by directional

beamforming. In order to assess their actual impact on network behavior and performance, CRCM

and our protocol have been compared using OPNET 11.5. The network is a 200m× 200m square,

where 12 nodes are uniformly randomly placed. The simulation time is 240 seconds, long enough to

stabilize the metrics, and the results are averaged over 30 independently generated random topologies,

which provide the desired statistical confidence.

The maximum transmission power (0.25 mW) has been chosen large enough to let every node

transmit a data packet (8336 bits) to any other node in an AWGNchannel with an outage probability

of 10% only if they both transmit and receive directionally with 4 antennas each.6

Therefore, this is a single-hop network with no hidden nodes. This scenario, where all nodes may

simultaneously contend for the channel, is designed to testthe ability of the protocol to exploit spatial

re-use and to reduce channel contention. MIMO ad hoc networks can provide increased parallelism,

but the physical layer capacity improvement must be coupledwith an adequate degree of coordination,

or otherwise performance may be even worse than conventional 802.11 [31]. Our study has focused

on the use of STBC to improve channel access. The impact of these techniques for multihop networks

is an interesting problem.

There are four types of packets: RTS, CTS, DATA and ACK. Theirsizes are, respectively, equal

to 240, 240, 8336 and 120 bits per packet. The CTS is as large asthe RTS because it carries the

estimated coefficients of the transmit beamforming vector.In CRCM, each RTS/CTS is sent 5 or 10

times, for a 4 or 8 antenna array [1]. The packet arrivals are described by a Poisson process, whose

rate takes values between 10 and 100 packets/s. This rate hasbeen increased until saturation.

6Our simulations show that both approaches make the network fully connected. This indirectly proves that they achieve

the same coverage, since this network is single hop only if sufficient array gain can be obtained also for handshake packets.
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Each node is equipped with a linear antenna array, comprising 4 or 8 antennas. The Rice factorκ

is equal to 1 or∞ (AWGN). These two values have been chosen to test almost opposite environments,

i.e., nearly Rayleigh or LOS. For our system, the rotation angle of the STBC has been chosen to be half

the characteristic angle of the PSK modulation. While this is not always optimal, the performance is

often close to the maximum [38]. Moreover, the channel is never purely Rayleigh. If fading followed

a Rayleigh statistics, CRCM performance would drop to a verylow level, because no LOS component

is present, while CRCM needs some predictable LOS componentto beamform and achieve array gain.

We have avoided this scenario, in which CRCM would be too penalized, and haven chosenκ = 1

instead as representative of a heavily faded channel. Finally, the channel bandwidth is 1 MHz and the

modulation is BPSK, and thus the data rate is equal to 1 Mbps.

Three metrics (aggregate throughput, packet delivery latency and transmit power consumption)

will be evaluated. The first metric is the aggregate throughput, defined as the total number of data

bits successfully acknowledged, normalized by the productof the channel bandwidth and the sim-

ulation duration. This quantity is depicted against the aggregate load,7 which is computed as the

total number of transmitted bits, including both data and control packets, also normalized by the

bandwidth-duration product. Whenever this quantity is larger than 100%, then spatial reuse is effec-

tively in place, because more bits than the duration-bandwidth product are sent. Hence this load (and

not the nominal load) actually proves whether antenna arrays enable spatial reuse, and is thus more

informative for this class of MACs. The results are reportedin Figs. 2.2 and 2.3. A few observations

are in order. First of all, Figs. 2.2 and 2.3 analyze the same networks; in the former, the Rice constant

is 1, in the latter∞. For a scenario close to Rayleigh fading, our system outperforms CRCM for

both array sizes (gaining 15% and 25% in throughput, respectively). In addition, the performance of

CRCM actually becomes worse for a larger number of antennas (losing 5% in throughput), because

of the increased RTS/CTS overhead and interference. In sucha case, handshakes fail more often and

since their duration is longer the loss in throughput is morenoticeable. The phenomenon is particu-

larly remarkable in the AWGN case: in the 4 antenna case CRCM delivers the same performance as

STBC but with slightly smaller load. However, in the 8 antenna case the relative order is reversed,

with a performance gain as large as 25%, showing that our scheme can better exploit the benefits of

antenna arrays. With 4 antennas, CRCM slightly outperformsour protocol because each hadshake

packet is sent out 4 times, and thus these frames can enjoy a limited amount of time diversity. For

a small number of antennas and the AWGN channel, CRCM does notincur a large overhead and its

RTS/CTS have additional robustness due to the repeated retransmissions. However, CRCM performs

better than the STBC solution only in terms of throughput andonly for LOS channels, that is to say

the situation it has been designed for. On the other hand, ourapproach is more robust to the channel

environment parameters, since it is not greatly affected bythe specific value of the Rice constant.

Incidentally, we point out that the metric shown on the x-axis of the plots is the effective load, and

therefore the expected saturation effect is not shown in thegraphs, because for higher nominal loads

7We shall use the expression effective load as a synonym. Thisterm is meant to also highlight that we take into

consideration the bandwidth actually used by the users, notthe nominal load given by the traffic generated at the packet

sources.
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Figure 2.2. Throughput vs effective load, 12 nodes
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Figure 2.3. Throughput vs effective load, 12 nodes

both aggregate load and throughput decrease.8 Therefore, points in the graphs reach a maximum in

the top-right corner and then both coordinates scale down.

More importantly, thanks to the much more efficient RTS/CTS exchange, our scheme achieves

a significantly reduced packet delivery delay (Figs. 2.4 and2.5). In the comparison, we considered

the latency between the start of MAC contention and the correct reception of the ACK. The delay

reduction is between 17 and 20% for 4 antennas and between 32 and 37% for 8 antennas. In addition,

this advantage is more noticeable for a larger number of antennas, as expected, and in the AWGN

case the 8-antenna system outperforms the 4-antenna network because of the increased interference

suppression, which leads to fewer retransmissions. Instead, CRCM’s latency is affected by the circular

RTS delay. Doubling the array size from 4 to 8 antennas results in twice as many transmissions of RTS

and CTS packets (from 5 to 10 times each). Each of them takes 240µs, leading to an additional delay

of 2.4ms. In fact, the CRCM curves in Fig. 2.4 are approximately the same but shifted upwards

by about 2.8ms, which is in fair agreement with this estimate. The difference is due to a worse

8We note that when the generated traffic is large, collisions become more likely and nodes spend a significant fraction

of their time in backoff. This fact reduces the available time for transmission, and thus the effective load.
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Figure 2.4. Delay vs Throughput, 12 nodes
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Figure 2.5. Delay vs Throughput, 12 nodes

protocol efficiency, as the longer handshake time slightly exacerbates the problems outlined before

(such as increased collisions). In conclusion, the STBC based packet distribution takes advantage of

the greater number of antennas in any propagation environment, which is not the case for CRCM;

moreover the shorter handshake eases problems of coordination, whereas the opposite happens in

CRCM.

Finally, another important metric is transmit energy consumption, computed as the total transmit

energy divided by the number of information bits successfully acknowledged, and plotted against

throughput in Fig. 2.6. We assumed that handshake packets are sent at the maximum power, while

unicast frames (data and ACK) are subject to power control. This fact is essential because otherwise a

data exchange (which lasts for a long time with respect to a control packet) would create a great deal of

interference and would also capture many receivers in the area, preventing further communications.

Therefore unicast frames have a limited weight in this metric, and the control (broadcast) packets

contribute to the majority of the energy consumption. Sinceour scheme needs significantly fewer

transmissions for a control packet, savings can be very high, as Fig. 2.6 shows. In addition, the

increased number of collisions in CRTS makes the gap betweenthe two sets of curves even wider.
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Figure 2.6. Energy per information bit vs Throughput, 12 nodes

2.2.4 Discussion

The issue of the gain asymmetry in ad hoc networks has been described and some of its con-

sequences have been discussed. The solution proposed in [18, 30] has been reviewed. The major

problem of this technique is the significant delay and energyconsumption due to the circular distri-

bution of the control packets. Building on theoretical considerations, in this work we have applied

Space Time Block Codes combined with Maximal Ratio Combining for the transmission of hand-

shake packets, and have shown that a suitable STBC can provide the required performance in terms

of coverage and omnidirectionality without any delay penalty. The performance benefits when this

scheme is incorporated into a MAC protocol for MIMO ad hoc networks have been documented by

simulation results. Interesting extensions of this work include rate adaptation and multihop.

2.3 Network Coding meets MIMO: A look into the rate/diversity trade-

off in wireless Network Coding

Network Coding (NC) has been proposed as a throughput efficient system for data dissemina-

tion [27]. Since then, extensive theoretical work [?, 41–46] and practical implementations [47–51]

have proved its effectiveness for real-world networks. NC delivers unquestionable benefits in wired

networks, where the packet error probabilities are generally very low. However, wireless networks

impose the far more hostile radio propagation environment.In this setting, NC may lose its efficiency,

because a higher redundancy may be required to deliver the data, thus reducing the advantage over

standard routing [?]. Moreover, NC is known to exhibit a threshold-like behavior with respect to

packet losses: ifP information bearing packets (called Information Units (IUs)) are coded together,

P linearly independent combinations must be correctly received. Otherwise, only if early decoding

is possible can some of the IUs be retrieved. On the other hand, conventional routing may enable to

decode some of the IUs, thus reducing the latency for some packets.

In order to fight the erratic behavior of the wireless medium,diversity is often employed. MIMO
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systems are extremely effective in achieving this goal [52]. The key mechanism of MIMO is to have

the same information transmitted and/or received at different antennas, i.e., different locations in

space. However, NC can itself be seen as an inherently multiple input, multiple output system, and an

Information Unit is naturally present in most (if not all) the received Coded Packets. Thus a natural

question arises: is it possible to take advantage of this diversity? Is there any way to have Network

Coding exploit such an inherent redundancy to improve the decoding process? The idea comes from

the observation that MIMO detection techniques and NC are based on a similar description of the

system. In both cases, the transmitted data are the solutionof a linear systemAx = b, whereb

contains the received data or samples andA is the channel matrixH in MIMO and the coding matrix

G in network coding. This similarity is useful to develop an integrated system where MIMO signal

processing and NC coexist at the same layer [4]. The key goalsof this research effort are:

1. to propose a family of practical, computationally efficient schemes (collectively called MIMONC)

based on NC that can tradeoff rate for diversity,

2. to show how much diversity can be recovered from Network Coding,

3. to gain some understanding on the tradeoffs between throughput and diversity in NC.

Recently, the interaction between network coding and otherimportant communication techniques

(especially channel coding and cooperation) has received some interest. The idea of moving network

coding towards the physical layer has been first proposed in [54]. Relations between network coding

and cooperation have also been investigated [55–58]. In [55], the authors propose a way to imple-

ment a physical network coding scheme over a two–way relay channel. Instead [56,57] propose two

approaches that exploit NC during a relaying phase, while [58] explores the rate regions for some

NC/cooperative strategies.

Some research [59–63] deals with the integration of channelcoding and network coding. These

studies exploit the efficiency of network coding in order to both increase the performance of channel

coding and reduce the channel decoding complexity. All these papers exploit in a smart way the

diversity that joint channel coding and network coding can offer. However, both network coding and

channel coding are applied across nodes and provide redundancy spread through the network, and thus

it is not straightforward to understand which technique is eventually responsible for these performance

improvements. Hence our aim is different, namely to analyzethe performance of network coding

alone, without the aid of channel coding, in order to find the fundamental performance limits in

network codingper se. Moreover, many of these papers are focused on some specific scenarios (e.g.,

the relay-aided delivery of some packets), while our techniques can be applied in a generic network.

2.3.1 The MIMO NC schemes

The complete flow of MIMONC is represented in Fig. 2.7. We want to point out that although

all nodes are equipped with a single antenna, this system is MIMO because multiple inputs (the

information packets) are coded together by a NC matrixG to create the multiple outputs (the coded
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Figure 2.7. MIMO NC system overview.

packets) that further result in multiple received packets at the destinations. The encoding process is

performed by each node in a distributed fashion, thus potentially offering spatial diversity. MIMO

provides advanced signal processing techniques for packetdecoding, while a true antenna array is

helpful but not necessary.

The encoding phase starts at the channel encoder, where the MAC layer packets are coded. These

bits are clustered into Galois symbols (here, the referencefield is GF(28)). We call the channel

encoded PDUsinformation units (IUs). The IUs created by the node, along with those previously

decoded, are stored in a buffer.9 The number of available IUs isP , and the IU symbols are denoted

asxp, where1 ≤ p ≤ P is the packet index. These IUs are linearly combined so as to create acoded

packet(CP). In MIMO NC, each CP may include one or two linear combinations of the IUs, and the

NC mixing matrices are denoted asG(r) andG(i). We shall assume for the time being that there is

some rule that decides whether one or two combinations should be produced, but some examples of

actual, distributed decision criteria will be described later. If only one combination is computed every

time, this scheme will be referred to as Basic MIMONC, while if the converse happens (all CPs

contain two linear combinations) the system will be called Super MIMO NC. In the latter case, the

rate is halved, but it will be shown that this rate decrease leads to a diversity order gain. Incidentally,

a receiver may get packets with different modulation formats, but the decoding process can support a

mixed set of CPs. Then-th CP (1 ≤ n ≤ N ) contains one or two linear combinations of theP IUs.

In the latter case, the output can be represented as:

d(r)
n =

P∑

p=1

g(r)
np xp, d(i)

n =

P∑

p=1

g(i)
npxp (2.3)

while in the former onlyd(r)
n is created.

If only one combination is produced, BPSK is chosen as the modulation format, otherwise a

QPSK constellation is employed in order to keep the same transmission time. For the rest of this

section, unless otherwise stated, two linear combinationsper CP and QPSK constellation will be

9In this Section, it is assumed that the payload of each packetincludes only one Galois symbol. This comes at no loss

of generality because each set of symbols is decoded independently.
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assumed because this is the more general case. For BPSK, onlythe real part of the received signal is

processed. The header of each CP includes the NC random coefficientsg(r)
np , g

(i)
np , p = 1, . . . , P used

to combine the IUs. The Galois symbolsd(r)
n , d

(i)
n are turned into bits (G/b operation in Fig. 2.7), and

the bits are mapped into QPSK symbolsqn,k, 1 ≤ k ≤ 8. To each pair of Galois symbolsd(r)
n , d

(i)
n

corresponds a vectorqn of 8 modulated symbols. The corresponding waveforms are sent through the

wireless channel and are collected by the receiver. The channel is Rayleigh distributed and frequency

flat, and can be represented by a complex circularly symmetric Gaussian random variablehn =

h
(r)
n + jh

(i)
n . 10 Thus, the real and imaginary part of the received complex sample yn = y

(r)
n + jy

(i)
n

can be written as: (
y

(r)
n

y
(i)
n

)
=

(
h

(r)
n −h(i)

n

h
(i)
n h

(r)
n

)(
q
(r)
n

q
(i)
n

)
+

(
η

(r)
n

η
(i)
n

)
(2.4)

whereη(r)
n + jη

(i)
n is a complex valued, circularly symmetric Gaussian noise with varianceσ2/2 per

component.

The destination estimates the channel (we shall assume thatperfect channel state information

is available at the receiver) and extracts the NC coefficients from the header. Should the header

be corrupted, the packet must be discarded because the NC coefficients cannot be retrieved. In all

the other cases, the receiver stores the packet into a bufferand updates its estimate of theG =

[G(r);G(i)] 11 matrices. This buffer keeps all physical layer packets related to the same generation,

i.e., the same set of IUs. These CPs have been received at different times and from different sources.

Whenever early or full decoding is possible, the node startsthe detection process. The real and

imaginary parts of the samples of then-th coded packet are gathered into the column vectorsy
(r)
n ,y

(i)
n ,

respectively. The2N vectorsy(r)
n ,y

(i)
n that belong to the same generation are stacked on top of each

other, so as to build a16N vectory = [y(r);y(i)] = [y
(r)
1 ;y

(r)
2 ; ...;y

(i)
1 ; ...;y

(i)
N ], that is passed to the

MIMO NC decoder along with the coding matrix,G.

In conventional NC, each packet is separately demodulated and the NC coefficients are extracted

from the packet header. Note that the two problems of demodulation and NC decoding are carried

out in separated stages. Classical NC can accept only non-redundant packets successfully processed

by PHY, whereas any other packets cannot be used.

However, these operations can be jointly performed in orderto exploit spatial diversity as much

as possible. Since ML detection/decoding achieves optimalperformance and is conceptually simple,

MIMO NC adopts it. The equivalent input-output relation forN received CPs can be written starting

from Eq. (2.4) (see also [64]):

(
y(r)

y(i)

)
=

(
H(r) −H(i)

H(i) H(r)

)(
q(r)

q(i)

)
+

(
η(r)

η(i)

)
(2.5)

10Throughout this Section, the real (imaginary) part of a complex numbera is denoted bya(r)
“

a(i)
”

, and similarly for

vectors
11In the rest of this Section, when we use the notation [x;y], we refer to the vectors (or matrices)x andy which are

stacked on top of each other, i.e.,

"

x

y

#

.
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whereH(r) andH(i) are8N × 8N diagonal matrices,q(r)(q(i)) is an8N vector whose8(n − 1) +

1, ..., 8n, 1 ≤ n ≤ N elements are equal toq(r)n,k(q
(i)
n,k) andη(r), η(i) are real-valued vectors made

up by8N iid Gaussian noise samples. The diagonal ofH(r) (H(i)) is made up byN 8 × 8 matrices

H
(r)
n (H

(i)
n ), 1 ≤ n ≤ N . EachH(r)

(
H(i)

)
is equal to the8 × 8 identity matrix multiplied byh(r)

n

(
h

(i)
n

)
. We point out thatH =

[
H(r) −H(i)

H(i) H(r)

]
is orthogonal andH ′ = HTH is a diagonal

matrix. Each element in the diagonal is exponentially distributed, and all the elements with index in

{8(n− 1) + 1, .., 8n} and{8(N +n− 1) + 1, .., 8(N + n)} are equal to the squared envelope of the

channel seen by then-th packet.

Therefore the received samplesy must be left-multiplied by theHT matrix, so as to diagonalize

the equivalentH matrix. At this point, the decoder has to solve a system of thetype:

Y = H ′Gx + η′ (2.6)

whereY is the16N vector of the processed received samples,H ′ = HTH, G = [G(r);G(i)] and

η′ = HT η. We point out that Eq. (2.6) implies a slight abuse of notation, becauseGx is a vector

of Galois numbers andH ′ is a matrix of real numbers. It is understood that the CPs are modulated

and thusH ′ actually multiplies the baseband equivalent of the modulated waveforms (which can

be represented by complex numbers). Eq. (2.6) is useful because it explicitly shows the parallel

between a MIMO system and NC. The real and imaginary parts of thek-th noise sample of then-th

CPη′(r)n,k (η
′(i)
n,k) are zero mean Gaussian random variables with variance|h2

n|σ2/2, since they can be

expressed ash(r)
n η

(r)
n,k − h

(i)
n η

(i)
n,k andh(i)

n η
(r)
n,k + h

(r)
n η

(i)
n,k, respectively.

Therefore, for any Galois inputx, there is a well defined set of modulated waveforms. The ML cri-

terion picks thex that minimizes the distance between the expected postprocessed received symbols

[H ′q(r);H ′q(i)] and the actual processed samplesY. An exhaustive search can be computationally

infeasible, but past research has found ways to speed up thisprocess. For instance, the NC matrix can

be considered as the channel encoding matrix of a non binary code. Therefore the given problem can

be cast as a joint MIMO demodulation (decode a vector of digital symbols from a vector of received

samples) and channel decoding. An efficient, ML solution to this problem has been offered by [65],

which is a modification of the sphere decoding algorithm (see[65] and references therein).

In order to describe this algorithm, the above Galois systemmust be rewritten. Any Galois matrix

G can be expressed asΠG = LU , whereΠ is a permutation matrix,L is lower triangular andU is

upper triangular [66]. Since, for Galois fields,Π−1 = Π, it stems thatG = ΠLU . Therefore the

problem can be decomposed into two subproblems:

y = H ′ΠLUx + η = H ′ΠLz + η, z = Ux (2.7)

where a dummyP × 1 vectorz is introduced, so that the easier problemy = H ′ΠLz+η needs to be

solved. Given a solutionz∗, x is easily found by conventional backsubstitution [66], sinceU is upper

triangular. The problemy = H ′ΠLz+η is easier than the full one becauseL is lower triangular.

We assume here, with no loss of generality, that the receivedpackets are already ordered so that

Π is the identity matrix. We callyn′ the 8-element column vector that includes the components of
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y whose index is between8(n′ − 1) + 1 and8n′, 1 ≤ n′ ≤ 2N . Moreover,Ln′ denotes the row

vector that is composed by themin(n′, P ) leftmost elements of then′-th row of L and finallyzn′

is the column vector made up by the firstmin(n′, P ) elements ofz. The algorithm picks the vector

z that minimizes the distance‖y − H ′Lz‖2, which can be written, with a slight abuse of notation,

as the sum of2N components:
∑2N

n′=1 γ
2
n′ =

∑2N
n=1 |yn′ − hn′Ln′zn′ |2. The termhn′Ln′zn′ must

be regarded as the multiplication of the scalarhn′ and the BPSK symbols that stem from the Galois

symbolLn′zn′ . We note that then′-th component depends only on the firstmin(n′, P ) symbols in

z. The sphere decoder finds a tentative solution forz1 and computesγ1. If this value is smaller

than a certain thresholdρ2, called thesquared sphere radius, it will proceed to considerz2, keeping

the present estimate forz1. Otherwise, the next tentative value forz1 will be considered. Given a

tentative solution for the firstk symbols, the decoder will proceed by decoding the(k+1)-st element

if
∑k

n′=1 γ
2
n′ < ρ2. The great advantage of the sphere decoder is that if the metric of a certain solution

S is too large, all subsequent solutions which shareS as a prefix need not be considered.

In summary, each node will collect the packets, decode the header, extract the NC coefficients and

then keep the received soft samples. The node tries to decodeas many transmitted packets as possible

with the collected frames. Should it fail (because a packet has been corrupted by interference or noise)

it will store the received samples and keep them so as to help the decoding of the next packets. On the

other hand, to avoid error propagation, nodes are allowed tocombine and retransmit only information

units that have been successfully decoded. Finally, we notethat in conventional MIMO the diversity

is due to the presence of multiple antennas. MIMONC, instead, may exploit three types of diversity:

spatial due to the different positions of nodes, temporal due to the different transmission times, and

coding due to redundant linear combinations of IUs, if present.

As a concluding remark, we highlight that MIMONC is based on soft decoding, while standard

NC employs hard decoded bits. Thus MIMONC may use corrupted or redundant packets and pro-

vides an SNR gain over NC. Thus it can benefit from all the received packets, and is less vulnerable to

corrupted packets. However, if the rate of the transmitted CPs is low (in a sense to be specified in the

next Section), MIMONC can achieve a diversity increase that neither soft decoding nor NC attain.

2.3.2 Performance Analysis

In order to gain some initial understanding, consider a simple case study that can be quite easily

analyzed. The sample network is reported in Fig. 2.8 where nodes 1 throughN have the sameP

IUs. Each of them transmits a coded packet (which is a random linear combination of theP original

packets). Node 0 collects theseN ≥ P coded packets and tries to recover the original frames.

This scenario can occur in a network where data dissemination has reached several nodes, thus many

terminals can combine multiple packets at once. In this caseit is common that some nodes transmit

to the same receiver different coded packets based on the same information units [43].

In this Section, Basic MIMONC is analyzed before Super MIMONC. The reason is that in Basic

MIMO NC, the matricesG andH are half as large as the Super MIMONC matrices. Therefore, the

analysis is easier and clear-cut and moreover the analysis for Super MIMONC stems as a straight-
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Figure 2.8. The test networks.

forward extension of that for Basic MIMONC. Finally, only in this section, the channel coefficients

hn represent only Rayleigh fading for ease of notation; the path loss will be included in the average

received powerPr.

Classical NC performance

The analysis of conventional NC is quite straightforward inthis scenario. We shall assume that

if P CPs out ofN are correctly decoded, the original IUs can all be recovered. 12 If fading is con-

stant over a whole packet, and it is frequency flat and Rayleigh distributed, the average packet error

probability Ppk is inversely proportional to the SNR [52]. For NC,P out of N CPs must be cor-

rectly decoded. Therefore the error probability is the cumulative distribution function of the sum of

N binary random variables evaluated atP − 1.

Let us consider the special case of all the fading coefficients h2
n being iid. The probability of

receiving fewer thanP correct packets out ofN is:

Perr =

P−1∑

k=0

(
N

k

)
(1 − Ppk)

kPN−k
pk (2.8)

For smallPpk the most likely error event is that exactlyP−1 packets have been correctly decoded.

In this case, the packet error probability is approximately:

Perr ≃
(

N

P − 1

)
P

N−(P−1)
pk =

(
N

P − 1

)
PN−P+1

pk (2.9)

In Rayleigh fading,Ppk ∝ 1/SNR, thusPerr ∝ 1/SNRN−P+1 and the diversity order is

N − P + 1.

Basic MIMO NC performance

The equivalent input/output relation for Basic MIMONC was reported in Eq. (2.7). We recall

that in Basic MIMONC, BPSK is employed and thus only the real part of the received signals is

12This approximation does not consider the negligible probability that the NC matrix may not be invertible. This proba-

bility decays as1/(256(N−P+1))
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considered. Hence, all vectors and matrices have half the size as in Section 2.3.1. In addition, since

only the real part of the incoming signals is considered, there is no need to left-multiply the received

vectors byHT in order to decouple real and imaginary parts, and thus only matrixH, rather thanH ′,

is needed by the ML decoder. Nonetheless, the computation ofthe exact error probability is rather

hard and the pairwise error probability will be pursued instead, because it reveals the diversity order

of the system.

Let us callcodewordthe vector of the CPs. Since it is assumed that each CP includes only one

Galois Symbol, here coding is applied across packets ratherthan inside a single packet, as is usually

done in channel coding. We shall denote the codewords by the symbols ci, wherei is an integer

index, andci = Gxi, wherexi is the set of IUs that generate that codeword. By definitionc0 is the

all zero codeword and it is assumed to be the transmitted codeword. This is not restrictive since the

matrixG is a linear operator.

The pairwise error probability of deciding for another codewordc1 instead ofc0 is the conditional

probability that:

‖HGx0 − y‖2 > ‖HGx1 − y‖2

‖HGx0‖2 − 2(HGx0)
Ty + ‖y‖2 > ‖HGx1‖2 − 2(HGx1)

Ty + ‖y‖2

(HG(x0 − x1))
T y < 0 (2.10)

given thatc0 was sent and all transmitted symbols are BPSK, thus‖HGxi‖2 does not depend on the

codewordci, i = 0, 1.

The inner product(HG(x0 − x1))
T y is the sum of8N terms. Let us definetn, n ∈ {1, . . . , N}

as the sum of the terms whose index goes from8(n − 1) + 1 to 8n:

tn =

8∑

k=1

[hn(b
(0)
n,k − b

(1)
n,k)][hnb

(0)
n,k + ηn,k] (2.11)

whereb(ℓ)n,k is the8(n−1)+k-th modulated BPSK symbol of theℓ-th codeword (ℓ ∈ {0, 1}) andηn,k

is thek-th element ofη(n), k ∈ {1, . . . , 8}. Sincec0 = 0, it follows thatb(0)n,k = −1,∀n, k. Clearly

each of the terms that make uptn is non zero ifb(0)n,k 6= b
(1)
n,k. 13 Letwn be the number of different bits

in then-th Galois symbol betweenc0 andc1 (wn ∈ {0, 1, .., 8}). After some algebra, the decision

statisticst =
(∑N

n=1 tn

)
/2 is found as:

t =

N∑

n=1

h2
nwn +

N∑

n=1

hn

8∑

k=1

((b
(0)
n,k − b

(1)
n,k)/2)ηn,k (2.12)

There is a decoding error ift < 0. In Eq. (2.12), the first term
(∑N

n=1 h
2
nwn

)
is a determin-

istic number (since we assume the codewords to be known). Instead,
∑8

k=1((b
(0)
n,k − b

(1)
n,k)/2)ηn,k

is the sum ofwn independent Gaussian random variables and its variance iswnσ
2. Therefore

13A term may vanish also ifhnb
(0)
n,k + ηn,k = 0, but this is a zero probability event.
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∑N
n=1 hn

∑8
k=1((b

(0)
n,k − b

(1)
n,k)/2)ηn,k has zero mean and variance

∑N
n=1 h

2
nwnσ

2. The overall deci-

sion statistics is thus a Gaussian random variable with mean
∑N

n=1 h
2
nwnPr and variance

∑N
n=1 h

2
nwnσ

2

[67]. Thus the error probability conditioned to the channelstate is:

Pblock = Q

(√
(
∑N

n=1 h
2
nwn)2Pr

(
∑N

n=1 h
2
nwn)σ2

)
= Q




√√√√
N∑

n=1

(h2
nwn)SNR




A few observations can be made. First of all, the error probability averaged on the fading statistics

has diversity order equal to the number of non-zerown, that is to say the Hamming distance between

c0 andc1. If G is regarded as the generator matrix of a linear block code, the minimum Hamming

distance of the code is the diversity order of the symbol error rate of the code. The best case occurs

when the code achieves the Singleton bound [68], i.e., the minimum distance isN − P + 1. From

a MIMO point of view, our system, in some sense, decodes a V-BLAST transmission with ML de-

coding. In this setting it is well known that the diversity order isN , notN − P + 1, whereP now

is the number of transmitted streams [52]. However, there isno real contradiction between these two

facts. The intuitive reason is the following. In real MIMO systems, the channel matrix is real, and

not a hybrid of Galois symbols and real numbers. Therefore the probability that a codeword may

force to zero some received samples is negligible. Instead,with the Galois-valued matrixG there

is with probability 1 a codeword that forcesP − 1 outputs to zero, i.e., we can find ax1 such that

c1 = G(x1 − x0) hasP − 1 zeros. For instance, consider a vectord whose firstP − 1 components

are 0 and the last one is an arbitrary non zero Galois symbol. If the matrix with the firstP rows of

G is denotedG(1 : P, :), the systemd = G(1 : P, :)x1 has a unique solution ifG(1 : P, :) is full

rank (which happens with high probability), and thus it is possible to find many such codewords that

effectively reduce the system diversity. Diversity can be regained if no such codewords exist.

Therefore, conventional NC encoding does not properly exploit the spatial diversity inherent in

the system, because the sizes of the fields of NC coefficients and input symbols are equal, while in true

MIMO this is not the case. This answers the second question raised in the Introduction. This problem

leads directly to the third question at the beginning of thissection: what would be the performance of a

MIMO NC system whose input rate is changed? Let us assume that the input symbols are drawn from

GF(2k), 1 ≤ k ≤ 8. This strategy effectively reduces the codebook and the rate. Since the codebook

is smaller, there are fewer words that the ML decoder of MIMONC may be confounded with. In

particular, also the words that differ forN−P +1 elements from the correct codeword are fewer, and

if there are none of them the diversity isN . Table 2.1 shows, forP = 2, N ∈ {2, 3, 4}, the probability

of having diversityN instead ofN − 1 by varyingk. It is apparent that there is full diversity with

high probability only fork ≤ 3, which entails an unacceptable rate reduction. This shows that 1)

the encoding phase of NC as it has been known so far is not suitable to exploit spatial diversity, and

2) there is an inherent tradeoff between rate and performance (in terms of diversity and SNR gain).

As Section 2.3.2 and the Simulation Results Section will show, a rate adaptation scheme (called

Adaptive MIMO NC) can explot this tradeoff. On the other hand, Basic MIMONC does achieve the

maximum possible diversity order for full rate communications and outperforms classic NC, since it

offers a SNR gain and can exploit packets that would not be considered by conventional NC. Even
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Table 2.1. Probability of having full diversity in aP = 2 Star system on varying the input rate

k 1 2 3 4 ≥ 5

N=2 100% 94.6% 76.4% 23.4% 0%

N=3 98.6% 92.2% 65% 11.4% 0%

N=4 98.5% 88.9% 59.1% 6.7% 0%
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Figure 2.9. Comparison of simulated Basic MIMONC and Union Bound whenP = 2 andN = 2, 3.

though the diversity order is the same for Basic MIMONC and NC, the former can successfully

decode the transmitted data in many situations where NC would fail, because the joint detection and

decoding can succeed even if the single packets are corrupted. In these cases NC could not even start

recovering the data. The results Section will confirm that this feature leads to faster data dissemination

and higher reliability.

In order to check the correctness of our analysis, we have compared the Union Bound [68] for

Basic MIMO NC whenP = 2 andN = 2, 3 with the simulated Basic MIMONC (Fig. 2.9). It

turns out that 1) the analysis is validated since it correctly predicts the diversity order and 2) the union

bound is quite accurate since it converges for high SNR towards the simulated curve.

Super MIMO NC

We shall prove in this Section that Super MIMONC can improve the diversity order of the sys-

tem. The performance of the system can be analyzed by means ofthe pairwise error probability.

By following very similar steps as for Basic MIMONC, the decoder decides for a codewordc1 if

(H ′G(x0 − x1))
T y < 0, given that the all zero codewordc0 was sent.

Let us assume that a QPSK symbol is received with average power Pr. Then, after some algebraic

steps that closely follow those of the Section 2.3.2.B, the decision statistic turns out to be:
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t =

N∑

n=1

|hn|2wn

√
Pr

2
+

N∑

n=1

8∑

k=1

((b
(r,0)
n,k − b

(r,1)
n,k )/2)η

′(r)
n,k +

N∑

n=1

8∑

k=1

((b
(i,0)
n,k − b

(i,1)
n,k )/2)η

′(i)
n,k (2.13)

whereb(r,0)n,k (b
(i,0)
n,k ) is the in phase (in quadrature) bit of thek-th (1 ≤ k ≤ 8) QPSK symbol in the

n-th packet,η′(r)n,k (η
′(i)
n,k) is the real (imaginary) part of thek-th noise sample for then-th coded frame

andwn = w
(r)
n + w

(i)
n , with w(r)

n =
∑8

k=1((b
(r,0)
n,k − b

(r,1)
n,k )/2) andw(i)

n =
∑8

k=1((b
(i,0)
n,k − b

(i,1)
n,k )/2)

the numbers of non zero bits in then-th component ofG(r)(x0−x1) andG(i)(x0−x1), respectively.

A decoding error happens ift < 0. By similar arguments to Section 2.3.2.B, the error probability

is:

Perr = Q




√√√√√√

(∑N
n=1 |hn|2wn

)2
Pr/2

(∑N
n=1 |hn|2wn

)
σ2/2


 = Q




√√√√
N∑

n=1

(|hn|2wn)SNR


 (2.14)

The diversity order is equal to the number of non zero terms inthe sum in the argument of the Gaussian

complementary cumulative distribution function (the Q function). If G is regarded as the generator

matrix of a linear block code, the number of non-zerow(r)
n andw(i)

n is the minimum Hamming

distance of the code. The best case occurs when the code achieves the Singleton bound [68], i.e.,

the minimum distance is2N − P + 1. The diversity order decreases by one if, for the samen,

w
(r)
n = w

(i)
n = 0. Since at mostP − 1 w

(r)
n or w(i)

n terms can vanish, the diversity order can be

lowered at most by⌊(P − 1)/2⌋ and thus the slope of the Packet Error Rate vs SNR curve is at least:

D(N,P ) = N −
⌊
P − 1

2

⌋
(2.15)

If P = 2, one term vanishes, but no diversity is lost, since each channel is present twice in

Eq. (2.14). Therefore, the diversity order is alwaysN . If P > 2, the diversity order will be smaller

thanN if the terms relative to the same channel vanish (i.e.,∃n : w
(r)
n = w

(i)
n = 0). This event can be

analyzed by falling back on a closely related problem: given2N balls indexed from 1 to2N , P −1 of

them are removed. What is the probability that one odd index and the following even one are drawn?

The probability of not choosing any two balls in a forbidden configuration is as follows. Each time

thek-th ball is moved out, the next ball (which can be drawn from2N − k positions) should not be

picked from any of thek indices such that a ball with a odd index is followed by one with an even

index. This probability is(2N − 2k)/(2N − k). Thus the probability of having diversityN is:

Pfull =
P−1∏

k=1

2N − 2k

2N − k
(2.16)

For largeN and fixedP the probability of having full diversity approaches 1, because all the

factors in Eq. (2.16) go to one.
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Adaptive MIMO NC

The previous analysis has shown that Super MIMONC can guarantee a diversity order of at least

N −
⌊

P−1
2

⌋
. However, this comes at the price of a reduced transmission rate, since a more spectrally

efficient constellation has been used but the effective datarate has not been changed. According to

the situation, it may be desirable to have lower error probabilities or higher transmission rates. In

particular, we note that when there is little redundancy at the receiver (N = P ), the error rates of

Basic MIMO NC can be quite high. Therefore it may be desirable to quicklyreduce the error rate in

the early data dissemination stages. Hence, we propose a simple rate adaptation scheme which works

as follows. The SNRs of the received coded packets (even the corrupted or redundant ones, but with

correct header in any case) are stored and sorted. If the strongestP SNRs are larger than a threshold

T (which is a design parameter), then the error rate is assumedto be sufficiently low and thus Basic

MIMO NC is used. If this is not the case, Super MIMONC is employed, in order to reduce the error

rate down to acceptable levels. We shall call such a scheme Adaptive MIMO NC.

We conclude this Section by noting an important fact: in adaptive MIMO NC, the CPs are trans-

mitted according to either Basic MIMONC or Super MIMONC, and the decoder can demodu-

late/decode a set of CPs which have been sent according to different schemes, as soon as the adopted

modulation scheme is known. This enables the nodes to decidewhich strategy to employ in a com-

pletely distributed fashion, without any exchange of information to coordinate them. Thus Basic

MIMO NC and Super MIMONC can seamlessly coexist, and this is another reason that makes Adap-

tive MIMO NC viable.

2.3.3 Performance Evaluation

In this Section we prove the effectiveness of Super MIMONC and Adaptive MIMONC in differ-

ent network configurations by comparing them with the Basic MIMO NC scheme and the classical

NC approach. We focus on three different scenarios. First, we consider the simple topology de-

scribed in Fig. 2.8 by varyingN andP . This scenario will be namedStar Topology. Second, the

performance of the different versions of MIMONC are compared in the well knownButterfly Topol-

ogy (Fig. 2.8) [27]. Finally, we test MIMONC in random networks.

The main difference between classical network coding, MIMONC and Super MIMONC is the

ability of the schemes based on MIMONC to exploit spatial diversity, thus decreasing the error

probability. For this reason, we mainly focus on the system error probabilityPsys which is defined as

the probability that at least one of the destination nodes does not receive one or more packets intended

for it.

Star Topology

We report in this Section simulation results about the SuperMIMO NC performance compared

with Basic MIMO NC approach and classical NC in the Star topology which is representative of com-

mon situations like data dissemination through random network coding, where the same information

is present at many neighboring nodes.
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Figure 2.10. System error probability, star topology,P = 2

In the Star configuration,N nodes(1, · · · , N) share the sameP IUs and they are charged to send

them to the destination, i.e., the central node0. In Fig. 2.10 we report the system error probability,

Psys (i.e., the probability that node 0 can not decode allP IUs) for the caseP = 2 andN = 2, 3, 4

for Basic MIMO NC and standard NC, whileN = 2, 3 for Super MIMONC. We point out that

the diversity order changes according to Eq. (2.15). Let us focus on the caseP = 2 andN =

2. In this situation, it can be noted that Basic MIMONC and NC achieve the same performance

while Super MIMONC trades off efficiency (measured asN over the total number of transmitted

linear combinations) for higher diversity and power gains over the other schemes (e.g., about8 dB at

Psys = 10−2).

It is also possible to compare Basic MIMONC and Super MIMONC with equal bandwidth

requirements. This can be done by considering the curves forBasic MIMO NC (P = 2, N = 4) and

Super MIMONC (P = 2, N = 2). In this case, Basic MIMONC outperforms Super MIMONC,

but it comes at the price of twice as many nodes involved. The conclusion that may be drawn is

the following: as Section 2.3.2 proved, some redundancy is needed to achieve additional diversity

in wireless NC. When this redundancy can be attained by having more nodes transmitting the same

information, Basic MIMONC is the system to be preferred. Instead, when the only viable way is to

reduce the spectral efficiency of each packet, Super MIMONC provides a more significant reliability

improvement than Basic MIMONC.

Butterfly Topology

In this Section, we consider the Butterfly Topology (see Fig.2.8) which is one of the best known

reference scenarios for network coding [27]. LetA andB be two source nodes which generate

two original packetsx1 andx2. NodesE andF are the destinations and they want to successfully

receive bothx1 andx2. Each of the intermediate nodes,C andD, transmits a CP which combines

x1 andx2. Note that, in this situation, intermediate nodes can transmit some packets only if they

can successfully recover some IUs. This means that the destinations can receive between two and
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four combined packets depending on how many intermediate nodes retransmit. This scenario is a

little more complex than the previous one as nodes are placedat different distances and only the two

source nodes have the IUs at the beginning.

The system error probability, in this case, is defined as the probability that at least one of the two

destinations does not successfully receive at least one of the two original packets. Fig. 2.11 compares

the system error probability of Super MIMONC, Basic MIMO NC, NC and Adaptive MIMONC

with two values for the SNR thresholdT (i.e., T = 12 dB andT = 16 dB). We first observe that

Super MIMONC always guarantees better performance with a gain of4 dB over Basic MIMONC

scheme and about1 ÷ 2 dB over Adaptive MIMONC. The plot shows that the error probability

curves of Super MIMONC and Adaptive MIMONC are comparable and they are steeper than those

of Basic MIMO NC and NC. Finally, we note that both Basic MIMONC and NC show the same

behavior for high SNR values. The slope decreases and the curves flatten to the constant value of

1/256. This is due to the fact that in Basic MIMONC and classical NC, the two sources may send

linearly dependent CPs. If this is the case, the received2×2Gmatrices are not invertible and neither

the relays nor the destinations can decode any packet. Such an event happens with probability1/256,

which is the value observed in Fig. 2.11.

The advantages of the Adaptive MIMONC scheme are pointed out in Fig. 2.12, where the trans-

mission efficiency is shown. This metric is defined as the ratio betweenN and the number of trans-

mitted linear combinations of the IUs. The lower the transmission efficiency, the lower the error

probability (because more redundancy is available), but also the more the required bandwidth. By

definition, Basic MIMONC has an efficiency of 1, since each CP contains only one linear combina-

tion. Instead, Super MIMONC implies a value of 1/2. Adaptive MIMONC can achieve a higher

efficiency than Super MIMONC guaranteeing also good performance in terms of error probability

(see Fig. 2.11). We also observe that, in the Butterfly topology, there can be at most four transmis-

sions. By the adaptive scheme a ratio of at most0.75 can be achieved, as the source nodes transmit

two linear combinations each while the relay nodes may send just one, therefore the maximum effi-

ciency averaged over all nodes is4/(2+2+1+1) = 0.75. In addition, the average efficiency achieved

by the adaptive scheme depends on the selection of the threshold T . The higher the threshold value,

the lower the efficiency ratio. Moreover, for high average SNR, the relay nodes never need to employ

Super MIMONC, therefore the upper bound for the efficiency (0.75) is reached. This proves that the

idea of tuning the modulation scheme according to the numberof collected packets is a promising

approach to increase both the diversity gain and the efficiency of MIMO NC systems.

Random Topology

In this Section, we study the performance of MIMONC when the node positions are random. Ten

nodes are uniformly distributed in a 90m× 90m square and two source nodes have one IU each and

the goal is to have all nodes decode both IUs. A TDMA schedulerarranges transmissions according

to the following rules. All nodes have an index, running from1 to 10. The time frame is slotted and

in the first slot node 1 (one of the sources) transmits its IU, while in the second slot terminal 2 (the
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Figure 2.12. Achieved rate, butterfly topology

other source) does the same with its IU. Then, in the following slot, the node with the smallest index

that has not yet transmitted and has decoded some IUs will broadcast a CP and so on. This scenario is

interesting because, while rather idealized, it mimics a real world data distribution system. Moreover,

NC performance is known to suffer because of high PERs, and therefore if the transmit power is low

traditional NC may no longer be effective. Instead the ability of MIMO NC of employing discarded

or redundant packets can lead to significant performance improvements.

We shall focus on four metrics of interest: the average time for a terminal (different from the

sources) to decode all IUs, the probability that a node may decode the IUs, the average time for all

nodes in the network to decode all IUs (if it happens) and finally the probability that all the nodes in

the network decode all IUs. All metrics are plotted against the average SNR at a distance of 90m (that

is to say, between two nodes located on two adjacent verticesof the square). At low SNR (-8 dB) the

network is about three hops wide. At high SNR (2 dB) a packet needs at most two hops.

The first metrics deal with the performance of these schemes from the point of view of the average

terminal. They are shown in Figs. 2.13 and 2.14. As is clear, MIMO NC outperforms NC in terms
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of decoding probability, especially in the low SNR regime. On the other hand, Super MIMONC or

Adaptive MIMO NC can further improve reliability or delivery time over Basic MIMO NC, albeit at

a lower transmission efficiency. This confirms that MIMONC trades off rate for reliability, and it can

be adapted to achieve different performance targets.

However, the most interesting results hold for the last two metrics, which refer to the possibility

that all nodes may decode all IUs (Fig. 2.15-2.16). These metrics measure the outage behavior of the

transmission scheme. Clearly, it is harder to guarantee delivery of all IUs to all the network nodes,

and the resilience of MIMONC to channel errors and fading makes an impressive difference. As far

as the network-wide delivery probability is concerned, even Basic MIMO NC outperforms NC by a

factor of 4 or more at low SNR, let alone the other more conservative schemes. The average time for

this delivery is as much as 25% lower. Finally, note the increased gap between MIMONC curves and

standard NC from Fig. 2.13 to 2.15, which proves that the outage behavior can be greatly improved.

This shows that MIMONC is more effective in real world propagation environmentsthan NC and is

able to guarantee remarkably higher performance standardsthan conventional NC.
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In conclusion, MIMONC can achieve much better reliability than standard NC, andis able to

trade off delivery time for reliability. In these discussions, we have assumed that two IUs are injected

(P = 2). We expect that the gap between MIMONC and NC would not decrease asP is increased,

because MIMONC is less sensitive to the threshold reaction of NC to packetlosses, and it would

show a softer performance degradation as the SNR is reduced.Results in [4] confirm this idea.

2.3.4 Discussion

In this Section a new joint demodulation/NC decoding system, called MIMO NC, has been ex-

plored. Its aim is to reap the spatial diversity inherent in NC, and it has been shown that this diversity

cannot be achieved without rethinking both the coding and the decoding phases of NC. MIMONC is

flexible enough to be throughput efficient or benefit from spatial diversity, without requiring multiple

antennas at each node. Theoretical analysis and simulationresults have proved its effectiveness in

many network scenarios.
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2.4 Phoenix: A Hybrid Cooperative-Network Coding Protocolfor Fast

Failure Recovery in Ad Hoc Networks

Cooperative communication techniques [69] have recently attracted much interest in the wireless

research community. The possibility of achieving a low bit error rate without the need for special

hardware (e.g., multiple antennas) has been the focus of a significant deal of research, especially at

the physical layer. More recent studies have proposed medium access strategies that try to take advan-

tage of cooperation. For instance, in [70] the authors propose a cooperative MAC scheme based on

IEEE 802.11 where each node proactively selects a relay for cooperation and lets it transmit simulta-

neously when beneficial in mitigating interference from nearby terminals. The authors of [71] design

a protocol, named CoopMAC, in which each node maintains a table, called CoopTable, of potential

helper nodes. At any communication, a terminal can select either direct transmission or transmis-

sion through a helper node in order to minimize the total delivery time. In [72] a source assisted

way to select the relay node is proposed. In the area between the transmitter and the destination,

the source identifies a relaying region. Any eligible terminal, when a cooperative phase is required,

contends to become a relay by starting a timer. The node with the shortest backoff actually performs

the ARQ transmission. These approaches introduce some additional overhead and require the source

to coordinate the cooperators’ activity.

The cooperative paradigm introduces new issues also at the network layer.

For instance, in all the classical cooperative schemes, a relay that performs a retransmission on

behalf of another node must delay its own frames. So far only alimited amount of attention has been

devoted to this aspect (e.g., [73] studies cooperative routing), and one of the main aims of our work

is to address these challenges.

Another approach that improves efficiency is Network Coding(NC), whose aim is to reduce the

number of transmissions by efficient packet coding. NC and cooperation have different but comple-

mentary goals: NC increases the efficiency of each transmission by sending multiple packets com-

bined together, while cooperation tries to make a smart use of this redundancy in order to increase

spatial diversity. While in the former technique several terminals send different packets to different

terminals, in the latter several nodes send copies of the same packet to the same destination.

Recently, the interaction between NC and cooperation has received some interest [54–57,59]. The

idea of moving network coding towards the physical layer hasbeen first proposed in [54]. In [55],

the authors propose a way to implement a physical network coding scheme over a two–way relay

channel. Also in [57] an approach that exploits network coding during a relaying phase is proposed.

Some research [56,59] deals with the integration of channelcoding and network coding. These studies

exploit the efficiency of network coding in order to both increase the performance of channel coding

and reduce the channel decoding complexity.

Network coding and cooperation have been recently joined in[4] in a completely new way. This

work has shown how to get the diversity gain of cooperation with the throughput efficiency of NC

by means of signal processing techniques borrowed from MIMO, hence its name MIMONC. The

basic property of MIMONC is thatN nodes may send combinations, called coded packets, of the
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sameP original information units, IUs, and simultaneously achieve a diversity order of at leastN −
⌊(P − 1)/2⌋, as well as a coding gain with respect to conventional NC. Forinstance, if a relay sends

a combination of a retransmitted packet and a packet of its own (N = 2, P = 2), the diversity order

is still two as in a conventional cooperative protocol, but the relay has been able to cooperate in the

classical sense, while at the same time also serving its own traffic.

As highlighted by the above example, an approach that combines the advantages of diversity (via

cooperation and MIMO processing) and packet coding (via thenetwork coding paradigm) makes it

possible for cooperating nodes to also send their own trafficat the same time, thereby removing a

significant drawback of traditional cooperative schemes where a cooperating node typically has to

delay its own packets. However, due to their main focus on physical layer issues, most of the existing

papers on this topic (including the original work that proposed MIMO NC [4]) have not addressed the

issues and the tradeoffs that arise in this case, which mostly relate to the MAC and network layers. An

in-depth study of such protocol design issues in the contextof MIMO NC and for realistic network

scenarios is the purpose of this branch.

More specifically, the contribution of our work is twofold. i) We propose a fully distributed relay

election procedure suitable for a decode-and-forward protocol. This solution is simple and easily

implementable with off-the-shelf WLAN cards. ii) We designa novel cooperative MAC protocol

based on MIMONC called Phoenix. Its main feature is to allow cooperators to code their own

packets together with the ones to be relayed, with no additional cost in time and energy.

2.4.1 Phoenix: A Cooperative - NC Protocol

In this paragraphs we propose a novel MAC protocol called Phoenix that relies on the MIMONC

physical layer (PHY) in order to leverage cooperative relaying and network coding techniques. Our

solution suitably extends the basic IEEE 802.11 CSMA mediumaccess policy without channel nego-

tiation [15], which is based on carrier sensing and Binary Exponential Backoff (BEB). In the remain-

der of the Section we will first describe a completely distributed mechanism to perform cooperation

among nodes and then extend it to the full Phoenix protocol byintroducing the contention procedures

needed to successfully combine relayed and original packets.
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CCSMA: A Cooperative CSMA

Consider the topology depicted in Fig. 2.17, and suppose that S sends a packet to D. Once the

transmission is accomplished, the source waits for a feedback from the destination of the frame in

order to determine how to behave. Three conditions can occur: i) the recipient has correctly decoded

the whole data packet, ii) the header of the packet has been received but the payload could not be

decoded, iii) the destination has not decoded the header. Wepoint out that condition ii) can hold

because the header is assumed to have a stronger FEC than the data and a separate CRC. If condition

i) happens, an acknowledgment message (ACK) is sent. On the other hand, if the destination fails

to receive the data but is aware of the attempt performed by the source (i.e., condition ii) holds),

a Not ACKnowledged message (NACK) is sent, asking for a retransmission. Finally, condition iii)

may occur because the destination has not been able to synchronize to the header (either because the

received power was too low or the destination was already engaged in another reception) or because

the SNIR has prevented a correct reception not only of the payload but also of the header. In any case,

the destination is not able to ask for a retransmission, as noinformation on the source is available,

and no feedback is sent.

Let us now assume that the communication between S and D fails. A pure CSMA protocol in this

situation would require S to retransmit the frame after a suitable backoff interval. However, if the com-

munication has failed because of harsh channel conditions between S and D, the following attempt

is not likely to succeed unless performed after a period longenough for the channel to decorrelate.14

On the other hand, thanks to the broadcast nature of the wireless medium, other terminals (e.g.,R1

andR2) may have decoded the packet sent by S, even though it was not intended for them. The

cooperative paradigm proposes that one of these nodes15 acts as relay by immediately retransmitting

the original frame in place of S. Two copies of the same packetare then available at the destina-

tion, sent over spatially independent channels. The receiver can therefore exploit spatial diversity by

performing Maximum Ratio Combining, and the decoding probability is strongly enhanced. Coop-

erative relaying, in brief, substitutes the time diversityoffered by pure CSMA with spatial diversity,

potentially offering a significant reduction of the duration of failure recovery procedures.

The main challenge in defining a cooperative system is to determine a strategy to select nodes that

have to act as relays. In this case we consider a fully distributed approach based on carrier sense. A

node is eligible as relay for the S-D communication if two conditions are met: i) the node has decoded

the data packet sent by S and ii) a frame requiring a retransmission coming from the destination has

been received. The latter condition prevents nodes from transmitting useless and potentially harmful

(in terms of interference) cooperative packets when they are not needed (i.e., when an ACK is missed

by the terminal due to poor channel conditions towards D or when D has not decoded the header of

the data packet from S, being unable to perform any kind of recombination). A terminal that satisfies

both requirements starts a backoff whose lengthn is drawn in the interval[0, CWrel/2] if the received

14The more correlated the channel, the longer the required period. Therefore, this problem may be particularly severe in

low mobility scenarios.
15In our work we consider decode-and-forward cooperation, i.e., only nodes that have correctly decoded the packet sent

by the source can act as relays.
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powerPrec for the NACK frame is higher than a given threshold̄P , and in[CWrel/2 + 1, CWrel]

otherwise. During the firstn − 1 slots, the node does not perform carrier sense. On the contrary,

during the last slot, the power level on the medium is checkedas in the normal contention phase.

If the channel is sensed busy, the terminal assumes that another node has won the contention to

relay data (i.e., another potential cooperator has chosen ashorter backoff window) and gives up its

attempt, going back to its own activity. If, instead, the countdown expires with an idle medium, the

node actually transmits to D a copy of the original packet received from S. After the transmission

is performed, the relay returns to its previous activities without waiting for any feedback from the

destination, as it has no need to be informed on the outcome ofthe communication. If D successfully

combines the original and the relayed packet, an ACK messageaddressed to S is sent. On the contrary,

if the cooperative phase fails (either because the relayed packet is not sufficient to recover the original

failure or because no packet is relayed at all), the destination sends another NACK frame addressed

only to S and therefore not able to trigger another cooperative communication. In this condition, S

decides whether to perform another attempt or not, according to the Short Retry Limit (SRL) value.16

In conclusion, a transmission between S and D is composed of up to SRL phases, separated in time

by the usual BEB mechanism, and each phase is made up by an original transmission from S and a

(potential) retransmission from a relay.

Let us now make some observations on CCSMA. First of all, we notice that the relaying phase

could fail for three main reasons: i) no cooperators may be available, ii) some collisions among

relayed packets may occur, and iii) a potential relay could sense the medium busy and give up the

contention because of aggregate network interference rather than because of an actual cooperative

transmission. The first factor is related to both network density (i.e., topological availability of relays)

and overall network activity (i.e., potential cooperatorsmay not decode data coming from S or a

NACK, due to interference). This issue is not specific to our strategy but rather affects all the decode-

and-forward relaying procedures. As far as collisions among relayed packets are concerned, they are a

drawback of the completely distributed approach that we employ. It is clear that the shorterCWrel the

higher the probability of having two or more cooperators choosing the same value forn. On the other

hand, a long contention window would increase the delay, thereby reducing the advantages of fast

failure recovery of cooperative ARQ. In our protocol we havechosen to use a maximum contention

period much shorter than the backoff window employed by a pure CSMA strategy while still keeping

sufficiently low the probability of collision for the considered network densities (see Section 2.4.3).

Moreover, we try to enhance the probability of success for a relaying phase by favoring nodes that

experience good channel conditions towards the destination. In fact, the threshold̄P represents the

average power of all data packets received from D. Therefore, if a NACK is decoded with a power

higher thanP̄ , the fading between the potential cooperator and D is favorable.

Let us now focus on the criterion chosen to give up the contention. The described carrier sense

mechanism aims at informing all the contending terminals assoon as a relay accesses the medium.

Nevertheless, as pointed out earlier (iii), a node always overhears some amount of overall interference

16The Short Retry Limit represents the maximum number of attempts to deliver a packet performed at the MAC layer

before dropping it [15].
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due to current transmissions in the network, and there is no way to distinguish a specific message out

of it. Therefore, if the noise and interference level exceeds the threshold, the contention may be

abandoned even if no other node is acting as a relay. In order to reduce the impact of this factor, we

ask a node to sense the medium only in the last slot of its backoff window. 17 Suppose, in fact, that

a neighboring communication is in place when the potential cooperator receives the NACK frame

but ends before the countdown is over. With the usual carriersensing scheme, the terminal would

unnecessarily abandon the contention, while with our approach cooperation may still take place. On

the other hand, we would like to observe that giving up cooperation if the overall interference level is

still high when the contention window actually expires may be a good solution. This stems from the

spatial correlation of interference. In fact, when a potential relay decides to abort its transmission, the

destination, which is typically one of its neighbors, is likely to be affected by unfavorable conditions

as well. Should the node cooperate anyway, not only would itstransmission experience a very low

SNIR at the receiver but also the other ongoing communications might experience a collision, with

detrimental effects on the network performance.

In conclusion, although the protocol could be easily extended to more cooperative retransmissions

per each phase, we have decided not to follow this approach, as the decoding performance would not

significantly increase. Actually, a relay phase typically fails because the overall interference at the

receiver is too high (see Section 2.4.3). In this situation,another immediate attempt is going to ex-

perience similar conditions and therefore it is not likely to succeed, wasting resources and increasing

network congestion.

The Phoenix Protocol

Cooperative techniques, as discussed, are able to shorten failure recovery procedures with respect

to pure CSMA protocols by exploiting spatial diversity. On the other hand, when a node acts as a

relay it has to both delay it own transmissions and spend someof its resources (e.g., energy) in order

to help another terminal. These drawbacks may deter potential cooperators from taking part in com-

munication recovery phases, thus limiting the potential advantages of such approaches. We propose

a novel MAC protocol, called Phoenix, that is able to go beyond the disadvantages of classic cooper-

ation by letting relay nodes transmit a combination of a cooperative packet and a packet taken from

their own queue. This solution is enabled by the MIMONC scheme described in Section 2.3. The

idea that underpins Phoenix can be explained referring to Fig. 2.17. In CCSMA, nodeR1 retransmits

S’s packetx on its behalf. With MIMONC,R1 can send a framex⊕ y that combinesx and a packet

y of its own. Any node that has at least an estimate ofx (i.e., it has correctly receivedx’s header)

and ofx ⊕ y is potentially able to decode both frames. With the novel PHY, the relaying phase still

provides spatial diversity to the destination of packetx (i.e., cooperative advantages) but at the same

time a relay can exploit the cooperative communication to serve its own traffic. The Phoenix approach

therefore encourages nodes to cooperate by offering them anadvantage and has the potential to sig-

17This solution does not worsen the probability of collision among relays. In fact, if a terminal accesses the medium, its

transmission lasts much longer than the relay backoff window chosen by any other contending node.
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nificantly improve overall network metrics such as throughput and delay by using ARQ procedures

to deliver novel packets.

In order to make the most out of the MIMONC PHY, however, the CCSMA protocol described

earlier has to be extended into the Phoenix solution. In particular, additional coordination among

nodes is required to properly handle cooperative-network coded transmissions (called NC phases

throughout the rest of this Section). First of all, observe that the success rate of a combined packet

is lower than that of a pure cooperative retransmission. Therefore, if an NC phase is performed, the

destination of the relayed packet (cooperative destination, that is to say D) experiences a degraded

success rate. This higher packet error rate can be justified only if the destination of the novel frame

(NC destination) has some chance to decodey (i.e., two successes with only one transmission are pos-

sible). Such a recovery is possible when the NC destination has cached an estimate ofx. According

to this remark, a cooperator shall perform a coded transmission only if the aforementioned condition

is met. To this aim, Phoenix modifies the CCSMA contention strategy. Once a node receives a NACK

asking for a retransmission and is eligible as a relay, it checks its own queue to determine if it has

packets to code with the relayed frame. If not, the usual CCSMA behavior is followed, and if the node

wins the contention a simple cooperative phase takes place.If the queue is non-empty, the potential

cooperator checks the IDs of the destination for the NC packet and acts accordingly, distinguishing

two conditions.

A) NC and cooperative destinations coincide. In this case, the node is sure that the addressee of

its packet (D) has a cached version ofx, although corrupted.18 The usual CCSMA contention is then

performed and if the terminal is elected as relay, a codedx⊕ y frame is sent.

B) NC and cooperative destinations are different. The backoff phase proceeds as in CCSMA. If

the node wins the contention, an RTS is sent. This is addressed to the destination of the relay’s own

frame and contains the ID of packetx. If the destination of the RTS receives it and has cached a

version ofx, a CTS is sent in reply. If the negotiation is successfully completed, the relay performs

the NC transmission. Otherwise, the node switches back to the pure cooperative scheme and sends

only x. We remark that the benefits offered by the RTS/CTS exchange are twofold. On one hand this

procedure avoids useless and less effective NC phases, as discussed earlier. On the other hand, the

collision avoidance strategy protects the relay communication because nodes that receive one of the

handshake frames update their NAV as in the usual IEEE 802.11approach [15]. This may be useful,

as the destination of the NC packet could be located out of theregions blocked by the simple carrier

sense mechanism for the original S-D communication.

If a pure relay transmission takes place, the cooperator, asdiscussed for the CCSMA protocol,

does not need any feedback and goes back to its activity. On the contrary, if an NC phase was

performed, the relay node has to know whether its own destination has decoded the packet or not.

Therefore, Phoenix has to handle two potential ACK messages: one from the addressee ofx and one

from the addressee ofy. To this aim, a simple slotted solution is employed. Once thereception of

the data frame has ended, the destination ofx starts sending its feedback (ACK/NACK) after a SIFS

18Because of the structure of MIMONC, also corrupted or redundant packets are cached and employed in the decoding

process.
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Figure 2.18. Markov chain for modelling the protocols in correlated fading.

interval, while the destination ofy waits. After this transmission, if the secondary destination has

successfully received its packet, a second ACK (addressed to the relay) is sent after SIFS seconds.

Otherwise, the node keeps silent. In the event of a success, the relay goes back to its activities having

processed one of its frames. If no ACK is received, the terminal puts packety back into its queue and

leaves the cooperative phase.

2.4.2 Analytical Model

In order to obtain some basic understanding on the possible gains that Phoenix can yield with

respect to CSMA and CCSMA, we have developed a Markov model tocompare the throughput of

these protocols in a simplified environment. The test scenario is a three node network, composed by

two saturated nodes A and B that send their packets to a central terminal T, which acts as a packet

sink. Nodes A and B are at the same distance from T. Time is slotted, and only one node can transmit

a single packet per slot. At the end of the slot, an instantaneous, error free ACK/NACK is sent to

both terminals. The channel between the nodes A/B and T is assumed to be subject to time-correlated

fading. Instead, the channel between A and B is error free. The correlation is modelled by a Markov

chain [74], in which the SNRs of the A-T and B-T channels are tracked. The SNR is quantized into

a set of values (from 0 to 18 dB, with step 1 dB, in our case), andthe chain may transition only

between neighboring states/SNRs. This is due to the fact that low speeds are considered and therefore

transitions towards further states are unlikely.19

All the studied systems employ a slotted time frame and the medium access is scheduled by T.

Nonetheless, the first protocol will be called CSMA, to be consistent with the other sections, and also

19More sophisticated models are available [75], however theyare not needed in the low mobility environment considered

here.
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because it represents a benchmark protocol that uses plain,conventional ARQ techniques. In this case,

if a node (say A) fails to deliver its packet, it transmits it again in the next slots (without any backoff)

until the SRL is reached. In our model, the SRL is 2 (i.e., onlyone retransmission is allowed). In the

second protocol, called CCSMA, if a transmission fails, B isassumed to have perfectly received A’s

packet and it performs the retransmission on behalf of A. No matter whether it succeeds or not, in the

next slot the relay (B) transmits one of its own packets. Finally, in the third protocol, Phoenix, the

relay node B transmits a coded packet which combines A’s corrupted frame (which is again correctly

received by the relay) and one of its packets. In the next slot, B transmits another packet of its own.

This model makes some simplifying assumptions. The channelbetween the relays is error free, so

the relay can always retransmit the packet on behalf of its neighbor. In addition, the relay is always

automatically elected without any contention phase, at no cost in time. No outside interference can

prevent the relay phase from acting. Therefore this environment represents an upper bound on the

achievable performance of our protocols. Furthermore, thetheoretical model is easy and quick to

derive, it provides an insightful qualitative comparison of the three protocols and it suggests under

which conditions Phoenix offers the highest benefits.

The network is described by a Markov chain for CSMA and a more elaborated one for CC-

SMA/Phoenix. In the former case, the state is described by two elements: a variableX ∈ {S,R, S′}
and the A-T channel SNR,HA. Whenever a new packet is transmitted,X = S if in the previous slot

a correct transmission occurred; on the other handX = S′ if 1) the previous slot experienced an error

and no retransmissions are possible and 2) a new packet is sent. Instead, if a retransmission is per-

formed,X = R. Let us explore the chain from state(S,HA) (a new frame is sent after a successful

transmission). If the packet is correctly received, the chain evolves into state(S,H ′
A). Otherwise, the

chain goes into state(R,H ′
A) and a retransmission is performed. If successful, the chainmoves into

state(S,H ′′
A), otherwise into(S′,H ′′

A). At this point, a new frame is transmitted and the chain then

evolves into states(S,H ′′′
A ) or (R,H ′′′

A ), depending on whether the packet was correctly transferred.

Flat, slow frequency fading is assumed, thus the transitionprobability is equal to the probability of

correct/failed packet reception (if the state goes into statesS orR/S′, respectively) multiplied by the

channel transition probability fromHA intoH ′
A. In order to compute the throughput, a suitable gain

matrix must be defined. In this protocol it is enough to have a gain of 1 packet at any transition into

state(S,HA) and 0 otherwise.

For CCSMA and Phoenix, some modifications must be adopted (see Fig. 2.18). Now both A’s

and B’s SNRs must be tracked, because they are both needed during a retransmission. The state is

composed by four elements:X ∈ {S,R, S′}, the node that is transmitting (A or B) and the SNRs

of the channels A-T and B-T,HA andHB. Let us start with a packet that is transmitted for the first

time by, say, A. Then the chain is in state(S,A,HA,HB). If the packet is successfully received, then

the chain transitions into state(S,B,H ′
A,H

′
B). Otherwise, a retransmission is performed, moving

into (R,B,HA,H
′
B). Note that the state of channel A-T has not evolved, since memory of the

first transmission must be kept. In this case, CCSMA retransmits A’s frame. Instead, in Phoenix

B will send a network coded combination of A’s and one of B’s packets. Node B will transmit an

altogether new packet after this phase, but if the retransmission is successful, the chain moves into
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Figure 2.19. Throughput vs average SNR (Markov analysis)

state(S,B,H ′′
A,H

′′
B). If this is not the case, state(S′, B,H ′′

A,H
′′
B) will be the new destination. Note

that channelHA has evolved by two steps intoH ′′
A. If the arrival state isS′ no reward is earned,

while a reward of 1 (2) is won by CCSMA (Phoenix) if the retransmission gets across. If instead the

model goes into stateS from S′ or S, the reward is just 1, since a simple, not NC-combined packet

is received. In Phoenix, the transition probability fromR into S is the probability that the packets are

jointly decoded, multiplied by the channel transition probabilities.

The results obtained from the analysis of these Markov models are reported in Fig. 2.19, where

the throughput is shown. First of all, Phoenix outperforms all protocols for sufficiently high SNRs.

This is reasonable, since for very low mean SNR, two combinedpackets can seldom be decoded with

just two transmissions. However, if the protocol is sufficiently well designed (for instance, relays

with high SNR are picked), these situations can be avoided most of the time. On the other hand,

Phoenix can achieve important improvements over CSMA and also has some advantage over the

simple cooperative protocol. In an actual network deployment, the first transmitter always contacts

one of its neighbors. Therefore, the average SNR will be in the high region, where Phoenix and

CCSMA can achieve gains of 30% and 25% over CSMA. Finally, thecooperative protocols can be

expected to increase the transmission range, since they achieve satisfactory performance at lower

SNR.

2.4.3 Performance Evaluation

In this Section, we investigate the performance of the proposed protocols in more realistic net-

work scenarios. The standard set of parameters reported in Table 2.2 is used, unless otherwise stated.

For all results, the 95% confidence interval never exceeds 3%of the estimated value. Two scenarios

were analyzed. In the former, Phoenix has been tested in networks with single hop flows and hidden

terminals. In this case, the network is deployed in a300m×300m square, and there is enough spatial

separation to allow multiple communications at any given time. This configuration tests the perfor-

mance of the protocol when external interference and hiddenterminals, representative of an actual

network deployment, are present. Such a scenario stresses the impact of the different medium access

policies.
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The protocols have been tested also in a true multihop case, where packets must be forwarded.

We have chosen a tree topology, where all nodes transmit their packets through multihop routes to

a single sink. This scenario is well known in sensor networks, where data must be gathered by a

sink. This setting is interesting because of the presence ofseveral bottlenecks. In these places, packet

losses are more frequent and they are particularly damagingsince they affect all upstream nodes. In

this case, MIMONC can be particularly useful because its throughput efficiency can help reduce

the impact of these losses. In all cases, the wireless environment is subject to correlated Rayleigh

fading. The Doppler frequency is equal to 70 Hz, corresponding to a speed of 5 m/s at 2.4 GHz. The

initial maximum contention window is 128, because if a smaller window is selected, the collision

probability in the 35 node network becomes so high that the protocols show very poor performance,

and collisions simply hide all the phenomena we are interested in.

Finally, we also report some results on clustered networks,while a more extensive elavuation

can be found in [9]. By clustered network we mean a wireless system where nodes have single hop

connectivity to a gateway. Each gateway and the terminals connected to it (cell members) form a

cell. This scenario finds important practical examples in cellular networks, Wireless LANs, some

military networks (where low complexity nodes, like soldier radios, are directly connected to more

sophisticated terminals, like Command & Control Centers, airplanes and so on), last mile connectiv-

ity or mesh networks (where mesh node communication may be supported by means of a different

wireless technology than that of cell members). We have considered networks composed byNc non-

overlapping cells of radius 75 m; each of them is made up by a gateway (GW) located at the center

andn additional nodes that generate single hop traffic flows addressed to the GW. The transmitters are

randomly distributed within an annulus centered at the GW ofinner and outer radii equal to 25 m and

75 m, respectively. Such a configuration has been chosen to reduce the number of nodes very close to

the GW. CSMA with Binary Exponential Backoff is known to leadto severe unfairness, where nodes

in favorable positions get the vast majority of the bandwidth. This situation is not interesting, because

that would basically turn off peripherals terminals and leave only the central nodes active. Further-

more, only the uplink is studied, because NC retransmissions offer no clear advantage for downlink

communications. In order to understand why, consider the case of a cell member A not successfully

receiving a packet from the GW. Another cell member B that acted as relay would have no packet in

queue for A, as all its traffic is addressed to the GW. Hence, ina clustered scenario, users within a cell

are not able to exploit the coded retransmission mechanism of Phoenix. Moreover, even if the GW

were allowed to act as a relay for itself and to perform a NC retransmission, the two coded packets

would be sent by the same node (the GW), thus offering no spatial diversity. For these reasons, we

believe that the downlink would benefit in no special way fromNC retransmissions.

In our simulations, all the nodes in the network share the same bandwidth (i.e., universal fre-

quency reuse).

The Short Retry Limit has been set to 3, a suitable value for delay constrained applications.

In these conditions the network is heavy loaded, and transmissions tend to be affected by a high

level of both intra-cell and inter-cell interference (as nofrequency division multiplexing has been

considered). This setting is critical for CSMA-based medium access policies, and represents a good
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Table 2.2. Parameters used in our simulations

Transmission power 10 dBm

Noise Floor -102 dBm

CS threshold -100 dBm

Detection threshold -96 dBm

Path loss exponent 3.5

Maximum Doppler shift 70 Hz (5 m/s)

Slot, DIFS, SIFS duration 20, 128, 28µ s

Data Rate 1 Mbit/s

Initial maximum contention window 128 slots

Short Retry Limit - CSMA, CCSMA, Phoenix 3, 2, 2

Number of slots used for relay contention,CWrel 32

Simulation Time 30 s

Simulation Transient (metrics not collected) 10 s

DATA payload 2000 bits

DATA header CSMA - CCSMA 272 bits

DATA header Phoenix 280 bits

ACK/NACK/CTS 112 bits

RTS 160 bits
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Figure 2.20. Packet Delivery Ratio

test for CCSMA and Phoenix, as the high number of packet losses is likely to often trigger cooperative

procedures.

Single hop flows

In order to have a fair comparison among the systems, we want them to offer similar reliability.

To this aim, we have tuned the SRL parameters of each protocoluntil a comparable Packet Delivery
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Figure 2.21. Aggregate Throughput
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Figure 2.22. System delay per acknowledged packet

Ratio (PDR) was obtained. It turns out that CCSMA and Phoenixshare the same SRL, while CSMA

may require this limit to be larger. The PDR is shown in Fig. 2.20. It can be pointed out that

Phoenix has a higher PDR than CCSMA. The reason is that the NC enhanced retransmission enables

to safely deliver more packets by means of reliable relays. When a cooperative phase succeeds,

CCSMA can increase the numerator of the PDR (i.e., number of acknowledged packets) by one unit.

Instead, Phoenix increases it by two units and the denominator (i.e., the number of frames which

are transmitted at least once) by one. Since the contention system often leads to a good choice of

the relay, the retransmission is often successful, and in the end this leads to a higher PDR. The fact

that the curves mildly rise for very high loads is due to the presence of nodes whose neighbors are

very close; therefore their success rate is always very high. As the load increases, these terminals

deliver most of the acknowledged traffic while the other nodes transmit fewer frames because their

PDR is rather small and then they are stuck in backoff cycles.For these reasons, the weight of the first

nodes in the PDR computation is larger: this induces the observed PDR rise. In perfectly symmetrical

topologies (i.e., circular networks) such trend completely disappears.

Aggregate throughput is reported in Fig. 2.21. It is apparent that Phoenix yields a 15% improve-

ment over plain CSMA and 10% over CCSMA. This plot shows that Phoenix is effective in recovering

lost packets in heavy interference scenarios. On the other hand, in the previous Section, the model
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Figure 2.23. Transmit energy consumption per information bit
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Figure 2.24. Percentage of times that cooperative behavior is shown

made some idealized assumptions about medium access and relay coordination, and therefore the

quantitative results cannot be the same. However, the modelpredicts the qualitative behavior of the

curves that can be found again in the simulation results; forinstance the ranking of the three proto-

cols is correctly foreseen. In conclusion, the model supports the choice of MIMONC as a suitable

physical layer for high performance.

Another metric of interest is the average MAC delay (Fig. 2.22). Phoenix reduces delay at high

loads by about 16% over CCSMA and 40% over CSMA. CSMA has a highdelay because of the three

retransmission phases, but the higher SRL is needed in orderto have a comparable reliability with the

other protocols. The key reason that enables a significant delay reduction by Phoenix over CCSMA

and CSMA is the transmission of additional data packets by means of NC. These frames sent in an

opportunistic fashion have much lower delay than the others. The reason is straightforward: they

basically have no latency due to MAC contention procedures.Therefore, they are subject only to

queueing delay. Since MAC contention delay can be rather larger, even a few of these frames can

significantly improve the mean delay.

The last end-user metric we report is transmit energy consumption. This is computed as the total

energy spent for packet transmissions divided by the total number of information bits successfully

acknowledged. While CCSMA reduces this metric at high loadsby about 5% with respect to CSMA,
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Table 2.3. Performance dependence on node density

nodes (AD) CSMA CCSMA Phoenix

PDR (%)

25 (3.5) 76.2 73.2 75.1

35 (5.5) 77.1 74.5 79.4

56 (7.5) 75.5 72.5 74.9

Throughput (kb/s)

25 1010 1040 1105

35 1160 1210 1330

56 1308 1375 1465

Delay (ms/pk)

25 368 242 212

35 480 310 260

56 673 434 367

Energy (nJ/bit)

25 26.3 24.9 23.9

35 25.8 24.6 22.2

56 27.1 25.8 24.5

NACK/Coop/
25 32.1/9.7/5.5

35 29/12/6.6

/NC (%) 56 34/12.5/6

Phoenix leads to as much as 13%. This is due to the transmission of additional data packets during

some retransmission phases at no cost in terms of bandwidth and transmission time.

Finally, Fig. 2.24 shows the percentage of data packets thatrequire a cooperative retransmission

(Sent NACK), how many contention phases are carried out by a relay (i.e., a relay has retransmitted

the corrupted data packet, Sent COOP) and how many times MIMONC is actually used (Sent NC).

Several conclusions can be inferred. Firstly, in 44% of the requested cooperative phases, some node

actually performs the retransmission. The trace files have shown that in a large number of cases (40%

of all requested retransmissions) there are no relays. Thisis partly due to topological reasons (there

may be no relay close to source and destination) but in most cases the data packet or the NACK have

not been received, because the relays may be decoding another packet in the meantime, or fading

caused the packet loss. In the remaining 16%, there were relays, but carrier sense prevented them

from transmitting. Two main conclusions can be drawn: first of all, interference does affect the

proposed contention phase, especially preventing nodes from correctly decoding the lost data packet.

On the other hand, further improvements could be attained bymeans of a more effective relay election

or a system that may prevent the contention phases from beingdeserted (i.e., so that at least one node

can actually contend for the role of cooperator). It is remarkable that the gains shown so far have been

achieved by acting on only the cooperative packets, that is to say 16% of all the traffic. Hence, even

if MIMO NC is actually used only a few times, it delivers an interesting performance bonus.

The protocols behavior has been also studied varying the network density. Besides the reference

case (35 nodes,300m×300m), two more settings have been analyzed, with 25 or 56 nodes,in the
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Figure 2.25. Packet Delivery Ratio according to hop distance from the sink

same area. The average number of neighbors (AD) is 3.5, 5.5 and 7.5 respectively. Table 2.3 reports

the results for the metrics of interest. First of all, the relative performance is approximately the same

for all configurations, showing that the system is robust to node density. However, this is a non trivial

result, because node density affects two competing factorsin Phoenix. More nodes imply higher

interference and more collisions, which beset any protocol. On the other hand, a denser network

offers more potential relays. By and large, it turns out thatthese factors balance themselves out, and

thus Phoenix is a suitable choice for a wide range of scenarios.

Multihop scenario

We have also tested the protocols in multihop scenarios where 25 nodes are arranged in a tree

topology. All terminals send their load towards the sink, and the network can be as deep as six hops.

This setting is interesting because of the presence of bottlenecks, especially around the sink. In this

case, any packet loss delays all the flows that converge into the bottleneck. Therefore, MIMONC can

be very helpful in ”masking” these failures: if the packet isrecovered together with the transmission

of a new frame, the delay induced by the retransmission will play out less severely on the waiting

flows. We show results up to a load of 12 pk/s, for which saturation arises. This remarks that severe

congestion is present in this scenario, and a fast failure recovery procedure is essential.

In multihop networks, it is well known that the longer the hopcount to the destination, the less

satisfactory the performance. Therefore, we have analyzedPDR and throughput for nodes at different

distances from the sink. Fig. 2.25 shows the PDR for nodes at 2and 4 hops from the destination. It

is clear that Phoenix delivers higher performance in all cases, especially for nodes farther from the

sink, whose PDR can be twice as large for Phoenix as for CCSMA or CSMA. This is confirmed by

Fig. 2.26, which shows that Phoenix outperforms all other protocols by as much as 30% in terms of

throughput.

Fig. 2.27 analyzes the aggregate throughput for all the network. In this case the advantage of

Phoenix is about 14% over CCSMA, lower than the 20-30% shown in Fig. 2.26. This is because

that one hop neighbors of the sink have always a high throughput no matter what protocol is used

(although the cooperative protocols do attain higher performance), and deliver the majority of the
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Figure 2.26. Aggregate Throughput according to hop distance from the sink
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Figure 2.27. Total aggregate Throughput, multihop scenario

traffic. Therefore, CSMA and, to a lesser extent, CCSMA are rather unfair. Phoenix can offer more

throughput to the network periphery than CSMA and CCSMA, andthus its gains over the other

protocols are more significant than in the single-hop flow scenario. Phoenix is thus more fair, and

therefore one can expect more throughput also at higher loads because the outer regions of the network

deliver more traffic than with CCSMA. Fig. 2.28 reports Jain’s fairness index and confirms exactly

this idea: at higher loads, Phoenix’s index is 10-12 percentage points higher than that of CCSMA, let

alone CSMA, whose notorious unfairness shows up very early.We point out that our protocol has not

been explicitly designed to be fair, and thus this importantresult is a desirable byproduct that comes

for free.

Clustered Networks

Phoenix and the other protocols have been evaluated for manydifferent configurations of clustered

networks [9]. We report here the reference scenario, with withNc = 4 cells andn = 9 nodes per cell

(plus the Gateway GW). The Short Retry Limit has been set to 3,a suitable value for delay constrained

applications. In these conditions the network is heavy loaded, and transmissions tend to be affected

by a high level of both intra-cell and inter-cell interference (as no frequency division multiplexing has
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Figure 2.28. Jain’s fairness index, multihop scenario
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Figure 2.29. Packet Delivery Ratio

been considered). This setting is critical for CSMA-based medium access policies, and represents

a good test for CCSMA and Phoenix, as the high number of packetlosses is likely to often trigger

cooperative procedures.

The first metric that we consider is the average Packet Delivery Ratio (PDR), defined as the ratio

of the number of packets successfully received at the GWs to the number of packets injected in the

network (i.e., transmitted at least once, either by means ofa direct transmission or by means of an

NC phase). The PDR is depicted against the nominal average generated loadλ, in pk/s at every

node, in Fig. 2.29. First of all, we notice that both CCSMA andPhoenix are able to significantly

improve reliability with respect to CSMA when operated at the same SRL. The reason for this is

that when a GW is not able to successfully receive a packet, CSMA can only rely on the temporal

diversity provided by successive retransmissions in orderto recover the failure. On the contrary,

protocols that implement cooperative relaying are able to take advantage of spatial diversity as well,

which strongly enhances the probability of successfully performing ARQ phases and thus improves

the overall PDR. All the curves in Fig. 2.29 mildly rise for high loads. This effect is a result of the

well known unfairness that affects CSMA-based protocols. In every cell, nodes that are closer to the

GW experience a success ratio higher than the one of terminals that are farther away. As the load



2.4. Phoenix: A Hybrid Cooperative-Network Coding Protocol for Fast Failure Recovery in Ad Hoc
Networks 51

10 20 30 40 50 60 70 80

400

600

800

1000

1200

1400

Load [pk/s]

A
gg

re
ga

te
 th

ro
ug

hp
ut

 [k
b/

s]

 

 

CSMA
CCSMA
Phoenix

Figure 2.30. Aggregate Throughput

increases, the former nodes tend to access the channel more often, while the latter get stuck for longer

periods in backoff cycles due to their lower success probability and deliver fewer packets. For these

reasons, terminals closer to the GW have a larger weight on the overall metric computation, thereby

inducing the observed PDR rise. It is interesting to remark that this effect is far less pronounced

in CCSMA and Phoenix. Cooperative relaying helps in particular nodes that incur frequent packet

losses, enhancing their success probability and thus shortening the number of backoff phases they

have to undergo. Therefore, this technique is extremely beneficial to reduce unfairness. Finally, we

notice that Phoenix yields a slight improvement over CCSMA (around 3% at high loads). This effect

stems from the higher reliability of cooperative-NC phases.

Aggregate network throughput is depicted in Fig. 2.30 against λ. The plot shows that Phoenix

outperforms CSMA by 16% and CCSMA by 10%. The improvement offered by our protocol is

twofold. On the one hand Phoenix takes advantage of cooperative relaying in order to both increase

the number of successfully delivered packets and to reduce the time required to perform a communi-

cation. On the other hand, cooperative transmissions can beexploited by nodes that act as relays to

opportunistically deliver their own traffic without negotiating the channel. The combination of these

two factors significantly increases the number of served anddelivered packets.

In order to get further insight on the performance of CCSMA and Phoenix, it is interesting to

consider the metrics depicted in Fig. 2.31: impact of cooperative phases and impact of NC phases.

The former is computed as the ratio of the number of packets sent by relay nodes (either as pure

cooperation or as NC combinations) to the number of NACKs sent out by the GWs asking for a

retransmission, while the latter is the ratio of the times MIMO NC is actually used to the same de-

nominator. At low loads, cooperative phases take place withhigh probability when a retransmission

has to be performed, proving the effectiveness of the contention scheme implemented by CCSMA

and Phoenix. On the other hand, MIMONC is very rarely used, as nodes that act as relays are un-

likely to have own packets to send to the GW. These two remarksexplain both why at low loads the

cooperative protocols are able to obtain interesting throughput gains with respect to CSMA and why

Phoenix does not improve over CCSMA. As the load increases, the impact of cooperative phases
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Figure 2.31. Impact of Cooperation and Network Coding

tends to decrease, stabilizing to 50%. This is due to the higher level of interference, that may on the

one hand prevent some nodes from decoding the original packet or the NACK sent by the GW (thus

reducing the number of potential cooperators) and on the other hand may induce relay candidates

to erroneously leave the contention phase (see Section 2.4.1). The impact of NC phases, instead,

increases with load as expected, because of the larger queuesizes. In saturation, a cooperative trans-

mission involves a MIMONC encoded packet in the vast majority (75%) of cases. This behavior is

reflected once again in Fig. 2.30: for high traffic rates Phoenix significantly outperforms CCSMA as

the benefits of MIMONC become more and more important.

Another metric of interest is transmit energy consumption,presented in Fig. 2.32. The metric is

computed as the total energy spent for packet transmissionsdivided by the number of successfully

delivered information bits. The plot shows that Phoenix is more energy efficient than its competitors:

at high loads, CSMA is outperformed by 20% while the improvement over CCSMA is as high as 10%.

This stems from the capability of our protocol to exploit retransmission phases in order to deliver

information packets at no additional cost in terms of energyand bandwidth. Two more observations

can be made: first of all, the curves in Fig. 2.32 tend to decrease for higher loads, as an effect of the

unfairness of CSMA-based protocols discussed earlier. Secondly, the gain of Phoenix over CCSMA is

strengthened as traffic rate increases. This is due to the higher impact of NC phases on the cooperative

mechanism that characterizes high load conditions (Fig. 2.31).

In our studies we have also investigated the behavior of the protocols with respect to network

capacity. We definēλ as the minimum value ofλ that saturates the bandwidthB, i.e., λ̄nTp = B,

whereTP is the minimum time to complete a data exchange (including overhead). Moreover, we

call L the payload size and definēτ = λ̄L, the target throughput per node corresponding to this

condition. In the reference scenario,λ̄ ≃ 40 pk/s per node and̄τ = 80 kb/s per node. We identify

four classes of terminals with respect to QoS; the highest class contains nodes that achieve an average

throughputτ higher than or equal tōτ ; the second class is for cell members that satisfy the constraint

2τ̄ /3 ≤ τ < τ̄ ; the third class groups terminals that obtain a throughputτ̄ /3 ≤ τ < 2τ̄ /3 and finally

the lowest class includes nodes that do not reach a minimum target throughput equal tōτ/3. The
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Figure 2.32. Energy Consumption
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Figure 2.33. Network Capacity in a 10 cells scenario

results obtained at high load (60 pk/s) for the three highestclasses are reported in Fig. 2.33. The

improvement offered by Phoenix over its competitors is twofold. On the one hand, the number of

cell members that support the minimum target throughput increases by 9% with respect to CCSMA

and by 20% with respect to CSMA. On the other hand, our protocol boosts the number of nodes with

medium and high QoS by as much as 35% if compared to the other medium access policies. These

results show that the combination of cooperative relaying and network coding is able to guarantee a

minimum service to a much higher share of cell members thanksto a more fair distribution of the

resources. Moreover, MIMONC may be extremely beneficial for applications characterized by high

QoS constraints, as networks that rely on Phoenix can support many more cell members with such

requirements even in harsh interference conditions.

Let us now focus on the trends for CCSMA and CSMA in Fig. 2.33. Two behaviors can be

observed: i) CCSMA increases the number of nodes that support the minimum throughput service,

i.e.,τ ≥ τ̄ /3; ii) the cardinality of the two highest QoS classes for CCSMAis slightly lower than the

one that characterizes CSMA. This offers an interesting insight on the impact of cooperative relaying

techniques. In a decode-and-forward approach, relay nodesspend some of their resources in order to
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help other terminals. In this way, not only do cooperators reduce their performance, but also nodes that

benefit from relaying become more aggressive, as the enhancement of their success rate leads them

to contend for the channel more often. Both these factors have a detrimental effect on cell members

that are more likely to cooperate, i.e., those that are closer to their GW and that would normally enjoy

high performance. We can then infer that cooperation redistributes the resources in the network at the

expense of users with high QoS. This effect, on the contrary,does not affect Phoenix: the MIMONC

scheme that we propose does not penalize terminals that decide to act as relays but rather it boosts

their performance by letting them exploit cooperative phases to serve their own traffic. Thus, our

approach overcomes an important limit of cooperative relaying, improving the performance of both

high and low QoS classes.

2.4.4 Discussion

In this work we have applied for the first time the new MIMONC physical layer to a MAC proto-

col. In particular, we have enhanced cooperative techniques so as to deliver new packets together with

retransmissions. This system encourages relays to cooperate, because they can help their neighbors

without delaying their own traffic. It turns out that significant performance gains in terms of through-

put, delay and energy consumption are possible, according to both analytical modelling and network

simulations in a variety of contexts. On the other hand, interesting research directions are ahead. For

instance, the possibility of transmitting multiple packets at the same time ushers new perspectives

for routing. This includes the analysis of the impact of MIMONC in generic multi-hop networks

as well as the development of a routing protocol specificallytailored to Phoenix. Finally, the perfor-

mance analysis on clustered networks shown that interesting performance improvements in terms of

throughput and especially capacity can be achieved for a wide range of design parameters. We have

also found that Phoenix is particularly suited for high density networks with tight delay requirements.

2.5 Chapter Conclusions

This Section has explored how MIMO signal processing can be useful in several different, appar-

ently unrelated areas. It is of course essential to properlydesign the physical layer of a MIMO ad

hoc network, especially to balance the range of unicast and broadcast transmissions; it is also very

helpful to make Network Coding more resilient to channel errors; finally its application to cooperative

networks can relieve problems at the network level like congestion and spur nodes to cooperate.
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3.1 Introduction

One of the main approaches used to regulate medium access control in wireless networks relies is

carrier sense (CS). In the wired world this idea coupled withCollision Detection (CD) proved to be so

efficient to reduce collisions almost to zero, especially when the propagation delay is negligible with

respect to the packet duration. On the other hand, in the wireless world CD would require full duplex

radios on the same frequency. Unfortunately, these radios are not yet technically feasible, and so far

IEEE 802.11 falls back on either a pure CSMA access control ora more sophisticated CSMA/CA

(Collision Avoidance), which includes RTS/CTS handshake packets. CS tries to avoid simultaneous

transmissions of interfering packets. This is particularly important in a scenario with a single access

point (AP) and other nodes which exchange data with it. In this case, only a single station should be

allowed to transmit, because a collision would occur otherwise.

However, if several APs are deployed in the same area, the question of whether multiple transmis-

sions can occur simultaneously naturally arises. The key problem is to keep under control the level of

mutual interference. According to this point of view, CS provides a tool to achieve this goal, because

a terminal can assess if there is room for an additional transmission. The multiple AP scenario is

representative of two types of networks which are receivinga great deal of attention: ad hoc networks

(where every node is both a router and a traffic generator) andthe Internet ”hot-spot” (the distribution

of the Internet throughout an extended area). These systemsmust support the communications of

multiple users at the same time and have to face the challengeof doing that in spite of scarce band-

width. Spatial re-use is indeed a prime concern in this case,but without the technology of multiple

antennas (which increases the capacity of the system by means of the separation of the signal spatial

signatures) admission control is one of the main ways to control mutual interference. The Carrier

Sense principle works towards this direction (at the MAC layer), because it avoids broadcasting new

packets if the medium is already sensed to be busy.

A fundamental question is how to choose the power threshold that discriminates whether a node

is allowed to send a packet or not. This threshold determinesa tradeoff between spatial reuse and

interference. Usually, this value is decided by means of simulation and real-world testing. There is

no analytical method that may suggest a good value (not even roughly). The upshot is that in most

cases this threshold is set to a low value, thus conservatively reducing bandwidth re-use and medium

access. This eventually lowers the data rate and increases the delay, that affect the performance of the

upper layers. For instance, TCP depends on the timely receptions of ACKs that may be inhibited in a

wireless scenario because of an excessively conservative CS threshold.

The choice of the CS threshold may be either static or dynamic. In the former case, the network

topology is known beforehand and the designer needs to find this optimal value. Such a scenario is

important for static wireless networks whose environment (e.g., number of nodes and deployment

area) changes very slowly in time, and hence an infrequent centralized optimization can be carried

out off-line. Instead, if the environment is unknown beforehand or changes too often, the carrier sense

threshold has to be found at run-time, possibly by the nodes themselves and in a distributed fashion.

An important contribution of this research branch is the development of an interference model for
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these networks that can quickly predict the value of the carrier sense threshold that maximizes the

aggregate throughput. This model is also very useful for thedesign at a low complexity scheduler in

wireless multihop mesh networks, which will be studied in Section 3.6.

Moreover, all previous discussions implicitly referred tosingle antenna nodes. We have also

explored special carrier sense systems for MIMO ad hoc networks which strike a balance between

the spatial reuse allowed by multiple antennas and the necessity to keep interference under a tolerable

level. This study works as an ideal bridge between Chapter 2 and Chapter 3.

3.2 Related Work

There has been some interest in the past for the performance optimization in CSMA ad hoc net-

works. In [1] the authors find, by simulation, the optimal value of the carrier sense threshold. How-

ever, a very simple interference carrier sense model was adopted: two nodes were assumed to interfere

with each other only if they were closer than a certain range.While this is true for LOS scenarios

and if only two nodes are present, this no longer holds in a more general propagation environment

or in a situation with many nodes. In [2] and [3] the authors study the dependence of the optimal

CS threshold of CSMA networks with respect to several parameters (e.g., protocol overhead or route

length). [4] studied CS in a CDMA/CSMA network, and concluded that for these networks the carrier

sense threshold could be lowered quite significantly with respect to a non-CDMA system, because

the interference suppression capabilities of CDMA may reduce the minimum distance between two

competing nodes and thus the value of the power threshold. Finally, [5] studied the problems of car-

rier sense on a real-world testbed. The conclusion was that the threshold is often very conservative

and, if increased, may result in significant throughput improvements.

In addition, there have been some approaches in the past thathave analytically modelled carrier

sense in the IEEE 802.11 protocol. One of the first works has been [6], whose authors assume a disk

model for carrier sensing (i.e., nodes whose distance is smaller than a certain sensing rangeRCS

cannot transmit simultaneously). In [7], the carrier sensemodel is still a disk, but the estimation of

the fundamental parameters in carrier sensing (duration ofa busy channel period and probability that

at a generic instant of time the channel can be perceived busy) is based on accurate (though complex)

graph models. The theoretical models well predict the simulation results. However, in neither of those

two cases has the dependence of network performance on carrier sense been really studied. In [8],

a CSMA protocol without binary backoff was studied. The importance of this study also lies in the

interference model adopted: the aggregate interference ismodelled by a Gaussian random variable,

whose parameters depend on the network activity.

On the other hand, some work has analyzed the adaptation of the carrier sense threshold for ad

hoc networks. For instance [1, 9] noted that the CS thresholdis usually kept to a low value (close

to the noise floor), so as to suppress neighboring interferers when a new transmission starts. This

choice guarantees a high success probability, but reduces spatial reuse. They also proved that a more

aggressive approach can bring significant performance improvements. [2] and [3] established that this

study cannot ignore the impact of MAC layer overhead or adopted data rate. Our research has also
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found that the optimal CS threshold (which enhances aggregate throughput) does depend on various

parameters including in particular the density of nodes in the network. Moreover, [9] has proposed

an interesting CS adaptation algorithm, and we will later compare our CS adaptation system with it.

3.3 A Robust approach to Carrier Sense for MIMO ad hoc networks

As the previous Chapter widely discussed, the introductionof multiple antennas and MIMO tech-

nology has spurred a significant deal of activity in the wireless ad hoc community, especially at the

PHY/MAC layers [10]. In MIMO Ad Hoc networks, the additionalspatial degrees of freedom can be

used to improve performance, for instance increasing throughput. However, there is not yet general

consensus on which PHY/MAC scheme can optimally exploit these additional resources. At least two

approaches can be discerned in the literature. First, all the spatial degrees may be assigned to a single

user; but this case would be a simple extension of the SISO case and does not require much redesign.

However, this would not be an optimal use of the spatial degrees of freedom. Firstly, if a single user is

assigned all degrees of freedom, not all the spatial channels may be reliable. In addition, the receiver

needs to untangle the spatially multiplexed signals by non trivial signal processing [11] unless rather

complete channel state information is available at the transmitter [12], which is however costly. This

can be avoided by exploiting multi-user diversity along with the spatial degrees of freedom. Then

the users can share the channels and all these bit pipes are likely to be of good quality by virtue of

multi-user diversity. How to best accommodate multiple simultaneous transmissions is still an open

question and several proposals exist [12–15].

A particularly interesting approach is the Opportunistic MAC (OMAC) protocol proposed in [15].

OMAC exploits multi-user diversity to ensure reliable channel quality and also full diversity for every

user by antenna selection. An important issue is the correctestimation of the number of simultaneous

transmissions in the neighborhood, by a generalization of carrier sense to MIMO. The performance

evaluation in [15] assumed that this mechanism was error-free (i.e., it would always correctly estimate

the number of concurrent communications). In this researchbranch, we develop a robust method to

estimate this quantity, based on a rank estimation algorithm resilient to noise and interference [16].

Our key contribution is the design and performance evaluation of a novel carrier scheme tailored to

MIMO that exploits the spatial structure of MIMO waveforms.Incidentally, the proposed carrier

sense system used here is by no means specific to OMAC, and could also be adopted by other MIMO

ad hoc protocols. The other MIMO MAC protocols based on carrier sense may use the conventional

approach (i.e., compare the average received power across the antennas against a certain threshold)

that does not exploit this structure [?, 13, 14, 17, 18], or may propose ad hoc techniques that work

only when transmissions are slot synchronous [12], while our scheme works also for asynchronous

communications. We will show that this carrier sense mechanism can untap the communication

parallelism inherent in MIMO at a limited cost in computational complexity.



3.3. A Robust approach to Carrier Sense for MIMO ad hoc networks 63

3.3.1 System Model and Protocol Description

System Model

We investigate a single hop wireless ad hoc network without hidden terminals composed ofN

nodes withM antennas each. Consider a typical transmission between a transmitter nodet and a

receiver noder in the presence ofNI interferes. The channel matrix betweent andr is H, where

H ∈ CM×M and its elements are independent and identically distributed (i.i.d.), zero-mean, complex

Gaussian random variables∼ CN (0, 1). LetHyx denote the channel coefficient between the transmit

antennax and the receive antennay and lethx be thex-th column ofH. Note thathx is the set of

channel coefficients between thex-th transmit antenna and the receiver array. All transmitters use

selection diversity. In selection diversity, the transmitter node sends its packet using the antennaat

which corresponds to the column with the maximum Frobenius norm:

at = arg max
x

||hx||2F = arg max
x

M∑

y=1

|Hyx|2 (3.1)

Let the vector corresponding to the maximum norm be denoted by hat , let a transmitteri send a

symbolsi using transmit antennaai and the average received power fromi bepi. Assuming that the

fading is constant over the observed time window (block fading model), the aggregate signal at the

receiverr at timeT is:

Ỹr,T = hat

√
pt st,T +

NI∑

i=1

hai

√
pi si,T + Wr,T =

= hat

√
pt st,T + Ir,T (3.2)

whereWr,T is aM × 1 vector of complex, zero mean, circularly symmetric Gaussian random vari-

ables with varianceN0, which represent the thermal noise atr. It stems that the interference covari-

ance matrixR̃I is:

R̃I = E
[
Ir,TIH

r,T

]
=

NI∑

i=1

pihai
hH

ai
+N0I (3.3)

At the intended receiverr, the received signal̃Yr,T , is pre-multiplied by the optimum MMSE

combining weights, given by [19]:

R̃−1
I hat (3.4)

Note that the above equations assume the signals to be symbol-synchronous. This is by no means

restrictive, as a simple example can show. Let us assume withno loss in generality that just two users

were transmitting, but their waveforms were not symbol-synchronous at a certain receiver and the

relative delay wereτ . Let us also assume that the receiver had acquired timing synchronization with

the first one. The aggregate signal would be:
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Ỹr,T = ha2rss(τ)
√
p2 s2,T + ha2rss(T − τ)

√
p2 s2,T+1

+ ha1

√
p1 s1,T + Wr,T

whereT is the symbol duration andrss(τ) is the autocorrelation function of the shaping pulse. After

some algebra, the autocorrelation matrix is:

R̃I = p2ha2h
H
a2

(r2ss(τ) + r2ss(T − τ)) +

+ p1ha1h
H
a1

+N0I (3.5)

Eq. (3.5) proves that the presence of asynchronous users is equivalent to a change in the received

power, but the rank is preserved.

Protocol Description

This section briefly describes the OMAC protocol proposed in[15]. It is based on the IEEE

802.11 Distributed Coordination Function (DCF) with MIMO-adapted carrier sensing to enable asyn-

chronous simultaneous transmissions. OMAC ensures that with high probability the maximum num-

ber of concurrent transmissions is not bigger than the number of antennas on each node.

If the received samples̃Yr,T were noiseless, the interference correlation matrixRI would be:

RI =

NI∑

i=1

pihai
hH

ai
(3.6)

Its rank is the number of transmitters currently active in the network. In Section 3.3.2 we will

describe a noise robust method to estimate the rank ofRI from Ỹr,T and its effects on the protocol.

One of the design principles of OMAC is to allow up tokM concurrent transmissions in the network,

that is to say, up tokM spatial degrees of freedom should be used. Since these degrees areM , it

stems thatkM ≤M . A largekM enhances the spatial reuse, but also reduces the margin to withstand

unusual levels of interference (generated, for instance, by terminals outside the network or incorrect

carrier sense decisions).

The protocol consists of the following three important stages: rank determination, transmission

decision, antenna selection. In the following, it is assumed (as in [15]) that the sensing node can

correctly estimate the rank ofRI . The next Section will show how to perform an actual, effective

estimation.

1: Rank Determination:

The transmitter calculates the rank ofRI , Rank(RI). The rank depends on the number of inter-

ferers active in the network.

2: Transmission Decision:

1. If Rank(RI) = X where0 ≤ X < kM , the sender can transmits an RTS packet if the

channel state satisfiesRank(RI) < kM for a period of Distributed Inter Frame Space

(DIFS) duration.
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2. Rank(RI) = kM represents full rank ofRI which, in OMAC, is considered as the busy

state of the channel and the sender must now enter the binary exponential back-off stage.

3. During the back-off stage, if the channel state changes fromRank(RI) < kM toRank(RI) =

kM , then the backoff counter is frozen, as in CSMA, untilRank(RI) becomes less than

kM . OnceRank(RI) < kM is satisfied, the backoff counter decrementing process is con-

tinued. When the backoff counter reaches zero, the sender begins its transmission based on

the antenna that was used to perform the last communication with the designated receiver.

4. If the conditionRank(RI) < kM is satisfied at the receiver, this destination replies with a

CTS.

3: Antenna selection:

For the receiver-transmitter pair(r, t), the index of the best antenna according to the selection

diversity criterion (3.1) is fed back in the CTS packet by thereceiverr.

The RTS/CTS packets are sent using Space Time Block Codes. The details of the employed codes

are given in [15].

3.3.2 The Carrier Sense System

Estimation of the number of active users

The carrier sense mechanism starts from the analysis of Eqs.(3.3) and (3.6). Eq. (3.6) suggests

that the rank of the correlation matrix of the interference is the number of transmitting terminals.

However, the correlation matrix̃RI (3.3) estimated from the received samples (3.2) would always

have full rank because of the white noise. Without further elaboration, noise would thwart any com-

putation of the number of users based onR̃I .

The MIMO carrier sense mechanism that we propose employs a robust rank estimation method

based on the Singular Value Decomposition (SVD) [16]. Let usconsider a set ofn consecutive time

slots. Without loss of generality, let the first time slot beT = 0. The terminal collectsM×n samples,

n ≥M , out of itsM antennas:

Ỹ =
[
Ỹr,0 Ỹr,1, ... Ỹr,n−1

]
(3.7)

The estimation of the number of users is based onỸ according to the following two important

logical steps:

1. The singular values ofY andR̃I are tightly linked;

2. The singular values of̃RI can indicate the rank ofRI

As far as the first point is concerned, note that the spectrum of R̃I is {σ̃2
1 , · · · , σ̃2

M}, while the

singular values of̃Y converge to{σ̃1, · · · , σ̃M} asn → +∞. For finiten, the second part of this

section will prove that the approximation is very accurate for n ≥ 20.
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Let us defineW as the noise that corrupts̃Y , wi,j the element ofW in the i-th row andj-th

column andY as the observatioñY devoid of noise:Y = Ỹ −W. The SVD decomposition of̃Y is:

Ỹ = Ũ
(
Σ̃ 0n−M, M

)
ṼH (3.8)

Σ̃ = diag(σ̃1, · · · , σ̃M ) (3.9)

whereŨ andΣ̃ areM ×M , 0n−M, M is then −M ×M null matrix andṼ is n × n. Let us also

call {σ2
1 , · · · , σ2

M} the singular values ofRI . Note that the number of non zero{σ2
1 , · · · , σ2

M} is the

number of active users (Eq. (3.6)).1

A precise statement about the second point is given by the Schmidt theorem [16]:

Theorem 1(Schmidt). LetY andỸ have the same meaning as before. Let us also define the thresh-

olds τ̃2
k , 0 ≤ k ≤M as the sum of the square of theM − k smallest singular values of̃Y:

τ̃2
k = σ̃2

k+1 + · · · + σ̃2
M (3.10)

Then the rank ofY is k if and only if:

τ̃2
k ≤ ||W||2F < τ̃2

k−1 (3.11)

where‖W‖2
F is the square Frobenius norm ofW.

Note that Eq. (3.11) makes a statement onY by means ofỸ ’s singular values. However, this

theorem is still impractical since it involves the Frobenius norm of the noise, which is unknown. The

final step is to notice that the statistics of||W||2F is known: it is a chi-square random variable with

2nM degrees of freedom, because the real and imaginary parts ofwi,j are normal random variables

with mean 0 and varianceN0/2 [19], and the CDFF (x; 2nM) is:

F (x) = 1 − e−x/N0

nM−1∑

i=0

(x/N0)
i

i!
(3.12)

Hence, two approaches are possible. In the first one,||W||2F is approximated by its expected (and

deterministic) valuenMN0. Hence, the rankk is the only value ofk such that:

τ̃2
k ≤ nMN0 < τ̃2

k−1 (3.13)

In the second strategy,||W||2F is a random variable with CDF given in (3.12). To each event

[τ̃2
k ≤ ||W||2F < τ̃2

k−1] is associated a probability equal to:

Pr[users= k] = Pr[rank= k] = Pr
[
τ̃2
k ≤ ‖W‖2

F < τ̃2
k−1

]

= F
(
τ̃2
k−1

)
− F

(
τ̃2
k

)
(3.14)

1Because of its conceptual simplicity and insight, here we deal with the SVD based technique. However, [16] proposes

other algorithms based on computationally less expensive decompositions, like the QR. We discuss complexity issues for

the SVD method later in this section.
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Figure 3.1. Pictorial representation of the estimation process as a function of the thresholds and the

Frobenius norm of the noise

whereτ̃2
−1 = +∞. We have used the latter method because it exploits a richer information than just

the expected value of the noise and the involved computations can still be carried out with relatively

low complexity. Last but not least, it provides some gain in terms of performance.

The MIMO carrier sense system proposed in [15] integrates this mechanism as follows: the node

computes the number of active nodesk̃U as the rank ofRI estimated fromỸ . The node transmits

only if k̃U is strictly smaller than a maximum number of allowed ongoingcommunicationskM . Note

that k̃U cannot be larger thanM , while the number of ongoing communications can be larger than

that. However, from the point of view of medium access control, this is not important, because in

both cases all spatial degrees of freedom have been used and there is no room for more simultaneous

transmissions. In addition, the proposed carrier sense approach is robust to noise not only because the

algorithm in [16] is so, but also because the node need not to correctly estimate the number of active

users, but just whetherkU is smaller or larger thankM . For instance, ifkU = 3 andkM = 3, both

k̃U = 3 andk̃U = 4 lead to the proper MAC decision of deferring the transmission.

Let us consider as an important example a system withM = 4 antennas. The thresholdsτ2
i are:

τ̃2
0 = σ̃2

1 + σ̃2
2 + σ̃2

3 + σ̃2
4

τ̃2
1 = σ̃2

2 + σ̃2
3 + σ̃2

4

τ̃2
2 = σ̃2

3 + σ̃2
4

τ̃2
3 = σ̃2

4

τ̃2
4 = 0

The rank is the number of the elements in
[
τ̃2
3 τ̃

2
2 τ̃

2
1 τ̃

2
0

]
that are bigger than the square Frobenius

norm of the error matrixW. A pictorial representation is given in Fig. 3.1.

We point out that the singular valuesσ2
i , 1 ≤ i ≤ M can be estimated either from̃Y or from an

estimate of theM ×M matrix R̃I , which can be computed as̃YỸH/n, whereỸH is the hermitian

of Ỹ. We prefer the former for two reasons. First of all, the ratioof the largest and smallest singular

values ofỸỸH/n is the square of the same quantity computed forỸ [19], which implies that the

results are less accurate in finite precision arithmetic. Then, it is not convenient even from a compu-

tational point of view. The cost to evaluate an SVD for anM × n matrix isO(n2M + nM2) [19],

but computingỸỸH/n requiresM2n2 operations. Hence, the computational complexity to operate

on Ỹ is O(Mn2 + M2n), while ỸỸH/n entailsO(M3) + O(n2M2). A quick comparison shows

that it is less expensive to figure out the rank from̃Y than fromỸỸH/n.

Another important consideration about the SVD-based rank estimation method is that it works

very well if the Signal to Noise Ratio (SNR) is strong enough.We will show how to tune the carrier
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Figure 3.2. Mass Distribution function of the number of estimated users

sense parameters according to the SNR so as to avoid noticeable performance degradation in the rank

estimation.

Performance evaluation

The rank estimation is the core of our MIMO Carrier Sense method, and valuable insight can be

gained by studying how its performance depends on differentparameters. The independent variables

that have been considered are the SNR, the number of samplesn used for the estimation and the

number of active userskU . It is reasonable to expect that the largern, the more reliablẽkU . Moreover,

the probability of incorrectly evaluatingkU should approach an asymptotic value forn→ +∞.

In this setting, the sensing node has to estimatekU and is equipped withM = 4 antennas. The

average SNR between any transmitter and the sensing node is the same and each sender uses one

antenna. The channel model is the one described in Section 3.3.1. Each scenario was run10000 times

so as to achieve the necessary statistical confidence.

Fig. 3.2 shows the mass distribution function ofk̃U when the SNR is5 or 20 dB, n = 100 and

kU ∈ {1, 2, 3, 4, 5}. At low SNR the estimation is reliable only with few transmitters (1 or 2, not

shown in the figure), and if more of them are present, the method underestimateskU . With kM = 4

(the system is allowed to saturate the spatial degrees of freedom) and 5 active users, the method yields

k̃U = 3 in most (80%) of the cases. At high SNR the estimation is dependable.

SettingkM = 4, a missed detection is defined as the event thatk̃U < 4 given thatkU ≥ 4.

Fig. 3.3 shows the probability of missed detection versus the length of the data sample, for different

SNR values. For each SNR, askU increases, it is more likely to detect that the system is saturated.

Moreover, the missed detection probability decreases withn, approaching an asymptotic value, as

predicted. Note that usuallyn = 40 is enough to get very close to this minimum error probability.

Hencen does not have a major influence on the system performance unless it is very small (less than

20 samples). Finally, at low and medium SNR the method is unable to reliably detect the saturation

condition, while at high SNR (20 dB) it correctly detects channel saturation.
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Figure 3.3. Probability of missed detection forkM = 4

Due to the poor performance at low and medium SNR forkM = 4, a more conservative approach

with kM = 3 has been explored. This choice ofkM creates a margin of safety against estimation

errors ink̃U . In addition, Fig. 3.4 points out that fewer missed detections occur forkM = 3 than for

kM = 4. The two different choices are compared in Fig. 3.5.

In conclusion, we note thatkM = 3 is a safe choice for this parameter, since it effectively sup-

presses decision errors at the MAC layer and still untaps themajority of the spatial degrees of freedom.

For low SNR,kM = 4 is unsuitable for two reasons. First of all it misleads the MAC layer decision

process quite often. Moreover, at low SNR the degrees of freedom are fewer thanM = 4 because the

system is noise limited rather than interference limited. Hence, lower spatial reuse should be sought,

since the SINR would be unacceptably low if too many concurrent communications were allowed. Fi-

nally, while we analyze protocols with a fixed value ofkM , it is easy to envision an adaptive protocol

that would tune it according to the system parameters, chiefly the SNR.

3.3.3 Performance Evaluation

The protocol performance was tested in a single-hop network, with 20 nodes uniformly distributed

in a 20 m ×20 m area, half of them labeled as sources and the other half as destinations. Nodes are

paired in couples, and all couples are disjoint (i.e., they share neither the source nor the destination).

The simulation parameters are listed in Table 3.1 and the transmit power was varied to achieve differ-

ent average SNRs (10, 20, 30 and 40 dB). The sources generate Poisson traffic with rate 2, 4, 8, 16,

32 or 64 packets per second. A sufficient number of simulations has been run to achieve the desired

statistical confidence.
Unlike [15], the rank of the interference autocorrelation is not assumed to be known and needs to

be estimated from the received samples. Fig. 3.6 shows the throughput when up to 4 simultaneous

transmissions are allowed (kM = M = 4, i.e., all degrees of freedom can be used), for different

values of the SNR. In addition, the ideal situation of perfect rank estimation (as in [15]) is reported
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Figure 3.4. Probability of missed detection forkM = 3
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Figure 3.5. Comparison of the missed detections forkM = 3 andkM = 4, for different values of the SNR

for comparison. At high SNR (40 dB) the CS is highly reliable and thereby ideal with good approxi-

mation. As the load grows, the throughput reaches a maximum and then decreases to an asymptotic

value, both of which increase with the SNR. At low SNR, this decrease can be explained by the fact

that the CS tends to underestimate the number of concurrent transmissions and the higher the load,

the more the users that try to simultaneously access the channel. It stems that it is more likely that at

least one node will fail to detect the channel to be busy and will therefore overload the medium, with

the consequent drop in throughput.

As suggested in Section 3.3.2, limitingkM to3 may yield better performance at low SNR, albeit at

the price of a reduced usage of the spatial degrees of freedom. This strategy decreases the probability

that more users thankM may access the channel, as Fig. 3.5 shows. In addition, even if 4 nodes were

simultaneously transmitting, this would not yet overload the channel. Moreover, the missed detection

probability is negligible and hence collisions are very unlikely. The results are shown in Fig. 3.7. In
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Table 3.1. Simulation Parameters

Parameter Value

Data Rate 1 Mb/s

Tslot,SIFS 20, 10µs

# of pairs 10

Packet size 10 kb

TACK 0.304 ms

M 4

2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

Arrival rate (packets/sec)

M
bi

t/s

Aggregate Throughput

 

 

ideal
10dB
20dB
30dB
40dB

Figure 3.6. Throughput of the original protocol (kM = 4), for different values of the SNR,10 pairs

the ideal casekM = 3 andkM = 4 yield a throughput of 2.6 and 3.3 Mbit/s, respectively. Given the

1 MHz bandwidth andM = 4, the maximum achieveable throughput is 4 Mbit/s and thus65% and

82% of the spatial degrees of freedom are used, respectively. A virtue of choosingkM = 3 is that the

system performance is not significantly sensitive to the SNR, while for kM = 4 there is a dramatic

impact of carrier sense inaccuracies. For instance, in saturation and for SNR = 10 dB,kM = 3 has

a throughput of about 2.6 Mb/s, while under the same conditions kM = 4 offers just 0.25 Mb/s.

Interestingly, setting the SNR to 10 dB the saturated throughput outperforms the ideal case because

the missed detections ofkU = 3 users leads to some extra transmissions which do not overload the

channel.

3.3.4 Discussion

We improved the protocol presented in [15] integrating a real CS mechanism based on the esti-

mation of the rank of the interference correlation matrix. From a first study, we showed that the per-

formance of these techniques are strongly dependent on the SNR. Moreover, we considered setting

kM = 3, which limits the number of concurrent transmissions but provides a more robust protocol be-

havior. The CS mechanism was tested in a network of20 nodes that implement the modified OMAC
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Figure 3.7. Throughput of the modified protocol (kM = 3), for different values of the SNR,10 pairs

protocol. For high SNR (30, 40 dB)kM = 4 uses a large fraction of the spatial degrees of freedom.

Instead, at low SNR the safer choice ofkM = 3 performs better. At very low SNR (10 dB),kM = 3

yields an impressive performance gain of1100% with respect tokM = 4. Extensions of this work

include multihop routing and adaptingkM to environment parameters (like the SNR).

3.4 A low complexity Model for Interference in Wireless Networks

3.4.1 Model Description

The goal of our work is to model a basic CSMA protocol with binary backoff (only data and ACK

packets are included) by means of a semi-Markov process (Fig. 3.8). This is similar to Bianchi’s

model [20], although it uses a semi-Markov, rather than Markov, model and because it also includes

carrier sense. The nodes are assumed to be in saturation conditions. The channel contention starts with

a backoff (according to IEEE 802.11), which corresponds to state B1 in Fig. 3.8 and then the node

sends its data frame. If the attempt is successful, then the terminal returns to B1 for the next packet.

Otherwise, it undergoes a new backoff stage until either themaximum number of transmissions is

reached or the communication is successful.

Since the binary backoff mechanism repeatedly tries to sendthe same packet, the chain structure

is made up by a set of states (backoff, packet transmission and ACK waiting) that is replicated as

many times as the short retry limit. Therefore the process has the following states:

• B1-B2-..-B6: the node undergoes thei-th backoff stage since it started contending for the

channel for a tagged packet;

• TX 1-..-TX 6: the node sends the tagged packet for thei-th time.

• Wait ACK 1-..-Wait ACK 6: the node waits for the ACK after having sent the data packet for

thei-th time.
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Figure 3.8. Semi-Markov model describing the protocol

This semi-Markov model is described by the matrices of transition probabilities and average tran-

sition times. All transitions depicted in Fig. 3.8 have probability one except for the transitions from

the i-th Wait ACK state back to B1, which is equal to the probability that a data packet and the cor-

responding ACK are correctly received. This probability depends on the local interference and its

computation will be considered later.

The transition times matrix elements are the following:

• from the i-th backoff state into the next transmission time: this timedepends on the local

interference and is covered in 3.4.1;

• in state TXi the chain transmits a data packet, thusTDATA seconds elapse in this state where

TDATA is the time to send a data packet;

• in state Wait ACKi the node waits for the acknowledgment. Thus SIFS seconds plus the time

to send an ACK are spent in this state.

The following parameters cannot be knowna priori and must be estimated:

• the statistics of the interference;

• the probability of correct packet reception;

• the probability that at any given instant the interference may cause the carrier sense mechanism

to prevent a node from transmission;
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• the duration of a backoff stage.

These quantities are iteratively evaluated, since knowledge of the first item influences the other

ones, while the others affect the node activity and communication attempts, which in turn have an

impact on the interference statistics.

Interference model and parameter estimation

The choice of the interference model is a key point for the overall prediction accuracy. In this

Section we evaluate a Gaussian mixture approach and compareit with the Gaussian model proposed

in [8].

In [8], the aggregate interferenceΞ is assumed to be Gaussian. The model is appealing because

of the central limit theorem: the total interference is the sum of many (approximately incoherent)

interferers. We suppose that every node transmits with a given fixed powerPT . Let us callPR(i, j)

the power received at thej-th node when thei-th node is sending a packet, let1[i](t) be the function

that is equal to 1 if thei-th node is transmitting at timet or 0 otherwise, and letπi be the long-run

fraction of time that thei-th node spends transmitting a packet. Hence,E[1[i](t)] = πj. Therefore, the

power received by nodej because of thei-th terminal isPR(i, j)1[i](t), and the aggregate interference

Ξj(t) is just the sum of these contributions:

Ξj(t) =
∑

i6=j

PR(i, j)1[i](t) (3.15)

and its mean is:

Ξj =
∑

i6=j

PR(i, j)πi (3.16)

The probabilityπi is equal to the steady state probability that the node is in a state where it is

sending a packet plus the probability that its backoff counter is 0 at a generic instant of time2. This

addition is needed because such an event would lead the node to transmit within the next slot, and this

event cannot be prevented by the carrier sense mechanism; inthe IEEE 802.11 protocol, this would

cause a collision. This probability is equal to2PBi/(Wi +1) (see [20]), wherePBi is the steady state

probability of being in thei-th backoff stage andWi is the contention window length of this backoff

stage. Finally, the interference variance isP 2
R(i, j)πi(1 − πi), and the global interference variance is

just the sum:

σ2
j =

∑

i6=j

P 2
R(i, j)πi(1 − πi) (3.17)

A single mode Gaussian model for the interference [8] is completely specified by Eqs. (3.16) and

(3.17).

2For simplicity, we ignore the low-probability event that a node that is active in a slot will not continue its transmission

in the next slot.
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While this is a very intuitive and mathematically simple model, it suffers from a few drawbacks.

The first one is that the central limit theorem may not necessarily apply. Let us focus on a specific

terminal: in a dense network, some nodes may be very close to the tagged terminal, and their inter-

ference power may be orders of magnitude above that of the other nodes. Hence, their interference is

very large and it may be even larger than all the background interference combined, thus making the

final interference statistics very asymmetrical, and definitely not Gaussian.

The distinction between two ”levels” of interferers (some dominant ones and the background

interference) can be justified for two reasons. The first one is that other models in the literature (for

instance in cellular networks models) assume that all the interference is generated by the first tier of

neighbors. While we believe that this may be too simplistic amodel for an ad hoc network, it proves

that past research upholds the idea of dominant interferers.

Our second argument states that even the application of the central limit theorem may be partly

questionable. Consider a network deployed inside a circle and a node at its center. All nodes generate

some interference at the tagged node, and if their positionsare randomly drawn inside the circle, their

interference is a random variable as well. Since the received powers can be widely different (even

by several orders of magnitude), the speed of convergence ofthe central limit theorem can be rather

slow [21].

Therefore we have opted for a Gaussian mixture model. At eachnode we select theK closest

nodes (withK in the range of 2-6), which generate the largest amount of interference. Given that

we know which of theseK nodes are transmitting, then they generate a certain (constant) level of

interference. On top of this, the other (far) interferers are assumed to create a Gaussian background

interference whose statistics can be computed as in (3.16) and (3.17). It is clear that the interference is

a Gaussian mixture random variable, where2K modes are present, each corresponding to a possible

combination of the dominant interferers states (active or waiting).

Let us callρ(i) the probability of thei-th configuration of dominant interferers. Then the final

pdf of the interference at thej-th node is the following:

fΞj
(x) =

2K−1∑

i=0

ρ(i)φ
(
x, Ξj,i, σj

)
(3.18)

whereΞj,i is average interference power in thei-th mode,σj is the standard deviation of the back-

ground model andφ
(
x,Ξj,i, σj

)
is the pdf of a Gaussian random variable evaluated inx with mean

Ξj,i and standard deviationσj . Note thatσj depends only on the background interferers, and thus it

is not a function ofi.

The interference primarily affects two aspects of a CSMA protocol: error probability and busy

channel probability. A closer look at these two situations suggests that two different types of interfer-

ence are at work: in the first case, the tagged node is transmitting and its power can inhibit the activity

of its neighbors. We shall call the interference perceived in this scenario as ”inhibited”. Instead in

the second case the tagged node is not transmitting and thus the nodes in the neighborhood are not

inhibited. This is called the ”unconditioned” interference.

In the first case, we compute the received power due to the transmitting node at each node in the
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Figure 3.9. Comparison of power histogram vs model PDFs

network. If this power is above the carrier sense threshold,then these nodes can cause interference

only if their backoff counter is 0. Thus theirπis include only the probabilities2PBi/(Wi + 1).

Terminals which are not inhibited are actually hidden nodes.

In the second case, all other nodes are not inhibited, thus the parameters as given in Eqs. (3.16)

and (3.17) can include all the terminals in the network. In our model, the difference between these

two types of interference is simply in the node set which is used to compute the overall interference.

Fig. 3.9 reports an insightful example: in a 40 node network inside a 40× 40m2 square, we

have compared the histogram of received power during a packet reception (computed by means of

ns2 simulations) and the pdfs of the single mode and Gaussianmixture model for a randomly chosen

node. For this example, a simple 4-mode mixture is applied (K = 2). All the models’ parameters

have been computed according to Eqs. (3.16)-(3.18). It is apparent that in the single mode case the

standard deviation can be very close to the average interference value, thus there is a non-negligible

probability (in this case about 15%) that the interference may be negative, while in the mixture case

this is not the case. In addition, the histogram is asymmetrical (making a single mode Gaussian fitting

quite hard), while the Gaussian mixture has enough degrees of freedom to fit the actual received

power distribution. Incidentally, the mixture already works well with just 4 modes (K = 2 dominant

interferers).

Finally, we would like to remark that some aspects of the wireless channels can be quite easily

included in the model. Let us consider for instance fading (which is assumed to be constant at the

packet level). Then Eq. (3.15) must include a fading termF (i, j) that represents the fading coefficient

from nodei to nodej. Since fading is unrelated to any node activity, then the mean value is just

multiplied by the fading average value. Since long-term attenuation is incorporated in the path loss,

E[F (i, j)] = 1 and therefore Eq. (3.16) goes unchanged. As far as the variance is concerned, Eq.

(3.17) now becomes:
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σ2
j =

∑

i6=j

E[(F (i, j)PR(i, j))21[i](t)2] +

−
∑

i6=j

E[F (i, j)PR(i, j)1[i](t)]2 =

=
∑

i6=j

PR(i, j)2πi

(
E[F (i, j)2] − πi

)
(3.19)

Busy Channel Probability

Given that the interference statistics has been estimated,the probability that nodej may perceive

an interference above the Carrier Sense Threshold is equal to the complementary cumulative distri-

bution function of the inhibited interference computed at ThCS, the Carrier Sense Threshold, i.e.:

Pbusy(j) = 1 − FΞj
[ThCS] (F (x) is the cumulative distribution function evaluated atx). Pbusy is

related to the fraction of time the backoff counter is frozen.

Backoff Duration

Every average duration in the Semi-Markov chain is known a priori, except for the duration of the

backoff stages. The lengthTBi of thei-th stage depends on the initial value of the backoff counterwi

and the length of every slotTSLOTk (one slot being the time between two consecutive backoff counter

decrements), which in turn depends on the carrier sense mechanism and the level of interference:

E[TBi] = E

[
wi−1∑

k=0

TSLOTk

]
= E[wi]E[TSLOTk] (3.20)

Our first assumption is that the random variableswi andTSLOTk
are independent of each other.

The first term (E[wi]) is simply (Wi − 1)/2 (sincewi is uniformly distributed in{0, 1, ...Wi − 1}).

The random variablesTSLOTk are functions only of the interference level, and the computation of

E[TSLOTk] must distinguish two cases, depending on whether the interference at the beginning of the

slot is above or below the carrier sense threshold. While at the end of the previous slot the interference

was clearly below this level (otherwise the counter would not have been decreased), we assume that

the interference level at the beginning of thek-th slot does not depend on its value during the previous

(k−1) slots. Thus, the random variablesTSLOTk are postulated to be iid, because of the independence

of the unconditioned interference power. This power may be above the ThCS with probabilityPbusy,

and the node is assumed to freeze its counter for a duration equal to a data packet transmission time

plus a DIFS. This duration is chosen because the most likely cause that may trigger the CS mechanism

is that a node has started a new packet. Therefore the interference power will stay above the ThCS

as long as the packet is being transmitted. While this is not strictly true, we make this approximation

because of its simplicity. At the end of this packet transmission, the interference falls again below the

ThCS for DIFS seconds and the backoff counter is eventually decreased. Therefore in this case the

slot duration is equal toTDATA +DIFS+TSLOT . If instead the channel is perceived to be free (and

this happens with probability1 − Pbusy), then the total slot duration is justTSLOT .
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Given that the contention window for thei-th backoff stage iswi, the average backoff duration is:

TBi = E[wi]E[TSLOTk] =

= [(Wi − 1)/2][Pbusy(TDATA +DIFS +

+ TSLOT ) + (1 − Pbusy)TSLOTk] (3.21)

All other transitions in the matrix have duration knowna priori, because they correspond to packet

transmissions/receptions.

Probability of correct packet reception

We assume that the interference statistics has been computed, and thatfΞj
(I) is the value of its

PDF evaluated at a given interference levelI. Let us also suppose that the PER vs. SNR curve of the

employed modulation/coding scheme is known. Then, the Packet Error Probability (PER) for nodej

can be computed as:

PERj =

∫ +∞

0
PERj(I)fΞj

(I)dI (3.22)

This expression can be simplified if a capacity achieving code is employed. For these codes,

the PER is 0 if the received SNR is above a certain threshold, and is 1 otherwise. In this case,

if the received signal power isP and the threshold SNR isΛ0, thenPER(I ≤ P/Λ0) = 0 and

PER(I > P/Λ0) = 1. Thus Eq. (3.22) reduces to1− F (P/Λ0). If we assume that the interference

is a Gaussian mixture, each Gaussian mode implies a PER equaltoQ[(P/Λ0 −Ξj,i)/σj ], whereΞj,i

is the average value of the interference for thei-th mode andσj its standard deviation. Finally, the

overall PER is:

PERj =

2K−1∑

i=0

ρ(i)Q[(P/Λ0 − Ξj,i)/σj ] (3.23)

whereρ(i) is the probability associated to thei-th mode.

The simplicity of this expression is indeed appealing, since it only involves complementary Gaus-

sian functions. Therefore it is adopted here to model the error correction capabilities of IEEE 802.11,

even though this standard uses non capacity achieving convolutional codes. Simulations reveal that

this approximation does not lead to significant discrepancies. Given the PER/SNR curves for IEEE

802.11 codes, we have set to 8 dB the correct detection threshold for the 6 Mbps data rate.

Model summary

We give a pseudocode description of the model:

for (counterIterations =

1:maxNumberOfIterations) {

for (nodeIndex = 1:allNodes) {
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1) compute the interference statistics

2) evaluate

a) the busy channel probability

b) the average backoff duration

c) the packet error rate

3) solve this node’s chain.

}

}

The algorithm solves every node’s chain several times (usually 5-6 iterations are enough for con-

vergence). Every time a specific node is considered, it employs the other nodes’ chains average

statistics, which are implicitly assumed to be in steady state.

The algorithm complexity is linear with the number of iterations and quadratic with the number

of nodes. Most of the complexity is due to the computation of the interference statistics: each node

must collect the powers coming from every other node in the network, whose complexity is a linear

function of the network size. Thus the overall complexity isquadratic with the number of nodes.

3.4.2 Performance Evaluation

We have compared the two models (single mode and Gaussian mixture) against ns2 simulations3.

The network encompasses 40 nodes that adopt the IEEE 802.11gprotocol, used at base rate (6 Mbps),

and have been randomly deployed in squares of increasing size: 40 × 40m2, 60 × 60m2, 80 × 80m2

and100 × 100m2. All nodes always have available packets to transmit.

Fig. 3.10 and 3.11 depict the average throughput per node achieved by ns2 simulations and the

Gaussian mixture model. The optimal CS threshold changes with the network size, and it turns out

that a larger area implies a smaller threshold, which is reasonable, because in this case the interference

power is reduced (node density is lower), and so is the mutualinterference. The model reasonably

predicts the optimal CS threshold for all the network sizes.Several other network configurations

(varying the number of nodes and the network size) have been tested, giving similar results. The

difference between the simulated and predicted values is due to the inaccuracies of the model (for

instance, the channel is sensed to be busy only for a single packet exchange or channel coding is

assumed to be capacity achieving). Nonetheless, we remark that the shape of the curves is the same

and our goal is to optimize the CS threshold by means of a simple model, not to replicate the exact

performance of the network and its complex protocol.

In addition, we have reported the model predictions when thesingle mode interference model is

adopted (Fig. 3.12). According to the previous discussion,this model does not have enough degrees

of freedom to correctly represent the interference, and theresults show that the optimal CS threshold

is missed by 2-3 dB.

3We have modified ns2 interference models so as to model it moreaccurately, for instance by taking into account the

capture effect and the temporal distribution of the interferers inside a packet.
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Figure 3.10. Throughput for the mixture model vs ns2 simulations
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Figure 3.11. Throughput for the mixture model vs ns2 simulations

Finally, Table 3.4.2 summarizes the model predictions against the simulations when 60 nodes are

deployed in the same area. The last column reports the average per node throughput computed by

ns2 simulations at the optimal CS thresholds predicted by the models, as well as the loss that this

model-based choice implies with respect to the true maximum. The CS threshold for the Gaussian

mixture model is within 1 dB from the real one, and the estimation error entails a small throughput

loss (about 15%), while for the single mode model this loss can be as much as 69%.

3.4.3 Discussion

We have analyzed how a simple Gaussian model can be used to estimate the interference behavior

in a wireless ad hoc network for carrier sense threshold optimization. We have shown that a Gaussian

mixture model can correctly predict the network behavior and enable a quick optimization of the

network parameters.
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Figure 3.12. Throughput for the single mode interference model

Table 3.2. Results for a 60 node network, 6 Mbps

Side (m) Opt Th (dB) Throughput (kb/s)

NS 40 25 312

Single mode 40 27 286 (-8%)

Gauss. mixture 40 25 312 (-0%)

NS 60 20 134

Single mode 60 25.5 45 (-66%)

Gauss. mixture 60 22 110 (-18%)

NS 80 17 86

Single mode 80 22 27 (-69%)

Gauss. mixture 80 18.5 80 (-7%)
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3.5 Dynamic Carrier Sense Adaptation

3.5.1 Dependence of the CS threshold on the node density

In cellular networks it is well known that a basic way to deploy more capacity is to create smaller

cells. The fundamental reason is that all signal strengths increase and thus the SIR stays constant

so that in an interference limited scenario the PHY performance is largely independent of the cell

size, while on the other hand being inversely related to the system capacity. However, in multihop

CSMA networks also the absolute value of the interference (and not only its ratio with the intended

signal) plays an important role. If the internode distance reduces, the SIR remains constant but the

interference power increases and thus the probability thatthe channel may be perceived as idle would

significantly drop. If the CS threshold is always kept at a very low level the channel would be per-

ceived busy even when a single packet is being transmitted, and the network behavior would not be

heavily affected. However, if the CS threshold is regarded as an optimization parameter this is no

longer the case and interesting tradeoffs arise. We argue that the threshold value should scale with the

intended signal strength.

Our work has focused on the optimal choice of the carrier sense threshold in the IEEE 802.11g

MAC protocol. The two main contributions are:

1. we show that the optimal choice of the CS threshold critically depends on the node density ac-

cording to a simple mathematical law; we give a qualitative proof of this fact and we empirically

validate it by simulation;

2. we propose a novel, adaptive and fully distributed algorithm for local CS threshold optimiza-

tion. Simulations show that it approaches the capacity offered by a centralized choice of the

threshold based ona priori knowledge of the node density.

First, we briefly explain why the optimal CS threshold shouldscale with the node density. It has

been proved that in a dense network performance is maximizedwhen routes have short hops [22].

Therefore, the denser the network, the shorter its hops, since neighbors would be closer on average.

Let us focus on a specific node T and let us assume that all its one hop neighbors are inside a circle

of radiusρ, while the entire network is withinR meters from T. All nodes whose distance is between

ρ andR can not directly communicate with T and their transmissionsonly generate interference to it.

In addition, let us express the received powerP (r) at distancer given a certain transmission power

Pt (assumed to be the same for all nodes) and a certain propagation constantG as

P (r) =
PtG

rα
(3.24)

whereα is the path loss exponent. A key assumption is adopted in the following analysis4. We

assume that when the aggregate throughput is maximized, theaverage fraction of time that a node

is transmitting (π(i), with i the node index) does not significantly depend on the CS threshold, nor

4This assumption is made here only for analytical convenience, and is removed in the simulation results



3.5. Dynamic Carrier Sense Adaptation 83

on the node density. That is to say, in an optimized system nodes transmit for a certain fraction of

time that is affected by the specific topology but not (as a first order approximation) by the optimal

CS threshold itself. Since nodes transmit for a constant fraction of time in optimal condition, it can

be inferred that theaverageinterference perceived at T increases roughly linearly with the number of

nodesN :

I =
N∑

i=1

P (ri)π(i) (3.25)

whereP (ri) is the average received power from thei-th node.

According to these hypotheses, the received power from a single node obeys (3.24). Since we

assume that the interferer position is uniformly distributed in the circular annulus of radiiρ andR and

that the ratioR/ρ = K is fixed, the average value ofP (r) can be computed as the integral from 0 to

+∞ of the complementary cumulative distribution function ofP (r) itself, which is:

P[P (r) ≥ A] = P
[
PtG

rα
≥ A

]
= P

[
r ≤ α

√
PtG

A

]

=
1

R2 − ρ2

[(
PtG

A

)2/α

− ρ2

]
;

PtG

Rα
≤ A ≤ PtG

ρα
(3.26)

Sinceρ ≤ r ≤ R, thenP (r) ≥ PtG/R
α with probability 1. On the other hand,P (r) cannot

exceedPtG/ρ
α. Therefore, the average value ofP (r) is:

P (r) = P (R) +

∫ P (ρ)

P (R)
P[PR ≥ A]dA =

= P (R) +
(PtG)

2
α

R2 − ρ2

∫ P (ρ)

P (R)

1

A2/α
dA+

− ρ2

R2 − ρ2

(
PtG

ρα
− PtG

Rα

)
(3.27)

If α = 2 (like in Friis propagation model), then:

P (r) =
PtG

R2

K2

K2 − 1
2 ln(K) (3.28)

If, instead,α > 2, then:

P (r) =
PtG

Rα

[
1 +

Kα−2 − 1

1 − 2/α
−
(
Kα − 1

K2 − 1

)]
(3.29)

for givenα andR.
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According to Eqs. (3.28) and (3.29),P (r) decays as1/Rα. Therefore the average interference

is proportional toN/Rα (see (3.25)), which we shall callgeneralized node density(and is equal

to the true node density forα = 2). The network performance can scale with the network size if

the average fraction of time in transmissionπ is kept constant with respect to the node density and

carrier sense threshold. Then the CS threshold must be increased because the absolute value of the

interference rises. Otherwise, carrier sense would prevent node transmissions because of the higher

received power, effectively reducingπ as the node density rises. This analysis, even though based

on strong approximations, suggests that the optimal network configuration can heavily depend on its

size, which is not the case for cellular networks.

We have analyzed pure CSMA (rather than CSMA/CA with RTS/CTShandshake) so as to study

carrier sense in isolation. While the inclusion of RTS/CTS is a topic for future research, we expect

that the given linear dependence of the optimal CS thresholdon the generalized node density should

not change. The reason is the following: in the above proof, all the nodes inside the inner circle are

not allowed to transmit. However, when the RTS/CTS mechanism is activated, all the terminals which

can decode one of these two packets will be inhibited. Thus, nodes inside the union of the coverage

areas of the transmitter and receiver will not be allowed to transmit and the above discussion goes

basically unchanged. As a result, although the actual numbers of the linear dependence may change,

the qualitative dependence of the optimal CS threshold on the generalized node density is expected to

hold.

In order to verify this idea we have found by means of ns-2 simulations5 the CS threshold that

maximizes the aggregate throughput for the Friis propagation model (α = 2) without fading. The

MAC protocol is IEEE 802.11g at base rate (6 Mbps) in the pure CSMA mode (no RTS/CTS packets

are used). We have tested networks with 30, 40, 100, 150 and 200 nodes. The terminals are located

in square areas, whose size ranges between 30 and 1400 meters, thus the node density varies between

0.75 and 450 nodes/hectare, sweeping over two orders of magnitude. All terminals are in saturation

conditions. The results are reported in Fig. 3.13, which shows that the optimal CS threshold linearly

increases with respect to the network density. This empirical relation also holds for different packet

sizes and data rates, even though the coefficients may dependon these variables. Finally, we note that

the points in Fig. 3.13 never go below the noise floor (set to -101 dBW in our simulations) and the

optimal CS threshold can never be smaller than this value.

Moreover, we have also analyzed the value of the optimal CS threshold when a two-ray propaga-

tion model (α = 4) is adopted (Fig. 3.14): now the CS threshold scales linearly with the generalized

node densityN/R4.

3.5.2 A Distributed Algorithm for Threshold Optimization

It has been proved that if all the nodes share the same CS threshold, the optimal value of this

parameter is strongly affected by the network density. There are at least two ways to exploit this

5We have modified ns2 interference models so as to compute it more accurately, for instance by taking into account

the cumulative character of interference, the capture effect, and the temporal distribution of the interferers insidea packet

transmission.
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Figure 3.13. Optimal carrier sense density with respect to the node density, free space path loss model
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behavior. In the first case, if the node density is known, all nodes can have their CS threshold set to

the optimal value. However, this is a centralized approach that requiresa priori knowledge of the

(generalized) node density. On the other hand, it is possible to create a distributed scheme where

each node estimates the local node density, e.g., accordingto the algorithm in [23], and then sets its

own CS threshold in agreement with the relationship previously found. That is to say, given a certain

estimated generalized node densityn̂, the CS thresholdTh (expressed in W) is equal toCn̂, where

C is a scaling constant that depends on the data rate. We have foundC by regression. For instance,

at a data rate of 6 Mbps and in free space,C can be computed from Fig. 3.13, and is equal to93

pW/(nodes/hectare).

This is a distributed algorithm that performs a local optimization of the CS threshold. We would

like to outline the difference with the algorithm in [9]: in our case, we base the choice of the CS

threshold on the estimated local node density, and the CS threshold for the different nodes need not

be equal. Instead, in [9] the authors propose to adapt the threshold according to the estimated SNIR.

This estimate may be larger than a certain upper thresholdThigh, smaller than a low thresholdTlow,

or in between. When the next ACK is sent, if the ”Duration ID” field is unused, this field will include

an indication to increase, decrease or keep constant the CS threshold, according to which of the three

previous cases has happened. The nodes will then collect these ACK packets and at the end of a

suitable period they will update their estimate by using themost conservative approach according to

this information. For instance, the CS threshold will be decreased if even a single ACK states so. This

mechanism has been introduced in order to keep the thresholdvariations under control. Moreover,

since the most conservative CS value is adopted, nodes will usually have very similar CS threshold

values. In conclusion, the scheme by Zhu et al. employs an SNIR estimate and in addition it requires

some information exchange among the nodes, while we do not require it. However, we need to know

the path loss exponent of the propagation environment, while [9] is not affected by this physical layer

parameter.

3.5.3 Performance Evaluation

The performance of our approach has been compared to a conventional IEEE 802.11 network

where the CS threshold was either 5 dB above the noise floor (thus set to a very low value) or opti-

mized according to the centralized approach (but still constrained to be the same for all nodes). The

network is composed of 30 or 50 nodes (all in saturation), uniformly distributed in a square whose

side is 40, 80 or 120 meters. Every value is computed by averaging 80 simulations, each lasting 100

seconds. The routing protocol used is AODV, the transmission power is 10 dBm and the propaga-

tion environment is free space. Throughput results are reported in Figs. 3.15-3.18 for data rates of

6 and 12 Mbps. First of all, both algorithms achieve on average a 40% improvement over a conser-

vative choice of the CS threshold. In addition, the centralized (where all nodes must have the same

CS threshold value) and distributed (where each node can have a different CS threshold level) ap-

proaches have comparable performance. Our simple and practical distributed algorithm yields a 40%

improvement over the IEEE 802.11 benchmark. Moreover, the optimized fixed-threshold case and
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Figure 3.15. Aggregate throughput, 30 nodes. Data Rate is 6 Mbps.
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Figure 3.16. Aggregate throughput, 50 nodes. Data Rate is 6 Mbps.
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Figure 3.17. Aggregate throughput, 30 nodes. Data Rate is 12 Mbps.
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Figure 3.18. Aggregate throughput, 50 nodes. Data Rate is 12 Mbps.
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Figure 3.19. MAC delay. Data Rate is 6 Mbps

the adaptive algorithm show large standard deviations. Thereason is as follows: with a very low CS

threshold, only one transmission is allowed at any given time (except during a collision) and thus the

throughput does not depend on the topology (note that the throughput is constant with respect to the

node density). Instead, when a higher threshold is employed, the specific node arrangement critically

affects the number of possible simultaneous transmissions.

Figs. 3.19-3.20 compare the MAC delay for the three approaches (data rates again of 6 and 12

Mbps, respectively) and our simulations show that this metric can be significantly reduced (by about

50%), because nodes are far less restrained while the success probability is still high. Incidentally,

Figs. 3.19 and 3.20 show that the delay of conventional IEEE 802.11 heavily depends on the number

of nodes. The delay curve for the 30 node network is lower thanthat in the 50 node case. Since only

one transmission is allowed at any time, the more the nodes inthe network, the longer the average

delay to gain channel access. On the other hand, our algorithm adapts itself to traffic intensity, and

therefore it is more robust to the network configuration precisely because of its adaptation.

Fig. 3.21 shows the time evolution of the average route hop count length vs time in the 80×
80m, 50 node network. It is evident that the hop count significantly increases at the beginning of the

network history. The reason lies in the relatively high CS threshold that is set by our algorithm. Such

a choice increases the node activity and then the interference. The lower SNIR disconnects nodes that

would have been otherwise linked in conventional IEEE 802.11 with lower interference. Thus, on

average the routes require more hops because the effective communication range shrinks. However,

the reduced hop length preserves an adequate SNIR. These twoelements (higher interference and

smaller hop length) work against each other, but it turns outthat the latter one paired with the high CS

threshold has a bigger impact. The upshot is that the delay oneach hop is relatively low, because the

high CS threshold prevents transmissions only in a small number of cases. Therefore communications

are faster and still reliable, leading to the overall performance improvement (Figs. 3.15-3.24).
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Figure 3.20. MAC delay. Data Rate is 12 Mbps
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Figure 3.21. Average Hop Count Length vs time in the optimized case
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Figure 3.22. Aggregate throughput, 30 node network. Data Rate is 6 Mbps.

Finally, we compare the performance of our algorithm with that of Zhu et al. [9]. The basic

difference between our algorithm and Zhu’s is that in our case the CS thresholds are allowed to

have different values at different nodes, so as to match the local interference and congestion level,

while [9] forces all nodes to have the same threshold. The flexibility of our approach yields an overall

performance improvement as shown by Figs. 3.22-3.23 for theaggregate throughput and by Fig. 3.24

for the delay. The latter graph is particularly important, because it proves that a local, rather than

global, CS threshold optimization lets nodes in highly congested areas to have significantly faster

data transfer.

3.5.4 Discussion

We have shown (by analysis and simulation) that the optimal choice of the CS threshold for

throughput maximization depends linearly on the generalized node density defined asN/Rα, where

N is the number of nodes in the network,α is the path loss coefficient andR is the network radius.

We exploit this relationship by building a simple, fully distributed and effective algorithm for CS

adaptation, that offers significant advantages over conventional IEEE 802.11 and is competitive with

the state-of-the-art CS adaptation algorithm in [9]. Our future work will study the interaction be-

tween transmission power control and CS tuning and the performance evaluation of our system when

important parameters such as the path loss coefficient are incorrectly estimated.
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Figure 3.23. Aggregate throughput, 50 node network. Data Rate is 6 Mbps.
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Figure 3.24. MAC delay for the adaptive algorithms. Data Rate is 6 Mbps
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3.6 A Physical Model Scheduler for Multi-Hop Wireless Networks Based

on Local Information

In multi-hop wireless networks, routing strategies are used to identify the best paths to deliver

information from source to destination terminals. Moreover, since the radio channel is shared, access

to it must be managed through proper scheduling algorithms.These two problems can be combined

in order to realize a joint routing and scheduling framework, whose theoretical basis has been posed

by the pioneering work reported in [24,25].

In this context, the network is represented as a graphG = (N , E), where nodes inN are the

network terminals and edges inE ⊆ N 2 are the communication links. In the following these terms

(nodes and terminals, or edges and links, respectively) will be used interchangeably. Scheduling and

routing are addressed by considering a transmission over a given link e ∈ E as corresponding to

activating, i.e., “turning on,”e, which is conversely inactive / turned off, when the link is not used

for transmission. By looking at the activations of links in asequential manner over time, one can

determine scheduling for a Time Division Multiple Access (TDMA). The subsequent activation of

links from a source node to a destination also implies routing. This framework can address, e.g.,

the minimization of the time required for the information delivery; this corresponds to an efficient

utilization of the network capacity, i.e., allowing the simultaneous activation of a large number of

transmissions, while checking at the same time that the active links bring information toward the

desired destination.

Even though these theoretical principles are well studied,the network descriptions commonly

used often abstract from a detailed characterization of thewireless medium. The only requirements

used to determine the admissibility of a scheduling patternrelate to flow conservation and to avoiding

the simultaneous utilization of a node for transmission when it is receiving a packet, or viceversa,

a condition which in most of the literature [26, 27] is referred to asprimary interference constraint.

Note that this terminology is somehow improper, since this condition does not really depend on

wireless interference, but rather on the half-duplex transceiver capability, which limits the number of

simultaneous operations which can be performed at a time [28].

In fact, multi-hop radio networks may suffer a severe capacity limitation due towireless interfer-

encephenomena. The majority of the approaches to model wirelessinterference beyond the primary

constraint, e.g., involving at least two disjoint pairs of nodes, follow the classification made in [22],

which distinguishes between the so-calledprotocol andphysical interference models. Other varia-

tions have been proposed [29], e.g., to take into account additional aspects such as the capture effect,

but these proposals can also be related to the aforementioned distinction.

The protocol model describes wireless interference by means of conflict sets(sometimes this

representation is also translated into graphs calledconflict graphs). For every edgee ∈ E the conflict

setI(e) ⊆ E \{e} is defined as containing all links whose simultaneous activation with e is forbidden

due to interference. This is simply modeled as a binary relationship: given a linkf ∈ E \ {e}, it can

either interfere withe, thus is put intoI(e), or not. However, this representation fails to capture that

interference has a cumulative effect, since the simultaneous activation of multiple links may cause
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too high an interfering power for linke, even though none of these links alone is to be considered as

interfering withe, and thus does not belong toI(e).

In spite of this problem, such a model is adopted in most of theliterature which deals with routing

and scheduling issues to capture wireless interference [30–33]. However, the more realistic physical

interference model should be preferred, as pointed out in [34]. The main problem in applying the

physical interference model is instead on the complexity side, because it requires to check the Signal-

to-Interference Ratio (SIR) at the receiver’s side of all active communication links and to evaluate

if it is above a given threshold. This requires a large amountof information, namely the link gains

between any pair inN 2.

To overcome this problem, in the present research effort we propose to exploit the interference

model previously proposed to reduce the complexity of the physical model and enable its use when

certain interference terms are difficult to quantify exactly, especially because they consist of many

small contributions to the overall interfering power. The rationale behind this model is to define, for

each node, a numberK of dominant interferers, which are, typically, theK closest neighbors. For

each node, the channel gains towards its dominant interferers must be known precisely, whereas the

rest of the network is simply described in statistical terms. If K is properly chosen, the approximation

introduced by this representation is almost negligible, while the complexity of the description can be

significantly reduced.

To validate our model, we evaluate the scheduling time on graphsG = (N , E) having different

kinds of topologies with single-path routing and where the destination set contains only one node.

All edges inE are also directed toward the root, possibly via multi-hop relaying, without multi-path.

This choice can be justified by several reasons. On the one hand, this allows us to focus on scheduling

only, without being involved in considerations about routing optimality, since in such a topology there

is only one possible route from any node to the root. This alsoallows a simpler implementation of

the scheduler, since it is reasonable to use, as will be argued in the following, greedy scheduling

strategies which maximize the number of packets forwarded toward the sink. On the other hand, this

kind of topology is still realistic, and can actually be envisioned in many implementations of wireless

multi-hop networks, such as the IEEE 802.16 Mesh mode operating with centralized scheduling [27].

We will compare our interference model with alternative techniques, using either the protocol

model or a different implementation of the physical model [34] and we also use, as a benchmark,

the optimal scheduling computed through exhaustive search. We perform several evaluations with

the Network Simulator 2 (ns-2) [35]. Numerical results showa very good agreement between the

performance limit and our proposed strategy. At the same time, our interference model obtains a

significantly better scheduling with respect to the protocol model and we are also able to improve

the results obtained in [34], where a physical model is used.This justifies our model as a practical

strategy to use the physical interference model in wirelessmulti-hop networks.

The general approach used in the literature to describe TDMAscheduling in multi-hop wireless

networks can be found in [24,25]. In [24] the scheduling problem is studied through linear program-

ming, and a polynomial complexity algorithm which solves the pure scheduling problem is given.

In [25], and all the extensions to this framework proposed inother works by the same authors, the
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problems of routing and scheduling for wireless packet networks are framed in the more general con-

text of identifying a suitablelink activation patternwhich satisfies certain optimality criteria and is

subject to certain constraints, so that a linear programming framework can be derived. The main goal

of this approach is to minimize the delivery time from all sources to all destinations; to this end, the

network capacity must be efficiently exploited.

The contribution we give in the present Section can be viewedas an extension of this approach

to a more realistic wireless environment. In fact, in [25] a more accurate characterization of wireless

interference is left open; in most of the developments derived from this framework, simplified ap-

proaches such as the protocol interference model are used. For example, different theoretical aspects

of scheduling in multi-hop networks are investigated in [30–33] by means of link activation schemes

which rely on the protocol interference model only.

In more detail, in [32] the problem of delay guarantees in wireless multi-hop networks is studied.

Differently from our approach, which closely follows [25],in this paper the per-flow delay is consid-

ered instead of the overall time to deliver all the packets totheir respective destinations. In [30], the

authors outline and investigate from a high level perspective certain bottleneck problems which arise

in joint routing and scheduling scenarios. In this way, related performance bounds are highlighted.

However, the analysis heavily relies on the protocol interference model, so it is unclear which con-

clusions can be extended to general wireless scenarios where a different interference model is to be

adopted. The contribution of [31] is an analysis of optimal scheduling conditions, again based on

the protocol interference model. With this background, a fair scheduling mechanism is proposed and

discussed to activate wireless links, based on the maximal clique search over a graph. Finally, the con-

tribution of [26] is to discuss a linear programming approach in order to solve routing and scheduling

and to introduce practical algorithms based on efficient heuristics. Similarly to the analysis reported

in [25], the only limitation imposed by wireless interference is that nodes can not be active in more

than one operation (which can be either a packet transmission or a packet reception). This rationale

is extended by the authors in [33] to a case where wireless interference is considered in a broader

sense, but again this involves the protocol model only. Instead we consider the problem of obtaining

efficient scheduling heuristics when more realistic wireless interference models are considered. Note

also that this poses an issue in terms of computational complexity and information exchange, which

we will address in the following.

In this sense, our approach is similar to [34], which also focuses on the physical interference

model, even though it introduces a simplification to prioritize the links in the scheduler. However,

in that paper the challenge of multi-hop transmission is mitigated since intermediate nodes have a

backlog equal to the aggregate backlog of all previous nodes. This simplification makes explicit

relaying unnecessary (i.e., a packet can be forwarded even if it has not been received by the relay,

because the relay backlog has been suitably increased to take these forwarded packets into account).

Thus, the algorithm was run on a set of single-hop flows, whosetraffic demands were sized so as

to take routing into account. In our analysis, we consider multi-hop more explicitly, as nodes are

also required to relay packets and therefore the status of the information delivery has to be constantly

monitored also at intermediate nodes.
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Finally, paper [27] also presents some similarity with our analysis, mostly in the fact that a similar

application scenario is considered. In fact, in that paper the specific case of IEEE 802.16 Mesh

mode operating with centralized scheduling is addressed, which might result in node placements

similar to the topologies considered in our work. However, we remark that in [27] again only primary

interference constraints are taken into account. For this reason, our investigations can be seen as an

extension of this work to a more realistic interference description.

3.6.1 Scheduler Design

In designing the scheduler, we have considered different kinds of node placements, both deter-

ministic and random, in an assigned area. A realistic propagation model (e.g., also including fading

effects) has been considered, both in the analytical model presented in Section 3.4.1 and in the numer-

ical evaluations in the following. Thanks to this accurate radio propagation description, even when

the node deployment is regular, channel impairments occur in an unpredictable manner. For what

concerns the random placement, the obtained topologies areeven more variable as they are rather

different in terms of node degree and length of the links. We also remark that we have kept a quite

general approach for what concerns lower layers than the scheduler.

About higher layers instead, and more specifically routing,we focused here on graphsG = (N , E)

with only one destination node and where a single path is available from any node to the destination.

The main reason to consider single-path topologies is in order to abstract the evaluation of the schedul-

ing performance from routing. In fact, as shown in [36], there are many considerations which would

advise for a cross-layer approach where routing and scheduling are performed jointly. If TDMA

scheduling is coupled with a sub-optimal routing, it can achieve very low efficiency; even worse, a

comparison of scheduling strategies obtained in this case may not reflect reality, since it is biased by

routing inefficiencies. In our scenario this problem does not occur, as the routes are uniquely deter-

mined, and every non-root node can only transmit over a single edge, i.e., the one toward its parent

node. This allows us to decouple the scheduling from the routing problem and to investigate in a

more direct manner the application to a scheduling problem of the interference evaluation framework

presented in Section 3.4.1 In our opinion, studying single-path networks is a first necessary step in

order to gain valuable insight on the problems related to scheduling, but our future work will extend

these findings to multi-path networks where a routing algorithm is also included.

This scenario corresponds to having a tree topology (eitherinherently derived from the radio

propagation or superimposed by a Minimum-Spanning-Tree algorithm as is done by many routing

algorithms [37]), where the root can be seen as a gateway node, reachable via multi-hop by all nodes,

and in charge of collecting the information from them. Exchange of packets is allowed only from

a node to its parent node in the tree hierarchy; however, all nodes can generate some interference

at a receiver node, depending on their physical placement and not on the logical position in the

tree. This actually happens in many scenarios, such as Wireless Mesh Networks operating with

centralized scheduling in IEEE 802.16 Mesh mode [27], or Wireless Sensor Networks for distributed

measurements [38]. In the former case, the gateway (i.e., the root node) is the access point of the
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wireless network backbone to a cabled connection to the Internet, in the latter it is the central data

collecting unit; in general, it is sensible to think of it as the location where the centralized scheduling

algorithm is run.

As a consequence of focusing on single-path topologies, we can simplify the computational com-

plexity of the search for the minimal time schedule. In particular, even simple greedy schedul-

ing strategies can be utilized as efficient schedulers, as justified by the following discussion. Ifℓ

= (ℓ1, ℓ2, . . . , ℓN ) describes the queue lengths at all non-root nodes inN , we denote withτ(ℓ) the

minimum time to deliver all the packets ofℓ to the tree root. Also, we callek the canonical base

vector equal to1 at thekth entry and0 otherwise. It is easy to prove that, ifi ∈ N is the parent

node ofj ∈ N , for any fixed vectorℓ the value ofτ(ℓ+ei) is not greater thanτ(ℓ+ej). In fact, the

transmission ofℓ+ei can be achieved with the same optimal activation pattern forℓ+ej by turning

off link j → i in one of the slots where it is active.

In order to reduce the computational complexity of the scheduling, we might want to define a

slot-wise activation criterion. Of course different criteria are possible for the specific choice of which

links to activate. However, the reasoning above implies that, within an already existing activation

set, turning on another link which is compatible with interference conditions is always beneficial on

single-path routing topologies. We can generalize this, when determining the link activation pattern

for a given time-slot, stating a practical rule of thumb thatthe more active links, the better. Therefore,

greedy schedulers appear to be appropriate for the scenariounder study, since they offer very good

performance and also seem to be better implementable in practical scenarios. Also, they allow com-

parisons to test the goodness of our proposed interference model against existing solutions present

in the literature, which also rely on heuristic schedulers often with a greedy rationale. However, we

stress that the choice of focusing on heuristic greedy scheduling does not give any advantage to our

proposed model, and we may reasonably infer that a similar comparison would also hold for more

detailed theoretical investigations performed within an optimization framework, which are however

out of the scope of this work, being far more difficult to implement and compare.

Finally, we remark that our scheduler is a centralized one. However, nodes employ accurate local

information (about the dominant interferers) and the rest of the network is modeled in statistical terms.

Thus, our scheduler makes some important steps toward the goal of a distributed system based on the

physical model, rather than the oversimplified protocol model.

3.6.2 Implementation Issues

In this section, we describe a low-complexity, centralizedscheduler for transmitting data in the

uplink of the tree topology (i.e., from all nodes to the root). In our setting, time is slotted and in

each slot a centralized controller, e.g., located at the tree root, activates some links to transmit data.

The key concept in our scheduler is that the nodes are selected in a greedy manner according to

their chances of successfully transmitting a packet. This probability is estimated by means of the

interference model reported in Section 3.4.1.

The scheduler knows the queue status at all nodes. We remark that this is the only information
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for which a shared knowledge is required: this can be important if a distributed implementation is

sought. We also point out that it is possible to achieve good performance also with rather coarse

information about queue status; it is often enough to know ifthe queue is empty, or its length is below

or above a certain congestion threshold. Simulation tracesshow that such a strategy often leads to

satisfactory results. Each terminali is associated with a weightψi, which is the sum of two factors:

the probability of successful packet transmission and a function of the queue status. The success

probability at a node is computed by means of (3.23) and multiplied by a constant suppression factor

α ∈ [0, 1] if a node transmitted a packet in the previous slot, in order to improve fairness for nodes

who are in disadvantaged positions, which otherwise would have fewer transmission opportunities.

The queue status obviously influences the scheduler in the sense that nodes with empty queues are not

eligible for transmission. Additionally, in order to keep the queue lengths under control, we assign

a bonusb to the nodes with long queues. The weightψi is equal to this bonusb plus the success

probability, multiplied (if necessary) byα. In the following numerical evaluations, for a given queue

lengthℓ, this bonusb follows a linear piecewise function:

b =





0 ℓ < ℓA

ℓ−ℓA

ℓB−ℓA
ℓA ≤ ℓ ≤ ℓB

1 ℓ > ℓB

(3.30)

The thresholdsℓA, ℓB have been empirically set to, respectively, 150% and 250% ofthe value of the

initial node backlog. Note that this additional term is particularly useful in a tree topology since the

nodes closer to the root have a higher traffic to deliver, since they also act as relays, but the leaves

generally have a greater chance of being scheduled, becausethey have fewer neighbors and thus less

interference.

This is the main loop the scheduler performs in each slot:

1. selectthe candidates

2. computethe queue size bonuses

3. while (the candidate queue is not empty)

for (nodeIndex = 1:allNodes)

(a) update the interference statistics and the packet success probability: for every nodej,

compute (3.23) by estimating the probability that each dominant interferersw of j trans-

mits, as equal to its weightψw. Add to all weights the queue bonus.

(b) pick the best node

(c) is this link compatible with the existing communications?

yes)include it in the list of scheduled nodes. For the rest of the time-slot, its activity factor

is 1 (i will surely transmit) and the activity factor and weight of every nodek which is a

neighbor ofi will be set to0 (k will not transmit). All the neighbors are removed from

the candidate list.

no) remove it from the candidate queue. Set its activity factor and weight to 0.
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end for

end while

In phase 1, the scheduler selects which nodes may be eligibleto be scheduled. In the default

implementation of the scheduler, only nodes whose weightψi is larger than 0 and whose queue is not

empty continue in the following steps.

Step 3 (thewhile loop) can be fully understood realizing that the interference model is completely

specified when the number of dominant interferersK and all the received powers and activity factors

are defined. The first term is a constant and the second does notchange within a slot. However, the

activity factors must be given suitable values. If a node cannot be scheduled in this slot (e.g., it has

an empty queue or there is a direct link with a node which has been scheduled to transmit), then it is

assigned the value 0. Otherwise, the activity factor can be equal to 1 if the node has been scheduled

to transmit. In all other cases, when it is not yet defined whether the node may or may not transmit,

the activity factor is set to 1/2 if the node has not sent a packet in the previous slot orα/2 if it has.

Please note the inclusion of the suppression factorα. This reduces, in the interference model, the

transmission probability (and therefore, the weightψi) of the nodes which transmitted in the previous

slot. Thus, the other terminals will predict a higher SIR andwill compute a higher success probability.

Finally, if α = 0, then weightψi for certain nodes will be 0 and they will not have a chance to transmit

in the next slot. We shall discuss the impact ofα in Section 3.6.3.

In step 3a, all the nodes update their interference model, which means to set the activity factors of

the dominant interferers. In step 3c, if the new link does notdecrease the SIR of the other nodes below

the target level, it will be scheduled in the incoming slot. However, its father and all its children in the

tree must have their weightψk set to 0 because they will not transmit due to the half-duplexconstraint.

If instead the candidate link is incompatible with the linksalready scheduled, it is discarded and it

will not be considered for the rest of the slot as a possible candidate. Thus its weightψi is set to 0.

We point out that step 3c is carried out taking into account all ongoing transmissions in the net-

work. This step is not distributed and requires global knowledge. However, [34] is subject to the

same requirement, while in the other steps our scheduler requires less knowledge than the algorithm

in [34].

The computational complexity of the scheduler with respectto the network sizeN depends on

the interference statistics model, which affects step 3a. Its complexity isO(K), since the weights

of the dominant interferers are updated. Steps 3b and 3c havea constant complexity with respect

to N . These operations must be repeated until the queue becomes empty, thus the outer loop is run

O(N) times, leading to a total ofO(NK). We state thatK weakly depends onN , and this statement

will be proved in the results section. Thus we approximate inthis analysisK as a constant factor,

independent ofN . Finally, the scheduler must compute the queue size bonus atthe beginning of the

slot, and this is anO(N) operation. Therefore the computational complexity is linear in the network

sizeN .

Since we assume that the scheduler has perfect channel stateinformation, scheduling errors (that

is to say, some links turn out to have an insufficient SIR) cannot happen in our settings.
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Figure 3.25. A sample regular (a) and random (b) tree topology

3.6.3 Performance Evaluation

We have quantified the performance of our scheduler in a number of different situations. Our

goal was to compare the absolute performance of our proposedscheduler against some recognized

benchmarks and to explore which factors impact its performance.

Scenario Description —All our tests have been run on tree topologies composed by a number of

nodes ranging from 16 to 31. For all links, we assume a path loss proportional tod−3.5, whered is the

distance between transmitter and receiver. Additionally,we superimpose a correlated shadowing term

modeled as in [39], with a variance of5 dB and a correlation at100 m equal to0.6. Moreover, two

classes of topologies have been created. The first type corresponds to the regular node deployment

depicted in Fig. 3.25a. In such a case, each node is300 m away from its next hop, and the tree is

binary and balanced (the difference between the depth of anytwo leaves is at most one). Observe

that, even though the nodes’ positions are fixed and regular,the presence of the correlated shadowing,

which is introduced in all the investigated topologies, allows us to obtain different values of the path

gain for each topology instance. In the second class of topologies, nodes are randomly placed in a

1000 m× 1000 m square. A tree topology is generated by means of a spanning tree algorithm which

chooses the closest node to the center of the square as the root, and allocates children nodes to the

already built tree, with a limit on the node degrees set to3. An example is shown in Fig. 3.25b.

Differently from the previous scenario, the tree is no longer binary and balanced. In spite of these

differences, most of the conclusions we derive for these twoscenarios are quite similar, so we infer

that they are likely to hold true for other cases as well.

Given anN node topology, anN − 1 node topology is created by removing a leaf picked at

random. According to this procedure, given a base tree consisting of31 nodes (i.e., a full tree where

all leaf nodes have depth4), we generate a sequence of smaller topologies by successively removing
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one leaf, until as few as16 nodes are left (i.e., exactly one leaf node has depth4). All the curves

reported in the numerical results are averaged over 30 different samples, which ensures adequate

statistical confidence. Where meaningful, 95% confidence intervals are reported.

The performance of our link scheduling algorithm is assessed by means of the following indices:

• schedule length: the duration of the schedule produced by the algorithm in number of slots.

• end-to-end system throughput(or simply throughput): the overall amount of net user data de-

livered by the system per unit time.

• fairness index: (
∑n

i=0 xi)
2/
(
n
∑n

i=0 x
2
i

)
[40], wheren denotes the number of data flows to

the gateway, andxi the throughput of thei-th flow. By definition, the fairness index is bounded

in [0, 1] and for equal partitioning of bandwidth is equal to 1.

To investigate the performance of our algorithm in terms of schedule length, we assume that

nodes have an integer number of packets in their queues (whose initial sizes need not be equal) and

the link rates are normalized to 1. All nodes transmit at a fixed power of10 dBm. The goal of the

scheduler is to transfer all data as quickly as possible fromthe nodes to the tree root/gateway. If

not stated otherwise, the interference model employsK = 2 dominant interferers, the suppression

factorα is 0 and each node initially has8 packets in its buffer. The number of dominant interferers

K was chosen to be 2 because for higherK performance improvement was found to be negligible.

Such a lowK strikes a good balance between computational complexity and performance. Moreover,

especially in random topologies, it is hard to find many strong interferers which generate comparable

interference so that they should all be regarded as dominant. Hence a higherK does not lead to

significant performance improvement in this setting. The set of results will explore the scheduler

performance as a function of network size, SIR threshold andK.

In addition, the system throughput is analyzed under realistic traffic conditions. Two types of data

traffic are used in the simulations, namely Web and Constant Bit Rate (CBR). In the former case,

traffic is modeled as a Web source generating variable size packets at variable inter-arrival times.

The packet size is distributed as a truncated Pareto random variable with location 10.3 kB, shape

1.1, and cut off 1500 kB. Packet inter-arrival time is exponentially distributed. In the latter case,

the source produces packets with length equal to 1000 B at a constant average rate of 50 kB/s. The

analysis was carried out by means of Network Simulator 2 (ns-2) [35]. Note that, since we deal

with physical realism of the interference models, we utilized, within ns-2 simulation, a more detailed

implementation of the physical level, including in particular the additive behavior of the interference.

This means that, according to Section 3.4.1, the packets need an SIR above the thresholdΛ0 at the

receiver’s side to be correctly decoded.

Numerical Results —The first test compared the time to empty the node queues for four different

systems: our proposed scheduler, the optimal link activation, the protocol model and the physical-

model based scheduler by Braret al. [34]. The scheduler by Braret al. is the present benchmark for

scheduling based on the physical model. The protocol model is implemented as in [34]; that is to say,

whenever a tagged link is activated, it silences all other links whose transmitter or receiver lie inside
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Figure 3.26. Performance comparison for the regular topologies,Λ0 = 2.5 dB,K = 2

the interference radius to the tagged link receiver. Observe that, whereas our proposed scheduler and

also the one by Braret al.mandatorily verify the feasibility condition for the SIR being aboveΛ0 for

each activated link, the protocol model, which performs just an approximate computation of the in-

terference, may instead obtain infeasible link activationpatterns. When this happens, we assume that

an ideal ARQ recovery mechanism is available, which means that the erroneous packets are always

detected and immediately (i.e., without delay) notified at the transmitter, which can retransmit them

already in the next time slot. This is clearly an optimistic assumption, so the behavior of the proto-

col model is overestimated; actually, in practical environments, a realistic error recovery mechanism

would imply an even worse performance.

The optimal link activation sequence is found by means of an exhaustive search over all possible

schedules that are feasible under the physical model.

Figs. 3.26 and 3.27 report the results for the regular and random topologies, respectively. They

show the ratio between the lengths of the schedules computedby the different approaches and the

optimal schedule length. Note that all of the approaches achieve an approximately linearly increasing

schedule length in the number of nodes, but with different slopes, that is to say the heights of the

curves in Figs. 3.26-3.27 (which is the most interesting aspect, as it tells us also how the scheduling

algorithms scale with the network size). First of all, the curve relative to our scheduler with queue

bonus is usually within1.1. This means that our schedule is about 10% longer than the optimal

one (and often less than that). This is a non-trivial result,since there is no easy way to predict the

performance of our scheduler, which could have been anywhere between the lower bound and the

protocol model. This fact points out that our algorithm can harness the potential spatial reuse and

achieve results which are very close to the optimal scheduling. Moreover, the performance of the

algorithm by Braret al. is 20% worse than the optimal schedule. Therefore, we are able to halve

the gap with the lower bound, and we can often do better. Incidentally, Braret al. proved that the

performance of their algorithm was within a constant multiplicative factor from the optimal schedule.

This is confirmed by our graphs. Finally, the protocol model performs rather poorly, because of the

low degree of spatial reuse.
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Figure 3.27. Performance comparison for the random topologies,Λ0 = 2.5 dB,K = 2, α = 0
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Figure 3.28. Performance dependence on the decoding threshold,K = 2, α = 0

Similar reasoning can be applied to Fig. 3.27, where the random topology case is considered.

Again, our scheduler’s curve is very close to the optimal policy and thus confirms the adaptability of

our method to realistic topologies. In this situation, the algorithm by Braret al.does not significantly

improve its performance over the previous case, while we approach the lower bound more tightly.

Fig. 3.28 compares the performance of the optimum link activation sequence and our scheduler

when the target SIR is changed, in the regular topology case.We note that the curve corresponding to

our scheme remains close to the optimal one for all the SIR values. This shows that our approach is

robust to the SIR choice. The schedule length increases witha higher SIR because the lower tolerable

level of interference decreases the spatial reuse.

A key issue for our scheduler is the determination of the minimum number of dominant interferers

used by the interference model necessary for satisfactory performance. It is reasonable to expect

that the more the dominant interferers, the better the scheduler performance because the interference

model becomes more accurate. However, the computational complexity increases. Fig. 3.29 explores

this tradeoff for the regular topology when the queue size bonus is set to zero. This bonus has been

removed in this context because we want to study the influenceof the interference model accuracy in
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Figure 3.29. Dependence on the number of dominant interferers, for regular (above) and random (below)

topologies,Λ = 2.5 dB,α = 0

isolation. The queue size bonus can mask the different impacts and so it has been turned off for these

experiments. Therefore, the curves here do not extend thosein the previous graphs (e.g., Fig. 3.26

or 3.27). First of all, the mixture model (K > 0) yields non negligible improvement over the single

mode model (K = 0) only for rather large networks (at least 20 nodes). The reason is the following:

as pointed out in [13], the Gaussian mixture model works wellwhen there are a few nodes whose

power received by a certain terminal is larger than all the rest of the combined interference. When

the nodes are few (less than 20) they are usually confined in a small area, and the range of powers

received at any point in the tree from all the nodes is within one order of magnitude. Thus, the final

interference is not multimodal, but can be already predicted fairly well by a simpler single-mode

Gaussian estimator. However, for larger networks dispersed in a wider region, the ratio of the powers

between two interferers may become significantly large and result in some noticeable performance

difference. This is only partially captured by the average schedule length. In fact, due to the choice

of a tree topology, the main bottleneck of the delivery is thetree root, which is independent of the

interference evaluation. Thus, also other quantities suchas the second order moments should be

considered. In any case, the reported difference is about5–10%. Also note thatK is quite low,

because no significant performance improvements can be achieved with higherK. Actually, the

curves forK ≥ 3 are not plotted because they are almost indistinguishable from the caseK = 2.

The graphs suggest that the dependence ofK on the network size is weak. We conjecture that it is in

fact sublinear, but further investigation is still needed in the area. Finally, observe also that the slope

of the curves changes, thus we infer that for larger networksthe gap would increase, which is also

confirmed by preliminary results.

We have also explored how the scheduler performance changeswhen the queue size is modified.

In particular, all our previous simulations considered allnodes to be equally backlogged. We have

tested two more scenarios: in the former case, the nodes closer to the root have a longer queue than

the leaves, and vice versa for the latter. In the first case thescheduler length is on average shorter (the

packets are closer to the root) and the opposite happens in the latter case. But no matter what the load
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Figure 3.30. Performance of our scheduler with web-browsing and CBR flows, α = 0.5.
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Figure 3.31. Performance of our scheduler for different values of the suppression factorα.

distribution could be, the gap between the optimal scheduling and our system is always in the order

of 10% as in the previous cases. Therefore our scheduler is robust to the backlog location.

So far we have proved that our system offers excellent performance compared to the optimal

scheduler and [34]. We complete our study by an analysis of our scheduler performance with realistic

traffic sources, CBR and Web by means of ns-2.6 In addition, further insight about the dependence

of the scheduler behavior with respect to its fairness parameterα has been sought. In Fig. 3.30 we

have studied the system throughput as the tree size is increased from 8 to 15 nodes. We note that

the throughput already saturates at 15 nodes, so we have not analyzed larger networks. Each link has

a data rate of1 MB/s, and the maximum possible capacity in the tree topologyis exactly 1 MB/s,

because only one of all the links that go into the root can be active per slot. Our scheduler achieves

around 45% of this value, which is a significant result considering the interference and topology

constraints. As can be seen, when the network becomes overloaded, i.e., the number of nodes is

greater than or equal to 11, the overall throughput achievedwith the Web source is slightly higher

6We point out that for web-browsing, UDP has been used as transport protocol, because TCP excessively influences the

system performance and its impact on protocol activity would cancel many of the phenomena we are interested in.
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than that with CBR. This is mainly due to the fact that flows experience random bursty arrivals of

packets followed by periods of inactivity. Therefore, it may happen that not all flows are active at the

same time and traffic experiences a better statistical multiplexing. Fig. 3.31 shows the throughput in

overload conditions versus the fairness index while changing the suppression factorα. We note that

there is a tradeoff between the two. This is due to the fact that whenα is large (close to 1) all nodes are

eligible to be scheduled. This implies that those link activations that enjoy a high spatial reuse may be

used very often, and thus the throughput will eventually benefit. However, this also favors those nodes

whose interference is inherently low because of their position. Therefore the fairness index will drop.

It is also evident that CBR traffic is more affected byα. We believe that this fact is due to the time

distribution of the packet arrivals: Web traffic is bursty, and thus terminals in unfavorable positions

just have to wait for some traffic to be delivered before having their chance to transmit. On the other

hand, CBR will keep busy those nodes in low interference locations, and thus the fairness-throughput

curve will be shifted toward the low-right corner of Fig. 3.31. Incidentally, we observe that when

no constraints on node selection are imposed (α = 1) the system fairness is nonetheless acceptable

(0.65). On the other hand, the ratio between the maximum and minimum saturation throughput is

0.78. This means that even when the candidate selection is strict (α = 0) the achieved throughput

is still a significant fraction of its best possible value. Hence the scheduler achieves simultaneously

high fairness and throughput. Moreover, it is really possible to trade off the two quantities (the curve

is smooth and there is no sudden change as the suppression factor changes) and thusα is a design

parameter that can be tuned to achieve a desired point in the tradeoff curve. All these observations

and findings lead us to concluding that the proposed scheduler is flexible and can perform well in a

wide range of scenarios.

3.6.4 Discussion

We have proposed a high performance centralized scheduler for wireless multi-hop networks

based on the physical interference model, rather than the protocol model. The scheduler low compu-

tational complexity model makes it attractive for these networks, due to its robustnes to some impor-

tant parameters (like the backlog distribution throughoutthe nodes) and to the ability to outperform

state-of-the-art schedulers. In some cases, the gap with the theoretical optimum is halved.

3.7 Chapter Conclusions

The first part of this Chapter dealt with carrier sense for MIMO ad hoc networks. The performance

of the proposed CS mechanism has been studied as a function ofsome design parameters (like the

training sequence length) as well as some environment conditions (SNR, traffic load). We have shown

in which scenarios the system works well and also suggested improvements on the present version.

We have analyzed how a simple Gaussian model can be used to estimate the interference behavior

in a wireless ad hoc network for carrier sense threshold optimization. A Gaussian mixture model can

correctly predict the network behavior and enable a quick optimization of the network parameters in
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a static setting (i.e., the node placements and path losses are known). Moreover, whenever the carrier

sense threshold has to be adjusted dynamically, we have shown (by analysis and simulation) that it

depends linearly on the generalized node density defined asN/Rα, whereN is the number of nodes

in the network,α is the path loss coefficient andR is the network radius. We exploit this relationship

by building a simple, fully distributed and effective algorithm for CS adaptation, that offers significant

advantages over conventional IEEE 802.11 and is competitive with the state-of-the-art CS adaptation

algorithm in [9]. Our future work will study the interactionbetween transmission power control and

CS tuning and the performance evaluation of our system when important parameters such as the path

loss coefficient are incorrectly estimated.

Finally, also the field of mesh scheduling can benefit from theproposed carrier sense model. It

is possible to design a high performance centralized scheduler for wireless multi-hop networks based

on the physical interference model, rather than the protocol model. The scheduler is based on a low

complexity model for aggregate mutual interference between nodes, whose complexity is linear with

the network size. We have evaluated the robustness of our algorithm with respect to some important

system parameters (detection SIR and backlog distributionin the network) and we have shed some

light on the dependence of the scheduler’s performance on some of its parameters (number of domi-

nant interferers or suppression factor). We are also able tooutperform other proposed models which

represent the benchmark for computationally efficient, physical-model based schedulers, achieving a

gain larger than50% in approaching the theoretical optimum.

Our future work will study the relaxation of some assumptions (for instance the perfect channel

state information assumption). Moreover we are working toward a distributed version of our algo-

rithm, for which problems like disseminating information about queue sizes, obtaining the status of

the dominant interferers or coping with imperfect channel state estimates in the previous slot must be

solved.
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4.1 Introduction

One of the main design issues in multi-hop wireless networksis determining the number of hops

between the source of information and the final destination [1]. For a given transmission power,

a smaller hopping distance results in a larger received signal-to-interference-and-noise-ratio (SINR),

which implies more reliability and/or a higher transmission rate over a single hop. However, as argued

in [1], this does not necessarily translate to an end-to-endperformance benefit, e.g., in terms of delay:

each node that is added between the source of information andthe final destination is also the cause

of additional delay, since a packet has to be decoded, encoded and wait in the queue, before it is

transmitted to the next node. Moreover, if the intermediatenodes can transmit only one at a time,

e.g., to avoid intra-route interference, the throughput might suffer as well. Along the line of thought

in [2], a meaningful performance analysis and the design of multi-hop ad hoc networks should be

carried out with end-to-end constraints on delay and reliability in mind.

To date, excluding the literature on capacity scaling laws [3], we can divide the work on multi-hop

networks into two categories. In the first one [4–8] (see the review paper [9] for a comprehensive list

of references), a snapshot of the multi-hop network, i.e., asingle hop of a typical route, is considered,

with the implicit assumption that the destination lies at aninfinite distance from its source. Single-

hop metrics are devised and evaluated, that are related to a performance benefit at the end-to-end

level. Such metrics include: the expected progress, i.e., the product (packet success probability)×
(hop length), for a given spatial density of transmitters, which reflects the trade-off outlined in the

previous paragraph [4]; the transmission capacity, i.e., the maximum density of transmitters allowed

under a constraint on the success probability, for a given hop length [6]; and the spatial density of

progress [7], i.e., the product (spatial density of successful transmissions)× (hop length) which is

a logical combination of the previous two metrics. A centralassumption in these papers is that the

transmitters constitute a Poisson random process in the plane. This allows a precise characterization

of the SINR statistics, hence the derivation of analytical results that demonstrate the effect of the

channel (fading, interference and noise) and various physical layer parameters on the above network-

wide metrics.

The second body of work [10–13] is, in a sense, complementaryto the first. A well defined route

is considered, where the distance to the final destination and the number of intermediate nodes, or

relays, are specified. However, the impact of interference from other transmissions in the network is

ignored. Assuming a channel model with path-loss, fading and noise, and no delay constraints, [11,

12] tackle the capacity-like problem of determining the end-to-end rate, i.e., the minimum achievable

rate over all hops, when a TDMA-access protocol is employed.Alternatively, under a given delay

constraint, [13] determines the number of hops and the rate allocation among them, such that the total

power consumption is minimized. A similar problem is studied in [10], under an end-to-end success

probability requirement.

Our work bridges the aforementioned research directions. We consider a random Poisson network

with finite-distance, mutually interfering routes. To accomodate the randomness in the delivery of a

packet over each hop, nodes are equipped with queues. A simple link-layer protocol is assumed,
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Table 4.1. Commonly used symbols

Symbol Meaning

p source MAP

pR relay MAP

pA probability of new packet arrival at the source

λ density of sources

pn success probability at thenth hop

rn distance ofnth relay from its source

where, if a packet is not received correctly by a node, it is retransmitted by the previous node in

the route at the next available opportunity. Central to our analysis is the derivation of conditions

such that the node queues are stable, i.e., their lengths remain bounded over time and, as a result,

the delay over a typical route is finite. Using an outage modelfor the packet success probability,

we analytically evaluate the mean end-to-end delay, as wellas the route/network throughput, and

determine the answers to the following questions: what are the number of relays and their placements

that minimize the delay; what MAP or traffic control must be enforced on the sources such that the

delay remains finite, irrespective of the relay placement; and, finally, what is the impact of shifting

the relays from their optimal positions. In face of simplifying model assumptions, we would like to

emphasize that the contribution of this work is for the most part analytical, with the intent of providing

design insights for practical multi-hop networks. A simulator is set up to verify the findings resulting

from our model.

The rest of this Chapter is organized as follows. The system model is described in Section 4.2,

and Section 4.3 includes our analysis. Numerical examples and simulation results are presented in

Section 4.3.3 and Section 4.4, respectively. Our conclusions are summarized in Section 4.5. A list of

symbols commonly used throughout the Chapter is given in Table I.

4.2 System model

4.2.1 Network setting

We consider a network composed by an infinite number ofroutesor flowson an infinite plane (see

Fig. 4.1). Each route comprises a source, a destination at distanceR, andN − 1 relays on the line

defined by the source-destination pair. We refer to sources,relays or destinations indiscriminately as

nodes. The distance of thenth relay,n = 1, . . . , N − 1, from its source is the same for all routes and

denoted byrn (with a slight abuse of notation,r0 = 0 andrN = R). The length of thenth hop in the

route is thereforern − rn−1, n = 1, . . . , N . A typicalN -hop route is shown in Fig. 4.2.

Each node has an infinite queue, where packets that are received from the previous node in the

route can be stored in a first-in, first-out fashion. The source, in particular, is not preceded by a

node and “receives” a packet from an upper layer of the protocol stack everyN slots with probability

pA (whenpA = 1, the source is backlogged). Time is divided into packet slots and the following
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Figure 4.1. A two-hop random network. So stands for source, Re for relay and De for destination. Note

that the relay is not necessarily placed in the middle between source and destination.

TDMA/ALOHA synchronous protocol is observed: the nodes at distancern from their source are

allowed to transmit a packet, with a certain probability, only at timesn + mN, m ∈ N, i.e., the

sources at slots0, N, 2N, . . . , the1st relays at slots1, 1 + N, 1 + 2N, . . . and so on. A packet is

received successfully by a node in the route, if the SIR in that slot is above a target threshold. If it is

not, the transmitting node is informed via an ideal feedbackchannel and the packet remains at the head

of its queue, at least for the nextN slots, until its turn to attempt a retransmission. For simplicity,

we assume that, upon the assigned TDMA slot, a source transmits with probabilityp (p-persistent

sources) and a relay with probabilitypR (pR-persistent relays). Note that the main characteristic of

the protocol is that intra-route interference is avoided, by having all other nodes be silent when a given

node in the route is transmitting. Since we are focusing on routes with only a few hops, permitting

intra-route spatial reuse would only yield a marginal performance benefit, at the price of increased

complexity [12]. Moreover, we consider relays that do not generate traffic, i.e., their sole function is

to forward the packets toward their final destination.

We assume that the network topology is such that, in every slot, the locations of the sources are

drawn independently according to a spatially homogeneous Poisson process of intensityλ [6, 7] and

the orientation of each destination with respect to its source is changed randomly. These assumptions

ensure that the interference levels encountered over different hops/slots are randomized and will be

discussed at greater length in Section 4.4.
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So DeRe1 Re2

p1 p2 p3 pN

r1
r2

R

Figure 4.2. AnN -hop route.

4.2.2 Physical layer

The channel between any two nodes at distancer includes Rayleigh fading and path-loss ac-

cording to the lawr−b, whereb > 2 is the path-loss exponent. All nodes have the same transmit

power, which is normalized to one. In order to place emphasison the interactions between the desired

and interfering signals, we consider an interference-limited setting, i.e., thermal noise is considered

negligible and disregarded. The SIR at the receiver of thenth node of a given route is

SIRn =
An(rn − rn−1)

−b

∑
t∈Tn−1

Atd
−b
t

,

whereAn is the fading coefficient between the(n − 1)th and thenth node and exponentially dis-

tributed with unit mean;Tn−1 is the set of interfering nodes at thenth hop;dt is the distance between

the interfering nodet and thenth node of the chosen route andAt is the respective fading coefficient.

We assume that a packet is successfully received when the SIRis above a target thresholdθ. 1

We can then define the probability of successful packet reception by thenth node,pn, over different

fading and network realizations, aspn = P(SIRn > θ). Under the network model described in the

previous section,Tn−1 can be considered as a Poisson process of interfering nodes with densityλn−1.

Using the result in [7], we have that

pn = e−λn−1c(rn−rn−1)2 , n = 1, 2, . . . , N, (4.1)

wherec is a physical layer dependent constant given by

c = Γ(1 + α)Γ(1 − α)πθα, (4.2)

with α = 2/b as thestability exponent[4]. Eq. (4.1) is the starting point of the analysis presented in

Section 4.3.

4.2.3 Network metrics

Our metric of interest is the mean end-to-end delayD, i.e., the mean total time (in slots) that it

takes a packet to travel from the source to the destination ina typical route. Ignoring propagation

times,D is the sum of the meanwaiting timesandservice timesalong the queues of the route. The

waiting time at a given node is measured starting from the moment a packet arrives at that node’s

1This implies that the receiver regards all interference as noise and no interference cancellation or multi-user detection

techniques are employed.
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queue, till it becomes the head-of-line packet, i.e., all packets in front of it have been successfully

transmitted to the next node. The service time is measured from the moment a packet reaches the

head of the queue, till it is successfully received by the next node. Mathematically,

D =

N−1∑

n=0

(Qn +Hn), (4.3)

whereQn, Hn stand for mean waiting and service times at noden, respectively. Note that, if the

sources are backlogged, it is only meaningful to talk about end-to-end delay for a packet at the head

of the source queue. Hence, only a mean service timeH0 is defined at the source queue.

In addition to the delay, we are interested in evaluating theRoute Throughput (RT), defined as the

expected number of packets successfully delivered to the destination per slot, over a typical route. At

the network level, a metric of interest is the Network Throughput (NT) [7], defined asNT = λRT.

4.3 Analysis

We begin our analysis by evaluatingD, given the packet success probabilities{pn}. The sec-

ond part and third part of this section are devoted to the evaluation of these probabilities and the

presentation of numerical examples, respectively.

4.3.1 Queueing analysis

The mean waiting and service times at a given node are functions of the packet arrival and depar-

ture probabilities to and from that node. Assume that the sources are backlogged and we are looking

at the queue of the1st relay. A packet arrival occurs at the end of slotmN , with probabilitypI = pp1.

Provided that the queue is not empty, at the beginning of slot1+mN , a packet departs from the head

of the queue with probabilitypO = pRp2. This procedure is repeated afterN slots.

The queue of the relay is modelled as a Random Walk [14, 15], whose state is the number of

packets in the queue at the end of slotmN . The queue is stable only whenpI < pO. Under this

requirement, the transition probability from statek to statek + 1, k ≥ 1, is pI(1 − pO), while it is

pO(1 − pI) from statek + 1 to statek, for k ≥ 0. Since in state0 the queue is empty, the transition

probability from state0 to state1 is simplypI . The steady state probability of being in statek, πk, is

πk =
pI

pO(1 − pI)
· ρk−1 · π0, k ≥ 1, (4.4)

where

π0 = 1 − pI

pO
(4.5)

and

ρ =
pI(1 − pO)

pO(1 − pI)
.

Note that the relay queue is non-empty with probabilitypI/pO.
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The mean waiting time at the1st relay,Q1, can be computed by Little’s theorem, as the average

queue size, excluding the head-of-line packet, divided by the arrival rate [14], in this casepI/N .

Using (4.4), the average queue size is found to be

+∞∑

k=1

(k − 1)πk =
p2

I

pO

1 − pO

pO − pI
,

therefore,

Q1 = N
pI

pO

1 − pO

pO − pI
.

It is also straightforward to show that the service time for the head-of-line packet is

H1 =
N

pO
−N + 1,

so the total time in the queue of the1st relay is

Q1 +H1 = N
pI

pO

1 − pO

pO − pI
+
N

pO
−N + 1

= N
1 − pI

pO − pI
−N + 1. (4.6)

If the queue at the1st relay is stable, i.e.,pp1 < pRp2, the packet arrival probability to the2nd relay

is the probability that the former is not empty, multiplied by pRp2, i.e.

pp1

pRp2
· pRp2 = pp1.

It is clear that, as long as each queue is stable, the packet arrival probability to all relay queues ispp1.

From (4.3) and (4.6),D is computed as

D =
N

pp1
+N

N∑

n=2

1 − pp1

pRpn − pp1
−N(N − 1). (4.7)

If the sources are not backlogged, then, provided that all queues are stable (including the source

queue), the packet arrival probability to all queues ispA [15]. The delay is

D = N
1 − pA

pp1 − pA
+N

N∑

n=2

1 − pA

pRpn − pA
−N(N − 1). (4.8)

The RT can be computed as follows: everyN slots, a packet is received by the final destination

with probabilitypp1 (pA for non-backlogged sources). Hence,

RT =

{
pp1

N , pA = 1
pA

N , pA < 1
. (4.9)
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4.3.2 Evaluation of packet success probabilities

Assume that the network operation starts at some arbitrary time, with an arbitrary number of

packets in each queue. Since transmissions interfere with each other, the evolutions of different

queues are coupled and a study of the network dynamics appears intractable. Similarly to [16], the

symmetry and randomness present in our model allow us to study the network in a stationary regime,

where a packet success at thenth hop of the typical route occurs with probabilitypn, which depends

on the average interference environment, yet it is independent of time and location.

In order to ensure that the length of any queue remains bounded in time, we take a worst-case

interference scenario, where all nodes in the corresponding slot are assumed to have a packet to

transmit, anddemandthat the packet arrival probability is smaller than the resulting lower bound

of the packet departure probability. This is a sufficient condition for the underlying Markov chain

describing the queue occupancy to be positive recurrent [17]. Under this condition, we derive fixed-

point equations that provide solutions for the packet success probabilities.

The following lemmas will be useful in the subsequent analysis and are stated without proof.

Lemma 1. The functionf(x) = xex, x ∈ R, is continuous, with a unique minimumf0 = −e−1 at

xo = −1.

Lemma 2. The equationy = xex, y ∈ [−e−1, 0], has two solutions,x2 ≤ −1 ≤ x1 ≤ 0. The largest

of the two is given byx1 = W (y), whereW (y), y ≥ −e−1, is known as the Lambert function.

We consider the backlogged and non-backlogged source casesseparately.

Backlogged sources

As a starting point, assume thatN = 2 andpR = 1. Recalling (4.1), the success probability in

the1st hop is given by

p1 = e−λ0cr2
1 = e−λpcr2

1 , 0 ≤ r1 ≤ R. (4.10)

As a worst-case interference scenario, consider that, in odd slots, all the relays have non-empty

queues. A lower bound to the success probability on the2nd hop is thereforep′2 = e−λc(R−r1)2 .

A sufficient condition for the stability of the relay queues is

pp1 < p′2

pe−λpcr2
1 < e−λc(R−r1)2 . (4.11)

In the special case wherer1 = 0, i.e., the relay is placed arbitrarily close to the source, (4.11) reduces

to p < e−λcR2
. Also, if p = 1, it is seen that (4.11) holds, if and only ifr1 > R/2, i.e., the relay

is placed closer to the destination than the source. Forr1 > 0 and general values ofp, we have the

following proposition.

Proposition 1. Let ro ∈ [R/2, R] be such that
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λcr2oe
−λc(R−ro)2 = e−1,

with ro , R, if there is no solution to the equation. Then, for anyr1 ∈ (0, ro], (4.11) is satisfied if

p < −W (−λcr21e−λc(R−r1)2)

λcr21
, p(1)(r1), (4.12)

while, for anyr1 ∈ (ro, R], it is satisfied for allp.

Proof. Multiplying both sides of (4.11) by−λcr21, we have

−λcpr21e−λpcr2
1 > −λcr21e−λc(R−r1)2

f(−λcpr21) > −g(r1), (4.13)

whereg(r1) , λcr21e
−λc(R−r1)2 , r1 ∈ [0, R], is a continuous and strictly increasing function ofr1

with a maximum valueg(R) = λcR2. If g(R) ≥ e−1 or, equivalently,R ≥ 1/
√
λce, theng(r1) takes

the valuee−1 for somer1 = ro, i.e.,g(ro) = e−1. The distancero is always greater than or equal to

R/2, a fact that we can prove with the help of Lemma 1:

g(R/2) = λc(R/2)2e−λc(R/2)2 ≤ e−1 = g(ro),

or ro ≥ R/2, with the equality occurring whenR = 2/
√
λc. On the other hand, ifR < 1/

√
λce,

then,g(r1) < e−1 for all r1 ∈ [0, R], in which case we definero = R.

According to Lemma 1, the minimum value off(−λcpr21) is f0 = −e−1. If r1 > ro, then

−g(r1) < −e−1 = f0, so (4.13) holds for anyp. On the other hand, ifr1 ≤ ro or −g(r1) ≥ −e−1,

then, according to Lemma 2, the equationf(−λcpr21) = −g(r1) has two solutionsx1 = −λcp(1)r21

andx2 = −λcp(2)r21, of which the former is obtained by the Lambert function,2 which, when applied

to both sides of (4.13), yields

−λcpr21 > W (−g(r1))

p < −W (−λcr21e−λc(R−r1)2)

λcr21
= p(1)(r1).

Note that (4.13) is satisfied for allp ∈ [0, p(1)) ∪ (p(2),+∞). However, from a practical stand-

point, such as energy consumption, the subset of larger values ofp can be discarded.

For a given relay position, Proposition 1 provides a limit onp, such that the relay queue is guaran-

teed to be stable. However, it does not take into account the fact thatp is a probability, i.e.p ∈ [0, 1].

The following lemma addresses the question whetherp(1)(r1) in (4.12) is greater than unity.

Lemma 3. The functionp(1)(r1) is strictly increasing inr1. If R ∈
(
0, 2√

λc

]
, thenp(1)(R/2) = 1. If

R > 2√
λc

, thenp(1)(r1) < 1, for r1 ∈ (0, ro].

2Note that the two solutions coincide atr1 = ro.
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Proof. Using the propertyW (y)eW (y) = y, p(1)(r1) can be rewritten as

p(1)(r1) = e−λc(R−r1)2−W (−λcr2
1e−λc(R−r1)2 ),

which is strictly increasing inr1, sinceW (y) is strictly increasing iny. Settingp(1)(r1) equal to

unity, we have

W (−λcr21e−λc(R−r1)2) = −λcr21
−λcr21e−λc(R−r1)2 = −λcr21e−λcr2

1

r1 =
R

2
.

By the definition of the Lambert function, the first equality can only be valid whenλcr21 ≤ 1. Since

the equality occurs atr1 = R/2, it can only hold whenR ≤ 2/
√
λc.

On the other hand, ifR > 2/
√
λc, note that

g

(
1√
λc

)
= e−λc(R− 1

λc)
2

< e
−λc

“

1√
λc

”2

= e−1 = g(ro),

or, equivalently,ro > 1/
√
λc. Since the maximum value ofp(1)(r1) is p(1)(ro) = 1/(λcro)

2, it

follows thatp(1)(r1) < 1, for r1 ∈ (0, ro].

Lemma 3 determines the range ofR for which, placing the relay closer to the destination than to

the source is sufficient for the stability of the relay queues, independently of the value ofp.

If (4.11) is satisfied, we are guaranteed thatpp1 is smaller than theactualpacket success proba-

bility in the 2nd hop,p2. According to the queueing analysis in Section 4.3.1, the probability that the

typical relay queue is not empty at the end of an even slot is thenpp1/p2. The density of active relays

at the2nd hop is thereforeλ1 = λpp1/p2. From (4.1), we obtain

p2 = e
−λ

pp1
p2

c(R−r1)2
. (4.14)

This fixed-point equation with respect top2 can also be written in the form

f

(
−λpp1c(R − r1)

2

p2

)
= −λpp1c(R − r1)

2. (4.15)

Lemma 1 dictates that (4.15) has two solutions, as long asλpp1c(R − r1)
2 ≤ e−1. This is obviously

satisfied whenr1 = R. For r1 < R, multiplying both sides byλc(R − r1)
2, it is easy to see that

(4.11) becomes

λpp1c(R − r1)
2 < λc(R − r1)

2e−λc(R−r1)2 ≤ e−1.

Once again, applying the Lambert function to (4.15) gives the desirable solution forp2
3

3It can be verified that the other solution forp2 is decreasing withr1, and therefore is ignored.
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p2 =
−λpp1c(R − r1)

2

W (−λpp1c(R− r1)2)

= eW (−λpp1c(R−r1)2), (4.16)

where we have once more used the propertyW (y)eW (y) = y, to derive the second equality.

If pR < 1, (4.11) is modified as

pe−λpcr2
1 < pRe−λpRc(R−r1)2 . (4.17)

Note that, if (4.17) is satisfied, the packet success probability in the 2nd hop is still given by (4.14).

This is because the probability that a relay is active,pp1/(pRp2) · pR = pp1/p2 - and thus the

interfering relay density - is unchanged. The effect ofpR < 1 on the delay performance is not

apparent;pR appears in the denominator of (4.7), which is potentially detrimental. However, as seen

from (4.17),pR < 1 may also result in a larger range of acceptable values forp, over which the

delay can be minimized. The effect ofpR < 1 on the delay performance is examined via a numerical

example in the next section.

WhenN > 2, sufficient conditions for the stability of all relay queuesare obtained by demanding

thatpp1 is smaller than the worst-case success probability at thenth hop, i.e.,

pe−λpcr2
1 < e−λc(rn−rn−1)2 , n = 2, . . . , N. (4.18)

If these conditions are satisfied, the active relay density at thenth hop isλn−1 = λpp1/pn. This,

together with (4.1), yields

pn = e
−λ

pp1
pn

c(rn−rn−1)2 . (4.19)

Similarly to (4.16), the solution to the above equation is

pn =
−λpp1c(rn − rn−1)

2

W (−λpp1c(rn − rn−1)2)

= eW (−λpp1c(rn−rn−1)2). (4.20)

Since{pn} are decreasing functions of the respective hop lengths{rn − rn−1}, the question is

raised if there is an optimal relay placement, that minimizesD. The following lemma addresses this

issue.

Lemma 4. The mean end-to-end delay in (4.7) is minimized when hops2, 3, . . . , N are equidistant.

Proof. Supposer1, thereforep1, are fixed. Definingh(rn − rn−1) = (pn − pp1)
−1,D is minimized

overrn if h′(rn − rn−1) = h′(rn+1 − rn). Sinceh′(·) is strictly increasing in its argument (the proof

of which we omit), it follows thatrn − rn−1 = rn+1 − rn, for n = 2, . . . , N .
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Non-backlogged sources (pA < 1)

Assume thatp = pR = 1 andN = 2. Assuming again a worst-case interference scenario, where

all sources and relays are active, we have

p′1 = e−λcr2
1

p′2 = e−λc(R−r1)2

Given a relay placementr1 ∈ [0, R], a sufficient condition for stability is

pA < e−λc max{r1,R−r1}2
,

from which it is seen thatpA cannot take values larger thane−λc(R/2)2 . Conversely, for a givenpA,

the acceptable range of relay positions is

R−
√

− log pA

λc
< r1 <

√
− log pA

λc
,

Following the steps of the backlogged source case, the success probabilities in the1st and2nd

hops are given by

p1 =
−λpAcr

2
1

W (−λpAcr21)

p2 =
−λpAc(R − r1)

2

W (−λpAc(R− r1)2)
. (4.21)

The extension of the above results toN > 2 is straightforward. Using the same approach as in

Lemma 4, we can show thatD in (4.8) is minimized whenall hops are equidistant. Finally, similar

observations to the backlogged source case hold for the effect of p, pA < 1 on the delay performance.

4.3.3 Examples

Unless otherwise stated,N = 2, p = pR = 1, λ = 4×10−4 nodes/m2, θ = 6 dB andb = 4. Note

that any choice of parameters that yields the same value forλπR2 (the average number of sources in

a circle centered at the typical source with radiusR) leads to the same numerical results.

We first explore the impact of the number of hops on the performance, for backlogged sources.

In Figs. 4.3 and 4.4, the minimum delay - over all possible relay positions - and the respective NT

are plotted vs.R, for different numbers of hops. We note that there is an optimal number of hops

for eachR which minimizes delay and maximizes NT simultaneously. Moreover, reproducing these

plots for different values of the productλc reveals that the distance between switching points (values

of R for whichN andN + 1 hops yield the same delay) is proportional to1/
√
λc; this agrees with

the intuition that increasing the network density or makingthe SIR constraint tighter requires more

hops in order to minimize the delay, for a givenR. Another observation is that the lower envelope of

the delay curves is approximately linear. A similar conclusion is reached in [18], regarding the time

it takes for a path to form between the source and the destination in a dynamic connectivity network.
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Figure 4.3. D vs.R, for N = 1, 2, . . . , 7 hops and backlogged sources (p = pR = 1). For eachR, D is

minimized over all relay placements.
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Figure 4.4. NT vs.R, forN = 1, 2, . . . , 7 hops and backlogged sources (p = pR = 1).

Enforcing a MAPp at the source andpR at the relay introduces two more parameters over which

the delay can be optimized - see (4.7). In Fig. 4.5, the delay is minimized over various subsets of

{r1, p, pR} and plotted vs.R, for a two-hop network. Note that, jointly optimizing overp andr1,

than simply overr1, yields a benefit forR ≃ 35m. This is also roughly the distance at which three-hop

routing results in smaller delay than two-hop routing whenp = 1 (Fig. 4.3). Moreover, the effect of

optimizing overpR does not become significant except for larger distances. Thedelay for a single-hop

network is also shown for comparison; it is seen that optimizing overp reduces the performance gap

between single-hop and two-hop routing significantly. Alternatively, while the single-hop strategy is

simple from a routing perspective, its delay performance has a high degree of sensitivity to the choice

of p.

Figs. 4.6 and 4.7 demonstrate the sensitivity of a two-hop backlogged network to imperfect

choices ofr1 or p. In Fig. 4.6, the delay is plotted vs.r1, for p = 1. As expected, there exists a

relay placement (r1 ≃ 13 m), for which the success probabilitiesp1 andp2 can be optimally adjusted
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Figure 4.6. D vs.r1 for backlogged sources (N = 2, p = pR = 1,R = 20 m).

to minimize (4.7). Below this critical value, asr1 → R/2, the differencep2 − p1 tends to zero and

the queueing delay becomes infinite. On the other hand, asr1 → R, thenp2 → 1 and the service time

at the sourceH0 dominates the delay performance. Fig. 4.6 indicates that, should it not be possible

to have a relay at the optimal position, it is preferable to select one that lies closer to the destination

than to the source, as the delay penalty is far smaller in the first case.

In Fig. 4.7, we setR = 30 m and plot the delay vs.p for different relay positions. The minimum

delay is achieved forp = 1 andr1 = 17 m. Placing the relay below the half-point atr1 = 9R/20,

imposes a limit on the acceptable values ofp, given by Proposition 1; ifp approaches this limit,

the delay can quickly become worse than that of a single-hop system. Whenr1 = 2R/3 > R/2,

similarly to Fig. 4.6, the delay is quite insensitive to the value ofp.

The non-backlogged source scenario is examined in Figs. 4.8and 4.9. Fig. 4.8 presents the

dependence of the delay onr1, for different arrival probabilitiespA. The minimum delay, irrespective

of pA, is achieved atr1 = R/2, as predicted in Section 4.3.2. It is also intuitive that, asthe traffic load
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R = 20 m).

increases, the delay becomes more sensitive to relay positions away from the half point. In Fig. 4.9,

we obtain the number of hops that minimizes the delay, as a function ofR. The curve marked as100%

shows the number of hops that maximizes the minimum RT value that renders the queues unstable.

Each of the other curves shows the optimal hop count for a given RT requirement, as a percentage

of this maximizing value. We observe that, for a givenR, a smaller number of hops is required to

minimize the delay as the throughput requirement is relaxed.

4.4 Simulation Results

A network simulator was constructed in MATLAB, in order to verify our analytical results. A

number of routes were scattered uniformly over a1800 × 1800 m2 square. In order to minimize the

impact of edge effects, metrics were collected only for the routes whose source was situated inside

an inner square of side1000m. In every slot, the positions of the sources in the inner square and the
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p = pR = 1).
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Figure 4.10. Comparison of theoretical and simulated packet success probabilities for a two-hop network

and backlogged sources (pR = 1, r1 = 0.6R).

outer square annulus, as well as the orientation of their destinations, were randomly generated. This

mimicked the assumption of a new network realization in every slot, while allowing us to keep track of

the queue evolutions of the inner routes and compute the stationary packet success probabilities. The

simulator was run for a sufficient number of slots to guarantee adequate statistical confidence (99%

confidence intervals are shown) and the main parameter values wereλ = 4×10−4, θ = 6 dB, b = 4.

Figs. 4.10 and 4.11 show the packet success probabilities for a two-hop and a three-hop network,

respectively, as functions ofR. The sources are backlogged and the relay distances from thesource

are fixed fractions ofR. It can be seen that the simulation results and the theoretical ones, given by

(4.16) and (4.20), are in good agreement. Fig. 4.11 also implicitly verifies the fact that, under stable

operation, the arrival rate to the second relay isp1.

Fig. 4.12 shows simulation results for the packet success probabilities in a two-hop network with

non-backlogged sources whenr1 andp (= pR) are varied, to confirm the theoretical results given by

(4.21). Note that, as stated in Section 4.3.2, the simulatedp1 andp2 do not depend on the value ofp,
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Figure 4.11. Comparison of theoretical and simulated packet success probabilities for a three-hop network

and backlogged sources (p = pR = 1, r1 = 0.45R, r2 = 0.8R).
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Figure 4.12. Comparison of theoretical and simulated success probabilities for a two-hop network and

non-backlogged sources (pA = 0.3,R = 20 m).

norpR, under stable operation.

Some more comments are in order regarding our analytical framework. In Section 4.2, we as-

sumed that the network is completely rearranged at the beginning of every slot. This is a strong

assumption in terms of node mobility, as, in most practical networks, nodes remain rather stationary

over several packet slots. However, even in a static or slow-mobility network, enforcing a MAP on

the sources and relays can emulate node mobility at the slot level, since, effectively, different subsets

of nodes are active in each slot. In Fig. 4.13, we explore the validity of this claim by plotting the av-

erage success probabilities in the1st and2nd hops over manystaticnetwork topologies, for different

values ofp = pR. For smallp, the degree of randomization is such that the simulation results agree

with p1 andp2 given by (4.10) and (4.16). Asp increases, the interference levels in the1st and2nd

hops become more correlated, so, if a packet transmission issuccessful in the1st hop, it is likely that

that will be the case in the2nd hop. As a result, (4.16) provides a pessimistic estimate of the actual
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Figure 4.13. Simulated packet success probabilities for a static two-hop network and backlogged sources

(R = 20m,r1 = 12m). The theoretical values correspond to the system model described in Section 4.2.

success probability in the2nd hop.

Finally, the stability conditions in Section 4.3.2 are sufficient but not necessary; consequently,

the delay given by (4.7) or (4.8) is not necessarily infinite when these conditions are violated. It can

be verified, e.g., that in the two-hop, backlogged,p = 1 scenario, there exists anǫ > 0, such that

p2, given by (4.16), is greater thanp1 at r1 = R/2 − ǫ, provided thatR > 2/
√
λc. We simulated

this scenario and observed the time-traces of a set of randomly picked relay queues. It appears that

the queue evolutions depend on the initial conditions, e.g., if a large enough fraction of nodes have

non-empty queues at the beginning of the simulation, the interference level in the network is such

that transmissions in the second hop are mostly unsuccessful. This creates a positive feedback effect,

i.e., more interference, and, after some time, the size of all the observed queues grows with time. In

this regime, all the relays are backlogged andp2 = e−λc(R−r1)2 < p1. Note that these simulation

results serve to illustrate some trends in the network behavior and are in no way conclusive in terms

of stability, when the conditions in Section 4.3.2 are not satisfied. In the absence of a framework

to characterize the network dynamics, taking a worst-case interference scenario is a conservative

approach, that nevertheless guarantees network stability.

4.5 Chapter Conclusions

We have conducted a study of random interference-limited multi-hop networks, using tools from

basic queueing theory and stochastic geometry. The mean end-to-end delay and throughput in a

typical route were evaluated as functions of physical and MAC layer parameters. In summary:

• The number of relays and their placements were determined such that the delay is minimized,

for a given distance to the final destination. Interestingly, the number of hops that minimizes

the delay also maximizes the throughput.

• The MAP that must be enforced on backlogged sources, such that the delay remains finite,
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irrespective of the relay placement, was characterized. Itwas shown that the closer the relay is

placed to the source in a two-hop network, the smaller the acceptable range of values that the

MAP can take, such that the delay is bounded.

• The delay can be very sensitive to the relay placement depending, e.g., on the traffic load. This

observation has implications in terms of routing protocols, i.e., selecting a relay from a random

node population in a practical network.

The focus of this Chapter has been to develop a tractable analytical network model and verifying

its results via simulation. Extending the model in order to accomodate more practical scenarios, e.g.,

asynchronous flows, random final destination distances and random relay populations, is an important

area of current research by the authors. Network simulations that accomodate these scenarios are also

being set up. Our preliminary results seem to indicate that the design insights obtained by our analysis

are valid in more general settings.
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Chapter 5
Conclusions

The main theme of this thesis has been how the interactions between physical and MAC/routing

layer affect protocol design. Such a question has been investigated in a variety of contexts, and the

foremost lesson has been that physical layer and MAC/routing protocols should not be disjointly

designed. This does not necessarily mean that there must be couplings in terms of cross-layer design,

but the choice of the physical layer greatly affects the MAC and viceversa.

In MIMO networks, it has been shown that suitable space time coding can provide range extension

comparable to beamforming but at a fraction of the delay, an essential matter for broadcast packets.

Moreover, MIMO signal processing is extremely useful to make Network Coding (a layer 2/3 tech-

nique) more efficient in the wireless environment and generate very powerful cooperative protocols,

which reward nodes for their cooperative behavior.

As far as carrier sense is concerned, a special busy channel detection mechanism must be devised

for MIMO in order to exploit its potential spatial reuse. Theresults have shown that realistic MIMO

carrier sense mechanism can reap most of the available spatial degrees of freedom. On the other

hand, for single antenna networks we have designed algorithms and analytical models to compute the

optimal carrier sense threshold in a variety of environments. Finally, these models have led to the

creation of a low complexity, high performance scheduler for mesh networks.

The third chapter has shown how physical layer modelling is not at crossroads with protocol

modelling and it can also yield important design insights. Chapter 4 has presented a framework to

analyze a wide class of wireless networks of different networks, and it explicitly computes the end-

to-end performance of the network. The dependence of the results on many physical layer parameters

is made explicit and simple yet insightful relationships between PHY, MAC and routing metrics have

been observed.
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Appendix A
Complete List of Papers

This Appendix presents a complete list of papers published,accepted or submitted during the

Ph.D. program. For convenience, the papers are grouped according to their main topic.

A.1 Papers on MIMO signal processing

The work in [1] analyses how specially crafted space time coding can bridge the gap with beam-

forming in terms of BER for broadcast traffic. The second partin [2] focuses on network performance,

while the journal version [3] performs a synthesis of the twoand adds new results.

On the other hand, MIMONC has been first introduced in [4], together with the resultson the

diversity order for NC and MIMONC. Super MIMONC is proposed as a way to get around this

problem in [5] and a study of the sensitivity of these methodsto channel estimation errors is reported

in [6]. A more mature contribution is [7], which joins [4] and[5], and proposes extensions and new

results.

Phoenix has been defined in [8], together with the analyticalmodel. On the other hand, [9] has

carried out extensive performance evaluation for clustered networks and [10].

Finally, a review of hybrid cooperative-network coding protocols has been carried out in [11].

A.2 Papers on carrier sense

The study of MIMO carrier sense has been the focus of the collaboration with the master student

Emanuele Coviello, and the gist of it is presented in [12].

On the other hand, work on static and dynamic network optimization is carried out in [13] and

[14], respectively. Finally, the mesh scheduler based on the model in [13] is exposed in [15].
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A.3 Papers on stochastic geometry and other topics

The submitted paper [16] deals with stochastic geomertry and its uses for wireless networks anal-

ysis. The papers [17,18] stem from Andrea Munari’s Master Thesis on directional antennas. Finally,

the article [19] is the product of an internship in Ericsson on cellular networks.
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