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Abstract

Some possible interactions between the hydrological, geomorphological, and ecological
features and processes have been studied here at different spatial scales and resolutions
in ecosystems. The ecohydrological framework is to perform an interdisciplinary research
to detect with essential models the broad and complex patterns in biological, ecology,
geomorphology and hydrology of river basins, in which water plays a key role.

Starting from the evidence of the invariance and universality of some geomorpho-
logical patterns in river basins, such as the drainage area and the Hack‘s lengths, the
distribution of the distances between tributaries along the mainstream has been stud-
ied using digital terrain maps of real basins, that is directly related to the availability
of water and of the channel and riparian area. Specifically it has been found that the
probability of exceedence of of the alongstream distances of tributaries larger than a
given threshold, has an exponential form in function of the boundary conditions and the
Hurst exponent of the basin. Also theoretical constructs have been used such as optimal
channel networks, Peano and Scheidegger networks at different growth stages, deriving
exact analytical expressions for the probability of the distances between subbasins on a
rectilinear mainstrem. The concepts of scale as extension, resolution and coarse-graining
level have been introduced in order to study the properties of patterns resulting from
ecological and geomorphological processes when varying these quantities.

Biodiversity patterns have been extensively simulated using two principal dispersal
mechanisms with a neutral metacommunity model. The mechanism with exponential
kernel dispersal and the mechanism with exponential plus a power-law kernel dispersal
that ensures a long-distance dispersal to the species. Because the neutrality hypothesis
all the individuals compete equivalently in the speciation and dispersal dynamics. The
dependence on the scale, resolution and coarse-graining at which the ecosystem is sim-
ulated has been investigated for different biodiversity indicators, such as the local and
regional species richness, the similarity in species richness between local communities,
the species-area relationship and the probability distribution of cluster-size of conspe-
cific individuals. Also empirical patterns of fishes and trees (with two classes of diameter
resembling two distinct life-stages) of the Mississippi-Missouri River System have been
analysed. The model is able to describe the probability distribution of the cluster-size
further other patterns as already evidenced by previous studies. The influence of the
topology of the ecosystem (2-D landscape and river network), of the shape, and of the en-
vironmental heterogeneities, have been analysed in detail. In general all the biodiversity
patterns result dependent on the scale and on the resolution. Therefore the species-area
relationship results invariant across coarse-graining levels.
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Abstract

The macroecological description of the spatial distribution of the species results re-
produced by the neutral model optimally. An interesting relationship has been found
between the exponent of the species-area relationship and the exponent of the power-law
of the cluster-size for different topologies and dispersal cases. The exogenous (immigra-
tion and environmental variables) and endogenous factors (speciation and topology) have
been disentangled in order to determine their contribution in the spatial patterns of fish
and vegetation. The speciation-death and dispersal phenomena are the determinants in
the clustering process without any need to include positive feedbacks between species in
order to reproduce the spatial patterns. The environmental heterogeneities, for example
dictated by the climate influence the structure of the power-law of the cluster-size of
species only in conditions of dispersal limitation and saturation of the local communi-
ties. It has been put emphasis also on the species-individual relationship as a tool to
better forecast the effect of climate change than the species-area curve, and to possible
allometric relationships between the dispersal parameter and some species traits such
has mass and lifespan. The relationship between the exponent of the species-area and
the lifespan of species is in agreement with what found in literature.

The interactions between the geomorphic structure of ecosystems and the processes
acting on them at different scale are of fundamental importance in the management
of ecological and water resources. This is the reason why it is extremely important to
understand the scale at which the relevant processes take place. It has been evidenced
clearly the striking features of the geomorphic supports and external drivers on ecological
and biological processes than on the hydrologic dynamics.

Keywords: biodiversity patterns, ecohydrology, scales, river basins, dispersal, neu-
trality, metacommunity, landscape ecology, geomorphology.
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Sommario

Questa tesi tratta dello studio dei controlli idrologici e geomorfologici sulle caratteristiche
e processi ecologici in ecosistemi fluviali. L’ inquadramento ecoidrologico qui perseguito
definisce un approcio interdisciplinare con lo scopo di modellare vasti e complessi patterns
biotici and abiotici nei quali l’ acqua gioca un formante ruolo chiave.

Partendo dall’ evidenza dell’ invarianza di alcune proprietà di patterns geomorfologici
dei bacini fluviali, la tesi prima tratta della distribuzione delle distanze tra sottobacini
lungo il corso d’ acqua principale. Questa é una caratteristica importante per i processi
ecologici perchè controlla lo sviluppo spaziale della capacità dell’ habitat locale di ospitare
individui delle specie, ed é stata studiata usando mappe digitali del terreno di bacini
fluviali. La relativa disponibilità di acqua e l’ area di canale e ripariale sono allo stesso
modo investigate. Specificatamente é stato trovato che la probabilità di eccedenza delle
distanze lungo il canale principale tra affluenti (maggiori di una data soglia) ha una
forma esponenziale legata al vincolo geomorfico. Costrutti teorici sono stati usati allo
stesso scopo, come le reti ottime di canali, le reti di Peano e Scheidegger, derivando
espressioni analitiche esatte per caratteristiche geomorfiche rilevanti.

Patterns di biodiversità sono stati estensivamente studiati con simulazioni numeriche,
con diverse textures ambientali definite dall’ ambiente fluviale, e usando due principali
meccanismi di dispersione in un modello neutrale a metcommunità. L’ ipotesi di neu-
tralità postula che tutti gli individui competono equivalentemente nelle dinamiche di
speciazione e dispersione. Un meccanismo é con un kernel esponenziale che descrive
certe caratteristiche ecologiche di interesse caratterizzate da una scala spaziale, mentre
un’ altro meccanismo é impiegando un kernel con dispersione a legge di potenza il quale
assicura dispersioni a lunga distanza alle specie. É stata analizzata la dipendenza dalla
scala, risoluzione e raffinamento del modello a cui l’ ecosistema é simulato, di svariati
indicatori di biodiversità, come la ricchezza locale e regionale di specie, la similarità in
specie tra comunità locali nell’ ecosistema, la relazione specie-area e la distribuzione di
probabilità della dimensione dei cluster di individui conspecifici.

Patterns empirici di pesci e alberi del sistema fluviale del Mississippi-Missouri sono
stati analizzati. Proprie simulazioni provano essere capaci di descrivere parecchi patterns
biotici osservati, includendo la distribuzione di probabilità della dimensione dei clusters
delle specie. Le influenze della topologia dell’ ecosistema (paesaggio 2-D e rete fluviale
1-D), della forma, e delle disomogeneità ambientali, sono state analizzate in dettaglio.
É stato trovato che in generale i patterns di biodiversità sono dipendenti dalla scale e
risoluzione.

La tesi anche tratta della descrizione macroecologica della distribuzione spaziale delle
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Sommario

specie prodotta dal modello neutrale. É suggerito come l’ esponente della rilevante re-
lazione specie-area e l’ esponente della legge a potenza della dimensione dei clusters sono
relazionati per diverse topologie e scenari di dispersione. I fattori esogeni (immigrazione
e variabili ambientali) ed endogeni (speciazione e topologia) sono stati studiati sepa-
ratamente per determinare il loro contributo mutuo e individuale nella generazione dei
patterns spaziali di pesci e vegetazione. I fenomeni di speciazione-morte e dispersione
sono suggeriti essere i determinanti nel processo di clusterizzazione senza nessun bisogno
di includere feedback positivi tra le specie. Le eterogeneità ambientali, ad esempio det-
tate dal clima influenzano sulla struttura a legge di potenza dei cluster delle specie solo
in condizioni di dispersione limitata o di saturazione delle comunità locali. Relazioni
specie-individui sono studiate come strumento per meglio predire l’ effetto del cambia-
mento climatico, e possibilmente per inferire relazioni allometriche tra il parametro di
dispersione e i tratti fisiologici delle specie come la massa e la durata di vita.

In conclusione le interazioni tra la struttura geomorfica degli ecosistemi e i processi
che avvengono in essi a diverse scale sono di fondamentale importanza nel organizzazione
e tutela delle risorse ecologiche e idrologiche. La tesi evidenzia il ruolo cruciale dei
supporti geomorfologici e dei drivers esterni sui processi ecologici e biologici che sono
controllati da dinamiche idrologiche.

Parole chiave: patterns di biodiversità, ecoidrologia, scale, bacini fluviali, dispersione,
neutralità, metacomunità , ecologia del paesaggio, geomorfologia.
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Chapter 1

Introduction

“The most beautiful thing we can experience is the mysterious. It is the source of all
true art and all science. He to whom this emotion is a stranger, who can no longer

pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed”
Albert Einstein

This thesis studies the interactions between hydrologic and ecological processes in
river network ecosystems. Aiming at extending recent studies at the interface of hydrol-
ogy, geomorphology and ecology under an integrated framework of analysis (Muneepeer-
akul et al., 2008; Azaele et al., 2009; Bertuzzo et al., 2009; Konar et al., 2009; Rodriguez-
Iturbe et al., 2009), the thesis addresses specific and related topics, ranging from biodi-
versity of freshwater fish in river networks to the distribution of riparian and not riparian
vegetation, joined by the common thread of the study of the dynamics of hydrologically-
controlled riparian ecosystems (Camporeale and Ridolfi , 2006) (and references therein).

The geomorphological environment where fluvial ecosystems thrive proves rather im-
portant. In fact, dendritic geometries abound in nature, covering a vast range of scales
(Ball , 1999). Dendritic environments are observed in living and non-living systems, in
networks of metabolic supply like in pulmonary systems, as well as in trails of foraging
ants, plants, caves, and bird migration routes (Solé and Goodwin, 2002). River networks
(Rodriguez-Iturbe and Rinaldo, 1997) produce scale-invariant structure from the scale of
a few meters to thousands of kilometers, where what strikes is the apparent diversity
of Nature’s ways, and yet the deep symmetries one may reveal and expose. Indeed,
countless processes essential to sustain human life and societies take place along den-
dritic structures, like metabolic networks (West et al., 1999) or migratory patterns of
birds (Ostling , 2005), a combination of innate cues and spatial memory (Garber , 1989;
Real , 1994; Burns and Thomson, 2006). Other patterns are also dictated by dendritic
pathways, like for instance human settlements that historically proceeded along river net-
works to follow the necessary water resources (Ammerman and Cavalli-Sforza, 1984a;
Campos et al., 2006).

Indeed, riparian ecosystems positioned along streams and rivers are shaped by den-
dritic networks. Their role is vital in their respective watersheds (Perona et al., 2009),
including nutrient filtering and biogeochemical processing (Lowrance et al., 1984; Peter-
john and Correll , 1984; Malanson, 1993; McClain, 2003), shade and resource provision-
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ing, and stream bank stabilization (Gregory et al., 1991; Malanson, 1993; Naiman and
Décamps, 1997). The spreading of water-borne diseases, such as cholera, occurs through
water bodies linked by dendritic river networks whose features dominate the traveling
fronts of the incipient outbreaks (Bertuzzo et al., 2007).

The related dynamics have been previously studied extensively. However, previ-
ous studies were mostly confined within the framework of so-called mean-field or two-
dimensional (2D) landscapes. This thesis will provide original insight into the role of the
morphological and hydrological factors that characterize the fluvial ecosystems. River
networks are perhaps the most widely appreciated instances of dendritic geometry in na-
ture. They form complex landscapes characterized by well-studied scaling laws and deep
symmetries that are shaped by climate, hydrology, geology, geomorphology, biology, and
ecology (Rodriguez-Iturbe and Rinaldo, 1997). River networks and the associated trans-
port processes provide a natural integrating framework for the hydrologic, ecologic, and
geomorphologic dynamics that take place in the river basin and its varied ecosystems.
The profound commonalities existing among all types of river basins and their drainage
networks, together with the key role that the embedded dendritic constraints operating
on the dynamics, allow for the establishment of key, general signatures whose statistical
characterization is studied in this work.

The above basic issue has been addressed in the literature of epidemiology, hydro-
chory, ecology, and geography. However, most of the models that describe the relevant
processes do not consider space in an explicit manner. Stochastic space-time evolution
of living communities in explicitly spatial landscapes is a relatively new subject (see e.g.,
Tilman and Kareiva, 1997). Among the foremost of the mechanisms relevant to the
spatial dynamics are the very configuration of local communities imposed by the river
networks and the anisotropy in the spreading of species, pathogens, or other agents of
interest along the waterways (Campos et al., 2006; Bertuzzo et al., 2007; Muneepeer-
akul et al., 2007b). Such anisotropy proves essential. Even without any anisotropy,
the network configuration per se exerts crucial effects on the spatial dynamics and pat-
terns of the ecological processes occurring in the fluvial system (Muneepeerakul et al.,
2008). Hydrologic controls accompanying river basins play central roles in the spread-
ing of species, water-borne disease, or populations in several other ways. For instance,
they dictate the spatial distribution of streamflow rates and velocity, which regulate
the amount of resources available for biotic and abiotic processes, thus resulting in the
sustainable community sizes, as well as the severity of disturbances required to disrupt
them. The combined effects of all these mechanisms are studied in that they give rise
to interesting dynamics and patterns. Morphological constraints provided by the river
basin are also vital, such as the features of the distances among subsequent tributaries,
a subject studied in detail in this thesis.

It is also necessary to explore the consequences of external forcing on the dynamics
of complex systems operating in dendritic networks. Precipitation events, and thus
river flows, flooding, and other hydrologic disturbances are stochastic and seasonal
(Rodŕıguez-Iturbe and Porporato, 2005). Due to external forcings, connectivity among
stream reaches, the spatial subunits of river basins, changes over time and space. To
investigate how external forcing alters the properties relevant to ecosystem dynamics,
this thesis reexamines the dynamics and patterns of the biodiversity and disease systems
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with transient connectivity. Transient connectivity is a feature investigated in spatial
ecological models only recently.

In this thesis novel analysis are presented following the path of a few recent studies
(Muneepeerakul et al., 2008; Azaele et al., 2009; Bertuzzo et al., 2009; Konar et al., 2009;
Rodriguez-Iturbe et al., 2009). Metacommunity models (as a set of local communities
that are linked by dispersal of multiple potentially interacting species (Giplin and Han-
ski , 1991; Wilson, 1992; Leibold , 2004; Economo and T.H., 2007)) are employed both for
fishes and vegetation under the main hypothesis of neutrality (Hubbell , 2001). The envi-
ronmental heterogeneity, e.g. the average annual precipitation, determines the number of
individuals in each local community, while the structure of the dispersal determines how
species spread in the ecosystems. The neutral assumption postulates that all individual
organisms of the species are competitively equivalent. A main aim of the thesis deals
with the exploration of the joint role of ecological neutrality and of the geomorphological
support on the processes and dynamics operating on ecosystems. Insights provided here
will lend themselves to issues of great practical importance such as integration of forest
and fishes into large-scale resource management, and spatial conservation strategies.

A few preliminary definitions are in order. Broadly speaking, biodiversity refers to
the extent of genetic, taxonomic and ecological diversity over all spatial and temporal
scales (Harper and Hawksworth, 1994). In this thesis we focus on the ecological diversity
over spatial scales, by assuming the stationary state of the relevant dynamical processes.
Here we the scale of ecological patterns is considered with great care. Patterns in river
basins are examined at different scales, resolution and coarse-graining level. As for the
range covered, it is important to detect if a statistical similarity exists between the
whole basins and all the subbasins (Rodriguez-Iturbe and Rinaldo, 1997). Scaling is an
essential tool for it allows to extrapolate the behavior of each component since it is the
same of the whole. As per the suitable resolution, it is fundamental to understand if the
variables used to characterize the patterns vary in function of the quality of the available
data. From a modeling viewpoint, it is also important to frame properly whether what is
actually simulated reflects reality in a satisfactory manner at every level of resolution. A
key issue in biodiversity, in fact, is to simulate the impact of artificial or natural changes
and their effects. On one side it is essential to reduce the computational effort, while on
the other it is necessary to provide reliable predictions.

Concept of scales are relevant to every ecosystem, whether fragmented by a network
or comprised of a savanna ecosystem. A remarkable number of studies in ecology exists,
especially for birds and vegetation, that treat the issue of patterns and processes at
different scales also in relation to the geomorphology of the ecosystem in study (Wiens,
1989; He et al., 1994; Condit et al., 2000; Gaston, 2000; Wu, 2004; Crawley and Harral ,
2001; Gotelli , 2002; Harte et al., 2005; Rahbek , 2005; Storch et al., 2007; Nogués-Bravo
et al., 2008; Storch et al., 2008). The study has been done in the view of ecohydrology as
a challenging multidisciplinary field (Porporato and Rodriguez-Iturbe, 2002), combining
here ecology and geomorphology of ecosystems.

A few relevant questions about biodiversity patterns in this context are the following:

• How does landscape heterogeneity affect biodiversity patterns and processes?

• How does biodiversity relate to ecosystem function at different spatial scales?
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• How do changes in land use and cover affect ecological processes?

• How can ecological information be transferred from small to large scales, and vice
versa?

The research presented in this thesis concentrates on pinpointing geomorphological
and hydrological controls on biodiversity patterns. The physical grounds and the effects
of relevant ecological parameters in modelling ecological patterns are studied as well.
The chosen analysis follows a distinguished path of studies searching for general scaling
laws interpreting ecological processes (Banavar et al., 1999; Harte et al., 1999; Ritchie
and Olff , 1999).

The study was first concentrated on the detection of novel scaling laws in river basins,
particularly in the distribution of the distances within tributaries in river basins (Con-
vertino et al., 2007). The properties of the real river networks studied were tested against
the properties of artificial river networks like Optimal Channel Networks (Rinaldo et al.,
1992; Rodŕıguez-Iturbe et al., 1992; Rinaldo et al., 1993; Rigon et al., 1996; Rodriguez-
Iturbe and Rinaldo, 1997), Peano and Scheidegger constructions, deriving for the latters
exact results. The distance between tributaries is of fundamental importance since it
is a proxy of the availability of water (and thus species’ habitat) that affects riparian
vegetation and the transport of species along the network.

The model employed for generating biodiversity patterns is a metacommunity model
(Giplin and Hanski , 1991; Wilson, 1992; Leibold , 2004; Economo and T.H., 2007). Note
that neutrality is a concept that was introduced at the level of genes by Kimura and
Crow (1964). It is quite interesting to see how neutrality can be a simple but powerful
assumption to describe how nature works in some cases to upscale species properties
from the individual to regions (Vandewoestijne et al., 2004; Bangert et al., 2008).

The study of species clustering in this context addresses the spatial distribution of
species. Most importantly, the datasets used to test the models, in particular clustering
schemes, refer to fishes (Oberdorff et al., 1995; Angermeier and Winston, 1998; Guégan
et al., 1998; Xenopoulos and Lodge, 2006) and big-trees of the Mississippi-Missouri River
System, first used by Muneepeerakul et al. (2008) and Konar et al. (2009) respectively.
Also used here are the datasets of small trees employed to test the different spatial
aggregation of trees at different life-stages Plotkin et al. (2000, 2002) and Condit et al.
(1996). As for the case of the trees, the simultaneous fitting of biodiversity patterns is
not the subject of this thesis as it is pursued elsewhere Konar et al. (2009).

The cluster process is also studied to possibly probe the dynamic origins of the power-
law distribution that one would presume to observe for cluster sizes. Previous attempts
exist in the literature Garcia-Martin and Goldenfeld (2006). Clustering of species oc-
curs in many different ecosystems from coral reefs to forests, also at microscales (Houch-
mandzadeh, 2008). In this thesis we address whether power-law shapes of cluster-sizes
exist, as well as the scale-invariance properties of biodiversity patterns from models and
data. In order to understand the clustering the various determinants of the ecologi-
cal patterns (i.e. environmental heterogeneity, neutral ecological drift, dispersal kernel
structure, and topology of the ecosystem) have been disentangled. Then, biodiversity
patterns have been analysed under several assumptions by: assuming a constant the
number of individuals in each local community; varying the dispersal parameter on a
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wide rage of values; changing the topology of the system; combining the the determi-
nant factors (such as the dispersal kernel). Borgono et al. (2009) presents an extensive
overview of mathematical models, also not kernel-dispersal based, addressing vegetation
pattern formation.

Also another well-know pattern in ecology, the species-area relationship (Arrhenius,
1921; MacArthur and Wilson, 1963; Condit et al., 1996; Connor et al., 2000; Hubbell ,
2001; MacArthur and Wilson, 2001; Horner-Devine et al., 2004; Garcia-Martin and Gold-
enfeld , 2006; Lewis, 2006; Guilhaumon et al., 2008; Pigolotti and Cencini , 2009; Rosindell
and Cornell , 2009) has been analysed by studying it as a function of the determinants
mentioned above. Clear but not trivial relationships between the slope of the species-
area relationship and the scaling exponent of the power-law of the cluster-size seem to
exist. The species-individual relationship has also been investigated as a pattern to bet-
ter detect the environmental variation and changes that determine modifications in the
abundance pattern. One possible issue, especially for large systems characterized by
strong environmental heterogeneities, deals with populations densities (or abundance)
and their correlation with area, possibly facing equilibrium theories of island biogeogra-
phy (MacArthur and Wilson, 1963; MacArthur and Wilson, 2001).

Classic niche-based environmental controls and models foresee that species distri-
butions are affected by dispersal, by the topology and by the shape of the ecosystem.
As significant descriptor of the ecosystem, an important feature proves the geometrical
diameter defined as the mean path between all the possible reachable sites (Convertino
et al., 2009). It measures the mean degree of connectivity within the whole network.
Indeed, local dispersal plays a fundamental role in many processes and for a networked
environment it crucially depends on local diameters (Rodriguez-Iturbe et al., 2009).

Dispersal is a life-history trait that has profound consequences for populations.
Viewed from an ecological perspective, dispersal influences the dynamics and persistence
of populations, the distribution and abundance of species, and community structure.
From an evolutionary perspective, dispersal determines the level of gene flow between
populations and affects processes such as local adaptation, speciation and the evolu-
tion of life-history traits (Dieckmann et al., 1998). In fact, it is difficult to imagine any
ecological or evolutionary problem that would not be affected by dispersal.

The various consequences of dispersal are extensively discussed in the ecological,
biological, zoological, and evolutionary literature (the Science Citation Index gave more
than 1000 occurrences of dispersal in the abstract or title of papers for the year 2009
alone). Surprisingly, however, the question on why particular dispersal strategies evolve
has received much less attention (Dieckmann et al., 1998; Bullock et al., 2002). One issue
is that it is notoriously difficult to test dispersal theories verified in the field (Ims and
Andreassen, 2005). There exists a serious gap between theory and data, and consequently
our understanding of why particular organisms disperse in specific ways is still limited
(Dieckmann et al., 1998).

Moreover, research about biodiversity is of fundamental importance both theoreti-
cally to understand how species evolve, but also for their conservation. Not least it is of
great importance to understand at which scales sampling campaigns should be performed
and at which of them to act (Edmunds and Bruno, 1996; Bissonette, 1997; Girdler and
Barrie, 2008). Human actions, motivated by social and economic driving forces, gen-
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erate various pressures on biodiversity, such as habitat loss and fragmentation, climate
change, land use related disturbance patterns, or species invasions that have an impact
on biodiversity from the genetic to the ecosystem level (Bangert et al., 2008). Each of
these factors acts at characteristic scales, and the scales of social and economic demands,
of environmental pressures, of biodiversity impacts, of scientific analysis, and of govern-
mental responses do not necessarily match. However, management of the living world
will be effective only if we understand how problems and solutions change with scale
(SFPRTD-EU , 2009). To this end as well the aims of this thesis are deemed relevant.

Finally, using data from the literature (Crocker , 1938; Gilbert and Singer , 1975; Ed-
wards and Bohlen, 1977; Stoeckel et al., 1997; Nathan et al., 2001, 2002a; Stenzel et al.,
2007; Houchmandzadeh, 2008; Nathan et al., 2008b; Blake et al., 2009; Pigolotti and
Cencini , 2009; Schurr et al., 2009), allometric relationships (Nee et al., 1991; Schmid
et al., 2000; Sutherland et al., 2000; Burness et al., 2001; Bowman et al., 2002; Marba
et al., 2007; White et al., 2007; Savage et al., 2008) are studied between the mean disper-
sal length of different taxa whose body size spans over seven orders of magnitude. The
large range of dispersal lengths suggested by appropriate simulations, described in the
thesis, require some speculation, possibly to relate long distance dispersals to the size of
the species and of the ecosystem analyzed. Overall, in fact, it has been suggested that
species tend to maximize their ability to disperse by evolving strategies maximizing their
colonization and survivability (Davies et al., 2004; Pearson and Dawson, 2004; Bohrer
et al., 2005; Soons and Ozinga, 2005; Nathan, 2006). Also an interesting perspective
lies in previous effort to link global biodiversity patterns to evolutionary dynamics using
metabolic theory (Gillooly and Allen, 2007).

The thesis is organized as follows:

• Chapter 2, describes the fishes and small/big-trees datasets used for comparative
analysis with modeling results, one of the cores of the research. It should be noted
that fish and big tree data were collected and originally analysed in Muneepeerakul
et al. (2008) and Konar et al. (2009) respectively;

• Chapter 3, describes in detail the models used;

• Chapter 4, describes in details the numerical results about the coarse-graining
dependence and invariance of some fundamental biodiversity patterns;

• Chapter 5, discusses the spatial clustering of individuals in function of the topol-
ogy of the ecosystem, the environmental heterogeneities, and the parameters of
the model. It has given particular importance to the cluster-size distribution of
conspecific species (fishes and small/big trees) and to the species-area relationship;

• Chapter 6, presents the results about the probabilistic description of the distances
between tributaries in river basin ecosystems and also in artificial networks pro-
viding in the latter cases exact solutions;

• Chapter 7, concludes the thesis with a brief presentation of the original contribu-
tions of the thesis and some perspectives for future research;
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• Appendix A reports additional simulations of biodiversity patterns for a river basin
with a fat-tail dispersal kernel and high speciation rate;

• Appendix B includes additional results about the probabilistic description of the
distances between tributaries for the Scheidegger network at different growth stages.

The publications produced for peer-reviewed international journals during the doctor-
ate program are reported in C. The present thesis in color is available at the University
of Padova electronic archive “Padua@Research” (http://paduaresearch.cab.unipd.it/).
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Chapter 2

Data

“The goal is to transform data into information, and information into insight”
Carly Fiorina

This Chapter reviews and organizes the data used for comparative purposes within
the present thesis. Section 2.1 describes the main geomorphological properties of the
networks employed in the research. Section 2.2 describes the datasets on fishes and trees
of the Mississippi Missouri River System (in the following for brevity MMRS).

2.1 Geomorphology of the River Basins employed

In this thesis several different basins around the world have been analyzed. Here we
give an overview of their foremost features. Further details are given in the chapters
reporting the studies performed on them (chapters 4, 5, and 6).

The italian basins employed, depicted in Figure 2.1, are: a) a portion of the Tanaro
river basin (Po basin, Piedmont region, Northern Italy, DTM 178 × 296 pixels) closed
at Garessio at an area of about 530 km2 and mean elevation of 1382 m a.m.s.l.; b) the
Mis river basin, closed at Mis, and the Cordevole basin, closed at Sospirolo, are nested
subbasins (Piave basin, Veneto region, Northern Italy) suitably extracted from the rel-
evant DTM (255 × 271 pixels), the former with extension of about 218 km2 (126 × 173
pixels) and the latter of about 691 km2 with mean elevation of 1721 m. All the related
river networks are suitably extracted from the relevant DTM at resolution 100 m. We
also employ artificial networks for their flexibility and exact properties. Specifically, we
employed Optimal Channel Networks whose geomorphological properties closely resem-
ble the optimal features of real river basins, Peano networks and Scheidegger networks
(Rodriguez-Iturbe and Rinaldo, 1997). The shape, dimensions and boundaries conditions
of the artificial networks have been varied to study the influence of these parameters on
geomorphological and biodiversity patterns. For an accurate description of the statistical
properties of the networks employed, and for an updated list of pertinent references the
reader is referred to Rinaldo et al. (2006). Figure 2.2 shows different patterns of the
Tanaro river basin extracted with different geomorphological thresholds. The threshold-
ing procedure is commonly employed in hydrology and geomorphology in order to detect
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2.1 Geomorphology of the River Basins employed

the relevant network structure to study hydrological and geomorphological processes at
different resolution.

A major benchmark for the ensuing results is the Mississippi-Missouri river system.
The whole extension of the MMRS is 2, 980, 000 km2 and the average principal and
transversal diameters are 1304.9 km and 2283.6 km respectively, so the shape of the
MMRS is quite unique respect the elongated shape of the river basins. The mean exten-
sion of a direct tributary area (DTA) is 3900 km2 then the mean diameter of a DTA is
62.45 km. The extension of the plot at which the trees-dataset is available, is 1/6 of an
acre (then is 0.0675 ha = 674.610m2). We acknowledge that due the very small size of
the plots the sampling is not affected by the shape of the samples. As demonstrated by
Potts et al. (2001) for plots with area less than 0.25 ha plot shape or aspect ratio of the
plots have almost no real effect on the number of species observed.

For the MMRS, a direct tributary area (DTA) is a geographic region directly draining
to a group of streams, i.e., not including areas upstream of it (Muneepeerakul et al., 2008);
the DTAs correspond to the U.S. Environmental Protection Agency and U.S. Geological
Survey HUC8-scale subbasins defined by National Hydrography Database Plus (USEPA-
USGS , 2006). Occurrence data for species and river network structure can be combined
and analyzed for several biodiversity patterns that will be introduced later. The river
network is modeled by an oriented graph constituted by nodes and edges (figure 2.3).
An oriented graph is a directed graph in which the edges have a direction, in this way
according tho the elevation drop that is the direction of the water from the source-area
to the outlet. In the river network case (RN) each link of the network is between the
center of mass of each pixel or DTA following the flow directions, then the neighbors are
only the downstream and upstream links. Every link is a local community (LC) that
hosts the individuals of species. Figure 2.3 shows the RN case of the MMRS; see also
Muneepeerakul et al. (2008). In the 2-D landscape case instead every pixel is connected
to all the eight adjacent neighbors. In topological unit each links has length equal to one.
Considering for the diagonal directions the actual topological distance

√
2 does not make

appreciable difference on the simulation of biodiversity and geomorphology patterns.
The DTAs for the trees analysis have been projected according the Lambert cylin-

drical equal-area criteria to consider the curvature of the Earth, since the spreading of
the species can happen for very large distances (Konar et al., 2009).
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2.1 Geomorphology of the River Basins employed

a)

b)

d) e)c)

Figure 2.1: Sample networks used in the research: a) Multiple-outlet OCN where dis-
tances between tributaries are usually measured along the lower draining boundary – al-
though in some instances we may resort to calculation of single-outlet OCNs to test main-
stream distributions (see details in figure 6.1 chapter 6); b) The Tanaro river basin; c)
Scheidegger network realized as the original construct and with the parallel side strongly
longer than the shorter one in grant to obtain H = 1/2, it is a subbasin extracted from
the basin-lattice (figure B.1 a) appendix B); d) Mis (detected by the red drainage-divide
line), and Cordevole; e) Peano network at the seventh stage of the multiplicative growth
process (258 × 258 pixels). For a detailed description of the specific construction rules
and their references, see Rinaldo et al. (2006). OCN, real basins and Scheidegger network
has been extracted with a threshold on area equal to Ath = 10. Each pixel of DTMs
utilized have length equal to 100 m.
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2.1 Geomorphology of the River Basins employed

a)

b)

c)

d)

Figure 2.2: Tanaro river network extracted at different geomorphic thresholds Ath: a)
space-filling network for A ≥ 1 in which every pixel is channelized; b) network for A ≥ 10;
c) network for A ≥ 100; b) network for A ≥ 1000
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2.1 Geomorphology of the River Basins employed

Mississippi−Missouri River System

c)

b)

a)

Figure 2.3: Representation of the MMRS: a) main branches of the real fluvial network
of the MMRS and US boundaries (courtesy of Bertuzzo et al. (2009)); b) DTAs subbasin
as classified by USEPA-USGS (2006); c) graph network of the MMRS as used in the
model (Muneepeerakul et al., 2008).
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2.1 Geomorphology of the River Basins employed

We now define some geomorphological quantities that will be used throughout the
following sections. The diameter, φi, is defined as the average distance from the stream-
link i to all other streamlinks j in the network, where the distance is measured through
the network in the river network (RN) case or overall the landscape in the 2-D case.
As defined above, it is a measure of the degree of connectivity associated with a local
community in the ecosystem and it is crucial for the dispersal dynamics in a landscape.
While the diameter is usually specified as the longest path between any pairs of links in
the network (e.g., Newman, 2003) the definition of an ecological diameter as stipulated
above seems more appropriate to our scope. Figure 2.4 shows the spatial patterns of the
diameters for the river basins under study (OCN, Cordevole and Tanaro). Note that
the minimum diameter, φmin, is farther away from the outlet in the Tanaro river basin
than in the OCN and the Cordevole. Moreover, link diameters do not necessarily change
monotonically with their distance from the outlet. This is due to the elongation of the
river basin, defined as the ratio between its longitudinal and transversal characteristic
lengths, say L‖ and L⊥ respectively. The more elongated the network is, the closer
to the middle of the basin the streamlink with minimum diameter, φmin, tends to be.
The elongation is a characteristic that is likely to be important in the functioning of
river networks as ecological corridors. Notice that the average value of the diameter of
the network, that is reported in each plot, corresponds to the average distance between
streamlinks. Then, from a biodiversity viewpoint the elongated shape is a favorable fea-
ture. Figure 2.5 shows the patterns for the river network (RN) and 2-D cases within the
Tanaro basin boundaries. The Tanaro basin has been taken as a prototype of optimal
basin due to its geomorphological features, including elongation. Several biodiversity
simulations have been carried out on it.
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Figure 2.4: Spatial patterns of the streamlink-diameters for a) OCN, b) Cordevole and
c) Tanaro 3) basins, shown at CG = 150, 300 and 400 respectively. The diameter φi,
is defined as the average length from the streamlink i to all other streamlinks j in the
network.
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a)

b)

7.5x10 1.02x10 1.56x10
3 4 4

1.07x10 1.66x10 2.28x10
4 4 4

Figure 2.5: Diameter map for: a) Tanaro river basin; b) Tanaro 2-D landscape. In both
domains the grain-length is 1000 m

The mean link length 〈l〉 for the RN in the MMRS is 110 km and in the 2-D coun-
terpart is 52 km. Figure 2.6 shows the diameter in the MMRS RN without considering
the curvature of the Earth (a), in the MMRS 2-D where the diameter is computed as
simple euclidean distances (b), and in the MMRS 2-D where the diameter is calculated
with the great-circle approach (c). In Table 2.1 the minimum, maximum and mean value
of the diameter are reported according to the different topology and methods adopted,
also determined by the euclidean distance and the flat-surface approximation. The latter
(and other possible alternative methods) do not produce much variation for modeling
the dispersal of species. Therefore the great-circle approach, widely accepted in geodesy,
has been chosen for the ensuing calculations.
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1290 2175.9 3244.6

a)

c)

b)

417.9 575.7 1047.9

744.8 1021.7 1757.9

Figure 2.6: Diameter map for: a) MMRS river network without considering the curvature
of the Earth; b) MMRS 2-D (the diameter is computed as simple euclidean distances)
and c) MMRS 2-D landscape (the diameter is calculated with the great-circle approach).
The distances are in km and the mean link-length is 110 km for the RN, 52 km in the
2-D case.
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2.1 Geomorphology of the River Basins employed

Table 2.1: d and φ as great-circle distances, pythagorean distances with parallel meridi-
ans, and euclidean distances

MMRS min max 〈.〉
d between links

RN 110 5060 2178.5
2Dgc 8.73 2928.3 1022.9
2Dsphere 8.72 2956.5 1024.3
2Deu 5.26 1830.7 576.4

φ

RN 1290 3244.6 2175.9
2Dgc 744.8 1757.9 1021.7
2Dsphere 745.12 1766.4 1023.1
2Deu 417.9 1047.9 575.74

Another geomorphic quantity of ecological interest is the the distance, d, between
links (alongstream) in the river network (RN), or between any pair of local communities
in a 2-D landscape. The probability distribution functions for both d and φ for the
MMRS are reported in Figure 2.7. Note that the bell-shape behavior of the distribution
of d can be captured rather well by a Gaussian function. For the river network the
alongstream distances are obviously larger than the euclidean distances in a 2-D land-
scape. This simple geometric fact has profound consequences on species dispersal. The
diameter, φ, does not show an interesting probability distribution (figure 2.7 b)) for both
the topology, RN and 2-D. Notice that pdf(φ) is the distribution of the mean values di
of each link i. The great-circle approach for computing the distances instead provides
clearly different results than assuming simple euclidean distances, underlying the im-
portance of the Earth’s curvature in modeling the dispersal of trees. Figure 2.8 shows
probability distribution function of d obtained for the OCN, Cordevole and Tanaro river
basins. In general, at approximatively the same total drainage area the mean distance
between links, 〈d〉, is lower for more elongated basin than in more compact ones.
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2.1 Geomorphology of the River Basins employed

Defining with A the drainage area, is possible to compute the exceedence probability
that the are is greater or equal than a. The derived distribution P (A ≥ a) is a power-law
with properties of scale-invariance and universality (Rodriguez-Iturbe and Rinaldo, 1997;
Convertino et al., 2007). Therefore, for example in the MMRS the scaling exponent of
the power-law is very far from the universal value found in most of the basins throughout
the world, i.e. 1− τ = −0.43. In Figure 2.9 the distribution is show for the MMRS. The
deviation from the universality in this case is due to the strong geological heterogeneity
of the system that cover more than half of the USA. Nonetheless biodiversity patterns
seem more influenced by the dissection exerted by the river network than the optimal
geomorphological configuration. Therefore some optimal features of river basins, e.g.
the elongation that can be represented by the elongation ratio m = L⊥/L‖, influence
the biodiversity patterns. In chapter 4 and 5 a comparison between three different
basins with different elongation has been performed. In Table 2.2 the longitudinal and
transversal diameters of the employed networks have been reported. The MMRS and
the Mis river basins constitute an anomaly among the elongated basins all around the
world.
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Figure 2.9: P (A ≥ a) of the MMRS in DTA units.
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Table 2.2: L⊥, L‖ and elongation ratio m = L⊥/L‖ for the basins using in the research.

River Basin L⊥ L‖ m

Tanaro 178 296 0.60
Cordevole 255 271 0.94
Mis 173 126 1.37
MMRS 2283.6 1304.9 1.75

In order to perform the analysis at the plot scale for the trees on the MMRS spatial
plot-scale database (USFS-FIDO , 2009), three different grids have been superimposed
on the spatial plot information whose unit-side length is 25, 50 and 100 km that imply
a unit extension of 625, 2500, and 10,000 km2 respectively. Since the average DTA area
is 3900 km2, the 50 km grid creates cells whose extension if more or less similar to the
extension of a DTA. Figure 2.10 show the partition of the plot spatial distribution with
the three different grids. This is useful to study how biodiversity patterns change with
resolution, a subject which will be covered in detail in the following.
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Figure 2.10: The figure shows the three grid employed in the resolution analysis per-
formed on the tree data-plots of the MMRS: the resolution is 25, 000, 50, 000 and
100, 000 m (that is the side-length of the grid unit) for the top, middle and bottom
plot respectively.
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2.2 Trees and Fishes of the Mississippi-Missouri River Basin

2.2 Trees and Fishes of the Mississippi-Missouri River Basin

In the analysis the 824 Direct Tributary Areas (DTAs) comprising the Mississippi-
Missouri River System are populated with the occurrence data of 433 fish species (Muneepeer-
akul et al., 2008), 233 big-trees species (Konar et al., 2009) and 228 small-trees species.
In Figure 2.14 is represented the network of the MMRS in which every DTA is connected
to each other with a directed link according the flow-network in the case of fishes. For
trees every DTA can be connected to all the others through euclidean distances.

For a detailed description of the model see chapter 3. The information about the
fishes is given at the DTA scale. For the 2-D cases every local community can be
connected with any other and a preferential direction does not exist. Figure 2.14 reports
for each location the number of species that is defined as local species richness (LSR).
The dataset of the fishes is the same used in Muneepeerakul et al. (2008) derived from
the database compiled by NatureServe (NatureServe, 2004).

The tree dataset is from the US Forest Service (USFS) Forest Inventory and Analysis
Database (FIADB) (USFS-FIDO , 2009). The information about the trees is given at
the plot scale defined in section 2.1. Big trees are used in (Konar et al., 2009) in order
to test how climate change will impact their large scale patterns. The dataset of small
trees has been introduced in this research for studying the spatial patterning of trees at
different life-stages. Big trees are those whose diameter at breast height (dbh) is larger
or equal than 5 inches, small trees those whose diameter is smaller than 5 inches.

Figure 2.11 represents the organization of the plots according USFS-FIDO (2009).
USFS has created an inventory program to include all forested lands in the US, regardless
of ownership or availability for forest harvesting (Burkman, 2005). The new program
includes all forest land in all 50 States plus all of the territories and possessions of the
US. It covers all public and private forest land such as reserved areas, wilderness, Na-
tional Parks, defense installations, and National Forests (Burkman, 2005). A nationally
uniform hexagonal-cells grid has been super-imposed by USFS over the existing set of
sample locations, in order to provide a uniform basis for determining the annual set of
measurement plots. For each hexagonal cell that is 6000 ac = 24.28km2 there is one plot.
The structure of the plot is represented in Figure 2.11 b) (in a three dimensional view)
and c). An FIA plot consists of a cluster of four circular subplots spaced out in a fixed
pattern. The plot is designed to provide a sampling frame in purpose of forest health and
inventory (Burkman, 2005). Individual plots are remeasured in cycles of approximately
5 − 7 years in the eastern U.S., and 10 years in the western U.S. Trees 1.0 − 4.9 inches
in diameter at breast height (dbh) are measured on 1/300-acre microplots, and trees
5.0-inches dbh and larger are measured on 1/24-acre subplots (Bechtold , 2003). Then
one plot is 1/6 of an acre. As new trees grow into the microplots and subplots, they
too are tracked until death Bechtold (2003). In each plots other variables are measured
such as tree-volume or tree-basal area per year (growth), tree-height, woody debries, soil
characteristic (Burkman, 2005). Growth is computed from sequential measurements of
tree dbh over time. Tree dbh is usually located at 4.5 feet above ground line on the
uphill side of the tree (Burkman, 2005). Crews identify which trees have survived since
the previous inventory and which trees have grown into the plot, with a series of codes
used to track tree history.
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2.2 Trees and Fishes of the Mississippi-Missouri River Basin

Figure 2.12 reports the patterns of the number of plots in each DTA, and the tree-
density for both the dbh classes (big and small trees) considered. Here the tree-density
is calculated as the ratio of the abundance of trees in each DTA and the respective area.

The information on trees at the DTA scale has been upscaled first by finding the
number of plots in each DTA, after determining the density that is dividing the number
of individuals in each DTA by the number of plots, then calculating the density per acre
and inferring the abundance matrix multiplying the density to the forested area (FA in
km2). The forested area is given by the product of the forest fraction (USFS Forest
Cover Types (USFS , 2009; Konar et al., 2009)) multiplied by the DTA area computed
using an Albers equal area conic projection of the USGS DTAs map given at geographical
coordinates (Bertuzzo et al., 2009). For the fishes database the abundance is not available
therefore it is not possible to compare a priori the habitat capacity distribution of the
model with data. For big trees and large trees the information about the abundance is
instead available (USFS-FIDO , 2009).

Figure 2.13 reproduces the pattern of the average annual precipitation (AAP, (USDA,
2009; Konar et al., 2009)), the average annual runoff production (AARP, (Gebert et al.,
1987; Muneepeerakul et al., 2008)) and the forested area (FA, (USFS-FIDO , 2009; USFS ,
2009; Konar et al., 2009)) in km2 that is the same for all the trees regardless the dbh
class.

Figure 2.14 shows the local species richness (LSR) of fishes (Muneepeerakul et al.,
2008), big trees (Konar et al., 2009) and small trees. As it will be discussed in chapter
3, LSR for fishes reflects closely the spatial patterns of the average annual runoff pro-
duction (AARP, Figure 2.13, Gebert et al. (1987); Muneepeerakul et al. (2008)), while
the LSR of trees partly reflects the forested area (FA) and the average annual precipi-
tation (AAP, Figure 2.13, (USDA, 2009; Konar et al., 2009)). Despite the great spatial
similarity of the LSR patterns for big and small trees, visible at eyesight, it will be sug-
gested that other, more quantitative, biodiversity patterns may differ considerably from
corresponding reference patterns in the key drivers, thus adding interest to our search.

Figure 2.15 shows the pairwise similarity of the species using a metric called Jaccard
Similarity Index (JSI) defined as the ratio between the number of common species and
the total number of species in both local communities considered. The calculation is
done among all the local communities of the ecosystem. In brief, JSI = 1 means total
similarity in species composition while JSI = 0 means no similarity at all between any
pairs of links at distance d. The JSI shows common features that seem to exist between
taxa, whereas other biodiversity patterns such as the cluster-size distribution (chapter 5)
suggest otherwise. Then quite interestingly the pairwise similarity of the species richness
exhibits common features for trees and fishes, therefore some speculations can arise about
common self-organizing optimal organization mechanisms of nature independently of
taxa. We believe the dispersal have an overall main influence above all the other factors
in determining the organization of species.
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Plot

Condition B

Seedling-Sapling Stand

Condition A

Mature Stand

       1/6-acre plot

Subplot 24.0 ft  (7.32 m) radius

Microplot 6.8 ft  (2.07 m) radius

Annular plot 58.9 ft  (17.95 m) radius

Lichens plot 120.0 ft  (36.60 m) radius

Vegetation plot 1.0 m2 area

Soil Sampling (point sample)

Down Woody Debris 24 ft (7.32 m) transects

a)

c)

b)

Figure 2.11: Organization of the trees-plot data in USA: a) hexagonal-cells grid in which
every cell is 6000 ac and is sampled one plot (with permission of Mike Hoppus (NE-FIA),
2009); b) 3-D illustration of a plot that cover 1/6 ac; c) sampling organization in a plot
composed by four microplots whose are is 1/24 ac.
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Big Trees

b)

0 38 358

0 0.23 1.75

0 0.06 0.59

Small Trees

# plots

Figure 2.12: Data derived from FIA-USFS data: a) number of plots in each DTA; b)
and c) tree-density per km2 for big and small trees respectively.
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AAP (cm)

a)

c)

AARP (cm)

b)
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0 22 106.9

0 879 6009.8

FA (km )
2

Figure 2.13: Patterns of AAP (USDA, 2009; Konar et al., 2009) (a), AARP (Gebert
et al., 1987; Muneepeerakul et al., 2008) (b), and FA (USFS-FIDO , 2009; USFS , 2009;
Konar et al., 2009) (c) in km2.
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Fishes data
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Figure 2.14: LSR patterns of fishes and trees data in the MMRS
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Figure 2.15: Jaccard Similarity Index for fishes and trees of the MMRS.
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Figure 2.16 shows the most present species, the second most common species, the
fiftieth most common species, and the one-hundredth most common species of the big-
trees database (USFS-FIDO , 2009; Konar et al., 2009). In figure 2.16 the choice of the
rank for the species ranked in occupancy is arbitrary. For the occupancy, the first most
common species seems to be placed according the availability of water that is higher in the
east part of the MMRS. Only the most common species occupy most of the entire basin.
The sharp decrease in species richness occurs a bit west than the 100 deg W meridian,
which is also the transition of the sharp gradient in the mean annual precipitation, but
probably there are also edge effects difficult to capture. The fiftieth most present species
is located along a stripe from the east side of the Appalachian to the midwest-US (c),
and the one-hundredth most common species is located in the south of the Great-Lakes
region (d). It is fascinating how nature produces such intriguing spatial distribution.

a) b)

c) d)

Big Trees Species Occupancy Pattern

Figure 2.16: Big Trees Occupancy Patterns: a) red dots is the most present species; b)
yellow dots is the second most common species; c) green dots is the fiftieth most common
species; d) is the one-hundredth most common species.

Figure 2.17 shows the most abundant species, the second most abundant species,
the fiftieth most abundant species, and the one-hundredth most abundant species of
the big-trees database (USFS-FIDO , 2009; Konar et al., 2009). The abundance distri-
bution is quite different than the occupancy distribution. In particular, it seems that
the abundance distribution captures the heterogeneities of the environment such as the
geological heterogeneities. In (a) the most abundant species occupy the south-east part
of the country, in (b) the second most abundant species is in a completely different geo-
graphic region, the west boundary of the basin, in (c) the fiftieth most abundant species
is distributed in the midwest, and in (d) the one-hundredth most abundant species is
concentrated in a small region in the east boundary of the MMRS (along the west side
of the Appalachian approximatively).
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a) b)

c) d)

Big Trees Species Abundance Pattern

Figure 2.17: Big Trees Abundance Patterns: a) red dots is the most abundant species;
b) yellow dots is the second most abundant species; c) green dots is the fiftieth most
abundant species; d) is the one-hundredth most abundant species.
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2.2 Trees and Fishes of the Mississippi-Missouri River Basin

Figure 2.18 shows the relationship between abundance and occupancy for big and
small trees species. The linear relationship indicates that the most abundant species
are on average the most widespread. Considering the species one by one the one to one
abundance-occupancy relationship is no more true as the pattern of Figures 2.16 and
2.17 shown. The scaling exponent in 2.18 different than 1 indicates that for species a
perfect match between the number of individuals and the area that they occupy does not
exist. This is more evident for big trees since the scaling shows an exponent larger than
1 than for small trees. Estimating the abundance from occurrence is one of the main
debated issue in ecology (He and Gaston, 2007) that would be extremely important.

This is related as it will be shown in chapter 5 to the species-individual vs species-
area relationship comparison. Briefly despite the strong heterogeneities, abundance is
positively correlated with the area, against what the equilibrium theory of island bio-
geography (MacArthur and Wilson, 2001; Connor et al., 2000) assumes.
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Figure 2.18: Occupancy-Abundance relationships for the Big Trees (top plot) and the
Small Trees (bottom plot) of the MMRS.
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Chapter 3

Model Description

“If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is”

John Louis von Neumann

This chapter deals with the description of the mathematical models used in the en-
suing analysis will be shown. In detail, section 3.1 defines the dispersal and reports an
overview of the dispersal theory, section 3.2 describes the metacommunity models used in
the ecosystems employed in the homogeneous case and incorporating the environmental
heterogeneities. The cases of global and nearest-neighbor dispersal are also discussed.
Observed features of the ecological patterns (of trees, fishes presence/absence data, clus-
tering properties) will be compared with those deduced from the results of a neutral meta-
community model used to infer freshwater fish biodiversity in the Mississippi-Missouri
fluvial system (Muneepeerakul et al., 2008). In the following, for the thesis to be self-
contained, we fully describe the framework adopted. Note that the particularization to
fish communities will be relaxed to vegetation ecosystems without particular problems
– key differences being easily pinpointed.

3.1 Dispersal Mechanisms

Biological dispersal refers to a species movement away from an existing population or
away from the parent organism. Through simply moving from one habitat patch to
another, the dispersal of an individual has consequences not only for individual fitness,
but also for population dynamics, population genetics, and species distribution (Hanski
and Giplin, 1997; Hanski , 1999). Many of the questions addressed by ecology and evolu-
tionary biology require a good understanding of species dispersal patterns (Broquet and
Petit , 2009).

The dispersal is a complex phenomena in nature that nowadays constitutes a large
branch in ecology. The study of dispersal is often related to the study of the animal
movements since animals are one of the most responsible agents in the spreading of
seeds and fruit types of plants. The interplay between zoology and ecology generating
biological changes has coined the discipline of movement ecology that consider also the
interplay of dispersal with the landscape features and the environmental heterogeneities
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3.1 Dispersal Mechanisms

(Bartumeus and Levin, 2008; Damschen et al., 2008; Getz and Saltz , 2008; Nathan et al.,
2008a; Revilla and Wiegand , 2008). The study of dispersal started with the empirical
experiment about the dispersal of pollens and seeds (Crocker , 1938).

Dispersal was mostly developed as an autoecology theory since studies were per-
formed considering empirically one individual species by one in relation to its environ-
ment rather than a global phenomena of the entire species population in the ecosystem.
Dispersal has been measure for example for seeds dispersed by birds Schurr et al. (2009),
seeds dispersed by wind Crocker (1938); Nathan et al. (2001, 2002a, 2008b), seeds dis-
persed by elephants Blake et al. (2009), for earthworms Edwards and Bohlen (1977), for
Zebra mussel Stoeckel et al. (1997), for butterflies Gilbert and Singer (1975), for Snowy
plovers Stenzel et al. (2007), and for elephants Mennell and Scholes (2008); Blake et al.
(2009). Here because the neutral theory applied to a metacommunity the dispersal is
assumed the same for all the individuals regardless species that is a strong assumption.
Therefore the neutral theory is a null theory capable to test the importance of the ne-
glected elements when they are not included in the description of the species that are
considered more similar rather than more different (Hubbell , 2001; Gewin, 2006; Hubbell ,
2006). If the ingredients not included in the neutral model are important the results do
not reproduce the real biodiversity patterns, e.g. like in Dornelas et al. (2006); Volkov
et al. (2007) for coral reefs and in Graves and Rahbek (2005); Ostling (2005) for Ama-
zonian birds.

Dispersal mechanisms lead to pattern formation (Borgono et al., 2009) and dispersal
limitation is a root of the neutral theory coupled with the stochastic speciation and death
of individuals. Niche theories are in some way opposed to dispersal theories and especially
the neutral theory in which was introduces the concept of dispersal limitation Hubbell
(2001). Niche theories put the main importance on the environmental heterogeneities
that produce trade-offs and strong competition between species (Gewin, 2006) in a view
of selective evolution. More in general in the ecological literature there is a separation
between niche-assembly and dispersal-assembly theories (Fargione et al., 2003). One of
the main issue is the estimation of the dispersal length of the species since it is difficult
to measure this quantity in the field. Therefore nowadays genetic and molecular biology
techniques are able to provide reliable values of the dispersal length, as average and
maximum value (Broquet and Petit , 2009). There is also a not clear definition of dispersal
length since it is possible to distinguish between natal dispersal length and breeding
dispersal length: the first is in general defined as the distance traveled by plant seeds,
larvae, pollen or juveniles between the birthplace and the first breeding of fertilization
site, while the latter is defined as the distance traveled by mature individuals between
two successive breeding areas. The natal dispersal is usually the most used and it is
proportional to the home-range size (Bowman et al., 2002) that is the spatial extent or
outside boundary of an animal’s movement during the course of its everyday activities
(Burt , 1943).

More in general dispersal refers to the movements of living or not-living organisms
in their own environment: so we can speak about dispersal or individuals (Ammerman
and Cavalli-Sforza, 1984b), dispersal of cells (Marco et al., 2009), dispersal of epidemics
(Bertuzzo et al., 2008), dispersal of contaminants (Botter et al., 2005), solutes and sedi-
ments in water streams and soils, hydrodynamic and geomorphological dispersal (Rinaldo
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et al., 1991) to give some examples. Dispersal of animals and seeds is influenced by the
vegetation patterns and it also constitutes itself the cause of the distribution of plants
underlying a complex dynamic with feedback between their movement and the resulting
patterns (Hein et al., 2004; Boyer et al., 2006).

The dispersal mechanism implemented is through a dispersal kernel that determines
how the offsprings are dispersed in the network or in the 2-D open landscape. The kernel
has a back-to-back non directional structure meaning that the species can move upstream
or downstream with equal probability in the river network case, and in every direction
with equal probability in the 2-D landscape case. The model was originally developed
in (Muneepeerakul et al., 2007b) and modified in (Muneepeerakul et al., 2008). Here the
version used is the latter one (Muneepeerakul et al., 2008) both for modeling the fishes and
trees in the MMRS, and for the numerical studies about the influence of the parameters
on biodiversity patterns. The dispersal kernel is basically the probability density of
moving a particular distance from the starting point where the individuals starts its
spreading. For the fish case the dispersal kernel “fat tailed” means that the long distance
tails of the distribution decay slowly such that the variance of the dispersal kernel does
not converge and is therefore undefined (or infinite). This means that is possible to
have long distance dispersal events (LDD), but still the mean dispersal distance could
be very small. In this case long distance dispersal is defined based on the overall shape
of the dispersal kernel. The choose of the exponential-Cauchy distribution appears then
the most appropriate. As for trees the kernel has an exponential decay and this pose
some questions about the possible existence of different optimal survival strategies for
trees than the long distance dispersal (LDD) or it is also plausible that fishes are free
to explore long distance dispersal while seeds are trapped by the pre-existing canopy
producing causing the less effective short distance dispersal. Long distance dispersal has
been in fact proved to be an optimization strategies of populations. This suggests that
species would adopt a fat-tail dispersal strategy that should maximize their colonization
and survivability (Alerstam et al., 2003; Davies et al., 2004; Pearson and Dawson, 2004;
Bohrer et al., 2005; Soons and Ozinga, 2005; Nathan, 2006; Schurr et al., 2009). It will
be shown how biodiversity patterns, then species, are less sensible to the topology of
the ecosystem when they spread with a fat-tail dispersal, then they are more robust to
endogenous or external perturbations in the connectivity. The definition of long distance
dispersal is not unique. Both absolute and proportional definitions of LDD are used in
the literature (Cain et al., 2000; Nathan, 2005). The absolute definition identifies LDD
events as those dispersal events that are longer than a specified threshold distance (e.g. 1
km). The alternative to this absolute definition is a proportional definition, which defines
LDD events as those that exceed a certain high quantile of dispersal distance (e.g. the
99 % quantile as the distance exceeded by only 1 % of all seeds). It is important to
note that the proportional definition actually identifies extreme dispersal events rather
than LDD events: in a species with highly restricted seed dispersal, the 99 % quantile of
dispersal distance might be located at only a few meters, a distance that typically will
not be considered as “long” (Schurr et al., 2009). Actually the threshold distance for
the absolute definition should be chosen based on the question studied: when studying
the dynamics of a plant species in a fragmented landscape, such an LDD threshold could
be the typical distance between neighboring habitat fragments (e.g. the average intra-

35



3.2 Neutral Metacommunity Model on River Networks and 2-D Landscapes

species patch distance). More in general the LDD events are function also of the size of
the organism rather than the size of the ecosystem in study.

Moreover the dispersal can be density dependent, the dispersal range can be in-
fluenced by environmental constraints or dispersal barriers, and it can be operated by
animals or referred to plant-dispersal mechanisms (Schurr et al., 2009). In the latter
case it is called seed dispersal and it can be by gravity, wind (Nathan et al., 2002a,b),
ballistic (autochory), animals and water (Schurr et al., 2009). Seidler and Plotkin (2006)
shows how the conspecific spatial aggregation of trees is correlated with the mode of seed
dispersal. Seed dispersal has many consequences for the ecology and evolution of plants.
Dispersal is necessary for species migrations, and in recent times dispersal ability is an
important factor in whether or not a species transported to a new habitat by humans
will become an invasive species (Lensink and Neubert , 2003). Dispersal is also predicted
to play a major role in the maintenance of species diversity. Dispersal of seeds away
from the parent organism has a central role in two major theories for how biodiversity is
maintained in natural ecosystems, the Janzen-Connell hypothesis (Janzen, 1970; Hyatt
et al., 2003) and recruitment limitation (Harms et al., 2000).

3.2 Neutral Metacommunity Model on River Networks and

2-D Landscapes

This study makes use of the neutral metacommunity model developed by Muneepeer-
akul et al. (2008) for freshwater fish biodiversity in the MMRS. In this framework, the
system is made up by different local communities with a certain habitat capacities, in-
terconnected through the ecological corridors provided by the river network or in the
2-D landscape. No life-history optimal survival strategies (Löbel and Rydin, 2009; Löbel ,
2009) are accounted in the model.

Variables and parameters employed in the model are summarized in tables 3.1, 3.2,
3.3, 3.4, 3.5 that will be explained in the following. Every local community is assumed
to be always saturated at its capacity, i.e., no available resources are left unexploited.
At each time step, a random individual (taxon unit) in a random local community (LC),
i.e. a link in the space-filling network or a pixel in a 2-D landscape, dies and its site
becomes available for colonization by an other taxon unit. With probability ν, the per-
site diversification rate, the site will be colonized by a species not already present in the
system. Note that the per-site diversification is a rate per birth due to speciation, to
external introduction of non-native species, or to immigration (and re-immigration) of
a new species from outside the system. With the remaining probability 1 − ν, the site
is colonized by a propagule (if trees) or fish unit already existing in the system. The
colonization process is modeled through the dispersal of taxon units “produced” by the
local communities. The per-site diversification rate, ν, is given by the ratio θ/N , where θ
is the overall diversification rate (or biodiversity parameter (Hubbell , 2001)), that is, the
average number of new species introduced at each generation, and N is the total number
of individuals in the system. In the model each spatial unit, i.e. a local community
(a link in the river network ,e.g. between two DTAs in the MMRS, or pixel in a 2-D
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landscape) represents a local community (fish or tree unit in the MMRS) interconnected
with all the others through the ecological corridors provided by the river network or
Euclideanly in a 2-D landscape topology. The whole set of local communities forms the
metacommunity. In the heterogeneous case, e.g. for the MMRS each DTA has a different
taxon habitat capacity, H, defined as the number of “taxon units” (fish or tree units
in the MMRS) sustainable by the resources present in that particular site (DTA in the
MMRS). A taxon-unit can be thought of as a sub-population of individuals of the same
taxon belonging to the same species. A taxon (plural taxa) is a population, or group
of populations of organisms which are usually inferred to be phylogenetically related
and which have characters in common that differentiate the unit (ICZN , 1999). Then a
metapopulation is composed by all the taxon-units belonging to the same species, and
the metacommunity is composed by all the metapopulations of all the species present in
the ecosystem. The model does not need to assume any description about the availability
of resources since the the dynamics of birth and death is purely stochastic.

We investigate a number of biodiversity patterns, to be described in the next section
(chapter 4), after the system has reached the stationary state where the total number of
species in the system, ST , fluctuates within a narrow range and the ecological patterns
observed no longer show systematic variations. A statistically stationary value of ST
is achieved on average at the same simulation time regardless of the ecological scenario
implemented, the basin and the resolution. As for the simulations reported in chapter
4 performed at different coarse-graining level of resolution (chapter 4), we proceed as
follows for the three basins employed:

• generation of the networks at four different CG-resolutions (that is the grain-size
of the ecosystem (see chapter 4, section 4.2));

• run the model to the stationary state for the four CG-resolutions;

• analysis of macroecological patterns emerging from each resolution. The probabil-
ity Pij that an empty site in local community i is colonized by an individual from
local community j is given by:

Pij =
KijHj

∑

jKijHj
, (3.1)

where Kij is the dispersal kernel (see below) and Hj is the habitat capacity of
local community j, assumed to be uniform and constant for all links without en-
vironmental heterogeneities. In the homogeneous case Hj is given by the ratio
N/n between the total number of individuals N (kept constant under coarse grain-
ing) and the number of links n that depends on the coarse graining level adopted.
Therefore n decreases from the finest to the coarsest resolution in the uniform case.
Table 3.1 gives the values of n and H employed for all the river networks and the
different coarse-graining levels used in this paper. See Table 3.2 for the numerical
values of the parameters assumed in the simulated ecological scenarios called a for
the exponential kernel and b for the exponential-Cauchy kernel.

The coarse-graining dependence study has not been performed for the MMRS for
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which the simulations have been run with the network at the DTA level (see figure 2.3
in chapter 2). Figure 3.1 reports the trend of the total number of species ST toward
the stationary state of a simulation in the river network case. The stationary state
is quite insensible to the number of species the beginning of the simulation (in this
case ST=0 = 1000). The fluctuations in time are due to what is called “ecological
drift” according the unified neutral theory (Hubbell , 2001). When the model reaches a
stationary state (e.g. here after 400 generations) it is run other 10 cycles and the results
presented are the average over those 10 cycle. At each time step the dynamic of birth-
death and dispersal take place among the species. Table 3.1 reports n and H that are
the number of links and the habitat capacity respectively, employed for the simulations
of biodiversity patterns reported in chapter 4. The coarse-graining resolution is the grain
size of the river network.
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Figure 3.1: Behavior of ST vs Simulation Time for the Tanaro river network. The
qualitative behavior of the curve is the same for all the river networks, therefore it
strongly depends on the parameter of the model.
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Table 3.1: Variables and parameters used in the neutral metacommunity model at the
various coarse-graining levels. The geomorphological parameters are reported in upper
white rows, while the ecological parameters are listed in the bottom grey rows. The
analysis of results is done after the system reaches stationarity when the stochastic
variable ST , i.e. the number of species in the whole basin, is stable.

OCN Cordevole Tanaro
CG 150 200 300 550 300 500 750 1500 400 600 800 1000

n 1711 924 383 96 2755 1036 478 114 1208 546 308 217
H 58 108 261 1042 36 97 209 877 82 183 325 461

The dispersal kernel Kij represents the probability that a propagule produced at a
site j arrives at i after dispersal. The general kernel structure implemented in this thesis
is given by:

Kij = Cj

[

exp

(

−Lij
dl

)

+
b2

L2
ij + b2

]

, (3.2)

where C is a normalization constant determined numerically such that,
∑N

i Kij = 1
for every local community j (i.e. individuals do not travel out of the system, which is
assumed to be isolated), where N is the total number of communities. The kernel used
herein is a combination of a back-to-back exponential (with mean dispersal length dl,
when b = 0) and Cauchy distributions which adds a fat-tail character to Kij (Muneepeer-
akul et al., 2008). Then the model has at most four parameters for calibration: i) the
mean habitat capacity 〈H〉 that defines the total number of taxa units in the system
N = 〈H〉 · n; ii) the average number θ = ν · N of new species introduced at every N
deaths and iii) the two shape parameters of the kernel, dl and b.

Equation 3.1 is written for the local-community j as a whole, and it manifests clearly
the neutral assumption made at the individual level since the probability Pij is the same
for all the local communities. Here it is proposed a formulation of the probability at
the species-level that is different for the present species. The neutral theory assumes no
species-specific competitive advantages and therefore the probability that an empty site
is colonized by a certain species depends only on the relative abundance of individuals
of that species present in the site. From the above assumptions, the probability P sij that
an empty unit in site i will be colonized by a propagule of the species s arriving from
site j can be expressed as:

P sij = (1 − ν)
Kij Hj

∑n
k=1KikHk

nsj
Hj

(3.3)

where Hk is the habitat capacity of site k and nsj is the abundance of taxa units of the
species s present in the site j. The first ratio in the right-hand side of equation (3.3)
represents the probability that the empty site in local community i is taken by a taxa-unit
arriving from local community j, whereas the second ratio expresses the probability that
the propagule belongs to the species s. To determine which species from local community
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j succeeds, it is drawn an individual at random from local community j. This action
of random draw is what equation 3.3 describes by multiplying with nsj/Hj. The neutral
assumption assumes equivalence at a per capita level, not at a species level. It means
that every individual is the same regardless of species. For example, if species A has 1000
offsprings (recruits) and species B has 10 offsprings, then species A’s success probability
is 100 times higher; if species B has 10000 offsprings and species A has 100 offsprings,
then species A’s success probability is 100 times lower. That is, species identity does not
matter, only relative abundance of offsprings does.

Note that an increment in the distance Lij in equation 3.2 occurs when traveling along
the network, or Euclideanly in a 2-D landscape, one moves from one local communities
to an another. In the thesis we often use the term “mean dispersal length” for the
dispersal parameter dl, but the meaning is not as the real mean length that species
experience because the dispersal. The reader should interpret dl as a parameter of
the metacommunity model useful to capture the biodiversity patterns. The ecological
distance Lij is defined as the length of the shortest path from link j to link i through
the network. Generally the ecological distance, Lij, for the network is defined as:

Lij = NDij + wuNUij , (3.4)

where NDij and NUij are the downstream and upstream distances comprising the short-
est path from link j to link i throughout the network. The parameter wu represents the
directional bias in the spreading of individuals along or not the network. Here the
transport is assumed to be unbiased (wu = 1) implying equal probability to travel ei-
ther downstream or upstream (Muneepeerakul et al., 2008b) so the ecological distance is
merely the geometrical distance Lij = NDij +NUij along the network. Distances in the
ecosystem are measured in meters, rather than in pixel or link units, allowing for proper
comparisons across different coarse-graining levels. The middle point of each streamlink
is used for calculating the distances used in the kernel, as well as for the calculation of
the diameter and the distance between links. In the case b = 0 the structure of the kernel
is exponential and this has been used for modeling the biodiversity pattern of big and
small trees. As for the trees the fitting of the biodiversity patterns as in (Muneepeer-
akul et al., 2008) is much well obtained in Konar et al. (2009) (that include permeable
boundaries, ν in function of the distance, and a different kernel for the immigration and
speciation), but as for the cluster-size pattern the simple model here used is sufficient.
As for the trees case in the MMRS the distances calculated according the great-circle
approach (Chapter 2) have been used, and they determined by the following:

Lij = Rm arccos(cos(DTA2i)cos(DTA2j)cos(DTA1i−DTA1j)+sin(DTA2i)sin(DTA2j)) .
(3.5)

where Rm = 6371.01 km is the average radius of the Earth thinking is as a spheroid,
DTA2 is the latitude and DTA1 is the longitude of each DTA. In table 2.1 of chapter 2
are also reported the distances calculated using the flat-surface pythagorean distance

Lij =
√

R2
e (DTA2i −DTA2j)2 +R2

p (DTA1i −DTA1j)2 cos((DTA2i +DTA2j)/2)2,

where Re and Rp are the equatorial and polar radii, but they do not differ so much

41



3.2 Neutral Metacommunity Model on River Networks and 2-D Landscapes

compared to the more exact great-circle distances. The euclidian approach (Lij =
(∆DTA2

2
ji + ∆DTA2

2
ji)

1/2) leads clearly to relevant mistakes in the estimation of the
distances. If b > 0, the kernel is a combination of the exponential and the Cauchy com-
ponents and exhibits a fat-tail that produces a long-distance dispersal. This has been
used for modeling the biodiversity patterns of fishes in the MMRS (Muneepeerakul et al.,
2008) and for studying their spatial clustering in the present thesis. In the first case
Equation 3.2 decays exponentially instead. In the latter case it has a power-law decay
that implies higher probability to have the same species at larger distances Lij . Notice
that, it is under the latter hypothesis that the model of Muneepeerakul et al. (2008)
better describes the pattern of fish biodiversity in the Mississippi-Missouri river system.

As for the details of interactions depending on the fine spatial scales in streamlinks
or in local communities in a 2-D landscape, consistently with a neutral metacommu-
nity approach (Hanski , 1999), we assume that they may be well-summarized by using
finite local habitat capacities. Ultimately, this rests on the limited availability of local
resources and turns out to be a plausible assumption under stationary conditions (Kir-
ley , 2005; Azaele, 2006; Azaele et al., 2006; Wang et al., 2008). On the other side, here
we are describing an isolated ecosystem which evolves on temporal scales smaller than
those characteristic of the actual speciation. Therefore, one expects that the temporal
variations in the diversification rates are negligible. Nonetheless on chapter 4 the focus
is on the effect of resolution change solely, and on chapter 5 on the effect of scale change
also.

In the following, we shall refer to two different ecological scenarios implied by different
structures of the dispersal kernel: (a) the exponential case, and (b) the exponential-
Cauchy case. The different sets of parameters are given in table 3.2 and the results are
reported in chapter 4.

Table 3.2: Values of the parameters used in the neutral metacommunity model for the two
ecological scenarios as defined in the text. For brevity we refer to (a) as the exponential
case, and to (b) as the exponential-Cauchy case.

Case dl b θ N

a 500 0 40 1 × 105

b 500 300 40 1 × 105
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3.2.1 Habitat Capacity in the MMRS

For modeling the dispersal of fishes and trees in the MMRS the habitat capacity has
been taken proportional to the average runoff production and the DTA area in the fishes
case, and proportional to the product of the forested area (FA) and the average annual
precipitation (AAP) in the trees case. Runoff depends on precipitation, evapotranspira-
tion and infiltration; an AARP map for the MMRS is reported in figure 2.13 of chapter
2. Obviously the latter assumption is somewhat crude and does not take into account
all the factors and processes that could determine resources and habitat availability at
local scale in river networks (Alexander et al., 2000; Battin et al., 2003, 2008). Nonethe-
less, in particular at regional scales, we shall assume that runoff production and average
annual precipitation coupled with the forested area, are the main drivers of the resource
availability for freshwater fish and trees respectively, and we speculate that they are able
to capture the broad spatial gradients of habitat capacity across wide and heterogeneous
regions with strong climatic and environmental gradients as the one considered herein.
In presence of strong gradients (see figure 2.13 in chapter 2), this model would be unlikely
to replicate observed patterns of biodiversity in a system where habitat capacity were
determined by allochthonous resource inputs that were independent of, rainfall, runoff
(e.g., closed-canopy stream systems) and forested area (Bertuzzo et al., 2009). The habi-
tat capacity in the fish case is the same adopted my Muneepeerakul et al. (2008), that
is

Hi = CH
AARP i DTAai

PN
k=1 AARPk DTAk

N

, (3.6)

rounded to the nearest integer. DTAa denotes watershed area, N (= 824) the total
number of DTAs, CH the estimate (due to rounding) of average habitat capacity, and
AARP the average annual runoff production. The results confirm that the weight of the
drainage are is important to capture better the biodiversity patters.

The habitat capacity in the trees case is maximum value between the real LSR
derived from data and the following,

Hi = CH
FAi AAPi

PN
k=1 FAk AAPk

N

, (3.7)

where FA is the forested area thats is derived by the product between the DTAa
and the forest fraction, AAP is the average annual precipitation, CH is the average
local community size of big and small trees that has been taken the same. Previous
attempt have beed done considering Hi for trees proportional to the evapotranspiration
that is ET = AAP −AARP but with no better results. Konar et al. (2009) assumes Hi

proportional to the forested area and CH function of the average habitat capacity. In
Konar et al. (2009) is also varied Hi in function of climate change scenario to investigate
the effect of climate change on biodiversity patterns.

Table 3.3 reports the actual and modeled habitat capacity for fishes and trees of the
MMRS. Hdata is available only for trees since the abundance information is not available
for fishes. Hhete is the average of the local community habitat capacities found by using

43



3.2 Neutral Metacommunity Model on River Networks and 2-D Landscapes

equation 3.6 and 3.7, then Nhete is the number of the number of individuals given by the
sum of all the modeled habitat capacities. It is interesting to notice that Ndata that is
the real number of individuals is much lower for small trees than big trees so many trees
in the MMRS are with high value of dbh (diameter at breast height). It is important to
note also that Ndata is different than Nhete because the model is not able to capture the
real number of individuals or better the abundance pattern as reality is. The biodiversity
patterns are captured reproducing well the occupancy pattern.

Table 3.3: Local-community mean habitat capacity and number of individuals in the
MMRS, data and heterogenous model.

Case Hdata Hhete Ndata Nhete

Fishes − 530 − 436, 730
Big Trees 823 400 678, 082 330, 415
Small T rees 205 400 168, 755 330, 054

Table 3.4 reports the dispersal parameters needed for equation 3.2. Values of dis-
tances are in km. Nhomo refers to the homogeneous case without considering the envi-
ronmental variability and it is the result of the product between the number of links in
the MMRS, n = 824, and the mean habitat capacity H.

The choice of adopting different values of dispersal parameter for big and small trees
in a biological and ecological point of view can be arguable. Indeed the seed dispersal
mechanisms may be assumed to be the same (Seidler and Plotkin, 2006). We have
considered the same species (except five more species for big trees) so the difference
in the spatial organization can only be attributed to external factors, like e.g. canopy
gaps (Duncan, 1993) or life-stage differences (Li et al., 2008, 2009), captured in spatial
patterns by using a different dispersal parameter. For a review of seed dispersal near
and far across temperate and tropical forest Clark et al. (1999) propose a kernel that is
able to reproduce an exponential and also fat-tail kernel. Here for trees it has been used
only a back-to-back exponential kernel. Moreover the spatial organization of small and
big trees is clearly different, as suggested e.g. by (Condit et al., 1996) and (Plotkin et al.,
2000, 2002). The difference in the spatial organization lead to a species-area relationship
and to a different probability of the cluster-sizes. This difference can emerge from the
different dynamics, e.g. different probability of death (higher for small trees).

Species-level variation in regeneration speed is reflected by variation in the range of
tree diameters within the clusters (Plotkin et al., 2002). Plotkin et al. (2002) found that
e.g. is very rare to find large trees in the center of clusters, then spatial biodiversity
patterns clearly reflects different mechanisms beyond the dispersal. The diversity of tree
life-history traits and the diversity of responses to abiotic influences are reflected by the
diversity of their spatial arrangements (Plotkin et al., 2002; Seidler and Plotkin, 2006).
Therefore here the model for big and small trees differs only for the dispersal parameter
and this results to be sufficient to describe the patterns of trees at the two different
diameter classes.

In Table 3.5 the parameters of the model have been reported for topological distances,
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Table 3.4: Parameters of the NMM for fishes and trees of the MMRS. The mean link
length is assumed to be ∼ 110 km for the river network and ∼ 52 km for the 2-D
landscape.

Case dl (km) b (km) θ H Nhomo Nhete ST

Fishes 81.67 4.50 66 530 436, 720 436, 730 433
Big Trees 25 0 30 400 329, 600 330, 415 233
Small T rees 20 0 30 400 329, 600 330, 054 228

with the purpose to have a direct comparison with the paper Muneepeerakul et al. (2008).
The mean dispersal length in topological distances is given by dl = −1/ln(a), that
multiplied by the mean link length gives the dl in actual distance (km). The parameter
b of the fat-tail kernel in real distances is found multiplying it by the mean link-length
in km. Figure 3.2 shows the trend of ST of the simulations for the Tanaro in the RN
and 2-D case. The magnitude of the ecological drift after reaching the stationary state
is the same in both cases. Therefore the 2-D configuration allows a faster reaching of
the stationary state, because the multiple direction allowed to the dispersal.

3.2.2 Global and Nearest-Neighbor Dispersal

Here we report the kernel structure for the exact global and nearest neighbor dispersal
implemented in this study. In chapter 5 the results about simulation for the Tanaro
RN and 2-D cases with these two kernels have been reported. The global and nearest-
neighbor kernel dispersals allow to study the extreme cases of habitat-capacity limitation
and dispersal limitation respectively. The former allows the dispersal in the whole ecosys-
tem instead the latter allows the dispersal only between the first neighbors. In chapter 4
some results for dispersal parameter lower than the grain-size (that is the nearest neigh-
bor dispersal distance) have been investigated. All the other cases for mean dispersal
length dl > λδ, where λδ is the length of the pixel local-community at the chosen grain-
level, and smaller then the size of the ecosystem (e.g. the mean diameter L‖), presents
biodiversity patterns in between the global and nearest-neighbor ones.

The global kernel dispersal is given by:

Kij = 1/n , (3.8)

for every pair of links ij where n is the total number of links.
Instead the nearest neighbor kernel dispersal is given by:

Kij =
1

nn + 1
, (3.9)

where nn is the number of neighbors around the link i, and the j-s are the neighbors
along the network or in a 2-D landscape.
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Figure 3.2: Behavior of ST vs Simulation Time for the Tanaro river network (top plot)
and the 2-D landscape (bottom plot) with the same boundaries for the networked basin.
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Table 3.5: Parameters of the NMM for fishes and trees of the MMRS using topological
distances.

Case Fishes Big Trees Small Trees

dl(topo) 0.74 0.23 0.18
a 0.26 0.0123 0.0041
b 0.03 0 0
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Chapter 4

On Neutral Metacommunity
Patterns of River Basins at
Different Scales of Aggregation

“When I hear of the destruction of a species, I feel just as if all the works of some great
writer have perished”
Theodore Roosevelt

Neutral metacommunity models for spatial biodiversity patterns are implemented
on river networks acting as ecological corridors at different resolution. Coarse-graining
elevation fields (under the constraint of preserving the basin mean elevation) produces
a set of reconfigured drainage networks. The hydrologic assumption made here implies
uniform runoff production such that each link has the same habitat capacity. Despite the
universal scaling properties shown by river basins regardless of size, climate, vegetation
or exposed lithology, we find that species richness at local and regional scales exhibits
resolution-dependent behavior. In addition, we investigate species-area relationships and
rank-abundance patterns. The slopes of the species-area relationships, which are consis-
tent over coarse-graining resolutions, match those found in real landscapes in the case of
long-distance dispersal. The rank-abundance patterns are independent on the resolution
over a broad range of dispersal length. Our results confirm that strong interactions occur
between network structure and the dispersal of species, and that, under the assumption
of neutral dynamics, these interactions produce resolution-dependent biodiversity pat-
terns that diverge from expectations following from universal geomorphic scaling laws.
Both in theoretical and applied ecology studying how patterns change in resolution is rel-
evant for understanding how ecological dynamics work in fragmented landscape, and for
sampling and biodiversity management campaigns especially in consideration of climate
change.

4.1 Introduction

Understanding local and regional patterns of species distributions is a major goal of
ecological and biological research (Levin, 1992; Nilsson et al., 1994; Matthews, 1998;
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Levine, 2000a,b, 2003; Rodriguez-Iturbe et al., 2009). Ecological systems are complex
and seemingly unpredictable due to the large number of interacting individuals of dif-
ferent species involved, but patterns in the spatial distribution of organisms provide im-
portant clues about the underlying mechanisms that structure ecological communities.
Although many mechanisms governing the biodiversity of species have been described,
we are far from a complete understanding of the factors controlling the probabilistic
properties of ecological patterns. Also it is not clear either what ecological descriptors
can be assumed as invariant across different scales of observation and resolutions, or the
interactions between geomorphological features and ecological dynamics, in this context
hinged to river network structure. Similarity across spatial scales remains an open issue
in ecological research where most studies focus on variables across a specific level of
observation. Frequently, predictions from numerical models are available at resolutions
coarser than those typical of ecological investigations (Levin, 1992). Many of these
studies refer to one particular species (Green et al., 2004; Green and Bohannan, 2006)
with the extension to multi-species ecosystems being far from trivial. In this chapter,
we address these issues for ecosystems in fluvial dendritic networks that obey the neu-
tral theory (Hubbell , 2001). Biodiversity patterns, especially those of vegetation, may
have effects of such ecosystem functions as productivity, nutrient cycling, and sediment
transport; these functions in turn affect hydrological processes like evapotranspiration
and runoff production. Furthermore, understanding the linkage between geomorphology
and ecology in fragmented fluvial ecosystems is an relevant topic (Benda et al., 2004),
especially towards biodiversity preservation in response to climate change or anthropic
interventions. Indeed an important problem in theoretical and applied landscape ecology
is understanding whether and how biodiversity patterns change as a function of what is
actually measured. Here the null-hypothesis is the resolution-invariance of biodiversity
patterns facing the established such features of fluvial landscapes (Rodriguez-Iturbe and
Rinaldo, 1997).

Space fragmentation plays a larger role in river basins than in savannas ecosystems
since in the first case the drainage network acts as a stronger controlling factor for
the spreading of organisms (e.g., Nilsson et al., 1989; Gascon et al., 2000; Honnay
et al., 2001; Levine, 2003; Rodriguez-Iturbe et al., 2009). Interactions have also been
documented among hydro-geomorphological features of non-dendritic landscapes and
ecological patterns. For examples in savannas where a preferential connectivity is not
exerted by a network, Caylor and Shugart (2006); Scanlon et al. (2007a); Borgono et al.
(2009) documented the existence of power-laws on the size of the vegetation clusters,
an important feature explained through local interaction mechanisms acting under a
global hydrologic constrain. Power-law clusters of halophytic vegetation have also been
documented by Marani et al. (2004) for tidal environments where hydrologic controls are
provided by tidal networks whose geomorphological features (Marani et al., 2002, 2003)
differ from fluvial ones. As for river basins in water-controlled ecosystems it appears
there may exist mechanisms leading to the optimal organization of vegetation patterns
around the channel network structure under the controlling influence of water stress
(Caylor et al., 2004, 2005). Other empirical studies have suggested the importance of
the river network on the biodiversity of freshwater fish, and in general of riverine habitats
(Poole, 2002; Ward et al., 2002; Wiens, 2002; Fernandes et al., 2004; Benda et al., 2004;
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Fisher et al., 2007; Muneepeerakul et al., 2008). It has been found, for instance, that
fragmentation within river networks may produce long-term genetic variations among
species and communities (Colwell , 2000; Gascon et al., 2000). As ecological corridors,
river networks also affect the spreading of human population and of water-borne disease
(Rodriguez-Iturbe et al., 2009). Also in the case of river basins, Muneepeerakul et al.
(2008b) made clear the crucial effect that directionality, a key feature for certain species
living in the drainage network ecosystem, has on biodiversity patterns.

With the above premises, the present chapter specifically aims at investigating, under
general coarse-graining of the networked landscape: the resolution-invariance of species-
area relationships; the interplay between the network shape and the dispersal of species;
and the behavior of relevant macroecological descriptors, like species richness at local
and regional scale and pairwise species similarity, through different scales of spatial
aggregation. The embedded constraint in river basins is that the dispersal of species
may happen only along the directed spanning structure of the drainage network that
exhibits clear scale and resolution invariant properties over several orders of magnitude
(Rodriguez-Iturbe and Rinaldo, 1997). In general patterns of species richness in real
landscapes may differ from the neutral ones addressed in this study (Chave et al., 2002;
Purves and Pacala, 2005), therefore it is accepted that even in the presence of strong
species-specific interactions neutral models may capture broad features of biodiversity
patterns.

The metacommunity model is built here around four main assumptions:

1. Space-filling network. The simulations are performed on space-filling networks (i.e.
all the pixel are channelized), implying there is no differentiation between hillslope
and channel sites. The only geomorphological constraints are thus provided by
drainage directions;

2. The definition of streamlink. The link connecting a pixel i to another pixel j where
no tributaries occur between them is defined as streamlink. If a confluence is
encountered a new streamlink originates. We assume that each streamlink (whose
length in reality is in turn dependent on a threshold for the size of tributary),
constitutes one local community (LC);

3. Uniform habitat capacity. All the local communities have the same habitat capac-
ity, the number of individuals in each local community. The implicit assumption
here is that the climatic variation over the studied region is negligible. Then the
hydrologic assumption is that the runoff production is the same for all the links,
which implies the habitat capacity is uniform in space;

4. The neutral assumption. Neutrality implies that each individual is competitively
equivalent at per capita level regardless of species (Hubbell , 2001). The neutral
theory is a valid approximation considering species at the same tropic level that
equally interact like particles. Neutral theory is capable of generating patterns
of abundance, diversity, species turnover, and geographic range similar to those
observed in natural ecosystems that in fact do not feature neutral relationships
among species (see e.g., Bell , 2001; Purves and Pacala, 2005; Mouillot and Gas-
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ton, 2007; Muneepeerakul et al., 2008).

4.2 On Coarse-Graining River Basins

Both real river basins as well as theoretical constructs are studied in this chapter, namely,
the Cordevole and Tanaro basins in Northern Italy, and an optimal channel network
(OCN) in a square-lattice domain (Rodŕıguez-Iturbe et al., 1992). The latter is an arti-
ficial network obtained through a selection process minimizing total energy dissipation
(a property of steady-state landforms) from which one obtains scaling forms that are
in excellent agreement with real networks extracted from DEMs (e.g., Rodriguez-Iturbe
and Rinaldo, 1997). The river networks extracted from the real basins and the OCN are
plotted in Figure 4.1.

Details on the Cordevole and Tanaro basins are given in Convertino et al. (2007).
Digital Elevation Models (DEMs) are employed in order to derive elevation maps at
different scales of aggregation, or resolutions, from which the space-filling networks are
extracted (see Figure 4.1). Note that a space-filling network is obtained when all pixels
in the landscape domain are assumed to be channelized. In the case at hand, the DEM
of Cordevole river basin has a drainage area of 691 km2 (255 × 271 pixels at a resolution
of 100 m), and the Tanaro river basin has a drainage area of 530 km2 (178 × 296 pixels
at a resolution of 100 m). The planar optimal channel network (OCN) is generated via a
simulated annealing process which minimizes the total dissipation of energy expenditure
in the transport of water. The chosen dimensions are 66 × 66 pixels, corresponding
to a drainage area of approximatively 44 km2 where an arbitrary resolution of 100 m
is assumed for comparative purposes with the real river basins. The associated 3D

landscape of the OCN is derived using the slope-area relationship |−−→∇zi| ∝ Aγ−1
i with

γ = 0.5, where |−−→∇zi| is the elevation gradient and zi the elevation of each pixel with
drainage area Ai (e.g., Rodriguez-Iturbe and Rinaldo, 1997).

The dependence on the resolution of observation of the biodiversity patterns is studied
by observing how they vary upon coarse-graining in the description of the river basin.
Figure 4.2 illustrates the coarse-graining procedure applied to the Tanaro river basin.

An example of invariance of geomorphological properties across different resolutions
is shown in Figure 4.3 for the three basins, where the probability of exceedence of the
drainage area P (A ≥ a) at a randomly chosen point is plotted at different scales of
aggregation. In Figure 4.3 the scaling exponents are very close to the typical value for
river basins 1− τ = 0.43: it is the reported the average over resolution and the standard
errors (Table 4.1) are found by reduced major axis regression. The value amax, i.e. a at
the outlet, decreases because ai is characterized here by the number of links upstream
of site i. The resolution-parameter λ is given by the coarse-graining resolution divided
by the finest resolution in meters, i.e. CG/100.

The distribution of A is maintained across different resolutions, although the accuracy
of the estimation of the slope in the scaling region decreases under coarse-graining. The
elevation of an arbitrary pixel i at a certain resolution λ is given by the mean value of the
elevations zi of pixels at the finest resolution encompassed in the area λ2δ2 of the new
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c)

1 km0

1 km0

a)

b)

Figure 4.1: Space-filling networks derived from DEMs at their original finest resolution:
a) OCN with single outlet and no-flux on sides, whose overall dimensions are 66 × 66
pixels (each of which is arbitrarily assumed to correspond to an area of 100 × 100 m2;
b) Cordevole, main tributary of Piave basin, Northern Italy, suitably extracted from
the DEM, 255 × 271 pixels, at 100 m resolution; c) Tanaro, Po basin, Northern Italy,
extracted from the DEM, 178 × 296, pixels at 100 m resolution. The space-filling
character is enforced by a threshold area for channelization A ≥ Ath = 1 in pixel units.
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Figure 4.2: Illustration of coarse-graining (CG) technique applied to derive different
elevation fields of the Tanaro basin starting from the most detailed DEM (top plot for
λ = 1), whose extracted network is shown in Figure 4.1. Although coarse-graining
brings changes into how streamlinks are connected, which in turn modify the slope-area
relationship of the original landscape, the obtained CG-DEMs still statistically preserve
the slope-area scaling relationship. L⊥ and L‖ are the transversal and longitudinal
diameters of the basin. All CG-landscapes are derived from the original topography
with λ = 1 by averaging the elevations of λ2 neighboring pixels. δ = 100 m is the
pixel size at the original resolution. Extracted networks and CG-DEMs are shown for
CG = 400 (λ = 4) and CG = 1000 (λ = 10) (bottom part of the Figure). The mean
elevation is preserved across aggregation scales.

53



4.2 On Coarse-Graining River Basins

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

a

A( 
P

a 
≥

)

1 - τ = - 0.43

CG 400
CG 600
CG 800
CG 1000

CG 100

[pixels]

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

A( 
P

a 
≥

)

CG 300
CG 500
CG 750
CG 1500

1 - τ = - 0.44

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

CG 150
CG 200
CG 300
CG 550

1 - τ = - 0.43

A( 
P

a 
≥

)

a)

b)

c)

Figure 4.3: 1) Probability of exceedence P (A > a) of the drainage area in pixel units at
any randomly chosen point, A, for the OCN (a), Cordevole (b), and Tanaro river basin
(c), using different levels of coarse-graining CG.
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pixel i, where δ is the side-length at the finest resolution and λ the resolution parameter
(see Figure 4.2). The invariance law of the cumulative drainage areas throughout the
coarse-graining operation (Figure 4.3) is a direct consequence of the fractal structure of
the river basin (Rodriguez-Iturbe and Rinaldo, 1997). It is important to note that across
CG-resolutions the potential energy of the landscape is kept constant, and although the
general directions of the fluxes are similar across CG-resolutions, the connectivity of the
network experiences changes.

4.3 Biodiversity Patterns of River Basins at Different Scales
of Resolution

This section focuses on the dependence of different biodiversity measures on the spatial
resolution for the networks used in the analysis (OCN, Cordevole, Tanaro). The value
of the habitat capacity and the number of local communities are given in Table 3.1
in Chapter 3. The two different ecological scenarios with parameters given in Table 3.2
(Chapter 3) are implemented for all river networks at different coarse graining levels. All
results presented here are the ensemble average over ten snapshots after the system has
reached a statistically stationary state. For the biodiversity patterns analyzed (Figure
4.4, 4.5, 4.6, 4.7, 4.8, and 4.9), the lowest coefficient of determination is 0.78, computed
by using the standard deviation averaged over ten realizations at stationary state. The
deviation of each single-realization curve from the average over the ten snapshots is small
and for this reason we have reported only the mean curve for the patterns analyzed.
The coefficient of determination, R2, has been reported for the SAR because it is very
consistent upon coarse-graining.

First, we have analyzed the rank-abundance (RA) curves resulting from the two eco-
logical scenarios, namely the exponential and exponential-Cauchy dispersal kernel case
for the three basins (Figures 4.4 a), c), e) and b), d), f) respectively). Here, the abun-
dance of a species is simply the number of individuals belonging to that species. In both
cases, the plots show overlapping curves from different coarse-grain levels. In addition,
we investigated the RA curves as a function of the dispersal parameters dl and the di-
versification rate θ. The resolution-invariance of the RA curves is not observed only for
very local dispersal. Under such circumstances, in fact, the influence of the dispersal,
and therefore that of coarse graining, is stronger on the total number of species. It is
interesting to note that the number of species at the steady state, ST , significantly de-
pends on the dispersal only when dl values are small independently of the diversification
rate; this is in agreement with Chave et al. (2002) and with the results shown in Figure
4.5 a) and b). The number of species at stationary state ST is quite insensitive to river
basin, resolution or ecological scenario. This is suggested to stem from the fact that
the total species richness depends more critically on N and θ as long as the dispersal
is sufficiently non-local. If the dispersal is extremely local, ST tends to increase (Figure
4.5 a)).

Figure 4.5 a) and b) show the dependence of ST on dl and θ for the exponential and
the exponential-Cauchy kernel cases, respectively, for the Tanaro basin. Two values of
θ have been considered: θ = 4 (red lines), and θ = 40 (blue lines) for CG = 400 (dashed
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Figure 4.4: Rank-Abundance curves associated with the exponential (left plots) and the
exponential-Cauchy kernel dispersal (right plots) for the OCN (a) and b)), the Cordevole
basin (c) and d)), and the Tanaro basin (e) and f)). The resolution-invariance of the
RA-curves is observed for both the sets of parameters used in the simulations (Table
3.2 in Chapter 3). ST that is the maximum rank is very invariant (∼ 300) regardless
the basin, the resolution, and the dispersal mechanism because the latter is sufficiently
non-local. This is because the total species richness depends critically on N and θ.
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lines) and CG = 1000 (solid line). The resolution dependency of RA is marked by the
gap between the CG = 400 and CG = 1000 resolution curves that shows a meaningful
variation of ST only for very small values of dl.

In the case of the exponential kernel (Figure 4.5 a)) there is a clear threshold value
of the dispersal length, i.e. about dl = 250, that determines the transition for the
rank-abundance to hold independently of the resolution and the diversification rate θ
(dl > 250). It is in this sense we refer to the resolution-independency of the RA pattern.
Below dl = 250, the total number of species at stationarity state, ST , results sensitive to
the coarse-graining resolution; the RA pattern for dl < 250 exhibit a plateau that means
the presence of many common species with the same abundance. This happens because
the dispersal length is so small that the movement of species is very limited: for dl = 1,
ST tends to coincides with the number of local communities, n, in which on average
there is only one species. In the case of the exponential-Cauchy kernel (Figure 4.5 b))
the resolution-invariance is consistent for all values of the dispersal parameter and the
resolution. The difference of ST for θ = 4 and 40 is similar to the exponential kernel
dispersal case, but for very small dl (owing to the fat-tail character of the dispersal)
the species are able to move along the whole network thus maintaining the resolution-
invariance of the RA pattern. Where in fact ST tends to be equal to the number of local
communities, a drop is produced in the rank-abundance curves (see Figure 4.5 c)) that
results in changes in the maximum value of the rank between coarse-grained resolutions
(the number of local communities n decreases as the CG-resolution increases). In the
case of global dispersal (i.e. a dispersal kernel Kij = 1/n, see Chapter 3) the invariance
of the rank-abundance plot is indeed observed.

Figure 4.5 c) reports the rank-abundance for non-trivial values of dl and different θ
at resolution CG = 1000 of the Tanaro basin, so dl = 1000 in this case is equal to the
the mean distance between two neighboring communities. Increasing the diversification
rate, e.g. for θ = 40 (solid and black-crosses grey lines, Figure 4.5 c)), the increase in
the number of species is much stronger than when assuming lower values of the dispersal
parameter (solid and dotted black lines) at the same CG resolution. Thus for higher
values of θ the number of species at stationary state, ST , is larger. For intermediate
values of dl and θ, the RA patterns are not affected by the resolution. We also note
that the effect of coarse-graining (CG) is intrinsically present for the discretization of
the dispersal kernel structure, Kij vs L – this is particularly evident when dl is small
and the CG resolution is coarse. For the Cordevole and the OCN the results shown in
are analogous to these shown for the Tanaro in Figure 4.5. In Figure 4.5 two values of
θ have been considered as example: 4 (red lines), 40 (blue lines) for CG = 400 (dashed
lines) and CG = 1000 (solid line). The resolution dependency of RA is marked by the
gap between the CG = 400 and CG = 1000 resolution curves that shows a meaningful
variation of ST for very small values of dl. Plot c) shows the rank-abundance curves for
the Tanaro basin in the exponential dispersal for the resolution CG = 1000, θ = 4, 40 and
different values of the dispersal length dl = 150, 250, 500, 1000 with different linestyles
according to the legend. For the Cordevole and the OCN the results are analogous to
these shown for the Tanaro. Table 3.2 (Chapter 3) reports the values of the parameters
for the simulated ecological scenarios (a) and (b).

Figure 4.6 illustrates the dependence of the regional species richness RSR on area
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Figure 4.5: Plots a) and b) show the dependence of dl and θ on the total number of
species at stationary state, ST , for the exponential and the exponential-Cauchy kernel
case respectively for the Tanaro basin.
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Table 4.1: Values of the exponent z from the species-area relationship RSR ∼ (H∗)z

computed by taking the average number of species in circular areas with different radii
randomly placed all over the basin, in ecological scenarios (a) and (b) and for the three
basins considered. The slope z is derived by the linear and Jackknife model (Warton
et al., 2006), and the coefficient of determination, R2, is reported. τ is the scaling
exponent of P (A ≥ a), where A is the drainage area, and its variability is the standard
error found by reduce major axis regression bootstrapping over cases and resolutions
(Warton et al., 2006).

Exponents OCN Cordevole Tanaro

τ 1.43 ± 0.01 1.44 ± 0.01 1.43 ± 0.02

Scenario a

z 0.25 0.49 0.43
R2 0.98 0.86 0.87

Scenario b

z 0.22 0.28 0.28
R2 0.99 0.87 0.98

at various CG scales of aggregation. RSR is computed as the number of species S
found over circular areas with different radii placed randomly over the basin. The RSR
values are then binned depending on the habitat capacity H∗ (i.e. the number of sites)
encompassed by the circular area and the average value is taken as representative of the
ensemble. A species-area relationship (SAR) is expressed as RSR ∼ (H∗)z. Figure 4.6
(left plots, a), c), e)) and (right plots, b), d), f)) show the RSR = 〈S〉 as function of H∗

for ecological scenarios (a) and (b) (Table 3.2 in Chapter 3) respectively. We note that
for both types of kernels the different levels of coarse-graining exhibit a collapse of RSR
vs H∗. The species-area relationship RSR ∼ (H∗) z computed independently of the
network structure, holds reasonably well for the case of dispersal with an exponential
kernel and remarkably well when the dispersal includes a fat-tail component for all the
three basins. The values of the exponent z are estimated for all cases and networks and
are given in Table 4.1.

The slopes are computed using the linear and Jackknife regressions (Warton et al.,
2006) and the coefficient of determination is derived. It is interesting to notice that the
value of z estimated in the case of the exponential kernel dispersal for the Tanaro and
Cordevole river basins, is considerably higher than those usually found in biogeographical
species-area relationships for ecosystems in typical 2D landscapes (MacArthur and Wil-
son, 2001). This is not the case when the dispersal includes a fat-tail component where
the obtained values of z are in the range of those commonly observed. This suggests that
species would adopt a fat-tail dispersal strategy should they maximize their colonization
and survivability (Davies et al., 2004; Pearson and Dawson, 2004; Bohrer et al., 2005;
Soons and Ozinga, 2005; Nathan, 2006). This is consistent with the invariance of ST
vs dl in case b rather than in case a. This can indicate that the long-distance dispersal
tends to diminish the impact of the network structure on the species-area relationship,
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and it is evidenced also by the more straight-convex character of the SAR (left plots
vs right plots in Figure 4.6). Figure 4.6 c) and e) show a double trend not present in
Figure 4.6 d) and f). As suggested by Hubbell (2001), the SAR is constrained by the
geometry of the biogeographic area in which the processes of origination, dispersal and
extinction act. The upturn of the SAR occurs in correspondence to a correlation length,
independent of θ, that represents the spatial scale of the geometric constraint imposed
by the landscape (Hubbell , 2001). We do not observe a significant difference in the value
of z in the two different dispersal cases for OCNs (Figure 4.6 a) and b)) perhaps due to
the shape of the basin.

We further investigate the effects of coarse graining on the local species richness, LSR,
defined as the number of species present in each local community at stationarity. LSR
represents a measure of local biodiversity. Figure 4.7 shows the probability of exceedence
of the normalized local species richness, LSR/Hz, for the OCN (Figure 4.7 a) and b)),
Cordevole (Figure 4.7 c) and d)), and Tanaro river basin (Figure 4.7 e) and f)) where H
is the habitat capacity of each local community and z is the exponent of the species-area
relationship (see Figure 4.6). The probability P (LSR/Hz ≥ lsr/Hz), however, does not
collapse onto a unique curve. In the exponential-Cauchy dispersal scenario (right plots)
the overlapping of the curves is more evident than in the exponential dispersal scenario
(left plots), as observed for the species-area relationship (Figure 4.6), due to the higher
homogeneity of the LSR in the latter case. This is more evident for the two real river
basins, Cordevole and Tanaro, particularly for the latter probably because of its more
pronounced elongation. Higher values of LSR are observed in the exponential-Cauchy
kernel dispersal than in the exponential kernel dispersal.

Figure 4.8 shows the behavior of the LSR as function of the diameter φ for the
OCN (Figure 4.8 a) and b)), Cordevole (Figure 4.8 c) and d)), and Tanaro river basin
(Figure 4.7 e) and f)), in the exponential dispersal case (left plot) and exponential-
fat tail dispersal case (right plots). The LSR generally increases from the finest to
the coarsest resolution (due to the decrease in the number of links n while the total
number of individuals N remains constant) and ordinarily decreases when the diameter
φ becomes larger. High values of the LSR are expected for streamlinks with small
diameters because they are well connected to all the other links in the basin and thus,
on the average, species can travel to links with small diameters more frequently than
to their large-diameter counterparts. This is particularly true in the case of exponential
kernels because, if the spreading of species shows a fat-tail component, they can move
over long distances resulting in more regular patterns. This is suggested by Figure 4.8
where the values of the LSR are quite uniform in the three basins for the ecological
scenario (b). Large LSR exists at the outlet, along the main streams of the network, and
in sources-areas it is quite big. Note that high values of LSR across all coarse-graining
resolutions exist in links where the diameter, φ, is small. From the LSR pattern the
structure of the network emerges in the case of the exponential dispersal kernel – Figure
4.8 a), c), e) – and the gradient of species richness along the mainstream towards the
source areas of the basin is relatively sharp. For the case of the exponential-Cauchy
dispersal kernel – Figure 4.8 b), d), f) – the LSR pattern is relatively homogeneous and
the alongstream gradient in species richness is not as steep as in case (a). The insets
of the plots are the LSR patterns properly color-coded (top of Figure 4.8). We find
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Figure 4.6: SAR derived between RSR = 〈S〉 vs H∗ for the three basins (OCN (a)
and b)), Cordevole (c) and d)), and Tanaro (e) and f))) at different resolutions for two
types of dispersal kernel, namely, exponential (left plots) and exponential-Cauchy kernels
(right plots); the circles represent the binning averages. In the insets it is illustrated the
approach for computing the species richness at regional scale. The estimated exponents
are derived by linear and Jackknife regressions (Warton et al., 2006)) and the coefficient
of determination, R2, is calculated (Table 3.2 in Chapter 3).
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Figure 4.7: Rescaled probability of exceedence of Local Species Richness, P (LSR/Hz ≥
lsr/Hz), at different resolutions for the exponential (left plots) and exponential-Cauchy
kernel (right plots) for the three river basins: OCN, a) and b), Cordevole, c) and d),
and Tanaro, e) and f). The distributions do not collapse onto the same curve and do
not exhibit a power-law behavior. The exponents z are those derived by fitting the
species-area relationship in Figure 4.6.
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that the average value of LSR in the whole basin decreases with the diameter for every
resolution. The OCN shows the largest values of the maximum and mean LSR regardless
of resolution; the mean and maximum values of LSR are larger for the Tanaro than for
the Cordevole owing to the larger diameter. It is not observed a relevant difference in
the LSR vs φ pattern between the two dispersal cases for the OCN (Figure 4.8 a) and
b)).

As a descriptor of the spatial structure of biodiversity - β-diversity - we use the
Jaccard Similarity Index, JSI, defined as:

JSIij =
LSRij

(LSRi + LSRj − LSRij)
, (4.1)

where LSRij is the number of species that are common to both links i and j, and LSRi
is the total number of species in link i. We examined the JSI index as a function of the
alongstream distance, d, between links. It ranges from 0 if two local communities share
no species, to 1, if their species composition are identical. Figure 4.9 reports the decay
with distance of the JSI index for the OCN (Figure 4.9 a) and b)), Cordevole (Figure
4.9 c) and d)), and Tanaro river basin (Figure 4.9 e) and f)), in the exponential dispersal
case (left plots) and exponential-fat tail dispersal case (right plots). As expected, the
pairwise similarity of species among links at a given distance d is greater for the ecological
scenario (b) where the Cauchy component of the dispersal kernel plays an important role.
In Figure 4.9 c) and e) for Cordevole and Tanaro respectively, JSI values in case (a) for
all resolutions basically coincides. The decay of JSI is faster in the case of exponential
kernel (a) implying that local communities at large distances tend to have very different
species composition. In all cases the value of JSI = 1 for d = 0 is not included. For the
OCN there is a relevant difference for the pairwise similarity pattern between resolutions
even in the exponential dispersal case, but the decay of JSI vs d is faster than in case
(b). This behavior could be related to the limited extension and the shape of the OCN
employed. We finally note that simulations with different values of the total number
of individuals, N , and speciation rates, θ, do not produce significant differences in the
computed biodiversity patterns and the above remarks.

4.4 Conclusions

The following conclusions are worth mentioning:

• By employing a metacommunity model for species that act neutrally, the study of
the macroecological descriptors (species richness at local and regional scale, and the
pairwise species similarity) in river basins has shown the validity across resolutions
of a species-area relationship dependent on the different network structures and the
diverse ecological scenarios. In the case characterized by a kernel whose structure
is the combination of an exponential at short distances, and a fat-tail that controls
the dispersal at large distances, the exponent of the species-area (SAR) relationship
assumes quite different values from the case with only the exponential but they
match those found in real landscape. For both the exponential dispersal and the
exponential-Cauchy dispersal kernels a unique regime appears for the SAR;
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Figure 4.8: LSR vs the diameter φ at different resolutions for the exponential (left
plots) and exponential-Cauchy kernel (right plots) for the three river basins: OCN, a)
and b), Cordevole, c) and d), and Tanaro, e) and f). The upper legend specify the color
for each resolution, and the color-bar refers to the insets in each plot showing the LSR
pattern related to each ecological case.
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Figure 4.9: Plots of the average JSI vs d at different coarse-graining resolutions for the
exponential (left plots) and exponential-Cauchy kernel (right plots) for the three river
basins: OCN, a) and b), Cordevole, c) and d), and Tanaro, e) and f).
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4.4 Conclusions

• The results suggest that the local species richness (LSR) and the species’ similarity
index (JSI) depend on the coarse-graining resolution used in the analysis. Thus,
the robust invariance of the geomorphological characters of river basins does not
imply universality in the resulting ecological patterns seen at different resolutions
under the hypothesis of neutral dynamics. However, future work should be focused
on possible scaling relations of these ecological indicators, not only in function of
the resolution but also in function of the scale of analysis;

• The rank-abundance curves shows a resolution-invariant character regardless the
specific value of the diversification rate and for a broad range of dispersal lengths.
In the exponential dispersal case there exists a limited region for dl < 250 in which
the total number of species varies significantly with the resolution and the RA
pattern have many common species with the same abundance. In the exponential-
Cauchy dispersal case the invariance of RA patterns is granted for all values of the
dispersal length. Moreover the number of species at stationary state ST is quite
insensitive to different river basins and ecological scenarios.

Thus we may reinforce earlier suggestions about the importance of the network struc-
ture on biodiversity patterns.

66



Chapter 5

Neutral Metacommunity
Clustering: River Basin and
Landscape Species Patterns

“It is not the strongest of the species that survives, nor the most intelligent that
survives. It is the one that is the most adaptable to change”

Charles Darwin

Moving from the analysis of the spatial distribution of species of real data of fishes and
vegetation in the Mississippi Missouri River System, this chapter studies the clustering
of species that has been simulated on different real and artificial networks and on a 2-D
non-fragmented landscape by a neutral metacommunity model. Power-law distribtions
of the cluster-size have been proved for fishes, big trees and small trees, whose slope
varies underlying different dynamics in the spatial distribution of species. The analysis
on real data for the MMRS evidences that the probability of exceedence of the cluster
size, P (CS ≥ c), is not invariant across different scales, resolutions and coarse-graining
levels. A scale/grain analysis has been performed for the species-area and the species-
individual relationship, the latter as a tool to detect the signature of environmental
heterogeneities in biodiversity patterns. A link is suggeested to exist between the species-
area relationship and the probability distribution of the cluster-size.

5.1 Introduction

Here it is proofed that the neutral metacommunity model adopted is capable to reproduce
the cluster-size distribution for different taxa, fishes and trees of the MMRS. For the
fishes the model developed in Muneepeerakul et al. (2008) has been used that reproduces
simultaneously other four relevant biodiversity patterns, namely the pdf of the local
species richness (LSR), the trend of LSR in function of the distance to the outlet, the
rank-occupancy curve, and the Jaccard similarity index (JSI) that is similarity of LSR
between local communities. As for the trees the fitting of these patterns is obtained in
Konar et al. (2009) (whose model include permeable boundaries, ν in function of the
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5.1 Introduction

distance, and a double exponential kernel for the immigration and speciation), but as
for the cluster-size pattern the simple model for trees described in chapter 3 is deemed
sufficient. It is shown that the only relevant dependence on the cluster-size distribution is
exerted by the dispersal parameter dl. The aim is to understand wheter the clusterization
process of the species depends mainly on the birth-death and dispersal stochasticity of the
neutral model, the topology of the ecosystem, or on the environmental heterogeneities.

In general, aggregation patterns of vegetation benefit from a separate large-tree/small-
tree treatment, that permits also to test the theories of Janzen (1970) and Connell
(1971). Recent observations have shown that even at microscales, microbes tends to
cluster-size according a neutral dynamic, see (e.g., Houchmandzadeh, 2002, 2008).
Power-law distributions of the cluster-size of patches have been analysed diffusely in
previous studies, both numerically and by using empirical data. Scanlon et al. (2007b)
found power-law of the clsuter-size in savannah ecosysystems, Kéfi et al. (2007) found
power-laws for the number of patches in Mediterranean arid ecosystems that is function
of the grazing pressures and aridity, Wu (2004) commented the qualitative trend of the
power-law of the cluster-size in function of the scale, and He and Hubbell (2003) char-
acterized the distribution of species in the Barro-Colorado island usin the percolation
theory. In general clustering is a widespread characteristic of many biotic system, for
example Boer et al. (2008) found aggregation in clusters of forest-fires confirming the
model of Bak et al. (1990) as reviewed also in Zinck and Grimm (2009), Vandermeer
et al. (2008) found clusters of ant colonies in tropical agrosystems, and Marco et al.
(2009) found power-law of cluster-size of cancer cells in analogies to the species dis-
tribution in ecosystems. Various theories and description have been proposed for the
clustering phenomena. (Pascual et al., 2002) used lattice-based models with antagonist
ecological interactions concluding that the clustering is a self-organized process arising
from the interaction of species, He and Hubbell (2003) provided an elegant formulation
using the percolation theory at different scale but without specifying any determinant
mechanism for the phenomena, Plotkin and Muller-Landau (2002) modeled the clus-
tering of conspecific individuals with a negative binomial distribution, that implies a
lognormal species-abundance distribution, in place of the Poisson. Moreover Garcia-
Martin and Goldenfeld (2006), also trying to link the species-area relationship (SAR,
the relationship between the number of species and their habitat area) to the aggrega-
tion of species, argued that the power-law SAR is a robust consequence of a the skewed
species-abundance distribution with higher rarity, together with the observation that
individuals of a given species tend to cluster.

As in Houchmandzadeh (2002); Houchmandzadeh and Vallade (2003); Houchmandzadeh
(2008); Marco et al. (2009) in this chapter it is found that ecological systems display
considerable patchiness and this is cused solely by the dynamics of birth, death and
dispersal. These causes seem to be common to all aggregation phenomena. Of course it
would be absurd to neglet the existence of the influences of the landscape structure and
environemtal heterogeneities on the spatial distribution of species (Young et al., 2001;
Houchmandzadeh, 2002) but their importance is relevant only in particular conditions.
The topology of the cluster-size probability distribution has been studied also in function
of the parameters of the model.

This is in agreement with Etienne and Alonso (2007) that claim that stochasticity
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5.2 Cluster-size Distribution and Species-Area relationship in the MMRS

produced by the neutral drift and dispersal can explain species coexistence. Then the
unified neutral theory of biodiversity (Hubbell , 2001, 2006) is a robust ecological theory
that adds an explanation of the reason for which at the macroecological scale is possible
to detect real patterns without assuming interaction between species. Marco et al. (2009)
evidenced the central role of local speciation in each local community and disperal of
species to other local communities. It is shown here how dispersal limitation or very
large dispersal that leads to saturation of the local communities and null correlation of
LSR, determine the breaking of the power-law structure of the cluster-size distribution.

Other studies in literature motivate the ubiquity and emergence of clustered patterns
to niche features, e.g. soil specialization and species traits (Russo et al., 2007). Quali-
tative studies also exist that use different types of null models (Hausdorf and Henning ,
2007), despite there is some consensus in considering the neutral model different than
standard null models (Gotelli , 2006). Houchmandzadeh and Vallade (2003) elegantly
provide also the analystical solution for the neutral clustering problem in 1-D (that can
be for example the case of the bed of a river or along the shore of an island), in 2-D and
3-D.

The clustering phenomena has been analysed as a function of the topology of the
ecosystem and in particular comparing the dissected ecosystem of river basins vs the open
structure of 2-D landscape with the same shape. The effect of the branching structure
of rivers has also been analysed. The comparison between ecosystems with the same
boundaries seems much more fair than what Muneepeerakul et al. (2007a,b) proposed in
which the comparison was performed using ecosystems with different shape and number
of local communities. Emphasis about the importance of dendritic ecosystems has been
reported, among the others, by Fagan (2002), Morrissey and Kerckhove (2009) for the
maintenance of gene flow, Gastner et al. (2009) studying the transition from connected to
fragmented vegetation patterns due to external changes, and by Lowe et al. (2006); Lowe
(2008) and Grant et al. (2007) for linking animal dynamics and traits to the dispersal in
riverine ecosystems.

The clustering analysis is performed on: 1) different river networks with different elon-
gation ratio (OCN, Cordevole and Tanaro) (Chapter 2) to study the effect of the shape of
the network; 2) different dispersal kernels, namely exponential and exponential-Cauchy
kernel, varying also the speciation rate (Chapter 3); 3) homogeneous and heterogeneous
conditions that imply constant and variable habitat capacity respectively (Chapter 3).
All the above analysis are also performed for different topologies, river network (RN)
and 2-D landscape (2D), in order to understand better the key determinants for the
spatial distribution of species. Also in this chapter the species-area relationship, intro-
duced in chapter 4, has been analysed in function of the probability distributions of the
cluster-size.

5.2 Cluster-size Distribution and Species-Area relationship

in the MMRS

The definition of cluster varies accordingly to the topology of the ecosystem in which the
spatial aggregation of species takes place. In this way the description of the patterns tries
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5.2 Cluster-size Distribution and Species-Area relationship in the MMRS

to understand the responsible processes of the clsutering dynamic. The cluster-size (CS)
is defined as the number of adjacent local communities (DTAs (direct tributary areas) in
the MMRS or grid-cells) in which a species is present. The adjacency criteria is function
of the dispersal mode. Considering the river network a DTA or grid-cell is considered
part of a cluster if it is immediately adjacent along the network with topological distance
equal to one (upstream or downstream). In a 2-D landscape the four-site von Neumann
adjacency criteria is sufficient in the definition of a cluster, so every neighbor of each site
belongs to the cluster if the species considered is present (see Figure 5.1).

It has to be noted that here the employed clustering analysis differs from the usual one
found in literature in most of the previous studies. In each DTA or grid-cell there can be
present more than one individual of the same or of different species, that act neutrally,
due to the metacommunity character of the model. In this way we refer to “neutral
metacommunity clustering”. In most of the already existing studies only one individual
is present for each grid of the domain, both in empirical studies due to the structure of the
data (Scanlon et al., 2007b, e.g.,) and in modeling studies (e.g. in voter models (Pascual
et al., 2002)). The cluster size is evaluated then for each metapopulation resulting from
the metacommunity model. Here a metapopulation include all the individuals of the
same species in all the local communities of the ecosusystem. Conspecific aggregation
appear ubiquous both for fishes and vegetation in the MMRS, and in simulated species-
patterns.

The different dynamics of small and big trees is evidenced by some past studies also
for different patterns, e.g. for the species-area relationship that is itself related to the
clustering process (Plotkin et al., 2000, 2002). The species-area relationship is linked
to the spatial distribution of species, which accordingly to the literature is essentially
governed at multiple scales by birth, death and migration process. The taxonomic and
regional uncertainty in the derivation of the species-area is reported in (Guilhaumon
et al., 2008). In this view it is evident the central role of the dispersal kernel. The species-
area relationship, S ∼ cAz (in the following SAR), was first postulated by Arrhenius
(1921) and subsequently MacArthur and Wilson (1963); MacArthur and Wilson (2001)
considered the power law in light of a dynamic equilibrium of species exchanges between
islands. Figure 5.1 shows the criteria to determine the cluster-size of the species in a
river network and in a 2-D landscape picking up two generic species A and B and some
DTA from the MMRS (see Figure 2.3 in Chapter 2).

Figure 5.2 shows P (CS ≥ cs) that is the probability of exceedence of the cluster-size
(CS) for fishes (Muneepeerakul et al., 2008), big trees (USFS-FIDO , 2009; Konar et al.,
2009) and small trees of the MMRS. The probability of exceedence of the cluster-size
has been computed as in Clauset et al. (2007). The power-law holds for three orders of
magnitude and ǫ is the slope of the assumed probability distribution,

P (CS ≥ cs) ∼ cs−ǫ F (
cs

CSmax
) , (5.1)

where F is a scale-function. The values of ǫ for the data, model and the homogeneous
case are reported in Table 5.3. The slope is lower for big trees than for fishes (higher ǫ)
meaning that is more probable to find larger clusters of big trees. Moreover ǫ of small
trees is lower than for big trees meaning smaller clusters for the former ones. The model
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a) b)

d)c)

River Network 2-D Landscape 

Species A

Species B

e) f )

Figure 5.1: Criteria to determine the cluster size of the species in a River Network and
in a 2-D landscape. a) is the structure of the DTA and part of the real network of the
MMRS; b) is the modeled network with links that connect each DTA; c) represents the
clusters for the species A in the RN case; d) represents the clusters for the species A
in the 2-D landscape; e) represents the clusters for the species B in the RN case; f)
represents the clusters for the species B in the 2-D landscape;
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5.2 Cluster-size Distribution and Species-Area relationship in the MMRS

is capable to reproduce optimally the power-law of the cluster-size as evidenced by the
overlapping of the black cuve (model) on the red curve (data) in figure 5.2. Also in figure
5.2 P (CS ≥ cs) is reported for the case in which the habitat capacity is constant for
all the local communities (see chapter 3). The distribution of CS in the homogeneous
condition does not vary significatively for fishes, instead it becomes milder for trees. The
maximum value of the cluster-size is larger as the probability of observing large clusters.
CSmax is larger for fishes than trees and the homogeneous condition determine larger
CSmax for all the three taxa. The SAR for fishes and trees of the MMRS is shown in
figure 5.3 for real data and in the homogeneous case. Here in the species-area pattern
the influence of the environmental heterogeneities is stronger than on the P (CS ≥ cs)
since z varies a lot in the homogeneous case respect the real one. Further consideration
about the effect of the environmental heterogeneities will be discussed in section 5.5.
With uniform habitat capacity z results smaller than in the real case. Both in figure 5.2
and 5.3 the computation for fishes and trees is at the DTA level.
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Figure 5.2: P (CS ≥ cs) of fishes and trees of the MMRS, data at the DTA level and
model results.
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Figure 5.4 disentangles the structure of P (CS ≥ cs) of big-trees of the MMRS in
function of their occupancy. The most present species are able to determine the structure
of the power-law over the entir range of cluster size as shown in plot b), where the
probability of exceedence of the cluster size for the 10 most common species is reported;
these species shape the entire distribution so they have the largest clusters but also the
smallest ones. The least common species (rare) have only small clusters (plot d)) and
the species with intermediate occupancy shape the middle part of the distribution. Then
in order to estimate ǫ the information needed is only about few most present species,
that can be e.g. very useful for reducing the effort of sampling campaigns. It seems then
only the information about the commonest species is relevant to detect the properties of
the clustering pattern. Collectively species are spatially organized all together forming
a power-law of the probability of occurrence of the cluster size. Therefore this does not
mean fractal scale-invariant patterns of the biodiversity patterns as shown in chapter 4.

P (CS ≥ cs) can be derived also for each single species (intraspecies distribution),
without merging the cluster-sizes of all the species, but as expected is not possible to
defend a power-law of the cluster size due to the limitedness of the number of clusters for
each of them. Therefore the range of the cluster-size, at least for the ten most common
species, ranges over three orders of magnitude but the number of clusters is not sufficient
to defend a power-law. P (CS ≥ cs) is then the interspecies distribution if nothing is
said contrarily.
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Figure 5.3: SAR of fishes and trees of the MMRS, data and model results. The grey
dots represents the actual values of the Species in function of the Area. The scatter of
the model results is less pronounced than data as appears also from the binned dots.
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Figure 5.4: a) P (CS ≥ cs) for big trees of the MMRS: the color is proportional to
the occupancy of the species (blue is most present, red is least present). Cluster size
distribution in the probability of exceedence for: b) the ten most common species; c) the
20-30th most common species; and c) the ten least present species.
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5.3 Scale and Resolution of the Cluster-Size Distribution

and SAR

In this section the dependence of P (CS ≥ cs) and the SAR is analysed in function of the
scale (extent), resolution (grain-size), and coarse-graining level at which the ecosystem
is simulated.

Figure 5.5 shows a preliminary study about the scale invariance of P (CS ≥ cs) and
the SAR in the MMRS using the big trees dataset (USFS-FIDO , 2009; Konar et al.,
2009) at the plot-scale. In order to test the scale invariance the dataset has been analysed
in the whole MMRS and in the southern portion of the basin that includes the outlet
(a region comprising part of the states of Texas, Louisiana, Mississippi, Arkansas, and
Oklahoma) where the spatial cover of plots is quite homogeneous in order to avoid bias
due to the limitedness of data. In order to compute the cluster-size distribution according
the method described in section 5.2, different grids with a decreasing resolution have been
overimposed on the big-trees dataset (see chapter 2). Since the dispersal of trees happens
Euclideanly on a 2-D not dissected ecosystem the only-adjacency criteria (von Neumann
neighboring) has been used: a pixel of the grid is a unit of a cluster if in the plots
relaying into it the species considered is present. For the analysis in figure 5.5 the finest
resolution of the grid (25,000) has been choosen. As it is shown also in table 5.1, in
general both ǫ and z decrease as the extension becomes smaller. Then ǫ and z for the
big trees dataset in the outlet portion of MMRS are smaller than for the dataset in the
whole basin. Further investigations need to be done in order to test better the relation
between P (CS ≥ cs) and the scale of analysis choosing e.g. sub-regions of the MMRS
with uniform but different climate (testing the influence of the dominant climate regime)
and with different plot-density (testing the influence of the dishomogeneity of data). In
table 5.1 and in figure 5.6 the behavior of ǫ, 〈CS〉, and z is reported in function of the
grain-size (resolution) of the adopted grid on the MMRS big-trees dataset. It is evident
how all the three clustering variables increase with decreasing the resolution, that is
from the finest to the coarsest grain-size grid. At the coarsest grid (here 100,000) the
probability to observe large clusters is higher as well as to have an higher mean value of
LSR.

Since the average DTA area is 3900 km2, the 50 km grid creates cells whose extension
if more or less similar to the extension of a DTA of the MMRS. Then P (CS ≥ cs) and
the SAR should lie in between the mentioned patterns of the grids at scales 50 and 100.
Therefore only z at the DTA scale (table 5.3) seems close to z derived at the 50 plot-scale,
not ǫ nor 〈CS〉. Then this puts an hint about the correctness of the method to upscale
the information at the plot-scale to larger scales (e.g. at the DTA level) maintaining
invariant the biodiversity properties or limiting the deviations from the mean values
within a certain tolerance.

Figure 5.7 shows P (CS ≥ cs) for the Tanaro basin in the scenario of exponential
kernel dispersal (a) for the river network (RN), and b) for the 2-D landscape case), and
for the exponential-Cauchy kernel dispersal (c) for RN, and d) for 2-D) at different coarse-
graining scales. The cases implemented are reported in table 3.2, chapter 3. P (CS ≥ cs)
results not invariant across coarse-graining scales. ǫ decreases going from the coarsest
to the finest resolution while 〈CS〉 increases. The probability to have a large number of
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Figure 5.5: P (CS ≥ cs) and SAR for the MMRS at different scales, the whole basin and
the southern part. The analysis is performed at the DTA level.
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Figure 5.6: P (CS ≥ cs) and SAR for the big tree plots-data of the MMRS at different
grid scales.
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Table 5.1: Clustering parameters for BT of the MMRS at different resolutions at the
plots scale.

Variables ǫ 〈CS〉 z(A)

Big Trees

25, 000 −0.75 6.25 0.37
50, 000 −0.59 9.82 0.43
100, 00 −0.56 10.98 0.55
25000 outlet −0.77 5.54 0.29

clusters increases when the spatial resolution increases since the number of pixels in the
grid become higher. In figure 5.7 a) the curves seems collapsing on a same curve due to
dispersal-limitation effects because the disperal paramter is very low in the exponential
kernel dispersal scenario (chapter 4).
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Figure 5.7: P (CS ≥ cs) for the Tanaro basin with exponential kernel dispersal (a) for
RN, b) for 2-D), and with exponential-Cauchy kernel dispersal (c) for RN, d) for 2-D)
at different coarse-graining scales. In b) and d) the 600 and 800 coarse-graining curves
(not reported) lie in between the red and black curves.
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In summary the findings are:

1. P (CS ≥ cs) and the SAR depend on the grain-size (resolution);

2. P (CS ≥ cs) is generally robust but variant across scales (extent) as the the SAR
results dependent on the scale;

3. P (CS ≥ cs) is in general variant across coarse-graining (model) while the SAR is
invariant.
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5.4 Relationship between SAR and Cluster-size Distribu-

tion

In this section the attention is focused in linking the biodiversity patterns of the species-
area relationship and the the exceedence probability of the cluster-size. Specifically the
aim is in relating their scaling exponents, z and ǫ respectively, for different topologies
and shapes of the studied ecosystem (figures 5.8 and 5.9). Also the behavior of z, ǫ and
〈CS〉 has been investigated in function of the dispersal parameter dl.

In general z gets higher for smaller dl (Figure 5.10). This is in fact true comparing
z for the exponential and for any other exponential-fat tail dispersal kernel scenario.
Because in general a decay of z is observed in function of dl, the smaller value of z for
big trees than for small trees both in the homogeneous and heterogeneous case is justified
(Figure 5.8). Also z for fishes is smaller than z for big trees mostly because the dispersal
parameter is higher with the additional determinant of the fat-tail kernel that adds a
long-dispersal character to the dispersal. Table 3.4 in chapter 3 shows the values of the
dispersal parameter adopted for fishes, big trees and small trees.

The z-values for the exponential-Cauchy dispersal scenario are lower than the z-s for
the pure exponential dispersal scenario both in the RN and 2-D case. In figure 5.8 and
5.9 we show a clear trend between z and ǫ distinguishable for different topologies (RN
and 2-D) and ecological scenario (a) and b)). We have also reported the z-ǫ points for
the fishes, big and small trees of the MMRS (F cross, BT and ST squares respectively)
which follow the same trend of the simulated cases but shifted above.

In figures 5.10 and 5.11 z, ǫ and 〈CS〉 for the Tanaro, Cordevole and OCN are
analysed in function of the dispersal parameter dl.
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Figure 5.8: Relationship between z and ǫ for the Tanaro river network (crosses) and the 2-
D landscape (squares) with the same boundaries. The scenario a) is with the exponential
kernel and the scenario b) is for the exponential-Cauchy kernel. Both scenarios have been
analyzed also for θ = 80. The dashed-line ellipses refer to the 2-D case and the solid-line
ones to the network case.
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Figure 5.9: Relationship between z and ǫ for the Cordevole and OCN river network cases
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is with the exponential kernel and the scenario b) is for the exponential-Cauchy kernel.
The dashed-line ellipses refer to the 2-D case and the solid-line ones to the network case.
Cordevole and OCN show lower values of z but higher values of ǫ.
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5.4.1 The Species-Individual Relationship

We have investigated the species-individual relationship (in the following SIR) that joined
with the SAR is a useful pattern to evidence the role of the environmental heterogeneities
which can be relevant in the spatial arrangement of the species in an ecosystem.

Contrarily to Condit et al. (1996) we have found that for different dbh classes (where
dbh stand for diameter breast height that is the diameter measured usually at 4.5 feet
above the ground line on the uphill side of the tree (Burkman, 2005)) the SIR shows
different exponents as the SAR. Condit et al. (1996) shows instead the SIR is a unique
curve for all the dbh classes. This contrasting results can doubtly depend on the wide
range of climatic zones across the MMRS vs the unique predominant climate in the
region analysed in Condit et al. (1996). In Condit et al. (1996), where tropical trees are
particularly analyzed, the different organization of the sampled dataset can be instead
the determinant reason for the discording results: in particular the dbh classes assume
trees with diameter above an increasing threshold, excluding all the others, in a way that
the sampled populations is smaller and smaller. Rather in your study it has been tried
to differentiate different life-stages dividing the tree-population in young and old trees
in function of a rough criteria that is the dbh value.

According to Brown and Gurevitch (2004) the SIR is capable to detect additional
biodiversity information than the SAR, the latter very used in the past as a tool to detect
the effect of climate change on the habitat-loss of species (Thomas et al., 2001, 2004;
Lewis, 2006). Therefore the estimates of the climate changes effects using the SAR have
be proofed to be overestimated (Lewis, 2006) due to the bias between sampled area and
individuals, then the SIR could be a better instruments to forecast the future climate
impact.

Figure 5.12 shows the species-individual relationships for fishes and trees of the
MMRS, data and model results. H∗ is the number of individuals in the sampled area
that, in the case of heterogeneous habitat capacity, does not coincide with the number
of local communities as in chapter 4. Then SAR and SIR are different only in the het-
erogeneous case that is proposed for the fishes and trees of the MMRS: in red is the SIR
for real data, in green is the for the heterogeneous combined case (fishes modeled in a
2-D landscape and trees in RN). In table 5.3 and table 5.4 the scaling slope of the SIR
is reported. It is to notice that z(A) of the SAR is always greater than z(H∗) meaning
that the number of individuals H∗ scales with the area with an exponent greater than
one. In this way the overestimation of the habitat-loss, due to climate change for exam-
ple, using the SAR is diminuished using the SIR. Moreover the effect of climate change
potentially impacts the nummber of individuals rather then the habitat area then the
species-individual relationship is a more correct tool to be used. z(H∗) for the fishes
simulated in 2-D landscape with an Euclidean dispersal is smaller than in the real case,
while for trees modeled in RN it is larger than in the 2-D case.
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Figure 5.10: Clustering properties z, ǫ and 〈CS〉 in function of the mean dispersal length
dl and kernel dispersal for the Tanaro, Cordevole and OCN.
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Figure 5.11: Clustering properties z, ǫ and 〈CS〉 in function of the mean dispersal length
dl, kernel dispersal and θ for the Tanaro river basin

88



5.4 Relationship between SAR and Cluster-size Distribution

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

S
p

e
ci

e
s

S  vs  H* S  vs  A

Fishes

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

S
p

e
ci

e
s

Big Trees

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

S
p

e
ci

e
s

A,   H*

Small Trees

S  vs  H* (RN)

S  vs  H* (RN)

S  vs  H* (2D)

Figure 5.12: Species-Individual relationships for fishes and trees of the MMRS, data and
model results

89



5.5 Effect of Landscape Topology, Shape and Environmental Heterogeneities

5.5 Effect of Landscape Topology, Shape and Environmen-

tal Heterogeneities

In this section the role of the topology (RN vs 2-D), shape, and environmental hetero-
geneities of an ecosystem, has been studied on the spatial aggregation of species.

The homogeneous condition is simulated assuming an habitat capacity that is uniform
and constant for each local community, i.e. the average habitat capacity H in table 3.4
of chapter 3. In the homogeneous case the exponent ǫ of the exceedence distribution of
the cluster-size is greater than in the heterogeneous case meaning a milder power-law,
then larger clusters. Conversely z of the species-area relationship is smaller than in the
heterogenous case. Moreover 〈CS〉 and LSR are higher in the homogeneous than in the
heterogeneous case, both for fishes and vegetation regardless the dbh class.The effect
of the environmental heterogeneities is stronger in the SAR (figures 5.3 5.17) than in
P (CS ≥ cs) (figure 5.16). Figures 5.13, 5.14, and 5.15 reproduce the LSR patterns of
fishes, big trees and small trees of the MMRS in the homogeneous condition, combined
condition (fish-dispersal in 2-D and trees-dispersal in RN), and homogeneous combined
conditions. Table 5.2 reports the values of LSR (mean 〈.〉, min and max) for data (see
Figure 2.14 chapter 2) and model, homogeneous, combined and homogeneous combined
scenario. The homogeneous condition produces a wider range of cluster sizes and the
observed ǫ is larger than in the real case. Big trees are more aggregated than small threes
and fishes (ǫBT > ǫST > ǫF ) despite the maximum value of CS is bigger for the fishes.

In general then it is not true that the river network enhances the power-law behavior
of the cluster-size dsitribution of species. The same robust power-law of the cluster-
size is observed for big/small trees whose spatial patterns, as for the fishes in the river
network, is almost entirely created by the birth-death and dispersal dynamics on the
2-D landscape. Changing the topology produces a drastic change on the power-law
distribution of the cluster-size. If individuals spreads in a 2-D MMRS topology with
the same parameters of fishes, P (CS ≥ cs) shows a milder behavior and the probability
of having large clusters is higher while the probability of having small clusters is lower
or equal than in the real RN MMRS case. This happens because the ratio between
the dispersal parameter of fishes and the mean diameter of the 2-D topology is larger
than the ratio between the same dispersal parameter and the mean diameter of the RN
topology of the MMRS. Instead if individuals spread with the same dispersal parameters
of trees in a RN MMRS topology, the effect is the contrary than the former for fishes in
a 2-D topology: the probability of having large clusters is smaller while the probability
of having small clusters is higher or equal than in the real 2-D case. In the combined
case of trees the dispersal is quite small in relation to the mean diameter of the RN of
the MMRS. The ratio dl/〈φ〉 is defined here as “ecological ratio” and it is extremely
important for the distribution of species in an ecosystem. dl is the dispersal parameter
(chapter 3) and 〈φ〉 is the mean diameter of the ecosystem 2. In the fish case in a
2-D topology the communities tends to be saturated instead in the trees case in a RN
topology the species tend to do not move or to be limited in a small region around the
place where they are introduced. The former is an habitat-capacity limited case while
the latter is a dispersal limited case.

In figure 5.16 is possible to see how the homogeneous condition affects fishes and
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trees weakly, in general producing a power-law that is milder than the real one observed.
Moreover taking out the environmental variability in the combined case (i.e. fishes in
2-D and trees in RN) the effects are much bigger than not considering them in the real
counterpart (fishes in RN and trees in the 2-D topology) since the combined case is
affected by habitat-capacity limitation for fishes, and by dispersal limitation for trees.
This effect is more evident for small trees because the dispersal parameter is lower than
for big trees. In figure 5.16 the blue distributions show the breaking of the power-law
structure for fishes in 2-D and for trees in the RN with homogeneous conditions. For
fishes the power-law scaling behavior of the cluster-size distribution is seriously reduced
to two orders of magnitude, while for big and small trees in the RN the behavior of
the cluster-size distribution is about exponential and no more power-law type. In the
combined case the influence of the environmental heterogeneity is much bigger since the
spatial arrangement of species changes consistently changing the shape of the cluster-size
distribution. Then ecosystems in situation of stauration or limited dispersal are more
fragile when changing in the exogeneous variables happens and this can lead to potential
habitat-loss and species-range reduction.

Then the major responsible factor of the clustering of species is imputable to the
long-distance dispersal coupled with the ecological drift. We conclude than the effect
of the environmental heterogeneity is relevant when the dispersal is low compared to
the mean diameter of the ecosystem (e.g. that is the case of fishes in the 2-D MMRS
landscape and of trees in the RN MMRS landscape). Tables 5.3 5.4 reports the values of
ǫ, 〈CS〉, z(A), and z(H∗) for the fishes and trees of the MMRS, data and model results.
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Figure 5.13: Simulated LSR patterns of fishes and trees in the MMRS with homogeneous
conditions
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Figure 5.14: Simulated LSR patterns for the combined heterogeneous conditions: a) 2-D
with fishes dispersal parameters; b) and c) river network with big/small trees dispersal
parameters respectively.
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Figure 5.15: Simulated LSR patterns for the combined homogeneous conditions: a) 2-D
with fishes dispersal parameters; b) and c) river network with big/small trees dispersal
parameters respectively.
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Table 5.2: LSR of the MMRS, data, heterogeneous and homogeneous model results.

LSR 〈.〉 max min

Fishes

data 46.5 156 0
RNhomog 67.3 132 32
2Dheterog 80.5 236 0
2Dhomog 118.5 139 96

Big Trees

data 24 73 0
2Dhomog 46.3 67 18
RNheterog 2.90 14 1
RNhomog 2.20 11 1

Small Trees

data 17 58 0
2Dhomog 41.2 64 12
RNheterog 2.06 10 1
RNhomog 2.20 7 1
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What is then the meaning of small values for ǫ more extensively? Small values of the
slope of the power-law cluster-size distributin are in general associated with high values
of z, meaning that for the same area the number of species found is larger, implying
higher local species richness on average. In the homogenous case ǫ is higher and z is
lower than the real case but the number of species found in the same area is larger,
therefore in general there is not a direct relation between 〈LSR〉 and z. The number of
species for small areas found in the homogenous case is higher than in the heterogenous
case. Then the increase of S with A is milder because the individuals of the species are
more uniformly distributed. The SAR is shown in figure 5.3 for real data and in the
homogeneous cases.

In figure 5.17 the SAR is reported for the combined and the homogeneous combined
cases. In the combined case z is lower for fishes and higher for trees than in the real case,
as ǫ is higher and lower respectively both for the two taxa than in the real case. The
combined homogeneous case here is not so different than the combined heterogeneous
case, evidencing the robustness of the species-area relationship. Figure 5.18 proposes z,
ǫ, and 〈CS〉 in function of the dispersal parameter for fishes and trees of the MMRS, data
and model results. Table 5.5 presents a qualitative overview of the effects of the changing
in the topology and in the environmental condition (taking out the heterogeneituies) on
some biodiversity descriptors.
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Figure 5.16: P (CS ≥ cs) of fishes and trees of the MMRS, data at the DTA level and
homogeneous, heterogenous and combined (fishes in 2-D, trees in RN) model results.
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Figure 5.17: SAR of fishes and trees of the MMRS, heterogeneous, homogeneous and
combined model results.
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Table 5.3: Clustering Properties of the MMRS, data, heterogeneous and homogeneous
model results.

Variables ǫ 〈CS〉 z(A) z(H∗)

Fishes

data −0.93 6.27 0.45 0.35
model −0.92 6.67 0.46 0.36
homogeneous −0.88 7.00 0.40 0.40

Big Trees

data −0.49 14.03 0.53 0.40
model −0.50 14.80 0.53 0.42
homogeneous −0.53 26.04 0.36 0.36

Small Trees

data −0.67 9.56 0.72 0.42
model −0.66 10.20 0.73 0.43
homogeneous −0.55 27.16 0.40 0.40
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Table 5.4: Clustering Properties of the MMRS, heterogeneous and homogeneous com-
bined model results (fishes dispersal in 2-D and trees dispersal in RN.

Variables ǫ 〈CS〉 z(A) z(H∗)

Fishes 2-D

heterogeneous −0.54 9.7 0.41 0.31
homogeneous −0.33 9.35 0.26 0.26

Big Trees RN

heterogeneous −1.32 6.07 0.85 0.58
homogeneous −1.80 5.04 0.81 0.81

Small Trees RN

heterogeneous −1.25 4.97 0.89 0.61
homogeneous −2.28 2.98 0.88 0.88
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Figure 5.18: z, ǫ and 〈CS〉 in function of dl, for the MMRS data and model results.
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Table 5.5: Sensitivity of the clustering properties of fishes and trees in the MMRS
changing topology and in the homogeneous conditions.

F BT ST

Topology

ǫ ↑ ↓ ↓
〈CS〉 ↑ ↓ ↓
z ↓ ↑ ↑
〈LSR〉 ↑ ↓ ↓
ST ↑ ↑ ↑
Homogeneous condition

ǫ ↑ ≈↓ ↑
〈CS〉 ↑ ↑ ↑
z ↓ ↓ ↓
〈LSR〉 ↑ ↑ ↑
ST ↑ ↑ ↑

In figures 5.19 and 5.20 we show the importance of the branching structure of the
river network that is the cause of the spatial dissection of the ecological habitat in riverine
ecosystems. The change in topology (RN to 2-D or viceversa) allows to study the effect
of the fragmentation exerted by the river network using the same dispersal parameters.
Here the term spatial fragmentation means a dissection of the ecosystem that is not
necessarily related to a loss of individuals as mostly reported in the ecological literature,
where fragmentation is associated to habitat-loss. Then here the meaning is only as a
generic geometrical change of the geometry. The difference consists solely in the way
in which the species spread in the ecosystem: along the network in the RN case, and
everywhere in the space (Euclidean paths) in the 2-D case. Considering the 2-D case if
the dispersal parameters are kept the same as the RN case, the dispersal is facilitated due
to the lower diameter of the 2-D topology (see Figure 2.5, Chapter 2). For this reason
in the following the 2-D case has been studied in which dlRN/φRN = dl2D/φ2D, so the
dispersal ability is the same in the fragmented and non-fragmented landscape, but still
the geometry (2-D) is different than the RN case. In this way it is possible to detect also
the importance of the branching structure of the river network i.e. the dendritic effect.
The branching degree of a river network is for example captured by the fractal dimension
of the rivulets (e.g. see Chapter 6 and Rodriguez-Iturbe and Rinaldo (1997)). We have
performed the experiment only for the exponential kernel dispersal scenario (case a)
Table 3.2 in Chapter 3). Then considering the actual values of the diameters and the
equivalence above of the ecological ratios between topologies, the dispersal parameter of
the 2-D case with an equivalent dispersal ability of the RN case is dl2D eq = 315 for the
choosen value of the model. In particular we have found the following relationships true:

• z2D < z2D eq < zRN ;

• ǫ2D > ǫ2D eq > ǫRN ;
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• 〈CS〉2D > 〈CS〉2D eq > 〈CS〉RN ;

• 〈LSR〉2D > 〈LSR〉2D eq > 〈LSR〉RN .

For the regional species richness (RSR) that is the number of species in an area
A and the Jaccard similarity index (JSI) that is the similarity in local species richness
(LSR) between local communities, the same inequality of 〈LSR〉 holds for the three cases
analysed above (topologies RN , 2−D, and 2−Deq that is the 2−D topology with the
same ecological ratio of the RN case), instead for the γ-diversity (i.e. the total number
of species ST ) the inequality is like for z among cases. Table 5.6 reports ǫ, 〈CS〉, LSR,
JSI and RSR for the Tanaro RN, 2-D and 2-D RN dispersal-equivalent case.
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Figure 5.19: LSR pattern in the exponential kernel dispersal for: a) Tanaro RN case; b)
Tanaro 2-D landscape; c) Tanaro 2-D equivalent case with the same dl/〈φ〉 ratio of the
RN case. The grain size is 1000 m.
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Figure 5.20: P (CS ≥ cs) for the Tanaro basin at CG = 1000 with exponential kernel
dispersal in the network case (green), 2-D case with the same dispersal parameter (red)
and in the 2-D case with the same dl/〈φ〉 ratio of the RN case.
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Table 5.6: ǫ, 〈CS〉, LSR, JSI and RSR for the Tanaro RN, 2-D and 2-D RN dispersal-
equivalent case

RN 2D 2Deq

ǫ −0.946 −0.637 −0.697
〈CS〉 7.587 13.663 12.662
z 0.483 0.279 0.382
〈LSR〉 25 65.23 39.91
LSRmin 8 41 21
LSRmax 48 83 61

〈JSI〉 0.17 0.45 0.28
JSImin 0.0026 0.25 0.0704
JSImax 0.7977 0.7347 0.7279

〈RSR〉 47.8 89.76 66.05
RSRmin 8 41 21
RSRmax = ST 322 284 311

Here the effect of the shape of the ecosystem, that is dictated by the shape of its
boundaries, is investigated in detail. The three basins used in the scale-invariance study
in chapter 4, namely the optimal channel network (OCN), and the two real river basins
Cordevole and Tanaro. Regardless the topology (RN or 2-D) the exponent z of the SAR
is higher for the Tanaro than the Cordevole and the OCN. Also the Tanaro exhibits
the lowest value of ǫ meaning that is less probable to find large clusters in elongated
basins. This is also proofed by the lowest value of 〈CS〉 for the Tanaro. Cordevole
and OCN present an elongation ratio ratio taht is higher than the Tanaro. z for the
Cordevole is higher than for the OCN. The differences in the clustering patterns of the
river basins analysed is imputable to the elongation of the river network that is higher in
the Tanaro than for the Cordevole. The OCN that is square has null elongation, that is
elongation ratio ratio equal to one equivalently. Further investigations will explore deeper
the elongation effect on the biodiversity patterns adopting OCNs with different aspect
ratio and plotting the biodiversity and clustering patterns in function of the elongation
ratio. The total number of species, ST or γ-diversity, seems to be not affected by the
shape of the river basin nor by the topology (RN or 2-D). The LSR assumes the largest
value in the OCN since it has the smallest dimension among the compared basins that
means a lower number of local communities which on average have an higher number
of individuals. Then a proper normalization based on the total extension of the basin
would make fair the comparison between the networks in study. Table 5.7 reports the
results of the analysis of the clustering features (ǫ, 〈CS〉, z) and of some macroecological
variables (ST , LSR, JSI, RSR) in function of the river network: O, C and T are OCN,
Cordevole and Tanaro respectively.
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Table 5.7: Analysis of the clustering features and of the macroecological variables in
function of the river network: O, C and T are OCN, Cordevole and Tanaro respectively.

RN 2D

ǫ T 0 C 0 O T 0 C 0 O
〈CS〉 T 0 C . O T 0 C . O
z T 1 C 1 O T 1 C 1 O
ST T ≈ C ≈ O T ≈ C ≈ O
LSR T 1 C < O T 1 C < O
JSI T & C < O T & C < O
RSR T & C < O T & C < O

5.6 Effect of the Dispersal

In this section the role of the dispersal is further analyzed on shaping the spatial distri-
bution of species that affects all the biodiversity patterns. The clustering patterns are
particularly considered in order to detect, possibly, some transitions between clumped,
random and uniform distributions of species in the ecosystems analysed.

5.6.1 Global and Nearest Neighbor dispersal

The results presented here are obtained using the model described in section 3.2.2 of
chapter 3 for the RN and 2-D topologies in the Tanaro boundaries. The global and the
nearest-neighbor dispersal are implemented. The global dispersal (indicated with G)
case represents the extreme case in which all the local communities tend to be saturated
because the species can travel in the whole ecosystem, then for this reason the global
dispersal scenario is referred as the “habitat capacity limitation” case. The nearest
neighbor dispersal case (NN) is not the extreme case of the “dispersal limitation” scenario
since the the mean dispersal length is equal to the grain-size that can be a very large
value. Instead the dispersal parameter can be smaller than the grain-size representing
“local dispersal” scenarios as for example shown in chapter 4. Basically the nearest
neighbor dispersal case can potentially reproduce a local dispersal situation but not surely
and extreme case of saturation for limited dispersal in which species do not move from
their habitat capacity. The definition of “local dispersal” then need more specification
because it has to be related to the scale and resolution of the ecosystem studied. It is
important to notice that both the G and NN dispersal kernel cases do not depend on
the dispersal parameter dl (equations 3.8 and 3.9 in chapter 3).

Figure 5.21 shows P (CS ≥ cs) and the SAR for the the global and nearest-neighbor
dispersal cases. The differences arises between the RN and 2-D topologies in both the
dispersal cases. The power-law of the cluster-size is well developed in the RN global
dispersal case and in the 2-D nearest neighbor dispersal case. P (CS ≥ cs) in the 2-D
global dispersal case has a limited scaling range because an habitat-capacity limitation
effect since the diameter of the Tanaro 2-D landscape is much smaller than of the RN
topology counterpart; on the other side P (CS ≥ cs) in the RN nearest-neighbor dispersal
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case is well-developed without suffering any dispersal limitation effect and the number
of species ST tends to be equal to the number of local communities. The species-area
relationship for the global dispersal case is substantially the same for the RN and 2-D
topologies meaning the same spatial organization of species. Then in the global dispersal
scenario the LSR patterns are expected to be very similar and the difference is on the
number of clusters of a given dimension CS, that leads to a different power-law of the
cluster size. In the NN dispersal case z for the RN topology is larger than for the 2-
D case meaning a more homogeneous pattern and larger LSR for the latter topology.
Figure 5.22 shows the occupancy-rank and rank-abundance curves for the global and
the nearest neighbors scenarios for the Tanaro basin in the RN and 2-D topology. The
occupancy-rank is concave downward in both topologies for the global dispersal meaning
the same spatial organization and many common species (the initial plateau), while it is
definitely concave upward for the RN NN dispersal case meaning few common species.
The rank-abundance curve instead does not vary so much among cases.
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Figure 5.21: P (CS ≥ cs) and SAR with the Global (g) and Nearest Neighbor (nn) kernel
dispersal for the Tanaro river network at CG = 1000
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Figure 5.23 reports the JSI for each case analysed. It is evident how the average
distance between local communities (d is the distance between local communities) is
larger in the RN topolgy. The similarity between local communities is larger in the 2-D
than in the RN case both for the NN and G dispersal case. The JSI for the global
dispersal case is basically constant for every d but the average value is higher for the 2-D
topology than for the RN, while in the nearest-neighbor dispersal case the decay of the
JSI is much faster for the RN case. Figure 5.24 shows the pdfs of LSR, JSI and RSR
in the NN and G dispersal cases. It appears that the differences between the RN and
the 2-D landscape topologies are evident only in the nearest-neighbor case in which the
2-D landscape presents higher LSR, JSI and RSR. LSR, JSI and RSR are also higher on
average in the global dispersal case than in the nearest-neighbor case but the range of
values is much more limited. The spatial patterns of LSR are reproduced in Figure 5.25.
The RN and 2-D topologies are undistinguishable in the global dispersal case, instead
in the NN dispersal case the LSR assumes high values along the main network (like to
reproduce riparian vegetation) in the RN topology, and high values in the middle of the
landscape in the 2-D topology. For the 2-D topology the decay of LSR from the local
community with the lowest diameter decays circularly as a consequence of the Euclidean
dispersal in all the directions. Table 5.8 reports the numerical values of the clustering
features and some biodiversity properties of the G and NN dispersal cases investigated.
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neighbors models in the Tanaro river basin.
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Figure 5.23: JSI for the global and nearest neighbor kernel dispersal simulations of the
Tanaro river network. a) RN global; b) 2-D global; c) RN nearest neighbors; d) 2-D
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Figure 5.24: pdfs of LSR, JSI and RSR for the global and nearest neighbor model for
the Tanaro river basin and associated 2-D landscape
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Figure 5.25: LSR patterns for Global and Nearest Neighbor Dispersal experiments for
the Tanaro river network. a) RN global; b) 2-D global; c) RN nearest neighbors; d) 2-D
nearest neighbors. Not the same color range for the patterns.
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Table 5.8: Biodiversity and clustering features of RN and 2-D landscapes in the global
and nearest neighbor kernel dispersal

Global Nearest Neighbor
Topology 2D RN 2D RN

ǫ −0.24 −0.70 −0.59 −0.80
〈CS〉 7.64 3.78 20.52 11.03
z 0.19 0.19 0.26 0.46
LSRmax 119 110 86 53
LSRmin 90 86 43 16
〈LSR〉 106 98 69 35

5.6.2 On the Role of the Mean Dispersal Length

In this section is investigated the behavior of the biodiversity pattern in function of
the main dispersal parameter dl. Figure 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, and 5.32
report the biodiversity patterns of the power-law of the cluster-size, the species-area
relationship, the range-rank curve, the rank-abundance curve, the pdf of the LSR, JSI
and RSR respectively, for the ecological scenario a and b (see chapter 3 table 3.2) in
the Tanaro basin at coarse-graining level CG = 1000 varying the dispersal parameter
dl in a wide range of values. Table 5.33 reports the qualitative behavior of clustering
features and some biodiversity patterns in function of the dispersal parameter dl, the
fat-tail Cauchy dispersal parameter b, and the biodiversity parameter θ. In appendix A
the same biodiversity patterns here studied are reported for the case with exponential-
Cauchy kernel dispersal and biodiversity parameter θ = 80. Table 5.9 compares the
clustering features, ǫ, 〈CS〉, and z between the exponential and exponential-Cauchy
kernel dispersal scenarios. P (CS ≥ cs) of the river network has a more straight/concave
downward trend than P (CS ≥ cs) of the 2-D landscape considering the same dispersal
scenarios. Also P (CS ≥ cs) for the 2-D landscape presents in general an higher cutoff so
the scaling region is smaller than in the RN case, especially in the exponential-Cauchy
case due to the habitat-capacity limitation phenomena. The exponential distribution of
the power-law of the cluster-size is observed only for very small values of dispersal length
in the ecological scenario a both for θ = 40 and θ = 80. It is also important to note that
for values of dispersal parameter greater than the grain size for which the ecosystem is
modeled (in this case 1000) there is a change in the power-law behavior of the cluster-
size distribution (reddish lines in figure 5.26). This abrupt change also happens for other
biodiversity patterns. The SAR in figure 5.27 seems to be a more robust patterns than
P (CS ≥ cs). z decreases for increasing dl, and for values of the dispersal parameter
larger than the grain-size of the simulated ecosystem it becomes quite stable around
small values not found in reality. In Figures 5.10 and 5.11 the values of z (of the SAR
of figure 5.27) and ǫ (of P (CS ≥ cs) in figure 5.26) in function of dl are reported. The
range for z is between 1 when dl = 1 that means basically no dispersal (in this case
ST is equal to the number of local communities and a perfect linear 1:1 correspondence
between abundance and occupancy occurs) and 0.20 when dl is very large compared
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to the grain size (e.g. here for dl = 20, 000 m). The range of the common z-values
observed in nature is between 0.1 and 0.6. In figures 5.28 and 5.29 the range-rank and
the abundance-rank patterns are analysed. For the RN, ST that is the maximum range,
generally decreases while increasing dl, on the contrary for the 2-D landscape. For low
values of dl (below the grain-size) the shape of the range rank is concave upward while
the abundance-rank presents a plateau meaning that there is a multitude of species
with the same abundance. For values of dl greater than the grain-size the range-rank
curve is concave downward and the abundance-rank assumes the common shape with
the upward concavity implying that most species are rare (phenomena called rarification
in Muneepeerakul (2007)). Figure 5.30, 5.31, and 5.32 show the pdf of LSR, JSI and
RSR respectively. All these patterns present a lager mean value while increasing dl and
there is an abrupt jump of the pdfs for dispersal values larger than the grain-size. This
happens also to P (CS ≥ cs). The pdf of the JSI is well fitted by a gaussian function
with the only exception for low values of the dispersal in the exponential dispersal case
in which pdf(JSI) assumes the shape of a gamma distribution approximatively. Actually
for extremely local values of mean dispersal length the shape of the pdfs of the JSI looks
like a Pareto distribution as the pdf of the RSR independently of dl.

Finally figures 5.33 and 5.34 report ST (γ-diversity), and the average values of LSR,
JSI and RSR, in function of dl for the RN and 2-D topologies in the exponential kernel
dispersal case (table 3.2 in chapter 3). In table 5.11 there is a final comparison of the
clustering and other macroecological variables until here cosnidered between the RN and
2-D landscapes. The results hold for both the dispersal kernels used.
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Figure 5.26: Numerical results of P (CS ≥ c) for the Tanaro river basin for the expo-
nential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b) 2-D
exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
The slope of the grey line is −0.5.
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Figure 5.27: Numerical results of the SAR for the Tanaro river basin for the exponential
and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b) 2-D exp., c)
RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80. The slope
of the grey line is −0.5.
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Figure 5.28: Numerical results of the Range-Rank for the Tanaro river basin for the
exponential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b)
2-D exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
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Figure 5.29: Numerical results of the Abundance-Rank for the Tanaro river basin for the
exponential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b)
2-D exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
The slope of the grey line is −0.5.
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Figure 5.30: Numerical results of the pdf(lsr) for the Tanaro river basin for the expo-
nential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b) 2-D
exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
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Figure 5.31: Numerical results of the pdf(jsi) for the Tanaro river basin for the expo-
nential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b) 2-D
exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
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Figure 5.32: Numerical results of the pdf(rsr) for the Tanaro river basin for the expo-
nential and exponential-Cauchy dispersal increasing dl (see legend): a) RN exp., b) 2-D
exp., c) RN exp-Cauchy, d) 2-D exp-Cauchy, e) RN exp. θ = 80, f) 2-D exp. θ = 80.
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Table 5.9: Comparison of the clustering features in the the RN and 2-D landscapes in
the exponential and exponential-Cauchy kernel dispersal

RN 2D

ǫ b 0 a b 1 a
〈CS〉 b . a b 1 a
z b 0 a b 0 a
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Table 5.10: Analysis of the clustering and macroecological properties increasing the
dispersal parameter and speciation. The results are mainly based on the simulation on
the Tanaro river network.

RN 2D

Parameter dl

ǫ ↑ ⇈

〈CS〉 ≈↑ ≈↑
z ↓ ↓
ST ↓ ↓
LSR JSI RSR ↑ ↑ ↑ ↑ ↑ ↑
Parameter b

ǫ ↓ ↑
〈CS〉 ≈↓ ≈↑
z ≈↓ ≈≈↓
ST ≈↑ ≈↑
LSR JSI RSR ↑ ↑ ↑ ↑ ↑ ↑
Parameter θ

ǫ ↓ ↓
〈CS〉 ↓ ↓
z ↑ ↑
ST ↑ ↑
LSR JSI RSR ↑ ↓ ↑ ↑ ↓ ↑
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Table 5.11: Comparison of the clustering and macroecological variables between the RN
and 2-D landscapes. The results hold for both the dispersal kernels used.

Topology

ǫ RN 0 2D
〈CS〉 RN 0 2D
z RN & 2D
LSR RN ≈0 2D 1

JSI RN ≈0 2D
RSR RN ≈0 2D 2

ST RN 1 2D 2

1 RN ≈0 2D is
more evident in
the exponential-
Cauchy kernel
dispersal case

2 ST is lower for the
RN than the 2-D
only in the nearest
neighbor dispersal
case

5.7 Interrelationships between Taxa

In this section some conclusions about the validity of the dispersal values used are traced.
The relationship between the LSR of trees and fishes has been also analysed. Can these
relationships tell us about the interactions between organisms of different taxa? Also
combining to the data of fishes and trees of the MMRS other data from literature possible
allometric scaling relationships between dispersal length, mass, lifespan of species and
the slope z of the species-area relationship have been investigated. Figure 5.35 shows the
relationship between the LSR of fishes and trees of the MMRS. The relationship is quite
strong between trees (slope = 0.77) and also quite surprisingly it holds between fishes
and big trees, meaning that despite the different topologies in the dispersal behavior of
different taxa and their sensitivity to different environmental stressors, the pattern of
LSR is not completely different. In table 5.36 there is a collection of data, i.e. mean
dispersal length dl, mass m, lifespan T and exponent z of the SAR for different taxa
(see references in the caption of the table), including also those of fishes and trees of
the MMRS. The motivation of this analysis is to put in evidence how large is the range
of dispersal values among taxa, in part to justify the large range of dl used in the
simulations. As second motivation, not less important than the former, even though
the dispersal parameter dl used in the metacommunity model is not the real average
dispersal value that fishes and seeds of trees adopt in their dispersal (see chapter 3), it is
interesting to compare the values used in the simulations with the values of other taxa
trying to establish allometric relationships. It has been mentioned that species tend to
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Figure 5.33: Behavior of ST , 〈LSR〉, 〈JSI〉, and 〈RSR〉 in function of dl for the Tanaro
RN case with exponential kernel dispersal (case a) table 3.2, chapter 3).
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Figure 5.34: Behavior of ST , 〈LSR〉, 〈JSI〉, and 〈RSR〉 in function of dl for the Tanaro
2-D case with exponential kernel dispersal (case a) table 3.2, chapter 3).
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5.7 Interrelationships between Taxa

adopt long-distance dispersal strategies. Therefore long-dispersal should be defined in
function of the size of the organism (that is a surrogate of the mass or body-size) rather
than compared to the size of the ecosystem that varies also in function of the study
performed. Since size should scale like length3 there might be other factors at play
in the allometric scaling unless the scaling exponent is equal to this factor. Thinking
about the long-distance dispersal it is ensured by a dispersal kernel that is “fat tailed”.
The dispersal kernel is the probability density of moving a particular distance from your
starting point and “fat tailed” means that the long distance tails of the distribution
decay slowly such that the variance of the dispersal kernel does not converge and is
therefore undefined (or infinite). This means that mathematically at least, is possible
to have long distance dispersal events, but still the mean dispersal distance could be
very small. In this case long distance dispersal is defined based on the overall shape of
the dispersal kernel. The choice of the exponential-Cauchy distribution appears then
the most appropriate even though there are many types of dispersal kernels that ensures
long-distance events (Clark et al., 1999). In Figure 5.36 it is shown how the relationships
between dl vs mass and vs lifespan do not hold. This can be both for the limited data
used or for the normal fluctuations due to the large variation of dl for the same mass
m and lifespan T of species (e.g. seeds with equal mass transported by animals are in
general dispersed at smaller distances than if dispersed by wind). Indeed we find quite
nice relationships between mass and lifespan and more interestingly between the z of the
species-area curve and the lifespan. The scaling exponent found between 1/z vs ln(T ) is
-2.00 that is close to the exponent found in literature (Pigolotti and Cencini , 2009). In
the log-log plot the allometric relationship between z and T presents an exponent equal
to 0.26.
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Table 5.12: Mean dispersal length dl, mass m, lifespan T and exponent z of the SAR for different taxa. For unicellulars see
Houchmandzadeh (2008); Pigolotti and Cencini (2009), for seeds dispersed by birds Schurr et al. (2009), for seeds dispersed by
wind Crocker (1938); Nathan et al. (2001, 2002a, 2008b), for seeds dispersed by elephants Blake et al. (2009), for earthworms
Edwards and Bohlen (1977), for Zebra mussel Stoeckel et al. (1997), for butterflies Gilbert and Singer (1975), for Snowy plovers
Stenzel et al. (2007), for elephants Mennell and Scholes (2008); Blake et al. (2009).

Case dl (km) m (g) T (days) z

Unicellulars (Dictyostelium discoideum) 2 × 10−5 − 4 ÷ 5 0.05
Seeds (birds dispersal) 0.1 ÷ 1 10 ÷ 12 180 ÷ 36500(191625) 0.3 ÷ 0.7
Seeds (wind dispersal) 0.02 ÷ 0.04 10 ÷ 12 180 ÷ 36500(191625) 0.3 ÷ 0.7
Seeds (elephants dispersal) 5 ÷ 10 10 ÷ 12 180 ÷ 36500(21900) 0.25
Earthworms 0.02 11.2 365 − 1890 0.08
Zebra mussel (MMRS) 100 ÷ 1600 1 ÷ 5 3 ÷ 90 −
Fishes (MMRS) 82 2000 ÷ 5000 2920 ÷ 5475 0.45
Butterflies 0.02 ÷ 1000 0.003 ÷ 1.5 20 ÷ 182 0.1
Snowy plover 10 ÷ 50 30 ÷ 57 730 ÷ 1095 0.125
Mangabeys 1.2 ÷ 2.2 3000 ÷ 20 × 103 6570 ÷ 10950 −
Elephants 40 ÷ 57 2300 × 103 ÷ 7000 × 103 25000 ÷ 29200 −
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Figure 5.36: Relationships between the dispersal length, lifespan, mass and the exponent
z of the species-area relationship for the taxa listed in Table 5.36. a) dl vs m; b) dl vs
T ; c) m vs T ; d) 1/z vs ln(T ) (in inset z vs T ).
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5.8 Conclusions

In the present chapter it has been proofed the following:

• A robust but not trivial relationship between z and ǫ dependent on the ecosystem
topology and shape and on the dispersal kernel structure;

• Purely random distributions of organisms have a flat pair correlation function that
is like a constant JSI (see chapters 2 and 4) in the ecological literature. In a
metacommunity P (CS ≥ cs) is more sensible to the shape of the occupancy-rank
pattern rather then the rank-abundance pattern although they are related. The
abundance-distribution like Preston’s lognormal (Preston, 1948) is not the con-
ditio sine qua non the clustering is not observed. P (CS ≥ cs) is influenced by
the dispersal mechanism (that include the value of the dispersal parameter) com-
bined with the topology. The environmental heterogeneities that affect the number
of individuals in each local communities have an influence when the dispersal is
extremely local (so when the speciation is the prevalent mechanism) or when the
dispersal is too much global that means random spreading of species. Moreover the
power-law structure of P (CS ≥ cs) does not mean fractal distribution of species.
The correlation function is not needed to be power-law type as demonstrated by
the global dispersal case in a river network. The power-law structure of the SAR is
less sensible to the dispersal parameter until a minimum clustering is guaranteed;

• The heterogeneity of the environmental conditions leads to a lower value of ǫ, that
means steeper power-law distributions of the cluster size, then smaller clusters than
in an ideal homogeneous scenario. Conversely z of the species-area relationship is
higher in the real case than in the homogeneous case. Moreover 〈CS〉 and 〈LSR〉
are lower in the case with heterogeneities than with the homogeneous conditions.
In the homogeneous condition the power-law of CS is still observed;

• The power-law structure of the cluster-size is very dependent on the topology and
on the shape of the ecosystem. The slope ǫ varies but the shape of P (CS ≥ cs)
is almost the same both for RN and 2-D. The power-law of CS shows that in the
2-D case the number of small clusters is lower (higher lower bound of CS so bigger
unreliable region due to the lower number of clusters) than in the RN counterpart,
then the scaling region of P (CS ≥ cs) in the 2-D case is slightly narrower. The
finite size-effects are the same in the RN and 2-D case.

• zF < zBT < zST , ǫF < ǫBT > ǫST , and 〈CS〉F < 〈CS〉BT > 〈CS〉ST . Aggregation
is stronger for larger dbh classes (big trees) if as a measure of aggregation of species
ǫ and 〈CS〉 are considered: larger clusters are observed for large-diameter trees on
the contrary, of what has been found for tropical forest e.g. by (Li et al., 2009).
Rare species are more strongly nested than abundant species;

• The elongation produces high values of z, low values of ǫ, and 〈CS〉. Therefore the
elongation enhances the LSR due to low values of the mean diameter in elongated
networks;
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• The dependence of the power-law of the cluster-size on the scale, resolution and
coarse-graining level on which the ecosystem is modeled. Table 5.13 reports a
synthesis of the study about the scale and resolution in variance of biodiversity
patterns and geomorphological variables. The SAR is only invariant across coarse-
graining levels. The dependence on the resolution of the JSI and of the means
RSR is because the former is a pairwise comparison on spatial patterns that are
not the same across resolution, while the latter is an average measure among areas
of increasing dimension diminishing the resolution. It is then very interesting how
in geomorphology many quantities, like the drainage area A and the upstream
lengths L are independent of scale, resolution and coarse-graining level, and result
also universal meaning that their average value is very robust for the majority of
river basins all around the world.
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Table 5.13: Synthesis paper of the macroecological variables in function of the scale, res-
olution and coarse-graining: (I) means invariant and (V) means variant (or dependent).
In grey the geomorphological variables.

Scale Resolution CG (model)

P (CS ≥ cs) V V V
SAR V V I
〈LSR〉 V V V
JSI V V V
〈RSR〉 V V I
A I I I
L I I I
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Chapter 6

The Probabilistic Structure of the
Distance Between Tributaries of
Given Size in River Networks

“Philosophy [nature] is written in that great book which ever is before our eyes – I mean
the universe – but we cannot understand it if we do not first learn the language and

grasp the symbols in which it is written. The book is written in mathematical language,
and the symbols are triangles, circles and other geometrical figures, without whose help
it is impossible to comprehend a single word of it; without which one wanders in vain

through a dark labyrinth”
Galileo Galilei

We analyze the distribution of the distances between tributaries of a given size (or of
sizes larger than a given area) draining along either an open boundary or the mainstream
of a river network. By proposing a description of the distance separating prescribed
merging contributing areas, we also address related variables, like mean (or bankfull)
flowrates, channel and riparian areas width, which are derived under a set of reasonable
hydrologic assumptions. The importance of such distributions lies in their ecological,
hydrologic and geomorphic implications on the spreading of species along the ecological
corridor defined by the river network and on the propagation of infections due to water-
borne diseases, in particular in view of exact theoretical predictions explicitly using the
alongstream distribution of confluences carrying a given flow. Use is made here of real
river networks, suitably extracted from digital elevation models, Optimal Channel Net-
works (OCNs) and exactly solved tree-like constructs like the Peano and the Scheidegger
networks. The results obtained redefine theoretically in a coherent and general manner
– and verify observationally – the distribution function of the above distances and thus
provide the general probabilistic structure of tributaries in river networks. Specifically,
we find that the probability of exceedence of the alongstream distance d of tributaries
of size larger than a has the explicit form P (≥ d) = exp (−Cd/aH/(1+H)) where C is
a constant that depends on the choice of boundary conditions and H ≤ 1 is the Hurst
exponent.
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6.1 Introduction

The role of the structure of river networks in modeling hydrochory (the spreading of
species along ecological corridors), human-range expansions (i.e. predicting how popula-
tions migrate when settling into new territories), or the spreading of water-borne infec-
tions has been recently recognized through quantitative models of dispersion along fractal
networks coupled with proper reactions at their nodes (Méndez et al., 2004; Méndez et al.,
2004; Campos et al., 2006; Muneepeerakul et al., 2007b,a; Bertuzzo et al., 2007). An es-
sential ingredient therein is the fact that settlers, infective agents or colonizing species
do not occupy all the territory isotropically, but rather follow river patterns as general
corridors and pathways. Among the key results, it was argued in a quantitative manner
that landscape heterogeneities play an essential role in several physical and biological
processes of great social, biological or physical importance that involve river basins as
substrate (Ammerman and Cavalli-Sforza, 1984a; Holmes, 1993; Fort and Méndez , 1999;
Campos et al., 2006; Muneepeerakul et al., 2007b,a; Bertuzzo et al., 2007).

One interesting corollary of any analysis of migration/spreading fronts is the central
role of the network structure acting as the substrate for wave propagation. Specific
and reliable structural models thus need to be employed, as well as the probabilistic
description of key random variables affecting the process. Empirical representations of
natural forms in the river basin and their mathematical models, possibly addressing
their fractal nature, have been thoroughly studied in the past (see e.g., Rodriguez-Iturbe
and Rinaldo, 1997). We are specifically concerned here with features that might affect
spreading processes on networks, like for instance the type and strictness of self-similar
properties appearing at different scales of observation, or the looplessness of the structure
(Rinaldo et al., 1998, 2006). The type of self-similarity observed for riverine trees is
particularly important. In fact, whether or not one would observe the same distribution
of confluences regardless of the stream chosen as receiving water body (see Figure 6.1),
is central to the generality of the distributions studied herein, and deeply related to the
similarity of the parts and the whole embedded in the fractal form (Rodriguez-Iturbe and
Rinaldo, 1997). Moreover, similarity is allowed only in a finite range of scales, as it needs
proper finite-size corrections because upper and lower cutoffs in the aggregation structure
– which reflect, respectively, the drainage density defining where channels begin, and the
loss of statistical significance of areas approaching the maximum basin size (see e.g.,
Maritan et al., 1996; Rodriguez-Iturbe and Rinaldo, 1997). Quite useful in this context
is the use of Optimal Channel Network models (Rodŕıguez-Iturbe et al., 1992; Rodriguez-
Iturbe et al., 1992; Rinaldo et al., 1992; Rinaldo et al., 1993), i.e. the robust determination
of network structures that minimize total energy dissipation, that mimic quite efficiently
the fluvial landforms over arbitrary ranges of scales and boundary conditions. Note that
this property has also been shown to be an exact attribute of the steady state of the
general (small-gradient) landscape evolution boundary value problem (Banavar et al.,
2000, 2001).

For general numerical calculations of the structure of distances of confluences of trib-
utaries of a given area we shall adopt here (Figures 6.1 and 2.1 in chapter 2): i) the
topology and geometry of real rivers, chosen from our archives and suitably extracted
from digital terrain maps of variable resolution (see e.g., Rodriguez-Iturbe and Rinaldo,
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1997); and ii) local-minimum Optimal Channel networks (OCNs) (Rodŕıguez-Iturbe et al.,
1992; Rodriguez-Iturbe et al., 1992; Rinaldo et al., 1992; Rinaldo et al., 1993; Rodriguez-
Iturbe and Rinaldo, 1997). They hold fractal characteristics that are obtained through
a specific selection process from which one obtains a rich structure of optimal scaling
forms that are known to closely conform to the scaling of real networks. To derive exact
results, instead, we shall resort to Peano and Scheidegger networks. The former is a de-
terministic fractal (Mandelbrot , 1983) whose main topological and scaling features have
been determined analytically (Marani et al., 1991; Colaiori et al., 1997), and the latter
a random aggregation model of directed network (Scheidegger , 1967). The former has
has been recently employed (Bertuzzo et al., 2007) to prove that geometrical constraints
imposed by a fractal network imply strong corrections on the speed of migration fronts.
It was noted therein that it is not surprising that Peano and OCNs lead to similar results,
because the speed of the front depends chiefly on topological features that are indeed
quite similar for real, OCN and Peano networks. In fact,the wave speed is affected mostly
by the gross structure encountered by the front while propagating along the network,
chiefly the bifurcations. Hence topology, rather than the fine structure of the sub-paths,
dominates the process. Because of this, we also address in detail the Scheidegger network
(introduced in Figure 2.1, chapter 2), an exactly treatable tree-like pattern constructed
by self-avoiding unbiased random aggregation pattern with injection (Scheidegger , 1967;
Huber , 1991; Takayasu et al., 1991). Indeed its topology and aggregation is known ex-
actly to be rather different from real rivers and OCNs or Peano’s construction. Optimal
Channel Networks (OCNs) used in our computations are local minima (that is, dynami-
cally accessible) of global energy dissipation, and are obtained by a simulated annealing
optimization procedure. With relaxed constraints like periodic boundary conditions,
both for single and multiple outlets, carefully annealed OCNs exhibit a value for the
exponent of the aggregated area close to the mean-field one, which is known exactly to
characterize the ground state and Peano (Rodriguez-Iturbe and Rinaldo, 1997).

Ecological implications of the distribution of tributaries relate to the availability of
flow, slope and riparian area available in defining an ecological corridor (Campos et al.,
2006; Bertuzzo et al., 2007; Banavar et al., 2007; Muneepeerakul et al., 2007a). Ripar-
ian zones, in fact, play many important roles in regulating ecosystem function within
streams, surrounding environments, and upland areas. They are usually related to the
stream width or to topographically concave areas, features that inevitably relate to
landscape-forming discharges and hence to the distribution of tributary areas. Spread-
ing of species or infections on river networks also requires flow specifications defining, for
instance, the bias affecting dispersion of water-borne agents or propagules. Moreover,
although models of biodiversity in two-dimensional landscapes had been extensively stud-
ied (see e.g., Tilman and Downing , 1994; Hubbell , 2001), only recently Muneepeerakul
et al. (2007a) have shown that the combined effects of directionality of dispersal produced
by the network landscape significantly alter various biodiversity patterns of vegetation
communities obeying the neutral model. Be it metapopulation models coupled with the
strictly hierarchical competition-colonization trade-off model to study the resulting bio-
diversity patterns in the river basin (Muneepeerakul et al., 2007a), or patterns of infection
or migration spreading (Bertuzzo et al., 2007), it is clear the fundamental role played
by the network substrate and of its properties on several ecological processes. About
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the purported connection with riverine ecology, suffice here to say that the distribution
we seek defines analytically the distribution of the distance of mean flowrates, channel
width or riparian areas alongstream. All are, in fact, proxies of cumulative basin area,
and hence of tributaries’ contributing area, which conditions such distribution.

Three sample basins in Northern Italy of different size are investigated in detail here
as source of real-world data. It is easily overlooked, in fact, that the very definition of
the confluence of streams with a tributary depends on specifications like the threshold
area for channelization, or the size of the confluent basin that defines a meaningful
tributary. On this basis alone we argue that a tenet of geomorphology, i.e. that the
link length distribution is the same random variable regardless of the link magnitude
(see e.g., Leopold et al., 1964), not uniform at all, needs be revisited. A link, in fact, is
only defined as the alongstream distance separating two consecutive tributaries of any
size. As we shall see, this concept is neither theoretically or empirically wrong, but it
is strongly correlated to an arbitrary threshold in tributary area being assigned. Even
operationally in the extraction of a river network, the concept is thus of fundamental
significance.

This chapter is organized as follows. Section 2 proposes our new theoretical frame-
work for the quantities of interest. Section 3 discusses the theoretical and empirical re-
sources mobilized for the validation of the theory, specifically treating tributaries draining
on mainstreams (in the case of real rivers and Peano networks), or tributaries draining
onto a draining multiple-outlet line (in the case of OCNs and Scheidegger networks).
Section 4 proposes results and discussion of the comparative analysis of theory and data
from various sources. A set of conclusions, Section 5, then closes the chapter.

6.2 Theoretical framework

Figure 6.1 illustrates the definition of the random variable that we address through-
out this chapter. The distance separating confluences of tributary areas larger than a
threshold a is shown along: a.1), a.2) the baseline of multiple outlet OCNs, and b)
the mainstream of a real river network. Note that a river basin, and any subbasin
nested into it, is generally an anisotropic system defined by a longitudinal typical length
L = L‖ (which we will identify with the linear size of the system), and a typical trans-
verse length L⊥ ≤ L‖, both measured along the principal inertia axes (Figure 6.1). We

shall assume that the width scales as L⊥ ∼ LH‖ (with 0 ≤ H ≤ 1) and call the basin
self-affine if H < 1 and self-similar if H = 1. H is called the Hurst coefficient because
of the analogies with fractional Brownian motion contexts and is typically in the range
H = 0.75÷ 1.00 ((Rodriguez-Iturbe and Rinaldo, 1997), pp. 174-175). As a consequence
the maximum characteristic area Amax is postulated to scale as Amax = L‖L⊥ ∼ L1+H

(Maritan et al., 1996; Rinaldo et al., 1998).
In Figure 6.1, the lower open boundary border of the OCN is sampled for tributary

area in this case – here df , H ∼ 1 (owing to the arrangement chosen, whereas single-outlet
OCNs usually yield lower H and higher df values see Rigon et al. (see e.g., 1996) and
Table 6.1). In such a case the length l of each tributary subbasin is roughly perpendicular
to the draining side. In more details figure 6.1 a.1) shows an OCN with cylindrical
boundary conditions (i.e. periodic in the transverse direction), and a no-flux condition
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along the upper side. The overall dimensions are 780 × 78 pixels in the case shown
herein (m = L⊥

L||
= 10). The threshold area for channelization is chosen at 10 pixels; a.2)

the same OCN drawn with threshold area at 1000 pixels, which indeed shows tributary
subbasins with area greater than a = 1000. The random distances among them are
highlighted; b) A real river network, the Tanaro basin (globally ∼ 8000 km2) closed at
Garessio (Piemonte, Northern Italy), suitably extracted from digital terrain map (DTM),
of dimensions 178×296 pixels where we have chosen for computational reasons relatively
large pixels (area 100×100 m2). Note the particular arrangement of tributaries draining
from both sides. The inset illustrates the notation where L = L‖ and L⊥ ∼ LH are
respectively the longitudinal and transverse length scales along the principal axes of
inertia, H is the Hurst parameter, l the mainstream length.

In all cases we can define, along either mainstreams or multiple-outlet boundaries or
else anywhere within the basin, the random contributing area at a site, say A, whose
probability distribution is here computed through P (A ≥ a), that is, the relative propor-
tion of areas, sampled anywhere, larger than the given value a (Figure 6.2) (Rodŕıguez-
Iturbe et al., 1992; Rodriguez-Iturbe et al., 1992; Maritan et al., 1996; Rodriguez-Iturbe
and Rinaldo, 1997) whose scaling form is:

P (A ≥ a) ∼ a−(τ−1) F

(

a

Amax

)

∼ a−(τ−1) F
( a

L1+H

)

, (6.1)

where: Amax = L1+H (Maritan et al., 1996) is the largest area that defines the upper
cutoff for the distribution (the length scale L is defined later), and τ = 1.43 ± 0.02 with
remarkably small scatter from a surprisingly large archive of real river basins regardless
of climate, vegetation, exposed lithology or mainstream sinuosity of the different river
basins (Figure 6.2) (Rodŕıguez-Iturbe et al., 1992; Maritan et al., 1996; Rigon et al., 1996;
Rinaldo et al., 1998). Obviously the probability density function (pdf) p(a) = −dP (A ≥
a)/da follows as:

p(a) = p(a|L) = a−τf
( a

L1+H

)

, (6.2)

where f follows from direct integration of Equation (6.1) and the notation p(a|L)
stresses the conditional character of the pdf on the cutoff size L1+H (Maritan et al.,
1996). Further relationships involving scaling exponents (Rinaldo et al., 1998) are Hack’s
law l ∼ Ahmax (where h ∼ 0.57 is the Hack’s exponent with implications on the type of
self-similarity operating within the river basin (Rigon et al., 1996, 1998) and l ∼ Ldf

(with df ∼ 1.0, see Table 6.1), where l is the length of the longest stream in the drained
area itself function of the contributing area value a (see Figure 6.1), from which one
derives linkages that constitute stringent comparative tools, e.g.

τ = 2 − df
1 +H

= 2 − h, (6.3)

which we shall usually simplify by assuming df ∼ 1, hence leading to 2−τ ∼ 1/(1+H).
Moreover, the relation τ +h ∼ 2 naturally conforms to the common values τ ∼ 1.43, h ∼
0.57 (Maritan et al., 1996). As shown in Figure 6.2 the above relationships are verified
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a.1)

l

L||

H

L||

a.2)

l

d 1 d 2 d 3 d 4

A 1≈a

A 2≥a A 3≥a A 5≥a

A 4≈a

b)

L||

H L||

d 1

A 1≥a

A 2≥a

A 3≈a

l

A 1

d 2

L||

L||

H

Figure 6.1: Samples of networks on which calculations are performed.

141



6.2 Theoretical framework

computationally or exactly derived for all the constructs shown in Figure 2.1, Chapter
2 and in Figure 6.1, including the Scheidegger construction which exhibits the exact
value τ = 4/3 for the distribution of areas along the baseline (Huber , 1991; Takayasu
et al., 1991) and a slow convergence to the exact asymptotic values for area at any
point (Figure 6.2) (see e.g., Maritan et al., 1996; Rigon et al., 1996; Rodriguez-Iturbe
and Rinaldo, 1997). A summary of the relevant scaling exponents derived in this study
is reported in Table 6.1 jointly with comparative results to be discussed later.

The constraint of conservation of total area suggests (Maritan et al., 1996; Rodriguez-
Iturbe and Rinaldo, 1997) that the distribution of areas sampled along a given line
boundary where multiple outlets occur, say pb(a|L), or along a mainstream draining
from both sides, say pms(a|L), differs from Equations 6.1 and 6.2 because tributary
area sampled anywhere within the tributary is a different random variable, sampled
from a different population from those constrained in relation to their possible spatial
locations. Indeed if at i sites one collects the areas Ai and must enforce the constraint
∑

iAi = Amax (where Amax is the total area), the resulting population is different from
that leading to Equation 6.1 because the analog areas Ai sampled anywhere do not add
to total area (Rodriguez-Iturbe and Rinaldo, 1997). If we assume that the distribution
at the mainstream sites is given by (Maritan et al., 1996; Rodriguez-Iturbe and Rinaldo,
1997):

pms(a|L) = a−τmsfms

( a

L1+H
,
)

(6.4)

the area conservation constraint, i.e.

l〈a〉ms ∼ L1+H , (6.5)

(where l is the length of the mainstream) leads, by explicitly calculating the mean
and power counting, to the relationship

τms = 1 +
df

1 +H
, (6.6)

and ultimately to the inequality:

τ ≤ 1.5 ≤ τms, (6.7)

indicating there are significant differences between τ and τms. For mainstream bound-
aries, draining areas of overall size L1+H we have normally τ ∼ 1.43 and τms ∼ 1.5,
although in particular cases like Scheidegger’s (where H = 1/2, df = 1 and τ = 4/3
exactly (Huber , 1991) one has τms = 5/3 (see Table 6.1). Figure 6.2 shows the relevant
numerical computations, where finite-size effects are particularly evident. In Figure 6.2
we have computed either τ − 1 = β or τb − 1 = βb from the estimate of the slope of
the double logarithmic plot. Note that the less constrained arrangement of the periodic
boundary conditions calls for values of τ closer to the exact value 3/2 of the ground
state; b) Sample statistics of the Tanaro river basin. Note that τms − 1 = βms ∼ 0.52
for areas along the mainstream and τ ∼ 0.44 for the entire basin, as we expected. Note
also the noteworthy lower cutoff imposed by the extent of unchanneled sites owing to
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Table 6.1: Summary of computed and predicted scaling exponents, respectively for: Peano’s network (Figure 2.1 e), Chapter
2); Scheidegger’s constructions (Figure 2.1 c), Figure B.1); multiple-outlet (mo) OCNs (Figure 6.1 a.1), a.2), and Figure 2.1 a),
Chapter 2) where areas are sampled at the lower boundary; three real river basins (Tanaro, Mis and Cordevole respectively, Figure
6.1 b) and Figure 2.1 b) (Chapter 2) for the first one, Figure 2.1 d), Chapter 2, for the latter ones); a single-outlet (so) OCN where
areas are sampled along the mainstream. The computed scaling coefficients are: H (row 1), df (row 2), τ (row 3), τms (row 8)
and τb (row 10) estimated numerically by fitting scaling laws (for τ , τb and τms see Figure 6.2 and checked against exact solutions
when available (see Equations 6.1 to 6.9); the scaling exponent φ + 1 = τ (row 4) estimated from the relationship 〈a〉a ∝ aφ

(Equation 6.11, Figure 6.3); the third independent estimate of τ = 2− df

1+H (Equation 6.3, row 5) is then directly computed from

the computational estimates of H, df ; the scaling exponent ψ computed from the relationship 〈d〉a ∝ aψ (row 6, Figure 6.7); the

scaling relationship ψ =
Hdf

1+H , derived theoretically (Equation 6.19), is compared from the independent estimates of H, df (row
6); the scaling exponent τms of the distribution of areas sampled along the mainstream (row 7) is computed, when appropriate,
from our data. Note that we have not computed it only for multiple outlet OCNs; the theoretical prediction τms = 1+df/(1+H)
(Equation 6.6, row 8) is analyzed from our data; the scaling exponent τb is computed via the proper area distributions sampled
along a line boundary where multiple-outlets occur (row 9). This calculation is possible only for multiple-outlet OCNs (Figure 6.1
a.1), a.2), and Figure 2.1 a), Chapter 2) and for the particular Scheidegger-like constructions shown in Figure B.1; the theoretical
prediction τb = 2 − 1/(1 + H) (Equation 6.9) is compared against our data (row 9). Variabilities of measured exponents are
standard errors found by Reduced Major Axis Regression (RMA or SMA) bootstrapping over cases, and deriving slopes by the
linear and the Jackknife models (Warton et al., 2006).

Scaling Peano Scheidegger OCN Tanaro Mis Cordevole OCN
exponent (mo) (so)

H 1.00 1/2 0.97 0.75 0.78 0.82 0.85
df 1.00 1.00 1.01 1.03 1.02 1.02 1.01

τ 3/2 4/3 1.45 1.44 1.43 1.43 1.45
φ+ 1 3/2 1.33 ± 0.02 1.46 ± 0.02 1.42 ± 0.03 1.45 ± 0.03 1.44 ± 0.03 1.45 ± 0.02

2 − df

1+H 3/2 4/3 1.48 1.41 1.43 1.44 1.45

ψ 1/2 0.33 ± 0.02 0.50 ± 0.01 0.43 ± 0.02 0.45 ± 0.02 0.46 ± 0.02 0.47 ± 0.02
Hdf

1+H 1/2 1/3 1/2 0.44 0.45 0.46 0.46

τms 3/2 1.66 ± 0.02 − 1.52 ± 0.03 1.55 ± 0.03 1.54 ± 0.03 1.53 ± 0.02

1 +
df

1+H 3/2 5/3 − 1.58 1.57 1.56 1.54

τb − 1.33 ± 0.02 1.50 ± 0.02 − − − −
2 − 1

1+H − 4/3 1.49 − − − −
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the relatively large extraction threshold chosen – a step quite suitable for 8000 km2 net-
works; c) Sample statistics of the Scheidegger network with L⊥ ∼ L1/2 and L|| ∼ L. The
Scheidegger model requires τb = τ , and might be treated as a single- or multiple-outlet
construction, with directed, subvertical drainage directions and periodic boundary con-
ditions (see also Appendix B). Here we show the results for different ratios of sides (see
Legend) starting with the lattice characterized by m = L⊥

L||
= 1/10 which allows sub-

basins properly characterized by H = 1/2. Statistics for the single-outlet Peano basin
are also shown for which, as for Sheidegger model, is true the equivalence βb = β.

Finally note that yet another random variable could be derived sampling area along
a straight boundary perpendicular to the main axis L‖ of the basin. In such a case,

independently on the size of the boundary as long as it exceeds LH , one has

pb(a|L) = a−τbfb

( a

L1+H
,
)

(6.8)

where

τb = 2 − 1

1 +H
, (6.9)

with the usual meaning of the symbols. For straight multiple-outlet boundaries in
Scheidegger constructs (of the type discussed in Appendix B) we find the exact result
τb = τ = 4/3. Notice that if df = 1, τ = τb and if H = 1 all area scaling exponents equal
3/2.

An interesting feature that can be derived from Equation 6.2 and its variations (4)
and (8) is 〈a〉a, i.e. the mean area of all tributaries whose size is larger than a given
threshold area a. This is tantamount to averaging the size of all incoming tributaries
larger than a, resulting in the obvious fact 〈a〉a ≥ a. Indeed this quantity matters here,
because we might want to define sites with flow, width or riparian area larger than a
threshold value to define viable minimum values, e.g. for biological conservation. One
thus has:

〈a〉a =

∫ ∞
a dx x p(x|L)
∫ ∞
a dx p(x|L)

=

∫ ∞
a dx x−zf(x/Lφ)

∫ ∞
a dx x−τf(x/Lφ)

, (6.10)

(where z = τ − 1 and φ = 1 +H, defined for reasons to appear in the latter) which
poses a nontrivial scaling result that we shall use in the following. The basic result is
that when L → ∞ and z > 1 one has the asymptotic behavior 〈a〉 ∝ a1−z, whereas
if z < 1 one has 〈a〉 ∝ Lφ(1−z) (see Equation 6.18). In the case at hand, regardless
of boundary conditions in order to average sizes of tributaries larger than a we sample
anywhere in the basin – thus p(a|L) is the appropriate distribution and τ the relevant
scaling exponent – one has:

〈a〉a =
L(1+H)(2−τ)

a1−τ
∝ aτ−1 = a1−

df

1+H , (6.11)

a result that we shall compare with data in the following. Note that for scaling with
τb as in Eq. 6.9 one would have had 〈a〉a ∼ aH/(1+H) and for τms as in Eq. 6.6 one
would have obtained 〈a〉a ∼ adf/(1+H).
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Figure 6.2: Cumulative probability distributions of areas P (A ≥ a|L) sampled on the
whole basin and Pms(A ≥ a|L) sampled along a mainstream. a): Statistics on OCNs for
different threshold values a (see Legend).
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We shall present now the derivation of the distribution of distances of tributaries
characterized by their area larger than a threshold a (and thus by related characteristic
flowrates, riparian proper, cross-section width, depth and velocity among other features).
Notationwise, we shall define the random variable drawn from the random population of
possible distances as D, and as P (D ≥ d)a the probability of exceeding a given distance
d conditional on the confluence of tributaries of area (at least) a.

We approach this derivation initially for the multiple outlet boundary leading to
a distribution of areas with scaling exponent τb. We assume that the distribution of
distances (conditional on a given tributary area a) is defined by the probability of finding
d − 1 consecutive tributaries with area smaller than a, and finding two tributaries of
area equal or greater than a at both ends. Distances are walks in terms of steps between
tributaries, so d is in pixel units. If statistical independence holds for tributaries area, for
a≫ 1 so d≫ 1, such probability would be given by P (A < a)d−1 = (1 − P (A ≥ a))d−1 ∝
exp

[

−(a1−τb) d
]

. One doubts, however, that the statistical independence might indeed
hold for small distances. At small areas, in fact, the determination of the probability is
most uncertain owing to the issue of the proper drainage density for network extraction
– hence probabilities become reliable only for sizable areas. For large areas, however, the
occurrence of consecutive tributaries cannot be independent at small distances, as one
cannot possibly have two large consecutive basins for distances smaller than L⊥ ∼ LH .
This assumption will also be tested in the following.

For two tributaries of size ≈ a, draining in a quasi-parallel arrangement along a
boundary, one may speculate that the minimum distance is roughly proportional to
their width L⊥. This implies that the mainstream is somewhat straight and that for
smaller distances the receiving boundary can only collect smaller basins. The above
relationships imply:

d(a) ∼ a
H

1+H . (6.12)

Note that in case the boundary is draining tributaries from both sides, as in the case
of a mainstream, we expect the distribution to be a fraction of that given by the ansatz
of Equation (6.12). Note also that the unconditional probability p(d) would be given by
the relationship p(d)dd = p(a)da and da/dd ∝ d1/H , from which one obtains, after some
calculations, using Equation 6.6 with df = 1:

p(d) ∼ d − 1+H
H fd

(

d

LH

)

, (6.13)

more generally the power law is d −
τms(1+H)−1

H , from which the unconditional prob-

ability of exceedence is given by P (D ≥ d) ∝ d−(τms−1) 1+H
H , with the scaling argument

d−1/H . From the computational viewpoint, one finds easier to compute the probability
P (D ≥ d)a of finding a distance conditional on a given size a of the tributary. The basic
relationship would be given by

p(d) =

∫

da p(d|a) p(a), (6.14)

from which, after some calculations and power counting by assuming p(d|a) ∼ d−ψ f̂d(d/a
H/(1+H)),
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one obtains ψ + 1/H = (1 +H)/H and hence ψ = 1 independently of τ , or:

p(d|a) = d−1 f̂d

(

d

aH/(1+H)

)

, (6.15)

which, interestingly, leads to the testable scaling form

P (≥ d) = P (D ≥ d)a = F̂d

(

d

aH/(1+H)

)

, (6.16)

(where both notations are freely interchanged) that follows from Equation 6.15 with:

F̂d(x) =

∫ ∞

x
dy y−1 f̂d(y), (6.17)

whose collapse for different values of a can be directly compared with observations
from real or artificial networks. Notationwise (in analogy with previous choices), we shall
use the notation Fms(x) and Fb(x) for mainstream or multiple-outlet boundary estimates
of the scaling function in Equation 6.16, respectively. The theoretical prediction, in fact,
suggests that the larger the threshold area a for tributaries of equal size, the larger, in the
average, the random distance D among them – hence different values of a should produce
broader distributions with larger mean and variance. However, when probabilities P (D ≥
d)a are plotted against d/aH/(1+H) a collapse onto a single curve is expected. Notice that
the scaling function Fd(x) → 1 when x→ 0 and Fd(x) → 0 when x→ ∞, and it depends
on the boundary conditions adopted (e.g. if drainage occurs along a mainstream, areas
flow in from both sides, and distances are shorter).

The expected distance between two rivers of area ≥ a would therefore be given in
terms of the probability of finding such area a, i.e. (for a mainstream)

〈d〉a ∼ 〈a
Hdf
1+H 〉 ∝

∫ ∞
a pms(a|L) aHdf/(1+H) da

∫ ∞
a pms(a|L) da

. (6.18)

Standard finite-size arguments require:

∫ ∞

a
a−z f

( a

L1+H

)

da ∼
{

L (1+H)(1−z) for z < 1
a1−z for z > 1

, (6.19)

where z = τms− Hdf

1+H , and the integral is dominated by the upper/lower cutoff when

z < 1 and z > 1 respectively. The coefficient z = τms − Hdf

1+H > 1 because H 6 1 6 df .
Since z, τ > 1, one finds the mean distance between two subbasins of area > a as:

〈d〉a ∼ a
1−

“

τms−
Hdf

1+H

”

a1−τms
∼ a

Hdf

1+H ∼ 〈a〉Ha , (6.20)

which can be compared with field observations directly. On average for real basins

df ≃ 1 so simplifying the scaling relation is 〈d〉a ∼ a
H

1+H . In Equation 6.19 we have
used the result 〈a〉a ∼ aτms−1 which can be derived with the same above procedure.
Analogously one may compute the second moment 〈d2〉a = 〈a2H/(1+H)〉 which poses a
few additional finite-size problems. In fact, through scaling arguments similar to the
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ones seen before, with df ≃ 1, we obtain

〈d2〉a ∼ aτms−1 L2H−1 = a
1

1+HL2H−1, (6.21)

and the variance σ2(d)a = 〈d2〉 − 〈d〉2 = 〈(d − 〈d〉)2〉, using Equation 6.20 and the
square of Equation 6.18, is given by

σ2(d)a ∼ a
2H

1+H

(

−1 + const
L1+H

a

)

2H−1
1+H

, (6.22)

Both statistics foresee notable corrections dependent on size L, which will also be
tested against data (see inset in Figure 6.3).

We finally note that in the case of straight, long enough (i.e longer than LH) multiple-
outlet boundary one has to carry out the same operations via the distribution pb(a|L)
with τb = 2 − 1/(1 +H) (see Equation 6.9), thus obtaining:

〈d〉a ∼ a
Hdf

1+H ∼ 〈a〉df
a /L, (6.23)

which indicates that Scheidegger’s network draining along a straight boundary should
scale approximately like real rivers along mainstreams (for both df = 1, exactly in the
case of Scheidegger and approximately for real rivers).

All the above relationships will be compared against data in the next Section. Note,
finally, that for Peano, OCNs and real basins one has H ≃ 1 ≃ df , whereas for Schei-
degger river networks df = 1 while H = 1/2 derive from the exact properties of the
random walk (Hughes, 1995) that defines the outer boundaries. Thus we value compar-
ative studies among them, as notable differences in scaling structures should arise in the
observational properties.

6.3 Comparative analysis: Tributaries draining onto multiple-

outlet boundaries or mainstreams

The dataset specifically used for the computation of the distributions of distances for
real rivers pertains three sample river basin in Northern Italy (see caption of Figure 2.1,
Chapter 2), the Tanaro river basin (Piemonte, Italy), the Cordevole and Mis river basins
(Veneto, Italy ), part of our relatively large geomorphologic database where we have cho-
sen the actual basins for their differing size, relief and geologic and vegetational context.
Table 6.1 illustrates the rather narrow range of variation for the possible values of H, df ,
τ of real networks, which follows usual patterns (see e.g., Maritan et al., 1996; Rodriguez-
Iturbe and Rinaldo, 1997; Rinaldo et al., 1998). Conversely, conceptual constructs like
Peano or Scheidegger have rather different features (Rinaldo et al., 1998), some exactly
determined (Huber , 1991; Marani et al., 1991; Takayasu et al., 1991), thus allowing us
to check theoretical results against the scaling exhibited by computational entities, such
as real river networks, and OCNs (single and multiple outlet). All geomorphological
quantities, including distance d and area a, are expressed in pixel units.

Figure 6.3 illustrates a preliminary test of the theoretical scaling results that are
derived solely from the the probability of areas p(a|L). Specifically, we discuss the
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scaling relationship of 〈a〉a (the mean area of all basins larger than a threshold area
a encountered along a boundary or a mainstream) with the minimum tributary area a.
From theory we predict (Equation 6.11) that such scaling is of the type 〈a〉a ∝ aτ−1 where
τ is the scaling exponent of the distribution of area anywhere within the network, and
thus independent of boundary conditions (Rodŕıguez-Iturbe et al., 1992; Maritan et al.,
1996). The computed values match quite accurately Peano’s exact value τ − 1 = 1/2
(Marani et al., 1991; Colaiori et al., 1997; Rodriguez-Iturbe and Rinaldo, 1997), the ),
Scheidegger’s exact value τ − 1 = 1/3 (Huber , 1991; Takayasu et al., 1991) and the
expected value from real networks (τ − 1 = 0.42 − 0.46). The implied validation of the
scaling argument leading to Equation 6.11 is deemed particulary significant.

Figure 6.4 shows the empirical distributions of distance conditional on area P (D ≥
d)a, computed for the sample networks shown in Figure 2.1, Chapter 2. Notice that
at larger values of a, the broader become the distributions and the larger the random
distance D in the average, as expected. The double logarithmic plot chosen emphasizes
the lack of a power-law character (predicted by Equation 6.16) strictly conditional either
on the threshold area a or on the drainage sites chosen as boundary conditions (a line or
a mainstream). In fact: the top graph a) shows multiple-outlet OCNs draining on a line;
b) shows the results for mainstreams of Tanaro basin; and c) illustrates Scheidegger’s
distribution of distances draining along a line orthogonal to the mainstream. Figure 6.4
a) shows also an approximation to the unconditional probability P (D ≥ d) obtained by
ensemble averaging. This is operationally mimicked by the average of the exceedence
probabilities calculated by putting together all distances computed for each value of the
parameter a (note that such distances span the entire range of possible values of D).
Although the sampling of a was not designed to produce a proper ensemble average, we
find that, as theory predicts and regardless of details on how this choice approximates
the unconditional probability, the computational slope is rather close to the theoretical
value of −1 for the exceedence probability (which of course implies a scaling of −2 for
the unconditional pdf). The effects of the different aggregation structure are clearly
reflected by the observational conditional exceedence probabilities of D. In all cases,
in fact, P (D ≥ d)a proves to be a function of the threshold value a for the confluent
tributary area, as larger thresholds naturally imply larger distances among equally-sized
tributaries.

In Figure 6.4: a), distribution of distances for the multiple-outlet OCN draining
along a straight line of Figure 2.1 a) in Chapter 2 (see also Figure 6.1 a.1) and a.2)),
for different values of a namely reported in Legend on right of the graphic; darker line
(empty circles) is obtained by ensemble averaging of the exceedence probabilities putting
together all distances for each value of a (note that such distances span the entire range
of possible values of D); b), statistics of distances made along the mainstream of Tanaro
basin (Figure 6.1 b) and Figure 2.1 b), Chapter 2). The chosen values of a are on Legend
attached on the right; c), statistics of Scheidegger network for m = L⊥/L|| = 1 draining
onto a straight boundary. Values of the parameter a related to each distribution are on
Legend on right of the plot; observe how for higher values of a distributions are quite
detached from the other ones, confirming the fast deviation of scaling exponents noted
computationally for the model (Figure B.2). Note also that the larger the size that defines
tributary confluent basins, the longer it takes to find them (in the average) walking along
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Figure 6.3: When we average the size of basins larger than a encountered along a main-
stream or a multiple-outlet boundary, we observe a scaling relationship between the
average size 〈a〉a and the threshold area a that defines the tributary, i.e. 〈a〉a ∼ aτ−1,
where τ is the scaling exponent of the distribution of areas anywhere in the basin. Here
we document an excellent agreement of theory and data, in all cases, specifically: (di-
amonds) Peano’s construction; (solid dots) Scheidegger’s network; (circles, squares and
triangles) real river basins. The estimated scaling exponents are shown in the Figure.
Inset: the logarithmic corrections to the relation between σ2(〈d〉a) vs 〈d〉a show here,
a function of a (see Figure 6.7 and 6.8). An average exponent for all basins is roughly
equal to 2, confirming the variance-mean theoretical expectation σ2(〈d〉a) ∼ 〈d〉 2α

a with
α ≃ 1.
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the chosen draining boundary. See for whichever type of networks that distributions of
distances (a), b), c)), for each value of the parameter a, lead to a characteristic length
d(a) in function of the parameter a, so they can be considered as exponential distribution,
like P [D > d]a = const exp (−βd) with β → 0.

Figure 6.5 shows the collapse plot attempted because of the theoretical prediction
(Equation 6.16), with estimates of the best collapse that indeed conforms well to the the-
oretical predictions (see Caption for details). Two theoretical predictions are validated,

namely the scaling form where d is rescaled with respect to the mean area 〈d〉a ∼ 〈a〉H, df
a

(with the exponent H for real basins, df for straight mainstream) of all tributaries with
area ≥ a, and the scaling with aH/(1+H). Values of H for the best collapse match the
viable values from direct observation. It is safe to assume, in this context, that the
estimate of df ≈ 1. In all cases the theoretical prediction is verified quite well, and
differences arising in the scalings are explained by the different boundary conditions or
aggregation structures, like e.g. in the case of Scheidegger’s construction which exhibits
by construction H = 1/2, df = 1 and τ = 4/3 (Huber , 1991). Overall, the theoretical
framework seems quite robustly verified.

In Figure 6.5, on the left side, the collapse of P (D ≥ d)a is tested as a function of

d/a
Hdf

1+H , as predicted by theory for mainstreams (Equation 6.16), and on the right, as

a function of d/〈a〉Ha or d/〈a〉df
a depending on boundary conditions (Eqs. 6.20 and 6.23

into Eq. 6.16). Here we show a.1) and a.2) for OCNs, b.1) and b.2) for the Tanaro
river network, c.1) and c.2) for Scheidegger model with side ratio m = 1. Insets in a)
and b): sensitivity tests are shown on the estimate of the best exponents, where R2 =
∑N

i=1 σ
2
i , i.e. the sum of variations with respect to the mean for each i-th logarithmic

bin considered. Larger red dots represent mean values for each bin and error logarithmic
bars are standard deviations. The fitting shown with the red continuous line is carried
out by an exponential function. For Scheidegger networks draining on a line, the collapse
for higher tributaries’ areas has to be done with the deviation exponents from H/1 +H
and df (Insets in c)), as observed before and as supported by our calculations (Figure
B.2).

Note also that it is of great practical interest the fitting of the collapse functions
Fms(x) and Fb(x), in this case simply addressed via exponential functions (Figure 6.6).
Although such choice clearly oversimplifies the fitting problem, the single parameter
serves well our purposes and clearly represents the inverse of the characteristic value
(of d/aHdf /(1+H), or d/〈a〉a respectively) for cutoff to occur. Here we obtain Fms(x) ∼
exp (−2.58x) and Fb(x) ∼ exp (−1.10x) respectively. These may indeed be useful for
practical applications.

In Figure 6.6, we choose an exponential which would be the case should the prob-
ability obey P (D ≥ d) ∝ P (A < a)d−1. We note that, as expected, the mainstream
collapse function is generally shorter than in the boundary case, with higher exponents
in semilog plot, because tributaries drain independently on both sides, whereas for line
boundaries – all other conditions being equal – the distances are larger in the average.
For Scheidegger’s construct (c)) the exponent β on semilog plot is higher than the OCN
one (a)) and lower than the Tanaro one (b)). The analytic form of the exponential
function is of the type F (x) = exp (−Cx) where C is a suitable constant (reported in
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Figure 6.4: Exceedence probability distributions P (D ≥ d)a of the random distance
D between tributaries versus the current value d of distance, clearly a function of the
threshold size a that defines a meaningful confluent tributary.
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Figure 6.5: Collapse tests for P (D ≥ d)a.
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each inset) where xc = 1/C is a cutoff value of the distribution of d/a
H

1+H . Note the
finite-size effects for Scheidegger’s networks (see also Figure B.2).

Figures 6.7 and 6.8 show the results of an articulate set of calculations required to
describe the scaling of mean and variance of d given a, 〈a〉 for all networks shown in Figure
2.1, Chapter 2. Here we illustrate both the scaling of the second moment 〈d2〉 and of the
variance σ2(d)a = 〈d2〉a − 〈d〉2a as a function of a. Note that the theoretical predictions
(Equations 6.19 to 6.22) are reasonably satisfied regardless of the fractal properties of
the network – noting that in the case of Scheidegger networks this represents quite a
demanding test owing to its exact scaling coefficients (H = 1/2, df = 1, τ = 4/3,
τms = 5/3).

The validity of the finite-size scaling argument is strengthened by the analysis of
the ratio of consecutive moments 〈dn〉a/〈dn−1〉a ∝ aH/(1+H) for different (integer) values
of n, which probes the structure of the cutoff function Fms(x). Once such ratio is
plotted against a in a double logarithmic graph (as in Figure 6.9, see Rigon et al. (1996)
for computational details on the binning requirements for sampling the moments for
several samples of area a), one might estimate the slope, which indeed should be equal
to H/(1 + H) from Equation 6.16. The consistency of the ratio of several consecutive
moments (here arbitrarily translated vertically for convenience) is a solid test for the
scaling argument adopted.

Figure 6.10 illustrates an a posteriori test of the validity of the statistical indepen-
dence assumption, i.e. P (D ≥ d)a ∝ P (A < a)d−1, and is carried out by plotting directly
the probability of exceeding a distance d given the threshold area a with the theoretical
value (1 − P (A ≥ a))d−1 valid under strict statistical independence. We note, that, as
we expected, deviations appear both at large and small areas, thus denying generality
to the position. Notice, however, that although the independence argument would have
called for a scaling structure for P (D ≥ d)a which is actually unsupported by our data,
differences do not seem overwhelming. Note that all relationships between tributaries’
areas and distances are then rightly derived through the finite-size scaling assumption
rather than by the expression postulating statistical independence.

6.4 Discussion

The collapse of all conditional distributions of distance P (D ≥ d)a when plotted against
d/aH/(1+H) or d/〈a〉df (depending on whether drainage is allowed along a mainstream or
a multiple-outlet line boundary) defines a general and interesting ecological measure. As
predicted by Equation 6.16, the distribution is shown to exhibit a finite-size scaling form
that derives from the probability distribution of contributing area at any point along a
given boundary or mainstream, and its related scaling exponents τms, τb. The major
effect of the constraints that can be imposed by the draining boundary is not surprising
because areas tributary to mainstreams or boundaries define a different population of
random variables.

Most important is deemed the “universal” behavior of P (D ≥ d)a against d/aψ or,
equivalently, d/〈a〉φ (with appropriate ψ, φ depending on B.C., see Table 6.1 for a com-
plete comparison and a detailed summary of scaling relationships), where a, 〈a〉 indicate,
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respectively, the threshold area for a tributary and the mean area of all tributaries whose
area is larger than a (see Figure 6.1). The collapse of all distributions that are clearly
distinct for different values of a, onto a single universal curve suggests that the rela-
tionship P (D ≥ d)a ∼ F (d/aψ) is valid for all areas a and thus seemingly of general
nature (Figures 6.4 and 6.5). This is a distinctive statistical tool that has notable im-
plications. In fact, the traditional geomorphological tenet that assumes link lengths as
uniformly distributed (see e.g., Leopold et al., 1964) is incompatible with our findings
that pose a few conceptual and practical problems. Uniformly distributed link lengths
do not seem to hold, in fact, on one hand because given a threshold area for the defini-
tion of a meaningful tributary, no observational dataset indeed conforms to some kind
of uniform distribution – the cutoff is inevitably far from a step function. On the other
hand, the distribution cannot escape the problem of the choice of a, which makes the
very definition of link quite arbitrary otherwise. On this basis alone we suggest that the
concept needs be readdressed in the present framework. Obviously this has implications
for biodiversity and ecosystem services provided by the river basin, as the confluence of
tributary areas is crucial to flow, width and riparian area at any basin site.

The analytical specification of the cutoff function F (d/〈a〉φ) differs from multiple-
outlet boundaries of mainstreams for the fact that allowing drainage from either sides
naturally shortens the distance between comparable (or larger) confluences. We notice,
however, that the scaling ansatz d ∝ aH/(1+H) seems to work properly also in this case,
thereby suggesting that the distribution of distances along a support draining from either
side is a obtained by rescaling the analog for an open boundary by some constant (Figure
6.9). Our guess of analytic form of the scaling function is F (x) = C exp (−β x) where
β = 1/xc is the exponent found via linear estimates on semi-log plot between F (x) and
x. In such case xc acts as a cutoff value of the distribution of d/〈a〉φ. The numerical
estimates produced for C, xc are described in Section 3 and are possibly general. Further
confirmations from data will be sought elsewhere.

The computation of mean and variance of the empirical distances matches nicely our
theoretical predictions. The mean distance between tributaries of area larger than a
is definitely proportional to 〈a〉H (hence often 〈d〉a ≈ 〈a〉), whereas the mean distance
plotted against a obeys the predicted scaling, resulting in 〈d〉a ∼ aH/(1+H) ≈ a0.52±0.04

except for singular cases like Scheidegger’s (where the exponent is close to the predicted
value of 1/3 – see Appendix B). The theoretical predictions, based on two different
arguments, capture well the structure of the distribution.

Overall the probabilistic structure of tributaries thus seems fully captured.

6.5 Conclusions

The following conclusions are worth mentioning:

• the probabilistic structure of the alongstream distance between tributaries of (any)
comparable size a drawn from a river network has been defined theoretically and
verified observationally. Its importance is linked to the ecological implications of
the availability of flow, width and riparian area available at any stream site, all
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bearing implications for the type of biodiversity and ecosystem services produced
by the river basin;

• the pdf of distance depends on the threshold size needed to define a tributary –
obviously if a unit area is employed, the distance turns out to be unit (i.e. the
link length is also unit), and grows, in a statistically well-defined sense, as basins
grow larger. Interestingly, however, when the distribution is plotted against d/a
or d/〈a〉 (〈a〉 being the mean area of all basins larger than a) collapses onto a
single curve. Notice that the dependence of link length on a proves that the
traditional tenet that assumes uniform link length distributions is a spinoff of the
rather arbitrary threshold for channelization used to extract fluvial patterns, and
cannot hold conceptually as it depends on the choice of cumulated area that defines
a tributary;

• the distribution of distances that separate a given average injection of flow, width
or riparian area (i.e. confluent area) seems to represent more general a concept than
that of link length. Our empirical findings support well the theoretical arguments.
In particular, exactly solved network constructions like Peano or Scheidegger net-
works (whose merits and limits in describing the geometry of river networks are
described elsewhere but are deemed noteworthy) have been extensively used to
validate our findings;

• overall we have proposed an explicit form of the probabilistic structure of tributaries
in the form P (≥ d) = P (D ≥ d)a = exp(−Cd/aH/(1+H)) where the constant C is
dependent on the choice of boundary conditions (i.e. whether mainstream areas of
multiple-outlet line sources are considered).
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meaningful but the stability results excellent. Note that the curves are conveniently

offset vertically by powers of ten; a) shows the relation 〈dn〉a/〈dn−1〉a ∝ a
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1+H with mean
exponent of 0.46 and standard deviation of 0.02; b) shows the relation 〈dn〉a/〈dn−1〉a ∝
〈a〉df

a with mean exponent equal to 1.14 ± 0.02.
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Chapter 7

Final Remarks

“ I do not know what I may appear to the world; but to myself I seem to have been only
like a boy playing on the seashore, and diverting myself in now and then finding a

smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me”

Isaac Newton

In the present thesis it has been tried to give a deep probabilistic description of how
some biodiversity and geomorphological patterns change with scale and resolution. Some
assumptions made can result too much simple but in order to give a test in their support
empirical data have been used. For example while it is true that interactions between
species exist, at the macroecological scale, that is not really a physical scale but rather
a way of analysis, the neutral theory that assumed individuals competitively equivalent
works and is able to reproduce the real biodiversity patterns. Fishes and trees patterns
of the Mississippi-Missouri River System are correctly reproduced. This does not mean
that interactions or other real processes does not matter, rather the study of ecosystems
and its management can be performed in a simple but efficient way using the neutral
theory that is based only on a stochastic birth-death and dispersal dynamics.

Further investigations will explore more in details the role of the prevalent climate on
the clustering patterns of the species selecting different ecosystem throughout the world
or regions with homogeneous climate in an heterogeneous region like the MMRS. For
example it is unclear how to explain that in subtropical forests the aggregation of trees
is weaker for large diameter classes (Li et al., 2009) while it is the contrary in a “globally
temperate” region like the MMRS. Therefore the comparison should be done as much
as possible at the same relevant scale of analysis since scale issues due to the different
extension of the studied area can arise. E.g. the extension of the MMRS and its degree
of heterogeneity vs the regions of investigation found in literature is extremely large.

Other studies will explore in more detail the role of the neutral model in the clumping
of individuals. For example how do species aggregate in a hierarchical competition-
colonization trade-off model that explicitly take in account the differences between them?
While it is true that here the species have been analysed under the neutral assumption
that captures the actual biodiversity patterns (among which also the spatial aggregation)
it is proofed that in some cases neutral models are not able to reproduce the actual
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observed biodiversity patterns especially at small scales or where the environmental
fluctuations are big and fast.

A possible further direction of research can be the characterization of the fractal
dimension of the boundaries of the patches formed by the aggregation of species. Since
the distribution of the cluster size is a power-law we expect fractality for the boundaries
of the patches. Therefore due to the resolution dependence of the cluster-size distribution
we expect also a different fractal dimension at different resolutions. Further study will
also be in the direction of characterizing the intra and inter-species distances between
clusters as well the characterization of the individuals in the ecosystem in function of
their ecological traits (e.g. the diameter) and in function of some geomorphological
variables (e.g. the slope and the elevation). As said the neutral model is not a tool
that neglect the existence of other factors such as geomorphological influences, biological
interactions and environmental heterogeneities, rather it is a null model testing their
respective importance without using them a priori, as niche models do, as determinants
of the spatial patterns of species in ecosystems.
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Appendix A

Simulations for the Tanaro river
basin with θ = 80 and
exponential-Cauchy dispersal

Here the results of the simulations performed on the Tanaro basin shape, in both the RN
and 2-D topologies, for the exponential-Cauchy kernel (case b in table 3.2 chapter 3) have
been reported. Figures A.1, A.2, A.3, A.4, and A.5, report the biodiversity patterns of
the power-law of the cluster-size, the species-area relationship, the range-rank curve, the
rank-abundance curve, the pdf of the LSR, JSI and RSR respectively. All the comments
about these results are in chapter 5.
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Figure A.1: Numerical results of P (CS ≥ c) for the Tanaro river basin with exponential-
Cauchy kernel dispersal increasing dl (see legend) and θ = 80: a) RN, b) 2-D. The slope
of the grey line is −0.5.
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Figure A.2: Numerical results of the SAR for the Tanaro river basin with exponential-
Cauchy kernel dispersal increasing dl (see legend) and θ = 80: a) RN, b) 2-D. The slope
of the grey line is −0.5.
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Figure A.3: Numerical results of the Range-Rank for the Tanaro river basin with
exponential-Cauchy kernel dispersal increasing dl (see legend) and θ = 80: a) RN, b)
2-D.
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Figure A.4: Numerical results of the Rank-Abundance for the Tanaro river basin with
exponential-Cauchy kernel dispersal increasing dl (see legend) and θ = 80: a) RN, b)
2-D.

168



0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

rsr

p
d

f(
rs

r)

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

rsr

40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

lsr

p
d

f(
ls

r)

80 90 100 110 120 130 140 150 160
0

0.05

0.1

0.15

0.2

0.25

lsr

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

jsi
0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

jsi

p
d

f(
js

i)

b)

c) d)

e) f )

a)

Figure A.5: Numerical results of the pdf of lsr (a, b), jsi (c, d) and rsr (e, f) for the
Tanaro river basin with exponential-Cauchy kernel dispersal increasing dl (see legend)
and θ = 80: RN (left plots); 2-D (right plots).
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Appendix B

Scheidegger’s construction and
the distance between tributaries

Testing the theory against Scheidegger’s construct proves particularly demanding and
interesting, owing to the strong anisotropy that such structure produces, and to the slow
convergence to exact power-law statistics (Huber , 1991; Takayasu et al., 1991; Rodriguez-
Iturbe and Rinaldo, 1997). It also relates to subtrees rooted along the primary path of
a binary tree (Troutman and Karlinger , 1993). In this context, we have performed our
analysis for different networks varying the ratio, say m, between the perpendicular and
the parallel main axes. Specifically, we have carried out the same analysis on 〈d〉a as
shown in Figure 6.7 a), b), and on σ(d) in Figure 6.8 a.2), b.2). Figure B.1 shows,
clockwise, Scheidegger’s networks with m = 1/10, 1, 10.

It is clear that statistical measures of distances for the Scheidegger model are strongly
dependent on the size of the lattice employed. It is relevant to note the deviation from
the predicted value of the exponent H

1+H = 1/3 (Equation 6.22 and Figure B.2 a.1)) for
〈d〉 in function of the parameter a, and from the exponent df = 1.00 (Equation 6.22 and
Figure B.2 b.1) for 〈d〉 in function of the mean area 〈a〉a. Same deviations are found in the
variance σ(d)2 in function of a and 〈a〉 (Figure B.2 a.2) and b.2)). The slow logarithmic
growth of Scheidegger’s construct (Huber , 1991) is, in fact, equivalent to the use of a
model with a high ratio m, which leads to incomplete aggregation. Several analysis
have been performed on Scheidegger basins with very low value of m (for example using
models with global area 1000 × 100 and 5000 × 100), and the statistics of areas at the
boundary match the theoretical results. Otherwise exponents gradually deviate from the
exact values (Figure B.2). The explanation for these deviation lies on the low value of the
Hurst exponent characterizing Scheidegger’s construct, H = 1/2. Only considering low
values of m, in fact, or equivalently considering a very long network, it is possible to tend
to reproduce the correct statistics between tributaries distances and areas, a phenomenon
fully understood theoretically by Huber (1991). Therefore we note, also from Figure 6.2
c), that boundary areas (whose distribution is a power law with exponent τb) and global
areas (whose scaling exponent is τ) exhibit both the typical behavior as power laws, and
are not susceptible to the level of growth of the stochastic construct. In this way only
finite-size effects alter the scaling, and this happens is particularly significant for high
values of m.
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a) b)

c)

Figure B.1: Scheidegger networks arranged, clockwise, with increasing aspect ratios, that
is, of perpendicular vs lateral dimension of the tributaries, specifically it is in growing
order m = L⊥/L|| = 1/10, 1, 10 (a), b) and c) respectively). Note that this geometric
and topological arrangement is seen as a demanding test for the theoretical results owing
to the pronounced anisotropy of the network forms (see Figure B.2).
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Figure B.2: Scaling relations between 〈d〉a and a, and 〈a〉a, for the Scheidegger networks
shown in Figure B.1. Here various aspect ratios are used, specifically in growing order
withm = L⊥/L|| = 1/10, 1, 10. The first case is perhaps the most appropriate to describe

the exact results of the exponent related to the tributaries distribution, i.e.
Hdf

1+H = 1/3,
because it eases the formation of subbasins with the exact value H = 1/2. Other lattice
ratios lead to a deviation from the exact values of exponents and deviations appear as
shown due to the slow logarithmic growth of the construct. The largest deviations relate
to the highest value of m. a.1) and b.1) show the computational relations 〈d〉a vs a and
〈d〉a vs 〈a〉a respectively, a.2) and b.2) the scaling of their related variance.
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Appendix C

List of
Publications/Manuscripts/Funds
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