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Abstract

This thesis works in partial differential equations and several complex
variables that concentrates on a general estimate for ∂̄-Neumann problem
on domain which is q-pseudoconvex or q-pseudoconcave at the boundary
point. Generalization of the Property (P ) in [C84], we define the Property
(f -M-P )k at the boundary point. The Property (f -M-P )k is a sufficient
condition to get following estimate

(f -M)k ‖f(Λ)Mu‖2 ≤ c(‖∂̄u‖2 + ‖∂̄∗u‖2 + ‖u‖2) + CM‖u‖2
−1

for any u ∈ C∞
c (U ∩ Ω̄)k ∩Dom(∂̄∗). We want to point our attention that by

the choice of f and M, (f -M)k will be subelliptic estimate, superlogarithmic
estimate, compactness estimate, subelliptic multiplier estimate...

Moreover, the thesis contains some applications of (f -M)k and construc-
tions of the Property (f -M-P )k on some class of domains.
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Riassunto

La presente tesi ha come argomento lo studio di equazioni alle derivate
parziali nell’ambito dell’analisi in piú variabili complesse. Un primo risultato
è stato quello di trovare alcune stime, abbastanza generali, per il problema del
∂̄-Neumann su domini q-pseudoconvessi o q-pseduconcavi. Un altro soggetto
di studio è stato quello di generalizzare la proprietà (P) (vedi [C84]) tramite
la definizione di una nuova nozione che chiameremo proprietà (f -M-P )k.
Quest’ultima consente di ottenere una stima del tipo

(f -M)k ‖f(Λ)Mu‖2 ≤ c(‖∂̄u‖2 + ‖∂̄∗u‖2 + ‖u‖2) + CM‖u‖2
−1

la quale, con oppurtune scelte di f eM, (f -M)k produce stime subellittiche,
superlogaritmiche, di compattezza o stime con moltiplicatori subellettici...

Inoltre mostreremo alcune applicazioni della proprietà (f -M)k e la costruzione
di alcuni domini che soddisfano alla stessa.
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Chapter 1

Introduction

The ∂̄-Neumann problem is probably the most important and natural ex-
ample of a non-elliptic boundary value problem, arising as it does from the
Cauchy-Riemann system. The main tools to prove regularity of solution of
this problem are various L2-estimates such as subelliptic estimates, super-
logarithmic estimates, compactness estimates... In this thesis, we introduce a
general estimate is called (f -M)k. The principal result proved in this thesis
are Theorem 1.10 and Theorem 1.13. To introduce the thesis, we first give a
brief description of the ∂̄-Neumann problem, for a detail account see [FK72].

1.1 The ∂̄-Neumann problem

Let Ω be a bounded domain of Cn with smooth boundary denoted by
bΩ. Let Lh,k2 (Ω) be the space of square-integrable (h, k)-forms on Ω. Then we
have

Lh,k−1
2 (Ω)

∂̄

�
∂̄∗
Lh,k2 (Ω)

∂̄

�
∂̄∗
Lh,k+1

2 (Ω) (1.1)

by ∂̄ we mean the closed operator which is the maximal extension of the
differential operator and by ∂̄∗ we mean the L2-adjoint of ∂̄. We defineHh,k ⊂
Lh,k2 (Ω) by

Hh,k = {u ∈ Dom(∂̄) ∩Dom(∂̄∗)
∣∣∂̄u = 0 and ∂̄∗u = 0}. (1.2)

1



2 CHAPTER 1. INTRODUCTION

The ∂̄-Neumann problem for (h, k)-forms can them be stated as follow :
given α ∈ Lh,k2 (Ω) with α ⊥ Hh,k, does there exist u ∈ Lh,k(Ω) such that

(∂̄∂̄∗ + ∂̄∗∂̄)u = α

u ∈ Dom(∂̄) ∩Dom(∂̄∗)

∂̄u ∈ Dom(∂̄∗), ∂̄∗u ∈ Dom(∂̄).

(1.3)

Observe that if a solution of (1.3) exists then there is a unique solution
of u of (1.3) such that u ⊥ Hh,k. We will denote this solution by Nα. If a
solution to (1.3) exists for all α ⊥ Hh,k, then we extend the operator N to a
linear operator on Lh,k2 (Ω) by setting

Nα =

{
0 if α ∈ Hh,k

u if α ⊥ Hh,k.
(1.4)

Then N is bounded self adjoint. Furthermore, if ∂̄α = 0, then form (1.3) we
obtain ∂̄∂̄∗∂̄Nα = 0, taking inner product with ∂̄Nα we get ‖∂̄∗∂̄Nα‖2 = 0
hence ∂̄∗∂̄Nα = 0. Thus we see from (1.3) that if ∂̄α = 0 and α ⊥ Hh,k

then α = ∂̄∂̄∗Nα. It then follows that v = ∂̄∗Nα is a unique solution to the
∂̄-problem {

∂̄v = α,

v is orthogonal to Ker ∂̄.
(1.5)

The ∂̄-Neumann problem is a non-elliptic boundary value problem; in fact,
the Laplacian � = ∂̄∂̄∗ + ∂̄∗∂̄ itself is elliptic but the boundary conditions
which are imposed by the membership to Dom(�) are not. The main interest
relies in the regularity at the boundary for these problems, that is, in stating
under which condition u inherits from α the smoothness at the boundary bΩ
(it certainly does in the interior). The regularity of the ∂̄-Neumann operator
is defined as follows

Definition 1.1. 1. Global regularity : if α ∈ C∞(Ω̄) then Nα ∈ C∞(Ω̄).

2. Local regularity : if α ∈ C∞
c (U ∩ Ω̄) then Nα ∈ C∞(U ′ ∩ Ω̄) where

U ′ ⊂ U is the neighborhoods of given point z0 ∈ Ω̄.

One of the main tools used in investigating the local (resp. global ) regu-
larity at the boundary of the solutions of the ∂̄-Neumann problem consist in
the certain priori estimates such as subelliptic, superlogarithmic (resp. com-
pactness) estimates. In this thesis we introduce the (f -M)k estimates which
are general of those estimates.
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1.2 The (f-M)k estimate

In order to define (f -M)k, some preliminary material is required.

For quantifies A and B we use the notion A . B to mean A ≤ cB for
some constant c > 0, which independent of relevant parameters. We write
A ∼= B to mean A . B and B . A. For functions f and g we use the notion
f � g to mean that lim

t→+∞
f(t)
g(t)

= +∞.

Let Ω be a smooth domain with local defining in a neighborhood of bound-
ary point z0. Throughout this thesis we assume z0 is the origin point. For a
neighborhood U of z0, fix a smooth real-valued function r

Ω ∩ U = {z ∈ U : r(z) < 0} (1.6)

such that |∂r| = 1 on bΩ. We take an local orthonormal basis of (1, 0) forms
ω1, ..., ωn = ∂r and dual basis of (1,0) vector fields L1, ..., Ln; thus L1, ..., Ln−1

generate T 1,0(U ∩ bΩ). For φ ∈ C2(U), we denote by φij the coefficients of
∂∂̄φ in this basis.

Let λ1(z) ≤ ... ≤ λn−1(z) be the eigenvalues of (rjk(z))
n−1
j,k=1. We take a

pair of indices 1 ≤ q ≤ n−1 and 0 ≤ qo ≤ n−1 such that q 6= qo. We assume
that there is a bundle Vqo ∈ T 1,0bΩ of rank qo with smooth coefficients, by
reordering we may suppose Vqo = span {L1, ..., Lqo} such that

q∑
j=1

λj −
qo∑
j=1

rjj|u|2 ≥ 0 on U ∩ bΩ; (1.7)

here we conventionally set
∑qo

j=1 · ≡ 0 if qo = 0.

Definition 1.2. (i) If q > qo we say that Ω is q-pseudoconvex at z0.

(ii) If q < qo we say that Ω is q-pseudoconcave at z0.
The q-pseudoconvexity/concavity is said to be strong when (1.7) holds

as strict inequality.

The notion of q-pseudoconvexity was used in [Ah07] and [Za00] to prove
the existence of C∞(Ω̄)k solutions to the equation ∂̄u = f . Though the notion
of q-pseudoconcavity is formally symmetric to q-pseudoconvexity, it is useless
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in the existence problem. The reason is intrinsic. Existence is a “global” prob-
lem but bounded domains are never globally q-pseudoconcave. Owing to the
local nature of estimates and the related local regularity of ∂̄-Neumann prob-
lem, this is the first occurrence where q-pseudoconcavity comes successfully
into play. Moreover, the local estimates on pseudoconcave domain play the
leading role in study the ∂̄/∂̄b-Neumann problem on annuli/hypersurfaces.

Remark 1.3. If Ω is q-pseudoconvex at z0 then it implies Ω is also k-pseudoconvex
for any k ≥ q. Similarly, if Ω is q-pseudoconcave at z0 then it implies Ω is
also k-pseudoconvex for any k ≤ q.

Remark 1.4. Definition 1.2 is generalized from usual pseudoconvexity, pseu-
doconcavity and condition Z(q). In fact, for qo = 0, q = 1 then 1-pseudoconvex
is usual pseudoconvex. Similarly, qo = n − 1, q = n − 2 then (n − 1)-
pseudoconcave is usual pseudoconcave. Moreover, if Ω satisfies condition Z(q)
at the point z0, that is, the Levi form has at least n− q positive eigenvalues
or at least q + 1 negative eigenvalue at each point z ∈ bΩ ∩ U , then Ω is
strongly q-pseudoconvex or strongly q-pseudoconcave at z0.

We denote by Ah,k the space of smooth (h, k)-forms in Ω̄. Throughout
this thesis we only deal with (0, k)-form since the extension form type (0, k)
to type (h, k) is trivial. Denote by

C∞
c (U ∩ Ω̄)k = {u ∈ A0,k

∣∣supp(u) ⊂ U}.

If u ∈ C∞
c (U ∩ Ω̄)k, then u can be written as follows:

u =
∑′

|J |=k

uJ ω̄J , (1.8)

where ω̄J = ω̄j1 ∧ ... ∧ ω̄jk here J = {j1, ..., jk} are multiindices and
∑′

denotes summation over strictly increasing index sets. If J decomposes as
J = jK, then we write ujK = εjKJ uJ where εjKJ uJ is the sign of the permuta-
tion iK → J . We check ready that u ∈ Dom(∂̄∗) if and only if unK |bΩ = 0
for any K.

We define the multiplier M such that if M = A0,0, we define

Mu := |M||u|. (1.9)
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If M =
∑

jMjωj ∈ A1,0 and when Ω is q-pseudoconvex/concave at z0, we
define

Mu :=

√√√√∣∣∣ ∑′

|K|=k−1

|
n∑
j=1

M̄jujK |2 −
qo∑
j=1

|M|2|u|2
∣∣∣. (1.10)

Let z0 ∈ bΩ, we choose special boundary coordinates (x, r) ∈ R2n−1 × R
defined in a neigborhood U of z0 where xj’s are the tangential coordinates
and r, the defining function, is called normal coordinate. Denote by ξ the
dual varialbes of x; and define x · ξ =

∑
xiξj; |ξ|2 =

∑
ξ2
j .

For ϕ ∈ C∞
c (U ∩ Ω̄) we define ϕ̃, the tangential Fourier transforms of ϕ,

by

ϕ̃(ξ, r) =

∫
R2n−1

e−ix·ξϕ(x, r)dx.

We denote by Λξ = (1+|ξ|2) 1
2 the standard “tangential” elliptic symbol of

order 1 and by Λ the operator with symbol Λξ; We define a class of functions
F by

F = {f ∈ C∞([1,+∞)
∣∣∣f(t) . t

1
2 ; f ′(t) ≥ 0 and

∣∣f (m)(t)
∣∣ . ∣∣fm−1(t)

t

∣∣,∀m ∈ Z+}.

Notice that with f(t) = 1; log(t)s or tε, ε ≤ 1
2
, then f ∈ F .

For f ∈ F , we define the operator f(Λ) by

f(Λ)ϕ(x, r) = (2π)−2n+1

∫
R2n−1

eix·ξf(Λξ)ϕ̃(ξ, r)dξ. (1.11)

where ϕ ∈ C∞
c (U ∩ Ω̄).

We define the energy form Q on C∞
c (U ∩ Ω̄)k ∩Dom(∂̄∗) by

Q(u, v) = (∂̄u, ∂̄v) + (∂̄∗u, ∂̄∗v) + (u, v)

for u, v ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗). Now we are ready to define (f -M)k

estimate.

Definition 1.5. Let Ω be q-pseudoconvex (resp. q-pseudoconcave) at z0 ∈
bΩ. Then the ∂̄-Neumann problem is said to satisfy (f -M)k estimate at
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the boundary point z0 ∈ bΩ if there exists a positive constant CM and a
neighborhood U of z0 such that

(f -M)k ||f(Λ)Mu||2 . Q(u, u) + CM‖u‖2
−1 (1.12)

holds for any u ∈ C∞
c (U ∩ Ω̄)k ∩Dom(∂̄∗) where k ≥ q (resp. k ≤ q).

Remark 1.6. Remark that CM is only depend on the constant M so that we
write CM for CM . Then if M is bounded constant then we can assume that
CM = 0.

Remark 1.7. If Ω is q-pseudoconvex at z0 and (f -M)k holds for k ≥ q then
(f -M)l holds for any l ≥ k. Similarly, If Ω is q-pseudoconcave at z0 and
(f -M)k holds for k ≤ q then (f -M)l holds for any l ≤ k.

We usually say simply (f -M)k holds when the definition applies. We

remark that f(|ξ|) . |ξ| 12 , and if f(|ξ|) ∼= |ξ| 12 then the operator M have to
bounded (that is,M independent on M) since the best estimate on boundary
point is 1

2
-subelliptic estimates.

1.3 Some relations with (f-M)k

We want to point our attention to the choice of f and M in relevant cases
and review some results concerning those estimates :

1) For f(|ξ|) = |ξ|ε for 0 < ε ≤ 1
2

and M = 1, then (f -M)k become
subellipitic estimate

|||u|||2ε . Q(u, u). (1.13)

When the domain Ω is pseudoconvex, a great deal of work has been done
about subelliptic estimates. The most general results concerning this problem
have been obtained in [Koh79] and [Cat87].

• In [Koh79], Kohn gave a sufficient condition for subellipticity over pseu-
doconvex domains with real analytic boundary by introducing a se-
quence of ideals of subelliptic multipliers.
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• In [Cat87], Catlin proved, regardless whether bΩ is real analytic or
not, that subelliptic estimates hold for k-forms at z0 if and only if the
D’Angelo type Dk(z0) is finite. Catlin applies the method of weight
functions used earlier by Hormander [Ho66]. One step in Catlins proof
is the following reduction:

Theorem 1.8. Suppose that Ω ⊂⊂ Cn is a pseudoconvex domain de-
fined by Ω = {r < 0}, and that z0 ∈ bΩ. Let U is a neighborhood of
z0. Suppose that for all δ > 0 there is a smooth real-valued function Φδ

satisfying the properties:
|Φδ| ≤ 1 on U,

Φδ
ziz̄j

≥ 0 on U,∑n
ij=1 Φδ

ziz̄j
uiūj >

∼
δ−2ε|u|2 on U ∩ {−δ < r ≤ 0}

(1.14)

Then there is a subelliptic estimate of order ε at z0.

However, not much is known in the case when the domain is not neces-
sarily pseudoconvex except from the results related to the celebrated Z(k)
condition which characterizes the existence of subelliptic estimates for ε = 1

2

according to Hörmander [Hor65] and Folland-Kohn [FK72]. Some further re-
sults, mainly related to the case of forms of top degree n− 1 are due to Ho
[Ho85].

The basic theorem of Kohn and Nirenberg [1965] shows that local regular-
ity is consequence of a subelliptic estimates. In fact, if subelliptic estimate of
order ε holds for the ∂̄-Neumann problem on a neighborhood U of the given
point in bΩ, then α|U ∈ Hs(U)k implies Nα|U ′ ∈ Hs+2ε(U

′)k for U ′ ⊂⊂ V ;
here Hs(U)k denote the L2-Sobolev space of order s on k-forms.

2) For f(|ξ|) = log |ξ| and M = 1
ε

for any ε > 0, then (f -M)k implies
superlogarithmic estimate

|| log(Λ)u||2 . ε(‖∂̄u‖2 + ‖∂̄∗u‖2) + Cε‖u‖2. (1.15)

Superlogarithmic estimate was first introduced by Kohn in [Koh02]. He
proved superlogarithmic estimate for the operator �b on pseudoconvex CR
manifolds and using them to establish local regularity of �b and of the ∂̄-
Neumann problem. These estimates are established under the assumption
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that subellipticity degenerates in certain specified ways.

3) For f(|ξ|) ≡ 1 and M = 1
ε

for any ε > 0, then (f -M)k implies
compactness estimate

||u||2 . ε(‖∂̄u‖2 + ‖∂̄∗u‖2) + Cε‖u‖2
−1. (1.16)

By definition (f -M)k, the compactness estimate in the line (1.16) is local
property. Roughly speaking, the ∂̄-Neumann operator N on Ω is compact if
and only if every boundary point has a neighborhood U such that the corre-
sponding ∂̄-Neumann operator on U ∩ Ω is compact. A classical theorem of
Kohn and Nirenberg [KN65] asserts that compactness of N (as an operator
form L2(Ω) to itsefl) implies global regularity in the sense of preservation of
Sobolve space.

Catlin [Cat84] introduced Property (P) and showed that it implies a com-
pactness estimate for ∂̄-Neumann problem. A pseudoconvex domain Ω has
Property (P) if for every positive number M there exists a plurisubhamonic
function ΦM in C∞(Ω), bounded between 0 and 1, whose complex Hessian
has all its eigenvalues bounded below by M on bΩ:

n∑
ij=1

∂2ΦM

∂zi∂z̄j
wiw̄j ≥M |w|2, forz ∈ bΩ, w ∈ Cn. (1.17)

Compactness is completely understood on (bounded) locally convexifiable
domains. On such domains, the following are equivalent [FS98], [FS01] :

(i) N is compact,

(ii) the boundary of the domain satisfies property (P),

(iii) the boundary contains no q-dimensional analytic variety.

In general, however, the situation is not understood at all.

5) For f(ξ) ≡ 1 and M = 1
ε

∑n
j=1 r

ε
ziz̄j

rz̄i
dzj is a 1-form for any ε > 0

here rε, r are defining functions with |∇rε| ∼= 1 on bΩ, then (f -M)k can be
written as∑′

|K|=k−1

‖
n∑

i,j=1

rεziz̄j
rz̄i
ujK‖2 . ε(‖∂̄u‖2 + ‖∂̄∗u‖2) + Cε‖u‖2

−1. (1.18)
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for any u =
∑′

|J |=k
uJdz̄J ∈ C∞(Ω̄)k ∩Dom(∂̄∗).

The estimate (1.18) was introduced by Straube in [Str08]. In [Str08],
he showed that if (1.18) holds for all u ∈ C∞(Ω)k ∩ Dom(∂̄∗) then the ∂̄-
Neumann operator Nk on k-forms is exactly regular in Sobolev norms, that
is

‖Nku‖s ≤ Cs‖u‖s

for any integer s ≥ 0 and all u ∈ Hs(Ω)k. Notice that the estimate (1.18) is
weaker than compactness estimate.

6) For f(|ξ|) = |ξ|ε and M ∈ A0,0 (resp. M ∈ A1,0), then (f -M)k-
estimates will be

|||Mu|||2ε . Q(u, u). (1.19)

One callsM be a subelliptic multiplier (resp. subelliptic vector-multiplier
). Kohn [Koh79] used the subelliptic multiplier and subelliptic vector-multiplier
to obtian the subelliptic estimate on real analytic domain. In particular, he
showed there is a nonzero constant function belong to his collection of all
multipliers.

1.4 The main theorems

The first goal in this thesis, we exploit here the full strength of Catlin’s
method to study (f -M)k estimate on a q-pseudoconvex or q-pseudoconcave
domain. These results are related to works of my joint work with G. Zampieri
in [KZ1],[KZ2] and [KZ3].

Denote by Sδ the strip set {z ∈ Ω| − δ < r < 0}, generalize conditions
(1.14) in Theorem 1.8 and Property (P ) in (1.17), we define

Definition 1.9. We call that Ω is satisfied Property (f -M-P )k at the bound-
ary point z0 ∈ bΩ if there is a neighborhood U of z0 and for all δ > 0 suf-
ficiently small there exists a real-valued function Φ := Φδ,M ∈ C2(U) such



10 CHAPTER 1. INTRODUCTION

that:

(f -M-P )k


|Φ| . 1∑′

|K|=k−1

n∑
ij=1

Φiju
τ
iK ū

τ
jK −

qo∑
j=1

Φjj|uτ |2

>
∼
f(δ−1)2|Muτ |2 +

qo∑
j=1

|Lj(Φ)uτ |2

(1.20)
on Sδ ∩ U for any u ∈ C∞

c (Ω̄ ∩ U)k, where uτ is the tangetial component of
u.

Our result is the following :

Theorem 1.10. Let Ω ⊂ Cn be q-pseudoconvex (resp. q-pseudoconcave) and
satisfy Property (f -M-P )k at boundary point z0 ∈ bΩ then (f -M)k-estimate
holds at z0 with k ≥ q (resp. k ≤ q).

Observe that conditions of the family {Φδ,M} in our Property (f -M-P )k

is simpler than conditions (1.14) in Theorem 1.8 and Property (P ) in (1.17).

The main idea for proving Theorem 1.10 stems from a paper of Catlin
[Cat87], combining with some modifications in our papers [KZ1] and [KZ2].

We remark that our Property (f -M-P )k is restriction only on uτ -tangential
component of u. we firstly get (f -M)k-estimate for u replaced by uτ . How-
ever, for the normal component uν ,of u, one can reasonably get the estimate
‖uν‖2

1 . Q(u, u). This supply completely u to get our estimates.

On the real hypersurface M of Cn, ∂̄ induces the tangetial Cauchy-
Riemann operator ∂̄b. Let ∂̄∗b be the L2-adjoint of ∂̄b and �b = ∂̄b∂̄

∗
b + ∂̄∗b ∂̄b,

the Kohn Laplacian. We denote by

Qb(u, v) = (∂̄u, ∂̄u)b + (∂̄∗u, ∂̄∗v)b + (u, v)b

for any u, v ∈ C∞
c (U ∩M)k where C∞

c (U ∩M)k the space of tangential (0,k)-
forms on M with support in U and ( , )b denotes the L2-inner product on M .

Suppose that u ∈ C∞
c (U ∩M)k. Write

u = u+ + u− + u0,
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where ũ+ is supported in a conical neigborhood of 0 with ξ2n−1 > 0, ũ− is
supported in a canonical neigborhood of 0 with ξ2n−1 < 0, and ũ0 is sup-
ported outside of such neighborhoods.

Our estimates on M are defined as follows:

Definition 1.11. If M is a hypersurface and z0 ∈M then a (f -M)kb estimate
holds for (∂̄b, ∂̄

∗
b ) on at x0 if there exists a neighborhood U of z0 such that

(f -M)kb ‖f(Λ)Mu‖2
b ≤ cQb(u, u) + CM‖u‖2

b,−1

for all u ∈ C∞
c (U ∩M)k. And a (f -M)kb,+-estimate (resp. (f -M)kb,−) holds

for (∂̄b, ∂̄
∗
b ) at z0 if the above holds with u replaced by u+ (resp. u−), that is,

(f -M)kb,+ ‖f(Λ)Mu+‖2
b ≤ cQb(u

+, u+) + CM‖u+‖2
b,−1

(resp.

(f -M)kb,− ‖f(Λ)Mu−‖2
b ≤ cQb(u

−, u−) + CM‖u−‖2
b,−1. )

Definition 1.12. The hypersurface M is called to be q-pseudoconvex at zo
if one of two sides divided by M is q-pseudoconvex at zo.

We denote by Ω+ = {z ∈ U |r(z) < 0} the q-pseudoconvex side at zo
which is divied by M ; and another side denoted by Ω−. By Remark 2.3,
Ω− = {z ∈ U | − r(z) < 0} is (n − q − 1)-pseudoconcave at zo. Here U is
a neighborhood of z0 ∈ M . We denote by (f -M)kΩ+ the (f -M)k on Ω+; by
(f -M)kΩ− the (f -M)k on Ω− .

The second goal in this thesis is the equivalents of (f -M)k estimates on
the domain and on its boundary.

Theorem 1.13. Let M be a q-pseudoconvex hypersurface at z0. Asumme
that M divides a neighborhood U of z0 to be Ω+ and Ω− as above. Then

(f -M)kΩ+ ⇐⇒ (f -M)kb,+ ⇐⇒ (f -M)n−1−k
b,− ⇐⇒ (f -M)n−1−k

Ω− (1.21)

for any k ≥ q.
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Since Qb(u
0, u0) >

∼
‖u0‖2

b,1, Theorem 1.13 implies that (f -M)kb onM holds

at z0 if we have Property (f -M-P )k and Property (f -M-P )n−1−k hold on
Ω+ at z0.

The thesis also contains the constructions of the Property (f -M-P )k on
some class of domains such that : Z(k), decoupled, regular coordinate; and
the discussion about global and local regularity.

The thesis is structured as follows. In chapter 2 we give the background
of the ∂̄-Neumann problem. In chapter 3 we prove theorem 1.10. The proof
of theorem 1.13 is presented in chapter 4. In chapter 5, we construct the
Property (f -M-P )k in some class of domains. The global and local regularity
is discussed in chapter 6.



Chapter 2

Background

In this chapter, we provide almost of the background for reading of the (fM)k

estimate of the ∂̄-Neumann problem on q-pseudoconvex/concave domains at
given point z0.

2.1 The terminology and notations

For z ∈ Cn, we denote by CTz the complex-valued tangent vectors to Cn

at z and we have the direct sum decomposition CTz = T 1,0
z ⊕T 0,1

z , where T 1,0
z

and T 0,1
z denote the holomorphic and anti-holomorphic vectors at z respec-

tively.

Denote A0,k
z the space of (0, k)-forms at z and by 〈 , 〉z the pairing of A0,k

z

with its dual space, we will also denote by 〈 , 〉z the inner product induced
on A0,k

z by the hermitian metric and by | |z the associated norm.

We fix the point z0 ∈ Cn. Then there exists a neighborhood U of z0 such
that we can choose C∞ vector fields with value in T 1,0, which at each point
z ∈ U are an orthonormal basis of T 1,0. Let L1, · · · , Ln be such a basis, then
for z we have 〈(Li)z, (Lj)z〉z = δij.

Let ω1, · · · , ωn be the dual basis of (1,0)-forms on U , so for each z ∈
U we have 〈(ωi)z, (Lj)z〉z = δij. We denote by L̄1, · · · , L̄n the conjugates

13
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of L1, · · · , Ln, respectively; these form an orthonormal basis of T 0,1 on U .
Denote by ω̄1, · · · , ω̄n, the conjugates of ω1, · · · , ωn respectively; then they
are the local basis of (0,1)-forms on U which dual to L̄1, · · · , L̄n. In this basis,
for any φ ∈ C∞(U), we can write

dφ =
n∑
j=1

Lj(φ)ωj +
n∑
j=1

L̄j(φ)ω̄j.

Then one defines

∂φ =
n∑
j=1

Lj(φ)ωj and ∂̄φ =
n∑
j=1

L̄j(φ)ω̄j.

We set φij to be the coefficients of ∂∂̄φ, i.e.

∂∂̄φ =
∑
ij

φijωi ∧ ω̄j. (2.1)

For each k = 1, ..., n, let c̄kij be smooth functions such that

∂ω̄k =
∑
ij

c̄kijωi ∧ ω̄j.

Then φij can be calculated as follows:

∂∂̄φ = ∂
(∑

k

L̄k(φ)ω̄k

)
=

∑
i,k

LiL̄k(φ)ωi ∧ ω̄k +
∑
k

L̄k(φ)
∑
i,j

c̄kijωi ∧ ω̄j

=
∑
i,j

(
LiL̄j(φ) +

∑
k

c̄kijL̄k(φ)
)
ωi ∧ ω̄j.

Form the fact that ∂∂̄ + ∂̄∂ = 0, we have

φij = LiL̄j(φ) +
∑
k

c̄kijL̄k(φ) = L̄jLi(φ) +
∑
k

ckjiLk(φ). (2.2)



2.1. THE TERMINOLOGY AND NOTATIONS 15

With our notions of φij’s, we say that (φij) is Levi matrix of φ under basis
ω1, ..., ωn. Moreover, from (2.2) we obtain

[Li, L̄j] =
∑
k

ckjiLk −
∑
k

c̄kijL̄k. (2.3)

where [Li, L̄j] = LiL̄j − L̄jLi, as usual.

Let Ω ⊂ Cn be an open subset of Cn and let bΩ denote the boundary of
Ω. Throughout this thesis we will restrict ourselves to domain Ω such that
bΩ is smooth in the following sense. We assume that in a neighborhood U
of bΩ there exist a C∞ real-valued function r such that dr 6= 0 in U and
r(z) = 0 if and only if z ∈ bΩ. Without loss of generality, we shall assume
that r > 0 outside of Ω̄ and r < 0 in Ω.

For z0 ∈ bΩ, we fix r so that |∂r|z = 1 in a neighborhood U of z0. We
choose ω1, · · · , ωn to be (1,0)-forms on U such that ωn = ∂r and such that
〈ωi, ωj〉 = δij for z ∈ U . We then define L1, · · · , Ln, L̄1, · · · , L̄n, ω̄1, · · · , ω̄n as
above. Note that on U ∩ bΩ, we have

Lj(r) = L̄j(r) = δjn.

Thus L1, · · · , Ln−1 and L̄1, · · · , L̄n−1 are local bases of T 1,0(U ∩ bΩ) :=
CT (U ∩ bΩ) ∩ T 1,0 and T 0,1(U ∩ bΩ) := CT (U ∩ bΩ) ∩ T 0,1 respectively,
where CT (U ∩ bΩ) the space of complex-valued tangent vector to U ∩ bΩ. We
define a vector filed T on U ∩ bΩ with values in CT (U ∩ bΩ) by:

T = Ln − L̄n.

Observe that L1, · · · , Ln−1, L̄1, · · · , L̄n−1, T are local basis of CT (U ∩ bΩ).
Using integration by parts, we get the proof of following lemma:

Lemma 2.1. Let ϕ, ψ ∈ C∞
c (U ∩ Ω̄), then we have

(L̄jϕ, ψ) = −(ϕ,Ljψ) +

∫
bΩ

L̄j(r)ϕψ̄dS + (ϕ, ajψ)

where aj ∈ C∞(Ū ∩ Ω̄).
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Substituting r for φ in (2.2), we get rij = c̄nij = cnij and by (2.3) hence

[Li, L̄j] = rijT +
n−1∑
k=1

ckjiLk −
n−1∑
k=1

c̄kjiL̄k. (2.4)

Let λ1(z) ≤ ... ≤ λn−1(z) be the eigenvalues of (rjk(z))
n−1
j,k=1 and denote

s+
bΩ(z), s−bΩ(z) , s0

bΩ(z) their number according to the different sign.

We take a pair of indices 1 ≤ q ≤ n − 1 and 0 ≤ qo ≤ n − 1 such that
q 6= qo. We assume that there is a bundle Vqo ∈ T 1,0bΩ of rank qo with
smooth coefficients, by reordering we may suppose Vqo = span {L1, ..., Lqo}
such that

q∑
j=1

λj(z)−
qo∑
j=1

rjj(z) ≥ 0 z ∈ U ∩ bΩ. (2.5)

Remember that we have defined Ω to be q-pseudoconvex or q-pseudoconcave
according to q > qo or q < qo follows when (2.5) holds.

Lemma 2.2. The domain Ω is q-pseudoconvex at z0 ∈ bΩ if and only if

∑′

|K|=k−1

n−1∑
ij=1

rijuiK ūjK −
qo∑
j=1

rjj|u|2 ≥ 0 on U ∩ bΩ (2.6)

holds for any u ∈ C∞
c (Ω̄ ∩ U)q ∩ Dom(∂̄∗).

Proof. The proof of Lemma immediately follows by the choice C =∑qo
j=1 rjj in the equivalence of two facts:

(i)
∑

|K|=k−1
′∑n−1

i,j=1 rijuiK ūjK ≥ C|u|2 for all u ∈ C∞
c (Ω∩U)k ∩Dom(∂̄∗)

(ii) The sum of any q eigenvalue of the matrix (rij) is greater than or equal
to C.

A proof of the equivalence of (i) and (ii) follows by diagonalizing the matrix
(rij); see [Hor65] and [Cat87].

�

As it has already been noticed, (2.5) for q > qo implies λq ≥ 0; hence

(2.5) is still true if we replace the first sum
∑q

j=1 · by
∑k

j=1 · for any k such
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that q ≤ k ≤ n− 1. Similarly, if it holds for q < qo, then λq+1 ≤ 0 and hence
it also holds with q replaced by k ≤ q in the first sum.

We notice that q-pseudoconvexity/concavity is invariant under a change
of an orthonormal basis but not of an adapted frame. In fact, not only the
number, but also the size of the eigenvalues comes into play. Thus, when we
say that bΩ is q-pseudoconvex/concave, we mean that there is an adapted
frame in which (2.5) is fulfilled. Sometimes, it is more convenient to put
our calculatiuons in an orthonormal frame. In this case, it is meant that the
metric has been changed so that the adapted frame has become orthonormal.

Example 2.1. Let s−(z) be constant for z ∈ bΩ close to z0; then (2.5) holds
for qo = s− and q = s−+1. In fact, we have λs− < 0 ≤ λs−+1, and therefore the
negative eigenvectors span a bunlde Vqo for qo = s− that, identified with the
span of the first qo coordinate vector fields, yields

∑qo+1
j=1 λj(z) ≥

∑qo
j=1 rjj(z).

Note that a pseudoconvex domain is characterized by s−(z) ≡ 0, thus, it is
1-pseudoconvex in our terminology.

In the same way, if s+(z) is constant for z ∈ bΩ close to z0, then λs−+s0 ≤
0 < λs−+s0+1. Then, the eigenspace of the eigenvectors ≤ 0 is a bundle which,
identified to that of the first qo = s−+ s0 coordinate vector fields yields (2.5)
for q = qo−1. In particular a pseudoconcave domain, that is a domain which
satisfies s+ ≡ 0, is (n− 2)-pseudoconcave in our terminology.

Example 2.2. Let Ω satisfy Z(q) condition at z0, that is, s+(z) ≥ n− q or
s−(z) ≤ q+ 1 for z ∈ bΩ∩U . Thus Ω is strongly q-pseudoconvex or strongly
q-pseudoconcave at z0

Example 2.3. Let Ω be a domain which defining function r defined in a
neighborhood z0 by

r = 2Rezn −Q(z1, ..., zqo) + P (zq, ..., zn−1)

where Q,P is real function such that (Qziz̄j
)qoij=1 and (Pziz̄j

)n−1
ij=q are semipos-

itive matrices. Then we can check that Ω is q-pseudoconvex at z0.

Similarly, Let Ω be a domain which defining function r defined in a neigh-
borhood z0 by

r = 2Rezn − P (z1, ..., zq+1) +Q(zqo+1, ..., zn−1)
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where P,Q is real function such that (Pziz̄j
)q+1
ij=1 and (Qziz̄j

)n−1
ij=qo+1 are semi-

positive matrices. Then we can check that Ω is q-pseudoconcave at z0 (see
Proposition 5.5 ).

Remark 2.3. Since the fact
∑n−1

j=1 λj(z) =
∑n−1

j=1 rjj(z) for z ∈ U ∩ bΩ, it
follows

q∑
j=1

λj −
qo∑
j=1

rjj =
n−1∑
j=q+1

(−λj)−
j=n−1∑
qo+1

(−rjj).

Therefore if Ω defined by r < 0 is q-pseudoconvex (q-pseudoconcave) at z0,
then Cn\Ω̄ = {−r < 0} is (n−q−1)-pseudoconcave ((n−q−1)-pseudoconvex)
at z0.

2.2 The basic estimate

Remember that we have already denoted by A0,k the space of (0, k)-forms
in C∞(X) restricted to Ω̄ and

C∞
c (U ∩ Ω̄)k = {u ∈ A0,k

∣∣supp(u) ⊂ U}.

If u ∈ C∞
c (U ∩ Ω̄)k, then u can be written as follows:

u =
∑′

|J |=k

uJ ω̄J , (2.7)

where ω̄J = ω̄j1∧...∧ω̄jk here J = {j1, ..., jk} are multiindices and
∑′ denotes

summation over strictly increasing index sets. When the multiindices are not
ordered, the coefficients are assumed to be alternant. Thus, if J decomposes
as J = jK, then ujK = εjKJ uJ where εjKJ is the sign if the permutation
jK → J . Then Cauchy-Riemann operator, ∂̄, acts usual on a (0, k)-forms via

∂̄u =
∑′

|J |=k

n∑
j=1

L̄juJ ω̄j ∧ ω̄J + ... (2.8)

where the dots refer to terms of order zero in u. Thus we have a complex

A0,k ∂̄→ A0,k+1.
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We extend this complex to L0,k
2 (Ω) the L2 space of (0, k)-forms, so that

the Hilbert space techniques may be applied to analyze the complex. For
each x ∈ Ω̄ de denote by (dV )x the unique positive (n, n)-form such that :
|(dV )x| = 1. We call dV the volume element. We define the inner products
and the norms

(u, v) =

∫
Ω

〈u, v〉x(dV )x; ‖u‖2 = (u, u), u, v ∈ L0,k
2 (Ω).

For each form degree (0, k), we define

Dom(∂̄) = {v ∈ L0,k
2 (Ω) : ∂̄v(as distribution) ∈ L0,k+1

2 (Ω)}.

Then the operator ∂̄ : Dom(∂̄) → L0,k+1
2 (Ω) is well-defined, and we have

∂̄ : L0,k
2 (Ω) → L0,k+1

2 (Ω) as a densely defined operator by noting that A0,k ⊂
Dom(∂̄). Thus, the operator ∂̄ has an L2-adjoint, ∂̄∗, defined as follows : if
u ∈ Dom(∂̄∗) and ∂̄∗u = α if

(v, α) = (∂̄v, u) for all v ∈ Dom(∂̄).

We have

(∂̄v, u) =
∑′

|K|=k−1

∑
j=1

(L̄jvK , ujK) + (v, · · · )

=
∑′

|K|=k−1

∑
j=1

(
− (vK , LjujK) + δjn

∫
bΩ

vK ūjKdS
)

+ (v, · · · )

=(v,−
∑′

|K|=k−1

LjujKω̄K) + δjn
∑′

|K|=k−1

∫
bΩ

vK ūjKdS + (v, · · · )

(2.9)

where dots denote an error term in which u is not differentiated. Here the
second inequality in (2.9) follows by Lemma 2.1. By (2.9), we have the proof
of following lemma :

Lemma 2.4.

u ∈ Dom(∂̄∗) if and only if ujK |bΩ = 0 for any K. (2.10)

Over such a form in (2.7) the action of the Hilbert adjoint of ∂̄, coin-
dides with of its ”formal adjoint” and is therefore expressed by a ”divergence
operator”:

∂̄∗u = −
∑′

|K|=k−1

∑
j

LjujKω̄K + ... (2.11)
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for any u ∈ Dom(∂̄∗).

For a real function φ in class C2, let the weighted L2
φ-norm be defined by

‖u‖2
φ = (u, u)φ := ‖ue−

φ
2 ‖2 =

∫
Ω

〈u, u〉e−φdV.

Let ∂̄∗φ be the L2
φ-adjoint of ∂̄. It is easy to see that Dom(∂̄∗) = Dom(∂̄∗φ) and

∂̄∗φu =−
∑′

|K|=k−1

n∑
j=1

δφj uKω̄K + · · · (2.12)

where δφj ϕ = eφLj(e
−φϕ) and where dots denote an error term in which u

not differentiated and φ does not occur.
By developing the equalities (2.8) and (2.12), the key technical result is

contained in the following proposition :

Proposition 2.5. Let z0 ∈ bΩ and fix an index qo with 0 ≤ qo ≤ n− 1, then
there exists a neighborhood U of z0 and suitable constant C such that

2‖∂̄u‖2
φ + 2‖∂̄∗φu‖2

φ + C‖u‖2
φ

≥
∑′

|K|=k−1

n∑
i,j=1

(φijuiK , ujK)φ −
∑′

|J |=k

qo∑
j=1

(φjjuJ , uJ)φ

+
∑′

|K|=k−1

n−1∑
i,j=1

∫
bΩ

e−φrijuiK ūjKdS −
∑
|J |=q

′
qo∑
j=1

∫
bΩ

e−φrjj|uJ |2dS

+
1

2

( qo∑
j=1

‖δφj u‖2
φ +

n∑
j=qo+1

‖L̄ju‖2
φ

)
(2.13)

for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗).

Proof. Let Au denote the sum in (2.8), we obtain that

‖Au‖2
φ =

∑′

|J |=k

n∑
j=1

‖L̄juJ‖2
φ −

∑′

|K|=k−1

∑
ij

(L̄iujK , L̄juiK)φ. (2.14)

Let Bu denote the sum in (2.12), we obtain that

‖Bu‖2
φ =

∑′

|K|=k−1

∑
ij

(δφi uiK , δ
φ
j ujK)φ. (2.15)
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Since Au and Bu differ from ∂̄u and ∂̄∗u by terms of order zero. It follows
from (2.14) and (2.15) that

2(‖∂̄u‖2
φ + ‖∂̄∗φu‖2

φ) + C‖u‖2
φ

≥ ‖Au‖2
φ + ‖Bu‖2

φ

=
∑′

|J |=k

n∑
j=1

‖L̄juJ‖2
φ +

∑′

|K|=k−1

n∑
i,j=1

(δφi uiK , δ
φ
j ujK)φ − (L̄juiK , L̄iujK)φ

(2.16)

where C is constant independent of φ.

Now we want to apply integration by parts to the term (δφi uiK , δ
φ
j ujK)φ

and (L̄juiK , L̄iujK)φ. Notice that for each ϕ, ψ ∈ C1
c (U∩Ω̄), similar to Lemma

2.1, we have{
(ϕ, δφj ψ)φ = −(L̄jϕ, ψ)φ + (ajϕ, ψ)φ + δjn

∫
bΩ
e−φϕψ̄dS

−(ϕ, L̄iψ)φ = (δφi ϕ, ψ)φ − (biϕ, ψ)φ − δin
∫
bΩ
e−φϕψ̄dS

and for some aj, bi ∈ C1(Ω̄ ∩ U) independent on φ.
This immediately implies that{

(δφi uiK , δ
φ
j ujK)φ = −(L̄jδ

φ
i uiK , ujK)φ + δjn

∫
bΩ
e−φδφi (uiK)ūjKdS +R

−(L̄juiK , L̄iujK)φ = (δφi L̄juiK , ujK)φ − δin
∫
bΩ
e−φLj(uiK)ūjKdS +R.

(2.17)

From here on, we denote terms involving product of u by δφj u for j ≤ n− 1
or L̄ju for j ≤ n by R.

Recall that ūnK = Lj(unK) = 0 on bΩ if j ≤ n−1. We thus conclude that
the boundary integrals vanish in both equalities of (2.17). Now by taking the
sum of two terms in the right side of (2.17), after discarding the boundary
integrals and we put in evidence the commutator [δφi , L̄j], we get

(δφi uiK , δ
φ
j ujK)φ − (L̄juiK , L̄iujK)φ = ([δφi , L̄j]uiK , ujK)φ +R (2.18)

for i, j = 1, ..., n and any K.

Notice that (2.17) is also true if we replace both uiK and ujK by uJ for
indices i = j ≤ q0. Then we obtain

‖L̄juJ‖2
φ = ‖δφj uJ‖2

φ − ([δφj , L̄j]uJ , uJ)φ +R. (2.19)
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Applying (2.18) and (2.19) to the last line in (2.16), we have

2(‖∂̄u‖2
φ + ‖∂̄∗φu‖2

φ) + C‖u‖2
φ

≥
∑′

|K|=k−1

n∑
i,j=1

([δφi , L̄j]uiK , ujK)φ −
∑′

|J |=k

q0∑
j=1

([δφj , L̄j]uJ , uJ)φ

+
∑′

|J |=k

( q0∑
j=1

‖δφj uJ‖2
φ +

n∑
j=q0+1

‖L̄juJ‖2
φ

)
+R.

(2.20)

Now we calculate the commutator [δφi , L̄j],

[δφi , L̄j] = LiL̄jφ+ [Li, L̄j]

= φij +
n∑
k

ckjiδ
φ
k −

n∑
j=1

c̄kijL̄k

= φij + rijδ
φ
n +

n−1∑
k

ckjiδ
φ
k −

n∑
j=1

c̄kijL̄k

(2.21)

here we use the formula in (2.2) and (2.4).

Since Ln(r) = 1, we have

(rijδ
φ
nuiK , ujK)φ =

∫
bΩ

rije
−φuiKujKdS +R. (2.22)

Substituting (2.21) in (2.20) and combine with (2.22), we get

2(‖∂̄u‖2
φ + ‖∂̄∗φu‖2

φ) + C‖u‖2
φ

≥
∑′

|K|=k−1

n∑
i,j=1

(φijuiK , ujK)φ −
∑′

|J |=k

q0∑
j=1

(φjjuJ , uJ)φ

+
∑′

|K|=k−1

n∑
i,j=1

∫
bΩ

rijuiK ūjKe
−φdS −

∑′

|J |=k

q0∑
j=1

∫
bΩ

rjj|uJ |e−φdS

+
∑′

|J |=k

( q0∑
j=1

‖δφj uJ‖2
φ +

n∑
j=q0+1

‖L̄juJ‖2
φ

)
+R.

(2.23)
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We denote by S the sum in the last line in (2.23). To conclude our proof,
we only need to prove that

R ≤ 1

2

∑′

|J |=k

( q0∑
j=1

‖δφj uJ‖2
φ +

n∑
j=q0+1

‖L̄juJ‖2
φ

)
+ C‖u‖2

φ. (2.24)

In fact, if we point our attention at term which involve δφj u for j ≤ q0 or
L̄ju for q0 + 1 ≤ j ≤ n, then (2.24) is clear since S carries the corresponding

square ‖δφj u‖2
φ and ‖L̄ju‖2

φ. Otherwise, we note that for j ≤ n − 1 we may

interchange L̄j and δφj by means of integration by parts : boundary integrals

do not occur because Lj(r) = 0 on bΩ for j ≤ n − 1. As for δφn, notice that
it only hits coefficients whose index contains n and hence unK = 0 on bΩ. So
δφn(unK)ū is also interchangeable with unKL̄nū by integration by parts. This
concludes the proof of Proposition 2.5.

�

For the choice φ = 0, we can rewrite the estimate (2.13) as

Q(u, u) >
∼

∑′

|K|=k−1

n−1∑
i,j=1

∫
bΩ

uiK ūjKdS −
∑
|J |=q

′
qo∑
j=1

∫
bΩ

|uJ |2dS

+

qo∑
j=1

‖Lju‖2 +
n∑

j=qo+1

‖L̄ju‖2

(2.25)

for any u ∈ C∞c(U ∩ Ω̄)kDom(∂̄∗).

Observe that if ϕ ∈ C∞
c (U ∩ Ω̄) with ϕ = 0 on U ∩ bΩ, then each ‖Ljϕ‖2

can be interchanged with ‖L̄jϕ‖2 ± (ε‖ϕ‖2
1 + Cε‖ϕ‖2) even for j = n due to

the vanishing of the boundary integral because ϕ vanish on the boundary.
Thus

qo∑
j=1

‖Ljϕ‖2+
n∑

j=qo+1

‖L̄jϕ‖2 + ‖ϕ‖2

≥1

2

n∑
j=1

(
‖Ljϕ‖2 + ‖L̄jϕ‖2

)
− ε‖ϕ‖2

1 + ‖ϕ‖2

>
∼
‖ϕ‖2

1

(2.26)
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where ‖.‖1 is the Sobolev norm of index 1.

So that we get an estimate which fully expresses the innterior elliptic
regularity of the system (∂̄, ∂̄∗)

Q(u, u) >
∼
‖u‖2

1 (2.27)

for any u ∈ C∞
c (U ∩ Ω̄)k with u|U∩bΩ = 0. Using observation (2.26) for ϕ

replaced by unK for any K, we get

Q(u, u) >
∼

∑′

|K|=k−1

n−1∑
i,j=1

∫
bΩ

rijuiK ūjKdS −
∑
|J |=q

′
qo∑
j=1

∫
bΩ

rjj|uJ |2dS

+

qo∑
j=1

‖Lju‖2 +
n∑

j=qo+1

‖L̄ju‖2 +
∑′

|K|=k−1

‖unK‖2
1

(2.28)

for any u ∈ C∞
c (U ∩ Ω̄)k ∩Dom(∂̄∗).

Notice that conversely we have

Q(u, u) .
∣∣ ∑′

|K|=k−1

n−1∑
i,j=1

∫
bΩ

rijuiK ūjKdS −
∑
|J |=q

′
qo∑
j=1

∫
bΩ

rjj|uJ |2dS
∣∣

+

q0∑
j=1

‖Lju‖2
φ +

n∑
j=qo+1

‖L̄ju‖2
φ + ‖u‖2

φ

(2.29)

for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗). This inequality is a consequence of

the calculation in the Proposition 2.5 and holds without the assumption of
pseudoconvexity.

2.3 The tangential operators

In our study of (f -M)k-estimates, we will use tangential pseudo-differential
operators on U ∩ Ω̄ with U is a neighborhood of z0 ∈ bΩ. These will be
expressed on the terms of boundary coordinates which are defined as follows
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Definition 2.6. If z0 ∈ bΩ we will call a system of real C∞ coordinates,
defined in a neighborhood U of z0, boundary coordinates if one of coordinates
function is defining function r. We will denote such a system by (x, r) =
(x1, ..., x2n−1, r) ∈ R2n−1 × R and call the xj’s tangential coordinates and r
the normal coordinate.

We denote the dual variables of x by ξ, and define x · ξ =
∑
xiξj; |ξ|2 =∑

ξ2
j . For ϕ ∈ C∞

c (U ∩ Ω̄) we define ϕ̃, the tangential Fourier transforms of
ϕ, by

ϕ̃(ξ, r) =

∫
R2n−1

e−ix·ξϕ(t, r)dt.

Denote by Λξ = (1+ |ξ|2) 1
2 the standard “tangential” elliptic symbol of order

1 and by Λ the operator with symbol Λξ. For f ∈ C∞([1,+∞)) we define
f(Λ)ϕ by

f(Λ)ϕ(ξ, r) =

∫
eix·ξf(Λξ)ϕ̃(ξ, r)dξ. (2.30)

Hence

‖f(Λ)ϕ‖2 =

∫ 0

−∞

∫
R2n−1

f(Λξ)
2|ϕ̃(ξ, r)|2drdξ. (2.31)

In the case f(t) = ts, s ∈ R, we define tangential Sobolev norms by

|||ϕ|||s = ‖Λsϕ‖ (2.32)

Lemma 2.7. Let f, g ∈ C∞([1,+∞)) satisfy lim
t→+∞

f(t)
g(t)

= +∞. Then for any

ε > 0 and s ∈ R+ there exists the constant Cε,s such that

‖g(Λ)ϕ‖2 ≤ ε‖f(Λ)ϕ‖2 + Cε,s|||u|||2−s

for any ϕ ∈ C∞
c (U ∩ Ω̄).

Proof. Since lim
t→+∞

f(t)
g(t)

= +∞, then for any ε > 0, there exists the constant

tε > 0 such that g(Λξ) ≤ εf(Λξ) for |ξ| ≥ tε. Hence

‖g(Λ)ϕ‖2 =

∫ 0

−∞

∫
|ξ|≥tε

g(Λξ)
2|ϕ̃(ξ, r)|2drdξ +

∫ 0

−∞

∫
|ξ|≤tε

g(Λξ)
2|ϕ̃(ξ, r)|2drdξ

≤ε
∫ 0

−∞

∫
|ξ|≥tε

f(Λξ)
2|ϕ̃(ξ, r)|2drdξ +

∫ 0

−∞

∫
|ξ|≤tε

g(Λξ)
2|ϕ̃(ξ, r)|2drdξ

≤ε‖f(Λ)ϕ‖2 + Cε,s|||u|||2−s.
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�
In R2n

− = {(x1, ..., x2n)|x2n = r ≤ 0}, the Schwarz function are smooth
functions which decrease rapidly at infinity:

S = {f ∈ C∞(R2n
− )|∀α, β sup

x∈R2n
−

|xαDβf(x)| <∞}

where α and β are 2n-indeces and Dβ = ∂β1

∂xβ1
· · · ∂β2n

∂xβ2n
. Recall that a class of

functions F is defined by

F = {f ∈ C∞([1,+∞)
∣∣∣f(t) . t

1
2 ; f ′(t) ≥ 0 and |f (m)(t)| . |f

m−1(t)

t
|,∀m ∈ Z+}.

Proposition 2.8. Let f ∈ F ; a ∈ S(R2n
− ); s ∈ R; and M be the a vector

field with coefficients in S(R2n
− ). Then we have

(i) |||[f(Λ), a]ϕ|||s . |||f(Λ)ϕ|||s−1;

(ii) |||[f(Λ),M ]ϕ|||s . |||f(Λ)ϕ|||s + |||Drf(Λ)ϕ|||s−1;

for any ϕ ∈ C∞
c (U ∩ Ω̄).

Proof. The proof of (i) of Proposition follows by Kohn-Nirenberg formula:

σ([A,B]) =
∑
k>0

(∂/∂ξ)kσ(A)Dk
xσ(B)− (∂/∂ξ)kσ(B)Dk

xσ(A)

k!
(2.33)

(notice here that the k = 0 term cancels out ). Using formula (2.33) for
A = f(Λ) where f ∈ F and B = a ∈ S(R2n

− ), we obtain

|σ([f(Λ), a])| . σ(Λ−1f(Λ)).

The second part of this proposition immediately follows by the first part with
notice that M =

∑
k ak(x, r)

∂
∂xk

+ b(x, r) ∂
∂r

.

�

Proposition 2.9. For f ∈ F , the estimate

‖Λ−1f(Λ)ϕ‖2
1 .

q0∑
j=1

‖LjΛ−1f(Λ)ϕ‖2 +
n∑

j=q0+1

‖L̄jΛ−1f(Λ)ϕ‖2

+ ‖Λ−1f(Λ)ϕ‖2 + ‖Λ−1/2f(Λ)ϕb‖2
b

(2.34)

holds for all ϕ ∈ C∞
c (U ∩ Ω̄).
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The above proposition is a variant of Theorem (2.4.5) of [FK72]. The
key to proving this theorem is a passage between functions in C∞(U ∩ Ω̄) to
C∞(U ∩ bΩ). This is done by using an extension of ψ on U ∩ bΩ to U ∩ Ω̄.
Suppose that ψ ∈ C∞

c (U ∩ bΩ), we define ψ(e) ∈ C∞({(x, r) ∈ R2n
∣∣r ≤ 0})

by

ψ(e)(x, r) =

∫
eix·ξer(1+|ξ|

2)1/2

ψ̃(ξ)dξ

so that ψ(e)(x, 0) = ψ(x).

Lemma 2.10. For each k ∈ Z, k ≥ 0; s ∈ R; and f ∈ F , then we have

(i) |||rkf(Λ)ψ(e)|||s ∼= Ck‖f(Λ)ψ‖b,s−k− 1
2

(ii) |||Drf(Λ)ψ(e)|||s ∼= ‖f(Λ)ψ‖b,s+ 1
2

for any ψ ∈ C∞
c (U ∩ bΩ).

Proof. (i): We observe that for every positive integer k, we have from
integration by parts:∫ 0

−∞
r2ker(1+|ξ|

2)1/2

dr = C ′
k(1 + |ξ|2)−k−

1
2 . (2.35)

Hence,

|||rkf(Λ)ψ(e)|||2s ∼=
∫ 0

−∞

∫
R2n−1

r2ke2r(1+|ξ|
2)1/2

(1 + |ξ|2)sf((1 + |ξ|2)1/2)2|ψ(ξ)|2dξdr

∼=C ′
k

∫
R2n−1

(1 + |ξ|2)s−k−
1
2f((1 + |ξ|2)1/2)2|ψ(ξ)|2dξ

∼=C ′
k|||f(Λ)ψ|||2

b,s−k− 1
2
.

(2.36)

(ii). Since the derivative Dr does not affect the variables in which we
take the Fourier transform, the two operations commute. Hence

|||Drf(Λ)ψ(e)|||2s =

∫
R2n−1

∫ 0

−∞
(1 + |ξ|2)sf((1 + |ξ|2)1/2)2(1 + |ξ|2)e2r(1+|ξ|2)1/2|ψ̃(ξ, 0)|2drdξ

=
1

2

∫
R2n−1

f((1 + |ξ|2)1/2)2(1 + |ξ|2)s+1/2|ψ̃(ξ, 0)|2dξ

=
1

2
‖f(Λ)ψ‖2

b,s+ 1
2
.
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Then lemma is proven.
�

Proof of Proposition 2.9. We prove the lemma for elliptic system {Lj}j≤q0∪
{L̄j}q0+1≤j≤n∪ replaced by {Sj}1≤j≤n where Sj ∈ CTU satisfies there exist
no 0 6= η ∈ T ∗U such that 〈Sj, η〉x = 0 for all j = 1, ..., n.

Assume for the moment that ϕ(x, 0) = 0, (i.e, ϕ|bΩ = 0), which implies
that Λ−1g(Λ)ϕ(x, 0) = 0 since the boundary condition is invariant under the
action tangential operators. Using the observation (2.26) to Sj’s, we get

‖Λ−1f(Λ)ϕ‖2
1 .

n∑
j=1

(
‖SjΛ−1f(Λ)ϕ‖2 + ‖S̄jΛ−1f(Λ)ϕ‖2

)
+ ‖Λ−1f(Λ)ϕ‖2

.
n∑
j=1

‖SjΛ−1f(Λ)ϕ‖2 + ‖Λ−1f(Λ)ϕ‖2.

(2.37)

Next suppose that ϕmay or may not vanish at the boundary. Let ϕb be the
restriction of ϕ to boundary, that is ϕb(x) = ϕ(x, 0). We set ϕ(0) = ϕ− ϕ

(e)
b .

Then ϕ(0) vanishes on the boundary so that the previous result applies to
ϕ(0). We then have

‖f(Λ)ϕ(0)‖2 .
n∑
j=1

‖SjΛ−1f(Λ)ϕ(0)‖2 + ‖Λ−1f(Λ)ϕ(0)‖2. (2.38)

Therefore

‖Λ−1f(Λ)ϕ‖2
1 .‖f(Λ)ϕ(0)‖2 + ‖f(Λ)ϕ

(e)
b ‖

2

.
n∑
j=1

‖SjΛ−1f(Λ)ϕ(0)‖2 + ‖Λ−1f(Λ)ϕ(0)‖2 + ‖f(Λ)ϕ
(e)
b ‖

2

.
n∑
j=1

[
‖SjΛ−1f(Λ)ϕ‖2 + ‖SjΛ−1f(Λ)ϕ

(e)
b ‖

2
]

+ ‖Λ−1f(Λ)ϕ‖2 + ‖Λ−1f(Λ)ϕ
(e)
b ‖

2 + ‖f(Λ)ϕ
(e)
b ‖

2

.
n∑
j=1

‖SjΛ−1f(Λ)ϕ‖2 + ‖Λ−1f(Λ)ϕ‖2

+ ‖Λ−1f(Λ)ϕ
(e)
b ‖

2 + ‖f(Λ)ϕ
(e)
b ‖

2 + ‖DrΛ
−1f(Λ)ϕ

(e)
b ‖

2

(2.39)
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since the Sj’s are linear combinations of ∂
∂xj

’s and Dr . Using Lemma 2.10,

the last line of (2.39) is estimated by ‖Λ− 1
2 g(Λ)ϕb‖2

b . This concludes the proof.

�
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Chapter 3

The (f-M)k-estimates : a
sufficient condition

In this chapter, we give the proof of Theorem 1.10.

3.1 Reduction to the boundary

Since the Property (f -M-P )k act only on uτ , the tangential component of
u, so that we firstly show (f -M)-estimate for uτ , that is

‖f(Λ)Muτ‖2 . Q(uτ , uτ ) + CM|||uτ |||2−1. (3.1)

One of our steps we reduce the estimate (3.1) to the boundary by following
theorem.

Theorem 3.1. Let Ω be the q-pseudoconvex (resp. q-pseudoconcave) at bound-
ary point zo. Then there is a neighborhood U of z0 such that

‖f(Λ)Muτ‖2 . Q(uτ , uτ ) + CM|||uτ |||2−1 + ||Λ−1/2f(Λ)Muτb ||2b , (3.2)

holds for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗) for any k ≥ q (resp. k ≤ q ).

Before the proof of Theorem 3.1, we need following lemma :

Lemma 3.2. Let Ω be the q-pseudoconvex (resp. q-pseudoconcave) at bound-
ary point zo. Then there is a neighborhood U of z0 such that∑′

|J |=k

( qo∑
j=1

‖LjuJ‖2 +
n∑

j=qo+1

‖L̄juJ‖2 + ‖DrΛ
−1uJ‖2 + ‖uJ‖2

)
. Q(u, u)(3.3)

31
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holds for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗) for any k ≥ q (resp. k ≤ q ).

Proof. We only need to show∑′

|J |=k

‖DrΛ
−1uJ‖2 . Q(u, u).

Since Dr = aL̄n + bT where a, b ∈ C∞(Ω̄) and T is tangential operator order
1, thus

‖DrΛ
−1uJ‖2 . ‖L̄nuJ‖2 + ‖TΛ−1u‖2 . ‖L̄nuJ‖2 + ‖u‖2 . Q(u, u).

�

Proof of Theorem 3.1. Apply Proposition 2.9 for ϕ = Muτ ∈ C∞
c (U ∩Ω̄),

it gives

‖f(Λ)Muτ‖2 .
qo∑
j=1

‖LjΛ−1f(Λ)Muτ‖2 +
n∑

j=qo+1

‖L̄jΛ−1f(Λ)Muτ‖2

+ ‖Λ−1f(Λ)Muτ‖2 + ‖Λ−1/2f(Λ)Muτb‖2
b .

(3.4)

For any S ∈ {Lj}j≤q0 ∪ {Lj}q0+1≤j≤n ∩ {id}, we have :

Case 1. If M = Mρ, where ρ ∈ A0,0 and M is either every positive
number or 1, remember that

Muτ := M

√∑′

|J |=k

|ρ|2|uτJ |2;

then

‖SΛ−1f(Λ)Muτ‖2 =M2
∑′

|J |=k

‖SΛ−1f(Λ)ρuτJ‖2

.M2
∑′

|J |=k

(
‖ρΛ−1f(Λ)SuτJ‖2

+ ‖ρ[S,Λ−1f(Λ)]uJ‖2 + ‖[SΛ−1f(Λ), ρ]uτJ‖2
)

.M2
∑′

|J |=k

(
‖Λ−1f(Λ)SuτJ‖2 + ‖Λ−1f(Λ)uτJ‖2 + ‖DrΛ

−2f(Λ)uτJ‖2
)

.
∑′

|J |=k

(
‖SuτJ‖2 + ‖uτJ‖2 + ‖DrΛ

−1uτJ‖+ CM |||uτJ |||2−1

)
.Q(uτ , uτ ) + CM |||uτJ |||2−1

(3.5)
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here the second inequality follows by Proposition 2.8; the fourth inequality
follows by Lemma 2.7 and the last follows by Lemma 3.2.

Case 2. If M = Mθ, where θ ∈ A1,0 and M is either every positive
number or 1, remember that

Muτ :=M

√√√√∣∣ ∑′

|K|=k−1

|
n∑
j=1

θjuτjK |2 −
∑′

|J |=k

qo∑
j=1

|θj|2|uτJ |2
∣∣ (3.6)

In the same way in case 1, we get

‖SΛ−1f(Λ)Muτ‖2 . Q(uτ , uτ ) + CM |||uτJ |||2−1

This completes the proof of Theorem 3.1.
�

Remark 3.3. We notice again that the constant CM := CM if M is every
positve number and CM := 0 if M = 1.

3.2 Estimate on strip

In this section, we show the Property (f −M−P )k implies the estimate on
the δ-strip near the boundary for each δ > 0.

Recall that Sδ := {z ∈ Cn : −δ < r < 0}.

Theorem 3.4. Let Ω be q-pseudoconvex (resp. q-pseudoconcave) at the bound-
ary point z0. Assume that property (f -M-P )k holds at z0 with k ≥ q (resp.
k ≤ q). Then there is a neighborhood U of z0 such that for any δ > 0

f(δ−1)2

∫
Sδ/2

|Muτ |2dV . Q(uτ , uτ ) (3.7)

holds for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗).

To simplify, define the quadratic form Hk
qo(φ, u) by

Hk
qo(φ, u) =

∑′

|K|=k−1

n∑
ij=1

φijuiK ūjK −
qo∑
j=1

φjj|u|2
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Proof of Theorem 3.4. The proof is divided into two steps. In step 1, we
shall modify Φδ to φδ which has property not only on strip. In step 2, we
shall prove the estimate (3.7).

Step 1. By our assumption, for any δ > 0 sufficiently small, there is a
function Φδ,M such that{

Hk
qo(Φ

δ,M, uτ ) ≥ c
(
f(δ−1)2|Muτ |2 +

∑qo
j=1 |Φδ,M)uτ |2

)
|Φδ,M| ≤ 1

on U ∩ Sδ (3.8)

where Φδ,M
j = Lj(Φ

δ,M).

The support of uτ on U but the weighted function has the properties only
on the strip Sδ. So that we have to modify Φδ,M to φδ,M to get the properties
on the whole U .

We define

φδ,M := Φδ,Mχ(−r
δ
), (3.9)

where χ is the cut off function which satisfies χ(t) =

{
1 for t ≤ 1

2

0 for t ≥ 1

and χ̇ ≤ 0.

Computation of ∂∂̄φδ,M show that

∂∂̄φδ,M =χ∂∂̄Φδ,M − χ̇Φδ,M

δ
∂∂̄r + 2 Re

χ̇

δ
∂Φδ,M ⊗ ∂̄r +

Φδ,Mχ̈

δ2
∂r ⊗ ∂̄r(3.10)

and notice that for all j ≤ q0 with q0 ≤ n− 1

φδ,Mjj = χΦδ,M
jj − χ̇Φδ,M

δ
rjj.

We remark that uτnK = 0 for any K on U . So that

Hk
qo(φ

δ,M, uτ ) = χHk
qo(Φ

δ,M, uτ )− χ̇Φδ,M

δ
Hk
qo(r, u

τ ). (3.11)

We note that we can write r = 2Rezn + h(z1, ..., zn−1, yn) is a graphing
local defining function and denote by z → z∗ the projection Cn → bΩ
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in a neigborhood of zo along the xn-axis. We have the evident equality
(rij(z))

n−1
ij = (rij(z

∗))n−1
ij=1. Thus the second term in right hand side of (3.11)

can be discard since Ω is q-pseudoconvex.

Combining with (3.8), we have

Hk
qo(φ

δ,M, uτ ) ≥ χHk
qo(Φ

δ,M, uτ )

≥ cχ
(
f(δ−1)2|Muτ |2 +

qo∑
j=1

|Φδ,M
j uτ |2

)
≥ c
(
χf(δ−1)2|Muτ |2 +

qo∑
j=1

|φδ,Mj uτ |2
) (3.12)

hold for z ∈ U ∩ Ω. Here last inequality follow form (φδ,M)j = χ(Φδ,M)j for
j ≤ qo and χ ≥ χ2.

Step 2. We apply Proposition 2.5 for φ = ψ(φδ) and u = uτ . First we
remark that

Hk
q0

(ψ(φδ,M), uτ ) =ψ̇Hk
q0

(φδ,M, uτ )

+ ψ̈
( ∑′

|K|=k−1

|
n−1∑
j=1

φδ,Mj uτjK |2 −
q0∑
j=1

|φδ,Mj |2|uτ |2
)
.

(3.13)

We also have

‖∂̄∗ψ(φδ,M)u
τ‖2

ψ(φδ,M) ≤2‖∂̄∗uτ‖2
ψ(φδ,M) + 2‖

∑′

|K|=k−1

n−1∑
j=1

ψ(φδ,M)ju
τ
jKω̄K‖2

ψ(φδ,M)

=2‖∂̄∗uτ‖2
ψ(φδ,M) + 2

∑′

|K|=k−1

‖
n−1∑
j=1

ψ̇φδ,Mj uτjK‖2
ψ(φδ,M).

(3.14)

Thus we get from (2.13), under the choice of the weight ψ(φδ) and k-form
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uτ , and taking into account (3.13) and (3.14):

2‖∂̄uτ‖2
ψ(φδ,M) + 4‖∂̄∗uτ‖2

ψ(φδ,M) + C‖uτ‖2
ψ(φδ,M)

≥
∫

Ω

ψ̇e−ψ(φδ,M)Hk
qo(φ

δ,M, uτ )dV

+

∫
Ω

(ψ̈ − 4ψ̇2)e−ψ(φδ,M)
∑′

|K|=k−1

|
n−1∑
j=1

φδ,Mj uτjK |2dV

−
∫

Ω

ψ̈e−ψ(φδ,M)

qo∑
j=1

|φδ,Mj |2|uτ |2dV.

(3.15)

We now specify our choice of ψ. First, we want ψ̈ ≥ 4ψ̇2 so that the term in
the third line of (3.15) can be disregarded. Keeping this condition, we need
an opposite estimate which assures that the absolute value of the second
negative term in the last line of (3.15) is controlled by one half of the term
in the second line. In fact, from (3.12), we have

1

2

∫
Ω

ψ̇e−ψ(φδ,M)Hqo(φ
δ,M, uτ )dV −

∫
Ω

ψ̈e−ψ(φδ,M)

qo∑
j=1

|φδ,Mj |2|uτ |2dV

≥
∫

Ω

e−ψ(φδ,M)
(1

2
cψ̇ − ψ̈

) qo∑
j=1

|φδ,Mj |2|uτ |2dV.
(3.16)

The above term is nonnegative as soon as ψ̈ ≤ c
2
ψ̇ . If we then set ψ :=

1
2
e

c
2
(t−1) then both requests are satisfied. Thus the inequality of (3.15) con-

tinues as

≥ 1

2

∫
Ω

ψ̇e−ψ(φδ)Hk
qo(φ

δ, uτ )dV

≥
∫

Ω

1

2
ψ̇e−ψ(φδ)cf(δ−1)2χ(−r

δ
)|Muτ |2dV

≥ c

2
f(δ−1)2

∫
Sδ/2

ψ̇e−ψ(φδ)|Muτ |2dV.

(3.17)

Here the first inequality come from (3.12) and the last equality follows the
fact χ(−r

δ
) = 1 on Sδ/2.

Now we want to remove the weight from the resulting inequality. The
weight in the first line of (3.15) can be handled owing to e−ψ(φδ,M) ≤ 1 on
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Ω̄ ∩ U . Furthermore, since |φδ,M| < 1 on U then the term ψ̇e−ψ(φδ,M) in the
last line of (3.17) can be greater than a positive constant. We end up with
the unweighted estimate

‖∂̄uτ‖2 + ‖∂̄∗uτ‖2 + ‖uτ‖2 >
∼
f(δ−1)2

∫
Sδ/2

|Muτ |2dV. (3.18)

This concludes the proof of the theorem.

�

3.3 The proof of Theorem 1.10

In this section, we give the proof of Theorem 1.10. We firstly show (f -M)k

estimate for uτ .

Theorem 3.5. Let Ω be q-pseudoconvex (resp. q-pseudoconcave) at the bound-
ary point z0. Assume that Property (f -M-P )k holds at z0. Then, for a suitable
neighborhood U of z0 , we have

‖f(Λ)Muτ‖2 . Q(uτ , uτ ) + CM|||uτ |||2−1 (3.19)

for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗) with k ≥ q (resp. k ≤ q).

For the proof of Theorem 3.5, we use a method derived from [Cat87].

Let {pk} with k = 0, 1, · be a sequence of cutoff functions with properties

1.
∑∞

k=0 p
2
k(t)

∼= 1; for any t ≥ 0

2. pk(t) ≡ 0 if t 6∈ (2k−1, 2k+1) with k ≥ 1 and p0(t) ≡ 0, t ≥ 2.

We can also choose pk so that p′k(t) . 2−k

Let Pk denote the operator defined by

(P̃kϕ)(ξ, r) = pk(|ξ|)ϕ(ξ, r)

for any ϕ ∈ C∞
0 (U ∩ Ω̄). To show the inequality (3.19) ,we need following

lemma
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Lemma 3.6. Let z0 ∈ bΩ; f ∈ F ; a ∈ S(R2n
− ) and S is the operator of order

1. Then there is a neighborhood U of z0 such that

(i) ‖f(Λ)ϕ‖2 ∼=
∑∞

k=0 f(2k)2‖Pkϕ‖2;

(ii)
∑∞

k=0 f(2k)2||[Pk, a]ϕ||2 . ||Λ−1f(Λ)ϕ||2;

(iii)
∑∞

k=0 ‖[Pk, S]ϕ‖2 . ‖DrΛ
−1ϕ‖2 + ‖ϕ‖;

holds for any ϕ ∈ C∞
c (U ∩ Ω̄).

Proof. (i): We have

‖f(Λ)ϕ‖2 =

∫ 0

−∞

∫
R2n−1

f(Λξ)
2|ϕ̃(ξ, r)|2dξdr

=

∫ 0

−∞

∫
R2n−1

f(Λξ)
2
( ∞∑
k=0

p2
k(|ξ|)

)
|ϕ̃(ξ, r)|2dξdr

since
∑∞

k=0 p
2
k = 1. We notice that Λξ = (1 + |ξ|2)1/2 ∼= 2k as long as |ξ| is in

the support of pk. Thus, it follow

‖f(Λ)u‖2 ∼=
∞∑
k=0

∫ 0

−∞

∫
R2n−1

f(2k)2|pk(τ)ϕ̃(ξ, r)|2dξdr

=
∞∑
k=0

f(2k)2‖Pku‖2.

(ii): We can choose another sequence of cutoff functions {qk}∞k=0 such
that

1. qk ≡ 1 on supp(pk) ;

2. qk(t) ≡ 0 if t 6∈ (2k−2, 2k+3) with k ≥ 1 and q0(t) ≡ 0, t ≥ 4.

Then

|pk(x)− pk(y)| . 2−kqk(y)|x− y| (3.20)

for any x, y ≥ 0 and
∑∞

k=0 q
2
k(t)

∼= 1. Observe that

F([Pk, a]ϕ)(ξ, r) =

∫
R2n−1

[
pk(|ξ|)− pk(|τ |)

]
ã(ξ − τ, r)ϕ̃(τ, r)dτ. (3.21)
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Using (3.20), and Plancherel Theorem and Young’s Inequality, it follows that

‖[Pk, a]ϕ‖2 . 2−2k‖Qku‖2 (3.22)

where Qk defined by

Ft(Pkϕ)(ξ, r) = qk(|ξ|)u(ξ, r).

Multiply (3.22) by f(2k)2; and take sum over k = 0, 1, ..., using result of (i)
for f(|ξ|) replaced by |ξ|−1f(|ξ|) and Pk by Qk, we get conclusion of (ii).

(iii): The proof of (iii) follows immediately by (ii) with observing that
S =

∑
aj

∂
∂xj

+ b ∂
∂r

. �

Proof of Theorem 3.5. By Theorem 3.1, we only need to estimate ‖Λ−1/2f(Λ)(Muτ )b‖2
b .

Let χk ∈ C∞
c (−2−k, 0] with 0 ≤ χk ≤ 1 and χk(0) = 1.

We have the elementary inequality

|g(0)|2 ≤ 2k

η

∫ 0

−2−k

|g(r)|2dr + 2−kη

∫ 0

−2−k

|g′(r)|2dr,

which holds for any g such that g(−2−k) = 0. If we apply it for g(r) =
‖χk(r)PkMuτ (·, r)‖b, we get

‖Λ−1/2f(Λ)(Muτ )b‖2
b '

∞∑
k=0

f(2k)22−k‖χk(0)PkMuτ (·, 0)‖2
b

≤ η−1

∞∑
k=0

f(2k)2

∫ 0

−2−k

‖χkPkMuτ (., r)‖2dr︸ ︷︷ ︸
I

+η
∞∑
k=0

f(2k)22−2k

∫ 0

−2−k

‖Dr

(
χkPkMuτ (., r)

)
‖2dr︸ ︷︷ ︸

II

.

Observe that χk ≤ 1 and recall Theorem 3.4 that we apply for PkMuτ and
δ = 2−k. Thus the first sums above can be estimated by



40 CHAPTER 3. THE (F -M)K ESTIMATES

(I) ≤
∞∑
k=0

f(22k)

∫ 0

−2−k

‖PkMuτ (., r)‖2dr

.
∞∑
k=0

Q(Pku
τ , Pku

τ )

.
∞∑
k=0

‖Pk∂̄uτ‖2 + ‖Pk∂̄∗uτ‖2 + ‖[Pk, ∂̄]uτ‖2 + ‖[Pk, ∂̄∗]uτ‖2

. Q(uτ , uτ ) + ‖Λ−1Dru
τ‖2

(3.23)

where the estimates on the commutator terms follow by Lemma 3.6. we
remark that Dru

τ can be expressed as a linear combination of L̄nu
τ and Tuτ

for some tangential vector field T . Then

||Λ−1Dr(u
τ )||2 . ||Λ−1L̄nu

τ ||2 + ||Λ−1Tuτ ||2

. ‖L̄nuτ‖2 + ||uτ ||2

. Q(uτ , uτ ).

Therefore,
(I) . Q(uτ , uτ ).

We now estimate (II). Since Dr(χk) ≤ 2k, DrPk = PkDr and χk ≤ 1, we
get

(II) ≤
∞∑
k=0

f(2k)22−2k
(∫ 0

−2−k

‖Dr(χk)PkMuτ (., r)‖2dr

+

∫ 0

−2−k

‖χkDr(PkMuτ (., r))‖2dr
)

≤
∞∑
k=0

f(2k)2

∫ 0

−2−k

‖PkMuτ (., r)‖2dr

+
∞∑
k=0

f(2k)22−2k

∫ 0

−2−k

‖PkDr(Muτ (., r))‖2dr

≤‖f(Λ)Muτ‖2 + ‖f(Λ)Λ−1Dr(Muτ )‖2.

(3.24)

where the last inequality follows by Lemma 3.6. We now estimate the second
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term in last line in (3.24), as before Dr = aLn + bT , we obtain

‖f(Λ)Λ−1Dr(Muτ )‖2 . ||f(Λ)Λ−1L̄nMuτ ||2 + ||f(Λ)Λ−1TMuτ ||2

. ‖L̄nuτ‖+ CM|||uτ |||2−1 + ||f(Λ)Muτ ||2

. Q(uτ , uτ ) + CM|||uτ |||2−1 + ||f(Λ)Muτ ||2.

Combining all our estimates of ‖f(Λ)Λ−1/2(Muτ )b‖2
b , we obtain

‖f(Λ)Λ−1/2Muτb‖2
b . (η−1+η)

(
Q(uτ , uτ )+‖uτ‖2+CM|||uτ |||2−1

)
+η||f(Λ)Muτ ||2.

Summarizing up, we have shown that

||f(Λ)Muτ || . η−1Q(uτ , uτ ) + CM‖uτ‖2
−1 + η||f(Λ)Muτ ||2.

Choosing η > 0 sufficiently small, we can move the term η||f(Λ)Muτ ||2 into
the left-hand-side and get

||f(Λ)Muτ ||2 . Q(uτ , uτ ) + CM|||uτ |||2−1.

The proof is complete.
�

The proof of theorem 1.10 is proven by Theorem 3.5 and following lemma:

Lemma 3.7. Let Ω be a q-pseudoconvex (resp. q-pseudoconcave ) at z0 and
U be a neigborhood of z0. For each u ∈ C∞(U ∩ Ω̄)k ∩ Dom(∂̄∗) with k ≥ q
(resp. k ≤ q), assume that (f -M)k estimate holds for uτ . Then (f -M)k holds
for u.

Proof. From (2.28), it follows

Q(uν , uν) . ‖uν‖2
1 =

∑′

|K|=k−1

‖unK‖2
1 . Q(u, u).

On the other hand,{
‖∂̄uτ‖ = ‖∂̄(u− uν)‖ ≤ ‖∂̄u‖+ ‖∂̄uν‖
‖∂̄∗uτ‖ = ‖∂̄∗(u− uν)‖ ≤ ‖∂̄∗u‖+ ‖∂̄∗uν‖.

Hence

Q(uτ , uτ ) ≤ Q(u, u) +Q(uν , uν) . Q(u, u). (3.25)
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Notice that, we always have

‖f(Λ)Muν‖2 . ‖uν‖2
1 + CM|||uν |||2−1 . Q(u, u) + CM|||uν |||2−1.

Therefore,

‖f(Λ)Mu‖ .‖f(Λ)Muτ‖+ ‖f(Λ)Muν‖
.Q(uτ , uτ ) + CM|||uτ |||2−1 +Q(u, u) + CM|||uν |||2−1

.Q(u, u) + CM|||u|||2−1.

(3.26)

Finally, we remark that

CM|||u|||2−1 .C̃M‖u‖2
−1 + ‖DrΛ

−1u‖2

.Q(u, u) + C̃M‖u‖2
−1.

(3.27)

This completes the proof of Lemma 3.7.
�

3.4 Some remarks of (f-M)k

In this section we give some remarks of (f -M)k estimate.

Lemma 3.8. Let f � g. Assume that (f -M)k holds then for any ε > 0,
(g-1

ε
M)k also holds.

The proof of lemma follows by Lemma 2.7.

For example, if f � log, then (f -1)k estimate implies superlogarithmic
estimate. Similarly, if f � 1, then (f -1)k estimate implies compactness esti-
mate.

Lemma 3.9. Let M′ = M on bΩ. Assume that (f -M)k holds then (f -M′)k

also holds.

Using observation (2.28), we get the proof of this lemma.

Lemma 3.10. If (f -M)k estimate holds then

‖DrΛ
−1f(Λ)(Mu)‖2 . Q(u, u) + CM|||u|||2−1

for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗).
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Proof. Since L̄n is non-characteristic operator respect to the surface r = 0,
there is functions a and b such that

Dr = aL̄n + aT

where T is tangential operator of order one. Therefore

‖Λ−1f(Λ)
∂

∂r
Mu‖2 .‖Λ−1f(Λ)L̄n(Mu)‖2 + ‖Λ−1f(Λ)TMu‖2

.‖L̄nu‖2 + ‖f(Λ)Mu‖2 + CM‖u‖2
−1

.Q(u, u) + CM‖u‖2
−1.

(3.28)

This is completely the proof of lemma.
�

It is interesting to remark that when Ω is pseudoconvex (resp. pseudo-
concave ) then if (f -M)k holds then (f -M)k+1 (resp. (f -M)k−1) also holds.

Lemma 3.11. Let Ω be a pseudoconvex (resp. pseudoconcave) at the bound-
ary point z0. We assume that (f -M)k holds. Then (f -M)k+1 holds (resp.
(f -M)k−1)

Proof. The pseudoconvexity case. Let

u =
∑′

|L|=k+1

uLω̄L ∈ C∞
c (U ∩ Ω̄)k+1 ∩Dom(∂̄∗).

We rewrite

u =
1

(k + 1)!

∑
|L|=k+1

uLω̄L =
(−1)k

k + 1

n∑
l=1

( 1

k!

∑
|J |=k

ulJ ω̄J

)
∧ ω̄l.

For l = 1, . . . , n, we define k-forms vl by vl :=
∑′

|J |=k
ulJ ω̄J . It is easy to see that

vl ∈ C∞
c (U∩Ω̄)k∩Dom(∂̄∗);

n∑
l=1

|vl|2 = (k+1)|u|2 and
n∑
l=1

∑′

|K|=k−1

(vl)iK(vl)jK =

k
∑′

|J |=k
uiJ ūjJ .

Using formula (2.29) we have
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n∑
l=1

Q(vl, vl) .
n∑
l=1

( n∑
j=1

‖L̄jvl‖2 +
∑
ij

∑′

|K|=k−1

∫
bΩ

rij(vl)iK(vl)jKdS
)

.(k + 1)
n∑
j=1

‖L̄ju‖2 + k
∑
ij

∑′

|J |=k

∫
bΩ

rijuiJujJdS

.(k + 1)Q(u, u).

(3.29)

If M∈ A0,0 , then

n∑
l=1

‖f(Λ)Mvl‖2 = (k + 1)‖f(Λ)Mu‖2.

If M∈ A1,0 we have

n∑
l=1

|Mvl|2 =
n∑
l=1

∑′

|K|=k−1

|Mj(vl)jK |2 = k
∑′

|J |=k

|MjujJ |2 = k|Mu|2;

then
n∑
l=1

‖f(Λ)Mvl‖2 = k‖f(Λ)Mu‖2.

The pseudoconcavity case. Let u =
∑′

|K|=k−1

uKω̄K ∈ C∞
c (U ∩ Ω̄)k−1 ∩

Dom(∂̄∗). For l=1,...,n, we define vl =
∑′

|K|=k−1

uKω̄K ∧ ω̄l ∈ C∞
c (U ∩ Ω̄)k−1.

Using the same argument in pseudoconvexity case we obtain the conclusion
for this case.

�



Chapter 4

The (f-M)k estimate on
boundary

In this chapter we shall study the behavior of the boundary value of forms as-
sociated to the ∂̄-Neumann problem. In fact, we establish a relation between
the (f -M)k-estimate on Ω and bΩ.

4.1 Definitions and notations

Let M be a smoothly real hypersurface in Cn. We start with the forms
on the boundary, denoted by A0,k

b the space of restriction of element of

A0,k∩Dom(∂̄∗) to the boundary bΩ. Then A0,k
b is the space of smooth section

of the vector bundle
(
T ∗0,1(M)

)k
on M .

The tangential Cauchy-Riemann operator ∂̄b : A0,k
b → A0,k+1

b is defined as

follows. If u ∈ A0,k
b and let u′ be a (0,k)-form which restricted to A0,k

b equals

u. Then ∂̄bu is the restriction of du′ to A0,k+1
b .

Let z0 ∈ M and U be a neigborhood of z0, we fix a defining function r
of M such that |∂r| = 1 on U ∩M . We assume that Ω is one of two side
divided by M defined in U . Let L1, ..., Ln be the local basis for (1,0) vector
fields defined in U , associated with Ω, which are defined in Chapter 1.

45
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We can define a Hermitian inner product on A0,k
b by

(ϕ, ψ)b =

∫
M

〈ϕ, ψ〉xdS

where dS is the volume element on M . The inner product gives rise to an
L2-norm ‖.‖b.

In analogy with development in Chapter 2, we also define ∂̄∗b to be the
L2-adjoint of ∂̄b in the standard way. Thus ∂̄∗b : A0,k+1

b → A0,k
b when k ≥ 0.

The Kohn-Laplacian is defined by

�b = ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b.

Remember that we have already defined

Qb(u, v) = (∂̄bu, ∂̄bv)b + (∂̄∗bu, ∂̄
∗
b v)b + (u, v)b.

Denote
C∞
c (U ∩M)k = A0,k

b ∩ C∞
c (U)

the space of smooth (0, k)-forms on the boundary with support compact in
U . If u ∈ C∞

c (U ∩M)k given by

u =
∑′

|J |=k

uJ ω̄J .

Then on M , the operator ∂̄b and ∂̄∗b are expressed as follows

∂̄bu =
∑′

|J |=k

n−1∑
j=1

L̄juJ ω̄j ∧ ω̄J + ... (4.1)

and

∂̄∗bu = −
∑′

|K|=k−1

n−1∑
j

LjujKω̄K + ... (4.2)

where dots refer the error term in which u is not differentiated.

In U , we choose special boundary coordinate (x1, ..., x2n−1, r). Let ξ =
(ξ1, ..., x2n−1) = (ξ′, ξ2n−1) be the dual coordinates to {x1, ..., x2n−1}. Let
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ψ+, ψ−, ψ0 be nonnegative functions in C∞({ξ ∈ R2n−1
∣∣|ξ| = 1}), with range

in [0,1], such that

ψ+(ξ) = 1 when ξ2n−1 ≥
3

4
|ξ′| and suppψ+ ⊂⊂ {ξ

∣∣ξ2n−1 ≥
1

2
|ξ′|};

ψ−(ξ) = ψ+(−ξ);
ψ0(ξ) satisfies ψ0(ξ) = 1− ψ+(ξ)− ψ−(ξ).

We extend these functions to R2n−1 so that

ψ+(ξ) = ψ+(
ξ

|ξ|+ 1
), ψ−(ξ) = ψ−(

ξ

|ξ|+ 1
), ψ0(ξ) = ψ0(

ξ

|ξ|+ 1
).

Define

C+ ={ξ
∣∣ξ2n−1 ≥

1

2
|ξ′|};

C− ={ξ
∣∣− ξ ∈ C+};

C0 ={ξ
∣∣− 3

4
|ξ′| ≤ ξ2n−1 ≤

3

4
|ξ′|}.

(4.3)

Then suppψ+ ⊂⊂ C+; suppψ− ⊂⊂ C−; and suppψ0 ⊂⊂ C0.

The operator Ψ is defined by

Ψ̂ϕ(ξ) = ψ(ξ)ϕ̂(ξ) for ϕ ∈ C∞
c (U ∩M);

Ψ̃ϕ(ξ, r) = ψ(ξ)ϕ̃(ξ, r) for ϕ ∈ C∞
c (U ∩ Ω).

The operator Ψ+,Ψ−,Ψ0 are defined as above with substitution of ψ+, ψ−, ψ0

for ψ, respectively. The microlocal decomposition ϕ = ϕ+ +ϕ− +ϕ0 is inter-
preted as follows

ϕ = ζΨ+ϕ+ ζΨ−ϕ+ ζΨ0ϕ

for all ϕ ∈ C∞
0 (U), where ζ ∈ C∞(U ′), Ū ⊂ U ′ and ζ = 1 on U .

We recall some definitions in Chapter 1:

Definition 4.1. If M is a hypersurface and z0 ∈M then a (f -M)kb estimate
holds for (∂̄b, ∂̄

∗
b ) on at x0 if there exists a neighborhood U of z0 such that

(f -M)kb ‖f(Λ)Mu‖2
b ≤ cQb(u, u) + CM‖u‖2

b,−1



48 CHAPTER 4. THE (F -M)K ESTIMATE ON BOUNDARY

for all u ∈ C∞
c (U ∩M)k. And a (f -M)kb,+-estimate (resp. (f -M)kb,−) holds

for (∂̄b, ∂̄
∗
b ) at z0 if the above holds with u replaced by u+ (resp. u−), that is,

(f -M)kb,+ ‖f(Λ)Mu+‖2
b ≤ cQb(u

+, u+) + CM‖u+‖2
b,−1

(resp.

(f -M)kb,− ‖f(Λ)Mu−‖2
b ≤ cQb(u

−, u−) + CM‖u−‖2
b,−1. )

Definition 4.2. The hypersurface M is called to be q-pseudoconvex at zo if
one of two parts divided by M is q-pseudoconvex at z0.

Denoted by Ω+ = {z ∈ U |r(z) < 0} the q-pseudoconvex part at z0 which
is divided byM ; and another part denoted by Ω−. By Remark 2.3, Ω− = {z ∈
U | − r(z) < 0} is (n− q− 1)-pseudoconcave at z0. Here U is a neighborhood
of z0 ∈ M . Remember that ωn = ∂r, then ω1, . . . , ωn−1, ω

+
n = ωn are the

orthonormal (1,0)-forms on U ∩ Ω̄+ and ω1, . . . , ωn−1, ω
−
n = −ωn are the

orthonormal (1,0)-forms on U ∩ Ω̄−. So that L+
n = −L−n = Ln where L+

n ; L−n
; Ln are the duals of ω+

n ; ω−n ; ωn, respectively. We define T = 1
2
(Ln − L̄n)

and ∂
∂r

= 1
2
(Ln + L̄n). So that

Ln =
∂

∂r
+ T ; and L̄n =

∂

∂r
− T. (4.4)

4.2 Basic microlocal estimates on M

This section we show the basic microlocal estimates on M .

In a way similar to Proposition 2.5, it follows

Lemma 4.3. For two indices q1, q2 ; (1 ≤ q1 ≤ q2 ≤ n− 1), then there is a
constant C such that

2‖∂̄bu‖2
b+2‖∂̄∗bu‖2

b + C‖u‖2
b

≥
∑′

|K|=k−1

n−1∑
ij=1

(rijTuiK , uiK)b −
∑′

|J |=k

q2∑
j=q1

(rjjTuJ , uJ)
2
b

+
1

2

∑′

|J |=k

( n−1∑
j=1

‖L̄juJ‖2
b −

q2∑
j=q1

‖LjuJ‖2
b

) (4.5)
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and conversely,

‖∂̄bu‖2
b+‖∂̄∗bu‖2

b

≤2
∑′

|K|=k−1

n−1∑
ij=1

(rijTuiK , uiK)b −
∑′

|J |=k

q2∑
j=q1

(rjjTuJ , uJ)
2
b

+ 3
∑′

|J |=k

( n−1∑
j=1

‖L̄juJ‖2
b −

q2∑
j=q1

‖LjuJ‖2
b

)
+ C‖u‖2

b

(4.6)

holds for all u ∈ C∞
c (U ∩M)k for any k.

The following lemma is the estimate for u0:

Lemma 4.4. Let M be a hypersurface defined near zo ∈M . Then there is a
neighborhood U of z0 such that

Qb(u
0, u0) ∼= ‖u0‖2

b,1

holds for all u ∈ C∞
c (U ∩M)k with any k.

Proof. Using inequality (4.5) twice times for q1 = q2 = 0 and q1 = 0; q2 =
n− 1 after that taking sum of them, we get

4‖∂̄bu‖2
b+4‖∂̄∗bu‖2

b + 2C‖u‖2
b

≥2
∑′

|K|=k−1

n−1∑
ij=1

(rijTuiK , uiK)b −
∑′

|J |=k

n−1∑
j=1

(rjjTuJ , uJ)
2
b

+
1

2

(∑′

|J |=k

n−1∑
j=1

‖LjuJ‖2
b +

∑′

|J |=k

n−1∑
j=1

‖L̄juJ‖2
b

)
≥1

4
‖Λ′u‖2

b −
(
ε+ diam(U)

)
‖Tu‖2

b − Cε‖u‖2
b

(4.7)

where Λ′ is the pseudodifferential operator of order 1 whose symbol is (1 +∑2n−2
j=1 |ξj|2)

1
2 . Choose U and ε sufficiently small, substituting u = u0 in (4.7)

with notice that ‖Λ′u0‖b >
∼
‖Tu0‖b, we get

Qb(u
0, u0) >

∼
‖Λ′u0‖2

b >∼
‖Λu0‖2

b .

The conversely inequality is always true.
�
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Lemma 4.5. Let M be a q-pseudoconvex hypersurface at z0. Then, there is
a neighborhood U of z0, such that

(i).

Qb(u
+, u+) + ‖Ψ+u‖2

b,−∞

∼=
∑′

|K|=k−1

n−1∑
ij=1

(rijζ
′(T+)

1
2u+

iK , ζ
′(T+)

1
2u+

iK)b

−
∑′

|J |=k

q0∑
j=1

(rjjζ
′(T+)

1
2u+

J , ζ
′(T+)

1
2u+

J )2
b

+
∑′

|J |=k

q0∑
j=1

‖Lju+
J ‖

2
b +

∑′

|J |=k

n−1∑
j=q0+1

‖L̄ju+
J ‖

2
b + ‖u+‖2

b + ‖Ψ+u‖2
b,−∞

(4.8)

holds for all u ∈ C∞
c (U ∩ M)k with any k ≥ q, where (T+)

1
2 is the

pseudodifferential operator of order 1 whose symbol is ξ
1
2
2n−1ψ

+(ξ) and
ζ ′ is canonical cutoff function with ζ ′ = 1 on supp (u+).

(ii).

Qb(u
−, u−) + ‖Ψ−u‖2

b,−1

∼=
∑′

|J |=k

n−1∑
j=q0+1

(rjjζ
′(T̄−)

1
2u−J , ζ

′(T̄−)
1
2u−J )b

−
∑′

|K|=k−1

n−1∑
ij=1

(rijζ
′(T̄−)

1
2u−iK , ζ

′(T̄−)
1
2u−iK)b

+
∑′

|J |=k

q0∑
j=1

‖L̄ju−J ‖
2
b +

∑′

|J |=k

n−1∑
j=q0+1

‖Lju−J ‖
2
b + ‖u−‖2

b + ‖Ψ−u‖2
b,−∞

(4.9)

holds for all u ∈ C∞
c (U∩M)k with any k ≤ n−1−q, where (T̄−)

1
2 is the

pseudodifferential operator of order 1 whose symbol is (−ξ2n−1)
1
2ψ−(ξ)

and ζ ′ is canonical cutoff function with ζ ′ = 1 on supp (u−).
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Recall that M is q-pseudoconvex at z0 then there is a defining function
of M such that ∑′

|K|=k−1

n−1∑
ij=1

rijuiK ūjK −
qo∑
j=1

rjj|u|2 ≥ 0 on M

for any u ∈ C∞
c (U ∩M)k with k ≥ q, and

n−1∑
j=qo+1

rjj|u|2 −
∑′

|K|=k−1

n−1∑
ij=1

rijuiK ūjK ≥ 0 on M

for any u ∈ C∞
c (U ∩M)k with k ≤ n− q − 1, where U is a neighborhood of

z0.
Proof. (i): Since ψ̃+ be a cutoff function with supp(ψ̃+) ⊂ C+ and ψ̃+ = 1
on suppψ+, we have

ϕ+ = ζΨ+ϕ = ζ(Ψ̃+)2Ψ+ϕ = (Ψ̃+)2ζΨ+ϕ+ [ζ, (Ψ̃+)2]Ψ+ϕ.

Then, the supports of symbols of Ψ+ and [ζ, (Ψ̃+)2] are disjoint, the operator
[ζ, (Ψ̃+)2]Ψ+ is order −∞ and we have

(rijTϕ
+, ϕ+)b =(rijTζΨ

+ϕ, ζΨ+ϕ)b

=(rijT (Ψ̃+)2ζΨ+ϕ, ζΨ+ϕ)b +O(‖Ψ+ϕ‖2
b,−∞)

=((ζ̃)2rij(T
+)

1
2
∗(T+)

1
2 ζΨ+ϕ, ζΨ+ϕ)b +O(‖Ψ+ϕ‖2

b,−∞)

=(rij ζ̃(T
+)

1
2 ζΨ+ϕ, ζ̃(T+)

1
2 ζΨ+ϕ)b

+ ([(ζ̃)2rij, (T
+)

1
2
∗](T+)

1
2 ζΨ+ϕ, ζΨ+ϕ)b +O(‖Ψ+ϕ‖2

b,−∞).

(4.10)

From the pseudodifferential operator calculus we get

([(ζ̃)2rij, (T
+)

1
2
∗](T+)

1
2 ζΨ+ϕ, ζΨ+ϕ)b| . ‖ϕ+‖2

b (4.11)

Substituting ujK or uJ for ϕ in (4.10), we obtain

∑′

|K|=k−1

n−1∑
ij=1

(rijTu
+
iK , u

+
iK)b −

∑′

|J |=k

q0∑
j=1

(rjjTu
+
J , u

+
J )2

b

=
∑′

|K|=k−1

n−1∑
ij=1

(rijζ
′(T+)

1
2u+

iK , ζ
′(T+)

1
2u+

iK)b −
∑′

|J |=k

q0∑
j=1

(rjjζ
′(T+)

1
2u+

J , ζ
′(T+)

1
2u+

J )2
b

+O(‖u+‖2
b) +O(‖Ψ+u‖2

b,−∞).

(4.12)
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Since M is q-pseudoconvex then the sum in second line in (4.12) is nonneg-
ative if k ≥ q where k is the degree of u . Thus the first part of Lemma 4.5
is proven by applying Lemma 4.3. with q1 = 0; q2 = q0 and u for u+.

(ii): The second part is proven analogously with notice

∑′

|K|=k−1

n−1∑
ij=1

(rijTu
−
iK , u

−
iK)b −

∑′

|J |=k

n−1∑
j=q0+1

(rjjTu
−
J , u

−
J )2

b

=−
∑′

|K|=k−1

n−1∑
ij=1

(rijζ
′(T̄−)

1
2u−iK , ζ

′(T̄−)
1
2u−iK)b +

∑′

|J |=k

n−1∑
j=q0+1

(rjjζ
′(T̄−)

1
2u−J , ζ

′(T̄−)
1
2u−J )2

b

+O(‖u−‖2
b) +O(‖Ψ−u‖2

b,−∞),

(4.13)

and by Remark (2.3), the second line is nonnegative for any k-form u with
k ≤ n− q − 1. �

4.3 Basic microlocal estimates on Ω+ and Ω−

In this section, we show the basic microlocal estimates on Ω+ and Ω−. We
begin with the harmonic extension. This extension was introduced by Kohn
in [Ko86]; [Ko01].

In terms of special boundary coordinate (x, r) the operator Lj can be
written as

Lj = δjn
∂

∂r
+
∑
k

akj (x, r)
∂

∂xk

for i = 1, ..., n. We define the tangential symbols of Lj, 1 ≤ j ≤ n− 1, by

σLj(x, r, ξ) =
1√
−1

∑
k

akj (x, r)ξk

and

σT (x, r, ξ) =
1

2
√
−1

∑
k

(
akn(x, r)− ākn(x, r)

)
ξk
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Note that σT is real. We set σ
Lj

b (x, ξ) = σLj(x, 0, ξ); σTb (x, ξ) = σT (x, 0, ξ)
and

σb(x, ξ) =

√∑
j

|σLj

b (x, ξ)|2 + |σTb (x, ξ)|2 + 1.

We see that if U is sufficiently small, then σb(x, ξ) ∼= (1 + |ξ|2) 1
2 .

Harmonic extension is defined as follows: Suppose that ϕ ∈ C∞
c (U ∩M)

we define ϕ(h) ∈ C∞({(x, r) ∈ R2n|r ≤ 0}) by

ϕ(h)(x, r) = (2π)−2n+1

∫
R2n−1

eix·ξerσb(x,ξ)ϕ̃(ξ)dξ,

so that ϕ(x, 0) = ϕ(x). This extension is called “harmonic” since 4ϕ(h)(x, r)
has order 1 on M . In fact, we have

4 =−
n∑
j=1

∂2

∂zj
∂z̄j

=−
n∑
j=1

LjL̄j +
2n−1∑
k=1

ak(x, r)
∂

∂xk
+ a(x, r)

∂

∂r

=− ∂2

∂2r
+ T 2 −

n−1∑
j=1

LjL̄j +
2n−1∑
k=1

bk(x, r)
∂

∂xk
+ b(x, r)

∂

∂r

(4.14)

since by (4.6) implies that LnL̄n = ∂2

∂2r
− T 2 + D, where D is a first order

operator. Hence if (x, r) ∈ U ∩ Ω̄+,

4(ϕ(h))(x, r) =

∫
eix·ξerσb(x,ξ)

(
p1(x, r, ξ) + rp2(x, r, ξ)ϕ̃(ξ)

)
dξ. (4.15)

Further more
Ljϕ

(h)(x, r) = (Ljϕ)h(x, r) + Ejϕ(x, r)

where

Ejϕ(x, r) =

∫
eix·ξerσb(x,ξ)

(
p0
j(x, r, ξ) + rp1

j(x, r, ξ)ϕ̃(ξ)
)
dξ

and
L̄jϕ

(h)(x, r) = (L̄jϕ)h(x, r) + Ējϕ(x, r)

for j = 1, ..., n− 1.
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Lemma 4.6. For each k ∈ Z, k ≥ 0; s ∈ R; and f ∈ F , then we have

(i) |||rkf(Λ)ϕ(h)|||s <
∼
‖f(Λ)ϕ‖b,s−k− 1

2
;

(i) |||Drf(Λ)ϕ(h)|||s <
∼
‖f(Λ)ϕ‖b,s+ 1

2

for any ϕ ∈ C∞
c (U ∩ Ω̄+).

Proof. We notice again that σb(x, ξ) ∼= (1 + |ξ|2) 1
2 , then the proof of this

lemma is similar with the proof of Lemma 2.10.

�

Moreover, if ϕ ∈ C∞
c (U ∩ Ω̄+) we define ϕb to be the restriction of ϕ to

boundary, we have

‖ϕb‖2
b,s . |||ϕ|||2

s+ 1
2

+ |||Drϕ|||2s− 1
2
. (4.16)

The following lemma is the basic microlocal estimates on Ω+.

Lemma 4.7. Let Ω+ be a q-pseudoconvex at the boundary z0. If U is a
sufficiently small neighborhood of z0 then

(i)

|||Ψ0ϕ|||21 .
qo∑
j=1

‖LjΨ0ϕ‖2 +
n∑

qo+1

‖L̄jΨ0ϕ‖+ ‖Ψ0ϕ‖2 (4.17)

holds for all ϕ ∈ C∞
c (U ∩ Ω̄+).

(ii)

|||Ψ−ϕ|||21 .
qo∑
j=1

‖LjΨ−ϕ‖2 +
n∑

qo+1

‖L̄jΨ−ϕ‖+ ‖Ψ−ϕ‖2 (4.18)

holds for all ϕ ∈ C∞
c (U ∩ Ω̄+).

(iii)

|||L̄nΨ+ϕ(h)|||21
2

.
qo∑
j=1

‖LjΨ+ϕ‖2
b +

n−1∑
qo+1

‖L̄jΨ+ϕ‖2
b + ‖Ψ+ϕ‖2

b (4.19)

holds for all ϕ ∈ C∞
c (U ∩ bΩ+).
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Proof. (i): Since suppψ0 ∈ C0, then we have

(1 + |ξ|2)|ψ0(ξ)|2 .
2n−2∑
j=1

|ξj|2|ψ0(ξ)|2 + ψ0

.
n−1∑
j=1

µj(0, 0, ξ)
2|ψ0(ξ)|2 + ψ0

.
n−1∑
j=1

µj(x, r, ξ)
2|ψ0(ξ)|2 +

n−1∑
j=1

(
µj(0, 0, ξ)− µj(x, r, ξ)

)2|ψ0(ξ)|2 + ψ0

.
n−1∑
j=1

µj(x, r, ξ)
2|ψ0(ξ)|2 + diam(U ∩ Ω̄)

2n−1∑
j=1

ξ2
j |ψ0(ξ)|2 + ψ0.

(4.20)

Hence

‖ΛΨ0ϕ‖2
1 .

q0∑
j=1

‖LjΨ0ϕ‖2 +
n∑

j=q0+1

‖L̄jΨ0ϕ‖2

+ ‖Ψ0ϕ‖2 + diam(U ∩ Ω̄)
2n−1∑
j=1

‖DjΨ
0ϕ‖2.

(4.21)

The estimate (4.17) follows by (4.21) by taking U with a sufficiently small
diameter.

(ii): For all ϕ ∈ C∞
c (U ∩ Ω̄), let ϕ

(h)
b be the harmonic extension of ϕb =

ϕ|U∩bΩ+ .

|||Ψ−ϕ|||21 .|||Ψ−(ϕ− ϕ
(h)b

b )|||21 + |||Ψ−ϕ
(h)
b |||

2
1

.‖Ψ−(ϕ− ϕ
(h)
b )‖2

1 + |||Ψ−ϕ
(h)
b |||

2
1.

(4.22)

Now we estimate |||Ψ−ϕ
(h)
b |||21, we have

L̄nΨ
−ϕ

(h)
b (x, r) =

∫
eix·ξer(σb(x,ξ))

(
σb(x, ξ)− σTb (x, ξ) + rp1(x, ξ)

)
ψ−(ξ)ϕ̃b(ξ, 0)dξ(4.23)

where p1(x, ξ) is a symbol of the tangential operator P1 of order 1. Choosing
U sufficiently small we have σTb (x, ξ) ≤ 0 when ξ ∈ supp(ψ−) ⊂ C−. Then

σb(x, ξ)− σTb (x, ξ) >
∼
|ξ|+ 1.
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So that

|||Ψ−ϕ
(h)
b |||

2
1 .‖L̄nΨ−ϕ

(h)
b ‖

2 + ‖rP1Ψ
−ϕ

(h)
b ‖

2. (4.24)

Applying Lemma 4.6 and inequality (4.16) for the second term in (4.24), we
get

‖rP1Ψ
−ϕ

(h)
b ‖

2 .‖Λ−1/2Ψ−ϕb‖2
b

.‖Λ−1DrΨ
−ϕ‖2 + ‖Ψ−ϕ‖2

.‖L̄nΨ−ϕ‖2 + ‖Ψ−ϕ‖2.

(4.25)

For the first term in (4.24), we have

‖L̄nΨ−ϕ
(h)
b ‖

2 .‖L̄nΨ−(ϕ− ϕ
(h)
b )‖2 + ‖L̄nΨ−ϕ‖2

.‖Ψ−(ϕ− ϕ
(h)
b )‖2

1 + ‖L̄nΨ−ϕ‖2.
(4.26)

Combining (4.22), (4.24), (4.25) and (4.26), we get

|||Ψ−ϕ|||21 . ‖Ψ−(ϕ− ϕ
(h)
b )‖2

1 + ‖L̄nΨ−ϕ‖2 + ‖Ψ−ϕ‖2. (4.27)

Finally, we estimate ‖Ψ−(ϕ− ϕ
(h)
b )‖2

1. Since Ψ−(ϕ−ϕ(h)
b ) = 0 on U ∩bΩ then

‖Ψ−(ϕ− ϕ
(h)
b )‖2

1 .‖∆Ψ−(ϕ− ϕ(h))‖2
−1

.‖∆Ψ−ϕ‖2
−1 + ‖∆Ψ−ϕ(h)‖2

−1

.
q0∑
j=1

‖L̄jLjΨ−ϕ‖2
−1 +

n∑
j=q0+1

‖LjL̄jΨ−ϕ‖2
−1

+ ‖P1Ψ
−ϕ‖2

−1 + ‖(rP2 + P1)Ψ
−ϕ(h)‖2

−1

.
q0∑
j=1

‖LjΨ−ϕ‖2 +
n∑

j=q0+1

‖L̄jΨ−ϕ‖2 + ‖Ψ−ϕ‖2.

(4.28)

Here the third inequality in (4.28) follows by (4.15). This is completed the
proof of (ii).

(iii): For any ϕ ∈ C∞
c (U ∩ bΩ+), we have

L̄nΨ
+ϕ(h)(x, r) =

∫
eix·ξer(σb(x,ξ))

(
σb(x, ξ)−σTb (x, ξ)+rp1(x, ξ)

)
ψ+(ξ)ϕ̃(ξ, 0)dξ.
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Choosing U sufficiently small we have σTb (x, ξ) > 0 when ξ ∈ suppψ+ ⊂
C+. So that

σb − σTb =

qo∑
j=1

σ
L̄j

b

σb + σTb
σ
Lj

b +
n−1∑

j=qo+1

σ
Lj

b

σb + σTb
σ
L̄j

b .

Since { σ
L̄j

b

σb + σTb

}
j≤qo

and
{ σ

Lj

b

σb + σTb

}
qo+1≤j≤n−1

are absolutely bounded. Hence

|||L̄nΨ+ϕ(h)|||21
2

.
qo∑
j=1

|||(LjΨ+ϕ)h||| 1
2

+
n−1∑

j=qo+1

|||(LjΨ+ϕ)h||| 1
2

+ |||rP1Ψ
+ϕ(h)|||21

2

.
qo∑
j=1

||LjΨ+ϕ||2b +
n−1∑

j=qo+1

||LjΨ+ϕ||2b + ‖Ψ+ϕ‖2
b .

(4.29)

�
Using Lemma 4.7 for each coefficient of a form we obtain :

Lemma 4.8. Let Ω+ be a q-pseudoconvex at the boundary z0. Then, there is
a neighborhood U of z0, such that

(i)
|||Ψ0u|||21 + |||Ψ−u|||21 . Q(u, u)

holds for all u ∈ C∞
c (U ∩ Ω̄+)k ∩ Dom(∂̄∗) with any k ≥ q.

(ii)
|||L̄nΨ+(u+)(h)|||21

2
. Qb(u

+, u+)

holds for all u ∈ C∞
c (U ∩ bΩ+)k with any k ≥ q.

Similarly, we get the basic microlocal estimates for Ω−.

Lemma 4.9. Let Ω− be a n− 1− q-pseudoconvex at the boundary z0. Then,
there is a neighborhood U of z0, such that

(i)
|||Ψ0u|||21 + |||Ψ+u|||21 . Q(u, u)

holds for all u ∈ C∞
c (U ∩ Ω̄−)k ∩ Dom(∂̄∗) with any k ≤ n− 1− q.
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(ii)
|||L̄nΨ−(u−)(h)|||21

2
. Qb(u

−, u−)

holds for all u ∈ C∞
c (U ∩ bΩ−)k with any k ≤ n− 1− q.

4.4 The equivalent of (f-M) estimate on Ω

and bΩ

In this section, we give the proof of Theorem 1.13. Theorem 1.13 immediate
consequence of the Theorem follows by Theorem 4.10, Theorem 4.11 and
Theorem 4.12.

Theorem 4.10. Let Ω+ be a smoothly q-pseudoconvex domain at z0 ∈ bΩ in
a hermitian manifold X with the boundary M . Then

(i) If (f -M)kΩ+ holds then (f -N )kb,+ holds where N is the restriction of M
to M

(ii) If (f -N )kb,+ holds then then (f -M)kΩ+ holds where M is any extension

of N from M to Ω such that M
∣∣
M

= N .

Proof. (i): We need to show that

‖f(Λ)Nu+‖2
b . Q(u+, u+) + CN‖u+‖2

b,−1 + ‖Ψ+u‖2
b,−∞

for any u ∈ C∞
c (U ∩ M)k where U is a neighborhood of z0. Set u(h) :=∑′

|J |=k
u

(h)
J ω̄J . Let χ be the cutoff function on r with χ(0) = 1. Applying in-

equality (4.16), we have

‖f(Λ)Nu+‖2
b .‖Λ

1
2χf(Λ)Mu(h)+‖2 + ‖Λ− 1

2Dr(χf(Λ)Mu(h)+)‖2

.‖f(Λ)Mχζ ′(T+)
1
2u(h)+‖2

+ ‖Λ−1f(Λ)Dr(Mχζ ′(T+)
1
2u(h)+)‖2 + error

(4.30)

where ζ ′ = 1 on supp(u+) and supp(ζ ′) ⊂ U ′. The way to insert ζ ′(T+)
1
2 is

similar Lemma (4.5) and the error term is

error . ‖Λ
1
2u(h)+‖2 + CM‖Λ

1
2u(h)+‖2

−1 + ‖Ψ+u(h)‖2
−∞.
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We can choose χ such that χζ ′T
1
2u(h)+ ∈ C∞

c (U ′ ∩ Ω̄)k. Notice that

χζ ′T
1
2u(h)+ ∈ Dom(∂̄∗) is always true. Using hypothesis for the term in the

second line in (4.30) and applying Lemma 3.10 for the second term in last
line in (4.30), continuing (4.30), we have

.Q(χζ ′T
1
2u(h)+, χζ ′T

1
2u(h)+) + CM‖χζ ′T

1
2u(h)+‖2

−1 + error

.
∑′

|K|=k−1

n−1∑
ij

(rijζ
′T

1
2u+, ζ ′T

1
2u+)b −

∑′

|J |=k

(rjjζ
′T

1
2u+

J , ζ
′T

1
2u+

J )b

+
∑′

|J |=k

( q0∑
j=1

‖Ljχζ ′T
1
2u

(h)+
J ‖2 +

n∑
j=1

‖L̄jχζ ′T
1
2u

(h)+
J ‖2

)
+ ‖χζ ′T

1
2u(h)+‖2 + CM‖χζ ′T

1
2u(h)+‖2

−1 + error

.Qb(u
+, u+) + CM‖u+‖2

b,−1 + ‖Ψ+u‖2
b,−∞

+
∑′

|J |=k

( q0∑
j=1

‖Λ
1
2 (Lju

+
J )

(h)
b ‖

2 +
n−1∑
j=1

‖Λ
1
2 (L̄ju

+
J )

(h)
b ‖

2
)

+ ‖Λ
1
2 L̄nΨ

+(u+)(h)‖2

.Qb(u
+, u+) + CM‖u+‖2

b,−1 + ‖Ψ+u‖2
b,−∞

(4.31)

here the second inequality follows by (2.29), the third one follows by Lemma
4.5, the last one by Lemma 4.8.

Proof of (ii). For any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗), we decompose u =

uτ + uν ; uτ = uτ+ + uτ− + uτ0. By Lemma ?? and Lemma 4.8, we have

‖f(Λ)Muν‖2 ≤ |||uν |||21 + CM‖uν‖2
−1 . Q(u, u) + CM‖u‖2

−1;

‖f(Λ)Muτ0‖2 ≤ |||uτ0|||21 + CM‖uτ0‖2
−1 . Q(u, u) + CM‖u‖2

−1;

‖f(Λ)Muτ−‖2 ≤ |||uτ−|||21 + CM‖uτ−‖2
−1 . Q(u, u) + CM‖u‖2

−1.

(4.32)

Moreover, by Theorem 3.1 and (3.25), we have

‖f(Λ)Muτ+‖2 .‖Λ− 1
2f(Λ)Nuτ+b ‖

2
b +Q(uτ , uτ ) + CM‖uτ‖2

−1

.‖Λ− 1
2f(Λ)Nuτ+b ‖

2
b +Q(u, u) + CM‖u‖2

−1.
(4.33)

Thus, we obtain

‖f(Λ)Mu‖2 .‖f(Λ)Muτ+‖2 + ‖f(Λ)Muτ−‖2 + ‖f(Λ)Muτ0‖2 + ‖f(Λ)Muν‖2

.‖Λ− 1
2f(Λ)Nuτ+b ‖

2
b +Q(u, u) + CM‖u‖2

−1.
(4.34)
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So that we only need to estimate ‖Λ− 1
2f(Λ)Nuτ+b ‖2

b , we have

‖Λ− 1
2f(Λ)Nuτ+b ‖

2
b . ‖f(Λ)N ζ̃Λ− 1

2uτ+b ‖
2
b + error. (4.35)

Then ζ̃Λ− 1
2uτ+b ∈ C∞(U ∩ bΩ)k, using hypothesis and continuing (4.35), we

get

.Qb(ζ̃Λ
− 1

2uτ+b , ζ̃Λ− 1
2uτ+b ) + CM‖ζ̃Λ− 1

2uτ+b ‖
2
b,−1 + error

.
∑′

|K|=k−1

n−1∑
ij=1

(rijζ
′T

1
2 (ζ̃Λ− 1

2uτ+b )iK , ζ
′T

1
2 (ζ̃Λ− 1

2uτ+b )jK)b

∑′

|J |=k

( q0∑
j=1

‖Lj(ζ̃Λ− 1
2uτ+b )J‖2

b +
n−1∑
j=1

‖L̄j(ζ̃Λ− 1
2uτ+b )J‖2

b

)
+ ‖ζ̃Λ− 1

2uτ+b ‖
2
b + CM‖ζ̃Λ− 1

2uτ+b ‖
2
b,−1 + ‖Ψ+Λ− 1

2uτb‖2
b,−∞ + error

.Q(ζ ′T
1
2 ζ̃Λ− 1

2 ζΨ+uτ , ζ ′T
1
2 ζ̃Λ− 1

2 ζΨ+uτ )∑′

|J |=k

( q0∑
j=1

‖ζ̃LjΛ− 1
2 (uτ+b )J‖2

b +
n−1∑
j=1

‖ζ̃L̄jΛ− 1
2 (uτ+b )J‖2

b

)
+ ‖ζ̃Λ− 1

2uτ+b ‖
2
b + C̃M‖Λ− 1

2uτ+b ‖
2
b,−1.

(4.36)

Since ζ ′T
1
2 ζ̃Λ− 1

2 ζΨ+ is tangential pseudodifferential operators of order zero.
So that

Q(ζ ′T
1
2 ζ̃Λ− 1

2 ζΨ+uτ , ζ ′T
1
2 ζ̃Λ− 1

2 ζΨ+uτ ) . Q(uτ , uτ ).

To estimate the last two line above we proceed as follows. For j ≤ q0,
since ζ̃LjΛ

− 1
2 (uτ+b )J ∈ C∞

c (U ∩ Ω̄), then using inequality (4.16), we have

‖ζ̃LjΛ− 1
2 (uτ+b )J‖2

b .‖Λ
1
2 ζ̃LjΛ

− 1
2 (uτ+)J‖2 + ‖Λ− 1

2
∂

∂r
ζ̃LjΛ

− 1
2uτ+J ‖

2

.‖Ljuτ+J ‖
2 + ‖ ∂

∂r
Λ−1Lju

τ+
J ‖

2 + error

.‖Ljuτ+J ‖
2 + ‖TΛ−1Lju

τ+
J ‖

2 + ‖L̄nΛ−1Lju
τ+
J ‖

2 + error

.‖Ljuτ+J ‖
2 + ‖L̄nuτ+J ‖

2 + error

.Q(uτ+, uτ+) . Q(uτ , uτ ).

(4.37)

By the same way for the term ‖ζ̃L̄jΛ− 1
2 (uτ+b )J‖2

b with q0 +1 ≤ j ≤ n− 1 and

for ‖ζ̃Λ− 1
2uτ+b ‖2

b . This concludes the proof of Theorem 4.10.
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�
Similarly, we get the equivalent of (f -M)k on Ω− and M:

Theorem 4.11. Let Ω− be a smoothly q-pseudoconcave domain at z0 ∈ bΩ
in a hermitian manifold X. Then

1. If (f -M)kΩ− holds then (f -N )kb,− holds where N is the restriction of M
to bΩ

2. If (f -N )kb,− holds then then (f -M)kΩ− holds where M is any extension
of N to Ω.

Finall,y we show that

Theorem 4.12. Let M be a q-pseudoconvex hypersurface at z0. Then (f -N )kb,+
holds if and only if (f -N )n−1−k

b,− holds.

Proof. We define the local conjugate-linear duality map F k : A0,k
b →

A0,n−1−k as follows. If u =
∑′

|J |=k
uJ ω̄J then

F ku =
∑

ε
{J,J ′}
{1,...,n−1}ūJ ω̄J ′ ,

where J ′ denotes the strictly increasing (n− k − 1)-tuple consiting if all in-

tegers in [1, n − 1] which do not belong to J and εJ,J
′

{1,n−1} is the sign of the

permutation {J, J ′} → {1, . . . , n− 1}.

Since (ϕ+) = (ϕ)− Then

F ku+ =
∑

ε
{J,J ′}
{1,...,n−1}(ū)

−
J ω̄J ′ ,

F n−1−kF ku+ = u+; ‖F ku+‖ = ‖u−‖;

∂̄bF
ku+ = F k−1∂̄∗bu

+ + · · ·

and
∂̄∗bF

ku+ = F k+1∂̄bu
+ + · · ·

where dots refers the term in which u is not differentiated. Hence

Qb(F
ku+, F ku+) ∼= Qb(u

+, u+).

On the other hand, we also have ‖f(Λ)NF ku+‖2 = ‖f(Λ)Nu+‖2. In fact,
this inequality follows by the definition of Nu+; Nu− and F k .
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Corollary 4.13. Let M be a pseudoconvex hypersurface at z0 and let N ∈
C∞(M). Then for 1 ≤ k ≤ n − 2, the estimate (f -N )kb holds if M has one
of following conditions:

1. (f -N )kb,+ and (f -N )kb,− hold

2. (f -N )kb,+ and (f -N )n−1−k
b,+ hold

3. (f -N )lb,+ holds for l ≤ min{k, n− 1− k}

4. (f -N )lb,− holds for l ≥ max{k, n− 1− k}

5. (f -M)kΩ+ and (f -M)kΩ− hold

6. (f -M)kΩ+ and (f -M)n−1−k
Ω+ hold

7. (f -M)lΩ+ holds for l ≤ min(k, n− 1− k)

8. (f -M)lΩ− holds for l ≥ max(k, n− 1− k)

9. Property (f -M-P )k holds on the both side Ω+ and Ω−

10. Property (f -M-P )k holds on the side Ω+ and Property (f -M-P )n−k−1

holds on the side Ω−

11. Property (f -M-P )l holds on the side Ω+ for l ≤ min{k, n− k − 1}

12. Property (f -M-P )l holds on the side Ω− for l ≥ max{k, n− k − 1}
where M is any extension of N form M to Ω+ or Ω−.

Proof. By Theorem 1.10, Theorem 1.13, Lemma 3.11 , we see that

(9) ⇒ (5) ⇔ (1)

(10) ⇒ (6) ⇔ (2)

(11) ⇒ (7) ⇔ (3)

(12) ⇒ (8) ⇔ (4)

(4) ⇔ (3) ⇒ (2) ⇔ (1)

Thus we only need to show (1) implies (f -M)kb holds. It follows from that
fact that

‖Λu0‖2
b . Qb(u, u)

holds for all u ∈ C∞
c (U ∩M)k. We get the conclusion.

�



Chapter 5

Property (f-M-P )k in some
class of domains

5.1 Domain satisfies Z(k) condition

In this section, we consider domain satisfying Z(k) condition at the boundary
point. This class of domains is probably the simplest of non-pseudoconvex
domains.

Theorem 5.1. Let Ω be a domain of Cn then Ω satisfies Z(k) condition at
z0 ∈ bΩ if and only if

|||u|||21/2 . Q(u, u)

holds for any u ∈ C∞
c (U ∩ Ω̄)k ∩ Dom(∂̄∗), where U is a neighborhood of z0

This is classical result of non-pseudoconvex domain. Theorem 5.1 can
be found in [Hö65], [FK72],... In this section, we give the new way to get
1
2
-subelliptic estimates by construction the family weight functions in the

Property (f -M-P )k when M = 1 .

Proof. We assume Ω satisfies Z(k) condition at z0 ∈ bΩ. Then Ω is
strongly k-pseudoconvex or strongly k-pseudoconcave. There is a number
qo 6= k and neighborhood U of z0 such that

∑′

|K|=k−1

n−1∑
ij=1

rijuiK ūjK −
qo∑
j=1

rjj|u|2 >
∼
|u|2 on U ∩ Ω̄ (5.1)

63
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for any u ∈ C∞
0 (U ∩ Ω̄)k ∩Dom(∂̄∗). So that we only need to show Ω satisfies

Property (f -1-P )k at z0 with f(δ−1) = δ−1/2.

We define Φδ = − r
δ
. For z ∈ Sδ, we see that Φδ is absolutely bounded

and

Hk
qo(Φ

δ, uτ ) >
∼
δ−1

∑′

|K|=k−1

n−1∑
ij=1

riju
τ
iK ū

τ
jK −

qo∑
j=1

rjj|uτ |2

>
∼
δ−1|uτ |2

(5.2)

Moreover, Lj(Φ
δ) = 0. Then the family {Φδ}δ>0 satisfies Property (f -1-P )k.

�

Corollary 5.2. Let M be a smooth hypersurface in Cn. Assume that M
satisfies Z(k) and Z(n− 1− k) condition at z0. Then there is a neigborhood
U of z0 such that

‖u‖2
b,1/2 . Qb(u, u)

for any u ∈ C∞
c (U ∩M)k.

The proof of Corollary 5.2 follows by Theorem 5.1 and Corrolary 4.13.

5.2 q-decoupled-pseudoconvex/concave domain

Let Ω ⊂ Cn be defined in a neighborhood of z0 by

r = 2Rezn − h1(z1, . . . , zq1+1) + h2(zq2 , . . . , zn−1) < 0 (5.3)

where 1 ≤ q1 + 1 < q2 ≤ n − 1 and hl’s with l = 1, 2 are the real functions
satisfying ∂∂̄hl be semipositive.

Definition 5.3. Ω is said to be q2-decoupled-pseudoconvex (resp. q1-decoupled-
pseudoconcave) at z0 if there are functions Pj such that h2(zq2 , . . . , zn−1) =∑n−1

j=q2
Pj(zj) (resp. h1(z1, . . . , zq1+1) =

∑q1+1
j=1 Pj(zj))

Remark 5.4. Since ∂∂̄hj ≥ 0 then
∂2Pj

∂zj∂z̄j
≥ 0.

Proposition 5.5. The domain Ω, defined by (5.3), is q2-pseudoconvex and q1-
pseudoconcave at z0.
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Proof. We consider the basis of vector fields

Li =
∂

∂zj
− rzj

∂

∂zn
, j = 1...n− 1 and Ln =

∂

∂zn
.

Let ω1, ..., ωn = ∂r be the dual (1,0) forms of these vector fields. We may
choose the Hermitian metric in which ω1, ..., ωn are orthonormal. Then

∂∂̄r = −
q1+1∑
ij=1

(h1)ijωi ∧ ω̄j +
n−1∑
ij=q2

(h2)ijωi ∧ ω̄j

where (hk)ij = ∂2hk

∂zi∂z̄j
for k = 1, 2. Hence

Hk
q1+1(r, u

τ ) =

q1+1∑
j=1

(h1)jj|uτ |2 −
∑′

|K|=k−1

q1+1∑
ij=1

(h1)iju
τ
iK ū

τ
jK +

∑′

|K|=k−1

n−1∑
ij=q2

(h2)iju
τ
iK ū

τ
jK(5.4)

for any k-form u. IfHk
q1+1(r, u

τ ) ≥ 0, then by Definition 1.2, Ω is q2-pseudoconvex
and q1-pseudoconcave.

Let F k be the operator defined as in the proof of Theorem 4.12, then

q1+1∑
j=1

(h1)jj|uτ |2 =
∑′

|K|=k−1

q1+1∑
ij=1

(h1)iju
τ
iK v̄jK +

∑′

|K′|=n−k−2

q1+1∑
ij=1

(h1)ij(F
kuτ )iK′(Fjuτ )jK′(5.5)

holds for any k, 1 ≤ k ≤ n − 2. In fact, the left hand side of (5.5) can be
rewritten as following

=

q1+1∑
j=1

(h1)jj

( ∑′

|K|=k−1

|uτjK |2 +
∑′

|K′|=n−k−2

|(F kuτ )jK′|2
)

+

q1+1∑
i,j=1;i6=j

(h1)ij

( ∑′

|K|=k−1

viK ū
τ
jK +

∑′

|K′|=n−k−2

(F kuτ )iK′(F kuτ )jK′

)
.

(5.6)

It is easily to check that the term in the first line in (5.6) equals to the right
hand side of (5.5) and the term in second line equals to 0.

Therefore,

Hk
q1+1(r, u

τ ) =
∑′

|K′|=n−k−2

∑
ij

(h1)ij(F
kuτ )iK′(Fjuτ )jK′ +

∑′

|K|=k−1

∑
ij

(h2)iju
τ
iK ū

τ
jK(5.7)
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is semipositive on U ∩ Ω̄ for any k.

�

Remark 5.6. If Ω is q2-decoupled-pseudoconvex then

Hk
q1+1(r, u

τ ) >
∼

n−1∑
j=k

∂2Pj
∂zj∂z̄j

∑′

|K|=k−1

|uτjK |2 ≥ 0 on U ∩ Ω̄ (5.8)

for all k ≥ q2. Similarly, if Ω is q1-decoupled-pseudoconcave then

Hk
q1+1(r, u

τ ) >
∼

k+1∑
j=1

∂2Pj
∂zj∂z̄j

(
|uτ |2 −

∑′

|K|=k−1

|uτjK |2
)
≥ 0 on U ∩ Ω̄ (5.9)

for all k ≤ q1.

Theorem 5.7. Let Ω be q2-decoupled-pseudoconvexity (resp. q1-decoupled
pseudoconvity ) at z0. Further suppose that for each j there is a invertible

function Fj with
Fj(|t|)
|t|2 increasing for any t near 0 such that either

∂2Pj
∂zj∂z̄j

(zj) >
∼

Fj(|xj|)
x2
j

or
∂2Pj
∂zj∂z̄j

(zj) >
∼

Fj(|yj|)
y2
j

(5.10)

By reordering, we may assume to be increasing ...Fj . Fj+1... (resp. de-
creasing ...Fj >

∼
Fj+1...). Then (f -1)k estimate holds in degree k ≥ q2 with

f(δ−1) = (F ∗
k (δ))−1 (resp. k ≤ q1 with f(δ−1) = (F ∗

k+1(δ))
−1 ) where F ∗

j is
inverse function of Fj .

Example 5.1. If Pj(zj) = |zj|2mj or |xj|2mj then we get ε-subelliptic estimate
with ε = 1

2max{mj} . If Pj(zj) = exp(− 1
|zj |mj ) or exp(− 1

|xj |mj ) then we get (f -1)k

estimate with f(t) = (log t)
1

max{mj} .

Example 5.2. For indices (qo, q) with qo < q ≤ n−1
2

, let

r = 2Rezn − h(z1, ..., zqo) +
n−1∑
j=q

Pj(zj).

where ∂∂̄h ≥ 0 and Pj(zj) is defined in Example 5.1. Then we get (f -1)k

estimate at z0 for domain Ω+ = {+r ≤ 0} (resp. Ω− = {−r ≤ 0}) for any
degree k ≥ q (resp. k ≤ n − q − 1) of forms. By Theorem 1.13 , (f -1)k

estimate for system (∂̄b, ∂̄
∗
b ) on M = {r = 0} holds for degree k between q

and n− q − 1.
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Proof of Theorem 5.7. We may assume that
∂2Pj

∂zj∂z̄j
(zj) >

∼
Fj(|xj |)
x2

j
for each

j because if
∂2Pj

∂zj∂z̄j
(zj) >

∼
Fj(|yj |)
y2j

we change coordinate by zj := izj. Let C be

the postive constant such that C
∂2Pj

∂zj∂z̄j
(zj) ≥ Fj(|xj |)

x2
j

.

The case q-decoupled-pseudoconvexity : For each degree k of forms (k ≥
q2), we define the family of weights by

Φδ
k = C

r

δ
− 4

n−1∑
j=k

exp(−
x2
j

4F ∗
k (δ)2

) (5.11)

then Φδ
k’s are absolutely bounded on Sδ. Computation the Levi form of Φδ

k

shows that

∂∂̄Φδ
k = C

∂∂̄r

δ
+

1

2F ∗
k (δ)2

n−1∑
j=k

(
1−

x2
j

2F ∗
k (δ)2

)
exp(−

x2
j

4F ∗
k (δ)2

)ωi ∧ ω̄i.

Then

Hk
q1+1(Φ

δ
k, u

τ ) =
C

δ
Hk
q1+1(r, u

τ )

+
1

2F ∗
k (δ)2

n−1∑
j=k

(
1−

x2
j

2F ∗
k (δ)2

)
exp(−

x2
j

4F ∗
k (δ)2

)
∑′

|K|=k−1

|uτjK |2.
(5.12)

Combining with (5.8). (5.10) and (5.12), we obtain

Hk
q1+1(Φ

δ
k, u

τ ) ≥
n−1∑
j=k

(1

δ

Fj(|xj|)
x2
j

+
1

2F ∗
k (δ)2

(
1−

x2
j

2F ∗
k (δ)2

)
exp(−

x2
j

4F ∗
k (δ)2

)
) ∑′

|K|=k−1

|uτjK |2

=
n−1∑
j=k

(Aj +Bj)
∑′

|K|=k−1

|uτjK |2
(5.13)

where

Aj =
1

δ

F (|xj|)
x2
j

;Bj =
1

2F ∗
k (δ)2

(
1−

x2
j

2F ∗
k (δ)2

)
exp(−

x2
j

4F ∗
k (δ)2

).

Notice that Aj ≥ 0 for any j. For each j (k ≤ j ≤ n − 1), we consider two
cases of |xj|:



68CHAPTER 5. PROPERTY (F -M-P )K IN SOME CLASS OF DOMAINS

Case 1. If |xj| ≤ F ∗
k (δ), we have

Bj ≥
1

4F ∗
k (δ)2

e−1/4 ≥ cF ∗
k (δ)−2;

hence
Aj +Bj >

∼
F ∗
k (δ)−2.

Case 2. Otherwise. we assume |xj| ≥ F ∗
k (δ). Using our assumption

F (|xj |)
x2

j

increasing, it follows

Aj =
1

δ

Fj(|xj|)
x2
j

≥ 1

δ

Fk(F
∗
k (δ))

F ∗
k (δ)2

=
1

δ

δ

F ∗
k (δ)2

= F ∗
k (δ)−2.

But in this case, Bj can get negative values; however, by using the fact

min
t≥ 1

2

{
(1− t)e−t/2} = −2e−3/2 for t =

x2
j

2F ∗k (δ)2
≥ 1

2
we have

Bj ≥ −e−3/2F ∗
k (δ)−2.

This imply
Aj +Bj >

∼
F ∗
k (δ)−2.

Therefore, continuous our estimate in (5.13), we obtain

Hk
q1+1(Φ

δ
k, u

τ ) >
∼

n−1∑
j=k

F ∗
k (δ)−2

∑′

|K|=k−1

|uτjK |2

>
∼
f(δ)2|uτ |2

(5.14)

here the last inequality follows by
n−1∑
j=k

∑′

|K|=k−1

|uτjK |2 ≥
∑′

|J |=k
|uτJ |2 = |uτ |2. More-

over, we see that (Φδ
k)j =

rj
δ

= 0 for any j ≤ q1+1. Hence
∑q1+1

j=1 |(Φδ
k)ju

τ |2 =

0. Thus the weights Φδ
k satisfy Property (f -1-P )k . Applying Theorem 1.10,

we get
‖f(Λ)u‖2 . Q(u, u)

for any u ∈ C∞
c (Ω̄ ∩ U)k ∩Dom(∂̄∗) with f(δ−1) = F ∗

k (δ)−1.
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The case q-decoupled-pseudoconcavity : For each k ≤ q1, we define the
family of weights by

Φδ
k = C

r

δ
+ 4

k+1∑
j=1

exp(−
x2
j

4F ∗
k+1(δ)

2
), (5.15)

In the same way to above argument , we get Φδ
k’s are absolutely bounded

on Sδ and

Hk
q1+1(Φ

δ
k, u

τ ) >
∼
F ∗
k+1(δ)

−2

k+1∑
j=1

(
|uτ |2 −

∑′

|K|=k−1

|uτjK |2
)

>
∼
F ∗
k+1(δ)

−2
(
(k + 1)|uτ |2 −

k+1∑
j=1

∑′

|K|=k−1

|uτjK |2
)

>
∼
F ∗
k+1(δ)

−2|uτ |2.

(5.16)

Now we need to show

Hk
q1+1(Φ

δ
k, u

τ ) >
∼

( q1+1∑
j=1

|(Φδ
k)j|2

)
|uτ |2. (5.17)

We note that (Φδ
k)j = 0 for k + 2 ≤ j ≤ q1 + 1 and

|(Φδ
k)j|2 = 8F ∗

j (δ)−2
( x2

j

2F ∗
j (δ)2

exp(−
x2
j

2F ∗
j (δ)2

)
)

. F ∗
j (δ)−2 (5.18)

for 1 ≤ j ≤ k + 1. So that, from (5.16) and (5.18) we get (5.17).

�

5.3 Subelliptic estimates for regular coordi-

nate domains

We state precise subelliptic estimates for the ∂̄-Neumann problem over the
class of regular coordinate domains of Cn.
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We consider a domain Ω defined by

2Rezn+
n−1∑
j=1

|fj(z)|2 < 0, with fj holomorphic, fj = fj(z1, ..., zj) and ∂mj
zj
fj 6= 0.

(5.19)
This is called a regular coordinate domain; the inequality which defines Ω
is denoted by r < 0. We discuss subelliptic estimates for the ∂̄-Neumann
problem on Ω:

|||u|||2ε <∼ ||∂̄u||
2
0 + ||∂̄∗u||20 + ||u||20 for any u ∈ C∞

c (U ∩ Ω̄)1 ∩Dom(∂̄∗).

(5.20)
Our problem is to find the optimal ε. There are several relevant numbers
related to Ω:

• m = m1 · ... ·mn−1 the multiplicity.

• D the D’Angelo type defined as the maximal order of contact of a
complex curve with ∂Ω. Note here that since

∑
j |fj|2 >

∼
|z|2m then

necessarily D ≤ 2m.

• ε the (optimal) index of subelliptic estimates. It satisfies

ε ≤ 1

D
Catlin 1983 [C83], ε

?

≥ 1

2m
D’Angelo conjecture 1992 [?].

We define a new number γ. For this, we write

fj = gj(z1, ..., zj) + z
mj

j +O(z
mj+1
j ) for gj = O(z

λ1
j

1 , ..., z
λj−1

j

j ).

Let jo, jo ≥ 2, j ≥ 2, be the first index with the property that gj is indepen-
dent of zj for any j ≤ jo − 1 and write lij for the minimum between λij and
mi (resp. mi− η for any η > 0) when i ≤ jo− 1 and j ≤ jo− 1 (resp. j ≥ jo),
and otherwise put lij = 1. Define

γj = min
i≤j−1

lij
mj

γi, γ = min
j
γj. (5.21)

Note that 1
2m
≤ γ

2
≤ 1

D
. Here is our main result (which is also presented in

[?] with γ
2

replaced by 1
2m

).
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Theorem 5.8. Let Ω be a regular coordinate domain and let γ be the number
defined by (5.21); then we have ε-subelliptic estimates for ε = γ

2
.

Example 5.3. For the domain of Cn defined by

2Rezn + |zm1
1 |2 +

n−1∑
j=2

|zmj

j − z
lj
j−1|2 < 0, lj ≤ mj−1 ≤ mj,

the number γ is given by γ = l2·...·ln−1

m1·...·mn−1
. We claim that ε = γ

2
= 1

D
. The

first equality follows from Theorem 5.8. As for the second, we can easily find
the critical curve Γ with the maximal contact with ∂Ω; this is parameterized
over τ ∈ ∆ by

τ 7→ (τ
1

m1γ , τ
l2

m2m1γ , ..., τ, 0).

In fact, we have r|Γ = |τ
1
γ |2 + | 6 τ

l2
m1γ− 6 τ

l2
m1γ | + ... = |τ

1
γ |2 and therefore

D ≥ 2
γ
. On the other hand ε = γ

2
< 1

D
by Catlin 1983 [C83].

Example 5.4. For the domain in C3 defined by

2Rez3 + |z4
1 |2 + |z6

2 +
5∑
j=0

cjz
j
2z
αj

1 +O(z7
2)|2 < 0,

with αj ≥ 3 for any j, we have γ1 = 1
4
, γ2 = 3

6·4 and γ = γ2.

Example 5.5. Let us consider in C4 the domain defined by

2Rez4 + |z6
1 |2 + |z4

2 + z3
1 |2 + |z4

3 + z3z
a
1 + z3z

b
2|2 < 0.

Here γ1 = 1
6
, γ2 = 3

6·4 and γ3 = min( 3·b
6·4·4 ,

a
6·4 ,

3
6·4) and γ = γ3; in particular, if

a ≥ 3, and b ≥ 4, we have γ = 3
6·4 .

Proof of Theorem 5.8.
In order to establish (5.20) it suffices to find a family of bounded weights

{φδ} whose Levi form satisfies over the strip Sδ := {z ∈ Ω : −r(z) < δ},
the estimate ∂∂̄φδ(z)(u, ū) >

∼
δ−γ|u|2 for u ∈ Cn. We choose α ≥ 1, put

αj = α(mj+1...mn) and choose a smooth cut off function χ with χ ≡ 1 in
[0, 1] and χ ≡ 0 in [2,+∞). We define

φδ = − log(
−r + δ

δ
)+

n∑
j=jo

mj−1∑
h=1

1

| log ∗|
log

(
|∂hzj

fj|2 +
δ(mj−h)γj

| log δ|(mj−h)αj

)

+ c

n∑
j=1

χ(
|zj|2

δγj
) log

(
|zj|2 + δγj

δγj

)
,

(5.22)
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where ∗ = δγj(mj−h)

| log δ|(mj−h)αj
; notice that log ∗ ∼ log δ. The weights φδ that we

have defined are bounded in the strip Sδ. When calculating the Levi form,
we observe that ∂∂̄r(u, ū) =

∑
j

|∂fj · u|2 and ∂∂̄|∂hzj
fj|2(u, ū) = |∂∂hzj

fj · u|2

and finally ∂∂̄|zj|2(u, ū) = |uj|2. Thus, we have got a decomposition

∂∂̄φδ(u, ū) =
n∑
j=1

Aj +
n∑

j=jo

mj−1∑
h=1

Bh
j +

n∑
j=1

Cj, (5.23)

with the estimates
Aj >

∼
δ−1|∂fj · u|2 for any z ∈ Sδ,

Bh
j >∼

δ−(mj−h)γj | log δ|
(mj−h)γj

| log ∗| |∂∂hzj
fj · u|2 if |∂hzj

fj|2 < δ(mj−h)γj

| log δ|(mj−h)αj
,

Cj >
∼
cδ−γj |uj|2 if |zj|2 < δγj .

We note that the Aj’s and Bh
j ’s are positive for any z but, instead, the Cj’s

can take negative values when |zj| > δγj ; however, |Cj| <
∼
cδ−γj |uj|2 and thus

the Cj’s are controlled by the Aj’s and Bh
j ’s. We define

Dj = Aj + Cj for j ≤ jo − 1, Dj = Aj +
∑

h≤mj−1

Bh
j + Cj for j ≥ jo.

We wish to start by proving that, when j ≤ jo − 1, then∑
i≤j

Di >
∼

∑
i≤j

δ−siγi|zi|2(si−1)|ui|2 for any si ≤ mi. (5.24)

We use induction and show how to pass from step j − 1 to step j (the step
j = 1 being elementary). We fix our choice si = lij and remark that

Aj +
∑
i≤j−1

Di >
∼
δ−1 |∂fj · u|2 +

∑
i≤j−1

δ−l
i
jγi|zi|2(l

i
j−1)|ui|2

>
∼

∑
i≤j−1

δ−l
i
jγi

[
|zj|2mj−1|uj|2 − |zi|2(l

i
j−1)|ui|2

]
+
∑
i≤j−1

δ−l
i
jγi|zi|2(l

i
j−1)|ui|2.

(5.25)

This proves (5.24) for s = mj. On the other hand, we have

Cj + δ−mjγj |zj|2(mj−1) >
∼

(δ−γj + δ−mjγj |zj|2(mj−1))|uj|2. (5.26)
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This is clear for |zj|2 ≤ δγj ; otherwise, Cj gets negative but it is controlled
by the second term in the left of (5.26) for small c. By combining (5.25) with
(5.26) we get (5.24) for s = mj and s = 1 and thus also for any 1 ≤ s ≤ mj.
This concludes the proof of our claim (5.24).

We pass to treat the terms Dj = Aj +
∑
h

Bh
j + Cj for j ≥ jo. We begin

by an auxiliary statement: if for some i with jo ≤ i ≤ j − 1 and for any
1 ≤ si′ ≤ mi′ , we have∑
i′≤i

Di′ >
∼
δ−γi| log δ|αi−1|ui|2+

∑
jo≤i′≤i−1

δ−γi′ |ui′|2+
∑

i′≤jo−1

δ−si′γi′ |zi′|2(si′−1)|ui′|2,

(5.27)
then we also have ∑

i≤j

Di >
∼
δ−γj | log δ|αj−1|uj|2. (5.28)

We prove the implication from step j−1 to j. By choosing si′ = li
′
j in (5.27),

and observing that, if i ≤ j − 2, then δ−γi ≥ δ−γj−1| log δ|a for any a, we get

Aj +
∑
i≤j−1

Di >
∼

∑
i≤jo−1

δ−γil
i
j

(
|∂zj

fj|2|uj|2 − |zi|2(l
i
j−1)|ui|2

)
+
∑
i≥jo

δ−γj−1| log δ|αj−1−1
(
|∂zj

fj|2|uj|2 − |ui|2
)

+
∑
i≤j−1

Di

>
∼
δ−γj−1| log δ|αj−1−1|∂zj

fj|2|uj|2.
(5.29)

If now |∂zj
fj|2 ≥ δ(mj−1)γj

| log δ|(mj−1)αj
, then (5.29) can be continued by

≥ δ−γj−1+(mj−1)γj | log δ|(αj−1−1)−(mj−1)αj |uj|2

≥ δ−γj | log δ|αj−1|uj|2.

If not, we pass to use B1
j instead of Aj. In this way we jump from ∂hzj

fj

to ∂h+1
zj

fj until we reach B
mj−1
j ; since |zj|2 = |∂mj−1

zj fj|2 is smaller than
δγj

| log δ|αj (otherwise we would have used the former term B
mj−2
j ), then B

mj−1
j

is bigger than the right side of (5.28). This concludes the proof of the auxiliary
statement.

We show that, for any value of |zj|2∑
i≤j

Di >
∼
δ−γj |uj|2, (5.30)
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whereas, when |zj|2 ≥ δγj

∑
i≤j

Di >
∼

{
either δ−γj | log δ|αj−1|uj|2

or δ−γj−1|zj|2(mj−1)|uj|2.
(5.31)

For j ≤ jo − 1, the claim has already been proved in (5.24): the second
alternative in (5.31) holds. If |zj|2 ≤ δγj , then Cj >

∼
cδ−γj |uj|2. Assume

therefore |zj|2 ≥ δγj and suppose (5.31) true up to step j − 1; we prove that
it also holds for j (which implies (5.30)). First, if in the inductive statement
it is the first of (5.31) which is fulfilled at some step i with jo ≤ i ≤ j − 1,
the first is also fulfilled at step j; this follows from the auxiliary statement.
Otherwise, assume we have the second for any i ≤ j − 1; (we surely do have

for any i ≤ jo − 1). Now, if for some i ≤ jo − 1, we have |zi|l
i
j ≥ |zj|mj−1, or,

for some jo ≤ i ≤ j− 1, we have |zi| ≥ |zj|mj−1, then, owing to |zj| ≥ δγj , we
have {

δ−1|zi|2(mi−1) ≥ δ−γil
i
j−η|zi|2(l

i
j−1), i ≤ jo − 1,

δ−γi−1|zi|2(mi−1) ≥ δ−γi−η, i ≥ jo.
(5.32)

To prove the second of (5.32), it suffices to notice that δ−γi−1|zi|2(mi−1) ≥
δ−γi−1+γj(mj−1)(mi−1) ≥ δ−γi−η. As for the first, we notice that

δ−1|zi|2mi−1 ≥ δ
−1+(mi−lij)

mj−1

li
j

γj

|zi|2(l
i
j−1)

≥ δ
−lijγi−(

mi
li
j

−1)γj

|zi|2(l
i
j−1) ≥ δ−l

i
j−η|zi|2(l

i
j−1),

(because lij ≤ mi − η). This proves (5.32). By (5.32), the second of (5.31) is
converted into the first in the inductive statement for i ≤ j−1 (and thus also
for j owing to the auxiliary statement). Thus the only critical case occurs
when both the inequalities{

|zi|l
i
j ≤ |zj|mj−1, i ≤ jo − 1,

|zi| ≤ |zj|mj−1, i ≥ jo,
(5.33)

are fulfilled. But we have in this situation

|∂zj
fj|2 ≥ |zj|2(mj−1) − 1

2

(
jo−1∑
i=1

|zi|l
i
j−1 +

j−1∑
i=jo

|zi|2
)

≥ |zj|2(mj−1),
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which implies Aj +
∑

iDi >
∼
δ−γj−1|zj|2(mj−1)|uj|2. This yields the second of

(5.31). Thus induction works and brings us to step j = n. At this point we
can disregard (5.31) (though it did a great job for the inductive argument):
(5.30) for any j ≤ n yields the conclusion of the proof.

�
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Chapter 6

Global regularity and local
regularity

6.1 Compactness estimates and global regu-

larity

In this section, we will discuss about compactness estimate implies global
regularity.

It is well-known that (global) compactness estimates implies global regu-
larity. The globally compactness estimate can be defined as : for every positive
number M , the estimate

M‖u‖2 . Q(u, u) + CM‖u‖2
−1 (6.1)

holds for any u ∈ C∞(Ω)k ∩Dom(∂̄∗).

The idea of the proof is very simple. By using elliptic regularization one
sees that the global regularity for the ∂̄-Neumann operator holds if

‖u‖s . ‖�u‖s (6.2)

for any u ∈ C∞(Ω̄)k ∩ Dom(�) and for any integer s. Moreover, since the
operator �, it is non-characteristic with respect to the boundary. Hence

‖u‖2
s . ‖�u‖2

s−2 + ||Λs−1Du||2 (6.3)

77
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where D is the differential operator of order 1 and Λ is the tangential differ-
ential operator of order s. By Lemma 3.10, the estimate (6.1) implies that

M‖DΛ−1u‖2 . Q(u, u) + CM‖u‖2
−1. (6.4)

In fact, it follows by the non-characteristic with respect to the boundary of
L̄n; the operator D can be understood as Dr or Λ.

We now estimate the last term of (6.3), we have

M‖Λs−1Du‖2 .M‖DΛ−1Λsu‖2 +M‖u‖2
s−1

.Q(Λsu,Λsu) + CM‖u‖2
s−1

.(Λs�u,Λsu) + ‖[∂̄,Λs]u‖2 + ‖[∂̄,Λs]u‖2

+ ‖[∂̄∗, [∂̄,Λs]u‖2 + ‖[∂̄, [∂̄∗,Λs]u‖2 + CM‖u‖2
s−1

.‖Λs�u‖2 + ‖Λs−1Du‖2 + ‖Λs−2D2u‖2 + CM‖u‖2
s−1

.‖�u‖2
s + ‖Λs−1Du‖2 + CM‖u‖2

s−1

(6.5)

where the second inequality follows by (6.4). Then the term ‖Λs−1Du‖2 can
be absorbed by the left-hand side term when M is sufficiently large. By in-
duction method, we obtain the estimate (6.2).

In the chapter 1, we have introduced the locally compactness estimate at
boundary point by

M‖u‖2 . Q(u, u) + CM‖u‖2
−1 (6.6)

for any u ∈ C∞
c (U ∩ Ω)k ∩ Dom(∂̄∗), where U is a neiborhood of a given

boundary point z0. The following lemma will obtain global estimate from
local estimate.

Lemma 6.1. Let Ω be a bounded domain. Assume the the estimates (6.6)
holds at any boundary point. Then (6.1) also holds.

Proof. Let {ζj}Nj=0 be a partition of unity such that ζ0 ∈ C∞
c (Ω) and

each ζj, 1 ≤ j ≤ N , is supported in coordinate patch Ui, ζj ∈ C∞
c (Uj),

Ω̄ ⊂ Ω ∪
(
∪ Uj

)
and

N∑
j=0

ζ2
j = 1 on Ω̄.
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Let u ∈ C∞(Ω̄)k ∩ Dom(∂̄∗), we need to show (6.1). For j = 0, Form the
interior elliptic regularity of the � (see (2.27) ), we have

‖ζ0u‖2
1 . Q(ζ0u, ζ0u).

For every positive constant M , using the Cauchy-Schwarz inequlity

M‖ζ0u‖2 . ‖ζ0u‖2
1 + CM‖ζ0u‖2

−1

Hence

M‖ζ0u‖2 .Q(ζ0u, ζ0u) + CM‖ζ0u‖2
−1

.Q(u, u) + CM‖u‖2
−1.

(6.7)

Similarly, for j = 1, ..., N , using hypothesis, we have

M‖ζju‖2 .Q(ζju, ζju) + CM‖ζju‖2
−1

.Q(u, u) + CM‖u‖2
−1.

(6.8)

Summing up over j, the lemma is proved.

�
We conclude the results without the proof in the following theorem.

Theorem 6.2. 1. Let Ω be the smoothly bounded q-pseudoconvex domain
at any boundary point in Cn , n ≥ 2. Assume that compactness esti-
mates holds on (0, k)-forms with q ≤ k ≤ n − 1 (resp. p ≤ k ≤ q) in
a neighborhood of any boundary point . Then the ∂̄-Neumann operator
Nk on (0, k)-form is global regularity.

2. Let Ω be the smoothly bounded annulus in Cn , n ≥ 3, defined by Ω =
Ω1 \Ω2 where Ω̄2 ⊂ Ω1 and Ω1 is p-pseudoconvex and Ω2 is (n− q−1)-
pseudoconvex. Assume that compactness estimates holds on (0, k)-forms
with p ≤ k ≤ q in a neighborhood of any boundary point . Then the
∂̄-Neumann operator Nk on (0, k)-form is global regularity.

3. Let M be the smoothly compact q-pseudoconvex hypersurface at any
local poin in Cn , n ≥ 3. Assume that compactness estimates holds on
(0, k)-forms with q ≤ k ≤ n − 1 − q in a neighborhood of any point in
M . Then the Green operator Gk (Gk := �−1

b ) on (0, k)-form is global
regularity.
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6.2 ”Weak” compactness estimates and global

regularity

The purpose of this section is to present that global regularity follows by an
estimate which is weaker than compactness estimate in a bounded pseudo-
convex domain. In fact, we will show the following theorem

Theorem 6.3. Let Ω be a smoothly bounded pseudoconvex domain in Cn.
Assume that for any positive constant ε > 0 there exists a defining function
rε of Ω with

∑
k

|rεzj
|2 ∼= 1 on bΩ such that

∑′

|K|=k−1

∥∥∥ n∑
ij

rεziz̄j
rεz̄i
ūjK

∥∥∥2

≤ ε‖∂̄u‖2 + ‖∂̄∗u‖2 + Cε‖u‖2
−1 (6.9)

for any u ∈ C∞(Ω̄)k∩Dom(∂̄∗). Then the Bergman projection Pk−1 is exactly
(global) regular, that is,

‖Pk−1α‖s . ‖α‖s
for s ≥ 0 and all α ∈ Hs(Ω)k.

Let U be a neighborhood of bΩ. For any ε > 0, we may assume that the
defining function r := rε of Ω satisfies

∑n
k=1 |rzk

|2 6= 0 on U . We define (1,0)
vector fields as follows

N =
1∑n

k=1 |rzk
|2

n∑
k=1

rz̄k

∂

∂zk
; T = N − N̄ and Lj =

∂

∂zj
− rzj

N

for j = 1, ..., n. Notice that T and Lj, 1 ≤ j ≤ n are tangential; T̄ = −T .
Firstly, we consider u ∈ C∞

c (U ∩ Ω̄)k. Using integration by part we get

‖Lju‖2 . ([L̄j, Lj]u, u) + ‖L̄ju‖2 + ‖u‖2

. ‖u‖1.‖u‖+ ‖L̄ju‖2 (6.10)

Denote S = span{L1, ..., Ln,
∂
∂z̄1
, ..., ∂

∂z̄1
, Id}.

Proposition 6.4. Let s ∈ N; S ∈ S then we have

‖Su‖2
s−1 . ‖∂̄u‖2

s−1 + ‖∂̄∗u‖2
s−1 + ‖u‖s−1.‖u‖s (6.11)
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and

‖u‖2
s . ‖∂̄u‖2

s−1 + ‖∂̄∗u‖2
s−1 + ‖u‖s−1.‖u‖s + ‖T su‖2 (6.12)

for any u ∈ C∞
c (U ∩ Ω̄)k ∩Dom(∂̄∗). Moreover, for u ∈ C∞

c (Ω)k ∩Dom(∂̄∗),
we have

‖u‖2
s+1 . ‖∂̄u‖2

s + ‖∂̄∗u‖2
s + ‖u‖2

s−1 (6.13)

Proof. The proof of (6.11) follows by the fact that

‖ ∂u
∂z̄j

‖2
s−1 . ‖∂̄u‖2

s−1 + ‖∂̄∗u‖2
s−1 + ‖u‖2

s−1 (6.14)

for j = 1, ..., n; and

‖Lju‖2
s−1 . ‖∂̄u‖2

s−1 + ‖∂̄∗u‖2
s−1 + ‖u‖s−1.‖u‖s (6.15)

for j = 1, ..., n−1. (The inequalities (6.14) and (6.15) may be found in [BS91,
p.83]; or in [CS01, Section 6.2]. The proof of (6.16) follows by the induction
in j that

‖T ju‖2
s−j . ‖∂̄u‖2

s−1 + ‖∂̄∗u‖2
s−1 + ‖u‖s−1‖u‖s + ‖T j+1u‖2

s−j−1. (6.16)

The last one follows by the elliptic holds in the interior of domain.

�

Lemma 6.5. (i)

[
∂

∂z̄j
, T ] =θjT + Sj0 (6.17)

where θj = − 1P
k

|rzk
|2
∑
i

rziz̄j
rz̄i

, and Sj0,∈ S

(ii)

[
∂

∂z̄j
, T 2s] =2sθjT

s+1 + A2s−1
j Sj (6.18)

where A2s−1
j are the tangential differential operator of order 2s−1, and

Sjs ∈ S
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Proof. By differentiating and using formula ∂
∂zj

= rzj
T + Lj + rzj

L̄n, we

get the proof of lemma.

�
Proof of Theorem 6.3. For any s ∈ N, we will show by inductions that Pl

is exactly continuous on Hs(Ω)l for l = n− 1, ..., k − 1.

Since Nn is elliptic, it follows that Pn−1 = I−∂̄∗Nn∂̄ is exactly continuous
on Hs(Ω)n−1. The induction hypothesis is that Pk is exactly continuous on
Hs(Ω)k. We need to show that Pk−1 is exactly continuous onHs(Ω)k for any s.

We firstly prove that

‖Pk−1α‖2
s . ‖α‖2

s + ‖Pk−1α‖2
s−1 (6.19)

for any α ∈ C∞
c (U ∩ Ω̄)k−1. We have

(I − Pk−1)α = ∂̄∗Nk∂̄α ∈ C∞
c (U ∩ Ω̄)k−1 ∩Dom(∂̄∗).

Using (6.16), for u replaced by (I − Pk−1)α, it follows

‖(I − Pk−1)α‖2
s .‖∂̄∂̄∗Nk∂̄α‖2

s−1 + ‖(I − Pk−1)α‖2
s−1 + ‖T s(I − Pk−1)α‖2

.‖α‖2
s + ‖Pk−1α‖2

s−1 + ‖T sPk−1α‖2 (6.20)

Hence

‖Pk−1α‖2
s .‖α‖2

s + ‖Pk−1α‖2
s−1 + ‖T sPk−1α‖2 (6.21)

Similarly, by using (6.11), we get

‖SPk−1α‖2
s−1 .‖α‖2

s + ‖Pk−1α‖s‖Pk−1α‖s−1 (6.22)

for any S ∈ S.

Now, we estimate the last term of (6.21). We have

‖T sPk−1α‖2 =(T sPk−1α, T
sα)− (T sPk−1α, T

s∂̄∗Nk∂̄α)

=(T sPk−1α, T
sα)− ((T s)∗T s∂̄Pk−1α,Nk∂̄α)

− ([∂̄, (T s)∗T s]Pk−1α,Nk∂̄α)

(6.23)
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Since ∂̄Pk−1α = 0 and

[∂̄, (T s)∗T s] =[∂̄, T 2s] + [∂̄, ((T s)∗ − T s)T s]

=2sΘ̄T 2s +
∑
j

A2s
j Sj Īj

=2s(T s)∗Θ̄T 2s +
∑
j

(Cs
j )
∗Bs−1

j Sj Īj.

(6.24)

where A2s−1
j , Bs−1

j and Cs
j are the tangential operator of order 2s− 1; s− 1

and s, respectively; and Īj : A0,k−1 → A0,k such that

Īju =
∑

|J |=k−1

uJdz̄j ∧ dz̄J

Continuing (6.23):

=(T sPk−1α, T
sα)− (Θ̄2sT sPk−1α, T

sNk∂̄α) +
∑
j

(Bs−1
j Sj ĪjPk−1α,C

s
jX

s
jNk∂̄α)

≤
√
ε
(
‖Pk−1α‖2

s + ‖Nk∂̄α‖2
s

)
+

1√
ε

(
‖α‖2

s +
∑
j

‖SjPk−1α‖2
s−1 + ‖Θ̄∗T sNk∂̄α‖2

)
.

(6.25)

Using hypothesis of this theorem, we have

‖Θ̄∗T sNk∂̄α‖2 .ε(‖∂̄T sNk∂̄α‖2 + ‖∂̄∗T sNk∂̄α‖2) + Cε‖T sNk∂̄α‖2
−1

.ε(‖[∂̄, T s]Nk∂̄α‖2 + ‖T s∂̄∗Nk∂̄α‖2 + ‖[∂̄∗, T s]Nk∂̄α‖2)

+ Cε‖T sNk∂̄α‖2
−1

.ε(‖Nk∂̄α‖2
s + ‖Pk−1α‖2

s + ‖α‖2
s) + Cε‖Nk∂̄α‖2

s−1

(6.26)

Combining (6.21);(6.22);(6.25) and (6.26), we obtain

‖Pk−1α‖2
s .‖α‖2

s + ‖Pk−1α‖2
s−1 +

√
ε‖Nk∂̄α‖2

s + Cε‖Nk∂̄α‖2
s−1 (6.27)

We use the Boas-Strauble formula in [BS] for ∂̄α, α ∈ Hs(Ω)k−1 we get

Nk∂̄α = PkwtNt,k∂̄w−t(I − Pk−1)α

where Nt,k is the solution operator to the weighted ∂̄-Neumann problem with
weight wt(z) = exp(−t|z|2). Using Kohn’s theory (see [Ko65]) implies that
Nt,k∂̄ is also exactly continuous on Hs(Ω)k−1. Therefore

‖Nk∂̄α‖s . ‖α‖s + ‖Pk−1α‖s (6.28)
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for any α ∈ Hs(Ω)k−1. From (6.27) and (6.28), we get (6.19).

Finally, for any α ∈ C∞(Ω̄)k we can write α = χ1α + χ2α where χ1 ∈
C∞
c (U ∩ Ω̄)k and χ2 ∈ C∞

c (Ω)k

We have

‖Pk−1α‖2
s .‖Pk−1(χ1α)‖2

s + ‖Pk−1(χ2α)‖2
s

.‖χ1α‖2
s + ‖Pk−1(χ1α)‖2

s−1 + ‖χ2α‖s + ‖Pk−1(χ2α)‖2
s−1

.‖α‖2
s + ‖Pk−1(χ1α)‖2

s−1 + ‖Pk−1(χ2α)‖2
s−1

(6.29)

for any α ∈ Hs(Ω)k−1.

Since ‖∂̄∗Nk∂̄α‖2 = (∂̄∗Nk∂̄α, ∂̄
∗Nk∂̄α) = (∂̄α,Nk∂̄α) = (α, ∂̄∗Nk∂̄α),

hence ‖Pk−1α‖ . ‖α‖. We assume by inductive method that ‖Pk−1α‖2
s−1 .

‖α‖2
s−1 for any α ∈ C∞(Ω̄)k, then by (6.29) we get

‖Pk−1α‖2
s .‖α‖2

s (6.30)

for any α ∈ C∞(Ω̄)k. Using the method of elliptic regularization as in [KN65];
[FK72], we past from the a priori estimate (6.30) to get the conclusion of
Theorem 6.3

�

6.3 Superlogarithmic estimates and local reg-

ularity

In [Ko02], Kohn proved that superlogarithmic estimate of system (∂̄b, ∂̄
∗
b )

implies local regularity of the operator �−1
b ; and superlogarithmic estimate

on positive microlocal of system (∂̄b, ∂̄
∗
b ) implies local regularity of the ∂̄-

Neumann operator. The purpose of this section is to prove the local regu-
larity of the ∂̄-Neumann operator and Bergman projection by using Kohn’s
technique.

Theorem 6.6. Assume that (f -M)k holds in a neighborhood of z0 ∈ Ω̄ with
either f � log; M = 1 or f = log; M = 1

ε
for any ε > 0. Then if u ∈ L0,k

2

such that �u = α with α ∈ L0,k
2 whose restriction to U in C∞ then the

restriction of u to U is also in C∞. Moreover, if χ0, χ1 are the canonical
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cutoff functions with suppχ0 ⊂ suppχ1 ⊂ U and χ1 = 1 on suppχ0, then for
each integer s ≥ 0, we have

‖f(Λ)χ0u‖2
s . ‖f(Λ)−1χ1α‖2

s + ‖u‖2.

Proof. For each integer s, we interpolate a sequence of cutoff functions
{ζj}2s

j=0 such that ζ0 = χ1; ζ2s = χ0; and ζj = 1 on a neighborhood of
suppζj+1. For m = 1, ..., s, we define the operator

Rmϕ(x, r) =

∫
R2n−1

eix·ξ(1 + |ξ|2)
sζ2m−1(x,r)

2 ϕ̃(ξ, r)dξ.

Since the symbol of (Λm −Rm)ζ2m is zero,

|||f(Λ)ζ2mu|||2m .‖f(Λ)Rmζ2mu‖2 + ‖f(Λ)ζ2mu‖2

.‖f(Λ)ζ2mR
mζ2(m−1)u‖2

+ ‖f(Λ)[Rm, ζ2m]ζ2(m−1)u‖2 + ‖f(Λ)ζ2mu‖2

.‖f(Λ)ζ2(m−1)R
mζ2(m−1)u‖2

+ ‖[f(Λ), ζ2m]Rmζ2(m−1)u‖2 + ‖f(Λ)[Rm, ζ2m]ζ2(m−1)u‖2 + ‖f(Λ)ζ2mu‖2.

(6.31)

From the calculus of pseudodifferential operator we conclude that the last
line of (6.31) is dominated by |||f(Λ)ζ2(m−1)u|||2m−1. So that

|||f(Λ)ζ2mu|||2m . ‖f(Λ)ζ2(m−1)R
mζ2(m−1)u‖2 + ||f(Λ)ζ2(m−1)u||2m−1. (6.32)

Similarly,

|||DrΛ
−1f(Λ)ζ2mu|||2m . ‖DrΛ

−1f(Λ)ζ2(m−1)R
mζ2(m−1)u‖2 + ||f(Λ)ζ2(m−1)u||2m−1.(6.33)

Denote Am = ζ2(m−1)R
mζ2(m−1), then (Am)∗ = Am and Amu ∈ C∞

c (U ∩
Ω̄)k ∩Dom(∂̄∗) if u ∈ A0,k ∩Dom(∂̄∗). Using hypothesis and Lemma 3.10, we
obtain

|||f(Λ)ζ2mu|||2m + |||DrΛ
−1f(Λ)ζ2mu|||2m . Q(Amu,Amu) + ‖f(Λ)ζ2(m−1)u‖2

m−1.(6.34)

Next, we estimate Q(Amu,Amu), we have

‖∂̄Amu‖2 =(Am∂̄u, ∂̄Amu) + ([∂̄, Am]u, ∂̄Amu)

=(f(Λ)−1Am∂̄∗∂̄u, f(Λ)Amu) + ([∂̄, Am]u, ∂̄Amu) + ([∂̄, Am]∗u, ∂̄∗Amu)

+ (f(Λ)−1[Am, ∂̄∗]∗, ∂̄]u, f(Λ)Amu).

(6.35)
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Similarly,

‖∂̄∗Amu‖2 =(f(Λ)−1Am∂̄∂̄∗u, f(Λ)Amu) + ([∂̄∗, Am]u, ∂̄∗Amu) + ([∂̄∗, Am]∗u, ∂̄Amu)

+ (f(Λ)−1[Am, ∂̄]∗, ∂̄∗]u, f(Λ)Amu).
(6.36)

Take over sum of (6.35) and (6.36), and using the (lc-sc) inequality, we obtain

Q(Amu,Amu) .‖f(Λ)−1Am�u‖2 + error

.|||f(Λ)−1ζ2(m−1)�u|||2m + error
(6.37)

where

error =‖[∂̄, Am]u‖2 + ‖[∂̄∗, Am]u‖2 + ‖[∂̄, Am]∗u‖+ ‖[∂̄∗, Am]∗u‖
+ ‖f(Λ)−1[Am, ∂̄]∗, ∂̄∗]u‖2 + ‖f(Λ)−1[Am, ∂̄∗]∗, ∂̄]u‖2 + ‖Amu‖2.

(6.38)

Now we estimate the error terms. First, we consider ‖[∂̄, Am]u‖2, by the
Jacobi identity

[∂̄, Am] =[∂̄, ζ2(m−1)R
mζ2(m−1)]

=[∂̄, ζ2(m−1)]R
mζ2(m−1) + ζ2(m−1)[∂̄, R

m]ζ2(m−1) + ζ2(m−1)R
m[∂̄, ζ2(m−1)].

(6.39)

Since the support of derivatives of ζ2(m−1) is disjoint from the support of
ζ2m−1 in the operator Rm. Let D is ∂

∂xj
or Dr, we have

[aD,Rm] = mD(ζ2m−1) log ΛRm + [a,Rm]D.

Hence

‖[∂̄, Am]u‖2 .‖log ΛAmu‖2 + ‖log Λζ2(m−1)u‖2
m−1 + ‖u‖2

.ε‖f(Λ)Amu‖2 + ‖f(Λ)ζ2(m−1)u‖2
m−1 + Cε‖u‖2.

(6.40)

here we apply Lemma 2.7. Arguing similarly we can bound all the term in
(6.38) we obtain

error .ε‖f(Λ)Amu‖2 + ‖f(Λ)ζ2(m−1)u‖2
m−1 + Cε‖u‖2

.εQ(Amu,Amu) + ‖f(Λ)ζ2(m−1)u‖2
m−1 + Cε‖u‖2 (6.41)

where the last inequality follows by using again the (f -1)k estimate. Therefore

Q(Amu,Amu) . |||f(Λ)−1ζ2(m−1)�u|||2m + ‖f(Λ)ζ2(m−1)u‖2
m−1 + ‖u‖2.(6.42)
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Combining (6.34), (6.37) and (6.42), we get

|||f(Λ)ζ2mu|||2m + |||DrΛ
−1f(Λ)ζ2mu|||2m . |||f(Λ)−1ζ2(m−1)�u|||2m

+‖f(Λ)ζ2(m−1)u‖2
m−1 + ‖u‖2.

(6.43)

for m = 1, 2, ..., s.

For m = 2, ..., s, since the operator � is elliptic, it is non-characteristic
with respect to the boundary, we have

‖f(Λ)ζ2mu‖2
m . ‖f(Λ)ζ2m�u‖2

m−2 + |||f(Λ)ζ2mu|||2m + |||DrΛ
−1f(Λ)ζ2mu|||2m

hence

‖f(Λ)ζ2mu‖2
m . ‖f(Λ)−1ζ2(m−1)�u‖2

m + ‖f(Λ)ζ2(m−1)u‖2
m−1 + ‖u‖2. (6.44)

For m = 1, from (6.43), we get

‖f(Λ)ζ2u‖2
1 . ‖f(Λ)−1ζ0�u‖2

1 + ‖f(Λ)ζ0u‖2 + ‖u‖2. (6.45)

For m = 0, it is easy to get

‖f(Λ)ζ0u‖2 . ‖f(Λ)−1ζ0�u‖2 + ‖u‖2. (6.46)

Combining (6.44), (6.45) and (6.46), we obtain

‖f(Λ)ζ2su‖2
s .

s∑
m=0

‖f(Λ)−1ζ2m�u‖2
m + ‖u‖2

.‖f(Λ)−1ζ0�u‖2
s + ‖u‖2

(6.47)

namely,

‖f(Λ)χ0u‖2
s .‖f(Λ)−1χ1�u‖2

s + ‖u‖2 (6.48)

for any u ∈ A0,k ∩ Dom(�). Using the method of elliptice regularization as
in [KN65], we conclude the proof of theorem.

�
Using above technique and conbining the research about smoothness of

Bergman kernel of Kerzman [Ke72], we obtian the following thoerem
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Theorem 6.7. Let Ω be a bounded q-pseudoconvex domain in Cn with class
C∞ boundary. Suppose further that (f -M)k estimate hold in a neighborhood
U of a point z0 ∈ bΩ with either f � log, M = 1 or f = log, M = 1

ε
for

any ε > 0. Let χ0 and χ1 be smooth cutoff functions supported in U with
χ1 = 1 in a neighborhood of the support of χ0. For every integer s ≥ 0, we
have the ∂̄-Neumann operator Nk and the Bergman projection Pk−1 satisfy
the estimates

‖f(Λ)χ0Nkα‖2
s . ‖f(Λ)−1χ1α‖2

s + ‖α‖2; (6.49)

‖χ0∂̄
∗Nkα‖2

s + ‖χ0∂̄Nkα‖2
s . ‖f(Λ)−1χ1α‖2

s + ‖α‖2; (6.50)

‖χ0Pk−1α‖2
s . ‖χ1α‖2

s + ‖α‖2; (6.51)

for any α ∈ Hs(Ω)0,k. Moreover, if w0 6= z0 is another point of bΩ such that
(f -M)k estimate hold in a neighborhood V of w. Then the Bergman kernel
function K(z, w) extends smoothly to (U ∩ Ω̄)× (V ∩ Ω̄).
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