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Abstract 
 

Endothelial dysfunction is an early feature of atherosclerotic vascular disease, characterized by 

a decrease in nitric oxide (NO) bioavailability and a concomitant increase in vascular 

superoxide (O2
-) formation. Loss of NO bioavailability precedes the development of overt 

atherosclerosis and is an independent predictor of adverse cardiovascular events. Indeed, 

decreased NO and enhanced production of reactive oxygen species (ROS) have been recognized 

as major determinants of age-associated endothelial dysfunction. 

Emerging evidence indicates a significant role played by the endothelium also in the onset and 

progression of the cardiac allograft vasculopathy (CAV), a peculiar type of coronary 

atherosclerosis which is considered nowadays the main limiting factor of long-term outcome 

after heart transplantation (HT). Furthermore, other quite common diseases, such as psoriasis 

and hyperparathyroidism, although proven to be at increased risk for cardiovascular mortality 

are poorly understood on a cardiovascular point of view. The exact pathogenesis of all these 

mentioned diseases remains not completely defined; however it is clear that immunologic 

mechanisms operating in the context of common cardiovascular risk factors lead to impaired 

endothelial function, mainly as a consequence of decreased NO bioavailability and excessive 

oxidative stress. 

The work submitted in this thesis describes on one side studies aimed to investigate 

molecular mechanisms underlying endothelial dysfunction and vascular inflammation driven by 

oxidative stress in the context of aging, hypertension and atherosclerosis using in vitro and in 

vivo models. On the other side, we present clinical studies focused on the pathophysiology of 

coronary microcirculation as far as functional aspects are concerned in the immuno-

inflammatory context of cardiac allograft vasculopathy.  
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Introduction 

 

The first description of basic cardiovascular concepts can be traced back to the ancient Roman 

Age with Galeno (about 200 AD), “the father of experimental physiology”, who first discovered 

that arteries contain blood instead of air. Later, important achievements were reached by other 

renowned anatomists such as Vesalio (1514-1564), after the Renaissance. But the foundation of 

the modern knowledge of the circulation and the role played by the heart, as a pump, have been 

established in the Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus, written by 

William Harvey, in 1628, an English medical doctor who trained in Italy, at the University of 

Padua. For the first time, Harvey was able to integrate the single isolated discoveries of his 

predecessors, providing a comprehensive understanding of the cardiovascular system as we 

know it nowadays1 

Later, Modern Age has witnessed major developments in cardiovascular physiology thanks to 

scientists like E.H. Starling in the 1920s, who described the “foundamental properties of the 

heart muscle itself and then found out how these are modified, protected, and controlled under 

the influence of the mechanisms- nervous, chemical and mechanical- which under normal 

conditions play on the heart and blood vessels”, quoting his remarkable studies. 1, 2 On the other 

side, the existence of pathological cardiovascular conditions have been recognized and 

described. The atherosclerotic vascular disease and its main clinical manifestation, angina 

pectoris have been firstly reported in the 18th century. In parallel, the earliest descriptions of 

some attempts for a pharmacological treatment appeared. Nitroglycerin, for example, has been 

initially prescribed by physicians in the late 19th century 3. A number of new pharmacological 

agents found to be of benefit have followed, leading to the constitution of the currently 

established cardiovascular pharmacotherapy. 

The atherosclerotic vascular disease was hypothesized to cause ischemia and infarction of the 

heart and other organs. Acute cardiovascular ischemic events, such as stroke, myocardial 
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infarction or sudden death, were frequently associated with localized arterial thrombus 

formation. However for many decades, these conditions remained totally mysterious and 

unpredictable events. Moreover, hypertension was recognized to damage large blood vessels 

and the microcirculation of different target organs, even if the specific mechanisms involved 

were unknown.  

 

The revolutionary concepts of vascular biology 

 

The Framingham Heart Study, a large-scale epidemiologic investigation began in the early 

1950s, demonstrated a striking association between coronary artery disease (CAD), stroke, 

peripheral artery disease with diabetes mellitus (DM) and aging, forcing physicians to 

investigate the possible pathophysiological connections among those diverse clinical 

conditions4. 

Vascular biology, as the study of vascular cells under normal and pathological conditions, began 

in the 1970s. This novel research discipline, has since then enjoyed exponential growth, 

allowing the comprehension of common pathophysiologic processes of cardiovascular diseases 

(CVD), especially those linked to atherosclerosis and DM. Translation of this knowledge to 

clinical practice has profoundly influenced management strategies leading to an improvement of 

outcomes 5. 

Traditionally, vascular smooth muscle cell (VSMC) was regarded as the site of control 

of the vascular tone in the resistance arteries of peripheral circulation. The same concept was 

translated to the regulation of the contractility in the coronary artery tree. In this view, a 

coronary spasm or a state of enhanced contractility was believed to elicit angina pectoris or to 

precipitate ischemia and myocardial infarction. For a long time, the endothelium was scarcely 

known and just mentioned as a simple, inert, selective barrier to the diffusion of 

macromolecules from the lumen of the vessel to the interstitial space.  
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This view completely changed in 1980, when it was described the obligatory role of endothelial 

cells in relaxation of arterial smooth muscle by acetylcholine (Ach) 6. A seminal event in the 

field of vascular biology, which was later awarded with the Nobel Prize in 1998 to Robert 

Furchgott, Louis Ignarro and Ferid Murad. By means of in vitro experiments in organ chambers, 

preconstricted arterial rings were demonstrated to relax in response to the muscarinic 

cholinergic agonist only if endothelial cells were present. Removing the endothelium by any 

means abolished the vasorelaxation, which was mediated by an undefined endothelium-derived 

substance that was named endothelium derived relaxing factor (EDRF). EDRF, subsequently, 

was shown to be, in large part, nitric oxide7. During the last three decades, several studies have 

definitively proved that the endothelium is not only a cell monolayer covering the lumen surface 

of the vascular wall, but it is involved in many key regulatory functions for the homeostasis of 

cardiovascular system.  

 

The endothelium and vascular homeostasis 

 

Endothelial cells (ECs) actively regulate basal vascular tone and reactivity under both 

physiological and pathological conditions, by responding to mechanical forces (shear stress and 

pulsatile stretch) and neuro-hormonal mediators with the release of a variety of relaxing and 

contracting factors 8. The endothelium has an endocrine/paracrine function and releases EDRFs, 

now known to be endothelial autacoids like NO, prostacyclin (PGI2) and a still elusive 

endothelium derived hyperpolarizing factor (EDHF) The latter mediator is produced by the 

EDHF synthase cytochrome P450 2C 9 and together with PGI2 might play an important role in 

the microcirculation. All these EDRFs can also inhibit platelet function and the proliferation of 

VSMCs. On the other hand, ECs may also produce vasoconstrictors and growth promoters, such 

as angiotensin II (Ang II), endothelin-1 (ET-1), thromboxane and prostaglandin H2 (PGH2). 
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Thus, the activity of the endothelium extends far beyond the control of vascular tone and 

vasomotion. Indeed, the release of vasodilating mediators clearly reflects only one aspect of its 

homeostatic and protective role. In normal ECs, those mediators are synthesized and released to 

maintain vascular homeostasis, ensuring adequate blood flow, nutrient delivery and waste 

removal, while preventing thrombosis and leukocyte diapedesis 10. The EC monolayer, because 

of its strategic anatomic position between the circulating blood and the vessel wall components 

is the crossroads of diverse signaling pathways affecting vascular function and structure, one of 

the most prominent being the L-arginine/NO pathway. NO is constitutively produced by 

endothelial NO synthase (eNOS, NOSIII), requiring tetrahydrobiopterin (BH4) as a cofactor, 

through a 5-electron oxidation of the guanidine-nitrogen terminal of L-arginine in response to 

receptor-dependent agonists (bradykinin, Ach, adenosine triphosphate (ATP) or haemodynamic 

forces 11. The bioavailability of NO represents a key marker of vascular health. NO diffuses to 

the underlying VSMCs and stimulates the second-messenger cyclic guanosine monophosphate 

(cGMP) to cause relaxation. Many, if not most, vasodilator stimuli, such as flow and multiple 

G-protein–coupled receptors, including those for serotonin and muscarinic cholinergic agonists, 

act through such endothelium-dependent mechanism11. 

In addition, a functional endothelium is a major regulator of vascular inflammation and 

remodeling. NO finely modulates integrins and other surface signals expression. An intact 

endothelial layer is critical for preventing circulating blood cells from exposure to 

prothrombotic subendothelial matrix by mediating molecular signals that prevent platelet and 

leukocyte interaction with the vascular wall and by inhibiting VSMC proliferation and 

migration 12, 13. Moreover, a healthy endothelium actively inhibits arterial thrombus formation. 

Indeed, endothelium-derived NO limits platelet activation, adhesion and aggregation, and 

inhibits the expression of prothrombotic protein plasminogen activator inhibitor-1 modulating 

the balance of profibrinolytic and prothrombotic activity 14. Furthermore, platelets have been 

shown to express eNOS and to produce NO that likely limits recruitment and aggregation of 



 10

platelets. Endothelial prostacyclin production, largely dependent on cyclooxygenase 2 (COX-2), 

acts synergistically with NO to prevent platelet activation 15. 

In 1997, the isolation of putative endothelial progenitor cells (EPCs) from human peripheral 

blood has been reported 16. Subsequently, evidence has accumulated documenting the presence 

of a population of endothelial precursor cells and/or adult stem cells, derived from bone 

marrow, with a specific role in maintenance of endothelial integrity against vascular injury 17. 

These cells are able to home areas of injury and ischemia-induced myocardial and peripheral 

neovascularization 18, healing endothelial integrity 19. 

 

Endothelial dysfunction, atherosclerosis and vascular inflammation 

 

Endothelial function has largely been investigated through the assessment of endothelium-

dependent vasomotion. Indeed, an impaired endothelium-dependent relaxation reflects an 

extensive loss of endothelial function. The first published studies, confirming the utmost 

importance of the endothelium in the control of vasomotor tone, provided substantial evidence 

that endothelium-dependent responses are impaired in animal models and patients with vascular 

disease20. Is endothelial dysfunction associated with the development of coronary 

atherosclerosis? The results of a study evaluating this hypothesis were published by Ludmer et 

al. in 1986. The authors concluded that Ach causes a dose-dependent dilation of coronary 

arteries in healthy subjects, while a “paradoxical” vasoconstriction is observed in patients with 

coronary disease, indicating an impaired endothelium-dependent coronary vasomotion 21. Later, 

Quyyumi et al. confirmed that the impaired response to Ach in patients with CAD or 

cardiovascular risk factor is largely due to reduced coronary availability of endothelium-derived 

NO 22. Abnormalities of endothelial function in vasomotor control have been demonstrated both 

in large arteries and in the microvasculature in multiple settings besides atherosclerosis, 
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including congestive heart failure, systemic and pulmonary hypertension. Cardiovascular risk 

factors such as DM, smoking, dyslipidemia, hypertension, low-estrogen states, were also shown 

to have synergistic effect in determining endothelial function.  

The emerging hypothesis following these observations was to assess whether common 

mechanisms may lead to impaired endothelial cell function in different conditions. Furthermore, 

it was important to characterize how endothelial dysfunction relates to the pathogenesis of 

atherosclerosis. Studies addressing these issues continue to provide remarkable evidence that the 

endothelial interface between the vascular wall and the circulation is the primary site for the 

triggering of cardiovascular events 23. 

A prototypical pattern of vascular changes has been proposed in atherosclerosis and 

predisposing conditions that constitutes a sort of sick vessel syndrome, with the following 

hallmarks: endothelial dysfunction, preserved relaxation of VSMC, exaggerated vasoconstrictor 

responses and structural changes/vascular remodeling initially triggered as adaptive and 

protective mechanisms that turn out to be deleterious and self sustaining 24. 

Under pathologic conditions the endothelium has a reduced availability of vasodilating factors, 

in particular NO, and an augmented production of vasoconstricting factors, leading to impaired 

endothelium-dependent vasodilation. Furthermore, endothelium derived NO has been 

demonstrated to exert a major anti-inflammatory effect and can therefore be considered the most 

important endogenous antiatherogenic molecule. Endothelial dysfunction promotes arterial 

inflammation and vice versa, chronic inflammation maintains a pro-inflammatory phenotype of 

the endothelium25. Therefore EC dysfunction seems to participate in atherosclerotic process 

from its inception onwards till ultimate complications with a complex and pleiotropic 

involvement of inflammation sustained by humoral and cellular inflammatory elements 26, 27. 

For decades, the fundamental inflammatory nature of atherosclerosis has been known in 

principle, but not fully appreciated. Atherosclerosis has been clearly recognized as a chronic, 

systemic, and diffuse disease with focal complications in different vascular beds. The 
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mechanisms by which a specific site is rendered more prone to the development of symptomatic 

disease with cardiovascular events were not known. However, the observation that all stages of 

atherosclerosis may be at distant and multiple locations simultaneously but, at the same time, 

this process may spare entire vascular segments led to hypothesize that the interface and 

interactions between the vascular wall and the circulation blood is a primary site for the 

mechanisms underlying cardiovascular events 23. The second seminal achievement has been to 

understand the importance of oxidation mechanisms in mediating physiological and 

pathophysiological responses in blood vessels. The intriguing observation that only after 

exposure of low density lipoprotein (LDL) to endothelial cells modified LDL were taken up by 

the macrophages to form foam cells led to extensive studies on lipoprotein metabolism 28. The 

modification undergone by LDL was recognized to be of oxidative nature and the presence of 

oxidized LDL (oxLDL) have been shown to exert multiple proinflammatory activities, including 

transcription of proatherogenic genes, production of matrix metalloproteinases and tissue factor, 

inhibition of NO activity, and promotion of VSMC apoptosis 29. Over the past years 

hypercholesterolaemia has been consistenly associated with endothelial dysfunction and has 

been established as a major risk factor for the development of atherosclerosis. OxLDLs 

antagonize the endothelial production of NO, reducing the expression of eNOS 30, decreasing 

the uptake of L-arginine and enhancing the level of asymmetric dimethylarginine (ADMA) 31.In 

both coronary and peripheral circulation, hypercholesterolaemia is associated with impaired 

endothelium-derived NO bioavailability, even when the coronary arteries are angiographically 

normal 32. There is evidence that cholesterol levels even in the normal range may be inversely 

related to endothelium-dependent vasodilation, and this finding has important clinical 

implications. This suggests that lowering cholesterol levels even when it is within the normal 

range may improve the production and release of endothelium-dependent NO and hence 

improve endothelial function33. Indeed, lowering of cholesterol levels in patients with 

documented CAD leads to decreased rates of myocardial infarction, and this protective effect 
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may in part be due to improvement in endothelial function34. Recent evidence suggest that 

chronic exposure to increased plasma cholesterol levels might also impair the repair of 

lipoprotein-mediated endothelial injury, possibly by reducing the availability and function of 

circulating endothelial progenitors 35 

 

Endothelial dysfunction and cardiac allograft vasculopathy: a 

paradigmatic immuno-inflammatory vascular disease 

 

Heart transplantation is the treatment of choice for patients with refractory end-stage heart 

disease. Numerous advances have been achieved in recipient selection, tissue preservation, 

surgical techniques as well as in post-transplant immunosuppression, improving short-term 

outcomes after HT36, 37. Although the procedure is nowadays considered effective in extending 

and improving quality of life, the onset of CAV remains the major limiting factor of long-term 

survival after HT. According to the 25th report of the Registry of the International Society for 

Heart and Lung Transplantation, CAV is the leading cause of death between 1 and 3 years after 

transplantation. After year 3, CAV accounts for 17% of deaths. Angiographic CAV occurs in 

54% of all heart transplant patients 10 years after transplantation. Intravascular ultrasonography 

(IVUS), a more sensitive technique, detects CAV in 75% of patients at 3 years36. The presence 

of allograft vasculopathy, is not unique to cardiac transplantation, but it is a key feature of most 

chronic rejection syndromes, limiting long-term graft success of other solid organ transplants 

(e.g. kidney, liver and lung allografts)38-41. Recent evidence defines CAV as a peculiar 

accelerated and aggressive form of CAD, however its exact pathogenesis remains unclear36. 

Emerging data indicate that the endothelium plays a significant role in the onset, progression 

and complication of this multifactorial disease, with both immunologic and non-immunologic 

risk factors contributing to its development. Improving our understanding of the integral role of 
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the endothelium in CAV is of crucial clinical interest since it could provide further insights into 

the related pathophysiological mechanisms and possible new strategies for CAV prevention and 

therapy. 

CAV is a fibroproliferative vascular disease resulting from “chronic rejection” of the cardiac 

allograft 36, 37, 42. As transplanted patients increase in number and live longer, non-transplant 

physicians need to be familiar with the pathophysiology and clinical presentation of CAV. The 

disease is a wholly peculiar arteriosclerotic entity. Many features are similar to both traditional 

atherosclerosis and arteritis, but there are at the same time important differences in both 

pathology and distribution of the disease. CAV is caused by immunologic mechanisms that 

combine with non-immunologic factors leading to persistent endothelial injury42, 43. The result is 

intimal thickening and VSMC proliferation. Intimal hyperplasia progresses towards coronary 

obstruction, which ultimately ends up in graft failure.  

The pathogenesis of the disease is complex, since it involves a peculiar, chronic, progressive 

immune-mediated insidious injury, refractory to conventional immunosuppression, intertwining 

with non-immunologic factors such as older donor age, sex, obesity, diabetes mellitus, 

hypertension, hyperhomocysteinemia (HHcy), cytomegalovirus (CMV) infection44, 

ischemia/reperfusion (I/R) injury, brain death45 and prothrombogenicity46. Along with 

hyperlipidemia and insulin resistance, which are the most significant non-immunologic risk 

factors, occurring in 50% to 80% of the HT population36. The recent evidence demonstrates that 

both the fibroproliferative disease resulting from chronic rejection and the classical 

atherosclerosis, arise secondary to endothelial dysfunction47-49. The endothelium seems to be 

initially a target, but lately an active player in the CAV process. The current accepted paradigm 

suggests that an initial specific immune-mediated injury trigger a following chronic non-specific 

inflammatory response due in part to conventional risk factors and in part to continuous 

repetitive immune damage. As a consequence of this multifactorial injury, the endothelium may 

become first activated and afterwards dysfunctional. Of note, once the injury has been 
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sufficiently strong and prolonged, the balance is definitively tipped towards stable endothelial 

damage and fibroproliferative modifications of the vessel wall. Then, the vicious circle becomes 

self-sustaining and autonomous, leading to CAV progression towards clinical complications48, 

50. Understanding the exact role of endothelial dysfunction in the initiation and progression 

CAV is important in order to achieve insight into the occurrence of late heart failure after HT.  

 

Evaluation of endothelial function 

 

Since endothelium plays a central role in the pathogenesis of cardiovascular disease, to establish 

a reliable, accurate and easily reproducible assessment of endothelial function represents a 

cardinal goal for clinical cardiology. Endothelial function may be tested by 2 main methods. 

These tests are based on the concept that certain stimuli trigger the release of NO from the 

endothelium to mediate vascular relaxation. Endothelial vasomotor testing may be performed in 

the coronary circulation by use of quantitative angiography with measurement of coronary 

artery diameter, before and after infusion of vasoactive substances, i.e. acetylcholine. Whereas 

acetylcholine caused a dose-dependent dilation of coronary arteries in healthy subjects, a 

“paradoxical” vasoconstriction was observed in response to acetylcholine in patients with 

coronary disease, indicating an impaired endothelium-dependent vasomotion21. Later, Quyyumi 

et al. confirmed that the impaired response to acetylcholine in patients with coronary disease or 

cardiovascular risk factor was largely due to reduced coronary availability of endothelium-

derived NO32. Although quantitative angiography is still considered the gold standard for the 

evaluation of endothelial function, it is an invasive and time consuming procedure. Hence, it is 

not suitable to detect early onset of endothelial alterations or to be repeated many times to 

monitor therapeutic interventions. Unfortunately, the recently introduced IVUS, which allows 

not only endothelial function evaluation, but also extremely promising measurement of 

atheroma burden beyond mere angiographical luminal narrowing, shares the same limitations 
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described for coronary angiography. The alternative endothelial vasomotor tests involve the 

peripheral circulation. Venous occlusion pletismography permits assessement of endothelial 

function measuring vasodilator capacity of the forearm resistance vessels when venous outflow 

is stopped by blood pression cuff inflation; vasoactive drugs can be administered directly 

through brachial artery cannulation. It is a procedure reproducible and accurate, but still 

moderately invasive and though, not suitable for large scale applications. Among recently 

alternative methods, the measurement of flow mediated dilation (FMD) of the brachial artery in 

response to increased shear stress during hyperemia, with high-resolution ultrasound was 

introduced in 1992 by Celermajer et al.51 as a non-invasive endothelial function test. 

Accordingly, it was demonstrated that flow-dependent dilation of the radial and brachial arteries 

is largely sustained by NO synthase52 and therefore provides a valuable “read-out” of vascular 

NO availability. This approach has now been used by numerous groups throughout the world to 

monitor endothelial function, with demonstration that the major cardiovascular risk factors 

impair FMD in a progressive manner, so that a more severe impairment of flow-dependent 

vasodilation is observed with increasing numbers of risk factors53. Several, but not all54, studies, 

show a comparable predictive value of FMD and coronary endothelial function to detect the 

presence and extent of CAD55, 56. Furthermore, a recent study evidenced a correlation between 

results of FMD and cardiac stress single photon emission computed tomography imaging 

(SPECT), which is another well established and reliable method to assess flow-limiting CAD57. 

However, the presence of controversial observations on the possibility to correlate FMD 

findings with other endothelial vasomotor tests, not only in different vascular beds, but also in 

the same vascular district58 and the evidence of some intrinsic methodological limitations, such 

as high variability, lack of standardized protocols, intra/interobservers variability, still prevent to 

validate FMD as a clinical established tool, although very promising59. 
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Assessment of coronary flow reserve to investigate the 

pathophysiology of coronary microcirculation in heart 

transplantation 

 

Early clinical diagnosis of CAV is difficult, owing to the denervation of the transplanted heart. 

Patients with CAV do not usually experience chest pain, but typically are asymptomatic until 

they present with sudden death or congestive heart failure, including fatigue, impaired exercise 

tolerance60 and ventricular arrhythmias61. Several noninvasive screening methods such as 

dobutamine stress echocardiography62, multi-slice computer tomography63, magnetic resonance 

imaging 64 have not proved yet fully reliable even if encouraging results have been achieved50, 

65. Therefore, periodic coronary angiography are performed for routine CAV diagnosis and 

surveillance in most transplant centers, however the sensitivity of this procedure, except for 

significant focal stenosis, is quite low. Coronary angiography frequently underestimates the 

extent and severity of the disease; by the common involvement of small intramyocardial vessels 

and by the occurrence of functional coronary alterations early before morphological changes are 

present66. IVUS technology is more sensitive than angiography67. IVUS, using an intracoronary 

catheter with a transducer at its tip, uniquely allows to visualize distinctively the 3 layers of the 

vessel wall, the intima, media, and adventitia. IVUS has been helpful in addressing the role of 

donor transmitted coronary artery disease vs. CAV arising de novo. Using this method, it has 

been shown that CAV (as coronary intimal thickening) can be demonstrated in almost all 

patients, being as high as 75% at 1 year after HT68 and occurs most rapidly during the initial 2 

years after transplant69. Usually only 1 of the major epicardial vessels is imaged, when imaging 

of all 3 vessels is performed the percentage of patients with CAV is even higher. The incidence 

of angiographically-diagnosed CAV is 42% at five years70 while using multi-vessel IVUS, 58% 

of HT patients have CAV at 1 year, 71% at 2 years, and 74% at 3 years71. Intimal thickening 
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diagnosed by IVUS predicts later angiographic CAV, and is associated with impaired survival 

even in patients with normal angiography69. Progression of intimal thickening during the first 

year after heart transplantation detected with IVUS is a reliable surrogate marker for subsequent 

adverse events67. The widespread use of IVUS is limited by several problems. The cost is 

markedly more than angiography alone. The procedure is time-consuming and increases the 

complexity and risks of an invasive angiogram. Lack of extensive expertise is also a limiting 

factor. Finally, complete evaluation of the entire coronary tree is not feasible due to the physical 

size of the IVUS catheter, leaving the secondary or tertiary vessels unexplored.  

Early CAV diagnosis remains the key for identification of recipients who are prone to develop 

the disease and suffering subsequent allograft failure. Growing interest is receiving the early 

assessment of the microcirculatory function in the coronary vascular bed, since at this level it is 

provided the primary control over myocardial tissue perfusion. Thus, the study of microvascular 

function may be more physiologically relevant than alterations in epicardial arteries. Most 

studies suggest that these 2 entities are distinct with different implications. 

A body of literature demonstrating impaired endothelium-dependent vasomotor function and a 

derangement of the eNOS system in coronary arteries of HT patients43, 48, 72 shows that 

endothelial dysfunction can be observed early after transplantation and predicts subsequent 

development of CAV73 as well as adverse clinical outcomes74. Microcirculatory aberrations tend 

to be present across all coronary territories in cardiac transplant recipients and are associated 

with poor survival, suggesting a generalized microvascular involvement even in the presence of 

a normal angiogram75. Other investigators have found heterogeneous distribution in endothelial 

dysfunction according to the vessel section examined as well a as the drug used76. Predominant 

allograft microvascular dysfunction is detectable in around 15% of patients after HT77. Very 

recently, stenotic microvasculopathy (detected in biopsy samples) has been characterized as a 

prognostic factor for long-term survival after HT78 even if not in all studies79. 
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Coronary flow reserve (CFR) is an important functional parameter commonly used to 

investigate the pathophysiology of coronary circulation. The available methodologies in 

assessing CFR have been either invasive such as the intracoronary Doppler flow wire (IDFW), 

or expensive and scarcely available such as the positron emission tomography. In fact the 

evaluation of endothelial function in many studies have been investigated with an invasive 

Doppler flow wire77 hence, not suitable to detect early onset of endothelial alterations or to be 

repeated many times to monitor therapeutic interventions. The ability to detect and distinguish 

changes in epicardial and microvascular function early and non invasively may aid in 

identifying modifiable factors that lead to CAV. Our group has focused on the use of contrast-

enhanced transthoracic echocardiography (CE-TTE) in assessing CFR. We demonstrated that 

blood flow velocity and flow reserve recording of distal left anterior descending artery (LAD), 

having a superficial course close to the anterior chest wall, is possible during a transthoracic 

Doppler study and can be greatly improved using contrast and second harmonic Doppler 

technology80. CFR by CE-TTE is a noninvasive, reproducible, feasible and reliable method for 

the CFR assessment. It has been validated vs. an independent reference method such as IDFW 

showing close correlation in patients with and without CAD81. We 82 studied 73 patients a mean 

of 8 years after HT and found that using a CFR cutoff of 2 or less, the specificity for 

angiographic luminal irregularities or more significant disease was 100% (sensitivity of only 

38%). Using a ROCderived cutoff of 2.7, the specificity and sensitivity were 87% and 82%, 

respectively. Later83 we showed that a CFR of 2.6 or less was associated with a 3.1 relative risk 

of death, myocardial infarction, congestive heart failure, or need for percutaneous intervention 

at a mean of 19 months. This technique, however, is fairly new and further data are required. 



 20

Outline of the thesis 

 

Based on the background presented above, the work submitted in this thesis describes on one 

side the studies aimed to investigate molecular mechanisms underlying endothelial dysfunction 

and vascular inflammation driven by oxidative stress in the context of hypertension and 

atherosclerosis using in vitro and in vivo models. These studies have been performed during the 

Fellowship I have spent in the Cardiovascular Research Division at the Department of 

Cardiology and Physiology at the University Hospital and at the University of Zürich, 

Switzerland. 

On the other side I present clinical studies aimed to provide novel understanding of the 

pathophysiology of coronary microcirculation as far as functional aspects are concerned in 

conditions such as cardiac allograft vasculopathy or inflammatory disease i.e. psoriasis and 

hormon disorders, like primary hyperparathyroidism. These studies have been built up along 

with clinical and echocardiographic follow up of these patients, clinical data collection and 

database maintenance in parallel with the development and validation of new non invasive 

imaging techniques to provide functional assessment of the coronary microvasculature. These 

studies have been performed during my residency at the Department of Cardiac, Thoracic and 

Vascular Sciences, Cardiovascular Unit of the University of Padova, Italy. 
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c-Jun N-Terminal Kinase 2 Deficiency Protects Against 

HypercholesterolemiaInduced Endothelial Dysfunction and 

Oxidative Stress 

 

Atherosclerosis is a systemic immunoinflammatory disease that develops in response to 

endothelial injury.1 Indeed, the endothelium is a key determinant of vascular integrity. 

Hypercholesterolemia, a well-known risk factor for cardiovascular disease, leads to 

accumulation and oxidation of low-density lipoprotein cholesterol within the intima of the 

vessel wall, triggering endothelial dysfunction and proinflammatory milieu as crucial steps in 

the early phase of the atherosclerotic process.2 Oxidative stress, resulting from an imbalance 

between reactive oxygen species (ROS) and the antioxidant defense system, is a crucial 

mediator of hypercholesterolemia-induced endothelial dysfunction.3,4 Indeed, ROS interact and 

inactivate nitric oxide (NO) and lead to protein nitration and lipid peroxidation. The c-Jun N-

terminal kinases (JNKs), also known as stress-activated protein kinases, are serine/threonine 

protein kinases belonging to the mitogen-activated protein kinase superfamily.5 JNKs play a 

fundamental role in stress responses, cell survival, and apoptosis. The JNK pathway is activated 

by stress factors such as ultraviolet radiation, reperfusion injury, ceramides, and inflammatory 

cytokines.6 The dimerization of JNK leads to activation of other kinases, their nuclear 

translocation, and subsequent modulation of the activity of different transcription factors such as 

c-Jun, ATF-2, Elk-1, p-53, and c-myc.7 Three distinct JNK genes have been described, JNK1, 

JNK2, and JNK3, encoding for different isoforms. JNK3 expression is restricted to brain, heart, 

and testis, whereas JNK1 and JNK2 proteins are ubiquitously expressed.8 Both JNK1- and 

JNK2-deficient mice are viable, indicating that neither JNK1 nor JNK2 plays an essential role in 

development and normal cellular functions; however, genetic disruption of both JNK1 and 

JNK2 is lethal.9 Studies using gene targeting as well as JNK inhibitors demonstrated the 

involvement of JNK1 and JNK2 genes in several pathological conditions including cancer, 

immune diseases, and neurological diseases as well as metabolic disorders and inflammatory 

conditions such as arthritis and atherosclerosis.10 JNKs are expressed in vascular smooth muscle 

cells and endothelial cells and activated by a wide range of stimuli such as oxidative stress, 

mechanical stretch, hypertension,11–13 hyperglycemia, apoptosis,14 and inflammation.10 A recent 

study suggested a role of JNK in endothelial dysfunction: short-term exposure of coronary 

arterioles to tumor necrosis factor-α–induced endothelial dysfunction through activation of JNK 
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signal transduction pathway and generation of superoxide anion.15 We recently reported a 

critical role of JNK2 in atherogenesis showing that JNK2 is required for foam cell formation 

within the atherosclerotic plaque by activating the scavenger receptor A.16 The role of JNK2 in 

the early stage of atherosclerosis related to endothelial dysfunction as it occurs under 

hypercholesterolemic conditions remains unknown. Thus, we compared JNK2-deficient with 

wild-type (WT) mice exposed to a high-cholesterol diet (HCD) or a normal diet (ND). We 

found that endogenous JNK2 is critically involved in hypercholesterolemia-induced endothelial 

dysfunction and oxidative stress. 

 

Methods 

Animals and Diets 

JNK2-/- and WT mice (both in a C57BL/6J background) were obtained from Jackson 

Laboratory (Bar Harbor, Maine) and kept on a regular diet. Mice were housed in temperature-

controlled cages (20°C to 22°C), fed ad libitum, and maintained on a 12/12-hour light/dark 

cycle. At the age of 8 weeks, mice were fed a ND or a HCD (D12108 containing 1.25% 

cholesterol; Research Diets, New Brunswick, NJ) for 14 weeks, respectively. All animal 

experiments were approved by the local institutional animal care committee. 

 

Plasma Lipid Measurements 

At the time of tissue harvesting, 0.5 to 1 mL of blood was drawn from the right ventricle with 

heparinized syringes and immediately centrifuged at 4°C, and the plasma was stored at -80°C. 

Total cholesterol, triglycerides, and free fatty acids were analyzed with the reagents TR13421, 

TR22421 (both Thermo Electron Clinical Chemistry and Automation Systems, Thermo Fisher 

Scientific, Waltham, Mass), and 994-75409 (Wako Chemicals GmbH, Neuss, Germany), as 

recommended by the manufacturer. The lipid distribution in plasma lipoprotein fractions was 

assessed by fast-performance liquid chromatography gel filtration with a Superose 6 HR 10/30 

column (Pharmacia, Basking Ridge, NJ).  

 

Tissue Harvesting 

Mice were euthanized by intraperitoneal administration of 50 mg/kg sodium pentobarbital. The 

entire aorta from the heart to the iliac bifurcation was excised and placed immediately in cold 

modified Krebs-Ringer bicarbonate solution (pH 7.4, 37°C, 95% O2, 5% CO2) of the following 

composition (mmol/L): NaCl (118.6), KCl (4.7), CaCl2 (2.5), KH2PO4 (1.2), MgSO4 (1.2), 

NaHCO3 (25.1), glucose (11.1), and calcium EDTA (0.026). The aorta was cleaned from 
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adhering connective tissue under a dissection microscope and either snap-frozen in liquid 

nitrogen and stored at -80°C or used immediately for organ chamber experiments. 

 

Organ Chamber Experiments 

For endothelial function experiments, aortas were cut into rings (2 to 3 mm long). Each ring was 

connected to an isometric force transducer (Multi-Myograph 610M, Danish Myo Technology 

A/S, Aarhus, Denmark), suspended in an organ chamber filled with 5 mL Krebs-Ringer 

bicarbonate solution (37°C, pH 7.4), and bubbled with 95% O2, 5% CO2. Isometric tension was 

recorded continuously. After a 30-minute equilibration period, rings were gradually stretched to 

the optimal point of their length-tension curve as determined by the contraction in response to 

potassium chloride (100 mmol). Concentration-response curves were obtained in a cumulative 

fashion. Several rings cut from the same artery were studied in parallel. Responses to 

acetylcholine (10-9 to 10-6 mol/L; Sigma-Aldrich, St Louis, Mo) in the presence or absence of 

polyethylene glycol–superoxide dismutase (PEG-SOD, 150 U/mL, Sigma-Aldrich) were 

recorded during submaximal contraction to norepinephrine (10-6 mol/L). The NO donor sodium 

nitroprusside (10-10 to 10-5 mol/L; Sigma-Aldrich) was added to test endothelium-independent 

relaxation. Relaxations were expressed as a percentage of the precontracted tension. 

 

Measurements of NO, O2-, and ONOO- 

Concurrent measurements of NO, O2-, and ONOO- were performed with 3 electrochemical 

nanosensors combined into 1 working unit with a total diameter of 2.0 to 2.5 um. Their design 

was based on previously developed and well-characterized chemically modified carbon-fiber 

technology.4,17,18 Amperometry was performed with a computer-based Gamry VFP600 

multichannel potentiostat. A current at the peak potential characteristic for NO (0.65 V) 

oxidation and ONOO- (-0.40 V) or O2- (-0.23 V) reduction was directly proportional to the 

local concentrations of these compounds in the immediate vicinity of the sensor. Linear 

calibration curves (current versus concentration) were constructed for each sensor from 10 

nmol/L to 2 umol/L before and after measurements with aliquots of NO, O2-, and ONOO- 

standard solutions, respectively. At a constant distance of the sensors from the surface of the 

endothelial cell, the reproducibility of measurements is high (5% to 12%). The consumption of 

redox species by nanosensors depends on the area of the electrode (<0.12 umq) and the duration 

time of electrolysis (≈5 to 10 seconds). For the amperometric measurements used, it varied 

between 0.04% and 0.1% of the NO, O2-, and ONOO- peak concentration. This value is 

negligible compared with the experimental error. The position of nanosensors (x,y, z 
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coordinates) versus the endothelial cell was established with the help of a computercontrolled 

micromanipulator. To establish a constant distance from cells, the module of sensors was 

lowered until it reached the surface of the cell membrane. After that, the sensors were slowly 

raised 4±1 um (z coordinates) from the surface of cells. The sensors were then moved 

horizontally (x, y coordinates) and positioned above a surface of randomly chosen single 

endothelial cells in an aortic ring. Acetylcholine was then injected with a nanoinjector that was 

also positioned by a computer-controlled micromanipulator.  

 

Western Blotting 

Frozen samples of aortas were pulverized and dissolved in lysis buffer (120 mmol/L sodium 

chloride, 50 mmol/L Tris, 20 mmol/L sodium fluoride, 1 mmol/L benzamidine, 1 mmol/L 

dithiothreitol, 1 mmol/L EDTA, 6 mmol/L EGTA, 15 mmol/L sodium pyrophosphate, 0.8 

ug/mL leupeptin, 30 mmol/L p-nitrophenyl phosphate, 0.1 mmol/L phenylmethylsulfonyl 

fluoride, and 1% NP-40) for immunoblotting. Cell debris was removed by centrifugation (12 

000g) for 10 minutes at 4°C. The samples (20 ug) were treated with x5 Laemmli’s SDS-PAGE 

sample buffer (0.35 mol/L Tris-Cl, pH 6.8, 15% SDS, 56.5% glycerol, 0.0075% bromophenol 

blue), followed by heating at 99°C for 5 minutes, and then subjected to 10% SDS-PAGE gel for 

electrophoresis. The proteins were then transferred onto Immobilon-P filter papers (Millipore 

AG, Bedford, Mass) with a semidry transfer unit (Hoefer Scientific, San Francisco, Calif). The 

membranes were then blocked by use of 5% skim milk in TBS-Tween buffer (0.1% Tween 20; 

pH 7.5) for 1 hour at room temperature and incubated with anti total JNK and p-JNK; (1:1000 

dilution; Santa Cruz Biotechnology, Inc, Santa Cruz, Calif), anti-NOS3 rabbit polyclonal 

antibody (1:1000 dilution; Santa Cruz Biotechnology Inc), anti-phospho (Ser1177)– endothelial 

NO synthase (eNOS) rabbit polyclonal antibody (1:250; Cell Signaling), anti-Mn-SOD rabbit 

polyclonal antibody (1:2000; Upstate USA Inc, Charlottesville, Va), anti-Cu/Zn-SOD rabbit 

polyclonal antibody (1:2000; Upstate Biotechnology, Lake Placid, NY) and antiextracellular 

(EC)-SOD (1:1000; Upstate Biotechnology) for 1 hour at room temperature. Membranes were 

then incubated with the secondary antibody (horseradish peroxidase–conjugated anti-

mouse/rabbit immunoglobulin antibody; Amersham Biosciences, Piscataway, NJ) at a dilution 

of 1:2000. Prestained markers (Bio-Rad Laboratories, Hercules, Calif) were used for molecular 

mass determinations. The immunoreactive bands were detected by an enhanced 

chemiluminescence kit (Amersham Biosciences). Anti-α-tubulin mouse monoclonal antibody 

(1:2000) or anti-α-actin (1:1000; Sigma-Aldrich) was employed as a loading control. Western 

blots were quantified densitometrically (National Institutes of Health Image 1.6, Bethesda, Md).  
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Immunohistochemistry and Superoxide Detection 

Freshly isolated aortic segments were immediately embedded in OCT medium and snap-frozen 

in pentane/liquid nitrogen. Cryosections of 6-um thickness were mounted on SuperFrost glass 

slides and incubated at 37°C for 30 minutes with 1 umol/L dihydroethidium for superoxide 

detection. To stain for protein-bound nitrotyrosine or Mn-SOD, sections were fixed in 4% PBS-

buffered formalin for 5 minutes, blocked with 10% BSA in PBS, and incubated with polyclonal 

anti-nitrotyrosine antibody (1:50; Upstate) and anti-Mn-SOD antibody (1:250; StressGen, 

Victoria, Canada) at 4°C overnight, respectively. For visualization, the secondary antibody 

(Alexa568 anti-rabbit IgG; 1:300; Molecular Probes, Carlsbad, Calif) was incubated for 1 hour 

at room temperature. Slides were then rinsed, embedded in glycerin-PBS, and examined under a 

fluorescent microscope (DM-IRB; Leica, Heerbrugg, Switzerland) connected to a digital 

imaging system (Spot-RT; Diagnostic Instruments/Visitron Systems, Puchheim, Germany). 

Pictures were obtained with identical camera and microscope settings. Dihydroethidium-stained 

specimens were background-corrected for autofluorescence of elastic fibers and the basal 

lamina with the use of ImageJ/ National Institutes of Health (rsb.info.nih.gov/ij/). 

 

Thiobarbituric Acid Reactive Substances Assay 

In vitro assessment of aortic levels of lipid peroxidation was performed with the use of the 

thiobarbituric acid reactive substances (TBARS) assay kit (OXItek, ZeptoMetrix Corp, Buffalo, 

NY), according to the manufacturer’s instructions. Briefly, snap-frozen tissue was crushed in a 

prechilled mortar and pestle and resuspended at a concentration of 50 mg/mL in PBS. Then 100 

uL of homogenate was added to SDS solution and mixed thoroughly. After TBA/buffer reagent 

addition, samples were incubated at 95°C for 60 minutes and centrifuged at 3000 rpm at room 

temperature for 15 minutes. Absorbance was read at 532 nm.  

 

Statistical Analysis 

Results are expressed as mean±SEM, and n indicates number of experiments. Statistical analysis 

was performed with Student t test for simple comparisons between 2 values. For multiple 

comparisons, results were analyzed by ANOVA followed by Bonferroni post hoc correction. A 

value of P<0.05 was considered statistically significant. The authors had full access to and take 

full responsibility for the integrity of the data. All authors have read and agree to the manuscript 

as written. 
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Results 

Lipid Profiles 

We determined plasma cholesterol, triglycerides, and free fatty acids in JNK2-/- and WT mice 

fed either a HCD or a ND (Table). Both JNK2-/- and WT mice developed significant 

hypercholesterolemia after 14 weeks of HCD. Interestingly, JNK2-/- mice had slight but 

significantly increased levels of total plasma cholesterol compared with WT mice on either ND 

or HCD (Table). No difference in plasma triglycerides or free fatty acids was observed between 

the groups (Table). 

 

Hypercholesterolemia Activates Aortic JNK  

To determine the effect of hypercholesterolemia on JNK activation, we compared Western blot 

analyses of aortic lysates from normocholesterolemic and hypercholesterolemic WT mice using 

a phosphospecific JNK antibody. Aortas from WT mice on HCD showed increased JNK 

phosphorylation compared with vessels from WT on ND (Figure 1). 

 

JNK2 Deletion Protects From Hypercholesterolemia-Induced Endothelial Dysfunction 

Isometric tension studies demonstrated no difference in vascular contractions to norepinephrine 

between aortas obtained from WT or -/- mice fed either a HCD or ND (data not shown). 

Endothelium-dependent relaxations to acetylcholine were impaired in WT mice on HCD 

compared with WT mice on ND. Interestingly, endothelium-dependent relaxations remained 

normal in JNK2-/- HCD mice, suggesting a preserved NO bioavailability favored by the lack of 

JNK2 (Figure 2A). Concurrent with this notion, addition of the free radical scavenger PEG-SOD 

(150 U/mL) significantly improved endothelium-dependent relaxations in HCD WT mice 

(Figure 2B). Endothelium-independent relaxations to sodium nitroprusside were similar in all 

groups (data not shown).  

 

Preserved Endothelial NO Release in Hypercholesterolemic JNK2-/- Mice 

For assessing NO bioavailability at the level of endothelial cells, we determined NO in single 

endothelial cells using nanosensors. After stimulation with acetylcholine (10-7 mol/L), maximal 

NO levels were 242±10 nmol/L in WT mice on ND and decreased ≈50% in WT mice on HCD 

(Figure 3A). In contrast, similar levels of NO release were found in JNK2-/- mice on ND or 

HCD (Figure 3A). 
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Decreased Oxidative Stress in Hypercholesterolemic JNK2-/- Mice 

To determine the effect of hypercholesterolemia on oxidative stress in endothelial cells, we 

measured superoxide anion (O2-) and peroxynitrite (ONOO-) production in single aortic 

endothelial cells. A significant increase in O2- concentration was observed in WT mice exposed 

to HCD compared with WT mice on ND, whereas no significant hypercholesterolemia-induced 

changes were observed in JNK2-/- mice (Figure 3B and 3C). In agreement with preserved NO 

bioavailability and O2- findings, ONOO- concentrations were increased only in WT but not in 

JNK2-/- mice fed a HCD (Figure 4A). Because ONOO- leads to increased 3-nitrotyrosine–

containing proteins, we performed in situ immunohistochemistry with a polyclonal antibody 

against 3-nitrotyrosine in aortic cross sections. JNK2-/- HCD mice showed a markedly reduced 

immunoreactivity both in the endotheliumand in the media compared with diet-matched WT 

mice (Figure 4B). This favorable redox profile was confirmed by measuring aortic TBARS 

levels. After HCD exposure, JNK2-/- mice did not exhibit an increase in lipid peroxidation 

compared with WT mice (Figure 4C). 

 

Free Radical Scavenger Expression and Activity 

Protein expression of 3 pivotal free radical scavengers was assessed to determine whether an 

upregulation of antioxidant defense mechanisms might explain the preserved NO bioavailability 

in hypercholesterolemic JNK2-/- mice. Cu/Zn-SOD was similar in all experimental groups (data 

not shown), whereas aortic expression of Mn-SOD and EC-SOD was significantly decreased in 

WT mice fed a HCD compared with WT mice on a ND (Figure 5A and 5B). By contrast, levels 

of Mn-SOD and EC-SOD in JNK2-/- HCD were similar to WT ND mice (Figure 5A and 5B). 

Unexpectedly, JNK2-/- ND mice exhibited a reduced expression of both SOD isoforms 

compared with diet-matched WT mice (Figure 5A and 5B). Accordingly, immunofluorescent 

stainings for Mn-SOD showed similar results in aortic cross sections (Figure 5C). 

 

Increased eNOS Expression in JNK2-/- Mice 

To obtain more insight into the mechanisms of preserved NO bioavailability in JNK2-/- mice 

with hypercholesterolemia, we quantified eNOS expression in aortic lysates. ENOS expression 

was not affected by HCD in WT mice, whereas JNK2-/- HCD mice showed a significantly 

increased expression of eNOS (Figure 6A). Furthermore, to determine whether NO production 

was also regulated by eNOS activity, we performed additional blotting of phosphorylated 

Ser1177-eNOS in pooled samples. pS1177-eNOS protein levels were similar in aortic lysates 
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from JNK2-/- on either diet and WT mice on ND. In contrast, we found reduced eNOS 

phosphorylation in WT mice on HCD (Figure 6B). 

 

Discussion 

 

The present study demonstrates for the first time that genetic deletion of JNK2 protects against 

hypercholesterolemiainduced and ROS-mediated endothelial dysfunction. The following 

findings support our conclusion:1 Long-term exposure of WT mice to a HCD induces aortic 

JNK phosphorylation2. In contrast to WT mice, long-term exposure of JNK2-/- to HCD did not 

impair endothelium-dependent relaxation to acetylcholine3. Lower ONOO- levels in 

hypercholesterolemic JNK2-/- mice were associated with decreased protein nitration and lipid 

peroxidation. Accordingly, 4 expression of the antioxidant enzymes Mn-SOD and EC-SOD was 

increased in JNK2-/- mice. In contrast, we observed a downregulation of these enzymes after 14 

weeks of HCD in WT mice. Genetic deletion of JNK2 did not affect severity of 

hypercholesterolemia, although JNK2-/- mice had slightly but significantly increased levels of 

total cholesterol compared with WT mice fed with either ND or HCD. Thus, we could rule out 

that differences observed among the 2 groups were caused by different experimental conditions. 

In contrast to our findings, a recent study showed similar total plasma cholesterol levels in 

JNK2-/- and WT controls19. Preserved bioavailability of NO is a key marker of vascular 

integrity. In vivo, activity of the L-arginine/NO pathway is determined by a balance between 

synthesis and breakdown of NO for its reaction with O2-. This balance is impaired in 

hypercholesterolemia and atherosclerosis20,21. Endothelial dysfunction, reflected by impaired 

endothelium-dependent relaxation, occurs in experimental models of hypercholesterolemia, as 

was confirmed in WT mice of this study22,23. Similarly, many clinical studies reported abnormal 

endothelium-dependent vasodilation in hypercholesterolemic patients24. Hypercholesterolemia 

induces a series of molecular events that increase the production of ROS and inactivate NO to 

form ONOO-25. In this study, acetylcholine-induced relaxation did not differ between JNK2-/- 

and WT mice in control conditions of normocholesterolemia following ND. However, on 

chronic hypercholesterolemia induced by 14 weeks of HCD, WT mice but not JNK2-/- mice 

developed endothelial dysfunction. The finding that addition of the free radical scavenger PEG-

SOD restored endothelium-dependent relaxation in WT mice on HCD suggests an important 

role of ROS in this context. Hypercholesterolemia-induced oxidative stress has been attributed 

to activation of oxidases in the vasculature and in infiltrating leukocytes.22 Moreover, 

hypercholesterolemia has been shown to impair antioxidant defense mechanisms against 
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ONOO- formation.25 To investigate whether preserved endothelial function in 

hypercholesterolemic JNK2-/- mice was associated with increased bioavailability of NO, we 

assessed NO release from single endothelial cells after stimulation with acetylcholine. In 

hypercholesterolemic control mice, NO levels decreased by ≈50%, whereas they remained 

unchanged in JNK2-/- mice. Because O2- is the main inactivator of NO, we tested whether 

decreased endothelial production of O2- contributes to increased NO bioavailability in JNK2-/- 

mice. We found enhanced O2- production in hypercholesterolemic WT mice compared with 

mice on ND, whereas no significant dietinduced changes were detected in JNK2-/- mice. 

Dihydroethidium stainings of aortic segments confirmed these findings.In aortas exposed to 

chronic hypercholesterolemia, the reaction of NO and O2- leads to enhanced ONOO- formation 

and, in turn, increased nitrotyrosine residues, which are typical end products of the reaction of 

ONOO- with biological compounds. 26 Tyrosine nitration is responsible for inactivation of 

several enzymes.27 Our group has shown that nitration of Mn-SOD and prostacyclin synthase 

occurs in aged and diabetic mice, respectively.28,29 In agreement with the notion that JNK2 

deficiency induces preserved NO bioavailability but reduced O2- production, we found that 

ONOO- concentrations were increased in WT but not in JNK2-/- mice fed a HCD. In parallel, 

nitrotyrosine immunoreactivity was detected in both endothelium and smooth muscle cells of 

hypercholesterolemic mice, as shown previously by our group.30 However, aortas from 

hypercholesterolemic WT mice exhibited enhanced immunostaining compared with diet-

matched JNK2-/- mice. ONOO- contributes to atherogenesis by promoting lipid peroxidation.31 

In contrast to hypercholesterolemic WT mice, JNK2-/- mice were protected against lipid 

peroxidation, as determined by TBARS in aortic lysates. To investigate whether antioxidant 

defense mechanisms contribute to the preserved endothelial function in hypercholesterolemic 

JNK2-/- mice, we assessed protein expression of 3 pivotal O2- scavengers. Aortic expression of 

Mn-SOD and EC-SOD was decreased in hypercholesterolemic WT mice compared with 

normocholesterolemic controls. By contrast, both Mn-SOD and EC-SOD were induced after 14 

weeks of hypercholesterolemia in JNK2-/- mice. Furthermore, in situ immunohistochemistry 

showed that changes in Mn-SOD expression occur throughout the aortic vascular wall. These 

findings suggest that the ability of the SOD scavenging system to respond to oxidative stress 

remains intact in JNK2-/- mice. Unexpectedly, normocholesterolemic JNK2-/- mice exhibited a 

reduced expression of Mn-SOD and EC-SOD compared with diet-matched WT mice. However, 

these changes did not translate into differences in endothelium-dependent, NO-mediated 

responses, as shown by organ chamber experiments and in situ measurements of NO release. At 

low concentrations, O2- diffusion is slow, and O2- is scavenged by highly diffusible NO. 
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Therefore, at low O2- in JNK2-/- mice on ND, SOD may be less competitive for O2- than NO. 

This process may change under high O2 and low NO levels, as found in the context of 

hypercholesterolemia, in which the role of SOD becomes more substantial. Accordingly, the 

reduced expression of Mn-SOD and EC-SOD in JNK2-/- mice on ND did not translate into 

changes of NO, O2-, and ONOO- production. To obtain more insight into the mechanisms of 

preserved NO bioavailability in hypercholesterolemic JNK2-/- mice, we assessed eNOS 

expression in aortic lysates. Western blot analysis revealed higher eNOS expression in 

hypercholesterolemic JNK2-/- compared with WT mice. Conflicting data have been reported 

related to the regulation of eNOS during hypercholesterolemia. Evidence exists of reduced 

transcription and enhanced breakdown of eNOS transcripts on increasing concentrations of 

oxidized lowdensity lipoprotein. Long-term stimulation with oxidized lowdensity lipoprotein 

may also lead to a decrease in the amount of NOS protein through induction of cytokines.32 

Experimental atherosclerosis is associated with an increased eNOS expression and NO 

production, whereas decreased eNOS expression and NO release are found in advanced human 

atherosclerosis.33 To determine whether NO production was also regulated by eNOS activity, we 

determined eNOS phosphorylation. Interestingly, the observed upregulation of eNOS protein in 

JNK2-/- on HCD did not translate into increased eNOS phosphorylation, justifying unchanged 

NO concentrations and endothelium-dependent relaxations in JNK2-/- mice. On the other hand, 

decreased eNOS phosphorylation in WT HCD mice matched reduced NO levels found in this 

group. Because deletion of JNK2 in hypercholesterolemic mice was associated with 

upregulation of SOD, it is likely that this antioxidant defense system contributes to protect 

against hypercholesterolemia-mediated oxidative stress in JNK2-/- mice. Thus, our findings 

suggest that JNK2 is involved in the pathways regulating vascular endothelial ROS production 

and antioxidant defense systems under hypercholesterolemic conditions. Our results are in 

accordance with previous studies that associate JNK activation with increased levels of 

oxidative stress and ROS-mediated cell death.34 In particular, JNK is known to play a major role 

in cardiovascular disease and is activated on mechanical stress, hypertension,11–13 and 

ischemia/reperfusion.35 JNK has also been reported to be activated in advanced atherosclerotic 

plaques in rabbits as well as in humans34 and to activate matrix proteases involved in disease 

progression of abdominal aortic aneurysm in mice and humans.36 Along this line, JNK2 is 

necessary for scavenger receptor A– or CD36-mediated foam cell formation in 

atherogenesis.16,37,38 JNK2 has also been demonstrated to be involved in insulitis of type I 

diabetes mellitus.39 Pharmacological JNK inhibition is a promising strategy given its beneficial 

effects in mouse models of atherogenesis,16 abdominal aneurysm,37 and cerebral ischemia.40 
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JNK inhibition may even be more rewarding considering its critical role in obesity and insulin 

resistance.41 Thus, JNK inhibition could represent a attractive therapeutic target to prevent 

progression of atherosclerosis and metabolic disease. Our findings suggest that JNK may also be 

a promising target for preventing atherosclerosis at its early stage of endothelial dysfunction. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Representative Western blots show phosphorylated JNK (p-JNK) protein expression in 

aortic lysates from WT mice after 14 weeks of ND or HCD. Expression of total JNK was used as a 

loading control. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A, Hypercholesterolemiainduced changes in endotheliumdependent relaxation of aortas 

isolated from WT and JNK2-deficient (JNK2-/-) mice after 14 weeks of ND or HCD. Line graphs 

show concentration-response curves to acetylcholine (Ach) during submaximal contraction to 

norepinephrine (NE) (10-6 mol/L). B, Effect of PEG-SOD on the endothelium-dependent relaxation 

to acetylcholine in all experimental groups. Results are presented as mea±SEM; n=4 to 6 in each 

group. *P<0.05 for WT HCD vs all other groups. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bar graphs show the concentration of NO (A) and superoxide (O2-) (B) produced by a 

single aortic endothelial cell of WT and JNK2-/- mice after 14 weeks of ND or HCD. Peak 

concentrations were measured after stimulation with acetylcholine (10-7 mol/L). Results are 

presented as mean±SEM; n=4 to 6 in each group. *P<0.05 vs WT ND. C, Similar results were 

obtained by fluorescence detection of O2- (red dihydroethidium staining) in freshly isolated aortic 

segments of WT and JNK2-/- mice after ND or HCD, respectively. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A, Bar graphs show peroxynitrite (ONOO-) concentration produced by a single aortic 

endothelial cell of WT and JNK2-/- mice after 14 weeks of ND or HCD. ONOO- was measured 

simultaneously with NO and O2- after stimulation with acetylcholine (10-7 mol/L). B, In aortas 

of WT and JNK2-/- mice after ND or HCD, immunostaining for nitrotyrosine (red staining) was 

detected in both the endothelium and in the media. C, Bar graphs show TBARS levels in aortas 

of WT and JNK2-/- mice after ND or HCD, respectively. Results are presented as mean±SEM; 

n=4 to 6 in each group. *P<0.05 vs WT ND. 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mn-SOD (A) and EC-SOD (B)protein expression from aortas of WT and JNK2-/- 

mice after 14 weeks of ND or HCD. Representative Western blots and densitometric 

quantification are shown. Results are presented as mean±SEM of Mn-SOD and EC-SOD/α-

tubulin expression ratio; n=4 to 6 in each group. *P<0.05 vs ND WT; **P<0.05 vs JNK2-/- 

ND; †P<0.05 vs diet-matched WT. C, In aortas of WT and JNK2-/- mice after ND or HCD, 

immunostaining for Mn-SOD (red staining) was detected in both the endothelium and the 

media. 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. eNOS protein expression and phosphorylation in aortic lysates from WT and JNK2-/- 

mice after 14 weeks of ND or HCD. A, Representative Western blot and densitometric 

quantifications are shown for eNOS expression. Results are presented as mean±SEM of 

eNOS/α-tubulin expression ratio; n=4 to 6 in each group. *P<0.05 for JNK2-/- HCD vs all 

other groups. B, Western blot of eNOS phosphorylation (pooled samples of n=3 mice in each 

group) with α-actin used as a loading control. 
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Inhibition of Protein Kinase Cββββ Prevents Foam Cell Formation by 

Reducing Scavenger Receptor A Expression in Human 

Macrophages 

 

Protein kinase C (PKC) comprises several structurally related serine/threonine kinases classified 

into 3 groups. The conventional or classic PKCs include PKCα, PKCβ1, PKCβ2, and PKCγ. 

These isoforms can be activated by Ca2+ and/or diacylglycerol, as well as by phorbol esters. 

The novel PKCδ, PKCε, and PKCθ also are activated by diacylglycerol and phorbol esters but 

are Ca2+ independent. The atypical PKCs, which include PKCζ and PKCι, are unresponsive to 

Ca2+/diacylglycerol and phorbol esters.1 Particularly interesting is the modulation of PKC 

activity by phosphorylation of serine and threonine amino acid residues within its catalytic and 

regulatory domains.2 Both conventional and novel PKC isoforms can translocate to the 

membranous compartment of the cell to elicit biological actions in the presence of 

diacylglycerol, the de novo synthesis of which is increased by hyperglycemia.3 Indeed, the 

activation of PKC pathway, especially the PKCβ isoform, has been shown extensively to cause 

diabetic vascular dysfunction.4–7 Because nonselective PKC inhibition is associated with lethal 

side effects, isoformspecific inhibitors have been developed. The macrocyclic bis (indolyl) 

maleimides like ruboxistaurin (LY333531), LY379196, LY317615, and LY290181 are 

competitive inhibitors of ATP binding sites within the PKC molecule.8,9 The advantage of 

macrocyclic bis (indolyl) maleimides is their high selectivity for PKCβ compared with other 

isoforms of PKC.10 Treatment of diabetic patients for 3 months with PKC412, a multitarget 

kinase inhibitor that also acts as a nonselective PKC inhibitor, resulted in significant 

gastrointestinal side effects such as nausea, vomiting, and diarrhea, as well as liver toxicity.11 

On the contrary, a multicenter, randomized clinical trial with the selective PKCβ inhibitor 

ruboxistaurin in patients with diabetic retinopathy revealed that its oral administration was well 

tolerated and did not cause any adverse events in patients with diabetes at doses up to 16 mg 

twice daily for 28 days.12 Furthermore, in patients with type 1 and 2 diabetes and minimal 

retinopathy, retinal blood flow was increased by the PKCβ inhibitor in a dose-dependent 

fashion.13 Treatment for >1 year with ruboxistaurin has shown beneficial effects in delaying the 

progression of diabetic nephropathy.14 These studies provided the first demonstration that a 

PKCβ isoform–selective inhibitor can be used for long-term clinical treatment of diabetic 

microangiopathy with minimal side effects.15 However, increasing evidence suggests that 

activation of PKCβ is involved in many mechanisms promoting atherosclerosis.16 Interestingly, 
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phorbol 12-myristate 13-acetate (PMA), a structural analogue of diacylglycerol, which is a 

natural activator of PKC, can trigger transformation of monocytes to macrophages.17 The 

accelerated atherosclerosis18 and chronic activation of PKCβ in vascular tissues of diabetic 

patients, including the retina, heart, aorta, and circulating monocytes, 4,19,20 prompted us to 

hypothesize that, among all PKC isoforms, PKCβ could be involved in foam cell formation. 

The present study was designed to investigate whether selective pharmacological inhibition of 

PKCβ prevents modified LDL uptake and hence foam cell formation. Our findings unmask an 

antiatherosclerotic effect of PKCβ inhibitors, extending their application far beyond diabetic 

vascular complications. 

 

Methods 

Cell Culture 

Peripheral blood mononuclear cells were isolated from healthy control subjects by density 

centrifugation in BD Vacutainer cell preparation tubes with sodium heparin (Becton Dickinson, 

Franklin Lakes, NJ) and further purified by magnetic-activated cell separation sorting with anti–

human CD14 antibody (Miltenyi Biotec, Cologne, Germany) conjugated with magnetic beads. 

After density centrifugation, highly purified monocytes were recovered. Human monocyte 

purity was assessed by flow cytometry (FACSCanto, BD, Heidelberg, Germany) using FITC-

conjugated anti–human CD14 antibody (Miltenyi Biotec). The human monocytic THP-1 cell 

line was obtained from the American Type Culture Collection (Rockville, Md). Monocytes were 

cultured in RPMI 1640 medium containing 25 mmol/L HEPES buffer (supplemented with 10% 

FCS, 1% L-glutamine 200 mmol/L, penicillin 100 U/mL, and streptomycin 100 ug/mL) in 

humidified air, 5% CO2 at 37°C. Freshly isolated human monocytes and THP-1 monocytes 

were differentiated into monocyte-derived macrophages (MDMs) in vitro by treatment with 0.1 

umol/L PMA (Calbiochem, Darmstadt, Germany) overnight in starvation medium, 0.5% FCS 

RPMI 1640. During starvation, the cells were exposed to LY379196 (10-6 mol/L), a 

nonselective inhibitor of both PKCβ isoforms, and CGP53353 (10-6 mol/L), a PKCβ2-selective 

inhibitor, and then incubated for another 24 hours in the presence of 10 ug/mL DiI-labeled 

acetylated low-density lipoprotein (DiI-acLDL) and DiI-labeled oxidized LDL (DiI-oxLDL) 

(Intracel, Frederick, Md). Human MDMs also were pretreated with myristoylated cell-

permeable myr-PKC peptide (10-4 mol/L) based on the pseudosubstrate motif of PKCβ, which 

keeps the enzyme in an inactive state by interacting with the substrate binding site of PKCβ 

catalytic domain.21 In another set of experiments, MDMs were pretreated with the 2 PKCβ 

inhibitors or myr-PKC and stimulated for 24 hours with 100 ng/mL lipopolysaccharide (Sigma, 
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Buchs, Switzerland). Afterward, tumor necrosis factor-α (TNFα) levels were measured in cell 

supernatant by ELISA (R&D Systems, Minneapolis, Minn). To exclude cytotoxicity, a 

colorimetric assay for detection of lactate dehydrogenase in cell supernatant was performed 

according to the manufacturer’s recommendations (Roche, Basel, Switzerland). 

 

siRNA Transfection 

Transfections were performed with INTERFERin (Polyplus Transfection, Basel, Switzerland) 

according to the manufacturer’s instructions in human MDMs (THP-1 cell line). Commercially 

available human PKCβ- and GAPDH- (Santa Cruz, Heidelberg, Germany) specific siRNAs 

were used for transfecting. The MDMs were transfected after 24 hours of seeding. 

INTERFERin transfection reagent (8 uL) was added to 100 uL OptiMEM serum-free medium 

containing 80 nmol/L of each siRNA oligo, incubated for 10 minutes, and added to the 3-cm 

plate containing 2 mL medium. GAPDH siRNA was used as a negative control. The FITC-

labeled (Santa Cruz) control siRNA A was used as a marker for transfection efficiency. Gene 

silencing was measured after 48 hours by Western blotting. The transfected cells were incubated 

for an additional 24 hours in the presence of 10 ug/mL DiI-acLDL (Intracel), and acLDL uptake 

was measured by flow cytometry. Another set of transfected MDMs were used for Western 

blotting. 

 

Real-Time Polymerase Chain Reaction 

Total RNA was extracted from MDMs (THP-1 cell line) with Trizol reagent (Invitrogen, Basel, 

Switzerland) according to the manufacturer’s recommendations. The total cellular RNA was 

converted to cDNA with Moloney murine leukemia virus reverse transcriptase and random 

hexamers (Amersham Bioscience, Otelfingen, Switzerland) in a final volume of 35 uL, using 4 

ug cDNA according to the manufacturer’s recommendations. Real-time polymerase chain 

reaction (PCR) was performed in a MX3000P PCR cycler (Stratagene, La Jolla, Calif). All PCR 

experiments were performed in triplicate using the SYBR Green JumpStart kit provided by 

Sigma. Each reaction (25 uL) contained 2 uL cDNA, 1 pmol of each primer, 0.25 uL internal 

reference dye, and 12.5 uL JumpStart Taq ReadyMix (containing buffer, dNTPs, stabilizers, 

SYBR Green, Taq polymerase, and JumpStart Taq antibody). The following primers were used: 

for scavenger receptor A (SR-A): sense primer, 5’-CCAGGGACATGGGAATGCAA–3’; 

antisense primer, 5’CAGTGGGACCTCGATCTCC–3’; and for human L28: sense primer, 

5’GCATCTGCAATGGATGGT-3’; antisense primer, 5’–TGTTCTTGCGGATCATGTGT-3’. 

The amplification program consisted of 1 cycle at 95°C for 10 minutes, followed by 40 cycles 
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with a denaturing phase at 95°C for 30 seconds, an annealing phase of 1 minute at 60°C, and an 

elongation phase at 72°C for 1 minute. A melting curve analysis was performed after 

amplification to verify the accuracy of the amplicon. For verification of the correct 

amplification, PCR products were analyzed on an ethidium bromide–stained 1% agarose gel. In 

each real-time PCR run for F3 and L28, a calibration curve was included that was generated 

from serial dilutions (2x107, 2x106, 2x105, 2x104, 2x103, and 2x103 copies per reaction for SR-

A; 2x107, 2x106, 2x105, 2x104, 2x103, and 2x103 copies per reaction for L28) of purified 

amplicons for SR-A and L28. 

 

Western Blotting 

Human MDMs, THP-1 cell line, and freshly isolated blood monocytes (when indicated) were 

washed twice with PBS and harvested in the extraction buffer (120 mmol/L sodium chloride, 50 

mmol/L Tris, 20 mmol/L sodium fluoride, 1 mmol/L benzamidine, 1 mmol/L DTT, 1 mmol/L 

EDTA, 6 mmol/L EGTA, 15 mmol/L sodium pyrophosphate, 0.8 ug/mL leupeptin, 30 mmol/L 

p-nitrophenyl phosphate, 0.1 mmol/L phenyl-methane-sulfonyl fluoride, and 1% NP-40) for 

immunoblotting. All cell debris was removed by centrifugation (12 000g) for 10 minutes at 4°C. 

The protein extracts (20 ug) were treated with 5x Laemmli’s SDS-PAGE sample buffer (0.35 

mol/L Tris-Cl, pH 6.8, 15% SDS, 56.5% glycerol, 0.0075% bromophenol blue), followed by 

heating at 99°C for 5 minutes, and then applied to 10% SDS–polyacrylamide gel for 

electrophoresis. The proteins were then transferred onto Immobilon-P filter papers (Millipore 

AG, Bedford, Mass) with a semidry transfer unit (Hoefer Scientific, San Francisco, Calif). The 

membranes were then blocked by use of 5% skim milk in TBS-Tween buffer (0.1% Tween 20, 

pH 7.5) for 1 hour and incubated overnight with anti–human SR-A (1:500, TransGenic, Kobe, 

Japan), anti–human lectin-like oxLDL receptor 1 (LOX-1; 1:4000, R&D Systems, Bad 

Nauheim, Germany), anti–phospho-Thr-642 PKCβ1 (1:1000, Biosource, Nivelles, Belgium), 

anti-PKCβ1 (1:1000, Santa Cruz), and anti-CD14 (1:1000, Dako Cytomation, Baar, 

Switzerland) antibodies in 0.5% BSA PBS. Antigen detection was performed with an enhanced 

chemiluminescence detection system (Amersham Biosciences, Otelfingen, Switzerland). 

 

LDL Uptake Measurement by Flow Cytometry 

After incubation with DiI-acLDL (10 ug/mL) and DiI-oxLDL (10ug/mL), human MDMs both 

freshly isolated and from the THP-1 cell line were subjected to flow cytometry to measure the 

amount of internalized LDL. Adherent and nonadherent cells were harvested by gentle scraping. 
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Cells were then washed twice with PBS and resuspended in 0.2% BSA in PBS. Samples were 

analyzed with the FACScanto II flow cytometer and Flowjo software. 

 

Measurements of Superoxide Anion Production 

Superoxide production in MDMs, both freshly isolated and from the THP-1 cell line, treated 

with LY379196 (10-6 mol/L) and silencing of PKCβ was determined by electron spin resonance 

spectroscopy analysis using the spin trap CM-H (1-hydroxy-3-methoxycarbonyl-2,2,5,5-

tetramethylpyrrolidine, Noxygen, Elzach, Germany) as described previously.22 In brief, MDMs 

were centrifuged (380g for 5 minutes) and resuspended in Krebs-HEPES buffer (pH 7.35) 

containing diethyldithiocarbamate (5 umol/L) and deferoxamine (25 umol/L). Electron spin 

resonance spectra were recorded using a Bruker e-scan electron spin resonance spectrometer 

(Bruker Corp, Faellenden, Switzerland) after the addition of the spin trap CM-H (200 umol/L) 

under stable temperature conditions (37°C; temperature-controlled system). The electron spin 

resonance instrumental settings were as follows: center field, 3495 G; field sweep width, 10.000 

G; microwave frequency, 9.75 GHz; microwave power, 19.91 mW; magnetic field modulation 

frequency, 86.00 kHz; modulation amplitude, 2.60 G; conversion time, 10.24 ms; detector time 

constant, 328 ms; and number of x scans, 10.  

 

Confocal Fluorescent Microscopy 

Human MDMs were washed once with PBS, fixed in 4% paraformaldehyde for 10 minutes, 

washed again with PBS, blocked with 0.1 mol/L glycine for 5 minutes, permeabilized with 

0.2% Triton 100 for 7 minutes, and incubated overnight with anti–human SR-A (Trans-Genic), 

anti-PKCβ1 (Biosource), anti-PKCβ2 (Biosource), or anti-CD68 (Dako Cytomation) antibody 

in 0.2% BSA. Afterward, the cells were washed 3 times with PBS and incubated with secondary 

Alexa Fluor 488–labeled antibody (Molecular Probes, Eugene, Ore) in 0.2% BSA for 1 hour. 

Cells were counterstained with 4’, 6 diamidino-2-phenylindol (DAPI; Vector Laboratories, 

Burlingame, Calif) and analyzed with a Leica confocal laser microscope. 

 

Drugs 

LY379196 was provided by Eli Lilly (Indianapolis, Ind). CGP53353 was kindly provided by Dr 

Doriano Fabbro (Novartis Pharma AG, Basel, Switzerland). Calphostin C, PMA, and myr-PKC 

were purchased from Calbiochem. Lipopolysaccharide was obtained from Sigma. 
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Statistical Analysis 

Results are expressed as mean±SEM, and n indicates the number of experiments. Statistical 

evaluation of the data was performed with Student’s t test for simple comparisons between 2 

values when appropriate. For multiple comparisons, results were analyzed by ANOVA followed 

by Fisher’s exact test. A value of P<0.05 was considered statistically significant. The authors 

had full access to and take full responsibility for the integrity of the data. All authors have read 

and agree to the manuscript as written. 

 

Results 

Role of PKCββββ in Mediating Human MDM Foam Cell Formation 

The differentiation of human primary monocytes and monocytic THP-1 cell line into 

macrophages (MDMs) was induced by PMA (0.1 umol/L). Incubation of human MDMs with 

DiI-acLDL (10 ug/mL) led to binding of acLDL to the plasma membrane and accumulation of 

lipoproteins into the cytoplasm as assessed by fluorescence microscopy (Figure 1A). The 

nonselective inhibitor of both PKCβ isoforms, LY379196 (10-6 mol/L), abolished acLDL uptake 

in MDMs as shown in Figure 1B. To identify the isoform of PKCβinvolved, human MDMs 

were exposed to selective antibodies against PKCβ1 and PKCβ2. PKCβ isoforms were 

localized in the nucleus and in the cytoplasm of MDMs, showing an activated state of the 

enzyme. The PKCβ1 isoform was distributed homogeneously within the cytoplasm and plasma 

membrane (Figure 1C), whereas PKCβ2 was present in the perinuclear patch and plasma 

membrane (Figure 1D). Accordingly, LY379196 showed a dose-dependent decrease in both 

acLDL and oxLDL uptake in MDMs by flow cytometry (Figure 2A and 2B). In contrast, the 

selective inhibitor of PKCβ2, CGP53353, did not exert any significant effect (data not shown). 

 

Effect of PKCββββ Inhibition on SR-A Expression 

To delineate the molecular mechanism by which LY379196 blunted modified LDL uptake, 

MDM gene and protein expression of SR-A was determined. Quiescent cells did not express 

SR-A mRNA; stimulation with PMA (0.1 umol/L) increased SR-A expression (Figure 3). A 

more pronounced upregulation of SR-A expression was achieved by the addition of acLDL (10 

ug/mL) to the medium. SR-A mRNA expression was abolished by treatment with LY379196 

(10-6 mol/L), whereas CGP53353 (10-6 mol/L) did not exert any inhibitory effect on 

PMA/acLDL-induced SR-A expression in human MDMs (Figure 3). In agreement with these 

results, SR-A protein expression was increased after exposure to acLDL as and oxLDL (Figure 
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4A and 4B). Treatment with LY379196, but not with CGP53353, totally abrogated 

PMA/acLDL-induced macrophage SR-A expression (Figure 4A). MDMs exposed to oxLDL in 

the presence of LY379196 (10-6 mol/L) showed similar results (Figure 4B). A myristoylated 

cellpermeable myr-PKC inhibitory peptide was used to confirm the modulatory role of PKCβ 

on SR-A expression. Like LY379196, the inhibitory peptide myr-PKC (10-4 mol/L) significantly 

blunted SR-A protein expression in human MDMs (Figure 4C). In contrast to SR-A, LOX-1 

protein expression did not change after exposure of MDMs to modified LDL. Furthermore, 

LY379196 (10-6 mol/L) did not exert any significant effect on LOX-1 expression (Figure 4D).  

 

 

SR-A Expression 

The transfection of PKCβ siRNA into MDMs resulted in reduced expression of the protein, 

whereas the GAPDH and mock controls did not exert any significant effect (Figure 5A). Using 

flow cytometry, we examined the DI-acLDL uptake by the transfected cells. PKCβ silencing 

reduced the uptake and blunted SR-A protein expression, reproducing the same effect as the 

pharmacological inhibitor LY379196 (Figure 5B and 5C). 

 

Role of Thr-642 Phosphorylation in PKCββββ1-Mediated SR-A Expression  

Western blotting with an antibody against phosphorylated PKCβ1 at a specific amino residue 

revealed that incubation of the cells with PMA/acLDL increased Thr-642 phosphorylation 

within the catalytic domain of this molecule (Figure 6). The inhibitor of both PKCβ isoforms, 

LY379196 (10-6 mol/L), and the inhibitory peptide myr-PKC (10-4 mol/L) blunted 

PMA/acLDL-induced Thr-642 phosphorylation (Figure 6), suggesting that phosphorylation of 

PKCβ1 at Thr-642 may thus represent a selective regulatory mechanism for SR-A upregulation. 

Accordingly, the selective PKCβ2 inhibitor, CGP53353 (10-6 mol/L), did not affect Thr-642 

phosphorylation (Figure 6). 

 

Effect of PKCββββ Inhibition on Macrophage Activation and Functioning 

As shown by confocal microscopy, high levels of SR-A expression in MDMs stimulated with 

acLDL were blunted in the presence of LY379196 (Figure 7A and 7B). However, LY379196 

did not exert any effect on the expression of CD68, a marker of macrophage activation (Figure 

7C and 7D). In addition, human MDMs were exposed to lipopolysaccharide (100 ng/mL) to rule 

out an effect of PKCβ inhibition on macrophage functioning in innate immunity. 
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Lipopolysaccharide elicited degradation of CD14 and secretion of TNFα, crucial steps in the 

activation of innate immunity (Figure 8A and 8B). Interestingly enough, increasing 

concentrations of LY379196 did not inhibit either lipopolysaccharide-induced CD14 

degradation (Figure 8A) or TNFα release (Figure 8B). Treatment with LY379196 did not elicit 

any release of lactate dehydrogenase (data not shown), ruling out that its effects on human 

MDMs were due to cellular toxicity. In agreement with this finding, no apoptotic nuclei by 

DAPI staining were observed (Figure 7). Furthermore, the effect of LY379196 (10-6 mol/L) on 

the ability of macrophages to produce superoxide anion (O2-) was measured. No significant 

changes in O2- production were observed (Figure 8C). In addition, silencing of PKCβ did not 

affect O2- production (data not shown). 

 

Discussion 

 

Accumulation of cholesterol-loaded foam cells in the arterial intima is a hallmark and key event 

of early atherogenesis.23 Circulating monocytes adhere to activated endothelial cells and 

transmigrate into the subintima to become tissue macrophages. On exposure to modified 

lipoproteins such as the oxLDL and acLDL, these macrophages become foam cells.24 Two 

receptors appear to be essential in foam cell formation and receptor-mediated binding/uptake of 

modified lipoproteins: CD36 and SR-A.25 Despite increasing evidence supporting that PKC is 

involved in many mechanisms promoting atherosclerosis,16 only a few studies have examined 

the role of PKC signaling in foam cell formation.20,26 In this study, we demonstrated that 

inhibition of PKCβprevents uptake of modified LDL by reducing human MDM SR-A 

expression. Several lines of evidence support this conclusion. First, fluorescent-activated cell 

sorter analysis revealed that the nonselective inhibitor of PKCβ isoforms blunted modified LDL 

uptake of human MDMs. Second, silencing of PKCβ by siRNA transfection also reduced LDL 

uptake. Third, we observed a selective Thr-642 phosphorylation within the catalytic domain of 

PKCβ1 and an increase in SR-A mRNA and protein expression in human MDMs exposed to 

modified LDL. Fourth, both LY379196 and the inhibitory peptide myr-PKC blunted 

phosphorylation of Thr-642 and upregulation of SR-A. In contrast, CGP53353, the selective 

inhibitor of PKCβ2,7 did not exert any significant effect. Expression and function of 

macrophage SR-A play a crucial role in the pathogenesis of atherosclerosis.27,28 Accordingly, 

SR-A gene– deficient mice bred with atherosclerosis-prone ApoE -/- or LDLrec-/- mice have 

been found to develop less atherosclerosis.29 We recently showed that ApoE-/- mice 

simultaneously lacking c-Jun N-terminal kinase 2 (ApoE-/-/JNK2-/- mice) developed less 
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atherosclerosis than ApoE-/- mice.30 Macrophages lacking c-Jun N-terminal kinase 2 displayed 

markedly decreased phosphorylation of SR-A and hence suppressed foam cell formation.30 

Thus, upstream signaling molecules that regulate the expression and function of SR-A may 

represent potential targets for therapeutic interventions.24 The present findings clearly indicate 

that SR-A expression in human MDMs is regulated by PKCβ. In contrast to SR-A, LOX-1 

expression did not change after stimulation of MDMs with modified LDL. Furthermore, 

LY379196 did not exert any significant effect on LOX-1. Because SR-A expression was 

enhanced on modified LDL stimulation and not LOX-1, we conclude that SR-A might be the 

primary receptor for modified LDL uptake. Several studies have strongly implicated activation 

of PKCβ in the pathogenesis of the vascular complications of diabetes.31 The synthesis of 

isoform-specific inhibitors for PKCβ has provided not only important insights into diabetic 

cardiovascular disease but also effective drugs against diabetic microvascular 

complications.15,32,33 Glucose-induced activation of PKCβ may lead to endothelial dysfunction 

by causing activation of vascular NADPH oxidase, endothelial nitric oxide synthase uncoupling, 

and reactive oxygen species production.6,34 Furthermore, high glucose enhances human 

macrophage LOX-1 expression via PKCβ activation.20 Treatment with a PKCβ inhibitor 

prevents impaired endotheliumdependent vasodilation caused by hyperglycemia.5 We 

demonstrated that selective inhibition of PKCβ2 inhibits glucose-induced vascular cellular 

adhesion molecule-1 expression in human endothelial cells.7 Interestingly enough, our data 

unmask an antiatherosclerotic effect of PKCβ inhibitors even in the nondiabetic condition of 

hypercholesterolemia. Specific siRNA-mediated knockdown of PKCβ further supports our 

conclusion. Indeed, on silencing of PKCβ, LDL uptake was blunted, SR-A expression was 

reduced, and hence foam cell formation was prevented. The molecular link between the PKCβ 

signaling pathway, SR-A upregulation, and uptake of modified LDL might involve Thr-642 

phosphorylation within the catalytic domain of PKCβ1. Indeed, inhibition of PKCβ by either 

LY379196 or the inhibitory peptide myr-PKC blunting PMA/acLDLinduced Thr-642 

phosphorylation abolished upregulation of SR-A and LDL uptake of human MDMs. In contrast, 

the selective inhibitor of PKCβ2, CGP53353, did not affect any of these events. According to 

our results, phosphorylation of PKCβ1 at Thr-642 represents a selective regulatory mechanism 

for SR-A upregulation and foam cell formation. Of particular interest is the fact that in our study 

LY379196, as a drug targeting macrophages, prevented only foam cell formation without 

affecting macrophage host defense activity. Indeed, LY379196 blunted modified LDL uptake 

but did not affect the expression of CD68, a marker of macrophage activation.35 We also 
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demonstrated that LY379196 did not inhibit lipopolysaccharide-induced CD14 degradation or 

TNFα release in human MDMs. Moreover, PKCβ knockdown or inhibition did not affect 

superoxide anion production. These findings rule out any effect of PKCβinhibition on 

macrophage functioning in innate immunity. In agreement with our results, PKCβ-deficient 

mice have not been reported to present any impairment in macrophage activity.36 Although 

these mice show a reduced peritoneal population of B-1 lymphocytes, the absolute number of 

splenic B cells is similar to wild-type animals. Furthermore, the thymuses of PKCβ-deficient 

mice were of normal size and cellularity and contained CD4+CD8+ double-positive cells and 

CD4+ or CD8+ single-positive cells at normal ratios.36 Earlier studies of the role of vascular 

PKCβ activation in diabetes were focused primarily on microvascular dysfunction. 37,38 Indeed, 

PKCβ inhibitors are currently being tested in clinical trials with microvascular end points.12–14 

 

Conclusions 

The results of our study suggest a role for PKCβ in atherogenesis even in the nondiabetic 

condition and anticipate the application of PKCβ inhibitors as putative antiatherosclerotic drugs. 

However, before deciding whether PKCβ inhibitors deserve to be tested in clinical trials of 

atherosclerosis, animal models will help evolve our current suggestive in vitro evidence 

concerning a proatherosclerotic role of PKCβ signaling. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A, Fluorescent confocal microscopy of human MDMs after incubation with DiI-acLDL. 

Red particles in the cytoplasm represent internalized DiI-acLDL. B, LY379196 (5x10-6 mol/L) 

abolished modified LDL uptake. In human MDMs, green staining shows intracellular distribution 

of PKCβ1 (C) and PKCβ2 (D). Nuclei stained blue with DAPI. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fluorescent-activated cell sorter analysis of human MDMs in the presence or absence of 

LY379196 after 24 hours of incubation with DiI-acLDL (A) and DiIoxLDL (B). LY379196 (5x10-6 

mol/L) blunted modified LDL uptake (blue). CGP53353 did not show any significant effect (data 

not shown). LY379196 exerted a dose-dependent inhibition of acLDL (A) and oxLDL (B) uptake. 

Results are presented as mean±SEM; n=4 in each group. *P<0.05 vs PMA plus acLDL or oxLDL. 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Expression of SR-A in PMA-induced human MDMs and after incubation with acLDL in 

the presence and absence of LY379196 (10-6 mol/L) or CGP53353 (10-6 mol/L). SR-A mRNA 

expression assessed by real-time PCR is normalized to L28 mRNA. Results are presented as 

mean±SEM; n=3 in each group. *P<0.05 vs control; **P<0.05 vs PMA alone; †P<0.05 vs PMA 

plus acLDL. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Representative Western blot and densitometric quantification of SR-A protein expression 

in PMA-induced human MDMs and after incubation with acLDL (A) and oxLDL (B) in the 

presence and absence of LY379196 (10-6 mol/L) or CGP53353 (10-6 mol/L). C, The inhibitory 

effect of myristoylated cell-permeable peptide, myr-PKC, on SR-A protein expression in PMA-

induced human MDMs after incubation with acLDL. D, LOX-1 protein expression in PMA-induced 

human MDMs and after incubation with acLDL and oxLDL in the presence and absence of 

LY379196. Results are presented as mean±SEM; n=4 in each group. *P<0.05 vs control; **P<0.05 

vs PMA alone; †P<0.05 vs PMA plus acLDL or oxLDL. 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Representative Western blot and densitometric quantification of PKCβ(A) and SR-A (C) 

protein expression after transfection of selective PKCβ siRNA into MDMs. B, Fluorescent-

activated cell sorter analysis of transfected human MDMs after 24 hours of incubation with DiI-

acLDL. On silencing of PKCβ, the uptake of modified LDL and SR-A expression is reduced. 

GAPDH and mock served as controls. Results are presented as mean±SEM; n=4 in each group. 

*P<0.05 vs mock and GAPDH. 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Representative Western blot and densitometric quantification of PKCβ1 phosphorylation 

at the Thr-642 residue in PMA-induced human MDMs after incubation with acLDL in the presence 

and absence of LY379196 (10-6 mol/L), CGP53353 (10-6 mol/L), or myr-PKC (10-4 mol/L). Results 

are presented as mean±SEM; n=4 in each group. *P<0.05 vs control; **P<0.05 vs PMA alone; 

†P<0.05 vs PMA plus acLDL. 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Treatment with LY379196 (10-6 mol/L) affects SR-A expression but not activation of 

human MDMs stimulated with acLDL. SR-A (A, B) and CD68, a marker of macrophage activation 

(C, D), are shown by fluorescent confocal microscopy. The nuclei stained with DAPI are blue; SR-

A and CD68 stainings are both green. 
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. LY379196 did not inhibit lipopolysaccharide-induced CD14 degradation, TNFα release, 

or O2-) production in human MDMs. Representative Western blot and densitometric quantification 

of CD14 expression (A) and TNFα levels in supernatant (B) after 24 hours of stimulation with 

lipopolysaccharide (100 ng/mL). O2- production after incubation with acLDL and oxLDL (10 

ug/mL; C). Results are presented as mean±SEM; n=3 to 5 in each group. 
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Pulsatile Stretch Induces Release of Angiotensin II and Oxidative 

Stress in Human Endothelial Cells Effects of ACE Inhibition and 

AT 1Receptor Antagonism 

 

Under homeostatic conditions, endothelial-derived nitric oxide (NO) mantains vascular structure 

and function, regulating vasomotor tone, blood fluidity and vascular cell growth. Impaired NO 

bioavailability, resulting in endothelial dysfunction, intertwines with other conditions, such as 

chronic inflammation, increased oxidative stress and impaired blood flow to determine 

atherosclerotic vascular disease (1). The activity of endothelial NO depends on the balance 

between synthesis of NO and its breakdown by superoxide anion (O2
•-). Increased production of 

reactive oxygen species (ROS) is regarded as major determinant of reduced level of NO (1). 

A whole body of evidence shows a great impact of the interplay between altered mechanical 

forces and activation of renin-angiotensin system (RAS) to determine endothelial dysfunction in 

the context of cardiovascular risk factors, such as hypertension, as well as overt atherosclerotic 

disease (2,3). Moreover, nowadays it is becoming clear that induction of oxidative stress is the 

unifying mechanism that links both mechanical stress and RAS activation to endothelial 

dysfunction (2,3). In pathological conditions, angiotensin II (Ang II), via AT1 receptor-activated 

signaling, appears to be the most important factor influencing structural and functional changes 

leading to inflammation, vasoconstriction, vascular remodeling and prothrombotic state. 

Different angiotensin II-signaling pathways are involved, but growing evidence indicates a 

prominent role for the NADPH oxidase-driven generation of ROS, namely O2
•- (4,5). Moreover 

Ang II via NADPH oxidase-derived O2
•- and hydrogen peroxide (H2O2) damaging effect, can 

lead to uncoupling of eNOS resulting in reduced NO production and NOS-dependent O2
•- 

formation (6). Accordingly, some of the beneficial long-term effects of RAS blockade with 

angiotensin I-converting enzyme (ACE) inhibitors (7) or angiotensin type 1 (AT1) receptor 

antagonists (8) have been correlated to the favourable influence exerted on NO/O2
•- balance (9-12). 

However, little is known about the specific link between RAS and the regulation of NO/O2
•- 

balance in endothelial cells exposed to mechanical stress.  

Plenty of data provided over recent years indicate that mechanical forces due to blood pressure 

and blood flow—namely, stretch and shear stress—can become crucial players of pathological 

structural and functional modifications of endothelial cells when disturbed flow profiles occur 

and persist 13. Cyclic stretch applied to endothelial cells and vascular smooth muscle cells 

induces oxidative stress with and H2O2 production 14,15; the influence on NADPH oxidase 
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activity exerted by stretch is considered to be of crucial importance 13,16. Interestingly, pulsatile 

stretch enhanced the release of angiotensin II by cardiac myocytes 17. Although we previously 

reported that in human aortic endothelial cells (HAEC), pulsatile stretch increases production as 

well as eNOS mRNA and protein expression 14,15, the contribution of cyclic strain to the 

regulation of balance in human endothelial cells has not been fully defined. We investigate the 

role of RAS blockade, comparing the effect of ACE inhibitor quinaprilat and AT1-receptor 

antagonist losartan on production and NO bioavailability in HAEC exposed to pulsatile stretch. 

 

Materials and Methods 

Cell Culture 

Human aortic endothelial cells were obtained from Clonetics (San Diego, Ca) and grown in 

gelatin-coated flasks in optimized endothelial growth medium (Clonetics) supplemented with 

10% fetal calf serum (Hyclone). Cells were detached by exposure to trypsin/EDTA for about 

120 sec in Hepes buffer saline, reseeded in type I collagen–coated plates for stretch experiments 

(Flex I). Cells were grown to confluency in humidified air (5% CO2 at 37°C). Cells between 

passages 2 and 6 were used for experiments.  

 

Application of Pulsatile Stretch on Cultured Cells 

Pulsatile stretch was applied to HAEC as previously described 20,21. Briefly, HAEC were seeded 

onto type I collagen-coated Flex I (Flexcell International Corp) culture plates at an initial 

density of 105 cells/mL. Flex I culture plates were placed on a computerized Flexcell Strain Unit 

gasketed base plate in the incubator. The membranes were subjected to a deformation with -20 

kPa of vacuum, respectively, at a frequency of 50 cycles/min. A vacuum of -20 kPa causes a 

deformation pattern of the membrane ranging from 0% at the center to 24% at the periphery 

(10% average strain). In parallel, other Flex I culture plates not subjected to stretch served as 

controls. The cell viability with and without stretch, as assessed with trypan blue exclusion test, 

was >90% throughout the experiments. Previous studies from our laboratory demonstrated a 

time-dependent increase of O2
•- production up to 60 min from HAEC exposed to pulsatile 

stretch (10% average elongation at a frequency of 50 cycles/min) 22. Indeed, after exposure of 

endothelial cells to different concentration of angiotensin II, O2
•- production reaches a maximal 

level after 1 h stimulation 26. Accordingly, a 60-minute interval was choosen for all our 

experiments. 
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Measurement of Angiotensin II  

Aliquots of culture medium were collected from stretch and control culture plates. All samples 

were purified with Sep-Pak column (Sep-Pak Light, Waters) as described 27. Levels of 

angiotensin II were determined by radioimmunoassay (RIA), using a specific antibody, 

according to the instruction of the manufacturer (Peninsula). 

 

NO Measurements 

Direct in situ measurements of NO were carried out as described 28. Immediately before NO 

measurements, the active tip of the L-shaped porphyrinic NO microsensor was placed directly 

on the surface of the endothelial cell monolayer. For maximal stimulation of eNOS calcium 

ionophore A23187 was injected into the cell culture dish to yield a final concentration of 1 

umol/L in all our experiments, as previously established 28. 

 

Measurement of O2
•- Production 

O2
•- production was measured as the SOD-inhibitable reduction of cytochrome c 22. Briefly, 

HAECs were preincubated in DMEM without phenol red for 30 minutes at 37°C, and then 

cytochrome c (final concentration, 1 mg/mL) with or without SOD (final concentration, 500 

U/mL) was added in a CO2 incubator. After 60 min, the medium was removed from the cells, 

and the absorbance was read at 550 nm against a distilled water blank. Reduction of cytochrome 

c in the presence of SOD was subtracted from the values without SOD. The portion of O2
•- 

specific reduction of cytochrome c- was between 20% and 35% according to the experiments. 

The optical density difference between comparable wells with or without SOD was converted to 

equivalent O2
•- production by use of the molar extinction coefficient for cytochrome c [21.0x103 

(mol/L)-1 ·cm-1] 29.  

 

Expression of eNOS by Western blot 

eNOS protein was analyzed by Western blotting using an anti-human endothelial NOS antibody 

(Transduction Laboratory). The antibody was used at 250x dilution. After the stretch 

experiments, HAECs were detached by trypsin-EDTA, and the cell number was determined by 

Coulter counter (Coulter Electronics). Then, 100 µL of lysis solution containing 10% glycerol, 

2.3% SDS, Tris-HCl, pH 6.8, 62.5 mmol/L, 0.01% bromophenol blue, and 5% mercaptoethanol 

was added to 105 cells. The lysate was then heated at 95°C to 100°C at 5 minutes. Next, 30 µL 

of cell lysates containing 3.3x104 cells was subjected to 7.5% single percentages gel (Ready 

Gel, BIO RAD). The separated proteins were electrophoretically transferred to Immunobilon-P 
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membranes and then incubated with anti-human NOS III antibody for 1 hour as previously 

described 30. The membranes were finally visualized by the ECL kit (Amersham Life Sciences). 

Densitometric measurements were performed by Fotodyne Visionary documentation system 

(Fotodyne, Bio Cell Consulting Research). 

 

Statistical Analysis 

Results are expressed as mean ± SEM and n indicates number of experiments. Statistical 

evaluation of the data was performed with Student’s t tests for simple comparison between two 

values when appropriate. For multiple comparison, results were analyzed by ANOVA followed 

by Fisher’s test. P≤0.05 was considered statistically significant. 

 

Results 

Pulsatile Stretch and Release of Angiotensin II 

Levels of angiotensin II were determined in culture medium collected from the stretch plates 

after 60 min. Interestingly, pulsatile stretch increased angiotensin II immunoreactivity (Ang II-

ir) (Figure 1). The mean concentrations of the Ang II-ir in the media were 0.29± 0.01 and 

0.42±0.03 ng/mL for control and stretched cells, respectively (n=6; P<0.05). Accordingly, 

stretch-induced increase of Ang II-ir was blunted by ACE inhibitor quinaprilat, whereas AT1-

receptor antagonist losartan did not exert any significant effect (Figure 1).  

 

RAS Blockade and Stretch-Induced Superoxide Production 

To clarify the relationship between RAS and stretch-induced O2
•- production, we studied 

whether inhibition of angiotensin II system at different levels may modulate stretch-induced O2
•- 

production. We measured O2
•- in cells exposed to pulsatile stretch with and without quinaprilat 

or losartan (10-8-10-6 mol/L). Stretch-induced production of O2
•- was blunted by both drugs 

(Figure 2). 

 

RAS Blockade and Stretch-Induced Modulation of NO Pathway 

Because eNOS can be influenced by mechanical forces, we determined the effect of pulsatile 

stretch on eNOS protein expression in the absence and presence of quinaprilat or losartan. 

Densitometric analysis showed a significant upregulation of eNOS in cells exposed to 

mechanical stress (Figure 3). Both drugs abolished stretch-induced upregulation of eNOS 

expression (Figure 3). Neither quinaprilat nor losartan affected eNOS expression in non-

stretched control cells (data not shown). 
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Despite pulsatile stretch-induced increase of eNOS protein levels, NO release after stimulation 

with calcium ionophore A23187 (10 umol/L) was reduced in endothelial cells exposed to 

mechanical stress (n= 10; P<0.05; Figure 4). As expected, NG-nitro-L-arginine methyl ester (L-

NAME; 10-5mol/L) abolished A23187-induced NO production (n=8; P<0.05; Figure 4).  

Interestingly, quinaprilat and losartan blunted the inhibitory effect of pulsatile stretch on NO 

release in a concentration-dependent manner (n=10; P<0.05; Figure 4). However, an higher 

concentration of losartan was necessary to inhibit stretch-induced eNOS upregulation and 

restore NO production (Figure 3 and 4). Both quinaprilat and losartan did not affect NO 

production in non-stretched control cells (data not shown). These findings indicate a close link 

between stretch-induced increase in O2
•- production and upregulation of eNOS.  

 

RAS Blockade and NO/O2
•- Balance 

Furthermore, we characterized the role of bradykinin (B2) and angiotensin type 2 (AT2) receptor 

activation on NO/O2
- balance in this context. As expected, the protective role of quinaprilat on 

NO release was abolished by the B2-receptor antagonist Hoe140 (Figure 5). Interestingly 

enough, the preservation of NO release exerted by losartan was blunted not only by the AT2-

receptor antagonist (PD123319) but also by Hoe 140, suggesting that kinins, acting through AT2 

receptors, also contribute to the vascular protective effects of AT1-receptor antagonists. The 

inhibitory effect of quinaprilat and losartan on stretch-induced O2
•- production was blunted by 

Hoe140 and PD123319 in a similar fashion (data not shown). However, PD 123319 and Hoe 

140 alone did not affect NO release in cells exposed to pulsatile stretch (Figure 5).  

 

Discussion 

The present study demonstrates for the first time that mechanical stretch of human endothelial 

cells triggers the autocrine release of Ang II, which in turn unfavourably alters the balance of 

NO and O2
•-. The novelty of this work is the simultaneous measurement of O2

•- and NO, with 

the evidence that in cells exposed to pulsatile stretch, in spite of eNOS upregulation, NO release 

was significantly reduced by increased O2
- production. Under these conditions we evaluated the 

effects of the ACE inhibitor quinaprilat and AT1-receptor antagonist losartan.  

Both quinaprilat and losartan abolished stretch-induced O2
•- production and upregulation of 

eNOS. Accordingly, quinaprilat and losartan blunted the inhibitory effect of pulsatile stretch on 

NO release. These findings indicate a close relationship between stretch-induced increase in O2
•- 

production, via angiotensin II, and upregulation of eNOS, the latter may represent a 
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compensatory mechanism attempting to counterbalance the angiotensin II-induced depletion of 

endothelial NO, through enhanced oxidative stress 26,31,32.  

The restoring effects of quinaprilat and losartan on the balance of NO and O2
•- were abolished 

by B2- or AT2-receptor antagonists, respectively. In particular, the effect of losartan on NO 

release was blunted not only by PD 123319 but also by the B2-receptor antagonist Hoe 140, 

suggesting that kinins, via AT2 receptors, may participate in the vascular protective effect of 

AT1-receptor antagonists (Figure 6). 

Although it is well established that mechanical forces cause a variety of effects on the structure 

and function of cells, little is known about how mechanical stimuli regulate cell function and 

gene expression 22,23. This is particularly relevant for endothelial cells directly exposed to shear 

stress and pulsatility for their strategic anatomical position between the circulating blood and 

vascular smooth muscle 33. Pulsatile stretch is involved in the development of atherosclerosis 

that primarily affects the aorta and its branches where this force is prominent. Indeed, cyclic 

strain increasing the production of endothelium-derived vasoactive substances, including 

endothelin-1 and growth factors 14-17, leads to smooth muscle cell proliferation 19,20. In vitro 

models, replicating the major geometric features of blood vessels, have shown a 5-6% wall 

excursion at peak systole under control conditions, which can increase to 10% under 

pathological conditions such as hypertension 34.  

Previous studies from our laboratory demonstrated that pulsatile stretch increases O2
•- 

production via NADPH oxidase and upregulates eNOS expression as a scavenger mechanism 

for O2
•- 22,23. In the present study, we report that mechanical stretch induces the release of Ang II 

in human endothelial cells as shown in cardiac myocytes 25. Such an activation of local RAS, 

tipping the balance of NO and O2
•- in favour of the latter, exerts oxidative and nitrosative stress, 

contributing to endothelial dysfunction, the initial step in developing of atherosclerosis 35.  

The inhibition of RAS either with quinaprilat or losartan, restores NO bioavailability by 

reducing O2
•- production and stimulating bradykinin-mediated NO release. The reduction of 

stretch-induced production of O2
• below control levels elicited by micromolar concentrations of 

both quinaprilat and losartan can be attributed to the blunting of angiotensin II-sensitive, 

NAD(P)H-dependent O2
•-producing enzymes. However, recent studies indicate that both 

treatment strategies not only inhibit AT1-dependent activation of NAD(P)H oxidase but also 

increase antioxidant activity of superoxide dismutase 36-38. 

Our present findings may provide the molecular basis to explain the improvement of endothelial 

function observed with these drugs. Quinaprilat is an ACE inhibitor with high affinity to tissue 

ACE, whose vasodilator effects in the human forearm arterial circulation have been shown to be 
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largely mediated by NO 39,40. Furthermore, it has also been reported that quinaprilat increases 

flow-mediated dilation of the brachial artery in patients with essential hypertension 41. In 

addition the Trial on Reversing Endothelial Dysfunction (TREND) has shown that quinaprilat 

improves coronary endothelium-dependent vasomotor function in patients with coronary 

disease42.  

Most vascular effects of ACE inhibitors have been attributed to the reduced generation of 

angiotensin II 43. However, an inhibition of the breakdown of bradykinin by kininase II, which 

is synonymous with ACE, plays a role in the beneficial response to ACE inhibitors, since 

bradykinin stimulates the endothelial production of NO 44,45. This raised the possibility that 

ACE inhibition might have a superior effect on endothelial function compared with AT1 

receptor antagonists. However, recent experimental data seem to weaken this hypotesis showing 

that AT1 receptor antagonism may reverse endothelial dysfunction in humans not only through 

improvement of NO availability by reducing AT1-induced oxidative stress, but also via an AT2-

mediated increase in NO synthesis 46-48. Losartan and its metabolites have been recently 

demonstrated to possess AT1 receptor-independent actions 49. The AT2  receptor exerts a tonic 

negative influence on ACE activity, suggesting that AT1 receptors blockers may reduce ACE 

activity by stimulation of AT2  receptors 48. Our findings indicate that, in the presence of 

losartan, pulsatile stretch-induced autocrine release of Ang II stimulates AT2 receptors and 

activation of the bradykinin/NO cascade. Indeed, the restoring effects of AT1 receptor blockade 

on NO release are abolished by B2-receptor antagonist Hoe 140. 

According to the dose-dependent responses observed in our experimental setting, the restoring 

effect on NO release was obtained by using a higher concentration of losartan as compared with 

quinaprilat. The pro-drug nature of this compound, with marked lower AT1 receptor affinity 

compared to its active metabolite (E3174) may likely explain such a difference 50.  

In conclusion, the modulation of RAS either by ACE inibition or angiotensin II receptor 

antagonism affects the crucial balance between NO and O2
•-. Quinaprilat improves NO 

bioavailability by blunting stretch-induced, Ang II-dependent O2
•-production as well as 

bradykinin degradation. Losartan exerts comparable effects involving AT2 receptors with 

subsequent B2 receptors activation. 

These results define the link between mechanical forces, Ang II and redox state in endothelial 

cells, but also provide the molecular basis to understand the vascular protective effects of ACE 

inhibition and AT1-receptor antagonism. 
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Figures 

 

 

Figure 1. Stretch-induced increase in angiotensin II in human aortic endothelial cells. Culture 

media were obtained after 60 min of pulsatile stretch or at the same time point from nonstretched 

endothelial cells (control). Data are mean±SEM; (n=6); *p<0.05 vs control. 
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Figure 2. Bar graphs showing stretch-induced production of O2
- in human aortic endothelial 

cells in the absence and in the presence of quinaprilat or losartan, respectively. Data 

are mean ± SE; (n= 6). *P<0.05 vs control. 
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Figure 3. Effect of pulsatile stretch on eNOS protein expression in human aortic endothelial 

cells in the absence and in the presence of quinaprilat or losartan, respectively. 

HAEC were stimulated by pulsatile stretch (10% average, 50 cycles/min) up to 1 h. 

On the top representative Western blot result. On the bottom densitometric 

quantification of eNOS in protein homogenates, from the left each lane means 

control (static), control with pulsatile stretch and stretch in the presence of 

quinaprilat (10-7 and 10-6) and losartan (10-7 and 10-6), respectively . Data are mean ± 

SEM (n=4-6). *P<0.05 vs control cells, **P<0.05 vs stretch alone. 
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Figure 4. Bar graphs showing NO release following stimulation with calcium ionophore 

A23187 (1 µmol/L) in control nonstretched, L-NAME-treated, and endothelial cells 

exposed to pulsatile stretch in the absence and in the presence of quinaprilat or 

losartan, respectively. Data are mean ± SEM (n=8). *P<0.05 vs control, **P<0.05 vs 

stretch alone. 
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Figure 5. Bar graphs showing the effects of B2–receptor antagonist (Hoe140;  

10-7mol/L) and AT2-receptor antagonist (PD123319; 10-7mol/L) on the restoration of 

NO release in the absence and in the presence of quinaprilat or losartan (10-6mol/L) 

in HAEC exposed to pulsatile stretch. Data are mean ± SEM (n=8). *P<0.05 vs 

control, **P<0.05 vs stretch alone. 
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Figure 6. Schematic representation of stretch-induced autocrine release of angiotensin II which 

in turn unfavourably alters the balance of NO and O2
-. Please note that activation of 

bradykinin/NO cascade is the common link to understand the protective effects of 

ACE inhibition and AT1 receptor antagonism. AT1 and AT2, angiotensin type 1 and 

type 2 receptor subtypes; B2, bradykinin receptor; NADPH ox, NADPH oxidase; 

eNOS, endothelial nitric oxide synthase; cGMP, cyclic guanosine monophosphate. 
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PART 2. INSIGHTS INTO THE PATHOPHYSIOLOGY OF 

CORONARY MICROCIRCULATION IN CARDIAC 

ALLOGRAFT VASCULOPATHY 
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Determinants of Coronary Flow Reserve in Heart Transplantation: 

A Study Performed With Contrast-enhanced Echocardiography 

 

Cardiac allograft vasculopathy (CAV) is the main limiting factor of long-term survival in heart 

transplantation (HT).1 In CAV, both epicardial coronary vessels and the microvasculature may 

be affected.2 Coronary flow reserve (CFR) measurements may provide functional assessment of 

the microvasculature in patients with CAV.3,4 We have recently applied a new non-invasive 

technique based on contrast-enhanced transthoracic echocardiography (CE-TTE) for assessing 

CFR in the left anterior coronary descending artery (LAD) in HT patients. 3,4 CFR by CE-TTE 

is a simple, readily available, objective, non-invasive diagnostic tool for the detection of early 

and severe CAV.3,4 It has been shown in several studies that CFR is reduced in patients with 

angiographically advanced vasculopathy.5,6 Intravascular ultrasound has been used to study the 

influence of angiographically silent intimal thickening on CFR.5 Furthermore, the prognostic 

impact of CFR has been demonstrated.4 However, few reports have focused on the determinants 

of CFR in HT.7 Therefore, the aim of the present study was to identify clinical and functional 

determinants of CFR in HT patients and, above all, in those without coronary occlusive disease. 

 

METHODS 

Study Patients 

We studied 119 consecutive HT recipients (97 men, 22 women; median age 55 years at HT, 

range 9 to 73 years). Median post-HT follow-up at study entry was 8.5 years (range 13 months 

to 19 years). Our immunosuppression protocol consisted of cyclosporine, azathioprine and 

steroids (triple therapy), as previously detailed.2,8 Cytomegalovirus (CMV) serostatus (IgG-

positive or IgG-negative) of all donors and recipients was analyzed before HT. The study was 

approved by the institutional ethics committee, and all patients gave written, informed consent. 

 

Acute Rejection Scores 

Acute graft rejection was monitored by endomyocardial biopsy following established 

protocols.8 A rejection score was assigned based on a modification of the International Society 

for Heart and Lung Transplantation (ISHLT) grading system.2 The following scores were 

calculated for each patient: rejection score in total follow-up (TRS); rejection score in the first 

year (RS 1yr); rejection score including only severe grades (≥3A) (sev TRS); and first-year 
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rejection score including only severe grades (sev RS 1yr). All scores were normalized for the 

number of biopsies taken in each patient. 

 

Cumulative Immunosuppressive Doses  

Cumulative doses (milligrams per killigram) of cyclosporine, azathioprine, prednisone and 

methylprednisolone at 3, 6 and 12 months, and cumulative total steroid load in the first year 

were calculated. Cumulative prednisone load for each patient in the first year (PDN 1yr) was 

calculated (in milligrams per kilogram), as was cumulative methylprednisolone (MethPD 1yr) 

and total steroid load (TotCORT 1yr = PDN 1yr +MethPD 1yr), following conversion of each 

methylprednisolone dose to an equivalent prednisone dose (4 mg of methylprednisolone = 5 mg 

of prednisone).2  

 

CMV pp65 Antigen Detection 

The CMV pp65 antigenemia immunofluorescence assay was used for the qualitative detection 

and identification of the lower matrix protein pp65 of CMV in isolated peripheral blood 

leukocytes. The immediate-early CMV antigen pp65 was investigated in all patients at 1, 6 and 

12 months post-HT. Antigen detection was performed at any given time if CMV infection was 

clinically suspected. 

 

Echocardiography 

An echocardiogram was obtained from all patients within 24 hours of coronary angiography. M-

mode measurements of the end-diastolic thickness of the interventricular septum and left 

ventricular posterior wall were taken from the parasternal long-axis view. Left ventricular 

hypertrophy was defined as diastolic septal or posterior wall thickness >11 mm. Measurements 

were performed independently by two observers blinded to clinical history and experimental 

data. 

 

Angiography/Diagnosis of CAV 

Cardiac catheterization was performed within 24 hours of CFR evaluation by CE-TTE in all 119 

patients. Angiograms were reviewed by a cardiologist who was unaware of clinical and 

echocardiographic findings. Data were analyzed using the following qualitative grading system: 

Grade I, normal angiogram; Grade II, luminal irregularities, diameter reduction <30%; Grade 

III, diameter reduction <50%; Grade IV, diameter reduction ≤50% and/or diffuse narrowing of 

small vessels.9 CAV was defined as presence of angiographic changes of Grade II or greater, 
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and significant CAV as Grade IV changes. Stenosis was considered critical if it reached ≥70%. 

In an attempt to better quantify the extent of CAV, the following indexes were computed and 

used as markers of CAV diffusion/severity: total index of stenosis (SDI), and total index of 

stenosis normalized for the number of diseased segments (SDI/nS), as previously described.2 

 

Coronary Flow Velocity Reserve Assessment 

We used CE-TTE for coronary flow evaluation before and after adenosine infusion This method 

has been described in detail in our previous reports.3,4,10 Briefly, a modified apical 2-chamber 

view was applied to carefully search for color-coded blood flow as a guide to obtain a pulsed-

wave Doppler diastolic flow recording in the distal portion of the LAD, at baseline and after 

intravenous infusion of adenosine (140 ug/kg/min, for 5 minutes). In most patients, an optimal 

Doppler signal can be detected even in the case of a sub-optimal color imaging, allowing 

reliable coronary flow definition. In rare cases, if the Doppler signal is visualized with poor 

definition, the same procedure can be attempted using Levovist (Schering AG, Berlin, 

Germany) as a Doppler signal enhancer, infused at a concentration of 300 mg/ml, at a rate of 0.5 

to 1 ml/min. Cardiac drugs were not interrupted before testing, although all methylxanthine-

containing substances or medications were withheld 48 hours before the study. CFR was 

determined as the ratio of maximum diastolic hyperemic peak flow velocity to diastolic resting 

flow velocity, based on studies by an experienced echocardiographer (F.T.) who was blinded to 

the angiographic and clinical data (Figure 1). Our previous studies demonstrated a high 

reproducibility for measurement of CFR by TTE.3,4,10 A cutoff point of >2.5 was selected to 

define a normal CFR in the present study. This threshold was based on the results of studies that 

demonstrated a prognostic impact of this value both in HT recipients as well as in patients 

having undergone successful coronary angioplasty. 11,12 

 

Statistical Methods 

Continuous variables are expressed as mean ± standard deviation. Student’s t-test for 

independent samples, chi-square test and Fisher’s exact test were used as appropriate. When 

comparing several groups, 1-way analysis of variance (ANOVA) was followed by the Student–

Newman–Keuls post hoc test for statistical significance. Pearson’s test was used for bivariate 

correlations of CFR with clinical conditions. Multiple linear regression analysis was performed 

between CFR and significant or marginally significant (p <0.1) risk factors or clinical 

conditions upon univariate analysis. Intra- and inter-observer measurement variability and 

reproducibility of CFR were evaluated by linear regression analysis. This was expressed by the 
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correlation coefficient (r) values and standard error of estimates (SEE), and by means of the 

intraclass correlation coefficients (ICCs), with reproducibility being considered satisfactory if 

the ICC was between 0.81 and 1.0. Data were analyzed with SPSS software, version 13.0 

(SPSS, Inc., Chicago, IL). Statistical significance was assumed if the null hypothesis could be 

rejected at p < 0.05. The investigators had full access to the data and take full responsibility for 

its integrity. 

 

Results 

Baseline Clinical and Diagnostic Features 

The baseline features of recipients and donors are shown in Table 1. Echocardiographic regional 

wall motion abnormalities were not detected. Age and time from HT were comparable in 

patients with and without abnormal angiography (49 ± 11 vs 51 ± 13 years [p =0.5] and 8 ± 3 vs 

7 ± 3 years [p = 0.4], respectively). Ejection fraction was normal in all patients (73 ± 8%). All 

patients studied were maintained on a cyclosporine (95%) or tacrolimus (5%) and azathioprine 

(70%) or mycophenolate mofetil–based (30%) immunosuppression protocol. Steroids were 

withdrawn in 53% of patients at 12 months after transplantation. Eighty-five percent of patients 

were treated with statins, 63% with aspirin, 10% with ticlopidine, 40% with calcium 

antagonists, 19% with beta-blockers and 42% with angiotensinconverting enzyme (ACE) 

inhibitors. Forty-five (38%) angiograms were classified as abnormal, of which 21 (47%) had 

Grade II lesions, 9 (20%) Grade III lesions and 15 (33%) Grade IV lesions. Ten (22%) patients 

had LAD critical stenosis and 12 (26%) had diffuse narrowing of small vessels. The left 

circumflex and right coronary artery were involved in 30 (66%) and 21 (46%) patients, 

respectively. The mean values for SDI and SDI/nS were 15 ± 13 and 7.2 ± 5, respectively. 

 

CFR Evaluation 

CE-TTE studies were always well tolerated and easily performed, with a need for Levovist 

infusion in only 11 (9%) patients to obtain an optimal Doppler signal. Overall, during adenosine 

infusion, heart rate increased compared with baseline (92 ± 13 vs 86 ± 11 beats/min, p < 

0.0001) and systolic blood pressure decreased (126 ± 21 vs 136 ± 19 mm Hg, p < 0.0001) as did 

diastolic blood pressure (80 ± 13 vs 85 ± 12 mm Hg, p < 0.0001), whereas peak diastolic 

velocity in the LAD increased (75 ± 23 vs 28 ± 9 cm/s, p < 0.0001). In the entire patient group 

CFR was 2.79 ± 0.8 (range 1.08 to 4.9). 
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Relation Between CFR and Clinical Characteristics in Entire Patient Study Group 

CFR was lower in men, in patients with CAV and in those with LAD stenosis ≥70%, as well as 

in patients with ischemic heart disease pre-HT (Figure 2A, top panel). CFR was inversely 

related to time from HT, SDI, SDI/nS, left ventricular end-diastolic pressure and interventricular 

septum thickness (Table 2). CFR was directly related to ejection fraction and tended to be 

related to cumulative cyclosporine doses (Table 2). No relation was found between CFR and 

rejection scores (Figure 3A, top panel). 

 

Relation Between CFR and Clinical Characteristics in  Patients Without CAV 

In patients without CAV, CFR was lower in diabetic patients (Figure 2B, bottom panel), 

inversely related to TRS and sev TRS (Figure 3B, bottom panel), and was marginally 

significantly related to RS 1yr, sev RS 1yr and total number of rejections (Table 2). TRS and 

sev TRS were higher in patients with normal coronary angiography and abnormal CFR (Figure 

4). 

 

Relation Between CFR and CMV 

In all patients, CFR is not significantly altered in CMVnegative HT recipients of CMV-positive 

hearts (p = 0.6) (Figure 5). CFR was also comparable in patients with and without documented 

CMV infection (p = 0.8) (Figure 6). Similar results were found in patients with normal coronary 

angiograms (data not shown). 

 

Determinants of CFR by Multivariate Analysis 

In the multivariate analysis, determinants of CFR were CAV diagnosis, SDI and SDI/nS, 

interventricular septum thickness and ischemic heart disease pre-HT (Table 3). In patients 

without angiographic CAV, only sev TRS was independently related to CFR (Table 4). If some 

variables are forced in the multivariate model because of their well-known documented effect 

on CFR (i.e., diabetes, hypertension, left ventricular end-diastolic pressure, etc.), then sev TRS 

remains the only independent determinant of CFR in patients with normal coronary angiography 

(data not shown). 

 

Intra- and Inter-observer Reproducibility 

Intra- and inter-observer reproducibilities of CFR measurements were assessed by repeating the 

CFR evaluation twice, 1 hour apart, by the same operator (F.T.) in a subgroup of 35 patients and 
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by another operator (E.O.) in a subgroup of 58 patients, respectively. The intra-observer 

reproducibility was high (r= 0.97, SEE=0.12); ICC was 0.985. The inter-observer 

reproducibility was also high (r= 0.96, SEE=0.14); intraclass correlation coefficient was 0.976. 

 

Discussion 

 

This study demonstrates, for the first time, that rejection score is an independent determinant of 

CFR in HT patients. In addition, recognized determinants of CFR have been confirmed.7 CAV 

is a diffuse process involving the entire coronary circulation, including microvessels.2 In the 

present study, CFR impairment in patients with CAV may have been related by 

hemodynamically significant LAD stenosis. Indeed, it has been shown in several studies that 

endothelium-dependent and -independent CFR is reduced in patients with CAV.3,4,13 We found 

that, although CFR reduction was associated with LAD stenosis of ≥70% according to 

univariate analysis, a flow-limiting stenosis was not an independent determinant of CFR. A 

major contribution of non-significant LAD stenosis to overall CFR reduction is unlikely, since 

epicardial coronary arteries physiologically determine only <10% of the overall coronary 

vascular resistance.14 This suggests that CFR reduction may reflect microvascular involvement, 

even in angiographically visible CAV. Potential explanations for the increased coronary 

resistance include: a reduced cross-sectional area in resistance vessels as CAV progresses; or an 

insufficient collateral function, as collateral vessels are not common in HT patients.15 Vascular 

lesions are the result of cumulative endothelial injury induced both by alloimmune responses 

and by non-specific alloimmune-independent insults.2 

Male gender and ischemic heart disease pre-HT were both CFR determinants. These findings 

may reflect the influence of recipient pro-ischemic risk factors in CAV 

progression/modulation.2 Classic cardiovascular risk factors, such as diabetes, may enhance 

vascular inflammation by inducing endothelial dysfunction. A novel finding in our study is that 

severe rejection scores were independently associated with CFR reduction in patients without 

angiographic CAV. Others investigators failed to identify such a relationship,11,16 which may 

have been due to the small number of patients,11 short follow-up,16 and lack of quantification of 

individual rejection burden in terms of rejection score.16 In addition, multivariate analysis was 

either not used16 or applied to inadequate numbers of patients.11 Our findings show that early 

graft vascular lesions seem to be confined mostly to small coronary arteries and arterioles. Our 

novel finding supports the hypothesis that microvasculopathy is an immune-mediated 

phenomenon, similar to epicardial CAV.2 CFR reduction seems to have been due to a previous 
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rejection crisis, which could have induced small areas of fibrotic scars in the myocardium, 

resulting in an impairment of the capacity of arteriolar vasodilation by extravascular 

compression, or medial fibrosis or reduction of the number of vessels. 

Assessment of microvascular function has been shown to be of predictive value after HT.4 

Predominant allograft microvascular dysfunction is detectable in 15% of patients after HT.17 

The ability to detect and distinguish changes in epicardial and microvascular function may aid 

in identifying modifiable factors that lead to CAV. Coronary angiography and intravascular 

ultrasound are not well suited to detect such abnormalities. Conversely, microvascular changes 

may be easily monitored by CE-TTE. In keeping with our results, Fearon et al recently 

demonstrated that, in HT recipients without angiographically significant CAV, predominant 

microcirculatory dysfunction was present, based on normal fractional flow reserve and 

abnormal CFR.17 Insults contributing to endothelial injury after HT may include pathogens such 

as CMV.1 Our finding that CFR was independent of both CMV serostatus and previous CMV 

infection is not surprising if we consider that adenosine is an endothelium-independent 

vasodilator. In support of our findings, other investigators found that endothelium-independent 

vasomotor function was not significantly altered in CMV-negative HT recipients of CMV-

positive hearts. Those same investigators found that CFR was comparable between patients with 

and without documented CMV infection.18 However, CMVseronegative recipients of 

seropositive hearts are of highest risk for development of endothelial dysfunction in small 

coronary vessels and have more cardiovascularrelated events and death during follow-up.18 

Documented CMV infection episodes are associated with deterioration of epicardial endothelial 

function, whereas endothelial dysfunction extends to the microcirculation in patients with 

symptomatic infections.18 The recruitment of circulating monocytes infected with CMV into 

allograft coronary vessels is the most likely mechanism by which CMV becomes associated 

with endothelial dysfunction. 

 

Study Limitations 

According to some but not all studies, acute rejection may affect CFR.19,20 In the present study 

on stable, long-term HT patients with preserved ejection fraction, no endomyocardial biopsies 

were taken. The possibility that our CFR findings may be related to undetected acute rejection 

seems unlikely. Acute rejection frequency is low after the first year, and in none of our patients 

was acute rejection clinically suspected or diagnosed in the following months. The measurement 

of coronary flow velocity by CE-TTE is only applicable to the distal part of the LAD, although 

a recent study reported the feasibility of measuring CFR in the posterior descending coronary 
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artery.21 However, CE-TTE–derived CFR measurements relate to microcirculatory function, and 

thus the choice of the sample vessel would not have influenced the results. Some studies have 

considered intravascular ultrasound as the “gold standard” for CAV diagnosis17,22; however, 

intravascular ultrasound is often technically difficult or not feasible in advanced disease and is 

certainly unsuited for long-term follow-up. Moreover, some investigators demonstrated that, in 

patients without angiographically overt coronary disease, the degree of epicardial intimal 

thickening as quantified by intravascular ultrasound does not predict the adenosine vasodilator 

response, when determined by commonly used parameters such as CFR.23,24 Routine detection 

of the immediate-early CMV antigen pp65 was performed only during the first 12 months. It is 

therefore possible that some sub-clinical CMV infection episodes could have been detected with 

a longer follow-up. In conclusion, the measurement of a lower coronary flow rate has been 

shown to be a reliable marker for CAV-related major cardiac events.4,11 The identification of 

CFR determinants, as shown here, should make it possible to design and test new therapeutic 

and preventive strategies aimed at modifying the time-dependent CFR reduction post-HT. This 

may lead to improved outcomes for patients. 
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Figure 1: Coronary flow response to adenosine- Coronary flow velocity at rest (left) and 

during adenosine infusion (right) by transthoracic echocardiography 
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Figure 2: Relation between CFR and clinical characteristics in the entire patients study 

group and in patients without CAV- CFR in the whole patient population (A) and in patients 

with normal coronary angiography (B) divided according to the presence (+) or the absence (-) 

of risk factors and clinical conditions considered in the study protocol. *n=45  
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Figure 3: Relation between CFR and rejection scores- Bivariate correlations of CFR with 

TRS and sev TRS in the whole patient population (A) and in patients with normal coronary 

angiography (B). 

 

 

 

 

 

 

 

 



 95

 

 

 

Figure 4: Rejection scores in patient without CAV and with abnormal CFR- Levels of TRS 

and sev TRS in patients without allograft vasculopathy divided according to CFR ≤2.5 or >2.5  

 

 

 

 

 

 

 

 

 

 

 



 96

 

 

 

 

Figure 5: CFR and CMV serostatus- CFR is not significantly altered in CMV-negative 

transplant recipients of CMV-positive hearts. 
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Figure 6: CFR and previous CMV infection- CFR was comparable between patients with and 

without documented CMV infection. 
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Coronary Flow Reserve by Transthoracic Echocardiography 

Predicts Epicardial Intimal Thickening in Cardiac A llograft 

Vasculopathy 

 

Cardiac allograft vasculopathy (CAV) is the leading cause of mortality after heart 

transplantation (HT) 1. In CAV both epicardial coronary vessels and the microvasculature may 

be affected 2. Histopathologically CAV is characterized by discrete intracellular endothelial 

changes and diffuse concentric intimal thickening 3. Coronary angiography is the most common 

tool of screening for CAV; however it is limited in detecting diffuse intimal thickening4. 

Intravascular ultrasound (IVUS) is more sensitive, but it requires some degree of expertise to 

perform and interpret the images, it is time consuming and expensive, and it only interrogates 

the epicardial coronary system. Coronary flow reserve (CFR) measurements by intracoronary 

Doppler flow wire may provide functional assessment of the microvasculature in CAV; 

however, coronary angiography, IVUS and intracoronary Doppler flow wire are invasive 

procedures. We have recently applied a new noninvasive technique based on contrast-enhanced 

transthoracic echocardiography (CE-TTE) for assessing CFR in the left anterior coronary 

descending artery (LAD) in HT patients 5-6. CFR by CE-TTE has been shown to correlate with 

angiographically detectable coronary artery lesion severity as well as intracoronary Doppler 

flow wire measurements 7, and to stratify the risk of cardiac events in HT patients 6 . We 

assessed the diagnostic potential of CFR by CE-TTE in CAV detection defined by IVUS and to 

test whether the extent of intimal thickening affects coronary flow velocity during adenosine 

infusion in HT recipients with normal coronary angiograms. 

 

Methods 

Study Patients  

We studied 22 consecutive HT recipients with normal coronary angiogram (20 male, aged 50 ± 

7 years at HT, range 36 to 61, mean ischemia time 169 ± 37 minutes), at 6 ± 4 years post-HT. 

Our immunosuppression protocol consisted of Cyclosporin A, Azathioprine or Mycophenolate 

mofetil, and steroids (triple therapy) as previously detailed2, 8. Twenty-four healthy control 

subjects, matched for age and gender, were recruited from local community. In the control 

subjects, the absence of cardiovascular diseases was evaluated by a clinical history and 
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examination and, when available, echocardiography and coronary angiography. The study was 

approved by the institutional ethics committee, and all patients gave written, informed consent. 

 

Echocardiography 

An echocardiogram was obtained in all patients within 48 hours of coronary angiography. From 

the parasternal long axis view, M-mode measurements were performed to determine the end-

diastolic thickness of the interventricular septum and the left ventricular posterior wall. Left 

ventricular hypertrophy was defined as a septal plus posterior wall thickness ≥ 24 mm 9. Left 

ventricular ejection fraction was measured using Simpson’s method. CFR was evaluated using 

CE-TTE before and after adenosine infusion. The method has been previously described in 

detail 7. 

 

Contrast-Enhanced Transthoracic Doppler Echocardiography 

Echocardiography was performed for coronary flow evaluation using CE-TTE before and after 

adenosine infusion, with an ultrasound system (Sequoia C256, Acuson, Mountain View, 

California) connected to a broad-band transducer with second harmonic capability (3V2c). All 

studies were continuously recorded on 0.5-in. (1.27-cm) S-VHS videotape. Briefly, CFR was 

measured in the distal portion of the LAD, firstly obtaining a modified foreshortened two-

chamber view or, if a distal LAD flow recording was not feasible, using a low parasternal short-

axis view of the base of the heart 7. If the angle between color flow and the Doppler beam was 

>20o, angle correction was performed using the software package included in the software unit. 

Administration of the contrast agent (Levovist, Schering AG, Berlin, Germany) was performed 

both before and during adenosine intravenous administration 5.  

 

Coronary Flow Velocity Reserve Assessment 

All patients had Doppler recordings of the LAD with adenosine infusion at a rate of 0.14 mg/kg 

per min for 5 min 5. Cardiac drugs were not interrupted before testing, although all 

methylxantine-containing substances or medications were withheld 48 h before the study. CFR 

in the LAD was calculated, as the ratio of hyperemic to basal diastolic flow velocity, by an 

experienced echocardiographer, blind to angiographic and clinical data. For each variable in the 

CFR calculation, the highest 3 cycles were averaged 5.  

 

 

 



 106

IVUS/Diagnosis of CAV 

After anti-coagulation with 5000–10 000 units of heparin and infusion of 200 µg intra-coronary 

nitroglycerin, standard coronary angiography (evaluating at least six planes of left coronary 

artery) was performed in order to exclude LAD stenosis, which might contraindicate IVUS 

performance 10. IVUS images were obtained using a commercially available 3F IVUS catheter 

(Volcano Corporation, Rancho Cordova, CA or Atlantis SR Pro 2, Boston Scientific, Natick, 

Massachusetts, USA) placed under fluoroscopic guidance to the periphery of the LAD. 

Automatic pullback (1 mm/sec motorized device) was performed and images were stored in a 

CD-ROM for subsequent analysis off-line by an experienced observer, who was always blinded 

to the patients’ characteristics and echocardiographic findings. External elastic membrane and 

lumen cross-sectional areas were identified and measured by manual planimetry. Following 

American College of Cardiology recommendations 11, we measured maximal intimal thickness 

(MIT); the average MIT was derived by averaging the MIT from the all sites examined. CAV 

was defined as MIT ≥0.5 mm 11. The area bounded by the external elastic membrane was 

considered the external vessel wall area and the difference between the external elastic 

membrane area and the lumen area was calculated to give the intimal (otherwise known as 

intima-media) area. An intimal index was calculated as intima area/(intima + lumen area). The 

luminal, vessel and plaque volumes (in cubic millimeters) of each segment were calculated as 

cross-sectional areas (lumen area, vessel area and plaque area) x segment length of 2 mm. Total 

plaque volume was obtained by adding up the measurements of all vascular segments. Since de 

novo graft atherosclerosis often has a diffuse distribution, unlike focal donor-related lesions, we 

averaged the measurements obtained from serial cross-sectional images taken every 2 mm of 

proximal 30 mm of LAD to minimize bias in the matching of individual sites in artery wall 

evaluation 12. Vascular sites with major side branches or calcifications occupying a vessel 

circumference of more than 30% were excluded from quantification. To assess the 

reproducibility of IVUS measurements, we performed two subsequent motorized pullbacks of 

the IVUS catheter during the same IVUS examination. Mean values of total vessel and lumen 

areas were calculated on the basis of these two recordings, matching 28 coronary segments. The 

intra-observer error for vessel and lumen area analysis was 0.46 ± 0.61% and 1.95 ± 1.14%, 

respectively. The correlation coefficient between the two sets of measurements was 0.95 for 

vessel wall and 0.92 for lumen areas. The inter-observer error for vessel and lumen analysis was 

1.66 ± 1.25% and 3.01 ± 2.2%, respectively. The correlation coefficient between the 

measurements performed by two different observers was 0.99 for both vessel wall and lumen 

areas. These reproducibility assessments are in line with previous reports 13.  
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Fractional Flow Reserve Measurements 

Fractional flow reserve (FFR), defined as the mean distal coronary pressure, measured with the 

pressure wire (Radi Medical Systems), divided by the mean proximal coronary pressure, 

measured with the guiding catheter, at maximum hyperemia, was measured after administering 

48 µg of intracoronary adenosine. The lower limit of the normal range for FFR was below 0.94 
14. 

 

Statistical Analysis 

Results are expressed as mean ± standard deviation. CFR distribution was assessed by Shapiro-

Wilk test, and it was not significantly different from normality (p=0.142). Student’s t test and 

chi-square test were used as appropriate. Sensitivity, specificity,  positive and negative 

predictive values were determined according to standard definitions. IVUS evidence of CAV 

was taken as the positive reference standard. Receiver operating characteristics (ROC) curve 

analysis was generated to test the predictive discrimination of patients with and without CAV. 

Correlation were sought by use of least-squares regression analysis. Intraobserver and 

interobserver reproducibilities of CFR were evaluated by linear regression analysis and 

expressed as correlation of coefficients (r) and standard error of estimates (SEE), and by the 

intraclass correlation coefficient. Reproducibility is considered satisfactory if the intraclass 

correlation coefficient is between 0.81 and 1.0. Intraobserver and interobserver reproducibility 

measurements were calculated in all 22 patients. Probability levels of <0.05 were considered 

statistically significant. Data were analyzed with SPSS software version 13.0 (Chicago, SPSS, 

Inc., Chicago, Illinois). The authors had full access to and take full responsibility for the 

integrity of the data. All authors have read and agree to the manuscript as written. 

 

Results 

Baseline Clinical and Diagnostic Features 

All patients had normal coronary angiograms. Of the 22 IVUS 10 (45%) were classified as 

abnormal (MIT ≥0.5 mm) (group A), 12 (55%) had normal coronaries (MIT <0.5 mm) (group 

B). Time from HT was longer in group A (8 ± 3 vs 6 ± 2 years, p=0.042). Group A was 

associated with donor male gender (76% vs 46%, p=0.02). Recipient age at HT, male recipient 

gender, incidence of gender mismatch and donor age were similar in the two groups. Incidences 

of hypertension, diabetes and hypercholesterolemia after HT were comparable between the two 

groups. End diastolic dimensions, ejection fraction and mass were similar in the two groups. No 
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regional wall motion abnormalities were detected. All patients were on aspirin and statins. No 

differences in immunosuppressive and cardiovascular therapies were observed. 

 

Comparison Between HT Recipients and Control Subjects 

CFR in HT recipients was comparable to control subjects (3.1 ± 0.8 vs 3.4 ± 0.7, p=0.3). CFR in 

HT patients with MIT≥0.5 mm was lower than in controls (2.5 ± 0.6 vs 3.4 ± 0.7, p=0.001). 

CFR in HT patients without MIT≥0.5 mm was comparable to controls (3.7 ± 0.3 vs 3.4 ± 0.7, 

p=0.2). The prevalence of CFR≤2.5 was higher in HT patients compared to controls (27.3% vs 

4.3%, p=0.04) and CFR is significantly lower in HT patients with CFR≤2.5 compared with the 

remaining patients’ population (2 ± 0.4 vs 3.5 ± 0.4, p<0.0001). 

 

IVUS and FFR Analysis 

IVUS was performed successfully in all patients. The mean MIT was 0.7 ± 0.1 mm (range 0.03-

1.8 mm) and intimal index was 0.13 ± 0.11 (range 0.05-0.55). MIT was higher in group A (1.16 

± 0.3 mm vs 0.34 ± 0.07 mm, p<0.0001). FFR was successfully measured in all patients. The 

mean FFR was 0.90 ± 0.05. In 64% of cases, the FFR was less than the normal threshold of 

0.94. In only one patient (4.5%), FFR was ≤ 0.80, the upper boundary of the gray zone of the 

ischemic threshold, and in none the FFR was ≤ 0.75 (15). FFR was inversely related to MIT (r=-

0.399, p=0.054). 

 

Noninvasive CFR Evaluation 

CE-TTE studies were always well tolerated. Overall, during adenosine infusion heart rate 

increased compared to baseline (90 ± 13 beats/min vs 83 ± 14 beats/min, p<0.0001), systolic 

blood pressure decreased (127 ± 18 mmHg vs 135 ± 22 mmHg, p=0.04), as well as diastolic 

blood pressure (77 ± 13 mmHg vs 82 ± 15 mmHg, p=0.03), whereas peak diastolic velocity in 

the LAD increased (82 ± 27 cm/s vs 26 ± 7 cm/s, p<0.0001). CFR was 3.1 ± 0.8 in the whole 

patient group. Adenosine peak diastolic velocity  and CFR were lower in group A (68 ± 28 cm/s 

vs 100 ± 13 cm/s, p=0.01 and 2.5 ± 0.6 vs 3.7 ± 0.3, p<0.0001, respectively) (Figure 1). Figure 

2 shows two representative examples.Severe (<2) CFR impairment was found in 3 out of 10 

(30%) patients with MIT ≥0.5 mm, but in none of those with MIT <0.5 mm (p=0.04). 
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Diagnostic Power of CFR by CE-TTE in the Identification of MIT ≥≥≥≥0.5 mm 

ROC analysis for separation of the presence or absence of MIT ≥0.5 mm was performed. The 

area under the ROC curve (AUC) of 0.903 has a SE of 0.022, yielding a 95% confidence 

interval of 0.941 to 1.026 (p<0.0001) (Figure 3). A cutpoint of ≤ 2.9, identified as optimal by 

ROC analysis, was 100% specific and 80% sensitive (positive predictive value= 100%, negative 

predictive value= 89%) (OR=8, p=0.007). Accuracy was 91%.  

 

Intra and Interobserver Reproducibility of CFR by CE-TTE 

Intraobserver and interobserver reproducibilities of CFR measurements were assessed by 

repeating CFR evaluation twice, 1 h apart, by the same operator (F.T.) in all patients and by 

another operator (E.O.) in all patients as well. The intraobserver reproducibility was high 

(r=0.95, SEE=0.11); intraclass correlation coefficient was 0.976. The interobserver 

reproducibility was also high (r=0.94, SEE=0.12); intraclass correlation coefficient was 0.968. 

 

Relation Between CFR and Risk Factors for Coronary Allograft Vasculopathy 

No relation between CFR and number or severity of previous rejections was observed. 

Moreover, there was no correlation between CFR and cytomegalovirus status or 

cytomegalovirus infection after HT. CFR was unrelated to pre-HT risk factors for coronary 

artery disease, donor/recipient gender, gender mismatch, and donor/recipient age at HT. The 

time from HT to CE-TTE and IVUS was unrelated to the degree of intimal thickening, resting 

and hyperaemic coronary flow velocity or CFR, and with FFR.  

 

Relation between CFR by CE-TTE and MIT 

CFR was inversely related to MIT (y=-1.35x + 41. r=0.796; SEE=0.23; p<0.0001) (Figure 4), to 

intimal index (y=-2.5x + 4. r=0.454; SEE=0.72; p=0.01) (Figure 5) and to plaque volume (y=- 

0.009x + 4.2. r=0.775; SEE=0.52; p<0.0001 (Figure 6). 

To determine whether the intimal hyperplasia of epicardial arteries contributed to the CFR 

reduction, we separately analyzed patients with normal (≥0.94) FFR. In these patients CFR by 

CE-TTE was correlated with MIT (y=-0.91x + 4.0. r=-0.814; SEE=0.26; p=0.01). The 

correlation between CFR and MIT was no more present in patients with FFR <0.94 (p=0.151). 

MIT is minor and CFR is higher in patients with a FFR≥0.94 (0.26 ± 0.1 vs 0.81 ± 0.1, p=0.01 

and 3.7 ± 0.3 vs 2.7 ± 0.7, p=0.002, respectively). 
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Relation between CFR by CE-TTE and FFR 

CFR by CE-TTE  correlated weakly with FFR (r=0.436, p=0.048). In 14% of cases , CFR by 

CE-TTE was ≤2. CFR and FFR were normal in 8 (36%) patients. FFR was abnormal and CFR 

normal in 11 (50%), and FFR and CFR were both abnormal in 3 (14%) patients. In one patient 

FFR was almost normal (0.93) and CFR was severely reduced (1.9), suggesting predominant 

microcirculatory dysfunction (Figure 7); in this patient MIT was 1 mm. 

 

Discussion 

 

This study demonstrates, for the first time, that CFR by CE-TTE in the LAD is a feasible and 

accurate noninvasive tool for the detection of  MIT ≥0.5 mm identified by IVUS, the gold 

standard for the diagnosis of CAV in HT 11. Many authors studied the relation between CFR and 

angiographic CAV. Some studies, mainly using invasive Doppler flow wire and endothelial-

independent vasodilatation, showed that coronary vasodilatatory capacity is preserved in HT 

patients without angiographic CAV 16-17 and is impaired in patients with mild CAV 5 . Our group 

demonstrated that CFR by CE-TTE may offer promise as a simple, readily available, objective, 

noninvasive diagnostic tool for the detection of early and severe CAV 5 , and that a lower CFR 

is the main independent predictor of poor outcome in long-term clinically stable HT patients 6. 

However, to the best of our knowledge, the present study is the first on CFR by CE-TTE and 

CAV in epicardial arteries defined by IVUS.  

 

Echocardiography  for the diagnosis of CAV defined by IVUS  

Dobutamine for the assessment of wall motion and left ventricular size and function is the most 

frequently used technique. Spes et al. analyzed the diagnostic value of dobutamine stress 

echocardiography for noninvasive  assessment of CAV 18. They found that resting 2D 

echocardiography detects CAV defined by IVUS with a sensitivity of 57% and a specificity of 

88%. Dobutamine stress echocardiography increased the sensitivity to 72%. Moreover, M-mode 

analysis increased the sensitivity of 2D rest and stress analysis to 85% but reduced the 

specificity to 82% 18. In other studies, the sensitivity of stress echocardiography ranged between 

15% and 79%, and the specificity ranged between 83% and 85%. In some, but not all studies, 

the accuracy was comparable to CFR by CE-TTE. However, dobutamine stress 

echocardiography depends on image quality and cannot be used in all patients. Furthermore, 

dobutamine echocardiography requires more experience than CFR by CE-TTE 6,18. CFR by CE-
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TTE is also more accurate for predicting cardiac events 6 and for verifying the functional 

significance of CAV.  

Tissue Doppler imaging is another growing practice in the nontransplant population. The 

limited data in HT showed that there are significant changes for both systolic and diastolic 

parameters. Compared with patients without CAV, even those with  CAV defined by IVUS 

showed significant differences  for all parameters 19 . In particular, sensitivity for systolic and 

diastolic parameters ranged between 83% and 93%, and the specificity between 92% and 96% 
19. However this methodology have some limitations. All parameters should be corrected to the 

heart rate and this is time consuming. Moreover, the reproducibility of measurements can be 

very high for clinical use. 

 

Influence of Intimal Thickening On Coronary Flow Reserve 

The relation between CFR and epicardial intimal thickening has been previously studied by 

other methods 20-21. CFR was not reduced in our whole patients population and in HT patients 

without MIT ≥0.5 mm. According with these results, previous studies described a normal 

endothelium-independent flow response in HT recipients using IVUS, intracoronary Doppler 

flow wire, or PET 20-21. 

In our study, CFR was reduced in patients with CAV defined by IVUS, and average maximal 

intimal thickness and coronary flow reserve were significantly correlated. By using histology or  

Doppler flow wire, previous studies investigating whether microvasculopathy occurs in 

concordance with intimal hyperplasia in epicardial arteries yielded conflicting results 20-22. 

However, these studies enrolled patients with either angiographic stenosis or with abnormal 

epicardial coronary physiology 14, 23. The inverse correlation between MIT and CFR is evident 

in our patients with functionally normal epicardial coronary arteries (FFR≥0.94). This 

correlation may indicate that, in the early stage of CAV, both epicardial arteries and 

microvasculature are concordantly involved. To the best of our knowledge, this is the first study 

showing a relation between MIT and CFR by CE-TTE and identifying a CFR cutoff for the 

diagnosis of CAV defined by IVUS. However, CFR interrogates the entire coronary circulation 

(25% epicardial function and 75% microvascular system). Therefore, the concordance between 

CFR and MIT could be because there was little microvascular dysfunction, as evidenced by the 

fact that there were  no patients with normal FFR and abnormal CFR (<2). The only way to 

distinguish between epicardial and microvascular dysfunction would be to have a simultaneous, 

invasive and independent assessment of the epicardial artery by measuring FFR and of the 

microvasculature by calculating the index of microvascular resistance (IMR) with a single 
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coronary pressure wire, as suggested in the PITA II study 24. However this independent 

assessment is, by now, noninvasively impossible. 

The combination of FFR and CFR by CE-TTE may provide information about the functional 

status of the coronary system that would not be available with either each measurement alone or 

coupled with IVUS. In particular, the combination of FFR and CFR by CE-TTE may identify 

patients with prevalent microvasculopathy. This finding is clinically relevant because the 

presence of microvascular dysfunction has been correlated with future development of  

epicardial allograft vasculopathy and cardiac events 6, 25. Fearon et al., evaluating a new method 

for simultaneously measuring FFR and CFR with a single wire, achieved similar results 14. In 

this very elegant study Fearon et al. showed that the assessment of FFR and CFR 

simultaneously help us to distinguish between abnormal epicardial and microvascular 

physiology and revealed that a different proportion of patients have predominant microvascular 

dysfunction. They conclude that the ability to detect and distinguish changes in epicardial and 

microvascular function in HT patients may aid in identifying modifiable factors that lead to 

transplant arteriopathy. We think that PITA study is a milestone on this topic. However these 

authors applied, even if very valid, an invasive method to study the coronary circulation. We 

aimed to identify a noninvasive method that allows us to reduce the number of coronary 

angiography and IVUS, and at the same time allows us to have information about the function 

of the coronary circulation. While remaining the undisputed superiority of invasive methods, 

every cardiac transplant group feels the need for a noninvasive method that can be applied to 

large populations of patients and at a lower cost compared to costs of invasive procedures and 

with low risk to the patient. We do not believe that the noninvasive CFR measurement may 

replace the invasive one, which allows us to have information also on FFR, but certainly it can 

be very useful in the clinical follow up of HT patients. 

 

Study limitations 

The sample size is relatively small, even if similar to previous studies 23-26. Nevertheless, our 

study represent the largest CE-TTE and IVUS study after HT reported to date. A recent study 

suggests that progression of maximal intimal thickening ≥ 0.5 mm in the first year after HT 

appears to be a reliable marker for subsequent outcome 26. In the current study, without serial 

examinations, the progression of intimal thickness and CFR can not be estimated. Therefore a 

larger study, with serial measurements would provide a better insight into the correlation 

between macro- and microvasculopathy. Currently, we are following these patients for cardiac 

events and by repeating IVUS and CFR by CE-TTE. A limitiation of this study is that the 1 
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mm/sec pull back of the IVUS catheter does not allow as accurate a determination of intimal 

thickening as 0.5 mm/sec. 

CFR was not quantify invasively. Therefore we do not have a comparison of an invasive method 

of calculating CFR with the noninvasive method. However, CFR by CE-TTE in the LAD has 

already been validated against Doppler flow wire measurements by our group, thus the 

validation was beyond the aim of our study 7, 27. 

The individual therapeutic protocol might have affected CFR. However, no differences in CFR 

were detected between patients who were taking calcium antagonists or ACE inhibitors and in 

patients with different immunosuppressive regimen. Acute rejection may affect CFR. In the 

current study, on stable long term HT recipients with preserved ejection fraction, no biopsies 

were taken. The possibility that CFR impairments are related to undetected acute rejection is 

unlikely. Acute rejection prevalence is low after the first year, and in none of our patients acute 

rejection was clinically suspected or diagnosed in the following months. 

 

Conclusions 

CFR assessment by CE-TTE is a novel noninvasive diagnostic tool in the detection of CAV 

defined as MIT ≥0.5 mm. The microvascular dysfunction, as assessed by CFR, correlates with 

intimal hyperplasia measured by IVUS in patients with physiologically normal epicardial 

coronary arteries, suggesting the possible concordant involvement of both macro- and 

microvascular system in early CAV. CFR by CE-TTE, coupled with IVUS, may help to detect 

and distinguish epicardial disease and microvascular dysfunction, emerging as a new 

noninvasive, useful tool to monitor the course of CAV. Thus, our data provide a rationale for 

including CFR by CE-TTE in future clinical trials aimed at assessing short-term or long-term 

pharmacological interventions for CAV prevention or stabilization. 
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Figure 1: Coronary flow velocity reserve by CE-TTE in patients with and without MIT≥0.5 mm. 
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Figure 2: (A) MIT <0.5 mm (upper left panel). Coronary flow velocity assessed by CE-TTE on the 

same day of IVUS increased from baseline (upper middle panel) to post-adenosine administration 

(upper right panel), with a calculated CFR of  4.5. (B) MIT >0.5 mm (lower left panel). Coronary 

flow velocity assessed by CE-TTE on the same day of IVUS increased from baseline (lower middle 

panel) to post-adenosine administration (lower right panel), with a calculated CFR of 2.3.  
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Figure 3: ROC analysis for separation of the presence or absence of CAV. True-positive rate 

(sensitivity) in the ordinate is plotted against false-positive rate (100-specificity) on the abscissa. 

The AUC of 0.903 has a SE of 0.022, yelding a 95% confidence interval of 0.941 to 1.026, 

indicating that this area is significantly different from the area of 0.500 under the diagonal identity 

line (p<0.0001). 

 

 

 

Figure 4: CFR by CE-TTE (y axis) as a function of average maximal intimal thickness (x axis) in 

the territory of the LAD. Increases in intimal thickness were associated with decreases in CFR. The 

relation was y=-1.35x + 41. r=0.796; SEE=0.23; p<0.0001. 
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Figure 5: CFR by CE-TTE (y axis) as a function of intimal index (x axis) in the territory of the 

LAD. Increases in intimal index were associated with decreases in CFR. The relation was y=-2.5x + 

4. r=0.454; SEE=0.72; p=0.01. 

 

 

Figure 6: CFR by CE-TTE (y axis) as a function of plaque volume (x axis) in the territory of the 

LAD. Increases in plaque volume were associated with decreases in CFR. The relation was y=- 

0.009x + 4.2. r=0.775; SEE=0.52; p<0.0001. 
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Figure 7: Scatterplot of FFR and CFR by CE-TTE values in each patient. Dashed lines represent 

FFR and CFR normal cutoff values. 
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Table 1: Recipient and Donor Characteristics  

 
Group A (MIT ≥≥≥≥0.5 mm) 

(n=12) 

Group B (MIT<0.5 mm) 

(n=10) 
p 

Age at HT, years 48 ± 6 51 ± 7 0.6 

Male gender, n (%) 11 (92) 9 (90) 0.8 

Ischemic time, min 170 ± 37 183 ± 30 0.5 

Time from HT, years 8 ± 3 6 ± 2 0.04 

Hypertension, n (%) 8 (66) 8 (80) 0.2 

Diabetes, n (%) 2 (16) 2 (20) 0.7 

Hypercholesterolemia, n (%) 4 (33) 3 (30) 0.6 

Donor age, years 35 ± 12 37 ± 10 0.5 

Donor male gender, n (%) 9 (75) 4(40) 0.02 

Gender mismatch, n (%) 3 (25) 3 (30) 0.5 

End-diastolic diameter, mm 46 ± 6 48 ± 5 0.9 

End-systolic diameter, mm 25 ± 3 27 ± 2 0.7 

LVEF (%) 68 ± 5 66 ± 3 0.7 

Interventricular septum thickness, mm 12 ± 0.5 12 ± 0.3 0.8 

Posterior wall thickness, mm 11 ± 0.4 11 ± 0.3 0.9 

IHD pre-HT, n (%) 4 (33) 3 (30) 0.6 

Total numbers of rejections 3.1 ± 2.5 3 ± 2 0.5 

Unless specified otherwise, the values are means ± SD 

HT = heart transplantation; IHD = ischemic heart disease; LVEF = left ventricular ejection fraction 
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Endothelial Progenitor Cells Are Decreased In Blood and in The 

Graft of Heart Transplant Patients With Microvasculopathy 

 

Cardiac allograft vasculopathy (CAV) is the main limiting factor of long-term survival in heart 

transplantation (HT) 1. In CAV both epicardial coronary vessels and the microvasculature may 

be affected 2, but in about 15% of patients only microvasculopathy can be detected 3. Coronary 

flow reserve (CFR) by contrast-enhanced transthoracic echocardiography (CE-TTE) may 

provide functional assessment of the microvasculature in HT patients 4,5.. Nowadays, the 

pathogenesis of CAV remains poorly understood, although alloimmune-dependent and–

independent factors have been recognized to play an important role 2. Emerging evidence 

indicates that bone marrow-derived endothelial progenitor cells (EPCs) take part in postnatal 

neovascularization 6. The EPCs co-express surface markers of both hematopoietic stem cells 

(CD34 and CD133) and endothelial cells (VEGF-R2, also known as KDR) 7,8. There is 

increasing evidence of reduced availability and impaired EPCs function in the presence of both 

cardiovascular disease and associated risk factors 9. A previous small study suggested that 

angiographically evidenced CAV is associated with reduction in EPCs (10). However, to the 

best of our knowledge, no data about the relationship between EPCs and microvascular function 

in patients with normal angiograms have been reported. Thus, we investigated the relationship 

between EPCs, their incorporation into allografts and coronary microvascular damage in HT. 

 

Methods 

Study Patients, Blood Sampling and Endomyocardial Biopsy 

We studied 29 consecutive HT recipients with normal coronary angiogram (24 male, age at HT 

50 ± 12 years) at 5 ± 2 years from HT. Angiographic evidence of CAV was defined as >20% 

stenosis in a main, branch epicardial, or intramyocardial coronary artery 10. No evidence of 

CAV was defined as normal-appearing coronary artery anatomy. CFR by CE-TTE to evaluate 

coronary microvascular function was performed in all patients within 24 hours from 

catheterization. The immunosuppression protocol consisted of cyclosporine, azathioprine , 

mycophenolate mofetil or everolimus, and steroids as previously detailed 2,11. Fresh blood was 

collected by venipuncture and anticoagulated in citrate phosphate dextrose solution (CPD) 

(Baxter). Biopsies of the first year, at 2 different time points, were examined in each patient. 

Immunohistochemistry for the stem cells marker c-Kit and the EPC markers, CD34 and KDR 
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was performed in serial sections in all biopsies. Cells positive for each marker were counted in 

all biopsy area-section and the number obtained was corrected by area-section. HT patients were 

compared with 40 healthy subjects, matched for age and gender, recruited from the local 

community. In control subjects, the absence of type 2 diabetes mellitus and impaired glucose 

tolerance was documented by means of fasting glucose and 2-h glucose determination or oral 

glucose tolerance test. The absence of cardiovascular diseases was evaluated by a clinical 

history and examination, carotid ultrasonography, and, when available, echocardiography and 

coronary angiography. The study was approved by the institutional ethics committee, and all 

patients gave written, informed consent. 

 

Quantification of Circulating Progenitor Cells 

Human progenitor cells were analyzed for the expression of surface antigens with direct three 

color flow cytometry as previously described 12 using fluorescein isothiocyanate (FITC)-

conjugated anti-CD34, PE-conjugated anti-KDR, and activated protein C (APC)-conjugated 

anti-CD133 mAbs. Cells within the mononuclear morphological gate were first assayed for 

CD34 and CD 133 expression and then for KDR expression. 5x105 events were always 

acquired. EPCs were defined as CD34+KDR+ cells, according to recent population-based 

studies 13,14. CD133+KDR+ and CD34+CD133+KDR+ were also considered as putative EPC 

phenotypes. Total CD34+, CD133+ cells as well as CD34+CD133+ cells were considered 

generic circulating progenitor cells (CPCs). The same trained operator (I.B.), who was blinded 

to the subjects’characteristics, performed all of the tests throughout the study.  

 
EPC Immunohistochemistry 

The antibody clones, used alone or in combination to identify EPCs in the biopsy sections, were 

the same to the direct flow cytometry ones. EPCs markers were CD34 (Immunotech, Marseilles, 

France) and VEGFR2/KDR (Santa Cruz, UK). Briefly, slides were treated with 0.3% hydrogen 

peroxide in methanol to block endogenous peroxidase activity, washed with phosphate-buffered 

saline, and incubate in buffered normal horse serum to prevent unspecific antibody binding. 

Sections were incubated with the primary antibodies for 1 hour at room temperature. After 

washing, a biotin-labelled secondary antibody was applied, followed by an avidin-peroxidase 

conjugate. As chromogen DAB was used. Slides were counterstaining with haematoxylin. 

Immunostaining on serial section was performed with antibodies against KDR and CD34. 
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Interphase Fluorescent In Situ Hybridization 

We prepared 5-µm sections from formalin-fixed, paraffin-embedded tissue blocks from biopsy 

specimens and subjected them to immunohistochemical staining and in situ hybridisation 

techniques as previously described. 15 Immunohistochemical analyses were performed to 

discriminate EPC phenotypes. The Y chromosome was detected by fluorescence in situ 

hybridization in nuclei in interphase by use of combined CEP X /CEP Y (alpha) SO DNA 

probes (Vysis Inc, Downers Grove, IL) consisting of two different probes specific for the 

centromeric region of the X (orange) and Y (green) chromosomes, respectively. A human Y 

chromosome centromeric-painting biotin conjugate probe (Star*FISH, Cambio, Cambridge, 

UK) was also used to confirm the in situ hybridization by optical microscope analysis. After 

overnight hybridization and stringent washes, the probe was visualized with a peroxidase-

conjugated avidin-biotin complex using DAB (Dakocytomation). 

 
Tissue Analysis 

Morphologic evaluation of the hematoxylin and eosin and immunostained sections was done 

under the light microscope. The fluorescent hybridized sections were analyzed with a confocal 

Leica TCS SL microscope (Leica Microsystems, Wetzlar, Germany). Sections were scanned 

under identical imaging parameters. For conventional bright-field microscopy, rigorous criteria 

were used to determine whether a Y-chromosome signal was indeed within the nucleus of the 

cell and whether that nucleus resided within a labelled cell population. Staining for Y 

chromosome was regarded as positive if a punctate, dark-brown signal was present within a 

given blue-stained nucleus and in the same focal plane. 

 

Cell Counting 

Each antibody was analyzed separately in all the sections. The count of positive cells was 

performed with the same criteria employed for in situ hybridization analyses. For each antibody 

cells positive count was done on the entire biopsy area. Cells number for each antibody was 

normalized for the total area and expressed as cells/mm2. 

 
Transthoracic Doppler Echocardiography 

An echocardiogram was obtained in all patients within 48 hours of coronary angiography. From 

the parasternal long axis view, M-mode measurements were performed to determine the end-

diastolic thickness of the interventricular septum and the left ventricular posterior wall. Left 

ventricular hypertrophy was defined as a septal plus posterior wall thickness ≥ 24 mm 16. Left 

ventricular ejection fraction was measured using Simpson’s method. Once the routine echo 
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Doppler examination was completed, the CFR was evaluated using CE-TTE before and after 

adenosine infusion. The method has been previously described in detail 17. 

 
 

Coronary Flow Velocity Reserve Assessment 

All patients had Doppler recordings of the left anterior descending coronary artery with 

adenosine infusion at a rate of 0.14 mg/kg per min for 5 min 4. Cardiac drugs were not 

interrupted before testing, although all methylxantine-containing substances or medications 

were withheld 48 h before the study. CFR in the left anterior descending coronary artery was 

calculated, as the ratio of hyperemic to basal diastolic flow velocity, by an experienced 

echocardiographer, blind to angiographic and clinical data. For each variable in the CFR 

calculation, the highest 3 cycles were averaged 4. 

 
Statistical Analysis 

Data are expressed as mean ± SEM. Results from flow cytometry are expressed as cells per 106 

cytometric events. Comparison between 2 groups was performed with a 2-tailed Student’s t test. 

Correlations between 2 variables were assessed by Pearson’s coefficient (r). The variables 

included in the multiple linear regression analysis for the determinants of CFR were CPCs, 

EPCs, time from HT, diabetes, hypertension and hypertrophy. Statistical significance was 

accepted if the null hypothesis could be rejected at p<0.05. Data were analyzed with SPSS 

software version 13.0 (Chicago, SPSS, Inc., Chicago, Illinois). The authors had full access to 

and take full responsibility for the integrity of the data. All authors have read and agree to the 

manuscript as written. 

 

Results 

Circulating Progenitor Cells in Patients vs Controls 

Flow cytometry was used to determine the number of circulating peripheral blood progenitor 

cells (CD133+ and CD34+) and EPCs (CD34+KDR+, CD133+KDR+, and 

CD34+CD133+KDR+). Because only 0.02% to 0.07% of white blood cells were CD34+, EPCs 

and CPCs counts were expressed for one million cytometric events. CD133+ and CD34+ 

progenitor cells were reduced in HT recipients (p<0.05). In parallel, EPCs were profoundly 

reduced in HT patients (p<0.05) (Figure 1). 

 
Circulating EPCs in Patients With Microvasculopathy 

CFR was abnormal (<2) in 6 patients (group A) and normal in 23 patients (group B). Patients 

characteristics are presented in the Table. Briefly, all study subjects were nonsmokers, were 
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treated with statins at equivalent dosages and had similar systolic and diastolic blood pressure. 

Subjects were well matched for all other risk factors and for other determinants of CFR, 

including recipient age, donor age, gender mismatch and number of previous rejection episodes. 

There was no statistically significant difference between the two groups in any of the clinical or 

laboratory parameters studied. There was also no significant difference between groups in the 

time interval between initial transplantation and CFR measurement with EPCs isolation. CFR 

was lower in group A (1.5 ± 0.1 vs 3.3 ± 0.8, p<0.0001). CD34+KDR+, CD133+KDR+, and 

CD34+CD133+KDR+ cell count were lower in group A (p<0.05) (Figure 2). At multivariable 

analysis, adjusted for time from HT, diabetes, hypertension and hypertrophy, only CD34+-CPCs 

were independently related to CFR (β=-0.773, p=0.006). 

 

Endothelial Progenitor Cells in Endomyocardial Biopsies 

The number of CD34+KDR+ EPCs in biopsy sections tended to be lower in group A (p=0.06) 

and were correlated with circulating CD133+KDR+, and CD34+CD133+KDR+ counts 

(r=0.752, p=0.003 and r=0.513, p=0.05, respectively) (Figure 3). 

 

Detection of Recipient EPC in Gender-Mismatched Heart Transplantation Recipients 

Four subjects who had undergone gender-mismatched heart transplantation were studied using 

combined endothelial marker immunohistochemistry and FISH. The biopsy specimens from 

nontransplanted female subjects (used to test the sensitivity of the probes) showed 59.29 ± 5.9% 

of cells with the X-chromosome and no orange fluorescent signals indicative of the Y-

chromosome, whereas the biopsies of non-transplanted male subjects (positive male controls) 

showed a high percentage of cells with the Y-chromosome (69.71 ± 4.47%). No evidence of 

opposite-sex chimerism was detected in same-gender HT recipients (data not shown). To further 

characterize the potential angioblastic lineage of recipient endothelial cells in donor vessels, 

combined FISH for Y chromosome and CD34, and KDR staining was performed. Recipient 

male endothelial cells within female donor microvessels were positive for each of these markers 

(Figure 4). 

 

Discussion 

 

Our study demonstrates, for the first time, that human EPCs in the circulation and in the graft 

are significantly decreased in HT recipients with normal angiogram and microvasculopathy, 

defined as a severe impairment of CFR. We also show that CPCs and EPCs are reduced in HT 
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patients compared with healthy subjects, matched for age and gender. The reduction of 

circulating CPCs and EPCs in HT patients as compared to controls can be explained by the 

effect of immunosuppressive therapy. Immunosuppression in the setting of heart transplantation 

causes a severe reduction in progenitor cells capable of differentiating into endothelial and 

smooth muscle cells 18 which can be explained by the inhibitory effect of cyclosporine. 

Cyclosporine alters the proliferation, migration and differentiation capacity of endogenous 

vascular progenitors with consequences for allograft endothelial biology 18. Cyclosporine was 

seen to affect a range of vascular progenitor biologic functions. Cyclosporine has previously 

been shown to inhibit endothelial cell proliferation in the context of increased interleukin-6 

protein and mRNA expression19 and decreased nitric oxide production19. Other 

immunosuppressive drugs, such as mTOR inhibitors, can have a potent inhibitory effect on 

circulating vascular progenitor cells as well20. The in vivo effect of sirolimus has been also 

evaluating in a model of neointimal hyperplasia with bone marrow chimeric mice. Results 

suggest that sirolimus has a potent inhibitory effect on both smooth muscle progenitor cell and 

endothelial progenitor cell incorporation at the sites of vascular lesions 20. It was also observed, 

in the clinical setting of stent implantation, that oral administration of everolimus, a macrolide 

of the same family of sirolimus, results in delayed endothelial coverage over the stent surface 

with loose endothelial cell junction, although in-stent neointimal growth was suppressed 21. The 

immunosuppressive protocol we used in these patients also included a dose of steroids, which 

could have also altered progenitor cells number 18. To the best of our knowledge, we present the 

first data showing differential levels of circulating EPCs in subjects who have developed 

transplant microvasculopathy and a different engraftment of recipient endothelial cells into the 

donor microvasculature. It is possible that EPCs are mobilized from bone marrow of the 

recipient and engrafted into the donor coronary microcirculation during immunologic 

myocardial injury over time 15. Previous animal 22 and human data 10 support such an endothelial 

recruitment from the recipient circulation. In keeping with our findings, Simper et al. 10 provided 

evidence that circulating EPCs are decreased in patients with angiographic allograft 

vasculopathy compared with matched transplantation subjects without evidence of disease and 

that these cells are of recipient origin. In contrast, these authors also showed a significant 

seeding of recipient endothelial cells in large-vessel lumen and adventitial microvessel lumen of 

arteriopathic vessels. This result is not in contrast with our study maybe because the authors 

studied circulating and tissue EPC in patients with angiographic evidence of CAV. Although the 

study of chemokine and chemokine receptors is beyond our aim, a possible explanation for the 

EPCs reduction in patients with microvasculopathy may involve humoral factors that influence 
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mobilization, migration and cell survival as may happen in the context of chronic low grade 

rejection 15. Recently, it has been demonstrated that apoA-I transfer increases the number of 

EPCs in hypercholesterolemic apoE-/- mice, enhances the incorporation of bone marrow-

derived EPCs into transplanted arteries in apoE-/- mice, promotes endothelial regeneration, and 

attenuates neointima formation in a murine model of allograft vasculopathy 23.. Soluble Kit-

ligand induces the release of stromal cell-derived factor (SDF)-1 from platelets, enhancing 

neovascularization through mobilization of CXCR4+ progenitors 24. Using a mouse aortic 

transplantation model, some authors showed that SDF-1 is a critical molecular target for the 

progenitor homing. In support of a functional role for these molecules, in vivo neutralization of 

SDF-1 inhibited stem cell homing 24. This confirms that bone marrow is the main source of stem 

cells participating in endothelial repair after alloimmune-induced endothelial loss in grafted 

vessels. However, it was also reported that a large proportion of EPCs in circulating blood is of 

non-bone marrow origin. For example, the spleen, some parenchymatous organs and the blood 

vessels themselves are particularly rich in EPCs 24. It has been recognized that EPCs number 

may be a surrogate marker of vascular function. Some authors showed an inverse correlation 

between the circulating EPCs and endothelial dysfunction or cardiovascular risk 9. Our findings 

showing EPCs number reduction in HT patients with microvascular dysfunction are consistent 

with these data and extend to allograft vasculopathy the concept of abnormal EPCs mobilization 

and homing in the presence of microvascular disease. 

 

Study limitations 

This study has certain limitations. First, there is a lack of consensus in the field of EPCs 

research regarding the precise definition of this cells. We accordingly quantified cells with 

phenotypes which have been frequently used to define EPCs in clinical cardiovascular studies. 

However this study shares with existing literature a lack of mechanistic certainty regarding the 

identity of the most important specific cell type involved in vascular repair. It therefore remains 

possible that there are other cell populations with EPC properties which were not identified 

using our immunophenotyping techniques. Another limitation is that biopsies and blood 

samples for EPCs counts were not simultaneous. However, we can speculate that EPCs present 

in the biopsies of the first year could also be found in the next years of follow up. In support of 

this concept, it has been demonstrated by our and other groups that the recruitment of EPCs to 

sites of endothelial injury or dysfunction in the transplanted heart is an ongoing process 10,15. It 

is conceivable that EPCs are recruited early and late. We can specualate that EPCs may be 
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continuously engrafted to areas of donor endothelial dysfunction in a cycle of continuous repair 

and in the context of ongoing alloimmune interactions. 

 

Conclusions 

EPCs are decreased in the circulation and in the graft of HT patients with microvasculopathy. 

Cells mobilization and engrafting after HT seem to preserve microvascular function. Our 

findings may be crucial in understanding the pathogenesis of allograft vasculopathy and in 

establishing new strategies for therapeutic intervention. If we could learn to control chimerism, 

it might be possible to delay or prevent this disease, which is the most common cause for failure 

of transplanted hearts. However, further studies are warranted to elucidate the nature and 

mechanism of circulating EPCs participation in CAV pathophisiology. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: EPCs in HT recipients and controls. Heart transplant patients have lower levels of 

circulating endothelial progenitor cells when compared to control subjects. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: EPCs in HT patients. Levels of endothelial progenitor cells in heart transplant 

patients divided according to CFR with cutoff of normality (CFR<2). 

 

 

 



 135

Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: KDR positive cells on monitoring endomyocardial biopsies. Brightfield 

micrographs representing: a)Circulating KDR+ endothelial progenitor cells in the myocardium 

interstitium (black arrows). Original magnification 320X; b) close up view of KDR+ endothelial 

progenitor cells (black arrow). Original magnification 600X. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Recipient endothelial progenitor cells. a) Brightfield micrograph chromogenic in 

situ hybridization for Y-chromosome. Recipient male endothelial cell (black arrow) within 

endomyocardial biopsy tissue showing Y-chromosome (brown punctate dot in the blue nuclei) 

and positive for endothelial progenitor marker CD34 staining (red cytoplasm). Original 

magnification 64X. The inlet represent a close up view of Y-chromosome positive cell; b) 

Confocal photomicrograph depicting fluorescence in situ hybridization (FISH) for X/Y 

chromosome showing the presence of two male progenitor endothelial cells (yellow square) in 

the endomyocardial biopsy vessel. Cells has one Y-chromosome (red dot) and one X-

chromosome (green dot). Original magnification 40X;c) CD34 staining on the same biopsy. 

Note as the male progenitor Ychromosome positive cells (yellow square) are CD34 positive. 

Original magnification 40X. 
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Conclusion  
 

The body of evidence collected up to date, clearly indicates that an impairment of endothelial 

function has profound and independent prognostic implications associated with cardiovascular 

events 84-86. Nevertheless, it has to be noted that at present, there is still a void in a prospective 

randomized trial, which demonstrates that improvement of endothelial function is associated 

with a reduction in cardiovascular events and attenuation of the disease process. The ongoing 

prospective studies analyzing the additive value of standardized endothelial function 

measurements to predict cardiovascular risk, such as the PREVENT-it study, should provide 

important insights 87. 

Currently there is also no gold standard treatment for endothelial dysfunction, however several 

pharmacological and non pharmacological approaches have been proved to be effective like 

statin, ACE inhibitors, physical exercise and so on. Endothelial dysfunction can be regarded as a 

syndrome that exhibits various systemic manifestations associated with significant morbidity 

and mortality rather than a localized vascular disorder. The concept of endothelial dysfunction 

should be extended beyond the conduit vessels into the vascular wall and even to the bone 

marrow and the progenitor endothelial cells. The clinical correlation between certain markers of 

inflammation and an increased rate of cardiovascular events represents an intriguing 

confirmation of the inflammation-derived endothelial injury framework. This concept has been 

nicely illustrated by a recent study in patients with chronic periodontitis. Indeed, after intense 

treatment of periodontitis associated with chronic inflammation, endothelial dysfunction was 

substantially improved, strongly suggesting that chronic inflammation promotes endothelial 

dysfunction 88. These findings have further stimulated interest in investigating mechanisms that 

underlie endothelial dysfunction and, more specifically, reduced NO availability 89. 
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Current molecular data link aging, diabetes, endothelial dysfunction, inflammation, traditional 

atherosclerosis but also cardiac allograft vasculopathy. Indeed, common mechanisms underlying 

these conditions have been described suggesting a detrimental role of ROS.  

Vascular biology successfully brought together basic and clinical sciences unmasking the key 

unifying role of oxidative stress in endothelial dysfunction and vascular inflammation. We 

believe that future efforts should be finalized to translate our current knowledge into the 

development of new therapeutic strategies to prevent, diagnose and cure atherosclerotic 

cardiovascular disease and the allograft vasculopathy of transplanted hearts. 

With this motivation I have been working on my PhD for the past 3 years 

 
Future perspectives 

 

All forms of cardiovascular disease show higher frequency with age, even in the absence of 

cardiovascular risk factors 90-92. These observations prompted research efforts to focus on the 

vascular biology of aging to define mechanisms that may underlie the increased risk conferred 

by aging per se. Recently, in view of its reported role in determining the redox state of the cells 

and their responses to free radicals, we investigated the age-related endothelial dysfunction in a 

JunD deleted mouse model. 

There are quite common diseases, such as psoriasis and primary hyperparathyroidism, 

proven to be at increased risk for cardiovascular mortality, however poorly understood on a 

cardiovascular point of view. As a consequence these diseases still have inappropriate screening 

and diagnosis of associated cardiovascular complications as well as risk factors assessment, 

inadequate patient counselling and follow-up protocols.  

We though to evaluate coronary microcirculatory function in psoriasis and primary 

hyperparathyroidism to investigate the earliest steps involved in the pathophysiology of 

cardiovascular diseases associated to such diseases.  
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The following are preliminary data collected so far regarding the above mentioned ongoing 

projects. 
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Enhanced age-related endothelial dysfunction in genetic deletion of 

JunD 

Background: JunD is a transcription factor that regulates genes involved in antioxidant defense. 

This study aimed to investigate whether JunD deficient mice (JunD-/-) are more prone to age-

related, oxidative stress-mediated endothelial dysfunction in comparison to age-matched wild 

type (WT) mice.  

 

Methods. Thoracic aortic rings from young (3 months old), middle aged (6 months old) and old 

(22 months old) male JunD-/- and WT mice were suspended for isometric tension recording. 

Endothelium-dependent relaxation to acetylcholine (Ach, 10-9-10-6mol/L) was assessed after 

submaximal contraction with norepinephrine (10-6mol/L). Calcium ionophore stimulated nitric 

oxide (NO), superoxide anion (O2
-) and peroxynitrite (ONOO-) were measured with 

electrochemical nanosensors placed near the surface (5±2 µm) of a single endothelial cell. 

 

Results. The age-associated impairment of endothelium-dependent relaxations to Ach (Ach, 10-

9-10-6 mol/L) was significantly enhanced in JunD-/- as compared to age-matched WT. Maximal 

relaxations were 55±5 vs 78±4% at 6 months and 39±3 vs 50±2% at 22 months for JunD-/- and 

WT mice, respectively (n=6-8, p<0.05 vs age-matched group). Endothelium-independent 

relaxations to sodium nitroprusside (10-10-10-5 mol/L) did not differ in JunD-/- and WT of 

different age groups (n=6-8, p<NS). Age-induced decrease of NO production was higher in 

JunD-/- as compared with WT (475±32 vs 350±28 nmol/L and 358±26 vs 220±23 nmol/L for 6 

and 22 months old WT and JunD-/-, respectively; n=3-5, p<0.05 vs age-matched group) 

(Figure1). O2
- and ONOO- generation increased with age in WT and more significantly in JunD-/- 

mice (O2
-, 67±6 vs 103±8 nmol/L and 116±9 vs 210 ±16 nmol/L (Figure2).; ONOO-, 224±17 vs 

319±22 nmol/L and 313±21 vs 492±29 nmol/L for 6 and 22 months old WT and JunD-/-, 
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respectively; n= 3-5, p<0.05 vs age-matched group. eNOS and MnSOD protein expression was 

downregulated in JunD-/- mice as compared with WT controls (n=3-5, p<0.05 vs age-matched 

group). Relaxations to Ach in JunD-/- mice were restored by free radical scavengers superoxide 

dismutase (SOD) (150 U/ml) and catalase (1200 U/ml). 

 

Conclusion. Our results indicate that JunD protects against vascular oxidative stress providing 

new insights into the pathophysiology of age-associated endothelial dysfunction. 
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Figure2 
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Coronary microvascular dysfunction in Primary 

Hyperparathyroidism patients: a hint for their incr eased 

cardiovascular risk. 

 

Background: Primary hyperparathyroidism (pHPT) increases the risk for myocardial infarction 

(MI). We evaluated coronary flow reserve (CFR) by transthoracic Doppler echocardiography 

(TDE), as an index of coronary microvascular function, in pHPT. 

 

Methods: 100 pHPT patients (pts) (80 F, aged 58±12 years) without clinical evidence of heart 

disease, and 50 controls matched for age and gender were studied. Coronary flow velocity in the 

left anterior descending coronary artery was detected by TDE at rest and during adenosine 

infusion. CFR was the ratio of hyperaemic diastolic flow velocity (DFV) to resting DFV. A 

CFR ≤2.5 was considered abnormal. The median time from pHPT diagnosis was 6 months 

(range 1-109). 

 

Results: In pHPT pts, CFR was lower than in controls (3.0±0.8 vs 3.6±0.7, p<0.0001) (Figure 

A). CFR was ≤2.5 in 27 (27%) pts compared with controls (4%) (p<0.0001). CFR was inversely 

related to parathyroid hormone (PTH) levels (Figure B). In pts with CFR ≤2.5, PTH was higher 

(410 ±95 vs 207±16 ng/L, p=0.01) while calcium levels were similar (2.7±0.2 vs 2.9±1 mmol/L, 

p=0.7). At multivariable linear regression analysis adjusted for age, gender and cardiovascular 

risk factors, PHT and age were the only determinants of CFR (PHT β=-0.230, p=0.03; age β=-

0.272, p=0.01 respectively). At multiple logistic regression analysis only PHT increased the 

probability of CFR ≤2.5 (OR 2.5, p=0.03). Out of 27 pHPT pts with pre-operative CFR ≤2.5, 9 

pts were evaluated 6months after parathyroidectomy and all surprisingly showed a complete 

CFR normalization (CFR 2±0.4 vs 3.2±0.9 p<0.0001, respectively).  
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Conclusions: Coronary microvascular function is impaired by pHPT and quickly restored after 

parathyroidectomy. PTH independently correlates with abnormal CFR, suggesting a negative 

effect on coronary microcirculation that may contribute to the increased cardiovascular risk of 

pHPT. 
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Psoriasis Impairs Coronary Flow Reserve: new Insights into the 

Clinical Value of Early Coronary Microvascular Dysfunction 

 
Background:Psoriasis (Ps) is a recently recognized independent determinant for myocardial 

infarction (MI), associated with cardiovascular risk factors.We investigated whether coronary 

flow reserve (CFR), an index of coronary microvascular function, was impaired in young 

patients with Ps and the relationship between clinical markers of Ps activity and coronary blood 

flow abnormalities. 

 

Methods: 56 patients (pts) with Ps (42 M, aged 37±7 years) without clinical evidence of heart 

diseases, and 48 controls matched for age and sex were studied. Coronary flow velocity in the 

left anterior descending coronary artery was detected by transthoracic Doppler 

echocardiography at rest and during adenosine infusion. CFR was the ratio of hyperaemic 

diastolic flow velocity (DFV) to resting DFV. A CFR ≤2.5 was considered abnormal. Mean 

time from diagnosis of Ps was 17±7 years. 

 

Results: In pts with Ps, CFR was lower than in controls (3.2±0.9 vs 3.7±0.7, p=0.02). 

(Figure1A) CFR was abnormal (≤2.5) in 12 pts with Ps (22% vs 0% controls, OR 1.27, 

p<0.0001). Moreover, in CFR ≤2.5 pts Psoriasis Area Severity Index (PASI), a clinical grade of 

Ps severity, was higher (11±6 vs 7±3, p=0.006) and duration of the disease was longer (13±6 vs 

9±5 years, p=0.03). (Figure1B) The highest probability for patients with psoriasis to have a CFR 

<2.5 occurred in those patients with higher PASI (Figure2) At multivariable analysis adjusted 

for age, smoke, hypertension and gender, PASI was the only determinant of CFR ≤2.5 (p=0.03). 

 

Conclusions: CFR is often reduced in pts with Ps, suggesting a preclinical coronary 

microvascular impairment. This microvascular dysfunction seems to be related to the severity, 
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extension and duration of Ps. Our findings may explain the increased risk of MI conferred by 

Ps. 

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 
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