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Abstract

This thesis addresses the problem of localizing a vehicle in unstructured en-
vironments through on-board instrumentation that does not require infras-
tructure modifications. Two widely used opto-electronic systems which al-
low for non-contact measurements have been chosen: camera and laser range
finder. Particular attention is paid to the definition of a set of procedures
for processing the environment information acquired with the instruments
in order to provide both accuracy and robustness to measurement noise.
An important contribute of this work is the development of a robust and
reliable algorithm for associating data that has been integrated in a graph
based SLAM framework also taking into account uncertainty thus leading
to an optimal vehicle motion estimation. Moreover, the localization of the
vehicle can be achieved in a generic environment since the developed global
localization solution does not necessarily require the identification of land-
marks in the environment, neither natural nor artificial. Part of the work
is dedicated to a thorough comparative analysis of the state-of-the-art scan
matching methods in order to choose the best one to be employed in the so-
lution pipeline. In particular this investigation has highlighted that a dense
scan matching approach can ensure good performances in many typical en-
vironments. Several experiments in different environments, also with large
scales, denote the effectiveness of the global localization system developed.
While the laser range data have been exploited for the global localization, a
robust visual odometry has been investigated. The results suggest that the
use of camera can overcome the situations in which the solution achieved by
the laser scanner has a low accuracy. In particular the global localization
framework can be applied also to the camera sensor, in order to perform a
sensor fusion between two complementary instrumentations and so obtain a
more reliable localization system. The algorithms have been tested for 2D
indoor environments, nevertheless it is expected that they are well suited
also for 3D and outdoors.

vii



viii

Sommario

La tesi affronta il problema della localizzazione di veicoli in ambienti non
strutturati mediante sistemi di misura che, montati a bordo del veicolo, non
richiedono modifiche dell’ambiente di navigazione. La scelta è ricaduta su
due strumenti opto-elettronici largamente utilizzati, camera e Laser Range
Finder (LRF), i quali consentono di effettuare misure senza contatto e quindi
non intervenire sull’ambiente. Particolare attenzione è stata posta alla
definizione di una serie di procedure per l’elaborazione dei dati acquisiti
da questa strumentazione al fine di ottenere delle informazioni affidabili
e robuste alle sorgenti di rumore ambientali. Un importante contributo
di questo lavoro è lo sviluppo di un procedura di associazione robusta ed
affidabile che consente di tener conto di tutti gli aspetti probabilistici in
maniera tale da poter essere utilizzata in un algoritmo di localizzazione
globale SLAM basato sulla teoria dei grafi e fornire una stima ottimale del
moto del veicolo. Inoltre, la localizzazione del veicolo può essere eseguita in
un ambiente generico dato che questo metodo di localizzazione globale non
richiede l’identificazione di caratteristiche particolari nell’ambiente. Parte
del lavoro è stata dedicata ad un’analisi esaustiva dei metodi di stima del
moto fra scansioni laser, allo scopo di identificare il metodo con prestazioni
migliori da impiegare nel metodo di localizzazione. Questo ha consentito di
evidenziare come un metodo di comparazione denso permetta di ottenere
buone prestazioni in diverse tipologie di ambiente. L’efficacia del metodo di
localizzazione globale implementato è supportata da una serie di valutazioni
sperimentali in diversi ambienti, anche di elevati dimensioni. Riguardo alla
camera, è stato sviluppato un metodo robusto di visual odometry, il quale
ha evidenziato come tale strumento permetta di affrontare delle situazioni
nelle quali le informazioni del laser non sono sufficienti per stimare la posa
del veicolo. In particolare, data la generalità del metodo di localizzazione
globale, questo può essere facilmente applicato anche alla camera, al fine
di ottenere la fusione di informazioni fra due strumentazioni complementari
e quindi ottenere un sistema di localizzazione più affidabile. Gli algoritmi
sono stati testati in un ambiente indoor bidimensionale, ma si prevede che
possano essere utilizzati anche in ambienti tridimensionali e outdoor.
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Chapter 1

Introduction

The mobile robotics has been for several years confined in industrial and few
cutting-edge applications. The main reason and limitation was the working
scenario: to ensure the complete governance of the robot, the environment
had to be controlled and perfectly known. Only in some really particular
applications, such as unmanned planetary rover this limitations have been
dealt using also the human intervention.

Nowadays, thanks to the large amount of research results in the lasts
two decades, the mobile robotics is no more confined in the industrial and
space applications but now includes also a new field, the service robots.
The service robots field, in addition to being a new market in continuous
expansion [1], gives also the opportunity to test new methods and algorithms
that in future can be applied also to more critical fields, like the industrial
and spatial ones. Though this application field may seem simple, it must
deal with a general scenario, human interactions and less restrictions on the
environment knowledge. These arguments become relevant in the mobile
robotics field: the robots can navigate in the environment without rigid
connections while instead a classic manipulator is strictly constrained to the
environment.

Mobile robots must deal with a large variety of environments. Fur-
thermore, the environment can also change with time and usually it is not
possible to place sensors in it. This leads to a mobile robot that must be
able to collect information from the environment and so navigate by using
only the data from on-board sensors. Additionally it must be able to cope
with variations in the environment. The variations covered may be not of
any type, their time scale must be related also to their importance. While is
reasonable that a man or another vehicle might moving in the environment,
more important mutations like the environmental framework must have a
slight dynamic.

On the one hand this means that during the navigation task the robot
has to explore the environment or using information previously achieved by
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2 CHAPTER 1. INTRODUCTION

taking care of the environment variations. On the other hand, once that
the robot is capable to perform these operations, it means that it would
be able to navigate in a general scenario. The importance of this aspect
has been also emphasized in the Strategic Agenda for Robotics in Europe
[2] in which, as depicted in Figure 1.1, the exploration and inspection task
has been chosen as one of the macro-applications. It must be aware that
this classification is very restricted to single applications: for instance also
the logistic robotics needs a navigation with similar requirements than the
exploration. In the same image is also noticeable that in all the sectors
there is the need of mobile robots able to localize themselves in an unknown
environment.

Space

Secur it y

Domest ic
Ser vice

Pr of essional
Ser vice

Indust r ial

Sect or s

Robot ic
Wor ker sAppl icat ion

Scenar ios

Robot ic
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Robot s f or
sur veil l ance
& int er vent ion

Robot s f or
expl or at ion &
inspect ion

Edutainment
r obot s

Figure 1.1: Robotics application scenarios in the different service sectors [2].

The generic considerations reported so far are useful to introduce the
topic of the thesis, which is the motion measurement by opto-electronic
systems. Being more specific, the motion measurement here is meant as
the localization of an unmanned vehicle, but also the detection of objects
in the environment and their localization with respect to the vehicle: even
though they seems to be very different, it must be highlighted that the basic
framework is very similar.

Strictly connected to the requirements of navigation in an unknown en-
vironment is the choice of opto-electronic sensors. Their main advantage
is that they permits non-contact measurements and they can be easily fit-
ted also in small vehicles. In addition, by selecting the appropriate sensors,
they can return information on the surrounding environment, without re-
quiring its modification. It should be pointed from the outset that they
can provide only partial information, no matter how accurate or reliable
they are. Moreover, the motion measurement must be inferred from these
limited information. This is probably one of the limiting problems of these
instrumentation.

With reference to the vehicle localization, when are used sensors able to
collect information on the surrounding environment, and these information
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are recursively used to estimate the vehicle position, the reference problem
is called Simultaneous Localization And Mapping (SLAM). This is a well
known problem that theoretically allows to achieve the best estimation of
the pose vehicle in a scenario without a priori knowledge of the environment.
As evidence of its importance there is the huge amount of scientific works
produced on this topic in the last decade. Against of all the works done in
this field and the results obtained, as will be explained further, there are
still some key points that require to be investigated, in order to consider the
SLAM problem as solved. One of these is the data association: indeed, also
the SLAM is based on recursive matching of environmental measurements.
Due to the fact that these one are partial information and additionally the
environment might undergo mutations, a reliable data association procedure
is needful.

The work done for the thesis is based on these premises. The sensors
used are a 2D laser range finder (LRF) and a camera: also if very different,
both are opto-electronic sensors, capable to collect information from the
environment. Particular attention was paid in modelling the uncertainties
involved in the phase of matching the environmental measurements. The
measurement uncertainty is propagated in the overall procedure up to the
final motion estimation.

In addition, a more detailed investigation has been performed on the
localization with laser range finder, in order to understand in which manner
use the data acquired from the sensors and to build a reliable localization
system used in the benchmark of the camera localization results. In this way
it is possible to obtain a weighted estimation using the information available
in a optimal sense. The present work is organized in three parts, starting
from the theory and the literature review on mobile robot localizations,
passing trough the proposed algorithm and ending with the experiments
investigation and validation of the algorithms.

In the first part (Chapter 2) is reported a more detailed descriptions
of the thesis topics briefly reported in this introduction. In addition it is
possible to find a review of the related scientific works in literature.

In the second part (Chapter 3) are defined formally the approaches and
algorithms implemented for the vehicle localization. In particular it is de-
scribed the data organization and the data processing.

In the third and last part are briefly introduced the instrumentation used
and the results (Chapter 4), and finally (Chapter 5) the conclusions.
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Chapter 2

Review of the Literature

In this chapter is introduced a more detailed description on the three main
topics of the thesis: the processing of the information acquired from the en-
vironment, the data association and the incremental and global localization
approaches. For each point is also reported a literature review on the most
relevant scientific works. The aim of this survey is to understand deeply the
problems, the evolution of the methods used in its solution and to verify the
possibility to improve or design alternative methods with a more suitable
and accurate formulation.

2.1 Environment Information Processing

The aim of the thesis is to measure the motions of an agent, in this partic-
ular case an Automated Guided Vehicle (AGV), through an unknown envi-
ronment by processing the information collected from the environment. As
reported in the introduction, to achieve the localization in a generic envi-
ronment, there are strong limitations on the sensors. The instrumentation
used have to fulfil two simple rules:

• all the components of the sensors must be fitted on the vehicle.

• the sensors operating principle has not to require the modification of
the environment.

Although these constraint appear simple to be met, only few categories of
instrumentations can be used and just a small number of sensors for each
category are suitable. As already mentioned, the opto-electronic systems
like laser range finder and camera are the most indicate. In the last two
decades several scientific works in literature have proved their worth. There
are also other sensors that meet the requirement, one for all the odometric
reconstruction with encoder on wheels. The main drawback in this case is
that they allow only a dead reckoning localization with well known problems

5
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in terms of error drift in the vehicle pose estimation, due to the not perfect
modelling of the wheel and its contact with the ground. In addition the
odometric reconstruction can be done only on wheeled vehicles: currently it
is not a big deal but probably in the future it will be a strong limitation.

Opto-electronic systems instead can retrieve more information on the
surrounding environment that can be used in the localization; also regards
on the vehicle kinematic they have few limitations. Their main drawback is
instead in the measurement, since they did not return a direct information
of the motion but this one has to be inferred from the retrieved data. This
is the first problem to solve: how to extract from the environment, or rather
from its sensor representation, useful information for the vehicle localization.
This choice is not an end in itself, because also the implications on the two
other main aspects, the data association and the localization, should be
considered. For this reasons, before to disclose the methods implemented,
it is better to give an overview on the literature works done until now.

Prior to talk about specifically on the sensors it is also better to define the
kind of scenario used. The scenario can be defined using different criterion:

• structured or unstructured environment

• a priori knowledge of the environment

• environment geometry

• outdoor or indoor environment

As already mentioned in the introduction, the aim to localize the vehicle
in the more general kind of scenario. This means that the scenario will be
unstructured, or rather an environment with a not well defined structure,
which may be subject to mutations. The second criterion in case of unstruc-
tured environment is in some way already defined: it is not possible to have
a priori knowledge of the environment when it is not structured. Another
important criterion is the environment geometry. If the environment can be
represented with a set of basic geometric shapes, it can also be described in
terms of this geometrical characteristics: on the contrary, for its definition
it must be used a more general procedure. The last classification is based
on outdoor or indoor environment. In this thesis it has been chosen to work
in an indoor scenario, mainly because it is more easy to control and check
the results. However it can be said that if the outdoor scenario allows to
use in an efficiently manner the opto-electronic systems, the algorithms and
approaches developed here can be used also in this situation.

With this premise is possible now to proceed in the analysis of the state
of the art of the sensors used, the laser scanner and the camera.
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2.1.1 Laser scanner

There are several nomenclatures to identify this type of sensors, laser scan-
ner, Laser Range Finder (LRF), Light Detection And Ranging (LIDAR): all
the nomenclatures try to define in few words its working principle. The key
concept is the estimation of the Time of Flight (TOF) of the laser beam path
from the emitter to the illuminated target and back to the detector. Because
of in common laser scanner, for the time measurement, is used a pulsed light
emission, the method is classified as Pulsed Modulation (Figure 2.1), that
is in contrast with the Continuous Wave Modulation used instead in other
instruments (like the TOF Cameras). The configuration with one emitter

Figure 2.1: Graphical representation of a TOF sensor with a Pulsed Modu-
lation scheme.

and one detector returns the measure of distance of a single point: in order
to collect information from the the environment it is not enough. For these
reason in the early 90s has been introduced Cyclone [3], the first laser scan-
ner capable to recover a bi-dimensional profile of the environment suitable
for the use in vehicle localization. The main component is again a couple of
laser emitter and detector, but thanks to a rotating mirror, the laser beam
can be pointed in different direction. The novelty of this approach was the
high rotational velocity of the mirror: in this way the effects of the time-
delay between the measurements is minimized. Moreover the effectiveness
of this solution is confirmed by the fact that almost all the current laser
scanners use the same principles (Figure 2.2(a)). Further improvements has
led to laser scanners capable to acquire three-dimensional information from
the environment, as the one depicted in Figure 2.2(b).

In the algorithms implemented for the thesis it has been chosen to use
a bi-dimensional laser scanner, though, has previously reported, nowadays
already exist instrumentation that can return three-dimensional data. This
choice requires some justifications, because is mandatory to ask why do not
use sensors that can return more information on the surrounding environ-
ments. The answers to this question are several. By figuring out the possible
targets for the localization procedure proposed, in most of them the vehi-
cle motion can be considered as planar. In this case there is not the need
to use more data in addition to those provided by bi-dimensional sensors.
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(a) Sick Laser scanner (2D) (b) Velodyne Laser scanner (3D)

Figure 2.2: Laser scanner commonly used nowadays: a bi-dimensional
industrial-grade laser scanner in which is visible the spinning mirror for
a 180◦deg field of view (a) and a three-dimensional outdoor laser scanner in
which there is an array of basic sensors that rotate together for a 360◦deg
field of view (b).

On the other hand, by using a bi-dimensional laser scanner, there is a lack
of information outside the plane defined by the laser beams: it is possible
to take care of it by using an additional camera, as reported in the Sec-
tion 2.1.3. Furthermore, as reported in the introduction, the SLAM is not
yet a completely closed problem in its bi-dimensional formulation and there
is still work to do in order to define the SLAM as a fully reliable solution,
also in the bi-dimensional case. In addition the algorithms and approaches
used in the bi-dimensional formulation can also be used, with the necessary
modifications, in the three-dimensional field.

2.1.1.1 Motion estimation with laser scanner

The motion estimation using a laser scanner is the key-point to achieve to
the localization of a mobile robot, as will be explained in the Section 2.3.
The localization can be defined as a main procedure that requires subrou-
tines: one of the most important is the motion estimation from the sensors,
the laser scanner in this case. The aim of the vehicle localization is to esti-
mate, for a planar motion, its pose X, composed by position and attitude
X = [x, y, θ]> referred to the environment reference frame Σenv. Using laser
scanner, at each vehicle pose is possible to acquire a measure of the environ-
ment, commonly defined as scan q, which consists in a set of ordered points.
The scan acquired from the laser in two different vehicle poses X1 and X2,
can be used to estimate the laser motion by matching the two observations
(Figure 2.3). For this reason the operation is called scan matching. Because
of the laser is rigidly connected to the vehicle, also the vehicle pose variation
is known.
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Figure 2.3: Graphical representation of the motion estimation H with laser
scanner between two vehicle poses X1 and X2 by observing the q1 and q2

scans acquired.

More in general the scan matching can be defined as the procedure that
allows to obtain the estimation of the planar transformation H between two
vehicle poses or the vehicle pose and a map. A map is defined as synthetic
representation of a known environment: the type of data stored are strictly
related to the approach used in the scan matching. As it is possible to figure
out, there are several approaches to match the scan, and the key for a fast
reliable and accurate localization is hidden behind too this selection.

Analysing the most important works in literature, it can be discerned
two main categories:

• Feature based scan matching.

• Dense scan matching.

This classification is based on the type of data used in the planar transforma-
tion solution. A feature based approach actually require two steps. The first
one is the identification in the environment of natural landmarks, defined
features, and their parametrization, in both the scans. In the second step,
the features identified in the two scans are associated in order to perform
the scan matching. Unlike the feature based approaches, dense matching
approaches do not need to identify and describe features, since the whole
scan is used to provide the solution at the scan matching problem.

These categories are well known from the very early literature works on
vehicle localization by using laser scanner. One of the first implementation
of a scan matching approach was the Cox [4] application to an experimental
autonomous cart in the 90s, in which he used a dense matching approach.
Few times later, a similar approach was also applied by Gonzalez [5] in a
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more formal manner. On the same year Shaffer proposed a feature based
method for underground mine vehicle navigation [6] and also a first com-
parison between the two categories of approaches [7]. After this first intro-
duction of the features, the successive publications go ahead in parallel by
keeping this classification. In all these applications the scan matching uses
a priori known map in order to perform a global localization (Section 2.3):
the further step was the matching between two laser scans in order to avoid
the map knowledge limitation. From the side of the feature based approach,
the works of Arras [8] and Einsele [9] start to deal with the problem of the
localization and unique description of features. In parallel, also the dense
matching approaches were applied between two laser scans: a remarkable
work was done by Lu [10], in which was explicitly introduced a closed form
solution for the scan matching. As prove of the importance of this new
methods, Gutmann in [11, 12] performed again a comparison of these two
main approaches, also by studying the influence of the noise in the laser
measurements.

At the same time, new procedures to associate data between two scans
has been introduced, but more or less this new approaches were the evolution
of the Iterative Closest Point (ICP) used in the Besl [13] and Zhang [14]
articles. The aim of these implementations was to improve the robustness
of the ICP approach, like in the approach implemented by Montesano [15].

In the further years there were released essentially refinements of all these
techniques, by introducing probabilistic aspects in the feature identification
and in the data associations for both the approaches and by improving their
performances for real time applications. Relevant results on probabilistic im-
provement are described in the Jensfelt article [16] and in the Censi works:
in [17] he reported a very accurate closed form uncertainty estimation of a
generic ICP approach, while in [18] is described how to estimate the uncer-
tainty lower bound from the map of a known environment.

Since the features used until nowadays are based on segments identifica-
tion in the scan (for a detailed description see Section 3.5.3), there are a lot
of references also on this topic. While Diosi [19] perform a complete discus-
sion on line uncertainty in Hesse Plane and a complete analysis of the laser
scanner sources of noise, the work of Nguyen [20] and Martinez-Cantin [21]
deal with the accurate segments identification. In the former it is possible to
find an useful investigation on the performances of the most used algorithms
to extract segments, while on the latter it is proposed a new procedure for
the segments identification in a fully parametric way.

With regards to the dense matching approaches, the improvements were
few. A remarkable work has been done by Censi [22] which, instead of using
a classical scan matching with points, he introduced a scan matching based
on the environment shape. In addition, in the last decade, another category
of dense matching approaches, based on the polar representation of the scan,
has been in introduced. A relevant work in this field is the Diosi one [23].
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2.1.2 Camera

Cameras are nowadays largely used as measurement system in several ap-
plications, mainly to measure or reconstruct the three-dimensional shape of
objects in the camera field of view. These kinds of applications are usually
carried out using artificial markers or by working in controlled scenarios
and, additionally, using more than a camera. In the last decade, thanks to
some remarkable scientific works, this limitations has been overcome. It is
possible to find applications capable to reconstruct the surrounding environ-
ment without the use of artificial landmark and without a priori knowledge
of camera positions.

The most important motivation to use the camera as a measurement
system is due to the large amount of information that this sensor can re-
turn. With a single shot a camera is capable to return a representation of all
the visible surrounding with information on colour, textures and shadings.
Its main drawback is that in order to represent the three-dimensional world
in the bi-dimensional domain of the image it is required a projection. As
will be explained in the further sections this is an irreversible transforma-
tion. The system of equations that this projection defines is undetermined:
it can return only an infinite set of solutions known up to the scale fac-
tor (Section 2.1.2.2). The problem is resolvable by adding constraints to
the problem: the most used one is the addition of another camera in or-
der to resolve the scale factor ambiguity by using the cameras in a stereo
configuration. A noticeable applications of this approach is the Mars Ex-
ploration Rovers navigation systems, based on the Navcam stereo-camera
(Figure 2.4). In this thesis it has been decided to not use the solution of

Figure 2.4: Picture mosaic from the Curiosity Navcam.

stereo-camera. For several reasons, reported in the Section 3.5.1, it is more
advisable the use of only one camera.

2.1.2.1 Motion estimation with camera

The motion estimation using only a camera has been really improved in the
last few years. This aspect is particular interesting: indeed the most im-
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portant formulations to model the camera and its transformations are well
known from more than 30 years. The main problem in the application of
these approaches was the computational cost to process the large amount
of information in each single image, and the lack of reliable image features
detectors. Like in the laser scanner data, also in this case there is a duality
on the approaches used to infer information from the images. As already
mentioned the first one is based on the features detection and their succes-
sive association; the other approach is the dense reconstruction. Differently
from the laser scanner these approaches, especially for the motion estima-
tion, were not developed in parallel. Most of the works was focused on
the features: indeed the dense approach is still called reconstruction, that
is related to the classical procedure to use camera in the reconstruction of
three-dimensional shapes.

In this section, are reported the most relevant scientific works, not only
in the specific application of mobile robot localization, but in a more general
scenario. A useful and complete survey on this approaches can be found in
the Scaramuzza and Fraundorfer tutorials [24, 25]. Actually the approaches
are categorized in Visual Odometry and Visual SLAM. Really interesting
works in this last category were presented by Davison [26] and Chli [27].
In their publications is possible to find a complete argumentation of the
visual SLAM with a camera, starting from the feature extraction to the
map building: all these procedures are carried out by using a full covariance
approach to estimate the motion uncertainty. Another interesting work is
[28], in which is explained how it is possible to reconstruct the structure and
the motion of a camera across multiple views by identifying the edges in the
images.

Scientific works more focused on vehicle localization are [29], that is one
of the early work applied on vehicles motion estimation, Mouragnon [30]
and Konolige [31] one: they are relevant because they work in a complete
unknown and very large environment, reporting good results. In conclusion,
is possible to mention also the works proposed by Ortin [32] and Scaramuzza
[33], in which is introduced the robust estimation in the association phase
(for a detailed description see Section 3.6).

2.1.2.2 Epipolar geometry

The estimation of the motion of a camera, as reported previously, can be
performed in several ways. In any case all the methods that use a camera
have to deal with the mathematical and geometrical description of the image
formation and the formulation of the multiple view geometry. For this reason
in the further paragraphs it will be introduced the basic geometry to describe
the camera. Furthermore, by studying these basic notions,s it is possible to
understand better the limitations of using cameras to estimate the motion.
The most used formulation in the computer vision is the one described in
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Zisserman book [34].
From a mathematical point of view, a camera can be described as a

mapping between the three-dimensional space of the world and the bi-
dimensional space of the image; there are several geometric formulations
to describe this phenomenon. The most used and studied camera model is
the one base on the central projection, which is a good compromise between
formulation simplicity and approximation of the real principle. The central
projection can be also progressively modified by modelling additional char-
acteristics, in order to give a better representation of the real situation. This
basic camera model is the pinhole camera: it is based on the perspective pro-
jection of 3D points on the camera sensor. To define its relations, it must be
taken as the centre of projection the origin of the camera coordinate frame
C and consider the plane Z = f as the image plane (Figure 2.5). With the

Figure 2.5: Camera perspective model used to map 3D points into the image
plane [34].

pinhole camera model a point in the three-dimensional space X = [X,Y, Z]T

is mapped into a bi-dimensional point x in the image plane. This point in
the image plane can be easily computed using triangles similarity. In addi-
tion it is possible to denote the centre of projection C as the camera centre,
while the line from camera centre and perpendicular to image plane is called
principal axis.

Representing the world and image points with homogeneous vectors, the
central projection can be easily expressed in term of matrix multiplication:

x = PX (2.1)

where P is defined as the camera projection matrix. The geometric rela-
tionship and the camera projection matrix can be improved considering the
principal point offset of Figure 2.6: the origin of the image coordinate frame
is not on the the principal point p defined by the optical axis. So the matrix
multiplication expressed in homogeneous coordinates becomes:

X
Y
Z
1

 7→
fX + Zpx
fY + Zpy

Z

 =

f 0 px 0
0 f py 0
0 0 1 0



X
Y
Z
1

 (2.2)
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Figure 2.6: Coordinate frames in camera image plane [34]. The perspective
relationship project a 3D point in the Σ(xcam, ycam) coordinate frame, while
images points are expressed in the Σ(x, y) coordinate frame.

where f is the focal length of the camera and p = [px, py]
> is the prin-

cipal point offset on the image plane. This formulation can be expressed
conveniently in a more concise form:

x = K [I | 0] Xcam (2.3)

where K is the camera calibration matrix, and Xcam is the position of the
three-dimensional point expressed in the coordinate frame of the camera,
which has the origin in the camera centre C and it is called camera coordinate
frame.

K =

f px
f py

1

 (2.4)

In addition, for a general finite camera, other parameters can be added,
as the number of pixel per unit distance in image coordinate (considering
unequal scale factors in each direction) and the skew parameter s. The
updated camera calibration matrix has the following form:

K =

αx s x0

αy y0

1

 (2.5)

where αx and αy are the representation of the camera focal length f in
terms of pixel dimension respectively in the x and y direction. The same
transformation must be applied also to the parameter p = [px, py]

>, which
in pixel dimension is denoted as x0 = [x0, y0]> (Figure 2.6).

In general, points in the three-dimensional space are expressed in a coor-
dinate frame different from the camera one. Assuming that the camera pose
is known, the transformation that must be applied to transform a point in
a generic three-dimensional coordinate frame to obtain its position in the
camera coordinate frame is:

Xcam =

[
R t
0 1

]
X (2.6)
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Figure 2.7: Camera 3D coordinate frame Σ(Xcam, Ycam, Zcam) and geomet-
rical transformation R, t to the global coordinate frame Σ(X,Y, Z) [34].

The matrix representation con be easily updated with this information:

P = K [R | t] (2.7)

Usually, the parameters that define the camera calibration matrix K
are called intrinsic parameters. Their definition is possible only after a
calibration procedure of the camera.

The rotation R and translation t between the camera coordinate frame
and the global coordinate frame are defined extrinsic parameters. Even these
can be defined during the calibration, and remain valid until the position
and orientation of the camera coordinate frame are fixed.

An important consideration must be done on the perspective model:
because it is essentially a mapping operation from a three-dimensional space
to a bi-dimensional space, there is a loss of information. This mapping
led to an undetermined system without a unique solution: a point on the
image plane produces infinite solution in the three-dimensional space. This
is noticeable by observing the Figure 2.5: all the infinite solutions lie on the
line that pass through the camera centre C and the point x on the image
plane.

This means that to retrieve information from the camera, at least two
view is needed, in order to obtain two incident projection lines Figure 2.8.
With two view the reference geometry is the epipolar geometry. It is essen-
tially the geometry that describe the intersection of a plane which contain
the three-dimensional point and its projections on the two camera image
planes.

Given a 3-D point in space X and his projection in first view x = PX
and second view x′ = P′X, epipolar geometry allows to compute one these
three problems at a time:

Correspondence geometry use of the constraint between x and x′ image
points in order to find their correct correspondences.
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Camera geometry with a set of corresponding image points, it is possible
to estimate the camera matrices P and P′.

Scene geometry with two corresponding image points x and x′ and the
camera matrices P and P′, computes the position of three-dimensional
point X.

2.1.2.3 Fundamental and Essential Matrix

Classical epipolar geometry deals with epipolar plane, epipolar lines and
their intersections. This geometrical representation is not the more suitable
in modern application where it is preferred a mathematical representation
with matrices. The Fundamental Matrix is the algebraic representation of
epipolar geometry. In particular it represents the epipolar constraint: the
projection of a point that belongs to the first camera image plane x must
lie on the epipolar line l′ on the second camera image plane (Figure 2.8).

Figure 2.8: Epipolar constraint graphical representation. The projection of
the point x on the second image must lie on the epipolar line l′.

The epipolar line l′ can also be seen as the projection in the second image
of the point x in the first camera, because of the three-dimensional point X
is known up to the scale factor. Hence the relation between x and l′ is a
projective mapping from point to line:

x 7→ l′ (2.8)

The Fundamental Matrix formulation is actually based on this mapping,
and it can be defined as follow:

l′ = Fx (2.9)

where F is the Fundamental Matrix. Since this mapping project a point
in the image plane from bi-dimensional space to a line, a one-dimensional
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space, the Fundamental Matrix is not a full rank matrix. F is a 3×3 matrix
of rank 2.

The Fundamental Matrix has become largely known since by using it is
easy to check the correspondence condition.

x′TFx = 0 (2.10)

The Fundamental Matrix permits to satisfy that condition for any pair of
corresponding points x 7→ x′ in the two images. This is an important re-
lation, because it gives a way to characterizing the Fundamental Matrix
without reference to the camera matrices, only in terms of corresponding
points in two different views.

Additionally, the Fundamental Matrix has some important properties,
that can be used to solve several problems:

Transpose if F is the matrix of the pair of cameras (P,P′), then F> is the
matrix of the pair in opposite order.

Rank equal to 2 because it is not a full-rank matrix, it also satisfies null
determinant det(F) = 0.

Seven degree of freedom F is a 3 × 3 homogeneous matrix, with seven
degrees of freedom. The number of independent variables is reduced by
the null-determinant constraint and by the common scaling of mapping
which remove two degrees of freedom.

Another important matrix in the epipolar geometry is the Essential Ma-
trix. It is the specialization of the Fundamental Matrix to the case of nor-
malized image coordinates. In other words it could be used under the as-
sumption of calibrated cameras (for the intrinsic parameters). Furthermore
it could be useful since it has fewer degrees of freedom and additional prop-
erties if compared to the Fundamental Matrix.

With the aim to understand the relationship between Fundamental and
Essential Matrix, it is better to introduce the normalize image coordinates.
The camera matrix can be decomposed as P = K [R | t], and used in the
mapping relation 2.1. If the calibration matrix K is known, it is possible to
obtain the point x̂ = K−1x and then x̂ = [R | t] X. The geometrical entity
x̂ is the image point expressed in normalized coordinates: it is possible to
express a point in this coordinate frame only with a camera calibrated in
the intrinsic parameters.

To define the Essential matrix, it must be considered a pair of normalized
camera matrices P = [I | 0] and P′ = [R | t]. The corresponding fundamen-
tal matrix is called Essential matrix, and has the form:

E = [t]x R = R[R>t]x (2.11)
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Also the essential matrix can represent the correspondence condition 2.10,
but in terms of normalized coordinates:

x̂′Ex̂ = 0 (2.12)

By substituting x̂ and x̂′, and comparing this relation with the one for
fundamental matrix 2.10, it follows the relation:

E = K>FK (2.13)

This equation represents the relation between the Fundamental and the
Essential Matrix. Like the Fundamental Matrix, also the Essential Matrix
has some important properties:

• the Essential Matrix E = [t]x R has only five degrees of freedom (dof ).
Rotation and translation have both three dof, but one in the transla-
tion is lost due the scale factor ambiguity.

• the Essential Matrix is a 3× 3 matrix: two of its singular values must
be equal and the third must be zero.

In conclusion, the Fundamental and the Essential Matrix allows to solve
the correspondence equation between two set of points acquired in two differ-
ent views. If the camera is calibrated in its intrinsic parameters, is possible
to recover the variation of the extrinsic parameters between the two views.
Unfortunately, the camera positions, and so the motion estimation, is known
up to a scale factor in the translation.

2.1.3 Laser scanner and camera

In the previous Sections 2.1.1 and 2.1.2 the laser scanner and camera has
been introduced as measurement systems to estimate the vehicle motion
between two poses. Their main characteristics are reported in Table 2.1,
and as presumable these instrumentations return quite different information.
Looking closer an comparing these characteristics is possible to notice that
laser scanner and camera are complementary instruments: on can supply
the weakness of the other.

While the laser scanner returns a bi-dimensional environment represen-
tation on the plane defined by the laser beams, the camera achieve to collect
a large amount of informations also out from this plane. On the other hand,
all the camera information are known up to a scale factor, whereas the laser
return already a metric information. For this reason also the uncertainties in
the laser pose estimation are usually limited, because of the camera requires
the knowledge of the scale factor. Lastly there is the reflection problems: in
the laser scanner when the emitted laser beam hit some particular kind of
surfaces the measures is not reliable. The camera instead use the environ-
ment light, so if there are some problems of reflection they can be solved for
instance with optical filters.
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Table 2.1: Laser Scanner and Camera measure characteristics comparison.

Laser Scanner Camera

Environment

representation
2D shape

2D representation of
3D space, with colour
and texture informa-
tion

Metric

measurements

Return directly a dis-
tance measurement

Distances and dimen-
sions determined up to
a scale factor

Uncertainties Low uncertainty in
frontal direction

Scale factor increase
the translational un-
certainty

Reflection

problems

Problems on some
type of surfaces

Can be solved with op-
tical filters

2.1.3.1 Motion estimation with laser scanner and camera

By taking care of all the considerations reported until now on camera and
laser scanner, the next step is how to get these sensors working together.
In the previous literature review, has been seen how they each sensor can
estimate the motion independently. Indeed in most of the scientific works
they are used as exclusive instruments, while they are complementary and
they can share information to improve the motion estimation and the envi-
ronment knowledge.

During the development of the thesis work, two categories of approaches
to share the sensors information were been identified:

• by estimating the motion independently with each instruments and
exchanging the informations on the motion measured. Thereafter it
is possible to merge the information with sensor fusion, in order to
achieve a better solution.

• by merging the measurements collected from the instruments in order
to increase the amount of information and in a later stage compute
the motion based on this fused information.

While there are few relevant works on the first category, it is possible
to figure out a framework in which laser scanner and camera exchange in-
formation on the pose estimation, not only in the final step, but also in an
intermediate step in order to solve the camera scale factor ambiguity. The
Naikal work [35] is very closed to this idea ant it proved the effectiveness of
this idea in a vehicle localization framework.

Concerning the second type of approach, it is possible to find more in-
teresting scientific works. One of the first implementation of this approach
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was done by Arras [36]: he proposed an approach based on the identification
of features in the laser scanner, and vertical edges in the camera. These en-
tities are representative of the same natural landmark in the environment,
and so by fusing these information it is possible to achieve a robust motion
estimation based on this redundancy. Later, Andersen [37] used a similar
approach to detect the road width by fusing laser and camera information.

2.2 Data Association

Data association is the second topic of the thesis. It is really important
since it is required in all the scan matching approaches and also in the
data association from two different views in the motion estimation with the
camera. How it will be explained in the further sections, it has also to deal
with uncertainty, outliers and similar problems.

2.2.1 What means data association?

In many applications, not only in mobile robots localization, when there
are more measurements of the same phenomenon, in order to obtain useful
information it is needful to associate the data of different observations. In
some cases, the number of measurements for each observation is very limited
and the data association could be an unnecessary step. Actually, also in this
cases, there can be important problems in the processing of information due
to the presence of outliers in the measurement.

In the case of mobile robot localization with sensors that are capable
to acquire information from the environment, since the motion estimation
has to be performed on this data, it is required a reliable data association.
In this way it is possible to infer the vehicle motion. Because of the data
association is a general procedure, it is possible to identify two general sets
of points q1 and q2 and use them to introduce the approach (Figure 2.9).
What makes the data association a difficult problem is the identification of
the correspondences between these sets of points.

A popular approach to solving the problem is the class of algorithms
based on the Iterative Closest Point (ICP), introduced by Besl [13]. ICP
is widely used because it ensure a very simple implementation and good
performances. Usually it need also an initial estimation and if it is rea-
sonably good the algorithm converges quickly to the correct solution, as
demonstrated in [13].

The ICP can be identified nowadays as a class of algorithms, because of
from its original concept several improvements have been developed. The
main reason is the presence of missing data or outliers in the association: it
means that only by using the ICP it is not possible to recover all the right
correspondences in an reliable way. Relevant works that deal with this kind
of problem was reported by Wang [38] and Trucco [39]. While the former
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Figure 2.9: Data association between two set of points q1 and q2: the ICP
algorithm can create incorrect associations.

introduced this problem and proposed a solution, in the scientific work of
Trucco is mentioned for the first time the word Robust ICP (RICP). In [40]
is possible to find a comparison of several ICP approaches: in particular are
highlighted the benefits achieved by a robust implementation. In conclusion
it is possible also to report a recent work [41], in which is investigated
the importance of the unique correspondences. Actually, the ICP can be
performed using only information on the points position: the points selected
are the more closest. But it is also possible to add more information on the
points besides their positions. In this way the correspondences are performed
not only by taking care of the distances, but also on the other aspects able
to identify uniquely the same point in two sets.

2.2.2 Detection of outliers: the LMedS method

As remarked in the short introduction, on of the most relevant problem in
the data association procedure it the presence of outliers. Actually this is a
real problem in many other applications when there is the need to model a
phenomenon with a mathematical interpretation. Also the data association
required for the vehicle pose estimation can be seen as a procedure to model
the transformation between two poses. This aspect will be explained better
in Section 3.4.1, where is reported the procedure implemented in order to
achieve a robust data association.

In this section the detection of outliers is presented with reference to
a generic model interpolation. Let f be a generic model described by the
following relation:

y = f(x), (2.14)

where x ∈ Rn is the vector of the n coefficient parameters used in the
model, which must be inferred from the m measures yi, i = 1, ...,m,m > n.
Assuming, to simplify the explanation here, that the function f(x) is a linear
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function on x which can be wrote as:

f(x) =
n∑
j=1

xjθj , (2.15)

where θ = [θ1, ..., θn]> is the vector of independent variables used to describe
the problem. The solution of the problem can be achieve with a multiple
regression in order to estimate the vector θ, by using the measures yi. If
the problem is well posed, this means the resolution of an overdetermined
system of equation.

There are several methods to solve the system, but the Gold Standard
in this situation is the Total Least Squares (TLS) method. It is easy to
demonstrate that in presence of measurements with normal distribution,
the TLS is the best estimator and it solves the problem:

min
θ

n∑
i=1

r2
i , (2.16)

where ri are the residual for each measurement yi and is defined as:

ri = yi −
n∑
j=1

xjθj . (2.17)

The simplicity of application of this method is in contrast with its lack of
robustness: one single outlier can have a relevant effect on the data interpo-
lation with a model (Figure 2.10). For this reason it is useful to introduce
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Figure 2.10: Least Squares line interpolation in presence of outliers.

the breakdown point ε∗, that is defined as the smallest percentage of outlier
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data that cause the failure of the estimation of the model parameters. In
the TLS method this value is ε∗ = 0: it means that the TLS can not deal
with outliers.

In order to increase the breakdown point, a well known method is the
Chauvenet’s criterion. It is based on the statical analysis of the residu-
als: the outliers are identified as the residuals with less probability. The
main drawback of the problem is that the residuals are computed after the
interpolation of all the data, hence also including the outliers.

To increase the breakdown point, Siegel [42] and then Rousseeuw [43]
identify the limiting factor of the TLS in the sum used in the functional
(Equation 2.16). Using instead the median, it is possible to achieve an higher
breakdown point of ε∗ = 0.5: intuitively if there is an outlier percentage of
the 50%, by choosing the median of the residuals computed with the ideal
model, is possible to select the last inlier value in the set of data. The
method implemented in this way is called Least Median of Square (LMedS).

In [43] are also reported and proved two important characteristics of the
LMedS:

• there always exist a solution to the LMedS problem.

• the breakdown point ε∗ for the LMedS approach is equal to the 50%:
it is the maximum value achievable using the median.

If on the one hand it permits to achieve an high percentage of outlier re-
jection, on the other hand its implementation has a very low efficiency.
Rousseeuw estimate that also in a good implementation, the time required
for the LMedS is an order of magnitude higher than the same interpolation
in the TLS. In addition its implementation is not simple. Because of the
median must be evaluated on the residuals computed on a model without
inlier, the LMedS algorithm requires multiple model evaluations on a set of
sub-samples selected from all the measurements y. The fact that it requires
multiple evaluation on small samples is to ensure that at least one of this
samples does not contain outliers. Lets define the following variables:

• the vector x of the n parameters of the model.

• the vector y of the m model observations. To ensure a unique solution
it must be respected the constraint m ≥ n.

• the vector of residuals rx,y computed on the model using the param-
eters x and the observations y.

• the number minimum of observations s to estimate a vector of param-
eters x.

• the number minimum of samples N to ensure that at least one sample
is composed only by inlier.
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The process can be represent schematically in five steps:

1. Random selection of N samples Γk, k = 1...N , each one of size equal
to the minimum number of observation s.

2. Estimation of the solution xk on the samples Γk, k = 1...N .

3. For each solution xk must be evaluated the medians mk, k = 1...N of
the squared residuals rxk,y computed for all the observations y:

mk = median
(
r2
xk,y

)
. (2.18)

The medians of all the samples are stored in the vector M.

4. Selection of the least median square from the vector M = [m1...mN ]>

and the respective set of parameters xk.

5. Identification of the outliers based on the residuals rxk,y of the sample
with the least median square and evaluation of the solution by using
only the inlier observations.

The number N of samples must ensure the presence at least one of the sam-
ples is without outlier. The evaluation of this number requires an initial
knowledge of the outlier percentage in the observations. With this assump-
tion, the probability P to create randomly a sample without outliers is:

P = 1− (1− ωs)N , (2.19)

where ω is the fraction of outlier. From this equation is easy to compute
the number of samples N :

N =
log(1− P )

log(1− ωs)
. (2.20)

It must be specified that the fraction of outlier ω used in this formulation is
a guess value, while for the probability is usually used P = 0.99.

Recalling the last step of the method, actually the solution xk corre-
sponding to the least median squares is evaluated on the minimum number
of observations. In order to achieve a more reliable result, it is possible
to identify the inlier observations and so refine the solution (Figure 2.11).
First of all, to identify the outliers it is required to compute a threshold that
must be applied to the residual of the samples computed in the least median
square set:

σ̂ = 1.4826α

(
1 +

5

n− s

)√
min(M), (2.21)

where α is a parameter that can be adjusted to select correctly the outliers:
in most of the application can be used α = 2.5.

A very similar approach to the LMedS is the Random Samples Consensus
(RANSAC). The main difference is in the threshold definition: while in the
LMedS the threshold σ̂ is based on a statistical evaluation of the residuals,
in the RANSAC approach, it is a fix parameter selected by the user.
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Figure 2.11: LMedS results with high outlier percentage (ω = 0.5) on a line
interpolation example.

2.2.3 Statistical approach to data association

The LMedS procedure can be applied also in the data association step: the
model to be interpolated is the vehicle pose variation between two environ-
ment observations. In this case the outlier identification is performed on the
correspondences between the two set of data processed from the informa-
tion acquired by the instrumentation in the two vehicle pose. In order to
evaluate these correspondences, it is possible to apply the LMedS algorithm
to the ICP framework: in this way the residuals of the model interpolation
are the distances of the matched point in the two set.

Moreover the LMedS algorithm is based on the assumption of random
variables with a Gaussian probability distribution, since only in this way
the outliers can be identified and removed. This assumption when applied
to the data association requires that the data used in the association must
be represented in this terms. Rather, the association residuals must have a
Gaussian distribution which implies that also the observations of the envi-
ronment should be represented under these conditions.

To ensure a robust data association and so a reliable solution, often the
euclidean distance between points is not enough. Actually, when is possi-
ble to associate to these points also information on uncertainties, there are
algorithms that can weigh the correspondences by taking care also of the
uncertainty. The most known algorithm used for this purpose is the Maha-
lanobis Distance [44]: to be applied it requires that the point uncertainty
must be described with by a multivariate Gaussian distribution. By defining
two points q1 = [q1

1...q
1
p]
> and q2 = [q2

1...q
2
p]
>, the Mahalanobis distance is

defined as:

d(q1,q2) =
√

(q1 − q2)>C−1(q1 − q2) (2.22)

where C is the sum of the covariance matrix Cq1 and Cq2 respectively of
the two points q1 and q2. An important feature of this algorithm is that the
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distance evaluated is the confidence level [45] between the distributions of
the two points. Hence it allows to evaluate the probabilistic distances: when
applied to a set of points, it is possible to give more weight to the points with
less uncertainty. Because of the Mahalanobis distance evaluation can be used
also in the LMedS method, in which the residuals must be evaluated several
times, the time required by its evaluation can be important. In Montiel
work [46] is possible to find useful consideration on Mahalanobis distance
algorithm simplification.

In addition, also the minimization of residuals in the data association
procedure can be performed by taking care of this probabilistic distance.
Avoiding numerical solution, closed form solutions can be achieved by using
Singular Value Decomposition (SVD) techniques. In Irani work [47] is re-
ported a generalization of the SVD factorization with uncertainty. Without
resorting to the SVD, Censi in [22] has developed a closed form solution that
can also take care of the uncertainties.

2.2.4 Joint Compatibility test

In Section 2.2.1, with reference to the data association methods, it has
been introduced the ICP, because it is the most known and used method.
Though the ICP performances in terms of reliability can be improved with
robust implementations, it still have an important limitation: it is based
on a nearest neighbour approach. This means that its performances depend
mainly from the initial estimation of the data association solution, no matter
as robust is the algorithm used to define the correspondences.

Neira, in his work [48], performed an accurate analysis of the nearest
neighbour approach, by illustrating its limitations. The limiting character-
istic is on the association predictions: by using nearest neighbour approach
the prediction is evaluated independently for each point. The drawback of
this kind of prediction is on the estimated uncertainty that is extremely
high if compared with the one that can be achieved using the correlation
between all the predictions. Using a statistical approach in the data associ-
ation, a prediction with high uncertainty implies the possibility that more
correspondences can be within the confidence level. This means that there
is an high probability to select wrong associations.

By correlating, instead, all the predictions is possible to obtain a joint
probability with a lower uncertainty: for this reason the new method pro-
posed is called Joint Probability Test. In order to evaluate the joint prob-
ability by avoiding individual correspondences, it is required an algorithm
capable to analyse all the space of possible correspondences in search of
the hypothesis with the largest number of probabilistic associations. The
Branch and Bound algorithm permits to perform this search in an optimal
way.
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2.3 Incremental and Global Localization

In this section is introduced the last main topic of the thesis, the localiza-
tion. Localization can be considered as the final step to perform after the
elaboration of the information acquired from the environment and the data
association. This does not mean that the localization is the most important
step, because if the previous operations are not performed in the correct
way, the localization fails.

One of the key points to obtain a full autonomous mobile robot is the
navigation. As described by Siegwart [49] this process requires four impor-
tant building blocks:

perception how the robot use its sensors to obtain useful data from the
surrounding.

localization how the robot solve its position and orientation in the envi-
ronment.

cognition how the robot decide the action to achieve its goals.

motion control how the robot plan and control the motion to follow a
desired trajectory.

The most studied and still open problem of these four blocks is the localiza-
tion. Several approaches has been proposed to localize vehicles, starting by
the use of encoder on wheels until the localization based on monocamera.

Localization is the operation used to estimate the position and orien-
tation of an agent in the reference frame of the environment. Position
and orientation in general can be defined in a three-dimensional space,
with six degrees of freedom. Obviously to estimate the three-dimensional
position and orientation is also needed instrumentation capable to collect
three-dimensional data information, like 3D laser scanner, stereo-camera or
mono-camera (with some expedients). Though the vehicle localization in a
bi-dimensional space may seem easier than the three-dimensional one, it is
still an open problem. In this thesis most of the work has been applied to
bi-dimensional laser scanners, but the methods proposed can also be applied
to other range finder instrumentation and cameras.

In Section 2.1, the indoor environment has been identified as the target
scenario. This is not a limitation, indeed most of the existent automated ve-
hicles use classical techniques with global sensors (laser triangulation, wire
or magnetic guidance) that requires the human manipulation of the environ-
ment. Current works in literature are focused in the study of methods that
can work in this environment scenario without theses constraints. From this
point of view, as seen in Section 2.1, a perfect sensor has to fit completely
on the vehicle, and must return a measurement of the environment without
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?

Figure 2.12: The localization problem: ”Where am I”? [49].

any aid from other sensors. Opto-electronic instruments are closed to this
definition, but still have to deal with some issues:

• Environment discretization: the sensor returns a environment repre-
sentation that depends on its pose. The information in different ac-
quisitions does not have explicit connection: for instance, the beams
of a laser scanner can acquire a set of points on a wall. By changing
the laser pose, the same wall is represented with different points.

• Measurement noise: the uncertainty of measure in range finders is due
to the sensor noise but also from the reflective surface (determined by
material, incidence angle, etc.).

However, by means of this instrumentation, especially with laser scanners,
it is possible to reconstruct the robot pose in most of the cases better than
with the odometric approach. Obviously the precision and accuracy on pose
estimation depend on method used to process data.

The most important manner to classify the vehicle localization is on the
method used to reference the robot position in the environment coordinate
frame. The simplest approach is the matching of sequential observation in
order to reconstruct the robot pose by concatenating all the transformations.
This is defined incremental localization. Instead, if each new measurement
is obtained by matching the observations acquired in the vehicle coordi-
nate frame with information stated in the environment coordinate frame,
the operation is defined global localization. Techniques that use maps, or
approaches based on SLAM are classified as global localization. The main
advantage of the global localization is the reduction of the drift in the pose
estimation error. Ideally, in this case the error on the pose evaluation is due
only by the error in the matching approach of the local observation with
the global information. Differently, the main problem of the incremental
localization is the error drift in the pose estimation. Indeed, because of
the information matching is performed incrementally, the error on the pose
evaluation is not only due to the last matching, but is also connected to the
errors in the previous vehicle pose estimation.
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Figure 2.13: Incremental (concatenation of green vectors) and global local-
ization (blue vector) comparison.

In order to care of these differences and to develop reliable methods,
it is indispensable to evaluate the uncertainty of the localization. In this
thesis the uncertainty of the vehicle state is described by a multivariate
normal distribution, since it is a good approximation of the real noise, and
in addition it allows a parametric representation with a covariance matrix.

Defining X = [x, y, θ]> the vehicle pose, the correspondent covariance
matrix is described by:

C =

cxx cxy cxθ
cxy cyy cyθ
cxθ cyθ cθθ

 . (2.23)

2.3.1 Incremental Localization

When there is not a-priori knowledge of the environment in which the vehicle
is moving, the incremental localization is the simplest method to implement.
It is based on the concatenation of incremental motion estimations: in few
words is a dead reckoning method. The development of this method requires
‘only’ to develop a method to process the environment information and to
associate these data. On the other hand it has a limitation in the drift of the
pose estimation error, no matter how accurate or reliable are the algorithm.
For this reason it is not used as a standalone localization method. However
the incremental localization can return good results on short movement and
for this reason it is useful to compute an estimation of the vehicle poses that
can be uses as an initial guess for a global localization method.

Because of these problems, few works have discussed its scientific charac-
terization: in [50] are reported some useful information on this topic. From
a probabilistic point of view, it must be considered the uncertainty propa-
gation in order to take care of the error drift. To introduce this concepts,
let X1 = [x1, y1, θ1]> and X2 = [x2, y2, θ2]> be two vehicle poses in which
are acquired the environment information, as depicted in Figure 2.14. In
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terms of incremental localization, the pose X1 is the previous pose known,
and X2 is the current vehicle pose to estimate. By supposing to be able

ΔX
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X2

Σ0

C1

C2

(x1,y1)

(x2,y2)

θ1

θ2

Figure 2.14: Incremental localization procedure and uncertainty propagation
from pose X1 to X2.

to process the information from the environment and to perform the data
association, it is possible to estimate the motion between the two poses.
The result is a vector that describes the variations of the pose, denote with
∆X = [∆x,∆y,∆θ]>. In this way the current vehicle pose X2 can be esti-
mated by updating the pose X1 with the measure ∆X:

X2 =

x2

y2

θ2

 =

x1 + ∆x · cos(θ1)−∆y · sin(θ1)
y1 + ∆x · sin(θ1) + ∆y · cos(θ1)

θ1 + ∆θ

 . (2.24)

In order to take care of the error propagation, the measurements uncertain-
ties must be combined. The general solution to this problem is to uses the
propagation of uncertainty method:

Cout = JCinJ
>, (2.25)

where Cout is the output covariance matrix, Cin is the covariance matrix
associated to the inputs and J is the Jacobian of the system of equation that
describe the relation between input and output.

In the incremental localization, the covariance matrix to estimate is C2,
the one associated to the vehicle pose X2. The system of equation on which
compute the Jacobian is the one reported in Equation 2.24. The input in
this case are the pose variation ∆X and also the previous pose X1. The
Jacobian formulation is:

J =
∂X2

∂ [x1, y1, θ1,∆x,∆y,∆θ]
> , (2.26)

and by applying the derivative the explicit formulation becomes:

J =

1 0 −(∆y · cos(θ) + ∆x · sin(θ)) cos(θ) −sin(θ) 0
0 1 ∆x · cos(θ)−∆y · sin(θ)) sin(θ) cos(θ) 0
0 0 1 0 0 1

 . (2.27)
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Also the associated input covariance matrix has to be composed in terms
of previous pose uncertainty and the estimated variation. Since this two
entities can be considered uncorellated, the input covariance matrix can be
defined as:

Cin =

[
C1 03×3

03×3 C∆X

]
. (2.28)

Thank to this formulation, the main limitation of the incremental lo-
calization becomes more evident: the covariance C2 of each new pose X2

concatenated to the previous vehicle pose X1 will increase by accumulating
the uncertainty of the pose variation C∆X.

2.3.2 Global Localization

The global localization has been developed in order to avoid the main prob-
lem of the incremental estimation: the error propagation. To bypass the
error accumulation the only option is to match the information acquired in
each new vehicle pose directly with the information defined in the global co-
ordinate frame of the environment. In this way, the uncertainty of each pose
is due only to the matching process and is completely independent from the
previous vehicle pose estimation. In addition is possible also to deal with
the kidnapped robot problem.

As evidence of these considerations, there is the fact that almost all the
localization systems widely used are based on global localization. Important
examples are the approaches based on laser triangulation (used in indus-
trial applications) and the GPS (used for outdoor localization). As working
principle they are the same method: both they can be though of as the ap-
plication respectively for indoor and outdoor environment. Unfortunately
they have also important limitations. First of all they require a network of
additional sensors widely distributed in the navigation environment in well
known positions. In addition, by using this sensors is usually only possible
to localize the robot. Information on surrounding environment can not be
achieved and operations like obstacle avoidance can not be performed. It is
clear that this methods require heavy constraints on environment, and they
are suitable for structured scenario.

With the evolution of methods the constraints required on navigation
environment became few. In particular, with the introduction of new instru-
mentations able to recognize the environment (like sonar, laser and camera)
and so obtain local information, a new technique was introduced: the Si-
multaneous Localization and Mapping (SLAM). Early works were done by
Chatila and Smith [51, 52]: while the former introduced the problem of the
consistent world modelling, the latter established the basis for the descrip-
tion of the uncertainties of the vehicle pose and map.

An intermediate step between the methods with distributed global sen-
sors and SLAM was the navigation in a-priori defined environment map.
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The robot can compare its measurements with the map and so estimate its
pose in the global coordinate frame defined by the map without the drift
in pose estimation error. This means that a priori knowledge of the map
is needed: the robot can navigate only in a well known environment. Fur-
thermore the map represent the environment state in a precise time; this is
not necessarily consistent with the environment state at the time the map
is used.

These are relevant limitations and the SLAM technique has been pro-
pose to avoid them. SLAM, as its acronym says, does not require a-priori
knowledge of the environment because of the map is built up while at the
same time that the robot localize itself. Since they are simultaneous pro-
cesses, the localization can also use the current map estimation to perform
a more accurate evaluation of the robot position.

Obviously the problem solution with SLAM has an higher complexity,
but it can be applied widely. It is well suitable for example in environment
exploration or navigation in non static and well structured scenario. Like
all the algorithms, SLAM too is in a continuous evolution: nowadays the
mapping part of the procedure is often skipped and replaced with similar
approaches really closed to it. In fact map can change in time and it requires
a lot of memory to store information of large environment.

In this work the attention is focused in an alternative procedure to avoid
the mapping task, though maintaining the benefit off the global localization.

2.3.3 Mapping, Filtering and Keyframe-based optimization

The acronym SLAM describes a generic problem which solutions are the
vehicle localization and the map definition. Only in its early releases it de-
scribed a method to build a probabilistic map by using a Bayesian fusion off
whole the information [52]. Nowadays it defines a research field constantly
evolving and several probabilistic approaches has been proposed besides the
Bayesian fusion.

In a recent work [53] Durrant-Whyte gives a survey of all the methods
proposed until 2005. This date is really important since up to this year all
the scientific works were concentrated in the implementations of the SLAM
using probabilistic approaches based on the Extended Kalman Filter (EKF).
Relevant works in this field were made from Duckett in [54, 55], where
he already studied methods to obtain fast map learning, and Konolige in
[56, 57]. While in the former he studied the SLAM in large scale map, in
the latter he dealt with the reduction of map information to increase the
performance of the approach. More focused on the Visual SLAM, Davison
in [26] proposed also a EKF approach to estimate the camera pose.

In 2005 Thrun with the scientific work [58] and the book [59] introduced
a new probabilistic approach to the SLAM, the GraphSLAM. The novelty of
the SLAM implemented in this new approach is that it does not use a EKF
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Figure 2.15: SLAM problem graphic representation [53]: the method esti-
mate simultaneaously the robot pose X and the map y landmark location
m using information on motion u and environment measurements z.

to filter the information. The GraphSLAM also change the probabilistic
description of the SLAM problem. From a probabilistic point of view there
are two main forms of SLAM problem that are classified by taking account
the temporal reference in which it is performed [59].

The former is known as online SLAM problem and it estimates the pos-
terior using the current pose and map. Defining with Xt the pose at the
time t, with y the map, z1:t the measurements and u1:t the controls the
posterior is estimate by using only the information on the current pose:

P (Xt,y|z1:t,u1:t) . (2.29)

The algorithms for the online SLAM can work well in incremental: the past
poses are already discarded and also the past controls and measurements
can be discarded after the posterior evaluation.

The latter SLAM approach is defined full SLAM problem and it uses
instead all the past information and all the path X1:t to estimate current
posterior:

P (X1:t,y|z1:t,u1:t) . (2.30)

It could seems a slight difference but it has important implications: the
most important one is the structure of the dependency and the connections
between all the vehicle poses. However they are both important in the
estimation of the posterior that is the gold standard in SLAM. From a more
practical point of view, this classification remarks the division from classical
approaches based on iterative Bayesian fusion and a new kind of approaches
that use whole the past information instead filtering.

The most important example of online SLAM algorithm is the EKF-
SLAM, that applies the Extended Kalmann Filter to filter the vehicle poses
using a maximum likelihood data association. To implement this approach
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are required some simplification; first of all is feature based. As consequence
it requires a good features detector and descriptor in order to perform a
correct data association in every situation: it can not work properly in
scenario with ambiguous features. Another important limitation is that
it can use only positive information on feature. The miss-detection of a
features could not be registered with the EKF approach.

z13z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z12 z15z14 z16z10 z11
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Figure 2.16: Localization and mapping with EKF approach. Using control
information u and measurement z it allows to reconstruct the vehicle poses
X and build the map y.

As said previously, full SLAM problem methods can be defined as a
new type of approaches. The main reason that has led to their definitions
is to avoid the limitations of filter based methods. The filter operation
of the EKF-SLAM must be replaced with methods capable to infer the
posterior using all the previous information. Approaches widely used for
this purpose are the Graph Theory and the Bundle Adjustment. Although
the Bundle Adjustment [60, 61] is more used in Computer Vision thanks to
their capabilities to work in non-linear problem solution, it can be used also
in SLAM. A significant drawback of the Bundle Adjustment is due to the
numerical optimization procedure that must be used.

y0 y1 y2 y3 y4 y5 y6 y7 y8

x0 x1 x2 x3

Figure 2.17: Localization and mapping in graph based SLAM approach.
The vehicle poses X are reconstructed directly from the measurements z of
the landmark in the environment y, without filtering operation.

In order to avoid the numerical optimization it possible to use meth-
ods based on the Graph Theory. Graph Theory allows to solve full SLAM
problems easily then Bundle Adjustment in closed form solution. It is so
important that a new branch of SLAM has been defined: the GraphSLAM.
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Early works on graph based SLAM was presented in the late 90s by Lu [62]
and Gutmann [63], but important results has been achieved only few years
ago, when it was understood the importance of the full SLAM. As matter of
fact the posterior of full SLAM naturally forms a sparse graph. Furthermore
without explicit use of minimization resolver, is possible to achieve to least
square problem solution.

Thus classical SLAM like the EKF implementation and graph based
SLAM can be seen as the extremes of the current SLAM knowledge. The
choice of which one is better depends on the application, but currently
cutting-edge applications use the graph based SLAM. This is due to some
advantages, not limited to computation and memory storage performance.
The first advantage is the map: with some graph based approaches the map
can be update while in other it is possible to skip the map generation pro-
cess. In fact in classical SLAM methods the map is the way in which is
represented the most updated information, while in graph based ones the
same information is stored in a graph with soft constraints. Further advan-
tages are given on precision because of the EKF-SLAM filter all the previous
informations in a map: in a given time t all the measurements are inferred
and stored in the map. New measurements can not access to previous data,
because they are “hidden” by the filter operation (Figure 2.18).

y0 y1 y2 y3 y4 y5 y6 y7 y8

xx x x

Figure 2.18: Filtering operation in online SLAM, all the information are
summarized with respect to the last pose state vector X.

On the other hand the graph based approach can use all the data col-
lected along the path and it can also correct the previous information in
terms of vehicle pose and map with new measurements. This means that by
this way it is possible to have a better estimation of both map and vehicle
poses since all the achievable information are used. With these premises it
could be said that graph-based method can produce maps with higher accu-
racy with respect to the map computed by classical EKF-SLAM approaches.

Obviously also graph-based slam has limitations: actually the main prob-
lem is that the size of graph grows with time. This drawback is probably
the most important, and actually the research is aiming to solve it.

A relevant work on the differences of this approaches has been presented
by Strasdat in [64]. The article perform a rigorous analysis of relative advan-
tages of online and full SLAM. The methods are applied to the monocular
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SLAM problem, with a series of experiments in simulation and real applica-
tions. The most important result achieved is the performance comparison
between two important aspects in the visual SLAM: the number of features
and the number of frames used in the camera motion estimation. In all
the cases studied the results proved that it is more important to have an
high number of features instead of an high number of frames. The work
main conclusion is that filter based SLAM algorithms might be convenient
only when small processing budget is available, but the bundle adjustment
optimization, also on key-frame, is superior elsewhere.

y0 y1 y2 y3 y4 y5 y6 y7 y8

x0 x1 x2 x3

Figure 2.19: Graph optimization using key-frame: by using only the most
representative vehicle poses the computational cost of the graph solution
can be decreased.

By applying these considerations to the work here presented it is possible
to do some consideration. First of all it must be noted that nowadays the
processing budget is not a limitation, so the bundle adjustment optimization
or graph based framework can have high performances. Furthermore, the
comparison between number of features and frames is clearly in favour of the
full SLAM approaches. Online SLAM requires highly distinctive features in
order to perform best matching operations and to update the map as better
as possible. In the generic scenario of navigation hypothesized in this thesis
it can be difficult to find an elevate number of unique features stable on
several vehicle poses. Hence the use of the online SLAM is not the best
choice since it works with few features and many observation. On the other
hand, as it will be shown in Section 2.3.4, the implementation of the full
SLAM with graphs allows to perform the global optimization using only the
most relevant vehicle poses (Figure 2.19) without affecting the performance
in terms of accuracy and reliability of the localization. Furthermore, by
selecting the right algorithm it is also possible to avoid the mapping: thus
there are no limitations on the type of information used to describe the
environment.

2.3.4 Graph Theory

The graph theory may seem a new method since most of the cutting-edge
methods on SLAM use it: on the contrary it is a very old concept. It was
introduced by Euler and the original idea is dated 1736: few publications
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were produced after its discovery. Only thanks to the growth of the com-
puter science there was the need to formalize the theory: an early work is
the Coxeter book [65]. In [66] is also possible to find a more recent discussion
that take in consideration the innovation introduced by the new approaches
in the computer science. Graph theory has been used mainly to represent
complex networks of communication and data organization, in several and
different fields (communications, computer science, chemistry, human rela-
tions, etc.). Here are reported only the principal notions in order to make
easy to explain how it can be used in the solution of the full SLAM problem.

A graph can be defined as a pair of sets G = (V,E), where V =
[v1, ....vm]> is the vector of vertexes of the graph G and E = [e1, ...en]>

is the vector of the edges. In literature vertexes are also called nodes or
points and edges are called lines or links. Actually the graph is defined by
the connections of the vertexes with the edges, as depicted in Figure 2.20.

v4

v3

v9

v2

v5

v1

e2e1

e3

e4

e5

e6 e7

e8

e9

Figure 2.20: Representation of a directed graph.

Graphs can be generalized allowing loops, or rather a link on the same
vertex, and also with multiple parallel links on the same vertexes as reported
in Figure 2.20. On the side of connections, if it is possible to assign an
information on the direction of a link, the graph can be defined as directed
graph. In the previous figure, the links represented in the graph are of this
kind. In this way edges have a direction, that is needful to solve the graph
when applied to the full SLAM problem. Actually, in order to solve the
full SLAM problem, the graphs considered are without loops and only with
directed links.

Last important theoretic concept of the Graph Theory are the walks. A
walk can be defined as a sequence of vertexes and edges, with an initial and
a final node, and all the intermediate nodes. Each link can be covered more
than one time: it is possible to define that:

• a walk is closed if initial and final vertex are the same one.
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• a walk is a path if each vertex is covered only one times.

• a walk is a cycle when it can be defined closed and it is a path except
for the first and last nodes.

This definition seems to be not useful, but when in the following sections
it will be introduced the similarity between the graphs and the data fusion
these notations will become important.

2.3.4.1 Graph Theory as linear system solver

The extension of the full SLAM problem representation of the vehicle pose
estimation with the Graph Theory is really simple. Indeed, how expressed
also in Section 2.3.3 the posterior of the full SLAM naturally forms a sparse
graph. In this case each node is a vehicle pose and the directed edges between
vertexes are the estimation of the transformations between these poses. In
order to describe better the problem, since the nodes are representing the
vehicle poses, they can be defined X and the links, that represent the pose
variations between the poses can be denoted with D.

To localize the vehicle the Graph Theory must be used to solve the nodes
X giving a set of pose transformation estimation D. If it is possible to draw
only a path the graph solution converge to an incremental estimation: each
node is connected only with the previous and following one. In this case is
possible to demonstrate that the number of equations created by the graph
is equal to the number of variables and so it exists a single unique solution.

Otherwise, if a generic node of the graph has more than two links, it is
possible to have more than one observation to reconstruct the pose associate
to the node. An example is reported in Figure 2.21(a), in which is depicted
a situation with 4 different vehicle poses X = {X1,X2,X3,X4}. At each
one of these poses is associated the data processed from the environment
observation: between all these measurements is possible to perform a data
association operation and so the estimation of the five pose transformation
reported in Figure 2.21(a). The evaluation of the X poses is not trivial,
because of the number of equations in this case is higher than the number
of variables. Taking for example the pose X3, starting from the first pose
X1, it can be estimated several walks. At least 3 path can be drawn:

• by a direct estimation from X1 to X3 with D13.

• by concatenating D12 and D23.

• by concatenating D12, D24 and (D34)−1.

This means that the system to solve is overdetermined: the gold standard
in this case is the least square optimization. Further it will be demonstrated
that the solution of this system of equations performed by solving the graph
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(a) Graph repre-
sentation
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12 13 23 24 34

1 -1 -1 0 0 0
2 1 0 -1 -1 0
3 0 1 1 0 -1
4 0 0 0 1 1

(b) Graph incidence matrix

Figure 2.21: Graphical representation of a directed graph and its incidence
matrix

is exactly the same of the least square minimization. This minimization
include all the others poses: so the graph theory allows to solve the vehicle
poses taking account of all the possible links, like a filter.

The simplest way to solve a system with a least square minimization is
to use the pseudo-inverse method. For this reason it is required a matrix
representation of the graph and system. This representation is possible
thanks to the Incidence Matrix M in which are stored the connections and
their directions. It is composed of {0,−1, 1} values and has m×n dimension,
where m is the number of nodes and n is the number of all the possible
estimations of pose transformation. For a graph with the characteristics
previously reported, without loops and with directed links, this number can
be evaluated with the follow relation:

n =
m(m− 1)

2
. (2.31)

The values in the incidence matrix M represent the positive or negative link
directions or the absence of a link when the value is 0. For a simple graph
in which there are 2 nodes u and v, with a link uv directed from u to v,
the incidence Matrix M has a −1 to the u row and uv column, a +1 to the
v row and uv column and 0 in all the other components. In Figure 2.21 is
reported a more elaborate example and it is represented also the incidence
matrix for that case.

The definition of the incidence matrix allows to write the general formu-
lation of the graph theory:

D̂ = M · X̂, (2.32)

where X̂ is the md−dimensional vector which is the concatenation of all the
poses X1,X2, ...,Xm each one of size d: for a planar motion the pose has
three dof and so d is equal to 3. The term D̂ is a nd−dimensional vector
obtained by the concatenation of all the link measurement Dij where i and
j are the indexes of the two nodes linked.
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The most interesting case is when to the measure Dij is associated an
uncertainty. By assuming that this uncertainty can be described with a
Gaussian distribution it can be denoted with the covariance matrix Cij .
The least square criterion for optimal estimation is to minimize the following
sum of squared Mahalanobis distances:

W =
∑

0≤i<j≤m
(Xi −Xj −Dij)

>C−1
ij (Xi −Xj −Dij). (2.33)

In this formulation it must be remarked that the relations between the poses
are considered linear. Actually the relations between two poses are not
linear: the solution to this problem are reported in Section 2.3.4.3. The
Equation 2.33 can also be represented in matrix form:

W = (D̂−MX̂)>CD̂
−1(D̂−MX̂), (2.34)

where the term CD̂ is the covariance matrix associated to D̂: since all the
measurements are independent, it is a nd× nd diagonal block matrix. The
solution of X̂ can be computed using the weighted pseudo-inverse method:

X̂ = (M>CD̂
−1M)−1M>CD̂

−1D̂. (2.35)

From the same weighted pseudo-inverse algorithm is possible also to compute
the covariance of the the concatenated pose vector X̂ is:

Ĉ =
(
M>CD̂

−1M
)−1

. (2.36)

By analysing the previous relations some important observations can
be done. First of all, the graph theory minimization criterion has a big
drawback: it can deal only with linear relation between nodes, and so it is
able to solve only system of linear equations. This aspect is really restrictive
and it forces to use some tricks like linearisation of the equation as reported
in [62].

Another important observation is on the covariance matrix CD̂: it has
nd× nd dimensions, but assuming that the measurements are uncorrelated
it becomes a diagonal block matrix, so the solution can be simplified [62]. In
addition, in the graph based SLAM the matrix G = M>CD̂

−1M is called
information matrix, and is really closed to the one reported in [58] except
for the information of the map.

2.3.4.2 Fusing information with Graph Theory

As demonstrated, Graph Theory can solve optimisation problems also by
weighting the links with the uncertainty of the correspondent measurements.
In addition, the solution is also minimized in order to obtain the best es-
timation of the posterior. Indeed, in simple cases the graph theory solve
problem by using sensor fusion based on Bayes Theorem.
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Figure 2.22: Graph with parallel connections.

Let X1 and X2 be two vehicle poses with two different estimation of
pose variation D′ and D′′. In graph theory the problem can be represented
using a network with two parallel links (Figure 2.22) for the measurements.
This is also a typical situation in which apply sensor fusion: defining with
C′ and C′′ the covariance matrix associated to the links and applying the
graph solution reported in Equation 2.35 it can be achieved these relations:

X1 = (C′−1 + C′′−1)−1(C′−1D′ + C′′−1D′′)
C = (C′−1 + C′′−1)−1 . (2.37)

The result is equivalent to the one found using the data fusion and reported
in Smith and Cheeseman [52]. Smith and Cheeseman’s algorithm has how-
ever an important limitation: it can be applied only to networks formed by
serial and parallel connections. In very simple cases like the one reported
in Figure 2.21 classical EKF-SLAM approaches that are based on Bayesian
data fusion can not be applied, or rather can be applied only by filtering all
the past poses. This simple example is very useful to understand the great
advantage of the graph theory with respect to the classical filter: the new
information can also modify the previous evaluations, and so the current
estimation of the measure.

2.3.4.3 Solving bidimensional non linear systems

The main drawback of the approach based on Graph Theory is that it re-
quires linear relations between nodes. In many cases this aspect could be a
relevant problem: actually the relations used in the vehicle localization are
non linear. By taking account only of the vehicle position, the problem can
be solved with linear equations, but introducing also the vehicle attitude
the problem becomes non linear since the attitude introduces trigonomet-
ric function. However the Graph Theory has such significant benefits that
justify its implementation in SLAM problem.

Since the initial works, the main problem was the use of graphs in non
linear cases. A seminal paper is the Lu and Milios one [62], they were the
first to describe the SLAM as a set of links between poses, and to formulate
a global optimization algorithm. In the same work it is also reported a
possible solution to the Graph Theory limitation to linear problem with a
linearisation of the pose relations in the neighbourhood of an initial guess
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estimation of the vehicle poses. Many subsequent works were based on
this paper. The Lu and Milios algorithm was successfully implemented by
Gutmann [67], who reported numerical instability due to the extensive use
of matrix inversion required by the linearisation process. An additional
problem emphasized is that the initial estimation has to be really close to
the real solution, otherwise the method converges to local minimum. This
problem can be significant in large environment in which the vehicle perform
a closed loop: there is an high probability that the scans used to close
the loop can have high error displacement and so the loop closure may be
performed in wrong way. Other relevant works are [68] and [54] in which
they provided efficient techniques for solving such instability problems. The
relation between covariances and the information matrix is discussed in Frese
work [69].

The GraphSLAM proposed by Thrun [58] is based on the Grapichal-
SLAM of Folkesson [70] and it is probably the most advanced implemen-
tation of the Graph Theory. It has currently a drawback: since its imple-
mentation is based on the identification of features in the environment it is
possible that in some scenario this approach can not work properly.

An interesting work as been presented by Martinez [71]. From the the-
oretic point of view it assumes some limiting hypothesis and in addition it
does not take account of uncertainties. Though the method is very simple if
compared with the Lu and Milios one and with some improvement it could
be a valid alternative.

2.3.5 Closed form solution and uncertainty estimation

The aim of the localization is to estimate, for a planar motion, the ve-
hicle pose X = [x, y, θ]> at each time. As seen in the previous sections,
incremental and global localization differ on the method used to reference
the measurements to the environment coordinate frame. However both the
methods have to use the same basic procedure to compare the information
extracted from the environment in order to perform the data association.

When the data processed is the one from the laser scanner, the procedure
described above is defined as scan matching and it allows to identify the
vehicle pose variation between two measurements, while using the camera
the same approach is defined image registration.

Without loss in generality and independently from the instrumentation,
it is required that the methods used to evaluate the pose variation must
be formulated with a closed form. In other words, after the data associa-
tion step the evaluation of the planar transformation has to be carried out
without using numerical optimization. The motivations for this request are
many: first of all it must be considered that by using numerical optimiza-
tions the solution can have local minimum and convergence problems. In
addition there are reasons strictly connected to the time required. Numeri-
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cal methods have not always the same number of iterations and usually are
slower than a closed form solution. This aspects connected to the time are
really important in the robust implementation with the view of a robust
implementation of the ICP. This will be explained better in the Section 3.4:
with the aim to ensure the right data association it is used a robust imple-
mentation of the ICP which requires multiple evaluation on different samples
of the original set. The use of a numerical optimization inside this procedure
is not feasible.

In addition it must be also recalled that in order to obtain a more reli-
able localization, no matter if by an incremental or by a global procedure, it
must be take care also of the uncertainty of each association. Since the as-
sociation are made on set of points the most used methods are based on the
Singular Value Decomposition (SVD) that thanks to efficient implementa-
tions allows to solve this kind of problem. The SVD is used to carry out the
solution by means of a Principal Component Analysis (PCA): in the Irani
work [47] is explained a method to use in the SVD factorization by taking
care the uncertainty. Another general method to solve the pose variation by
weighting the association with their uncertainty is reported in [22].

The covariance estimation is an important process to qualify every mea-
surement; moreover it is indispensable in case of sensor fusion. In addition,
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Figure 2.23: Representation of the vehicle pose uncertainties in the graph.

in the proposed graph based SLAM the link weighting with uncertainty is
a truly important aspect: without considering it, all the possible walks to
a node have the same importance. This means that a direct connection be-
tween two nodes has equal weight of any other walk passing through several
nodes and end on the same node. A graphical interpretation of this aspect
is reported in Figure 2.23. Let X′k and X′′k be two estimations of the the
vehicle pose Xk returned from two different graph paths. These estimations
can be different not only in terms of position and attitude, but also in the
uncertainty: since the X′′k has been evaluated by concatenating different
measurements its uncertainty is higher. The optimal solution is to fuse the
poses by taking care if their uncertainty. All these operations are included
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in the graph solution with uncertainty weighting.

As reported in Censi paper [17], covariance estimation is not a trivial
problem. This is true especially when there is not a direct correlation be-
tween the covariance of the inputs and the one of outputs. In such situation
is difficult to propagate the uncertainty; an example is exactly the data
association with ICP. The only relation between input and output is the er-
ror function to minimize, since the minimization procedure can be not easy
to analyse (for example it can be a numerical optimization procedure). In
these cases the existing methods to estimate the covariance are inaccurate
or computational too expensive to be used in real-time.

The method proposed in [17] allows to achieve a good accuracy in co-
variance estimation, with a low computational cost. Differently from other
methods that can be too much optimistic or can overestimate the covari-
ance, the one presented is more accurate. It is based on the known method of
uncertainty propagation that use a first order approximation. Let x̂ be the
solution of a minimization algorithm A with a error function F that depends
on the measurements ẑ such that x̂ = argminxF (ẑ,x). Then the covariance
on the solution can be estimated using the uncertainty propagation:

cov(x̂) ' ∂A

∂z
cov(z)

∂A

∂z

>
. (2.38)

Since A is a minimization algorithm, it does not have a close form to derive.
Because of in the solution x̂ the error function gradient is null it is possible
to obtain:

∂A(z)
∂z

∣∣∣
z=ẑ

= −
(
∂2F
∂x2

)−1
∂2F
∂z∂x

∣∣∣
x=A(ẑ)

. (2.39)

Using this relation it could be obtained the final formulation of the uncer-
tainty propagation from a measurement ẑ to the solution x̂ also when the
minimization algorithm A has not a derivative, by only knowing the error
function F :

cov(x̂) '
(
∂2F

∂x2

)−1
∂2F

∂z∂x
cov(z)

∂2F

∂z∂x

>(
∂2F

∂x2

)−1

. (2.40)

Analysing the covariance formulation it is evident that the only source of
error considered is the sensor noise on the measure z. Other sources of error
are not considered: for example it is assumed that the algorithm can not be
trapped in a local minimum. It has been tested that with wrong converge
the covariance estimation increase quickly, so it is possible to deal with this
kind of problem, and also check the right convergence of the solution for
example in the ICP framework.

Moreover the uncertainty estimation in the data association is very useful
also in situations in which there are not information in the environment
suitable for the data association. In this case the all the matching for an
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undetermined system of equation that does not allow to evaluate a unique
solution. Undetermined situations can be also considered as source of error:
classical examples in a bi-dimensional pose estimation can be corridor or a
circular environment without any other information in terms of texture or
colour. In this case also the data association methods can fail: anyway it is
possible to detect these situations because in this case the value of one of
the covariance matrix eigenvector becomes very high.
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Chapter 3

Methods and Algorithms

In this chapter are introduced the methods and the algorithms developed for
the research topics of the thesis and used to solve the problem of the vehicle
motion estimation in a general scenario. The review of literature reported
previously is useful in order to emphasize the problems on these topics and
to suggest the development directions to be taken.

In particular it has been noticed the lack of robust methods suitable for
a generic scenario. If on the one hand in the state-of-the-art works there
are rigorous studies that deals with robust and reliable localizations, on the
other hand these applications are limited to some categories of environment.
Since the aim is to introduce a general method that can work in every
condition and environment, it has been evaluated also the use of more than
one instrument in order to overcome the situations in which one of the sensor
can not return reliable information from the environment.

To achieve the target of this kind of localization it has been shown as
the SLAM is if not the only one, at least the best method. In regard of
the SLAM method there are still some questions proving that this problem
is not yet completely resolved. Indeed, in order to achieve a solution there
are some strong assumptions in terms of non linearity modelling and in the
descriptions of the uncertainties with a Gaussian distribution.

3.1 Working Procedure

The aim of the thesis, as already explained in the previous chapters, is the
motion estimation of a mobile robots. It has been also shown that it is a field
in continuous evolution: for this reason it was really important to follow a
well defined working procedure.

To achieve to the final objective of vehicle localization, the work has
been divided in the three main topics already used to classify the litera-
ture review: the processing of information from the environment, the data
association and finally the incremental and global localization. This work

47
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division is useful in the explanation of the arguments but it is also a formal
classification. In fact the topics can not be developed independently since
they are closely connected: the choice of a particular solution in one of them
can cause strong limitations or completely prevent the final objective. While
the processing of the environment information from the measurements is the
most studied topic, the main issues are in the two other points. Especially
the data association must be very robust and reliable, in both the incre-
mental and global estimation. Indeed, in the incremental estimation are
required data association approaches with high reliability in order to limit
the drift error, while in the global are needed also robust approaches since
the associations can involve the comparison of information collected from
very far observations.

The first part of the work was focused on the use of the measurements
from the laser scanner mainly because of the sensor returns directly metric
information of the surrounding information. The laser scanner is an instru-
ment widely used in the research field of mobile robotics: it is possible to
find a huge amount of test and datasets to compare the results in different
application. Since the final target is to implement a SLAM approach to lo-
calize the vehicle in a general scenario, as seen in the Section 2.3.3 classical
implementations based on the EKF-SLAM have strong limitations on the
mapping accuracy and in the fact that the filtering approaches require a
map described by a set of features. Using a SLAM approach based on the
Graph Theory is possible to avoid the filtering operation and increasing the
map accuracy. The problem in this case is that the methods implemented
in literature are still based on feature: in order to remove this limitation has
been developed a SLAM approach for a general scenario using a dense scan
matching approach.

To achieve this final objective is important to have a robust and reliable
data association approach: part of the thesis work has been spent also on
this topic. Preliminary results on the data association approach developed
for the thesis show that it can be also used not only in the SLAM method
but also in other different applications. An example was the implementation
of these methods in the International Thermonuclear Experimental Reactor
(ITER) Remote Handling (RH) project [72] .

Concerning the motion estimation by means of the camera, the working
procedure followed has been quite similar to the one used in the laser. It
has been chosen to develop the vehicle localization based on camera after
the one based on the laser in order to have an accurate method to test the
results. The intention of the work here reported using as sensor the camera
was to provide a framework on which apply the data association and global
localization approaches already used with the laser.
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3.2 Sensor Data Processing

The elaboration of the data collected from the sensors is the first operation to
perform in order to estimate the vehicle motion. As explained in Section 2.1
it can be classified according to the amount of processing required. For the
laser scanner and camera sensors this classification is the same and it defines
two categories: feature based and dense method. However, the implications
on the typology of environment that involves the choice of a method rather
than the other are different for the two sensors.

Because of the amount of information collected by the laser scanner
sensor is limited to a bi-dimensional set of points, the feature can only be
defined on the geometric interpolation of the environment. This is a strong
limitation on the type of environment, that can be overcame by limiting the
data processing and using the raw information.

With respect to the camera, the limitations on using feature are less
than in the case of the laser scanner data. This is due to the large content
of information in a image, which it is not limited to a geometric representa-
tion but also includes information on colour, texture and so on. Hence the
features identification in the images is not a limitation on the environment
type.

These considerations are really important in the selection of the data
fusion method to apply on laser and camera. Approaches already used in
literature in which the camera is used to increase the information of the
laser features (Section 2.1.3.1) do not use all the achievable information in
the camera images and they limit the vehicle navigation in environment that
can be described with simple geometries.

3.3 Laser Scans Processing

The LRF sensor returns a set of bi-dimensional points that represent its dis-
cretization of the environment in a polar coordinate system since its working
principle is based on a rotating mirror. These points can be simple trans-
formed in a Cartesian coordinate system and defined as laser scan or simply
scan here identified with q. A laser scan is an ordered set of points which
represents a 2D measurement of the environment profile in the local refer-
ence frame of the laser instrument. At each point of the scan is associated
an uncertainty due to the noise of the sensor in the beam range and angular
measurements. The uncertainty expressed in the polar coordinate system
can be mapped in the Cartesian coordinate system using the uncertainty
propagation formulation.

As introduced in Section 2.1.1.1 the final goal of the motion estimation
is to evaluate the vehicle pose X by computing an optimal spatial trans-
formation between two scans acquired in two different vehicle position, or
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between a scan and the environment map. A map is defined as a synthetic
representation of a known environment: the type of data stored are strictly
related to the approach used in the scan matching. The processes of asso-
ciating data between the scan and the map or between two scans and of
computing the spatial transformation go under the name of scan matching.
The classification in terms of data processing is defined as:

• Feature based matching: natural landmarks are identified in a scan,
and the pose estimation is a result of their matching either with the
landmarks of another scan or of the map.

• Dense matching: all the points in a scan are used to perform the
matching procedure and so to return a pose estimation.

It must be also recalled that a fundamental step, in order to be able
to associate an uncertainty to the vehicle position, is the evaluation of the
uncertainty of the matching. With the knowledge of the map, path and
laser parameters, using the method reported in [18] the Fisher Information
Matrix is computed and thus the minimum achievable uncertainty on pose
estimation as well. In this way it is possible to compute the uncertainty
lower bound of the vehicle pose. In addition, by observing the Fisher In-
formation Matrix, it is possible to detect the undetermined situations. In
these cases, like corridor or circular environment, is not possible to obtain
a solution from the scan matching with any approach. The navigation in
an unknown environment assumes that the map is unknown: the method
previously described can not be applied in this kind of navigation, but it
provides some useful suggestions to check undetermined situations during
the scan matching.

3.3.1 Feature based scan matching

A feature can be defined as natural landmark of the environment that is
invariant with the observation point of view and locally unique: these are
key requirements to perform a reliable matching. They have been introduced
to avoid some typical problems of the laser scanner measurements: different
scans of the same scenario are strongly dependent on the observation pose;
measurement noise and discretization can bring to wrong data association
and feature extraction can mitigate this problem.

When the environment is structured and defined by a set of basic geo-
metric entities, the easiest features to extract from the scan are segments
and their intersection points called corners. The extension of the feature
definition to geometrical entities of higher order, like curves, is possible but
in most of the applications the highest order employed is the linear one.
Even with the simplest features, the identification must deal with partial
occlusions or discontinuities in the landmark surfaces. To ensure a reliable
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pose estimation, it is required a complete uncertainty evaluation. Each fea-
ture must be assigned a position and an uncertainty, and the minimization
problem in the matching framework should be a weighted least squares prob-
lem which takes into account features uncertainties. This has been done in
the present work.

In order to achieve a feature unique local description, in [8] were defined
several types of features. From a practical point of view, the definitions
of many kind of natural landmarks can create some difficulties, because of
changing in point of view can involve also a feature transformation (Fig-
ure 3.1). Hence it is possible to define only a feature type, corner. Every
corner is defined by the intersection of two segments and because of the laser
acquisition has a clockwise or counter-clockwise rotation, these segments can
be sorted with respect to this rotation. In some particular situations some
features are defined as the end point of a segment, like the one depicted in
Figure 3.1 in position mi+1. This is due to the lack of information on the
hidden segment. By describing it as a corner it is possible to take care also
of the changes in the feature information.

(x,y)

θ

li+1,2

li-1,1

mili,2

mi+1

mi-1

li,1≡li-1,2

scan rotation

Figure 3.1: Schematic representation of features. While Mi−1 and Mi are
defined by two segments each, Mi+1 is defined by only one segment: by the
vehicle motion it will be detected as corner.

A feature can be described as a set:

M = {m,Cm, l1,Cl1 , l2,Cl2} (3.1)

where M is the set of feature information, m = [mx,my]
> is the feature

position in the scan reference frame with covariance matrix Cm, l1 and l2 are
the segments connected with m, sorted according to scan rotation direction
(Figure 3.1), Cl1 and Cl2 are their uncertainties in the Hesse plane. The
covariance matrix of a feature position, defined in the scan reference frame,
can be expressed as:

Cm =

[
cxx cxy
cxy cyy

]
. (3.2)
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The generic segment is defined in the Hesse plane by the vector l = [lδ, lr]
>

and its covariance matrix Cl is:

Cl =

[
cδδ cδr
cδr crr

]
. (3.3)

A cartesian point which lies on the line segment must satisfy the constraint:

qxcos(lδ) + qysin(lδ) = lr, (3.4)

where q = [qx, qy]
> is the point in Cartesian coordinates. Using this features

description, instead of using clusters of noisy scan points, allows to achieve a
better local unique description, and so to perform a more reliable matching.

3.3.1.1 Segment identification

Segments can be extracted with a classical split and merge approach: as
reported by Nyugen [20] it is the best choice for a geometrical environment.
A graphical representation of the split and merge iterative approach is de-
picted in Figure 3.2. The performance of this approach can be improved
by pre-processing the set of points with a clusterization. The main problem

start

d⊥max

end

(a)

start

end

(b)

start

end

(c) (d)

Figure 3.2: Split and merge segments identification on cluster of point,
identification of the maximum distance point (a) and segment splitting (b).
The process stops when the maximum distance is under a threshold (c) and
is possible to interpolate the segments (d).

of this algorithm is the tuning of the constant parameters: by supposing to
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know the laser scanner measurement noise it is possible to obtain a non-
parametric method.

Otherwise, for cluttered environment, a method that can ensure high
performances and a good segment extraction, without constant parameters,
is the Adaptative Scale Sample Consensus ASSC [21], which also does not
require the knowledge of the measurement noise. In this method is intro-
duced the concept of the scale that in classical method as the split and
merge is related only to the noise standard deviation of the sensors. Actu-
ally there are several factors that have influence on the scale, like the angle
of the beam, the kind of surface and so on: the scale is a property of each
segment of the scene. The method is based on the maximization of an utility
function U(θ) defined as:

U(θ) =
nk
σk
, (3.5)

where θ is the vector of the line parameters, nk is the number of points in
the segment and σk is the standard deviation of the segment interpolation
residuals. If on the one hand this method works fine in cluttered environ-
ment, on the other hand when the environment is composed by segments of
different size connected each other it has some limitations. These are due
to the fact that the utility function promotes the ratio between the number
of points and the residual standard deviation.

Points associated to segment
Points of scan

Figure 3.3: ASSC segment identification scale problem on connected seg-
ments.

The problem is reported in Figure 3.3: to the segment with high scale
are associated also the points of the adjacent segments. It is possible to limit
these problem by interpolating the segments with a method that allows the
outlier identification, like the LMedS (Section 2.2.2).

Though with these methods is possible to obtain good results, they re-
quire a post-processing procedure to fix problems due to occlusions and
surface discontinuities. Concerning the segments interpolation, given the
measured points it is possible to follow the method described in [19] which
also allows to reliably compute the segments uncertainties in the Hesse co-
ordinate systems.
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3.3.1.2 Feature identification

The feature identification and their uncertainty estimation are based respec-
tively on segments parameters and their uncertainties. When a feature can
be identified as the intersection of two segments, like a corner, its position
is defined by the segment intersection. Writing the two segments in the
form of equation 3.4 is possible to define a system in which the unknowns qx
and qy are the coordinate of the feature m. The feature uncertainty can be
expressed by propagating the input uncertainties of the connected segments:

Cm = JCl1,2J
>, (3.6)

where J is the Jacobian of the system of equations used to compute the
intersection point, and Cl1,2 is the joint covariance matrix of the intersecting
segments l1 and l2. The Jacobian is defined as:

J =

[
∂mx
∂δ1

∂mx
∂r1

∂mx
∂δ2

∂mx
∂r2

∂my

∂θ1

∂my

∂r1

∂my

∂δ2

∂my,i

∂r2

]
. (3.7)

The composed covariance matrix is defined as:

Cl1,2 =

[
Cl1 02×2

02×2 Cl2

]
, (3.8)

where the segments l1 and l2 are considered uncorrelated.
In case of features defined only by one segment, that is an endpoint of a

segment, it can be used the same approach by replacing the missing segment
with the next laser beam closest to the endpoint. The parameters of the
ray in Hesse plane are assumed uncorrelated and the standard deviation of
the angular parameter δ of the missing segment is considered proportional
to the laser angular resolution. In addition, when a segment end point is
detected it must be checked also that the feature is in the foreground. On
the contrary the detected point is not a stable natural landmark.

3.3.1.3 Feature matching

Once two set of features
{
M1,M2

}
are available, the matching procedure

can be implemented. To ensure a reliable solution the matches are selected
using a probabilistic gate where the Mahalanobis distance between the fea-
tures of the candidate pair is evaluated. When global localization with
respect to the map is performed, the set M2 corresponds to the map fea-
tures while M1 corresponds to the scan. The set M1 is transformed to
M1∗ according to the initial guess for the pose estimation. This practically
means that the feature positions, their covariances and the segments infor-
mation are transformed in the reference system of the second scan or of the
map according to the tentative pose transformation. Then is applied the
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association filter. To strengthen the association check, also the probabilistic
distances of the intersecting segments in the Hesse plane are evaluated for
each feature by computing the following equations:



Dm
2 =

(
m1∗
i −m2

j

)> (
C∗
m1

i
+ Cm2

j

)−1 (
m1∗
i −m2

j

)
Dl1

2 =
(
l1∗i,1 − l2j,1

)>(
C∗
l1i,1

+ Cl2j,1

)−1 (
l1∗i,1 − l2j,1

)
Dl2

2 =
(
l1∗i,2 − l2j,2

)>(
C∗
l1i,2

+ Cl2j,2

)−1 (
l1∗i,2 − l2j,2

) (3.9)

where Dm is the Mahalanobis distance between the jth feature position
in M2 and the ith feature position in M1∗, with a transformed covariance
matrix C∗

m1
j
. Dl1 is the probabilistic distance between the first segment

l2i,1, with uncertainty Cl2i,1
, of feature M2

i and the first segment l1∗j,1, with

uncertainty C∗
l1j,1

, of feature M1∗
j , all expressed in the reference frame of the

set M2. Likewise, Dl2 is the probabilistic distance of the second segments
connected to each features.

Using also the information on the connected segments is possible to
create features locally unique. In case of comparison between a corner and
an end point is possible to neglect the evaluation on the missing segment.

The solution kernel for the computation of the planar transformation
matrix between the two feature sets is obtained in a closed form by weighting
with uncertainties, in practical terms by minimizing the sum of Mahalanobis
distances of the associated features:

min
H

∑
i

∥∥Hm1
i −m2

i

∥∥2

C−1
ij
, (3.10)

where m1
i and m2

j are the associated features respectively in the first and

in the second vehicle pose and the norm used is defined as ‖v‖2C = vCv>

and so corresponds to the Mahalanobis distance. For this purpose valid
methods are the factorization with uncertainties [47] or the optimization in
closed form reported in [22]. With regard to the solution uncertainty, in
Section 2.3.5 is described a general method to estimate the uncertainty of
optimization problem.

Lastly there is the problem of the detection of undetermined situations.
In the feature based method is quite simple to detect these kind of situations,
since the matching requires the presence of at least two features to solve the
planar motion. When the number of feature is not sufficient a solution can
not be achieved.



56 CHAPTER 3. METHODS AND ALGORITHMS

3.3.2 Dense scan matching

The dense scan matching approaches have been introduced in order to over-
come the limitations of the feature in terms of geometrical description of
the environment. In the dense matching category more than one method
can be identified. The most used method matches pairs of points from two
different scans or from one scan and a suitable point-based representation of
the map, it is called Point to Point (PP) matching. An alternative version
of this method matches the points of a scan with a line interpolation of the
other, instead of matching pairs of points. It is called Point to Line (PL)
matching.

3.3.2.1 Point to Point matching

Point to Point (PP) matching is the simplest implementation to perform scan
matching. It must be recalled that it works on the sensor representation of
the environment, with measurement noise. Furthermore, differently from the
features, each point in the scan is not univocally distinguishable. For this
reason is important to use a robust implementation of the ICP framework
to achieve an accurate solution. These characteristics limit the performance
of the approach. To ensure a good accuracy and precision, the approach
must be applied to a moderate pose variation between the two scans. It can
also work with large pose variation but in this case its precision decreases.
In each ICP iteration it could be found the best estimation of the planar

q1

q2

qi-1
1

qj-1
2

qj
2

qi
1

qi+1
1

qj+1
2

x

y y

xΣ1 Σ2

H

Figure 3.4: Schematic representation of the PP procedure between two set
of points q1 and q2, which are respectively espressed in their reference frame
Σ1 and Σ2, that differ for the transformation H.

transformation H between the two set of points q1 and q2, by minimizing
the functional:

min
H

∑
i

∥∥Hq1
i − q2

j

∥∥2
, (3.11)

where q1
i and q2

j indicate respectively the ith point in the first set associated

with the jth point on the second set and H is the planar transformation
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between the two point sets. Like the other dense matching approaches for
laser scanner, there are some critical situations in which the pose estima-
tion fails. In corridor with all parallel walls or in circular environment the
PP cannot return correct solutions, and unlikely the PL approach it is not
possible to detect these situations. Also in this case the covariance can be
computed in closed form with the method reported in Section 2.3.5.

Against all these drawbacks, the PP has also an important advantage, its
robustness to large initial displacement errors. If the laser scans are closer
enough to each other in terms of displacement and rotation this method can
work also without initial guess of pose estimation.

Concerning the pose estimation, omitting numerical optimization, al-
most all the other methods are based on Principal Component Analysis
evaluation. A classical approach is to use the Singular Value Decomposition
(SVD), that requires some improvement [73] in order to avoid the typical
problem of this method. Otherwise a simpler method has been proposed by
Lu [10].

3.3.2.2 Point to Line matching

The Point to Line PL approach has been proposed to obtain a better mod-
elling of the dense scan matching. The rationale is that the ICP has to solve
a surface matching problem even though the laser scans are quite rough
discretizations of the environment surfaces.

The new formulation can be stated as follow: given a reference surface
Sref and a set of points q, the problem is to find the planar transformation H
that minimizes the distances of the points q to their transformed projections
on the reference surface Sref using the transformation H:

min
H

∑
i

∥∥∥Hqi −
∏{

Sref , Hqi

}∥∥∥2
, (3.12)

where the symbol
∏{

Sref , ·
}

denotes the projection on Sref of the ith point
of the q set. This formulation needs a representation of the surface Sref that
is known if the scan is compared to a map, and so the solution is easy [5].
Otherwise, if the method is used to match scans, the surface formulation
must be estimated. In this case is anyway possible to interpolate with a
surface one of the two scans, in order to evaluate the normals on which
compute the point to surface distances. The surface representation can be
done in several ways, but a method quite simple, without any problem of
interpolation stability, is the linear interpolation and for this reason the
approach is defined Point to Line. The line is the one that, given a point
of a scan, contains the two closest points in the reference scan (Figure 3.5);
the goal is to minimize the distance of each point to its associated line.

The ICP in this approach is used on q2
j , the jth point of the second

scan, to find the two closest points in the first scan, denoted by q1
i,1 and
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q1
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qj
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Figure 3.5: Schematic representation of the PL procedure: for each point q2
j

in the second set, two points q1
i,1 and q1

i,2 are selected in the first one. With

a linear interpolation it is possible to approximate the reference surface Sref

and find the point reprojection on it.

q1
i,2. These two points define a line, with normal ni = [nx,i, ny,i]

>, which is
used to solve the surface matching problem. The functional to minimize is
defined by equation (3.12):

min
H

∑
j

∥∥ni [Hq2
j − q1

i,1

]∥∥2
. (3.13)

Solely with this simple scan interpolation is possible to increase the per-
formance of the dense matching approaches. In addition, since the approach
does not work on a single point of the scan, the solution can be accurate
also with large position variation. The main drawback of this approach is
the reliability: it is very sensitive to the presence of outliers in the matching.
For this reason it requires a robust implementation of the data association
and a good initial pose estimation.

Also in the PL scan matching minimization can be performed in closed
form [22] like its uncertainty (Section 2.3.5). Unlike the PP approach, with
the PL is possible to detect the undetermined situations in which the solution
is not well defined. The evaluation of the Fisher Information Matrix in
this case is not feasible, but observing the covariance matrix associated to
the solution is noticeable that in case of undetermined situations one of its
eigenvectors tends to the infinite. This means that uncertainty and so the
solution is not defined in one of the pose parameters.

3.4 Laser Data Association

A critical task in the scan matching process is the data association. In this
work the different implementation pipelines of each approach share the same
data association algorithm both for the robust association of features or for
PP and PL matching. The algorithm is based on a robust improvement of
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the Iterative Closest Point (ICP) used in [14] and [13]. More specifically, the
robustness is achieved by applying the Least Median of Squares (LMedS) [43]
method in order to detect the outlier associations. The pose estimation for
all the approaches has a closed form solution thus reaching a good efficiency
of the LMedS implementation.

Although this robust implementation of the ICP, it must be take account
of some important considerations. The first one is the difference between
the feature based and dense matching: while to a feature is associated a
descriptor that ensure its local uniqueness, it is not possible to build a
descriptor for the single scan point. Secondly, the robust implementation
with LMedS on the association can work until the 50% of outliers. This limit
is adequate when the pose variation between the two laser measurements
is limited, but because of the data association must be used also in the
global localization whit large pose variations, it must put in practice other
preventive measure to limit this percentage.

The first one is a sifting process based on the sensor field of view. It
requires an initial estimation of the pose variation that is used to detect the
laser scans common area and so to limit the number of points or features
that can create outlier associations.

A second preventive operation is to use bi-unique correspondences in the
definition of the associations. In classical ICP algorithm implementation
the correspondences are defined by searching the closest points between a
first set of points to the second one. Thus a point of a set can have multi-
ple correspondences with points in the other set: most of these correspon-
dences can be outliers. To avoid this situation it is possible to carry out the
ICP by evaluating the correspondences from the first set to the second one
and vice versa. This double correspondences can be processed to find the
connections available in both the directions and so defining the bi-unique
correspondences.

3.4.1 Detection of outlier associations

The implementation of the ICP algorithm with the sensor field of view filter
and the bi-unique correspondences does not ensure the correctness of all the
associations. The wrong correspondences between points or features of the
two sets are defined as outlier associations. Because of all the scan matching
approaches are based on a least square minimization the presence of this out-
liers prevents the settlement of a reliable solution. For this reasons there is
the need of a robust ICP capables to detect the wrong associations. In Sec-
tion 2.2.2 has been presented a method that can detect the presence of the
outliers, the LMedS algorithm. This algorithm can be used in the detection
of outlier associations by considering the ICP correspondences as measure-
ments and the planar transformation that describes the pose variation as
the model parameters. By evaluating the planar transformation on several
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samples of correspondences is possible to detect the outlier associations.
Let q1 and q2 be two sets of points or features on which perform the

scan matching and Ĥ be is the initial estimation of the planar transforma-
tion between the two vehicle poses. The LMedS general procedure can be
summarized in the following steps:

1. Transformation of the first set of points q1 in the reference frame of
the second set using the initial estimation Ĥ: the new set of point thus
obtained is denoted with q1∗.

2. Filtering of the q1∗ and q2 sets by taking care of the sensors field of
view.

3. Definition of the bi-unique correspondences
{
q1
i , q

2
j

}
using the ICP

algorithm between the two set of points q1∗ and q2.

4. Selection of N random samples Γk, k = 1...N on the bi-unique cor-

respondences
{
q1
i , q

2
j

}
. The number of correspondences in each sam-

ple must be equal to the minimum number of associations needed to
evaluate the planar transformation between the two set of points: to
estimate the planar transformation the minimum number is s = 2.
The number of samples N must be evaluated using the Equation 2.20.

5. Estimation of the planar transformation Hk using the association
stored in the samples Γk, k = 1...N .

6. Computation of the association distances for all the correspondences
found by the ICP algorithm. The distances must be evaluated follow-
ing the procedures illustrated for each scan matching approach. The
distances are the residual of the model interpolation and are stored in
the vectors rHk

, k = 1...N .

7. Evaluation of the vector of the medians M = [m1, ...,mk, ...mN ]> as-
sociated to the squared residuals rHk

, k = 1...N :

mk = median
(
r2
Hk

)
. (3.14)

8. Selection of the least median squarem′k from the vector M = [m1...mN ]>

and its residuals vector r′Hk
:

m′k = min(M). (3.15)

9. Computation of the residuals threshold σ̂:

σ̂ = 1.4826α

(
1 +

5

n− s

)√
m′k. (3.16)
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In the feature based scan matching the threshold is set to the desired
confidence level, since the residuals in this case are Mahalanobis dis-
tance.

10. Identification of the outliers association by comparing the residuals
r′Hk

of the sample with the least median square with the threshold σ̂.

11. Evaluation of the final solution by using only the inlier associations.

Actually using the LMedS method there would be no need to use an
iterative algorithm like the ICP because of the sampling procedure consents
to estimate the planar transformation on a set of points without outliers.
Indeed ICP uses the iterations to overcome the presence of outliers. However
if the initial motion estimation is distant from the final solution quite a
few associations are incorrect: the LMedS classifies them as outliers and
computes the final solution on a small number of association. Instead, by
performing another iteration of the proposed framework, the ICP can work
on a better initial motion estimation and so it can return more correct
associations that LMedS recognizes as inlier. The final solution is more
accurate since it is evaluated on a large number of associations.

In terms of computational cost the three scan matching approaches are
similar. If on one hand the time required from dense matching approaches
in the association phase is higher than in the feature-based approach due
to the higher number of matches to evaluate, on the other hand the feature
approach has an additional step that is the natural landmark identification.

3.4.2 Consistent association with Joint Compatibility

The consistent data association with Joint Compatibility (JC) permits to
avoid the ICP procedure by exploring all the possible associations between
two set of points. This is particularly useful when there are a limited number
of associations to evaluate and so the wrong estimation of a correspondence
can cause the failure of the scan matching approach. It must be notated
that the use of the LMedS procedure in the ICP framework is very similar
to this algorithm.

The combination of LMedS and ICP defines probably a method with a
slower convergence since it requires more than one iteration while using the
JC only one iteration is needed. On the other hand the LMedS evaluates the
association by considering limited number of minimal correspondences com-
binations: the JC instead perform an exhaustive search on all the possible
combinations. Increasing the number of points in the sets the LMedS uses
always the same number of evaluations while the number of combinations in
the JC, also using the Branch and Bound algorithm, increase exponentially.
From this point of view the JC is more like a brute force research algorithm.
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For this reason in this thesis work has been preferred the implementation
of the LMedS algorithm in the ICP procedure than the Joint Compatibility
data association.

3.5 Camera Images Processing

The decision to estimate the vehicle motion in a generic environment pre-
vents to fuse the information in the environment data processing as seen in
Section 3.2: camera and laser scanner have to provide the vehicle motion
independently. While in the laser scanner the basic operation is the scan
matching, in the camera images processing the analogous procedure is called
Visual Odometry (VO).

The Visual Odometry is the process of estimating the ego-motion of an
agent (e.g., vehicle, human, and robot) using only the input of a single or
multiple cameras attached to it. The term was coined in 2006 by Nister [74]
in his paper: the name was chosen for its similarity to the wheel odometry.
Likewise, using the VO is possible to estimate incrementally the vehicle
poses by examining the changes that motion induces on the images acquired
by the on board cameras.

The most used technique in this field is the classical odometry and almost
every vehicle has rotary encoders to measure wheels rotation. Unfortunately
it has some drawbacks:

• Error drift on pose estimation due to the slippery and slide of wheels
on the floor.

• It can not be applied to mobile robots with non-standard locomotion
methods.

• It assumes that the vehicle moves in a plane.

Using instead a measurement system that can estimate its position ob-
serving the environment, it is possible to overcome the odometry drawbacks.
With three-dimensional information the vehicle could be able to localize it-
self also in non-planar environment. Moreover, the scenario observation is
indispensable to planning the vehicle path. In this order of things VO could
be an important improvement to vehicle localization. Its capabilities makes
VO an interesting supplement to wheel odometry or to other navigation
systems.

The problem of recovering relative camera poses and the three-dimensional
structures from a set of camera images (calibrated or non calibrated) is
known in the computer vision as structure from motion (SFM). It is a field
studied since the early 1980s, but real-time working systems has been de-
ployed only in the last years.
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3.5.1 Monocular vs Stereo Cameras

Though in the work here reported has been used only one camera it is
interesting to illustrate the differences with multi-camera approaches. In
this context it should be emphasized that the state of the art works use the
monocular pose estimation.

Visual Odometry algorithms can be classified in several way. One of the
most important classification is based on the number of camera used:

1 camera only one camera it is used, the pose between two frames is un-
known. It is defined as Monocular VO.

2 or more cameras it is used stereo or trinocular configurations for the
cameras. The cameras relative position must be well known. Though
it is possible to have more than two cameras is defined Stereo VO.

This classification is really important not only for the implementation of
the method, but also for the results that can be achieved. Most of the
research done in VO was produced using stereo cameras: indeed the VO is a
particular case of the SFM, which was developed starting from multi-camera
setups. The main characteristic of the stereo VO algorithms is that the
three-dimensional position of features is evaluated by using a triangulation
procedure in each vehicle pose. Successively by comparing these set of points
computed in different vehicle poses it is possible to estimate the camera
motion.

The alternative to the stereo vision is to use a single camera. In this case
there are no information on camera poses, since by using only a camera they
are the unknowns of the problem. The difference from the stereo scheme is
that both the relative motion and the three-dimensional structure must be
inferred from the bi-dimensional information in the image plane.

The main drawback of using a monocular approach is that the motion
can only be recovered up to a scale factor. The reason is that in the epipolar
geometry there are three main variables: the correspondences, the camera
and the scene geometries. By knowing two of them it is possible to achieve
a complete information on the third one. In this case already two of them
are unknown: the cameras extrinsic parameters, since they are the ego-
motion to estimated and the scene geometry, because it has been assumed
a navigation in an unknown scenario. It means that a complete information
can not be achieved, in fact the scale factor can not be computed with only
these information. The absolute scale can be determined from:

• Direct measurements of a known object in the environment .

• Motion constraints.

• Integration with other sensors.
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Anyway also the stereo VO has some drawbacks:

• The camera extrinsic parameters must be computed with a calibration.

• The camera extrinsic parameters degradation over the time.

• The stereo VO can degenerate to the monocular case when the distance
to the scene is much larger than the stereo baseline.

3.5.2 Visual Odometry

Once that the basic idea of the VO has been introduced, it is possible to go
further in the formulation of the problem. The scenario is the following: a
vehicle is moving through the environment, with a rigidly attached camera
system. At each discrete time t the camera takes a picture It: by using
a monocular system at the time n is possible to obtain a set of images
I0:n = {I0, ..., In}. Because of the VO is an incremental procedure, at each
time t it allows to compute the rigid body transformation from the previous
camera position and orientation to the actual one:

Ht
t−1 =

[
Rt
t−1 ttt−1

0 1

]
, (3.17)

where Rt
t−1 is the rotation matrix and ttt−1 the translation vector of the

camera pose at the time t respect to its pose at the time t − 1. Using
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Figure 3.6: Visual Odometry incremental pose estimation.

a recursive estimation it is possible to construct the set of all subsequent
motions H1:n =

{
H1

0, ...,H
n
n−1

}
and then the set of camera poses X0:n =

{X0, ...,Xn} that describes the camera motion with respect to the initial
coordinate frame. Each camera pose is obtained by concatenating all the
previous transformations and so at this stage the vehicle is localized by an
incremental localization.



3.5. CAMERA IMAGES PROCESSING 65

The relations presented previously describe the geometry of the problem,
while the complete VO pipeline is reported in Figure 3.7. It is noticeable
as the main tasks are essentially the same defined in the laser scanner ap-
proach. For every new image acquired It the first two steps consist in the

Image Sequence

Feature Detection

Feature Matching (or Tracking)

Local Optimization (Bundle Adjustment)

Motion Estimation

2-D-to-2-D 3-D-to-3-D 3-D-to-2-D

Figure 3.7: Visual Odometry framework for general purpose.

detection and matching of the bi-dimensional features in the current image
with those from the previous frame: they must be the reprojection on im-
age plane of the same three-dimensional feature. Like in the laser scanner
data association, the robust data association is an important task in order
to estimate correctly the motion. There are several ways to perform motion
estimation that depend on the number of camera used in the VO. In the
case of monocular VO, since with a single view it is not possible to achieve
three-dimensional information due to the unknown scale factor, the compar-
ison is between the bi-dimensional features information in two consecutive
views. Thus the camera poses are recovered incrementally. It is possible to
perform a refinement work over the last m images and this technique is the
windowed bundle adjustment.

Following the information flow given by the reported flow chart, the first
topics must be the feature detection and matching. For some reasons that
will be explained in the sequent Section 3.6, it is better to explain first the
motion estimation. Indeed there are some basic aspects that must be known
in order to apply a robust matching.

The motion estimation for a monocular camera is the 2-D to 2-D case:
the only information achievable are the features identified and matched on
the camera image plane in two different poses. As shown in Section 2.1.2.3,
using the Fundamental and the Essential matrices it is possible to describe
the relations between points on camera in different poses. The properties
of Fundamental and Essential matrices can be used to solve these relations.
In particular the Essential matrix has less unknown variables and more
constraint: it means that by using its formulation it could be easier to
estimate the camera motion. The Essential matrix requires the employ of
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the normalized coordinates. To use them the camera calibration matrix
K must be known: hence the camera must be calibrated in the intrinsic
parameters. With these premises, by applying the correspondence condition
defined in Equation 2.12 it is determined a system of equations:

x̂tEk
t−1x̂

t−1 = 0, (3.18)

where x̂t and x̂t−1 are the sets of features found respectively in the images
It and It−1 and Et

t−1 is the Essential matrix which contains the motion
estimation information:

Et
t−1 = t̂tt−1R

t
t−1, (3.19)

in which Rt
t−1 is the rotation matrix between the two camera poses, ttt−1 =

[tx, ty, tz]
> is the translation and:

t̂tt−1 =

 0 −tz ty
tz 0 −tx
−ty tx 0

 . (3.20)

To estimate the motion in the context reported there is a set of standard
algorithms, most of them are build for Fundamental matrix but they can
also work with the Essential matrix. The most used algorithms are:

eight-point algorithm is the first solution proposed. It allows to solve
the problem with a system of linear equation using a singular value
decomposition.

five-point algorithm is the minimal case for 2-D to 2-D correspondences.
It has became the standard in presence of outliers.

The simplest method to compute the essential matrix is the eight-point
algorithm. Rearranging the matrix in Equation 3.18 and stacking the cor-
respondence condition from eight points gives a linear equation system:

AE∗ = 0 (3.21)

where A and E∗ are matrices built by stacking the information of the ma-
trix product in Equation 3.19. The parameters of E∗ are defined by solv-
ing this system. Using more than eight points, the overdetermined sys-
tem can be solved using the SVD factorization that leads to the equation
A = USV>. The estimation of E∗ is defined by the last column of V. A
valid essential matrix after the SVD is E∗ = USV> with S = diag {s, s, 0},
in order to fulfil the Essential Matrix constraint on its singular values (Sec-
tion 2.1.2.3). To satisfy all the constraint, the correct Essential matrix is
E
∗

= Udiag {1, 1, 0}V>.
The eight-point algorithm has some drawbacks. First of all its solution

can degenerated when the three-dimensional points associated to the fea-
tures identified are coplanar. Moreover it is not to robust to the presence of
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outlier associations. To avoid the co-planarity problem it is possible to use
the five-point algorithm, but also this one has some drawbacks:

• the system to solve is not linear and it generates a tenth degree poly-
nomial.

• eight-point works with calibrated and uncalibrated cameras, five-point
deals only with calibrated cameras.

• eight-point approach can solve overdetermined systems of equation,
while the five-point works only with exactly five points.

Taking care of these considerations, since both the methods are based
on a SVD decomposition, the returned values are not the rotation and the
translation but the SVD matrices U,S,V. In order to infer the camera
motion between the two frame it is easier to assume that:

• the 1st camera matrix is P = [I | 0].

• the 2nd camera matrix is P = [R | t].

This means that the solution is referred to the first camera reference frame.
Using the properties of essential matrix, it is possible to find four solution
of motion, plus the scale factor ambiguity:

R = U
(
±WT

)
V>

t = U (±W) SU>,
(3.22)

where the matrix W is defined as:

W =

 0 ±1 0
∓1 0 0
0 0 1

 . (3.23)

The scheme of the four solutions is depicted in Figure 3.8 and it is noticeable
that they are essentially the combination of two opposite rotations and two
opposite translations of the second camera. The right solution can be chosen
by taking care that a reconstructed three-dimensional point X, in order to
be a real point, must be in front of both camera views. Thus, to select the
right solution is sufficient to check the cheirality [75].

In conclusion, using these formulations, it is possible to reconstruct the
camera pose. Ideally by using this formulation there is no restriction on
the type of motion: it must be recalled that the rotation matrix R and
the translation vector t describe a three-dimensional motion. For some
applications, like unmanned vehicle that navigate in a planar surface, it is
enough to reconstruct the motion in a plane. If the camera has a planar
motion the geometric relations can be simplified. A very recent work on this
topic is the 1-Point RANSAC presented in [33]. Though it is a remarkable
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Figure 3.8: The four possible solutions associated to the Essential Matrix
[34]: the right solution is the one (a) with the triangulate point in front of
both cameras.

work in the vehicle motion estimation field, it requires strong restrictions
on the motion, as reported in the same article by the comparing with a
five-point algorithm.

The procedure implemented to estimate the motion between two vehicle
poses is based on the Ortin work [32], in which it is also assumed a planar
motion but with less constraint than the previous approach. As reported in

θ

φ

Figure 3.9: Schematic representation of the camera planar motion [32].

Figure 3.9 the camera has to move inside a plane with also the optical axis
z parallel to the motion plane. Respecting these constraints the rotation
matrix R and the translation vector t can be defined in terms of the camera
planar pose parameters. In addition, since the translation is defined up to a
scale factor it can be represented only by the direction of a unit vector. So
the rotation and translation of the second camera with respect to the first
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camera coordinate frame are:

R =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 t =

sin(ϕ)
0

cos(ϕ)

. (3.24)

This notation can be used in the definition of the Essential matrix reported
in the Equation 3.19 obtaining its representation in terms of the two angular
values that define the planar motion:

E =

 0 −cos(ϕ) 0
cos(θ − ϕ) 0 cos(θ − ϕ)

0 sin(ϕ) 0

 . (3.25)

At this point it is possible to define the new variables:

Cϕ = cos(ϕ) C(θ−ϕ) = cos(θ − ϕ)

Sϕ = sin(ϕ) S(θ−ϕ) = sin(θ − ϕ).
(3.26)

By substituting this variables in E and its stacked version E∗ in the Equa-
tion 3.21, it could be found a linear system solvable using SVD and at least

three points, being
[
Cϕ, Sϕ, C(θ−ϕ), S(θ−ϕ)

]>
the unknown parameters vec-

tor.
In conclusion, using the previous methods it is possible to compute the

pose transformation between two frames. The motion estimation can be
done in a three-dimensional space using the five-point and eight-point algo-
rithms or in a bi-dimensional space by supposing a camera planar motion.
In both the cases there is a drawback: the translation is known up to a scale
factor. To recover the trajectory X0:n of the camera in the image sequence,
the transformations H0:n have to be concatenated (Figure 3.6) To do this,
the proper relatives scaled for subsequent transformations must be com-
puted. A way of doing this it is to triangulate the three-dimensional points
from the features matched in two subsequent image pairs and compute the
distance ratio from couples of matched points: this one is the method im-
plemented in this work. A better procedure to recover the scale is to use the
trifocal tensor. In both the solution all the transformations have the same
global scale factor, but it is still unknown.

In order to estimate the real scale factor is possible to use one of the
method listed in Section 3.5.1. It must be remembered that the aim is the
vehicle localization in a generic scenario, so the most feasible one is the
fusion of information on the motion with another instrument.

3.5.3 Feature identification

In order to estimate the motion of the camera using one of the method
proposed, it is necessary to carry out the two previous operation of the VO
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pipeline of Figure 3.7: the identification and the matching of the features.
The selection of the features must take care of some important aspects. The
first one is that the navigation occurs in an unknown scenario, features based
on the identification of geometrical landmark are questionable. Secondly, the
feature must be detected and matched in several frames in which the camera
may undergo significant pose variations. Hence it is needed an algorithm
capable to identify highly distinctive and local invariant features. Only
in this manner it is possible to match correctly the features with different
camera poses and environment conditions.

An interesting work in which can be found a comprehensive analysis on
the local invariant features is [76]. In this survey several types of feature
detectors have been tested and evaluated by taking into account the most
required characteristics:

• Interest Point, Region or Local Feature: a feature can be defined as a
point, a uniform region or a point with the information of the neigh-
bourhood.

• Rotation invariant : the feature descriptor changes slightly with the
rotation of the camera.

• Scale invariant : the feature descriptor changes slightly with the dis-
tance of the camera.

• Repeatability : given two images of the same scene under different con-
ditions, an high percentage of features must be detected in both the
images.

• Localization accuracy : the feature should be accurately localized in
the images.

• Robustness: the feature should be little sensitive to the scene condi-
tions.

• Efficiency : the feature detection must be suitable for real-time appli-
cations.

Analysing the results, one of the best methods is the Scale Invariant Fea-
ture Transform (SIFT) [77]. It is based on a Difference-of-Gaussians (DoG)
detector which means that it can work also in non structured environments.
The features of the SIFT are image points with a descriptor of the neighbour-
hood that permits to obtain good performances in almost all the properties
listed previously. As can be easily understood from the SIFT acronym its
main characteristic is the scale invariance, however the SIFT detector per-
forms extremely well in matching and image retrieval.

In conclusion the SIFT is a very efficient method, but it has also some
drawbacks. The first one is the it requires the definition of thresholds to
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remove features in low contrast regions and edges. Indeed SIFT creates a
lot of key points but the ones that do not have enough contrast or lie on
edges are not locally invariant features. The thresholds must be tuned on
the type of environment and on the camera used. Another drawback is the
lack of an uncertainty estimation of the single feature: the SIFT includes
also a matching operation that returns a score based on the similarity of the
matched features, but there is not information on the uncertainty associated
to the definition of the feature position in the image.

3.6 Camera Data Association

The processing of the information acquired from the camera with the modal-
ities reported above permits to obtain a set of highly distinctive features for
each image. Using the SIFT detector this distinctiveness is reached by a
descriptor of the neighbourhood: in addition this algorithm offers also the
possibility of a matching process capable to deal with these descriptors and
to return the appropriate associations.

Unfortunately the SIFT is not faultless. It has a good localization accu-
racy but is possible that some features can be detected with less accuracy
of others. Furthermore the features are locally invariant and distinctive, so
it is possible that in a repetitive environment the matching operation can
create incorrect correspondences. As shown previously the methods used in
the VO to solve the Essential Matrix and so compute the camera motion are
sensitive to the presence of outliers in the feature associations. Thus, also
in the VO is required a data association with outliers identification.

In Section 3.4 it has been introduced the data association for the laser
scanner data based on a ICP algorithm with a LMedS robust implementa-
tion. The same concept can be applied also in this case with the excep-
tion of certain steps. Since the common SIFT implementations come with
the matching procedure already implemented, the initial ICP steps can be
avoided. After that, the steps to follow are exactly the same.

Defining also in this case as q1 the set of features in the first image in
comparison and with q2 the ones in the second image, with reference to the
framework listed in Section 3.4.1 the operations to perform in the camera
data associations are:

1. Selection of N random samples Γk, k = 1...N on the matched features{
q1
i , q

2
j

}
.

2. Estimation of the camera motion Hk, described by the three-dimensional
rotation matrix Rk an translation vector tk, from the Essential matrix
evaluated using the association stored in the samples Γk, k = 1...N .

3. Computation of the association distances for all the matched features.
The distances are stored in the vectors rHk

, k = 1...N .
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4. Evaluation of the vector of the medians M = [m1, ...,mk, ...mN ]> as-
sociated to the squared residuals rHk

, k = 1...N :

mk = median
(
r2
Hk

)
. (3.27)

5. Selection of the least median squarem′k from the vector M = [m1...mN ]>

and its residuals vector r′Hk
:

m′k = min(M). (3.28)

6. Computation of the residuals threshold σ̂:

σ̂ = 1.4826α

(
1 +

5

n− s

)√
m′k. (3.29)

7. Identification of the outliers association by comparing the residuals
r′Hk

of the sample with the least median square with the threshold σ̂.

8. Evaluation of the final solution by using the inlier associations.

In the implementation of the data associations it must be take into ac-
count two important aspects. The first on is regarding the evaluation of
the distance of the residuals rHk

, k = 1...N in each step. Features iden-
tified by the SIFT are point in the image plane and the distance defined
by the use of the Essential matrix in the correspondence condition (Equa-
tion 3.18) is a reprojection error. Since the image formation is based on
a projective transformations, the algebraic distance is not the same of the
geometric distance [34]. The algebraic distance is a particular case of the ge-
ometric distance. Furthermore the geometric error permits to evaluate more
precisely the reprojection error, but its formulation is quite difficult; hence
usually it is used an its first-order approximation defined as Sampson error.
In addition the Sampson error, or distance, in the case of Essential matrix
has a formulation even simpler. Let x̂′ and x̂ be two set of image features
points expressed in normalized coordinates and E the Essential matrix that
describe the correspondence condition between these set of points:

x̂′Ex̂ = 0. (3.30)

The Sampson distance associated to the ith feature correspondence between
x̂′i and x̂i is:

dSampson =
(x̂′iEx̂i)

2

(Ex̂i)2
1 + (Ex̂i)2

2 + (E>x̂′i)
2
1 + (E>x̂′i)

2
2

, (3.31)

where (Ex̂i)
2
j denotes the square of the jth value of the vector Ex̂i.
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Table 3.1: Number N of samples required by the LMedS by assuming the
50% of outliers and the 0.99 probability to define a set without outliers.

Min. set of points 8 5 3 2 1

No. of samples 1177 145 35 16 7

The second aspect is the problem dimensionality. LMedS algorithm has
to select a certain number N of samples to ensure that at least one of them
is composed only by correct associations. The Equation 2.20 permits to
compute this number and in Table 3.1 are represented the values associated
to the typical number used in the VO algorithms. It is noticeable the rapid
increase of the required samples with respect to the cardinality of the prob-
lem: between the eight-point and five-point algorithms there is almost an
order of magnitude.

Using the planar motion assumption the cardinality of the problem is
equal to 3 and so the number of evaluation is limited to 35. In addition the
minimization can work on few parameters and so the final solution can be
more accurate. For this reason it has been implemented the VO with the
planar motion assumptions described in the previous section.

3.7 Incremental Localization

The incremental localization is the simplest approach that can be applied
having a method capable to estimate the motion between two subsequent
observations. The vehicle pose at the time t is defined with Xt and it is
computed by updating the previous pose Xt−1 with the estimation of the
motion Ht

t−1, as represented in Figure 3.10. By performing this operation
recursively at each time t it is possible to obtain the incremental localiza-
tion. The set of the past poses X0:t = {X0, ...,Xt} define the path followed
by the vehicle. In the case of planar motion the estimation Ht

t−1 is a trans-

Xt-1

Xt

Σ0

(xt-1,yt-1)

(xt,yt)

Ht
t-1  = [ Rt

t-1 | t
t
t-1 ]

θt-1

θt

Figure 3.10: Represenation of the vehicle poses nomenclature in the incre-
mental localization.

formation matrix composed by the bi-dimensional rotation matrix Rt
t−1 and
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translation vector ttt−1:

Rt
t−1 =

[
cos(∆θtt−1) −sin(∆θtt−1)
sin(∆θtt−1) cos(∆θtt−1)

]
ttt−1 =

[
∆xtt−1

∆ytt−1

]
, (3.32)

in which ∆Xt
t−1 = [∆xtt−1,∆y

t
t−1,∆θ

t
t−1]> is the pose variation described

by the transformation matrix Ht
t−1.

The pose updating is described by the Equation 2.24, in this case the
formulation can be stated as:

Xt =

xtyt
θt

 =

xt−1 + ∆xtt−1 · cos(θt−1)−∆ytt−1 · sin(θt−1)
yt−1 + ∆xtt−1 · sin(θt−1) + ∆ytt−1 · cos(θt−1)

θt−1 + ∆θtt−1

 . (3.33)

The incremental estimation can be applied on the camera and on the laser
scanner, since both the instruments can estimate the pose variation between
two subsequent environment observation.

While the concatenation of the pose variations is a simple procedure,
more difficult is to obtain a reliable estimation of the motion Ht

t−1. Indeed
the major drawback of the incremental localization is the error drift in the
pose estimation. This problem is well known in the dead reckoning localiza-
tion with encoder mounted on wheels, especially in the vehicle attitude as
it can be seen in Figure 3.11.
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Figure 3.11: Dead reckoning localization with encoder on wheels with prob-
lems on attitude drift.

In order to limit the drift in the pose estimation error it is possible to
apply at the scan matching and the visual odometry the LMedS approach
robust improvements on the data association, presented respectively in Sec-
tion 3.4 and Section 3.6. Previously it has been introduced the encoder
odometry incremental localization: its performances are poor, but it can be
very useful in the definition of the correspondences in the scan matching
procedure and to estimate the scale factor in the visual odometry. By us-
ing the encoder odometry is also possible to implement a Extended Kalman
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Filter (EKF) in order to fuse the information between this sensor and the
localization based on the range sensors.

Concerning the incremental localization with the camera, the current
limiting aspect is that to the features extracted from the images is not
associated a position uncertainty. This aspect prevents the evaluation of
the visual odometry uncertainty and so to apply the EKF. However the
odometry is still important to compute the scale factor: only in this way
the translation of the camera can be estimated.

On the other hand, regarding the incremental localization with the laser
scanner, by using the scan matching approaches is possible to evaluate the
uncertainty of the motion. This means that it is possible to apply the EKF
in order to fuse the information on the vehicle pose. The implementation of
the EKF depends on the vehicle kinematics, but in general it is composed
by the prediction and updating steps. Let x̂ be the vehicle state vector, P
the covariance associated to the state and Q the covariance of the control
input u; the prediction can be expressed by the relation:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 + Qk−1,

(3.34)

where x̂k|k−1 and Pk|k−1 are the predictions respectively of state and its
uncertainty and Fk−1 is the Jacobian of the function f used to compute
the prediction. The encoder are associated to the input uk−1 with the
uncertainty Qk−1. Furthermore, by using the encoder the vehicle state x̂
corresponds to the vehicle pose X and its covariance matrix C is equal to the
state uncertainty P. This prediction can be used to compute an initial pose
estimation for the scan matching approaches which return a measurement
zk of the state with uncertainty Rk. This measurement is used to update
the vehicle state:

x̂k|k = x̂k|k−1 + Kkyk
Pk|k = (I−KkGk)Pk|k−1,

(3.35)

in which Gk is the Jacobian of the function g used to map the measurement
to the state, and yk = zk−g(x̂k|k−1) is defined as the innovation. The matrix

Kk is the Kalman gain determined by the relation Kk = Pk|k−1H
>
k S−1

k in

which is used the innovation covariance Sk = GkPk|k−1G
>
k + Rk.

It should be noted that the scan matching approaches evaluate the trans-
formation between two vehicle poses. The current vehicle pose, and so the
measurement zk used in the update step of the EKF, is computed incre-
mentally from the best evaluation of the previous vehicle pose using the
Equation 3.33. Very similar argument is also valid for the uncertainty Rk,
that must be computed using the formulation reported in Section 2.3.1. The
best estimation of the previous vehicle pose on which apply the incremental
solution is the solution returned by the EKF in the prior routine.

On the chance that the encoder estimation is not available, it is still
possible to work with the laser. Indeed the scan matching approaches can
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afford to work without the initial guess poses if the pose variation between
the two laser scans is not excessive. With the aim to obtain a more reliable
method is possible also in this case to use an EKF. The formulation is
similar to the one reported above except that the input is not defined. The
prediction can be inferred from the previous vehicle states. For this purpose
the vehicle state, and also its uncertainty, used in the EKF must include the
pose velocities:

x̂ = [x, y, θ, ẋ, ẏ, θ̇]>. (3.36)

Using instead the camera without the encoder pose estimation, it is not
possible to recover the scale factor. To perform the vehicle incremental
localization with the camera there must be an exchange of information with
the laser in order to evaluate the translation scale factor.

3.8 Global Localization with Maps

The global localization with maps lies outside the localization in unknown
environment, but it is a good test field for the scan matching approaches.
It has been developed during a collaboration on the preliminary analysis
of localization systems for the International Thermonuclear Experimental
Reactor (ITER) Transfer Cask System (TCS) [78].

Figure 3.12: ITER scenario and TCS vehicle.

The procedure is very similar to the incremental localization: at each
time t the vehicle pose Xt is estimated with a scan matching approach. The
difference in the global localization with map is in the input used in the
scan matching. Instead of comparing the current scan with the previous
one, now the scan is compared with the map. Since the environment in
which the TCS navigates it is structured, with a well defined geometry,
the map representation is quite simple and can be derived from the CAD
model of the building. The map thus defined is simply composed by a set
of points connected by segments. These circumstances are perfect to apply
the feature based scan matching approach: is also possible to implement
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the dense scan matching approaches in order to compare the results of the
different algorithms.

Concerning the feature based approach, it requires a pre-processing to
identify the features and to store the information in a structure like the
one proposed in Equation 3.1. Also regarding the PL approach the changes
required are few since the map is already defined with a sequence of lines
that can be used as reference surface Sref . Few modifications are instead
required from the PP. To accomplish this scan matching are necessary two
set of points. The scan acquired from the laser scanner is already a set of
points, the second one scan be evaluated by simulating the laser acquisition
in a predicted pose by using the map. It is essential in this case to have
a laser scanner simulator that can return this kind of information from the
map.

Since using the map does not mean that all the correspondences in the
scan matching approach are correct, also in this case has been implemented
an ICP framework with a LMedS evaluation to detect the outliers in the
association (Figure 3.13).

ICP Framework

environment 
map

current set 
of points

map
associations

outliers
 identification
with LMedS

Closed Form
solution

vehicle pose 
estimation

initial guess 
poses

ICP exit
condition

Figure 3.13: ICP framework used in the all the compared matching ap-
proaches, featured by a LMedS step for robustness improvement.

Like the incremental localization (Section 3.7) it has been implemented
an EKF in order to generate the prediction of the vehicle pose and to use
this information as initial pose estimation in the scan matching approaches.
The implementation of the EKF, with or without the odometry, is perfectly
the same of the one reported in Equation 3.34 for the prediction stage and
in Equation 3.35 for the update. The main difference is in the information
used in the measurement update. Since the scan matching is performed
directly with information stated in the environment global reference frame,
the pose estimation zk is already the pose vehicle expressed in this reference
frame. The same logic must be applied to the covariance matrix Rk which
is the uncertainty of the global localization.

Furthermore, having a map it is also possible to evaluate the lower-bound
uncertainty of the laser scan matching. Using the algorithm developed in
[18] is possible to compute for each planned vehicle pose the Fisher’s infor-
mation matrix and so establish the Cramer-Rao lower bound of the unbiased



78 CHAPTER 3. METHODS AND ALGORITHMS

estimator of the vehicle pose X.

3.9 Global Localization with Graph Theory

When there is no a-priori knowledge of the environment map the alterna-
tive for the localization is not just the incremental localization. In this cases
it is possible to estimate the vehicle pose in a more reliable manner with
the SLAM, which allows to localize the vehicle and build the map simul-
taneously. Moreover the SLAM approach meets exactly the requirements
of the vehicle motion estimation in an unstructured scenario. As shown
in Section 2.3.2 there are several implementations of the SLAM; the main
difference is in the use of the information acquired during the navigation.

The online SLAM algorithm is usually based on a EKF, which is used
to summarize all the previous information in the current pose and map
estimation by means of a filtering operation. As reported in Section 2.3.3,
this operation has limitations in the estimation accuracy of both the map
and vehicle poses. In addition it requires a feature based map, since the
EKF has to store and update a probabilistic map of the environment: the
use of features permits to perform this operation in the easiest way.

On the contrary the full SLAM algorithm uses in each iteration all
the previous information in terms of vehicle poses and sensor observations.
Moreover it can be solved using the Graph Theory. Since the Graph Theory
does not use filtering, it allows to fuse the data in a manner unattainable
by the approaches based on the Bayesian formulation, as the EKF (Sec-
tion 2.3.4.2). For these reasons in the thesis work has been implemented the
global localization based on the Graph Theory. In addition, because of the
method here proposed does not use expressly the map building, it is possible
to use dense matching approaches and so carry out the localization also in
a non-geometric environment.

The main drawback of the Graph Theory is that it solves only linear
systems, while the global localization defines a non linear system. A lot of
literature works have been produced on this topic (Section 2.3.4.3); in the
following section is explained the approach here implemented.

3.9.1 Solve the non-linearity

The most relevant work in the graph-based SLAM has been proposed by
Lu in [10]. In this early work the non-linearity problem was solved by
linearising the vehicle motion equations in the neighbourhood of the initial
vehicle pose estimation. The resulting approach was not robust, but the
implemented algorithms were a fundamental step in the solution of graphs
with uncertainty weighting (Section 2.3.4.1). A more recent work [71] dealt
with the solution of the non-linearity problem, but using a less rigorous
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probabilistic discussion. The main innovation of this algorithm is in the
approach used in the linearisation: a Two-Step pose estimation.

In order to understand how it works it must be considered two vehicle
poses Xi and Xj used in the global localization, which correspond two nodes
of the graph. By performing the matching of the information acquired by
the sensors in these poses is possible to estimate the pose variation Dij .
The formulation that describes the relation between these entities is the one
already used in the incremental localization. Defining Xi = [xi, yi, θi]

> the
pose of the ith node and Xj = [xj , yj , θj ]

> the pose of the jth node, the
system of equations that describe their relation, given the pose variation
Dij = [∆xij ,∆yij ,∆θij ]

>, can be stated as follow:

Xi =

xiyi
θi

 =

xj + ∆xij · cos(θj)−∆yij · sin(θj)
yj + ∆xij · sin(θj) + ∆yij · cos(θj)

θj + ∆θij

 . (3.37)

In this system of equations it is noticeable that while the relations that
describe the vehicle position X′ = [x, y]> are non-linear, the relation between
the vehicle attitudes is linear. By assuming that attitude and position of the
vehicle can be solved separately, it is possible to linearise all these relations.
Indeed, once that the vehicle attitude is solved, the position relations become
linear. In conclusion the concept is extremely simple: the linearisation can
be done by solving the problem in two step, one for the rotation and the
other one for the translation. Extending this approach to the whole graph,
it means that there are two system of linear equation, that can be solved
easily with the Graph Theory.

In order to perform this two step evaluation, it must be assumed that the
the matching errors in X′i = [xi, yi]

> and θi are not correlated. This means
that the covariance matrix Ci associated to the generic pose Xi returned by
the global localization has a block diagonal form:

Ci =

cxx cxy 0
cyx cyy 0
0 0 Cθθ


x=xi,y=xi,θ=θi

. (3.38)

This is clearly a simplification, because of the vehicle attitude and posi-
tion are not independents; on the other hand the alternative solution is to
linearise the equations that, how it has been reported previously, proba-
bly leads to worst results. It mus be notated that also by using classical
probabilistic approaches in the SLAM there are simplifying assumptions in
the uncertainties evaluation, because only serial and parallel links can be
treated.

According to this two-step implementation, the first operation is to ac-
complish the global optimization of the pose attitude. Let X0:m = {X0, ...,Xm}
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be the set of m poses on which apply the global optimization. To the atti-
tudes of these poses can be applied the system of equation defined by the
graph and reported in Equation 2.32:

∆θ = M · θ, (3.39)

where ∆θ is the vector of the relative attitude between the graph poses, θ
is the vector of the vehicle global attitudes referred to the reference frame
of the pose X0 and M is the incidence matrix:

∆θ = [∆θ01, ...,∆θij , ...,∆θ(m−1)m]>

θ = [θ0, ..., θm]>
, (3.40)

in which the complete vector ∆θ has dimension n = m(m−1)
2 . The incidence

matrix M is the connection between the measurements ∆θ and the global
estimation of attitude θ, so its dimensions are n×m.

The system in Equation 3.39 can be solved by taking into account the
standard deviation σ∆θij associated to the relative attitude evaluation be-

tween the ith and jth node. This values are stored along the diagonal of the
matrix C∆θ that has dimension n× n:

C∆θ =


σ2

∆θ01
0

...
...

0 σ2
∆θ(m−1)m

 , (3.41)

By applying the Equations 2.34 and 2.35 is possible to compute the global
vehicle attitude:

θ = (M>C∆θ
−1M)−1M>C∆θ

−1∆θ, (3.42)

and its uncertainty:
Cθ = (M>C∆θ

−1M)−1. (3.43)

Once the global attitude is evaluated, it is possible to optimize the vehicle
position. To obtain linear relations in the position terms, it must be applied
the global attitude to all the relative position evaluations defined for each
link. This means the definition of a new set of relative position evaluations
from the original set of measurements Dij = [∆xij ,∆yij ,∆θij ]

>. The new
set can be defined as:

∆X′ij =

[
∆x′ij
∆y′ij

]
=

[
∆xijcos(θi)−∆yijsin(θi)
∆xijsin(θi) + ∆yijcos(θi)

]
. (3.44)

The matrix M must be reshaped in order to be used with the position. This
not due to changes of the graph links, but is to deal with the dimensionality
variation: the vehicle attitude θi is a scalar value while the position X′i is
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a vector. The new incidence matrix is defined as M′ and it has 2n × 2m
dimensions.

In addition it must be defined the matrix C∆X′ . It is a diagonal block
matrix: each block is the covariance matrix associated to the relative po-
sition estimation between the nodes of the graph, and its dimensions are
2n× 2n.

C∆X′ =


C∆X′01

0

...
...

0 C∆X′
(m−1)m

 . (3.45)

The system of linear equation that must be solved to evaluate the vehicle
global positions X′ is:

X′ = M′ ·∆X′. (3.46)

The global optimized vehicle position X′ and its uncertainty CX′ are achieved
by solving the graph with uncertainty weighting:

X′ = (M′>C∆X′
−1M′)−1M′>C∆X′

−1∆X′ (3.47)

CX′ = (M′>C∆X′
−1M′)−1. (3.48)

At the end of this operations, thanks to the two-step linearisation ap-
proach, it is possible to obtain the global optimization of the vehicle pose
without using numerical algorithms. Furthermore, the method does not
require the building of a map.

X1

X2

X3

X4

(a) open loop uncertainties

X1

X2

X3

X4
X5

(b) close loop uncertainties

Figure 3.14: Graphical representation of vehicle uncertainties in SLAM. (a)
In open loop estimation vehicle and map uncertainties grow up at at each
step. When it is possible to close the loop (b), uncertainties of vehicle
position and map decrease suddenly.

Summing up all the observations pointed out until this point, some im-
portant considerations on this global localization implementation can be
carried out. The first one is regarding the pose connections in the graph.



82 CHAPTER 3. METHODS AND ALGORITHMS

The graph solution perform a Total Least Square minimization by consid-
ering all the possible walks. This means that for each node of the graph
the error of all the measurements, also the indirect one, is minimized by
considering also the uncertainties and their propagation along the walk. In-
tuitively the graph can be compared to a network with elastic connections
between the nodes: low uncertainty pose estimation between two nodes cor-
respond to a stiffer connection. The global optimization accomplished from
the graph based SLAM is equivalent to find the minimum energy config-
uration of the network. For this reason, unlike EKF-SLAM, the proposed
method can modify the previous pose estimations in order to achieve to
the best solution. Maybe this feature seems to be unsafe, but instead it is a
strength point: in open loop, both classical and graph based SLAM can have
error drift in pose estimation. When a new observation allows to close the
loop (Figure 3.14), with a graph approach all the past poses can be updated
in order to estimate the more reliable vehicle path. With an EKF-SLAM
instead, all the past poses are summarized with the filtering in a prior. The
new observation can not fix previous poses and map: this means that the
map accuracy decrease and the uncertainties of all the poses of the path are
greater than the one estimated with a graph based SLAM

Another important observation is on computational cost. As seen in Sec-
tion 2.3.3, in order to obtain a reliable pose estimation is more important to
have an high number of landmarks than vehicle poses. It means that the full
SLAM can be performed only on same key-frame without significant effects
on pose uncertainty. Furthermore, using dense matching approaches is pos-
sible to increase the number of natural landmarks used in each association.

3.9.2 Pose uncertainty evaluation

By applying the proposed method for linearisation, since the estimation
of the global pose has been split in two steps, the Graph Theory has to
be performed twice, one for the attitudes and one for the positions of the
vehicle. This means that in the solution procedure, the attitude θ and
the position X′ = [x, y]> are assumed independents. The independence
of this parameters helps to linearise the relations. This assumption affects
also the estimation of the pose uncertainty: at the conclusion of the graph
based approach the vehicle pose uncertainty is described by a block diagonal
covariance matrix.

Assuming that the pose of ith node can be notated as Xi = [xi, yi, θi]
>,

the covariance matrix after global localization must have the form:

Ci =

cxi,xi cxi,yi 0
cyi,xi cyi,yi 0

0 0 cθi,θi

 , (3.49)

where the first and the second diagonal block are evaluated respectively from
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the second and first step of the graph based SLAM linearisation procedure.
The zeros out of diagonal blocks indicate that the vehicle position and atti-
tude are uncorrelated. To compose the covariance matrix Ci defined above,
with the assumption of independence between position and attitude, it could
be performed a simply operation of matrix composition:

Ci =

[
CX′i

0

0 Cθi

]
. (3.50)

The covariances CX′i
and Cθi must be computed from the covariance matri-

ces returned by the graph based SLAM. Actually the problem is that these
covariance matrices are associated to the parameters of all the pose vari-
ables in the graph, while the covariances needed are only the one referred
to the pose parameters of the single node. This issue can be solved with a
marginalization of the distribution on a node.

The marginal density of a generic scalar value x on the ath node is by
definition the integration of all the joint densities p(xa, xb) on the other bth

nodes:

p(xa) =

∫
p(xa, xb)dxb. (3.51)

This formulation is not always easy to use and it could be unusable for a
large number of variables: it is the case of the uncertainties returned from the
graph solution. Assuming that the uncertainties estimated by the graph can
be represented with a multivariate Gaussian, the integral formulation can
be simplified. As demonstrated by Schon [79], in this case the computation
of the covariance can be done very easily. Let x be a random vector with
mean µ and covariance Σ and assume that the vector can be partitioned in
xa and xb as follow:

x =

(
xa
xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
. (3.52)

By marginalizing the Gaussian distribution is possible to obtain the uncer-
tainty distribution p(xa) of the partition xa:

p(xa) = N (xa;µa,Σaa) . (3.53)

Identical approach can be applied to the covariance matrices of vehicle po-
sition CX′ and attitude Cθ estimated by the graph based SLAM. Assuming
that these uncertainties can be represented by a multivariate Gaussian, the
vectors of position and attitude can be partitioned on the values of each
node. Thus is possible to marginalize the uncertainties of all the poses in
the path in order to evaluate the covariance matrices CX′i

and Cθ′i
associated

to the generic Xi pose of the path.
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Chapter 4

Experimental Results

In order to test the proposed algorithms under different environment spec-
ifications, in this work has been used several instrumentations mounted on
different research vehicles and a collection of standard datasets well known
in the field of vehicle localization. Since the vehicle localization is a field still
in evolution, the most difficult part is the assessment of the results. Actually
the problem is to achieve the information from a more accurate measure-
ment system in such a manner to have a ground truth: for this reason the
methods have been also tested on simulated data.

4.1 Instrumentation

4.1.1 Simulations and Datasets

The simulations and the datasets have been used to test and qualify the
localization algorithms. For the simulation of the global localization with
maps procedure has been used the simulator included in the software Rob-
DAC developed by the institute IPNF of the IST of Lisbon [72]. The soft-
ware has been modified in order to simulate the typical sources of noise in
the laser scanner and to allow the definition of several types of laser scanner,
in order to investigate on the performance of the different scan matching ap-
proaches. This laser simulator developed was also used in the creation of the
simulation used in the evaluation of the incremental and global localization
in unknown environment.

In order to perform a comparison of the performances between the devel-
oped algorithms and other works on the same topic has been used the MRPT
dataset collection [80] of experimental measurements. Unfortunately, also
in this case most of the data acquired is released without the reference of
a ground truth: however it was useful to evaluate qualitatively the perfor-
mance of the algorithms and to test them in several kind of environment.

85
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4.1.2 Test vehicle

The test vehicle used, shown in Figure 4.1, is a research mobile robots Mo-
bileRobots Pioneer P-3DX. It is a differential drive vehicle for indoor appli-

Figure 4.1: Mobile Robots Pioneer P3-DX test vehicle equipped with lasers
and camera.

cations, with several on-board sensors like wheel encoders, gyroscope and
an array of sonar. The one used during the thesis has been also equipped
with an on-board computer needful to acquire the data returned from the
opto-electronic instrumentation. As depicted in Figure 4.1, to the vehicle
has been added two laser scanners at different height and a camera. The
laser scanners used are respectively a Sick S2000 on the bottom and a Sick
LMS151 on the top: since they have different specifications it was possible
to test the algorithms with different laser profiles. The camera used was
industrial graded, and in particular it is a Matrix Vision BlueFox with a
1024× 768 CCD sensor and an optical with f = 8mm focal length.

The Sick LMS151 laser scanner is also used in the proprietary naviga-
tion software of the Pioneer P3-DX. In order to reference all the information
acquired by the Sick S200 laser scanner to the vehicle pose it was used a soft-
ware developed from our laboratory, based on the scan matching procedures
presented on this thesis. In this way it has been also possible to calibrated
the extrinsic parameters of the camera after a camera-laser calibration [81].
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4.1.3 ITER vehicle prototype

The ITER vehicle prototype shown in Figure 4.2 is a model of the Cask
and Plug Remote Handling System (CPRHS) used in the mock-up of the
Tokamak Building of the ITER project to test different algorithms of vehicle
localization, navigation and path planning. It is a rhombic like vehicle,

Figure 4.2: ITER model vehicle prototype equipped with laser and camera.

or rather a two-steering-wheels AGV which navigates inside the mock-up
environment by collecting the measurement from a Hokuyo URG-04LX-
UG01 laser scanner and a common webcam. The vehicle is equipped with a
small micro controller in which is implemented the command of the drives
In order to collect the data from the two sensors it has been used a laptop
with the RobDAC software.

4.2 Global Localization with Maps

The first results reported is the global localization with map. Although this
type of localization requires a complete knowledge of the environment, since
the map is available, it allows to test the performances of the scan matching
approaches when they are used in a localization framework; in this way it is
possible to achieve a complete overview of their pro and cons.

The localization is performed in a representative environment that in-
cludes several type of situations commonly encountered by an indoor mobile
robot, some of which can be also critical, like the one depicted in Figure 4.3.
This environment has narrow areas with high symmetry and few features,
wide areas with good asymmetry and number of features and areas that are
very closed to critical situations.

In order to investigate on the performance of the scan matching methods
in a localization framework, several laser profiles in terms of sensor perfor-
mances have been tested. The considered parameters are:

• maximum distance detectable (10, 20, 100 m)

• standard deviation of noise in range (0.04, 0.1 m)
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(a) 3D CAD model of the environ-
ment
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Figure 4.3: CAD model of the ITER environment (a) and relative map,
with real path and dead-reckoning estimation. The three type of scenarios
are (I) narrow with few features, (II) wide with several features and (III)
featureless and thus closed to undetermined situation. The vehicle starts
from the room on the top.

• angular field of view (180◦ and 240◦ deg)

• angular resolution (0.25◦, 0.5◦, 1◦ deg)

The selection of the parameter values is based on common values of com-
mercial lasers: while the last three parameters are more general in the scope
of the present comparison analysis, the maximum measurable range must
be related to the environment size. Actually the chosen values are respec-
tively about 0.1, 0.2 and 1 times the maximum distance measurable in the
environment. Since it is not feasible to change all these parameters in a real
LRF and we didn’t avail of an highly accurate ground-truth of the vehicle
trajectory, a first evaluation has been carried out in a controlled simulation.
All the combinations of these parameters define 36 different laser profiles,
defined here ID (Table 4.1), based on which the localization procedures
based on the three different scan matching approaches have been test. Two
tests are provided:

• with an initial guess pose estimation given by a simulated odometry

• without any initial guess pose estimation
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For both the approaches an Extended Kalman Filter (KF) is used : in the
former, which is the classical approach, the odometric estimation can be
used as an input control in the prediction step of the KF. In the latter the
prediction must be inferred from the past vehicle states. In the case with-
out odometry data a EKF assuming constant velocities (linear and angular)
model is used. The velocity state is estimated from the observations of incre-
mental displacements obtained by matching consecutive scans. Furthermore
the localization methods have been also tested in a scale model of the real
scenario.

Simulation and experimental results share the same scenario (Figure 4.3),
except for the 1 : 25 scale factor of the experimental mock-up . These analy-
sis has been complemented with the analysis of the theoretical limitations of
the environment, performing an uncertainty lower bound computation along
the path. Having the best theoretical performance of the pose estimation at
hand, the comparative analysis gains more generality. With the knowledge
of the map, path and laser profile, using the method reported in [18] the
Fisher Information Matrix is computed and thus the minimum achievable
uncertainty on pose estimation as well. In addition, by observing the Fisher
Information Matrix, it is possible to detect the undetermined situations. In
these cases, like corridor or circular environment, is not possible to obtain a
solution from the scan matching with any approach. In Figure 4.4(a) is de-
picted the analysis of the best achievable uncertainty for profile ID 29. It is
observable how the uncertainty on vehicle pose increases along the corridor.
In addition, by only changing the laser angular resolution (from profile ID
29 to ID 17) the poses with high uncertainty degenerate in undetermined
situations, as represented in Figure 4.4(b) by the regions A, B an C.

4.2.1 Simulated results

The simulation results are reported in (Table 4.1). The best laser profile
in terms of measurement noise, resolution, range and field of view, can be
identified in the ID 36, while the worst one is ID 1. Since reporting the results
for all the IDs can be useless, the results shown below are a selection of the
whole laser profiles set, in order to emphasize the most relevant comparisons.

In Table 4.2 and 4.3 are reported the results of the simulation. For some
IDs results are missing because these are cases where localization fails. This
problem can occur when for several consecutive times the amount of data in
the scans are not sufficient to localize the vehicle. In these situations the KF
can diverge and the localization gives rise to a kidnapped robot problem. The
solution of this problem is not the aim of this application, which is instead
the evaluation of the scan matching approaches.

Among the simulations with a guess pose estimation the best results in
terms of mean and maximum error correspond, as expected, to the best laser
profile ID 36 (Table 4.2). By an insight into this profile (Figure 4.5) it is
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Figure 4.4: Vehicle pose uncertainty lower bound (magnified by 100) (a) and
undetermined situations (A,B,C) of a lower angular resolution laser scanner
(b). The numbers represent the progressive scan number along the path.

Table 4.1: Laser scanner profile IDs used in the simulation.
ID angular FOV angular resolution range max range noise std

[deg] [deg] [m] [m]

1 180 1 10 0.1
5 180 1 20 0.1
9 180 1 100 0.1
10 240 1 100 0.1
12 240 1 100 0.04
17 180 0.5 20 0.1
24 240 0.5 100 0.04
27 180 0.25 10 0.04
28 240 0.25 10 0.04
29 180 0.25 20 0.1
32 240 0.25 20 0.04
34 240 0.25 100 0.1
35 180 0.25 100 0.04
36 240 0.25 100 0.04

clear that the most accurate approach is the PL, that it is capable to esti-
mate the position with a mean error lower than 0.01 m in the best case, also
when the localization is performed without the initial guess pose estimation
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Table 4.2: Errors in the case of simulated vehicle pose estimation using
odometric data as initial guess.

Errors in vehicle position/attitude estimation
with initial guess pose estimation

ID Feature PP PL
mean max mean max mean max
[m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg]

1 0.24/1.19 1.06/9.03 0.07/0.30 0.39/2.85 0.05/0.33 1.38/6.12
5 0.15/0.65 0.51/5.38 0.07/0.27 0.28/0.98 0.02/0.09 0.09/0.76
9 0.16/0.54 1.10/4.54 0.08/0.31 0.56/1.19 0.02/0.06 0.11/0.68
10 0.11/0.43 0.35/6.06 0.05/0.26 0.28/0.70 0.02/0.06 0.12/1.55
12 0.05/0.21 0.16/1.63 0.06/0.31 0.27/1.13 0.01/0.02 0.03/0.23
17 0.47/1.90 2.15/7.97 0.03/0.11 0.11/0.41 0.02/0.07 0.13/0.82
24 0.04/0.10 0.30/1.00 0.03/0.16 0.14/0.57 0.01/0.01 0.02/0.09
27 0.22/1.82 1.02/18.2 0.02/0.09 0.24/0.64 0.01/0.10 0.09/2.68
28 - - 0.02/0.07 0.13/0.81 0.01/0.04 0.05/0.94
29 0.10/0.48 0.38/2.16 0.01/0.05 0.09/0.32 0.01/0.04 0.07/0.26
32 0.04/0.08 0.18/0.41 0.01/0.05 0.04/0.25 0.01/0.03 0.03/1.29
34 0.07/0.15 0.42/1.29 0.01/0.07 0.07/0.28 0.01/0.04 0.04/1.55
35 0.04/0.12 0.17/1.44 0.02/0.09 0.17/0.33 0.01/0.02 0.05/0.98
36 0.03/0.07 0.13/0.54 0.01/0.08 0.09/0.29 0.01/0.01 0.01/0.04

Table 4.3: Errors in vehicle pose estimation in simulation with respect to
the ground-truth, without initial guess pose estimation.

Errors in vehicle position/attitude estimation
without initial guess pose estimation

ID Feature PP PL
mean max mean max mean max
[m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg] [m]/[deg]

1 - - - - - -
5 - - - - 0.06/0.08 1.95/0.57
9 0.24/0.70 1.73/4.55 0.10/0.31 0.57/1.25 0.03/0.06 0.37/0.65
10 0.18/0.59 1.71/10.9 0.06/0.25 0.25/0.70 0.02/0.05 0.31/0.33
12 0.07/0.26 0.50/2.82 0.07/0.28 0.43/0.73 0.01/0.03 0.04/0.25
17 - - - - - -
24 0.04/0.11 0.35/0.66 0.03/0.15 0.20/0.45 0.01/0.01 0.01/0.08
27 - - - - - -
28 - - - - - -
29 - - 4.17/19.5 19.7/122 0.05/0.04 1.08/0.26
32 0.06/0.10 1.92/1.11 - - 0.01/0.01 0.87/0.07
34 0.08/0.18 0.29/1.45 0.02/0.06 0.11/0.33 0.01/0.02 0.13/0.14
35 0.05/0.15 0.35/1.51 0.05/0.11 1.01/2.08 0.01/0.01 0.03/0.12
36 0.03/0.06 0.15/0.42 0.02/0.07 0.11/0.23 0.01/0.01 0.06/0.05

(Table 4.3). The PP approach ensures good results in terms of accuracy but
less in precision. Despite of the premises, the worst approach is the feature-
based in terms of both mean and maximum error. Even though the features
have a better statistical implementation, their limited numbers and high
uncertainties lead to results worse than dense matching approaches. Theo-
retically the features should be the best approach, since their identification
is done with a probabilistic inference on noisy data in a well structured en-
vironment. However the number of features detectable is small if compared
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with the number of points in each scan. In addition, due to the environment
size, the features are also far from the laser, in areas where the scan reso-
lution is low: this entails the extraction of features with high uncertainties
that consequently affect the pose estimation.
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Figure 4.5: Error in vehicle position estimation along the path using the
laser profile ID 36.

Next consideration is on the angular field of view: by increasing it, the
error in position must decrease, especially in environments where there are
several undetermined situations like corridors. This is noticeable by com-
paring the results on IDs (32,35,36): since the IDs 35 and 36 can avail of
an high maximum range, the ID 32 with a wide 240◦deg field of view but
lower maximum range has comparable performances. Furthermore it can be
observed in Figure 4.6 that the angular FOV is really important to avoid
the undetermined in the region C, in the neighbourhood of pose number 70.

Regarding the laser maximum range, with reference to IDs (36,32,28),
a degradation in accuracy by lowering the range is remarkable . Analysing
the overall performances along the path, while the localization based on
dense matching with initial guess pose estimation work properly, in the
feature-based case the localization fails in some parts of the path. This
problem is represented in Figure 4.7(a), while the comparison of the methods
over all the laser maximum ranges is depicted in Figure 4.8. The feature-
based approach fails on the pose 40, at the entry of corridor. This is due
to a very short range (10 meters), which does not allow to identify the
minimum number of features required. On the same IDs, without using
the initial guess pose estimation, the results with short range laser become
worst: all the approaches fail. While the feature-based and PP approach
stop to work correctly on the undetermined region B, the PL continues to
localize the vehicle until the region C: the PL approach can also work in
region very closed to the undetermined situations. This is in accordance
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(a) Feature scan matching
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(b) PP scan matching
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(c) PL scan matching

Figure 4.6: Error in vehicle position estimation along the path on localiza-
tions performed with different laser angular FOV with initial guess pose
estimation.

with a maximum error of PL in most of the case lower than in the other
approaches.
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Figure 4.7: Error in vehicle position estimation along the path on localiza-
tions performed with laser profile ID 28.

Comparing the IDs (36,24,12) is possible to analyse the influence on the
performances by changing the laser angular resolution: the improvements on
using high resolution are poor if compared with the other profile parameters,
especially for the PL approach (Figure 4.9).
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(a) Feature scan matching
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(b) PP scan matching
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(c) PL scan matching

Figure 4.8: Error in vehicle position estimation along the path on localiza-
tions performed with different laser maximum range with initial guess pose
estimation.
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(a) Feature scan matching
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(b) PP scan matching
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(c) PL scan matching

Figure 4.9: Error in vehicle position estimation along the path on local-
izations performed with different laser angular resolution with initial guess
pose estimation.
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Last comparison can be done on the laser range noise, by observing
the IDs 36 and 34. In Figure 4.10 the same comparison is reported in
a graphical manner. While the performances improvement on the dense
matching approaches is limited, in the feature based approach it is worth
using sensors with low noise. This is in agreement to what explained above
about feature extraction uncertainty.
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(b) PP scan matching
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(c) PL scan matching

Figure 4.10: Error in vehicle position estimation along the path on local-
izations performed with different laser range noise with initial guess pose
estimation.

Few comments can also be done on the worst configurations. It is impor-
tant to denote that in these cases by using the odometry initial guess pose
estimation to localize the vehicle is possible in almost all the profiles. In-
stead, without initial guess pose estimation and bad laser profiles, the num-
ber of undetermined situations (or rather the ones with the highest lower
bound uncertainty) is high, and since they are located in some key-points
of the path (Figure 4.4) the EKF can easily diverge.

The good performances of the PL approach are also proved by the un-
certainty comparison reported in Figure 4.11. Its uncertainty estimation is
close to the lower-bound along all the path. Instead the uncertainty evaluate
by the feature based scan matching approach is higher than the lower-bound,
and justify also the performances discussed above.
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Figure 4.11: Uncertainty comparison (magnified by 200) between the lower-
bound estimation and the scan matching approaches on profile ID 36.

4.2.2 Experimental Results

The evaluation of the experimental data have been performed in a qualita-
tive manner, since a precise ground truth was not available. Nevertheless,
importantly, it is possible to put in evidence some interesting considera-
tions in the scope of this applications, coming from the comparison between
simulations and real world tests. In the experimental results a single laser
profile have been used: the Hokuyo URG-04LX-UG01. This laser scanner
has 5.6 m maximum range, 0.352 deg angular resolution and a 240 deg field
of view. Because the navigation area has a maximum length of about 3.5 m,
its maximum range is enough to avoid critical situations like the one of
measuring only parallel walls of a corridor and no corner. The experimental
tests in this mock-up (Figure 4.12) are really challenging, for several reasons.
The first one is the narrow spaces of navigation: the LRF in these situations
returns biased data. In addition, in real implementations the available map
can be quite different from the real environment. Hence the localization
and the scan matching approaches must be very robust. Like the simulation
stage, also in this case the localization has been performed using or not an
initial guess pose estimation from odometry.
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Figure 4.12: Environment and CPRHS mobile robot mock-up used to collect
data for the experimental results.

Figure 4.13 reports the results of the PP scan matching approach. The
differences in using (Figure 4.13(a)) or not (Figure 4.13(b)) the initial guess
pose estimation are more remarkable only in the final part of the path. The
reason of the scans mismatching in this zone is probably due to the laser
bias in the measurements of close walls on both sides of the laser.

Also for the PL localization (Figure 4.14) the main differences are in the
same part of the path. In addition this approach returns bad results in the
zone A and along the main corridor: the effects are visible in the top-right
walls were the points spread is higher than the PP one.

Lasts results reported are the pose estimations with the feature-based
approach (Figure 4.15). In this case the differences between using or not an
initial guess are almost negligible. Differently for the simulation results, in
this case the results using the feature procedure are more closed to the best
dense matching approach performance, and also in the final port the scans
are well overlapped.

In conclusion it can be observed that in presence of a not ideal map and
instrumentations with not modelled biases, the feature-based scan matching
is comparable to the dense matching approaches in terms of performances.
This is particularly true in terms of accuracy, while the PP approach is
superior in terms of precision. Instead, the PL approach in these condi-
tion presents a low precision in the region very closed to the undetermined
situations.
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(a) with initial guess pose es-
timation

inconsistency

(b) without initial guess
pose estimation

Figure 4.13: Vehicle localization in the mock-up system with point to point
scan matching approach.

inconsistency

(a) with initial guess pose es-
timation

inconsistency

(b) without initial guess
pose estimation

Figure 4.14: Vehicle localization in the mock-up system with point to line
scan matching approach.
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(a) with initial guess pose es-
timation

(b) without initial guess
pose estimation

Figure 4.15: Vehicle localization in the mockup system with feature based
scan matching approach.

4.3 Incremental Localization

In this section are reported the results achieved on incremental localization
using the laser and the camera as independent sensors, in order to fulfil the
requirement of navigation in a generic scenario.

4.3.1 Incremental localization with laser scanner

The analysis of the global localization with maps is very useful in order to
evaluate the performances of the scan matching approaches and data as-
sociation procedure. On the other hand the assessment of scan matching
approaches with the global localization with map is not entirely compre-
hensive. There are two main limitations in this analysis, both related to
the data association topic. First of all the matching is performed between
a scan and the map which is an ideal measurement. In such way it is not
possible to retrieve information on the matching between two sets of infor-
mation processed from the measurements. Secondly, the evaluation of the
error drift in the vehicle pose estimation is not possible. This prevents the
understanding of the systematic errors of the data association procedure.
Testing instead the algorithms in a incremental localization framework it
makes possible to evaluate better the effectiveness of the data association
procedure and of the scan matching approaches. Moreover the incremental
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localization is indispensable to provide a reliable initial estimation of the
vehicle pose for the SLAM approach.

Like the global localization with map, also in this case the analysis is
performed first on the laser scan data retrieved by a simulation due to the
problem of estimating a reliable ground truth and then on the experimental
data of a real environment.

4.3.1.1 Simulated results

The environment simulated in this case is more general than the one used in
the global localization with maps, but it is yet structured (Figure 4.16), in
order to compare the performances of the feature based and the dense scan
matching approaches. Taking into consideration the forthcoming use of the
simulator in the SLAM approach, it also permits to draw vehicle paths on
which test the loop closure. It must be specified that the aim of the incre-
mental localization analysis is not to report an exhaustive comparison over
all the laser profile parameters, but to highlight the results already reported
above from a more practical point of view, otherwise this comparison and
the one exposed in the global localization will be redundant. Moreover the
results on incremental localization are needful to recognize the most efficient
scan matching approach.

The first results presented is a comparison of the scan matching ap-
proaches over the laser parameters: from the previous investigation is al-
ready predictable a decrease of the performance by lowering the laser char-
acteristics, but it is interesting to observe the effects on the pose estimation
error drift. The selected profile laser IDs are the two reported in Table 4.4.
In both the configurations the maximum range can cover all the environ-
ment; in this way it is possible to avoid undetermined situations.

Table 4.4: Laser scanner profile IDs used in the incremental localization
simulation.

ID angular FOV angular resolution range max range noise std
[deg] [deg] [m] [m]

2 270 0.5 100 0.04
1 180 1 100 0.1

In Figure 4.16 is reported the localization obtained with the PL approach
and the best laser profile (ID2): the acquired laser scans are overlapped to
the map using the incremental localization solution. A complete description
of the results is reported in Figure 4.17. Immediately is noticeable the drift
in the pose estimation, especially in the attitude. In particular for both the
laser IDs the PP is the approach with highest error drift: this confirms the
assumptions made during its presentation.

Concerning the feature based and PL approach, their results are very
closed. By degrading the laser performance, the error in the localization
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Figure 4.16: Incremental localization with PL in simulated environment
using laser profile ID2.
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Figure 4.17: Vehicle incremental localization errors in position and attitude
for the laser IDs of Table 4.4.

with PL increase while the performance of the features are more stable. It
must be recalled that the kind of environment is the most suitable one for
the features.

Another important factor to investigate is the number of laser scan ac-
quisitions used in the incremental pose estimation. If on the one hand a high
number of incremental observations can increase the error propagation, on
the other hand using few acquisitions forces the scan matching to work with
a lower number of points or features in common between two views. The
analysis of this aspect is illustrated in Figure 4.18, where it is shown the
pose estimation error on the same path used above but with halved acqui-
sition. The performances of all the approaches decrease except for the PP
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algorithm. This aspect confirms its low accuracy but also its robustness to
high displacement.
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Figure 4.18: Vehicle incremental localization errors in position and attitude
with less acquisitions using the laser ID 2.

In conclusion, the experiments on simulated data shown that in a well
structured environment the feature based scan matching can return good
results. Also the PL approach is capable of good performance at most in an
optimal environment for the features.

4.3.1.2 Experimental results

The simulation results are useful to investigate theoretic advantages and
drawbacks of the scan matching approaches, but to test their actual effec-
tiveness is essential an evaluation on a sequence of laser scans acquired in
a real environment. From these evaluations is excluded the PP approach
since already during the simulations has shown major limitations especially
in terms of error propagation. Though it is very robust to large initial dis-
placement and for this reason is used to estimate the initial guess for the
other approaches, since the odometry does not always return good results.

By taking care that a precise ground truth is not known, the best way
to represent results in this cases is to overlap all the scans referenced to
the environment coordinate frame using the poses estimated with the local-
ization. An accurate solution permits to obtain a proper definition of the
navigation environment; on the contrary, with a bad pose estimation, the
accuracy by which the environment is reconstructed becomes worst, with an
high dispersion of points.

The first pose estimation reported is regarding a long corridor scenario
(Figure 4.19) in which most of the acquisitions are closed to undetermined
situations. Additionally the number of features is low and attached on
the lateral walls there are small and unstable entities: the sum of these
issues cause the partial failure of the feature based algorithm. Also the
PL approach presents some difficulties, especially in the estimation of the
frontal motion, in which instead the feature approach commits less errors.
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Figure 4.19: Incremental localization on long corridor scenario with the
feature based an PL scan matching approaches.

This is noticeable by observing the points dispersion on the top wall, the
error is quantifiable for the PL algorithm in about 3 meters. With regard
to lateral displacement and attitude instead, by using the PL approach the
drift is very limited, the lateral walls are well defined and remains rectilinear
also after the turn in the top part of the path.

A second analysis has been carried out in the laboratory of the univer-
sity. The scenario in this case is more general, there is again a corridor that
connect a small room (right side) and an open space (left side), but in this
case on its walls there are more detectable features. For this reason the ap-
proach based on feature can work in a better way if compared to the previous
result. Though globally, the PL approach has superior performances, but it
still has problems to localize the vehicle in the corridor. How it is detectable
from the wall on the far left and by the point spreading in the open space,
the estimation of the motion along the corridor is not completely correct.
It is instead remarkable the limited drift in the attitude. After the turn on
itself the points overlapping in the corridor is fine, whereas in the feature
approach this aspect is a point of weakness.

To conclude this experimental assessment it is possible to notice that,
despite the simulation results, in a real environment the scans can be very
cluttered. Furthermore in some kind of environment the number of de-
tectable feature can be very low or even null. These peculiarities cause a
decrease in performance of the feature based scan matching approach.
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Figure 4.20: Incremental localization in the laboratory scenario with the
feature based an PL scan matching approaches.

Concerning the PL algorithm, because it does not have restriction on
the environment structure, it can work in almost all the situations. As
see previously it has a weak point in circumstances closed to undetermined
situations, like corridors.

4.3.2 Incremental localization with camera

The testing of the camera localization is quite difficult since at the moment
there is not a valid simulator that can be used to generate data. Different
environment conditions such as light variation, reflections camera saturation
and so on are not so easy to model. For these reason the vehicle localization
with camera has been tested only on experimental data. As already intro-
duced, the aim is to obtain a localization system independent from the laser,
that can be used to fuse information regarding only the motion estimation.
In such way it is possible to overcome the limit of navigation in unstructured
environment.

Moreover the motion estimation with camera can be useful when the laser
encounters undetermined situations. This is the reason why the method has
been tested in the corridor environment already used in the laser incremen-
tal localization, which results are reported in Figure 4.19. In Figure 4.21
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is shown a frame of the set of images used in the VO. The images sizes

Figure 4.21: Images used in the incremental localization with camera on the
long corridor environment.

are 320 × 240 pixels, in order to obtain a fast image processing with the
SIFT detector. Scale factors of the translations are estimated by using the
odometry incremental estimation between two frame acquisition.

In Figure 4.22 is depicted the incremental localization performed with
the monocular VO and the comparison with the odometric and laser scan
matching approach. Though the real ground truth is not known, it is pos-
sible to use as reference the best laser estimation obtained with the global
localization, since the estimation has high accuracy (Section 4.4.2 for more
details). The pose estimation errors in position and attitude of the local-
ization achieved by using the VO and computed by taking as reference the
global localization performed with the laser are reported in Figure 4.23. It
is noticeable an elevate error drift in the position estimation, while in atti-
tude the error are very closed to the odometry. By comparing the position
error and the path estimation it can be seen that the elevated error drift in
position is probably due to a wrong data association in the middle of the
path.

Concerning the data association step, it has been used the LMedS algo-
rithm described in Section 3.6 applied to the the planar motion constraint.
A representation of this procedure is illustrated in Figure 4.24. The SIFT
algorithm can extract highly distinctive feature, but in repetitive environ-
ment the matching based only on the feature descriptor can connect different
features. In addition, also in the case in which the features matching are
correct, it is possible that some features are not well defined: it is the case
of feature extracted in uniform zones, as the floor or the wall in Figure 4.24.
The LMedS algorithm can corrected both these kinds of wrong associations.

In conclusion the monocular VO shows discrete performances especially
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Figure 4.22: Incremental localization with monocular VO. The result is
compared with the odometry and the best estimation obtained using the
LRF.

in the attitude error drift that is comparable with the one of the odometry
dead reckoning. By observing the images in Figure 4.24 is noticeable that the
use of a camera with a limited field of view angle requires large displacement
between two image frames. For this reason to improve the VO performances
must be used camera with higher angular field of view.

4.4 Global Localization with Graph Theory

The last results presented concern the global localization performed without
previous knowledge of the navigation environment. In Section 3.9 it has
been introduced an algorithm based on the Graph Theory that can deal
with association uncertainties and non linear equation. Since the graph in
the case of global localization represents the associations network between
all the poses, the best results can be achieved using all the possible poses in
a path. However, by applying the algorithm in this manner is a limitation,
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Figure 4.23: Position and attitude error in the monocular VO evaluated by
taking as reference the best laser scan matching estimation.

the vehicle has to execute a complete path in order to be globally localized.
Along the whole path its pose are estimated using only the incremental
localization, with the problem of error drift show previously. Instead, it is
possible to apply the method also while the vehicle is moving, on small sets
of poses that becomes globally consistent. This procedure can be define
as a windowed global localization: when a loop closure is detected is then
possible to perform the global localization.

The global localization algorithm proposed is general, in this work has
been applied to the laser scanner, but without modification it is possible to
use it also for the camera. In particular, in order to achieve the objective
of navigation in a general scenario, it has been chosen the PL algorithm
which, as noticeable from the incremental localization results, can ensure
good results independently from the environment.

4.4.1 Simulated results

To present the benefits in using the windowed global localization is used
a an analysis on simulated data, in order to have a precise ground truth.
The simulated scenario is the same of the one already used and illustrated
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(a) Associations returned by SIFT algorithm

(b) Outlier associations identification with LMedS algorithm

Figure 4.24: Outliers identification in the SIFT algorithm associations. The
initial association (a) are processed with an LMedS algorithm in order to
detect the outlier associations (red line).

in Figure 4.16. Since the aim is to remark the importance of the global

X1 X2 X9 X10 X11 X20

window 1

window 2

Figure 4.25: Windowed global localization each 10 vehicle poses.

localization it has been used a laser profile with low performances, and the
windowed global localization is performed on sets of 10 scans each one (plus
one scan to connected the sets, as represent in Figure 4.25).

In Figure 4.26 is illustrated this procedure applied in two different in-
stant time. The vehicle starts to move and localize itself incrementally with
the PL approach until it reaches a number of poses equal to 10 (the limit
used in this investigation). At this point it is carried out the windowed
global localization that can improve the estimation accuracy, as it is notice-
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able in Figure 4.27(a) and (b). The windowed global localization creates a
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Figure 4.26: Windowed global localization accuracy improvement on the first
10 vehicle poses in attitude (a) and position (b). The attitude and position
errors in (c) and (d) are referred to the windowed global localization on the
set of poses from 40 to 50. Error evaluated on the ground truth.

small local graph on the set of vehicle poses selected, improving the local-
ization performances. Then, starting from this optimized poses, the vehicle
is localized again in incrementally until a new window of optimization can
be defined (Figure 4.25). On this new window is performed again a local
optimization and the update of the vehicle poses of the window. In Fig-
ure 4.26(c) and (d) are shown the errors in vehicle attitude and position
at the pose 50 after the windowed global localization. In particular it can
been seen the incremental localization carried out starting from the best
estimation in pose 40 (red dashed line) and the improvement in terms of
error after the windowed global localization (green dashed line). It is also
draw the incremental localization of the vehicle (black line).

The use of this windowed global localization procedure ensure a error
drift lower than the incremental localization, and so makes it possible to
evaluate a better initial pose estimation for the final global optimization on
the whole path, as reported in Figure 4.27.
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Figure 4.27: Windowed and complete global localization procedures com-
parison with the incremental vehicle localization.

4.4.2 Experimental results

Analogous considerations to those expressed in the simulation results can
be carried out in the experimental results: in real application the effects are
clearly visible also without the ground truth. Additionally it is possible to
analysis further characteristics that otherwise with simulated data are not
replicable.

A first analysis is on the importance of the windowed global localiza-
tion and subsequently the global localization on the whole path. In Sec-
tion 4.3.1.2 during the exposure of the incremental localization on real data,
with reference to the PL result of Figure 4.19, it has been noticed the prob-
lematic of the PL approach in environment similar to a corridor. These
problem can be solved using a global localization algorithm, as noticeable in
Figure 4.28. Only by using a windowed global localization the problem of
the estimation the frontal motion in a corridor can be drastically reduced:
this is observable by comparing the points spreading on the top wall and on
the small object placed along the lateral walls. Using a global localization
on the whole path the results are still better. The reason of this improve-
ment is on the uncertainty weighting of the graph links: in environment like
a corridor the uncertainty in its main direction is high. The links in this
direction are weak, and so the global localization (and also the windowed)
can move easily the poses in according to the more reliable measures, in
order to achieve the best vehicle path estimation.

From the foregoing considerations is clear that the use of the uncertainty
weighting is indispensable for a trustworthy method. This consideration is
valid not only for corridors, but also for general environment. To demon-
strate that this is a relevant aspect, in Figure 4.29 and Figure 4.30 are
reported the results of global localization carried out by applying or not the
uncertainty weighting to the graph solution. The aim of this confrontation
is to prove that uncertainty weighting can makes the difference; though the
results are quite closer, a measurement in real application must be qualified
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Figure 4.28: Windowed and global localization in long corridor scenario.

with uncertainty. Differences seem to be minimal, due to the good guess
trajectory returned by the incremental localization. Analysing deeply the
reconstruction it is possible to notice that the global optimization performed
by taking care of uncertainty Figure 4.29 is more accurate. This is clearly
visible in Figure 4.30 by observing the point spreading in almost all the
reconstructed walls. The error in the pose estimation is also observable in
the wall between the two rooms: while using uncertainty weighting it is
defined by only one segment, without taking care of the uncertainties the
error entails in two different estimations of the same wall.

Another important feature to investigate is the performance enhance-
ment fostered by the loop closure. In both the previous results, it has been
granted the possibility to the global localization to close the loop, or rather
to associate also the measures of the last poses to the first acquisitions. It is
interesting to observe the consequences when these associations are avoided.
To prevent the loop closure, it has been imposed a limit on the number of
connections between subsequent nodes in the graph. The limit on forward
links has been chosen in order to avoid the connections between the initial
scans and the ones acquired by the laser after the round-about on the right
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Figure 4.29: Graph based global localization on experimental data using
uncertainty weighting.

circumference in the environment. The localization result is reported in Fig-
ure 4.31 and it allows to emphasize an important consideration. Since in
this case it is used the uncertainty weighting, the point spreading on the wall
is very limited, but are noticeable the effects of the error drift in the pose
estimation. Most of the walls are defined twice: this issue is attributable
precisely to the error accumulated during the round-about on the right cir-
cumference. Thus in a global localization without loop closure or with a
loop closure that defines a labile network, if on the one hand the local re-
construction seems very accurate, on the other hand it is possible that the
regions far from the initial acquisition can be affected by a significant error
in the pose estimation.

In this context it is interesting to analyse the uncertainties in presence
or not of a loop closure. This analysis is resumed in Figure 4.32 and Fig-
ure 4.33. In the first figure are depicted the uncertainties among the whole
vehicle path. Here again it is proposed the comparison between the in-
cremental, and the global optimization: the ellipses represent the position
uncertainties with the probabilities of the 99.7%, while the arcs of circum-
ference are representative of the attitude uncertainties, also related to the
99.7%. As reported in the figure note, to obtain a better representation the
uncertainties were scaled of a factor 10.

Analysing the uncertainties, the considerations made previously, based
on qualitative observation of the overlapped scans can be confirmed. The
drift of the incremental estimation is well explained from its uncertainty, that
grows at each step, while in global localization the uncertainties are limited,
like the drift in the pose estimation. It can be noticed another important
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Figure 4.30: Graph based global localization on experimental data without
the use of uncertainty weighting. Green arrows indicated the scan inconsis-
tencies.

aspect: global localization, with or without loop closure, ensure a lower
drift in vehicle attitude estimation. In Figure 4.33 are represented the pose
estimation of the three procedures, in the 8th and 27th (last) scans. By this
way it is possible to observe the good performances of global localization
and loop closure. In the last pose the uncertainty in the closed loop global
localization is at least an order of magnitude less than the incremental one.
In addition the uncertainty of the global localization with loop closure is
lower than the localization in open loop.

From the same figure another important feature of the graph based slam
can be noticed: all the nodes are used in optimization and so all the node
poses can be optimized. This is the big difference between online and full
SLAM, and it is noticeable in the estimation of the pose 8. Using the graph
based global localization and by forcing the loop closure, the values of posi-
tion and attitude of this pose change. The same operation is unattainable
by using a filtering operation, since the information of previous poses are not
achievable. This means that further scan matching can not change previous
poses, while using the graph based global localization all the previous poses
can be changed in order to obtain the best global optimization.

Last results concern the global localization in large environments. The
testing in large environment is very important to qualify the global localiza-
tion algorithms. In this case the main problem is the error drift in the vehicle
pose estimation used as initial guess in the global localization. If in small
scale environments the drift is limited and can be easily compensated, in
large scale environment it can be relevant and it can cause inconsistency as
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Figure 4.31: Graph based global localization on experimental data prevent-
ing the loop closure. Green arrows indicate inconsistencies due to the error
in pose estimation.
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Figure 4.32: Pose uncertainties comparison between incremental and global
with open and close loop pose estimation. Uncertainties are scaled by a
factor 10.

represented in Figure 4.34(a). These issues can preclude the loop closure by
introducing wrong associations. From this point of view is really important
to estimate as good as possible the vehicle pose also when it is not possible a
loop closure, using for instance the windowed global localization procedure.
In Figure 4.34 are depicted the two step of the windowed global localization
and the global localization performed on the whole path. It is noticeable an
inconsistency in the scan overlapping in Figure 4.34(a) but is very limited
considering that it has been computed in open loop. Also after the global
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Figure 4.33: Detail of the pose uncertainties comparison between incremen-
tal an global localization.
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(b) global localization on the whole path

Figure 4.34: Graph based global localization on the Intel dataset [80] using
the windowed procedure (a) and the global localization on the whole path(b).

localization (Figure 4.34(b)) are still present some inconsistencies, that are
probably due to the low number of scan used in the global localization.

In addition a useful instrument that can be used to understand the state
of the connections is the Information Matrix (Section 2.3.4.1) which is the
inverse of the covariance matrix of the system of equation to solve. The
Information Matrix associated to this global localization is illustrated in
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Figure 4.35: Representation of the information matrix associated to the
graph based global localization on the Intel dataset [80].

Figure 4.35 as image. Darker areas represent strong connections between
poses: this ones are limited in a band around the diagonal, which means that
only small group of subsequent poses can be connected. This constraint is
forced by the structure of the environment. It is also possible to observe
the two small groups in the corners opposite to the diagonal: these areas
represent the loop closure. Hence, in this case the windowed global localiza-
tion is a needful instrument not only in order to estimate a reliable vehicle
localization before the global localization on the whole path, but also to
ensure the loop closure.
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Figure 4.36: Graph based global localization in the laboratory scenario.

In Figure 4.36 is represented the result of the global localization on the
same data used in the incremental localization (Figure 4.20). The improve-
ment of the global localization are noticeable also in very cluttered environ-
ment. It is also very interesting to analyse the Information Matrix for this
vehicle path, which is drawn in Figure 4.37. Like the previous information
matrix there are strong connections on the diagonal, but this time there
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Connection between
corridor and room

Figure 4.37: Representation of the information matrix associated to the
graph based global localization in the laboratory scenario.

are also connections outside the diagonal band. This means that different
portions of the vehicle path were carried out in the same environment. It is
also possible to notice a loop closure between the initial and final poses and
also the division of the environment in two different rooms, connected by a
small set of poses.
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Chapter 5

Conclusions

This thesis work presents a set of algorithms capable to estimate the motion
of a vehicle in an indoor scenario, without a priori knowledge of the envi-
ronment, by using the measurements acquired from a camera and a laser
range finder. In particular the aim was to develop a general framework
based on a probabilistic approach that can be used in both the sensors. For
this reason were identified three main topics, the processing of the sensors
information, the data association and the vehicle localization. With the ex-
ception of the first, which is strictly connected to the information returned
from the instruments, the other procedures can be easily fitted for each type
of opto-electronic measurement system.

The environment information processing was carried out by considering
a generic environment. Concerning the laser data, it was highlighted how
dense scan matching approaches and in particular the point to line algo-
rithm, can be used in generic environments and geometric environments as
well. This result was derived by the comparison of the three scan match-
ing approaches in the global localization with map. Also for the camera
was decided to use a data elaboration approach suitable for an unknown
environment: since the information in the images are referred not only to
geometric environment characteristics, in this case it was used the identifi-
cation of locally invariant features with the SIFT algorithm. Furthermore
it was pointed out how in some situations wherein the laser scan matching
solution is not defined, the properties of the camera can be helpful to localize
the vehicle.

Regard the data association was developed a robust procedure based on
the LMedS algorithm, capable to deal with an high percentages of outliers.
The use of this method has permitted to apply a probabilistic approach
in the association of the data acquired in different poses vehicle, which is
indispensable in order to obtain a reliable method.

With respect to the last topic, the vehicle localization, besides the in-
cremental approach were developed two global localization procedures. The
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first one, although not innovative since based on map, with the improve-
ments on data processing and association, has shown results of remarkable
applicative interest. In particular it was applied in a preliminary analysis
for the localization with on-board laser range finder of a service vehicle used
in the ITER remote handling system. A more original approach was devel-
oped in the global localization based on the Graph Theory. The solution
of this SLAM problem was strengthened using a two step linearization and
uncertainty weighting of the graph connections. In addition, since the al-
gorithm does not require expressly the mapping procedure, it is possible to
use also non feature based approaches. With the laser range finder it was
possible to take advantage of this aspect by using the PL dense scan match-
ing approach. The global localization with on-board laser range finder thus
obtained was applied in different conditions and qualified using simulation,
datasets and data acquired from a research mobile robot. Due to the gener-
ality and robustness of the algorithm developed it was possible to carried out
the vehicle global localization in all these contexts without any modification
of the approach or the environment. All these characteristics ensure that
the same procedure can be also applied to the information elaborated from
the camera, as it was already done with the data association algorithms.
In such a way it would be possible to have two different motion estimation
approaches which can be used in a complementary manner to guarantee the
vehicle localization.

This work was useful to develop a framework for the study of the vehicle
localization problem and to create a benchmark tool for the evaluation of
vehicle localization algorithms. The possible further improvements in order
to obtain a complete localization systems are:

• extension of the vehicle global localization approach to the camera,
by qualifying the uncertainty of the image feature identification pro-
cedure.

• selection of the key-frame poses based on the information matrix re-
turned by the Graph Theory approach, in order to solve optimally the
global localization.

• representation of the vehicle pose uncertainty with a Particle Filter
algorithm in order to solve the kidnapped robot problem and develop
a multi robot exploration.
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