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What we call the beginning is often the end. 
And to make an end is to make a beginning.  

The end is where we start from.  
T. S. Eliot 
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Abstract 
 
Aim of this thesis was to apply the stable isotopes technique to study pulmonary 

surfactant kinetics. 

Lung surfactant is essential to live, because it prevents the alveoli to collapse 

during normal breathing. Lung surfactant is composed of lipids and specific 

proteins, and nowadays it is well known that alterations on the composition and 

amount of surfactant are involved in acute and chronic lung diseases. 

This work presents two studies about lung surfactant kinetics. 

The first one is about the synthesis of disaturated phosphatidylcholine, the main 

lipid in the pulmonary surfactant system, in a murine model of unilateral acid 

injury. 

The second one explains an optimized procedure to evaluate surfactant protein B 

synthesis and a novel method to study surfactant protein C synthesis in both 

infants and adults, each with stable isotopes technique. 
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Riassunto 
 
Obiettivo di questa tesi è stato quello di applicare l’uso degli isotopi stabili come 

traccianti metabolici allo studio del metabolismo del surfattante polmonare.  

Il surfattante polmonare è una sostanza fondamentale per vivere in quanto 

impedisce agli alveoli di collassare durante l’atto respiratorio. Il surfattante 

polmonare è composto da lipidi e proteine specifiche, ed è ormai noto che 

alterazioni nella composizione e nella quantità del surfattante polmonare sono 

presenti nella malattia respiratoria acuta e cronica.  

In questo lavoro vengono presentati due studi sulla cinetica del surfattante 

polmonare: il primo riguarda la sintesi del lipide maggiormente presente nel 

surfattante, ovvero la fosfatidilcolina disatura, in una condizione di danno 

unilaterale da acido in un modello murino. 

Il secondo studio riguarda un metodo ottimizzato per misurare la sintesi della 

proteina B del surfattante e un nuovo metodo per valutare, sempre con l’utilizzo 

degli isotopi stabili, la sintesi della proteina C del surfattante in bambini e adulti. 
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Chapter One 
 

 

Pulmonary surfactant system: as easy as breathing…? 
 

Lungs are the site of gas exchange with blood.  To facilitate this gas 

exchange, the lung has the largest epithelial surface area of the body in contact 

with the external environment. Together, human lungs contain approximately 2.4 

km of airways and 300 to 500 million alveoli, with a total surface area of about 70 

square metres in adults. The alveolus is the primary site of gas exchange from the 

blood in mammalian lungs. It consists of an epithelial layer and extracellular 

matrix surrounded by capillaries. The alveolar surface is formed by two types of 

epithelial cells, pneumocytes I and pneumocytes II (Figure 1). Type I cells make 

up 95% of the alveolus, and serve as a thin barrier between blood and air [1]. 

Type II cells can differentiate in type I cells, and they take part in the immune 

defence, expressing receptors like Toll- like receptor. Also, they can regulate the 

transmigration of monocytes across the epithelial layer and participate in T-cell 

activation. However, the most important role of type II cells is to synthesize and 

secrete an aqueous fluid covering alveolar epithelial cells called pulmonary 

surfactant [2].  

 

 
Figure 1: Alveolar structure and its main components. 
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Pulmonary surfactant is a complex mixture of lipids and proteins that creates a 

unique interface separating alveolar gas and liquids at the alveolar cell surface, 

reducing surface tension and preventing atelectasis at the end of expiration.  

(Table 1) 

Increasing evidence also suggest that surfactant is needed in the bronchioli 

through which air is conducted to the alveoli. A lack of surfactant leads to closure 

of the small cylindrical airways[3]. 

 

Table 1: Functions of pulmonary surfactant 

Biophysical functions 

Prevents collapse of the alveoli during expiration 

Supports inspiratory opening of the lungs 

Stabilizes and keeps small airways patent 

Improves microciliary transport and removal of particles and cellular debris from 

the alveoli 

Immunological, non biophysical functions 

Phospholipids inhibit endotoxin-stimulated cytokine (TNF, IL-1, IL-6 release 

from macrophages 

SP-A and SP-D modulate the phagocytosis, chemotaxis and oxidative burst of 

macrophages 

SP-A and SP-D can opsonise various micro-organisms for easier phagocytosis, 

and capture bacterial toxins. 

 

The expanding force of gas in an alveolus of radius r is expressed by the law of 

Laplace: 

 

                                                       ΔP= 2γ/r  

 

where the gas pressure difference (ΔP) needs to keep equilibrium with the 

collapsing force of surface tension γ. ΔP  is approximately equal to the negative 

pressure around the alveolus. If γ does not change during breathing, ΔP would 
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increase during expiration as r decreases. Alveoli that are surrounded by n 

excessive negative pressure easily collapse causing pulmonary atelectasis. 

During normal breathing γ can be modulated by surfactant phospholipids that are 

forced to come closer during expiration, leading to a decreased γ value and thus 

avoiding alveoli collapse [4].  

Surfactant system not only protects the lung against alveolar collapse, but, 

together with alveolar macrophages, constitutes the front line of defence against 

inhaled pathogens. 

These essential functions are strictly linked to the complexity of the lipid-protein 

system. 

 

 

Pulmonary surfactant composition 

 

Lung surfactant is composed for the 90% of lipids and for the 10% of 

proteins (Figure 2). 

 

 

 

 

 

 

 

 

  

 

 

 

 Figure 2: Composition of lung surfactant 
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Surfactant is synthesized in the endoplasmatic reticulum of type II cells t ype II 

cells and stored in to specific lysosome-like organelles called  lamellar bodies [5-

6]. After regulated secretion by exocytosis, lamellar bodies unravel spontaneously 

in the alveolar fluid to form multilamellar vesicles and highly organised 

membranes termed tubular myelin [2]. 

Secreted surfactant is internalised by type II cells that can be incorporated back to 

lamellar bodies for recycling and degradation by alveolar macrophages [7]. 

Lipids and proteins are secreted into the alveolar sub phase to form a tubular 

myelin reservoir from which multilayers and monolayers form a film. 

 

 

Lipids 

 

Pulmonary surfactant contains several classes of lipids, such as 

phospholipids, triglycerides, cholesterol, and fatty acids. Phospholipids 

composition is highly conserved among mammals [8-9]. 

Phosphatidylcholine (PC) is the major phospholipid comprising 80% of surfactant 

lipids.  

Surfactant PC contains disaturated PC (DSPC) species, 16:0/16:0-PC. 

60% of surfactant PC is present as dipalmitoylphosphatidylcholine (DPPC), and it 

is the major surface-active component [10] 

Mammalian surfactant contains about 10% of 16:0/14:0-PC, 16:0/16:1-PC (30%), 

and 16:0/18:1-PC and 16:0/18:2-PC species at lower concentrations. 

Phosphatidylglicerol (PG) is the second most abundant phospholipid in surfactant 

and it is present at 7-15%. of the total phospholipid. 

It is still not completely understood the role of  PG in the pulmonary surfactant 

system, but it seems to stabilize the alveoli and to take part in the immune 

response [11-12]. 

Other minor phospholipids are phosphatidylethanolammine (PE), sphingomyelin 

(SM), phosphatidylinositol (PI), and phosphatidylserine (PS).  
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Proteins 

 

Proteins represent about the 10% of the mass of the pulmonary surfactant. 

There are four specific surfactant protein: SP-A, SP-B, SP-C and SP-D. They are 

produced by respiratory epithelial cells, each playing  a specific role in surfactant 

homeostasis and host defence.  

SP-A and SP-D are hydrophilic, and they are members of the calcium-dependent 

lectin family of proteins that share collagenous domains (Figure 3). They are able 

to bind complex carbohydrates, lipids and glycolipids, including those on the 

surface of the pathogens. 

SP-B and SP-C are small, hydrophobic proteins and they play a critical role in 

enhancing the rate of spreading and stability of surfactant phospholipids. For more 

details about surfactant protein B and C see chapter 4. 

 

 
 

 

 

 

 

 

 

Figure 3: Surfactant proteins: collectins and hydrophobic proteins 
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Synthesis and regulation of surfactant phospholipids precursors 
 

Surfactant phospholipids derived from a de novo pathway, are dependent 

on the availability of fatty acids (FA) in type II cells.  FA come from the 

circulation in the form of free FA or triacylglycerols within lipoproteins. FA 

uptake from the circulation is mediated by membrane FA binding protein. 

Alternatively, they can be internalise by alveoli after phospholipid hydrolysis. 

Lactate can also be a precursor for de novo synthesized FA in mature type II cells, 

while in the late fetal period the main precursor is glycogen. 

The keratinocyte growth factor (KGF) regulates the type II cell phenotype and 

stimulates the key enzymes of FA synthesis like acetyl CoA carboxylase, fatty 

acid synthase (FAS), citrate lyase. These enzymes are up regulated during 

surfactant lipogenesis in the lung (Figure 4) [13].  

Moreover, hormonal and physiologic factors can also stimulate de novo FA 

synthesis. FAS is activated by glucocorticoids in fetal lung while thyroid hormone 

and transforming growth factor β1 (TGF-β1) antagonize this effect [14].  

 



 

13 

 

 
 

 

 

Surfactant proteins can be synthesized in type II cells but only for surfactant 

protein C they are the only site of synthesis. Surfactant proteins A, B and D can 

also be synthesized in Clara cells. 

 

 

Regulation of surfactant secretion 
 

Surfactant secretion has been studied both in vivo in intact animals and in 

vitro with isolated type II cells. Studies have focused primarily on PC or 

disaturated PC. The phospholipid composition of isolated lamellar bodies is 

Figure 4: Biosynthesis of phosphatidylcholine, phosphatidylglicerol and phosphatidylinositol. 
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virtually the same of the lamellar bodies and surfactant phospholipids are secreted 

together with lamellar bodies [15]. This step occurs through the fusion of the 

limiting membrane of lamellar bodies with the apical plasma membrane, and then 

the content of the lamellar bodies is extruded into the alveolar space. 

Phospholipids can translocate across the membrane through the ABC transporters; 

in particular, ABCA3 is in the outer membrane of the lamellar bodies of type II 

cells.  

Lamellar bodies are enriched in SP-B and SP-C and it is likely that these proteins 

are secreted together with phospholipids by regulated exocytosis of lamellar 

bodies [15] . 

SP-A  secretion in isolated type II cells is not stimulated by agonists that stimulate 

PC secretion.[16]. Lamellar bodies era lacking of SP-D, thus implying that this 

protein could be secreted independently of the lipids [17-18].  

Secretion is an indispensable step in lung surfactant homeostasis. A lack of 

secretion could lead to a drastic deficiency in surfactant, a condition incompatible 

with life.  To avoid this problem, there are more than one signalling mechanism 

involved in the regulation of surfactant secretion (Figure 5): 

 

1) The activation of adenylate cyclase (AC), with the subsequent activation 

of cAMP-dependent protein kinase. This signalling is activated by β-

adrenergic and adenosine A2B receptors coupled with a G-protein [19]. 

Also cholera toxin and forskolin can activate the AC pathway. 

2) The second way is mediated by the activation of protein kinase C (PKC), 

that results in the hydrolysis of phosphatidylinositol bisphosphate and the 

formation of diacylglicerol (DAG) and inositol triphosphate (IP3). The 

consequence of these reactions is the activation of phospholipase D (PLD) 

that leads to the formation of choline and phosphatidic acid (PA). PA is 

converted into DAG with the activation of PKC. 

3) The third mechanism involves the elevation of intacellular levels of Ca++, 

[20] that can result from an increase of  IP3 or by ionophores that promote 

Ca++ influx into the cell from the medium. Ca++ activates a Ca++ -
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calmodulin dependent kinase (CaCM-PK) and can activate some PKC 

isoforms. 

 

In conclusion, PKA, PKC or the mobilization of Ca++ can lead to signal 

protein phosphorilation and so to the surfactant secretion.  

 

 
 

 

 

 

 

Surfactant degradation and recycling 
 

Surfactant components can be reutilized by type II cells that internalize 

alveolar phospholipids to re-incorporate into LB for secretion [21]  

Substantial portion of surfactant (25%-95%) are re-internalized in type II cells and 

this mechanism is promoted by SP-A thanks to its high-affinity receptors present 

on the cell surface [22]. Mechanisms are not fully defined. 

 Surfactant components taken up by type II cells are recycled or degraded, while 

surfactant internalized by macrophages is largely degraded. 

Figure 5: Schematic representation of signal transduction mechanisms mediating surfactant 
secretion in type II cells. See text for abbreviations. 
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Inhibition of surfactant activity 
 

Surfactant inhibition, or inactivation, refers to those processes that 

decrease or abolish the normal surface activity of pulmonary surfactant. The 

major inhibitory factors include plasma proteins, unsaturated membrane 

phospholipids, lysophospholipids, free fatty acids, meconium (fetal feces expelled 

during stress), and high cholesterol levels [23]. 

Surface activity can be inhibited in vitro by phospholipase A2 and C, fatty acids, 

lyso PC. These molecules are released during lung injury. 

The main lytic enzyme implied in 

PL degradation are the 

phospholipases 2 (PLA2) 

superfamily. Their principle role is 

to catalyze the hydrolysis of the 

sn-2 ester bond in a variety of 

different PLs. The endproducts of 

these reactions is a fatty acid (FA) 

deriving from position 2 and the 

remaining lyso-PL, both of them 

can serve as lipid mediator 

precursor: the free FA can be metabolized to form various eicosanoids and related 

bioactive mediators, while the second can be a platelet activator factors (PAF) and 

lysophasphatidic acid precursor. 

Moreover, cellular lipids and blood proteins can impair lung surfactant activity. 

Proteins, membrane lipids and free fatty acids (FFA) have intrinsic surface 

activity, and can compete with the components of surfactant system, and this can 

seriously interfere with the entry of lung surfactant into the air-liquid interface. 

FFA also adsorb readily, but unlike large proteins, these small molecules tend to 

interpenetrate and form mixed films with lung surfactant phospholipids. When the 

content of unsaturated fatty acids like oleic acid rises to a sufficient level in the 

surface film, its ability to reach low surface tensions during subsequent dynamic 

compression is compromised [24]. 

SURFACTANT INACTIVATION AND 
LUNG DISEASES 

 
Inactivation: 
- Leakage of plasma proteins 
- Lipids: bacterial LPS, PLA2, high 

cholesterol levels 
- oxidative degradation 

Lung diseases: 
- ARDS, ALI 
- Chronic bronchitis 
- Cystic Fibrosis 
- Asthma 
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Diseases 

 

ARDS 

ARDS (acute respiratory distress syndrome) and ALI (acute lung injury) 

can have a variety of causes, but the most common for adults is sepsis, mechanical 

trauma, multiple transfusions and gastric aspiration (see Chapter 3 for details). A 

reduction of synthesis of surfactant can contribute to the decreased surfactant 

activity in ARDS. 

Alterations in the biochemical composition and the biophysical properties of 

pulmonary surfactant are well documented for patients with acute inflammatory 

lung diseases such as the acute respiratory distress syndrome. In these patients 

were noted a reduced relative content of phosphatidylcholine (PC) and 

phosphatidylglicerol, an increase in minor PL including sphingomyelin, 

phosphatidylinositol, and phosphatidylethanolamine , a decreased relative content 

of disaturated PC species, and reduced SP-A, SP-B, and SP-C [25]. 

Thus, lung injury can reduce both synthesis and function of surfactant lipids and 

proteins. 

 

Respiratory distress syndrome 

Respiratory distress syndrome (RDS) is one of the most common causes of 

morbidity in preterm neonates. It occurs shortly after birth with apnea, cyanosis, 

inspiratory stridor, poor feeding and tachypnea. Radiological findings also include 

reticulogranular “ground glass” appearance. 

Preterm neonates with RDS have low amounts of surfactant, and lower quantity of 

DSPC, PG and surfactant specific proteins than a mature lung. 

Nowadays the standard therapy comprises corticosteroids and surfactant 

replacement therapy. 

Surfactant therapy has become the standard of care in management of preterm 

infants with RDS[26].  
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Meconium aspiration syndrome 

Meconium aspiration syndrome (MAS) is  an important cause of morbidity 

and mortality from respiratory distress in the perinatal period. In the present of 

fetal distress, gasping can start in utero with  aspiration of amniotic fluid and its 

contents, including meconium, leading to acute lung injury. 

It has been demonstrated that meconium aspiration can impair surfactant system 

decreasing its surface adsorption rate [27] 

Moreover, MAS is linked with increasing cytokines IL-1β, IL-6 and IL-8 [28].  
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Chapter Two 
 

 

Stable isotope tracers 

 

The atoms of one element have the same number of protons but can have a 

different mass number, that is a different number of neutrons. In fact, the term 

isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος 

"place"), meaning that they are at the same place in the periodic table.  

Some isotopes, called radionuclides, can undergo a radioactive decay, while some 

others have never demonstrated a decay, and they are called stable isotopes. The 

majority of chemical elements consists of a mixture of stable isotopes.  

 

 
 

 

For example carbon can have three main isotopes (figure 1): carbon-12, with 12 

neutrons, and carbon-13 and 14, with respectively one or two more neutrons. 

Carbon-13 is stable, while carbon-14 is not stable but decays at a known rate. 

Only hydrogen isotopes have different name: protium is the most abundant form 

of hydrogen with one proton and no neutrons, deuterium is the stable isotope, with 

Figure 1: isotopes of carbon 
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one proton and one neutron, and tritium is the radionuclide with one proton and 

two neutrons. 

The origin and evolution of the component they derive from, can bring a different 

isotopic composition. That’s why stable isotopes can be used in many different 

fields, to discriminate different molecules, such as archaeology, geochemistry, 

pharmaceutics, forensic science, anti-doping screening, environmental chemistry 

and art. 

Since the last decade, stable isotopes are used in research to determine turnover 

rates of substrates such as amino acids, glucose and fatty acids as well as energy 

consumption, distribution volumes of particular metabolites, the elucidation of 

metabolic pathways and pharmacokinetic studies[1-5]. In clinical diagnosis, stable 

isotopes are primarily employed for breath tests aiming at the evaluation of 

hepatic, gastric, small intestine and pancreatic functions, and for the diagnosis of 

Helicobacter pylori infection [6-12]. 

 

 

Tracers labelled with stable isotopes 

 

Every metabolic process could be studied using stable isotopes. In spite of 

possible small differences in metabolic behaviour, molecules labelled with stable 

isotopes in one or several position are suitable tracers for the study of chemical 

and biological processes. These tracers can be instilled orally or intravenously, 

and modern analytical techniques allow the measurement of undifferentiated 

molecules or after conversion into their metabolites. A large number of different 

isotopes are used for studies in humans, but most widely used are the stable 

isotopes of hydrogen, carbon, oxygen and nitrogen. A variety of applications for 

stable isotopes in research and diagnosis has been described, some example are 

given in Table 1. For investigative purposes mainly 13C labelled glucose, fatty 

acid and 15N labelled amino acids and 2H2O or 1H2
18O are used. Total body water 

as well as energy expenditure can be determined by measuring the dilution of 

tracer in the body. Stable isotopes prove to be especially helpful during the 

examination of unknown metabolic pathways and inborn errors of metabolism. 
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The kinetics of metabolic processes can be elucidated by tracer analyses in 

precursors, intermediates and end products. Direct end products such as CO2, NH3 

and H2O can be extracted and analysed without or with minor sample processing. 

More complex metabolites can be studied in tissue or plasma samples after clean 

up of the analyte. 13CO2 breath test are easy to perform and painless for the 

patient. They are increasingly used particularly in gastro-enterological functional 

diagnosis. Numerous digestive processes can be evaluated due to the appearance 

of 13C in breath, indicating the amount of oxidation of specific 13C substrates. A 

practical example for the use of stable isotope labelled tracer in paediatrics is the 

examination of gastric emptying in newborn infant using carboxyl13C-acetate. 

 
TOPIC TRACER REF. 

Infections   

Helicobacter pylori 13C-urea [8] 

Gastrointestinal functions   

Gastric emptying 13C-acetate, 13C-ottanoate [13] - [14] 

Maldigestion   

Lactase deficiency 13C-lactose [15] 

Lipase deficiency 13C-trioctanoin, 13C-triolein,13C-palmitic acid [12] 

Malabsorption   

Carbohydrates 13C-glucose [3] 

Fat Different13C-triglyceride [12] 

Amino acid 13C-15N- leucine, 13C-leucine [16] - [17]                                     

Body composition   

Total body water D2
18O [5] 

Synthesis processes   

Gluconeogenesis 2,3-13C2-alanine,  6,6 2H-glucose [18] 

Albumin 15N glycine, 13C leucine [19] - [20] 

Cholesterol D2O [21] 

Fatty acid conversion Different fatty acid enriched 13C [22] 

Metabolism and metabolic disorders   

Energy expenditure D2 
18O [23-26] 

Fructose intolerance 13C-fructose [27] 

Phenylketonuria 2H-phenilalanine [28] 

 
Table 1: Stable isotopes in clinical practice and research. 
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Use of stable isotopes: advantages 

 

The application of stable isotopes in medicine has many advantages. First 

of all, they can be safely administered in children and pregnant women, since they 

are not radioactive. Moreover, many radioactive isotopes can decay too much 

faster (e.g. radioactive nitrogen decays in 10 minutes, radioactive oxygen in 123 

seconds), precluding long lasting metabolic studies.  Also, the employment of 14C 

or 3H leads to an important discrimination by the metabolic pathway, because of 

their heavier mass. 

Many stable isotopes can be used at the same time, to study simultaneously more 

than one metabolic pathway in the same subject. 

Toxicity of stable isotopes has been studied both in animals and humans.  

In animal studies high deuterium doses showed toxic effects, but administered 

doses were really higher than ones used in human studies. 30-40% of deuterium in 

total body is fatal [29-30]. In human administered doses are lower and it is 

established that the maximum doses to which adverse effects appear are 200-400 

mg/kg body weight. In clinical studies deuterium is used in a highly lower 

amount, ranging from 1 to 80 mg/kg body weight [29]. Unlike deuterium, mass 

difference between 12C and 13C is low and even clinical effects due to 13C 

administration are unusual. 13C percentage contribution is already high 

representing 1,1% of the total carbon. In clinical studies, the normal tracer dose 

administered is 1 mg/kg of 13C. 
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How to analyze stable isotopes: Mass Spectrometry 
 

Mass Spectrometry is a technique to determine extremely accurate mass of 

molecules. The three essential functions of a mass spectrometer, and the 

associated components, are (figure 2): 

1. The ions source, where the analyte is converted into ions. 

2. The mass analyzer, where ions are separated according to their mass to 

charge ratio (m/z). 

3. The detector, where ions are measured and amplified. 

 
 

 

The role of the ion sources is to turn neutral molecules into charged ions: in this 

way they can interact with the electromagnetic field of the analyzer, and be 

separated, 

There are two main types of ion sources: Electron Impact Ionizator (EI) and 

Chemical Ionization (CI). 

EI is probably the most common ion source used in mass spectrometry.  

In the EI process, the sample of interest is vaporized into the mass spectrometer 

ion source, where it is impacted by a beam of electrons with sufficient energy to 

ionize the molecule.  

Figure 2: Components of a mass spectrometer. 
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This process can be summarised in this equation: 

 

                                                       M + e-                         M+ + 2e- 

 

The ion fragmentation is typical for the molecule of interest. 

  

CI is applied to samples similar to those analyzed by EI and is primarily used to 

enhance the abundance of the molecular ion. Chemical ionization uses gas phase 

ion-molecule reactions within the vacuum of the mass spectrometer to produce 

ions from the sample molecule. The chemical ionization process is initiated with a 

reagent gas such as methane, isobutane, or ammonia, which is ionized by electron 

impact. High gas pressure in the ionization source results in ion-molecule 

reactions between the reagent gas ions and reagent gas neutrals. Some of the 

products of the ion-molecule reactions can react with the analyte molecules to 

produce ions. 

This kind of ionisation is milder and produces a restrained fragmentation pattern. 

Ions produced in the ion source are focused into the mass analyzer, where charged 

molecules are separated. 

The most common analyzer is the “quadrupole” analyzer, that is composed of four 

metal rods arranged as in figure 3. Each rod pair is connected electrically, and a 

constant dc current is applied to all the rods, while a radio frequency voltage (RF) 

is applied between one pair of rods and the other.  

Changing RF, the quadrupole can select a specific m/z ratio and thus specific ions. 

If ions are resonant with the filed, they can pass trough and reach the detector, 

otherwise they will not (non-resonant ions). 
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Once the ions are separated by the mass analyzer, they reach the ion detector, 

which generates a current signal from the incident ions. The most commonly used 

detector is the electron multiplier, which transfers the kinetic energy of incident 

ions to a surface that in turn generates secondary electrons.  

 

Isotope Ratio Mass Spectrometry 

 

The measurement of isotopic differences in natural abundance requires a 

mass spectrometer with lower sensitivity but higher precision and resolution than 

conventional mass spectrometer; the instrument utilized is an isotopic ratio mass 

spectrometer (IRMS). 

The organic sample is pyrolised to its fundamental components, like CO, CO2,, 

H2. 

Water is removed and the sample is ionised in a EI source. As analyzer, it is used 

a magnetic analyzer because it permits a very precise measurement of isotopes 

ratio. Each cup of the analyzer can monitor a single m/z ratio. Ratios are usually 

expressed as delta, that represents the variation of the isotopic ratio of the sample 

versus the isotopic ratio of the sample: 

 

Figure 3: Schematic representation of a quadrupole 



 

28 

 

where R= heavy isotope mass/ light isotope mass ratio (i.e. 13C/12C, 2H/1H); δX>0 

when the heavy isotope is enriched versus standard in the sample; δX<0 when the 

heavy isotope is impoverished or the light isotope is enriched versus standard in 

the sample. 

Isotopic enrichment has to be compared to a standard, to provide comparable data. 

Standard are shown in table 2. 

 

Element 
Stable 

isotopes 

Natural mean 

abundance (%) 

Standard ratio 

values 

International 

standard reference 

Hydrogen 
1H 
2H 

99.985 

0.015 
2H/1H = 0.000316 

VSMOW (Vienna 

Standard Mean 

Ocean Water) 

Carbon 
12C 
13C 

98.892 

1.108 

13C/12C = 

0.0112372 

PDB (Pee Dee 

Belemnite) 

Oxygen 
16O 
18O 

99.7587 

0.2039 

18O/16O = 

0.0039948 

VSMOW (Vienna 

Standard Mean 

Ocean Water) 

Table 2: International standard references for the stable isotopes of hydrogen, carbon and oxygen. 
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Chapter Three 
 

 

 

Aspiration pneumonia: effect of unilateral lung injury on 

surfactant disaturated phosphatidylcholine synthesis in mice 
 

Aspiration pneumonia is the result of the abnormal entry of endogenous 

secretion or exogenous substances into the lower airways. In aspiration 

pneumonia there is a breakdown of the defences protecting the tracheobronchial 

tree as well as pulmonary complications. 

 

There are three categories of pulmonary aspiration:  

1- Chemical pneumonitis is caused by fluids like acid, kerosene, gasoline, 

milk, mineral oil, alcohol. This is independent from bacterial infection. 

2- Oropharyngeal secretion aspiration results in bacterial infection of the 

lower airways by commensals of the oropharynx 

3- Aspiration of inert fluids, like saline, water, barium that aren’t toxic to the 

lung but that can cause airway obstruction 

 

There are some conditions that can 

predispose to the development of 

pulmonary aspiration, like altered 

consciousness, anatomic disorders, 

physiologic disorders, neurologic 

disorders, mechanical disruption of 

the normal defence barriers and 

accidental ingestion of substances 

(Table 1). 

    Aspiration of gastric contents is a 

severe complication seen in 

intensive care patients [1]. Acid 
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aspiration can contribute to acute respiratory distress syndrome (ARDS) or acute 

lung injury (ALI) and is associated with high morbidity/mortality rates.  

Aspiration-associated ALI/ARDS carries a 30% mortality and accounts for up to 

20% of all deaths attributable to anaesthesia [2]. Also, it can lead to bacterial 

pneumonia. 

ALI/ARDS can lead to pulmonary inflammation, alveolar-capillary permeability 

injury, hypoxemia and protinaceous oedema with loss of lung compliance [3-4]. 

The main steps of AP-induced lung damage are an early marked alveoli’s 

capillary injury due to the caustic effect of the acid. In fact, acid aspiration 

induces lung injury in a biphasic pattern. There is initially an increase in lung 

permeability without marked evidence of inflammation. The second and more 

important response is the presence of neutrophils in the lung and alveolar spaces 

[5]. In animal models it has been demonstrated that the adhesion and activation of 

neutrophils mediated by eicosanoids [6] and tumor necrosis factor (TNF). 

TNF-alpha increases expression of endothelial cells adhesion molecules (e.g. 

intercellular adhesion molecule-1, E-selectin) that mediate the anchoring of 

neutrophils to endothelial cells.  

After that, neutrophils migrate into the lung in response to a putative chemotactic 

gradient to release oxidants and proteases that mediate lung damage[7]. 

Alveolar-endothelial barrier damage and neutrophils infiltration cause alterations 

of surfactant homeostasis and, during the late inflammation stage, a delayed 

fibrotic lung tissue remodelling resulting in a lack or impaired functionality of the 

involved lung section. 

In particular, disaturated phosphatidylcholine (DSPC) is the key component of the 

phospholipid film covering the alveoli for its uncommon characteristic molecular 

conformation that comprise two saturated residues (mainly palmitate residues) 

(Figure 1).  
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This packed configuration avoids alveolar collapse during expiration and permits 

alveolar expansion during inspiration [8]. Type II cells are the only cells involved 

in the modulation of surfactant synthesis, secretion, uptake, and catabolism. 

Alveolar macrophages contribute to surfactant homeostasis mainly by catabolising 

surfactant components [9]. 

Alterations of the pulmonary surfactant system, in particular of the PL profile, 

have been confirmed in the course of ARDS, or less specifically, in lung diseases 

with pronounced alveolar inflammation (Figure 2)[10]. 

 

 
 

Figure 2: Mechanisms of lung injury in the early stage of ARDS. 

Figure 1. Palmitoyl-oleyl-PC. An example of a PC species. Saturated species (DSPC) 

contains two saturated residues. The most common saturated residue is the palmitate 

one. 
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To clarify the mechanisms of lung surfactant damage/recovery in the late phase of 

aspiration pneumonitis we used a formerly characterized murine model of AP 

[11], that includes an acid load instilled only in the right bronchus, and we applied 

the sensitivity of gas-chromatography isotope ratio mass spectrometry (GC-

IRMS) to measure DSPC synthesis and secretion by means of stable isotopes 

(deuterated water as precursor of DSPC-palmitate biosynthesis) [12-14]. Lung 

inflammation was assessed by inflammation markers in both injured and non-

injured lungs. We demonstrated that acid aspiration injury in a single lung triggers 

the contralateral non-injured lung to increase DSPC synthesis and pools to 

overcome a respiratory impairment occurring in the injured lung. 

 

 

Materials and methods 
 

Animal Protocol 

CD-1 mice (male, 32 ± 2.2 g, Charles River Laboratories, Lecco, Italy) 

were maintained under standard laboratory conditions. Procedures involving 

animals and their care were in accordance with NIH’s Guide for the Care and Use 

of Laboratory Animals 8th Edition. Local Ethic Committee approved study’s 

protocol. 

Animals with lung injury (n=20) were anaesthetized prior to any procedure with a 

400 mg/kg intraperitoneal injection of 2.5% Tribromoethanol (Avertin, Sigma-

Aldrich, Milan, Italy). Lung injury was induced by instillation of 1.5 ml/kg HCl 

0.1 M with a PE10 tube into the right bronchus through a small tracheal incision. 

The bronchial catheter was then removed and the tracheal incision sutured. During 

instillation and for the next 10 minutes, mice were mechanically ventilated 

(Inspira asv, Harvard Apparatus, Holliston, Massachusetts, USA with the 

following parameters: VT 8-10 ml/kg; RR 130, PEEP 2 cmH2O, FiO2 1) and kept 

in a reverse Trendelenburg position (45°), tilted to the right side (45°) to confine 

the instilled fluid to the right lung. Treated animals were then placed in an 

oxygenated chamber (FiO2 = 0.5) until full awake [11]. Eight healthy mice were 
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used as “controls”, so not treated but ventilated as treated mice. Therefore, the 

study included 4 groups of lungs: (1) Injured (I) right lung; (2) contralateral non-

injured (NI) left lung; (3) control right lung; (4) control left lung. 

 

 

Isotope Infusion Protocol 

Previous unilateral injury studies from our group showed that 

inflammation in both lungs reached its maximum peak within 12 to 24 h from  

acid instillation [11, 15] , therefore the administration of deuterated water was 

performed after 18 h from the lung injury.  

All study mice  (n=28)  received an intraperitoneal dose of 1 ml/kg 10% (v/v) of 

deuterated water (Cambridge Isotope Laboratories, Andover, MA) to assess 

DSPC-palmitate synthesis and secretion. Animals were sacrificed at 4, 8, 10, 12, 

20 and 24 h after isotopes administration that corresponded to 22, 26, 28, 30, 38 

and 42 h from HCl injury (Figure 3). Four animals were used for each time point. 

The age matched control animals did not receive any surgical manipulation but 

only  the intraperitoneal dose of deuterated water and thereafter sacrificed at 4, 8, 

10, 12, 20 and 24 hours after isotopes administration. 

 

 

 

 

 

 

 

 

 

 

Samples collection 

After opening the chest and “proper injury” assessment (see Results 

Section for details), right and left lung were subjected to selective bronchoalveolar 

lavage (BAL) performed as follows: 0.6 ml of 0.9% NaCl was instilled in the right 

Figure 3. Study Design. Mice were anesthetized and an unilateral (right) HCl injury was 
performed. After 18 h, at the point of maximum inflammation, mice were injected with deuterated 
water as precursor of DSPC biosynthesis. Lung tissue and BALF were collected at subsequent time 
points. 
 



 

38 

 

main bronchus 3 times, the withdrawal fluid was recovered and pooled in a single 

aliquot; 0.4 ml of 0.9% NaCl was instilled 3 times in the left main bronchus to 

obtain the left bronchoalveolar lavage fluid (BALF). During the instillation 

procedure each lung was isolated with a clamp onto the opposite main bronchus to 

confine a lung during the lavage of the contralateral one. BALF was centrifuged 

10 min at 1,500 x g to eliminate cells and cell debris. Supernatants were stored at 

–80°C until analysis. Lungs were dissected, weighed and separately homogenized 

in 0.9% NaCl with protease inhibitors (Complete Mini, Roche, Mannheim, 

Germany). The homogenate was then sonicated 3 times for 10 s at full speed 

(Labsonic 1510, B.Braun, Melsungen, Germany), centrifuged 10 min at 20,000 x 

g and the supernatant stored at –80°C until analysis. 

Urine of each mouse was collected to assess body water deuterium enrichment 

(see below).  

 

 

Total proteins and MPO assay 

BALF and lung tissue homogenates total proteins were quantified by a 

spectrophotometric assay according to Lowry [16]. Myeloperoxydase (MPO) 

activity, as marker of neutrophil infiltration, was assayed in BALF and 

homogenates according to Bradley [17] modified as follows: BALF or 

homogenates were centrifuged for 40 min at 20,000 x g, supernatants were added 

to 2.9 ml of revealing buffer ( 50 mM KH2PO4, H2O2 30% and 0.168 mg/ml o-

dianisidine hydrochloride). Absorbance was recorded for 4 min at 460 nm. Each 

sample was determined in duplicate [18]. 

 

 

DSPC  isolation 

DSPC was isolated from BALF and lung homogenates with a modification 

of the procedure described by Mason et al. [19]  Three-hundred µl of sample were 

added with 10 µg of pentadecanoyl phosphatidylcholine 1 mg/ml (Sigma Aldrich, 

Milano, Italy) and lipids were extracted as described before [20]. The extracted 

lipid fraction was dried under nitrogen stream, combined with 500 µl of 10 mg/ml 
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osmium tetroxyde in carbon tetrachloride, and left for 8 hours at room 

temperature in the dark. Samples were then dried under nitrogen, dissolved in 100 

µl of chloroform/methanol (2:1), spotted onto 20 x 20 cm silica gel plates 

(Silicagel 60, Merck KGaA, Darmstadt, Germany) and fractionated with 

chloroform/methanol/isopropanol/triethylamine/potassium chloride 0.5% in water 

(40/12/33.3/24/8).  

 

 

Fatty acids methyl ester preparation 

To perform GC analysis, DSPC was hydrolyzed and volatilized by 

methylation under acidic conditions[21-22] . After neutralization with potassium 

carbonate 10%, 200 µl of n-hexane were added to the neutralized solution, mixed 

for 10 min and centrifuged at 400 x g for 5 min. The upper n-hexane phase, 

containing esterified fatty acids, was transferred to a glass vial-insert and 

analysed. 

 

 

Quantification of DSPC pools 

DSPC amount was assessed as reported previously[22]. Briefly, fatty acid 

methyl esters were injected into a GC-FID system (HP 5890, Palo Alto, CA, 

USA) and their amounts were determined from the fatty acid peak-areas using the 

previously added internal standard. DSPC lung homogenate and  BALF DSPC 

pools were expressed as umol/g wet lung weight. In addition, BALF pools were 

corrected for the estimated BALF recovery obtained as described below. 

 

 

Estimate of BALF recovery 

In order to estimate the recovery of DSPC from the airways, right and left 

lungs of 4 healthy mice that were not part of the study, were sequentially washed 

3 times.  Right and left BALFs were collected and the three lavages of the right 

and left lungs were analysed separately. The incremental recoveries of DSPC 

were plotted using the sample equation y=A*exp (Bx) + C and the asymptote of 
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the resulting curve was automatically calculated (LabView Software, National 

Instruments Corporation) to estimate DSPC recovery. 

 

 

Measurement of deuterium enrichment 

DSPC-palmitate methyl ester deuterium enrichments were measured by 

GC-IRMS (DELTA plus XL, Thermo Fisher Scientific, Rodano, Italy). The 

DSPC fatty acids were separated [23] and the 2H/1H ratios of the hydrogen gas 

obtained by quantitative pyrolysis were determined by the simultaneous 

integration of the m/z 2 (1H1H) and m/z 3 (2H1H) ion beams over time. The 2H/1H 

ratios were automatically corrected by the ISODAT 2.0 software for the H3
+ 

contribution to m/z 3. Each sample was analysed in triplicate. A blank run with 

pure n-hexane was interspersed every six injections to insure absence of palmitate 

ghost peaks and to avoid  memory effects [24]. 

 

 

Urine deuterium enrichment 

Urinary deuterium enrichment, representative of the body water 

enrichment, was measured by a thermal conversion/elemental analysis (TC/EA, 

Thermo Fisher Scientific) device coupled with an IRMS [25]. Briefly 100 µl of 

urine were deproteinized with sulphosalicylic acid, cooled in an ice bath for 10 

min, and centrifuged at 2,300 x g for 10 min. The supernatant was isolated, 

diluted 1:20 with distilled water of known isotopic enrichment and injected into 

the TC/EA device .  

 

 

Kinetic calculations 

Results were expressed as ð (delta) 2H[‰] = (1000 ð x (2H/1Hsample - 
2H/1Hstandard)/2H/1Hstandard). The δ 2H represents the increase in isotopic 

enrichment above baseline of 2H. Urine enrichments were normalized against 

Vienna Standard Mean Ocean Water (VSMOW, International Atomic Energy 

Agency, Vienna, Austria), which defines 0‰ as δ 2H. Delta 2H values of fatty 
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acids vs. VSMOW were obtained using a standard mixture of fatty acids with 

standard δ 2H (“Mixture F8”, kindly provided by Prof. Arndt Schimmelmann, 

Dept. of Geological Sciences, University of Indiana, Bloomington, IN, USA) [23]. 

The DSPC fractional synthesis rate (FSR) was obtained by dividing the slope of 

the linear enrichment increase of DSPC-palmitate by the urine enrichments 

multiplied by 64.8% under steady state conditions [26]. FSR represents the 

fraction of DSPC pool synthesized in one day from the isotope precursors. FSR 

was standardized per gram of the respective wet lung. The DSPC absolute 

synthetic rate (ASR) is the product of DSPC’s FSR multiplied by the respective 

DSPC pool (lung homogenate or BALF) and it represents the amount of DSPC 

synthesized in one day in that pool, expressed as umol/g wet weight/day. Since 

DSPC is synthesized in the lung tissue and secreted into the alveolar space, for the 

purpose of this study we considered as indicator of DSPC’s synthesis the ASR 

calculated in the lung homogenate, and as indicator of DSPC’s secretion the ASR 

value calculated in the BALF fluid.  

 

 

Statistical Analysis 

Data were expressed as mean ± SD. Comparison between two groups were 

performed by Student t-test. Two-way analysis of variance (ANOVA) was used to 

evaluate the effects of HCl injury, time, and their interaction on the continuous 

variables. One-way ANOVA with the Dunnett’s multiple comparison test was 

used to compare I and NI lungs with the respective control lungs at each time 

point. P values of less than 0.05 were considered statistically significant. Analysis 

was performed by Prism 4.0 (GraphPad Software Inc. La Jolla, CA, USA). 

 

 

Results 
 

Animal Protocol 

Selectivity of the injury was assessed by lung macroscopic examination 

during the autopsy. Animals with bilateral or left injury were excluded. We 

previously confirmed the macroscopic view showed that the majority of the 
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histopathologic changes described affected the right caudal pulmonary lobe [11]. 

In order to verify the selectivity of acid instillation and to exclude a relevant 

contamination of the left lung, we performed preliminary experiments 

(unpublished data, under review) in which mice were treated with a bolus of 1.5 

ml/kg of methylene blue administered in the same way used for HCl instillation, 

and mechanically ventilated reverse in a Trendelenburg position (45°), tilted to the 

right side. We macroscopically confirmed a confinement of the instilled fluid in 

the right lung (principally, in the caudal lobe) while neither the parenchyma, the 

hilum or the main right bronchus had signs of the blue dye (data not shown). 

 

 

Estimate of BALF recovery from the lungs 

Three sequential BALF’s from 4 different mice were recovered and 

analysed separately for both the right and the left lung. The asymptote of the 

resulting curve was calculated with the sample equation y=A*exp (Bx) + C 

(Figure 4). We estimated a 100% recovery in 0.233 mg of DSPC from the right 

lungs and of 0.220 mg of DSPC mg from the left lungs. The mean DSPC amount 

in our (pooled) right BALF was 0.189 ± 0.05 mg, corresponding to 81% recovery 

of total DSPC after 3 lavages. The mean DSPC pool size for the left lung was 

0.176 ± 0.04 mg, corresponding to a 80% recovery. 

 

 
 

 

 

Figure 4. Asymptotic calculation of BALF lavages DSPC recovery. Three serial 
BALF were collected from the right and left  lungs of 4 control mice and analyzed 
separately. DSPC amounts were plotted against the BALF serial number and the 
total amount of DSPC extrapolated from an exponential curve fitting. The figure 
shows the representative plot of the right lungs experiment. 
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Total Proteins and Myeloperoxidase activity 

Total protein content in the I and NI lung is represented in figure 3. Total 

BALF proteins were significantly increased by HCl injury (p=0.002) and by the 

time from the study start (p=0.002) (both lungs, two ways ANOVA). (Figure 5a). 

In the lung homogenate the total protein content was affected only by HCl injury 

(p<0.0001) (Figure 5b). Moreover, mean BALF protein content of all pooled time 

points increased 3 times in I lungs (p=0.004) and 2 times in the NI lungs (p=0.02), 

compared with control lungs by Student’s t-test (Figure 5c).  

BALF MPO activity was significantly increased in both I and the NI lungs over 

time (p=0.0004, two ways ANOVA) and tended to be more pronounced in the I 

lung compared with the NI lungs (I = 45.61 ± 17.9 mU/g wet weight, NI= 34.82 ± 

9.4 mU/g wet weight, p=0.07 by Student’s t-test). In the lung homogenate we 

found no difference of MPO activity between I and NI lungs over time. Mean 

BALF MPO activity was significantly increased  only in the I lungs compared 

with controls (4.7 ± 1.6 mU/g wet weight; p=0.04 by Student’s t-test) . MPO 

activity in BALF was significantly increased at t26 and t28 in the I lungs 

compared to controls (p<0,01 in both case by Dunnett’s multiple comparison test, 

data not shown), while in the NI it was increased only at t26 (p<0,05, Dunnett’s 

multiple comparison test, data not shown). No differences were found for the lung 

homogenates. 
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Figure 5. Determination of total protein content in BALF (Panel a) and lung 
homogenate (Panel b) of injured (I) lungs compared to the respective not injured (NI) 
lungs. Time points 22, 26, 28, 30, 38, 42 h from acid instillation. Data are expressed as 
means ± SD, n=4 mice/time point. *P<0.05 compared with control (Dunnett’s multiple 
comparison test). Panel c shows the BALF group mean ± SD of all I and NI lung total 
proteins. Differences were statistically significant (p=0.004 and p=0.02, respectively, 
by Student’s t-test). 
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DSPC pool size 

BALF DSPC pool size was significantly decreased in the I lungs by HCl 

injury compared to NI lungs (p=0.008, Student’s t-test) and tended to be affected 

by time from the beginning of the study (p=0.056) by two ways ANOVA. Only 

the I BALF DSPC pool size was significantly decreased compared with controls 

(p=0.02) by Student’s t-test. BALF DSPC of the I lungs was significantly 

decreased at t28 an t30, p<0,05 and p<0,01 respectively by Dunnett’s multiple 

comparison test  (Figure 6). 

 

 

 
 

 

 

 

 

 

 

Mean DSPC lung homogenate pool sizes did not differ between the I and NI lungs 

and they were also not different from their respective control lungs (Table 2).   

 

 

 

 

Figure 6: Pool size of DSPC. DSPC concentration (I and NI lung) extracted from 
BALF of I group compared to controls at 22, 26, 28, 30, 38, 42 hours from acid 
instillation in the right main bronchus. The data are expressed as means ± SD, n=4 
mice/time point. BALFs DSPC from I lungs were significantly decreased compared 
with the NI contralateral lungs (p=0.008, Student’s t-test) and tended to be affected 
also by time (p=0.056) by two ways ANOVA. They were also significantly decreased 
compared with right control lungs (p=0.02, Student’s t-test). *P<0.05 compared with 
control (Dunnett’s multiple comparison test). 
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Right 

homogenates 

Left 

homogenates 

Right 

BALF 

Left 

BALF 

 

Controls 

HCl 

model 

(I) 

Controls 

HCl 

model 

(NI) 

Controls 

HCl 

model 

(I) 

Controls 

HCl 

model 

(NI) 

FSR 

(%synthesis/day) 
16.3 23 13.1 26.7 23.8 33.2 23.7 36 

ASR 

(umol/g wet 

weight/day) 

36 42.1 27.1 45.8 30.9 29.2 28.5 46.8 

DSPC pool size 

(umol/g wet 

weight) 

2.2±0.7 1.8±0.3 2.1±0.6 1.7±0.5 1.3±0.4 0.9±0.3 1.2±0.2 1.4±0.4 

 

 

 

 

 

 

 

 

DSPC-palmitate synthesis 

Deuterium urinary enrichment reached the plateau after 8 hours from the 

injection and it was maintained during the entire study (data not shown). 

DSPC synthesis (lung homogenate ASR) and secretion (BALF ASR)  of I, NI and 

control lungs are reported in Table 1. In lung homogenate DSPC synthesis was 

respectively 14.3% and 40.8% faster in I and NI lungs compared with the 

respective control lungs. 

In BALF, DSPC secretion of the I lungs was similar to the controls, whereas that 

of the NI lungs was 37.6% faster than the respective control lungs. The NI lungs 

synthesized 64.3% more mg/g wet lung/day of DSPC than the I lungs. 

The specificity of this synthesis is shown on fig.5, where controls had a lower rate 

of synthesis compared to BAL and lung of the HCl model. 

 

 

Table 2. Kinetics parameters and mean pool size of BALF and lung homogenates from HCL injured 
and control mice). Eighteen hours after injury mice received an intraperitoneal dose of deuterated water 
10% v/v, 1 ml/kg. Samples were collected at 4, 8, 10, 12, 20, 24 h after isotope dose, that corresponded 
to 22, 26, 28, 30, 38, 42 h from acid instillation. FSR was calculated using the slope of the enrichment 
versus time curves of surfactant DSPC-palmitate. ASR was calculated by multiplying FSR by DSPC 
pool size. I= acid injured lungs; NI= contralateral, non injured lungs. N=4 mice/time point. 
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Discussion 
 

In this study we used body water-derived deuterium incorporation into 

lipids to trace the synthesis of the most important sub-family of surfactant 

phospholipids, DSPCs, in a well-characterized model of a unilateral acid-induced 

lung injury[11]. We wanted to assess if a localized injury influences surfactant 

regulation only in the afflicted (confined) lung space, or if a regional damage 

could influence the whole pulmonary surfactant system. In this model, selectivity 

of the injury was assessed by lung macroscopic examination during the autopsy. 

Animals with bilateral or left injury were excluded. In almost all animals the 

injury was confined in the lower lobe bronchus, confirming the goodness of the 

model. 

According to a previous study [11] control mice and NaCl 0.9% (vehicle) treated 

mice did not show a significant difference in the inflammatory status; hence we 

used healthy mice as controls for comparison. Local lung injury and endothelial 

dysfunction were assessed by MPO activity and total protein. MPO tend to be 

higher in the injured lungs but it’s substantially unvaried between injured and not 

injured lungs both in BALF and lung tissue. Proteins are significantly higher in 

BALF of I lungs confirming an alveolar tissue damage with subsequent plasma 

protein leaking. Moreover, proteins tend to be higher also in NI lungs as an effect 

on alveolar capillary permeability by inflammatory mediators released into the 

blood stream after the HCl harm in the contralateral lung. The inflammatory status 

is in accordance with our previously reported description of the model[11].  

We measured the synthesis of lung surfactant DSPC-palmitate using a well-

established protocol involving stable isotope technique, successfully used also to 

trace surfactant’s components regulation in humans [18, 20] 

In lung homogenate DSPC-palmitate synthesis was increased by 14.3% in the I 

lungs and by 40.8% in the NI lungs compared with control mice (Table 1). The NI 

lungs DSPC synthesis was remarkably faster compared with the respective I 

lungs, suggesting a compensatory mechanism occurring in the lung parenchyma 

contralateral to the injury. A mechanism of systemic and/or organ-mediated 

inflammatory stimuli originated in I lungs and delivered to NI lungs could trigger 

an increased DSPC synthesis in NI lungs even if these lungs were unlikely to be 
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directly involved in the damage. Another explanation could be that inflammatory 

milieu in damaged lungs is different from the NI lungs. MPO and protein data did 

not reflect a neutrophil and alveolar permeability difference between I and NI 

inflammatory state, but some other unidentified factors could inhibit DSPC 

production and/or enhance DSPC catabolism. One of these could be type II 

pneumocytes damage that inhibit DSPC synthesis as a consequence of a direct 

disruption of the only one cell type able to synthesize surfactant. In this scenario a 

clue is that DSPC absolute quantity is less in I lungs BALF than in all of the other 

lungs BALF and tissue (DSPC pool size 30% lower than the control values, 

p=0.02, and 36% lower than the respective NI value, p=0.008). Moreover a recent 

study by our research group demonstrated that in ARDS patients, tracheal aspirate 

DSPC was markedly reduced compared to control patients, its FSR was 3.1 times 

higher than that of controls [14] attesting that in critical ill patients, a 

compensatory mechanism is present but inflammation could prevent it to be 

successful. Finally, hydrolysis of DSPC by phospholipase A2 (PLA2s) released 

by inflammatory cells requires millimolar calcium concentrations which are 

reached in the alveolar space during inflammation subsequent to ARDS. In these 

conditions, the enzyme becomes fully active outside the cellular 

compartment.[27-28].  

In lung homogenates we did not find any difference in DSPC pool size among I 

and NI lungs as compared with controls. This supports the assumption that the 

surfactant catabolism is more pronounced in the alveolar compartment where 

alveolar macrophages and neutrophils play a major role in surfactant catabolism. 

Shanley et al. demonstrated that macrophage inflammatory protein (MIP-2) was 

up-regulated in aspiration-induced lung injury in rats, leading to an accumulation 

of neutrophils via a chemotactic mechanism [7]. A murine model of granulocyte-

macrophage colony stimulating factor (GM-CSF) lung deficiency, demonstrated 

that an increase in pool size of GM-CSF(-/-) mice was due to a lack of surfactant 

catabolism by alveolar macrophages [29].  

It is well established that surfactant DSPC secretion to the alveolar space needs a 

lipid intracellular transport protein,  (ATP-binding cassette A3, ABCA3) and the 

surfactant specific protein SP-B to aggregate and excrete surfactant by exocytosis. 
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Recent studies in mice receiving intraperitoneal lipopolisaccaride showed that 

STAT-3 (signal transducer and activator of transcription-3), activated by members 

of the IL-6 like group of pro-inflammatory cytokines, increased DSPC and SP-B 

concentration in lungs and in the alveolar space  by a STAT-3 dependent pathway 

[30].  This induction of surfactant homeostasis improved lung functionality and 

recovery. In addition, maintenance of surfactant function in ABCA3-deleted mice 

after birth was associated with compensatory lipid synthesis in non-targeted type 

II cells, indicating that surfactant homeostasis is a highly regulated process that 

includes sensing and co-regulation among alveolar type II cells [31]. 

In summary, combining the efficacy of a well-characterized model of lung injury 

and the sensibility of stable isotopes/GC-IRMS techniques we showed that after a 

local injury the entire lung system is involved in responding to the damage , by 

activating the immune system and the compensatory mechanisms of surfactant 

synthesis. We speculate that surfactant catabolism and synthesis are two 

interdependent pathways, and that it is likely that synthesis undergoes a “whole 

organ” regulation while inflammation/catabolism has its climax locally that 

gradually decreases away from the injury. 

Future studies are needed to assess the behaviour of other surfactant components 

like specific proteins and changes in the ventilation parameters of a single lung. 
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Chapter Four 
 
 
Synthesis of surfactant protein B and C in vivo by stable isotopes 
 

The most important role of pulmonary surfactant is to lower surface 

tension in the alveoli and to stabilize these structures to prevent alveolar 

collapse[1]. Surface tension is reduced by a phospholipid (PL) film that is stable 

during alveolar expansion and compression associated with breathing.  

This film is composed mainly by phosphatidylcholine, and phosphatidylglicerol, 

two PLs that at body temperature have a rigid conformation. On the other hand, 

the surfactant film on the alveolar surface has to assume a rapid formation and 

decompression of the PL film.  This property is mainly due to the presence of two 

hydrophobic proteins, surfactant protein B (SP-B) and surfactant protein C (SP-

C).[2]. No information is available on SP-C synthesis in humans 

Our lab has previously described a method to measure SP-B kinetics in vivo in 

humans [3]. This work presents a optimized method to measure surfactant protein 

B kinetics and a novel method to measure surfactant protein C kinetics. 

 

 

Surfactant protein B 
 

Surfactant protein B is a 18 kDa hydrophobic peptide composed of 79 

amino acid (Figure 1) [4], expressed in Clara cells and alveolar type II cells. 

SP-B is encoded by a single 9.5-kb gene on human chromosome 2. The SP-B 

cDNA is highly conserved, sharing 70% homology in human, rabbit, and murine 

species at the amino acid level.  

Human SP-B mRNA is translated into a 40 kDa preproprotein, that is cleaved to a 

42-kDa proprotein. This proprotein is then cleaved at the amino terminus by 

cathepsin D or a cathepsin D-like protease, resulting in a 25-kDa intermediate 

protein. At the end, the mature, active peptide is obtained by removing the 

carboxyl-terminal peptide [5].  
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Figure 1: Structure of pro SP-B and SP-B 

 

Surfactant protein B peptide and mRNA are detected as early as 14- to 15-wk 

gestation in the human fetal lung, and they are localized in epithelial cells of 

bronchi and bronchioles.  

After 25-wk, the active peptide is only detected in alveolar type II cells, in the 

alveolus and in alveolar macrophages. Pro-SP-B is detected in bronchiolar and 

alveolar cells, suggesting that distinct processing of SP-B occurs in proximal 

versus distal airway cells [6]. 

Surfactant protein B has several functions in lung surfactant system, the most 

important one is its ability in enhancing the rate of adsorption and surface 

spreading of the phospholipids. 

Surfactant protein B interacts primarily with the head group region of the lipid 

bilayer. The positively charged amino acid residues of SP-B interact at the surface 

of surfactant lipids – together with S-PC - forming stable monolayers and bilayers 

that reduce surface tension and enhance the stability and spreading of the lipid 

film (Figure 2) [2]. 

SP-B can interact with lipid vesicles, generating phospholipids sheets necessary 

for the formation of lamellar bodies. 

SP-B has also an important role in the extracellular environment, playing a critical 

part in surfactant homeostasis. In fact, it can promote the adsorption of lipid 

molecules into the expanding surface sheet and enhance the stability of the film 

during the respiratory cycle [7].  
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A study in mice by Clark et al. lacking of the gene encoding for SP-B 

demonstrated that this deletion resulted in respiratory failure immediately after 

birth, although the composition of surfactant phospholipids was normal. Epithelial 

cells contained, instead of lamellar bodies, aberrant multivesicular bodies with 

small-accumulated lipid vesicles. It was demonstrated the importance of 

surfactant protein B in the packaging of surfactant phospholipids into lamellar 

bodies [8]. SP-B also contributes to recycling of surfactant from the alveolar 

space, enhancing the uptake of phospholipids by type II epithelial cells.  

In addition, a deficiency of surfactant protein B interrupts the processing of 

surfactant protein C precursor, with the formation of an abnormal fragment of 35 

amino acids plus an amino-terminal extension [9]. 

 

 
Figure 2: disposition of surfactant protein B and C within the surfactant bilayer 
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Surfactant protein c 
 

Surfactant protein C is one of the most hydrophobic proteins in the 

proteome, accounting for approximately 4 percent of surfactant by weight. It is a 

4.2 kDa lipopeptide consisting of a 35 amino acid polypeptide rich in valine, 

leucine and isoleucine (figure 3). The central hydrophobic domain of SP-C is 

configured as a trans-membrane spanning alpha elix with covalent attachment of 

palmitoyl groups at two adjacent amino- terminal cysteine residues. 

It is expressed only in alveolar type II cells, and its mature form is produced from 

a multistep cleavage of C-terminal and N-terminal regions of a larger 21 kDa 

precursor called pro-SPC [10].  This precursor is encoded by a six exons, 2.4 kb 

gene (SFTPC), located on the short arm of the chromosome 8.  

 

 
Figure 3: Structure of pro SP-C and SP-C 

 

Surfactant protein C is the only known protein synthesized as an integral 

transmembrane precursor protein and then secreted as a luminal peptide. SP-C has 

an important role in the surfactant system, and most of its properties are strictly 

linked to its extreme idrophobicity. SP-C, inserted in the PL film, disrupts lipid 

packing promoting lipids movements between sheets of membranes [11]. 

SP-C isolated from pulmonary surfactant is not a unique molecule, but it is 

composed of a mixture of isoforms, where one is quantitatively the most present 

in vivo. The number of known modifications appears to increase in parallel with 
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increases analytical sensitivity, and probably additional SP-C forms will be 

discovered in the future. At the state of the art, we know that the major form of 

SP-C is presumably the biologically active molecule. 

It is anyway important to discover the minor isoforms structure, to better 

understand the proteolytic formation of SP-C, its metabolism and the relationship 

between structure and activity. 

The human, porcine and rabbit SP-C polypeptide chain contains 35 amino acids 

residues, but canine and bovine SP-C are one residue shorter, and this is the result 

of a different extents of N-terminal truncation. SP-C is post-translationally 

modified by addition of one (canine and mink) or two (human, porcine, rabbit) 

palmitoyl groups via thioester bonds. Increased amounts of non- and 

monopalmitoylated SP-C are found in human alveolar proteinosis surfactant [12] .  

It was shown by FTIR spectroscopy that SP-C is oriented in a transmembrane way 

in dipalmitoylphopsphatidylcholine –phophatidylglycerol bilayers [12]. The exact 

localization of SP-C in pulmonary surfactant remains an open question, and from 

the available data, it is possible that the peptide is incorporated in both PL bilayers 

and monolayers. 

 

SP-C and inflammation 

Inflammatory signals can influence SP-C expression, as it has been well 

demonstrated in animals model of lung injury.  To simulate respiratory distress 

and fibrosis, rats were instilled with bleomycin and Savani et al. found a 

significant decrease in both SP-C transcription and protein expression levels [13]. 

Another study by Matthew et al. demonstrated that hyperoxia, which causes 

accumulation of inflammatory mediators within lung, reduces SP-C expression 

[14]. Also, in a murine model of Aspergillus fumigatus SP-C expression was 

downregulate [15]. 

The intratracheal administration of TNF-α in adult mice downregulates SP-C 

mRNA, and a in vitro study in murine cells  showed that TNF- α inhibits SP-C 

transcription [16]. Chaby et al. demonstrated that the mature form of SP-C can 

interact with LPS, while the immature form of SP-C does not.  
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Also, analysis of binding inhibition with synthetic analogs of lipid A, indicate an 

important role in contrasting LPS for the alpha configuration of the terminal 

phosphate group [10]. 

When associated with vesicles of dipalmitoylphosphatidylcholine, SP-C inhibits 

the binding of radiolabeled LPS to a macrophage cell line (RAW 264.7); also, it 

demonstrated to inhibit TNF-α production stimulated by LPS. Furthermore LPS- 

binding capacity of SP-C is resistant to peroxynitrite, a mediator of acute lung 

injury formed by reaction of nitric oxide with superoxide anions.  

SP-C can also interact with CD-14, a receptor on the surface of phagocytes that 

can recognize LPS [17]. In fact, SP-C can enhance the binding between CD-14 

and LPS modifying the conformation of CD-14. Also SP-A can improve this 

binding in the same way. 

These data suggest that SP-C can contribute to the host defence, together with SP-

A and SP-D; also, the binding with CD-14 demonstrates the role of SP-C in innate 

immunity is not limited to gram negative bacteria, but also to other pathogenic 

microorganisms. 

 

 

SP-C: lung development and genetics 

SP-C expression is initiated early in the embryonic period of lung 

formation, and the protein’s transcripts are detected in epithelial cells lining the 

developing airways. SP-C expression decreased in cells of the proximal 

conducting portion of the lung, and maintained in the periphery of the developing 

respiratory tubules as the branching tubules elongate. Finally, alveoli are formed 

from respiratory tubules and SP-C mRNA is detected only in alveolar type II cells 

of the mature lung.  

To understand the role of surfactant protein C, Glasser et al. inactivated SFTPC in 

embryonic stem cells to obtain mice lacking SP-C [18]. These mice demonstrated 

to have the same content of surfactant lipids and proteins, but the physical and 

mechanics properties were affected. 

There is an association between interstitial lung diseases (ILDs) in newborn 

infants and adults and mutation in the SFTPC gene. 
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The ILDs are a heterogeneous collection of over 100 different diseases, 

characterized by pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is the 

prototypic ILD [19]. Nogee et al. reported a mutation located in the intronic 

region of SFTPC with ILD presentation in both a full term infants and mother. 

This mutation caused the production of a truncated precursor protein, with 

absence of detectable mature SP-C [20]. 

Thomas et colleagues studied a family in 5 generations that included 11 

individuals with pulmonary fibrosis and 3 affected with nonspecific interstitial 

pneumonia. (NSIP). People were from 4 months to 57 years old. A mutation 

consisting in the change of leucine in position 188 to a glutamine, was present in 

all affected members. They also found an abnormal staining of SP-C in the lung 

tissue of the affected people and abnormal lamellar bodies in the alveolar type II 

cells [21].  

SP-C mutations can disrupt ATII cells function, and it can be an etiological basis 

for the development of ILD. Abnormalities in ATII cells caused by the SFTPC 

gene mutations don’t create a significant change at alveolar level, also during an 

acute lung injury. However, a prolonged alveolar insult can enhance a condition 

of altered metabolism and abnormal secretion by these cells. In addition to a lack 

of SP-C, extracellular matrix disturbances can lead to epithelial cell disorder, 

apoptosis, fibrosis, that can deeply change the alveolar environment [11]. 

There is also a strong relationship between SP-B deficiency and decreased 

concentration of mature SP-C and accumulation of a larger inactive SP-C derived 

peptide, called SP-Ci, which is not observed under normal condition. This peptide 

has a poor ability to promote PL absorption, and doesn’t bind LPS in vitro. This, 

in combination with the almost complete absence of mature SP-C, implies that 

SP-B-deficient children lack active forms of both membrane-associated surfactant 

protein [22]. 
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Material and methods 
 

Adult patients were admitted to the department of Anaesthesia and Critical 

Care, University of Padova, Italy. Children were admitted in Neonatal Intensive 

Care Unit of the Department of Pediatrics, University of Padova. The local ethical 

committee approved the study and for children informed consent was obtained 

from both parents. 

 

Study design 

Patients received a 24 h constant intravenous infusion of 1 g 1-13C Leucine 

for adults, and 2 mg/kg/h for infants (Cambridge Isotope Laboratories, Andover, 

MA) dissolved in saline.  

Blood and tracheal aspirates were collected every 6 hours until 72 h. Tracheal 

aspirates and blood samples were centrifuged at 400g and 1300g respectively and 

supernatants were stored at -80° C until analysis. 

 

Isolation of SP-B and SP-C from tracheal aspirates 

Phospholipids’ phosphorus was measured according to Bartlett [23] 

Lipids from tracheal aspirates (TA) were extracted according to a modified Bligh 

and Dyer method [24]. An aliquot corresponding to 200 ug of PL were mixed 

with 2 volumes of MeOH:CHCl3:HCl (2:3:0.005N), vortexed for 10 min, 

centrifuged for 10 min at 400g and the organic phase recovered. The procedure 

was repeated twice. 

The organic phases were evaporated to dryness under N2 stream, resuspended in 

chloroform and applied to a Bond Elute NH2 column containing 100mg resin 

(Supelco, Milan, Italy) preconditioned with 3-5 ml chloroform. After loading the 

sample, columns were eluted sequentially with 3 ml of the following chloroform/ 

methanol/ acetic acid mixtures: 20:1:0; 9:1:0; 4:1:0; 4:1:0.025; 3:2:0; 1:4:0;  

1:9:0. Surfactant protein B were eluted with the 4:1:0 and 4:1:0.025 fractions, 

whereas SP-C started to be recovered with the mixture 3:2:0 [3].  
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SPB derivatization 

SP-B fractions (4:1:0 and 4:1:0.025) were pooled together, dried under 

nitrogen and hydrolysed to free amino acids by 0.5 ml of HCl 6N for 24 h at 

110°C.[3]. 

Individual amino acids were converted into their N-acetyl-n-propil derivates with 

an optimized procedure [25]. The hydrolysed samples were dried at 40°C under a 

nitrogen stream and propylated with 1 ml of a solution of n-propanol and acetyl 

chloride (1:4 v/v) at 100°C for 1 hour. The tubes were then put in an ice bath to 

stop the reaction. Solvents were removed under a nitrogen stream at 40°C , and 

dichloromethane (2x 0.25ml) was added and evaporated at room temperature to 

remove the excess of isopropanol and water. The n-propyl esters were converted 

in N-acetyl-n-propyl esters by adding 1 ml (1:2:5 v/v) of acetic anhydride, 

triethylamine (Sigma-Aldrich, Milan) and acetone for 10 min at 60°C. The 

acetylates were dried under a gentle stream of nitrogen at room temperature and 

dissolved in 2 ml of ethil acetate, 1 ml of saturated solution of NaCl was added to 

obtain a phase separation.  

After vortexing, the organic phase was dried under nitrogen stream, added of 

dichloromethane (2x0.25ml) and any remaining reagent removed under nitrogen. 

The derivatized amino acids were dissolved in ethyl acetate and stored at -20°C 

until analysis. 
13C enrichment of leucine was measured on a gas chromatograph (Agilent 

Techologies Italia SPA, Cernusco sul Naviglio, Italy) coupled with an Agilent 

mass spectrometer operated in positive chemical ionization (PCI) mode. Leucine 

was separated on a 50 m x 0.20 mm x 0.33 µm Ultra 2 fused silica capillary 

column. 

The ion monitored were m/z 216 for leucine and 217 for 113C-leucine. Results 

were expressed as mole percent excess (MPE), referring to a calibration curve for 

113C leucine. 
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SP-C derivatization 

For studying the incorporation of 13C leucine into SP-C, 1:4:0 and 1:9:0 

fractions were pooled together, evaporated to dryness and hydrolyzed to free 

amino acids for 24 h at 100°C in 500 µl of 6N HCl. 

Amino acids from acid hydrolysis were derivatized into their oxazolinone 

derivatives [26]. Briefly, samples were evaporated to dryness under nitrogen 

stream and a 100ul (50:50 v/v) mixture of trifluoroacetic acid / trifluoroacetic 

anhydride (Sigma-Aldrich, Milan) was added. Then, samples were heated at 

110°C for 5 min. Benzene (500ul) and water (1 ml) were added, tubes vortexed 

and centrifuged. The benzene layer was collected for analysis. 

 

GC-MS analysis  

Both SP-B and SP-C leucine enrichments were measured on a 6890N gas 

chromatographer coupled to an Agilent 5973i mass spectrometer (Agilent 

Technologies Italia SpA, Cernusco sul Naviglio, Italy). Leucine was separated on 

a 50 m x 0.20 mm x 0.33 µm Ultra 2 fused silica capillary column (Agilent 

technologies, Italia, SpA). The oven temperature was programmed for 1 min at 

80°C, increased from 80°C to 180°C at 6°Cmin-1; increased from 180°C to 280°C 

at 30°Cmin-1; held at 280°C for 3 min. 

The ion monitored for SP-B leucine  was m/z 216, and 217 for113C-leucine, while 

the ions for SP-C leucine were m/z 209 and 210 for 113C-leucine.  

Results were expressed as mole percent excess referring to a calibration curve for 

113C-leucine. 

 

Plasma leucine enrichment 

One hundred ul of plasma was deproteinized with sulphosalicilic acid 

(10% wt/vol), and plasma amino acids were derivatized according to Husek 

(Husek 1991) as N (O,S) ethoxycarbonyl esters in a aqueous solution of ethil 

chloroformate. Free plasma leucine enrichment was measured by gas 

chromatography mass spectrometry (GC/MS). Results were expressed as MPE 

referring to a calibration curve for 113C leucine. 
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Kinetic parameters 

All kinetic measurements were performed assuming a steady state: in all 

patients plasma 113C leucine reached steady state within 6 hours from the isotope 

infusion. Also, the slope of the enrichment curve over time did not deviate 

significantly from zero between time 6 and 24 h for plasma leucine. 

Fractional synthesis rate (FSR) was calculated by dividing the slope of the linear 

increase of the enrichment of SP-B and SP-C by the plasma steady state 

enrichment of free 113C leucine. 

Secretion time (ST) was defined as the time lag between the start of the infusion 

of the precursor and the appearance of the enriched product. This was calculated 

by plotting the regression line for the linear increasing part of the enrichment 

versus time curve and extrapolating it to baseline enrichment. 

Peak time is the time of maximum enrichment of surfactant SP-B after the isotope 

infusion.  

Kinetic data are presented as median individual and group values and range. 
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Results 
 

Patients 

No side effects were observed after the administration of 13C leucine. 

Patients’ clinical characteristics are reported in Table 1.a and 1.b. 

Five adults and four children were studied. Clinical characteristics are reported in 

table 1.a and 1.b   

Three adults were  recovered for acute respiratory distress syndrome or acute lung 

injury (ARDS/ALI), while controls were recovered for neurological failure. 

Two infants had no lung disease (hydrocephalous and myotonic dystrophy), while 

two had congenital diaphragmatic hernia (CDH). 

 

 

Patients Sex Age (y) 
Weight 

(kg) 
Intubation (d) Ventilator mode Group 

1 M 55 120 28 PCV ARDS 

2 F 81 70 19 PCV ARDS 

3 F 41 62 18 PCV ARDS 

4 M 67 70 408 tracheostomy control 

5 F 26 50 15 PCV control 

Table 1.a: Clinical characteristics of the study adults 

 

Patients Sex 
Gestational 

Age (wk) 
Age (h) 

Weight 

(kg) 

Intubation 

(d) 

Ventilator 

mode 
Group 

1 M 35 19 3.5 7.5 HFOV CDH 

2 F 38.6 77 3.4 6 HFOV CDH 

3 M 36 624 3.05 13 SIMV control 

4 F 37 696 2.5 3 SIMV control 

Table 1.b: Clinical characteristics of the study infants 
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Surfactant protein B and surfactant protein C kinetics 

SP-B and SP-C kinetics were successfully measured in all study adults and infants 

(fig. 4.a and 4.b) 

 

 
Figure 4a:  Enrichment curves for SP-B and SP-C of all study adults. 
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Figure 4.b:  Enrichment curves of all study infants. 
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Individual and median SP-B and SP-C kinetics parameters are reported in Table 

2.a and 2.b 

 

 
 SP-B SP-C 

Patients 
FSR  

(% day) 
ST (h) 

Peak time 

(h) 
FSR  

(% day) 
ST (h) 

Peak time 

(h) 

1 64 3 24 30 17 36 

2 71 6 18 51 1 12 

3 73 2 24 13 30 24 

4 47 7 24 66 5 24 

5 54 2 18 12 2 30 

Median 63.9 3.2 24 30 5 24 

Range 47-73 2-7 18-24 12-66 1-30 12-36 

Table 2.a:  Adults kinetics parameters 

 

 
 SP-B SP-C 

Patients 
FSR 

(% day) 
ST (h) 

Peak time 

(h) 
FSR 

(% day) 
ST (h) 

Peak time 

(h) 

1 43 1.2 24 7 17 42.5 

2 34 26 24 16 5 20 

3 88 3 18 14 7 18 

4 88.5 1 18 5 3 36 

Median 65.5 2 21 10 6 28 

Range 34-88.5 1-26 18-24 5-16 3-17 18-42.5 

Table 2.b: Infants kinetics parameters 
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Discussion 
 

In this study, we report two main results: 

 

1- an optimized method to measure surfactant protein B kinetics 

2- a novel method to measure surfactant protein C kinetics 

 

Our group had recently published the method of SP-B purification from newborn 

infants’ TA [27]. 

The optimization of the derivatization procedure has been achieved extending the 

propylation time (from 20 min to 1 h at 100°C). A standard solution of 50 ng/ul of 

L-Leucine was derivatized, using both mehods, and analysed by a GC-FID. The 

area obtained by the new extended procedure was increased twice.  

The second goal was to isolate surfactant protein C from TA and to measured its 

kinetics in both adults and studied infants.  

As shown in tables 2.a and 2.b, median FSR, ST and PT for SP-B and SP-C were 

successfully measured in all patients. 

SP-B and SP-C are very hydrophobic proteins and their analytical separation is 

difficult. We chose to separate and isolate these proteins by sorbent 

chromatography. 

We previously did not find contamination of SP-B by SP-C [27].  

 We also performed an experiment to evaluate the effective distribution of the 

proteins studied in the eluted fractions by LTQ Orbitrap at Chiesi Farmaceutici, 

Parma, Italy (data not shown). 

In this study, there is a very low amount of patients and it is not possible to make 

any meaningful clinical speculation.  Our goal was to identify a method to 

measure the kinetics of SP-B and SP-C in vivo.  

It is well established that low amounts of surfactant protein B and surfactant 

protein C lead to respiratory failure [2]. Since the first use of surfactant in human 

neonates over two decades ago, a large number of surfactant preparation have 

been developed, including animal- derived products and non-protein-containing 

synthetic products. Surfactants available for daily clinical practice have 
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dramatically decreased morbidity and mortality in human premature neonates 

[28]. 

However, the levels of SP-B and SP-C found in these commercial preparations are 

reduced compared to levels found in native pulmonary surfactant, and they could 

be too low to sustain the adsorption of the phospholipids at the air-liquid interface. 

Synthetic surfactant proteins could be a solution to standardize protein 

composition and enhance surfactant function.  

Within this frame, it is important to understand surfactant proteins’ kinetics in 

different clinical situation to improve surfactant composition, and consequently 

the patients’ outcome. 

 

 



 

72 

 

References 
 
1. Glasser JR, Mallampalli RK. Surfactant and its role in the pathobiology of 
pulmonary infection. Microbes Infect 2012: 14(1): 17-25. 
2. Whitsett JA, Weaver TE. Hydrophobic surfactant proteins in lung function 
and disease. N Engl J Med 2002: 347(26): 2141-2148. 
3. Cogo P, Baritussio A, Rosso F, Gucciardi A, Moretti V, Badon T, Duner 
E, Zimmernann L, Carnielli VP. Surfactant-associated protein B kinetics in vivo 
in newborn infants by stable isotopes. Pediatr Res 2005: 57(4): 519-522. 
4. Hawgood S. Surfactant protein B: structure and function. Biol Neonate 
2004: 85(4): 285-289. 
5. Pryhuber GS. Regulation and function of pulmonary surfactant protein B. 
Mol Genet Metab 1998: 64(4): 217-228. 
6. Whitsett JA, Nogee LM, Weaver TE, Horowitz AD. Human surfactant 
protein B: structure, function, regulation, and genetic disease. Physiol Rev 1995: 
75(4): 749-757. 
7. Hawgood S, Derrick M, Poulain F. Structure and properties of surfactant 
protein B. Biochim Biophys Acta 1998: 1408(2-3): 150-160. 
8. Clark JC, Wert SE, Bachurski CJ, Stahlman MT, Stripp BR, Weaver TE, 
Whitsett JA. Targeted disruption of the surfactant protein B gene disrupts 
surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl 
Acad Sci U S A 1995: 92(17): 7794-7798. 
9. Vorbroker DK, Profitt SA, Nogee LM, Whitsett JA. Aberrant processing 
of surfactant protein C in hereditary SP-B deficiency. Am J Physiol 1995: 268(4 
Pt 1): L647-656. 
10. Chaby R, Garcia-Verdugo I, Espinassous Q, Augusto LA. Interactions 
between LPS and lung surfactant proteins. J Endotoxin Res 2005: 11(3): 181-185. 
11. Mulugeta S, Beers MF. Surfactant protein C: its unique properties and 
emerging immunomodulatory role in the lung. Microbes Infect 2006: 8(8): 2317-
2323. 
12. Johansson J. Structure and properties of surfactant protein C. Biochim 
Biophys Acta 1998: 1408(2-3): 161-172. 
13. Savani RC, Godinez RI, Godinez MH, Wentz E, Zaman A, Cui Z, Pooler 
PM, Guttentag SH, Beers MF, Gonzales LW, Ballard PL. Respiratory distress 
after intratracheal bleomycin: selective deficiency of surfactant proteins B and C. 
Am J Physiol Lung Cell Mol Physiol 2001: 281(3): L685-696. 
14. Matthew E, Kutcher L, Dedman J. Protection of lungs from hyperoxic 
injury: gene expression analysis of cyclosporin A therapy. Physiol Genomics 
2003: 14(2): 129-138. 
15. Haczku A, Atochina EN, Tomer Y, Chen H, Scanlon ST, Russo S, Xu J, 
Panettieri RA, Jr., Beers MF. Aspergillus fumigatus-induced allergic airway 
inflammation alters surfactant homeostasis and lung function in BALB/c mice. 
Am J Respir Cell Mol Biol 2001: 25(1): 45-50. 
16. Bachurski CJ, Pryhuber GS, Glasser SW, Kelly SE, Whitsett JA. Tumor 
necrosis factor-alpha inhibits surfactant protein C gene transcription. J Biol Chem 
1995: 270(33): 19402-19407. 
17. Augusto LA, Synguelakis M, Johansson J, Pedron T, Girard R, Chaby R. 
Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. 



 

73 

 

Infect Immun 2003: 71(1): 61-67. 
18. Glasser SW, Burhans MS, Korfhagen TR, Na CL, Sly PD, Ross GF, 
Ikegami M, Whitsett JA. Altered stability of pulmonary surfactant in SP-C-
deficient mice. Proc Natl Acad Sci U S A 2001: 98(11): 6366-6371. 
19. Garcia CK. Idiopathic pulmonary fibrosis: update on genetic discoveries. 
Proc Am Thorac Soc 2011: 8(2): 158-162. 
20. Nogee LM, Dunbar AE, 3rd, Wert SE, Askin F, Hamvas A, Whitsett JA. 
A mutation in the surfactant protein C gene associated with familial interstitial 
lung disease. N Engl J Med 2001: 344(8): 573-579. 
21. Thomas AQ, Lane K, Phillips J, 3rd, Prince M, Markin C, Speer M, 
Schwartz DA, Gaddipati R, Marney A, Johnson J, Roberts R, Haines J, Stahlman 
M, Loyd JE. Heterozygosity for a surfactant protein C gene mutation associated 
with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis 
in one kindred. Am J Respir Crit Care Med 2002: 165(9): 1322-1328. 
22. Li J, Ikegami M, Na CL, Hamvas A, Espinassous Q, Chaby R, Nogee LM, 
Weaver TE, Johansson J. N-terminally extended surfactant protein (SP) C isolated 
from SP-B-deficient children has reduced surface activity and inhibited 
lipopolysaccharide binding. Biochemistry 2004: 43(13): 3891-3898. 
23. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem 
1959: 234(3): 466-468. 
24. Paschen C, Griese M. Quantitation of surfactant protein B by HPLC in 
bronchoalveolar lavage fluid. J Chromatogr B Analyt Technol Biomed Life Sci 
2005: 814(2): 325-330. 
25. Corr LT, Berstan R, Evershed RP. Development of N-acetyl methyl ester 
derivatives for the determination of delta13C values of amino acids using gas 
chromatography-combustion- isotope ratio mass spectrometry. Anal Chem 2007: 
79(23): 9082-9090. 
26. Dwyer KP, Barrett PH, Chan D, Foo JI, Watts GF, Croft KD. Oxazolinone 
derivative of leucine for GC-MS: a sensitive and robust method for stable isotope 
kinetic studies of lipoproteins. J Lipid Res 2002: 43(2): 344-349. 
27. Cogo PE, Toffolo GM, Gucciardi A, Benetazzo A, Cobelli C, Carnielli 
VP. Surfactant disaturated phosphatidylcholine kinetics in infants with 
bronchopulmonary dysplasia measured with stable isotopes and a two-
compartment model. J Appl Physiol 2005: 99(1): 323-329. 
28. Horbar JD, Wright EC, Onstad L. Decreasing mortality associated with the 
introduction of surfactant therapy: an observational study of neonates weighing 
601 to 1300 grams at birth. The Members of the National Institute of Child Health 
and Human Development Neonatal Research Network. Pediatrics 1993: 92(2): 
191-196. 
 


