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Summary

In healthy subjects, glucose concentration is tightly kept in a limited range
around its basal value thanks to complex regulatory mechanisms. Impairment of
this regulatory system is the cause of several metabolic disorders, such as diabetes,
characterized by chronic hyperglycemia, which leads to severe micro- and macro-
vascular complications.

Different hormones are involved in this regulation, with insulin being one of the
most important and well studied. It is physiologically secreted at every meal by
pancreatic β-cells in response to increased blood glucose levels, in order to lower
glucose concentration. Other substances can stimulate insulin secretion, for exam-
ple glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone released from in-
testinal L-cells in response to food ingestion. It is, together with other hormones,
responsible for the so-called incretin effect, i.e., the fact that glucose ingested orally
elicits a greater insulin response than glucose administered intravenously, even when
glucose concentrations in plasma are matched. In type-2 diabetes, both insulin and
GLP-1 secretion is impaired. In this context, a combination of experimental data
and mathematical modeling could help in getting a deeper insight into the cellular
mechanisms leading to the secretion of both hormones.

In most of the excitable cells, the steps leading to secretion are quite similar:
a trigger initiates the electrical activity in the cell, which leads to the opening of
voltage gated calcium channels and a subsequent calcium influx inside the cell; the
increase in calcium levels allows the vesicles to fuse with the plasma membrane and
to release their content outside the cell.

In this work, the different steps leading to secretion will be analyzed by means of
a combination of both experimental data and mathematical modeling, with reference
to the intestinal L-cells and the pancreatic β-cells.

Regarding the intestinal L-cells, a mathematical model of electrical activity was
built to investigate the stimulus-secretion pathway, which is still poorly understood.



However, two glucose-sensing mechanisms are known to contribute in the sensing
of luminal glucose: the sodium-glucose cotransporters (SGLT) and ATP-sensitive
K+-channels (K(ATP)-channels). The results showed how the two glucose-sensing
mechanisms interact, and suggested that the depolarizing effect of SGLT currents is
modulated by K(ATP)-channels activity.

On the other hand, the stimulus-secretion pathway in pancreatic β-cells is well
established. SK-channels and Ca2+ dynamics were included in a previous mathemat-
ical model of electrical activity in human beta-cells to investigate the heterogeneous
and non-intuitive electrophysiological responses to ion channel antagonists. By us-
ing our model we also studied paracrine signals, and simulated slow oscillations by
adding a glycolytic oscillatory component to the electrophysiological model. The
model was further developed by including Kir channels, which play a critical role in
the cardiac cells, by determining the shape of cardiac action potential. The inclusion
of the Kir2.1 current in the model resulted in a clear improvement of the model be-
havior, by slowing down the spiking dynamics, thanks to the small outward Kir2.1
current, which tends to stabilize the inter-spike membrane potential.

As a result of the β-cell electrical depolarization, Ca2+-channels open, leading
to an influx and a subsequent diffusion of calcium inside the cell, which in turn
triggers exocytosis. Hence, from the electrical activity analysis, we moved to the
investigation of the relationship between insulin granule exocytosis, calcium levels,
distance from Ca2+-channels and channel clustering in β-cells.

This subproject is based on Total Internal Reflection Fluorescence (TIRF) mi-
croscopy, consisting in simultaneous visualization of two different fluorophores. The
first fluorophore is used to label insulin-containing vesicles, and to differentiate them
into two groups: the ones that undergo exocytosis in response to depolarization, and
the ones that do not. The second fluorophore, a genetically encoded Ca2+ indicator
(R-GECO), is attached to the plasma membrane and permits visualizing calcium
levels during the stimulus. Simulations were performed using the modeling program
CalC, which implements calcium diffusion and buffering. Simulated calcium levels
and the corresponding R-GECO signal were evaluated at different distances from
the channel. The comparison of the simulations to the TIRF microscopy data al-
lowed estimating the average distance from the channel of the granules that undergo
exocytosis.

Calcium diffusion simulations were coupled to a simple model for insulin granule
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exocytosis to investigate different pools of granules, in terms of vicinity to the Ca2+-
channel and calcium affinity. Furthermore, the fusion probability was evaluated both
in a single channel, and in a cluster-of-channels context. Simulations confirmed that
the hypothesis of a cluster significantly increases the fusion probability and a certain
dependence between the channels in the cluster is functional advantageous.

So far we analyzed cellular mechanisms, which translate in insulin secretion.
Hence, the natural step was to move from a cellular point of view to a bigger scale
considering the whole pancreas. In this context, the so called minimal model ap-
proach might become useful, by allowing the determination of indexes to assess
β-cell function in different experimental groups. A minimal model specific for the
perfused pancreas experimental setting was built adapting the C-peptide minimal
model previously applied to the intravenous glucose tolerance test. The model was
initially applied to untreated pancreata and afterward used for the assessment of
pharmacologically relevant agents (GLP-1, the GLP-1 receptor agonist lixisenatide,
and a GPR40/FFAR1 agonist, SAR1) to quantify and differentiate their effect on
insulin secretion. Model application showed that lixisenatide reaches improvement
of β-cell function similarly to GLP-1 and demonstrated that SAR1 leads to an addi-
tional improvement of β-cell function in the presence of postprandial GLP-1 levels.

In conclusion, in this work different aspects of GLP-1 and insulin secretion were
investigated by means of a combination of experimental data and mathematical
models. Starting from the modeling of electrical activity in both L-cells and β-cells,
we moved to the calcium diffusion and exocytosis of insulin vesicles, concluding with
a minimal model of insulin secretion.
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Sommario

In soggetti sani, il controllo della glicemia si basa su un complesso sistema di
regolazione che permette di mantenere il livello di glucosio nel sangue all’interno
di un range ristretto che oscilla attorno al suo valore basale. Malfunzionamenti in
questo sistema di regolazione causano diversi disordini metabolici, tra cui il diabete,
caratterizzato da una iperglicemia cronica, che può portare a gravi complicanze
micro- e macro-vascolari.

Diversi ormoni fanno parte di questo sistema di regolazione. L’insulina, che è
uno dei più importanti e maggiormente studiati, è fisiologicamente secreta ad ogni
pasto dalle β-cellule pancreatiche, a seguito dell’aumento dei livelli di glucosio per
diminuirli. Altre sostanze stimolano la secrezione di insulina, ad esempio il Glucagon-
like Peptide-1 (GLP-1) è un ormone insulinotropico rilasciato dalle L-cellule intesti-
nali in risposta all’assunzione di cibo. Assieme ad altri ormoni, è responsabile del
cosiddetto effetto incretinico, ovvere la risposta insulinica maggiore per l’assunzione
di glucosio orale rispetto alla somministrazione di glucosio endovenoso, anche nel
caso in cui le concentrazioni nel plasma siano le stesse. Nel diabete di tipo 2 è ridotta
sia la secrezione di insulina che di GLP-1. In questo contesto, i modelli matematici
in combinazione con i dati sperimentali posso aiutare nell’ottenere una visione più
approfondita dei meccanismi cellulari che portano alla secrezione di entrambi gli
ormoni.

Nella maggior parte delle cellule eccitabili, le fasi che portano alla secrezione
sono piuttosto simili: l’attività elettrica, indotta da uno stimolo esterno, fa aprire
i canali di calcio voltaggio dipendenti e causa un influsso di calcio all’interno della
cellula; l’aumento dei livelli di calcio permette ai granuli di fondersi con la membrana
plasmatica e rilasciare il loro contenuto all’esterno della cellula.

In questo lavoro, le diverse fasi che portano alla secrezione verranno analizzate at-
traverso una combinazione di dati sperimentali e modelli matematici, in riferimento
alle L-cellule intestinali e le β-cellule pancreatiche.



Riguardo alle L-cellule intestinali, è stato sviluppato un modello matematico
dell’attività elettrica per indagare il pathway stimolo-secrezione, che è ancora poco
compreso. Tuttavia, è noto che due sono i meccanismi ritenuti responsabili della
percezione del glucosio intestinale: il cotrasportatore sodio-glucosio (SGLT) e i canali
potassio sensibili all’ATP (canali-K(ATP)). I risultati ottenuti hanno mostrato come
i due meccanismi di percezione del glucosio interagiscono e suggeriscono che l’effetto
depolarizzante delle correnti dovute ad SGLT è modulato dall’attività dei canali-
K(ATP) .

Invece, il pathway stimolo-secrezione delle β-cellule pancreatiche è noto. Per in-
vestigare alcune risposte elettrofisiologiche eterogenee e non intuitive ad antagonisti
dei canali ionici, in un precedente modello matematico dell’attivià elettrica nelle
β-cellule umane sono stati inseriti i canali SK e la dinamica del calcio. Utilizzando il
modello sono stati studiati anche i segnali paracrini e, aggiungendo un oscillatore gli-
colitico al modello elettrofisiologico, sono state simulate anche le oscillazioni lente. Il
modello è stato ulteriormente sviluppato includendo i canali Kir2.1, che svolgono un
ruolo fondamentale nelle cellule cardiache, determinandone la forma dei potenziali
d’azione. L’inserimento di questa corrente nel modello ne ha migliorato il compor-
tamento rallentandone la dinamica.

A seguito della depolarizzazione elettrica delle β-cellule i canali di calcio si
aprono permettendo l’influsso e la diffusione del calcio all’interno della cellula, che
a sua volta causa l’esocitosi dei granuli di insulina. Per questo motivo, dall’analisi
dell’attività elettrica, siamo passati allo studio nelle β-cellule della relazione tra
l’esocitosi dei granuli di insulina, i livelli di calcio, la distanza dai canali di calcio ed
il clustering dei canali.

Questo sotto-progetto è basato su dati di microscopia per fluorescenza a rifles-
sione interna totale (TIRF), che consiste nella visualizzazione simultanea di due
differenti fluorofori. Il primo è utilizzato per differenziare i granuli contenenti in-
sulina in due gruppi, quelli che vanno incontro ad esocitosi e quelli che non lo fanno.
Il secondo fluoroforo, un indicatore del calcio geneticamente codificato (R-GECO),
è connesso con la membrana plasmatica e permette di visualizzare i livelli di cal-
cio in quell’area durante lo stimolo. Le simulazioni sono state effettuate utilizzando
il programma CalC, che permette di implementare la diffusione ed il buffering del
calcio. Il confronto delle simulazioni con i dati di microscopia TIRF ha permesso di
stimare la distanza media dai canali di calcio a cui si trovano i granuli che vanno
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incontro ad esocitosi.
Le simulazioni di diffusione del calcio sono state accoppiate ad un modello

dell’esocitosi per studiare i differenti gruppi di granuli, in termini di vicinanza ai
canali di calcio ed affinità al calcio stesso. In questo contesto, la cinetica dei canali di
calcio durante la depolarizzazione è stata simulata attraverso un sequenza stocastica
ed un setup a canale singolo è stato confrontato con un setup di tre canali cluster-
izzati indipendenti o sincronizzati. Le simulazioni hanno confermato che l’ipotesi di
un cluster di canali aumenta in modo significativo la probabilità di fusione e una
certa dipendenza tra i canali risulterebbe funzionalmente vantaggiosa.

Fino a questo momento, sono stati analizzati meccanismi cellulari, che si traduco
nella secrezione di insulina. Quindi, un ulteriore passo è stato quello di spostarsi ad
una scala maggiore considerando l’intero pancreas. In questo contesto, i cosiddetti
modelli minimi possono essere un utile approccio, in quanto permettono di deter-
minare degli indici per valutare la funzionalità β-cellulare in differenti gruppi sper-
imentali. A partire dal modello minimo del C-peptide precedentemente applicato
al test endovenoso di tolleranza al glucosio, è stato sviluppato un modello minimo
specifico per il setup del pancreas perfuso. Il modello è stato inizialmente applicato a
pancreas non trattati e, successivamente, utilizzato per la valutazione di importanti
agenti farmacologici (GLP-1, lixisenatide, un agonista del recettore del GLP-1, e
SAR1, un agonista del recettore GPR40/FFAR1), quantificando e differenziando il
loro effetto sulla secrezione di insulina. I risultati hanno mostrato che lixisenatide
ottiene un miglioramento della funzione β-cellulare simila al GLP-1 e che SAR1
porta ad un miglioramento ulteriore della funzionalità β-cellulare in presenza di
livelli post-prandiali di GLP-1.

In conclusione, in questo lavoro diversi aspetti della secrezione di GLP-1 e di
insulina sono stati studiati con una combinazione di dati sperimentali e modelli
matematici. Iniziando dai modelli dell’attività elettrica sia nella L-cellule che nelle
β-cellule, siamo passati alla diffusione del calcio e all’esocitosi dei granuli di insulina,
concludendo con un modello minimo della secrezione di insulina.
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1
Introduction

This introductory Chapter has the aim to outline the context within the
present Thesis is embedded. Therefore, a brief description about metabolic

processes connected with regulation of glucose concentration will be first presented
in order to define diabetes. A short description of the main regulatory hormones
will follow. Finally, the different steps of exocytosis will be presented. The Thesis
outline will conclude the Chapter.

1.1 Experiments and the Modeling Contribution

In this Thesis, a combination of experimental data and mathematical modeling
is used to help in getting a deeper insight into the cellular mechanisms involved in
insulin and GLP-1 secretion. As a consequence, before introducing the background
in which the Thesis is embedded, I would like to highlight the relationship between
experiment and modeling.

The modeling process itself is strictly connected to the available experiments. In
fact, in the first phase it is necessary to focus on the most plausible mechanisms based
on the experiments. Then, after creating a schematic representation of the biological
process, the basics laws of physics and chemistry are applied to get mathematical
equations and expressions. These equations are combined together using differential
equations to obtain a dynamic mathematical model. Finally, the model is used to
simulate the experiments and the results are compared to the initial (or new) data.
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After the comparison, the entire process is repeated in order to adjust the behavior
of the model to reproduce better the experiments.

Once the model has been built and tested against the available data, it can be
used in different ways. For example, it can be used to test hypothesis, which for some
reasons are hard or even impossible to test experimentally. The model simulations
can support the interpretation of the experimental data, especially when the result
are non intuitive and heterogeneous between cells. Finally, the model might allow
to get access to variables of the systems that can not be observed or measured
experimentally.

1.2 Background

The human body is a complex system that is controlled in an extremely accurate
way; its regulatory system produces many substances, which have the aim to keep
parameters, like body temperature, blood pressure and substrate concentration, in
a physiological range. A defect in this organization causes different kinds of disease.
Glucose is a substrate that is essential for the correct working of many organs and
tissues, since it is their principal energy provider.

In healthy subjects, glucose concentration is tightly kept in a limited range
around its basal value (i.e. 70-120 mg/dl) thanks to complex regulatory mechanisms.
Impairment of this regulatory system is the cause of several metabolic disorders, such
as diabetes, characterized by chronic hyperglycemia, which leads to severe micro-
and macro-vascular complications [1].

1.2.1 Glucose Complex Regulatory Mechanism

In the 1920s insulin was identified as a potent hormonal regulator of both glucose
appearance and disappearance in the blood circulation. As a consequence, diabetes
was initially viewed as a mono-hormonal disorder characterized by absolute or rel-
ative insulin deficiency. Afterwards, in the 1950s glucagon was characterized as a
major stimulus of hepatic glucose production. This discovery led to a bi-hormonal
definition of diabetes [2]. Finally, In the 1970s the gut hormone GLP-1 was identi-
fied as another player in the glucose regulatory mechanism. Consequently, the more
recent view of glucose homeostasis is represented by a multi-hormonal and complex
network (Fig. 1.1) [3].
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In healthy subjects glucose concentration in blood, the glycaemia, is the bal-
ance between glucose entering the circulation and glucose removed from it. Glucose
appearance is the sum of different components:

• intestinal absorption during the fed state, determined by gastric emptying;

• glycogenolysis, i.e. the breakdown of glycogen, which is the storage form of
glucose in the liver;

• gluconeogenesis, a metabolic pathway that results in the generation of glu-
cose from non-carbohydrate substrates such as pyruvate, lactate, glycerol, and
glucogenic amino acids.

Brain 

Stomach 

Gut 

Liver 

Pancreas BLOOD GLUCOSE 

Gastric 
Emptying 

Rate of Glucose 
Appearance 

INSULIN 

GLUCAGON 

GLP-1 

Endogenous Glucose 
Production 

Food 
Intake 

Rate of Glucose 
Disappearance 

-‐	  
+	  

+	  
+	   Organs, Tissues 

and Cells 

-‐	  

+	  

Figure 1.1: Simplified scheme of the complex glucose regulatory mechanisms. Adapted from [4].

Glucose is used by many organs, tissues and cells in different ways. Some, like
brain or red blood cells, consume glucose continuously and independently of insulin
and the interruption of this supplying may cause severe damages. For muscles, fatty
tissue and liver the absorption of glucose is proportional to insulin concentration.
In fact, insulin must be present in order to transport glucose from bloodstream into
cells, where it is used for growth and energy.
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In the fasting state, glucose disappears from the circulation at a constant rate.
To balance this loss, endogenous glucose production is necessary. Its main source is
the liver. However, in cases of extreme starvation, renal gluconeogenesis contributes
substantially to the glucose production [5].

After a meal, blood glucose reaches a peak and slowly goes back down to the
fasting levels. In this period, glucose removal into skeletal muscles and adipose tis-
sue is mainly driven by insulin. Simultaneously, endogenous glucose production is
suppressed by direct action of insulin, and as a result of glucagon suppression.

Insulin

Insulin is released by the pancreatic β-cells of the islet of Langerhans in response
to increased blood glucose levels, in order to lower glucose concentration and bring
it back within the physiological range. This action is achieved by three different
ways. First, insulin stimulates insulin-sensitive peripheral tissue and increases their
uptake of glucose. Second, insulin promotes glucose storage in the liver in the form
of glycogen [6]. Third, insulin inhibits glucagon secretion from pancreatic α-cells,
which has the effect of decreasing the endogenous glucose production [7].

Other actions of insulin include the stimulation of fat synthesis, promotion of
triglyceride storage in fat cells, promotion of protein synthesis in the liver and mus-
cles, and proliferation of cell growth [6].

In response to a glucose step, insulin is secreted in two phases [8]: an initial
rapid release attributable to granules already residing at the membrane, followed by
a sustained second phase, caused by the recruitment of new granules from a reserve
pool.

While glucose is the most important stimulus for insulin secretion, it can be
modulated by additional stimuli such as somatostatin, adrenaline, some amino acids,
the gut hormone GLP-1, and neuronal stimulation [9].

In type 2 diabetes the amount of insulin secreted during the first phase, in
particular, is severely reduced [10]. It is now generally accepted that deficient insulin
secretion plays a crucial role in the pathogenesis of diabetes [11].
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Glucagon

Glucagon is secreted by the pancreatic α-cells of the islet of Langerhans and plays
a major role in sustaining plasma glucose during fasting conditions by stimulating
the hepatic glucose production.

When plasma glucose falls below normal range, glucagon secretion increases,
resulting in an increased hepatic glucose production, which helps in bringing back
plasma glucose to normal range. This endogenous source is not needed after a meal,
and in fact glucagon secretion is suppressed in the fed state [12].

In the bi-hormonal definition of diabetes, glucagon excess plays an important role
in diabetes etiology. In a diabetic subject, the inadequate concentrations of insulin
and the elevated concentrations of glucagon, cause an excess in glucagon’s actions
and contributes to an unnecessary supply of glucose in the fed state.

GLP-1

GLP-1 is an insulinotropic hormone released from intestinal L-cells in response
to food ingestion [13]. It is, together with other hormones, responsible for the so-
called incretin effect, i.e., the fact that glucose ingested orally elicits a greater insulin
response than glucose administered intravenously, even when glucose concentrations
in plasma are matched. In addition, GLP-1 inhibits glucagon secretion, slows gastric
emptying, regulates appetite and food intake, stimulates β-cell neogenesis, prolifer-
ation and promotes cell survival both in vitro and in vivo [13].

In particular, GLP-1 stimulates insulin secretion when plasma glucose concen-
trations are high, but not when they approach or fall below the normal range.

Animal studies have demonstrated that the action of GLP-1 occurs directly
through activation of GLP-1 receptors on the pancreatic β-cells and indirectly
through sensory nerves [14]. GLP-1 has a very short plasma half-time (∼2 min-
utes), since it is rapidly degraded by the enzyme dipeptidyl peptidase-IV.

In advanced type 2 diabetes, GLP-1 secretion is attenuated [13], and deficient
incretin signaling has been suggested to be a major reason of insufficient insulin re-
lease and excessive glucagon release in type 2 diabetics [15]. Further highlighting the
importance of GLP-1 in diabetes, changes in GLP-1 secretion have been suggested
to contribute to the dramatic anti-diabetic effects of gastric bypass surgery [16].



6 1. Introduction

1.2.2 Diabetes

Traditionally diabetes is differentiated into two types.
“Type 1 diabetes” is mainly characterized by loss of the pancreatic β-cells leading

to insulin deficiency. As a result, postprandial glucose concentration rise due to lack
of insulin-stimulated glucose disappearance and poorly regulated hepatic glucose
production. In most cases type 1 diabetes has an autoimmune origin and affects
children or young adults, and in fact it is also called “juvenile diabetes”.

In “Type 2 diabetes” tissues are unable to appropriately utilize glucose because of
insulin resistance, and insulin secretion cannot compensate for this. It is frequently
associated with obesity and a sedentary lifestyle. Type 2 is the most common dia-
betes type (90 % of cases) and mostly affects adult people.

Fail of the glucose counter regulatory system in diabetic people causes blood
glucose levels to go out of the correct range. This situation might lead to short
(hypoglycaemia) and long (hyperglycaemia) term complications.

Hyperglycaemia, high glucose levels, does not have an immediate damaging con-
sequence on organism, but, if this state is frequent and persists for long time, it can
lead to several invalidating complications like neuropathy, nephropathy, retinopathy,
heart disease, strokes and peripheral vascular disease [17].

On the other hand, hypoglycemia, low glucose levels, affects the brain, given
its continuous glucose demand. Therefore, when glucose levels fall, brain functions
diminish and people may lose cognitive abilities and even enter a coma condition.

For the past 80 years, insulin therapy has been the only pharmacological alterna-
tive. However, it substitutes only one of the hormones involved in glucose regulation.

The close relationship between insulin and glucagon has suggested additional
areas for treatment. Based on preclinical data, several glucagon receptor antago-
nists have been put forth into clinical development. However, they have been aban-
doned because of safety issues [18]. To date, no pharmacological means of regulating
glucagon exist and the need to decrease postprandial glucagon secretion remains a
clinical target for future therapies.

Recently, the importance of incretin hormones has become clearer. However,
replacing GLP-1 is challenging. In clinical trials, continuous infusion was superior
to single or repeated injections of GLP-1 because of its rapid degradation [19]. To
avoid this intensive mode of treatment GLP-1 mimetics, which last longer than
native GLP-1, and inhibitors of GLP-1 degradation, have been investigated and
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are already available [20]. Alternative treatments, aiming at enhancing endogenous
GLP-1 secretion from the intestinal L-cells directly, are under investigation [21, 22].

These new classes of investigational compounds have the potential to enhance
insulin secretion and suppress prandial glucagon secretion in a glucose-dependent
manner, regulate gastric emptying, and reduce food intake. Lastly, incretin mimetics
may also play a role in preservation of β-cell function and proliferation.

1.2.3 Exocytosis Process in Excitable Cells

From the cellular point of view, hormone secretion is the result of regulated
exocytosis, the process with which internal vesicles fuse with the plasma membrane
releasing their content into the capillary blood. Exocytosis machinery is still an
open research area. The Nobel Prize in Physiology or Medicine 2013 was awarded
jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof “for
their discoveries of machinery regulating vesicle traffic, a major transport system in
our cells” [23].

Figure 1.2: Schematic representation of the steps leading to granule exocytosis. From [24].

Regulated exocytosis has been extensively studied in synapses, where it is the
mechanism by which neurotransmitters are very rapidly released in a controlled man-
ner from synaptic vesicles. However, a wide range of non-neuronal cell types contain
similar regulated secretory granules, the contents of which serve a diverse range of
physiological functions. These include cells specialized to secrete large amounts of
secretory products, like intestinal L-cells and pancreatic β-cells, whose exocytosis is
Ca2+-regulated.

Thanks to different experimental procedures, regulated exocytosis has been func-
tionally dissected into a number of stages (Fig. 1.2) from being non-releasable, they
might becomes releasable following a recruitment step, and become part of a so-
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called “ready-releasable” pool that can undergo exocytosis within tens of millisec-
onds. The pool of secretory granules may be fully releasable, but in many cell types,
a large reserve pool exists and only a small portion of the granules (∼3 %) are
initially rapidly releasable [8, 25, 26].

The functionally defined, sequential stages within the exocytotic pathway have
been shown to involve ATP-dependent priming steps, physical movement of vesicles
to the submembrane region of the cell, tethering and then docking at release sites
on the plasma membrane, conversion to a fully releasable state, triggered membrane
fusion, release of granule contents, and finally retrieval of the granule membrane. In
the case of Ca2+-triggered exocytosis, calcium may stimulate multiple stages before
membrane fusion as well as fusion itself and membrane retrieval by endocytosis [27].

Figure 1.3: Alternative events after fusion-pore formation: kiss-and-run exocytosis (A), semi-
fusion (B) and full fusion (C). From [8].

The precise events that initiate and complete membrane fusion are not under-
stood, although many of the proteins involved have been identified [28]. However, it
has been established through biophysical measurements, that fusion begins with the
formation of a fusion pore that can open transiently and, potentially rapidly reclose.

After the fusion pore is formed, three alternative events can take place [8]. In
the first type called “kiss-and-run” the fusion pore could close even before emptying
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the granule interior completely and without mixing of the granule membrane with
the plasma membrane (Fig. 1.3A). Alternatively, in case of complete fusion the
granule membrane is integrated into the plasma membrane, and then recaptured
by clathrin-mediated endocytosis (Fig. 1.3C). The last case, called “semifusion”, is
an intermediate between the previous two. It consists in a large opening between
the granule lumen and the extracellular space, but the granule remains structurally
intact (Fig. 1.3B). One physiological consequence of fusion through a reversible
fusion pore is that it could allow to control the amount of release that occurs per
secretory granule.

In cells where a rise in intracellular Ca2+ is the main (or the only) trigger for
the initiation of regulated exocytosis, Ca2+ elevation can occur via a variety of
entry mechanisms including second messenger-operated, voltage-operated, receptor-
activated, and Ca2+ release-activated Ca2+-channels. Many features can modify the
extent and duration of an effective Ca2+ signal for exocytosis, including buffering and
Ca2+ uptake into organelles. Another factor that affects Ca2+-regulated exocytosis
in particular cell types is the spatial distribution of channels, which can be associated
with secretory granules location [29, 30].

Considerable effort has been made in the determination of the Ca2+ sensitivity
of the exocytotic machinery in a wide range of cell types [31]. This information is
required for the interpretation of the relationship between the observed physiological
Ca2+ signals and the efficiency of activation of exocytosis, and also provides clues
regarding the physiologically relevant properties of the Ca2+-sensor.

Within experimental error, the Ca2+-dependency of Ca2+-triggered granule ex-
ocytosis is similar in many cell types, suggesting the existence of a common Ca2+-
sensor or a closely related family of Ca2+-binding proteins. However, there are some
notable differences, and in certain cell types vesicles have distinct Ca2+-dependencies
allowing differential control of their release.

Despite considerable similarities in the process of regulated exocytosis in most
cell types, differences are evident that reflect the physiological function of the par-
ticular cells. These include variations in the rate of exocytosis, the lag time before
it begins, its time course, the proportion of vesicles that undergo fusion in response
to stimulation and the presence of single or multiple granule types.
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1.3 Thesis Outline

In the previous Subsection, we have briefly described the common steps of ex-
ocytosis in excitable cells. In this Thesis the focus will be on modeling secretion
of two hormones involved in glucose regulation, i.e. insulin, secreted by pancreatic
β-cells, and GLP-1, secreted by intestinal L-cells.

Electrical activity plays a pivotal role both in β-cells and L-cells by coupling
the increase in the blood glucose to insulin and GLP-1 secretion respectively. In the
next Chapter, some basic concepts required for the modeling of cellular electrical
activity will be presented. In particular, after a brief overview of the cell components,
attention will be given to the description of the cell membrane and the different
means of transporting ions across the membrane. The biological concepts will be
followed by the respective mathematical models. The Chapter will be concluded by
the pioneering model by Hodgkin and Huxley of electrical activity in the squid giant
axon.

In Chapter 3 a mathematical model of electrical activity in primary L-cell and
in the GLP-1 secreting GLUTag cell line will be presented. By using the model, the
interaction between two glucose-sensing mechanisms underlying electrical activity
and GLP-1 secretion will be analyzed.

Chapter 4 will be dedicated to the modeling of electrical activity in human pan-
creatic β-cells. Initially, the first model of human β-cells will be described, followed
by my contribution to the further development of the model, which was used to
investigate the heterogeneous response of β-cells to different channel blockers. The
Chapter will be concluded with an additional development of the model, which led
to interesting but mostly speculative results.

As previously described, exocytosis in both cells is triggered by intracellular
calcium elevation as a consequence of electrical activity and calcium channel opening.
Hence, it was natural to move from the modeling of electrical activity to the modeling
of calcium diffusion and buffering. This and the following parts of the Thesis will
refer to pancreatic β-cells only. The first part is based on TIRF microscopy data.
An overview of this technique and its application will be given at the beginning of
Chapter 5. The Chapter will continue with an introduction of the basic concepts of
calcium diffusion and buffering in cells. Also in this case, the biological description
will be followed by the mathematical modeling equations. Then, after describing
the main features of the modeling program used to simulate calcium diffusion and
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buffering, the simulation results will be compared to the data. The Chapter will be
concluded with some discussion on the obtained results.

The simulations of calcium diffusion and buffering were coupled to a simple
model that describes the different exocytosis steps of a secretory granule. The model
description and the results will be presented in Chapter 6.

Finally, from a cellular point of view, the Thesis will move to a bigger scale, in
which the whole pancreas will be considered and the insulin secretion as a result of
a stimulated perfused rat pancreas will be modeled. In this case, the model was used
to quantify the effect of different pharmacologically relevant agents. The model and
its application will be presented in Chapter 7.





2
Basic Concepts for Modeling

Cellular Electrical Activity

The aim of this Chapter is to give the background knowledge required to
understand the next two Chapters, in which the modeling of electrical

activity in intestinal L-cells and pancreatic β-cells will be presented. This Chapter
is a mixture between biological and mathematical concepts. First a brief description
of the cell will be introduced, focusing in particular on the cell membrane. After-
wards, a complete overview of the structures and mechanisms of transport across
the membrane will be presented. The Chapter will be concluded by the pioneering
model of electrical activity in the squid giant axon by Hodgkin and Huxley.

2.1 Cells: a Small and Complex “Organism”

The cell is the basic structural, functional, and biological unit of all known living
organisms. Cells are the smallest unit of life that can replicate independently, and
are often called the “building blocks of life”.

An eukariotic cells is enclosed within a membrane and subdivided into membrane
bound compartments, in which specific metabolic activities take place. Its nucleus
is surrounded by a double membrane, called nuclear envelope, with pores that allow
material to move in and out. The intracellular space where most of the cellular
activities occur is called cytoplasm.
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Figure 2.1: Scheme of an eukariotic cell. The nucleus components and various membrane bound
compartments are shown.

The cytoplasm comprises the cytosol and the organelles, the cellular internal sub-
structures adapted and/or specialized for carrying out one or more vital functions,
analogous to the organs of the human body. The cytosol consists mostly of water,
dissolved ions, small and large water-soluble molecules. Its viscosity is roughly the
same as pure water, although diffusion of small molecules through this liquid is
about fourfold slower than in pure water, due mostly to collisions with the large
numbers of macromolecules [32].

A brief overview of the most important cell components will be given in the
following (see Figure 2.1).

The cytoskeleton is a network of microfilaments, intermediate filaments and mi-
crotubules, which have the function of organizing and maintaining the cell shape. It
anchors organelles in place, helps during endocytosis and moves parts of the cell in
processes of growth and mobility.

The mitochondria are the so called “power generators”, playing a fundamental
role in producing energy in the cell. In particular, they synthesize ATP by electron
transport and oxidative phosphorylation .

The Endoplasmic Reticulum (ER) is a transport network for molecules targeted
for certain modifications and specific destinations. The ER has two forms: the rough
ER, which has ribosomes on its surface that secrete proteins into the ER, and the
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smooth ER, which lacks ribosomes and plays a role in calcium sequestration and
release.

The Golgi apparatus processes and packages the macromolecules, such as proteins
and lipids, before sending them to their destination.

The lysosomes contain digestive enzymes, to degrade excess or worn-out or-
ganelles, food particles, and engulfed viruses or bacteria.

The centrioles are involved in organizing microtubules in the cytoplasm. Its
position determines the position of the nucleus and plays a crucial role in the spatial
arrangement of the cell.

2.2 The Cell Membrane

The cell membrane, also called plasma membrane, separates the interior of all
cells from the outside extracellular environment. It consists of a phospholipid bi-
layer with embedded proteins. Besides protecting the cell from its surroundings,
cell membranes are involved in a variety of cellular processes such as cell adhesion,
ion conductivity and cell signaling, and serve as the attachment surface for several
extracellular structures.

The cell membrane is selectively permeable and able to regulate what enters and
exits the cell, thus facilitating the transport of materials needed for survival. The
movement of substances across the membrane can be either “passive”, occurring
without the input of cellular energy, or “active”, requiring the cell to expend energy
in transporting it.

Some substances, such as small molecules and ions (CO2, O2, . . . ), can move
across the plasma membrane by simple diffusion. Others diffuse passively through
protein channels in facilitated diffusion or are pumped across the membrane by
transmembrane transporters.

Other transport mechanisms, that involve the plasma membrane, are endocy-
tosis and exocytosis. Endocytosis is the process in which cells absorb molecules by
engulfing them. The plasma membrane creates a small deformation inward, called
an invagination, in which the substance to be transported is captured. The deforma-
tion then pinches off from the membrane on the inside of the cell, creating a vesicle
containing the captured substance. Since endocytosis requires energy, it is a form of
active transport.
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Similarly, using exocytosis the membrane of internal vesicles can fuse with the
plasma membrane, releasing its contents to the surrounding medium. Exocytosis
occurs in various cells to remove undigested residues of substances brought in by
endocytosis, and to secrete substances such as hormones and enzymes.

As said before, cell membrane is a selective filter, allowing the concentrations of
ions in the cytosol to be different from those in the extracellular fluid.

Intracellular Extracellular
Ion Concentration (mM) Concentration(mM)

K+ 139 4
Na+ 12 145
Cl− 4 116
HCO3- 12 29
Mg2+ 0.8 1.5
Ca2+ <0.0002 1.8

Table 2.1: Typical intra end extracellular ion concentrations in mammalian cells [33].

Table 2.1 shows that typically cytosol has a high concentration of potassium ions
and a low concentration of sodium ions compared to extracellular fluid. This differ-
ence create a voltage difference between the two sides of the membrane. Moreover,
the low concentration of calcium in the cytosol allows Ca2+ to function as a second
messenger in signaling. A trigger, such as a hormone or an action potential, allows
calcium to flow into the cytosol by opening calcium channels. This sudden increase
in cytosolic calcium can activate other signaling molecules or trigger exocytosis.

2.2.1 Model of the Cell Membrane

To exemplify what a selective filter means and how the membrane potential is
created, consider the case where two ions, K+ and any monovalent anion A−, are in
solution such that the concentration is different across an impermeable membrane,
but is equal on the same side of the membrane. In that case, there is no potential
difference across the membrane, because the charge between the K+ ions and the
A− ions is balanced on each side due to the equivalent concentrations. If a ion-
selective pore is inserted, allowing only the passage of K+, this ion diffuses through
the pore driven by the concentration gradient. However, since the membrane is not
permeable to the anion A−, each K+ ion that passes down the concentration gradient
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is not balanced by an accompanying A−. The transfer of these charges establishes an
electrical potential gradient, and K+ ions continue to move from high concentrations
to low until the force due to the electrical potential difference is balanced by the
opposite force generated by the concentration difference, called osmotic force.

Nernst Potential

The equilibrium potential, where the electrical and osmotic forces are balanced
is given by the Nernst equation. It is what the membrane potential would be if
a particular ion were at equilibrium across a membrane. The Nernst equation is
derived from the expression for the change in Gibbs free energy, when one mole of
an ion of valence z is moved across a membrane:

∆G = −RT ln [ion]out
[ion]in

+ ∆V zF. (2.1)

Nernst potential is obtained by setting ∆G to zero, which corresponds to the
equilibrium state:

∆V = VNernst = RT

zF
ln [ion]out

[ion]in
, (2.2)

where R is the gas constant, F the Faraday’s constant and T the temperature.
Because the Nernst potential represents the thermodynamic equilibrium of the

system, the potential difference evolves to this value driven by the Nernst equation
regardless of the initial starting point. In electrophysiology and in this Thesis, the
equilibrium potential will be called the reversal potential, because it corresponds to
the point at which the current flux changes its direction, and consequently its sign.

While the Nernst potential is the equilibrium potential for one permeant ion, in
a cell there are various channels selective for different ions. To consider the general
case with multiple conductances (g = 1/R), the following weighted sum formalism
can be used for calculating the resting membrane potential of a cell:

Vm =
∑
i (Vi · gi)∑

i gi
, (2.3)

where Vi is the reversal potential, calculate from the Nernst equation, for ion i. For
example, the membrane potential for a cell containing Na+, K+, and Cl− ions would
be:

Vm = (VNa · gNa) + (VK · gK) + (VCl · gCl)
gNa + gK + gCl

. (2.4)

Since the resting membrane potential is the weighted average of Nernst potentials
for the various ion, the ion with the greatest conductance contributes the most.
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Membrane Model

Now that we have introduced the concepts of the equilibrium potential, we can
move to the description of the membrane model, which is used to describe how the
systems evolves to the steady state.

Figure 2.2: The equivalent electrical circuit for an electrically active membrane. The
capacitance is due to the phospholipid bilayer separating the ions on the inside from the outside
of the cell. The three ionic currents, one for Na+, one for K+, and one for a non-specific leak, are
indicated by resistances. From [34].

The notion that a cell membrane could be compared to an electrical circuit comes
from the pioneering work of K.S. Cole [35]. In his model, the base circuit elements
are:

• the phospholipid bilayer, which act as a capacitor in which the ionic charge
accumulates as the electrical potential across the membrane changes;

• the ionic channels of the membrane, which act as resistors in an electronic
circuit;

• the electrochemical driving forces, which act as batteries driving the ionic
currents.

The ionic and the capacitive currents are arranged in a parallel circuit, as shown in
Figure 2.2.

As a consequence to analyze the system evolution, we need to study the dynam-
ics of the various currents that flow in and out of the cell. Kirchoff’s law is used
to translate the electric circuit diagram in Figure 2.2 into differential equations.
Kirchoff’s law says that the capacitive current must balance with the ionic currents
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and any currents that might be applied through experimental manipulation. This
implies that

Icap = Iion + Iapp. (2.5)

Since we assume that the membrane acts as a capacitor, the capacitive current
across the membrane can be written as

Icap = C
dV

dt
, (2.6)

where C is the capacitance of the membrane and V is the membrane potential.
Taking an example for the ionic currents and assuming that the reversal potential

stays constant, the current flowing through K+-channels is:

IK = −gK (V − VK) . (2.7)

where gK is the conductance of the K+-channels. The negative sign is necessary
because, by convention, the membrane potential V is the difference between the
outside and the inside voltage (Vout−Vin). VK is the K+ reversal potential determined
by the Nernst equation, and V −VK represents the driving force across the membrane
provided by the ionic battery. The reversal potential for a given ion is assumed to
remain constant, which means that restorative mechanisms such as ionic pumps
prevent the ionic battery from running down. This is a reasonable assumption for
a large cell, where the ion transfer has a negligible effect on the intracellular ionic
concentration.

Numerous ions are responsible for the electrical behavior in a cell, thus the total
current is the sum of the individual ionic currents:

Iion =
∑

Ii =
∑
−gi(V − Vi) = −gK(V − VK)− gNa(V − VNa)− . . . . (2.8)

Summarizing the expressions Eq. 2.5, Eq. 2.6 and Eq. 2.8, one gets:

C
dV

dt
= −

∑
i

gi(V − Vi) + Iapp. (2.9)

To solve this differential equation for voltage, we must know how the gated
conductances gi depend on V (and possibly time). In general, the gi will not be
linear functions of V . In the next Sections, we will describe different ion transport
mechanism, along with the model of the associated current.
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2.3 The Cell Membrane Population

Each cell membrane has a set of specific membrane proteins with different func-
tions: transport of nutrients, passage of water, selective transport of molecules, re-
ception of signals from the extracellular environment, physical and functional con-
nection with other cells or the extracellular matrix. The ability of cells to generate
electrical signals is entirely dependent on the evolution of ion-specific pumps and
pores that allow the transfer of charge up and down gradients.

The membrane proteins can be divided into two categories: the integral mem-
brane proteins and the peripheral ones. The integral membrane protein is perma-
nently attached to the biological membrane. They include transporters, linkers,
channels, receptors, enzymes, proteins responsible for cell adhesion, ect. The pe-
ripheral membrane proteins instead adhere only temporarily to the biological mem-
brane and do not interact with the hydrophobic core of the bilayer. They are often
associated with integral membrane proteins acting as regulatory protein subunits.

2.3.1 Ion Channels

Basic Biology

An example of integral membrane protein, responsible for the selective transport
of ions are the channels. The ion channels are small highly selective pores in the cell
membrane that open and close in a regulated manner, allowing the passage of ions
following the driving force that is a combination of electrical potential and chemical
ionic concentrations. They are an example of passive transport, since ions flow from
high to low concentration and no energy is used. The average rate of transport is
pretty fast (∼107 ions/s) [33, 36].

Besides the transport function, the ion channels regulate the membrane potential
and signaling. As a consequence, they are responsible for processes as heart beat,
muscle contraction, sensory signals, cognition and hormone secretion.

Each cell type expresses a different set of channel proteins depending on its func-
tion. However, their expression can be regulated by growth factors, inflammatory
mediators, hormones, etc.

In a shorter term, the ion channel activity is regulated by gating, which sets how
long on average a channel is open. Some channels exhibit only two discrete states
(e.g. K+-channels): open, when it is conducting, or closed (Figure 2.3). Others, like
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Figure 2.3: Scheme of two-state ion channel.

Ca2+-channels can also reach an inactive state, that corresponds to an open channel
that is not conducting [37]. This happens when part of the channel structure or
some external particles block the otherwise open channel.

Different mechanisms can regulate channel gating, for example the voltage across
the cell membrane producing voltage-gated channels, a chemical ligand producing
ligand-gated channels or a mechanical stimulus producing stretch-gated channels.
The gating source gives the required energy to switch the channel protein between
two different 3D conformation shapes, corresponding to the opening and closing of
the pore.

Models of Voltage-Dependent Gating

Even if using special techniques it is possible to measure transition between
closed and open states for a single channel, we will focus on the average change for
the entire ensamble of channels, since it determines the cellular dynamics.

The mathematical description of voltage-dependent activation and inactivation
gates is based on the mechanism

C
k+
−⇀↽−
k−

O, (2.10)

where C corresponds to the closed state, O to the open state of the channel and
the arrows stand for reversible elementary molecular processes, representing the
conformation changes. k− is the rate constant [s−1] for the transition from state O
to state C, while k+ is the rate constant [s−1] for the reverse reaction.

Hence, the rate of the transition from state O to state C is

j− = k−fO, (2.11)
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where fO represents the fraction of open channels NO/N , being N the total number
of channels and NO the open channels. Similarly for the reverse reaction from closed
to open (C k+

−−→ O).
Because the kinetic model (2.10) involves only interconversion of channel states,

the total number of channels should be preserved, N = NO +NC . As a consequence,
one differential equation is sufficient to describe the changes in the fraction of open
channels and the fraction of closed channels can be simply calculated as fC = 1−fO.

The change in fO over time corresponds to the difference between the fraction
of closed channels that open and the fraction of open channels that close:

dfO
dt

= j+ − j− = k+(1− fO)− k−fO. (2.12)

Rearranging
dfO
dt

= −(k− + k+)
(
fO −

k+

(k− + k+)

)
, (2.13)

and defining τ = 1/(k− + k+) and f∞ = k+/(k− + k+), one gets
dfO
dt

= −(fO − f∞)
τ

. (2.14)

It means, that at steady state the fraction of open channel fO is equal to f∞ and
that the steady state would be reached with τ as time constant.

Because ionic channels are composed of proteins with charged amino acid side
chains, the potential difference across the membrane can influence the rate at which
the transitions from the open to the closed state occur. According to the Arrhenius
expression for the rate constants, the membrane potential V contributes to the
energy barrier for these transitions. Hence, the rate constants will have the form

k+ = k+
0 exp (−αV ) and k− = k−0 exp (−βV ), (2.15)

where both k+
0 and k−0 are independent of V . Substituting the relationship (2.15)

into the expression for f∞:

f∞ = k+
0 exp (−αV )

(k+
0 exp (−αV ) + k−0 exp (−βV ))

= 1
1 + k−0 /k

+
0 exp ((α− β)V ) . (2.16)

Similarly for τ :

τ = 1
(k+

0 exp (−αV ) + k−0 exp (−βV ))

= 1
k+

0 exp (−αV ) ·
1

1 + k−0 /k
+
0 exp ((α− β)V ) . (2.17)
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Now, defining

V0 = − ln(k−0 /k+
0 )

α− β
and n0 = 1

α− β
, (2.18)

and substituting into (2.16) and (2.17), one finally gets

f∞ = 1
1 + exp((V − V0)/n0) , (2.19)

τ = exp(αV )
k+

0
· 1

1 + exp((V − V0)/n0) . (2.20)

It is worth noting that n0 determines the steepness of the dependence of f∞ on V ,
whereas V0 corresponds to the voltage at which half of the channels are open.

An activation gate tends to open when the membrane is depolarized, while an
inactivation gate tends to close. Whether a gate activates or inactivates with depo-
larization is determined by the sign of n0: a negative sign implies activation and a
positive sign inactivation.

Voltage Clamp

In order to measure the voltage dependence of the activation and the inactivation
of ion conductances, a technique called voltage clamp is used. An electronic feedback
device adjusts the applied current, Iapp, to counter the membrane currents such that
the membrane voltage is held constant. Now, consider a membrane with a single
gated ionic current. If we assume that the total conductance is the result of the
activation of many channels, the conductance g that we have used above can be
defined as the product of the maximum possible conductance ḡ and the fraction of
open channels f0:

g = f0ḡ. (2.21)

We can include this new relationship in the differential equation for membrane
potential:

C
dV

dt
= −f0ḡ(V − Vrev) + Iapp. (2.22)

If we apply a current that is equal and opposite to the current flowing through
the membrane,

Iapp = ξḡ(V − Vrev), (2.23)

then the right-hand side of Eq. 2.22 is zero and the voltage must be constant. Because
V is constant, ξ = f0 and the time dependence of the applied current follows the
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one of f0 as determined by the gating equation:

dξ

dt
= −f − f0

τ
. (2.24)

Thus the time dependence of the applied current provides a direct measurement
of the gated current at a fixed voltage. To carry out a voltage clamp measurement
like this it is necessary to block all but a single type of current. While this is not
always possible, specific toxins and pharmacological agents have proven useful.
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Figure 2.4: Simulation of voltage clamp experiment. A) Current simulations resulting
from 40 ms depolarizations from the holding potential of -70 mV to different test potentials from
-40 mV to 10 mV (step 10 mV). B) The maximum (steady state) current as a function of test
potential.

The simulation shown in Figure 2.4A represents a typical set of experiments in
which the membrane potential is clamped at a holding potential (-70 mV), then
changed to various test potentials for a fixed interval (40 ms), and finally returned
to the holding potential. To simplify the interpretation, the value of the holding
potential generally is chosen so that the current through the channel is negligible.
Figure 2.4A shows the current that develops during this protocol for 5 test voltages
Vtest. The increase in current when the potential is clamped at the test values is
governed by the exponential increase in f0 with characteristic time τ(Vtest). When
the potential is clamped again at the holding potential, the resulting current is called
the tail current. Figure 2.4B gives a plot of the steady-state current as a function of
the test voltage.
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2.3.2 Pumps and Transporters

Biology

In addition to ion channels, there are numerous specific pumps, cotransporters
and exchangers that allow ions and small molecules to be transported selectively
into internal compartments or out of the cell.

Unlike ionic channels, most transporter and pumps expend considerable energy.
Furthermore, contrarily to the ion channel passive transport, the pumps is a very
slow mechanism (i.e. ∼100 molecules/s) [33, 36].

The pumps are the primary active transporters, since they generate chemical
or electrical gradient and later they transport against the same gradient. Usually
pumps use ATP, light, redox potential or decarboxylation to transport against the
driving forces. The ATP-driven pumps are also called ATPases. For example the
Sarco-Endoplasmatic Reticulum Ca2+ ATPase (SERCA) pump is found in the ER,
where it is used to maintain the calcium reserve. The calcium release from the
ER is involved in cardiac contraction, in stimulating hormone secretion and other
intracellular signaling cascades [38].

Besides the pumps, secondary transporters use the gradients created by the pri-
mary transporters as energy. Similarly to the pumps, they are selective for the
transported molecule, have low transport rate and are reversible.

Their working mechanism consist in these steps: the substrate binds on one side
of the membrane, the binding site reorients and finally the substrate is released
on the other side. As a consequence, they are subject to significant conformational
changes and they can be open only to one side of the membrane.

Figure 2.5: Examples of Transporters. From
[39].

There are three types of trans-
porters: the uniporters, the co-transporters,
which can be either symporters or an-
tiporters.

The uniporters transport only a sin-
gle substrate. Their mechanism consist
in a facilitated “low resistance” diffu-
sion, since they transport down the con-
centration gradient, by accelerating a
reaction that is already thermodinam-
ically favored. The rate of movement is



26 2. Modeling Cellular Electrical Activity

much higher than the passive diffusion, since the molecule never comes in contact
with the hydrophobic core of the cell membrane. Since the transport occurs via a
limited number of uniporters, it is easily saturable.

Example of uniporters, are the GLUT transporters. GLUTs transport glucose
and each isoform plays a specific role in glucose metabolism determined by substrate
specificity, transport kinetics, and regulated expression in different physiological
conditions. They are expressed by renal tubular cells, small intestinal epithelial
cells, liver cells and pancreatic β-cells.

On the other hand the co-transporters couple movement of one substrate down
the gradient to the movement of another substrate against the gradient. It is a
symporter, if both substrates are transported in the same direction. Otherwise, the
co-transporters is called antiporter.

An example of a symporter is the Sodium-Glucose Linked Transporter (SGLT): a
family of glucose transporter found in the intestinal mucosa of the small intestine and
the proximal tubule of the nephron. They contribute to renal glucose reabsorption.
In the kidneys, 100% of the filtered glucose in the glomerulus has to be reabsorbed
along the nephron. In case of too high plasma glucose concentration, glucose is
excreted in urine, because SGLT are saturated.

An example of antiporter is the Na+-Ca2+-eXchanger (NCX), which is considered
one of the most important cellular mechanisms for removing calcium from cells. It
uses the energy that is stored in the electrochemical gradient of sodium by allowing
Na+ to flow down its gradient across the plasma membrane in exchange for the
countertransport of calcium ions. The NCX removes a single Ca2+ in exchange for
the import of three Na+. The exchanger is usually found in the plasma membranes,
the mitochondria and th ER of excitable cells.

Models of Transporters

To exemplify the mathematical description of the transporters model, GLUT2
will be considered.

The transport is modeled as a four state process (Fig. 2.6) [40]. State S1 rep-
resents the empty carrier, with the glucose binding site exposed to the exterior of
the cell. When glucose binds to this state, the transporter makes a transition to
state S2 with glucose bound and facing exterior. The third step corresponds to the
translocation of the glucose from outside to inside the cell (state S3). When glucose
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dissociates from GLUT and ends up inside the cell, the transporter is left in state
S4. Finally, the cycle can repeat if S4 makes the conformational transition back to
S1. All these processes are reversible.
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Figure 2.6: Four-state kinetic diagram of a GLUT transporter.

From the diagram in Figure 2.6, it is easy to verify that the transition from
S1 and S2 is a bimolecular process, because it requires the interaction of a glucose
molecule (Gout) and the GLUT transporter in state S1. While the reverse transition
(from S2 to S1) is an unimolecular process and involves the GLUT molecule only.

Similarly to the ion channels, the rate of the transition from S1 to S2 is given by

J12 = k12Goutx1, (2.25)

where x1 represents the fraction of the GLUT molecules in S1 (x1 = N1/N). The fac-
tor k12 is the rate constant, in this case bimolecular, with units [s−1mM−1]. Similarly
for the reverse unimolecular reaction from S2 to S1, the rate is given by

J21 = k21x2, (2.26)

with k21 a unimolecular rate constant [s−1].
It is possible to write the differential equations that the diagram 2.6 represents,

by tracking the changes for the fraction of GLUT molecules in each state:
dx1

dt
= −k12Goutx1 + k21x2 + k41x4 − k14x1,

dx2

dt
= k12Goutx1 − k21x2 − k23x2 + k32x3,

dx3

dt
= k23x2 − k32x3 − k34x3 − k43Ginx4,

dx4

dt
= k34x3 − k43Ginx4 − k41x4 + k14x1. (2.27)
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Similarly to the ion channels, the total number of transporters should be preserved

x1 + x2 + x3 + x4 = 1, (2.28)

and one of the dependent variables can be eliminated using the conservation law,
for example:

dx1

dt
= −(k12Gout + k14 + k41)x1 + (k21 − k41)x2 − k41x3 + k41,

dx2

dt
= k12Goutx1 − (k21 + k23)x2 + k32x3,

dx3

dt
= −k43Ginx1 + (k23 − k43Gin)x2 − (k32 + k34 + k43Gin)x3 − k43Gin,

x4 = 1− x1 − x2 − x3. (2.29)

To illustrate how a complete model of a transporter is created, we will consider
the SGLT1 from intestinal epithelials cells. This transporter utilizes a concentration
gradient of Na+ to transport glucose from the intestine into the epithelial cells that
line the gut.

A model of any transporter must incorporate a number of basic experimental
facts [41]. One of these is stoichiometry, which for the co-transporter is the number
of Na+ ions transported per glucose molecule. Experimental measurements on the
SGLT1 cotransporter from intestine yields a stoichiometry of 2 Na+ to 1 glucose.
Another important fact about the cotransporter is the absolute requirement for Na+.
If Na+ is absent from the external medium, glucose is not transported. In addition,
the co-transporter is electrogenic, because transport generates an electrical current
due to the transport of Na+.

These observations require 2 Na+ and 1 glucose ordered association/dissociation
steps on each side of the membrane. It would be possible that the second sodium
binds after the glucose. However, this can be ruled out if the states with Na+ and
glucose bound from the outside are connected by conformational transitions to com-
parable states inside. In that case the six state cycle would transport only a single
Na+ for every glucose molecule, implying a stoichiometry at steady state less than
2:1. Alternatively, glucose could bind first. This is ruled out, since the cotransporter
supports Na+ currents even in the absence of glucose.

Now, there are different possibilities for connecting the outside to the inside of
the cell. The conformational change must occur after the glucose binding, otherwise
no glucose would be transported. The cycle must end after the second Na+ is released
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Figure 2.7: Six-state model of sodium/glucose cotransporter SGLT1. Adapted from [42].

inside the cell, to have the right stoichimetry. Finally a single cycle cannot explain the
Na+ current even in absence of glucose. The other possibilities, that are compatible
with the experimental evidence, can all be reduced to a six-state diagram.

The six state model (Fig. 2.7) [42] starts with the empty carrier outside the
cell (state 1). The first step is the association of two sodium ions with the carrier
(state 2), that allows the subsequent association of glucose (state 3), the third step
corresponds to the translocation of the carrier from outside to inside the cell (state
4), symmetrical steps take place inside the cell consisting in successive dissociation
of glucose (state 5) and sodium (state 6), a final step bring the empty carrier back
the initial state outside the cell.

Models of Pumps

As example of pumps models, the SERCA pump will be presented. The rate at
which it pumps Ca2+ has a sigmoidal dependence on intracellular Ca2+ with Hill
coefficient close to two,

R = Rmax[Ca2+]2i
K2 + [Ca2+]2i

. (2.30)

The Hill coefficient is related to the stoichiometry of the SERCA pump, which is
known to be 2 Ca2+:1 ATP [43]. Experiments confirmed the presence of two binding
sites for Ca2+.
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A simple model that is consistent with the Ca2+ dependence of the pump rate can
be constructed using only two states; from an inactive state I, it reaches an active
state A via the binding of two Ca2+ ions. This model is consistent with equation
(2.30) assuming that the two states rapidly equilibrates and that the active state
allows Ca2+ release inside the cell.

Rapid equilibration implies the balance of the forward and the reverse rates,
leading to this condition

k−/k+ = Keq = [Ca2+]2i [I]
[A] , (2.31)

where [I] and [A] are the per unit area concentration of inactive and active SERCA
pumps respectively, and Keq is the ratio of the rate constants. Solving for [I] and
substituting that expression into the conservation condition [I]+[A]=N , one gets

Keq[A]
[Ca2+]2i

+ [A] = N, (2.32)

then solving for [A]

[A] = N [Ca2+]2i
K2 + [Ca2+]2i

, (2.33)

where K =
√
Keq. It has the same units of concentration, and equals the concentra-

tion of Ca2+ at which half of the SERCA are in the active state. A small value of K
corresponds to a high affinity for the binding site. If the rate constant for the Ca2+

release inside the cell is k, then from (2.33), one gets

R = kA = Rmax[Ca2+]2i
K2 + [Ca2+]2i

, (2.34)

with Rmax = kN .

2.4 Hodgkin-Huxley Model

Now that we have all the basic concepts, the famous model of electrical activity
in the squid giant axon developed by Hodgkin and Huxley will be presented [44].

The Hodgkin-Huxley model is empirical. Many voltage clamp experiments were
performed by Hodgkin and Huxley, and their data were fit to expressions that they
incorporated into the model without consideration of an underlying mechanism for
the channel gates. However, it is possible to derive the gating expression used in the
Hodgkin-Huxley model using mechanistic models.
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From the knowledge of the individual currents, one can obtain the conductances
as

gNa = INa
(V − VNa)

, gK = IK
(V − VK)

. (2.35)

Figure 2.8 shows the plot of the ionic conductance as function of time following a
step increase or decrease in the membrane potential. It is important to notice that
with voltages fixed, the conductances are time dependent.

Figure 2.8: Hodgkin-Huxley voltage clamp experiments. From[44].

Considering the potassium conductance, it increases over time to a final steady
level. In particular, gK increases in a sigmoidal fashion, i.e. with a slope that first
increases and then decreases.

This leads Hodgkin and Huxley to the idea that gK had a single activation gate,
which can be modeled as some power of a different variable, that satisfies a first
order differential equation:

gK(V ) = ḡKn
4, (2.36)

dn

dt
= −n− n∞(V )

τn(V ) , (2.37)

the fourth power was chosen not for physiological reasons, but because it was the
smallest exponent that gave acceptable agreement with the experimental data. The
function n(t) is called the potassium activation, since at elevated potentials it in-
creases monotonically and exponentially towards its resting value. Furthermore,
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since the Nernst potential is below the resting potential, the potassium current
is an outward current at potential greater than rest.

Suppose to increase the membrane potential from 0 to V0 and that initially n = 0.
The solution of Eq. 2.37 is

n(t) = n∞(V0)
[
1− exp

(
−t

τn(V0)

)]
. (2.38)

By fitting Eq. 2.38 to experimental data, it is possible to estimate n∞ and τn for
any given voltage step. To obtain a complete description of gK , Hodgkin and Huxley
fitted a smooth curve through the data points. The functional form of the smooth
curve has no physiological significance, but it is a convenient way of providing a
continuous description of n∞ and τn.

Now, considering the sodium conductance gNa. Following a step increase in the
voltage, it first increases, but then decreases again. This observation suggested that
the sodium conductance involved two voltage-dependent “gates”, an activation gate
and an inactivation gate. Hodgkin and Huxley proposed that the sodium conduc-
tance is of the form

gNa(V ) = ḡNam
3h, (2.39)

and they fit the time-dependent behavior of m and h to exponentials dynamics
similar to n:

dm

dt
= −m−m∞(V )

τm(V ) , (2.40)

dh

dt
= −h− h∞(V )

τh(V ) . (2.41)

Since m is small at rest and increases at higher potentials, it is called the sodium
activation, while h that shots down, is called the sodium inactivation.

Hodgkin-Huxley equations assumed that Na+-channels consist of three m gates
and one h gate, each of which can be either closed or open. If the gates operate
independently, then the fraction of open Na+-channels is m3h, where m and h obey
the equation of the two-state model. Similarly, if there are four n gates per potassium
channel, all of which must be open for potassium to flow, then the fraction of open
K+-channels is n4. In Figure 2.9 the gating variables and the corresponding time
constants are shown as a function of voltage.

Putting together the differential equations for the gating variables one gets the
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Figure 2.9: Voltage dependence of Hodgkin-Huxley model parameters. A) Voltage
dependence of the gating variables: n (dashed line), m (black solid) and h (grey solid). B) Voltage
dependence of the time constants: τn (dashed line), τm (black solid) and τh (grey solid).

primary equations for the Hodgkin-Huxley model:

C
dV

dt
= −ḡNam3h(V − VNa)− ḡKn4(V − VK)+

− ḡleak(V − Vleak) + Iapp, (2.42)
dm

dt
= −m−m∞

τm
, (2.43)

dh

dt
= −h− h∞

τh
, (2.44)

dn

dt
= −n− n∞

τn
. (2.45)

They added the conductance ḡleak to their voltage equation, to account for a small
voltage-independent conductance that they attributed to a leak in the membrane,
possible through their microelectrode. All the voltage-dependent terms in the gating
equations are non linear functions of V .

One wonders whether these equations reproduce a realistic action potential, and
which is the mechanism of the produced action potential .

The actual sequence of events is determined by the dynamics of m, n, and h. The
first useful observation is that τm(V ) is much smaller than either τn(V ) or τh(V )
(Fig. 2.9B). As a consequence, m(t) responds much more quickly to changes in V

than either n or h. If the potential V is raised slightly by a small stimulating current,
the sodium activation m is tracking the increased m∞(V ). If the stimulating current
is large enough to raise the potential, and therefore m∞(V ), to a high enough level
(above its threshold), then m will increase sufficiently to change the sign of the net
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Figure 2.10: Hodgkin-Huxley model simulations. A) Sequence of action potentials as a
result of a depolarizing current stimulus. B) Gating variables during one single action potential: n
(dashed line), m (black solid) and h (grey solid). C) gK (dashed) and gNa (solid) during one single
action potential.

current. Now, as the potential rises, m continues to rise, and the inward sodium
current is increased, further adding to the rise of the potential.

If nothing further were to happen, the potential would be driven to a new equi-
librium at VNa. However, as the potential increases, h∞ decreases toward zero (it was
about 0.6 at resting potential), and as h approaches zero, the sodium current inac-
tivates. However, because the time constant τh(V ) is much larger than τm(V ), there
is a considerable delay between turning on the sodium current when m increases
and turning it off when h decreases.

At about the same time that the sodium current is inactivated, the outward
potassium current is activated. This is because of the similarity of the time constants
τn(V ) and τh(V ) (Fig. 2.9B). Activation of the potassium current drives the potential
below rest toward VK . When V is negative, n declines, and the whole process can
start again. In Figure 2.10A a plot of the potential V (t) during a sequence of action
potentials following a superthreshold stimulus is shown. In Figure 2.10B, m(t), n(t),
and h(t) during one single action potential are shown. Finally, in Figure 2.10C, gK
and gNa during one single action potential are shown.
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Modeling Electrical Activity in

Intestinal L-Cells

As said in the introductory Chapter, glucose sensing by a variety of specialized
cells plays a crucial role in the control of body weight and blood glucose levels, and
dysfunctional glucose sensing is involved in the development of obesity and diabetes
[45]. The various glucose-sensing cells rely on different molecular mechanisms for
monitoring glucose levels. The prototype mechanism operating in pancreatic β-cells,
that will be analyzed in the next Chapters, involves closure of K(ATP)-channels,
which leads to cell depolarization and action potential firing with subsequent insulin
release [46]. However, the stimulus-secretion pathway in intestinal L-cells is still
poorly understood.

Due to the low number of L-cells in the intestinal wall and their resemblance
with neighbouring enterocytes, the GLP-1 secreting cell line GLUTag [47] has been
widely used to obtain insight into the cellular mechanisms leading to GLP-1 release.
These studies have clarified that GLUTag cells use the electrogenic SGLT1 [48]
and K(ATP)-channels [49] to sense glucose. Electrical activity consisting of action
potential firing driven by Na+- and Ca2+-channels then promote Ca2+ influx and
release of GLP-1 [50].

Subsequent studies using transgenic mice with fluorescent L-cells [51] confirmed
that primary L-cells rely on similar mechanisms to transduce glucose sensing to
GLP-1 secretion [51, 52]. However, differences in the electrophysiological properties
of GLUTag [50] and primary L-cells [53] have emerged, which could underlie the
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variation in secretory responses in GLUTag versus L-cells. In particular, primary
L-cells appear to rely mainly on SGLT1 for glucose sensing, in contrast to GLUTag
cells, which use both SGLT1 and K(ATP)-channels to transduce glucose stimuli into
GLP-1 secretion [54–57].

This particular glucose-sensing arrangement with glucose triggering both a de-
polarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP)
current is of more general interest for our understanding of glucose-sensing cells.

To dissect the interactions of these two glucose-sensing mechanisms, a mathe-
matical model of electrical activity underlying GLP-1 secretion was built and will
be described in this Chapter. In particular, two sets of model parameters will be
presented: one set represents primary mouse colonic L-cells; the other set is based on
data from GLUTag cell line. The model will then be used to obtain insight into the
differences in glucose-sensing between primary L-cells and GLUTag cells. The results
presented here will illuminate how the two glucose-sensing mechanisms interact, and
should be useful for further basic, pharmacological and theoretical investigations of
the cellular signal underlying endogenous GLP-1 and peptide YY release.

3.1 Mathematical Modeling

A single mathematical Hodgkin-Huxley-type model that, depending of the pa-
rameters, describes electrical activity in mouse L-cells or in the GLP-1 secreting
cell line GLUTag [47] was developed. The model and the two parameter sets were
based on patch clamp data from primary colonic L-cells [53] and GLUTag cells [50],
respectively. The model includes ATP-sensitive K+-channels (K(ATP)-channels),
voltage-gated Na+-, K+- and Ca2+-channels, and the electrogenic sodium glucose
co-transporter SGLT1.

The evolution of the membrane potential V is driven by the contribution from
the different currents (normalized by cell capacitance) to be described in details
below,

dV

dt
= −

(
INa + ICaT + ICaHV A + IKv + IKA + IK,hyper + ISGLT + IK(ATP )

)
. (3.1)

Voltage-gated membrane currents are modeled as

IX = gXmXhX (V − VX) , (3.2)
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where X stands for the channel type, VX is the associated reversal potential, gX the
maximal whole-cell channel conductance, and mX and hX describe activation and
inactivation of the channel, respectively.

Activation (similarly inactivation) is described by

dm

dt
= mX,∞(V )−mX

τmX
, (3.3)

where mX,∞ is the steady-state voltage-dependent activation function, and τmX is
the time-constant of activation, which in some cases depends on the membrane
potential. Steady-state voltage-dependent activation (inactivation) functions were
described by the Boltzmann equation

mX,∞ = 1
1 + e(V−VmX)/kmX

. (3.4)

Parameters can be found in Table 3.1.

Voltage-gated Sodium-channels

In GLUTag cells, voltage steps triggered rapidly inactivating currents at po-
tentials higher than -40 mV. Inactivation parameters were used from [50] without
modification, with an estimated time constant of 1.5 ms based on reported voltage
clamp traces. Channel conductance and activation function were obtained from fits
to the current-voltage (I-V) relationship in [50]. Given the rapid activation, Na+-
channel were assumed to activate instantaneously.

In primary murine L-cells, Na+-currents (INa) were reported to have fast acti-
vation and to undergo large and rapid inactivation. Hence, they were assumed to
activate instantaneously, while the inactivation kinetics was estimated by simulating
voltage clamp experiments [53] (τhNa ≈ 3 ms). Activation and inactivation param-
eters were used without modification from [53]. The conductance value was slightly
(∼10%) increased compared to the value reported in [53], but the resulting I-V re-
lationship was the within errorbars in [53]. Compared to GLUTag cells, primary
L-cells have a bigger sodium current with activation function is left-shifted by ∼10
mV.

Voltage-activated Calcium-channels

The calcium I-V relationship in GLUTag cells exhibit a single peak [50], probably
due to the lack of the low voltage activated T-type Ca2+-channels in the cell line [53].
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Figure 3.1: Sodium currents. Comparison of Na+ current (INa) activation function (A),
inactivation function (B) and I-V relationship (C) between GLUTag (solid line) and primary
L-cells (dashed line).

Hence, the Ca2+ current in GLUTag was modeled as a single high voltage activated
(HVA) current (ICaT = 0 pA/pF in Eq. 3.1). Since half of the current inactivates
[50], inactivation function was modeled as:

hCaHV A,∞ = (1− A) + Ah∗CaHV A,∞, (3.5)

with A = 0.5 and h∗CaHV A,∞ as in Eq. 3.4. Inactivation parameters were used with-
out modification from [50] and an estimated time constant of ∼40 ms compatible
with voltage clamp experiments. Channel conductance and activation function were
obtain from the I-V relationship reported by [50].

In primary murine L-cells, Ca2+-currents have fast activation and approximately
half of the total Ca2+ current inactivates. Moreover, voltage dependence of the peak
current presents a clear shoulder around −30 mV, suggesting the presence of low
(T-type, ICaT ) and high (L- and Q-type, ICaHV A) voltage-activated Ca2+ currents
[53]. We assumed instantaneous activation of the Ca2+-currents.

The T-type Ca2+-channels were assumed to inactivate completely. Accordingly
the I-V relationship for the steady state Ca2+-current lacks the shoulder around
−30 mV of the peak current [53]. The high voltage activated Ca2+-channels likely
correspond to a combination of L-type and Q-type [53], which in neuronal cells have
similar inactivation kinetics [58]. Barium and calcium inactivated the Ca2+-current
to a similar degree [53], suggesting that inactivation was voltage-dependent. Given
the complete inactivation of T-type Ca2+-channels, the residual current is due to
HVA Ca2+-channels only. As a consequence their inactivation function was modeled
as in Eq. 3.5, with A=0.38 and h∗CaHV A,∞ estimated as described below.
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To differentiate between inactivation of low- and high-voltage-activated Ca2+-
channels, we fitted all parameters simultaneously (activation, inactivation and con-
ductance) using I-V relationship for peak and steady state Ca2+-current along with
the overall inactivation function reported in [53]. The resulting activation parameters
and conductance were in good agreement with the ones reported by [53], which fitted
the I-V relationship for the peak Ca2+-current only, and we used as initial values
for the fitting procedure. Ca2+-currents exhibits slower inactivation in correspon-
dence to voltage pulse evoking of maximal peak current, where HVA Ca2+-channel
represent the dominant component [53]. As consequence, we assumed that the time-
constant of T-type Ca2+-channels inactivation was faster (∼20 ms) compared to the
HVA Ca2+-channel inactivation (∼100 ms).
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Figure 3.2: Calcium currents. Comparison of HVA Ca2+ current (ICaHV A) activation func-
tion (A), inactivation function (B) and I-V relationship (C) between GLUTag (solid line) and pri-
mary L-cells (dotted line). Superimposed T-type Ca2+ current (dot-dashed line) and total Ca2+

current (dashed line) in primary L-cells.

Voltage-dependent Potassium-channels

A detailed characterization of K+-channels in GLUTag cells was reported in [50].
Depolarization steps resulted in voltage-dependent currents, which showed partial
inactivation. The dominant component of this current was non-inactivating and
TEA-sensitive (IKv). This current was assumed not to inactivate and to activate
with kinetics modeled as

τmKv = τ0 + τ1

1 + e((V+Vτ )/kτ ) , (3.6)

compatible with voltage clamp experiments. Activation function parameters were
taken from [50] without modification, while conductance was estimated from the
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data [50].
The TEA-insensitive current was reported to have the characteristics of an A-

type current (IKA). Inactivation parameters were used from [50] without modifi-
cation, while inactivation time constant was estimated from voltage-clamp current
traces. Conductance and activation function were obtain from the experimental I-V
relationship.

In response to hyperpolarizing voltage steps, a time- and voltage-dependent,
non-inactivating current was observed [50]. Current characterization was taken from
[50], with an activation time constant of 500 ms, compatible with voltage-clamp
experiments in [50].

In the primary murine L-cells, K+-currents (mainly delayed-rectifiers, IKv) ex-
hibit voltage-dependent activation kinetics, which was modeled similarly to Eq. 3.6,
but with different parameters value compatible with voltage clamp experiments in
[53].

K+-channels were assumed not to inactivate, given their slow inactivation [53].
Activation parameters were used from [53] without modification, while conductance
was slightly (∼10%) decreased compared to the value reported in [53], but the
resulting I-V relationship was within errorbars.
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ATP-sensitive Potassium-channels

The ATP-sensitive potassium (K(ATP)) current was modeled as

IK(ATP ) = gK(ATP ) (V − VK) ,

where gK(ATP ) represents the equivalent conductance of the ATP-sensitive potassium
channels and varies according to the percent of open channels.

K(ATP) current was detected in the GLUTag cell line [49]. Its amplitude was
estimated from the immediate whole-cell current of ∼0.6 pA/pF in response to 20
mV pulses from −70 mV. Assuming a potassium reversal potential of VK = −70
mV, we obtain a conductance of gK(ATP ) = 30 pS/pF in the GLUTag cells.

Similarly, functional K(ATP) channels in primary L-cells were identified in [51],
by the presence of a tolbutamide-sensitive current. The endogenous K(ATP) con-
ductance was estimated from the measured slope conductance just after whole-cell
mode [51]. The obtained value was gK(ATP ) ∼3 pS/pF.

Thus, the ATP-sensitive potassium current resulted to be an order of magnitude
bigger in GLUTag compared to primary L-cells.

Sodium/glucose Co-transporter Model

SGLT1 utilizes a concentration gradient of Na+ to transport glucose from the
intestine into the L-cells. Experimental measurements showed that two Na+ are
required to transport one molecule of glucose into the cell. Moreover, in absence of
sodium in the external medium, glucose is not transported [59].

These observations lead to a six-state model (Fig. 3.4) [42]. Starting with the
empty carrier outside the cell (state 1), the first step is the association of two sodium
ions with the carrier (state 2), that allows the subsequent association of glucose
(state 3), the third step corresponds to the translocation of the carrier from outside
to inside the cell (state 4), symmetrical steps take place inside the cell consisting in
successive dissociation of glucose (state 5) and sodium (state 6), a final step bring
the empty carrier back the initial state outside the cell. The experimental values of
rate constants for the six-state model have been assigned in [42], and are given in
Table 3.2.

A small current is associated with sodium/glucose co-transport, attributable to
the translocation of the negatively charged carrier [42]:

ISGLT = −2F
C

n

NA

[α(k12C1 − k21C2) + δ(k61C6 − k16C1)] (3.7)
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Figure 3.4: Six-state model of sodium/glucose cotransporter SGLT1.

where F is the Faraday constant, C the cell capacitance, n the number of trans-
porters, NA the Avogadro’s number, kxy is the rate constant describing the transition
between state x and state y, Cz is the fraction of carriers in state z, and α and δ are
phenomenological coefficients representing fractional dielectric distances. Finally, µ
is the reduced potential FV/RT , where R is the gas constant and T is the temper-
ature.

The SGLT1 current depends on glucose and sodium concentration inside and
outside the cell, as well as on the membrane voltage, given the dependence of the
rate constants on this factors. Simulated depolarization steps cause an outward
transient current and an inward steady-state current.

The magnitude of the SGLT1 current is directly proportional to the number of
transporters n in the cell. In GLUTag cells, the SGLT1 current was calibrated using
the change in the holding current at −70 mV, when αMG was applied at saturation
level (20 mM) [48], which led to n = 7.7× 106. No corresponding data are available
for the primary murine L-cells. We assumed that the SGLT1 current was smaller
in primary compared to GLUTag cells, similarly to the difference in K(ATP) con-
ductance, since the balance between the SGLT1 and K(ATP) currents determines
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whether the cell is excitable. These currents should therefore be of comparable mag-
nitude in order to allow the cell to switch from quiescence to action potential firing
and vice versa. For the primary murine L-cells we used n = 4× 106.

Parameter Primary Ref GLUTag Ref Unit
VNa 69 69 mV
gNa 2.1 R11 1.7 nS/pF
VmNa -19 R11 -9.5 mV
kmNa -5 R11 -6.7 mV
VhNa -46 R11 -39.7 R05 mV
khNa 6 R11 9.2 R05 mV
τhNa 3 1.5 ms
VCa 65 65 mV
gCaHV A 0.29 R11 0.24 nS/pF
VmCaHV A -5 R11 -13.7 mV
kmCaHV A -6 R11 -9.4 mV
VhCaHV A -23 R11 -25 R05 mV
khCaHV A 13 R11 8.5 R05 mV
τhCaHV A 100 40 ms
A 0.38 0.5 R05 ms
gCaT 0.075 R11 0 nS/pF
VmCaT -40 R11 - mV
kmCaT -7 R11 - mV
VhCaT -62 R11 - mV
khCaT 20 R11 - mV
τhCaT 20 - ms
VK -70 -70 mV
gK 2.5 R11 1.7 R05 nS/pF
VmK 5.2 R11 0.5 R05 mV
kmK -15 R11 -11.2 R05 mV
τ0 30 10 ms
τ1 40 20 ms
Vτ 20 10 mV
kτ 5 10 mV
gA 0 0.65 nS/pF
VmA - 3.9 mV
kmA - -23.5 mV
VhA - -61 R05 mV
khA - 7.5 R05 mV
τhA - 30 ms
gHyper 0 0.1 R05 nS/pF
VHyper - -40.2 R05 mV
VmHyper - -85.7 R05 mV
kmHyper - 9.2 R05 mV
τmHyper - 500 ms
gK(ATP ) 0.003 R08 0.03 RG02 nS/pF

Table 3.1: Default parameters of the different ion channels. References are R11: [53], R05: [50],
R08: [51], RG02: [49].
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Parameter Primary Ref. GLUTag Ref. Unit
n 4e6 R08 7.7e6 RG02 adim
C 8 R11 7 pF
k0

12 8e-5 P92 8e-5 P92 ms−1 mM−2

k0
21 0.5 P92 0.5 P92 ms−1

α 0.3 P92 0.3 P92 adim
k23 0.1 P92 0.1 P92 ms−1mM−1

k32 0.02 P92 0.02 P92 ms−1

k25 3e-4 P92 3e-4 P92 ms−1

k52 3e-4 P92 3e-4 P92 ms−1

k34 0.05 P92 0.05 P92 ms−1

k43 0.05 P92 0.05 P92 ms−1

k45 0.8 P92 0.8 P92 ms−1

k54 40 P92 40 P92 ms−1mM−1

k56 0.01 P92 0.01 P92 ms−1

k65 5e-8 P92 5e-8 P92 ms−1mM−2

k0
16 0.035 P92 0.035 P92 ms−1

k0
61 5e-3 P92 5e-3 P92 ms−1

δ 0.7 P92 0.7 P92 adim

Table 3.2: Default parameters of the SGLT1 model. References are R11: [53], R08: [51], RG02:
[49], P92: [42].

3.2 Simulation Results of Electrical Activity

3.2.1 Glucose-sensing Mechanisms

Experimentally, it is possible to stimulate the two glucose-sensing mechanisms in-
dividually by using different sugar types. For example, α-methyl-D-glucopyranoside
(αMG) is a non-metabolizable glucose analogue that is co-transported by SGLT1 and
can depolarize the cell by the SGLT1-associated current without inducing K(ATP)-
channel closure. Fructose, on the other hand, does not enter via SGLT1, but is
metabolized and the resulting ATP increase closes K(ATP)-channels. Finally, a glu-
cose stimulus might be sensed by the two different pathways simultaneously, and
the model could help in differentiating the contribution of each pathway. Instead
of fructose, the K(ATP)-channel blocker tolbutamide is commonly used to target
K(ATP)-channels without affecting the SGLT1-associated current.
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To simplify the notation, in the following SGLT1-substrate will represent any
substance that is co-trasported by SGLT1 and induces the associated current. In
the model described in the previous Section, a SGLT1-substrate corresponds to the
parameter Go, which represents the extracellular concentration of e.g. glucose or
αMG.

GLUTag cells

In GLUTag cells electrical activity was promoted by stimulation with glucose
[48–50]; αMG [48], acting on SGLT1 only; or with tolbutamide [49] or fructose [48],
which affect K(ATP)-channels only. In contrast to the primary L-cells, a glucoki-
nase activator (GKA50) augmented GLP-1 secretion from GLUTag cells at 1 or 10
mM glucose [55]. These experiments showed that although both electrogenic SGLT1
uptake and sugar metabolism independently can trigger action potential firing in
GLUTag cells, the two mechanisms interact and both play a direct role in glucose
sensing in the cell line.

It was investigated whether electrogenic glucose uptake alone can evoke electrical
activity in the mathematical model of the GLUTag cell line. In order to simulate
SGLT1-mediated glucose uptake, with no effect on metabolism, it is sufficient to
change extracellular SGLT1-substrate concentration and keep K(ATP)-conductance
unchanged. At low Go (0.5 mM), the cell is in a silent state, and an elevation of
Go (1.5 mM or 10 mM) induces an inward transport of the SGLT1-substrate that
generates a fast increase in the associated inward current, which is sufficient to
depolarize the cell and initialize electrical activity (Fig.3.5A,B).

The model also reproduces the induction of electrical activity as a consequence of
K(ATP)-channel block in response to tolbutamide [49] or fructose [48] (Fig. 3.5C).
In this case, the reduction in the outward potassium current is sufficient to allow
depolarization and electrical activity.

The SGLT1-associated current becomes positive during the action potential (see
Fig. 3.5B), and therefore contributes to cell repolarization. This two-fold role of
the SGLT1-associated current, the depolarization effect to initiate the action po-
tential and the repolarizing effect to terminate it, was further analyzed with the
model. In response to depolarizing pulses, the SGLT1 co-transporter generates a
fast transient outward current followed by a sustained inward current, whose mag-
nitude depends both on the voltage of the pulse (see Fig. 3.6A) and on extracellular
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Figure 3.5: Simulated electrical activity in the GLUTag cell line. A) Simulation of
electrical activity triggered by SGLT1-substrate uptake, corresponding to αMG application, with
default parameters and extracellular SGLT1-substrate concentration, Go, changing from 0.5 mM to
1.5 mM and 10 mM as indicated. B) SGLT1-associated current corresponding to the simulation in
(A). C) Simulation of electrical activity triggered by the K(ATP)-channel blocker tolbutamide with
default parameters and K(ATP)-channel conductance, gK(ATP ), changed from from 30 pS/pF to
23 pS/pF as indicated by the bar. D) Voltage peak amplitude as a function of extracellular SGLT1-
substrate concentration Go and K(ATP)-conductance, gK(ATP ). E) Spike frequency as a function
of Go and gK(ATP ). In panels (D) and (E), the arrows indicate the parameter changes in (A), (B)
and (C).

SGLT1-substrate concentration (see Fig. 3.6B). At low SGLT1-substrate concen-
trations, the simulated transient outward current is bigger for more positive pulse
potentials (Vpulse), while the inward current current becomes smaller with increas-
ing Vpulse. As the SGLT1-substrate concentration increases, the transient outward
current decreases, eventually becoming negligible, whereas the steady-state inward
current increases with high affinity for the substrate (see Fig. 3.6C,D). As a con-
sequence, at high SGLT1-substrate concentrations the cell can initiate electrical
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Figure 3.6: Model characterization of SGLT1-associated currents during voltage
clamp as a function of SGLT1-substrate concentration, Go, and voltage pulse, Vpulse

and parameters as for GLUTag model. The voltage-clamp protocol consisted in applying 1
s depolarization at t = 0.5 s from a holding potential of -70 mV. A)Simulated SGLT1-associated
current in response to different voltage pulses (Vpulse = -50, -30, -10, 10, 30 mV) and constant Go=
5 mM. B) Simulated SGLT1-associated current in response to a voltage pulse (Vpulse = -10) and
different Go= 0.1, 1, 5, 10, 20 mM. C) Simulated peak SGLT1-associated current in response to
voltage pulses as a function of Go and Vpulse. D) Simulated steady-state SGLT1-associated current
in response to voltage pulses as a function of Go and Vpulse.

activity thanks to the increased inward current, and the action potentials can reach
slightly higher values because of the reduced outward current (see Fig. 3.5A,B).

In the simulations above, only one possible glucose-sensing mechanism is in-
volved, i.e. either extracellular SGLT1-substrate concentration, having an effect
on SGLT1 current, or gK(ATP ), corresponding to the closure/opening of K(ATP)-
channels. However, to better understand the interaction between the two glucose-
sensing mechanisms, the model response should be analyzed by varying the two
parameters simultaneously. Different combinations of the two parameters lead to
different electrical activity responses, which can be characterized by the peak value
of the membrane potential during spiking activity and the spiking frequency. The
results are shown in Figure 3.5D for peak membrane potential and in Fig. 3.5E for
the frequency. Looking at the pictures, the region in which the cell is electrically
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active becomes evident. Furthermore, simulations showed that, action potential am-
plitude is almost constant, if the cell is electrically active, while frequency can be
modulated by different combinations of Go and gK(ATP ).

Figure 3.5D,E becomes an useful tool to understand the simulations of electrical
activity in GLUTag cells (Fig. 3.5A,C). A cell in the silent state can become active
as a result of an increase in extracellular SGLT1-substrate, which corresponds to
the rightwards arrows in Figure 3.5D,E. Given the high affinity of SGLT1 to its
substrate, a higher concentration would not result in a significant effect on electrical
activity (see Fig. 3.5D,E). Alternatively, the cell might become active as a result of
K(ATP)-channel closure, which is represented by a downwards arrow in the picture.
A further decrease in gK(ATP ), would result in an increase of both spiking amplitude
and frequency.
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Figure 3.7: Effect of stimulation with glucose at different concentrations (indicated
by grey bars) on GLUTag electrical activity. The stimulation with 1.5 mM glucose was
simulated by changing extracellular SGLT1-substrate concentration, Go, from 0.1 mM to 1.5 mM,
while gK(ATP ) remained unchanged from its default value. Subsequent 20 mM glucose application
was simulated by changing Go from 1.5 mM to 20 mM, and gK(ATP ) from 30 pS/pF to 25 pS/pF.

Glucose stimulation would have an effect on both variables depending on its
concentration. In particular, the ability of GLUTag cells to sense low concentrations
of sugars might be attributable to the SGLT1-associated current, given the high
glucose affinity of SGLT1, which in the model corresponds to a change in Go with
unchanged gK(ATP ). At higher glucose concentrations (>5 mM), there could be an
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effect of metabolism and closure of K(ATP)-channels, besides an increase in the
SGLT1-associated current. The resulting membrane potential simulation is shown
in Figure 3.7. The higher glucose concentration resulted in a small increase in the
peak of the action potential and a greater increase in spiking frequency, in agreement
with experiments [49]. The increased peak and frequency is due to a combination of
the closure of K(ATP)-channels (Fig. 3.7C) and a reduction in the transient outward
SGLT1-current (Fig. 3.7B), given its two-fold role explained above (Fig. 3.6).

Primary L-cells

As for the GLUTag cell line, similar simulations can be performed to analyze the
contribution of the two sensing mechanisms in primary L-cells. To our knowledge,
no experimental data on electrical activity with αMG, acting on SGLT1 transport
alone, are available in the literature. However, with the mathematical model, we
can now test directly whether electrogenic glucose uptake is sufficient to trigger
electrical activity in primary L-cells. Similarly to the GLUTag cells, at low Go (0.1
mM), the cell is in a silent state, and an elevation of Go (1 mM or 20 mM) generates
an increase in the SGLT1-associated inward current, causing cell depolarization and
electrical activity (Fig.3.8A,B). A further increase in Go does not affect electrical
activity significantly because of the high affinity of SGLT1 to its substrate.

The model also reproduces the induction of electrical activity by the K(ATP)-
channel antagonist tolbutamide [52] (Fig. 3.8C). However, it is worth noting that
the starting point for the primary L-cells corresponds to gK(ATP )= 3 pS/pF, which
means that on average only a single K(ATP) channel is open [60]. In contrast, the
GLUTag cells have a ten-fold higher K(ATP) conductance, which might explain how
stimulated metabolism by fructose [48] or glucosekinase activators [55] can have an
effect in GLUTag cells but not in primary L-cells: in the latter almost all K(ATP)-
channels are already closed and further physiological inhibition is therefore not pos-
sible. Nonetheless, pharmacological closure of K(ATP)-channels by tolbutamide can
trigger electrical activity and GLP-1 secretion [51, 52, 61], and our model shows that
although the exogenous K(ATP)-channels activity is very low, a further reduction
is sufficient to allow electrical activity.

The simulated electrical responses are summarized in Figure 3.8D,E showing
voltage peak and frequency, respectively, as a function of Go and gK(ATP ). Similarly
to the GLUTag cell line, it is easy to identify the region in which the cell is electrically
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Figure 3.8: Simulated electrical activity in primary L-cells . A) simulation of electrical
activity triggered by SGLT1-substrate uptake, corresponding to αMG application, in primary L-
cells with default parameters and extracellular SGLT1-substrate, Go, changing from 0.1 mM to
1 mM and 20 mM as indicated. B) SGLT1-associated current corresponding to the simulation in
(A). C) Simulation of electrical activity triggered by K(ATP)-channel blocker, tolbutamide. De-
fault parameters and K(ATP)-channel conductance, gK(ATP ) changing from from 3 pS/pF to 0
pS/pF. Grey bars indicate application of the substances. D) Voltage peak as a function of extra-
cellular SGLT1-substrate Go, and K(ATP)-channel conductance, gK(ATP ). E) Spiking frequency
as a function of Go and gK(ATP ). The arrows indicate the parameter changes in (A) and (B).

active. In that area, the electrical activity changes by different combinations of Go

and gK(ATP ). Contrarily to an active GLUTag cell line, whose frequency can be finely
modulated mainly by changing gK(ATP ) in the presence of Go, in the primary L-cell
model, the spiking frequency is only slightly affected by a further change in the
parameters. Action potential amplitude can be increased by different combinations
of Go and gK(ATP ). The increase is bigger (∼10 mV) compared to the one obtain
in the GLUTag model (∼3 mV) with similar parameter changes. Thus, the model
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suggests that primary L-cells use action potential amplitude rather than frequency
to transduce glucose-sensing to Ca2+ influx.

3.2.2 Role of Sodium-channels

GLUTag

Experimentally, the application of the Na+-channel blocker TTX in the GLUTag
cell line blocks action potentials evoked by 10 mM glucose completely, but did not
prevent glucose-triggered rise in intracellular Ca2+ and had no effect on GLP-1
secretion [50]. These results are likely due to the ability of glucose to depolarize
the cell, both in presence and absence of TTX, which may cause a sustained Ca2+

current [50]. This explanation could be verified using the model by comparing three
conditions: 0.1 mM glucose and no TTX (Go=0.1 mM and gK(ATP )=0.03 nS/pF), 10
mM glucose stimulation and no TTX (Go=10 mM and gK(ATP )=0.015 nS/pF), and
10 mM glucose stimulation with TTX present (Go=10 mM, gK(ATP )=0.015 nS/pF
and gNa = 0 nS/pF). Now, we can directly compare the mean voltage and mean
Ca2+ current, represented by a dashed line during electrical activity, in the different
conditions (Fig. 3.9A,B). Glucose depolarizes the cell by ∼10 mV, both in absence
and in presence of TTX. The mean Ca2+ current is highest during electrical activity
in presence of glucose and absence of TTX. However, while TTX application reduces
the current, it is still higher than in the absence of glucose, which might explain why
glucose simulates GLP-1 secretion also in the presence of TTX in spite of the absence
of action potential firing.

Primary L-cells

The important role of Na+-channels in the upstroke of the action potentials in
primary L-cells was confirmed by the model. An example of electrophysiological
response to TTX was reported in [53]. The primary L-cell, maintained in a depolar-
ized state by continuous injection of a small depolarizing current, fired spontaneous
action potentials that were dramatically reduced in frequency, but not completely
abolished by TTX. Simulation of Na+-channel block in similar conditions, and with
default parameters, completely abolished electrical activity (Fig. 3.9C). However,
given that only one example was reported in [53] and considering heterogeneity be-
tween cells, we further analyzed the model response to TTX, varying the parameters
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Figure 3.9: Simulation of application of Na+-channel blocker TTX. A) Simulation of
glucose-induced electrical activity (Go = 10 µM and gK(ATP ) = 0.015 nS/pF) and subsequent
application of TTX in GLUTag cells with default parameters. Dashed line represent mean voltage
during electrical activity. B) Calcium current corresponding to the simulation in (A). Dashed
line represent mean calcium current during electrical activity. C) Simulation of current-induced
electrical activity (Iapp = 0.1 pA/pF, Go = 1 mM and gK(ATP ) = 0.0035 nS/pF), and subsequent
application of TTX in primary L-cells . D) As in (C), except gCaT = 0.11 nS/pF. E) Simulation
of current-evoked action potential in primary L-cells in control case (black line) and in presence of
TTX (grey line). Black bar indicates the current application Iapp = 5 pA/pF. Grey bars indicate
glucose and TTX application as indicated.

within the physiological limits. For example, by increasing T-type Ca2+-channel con-
ductance from 0.075 nS/pF to 0.11 nS/pF, TTX application resulted in membrane
potential oscillations between -60 mV and -40 mV (Fig. 3.9D), which is close to the
threshold for the action potential generation. As a consequence, the very low fre-
quency recorded experimentally after TTX application, might be the result of noise,
which occasionally allows the membrane potential to cross the threshold and fire an
action potential.

Furthermore, in presence of TTX, action potentials could still be evoked by
current injection, but compared to the control case, they were wider, elicited at a
higher threshold and had a smaller amplitude [53]. The model predicts a thresh-
old of ∼-40 mV for initiation of action potentials, which is close to the one found
experimentally of ∼-36 mV [53]. Blocking Na+-channels in the model, a membrane
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potential of ∼-10 mV should be reached to activate sufficient Ca2+ channels to con-
tinue the depolarization trend, even after the applied current is removed (Fig. 3.9E)
Also the decrease in the action potential amplitude caused by TTX is quite similar
(∼40 mV) compared to the experimental example reported in [53].

3.2.3 Role of Calcium-channels

GLUTag

The evaluation of the role of Ca2+-channels is fundamental, given the association
of calcium concentration with the exocytotic process. In experiments with GLUTag
cells, the application of the L-type calcium channel blocker nifedipine in presence of
10 mM glucose caused a reduction in action potential frequency [50]. The GLUTag
mathematical model has a single calcium current, and does not differentiate between
calcium channel types. To simulate the nifedipine effect, Ca2+-channel conductance
was reduced from 0.24 to 0.14 nS/pF, which is comparable to the barium current
inhibition caused by nifedipine application in GLUTag cells [50]. The resulting model
simulation in Figure 3.10A showed both a lower peak amplitude and a dramatic
reduction in action potential frequency.
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Figure 3.10: Simulation of application of Ca+-channel blocker. A) Simulation of appli-
cation of the L-type Ca2+-channel blocker, nifedipine, in GLUTag cells, with default parameter
except Go=10 mM, gK(ATP ) = 0.015 nS/pF. B) Simulation of application of partial block of HVA
Ca2+-channels in primary L-cells , with default parameters except Go=10 mM. Grey bars indicate
Ca2+-channel blocker application.
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Primary L-cells

Experimentally, the block of L-type or Q-type Ca2+-channels in primary L-cell
preparations caused a similar and significant reduction in GLP-1 secretion, both
under basal and glutamine-stimulated conditions [51]. Simulation of partial block of
HVA Ca2+-channels, which are a combination of L-type and Q-type Ca2+-channels,
significantly reduced the peak amplitude of glucose stimulated electrical activity,
which might underlie the reduction of secretion found experimentally (Fig. 3.10B).

3.3 Discussion

The relative contribution of SGLT1 and GLUT2 glucose transporters to glucose
sensing in the intestinal L-cells has been a matter of debate [56]. Whereas SGLT1
transporters are electrogenic and could promote electrical activity on their own, glu-
cose transported via GLUT2 should be metabolised to increase the ATP/ADP ratio
and close K(ATP)-channels, which could lead to action potential firing as in pancre-
atic β-cells. Glucose entering via SGLT1 could also reduce K(ATP)-channel activ-
ity. However, accumulating evidence support the main role of the SGLT1-mediated
current in primary L-cells [54–57, 62], whereas both SGLT1 currents and K(ATP)-
channel closure contribute to stimulus-secretion coupling in GLUTag cells [48, 55].
The theoretical analyses presented here provide new insight into how the electro-
physiological differences between primary L-cells and the GLUTag cell line lead to
their diverse glucose-sensing mechanisms. The model further suggests that the two
cell types encode the glucose signal in electrical activity in diverse ways: primary
L-cells appear to use action potential amplitude (cf. Fig. 3.8D,E) to transduce glu-
cose sensing to Ca2+ influx and exocytosis, while we propose that GLUTag cells rely
mainly on changes in firing frequency (Fig. 3.5D,E).

In the isolated intestine, reflecting the situation in vivo, SGLT1 transporters are
located on the luminal, apical side of the L-cells, and are therefore exposed directly
to glucose in the intestine [56]. In contrast, the GLUT2 transporters are located
on the basolateral, vascular side of the L-cells [56], where they allow glucose to
pass between the cytosol of L-cells and the plasma. There are reports of GLUT2
protein being transported to and inserted in the luminal membrane of enterocytes
in response to glucose [54, 63] (but see [56]). We note that although GLUT2 knock-
out mice have less GLP-1 release, the reduced secretion can be explained entirely
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by lower GLP-1 expression, since both GLP-1 secretion and expression are reduced
by ∼50 % compared to control animals [64]. Hence, no role for GLUT2 in glucose
sensing in L-cells can be inferred from the knock-out animals. In contrast, luminal
GLUT2 inhibition by phloretin has been shown to reduce but not abolish GLP-1
secretion in the perfused rat small intestine [57]. GLUT2 inhibition also abolished
a SGLT1-independent component of GLP-1 secretion in isolated loops of small rat
intestine [63], but of note this SGLT1 independent component was not observed in
isolated rat small intestine [57] or in vivo in mice [62], where the SGLT1 inhibitor
phloridzin abolished glucose induced GLP-1 secretion.

Interestingly, vascular perfusion with high glucose concentrations in the presence
of 3.5 mM luminal glucose triggered GLP-1 secretion in the isolated porcine intestine
[65], but in the isolated rat intestine vascular glucose did not lead to GLP-1 release
in the absence of luminal glucose [57]. Besides species differences, these conflicting
results can be explained as follows. In the presence of 3.5 mM luminal glucose, the
SGLT1 current is operating, and vascular glucose can augment GLP-1 secretion by
entering the L-cells via basolateral GLUT2 leading to metabolism and closure of
K(ATP)-channels. In contrast, in the absence of intestinal glucose and SGLT1 cur-
rent, the closure of K(ATP)-channels is insufficient to trigger electrical activity and
GLP-1 secretion. In terms of our model, the presence of luminal glucose allows the
L-cells to operate further to the right in Fig. 3.8D,E where small downward move-
ments due to reduced K(ATP)-conductance more easily lead to electrical activity.

These various experiments points to a mechanism where SGLT1 is the major
glucose-sensing component in primary L-cells, but glucose metabolism leading to
K(ATP)-channel closure might play a modulating role. The theoretical results pre-
sented here support this picture. Pharmacological modulation of K(ATP)-channels
can overwrite glucose-sensing, i.e. K(ATP)-channel closure by tolbutamide can trig-
ger electrical activity and secretion in primary L-cells even in the absence of glucose
[51, 52, 57], and the K(ATP)-channel agonist diazoxide abolishes glucose-stimulated
GLP-1 secretion [53, 57], which can be explained with the model as follows. Phar-
macological modification of K(ATP)-channel conductance can push the system in or
out or the area with activity, independently of glucose-sensing by SGLT. Such modu-
lation of K(ATP)-channel activity corresponds to large vertical moves in Fig. 3.8D,E
such that horizontal movements (SGLT1-mediated sensing) are ineffective.

In the basal state the primary L-cells have a K(ATP)-conductance of <10 pS
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[51], which corresponds to just a single K(ATP)-channel being open on average
[60]. Thus, tolbutamide would have very little K(ATP)-channel conductance to act
upon. Nonetheless, the simulations presented here showed that a further reduction in
K(ATP)-channel conductance is sufficient to allow electrical activity. In contrast, the
GLUTag cells have K(ATP)-channel conductance an order of magnitude larger than
the primary L-cells [49]. This fact means that physiological modulation of K(ATP)-
channel activity becomes a more reliable glucose-sensing mechanism in the GLUTag
cell line, as highlighted by the findings that stimulated metabolism by fructose [48] or
glucosekinase activators [55] stimulate secretion in GLUTag cells but not in primary
L-cells. During an oral glucose tolerance test, tolbutamide does not trigger further
GLP-1 release [66]. In this condition, the luminal glucose concentration is high,
meaning that the L-cells are active and operating far to the right in Fig. 3.8D,E.
A reduction in K(ATP)-channel conductance because of tolbutamide application,
corresponding to a downward movement in Fig. 3.8D,E, will therefore have very
little effect.

While the role for Na+-channels in the generation of action potentials is clear in
both GLUTag [50] and primary L-cells [53], their importance for GLP-1 secretion is
– surprisingly – less evident. The addition of the Na+-channel blocker TTX does not
change glucose-stimulated GLP-1 secretion from GLUTag cells [50], while both basal
and glutamine-stimulated GLP-1 secretion from primary L-cell cultures are lowered
slightly and to the same extent by TTX [53]. Another Na+-channel blocker, lido-
caine, did not lower glucose-stimulated GLP-1 secretion from perfused rat intestines
[57].

The model simulations presented here showed that, in line with experiments,
glucose was able to depolarize both GLUTag and primary L-cells, but demonstrated
also that the mean Ca2+ current in simulated GLUTag cells was greater during
electrical activity in the absence of TTX than in the presence of TTX (Fig. 3.9).
If the modest elevation in Ca2+ current in the presence of TTX is sufficient to
trigger maximal secretion, for example because of depletion of the pool of releasable
secretory vesicles, then secretion in presence or absence of TTX would be similar,
in line with experiments [50]. However, this interpretation is at odds with the fact
that glucose-evoked Ca2+ elevations in GLUTag cells were unaffected by TTX [50].
It might be that the small Ca2+ current evokes Ca2+-induced Ca2+ release, which
then is responsible for triggering exocytosis, suggesting that it is the depolarization
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of the base-line rather than action potential firing that causes GLP-1 secretion.
Clearly, the importance of Na+ channels and electrical activity in L-cells needs
further investigation.

The model presented here should be valuable also for understanding glutamine-
stimulated GLP-1 secretion, since glutamine is cotransported with Na+ by the elec-
trogenic glutamine cotransporter [67], and the stimulus pathway is therefore similar
to glucose-sensing by SGLT1 investigated here.





4
Modeling Electrical Activity in

Human Pancreatic Beta-Cells

The central role of electrical activity in pancreatic β-cells is highlighted by
the excellent correlation between the fraction of time with electrical activ-

ity and insulin secretion [68]. The plasma membrane potential in rodents shows com-
plex bursting electrical activity with active phases where action potentials appear
from a depolarized plateau, interspaced by silent, hyperpolarized phases [68–70].
Mathematical modeling of electrical activity has for nearly 30 years accompanied
the experimental investigations of the mechanisms underlying bursting electrical ac-
tivity, starting with the work by [71] on which virtually all subsequent models, even
the most recent, are based [72–75]. β-cell models have been used to test, support
and refute biological hypotheses [72, 74, 76], but frequently restricted to rodent, due
to the availability of electrophysiological data.

However, human β-cells show important differences to β-cells from mice, for
example with respect to the patterns of electrical activity observed, which consist of
very fast bursting or spiking in human cells [77–81], and never the classical slower
burst pattern observed in rodents. This difference could be due to the involvement of
different ion channels in human β-cells compared to rodents [78–81] or to differences
in islet organization [82, 83].

Electrophysiological responses in human β-cells to a range of ion channels antag-
onists are heterogeneous. In some cells, inhibition of small-conductance potassium
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currents has no effect on action potential firing, while it increases the firing frequency
dramatically in other cells. Furthermore, in contrast to L-type Ca2+channels, P/Q-
type Ca2+currents are not necessary for action potential generation, and, surpris-
ingly, a P/Q-type Ca2+channel antagonist even accelerates action potential firing.
The heterogenous electrophysiological responses in human β-cells must be taken into
account for a deeper understanding of the mechanisms underlying insulin secretion
in health and disease.

This Chapter will be focused on the modeling of electrical activity in human β-
cells. In particular, the first human model will be presented briefly. Afterwards, my
contribution to the further development of the model will be described. The model
was also used to study paracrine signals, and to simulate slow oscillations by adding
a glycolytic oscillatory component to the electrophysiological model. The last part
of the Chapter is dedicated to a further development of the model, which led to
interesting but mostly speculative results.

4.1 First Model of Human Beta-cells

In this Section the first published mathematical model of electrical activity in
human β-cells [84] will be presented. It was based entirely on published ion channel
characteristics of human β-cells and electrical activity was modeled by a Hodgkin-
Huxley type model, as has been done for rodent β-cells [71–76, 85]. Most voltage-
gated membrane currents (measured in pA/pF) are modeled based on the results
of [81], who carefully assured that investigated human islet cells were β-cells. Hu-
man Ether-a-go-go-Related Gene (HERG) potassium currents in human β-cells were
described in [86] and are modeled accordingly.

The membrane potential V (measured in mV) develops in time (measured in ms)
according to

dV

dt
= −(IHERG + IBK + IKv + INa

+ ICaL + ICaPQ + ICaT + IK(ATP ) + Ileak).
(4.1)

In the following, the modeling of the currents on the right-hand side of Eq. 4.1 is
explained in detail.

The leak current summarized all currents not modeled explicitly, such as currents
mediated by exchangers, pumps and, e.g., chloride and nonselective, non-voltage
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dependent cation channels, and was modeled as

Ileak = gleak(V − Vleak). (4.2)

The ATP-sensitive potassium current is described by

IK(ATP ) = gK(ATP )(V − VK). (4.3)

Here, Vleak and VK are the respective Nernst reversal potentials. In [78] it was es-
timated that at 6 mM glucose, the conductances gleak and gK(ATP ) contribute to a
similar extent to the total membrane conductance of ∼0.3 nS. With a cell capac-
itance of ∼10 pF [81], values of gleak = 0.015 nS/pF and gK(ATP ) = 0.015 nS/pF
were obtained for a glucose stimulated β-cell. These values were used as default, and
can be found with all other default parameter values in Table 4.1.

Voltage-gated membrane currents were modeled as

IX = gXmXhX(V − VX), (4.4)

where X denotes the type of channels, VX the reversal potential of the ion conducted
by the channels, while mX describes activation and hX describes inactivation of
the channels. As described in the following, some channels were assumed not to
inactivate (i.e., hX = 1), some activate instantaneously (mX = mX,∞(V )), but in
general, activation (and similarly inactivation, hX) was supposed to follow a first-
order equation

dmX

dt
= mX,∞(V )−mX

τmX
, (4.5)

where τmX (respectively τhX) is the time-constant of activation (respectively inac-
tivation for hX), and mX,∞(V ) (respectively hX,∞(V )) is the steady-state voltage-
dependent activation (respectively inactivation) of the current. The steady-state
activation (and inactivation) functions were described with Boltzmann functions,

mX,∞(V ) = 1
1 + exp((V − VmX)/nmX) , (4.6)

except for calcium regulated currents as explained below. For activation functions,
the slope parameter nmX is negative, while the corresponding slope parameter nhX
is positive for inactivation functions (see Section 2.3.1).

A detailed description of the currents of the model is given in the following.
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Voltage-gated Calcium-channels

In [81] three types (T-, P/Q- and L-type) of voltage-gated Ca2+-channels in
human β-cells were found. The total Ca2+-current activated very rapidly (<1 ms),
and no difference in activation kinetics is apparent from the data using various
Ca2+-channel blockers [81, Fig. 5]. It was therefore assumed that all Ca2+-channels
activate instantaneously. The activation functions were estimated from the voltage-
dependence of peak Ca2+-currents reported by [81], and are given in Figure 4.1A.
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Figure 4.1: Characterization of Ca2+-channels. A) Activation functions of T-type (full),
P/Q-type (dash-dotted) and L-type (dotted) Ca2+-channels with parameters as in Table 4.1. B)
Inactivation functions of Ca2+-channels, legends as in panel (a). C) IV-relationship of all Ca2+-
currents. The dashed curve shows the total Ca2+-current.

The low-voltage activated T-type channels were found to inactivate faster than
the L- and P/Q-types [81, Fig. 5], and it was therefore assumed to be responsible
for the fastest component of total Ca2+-current inactivation with a time constant
of τhCaT = 7 ms. The parameters of the Boltzmann function describing steady-state
inactivation were used without modification from [81].

The high-voltage activated P/Q-type channels were assumed not to inactivate,
since they inactivate much more slowly than the other Ca2+-currents and the dura-
tion of action potentials [81].

Finally, the high-voltage activated L-type Ca2+-channels inactivate with a time-
constant of τhCaL = 20 ms.

The parameters of the inactivation function for L-type Ca2+-channels in hu-
man beta-cells were unknown. However, the inactivation function of the total Ca2+-
current has been investigated [87]. Inactivation showed a U-shaped voltage depen-
dence with maximal inactivation of ∼50% seen at -10 mV. Since L-type currents
make up ∼50% of total peak Ca2+-currents in human β-cells [81], and T-type Ca2+-
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channels were completely inactivated at -10 mV, while P/Q-type channels do not
inactivate substantially [81], it was assumed that the U-shaped inactivation function
reflects inactivation of the L-type Ca2+-current with almost complete inactivation at
-10mV. Inactivation of the L-type Ca2+-current was assumed to be Ca2+-dependent
and caused mainly by Ca2+ in microdomains below the L-type channels [87, 88],
which is approximately proportional to the L-type Ca2+-current [37]. The amount
of inactivation (1 − hCaL,∞) was therefore assumed proportional to the activated
L-type Ca2+-current mCaL,∞(V )(V −VCa), which yields the following expression for
the inactivation function

hCaL,∞(V ) = max
(
0,min {1, 1 + [mCaL,∞(V )(V − VCa)]/Φ}

)
, (4.7)

with normalization factor Φ = 57 mV (adjusted) and is shown in Figure 4.1B. The
max-min construction confines hCaL to the interval [0, 1].

Voltage-gated Sodium-channels

Based on the rapid kinetics of the Na+-currents [81], the voltage-gated sodium
channels were assumed to activate instantaneously, and to inactivate with a time
constant of 2 ms. The activation function was estimated from the voltage-dependence
of peak Na+-currents reported in [81], and are given in Figure 4.2A. The parameters
of the Boltzmann function describing steady-state inactivation were used without
modification from [81]. Both set of parameters were in good agreement with esti-
mates in [80].
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Figure 4.2: Characterization of Na+-channels. A) Activation and B) Inactivation functions
of voltage gated Na+-channels. C) IV-relationship of Na+-current.
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Delayed Rectifying Potassium-channels

The delayed rectifying potassium (Kv) channels were assumed to activate on a
voltage-dependent time-scale [81, 89] as shown in Figure 4.3B. with expression

τmKv =


τmKv,0 + 10 exp

(
−20 mV−V

6mV

)
ms, for V ≥ −26.6 mV,

τmKv,0 + 30 ms, for V < −26.6 mV,
(4.8)

where (as default value) τmKv,0 = 2 ms [81]. Note that in [89] Kv-channels were
found to activate more slowly with τmKv,0 ≈ 10 ms. The Kv-current was assumed
not to inactivate, because of its slow (seconds) inactivation kinetics [81, 89].

The activation function was estimated from the voltage-dependence of the Co2+-
resistant peak K+-currents reported by [81], and is given in Figure 4.3A. The esti-
mated values were in general agreement with [87, 89].
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Figure 4.3: Characterization of K+-channels. A) Activation function for both Kv-channels
and BK-channels. B) Time constant functions of voltage gated Kv-channels. C) IV-relationship of
Kv-current (solid), BK-current (dotted) and total K+-current (dashed).

Large-conductance BK Potassium-channels

BK-channels show both voltage- and Ca2+-dependence [90]. However, since BK-
and Ca2+-channels are colocalized and BK-channel activation is regulated by local,
microdomain Ca2+ below Ca2+-channels [90], a simplification as done for L-type
Ca2+-channel inactivation can be done [37]. The microdomain Ca2+-concentration
was assumed to be proportional to the total Ca2+-current ICa = ICaL + ICaPQ +
ICaT . The steady-state activation function for BK-channels was therefore assumed
to depend on V only, since it was assumed proportional to the product

[−ICa(V ) +BBK ] ·mBK,∞(V )



4.2. My Contribution to the Model 65

where BBK denotes “basal”, Ca2+-independent, V -dependent activation, and mBK,∞

is a Boltzmann function as in Eq. 4.6. It was assumed that Ca2+-dependent activa-
tion occurs instantaneously, while voltage-dependent activation follows Eq. 4.5 with
time-constant τmBK = 2 ms [81]. BK-currents were assumed not to inactivate. This
was done partly since the inactivation function of BK channels in human β-cells is
unknown, and partly since BK-currents rapidly repolarize the membrane potential
in most simulations, hence deactivation due to repolarization happens faster (∼10
ms) than inactivation at depolarized membrane potentials (∼22 ms, [81]).

The BK-current is then expressed as

IBK = ḡBKmBK(V − VK)(−ICa(V ) +BBK), (4.9)

with parameters chosen to reproduce the I-V relationship for the iberiotoxin (a
specific BK-channel blocker) sensitive K+-current reported by [81] and shown in
Figure 4.3C.

HERG Potassium-channels

The voltage-gated HERG potassium channels are present in human β-cells [86,
91]. The parameters of the Boltzmann activation and inactivation functions in [86]
were used without modification. The time-constant of inactivation was estimated
from [86] to be ∼50 ms, while activation was slower. Based on data from ERG
channels expressed in Xenopus oocytes [92], the activation time-constant was set to
100 ms. From results in [86] a conductance of gHERG ∼0.5 nS/pF can be calculated.
However, gHERG increases with the extracellular K+ concentration [93]. Since in the
experiments in [86] a relatively high extracellular K+ concentration (40 mM) was
used, a lower value of gHERG = 0.2 nS/pF was used in the model.

4.2 My Contribution to the Model

In the previous Section, the first model of electrical activity in human β-cells
was presented. The model included Na+-channels, three types of Ca2+-channels,
an unspecified leak-current, and several K+-channels: delayed rectifier (Kv) K+-
channels, large-conductance (BK) Ca2+-sensitive K+-channels, HERG K+-channels
as well as K(ATP)-channels. Recently evidence for small conductance (SK) Ca2+-
sensitive K+-channels in human β-cells was published [9, 94], a current not included
in the mathematical model.
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Parameter Ref. Parameter Ref.

VK −75 mV [81] VNa 70 mV ∗
VCa 65 mV ∗ gK(ATP ) 0.015 nS/pF [78]
gleak 0.015 nS/pF [78] Vleak −30 mV +
gCaT 0.050 nS/pF [81] τhCaT 7 ms [81]
VmCaT -40 mV [81] nmCaT -4 mV [81]
VhCaT -64 mV [81] nhCaT 8 mV [81]
gCaPQ 0.170 nS/pF [81]
VmCaPQ -10 mV [81] nmCaPQ -10 mV [81]
gCaL 0.140 nS/pF [81] τhCaL 20 ms ∗
VmCaL -25 mV [81] nmCaL -6 mV [81]
VhCaL -42 mV + [87] nhCaL 6 mV + [87]
gNa 0.400 nS/pF [81] τhNa 2 ms [81]
VmNa -18 mV [81] nmNa -5 mV [81]
VhNa -42 mV [81] nhNa 6 mV [81]
gKv 1.000 nS/pF [81] τmKv,0 2 ms [81]
VmKv 0 mV [81] nmKv -10 mV [81]
ḡBK 0.020 nS/pA [81] τmBK 2 ms [81]
VmBK 0 mV [81] nmBK -10 mV [81]
BBK 20 pA/pF [81] τmHERG 100 ms [92]
gHERG 0.200 nS/pF + [86] τhHERG 50 ms [86]
VmHERG -30 mV [86] nmCaL -10 mV [86]
VhCaL -42 mV [86] nhCaL 17.5 mV [86]

Table 4.1: Default parameters for the first human β-cells model. (∗ M. Braun, University of
Oxford, UK, personal communications, 2010; + Adjusted.)
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The previous model was shown to reproduce, depending on parameter values,
spiking or rapid bursting electrical activity, which could be modified in accordance
with a series of experiments by simulating pharmacological interventions such as ion
channel blocking. These experiments were in general straightforward to interpret,
also without a model. For example, the facts that blocking depolarizing Na+- or
Ca2+-currents slowed or abolished electrical activity [81] are as one would expect.

The previous model for human β-cells was extended by including SK-channels
and Ca2+ dynamics. The new model allowed to get insight in less intuitive ex-
perimental findings. The new model is then used to investigate paracrine effects of
γ-aminobutyric acid (GABA) and muscarinic signaling on electrical activity. Finally,
experimentally slow oscillations in electrical activity that might underlie pulsatile
insulin secretion from human pancreatic islets will be shown, and by adding an
oscillatory glycolytic component [95] to the electrophysiological model, such slow
bursting patterns will be simulated.

4.2.1 Methods

Mathematical Modelling

The previously published Hodgkin-Huxley type model for human β-cells [84],
explained in detail in the previous Section, was built on by including SK-channels.
Since these channels are Ca2+-sensitive and located at some distance from Ca2+-
channels [90], it was necessary to model Ca2+ dynamics in a submembrane layer
controlling SK-channel activity.

The membrane potential V (measured in mV) develops in time (measured in ms)
according to

dV

dt
= −(ISK + IBK + IKv + IHERG + INa

+ ICaL + ICaPQ + ICaT + IK(ATP ) + Ileak + IGABAR).
(4.10)

All currents (measured in pA/pF), except the SK-current ISK and the GABAA

receptor mediated current IGABAR, were already modeled.
SK-channels were assumed to activate instantaneously in response to Ca2+ eleva-

tions at the plasma membrane but away from Ca2+-channels [90], and were modeled
as [96]

ISK = gSK
Canm

Kn
SK + Cam

n (V − VK). (4.11)
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In human β-cells, flash-released Ca2+ triggered a∼10 pA current at a holding current
of -60 mV, presumably through SK-channels [94]. Assuming that SK-channels were
nearly saturated by Ca2+, the maximal SK-conductance was estimated to be gSK ≈
10 pA/(-60 mV −VK)/Cm ≈ 0.1 nS/pF. Where, Cm =10 pF is the capacitance of
the plasma membrane [81].

In Eq. 4.11, Cam is the submembrane Ca2+ concentration ([Ca2+]mem; measured
in µM), which was described by a single compartment model [97]

dCam
dt

= fαCm(−ICaL − ICaPQ − ICaT )/V olm

− f(V olc/V olm) [B(Cam − Cac) + (JPMCA + JNCX)] ,
(4.12)

where f = 0.01 is the ratio of free-to-total Ca2+, a = 5.18x10−15 mmol/pA/ms
changes current to flux, and V olm and V olc are the volumes of the submembrane
compartment and the bulk cytosol, respectively. B describes the flux of Ca2+ from
the submembrane compartment to the bulk cytosol, JPMCA is the flux through
plasma membrane Ca2+-ATPases, and JNCX represents Ca2+ flux through the Na+-
Ca2+ exchanger.

Cytosolic Ca2+ (Cac; measured in µM) follows

dCac
dt

= f [B(Cam − Cac)− JSERCA + Jleak], (4.13)

where JSERCA describes SERCA pump-dependent sequestration of Ca2+ into the
ER, and Jleak is a leak flux from the ER to the cytosol. Expressions and parameters
for the Ca2+ fluxes are taken from [98].

The submembrane compartment volume was estimated based on the consider-
ations of Klingauf and Neher [99], who found that a shell model (in contrast to
a domain model) describes submembrane Ca2+ satisfactorily when the shell-depth
is chosen correctly. The Ca2+ dynamics between channels can be estimated from
a shell model at a depth of ∼23% of the distance to a Ca2+-channel. In mouse β-
cells the interchannel distance has been estimated to be ∼1200 nm [29]. Moreover,
SK-channels are located >50 nm from Ca2+-channels [90].

Based on these considerations, the submembrane space controlling SK-channels
was modeled as a shell of depth ∼190 nm. The radius of a human β-cell is ∼13 µm,
which gives cell volume (V olc), shell volume (V olm) and internal surface area (Am)
of the shell, of

V olc = 1.15 pL = 1150 µm3, V olm = 0.1 pL, Am = 530 µm2. (4.14)
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The flux-constant B can then be calculated as [100]

B = DCa
Am

V olcdm
, (4.15)

where dm is a typical length scale. dm was set to 1 µm, which together with the
diffusion constant for Ca2+, DCa = 220 µm2/s [99, 101], gives B = 0.1 ms−1.

In human β-cells, GABA activates GABAA receptors, which are ligand-gated
Cl−-channels. The current carried by GABAA receptor was modeled as a passive
current with the expression

IGABAR = gGABAR(V − VCl), (4.16)

where gGABAR is the GABAA receptor conductance, and VCl = −40 mV is the
chloride reversal potential [9]. gGABAR was estimated from the findings that 1 mM
GABA evokes a current of 9.4 pA/pF (but with substantial cell-to-cell variation)
at a holding potential of -70 mV [102], which yields a conductance of ∼0.3 nS/pF.
To simulate the changes in firing patterns evoked by lower GABA concentrations
(10 or 100 µM) [102], the does-response curve [103] for the α2β3γ2 subunits, which
are the most highly expressed subunits in human β-cells [102], were taken into
consideration. At 10 µM the GABA-evoked current is >10-fold smaller compared
to 1 mM GABA, thus gGABAR was set to 0.02 nS/pF. At 100 µM, the reduction
is about 2-fold compared to 1 mM. gGABAR = 0.10 nS/pF was used to simulate
application of 100 µM GABA.

To investigate slow electrical patterns, a glycolytic component presented in [95]
was added. It drives ATP levels and K(ATP) channel activity. The glycolytic sub-
system can oscillate due to positive feedback on the enzyme phosphofructokinase
(PFK) from its product fructose-1,6-bisphosphate (FBP). The glycolytic equations
are

d G6P · F6P
dt

= VGK − VPFK , (4.17)
d FBP

dt
= VPFK − VFBA, (4.18)

d DHAP ·G3P
dt

= 2VFBA − VGAPDH , (4.19)

where VGK is the rate of glucokinase, which phosphorylates glucose to glucose-6-
phosphate (G6P). G6P is assumed to be in equilibrium with fructose-6-phosphate
(F6P), the substrate for PFK, and G6P·F6P is the sum of G6P and F6P. VPFK
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is the rate of PFK producing FBP, which is subsequently removed by fructose-
bisphosphate aldolase (FBA), which produces glyceraldehyde-3-phosphate (G3P)
and dihydroxyacetone-phosphate (DHAP) with rate VFBA. DHAP and G3P are
assumed to be in equilibrium, and DHAP·G3P indicates their sum. Finally, G3P
serves as substrate for glyceraldehyde-3-phosphate dehydrogenase (GAPDH with
rate VGAPDH), which via the lower part of glycolysis eventually stimulates mito-
chondrial ATP production. A phenomenological variable a that mimics ATP levels
was introduced and model by

da

dt
= VGAPDH − kA a, (4.20)

The K(ATP) conductance depends inversely on a, and was modeled as

gK(ATP ) = ĝK(ATP )/(1 + a). (4.21)

Simulations were done in XPPAUT with the cvode solver, except the stochastic
simulation, which was performed with the implicit backward Euler method.

Default parameters are given in Table 4.2.

Experiments

Human pancreatic islets were obtained with ethical approval and clinical consent
from non-diabetic organ donors. All studies were approved by the Human Research
Ethics Board at the University of Alberta. The islets were dispersed into single cells
by incubation in Ca2+ free buffer and plated onto 35 mm plastic Petri dishes. The
cells were incubated in RPMI 1640 culture medium containing 7.5 mM glucose for
>24 h prior to the experiments. Patch-pipettes were pulled from borosilicate glass
to a tip resistance of 6-9 MΩ when filled with intracellular solution. The membrane
potential was measured in the perforated-patch whole-cell configuration, using an
EPC-10 amplifier and Patchmaster software (HEKA, Lambrecht, Germany). The
cells were constantly perifused with heated bath solution during the experiment to
maintain a temperature of 31-33oC. The extracellular solution consisted of (in mM)
140 NaCl, 3.6 KCl, 0.5 MgSO4, 1.5 CaCl2, 10 HEPES, 0.5 NaH2PO4, 5 NaHCO3

and 6 glucose (pH was adjusted to 7.4 with NaOH). The pipette solution contained
(in mM) 76 K2SO4, 10 KCl, 10 NaCl, 1 MgCl2, 5 HEPES (pH 7.35 with KOH) and
0.24 mg/ml amphotericin B. β-cells were identified by immunostaining (18 out of
28 cells) or by size when immunostaining was not possible (cell capacitance >6 pF,
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Parameter Ref. Parameter Ref.

VK −75 mV [81] VNa 70 mV [84]
VCa 65 mV [84] VCl -40 mV [9]
gSK 0.1 nS/pF [94] KSK 0.57 µM [96]
n 5.2 [96]
ḡBK 0.020 nS/pA [81] τmBK 2 ms [81]
VmBK 0 mV [81] nmBK -10 mV [81]
BBK 20 pA/pF [81]
gKv 1.000 nS/pF [81] τmKv,0 2 ms [81]
VmKv 0 mV [81] nmKv -10 mV [81]
gHERG 0 nS/pF + [84, 86]
VmHERG -30 mV [86] nmHERG -10 mV [86]
VhHERG -42 mV [86] nhHERG 17.5 mV [86]
τmHERG 100 ms [92] τhHERG 50 ms [86]
gNa 0.400 nS/pF [81] τhNa 2 ms [81]
VmNa -18 mV [81] nmNa -5 mV [81]
VhNa -42 mV [81] nhNa 6 mV [81]
gCaL 0.140 nS/pF [81] τhCaL 20 ms [84]
VmCaL -25 mV [81] nmCaL -6 mV [81]
gCaPQ 0.170 nS/pF [81]
VmCaPQ -10 mV [81] nmCaPQ -6 mV [81]
gCaT 0.050 nS/pF [81] τhCaT 7 ms [81]
VmCaT -40 mV [81] nmCaT -4 mV [81]
VhCaT -64 mV [81] nhCaT 8 mV [81]
gK(ATP ) 0.010 nS/pF [78] gGABAR 0 nS/pF [102, 103]
gleak 0.015 nS/pF [78] Vleak −30 mV [84]
JSERCA,max 0.060 µM/ms + [98] KSERCA 0.27 µM [98]
JPMCA,max 0.021 µM/ms [98] KPMCA 0.50 µM [98]
Jleak 0.00094 µM/ms [98, 104] JNCX,0 0.01867 ms−1 [98, 104]
f 0.01 V olc 1.15 ×10−12 L
B 0.1 ms−1 V olm 0.1 ×10−12 L
α 5.18× 10−15 µmol/pA/ms
kA 0.0001 ms−1 + ĝKATP 0.050 nS/pF +

Table 4.2: Default parameters of the new model unless mentioned otherwise. Parameter values
are based on the indicated literature references (+ indicates adjusted parameters). All glycolytic
parameters are taken without modification from reference [95], where a discussion of their values
based on experimental data can be found. HERG channel conductance, gHERG, was set to zero
in the new model to investigate whether SK-channels can substitute for HERG channels, e.g., in
driving bursting.
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[81]). Tetrodotoxin (TTX) and ω-agatoxin IVA were purchased from Alomone Labs
(Jerusalem, Israel), UCL-1684 was obtained from R&D Systems (Minneapolis, MN),
TRAM-34 from Sigma-Aldrich (Oakville, ON, Canada). Figures with experimental
responses to ion channel antagonists (Figs. 4.4, 4.6, 4.7 and 4.8) show recordings
from the same cell before (ctrl) and after application of the blocker.

4.2.2 Heterogeneous Responses: Experiments and Model In-
terpretation

SK-Channels

When stimulated by glucose, human β-cells show electrical activity [78, 81].
Human β-cells express SK-channels [9, 94], which might participate in controlling
electrical activity.

The new model with standard parameters produces spiking electrical activity
(Fig. 4.4A), which is virtually unaffected by setting the SK-conductance gSK=0
nS/pF simulating SK-channels block. This model prediction was confirmed by our
experimental data, and was also observed in at least one cell by Jacobson et al. [94].
Fig. 4.4B shows an example of spiking electrical activity in a human β-cell stimu-
lated by 6 mM glucose, where addition of the SK1-3 channel blocker UCL 1684 (0.2
µM) did not affect the spiking pattern. Unchanged or marginal effects on electrical
activity were also seen with a specific SK4 channel antagonist, TRAM-34 (1 µM,
Fig. 4.4C). However, in some cells TRAM-34 application increased the action poten-
tial dramatically (Fig. 4.4D) in agreement with observations with the SK-channel
antagonist apamin [94]. Note that before SK-channel block, the cell in Fig. 4.4D
was almost quiescent, and fired action potentials very infrequently and randomly.
This increase in spike frequency can be simulated by a stochastic version of the
model. For the stochastic simulation in Fig. 4.4E, “conductance noise” [105] in the
K(ATP) current was included by multiplying IK(ATP ) by a stochastic factor (1+0.2
Γt), where Γt is a standard Gaussian white-noise process with zero mean and mean
square 〈Γt,Γs〉 = δ(t− s), see also [106–108].

By including noise in the K(ATP) current, an otherwise silent cell produces in-
frequent action potentials evoked by random perturbations (Fig. 4.4E). When the
SK-conductance is set to 0 nS/pF, the cell starts rapid action potential firing driven
by the underlying deterministic dynamics. The model analysis indicates that this
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Figure 4.4: Heterogeneous responses to SK-channel block. Note the differences in time-
scales. A) Simulation, with default parameters, showing no effect of SK-channels block (gSK = 0
nS/pF during the period indicated by the gray bar). B) Experimental recording of spiking electrical
activity in the same human β-cell before (left) and during (right) application of the SK1-3 channel
antagonist UCL-1684 (0.2 µM). C) Experimental recording of spiking electrical activity in the same
human β-cell before (left) and during (right) application of the SK4 channel antagonist TRAM-34
(1 mM), which had little effect on the action potential frequency in this cell. D) Experimental
recording of spiking electrical activity in the same human β-cell before (left) and during (right)
application of the SK4 channel antagonist TRAM-34 (1 µM), which accelerated the action potential
frequency in this cell. E) Stochastic simulation reproducing the dramatic effect of SK-channels
block (gSK = 0 nS/pF during the period indicated by the gray bar). Other parameters took
default values, except gKATP = 0.0175 nS/pF.
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mechanism only works if the cell is very near the threshold for electrical activity
in the absence of the SK-channel antagonist. Düfer et al. [109] suggested a similar,
important role for SK4 channels in promoting electrical activity in murine β-cells
at subthreshold glucose concentrations. Summarizing, cell-to-cell heterogeneity can
explain the differences seen in the electrophysiological responses to SK-channel an-
tagonists.

Figure 4.5: Bursting in human β-cell. A) Experimental recording of rapid bursting in a
human β-cell. B) Simulation of bursting driven by [Ca2+]c via SK-channels. Default parameters
except gSK = 0.03 nS/pF, gKv = 0.25 nS/pF, nxPQ = −10 mV.

In addition to spiking electrical activity, human β-cells often show rapid bursting,
where clusters of a few action potentials are separated by hyperpolarized silent
phases [9, 78–80, 110] (Fig. 4.5A). The model presented here can also reproduce
this behavior (Fig. 4.5B) as could the previous version of the model, where the
alternations between silent and active phases were controlled by HERG-channels. In
contrast, in the present version of the model the rapid burst pattern (Fig. 4.5B, upper
trace) can be controlled by SK-channels, which in turn are regulated by [Ca2+]mem

and ultimately by bulk cytosolic Ca2+ levels ([Ca2+]c). The simulated cytosolic Ca2+

concentration shows the characteristic sawtooth pattern (Fig. 4.5B, lower trace) of
a slow variable underlying bursting [111, 112]. Thus, as in the pioneering model
by Chay and Keizer [71], [Ca2+]c increases during the active phase and activates
SK-channels, which eventually repolarize the cell. During the silent phase [Ca2+]c
decreases and SK-channels close, allowing another cycle to occur.
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Sodium-channels

Blocking voltage-dependent Na+-channels in human β-cells showing spiking elec-
trical activity with tetrodotoxin (TTX) typically reduces the action potential am-
plitude by ∼10 mV, and broadens its duration [80, 81, 110] (Fig. 4.6A).

The previous version of the model could reproduce these results, though the re-
duction in peak voltage was slightly less than observed experimentally. The inclusion
of SK-channels in the model leads to a greater reduction in the spike amplitude (Fig.
4.6B, upper trace) when Na+-channels are blocked. This improvement is because of a
mechanism where the slower upstroke in the presence of Na+-channel blockers allows
submembrane Ca2+ to build up earlier and to higher concentrations (Fig. 4.6B, lower
trace), and consequently to activate more SK-channels, which in turn leads to an
earlier repolarization reducing the action potential amplitude. In other experiments
(Fig. 4.6C) [79], TTX application suppresses action potential firing. In agreement,
simulated spiking electrical activity can be suppressed by TTX application if the cell
is less excitable because of, for example, smaller Ca2+-currents (Fig. 4.6D, upper,
black trace). Before TTX application, the simulated cell had less hyperpolarized
inter-spike membrane potential (∼-61 mV; Fig. 4.6D) compared to the simulation
with default parameters (∼-70 mV, Fig. 4.6B). This finding is in accordance with
experimental recordings (compare Fig. 4.6A and 4.6C). The cessation of action po-
tential firing leads to a reduction in simulated [Ca2+]mem (Fig. 4.6D, lower, black
trace). The model predicts that spiking, electrical activity can continue in presence
of TTX even in less excitable cells, e.g., with lower depolarizing Ca2+-currents, if the
hyperpolarizing K(ATP)-current is sufficiently small (Fig. 4.6D, upper, gray trace).
In this case, [Ca2+]mem is nearly unchanged (Fig. 4.6D, lower, gray trace). Hence, it
is the relative sizes of the depolarizing and hyperpolarizing currents that determine
whether TTX application silences the cell or allows the cell to remain in a region
where action potential firing continues. The model thus predicts that in some cells,
which stop firing action potentials in the presence of TTX, increased glucose con-
centrations or sulfonylureas (K(ATP)-channel antagonists) could reintroduce spiking
electrical activity.

More surprisingly, TTX application can change spiking electrical activity to rapid
bursting in some cells (Fig. 4.6E). This behavior can also be captured by the model
(Fig. 4.6F). To simulate this behavior it was necessary to increase the size of the
Na+-current. Without TTX, the big Na+-current leads to large action potentials,
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Figure 4.6: Tetrodotoxin (TTX, 0.1 µg/ml) has different effects on electrical activity
in human β-cells. A) TTX caused a reduction in action potential amplitude in this human β-
cell. B) Simulation with default parameters showing V (upper trace, left axis) and [Ca2+]mem

(lower trace, right axis), reproducing the data in panel A. C) TTX abolished action potential
firing in this human β-cell. D) Simulations of V and [Ca2+]mem with default parameters except
gCaL = 0.100 nS/pF. With default K(ATP)-channel conductance gKATP = 0.010 nS/pF, the
simulation reproduces the data in panel C (black traces). When gKATP = 0.002 nS/pF, the model
shows continued firing with Na+-channel block (gray traces). E) TTX changed spiking into rapid
bursting electrical activity in this human β-cell. F) Simulation showing V (upper), [Ca2+]mem

(middle), and IBK (lower), reproducing the data in panel E. Parameters took default values, except
gNa = 0.7 nS/pF, τhNa = 3 ms, gKv = 0.25 nS/pF, gSK = 0.023 nS/pF, gleak = 0.012 nS/pF,
and nxPQ = −10 mV. The extracellular glucose concentration was 6 mM in all experiments. Each
couple of experimental traces (panels A, C and E) is from the same human β-cell before (left) and
during (right) application of TTX. In the simulations, the Na+-channel conductance gNa was set
to 0 nS/pF during the period indicated by the gray bars.
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which activate sufficient BK-current to send the membrane potential back to the
hyperpolarized state, allowing a new action potential to form. With Na+-channels
blocked, there is insufficient depolarizing current to allow full action potentials to
develop. In consequence, less BK-current is activated (Fig. 4.6F, lower trace), and
the membrane potential enters a regime with more complex dynamics where smaller
spikes appear in clusters from a plateau of ∼-40 mV. The change to bursting activity
leads to a notable increase in simulated [Ca2+]mem (Fig. 4.6F, middle trace).

Calcium-channels

High-voltage activated L- and P/Q-type Ca2+-currents are believed to be directly
involved in exocytosis of secretory granules in human β-cells [78, 81, 97, 113]. Block-
ing L-type Ca2+-channels suppresses electrical activity [81], which is reproduced by
the model (Fig. 4.7A), and the lack of electrical activity is likely the main reason
for the complete absence of glucose stimulated insulin secretion in the presence of
L-type Ca2+-channel blockers [81]. Thus, L-type Ca2+-channels participate in the
upstroke of action potentials and increases excitability of human β-cells.

In contrast, and surprisingly, application of the P/Q-type Ca2+-channel antag-
onist ω-agatoxin IVA does not block or slow down electrical activity, but leads
to an increased spike frequency (Fig. 4.7B). Electrical activity continues also in our
model simulations of P/Q-type channel block with slightly increased spike frequency
(Fig. 4.7C). Reduced Ca2+ entry leads to lower peak Ca2+ concentrations in the
submembrane space ([Ca2+]mem; Fig. 4.7D). As a consequence, less hyperpolarizing
SK-current is activated (Fig. 4.7E), which leads to an increase in spike frequency
(Fig. 4.7C). Hence, the reduction in excitability caused by blockage of the P/Q-type
Ca2+-current can be overruled by the competing increase in excitability due to the
smaller SK-current. Experimentally, ω-agatoxin IVA application reduced the action
potential amplitude slightly in 3 of 4 cells (by 2.0-4.3 mV), a finding that was quan-
titatively reproduced by the model, although the reduction was larger (∼7.5 mV in
Fig. 4.7C). A direct conclusion from Fig. 4.7B is that the P/Q-type Ca2+-current
is not needed for the action potential upstroke, unlike the L-type current, probably
because of the fact that P/Q-type channels activate at higher membrane potentials
than L-type channels. The fact that electrical activity persists with P/Q-type Ca2+-
channels blocked, albeit with lower peak [Ca2+]mem, could underlie the finding that
ω-agatoxin IVA only partly inhibits insulin secretion [81].
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Figure 4.7: Block of L- and P/Q-type Ca2+-channels affects electrical activity dif-
ferently. A) Spiking electrical activity is suppressed by L-type Ca2+-channel block in the model
with default parameters, and gCaL = 0 nS/pF during the period indicated by the gray bar. B)
Spiking electrical activity is accelerated by the application of ω-agatoxin IVA in human β-cells.
Recordings from the same human β-cell in 6 mM extracellular glucose before (left) and during
(right) application of 200 nM ω-agatoxin IVA. C) Model simulation with default parameters of the
membrane potential during spiking electrical activity under control conditions and after blockage
of P/Q-type Ca2+-channels (gPQ = 0 nS/pF during the period indicated by the gray bar). D) In
the model, the peak submembrane Ca2+-concentration [Ca2+]mem is lower when P/Q-type chan-
nels are blocked. E) The reduced [Ca2+]mem activate less SK-current when P/Q-type channels are
blocked.

Paracrine Effects on Electrical Activity

The neurotransmitter γ-aminobutyric acid (GABA) is secreted from pancreatic
β-cells, and has been shown to stimulate electrical activity in human β-cells [102].
In human β-cells, GABA activates GABAA receptors, which are ligand-gated Cl−

channels, thus creating an additional current. Notably, the Cl− reversal potential
in human β-cells is less negative than in many neurons, and positive compared to
the β-cell resting potential, which means that Cl− currents, such as the GABAA

receptor current, stimulate action potential firing in β-cells. Hence, GABA is a
excitatory transmitter in β-cells, in contrast to its usual inhibitory role in neurons.
The addition of GABA was simulated by raising the GABAA receptor conductance.
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In a silent model cell with a rather large K(ATP)-conductance, simulated GABA
application leads to a single action potential where after the membrane potential
settles at ∼-45 mV (Fig. 4.8A), in close correspondence with the experimental results
[102]. In an active cell, the simulation of activation of GABAA receptors leads to
a minor depolarization and increased action potential firing (Fig. 4.8B), as found
experimentally [102].

Figure 4.8: Paracrine effects on electrical activity. A) Simulation of application of 100 µM
GABA to a silent cell (reproducing Fig. 7A in [102]). Default parameters except gKATP = 0.021
nS/pF. GABA application was simulated by setting gGABAR to 0.1 nS/pF during the period indi-
cated by the gray bar. B) Simulation of application of 10 µM GABA to an active cell (reproducing
Fig. 7B in [102]). GABA application was simulated by setting gGABAR to 0.020 nS/pF during the
period indicated by the gray bar. Other parameters took default values. C) Experimental recording
of spiking electrical activity in the same human β-cell before (left) and during (right) application
of carbachol (20 µM). D) Simulation of accelerated action potential firing due to carbachol appli-
cation. Default parameters except gKATP = 0.016 nS/pF. Carbachol application was simulated by
increasing gleak to 0.030 nS/pF during the period indicated by the gray bar.

Another neurotransmitter, acetylcholine, might also play a paracrine role in hu-
man pancreatic islets, where it is released from α-cells, and activates muscarinic
receptors in β-cells [114]. Muscarinic receptor activation by acetylcholine triggers a
voltage-insensitive Na+-current in mouse pancreatic β-cells [115], and similarly, the
muscarinic agonist carbachol activates nonselective Na+ leak channels (NALCN) in
the MIN6 β-cell line [116]. Based on these findings, it was speculated that mus-
carinic activation of NACLN currents in human β-cells might participate in the
positive effect of acetylcholine and carbachol on insulin secretion [9]. Experimen-
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tally, carbachol (20 µM) was found to accelerate action potential firing (Fig. 4.8C).
The hypothesis of a central role of leak current activation was tested by increasing
the leak conductance in the model to simulate carbachol application, which caused
accelerated action potential firing. The simulation thus reproduced the experimen-
tal data, and lends support to the hypothesis that carbachol and acetylcholine can
accelerate action potential firing via muscarinic receptor-dependent stimulation of
NALCN currents [9].

Slow Oscillations

The new model was finnaly used to address the origin of slow rhythmic patterns
of electrical activity in human β-cells (Fig. 4.9A) [9, 117], which likely underlie
slow oscillations in intracellular Ca2+ [83, 118] and pulsatile insulin release [119,
120]. Based on accumulating evidence obtained in rodent islets [121, 122], it was
speculated that oscillations in metabolism could drive these patterns [84]. In support
of this hypothesis, oscillations in ATP levels with a period of 3-5 minutes have been
observed in human β-cells [123, 124]. By adding a glycolytic component [95], which
can oscillate due to positive feedback on the central enzyme phosphofructokinase
(PFK), the new model can indeed simulate such periodic modulation of the electrical
pattern, where action potential firing is interrupted by long silent, hyperpolarized
periods, which drives slow Ca2+ oscillations (Fig. 4.9D-E).

4.2.3 Discussion

Human β-cells show complex and heterogeneous electrophysiological responses
to ion channel antagonists. It can therefore sometimes be difficult to reach clear
conclusions regarding the participation of certain ion channels in the various phases
of electrical activity, in particular since some of the electrophysiological responses
are nonintuitive as shown in the previous Section. A deeper understanding of the
role of ion channels in electrical activity and insulin secretion could have important
clinical benefits, since it might help in the development of new anti-diabetic drugs.

The mathematical modeling can help in interpreting various electrophysiological
responses, and in particular, to study the effect of competing effects and cell hetero-
geneity. The role of SK-channels in human β-cells is still not clear. We (Fig. 4.4) and
others [94] have found heterogeneous electrophysiological responses to SK-channel
antagonists. Our model suggests that these differences can be caused by underlying
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Figure 4.9: Metabolically driven slow waves of electrical activity and Ca2+ oscilla-
tions. A) Experimental recording of slow oscillations in action potential firing in a human β-cell
exposed to 10 mM glucose. B-D) Simulation of slow bursting driven by glycolytic oscillations with
glucose concentration G = 10 mM and default parameters, except gKv = 0.2 nS/pF, gSK = 0.02
nS/pF, gBK = 0.01 nS/pF. Oscillations in glycolysis create pulses of FBP (B), which via ATP pro-
duction modulates K(ATP) channels in a periodic fashion (C). The rhythmic changes in K(ATP)
conductance drives slow patterns of electrical activity (D), which causes oscillations in the intra-
cellular Ca2+ concentration (E).
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variations in cell excitability: less excitable β-cells that produce action potentials
evoked mostly by stochastic channel dynamics show a clear increase in action po-
tential frequency when SK-channels are blocked (Fig. 4.4DE). In contrast, spiking
electrical activity in very active cells is driven by the deterministic dynamics caused
by ion channel interactions, and is nearly unchanged by SK-channel blockers (Fig.
4.4A-C). Furthermore, the rapid bursting activity can be driven by Ca2+and SK-
channels (Fig. 4.5), which could add a complementary mechanism to HERG-channel
dynamics, as in the previous version of the model, for the control of rapid bursting.

The wide range of responses to TTX could be accounted for by a single model
but with different parameters, i.e., differences in the relative size of the various cur-
rents. A peculiar finding is the qualitative change from spiking to rapid bursting
seen in some cells (Fig. 4.6E). We suggest that this happens in human β-cells with
large Na+-currents. The blockage of this depolarizing current reduces the ampli-
tude of the action potentials, and as a consequence, the size of the hyperpolarizing
BK-current. Under the right conditions, the combination of these competing events
allows the membrane potential to enter a bursting regime controlled by SK- and/or
HERG-channels (Fig. 4.6F). Interestingly, it has been found that TTX reduces in-
sulin secretion evoked by 6 mM glucose greatly, but at glucose levels of 10-20 mM,
the effect of TTX on secretion is smaller [80, 81, 110]. Based on the simulations show-
ing that less excitable cells cease to fire in the presence of TTX (Fig. 4.6D, black
traces), but that lower gK(ATP ) can reintroduce spiking activity (Fig. 4.6D, gray
traces), it might be concluded that at low, near threshold glucose levels TTX abol-
ishes electrical activity in many cells, which reduces the [Ca2+]mem and consequently
insulin secretion greatly (Fig. 4.6D, black traces). At higher glucose concentrations,
β-cells have lower K(ATP)-conductance and in some of the cells that stop firing in
low glucose concentration the effect of TTX on electrical activity and [Ca2+]mem is
smaller (Fig. 4.6D, gray traces). Hence, more β-cells remain active in the presence
of TTX at high than at low glucose levels. Consequently, insulin secretion is more
robust to TTX at higher glucose concentrations.

Similarly, insulin release is more affected by the P/Q-type Ca2+-channel blocker
ω-agatoxin IVA at 6 mM (∼-71%) than at 20 mM (∼-31%) glucose [81]. This is
in contrast to L-type Ca2+-channel antagonists, which abolish insulin secretion at
both high (15-20 mM) and low (6 mM) glucose concentrations [78, 81, 110]. These
results concerning L-type Ca2+-channel block are easily explained by the fact that L-
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type channel activity is necessary for action potential generation [81] (Fig. 4.7A). In
contrast, we showed that electrical activity in human β-cells not only persists, but is
accelerated by ω-agatoxin IVA (Fig. 4.7B). The counter-intuitive finding of increased
excitability and electrical activity when the depolarizing P/Q-type Ca2+-current is
blocked by ω-agatoxin IVA can be accounted for by an even greater reduction in
the hyperpolarizing SK-current due to reduced Ca2+-influx and consequently lower
[Ca2+]mem.

Our mathematical modeling confirmed that GABA released from human β-cells
can have a role as a positive feedback messenger. GABA application has been shown
to depolarize both silent and active human β-cells [102], which was reproduced.
A detailed characterization of GABAA receptor currents would refine the analysis
presented here.

Data from mouse β-cells [115] and the MIN-6 β-cell line [116] suggest that mus-
caric agonists such as carbachol and acetylcholine stimulate insulin secretion partly
by activating NACLN currents. Using the new version of the model it is possible to
translate this finding to the human scenario, thus testing the hypothesis that this
mechanism is also operating in human β-cells [9]. The simulations confirmed that
increased leak currents can underlie the change in electrical activity found experi-
mentally (Fig. 4.8C). The incretin hormone GLP-1 has also been shown to act partly
via activation of leak channels [125], a mechanism which might be involved in acti-
vating otherwise silent β-cells [84, 126, 127]. These results suggest that leak currents
could play important roles in controlling electrical activity in β-cells, and potentially
be pharmacological targets. Further studies are clearly needed to investigate these
questions.

By adding an oscillatory glycolytic component to the model, it is also possible
to simulate slow rhythmic electrical activity patterns To date, there is no evidence
of oscillations in glycolytic variables in human (or rodent) β-cells or islets, but ATP
levels have been found to fluctuate rhythmically also in human β-cells [123, 124],
supporting the idea of metabolism having a pacemaker role. In agreement, data from
rodent β-cells show accumulating evidence for oscillations in metabolism playing
an important role in controlling pulsatile insulin secretion [121, 122]. It will be
interesting to see if these findings in rodents are applicable to human β-cells.

Regarding the model development, the inclusion of SK-channels in the model
provided insight that was not within reach with the previous version of the model
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[84]. Besides the direct investigation of the role of SK-channels, the acceleration in
action potential firing seen with P/Q-type Ca2+channel blockers (Fig. 4.4) can not
be reproduced by the older version of the model without SK-channels [84]. Moreover,
considering the effect of TTX on spike amplitude, a better correspondence between
experiments and simulations was found with SK-channels included in the model.
To model SK-channel activation accurately, a special effort was made to describe
[Ca2+]mem carefully. Submembrane Ca2+ responds rapidly to an action potential,
while [Ca2+]c integrates many action potentials. The rapid submembrane dynamics
has important consequences for the study of the role of SK-channels in spiking
electrical activity, e.g., it was crucial for explaining the larger effect of TTX on
spike amplitude in this version of the model. Most models of electrical activity in
rodent β-cells do not include a submembrane Ca2+ compartment, but these models
were typically built to explain the slow bursting patterns seen in rodent islets with
a period of tens of seconds. For these long time scales, the rapid dynamics in the
submembrane compartment is not important. In contrast, the situation is different
in human β-cells with their faster dynamics.

4.3 Further Development to the Model

This last Section of the Chapter is dedicated to an interesting and recent further
development of the model, which consisted in the inclusion of the inwardly rectifying
potassium channels. In particular, the inwardly rectifying Kir2.1 potassium channels
are well-known to control cardiac electrical activity, e.g., by stabilizing the interspike
interval [128]. The KCNJ2 gene coding for Kir2.1 channels is widely expressed [129],
also in human pancreatic islets and β-cells (Beta-Cell Gene Atlas, www.t1dbase.

org/page/AtlasHome, [130]). Hence, Kir2.1 currents might play a role in shaping
action potential firing in human β-cells.

The previous versions of the model tended to fire action potentials too rapidly
compared to experiments, which might indicate that the model was still incomplete.
Since the Kir2.1 current tends to stabilize the interspike potential in cardiomyocytes
and neurons, it might improve the performance of the model concerning action
potential frequency.

Interestingly, long QT syndrome can be due to loss of functionality in cardiac
Kir2.1 channels [128], and recently, it was reported that some patients with the

www.t1dbase.org/page/AtlasHome
www.t1dbase.org/page/AtlasHome
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KCNQ1 long QT syndrome suffer from increased insulin secretion, hyperinsulinemia
and symptomatic hypoglycemia [131]. This finding suggests a possible link between
loss-of-function abnormalities of Kir2.1 channels, which can cause KCNJ2 long QT
syndrome and increased insulin secretion.

In this Section we will investigate the contribution of Kir2.1 currents to electri-
cal activity in human β-cells using a combination of patch-clamp experiments and
mathematical modeling.

4.3.1 Methods

Mathematical Modelling

The membrane potential V (measured in mV) develops in time (measured in ms)
according to

dV

dt
= −(ISK + IBK + IKv + IKir + INa

+ ICaL + ICaPQ + ICaT + IKATP + Ileak).
(4.22)

All currents (measured in pA/pF), except the Kir2.1 current IKir, are modeled as
described in the previous Section.

The Kir2.1 current IKir was assumed not to inactivate and to activate instanta-
neously in response to hyperpolarisation. Activation was modeled with a Boltzmann
function, i.e.,

IKir = gKir (V − VK)
/(

1 + exp
(
V − VmKir
nmKir

))
. (4.23)

To model the data, we first fixed the K+ reversal potential to VK = −85 mV based on
visual inspection of the data and the theoretically calculated value VK ≈ −83 mV.
The other three parameters, gKir; VmKir, and nKir, were then obtained by fitting the
current expression in Eq. 4.23 to the I-V data in Fig. 4.10B. Since the perforated-
patch recordings of electrical activity [81, 86, 110] are typically performed with intra-
and extra-cellular K+ concentrations different from the ones used for the Kir2.1
characterisation, the value of VK was shifted to -75 mV in our model simulations
[84, 132]. The intra- and extra-cellular K+ concentrations modify not only VK , but
also the location parameter VmKir, which was estimated to VmKir = −100 mV based
on Fig. 4.10B. Because a 10 mV shift in VK corresponds to a nearly identical shift
in VmKir [133], we used VmKir = −90 mV for the simulations of electrical activity.
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The maximal conductance gKir = 1 nS (gKir = 0.1 nS/pF when normalized to cell
capacitance ∼10 pF [81]) and the slope parameter nmKir = 15 mV were not changed
from their estimated values.

Simulations were done in XPPAUT [134] with the cvode solver.

Figure 4.10: A) Example trace of the tolbutamide-insensitive, barium-sensitive K+ current
in a human β-cell in response to a 50 ms depolarisation from -70 mV to -120 mV (black bar). B)
Current-voltage relationship of the inwardly rectifying (Kir2.1) K+ currents in human β-cells (dots
and error bars indicate means and standard errors). The full curve shows a fit of Eq. 4.23 to the
data points. This curve is right shifted to yield the dashed curve, which is used for the simulations
of electrical activity.

Experiments

Human pancreatic islets were obtained with ethical approval and clinical consent
from non-diabetic organ donors. All studies were approved by the Human Research
Ethics Board at the University of Alberta. The islets were dispersed into single cells
by incubation in Ca2+ free buffer and plated onto 35 mm plastic Petri dishes. The
cells were incubated in RPMI 1640 culture medium containing 7.5 mM glucose for
>24 h prior to the experiments. Patch-pipettes were pulled from borosilicate glass to
a tip resistance of 6-9 MΩ when filled with intracellular solution. Potassium currents
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were measured with the patch-clamp technique in the whole-cell configuration, using
an EPC-10 amplifier and Patchmaster software (HEKA, Lambrecht, Germany). The
cells were constantly perifused with heated bath solution during the experiment to
maintain a temperature of 31-33◦ C. The extracellular solution consisted of (in mM)
140 NaCl, 3.6 KCl, 0.5 MgSO4, 1.5 CaCl2, 10 HEPES, 0.5 NaH2PO4, 5 NaHCO3

and 6 glucose (pH was adjusted to 7.4 with NaOH). The pipette solution consisted
of (mM) 130 KCl, 1.0 MgCl2, 1.0 CaCl2, 10 HEPES, 10EGTA, 3.0MgATP, 0.1 Na+-
GTP(pH 7.2 with KOH). β-cells were identified by immunostaining or by size when
immunostaining was not possible (cell capacitance >6 pF, [81]).

4.3.2 Results and Discussion

Ion channels are widely expressed, but depending on the cell type they can have
different roles in shaping electrical activity. The long QT syndrome can be caused
by loss-of-function in potassium channels such as the Kv7.1 channels (KCNQ1 gene)
or – more rarely – the Kir2.1 channels (KCNJ2 gene) [128]. Interestingly, patients
with the relatively frequent KCNQ1 long QT syndrome exhibit hyperinsulinemia
caused by increased secretion of insulin [131].

Experimental Characterisation of Kir2.1 Currents in Human β-cells

The KCNJ2 gene coding for Kir2.1 channels is expressed in human islets and β-
cells. Whole-cell voltage-clamp experiments were performed to investigate the Kir2.1
current/voltage (I-V) relationship in human β-cells. We found experimental evidence
of a tolbutamide-insensitive, barium-sensitive K+ current, which activated rapidly
and showed little evidence of inactivation (Fig. 4.10A). The current developed at
voltages close to the resting potential of human β-cells and at more hyperpolar-
ized voltages, but depolarising pulses deactivated the current (Fig. 4.10B). These
characteristics are typical of Kir2.x currents [135, 136].

Besides the Kir2.1 coding gene KNCJ2, the genes KCNJ4 (Kir2.3) and, possi-
bly, KCNJ12 (Kir2.2) are also expressed in human pancreatic islets and β-cells. The
available data cannot rule out a contribution from Kir2.2 and Kir2.3 currents since
they have I-V characteristics similar to the Kir2.1 current [137]. However, Kir2.1
siRNA knock-down reduced the tolbutamide-insensitive, barium-sensitive K+ cur-
rent by ∼70% (M. Braun, unpublished), suggesting that the observed current is due
to Kir2.1 channels.
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Mathematical Modeling of the Role of Kir2.1 Currents in Human β-cells

Kir2.1 current was included in the model of human β-cells based on the I-V curve
found experimentally (Fig. 4.10B). The intra- and extracellular K+ concentrations
in the perforated patch experiments measuring electrical activity [81, 86, 110] are
different compared to the whole-cell recordings of K+ currents presented in Fig. 4.10.
These changes of K+ concentrations modify not only the Nernst K+ potential VK ,
but also the activation curve of the Kir2.1 current, which is right-shifted to the same
extent as VK , resulting in a characteristic “cross-over” phenomenon (Fig. 4.10B;
[133, 136]).
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Figure 4.11: Simulation of electrical activity in human β-cells with varying size of Kir2.1
currents as indicated above the bars. “Control” corresponds to the data fit in Fig. 4.10B and
corresponding parameters in Table . The case “Kir block” (gKir = 0 nS/pF) corresponds to the
previous version of the model.

The previous versions of the model tended to fire action potentials too rapidly
(∼5 Hz [132] vs. 1-3 Hz seen experimentally [86, 110]). The simulations showed that
the Kir2.1 current stabilises the interspike interval, thus reducing the action po-
tential firing frequency, compared to the previous version of the model (Fig. 4.11).
With the Kir2.1 conductance estimated from data, the firing frequency is ∼3 Hz,
within the range of experimentally observed frequencies [86, 110]. Hence, this last
version resulted in a clear improvement of the model behaviour. Of note, the sim-
ilarity between Kir2.x currents [137] means that the model results are valid also
in case Kir2.2 and Kir2.3 channels contribute to the inwardly rectifying current.
Blocking the Kir2.1 channels accelerates electrical activity, predicting that KCNJ2
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long QT patients, which have reduced Kir2.1 currents, might show increased insulin
secretion. Further, increased Kir2.1 conductance, which corresponds to hyperactive
channels, reduces the firing frequency, and even abolishes spiking activity at high,
which would result in decreased insulin release. We know of no data linking mu-
tations in KCNJ2 to hyperinsulinemia, diabetes or impaired glucose tolerance, but
our theoretical results suggest that such connections may exist. Genetic screening
could test this hypothesis.

Parameter Ref. Parameter Ref.

VK −75 mV [81] VNa 70 mV [84]
VCa 65 mV [84] VCl -40 mV [9]
gSK 0.1 nS/pF [94] KSK 0.57 µM [96]
n 5.2 [96]
ḡBK 0.020 nS/pA [81] τmBK 2 ms [81]
VmBK 0 mV [81] nmBK -10 mV [81]
BBK 20 pA/pF [81]
gKv 1.000 nS/pF [81] τmKv,0 2 ms [81]
VmKv 0 mV [81] nmKv -10 mV [81]
gNa 0.400 nS/pF [81] τhNa 2 ms [81]
VmNa -18 mV [81] nmNa -5 mV [81]
VhNa -42 mV [81] nhNa 6 mV [81]
gCaL 0.140 nS/pF [81] τhCaL 20 ms [84]
VmCaL -25 mV [81] nmCaL -6 mV [81]
gCaPQ 0.170 nS/pF [81]
VmCaPQ -10 mV [81] nmCaPQ -6 mV [81]
gCaT 0.050 nS/pF [81] τhCaT 7 ms [81]
VmCaT -40 mV [81] nmCaT -4 mV [81]
VhCaT -64 mV [81] nhCaT 8 mV [81]
gKir 0.1 nS/pF gK(ATP ) 0.010 nS/pF [78]
VmKir -90 mV nmKir 15 mV
gleak 0.015 nS/pF [78] Vleak −30 mV [84]
JSERCA,max 0.060 µM/ms [98, 132] KSERCA 0.27 µM [98]
JPMCA,max 0.021 µM/ms [98] KPMCA 0.50 µM [98]
Jleak 0.00094 µM/ms [98, 104] JNCX,0 0.01867 ms−1 [98, 104]
f 0.01 V olc 1.15 ×10−12 L [132]
B 0.1 ms−1 [132] V olm 0.1 ×10−12 L [132]
α 5.18× 10−15 µmol/pA/ms

Table 4.3: Default model parameters used in the model simulations of electrical activity in
Figure 4.11.





5
From Electrical Activity

to Exocytosis:
Calcium Diffusion and Buffering

As a result of the β-cell depolarization, Ca2+-channels open, leading to influx
and subsequent diffusion of calcium inside the cell, which in turn triggers

exocytosis. Hence, from the electrical-activity analysis of the previous Chapters, we
will move to the investigation of the relationship between insulin granule exocytosis,
calcium levels, distance from Ca2+-channels and channel clustering in pancreatic
β-cells.

This subproject is based on Total Internal Reflection Fluorescence (TIRF) mi-
croscopy, consisting in simultaneous visualization of two different fluorophores. The
first fluorophore is used to label insulin-containing vesicles, and to differentiate them
into two groups: the ones that undergo exocytosis in response to depolarization, and
the ones that do not. The second fluorophore, a genetically encoded Ca2+ indicator
(R-GECO), is attached to the plasma membrane and permits visualizing submem-
brane calcium levels during the stimulus.

Simulations were performed using the modeling program CalC, which imple-
ments calcium diffusion and buffering. Simulated calcium levels and the correspond-
ing R-GECO signal were evaluated at different distances from the channel. The
comparison of the simulations to the TIRF microscopy data allowed estimating the
average distance from the channel of the granules that undergo exocytosis.
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The Chapter will begin with a brief introduction to TIRF microscopy, followed
by a mathematical description of the diffusion process, along with the important
role of calcium buffering. Afterwards, the features of the modeling program CalC
will be presented. Finally, after describing the simulation setup, the results of the
comparison between experimental data and simulations will be presented.

5.1 TIRF Microscopy

TIRF microscopy, also known as evanescent field microscopy, is used in a wide
range of applications, particularly to view single molecules attached to planar sur-
faces and to study the position and dynamics of molecules and organelles in living
culture cells near the contact regions with the glass coverslip.

TIRF provides a means to selectively excite fluorophores in an aqueous envi-
ronment very near a solid surface (≤100 nm), since the evanescent field does not
propagate deeper into the sample. Combined to microscopy, TIRF produces images
with high signal-to-noise ratio and very low background fluorescence, by avoiding
excitation of fluorophores from out-of-focus planes. Compared with confocal and
epifluorescence, TIRF microscopy has the advantage of providing high-resolution,
high-contrast images of the region closest to the glass coverslip. As a consequence,
it is used for studying processes such as endocytosis, exocytosis, cell adhesion and
cytoskeletal dynamics.

This Section will briefly describe the basic optical theory on which TIRF is
based, followed by some examples of the current applications in cell biology and the
presentation of our data. For a complete review of the technique see [138, 139].

5.1.1 Theoretical Principles

The refractive index, n, of an optical medium represents how electromagnetic
waves (e.g. visible light) propagate through it, relative to how it propagates through
a perfect vacuum. It is defined as n = c/v, where c is the velocity of light in a
vacuum and v the velocity of light in the medium.

When a light beam propagating through a transparent medium of high index
of refraction (e.g. glass) meet a planar interface with medium of lower index of
refraction (e.g. air, water, cytosol), the subsequent direction of the light rays is
changed depending on the angle at which the light meets this interface. Some of the
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light rays may be reflected from the interface and some may be transmitted into the
second medium. If the refractive indices of both media are known, n1 and n2, as well
as the angle of incidence, θ1, then Snell’s law provides the angle at which light rays
are transmitted and/or reflected from this interface, θ2 (Fig. 5.1):

n1 sin θ1 = n2 sin θ2. (5.1)

Figure 5.1: The direction of light rays changes when they propagate through one medium (gray)
and encounter an interface of a second medium (white), with lower refractive index. A) The angle
of incidence is less than the critical angle. B) The angle of incidence is equal to the critical angle.
C) The angle of incidence is greater than the critical angle. From [138].

Total internal reflection occurs when the refractive index of the first medium is
greater than that of the second, n1 > n2, and the angle of incidence is greater than
what is known as the “critical” angle, θc. For “subcritical” incidence angles θ < θc,
most of the light propagates through the interface into the lower index material (Fig.
5.1A). When the angle of incidence is equal to the critical angle, θ1 = θc, light rays
emerge into the second medium and propagate tangentially along the direction of
the interface, or θ2 = 90o (Fig. 5.1B). So Snell’s law gives us:

n1 sin θc = n2 sin 90o = n2, (5.2)

and therefore
θc = sin−1 n2

n1
. (5.3)

For angles of incidence greater than θc, light rays are totally reflected back into the
first medium (Fig. 5.1C).

The field in the liquid, sometimes called the “evanescent wave” is capable of
exciting fluorescent molecules that might be present near the surface, as shown
schematically in Figure 5.2B, compared to epifluorescence microscopy where all flu-
orescent molecules are excited as in Figure 5.2A.
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Figure 5.2: A) Epifluorescence, where the excitation beam travels directly through the cover-
slip-sample interface exciting the fluorophores in the entire sample. B) TIRF Microscopy, where
the excitation beam travels from left at incident angle θ1 and excites only the fluorophores in the
evanescent field. Adapted from [140].

The intensity I of the evanescent field at any position , measured as perpendicular
distance z from the interface, exponentially decays with z:

I(z) = I0e−z/d, (5.4)

where d is the decay constant of the field, and I0 is the intensity of the field at the
interface (z = 0).

Local areas of high refractive index within a sample will convert the evanescent
field into scattered propagating light which will in turn contaminate images. For that
reason, it is often desirable for a TIRF system to have the capability to vary the
penetration depth of the evanescent field. The equation below shows what determines
the penetration depth:

d = λ0

4πn1

(
sin2 θ1 − sin2 θc

)−1/2
. (5.5)

Hence, the penetration depth is dependent on the wavelength of the excitation beam,
λ0; the angle of incidence of the excitation beam, θ1; and the refractive indices
of the two media (n1, n2). In practice, the refractive index of a biological sample
(n2) is difficult to control, the excitation wavelengths (λ0) depends on the specific
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fluorophore and the refractive index of the imaging surface is fixed (n1). Therefore,
experimentally the penetration depth can only be controlled through variation of
the angle of incidence (θ1).

5.1.2 Applications

TIRF microscopy has been used extensively in the last decade to study cellular
organization and dynamics that occurs near the cell culture/glass substrate interface.
Some examples will be discussed in this Subsection.

Secretory Granule Tracking and Exocytosis

Secretory granules often reside through the whole depth of a cell. When viewed
with standard epifluorescence, marked secretory granules are difficult to distinguish
individually (Fig. 5.3A). However, with TIRF the granules closest to the membrane
appear very distinctly (Fig. 5.3B). The thin evanescent field allows small motions
of individual fluorescence-marked secretory granules to manifest as small intensity
changes arising from small motions in the direction normal to the interface (z-
direction).

Figure 5.3: Conventional (A) versus TIRF (B) digital images, where bovine chromaffine cell
contains secretory granules marked with GFP protein. Adapted from [139]. C) Image sequence
showing a single granule undergoing exocytosis [141].
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The precision of such axial tracking can be as small as 2 nm, much smaller
than the light microscope resolution limit. Because of the high contrast and low
background, the position of the centers of granules can be measured with an accuracy
down to about 10 nm and motions much smaller than the granule diameter can be
followed before and after exocytosis-inducing chemical stimulation [140]. In some
cases, dispersal of granule contents can be observed and interpreted as exocytosis
and the steps immediately preceding exocytosis characterized.

Figure 5.3C shows the exocytosis of single granule in INS1 cells expressing the
granule marker neuropeptide-Y (NPY)-mCherry stimulated via KCl depolarization.
The vesicle can be seen to get brighter as it nears the plasma membrane and moves
deeper into the evanescent wave. The fluorescence intensity then starts to decline as
the granule marker spreads out into the plasma membrane, increasing the width of
the intensity profile as this lateral diffusion continues. The exocytic event is usually
very fast, so imaging needs to be as rapid as possible.

Endocytosis

There are several endocytic pathways in cells. The most well defined of these
is clathrin-mediated endocytosis. Clathrin-coated pits (CCPs) form at the plasma
membrane before they are pinched off as vesicles inside the cell through the action of
the GTPase dynamin. Fluorescently tagged clathrin and dynamin constructs have
been developed and validated for use in live-cell imaging studies [138].

TIRF microscopy can be used to study such processes. When cells express fluo-
rescently labeled clathrin, the CCPs appear as spots at the cell surface. As clathrin-
coated vesicles (CCVs) form, they are still seen at the plasma membrane, but as
they are pinched off and moved into the cell, and therefore out of the TIRF field,
they disappear.

Various criteria need to be met to ascertain that the protein of interest is really
undergoing endocytosis. Firstly, the tentative endocytic event must be seen to disap-
pear over successive frames and not move laterally out of the field of view. Secondly,
it is necessary to verify that the spot disappearance is not due to photobleaching,
by checking that other neighboring spots in the field of view show no change in
intensity. Alternatively, a spot is being endocytosed if it disappears from the TIRF
image, but is still visible in an epifluorescence image, indicating that it has moved
further than 100 nm into the cell.
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Cell-Substrate Contact Regions

Focal adhesions (FAs) are large, multiprotein complexes that act to link the actin
cytoskeleton of cells to the extracellular matrix through transmembrane proteins
called integrins. Regulation of these structures is important for cell migration; new
focal contacts, that form at the front of migrating cells, can mature into more stable
FAs allowing the cell to transmit traction forces. FAs need to be disassembled at
the back of the cell so the rear can be retracted and the cell can move forward. As
FAs form at the adherent cell membrane, they are best visualized through the use
of TIRF microscopy to eliminate unwanted signal that might obscure their pattern
and position in the cell. It is often a topic of investigation for any treatment that
affects cell migration and could be acting on the formation or disassembly of FAs.

5.1.3 TIRF DataSet

This subproject is based on TIRF microscopy data consisting in simultaneous
visualization of two different fluorophores. The first fluorophore (EGFP) is used to
label insulin-containing vesicles, while the second one, a genetically encoded Ca2+

indicator (R-GECO), is attached to the plasma membrane and permits visualizing
calcium levels during the stimulus.

Figure 5.4: INS1 cells transfected with insulin granule marker and Ca2+ sensor (R-GECO) were
imaged in TIRF microscopy in presence of EGTA-AM. Cells were imaged with short depolarizations
with elevated KCl. A) Ca2+ levels for the granules which did exocytosis. A) Ca2+ levels for the
granules which did not do exocytosis. All the images are an average of more than 50 events.

In particular, thanks to the TIRF microscopy it is possible to track insulin gran-
ule during stimulus and differentiate them into two groups: the ones that undergo
exocytosis in response to depolarization (exo group), and the ones that do not (con-
trol group). Thanks to the use of the second fluorophore, it is possible to track the
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calcium levels in correspondence to the granule position (Fig. 5.4). Given the divi-
sion of granules into exo and control groups, it is possible to analyze if there is any
difference in calcium seen by the two groups.

The experimental results with different exogenous buffers (EGTA-AM and BAPTA-
AM) are shown in Figure 5.5.
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Figure 5.5: The normalized intensities of Ca2+ from the exocytosing granule (blue) and control
granule (black). A-B) Cells were incubated with EGTA-AM. B) is an enlargement of the depo-
larizing step in A). C-D) Cells were incubated with BAPTA-AM. D) is an enlargement of the
depolarizing step in B).

Experimentally, the exo group exhibits a faster and earlier increase in calcium
levels compared to the control group. This likely translates into a closer proximity
of the exocytotic granules to the calcium channels. However, it is not possible to
quantify that distance. In this context, mathematical simulations of calcium diffusion
and buffering inside the cell might help in quantifying the average distance at which
exo and control groups are located. Some experimental details are given below.
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Cells

INS1-cells clone 832/13 were maintained in RPMI 1640 (Invitrogen) supple-
mented with 10% fetal bovine serum, streptomycin (100 µg/ml), penicillin (100
µg/ml), Na-pyruvate (1 mM), and 2-mercaptoethanol (50 µM). For experiments,
the cells were placed on polylysine-coated coverslips, transfected using Lipofec-
tamine2000 (Invitrogen) and imaged 36-42 hours later.

Solutions

Cells were imaged in solution containing (in mM) 138 NaCl, 5.6 KCl, 1.2 MgCl2,
2.6 CaCl2, 3 D-glucose and 5 HEPES (pH 7.4 with NaOH). For exocytosis experi-
ments the buffer instead contained 10 mM glucose and was supplemented with 200
µM Diazoxide and 2 µM forskolin. Exocytosis was evoked by timed local application
of high K+ (75 mM KCl equimolarly replacing NaCl) through a pressurized glass
electrode similar to those used for patch clamp experiments. All experiments were
carried out with constant buffer perifusion at 32oC.

Microscopy

Cells were imaged using a custom-built lens-type total internal reflection (TIRF)
microscope based on an Axiovert 135 microscope with a 100x/1.45 objective (Carl
Zeiss). Excitation was from two DPSS lasers at 473 and 561 nm (Cobolt, Stockholm,
Sweden) and a diode laser at 405 nm (Lambda Physik, Göttingen, Germany), con-
trolled with an acousto-optical tunable filter (AA-Opto, France) and using dicroic
Di01-R488/561 (Semrock). Cells were found using only 561 nm light, to avoid bleach-
ing of the EGFP signal. The emission light was separated onto the two halves of an
EMCCD camera (Roper Cascade 512B) using an image splitter (Optical Insights)
with a cutoff at 565 nm (565dcxr, Chroma) and emission filters (FF01-523/610,
Semrock; and ET525/50m and 600EFLP, both from Chroma). Scaling was 160 nm
per pixel. The alignment of the red and green images was determined once every
experimental session using 100 nm beads (Molecular Probes, Eugene, OR) immo-
bilized on the coverslip surface and fluorescing in both channels. An algorithm was
then used to shift and shrink (by <4%) the red image to correct for misalignment
[142].
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Image Analysis

Figure 5.6: Definition of the differ-
ent areas in the image: a central circle
(c) of 3 pxl (0.5 mm) diameter, a sur-
rounding annulus (a) with an outer di-
ameter of 5 pxl (0.8 mm) and a back-
ground area not including any cell (bg).

Colocalization of EGFP-labeled proteins
with granules was measured as described pre-
viously [143]. Briefly, locations of well separated
granules were identified by eye (7-36 per cell). An
algorithm implemented as MetaMorph journal
then read the average pixel fluorescence in a cir-
cle of 3 pxl (0.5 µm) diameter and a surrounding
annulus with an outer diameter of 5 pxl (0.8 µm)
(Fig. 5.6). For comparison, an insulin granule is
∼300 nm in diameter [26]. The circle c represents
the granule-associated fluorescence and the an-
nulus a represents local background onto which
the cluster is superimposed. The annulus value a
was subtracted from that of the circle c to yield
the EGFP fluorescence specifically associated with a granule (∆F = c − a). The
cell’s average background-corrected annulus value (S = a − bg) is linearly related
to the expression level of the labeled protein. To account for different expression
levels, ∆F was therefore divided by S to yield ∆F/S. In some cases colocalization
of EGFP-labeled cluster with granules was also estimated by eye. Granules were
tracked using ImageJ particle tracker. Exocytosis events were detected manually
based on sudden brightening of a granule (due to pH equilibration and unquenching
of EGFP) [144], followed by sudden disappearance of the granule fluorescence. The
moment of exocytosis was defined as the first significant change (2 SD) from the
pre-exocytosis baseline.

In correspondence to the granule positions, R-GECO fluorescence was analyzed
considering the same areas a, c, bg. In particular, the background-corrected circle
value c− bg was normalized by the background-corrected pre-stimulus value c(0)−
bg, where 0 corresponds to the time of depolarization. Finally, since the R-GECO
fluorescence can not be easly translated to calcium levels and different cell might
have different R-GECO signal but same calcium concentration, the baseline value
was subtracted to the curves, and the result normalized to the maximum value. In
this way, the resulting curves go from 0 to 1 during depolarization, which allows a
direct comparison of the rise times (see Fig. 5.5).
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5.2 Calcium Diffusion and Buffering

Diffusion is the process by which random movement of molecules or ions causes
an average movement toward regions of lower concentration, which may results in
the annihilation of the concentration gradient. The introduction of diffusion into
a model raises many issues, such as spatial scale, dimensionality, geometry, and
which buffers can be considered immobile. Furthermore, binding sites with different
affinities may compete for the diffusing molecule, which leads to a highly non linear
dynamics.

In this Section, we will consider the diffusion of Ca2+ inside a cell as a result of
Ca2+-channel opening, and its interaction with intracellular buffers, which signifi-
cantly affect the time constant of calcium diffusion.

5.2.1 The Diffusion Process

To describe the basic concepts of diffusion, we will consider the simple case where
the spatial variation of Ca2+ concentration, c [µM], is restricted to one spatial vari-
able x. This case is represented by Ca2+ contained in a long thin tube with constant
cross-sectional area A. In any fixed region R along the tube, the conservation of
Ca2+ states that the rate of change of the total amount of Ca2+ within R is equal
to the rate at which Ca2+ flows in to R minus the rate at which it flows out, plus
the difference between its production and its removal.

Now, we will translate this statement into equations. The total amount of Ca2+

contained in a region R, whose limits are (xa, xb) is:∫ xb

xa
c(x, t)Adx. (5.6)

By denoting J(x, t) [µM/area/time] as the rate at which Ca2+ moves across the
boundary at position x from left to right at time t, the net flux of Ca2+ into the
region R is:

AJ(xa, t)− AJ(xb, t). (5.7)

Finally, by denoting f(x, t, c) [µM/time/volume] the net rate of increase of Ca2+ per
unit volume at location x and time t, due to the difference between its production
and its removal, the total amount of Ca2+ produced in the region R at time t is:∫ xb

xa
f(x, t, c(x, t))Adx. (5.8)
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Now, we can translate the conservation law in mathematical symbols as:

d

dt

∫ xb

xa
c(x, t)dx = J(xa, t)− J(xb, t) +

∫ xb

xa
f(x, t, c(x, t))dx, (5.9)

where each term was normalized by the area A.
The flux terms can be replaced by

J(xa, t)− J(xb, t) = −
∫ xb

xa

∂

∂x
J(x, t)dx, (5.10)

and Eq. 5.9 becomes

d

dt

∫ xb

xa
c(x, t)dx = −

∫ xb

xa

∂

∂x
J(x, t)dx+

∫ xb

xa
f(x, t, c(x, t))dx. (5.11)

If the function c(x, t) is smooth enough, then the differentiation and integration can
be interchanged

∫ xb

xa

[
∂

∂t
c(x, t) + ∂

∂x
J(x, t)− f(x, t, c(x, t))

]
dx = 0, (5.12)

and it is possible to obtain the equivalent conservation law in differential form

∂c(x, t)
∂t

+ ∂J(x, t)
∂x

= f(x, t, c(x, t)). (5.13)

Note that this equation contains two independent variables (x and t), and partial
derivatives with respect to both of these. Such equations are called Partial Differ-
ential Equations (PDEs).

Eq. 5.13 is undetermined, because it is a single equation relating two unknowns
(c and J). Hence, to resolve this problem, an additional equation is needed. This sec-
ondary relation is usually called a constitutive equation, since it must be determined
empirically and is not universally valid.

One example is the Fick’s law, which states that a substance moves from regions
of high to regions of low concentration at a rate proportional to the concentration
gradient. Hence, this diffusive flux is:

J(x, t) = −D ∂

∂x
c(x, t), (5.14)

where the proportionality constant D [length2/time] is called the diffusion constant.
The negative sign signifies that the substance moves spontaneously from high to low
concentrations. The value of D depends both on the size of the substance and the
properties of the medium in which it is diffusing.
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Using Fick’s law, Eq. 5.13 becomes the reaction-diffusion equation:

∂c(x, t)
∂t

− ∂

∂x

(
D
∂c

∂x

)
= f(x, t, c(x, t)). (5.15)

When f is zero, Eq. 5.15 becomes the diffusion equation:

∂c(x, t)
∂t

= ∂

∂x

(
D
∂c

∂x

)
, (5.16)

and if D is constant in space
∂c(x, t)
∂t

= D
∂2c

∂x2 . (5.17)

For completeness, the conservation equation in multiple dimension is reported:
∂c(x, y, z, t)

∂t
+∇ · J = f(x, y, z, t), (5.18)

and the corresponding Flick’s law

J(x, y, z, t) = −D∇c(x, y, z, t), (5.19)

which combined give the diffusion equation
∂c(x, y, z, t)

∂t
= ∇ · (D∇c). (5.20)

To solve ordinary differential equations initial data need to be specified. In case
of partial differential equations, both initial data and boundary conditions should
be given to find a solution. Initial conditions usually specify the values of the de-
pendent variables at some initial time at which the solution is known or specified
by experimental conditions. Boundary conditions reflect certain physical conditions
of the experiment. For example:

• Dirichlet boundary condition is used when the concentration c is some function
f(t) at some boundary point, e.g. x = xa:

c(xa, t) = f(t); (5.21)

• Neumann boundary condition is used to specify the flux at a boundary point:

−D∂c

∂x
(xa, t) = g(t); (5.22)

• Robin boundary condition is used when the flux is related to the value of c at
the boundary:

−D∂c

∂x
(xa, t) = h(t)− αc(xa, t). (5.23)
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5.2.2 The Role of Buffers

Reaction-diffusion systems have been studied most extensively in the context
of buffering and binding of calcium ions. Cells contain an impressive variety of
molecules with calcium binding sites, e.g. pumps that remove the intracellular cal-
cium, buffers that bind calcium ions and enzymes activated or modulated by calcium.
The interaction of the transient steep calcium concentration gradients with all these
binding sites creates complex reaction-diffusion systems, the properties of which are
not always completely understood.

Ca2+ buffering is an important process in Ca2+ signalling because it have been
estimated that only about 1-5% of Ca2+ ions entering into the cell remain as free
Ca2+, which is the physiologically active form [145]. Furthermore, buffers decrease
both the peak and equilibrium calcium concentration, slow the diffusion process,
and limit the spread of calcium to the submembrane region.

In the cytosol, Ca2+ buffering can be mediated by mobile and immobile buffers,
keeping under control the diffusion of free Ca2+ ions inside the cytoplasm and re-
ducing its diffusion spread. Immobile buffers are represented by molecules of high
molecular weight or anchored to intracellular structures, while mobile buffers are
molecules of low molecular size, as soluble proteins or small organic anions and
metabolites. A mobile Ca2+ buffer will disperse domains of elevated calcium con-
centration, whereas fixed buffers will tend to prolong them. Commonly used buffers
for experimental purposes, such as EGTA, BAPTA or fluorescent indicators them-
selves, must also be considered as competitive buffers.

Here, the macroscopic interaction of Ca2+ with buffers will be described using
the simple second-order equation:

Ca2+ +B
k+
−⇀↽−
k−

CaB. (5.24)

It is only an approximation because most buffers have multiple binding sites with
different binding rates and require more complex reaction schemes. However, exper-
imental data for such schemes are often not available. Nevertheless, it is important
to express buffer binding with rate equations, in order to consider the effects of the
competition between buffers.

At the steady state, the forward flux equals the reverse flux:

k+[Ca][B] = k−[CaB], (5.25)
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where k+ has units of [µM−1ms−1] and k− of [ms−1]. Hence, it is possible to define
the dissociation constant as:

KD = k−

k+ = [Ca][B]
[CaB] , (5.26)

which has the same unit as concentration. To understand its meaning, let us follow
these steps:

KD

[Ca] = [B]
[CaB] , (5.27)

KD

[Ca] + 1 = [B]
[CaB] + 1, (5.28)

KD

[Ca] + [Ca]
[Ca] = [B]

[CaB] + [CaB]
[CaB] , (5.29)

[Ca]
KD + [Ca] = [CaB]

[B] + [CaB] . (5.30)

Since the sum [B] + [CaB] corresponds to the total concentration of the buffer BT ,
the right side of the equation represents the fraction of buffer, which is bound to
calcium:

[Ca]
KD + [Ca] = [CaB]

[BT ] . (5.31)

When the calcium concentration equals the dissociation constant KD, half of the
buffer is bound to calcium:

[CaB]
[BT ] = KD

KD +KD

= 1
2 , (5.32)

which means that the greater the value of KD is, the greater the calcium concentra-
tion should be to occupy half of the buffer present. As a consequence, it is useful to
define the affinity constant as the reciprocal of the dissociation constant:

KA = 1
KD

. (5.33)

While the KD describes the affinity to calcium at steady state, the dynamic behavior
of the buffer is characterized by the rate constants k− and k+, i.e. the smaller the
constants are, the slower the buffer binds the calcium. Moreover, since affinity is
the ratio between the rate constants, two buffers might have the same affinity to
calcium, but different kinetics. For example, EGTA and BAPTA have similar affinity,
but BAPTA has ∼100 times faster kinetics compared to EGTA.
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Finally, it is worth defining the buffer capacity, which is the ratio between the
inflowing ions that are bound to buffer to those that remain free:

κ = d[CaB]
d[Ca] = KDBT

(KD + Ca)2 . (5.34)

In the case of low calcium concentration, Eq. 5.34 reduces to

κ = BT

KD

. (5.35)

Buffer capacity in the cytoplasm is high and quite variable among different cell types
or even in the same cell depending on host tissue or species, ranging from about 45
in adrenal chromaffin cells [146] to more than 4000 in the Purkinje cell [147].

Genetically Encoded Calcium Indicators

Ca2+-indicators are themselves Ca2+ buffers (often highly mobile) that can po-
tentially affect intracellular Ca2+ signaling.

After the development of Ca2+-sensitive dyes such as Quin2[148] and fura-2[149],
the introduction of genetically encoded Ca2+ indicators, GECIs, was preceded by
three important steps: the discovery of green fluorescent protein (GFP)[150], the
creation of GFP color variants, and the biochemical study of Ca2+ binding. An im-
provement in GECIs was the development of single-fluorescent protein Ca2+-sensors
(camgaroos[151], pericams[152], GCaMP[153]).

The strengths of GECIs include the following [154]. The localization of a GECI
can be controlled by including a signal sequence as part of the indicator, thus GECIs
are preferred for measuring Ca2+ in defined subcellular locations, such as the plasma
membrane, ER, mitochondria, or Golgi. GECIs can be genetically fused to a pro-
tein of interest and therefore can measure Ca2+ in micro-domains in the immediate
vicinity of a given protein. GECIs can be maintained within cells over days to weeks
(in the case of stable incorporation). Hence, GECIs enable extended time-lapse ex-
periments where small molecule indicators would slowly leak out, or be extruded,
from the cell. GECIs can be transfected into cells along with other genes such that
only the co-transfected subpopulation is monitored.

More recent improvements, involving large-scale screening after random (GECOs
[155]) or semi-rational mutation (GCaMP5-indicator family [156]), have led to color
and high dynamic range variants of single fluorescent protein-based indicators [157].
In partiuclar, in this subproject the red-shifted fluorescent (R-GECO) was used.
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5.3 CalC: the Calcium Calculator

At this point, it becomes easy to imagine that simulating diffusion is in general a
computationally expensive process. In my project, the computational program CalC
(“Calcium Calculator”) was used. It is a free modeling tool for simulating intra-
cellular calcium diffusion and buffering [158, 159]. CalC solves continuous reaction-
diffusion PDEs describing the entry of calcium into a volume through channels, and
its diffusion, buffering and binding to calcium receptors.

In this Section we will briefly review some of CalC features.

Implemented Geometries

CalC allows simulations in any geometry: cartesian 3D, 2D or 1D, polar, spher-
ical, cylindrical, conical, etc. In the following some examples are given.

R0R1

z0

z1

ϕ

(R,dR,z,dz)

ϕ
R1

R0

φ1 φ0

φ

(R,dR,φ,dφ)

R0R1

(R,dR)

A
B C

Figure 5.7: Examples of implemented geometries in CalC. A) Spherical symmetry. Vol-
ume parameters: R0,R1. Calcium source in solid grey line, with position described by R and di-
mension set by dR. B) Cylindrical symmetry with respect to angle φ. Volume parameters: R0,R1,
z0, z1. Calcium source in solid grey line, with position described by R,z and dimension set by
dR,dz. C) Conical symmetry with respect to angle φ. Volume parameters: R0,R1,θ0,θ1. Calcium
source in solid grey line, with position described by R,θ and dimension set by dR,dθ. In all figures
the inner surface is represented by dashed grey lines.

When the geometry is spherically symmetric, e.g. one source in the center of a
sphere or a current uniformly distributed over the surface of a spherical cell, the 3D
problem reduces to a 1D problem in spherical coordinates (Fig. 5.7A). In this case
it is much more efficient to solve the resulting one-dimensional problem. To define
the volume only two parameters are need: R0 for the inner radius and R1 for the
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outer one of the spherical shell. Similarly, only two boundary conditions need to be
defined, corresponding to the two surfaces (inner and outer). Finally, for the calcium
source location, R specifies the radius of the spherical surface over which the current
is uniformely distributed (R = 0 for a source in the center of the sphere), and dR
represents the width of the source current layer in radial direction.

If the geometry for the problem is symmetric with respect to the azimuth angle
φ in cylindrical coordinates, the 3D problem reduces to a 2D problem in coordinates
r and z(Fig. 5.7B). Four parameters define the volume: R0 and R1 represent the
inner and the outer radii of the volume, while Z0 and Z1 are the limiting z-values,
which set the length of the cylinder. In this case, four boundary conditions have to
be specified and four parameters describe location (R and z) and dimension (dR
and dz) of the calcium source.

Finally, if the geometry for the problem is symmetric with respect to the az-
imuth angle φ in spherical coordinates, the 3D problem reduces to a 2D problem
in coordinates r and θ [99](Fig. 5.7C). Four parameters define the volume: R0 and
R1 represent the inner and the outer radii of the volume, while θ0 and θ1 are the
limiting angle values, which determine the width of the cone base. Similarly to cylin-
drically symmetric geometry, four boundary conditions have to be specified and four
parameters describe location (R and θ) and dimension (dR and dθ) of the calcium
source.

The simulation space volume can be composed of an arbitrary number of “boxes”,
with an arbitrary number of obstacles, i.e. barriers to diffusion of calcium and/or
buffers.

Grid Points

Calcium and buffer concentration fields are computed on a mesh of points, cov-
ering the entire diffusion space. The grid may be non-uniform too. The advantage
of a non-uniform grid is that the accuracy of the computation can be improved by
increasing the density of grid points in the vicinity of calcium channels, where the
concentration gradients are the greatest.

Boundary Conditions

By default, both calcium and buffers satisfy zero flux boundary conditions at all
surface of all geometry elements. However, boundary conditions may be specified
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by the user for each volume and for each obstacle. The boundary conditions may
be either defined by the user, or be one of the two predefined types, the zero flux
and to the boundary value clamped to background concentration. The user defined
boundary condition can be in one of these forms:

A · Flux+B([Ca]− [Ca]0) + C

(
[Ca]n

[Ca]n +Kn
− [Ca]n0

[Ca]n0 +Kn

)
= 0, (5.36)

A · Flux+B([Ca]− [Ca]0) = 0, (5.37)

[Ca]− [Ca]0 = R, (5.38)

where [Ca] is the Ca2+ concentration and [Ca]0 is the background concentration. A,
B, C, n and K are parameters that can be set by user. In Eq. 5.36 and Eq. 5.37
Flux is the flux per unit area at the boundary, while in Eq. 5.38 R represents the
difference between calcium concentration at the boundary and background calcium
concentration.

Buffers

CalC allows an arbitrary number of Ca2+ buffers, with one-to-one or one-to-two
Ca2+ binding stoichiometry, to be included in the simulation.

In the case of one-to-one stoichiometry, the following parameters need to be
specified to characterize the buffer: total concentration, diffusion (if the buffer is
mobile), boundary conditions and calcium binding kinetics, by defining two of the
following three parameters: binding rate (k+), unbinding rate (k−) or affinity (KD =
k−/k+). Before the simulation is initiated, the program automatically calculates the
initial buffer concentration from its kinetic parameters and total concentration value,
assuming an equilibrium with the defined background Ca2+ concentration.

To define a buffer with one-to-two calcium binding stoichiometry, the rates of
the two reactions in the following diagram should be declared as properties of the
buffer B for the first reaction, and of buffer CaB for the second:

B + 2Ca2+ k+
1−⇀↽−
k−

1

CaB + Ca2+ k+
2−⇀↽−
k−

2

Ca2B. (5.39)

The diffusion coefficient of a cooperative buffer is allowed to changed upon Ca2+

binding, so three diffusivities have to be defined for a buffer B, namely the diffusion
for B, CaB and Ca2B. If the total concentration is defined for the unbound buffer
only, then the fully and partial bound states of the buffer are assumed to be in
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equilibrium with the background Ca2+. Alternatively, total concentration of each
state can be given. In this case, the simulation will start from the defined non-
equilibrium initial condition.

Calcium Channels

An arbitrary number of calcium channel can be defined. For each channel, loca-
tion and width of the spatial distribution of the current need to be defined. The de-
fault value for the width parameters is zero, which correspond to a point-like source.
Channels can be located either inside the simulation volume or on the boundary.

Simulation Specifications

The simulation run requires specifying the integration time and the value of
the calcium channel current during the run. There are two integration methods, the
adaptive, corresponding to a variable time step, and the non-adaptive, corresponding
to a fixed time-step.

When using the adaptive time-step method, the size of the integration time step
is constantly modified to maintain a given level of accuracy. Optional parameters
can be used to modify the working setup of the method. For example the initial
time-step can be set, and it will be automatically reduced if the error tolerance
accuracy is not met. Without going into the details, other parameters can be set in
order to obtain the desired accuracy. Accuracy checks are performed every n-steps: if
accuracy check is successful, n is increased by one, otherwise the time step is halved,
and n is reset depending on the number of steps since last time step reduction. If
the error is greater than five times the accuracy tolerance, the integrator takes a
reverse step back to the previous successful accuracy check.

The parameters for the non-adaptive method are very simple, since it is sufficient
to specify the time-step. The accuracy is an optional parameter.

The simulation may be broken down into an arbitrary number of shorter simu-
lations. In this case, there should be a current definition for each part. Breaking up
the simulation into multiple “runs” is desirable when the calcium channel currents
change abruptly during the run, as when simulating channel opening and closing
events. If an adaptive method is used, it is important that the channel current is
continuous during each of the individual “runs”. This will limit the error arising from
large current discontinuity.
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Finally, the most important hidden parameter controlling the accuracy of the
numerical PDE solver specifies how many iterations the numerical engine performs
to integrate the non-linear buffering reaction in each time step. The default value is
equal to 3, but in the case of very fast Ca2+ buffering reactions, its value should be
increased to insure accuracy.

Other Features

With proper commands, it is possible to define intracellular calcium uptake into
internal stores such as ER or mitochondria. Furthermore, CalC scripts may include
ordinary differential equations, for instance to model Ca2+-dependent exocytosis. It
is also possible to introduce additional time-dependent variables, that are functions
of ODE variables, or a discrete continuous-time stochastic variable.

5.4 Simulation Setup

In the previous Section, CalC general features have been presented. In this Sec-
tion, the simulation setup for this subproject will be described.

Geometry and Boundary Conditions

For simplicity, the pancreatic β-cell was represented by a sphere with radius 6.5
µm(Fig. 5.8A). The assumption that calcium channels are uniformly distributed on
the surface, and that the density of calcium channel in the β-cells is low [29], allowed
us to restrict the simulations to a conical region 3 µm in diameter at its base (Fig.
5.8B).

A reflective boundary condition was imposed for both Ca2+ and buffers on the
sides of the cone. This corresponds to the assumption that the Ca2+ and buffer fluxes
flowing into the cone from the neighboring Ca2+-channel regions are balanced by
the equal fluxes flowing out of the cone. Alternatively, the same boundary condition
holds if calcium and buffers levels are at background levels at the boundary.

These assumptions allowed us to simplify the geometry and to perform sim-
ulations in rotationally symmetric spherical (r, θ) coordinates, instead of solving
the problem in full three dimensions. The reduction from three to two dimensions
significantly reduced the computational intensity of the simulations.
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Figure 5.8: A) Schematic representation of the cell. B) Conical symmetry with calcium channel
in the enter of the cone base.

Buffers

The calcium simulations included three types of buffers. The R-GECO sensor,
which was described in Section 5.2.2 and was used to visualize submembrane calcium
levels, responds to the binding of Ca2+ by increasing its fluorescence. It is genetically
encoded to localize in the plasma membrane, hence it was assumed to be immobile
and its distribution was confined to a thin layer under the cone base (50 nm). In
CalC the total concentration of the buffer must be fixed. However, in the R-GECO
case, it makes more sense to consider its area density to determine if it is a reasonable
value. A total concentration, CT , of 20 µM and a thickness of 50 nm for the layer, in
which the buffer is present, were assumed in the simulations. In this case, to convert
from total concentration to area density consider the following steps:

20µM · 50nm = 10−21mol/µm2 =

= 6.02 ∗ 102molecules/µm2 = 1 molecule/0.0017µm2,

which corresponds roughly to the reasonable value (Prof. Sebastian Barg, private
communication) of one molecule every 40 nm x 40 nm of square patch. Its kinetics
rate constants and affinity was take from the literature [155]. It is worth noting, that
R-GECO has slow binding kinetics, similar to EGTA.

The second buffer included in the simulations was the exogenous buffer used
during the experiment, which was EGTA-AM or BAPTA-AM. Their characteristics
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Parameter R-GECO Endogenous EGTA-AM BAPTA-AM Unit

CT 20 50 50 50 µM
D 0 0 0.22 0.22 µm2/ms
k+ 0.01 0.1 0.01 1 1/(µMms)
KD 0.48 2 0.2 0.2 µM

Table 5.1: Default buffer parameters for CalC simulations: CT total buffer concentration, D
diffusion constant, k+ binding rate constant and KD affinity.

were taken from the literature [160]. The two buffers have identical diffusion coef-
ficients, and similar affinities to calcium. However, BAPTA-AM binding to calcium
is approximately 100 times faster compared to EGTA-AM. To simplify the results
analysis, in the simulations the two buffers were assumed to have identical calcium
affinity and exactly two orders of magnitude in the difference of binding kinetics.
Taking the original values does not affect the results significantly. Little is known
about the internal concentrations of the two buffers inside the cell, since they pas-
sively move from outside to the inside of the cell. As a consequence, the sensitivity
of the results to this parameter was tested.

The last buffer included in the simulations was a generic endogenous buffer. As
already discussed in the previous Section, it is a good approximation to consider the
endogenous buffer as a fixed one. However, very little is known about its other char-
acteristics. Hence, the sensitivity of the results to these parameters was evaluated.

The default buffer parameters for the CalC simulations are reported in Table
5.1.

Calcium Channels

A Ca2+-channel is not continuously open during stimulation of the β-cell (see
Fig. 8 and 10 in [29]). As a consequence besides the magnitude of the single channel
current, the opening sequence of the single channel should be defined to perform the
simulations.

The single channel current can be calculated as

iCa = ḡCa(V − VCa), (5.40)

where ḡCa is single Ca2+-channel conductance, whose value was reported in [60].
Since experiments were performed with 2.6 mM extracellular Ca2+, the correspond-
ing calcium reversal potential VCa is ∼65 mV. Depolarizing the cell with 75 mM
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KCl results to a potential of approximately 0 mV [[161]]. This gives a single channel
current of ∼2 pS ·(0 − 65) mV= 0.13 pA. Alternatively, the single channel current
can be calculated from

iCa = ICa
NCa

, (5.41)

where ICa is the total calcium current and NCa is the number of open calcium
channels. Since in a β-cell there are ∼450 calcium channel [29], assuming that they
are all open at 0 mV, from Figure 1 in [29], one gets:

iCa = ICa(0)
NCa

= 82
450 pA = 0.18 pA, (5.42)

which is in accordance with the previous calculated value.
Regarding the opening sequence, it was reported that depolarization to 0 mV

cause an average open time of 1.9±0.3 ms and a mean closed time of 63±20 ms, in
recording that contain only a single active channel [29].

For simplicity, in the first part of this subproject the opening sequence was
supposed to be deterministic, as a fixed repetition of open and close periods of 2 ms
and 63 ms of duration respectively. The magnitude of the current was supposed to
be three times bigger than the previous calculated value, given the high probability
of triplets of channels in β-cells [29].

5.5 Simulations Results

5.5.1 Calcium Levels and GECO Signal

CalC simulations allow us to track both unbound Ca2+ and buffers levels. Un-
bound Ca2+ is the most interesting value, since it has an effect on exocytosis, while
the only buffer concentration that has a significant meaning is bound GECO, since
it corresponds to the fluorescence data. The concentration of bound GECO is not
directly saved from CalC, but it can be easily calculated as the difference between
the total concentration and the unbound one, which is directly saved from CalC.
The resulting value is normalized by the pre-stimulus bound concentration.

Figure 5.9 shows an example of calcium diffusion simulation during the opening
of the Ca2+-channel. In particular, it is possible to see calcium levels both inside the
cone (Fig. 5.9A), which represents the inside of the cell, and at the base of the cone
(Fig. 5.9B), which represents the submembrane area. The calcium concentration
during channel opening reaches high values in close proximity to the channel.
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Figure 5.9: CalC simulation of calcium levels and GECO signal with exogenous
buffer EGTA-AM during the opening of the calcium channel. A) Calcium levels inside
the cone . B) Calcium levels at the base of the cone. C) GECO levels inside the cone. D) GECO
levels at the base of the cone.

It is worth analyzing how the calcium concentrations translate to the GECO sig-
nal. For example, since GECO is membrane-bound, its signal does not spread inside
the cell, but it is confined to a thin layer (50 nm) representing the submembrane
area (Fig. 5.9C). In this area GECO signal looks quite different compared to the cal-
cium levels (Fig. 5.9B,D). As GECO has high affinity to calcium (KD = 0.48 µM),
it is easily saturated by the high concentrations close to the channel. Furthermore,
GECO is able to detect also the small changes at some distance from the channel.

In Figure 5.9 only one time instant is considered. However, we are interested in
the time changes in calcium levels. To visualize them at different distances from the
calcium channel, it is advantageous to consider the conical symmetry and take a line
passing through the calcium channel on the cone base. It is possible to evaluate what
happens along that line during the entire simulation as a 2D matrix. In particular,
putting the simulation time on the x-axis, calcium levels and GECO signal close to
the channel (y-axis =0) and far from the channel can be observed simultaneously
(Figure 5.10).

In Figure 5.10A, the short opening of the channel are observable as small red
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Figure 5.10: CalC simulation of calcium levels and GECO signal during KCl depo-
larization stimulus between 2.2 and 4.2 seconds and exogenous buffer EGTA-AM. A)
Calcium levels during stimulus as a function of time and distance from the calcium channel. B)
GECO signal during stimulus as a function of time and distance from the calcium channel.

areas, which rapidly vanished as the channel closes. In this case too, it is worth to
compare calcium simulations to the corresponding GECO signal (Fig. 5.10B). Since
GECO has slow binding kinetics, the short openings of the channel are not clearly
observable. Moreover, the high affinity of GECO to calcium allows us to visualize
small changes in calcium levels even far from the channel.

So far we visualized simulations of calcium levels and GECO signal without
considering the experimental influence. Two aspects should be considered and will
be briefly mentioned here without going into the details, which are beyond the
scope of this Thesis. The first aspect to be considered is the point spread function
of the microscope, which describes the response of an imaging system to a point
source. This means that a real point light source would be seen as a blob in the
image, which exactly corresponds to the point spread function. Mathematically, the
acquired image is the results of the convolution between the real source and the
point spread function, which depending of the form of the point spread function
would result in an attenuation of the steep spacial gradients in the image.

The second aspect is the fact that the microscope does not capture the image
instantly, but it needs ∼50 ms to capture a sufficient number of photons to produce
the image, and has a sampling time of 100 ms. As a consequence, the second post-
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processing to the simulation was to down-sample the simulation every 100 ms and,
instead of taking the instant simulation value, the average over the previous 50 ms
was calculated.
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Figure 5.11: CalC simulation of calcium levels (A) and GECO signal after the post-processing
steps (B) at 0.3 µm from the calcium channel. KCl depolarization stimulus between 2.2 and 4.2
seconds and EGTA-AM as exogenous buffer.

Since the GECO signal is the light source for our TIRF data, these two post-
processing steps were applied to the GECO signal only.

In Figure 5.11, calcium levels and GECO signal after the post-processing steps
at a fixed distance from the channel as a function of time are shown. However, to
compare the results to the available data, one should take into account that the
granules that undergo exocytosis are not all located at the same distance from the
channel, but most likely are spread at different distances. As a consequence, instead
of plotting the calcium levels at a fixed distance from the channel, it is reasonable
to divide the area around the calcium channel in regions with different distances to
the channel: around the Ca2+-channel (0-0.16 µm), close to the Ca2+-channel (0.16-
0.32 µm or 0.32-0.48 µm), and far from the Ca2+-channel (0.48-1.5 µm). Results are
shown in Figure 5.12.

As said before, calcium reaches high concentrations only close to the channel. In
particular, simulations predict that between 0 and 0.16 µm from the Ca2+-channel
an average concentration of 15-20 µM is reached during the opening of the channel,
while further from the channel concentrations do not exceed 2 µM (Fig. 5.12A).
On the other side, given its high affinity, GECO levels are easily saturated by high
concentrations of calcium. As a consequence, differences between groups can be
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Figure 5.12: CalC simulation of calcium levels (A) and GECO signal after the post-processing
steps (B) and EGTA-AM as exogenous buffer. KCl depolarization stimulus between 2.2 and 4.2
seconds. The different groups represent the average of calcium levels or GECO signal in regions
with different distances from the channel: 0-0.16 µm (dark blue), 0.16-0.32 µm (green), 0.32-0.48
µm (red) and 0.48-1.5 µm (light blue).

detected even further of 0.16 µm from the channel (Fig. 5.12B). Moreover, the
calcium levels are very irregular, due to the short opening and the longer closing of
the channel. Contrarily, given the slow kinetics of GECO, its levels are regular since
the closing time is too short for calcium to unbind from GECO. As a consequence,
GECO signal is almost monotonically increasing and eventually saturated.

Similar figures can be obtained when the exogenous buffer EGTA-AM is substi-
tuted with the BAPTA-AM, as for the experimental data. A summary of the results
is reported in Figure 5.13.

In the simulations where EGTA-AM is used, the exogenous buffer competes
with GECO for binding Ca2+, since they have similar kinetics. Contrarily, BAPTA-
AM, which has 100 times faster binding kinetics, tends to overrule GECO limiting
its fluorescence closer to the channel (compare Fig. 5.10A,B with Fig. 5.13A,B).
Accordingly, the group closest to the channel (0-0.16 µm) has lower GECO signal
compared to the EGTA case (compare Fig. 5.12B with Fig. 5.13D), while calcium
levels are more similar (compare Fig. 5.12A with Fig. 5.13C). As a consequence, the
use of BAPTA-AM as endogenous buffer in the simulations allows to differentiate
better the regions closer to the Ca2+-channel, while it tends to flatten the difference
for further groups.
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Figure 5.13: CalC simulation of calcium levels and GECO signal with exogenous buffer
BAPTA-AM. KCl depolarization stimulus between 2.2 and 4.2 seconds. A) Calcium levels dur-
ing stimulus as a function of time and distance from the calcium channel. B) GECO signal during
stimulus as a function of time and distance from the calcium channel. CalC simulation of calcium
levels (C) and GECO signal after the post-processing (D) grouped by distance. The different groups
represent the average of calcium levels or GECO signal in regions with different distances from the
channel: 0-0.16 µm (dark blue), 0.16-0.32 µm (green), 0.32-0.48 µm (red) and 0.48-1.5 µm (light
blue).

5.5.2 Examples of Results Sensitivity to Parameter Changes

In Section 5.4, it was pointed out that little is known about some parameters
of the buffers included in the simulations. Here, for completeness some examples of
parameter changes will be presented in the case of EGTA-AM as exogenous buffer.
Such analysis is usually performed to evaluate which parameter value has greater
influence on the results, and consequently should be carefully set. Alternatively, it
helps in identifying the parameters, whose value is not necessary to know precisely.
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Endogenous Buffer Concentration

Very little is known about the characteristic of the endogenous buffer. However,
the buffer capacity (κ = BT/KD) can help in finding a reasonable value for total
concentration, even if it is very variable between cells. With the default parameters,
the buffer capacity was 25, which is in the lower range for physiological cytoplasmic
buffer capacity. As a consequence, it was worth to analyzed what happens if the total
concentration of the endogenous buffer is increased 10 times. The comparison of this
situation with the default simulation is reported in Figure 5.14B and A respectively,
where GECO signal is shown.
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Figure 5.14: CalC simulation of GECO signal with exogenous buffer EGTA-AM, default
parameters (A) and a 10 times bigger total concentration (CT=500 µM) of the generic endogenous
buffer (B). KCl depolarization stimulus between 2.2 and 4.2 seconds.

From Figure 5.14, it is possible to notice that the increased concentration of the
endogenous buffer causes slightly lower values of GECO signal far from the Ca2+-
channel. However, the global results are not significantly affected by a 10 times
change in the concentration of the endogenous buffer. As a consequence, it can be
concluded that even if the total concentration of the endogenous buffer is not known
precisely, its value will probably not affect the results.

R-GECO Density

In Section 5.4, the GECO superficial density was discussed. The expression of
the GECO sensor is not controllable and varies from cell to cell. Nevertheless, a
range of reasonable values is known (Prof.Sebastian Barg, private communication).
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In some cells, it might happen that GECO expression is lower compared to the
default value in the simulations. Hence, we analyzed what happens if GECO density
(or alternatively GECO concentration, since thickness of the layer of GECO was
kept constant) was reduced 10 times.
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Figure 5.15: CalC simulation of GECO signal with exogenous buffer EGTA-AM, default
parameter (A) and a 10 times smaller total concentration (CT=2 µM) of R-GECO (B). KCl
depolarization stimulus between 2.2 and 4.2 seconds.

In Figure 5.15 the two situations are compared. The two figure are almost iden-
tical, probably thanks to the high affinity of GECO to calcium. As a consequence,
also GECO density do not affect the results.

Virtually Playing with the GECO Sensor

Finally, an interesting application of the simulations will be presented. Exper-
imentally, it is very difficult to change the properties of the sensor. Would it be
possible to know in advance if all these efforts in changing the sensor are worth?
Changing the properties of the sensor in the simulations can be a fast and easy way
to check, if they will improve the data based on the aims of the problem.

Above, it was observed that GECO has slow kinetics. How will the results change
if a faster sensor was available? The results are shown in Figure 5.16, where the
GECO binding constant, k+, was increased 10 times, obtaining a fast “virtual”
GECO sensor.

With a faster kinetics, the “virtual” GECO sensor would be able to detect the
short opening of the Ca2+-channel. Furthermore, the “virtual” GECO sensor would
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Figure 5.16: CalC simulation of GECO signal with exogenous buffer EGTA-AM, default
parameter (A) and a 10 times faster “virtual” GECO sensor (k+=0.1 µM−1ms−1) (B). KCl depo-
larization stimulus between 2.2 and 4.2 seconds.

be able to bind Ca2+ far from the channel already from the first opening of the
channel, probably thanks to the overruled competition with the slower EGTA-AM.

5.6 Comparison TIRF Data and Discussion

While in the previous Section, the CalC simulations results were presented, in
this Section they will be compared to the TIRF data, which were described in
Subsection 5.1.3. In particular, the data will be compared to the GECO signal
simulations grouped by distance, in order to determine if the rise time can give
some information about the location of the exocytotic granules.

To allow a direct comparison of the simulation with the data, the different groups
in Figure 5.12B and in Figure 5.13D, for exogenous buffer EGTA-AM and BAPTA-
AM respectively, were similarly normalized by subtracting the baseline pre-stimulus
value and dividing by the maximum value, obtaining curves between 0 and 1 for each
group. The normalized groups are shown in Figure 5.17B,D, for exogenous buffer
EGTA-AM and BAPTA-AM respectively.

First, let us analyze the TIRF data, where cells were incubated with EGTA-
AM (Fig. 5.17A). The exo and the control group exhibit similar rise times, with a
slightly earlier increase for the exo group. Similarly, during the repolarization step,
the control group decreases with a slightly slower kinetics than the exo group. These
two characteristics are captured by the two groups, which are closest to the calcium
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Figure 5.17: Comparison of TIRF data with CalC simulations. A) TIRF data, where cells
were incubated with EGTA-AM. Exo group in blue and control group in black. B) CalC simulation
with EGTA-AM as exogenous buffer. The different groups represent the average of calcium levels
or GECO signal in regions with different distances from the channel: 0-0.16 µm (dark blue), 0.16-
0.32 µm (black), 0.32-0.48 µm (red) and 0.48-1.5 µm (light blue). C) TIRF data, where cells were
incubated with BAPTA-AM. Exo group in blue and control group in black. D) CalC simulation
with BAPTA-AM as exogenous buffer. Groups as in B).

channel: 0-0.16 µm for the exo group in blue and 0.16-0.32 µm for the control group
in black. The two groups have similar rise times during depolarization, and similar
decrease during repolarization (Fig. 5.17B). However, the simulations in both groups
have faster increase compared to the data. This can be due to different aspects, that
were not considered in the simulations: the time required by KCl to depolarize the
cell, or Ca2+-channel inactivation, which can both affect the opening and closing
times of the Ca2+- channel.

The TIRF data, where cells were incubated with BAPTA-AM (Fig. 5.17C), can
be used as a test set, i.e. considering the same groups as in the simulations with
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EGTA-AM as exogenous buffer, to check if the changes in the simulations with
different exogenous buffers are similar to the difference in the experimental data.
The two groups, which are closest to the calcium channel (0-0.16 µm in blue and
0.16-0.32 µm in black), exhibit a bigger difference in the rise times when BAPTA-
AM is used, instead of EGTA-AM (Fig. 5.17B,D). Similarly, the TIRF data, where
BAPTA-AM is used as exogenous buffer, present a bigger difference in the rise time
in the exo and control group compared to the data were EGTA-AM is used.

However, the results presented here are only preliminary and need further in-
vestigation. For example, both TIRF data and simulations were normalized by the
maximum value of each group. This normalization was done since GECO level is
not easily translated to calcium concentrations, since GECO expression might differ
significantly between cells. As a consequence, we can compare rising times but it
does not make sense to compare levels. Moreover, the time at which the granules
undergo exocytosis was not taken into account here. It would be interesting to eval-
uate if there is any difference between the granules that do exocytosis in the first
half second of depolarization and the ones that do it later.



6
From Electrical Activity

to Exocytosis:
Calcium-Channels Clustering

Calcium diffusion simulations presented in the previous Chapter were cou-
pled to a simple model for insulin granule exocytosis to investigate dif-

ferent pools of granules, in terms of vicinity to the Ca2+-channel and Ca2+ affinity.
Furthermore, the fusion probability was evaluated both for a single channel, and in
a cluster-of- channels context.

This Chapter will firstly present the model of exocytosis and focus will be given to
the various steps of exocytosis. Then, after having presented the aim of the coupling
of diffusion to the exocytosis model, the implementation of the stochastic channel
gating will be described. The Chapter will be concluded with the discussion of the
simulation results.

6.1 Model of Exocytosis in Pancreatic Beta-cells

In this Section the mathematical model of exocytosis in pancreatic β-cells devel-
oped by Chen at al. will be briefly presented. For the details of the model and its
applications see the original article [104].
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Figure 6.1: Steps of the exocytosis modeled in [104].

Chen’s model uses a multi-state kinetic model to represent the various exocytotic
reactions, which is combined with a simple two-compartment model to handle the
temporal distribution of Ca2+ between the microdomain and the cytosol.

Granules in the cell are divided into a large reserve pool and a smaller pool
of docked granules, which can be further subdivided according to different fusion
competencies. Granules from the reserve pool have to undergo maturation before
becoming exocytosable. In particular the exocytotic cascade is divided schematically
into seven steps, as shown in Figure 6.1. These steps correspond to the fact that a
granule has to dock to the membrane from a reserve pool, be primed, and move to
the microdomain at an L-type Ca2+-channel before it can bind with Ca2+ and fuse
with the cell membrane.

The simplest kinetic scheme for this exocytotic cascade is given in Figure 6.1B,
where each step in the cascade is represented by a single chemical reaction except
the Ca2+ triggering step, which is described by three Ca2+ binding reactions as pro-
posed for chromaffin cells [162]. The three pre-triggering (�(6)�(5)�(1)) steps are
assumed to be reversible, whereas the three post-triggering steps (→(4)→(F)→(R))
are assumed to be irreversible. Due to the existence of these irreversible steps, the
rates of fusion and insulin secretion of the system are always nonzero, even at the
resting steady state.

The time-dependent distribution of the pool population in Figure 6.1B can be
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described by following differential equations:

dN1

dt
= − [3k1Camd(t) + r−1]N1 + k−1N2 + r1N5,

dN2

dt
= 3k1Camd(t)N1 − [2k1Camd(t) + k−1]N2 + 2k−1N3,

dN3

dt
= 2k1Camd(t)N2 − [k1Camd(t) + 2k−1]N3 + 3k−1N4,

dN4

dt
= k1Camd(t)N3 − [3k−1 + u1]N4,

dN5

dt
= r−1N1 − [r1 + r−2]N5 + r2N6,

dN6

dt
= r3 + r−2N5 − [r−3 + r2]N6,

dNF

dt
= u1N4 − u2NF ,

dNR

dt
= u2NF − u3NR, (6.1)

where Ni represents the number of granules in pool i, and Camd is the Ca2+ concen-
tration in the microdomain compartment.

The resupply step is assumed to depend on both ATP and bulk cytosolic Ca2+.
The ATP dependency derives from the finding that insulin secretion from single
islets drops to a low level after a long depolarization in the absence of glucose.

Both the resupply and priming steps are assumed to depend on Ca2+ concentra-
tion in the cytosol, Cai, using the simple equilibrium binding formulae:

r2 = r0
2Cai(t)/ [Cai(t) +Kp] , (6.2)

r3 = r0
3Cai(t)/ [Cai(t) +Kp] , (6.3)

where Kp is a constant.
The rate of fusion, the rate of pore expansion and the rate of insulin secretion

at time t can be calculated as:

JF (t) = u1N4(t), (6.4)

JR(t) = u2NF (t), (6.5)

JIS(t) = u3NR(t). (6.6)

Similarly the accumulated total number of granules fused, the total number of gran-
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ules ready to release and the total amount of insulin secreted corresponds to:

MF (t) =
∫ t

0
u1N4(t′)dt′, (6.7)

MR(t) =
∫ t

0
u2NF (t′)dt′, (6.8)

MIS(t) =
∫ t

0
u3NR(t′)dt′. (6.9)

The dynamics of Ca2+ concentration was modeled by two-compartments. The
first compartment is represented by the microdomain, which corresponds to a half-
sphere surrounding the inner mouth of an L-type channel. It is a functional mi-
crodomain, in the sense that it is the place where a primed granule can form a
stable complex with the plasma membrane and execute the Ca2+ triggered fusion
step. In contrast, the R-type channel is not functional because granules do not form
stables complexes with the channel and therefore very few fusion events will occur
there.

The calcium entering the first compartment through the L-type Ca2+-channels,
can diffuse to the second compartment which corresponds to the cytosol. Another en-
try source for the second compartment are the non functional R-type Ca2+-channels.
The clearance of Ca2+ from the cytosol compartment is assumed to be regulated by
four types of transporters: SERCA pumps, the plasma membrane ATPase (PMCA),
the NCX, and the leak channel. For their characterization and other details see [104].

6.2 Tradeoff between Distance from Calcium Chan-
nels and Calcium Affinity

In the previous Chapter, the average distance of exocytotic granules from cal-
cium channel was estimated by comparison of simulations to TIRF microscopy data.
However, the calcium levels are only one component in Ca2+-triggered granule exo-
cytosis. The affinity of the Ca2+ sensor on the granules plays an important role in
regulating the secretion.

In many cell types the affinity is similar (20-30 µM), suggesting the existence
of a common low-affinity Ca2+ sensor or members of a closely related family of
Ca2+-binding proteins with similar properties. However, in certain cell types, there
are granules with distinct Ca2+ dependencies allowing differential control of their
release.
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In pancreatic β-cells, it is believed that first-phase secretion is a result of granules
already residing at the membrane, whereas enhanced supply of new vesicles to the
plasma membrane is responsible for second phase. Traditionally, the newly-arrived
vesicles must go through maturation steps such as docking and priming before fusing,
although other data suggest that newcomer granules fuse with almost no delay
during second-phase secretion [163].

Most immediate exocytosis occurs with a very low affinity for Ca2+ from a readily
releasable pool (RRP) of granules, showing an affinity to Ca2+ of tens of micromo-
lar. Such high concentrations are only attained right below the calcium channels.
In addition to the fast microdomain controlled exocytosis, another highly calcium-
sensitive pool (HCSP) of granules has been described with an affinity to Ca2+ of
a few micromolar. The difference in calcium affinity between the RRP and the
HCSP might be explained by different isoforms of the Ca2+-sensor synaptotagmin
regulating membrane fusion from the two pools. Because both HCSP granules and
newcomers fuse away from Ca2+-channels, it was proposed that they might be over-
lapping sets of vesicle, and consist in granules that are still not completely docked
to the cell membrane [163].

In the following Section, the exocytotic machinery will be analyzed as a function
of distance from calcium channels and affinity of the calcium sensor.

6.2.1 Impact of Calcium Level versus Opening Time

In this context no experimental data were available to us. Nevertheless, the
coupling of the diffusion simulations to the exocytotic model become an useful tool
in evaluating the impact of the calcium levels in comparison to the calcium channel
opening time.

In particular, under control conditions, the mean open time of the Ca2+-channels
during a depolarization is very short (∼2 ms) compared to the delay between cal-
cium elevation and the initiation of exocytosis (∼10 ms). This lead to the idea that
Ca2+-channels clustering would be functionally advantageous. Furthermore, it was
reported that calcium channels mainly clusters in triplets [29].

In this Chapter, three different situations will be compared: a single channel,
a cluster of three channels with synchronized gating (all channels open simultane-
ously) and a cluster of three channels with independent gating (each channel opens
independently from the others).
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The difference between the single channel setup and the synchronized gating
consists only on the current magnitude. However, the average open time of the
cluster is equal to the open time of a single channel. This means, that calcium
concentration reaches higher levels but only for a short time. On the contrary, the
cluster with independent gating increase the possibility to find at least one open
channel, but the probability that the three channels are open simultaneously is very
low.

To implement the three different scenarios, stochastic simulation of channel gat-
ing was needed. In the following Section, the implementation as a Markov process
will be described.

6.3 Stochastic Channel Gating

Consider the transition-state diagram already introduced in Chapter 2:

C
k+
−⇀↽−
k−

O, (6.10)

where C corresponds to the closed state, O to the open state of the channel and the
arrows stand for reversible elementary molecular processes regulated by k− and k+.

Let us define s as a random variable taking values corresponding to the two
states, s ∈ {C,O}, and Pi(t), the probability that s = i at time t. If a two-state ion
channel is in state O at time t, the probability that it will close in a short interval of
time (∆t) is given by k−∆t. By multiplying this probability to PO(t), the probability
that the two-state channel is indeed in state O, one obtains the probability that the
transition O → C actually occurs. Moreover, the probability that the channel is
open at time t + ∆t is equal to the probability that it was open at time t minus
the probability that it leaves this state plus the probability that has just open. In
mathematical form:

PO(t+ ∆t) = PO(t)− k−PO(t)∆t+ k+PC(t)∆t (6.11)

taking the limit ∆t→ 0, one gets:
dPO
dt

= −k−PO(t) + k+PC(t) (6.12)

Considering that a channel is either open or close, and therefore:

PC(t) + PO(t) = 1, (6.13)
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it becomes:
dPO
dt

= k+(1− PO(t))− k−PO(t). (6.14)

Since the probability that an open channel will close in ∆t is given by k−∆t, the
probability that it will stay open is 1− k−∆t. Similarly for a closed channel. Hence,
the transition probability matrix takes this form:

Q =
1− k+∆t k−∆t

k+∆t 1− k−∆t

 , (6.15)

where the elements Qij of the matrix correspond to the transition probability from
state j to state i.

Using the transition probability matrix, the state of the channel at t + ∆t can
be written as:

P(t+ ∆t) = QP(t), (6.16)

where P(t) is the vector that contains the current state of the channel [PC(t);PO(t)].
In the general case:

P(t+ n∆t) = QnP(t). (6.17)

The transition probability matrix is useful to calculate the average amount of
time that the channel remains in the open or the closed state, the so called dwell
times. While the probability that one open channel will stay open in a ∆t interval
is 1 − k−∆t, the probability that it will stay open for the following time step is
(1− k−∆t)2. In general:

PO(t+ n∆t|O, t) = (1− k−∆t)n. (6.18)

By defining τ = n∆t, Eq. 6.18 becomes:

PO(t+ τ |O, t) =
(

1− k−τ

n

)n
. (6.19)

Taking the limit for ∆t→ 0, n→∞, one gets:

PO(t+ τ |O, t) = e−k
−τ , (6.20)

which means that the probability that a channel open at time t stays open until t+τ
is a decreasing exponential function of τ . Finally, the probability that a channel open
at time t stays open until t + τ and then close for the first time in the next ∆t is
given by:

PC(t+ τ |C, t)PO(t+ τ + ∆t|C, t+ τ) = e−k
−τk−∆t. (6.21)
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Hence, the average open time corresponds to

〈τO〉 =
∫ ∞

0
τe−k

−τk−dτ = 1
k−
. (6.22)

Similarly, the average closed time is

〈τC〉 =
∫ ∞

0
τe−k

+τk+dτ = 1
k+ . (6.23)

6.3.1 Single Channel Setup

To simulate the transitions of a two-state channel, a simple method based on
the transition probability matrix can be used. Since the conservation of probability
ensures that each column of Q will sum to unity, we can divide the interval [0, 1]
into regions, each corresponding to a possible change of state or lack of change of
state. Then, using a random number Y uniformly distributed on the interval [0, 1],
it is possible to choose if a transition took place or not based upon the interval in
which Y falls.

In particular, Q12 = k−∆t corresponds to the probability that an open channel
closes in the next time step ∆t. Hence, if the current state is O, then a transition
to the closed state occurs if 0 ≤ Y < k−∆t, while the channel remains open if
k−∆t ≤ Y ≤ 1, which is an interval of length 1−k−∆t equal to Q22, the probability
that an open channel stays open. Similarly, if the channel is in state C, then a
transition will occur if 1−k+∆t ≤ Y ≤ 1, while it remains closed if 0 ≤ Y < 1−k+∆.

Now, if the average open and closed times is known, the rate constants k+ and
k− can be calculated as the reciprocal values. The average open and close times
for a single calcium channel in mouse pancreatic β-cells depolarized to 0 mV was
reported in [29] and correspond to ∼2 ms and ∼63 ms respectively. An example of
a simulated single channel stochastic gating is reported in Figure 6.2A.

6.3.2 Cluster: Synchronized Gating

The implementation of a cluster with synchronized gating is straightforward.
Since the cluster gating dynamics is the same as for a single channel, it is sufficient
to change the magnitude of the current depending on the number of channels in the
cluster. An example is shown in Figure 6.2B, where the cluster is formed by three
channels.
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Figure 6.2: Examples of simulation of stochastic gating in a single channel (A), a cluster with
synchronized gating (B) and a cluster with independent gating (C)

6.3.3 Cluster: Independent Gating

Finally, the gating of multiple independent channels can be simulated in several
ways. The most intuitive method for simulating a small number of independent two-
state ion channels is to implement N stochastic simulations of a single channel and
just take their sum.

Alternatively, under the assumption of identical and independent channels, it is
worth mentioning an alternative method, which consists to simulate a single Markov
process that tracks the number of open channels. For simplicity, consider an example
of a cluster of three channels. In this case, there are four possibilities for the number
of open channels (0, 1, 2 or 3) and thus four distinguishable states for the Markov
process. By representing the states as S0, S1, S2 and S3, the transition state diagram
is the following

S0
3k+
−−⇀↽−−
k−

S1
2k+
−−⇀↽−−
2k−

S2
k+
−−⇀↽−−
3k−

S3, (6.24)

where the factors modifying the rate constants k+ and k− account for the fact that
more channels in the same state can make a transition.

The corresponding transition probability matrix is

Q =


1− 3k+∆t k−∆t 0 0

3k+∆t 1− k−∆t− 2k+∆t 2k−∆t 0
0 2k+∆t 1− 2k−∆t− k+∆t 3k−∆t
0 0 k+∆t 1− 3k−∆t

 . (6.25)

The implementation is quite similar to the single channel case. Since the con-
servation of probability ensures that each column of Q will sum to unity, we can
divide the interval [0, 1] into regions, each corresponding to a possible change in the
number of open channels. Then, using a random number Y uniformly distributed on
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the interval [0, 1], it is possible to choose if the number of open channels increases,
decreases or remains constant.

In particular, supposing that only one channel is open (state S1), Q12 = k−∆t
corresponds to the probability that this single channel closes in the next time step
∆t. Hence, a transition to the closed state occurs if 0 ≤ Y < k−∆t, reaching state
S0. While one of the two closed channel opens if k−∆t ≤ Y < k−∆t+ 2k+∆t, which
is an interval of width 2k+∆t. In this case the system reaches state S2. Finally,
the system stays in S1 if k−∆t + 2k+∆t ≤ Y ≤ 1, which is an interval of length
1− k−∆t− 2k+∆t, corresponding to Q22. Similarly, if the system is initially in any
other state. An example of simulation is shown in Figure 6.2C.

6.4 Comparison and Discussion

In the following, each shown figure is the average on ten stochastic simulations,
which was used to get an idea on the average behavior of the model avoiding the
misinterpretation of results due to the single specific realization of the stochastic
opening sequence. The simulations, whose results are presented in this Section, con-
sists of two seconds depolarization. Moreover, the initial values for the granules in
each state was not changed from the one used in Chen’s paper. The results presented
here can be scaled be any value, keeping the ratio between pools unchanged.

Stochastic versus Deterministic Opening Sequences

In the previous Chapter, the opening of the calcium channel was supposed de-
terministic for simplicity. For the aim of this analysis, it was more reasonable to
consider a stochastic sequence. In particular, the current set in the deterministic
context corresponds to a cluster of three channel (0.6 pA). As a consequence, the
calcium diffusion simulations obtained in the previous Chapter should be compara-
ble to the stochastic one obtained for a cluster with synchronized gating.

In Figure 6.3, the simulation of GECO signal grouped by distance as a results of
a deterministic sequence is compared to the average of ten stochastic simulations for
a cluster with synchronized gating. As one would expect, the deterministic sequence
and the stochastic one give similar results.



6.4. Comparison and Discussion 135

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
G

E
C

O
C

a 
[F

]

time [s]

A

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

G
E

C
O

C
a 

[F
]

time [s]

B

Figure 6.3: Simulation of GECO signal grouped by distance (0-0.16 µm (dark blue), 0.16-0.32
µm (green), 0.32-0.48 µm (red) and 0.48-1.5 µm (light blue)) as a results of a deterministic sequence
(A) and the average of ten stochastic simulations for a cluster with synchronized gating (B).

Coupling to the Exocytosis Model

In Chen’s model, microdomain calcium levels were calculated as a compartment,
whose input was directly proportional to the L-type calcium current and corresponds
to an average calcium concentration in close proximity to the Ca2+-channel. With
the calcium diffusion simulations described in the previous Chapter, calcium lev-
els at different distances of the channel can be calculated and can substitute the
microdomain calcium levels. This substitution allows us to hypothesize different lo-
cations for the exocytotic granules, and to use in the model the exact calcium levels
corresponding to that distance instead of a mean values as in the microdomain
compartment.

The second parameter that controls the exocytotis response is calcium binding
affinity. The value for the binding and unbinding calcium rate constants in Chen’s
model are 20 ms−1µM−1 and 100 ms−1 respectively. Since KD = k−1/k1, the default
parameters correspond to a calcium affinity of 5 µM.

To understand the importance of the distance from the Ca2+-channel, the cumu-
lative total number of granules fused, the total number of granules ready to release
and the total amount of insulin secreted are shown in Figure 6.4, in the case of clus-
ter with synchronized gating. Granules were supposed to be at a distance of 30 nm
and of 300 nm from the Ca2+-channel for the solid and the dashed line respectively.

If all granules were located at 30 nm, more than half of the ready releasable
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Figure 6.4: Cumulative total number of granules fused (A), the total number of granules ready
to release (B) and the total amount of insulin secreted (C), in the case of cluster with synchronized
gating. Granules were supposed to be at a distance of 30 nm and of 300 nm from the Ca2+-channel
for the solid and the dashed line respectively.

granules will fused with the membrane in half a second. After this first phase, a
second slower fusion of granules will take place in the next seconds of depolarization.
Contrarily, if the granules were located 10 times further away, at the end of the two
second of depolarization almost half of the ready releasable granules would be fused
with the membrane (Fig. 6.4A).

Similar considerations can be done for the cumulative total granules ready for
release, even if its dynamics is slower and delayed compared to the total fused
granules (Fig. 6.4B).

Finally, total amount of secreted insulin is shown in Figure 6.4C. The different
behavior between the two assumed distances is still evident. However, in this case
it is worth noting the delay for insulin secretion compared to the granule fusion. It
is known that insulin is stored into the granules in crystalline form [33] and besides
the pore expansion, the insulin-crystal needs time to dissolve, even if the exact
mechanisms are not known. This fact is capture by Chen’s model by the small value
in parameter u3.

General Case

In the previous example only one affinity and two different distances have been
taken into account. However, we are interested to evaluate what happens for dif-
ferent combinations of distances from the Ca2+-channel and calcium affinity of the
exocytotic mechanism. To visualize the results, the number of fused granules at
the end of the stimulus and the time to reach the half max possible value can be
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used to characterize the model response. The first value represents the magnitude
of exocytosis, while the second value corresponds to the rapidity of the process.

Moreover, in the previous example only the results relative to the cluster with
synchronized gating were shown. What would we expect in the other scenarios?
Would it be more functionally advantageous to increase the current magnitude, as
in the case of the synchronized gating, or to increase the open time, as in the case
of an independent gating?

The results for all the scenarios are shown in Figure 6.5 and Figure 6.6 repre-
senting the maximum value and the time for half maximum respectively.
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Figure 6.5: Total number of granules fused at the end of two seconds depolarization as a
function of distance from calcium channel and calcium affinity in a single channel setup (A), in a
cluster with synchronized gating (B) and in a cluster with independent gating.
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Figure 6.6: Time to reach the half maximum of total number of granules fused as a function of
distance from calcium channel and calcium affinity in a single channel setup (A), in a cluster with
synchronized gating (B) and in a cluster with independent gating. If the half maximum of total
fusible granules is not reached at the end of two seconds of depolarization, the value 2 seconds is
displayed.

It is evident that, compared to the single channel, the cluster setup is functionally
advantageous both in terms of total number of fused granules at the end of the two
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second depolarization and in terms of velocity of the process. The area where all
the granules fused after two seconds depolarization is larger in the cluster setup
compared with the single channel, with the cluster with synchronized gating having
a slightly greater area.

The dependence of total fused granules is exponential both in respect on dis-
tance from the calcium channel and on the calcium affinity, in agreement with the
exponential decay of calcium concentrations from the Ca2+-channel. This means
that if the granules were located close to the channel, the affinity would not have
an influence on their fusion, but they will fuse in a short time anyway. However, if
we hypothesize that they are located a bit further from the channel, the minimal
necessary affinity to get maximal possible fusion decreases exponentially. Similarly,
if affinity is considered the granules can be located anywhere to get maximal possible
fusion if the affinity is high, while if the affinity is decreased the maximal possible
distance decreases exponentially.

To better visualize this characteristic, it is useful to fix calcium affinity at 3.5µM
ad see how the number of total fused granules at the end of two seconds depolariza-
tion depends on distance. The results are shown in Figure 6.7,light blue line.
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Figure 6.7: Total number of granules fused at the end of two seconds depolarization as a
function of distance from calcium channel and calcium affinity in a single channel setup (A), in a
cluster with synchronized gating (B) and in a cluster with independent gating. The different color
corresponds different to affinities (0.1, 0.4, 1.6, 3.5 (light blue), 5.5, 11, 23, 48 µM)

In the single channel setup, the total number of fused granules remains maximal
till ∼100 nm from the calcium channel, then it decrease as we move far from the
channel, reaching half maximal value at ∼ 190 nm, and going to zero in correspon-
dence to ∼ 400 nm (Fig. 6.7A). In the cluster with synchronized gating, the number
of fused granules remains high till ∼200 nm, and does not go to zero at the furthest
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distance ∼ 400 nm (Fig. 6.7B). Similarly, in the cluster with independent gating,
the number of fused granules remains high till ∼150 nm and decreases to zero slower
compared to the single channel setup (Fig. 6.7C).

Similar curves can be obtained by varying the calcium affinity. In particular, if
the calcium affinity is increased the curves tend to stay at the maximal value for
bigger distances, while if the calcium affinity is decreased the curves go to zero for
smaller distances (Fig. 6.7).

Concluding Remarks

Under control conditions, the mean open time of the Ca2+channels during a de-
polarization is very short (∼2 ms) compared to the delay between calcium elevation
and the initiation of exocytosis (∼10 ms). This lead to the idea that Ca2+channels
clustering would be functionally advantageous [29]. Furthermore, it was reported
that the frequency of multi-channel openings far exceeded the probability of ob-
serving simultaneous openings of independently gating channels, suggesting that a
group of several L-type Ca2+channles may activate and inactivate in a synchronous
manner [164].

In this context, the analysis presented previously becomes an useful tool in un-
derstanding the impact of different channel organization, i.e. single channel, cluster
with synchronized gating and cluster with independent gating.

Our results confirm the functional advantage of a cluster scenario compared to
a single channel setup, and the synchronized gating showed the best performance
in the exocytotic machinery. Hence, the simulations presented here might suggest
that there is a certain degree of interplay between the channel forming the cluster,
in accordance with [164].





7
From Exocytosis to Secretion:
Minimal Model of Insulin Secretion in the

Perfused Rat Pancreas

So far we analyzed cellular mechanisms, which translate in insulin secretion.
Hence, the natural step is to move from a cellular point of view to a big-

ger scale considering the whole pancreas. In this context, the so called minimal
model approach might become useful, by allowing the determination of indexes to
assess β-cell function in different experimental groups. In this Chapter a minimal
model specific for the perfused pancreas experimental will be described. It was built
adapting the C-peptide minimal model previously applied to the intravenous glucose
tolerance test. An useful application of the model will be presented: the quantitative
assessment of pharmacologically relevant agents.

7.1 Insulin Secretion and the Perfused Rat Pan-
creas

In the isolated perfused rat pancreas, the biphasic nature of insulin secretion
in response to an increase in glucose levels was first observed by Curry et al. [165].
Later experiments have shown that in type 2 diabetes the amount of insulin secreted
during the first phase, in particular, is severely reduced . It is now generally accepted
that deficient insulin secretion plays a crucial role in the pathogenesis of diabetes
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[11]. Thus, reliable methods to investigate and quantify insulin secretion both in
clinical and experimental settings are desirable.

The perfused rat pancreas, performed either isolated or in situ, is commonly used
for different kinds of investigations, whose aim is the evaluation of β-cell function and
the effect of various factors on insulin secretion. The most common application of
this experimental setting is the analysis of the effect of drugs or other secretagogues
[166][167], in some cases both in normal and diabetic rats [168]. Furthermore, it can
also be used to assess the effect of fat content in diet [169][170] or the influence of
exercise on insulin secretion and β-cell function [171].

Minimal models, by postulating a specific glucose-insulin secretion functional
relationship, are able to provide indices describing β-cell responsivity to glucose
of first and second phase secretion. Minimal models describing the glucose/insulin
system have been successfully applied for the estimation of indices in a clinical setting
(e.g. intravenous and oral glucose tolerance tests) [172]. However, a minimal model
applicable to the isolated perfused rat pancreas was unavailable so far. Here, we
adapt the C-peptide minimal model, previously applied to the intravenous glucose
tolerance test [173], to obtain a specific model for the experimental settings of the
perfused pancreas.

Insulin secretion is mainly regulated by glucose through intracellular metabolism
of the sugar, and is additionally modulated by other factors such as incretin hor-
mones and fatty acids by stimulation via G Protein-Coupled Receptors (GPCRs). In
particular, the activation of specific receptors, that enhance insulin secretion only
in presence of stimulatory glucose levels, is therapeutically appealing since they
increase insulin levels with minimal risk of hypoglycaemia.

Glucagon-Like Peptide-1 (GLP-1) acts on the pancreatic β-cell through a Gαs

coupled GPCR. Another potential treatment of type 2 diabetes is the activation of
G protein-coupled receptor 40 (GPR40), also known as Free Fatty Acid Receptor 1
(FFAR1), a GPCR that is found in pancreatic β-cells [174]. Several drug candidates
addressing this receptor are currently in clinical development, with TAK-875 being
the most advanced compound having just entered phase III clinical trials [175]. At
Sanofi the compound SAR1 has been identified as a potent and selective GPR40
agonist, which is currently in preclinical development. SAR1 clearly demonstrated
a glucose dependent mechanism in increasing the intracellular Ca2+-signal and a
resulting increase in insulin secretion under elevated glucose concentrations in the



7.2. Materials and Methods 143

perfused rat pancreas [176].
The model was applied for the assessment of pharmacologically relevant agents

(GLP-1, the synthetic GLP-1-receptor agonist, lixisenatide, and the compound SAR1),
with the aim to quantify and differentiate their effect on insulin secretion.

7.2 Materials and Methods

Animals and Housing

Animal studies were performed according to German animal protection law as
well as according to international animal welfare legislation and rules, and our ex-
periments were approved by the Federal Authority for Animal Research at the
Regierungspräsidium Darmstadt. Male Sprague-Dawley rats were purchased at a
body weight of 200-220 g from Harlan-Winkelmann (Borchen, Germany). The ani-
mals were acclimatized for ≥1 wk and housed under controlled environmental con-
ditions (temperature 22±2řC, humidity 55±10%, 12:12-h dark-light cycle, lights on
at 0600) with free access to standard laboratory chow (ssniff R/M-H 1534) and tap
water. Animals were housed in Macrolon cages size IV-S (1400 cm2, 2-4 rats/cage)
on softwood granulate. For environmental enrichment, all cages were equipped with
wood shavings and a wooden gnawing block. All manipulations were performed at
the same time in the morning.

Experimental Protocol

Male fed Sprague-Dawley rats weighting 200-220 g were used throughout the
experiments and were anesthetized with pentobarbital sodium (80-100 mg/kg body
wt). The pancreas was isolated as described previously [177] and placed into the
perfusion chamber, which was constantly gazed with a humidified mixture of O2 and
CO2 (ratio 95:5; Carbogen) and was kept at a constant temperature of 37řC. The
organ was perfused (perfusion rate: 1.5 ml/min) with a modified solution of Krebs-
Henseleit Buffer (KHB; in mM: 118 NaCl, 4.7 KCl, 25 NaHCO3, 1.2 NaH2PO4, 1.25
CaCl2, 1.2 MgSO4) containing 1% bovine serum albumin and glucose as indicated,
which was permanently gazed with Carbogen and kept at a temperature of moment
37řC. The solution entered the organ via the aorta abdominalis, circulated through
the pancreas, and exited via the portal vein. Insulin was measured from frozen
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samples using the fluorescent immunoassay (order no. 10-1248-10) from Mercodia
according to the manufacturer’s instructions.

This experimental setting was used to test the effect of pharmacologically rele-
vant agents, namely GLP-1, lixisenatide, and SAR1, on insulin secretion. The iso-
lated pancreas was perfused with a buffer (KHB) containing different concentrations
of glucose. Initially, the pancreas was perfused with 5.6 mM glucose to ensure that
any soluble protease in the pancreas was washed out. To investigate the drug ef-
fect, the test compound was added after 6 min at low glucose by switching to a
reservoir containing the compound. After 15 min, the concentration of glucose was
increased to 16.5 mM by switching to a reservoir with high glucose concentration
under the same conditions (testing compound or no drug). The increase to 16.5 mM
in glucose concentration induces glucose-stimulated insulin secretion of the isolated
organ. The effluent was collected in ice-cooled tubes for the measurement of insulin
concentration.

Mathematical Model of Insulin Secretion in the Perfused Pancreas

Pancreatic secretion above basal secretion (SR) is assumed proportional to the
amount X (pmol) of readily releasable insulin in the β-cells [178]:

SR(t) = mX(t). (7.1)

The change in the insulin amount in the RRP X results from the balance between
the insulin secretion rate, the provision Y (pmol/min) of insulin refilling the RRP,
and recruitment of readily releasable insulin XD (pmol/min):

dX(t)
dt = −mX(t) + Y (t) +XD(t) X(0) = 0, (7.2)

XD is responsible for the first phase of secretion and is assumed to be proportional
to the rate of increase of glucose via the constant parameter KD:

XD(t) =


KD

dG(t)
dt , if dG(t)

dt > 0;

0, otherwise.
(7.3)

Further explanations for the constraint can be found in [127, 179].
The provision Y generates the slower second phase and is controlled by glucose

according to the equation
dY (t)

dt = −α [Y (t)− β (G(t)−Gb)] , Y (0) = 0, (7.4)
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where Gb represents the basal value of glucose.
It is worth noting that the provision is not linearly related to glucose concen-

tration, but it tends, with a time constant of 1/α (min), toward a steady-state
value linearly related through the parameter β [pmol/(mmol/l)= 109/l] to glucose
concentration G (mM) above the basal level Gb.

A direct measurement of glucose concentration inside the pancreas was not fea-
sible. Therefore, it was modeled using a sigmoidal function trying to mimic the
experimental protocol:

G(t) = Gb+ Gmax −Gb
1 + e−n(t−th) , (7.5)

where Gmax 16.5 mM represents the maximum glucose stimulus during the experi-
ment, Gb 5.6 mM represents the glucose level during the first part of the experiment,
n controls the steepness of the function, and th is the time at which the switch from
Gb and Gmax is centred. Parameters were based on the following considerations. We
calculated that the solution at high glucose requires ∼0.5 min to reach the aorta
abdominalis through the tubing. Additionally, isolated islets show a delay around
1 min before the initiation of insulin secretion by a step increase in extracellular
glucose concentration [8] [180]. Thus, the function G(t) (Fig. 7.1A) was chosen to
be very steep (n =6) and centred at th =16.5 min, accounting for the delay of 1.5
min due to the sources explained above.

Using a mathematical equation for the glucose concentration allows for an ana-
lytic calculation of the glucose derivative without approximations or delays:

dG
dt = n (Gmax −Gb) e−n(t−th)

(1 + e−n(t−th))2 . (7.6)

Model Identification

All secretory parameters (m, KD, α, and β) are a priori uniquely identifiable.
The parameters were estimated for each perfused rat pancreas, together with a
measurement of their precision, by applying weighted nonlinear least square methods
to insulin data using the SAAM II software.

Weights were chosen optimally, i.e., equal to the inverse of the variance of the
measurement errors, which were assumed to be independent, Gaussian, and zero
mean with unknown constant standard deviation. The variance of the measurement
errors was estimated a posteriori.
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Figure 7.1: A) glucose function (black, left axis), along with its derivative (gray, right axis),
using the selected parameters (Gb = 5.6 mM, Gmax = 16.5 mM, n= 6 and th = 16.5 min). B)
means of estimated insulin secretion profiles with reference data and standard deviation bars in
control (black solid line), glucagon-like peptide-1 (GLP-1; 10 nM, black dashed line), lixisenatide
(10 nM, gray dashed line, gray triangles), and SAR1 (1 µM; gray solid line, gray circles) groups.
C) means of estimated insulin secretion profiles with reference data and standard deviation bars in
control (black solid line), GLP-1 (10 pM, black dashed line), and GLP-1 (10 pM)+SAR1 (0.1 µM,
gray solid line, gray circles) groups. The arrows indicate the time at which the drug was added.

A Bayesian approach was used when the parameter m was estimated with in-
sufficient precision to avoid compensatory issues with the anticorrelated parameter
KD. Because the parameter m in the control group was estimated with good preci-
sion without the Bayesian term, its mean value was used as the prior in the treated
groups when required.
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Indices Definition and Interpretation

Indices of responsivity to glucose of the first (dynamic) and second (static) phases
were also calculated.

The dynamic sensitivity [ΦD (109/l)] is defined as the amount of insulin released
during the first phase normalized by the glucose increment ∆G = (Gmax−Gb) during
the experiment. To calculate the amount of insulin secreted during the first phase,
it is useful to divide compartment X into two components responsible for first and
second phases

X(t) = XI(t) +XII(t), (7.7)
dXI(t)

dt = −mXI(t) +KD
dG(t)

dt , (7.8)

dXII(t)
dt = −mXII(t) + Y (t). (7.9)

and integrate over time both sides of Eq. 7.8 between 0 and Tend, representing the
end of the experiment when XI(t) is back to the steady-state condition:

∫ Tend

0

dXI(t)
dt dt =

∫ Tend

0

(
−mXI(t) +KD

dG(t)
dt

)
dt. (7.10)

Alternatively,∫ Tend

0
dXI(t) = −

∫ Tend

0
mXI(t)dt+

∫ Tend

0
KDdG(t), (7.11)

which gives

XI(Tend)−XI(0) = −
∫ Tend

0
mXI(t)dt+KD(G(Tend)−G(0)). (7.12)

Since at Tend the system is back to the steady state condition, XI(0)−XI(Tend) =
0. We can obtain the quantity of insulin secreted during the first phase from Eq. 7.12:∫ Tend

0
SRI(t)dt =

∫ Tend

0
mXI(t)dt = KD(Gmax −Gb). (7.13)

Finally, normalizing by the glucose increment ∆G = Gmax −Gb, we get

ΦD =
∫ Tend

0
SRI(t)dt/∆G = KD. (7.14)

The dynamic index is a measurement of the stimulatory effect of the increased
rate of glucose on the secretion of readily releasable insulin.
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The static sensitivity [ΦS (109 min/l)] is defined as the ratio between the pro-
vision and the glucose concentration (above the basal level) at the steady state.
Starting from Eq. 7.4, it is possible to calculate the provision at the steady state:

YSS = β(GSS −Gb). (7.15)

Hence, normalizing by the glucose step, and since GSS = Gmax, we obtain the
following:

ΦS = YSS/∆G = β. (7.16)

The model also allows us to quantify the delay time of the second phase T (min).
It is

T = 1
α
, (7.17)

simply, the time constant with which the provision reaches its steady state value,
and it is related to the time required for new granules to become ready for release.

Statistical Methods

Indices of β-cell function were compared between groups with two-sided t-tests
using Microsoft Excel, and P values were Bonferroni corrected to adjust for multiple
comparisons. Linear statistical modeling (using r) was used to assess whether SAR1
(0.1 µM) had an effect in the presence of physiological GLP-1 levels (10 pM) by
including an interaction term in the linear models of the form

Zj = β0 + β1GLP1j + β2(GLP1 · SAR1)j + εj, (7.18)

where j identifies the experiment, Z is one of the estimated β-cell indices (ΦD, ΦS,
T ), β0 is the estimate of the index in the control group, β1 indicates an additional
effect of 10 pM GLP-1, and β2 estimates how much SAR1 further modifies the
index. GLP1j is a factor indicating whether the pancreas was exposed to GLP-1,
and (GLP1 · SAR1)j indicates whether both GLP-1 and SAR1 were present. Two-
sided t-tests were used to evaluate whether the regression coefficients β1 and β2 were
significantly different from zero for each β-cell index.
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7.3 Results: Drug Effect Quantification

Mean insulin secretion profiles of control and treated groups are shown in Figure
7.1B,C along with their standard errors. After a silent phase in which secretion is
at basal values, each profile exhibits the typical biphasic insulin secretion pattern
in response to the glucose step. In some groups the addition of the compound alone
perturbs the basal secretion. This effect was measured by the area under the curve
(between minutes 6 and 15) above basal (before minute 6) of insulin secretion in
the prestimulus state. If it was >9 pmol, corresponding to an average flux of 1
pmol/min above basal, the perturbation was considered significant. In the SAR1
and GLP1+SAR1 groups, the compound significantly perturbed more than half of
the individual pancreases in the basal state.

Individual secretion parameters for each group are summarized in Tables 7.1,2
together with their precision. The ability of the model to fit the data is shown in
Figure 7.1B,C. Precise estimates were obtained for all pancreases in each group.

A significant difference was found in presence of 10 nM GLP-1 compared with
control for all of the responsivity indices (dynamic ΦD, static ΦS, time delay T ); 10
nM lixisenatide had a significant effect on all three indices relative to the control,
whereas SAR1, at a concentration of 1 µM, exhibits a significant difference compared
with the control for the dynamic index ΦD and the time delay T but not for the
static index ΦS (P=0.90) (Fig. 7.2).

Physiological levels of GLP-1 (10 pM) had a significant effect on all three indices
compared with control (Fig. 7.3). SAR1, when administered in presence of 10 pM
GLP-1, was found to have a significant additional effect on both dynamic and static
β-cell responsivity indices. In contrast, no further significant decrease in the time
delay was detectable (Fig. 7.3).

7.4 Discussion

In this Chapter, a mathematical model of insulin secretion for the isolated per-
fused rat pancreas was presented. This type of experiment is used in different kinds
of investigations aimed at evaluating the effect on β-cell functionality of several
factors, such as drugs and secretagogues, but also diet composition and exercise.
Hence, mathematical models that are able to characterize insulin secretion phases
and quantify β-cell function may be useful tools for the analysis of the perfused rat
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ΦD(109l) ΦS(109l/min) T (min) m(min−1)

Control
Rat 1 0.753 (11) 1.072 (10) 23.652 (15) 0.605 (18)
Rat 2 0.809 (11) 1.101 (10) 20.547 (16) 0.892 (18)
Rat 3 1.034 (15) 1.694 (6) 16.273 (13) 0.713 (32)
Rat 4 0.536 (16) 1.566 (10) 26.103 (16) 0.818 (28)
Rat 5 0.701 (14) 1.584 (13) 30.111 (20) 0.636 (30)
Rat 6 0.408 (18) 3.044 (29) 62.383 (34) 1.368 (29)
Rat 7 0.584 (19) 0.767 (5) 12.129 (14) 0.536 (38)
Rat 8 0.854 (14) 1.187 (13) 12.809 (23) 0.698 (26)
Rat 9 0.373 (24) 1.480 (17) 31.211 (24) 1.010 (40)
Rat 10 0.730 (13) 1.585 (6) 19.724 (11) 0.720 (23)
Rat 11 0.660 (15) 1.739 (5) 19.080 (10) 0.757 (24)
MEAN 0.677 1.529 24.911 0.796
SD 0.195 0.589 13.922 0.232

GLP-1 (10 nM)
Rat 1 5.609 (9) 3.419 (4) 8.757 (11) 0.587 (13)
Rat 2 9.735 (8) 4.220 (3) 4.767 (12) 0.758 (14)
Rat 3 10.482 (9) 4.405 (3) 5.617 (10) 0.509 (15)
Rat 4 10.253 (8) 4.140 (3) 3.750 (14) 0.856 (13)
Rat 5 6.488 (8) 4.260 (4) 7.933 (12) 0.858 (10)
Rat 6 10.664 (6) 5.244 (3) 4.968 (10) 0.911 (9)
MEAN 8.872 4.281 5.965 0.747
SD 2.226 0.585 1.956 0.163

Lixisenatide (10 nM)
Rat 1 6.673 (8) 3.074 (3) 5.821 (10) 0.593 (12)
Rat 2 7.791 (11) 3.579 (3) 5.581 (12) 0.610 (18)
Rat 3 10.280 (9) 4.152 (4) 4.493 (18) 0.888 (10)
Rat 4 6.044 (12) 3.198 (5) 6.604 (16) 0.775 (21)
Rat 5 11.281 (10) 4.234 (4) 5.444 (14) 0.577 (15)
Rat 6 2.754 (13) 3.426 (11) 19.350 (19) 0.903 (21)
Rat 7 9.904 (8) 3.707 (3) 3.562 (14) 0.884 (12)
Rat 8 8.665 (29) 2.831 (11) 3.395 (49) 0.746 (51)
MEAN 7.924 3.525 6.781 0.747
SD 2.755 0.498 5.199 0.139

Table 7.1: Individual secretion parameters. Data in parentheses are precision of param-
eter estimates, expressed as % coefficient of variation. ΦD, dynamic responsivity index;
ΦS , dynamic responsivity index; T , dynamic responsivity index; m, secretion rate.
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ΦD(109l) ΦS(109l/min) T (min) m(min−1)

SAR1 (1 µM)
Rat 1 3.445 (8) 1.267 (3) 3.324 (14) 0.900 (13)
Rat 2 2.574 (9) 1.594 (8) 6.678 (17) 0.906 (10)
Rat 3 3.193 (6) 1.601 (4) 9.112 (9) 0.832 (9)
Rat 4 2.828 (7) 1.188 (4) 7.547 (13) 0.846 (12)
Rat 5 5.536 (5) 1.692 (2) 5.374 (9) 0.614 (7)
Rat 6 3.419 (10) 1.538 (5) 4.312 (20) 0.815 (12)
Rat 7 3.929 (11) 2.004 (8) 6.572 (23) 0.899 (18)
MEAN 3.561 1.555 6.131 0.830
SD 0.976 0.272 1.964 0.102

GLP-1 (10 pM)
Rat 1 4.215 (9) 2.433 (7) 13.534 (14) 0.507 (14)
Rat 2 7.247 (10) 2.426 (3) 4.952 (13) 0.495 (16)
Rat 3 8.060 (9) 3.146 (4) 7.578 (13) 0.623 (14)
Rat 4 4.219 (10) 3.537 (8) 13.233 (17) 0.800 (11)
Rat 5 2.790 (9) 1.771 (4) 9.797 (10) 0.577 (14)
Rat 6 4.447 (12) 2.886 (6) 11.545 (14) 0.511 (19)
Rat 7 0.992 (13) 1.007 (8) 13.702 (16) 0.710 (14)
Rat 8 1.336 (11) 1.635 (7) 13.998 (13) 0.708 (13)
MEAN 4.163 2.355 11.042 0.616
SD 2.528 0.845 3.332 0.113

GLP-1 (10 pM)+SAR1 (0.1 µM)
Rat 1 5.584 (8) 3.301 (2) 5.799 (8) 0.669 (14)
Rat 2 7.588 (7) 4.674 (4) 9.173 (11) 0.878 (9)
Rat 3 6.533 (7) 2.745 (4) 6.555 (14) 0.953 (8)
Rat 4 4.566 (6) 2.419 (3) 6.585 (10) 0.868 (9)
Rat 5 5.217 (5) 2.539 (3) 7.817 (10) 0.909 (8)
Rat 6 5.032 (9) 3.415 (3) 6.873 (11) 0.729 (12)
Rat 7 5.217 (9) 3.314 (3) 5.103 (12) 0.856 (11)
MEAN 5.677 3.201 6.843 0.837
SD 1.038 0.763 1.332 0.101

Table 7.2: Individual secretion parameters. Data in parentheses are precision of param-
eter estimates, expressed as % coefficient of variation. ΦD, dynamic responsivity index;
ΦS , dynamic responsivity index; T , dynamic responsivity index; m, secretion rate.
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pancreas experiment.
The C-peptide minimal modeling approach has been applied successfully in hu-

mans to a variety of glucose stimuli, e.g., intravenous glucose tolerance test (IVGTT)
[178], oral glucose tolerance test (OGTT) [181], and up- and downgraded infusion
[173]. Since the change from low to high glucose concentration is very fast, as dur-
ing an IVGTT, we start from the C-peptide minimal model used previously in this
experimental setting and built a new version of the model suitable for the perfused
pancreas protocol. The model is simpler in the sense that there is no need to include
the C-peptide dynamics, since the insulin secretion profile is measured directly. The
model assumes that glucose can stimulate pancreatic insulin secretion via both a
dynamic control proportional to its rate of change and a static control related to
its concentration. The dynamic control is connected to the model assumption of the
presence in the β-cell of a pool of readily releasable insulin, which can be promptly
secreted when glucose increases above its basal value and whose recruitment is pro-
portional via the parameter KD to the glucose increase rate. From Eq. 7.10, is easy
to verify that the product of KD and the total increase in glucose concentration in
the rising portion of the glucose function measures the total amount of releasable
insulin stored in the β-cell before the experiment, which corresponds to the variable
X0 in the IVGTT model (C-peptide total amount). The static control is related
to an insulin secretion provision process, which accounts for a slower and delayed
component of secretion.

The time course of insulin secretion in response to a glucose stimulus is bipha-
sic, and each phase can be described by a β-cell responsivity index. A dynamic
responsivity index (ΦD; describing the first phase) reflects the ability of the β-cell to
respond to the rate of an increase in glucose levels, whereas the static responsivity
index (ΦD; describing the second phase), together with the time constant T , depicts
the response to above-basal blood glucose.

Drug Effect Case Study

We applied the model for the assessment of pharmacologically relevant agents,
namely the gut hormone GLP-1, a potent synthetic GLP-1 receptor agonist (lixisen-
atide), and a GPR40 agonist (SAR1). This particular case study becomes meaningful
considering that drug development has the need to assess and quantify the action
of antidiabetic drugs in earlier preclinical phases, when the experimental setting of
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Figure 7.2: Boxplot of responsivity indices dynamic (ΦD; A), static (ΦS ; B), and time delay
(T ; C), for control, GLP-1 (10 nM), and SAR1 (1 µM). Superimposed individual values. On
each box, the central mark is the median, and the edges of the boxes are the 25th and 75th
percentiles. Most extreme data points non considered outliers are delimited by horizontal lines.
Difference between groups was assessed using a t-test with Bonferroni correction for multiple test.
? ? P < 0.0033(0.01/3);? ? ?P < 0.00033(0.001/3).
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the perfused rat pancreas is often used.

Our data show that GLP-1 amplifies both the static and dynamic β-cell respon-
sivity in a dose-dependent fashion. At the higher dose applied (10 nM), we found a
13.1-fold increase in ΦD and a 2.8-fold increase in ΦS relative to the control. Our
results show that lixisenatide at the same concentration (10 nM) of GLP-1 reaches
an improvement of β-cell function that is similar to GLP-1 (improvement of 11.7-
and 2.3-fold in ΦD and ΦS, respectively). Since type 2 diabetes is characterized by a
loss of the early phase of insulin secretion [10], the treatment may benefit especially
from the pronounced enhancement of the first phase, as reflected by the dynamic
responsivity index.

Compared with the control experiment, 1 µM SAR1 showed a 5.3-fold improve-
ment in ΦD, whereas no effect on ΦS could be detected. However, it should be noted
that the delay constant T was reduced from 25 to 6 min. Thus, 1 µM SAR1 has
an effect on the second phase, but this is apparent only in its faster onset and not
in the magnitude. Other studies using rat [182] or mouse [183] islets found that
GPR40 agonists stimulated the magnitude of the second phase. The perfused rat
pancreas in control conditions presents a larger second phase compared with the
isolate islet data (Fig. 7.1) [165]. The magnitude of a small second phase, as seen in
the isolated islets, might be readily increased by GPR40 agonists. This may explain
the discrepancy between our results and those in [182, 183].

Under physiological conditions, in the postprandial state, incretin levels increase
and will have an effect on the insulin secretion from the pancreatic islets. This
enhancement is not reflected in the basic control experiment, where only the glucose
but not the incretin concentration is increased. To approximate the physiological
situation, we added 10 pM GLP-1 to the perfusate during the experiment. This
GLP-1 concentration is approximately the one found postprandially in the rat [184].
Already under this condition, a substantial increase in β-cell function compared
with the incretin-free experiment is observed (6.2-fold increase in ΦD and 1.5-fold
increase in ΦS, whereas T was reduced to 11 min).

In a previous work [185], where glycemic profiles in an OGTT were matched in
the same human subjects by means of an intravenous glucose infusion, an increase of
58% for the static index due to incretin effect was found, which is similar to the 54%
increase with 10 pM GLP-1 in the perfused rat pancreas found here. The changes to
ΦD are not directly comparable due to the different patterns of the glucose profiles
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Figure 7.3: Boxplot of responsivity indices dynamic (ΦD; A), static (ΦS ; B), and time delay (T ;
C), for control, GLP-1 (10 pM), and GLP-1 (10 pM)+SAR1 (0.1 µM). Superimposed individual
values. On each box, the central mark is the median, and the edges of the boxes are the 25th and
75th percentiles. Most extreme data points non considered outliers are delimited by horizontal lines.
Difference between groups was assessed using a linear model, as explained in Statistical methods.
?P < 0.05 ? ? P < 0.01;? ? ?P < 0.001.
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during an OGTT and in the perfused pancreas experiment.
What effect could we expect if we were to add SAR1 on top of 10 pM GLP-1?

Using the 10 pM GLP-1 experiment as a control, we see a 1.4-fold increase in static
and a 1.4-fold increase in dynamic responsivity by SAR1. It is interesting to note
that SAR1 (1 µM) is not able to improve static β-cell responsivity in the absence of
a physiological GLP-1 receptor stimulation, whereas even 0.1 µM SAR1 has an effect
on ΦS in the presence of 10 pM GLP-1. This could indicate a synergistic effect of
the Gαs-coupled GLP-1 receptor and the Gαq-coupled GPR40 on the second phase
of insulin secretion, although care must be taken because of the different SAR1
concentrations used. Overall, this analysis demonstrates that, even in the presence
of postprandial GLP-1 levels, SAR1 leads to an additional improvement of β-cell
function in the isolated perfused pancreas.

The work presented here, illustrates how the mathematical model is able to assess
the ability of a compound to improve β-cell function in an ex vivo experiment, as it is
used in the early phases of drug development. The parameter estimates obtained here
represent valuable information to rank and classify compounds in development (e.g.,
by the ability of acting predominantly on one type of β-cell responsivity). Moreover,
these values (or their relative changes) can be transferred to a mathematical model
of the human glucose insulin system, e.g., the meal simulation model in [186] that
also contains parameters for static and dynamic β-cell responsivities. Here, the effect
of the new compound on insulin secretion and postprandial glucose lowering can be
simulated, thereby translating results from an animal experiment into the human
situation (certainly taking into account the uncertainty arising from the species
difference). Including the pharmacodynamics of the compound into the model could
then make the simulations even more relevant for the assessment of a potential drug.
Such a process would then give valuable guidance for the design of first clinical trials.
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Conclusions

Diabetes is a worldwide problem and the number of people with diabetes is
constantly increasing due to several reasons including population growth, age, and
increasing prevalence of obesity and physical inactivity. In particular, the long-term
complications make diabetes a social and economical problem, since they have great
impact on subject daily life and its management is financially expensive. As a conse-
quence, considerable efforts have been made to understand better different aspects
of this disease.

Glucose regulations is the result of a complex regulatory network in which differ-
ent hormones are involved. The focus of this Thesis was on two hormones involved
in this regulation: insulin, secreted by pancreatic β-cells, and GLP-1, secreted by
intestinal L-cells. In advanced type-2 diabetes, both insulin and GLP-1 secretion is
attenuated. In this Thesis, a combination of experimental data and mathematical
modeling was used to get a deeper insight into the cellular mechanisms involved in
insulin and GLP-1 secretion.

Insulin and pancreatic beta-cells

The stimulus-secretion pathway in pancreatic β-cells is well established, with
electrical activity playing a pivotal role. Following metabolism of the sugars, ATP-
sensitive potassium channels (K(ATP)-channels) close in response to the elevated
ATP/ADP-ratio, which triggers action potential firing and Ca2+-influx through
voltage-gated calcium channels. The resulting increase in intracellular calcium leads
to insulin release by Ca2+-dependent exocytosis.
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However, human β-cells show complex and heterogeneous electrophysiological
responses to ion channel antagonists. Therefore, sometimes it is difficult to reach
clear conclusions regarding the participation of certain ion channels in the various
phases of electrical activity, in particular when electrophysiological responses are
non-intuitive. A deeper understanding of the role of ion channels in electrical activity
and insulin secretion could have important clinical benefits, since it might help in
the development of new anti-diabetic drugs. The mathematical modeling can help
in interpreting various electrophysiological responses, and in particular, to study the
effect of competing effects and cell heterogeneity.

The first model of electrical activity in human β-cells was presented in [84]. In this
Thesis, SK-channels and Ca2+ dynamics were included in the previous mathematical
to investigate the heterogeneous and non-intuitive electrophysiological responses to
ion channel antagonists. By using the model paracrine signals were also studied,
and slow oscillations were simulated by adding a glycolytic oscillatory component to
the electrophysiological model. The model was further developed by including Kir
channels, which resulted in a clear improvement of the model behavior.

From the modeling of electrical activity we moved to the modeling of calcium
diffusion and buffering. The TIRF microscopy data allowed us to monitor calcium
levels during stimulus in two groups: the granules that undergo exocytosis in re-
sponse to depolarization and the ones that do not. Simulations were performed us-
ing the modeling program CalC, which implements calcium diffusion and buffering.
Calcium levels and the corresponding R-GECO signal were evaluated at different dis-
tances from the channel. The comparison of the simulations to the TIRF microscopy
data allowed estimating the average distance from the channel of the granules that
undergo exocytosis.

The calcium diffusion simulations were coupled to a model for insulin granule
exocytosis to investigate exocytosis in terms of vicinity of granules to the Ca2+-
channel and affinity to calcium. The fusion probability was evaluated both in a single
channel, and in a cluster-of-channels context, to assess the importance of channel
opening time versus current intensity. Simulations confirmed that the hypothesis
of a cluster significantly increases the fusion probability and a certain dependence
between the channels in the cluster is functional advantageous.

In a multiscale context, the natural step was to move from a cellular point of
view to a bigger scale considering the whole pancreas. A minimal model specific for
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the perfused pancreas experimental setting was built and used for the assessment of
pharmacologically relevant agents to quantify and differentiate their effect on insulin
secretion.

GLP-1 and intestinal L-cells

Contrarily to the β-cells, the stimulus-secretion pathway in L-cells is still poorly
understood, although it is known that GLP-1 secreting cells use SGLT1 and K(ATP)-
channels to sense intestinal glucose levels. Electrical activity then transduces glucose
sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement
with glucose triggering both a depolarizing SGLT current as well as leading to closure
of the hyperpolarizing KATP current is of more general interest for our understand-
ing of glucose-sensing cells.

In this Thesis, the first mathematical model of electrical activity underlying
GLP-1 secretion was presented and used to dissect the interactions between the two
glucose-sensing mechanisms in primary mouse colonic L-cells and in GLUTag.The
results illuminate how the two glucose-sensing mechanisms interact, and suggest that
the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity.

Future Developments

Models of electrical activity in β-cell have been frequently restricted to rodents,
due to the availability of electrophysiological data. However, human β-cells show
important differences to β-cells from mice, for example with respect to the patterns
of electrical activity observed, which consist of very fast bursting or spiking in human
cells and never the classical slower burst pattern observed in rodents. Consequently,
models of human β-cells are in an early stage compared to models of rodent β-cells.
However, the former are likely to evolve rapidly and contribute to the understanding
of the pathogenesis of type 2 diabetes.

Recently, thanks to the new available techniques, furthers insights into the ex-
ocytotic mechanisms in β-cells have been obtained. However, still many aspects
remain unknown. The results presented here aims at investigating the location of
granules and their affinity to calcium with the modeling support. However, it is only
a preliminary analysis, which needs further evaluation. For example, in the TIRF
microscopy data, the time at which granules undergo exocytosis was not taken into
account. It would be interesting to evaluate if there is any difference between the
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granules that do exocytosis in the first half second of depolarization and the ones
that do it later. Finally, the coupling of diffusion simulations to the exocytosis model
need experimental data, to reach more precise conclusions.

As previously said, the stimulus-secretion pathway in L-cells is still poorly un-
derstood. Hence, there are still many areas to investigate and model.

For example, as for the pancreatic β-cells it would be interesting to model the exo-
cytotic steps in L-cells. This becomes even more intriguing considering that L- cells,
contrarily to β-cells, are polarized cells, featuring distinct plasma membrane do-
mains: apical, lateral and basal. The apical domain corresponds to the one that
faces the intestine lumen, and its function is to sense luminal glucose. The lateral
domain represents the connection to other epithelial cells. Finally, the basal domain
is the one facing the blood capillary, where GLP-1 should be released. As a con-
sequence, the exocytotic process becomes a spatial problem too, where the glucose
sensing in one compartment should be transferred and translated into exocytosis in
another compartment. The modeling of L-cells within an epithelial layer, with dif-
ferent ionic and nutrient concentration gradients across the apical and basolateral
surfaces, might help in understanding the diversity in response between in vivo and
in vitro experiments, where the cell polarity is lost.

Furthermore, intestinal L-cells are not uniformly distributed along the long in-
testinal tract, but they are primarily found in the ileum and colon, while few are in
the duodenum and jejunum. In this context, modeling of the whole intestinal tract
with different time for the glucose increase would be an intriguing issue.

This modeling could be the bridge between the cellular mechanism and the whole
body GLP-1 secretion. To our knowledge, a minimal model for GLP-1 secretion is
still not available. In fact, to better understand the glucose regulatory network, the
different hormones should be considered and the development of a minimal model for
the GLP-1 secretion could help in understanding the interplay between the different
hormones.
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[28] J. Rizo and T. C. Südhof, “The membrane fusion enigma: SNAREs, Sec1/Munc18
proteins, and their accomplices-guilty as charged?,” Annu Rev Cell Dev Biol, vol. 28,
pp. 279–308, 2012.

[29] S. Barg, X. Ma, L. Eliasson, J. Galvanovskis, S. O. Göpel, S. Obermüller, J. Platzer,
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