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Abstract

Understanding and predicting the binding process of a protein with drug
molecules or other proteins is nowadays of fundamental importance for boosting
advancements in medicine and the production of protein-based therapeutic
products. In this thesis we investigated three main aspects that are important
for the comprehension and modeling of binding processes: (i) protein-solvent
interactions (ii) change of the volume of the protein configurational space, and
(iii) protein configurational modifications.
The study of the first two aspects led to the development of new methodologies
in the field of knowledge-based potentials (KBPs). In particular we took
into account entropic contributions to the binding affinity between proteins
and demonstrated how this improves the performances of a simple KBP in
estimating it. Moreover, the utilization of a simple physical-modeled KBP as a
playground allowed us to recognize some of the limitations of this statistical
approach: two new KBPs have been developed with the aim of overcoming these
issues. The performances of one of these new methods in discriminating native
state of proteins have proven to be comparable to that of other state-of-the-art
methods.
In order to model the local protein configurational changes in the binding
interface we developed a sophisticated numerical algorithm inspired by robotics.
Through a generalized notion of concerted rotation, the developed method
allows to locally perturb the backbone configuration of a certain region by
modifying only an arbitrary number of degrees of freedom while leaving all
the others unchanged. The efficiency of the methodology capitalizes on the
inherent geometrical structure of the manifold defined by all chain configurations
compatible with the fixed degrees of freedom. We then validated the proposed
algorithm on few pedagogical examples.





Abstract

Comprendere il meccanismo di binding tra diverse proteine e tra proteine e
piccoli ligandi è oggi di fondamentale importanza per accelerare lo sviluppo di
prodotti terapeutici basati sull’utilizzo di proteine. In questa tesi sono state
principalmente approfondite tre tematiche che sono basilari per la comprensione
ed il modeling del processo di binding: (i) interazioni proteina-solvente, (ii)
contrazione dello spazio conformazionale delle proteine dopo il binding e (iii)
cambiamenti conformazionali delle proteine durante il processo di binding.
L’analisi dei primi due aspetti ha portato allo sviluppo di nuove tecniche
nel campo dei potenziali statistici (knowledge-based potentials or KBPs). In
particolare è stato considerato il ruolo di contributi entropici alla affinità di
legame tra proteine ed è stato dimostrato come le performance di un semplice
KBP nel predire le affinitaà di legame migliorino se si tiene conto di questi
contributi. Inoltre l’utilizzo di un semplice KBP come banco di prova ci ha
consentito di individuare alcune limitazioni di questo approccio: nel tentativo di
superare queste limitazioni sono stati sviluppati due nuovi potenziali statistici.
Le performance di uno di questi nuovi potenziali si sono rivelate pari o superiori
a quelle di altri metodi all’avanguardia.
Al fine di descrivere i cambi conformazionali all’interfaccia tra proteine è stato
sviluppato un algoritmo che generalizza la nozione di rotazione coordinata e che
permette di modificare localmente un numero limitato di gradi di libertà interni
alla catena, senza perturbarla globalmente. L’algoritmo sfrutta la geometria
della varietà che definisce l’insieme delle possibili configurazioni compatibili
con i vincoli di località imposti per assicurare la convergenza ad una soluzione.
L’algoritmo e’ stato verificato in diverse applicazioni.





Preface

Chapter 2. Section 2.2 is a summary of the work presented in [CGL+12],
here presented with the permission of authors. Figure 2.2 is an adaptation of
a Figure from the same paper. The work presented in Section 2.3.1 has been
published in [SZC+13], of which I am an author.
Chapter 3. Paper in preparation [SZS+].
Chapter 5. The work here presented has been accepted for publication by
PlosOne.
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Thesis outline

Proteins are large biological molecules consisting of a linear chain of amino acid
residues serially linked together. They are main actors in all living organisms
and participate in virtually every biological process within them. The vast array
of functions protein perform include catalyzing chemical reactions (enzymes),
providing structural and mechanical support, and ligand binding; moreover
proteins are involved in DeoxyriboNucleic acid (DNA) replication and signal
transduction.

Nowadays proteins are largely employed in many medical treatments and
pharmacological products. Their applications in medical products have dra-
matically increased in number and frequency since the introduction of the first
recombinant protein — human insulin — in 1982. Despite therapeutic proteins
already have a significant role in almost every field of medicine, this role seems
to be only in its infancy [LBG08].

The biological function of proteins has proved to be related to their three-
dimensional native structure, which is protein natural conformation when put
in solvent in biological conditions. Non native folding often is the leading cause
of diseases in the host and, eventually, his death. Among human diseases caused
by an incorrect folding (proteopathies) are Alzheimer’s disease, Parkinson’s
disease, prion disease, type 2 diabetes and amyloidosis [WL00, CD06, CL97].

Since proteins activity is (at least partly) determined by their three-di-
mensional structure, huge efforts have always been dedicated to structure
determination. Moreover many biological functions involve the formation of
protein-protein or protein-ligand complexes, thus the understanding of such
interaction is of fundamental importance for structure-based design of thera-
peutic proteins.
In the third decade of the twentieth century the development of X-ray spec-
troscopy has allowed scientists to experimentally resolve the structure of the
first biological molecule (hexamethylenetetramine) while crystal structures of
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proteins began to be solved only in the late 1950s, starting with the structure
of the sperm whale myoglobin. This experiment earned Sir John Cowdery
Kendrew the Nobel Prize in 1962. Since then, an increasing number of proteins
have been resolved and more than 98000 protein structures are publicly avail-
able in the Protein Data Bank (pdb) at the beginning of 2015.
The availability of this large amount of data allows and encourages scientists
from all over the world to try to deducing the rules governing protein folding
and activity. During last decades significant progresses have been made in
understanding some important processes in which proteins are involved.

Another field taking advantage of the large amount of experimental data
available is that of native state recognition. Differently from other applications
(Molecular Dynamics and Monte Carlo simulations for instance) this approach is
not applied to understanding the mechanisms ruling processes in which proteins
are involved but is aimed to capture those characteristics that distinguish
proteins in their native configuration from abnormally folded or bounded ones.
The recognition of native protein structures is of fundamental importance
in protein design [KDI+03] (see Chapter 2) and, more generally, in protein
structure prediction [RSMB04, SRK+99]. The instruments by excellence in this
field are Knowledge Based Potentials (KBPs), empirical functions specifically
devised for scoring/benchmarking the goodness of protein structures. The
first KBP has been proposed by Miyazawa and Jernigan in 1985 [MJ85] and
since then many valuable KBP have been introduced and reported in literature
[SRK+99, LK00, KDI+03, RMF08, SR08, JTT92].

Aim of this thesis was to evaluate the feasibility of a new KBP for the study
of protein-protein or protein-ligand binding processes. A good KBP for such
applications should be able to recognize with good accuracy and reliability the
correct binding between two monomers as well as to estimate their binding
affinity.
Three main aspects of key importance to reach our aim have been examined:

• monomer-solvent interactions

• entropic contributions

• protein modifications upon-binding.

The Bayesian Analysis Conformation Hunt (BACH) KBP [CGL+12] was chosen
as testing ground for examining and validating new developed concepts because
of its simplicity and proven ability in recognizing native state of proteins.
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The outline of the thesis is as follows.
InChapter 1 we briefly introduce proteins and recall some notions of biophysics.
The risk in introducing such a vast topic is that of incurring in either errors
or trivialities. Moreover experimental findings in biological areas are prone to
be proven wrong or incomplete by successive studies [Ioa05, GG07, SZP+07,
KPK+09, NFW11]. In the attempt to avoid these risks, proteins are introduced
in a very abstract and unconventional way which should allow anyone to
understand it. However, the reader who has familiarity with the topic will
surely be facilitated in the comprehension of the chapter. This introduction
is not intended to give a comprehensive knowledge on the topic but will deal
mainly with those concepts that are useful for the understanding of central
chapters, along with some hopefully interesting extras. For a more exhaustive
introduction to proteins pleas consult for instance [Whi05, LNC08].
In Chapter 2, after a brief introduction on protein design and KBP we
describe the BACH knowledge based potential that we used as benchmark for
the development and implementation of new features aimed to improve its
performances in recognize the native state of proteins. In the same chapter we
also present and discuss two methods for determining macromolecule surface;
the first method is a simplified version of the Linear Combination of Pairwise
Overlaps (LCPO) algorithm [WSS99] while the second is based on the definition
of the α-shape of a set of points. Both these methods have proved to be more
precise and computationally efficient in determining the surface of protein
complexes with respect to the original implementation of BACH.

In Chapter 3 we discuss the importance of entropic contribution in the
estimation of binding free-energy between two proteins. Starting from the
structures of two monomers and of their complex we exactly computed the rota-
tional and translational entropy loss upon binding. A vibrational contribution
has been estimated by employing an Anysotropic Network Model (ANM), in
which the spring constant has been obtained by matching the mobility profile
of the structures obtained with the ANM with the ones obtained with short
Molecular Dynamicss (MDs). Finally the interaction term has been estimated
by using the BACH score. The total binding free-energies (∆G) of 15 complexes,
obtained as a weighted sum of these four contributions, have been compared to
experimental values.

In Chapter 4 we discuss the limitations hidden in the formulation of KBPs
and propose two different potentials aimed to resolve the observed problematic.
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In Chapter 5 we investigate the possibility of perturbing a small set of
backbone degrees of freedom in such a way that only a limited number of atoms
are affected by the perturbation and no other degrees of freedom are modified.
These constrained backbone modifications can be potentially employed in the
study and modeling of conformational changes of protein-protein interfaces
that occur upon-binding.
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Chapter 1

Proteins

Polymers (poly :many, mers :parts) are macromolecules that play a fundamental
and ubiquitous role in living organisms due to their broad range of physical
properties [Pai97]. They are composed of multiple repeating units of low relative
molecular mass called monomers (mono:single). Depending on the nature of
the monomers, polymers exhibit a variety of architectures (linear or branched).
For instance carbohydrates can be both branched (e.g. amylopectin) and linear
(e.g. amylose); on the contrary nucleic acids (DNA and RiboNucleic Acid
(RNA)) and proteins are intrinsically linear polymers.
This chapter is mainly focused on the properties of proteins and partly on
DNA. Proteins are composed of repeating units which are called amino acid
residues, being the part which remains in the polymeric chain after amino acids
are strung together: we will refer to them as both residues or amino acids.
Units composing DNA are instead called bases.

1.1 Languages

The simple architecture of linear polymers is suitable to be described as a
sequence of symbols that identify the order in which each monomer appears in
the polymeric chain. Each monomer is in fact uniquely identified by a symbol,
usually a character or a short string; the list of symbols necessary to label
different possible monomers of a given class constitutes an alphabet α. Different
classes of polymers require different alphabets in order to be appropriately
described: as an example Tables 1.1 and 1.2 show the International Union
of Pure and Applied Chemistry (IUPAC) alphabets for DNA and protein
respectively.
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Base Name Symbol

Adenine A
Cytosine C
Guanine G
Thymine T

Table 1.1: IUPAC nomenclature for DNA bases

Name Symbol Name Symbol

1 Letter 3 Letters 1 Letter 3 Letters

Alanine A ALA Leucine L LEU
Arginine R ARG Lysine K LYS
Asparagine N ASN Methionine M MET
Aspartic Acid D ASP Phenylalanine F PHE
Cysteine C CYS Proline P PRO
Glutamine Q GLN Serine S SER
Glutamic Acid E GLU Threonine T THR
Glycine G GLY Tryptophan W TRP
Histidine H HIS Tyrosine Y TYR
Isoleucine I ILE Valine V VAL

Table 1.2: IUPAC nomenclature for protein residues

The symbols defined in α, often referred to as letters, can be put together in
a sequential way and according to some predetermined rules to form sequences,
which virtually represent existing polymers of the corresponding class.
The whole set of possible sequences so generated is a formal language and the
set of rules used in the formation process is called grammar. In simple cases,
such this one, the grammar is identified by four elements [BHPS61, Cho56]:

• an alphabet α

• a set of starting symbols, that are symbols not belonging to α and usually
represented inside chevrons 〈·〉

• a list of production rules P, that are used for substituting the start-
ing symbols into combination of starting symbols and/or letters of the
alphabet, here also referred as terminal symbols

• an initial symbol, chosen among the starting ones, that indicate how to
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begin the substitution process.

An empty production rule is often employed to allow the process to end, and
therefore the stop symbol ε is introduced.
For instance all the (finite and infinite) sequences composed by the letters of
the alphabet α can be generated by the grammar G = ({〈S〉}, α,P , 〈S〉) with
production rule P :

〈S〉 |= any symbol defined in α, 〈S〉

〈S〉 |= ε,

where the symbol |= stands for “can be substituted into” or “is defined as” and
〈S〉 is the initial symbol (as well as the only starting one). The first production
rule tells that the sequences can be generated by appending any letter of α to
the end of the existing sequence, in a recursive fashion. The process can go
on indefinitely or can end if the empty production rule 〈S〉 |= ε is used. The
number of letters that form the sequence is called the length of the sequence.

It was experimentally observed that each letter is not equally probable in
DNA and protein languages and that this usage bias is specie-dependent. The
study of the reasons of this bias is still an active research field in bioinformatics
and biochemistry [JH03, SBG+05]. Despite the fact that some persistent char-
acteristic in sequence composition have been found in the realm of prokaryotes
[PMD06], the phenomenon is still under discussion. Among the factors which
have been recognized to influence codon and, consequently, amino acid usage
are the action of mutation, natural selection, and genetic drift [CWB06]. But
many others factors, like translation efficiency [Mer03, Roc04], seem to bias
both codon and amino acid usage.

The degree of identity between two sequences belonging to the same language
is measured by employing a metric definition over the space of sequences. Basic
Local Alignment Search Tool (BLAST) [AGM+90] is probably the most used
method for determining the identity between two sequences (in this thesis we
will refer to it whenever we talk about sequence identity) but various definitions
of distance are used depending on the application.
Indeed the fast growing number of available sequences and the resulting need
to process increasingly larger data sets have pushed toward the development
of new and faster algorithms [Edg10]. A selection of other methods that are
nowadays popular is reviewed in [Not02].
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Figure 1.1: Graphical description of the central dogma of molecular biology. Arrows
depict the information flow from nucleic acids to proteins. Blue arrows are related to
general transfers (believed to occur normally in most cells) while the red ones are
related to special transfers (known to occur, but only under specific conditions, e.g.
in the case of some viruses or in the laboratory). The three other possible transfers
are believed to never occur.

Sequence alignment is the preferred method for the determination of sequence
homology and this is probably the reason why sentences like “X% homologous
sequences” and “X% identity sequences” are commonly used interchangeably,
despite the fact that only the latter is formally correct.

On the contrary to all spoken languages on Earth, protein and DNA
sequences are often pangrammatic sequences, i.e. all symbols defined in their
alphabet often appear at least once along the sequence. For a comparison,
there are no pangrammatic sentences in this whole thesis.

DNA, RNA and protein sequences are closely related by the possibility to
translate one into another. For instance DNA sequences can be translated
into RNA ones and RNA can, in turn, be translated into a protein sequence.
Among the possible nine translations between DNA, RNA and proteins only
six naturally occur Fig. 1.1. The observation that the sequential information
seems to flow from nucleic acid to protein and never back from protein to
either protein or nucleic acid constitutes the central dogma of molecular biology
[C+70].

The existence of the translation process DNA → RNA → protein allows to
define the direction, or order, of RNA and protein sequences once the order of
the corresponding DNA sequence is given. By convention DNA sequences are
ordered from their 3′ end to their 5′ one and, as a consequence, proteins are
ordered starting from their N-terminal monomer to their C-terminal one (see
Section 1.3).
Even if DNA sequences are usually not directly translated into protein ones, it is
possible to define the effective translation that is the result of the two combined
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translations DNA→ RNA and RNA→ protein. In this way each DNA sequence
can be mapped to a corresponding protein sequence by sequentially mapping
each successive triplet of bases (called codons) to one amino acid, as described
by Table 1.3

Table 1.3: DNA to protein conversion table.

First Base Second Base Third Base
T C A G

T
PHE

SER
TYR CYS T

C

LEU

ε
ε A

TRP G

C PRO
HIS

ARG

T
C

GLN A
G

A ILE THR
ASN SER T

C

LYS ARG A
MET G

G VAL ALA
ASP

GLY

T
C

GLU A
G

As can be seen from Table 1.3 different codons are translated into the
same residue and as a consequence a certain amount of information is lost;
sequential information contained in DNA is lossily compressed into a protein
sequence during translation and the process can be more correctly seen as a
lossy compression rather than a mere translation. This redundancy of the DNA
language is of great importance for the evolution of species: a highly redundant
sequence is indeed less prone to be affected by mutations of a single base (single
point mutations) and is therefore more evolutionary stable.

1.1.1 A language of proteins

In this section we will focus on the properties of the sole protein sequences in
light of the facts discussed above.
Physical and chemical properties of protein, and consequently its functions,
are completely determined by its sequence of amino acids. For this reason

11



Figure 1.2: Protein length distribution computed by using 105 protein sequences from
uniref50 database.

protein sequences perhaps constitute the most concrete example of what is
known in ontology as a substance: a thing-in-itself, a property-bearer that must
be distinguished from the properties it bears [Lan98].

The language that describes the universe of protein sequence is generated
by the grammar G = ({〈S〉, 〈T〉}, αprot,P , 〈S〉) with production rule P

〈S〉 |= M, 〈T〉

〈T〉 |= any symbol defined in αprot, 〈T〉

〈T〉 |= ε.

This is a slightly more complicated version of the production rule encountered
in the previous section. The drawback arises from the fact that every protein
sequences begin with a methionine residue at the N-terminal end, with the only
exception of those proteins that undergo to some post-translation processes that
cause a removal of the N-terminal portion of the original methionine-starting
sequence.
The remaining positions in the chain are not constrained to any specific residue,
but nonetheless the sequence of amino acids in proteins are not completely
random. The probability of each amino acid to occur at a given position
along the chain depends both on the position and on the type of previous and
following residues.

Usually protein length range from ∼ 20 to ∼ 103 residues. Lengths distribu-
tion is very peculiar and exhibits a peak in the range of 100− 300 with complex
species having a peak at higher length with respect to less species [BK05].
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1.2 Contact maps

The three-dimensional arrangement of a protein chain in space constitute the
protein tertiary structure.
Describing a protein structure consists in characterizing the position of all
its atoms in space. These information are usually stored in formatted files
[BHN03] (pdb,pdbx,mmcif) and are freely accessible on the web from any of
the Protein Data Bank [BWF+00] servers. A pdb code, or accession number,
is assigned to each protein structure that has been experimentally resolved and
uniquely identifies it.

However, more schematic descriptions can be drawn with much less amount
of information. Indeed a first insight into protein structure can be obtained
by using binary contact maps, that are square matrices having the same size
N of the protein length, and whose elements ∆ij are equal to one if and only
if residues at positions i and j are near in space, whereas they are equal to
zero otherwise. The vicinity relation employed in the definition of the contact
map is usually determined by computing the distance between the residues and
checking if it is lower than a certain threshold value D. For completeness we
introduce in the notation a superscript characterizing the threshold used for
computing the map: ∆ → ∆D. Since the vicinity relation is symmetric the
binary contact map ∆D is symmetric too. The distance between the residues is
typically defined as the distance between two reference atoms or the minimum
distance between the atoms of the residues.
The binary contact map gives information about the topology of the protein
but, in general, does not uniquely identify its tertiary structure [VMDL+08];
moreover not every possible binary matrix corresponds to a physical protein
structure. Nonetheless contact maps are useful for studying in an effective way
the possible folds that a protein can assume and are therefore used to describe
similarity between protein structures [HS96].

As an example Fig. 1.3 shows the contact maps of two proteins (pdb codes
2PEC and 4OMX): interacting residues are highlighted by a blue colored
entry in the matrix; the main diagonal ∆ii (from bottom-left to top-right),
that describes the interaction of each residue with itself, is considered empty.
The first characteristic that can be noticed by looking at contact maps is
the presence of patterns. The most occurring patterns are given by contacts
between pair of residues that follows the relation (i+ k, j− k) and (i+ k, j + k)

with varying k and i 6= j. These patterns correspond to very specific structural
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(a) Contact map of 2PEC pdb file (b) Contact map of 4OMX pdb file

Figure 1.3: Contact maps in which it is possible to recognize a parallel β pattern
(left) or an antiparallel β pattern (right). Alpha helices are present in both contact
maps. A threshold D = 4.5 Å was used in both cases.

arrangements that constitute the secondary structure of proteins.
The former one corresponds to an anti-parallel arrangement of the chain known
as anti-parallel β-sheet.

Different structural arrangement instead contribute to the (i + k, j + k)

pattern.
The case k = 1 is trivial, being due to the fact that each residue is always
connected with both the preceding and the following ones (with the obvious
exception of the terminal residues). Structures corresponding to k = 4 are
called four-helices or α-helices and finally the case k > 4 represents parallel
beta sheets structure.

The probability of detecting a contact between two monomers of a chain
rapidly drops when their separation along the sequence increases and is usually
negligible for distances larger than m = 30 ∼ 35 residues. The curve in Fig. 1.4
shows how the contact probability decreases as a function of the separation
of two residues along the sequence. Even if the probability is a monotonic
decreasing function of the separation distance m, an irregularity at m ∼ 27 is
evident. This irregularity has first been noted by Berenzovsky [BGT00] in 2000
and is at the base of Trifonov’s theory of protein evolution [TKKB01, TB03].

1.3 Tertiary structure

Until now we depicted a very abstract image of proteins by focusing on the
properties of sequences and contact maps. In this section we discuss in details
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Figure 1.4: Probability of observing a contact between two residues at a fixed
separation in sequence. The graph has been obtained by checking the number of
pairs of alpha carbons whose distance is below the threshold of 7.0 Åin the whole
top8000. The peak visible at x ∼ 27 was firstly observed by Berenzovsky.

the characteristics of three-dimensional structure of proteins. The architec-
ture of residues is first examined and subsequently used to understand the
architecture of the whole chain.

Every amino acid shows a similar structure (see Fig. 1.5) with a central
carbon atom, named α-carbon and labeled CA or Cα, which is bonded to an
amine group NH2, to a carboxyl group COOH and to a sidechain R that is
residue-specific. Proline (PRO) constitutes the only exception to this scheme
because its side-chain is bonded to the nitrogen of the amine group to form a
ring.
Side-chains exhibit a large variety of chemical and physical properties that can
be grouped in negatively charged (GLU, ASP), positively charged (ARG, LYS,
HIS) or neutral. Moreover side-chains can be hydrophobic (ALA, VAL, ILE,
LEU, MET, PHE, TYR, TRP) or polar (SER, THR, ASN, GLN) [BR03].

During protein synthesis the amino acidic chain is built by recursively join a
residue to the already formed portion of the chain. During the polymerization
a condensation process takes place between the carboxyl group of the former
sequence and the amino group of the residue to be added. As a consequence
a covalent bond, named peptide bond, is formed between the carbon and the
nitrogen atoms. The significant delocalization of electrons gives the bond a
partial double bond character, which is responsible for the planarity of the four
atoms of the peptide group O C N H.
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Figure 1.5: Amino acid structure. Fig. 1.5a shows the structure shared by all amino
acids except proline. Fig. 1.5b shows proline chemical structure.

Figure 1.6 shows a sketch of the resulting chain. As can be seen the first residue
exposed an amine group NH2 while the last one exposes a carboxyl group
(COOH): for this reason they are called N-terminal and C-terminal residues,
respectively. Peptide linkages, along with N-Cα and Cα-C bonds, form the so
called protein backbone (highlighted with bold lines in Fig. 1.6). Bond length
and bond angles assume a very narrow range of values about their average and
can be thought to be approximately constants.

The planarity of the peptide bond implies that the torsional angle ω, defined
as the angle between the planes CA,C,N and C,N,CA, is either 0 or π. The
two possible isomer forms characterized by these two values of ω are named
cys and trans isomers, respectively. In the folded state of proteins the trans
isomer is overwhelmingly preferred in most peptide bonds, with rare exceptions.
Prolin, on the contrary, is the only residue that is often found in the cys isomer
(roughly 3:1 ratio in trans:cys population versus the roughly 1000:1 typical of
the remaining residues [RM76]). The trans-cis isomerization of proline plays a
key role in the rate-determining steps of protein folding [WWS02].
The conditions of constant bond angles and bond length, together with ω = π

fix the distance of two consecutive α carbons to be 3.8 Å.
The remaining backbone torsional angles are usually labeled with the greek
letters φ and ψ and can be used to fully parameterize the backbone since
they are its only unconstrained degrees of freedom. The distribution of the
pairs (φ, ψ) inside proteins has been firstly studied by Ramachandran who,
in 1963, introduced the Ramachandran’s plot [RRS63]. Ramachandran’s plot
has since then become a standard tool for the determination of protein struc-
ture [MMHT92] and the definition of secondary structures [MS94]. Using an
analysis of local hard-sphere repulsions between atoms that are at least third
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Figure 1.6: A sketch of the architecture of a protein. Residue side-chains R are
labeled with consecutive integers. The protein backbone is highlighted in bold.

neighbors, Ramachandran constructed a steric map of the Ramachandran’s plot
that predicted the commonly allowed αR, αL and β regions and has become
the standard interpretation of the Ramachandran’s plot. Figure 1.7 shows
the Ramachandran’s plot obtained from the structures of the top500 database.
Despite the fact that various studies have refined the calculation of the Ra-
machandran plot [Ram68] the shape of the allowed regions of the diagram is
not perfectly understood and is yet a subject of study [HTB03].
Side chain configurations are certainly not frozen and different degrees of

freedom are associated to different residue side chains. The free degrees of
freedom of residue side chains play an important role in protein folding [BD94]
and protein-protein interaction [Zac03]. Despite recent advantages in the un-
derstanding of the protein folding mechanism [MLM02, CT93, Bak00], the
folding process of a protein in yet not well understood. Among the driven forces
responsible for the correct folding are the hydrophobic effect and inter-atomic
interactions between the atoms of the protein, but [Bak00] suggests that folding
rates and mechanisms are largely determined by the topology of the native
(folded) state.
Following the linguistic metaphor of Section 1.1, and in analogy with the
definition of word in spoken languages as the “minimum unit with semantic or
pragmatic content”, we define a word in the context of protein language as the
minimum (sub-)sequence that exhibit a well defined native structure, indepen-
dently from the eventual presence and nature of other residues belonging the
same chain. This concept correspond to the definition of protein domains in
biology.

The thermodynamic properties of a polymer composed of N monomer, by
virtue of the polymer linkage, is different from that of a gas of N isolated
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Figure 1.7: Ramachandran’s plot obtained from the structures of top500. The density
has been normalized: red regions correspond to highly favored values while blue regions
are less favored. The highly disfavored configurations, whose probability is less than
10−4, are represented in white (see [CAH+09] for the definition of favored/disfavored
regions).

monomers at any nonzero temperature T . Unlike gases, polymers would not
occupy the whole available volume in order to maximize their entropy. This
brings in a quantity very special to polymers, namely the equilibrium size of a
polymer, in addition to the usual thermodynamic quantities.
The size of a protein, to be distinguished from its length, is quantified through
two quantities called end-to-end distance Re and radius of gyration Rg: the
former measures the distance between the first and the last residues while the
latter is the average root mean square distance of the protein atoms from their
center of mass. If the three-dimensional position of the α-carbon of residue
k is denoted as r0

k the end-to-end distance and the radius of gyration can be
computed as

Re = ||
(
r0

1 − r0
N

)
|| (1.1a)

R2
g =

1

N

∑
k

(
r0
k − r̄0

)2
, (1.1b)

where the vector r̄0 is the average position of all the alpha carbons of the
structure.
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1.4 Protein size

The dependence of the polymer size on its length and how this dependence
affects other thermodynamic properties are among the main topics in the field
of polymer physics.
The success of exact methods, scaling arguments and the renormalization
group crafted the statistical physics approach to polymer physics into a well
defined and recognized field. These topics are covered in various monographs
[Yam71, DCJ90, BGM13]; here we briefly introduce a simple model of polymer
chain, called Freely Jointed Chain (FJC) model, and summarize some results
of the famous Flory’s theory [FV+69].

A FJC is a flexible chain composed by N monomers that are serially linked
one to another to form a linear chain. The bonds variable τj, i.e. the direction
of the vector connecting two consecutive monomers at positions rj and rj−1,
is supposed to have a fixed length |τj| = b; the flexibility is expressed as an
absence of correlation between any two bonds

〈τi · τj〉 = b2δij. (1.2)

It can be shown [BHM05] that the end-to-end distance of a FJC follows the
gaussian distribution

P (Re, N) =

(
3

2πσ2

) 3
2

exp

(
−3R2

e

2σ2

)
, (1.3)

in which the variance, given by σ2 = Nb2, also corresponds to the expected
value of the square of the polymer size 〈R2

e〉 = Nb2. If one assume a functional
dependence of the end-to-end distance on the chain length of the form

< Re >= Nν b, (1.4)

where ν is a size exponent, the FJC model predicts ν = 1
2
.

The FJC model describes an ideal (non-interacting) chain in which the
orientation of bonds are not correlated along the chain. A simple way to
introduce the steric effects between non-consecutive monomers is to consider
an hard-sphere repulsive energy proportional to the excluded volume Vexcl of
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one monomer pair times the number of monomer pairs per unit volume

repulsive energy ∝ N2

R3
e

Vexcl; (1.5)

notice that the available volume is supposed proportional to R3
e. Once the

entropy of the chain is computed from Eq. (1.3)

S(Re, N) ∝ − R2
e

Nb2
, (1.6)

the total free-energy of the system can be estimated as a linear combination of
the energetic term in Eq. (1.5) and of the entropic term in Eq. (1.6):

F (Re, N) = β0 + β1
N2

R3
e

Vexcl + β2
R2
e

Nb2
, (1.7)

where β0, β1 and β2 are three temperature-dependent parameters that account
for the undetermined proportionality constants in Eq. (1.5) and Eq. (1.6) as
well as for the remaining parts of the free-energy. The expected size of the
polymer can be computed by minimizing the free-energy with respect to the
end-to-end distance. As a result the size exponent ν for a purely repulsive
chain is predicted to be ν = 3

5
.

The case in which monomers attract each others can be solved by simply
noting that, in a more or less compact packing of hard spheres, the volume
enclosing the system is roughly proportional to the number of monomers, and
therefore ν = 1

3
.

It is therefore possible to distinguish three regions in the phase diagram of
a polymer:

• a compact phase, described by a size exponent ν = 1
3
, that is dominated

by the effective attraction between the monomers

• a swollen phase, described by a size exponent ν = 3
5
, in which the behav-

ior of the polymer is dominated by the hard-sphere repulsion between
monomers

• an intermediate phase, described by a size exponent ν = 1
2
, in which the

effects of attraction and repulsion between the monomers compensate
each other and as a consequence the end-to-end distance distribution is
that of an ideal gaussian chain.
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1.5 Fluctuations

Proteins in the folded state are not rigid but fluctuate near equilibrium positions
and sample numerous conformations in the neighborhood of their native confor-
mation [FSW91, ADJ+01] . These fluctuations are usually small in magnitude,
not exceeding several Ångstroms, and lie in the sub-nanosecond frequency range.
The details of the atomic motion due to equilibrium fluctuation can be in prin-
ciple elucidated by MD simulations and by using ad-hoc all-atom empirical
potentials. This approach however becomes computationally inefficient when
increasing the size of the system. Therefore coarse-grained protein models and
simplified force fields therefore becomes particularly appropriate for describing
the collective motions of large complex systems [BEJ+99, ADJ+01] that can not
otherwise be investigated with atomic models [BEJ+99, BJ99, KG99]. A first
approximation that can be done is considering an harmonic approximation to
the real potential function and to describe the system as a network of coupled
harmonic oscillators.
By assuming that each residue k at position rk is assigned a mass mk, the
Lagrangian of the system can be written, with harmonic approximation, as

L =
1

2
q̇TMq̇ − 1

2
qTHq, (1.8)

where q are a set of generalized coordinates describing the atom positions and
M is the mass matrix

Mij =
∑
k

mk
∂rk
∂qi

∂rk
∂qj

. (1.9)

The matrixH is instead the Hessian matrix of the potential energy with respect
to the generalized coordinates. This system can be compared to a system of
uncoupled harmonic oscillators by introducing the change of variables q = Uθ

such that
UTMU = I (1.10a)

HU = MUΛ, (1.10b)

with Λ diagonal: the resulting system of harmonic oscillators is described by
the equations θ̈i = −Λii θi = −ω2

i θi. We can take advantage of this mapping
in order to compute the partition function Q

Q =
∏
i

2π

βhωi
(1.11)
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and the free-energy F

β F = 3N ln

(
βh

2π

)
+
∑
i

ln (ωi) (1.12)

of the original system, where we denoted h the Plank’s constant and indicated
with β the inverse temperature, N is the number of residues and 3N the total
number of degrees of freedom. We will be interested in the entropic contribution
to the free energy:

s

KB

= −
∑
i

ln(ωi)− 3N ln

(
β~
e

)
(1.13)

. Computationally the procedure to obtain the matrices Λ and U is as follows.
Defined ΛM and UM as the eigenvalue matrix and the eigenvectors matrix
obtained from the diagonalization of the mass matrix M , the matrix Λ is the
eigenvalue matrix of HM , where

HM = Λ
− 1

2
M UT

MHUMΛ
− 1

2
M . (1.14)

The eigenvectors matrix U ′ of HM defines instead the matrix U

U = UMΛ
− 1

2
M U ′. (1.15)

In ANM, each pair of residues is assumed to be coupled by harmonic
potential

Vij =
1

2
k
(
rij − r0

ij

)2
, (1.16)

where rij is the distance between residues i and j, while r0
ij is the equilibrium

distance between the two residues in the native state. No distinction is made
between different types of amino acids, so that a generic force constant k is
adopted for the interaction potential between all pairs of sufficiently close
residues. The success of ANM is due to its simplicity and, at the same time, to
its ability to predict many equilibrium properties related to collective modes of
motion.
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Chapter 2

Knowledge Based Potentials

Since the early 1980’s [MJ85], scientists have been trying to use the ever-
increasing data availability about protein structure and function to redesign
existing proteins, and more recently, to design entirely new proteins. Many
promising designing methods have been proposed in the last decades [DWL89,
BBL+95, DM97, HPT+98, KDI+03].

Protein design consists the creation of novel protein sequences with arbi-
trarily chosen three-dimensional structures [RR89]. Given a target structure,
the design process can be coarsely divided into two steps.
The first step consist in the proposal of a test sequence S that, during the
second step, has to be tested with some suitable and specific method. The test-
ing methods usually takes advantage of the observed regularities exhibited by
protein structures in order to assess the quality of the proposed protein. Indeed
different types of amino acids, having their own chemical features, are found in
different strategic positions of the structure to stabilize the fold. A collection
of carbon-rich amino acids, like leucine and phenylalanine, are usually placed
inside the protein, and lock perfectly together. On the other hand, charged
amino acids, such as lysine and aspartic acid, are typically spread across the
surface to make the protein soluble in water. Hydrogen-bonding amino acids,
such as serine and asparagine, are spread in strategic positions to tie different
portions of the chain together. Finally, glycine and proline are added to redirect
the chain in the proper direction. This combination of favorable forces locks
the protein chain into a stable and compact structure.
The two steps described above are iterated several times and the sequence that
better fit the target structure is finally named the designed sequence.
Ideally the iteration would happen over every possible sequence having the
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right length but this is practically impossible: indeed even enumerating all
the sequences of a small protein composed of only 30 residues is unfeasible
with modern computers. The solution is restricting the search space to some
subset of sequences with desired characteristics such as a reasonable ratio of
hydrophobic and hydrophilic residues. The test sequence is often obtained by
modifying the sequence of a protein with a structure similar to the target one
(protein redesign).

In order to design a protein that will successfully fold the previously de-
scribed steps are not sufficient and to assure that the protein only has one
stable structure is also necessary. Indeed any other fold compete with the
desired stable structure thus interfering with it. Therefore designing a stable
protein structure is not enough and the design of a protein structure that is
unstable in every other conformation is needed.

We focused our attention on a class of methods that are most frequently
employed in the second stage of protein design and that are referred to as
KBPs. Despite their popularity and success [KDI+03] in the field of protein
design, the application of these methods is also exploited in other areas where
the validity and accuracy of a proposed tertiary structure is of fundamental
importance, as for instance protein structure prediction and refinement. Indeed
many of the several scoring functions that have been proposed for recognizing
protein native structures [FVM07, DWL06, MSE03, ZZ02, FS06, RMF08] are
rooted on KBPs. Broadly speaking KBP are energy functions derived from
databases of known protein conformations that empirically aim to capture
the key aspects of the physical chemistry of protein structure and function.
As benchmarked during the biennial Critical Assessment of protein Structure
Prediction (CASP) [MFK+09], the performances of KBPs in the recognition
of native states are reasonably good, but significant room for improvement
remains. For the advantage of the scientific community, many of these methods
are publicly available through web servers so that users may have direct access
to scoring functions for quality estimation of their own protein structural
models.

2.1 Assess the quality of a structure

KBPs are potential functions that associate a real number to the three-dimen-
sional configuration of a (macro-)molecule. The molecular structure is often
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represented by mean of a coarse-grained model, in which groups of atoms are
merged together into a single effective unit or particle. The term knowledge
based reflects the fact that the parameters modulating the potential are inferred
from experimental data, typically from the knowledge of the three-dimensional
structure of a large number of macromolecules. The aim of KBPs is to take
advantage of the availability of such data in order to estimate how much a
molecular structure resembles its (unknown) native structure. Since the native
structure corresponds to the minimum energy conformation of the protein,
KBP usually try to describe in an effective and coarse-grained fashion all the
inter-atomic interactions that stabilize the protein. Similarly to physical poten-
tial energies KBPs assign a negative (favorable) score to events that happen
more frequently than expected and positive score to rarer events. The expected
probability of an event is called a priori probability and acts as a reference for
distinguishing between favorable and non favorable interactions. The set of all
a priori probability constitutes the reference state of the KBP.

All KBP are based on a common theoretical framework and are specified
by four elements:

• a base knowledge

• chain representation

• event definition

• reference state

The knowledge on which the potential is based is usually constituted by a
(preferably large) set of protein structures. The choice of the data-set is therefore
fundamental and has to be performed carefully, since different classes of proteins
(globular, fibrillar, ...) are expected to exhibit different effective interactions. A
good KBP must be at least robust over the change of starting data-set, i.e. the
parameters estimated from two different (but equivalent) data-set of protein
structures must be the same within the errors.
The macro-molecule representation is at the core of the KBP formulation.
Indeed particles used to represent the structure constitute the interacting units
upon which the potential will act. In case the macromolecule is a protein the
natural choice for such units are the residues themselves but other choices, such
as functional groups or single atoms, are equally appropriate.
The interactions between structural units are usually defined in a coarse-grained
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way themselves, by choosing a set of events to be associated to the interactions.
Typical events are “A particle of type α and particle of type β are found at
a distance r ±∆r” or “A particle of type α and particle of type β are found
at a distance r < r0” or again “A particle of type α and particle of type β are
hydrogen-bonded”, but infinite other definitions are possible. Since the set of
events is often chosen to mimic different interaction that can take place between
pair of particles, we introduce the concept of interacting class in such a way that
each event can be described by the sentence “The interaction between particle
of type α and particle of type β belong to interaction class `”. Each event
can therefore be identified by three indexes: the first two (α and β) identify
the pair of particles while the last one (`) identifies the kind of interaction
that occurs between the two. It is important to notice that the choice of the
interacting classes is equivalent to imposing a functional form to the potential.
The definition of the interacting classes is in general not knowledge based but
motivated by physical or chemical reasoning.
Notably an intimately dependence of the definition of the interacting classes on
the coarse-grained level used for describing the structure exists. For instance if
particles are composed of a large group of atoms different relative orientations
of two particles could in principle lead to different physical interactions between
them. In addition the loss of details induced by the coarse grained should be
integrated by specialize the interaction classes.

In order to estimate the statistical interaction associated to an event it is
necessary to set an expected probability p̃`α,β for that event. The choice of this
reference probability is highly non trivial and largely discussed in the literature
[Mue02, ZZ02, LZZZ04]. The observed probability p`α,β is instead computed
from the previously selected database. The score associated to the event is
finally estimated as

ε`α,β = −KBT · log

(
p`α,β
p̃`α,β

)
, (2.1)

as proposed in [Sip90].

2.1.1 Solvent

One aspect of the formulation of KBPs that we have omitted in the previous
section but deserves to be examined is the role of interactions between the
protein and the solvent [MJ85]. Indeed even if the folding process has not
been understood yet (and is still far from being understood) it is known that
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Figure 2.1: A graphical sketch of the solvent accessible surface (blue line) of a group
of atoms (grey circles) compared to their van der Walls surface (red lines). The water
molecule is assumed to roll around atoms: during this motion the center (yellow dot)
of the water molecule (blue circle) slips onto the solvent accessible surface.

protein-solvent interactions are crucial in determining the correct fold of a
protein [BB01, Jac06].
From a practical perspective modeling the interactions happening between
protein and solvent is fundamentally different from the case of interaction
between particles inside the protein structure.
The first challenge arises from the fact that experimental three-dimensional
coordinates of solvent molecules are usually not present in pdb files. In order
to overcome this problem, the solvent is often modeled as an homogeneous
medium in which the protein is immersed (implicit solvent). However, this
approach introduces new challenges, due to the continuum nature of the solvent.
Indeed, since physical solvent molecules are missing it is not possible to talk
about residue-solvent interaction but more precisely about the probability that
a particle is interacting with the solvent. If this probability is zero we denote
the particle as buried ; otherwise it is exposed to the solvent. The degree of
exposure of a particle to the solvent is measured by the area in Å2 of the
interface between the solvent and the particle itself.

We here consider Solvent Accessible Surface Area (SASA) as an approxima-
tion of the area of this interface.
The solvent accessible surface is a virtual surface that surround the protein
and whose points constitute the center of a spherical probe in its maximum
approach position to the protein (see Fig. 2.1). The value of SASA of a given
group of atoms therefore constitute a measure of how much that group is
exposed to the solvent. In last decades both analytic [FB98, HHS+05, Con83]
and approximated [HHS88, SM98] methods for computing SASA have been de-
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veloped. Thanks to their reduced computational time, approximated methods
are often preferred on the analytical ones in all those applications (MC, MD)
in which SASA needs to be computed a large number of times; as usual the
choice of the preferred algorithm has to consider the best compromise between
reliability and computational efficiency.

As SASA is the most meaningful quantity that can be used to measure
the degree of exposure of a particle to the solvent, it is not surprising that
protein-solvent interaction in KBPs are often parameterized by this quantity.

2.1.2 Benchmark

KBPs are benchmarked by comparing their performances in recognizing the
native state of a protein among a large set on non-native structures. During
the biennial CASP competition hundreds of independent research groups try
to predict the structure of a target protein by using state-of-the-art algorithms.
The resulting decoys sets, composed by the native structure and by all the
proposed models, show high structure similarity and therefore constitute a
challenging test for KBPs [HKL09]. Although it is not trivial to definitely assess
their absolute efficiency, many KBP perform quite well: Rosetta [SRK+99,
TBM+03], a scoring function derived using an elegant Bayesian analysis, the
composite scoring function QMEAN6 [BTS08] and the potential RF_CB_-
SRS_OD introduced by Rykunov and Fiser [RF10] are particularly successful,
even when tested on CASP targets.

2.2 BACH

In 2011 Cossio et al. developed a KBP called BACH [CGL+12]. This potential is
constructed by analyzing a set of 500 experimentally resolved protein structures
from top500 database, monitoring the probability of the event in which single
residues or residue pairs are observed in different structural classes.
The BACH score function is obtained by adding together two contributions
that account for residue-residue as well as for residue-solvent interactions. The
residue-residue term is often denoted as pair contribution while the residue-
solvent term is addressed as solvation term. The pair score is weighted with a
positive parameter p that fixes the relative units of the two contributions:

SBACH = p× SPAIR + SSOLV . (2.2)
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The pairwise statistical potential is based on classifying all residue pairs within
a protein structure in five different structural classes, labeled by integers from 1

to 5 in decreasing order of priority. One pair cannot be classified as belonging to
one class if it is also classified in a second class with higher priority (lower label),
in such a way that each pair only belongs to one class. Two residues may form
a α-helical bridge (1), or an anti-parallel β-bridge (2), or a parallel β-bridge (3),
or may be in contact with each other through side chain atoms (4), or may not
realize any of the previous four conditions (5). A modified version of the Define
Secondary Structure of Proteins (DSSP) algorithm [KS83] is used in order to
detect α and β-bridges. The modified algorithm employs a more stringent
energy threshold (−1 kcal mol−1 in place of the original −0.5 kcal mol−1) to
assess hydrogen bond formation. Since hydrogen atoms are often missing in
experimental data, we used a simple geometrical rule borrowed from DSSP to
reconstruct the position of backbone hydrogen atoms, which are required in
the computation of the H-bridge energy. A residue pair is assigned to the side
chain-side chain contact class if any inter-residue pair of side chain heavy atoms
is found at a distance lower than 4.5 Å. If a pair of residues is not assigned to
any class labeled with ` < 5 it is automatically assigned to the non-interacting
class.
Pairwise parameters can be stored in five symmetric matrices ε̄` whose entries
ε`α,β represent the score assigned to a pair of residue of given type α and β,
whose interaction is classified as class `. The number of parameters required
by the pair-wise potential, once the symmetry ε`α,β = ε`β,α is kept into account,
are 1050.
The pairwise contribution to BACH statistical potential SPAIR is computed as

SPAIR =
∑
i<j

ε`ai,aj , (2.3)

where ai, aj represent the type of amino acid in position i and j along the chain,
and ` identifies the contact class between residues i and j. Notice that BACH
does not score the structure of a protein but rather its contact map: small
perturbations of the structure that do not affect its contact map do not affect
the value of SPAIR either.

Similarly, the solvation term is based on classifying all residues in two
different environmental classes, either buried or solvent exposed. The envi-
ronmental class is defined based on the evaluation of the SASA performed by
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the SURF tool of Visual Molecular Dynamics (VMD) graphic software. The
SASA is computed by SURF for all heavy atoms of the protein chain by rolling
a probe sphere (representing a water molecule) on the surface of the set of
spheres centered at heavy atom coordinates. The radii of the probe sphere
and of all atoms are set to 1.8 Å. The radius of water is higher than what is
employed in VMD (1.4 Å) in order to avoid considering internal cavities as
areas exposed to the solvent. The output of SURF is the number of triangle
vertexes associated to each atom of the protein. These vertexes are used in
the triangulated representation of the protein surface employed by VMD, and
the area associated with each vertex is approximately 0.15 Å. By summing
over all atoms of a given residue, the number of vertexes t associated to that
residue (which is approximately proportional to its SASA) is obtained. The
single residue statistical potential SSOL requires two separate parameter sets,
for overall 40 parameters.

The reference state used for defining BACH pairwise parameters ε`α,β corre-
sponds to the observed probability for a pair of residues to be in interaction class
`, without distinguishing their type α, β. Similarly the solvation reference state
p̃`α is simply given by the probability of observing a residue in the environmental
class (buried or exposed to the solvent) `. In both cases the reference state is
computed from the same set of proteins used for computing BACH parameters.

The parameter p introduced in Eq. (2.2) is used to tune the contribute
of the pairwise scoring function with respect to the solvation part. Its value
has been decided in such a way that the standard deviation of the solvation
contribution to the scoring of each structure in top500 is the same as that of
the pairwise contribution and results to be p = 0.6.

Notice that since top500 is a database of globular proteins, BACH param-
eters could be suitable to only describe effective interactions inside globular
proteins.

Figure 2.2 shows the performance of BACH in discriminating the native
state of a set of 33 decoys from CASP 8 and CASP 9 competitions [MFK+09].
For each decoy, all structures are ordered in increasing value of BACH score:
the normalized score is computed as the position of the native structure (its
rank) divided by the total number of structures in the decoy. The lower the
normalized score, the better the performance of the KBP. Normalized ranks
of all 33 decoys are subsequently ordered from the lower to the higher, as in
Fig. 2.2.
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Figure 2.2: Performances of different KBPs on CASP8-9 decoys (the lower the better).

BACH has proved to outperform other state-of-the-art methods in discriminat-
ing the native state of proteins among a large set of misfolded configurations of
the sequences.

Authors also showed how using the mean value of BACH score obtained
during a short molecular dynamics trajectory enhanced the performance of
the algorithm in those cases in which the native structure was not correctly
recognized. BACH seemed to be sensitive to rather small fluctuation of pro-
teins around their native structure: this suggests that fluctuations cannot be
neglected in order to correctly determine the native state of a protein.

The simplicity of the model employed in BACH scoring function and its
performances compared to other state-of-the-art knowledge-based-potentials
encouraged us to develop the ideas beneath it and to devise other potentially
interesting applications in the field of protein bio-physics.

2.3 Enhancing BACH

The modifications we propose to enhance the performances of BACH are focused
on the development of new algorithms for determining the environmental class
of each residue. Indeed there are three main disadvantages in the usage of the
rolling-ball algorithm implemented in SURF:

• the usage of the external routine results in a limited ability to modify the
rolling-ball algorithm as needed
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• the computation of SASA is not efficient since the routine can not be
perfectly integrated into the BACH source-code

• the rolling-ball algorithm itself is relatively slow

For these reasons we implemented and tested two different algorithms that are
able to determining if a group of atoms is buried or exposed to the solvent.
The first algorithm we present estimates SASA by using a modified version of
the LCPO algorithm [WSS99]. The algorithm presented in Section 2.3.2, on the
contrary, determines if a particle is exposed to the solvent without computing
its SASA and therefore saving computational time.

2.3.1 Linear Combination of Pairwise Overlaps

We here propose to assign a residue to an environmental class by estimating
its SASA in a simpler manner, following the LCPO algorithm presented in
[WSS99]. This approach approximates the accessible surface of a solute as a
linear combination of the surfaces of its atoms, modeled as spheres of radius
r. The working principle is to remove from the sum of the whole surface
contribution of each atom the estimated overlap of the surfaces of nearby atoms.
The exposed surface of the atom i is approximated as follows:

Ai = P14πr2
i + P2

∑
j∈N(i)

Aij + P3

∑
j,k∈N(i)k∈N(j)k 6=j

Ajk +

+P4

∑
j∈N(i)

Aij

( ∑
k∈N(i)k∈N(j)k 6=j

Ajk

)
, (2.4)

where

Aij = 2πri

(
ri −

dij
2
−
r2
i − r2

j

2dij

)
. (2.5)

The quantity ri is the radius of atom i, N(i) stands for the list of atoms that
overlap with atom i and dij is the center-to-center distance of atom i and
j. In the original work [WSS99] the four parameters P1-P4 depended on the
hybridization of the atom and on its neighborhood and were estimated by linear
regression of a heterogeneous database of analytically calculated cases.

In order to simplify the implementation of the method, we decided to
attempt a coarse approximation, using for all the heavy atoms of the protein
a single value of the radius rLCPO, and single set of parameters Pi, the one
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Figure 2.3: BACH++ benchmark on 33 decoy sets from CASP 8/9 competition; the
performance is comparable to that of other state-of-the-art methods.

introduced in [WSS99] for a sp3 carbon bound with three heavy atoms. Since
the parameters P2 and P3 are negative the value of Ai can also be negative.
By visual inspection, we checked that this normally happens when the atom
is deeply buried in the protein core. We therefore assumed that a residue is
solvent exposed if the sum of the values Ai of its atoms is larger than zero.

The only free parameter in the functional form (2.4) is thus the radius
of the heavy atoms. To determine it, we defined a coherence score as the
fraction of residues over all the top500 structures for which SURF and the
LCPO algorithm agree on the environmental class assignation (b or e). We
then found the radius parameter that maximizes the value of this score. We
reached a maximum 87% overall accordance for the value of rLCPO = 3.09 Å.
This value roughly corresponds to the sum of the Van der Waals radius of an
aliphatic carbon (1.6 Å) and the radius of a water molecule (1.4 Å). We named
this upgraded version of BACH as BACH++.

We benchmark this functional form of Ssolv by the same procedure followed
in [CGL+12]. In particular, we consider a selection of 33 decoy sets from CASP
8/9 competition [MFK+09]. For all the decoy sets we first compute the value
of Ssol for all the decoy structures and for the native structure. We define
the normalized ranking as the rank in the sorted list of the native structure,
divided by the number of structures of the decoy set. The smaller this number,
the better the solvation function discriminated the native among the decoys.
In Fig. 2.3 the rankings of BACH and BACH++ are compared to that of other
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Figure 2.4: Solvation term contribution to BACH++: benchmark on 33 decoy sets
from CASP 8/9 competition; the performance is comparable to that of BACH.

state-of-the-art methods. In Fig. 2.4 the sole contribution of the solvation
term is instead considered. We can see that this new LCPO-based procedure
guarantees a slightly more accurate prediction of the native structure with
respect to BACH.

2.3.2 Alpha shapes

As seen in Section 2.1.1 in order to classify a group of atoms as buried or
exposed to the solvent the value of its SASA S is often used . The classification
is decided by comparing the surface area to some pre-determined and fixed
threshold value S?: if S exceeded S? the group of atoms is considered exposed
to the solvent, otherwise it is considered buried.
In this section we will present a technique that greatly enhances this procedure
from a computational efficiency perspective and produces, at the same time, a
more exact classification.

The main problem in estimating SASA is computational time. Indeed
existing algorithms (see previous section on LCPO) need to iterate on every
pair of atoms belonging to the structure and, as a consequence, the time
required is proportional to the square of the number of atoms considered.
Fortunately it is not necessary to compute SASA of a group of atoms in order
to determine if it is located on the protein surface: the information stored
in the sentence “SASA is S” is much more than the information required by
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(a) Appropriate probe radius. (b) Large probe radius

Figure 2.5: Two different alpha-shapes (black lines) of a random set of points (blue)
in the plane. In panel (b) the larger radius of the probe (red circles) is responsible
for the loss of details of the reconstructed shape.

BACH, which can be summarized in the sentence “Is SASA greater than S??”.
Computing the surface area requires a great amount of computational resources
and time that can be saved by an algorithm devised to compute just the right
amount of information needed.
The algorithm we proposed computes the shape of the desired protein or protein
complex and manage to classify every atom of the structure as belonging to
the surface in sub-quadratic time.

The shape of an object is a vague notion and there are probably many
possible interpretations; among these we utilize that of α-shape. The concept
of α-shape is relatively new [EKS83] but is nowadays largely used for shape
reconstruction in many different fields like computer sensing [FM09, BB97],
topography [VKMT10], and biology [BNL03, TAD06]. Alpha-shapes are piece-
wise linear surfaces made up of triangles. A triangle is drawn for all triplets
in the input set that sit on the boundary of a probe sphere of radius α

1
2 that

contain no other points in the input set. The radius of the probe sphere plays a
fundamental role in the accuracy of the algorithm and need to be decided with
meticulous attention: indeed if a too large value is used most of the details of
the reconstructed surface would be lost. On the contrary the usage of a probe
that is too small if compared to the typical distance between points will result
in a disconnected shape. Notice that the alpha shape obtained with a infinitely
large probe (α =∞) corresponds to the convex hull of the original set of points.
Figure 2.5 shows pictorially how the reconstructed shape can depend on the
choice of probe radius.
The algorithm for reconstructing the protein surface uses the α-shape im-

plementation of the Computational Geometry Algorithms Library (CGAL)
library [cga]. The set of input points that is used for determining the shape
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of the macromolecule is formed by the position of every heavy atom of the
structure; as usual hydrogen atoms are not considered because information
about their position is often missing from experimental data. In the context of
protein surface reconstruction the probe sphere used by the algorithm mimic
the presence of a solvent molecule and therefore its size should reflect the steric
effects between (heavy) atoms of the structure and solvent molecules. The
solvent is assumed to be water and so we expect the correct radius to be greater
than the typical dimension of an H2O molecule, i.e. 1.4 Å.
In order to determine the best probe radius value we studied how the classifica-
tion of residues of a set of 50 different globular proteins randomly chosen among
those of the top500 database changes as a function of the probe radius. We
considered the exact classification to be the one obtained using an analytical
method for computing SASA [FB98] and by setting a threshold value S? = 0.
The probe radius was therefore chosen in such a way that the error committed in
classifying residues as buried or exposed to the solvent is minimized. Figure 2.6
shows how the relative error varies as a function of the probe radius: the
minimum is obtained for a probe radius of rp = 3.2± 0.01 Å that, as expected,
is greater than the typical value used as radius of a water molecule (rH2O = 1.4

Å). The larger effective radius of the solvent molecule accounts for the steric
effects between the solvent and structure heavy atoms as well for the steric
effects due to the presence of hydrogen atoms, that are not considered in the
model.

We also compared the error obtained by using the α-shape algorithm with
the one obtained by using the LCPO one.
We recall that LCPO algorithm estimates the SASA of a group of atoms as
a linear combination of terms composed by pairwise overlaps of hard spheres
of fixed radius rLCPO and centered on heavy atoms. Notice that the sphere
used by the LCPO algorithm has the same physical interpretation than the
probe used in the α-shape method, its size having to mimic the steric effects of
a water molecule and atoms inside proteins. The same Fig. 2.6 also shows the
relative error obtained in the classification of residues by the modified version
of LCPO as a function of rLCPO. We noticed that the minimum error obtained
with LCPO is twice the error produced by the α-shape algorithm. Moreover
the fact that the width of the minimum obtained with α-shape is considerably
larger than the one obtained with LCPO indicates that the classification is
more stable, and therefore reliable, in the former case.
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Figure 2.6: Error committed in the classification of residues as buried or exposed
according to LCPO (blue line) and alpha-shape (red line) algorithms.

The improved performances of the α-shape based algorithm allow the
application of the same technique for the classification of even smaller sets
of atoms, for which the classification proposed by LCPO method becomes
unreliable.

The α-shape algorithm implemented in CGAL also computes the tetrahe-
dralization of the space induced by the input points, that is a subdivision of
the protein inner space obtained by connecting near atoms, similarly to what
is done by the Delaunay tetrahedralization algorithm. This space partition
can be used to determine for each atom a list of neighboring atoms: the corre-
sponding graph describing the vicinity relation between input points can be
used during the computation of the pairwise scoring function for limiting the
search of interacting residues to those connected in the graph. In this way the
computation of the pairwise potential only require a time that grows linearly
with the protein size.
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Chapter 3

Estimating binding affinities

Protein–protein interactions are involved in almost all biological processes [JT96,
NT03, JBC08] and the comprehension of their thermodynamical and structural
properties is of paramount importance to gain a quantitative understanding of
biological function and to enable the design of proteins, small molecules and
other compounds to modulate their strength [AW04, ZC05]. Moreover, the
characterization of protein interaction networks is the main goal of functional
genomics in order to understand the complex relationship between genotype
and phenotype on a global, genome-wide scale [HHL+08, KZV10, ZPNH10].

A crucial step to get a deeper insight in the protein-protein interaction
mechanisms is the calculation of protein-protein binding affinities, e.g. a
measure of the capability for a pair of proteins of forming a stable complex
[AR06, Del09, KMH+11, MAB11]. For a binary complex, the binding affinity
translates in physical–chemical terms into an equilibrium dissociation constant
(Kd), which may be measured at equilibrium or derived from the reaction
kinetics, and the related Gibbs binding free energy ∆G. Determining computa-
tionally the binding affinity starting from the knowledge of the structure of the
complex and of the two unbound sub-units alone, in the case of non-obligatory
complexes, is therefore an important benchmark for our understanding of the
determinants which are driving the protein binding and it can be also a valuable
tool for many efforts in structural bioinformatics ranging from the design of
peptides for therapeutic purposes [KVS+10] to protein engineering [SYDS11].

Given its huge practical relevance, the construction of accurate and efficient
binding free energy functions attracted a large variety of studies based on
somewhat different methods in terms of physical plausibility, accuracy and
computational cost. These methods range from highly accurate but numerically
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costly approaches such as thermodinamic integration [Kol93] and Molecular Me-
chanics/Poisson–Boltzmann Surface Area (MM/PBSA) methodologies [GZ07]
to empiric energy functions, mainly based on statistical potentials, where a
statistical analysis of the relative position of residues observed in experimental
structures is used to infer a potential of mean force. While the former strategies
use extensive molecular dynamics sampling and are usually only applicable
when the bound and unbound state states have a significant overlap, the latter
are much more flexible and their performances can be boosted by optimiz-
ing relative weights with linear regression against known binding affinities
[BYY+11].

The strong limitations in data sets available have been a major drawback
both for training and for benchmarking the quality of numerical predictors
of binding affinities. Such problems have been overcame by a databank re-
cently obtained [KMH+11] by collecting the largest and most diverse set of
experimental binding free energies to date, covering 144 non-redundant in-
teractions, with structural cross-referencing to both the bound complex and
its unbound constituents. While in the past all the methods have been pa-
rameterized and/or evaluated on a narrow range of proteins, this new data-
bank, which cover several order of magnitude of Kd, provides an unprecented
opportunity for the construction and evaluation of empirical binding free en-
ergy models. By using this databank, high accuracy predictions previously
obtained[HL92, JGM+02, MWLZC02, AS07, ZL08, SZX+09, BYY+11] turned
out to be an artifact of the unreliability of former data sets. New methods have
then been introduced [MAB11, VHPW12] but significant improvement over
previous empirical free energies has only been obtained throughout very com-
plicated consensus energy functions based on up to 200 molecular descriptors
[MAB11].

In this chapter we want to study the problem by taking into account the
entropic terms due to the fluctuations of the structures which can be significantly
different between the unbound states and the complex. In our approach the
physical processes governing the association of proteins, such as van der Waals
interactions, electrostatic interactions, hydrogen bonding and solvation are
modeled by using the BACH-SixthSense energy function. This potential, that
is based on the hypothesis [SGS+15] that protein complexes are stabilized by
the same fundamental interactions of monomeric proteins, works equally well in
discriminating correctly the native structure among a competing set of decoys
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for both monomeric proteins and protein dimers. SixthSense is grounded on the
BACH knowledge-based potential [CGL+12, SZC+13], where a pairwise contact
potential, based on 5 different contact classes, is combined with a one-body
solvation potential and a term introduced to consider the effect of steric clashes.
However, as expected, the mere application of SixthSense to compute binding
affinities show a low correlation coefficient with experimental measurements.
This correlation dramatically increased as soon as fluctuations of the structures
around their native conformations are taken into account. This can be done by
an accurate matching between the vibrations modes, as computed with a coarse
grained elastic network model and with short molecular dynamic simulations
run from the native three dimensional structures of the complex and of the
unbound sub-units. With this setup our approach give a level of accuracy of
the same quality of most up to date methods underlying the relevant role of
fluctuations in estimating bind affinities of not rigid bodies.

3.1 Contributions to binding Free-Energy

As seen in Section 2.2 fluctuations of the structure around its native conforma-
tion are critical in the scoring process. We expect the role of fluctuations to
be particularly evident in the case of protein-protein interaction, as the space
available to the monomers for their fluctuation to occur shrinks upon binding.
Unfortunately the contribution of fluctuations to the score of a structure cannot
be simply computed from the molecular structure but instead relies on the
ability of generating a molecular dynamics trajectory starting from the native
conformation. As molecular dynamics requires a set of preliminary settings
that can not be automatized it results to be time consuming and, above all,
delicate.

We devised a procedure that allow to estimate the ∆G of binding of protein
structures in water with an accuracy comparable to that of other state-of-the-art
methods. The range of free-energy differences on which the proposed procedure
has been tested spans 12 orders of magnitude, corresponding to binding free
energies from −18 kcal ·mol−1 to −6 kcal ·mol−1.

In order to compare our results with that of other methods we employed a
largely used database constituted by non-obligatory complexes for which the
structures of its unbound monomers as well as their binding affinity is available
[KMH+11, MAB11]. A large fraction of the structures in this dataset is not
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complete, missing some heavy atoms or some residues. Often missing residues
in the monomers are instead present in the complex structure, or vice versa. In
these cases we deliberately delete those residues and only deal with maximum
common structures in which all residues are participating to both the monomer
and the complex.
We therefore selected those complexes that:

• have no missing heavy atoms (but there can be whole residues missing)

• the contribution of the residues of the interface to the SixthSense score
do not change after the maximum-common-structure procedure.

Among the 144 complexes available in the original database only 74 satisfy
these requests.

3.1.1 Thermodynamics

We assume that the partition function Q of one monomer can be written as

Q = qi · qt · qr · qv, (3.1)

where qi denotes the contribution of intra-molecular interactions, qt denotes
the translational contribution, qr the rotational contribution and finally qv

the vibrational contribution. Notice that we neglect other major possible
contributions such as, for instance, solvation effects. In Eq. (3.1) we also
assume that each of the terms in the r.h.s. of Eq. (3.1) is independent from
each other.
Schematically, in the binding process, two molecules A and B associates into the
complex C. The free-energy lost in the binding process can be easily computed
by applying Eq. (3.1) to the complex C and to both the monomers A and B

∆G = −KBT log

(
QC

QA QB

)
(3.2)

= ∆Gi + ∆Gt + ∆Gr + ∆Gv, (3.3)

where ∆Gi corresponds to the difference in free energy due to the intra-molecular
contributions and similarly ∆Gt, ∆Gr and ∆Gv are due to translational,
rotational and vibrational contributions, respectively.
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The translational and rotational contributions can be exactly computed
from the three-dimensional structure of the monomers and of the complex:

∆Gt =−KBT log

(
h3

(2πKBT )
3
2

VCm
3
2
C

VAm
3
2
AVBm

3
2
B

)
(3.4)

∆Gr =−KBT log
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1
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1
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1
2

)
, (3.5)

where h is the Plank’s constant and Ix, Iy and Iz denote the principal moments
of inertia for rotation about the three orthogonal axes and mA, mB and mC

the masses of both the monomer and of the complex (mC = mA +mB).

The remaining terms cannot be deduced in a trivial way from the three-
dimensional structures of the proteins but need to be estimated with some
simplified models.

We recall that the binding affinity Kd is defined in term of the binding free
energy as

Kd = c0 exp

(
∆G

KBT

)
, (3.6)

where c0 = 1 mol · L−1 is a reference concentration.

3.1.2 Vibrations

Although a quantitative analysis of vibrations requires structural information
and a detailed potential energy function, we can get a good qualitative under-
standing by means of a simplified approach.
We estimate the vibrational contribution ∆Gv by describing the unbound
monomers and the complex with coarse-grained anisotropic network models
[ADJ+01]. In this model we depict the protein chain as a network of ideal
springs connecting the α-carbons of different residues whose distance is lower
than 12 Å. The elastic constant of each spring can have two different values,
depending on the relative position of the considered residues: if the residues
are consecutive along the chain (i.e. they are connected with a peptide bond)
an large constant kpep is used; if, on the contrary, the two residues are not
consecutive a smaller elastic constant kint is used. In order to mimic the rigidity
of the peptide bonds the constants are chosen in such a way that

kpep
kint

= 10. (3.7)
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In case that the coordinates of the α-carbon of one or more residues are
missing from experimental data, no special care is taken and the chain is left
disconnected. The same strategy is followed in MD simulations. As seen in
Chapter 1, anisotropic network models can be used to predict both the mobility
profile of a molecular system and other thermodynamic quantities, such as
the partition function. We determined the most appropriate value of kint by
comparing the mobility profile predicted by the anisotropic network model with
the one computed from an MD trajectory in explicit solvent and we utilized
the obtained value for estimating the vibrational contribution to the binding
free-energy.

Molecular Dynamics

A MD simulation has been performed for each of the input structures, i.e. 57

complexes and the corresponding unbound monomers, by using the GROMACS
4.5.4 package [HKVDSL08, PPS+13]. All MD simulations are based on the
AMBER99SB force field and on the TIP3P water model.

The hydrogen atoms of the proteins have been replaced (or added, if missing
in the input file) employing H++ automated system through its web interface
(version 3.1) [GMF+05, AAO12]. The protonization process has been performed
according to the pH value and salt concentration specified in the Supplementary
Material of [KMH+11] while the values of protein dielectric constant and solvent
dielectric constant were 10 and 80 respectively. H++ automated system also
assigned the most favorable protonation states of histidine residues, as well as
the favorable orientations of glutamine and asparagine side-chains.
An octahedron box was used for delimiting the system: the protein was centered
into the octahedron, whose size was chosen in such a way that the minimal
distance between the solute and the box was 10 Å. Water molecules were added
to the system and Na and Cl atoms were inserted in accordance with the value
of the experimental salt concentration.
In order to fix steric clashes between atoms of the protein and water molecules,
we employed an energy minimization procedure based on the steepest descent
algorithm. Finally the system was gradually heated from 0 to 300 K by using a
velocity-rescaling thermostat with different time-coupling constants for protein
and water/ion molecules.

After the preparation part described above we performed 1 ns-long equi-
libration runs by using a time-step of 1 fs. The final runs, during which the

44



productive trajectories were collected, were instead 5 ns-long and employed a
time-step of 2 fs. As a result a total of 2500 different configurations belonging
to the native state have been generated for each input structures.
These configurations have been clustered by using the gmx built-in clustering
utility in GROMACS.

Estimating the vibrational contribution

The mobility of each residue is extracted from the MD trajectory as the
mean square deviation of the position of any alpha carbon around a reference
structure, which is taken to be the center of the most populated cluster, as
determined by the gmx utility built-in in GROMACS. The mobility profile
µmd we obtained from the MD simulation is used as a reference mobility to
determine the best value of the elastic constant employed in the anisotropic
network model. Usually the mobility profile obtained from the network model
is, to some extent, proportional to the one computed from the MD simulation:
low mobility and high mobility areas are often recognized by both approaches
with a good accordance. Nonetheless the two profiles often appear to be globally
rescaled one with respect to the other and moreover some regions exhibit very
different relative mobilities.

As a starting point we fixed the elastic constant kint = 1 N/Å and we
compute, as a N -component vector, the corresponding mobility profile µ0

anm

µ0
anm =

1

3

∑
i>6

KBT

λi
(ux,i + uy,i + uz,i) , (3.8)

where λi is the ith eigenvalue and ux,i,uy,i,uz,i are N-component vectors that
together form the corresponding 3N -eigenvector, as obtained from solving the
eigenvalue problem described in Section 1.5. Notice that the summation is
extended to all oscillating modes except the first 6 ones, that correspond to
rigid roto-translations. Their contribution can not be estimated with an ANM
model and has already been taken into account in Eqs. (3.4) and (3.5). The
vibrational contribution to the free energy that corresponds to this initial choice
of kint is given by the following relation

Ĝ0
v = KBT

∑
i>6

log

(
~ λ

1
2
i

e KBT

)
. (3.9)

45



Modifications of the spring constant correspond to a rescaling of this initial
profile: we therefore try to match the MD and ANM profiles by mean of a
global rescaling of the latter one

µanm = Cµ0
anm (3.10)

by computing the rescaling factor C that minimize their Mean Square Error
(MSE). This can be done exactly by employing some estimators like, for instance,
Ordinary Least Squares (OLS). But in order to eliminate the contribution of
those regions that can not be matched (usually loops and chain ends) we decided
to proceed by using an iterative procedure that allows us to automatically
recognize and discard those undesired regions.

Within this procedure, on every step k > 1 the scaling constant Ck is
computed by minimizing the sum of squared residuals as

Ck =
µkmd · µkanm
µkmd · µkmd

, (3.11)

where µk is the mobility of all those residues that have not been excluded during
the preceding steps. Once the constant Ck is computed, the residue whose
mobility exhibits the biggest difference between the two profiles is excluded
and not considered in the successive steps. The procedure ends when the MSE
between the profiles is smaller than ∆µ = 4 Å2 and C is finally set to be the
last computed Ck. Even if there are cases in which most of the residues are
excluded from the matching procedure, as in Fig. 3.1, it can be seen that the
final mobility profile has been appropriately rescaled and therefore the factors
C can be safely used for estimating the vibrational contribution ∆Gv. The
correction to the binding free energy due to the introduction of these rescaling
factors is given by

− KBT

2
log

(
C3NC−6
C

C3NA−6
A C3NB−6

B

)
, (3.12)

where CA, CB and CC are the rescaling constants obtained by minimizing the
MSE of the mobility profiles of both the unbound monomers A,B and the
complex C. The final estimation

∆Ĝv = −KBT

2
log

(
C3NC−6
C

C3NA−6
A C3NB−6

B

)
+ ∆Ĝ0

v (3.13)
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is obtained by summing the estimation initially obtained by fixing the elastic
constant to k0

int = 1 N · Å−1 (given in Eq. (3.9)) with the correction computed in
Eq. (3.12). The missing contribution of the 6 roto-translational modes is taken
into account by the translational and rotational terms in Eqs. (3.4) and (3.5).
Notice that this interpretation is correct only if the number of residues of the
complex is equal to the sum of the number of residues of its monomers.

3.1.3 Intra-molecular contribution

The remaining term in Eq. (3.3) depends on the intra-molecular interactions
and is given by

∆Gint = −KBT log

(
qCint

qAintq
B
int

)
. (3.14)

We decided to estimate this term by using the modified version of the BACH
knowledge based potential presented in [SGS+15]. This version, named Sixth-
Sense employs a more refined definition of side-chain interaction between
residues and distinguishes between cases in which an interaction takes place
between non-polar groups from cases in which at least one of the groups in-
volved in the interaction is polar. Following the approach already employed
in [SGS+15], we only considered the contribution to the SixthSense score due
to those residues that, in the complex, belong to the interface.
The interface between the two bound monomers is defined as the set of residues
that in the complex interact (according to BACH) with at least one residue
belonging to the other monomer.

The ∆Gint is assumed to be proportional to the difference between the
SixthSense score of the complex SBACH(ABbound) and that of the two unbound
monomers SBACH(ABunbound) and is therefore estimated as

∆Ĝint = SBACH(ABbound)− SBACH(ABunbound). (3.15)

Notice that residue pairs from different monomers that interact at the complex
interface will be assigned the non-interacting SixthSense score in the unbound
state.
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Complex Monomer 1 Monomer 2

pdb id chains pdb id chains pdb id chains

1AK4 A:D 2CPL A 1E6J P
1BVN P:T 1HOE A 1PIG A
1DFJ E:I 2BNH A 9RSA B
1DQJ AB:C 1DQQ CD 3LZT A
1GL1 A:I 1PMC A 4CHA ABC
1GPW A:B 1K9V F 1THF D
1MAH A:F 1FSC A 1J06 B
1MLC AB:E 1MLB AB 3LZT A
1PPE E:I 1LU0 A 2PTN A
2PTC E:I 2PTN A 9PTI A
2SIC E:I 1SUP A 3SSI A
3SGB E:I 2QA9 E 2OVO A

Table 3.1: Training set used for determining parameters β0, β1 and β2 in Eq. (3.16).
For each pdb code the list of chains that constitute the complex are provided.

3.1.4 All together

The total binding free energy is estimated by using the following linear combi-
nation of the contributions computed in the previous sections:

∆Ĝ = β0 + β1∆Ĝi + β2∆Ĝvtr, (3.16)

where ∆Ĝvtr ≡ ∆Ĝv + ∆Gt + ∆Gr, and β = (β0, β1, β2) are scalar parameters
we introduced in order to take into account for the presence of systematic errors
in the estimation of ∆Gi and ∆Gv as well as for the role of other contributions.
The parameters have been computed by minimizing the mean square residuals
between ∆Ĝ and ∆G, by mean of an OLS regression, on a set of 12 complexes
that we used as training set. The training set comprises 12 complexes and has
been chosen among the structures constituting the training set in [MAB11]
in such a way to maximize the range of experimental binding affinities. It is
described in Table 3.1. Other 15 complexes (listed in Table 3.2) have been
used as test set and have been used to benchmark the accuracy of the method
proposed. The test set has been chosen among the structures constituting the
test set in [MAB11], with the same criteria followed for the training set.

48



Complex Monomer 1 Monomer 2

pdb id chains pdb id chains pdb id chains

1ACB E:I 4CHA ABC 1EGL A
1B6C A:B 1D6O A 1IAS A
1BVK DE:F 1BVL BA 3LZT A
1CBW ABC:D 4CHA ABC 9PTI A
1E6J HL:P 1E6O HL 1A43 A
1EAW A:B 1EAX A 9PTI A
1F6M A:C 1CL0 A 2TIR A
1FSK BC:A 1FSK BC 1BV1 A
1JIW P:I 1AKL A 2RN4 A
1RV6 VW:X 1FZV AB 1QSZ A
2AQ3 A:B 1BEC A 1CK1 A
2I25 N:L 2I24 N 3LZT A
2JEL HL:P 1POH A 2JEL HL
2PCC A:B 1CCP A 1YCC A
2TGP Z:I 1TGB A 9PTI A

Table 3.2: Test set used to benchmark the accuracy of the method. For each pdb
code the list of chains that constitute the complex are provided.

3.2 Results

We start by showing a practical example of how the matching between the
mobility profiles estimated by MD and ANM allows to obtain the scaling
constant C (by employing Eq. (3.11)) and consequently the correct elastic
constant

kint = k0
int/C ; (3.17)

as introduced in Section 3.1, k0
int = 1 N · Å−1 is the initial estimation of the

elastic constant used to compute the residue mobility profile with ANM (see
Eqs. (3.8) and (3.9)). It is important to observe that by using the above
procedure we get different elastic constants for different structures. Therefore,
when considering a complex and the two unbound subunits, we compute three
different elastic constants.
Figure 3.1 graphically depicts the matching procedure, as it happens for the
complex 1BVK and its unbound subunits 1BVL and 3LZT. The residues
excluded from the rescaling procedure are signaled by grey bars, to highlight
the fact that such regions are most typically excluded because the ANM grossly
underestimations their MD mobility. Our interpretation is that ANM fails to
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Figure 3.1: Best matching between the residue mobility profile obtained from the
MD trajectories and the one estimated from the coarse-grained elastic network model
after rescaling, as resulting from the iterative procedure of excluding residues whose
MSE differs more than 4 Å2. The logarithm of the mobility is shown on the vertical
axis, in order to better appreciate the similarities between profiles after rescaling.
Upper panel: the MD (red) and ANM (blue) residue mobility profiles for the complex
1BVK (residues covered with the vertical grey lines are excluded from the matching,
and the remaining ones are used to determine the scaling constant (see Eq. (3.17))).
Lower panel: the same as in the upper panel for the two unbound subunits 1BVL and
3LZT; the two sequences are pasted to allow a direct comparison with the complex
1BVK.

correctly describe those regions because their behavior is beyond the linear
elastic regime. Therefore, since we want to use the results obtained by an ANM
approximation to estimate the vibrational entropy, we deliberately exclude
those regions from the rescaling procedure, even if they can eat up a good
fraction of the whole sequence (see the upper panel of Fig. 3.1).

In order to appreciate the crucial role of a correct estimation of the vibra-
tional entropy contribution to the binding free energy, we proceed step by step.
First we use only the BACH KBP score of the interface of the protein complex
as an estimate of the binding free energy.
The results are shown in Fig. 3.2, together with the corresponding Pearson
linear correlation coefficient obtained for three choices of the data set: (i) 74

complexes chosen among those used in [MAB11] as described in Section 3.1,
(ii) the 12 complexes that we will use in the following as our training set (red
points in the plot), and (iii) the 27 complexes that include both the training
and the test set used in the following (red and blue points in the plot). Both the
training and the test sets are subsets of the larger corresponding sets employed
in [MAB11]. The full set of 27 complexes that we will consider in the following
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Figure 3.2: Correlation between the experimental values of the binding free energy ∆G
and the estimate given by the BACH interface score. All the data points (colored in
black, red and blue) correspond to 74 complexes, that are the subset of the benchmark
data set of Kastritis et al. Ref. [KMH+11] for which no heavy atom was missing in
the pdb file and for which the value of the BACH interface score remained unchanged
upon the usage of “maximum similarity” protein models, instead of the original pdb
files. The data shown in red correspond to 12 complexes that belong to our training
set, while the data colored in blue correspond to the 15 complexes that form our test
set. The Pearson correlation coefficient is shown for the 74, 12, and 27 = 12 + 15
sets. The dashed black line is the linear interpolation for all 74 points.

was chosen to span all possible experimental values of binding affinity, with a
deliberate preference for the worst outliers in Fig. 3.2.
A mild correlation appears, notably even less evident for the training set that
corresponds to the “validated” complexes, for which the experimental measure
of the binding affinity should be more reliable, according to [MAB11].

We therefore tried to enhance this mild correlation by introducing entropic
corrections. In the following, we did not simply verify the linear correlation
between experimental values and theoretical estimations, but also tried to
predict quantitatively the binding free energy of different complexes. Along
this line, we introduced a set of three scalar parameters (β = (β0, β1, β2))
that enter our theoretical estimations. These parameters have been optimized
by minimizing the Root Mean Square Error (RMSE) between the theoretical
estimations ∆Ĝ and the corresponding experimental values ∆G on the training
set of complexes, and the performance of the method has been verified on the
full (training and test) set.
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Figure 3.3: Experimental and predicted binding free energies; no estimate for en-
tropic contribution. Eq. (3.18) is used for the theoretical prediction, with optimized
parameters β0 = −12.1223 kcal ·mol−1 and β1 = 0.1670. Red points: training set.
Blue points: test set. All points should lie on the dashed black diagonal line for a
perfect predictor. The dashed-dotted black line is the result of the linear regression
for all 27 data. The reported Pearson linear coefficient (p) and RMSE ε are computed
for all 27 data.

Again, we started by not including entropic contribution in our theoretical
estimate:

∆Ĝ = β0 + β1∆Ĝi , (3.18)

where β0 and β1 are the parameters to be optimized. The reported Pearson
correlation coefficient is obtained with the Leave One Out (LOO) procedure as
the average of the 27 different results obtained for all possible subsets with 26

data. The resulting standard deviation is reported as well. The LOO procedure
is used for the RMSE ε as well, the standard deviation being 0.01 kcal ·mol−1

in all the cases shown in this work. The mild correlation that is found is the
same as seen in Fig. 3.2, and the quantitative prediction is definitely poor.

As a second step, we considered the estimation of the entropic contribution
∆Ĝ0

v obtained through Eq. (3.9), by using the same elastic constant k0
int in all

ANMs:
∆Ĝ = β0 + β1∆Ĝi + β2∆Ĝvtr , (3.19)

where β0, β1, β2 are the parameters to be optimized. As can be seen in Fig. 3.4,
the linear correlation coefficient slightly improves, but the performance in
quantitative prediction is essentially as poor as in the previous case. Even

52



Figure 3.4: Experimental and predicted binding free energies; estimate of entropic
contribution with the same elastic constant for all structures. Equation (3.19) is used
for the theoretical prediction, with optimized parameters β0 = −3.5509 kcal ·mol−1,
β1 = 0.0604 and β2 = −0.2091. Red points: training set. Blue points: test set.
All points should lie on the dashed black diagonal line for a perfect predictor. The
dashed-dotted black line is the result of the linear regression for all 27 data. The
reported Pearson linear coefficient (p) and RMSE ε are computed for all 27 data.

worse, the negative sign of β2 implies that the estimation of the entropic
contribution is grossly mistaken.

As a third step, we considered the estimation of the entropic contribution
obtained through Eq. (3.13), that is by using in the ANM model a different
elastic constant kint obtained through the rescaling (see Eq. (3.17)) with all
residues included in the matching procedure that determines the scaling constant
C. The optimized parameters are again β0, β1, β2, according to Eq. (3.19). The
sign of β2 is now positive, but the overall performance is the same as in the
previous case, both for the linear correlation coefficient and for the RMSE.

Finally, as a fourth step, we consider the estimate of the entropic contribution
obtained through Eq. (3.13), by using in the ANM model a different elastic
constant kint obtained through the rescaling (see Eq. (3.17)) where some
residues are iteratively excluded from the matching procedure that determines
the scaling constant C, until the RMSE between the MD and the ANM mobility
profiles of the remaining residues is less than ∆µ = 4 Å2 (see Section 3.1).
The optimized parameters are again β0, β1, β2, according to Eq. (3.19). The
performance is now drastically improved for both estimators.

All performance obtained separately for training, test, and full (test and
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Figure 3.5: Experimental and predicted binding free energies; estimate of entropic
contribution with the different rescaled elastic constant for different structures and
all residues included in the rescaling procedure with ∆µ = 4Å.Equation (3.19) is used
for the theoretical prediction, with optimized parameters β0 = −11.7356 kcal ·mol−1,
β1 = 0.1922 and β2 = 0.0123. Red points: training set. Blue points: test set. All
points should lie on the dashed black diagonal line for a perfect predictor. The
dashed-dotted black line is the result of the linear regression for all 27 data. The
reported Pearson linear coefficient (p) and RMSE ε are computed for all 27 data.

training) are shown in detail in Table 3.3

A crucial parameter in our estimation of entropic contribution is ∆µ, the
threshold value of the RMSE between MD and ANM mobility profiles, below
which the iterative residue exclusion procedure is stopped. The value ∆µ = 4 Å2

used in Fig. 3.6 was chosen after a careful analysis, as shown in Figs. 3.7 and 3.8.
∆µ = 4 Å2 is the threshold value where both the Pearson correlation coefficient
and the RMSE between experimental and predicted binding free energies show
the best performance on both the training and the full set. As expected, the
performance is better on the training set for both estimators.

Finally, we compare our results with a state-of-the-art method for the
prediction of protein complex binding affinities, introduced in [MAB11]. The
comparison is obviously taken on the 27 complexes that we were able to address
within our methodology. We remind that our training and test sets were
deliberately chosen as subsets of the training and test sets, respectively, used
in [MAB11]. As can be seen in Fig. 3.9, our performance for both estimators
is just slightly worse. This is a remarkable result, given that in our method
two independent quantities are combined, the BACH interface score and the
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Figure 3.6: Experimental and predicted binding free energies; estimate of entropic
contribution with the different rescaled elastic constant for different structures and
residues excluded in the rescaling procedure. Equation (3.19) is used for the theoretical
prediction, with optimized parameters β0 = −12.5834 kcal ·mol−1 , β1 = 0.1606 and
β2 = 0.0297. Red points: training set. Blue points: test set. All points should lie
on the dashed black diagonal line for a perfect predictor. The dashed-dotted black
line is the result of the linear regression for all 27 data. The reported Pearson linear
coefficient (p) and RMSE ε are computed for all 27 data.

Figure 3.7: Pearson correlation coefficient with varying ∆µ. Red: training set; black:
full set.
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(A) BACH contribution only
Complexes Pearson coefficient RMSE (kcal ·mol−1)

train set 0.26±0.07 3.08
test set 0.42±0.06 3.42
full set 0.34±0.03 3.27

(B) Same k for all structures
Complexes Pearson coefficient RMSE (kcal ·mol−1)

train set 0.37±0.07 2.96
test set 0.46±0.07 3.41
full set 0.39±0.03 3.22

(C) No excluded residues (∆µ =∞)
Complexes Pearson coefficient RMSE (kcal ·mol−1)

train set 0.43±0.13 2.85
test set 0.40±0.05 3.46
full set 0.40±0.04 3.20

(D) Excluded residues: ∆µ = 4 Å2

Complexes Pearson coefficient RMSE (kcal ·mol−1)

train set 0.64±0.10 2.42
test set 0.50±0.03 3.19
full set 0.56±0.02 2.87

Table 3.3: The values of Pearson coefficients and of RMSE between experimental and
predicted binding affinities for different predictors corresponding to Figs. 3.3 to 3.6;
for the training set of 12 complexes, the test set of 15 complexes and the full set of
27 complexes.

Figure 3.8: RMSE between experimental and predicted binding free energies
(kcal ·mol−1) with varying ∆µ. Red: training set; black: full set.
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Figure 3.9: Experimental and predicted binding free energies (kcal ·mol−1). Data
for all 27 complexes used in this work are shown. Blue circles: our method, as in
Fig. 3.6; red crosses: results from [MAB11]. The Pearson linear correlation coefficient
and the RMSE ε between experimental and predicted values are computed using
the LOO procedure. The Pearson coefficient from [MAB11] on the training set is
0.69±0.10, while on the test set is 0.41±0.09, to be compared with the corresponding
performances of our method reported in Table 3.3 (D).

entropic contribution, with only 4 parameters being optimized (β0, β1, β2,∆µ),
compared to the combination of beyond 200 descriptors used in [MAB11]. The
good performance of our method underlines that it is crucial to take into
account the entropic contribution to the binding affinity. It underlines as well
that such contribution can be estimated to a good approximation by using
coarse-grained elastic network models, provided that the elastic constant is
rescaled carefully, by excluding from the matching procedure the more mobile
residues whose behavior cannot be described within the harmonic regime.
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Chapter 4

Devising new potentials

KBPs have proved to be a simple and fast tool for recognizing the native state
of proteins (see Chapter 2) and also perform well in estimating the free energy
contribution of the binding affinity due to the interactions inside proteins (see
Chapter 3).
In this chapter we try to test the ability of KBP to capture even more detailed
information about protein structures and interactions. With this in mind we
investigated some of the limitations of the standard implementation of BACH
(described in Section 4.1) and tried to overcome them in two different KBP
implementations (presented in Sections 4.2 and 4.3).

4.1 Lessons learned

In applying the BACH scoring function in the contexts of native state recognition
and protein binding we investigated the behavior of this simple potential in
facing the many situations we put in front of him. One of the strong points
of BACH is its simplicity and reduced number of parameters: it is often very
easy to locate the problem when it does not work; as a testing ground, BACH
has proven to be educative.

4.1.1 Untold hypotheses

In order to understand what are the approximations implicitly made in BACH
formulation we tried to derive an equation similar to Eq. (2.1) starting from a
very simple physical model of two interacting particles.
We assume that the theoretical probability p̂`α,β of observing two different
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particles of type α and β respectively in a contact of type ` is

p̂`α,β =
q`α,β exp

(
− ε`α,β
KBT

)
∑

`′ q
`′
α,β exp

(
− ε`

′
α,β

KBT

) , (4.1)

where ε`α,β is an interaction energy, KB the Boltzmann’s constant and T the
temperature. Parameters q`α,β are intended to be the contact probability between
the particle if the energies were zero or, equivalently, if the temperature was
infinite. Being a probability,

∑
` q

`
α,β = 1.

We now try to find the best values for the energy parameters that are compatible
with our experimentally observed number of particles of type α and β in contact
class `, denoted by {n`α,β}. If we also assume that the probability of observing
the data {n`α,β} given the value of energies {ε`α,β} is the multinomial distribution

p
(
{n`α,β}|{ε`α,β}

)
=

(∑
` n

`
α,β

)
!∏

` n
`
α,β!

∏
`

(
p̂`α,β

)n`α,β (4.2)

we can easily estimate the best values of energies by maximizing the log-
likelihood L

L =
∑
α,β

∑
`

log
[
p
(
{n`α,β}|{ε`α,β}

)]
(4.3)

with respect to the parameters ε`α,β. As a result we obtain

q`α,β exp
(
− ε`α,β
KBT

)
∑

`′ q
`′
α,β exp

(
− ε`

′
α,β

KBT

) =
n`α,β∑
`′ n

`′
α,β

, (4.4)

where of course the ratio p`α,β =
n`α,β∑
`′ n

`′
α,β

represents our best estimation of the

theoretical probability p̂`α,β. In order to exactly estimate the energy parameters
we define a reference class ` = 0 and divide both the l.h.s. and the r.h.s. of
Eq. (4.4) by p0

α,β to obtain

ε`α,β = ε0α,β −KBT log

[
p`α,β q

0
α,β

p0
α,β q

`
α,β

]
, (4.5)
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that is the same as Eq. (2.1) once we identify

p̃`α,β =
p0
α,β q

`
α,β

q0
α,β exp

(
− ε0α,β
KBT

) (4.6)

as the reference probability.

This model is very instructive because it makes explicit the hypotheses
that have been necessary to obtain a KBP-like formula from a simple physical
model.
The parameters q`α,β have been supposed to only depend on the type of residues
α and β and on the interaction class `. This assumption seems to be poor, as
we already know from Fig. 1.4 that the probability contact of two particles
depends on their distance along the polymer chain. Introducing a dependence
on the inter-particle distance in q can be easily done but, nonetheless, BACH
does not consider this dependence in its parameters.
Even if Eq. (4.2) seems a reasonable assumption for describing the probability
of observing the data {n`α,β}, the multinomial distribution is the probability
distribution of a certain number of independent Bernoulli trials, with the same
probability of success on each trial. Employing Eq. (4.2) is therefore equivalent
to assume that there are no correlations inside the chain. But the presence of
secondary structures induces high correlations; for instance Fig. 4.1 shows the
probability density for the distance between two alpha carbons located in two
different strands of the same β-sheet.
Finally, Eq. (4.5) shows how critical is the definition of the reference state p̃`α,β
to a correct and unbiased estimation of the parameters. It is also clear that,
at least in this case, the correct reference state depends on α and β. On the
contrary, the reference state chosen by BACH is∑

α,β n
`
α,β∑

α,β

∑
`′ n

`′
α,β

and therefore does not depend on residue types.

4.1.2 The role of correlations

In order to get some insight on the functioning of the KBP we devised a simple
experiment. The aim of the experiment is that of showing how the chain
topology can affect the estimation of interaction parameters in KBPs. We

61



Figure 4.1: The effect of correlations inside β secondary structures. The figures show
the probability density for the distance between two alpha carbons located in two
different strands of the same β-sheet; pair of residues that take part to the same
H-bond are not considered.

therefore consider an ideal case in which we have a perfect knowledge on the
system (for instance we know the Hamiltonian and we also have access to every
possible protein sequence and protein structure) and we ask what happens if we
try to compute the parameters of a KBP by using Eq. (2.1). With this in mind
we studied a revisited version of the famous HP -model on a bi-dimensional
square lattice Z2 [Dil85, Dil90]. This approach is similar in spirit to the one in
Ref. [TCPB04].

In the context of on-lattice protein models each site of the lattice is seen as
connected to its adjacent sites: each site can host a protein residue only if it
is not occupied by another residue and if the preceding residue is hosted on
one of the adjacent sites. As a consequence a protein appears as a self avoiding
polygonal chain, briefly referred as Self Avoiding Walks (SAW), connecting
adjacent sites of a regular lattice. Two sites are said to be adjacent to each
other (or nearest-neighbors) if they lie on the same side of one square defined
by the lattice; they are said to be next-nearest-neighbors if the lie on the same
diagonal of a square. In the case of a square lattice each site has exactly 4

adjacent sites and other 4 nearest-neighbor sites.
As in the original HP model each residue can be polar (P ) or hydrophobic
(H). The pairwise potential Vα,β(r) is attractive in case two H residues are
nearest-neighbors (but not consecutive along the chain), repulsive if two H
residues are next-nearest-neighbors and zero otherwise. Table 4.1 lists all
parameters that define the energy of the system.
In order to have access to all possible information about the system we
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Residue pair Potential nn Potential nnn Potential nc

PP 0. 0. 0.
PH 0. 0. 0.
HH −1. π

17
0.

Table 4.1: Parameters describing the interactions between pair of residues in the
modified version of HP model studied. Potential nn refers to the case in which
two residues are nearest-neighbors while Potential nnn to the case two residues are
next-nearest-neighbors. Finally Potential nc describe the interaction between all
other pairs that are not consecutive along the chain.

restrict the SAW to have a fixed length N = 16. Indeed in this case we are
able to enumerate easily all the possible sequences as well as all the possible
polymer configurations; moreover we are able to associate an energy to every
possible combination of structure-sequence: we therefore have access to the
whole universe of proteins.
We defined the native state of a protein its minimum energy configuration if
this configuration is unique; notice that with this definition not every sequence
has a native configuration. In this context the ensamble of native structures
is intended to mimic a database of experimentally resolved structures and we
indeed employed it to determined the parameters of a BACH-like KBP on
the lattice. We suppose that the definition of the interacting classes of this
hypothetical potential perfectly matches that of the real interactions in such a
way that any difference between the parameters of the KBP and that of the
real interaction must be solely attribute to the effects of correlations and/or to
the choice of the reference state.
Table 4.2 shows the parameters obtained by the described procedure: it is
evident how the estimated potential is completely different from the real one.
In particular we see how the nearest-neighbor interaction between a polar and
an hydrophobic residue appears to extremely repulsive while the repulsive
next-nearest-neighbor interaction between two hydrophobic residues appears to
be attractive.

This example teaches us that it is possible that correlations completely alter
and bias the estimation of the interacting parameters in KBPs. We can not
know if the effects in real life scenarios are as drastic as in this simple model
but nonetheless it is important to be aware of this possibility.
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Residue pair Potential nn Potential nnn Potential nc

PP 0.7521863 0.5344563 −0.1378130
PH 2.5862754 0.0459283 −0.0954614
HH −0.95 −0.2416561 0.2454912

Table 4.2: The same as in Table 4.1 but here the interaction parameters have been
computed with a BACH-like algorithm.

4.1.3 Interfaces

As seen in the previous section, interactions between residues located at the
interface between two different monomers are critical in estimating their binding
affinity and deserve to be discussed in more details.
The term interface between two macromolecules is somehow vague and intu-
itively define the space in which the two monomers can be consider to be in
contact. Therefore we coherently classify a residue as being located on the inter-
face if it interact with at least another residue belonging to the other monomer.
From simple geometric consideration we can see that, in the case of compact
proteins, while the number of residues scales with the third power of the protein
size, the number of residues that belong to the interface scales linearly with
it. As a consequence the interface is populated by a relatively low fraction of
residues that, nonetheless, play a fundamental role in the binding process. It is
not difficult to see that inaccurate classification of these interactions during
the protein scoring and/or the usage of inaccurate scoring functions can easily
result in wrong estimation of the binding affinity.

We verified that, in some cases in which BACH completely failed in estimat-
ing the binding, affinity the interactions that were taking place at the interface
occur very rarely in the protein bulk, where BACH parameters are computed.
In retrospect it is not surprising that the effective pairwise interactions depend
on the environment (protein bulk or protein surface). Indeed, while in the
protein bulk contacts are stabilized by pairwise interactions and by topological
constraints, this is not true on surfaces were not only topological constraints are
different but also there are entropic effects due to the presence of the solvent.
The first attempt that has been made in order to capture this behavior is that of
splitting the side-chain side-chain class of interaction into two different classes
that distinguish between non-polar - non-polar interactions and non specific
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ID Description Formula

ALC Hydroxyl ROH
CH2 RC(H2)R′

CH3 RCH3

CXY Carboxyl or Carboxylate RC(= O)OH or RC(= O)O−

SC3 Methionine functional group SCH3

THI Thiol RSH
ARG Arginine functional group RN(H)C(= NH)NH2

PRK Group NH in primary ketimine RN(H)R′

PAM Primary amine RNH2

PRA Protonated amine RNH3

PHE Phenil RC6H5

IMD Imidazole ring in Arginine n1c(H)[nH]c(H)c1
TRP Tryptophan rings c1ccc2c(c1)c(c[nH]2)CR
PEP Peptide group RC(= O)N(H)R′

Table 4.3: List of moieties employed in the definition of mBACH.

interactions [SGS+15]. The resulting KBP, hereafter referred as SixthSense, has
proven to be of fundamental importance in the prediction of binding affinities.

4.2 Moieties

The poor performance of BACH, with respect with its improved six-classes
version, in the study of binding processes suggests that the coarse grained made
in considering each residue as a whole is probably inaccurate.
We therefore studied a statistical potential in which the interacting units are
chemical moieties with a more defined chemical behavior. Using such units is
important: indeed if two groups of atoms α and β have a well defined behavior
we can expect that the event “α and β are in interacting class `” can be
considered as favored or disfavored with a certain confidence and independently
on their mutual orientation. This is not true if large set of atoms (such as
residues) are employed as interacting units as two units can expose to the other
different functional groups, depending on their mutual orientation. The first
four classes of BACH and the two upgraded classes in SixthSense are devised
to account this issue.

We identified 14 groups of atoms that satisfy the following properties:
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1. have a well defined chemical behavior

2. cover all possible protein structures, without overlapping

Following the evidences that interactions can be different on the interfaces with
respect to the protein bulk, we changed the functional form of BACH in such a
way that pairwise interactions between moieties are environment-dependent.
This is achieved by distinguishing between four cases:

00 - Both the moieties are buried

01 - The first moiety (α) is buried while the other (β) is exposed to the solvent

10 - The first moiety (α) is exposed to the solvent while the other (β) is buried

11 - Both moieties are exposed to the solvent

Besides these four interacting classes we consider the non-interacting (nc) class,
for a total of five pair-wise interacting cases. Notice that the information
stored in this classes is redundant as ε01α,β = ε10β,α, ε11α,β = ε11β,α, εα,β = ε00β,α and
εncα,β = εncβ,α.
We denote this upgraded version of BACH as mBACH, where m resembles the
fact that the interacting units are moieties, rather than residues.

The score in mBACH is computed as

SmBACH =
1

2

∑
i 6=j

ε`ai,aj , (4.7)

where the summation in the r.h.s. is extended over all the moieties of the
structure and ` labels the pair-wise interacting class (` ∈ {00, 01, 10, 11, nc}).
Parameters ε`ai,aj are computed as usual by applying Eq. (2.1) to the counting
obtained by analyzing a large database of high-resolution protein structures
top500. As in BACH the reference state is chosen as the average interacting
probability and is computed on the same set of protein structure. Each moiety
is checked to being exposed to the solvent or buried by using the alpha shape
based algorithm described in Section 2.3.2: a moiety containing at least one
heavy atom that belongs to the alpha shape of the protein is considered exposed
to the solvent. The total number of parameters needed in mBACH is 490, less
than a half of the ones employed by the standard version of BACH.

The usage of moieties as atomic units in the development of mBACH allows
our statistical potential to be applied not only on protein structures but also
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Figure 4.2: Comparison of the performances of mBACH with other state-of-the-art
methods.

on other molecules such as drugs and ligands. This potentially interesting
application is complicated by the need of automatically recognize functional
groups as part of larger molecular structures. The drawback arises from the
fact that different nomenclatures are used for labeling atoms in pdb files and
from the fact that important structural information (such as bound valency
and aromaticity) are not described in pdb files at all. Even if all information
that are potentially useful to recognize a moiety as par of a larger molecule
can be extracted from the list of atom properties ( for instance bonds can be
assigned by comparing the inter-atomic distance with the vdW radii of the
two atoms) this approach is not efficient nor reliable. Fortunately the Protein
Data Bank provide connectivity information, together with additional atom
properties, in separate mmcif files.
We used these information in order to build an undirected graph that describe
the structure of the target moleculeand in which vertexes represent atoms while
edges represent inter-atomic bonds. Each vertex is described by two properties:
an element descriptor, which uniquely identify the atom element, and a boolean
aromaticity flag that classify the atom as aromatic or not aromatic. Bonds
can be both single or double and aromatic or not aromatic, as described
respectively by the type and aromaticity bond descriptors. Once the exact
structure topology is built, moieties can be recognized by checking for the
existence of some sub-graph isomorphism between the topology of the structure
and that of the moiety. A sub-graph of the structure topology S is said to be
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isomorphic to the graph that describe the moiety M if and only if there is a
bijection f from a subset of vertexes of S to the vertexes of M such that, for
every pair of vertexes u,v:

1. f(v) and f(u) are connected in M if and only if u is connected to v in S

2. each vertex f(u) has the same element and aromaticity of u

3. the bond connecting f(u) to f(v) has the same type and aromaticity as
the respective bond between u and v.

Since we require that every atom belongs to at most one moiety, we have to
pay attention to the order in which we assign an atom to a moiety. Consider,
for instance the two moiety CH2 and CH3: it is clear that since there are
three possible different sub-graph isomorphism between the two functional
groups, an atom that belongs to a CH3 functional group can also be assigned
to a CH2 one. The problem is simply overcame by checking the existence of
isomorphisms starting from the biggest moiety (i.e. the one with the highest
number of atoms ) and by proceeding with order until a sub-graph isomorphism
between the structure and the smaller moiety is checked. We optimized the
process by removing from the large structure those vertexes that have been
already assigned to a moiety, in such a way that subsequent steps of the
algorithm proceed faster due to the ever decreasing size of the structural graph.

4.3 A gaussian chain potential

Simplifications usually made in the formulation of knowledge based potentials
like BACH are based on the assumption that the presence of contacts between
two groups of atoms inside a macro-molecule is due only to their properties and
not to topological reasons. For instance the fact that residues are serially linked
together is often neglected and events like “Residue i is in contact with residue
j” and “Residue i′ is in contact with residue j′” are considered as independent.
This is obviously not true, as we already know that, inside β-sheets, the linear
topology of the protein structure induces topological contacts between residues
that are not related to any physical interaction (see Fig. 4.1). But the biggest
effects in the estimation of pairwise parameters is probably due to the fact that
we forget about the dependence of the distance between two group of atoms on
their separation along the chain: it is indeed clear that the contact probability
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between two residues is a decreasing function of their separation along the
chain, as shown in Fig. 1.4.
Another limitation of the KBP is the adoption of an a priori functional form
of the potential which is implicitly determined by the set of events used to
classify different interaction: its choice is often based of physical/chemical
considerations and is not deduced from experimental data.

The effects introduced by these simplifications are not easily quantifiable;
hopefully the reference state can be tuned to partly correct the error induced
in the estimation of the parameters but nonetheless neglecting to model a key
aspect of the protein structure such as it linear topology has consequences in
the estimation of parameters in knowledge-based potentials (see Section 4.1.2).

We here propose a new knowledge-based potential that is ideally unaffected
by the presence of topological contacts and that keep into account the depen-
dence of the pairwise distance between residues on their separation along the
chain. Moreover the method is devised is such a way that the dependence
of the score on the pairwise distance r is not imposed a priori but is instead
directly recovered from experimental data.

In 2005 Banavar et al. [BHM05] showed that the end-to-end distances of
m-residues-long protein fragments are gaussian distributed according to the
law

P̃σ(r,m) =
4πr2(

2
3
πσ2m

) 3
2

exp

(
3r2

2πσ2m

)
, (4.8)

with the assumption that m is sufficiently high (m ≥ 48) to forget the presence
of secondary structures and sufficiently low (m < N

2
3 ) to forget the presence of

the protein surface (as indicated in [LBG04]). This scaling is the one predicted
by Flory’s theory at the θ point [FV+69, BGM13], for a polymer melt [LBG04],
and, of course, by a gaussian chain model with average bond length σ. The
existence of the gaussian scaling of Eq. (4.8) is usually explained by a sort of
compensation between the inter-atomic repulsion inside the chain that tend to
swollen it and the idrophobic effects due to the presence of the solvent, that
tend to compact the protein. As a consequence the end-to-end distance of
real-protein fragments behave as if fragments were ideal gaussian chains and is
ideally unaffected by interactions between residues located in the central part
of the fragment, or by other topological effects.
We reproduced the results presented in [BHM05] by using a larger data-set
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Figure 4.3: Distribution of the gyration radius on the selected subset of top8000. The
slope of the fitted line (in log-log-scale) is b = 0.359± 0.002 Å while the intercept is
a = 2.493± 0.001 Å.

of globular proteins, selected from top8000 in such a way that their gyration
radius were proportional to the cube root of the chain length (see Fig. 4.3). We
computed the end-to-end distance distribution of protein fragments of length
N

2
3 , where N is the total chain length. We also verified that the condition

m ≥ 48, suggested in the original paper, can be safely relaxed to m ≥ 35.
Figure 4.4 shows the distribution of experimental data obtained from the
structures of top8000 database. End-to-end distances have been computed
as the distance between the terminal Cα carbons and have been divided by a
factor

√
m (x axis); y axis has instead been rescaled by a factor

√
m in such a

way that data collapse on the curve of equation

y(x) =
4πx2(

2
3
πσ2
) 3

2

exp

(
3x2

2πσ2

)
, (4.9)

which is independent from m. The variance σ of the experimental distribution
is σ? = 3.84 ± 0.01 Å, a value surprisingly similar to the distance between
two consecutive α carbons. For each experimental data (xi,mi) collected we
estimated the corresponding value of probability density by considering the
number of data occurring in the interval of width ∆ = 0.01 Å and centered in
(xi,mi), i.e.

[
(xi − ∆

2
,mi), (xi + ∆

2
,mi)

]
.

Despite the overall good agreement, experimental data substantially differ from
the theoretical distribution in the short-distance regime, where the experimental
probability is lower than the theoretical one, and in the long-range regime
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Figure 4.4: Distribution of experimental data (red point) as compared to the expected
curve Eq. (4.9) and σ = σ?. Axis of ordinates is in log-scale.

where, on the contrary, the experimental probability is slightly higher than the
theoretical one.

We assume that the observed distribution of end-to-end distances P (r,m)

is given by

P (r,m) =
exp

(
− V (r)
KBT

)
P̃σ?(r,m)∫∞

0
dr exp

(
− V (r)
KBT

)
P̃σ?(r,m)

. (4.10)

Indeed the overall good agreement of the theoretical curve in Eq. (4.8) with
σ = σ? with experimental data allow us to identify Eq. (4.8) as the expected
probability of finding a contact between residues given their separation along
the chain and to use it as reference state in a KBP. According to Eq. (2.1)
we therefore compute a pairwise statistical potential that is a (continuous)
function of the distance between α-carbon atoms by computing

ε(r,m) = −KBT log

(
P (r,m)

P̃σ?(r,m)

)
. (4.11)

From Eq. (4.10) we can reduce the previous equation to

ε(r,m) = V (r) +KBT log

(∫ ∞
0

dr exp

(
−V (r)

KBT

)
P̃σ?(r,m)

)
, (4.12)

which assures us that the estimated function ε(r) differs from the real inter-
particle potential by only a constant.
Figure 4.5 shows an ensamble of 150000 experimental values of ε(r,m) com-
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Figure 4.5: Average potential between two arbitrary residues inside a globular struc-
ture. The colored shadow represent the error associated to the average curve.

puted as described above; all points collapse on a well defined curve, indepen-
dently from their value of m. This fact allows us to identify ε(r) ≡ ε(r,m)

as an effective potential. We therefore estimated ε(r) by averaging the data
obtained from different values of m: the curve superposed to the data is a
running average of the points and defines the function ε(r). At this stage, we
intentionally neglect the dependence of the potential on the type of the inter-
acting residues: the curve depicted in Fig. 4.5 is an average effective-potential
that do not distinguish between different type of amino acids.
Data suggest that proteins can be described as repulsive chains with an

hard-sphere repulsion (for distances r . 4 Å) and a soft shell (for distances 4

Å. r . 10 Å). Residues feel no interactions, on average, for distances greater
than 10 Å.
We recover the dependence on the type of the interacting residues by restricting
the set of fragments used for computing the contact probability Pα,β(r,m) to
the ones whose first and last residues were respectively of type α, β of β, α. Beta
sheets have been identified as a source of spurious contacts and the effects of
these contacts have been canceled. In order to avoid biases in the computation
of Pα,β(r,m) due to spurious contacts inside β-sheets (see Fig. 4.1) we did not
consider pair of Cα carbons that belong to the same β-sheet and that are not
hydrogen-bonded to each other.
Again we used theoretical distribution P̃σ?(r,m) as reference state and we
compute the pairwise parameters of the scoring function by employing Eq. (2.1)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: A selection of pairwise potentials. Panel 4.6a describe the interaction
between two Alanine residues, panel 4.6b the one between two valine residues, panel
4.6c the one between two arginine residues and finally panel 4.6d depicts the interaction
between two isoleucine residues. Panel 4.6e represents the effective interaction between
residues, independently from their type and panel 4.6f shows a direct comparison of
all the potentials shown in the other panels. In all figures solid dots are the running
average of the data while the shaded region is the error associated with the average in
each point: its width is twice the standard deviation of the set of data that contribute
to the running average.
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as

εα,β(r) = − log

(
Pα,β(r,m)

Pσ?(r,m)

)
(4.13)

where indexes {α, β} label the amino acid type and Pα,β(r,m) represents the
end-to-end distance of fragments whose first residue is of type α and the last
one is of type β, or vice-versa. The resulting potentials (some of which are
shown in Fig. 4.6) exhibit features that are peculiar of the residues involved in
the interaction: notice for instance how the interaction between two charged
ARG is repulsive, as expected. We also notice that the value of ε(r) at large
values of the distance is approximately zero. This make us to suppose that the
constant ε(r)− V (r) is small when compared to typical values of ε(r).

In view of more appropriate choice of the reference state, the KBP introduced
in this section correctly accounts for the dependence of the contact probability
on the separation along the chain.

Even if the technique described in this section seems promising for the
development of reliable KBPs, it is necessary to point out how this specific
potential is not able to distinguish the different possible pairwise interactions
between two residues, e.g. does not depend on their relative orientation. As a
consequence a benchmark on the same CASP targets employed in [CGL+12]
and in Sections 2.3.1 and 2.3.2 shows its limited performances in recognizing
the native structure of proteins (see Fig. 4.7).
We can then conclude that categorize the possible interactions between residues
i smore crucial than to take into account the correlations inside the protein
chain. Further or going work is planned to develop this strategy.
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Figure 4.7: Comparison of the performances of Gaussian Chan Potential (GCP) with
other state-of-the-art methods.
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Chapter 5

Backbone movements

We consider the problem of the local movements of a chain molecule where
a small subset of degrees of freedom, e.g. dihedral angles, bonds angles or
bond lengths, are concertedly modified inside a specific portion of the chain,
in such a way that only the atoms in that region are moved while all the
others are kept fixed. We do not place any constraints on the degrees of
freedom that are modified: they can be chosen everywhere along the part of
the chain we want to move without the necessity of belonging to atoms/bonds
which are consecutive along the polymer. The issue of local movements is
related to the loop closure problem, i.e. finding conformations of a segment of
consecutive atoms in a chain molecule that are geometrically consistent with
the rest of the chain structure. These questions arise in the context of the
control of robotic manipulators made up of serially connected joints, where in
many common applications one end is fixed and the other must be positioned
at a specific location and with a given orientation [HH92], but they are also
topics of paramount importance in structural chemistry and in computational
biology. For instance, effective loop closure tools can enhance the performances
of homology modeling where segments of insertion or deletion have to be
predicted while the rest of the protein structure is reasonably well known from
structures of homologous proteins. The ability of moving efficiently a chain
may as well have useful applications in the Monte Carlo dynamics for large
scale simulations of dense polymeric systems [LCOS08]. In such situation, the
efficiency of Monte Carlo simulations relies heavily on the kinetic algorithm
used to sample the various possible conformational states of the molecule and
the introduction of a concerted move which restricts itself to modifying atom
locations only in limited positions of the molecule might play a key role to
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boost performances, by reducing the hindering effect due to excluded volume
constraint. Even the theoretical study of conformational flexibility can benefit
from the use of local collective movements that, at variance with Cartesian
moves, avoid geometric distorsions of the chain giving the possibility to explore
all the possible local arrangements of the flexible molecule.

In the biological context, the problem was often reduced to modify dihedral
angles that are the only soft degrees of freedom of the system. A first analysis
was due to Go and Scheraga [GS70] with an analytical approach and with the
developing of equations for determining the allowed dihedral angles when all
the rotating bonds are connected and when a subset is separated by rigid bonds
in the trans conformation. This approach was further extended by Theodoru
and coworkers [DBT93] to take into account the necessary requirements to
ensure Boltzmann distributed sampling for Monte Carlo simulations and by
Dinner [Din00] to generalize the formalism to allow fixed dihedral angles
that sequentially interrupt the rotating bonds to be non-planar. Another
refinement was later proposed with methods [FIS01, UJ03, UJ04, Bet05] in
which the inclusion of bond angle variations and of local constraints improved
the efficiency of the algorithm. Different formalisms were proposed by Hoffmann
and Knapp [HK96] to derive equations for dihedral angles and to apply these
moves to study a protein-like model that had the topology of polyalanine
with rigid peptide planes and by Coutsias et al. [CSJD04, CSWD06] with a
robotics inspired approach. The latter approach was succesfully incorporated
in state-of-art protein modeling tools, allowing sub-angstrom accuracy in loop
reconstruction [MCK09, SK13]. More recently, an efficient numerical method to
solve the analytical solution of the classic chain closure problem was introduced
with the specific purpose of optimizing Monte Carlo performances for dense
molecular systems [BBEJ+12].

Broadly speaking, all these methods are proposing efficient solutions, while
violating the general rules of the problem: either by imposing restrictive
conditions on the degrees of freedom that can be used (e.g. moving only specific
angles) or by relaxing the boundary constraints (e.g. not keeping completely
fixed all the other degrees of freedom).

On the contrary, here we develope a numerical strategy that, exploiting
the knowledge of an initial configuration of the chain, allows for an exhaustive
exploration of all the possible configurations that can be obtained by modifying
only n > 6 degrees of freedom, and that perfectly adapts to the frozen part of
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the chain. The choice of the degrees of freedom themselves is completely free
and any combination of bond and dihedral angles and of bond lengths can be
selected, resulting in a very rapid and efficient search algorithm.

Starting from a geometrical description of the chain inspired by robotic
language [HD64], similar in spirit to the one introduced by Go and Scheraga
[GS70], we derive six numerical equations, as a function of the n free variables,
which have to be fulfilled to satisfy the boundary conditions. Therefore, if
there is no degeneracy, the solutions that have to be found lie on a manifold
with dimension n− 6. The novel idea we here present consists in an extremely
powerful strategy to explore these manifolds, based on moving slightly out
along their tangent space and on coming back along the orthogonal space
towards a new configuration which satisfies all the equations and constraints.
This is viable by means of an appropriate double change of coordinates and
by employing mathematical algorithms to optimize the computational time.
Moreover, the algorithm is designed in such a way that the detailed balance
is quite easily satisfied for a very general choice of the modified degrees of
freedom.

The efficiency of the approach is remarkable and it makes possible, for
instance, to estimate the volume of the manifold which corresponds to the
number of possible conformations that are compatible with the constraints,
in the simplest n = 7 case. While at this stage the method is presented for
an ideal chain, without taking into account excluded volume or other energy
functions, such features can be introduced in a straightforward manner.

Although the method is completely general and can be applied to any sort
of linear object, it is intriguing to think about its applications to protein chains.
In such context bond angles and bond lengths can be considered constant
and the ψ and φ dihedral angles (Ramachandran’s angles) are the natural
degrees of freedom to be modified: the algorithm we propose thus becomes a
generalized crankshaft move involving a portion of the chain of desired length.
Some possible applications on proteins are shown, such as the estimation of
their backbone mobilities and local structure refinement.
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5.1 Mathematical framework

5.1.1 Denavit-Hartenberg parameters for chain descrip-

tion

In this section we introduce the parametric representation of a linear chain
used to derive the equations at the core of our algorithm. We consider a linear
chain composed of N + 1 atoms linked serially in which each of the N bonds
can be labeled with numbers from 1 to N . We describe the chain by using the
Denavit-Hartenberg (DH) notation [HD55]. According to DH a local reference
system Oi can be built on each bond composing the chain: the ẑi axis lies on
the bond while x̂i is oriented as ẑi−1 × ẑi. The ŷi axis is given, as usual, by the
right-hand rule. The origin oi of each reference frame is always located along
ẑi: in case ẑi is co-planar to ẑi−1, it lies on the first atom defining the bond;
otherwise it lies on the common normal to ẑi and ẑi−1.

A vector ~aj in the reference frame Oj can be expressed relative to Oj−1 as

~aj−1 = Rj−1
j · ~aj + ~Sj−1

j , (5.1)

where Rj−1
j is a 3× 3 orthogonal matrix that expresses the orientation of Oj

relative to Oj−1 and ~Sj−1
j is a vector describing the position of the origin oj

with respect to Oj−1. The matrix Rj−1
j and the vector ~Sj−1

j can be completely
described by using four parameters named link offset, link twist, link length
and joint angle. These are defined by the following rules:

• the link offset di is the distance along x̂i from oi to the intersection of
the x̂i and the ẑi−1 axes (i.e. the minimum distance between ẑi−1 and ẑi
axis);

• the link twist αi is the angle between ẑi−1 and ẑi measured about x̂i;

• the link length ri is the distance along ẑi−1 from oi−1 to the intersection
of the x̂i and the ẑi−1 axes and

• the joint angle θi is the angle between x̂i−1 and x̂i measured about ẑi−1.

Figure 5.1 shows how the DH parameters are defined for the general disconnected
case (i.e. link offset di > 0). This is actually a typical case, when the structure
of a protein backbone chain with all its heavy atoms is considered, since the
ω torsional angle around the peptide bond is a hard degree of freedom with a
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Figure 5.1: General graphical representation of a chain according to the Denavit-
Hartenberg convention, as discussed in the text. Thick lines represent the physical
bonds and spheres the atoms. α, θ, r and d are the DH parameters describing the
chain and o is the origin of each local frame O. The structure of a portion of a protein
backbone chain with all its heavy atoms is shown superimposed.

well defined typical value. If ω is then kept strictly fixed, the DH convention
allows to “spare” that degree of freedom, defining a disconnected chain as
shown in Fig. 5.1. In the simplest case, when all bonds included in the DH
description are connected with each other (i.e. all link offsets di = 0), the DH
variables have a well defined physical meaning. Link lengths are bond lengths,
link twists are supplementary of bond angles, and joint angles are torsional
angles. The DH formalism is in this case equivalent to the one routinely
used by software programs that reconstruct biomolecular structures subject to
experimental restraints[GMW97, BAC+98] and that employ efficient internal
dynamics algorithms that update only the values of torsional angles[JVR93].

By using the DH definitions the matrix Rj−1
j and the vector ~Sj−1

j can be
explicitly expressed as

Rj−1
j =

 cos(θj) − sin(θj) cos(αj) sin(θj) sin(αj)

sin(θj) cos(θj) cos(αj) − cos(θj) sin(αj)

0 sin(αj) cos(αj)

 (5.2a)

~Sj−1
j = (dj cos(θj), dj sin(θj), rj)

T . (5.2b)

With a more compact notation we rewrite Eq. (5.1) with the following

aj−1 = Tj−1
j aj, (5.3)
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where Tj−1
j is a 4× 4 matrix given by

Tj−1
j =

(
Rj−1
j

~Sj−1
j

0 1

)
(5.4)

and a is the vector a = (~a, 1)T . With this notation it is easier to relate any
Oj with any other Oi (j > i); indeed the following equation holds:

ai = Tija
j = Tii+1T

i+1
i+2 · · ·T

j−1
j aj. (5.5)

It should be now clear that the chain can be described by the whole set
{ri, αi, di, θi}i=1,··· ,N . For simplicity we denote {ri}i=1,··· ,N with r, {αi}i=1,··· ,N

with α, {di}i=1,··· ,N with d and {θi}i=1,··· ,N with θ; the chain configuration is
then given by the set {r, α, d, θ}.

5.1.2 Performing the concerted local move

It is possible to deform an initial configuration {r0, α0, d0, θ0} by changing
at least one of the parameters describing it.

Consider n DH parameters ξ̃µ, with µ = 1, · · · , n and the nb bonds to which
the n parameters are related. The number of bonds to be considered is always
smaller or equal to the number of DH parameters because in principle two or
more parameters could be related to the same bond. As already stated we
consider the general case in which these bonds can be non-consecutive. There
are two particularly interesting bonds among the nb: the first and the last i.e.
the one with the lowest label and the one with the highest one. These two
bonds delimit the region of the chain we are interested in modifying with an
opportune change of ξ̃, leaving the atoms outside this region unmodified (see
Fig. 5.2). Such a change can be highly non-trivial and could not always be
obtained: we will see later a condition that ensures us that this change can be
performed.

For convenience, we re-label the bonds we are interested in with numbers
from 1 to nb+1, where the latter is the first bond that remains fixed subsequent
to the moved portion of the chain. The condition that needs to be imposed in
order to ensure the locality of the change {r0, α0, d0, θ0} → {r, α, d, θ} is

T1
nb+1(r, α, d, θ) = T1

nb+1(r0, α0, d0, θ0), (5.6)
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Figure 5.2: Schematic representation of the portion of a linear chain involved in a
local modification. Bonds (1) and (nb + 1) are colored in blue while all the others are
in red. The degrees of freedom which are varied (ξ1, . . . , ξn) are arbitrarily distributed
inside the region. When they are concertedly changed to new values (ξ′1, . . . , ξ

′
n), the

new pink configuration is obtained while all the bonds outside the region (in black)
remain fixed in space.

that is requiring that the local reference frame Onb+1 does not move with
respect to the first one. In order to explicit the variables ξ̃ inside the relation
in Eq. (5.6) we define, with abuse of notation,

T1
nb+1(ξ̃) ≡ T1

nb+1(r, α, d, θ)− T1
nb+1(r0, α0, d0, θ0) (5.7)

in such a way that Eq. (5.6) can be rewritten as

T1
nb+1(ξ̃) = 0. (5.8)

Given the form of Tji (described in Eq. (5.4)), the 16 equations that are implicit
in Eq. (5.8) can be reduced to 6 equations in the n variables ξ̃. Three equations
are needed in order to set the translational part of Tji and other three for the
rotational part. We choose, for instance,

f1(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
01

f2(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
02

f3(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
12

f4(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
03

f5(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
13

f6(ξ̃) ≡
[
T1
nb+1(ξ̃)

]
23

(5.9)
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or, in a more compact form, f(ξ̃) = 0. If n is greater than 6 and if the system
of equation described in Eq. (5.9) is non degenerate then the solutions lie on a
manifold with dimension n− 6. If, on the contrary, the system is degenerate
the solutions lie on a manifold with dimension greater than n− 6.

Before to proceed it is important to notice that since the degrees of freedom
ξ̃ can describe both spatial or angular quantities the space defined by these
variables is in general dimensionally non-homogeneous. For this reason we
introduce a set of n scalar multipliers λi chosen in such a way that every
ξi = λiξ̃i is dimensionless. The space defined by the rescaled variables ξi is
now homogeneous and an appropriate metric can be defined in it by means
of the usual scalar product. In the case that a set of homogeneous variables
are chosen as system variables (e.g. all dihedral angles) the introduction of the
scalar multipliers is unnecessary but nonetheless it turns out to be useful (see
Section “Tuning of fluctuations by rescaling variables”).

The problem of finding a new configuration ξ starting from an existing ξ0
in such a way that Eq. (5.8) is satisfied can now be visualized as the problem of
moving on an (n−6)-dimensional manifold embedded in an n-dimensional space.
The most intuitive way to perform this non-trivial task is that of generating
an intermediate configuration ξ′ that may not lie on the manifold but that
it is not far from it. This first step is called by other authors pre-rotation
[BBEJ+12, BFH+13], and we will adapt to this nomenclature. Starting from
ξ′ it is then possible to compute a true solution with numerical methods, e.g.
root finding algorithms, or analytical ones [CSWD06].

In order to simplify the description of the pre-rotation step we introduce two
new quantities nm and nv that are respectively the dimension of the tangent
space M to the manifold at ξ0 and the dimension of the orthogonal space V
to the manifold at ξ0. Obviously nm + nv = n and nv = 6 if the system of
Eq. (5.9) is non-degenerate. In general nv is the number of linearly independent
functions in Eq. (5.9). The procedure we use to find a basis of the tangent
space to the manifold takes advantage of the implicit function theorem in order
to compute the derivatives ∂ξi

∂ξj
. Indeed we consider nm among the n variables

as independent and we denote them with the subscript x. The other nv are
labeled with a subscript y and will be written as a function of ξx. With this
notation we can write a set of nm n-dimensional vectors that span the tangent
space as

ex,i =

(
∂ξ

∂ξx,i

)
, (5.10)
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where the derivative
(

∂ξ
∂ξx,i

)
can be performed by computing separately the

contribute of the dependent variables ξy and that of the independent ones
ξx. The former (in the form of an nv-dimensional vector ∂ξy

∂ξx,i
) can be easily

computed by applying the implicit function theorem

∂ξy
∂ξx,i

= −

(
∂f(ξ̃0)

∂ξy

)−1

· ∂f(ξ̃0)

∂ξx,i
(5.11)

while the latter is given by the nm relations ∂ξx,j
∂ξx,i

= δi,j. In the cases in which

the matrix
(
∂f(ξ̃0)
∂ξy

)
is not invertible it is sufficient to choose a different set of

ξx as independent variables. Vectors ex,i can be orthonormalized to compute
a basis {êx,i}i for the tangent space. The intermediate configuration ξ′ can
finally be computed by simply summing an arbitrary linear combination of êx,i
to the initial configuration ξ0.

The intermediate configuration is an open configuration in which the position
and orientation of the last reference frame do not correspond to the target
ones. We therefore adjust the coordinates on the orthogonal space V by using
a root-finding algorithm to obtain the final configuration. Figure 5.3 depicts
an example move in case the manifold is one-dimensional (the full example is
addressed in the Section “Workout example”). The solution manifold (blue)
and the initial configuration are represented. The pre-rotation step corresponds
to the first update (thick red arrow) while the second step along the dotted line
allows to converge back to the manifold by means of a root-finding algorithm.
This is in general possible only for small enough pre-rotation steps. The brown
arrows show the case when a too big pre-rotation step does not allow the
procedure to converge back to the manifold.

A basis for V can be efficiently computed starting from the knowledge of a
basis for M and by using ad-hoc algorithms (e.g. QR-decomposition algorithm).
With this strategy the chain closure step usually takes few iterations of the
Broyden’s root finding algorithm. Notice that it is in principle possible to use
a root-finding algorithm that takes advantage of the easy-to-compute gradient
∂f(ξ)
∂ξ

to boost the search for the solution. However our tests have shown that
the time saved by the root-finding algorithm usually does not compensate for
the time necessary for computing the gradient.

The full algorithm can be summarized in the following steps:

1. Compute a basis for the tangent space M at ξ0, as well as a basis for the
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Figure 5.3: Graphical sketch of the updating of the conformations in the n-dimensional
space of the degrees of freedom which are changed. The blue line represents the
manifold of the solutions of Eq. (5.23), as discussed in the Section “Workout example”
within “Material and Methods”. The manifold is plotted within the (θ, ρ) plane, with
the independent variable being ξx = ρ and the dependent variable ξy = θ. M and V
are respectively the tangent and the orthogonal space to the manifold in the starting
conformation ξ0. The degrees of freedom are first changed along M (red continuous
arrow) and a new conformation satisfying Eq. (5.9) is reached by moving along V
(dashed red arrow). If the pre-rotation step along M is too large (brown continuous
arrow), the post-rotation closure step along V (dashed brown arrow) fails to fall back
to the manifold.
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orthogonal space V ;

2. Choose an arbitrary direction η̂ in M and an arbitrary step length ds;

3. Generate an intermediate configuration ξ′ = ξ0 + ds · η̂;

4. Use a root-finding algorithm in order to converge to a solution of Eq. (5.9)
by moving on V ;

5.1.3 Detailed balance

In this section we will denote the three-dimensional configuration of an N -atom
chain at time t with the 3N -dimensional vector Rt = {rt1, rt2, · · · rtN}, where
each rtk = (xtk, y

t
k, z

t
k)
T represents the three-dimensional position of atom k at

time t.
In order to demonstrate that the scheme we proposed for changing the

backbone configuration satisfies the detailed balance condition

P (Rt)Π(Rt → Rt+∆t) = P (Rt+∆t)Π(Rt+∆t → Rt} (5.12)

we will show separately that (1) with an appropriate change of variables, it
is possible to uniformly sample the whole configurational space of the system
without changes to the algorithm and (2) the probability of moving from Rt to
Rt+∆t can be chosen in such a way that Π(Rt → Rt+∆t) = Π(Rt+∆t → Rt).

We start by showing that point (1) is true. If the DH’s variables α,θ, r are
used for describing the chain, the volume element in the configurational space

dV t =
N∏
k=1

dV t
k =

N∏
k=1

dxtkdy
t
kdz

t
k (5.13)

can be rewritten as

dV t =
N∏
k=1

J tkdα
t
kdθ

t
kdr

t
k, (5.14)

where J tk = sin(αtk) (rtk)
2. Since the determinant Js =

∏N
k=1 J

s
k of the change of

variables Rt → {α,θ, r} is not constant, a uniform sampling of the space of the
DH’s variables does not result in a uniform sampling of the configurational space.
In this case uniformity can be achieved by accepting the configuration change
{α,θ, r}1 → {α,θ, r}2 with probability p = min

(
1, J

t+∆t

Jt

)
. Such essential

choice compromises efficiency both by increasing the number of calculations
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per time step and by reducing the probability of obtaining a new configuration.
With our approach the problem is overcome without performing any additional
time-consuming calculation. Indeed it is easy to notice that the algorithm
proposed in the previous section does not rely on the particular form of ξ
or f(ξ̃) but rather on the possibility of computing f(ξ̃) and its derivatives.
For this reason every differentiable, invertible function of ξ̃, whose inverse
is differentiable, can be used as degree of freedom of the system without
jeopardizing the efficiency of the full scheme. If, for instance, ψ = g(ξ̃) is used
as degree of freedom, the following trivial relations holds:

f(ψ) = f(g
(
ξ̃
)

) (5.15a)

∂f(ψ)

∂ξ̃
=
∂f(ψ)

∂ψ

∂g(ξ̃)

∂ξ̃
. (5.15b)

If DH’s parameters can be interpreted as bond lengths, bond angles and torsional
angles (θ is always a torsional angle, α is a bond angle for bonds connected to
the previous one, r is a bond length for bonds connected to both the previous
and the subsequent one) it is sufficient to use the variables ξ̃α = cos(α) and
ξ̃r = r3

3
as new degrees of freedom in order to guarantee the determinant of

the Jacobian of the change of variables to be constant: this implies that the
new configuration can always be accepted. This result relies only on the fact
that the Jacobian does not depend on ξ; we derived it independently from the
values of the rescaling factors.

Notice that even if the inverse of the cosine function is not differentiable in
0 and π, these points are at the boundary of the domain in which the bond
angle α is defined. Hence the analysis is valid in the open domain (0, π) but
not in its closure. The same is true for r3

3
, whose inverse is not differentiable in

r = 0. Of course these drawbacks are not relevant for most applications, since
α = 0, π and r = 0 are far from physical values. Therefore a uniform sampling
of the space of the new variables

{
ξ̃α, ξ̃r, θ

}
is sufficient to ensure a uniform

sampling of the configurational space.
In order to ensure the detailed balance condition to be valid it is now neces-

sary to check whether the step size ds that has been used in the forward update
ξ1 → ξ2 is the same that would be necessary for the reverse transformation
ξ2 → ξ1. Indeed the step size is typically chosen from a fixed probability
distribution and therefore if the backward step size ds′ is different from the
forward one, it is necessary to take into account the different probability of
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proposing such a step. The backward step can be easily computed as the norm
of the projection of ξ2 − ξ1 onto the tangent space to the manifold at ξ2. If the
step size is chosen from a normal distribution with zero average and variance
σ2 it is sufficient to accept the update with probability

P = min

(
1, exp

(
ds2 − ds′2

2σ2

))
(5.16)

to ensure the equivalence between forward and backward probability. In many
practical cases ds′

ds
is close to one and, as a consequence, the probability of

rejecting a Monte Carlo move is negligible. This calculation can be done for
whatever choice of the factors λi. The detailed balance can therefore be satisfied
independently from the choice of each λi.

Tuning fluctuations by rescaling variables

The role of rescaling factors λi previously introduced can be further exploited.
As already briefly discussed, their introduction has been necessary to map the
original non-homogeneous space of the variables ξ̃ in the homogeneous one of
the variables ξ = λ · ξ̃ where a metric can be defined. But on top of that they
can be used in order to tune the fluctuations of the corresponding degrees of
freedom.

Given a starting configuration ξ̃0 suppose that some of the ξ̃0,i are hard
degrees of freedom (ξ̃0,H) while the others are soft (ξ̃0,S). We can use two
different values of λi, depending on the class of the corresponding degrees of
freedom, thus mapping

ξ̃0 = (ξ̃0,S, ξ̃0,H)T → (λS · ξ̃0,S, λH · ξ̃0,H)T = ξ0, (5.17)

where λH > λS. As described in previous sections the algorithm is applied to
the initial conformation in the homogeneous, deformed space. For simplicity
we consider in the following discussion the particular case in which the soft
degrees of freedom correspond to the independent variables, in such a way that
the new configuration ξ can be written as a function of the variation vectors
∆ξS and ∆ξH = ∇ξSξH ·∆ξS as

ξ = ξ0 + ∆ξ =
(
λS · ξ̃0,S + ∆ξS, λH · ξ̃0,H + ∆ξH

)T
, (5.18)

89



where ∇ξSξH is the matrix of the derivatives of the hard degrees of freedom
with respect to the soft ones.

It is possible to express the norm of the variation vector for independent
variables ∆ξ̃S as a function of the size of the actual move performed in our algo-

rithm, the step size ds in the tangent space: ds =
(
λ2
S||∆ξ̃S||2 + λ2

H ||∆ξ̃H ||2
) 1

2 .

The previous equation allows to define the function gλs,λH
(
ξ̃S, ξ̃H

)
through

||∆ξ̃S|| =
gλs,λH (ξ̃S ,ξ̃H)

λS
ds. The function gλs,λH

(
ξ̃S, ξ̃H

)
describes the reduction

of the variation of the soft independent variables, for a fixed step size ds, due
to the orientation of the tangent space with respect to the space of independent
variables. It depends, in general, both on the position of the initial point in
the manifold and on the chosen rescaling factors.

Each point of the deformed manifold can be remapped to the original mani-
fold with the inverse transformation ξ̃ = 1

λi
ξ. Therefore the new configuration

found in Eq. (5.18) corresponds to a final configuration in the original space
equal to

ξ̃ =
(
ξ̃0,S + 1

λS

[
gλs,λH

(
ξ̃S, ξ̃H

)
ds
]

∆̂ξ̃S, ξ̃0,H + 1
λH

[
gλs,λH

(
ξ̃S, ξ̃H

)
ds
]
∇ξSξH · ∆̂ξ̃S

)T
, (5.19)

where ∆̂ξ̃S is a normalized vector.

The previous equation holds also in the λS = λH = 1 case, when no rescaling
occurs. The rescaling factor KS for the variation of the independent variables
ξ̃S as a consequence of the introduction of λS, λH 6= 1 is then easily computed:

KS(ξ̃S, ξ̃H) =
1

λS

gλs,λH

(
ξ̃S, ξ̃H

)
g1,1

(
ξ̃S, ξ̃H

) (5.20)

while the rescaling factor KH for the variation of the hard degrees of freedom
ξ̃H reads

KH(ξ̃S, ξ̃H) =
λS
λH

KS(ξ̃S, ξ̃H)
||∇ξSξH · ∆̂ξ̃S||

||∇ξ̃S ξ̃H · ∆̂ξ̃S||
. (5.21)

This is the central equation of this section, as it shows to what extent the
variation vector for hard degrees of freedom is modified differently than for
soft degrees of freedom, due to the rescaling of the original variables. Besides

the global tuning factor λS
λH

a second factor ||∇ξS ξH ·
ˆ

∆ξ̃S ||

||∇ξ̃S ξ̃H ·
ˆ

∆ξ̃S ||
appears, related to the

local geometrical properties of the considered manifold.
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For one-dimensional manifolds, it is easy to see that ∇ξSξH = λH
λS
∇ξ̃S ξ̃H ,

so that KS(ξ̃S, ξ̃H) = KH(ξ̃S, ξ̃H); the variations of both the hard and the soft
degrees of freedom are rescaled in the same way, as if a new effective step size
ds(ξ̃S, ξ̃H) = KS(ξ̃S, ξ̃H) ds were used.

For manifold of higher dimension, if ∇ξSξH 6=
λH
λS
∇ξ̃S ξ̃H then KS(ξ̃S, ξ̃H) 6=

KH(ξ̃S, ξ̃H) and the λ factors can effectively be used in order to tune the
amplitude of the fluctuations of hard degrees of freedom with respect to the
soft ones. It is obviously not easy to quantify ‘a priori’ the local geometric

factor ||∇ξS ξH ·
ˆ

∆ξ̃S ||

||∇ξ̃S ξ̃H ·
ˆ

∆ξ̃S ||
.

In the most general case, with no restriction on the soft degrees of freedom
being either independent or dependent variables, we expect to find qualitatively
similar results both for high-dimensional and one-dimensional manifolds.

Workout example

In order to better explain each step of the algorithm we provide a simple
example that can be solved exactly. Beyond the context of concerted local
movements in chain molecules, the simplest possible case for our algorithm
corresponds to the motion along a one-dimensional manifold defined by a single
constraint within a two-dimensional space. In this spirit, we consider a physical
system in which a single particle is constrained to move within the (x, y) plane
on the right branch (x ≥ 1) of a hyperbola of equation

x2 − y2 − 1 = 0. (5.22)

We introduce new polar coordinates
(
ρ̃ =

√
x2 + y2, θ̃ = atan

(
y
x

))
that, in this

example, will have the same role the DH parameters have for the description of
a chain molecule. Notice that θ̃ is defined in the open interval (−π

4
, π

4
). We also

introduce two scalar quantities λρ and λθ defined in such a way that ρ = λρρ̃

and θ = λθθ̃ are both dimensionless quantities. Constraints are defined by the
analogous of Eq. (5.9)

f1(ρ̃, θ̃) : ρ̃2 cos(2θ̃)− 1 = 0 (5.23)

that, as a function of the rescaled variables becomes

f1(ρ, θ) :
ρ2

λ2
ρ

cos(2
θ

λθ
)− 1 = 0. (5.24)
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The tangent space M and the orthogonal space V in the initial configuration
(ρ0, θ0) can be easily computed starting from the expression of the derivatives
of f1(ρ, θ) {

∂f1(ρ,θ)
∂ρ

= 2 ρ
λ2
ρ

cos(2 θ
λθ

)
∂f1(ρ,θ)
∂θ

= −2 ρ2

λ2
ρλθ

sin(2 θ
λθ

)
(5.25)

by means of the implicit function theorem. Indeed, if the initial configuration
is such that ∂f1(ρ,θ)

∂θ
6= 0 (i.e. θ 6= 0) it is possible to choose ρ as independent

variable and to compute the derivative ∂θ
∂ρ

= λθ
ρ

cotan
(

2 θ
λθ

)
. The tangent space

M is therefore generated by the vector η(ρ, θ) =
(

1, ∂θ
∂ρ

)T
and any intermediate

configuration can be selected as (ρ′, θ′) = (ρ0, θ0) + ds · η̂(ρ0, θ0), where ds
is an arbitrary step-size and η̂ is normalized. Once η is computed, the QR
algorithm is used in order to generate a basis for the orthogonal space V .
In this simple example V is one-dimensional and the generating vector can

be computed explicitly as η⊥(ρ, θ) =
(
−∂θ
∂ρ
, 1
)T

. A root finding algorithm
is finally used in order to find a solution to the equation f1(ρ, θ) = 0 with
(ρ, θ) = (ρ′, θ′) + k · η̂⊥ and with varying k. In case θ = 0, it is not possible to
use ρ as the independent variable, and θ has to be chosen instead. Notice that
in order to ensure numerical stability it is safer to use θ as independent variable
in a suitable interval centered in θ = 0. Also, the existence of a solution is in
general ensured only for small enough step sizes, as depicted in Fig. 5.3.

We now consider within this example the effect of introducing the rescaling
factors λρ and λθ, as discussed in the previous section. We assume θ̃ 6= 0, so
that ρ can be used as the independent variable. In this case we see that

∂θ

∂ρ
=
λθ
λρ

∂θ̃

∂ρ̃
(5.26)

and therefore any rescaling induced for dρ is applied to dθ as well, as expected
for a one-dimensional manifold. The relation between the step size ds tangent
to the manifold and the variation dρ̃ of the independent unrescaled variable is

ds = dρ̃

[
λ2
ρ + λ2

θ

(
∂θ̃
∂ρ̃

)2
] 1

2

, that allows to recover the function gλρ,λθ
(
ρ̃, θ̃
)

=

λρ
ds/dρ̃

=

[
1 +

λ2
θ

λ2
ρ

cotan2(2θ̃)
ρ̃2

]− 1
2

. We finally obtain the rescaling function from
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Eq. (5.20) as

K(ρ̃, θ̃) =
1

λρ

[
1 + 1

ρ̃2 cotan2
(

2θ̃
)] 1

2

[
1 +

λ2
θ

λ2
ρρ̃

2 cotan2
(

2θ̃
)] 1

2

.

Results

In this section we present some applications of our method for the study of
polypetide molecular systems, preceded by a test of detailed balance and of how
the fluctuations of different degrees of freedom can be tuned by using rescaled
variables. In polypeptide chains the rules of quantum chemistry constrain bond
lengths and bond angles to fluctuate slightly around known values and double
bonds to be approximately planar. The flexibility of the chain is therefore
mainly due to the variation of φ, ψ Ramachandran’s angles. In order to mimic
this behavior, hard degrees of freedom are typically strongly constrained by
using stiff quadratic potentials. This is not necessary with our approach because
the hard degrees of freedom can be kept frozen in their minimum energy value
thus reducing the number of degrees of freedom.

For this reason, in all applications discussed below we consider only the
Ramachandran’s φ and ψ torsional angles as degrees of freedom of the system;
since ω is kept fixed, the set of bonds considered in the DH description is
disconnected, as shown in Fig. 5.1. In practice, in our simulations Eq. (5.9)
is always not degenerate, in such a way that the solution manifold has co-
dimension 6.

Detailed balance

In order to verify that the detailed balance is satisfied we performed a Monte
Carlo simulation on a 63-residue long protein fragment (pdb code 1CTF) by
using our algorithm. We allowed only the Ramachandran’s φ and ψ angles to
vary during the simulation; these modifications were obtained by randomly
selecting either a Pivot move around a randomly selected bond or our locally
concerted move on a set of randomly selected angles. The introduction of
the Pivot move was necessary to move the last bond of the chain and thus
ensure simulation ergodicity. Figure 5.4 shows the distribution of the values of
different torsional angles of a protein chain that has been simulated using the
proposed schema. As expected when detailed balance holds, the distribution is
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Figure 5.4: Distribution of the values of torsional angles of a 67 residues long protein
(1CTF) during a 3.5 · 105 time-steps Monte-Carlo simulation. Each of the stacked
barchart is relative to a different torsional angle. At each simulation step the structure
is deformed by applying our algorithm to a randomly chosen portion of the chain
(with probability 0.7) or by a pivot move (with probability 0.3). In the former case
the step size ds is chosen from a normal distribution with mean 0 rad and variance
0.08 rad2. In the latter case a randomly chosen φ or ψ angle is perturbed by adding
to it a quantity that is chosen from a normal distribution with mean 0 rad and
variance 0.4 rad2.
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Figure 5.5: Distribution of variability of θ1 and θ3 angles for different values of λ1 for
a 9 degrees of freedom chain. The distribution of θ3 is largely not affected by the
change of λ1 while the distribution of θ1 is rescaled according toEq. (5.19).

flat, within natural stochastic fluctuations.

Fluctuation tuning by rigidity rescaling

We also studied how the dynamics of the exploration of the solution manifold
is affected by the rigidity factors λi used to rescale the original variables (see
Materials and Methods). This has been done by comparing the distribution of
the fluctuations ∆θ of two different torsional angles upon changing the rigidity
of one of the two. The data have been obtained by performing short simulations
with fixed step-size ds = 0.01 along a randomly chosen direction onto the
tangent space to the manifold. First a nine degrees of freedom fragment,
corresponding to a three-dimensional manifold, was explored for different values
of λ1. Figure 5.5 shows the distribution of the fluctuations of the corresponding
torsional angle θ1 and of another torsional angle (θ3) used as negative control.
A rescaling of λ1 by a factor of 3 does not globally affect the distribution of ∆θ3,
but rescales the corresponding distribution of ∆θ1 by a factor roughly 3. This
shows that the main role in Eq. (5.19) is played by the global rescaling factor
1/λ, wheres the role of local manifold geometry is in practice less relevant, at
least in the considered example. On the other hand, the effect of local manifold
geometry may explain some reshaping that can be appreciated in the plotted
distributions apart from the global rescaling.

Similarly, Fig. 5.6 shows the distribution of the fluctuations of the angles
θ1 and θ3 obtained while exploring the solution manifold of a seven degrees of
freedom fragment with a fixed step-size ds for different values of λ1. In this
case the solution manifold is one-dimensional and therefore the fluctuations
of θ1 and θ3 are always related. Indeed, after the rigidity λ1 is increased,
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Figure 5.6: Distribution of variability of θ1 and θ3 angles for different values of λ1 for
a 7 degrees of freedom chain. In this case it is not possible to change a single dof
without altering the others: as a consequence a rescaling of λ1 affects the distributions
of θ1 as well as of the other angles (shown: θ3). In this case the effect of changing the
rigidity of one or more parameters is the same as rescaling the step size used during
the simulation.

both distributions are globally rescaled by the same quantity. The dynamics
on the deformed manifold corresponds, in this case, to a dynamics on the
original manifold with a rescaled step size. For the one-dimensional example as
well, some reshaping can be seen in the plotted distributions apart from the
global rescaling. Again, this observation may be explained as an effect of local
manifold geometry, consistently with Eq. (5.19).

Exploring the conformational space

The first application we describe is the exploration of the whole conformational
space of a small portion of a polypeptide, i.e. finding all configurations of that
fragment that are compatible with the locality constraints. The problem can
be resolved by finding a method to compute all the solutions of Eq. (5.9). This
is not a simple task when the number of degrees of freedom is large but, on
the contrary, if the number of variables is 7 the exploration of the manifold is
simple. In this case the manifold has dimension 1 and so it is sufficient to move
on the manifold always along the same direction. This can be done by choosing
at each step k an initial direction η̂k in such a way that η̂k−1 · η̂k > 0. In
practice, we choose η̂k to be parallel to the projection of η̂k−1 onto the tangent
space to the manifold in the actual configuration.

Figure 5.7 shows a three-dimensional projection of a one-dimensional mani-
fold obtained by changing 7 consecutive φ and ψ Ramachandran’s angles of a
portion of a protein. Some configurations of the polypeptide that have been gen-
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Figure 5.7: Three-dimensional projection of the solution manifold. The whole manifold
lies in a seven-dimensional space. Some configurations are highlighted: the starting
configuration is emphasized with a red circle while two other possible solutions are
emphasized in green. The red part of the structure is the portion which has been
modified with our moves.

erated during the exploration are also plotted. There are no other configurations
of the selected region that are compatible with the constraints imposed by the
locality requirement and that can be generated with a continuous modification
of the original configuration.

Higher dimensional manifolds can be explored as well but, in these cases,
there is not a general strategy that allows an efficient exploration of the whole
space. This exploration can be achieved with a Monte-Carlo simulation or
with ad hoc procedure as in the next example. As a proof of concept, with the
only purpose of showing the viability of the method in higher dimensions, we
consider a small cyclic molecule (cyclooctatetraene) and we assume that all its
8 torsional angles are soft degrees of freedom that can be modified. Figure 5.8
shows four conformations of cyclooctatetraene obtained with our procedure
and Fig. 5.9 shows the whole bidimensional solution manifold.

We highlight the efficiency of the method. The full exploration of cyclooc-
tatetraene configurational space has been performed in about 5 minutes on
a single core 2.0 Ghz computer, collecting more than 105 different structures
with a sample-step of 10−2 radians.
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Figure 5.8: Four conformations of the ciclic molecule cyclooctatetraene obtained
while exploring its whole conformational space by changing the 8 torsional angles
degrees of freedom. Bond length and bond angles are kept fixed. This is a toy model
to illustrate the efficiency of the method: the molecule alternates double and single
bonds and therefore half of the torsional angles are constrained and only four are
completely free. Images of molecular structures have been generated with PyMol
[Sch10].

Figure 5.9: A three-dimensional projection of the solution manifold for our model
of cyclooctotetraene molecule (B) and a schematics of how the manifold has been
explored (A). First a set of seven angles are chosen and the relative one-dimensional
manifold is visited (red line). Then the one-dimensional manifold relative to a different
choice of degrees of freedom is explored using each of the generated structure as a
starting point (green dots).
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5.1.4 Protein backbone mobility

In this section we describe how it is possible to estimate the mobility of a
portion of protein backbone (local backbone mobility) by using a simple schema
based on the algorithm proposed here. The hypothesis we use is that the local
mobility is proportional to the number of configurations that can be explored
locally without modifying the rest of the chain, the local backbone volume. In
principle, the number of configurations taken into account in this counting
could be reduced by eliminating those conformations that exhibit steric clashes.
Also, it would be possible to introduce a pair-wise potential in order to consider
interaction effects. Here we limit the study of the mobility to non-interacting
chains.

Consider the 3N -dimensional configurational space describing the position
of each atom composing the system. In analogy with the usual definition of
entropy, we define the local backbone entropy as the logarithm of the local
backbone volume, that is the volume of the solution manifold measured in
the 3N -dimensional configurational space. This volume can be computed by
integrating the Gramian of the transformation {α,θ, r} → Rt on the solution
manifold in the DH’s variable space. The Gramian function specifies how
the (n − 6)-dimensional volume element of the manifold in the space of DH
parameters is mapped into the 3N -dimensional configurational space. If s are
the coordinates on the manifold, determined within an orthonormal system of
basis vectors in the tangent space, the Jacobian of the transformation can be
written as ∇sRt, and the Gramian is computed as

G(s) = {det
[
(∇sRt)T ∇sRt

]
}

1
2 , (5.27)

(see [Ros80, Rud64]).

Values of entropy can be assigned to different protein fragments, i.e. to
different subsets of degrees of freedom, by considering the corresponding mani-
folds defined by their concerted variations. We first estimate the entropy S(i)

associated to a single residue i as the sum of the entropies computed for all
the different fragments comprising that residue. For simplicity, we restrict our
calculation to fragments that comprise seven consecutive φ and ψ Ramachan-
dran’s angles. We then call the map i 7→ A × exp (S(i)) the mobility profile
of the structure. The factor A is a proportionality constant which has the
dimension of an Angstrom squared.
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Figure 5.10: Comparison between the experimental mobility and the theoretical mobil-
ity profile of different structures. Data in (A) are relative to an all-α protein (1YGM)
while (B) shows the mobility of mixed β and α protein (2ITH). The experimental
profile has been computed as the variance in the position of α-carbons in different
NMR models of the same protein. Red lines represent theoretical calculations, black
lines experimental values. Boxes below the horizontal axis locate the position of
secondary structures along the chain: red for α-helices and yellow for β-sheet. The
matching between the theorethical and experimental profiles has been obtained by
optimizing the proportionality constant A with a least square fit. In (A) the fit has
been computed over the whole length of the chain, while in (B) the fit concerned only
the α regions.

In Fig. 5.10, we compare the mobility profile with the corresponding ex-
perimental data, i.e. the variance of the positions of the α carbon atoms in
different NMR models of the same structure. Note that the predicted mobility
profile is matched to the experimental one by fitting A, so that only the ratio
between the mobilities of different regions of the same protein structure can be
considered as a real prediction of our model.

Remarkably, the mobility of 1YGM, an all-α structure, is described with a
good degree of accuracy by the theoretical estimations. This fact, confirmed
by similar analysis on other all-α structures (data not shown) suggests that
the local geometrical constraints of the protein backbone taken into account
by our method are enough to predict the relative mobility of helical and non
helical regions. The surprising conclusion is that the presence of both steric
and energetic effects reduces the available phase space, and hence the mobility,
by the same amount for both regions. On the contrary, β-sheet mobility is
not captured at all, probably because we do not consider in our analysis the
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non-local inter-strand interactions that are crucial for their stability.

Structure refinement

The ability of exploring completely the conformation space of a limited fragment
of a protein can be exploited for reconstructing or refining a small portion of a
polypeptide structure. Let us suppose to have a putative fragment of a protein
which has been roughly reconstructed by experimental methods: the hard
degrees of freedom (bond angles and bond lengths) of this portion have correct
values, whereas some of the torsional angles may not all be consistent with the
allowed values of the Ramachandran’s plot. Given such initial configuration Γ0,
our approach allows to modify exhaustively the soft degrees of freedom and to
check if it is feasible to obtain a solution which is compatible with the standard
Ramachandran’s plot.

To test this possibility, we first partition the Ramachandran’s plot in a grid
of squares with size 2◦×2◦. By analyzing the databank Top500 formed by a non-
redundant, specially refined set of 500 high resolution X-ray crystallographic
structures of globular proteins [LDA+03], we consider as good, those bins
which have a fractional occupancy higher than 0.04. We investigate if the
condition of having good Ramachandran’s angles in a small fragment of a
protein is a condition sufficient to reconstruct/refine the protein backbone.
Therefore we randomly explored the conformational space of different portions
of a protein. For each portion we store only the acceptable configurations, i.e.
those configurations with good Ramachandran’s angles.

Different 5 residues long fragments were analyzed, from α, β, or coil struc-
tures (that are neither in α nor in β). Figures 5.11 and 5.12 show all the
acceptable configurations that have been generated during the exploration of
an α-helix and a β-strand portion, respectively. Each subplot shows the values
sampled by a different pair of Ramachandran’s angles within the considered
fragment. From Fig. 5.11, we can notice that all acceptable solutions generated
from an α-helix structure lie in a very narrow region of the Ramachandran’s
plot. The exploration of different α-helix regions confirms this finding and
shows that usually about the 90% of the configurations that are compatible
with the imposed constraints are acceptable, and hence shown in Fig. 5.11.

Going back to the original problem of refining a rough initial estimation of a
protein portion, our results imply that, for an α-helix, it is easy to reconstruct a
solution that is essentially unique, within very small changes of Ramachandran’s
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Figure 5.11: All acceptable Ramachandran angles obtained during the exploration
of the solution manifold of a 5-residue-long α fragment. All points form a unique
cluster, meaning that there is only one acceptable conformation of the helix that is
compatible with the initial configuration. Thus, having fixed the first and the last
bond, there is only one possible way to reconstruct the missing helix.
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Figure 5.12: All acceptable Ramachandran angles obtained during the exploration of
the solution manifold of a 5-residue-long β fragment. Points form different clusters,
meaning that there are more than one acceptable conformation of the strand that
are compatible with the initial configuration. It is not possible to safely reconstruct
or refine a β fragment by only requiring the final configuration to have acceptable
Ramachandran’s angles.
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angles. Results are different in the case of β-structure; in such situation the
algorithm works smoothly to find solutions but most of them are not in good
regions of the Ramachandran’s plot (more than 90%) and those satisfying such
constraints, the ones shown in Fig. 5.12, are more widely distributed in the good
region. Therefore, a reconstruction starting by a β-like structure is feasible
within our approach, but produces a broader range of possible solutions with
respect to α-helical fragments. For both the α and the β fragments, in order to
evaluate how exhaustive is our exploration strategy, the stored configurations
were analyzed with a sophisticated cluster algorithm [RL14], checking that the
conformational clusters found in each half of the search trajectories do not
change.

Repeating the same analysis for coil fragments, it is found that only a very
low percentage (usually below 1%) of configurations have good Ramachandran’s
angles, whereas the acceptable configurations span all possible allowed values
(Figure not shown). Under such circumstances, an exhaustive search of all
possible acceptable solutions can be quite time consuming.

5.2 Discussion and Conclusions

We introduced a novel technique that can be used to locally deform linear or
cyclic polymer chain structures. Different kinds of degrees of freedom (torsional
angles, bond lengths, bond angles or any arbitrary combination of these) can
be used. There are no general requirements on the choice of the degrees of
freedom: in the case of protein chains they can belong to the same residue as
well as to residues that are far away from each other. In the general case, for
the algorithm to work, it is necessary that at least seven different degrees of
freedom are used.

The three-dimensional configuration of a linear chain is commonly de-
scribed by using the cartesian coordinates of each monomer with respect to the
same fixed frame of reference. Instead, in our algorithm we use the Denavit-
Hartenberg (DH) convention [HD55, HD64], that is very popular in robotics
and has already been used by different authors [GS70, BK85, MZW95, CSJD04,
NOS05] in order to describe a polypeptide chain. One advantage of the DH
convention is its ability to readily describe a general disconnected subset of the
bonds of the physical chain. This is useful if one is interested in varying in
a concerted way degrees of freedom from disconnected chain segments, while
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keeping fixed the degrees of freedom in between. This occurs, for instance,
when consecutive φ, ψ Ramachandran’s angles are chosen to be varied, whereas
the torsional angle ω around the peptide bond is kept fixed [Din00]; in this
case it is not necessary to include the peptide bond in the DH description (see
Fig. 5.1).

In the simplest case, when all bonds included in the DH description are
connected with each other, the DH variables have a well defined physical
meaning. Since two consecutive bonds always share an atom, link offsets d are
zero, and therefore we can interpret link lengths r as bond lengths, link twists
π − α as bond angles, and joint angles θ as torsional angles. In the general
case, some physical bonds may not be considered so that two consecutive bonds
included in the DH description do not share an atom. When a disconnected
bond is added, the link offset is different from zero, the link length and the
link twist do not have a physical interpretation anymore, whereas the joint
angle can still be interpreted as a torsional angle, albeit with an offset in its
definition. As a consequence, torsional angles can always be included within
the DH description as such, bond angles only if the previous bond in the DH
description is not disconnected, and bond lengths if both the previous and the
subsequent bond are not disconnected.

In general, the change of a single DH parameter is responsible for a global
modification of the structure, i.e. a modification that, on average, affects a
number of atoms proportional to the number of atoms of the chain. For instance
the change θi → θi+∆θi is responsible for a rotation around ẑi−1 of all the atoms
of the chain that belong to the bonds labeled with j > i; this configuration
change is known as a pivot move. In order to locally update a configuration
{r0, α0, d0, θ0} it is necessary to simultaneously change more than one DH
parameter with the costraint that the remaining part of the chain is kept fixed.
By using the DH description we were able to write a set of equations (see
Eq. (5.9)) that describe the constraints and whose solutions correspond to the
locally deformed configurations we want to compute. This set of equations
is the central mathematical framework on which several other methods are
based on [GS70, BK85, MZW95, CSJD04, NOS05]. The solutions derived by
existing approaches are however limited to considering only torsional angles.
Moreover, in order to compute a solution of the equations, existing techniques
usually restrict their application to the study of particular geometries, such
as the ideal Pauling-Corey geometry, or need to slightly modify a number of
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other degrees of freedom of the chain.

Our method generalizes existing algorithms by proposing a strategy that
allows for a concerted modification of any arbitrary set of degrees of freedom
of the chain while keeping all the other strictly fixed. The only requirement is
that the number of selected degrees of freedom is greater than the number of
linearly independent equations that define the constraints in Eq. (5.9), i.e. is
greater than 6 in the non degenerate case.

All algorithms performing concerted local structural changes for a polymer
chain roughly follow the same general strategy. First, a pre-rotation step is
proposed, that is an update of a selected subset of driver pre-rotation angles
among all the ones that will be eventually involved in the local move. If actually
performed, the pre-rotation would generate an intermediate configuration ξ′

corresponding to a global structural change. Then, the post-rotation step is
performed, by explicitly finding the remaining post-rotation angles that satisfy
the locality constraints.

The algorithm here proposed introduces a novel way to perform the pre-
rotation step (see Fig. 5.3). Indeed, while other methods arbitrarily selects the
driver angles and then generate the intermediate configuration ξ′ by randomly
perturbing them, our algorithm generates ξ′ by moving from the initial config-
uration along a random direction in the tangent space to the manifold of the
configurations compatible with the locality constraints. Thus, the pre-rotation
step is already a change of all the degrees of freedom involved in the local move
concerted in a way that is intrinsically driven by the geometrical properties of
the manifold of explorable configurations.

The post-rotation step is then performed by using a root-finding algorithm to
converge again to the manifold of correct configurations. Despite its simplicity,
the root-finding approach is effective since it takes advantage of the fact that
the intermediate configuration ξ′ is already a good approximation to the correct
solution as well as of the fact we can restrict the root-finding algorithm to
search for a solution by moving within the space orthogonal to the manifold
at the initial configuration. The orthogonal space can be efficiently computed
based on the knowledge of the tangent space already needed in the pre-rotation
step. Restricting the search of the solution within the orthogonal space also
ensures that the solution searched for in the post-rotation step is unique, for
small enough pre-rotation moves, providing at the same time a simple way to
compute the probability of the backward transition and thus to enforce detailed
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balance in a Monte Carlo simulation.

The possibility to numerically compute the derivatives as in Eq. (5.11)
is not only useful to determine the basis vectors for the tangent space to
the manifold of chain configurations compatible with the locality constraints,
but also to obtain any directional derivative on it of scalar functions that
depend on chain configuration such as, for instance, potential energy functions.
Notably, 300-400 concerted moves per second can be performed on a single core
2.0 Ghz processor in the present implementation. This makes the efficiency
of our general numerical methodology not so distant from the one reported
in [MCK09], 2000 loop closure solutions per second, with an analytic-based
strategy that relies on a specific choice of the torsional angles to be modified.

Importantly, once the difference between forward and backward probabilities
is taken into account, the usage of orthonormal basis vectors in both the tangent
and orthogonal spaces ensures that the space of DH parameters involved in
the local move is sampled uniformly in a Monte Carlo simulation, if no other
reweighting is employed in the acceptance/rejection test. This is shown in
Fig. 5.4 for the simple case of DH parameters that correspond to torsional
angles, that are indeed expected to display a uniform distribution at equilibrium
in the absence of any interaction. Thus, at variance with existing algorithms, we
do not need to perform, for further reweighting, the time-consuming calculation
of the Jacobian factor due to the solution of the post-rotation step [UJ03].

For DH parameters that correspond to bond lengths and bond angles, that
are not expected to have uniform distributions at equilibrium, no reweighting
is again needed, provided that the locality constraints and the corresponding
manifold of possible chain configurations are defined in terms of simply modified
variables that are instead expected to be uniformly sampled.

Moreover, a simple rescaling of uniformly sampled variables used in the local
move maintains their sampling properties while allowing to tune the relative
fluctuations of the non rescaled variables. This could be useful in dealing with
polypeptide chains, when variables originally related to bond lengths and bond
angles are expected to fluctuate much less than torsional angles. The need
of further reweigthing is again avoided due to the proper exploitation of the
intrinsic geometrical properties of the manifold of correct configurations, as
defined in terms of the rescaled variables. However, as shown in Fig. 5.5, the
tuning of relative fluctuations by means of variable rescaling is possible only
for manifolds with dimension at least two. Moreover, Fig. 5.5 shows that the
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effect the rescaling of one variable induces on the other variables, through
the coupling with local manifold geometry, is in practice negligible. As a
consequence, we may expect that the number of variables whose fluctuations
can be independently tuned by rescaling is given by the manifold dimension
minus one. Consistently, as shown in Fig. 5.6, for unidimensional manifolds
the relative fluctuations of the different variables involved in the local move
are in itself dictated by manifold geometry and are not affected by rescaling.

Instead, if DH parameters that do not have a physical interpretation are
involved in the local move, it is not possible to go simply back to the case of
uniform sampling. It would be necessary to take into account the expected non
uniform sampling of all bond lengths and bond angles related to the unphysical
DH parameters by proper reweighting factors.

We showed different possible applications of the technique that we intro-
duced.

A first application is an efficient scheme to explore the whole configurational
space of small fragments of a polypeptide backbone or of other chain structures
that are compatible with locality constraints. We demonstrated the concept,
first, in the simplest case of a protein fragment where the degrees of freedom
involved in the local move are 7 consecutive φ, ψ Ramachandran’s angles
along the polypeptide backbone. In that case, all possible configurations
to be explored lie on a one-dimensional manifold embedded in a periodic
7-dimensional space, whose projection in a 3-dimensional space is shown in
Fig. 5.7. Since our technique relies on the computation of the tangent space to
the manifold, in order to define the pre-rotation step, it is both straightforward
and efficient to stride along the manifold following the same direction until the
starting configuration is revisited.

For higher-dimensional manifolds the systematic exploration of all possible
configurations is a difficult task. We employed the cyclo-octotetraene cyclic
molecule as a toy model, by considering all its 8 torsional angles as degrees
of freedom. The manifold of possible configurations (in the special case of a
cyclic closed chain these are all possible configurations) is a bidimensional one
in an 8-dimensional space. We used the strategy of dividing the exploration in
separate one-dimensional trajectories that are tracked along the same direction
until the initial configuration is recovered, as in the previous case. The whole
manifold can be recovered in this way, by changing the initial configuration
and the subset of 7 torsional angles to be varied along a given one-dimensional
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trajectory. The resulting manifold is shown as a projection in a 3-dimensional
space in Fig. 5.9 and some representative conformations are shown in Fig. 5.8.
For higher-dimensional manifolds, the usage of more sophisticated sampling
techniques, such as generalized ensemble Monte Carlo methods [WL01] or
metadynamics [LP02], may well be more efficient.

It is important to observe that our technique relies on the previous knowledge
of a configuration already compatible with the locality constraints, and the
loop closure problem is solved only at a local level, in the post-rotation stage
(see Fig. 5.3). In the classic loop closure problem, instead, one is given the task
of reconstructing ‘ab initio’ a missing portion of a linear chain. It is then easy
to do it by using ‘wrong’ values for, say, one bond length and one bond angle.
The hard problem of finding a configuration with the ’right’ values, then, could
be in principle recast, within the framework of our technique, as the problem
of the searching for a subset of configurations with the ’right’ values within
a manifold suitably chosen where the bond length and the bond angle to be
fixed are among the degrees of freedom that are allowed to change. While
the actual implementation of the above sketched strategy is beyond the scope
of the present thesis, it provides a context where the exploration efficiency
demonstrated by our technique could prove extremely useful.

The other applications of our technique that we investigated are more
directly related to the local distortion properties of protein chain structures,
when only backbone heavy atoms are considered.

First, we introduced the notion of local backbone volume, as the volume
spanned in the 3N -dimensional Cartesian space by all configurations that can
be adopted by a protein segment, compatibly with the locality constraints, as
the degrees of freedom involved are changed on the corresponding manifold. As
a consequence, the local backbone volume may strongly depend on the choices
made for both the constraints and the degrees of freedom. Locality constraints
can differ a lot depending, for example, on the secondary structure content of
the considered protein chain segment.

It is natural to relate the volume at disposal for local concerted movements
to the mobility of residues, so that the higher the local volume the more mobile
the residues. Indeed, the local backbone volume computed for different protein
chains, in the simplest case of 7 consecutive φ, ψ Ramachandran’s angles, allows
to easily recognize α-helices as the most locally rigid portions of proteins. In
the case of an all-α helical protein, a quantitatively good matching can be
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performed between the local volume profile and the residue mobility profile
resulting by different NMR structural models of the same protein (see Fig. 5.10).
This is a non trivial result, since the local backbone volume is a geometrical
feature that does not take into account any interaction or excluded volume
effect. Consistently, β-strands are not identified as locally rigid segments in
our approach (see Fig. 5.10), since, at variance with α-helices, they need to be
stabilized by hydrogen bonding to a nearby strand.

Second, we tried to assess the following point: How many realistic protein
structures do exist that are compatible with a given locality constraint? This is
a central issue in structure refinement, when the task is often to improve over an
existing non realistic configuration of a protein segment. In practice, we start
from a real protein segment configuration and we simply use our technique to
perform a thorough exploration of the manifold of possible solutions compatible
with the locality constraints. We look for standard values of the Ramachandran’s
angles φ and ψ to filter realistic structures. Again, the locality constraint, and
thus the answer to the raised question, crucially depend on the secondary
structure of the chosen protein segment.

We use a state-of-the-art cluster analysis to make sure that the exploration
of the manifold was completed, when no new clusters are observed. Consistently
with the local backbone volume analysis, we observe that if the initial segment
has an α-helical structure, most of generated configurations are realistic, the
latter are all α-helical ones and span a very narrow region in the Ramachandran’s
plot (see Fig. 5.11). If the initial segment has a β-strand structure, the fraction
of generated configurations decreases, whereas all realistic configurations found
are in the β-strand region of the Ramachandran’s plot, spanning a wider region
(see Fig. 5.12). If the initial segment has no secondary structure, the generated
configurations essentially span the whole Ramachandran’s plot and the fraction
of realistic conformations is very small. Based on pure geometrical properties,
a helical structure is quite easily refined, a strand segment is less easily refined,
a loop coil region is not quite easily refined.

Our aim here is to show how the efficiency of our local exploration technique
can be easily employed in the context of protein structure refinement; systematic
results could be obtained by testing, within the same approach, initial segments
as helix or strand ends, or hairpin turns. More importantly, a bias can be easily
incorporated in the sampling of the manifold of possible solutions, according to
a potential energy function, or to a general scoring function, or to a measure of
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consistency with known experimental data, such as electron density maps for
X-rays diffraction experiment on protein crystals.
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Chapter 6

Conclusion

Proteins are the most important biological macro-molecules together with
nucleic acids. They perform a vast array of functions inside the cell, spanning
from enzymatic activity to signal transduction. Moreover therapeutic proteins
have recently gained a predominant importance in the field of medical treatments
and the ever increasing number of protein-based medical products suggests
that this role is still only in its infancy.
In this perspective research and development of physical-based methodologies
to be applied to the study, modeling and understanding of protein structure
and protein-protein interactions can successfully boost the advancement in the
field of medicine and pharmaceutics.

Aim of this thesis is to evaluate the feasibility of new computational method-
ologies to be applied to the study of binding processes between two proteins or
between a protein and a small ligand.
Three main aspects have been considered of particular importance for this
problem and have been examined:

• monomer-solvent interactions

• entropic contributions due to the change of accessible configurational
space upon binding

• conformational modifications upon-binding.

The focus has been put on the estimation of binding affinities between two
monomers (Chapter 3) and on the development of a technique which allows
to explore ’local’ conformations of polypeptide chains and that could be most
useful when considering conformational modifications upon binding (Chapter 5).
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In Chapter 4 we summarized some general considerations on statistical methods
in protein physics (KBPs) and tried to treasure them for the development of
two novel KBP, presented in the same chapter.

The thesis can therefore be divided into two macro-parts, the first focused
on KBPs (Chapters 2 to 4) and the second focused on a new method for the
local deformation of polypeptide chains (Chapter 5).
As testing ground for benchmarking new methods in the field of KBPs we
employed BACH, a simple KBP presented in [CGL+12] that was already
proved to be able to recognize the protein native state. We introduced BACH
in Section 2.2.
The method we devised to locally modify polypeptide chains is instead inspired
by the world of robotic hand manipulators and constitutes a generalization of
many existing methods, briefly described in the introduction to Chapter 5.

6.1 Summary of the thesis

Protein-solvent interactions: determining the surface of a macro-
molecule BACH classify each residue depending on its status of either solvent-
exposed or solvent-buried. We devised two new methodologies that allow this
classification to be more reliable and efficient with respect to the one originally
implemented in [CGL+12].
The first algorithm implemented is a modified version of the LCPO algorithm
[WSS99] and has been published in [SZC+13]. The working principle on which
it is based is to compute the SASA of the residue by removing from the sum
of the whole surface contribution of each atom the estimated overlap of the
surfaces of nearby atoms: residues with values of SASA greater than zero are
considered exposed, or buried otherwise. This new implementation is faster
and more flexible than the original one; moreover the performances of this
upgraded version of BACH show an improvement over the standard version.
The second method we implemented is based on the computation of the α-shape
of macromolecules. The α-shape of a set of points (in this context identified by
the coordinates of all heavy atoms of the system) describes the piece-wise linear
surface which enclose those points that cannot be touched by a sphere of radius
α

1
2 without superposing it to some other atoms. This algorithm shows three

major improvement over the modified LCPO one. First of all, by comparing the
solvent-exposure classification obtained by an analytic calculation (provided by
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the getArea server) with the ones obtained with our algorithm, we conclude that
the classification suggested by the α-shape algorithm is twice more accurate than
the modified LCPO one, and therefore more reliable. Moreover by renouncing
to explicitly compute SASA, alpha-shape computation is faster and also has
a better scaling behavior on the molecule dimension (N logN in the case of
α-shape vs. N2 in the case of LCPO).

The improved accuracy and the faster execution time can have great impact
in applications in which the surface of large molecules has to be computed
many times, e.g. the case in which a KBP has to be applied to all frames of a
molecular dynamics.

Protein-protein interactions: the role of entropy in the estimation
of binding affinities In the context of protein-protein interaction, devising
numerical procedures for estimating binding affinities between associating
protein sub-units is of great importance: such techniques could indeed guide
biologists in the development of new protein drugs specifically designed to bind
a target protein (or molecule) without the need of performing a vast number of
long and onerous experiments.
In Chapter 3 we tried to estimate the binding affinity of different pairs of
proteins for which an experimental value is available from the literature. But
rather than using an ad-hoc KBP or a machine-learn approach (both very
popular) we employed a BACH-like scoring function [SGS+15] that estimates
the free-energy contribution due to the formation of new inter-residue contacts
in the interface between proteins. This first term has been combined with
the entropic contribution, in turn constituted by three terms that account for
translational, rotational and vibrational contributions. The first two entropic
contributions have been computed exactly from the three-dimensional structures
of the monomers and of the complex. The vibrational term instead has been
estimated by employing an ANM whose elastic constant has been determined
by matching the mobility profile obtained with the network model to the one
computed from a short MD trajectory. We compared the experimental binding
affinities of the studied complexes with a linear combination of the interface and
entropic terms. The coefficient of the linear combination have been computed
by minimizing the errors between experimental and theoretical results on a
set of 12 complexes (train set) while the final benchmark has been done on a
different set of 15 complexes.
Results indicate the role of entropic contribution to be fundamental to correctly
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describe experimental data. Indeed, even if the performance of the proposed
method are slightly worse than that of other state-of-the-art methods, the
improvement we obtained by correctly accounting for the entropic contributions
is significant.

Although our method for the estimation of the binding affinity of two
proteins is not of easy practical use, due to the need of running expensive
MD simulations, we conclude that rotational, translational and vibrational
entropic contributions are fundamental for predicting binding affinities. We also
deduced that the vibrational term can be estimated with a sufficient accuracy
by employing an ANM.

Inside KBPs: some considerations An important step in the development
of new KBPs was that of understanding the limitation of existing methods and,
in particular, the limitations of the approach used in BACH.
We therefore proceeded in deriving with a maximum-likelihood approach the
inverse-Boltzmann-like formula commonly employed in the definition of KBPs.
This (trivial) derivation had the benefit of highlighting all the hypothesis that
are necessary to justify the usage of the formula. Probably the most evident
hypothesis is to consider the chain as an ensamble of pointless and free particles
(residues); correlations naturally due to the connectivity of the chain are indeed
not taken into account. With the aid of a lattice HP model we showed that
this fact can result in a considerable error in the estimation of the parameters
involved in the KBP.

Development and testing of two new KBPs We developed two different
KBPs with the aim of improving the performances of BACH in the recognition
of protein native states and evaluating the importance of correlations in real
proteins.
The first KBP we implemented is basically a modified version of BACH in
which the interacting units are defined as small functional groups, with a
well-defined chemical behavior, rather than as residues. The benefit of this
improvement is that interactions are described in a more specific fashion.
Results are encouraging: the performance is the same as BACH even if the
involved parameters are roughly half those of BACH. This algorithm, referred as
mBACH in the main text, employed the α-shape technique for classifying each
functional group as buried or exposed to the solvent. As in BACH, correlations
are not taken into account.
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The second KBP we proposed is specifically designed to consider the correlations
along the chain, but renounce to describe inter-residue interaction in any
specific way. We indeed consider the probability distribution of distances
between α carbons of the same protein; if the separation along the chain of
the corresponding residues is inside a specific range (described in [BHM05]) we
expect this probability to be approximately gaussian. The basic idea of the KBP
proposed, and named Gaussian Chain Potential (GCP), is that of considering
the fluctuations from the expected gaussian distribution as due to the effect
of physical pairwise potentials, that we were able to deduce. The obtained
potentials exhibit distance-dependent behaviors that are residue-specific.

Locally constrained backbone conformations We analyzed the problem
of the local movements of a chain molecule where a small subset of degrees of
freedom, e.g. dihedral angles, bonds angles or bond lengths, are concertedly
modified inside a specific portion of the chain, in such a way that only the atoms
in the selected region are moved while all the others are fixed. The possibility
of determining such locally constrained conformations can be fundamental in
describing the conformational changes of the interface between two interacting
proteins but has also proved to be extremely valuable in Monte Carlo (MC)
simulations. The method we proposed is very general and is devised in such
a way that it can be implemented in a MC simulation without the need of a
Jacobian reweighting, which is usually necessary to ensure the detailed balance
condition.
We tested the algorithm on different applications and we showed that:

• the configurational space of backbone fragments that comprises 7 free
degrees of freedom can be efficiently and completely explored; higher
dimensional configurational space can be explored as well with MC
techniques;

• the configurational space of a small ring with 8 free torsional angles can
be efficiently and completely explored. The technique used in this case
can be implemented in principle for exploring the configurational space
of an 8 degrees of freedom fragment, but in this case the completeness of
the exploration is not guaranteed;

• the mobility profile of all-α proteins is well described by the volume (in
the configurational space) that is accessible to each residue;
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• the fluctuation of each free degree-of-freedom can be tuned by a simple
rescaling of the variable involved in the algorithm;

• detailed balance is satisfied by the algorithm without the need of additional
(and usually time consuming) calculations;

Moreover we suggested the possibility of employing the proposed method for
loop modeling problems.
The work described in Chapter 5 has been accepted for publication after
peer-reviewing process in PlosOne [ZRST].

6.2 Future perspectives

The role of entropy for the estimation of the binding affinity (described in
Chapter 3) is promising and should be examined more in depth. In particular
the estimation of the vibrational term is not applicable in real-life scenarios
because it requires three MD simulations to be run (one for each monomer
and one for the complex): a new method that do not depend on simulations is
therefore needed, for correctly estimating the rescaled elastic constant to be
used in the elastic network model. Moreover, one could think of more refined
elastic network models, e.g. by introducing different kinds of elastic constants.
In this way, one could get a better matching with the MD mobility profile and,
as a consequence, a better estimate of the vibrational term.
The new KBPs proposed in Chapter 4 are still in their embryonic form and
need more tests. But mBACH has already proved to be at least as valuable as
BACH despite the highly reduced number of parameters it employs. Moreover
the usage of mBACH, being based on functional groups rather than amino acid
residues, is not limited to proteins but could be extended to other molecules,
thus paving the way to many applications in pharmaceutics (for drug design)
and more generally in medicine.
The ideas underlying the development of the GCP can potentially lead to the
development of a KBP in which parameters are not biased by correlations but,
at the moment, it fails in capturing the specific interactions occurring between
pair of residues. The enhancements necessary for KBP improvement should
therefore be focused on describing with more specificity pairwise interactions.
For instance the potential could be parameterized not only by the Cα − Cα
distance but also by the mutual orientation of the chain at the corresponding
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residues; or a functional-group-based version of the GCP could also be devised.
The algorithm we devised for generating local perturbations of polypeptide
chains has a vast array of possible applications, from its implementation in
efficient MC moves to the estimation of protein chain mobility. Moreover
techniques employed in Section 5.1.4 can be extended to the more general case
of loop modeling, in which the problem of reconstructing a delimited portion
of a polymeric chain is considered. But the application that could be more
relevant in the field of protein-binding is that of binding-site modeling and
prediction. Indeed binding sites usually comprise a low number (∼ 10) of
residues and are therefore the ideal target for the application of the algorithm
if backbone torsional angles are the only free degrees of freedom considered.
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