

UNIVERSITY OF PADOVA, ITALY

DOCTORAL THESIS

Service Design in the Cloud

Author: Supervisor:
Kiyana Bahadori Prof. Tullio Vardanega

Coordinator:

Prof. Giuseppe Sartori

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Brain, Mind, Computer Science (BMSC)

Department of Mathematic
Series: XXXI

May 29, 2019

https://www.unipd.it/en/

iii

Abstract

In computer science, the notion of service is a broad term that incorporates any IT
service delivered and accessible globally from the Internet. With the arrival of social
networks and the pervasive entry of IT into business infrastructures, the population
of (web-based) Internet service has grown large enough to turn the need, acquisi-
tion, delivery, maintenance and upgrade of computing resources into real strategic
challenges. Along with the technology evolution and the growth experienced on the
available information, the resource demand has been increasing in both science and
engineering marketplaces. To satisfying the growth in resource demand, there have
been attempting to enhance the resource-efficiency of delivered service to users, i.e.,
the effective utility from the available resources, before investing in additional com-
pute resources, in an attempt to maximize their business competitiveness and return
on investment of their infrastructures. Accordingly, one of the significant features
that make cloud computing an attractive service-oriented architecture for competi-
tive business is: elasticity, i.e., the ability to scale up/down the resources on-demand
together with pay-per-use pricing model which eliminates the need for massive up-
fronts investment in local infrastructure, a model that was not economically feasible
in the era of traditional enterprise infrastructures.Therefore, the work in this thesis
had the focus on improving performance and resource utilization of service in Cloud
environment.

v

Acknowledgements

It has been a period of intense learning for me, not only in the scientific arena but
also on a personal level. Writing this dissertation has had a significant impact on
me. During this almost 4 years, I have met many people who have helped me with
technical discussions and a good relationship with friendship. that is why, I would
like to reflect on the people who have supported and helped me so much throughout
this period.

First and foremost, praises and thanks to the God, the Almighty, for His show-
ers of blessings throughout my research work. I would like to thanks my research
supervisor, Prof. Tullio Vardanega for providing funding and support.

Words can not express how grateful I am to my parents for their love, prayers,
and sacrifices for educating and preparing me for my future.

I was very lucky to interact with brilliant people at the Barcelona Supercom-
puting Center(BSC). I would like to express my sincere gratitude to David Carrera
Perez, and Josep Lluís Berral Garcia who provided me an opportunity to join their
team, and for their excellent collaboration. Working on a topic, which you are pas-
sionate about, is one of the most important aspects for doctoral students. My year
in Barcelona was improved by the many wonderful friends I met here. Thanks to
all members of BSC (Alberto Gutierrez, Felipe, Nicola Cadenelli, Shuja-ur-Rehman
Baig, David Buchaca, Aaron Call) for everything I learned from them.

My heart felts regard goes to my uncle (Fab) and his supportive wife (Anna),
who provide unending inspiration and support for me. I would like to thank my
best friends Maryam and Ruben for their sympathetic ear and moral support.

Finally, my thanks go to all people who have supported me to complete the re-
search work directly or indirectly.

vii

Contents

1 INTRODUCTION 1
1.1 Motivation Challenges . 3
1.2 Contributions . 3
1.3 Thesis Organization . 5

2 BACKGROUND 7
2.1 The Notion of Service in the Cloud Computing 7

2.1.1 Virtualization . 9
2.1.2 DevOps Methodology . 10
2.1.3 Cloud-native Application . 11

3 ELASTICALLY SCALABLE SERVICE 13
3.1 Design and Implementation Priniciple 13

3.1.1 Scalable Service Design Principle 14
3.1.2 Composability . 14
3.1.3 Independent Deployability . 16
3.1.4 Scalable Service Architecture . 17

3.2 Container Orchestration . 19
3.3 Implementation princincple within state-of-the-art technology 20

3.3.1 Kubernetes . 21
3.3.2 Docker Swarm . 22

3.4 Final Consideration . 23

4 SCALABILITY IN SOFTWARE DEVELOPEMENT PROCESS 25
4.1 Background . 25
4.2 Infrastructure Agility . 26

4.2.1 Operational Performance . 27
4.3 Experimental Evaluation . 29

4.3.1 Experimental Environment . 30
4.3.2 Experimental Results . 31

4.4 Final Consideration . 33

5 SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING 35
5.1 Introduction . 35

5.1.1 Contribution . 37
5.2 State of the Art . 38

5.2.1 Background and Motivation . 38
5.2.2 Related Work . 38

5.3 Architecture . 39
5.3.1 Edge Computing Networks . 39
5.3.2 Edge-Cloud Hierarchies . 40
5.3.3 Data Pipelines . 40
5.3.4 Floating Car Data . 41

viii

5.4 Methodology . 42
5.4.1 Recurrent Neural Networks . 42
5.4.2 Traffic Forecasting . 43
5.4.3 Training Process Automation . 43
5.4.4 Distributed Model Training . 47

5.5 Evaluation . 48
5.5.1 Evaluation infrastructure . 48
5.5.2 Detecting the Required Training Epochs 49
5.5.3 Model Performance and Tuning 50

Single Model (N1) Evaluation . 50
Comparison of Single Model (N1) with Parallel Models (N2

and N3) . 53
5.6 Final Consideration . 55

6 SECURITY 57
6.1 Motivation and Background . 57
6.2 Preliminaries . 59

6.2.1 Elliptic Curve Cryptography . 60
6.2.2 Elliptic Curve Integrated Encryption Scheme 60
6.2.3 Secret Sharing Scheme . 60
6.2.4 Access Tree . 61
6.2.5 Formal Key-policy attribute-based encryption (KP-ABE) 61
6.2.6 Dynamic Attributes . 62

6.3 The Proposed Scheme . 63
6.3.1 Revocation of Access Permission 65

6.4 Security and Performance Analysis . 65
6.4.1 Preserving data confidentiality 65
6.4.2 Preserving data integrity . 66
6.4.3 Possibility to change access policies 66
6.4.4 Efficiency and lightweightness 66

6.5 Conclusions and Future Work . 68

7 CONCLUSION AND FUTURE WORKS 69
7.1 Conclusion . 69
7.2 Future Works . 70

Bibliography 71

ix

List of Figures

1.1 Summary of contributions. 3

2.1 Visual model of Cloud Computing . 8
2.2 Autonomic system’control loop . 9
2.3 Virtualization . 10
2.4 A reference architecture for Cloud-native enterprise system 12

3.1 Scalable service principle . 14
3.2 Service composability principle . 15
3.3 Horizontal vs Vertical scaling . 18
3.4 Microservice and Monilith scaling . 19
3.5 Refrence architecture for container cluster manager 20
3.6 Kuberenets architecture . 22
3.7 Docker Swarm platform schema . 22

4.1 CI/CD pipeline for software development 26
4.2 Infrastructure as code workflow . 27
4.3 IT Evolution . 28
4.4 Dev and Ops united in an Infrastructure-as-a-Service (platform) topol-

ogy) . 28
4.5 Experimental framework for orchestrated container on AWS 30
4.6 Prediction error. 31
4.7 Container allocation in response to varying load. 32
4.8 Variation of service response time under variable user load. 32

5.1 Edge-Cloud Aggregation Schema, with environment actors (Sensors,
Actuators and Users) . 36

5.2 Schema of the Fog Infrastructure, from Edge to Cloud 40
5.3 Pipeline of Time-Window Aggregation, Learning and Prediction 41
5.4 Schema of a unit of a GRU Recurrent Neural Network layer 43
5.5 Different Training NNs Scenarios . 44
5.6 Training NNs Scenario, where a bouncing point in Validation can be

detected and used to prevent over-fitting 44
5.7 Different Training NNs Scenarios . 45
5.8 Training NNs Scenario, where a bouncing point in Validation can be

detected and used to prevent over-fitting 46
5.9 Schema of Distributed Modeling in Training and Testing Phases. Data

is split among N workers, creating N models to be merged creating
the Final model to be evaluated . 48

5.10 Comparison of Mean Absolute Error (MAE) for a various static num-
ber of epochs with a dynamic number of epochs for estimating the
number of cars and average speed. Here d represents a dynamic num-
ber of epochs . 50

x

5.11 Effect of using different number of hidden units with various aggre-
gation levels for number speed of cars estimation 51

5.12 Comparison of Average RMSE using different number of hidden units
with various aggregation levels . 52

5.13 Selection of the Training number of Epochs 53
5.14 Comparison of RMSE vs Training time for different parallel models(Nx)

with number of epochs divide by x where x=1,2,3 54

6.1 A conceptualized view of the IoT architecture. 58
6.2 High-level architecture of the proposed algorithm for use on smart-

phones. 62
6.3 The main components of the proposed scheme. 63
6.4 Transmission cost of ABE schemes . 67
6.5 The communication cost can be reduced by considering the dynamic

attributes . 67

xi

List of Tables

5.1 Example of Minute-Aggregated Data-set. Notice that position is from
the receiving antenna/Edge node, not the vehicle 41

5.2 Comparison of error and training time with fixed number of epochs
(FixedEp) and proposed number of epochs (PropEp) 54

5.3 Comparison of change factor in error and training time for N2 and N3
w.r.t N1 . 55

5.4 Comparison of using multiple cores with single model (N1) 55

6.1 The symbols used in this paper. 59
6.2 Communication cost comparison between our scheme and KP-ABE. . 66

1

Chapter 1

INTRODUCTION

Along with the technology evolution and the growth experienced on the available
information, the resource demand has been increasing in both science and engineer-
ing marketplaces. To satisfying the growth in resource demand, there have been at-
tempting to enhance the resource-efficiency, i.e., the effective utility from the avail-
able resources, before investing in additional compute resources, in an attempt to
maximize their business competitiveness and return on investment of their infras-
tructures.

In the past few years, the "pay-as-you-go" Cloud Computing model with its vi-
sion of offering "everything as a service" has become a dominating paradigm in the
externalisation of IT resources and efficient alternative to owning and managing pri-
vate data centres due to its scalability paradigm for enterprises starting, since the
start of 2000s. The design of Cloud service delivery takes advantage of virtualiza-
tion techniques as a key technology to improve resource-efficiency. Virtualization
provides a systematic abstraction of hardware, system resources, and operating sys-
tems, to convert dedicated physical resources into virtual shared resources and sim-
plify the complexity of management and deployment of applications. Virtualization
can enable efficient collocation of workloads due to its isolation capabilities, and be-
sides that, provides a confined environment that has specific software requirements
including OS version dependencies and libraries from the underlying physical in-
frastructure where an application can run, dynamically adapt to the workload while
being economically profitable.

Along with virtualization trend that has been massively contributing to provide
resource efficiency, the emergence of parallel and distributed systems, a great effort
has been put into making applications benefit efficiently from multiple computing
resources.

Recently, the concept of the Internet of Things (IoT) and its required service archi-
tecture and computing paradigm has drawn significant interest from both academia
and industry enhancing resource efficiency to which avoid unnecessary north(Cloud)-
south(smart device/ things) bound communication of data that can be processed on
the edge or intermediate nodes. IoT due to its potential applications oriented to-
wards Smart Cities and health-care services urge experts on designing new architec-
tures for infrastructure, platforms and services while leveraging near-data comput-
ing resource (IoT scenarios usually require low latency between sensors/actuators
and computing power).

The work in this thesis had the focus on improving performance and resource
utilization of services in Cloud environment. But, another major challenge that typ-
ically discourages users to use a cloud-like environment is the security concerns. As
the resource capacity of near-edge IoT devices is naturally insufficient to cope with

2 Chapter 1. INTRODUCTION

the influx of sensed data and its processing requirements, integration of the IoT sys-
tem with cloud services allows opportune offloading of excess work. In several do-
mains, the data must be protected before being offloaded to the cloud. However, for
the sake of privacy, the data must be protected before being offloaded to the cloud.
In this work, we also describe a security challenge concerning resource limitations
of IoT devices and presents light-weight security schema for IoT ecosystem.

1.1. Motivation Challenges 3

1.1 Motivation Challenges

In this thesis, my research objective was to get the most value out of the amalgama-
tion of (1) Cloud service delivery means, the important steps forward being made
in (2) the software architecture concept, with containers, microservices, in (3) the
development process revolving around the DevOps agility, and (4) the deployment
options in IoT ecosystems allowed by the increasing heterogeneity of hardware ar-
chitectures to embrace parallel computing including accelerators such as Graphics
Processing Units (GPUs) vs CPU trade off, that directly influences the scaling of
computation performance and cost.

To this end, the combination of our research work presented in this disserta-
tion explores design and implantation aspect of elastic scalable service(C1), pro-
posed effective solutions to improve elastic service delivery across container orches-
tration platform(C2), and proposed distributed machine learning technique in IoT
ecosysyem which enhance resource efficiency (C3), finally describe a security chal-
lenge concerning resource limitations of IoT devices and presents light-weight secu-
rity schema for IoT ecosystem (C4) in the following evolving Cloud environment.

FIGURE 1.1: Summary of contributions.

1.2 Contributions

Provided the presented context, our contribution in this PhD work explored the de-
sign and implementation principles that warrant rapid elastic scalability to software
services deployed on the Cloud and Fog computing paradigms. Our research work
in this project has consisted of the following steps:

The focus of this thesis is to improve service scalability, by increasing resource ef-
ficiency on virtualized environments within design and implementation technology.
To archive that we:

• We drew a trajectory that, starting from a better understanding of the princi-
pal service design features, related them to the microservice architectural style
and its implications on elastic scalability, most notably dynamic orchestration,
and concludes reviewing how well state-of-the-art technology fares for their
implementation. This contribution is corroborated by the following paper:

– c1. Kiyana Bahadori, Tullio Vardanega, “Designing and Implementing
Elastically Scalable Services - A State-of-the-art Technology Review”. In
proceedings of the 8th International Conference on Cloud Computing
and Services Science, CLOSER 2018, Funchal, Madeira, Portugal, March
19-21, 2018.

4 Chapter 1. INTRODUCTION

• In the level of Platform-as-a-Service(PaaS) and on the abstraction level of con-
tainer, we have presented and discussed our view of how the dynamic or-
chestration capabilities required for containerized microserviced-based appli-
cations responds to the DevOps demand for increased agility in the whole de-
velopment cycle. We have argued that Machine Learning is a necessary in-
gredient to enable the realization of sound and effective automation rules. To
prove our point we presented the results from an experimental implementa-
tion of an Elastic Container Service (ECS) hosted on AWS, augmented with
our machine learning implements, to increase the agility in deployment of
containerized application. We evaluated that prototype against a few exper-
imental scenarios, which showed the lower latency achieved by our method
for application deployment. This contribution resulted in the following paper:

– c2. Kiyana Bahadori, Tullio Vardanega, “DevOps Meets Dynamic Orches-
tration”, In proceeding of the First international workshop on software
engineering aspects of continuous development and new paradigms of
software production and deployment, DevOps 2018, Toulouse, France,March
5-6, 2018. (In print).

• We have extended our interest to a specific innovative distributed application
for a traffic modeling and prediction service, designed scenario, drawn from
a Smart City context. We present a distributed machine learning approach for
road traffic modeling and prediction, designed for a city-wide scenario based
on the Fog computing paradigm. We display an architecture for large scale
Floating Car Data (FCD), data modeling on the Edge, leveraging parallelism
on deep learning algorithms in a city-wide scenario towards prediction. To
validate this approach, we used real traffic logs from one week of Floating
Car Data (FCD) in the city of Barcelona, provided by one of the largest road-
assistance companies in Spain, comprising thousands of vehicles from their
fleet only in the city of Barcelona.

– c3. Kiyana Bahadori, Shuja-ur-Rehman Baig, Alberto Gutierrez-Torre,
Waheed Iqbal, Josep Lluís Berral, David Carrera, Tullio Vardanega, "To-
wards Modeling Traffic Data on Edge Infrastructures using Distributed
Deep Learning". The International Journal of eScience, Future Generation
Computer Systems (FGCS)(submitted)

• The work in this thesis had the focus on improving performance and resource
utilization of services in Cloud environment. But, another major challenge
that typically discourages users to use a cloud-like environment is the security
concerns. As the resource capacity of near-edge IoT devices is naturally insuf-
ficient to cope with the influx of sensed data and its processing requirements,
integration of the IoT system with cloud services allows opportune offloading
of excess work. In several domains, the data must be protected before being
offloaded to the cloud. However, for the sake of privacy, the data must be pro-
tected before being offloaded to the cloud. In this work, we also describe a
security challenge concerning resource limitations of IoT devices and presents
light-weight security schema for IoT ecosystem.

1.3. Thesis Organization 5

– c4. Seyed Farhad Aghili, Kiyana Bahadori, Hamid Mala, Tullio Vardanega,
“ A Lightweight Attribute-Based Encryption Scheme for IoT-Cloud Inte-
grated Systems Using Dynamic Attributes”. International Conference on
Computer Communications and Networks (submitted)

Next, we further detail the five contributions of this thesis.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces some basic con-
cepts about service and virtualization and their associated technologies; Chapter 3
presents design and implementing aspect of elastically, scalable service and review
the state of the art technology; Chapter 4 presents the results from an experimen-
tal implementation of an Elastic Container Service (ECS) hosted on AWS; Chapter 5
presents and evaluate a distributed machine learning approach for road traffic mod-
elling and prediction, designed for a city-wide scenario based on the Fog computing
paradigm; Chapter 6 describe a security challenge concerning resource limitations
of IoT devices and presents light-weight security schema for IoT ecosystem; Finally,
Chapter 7 presents the conclusions and the future work of this thesis.

7

Chapter 2

BACKGROUND

The fundamental concepts used during the elaboration of the other chapters are
briefly introduced in this chapter and further described and discussed in the other
chapters, along with this thesis. We first describe the notion of service and its related
elastic scalability challenge to meet resource efficiency. Then, we detail the architec-
ture and, other requirements, which plays a crucial role to meet this requirement.

2.1 The Notion of Service in the Cloud Computing

In computer science, the notion of service is a broad term that incorporates any IT
service delivered and accessible globally from the Internet. With the arrival of social
networks and the pervasive entry of IT into business infrastructures, the population
of (web-based) Internet service has grown large enough to turn the need, acquisi-
tion, delivery, maintenance and upgrade of computing resources into real strategic
challenges. Interestingly, the prospect of fast and affordable on-demand service de-
livery over the Internet proceeds from the very notion of Cloud computing [39, 6,
95, 56, 22]. The old central concept of Cloud in terms of Computation as a utility
together with the vision of offering "everything as a service" has become a domi-
nating paradigm in the externalization of IT resources for enterprises starting, since
the start of the 2000s. Cloud computing has emerged as a successful and ubiquitous
paradigm for service-oriented computing, where computing infrastructure and solu-
tions are delivered as a service. In fact, Cloud by changing the relationship between
business and infrastructure via offering higher-level of value to the businesses, set
this trend to accelerate, resulting in the impressive growth of the infrastructure as a
Service (IaaS) [139]. In 2017-2018, the use of the top Cloud service providers (Ama-
zon, Microsoft Azure) had increased respectively from 60% to 63% and 19% to 25%
[139].

Over the last years, the development of information technologies has increased
the demands of resources. To satisfying this growth, there have been attempting
to enhance the resource-efficiency of delivered services to the users, i.e., the effec-
tive utility from the available resources, before investing in additional compute re-
sources, in an attempt to maximize their business competitiveness and return on
investment of their infrastructures.

Accordingly, one of the significant features that make cloud computing an at-
tractive service-oriented architecture for competitive business is: elasticity [63], i.e.,
the ability to scale up/down the resources on-demand together with pay-per-use
pricing model which eliminates the need for massive upfronts investment in local
infrastructure, a model that was not economically feasible in the era of traditional
enterprise infrastructures. The recent advances in Cloud computing and the enter-
prise interest in exploiting its potential with its distinguishing traits provide a broad
spectrum of capabilities that service providers could offer to meet compute service

8 Chapter 2. BACKGROUND

needs, and ultimately to deliver cost-effective end-user application usage experi-
ences [142, 6, 22, 74].

At the big-picture level, the most critical characteristic in the service delivery
model of Cloud is the inherent asymmetry in the economies of scale [56, 6]. It pro-
vides an organization with access to the near limitless availability of powerful com-
puting resources in a consumption-based model that previously would be beyond
their reach financially and operationally. From the service provider’s perspective,
cloud computing is an ideal way to leverage unused physical resources by "lending"
them to consumers that are willing to pay for their use. However, the ability to af-
ford those benefits to the user is contingent on attaining rapid elasticity in service
design and implementation.

FIGURE 2.1: Visual model of Cloud Computing

Elasticity is defined as the ability to conserve resources at a fine grain with as
fast as possible lead time allows matching resource to workload much more closely
which result in cost savings for service providers [95, 63]. According to [58]

"Elasticity is the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in an autonomic
manner, such that at each point in time the available resources match the
current demand as closely as possible."

Speed and precision are the qualifying traits of elasticity [63]. As the number of
requests for particular service increases (respectively, decreases), the speed of re-
source provisioning (respectively, releasing) should vary in accord with the speed of
demand variation.

2.1. The Notion of Service in the Cloud Computing 9

The demand of elasticity has come up with the need for autonomic systems capa-
ble of managing themselves to replace tedious and complex operations with human
agents. Thanks to autonomic techniques, elasticity just does that. In a 2001 manifesto
[73], IBM was the first to coin the conceptual architecture of autonomic computing in
the form of an autonomic loop with different properties of autonomic system, each
corresponding to a particular purpose. This model as it shown in Figure 2.2 details
the different components that allow an autonomic manager to achieve dynamic scal-
ing (elasticity), namely Monitor, Analyze, Plan, Execute and Knowledge (MAPE-K
loop).

FIGURE 2.2: Autonomic system’control loop

2.1.1 Virtualization

The design of Cloud service delivery takes advantage of virtualization techniques to
provide a confined environment from the underlying physical infrastructure where
an application can run, dynamically adapt to the workload while being economically
profitable. Virtualization is the key technology that utilizes resources by creating a
virtual logical partition from a shared pool of resources to meet the principle of elas-
tic scalability for service [56, 6]. To this end, hypervised virtualization has been a sig-
nificant enabler for cloud computing. Its primary bounty includes isolation (which it
assures) and self-sufficiency, that is, no external dependency and perfect loose cou-
pling (which it allows for), both being much-desired qualities for service-oriented
applications. In addition to, or perhaps as a reflection of, being too resource-costly,
however, classic hypervised virtualization technology is fundamentally unable to
respond to the rapidity requirements put forward by elastic horizontal scaling [103,
43].

Accordingly, an important step relevant to the trend in elastic service delivery is
the shift of virtualization from the hardware level (virtual machines) to the operating
system level (containers) as is depicted in Figure 2.3. In 2013, the Linux container
technologies with critical features such as kernel namespaces, and Cgroups, created
an ecosystem consisting of isolated layered container image format that revolution-
izes the way software is being designed and deployed [103].

10 Chapter 2. BACKGROUND

A container is composed of two parts: a pile of images and one container. Images
are a collection of different read-only file systems stacked on top of each other us-
ing the Advanced multi-layered Unification File-system (AuFS), which implements
union mounting that allows separate file systems or directories to be overlaid into
a single coherent file system. A container is the writable image that sits on the top
layer of the image stack [103, 75, 43].
The container uses the kernel of the host operating system to run multiple root file
systems. The name "container" designates each such root file system [69] and holds
the code and libraries that constitute the contained application while sharing the
host operating system with all other entities that run on it. This sharing is a blessing
but also a weakness; the latter because it requires the application to run on the host
OS, renouncing interoperability. Containers use namespaces to cater for isolation
among processes and cgroups to limit and control resources usage in an individual
process. As it shown in Figure 2.3 the basic idea of containers is to package the entire
application and its required dependencies into one isolated, lightweight, executable
unit to run in virtualized environment [103].

FIGURE 2.3: Virtualization

The resulting artifacts are lightweight, immutable image of software that reside on
an already provisioned operating system, which therefore need only a few seconds
to bootstrap [50]. Interestingly, allocating the required amount of resources needed
for every individual container precisely is a great transitive facilitator to achieving
more efficient usage of the underlying infrastructure. However, this practice also
adds one level of abstraction (the container layer) to the problem of managing the
deployment infrastructure of the application. Moreover, containerization achieves
portability by isolating the application and its dependencies within self-contained
units that are agnostic to programming languages and deployment platform [75].
Docker [69] is a de-facto standard and the most popular implementation of the con-
tainer concept.

2.1.2 DevOps Methodology

The evolution gives the evidence of the progressive maturation in the interpretation
of the Cloud Computing offering in the conceptualisation of software development
and releases process across the SaaS, PaaS and IaaS layers of the Cloud reference
architecture. Along with this maturation, the software element of the Cloud stack
starts to take an increasingly prominent role in the realization of service-based inno-
vation. Netflix [100] is an excellent example of a successful transition to an entirely

2.1. The Notion of Service in the Cloud Computing 11

new (software enabled) system architecture which required migrating existing data
centre-based applications to the public Cloud (AWS) leveraging its horizontal scala-
bility and agility needed to succeed.

Over the last few years, as innovation accelerates and customer needs rapidly
evolve, a novel technology stack is sought that helps inject responses to the de-
mand of accelerated agility and speed into the software development lifecycle. In
this respect, the adoption of Cloud-aware agile development methodologies [40],
now known as DevOps, is a fundamental shift in how leading-edge companies are
starting to manage software and IT performance, where speed, agility, security and
stability are business imperatives [76, 13, 52, 45, 52].

The DevOps concept rests on the adoption of automation solutions to create and
manage tasks ("items" in the Agile TODO list) as dynamic assets in terms of In-
frastructure as Code (IaC) [136, 98, 36]. Its high pressure on automation, extended
from application development to the maintenance and operation infrastructure, fos-
ters more in-depth attention to the performance of infrastructure management [45].
Therefore, the IaC paradigm is a natural fit for Cloud infrastructure where a resource
can be provisioned and configured through APIs thus helping balance time, resource,
and quality which are the critical assets in elastic service delivery in the Cloud envi-
ronment [136].

Realizing software releases in terms of as-a-service offerings, which is natural
for web and Cloud service development, naturally positions their providers as the
early adopters of DevOps principles after the agility and speed that they promise
[13]. In this context, DevOps embraces the operational aspects of defining a service
as a product item that needs to be deployed, scaled, maintained, monitored and
supported through its life cycle. Not surprisingly, therefore, players such as Amazon
[25] provide a DevOps-focused way of creating and maintaining their infrastructure.

2.1.3 Cloud-native Application

As businesses grow, it becomes strategically necessary for providers to assure the
ability to more users, in more locations, with a broader range of devices, while main-
taining responsiveness, managing costs, and not falling over. In this context, the
initial idea and concept of Cloud native computing with its service delivery model
changed the relationship between businesses and infrastructure. Later, the pursuit of
business growth changes the relationship; it moves forward to change the relation-
ship between applications and infrastructure in terms of Cloud-native application.

Cloud-native application introduced a new way to design, implement resilience
and scalable ecosystem around constraint inherent to Cloud environment [80, 79,
129, 123]. The Cloud Native Computing Foundation defines the core concepts for
Cloud-native as a containerized unit of application that dynamically orchestrated
while its architecture (microservice oriented) leverage horizontal scalability and uti-
lize the advantages of the Cloud computing model [78, 21, 49].

The Cloud-native application development focused on how an application is
built, delivered, and operated regardless of location in order to leverage the advan-
tages of the Cloud computing [129, 79]. Taking advantage of Cloud services means
using agile and scalable components like containers to deliver discrete and reusable
features that integrate into well-described ways, even across technology boundaries
like multicoloured, which allows delivery teams to iterate using repeatable automa-
tion and orchestration rapidly.

At a high level, Figure2.4 depicted the reference architecture for Cloud-native
enterprise system using container-based technologies. On the subject of a reference

12 Chapter 2. BACKGROUND

FIGURE 2.4: A reference architecture for Cloud-native enterprise sys-
tem

architecture for Cloud-native architecture, we have highlighted our contributions of
this thesis concerning the resource efficiency of service design in the Cloud environ-
ment.

13

Chapter 3

ELASTICALLY SCALABLE
SERVICE

Cloud technology, with innovative ideas to host and on-demand delivery of service,
creates an undeniable benefit of fast and affordable compute acceleration over the
Internet. To this end, elastically scalable design and implementation for service are
essential for today’s modern service providers to the fulfillment of Service Level
Agreements (SLAs) by dynamically re-allocating workloads and resources. In this
chapter, in the quest for a service-based architecture that can guide service design,
we argue for the adoption of the microservice architecture style. Subsequently, we
look into state-of-the-art technology to assist the implementation of elastic scalabil-
ity, concentrating on dynamic orchestration, which is one particular facet of that
general quality.

3.1 Design and Implementation Priniciple

The first widespread use of the notion of service, concerning software systems, arose
as part of the Service Oriented Architecture (SOA) initiative. In the context of SOA,
the term service is defined as an independent logical unit, which provides function-
ality for a specific business process and can be composed with other services to form
an application [48, 89]. Another connotation of service emerged in Cloud Comput-
ing as part of the X-as-a-service model, coined to evoke the manner of contract-
based, pay-as-you-go utility delivering [6, 56]. The union of the two perspectives
sets a most ambitious goal: building a software application by agile aggregation of
service units in such a way that the exposed capabilities are realized with the least
resource consumption and then delivered and consumed as metered utilities with
assured quality of service.

Cloud computing has imposed itself as an attractive novel operational model for
hosting and delivering IT services over the Internet [6, 56, 22]. Its central tenet of
as-a-service provisioning, to the user (from the application perspective) and to the
service provider (from the implementation perspective), meets the technology and
economic requirements of today’s acquisition pattern of IT infrastructure [6, 56].
In fact, the promised benefits of cost-effectiveness favoring pay-as-you-go pricing
model, scalability [1, 138] and reliability, appeal major IT companies to meet their
business objectives in cloud environment [5, 22]. However, from service provider
point of view, the cost is outweighed by economic benefits of elasticity and transfer-
ence of risk especially in an occurrence of over and under-provisioning of resource
[56]. In that context, the goal of service providers is to design and implement service
portfolios capable of satisfying given service level objectives (SLO), in the face of
fluctuating user demand, while keeping operational costs at bay.

14 Chapter 3. ELASTICALLY SCALABLE SERVICE

FIGURE 3.1: Scalable service principle

To this end, service design and implementation must both seek and provide for
elastic scalability [63]. Figure 3.1 has shown the design and implementation princi-
ples required to meet this demand.

3.1.1 Scalable Service Design Principle

Fundamentally, service design is the activity of planning, and organizing a busi-
ness’s resource, implementing change to improve a service’s quality and making it
meet the user’s and customer’s needs for that service. It can be used to improve
an existing service or to create a new service from scratch. The general principles
of service design are to focus the designer’s attention on generic requirements of all
services. For example, the powering of an online shopping site rests on a multiplicity
of services, ranging displaying, carting, payment processing, monitoring and ship-
ping, which may either be procured from third-parties or provided by specialized
development units inside the business organization.
Enterprise IT architectures have to leverage and improve the existing suite of appli-
cations to address changing the business requirements rapidly [76, 67]. Other than
for silo-ed monoliths [113], the functionality provided by a single service is nor-
mally insufficient to respond alone to all user requests. In other words, a service
normally needs to collaborate with other services to pursue a specific business goal,
and the fabric of such collaboration may change with the goal. This collaborative
trait requires services to warrant composability [120], i.e., the ability to participate,
unchanged, in different aggregates as business demand requires [126, 110].

3.1.2 Composability

Service composability means the ability of new services from combining existing ser-
vices. Following the mentioned example of the online shopping site, composability
improves the ability of services to be composed into larger blocks, thereby enabling
rapid (re)use of the functionality [120, 93]. Services need to be composable so that
smaller services can be combined into more extensive services that provide a specific
value. The principle of service-oriented architecture knows as service composability,
as shown in Figure 3.2 can be broken up into five basic principles. In the following,
we explain briefly all the five principles needed for service composability.

3.1. Design and Implementation Priniciple 15

FIGURE 3.2: Service composability principle

• Explicit boundaries

– A service possesses an interface specification that describes its functional-
ity and exposes for the use of other services. That interface, separate from
the corresponding implementation, forms the boundary of that service
and contains all that one needs to know to interact with it. The bound-
ary for service is defined through a contract [27]. A contract contains a
schema and associated service policies (for a style of interaction, persis-
tence, guarantee, etc.), and is published using different mechanisms, ini-
tially via WSDL [26], and later through REST API [90] and GRPC [137].
The schema defines the structure of the data message, agnostic to pro-
gramming languages (hence intrinsically interoperable), needed to re-
quest a specific service functionality.

• Policy-driven interoperability

– Interoperability is a concern with the ability of software systems, using
different platforms and languages to communicate with each other. W3C’s
notion of web service was the first practical solution to assure network-
based interoperability [33, 31]. Service policies provide a configurable
set of semantic stipulations concerning service expectations or require-
ments expressed in a machine-readable language. For example, an online
shopping service may require a security policy enforcing a specific service
level (requiring an ID) and the users who do not comply are not allowed
to continue. The security policy can be used with other related services
such as shipping. Augmenting service interfaces with policy stipulations
strengthens the assurance of service guarantees across technology bound-
aries. So, a rich policy-driven interoperable interface enables the move-
ment of a service from one platform to another without changing its func-
tionalities.

• Loose coupling

– Flexibility in the system is achieved by making services loosely coupled
and autonomous, which enables them to be composed without affecting
the other parts of the system [48]. Loose coupling refers to the degree to
which the functionalities of services depends upon each other. A well-
defined service boundary goes hand in hand with the self-contained-ness
of the functionality set exposed in its service interface, and therefore with

16 Chapter 3. ELASTICALLY SCALABLE SERVICE

the degree of loose coupling and autonomy of its implementation. Loose
coupling is when service does what your service interface declares (with-
out incurring chains of dependencies) and does not place arbitrary con-
straints on your context of use (hence being fit for reuse in various com-
positions) [49]. Loose coupling is gained by limiting each service’s knowl-
edge about the implementation of other services through an explicit con-
tract. Leveraging loose coupling also promotes reusability: organizations
can adapt their applications to new market requirements over time.

• Self-containedness

– A service interface is self-contained if its implementation can be inde-
pendently managed (for instance, replicated or migrated) and versioned
(so long as in a backwards-compatible manner) without affecting the rest
of the system [48]. However, this is an ideal case which should be fol-
lowed, and in some cases, it might not be possible to follow. For exam-
ple, a service might provide new API versions or a different, backwards-
incompatible interface or transport mechanism (e.g. a new API interface
might not return all data that was returned by a previous version of the
API due to privacy-related requirements that came in force after the pub-
lication of the first version of the API, or new security requirements man-
date that TLSv1 transport should be outphased). In this case, the services
that depend on this microservice must be adapted.

• Statelessness

– The separation between service execution and state information enables
replication, which is one of the essential dimensions of scalability [1].
Statelessness [48] is the name that designates this design quality. An
important design principle for service composability is statelessness. A
stateless service does not retain any information regarding the service it-
self or any previous request to it and lets the database layer handle the
maintenance of a client’s state. This principle allows for separation be-
tween a service and its state information, which favors replication and
reusability for a service.

3.1.3 Independent Deployability

Another essential trait of a service that helps meet the requirements of elastic
scalability is being independently deployable (desirably, by fully automated machin-
ery [55]). It provides an ability for a developer to deploy, update, test and investigate
directly on a particular service without affecting the rest of the system. Therefore
each service can be scaled independently of other services. Moreover, the isolation of
each service addresses the challenge of the technology stack. This, in fact, is entirely
different from using monolithic application where components must be deployed
together.

3.1. Design and Implementation Priniciple 17

3.1.4 Scalable Service Architecture

The existence of previously mentioned key traits within a service as composability
and independent deployability emphasized required migration in the context of the
application architecture from the traditional monolithic towards a service-oriented
architecture. The monolithic architecture defined an application as a single large
unit which offers several services [55]. If any part of the application fails the whole
set of services goes down, which represents a single point of failure. Any change
made to a small module in a monolith application requires the entire application
to be rebuilt and re-deployed, which causes a long downtime. Monolithic applica-
tion architecture also suffers from the dependency hell problem [96] and imposed
technology lock-in for developers.

The real essence of service-oriented architecture as a service-based model con-
sists of breaking down a traditional monolithic application into units of service to
reduce the complexity of the system. The evolution of software architecture in the
last decades has shifted from Monolithic architecture towards service-oriented ar-
chitecture and, more recently, microservice architecture. Service-oriented architec-
ture can be seen as a step in this evolution process, which brought up the idea of
service as a fundamental building block of an application. In a microservice archi-
tecture, a system is composed of independently deployable services, which interact
with each other via light-weight communications mechanisms using standard data
formats and protocols across well-defined interfaces [42, 128, 99]. Microservice is an
architectural style that originated from SOA [89, 99].

Microservice architecture is defined as[99, 101, 55] as an approach to develop-
ing a single application composed of a set of independently deployable services,
which interact with each other via light-weight communications mechanisms. The
term microservice is defined as a small, cohesive, independent function which im-
plements a single business capability [42]. However, there is no predefined size
limit for a microservice. Each microservice is expected to maintain focus on com-
bining related functionalities into a single business capability. Each microservice
has the capability of being independently deployed by fully automated deployment
machinery [55]. The major difference between microservices and SOAs comes from
the higher granularity and high independence of services which brings the beneficial
aspects in maintainability and extend-ability [99]. On the solid footsteps of success-
ful adopters such as Amazon [72], LinkedIn [68], Netflix [92], the endpoint of that
transformative journey should arguably be the microservice architecture.
One driving criterion that helps cut the service boundary right is to focus on the scal-
ability concern [132, 2, 41]. Scalability is the ability to deploy cost-effective strategies
for extending one’s capacity [138]. Scalability can be obtained in two ways: vertical
or horizontal scaling as it has shown in Figure 3.3. Vertical scaling (aka scale-up)
is the ability to increase, in quantity or capacity, the resources availed to a single
instance of the service of interest. The extent of this strategy is evidently upper-
bounded by the capacity of the hosting server [133, 132]. In fact, this approach re-
quires investing heavily in more powerful computers to accommodate the demand,
which requires enormous capital expending. Therefore; the vertical type of scaling is
limited by the size of a single server(physical/virtual) in which the application can
only get resources as big as the size of the server [133, 15]. Horizontal scaling (aka
scale-out) is the ability to aggregate multiple units, transparently, into a single logical
entity to adapt to different workload profiles [15]. In this approach, application ar-
chitecture needs to be designed in such a way that allows efficiently distributing and

18 Chapter 3. ELASTICALLY SCALABLE SERVICE

scaling for their components. The system attains horizontal scaling through replica-
tion mechanism to handle the workload. Replication is one central dimension to this
strategy.

FIGURE 3.3: Horizontal vs Vertical scaling

To meet the goals stated earlier, we need to pursue elastic scalability (aka elastic-
ity), that is, the combination of strategy and means that allow dynamic resource pro-
visioning and releasing, while preserving service continuity, and that is amenable to
full automation [6, 63]. Speed and precision are the qualifying traits of elasticity [63].
As the number of requests for particular service increases (respectively, decreases),
the speed of resource provisioning (respectively, releasing) should vary in accord
with the speed of demand variation, fully transparent to the user.

The latter quality, which one might call frugality, prevents wastefulness in the
ratio of provisioning over need, by matching the footprint of resource deployment
to the level of demand as exactly as the grain of service design allows.It is the balance
of those two qualities that sanctions the goodness of the service boundary.

In the monolithic approach, in case of increased workload on a specific service,
the scaling solution is to duplicate the entire application. This results in complexity
and over-provisioning of resources for the other existing components, which is not
beneficial for enterprises due to being inefficient. Similar reasoning can be applied
to service-oriented architecture since services are large, not isolated and they can
only scale at a large granularity. This is where microservices come up to facilitate by
providing small services that could be deployed and scaled independently.

In a microservice architecture, due to stateless and independent deployability of
service, each particular service can be easily replicated, and it is possible to achieve
the beneficial aspects of scaling by utilizing resources more efficiently. Consequently,
it is important for an application architecture to be capable of applying elastic scala-
bility mechanisms to meet the requirement of the users and provide efficient utiliza-
tion of resources. Deploy web applications in the cloud has shown [135] an indepen-
dent ability of microservices to be developed, deployed, scaled and operated and
monitored. Therefore, microservice architecture facilitates elastic scalability in the
system and also provides efficient resource utilization due to having independent
deployablity as a characteristic for its services. Numerous studies (e.g[microiot1,
microiot, 11, 41, 12, 135]) show that adopting the microservice architecture helps
pursue those goals. To better understanding, we illustrate the methodology which
monolithic and microservice architecture uses to handle the scalability in Figure 3.4.

3.2. Container Orchestration 19

FIGURE 3.4: Microservice and Monilith scaling

3.2 Container Orchestration

In the microservices architecture, each service needs to be provided with its required
resources in a fast, reliable and cost-effective way, and then needs to be run, up-
graded and replaced independently. These requirements speak of containers [103].
Container-based virtualization, which originates from the Linux Container project
(LXC), as we describe in Chapter2 is much better apt than the virtual machine at the
scaling, while still assuring excellent isolation [103]. Because of their leaner nature,
containers consume less resources (so that one single host can accommodate many
containers) and are lighter and easier to house and transport, faster to deploy, boot
and shut down than virtual machines [43]. It is not surprising, therefore, that con-
tainers were found to be up to 10 times faster to bootstrap than virtual machines
[50].

There are two approaches to deploying an application using containers: one-to-
one and one-to-many [112]. The classification criterion is the number of services
housed in the container, which defines its granularity. The one app (service) per con-
tainer approach allows each service to run on a dedicated container so that one con-
tainer hosts only one service, and each service is packaged as a container image. This
solution eases horizontal scaling, provides fast build/rebuild of the container, and
allows the same container to be reused for multiple different purposes in the same
system. The major downside of this approach is that it may yield a large number
of containers, and thus considerable overhead for interaction and management. The
one-to-many solution, where each container houses multiple services, addresses this
very concern, without however answering the question of which services to gather
into which container.

Consequently, having multiple independent units of the containerized unit of
microservice applications collaborate in responding to a user request most definitely
incurs coordination overheads that must be addressed by orchestration [134]. Orches-
tration is defined as the automated arrangement, coordination, and management of
complex computer system, middleware, and services, all of which helps to acceler-
ate the delivery of IT services while reducing cost. It concerns services, workload,
and resources in the system [134].

The entry level of of orchestration entails automating the deployment of the ap-
plication by means of Continuous Integration and Continuous Delivery (CI/CD) solu-
tions such as Chef [107], and Jenkins [70]. Despite, significant benefits provided by
the DevOps approach into the process of orchestration, fluctuating user demand,

20 Chapter 3. ELASTICALLY SCALABLE SERVICE

and on-demand Cloud service provisioning derives the need for dynamic orches-
tration across the Cloud environment. Supporting on-demand provisioning of the
resource requires elastic resource allocation to minimize provisioning costs while
meeting service level objectives (SLOs). Therefore, to align with elastic scalability,
orchestration must be dynamic, that is, able to support the adjustment of resource
provisioning and service deployment required to fluctuating user demand.

3.3 Implementation princincple within state-of-the-art tech-
nology

The complementary specification in the direction of designing and implementing
elastic scalability for the definition of dynamic orchestration that we discussed ear-
lier requires the technology solutions to support efficient resource allocation and co-
ordination. Figure 3.5is shown the reference architecture for Orchestration process
which can be understood in analogy to a conductor as an orchestrator, who conducts
an orchestra so that performing all different instruments are in tune and in time and
conductor (orchestrator) oversee the process by receiving responses.

Later, we will describe more in detail the main concerns and functionality of
the container orchestration platform with considering current state-of-the-art in this
technology.

FIGURE 3.5: Refrence architecture for container cluster manager

In particular, it’s primary objective is to provide alignment between application
and resource so that it can address under-provisioning and over-provisioning is-
sues. The scheduler is an essential component of an ideal dynamic orchestration
solution toward elastic scalability issue, as it is the entity in charge of generating a
dynamic execution plan that responds to changes in user demand. The scheduler
(auto-scaling) must generate dynamic statistics on the state of the resources that it
manages, to compute the best possible service-resource mapping, using either reac-
tive or proactive strategies.

Reactive approaches are solutions that react to detected demand fluctuations be-
fore(periodic) demand prediction is available. Examples of this solution appear in
most commercial solutions such as RightScale [114] and AWS [3].

Proactive approaches are solutions that use predicted demand to allocate resources
before they are needed [58, 40, 34]. In using proactive approaches, the accuracy of

3.3. Implementation princincple within state-of-the-art technology 21

demand prediction and provisioning is critical to saving costs with utility comput-
ing [131].

Accordingly, auto-scaling approaches (reactive, proactive) are introduced as a so-
lution to allocate runtime resources according to workload dynamically. Therefore,
a modern scheduler(autoscaling) should provide support for the following features:

• Affinity / Anti-affinity, to implement restrictions that enforce given entities to
always be adjacent or separate to one another. An affinity rule simply means
the ability to ensure that certain workload or virtual server always runs on the
same host. Anti-affinity works in the opposite way, with the same impact as
Affinity.

• Taint and toleration, to mark a particular (logical/physical) computing node
as un-schedulable so that no container will be scheduled on it other than those
that explicitly tolerate the taint. This requirement can also be used to keep
away a node with a particular specification (e.g., a physical resource) from the
others and dedicate it to given workload. It also allows rolling application
upgrades of a cluster with almost no downtime.

• Custom schedulers, to delegate responsibility for scheduling an arbitrary sub-
set of hosts to the user, alongside with the default scheduler.

To examine how current state-of-the-art technology meets the requirements for
elasticity, we look in Kubernetes [82, 21], OpenShift [10], DockerSwarm [69], as the
most widely used solutions for the dynamic orchestration.

3.3.1 Kubernetes

One of the first open source orchestration platform written in Google’s Go program-
ming language. Its architecture, as depicted in Figure 3.6, is based on a set of master
and worker nodes configuration. Within each worker node, there are groups of con-
tainers called pods, which share resource and are deployed together. The basic unit
of scheduling is called a "pod" which can be composed of one or more containers.
Pods play a significant role in placing workload across a cluster of nodes. A set
of pods that work together is called a Service in Kubernetes. Services are exposed
within a cluster and are assigned an IP address and the Domain Name System (DNS)
name so it can be discovered by other Kubernetes applications and service [9].

The Master uses an etcd key-value store to maintain information about the state
of the entire cluster. An API server provides an HTTP interface for both internal
and external access to the Kubernetes master. It processes REST or Protocol Buffers
(Protobuf) requests and updates the etcd data store. The Scheduler selects the node
that an unscheduled pod should run. The built-in scheduler knows about resource
requirements, availability, affinity, etc. to make scheduling decisions. However, an-
other specialized scheduler can be provided as an add-on plugin. In the worker, the
Kubelet is responsible for discovering the resources and keeps track of running state
on each node and relays that information to the Kubernetes master. Kubelet is also
responsible for managing the pods and starting the containers [9].

Kubernetes uses architectural descriptions, written in JSON or YAML, to describe
the desired state of services, which it feeds to the master node. The master node
devolves all dynamic orchestration tasks onto worker nodes. Kubernetes has a con-
troller that manages the state of the cluster and provides mechanisms to replicate
and scale multiple copies of a pod across the cluster of server nodes.

22 Chapter 3. ELASTICALLY SCALABLE SERVICE

FIGURE 3.6: Kuberenets architecture

Kubernetes provides Required and Preferred rules. Required rules need to
be met before a pod can be scheduled. Preferred rules do not guarantee enforcement.
Kubernetes also uses a replication controller with a reactive approach to instantiate
pods as required. Kubernetes provides pods and nodes with affinity /anti-affinity
attributes. It defines rules as a set of labels for pods, which determines how nodes
schedule them. Anti-affinity rules use negative operators. Kubernetes marks nodes
to avoid them to be scheduled. The Kubectl command creates a taint on nodes
marks them un-schedulable by any pod that does not have a toleration for taint with
the corresponding key-value. Kuberenes at v1.6 supports customs schedulers in a
way that allows users to provide a name for their custom scheduler and ignore the
default one. Custom strategies are completely custom, meaning that the user must
write an ad-hoc plugin to use them.

3.3.2 Docker Swarm

It is a native orchestration tool for the Docker Engine, which supports deploying
and running multi-container applications on different hosts. The term swarm refers
to the cluster of physical/virtual machines (Docker engines), called nodes, where
services are deployed. Its architecture as shows in Figure 3.7 uses one master and
multiple worker nodes.

FIGURE 3.7: Docker Swarm platform schema

The key concepts in it are services and tasks. Service designates the tasks that
need to execute on the worker nodes, as specified in the tasks’ desired state. Tasks
represent atomic scheduling units of work associated to a specific container. Docker

3.4. Final Consideration 23

Swarm uses a declarative description, called Compose file, written in YAML to de-
scribe services. The swarm manager is responsible for scheduling the task (con-
tainer) to worker nodes (hosts). Docker Swarm places a set of filters on nodes and
containers to support the first two requirements mentioned earlier. Node filters
constraint and health operate on Docker hosts to select a subset of nodes for
scheduling. The node filter containerslots with a number value is used to pre-
vent launching containers above a given threshold on the node.

Docker Swarm offers three strategies, called spread, binpack, random, to
manage cluster assignment according to need. Under the spread strategy (which
is the default one), it computes ranking according to the node’s available CPU and
RAM, attempting to balance load across nodes. The binpack strategy attempts to
fill up the most used hosts, leaving spare capacity in less used ones. The random
strategy (which is primarily intended for debugging) assigns computation randomly
among the nodes that can schedule it.

3.4 Final Consideration

As mentioned earlier, scheduler is an essential component to achieve optimal pro-
visioning that response to changes in user demand. Concentrating on the scheduler
to achieve optimal provisioning in the mentioned technologies, we observe that all
are using predictive approaches to achieve elasticity. As, using resources have boot-
times that vary, depending on the application, from a couple of minutes to even 30-40
minutes to load all the components needed. Even in the container world, spawning
a new large-image container on a new node while the network is under stress, will
easily take 5 to 10 minutes. The same holds for shut-down times. Therefore, the
longer the boot time will result in consuming more resource and less efficiency. So,
the more important it becomes to be proactive and provide required resources in ad-
vance to achieve effective elasticity. This justifies investigating proactive algorithms
in place / along with reactive ones to achieve effective elasticity.

Consequentlty, the technology exploration that we have discussed shows that
there continues to be a gap between what state-of-the-art solutions have to offer in
the way of support for elastic scalability and the full range of requirements that such
a need entails. Accordingly, proactive approaches to resource scheduling are the
most acute need that is not supported as yet other than in early research prototypes.
To this end, our next research goal as describe in Chapter 4 is to design, implement
and comparatively evaluate experimental proactive elastic resource allocation algo-
rithms, which could be used by Cloud service provider to make a more sustainable
use of DevOps.

25

Chapter 4

SCALABILITY IN SOFTWARE
DEVELOPEMENT PROCESS

4.1 Background

Traditionally, software development has followed a linear Software Development
Life Cycle (SDLC) that traverses planning, analysis, design, coding, and testing
before enabling application deployment onto the production environment. In this
style, post-deployment maintenance of the application was in charge of the IT/Op-
eration professionals (IT/Ops), whose organization tile had separate objectives (and
distinct key performance indicators) from developers. In particular, the develop-
ment objective is to release application service augmented with new features using
agile development practices, whereas the operation objective during maintenance is
to ensure continued stability and reliability to the production environment.

Over the years, these two teams siloes by their respective separation of concerns
has created barriers of practices and solutions to the problem of deploying service
updates with new features quickly and frequently, without undermining the relia-
bility and stability [80]. Besides, this hiatus broadened to encompass negative effects
on the efficiency of the delivery cycle, as well as on the quality of the products and
services provided.

In 2001, Agile methodology ultimately gave rise to new processes and technol-
ogy breakthroughs aimed at streamlining and automating the entire software deliv-
ery lifecycle. Agile methodologies taught developers to break down software de-
velopment into smaller chunks known as "user stories," which accelerate feedback
loops and align product features with market need. Accordingly, the focus of the
software life cycle moves downstream toward IT operation, to reduce the friction
that arises with new software releases, under the label of DevOps [76, 14].

DevOps originated as a natural evolution of the agile methodology for software
development, integrating traditional SDLC with operational support into one single
methodology centered on the notion of continuous action [51]. In the conventional
sense, DevOps is the integration of the process practices and associated tooling that
drive continuous integration and delivery of business software applications [45].

Kim et al. [76] articulate five major points to describe the fundamental principles
of DevOps framework, summed up in the acronym ”CALMS”: Culture, Automa-
tion, Lean, Measurement, Sharing. The core of these authors’ idea rests on building
a culture of collaboration that bridges the gap between Development (Dev) and Op-
erations (Ops) to design, deliver, manage and improve the way IT is used within the
organization.

DevOps embodies those principles into a continual-improvement process called
Continuous Integration and Continuous Delivery pipeline (CICD) in the intent to

26 Chapter 4. SCALABILITY IN SOFTWARE DEVELOPEMENT PROCESS

improve stability and performance of the organization’s development and opera-
tion assets [136, 45, 13]. The CICD workflow is designed to ensure deployable and
scalable product delivery that can be updated in real time in response to monitored
evidence collected throughout the entire software life cycle.

Figure 4.1 depicted the Continuous Integration (CI) part of the CICD pipeline,
whose prime benefit is to keep the developers synchronized with each other fre-
quently. In fact, CI much reduces the delays related to integration issues as each
step of integration involves highly automated test sessions aimed to detect latent er-
rors as quickly as possible. In that respect, therefore, CI allows the rapid building of
new features in the application while reducing the associated risks [54]

FIGURE 4.1: CI/CD pipeline for software development

The main focus of the DevOps culture is commonly associated with Continuous
Delivery (CD) with more holistic view, originated from the goal of acquiring the
ability that uses smart automation to create repeatable and reliable process for deliv-
ering software [53]. The CD practices (cf. the right part of Fig. 1) subject the changes
applied a software part to automated verification tests performed on the so-called
deployment pipeline, in a fashion that gets the application increasingly close to the
eventual production environment [53]. In effect, Continuous Delivery expands the
concepts behind Continuous integration. CI started as a development strategy and
expanded to encompass production deployments, which meant bringing the oper-
ations team closer to development. When the principles of DevOps came into play,
places emphasis on the operational issues such as deployability, scalability and mon-
itoring.

4.2 Infrastructure Agility

The concept of DevOps, with its focus on quality building, requires a high degree of
automation that extends from the application to the infrastructure itself, giving rise
to the principle of Infrastructure as Code (IaC) [45, 64].

Infrastructure as code (programmable infrastructure) refers to machine-readable
code to manage infrastructure resources, configurations and deployments while au-
tomating dynamic provisioning and releasing [136, 98]. IaC seeks to afford maxi-
mum velocity to the continuous integration and delivery pipeline, enabling the user
to treat the infrastructure management as an agile discipline, thus helping balance
time, resource and quality, which are the critical assets in any business environment
[80].

As shown in Figure 4.2, the automation of IaC results in a workflow process that
assures all software assets are portable, reusable, and subject to version control. It

4.2. Infrastructure Agility 27

keeps the desired infrastructure state transparent while assuring the availability of
IT infrastructure entire the whole software development process.

Therefore, the IaC paradigm is a natural fit for cloud infrastructure where a re-
source can be provisioned and configured through APIs thus helping balance time,
resource, and quality which are the critical assets in elastic service delivery in the
cloud environment [136].

FIGURE 4.2: Infrastructure as code workflow

Traditional configuration management tools (such as Puppet [107] for example) have
helped to achieve automation-based consistency in code-based infrastructures, but
they fall short for scaling, where their single-server organization becomes a frustrat-
ing bottleneck. Terraform [127] is an example of an open source tool to provision
and manage cloud infrastructure using declarative, version controlled configuration
in an automated fashion. It generates an execution plan describing what it will do to
reach the desired state and then executes it to build the described infrastructure. As
the configuration changes, Terraform is able to determine what changed and create
incremental execution plans which can be applied [127]. In fact, the IaC paradigm
is able to reproduce and change the state of environments in an automated fashion
from information in version control rather than configuring infrastructure manually
as in the configuration management tool.

4.2.1 Operational Performance

Realizing software releases in terms of as-a-service offerings, which is natural for
web and Cloud service development, naturally positions their providers as the early
adopters of DevOps principles after the agility and speed that they promise [13].
One of the traits that forms a join point between the two perspectives of Cloud and
DevOps is rapid elasticity, which, in the DevOps context, becomes the rapid delivery
of scalable infrastructure as a service [56].

In this context, DevOps embraces the operational aspects of defining a service
as a product item that needs to be deployed, scaled, maintained, monitored and
supported through its life cycle. DevOps creates increased innovation opportunities
and fostering a performance orientation with the highest priority to satisfy the cus-
tomer through continuous delivery of valuable software. In such a way that releas-
ing software happens rapidly, frequently, and more consistently, under the notion of
continuous delivery and deployment pipeline.

Accordingly, one of the main challenges that DevOps methodology tries to ad-
dress is adaptability to changes while maintaining high quality at low cost and high-
speed [80].

28 Chapter 4. SCALABILITY IN SOFTWARE DEVELOPEMENT PROCESS

Therefore, concerning the IT evolution depicted in Figure 4.3, to get the most
value out of the rise of cloud, containers, microservices, enhancing agile and dy-
namic, given their complexity and operational costs must be organized and man-
aged in the most optimal, and adaptable way. The adoption of Container technology
as a lightweight and scalable solution to deployment challenges, which isolates the
application and its dependencies within self-contained units agnostic of program-
ming language and execution platforms, removes the need for runtime collabora-
tion between Dev and Ops [103]. Precise allocation of resources for individual con-
tainers enables efficient usage of the underlying infrastructure. However, this prac-
tice also adds one level of abstraction (the container layer itself) to the problem of
managing the deployment infrastructure of applications. Most important, this per-
spective changes the nature of scaling from handling relatively coarse-grained units
(VMs) to a collection of small, lightweight coordinated units (containers). Therefore,
containerization reduces over-dimensioning and under-utilisation, while increasing
manageability to achieve optimal infrastructure scalability [103].

DevOps encouragement for rapid integration and cross-team communication
motivates abandoning siloed application architectures, and therefore favors the adop-
tion of microservices (application architecture), which break down the application
into a granular set of independent units of discrete functions that are built and de-
ployed independently and communicate via APIs external to their code base and
therefore accessible with technology-neutral solutions [99, 11]. Embracing microservice-
based applications the developers may build more robust software and implement
the extent of scalability and performance features that operations personnel much
desire [41, 128]. Taken as part of the automated system, applications real- ized in
terms of containerized microservices increase the agility and scalability dotation that
serves the speed of deployment.

FIGURE 4.3: IT Evolution

To improve the delivery of value, Cloud offers DevOps an advantageous infras-
tructure (IaaS), which enables an effective team structure (topology) to be put in
place between Dev and Ops personnel using Infrastructure-as-a-Service as its plat-
form [91] as it shows in Figure 4.4.

FIGURE 4.4: Dev and Ops united in an Infrastructure-as-a-Service
(platform) topology)

4.3. Experimental Evaluation 29

In this topology, appropriate IaaS settings provide an elastic infrastructure to op-
eration, to deploy and run applications on, assuring the low latency required to meet
desired service level agreement (SLA), and facilitating the release of new software
versions. Elastic infrastructure denotes the scaling of resource up and down in order
to meet the quality of Service (QoS) requirements such as response time. However,
applications deployed in a cloud environment require both performance and cost-
efficient resource usage.

4.3 Experimental Evaluation

To get the most value out of the Cloud, containers, and microservices combined,
requires innovative solutions for the coordination and management of infrastructure
optimization. As noted in Chapter 3, the umbrella terms that encompasses those
challenges is dynamic orchestration.

To this end, our contention here is that orchestrating containerized applications
dynamically using automation in the faces of the continuous changes in the dynam-
ics of service workloads, requires Artificial Intelligence techniques to learn, model
and predict changes in system behavior in near-real time.

To explore the viability of this contention we looked at Auto-Regressive Inte-
grated Moving Average (ARIMA) model [23] for forecasting a time series and Long-
Short Term Memory (LSTM) [143] as a special kind of Recurrent Neural Networks
(RNNs), which is capable of learning features and long-term dependencies in the
modeling of dynamic systems.

The objective of RNNs is to map an input sequence, one step at a time, into a
corresponding output sequence, using integration of information captured in the
hidden layer (recurrent unit) to predict the input sequence ahead, while optimizing
the weight parameters of the network. RNNs have been widely and successfully
applied to many sequential tasks and time-series analysis [117]. The structure of
RNNs is inspired on the biological neural network that is the brain. RNNs consist
of multiple cascading layers (input, hidden, output) of non-linear artificial neurons
that operate as basic cog- nitive units, and a feedback loop called a recurrent unit
that provides persistent memory over time (through the input sequence) [117].

Most uses of RNNs to model long-term sequential dependencies in the state of
the art report exposure to vanishing or exploding gradient during training [117].
Long-Short Term Memory (LSTM) [143] has been proposed to overcome those prob-
lems. To this end, the LSTM modifies the layers of the RNN adding an internal state
variable, which keeps track of the already processed inputs and therefore eases the
modeling of long-term sequential time-series data sets without requiring massive
and costly updates to the recurrent unit.

The effectiveness of the prediction algorithm is evaluated by the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) metrics, which are defined
as follows:

RMSE =
√

MSE where MSE =
1
n

n

∑
i=1

(Yiground −Yipred)
2 (4.1)

MAE =

n
∑

i=1
|Yiground −Yipred |

n
(4.2)

30 Chapter 4. SCALABILITY IN SOFTWARE DEVELOPEMENT PROCESS

where Yiground is the actual output at time i, Yipred is the predicted output and n is
the number of observations in the dataset. The smaller the RMSE or MAE values,
the better the predictive quality of the model.

4.3.1 Experimental Environment

Having explained the context of interest to our work, we can now illustrate the strat-
egy that we have adopted to embed our proposed method for orchestration of single-
tier web application deployed on Amazon’s Elastic Container Service.

The Elastic Container Service (ECS) of AWS provides a highly scalable container
management that monitors, schedule and deploys containers across cluster of nodes
corresponding to EC2 instance [8].

To create a simple, yet representative scenario for our experiments, we employed
a cluster comprised of two EC2 instances of type t2.medium to run a container ser-
vice composed of single tier web application (web tier) deployed on an Apache web
server (Figure 4.5).

FIGURE 4.5: Experimental framework for orchestrated container on
AWS

The implementation uses five parts:

1. Elastic Load Balancer, ELB,

2. Elastic Container Service, ECS,

3. Auto-scaling Group, ASG,

4. CloudWatch, CW, and

5. A Scheduler Module that bridges the ECS cluster with its associated Cloud-
Watch.

The ELB, ECS, ASG and CW components are standard components of the AWS
offering. The Scheduler Model was our own. To generated the historical data to train
and test the LSTM forecasting model, we used the AWS server metrics (request per
second, CPU utilization) as collected by the Amazon CloudWatch service available
with the Numenta Anomaly Benchmark (NAB) [102]. Subsequently, we generated

4.3. Experimental Evaluation 31

live workload using Hey (rakyll) [109] with the same probability distribution as used
in the production of the training dataset, which we jittered with random noise. Dur-
ing the experiment, we used the CloudWatch service to monitor CPU utilization of
ECS in the two dimensions of service level and cluster level, as well as the number
of requests en-queued at the LB, to feed a prediction model and translate the output
into the required number of containers. As part of that, we used the AWS API to
access the provided key-value store to acquire the current state on each cluster node
and integrated the resulting value in our custom scheduler. In that setting, we com-
pared the behavior of our custom model with that of the default ECS. Overall, our
experiments consisted of the following steps:

1. Designing and implementing automated scaling API for containers, which ob-
serves selected and configurable metrics from ECS;

2. Constructing an application performance model machine learning that pre-
dicts the number of container unit required to handle demand;

3. Periodically predicting future demand using time series and determining the
application resource requirements using the performance model;

4. Automatically allocating resources using the predicted resource requirements;

5. Running experiments on real data to determine how fast the system can re-
spond to emerging application needs.

4.3.2 Experimental Results

The first goal of our experiment was to compare the prediction of required number of
containers obtained with the ECS default method against ours. Figure. 4.6 shows the
results that we obtained, which shows a lower error rate corresponding to prediction
time in applying the LSTM in comparison to the ARIMA model to proceed with the
next step of the experiment

FIGURE 4.6: Prediction error.

32 Chapter 4. SCALABILITY IN SOFTWARE DEVELOPEMENT PROCESS

Figure. 4.7 plots the results we obtained, which show better performance of our
model, where the service time provided to the user stays quite stable throughout
significant changes in the intensity of user requests.

FIGURE 4.7: Container allocation in response to varying load.

In the second part of our experiment as shown on Fig. 4.8, we used response time
as a performance indicator, that is, the time to serve a user request to completion.
Once again, the compared the default auto-scaling mechanism, threshold based on
CPU utilization per node, against our predictive model.

FIGURE 4.8: Variation of service response time under variable user
load.

4.4. Final Consideration 33

4.4 Final Consideration

In this work, we have presented and discussed our view of how the dynamic or-
chestration capabilities required for containerized microserviced-based applications
responds to the DevOps demand for increased agility in the whole development
cycle. We have argued that Machine Learning is a necessary ingredient to enable
the realization of sound and effective automation rules. To prove our point we pre-
sented the results from an experimental implementation of an Elastic Container Ser-
vice (ECS) hosted on AWS, augmented with our machine learning implements, to
increase the agility in deployment of containerized application. We evaluated that
prototype against a few experimental scenarios, which showed the lower latency
achieved by our method for application deployment.

35

Chapter 5

SCALABILITY IN ANALYTIC
TIER OF MACHINE LEARNING

The increasing amount of data generated and to be processed in the context of Smart
Cities, along with the complexity of existing neural network algorithms to meet a de-
cent accuracy on modeling, has led to bigger computational and memory resource
requirements. Accelerating neural networks training to competitive accuracy while
maintaining a short training time is a major challenge that entails greater computa-
tional resources demands. Consequently, handling this challenge due to the scala-
bility and efficiency of the learning algorithms have given rise to the notion of dis-
tributed machine learning. Distributing machine learning towards scalable while
efficient algorithms is a promising solution in a scenario where both data and re-
sources are scattered along with the architecture, with the added challenge of the
near impossibility of having all data in the same place, and the cost of constantly
offloading computation to the Cloud.

In this Chapter, we present a distributed machine learning approach for road
traffic modeling and prediction, designed for a city-wide scenario based on the Fog
computing paradigm. We display an architecture for large scale Floating Car Data
(FCD), data modeling on the Edge, leveraging parallelism on deep learning algo-
rithms in a city-wide scenario towards prediction. FCD is collected in localized
Edge nodes, and processed as time series indicating “volume of cars” and “average
speed” on the surrounding area. This approach takes advantage of already active
devices collecting data instead of purchasing additional Cloud resources, also re-
ducing network communication and protecting services from network disruptions
by keeping them autonomous on the Edge.

5.1 Introduction

The Internet of Things (IoT) has drawn significant interest from both academia and
industry. The potential applications oriented towards Smart Cities and health-care
services urge experts on designing new architectures for infrastructure, platforms
and services, taking care of inherent limitations on connectivity and computing
power found on edge devices and dynamic networks while leveraging near-data
computing. Those IoT architectures are usually composed of real-time monitoring
systems and actuators (sensors and acting devices) running in different locations,
connected to data aggregation applications or data-warehouses through dynamic
networks (such as 5G, Wi-Fi or wired Internet).

Cloud architectures provide “infinite” resources and scalability, whereas, scenar-
ios like Smart Cities usually require proximity and quick reaction time, while gen-
erating big amounts of data that must be transmitted to the analytics applications.

36 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

FIGURE 5.1: Edge-Cloud Aggregation Schema, with environment ac-
tors (Sensors, Actuators and Users)

Knowing that those analytics applications aggregate data, Fog computing pipelines
contemplate aggregation at low and intermediate levels, moving data processing
close to the sources, reducing data to synthesized volumes to be transmitted north-
bound to the Cloud, as shown in Figure 5.1. Additionally, when services provided
in the Edge depend only on local data, collected and aggregated data among local
nodes can provide solutions to the service without communicating with the Cloud.
This is the case of traffic monitoring on cities, where street-placed nodes and anten-
nas can collect data from the road and equipped car sensors, and analyze and predict
traffic status locally while sending only relevant statistics to the Cloud.

Here we address the problem of modeling time-series data, particularly Float-
ing Car Data (FCD), for predictive analytics on the Edge, where the Edge-node de-
vices have resource limitations. Due to big volumes of geo-distributed and time-
distributed data produced by FCD, we focus on:

1. Modeling data on the edge using deep learning methods.

2. Considering time to train models in scenarios with limited time and resources.

3. Producing accurate enough models with the given time.

4. Constrained number of CPUs/GPUs.

5. Leveraging availability of distributing load among CPUs/GPUs or neighbor
devices.

Through this, we can distribute intelligence and load across the Edge, affording
good-enough models with the available resources, without pushing all unnecessary
data to the Cloud and using resources already available on the Edge, demonstrating
the effectiveness and feasibility of Edge-based data analytics.

On this setting, we use Gate Recurrent Unit(GRU) neural networks to model the
traffic behavior in order to produce short/medium-term prediction on such traf-
fic. Additionally, we present a lesser-complex technique to parallelize and automate
the training process, considering that models will be created on the Edge, fitting to
local behaviors. From here on, we study different levels of data aggregation, differ-
ent levels of data processing parallelism, time requirements for achieving suitable

5.1. Introduction 37

accuracy levels for models, and suitability for real-time applications in the Edge.
To validate this approach, we used real traffic logs from one week of Floating Car
Data (FCD) in the city of Barcelona, provided by one of the largest road-assistance
companies in Spain, comprising thousands of vehicles from their fleet only in the
city of Barcelona. The data-set comprises data collected over one week between
10/27/2014 and 11/01/2014 across the Barcelona metropolitan area. Deep Learning
modeling is done through Keras (R + TensorFlow), comparing train time, obtained
accuracy, used resources (i.e. 1 CPU/GPU per process, as edge devices are not High-
Performance designed), and GRU configuration (provided hidden units). Finally, we
provide a set of criteria to automate the learning process by selecting training time
in function of observed behaviors on model training and validation.

Through experimentation we observe that the presented methodology allows
to bring this kind of predictive analytics to the Edge, including complex learning
mechanisms like GRUs, allowing cost/effective compromises between model accu-
racy and training times at low powered or restricted devices, and can be enhanced
by distributing load among extra CPU/GPU resources when available. Addition-
ally, compared to previous prediction methods, GRUs achieve good accuracy results
with constrained training time in front of the previously used methods, even if the
modeling process is split to reduce training time.

5.1.1 Contribution

The contributions of this work are summarized as follows:

• An architecture for distributed modeling Floating Car Data based on the Fog
computing paradigm and Edge Analytics.

• A simplistic method to distribute Deep Learning data modeling processes on
restricted resource scenarios, using multiple CPUs/GPUs.

• A comparison and study of resource usage vs. accuracy on training models for
real Floating Car Data, also comparing to baseline methods.

• A comparison of required time on modeling when performed on High-Performance
environments (e.g. the Cloud) versus Low-Power environments, using real
standard devices on the Edge.

• A mechanism to automate decisions on-the-run for stopping training processes
when accuracy levels are considered reliable.

From these contributions on, further advances can be done by reducing not only data
transmission, but also model transmissions on scenarios where models were com-
puted on the Cloud and pushed southbound, also increase the quality of service on
Edge-provided end-user services by not depending on Edge-Cloud communications
and being resilient to back-haul interruptions.

38 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

5.2 State of the Art

5.2.1 Background and Motivation

In the past years, the “pay-as-you-go” model from Cloud Computing has become
an alternative to private data-centers, due to its scalability paradigm. The Cloud
has been widely used to address the emerging challenges of big data analysis in
many smart city ecosystems such as smart houses, smart lighting, and video surveil-
lance [38, 125, 24]. However, IoT scenarios usually require low latency between sen-
sors/actuators and computing power, while attempting to avoid unnecessary north-
south bound communication of data that can be processed on the edge or intermedi-
ate nodes. Location awareness is also a must on many Smart Cities IoT architectures
providing immediate in-place services. As IoT services in Smart Cities are getting
more involved in the daily life of people, Cloud services alone can hardly satisfy the
mentioned requirements of this ecosystem.

Keeping data processing near the actuators and end-users on the Edge, to offer
localized and low latency, is required by the explosive growth data generated by
the ubiquitous deployments of sensors. Within this context, intelligent data analysis
is playing an important role in predictive analytics related to city-wide scenarios,
facing large data-sets to be processed, most of them localized [104]. Submitting the
enormous data generated by massive sensors to the Cloud, to later receive results to
the user, requires communication bandwidth and power consumption.

Consequently, the inherent distributed architecture of the Edge has significant
advantages over the Cloud to provide localized services to a user and is well posi-
tioned for real-time big data analytics close to the source for latency-sensitive appli-
cations, such as complex event processing, gaming, and video streaming [66]. Fog
computing, the paradigm combining the Edge and Cloud capabilities, can handle
the significant data treatment, including acquisition, aggregation, analytics and pre-
processing, while reducing transportation and storage, even balancing computation
power among intermediate nodes. In addition, transforming this data into ac-
tionable knowledge and adapting to changing dynamics of modern cities, requires
intelligent modeling techniques not only accurate but adaptive. Machine learning
techniques enable smartness in Smart Cities by modeling, predicting and extracting
useful information from collected data, through advanced statistics and artificial in-
telligence algorithms. Deep Learning, a machine learning technique based in multi-
layer neuronal networks, is becoming an important tool in City modeling paradigms
across many areas such as forecasting [], , image processing [81, 28], speech recog-
nition [32, 85, 4] or object recognition [29], useful to manage public services, detect
hazardous scenarios or aid emergency services among others.

5.2.2 Related Work

The exponential growth of the IoT, caused by the opportunity of leveraging smart
devices in generalized enterprise settings, motivate the quest for novel approaches
to developing deep learning system that can scale to very large models and large
data-set to which suit the computational resource and time requirements. However,
training to competitive accuracy while maintaining a short training time with large
and complex networks together with huge data-sets results in a major challenge in
taking advantage of Fog computing paradigm for city wide scenario (longer training
time).

5.3. Architecture 39

A significant amount of effort and research has been put into tackling training
huge data-sets through building large models with more parameters and paralleliza-
tion or distribution methods based on the Cloud computing infrastructure [17, 37,
122, 83, 94, 144]. For example, Google implemented a distributed framework for
training neural networks over CPUs based on the DistBelief framework [35, 84]
which makes use of both model parallelism, and data parallelism.This model has
also proved useful for computer vision problems, achieving state-of-the-art perfor-
mance on a computer vision benchmark with 14 million.

Within the context of scale up learning in the direction of training , researchers
utilize accelerators such as a single or cluster of GPUs to achieve scale through com-
putational power [124, 30]. Recently, Facebook [59] present the results of 90% scal-
ing efficiency on training visual recognition model using data parallelism combining
with the use of GPUs. R.Raina et al. [108] present one of the earliest research based
on data parallelization using GPU. [28] used GPUs to train a collection of many small
models and subsequently averaging their predictions. The authors of Hovord [119]
presented an open source library that employ efficient inter-GPU communication
and enable faster, easier distributed training in TensorFlow.

K. Hong et al. [66] propose a fog-based opportunistic spatio-temporal event pro-
cessing system to meet the latency requirement. Their system predicts future query
region for moving consumers and starts the event processing early to make timely
information available when consumers reaches the future locations.

5.3 Architecture

The current approach presents a data processing schema to be implemented on dis-
tributed architectures for Smart Cities, focusing on low capacity Edge devices pro-
cessing data before using it directly or submitting it to the Cloud. In this section,
we present the different parts of such architecture, detailing the main reasons and
challenges, the relation among components between the Edge and the Cloud, and
how data flows across the system from source to usage.

5.3.1 Edge Computing Networks

Edge computing networks are based on architectures where sensors collect data (e.g.
near-by cars, users, events...) and send it to Edge nodes, close to the captured events,
to be aggregated and pushed to the Cloud, where data is stored in data warehouses,
analytics are made, and services are provided from such analytics. The “Fog” is that
part of the architecture embracing Edge nodes receiving data from sensors, Interme-
diate nodes performing intermediate data aggregation, and Cloud APIs receiving
data to be processed and stored. In fact, the Fog Computing paradigm, proposed by
Cisco [20] towards Smart Cities scenarios, extends the Cloud by moving computa-
tion of data (analytics and services) between the Edge and the Cloud.

Fog architectures can be leveraged by distributing the load between the Edge,
with low computing power enough to receive data from sensors and minimal pro-
cessing towards pushing it to the Cloud, and the Cloud itself, with high computing
power but far from the sensors, actuators and service end-users [104]. Figure 5.2
shows a Fog infrastructure, with near-data nodes on the Edge, intermediate nodes
with medium power to pre-process aggregate or localized data, and the Cloud.

40 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

FIGURE 5.2: Schema of the Fog Infrastructure, from Edge to Cloud

Current devices on the Edge are specially designed to consume low power, hence
producing low throughput and offering low capabilities (e.g. “Raspberry Pi” or “Ar-
duino” devices [111]). But given the recent interest on Edge computing by public
administrations towards Smart Cities, the industry is moving forward computing
devices that offer a compromise between low power and high capabilities, oriented
towards complementing those Edge devices. Examples are the Intel Movidius “Ten-
sor Processing Units” [106], that provide advanced matrix multiplication operations,
focusing on Computer Vision and Deep Learning for Edge devices, or its competitor
NVIDIA Jetson [47] incorporating an NVIDIA GPU and CUDA framework.

5.3.2 Edge-Cloud Hierarchies

The two reasons to run load in the Edge are 1) user proximity: when the local edge
nodes collect data required by nearby end-users, and that data do not require high
performance processing or non-local data. This can also be applied for actuators,
devices that need to perform actions according to the information collected from
local sensors. Also 2) big volumes of data: when the aggregate of collected data
to be transmitted to the Cloud escalates, but as only aggregates are relevant, these
operations can be performed at Edge levels.

While Edge nodes are low-powered, intermediate nodes are expected to have
more power but also be localized, aggregating sets of Edge (or other intermediate)
nodes close in space, and finally Cloud nodes designed for high performance. The
decision of where to place data processing, aggregation and analytics depends on
the trade-off between “computing and network capacity” and “proximity to user
and volume of data to be aggregated”. Here we focus on policies that push load
to the Edge, taking advantage of already active devices collecting data instead of
purchasing additional Cloud resources, also reducing network communication and
protecting services from network disruptions by keeping them autonomous on the
Edge.

5.3.3 Data Pipelines

Floating Car Data is produced by equipped vehicles that indicate their speed by ra-
dio means to listening stations, that is processed into traffic information. Antennas
act as sensors transmitting information to their closest Edge nodes, that collect in-
formation of local traffic, that can refer to a street, a neighborhood or an urban area,

5.3. Architecture 41

depending on the required localization of analytics. More details on the format and
treatment of the FCD is explained on next Section 5.4.

Once data is collected by sensors in an irregular pace (there is no synchronous
reporting from antennas to the Edge node), then performing a first aggregation in
defined time windows (e.g. minutes). The aggregated data-set contains now a regu-
lar time-series, also with default values on empty windows. This regular time-series
is used first as training data-set for creating a local model on the node, then new
incoming series are passed through the model towards forecasting future windows
in short term. Figure 5.3 shows the modeling process.

FIGURE 5.3: Pipeline of Time-Window Aggregation, Learning and
Prediction

Aggregated data and created models can be pushed up to the Cloud for storage
and further analysis and global-scale prediction, or pushed to intermediate nodes for
further aggregation with neighbor nodes and create more generalist models, in the
previously shown architecture of Figure 5.2. As we observed in previous works, lo-
cal models can “fit” to local scenarios better than general models in the Cloud [105],
avoiding intense communication and network interruption problems.

5.3.4 Floating Car Data

As previously mentioned, FCD is received by antennas covering the City, and can
represent a large urban zone, a localized neigborhood, a street or a street segment,
depending on which granularity we require. That data is provided to the Edge an-
alytics indicating the received time-stamp for each vehicle transmission, plus the
speed of the vehicle (in this case). Data like vehicle position (e.g. GPS) is not pro-
vided for privacy and security reasons, e.g. public transportation in Barcelona pro-
vides information about buses E.T.A. to stops (adding a minute delay) but never
their real position, to prevent vehicles to be closely tracked. The GPS position corre-
sponds to the sensor capturing the data.

This data, arriving asynchronously to our Edge nodes, is the aggregated to pro-
duce periodic summaries of traffic information, i.e. Average Speed of vehicles sur-
rounding the node (in Km/hour), and count of vehicles considering that vehicles
will report once in the aggregation window time. Considering a first aggregation of
1 minute information as lower bound, we aggregate data reaching the node obtain-
ing data-sets like the presented in Table 5.1.

latitude longitude n.cars µ.speed timestamp
41.36196 2.09515 4 17 1414365180

TABLE 5.1: Example of Minute-Aggregated Data-set. Notice that po-
sition is from the receiving antenna/Edge node, not the vehicle

42 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

One-minute aggregation data is only a base for larger aggregations, as traffic
time-series can be aggregated from minutes to hours to days, as traffic usually presents
a periodic pattern. While large aggregations can be easily predicted due to this pe-
riodicity, smaller aggregations can be more challenging. For the validation exper-
iments, in the next Section 5.5, we test different levels of time aggregation (from 5
minutes to 1 hour) to observe the capabilities of models depending on how much
precise in time we want to be.

5.4 Methodology

Here we introduce the different elements of the methodology towards Edge aggrega-
tion, modeling and forecasting, and also how these methods are distributed, leverag-
ing resource parallelism. We focus on the algorithms used for modeling traffic (train-
ing machine learning techniques) and distribution of modeling among resources on
the Edge.

5.4.1 Recurrent Neural Networks

The proposed technique used for traffic modeling is Recurrent Neural Networks
(RNNs), specifically a configuration known as Gated Recurrent Unit (GRU) network.
This network is formed by one or more layers of GRU and other neural network
layers, e.g. densely connected layer for prediction.

This kind of neural network layer is able to deal with time dependencies using
a gating mechanism. This gating mechanism is composed by two different gates for
each GRU layer: the reset gate and the update gate. These two gates affect to the
value that the next hidden status St will have. This St is used for internal calcula-
tions as the state of the memory and it is also used as output of the layer. A graphical
representation of this kind of layer can be seen in Figure 5.4. The flow of data rep-
resented there is a simplification of the following equations. Biases and weights are
omitted for the sake of clarity. The box containing rt is the reset gate, the box con-
taining ut is the update gate and the one containing S̃t is the proposed new state. In
the following equations, xt represents the input at time t.

First, the reset gate controls the access to the previous hidden state St−1 and is
used to compute the new proposed state S̃t as can be seen in Equation 5.3. The reset
gate is computed as shows Equation 5.1:

rt = σ(xtWxr + St−1Wsr + br) (5.1)

Second, the update gate is in charge of how much the state is updated, i.e. which
interpolation between St−1 and S̃t we want to do, being the extremes maintaining the
previous state or updating it completely. This interaction can be seen in Equation 5.4
The update gate is computed as shows Equation 5.2:

ut = σ(xtWxu + St−1Wsu + bu) (5.2)

Finally, the proposed state S̃t is the new hidden state calculated regarding the
previous state and the current input. This status is calculated as follows:

S̃t = tanh(xtWxs + (rt � St−1)Wss + bs) (5.3)

5.4. Methodology 43

After the gates and the proposed state is computed, we do an interpolation be-
tween the current state St−1 and the proposed next state S̃t, which represents how
much do we change our memory given the current input xt:

St = (1− ut)� St−1 + ut � S̃t (5.4)

St−1

Xt

St+�

�utσ+

S̃ttanh+

�
rtσ+

FIGURE 5.4: Schema of a unit of a GRU Recurrent Neural Network
layer

Each layer has a given number of units as the one represented in Figure5.4 that
have memory and the more units we add, the more different things the layer will be
able to remember.

5.4.2 Traffic Forecasting

Having the FCD Time-Series data-set as a matrix of [time.window× input. f eatures],
being the input features 〈antenna.lat, antenna.long, num.cars, avg.speed〉 and ordered
by time.window, the forecasting problem targets predicting variables num.cars and
avg.speed of time.window = t + 1 from the same variables from time.window ∈ [t−
d, t], being d our delay or memory window.

As time.window is a whole aggregation period, the problem here addressed has
as objective predict the next period of traffic information. Given the capabilities of
the GRUs, it could be possible to forecast far from t + 1, as GRUs are shown to be
capable of medium-term forecasting in many scenarios. GRUs are generative, and
can generate predictions by using their last prediction and status as input/memory
for the next prediction. As for our problem, we are predicting from t + 1 up to t + N,
being N the size of testing data-set in the experiments (approx 1 day in the following
experiments).

5.4.3 Training Process Automation

Training models in Machine Learning are usually controlled by a “Training vs. Vali-
dation” process, and in Neural Networks (NNs) this is used to decide when to stop
the iterative process. Training data is divided in two batches: “training” and “val-
idation” data-sets. The more time a NN trains (the more epochs training data-set is

44 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

visited), the more fitted the model is expected to be, but to the training data! To pre-
vent such over-fitting, the validation data-set is predicted at the same time, checking
how the model behaves with “non-training” data. While error in training data de-
creases at each epoch, error in validation data decreases until the point of over-fitting
and increases from there, as seen in Figure 5.8. That point is considered the “bounc-
ing point”, and data-scientists would manually stop iterating at that point. But for
non-stable data as we face with FCD, validation can differ enough from training data
in certain occasions, and those expected behaviors can not be found during training,
and a decision on when to stop iterating must be made.

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

0.3

0.4

0.5

0.6

0 50 100 150

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Number of epochs

Training Validation

FIGURE 5.5: Different Training NNs Scenarios

FIGURE 5.6: Training NNs Scenario, where a bouncing point in Vali-
dation can be detected and used to prevent over-fitting

When modeling on laboratories with fixed data, finding the optimal stop point

5.4. Methodology 45

can be made manually through several training experiments, or using complex rules
to be tested. In our scenario, each Edge node has a model to be trained and man-
ual or complex decisions are not available. For that reason we implemented a set
of simplistic rules, to be followed to stop the training from iterating, in case a triv-
ial bouncing point on validation can not be detected. Those cases can be scenarios
where validation error does not decrease and the bouncing point is at Epoch = 1,
the validation error starts below training error, or validation (and training) decrease
asymptotically horizontal.

To detect those trends is required to train first, so after several experiments we
concluded on a Max.Epoch. The GRU trains until that point, detecting the point p of
minimal error on training (the “bounce point”). But in case p = 1 or p = Max.Epoch,
meaning that the validation error does not decrease or decreases monotonically, we
attempt to detect if 1) there is a crossing point between validation and training error,
2) there is a point where errors (training or validation) decrease below a delta thresh-
old, 3) previous decisions occur before a minimal number iterations considered nec-
essary after observing experiments. Finally, in case previous rules fail, a maximum
number of iterations is fixed. Algorithm 1 shows the decision algorithm for fixing p
dynamically, using the error on training and validation, previously smoothing both
sequences to facilitate treating wavy sequences as seen in Figure 5.8, using a LOESS
regression method.

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

0.3

0.4

0.5

0.6

0 50 100 150

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Number of epochs

Training Validation

FIGURE 5.7: Different Training NNs Scenarios

When modeling on laboratories with fixed data, finding the optimal stop point
can be made manually through several training experiments, or using complex rules
to be tested. In our scenario, each Edge node has a model to be trained and man-
ual or complex decisions are not available. For that reason we implemented a set
of simplistic rules, to be followed to stop the training from iterating, in case a triv-
ial bouncing point on validation can not be detected. Those cases can be scenarios
where validation error does not decrease and the bouncing point is at Epoch = 1,
the validation error starts below training error, or validation (and training) decrease
asymptotically horizontal.

46 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

FIGURE 5.8: Training NNs Scenario, where a bouncing point in Vali-
dation can be detected and used to prevent over-fitting

To detect those trends is required to train first, so after several experiments we
concluded on a Max.Epoch. The GRU trains until that point, detecting the point p of
minimal error on training (the “bounce point”). But in case p = 1 or p = Max.Epoch,
meaning that the validation error does not decrease or decreases monotonically, we
attempt to detect if 1) there is a crossing point between validation and training error,
2) there is a point where errors (training or validation) decrease below a delta thresh-
old, 3) previous decisions occur before a minimal number iterations considered nec-
essary after observing experiments. Finally, in case previous rules fail, a maximum
number of iterations is fixed. Algorithm 1 shows the decision algorithm for fixing p
dynamically, using the error on training and validation, previously smoothing both
sequences to facilitate treating wavy sequences as seen in Figure 5.8, using a LOESS
regression method.

Algorithm 1 Detecting GRU training cutting-point (epoch) p from training and val-
idation error
Result: p point of bounce/intersect/convergence/minimum, prioritizing error on validation over error on training
smooth_tr, smooth_val← loess_smooth(error_tr, error_val)
1: if exists_bounce(smooth_val) then
2: return bounce_p(smooth_val)
3: else
4: if exists_intersect(smooth_tr, smooth_val) then
5: return intersect_p(smooth_tr, smooth_val)
6: else
7: if exists_bounce(smooth_tr) then
8: return bounce_p(smooth_tr)
9: else

10: if converges(smooth_tr, min_threshold) then
11: p← converging_p(smooth_tr, min_threshold)
12: return min(p, minimum_p)
13: else
14: return minimum_p
15: end if
16: end if
17: end if
18: end if

The process of finding p implies running a certain amount of epochs, to find the
trend and detect the bouncing, intersection or convergence point. This process can

5.4. Methodology 47

be substituted by more sophisticated methods that can be done online, although the
presented set of rules can be used once to find p given a certain amount of data, and
keep that p for future models.

Finally, but not less important, a third data-set (“test”) is always kept aside from
“training” and ‘validation”, and used as final evaluation of the model. This step is
important as “training” also “validation” are used in the process of training, refining
and selecting the final model, that needs to be evaluated with new data not used in
any part of the previous process. Then, data is divided in training/validation for
creating the model, and testing for checking experiment results. This split is done
here by 80%− 20% as training/validation vs. testing data-sets. As data is a time
series, the split is done by cutting data instead of random sampling.

5.4.4 Distributed Model Training

The computational resources available in the Edge are not High-Performance ori-
ented as in the Cloud. Machines tend to be low-power processors with reduced
number of cores and threads, aside of limited amount of Memory. While the lim-
ited number of processors are mostly used for receiving and transmitting data from
sensors to Cloud, spare CPUs can perform aggregation and modeling processes, but
never counting with 100% of availability of those CPUs.

For the modeling process we assume single CPU processes, different from mod-
eling on the Cloud where training processes can be spread along large amounts of
CPUs without a problem. Parallelization can occur when more than one CPU is
available, or when neighbor nodes have spare CPUs available, but not necessary
in a complete synchronous environment. Considering the parallel workers as in-
dependent agents, we must use a load distribution method that allow independent
modeling for later joining separate outcomes.

Breaking down computation on modeling can be done by Data Parallelism and
Model Parallelism. To distribute training over workers (local or remote CPUs and
devices) we partition the training-validation data-set, and send it over the available
workers. Each worker creates a model from its subset and validates it, then all sub-
models are reunited in the original Edge node, and merged. Merging sub-models on
neural networks is easier than in other methods, as NNs are composed by a matrix
of weights and a vector of biases, that can be aggregated (e.g. averaged) to obtain
the “average model”. Aggregated models do not need to be exact as a “unified”
model created from a single training process, but usually approximate the results of
the unified one, as ensembles do with other methods (e.g. Random Forests vs Deci-
sion Trees). The resulting aggregated model can either work better for the dilution of
noise among sub-models, or either work worse due to over-fitting of each sub-model
to its sub-set. For this reason and also good practice, the aggregation model is sub-
ject to the testing data-set in the original Edge node, to evaluate the aggregation.
Figure 5.9 shows the process of distributed training, merging and evaluation

Some machine learning and NN frameworks include methods to automatically
split computation on training, like TensorFlow does, by creating a single model in
different stages or data segments distributed among multiple CPUS, useful when
all computing is well defined and close (i.e. same machine/cluster). Here we fo-
cus better on scenarios where CPUs/GPUs are “disaggregated”, meaning that those
resources do not need to be in the same machine, but physically distributed in com-
mon or uncommon architectures or networks (i.e. an IoT network).

48 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

FIGURE 5.9: Schema of Distributed Modeling in Training and Test-
ing Phases. Data is split among N workers, creating N models to be

merged creating the Final model to be evaluated

Distributing data among nodes is trivial as we do not introduce load balancing
for the current case of use. For data distribution among processes (workers), train-
ing/validation data is split in N parts, where N is the number of workers to be de-
ployed. The split of training vs. validation is done following the criteria 80%− 20%
as training vs. validation, for every subset. Each worker splits its data to train and
validate its model. The test set (a 20% of the total data) is kept for the aggregated
model for evaluating the final model.

Finally, there is an optimization step that can be performed on distributing the
learning process, by reducing the number of epochs per worker. With less data to
model and same amount of epochs than the original problem, workers are expected
to overfit, and an option is to reduce the amount of epochs at each worker. We expect
that each worker will require less iterations to model fewer data, reducing training
time while maintaining the validation and test error. Then, when distributing data,
modeling algorithms receive (epochs← 1/N × epochs) for training.

5.5 Evaluation

The presented approach is evaluated with a series of experiments to test the capac-
ity of learning the proposed traffic data, distributing the modeling task among pro-
cesses, automatically tuning part of the training process, and comparing with other
valid techniques.

5.5.1 Evaluation infrastructure

Implementation and evaluation have been performed using Tensorflow and Keras
frameworks for Deep Learning, using R as interface and Python TF + Keras as a
learning engine. The infrastructure to run and measure training times corresponded
to a single thread Xeon processor for comparison experiments among different train-
ing configurations, an NVIDIA Jetson Nano (ARM processor + NVIDIA GPU) for
testing IoT+GPU environments.

The outcomes of the presented problem depend principally on the trade-offs be-
tween the model error, the model training time, the number of epochs for training,
the NN hyper-parameters like the number of hidden units, the level of aggrega-
tion of data in time, and the distribution of load among processes/processors. The
model error depends on the amount of data and number of training epochs; the
training time depends on the number of epochs and the amount of data; the number
of epochs determine the error and training time; the number of hidden units affects
the training time; the level of aggregation determines the amount of data also may

5.5. Evaluation 49

affect the achievable accuracy and error when modeling; and the distribution of load
defines the amount of data per process.

The evaluation will focus on the following experiments:

1. The effects of training the RNN with different number of Hidden Units {2, 4, 8,
16, 32} and different number of epochs, and check the usefulness of determin-
ing a stop-point p dynamically using the presented set of rules versus fixing a
large enough p a-priori.

2. The comparison and trade-off between training epochs vs. hidden units vs.
resulting error vs. level of time aggregation ({5, 10, 15, 20, 30, 60 min.}).

3. The effects of distributing the training process among N different processors
{1, 2, 3}, considering a low range for N matching the dimensions of common
low-power devices.

The goal of studying such trade-off is to find a point where we meet good re-
sults (error), in reasonably few time (training time/epochs), using the appropriate
available resources (parallelism).

5.5.2 Detecting the Required Training Epochs

First of all, we must evaluate the capability of the neural network to learn the target
time-series, concerning Volume of Traffic (Cars) and Average Speed of Traffic (Speed).
The following experiments evaluate in a grid search-like the Mean Absolute Error
(MAE) of the model when trained using a different number of hidden units in the
GRU, and different levels of aggregation in time (from 5 to 60 minutes). As pre-
viously explained, the model is trained using the Training data-set, the Validation
data-set is used for selecting the best p value (stop-point for training) on the dynam-
ic/automatic scenario, and the Test data-set is used to obtain the evaluation MAE on
a range of different number of training epochs plus the selected dynamic stop-point.

Figure 5.10 shows the error distribution for different training epochs over the Test
data-set and the dynamic stop-training point. While for the volume of cars, learning
seems to be easy with a MAE around 1− 1.3 , predicting the speed of cars becomes
more complex with a more volatile error 3− 5.5, (the variability of the traffic speed
on those data-sets is already known from previous works [105]). While most of
training is done on the first epochs of the different tested NN configurations, select-
ing automatically a stop-training point becomes conservative respect the best option,
but performs almost as good as the optimal having into account the automation.

Observing the different results of individual experiments we realized the diffi-
culty to establish a set of rules that match every single training-validation scenario.
Selecting the best number of epochs is still an open problem that can be automated
with more complex mechanisms, but for the current scenario where quick decisions
must be made, the current set of rules becomes an adequate solution. We plan to
focus on the selection of training time trade-off error vs method complexity for future
work following the current contributions.

Finally, this set of experiments show the capability of learning both traffic at-
tributes on different ranges of time aggregation and NN power. The next experiments
will study in detail the effect of different time aggregations and NN configurations.

50 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

10 20 50 100 200 d
Number of Epochs

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
ea

n
Ab

so
lu

te
 E

rro
r

(A) MAE for different epochs and dynamic d
on Volume of Cars

10 20 50 100 200 d
Number of Epochs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

M
ea

n
Ab

so
lu

te
 E

rro
r

(B) MAE for different epochs and dynamic d
on Average Speed

FIGURE 5.10: Comparison of Mean Absolute Error (MAE) for a var-
ious static number of epochs with a dynamic number of epochs for
estimating the number of cars and average speed. Here d represents

a dynamic number of epochs

5.5.3 Model Performance and Tuning

The following experiments focus on the evaluation of the different configurations
for time aggregation and NN hyper-parameters (here hidden units). Previous exper-
iments were done to find a proper value for most of NN hyper-parameters (learning
rate, GRU delay, etc.), leaving as free parameter the number of hidden units as the
one affecting the most, also affecting the computing requirements, crucial for our
low-power scenario. We also include the decisions on Number of epochs for training
process and their effect on the model error.

As previously indicated we consider parallelism as a viable solution to cut train-
ing time, thus we divide experimentation in two approaches: a single-model method
(N1) and a parallel-model method (N2, N3).

Single Model (N1) Evaluation

Single-model (N1) method is evaluated by running the different configurations for
hidden units and time aggregation levels, checking for the Relative Mean Squared
Error (RMSE) in this case. For the selection of the number of epochs, the dynamic

5.5. Evaluation 51

stop-point p is chosen. The baseline system is the single-CPU Xeon machine for
comparison between configurations, to later be compared with the corresponding
low-power devices.

Figure 5.11a shows the RMSE for estimating the number of cars on test data for 2,
4, 8, 16 and 32 hidden units with 5, 10, 15, 20, 30 and 60 minutes aggregation levels.
We observed the aggregation yields stable behavior until 30 minutes aggregations
as the RMSE remain under 2. However, with 60 minutes aggregation level, we ob-
served a significant decrease in accuracy. This is because of a higher level of data
aggregation, the underlying fine-grained details are hidden, and the model cannot
learn from data accurately. We observed the effect of changing the number of hid-
den units does not have any significant effect on accuracy. The average RMSE of
estimating the number of cars remain in between 1 to 2 except aggregation level of
60 minutes.

5 10 15 20 30 60

Aggregation Level (Minutes)

0

1

2

3

RM
SE

 (N
o

of
 C

ar
s)

hidden units
2 4 8 16 32

(A) Error vs. Hidden units vs. Time aggregation for number of
cars estimation

5 10 15 20 30 60

Aggregation Level (Minutes)

0

2

4

6

RM
SE

 (S
pe

ed
)

hidden units
2 4 8 16 32

(B) Error vs. Hidden units vs. Time aggregation for speed esti-
mation

FIGURE 5.11: Effect of using different number of hidden units with
various aggregation levels for number speed of cars estimation

52 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

Figure 5.11b shows the RMSE for estimating the speed of cars on test data for
2, 4, 8, 16 and 32 hidden units with 5, 10, 15, 20, 30 and 60 minutes aggregation
level. We observed the high error for aggregation levels 5 and 60; however, for other
aggregation levels, it remains similar. We do not observe any noticeable accuracy
gain for using a different number of hidden units. The average RMSE of estimating
the speed of cars remain between 4.5 to 5.5 except aggregation level of 5 and 60
minutes.

From this set of experiments, we identify the appropriate aggregation level and
hidden units to be used in the final model, and we compute average RMSE of speed
and number of cars on test data for (2, 4, 8, 16, 32) hidden units with (5, 10, 15, 20, 30, 60)
minutes aggregation levels. Figure 5.12 shows the average RMSE for estimating the
speed and number of cars. Each level of aggregation has its optimal number of hid-
den units, meaning that there is no optimal configuration able to deal with all levels
of aggregation, a desirable state allowing us to decide precision of the time interval.
Making the decision of selecting a time interval where we can trust predictions the
most, we observe that the 2 hidden units with 20 minutes aggregation level yield the
minimum error as compared to the other configurations. Therefore, in the rest of the
experiments, we used 2 hidden units and 20 minutes of aggregation level.

5 10 15 20 30 60

Aggregation Level (Minutes)

0

5

10

15

20

RM
SE

 (A
ve

ra
ge

)

4.2 3.22 3.16 3.04 3.14 3.62

4.15
3.24 3.24 3.2 3.31 4.2

3.98
3.2 3.46 3.47 3.18

5.16

3.96
3.3 3.52 3.19 3.26

4.22
4.0

3.41 3.33 3.16 3.32

4.34

hidden units
2 4 8 16 32

FIGURE 5.12: Comparison of Average RMSE using different number
of hidden units with various aggregation levels

The number of epochs is selected using the dynamic mechanism, and in the case
of 2 hidden units and 20 minute aggregation, this is 94 epochs as a bouncing point in
validation smoothed MAE as shown in Figure 5.13a. Additional experiments were
made manually tuning the epochs from 10 to 200 to validate the automatic decision.
Figure 5.13b zooms into the smoothed fitting regression from Figure 5.13a behav-
ior on validation. Remember that while training goes below the optimal validation
error, we use validation as non-training data to make non-overfitted decisions. As
an example scenario, the experiments on parallelism (N2, N3) in the following set
of experiments will take the parameters on the best case for N1, 2 hidden units, 20
minute aggregation, 94 training epochs.

5.5. Evaluation 53

0 50 100 150
Number of epochs

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Training Validation

(A) Effect of number of epochs on the MAE for training and val-
idation

0 50 100 150
Number of epochs

0.33

0.34

0.35

0.36

0.37

0.38

0.39

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Training Validation

(B) Zoomed in version with respect to y-axis and show the inter-
val 0.33− 0.39. It can be observed that at 94 number of epochs
the validation data bounced back, selecting it as training stop-

point

FIGURE 5.13: Selection of the Training number of Epochs

Comparison of Single Model (N1) with Parallel Models (N2 and N3)

Next experiments focus on the capacity of breaking down the training model be-
tween computing units (CPUs and GPUs). We focus two different scenarios here,
where the processes can work in multiple CPUs in the same place (e.g. Tensor-
flow working with multiple CPUs in the same machine), or a scenario where CPUs
are disaggregated and become independent between each other (e.g. different edge
nodes cooperating). The best configuration from the previous N1 exploration are
used for the parallelism comparison, with the addition that when distributing the
data to be modelled we are applying the 1/N factor to the number of training epochs
as the “proposed epochs”.

54 Chapter 5. SCALABILITY IN ANALYTIC TIER OF MACHINE LEARNING

Table 5.2 shows the comparison of RMSE for number of cars and speed with fixed
and proposed number of epochs for different parallel models (N1, N2 and N3). We
observed that for N2 and N3, using fixed number of epochs results in increase of
RMSE due to over-fitting of the model. We also observed that training time did not
change even we distribute the input data to be processed by more than one model.
This is because of number of epochs are same for each configuration. However, we
observe a significant decrease in training time when we used proposed number of
epochs which are obtained by dividing the optimal fixed epochs for N1 by number of
parallel models. We observed that RMSE is slightly increased for estimating number
of cars and it remains almost stable for estimating speed of cars.

Model
RMSE (Cars) RMSE (Speed) Time (Sec)

Fixed Ep Prop. Ep Fixed Ep Prop. Ep Fixed Ep Prop. Ep
N1 1.40 1.40 4.62 4.62 233.71 233.71
N2 3.25 2.05 7.84 5.45 237.79 118.32
N3 6.25 3.29 6.83 4.64 229.53 84.69

TABLE 5.2: Comparison of error and training time with fixed number
of epochs (FixedEp) and proposed number of epochs (PropEp)

The effect of using parallel models (N1, N2 and N3) on the number of cars and
speed accuracy is shown in Figure 5.14. We observed in Figure 5.14a that accuracy to
estimate the number of cars slightly decrease with the increase of number of parallel
models used to train the input data. This is because of models are trained on less
data and are more specific to particular input set due to which when we combined
them and use the final model to predict the number of cars on test data, we observe
this behaviour. However this does not effect the accuracy of predicting speed of
cars and it somehow remain stable regardless of number of models used to train
the input data set. We also observed that on average we are loosing some accuracy
but we are saving more than 50% of training time when we used parallel models as
shown in Figure 5.14b.

N1 N2 N3
Parallel Models

0

1

2

3

4

5

RM
SE

cars rmse speed rmse

(A) Effect of parallel models on accuracy

N1 N2 N3
Parallel Models

0

50

100

150

200

Tr
ai

ni
ng

 T
im

e
(S

ec
on

ds
)

(B) Effect of parallel models on training time

FIGURE 5.14: Comparison of RMSE vs Training time for different par-
allel models(Nx) with number of epochs divide by x where x=1,2,3

In respect to the speed-up comparison for parallel models (N2, N3) with respect
to N1, Table 5.3 shows the improvement factor for error and time. We observed that

5.6. Final Consideration 55

when we distribute the input data set to be processed by 2 models. there is decrease
of 115.39 seconds in training time with the increase of 0.65 and 0.83 for number of
cars and speed accuracy. Similarly we observed that 149.02 of training time decrease
when use use three parallel models with the increase of 1.89 and 0.02 of RMSE for
number of cars and speed.

Model RMSE (Cars) RMSE (Speed) Time (Sec)
N2 0.65 0.83 -115.39
N3 1.89 0.02 -149.02

TABLE 5.3: Comparison of change factor in error and training time
for N2 and N3 w.r.t N1

Finally, Table 5.4 shows the RMSE and training time for single model (N1) with
the different configurations of number of cores which are used to train the input
data set. We observed that changing number of cores does not effect the training
time however it almost maintain the accuracy. This is because of creating single
model which is used to make the predictions.

Cores RMSE (Cars) RMSE (Speed) Time (Sec)
1 1.40 4.65 233.71
2 1.43 4.65 257.41
3 1.55 4.61 219.76

TABLE 5.4: Comparison of using multiple cores with single model
(N1)

5.6 Final Consideration

Through experimentation we observe that the presented methodology allows to
bring this kind of predictive analytics to the Edge, including complex learning mech-
anisms like GRUs, allowing cost/effective compromises between model accuracy
and training times at low powered or restricted devices, and can be enhanced by
distributing load among extra CPU/GPU resources when available. Additionally,
compared to previous prediction methods, GRUs achieve good accuracy results with
constrained training time in front of the previously used methods, even if the mod-
eling process is split to reduce training time.

57

Chapter 6

SECURITY

The Internet of Things (IoT) is a new computing paradigm that integrates traditional
vertically embedded and horizontally distributed systems into a continuum that ex-
tends from the physical word, near the edge, to the resource-intensive computing,
toward the Cloud. The development of the IoT requires advancements in a variety
of neighboring technologies, including near-field communication (NFC), 5G wire-
less systems, and radio-frequency identification (RFID), which play central roles in
data sensing as well as in near-equipment processing. As the resource capacity of
near-edge IoT devices is naturally insufficient to cope with the influx of sensed data
and its processing requirements, integration of the IoT system with cloud services
allows opportune offloading of excess work. In several domains, the data must be
protected before being offloaded to the cloud. However, for the sake of privacy, the
data must be protected before being offloaded to the cloud, as required for example
in health care, transportation, and security-sensitive applications. Moreover, the re-
source limitations of IoT devices require fitting the encryption algorithms of interest
to the corresponding constraints. Addressing this requirement opens a new front
of challenges in the field of security and privacy. In this work, we propose a novel
lightweight attribute-based encryption scheme based on both dynamic and static at-
tributes suited for IoT systems. In particular, we consider the revocation of a user’s
access permissions, and present solutions to this problem. Our proposal provides
for higher security guarantees than the state-of-the-art protocols thanks to the use of
elliptic curve cryptography (ECC).

6.1 Motivation and Background

From the communications perspective, the Internet of Things (IoT) is a new technol-
ogy in which connectivity is provided by radio waves near the edge, where the sys-
tem borders the physical world, and then through communication networks, such
as the Internet, as we move away from the edge toward the system core.

The Internet of Things is an orchestrated ensemble of networked near-physical
objects, each of which is provided with a variety of sensors and actuators. This en-
semble interacts intensively with the physical environment, capturing data from it
and transferring them to computing devices capable of drawing intelligence from
them and returning consequent actuation commands. The computational intelli-
gence of many such devices resides in the Cloud and is reached via the Internet.

The connectivity among objects is wireless. Each such object is a small physical
unit (e.g., RFID tag), with important limitations in power, memory, security and ac-
cess control capacity. It is this limitation that makes the Cloud an essential compan-
ion to the Internet of Things (IoT) architecture. Figure 6.1 depicts the IoT architec-
ture as divided into three stacked layers [71]. At the bottom we have the perception
layer, which is the core of the IoT. This layer is responsible for identifying objects

58 Chapter 6. SECURITY

and collecting the data sensed from them. Examples of such objects include RFID,
WSN, GPRS. The middle layer is called the network layer, which provides transpar-
ent transmission capabilities to transfer the collected data to specialized application
software through the Internet. At the top we have the service or application layer,
where value-added enterprise applications operate [140].

Internet
Mobile Telecom

Network
Information
Network

Cloud Computing

N
et
w
or
k
La
ye
r

A
pp
lic
at
io
n
La
ye
r

Pe
rc
ep
tio
n
La
ye
r

FIGURE 6.1: A conceptualized view of the IoT architecture.

In these systems, the information is transferred through wireless networks, which
are intrinsically exposed to security threats that include malicious interference with
or unauthorized access to the transmitted data. It therefore follows that opportune
data encryption techniques and appropriate access control policies have to be con-
templated to provide acceptable security for these systems.

Attribute-Based Encryption (ABE) has been widely used to cope with encryp-
tion scheme with access control capability to address these needs, in the two vari-
ants of Key-Policy ABE (KP-ABE) [60] and Ciphertext-Policy ABE (CP-ABE) [18]. In
ABE, every user has the ability to decrypt the encrypted data which has its required
attributes at that time. The schemes that use ABE employ bilinear pairing opera-
tions, which are heavy weight and costly [141]. Hence, the need arises for solutions
that can assure security and confidentiality while being lightweight in terms of re-
source requirements. Some of the proposed schemes in this regard employ the Ellip-
tic Curve Cryptography (ECC) [97, 77], which are more convenient than RSA-based
schemes in implementation and security aspects. However, the schemes currently
proposed to this end only consider static attributes and do not support dynamic
ones, such as location, time, temperature, and noise, in the implementation of access
control policies.

6.2. Preliminaries 59

The exponential growth of the IoT, caused by the opportunity of leveraging
smart devices in factories, plants and generalized enterprise settings, motivates the
quest for novel approaches to provide privacy and security that must be lightweight
enough to suit the resource constraints of edge devises as well as providing access
control to support dynamic attributes (e.g., location, temperature, time) in addition
to static ones (e.g., role, degree, identity).

Attribute based encryption was first introduced by Sahai and Waters in 2005
[116]. In 2006, Goyal et al. [60] and Bethencourt et al. [18] defined the concept
of ABE, which may use a private key or encrypted text solutions. The two options of
the cited model gave rise to KP-ABE and CP-ABE schemes, based on bilinear pair-
ing. In KP-ABE, the access policies are in the private key, and the text is encrypted
with a set of attributes. In CP-ABE the access policies are encrypted in the text, and
the attributes are in the key of each user. All of those works, however, solely focus
on fulfilling access control policies, and ignore the resource constraints of the IoT.

In [141], the authors propose a lightweight scheme that is appropriate for use
in the IoT systems. This scheme is based on elliptic curve cryptography (ECC) that
does not use bilinear pairing, and does not support dynamic attributes. Li et al.
[86] presented a new scheme that includes dynamic attributes in addition to static
ones. The authors show that their proposed scheme is more secure than the previ-
ous schemes that are only based on static attributes. However, this solution is not
lightweight. In [130], the author propose a lightweight KP-ABE scheme called C-
KP-ABE for cloud-based IoT applications. More recently, the authors in [16] propose
a policy update ABE (PU-ABE) scheme that supports access policy update. In these
two works, however, the authors use bilinear pairing which is not lightweight and
cannot be used for IoT systems. This work addresses this limitation by proposing a
lightweight scheme based on dynamic and static attributes that warrants high secu-
rity through the use of elliptic curve cryptography (ECC).

6.2 Preliminaries

This section introduces the basic concepts needed to understand the core contents of
this paper. It does so using the notation summarized in Table 6.1.

TABLE 6.1: The symbols used in this paper.

Notation Description

p, q Large prime numbers
Zq A finite integer field with elements set {0, 1, . . . , q-1}
x ∈R Z∗q x randomly chosen from Z∗q , where Z∗q = Zq-{0}
G A generator of elliptic curve group
HMAC(a, k) A hash function which gets the value a and key k to generate an authentication code for a
h(·) A one-way hash function
ENC(m, k) A symmetric encryption algorithm which encrypts m using k
DEC(C, k) A symmetric decryption algorithm which decrypts the cipher-text C using k
AA An attribute authority center
KDF(·) A key derivation function
MT(a, b) A mapping function, if a-b is less than threshold T then the output is 1; otherwise the output is 0
params Parameters of the public key in ABE
γ The static set of attributes
σ The dynamic set of attributes
Γr The access tree with root r

60 Chapter 6. SECURITY

6.2.1 Elliptic Curve Cryptography

ECC was first introduced by Miller [97] and Koblitz in 1985 [77]. Although RSA [115]
and ElGamal [46] are regarded as the highest-security algorithms, their security is
achieved at the expense of using large keys and heavyweight operations. ECC-based
algorithms achieve the same level of security with a much shorter key, and therefore
attain equivalent reliability with faster processing [61, 62].

In most ECC implementations, encoding is based on Elliptic Curve Discrete Log-
arithm Problem (ECDLP), in which, with points P and Q = k · P, computing k has
exponential complexity and it is a hard problem.

Moreover, ECDH is the Diffie-Hellman key exchange protocol over elliptic curves
(EC), a shared key between two entities with pairs (sA, PA = sA.G) and (sB, PB =
sB.G), which are using same EC with the parameters (q, a, b, G, p) are calculated as
KA,B = sA.PB = sB.PA = sA.sB.G. This shared secret key can be used to transmit
symmetric encryption keys safely.

6.2.2 Elliptic Curve Integrated Encryption Scheme

In this paper, we use the Elliptic Curve Integrated Encryption Scheme (ECIES) to
provide for confidentiality and data integrity. The scheme presented in [57] uses
the (ECDH) and the authentication code, which is based on the MAC function to
authenticate data. The encryption and decryption process of ECIES are presented in
Algorithms 2 and 3 in which KDF is a key derivation function that is responsible to
produce a set of keys from keying material and some optional parameters (see [57]
for more detail definitions).

Algorithm 2 ECIES encryption algorithm.
Input: Message m
Output: R, C, MACC

1: Randomly select integer r from [1,p-1]
2: R← r · G
3: K ← r · PB = (KX , KY)
4: if K = O then go to Step 1
5: else
6: kENC‖kMAC ← KDF(KX)
7: C ← ENC(m, kENC)
8: MACC ← HMAC(C, kMAC)
9: return R‖C‖MACC

10: end if

6.2.3 Secret Sharing Scheme

We use Shamir’s (t, w)-threshold secret sharing scheme proposed in 1979 [121]. Shamir’s
(t, w)-threshold scheme is based on interpolated polynomial and progresses across
the three phases as described below.

• Initialization phase: the special entity as a dealer chooses s ∈ Z∗p as a secret
and chooses w distinct non-zero elements of xi ∈ Zp, 1 ≤ i ≤ w. Then, the
attribute-authority center AA sends these elements to the w entities.

• Share distribution phase: subsequently, the dealer chooses t− 1 elements aj ∈
Zp, 1 ≤ j ≤ t− 1 and computes yi = a(xi) = s + ∑t−1

j=1 ajx
j
i mod p. Eventually,

the dealer gives vi = xi‖yi to the i-th entity.

6.2. Preliminaries 61

Algorithm 3 ECIES decryption algorithm
Input: R, C, MACC
Output: m or ⊥
1: if R is not on the elliptic curve then return ⊥
2: else
3: K ← sB · R = (KX , KY)
4: if K = O then return ⊥
5: else
6: kENC‖kMAC ← KDF(KX)
7: if MACC 6= HMAC(C, kMAC) return ⊥
8: else then
9: m← DEC(C, kENC)

10: return m
11: end if
12: end if
13: end if

• Secret reconstruction phase: at this point, a group of at least t entities can re-
construct s by executing the Lagrange interpolation equation. s′ = f (0) =

∑t
i=1 yi ∏t

k=1,k 6=i
xk

xk−xi
mod p.

6.2.4 Access Tree

Our solution uses an access tree [60] to describe access policies. Let us now briefly
describe how that works.

For an access tree Γ, each non-leaf node is a threshold gate described by its chil-
dren and a threshold value dx. For each node x with numx children, the value of dx
is within the range 0 < dx ≤ numx; in particular, for dx = 1 the threshold gate is an
OR gate, whereas for dx = numx > 0, the threshold gate is an AND gate. Moreover,
each leaf node x of this access tree has a threshold value dx = 1 and is assigned an
attribute. In accordance with [116], the parent of each node x in the access tree is
denoted by the parent(x) function, whereas the attribute of a leaf node e is returned
by the att(e) function. In this tree, each children is assigned a node number between
1 and numx, and the index(x) function returns this value for node x.

Assume that Γr is an access tree with root r and Γx is the sub-tree of Γr with root
x with children x′. The value of the Γr(γ) is recursively calculated for Γr as below.
First, for the leaf node e, Γe(γ) = 1 if and only if att(e) ∈ γ. Then, the value Γx′(γ) is
calculated for each children x′ of x and Γx(γ) = 1 if and only if the minimum number
of dx children nodes returns the value of 1. So, if the attribute set of γ satisfies the Γx
tree, then the value of the Γr(γ) is equal to 1.

6.2.5 Formal Key-policy attribute-based encryption (KP-ABE)

Our solution uses attribute-based encryption with the key policy [60]. The KP-
ABE scheme is composed of four sub-algorithms, namely Setup, Encryption, Key-
Generation, and Decryption. In the following we briefly explain the working of each
such sub-algorithm.

Setup is a random algorithm run by attribute authority AA Center. This algo-
rithm generates public key PK parameters and master key MK. It publishes PK
parameters as an output and holds the value of MK to itself.

Encryption(m, γ, params) is a random algorithm run by a sender. In this algo-
rithm, a public key PK parameters, message m, and attributes set γ are defined as an
inputs and an encrypted message C as output.

62 Chapter 6. SECURITY

Key-Generation (Γ, MK) is a random algorithm run by AA. This algorithm re-
ceives the master key MK, and access structure Γ as an input and returns the decryp-
tion key D as an output.

Decryption (C, D, params) is an algorithm executed by a receiver, in such that it
receives encrypted message C, a public key PK parameters, and a set of attributes γ,
to which a text has been encrypted as an input. It receives the decryption key D that
is encrypted for the access structure Γ and, if the condition Γ(γ) = 1 holds, then it
returns the message m as an output.

6.2.6 Dynamic Attributes

As noted earlier, in this work we consider not only static attributes, but also dynamic
ones, such as location, temperature, time, noise. Using dynamic attributes may re-
quire adding another security layer in the internal architecture of the IoT node.

The benefit of using dynamic attributes is easily explained as follows. Assume,
for the sake of the example, that a message receiver is a mobile device that uses only
static-based policies. In the event that an unauthorized user compromises this entity
(e.g., by stealing the device), the attacker can decrypt the data encrypted with access
policies based on static attributes at any location and time. Conversely, if dynamic
attributes were used in addition to static ones, to decrypt the encrypted data the
unauthorized user would need to access further dynamic information besides the
decryption key, which is a much more difficult attack.

For a mobile set, this functionality could be provided with a "behavior-profiling"
app, as discussed in [87], together with a security and privacy analysis of it.

As shown in Figure 6.2, the app is installed within a secure container using soft-
ware platforms such as KNOX or BES12 [118, 19], and updated periodically after
installation. The values to be assigned to such dynamic attributes are obtained from
the raw sensors available in the smartphone (e.g., GPS, RFID).

GPS

SensorsSecure Container

Mapping Function

Static Attributes

Hash Function

Dynamic Attributes

Behaviorprofiling App

FIGURE 6.2: High-level architecture of the proposed algorithm for
use on smartphones.

The app includes a Mapping function MT(·) that performs a linear comparison.
MT(a, b) takes two inputs: one from a selected sensor in the smart device (i.e, lo-
cation); the other from the data owner embedded securely within any smartphone
app. MT(a, b) compares those inputs, returning the yield of the Boolean expression.
So, if a-b is less than threshold T then the output is 1; otherwise the output is 0. As

6.3. The Proposed Scheme 63

an example, for the location, if the implemented location by the data owner is Italy
and the location collected from GPS is Spain. MT(Italy, Spain) evaluates to 0 and if
the location collected from GPS is Italy the output of the MT(Italy, Italy) evaluates
to 1.

6.3 The Proposed Scheme

This section describes our proposed solution, which employs lightweight crypto-
graphic scheme based on dynamic attributes for IoT systems. As shown in Fig-
ure 6.3, our solution is comprised of the following components:

Attribute Authority (AA)

Encrypted data

Cloud

Sender (Data owner) Receiver (User)

FIGURE 6.3: The main components of the proposed scheme.

Attribute Authorities (AA): this is a trusted authority that has the task of estab-
lishing the Setup and Encryption phases in a secure environment. In this scheme,
a user needs to prove her attributes to AA to receive the decryption key for each
attribute from the corresponding authority.

Sender (data owner): this is assumed to be a smart device such as a smartphone.
It encrypts outgoing data using the access policies based on static attributes obtained
from AA together with its dynamic attributes. In that manner, the sender can dis-
patch encrypted data to the receiver, using appropriate Cloud services.

Receiver (user): this is assumed to be a smart device, too, which accesses en-
crypted data incoming through the Internet, and uses the decryption key obtained
from AA together with its own dynamic attributes for decryption.

The proposed scheme is based on the ECC, whose secure parameters are (q, a, b, G, p).
In this scheme, the secret key for the static attributes set γ, is obtained by Shamir’s

secret sharing scheme presented in Section 6.2, in which the Lagrange coefficient ∆i,γ

is computed by executing equation ∆i,γ = f (xi) = ∏j∈γ,j 6=i
xj

xi−xj
. where, γ is the at-

tributes set and i ∈ Z∗q .
The solution uses the four algorithms described in the following.
Setup: assume that the space of static attributes is V = {1, 2, . . ., n}; AA selects

one si ∈R Z∗q for each static attribute i ∈ V, and calculates the corresponding public
key equal to Pi = si · G. Then, uniformly, AA selects s ∈R Z∗q as MK and chooses
PK = s ·G corresponding to it. Therefore, the public parameters are set as params =
{PK, P1, . . ., Pn}.

Encryption (m, ω, params): this step uses an algorithm that differs from the con-
ventional algorithms in this field. It derives from the ECIES algorithm (Algorithm 2)
described in Section 6.2, and uses dynamic attributes in addition to static ones. We

64 Chapter 6. SECURITY

also use the message m as an input for HMAC: see Algorithm 4 for a specification
of it.

Algorithm 4 Proposed encryption algorithm.
Input: m, ω, Params
Output: CM

1: Randomly generates k ∈ Z∗q
2: C′ ← k · PK = (KX , KY) 6= O
3: Ci ← k · Pi, i ∈ γ
4: H ← h(MT(σ1, σ1)‖MT(σ2, σ2)‖ . . . ‖MT(σn, σn))
5: C ← ENC(m, KX‖H)
6: MACM ← HMAC(m‖H, KY)

7: return CM = γ‖C‖MACM‖C′‖Ci, i ∈ γ

The algorithm encrypts a message m using attribute sets ω = γ ∪ σ in which
the static set of attributes γ = (γ1, γ2, . . ., γn) and the dynamic set of attributes
σ = (σ1, σ2, . . ., σn). Algorithm 4 runs as follows:

• Initially, a sender randomly selects a value k from Z∗q and computes C′ = k ·
PK = (KX, KY) 6= O.

• Subsequently, the values of Ci, i ∈ γ are computed as Ci = k · Pi.

• Then, the sender first computes the value H = h(MT(σ1, σ1)‖MT(σ2, σ2)‖ . . . ‖MT(σn, σn)),
and then uses KX‖H and Ky as an encryption key and HMAC-key respectively,
to construct the encrypted text CM as presented at Lines 5∼7 of Algorithm 4.

Key-Generation (Γ, MK): in this algorithm, the decryption key generated by
AA, the master key and a series of static attributes γ are received in input, and on the
condition that Γ(γ) = 1, a decryption key is returned under the static attributes set γ

as follows. At first, the polynomial qnode(x) = qnode(0) + ∑dnode−1
j=1 ajx

j
i of degree dnode-

1 for each node node is determined from the access tree Γ from top to bottom, where
dnode is the threshold value of this node. Therefore, in this algorithm, for a root r of
the access tree Γ, a value qr(0) = s, and for other dr-1 points aj of polynomial qr(x),
random variables are considered, where dr is the threshold value of root r. Similarly,
for each node v (including the leaf node e), the value qv,e(0) = qparent(v,e)(index(v, e))
and the other dv,e-1 points aj of the polynomial qv,e(x) are considered to be random.
After determining the polynomial of a leaf node e, the decryption key for leaf node
e is obtained from De =

qv,e(0)
si

, where i = attr(e) and si ∈R Z∗q . All the polynomials
and the secret keys corresponding to them are generated for all leaf nodes in this
manner, and their collection is obtained as the decryption key D = (De =

qv,e(0)
si

, i =
attr(e) and i ∈ γ).

Decryption (CM, D, Params): this algorithm runs at the receiver side (see Algo-
rithm 5).

An algorithm DecryptNode(CM, D, e) for the leaf node e is done by the access
tree as follows:

If i = attr(e) ∈ γ, then DecryptNode(CM, D, e) = De · Ci = (qv,e(0)
si

) · k · Pi =

(qv,e(0)
si

) · k · si · G = qv,e(0) · k · G. Otherwise DecryptNode(CM, D, e) =⊥. For the
non-leaf node u if i = attr(u) /∈ γ, we have DecryptNode(CM, D, u) =⊥. Otherwise,
for all v children nodes of non-leaf node u, the recursive algorithm DecryptNode(CM, D, u)
is expressed as follows:

6.4. Security and Performance Analysis 65

Algorithm 5 Proposed decryption algorithm.
Input: CM, Dv(i), Params
Output: m or ⊥
1: if i = attr(v) /∈ γ then ⊥
2: else
3: Run DecryptNode(CM, D, r) and obtain (K′X , K′Y)
4: H′ ← h(MT(σ1, σ′1)‖MT(σ2, σ′2)‖ . . . ‖MT(σn, σ′n))
5: m′ ← DEC(C, K′X‖H′)
6: if HMAC(m′‖H′, K′Y) 6= MACM then ⊥
7: else
8: m← m′

9: return m
10: end if
11: end if

Suppose γu is an arbitrary attribute set with size du of non-leaf node u. For
DecryptNode(CM, D, v) 6=⊥, if there is no such set γu, then DecryptNode(CM, D, u) =⊥;
Otherwise, we have:

DecryptNode(CM, D, u) =
∑v∈γu

∆i,γ′u(0) · DecryptNode(CM, D, v) =
∑v∈γu

∆i,γ′u(0) · qv(0) · k · G =

∑v∈γu
∆i,γ′u(0) · qparent(v)(index(v)) · k · G =

∑v∈γu
∆i,γ′u(0) · qv(i) · k · G = qv(0) · k · G

where γu′ = {index(v), v ∈ γu} and i = index(v).
Given the recursive function DecryptNode(CM, D, u) described above, for a root

r from the access tree, we have: DecryptNode(CM, D, r) = qr(0) · k · G = s · k · G =
k · PK = (K′X, K′Y).

In this step, using the values of the dynamic attributes collected by selected sen-
sors through the receiver’s mobile app, the value H′ is calculated as H′ = h(MT(σ1, σ′1)‖MT(σ2, σ′2)‖ . . . ‖MT(σn, σ′n)).
Using the values of H′ and K′X computed in the previous steps, the value of m′ com-
puted as m′ = DEC(C, K′X‖H′) and if the equality HMAC(m′‖H′, K′Y) = MACm
holds, then the integrity of the data is accepted and it can be concluded that m′ = m.

6.3.1 Revocation of Access Permission

As stipulated in Section 6.2.6, dynamic attributes are installed by the employer us-
ing software platforms such as KNOX or BES12 [118, 19] and updated periodically.
Those apps have been shown able to detect unauthorized users [44, 88] who attempt
deception by presenting false dynamic attributes. Concerning the above functional-
ity, whenever it is necessary to revoke a particular user’s access to a series of infor-
mation, it is sufficient for the software to be updated and loaded into a new mapping
function.

6.4 Security and Performance Analysis

We now analyze the security and efficiency of the proposed scheme.

6.4.1 Preserving data confidentiality

One of the critical issues in the IoT is to maintain the confidentiality of data and ac-
cess control in a manner consistent with AA’s defined access policies. These systems
require users not to have unauthorized access to data. Our proposed scheme, which

66 Chapter 6. SECURITY

uses secure cryptographic algorithms and access policies based on the access tree as
well as secure apps, can be seen to maintain complete confidentiality of the data.

6.4.2 Preserving data integrity

In the proposed scheme, the HMAC function is used to prevent the data from being
altered by unauthorized users. This provision in turn provides for the authenticity
of the data.

6.4.3 Possibility to change access policies

In the proposed scheme, applying dynamic attributes along with static ones, to-
gether with the use of secure software apps such as KNOX and BES12, provides
the ability to change the access policy of a particular user at any time. All that it
takes to that end is a software update, which causes the loading of a new mapping
function.

6.4.4 Efficiency and lightweightness

The scheme proposed in this work uses elliptic curve cryptography that is known
to be more lightweight and cheap than state-of-the-art alternatives [87, 60, 7], whose
authors use bilinear pairing techniques.

Table 6.2 compares the communication cost of our proposed scheme against
other KP-ABE schemes. In this table, the term l is equal to 160 bits. Thus, in 160-
bit ECC, the size of a point is 2l and the size of private and public keys is l and 2l,
respectively.

Similarly, for 1024-bit RSA, which is supposed to have the same security level
as 160 bit, the size of public and private keys are both 6.4l and the size of output
element is 12.8l. The lengths of MAC is also assumed l bits.

Note that in our comparison we use lγ to denote the size (cardinality) of the static
attribute set. So, the length of the encrypted message CM in our proposed protocol
is computed as |CM| = |γ|+ |C|+ |MACM|+ |C′|+ |Ci| = lγ + 4l.

TABLE 6.2: Communication cost comparison between our scheme
and KP-ABE.

Scheme CM size (bit) Attributes

Ours lγ + 4l Static + Dynamic
[87] lγ + (3× 6.4)l Static + Dynamic
[60] lγ + (2× 6.4)l Static
[65] lγ + (3× 6.4)l Static
[141] lγ + 4l Static

The results presented in Table 6.2 show that our scheme is more lightweight than
other KP-ABE schemes in terms of communication overhead. The results reported
in Figure 6.4 support this claim, assuming l = lγ = 160 bits, as a typifying exam-
ple. Although the CM size of our proposed solution is the same as in the scheme
proposed in [141], our solution is superior because it supports dynamic attributes.

Interestingly, for our scheme and [87], decreasing the number of static attributes
and increasing the number of dynamic ones, reduces significantly the bit-length of
lγ, as shown in Figure 6.5. In this figure, the total number of attributes are constant
and is equal to nlσ + (m-n)lγ, m > n. In which n, m, and lσ are number of the
dynamic attributes, number of the static attributes and the size (cardinality) of the

6.4. Security and Performance Analysis 67

2 4 6 8

1,000

2,000

3,000

4,000

Number of static attributes

C
M

si
ze

(b
it

)
Ours
[141]
[60]
[87]
[65]

FIGURE 6.4: Transmission cost of ABE schemes

dynamic attribute set, respectively. For example, if l = lγ = 160 bits, for the scheme
which should consider ten attributes (i.e., n + m = 10), if we reduce the number of
the static attributes (m) and evenly increase the number of dynamic attributes (n),
we can keep number of attributes but make the scheme more efficient than the other
schemes which do not support the dynamic attributes.

1 2 3 4 5 6 7 8 9

1,000

2,000

3,000

4,000

Number of dynamic attributes

C
M

si
ze

(b
it

)

Ours
[141]
[60]
[87]
[65]

FIGURE 6.5: The communication cost can be reduced by considering
the dynamic attributes

Furthermore, applying dynamic attributes in addition to static attributes, com-
putational time can be significantly reduced. For example, assuming that ten at-
tributes are required to be considered, If all these attributes are static, the time to
use these attributes is far more than when five static attributes and five dynamic
attributes are required to be considered. Due to the fact that, the use of dynamic
attributes requires only a new map function, it can significantly reduce the compu-
tational time.

68 Chapter 6. SECURITY

6.5 Conclusions and Future Work

Owing to its intrinsic flexibility and its ability to draw value added from its im-
mersion in the physical world, the Internet of Things paradigm is finding rich and
attractive opportunities of use in various application scenarios such as smart cities,
health care, and transportation. However, the limited resource capacity of IoT de-
vices present serious challenges to those who want to achieve adequate levels of
security in their system.

In this paper, we have proposed a novel lightweight scheme based on dynamic
attributes in combination with the elliptic curve encryption technique to provide
high security at low resource cost, fit for use in IoT environments.

In addition to incorporating dynamic attributes to overcome attacks from com-
promised entity, our proposed scheme uses a smaller key size to provide the same
level of security as the RSA and other modular exponentiation-based techniques.
Furthermore, applying point scalar multiplication operation makes our scheme faster
than the conventional schemes, which use modular exponentiation and bilinear map-
ping operations.

The Fog has recently emerged as a new computational layer where data collec-
tion and processing can be performed closer to the edge, where the physical world
begins, sensed and actuated by such "things" as sensors, smart devices, hence with
assurance of lesser latency than with full offloading to the Cloud. Adding a Fog
layer between the Edge and the Cloud facilitates the apportionment of the compu-
tational load and improves efficiency of future IoT system. An obvious extension to
our work explores assuming and leveraging the presence of a Fog layer, while also
validates our proposed scheme using real case scenarios.

69

Chapter 7

CONCLUSION AND FUTURE
WORKS

7.1 Conclusion

In this thesis, we presented three complementary steps toward the creation of prac-
tical systems to achieve higher resource efficiency for service in Clod environment.
First, we drew a trajectory that, starting from a better understanding of the essen-
tial service design features, related them to the microservice architectural style and
its implications on elastic scalability, most notably dynamic orchestration, and con-
cludes reviewing how well state-of-the-art technology fares for their implementa-
tion. Secondly, we use these principles to uncover the potential to improve the
resource-efficiency of dynamic orchestration of service in technology level. More-
over, then, we propose an intelligent system making informed decisions on auto-
scaling in dynamic orchestration platform. We further exploit the resource-efficiency
potential via distributed machine learning in Fog computing paradigm. In this
sense, we present a distributed machine learning approach for road traffic mod-
elling and prediction, designed for a city-wide scenario based on the Fog comput-
ing paradigm. We display architecture for large scale Floating Car Data (FCD), data
modelling on the Edge, leveraging parallelism on deep learning algorithms in a city-
wide scenario towards prediction. Finally, we explore another major challenge that
typically discourages users to use a cloud-like environment is the security concerns.
As the resource capacity of near-edge IoT devices is naturally insufficient to cope
with the influx of sensed data and its processing requirements, integration of the
IoT system with cloud services allows opportune offloading of excess work. In sev-
eral domains, the data must be protected before being offloaded to the cloud. How-
ever, for the sake of privacy, the data must be protected before being offloaded to
the cloud. In this work, we also describe a security challenge concerning resource
limitations of IoT devices and presents light-weight security schema for IoT ecosys-
tem. We have proven that all the presented techniques achieve their performance
objectives.

70 Chapter 7. CONCLUSION AND FUTURE WORKS

7.2 Future Works

We believe that the contributions described above open many interesting paths for
future research. Therefore, in this section, we present some promising future direc-
tions for the work done in this thesis.

• SECURITY IN CLOUD: Future research is needed to address these concerns to
enable a more secure cloud environment. Nowadays, integration (combina-
tion) of the Internet of Things (IoT) and Cloud computing have been widely
used in several domains of application. However, the limited resource ca-
pacity in the Internet of Things (IoT) has arisen various challenges in the au-
thentication technologies that have been investigated for secure data retrieval
and robust access control on large-scale IoT networks. Within this context,
recently, a protocol has been proposed for these systems that claims to re-
sists the common security threats on large-scale IoT networks. In this work,
we analyze the security of the mentioned protocol. We prove how the men-
tioned proposed protocol is not immune to users, cloud server impersonation,
and man-in-the-middle attacks. To overcome these shortcomings, firstly, we
have advanced(enhanced, improved) the Zhou et al.’s protocol and infor-
mally show (demonstrate, explain, describe) that our advanced(enhanced, im-
proved) scheme is secure against the most common attacks in these systems.
Then, we verify formally our proposed protocol using the Proverif language.
Consequently, we prove that our scheme provides better efficiency and secu-
rity in comparison to the Zhou et al.’s scheme, applicable to large-scale IoT
networks.

c5. Seyed Farhad Aghili, Kiyana Bahadori, Mohammad Shojafar, Hamid Mala,
Tullio Vardanega, “ Breaking and fixing an IoT-based authentication and key
agreement scheme in Cloud computing”. Transaction Conference on Com-
puter Communications and Networks (under-submission)

• In future work, we plan to extend the line of work as resource efficiency in
service design looking into combined auto-scaling policies that operate at both
container and node level, integrating business-level and service-level objec-
tives (e.g., performance, cost, etc.) by converting them to utility functions that
can be fed as additional input parameters such as online learning method into
our models, so as to facilitate dynamic rule generation for a container orches-
tration platform for optimal resource provisioning in the Cloud.

71

Bibliography

[1] Martin L. Abbott and Michael T. Fisher. The Art of Scalability: Scalable Web Ar-
chitecture, Processes, and Organizations for the Modern Enterprise. 1st. Addison-
Wesley Professional, 2009. ISBN: 0137030428, 9780137030422.

[2] Martin L Abbott and Michael T Fisher. The art of scalability: Scalable web archi-
tecture, processes, and organizations for the modern enterprise. Pearson Education,
2009.

[3] Amazon. Amazon Web Service. https://aws.amazon.com/. 2017.

[4] Dario Amodei et al. “End to end speech recognition in English and Man-
darin”. In: (2016).

[5] Vasilios Andrikopoulos et al. “How to adapt applications for the cloud envi-
ronment”. In: Computing 95.6 (2013), pp. 493–535.

[6] Michael Armbrust et al. “A view of cloud computing”. In: Communications of
the ACM 53.4 (2010), pp. 50–58.

[7] Nuttapong Attrapadung, Benoît Libert, and Elie De Panafieu. “Expressive
key-policy attribute-based encryption with constant-size ciphertexts”. In: In-
ternational Workshop on Public Key Cryptography. Springer. 2011, pp. 90–108.

[8] The Amazon Authors. Automated container deployment, scaling, and manage-
ment. https://aws.amazon.com/ecs/. 2018.

[9] The Kubernetes Authors. Automated container deployment, scaling, and manage-
ment. https://kubernetes.io/. 2018.

[10] The OpenShift Authors. Automated container deployment, scaling, and manage-
ment. https://www.openshift.com/. 2018.

[11] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices
architecture enables DevOps: migration to a cloud-native architecture”. In:
IEEE Software 33.3 (2016), pp. 42–52.

[12] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Migrating to
cloud-native architectures using microservices: an experience report”. In: Eu-
ropean Conference on Service-Oriented and Cloud Computing. Springer. 2015, pp. 201–
215.

[13] Soon K Bang et al. “A grounded theory analysis of modern web applications:
knowledge, skills, and abilities for DevOps”. In: Proceedings of the 2nd annual
conference on Research in information technology. ACM. 2013, pp. 61–62.

[14] Maximilien de Bayser, Leonardo G Azevedo, and Renato Cerqueira. “Re-
searchOps: The case for DevOps in scientific applications”. In: Integrated Net-
work Management (IM), 2015 IFIP/IEEE International Symposium on. IEEE. 2015,
pp. 1398–1404.

[15] D. Beaumont. How to explain vertical and horizontal scaling in the cloud. https:
//www.ibm.com/blogs/cloud-computing/2014/04/explain-
vertical-horizontal-scaling-cloud/. 2017.

https://aws.amazon.com/
https://aws.amazon.com/ecs/
https://kubernetes.io/
https://www.openshift.com/
https://www.ibm.com/blogs/cloud-computing/2014/04/explain-vertical-horizontal-scaling-cloud/
https://www.ibm.com/blogs/cloud-computing/2014/04/explain-vertical-horizontal-scaling-cloud/
https://www.ibm.com/blogs/cloud-computing/2014/04/explain-vertical-horizontal-scaling-cloud/

72 BIBLIOGRAPHY

[16] Sana Belguith, Nesrine Kaaniche, and Giovanni Russello. “PU-ABE: Lightweight
Attribute-Based Encryption Supporting Access Policy Update for Cloud As-
sisted IoT”. In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE. 2018, pp. 924–927.

[17] Tal Ben-Nun and Torsten Hoefler. “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis”. In: arXiv preprint arXiv:1802.09941
(2018).

[18] John Bethencourt, Amit Sahai, and Brent Waters. “Ciphertext-policy attribute-
based encryption”. In: Security and Privacy, 2007. SP’07. IEEE Symposium on.
IEEE. 2007, pp. 321–334.

[19] BlackBerry. BES12. https : / / global . blackberry . com / en / bes -
support. 2005.

[20] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In:
Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM. 2012, pp. 13–16.

[21] Eric A. Brewer. “Kubernetes and the Path to Cloud Native”. In: Proceedings
of the Sixth ACM Symposium on Cloud Computing. SoCC ’15. Kohala Coast,
Hawaii: ACM, 2015, pp. 167–167. ISBN: 978-1-4503-3651-2. DOI: 10.1145/
2806777.2809955. URL: http://doi.acm.org/10.1145/2806777.
2809955.

[22] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility”. In: Future Gen-
eration computer systems 25.6 (2009), pp. 599–616.

[23] Rodrigo N Calheiros et al. “Workload prediction using ARIMA model and its
impact on cloud applications’ QoS”. In: IEEE Transactions on Cloud Computing
3.4 (2015), pp. 449–458.

[24] Miguel Castro, Antonio J Jara, and Antonio FG Skarmeta. “Smart lighting
solutions for smart cities”. In: 2013 27th International Conference on Advanced
Information Networking and Applications Workshops. IEEE. 2013, pp. 1374–1379.

[25] David Chapman. Introduction to DevOps on AWS. https://aws.amazon.
com/whitepapers/introduction-to-devops-on-aws/. 2014.

[26] Erik Christensen et al. Web Service Description Language (WSDL) 1.1 W3C Note.
Tech. rep. World Wide Web Consortium (W3C), 2001.

[27] Pablo Cibraro et al. Professional WCF 4: Windows communication foundation
with. NET 4. John Wiley & Sons, 2010.

[28] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep neu-
ral networks for image classification”. In: arXiv preprint arXiv:1202.2745 (2012).

[29] Adam Coates, Andrew Ng, and Honglak Lee. “An analysis of single-layer
networks in unsupervised feature learning”. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. 2011, pp. 215–223.

[30] Adam Coates et al. “Deep learning with COTS HPC systems”. In: Interna-
tional conference on machine learning. 2013, pp. 1337–1345.

[31] Frank Cohen. “Understanding Web service interoperability”. In: IBM Techni-
cal Library (2002).

[32] George E Dahl et al. “Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition”. In: IEEE Transactions on audio, speech,
and language processing 20.1 (2012), pp. 30–42.

https://global.blackberry.com/en/bes-support
https://global.blackberry.com/en/bes-support
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
http://doi.acm.org/10.1145/2806777.2809955
http://doi.acm.org/10.1145/2806777.2809955
https://aws.amazon.com/whitepapers/introduction-to-devops-on-aws/
https://aws.amazon.com/whitepapers/introduction-to-devops-on-aws/

BIBLIOGRAPHY 73

[33] Hugo Haas Francis McCabe Eric Newcomer Iona Michael Champion Chris
Ferris David Orchard David Booth Hewlett-Packard. “Web Services Archi-
tecture, W3C Working Group Note”. In: (11 February2004). URL: https:
//www.w3.org/TR/ws-arch/.

[34] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. “Elastic vm for
cloud resources provisioning optimization”. In: Advances in Computing and
Communications (2011), pp. 431–445.

[35] Jeffrey Dean et al. “Large scale distributed deep networks”. In: Advances in
neural information processing systems. 2012, pp. 1223–1231.

[36] Patrick Debois. “Agile infrastructure and operations: how infra-gile are you?”
In: Agile 2008 Conference. IEEE. 2008, pp. 202–207.

[37] Li Deng, Dong Yu, and John Platt. “Scalable stacking and learning for build-
ing deep architectures”. In: 2012 IEEE International conference on Acoustics,
speech and signal processing (ICASSP). IEEE. 2012, pp. 2133–2136.

[38] Swarnava Dey et al. “Smart city surveillance: Leveraging benefits of cloud
data stores”. In: 37th Annual IEEE Conference on Local Computer Networks-
Workshops. IEEE. 2012, pp. 868–876.

[39] Tharam Dillon, Chen Wu, and Elizabeth Chang. “Cloud computing: issues
and challenges”. In: Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on. Ieee. 2010, pp. 27–33.

[40] Torgeir Dingsøyr et al. A decade of agile methodologies: Towards explaining agile
software development. 2012.

[41] Nicola Dragoni et al. “Microservices: How to make your application scale”.
In: arXiv preprint arXiv:1702.07149 (2017).

[42] Nicola Dragoni et al. “Microservices: yesterday, today, and tomorrow”. In:
Present and Ulterior Software Engineering. Springer, 2017, pp. 195–216.

[43] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. “Virtualization vs con-
tainerization to support paas”. In: Cloud Engineering (IC2E), 2014 IEEE Inter-
national Conference on. IEEE. 2014, pp. 610–614.

[44] Nathan Eagle and Alex Pentland. “Reality mining: sensing complex social
systems”. In: Personal and ubiquitous computing 10.4 (2006), pp. 255–268.

[45] Christof Ebert et al. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94–100.

[46] Taher ElGamal. “A public key cryptosystem and a signature scheme based
on discrete logarithms”. In: IEEE transactions on information theory 31.4 (1985),
pp. 469–472.

[47] Embedded Systems for Next-Generation Autonomous Machines. 2019. URL: https:
//www.nvidia.com/en- us/autonomous- machines/embedded-
systems/.

[48] Thomas Erl. Soa: principles of service design. Prentice Hall Press, 2007.

[49] Christoph Fehling et al. Cloud computing patterns: fundamentals to design, build,
and manage cloud applications. Springer Science & Business Media, 2014.

[50] Wes Felter et al. “An updated performance comparison of virtual machines
and linux containers”. In: Performance Analysis of Systems and Software (IS-
PASS), 2015 IEEE International Symposium On. IEEE. 2015, pp. 171–172.

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

74 BIBLIOGRAPHY

[51] Brian Fitzgerald and Klaas-Jan Stol. “Continuous software engineering and
beyond: trends and challenges”. In: Proceedings of the 1st International Work-
shop on Rapid Continuous Software Engineering. ACM. 2014, pp. 1–9.

[52] Nicole Forsgren, Jez Humble, and Gene Kim. “Accelerate: The Science of
Lean Software and DevOps Building and Scaling High Performing Technol-
ogy Organizations”. In: (2018).

[53] Martin Fowler. Continuous Delivery. https://martinfowler.com/books/
continuousDelivery.html. 2006.

[54] Martin Fowler. Continuous Integration. https://www.martinfowler.
com/articles/continuousIntegration.html. 2006.

[55] Martin Fowler. Microservices, a definition of this new architectural term. https:
//www.terraform.io/. 2017.

[56] Armando Fox et al. “Above the clouds: A berkeley view of cloud computing”.
In: Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS 28.13 (2009), p. 2009.

[57] Víctor Gayoso Martínez, Luis Hernández Encinas, and Carmen Sánchez Ávila.
“A survey of the elliptic curve integrated encryption scheme”. In: (2010).

[58] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “Press: Predictive elastic re-
source scaling for cloud systems”. In: Network and Service Management (CNSM),
2010 International Conference on. Ieee. 2010, pp. 9–16.

[59] Priya Goyal et al. “Accurate, large minibatch sgd: Training imagenet in 1
hour”. In: arXiv preprint arXiv:1706.02677 (2017).

[60] Vipul Goyal et al. “Attribute-based encryption for fine-grained access control
of encrypted data”. In: Proceedings of the 13th ACM conference on Computer and
communications security. Acm. 2006, pp. 89–98.

[61] Nils Gura et al. “Comparing elliptic curve cryptography and RSA on 8-bit
CPUs”. In: International workshop on cryptographic hardware and embedded sys-
tems. Springer. 2004, pp. 119–132.

[62] Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. “Software
implementation of elliptic curve cryptography over binary fields”. In: Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer.
2000, pp. 1–24.

[63] Nikolas Roman Herbst, Samuel Kounev, and Ralf H Reussner. “Elasticity in
Cloud Computing: What It Is, and What It Is Not.” In: ICAC. Vol. 13. 2013,
pp. 23–27.

[64] Vanessa Ho. Bringing DevOps to the masses with Microsoft’s Donovan Brown.
https://blogs.microsoft.com/firehose/2016/11/29/bringing-
devops-to-the-masses-with-microsofts-donovan-brown/. 2016.

[65] Susan Hohenberger and Brent Waters. “Attribute-based encryption with fast
decryption”. In: Public-Key Cryptography–PKC 2013. Springer, 2013, pp. 162–
179.

[66] Kirak Hong et al. “Opportunistic spatio-temporal event processing for mo-
bile situation awareness”. In: Proceedings of the 7th ACM international confer-
ence on Distributed event-based systems. ACM. 2013, pp. 195–206.

[67] Jez Humble and Joanne Molesky. “Why enterprises must adopt devops to
enable continuous delivery”. In: Cutter IT Journal 24.8 (2011), p. 6.

https://martinfowler.com/books/continuousDelivery.html
https://martinfowler.com/books/continuousDelivery.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.terraform.io/
https://www.terraform.io/
https://blogs.microsoft.com/firehose/2016/11/29/bringing-devops-to-the-masses-with-microsofts-donovan-brown/
https://blogs.microsoft.com/firehose/2016/11/29/bringing-devops-to-the-masses-with-microsofts-donovan-brown/

BIBLIOGRAPHY 75

[68] Steven Ihde. InfoQ | From a Monolith to Microservices + REST: the Evolution of
LinkedIn’s Service Architecture. [Online]. http://www.infoq.com/presentations/
linkedin-microservices-urn/. 2015.

[69] Docker Inc. Docker Datacenter Enables DevOps. https://www.docker.
com/use-cases/devops. 2018.

[70] Jenkins. Jenkins. https://jenkins.io/. 2017.

[71] Xiaolin Jia et al. “RFID technology and its applications in Internet of Things
(IoT)”. In: Consumer Electronics, Communications and Networks (CECNet), 2012
2nd International Conference on. IEEE. 2012, pp. 1282–1285.

[72] Staci Kamer. GIGAOM, The Biggest Thing Amazon Got Right: The Platform. [On-
line]. https://gigaom.com/2011/10/12/419-the-biggest-thing-
amazon-got-right-the-platform/. 2011.

[73] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”.
In: Computer 1 (2003), pp. 41–50.

[74] Ali Khajeh-Hosseini et al. “The cloud adoption toolkit: supporting cloud adop-
tion decisions in the enterprise”. In: Software: Practice and Experience 42.4 (2012),
pp. 447–465.

[75] Asif Khan. “Key Characteristics of a Container Orchestration Platform to En-
able a Modern Application”. In: IEEE Cloud Computing 5 (2017), pp. 42–48.

[76] Gene Kim et al. The DevOps Handbook: How to Create World-Class Agility, Reli-
ability, and Security in Technology Organizations. IT Revolution, 2016.

[77] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209.

[78] Nane Kratzke and René Peinl. “ClouNS - A Cloud-native Application Refer-
ence Model for Enterprise Architects”. In: CoRR abs/1709.04883 (2017). arXiv:
1709.04883. URL: http://arxiv.org/abs/1709.04883.

[79] Nane Kratzke and René Peinl. “Clouns-a cloud-native application reference
model for enterprise architects”. In: Enterprise Distributed Object Computing
Workshop (EDOCW), 2016 IEEE 20th International. IEEE. 2016, pp. 1–10.

[80] Nane Kratzke and Peter-Christian Quint. “Understanding cloud-native ap-
plications after 10 years of cloud computing-a systematic mapping study”.
In: Journal of Systems and Software 126 (2017), pp. 1–16.

[81] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems. 2012, pp. 1097–1105.

[82] Kuberenetes. Container Orchestration. https://kubernetes.io/.

[83] John Langford, Alexander Smola, and Martin Zinkevich. “Slow learners are
fast”. In: arXiv preprint arXiv:0911.0491 (2009).

[84] Quoc V Le et al. “Building high-level features using large scale unsupervised
learning”. In: arXiv preprint arXiv:1112.6209 (2011).

[85] Honglak Lee et al. “Unsupervised feature learning for audio classification
using convolutional deep belief networks”. In: Advances in neural information
processing systems. 2009, pp. 1096–1104.

[86] Fei Li et al. “Robust access control framework for mobile cloud computing
network”. In: Computer Communications 68 (2015), pp. 61–72.

http://www.infoq.com/presentations/linkedin-microservices-urn/
http://www.infoq.com/presentations/linkedin-microservices-urn/
https://www.docker.com/use-cases/devops
https://www.docker.com/use-cases/devops
https://jenkins.io/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
http://arxiv.org/abs/1709.04883
http://arxiv.org/abs/1709.04883
https://kubernetes.io/

76 BIBLIOGRAPHY

[87] Fei Li et al. “Robust access control framework for mobile cloud computing
network”. In: Computer Communications 68 (2015), pp. 61–72.

[88] Fudong Li et al. “Behaviour profiling on mobile devices”. In: Emerging Secu-
rity Technologies (EST), 2010 International Conference on. IEEE. 2010, pp. 77–82.

[89] C Matthew MacKenzie et al. “Reference model for service oriented architec-
ture 1.0”. In: OASIS standard 12 (2006), p. 18.

[90] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces. " O’Reilly Media, Inc.", 2011.

[91] Manuel Pais Matthew Skelton. DevOps Topologies. https://web.devopstopologies.
com/#anti-types.

[92] Tony Mauro. Nginx | Adopting Microservices at Netflix: Lessons for Architectural
Design.[Online]. https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices/. 2015.

[93] Dimitri Mazmanov et al. “Handling Performance Sensitive Native Cloud Ap-
plications with Distributed Cloud Computing and SLA Management”. In:
Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing. UCC ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 470–475. ISBN: 978-0-7695-5152-4. DOI: 10.1109/UCC.2013.92.
URL: http://dx.doi.org/10.1109/UCC.2013.92.

[94] Ryan Mcdonald et al. “Efficient large-scale distributed training of conditional
maximum entropy models”. In: Advances in Neural Information Processing Sys-
tems. 2009, pp. 1231–1239.

[95] Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing”. In:
(2011).

[96] Dirk Merkel. “Docker: lightweight linux containers for consistent develop-
ment and deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[97] Victor S Miller. “Use of elliptic curves in cryptography”. In: Conference on the
theory and application of cryptographic techniques. Springer. 1985, pp. 417–426.

[98] Kief Morris. Infrastructure as code: managing servers in the cloud. O’Reilly Me-
dia, Inc., 2016.

[99] Dmitry Namiot and Manfred Sneps-Sneppe. “On micro-services architecture”.
In: International Journal of Open Information Technologies 2.9 (2014), pp. 24–27.

[100] Netflix. Netflix. https://www.netflix.com.

[101] Sam Newman. Building microservices: designing fine-grained systems. " O’Reilly
Media, Inc.", 2015.

[102] Numenta. The Numenta Anomaly Benchmark. https://github.com/numenta/
NAB. 2018.

[103] Claus Pahl. “Containerization and the paas cloud”. In: IEEE Cloud Computing
2.3 (2015), pp. 24–31.

[104] Juan Luis Pérez et al. “A resilient and distributed near real-time traffic fore-
casting application for Fog computing environments”. In: Future Generation
Computer Systems 87 (2018), pp. 198–212.

[105] Juan Luis Pérez et al. “A resilient and distributed near real-time traffic fore-
casting application for Fog computing environments”. In: Future Generation
Computer Systems 87 (2018), pp. 198 –212. ISSN: 0167-739X. DOI: https://
doi.org/10.1016/j.future.2018.05.013.

https://web.devopstopologies.com/##anti-types
https://web.devopstopologies.com/##anti-types
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://doi.org/10.1109/UCC.2013.92
http://dx.doi.org/10.1109/UCC.2013.92
https://www.netflix.com
https://github.com/numenta/NAB
https://github.com/numenta/NAB
https://doi.org/https://doi.org/10.1016/j.future.2018.05.013
https://doi.org/https://doi.org/10.1016/j.future.2018.05.013

BIBLIOGRAPHY 77

[106] Powering the Machine Intelligence Revolution. 2019. URL: https://www.movidius.
com/.

[107] Puppet. Configuration Management tool. https://www.puppet.io/chef/.

[108] Rajat Raina, Anand Madhavan, and Andrew Y Ng. “Large-scale deep unsu-
pervised learning using graphics processors”. In: Proceedings of the 26th annual
international conference on machine learning. ACM. 2009, pp. 873–880.

[109] rakyll/hey. rakyll/hey. https://github.com/rakyll/hey. 2018.

[110] Jinghai Rao and Xiaomeng Su. “A survey of automated web service compo-
sition methods”. In: SWSWPC. Vol. 3387. Springer. 2004, pp. 43–54.

[111] Raspberry Pi. 2019. URL: httpsbs://www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[112] Chris Richardson. Choosing a Microservices Deployment Strategy. https://
www.nginx.com/blog/deploying- microservices/. February 10,
2016.

[113] Chris Richardson. Monolithic architecture. http://microservices.io/
patterns/monolithic.html. 2017.

[114] RightScale. RightScale. https://www.rightscale.com/. 2017.

[115] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtain-
ing digital signatures and public-key cryptosystems”. In: Communications of
the ACM 21.2 (1978), pp. 120–126.

[116] Amit Sahai and Brent Waters. “Fuzzy identity-based encryption”. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer. 2005, pp. 457–473.

[117] Hojjat Salehinejad et al. “Recent Advances in Recurrent Neural Networks”.
In: arXiv preprint arXiv:1801.01078 (2017).

[118] Samsung. KNOX. https://www.samsungknox.com/. 2005.

[119] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed
deep learning in TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[120] Martín Serrano et al. “Cloud services composition support by using semantic
annotation and linked data”. In: International Joint Conference on Knowledge
Discovery, Knowledge Engineering, and Knowledge Management. Springer. 2011,
pp. 278–293.

[121] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11
(1979), pp. 612–613.

[122] Qinfeng Shi et al. “Hash kernels”. In: Artificial intelligence and statistics. 2009,
pp. 496–503.

[123] Matt Stine. Migrating to Cloud-Native Application Architectures. 2015.

[124] Nikko Strom. “Scalable distributed DNN training using commodity GPU
cloud computing”. In: Sixteenth Annual Conference of the International Speech
Communication Association. 2015.

[125] Kehua Su, Jie Li, and Hongbo Fu. “Smart city and the applications”. In: 2011
international conference on electronics, communications and control (ICECC). IEEE.
2011, pp. 1028–1031.

https://www.movidius.com/
https://www.movidius.com/
https://www.puppet.io/chef/
https://github.com/rakyll/hey
httpsbs://www.raspberrypi.org/products/raspberry-pi-3-model-b/
httpsbs://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.nginx.com/blog/deploying-microservices/
https://www.nginx.com/blog/deploying-microservices/
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
https://www.rightscale.com/
https://www.samsungknox.com/

78 BIBLIOGRAPHY

[126] Fei Tao et al. “FC-PACO-RM: a parallel method for service composition optimal-
selection in cloud manufacturing system”. In: IEEE Transactions on Industrial
Informatics 9.4 (2013), pp. 2023–2033.

[127] Terraform. Write, Plan, and Create Infrastructure as Code. https : / / www .
terraform.io/. 2017.

[128] Johannes Thönes. “Microservices”. In: IEEE software 32.1 (2015), pp. 116–116.

[129] Giovanni Toffetti et al. “Self-managing cloud-native applications: Design, im-
plementation, and experience”. In: Future Generation Computer Systems 72 (2017),
pp. 165–179.

[130] Lyes Touati and Yacine Challal. “Collaborative KP-ABE for cloud-based inter-
net of things applications”. In: Communications (ICC), 2016 IEEE International
Conference on. IEEE. 2016, pp. 1–7.

[131] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. “Service-oriented cloud com-
puting architecture”. In: Information Technology: New Generations (ITNG), 2010
Seventh International Conference on. IEEE. 2010, pp. 684–689.

[132] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. “Dynamically
scaling applications in the cloud”. In: ACM SIGCOMM Computer Communi-
cation Re 41.1 (2011), pp. 45–52.

[133] Jinesh Varia. “Architecting for the cloud: Best practices”. In: Amazon Web Ser-
vices 1 (2010), pp. 1–21.

[134] Suchitra Venugopal. Cloud orchestration technologies,IBM. https://www.
ibm.com/developerworks/cloud/library/cl-cloud-orchestration-
technologies-trs/index.html. 2016.

[135] Mario Villamizar et al. “Evaluating the monolithic and the microservice ar-
chitecture pattern to deploy web applications in the cloud”. In: Computing
Colombian Conference (10CCC), 2015 10th. IEEE. 2015, pp. 583–590.

[136] Manish Virmani. “Understanding DevOps & bridging the gap from continu-
ous integration to continuous delivery”. In: Innovative Computing Technology
(INTECH), 2015 Fifth International Conference on. IEEE. 2015, pp. 78–82.

[137] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. “GRPC: A Communication Co-
operation Mechanism in Distributed Systems”. In: SIGOPS Oper. Syst. Rev.
27.3 (July 1993), pp. 75–86. ISSN: 0163-5980. DOI: 10.1145/155870.155881.
URL: http://doi.acm.org/10.1145/155870.155881.

[138] Charles B Weinstock and John B Goodenough. On system scalability. Tech. rep.
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST, 2006.

[139] Matt Werner. Executive Summary, Cloud, Serverless, Functions, Multicloud. https:
//dzone.com/cloud-computing. 2018.

[140] Xue Yang et al. “A multi-layer security model for internet of things”. In: In-
ternet of things. Springer, 2012, pp. 388–393.

[141] Xuanxia Yao, Zhi Chen, and Ye Tian. “A lightweight attribute-based encryp-
tion scheme for the Internet of Things”. In: Future Generation Computer Sys-
tems 49 (2015), pp. 104–112.

[142] Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: state-of-the-
art and research challenges”. In: Journal of internet services and applications 1.1
(2010), pp. 7–18.

https://www.terraform.io/
https://www.terraform.io/
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-cloud-orchestration-technologies-trs/index.html
https://doi.org/10.1145/155870.155881
http://doi.acm.org/10.1145/155870.155881
https://dzone.com/cloud-computing
https://dzone.com/cloud-computing

BIBLIOGRAPHY 79

[143] Zheng Zhao et al. “LSTM network: a deep learning approach for short-term
traffic forecast”. In: IET Intelligent Transport Systems 11.2 (2017), pp. 68–75.

[144] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In: Ad-
vances in neural information processing systems. 2010, pp. 2595–2603.

	INTRODUCTION
	Motivation Challenges
	Contributions
	Thesis Organization

	Background
	The Notion of Service in the Cloud Computing
	Virtualization
	DevOps Methodology
	Cloud-native Application

	Elastically Scalable Service
	Design and Implementation Priniciple
	Scalable Service Design Principle
	Composability
	Independent Deployability
	Scalable Service Architecture

	Container Orchestration
	Implementation princincple within state-of-the-art technology
	Kubernetes
	Docker Swarm

	Final Consideration

	Scalability in Software Developement Process
	Background
	Infrastructure Agility
	Operational Performance

	Experimental Evaluation
	Experimental Environment
	Experimental Results

	Final Consideration

	Scalability in Analytic tier of Machine Learning
	Introduction
	Contribution

	State of the Art
	Background and Motivation
	Related Work

	Architecture
	Edge Computing Networks
	Edge-Cloud Hierarchies
	Data Pipelines
	Floating Car Data

	Methodology
	Recurrent Neural Networks
	Traffic Forecasting
	Training Process Automation
	Distributed Model Training

	Evaluation
	Evaluation infrastructure
	Detecting the Required Training Epochs
	Model Performance and Tuning
	Single Model (N1) Evaluation
	Comparison of Single Model (N1) with Parallel Models (N2 and N3)

	Final Consideration

	Security
	Motivation and Background
	Preliminaries
	Elliptic Curve Cryptography
	Elliptic Curve Integrated Encryption Scheme
	Secret Sharing Scheme
	Access Tree
	Formal Key-policy attribute-based encryption (KP-ABE)
	Dynamic Attributes

	 The Proposed Scheme
	Revocation of Access Permission

	Security and Performance Analysis
	Preserving data confidentiality
	Preserving data integrity
	Possibility to change access policies
	Efficiency and lightweightness

	Conclusions and Future Work

	CONCLUSION AND FUTURE WORKS
	Conclusion
	Future Works

	Bibliography

