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“Do not worry about your difficulties in Mathemasic
| can assure you mine are still greater.”

(A. Einstein, 1879-1955)
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ENGLISH SUMMARY

A growing amount of evidence supports the hypothtgat humans are able, from the
earliest age, to process numerical informatioredbsence of language. This work addresses
the question of the nature of the internal repriedm for processing numerosities from three
perspective: developmental, adults’ skilled perfance, and the peculiar case of
synaesthesia.

In our studies with children we addressed the dgrekent of the mental
representation for numbers. In the first experimeatshowed that, before formal teaching,
preschoolers possess multiple numerical represemsathat follow a specific developmental
trend. Indeed, they first rely on an intuitive repentation where numbers are distributed
logarithmically and progressively, with numericabgtice and increasing knowledge, they
shift to a formal and linear representation. Moexowpreschool children can exhibit both
types of representations according to the famijiamth the context.

In the second study, we tested the hypothesisnibi@inumerical sequences may also
rely on a similar representation and follow the sadevelopmental pattern. By studying
children from the last year of kindergarten t& gade we observed that numerical and non-
numerical sequences have different mental reprasens. Indeed, only the numerical
sequence shows the classical effects that suppwt hypothesis of a logarithmic
representation. Moreover, we observed that childtant to learn linearity in the numerical
domain and then generalize the principle to allr@aidsequences.

In our third study we investigated adults numerrepresentation of symbolic and non
symbolic material. The aim was to test if the baalality of discriminating between
numerosities could explain higher level processeshsas approximate calculation and
symbolic number comparison. Indeed, if the preViedparoximate system of the numerical
representation forms the basis of more complex migaleand mathematical knowledge, it
should influence performance in other numericakgdadloreover, the crossing of symbolic
and non-symbolic format of the stimuli for the apgmate calculation task allowed us to
qualify previous findings about thaperational momentum effect in approximate arithmetic
(i.e., the tendency to overestimate additions andetestimate subtractions). Indeed, we
observed that the effect may be explained by thdaecy to underestimate numerosities and

that this bias is proportional to the set size.
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In the last experiment we investigated the relati@tween colour and numerical
representation in NM, a number-colour synaesthResults showed that, in spite of not
reporting colours for numerosities, our synaestheds subject to interference effects. From
these results we suggest a new model that accéamtise implicit and explicit synaesthetic
effects by suggesting the existence of primary aedondary synaesthetic connections
(“pseudo-synaesthesia”). Our results and model touness previous work on bi-directional

effects and the operational definition of synaesthe



ITALIAN SUMMARY

Un numero crescente di studi dimostra che gli esserani sono in grado di
processare informazioni numeriche fin dai primirgiali vita e molto prima dell’acquisizione
del linguaggio. Questa tesi si propone di indagdae rappresentazione mentale
dell'informazione numerica tramite tre approccitidis: i) lo studio dello sviluppo cognitivo
in bambini di eta scolare e prescolare, ii) lo giwtktlle abilita di soggetti adulti normodotati,
iii) lo studio di un particolare caso singolo diastesia.

Il primo studio sui bambini ha indagato lo svilupgella rappresentazione mentale dei
numeri. | risultati mostrano che, ancor prima deltio del’educazione formale, i bambini
della scuola per linfanzia possiedono moltepli@appresentazioni numeriche che si
sviluppano seguendo uno specifico percorso. | bambiilizzano inizialmente una
rappresentazione intuitiva dove i numeri sono iflisiti in modo logaritmico e
progressivamente, con l'apprendimento e la pratima i numeri, viene sostituita da una
rappresentazione formale basata su una distribeizloreare. Inoltre, i bambini in eta
prescolare possono utilizzare entrambe le rappt&geni a seconda della familiarita con il
contesto.

Nel secondo studio & stata testata lipotesi clguesgze non numeriche possano
anch’esse far riferimento ad una rappresentaziondesa quella numerica, sviluppandosi
secondo lo stesso percorso. | risultati, ottenomi lbambini dall’'ultimo anno della scuola per
l'infanzia fino alla terza classe della scuola @i, hanno mostrato che le sequenze
numeriche e non numeriche hanno rappresentaziontatnélistinte. Infatti, solo la sequenza
numerica mostra gli effetti classici che sostengdiootesi di una rappresentazione
logaritmica. Inoltre, si osserva che nei bambintdhcetto di linearita nasce inizialmente in
ambito numerico, e successivamente si generalinzieale sequenze ordinate.

Nello studio con gli adulti & stata indagata lapr@sentazione di materiale numerico
simbolico e non simbolico. Lo scopo era di verifeae la capacita di discriminazione tra
numerosita potesse spiegare competenze di pidiato quali il calcolo approssimato e |l
confronto di numeri arabi. Infatti, se il sistemiarappresentazione numerica preverbale ed
approssimativo costituisce le basi per I'apprenditoali concetti numerici e matematici piu
complessi esso dovrebbe influenzare le prestangservate in altri compiti di tipo numerico.
Inoltre, la presentazione di materiale sia simlwotibe non simbolico nel compito di calcolo

approssimativo ha permesso di ridefinire il fenomedell’ “operational momentum’
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nell'aritmetica approssimata (ovvero la tendenzaaastimare il risultato di una addizione e
a sottostimare il risultato di una sottrazione¥att, si € osservato che l'effetto pud essere
spiegato dalla naturale tendenza a sottostimarartgerosita di un insieme e che questo errore
di stima e proporzionale alla grandezza numeridlardgeme.

Infine, nell'ultimo studio si €& investigata la relane tra colore e rappresentazione
numerica in NM, un sinesteta numero-colore. | tesuhanno mostrato un effetto interferenza
per insiemi di pallini malgrado NM non riportassepkcitamente nessun colore per le
numerosita. A partire da questo risultato é stitbagato un nuovo modello che spiegherebbe
gli effetti impliciti ed espliciti osservati in st sulla sinestesia. In questo modello si presenta
I'ipotesi di connessioni sinestetiche di primo e@®lo grado (“pseudo-sinestesia”). | risultati
ed il modello pongono nuove domande sia sulla rddddirezionalita dell'interferenza

sinestetica che sulla formulazione di una defimeioperativa del fenomeno.
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General Introduction

| : Numbers, Numerosities and Numerical

Processing.

What is a number? What is the information that nerallike “1, 2, 3...” convey? What
information does our brain process to judge the sizwo numbers or of two sets of objects?
More generally, the question that has been occgpygaearchers in numerical cognition is to
understand what underpins humans’ ability of ediimga counting and manipulating
numerical information. Indeed the field of reseaixiide and it would be far from possible
to answer all these questions in this work butsghe questions will be addressed, others
will be answered and even more will be asked. Giext without questions there would be
no science and research.

In this first chapter, the core theoretical knovgedf numerical representation will be
outlined. First, the principal models of numericalgnition will be described and we will
focus on those main effects and psychophysical thascharacterize numerical processing.
Then two processes that are known to rely uniqoelynumerical representations will be
described: subitizing and estimation.

In the second section of this chapter, the devetopail perspective of numerical
cognition will be reviewed. First infants abilitiegith small and large numerosities will be
discussed and will be followed by the descriptidnpreschoolers’ performance with both
symbolic and non symbolic material. Finally, thedhand last section of this chapter will be

dedicated to adults behaviour mainly in non syndolimerical tasks.

|.1. Models of numerosity processing.

Several models have been suggested to accounhdoalility to process numerical
information. However only two models, that we vatinsider in detail, integrate symbolic and
non-symbolic processing of numerical quantities, aax®n more importantly, consider that
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the ability of manipulating numerositfes present prior to language and is shared with no
human species. This assumption is critical sinaldws to investigate the abilities of both
infants and children that have not yet started &rsehooling.

Besides these models of approximate numerical septation, other models postulate
an exact numerical representation (Verguts, FiasSt&vens, 2005; Verguts & Fias, 2004;
Zorzi & Butterworth, 1999; Zorzi, Stoianov, & Umalt 2005; Zorzi, Stoianov, Becker,
Umilta, & Butterworth, 2008). The numerosity codedrl assumes a linear representation of
numerosity, in a similar way to a “thermometer” negentation (Zorzi et al., 2008). Each
numerosity set is represented by a correspondintpeuof nodes which contains the smaller
sub-sets. This model successfully explains thedcs and size effect in number comparison
as well as correctly simulating the distance-prgneffect which is not explained by non
linear numerical representations. Moreover, th@a@stsuggest that this model should coexist
with an approximate representation since cardinakt not the only type of mental
representation of numbers. In the following sectiomly approximate representations will be

described in details since they constitute therbasés of the present work.

1.1.1. The Preverbal Counting Model.

The model proposed by Gallistel and Gelman (1992an extension of the animal
model proposed by Meck and Church (1983). Accordmghe authors, numbers would be
represented in an analogical manner thanks to thlegtcall magnitudes. In fact, this model
postulates that all numerical judgments rely orneaat process that accumulates an equal
amount of activation for each unit to be counted imhat could be described as a container.

The comparison between two numbers or two numéessitould consist in comparing
two amounts of activation. For humans, the acqarsibf humber words would allow the

creation of a bidirectional mapping with magnitudeSach numerosity would be stored in

! Numerosity defines the quantity represented bivangnumber or the numerical value of a set of #die., its
cardinality). Thus it refers to a quantity that nieynumerically determined.
2 The magnitude corresponds to the activation of umarical quantity on an internal and analogical

representation.
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memory and compared to the actual magnitude aetivathrough this process, a number

(written or spoken) would be mapped into a magmitadd vice-versa (Figure 1.1.).

One quantity of

activation per unit
counted :
9\ .
Variability during
H ? transcoding

Accumulator

Qt—n
Bidirectional §,_.,
correspondence + >
et >
34—
2e—»
la—»

Figure 1.1.: The preverbal counting model. Items are seriatlynted by the accumulator, that is, quantities are
incremented one by one, as a cup would be poutedhigraduated recipient; the result of the cosmead out
in memory where it has been stored, but memoryoisynand therefore leads to different estimateshef
number counts on different occasions. The amounbade in memory is proportional to the numericaaduatity
being counted (scalar variability: the variabilitythe estimates is proportional to the mean ofdis&ibution of

estimates). Reproduced from (Gallistel & GelmarQ®0

An important axiom of the model is that the mappb®iween the codes (verbal and
internal) would be subject to variability. The peelval counting mechanism would lead to
increasingly imprecise estimates as numerosityeasx®s. AsS more and more counts are
accumulated, there would be more and more chantesrar keeping the exact count.
Therefore, in this model, numerosities would beaespnted on a linear scale (same quantity
added for each additional item counted and samtargie between two neighbouring
numerosities) but representations would get inanglsfuzzier due to increase in noise in the
translation process. This would thus lead to irgirep overlap of representations as

numerosities increase.
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1.1.2. The Triple Code and the Log-Gaussian model.

The Log-Gaussian model has been presented in tgtBiehaene and Changeux (1993)
and is part of a broader model of numerical cognitialled the Triple Code Model (Dehaene,
1992; Dehaene & Cohen, 1995). The Log-Gaussian isogbat the authors consider the core
component of numerical comprehension. The otherpom@ants that constitute the Triple
Code allow to translate from the symbolic formatirber words and digits) to the non
symbolic format and therefore access the semaiftimmbers. These components are also
responsible of a number of other tasks such asticg,parity judgment, calculation etc.

Briefly, the Triple Code Model is composed, as ntsme suggests, by three main
components, each based on a distinct represen{ati@ode) that is used for input and output
(Figure 1.2.). According to this model, therefothe number of codes allowed to process
numerical information are limited to three. Moregweach component is tied to specific input
and output procedures allowing the peripheral msiog of each code separately. These
procedures, although specific to each componentjldvbe shared with other cognitive

functions as for example reading and writing.

\ Comparison and

| approximate calculation
Subitizing ———
Estimation

Analogical
Representation

\ -
A -
- -
Arabical ~ =T
Digits N\

"

-
-

Visual-Arabic
Representation

Audio-verbal ——P  Vemal Output

{_ Auditary Input

Complex calculation Arithmetical facts
and parity judgment and counting

Representation

Figure 1.2.: The Triple Code Model: each representation is@atzd to input and output processes and is also

responsible for specific tasks (adapted from Deba2892).

The first component is the Visual-Arabic format waliallows to represent numerical
notations as sequence of digits in a visuo-spatiatnal space. To this component, the main
associated tasks would be parity judgment and cexngalculation. The second component is

the audio-verbal representation. In this systermbmers are represented as a sequence of

10
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words syntactically organized and would be sintitaverbal representations. This component
would therefore be responsible for the ability olcting and reciting simple arithmetical
problems (arithmetical facts). The last compon#rg, semantic component is the analogical
representation of numerical quantities. This congmbms conceptualised as a mental number
line (Dehaene, 1992).

The Log-Gaussian Model is a model of the mentallmemline that postulates a parallel
numerosity mechanism and a compressive internatseptation with fixed (Gaussian) noise.
The model proposes that numerosity is represented log scale, explaining therefore that
smaller numerosities are represented in a morasgraeay, whereas larger ones are more
compressed and therefore less easy to discrimifate. main differences distinguish the
Log-Gaussian Model from the Preverbal Counting Mofiest, the numerosity detection is
parallel in the former and serial in the latterc@®d the noise is an intrinsic feature of the
representation in the former, whereas it is thaltes the accumulation process in the latter.

For the Log-Gaussian Model, each activated numigresiuld yield a fixed Gaussian
activation on the line and the logarithmic compi@ssvould account for the overlap with
increasing numerosities (Figure 1.3.). Therefo@, & given numerical distance, two large
numbers would show a larger overlap of activatiompared to two smaller numbers (i.e. 1

and 4 compared to 4 and 8).

Logarithmic Scale

Figure 1.3.: Representation of the Log-Guassian Model. Numgessare represented on an internal logarithmic
scale with fixed Gaussian noise. Larger numercsti@ closer on the line therefore each Gaussaritdition

overlaps more accounting for the decreasing disoahility.

The width of the Gaussian distribution determinke precision of the underlying
representation. Indeed, thaternal Weber Fraction is used to refer to the Gaussian’s width
which may be different for each single individuatlamight explain interpersonal differences.
A more precise discrimination between numerosieslld be described by a smaller width
of the Gaussian (Piazza, Izard, Pinel, Le BiharD&haene, 2004). In the following section
theinternal Weber Fraction will be discussed in more details.

11
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|.2. Psychophysical laws of numerosity and the Weber

fraction.

Before introducing the psychophysical laws of nug&rprocessing, it is essential to
describe a couple of very robust effects that Haaen found in numerical cognition. These
are very important since any model of numericalnttign should be able to explain them and

fit the behavioural data.

|.2.1. Distance and Size effects.

In adult research two main effects have shaped Imazte numerical cognition. In a
number comparison task, thestance effect corresponds to the decreasing response time and
increasing accuracy as the distance between thébemsmincreases. Moyer and Landauer
(1967) were the first to observe this effect whesspnting single digits and they showed that
it followed the same psychophysical laws as pet@@ptomparison. Indeed, the same effect
was previously described by Johnson (1939) in @gptual task where participants were
required to compare the length of bars. This resultery important since it shows that
participants had to access a semantic represantatimake the comparison as two numbers
are not more likely to be physically different justcause they are numerically farther apart.
This also suggested that the semantic represemtafioumbers is analogical. After Moyer
and Landauer, many other studies have confirmeeffieet extending it to other material as
for instance double digits (Dehaene, Dupoux, & MehlL990) and sets of dots (Buckley &
Gillman, 1974). Even more intriguing is the obséiva that this effect appears even when
numerical information is irrelevant to the task flaene & Akhavein, 1995) suggesting that
the semantic activation of numbers is automatictofaticity is also revealed by other
effects, discussed further in this chapter, suckthasSNARC effect (Spatial Association of
Response Codes; Dehaene, Bossini, & Giraux, 1988}l numerical Stroop effect (Girelli,
Lucangeli, & Butterworth, 2000; Mussolin & Noel, @D).

The size effect is also typically found in comparisons tasks. Tikithe observation that

for a given numerical distance, reaction time iasgs and accuracy decreases when numbers

12
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are larger (Banks, Milton, & Fortunee, 1976; Delgel®89; Moyer & Landauer, 1967). For
example it will take more time to discriminate beem 8 and 9 than between 1 and 2. This
result is critical because it suggest that not dhé/exact distance between numbers but also
their size strongly influences the discriminatiorogess. Moreover, Buckley and Gillman
(Buckley & Gillman, 1974) have compared the perfante on symbolic (digits) and non-
symbolic comparisons of numerosities from 1 to 8 have shown that reaction times where
extremely similar, again suggesting an analogeptesentation of numerical magnitude.

As it already appears, both effects are explainetthé® models presented in the previous
section (I1.1.1.). In the Preverbal Counting Modkels the scalar noise in the mapping process
that accounts for the increasing overlap betweenemasities, whereas in the Log-Gaussian
Model it is the nature of the numerical represeomaitself that accounts for the observed

effects.

1.2.2. The Law of Proportionality and the Weber fraction.

The above mentioned effectiistance and size, have been interpreted as the signature
of an analogical representation of numerical qti@stiand as being the result of a same
principle: the Law of Proportionality. This law ta that the confusion between two numbers
or numerosities is related to the proportion betwtbe two values. Indeed, the more the ratio
is close to 1 the greater the confusion. For ircgathe degree of confusion may be calculated
using percentage of accuracy. Therefore accurakylrep when the ratio approaches 1.

This law explains thealistance effect since the ratio approaches 1 when the distance
between two numbers decreases. Lets take the faljpopairs: (4,10) and (4,8). Indeed, the
ratio of the first pair is larger than the secob@4 = 2.5 and 8/4 = 2). Moreover, this law also
explains thesize effect since, when the numerical distance is kept cofnsthe ratio also
approaches 1 with larger numerical values. Forams¢, the ratio of pairs (20,30) and
(120,130) is closer to 1 for the larger pair (1l 4,08 respectively) although the numerical

distance is constant.

13
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The Weber Law is closely related to the Law of Prtipnality. Indeed, thgust
noticeable difference® between two stimulations is lawfully related tae thitial stimulus
magnitude. In other words, the law states thatjtise noticeable difference is a constant
proportion of the original stimulus valual(tensity/Intensity of reference = constant). This
law is applied to various sensory features (brighsn loudness, mass, line length, etc.) and
numerosity is also one of them.

The behavioural Weber fraction is therefore the value of the constant in the Bogna
allowing to estimate the performance in situatiovisere the ratio between two sensory
experiences may be calculateth the Log-Gaussian model, where numerositiefvola
logarithmic distribution and the Gaussian activatad any given numerosity is constant, the
activation overlap between two numerosities accouat the ratio effect. Therefore, by
means of a mathematical transformation of lileavioural Weber fraction, it is possible to
formalize theinternal Weber fraction (Izard & Dehaene, 2007; Piazza et al., 2004). [atter
would therefore correspond to the width of the Garsactivation on the internal numerical
representation. It would indicate the minimal dist&a on the numerical representation for two
numerosities to be considered as different in 75%he cases. Therefore, it determines the
precision in subjects’ performance: a smaller Ganswidth corresponds to less overlap in

numerosity representation and thus a more pred@sermination ability.

|.3. Subitizing and numerical estimation.

In this section we will discuss two numerical preges that should only rely on the
internal numerical representation. The first, ahlgubitizing, is the ability to enumerate
extremely quickly and accurately sets of 1 to 3ximam 4, visually presented objects. This
phenomenon is classically observed when particgppaneé asked to enumerate as fast and
accurately as possible sets of dots ranging fram 1I0. Reaction times are generally flat and

error rates low for numerosities 1 to 3 and bottides of performance progressively increase

% The just noticeable difference is the minimum antday which stimulus intensity must be changedriteo to
produce a noticeable variation in sensory expeeienc
* For sake of simplicity we will only discuss théeber Law in the field of numerical cognition throughout the

present work.

14
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for larger sets. In the small range, the increaseaction time is usually about 50ms whereas
above the 1-4 range the increase in reaction tgvaout of 200ms for each additional item
(Trick & Pylyshyn, 1994; Mandler, 1982; Atkinsona@pbell, & Francis, 1976). Beyond the

subitizing range, if accuracy is high and reactiomes slow, the process involved is

considered to be counting.

The second process is observed when a participargiguired to enumerate rapidly a
large amount of stimuli without using the countistrategy. As numerosity increases,
numerical estimation judgments move away form e value. This characteristic is called
scalar variability and is typical of estimation processes (Galli§&tgbelman, 1992; Izard &
Dehaene, 2007; Whalen, Gallistel, & Gelman, 1999).

Both models described in section 1.1.1. may accdentthese phenomena. The
Preverbal Counting Model, with scalar variability in the mapping to memory of the
activated magnitude predicts exact responses toisthall range and approximate ones for
larger numerosities. Indeed, the noise in the nmgpgrows with numerosity and is negligible
for numerosities up to 3 and then progressivelyeases. For the Log-Gaussian Model, it is
the compressed nature of the internal number ha¢ determines the uncertainty for large
numerosities but exact enumeration for small onesfact, for small numerosities the
activation does not overlap with adjacent valueenels the overlap increases with larger
numerosities (see figure 1.3.).

Interestingly, lzard and Dehaene (2007), have ekserthat participants tend to
underestimate very large numerosities when no fegdbs given. In their study, they
presented sets of up to 100 dots for a duratidtb6fms. Participants where asked to carry out
several estimations for each numerosity in ordexatoulate mean response and deviations for
each. The first observation was that the estimatiocreased with numerical size of the set
even though answers were always highly underestomdturthermore, responses followed
scalar variability which means that their coeffitieof variation (standard deviation/mean

response) was independent from the numerositytim&e.

15
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Il : Numerical Representations in Childhood.

In section I.1., two important models of numericafnition have been described and
both assume that numerical abilities are presefurdbdanguage acquisition. In this section
will review developmental studies of numerical cibign that give support to either model
along with the main controversies in the field. Thst part, describes a number of studies
highlighting infants’ numerical abilities and thecend part shows how these abilities and the
underlying numerical representation evolve in aleitd before and after the first years of
primary school. | will also briefly discuss the aggjtion of number symbols, as digits and as

written or spoken words.

[I.1. Numerical Processing in Infants.

Before understanding how a child learns to courd ealculate, it is interesting to
understand how the numerical representation evadves on what initial processes these
abilities rely. It is undeniable that numerical pessing in adulthood becomes completely
automatic. To understand this development, sevesdarchers have studied children’s and
infants’ abilities to solve numerical tasks.

It is important to bear in mind that the studiesl aesults exposed hereafter are still
object of controversy and have only given cluethinnate skills of infants. Indeed, a first
object of debate is the nature of the underlyiqgesentation. Some support the assumption
that numerical processing is innate and speciftoers postulate that there is a general
mechanism for magnitude processing not specifiaumerosities but also shared by other
guantifiable dimensions as, for example, time grats.

Research on numerical abilities in infancy is alsaded according to the numerosity
tested during the experiment. A first stream ofeagsh has focused on infants ability to
discriminate between small sets of objects (up)toMBereas a second group of studies has
used large numerosities.

Studying infants also involves the use of a speatfiethodology. The most common

paradigms are habituation and violations of exgexta. The former consists in repeating the

16



General Introduction

same stimulation, for example an image, until thiddés interest drops and only then a new
stimulus is presented. The basic assumption ishidlaies are attracted by novelty. Therefore,
the baby will lose interest for repetitive stimubat of the same information and if she regains
attention it indicates that she has noticed thegéaf information in the novel stimulus. The
other paradigm, violation of expectations, tests #bility of infants to make assumptions
about the world presenting situations where implrciles are violated. If the baby has
expectation about the consequence of an event slhebev aroused if the situation is

inconsistent to her expectations.

1I.1.1. Processing of small numerosities.

Among the first to study infants numerical abilitgtarkey and Cooper (Starkey &
Cooper, 1980), have shown that, using the habamagtaradigm, 4-months-old infants were
able to discriminate between two and three dots lime. This result was replicated for both
older and younger infants. Antell and Keating (19@3ted infants a few days old and Strauss
and Curtis (Strauss & Curtis, 1981) tested infaatgying from 10 to 12 months of age. This
finding was also replicated with paradigms whermuli were presented sequentially or in
movement (Canfield & Smith, 1996; Wynn, 1996; vasosbroek & Smitsman, 1990). For
instance, Wynn presented dynamic displays where®tns-old infants were familiarized to
puppets jumping 2 or 3 times and were then tesi#id both numerosities. Results showed
that infants were looking longer at the testingusggte when the number of jumps differed
form the habituation sequence (Figure 1.4.). Thi#h@ns concluded that numerical ability is
not limited to certain entities as physical objelote could be general and abstract. In this
case, infants could enumerate actions.

Bijeljac-Babic and colleagues (Bijeljac-Babic, Bertini, & Mehler, 1993) have shown
that syllables were among the entities that co@debumerated whereas others have shown
intermodal numerical correspondence (Starkey, ®pedk Gelman, 1983, 1990; Moore,
Benenson, Reznick, Peretson, & Kagan, 1987). Staakd collaborators (1990) presented to
6 to 8-months-old infants two images, one contgrtimo objects and the other three. After
about a second, a sound with a sequence of eitlzeot three tones was played. The result
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was that infants preferred looking at the imagehwite same amount of objects as sounds

heard.

15 =

Last & Habfuation Trials Test Trials

Figure 1.4.: Experimental setting and results form an habituagiaradigm (Wynn, 1996). On the left side of the
figure is a classical response curve for lookimgetiduring habituation and during test trial. Neimnsti in test
trials arouse looking time compared to old ones.tlnright side is a prototypical experimental isgttfor

testing infants (reproduced from Wynn, 1996).

Finally, beyond these discrimination abilities, ®mths-old infants seem to posses basic
calculation abilities. Koechlin, Dehaene and Meh{#097) have used the violation of
expectations paradigm to test infants predictiams@dition and subtraction. Infants watched
a little theatre where one or two puppets wereegoreesl. A curtain dropped to hide the set and
a visible hand introduced or removed a puppet foemind the curtain. When the curtain was
pulled away, the set could either be congruenhocongruent with expectations (1 puppet + 1
puppet = 2 puppets or 1 puppet). When the set micdrad expectations, infants looked
longer as if they could not understand what happelidas to be noted that spatial location
was also controlled.

Unfortunately, although these results are venaetive, Mix, Huttnelocher and Levine
(2002) criticised many studies for important metblodical flaws. Indeed, they showed that
perceptual properties highly co-varied with num#gysand suggested that a general
guantification process could yield the same resadt& specific numerical module. What is
therefore the real cue used by infants for disaerating between sets? A number or
researchers tested the hypothesis of a perceptuasltisity instead of a numerical ability
(Clearfield & Mix, 1999, 2001; Feigenson, CareysSfelke, 2002).

Feigenson, Carey and Spelke (2002) tested the giaetenypothesis and controlled for
surface area and number. Indeed, they found thanvsurface area and number were not

correlated, infants dishabituated to area rathan tto number (Figure 1.5). The authors
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concluded that infants lack sensitivity to numbat &re more sensitive to continuous extent

dimensions as area.

Habituation Test
Familiar nomber Novel number
1 large object Novel continuous extent Familiar continuous extent
OR OR
ﬁ
L |
Novel number Familiar number
2 small objects Familiar continuous extent  Novel continuous extent

Figure 1.5.: Objects used in Feigenson, Carey and Spelke (26102 in which number was pitted against
continuous extent. Here front surface area wasaled between habituation and test trials. In thiperimental

condition infants failed to dishabituate to numfreproduced from Feigenson et al., 2002).

Clearfield (2004) also replicated Wynn's experimaft dynamic displays but she
controlled for rate of jump during habituation aactoss test trials. With this manipulation,
infants failed to show any preference suggestiray thte changes can override infants’
response to number. Furthermore, the author tekthé amount of time the puppet spent
jumping instead of number was the explanation fdarits’ behaviour. Indeed, infants’
dishabituated to displays that changed in timesasof number.

Finally, to prove intermodal numerical correspormerxperiments wrong, Moore and
collaborators (Moore et al., 1987) replicated Stgik studies (Starkey et al., 1983; Starkey et
al., 1990) and obtained opposite results. Inddesly 7-months-old infants preferred looking
at the display with a different number of objed#x, Levine and Huttenlocher (1997) also
replicated Starkey’s studies with no success.

The failure to replicate results could be explainggd important methodological
differences as time between habituation and tedtadso the length of blocks. Starkey and
collaborators argued that it required several dri@l practice in a block for infants to start
discovering the correspondence between auditoryvaswhl stimuli which were fewer in
Moore and al's experiment. Moreover, in Mix et akxperiment trials of different

numerosities were randomized, whereas in Starkstyidies several trials kept the same
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numerosity. This could have distracted infants’ligbito figure out the correspondence
between modalities.

A recent study presented by Feigenson (2005) séemise a clear demonstration that
infants are able to use numerosity when no otreralicue gives more salient information. In
the first experiment 7-months-old were able to cotemumerosity when the objects in the
array contrasted for colour, pattern and texturbeneas in the second experiment results
showed that, with these heterogeneous objectsntgfiao longer represented array’s total
continuous extent but relied on number. Feigendurs tconcludes that infants extract
numerical information when stimuli are heterogerseand use perceptual cues if objects are

identical.

1I.1.2. Processing of large numerosities.

Already at 6-months of age, infants show discrirtiora abilities between large
numerosities as long as the ratio is larege endxgh & Spelke, 2000). Infants were
habituated to images of either 8 or 16 dots whielnenwalso controlled for size and dispersion.
The test was either of 8 or 16 dots for which simes familiar and total surface was not
outside the range seen during habituation. With aa%#o infants were able to make
discriminations between the 2 numerosities but witnenauthors replicated the experiment
with 8 and 12 dots they failed to discriminate betw sets% ratio).

Lipton and Spelke (2003) showed that infants’ &bl discriminate large sets extends
to auditory stimuli with the same % ratio effectoidover, the authors also demonstrated that
discrimination improved with age since, at 9-monithfaints discriminate between sets that
have &% ratio (8 and 12 sounds) but fail when they are ganimg sets with a ratio &fs (8
and 10 sounds). This result was recently confirdogdXu and Arriga with 10-months-old
infants and visuo-spatial arrays (2007).

Some research also investigated the principle dinality and basic approximate
calculation skills for larger numerosities. A stuchrried out by Brannon (2002) investigated
the development of ordinal numerical knowledge. $hesented to 9 and 11-months-old
infants sequences of stimuli that either increasedecreased in numerosity (Figure 1.6.).

Only the older group was able to discriminate betwthe sequences indicating that only by

20



General Introduction

that age infants possess the ability to appredia¢egreater than and less than relations

between numerical values.

A. Example
Habituation
Trial in Exp. 1

B. Example
Familiar Test
Trial in Exp. 1

C. Example
Novel Test
Trial in Exp. 1

Figure 1.6.: Sequential stimuli presented in Brannon’s studyirteestigate ordinal numerical knowledge

(reproduced form Brannon, 2002).

McCrink and Wynn (2004) investigated basic caldalaskills in infants. Nine months
old infants were shown a movie where a number @gai® moved and continuously changed
dimension and shape until they disappeared behipdteh. Once hidden, either a new set
would go add itself to the first one (addition cdiwh) or a subset would leave from behind
the patch (subtraction condition). At the end @ thovie the patch disappeared leaving the
outcome visible. Numerosities employed were onhariel 10 for both the terms of the
problems and the results. Analysis indicated thnts were surprised and looked longer at
incorrect outcomes compared to correct ones.

The same authors (McCrink & Wynn, 2007) have rdgettsted the ability of
discriminating ratios in 6-months-old infants. Tiesrecognising the ratio between two types
of visual objects inside the same stimulus. Eadsithation stimulus was constituted of blue
and yellow dots. Infants were habituated with b %2, or ¥ and test stimulus had ratios
of ¥2 and %a. If the test differed by a factor ok2y( habituation with % ratio and testing on %)
then infants succeeded, otherwise they failed ¢togeize a change in ratio (factor of 1.5:

habituation with/s ratio and testing on ¥).

11.1.3. Summary of infants abilities.

The research on numerical cognition in infancy slaswn that humans are endowed

from the earliest days of life of specific numelis&ills. Infants seem able to discriminate
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both small and large sets as long as the ratiodsivthe two is large enough to be perceived.
This could explain why some research on smalllsgtsfailed to show discrimination abilities
between sets of 4 and 6 objects since the ratiota@asmall for the age tested (Antell &
Keating, 1983). Moreover, infants also possess tennexpectations of addition and
subtraction for both small and large numerosities.

It is probably due to these skills that childrearte formal numerical knowledge and

later learn to manipulate numerical symbols. ToEd is the object of the following section.

11.2. Numerical Processing in Children.

Numerical skills in children are more diverse thafants’. Indeed, children learn
progressively to use number words and with insipacthey also learn numerical symbols.
Moreover, as we have shown in the previous sectiomerical discrimination improves with
age and therefore also the numerical representalfibis development probably continues
during the following years through the first yeafgormal schooling.

All these stages require specific cognitive modificns that need to be addressed to
obtain a picture of children’s numerical abiliti§his is the aim of the next section. Since the
populations studied in the two following experimemanges from preschoolers to third
graders, the abilities of older children will na¢ Hescribed as it is not relevant to the aim of
the present work. Only a brief introduction to cédtion abilities will be offered because our
studies are mainly focused on the developmenteoirtternal representation of numbers.

I1.2.1. Non symbolic processing.

Recognizing equivalence across different setscsti@al numerical accomplishment of
early childhood. It represents the ability of uredending that different sets, containing
assorted types of items, are equivalent if the remolb items is the same. Three dogs is a set
equivalent to three apples or three cars andeivén equivalent to a set composed of a fork, a

spoon and a knife. In a first study, Mix, Hutterllec and Levine (1996) showed that
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preschoolers were able to recognize equivalencedeet sets if they were similar (i.e., black
disks and black dots) but were impaired if the setse intermodal (i.e., sounds and dots).
However, a subgroup of children that had proficientinting abilities could also match
dissimilar sets. This result suggest that conveali@ounting skills may play an important
role when similarity is low. Later, Mix (1999) stied the same ability in 3 to 4-years-old
children only with visual stimuli that varied innsilarity (dots, shells and random objects).
Results indicated that the ability to match nunadlycequivalent sets improves with age. At
age 3 only identical comparisons were succesdfel) fprogressively by 4 and %2 children
were able to match those sets that were composeet@fogeneous items. Moreover, children
that had better knowledge of conventional countdsohad also better performance in
recognizing numerical equality. Long before, Sie€l68) had shown the same result with
children aged between 4 and 5. They performed fitgnily worse when the sets were
heterogeneous than when the sets were homogen@oilys.the older group of children
performed well in both conditions. Unfortunately oorrelation with other numerical skills
were performed leaving unclear the reason of magcimprovement.

On comparisons of large numerosities, Rousselleéta and Noél (2004) presented 3-
year-old children with a task where sets were ately controlled for perceptual cues and
ratios. In the most perceptually controlled cormdfifichildren failed to use numerical cues to
compare sets. Moreover, they also tested childreerbal counting skills and correlated the
performance in the two tasks. Results showed dioelébetween the development of
numerically-based judgments and some cardinalipnkedge.

Using a numerosity comparison task, Huntley-Feamer Cannon (2000) investigated 3
to 5-years-old children’s performances on pairarméys that varied by either %2 %rratios.
Some perceptual variables as density and lengtarmafys were controlled. The authors
analyzed the proportion of accurate responses laeyl dbserved that items with%a ratio
were harder and that errors varied systematicaillly katios, indicating that performance was
consistent with an analogue magnitude representatdoreover, performance in the
discrimination task correlated with the ability wdciting number words but not with the
ability of counting sets of objects.

A recent study carried out in Finland (Hannula &htieen, 2005), investigated the
Spontaneous Focusing on Numerosity (SFON) of afriidrged between 3 %2 and 6-years-old.
The task was striking in simplicity. The child wasked to imitate (without further numerical
instructions) the experimenter in the actions sles wealizing. The actions consisted in

feeding a puppet a number of food pieces. The @xpeter first showed how she fed the

23



Chapter |

puppet and clearly took a piece of food at a tiop@tp 3 pieces) and introduced them in the
puppet’'s mouth. Then it was the child’s turn. Tik@erimenter took note of the number of
pieces the child gave and if any type of commerd made on numerosity. This task allowed
the experimenter to notice if the child was abldatus on the numerical aspect of the task.
Spontaneous focusing also correlated with othehemaatical skills such as counting. The
authors conclude that within a child’s existing hehatical competence, there is a separate
process which refers to it's personal tendencytwu$ on numerosity.

As for non-symbolic arithmetic, Barth and colleagtested the ability of preschoolers
and adults to add and subtract large numerosiBasti{ et al., 2006). Perceptual cues were
controlled and proposed outcome sets varied agogrth four ratios from the correct
outcome. Both adults and children succeeded abbaace and were sensitive to the ratio:
accuracy decreased with a ratio closer to onenditheer study , Barth and colleagues (Barth,
La Mont, Lipton, & Spelke, 2005), showed that 5+gealds are able to perform calculations
both when presented as visual non-symbolic matandl when stimuli are presented across
modalities. Performance was correlated with conspariabilities but not with symbolic
versions of the addition tasks. The authors comlinéit numerical quantity representations
are computationally functional and may provide anidation for formal mathematics.
According to the authors, abstract knowledge of Ioeimand addition precedes, and guides,

language-based instruction in mathematics.

11.2.2. Symbolic processing.

After infancy, the ability to perceive sets as die objects is likely present and it is
reasonable to assume that children pull togethendbconcepts of numerosity from such
beginnings. A theory proposed by Gelman statesribaverbal numerical reasoning is the
starting point to learn both number words to coand the rules for how to use them.
Numerical concepts have in this theory an ontogermigin and a neural basis that are
independent of language (Gelman, 2006; Zur & Ge|n#004; Gelman & Butterworth,
2005).
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A. Counting.

What is counting? Nothing easier to a numeratetatlah counting. But learning how
to do it properly requires many years and a nundferognitive steps. Gelman (Gelman,
2006; Gelman & Meck, 1983) describes the differates that a child needs to learn to make
a proficient use of number words. Indeed, it ig just enough to know the words. Each
number word has to be in a one-to-one correspordefits the item to be counted, words
must have a stable order and finally, the last wegatesents the cardinal value of the set.
According to the authors’ model, the child hasdarh the number words and learn to map
them onto the internal numerical representationoider to create a memory for each
numerosity (Gallistel & Gelman, 1992).

By the age of 3% children already understand hosvdbunting system determines
numerosity and have acquired the cardinal meaningllahe number words within their
counting range (Wynn, 1990). Remarkably they stary early in the counting stage to
understand the specific numerosity of number wdrdfact, even if they master only number
words “one” or “two” they already understand thagyt refer to a specific number of objects.
From this, children progressively acquire the megrof each following number until they
generalize the principle that any following numbethe number word sequence is one item
more than the previous (Wynn, 1992; Margolis & lenge, 2007; Rips, Asmuth, &
Bloomfield, 2006); for a discussion: (Rips, Asmuif, Bloomfield, 2007; Gelman &
Butterworth, 2005). It takes about a year for thédcto reach a complete understanding of
the counting system. Moreover, Mix (Mix, 2002) hdsown in a single case longitudinal
study that during the second and third year of Bfehild is involved in a variety of one-to-
one activities (give one to mummy, one to daddy.mbedded in social and linguistic
contexts that helps her to construct number coscept

While Gelman and collaborators suggest an innatevladge of the counting principles
others argue that the count list is learned jushadetters of the alphabet, without attributing
any significance to the order. The knowledge ofntimg principles would be constructed by
attempting to make sense of the number words theeséLe Corre & Carey, 2008; Le
Corre & Carey, 2007). Le Corre and Carey, put fodatae ‘enriched parallel individuation”
hypothesis. According to this hypothesis, numeriogpresentations are based on the
combination of two processes: parallel individuatand set-based quantification. The former
Is a system that represents individuals by creattogking memory models in which each
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individual in a set is represented by a unique adesymbol and is able to store only a limited
number of individuals in parallel (3-4). This systeontains no symbols for numbers but they
are represented implicitly through the criteria ttimaintain one-to-one correspondence
between working memory and individuals in the worlthe latter process, set-based
guantification, is the root of the meaning of atural language quantifiers, as for example, in
English, the singular determiner “a”, the quantgiésome” and the plural marker “-s”. The
authors thus explain that, children would constrtiet meaning of number “one” as a
situation where only an individual is representedvorking memory. “Two” would be the
situation where two individuals are representedianking memory and are in addition linked
to linguistic markers of plural. This would be thge of associations that children would
learn for all numbers up to 4. With time, the maygpof small numerosities to models of
individuals in working memory could lead to the emstanding that adding one corresponds
to the next word in the counting list and thereftead to the acquisition of the counting
principles. In this process, an innate numericatesentation would not play a central role but
in view of the present work it does not exclude atgstence. What constitutes a critical
difference in this model is that the acquisitiontloé exact numerical representation and the
concept of infinity, which differentiates human®rfr the other species, are gained by a
bootstrapping process based on the parallel ingatidn system (3-4 elements). Conversely,
for those models that postulate the existence chamgnitude representation, the exact
numerical representation is acquired by mappingbernwords onto magnitudes.

B. Symbolic comparison.

Studies on symbolic comparison usually aim at ustdeding the automaticity of
numerical processing and the activation of the dgithg magnitude. Several studies have
investigated magnitude comparison in children aagehshown that they are sensitive to the
same effects as those observed in adults (i.e,a1d distance effects). Several researchers
have shown that children exhibit a distance effdty are faster and make less errors when
the numbers are numerically further apart (DuncanM& Farland, 1980; Sekuler &
Mierkiewicz, 1977). In Duncan and McFarland’s studiildren form kindergarten through
fifth grade were asked to make a same/differengrueht on single digit pairs. This task

could easily be solved only by visual cues buty@asng as 6, children were influenced by

26



General Introduction

numerical distance indicating that Arabic digitsrev@rocessed all the way to the semantic
level.

To further investigate the automatic processingnoimbers, Girelli, Lucangeli and
Butterworth (2000), used two Stroop type paradigimsheir study, children from*] 3% and
5" grade as well as adults had to compare, numericalbhysically, pairs of digits (1-9).
Both physical and numerical distances in the pareamanipulated. In one task, participants
had to judge the physical dimension ignoring thmerical one and in the other task they had
to attend to the numerical dimension ignoring thgsical one (e.g., 2 v4). The physical
and numerical dimensions could be congruent (ihe,largest number was also physically
bigger) or incongruent (i.e., the numerical magihgtuvas opposite to the physical one). There
was also a neutral condition in which one dimensias kept constant (the pair either varied
in size or number but not both). Results indicdted the physical dimension interfered with
and facilitated numerical judgment for all age gr®whereas only the older children and
adults were also influenced by numerical magnitudéhe physical comparison task. This
suggests a gradual achievement of automaticitymber processing.

Mussolin and Noél (2007) tested the possibilityt thamerical processing could just not
be fast enough to show effects in younger childusing the same paradigm as Girelli and al.
(2000) and a population of2 3¢ and 4" graders, they controlled for the time of procegsin
for the numerical and physical dimensions. The thgits were presented at first with the
same physical size and progressively changed. Remsuicated that all age groups were
subject to numerical interference in the physicalgment task but only as long as the
distance between the two digits was large enough, @f ¥2) and enough time to process
numerical information was allowed.

A parity judgment task on single digits also assdsthe automaticity of numerical
information in children from 7-years-old to 13-ysaid (Berch, Foley, Hill, & Ryan, 1999).
Indeed the authors noticed that frofi grade (9-years-old), parity information is dirgctl
retrieved from memory without the use of calculatistrategies and as early d¢ grade,
children exhibited a SNARC effect (Spatial Assdoiatof Response Codes: in a reaction
time task, small numbers are responded to fastiértive left hand and the reverse is true for
large numbers, Dehaene et al.,, 1993). Once moseltseindicate that, also for children,
numerical information is automatically accessedalgh irrelevant for the task.
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C. Internal numerical representation in children.

All studies mentioned above have described childrahilities in numerical cognition
but only a few addressed the internal represemtaifonumbers. Some authors have shown
that ratio influences the ability to discriminatetWween sets and others have analyzed standard
errors in relation to ratio, in both cases suppgrtihe hypothesis of a compressed or noisy
representation of numbers (see Chapter |, paragtaph. for models of numerosity
processing). Only recent studies carried by Siegladl colleagues have investigated the
development of such internal representation andretation to other formal numerical
knowledge (Siegler & Opfer, 2003; Siegler & Boo#004; Booth & Siegler, 2006; Opfer &
Siegler, 2007).

Siegler and collaborators have conceptualized whey consider a pure numerical
estimation task that reveals the underlying nunaérepresentation. In a first study (Siegler
& Opfer, 2003), the authors investigated secondrtfoand sixth grade children as well as
adults in two estimation tasks. In one task, nuntbgyosition (NP) task, participants had to
estimate the numerical position of given numbersaolme. Two different intervals were
proposed: on the left end there was always 0 antherright end there was either 100 or
1000. The second task, position-to-number (PN), tasis the complementary version of the
former. Instead of estimating the position of aegivnumber, participants were asked to
estimate the number corresponding to a given posibin the intervals 0-100 an 0-1000:.
According to the authors, these tasks are advantzgeecause they allow a direct mapping
between numerical and spatial representations #mbodying the core property of
estimation. Moreover, the absence of specific memsent units makes these tasks
particularly suitable for young children. The arsidy showed that children’s estimates
changed over time. At the youngest age, childreerestimated small numbers and
compressed large numbers to the end of the saaiar{thmic shape of the estimates). This
was however modulated by numerical context. Indegen the context was familiar (i.e., the
smaller interval) positions of estimates were Imealder children (grade six) and adults
positioned numbers linearly on both intervals siZEse authors stress that the logarithmic
positioning on the larger scales was not the camsste of a general misunderstanding of
numerical quantities since they could perfectlyi@ob a linear positioning on the smaller
scale with numbers that were shared by both inkervidhe logarithmic positioning for the

larger interval would therefore be the consequenfean intuitive and logarithmic
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representation of numbers, used in unfamiliar sibna. These results are taken as evidence
for two main conclusions. First, children possesdltigie numerical representations and
second, different representations may apply acogrii the context.

To support their first study, Siegler and Booth(J2preplicated the experiment with a
population of preschoolers, first and second gragels. The aim was twofold: first, to show
parallels in the developmental sequence at diffesges; second, to test the relation between
number-line estimation and math achievement testesc The development of numerical
representations was replicated, preschoolers pre@otty relied on logarithmic
representations, progressively shifted to a lireee for familiar numerical contexts at grade
one and became predominantly linear at grade twarebVer, accuracy of estimates on the
number-line task was correlated to math achievesemes (SAT-9).

Furthermore, Booth and Siegler (2006) have testeddenerality of the developmental
shift across different types of estimation. Perfance in the number-line task was compared
to other estimation problems such as approximatditiads, numerosity estimation,
measurement estimation. Results from a populatiahitdren from kindergarten to“égrade
revealed that accuracy substantially improved acegges and for all tasks. Furthermore, the
authors suggest that the reason for primary sattatnlren’s poor estimation is the reliance on
a logarithmic rather than linear representationwherical magnitudes.

In a recently published paper, Opfer and Siegl@072 studied the ability to improve
estimates according to the type of feedback. Indéey tested the theoretical prediction that
feedback providing the greatest discrepancy betwleenwo representations would yield the
greatest representational change. In this studyy second graders that relied on a
logarithmic representation undertook the task dredexperimenters manipulated the degree
of discrepancy between the estimation made by liiled end the feedback given. In other
words, for each child the logarithmic fit of estites was calculated and feedback was given
on one estimate according to its discrepancy (lmiglow). Those children that were in the
high discrepancy feedback group were the ones viloovesd the largest representational
change. Strikingly, it occurred after a single feack trial and for all the estimates of the
interval. These results suggest that cognitive gearcan occur over an entire representation

with a minimal but significant feedback.
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11.2.3. Summary of children’s numerical abilities.

In this somewhat brief introduction of children’'americal ability we have shown that
in the first years of life, a child is faced withgeeat deal of learning challenges. Theories on
how they acquire the counting skills still divergat it seems reasonable to state that an early
numerical representation is present and guidesdutwmerical learning. With time, the
internal representation develops and becomes maaeisp. In parallel to this cognitive
transformation, children learn to map numerical Bgia onto numerosities and back until the
processing of numerical information reaches autaityt Finally, with formal teaching,
children learn to use an adequate numerical repr@sen where numbers are linearly
represented for those numerical magnitudes tha haen learned.

Lucangeli, lannitti and Vettore (2007), have summett in the following way the
developmental stages that are achieved in theyiats of life of a child. From birth to about
2 years of age, infants posses uniquely preverlralenical competences that is subitizing and
numerical expectations. In the next two yearsdehit have to learn the number sequence and
the one-to-one correspondence as well as the @ditglirprinciple. Beyond this age and
throughout school, they learn to write and read Imeimwords, they acquire formal
computational procedures and, we can add to tHeesitsummary, they learn to rely upon a

linear representation.
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11 : Numerical Representations in Adults.

Human adults are able to exactly represent a nunisr as they are able to
approximate a numerical quantity. The first compegerelies on a verbal system, the second
is based on an approximate number system similartomber line. The first section of this
chapter offered a general overview of humans’ nigakrabilities and introduced the
concepts of subitizing and estimation, as well les tarious models that allow to explain
these, but also other, numerical competences. dnptiesent section, the focus is on the
performance of skilled adults when faced with ngmisolic tasks. That is, their ability of
approximating and estimating numerical informatidime tasks may be classified in two
groups: those that require to estimate or compammenosities and those that require

participants to compute an operation (additionutrtiaction) on sets of items.

I11.1. Numerosity Comparison and Estimation.

Numerosity comparison is a task where two setdewhs, usually dots, are presented
with the instruction to either judge if the numetpss the same or to choose the smaller/large
set. Obviously, time limits are set to avoid congtialthough participants are highly
discouraged from doing so. Estimation tasks arelisided in those tasks requiring a verbal
answer and those that require the production obtonsequence (e.g., press a response key)
corresponding to a given number or numerosity. Beisond paradigm has also been widely
employed with animals allowing a comparison of orse patterns.

Minturn and Reese (Minturn & Reese, 1951) have meskthat estimation answers
largely diverged with an estimated factor of 4 ab@nd below the true answer. However,
subsequent studies have reported mostly an unoheagisin (Indow & Ida, 1977; Krueger,
1982; Krueger, 1984). Moreover, underestimatiompnssent since the first trial, increases
during the experiment and the larger the numerdbgygreater the variability in the response
(Krueger, 1982). This variability has further bestandied by Whalen and colleagues (Whalen
et al., 1999) and described as the scalar vafahifoperty. Indeed, the coefficient of

variation (CV = standard deviation/mean) is conistanross numerosities. In another
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estimation experiment (Cordes, Gelman, Gallistel{V&alen, 2001), participants had to press
a response key either suppressing the possihliligptint by repeating a sound or by counting
as fast as they could while answering. The secamdliton reveal more accurate and less
variable answers.

In addition, Krueger (1984) observed that whenfaremce stimuli is given, response
patterns tend to be less underestimated and thiéicocer® of variation decreases for all
subsequent stimuli. More recently, Lipton and See(R005) have shown that in some
conditions participants are able to properly estenthe numerosity of sets. In their study, two
sets of dots where presented and the numerosttedirst set was given as reference for the
estimation of the second. Average estimations lfier $econd set perfectly matched real
numerosity. Only one study (Izard & Dehaene, 2Q@@jipulated the accuracy of feedback.
In one condition participants had to estimate withfeedback numerosity up to 100 dots and
in the other condition they were calibrated on nrosigy 30 with either a correct or a wrong
feedback (larger or smaller). Results indicatedt thhdoen no calibration was given,
participants underestimated systematically wherdasdback significantly improved
performances. Moreover, the type of feedback imibeel average estimation and extended to
the whole range of numerosities tested. For botiditions, a scalar variability of estimates
was observed; moreover, their mean followed a pdwestion of numerosity.

It is important to highlight that perceptual vatedbinfluence the ability of estimating.
Several authors have shown that the dispositiodotd in the array play an important role.
When dots are grouped and more dense, responsesoaeeunderestimated that when they
are evenly and regularly spaced (Durgin, 1995;KkAlTuulmets, & Vos, 1991; Allik &
Tuulmets, 1991; Ginsburg, 1978). Moreover, the saffeet has been observed with temporal
presentations: evenly presented stimuli in time eawer-estimated whereas irregularly
presented stimuli are underestimated (Allik & Tuats) 1993).

Adults’ performance in discrimination between nuasgiies mirrors the pattern
observed in the comparison of symbolic numbersh wite and distance effet{@uckley &
Gillman, 1974; van Oeffelen & Vos, 1982). The anloda abstract representation that

underlies the ability to process numerosities hesnbstudied by Barth in two experiments

> The distance effect is the observation that theallem is the numerical distance between two
numbers/numerosities the longer the reaction tiamesthe higher the error rate. The size effectisthé an
increased difficulty (error and RT) associated e humerical size of the smaller number/numero&ee

section | for more details).
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(Barth, Kanwisher, & Spelke, 2003; Barth et al.p@Pin which participants were asked to
discriminate between sets of stimuli of either @menat or between formats. Stimuli could be
visual or auditory, sequential or simultaneous.uReshowed that for all conditions, reaction
times and accuracies are determined by the ratigseesm the numerosities to compare. This
led the authors to conclude that numerical reptesen is independent from the format of
the stimulus.

A slightly different paradigm was presented by Peéaand collaborators (2004). The
aim was primarily to investigate neural correladésiumerosity in an fMRI study. Using an
habituation paradigm where participants had to guidig stimulus was numerically different
from the previous ones, they observed that the oadyons that responded to numerical
distance were localized in the left and right iptmaetal sulci (IPS, including the horizontal
segment). Their work confirms and extends datarebsgeboth with single cell recording in
animals and in neuroimaging experiments with humans

Cantlon, Brannon, Carter and Pelphrey (2006), uaisgnilar paradigm as the one used
by Piazza and al. (2004), they addressed the guestithe early development of brain areas
for processing abstract numerical information. THeund that in 4-years-old, the IPS
responded similarly to adults for numerical chanddse authors concluded that the neural
correlates of numerical cognition are active eanlglevelopment prior to formal instruction
and symbolic experience.

Overall, responses to estimation and comparisosisstare subject to Weber's law:
judgments become increasingly less precise as mgierincreases and the variability
increases proportionally to the mean response, sbhaeh numerosity discrimination is
determined by the ratio between numbers (Galli&t&elman, 1992; Whalen et al., 1999;
Cordes et al., 2001; Izard & Dehaene, 2007; Piazz&, 2004).

I11.2. Approximate Calculation

Approximate calculation tasks have been createslitacthe necessity of testing implicit
computational knowledge especially in children ptlanguage acquisition (see section I1.1.

and I1.2.). Nevertheless, in one study (Barth gt24106), both adults and children were tested

33



Chapter |

to observe similarities in performance in simplécakations (additions and subtractions).
Three separate experiment were constructed foadié population: in the first experiment,
arrays of dots were presented visually and secalbntin the second experiment, formats
were mixed between visual and auditory; and inléise experiment, stimuli where presented
in a movie format where dots moved on the screachiag (addition) or leaving (subtraction)
an occluding patch. All three experiments proviédedlence that adults are able to add two
arrays, or subtract one array from the other, &aed tompare the sum or difference to a third
array. Performance also showed the classical samature for large number representations.
This paradigm has also been used to test numeabdities and knowledge in

populations that lack words to express large numbas the Mundurucus found in the
Amazonian forest of Brasil. Pica and collaborat@®ga, Lemer, Izard, & Dehaene, 2004)
observed their performance in several numericdtstascluding an addition task of large
numerosities. For the computational task they wsainilar task as the third experiment in
Barth (2006) except that the occluder was replégea can were items fell inside or came out
from it. Performance was above chance with a minimaf 80% correct responses and
answers were solely affected by distance. In shdundurucis had no difficulty adding
approximate numerosities and their precision wastidal to the one observed in a group of
French controls. The authors conclude that the slgtport the distinction between a verbally
based numerical representation (very limited in Mhendurucd’s language) used for exact
number processing and an approximate system thgirasent early in development,
independent of language proficiency and shared othiler species (Nieder, 2004; Feigenson,
Dehaene, & Spelke, 2004).
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IV : Introduction to the Studies

After the general theoretical introduction in trdkapter and more specifically the
summary on numerical processing in infancy anddtloibd (section Il), two experiments will
give some insight into the development of numemnearesentation in space. In Experiment
la, a developmental pattern suggested by Sieglércalleagues (Siegler & Opfer, 2003;
Siegler & Booth, 2004; Booth & Siegler, 2006) iplieated with a population of younger
children (4 to 6 years old). The task used is aereid by Siegler and Opfer (2003) a pure
numerical task. The Number-to-Position task, adogrdto the authors, allows the
investigation of children’s internal spatial repgretation of numbers.

In Experiment 1b, the performance of preschoolerhé Number-to-Position task was
related to the ability in discriminating numeraos#ti Using the paradigm suggested by Piazza
and collaborators (Piazza et al., 2004), the drsoation ability was evaluated with the
internal Weber fraction for all children and correlated to the positionpgrformance in the
Number-to-Position task.

Experiments 2a was designed to investigate theeseptation of numerical and non-
numerical sequences using the Siegler et al. (2@084) positioning task. Indeed, the
developmental pattern observed with Number-to-Rwsitask could be general to other
sequences (e.g., letters). An alternative hypashtesithe one offered by Siegler, is that the
task does not tap on a core numerical representhtibhighlights a common positioning bias
due to the limited knowledge of a given sequente first items know would be spread apart
whereas the other would be clustered together.

In Experiment 2b, the same children were testethenmental bisection task used by
Zorzi and collaborators (Zorzi et al., 2002; ZomRrjftis, Meneghello, Marenzi, & Umilta,
2006) which also highlights the spatial represémtatof numerical and non-numerical
sequences. Therefore, the Number-to-Position task the mental bisection task were
compared. Indeed, if both measure the same spapatsentation of sequences, a positive
correlation should be found.

After these developmental studies, Experiment 3fosused on various adults’
numerical abilities. Participants numerosity disgnation ability was estimated using the
internal Weber fraction. This value was correlated to other two numertaaks: a double-

digit number comparison and a task on approximakeutation. In the addition and
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subtraction approximation task, the symbolic andh-sgmbolic stimuli were crossed to

observe any specific presentation format effectwdrat McCrink and collaborators have

termed theOperational Momentum (McCrink et al., 2007). That is the tendency to
overestimate additions and underestimate subtrectio

Numerical cognition is investigated from a differ@erspective in Experiment 4 with a

single case study of a number-colour synaesthel¢.cddims to perceive colours when

viewing digits but not for sets of dots. To invgste the level at which the synaesthetic
perception is triggered, two Stroop-like tasks wereated: one using digits, to replicate
previous findings, and the second using canonicdlr@n canonical patterns of dots. In the

discussion a new model for synaesthetic assocgtmnumerical representations is offered.
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Development of Numerical Representations in Preslens

| : Experiment 1a: Numerical Representations in

Preschoolers.!

Abstract

Previous developmental studies of numerical estomahave shown that children
performing the number-to-position task (Siegler §f€&, 2003; Siegler & Booth, 2004)
increasingly rely on formally appropriate, lineapresentations and decrease their use of
intuitive, logarithmic ones. Here we investigate ttevelopment of numerical representations
in a much younger population of preschoolers (fd#t to 6 ¥2 y.0.) using 0-to-100 number
lines and a novel set of 1-to-10 number lines. AN large interval, estimates became more
accurate but also increasingly logarithmic with .affe contrast, estimates became more
accurate and shifted from logarithmic to linear tire small number range (1-10) with
increasing age, following the developmental trerelpusly reported with older children on
0-t0-100 and 0-to-1000 number lines. Moreover,negtiion accuracy was correlated with
formal numerical knowledge measured by naming auiof one-digit Arabic numbers.
Those results suggest that, the development of ncah@stimation is built on a logarithmic
coding of numbers — the hallmark of the approximatenber system subserving the non-
symbolic representation of numerosities — and sssequently shaped by the acquisition of

cultural practices with numbers.

! This experiment is an article in preparation: Bletti, Lucangeli, Piazza, Dehaene and Zorzi.
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|.1. Introduction.

Prior to language acquisition, infants and childaee able to discriminate between sets
of objects (Lipton & Spelke, 2003; Wynn, 1996; XuSfelke, 2000; Xu, 2003) or sequences
of sounds (Bijeljac-Babic, Bertoncini, & Mehler, 93 by relying only on numerical
information. Around the age of three, children feapbme counting words and understand
how they refer to a distinct, unique numerosity (\Wy1996). Lipton and Spelke (2006) have
shown that 5-years-old children understand thatbermwvords outside their counting range
also refer to unique quantities and that a speatiimber word cease apply to a set when an
item is removed from it. It is only when the itegreintegrated into the set that children again
apply the original numerical label, suggesting ttlaitdren possess a productive system for
representing numbers before formal education. dsé abilities, that appear early and are
already present before language acquisition, peogiddence that numeracy is founded upon
an early non-symbolic system of numerical represtent (for reviews see Butterworth, 2005;
Carey, 2001; Feigenson, Dehaene, & Spelke, 2004).

It has been proposed that the infant’'s sense obeusnin the first year of life, is based
on two “core systems” (Feigenson et al., 2004)a@nall number system that is accurate for
numbers up to 3; this is essentially the perceptiystem for tracking objects. (i) an
approximate number system for representing larger numerositibs system encodes
approximate numerosities as analog magnitudes,hwdrie usually thought of as overlapping
distributions of activations on a mental numbee lthat is logarithmically compressed (for
review Dehaene, Piazza, Pinel, & Cohen, 2003,).

In subsequent years, children in our culture ach&wnental representation of number
that goes beyond these core number systems irasit tiwo different ways. First, numerate
children and adults are able to go beyond appra@mamerosities and can distinguish and
represent exact numerosities greater than 3. Sepanidof the adult concept of exact number
implies a linear (rather than logarithmic) mappiogtween numbers and space, such that
numbers can be used for measurement. It is a c@ngial matter as to how both advances
are achieved, although it is clear that the ch¥pgegience with counting and number words
plays a major role (e.g., Le Corre & Carey, 200NQtably, a developmental transition from
logarithmic to linear representations has been oheriied in the seminal studies of Sigler and
collaborators (Siegler & Opfer, 2003; Siegler & Bwa2004).
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Siegler and Opfer (2003) investigated the implmimerical representations used by
second, fourth and sixth grade pupils as well adtadh two numerical estimation tasks. In
one task, individuals were asked to estimate tlwtipa of a given number on a “number
line” with 0 at one end and either 100 or 100Chatather endnumber-to-position task). The
other task was the complementary version of thenéorand consisted in estimating the
number associated with a given position on the rermiime @osition-to-number task).
According to the authors, these tasks embody the pooperty of estimation because they
require translation between numerical and spatiptesentations. Moreover, the absence of
specific measurement units makes these tasks ylarticsuitable for young children.

Results of the estimation tasks indicated that witlieasing age, children’s estimates
changed and shifted from a logarithmic to a linegaresentation. At the youngest age (grade
two and four), children overestimated small numlsard compressed large numbers to the
end of the scale (logarithmic positioning) when tduwntext was not familiar (0-to-1000
number line), but they positioned numbers linearhen the context was well known (0-to-
100 number line). Moreover, the oldest group (grad® positioned numbers in a linear
manner on both small and large scales, similadtdt garticipants (Siegler & Opfer, 2003). It
is important to highlight that the logarithmic repentation used by second and fourth graders
on the larger interval (0-to-1000 number line) wast the consequence of a general
misunderstanding of numerical quantities since lgotlups had a linear representation on the
0-to-100 number line. This provides evidence thatlogarithmic fit for the larger scale is the
consequence of an intuitive and logarithmic repregen that is used when the context is
unfamiliar. Finally, the authors showed that thentegt greatly influenced the numerical
representation since the same numbers were tre#tecently according to the interval of
reference, with identical numbers placed linearitlee small interval, and logarithmically on
the large interval. Thus, multiple numerical repraations coexist and that the choice among
them changes with age and experience.

In a second study, Siegler and Booth (2004) ref@dcéhe experiment with a population
of preschoolers, first graders and second gradersarf ages: 5.8, 6.9 and 7.8 years
respectively). Results indicated that, from kindetgn to second grade, the developmental
sequence for the 0-to-100 number line was equivatethe developmental sequence shown
with the larger 0-to-1000 number line by the olgepulation of children in the study of
Siegler and Opfer (2003). That is, the predoming# of a logarithmic representation was
followed by the use of both linear and logarithma@presentations depending on the scale, and

finally by consistent reliance on a linear repréagon. Furthermore, mathematical
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achievement was found to correlate with the lirtgasf the estimates. In a subsequent study,
Booth and Siegler (2006) found a correlation betweerformance in the number-to-position
task and other numerical estimation tasks suchpasogimate addition, numerosity and
measurement estimation.

The current study investigated numerical estimatiom population of even younger
children. The aim was to assess children’s abiiityprovide reliable estimates (whether
logarithmic or linear) as early as 3.5 years old smfurther characterize the developmental
trend that leads to the emergence of a linear septation of numbers. We tested children
aged from 3.5 to 6.5 years old on the number-tatipostask. We used the 0-t0-100 interval
used by Siegler and Booth (2004) as well as a smadterval 1-to-10 that was not used in
previous studies. The latter interval contains nerslthat should be familiar even to the
youngest children tested. Moreover, the smalldstwal started from 1 because children learn
the counting sequence starting from one and theemirof zero is usually introduced later
(Butterworth, 1999). Children were also tested asit® numerical knowledge to investigate
its relation to their ability to estimate linearlgs was done in previous studies (Siegler &
Booth, 2004; Booth & Siegler, 2006). This was dent a simple digit naming task, which,
for very young children, has been found to be ansfipredictor of other numerical tasks (Ho
& Fuson, 1998; Huntley-Fenner & Cannon, 2000).

We predicted that performance of the youngest dmldwould reveal a purely
logarithmic representation and that the developalepattern would show a shift from
logarithmic to linear representation, but only fiee smaller interval. Thus, the hypothesis that
children possess multiple numerical representati@isgler & Opfer, 2003) leads to the
prediction that performance might become compleliaar on the smaller interval but still

remain logarithmic on the larger interval.

|.2. Method.

Participants

Forty-six children (21 females), recruited in twifetent kindergarten schools from

north-eastern Italy, were divided in three age gsouhe youngest group (n=11) had a mean
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age of 48 months (SD = 4), the middle group (nZ1&) a mean age of 60 months (SD = 3)
and the oldest group (n=19) had a mean age of HhwadSD = 3).

Procedure

Two trained female teachers from each school mit thie children individually during
school hours in a quiet classroom for about halheaar. The familiarity with the teachers
helped children to feel comfortable in the testsggsion. Children were first tested on basic
numerical knowledge, and were asked to name Ardigds from O to 9. Digits were
randomly presented on separate cardboards of & &nd children were asked to name them
aloud. For each digit correctly named, the chilcswgavzen a score of one, for a maximum
score of 10. No feedback was given during the task.

Numerical estimation was tested with the NumbePktsition task developed by Siegler
and Opfer (2003). Note that this task does notiregknowledge of measurement units.
Children were presented with 25-cm long lines m¢kntre of white A4 sheets. Two different
intervals were administered: 1-10 and 0-100. This et the lines were labelled on the left by
either 1 or 0 and on the right by either 10 or ID® number to be positioned was shown in
the upper left corner of the sheet. All numbersegxdor 1, 5 and 10 had to be positioned on
the smaller interval, whereas for the larger iraétlie numbers were 2, 3, 4, 6, 18, 25, 48, 67,
71, 86 (corresponding to sets A and B for the santeeval used in Siegler & Opfer, 2003).

Order of the two intervals and order of items witl®ach interval were randomized.
Each line was seen separately from the others aa anfluence from previous positioning.
Instructions given at the beginning were: “We witlw play a game with the number lines.
Look at this page, you see there is a line drawm.hewant you to tell me where some
numbers are on this line. When you have decidedewvtiee number | will tell you is, | want
you to make a mark with your pencil on this lin€d ensure that the child was well aware of
the interval size, the experimenter would poine&eh item on the sheet while repeating for
each item: “This line goes from 1(0) to 10(100)hé#re is 1 (0) and here is 10 (100), where
would you position 5 (50)? The numbers to positwere always named verbally by the
experimenter.

The numbers 5 and 50 were used as practice taalshe small and large interval,
respectively, and to check if the task was propengerstood. Experimenters were allowed to
rephrase the instructions as many times as neeleduivmaking suggestions about where to

place the mark.
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|.3. Results.

Number-to-position task

The analysis on the accuracy of children’s estimatas computed using the percent
absolute error of estimation for each child. Thigswalculated according to the following
equation (Siegler & Booth, 2004):

percent absolute error = (estimate — estimatedtjyphscale of estimates

A one-way ANOVA on mean percent absolute error wasputed for each interval
with age as between-subjects factor. For bothvatsy results indicated that the three groups
were significantly different and the accuracy direation increased with age (1-10 interval:
F(2,43) = 6.14,p < .01,1? =.05; 0-100 intervalf(2,43) = 4.22,p < .05,1* =.01). The
youngest and the middle groups significantly ddétérfrom the oldest group on post hoc
comparisons for the interval 1-1ps(< .05). Percent absolute error for the youngesgidia
and oldest group were 28%, 24% and 15% respectitelyinterval 0-100, percent absolute
error were 32%, 30% and 23% respectively and drdyybungest group significantly differed
from the oldest group on post hoc comparisgns (05). It is worth noting that for the 0-100
interval the accuracy of estimation for our oldgsiup is slightly better than the accuracy of
the comparable age group studied by Siegler andhB@004; 27% in their study).

To analyze the pattern of estimates, the fit oédinand logarithmic functions were
computed. These fits were first computed on growguliams, and then for each individual
child.

For group medianghe difference between models was tested withi@gaample t-

test on the distances between children’s mediamats for each number and a) the predicted
values according to the best linear model and é)pitedicted values according to the best
logarithmic model (see Figure 11.1.). For the lidterval, the model with the highest r-square
was logarithmic for the youngest groug? (og = 87%,p < .01) but it did not significantly
differ from the linear fit & lin = 84%,p < .01;t(6) = -1.17,p_> .05). For the two older
groups, the fit of the linear model was signifidgiitetter than the fit of the logarithmic model
(intermediate groupR? lin = 95%, p < .001 vs. Rlog = 89%,p < .01;t(6) = 2.82,p < .05;
oldest groupR? lin = 97%p < .001 vsR? log = 88%,p < .01;t(6) = 4.05,p < .01). For the 0-
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100 interval, the best fitting model for the thgreups was logarithmic, but the r-square value
increased with group age (youngeRtiog = 59%,p < .01 vs.R? lin = 46%,p < .05,t(9) = -
1.2, p > .05; intermediateR? log = 85%,p < .001 vs.Rlin = 57%, p < .05, t(9) = -3.15,

p < .05; and oldest®’ log = 94%,p < .001 vs.R? lin = 70%, p < .01,t(9) = -3.62,p <. 01).
The absence of statistical difference betweenwioenbodels for the youngest group might be
explained by the large standard deviations (limeadelp = 15.6,SD = 12.2 vs. logarithmic
model p = 18.2, SD = 13.5). Alternatively, this lack of significantifiérence could be
explained by the observation that during testinghynehildren from the youngest group
adopted non-numerical strategies to perform thie f@g., they alternated between right-side

and left-side marks).

a) Median Magnitude Estimation for the 1-10 Interval
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Figurell.l.: Best logarithmic or linear fit as a function oktinterval and age group. For the small interval th
type of fit evolves from logarithmic to linear witlge and for the larger interval the precisionhef lbgarithmic

fit increases with age group.

Regression analyses were then performed on theodlatalividual children. The best
fitting model between linear and logarithmic wagrilatited to each child, whenever

significant. For example, the child was attributedogarithmic representation for a given
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interval if the highest r-square was logarithmidodth models failed to reach significance the
child was classified as not having a representatisnthe interval considerédFor each
interval, children were therefore classified asihga linear, logarithmic, or no representation
(see Table 11.1.). Spearman rank correlations waleulated between group (1= youngest, 2=
intermediate and 3= oldest) and type of representgl= no representation, 2= logarithmic
and 3= linear). Results indicated that for the $enahterval the estimation tended to become
linear with age s = .49, <.001, one-tailed test). For the bigger intervad thgarithmic
representation became more predominant with agereal the proportion of children that
were unable to position numbers diminished £ .33, 3<.05, one-tailed test). These data
highlight the developmental trend that with inciegsage children learn to position numbers
more accurately. When the numerical context isialiff, or unfamiliar, they rely on an
intuitive, logarithmic representation, whereas whlea numerical context is more familiar,

they use a formal linear representation.

Tablell.l.: Type of representation adopted by children asatfon of group and task.

Type of representation

Task None Logarithmic Linear Total

1-10 Interval

Youngest 5 4 2 11

Intermediate 5 3 8 16

Oldest 1 3 15 19
0-100 Interval

Youngest 7 3 1 11

Intermediate 9 6 1 16

Oldest 4 13 2 19

Note. Cell values represent number of children.

This pattern is also supported by the analyseswiad on both intervals according to
the type of representation (see Table 11.2.). Idgdbe ability to position numbers on one
interval is significantly correlated with the abjlito position numbers on the other interval

(rs=.39,p < .005, one-tailed). In other words, the repred@riaused on one interval was

2 It is worth noting that those children who weré dlassified as having a linear or a logarithmigresentation
used non-numerical strategies to perform the taskinstance, some alternated between left and niginks on

the lines.
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dependent on the one used on the other intervéldr€h with a more precise representation

on the 1-10 interval also had a better represematn the 0-100 interval.

Tablell.2.: Type of representation adopted in both tasks o ehild.

0-100 Interval
1-10 Interval None Logarithmic  Linear
None 9 1 1
Logarithmic 4 6 0
Linear 7 15 3

Note. Cell values represent number of children that adagiven combination of representations as a fanaif

task.

Finally, we investigated the relationship betweergitd naming and type of
representation. The correlations between namingescdfrom 0 to 10) and type of

representation on the two intervals were signifig@merval 0-10:rs = .46,p < .001, one-
tailed; interval 0-100rg = .46, p < .001, one-tailed). These results suggest thaetterb
knowledge of Arabic numerals goes together with tle® of more precise numerical

representations — linear for the smaller intervad aredominantly logarithmic for the larger

interval — in the number to position task.

| .4. Conclusions.

The present study shows that an understanding of mo@mbers map onto space
develops long before formal education begins. Pwaslers relied on a logarithmic
representation when confronted with the 0-100 nunthege and the youngest children
showed a trends towards a logarithmic representaven for the 1-10 interval. Thus, the use
of a logarithmic representation before a linear seems mandatory. In contrast, older
children deployed a linear representation when rooiéd with the more familiar range of
small numbers (1-10 interval) and the oldest grapproximated very closely the ideal
positioning. The dissociation between smaller aadydr intervals is consistent with the
results of Siegler and colleagues (Siegler & O2€03; Siegler & Booth, 2004) and reveals

the coexistence of multiple representations. Thengest age groups in their studies relied on
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a linear representation for the 0-to-100 numbe (mur larger interval) whereas on the 0-to-
1000 number line only the oldest group of childweare able to position numbers linearly like
adults. Together, these findings reveal a cleaeldgvwnental trend with a progressive shift
from logarithmic to linear representation.

Logarithmic coding of numbers (Dehaene et al., 2002 hallmark of the approximate
number system subserving the non-symbolic reprasentof numerosities (Feigenson et al.,
2004; see Dehaene & Changeux, 1993, for a compngdtimodel). The finding that the
logarithmic fit over the three groups and the aacigs of estimates increased with age
suggests a developmental pattern even for theitbgac representation. Increasing precision
of the logarithmic representation is consistenhwiite finding that the ability to discriminate
the numerosity of two sets increases with age,(kijgton & Spelke, 2003).

Lipton and Spelke (2005) have shown that preschbidiren map the number words
within their counting range onto non-symbolic regaetations of numerosity, but that they
show no such mapping for number words beyond trage. Indeed, the youngest children in
our study showed a poor and inconsistent performamdhe 0-100 interval, whereas they
mastered the estimation task in the 1-10 intefMad precision of numerical estimation across
all children in our study was correlated with theiility to name single-digit Arabic numbers.
This finding highlights the role of the acquisitia numerical symbols in structuring the
child’s understanding of numbers, although the epath that leads from a logarithmic to a
linear understanding remains to be understood tffeoretical suggestions, see Verguts &
Fias, 2004; Dehaene 2007)
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Il : Experiment 1b: Numerical Representations
and the Weber Fraction.

[1.1. Introduction.

In Experiment 1a, results clearly showed that childas young as 3 and a half already
start using an intuitive representation of numbfersfamiliar contexts such as the 1-10
interval. At the age of 4 and a half they alreaadygg®s two representations for numbers
according to the context. Indeed, for the familiand smaller numerical context,
representations are linear whereas when confraotad unfamiliar context they rely on their
intuitive representation. Finally, with the acqti@m of more formal numerical knowledge
they rely solely on a linear representation. Teiadks to the hypothesis that if the task is a
translation of the internal numerical representatiben it should also correlate to other
estimates of the internal representation of numbech as the individual Weber fraction. As
introduced in Chapter | (paragraph 1.1.2., parttBg Weber fraction allows to estimate the
discrimination threshold between two numerositiEise internal Weber fraction (w) is the
width of the Gaussian activation on the mental nentine for any given numerosity that best
fits the behaviour of the individual in a numergssbmparison task (Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004).

The hypothesis tested is straight forward, A morecige internal representation
(indexed by a lower Weber value) should correspona better performance in the Number-
to-Position (NP) task because both describe theesaimaracteristic of the internal
representation. To this aim, the same preschotdreim form Experiment 1a also undertook a

numerosity discrimination task.

Participants

The same 46 children (21 females) from experimeat @lso completed the
discrimination task. They were divided in three ggeups: the youngest group (n=11) had a
mean age of 48 months (SD = 4), the middle groefi§ih had a mean age of 60 months (SD
= 3) and the oldest group (n=19) had a mean a@®é afonths (SD = 3).
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Procedure

Two trained female teachers from each school nwtichually with the children during
school hours in a quiet classroom for about halhaar. The familiarity with the teachers
helped children to feel comfortable in the testsegsion. Children were first tested on the NP
task and then were presented with a computer giexaledéscrimination task.

The task consisted in two arrays of randomly spreladk dots on a white circle
presented laterally to a fixation cross. The ansmas recorded by pressing on the response
key located on the same side of the larger arraytifNe limit was set but it was asked not to
count the number of dots. This task consisted modified version of the task presented by
Piazza and collaborators (Piazza et al., 2004).e@ch trial, one of the two arrays was
composed of either 16 or 32 dots (reference nuritgfo$he paired numerosities for the 16
dot reference contained 12, 13, 14, 15, 17, 18,0020 dots. For the 32 reference,
numerosities for the second array were twice aarlag those for reference 16 (24, 26, 28, 30,
34, 36, 38, 40). The second reference was the doafbthe first in order to confirm that
participants’ performance complied with Weber's Laimdeed, when the reference is
doubled, the discrimination threshold should als@bubled.

Perceptual variables were also controlled. Halétohuli were controlled for total area
whereas the remaining half were controlled for sizdots.

» Stimuli controlled for total dots area (Figure 1a29: dots dimension for the non-
reference arrays was fixed thus yielding differemtfaces (dots area correlating with
numerosity). Control for area was realized on #ference arrays. Different versions
were realized in order to cover the total surfearege occupied by the non-reference
arrays.

» Stimuli controlled for size (Figure 11.2.b.): datistal area was controlled for the non-
reference arrays yielding different dot sizes. ek area constant, different dot sizes
were generated. The reference arrays were thusrgotesl to cover the range of non-

reference arrays sizes.

50



Development of Numerical Representations in Preslens

Figurel1.2: Reference and non-reference stimuli employed énnhmerosity discrimination task. The top row
(a.) shows to an example of perceptual controltédal area and the bottom row (b.) shows an exarmaple

perceptual control for stimulus size.

Considering participants’ age, time and lengthhef task was critical. Therefore only a
limited number of trials was run. Only 5 blocks kvéach of the 16 pairs were thus prepared.

I1.2. Results.

The percentages of times a non-reference stimulss a@nsidered as more numerous
than the reference were calculated to plot eadd’skdiscrimination curve and calculate both
logarithmic fit and the Weber value (for the matla¢ical model and computational details of
the procedure please refer to (Piazza et al., 280d)to the Supplemental Data provided by
the authors available at: http://www.neuron.orgmitent/full/44/3/547/DC1/).

Response curves were analyzed separately for eamip.gFigure I1.3. Shows the
logarithmic fits for both reference numerosities (&nd 32) for each age group. When
percentages are plotted on a linear scale, theitaaplof the curve for the larger reference is
wider than for the smaller. Indeed, Piazza andeagilies (2004) have shown that for adults
the curve for reference 32 is twice as large a®tieefor reference 16. Moreover, when adults
performance is plotted on a logarithmic scale the turves are identical indicating the
logarithmic characteristic of the internal reprdaéion. Indeed, children’s performance in a
log scale tends to become more similar for thersferences (Figure 11.3. second row).

Finally, the logarithmic fit increases with age atie Weber valuew) decreases.
Coherently, since the Weber value indicates howigeeis the internal representation, it can

be concluded that with age it becomes more finengda For the younger group, two numbers
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that differ of about 84% (e.g., 5 and 9, or 100 &84) are just within one standard deviation
of the internal variability. For the oldest age wwp two numbers within one standard

deviation of internal variability differ of abouB% (e.g., 5 and 7, or 100 and 148).

Younger Group Intermediate Group Older Group

Log fit (R2=.59) Log fit (R2=.87) Log fit (R2=.87)

_ Ref =16
Ref= 16 1007 Ref =16

100

804

604

40f "

20}

0 16 32 48 10 16 32 4

18
Reference Numerosity - Linear Scale

10 16 32 48

o W=0.84 Ref = 16 o W=0.66 Ref= 16 wor  W=0.48 Ref = 16

% of responses where Non Reference > Reference

10 16 32 48 10 16 32 48

Reference Numerosity - Logarithmic Scale

Figure 11.3.; Numerosity discrimination task. Graphs represemtcgntages of trials in which participants
responded that the non-reference numerosity wagidahan the reference one. Performance is plated
function of the amount of numerical deviation. ihe top row the scale is linear and curves for wereferences

are distorted and become progressively symmeifica logarithmic scale (bottom row).

To investigate the relation between the Weber valug the Number-to-Position task,
each child’s Weber value was calculated and cde@lwith several performance indices for
the type of representation in the two Number-toHiwstasks as the slope and both the linear
and logarithmic Rof individual regressions. None revealed significa

I1.3. Discussion.

The Numerosity Discrimination task revealed thatldebn’s internal numerical
representation becomes progressively more finengdawith age and experience. This is by
decreasing the variability of the internal actigatiand thus being able to discriminate

between sets that have a smaller numerical diféereihis is coherent with the results
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observed in other studies. In infants, for examghle,ability to discriminate between sets goes
form a ratio of %2 at 6-months of age to a rati&sait 9-months (Lipton & Spelke, 2003).

It was expected that would correlate with the representation used e Number-to-
Position task, since it is also a measure of theldpment of the internal representation. The
more a child is familiar and has experience withmbars the more the representation
becomes mature.

Two hypotheses could explain the absence of cdioalaFirst, the Weber value in our
population had a large variability. Instead, theriiber-to-Position task seemed to generate a
more coherent set of data for each age group. Rraatistical point of view, this is a first
limit for finding a correlation.

A second possible explanation is that the two tasksot tap onto the same component.
The Numerosity Discrimination task is highly anatad and does not involve any symbolic
format whereas the Number-to-Position task doesrebler, the latter presupposes the
understanding of the symbolic format which mightitsgelf draw upon a different process.
Indeed, this task could actually not be a purestedion of an internal representation. The
Number-to-Position task might only evaluate the puag ability of children. A mature
representation and knowledge of numbers would beessary but not sufficient for
performing such task. The ability to position numsbeequires more formal knowledge than
judging the numerosity of two sets.

The question of the specificity of the evaluationtlee numerical representation assessed
through the Number-to-Position task is therefordrasised with a follow up study presented
hereafter (Study 2).
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Development of Numerical and Non-Numerical Sequence

| : Representation of Numerical and Non-

numerical Sequences'

Abstract

This study investigated the representation of nicakand non-numerical sequences in
children from kindergarten tograde. The development of the mental representatid
numbers, letters, and months was studies with ai@usag task where children had to
position items on a line representing a given wdk(Siegler & Opfer, 2003) as well as with a
mental bisection task (Zorzi, Priftis, & Umilta, @) where children had to estimate the
midpoint of verbally presented intervals. The posing task had never been used with non-
numerical sequences, whereas the mental bise@ginhad never been used with children,
Results of the positioning task showed a similatetigpmental pattern for both numerical and
non-numerical sequences, with a shift from compwvesgi.e., logarithmic) to linear
positioning. In constrast, in the mental bisectdnntervals only the numerical task revealed
the typical compressive representation that chamaes the youngest children. The
inconsistency in the data obtained with the twdkgas discussed in terms of the mapping
between internal (mental) representation and eatepresentational medium, which is a
fundamental component in the positioning task lsuhot required in the mental bisection
task. Finally, the results suggest that childrexrriethe concept of linearity in the numerical

domain first and progressively extend it to allined sequences.

! This experiment is an article in preparation: Bletti, Lucangeli, and Zorzi.
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|.1. Introduction.

An influential theory of numerical representationnumans is based on the notion of a
“mental number line”. Numbers and numerosities wWadtivate a certain position on the line
allowing us to grasp the magnitude perceived (Debad&992; Dehaene, Piazza, Pinel, &
Cohen, 2003). Essentially, this internal repredentais assumed to be logarithmically
compressed, whereby small numbers would be ovesepted and large numbers would be
closer in mental space (Izard & Dehaene, 2007;zajalzard, Pinel, Le Bihan, & Dehaene,
2004).

This internal numerical representation would bespn¢ form the first days of life, long
before language acquisition. Several studies hhwgers that infants and young children are
able to make judgments that rely upon numericabrmftion independently form other
dimensions (Butterworth, 2005; Bijeljac-Babic, Bertini, & Mehler, 1993; Wynn, 1996; Xu
& Arriga, 2007). These results have also suggestatithe internal representation, although
functional since the earliest months of life, miglquire several years and practice
manipulating numbers to develop. For example, stidvith infants have shown that
numerical ratio between arrays of dots is a prabietvariable of performance. At 6 months,
a ratio of ¥z is necessary for being able to disicrate between the sets whereas at 9 months
the ratio drops té&5 (Lipton & Spelke, 2003).

During the first years of school children seem tosges multiple numerical
representations (Siegler & Opfer, 2003; Siegler &, 2004). Siengler and colleagues
developed an estimation task where children hagogition a given number on a line. The
authors consider it a pure numerical estimatiok sisce it uses numbers as inputs and does
not require real-world knowledge of the entitiesvidhich properties are being estimated or of
conventional measurement units. Moreover, to tha&raoy of approximate calculation, in
their task no mathematical knowledge is requirades could go from 0 to 100 or 0 to 1000.
Reference numbers were printed on both extreme. didsanalysis of children’s estimates
indicated that they could position numbers on thee laccording to 2 main models:
logarithmically or linearly. Indeed, smaller chislr, having less familiarity with numbers,
overestimated small numbers on the line whereasuhderestimated large numbers yielding
a logarithmic fit of the estimates. At the oldegfeatested, children properly estimated

numbers’ positions, which were consequently fitablynear model. The interesting result was
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that at intermediate ages, children would posittarmbers differently according to the
interval. When the context was familiar and therefeasy, numbers were linearly positioned
but when the context was unfamiliar or hard, cleitdpositioned numbers logarithmically.
These results led to two main conclusions. Fitstdeen possess multiple representations at a
given time and the linear representation is notaliy generalized to all numbers until the
interval becomes familiar. Second, the task wasidened as a good tool to map the child’s
internal representation of numbers.

The developmental shift from an intuitive to a famepresentation has been replicated
in our previous study (Experiment 1a) with a popataof younger children. Indeed, we have
tested children from 3-years-old to 6-years-oldhwitimber lines 1 to 10 and 0 to 100. The
youngest group showed a logarithmic representdtiooth lines whereas the intermediate
group had both representations according to tleedimd the oldest reached linearity for both.
Beside replicating the developmental pattern arwveig that before formal education both
representations may already coexist at a same timsegxperiment has shown that children as
young as 3 already possess an intuitive represemtand it is functional as soon as they start
learning about numbers. Indeed, their estimatioifitalworrelated with performance on a
simple number naming task.

In a follow-up study, carried out by Booth and $#eg(2006), the authors of the
Number-to-Position task have shown that the estimaabilities on the number line were
correlated to a number of other numerical estinmatesks. The aim was to find the same
developmental trend, that is a shift from a lodpemiic representation to a linear one, with
other types of numerical estimation tasks and sessif the change occurred during the same
age period. The different tasks were approximatktiath, numerosity estimation, line length
in inches and the Number-to-Position task. Perfoceafrom kindergarten up to grade 4
showed that the developmental shift across diftetgoes of numerical estimation task was
comparable (percentage of absolute error decreaghdage in a similar proportion for all
tasks). Moreover, results showed that the maincgoaf poor estimation is the reliance on a
logarithmic representation, because the averageoffithe linear function for all tasks
improved with age.

All these data converge to the conclusion thatNenber-to-Position task is a good
numerical estimation task. It has been shown to thepdevelopment of children’s internal
numerical representation and it correlates welhwither numerical estimation tasks. But two
points have been partially overlooked by the awhdndeed, no other non-numerical

developmental change has been studied and codeldtk their task. In fact, it could be
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argued that the developmental shift observed woatdoe specific to the development of the
sole numerical representation but would be a mameeral development of all cognitive

abilities. Children from preschool td%3r 4" grade learn a great deal of information and
many fields of knowledge are taught during schoamlir. Therefore, the results could be
general and not specific. Moreover, the transifr@m an intuitive representation to a linear
one could be the consequence of the familiarizatith a metric system where the mapping
with space is linear. Therefore, it could influetice way a sequence is represented in space.

Although several effects observed in numerical dogn support the logarithmic
internal representation of numbers (size and distaffects, Moyer & Landauer, 1967) other
sources could explain children’s performance. Ghiddcould overestimate small numbers
simply because they have a limited knowledge of nhenerical sequence. That is, those
numbers that are spread wide apart on the lineddoglthe only ones they know and on the
contrary, those numbers that are outside their toogimrange are just clustered together
towards the end of the line. This pattern couldsthe replicated with non-numerical
sequences as the alphabet, the months, and thefddwsweek.

In Experiment 2a we tested children from the lasaryof kindergarten,>1grade, i
grade and "8 grade in several positioning tasks. That is, wesented the two classical
Number-to-Position tasks as previously done by I8iegnd collaborators but also various
non-numerical sequences. One was the alphabewithé’A” and “Z” at the extreme ends, a
second one was the months line with “January” ddelcémber” at the ends, and the third one
was the week line starting with “Monday” and endimigh “Sunday”. Moreover, to allow a
direct comparison with the numerical representatveralso prepared equivalent number lines
for each non-numerical one. For example, the cpomdent numerical line for the week line
was marked 1 on the left end and 7 on the right dieése lines would thus make the
comparison between the two series straightforward.

In addition to the numerical and non-numerical dineve tested the same group of
children on bisection of verbally presented nunari@and non-numerical intervals
(Experiment 2b). This task was presented by Zardi @llaborators (Zorzi, Priftis, & Umilta,
2002; Zorzi, Priftis, Meneghello, Marenzi, & UmiJt2006) to hemi-spatial neglect patients.
These patients, after a right parietal lesion, slospatial deficit for the left-side stimuli. A
common test to visual line, these patients systealBt misplace the mark to the right as if
the part of line on the left was not processed l{gt & Marshall, 1988; Halligan &
Marshall, 1989; Marshall & Halligan, 1989). Fromstbehavioural pattern, the authors tested

the assumption that the internal numerical reptasen resembles a left to right oriented
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line. To do so, they presented orally several nizakmntervals for which patients had to state
the midpoint. They observed that the answers tetmlée misplaced to the right (e.g., for the
interval 1-7 they would answer 6 instead of 4) fashe interval corresponded to a real
physical line. This result demonstrates the spaislre of the mental number line and its
isomorphism to a physical line. The authors hawtete a second group of patients with
numerical and non-numerical intervals. The hypathess that if all sequences, therefore not
only numerical ones, would be spatially coded msame way as the numerical one, patients
should misplace the midpoint of non-numerical s in a similar way. The results to the
non-numerical intervals showed very different patde When bisecting letter intervals,
patients showed a rightward shift of the midpoioimpared to controls but it was not
modulated by the length of the interval. Instealemw bisecting month intervals, the pattern
was different and patients tended to underestirttegemidpoint (leftward bias). Therefore
results indicate that non-numerical sequences aranapped onto a spatial representation
that has the same characteristics as the numegjgadsentation. The authors suggest, in light
of other results, that letters and months wouldofela different spatial organization. For
example, months could be circularly representedesthey have the additional characteristic
of being cyclic over time. Moreover, to support t@ecial coding for months and letters,
Gevers and colleagues (Gevers, Reynvoet, & Fiad4;2Gevers, Reynvoet, & Fias, 2003)
have observed a spatial coding similar to the SNAGREct (Space-Number Association of
Response Codes, Dehaene, Bossini, & Giraux, 1@93)dth non-numerical sequences. The
association between number and space is considesttbng effect for demonstrating the
special coding of the numerical representationrdfioee, if a similar results is observed with
non-numerical sequences, these sequences musiaalssome type of spatial representation.
Finally, also neural correlates support these tesihce both numerical and non-numerical
representations activate the same region, nameljhahnizontal segment of the intraparietal
sulcus (Fias, Lammertyn, Caessens, & Orban, 200d)the consolidation of new ordinal
sequences is correlated to the activation in thgulan gyrus usually involved in simple
arithmetic problems (Van Opstal, Verguts, Orbarki&s, 2007).

With children three types of intervals were admnaried: numerical, alphabetical and
months. The expected pattern of behaviour wouldrbmcrease of precision in estimating the
midpoint with age for all types of sequences, iy dor numbers the misplacement of the
midpoint should follow determined characteristicgleed, if numbers to the right end of the
interval are compressed and those to the left xgpareled, the subjective midpoint should be

smaller number than the true one and the underaistim should be stronger for longer
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intervals. Additionally, performance in the verlxaierval bisection task and in the Number-
to-Position task should correlate if both measheesame representation.

Finally, children were tested on their knowledgetltd different sequences they were
tested on. They had to count as far as they coedite the letters of the alphabet, the months

of the year, and the days of the week.

|.1.1. Experiment 2a.

A. Method

Participants

A total of 136 children from 14 different schoolsrmrth eastern Italy ranging from the
last year of kindergarten tddagrade took part in the study. There were 51 pslens (27
girls) with mean age of 68 months (standard demiafED) = 6 months), 28 first graders (15
girls) with mean age of 83 monthS§= 4), 35 second graders (18 girls) with mean d@bo
months ED= 4), and 22 third grader (9 girls) with mean a§&05 months$D = 5).

Procedure

Trained teachers from each school met with thedodl individually during school
hours in a quiet classroom for about half an hdine familiarity with the teachers helped
children to feel comfortable in the testing sessiOrder of experimental tasks was randomly
presented to children. Tasks were presented assgtmattract children’s attention. For all
tasks, no time limit was given and items or questioould be repeated if asked. Children that

felt tired or bored were free to stop the studsrat time.

Sequences knowledge

All children were tested on their minimal knowledge numbers, letters, months, and
days of the week. They were asked to count asdahey knew for the number sequence
(e.qg., “Do you know the numbers? Try to tell methk numbers you know”). If the child
reached 30 with success he was stopped. For tlee stlquences they were asked to give all
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the letters/month/days they knew (e.g., “Do youwrbe letters? Try to tell me all the letters

you know”).

Number-to-Position task (NP task)

The evaluation of the numerical estimation was dasm@resented in Siegler and Opfer
(2003). Children were presented with 25-cm longedinn the centre of A4 paper. Two
different lines were administered: 0-100 and 0-100@e ends of the lines were labelled on
the left by O and on the right by either 100 or @O the upper left corner of the sheet was
the number to be positioned. The number was nactyr above the line avoiding any
positioning influence. Numbers to be positionedtfe 0-100 line were: 2, 3, 4, 6, 18, 25, 48,
67, 71, 86; and for the 0-1000 line: 4, 6, 18,2k, 86, 230, 390, 780, 810 (corresponding to
sets A and B for the same lines used in Sieglerge® 2003). Numbers were completely
randomized within each interval. Each line was sseparately from the others to avoid
influence from previous positioning. Instructionsen at the beginning were: “We will now
play a game with the number lines. Look at thisepagu see there is a line drawn here. |
want you to tell me where some numbers are onlittes When you have decided where the
number | will tell you is, | want you to make a rkavith your pencil on this line.” To ensure
that the child was well aware of the interval sittes experimenter would point to each item
on the sheet while repeating for each item: “This goes from 0 to 100 (1000). If here is 0
and here is 100 (1000), where would you position(SID)? The numbers to position were
always named verbally by the experimenter for thtlc

For both intervals, there was a practice trial tsed the numbers 50 and 500 for the
smaller and larger interval respectively. It wasrtipossible to check if the task was properly
understood. Experimenters were allowed to rephthseinstructions as many times as

required without making suggestions of where ta@lde mark.

Non-numerical lines task
The alphabet, month and week lines as well as treegponding numerical lines were
presented in the same way as the Number-to-Pos#gk The stimuli used for the Letter-to-
Position (LP) task were: “B, E, H, L, N, P, S, Wor the Month-to-Position (MP) task,
children had to position: “February, April, Julyef@ember and November”. Finally, for the
Day-to-Position (DP) task, every day name excepiuf§day” had to be positioned and the
line started on “Monday”. The corresponding nuradritnes were 1-21 for the Italian

alphabet, 1-12 for the months, and 1-7 for the w¥eé& considered to start from 1 instead of
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0 since it represented more accurately non-numnidnies that all start with the first element
of the sequence. The numbers to position were toos@sponding to the non-numerical

items (e.qg., items “Tuesday”, “B”, and “Februaryére replaced by number 2).

B. Results.

Sequence knowledge

Mean correct responses (M) and standard deviaB&h \ere calculated for all recited
sequences. The maximum score was 30 for numberfgr2étters (according to the Italian
alphabet; letters from other alphabets were nosidened), 12for months and 7 for days. Two
scores were initially calculated. One was the dieramber of items reported from that
sequence without repetitions and in any orderother score considered only items given in
the correct order, without repetitions and with aximum gap of 2 in-between items (e.g. “a,
b, e, f...” was considered as an acceptable sequemc@ot “a, b, f...”). In some cases
children would give parts of correct sequencesrimiteed with random items, therefore the
score corresponded to the longest correct piecegdence (e.g., “a, b, ¢, z, v, d, e, f, g, h”
was scored 5 for the sequence part starting witlatd ending with “h”).

Correlations between the two types of scores werg kigh therefore only the second
and more strict type of scoring was kept. In thkof@ing table mean scores aisDs are

summarized for each class and for the four seqeefi@ble I11.1).

Tablelll.1l.: Mean scores and standard deviations for the Segqadask.

Numbers(30) Letters(21) Months(12) Days(7)
Class

M s M SO M SO M SD
Preschool 21.9 89 59* 69 19* 34 34 29
1'grade  29.4 19 168 64 94 38 69 03
2™grade  29.5 1.9 193 46 113 21 69 05
3 grade 30 0 203 16 119 05 7 0
Total 26.7 67 139 84 75 53 56 24

Note: In parenthesis by each sequence are maxiroarass®* One participant did not complete the task.

Separate one way analysis of variances (ANOVA) amres for each sequence were

calculated introducing class as a factor. For aluences, class was significant
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(NumbersFz 132y = 19, p < .001; LettersF 131y = 56, p < .001; Months:F3131) = 102,
p < .001; DaysFs131)= 41,p < .001). Post-hoc comparisons highlighted thatsiggaificant
improvement occurred between preschool and thegpyirschool for all sequences (preschool
versus all primary gradeps < .001). Moreover, only for months a significanmtprovement
occurred betweerand 3 grade p < .023).

One-tailed Pearson correlation analyses were asducted between sequences and
with class. The a priori hypothesis was that improent should occur with level of
instruction for all sequences. For simplicity, &ation results are displayed in Table Ill.2.

All tasks positively correlate with each other amith class.

Tablelll.2.: One tailed correlations for all sequences andsclas

Numbers Letters Months Days

Class .48 .69 a7 .59
Numbers / .60 .55 .63
Letters / / 71 .60
Months / / / .69

Note: all correlations are significant@ak .001 one-tailed.

Number-to-Position task

For the Number-to-Position task, analysis were ootetl according to the method
recommended by Siegler (Siegler & Opfer, 2003; I8red Booth, 2004). Analysis on
accuracy of children’s estimates was computed uiagpercent absolute error of estimation
for each participant. This was calculated as fodpw

percent absolute error = (estimate — real valu@gliof estimates

A mixed ANOVA on mean percent absolute error (cctied with the
2*arcsin(percentage/100) formula) was computed with clasa between-subject factor and
type of interval (0-100 and 0-1000) as within-sgbjéactor. Results indicated that both
variables introduced were significant (cla$izi27) = 37, p < .001; type of interval:
F@,127)= 348, p < .001). For the 0-100 line, the mean percent labscerror was 17%
(SD=10%) and for the 0-1000, the mean was 328bB € 12%). Post-hoc comparison
indicated that the estimation progress was sigmiti¢hrough all classes (g < .005) except
between T and 2 grade that did not reach significance. Mean peaggnabsolute error for
both lines, 0-100 and 0-1000 were 27% and 38% fesghoolers, 14% and 36% fot' 1

65



Chapter llI

graders, 12% and 28% fof%graders, and 8% and 20% fdf §raders. These percentages
closely resemble those obtained by Siegler andalcothtors in various studies (Booth &
Siegler, 2006; Siegler & Booth, 2004) and alsoadest group in Experiment 1a had a mean
percentage absolute error of 23% on the correspgn@i100 line. The interaction also
revealed significant, highlighting that the mainca@cy change arises at different times
according to the lineR 127y = 9.47,p < .001). Repeated contrasts indicated a significan
improvement of accuracy from preschool tbgtade and from™ to 39 for the 0-100 line. In
contrast, for the 0-1000 line the accuracy impravestly from #'to 2'¢ and from 2 to 3¢
grade (Figure 1ll.1.). Only five children did nobroplete enough items for these tasks to be

included in the analysis.

Mean Percent Absolute Error for each class
100

80

B0 |

40 | ----gpemzooo oo

-~ .
~$—--—-

20

T o— —— .

Kindergarten 1st grade 2nd grade 3rd grade

Figurelll.l.: Mean percent sbsolute error for each class invtleeNumber-to-Position tasks. The dashed line
corresponds to the 0-100 line and the solid lintheo0-1000 line. The error is smaller for the dardine and
the greatest improvement occurs earlier for thellsmiine (preschool to*Lgrade) and later for the 0-1000 line
(after T' grade).

To analyse the pattern of estimates, the fit ofatdgmic and linear functions were
computed on group medians first and then for eadlvidual child. For group medians, the
difference between models was tested with twotstes the distances between children’s
median estimates for each number and the predickees of both linear and logarithmic
models (i.e., t-test on the residuals of both me)ddtor preschoolers, both lines were best
represented by a logarithmic mod@é4100: tg) = 2.86,p < .05, R? = .93;0-1000: te) = 2.56,

p < .05,R* = .83). For ' and 2 graders the t-test was not significant betweerlitiear and
logarithmic representation for the 0-100 line buittbR* were very high (f graders:
linearR? = .88, logarithmid?? = .98; 29 graders: lineaR? = .95, logarithmid?® = .96). This

indicates that overall children froni'and 2° grade have almost completely achieved a linear
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representation. On the 0-1000 line, performancleotii age groups were best represented by
the logarithmic function ¢l gradersite = 3.41,p < .01, R® = .93; 2¢ gradersitg) = 3.72,
p<.01,R? =.99). Only & graders were clearly linear for the smaller lind atarted to show
some linearity also on the larger lir@%00: t) = -3.21,p < .05,R? = .99;0-1000: tg = 2.56,

p > .05, linearR? = .85 and logarithmid® =.94). Graphs of median estimates and the best

fitting model are presented in Figure 111.2.

i Preschool 1st Grade 2nd Grade 3rd Grade
a0 s
Af%. . j‘—é 86 /
&0 v e T X‘ﬂ7/ /
+ 18 + 43 [t G
40 & % 25 * 48
o / / Lin R?= 88 //“/ Lin R?=.95 y,w/
2 20 n n
5 12 Log R?=93 |f7 Log R?-98 |37 Log R2=96 |Zf Lin R2—99
[}
.‘3 0 20 40 60 80 100 20 40 60 80 100 20 40 (11} 80 100 20 40 60 80 100
@ 1000
c
0 .—«m"’/_
© 200 + 230 + %0 2810
= L] #° * 780
600 ¢ —e——— %80 £ . vzl
; /o /"‘( Sl
400 18 18 r Akl
’s Log R?=83 Log R?=93 LogR2=99 |2 Log R2=.94
200 ] %
P T [g Lin R?=85
0

o 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Real values

Figurelll.2.: Best logarithmic and linear models for each claghe Number-to-Position task. Mean estimates
are plotted against real numerical values. Thetgrdpr the 0-100 line are in the top row and thfmsethe O-
1000 are in the bottom row. Groups that did notshosignificant difference between the type of posing
have both models plotted.

Fitting individual children’s estimates allows torther understand the results found on
group medians, and also to grasp developmentatrpatt The best fitting model between
linear and logarithmic was attributed to each childenever one was significant. If for
example, both models were significant but the lilyaric R* was the highest then the child
was attributed a logarithmic representation. In ¢hse where both were not significant, the
child was considered not to be able to position lmers and probably solved the task using a
non-numerical strategy (e.g., alternating left agtit marks from trial to trial). For each line,
children could be classified as having linear, tigaiic or no representation.

Spearman’s rank correlations were computed betwkes (preschool, 51 2" and &
grade) and type of representation (no representakigarithmic and linear) separately for
each line. Moreover, another correlation was atsmputed on the representations for both
lines. Additionally, a chi-square test was perfodm® test the random distribution of
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representations. Since the a priori assumptiorha the older the child, the better the
familiarity with numbers, all tests were one-tailédl correlations were significant as well as
the chi-square testsléss & representation on the 0-100 line: rs = .60,p < .001,;(2(6) =73,

p < .001;class & representation on the 0-1000 line: rg = .49,p < .001,;(2(6) =43,p < .001,;
representation on 0-100 & 0-1000 lines: rs = .50,p < .001,)(2(4) =70,p<.001). Tables IIl.3.
and l11.4. report the percentages of each typeepfasentation as a function of class and type

of line.

Tablelll.3.: Percentages of children adopting a specific regpt@sion on each numerical line.

Type of representation 0-100* | Type of representation 0-1000**
Class None Logarithmic Linear | None Logarithmic Linear
Preschool 50 40 10 53 41 6
1% Grade 4 82 14 11 89 0
2" Grade 0 62 38 6 82 12
3%Grade 5 18 77 4 73 23

Note: * Three preschoolers and orfé @ade child did not complete enough items tohiit inodels.

** Four preschoolers and twd®grade children did not complete enough itemsttthé models.

Tablelll.4.: Percentages of children adopting a given comhinaif representations on the two numerical line.
0-100line

0-1000line  None Logarithmic Linear

None 68 19 13
Logarithmic 3 66 31
Linear 18 9 73

Note: overall 7 children did not complete enougims on one or both tasks to fit the models.

Non-numerical lines task

For simplicity each non-numerical line with its nencally equivalent line will be
presented separately: alphabet (LP), months (MB)veeek (DP). All nhon-numerical lines
and their corresponding numerical lines were arelyollowing the procedure used for the

Number-to-Position task.

Alphabet line (LP) and 1-21 line
A mixed ANOVA on mean percent absolute error (ccied with the

2*arcsin(percentage/100) formula) was computed with clasa between-subject factor and
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type of line as a within-subject factor. The maiifeet class and type of line were significant
(F(z,128)= 1666,p < .001;F 128 = 6.07,p < .05), highlighting both an improvement in the
precision of estimating with age and schooling, #relbetter performance for the 1-21 line
compared to the LP. Mean percent absolute errothalphabet was 179%ID = 12%) and
for the 1-21 line was 14%SD = 11%). Post-hoc comparisons revealed that then mai
difference occurred between preschool and the @ludgisses (albs< .001). Moreover, only
for preschoolers there was a significant differeimcthe precision of estimating the items on
the two lines (27% for letters against 22% for nensh. For the other classes the difference
was not significant ¢ and 2° graders: 12% and 10 % respectively for letters ford
numbers; 3 graders: 10% for both types of items). Four ceitdwere not included in the

analysis because they did not complete enough itémach line.
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Figure I11.3.; Best logarithmic and linear models for each clasthe LP and its numerical equivalent. Mean
estimates are plotted against real numerical valliee models fit on the letter estimates are repres! with
dashed lines and triangle whereas the models fthemumber estimates are represented with solib land
dots.

To analyse the pattern of estimates, the fit ofatdgmic and linear functions were
computed on group medians first and then for eadlvidual child as done for the Number-
to-Position task. Preschoolers performance on fevere best represented by a logarithmic
function ¢y = 2.77,p < .05) whereas for the numerical counterpart tifferdince between the
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two types of representations was not significamlicating that with such a small interval
children from preschool already start to masteinear positioning. Indeed, in our previous
study (Experiment 1a) we have shown that childfeth@ same age were perfectly linear on a
1-10 line. In £, 2"%and ¥ grade, the way children positioned letters wasathgwell fit by a
linear and a logarithmic model while numbers weredpminantly positioned linearly Y1
gradei) = 2.88,p < .05; 29 gradet;) = -2.75,p < .05; 3 gradety; = -3.26,p < .05; Figure
111.3.).

A type of representation was attributed to eacldchsing the same criteria as those
used for the Number-to-Position task allowing tatar understand developmental patterns.
Indeed, one could argue that mean estimates calotuly represent individual performance.
Therefore, for each children and for each linel{alet and numerical), a linear, logarithmic

or no representation could be assigned (Table)ll.5

Tablelll.5.: Percentages of children adopting a specific regmtasion on each type of line (LP and 1-21 line).

Type of representation LP* | Type of representation 1-21**
Class None Logarithmic Linear | None Logarithmic Linear
Preschool 66 17 17 49 24 27
1% Grade 11 25 64 4 25 71
2" Grade 6 20 74 0 11 89
3%Grade 5 27 68 4 14 82

Note: * Five children form preschool did not contplenough items to calculate the models.

** Two children from preschool did not complete eigh items to calculate the models.

One tailed Spearman’s rank correlations were coetplietween class and type of
representation separately for each line as webbedaween the representations to both lines.
Additionally, a chi-square test was performed tcsttdhe random distribution of
representations. All correlations were significast well as the chi-square testaés &
representation on the LP: rg=.54,p < .001,)(2(6) =54,p <.001;class & representation on
the 1-21 line: rs = .55,p < .001,)(2(6) = 54,p < .001;representation on LP & 1-21 line:
rs=.62,p < .001,°4 = 69,p < .001).

Months line (MP) and 1-12 line
A mixed ANOVA on mean percent absolute error (ccied with the
2*arcsinV(percentage/100) formula) was computed with clasa between-subject factor and

type of line as a within-subject factor. Both mafiects were significant as well as the
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interaction. The older the class the better thauamy in positioning months and numbers
(F126) = 1523,p < .001). Overall performance was more accuratetifer numerical line
(Fz,126) = 5.36,p < .005). Post-hoc comparisons again revealed mifisant difference
between preschoolers and the three primary clagbessignificant interactiorHz 106)= 5.29,

p < .005) indicated a larger improvement in positignmonths compared to positioning
numbers. Preschoolers were more accurate for nsmban months but by*1through ¥
grade children were more accurate in positioningtimg In separate analysis, onfydnd &
graders were significantly more accurate in positig months compared to numbers
(F,26)= 6.69,p < .05; F(1,21) = 10.95,p < .005) although the analysis on preschoolers was
also close to significancd=¢ 45y = 3.7,p = .061). Six children overall did not complete a

sufficient amount of items to be included in thalgais.
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Figurelll.4.: Best logarithmic and linear models for each ctasthe MP and its numerical equivalent. Mean
estimates are plotted against real numerical vallies models fit on the months estimates are repted with
dashed lines and triangles whereas the models fihe number estimates are represented with sokd and
dots. For clarity of the graph, only the model witle highesR? is shown although not always significantly
different from the otheR?.

Subsequently, the fit of logarithmic and linear dtions were computed on group

medians first and then for each individual chilcheTt-test on the logarithmic and linear
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models for preschoolers’ performance, on both neatid equivalent numerical line, did not
reach significance indicating that the data coutdelaplained just as well by both models
(Figure 111.4.). Nevertheless, a slight bettef was found for the logarithmic fit when
positioning months and a better lineRf was found for the equivalent numerical line
(Months: logarithmid?® = .82; linearR® = .66; 1-12 line: logarithmi&® = .90; linear?? = .97)
First graders positioned months linearly whereath boodels explained equally well the
numerical estimates (Montht = -3.74,p < .05). For the two older classes, both tasks were
best fit by a linear modeR{® graders: monthstyy = -3.41,p < .05: 1-12 linet) = -2.83,
p<.05;3%graders: monthst) = -3.72,p < .05; 1-12 linds) = -3.7,p < .05).

Again, each child was attributed a representatioriffe MP and the 1-12 line. Therefore, for
each line, children could have a linear, logarithrar no representation (Table 111.6). One
tailed Spearman’s rank correlations were computtdiden class and type of representation
separately for each line as well as between theeseptations for both lines. Additionally, a
chi-square test was performed to test the randostriltlition of representations. All
correlations and the chi-square tests were sigmfi€lass & representation on the MP:
r«=.37,p < .001,)(2(6) = 28,p < .001;class & representation on the 1-12 line: rs = .56,

p <.001,7%¢) = 67,p < .001;representation on MP & 1-12line: rs = .45,p < .001 %4 = 31,

p <.001).

Tablelll.6.: Percentages of children adopting a specific regasion on each type of line (MP and 1-12 line).

Type of representation MP* | Type of representation 1-12**
Class None Logarithmic Linear | None Logarithmic Linear
Preschool 58 6 36 83 2 15
1% Grade 15 11 74 22 14 64
2" Grade 17 6 77 3 26 71
3%Grade 14 14 72 18 9 73

Note: * Three children form preschool and one frbingrade did not complete enough items to calculage t

models. ** Five children from preschool did not qoete enough items to calculate the models.

Week line (DP) and 1-7 line

The mixed ANOVA on mean percent absolute error rémed with the
2*arcsin(percentage/100) formula) was computed with clasbetween-subject factor and
type of line as within-subject factor. Only mainfeets reached significance (class:
FG.1290= 2239,p < .001; type of lineF,129)= 70,p < .001). Overall, mean percent absolute
error for positioning the days of the week was 1@b= 11) and 24% D = 12%) for
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numbers. Children were therefore more accurate dsitipning days of the week than
numbers. Once more, post-hoc comparisons showedarketh improvement between
preschool and the other 3 primary classes galk .005). Only three children had do be
removed from the pool of participants for not pasitng enough items on the lines.
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Figure l11.5.; Best logarithmic and linear models for each ctasshe DP and its numerical equivalent. Mean
estimates are plotted against real numerical valliBe models fit on the week estimates are reptedenith
dashed lines and triangles whereas the models fihe number estimates are represented with sokd and
dots.

Logarithmic and linear fits over median estimates plass resulted in contradictory
results. On the one hand, only iff rade, children were significantly more linear in
positioning numbers on the 1-7 lingyy(= -3.91,p < .05). For the three younger classes the
positioning was fit equally well by both linear ataharithmic models even if the’Rvas
highest for the linear model. On the other hangsd# the week were fit significantly better
by the linear representation for the two youngessés (preschodiy = -4.22,p < .05; £
grade:ty) = -4.9,p < .05) whereas both models fit equally well medatimates made by the
older group. An explanation for the awkward resultthe numerical line is that the numerical
interval of 1-7 is very unusual. As a matter oftfashildren at that age have already shown
linearity on longer lines as the 0-100 in this ekpent and on the 1-10 line in our

Experiment la. Indeed, in the first years of schabildren learn using with a 10-base
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reference. Placed in a task were the reference?yasildren were impaired in “resizing”
their line. The other lines, 1-21 and 1-12, wereemaloser to familiar lines compared to the
1-7 line. This is also evident when visualizing gesition of item number “5” (Figure 111.5.).

In general, all items for the numerical line haweib underestimated but this item has been
systematically and more strongly underestimatetbdisg model fits in all classes with the
exception of % grade. This particular underestimation and norediity of fits is
contradictory with the ability of%] 2'® and 3 graders to estimate the positions of numbers
linearly on larger lines (i.e., 0-100, 1-21 and2)-1

To further support this hypothesis, models madsiogle children showed an inability
to position numbers across all groups. Up 'fogBade, more than 40% of children were not
able to position numbers adequately and were cagegbas having no representation (Table
11.7.). Moreover, the linear representation is mor less absent until®3grade where a big
jump appears. Indeed, 50% percent of the childositipn numbers linearly highlighting an
all-or-none pattern.

Since the 1-7 line was misrepresentative of childibilities, the one tailed Spearman’s
rank correlations was computed only between clagk tgpe of representation in the DP.
Additionally, a chi-square test was performed tcsttdhe random distribution of
representations. Both the correlations and thesgbhare test were significantldss &

representation on the DP: rg = .45,p < .001,;(2(6) = 36,p < .001).

Tablelll.7.: Percentages of children adopting a specific regmtasion on each type of line (DP and 1-7 line).

Type of representation DP* | Type of representation 1-7**
Class None Logarithmic Linear | None Logarithmic Linear
Preschool 67 6 27 84 6 10
1% Grade 43 0 57 64 11 25
2" Grade 17 6 77 77 20 3
3%Grade 9 18 73 41 9 50

Note: * Three children form preschool did not coatplenough items to calculate the models.

** One child from preschool did not complete enotuigims to calculate the models.
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Regression analyses with the Sequences knowleskg dad type of representation on

the different lines (numerical and non-numerical).

To understand the role of specific sequence knaydeoh the ability to position
numbers, letters, months and days of the week, raumeregressions were performed
introducing both class and score on the appropsetgience as predictors. Indeed, the better
a child knows the sequence of numbers the betteanighat position numbers on the lines.
This was the assumption made by Siegler and cobiéns (Siegler & Opfer, 2003; Siegler &
Booth, 2004) when they claim that the familiarityttwthe numerical context influences
children’s ability to position numbers either iritvely or linearly. In our analysis, class was
introduced to partial out the general effect ofasdimg. Table I11.8. presents the percentages
of variance explained by each predictor introducesingle regressions.

Tablell1.8.: Percentages of variance explained for each ragressith class as first predictor and score on the

different sequences as second predictor.

1% Predictor 0-100 0-1000 LP 1-22 MP 112 DP

Class 36% 20% 28% 29% 14% 30% 20%
2" Predictor

Numbers score 39% 26% 39% 37%

Alphabet score 38%

Months score 22%

Days score 26%
A of R? explained 3% 6% 10% 10% 9% 7% 6%
N participants 130 128 129 132 127 129 132

Note: In each row are represented the first andrskpredictors, in each column the percentage ohnee
explained for each task. The penultimate row ingisahe percentage of unique variance explainedhby
second predictor and the last row the number ofigigants introduced in the analysis. All predistorere

significant withp-values < .01.

Although percentage of unique variance explainethkysecond predictor was small, it
was never the less always significant. This in@isdahat even if a core part of the variance is
explained by a general improvement due to yeansigifuction, the specific knowledge of
each sequence influences the ability to positiem# on the line in a formal and more
appropriate way. It is interesting to highlight haildren implicitly tend to position non-
numerical sequences linearly even if this is ngunmed. In fact, nothing specifies that the

distance between “A” and “C” is twice the one betwe'D” and “E”. The same is true for
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months and days of the week. At this point we coolfiér two possible, but opposite,

explanations: first, children generalize the lirtyaprinciple to all sequences whether or not
they are numerical as long as the context is fam#nough, and second, logarithmic and
linear positioning are not the consequence of aamoa representation but a general
phenomenon: the more items of the sequence arerkntw more they are equally spread

onto the line.

Table 111.9.: Percentages of variance explained for each ragressith class as first predictor, score on the
appropriate non-numerical sequence as second pyediad finally type of representation for the e@lent

numerical line.

1% Predictor LP MP DP

Class 28% 14% 20%
2" Predictor

Alphabet score 38%

Months score 22%

Days score 26%
A of R? explained 10% 9% 6%
3" Predictor

Representation 1-21  48%

Representation 1-12 26%

Number score 29%
A of R? explained 10% 4% 3%
N participants 129 127 132

Note: In each row are represented the first, secand third predictors, in each column the pergmtaf
variance explained for each task. The penultimateindicates the percentage of unique varianceaimgd by
the third predictor and the last row the numbepaiticipants introduced in the analysis. All prédis were
significant withp-values < .05. For the DP the representation feritty line was not representative, therefore

the predictor was substituted with the score inNbenber Knowledge task.

To discern between these two explanations, angttenf regressions was computed to
establish if the type of representation on the vejant numerical line would explain a
significant part of the ability in positioning itemon non-numerical lines. Indeed, if the type
of representation for a non-numerical sequencetshe consequence of a generalisation of
the numerical representation then it should onlgXx@ained by abilities in that specific field
and not by numerical abilities. As in the previaset of regressions, class was the first
predictor introduced, followed by the knowledgetloé non-numerical sequence and finally

by the type of representation for the numericatiyiealent line. Only for the WL the third

76



Development of Numerical and Non-Numerical Sequence

predictor was the score in the Numerical knowletiggk since the 1-7 numerical line was
biased and not representative of children’s peréorce (Table 111.9.).

Percentages of unique variance explained by thel thredictor were significant,
indicating that the ability to position numbers cstill predict the ability to position non-
numerical items even though the effect of spe@Bquence knowledge was partialled out.
This result supports the possible generalizatigmothyesis where children learn linearity for

numbers first and then generalize the principletter sequences.

C. Discussion Experiment 2a.

To summarize the data, we have observed that thergieknowledge for sequences
improves with class and the greatest improvementirschetween kindergarten artigrade.
This result is in agreement with the beginningarfifal teaching at school. In the Number-to-
Position (NP) task, the developmental pattern oleseby Siegler and collaborators (Siegler
& Opfer, 2003; Siegler & Booth, 2004) and in Expeent 1a has been replicated. Children
initially overestimate small numbers and progresgishift to an equidistant positioning of
estimates. For the 0-100 line, preschoolers whighereunable to position numbers or were
best represented by a logarithmic positioning. tFinsd 2% graders were in-between the
logarithmic and the linear positioning whereas rtegority of 3¢ graders were clearly linear.
For the 0-1000 line, from kindergarten t§ Brade, positions of estimates was best described
by a logarithmic representation and only b §rade some ability to position numbers
linearly appeared. Additionally, we directly testegprovement in both lines and observed
that the strongest increase in precision for thallemline (0-100) occurred in®1grade
whereas for the larger line (0-1000) it occurrexhfr?' grade on.

Comparisons between the Letter-to-Position (LPk &@sd the 1-21 line showed that,
although accuracy increased for both lines, perémre in positioning numbers was higher.
Analysis on individual representations for the L#&sSki indicated that the majority of
preschoolers did not possess enough knowledgesitiquoletters. FromSito 3% grade, even
if a fourth of the children overestimated the fiedters of the alphabet, the majority were able
to position them linearly. This rapid shift, fronmlergarten to *t grade, could be explained
by the fact that the experiment was carried otlh@tend of the school year. Consequently, 1

graders, compared to preschoolers, had an intepsaatice on letters. This explanation is
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supported by the significant increase in scorehenleétter sequence task (from 6 to 17 letters
named in correct order by the end &fgtade). For the equivalent numerical line, thesizal
developmental trend was observed although somehwekers were already able to position
numbers linearly. Indeed, children of the same qrip in Experiment la were able to
position numbers linearly on a 1-10 line.

Performance in the Months-to-Position (MP) task andthe 1-12 line was also
characterized by a general improvement as a fumatioclass. Numbers were positioned
linearly starting from kindergarten but for montlisere was an all-or-none pattern.
Preschoolers did not reach a logarithmic positignivhereas from *1 grade on they all
positioned months linearly. Again, this shift couté the consequence of the late testing
period that gave pupils almost a year of practice.

The Days-to-Position task and the numerical egavaline (1-7) showed a peculiar
pattern of performance. Although the greatest imgneent occurred in®lgrade, conversely
to the other tasks, the non-numerical sequencesalagd more accurately. Performance in
the 1-7 line was poor in general and onrﬂlg}aders were able to position numbers linearly.
The other classes were not even characterizeddmeathmic fit of the estimates. This result
is contradictory with the better performance obedrin tasks with larger intervals. A
reasonable explanation is that numbers are alweysgght in school using a base-10 reference
system. The particular interval used probably imduchildren in error by confusing their
scheme of reference. In suppoft Gaders were either unable to position numbergoj4dr
had a linear positioning (50%) with almost no ivbeen performance. Moreover, 192
grade only 3% of the children positioned numberedily. Probably, only by'3 grade
children have had enough practice to master numimelspendently form the teaching
reference and are able to overcome the confusianthérmore, children have a better
performance in the longer intervals that are cléseéhe base-10 reference system. This result
is nevertheless interesting because it highligigsimportance of familiarity with the context
for achieving the task and knowing the numbersoitssufficient to be able to position them
according to a linear representation.

Finally, the ability to position items was a fumeti of school years and specific
knowledge. It appeared that once the number ofsy@arschool was partialled out, the
knowledge of a specific sequence significantly akmd the ability in positioning items in
the corresponding line task. Interestingly, non-edoal lines were positioned linearly
although nothing in the sequence itself suggediseit the distance between A and B needs

not to be the same as between C and D, as welliss\& larger than A). Therefore it could
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be that children generalize the linearity conceptatl sequences. Indeed, the ability to
position numbers in the equivalent line still exipéal a part of unique variance once class and
specific knowledge were partialled out.

Overall, in this experiment we have observed thgatithmic and linear positioning of
estimates is not restricted to numerical sequeriMeseover, the ability to position numbers
predicts the ability to position non-numerical seqgges supporting the assumption that

children generalize the linearity principle to @itlinal sequences.

|.1.2. Experiment 2b.

A. Method.

Participants and Procedure

The same participants of Experiment 2a also undkrtbe tasks from Experiment 2b.

Moreover, the same procedure was followed.

Mental bisection of numerical intervals

Stimuli and procedure strictly followed those ofrZioand collaborators (Zorzi et al.,
2002). From their stimuli we only used the forwanmtkrvals considering the backward task
too challenging for young children. The 48 forwandmber intervals were randomly
presented verbally to the each child. Lengths tdrials were: three (e.g., 1-3), five (e.g., 1-
5), seven (e.g., 1-7), and nine (e.g., 1-9). Eatdrval length was presented in the units range
(e.g., 1-5), the tens (e.g., 11-15), and the twsnfe.g., 21-25). Children were asked to say
what number was in the middle of each number iadefive., “What number is in the middle
between 1 and 9?”). In case children used thegefis to solve the problem, the experimenter

kindly discouraged them from doing so.

Mental bisection of non-numerical intervals
Also for the non-numerical intervals only the fordaitems from Zorzi and
collaborators (Zorzi et al., 2006) study were uasgdin considering the backward task too

challenging. Twenty-two verbally presented lettetervals (e.g., L-T) were randomly and
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verbally presented. The length of the interval wase (e.g., L-N), five (e.g., L-P), seven
(e.g., L-R), and nine (e.g., L-T). Participants &vexsked to say what letter occupied the
midpoint position for the interval. (i.e., “Whattter is in the middle between P and T?”
Correct answer: “R”).

For months intervals, 16 forward stimuli were used randomly presented. Interval
lengths were three (e.g., April-June), five (eApril-August), seven (e.g., April-October), or
nine (e.g., April-December). Participants had tonaathe month that was the midpoint of
each interval (i.e., “What month is in the middetween April and August?” Correct answer:

“June”).

B. Results.

Analysis on response types in the mental bisectiomtervals

For the mental bisection tasks the first analysieed at understanding children’s
response pattern. Indeed, compared to adults,rehildad a much wider range of responses
including answers out of the given interval or ea@swers from other domains (e.g., respond
“3” for the interval “April-August”). Therefore, awers were first classified in 5 distinct
categories: correct answers (CA), interval ans\ié&{s scale answers (SA), aberrant answers
and finally no answer. Since the percentages ®two last classifications were overall very
low, they have been merged into the other ansvi@®g ¢ategory. 1A included all the answers
that were not correct but were inside the inteyigen for that trial (e.g., “May” for the
interval “April-August” when the correct answer wakine”). SA were all the answers that
fell inside the total range covered by all the i.em that domain. For example, number
intervals included numbers going from 1 to 29, ¢f@re, a SA could have been “19” for
interval 11-17. Finally, aberrant answers wereaawers outside the total covered range and
even those answers from another domain (e.g., mespb000” or “B” for interval 1-9).
Percentages of each type of answer were calculatddually for each child and corrected
with the 2*arcsin/(percentage/100) formula.

This classification allows to qualitatively undenstl the development of the ability to
solve the task. Analyzing percentages of absolutar evould have reduced the amount of
information from the task. Indeed, we predict tindtiter classes and with familiarity with the
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domains investigated, children would give more GW arror patterns would shift from OA
or SAto IA.

Numerical intervals

Separate analysis of variance were computed fdr gpe of answer (CA, 1A, SA, OA)
introducing class (preschool®,12" and & grade), interval length (3, 5, 7, and 9) and
numerical size (units, tens and twenties). Figuiké.ldisplays percentages of each type of
answer as a function of class.

For CA the three main effects were significant (cld&sa44)= 233,p < .001; interval
length: F(3,144)= 626,p < .001; numerical sizeé 144y= 8.79,p < .001). Percentages of CA
increased with classpfeschool p = 17%,SD = 14%:; 1% grade p = 48%,SD = 30%;
2" grade u = 59%,SD = 25%; 3% grade p = 62%,SD = 26%). With increasing interval
length and numerical size, percentages of CA deeceénterval 3 p = 71%,SD = 26%;5
M= 32%,SD = 17%; 7 p = 21%,SD = 14%; 9 u = 22%,SD = 15%; units g = 50%,
SD=30%; tens p = 45%,SD = 31%; twenties p = 25%, SD = 20%). All two-way
interactions were significant. The numerical siZantervals influenced more preschoolers
compared to "8 graders 6,144y = 2.96,p < .05). Performances were better for the units
intervals but by 8 grade, percentages of CA were similar throughtutiemerical sizes. The
interaction length of the interval by class wasdigant (F 144y = 9.92,p < .001). For the
smallest interval accuracy increased more withsctamnmpared to the other three. fhgrade
performance already reached 80% of CA. The othervals also improved with class but not
so strongly and never reached 50% of CA. The intema length of interval by numerical size
was also significantFe 144y = 2.23,p < .05). The best solved interval was the one \&ith
length of three in the units range (almost 80% emxy). All the other combinations did not
reach 50% of accuracy. Finally, the three way adgon class by interval length by
numerical size was also significarff(g 144y = 2.51, p < .001). Overall, this interaction
describes a gradual improvement of accuracy foerwal length and numerical size
throughout classes.

For 1A the same ANOVA was computed. All three main eBeatere significant
indicating a slight increase in 1A with clasS144) = 22,p < .001; p = 20%SD = 16%;

M = 35%,SD=29%; p = 29%SD = 26%; 1 = 30%SD = 27% respectively from preschool to
3 grade) and interval lengthr§ 144)= 835,p < .001; p = 3%SD = 3%; p = 44%SD = 12%;
M = 55%,SD = 14%; u = 54%SD = 16% respectively from interval 3 to 9), whilesléght
decrease for numerical SiZ€144)= 9.8,p < .001; p = 31%SD = 27%; p = 28%SD = 26%;

81



Chapter llI

M = 26%,SD = 24% respectively for units, tens and twenti€ly the class by interval
length interaction reached significance showingaémost absolute absence of IA for the
length of 3 because only the two extremes of therwal could count as such answers, and an
improvement with class for the interval of lengtFp 144)= 15,p < .001). Moreover, the two
way interaction numerical size by class was classignificance Eg 1440 = 15,p = .052):
preschoolers gave more IA for intervals composednifs but this difference disappears in
the older children. The three way interaction ws® &lose to significance=(ig 144)= 1.65,

p < .055).

Class and numerical size reached significance fmisdhe SA (class: F( 144y = 47,
p<.001; p = 24%SD = 7%; U = 7%,SD = 5%; n = 12%SD = 6%; pu = 5%,SD= 5%;
respectively from preschool td®3grade;numerical size: F@144) = 23,p<.001; p = 9%,
SD=10%; pu = 12%SD = 9%; u = 15%SD = 9% respectively for units, tens and twenties)
showing a decrease with class for answers outdideirtterval. More interestingly, the
numerical size effect shows that the larger the emnigal size of the interval the greater the
tendency to give SA responses, probably due tesa éxtensive knowledge of the larger
numbers. Indeed, if a child does not know the secgief numbers between 25 and 29 he
might just guess a number that is twenty somettierg., 21). Moreover, the interaction
numerical size by interval length was significafffo 44y = 2,27, p < .05). That is, the
percentage of SA decreased with interval lengtly éoit the smallest numerical size (i.e.,
units), showing a better knowledge for the smalheshbers.

The percentage of OAignificantly decreased with clasb{144) = 344, p < .001;

M =39%,SD= 12%; 4 = 11%SD = 4%; 1 = 0%SD = 0%; u = 3%SD = 3% respectively
from preschool to "3 grade). Additionally, the larger the numericalesizf the interval the
higher the percentages of OA& {144y = 3.87,p<.05; p = 10%,SD = 11%,; p = 14%,
SD=19%; u = 15%.SD = 18% respectively for units to twenties). Butsthaffect was
modulated by the class, because only preschoolessvesi a real advantage for units
compared to larger numerical sizeSef44y = 2.66,p < .05). This shows a progressive

acquisition of numbers with instructions.
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Numerical Bisection Task
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Figurelll.6.: Mean percentages for each type of answer as sidaraf class in the Numerical Bisection Task.

Letters intervals

Separate ANOVAs for each type of answer were coetpwtith class and interval
length as independent variables. Figure 111.7. ldigp percentages of each type of answer as a
function of class.

CA increased with clas$ G 72)= 124,p < .001; p = 6%SD = 5%; p = 25%SD = 22%;
U = 42%,SD = 28%; u = 44%SD = 23% respectively from preschool t8 grade) and
decreased with interval lengtk{ 72) = 186,p < .001; p = 55%SD = 28%; p = 22%SD =
14%; n = 15%SD = 10%; pu = 10%SD = 9% from interval length 3 to 9). The interaction
class by length of interval was significafie(z2) = 11,p < .001). The smallest interval was
also the one that had the strongest increase Vafis éollowed in order of length by the other
3 intervals.

All effects and interaction were also significaot 1A. With class and with interval
length the percentage of IA increased significaalgss: F 72)= 39,p < .001; p = 16%SD
= 9%; u =33%,SD = 24%; p = 40%SD = 30%; p = 42%SD=28% respectively from
preschool to 8 grade;interval length: Fa72)= 287,p<.001; p = 3%SD = 4%; p = 40%,
SD = 15%; p = 51%,SD = 19%; u = 58%,SD = 21% from interval length 3 to 9).
Furthermore, IA to the smallest interval were cans{only two possible 1A), whereas, for all
the other intervals they increased with cldss )= 12,p < .001).

SAto the letters intervals slightly decreased wldss showing an improved knowledge
of letters Fz72= 13,p < .001; p = 14%SD = 6%; p = 15%SD = 9%; p = 7%SD = 5%; u
= 10%,SD = 7% respectively from preschool t8 grade). As well as a decrease with interval
length E@372= 27,p < .001; p = 16%SD = 7%; p = 12%SD= 7%; pu = 9%SD = 5%; p =
3%, SD = 3% from interval length 3 to 9). Indeed, thegkarthe interval the less the possible
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answers outside the scale. Finally, G#ynificantly decreased with clasS{72) = 256,p <
.001; u =64%SD = 4%; u = 26%SD = 7%; u = 11%SD = 45%; p = 5%SD = 4%

respectively from preschool t&"3rade).

Letters Bisection Task

100

BO |~

Mean Percentage

Correct Answers Interval Answers Scale Answers Other Answers

‘l Preschool B 1st Grade B 2nd Grade O 3rd Grade ‘

Figurelll.7.: Mean percentages for each type of answer as sidaraf class in the Letters Bisection Task.

Months Intervals

Separate ANOVAs for each type of answer were coatputith class and interval
length as independent variables. Figure 111.8. ldigp percentages of each type of answer as a
function of class.

Children became more accurate (GM}h class Fz4g) = 56,p < .001; g = 8%SD =
5%; M =42%,SD = 29%; n = 58%SD = 30%; p = 61%SD = 28% respectively from
preschool to 8 grade) and less accurate with interval lenéih 4) = 129,p < .001; n=66%,
SD = 33%; 4 = 28%SD = 16%; 4 = 19%SD = 16%; 4 = 17%SD = 16% from interval
length 3 to 9). The interaction highlighted an ease in performance more salient for the
smallest interval length with class whereas it ve@s marked for all other intervalS 4s) =
9,p<.001).

IA showed a slight increase with cla&gs gs) = 15,p < .001; p = 14%SD = 9%; | =
29%,SD = 26%; 1 = 33%SD = 32%; p = 32%SD = 28% respectively from preschool t§ 3
grade) but greatly increased with interval lend®p 4gy= 197,p < .001; p=3%SD = 3%; p =
39%,SD = 18%; U = 52%SD = 19%; U = 56%SD = 21% from interval length 3 to 9). For
the interaction between the two variables, agamnpércentages of 1A were constant for all
classes for the small interval (3) and increasedhfe other intervals with clasB§ s = 11,p
<.001).
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Percentages for the S&ere very low since the total range covered byitdras was of
nine over the twelve possible months. Even so, bwin effects were significant indicating
first that with class, children decreased in thecgmrtage of answers outside the interval
(F(3,48= 4.88,p < .005; p = 15%SD= 6%; p = 9%SD= 6%, | = 7%SD= 7%; u = 4%SD
= 9% respectively from preschool td® 3rade) and second, the percentage of SA also
decreased with interval length{4s = 3.69,p < .001; p = 10%SD = 8%; p = 11%SD =
9%; U = 6%,SD = 5%; u = 0%SD = 0% from interval length 3 to 9). This seconceeffis
even more obvious since the possible outside asswere only of three for interval item
“April-December”, possible SA: January, Februard &march).

The remaining type of answers (PAecreased with class and slightly increased with
interval length €lass: Fz )= 141,p < .001; p = 63%SD = 4%; p = 19%SD = 4%; y = 2%,
SD= 3%; g = 4%SD = 4% respectively from preschool t& §rade;interval length: Fz.48)
=3.3,p<.05; p =21%SD= 25%; pu = 22%SD = 26%; n = 23%SD = 25%; u = 27%SD =
27% from interval length 3 to 9).

Months Bisection Task

100

I i
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Figurelll.8.: Mean percentages for each type of answer as #idaraf class in the Months Bisection Task.

Representations to the mental bisection of interval

Further analyses aimed at understanding the typemesentation used to solve the
task. Zorzi and collaborators (Zorzi et al., 20@®yzi et al., 2006) observed that patients’
bisected mental intervals in the same way as thegcted physical lines. The subjective
midpoint was systematically overestimated and & wadulated by length of the interval. For
the non-numerical intervals, Zorzi and collaboratobserved different patterns. For the

letters intervals, patients’ performance was notiutated by the length of the interval and for
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the months intervals, they tended to underestirtintérue midpoint. These results suggested
that these sequences are not represented on arsimiérnal space as the numerical
representation.

According to these results, children were expediedbisect numerical and non-
numerical intervals in different ways. If numbers distributed logarithmically onto a mental
line, children should systematically underestintagetrue midpoint. Indeed, smaller numbers
are more spread apart than larger ones. Moreoser,cansequence the larger the interval the
stronger the underestimation. With a progressidsyter representation of numbers, the
underestimation should disappear. For the otheuesemps no such pattern was expected.
Finally, precision was also supposed to increaske elass for all sequences.

Because children gave an heterogeneous range wfees)sit was necessary for the
following analysis to consider only those answdrat twere in the interval range. Indeed,
considering a number too far outside the rangdefititerval would have biased the overall
result. Moreover, a second criteria of 70% of aacyrwas set in order to consider only those
children that properly understood task as wellresigng a sufficient number of responses for
the analysis. In all following analyses, degree$reédom were corrected with Huynh-Feldt

method whenever the assumption of sphericity od dats violated.

Numerical intervals

At a group level, mean differences between obseaveticorrect (dO-C) answers were
calculated for each class. A mixed ANOVA with intar length as within-subject variable,
class as between-subject variable and decade asa®evshowed a main effect of clabg ()
= 5.89,p < .05) and an interaction class by intervgh 198 = 3.42,p < .05; Figure II.9.).
The larger the interval the larger the leftwardidgon from the true midpoint but this was
modulated by the class. In other words, the tengemanswer a smaller number than the true
midpoint is stronger for larger intervals but theviation attenuates with class (udO-C: -1.2, -
0.41, -0.15 and 0.04 respectively from preschodtayrade). Preschoolers were the group
that had the strongest underestimation bias witierval length. Older children were

progressively more accurate and less influencedteyval length.
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Mean deviation according to interval length: numerical
interval

Mean dO-C

interval 3 interval 5 interval 7 interval 9

‘—0 = Preschool = ® =1stgrade == =2nd grade =il 3rd grade ‘

Figure I11.9.: Mean difference between observed and correct angi@-C) per class for each interval across

numerical size. A negative value indicates thatoihserved answer was smaller than the correct answe

Letters intervals

To obtain a adequate number of data points forathaysis, the mean dO-C were
calculated for each subject and then introducea mmxed ANOVA. Therefore, for the letter
interval analysis, the within-subject variable waterval length and the between-subject
variable was class (Figure 111.10). Results showedsignificance for class but only for
interval F@.9117.20= 7.71,p < .001). Longer intervals had an overall strongdtwlard bias
(mdO-C: -.03, -.13, -.51, -.8). No interaction reed significance.

Mean deviation according to interval length: letters
interval

mean dO-C

3 5 7 9
Interval

‘—0 = Preschool = ® =1stgrade =—A =2nd grade —l=3rd grade ‘

Figure I11.10.: Mean difference between observed and correct an@@ C) to the Letter Bisection task per

class for each interval length. A negative valudidates that the observed answer was smaller tfeandrrect
answer.
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Months intervals
The same analysis as for the letters intervals egsed out with the data for the
months intervals. The mixed ANOVA with interval gh as within-subject variable and

class as between-subject variable did not reacfifsignce (Figure 111.11).

Mean deviation according to interval length: months
intervals

mean dO-C
o

‘—0 = Preschool = ® =1stgrade ==& =2nd grade =—=3rd grade ‘

Figurelll.11.: Mean difference between observed and correct an&@@ C) to the Months intervals task per
class for each interval length. A negative valudidates that the observed answer was smaller ttendrrect

answer.

C. Discussion Experiment 2b.

Common conclusions can be drawn following the agialgn type of answers for each
interval. First, the number of correct answerseases with the class and decrease with the
length of the interval. Indeed, the older childiead more years of practice for each type of
domain and the larger the interval the harder #sk.tMoreover, the error patterns were
described by a large number of answers outsidenteeval at the youngest age group that
progressively became interval answers. This patieows the knowledge improvement in the
domain. For example, a child that does not mastdr mumbers might be tempted to guess
the answer when faced with an interval outsideadmge of knowledge (e.g., “28” for interval
“21-25"). Moreover, for the numerical intervalsgtharger the numerical size of the interval
the lower the accuracy. Indeed, children firsttethto master units, then tens and finally also

twenties. Finally, to the contrary of the numericaimain which is virtually infinite, the
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alphabet and the months had less scale answersiaBpavith increasing length of the
interval. For example, when a child was presentgél the interval “April-December” there
were only three possibilities of falling outsidestinterval. For the numerical bisection task
answers could go well beyond the maximum numbesgnted (i.e., 29, some children
answered 70, 100 and 1000).

In the analysis on the representation used in tleatah bisection of intervals we
observed different patterns according to the typseguence. The numerical bisection task
shows a clear underestimation as a function ofsclsd interval length. Preschoolers
underestimated the subjective midpoint more strotighn the older groups. Moreover, the
degree of underestimation was stronger with longeervals. This result reflects the
hypothesis of a logarithmic distribution of numbers the mental number line that would
progressively improve with practice. Moreover, thmttern parallels the numerical
representations observed with the Number-to-Posiiisk. Indeed, the more immature is a
child’s numerical representation the more the mindipof an interval is underestimated.

The letter interval bisection shows a general uestenation that is influenced by the
length of the interval but does not seem to attenwath practice. Interestingly, the adult
control group from the study carried out by Zomdacolleagues (2006) shows a tendency to
underestimate that is modulated by interval lengithough it is not significant. Finally,
performance in the bisection of month intervalssdoet seem to change with practice nor
with interval length.

Overall, the patterns observed in the three bisediisks confirm the claim made by
Zorzi and collaborators (2006) that each sequeeems to have its own type of bisection bias
and therefore its own mental representation. Omdyperformance in the numerical bisection
task follows the clear characteristics of a lodpmiic distribution and significant changes with

practice.
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|.1.3. Combined analysisfor Experiments 2a and 2b

In addition to the previous findings, children’srfpemance to numerical intervals, was
expected to be a function of their internal repnéstton. The type of positioning adopted in
the Number-to-Position task should be related ¢odégree of underestimation in the mental
bisection task. For the other sequences, althoedionmance to the positioning task seemed
to follow the developmental pattern found for thanhber-to-Position task, the correlation
with the bisection task was not expected. As oleskrthe type of bias was different for the

non-numerical sequences compared to the numenmneal o

Numerical intervals, Number-to-Position and numbequence

To test for a relation between the performancehim mental bisection of numerical
intervals and performance in other tasks, regrassfor each individual were computed.
Introducing mean dO-C for each interval at each eniral size as dependent variable and
interval length as predictor. Standardized befgswere extracted and used as dependent
variable in a step-wise regression where classytomyiscore and the type of representations
in the Number-to-Position task (both 0-100 and 0@L0Ones) were introduced as predictors.
The only predictors that had a significant conttidiu were class and counting Scoff@ ¢s) =
8.97,p < .001;R?2=.19). The type of representation for both NurdbePosition intervals did

not explain a significant part of unique variance.

Letters intervals, Letter-to-Position and alphabetjuence

For each individual, the regression slopgwas calculated on mean dO-C and interval
length. This index of the deviation tendency frame true midpoint was introduced into a
stepwise regression with score in the alphabet, typle of representation in the Letter-to-

Position task and class as predictors. None otthesched significance.

Months intervals, Month-to-Position and moths seqee

Individual regression slope$)(were calculated on mean dO-C and interval lergth
deviation index. The stepwise regression with saotbe months sequence, representation to
the Months-to-Position taks and class as predidigrsot reach significance.
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Finally, a correlation analysis between all meitigection tasks (number, letters and
months) was run on individual slopes to observeafoommon individual deviation tendency.

However, none reached significance.

Percentage absolute error analysis for the menisgdtion and the positioning tasks

A last correlational analysis was performed to teshe precision of estimation was
similar across tasks, as previously done by Booth&iegler (they correlated the Number-to-
Position task to other 3 estimation tasks; 2006 fean absolute percentage of errors was
calculated for both the positioning tasks and thental bisection of intervals. Simple
correlations on the percentage of errors for thabwr interval bisection and for the 0-100 NP
task were significantr (= .469,p < .001, one-tailed). The correlations for the namrerical
sequences were also significant (letter intervatk leetter-to-Positiont. = .563,p < .001, one-
tailed; for months intervals and the Months-to-Rosi r = . 323,p < .005, one-tailed).
However when class was introduced as covariateg mdrthe above correlations remained
significant nor did the correlation between theQ®-Bnd the 0-1000 lines. This covariate was
not introduced in Booth and Siegler analysis whecluld have also explained the results

obtained in their study.

In summary results to the combined analysis showed thatbthection bias was not
correlated to the way children positioned itemstloa line tasks. Moreover, only the mental
bisection of numerical intervals was explained bgss and counting score indicating a
decrease in the bias with practice. Finally, theoslite percentage of error for the two types

of tasks correlated although it was completely aoted by the class (years of school).

|.2. General discussion.

The first aim of this study was to test the devaleptal pattern observed by Siegler and
collaborators (Siegler & Opfer, 2003; Siegler & Bwo2004) with non-numerical sequences.
Indeed, it was suggested that the logarithmic [wsiig of numbers on the numerical
intervals was the consequence of a limited knowdedfythe numerical sequence and with
increasing knowledge the numbers would be positidimeearly. If this were true, than the

same developmental pattern should have appearédneit-numerical patterns. Therefore,
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children from kindergarten to"3grade were tested on both numerical and non-neaieri
positioning tasks. Results in the Number-to-Positask replicated previous findings, that is,
a shift from an immature representation to a lirma&. This was also true for the Letter-to-
Position, the Month-to-Position and the Days-to#fws task. Children in the youngest
groups were not able to position items accordingrty model (logarithmic or linear) but by
3 grade were able to position them linearly. Theyatifference was that the logarithmic
representation was less noticeable at individuad! leor probably two main reasons. First, the
intervals were much smaller than the numerical amessecond, the testing period occurred
at the end of the school year allowing extensivaciite to I' graders compared to
preschoolers. Additionally, representations usedthe Number-to-Position task were
explained by both class and specific knowledge rftag score). For the non-numerical
sequence the same was true but an additional una@nce was explained by the type of
representation in the Number-to-Position task. @fwee, this leads to the suggestion that the
type of representation used with non-numerical seges is a consequence of the ability in
the numerical domain. Children would probably letra linearity principle in the numerical
domain and extend the concept to other non-nuniegcpences.

Finally, we have observed that linearity is not mgonsequence of number knowledge.
When children were faced with a small and unusot@rval, that is an interval inside their
range of numerical knowledge but with an unfamilianit (i.e., 1-7), even the older children
experienced difficulty in positioning numbers. lede for being able to accomplish the task,
children had to overcome the predominant base-fidérergce scheme used in all teaching
methods and predominant in the metric system (itegriational System of Units).

The second aim of this experiment was to comparfoimeance in two tasks that tap
onto the same representation. Zorzi and collabmgiorzi et al., 2002; Zorzi et al., 2006)
demonstrated that the mental representation of etsnbesembles a physical line and
influences the performance on a mental bisecti@k.tdherefore, if children possess an
immature representation of numbers this should lerwved in their answers. The initial
hypothesis was that an immature representationrem@sents small numerosities and
underrepresent large ones resulting in an underastn performance in the mental bisection
task. For the non-numerical interval, no specifasbwas expected.

Overall, performance in the bisection task of nuoatrand non-numerical intervals
improved with class and was modulated by the lengttine interval. A progressive shift of

answers from outside to inside the given intervakwbserved highlighting an increasing
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knowledge of the sequence. Indeed, if the sequisncet well mastered it is harder to guess
an item inside the interval.

Moreover, percentage of error in estimating thepuoidt of the interval was correlated
to percentage of error in placing the items in puositioning tasks. The more they were
precise in positioning an item on a line the mdreytwere precise in estimating the true
midpoint in the mental bisection task. However, etige class was partialled out from the
analysis, the correlation between the two disamekafhis should be considered when
correlating the Number-to-Position task with otestimation tasks. In their work, Booth and
Siegler (2006) did not consider this variable whesting children from kindergarten td' 4
grade.

An interesting result is found when analyzing tlgpet of representation used in the
mental bisection task. Children showed differeritggas according to the type of interval to
bisect. Numerical intervals were more underestithdtg younger children but there was a
strong modulation of interval length. This resdtplies with the hypothesis of a logarithmic
distribution in the mental representation of numsbeConversely, letters only showed a
general underestimation tendency that was not natellilby class and months did not show
any specific deviation bias. Individual performarnicehe bisection of the different intervals
were not correlated indicating that children did posses the same bias for all sequences and
only performance in the numerical bisection wergatated with class but more importantly
with counting score.

In light of these results, it seems that childreneyalize linearity to all sequences once
it is achieved in the numerical domain. This ismaged by the different deviation patterns
for the different sequences in the mental bisedtask, by the unique variance explained in
the regression analysis of the positioning taskk@anthe fact that non-numerical sequences
show an all-or-none pattern in the positioning taskis result is in line with previous
findings of spatial representation for non-numedrsejuences. Indeed, if early in childhood a
child learns to generalize the linear represematioall ordered sequences it is reasonable to
expect SNARC-like effects (Gevers et al., 2004; €s\et al., 2003) or even activation in the
same brain regions (Fias et al., 2007; Van Opstall €2007)

Moreover, it appears that the mental bisection tasla more straightforward task
compared to the Number-to-Position task since é@sdoot require a mapping between the
mental and the visual representations showing rmlegely the difference between sequences.
The mapping onto a visual line probably inducesuse of strategies tied to the numerical or

metric system.
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Numerosity Processing in Adults

| : Experiment 3: Numerosity discrimination

under pinning approximate calculation

Abstract

The relation between the ability to discriminatenauosities, as described by the Weber
fraction, with more complex abilities was investegh Indeed, if the Weber value describes
the quality of individuals’ numerical representatid@ should be related to the accuracy
observed in more complex numerical tasks requitisi@ctivation. Therefore, sixteen adults
were tested on three tasks: numerosity discrironathumber comparison and approximate
calculation. In the latter task, participants viemte/o operands (as well as the operator) and
then had to choose between two alternative reslitts.format of operands and results was
manipulated by crossing symbolic (digits) and ngmisolic (dots) notations, with the
exception of the digit-digit condition that was rmoesented to avoid exact calculation. The
proposed results were always composed of the ¢aodation and one distracter (ratio of £
1.5 and 1.25). Results showed that the formatsotf problem and answers influenced the
overall estimation accuracy. A classical distanifece was found and the closest distracters
were harder to reject than the distant ones. M@ea general operational momentum effect
was found although this effect was modulated byfdieat combination. When the problem
was presented in dots and the answer in digitsiehdency was to underestimate for both
operations whereas in the reversed format combimgtigits to dots), the general tendency
was to overestimate the correct answer. The clssperational momentum, overestimating
when adding and underestimating when subtractirag enly found in the dots-dots format
combination. These results are discussed accotdimgevious findings showing that large
collections of dots are generally underestimatemgkurg, 1978; Allik & Tuulmets, 1991;
Durgin, 1995) and an alternative account, not mlytuaxclusive with the operational
momentum, is considered. Finally, the relation leemvthe Weber fraction and the other tasks

is discussed.
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|.1. Introduction.

Numerous studies have demonstrated that adultsrdats are endowed of various
numerical abilities. Since the earliest monthsifef humans are able to discriminate sets of
objects only relying on numerical information (Femgon, 2005; Xu & Spelke, 2000; Lipton
& Spelke, 2003; Xu & Arriga, 2007) as well as aipating numerical outcomes of non
symbolic approximate operations (Koechlin, DehaehaeMehler, 1997; Barth, La Mont,
Lipton, & Spelke, 2005; Barth et al., 2006; McCririkehaene, & Dehaene-Lambertz, 2007,
McCrink & Wynn, 2004). Performance, at all ages,nmmerical tasks is described by a
number of characteristics that all follow Webersvl first, the ratio between numerosities
influences discrimination performances; second, ltiger the numerosity the greater the
variability of responses with a constamtetficient of \ariation (CV = Standard deviation /
mean).

Dehaene, among others, has suggested the hypatihastte numerical representation
would be similar to a mental line where numerositfellow a logarithmic distribution
(Dehaene, 1989; Dehaene, 1992; lzard & Dehaene,7)200lore specifically, the
representation of numerosity was formally descrilbgda log-Gaussian model (Izard &
Dehaene, 2007; Piazza, Izard, Pinel, Le Bihan, &deae, 2004), where numbers are placed
on the line according to a log scale and correspgond Gaussian distribution with fixed
variability. Therefore, the compressive nature loé number line would account for the
increasing overlap of activation between larger exgsities accounting for the ratio effect.
The precision of discrimination is directly measlbgy the ratio necessary to discriminate two
numerosities. The usual performance threshold % @5 correct discrimination for a given
numerical distance. Then, mathematically, it is gie to estimate thénternal Weber
fraction (w) which refers to the width of the Gaussian disttidkn of activation on the internal
number line. This value, determines the precismsubjects’ performance: a smaller width of
the Gaussian corresponds to less overlap in nuierepresentation and thus a more precise
discrimination ability.

Piazza and collaborators designed an habituatisk wéhere participants viewed a
reference numerosity (16 or 32) for at least tlu@esecutive trials followed by a fourth trial
with either the same numerosity (25% of cases) @evaant numerosity (ratio of + 1.25, 1.5

or 2). Participants simply had to give a same/diffé judgement. Stimuli were constructed in
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order to avoid the use of non numerical cues agesbhitems (triangles or dots), density, size
and layout. Proportion of “different” answers falled a classical U-shaped function and it
conformed to the predictions of the compressed rurioe model. Indeed, when plotted on a
linear scale for numerosity, the performance cuwere asymmetrical and twice as broad for
reference 32 compared to reference 16. Howevéreiturves where plotted on a logarithmic
scale they became symmetrical and Gaussian witked fvidth. In a second version of the
task, participants had to judge if the fourth stimuas larger or smaller than the previous
ones. Again, results confirmed those obtained m fibst task, performance followed a
sigmoid curve and the width of the slope was twase large for the larger reference.
Moreover, the average curves for both tasks werdreg on the habituation number,
suggesting that participants could extract accuratemerical information. From a
neuroanatomical point of view, they also observest the only regions that responded to
numerical distance were localized in the left aigghtrintraparietal sulci (IPS, including the
horizontal segment) confirming and extending ddiseoved both with single cell recording
in animals and in neuroimaging experiments with Ao

Cantlon, Brannon, Carter and Pelphrey (2006) redt Piazza's experiment and
addressed the question of the early developmenirainh areas for processing abstract
numerical information. By testing both adults angeérs-old children they observed, besides
replicating the adults findings, that the changeadtivations for numerosity were similar in
both groups. This data confirms that the neuralatate of numerical cognition is active early
in development prior to formal instruction and sy experience.

Also results obtained in approximate calculatiopezkments with children and adults
comply to Weber’s law (McCrink & Wynn, 2004; Bargh al., 2006; Barth et al., 2005; Pica,
Lemer, lzard, & Dehaene, 2004). In the most regeptiblished study on approximate
calculation with adults (McCrink et al., 2007), thathors have shown that variability was
found to increase with problem size and participamtre more likely to consider a response
as correct if the ratio between the proposed and tutcome was closer to one. In their
experiment, participants viewed movies where & fiets of dots moved behind an occluder
and a second set could join or leave the one airdadiden (addition or subtraction).
Participants had to predict the outcome and thempewme it with a proposed solution. Three
larger and three smaller incorrect solutions whaeated using three ratios (1.25, 1.5, 2).
Interestingly, not only they found that the respopattern overall complied with Weber’s law
but also fount that when solving additions the &y was to overestimate the outcome and

the reverse when performing subtractions. Theyddrthis effect the@perational momentum
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effect for its analogy with theepresentational momentum. The latter indicates a perceptual
effect for which an observer remembers the finaiggmn of a moving target (implied or
apparent) as shifted in the direction of the mo(iereyd & Finke, 1984; for a review see T.L.
Hubbard, 2005). Moreover, this effect was also tbwith abstract concepts of represented
motion as change in pitch (Freyd, Kelly, & DeKa®9D). In addition to the observation that
the internal numerical representation resemblesne, lsupported by the SNARC effect
(Dehaene, Bossini, & Giraux, 1993) and neuropsyatiohl data (Zorzi, Priftis, & Umilta,
2002), the authors argue that realizing an addiioa subtraction would be comparable to a
displacement on the mental number line in the oecsuggested by the operation.

The work of McCrink and has been recently followaa by Knops, Viarouge and
Dehaene (submitted). In their study, they investigan more detail the psychophysical laws
of approximate mental arithmetic with both symbaiod non symbolic problems. The goals
were to understand the influence of numerical ntagei of the operands on tbperational
momentum and whether this effect holds for symbolic formattwo experiments participants
had to estimate the answers of basic problems t{adsliand subtractions) by choosing
among seven proposed outcomes. Overall, resultsplaanwith Weber's law. Indeed,
participants were relatively accurate in solving toroblems, showed a consistent bias to
underestimate (stronger for non symbolic operajiansl the classical scalar variability with a
constant CV were also observed. Furthermore, tegjicated theoperational momentum
effect, although it was weak for the symbolic fotrend showed that it is influenced by the
size of the operands: as the size of the outcopreases the effect becomes stronger.

All these studies lead to the conclusion that d#fifeé numerical competences show the
signature of Weber's law: ratio effect, scalar ahiiity and constant CV. Therefore,
comparison and approximation should rely on a saemresentation and individual
performance in both tasks should correlate. Moreaiace these abilities are present early in
development it is reasonable to assume that thegseptation on which they rely is also the
basis of formal numerical knowledge and competendesagreement to a common
representation between non symbolic and symbolacgssing of numerical information,
distance and size effect have been found in mampsijc tasks such as number comparison
(Dehaene, 1992; Dehaene & Akhavein, 1995; Vergut®& Moor, 2005; Reynvoet &
Brysbaert, 1999; Girelli, Lucangeli, & ButterwortB000). To our knowledge, no study has
yet demonstrated a direct relation between theedypes of numerical abilities.

Therefore, the aim of the present study was to fndink between the various

competences that would rely on a common representdhdeed, as described in Piazza et
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al’s study (2004), the interval Weber fraction déses the individuals’ internal representation
and therefore should be predictive of his/her pertnce in all numerical tasks.

In this study, we adopted a modified version of nbenerosity discrimination task used
in Piazza and collaborator’s study in order to wb&avalue of the Weber fraction for each
participant (henceforth Weber valugy). Then, the same group of participants was
administered both the corresponding number compariask and an approximate addition
and subtraction task. With these three tasks, thetlrelation with the symbolic processing of
numerical information and the ability in approximnat calculations should be highlighted if
all competences rely on a common numerical reptasen. In our approximate calculation
task we also manipulated the presentation formahb®lic and non symbolic formats were
crossed for the problem and the outcomes. The oahdition with both problems and
outcomes in symbolic format was excluded sinceoid have resulted in exact calculation.
Finally, up to date, the stability of the Weberuahas not been established. Crucially, the
Weber value has to prove stable for each partitipanbe considered a real index of
individual numerical representation. Therefore, th@merosity discrimination task was

administered twice in two separate sessions.
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1.1.1. Method.

Participants
Seventeen university students (9 females) tooktpatie study and were paid for their

collaboration.

General procedure

Each participant was tested individually in a dinlity and silent laboratory. The
experiment was subdivided in two sessions of alouhour each. Testing conditions were
kept as similar as possible by setting the two isassexactly one week apart at
approximately the same hour. The approximation task subdivided in two conditions,
addition and subtraction, counterbalanced betweeiicpants. Both sessions started with the
numerosity discrimination task and were followed dwye of the two conditions of the
approximation task. The number comparison taskadasinistered only at the end of the first
session. Moreover, participants were asked to teper number of hours of sleep and the
guantity of coffee consumption before the firstss®s and were required to monitor these
parameters for the second session.

All tasks were presented on a 17 in. screen (1028 yixels) at 105 cm from the chin
rest. E-Prime software (version 1.1.4.4., 2003) waed for stimuli presentation and
responses were recorded using the PST Serial Resox. For all tasks, participants used

only two out of five buttons situated at the exteeemds with the ipsilateral index finger.

Numer osity comparison

Two versions of this task were constructed and tybalanced between participants to
ensure that the same stimuli were not seen twiaeh Eersion was composed of 320 plus 10
practice trials subdivided in four blocks. Only gliee trials received feedback on accuracy.
Each trial started with two white disks (on bla@dckground) on each side of a fixation point
for 1400 ms. Sets of black dots appeared in eadtewlsk and disappeared when the answer
was recorded. The initial screen appeared agaid@6rms (Figure 111.2.). Instructions were
to choose the most numerous set without countiraih Beaction time and accuracy were
stressed.
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This task consisted in a modified version of thektgpresented by Piazza and
collaborators (Piazza et al., 2004). On each wia& of the two arrays was composed of either
16 or 32 dots (reference numerosity). The pairetherosities for the 16 dots reference
contained 12, 13, 14, 15, 17, 18, 19 or 20 dotsti® 32 dots reference, numerosities for the
second array were twice as larger as those foramée 16 (24, 26, 28, 30, 34, 36, 38, 40).
The second reference was the double of the firsorater to confirm that participants’
performances complied with Weber's Law. Indeed, nvhbke reference is doubled, the
discrimination threshold should also be doubled.

Perceptual variables were also controlled. Halstofiuli were controlled for total area
whereas the remaining half were controlled for sizdots.

e Stimuli controlled for total dots area (Figure Na): dots dimensions for the non-
reference arrays was fixed thus yielding increasirgnas with increasing numerosity.
Control for dots area was realized on the referaarcays. Different versions were
used in order to cover the total area range ocdupyehe non-reference arrays.

e Stimuli controlled for size (Figure 1V.1.b.): ddistal area was controlled for the non-
reference arrays yielding different dot sizes. Befk surface constant in the reference

stimuli, different dot sizes were generated. THerence arrays were thus constructed

to cover the range of non-reference arrays sizes.

FigurelV.1.: Reference and non-reference stimuli employedeémitlimerosity discrimination task. The top row
(a.) shows to an example of perceptual controltédal area and the bottom row (b.) shows an exaraple

perceptual control for stimulus size.

Finally, four different configurations of each stims where created and side of
presentation was counterbalanced giving a tot8R6fstimuli (2 references x 10 distances x 2
versions x 4 configurations x 2 presentation sidésfal size of stimulus on the screen

occupied 5.5 degrees of visual angle.
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Number comparison

This task was the symbolic version of the numeyosttmparison task. The same 20
pairs were presented inside a white disk on a htedkground and the same procedure was
followed (Figure IV.2.). The 160 trials (2 referes¢ 10 distances, 2 presentation sides x 4
repetitions) were divided in four blocks and presskdby 6 practice trials. The double digits

numbers occupied 7.5 cm on the screen, equivalehtiegrees of visual angle.

Until response

/ 1400 ms

FigurelV.2.: Example of a trial for the symbolic (on the rightjd non symbolic (on the left) comparison task.

Approximate addition and subtraction

Additions and subtractions were presented sepgrhtel the procedure was the same
for both conditions. The tasks was to approximiagesolution to the problem presented either
as symbols (digits) or as dots and choose the coareswer among two possible outcomes.
The proposed outcomes could also be in symboliaam-symbolic format, although the
symbolic to symbolic combination was excluded.

Problems used for this task were constructed usi@game reference numbers as those
for the numerosity comparison task guaranteeind tha magnitude of the sets were
comparable throughout the tasks. Furthermore, aissfoe the two operations and the two
references were controlled to allow a comparisotwéen the different conditions. Five
possible answers were selected making a total afiff€rent problems per operation (Table
IV.1). Distracters were generated by dividing andltiplying the correct answer either by
1.25 or by 1.5 ratios. Correct answers were theeefwresented with the four possible
distracters and counterbalanced for side of praent Overall, 240 trials per operation were
administered (2 references, 5 problems, 4 distrsic8format combinations, 2 presentation

sides).
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Some precautions were taken for both controllimgihosity of the stimuli and ensuring
that participants did not confuse the problem with proposed outcomes. Problems were
presented in black and possible outcomes in whielé a grey disk on a black background
(Figure 1V.3.). For this task, size of dots werepkeonstant throughout problems and
outcomes. Total size of non-symbolic stimuli coeef5 degrees of visual angle whereas

symbolic stimuli covered 4 degrees of visual angle.

TablelV.1.: Stimuli used for the approximate addition andtsadiion task.

Problems Distracters
Correct Answer
Subtractions Additions /125 1/15 1*1.25 1*15
58-16 16+26 42 28 34 53 63
60-16 16+28 44 29 35 55 66
61-16 16+29 45 30 36 56 68
62-16 16+30 46 31 37 58 69
63-16 16+31 47 31 38 59 71
74-32 32+10 42 28 34 53 63
76-32 32+12 44 29 35 55 66
77-32 32+13 45 30 36 56 68
78-32 32+14 46 31 37 58 69
79-32 32+15 47 31 38 59 71

Each trial started with the two empty grey disks 600 ms on each side of a fixation
point. The problem appeared for 2000 ms with tlieaeration sing between the two disks.
Again the initial empty disks appeared for 200 refole the two possible choices filled the

disks. The selection of the answer erased the rs¢Fegure 1V.3.).

Until response

Figurell1.3.: Example of an addition trial with the problem meted in the symbolic format and the outcomes

in non symbolic format.

105



Chapter IV

|.1.2. Results.

Numerosity comparison

The percentage of times a given set was chosenuateritally larger by each
participant were averaged at group level. Meangrgeges were then plotted on a linear and
a logarithmic scale for numerosity (Figure IV.AYhen means are plotted on a linear scale,
the slope of the sigmoid curve is steeper for efee 32 than for referencel6. Conversely,
the two curves become identical with a fixed anopld on a logarithmic scale. The log-
Gaussian model explains 99% of the variance and\taber valueW) is of 0.16. This data

conforms to Piazza and collaborator’s (2004) reswho found av of 0.17.
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Figure IV.4.. Mean percentages of larger responses for each rogitye are plotted on a linear (a) and
logarithmic (b) scale. The sigmoid curves beconemiital for the two references once plotted ongadithmic

scale. The y-axis represents percentage of tingdgea numerosity was considered larger than thereete.

For all participants a Weber value was also catedldor each version of the task. A
correlation on participantsV did not reach significance € .392,p = .12). However when the
values were introduced in a repeated measures Agovap means did not statistically differ
for the two sessions=(1,16)= 1.2,p > .1) indicating that overall the values fell insithe same
range (Figure IV.5.). Mean and standard deviatt) ©f w for the first session was of 0.166
(0.05) and for the second session of 0.152 (0.04).

To analyse the between participants heterogenritgchieving the task, a one-way
Anova was run with subject as independent variaoted w as dependent variable. A
statistically marginal significance was obtain€gd17)= 2.22,p = .055) suggesting different
numerical abilities between participants. Thestetkhces could also reflect in more complex

tasks.
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Mean % of larger responses

07 1 14
Ratio

Figure IV.5.: Mean percentages of larger responses on the tegioss as a function of ratio. The y-axis

represents percentage of times a given numerosisyoansidered larger than the reference.

In summary, the data observed with the numerositgparison task replicates previous
data and shows to be stable within a range of gallibe correlation could have failed to
reach significance because the pool of participauats relatively small as well as the number
of trials. Increasing both parameters would inceestsitistical power and the correlation for

the two sessions would presumably reach signifieanc

Number comparison

For the number comparison task, mean accuracy Wais.8% & = 1.9) and therefore
only reaction times (RT) were considered for thealgsis. RTs were averaged across
distances and then averaged across participamtse $ie numbers were composed of two
digits, it was not possible to apply a commonlyduenction that reorders any couple of one-
digit numbers according to both size and distaridaepair (Welford function, Butterworth,
Zorzi, Girelli, & Janckheere, 2001). Therefore, adified version of this function was used:
for each pair the ratio between the logarithmshef $maller and the larger value (logarithm
MIN/logarithm MAX) was calculated. For example, ttaio of the logarithms is smaller for
the pair 10-16 compared to the pair 16-22 since sheond pair has an overall larger
numerical size although both distances are of 6relher, number pairs were classified
according to the compatibility of the digits. If thodigits of one number are larger/smaller
than both digits of the other number in the p#ie, pair was compatible. In the opposite case,
the pair was incompatible (e.g., 16 vs. 22 arecoatpatible since for the decades 1 is smaller

than 2 and for the units 6 is larger than 2). Caibpily has shown to influence performance
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in two-digit number comparison (Verguts & De Mo@Q05; Reynvoet & Brysbaert, 1999;
Nuerk, Weger & Willmes, 2001). Finally, the two ines were introduced in a regression and
the model explained a significant part of the Jaitiey (F2,30)= 20,p < .001,R? = .528) with
the following equation:

Y = (88.195* compatibility) + (512.104*ratio of the logarithms) + 141.489

Reaction times were therefore faster for pairs wibimpatible numbers, numerically

small and with a large distance.

Approximate addition and comparison

Only accuracies were considered for the approxonatask and percentages were
normalized with the 2arcsifip) formula. All main effects and interactions wthg the
sphericity assumption were adjusted using the Hilgldt correction method and multiple
comparisons were corrected with the Bonferroni metlOne participant was excluded from
the pool for being more than3 below group average for accuracy.

The data were submitted to a repeated measures ANQYeration (addition,
subtraction) x Reference (16, 32) x Format comimnatdots-dots, dots-digits, digits-dbt
Ratio (1/1.5, 1/1.25, 1*1.25, 1*1.5). The ordertatk was introduced as a between subjects
variable. Given that it did not influence perforraant was not considered further.

The type of operation participants had to solve wad influence overall accuracy.
Participants were 70,1900 = 4.5) accurate for the addition task and 67.8 € 7.9) for
the subtraction task. Format combination was sicamit 2, 30) = 16,p <.001) and post-hoc
comparisons showed significant differences forttiree format combinations (g < .05).
The combination with the highest accuracy was dags with 76.5%, followed by dots-dots
with 70.4%, and the worst were the digits-dotdsngith 63.5% of accuracy.

A main effect of ratio also highlighted the classlistance effectK.3195 = 5.3,

p < .05). Accuracy dropped when the ratio betweenctiteect answer and the distracter was
closer to one. For the distant ratios, 1/1.5 antl3,*accuracies were respectively of 77% and
73% whereas they were of only 67% and 62% for the?% and 1*1.25 ratios.

The two-way interaction Ratio x Operation was digant 2185 = 5.2, p<.05)

revealing a greater accuracy for smaller ratioswdéding and a greater accuracy for larger

! For simplicity, format combinations are abbrewiaty indicating the format of the problem and outes as
follows: both parts presented as dots will be letoetots-dots combination; problems presented &s alad

outcomes as digits will be labelled dots-digitsl éime reverse combination will be labelled digitgsd
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ratios when subtracting. When participants perfataeditions, they always tended to choose
the largest set. That is, the correct answer watemntially chosen when it was presented
with a smaller distracter (smaller ratio) compatedwhen it was presented with a larger
distracter. For the subtractions the reverse waes farticipants tended to select the smaller
set as the correct answer. They chose the correstves when the distracter was larger
whereas they selected the distracter when it wasitiallest set (Figure 1V.6.a). This result is
in agreement with théperational Momentum described by McCrink and collaborators

(2007). In their experiment they observed that wipemforming approximate additions

participants tended to overestimate whereas wheropleration was a subtraction, answers

were systematically underestimated.

100 100
O Addition B Subtraction W dots-dots O dots-digits E digits-dots
920 - 90 -
80 - 80 - ?
. 2
% 70 - 70
< 60 - 60 -
50 - 50
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40 - 40 - %
30 30 B T T T
1M.5 1125 1"1.25 1*1.5 1M.5 1M1.25 1%1.25 1*1.5
a) Ratio b} Ratio

Figure IV.6.: The graph on the left side of the figure (a) repris percentages of correct responses as a
function of operation and ratio. The graph on tightrside (b) represents accuracies as a functidiormat

combination and ratio.

The second significant double interaction was FomnRatio €5 37.5= 34,p < .001;
Figure 1V.6.b). This interaction highlights thaketkendency to underestimate or overestimate
is influenced by the format of presentation. Whethlproblem and outcomes are presented
in dots, accuracies show a classical distance teff@tereas an asymmetry appears when
formats are crossed. For the dots-digits combinatibe choice is preferentially set on the
smallest number whereas it is preferential for lHrgest set in the digits-dots condition. In
other words, when the combination is dots-digitguaacy is high when the correct answer is
presented with the larger distracter. The reverses wue for the digits-dots format

combination.
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The interaction Operation x Reference was alsoifstgnt (F(1,15) = 6.5,p < .05). For
the addition task, accuracy was higher for problevith reference 32 whereas the opposite
was true for subtractions. Accuracies for additieere 69% for reference 16 and 72% for
reference 32. In the subtraction condition, acaesawere 69% and 67% for reference 16 and
32 respectively. This could be explained by theiahaf operands for the experimental
stimuli. Indeed, the second operand for the adustimith reference 32 was smaller than the
second operand for reference 16 (range 10 to 12&40 31). Indeed, underestimation is
proportional to the numerosity, hence, for refeeeB2 the approximation was more accurate.
Moreover, the same was true for the subtractiooblpms where 16 had to be subtracted had
a better accuracy since overall underestimationsnealer than for problems with 32.

Finally, the significant triple interactior§. 9 59)= 3.3,p < .05) qualifies the@perational
momentum effect according to format combination. As showntbg graphs in Figure IV.7.
only the dots-dots combination clearly replicatee pattern observed by McCrink (2007).
The other two combinations are less clear showiny a strong format effect. Therefore
further ANOVAs were run separately for each combama For both dots-dots and digits-
dots format combinations, the ratio and the ratyooperation interaction were significant
(dots-dots ratioF (3 264)= 7.9,p < .001; dots-dots interactioRiz 264)= 11,p < .001; digits-dots
ratio: Fz 264y = 51, p < .001; digits-dots interactiorfs 264y = 5.9,p < .001) confirming the
tendency to overestimate when performing additiod anderestimate when performing
subtractions. For the third combination, dots-digihe interaction failed to reach significance
(ratio: F(z 264y= 54,p < .001).

Digits-dots Dots-digits Dots-dots

O Addition B Subtraction

100
90 -
80 -
70 -
60 -
50 -

40 -

30 . ‘ ‘ ‘ .
1115 11.25 1"1.25 1.5 115 11.25 125 115 15 1125 1M1.25 1.5

Ratio

% Accuracy

Figure IV.7.: Percentages of accuracies are represented astofunf format, operation and ratio. Only the
dots-dots condition clearly replicates the oper@iomomentum introduced by McCrink and collaborsitor
(2007).
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In summary, the analyses of approximate additioth subtraction task showed that
when both operation and outcomes are presenteatas merformance is influenced by the
type of operation that had to be computed. Wheriraciing, the tendency is to prefer a
smaller outcome than the correct answer and wheatingd the reverse is true. This
corresponds to the definition of tbperational momentum effect.

Performance was also influenced by the format sfoceanixed format combinations
(digits and dots) the patterns of overestimatiod anderestimation were modified. Indeed,
for the dots-digits combination, participants werere prone to of prefer a smaller outcome
and the type of operation did not influence accur&onversely, when participants were
solving problems in the digits-dots combinatioreytipreferentially chose the larger set of
dots. Moreover, the type of operation influenceduaacy since participants overestimated
less when subtracting digits compared to addingthe

These results will be discussed in more detailthen conclusions section since they
allow to offer an alternative explanation basedtlo& general underestimation finding but

without being mutually exclusive with tloperational momentum hypothesis.

Relations between the Weber value and the other tasks.

The Weber value failed to correlate with the numb@mparison task. For the latter,
regressions for each participant were computeddniring the same parameters as those used
at the group level (compatibility and ratio of tlgarithms). The slope valug)(associated to
the ratio of the logarithms for each participanswviaen correlated to the Weber value= ¢
.066,p > .05).

To evaluate a relation between the Weber value thadapproximate addition and
subtraction task, for each participant an indetheftendency to overestimate was calculated
separately for each format combination and for haghkrations. According to McCrink and
collaborators, when performing an addition thera iendency to prefer the largest answer
and the converse for the subtraction. This diffeeewas calculated by first averaging the
accuracies of larger (1*1.25 and 1*1.5) and smablépos (1/1.25 and 1/1.5), then calculating
the difference between the latter and the formepositive value indicated a higher accuracy
for smaller ratios. In other words, participante@stimated since they preferred the larger
ratio when presented with the correct answer. Aaheg value indicated higher accuracy for
larger ratios: participants preferentially seledisel smaller set.

Of all the possible correlations between the owtireation index and the Weber value,

only two were significant and both for the digitstsl operations (additiof®® = .25,p < .05;
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subtraction:R? = .43, p < .005). Although surprising that only two corréas reached
significance, it is worth highlighting that theseot were the most likely to be related to the
Weber value. Indeed, in the digits-dots conditiparticipants could exactly calculate the
result and would only have to discriminate betwéla two numerosities presented as
outcomes. For the other tasks, other factors chaice hidden the relation. Indeed, for the
dots-dots combination estimation biases could eeatgooth levels of the task, whereas in
the dots-digits combination the discrimination éfpifor the answer has probably been hidden
by the exact representation of the outcomes. Alshaildiscussed in the conclusion, the dots-
digits condition was probably biased and is notlwepresentative of pure approximate
calculation. Because the range of answers was alway same for all combinations, one
participant overtly declared at the end of the sdcgession that he had understood the range
of correct answers. Thus, participants could indieéer the probable answers to the dots-
digits trials by exactly calculating the resultthre digit-dots trials. In support to this to this
speculation it can be noted that this format comtoam yielded the highest percentages of

accuracy.

|.2. Conclusions

The aims of this study were to estimate the indigldvalue of internal Weber fraction
through a numerosity discrimination task and tateethis value to other tasks that putatively
all rely on a common (log-Gaussian) representaagahown by Weber’s law signature.

As for the reliability of the individual Weber vautwo versions of the discrimination
tasks were administered to the same participargsa@ek apart. Unfortunately, participants’
values for the test and retest sessions failedi@late but group analysis also failed to show
a statistical difference between the two sessioNghough it is speculative to draw
conclusions from null effects, we may consider thatabsence of correlation was due to the
small number of participants and trials. This stmming should easily be resolved by
increasing the pool of participants and therefaoeaasing statistical power.

As for the primary aim of this study, we have tdstBe same participants on two
different numerical tasks, number comparison amq@pmate addition and subtraction, that

should both rely on a common internal represenmtafidhe former showed classical effects
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observed by other authors for double digit comparig hat is, participants’ performance was
influenced by both distance and size of the pawels as by the compatibility of the digits
(Reynvoet & Brysbaert, 1999; Butterworth et al.020Nuerk et al., 2001; Verguts & De
Moor, 2005). Surprisingly this task also faileddorrelate with the ability of discriminating
between sets (i.e., the Weber value), which has beasidered as a basic competence upon
which further symbolic knowledge would be constedc(e.g., Feigenson, Dehaene & Spelke,
2004). Indeed, as observed by the distance andefieet, comparing digits requires the
activation of a numerical representation that obeysVeber’'s law. The failure to correlate
could be explained by the fact that, the indicesdusight not be directly comparable because
accuracy the Weber value reflects discriminatiocueacy while performance in the number
comparison task was measured by RTs. Alternativelgould be argued that the symbolic
comparison task relies only partially on the ingog-Gaussian representation. In support of
the latter hypothesis, different models of numeéripeocessing are now leading to the
conclusion that adult numerical abilities are updared by two separate systems: one would
be language-based and activated for all exact noaletasks and the second would be
language independent, necessary for numerical appate processing and phylogenetically
determined (Verguts, Fias, & Stevens, 2005; VergutBias, 2004; Spelke, 2000; Zorzi,
Stoianov, Becker, Umilta & Butterworth, submittedjurther support to this hypothesis
comes from a neuropsychological study (Lemer, DebaSpelke, & Cohen, 2003) on two
patients with numerical deficits. The first patidrad preserved abilities in approximation
tasks but failed in symbolic tasks. The secondepatshowed the reverse pattern of deficit,
with spared exact calculation and deficits in agpmate tasks. Therefore, in our data, when
comparing Arabic numbers instead of numerosities.eract numerical system would be
active and therefore hide the numerical representaescribed by the Weber value.

The approximate addition and subtraction task wassttucted in order to observe a
format influence on performance. Symbolic and ngmisolic numerosities were presented as
either the problem or as the outcome. To avoid tegalculation, the symbolic to symbolic
format combination was excluded. The interestingeobation was that theperational
momentum defined by McCrink and collaborators (2007) anglicated by Knops and
collaborators (submitted) was found in the non-sgiicb to non-symbolic format
combination. When the task was to add two setotd dnd choose the correct answer among
two proposed sets, participants tended to seleet ldrger of the two outcomes
(overestimation), whereas if the task was to sehtthe preferred answer was the smaller set

(underestimation). The patterns observed for theerotwo format combinations were
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different. When the problem format was symbolic ahd proposed outcomes were non-
symbolic, participants tended to overestimate threect answer, regardless of the operation,
selecting the larger set. For the reverse comlanaif formats the opposite was true: when
participants had to choose among two symbolic on&s after viewing a non-symbolic
problem, they systematically chose the smaller ezakurther analyses revealed that in the
symbolic to non-symbolic combination the overestiorawas nevertheless influenced by the
operation. The tendency to overestimate was Staiist smaller for subtractions than for
additions, highlighting a subtleperational momentum effect. For the non-symbolic to
symbolic combination this effect did not appears larguable that this absence was due to the
stimuli employed. Indeed, several participants reggbthat they had guessed the range of
possible correct answers by exactly calculatingsthlations in the symbolic to non symbolic
condition and inferring that the same answers Mhield for the non symbolic to symbolic
condition. This strategy used by participants hasbably influenced overall performance,
diminishing a possibleperational momentum for this format combination.

Even if theoperational momentum seems to be confirmed in this experiment, theee is
second explanation for the observed patterns oftsgsvhich in our view is more economical
although not mutually exclusive with the former. rCalternative explanation is based on
numerous observations that dot patterns are urtdeeted and the degree of underestimation
is proportional to set size (Ginsburg, 1978; Iz&rDehaene, 2007; Allik & Tuulmets, 1991,
Durgin, 1995). Larger sets are more underestimdi@sh smaller ones. In the present
experiment, when the combination was non-symbadicsymbolic, participants mentally
approximated the result and since it was in a nonbslic format they underestimated the
outcome. Therefore, when they had to select theemism the symbolic format they preferred
the smallest value. For the opposite combinatiomb®lic to non-symbolic formats,
participants could obviously calculate the exastuiebut when they had to chose among sets
they tended to underestimate the proposed outcamedherefore preferred the largest set
(perceived as less numerous). Finally, also forpimely non-symbolic combination the data
can be accounted by an underestimation bias. Wileimg additions, the operands as well as
the outcomes are underestimated and since the ggdmutcomes are numerically larger than
the operands (always the case in additions), ttierlavere more underestimated, leading
participants’ choice towards the larger sets (cst@retion). In subtraction, the numerically
larger set, the more underestimated, was in theatpa and led participants to a much

smaller approximated answer than the correct omerefore, when choosing among the
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possible outcomes, participants’ choice preferdntiell on the numerically smaller set
(Figure 1V.8.).

Smaller Correct Larger

Problem Distracter Answer Distracter

Dots - digits

Digits - dots

Dots - dots

Figurell1.8.: Example of problem and outcomes for each formathination and operation. The problem is on
the right hand of the picture and the correct answth the two types of possible distracters (seradlr larger)
are on the left hand. Arrows indicate what outcomrese preferentially chosen. For example, in thes-didgits
combination, participants chose the correct ansven it was presented with the larger distractarl(@rrow),

whereas they chose the distracter when it was enthlin the answer (light arrow).

Finally, the Weber value obtained for each paréinipcorrelated with the performance
in the approximate addition and subtraction whea fdrmat combination was symbolic to
non-symbolic. This result is encouraging since tlumbination of format was probably the
closest to the numerosity discrimination task. bdjeafter calculating the answer to the
symbolic problem, participants had a simple disoration task between the two proposed
outcomes. The correlations with the other taskddcbe explained by the double source of
underestimation in the purely non-symbolic task Bpdhe bias observed for the condition in

which the outcomes where symbolic. To overcome s, a larger number of trials and
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stimuli should be created where the correct answald also be the wrong answer to some
problems therefore disrupting the use of non-nucaérstrategies. This solution would
nevertheless leave open a question regarding thferpance on symbolic to symbolic
approximate calculation. Therefore, a fully crossexperiment could be designed by
presenting several distracters differing by a largege of ratios and by avoiding to present

the correct answer as in Knops and colleagues (tgoin

116



Chapter 5: Numerical Representation in
Synaesthesia.






Numerical Representation in Synaesthesia

I must, however, beg
them not to consider their own minds as identical with
those of every other sane and healthy person. Psycho-
logists ought to inquire into the mental habits of other
men with as little prejudice as if they were inquiring into
these of animals of different species to their own, and
should be prepared to find much in many cases that is
quite unlike their own personal experience.

(Galton (1880), Nature, 22, p. 494)

In 1880, Galton was amongst the first to discovet some people may experience
sensory stimulations in various different ways. Fstance, he pointed out that “the various
ways in which numerals are visualised is but a bsabject, nevertheless it is one that is
curious and complete in itself (Galton, 1880b, §2)2. In his seminal work, Galton describes
personal reports of people who vividly experienagmbers in their mind's eye. They
visualize them in space, colour or both, and samegiare able to manipulate these images to
perform arithmetical operations. This particulapdyof associations have been termed
number-colour and number-form synaesthesia. In&rdsreekgov (syn) means “with” and
aicOnoic (aisttesis) means “sensation” thus indicating the uniosesfsations. Synaesthesia is
defined today as a neurologically-based phenomevimere the stimulation of one sensory
modality leads to an automatic and involuntary sdeoy experience in the same or in a
different modality. Various types of associatioxsse(e.g., grapheme-colour, sound-colour,
word-taste, ect.) and probably not all have yenbaescribed. However, here the focus will
only be on the association where the perceptiomwhbers (heard or read) induces a
sensation or the visualisation of a colour.

Because the earliest (1880-1930) investigationhesé¢ phenomena was difficult and
relied primarily on introspection, the rise of betoarism hampered research in this field
until almost completely disappearing from scientjburnals. It is only around the 80’s that
adequate experimental techniques allowed to redensiynaesthesia as a phenomenon to
investigate.

Several experiments have tested synaesthetes’ <land given proof of their
introspective reports (Nikolic, Lichti, & SingerP@7; Wollen & Ruggiero, 1983; Paulsen &
Laeng, 2006; Mills, Boteler, & Oliver, 1999; forraview see Hubbard & Ramachandran,
2005). Moreover, with the increasing accessibiiityneuroimaging techniques and studies in

genetics the neurological bases of the phenomenatarting to be drawn (Ramachandran &
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Hubbard, 2001a; Nunn et al., 2002; Hubbard & Arm2005; Barnett et al., 2007; Smilek et
al., 2001; Hancock, 2006).

In addition of being “curious”, as described by @8] synaesthesia is another path to
understand human cognition. Just as it is inforweatio study neurologically impaired
patients, synaesthesia through its “abnormalitydshlight on how a “normally functioning”
system works. In the field of numerical cognitiasynaesthetic experiences have given
support to some models of numerical representdiypmovertly describing their perceived
associations.

As seen in Chapter 1, several models of numerieptesentations postulate that
numbers are represented on a mental number linea@de, 1992; Verguts, Fias, & Stevens,
2005; Zorzi, Stoianov, Becker, Umilta, & Butterwlpr2008). Moreover, the distance, size
and SNARC effects suggest that the line might be compressedrds larger numbers and
be oriented from left to right (Dehaene, BossiniG&aux, 1993; Ashcraft, 1992; Moyer &
Landauer, 1967). Synaesthetic reports of numben-fassociations have shown that in about
63 to 66 % of the cases, (Seron, Pesenti, & N&21Sagiv, Simner, Collins, Butterworth,
& Ward, 2005), the orientation of the line wheranhers are visualized follow a left to right
orientation. Curiously, in a study of individual rjmance, only 65% of the participants
showed a SNARC effect (Wood, Nuerk, & Willmes, 206 addition to reporting numbers
on a line, several synaesthetes describe their argras becoming more fuzzy the larger the
value (Figure V.1., Seron et al., 1992; Galton, (I8 The compressed numerical
representation was also demonstrated by interferaifects in a Stroop type paradigm
(Cohen Kadosh, Tzelgov, & Henik, 2008). Number-colsynaesthetes were asked to name
digits that could be congruently or incongruenthotired with their personal associations (if
“2” was associated to “red” for one participantywbuld have been incongruent if presented
with the colour associated to “3” which was pereéivas “blue”) or to name the colour
ignoring the digit. Reaction times showed that ¢bagruency effect was modulated by the
numerical magnitude: the larger the number thengeo the interference. According to the
authors, this would challenge the idea of a limeanber line.

Potentially, besides these examples in numeriaghition, synaesthesia may inform on
many other domains as automaticity, crossmodatant®ns, modularity, brain development,

attention, etc. This is why an apparently unrelaséatly is included in this thesis. The

! Spatial Association of Response Codes effect:omdipg is faster for small numbers with the lefy kend to

large numbers with the right key, in western sdeget
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heterogeneity of adopted perspectives should bdogplementary knowledge to the

understanding of numerical representation.

Fig, 2,

Fic. 4

Figure V.1.: Number-form associations form two synaesthetesrii@wed by Galton (Galton, 1880b). The
representation on the left was also followed byadk® highlighting that larger numbers were closeeach

other both for decades and hundreds. On the tightspatial representation is accompanied by @iffiecolours

for each decade.
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| : Experiment 4: Implicit versus Explicit

| nterference Effectsin a Number-Colour
Synaesthete.

Abstract

One of the fundamental questions in the study afscmusness is the connection
between subjective report and objective measurese,Hve explore this question by testing
an individual with grapheme-color synesthesia, NMho reports an associated conscious
experience of seeing colors when viewing digitsf hot when viewing dot patterns.
Synesthesia research has traditionally used variainthe Stroop paradigm as an objective
correlate of these subjective synesthetic repoffe used two paradigms: a standard
synesthetic Stroop paradigm, in which digits weskied congruently or incongruently with
the colors NM reports, and a numerosity Stroop gigra, in which random dot patterns were
colored congruently or incongruently with the csltihhat NM reports for digits. We observed
longer response times in the incongruent condittwrboth the standard and the numerosity
Stroop paradigms, despite the fact that NM denxgemrencing colors for dot patterns. This
constitutes a clear dissociation between subjeciiveé objective measures of synesthetic
experience. Based on these results, we argue stadilishing the presence of synesthesia in
an individual should depend primarily on the presenf subjective reports, validated by
objective measures, and more generally, that counslsi and unconsciously mediated

interference may arise from qualitatively differeméchanisms.

This work is currently submitted as Berteletti, abd and Zorzi.
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|.1. Introduction.

Over a century ago, Galton (Galton, 1880b; Galtb880a) described a particular
neurological condition in which a sensory expereengould automatically evoke an
additional percept (concurrent) in the same or feerdint sensory modality (i.e. colored
graphemes, colored music, etc.). Different etidsgnave been advanced to account for this
phenomenon, ranging from a deficit of neuronal prgrduring development to overactive
binding between colors and letter forms (Baron-@ohBurt, Smith-Laittan, Harrison, &
Bolton, 1996; Hubbard & Ramachandran, 2005). Howeegardless of which explanation is
ultimately supported, all models of synesthesiaeagthat cerebral connections are the
physiological basis for these unusual perceptupég&nces.

To demonstrate the genuineness of synesthesia,rausnbehavioral paradigms have
been developed; among these the most widely used neodified version of the Stroop
paradigm (Wollen & Ruggiero, 1983; Mills et al., 999 Odgaard, Flowers, & Bradman,
1999; Dixon, Smilek, Cudahy, & Merikle, 2000; Matgiey, Rich, Yelland, & Bradshaw,
2001). The classical version of the Stroop paradgyenconflict task in which color names are
written in various ink colors (i.e. the word REDaither red or green ink; Stroop, 1935; for a
review see MacLeod, 1991). The participant is neglito name the ink color while ignoring
the color name. Reaction times (RTs) to name tkeahor are longer when the ink color and
word name are incongruent, compared to when theycangruent, which suggests that
automatic reading process interfere with the colaming process and thus increase RTSs.
Using the same logic, the paradigm has been adaptiedt grapheme-color synesthetes who
report perceiving colors (photisms) when viewingtbinking about letters and numbers
(Wollen & Ruggiero, 1983). When the graphemes acengruently colored with respect to
the photisms reported by an individual synesthRfes are higher for naming the ink color
compared to the condition where the same stimelicangruently colored (e.g. Mills et al.,
1999; Dixon et al., 2000; Mattingley, Payne, & Ri@006; Nikolic et al., 2007). This result is
one of the strongest pieces of evidence for théesicity of synesthesia, with the
interference being interpreted as the result ch@omatic and involuntary process triggering
the perception of color.

However, it is clear that synesthesia is not aaupiphenomenon, and it is possible that

synesthetic color experiences are elicited at wffestages of processing. Ramachandran and
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Hubbard (Ramachandran & Hubbard, 2001b; Hubbard &m&chandran, 2005) have
introduced a distinction based on the represemaitidevel at which the concurrent
synesthetic experience is evoked (perceptual vscegual). The authors suggest that if
different stimuli sharing the same meaning (e.qgitsli number words, Roman numerals) also
induce the same synesthetic experiences, thensdoiation probably occurs at a semantic
level (“higher” synesthesia), whereas if lower-leveroperties of the stimulus elicit
concurrents, (e.g., a digit and number word eldifferent colors) then the association
probably arises at a perceptual level (“lower” sthesia).

In order to explore this question, some authorsehased versions of the Stroop
paradigm to test the representational level at whiee concurrent is induced. In the first
study of this kind, Dixoret al (Dixon et al., 2000) presented a synesthetidgjaaint, C, with
a “mathematical Stroop” paradigm in which arithraeproblems, such as 2 + 5 were
presented, followed by a color patch. C’s reactiomes were slower when the color patch
was incongruent with the arithmetic result, demiaistg that the digit does not have to be
physically presented to elicit interference. Howewbese experiments do not allow us to
identify the representational level at which thenaarent was elicited, as the participant
could have depended on either a semantic reprégente on an image of the Arabic digit. In
a follow-up study, Jansaet al (Jansari, Spiller, & Redfern, 2006) tested whethierference
was present both in the visual and auditory moglalithree synesthetic participants. One of
their participants showed interference only invisual modality, while the other two showed
interference only in the auditory modality, conyrdo the hypothesis that the synesthetic
experiences for these individuals are elicited urécom higher-level conceptual
representations, which should be triggered by bexditory and visual stimuli, as has
previously been shown for numerical representatifigger, Sterzer, Russ, Giraud, &
Kleinschmidt, 2003).

More recently, Ward and Sagiv (2007) presentedhglesicase study of a synesthete,
TD, who reported conscious experiences of colorenwiiewing Arabic digits, when
counting fingers, and when viewing dice patternkictv according to the current definition
constitutes a case of higher synesthesia. Usingam®like paradigm, the authors showed
that TD's synesthetic colors interfered with incaremtly colored stimuli for all types of
numerical stimuli. Moreover, incongruent colorscalsiterfered when TD was asked to
estimate the number of dots in a dice pattern rgherse of the standard task). Interestingly,
colors not only impaired color naming in the claakiStroop but also in the numerosity

judgment suggesting that colors convey numeridairimation for TD. Based on the results,
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the authors conclude not only that TD’s synesthiesilicited at a semantic level (“higher”
synesthesia) but also that it is a result of bedtional links between colors and numbers.
However, as Ward and Sagiv note, random dot patt@nd dice patterns may not be strictly
comparable given that dice patterns may be overehrand may be treated as familiar visual
patterns rather than pure numerosity stimuli.

In this study, we present a synesthete (NM) whontspcolors for digits 1 to 9. Unlike
TD, NM reports that he does not experience synaésthelors when shown dice patterns or
random dot configurations. Despite the fact thatdports no subjective colors, we tested NM
on two Stroop-like tasks. The first one, a digitoSp task, aimed at replicating previous
interference findings. The second one was a nuntgr8goop task where a canonical (dice
patterns) and two non-canonical configurations ofsd(NC1 and NC2) were presented
colored congruently or incongruently with the colarthe corresponding digit. Since the
digits elicit conscious experiences of color for Nlve predicted the same interference effects
as already reported in previous studies. For tlee dnd non canonical patterns, however,
whether interference is observed will depend ondhas at which the synesthesia is elicited.
If NM’s synesthesia is elicited at lower level, thee would not predict any interference with
dot patterns. However, if NM’s synesthesia is &itiat a higher level, then we would expect
to observe interference in at least the dice pattendition which is known to trigger the
numerical information faster than non-canonical figamations (Wolters, van Kempen, &
Wijlhuizen, 1987). The presence of Stroop intenfieee from random dot patterns would
constitute the first demonstration that synesthetggers in number-color synesthesia can
occur at a semantic level, since they are not stibgethe above concern about overlearned
pattern recognition.

Moreover, since the dot patterns are not overtoeaisted to color, we would predict
that if interference is found, it will be smalldran that shown in the digit Stroop task. The
presence of such interference despite the absdramscious synesthetic reports would also
suggest that the connection between semantic standlsynesthetic experiences is triggered
automatically. Finally, the possibility of findingnterference even in the absence of
consciously experienced colors raises the quesiieh posed by Merikle and colleagues
(Merikle, Smilek, & Eastwood, 2001; Cheesman & Mkxj 1986), as to whether explicit and
implicit Stroop-interference arises from qualitaliv different mechanisms. In the discussion

we thus explore an alternative account for the icitffects of synesthesia.
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1.1.1. Method.

Participant

NM answered an announcement placed in the lectlle dn the University of Padova
campus. When we first interviewed him, NM was 2%rgeold and was finishing a PhD
program. He reported being a grapheme-color andnabar-color synesthete with number-
forms for digits and week of the days. He visuaitee numbers 1 to 9 from left to right and
the smaller the digit the glossier the color. M@ the smaller digits are bold and become
progressively more normal font with numerical size.

NM’s synesthesia was first assessed with a brodferegmort questionnaire and the
genuineness of his number-color associations fgitsdd to 9 were assessed with a test-retest
procedure. Color selections for each number wecerded in the form of RGB triplets,
values ranging from 0 to 255 on each dimension.tRercolor test-retest, a group of five
controls with no synesthesia also performed thk #aml were instructed to remember their
associations since they would be retested one Va¢ek NM, on the other hand, was retested
two months apart without notice. The analysis o RGB values, using the city block
distance proceduteshowed that NM was less variable than the comtiot scored close to 2
SD deviations below the mean of the non-synesth&&fq mean distance for the 10 digits
was .095 in RGB space, the controls’ mean distavase.533 in RGB space, with a standard
deviation D) of .247;t4) = -1.62,p=.09 one-taile (Crawford & Garthwaite, 2002)).

We then performed a second test to objectivelyfwédiM’s superior consistency by
randomly presenting colors pairs to external judges asking them to rate the similarity (1 =
completely different to 5 = completely similar) thfe colors chosen at Time 1 and Time 2.
The judges rated the colors NM selected acrossatbesessions as significantly more similar
than those of control participants (NM mean = 4éohtrols mean = 3.05 ar@D = .59;t4) =
-2.343,p <.05 one-tailed; (Crawford & Garthwaite, 2002)).

% The city block distance analysis permits calcolabf distances between coordinates in a 3-dimeasipace.
* Because the t-test tends to be liberal when cdmpar single sample against a population, we usesvford
and Garthwaithe’s (2002) program to test whether's\idividual score is significantly different frorhe

control sample: http://www.abdn.ac.uk/~psy086/d&ipgle CaseMethodsComputerPrograms.HTM
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Procedure

NM participated in two different tasks, a Digit &p and a Numerosity Stroop task in
three experimental sessions. Each session startasking NM to pick his personal colors for
the numbers 1 to 6. This allowed us to ensurettieastimulus colors would be as close as
possible to NM’s photisms in the specific experita¢righting conditions. In order to
eliminate the possibility of carry-over effects ritothe Digit Stroop task, the Numerosity
Stroop Task was run in the first two sessions &edigit Stroop Task in the third, although

we describe the tasks in the opposite order faitgla

Digit Stroop Task

In order to replicate previous studies demonstgasygnesthetic Stroop effects when
Arabic digits are presented in colors inconsistetih those reported by the synesthetes
(Wollen & Ruggiero, 1983; Mills et al., 1999; Odgdeet al., 1999; Dixon et al., 2000;
Hancock, 2006; Paulsen & Laeng, 2006), we preseiddvith Arabic digits colored either
congruently or incongruently with his reported ptiots. NM’s task was to name the ink
color as quickly and accurately as possible, wigitering the identity of the digit. We also
tested the two baseline conditions, which were dma the ink of large colored disks and
name black digits. Given that the simple digit nagniask can be performed through the non-
semantic pathway, we would not expect RTs to bleentted by numerical size, and thus no
numerical effects were expected in the digit nantasl (Dehaene, 1992; Butterworth, Zorzi,
Girelli, & Janckheere, 2001).

Numerosity Stroop Task

In order to determine whether the synesthetic $treffect is limited to Arabic
numerals, or whether it generalizes to semanticesgmtations of number, we presented NM
with dot patterns colored either congruently oromgruently with the photisms that he
reported for the corresponding Arabic digit. As m@med above, NM did not report
perceiving colors for any kind of dot pattern. Tae®t patterns were either canonical (dice)
or non-canonical patterns. Numerosities ranged foom to six and in order to minimize any
potential learning effects for the non-canonicahfaqurations, we constructed two different

sets, non-canonical 1 (NC1) and non-canonical 22)RIC

® The non-canonical patterns covered the same artizecscreen as the dice patterns.
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To control for any potential color naming effed@dyaseline condition was run in which
NM had to name the ink color of large central diskise colors were the same ones used for
the Stroop task. A second baseline, an enumertdgi) was run to control for any possible
familiarity effects of the dice patterns, which assumed to be over-learned compared to the
non-canonical configurations, and for any potenkegrning effects for the non-canonical
configurations due to repeated presentation ofdtiv@uli during the experiment. In this
control condition, the same dot configurations lassé for the Stroop task were used, but
were presented in black on a gray background. &usvstudies of dot enumeration have
shown that reaction time increases with the nuraksize of the set (numerical size effect
(Wolters et al., 1987). Moreover, enumeration & krgest set of dots is usually faster than
for the next smaller set (end-effect) because dhgekt set has only one competitor whereas
all others have two competitors (van Oeffelen & V882; Wolters et al., 1987). For the
over-learned dice configurations, on the other hdahd RT curve is flat since participants
merely need to recognize the pattern, rather thamerate the number of dots (Wolters et al.,
1987). Therefore, for the enumeration base lineexeected to observe numerical size effects
and the end-effect (i.e. for numerosity 6) for ti@n-canonical configurations whereas we

expected to observe a flat RT curve for the digdigarations.

General procedure

In both Stroop tasks each stimulus was presentetthiss, resulting in 240 total trials
(2 congruity conditions x 6 numerosities) for thegiDStroop and 720 total trials (3 pattern
types x 2 congruity conditions x 6 numerositieg)tfie Numerosity Stroop, divided into two
sessions of 360 trials. For the baseline condititimsre were 120 trials for color naming (6
colors), 120 trials for digit naming (6 digits) aB@0 for dot enumeration (3 pattern types x 6
numerosities). Crucially, for the incongruent cdiudhi, in both the Numerosity and the Digit
Stroop, the colors used were the colors associaitdeach of the other numbers (i.e. the
numerosity or digit 3 in the incongruent conditiwas colored with the colors associated with
1,2, 4,5, and 6).
The trial sequence was the same for both taskisxationh cross was presented for 1000 ms
after which the stimulus appeared until the voieg Hevice detected the response. After the
response was detected, the image was reducedeinasid a code appeared in the left lower
corner allowing the experimenter to code, by meainghe keyboard, the accuracy of the
answer and any possible voice key errors (e.gglt®wr hesitations). Regular breaks were

scheduled during the task and the participant caldd choose to rest between trials before
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the answer was coded. The experiment was progranusied E-Prime 1.1 experimental
software (Schneider, Eschman, & Zuccolotto, 2002bhneider, Eschman, & Zuccolotto,
2002a) and run on a PC desktop computer (AMD AthI800+) running Windows 2000. The
experimental room was dimly lit and quiet. Stimukre presented on a 17-inch CRT screen
(1024 x 768 resolution at a 75 Hz refresh rate}raéiy in the visual field in less than 5° of

visual angle. NM was seated 1 meter from the screen

|.1.2. Results.

Overall Numerosity and Digit Stroop Tasks

Overall accuracy, collapsed across tasks, was 9&B%ongruent trials and 95.4% for
incongruent trials. After errors and voice key @&t errors were excluded (3.1% of trials)
from the data set, naming latencies exceeding taondsrd deviations from the mean per
condition were eliminated (4.9% of the remainingl$). For the two Stroop Tasks, an overall
ANOVA was run on the mean latencies for the cleadath. The factors introduced were
stimulus type (digits, dice pattern, NC1 and NG®ygruency (congruent or incongruent ink
color) and numerical value (1 to 6). All post-haergarisons were Bonferroni corrected.

Figure V.2. shows the mean reaction times for eafcthe four stimulus types as a
function of whether the ink color was congruentrmongruent with NM’s reported photism.
The main effect of congruency across digits and deds significantR(;, sssy= 190.12,p <
.001). This result replicates and extends previoesearch on digit and dot patterns
demonstrating a synesthetic Stroop effect whendaolors are incongruent with reported
photism colors. Mean RTs were 441 r8OE 121 ms) in the congruent condition and 549 ms
(SD= 228 ms) in the incongruent condition. In additithe main effect of stimulus type was
significant €, s34y = 358.61,p < .001) consistent with previous research in nucaer
cognition. Mean RTs (collapsed across congruen@&new18 ms3D = 197 ms) for digits,
430 ms ED = 94 ms) for the dice pattern, 404 nsO(= 105 ms) for the NC1 pattern and 424
ms SD= 131 ms) for the NC2 pattern. Post-hoc compasigerealed significant differences
between digits and all dot patterns (@l < .001) and between the dice patterns and the NC1
patternsf < .05).
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Figure V.2.: Mean RTs as a function of congruency across typstimuli. The shaded bars represent the
incongruent condition, while the white bars repnédbe congruent condition. Error bars represestahdard

deviations from the mean.

The stimulus type x congruency interaction was agmificant €, s34 = 35.09,

p <.001), with digits and dice patterns showingatge interference (247 ms for digits and
102 for dice patterns) than the two non-canoniedtigons (38 ms and 56 ms for the NC1 and
NC2 patterns, respectively), suggesting that thegagency effect is modulated by stimulus
type. Crucially, however, the incongruent conditimas significantly slower for all four
stimulus types (alps < .01), demonstrating the presence of a syné&stSabop effect for
each of the stimulus configurations, despite tloe fiaat NM denied experiencing colors for
dot patterns. Finally, the stimulus type x congruit numerosity interaction also reached
significance Es, s34)= 2.09,p < .01). Separate analyses for each stimulus typeesth that
congruency x numerosity interaction was significanll for dice and NC2 patternp € .028
andp = .015, respectively).

Although the analysis of variance is a very robststistical method, running it on a
single case violates basic assumptions of dataparmtkency (Basso, Salmaso, & Pesarin,
2006; Basso, Chiarandini, & Salmaso, 2007). We ttummpared a simplified ANOVA (with
congruency and stimulus type as factors) with ampgation test analysis (10000
permutations) to provide independent verificatidriiee observed congruency and stimulus
type effects. Since only a limited number of fastonay be introduced in a permutation
analysis we focused our permutation analysis osdtstimuli that yielded the smallest effects
in our ANOVA,; thus the demonstration of a signifiteeffect in the permutation analysis

allows us to conclude that larger effects would d&le significant if we were to test them with
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the permutation analysis. Both the permutationyaimiand the ANOVA yielded substantially
similar results, with both main effects and theeiattion being significant gt < 0.005,

confirming the robustness of observed effects.

Numerosity Influence

Since the congruency x numerosity interaction vigsificant for the dice and the NC2
patterns in the overall analysis, a second ANOV/A wan on the Numerosity Stroop task
only. To this end, numerosities were subdividethia ranges: small (numerosities 1, 2 and 3)
and large (4, 5 and 6). Thus the factors introdunetthe analysis were: stimulus type (Dice
pattern, NC1 and NC2), congruency (congruent oongeuent) and numerical range (small
and large numerosities). Mean RTs for the congrat incongruent conditions (across
numerosities and stimulus types) were 388 8B £ 85 ms) and 451 ms$SD = 126 ms)
respectively, whereas for the small and large nosites (across congruence levels and
stimulus types) RTs were 414 nSO0= 114 ms) and 424 m$SD= 108 ms), respectively.
The factors stimulus type and congruency were Bmhificant €, 6a9)= 4.74,p < .01 and
F s49)= 62.50,p < .001) demonstrating that responses were fastahéodice patterns than
for the two non-canonical patterns and replicatimg significant synaesthetic Stroop effect
reported above. As in the overall ANOVA, the stiomitype x congruency interaction was
significant €, s49)= 5.25,p < .01) with the synaesthetic Stroop effect beingrager in the
dice condition than in the other two conditionsndfly the congruency x range interaction
was also significantq(s, 649)= 9.76,p < .005; see Figure V.3.) indicating that the irdeghce
was stronger for smaller numerosities than for dargumerosities (90 ms and 36 ms,
respectively). In separate analyses for both rgng@asgruency remained significant (bgih
< .001). These results provide two arguments irfaf a semantic interpretation of NM’s
experiences. First, the slower observed RTs irfoailt incongruent conditions demonstrate
that the interference occurs independent of notate hallmark of semantic processing.
Second, the finding that smaller number elicitedrgger effects indicates that the concurrents
are elicited at a semantic level, since small nagiges are processed faster and with greater
accuracy (a process known as subitizing (Mandl@82) than larger numbers thus eliciting
the synesthetic color faster, and correspondingbatgr interference with the physically

presented color.
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Figure V.3.: Mean RTs as a function of congruency across timenigal range. The shaded bars represent the
incongruent condition, while the white bars repntdbe congruent condition. Error bars represestaddard

deviations from the mean.

Baseline tasks

Given that dice patterns are over learned, andtteeefore likely to be processed
differently than the non-canonical patterns, aftex Stroop task we asked NM to verbally
report the number of dots for neutrally colorech{ on a gray background) versions of the
dice, NC1 and NC2 patterns used in the main exmaninThis baseline task also allowed us
to test the learning effect of the non-canonicaifigurations used during the Numerosity
Stroop task. An ANOVA for the enumeration baselmas run introducing stimulus type
(dice, NC1, NC2) and numerosity (1 to 6) as factBath main effects were significant and
as expected, RTs are longer for larger numerogitiemerosity:Fs, 325y= 108.70,p < .001,;
stimulus type:F,, 325y = 83.42,p < .001; Figure V.4.). Moreover, post-hoc comparsdor
stimulus type indicated that all types of configioas were significantly different from each
other (allps < .05) with the dice patterns being enumeratetefathan the non-canonical
patterns and NC2 patterns also being enumeratéet fdian NC1 patterns. Furthermore, the
main effect of numerosity showed a classical ingirega curve for increasing numerosities.
The stimulus type x numerosity interaction was aigmificant €0, 325y= 10.018,p < .001).
The increasing curve was only true for the NC1 &€R patterns since RTs for the dice
patterns, as expected, were constant for all nusitez® (Wolters et al., 1987). The difference
between the enumeration curves for the NC1 and piE@rns and that for the dice patterns
indicates that the non-canonical configurationsenedeed unfamiliar to NM and could have

not been previously associated with colors in largy memory.
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However, it could be argued that the associatioth wblors was due to repeated
exposure during the experiment and that patterme tvetter recognized at the end compared
with the beginning of the experiment. In order $sess whether NM had learned the patterns
and could have recalled them directly from memaoryhe second session, we performed a
second ANOVA on enumeration RTs including sessfost(or second) as a factor. In this
new analysis, in addition to the previous main @ige the main effect of session was
significant €1, 307y = 10.429,p < .01) indicating that during the second session &b
overall faster (session 1: mean = 346 8B,= 98 ms; session 2, mean = 331 ®5,= 98
ms). However none of the interactions with sessagna factor approached significance
(p > .5). Separate analyses confirmed the presenassigiificant stimulus type x numerosity

interaction in both sessions (bgib< .001).
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Figure V.4.: Mean RTs for the six numerosities for each ofttiree dot configuration (dice, NC1 and NC2).
The dots represent the dice patterns, the squapessent the NC1 patterns, and the triangle the peE2rns.

Error bars represent 2 standard deviations fronmtben.

Taken together, the findings that enumeration oth baon-canonical patterns was
significantly slower than for dice patterns andtttieey did not become over-learned during
the experimental sessions strengthens the argutmerthe results obtained in the Stroop task
are not simply due to an association between pdatiqpatterns and colors. Rather these
results argue that synesthetic interference geamesato other numerically based stimuli (at
least for NM), including novel dot patterns, funth&rguing for a semantic locus for the

observed effects.
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In addition, we tested NM on a Color Naming baselio test for the presence of
differences in the time required to name each cdalor naming RTs (after exclusion of
errors and outlier removal using &P cutoff) were analyzed with a one-way ANOVA with
color as a factor (6 different color names). Themadfect of color was significant(s, 223)=
6.934,p < .01) and post-hoc comparisons indicated thatitierences were a result of color
names brown and grey being slower to nhame thaottiers (brown was significantly slower
than blue and greep,< .05 and .01 respectively, whereas grey was fiegnily slower than
all colors except for brown, ajps < .01). It seems unlikely that the interferencéeab
obtained in both the Digit and the Numerosity Sprdasks were mediated by the slower
reaction times to brown and grey, given that wes@néed all of the numbers and dots in all of
the colors. However, in order to rule out this ploitisy, we performed a new ANOVA
introducing mean naming time for each color (actwydo each experimental session) as a
covariate. The factors included were congruencydogent and incongruent), stimulus type
(digits, dice, NC1 and NC2) and number (1 to 6)e Tovariate did not reach significange (
= .623) whereas the congruency and stimulus typectsf were still significantR(, s33) =
190.075,p < .001 and3, g33)= 266.211p < .001). Moreover, the interactions also remained
significant: Congruency x Stimulus Typ&d ss33 = 35.054,p < .001) and Congruency X
Stimulus Type x Numbef(is, g33y= 2.087,p < .01). These results rule out the possibility that

the interference effects were the result of diffiees in color naming times.

Permutation analysis and result validation

Although the analysis of variance is a very rokststistical method, running it on a
single case violates basic assumptions of datgpermdiency (21, 22). For this reason, we
performed a permutation test analysis (10000 peatiams) and an ANOVA with congruency
(congruent and incongruent) and stimulus type (dW@1 and NC2) as factdrso compare
and validate the results of the ANOVA. We focusad permutation analysis on those stimuli
that yielded the smallest effects in our ANOVA; slthe demonstration of a significant effect
in the permutation analysis allows us to concluldat targer effects would certainly be
significant if we were to test them with the peratign analysis. Both the permutation
analysis and the ANOVA yielded substantially simil@sults, with both main effects and the
interaction being significant at a p-value < 0.0@86nfirming the robustness of observed

effects.

® Only a limited number of factors and levels carirtteoduced into a particular permutation analysis.
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Figure V.5.: Mean for the six colors that NM associates to eaamber from one to six. Error bars represent 2

standard deviations from the mean.

NM was tested on a Color Naming baseline to testife presence of differences in the
time required to name each color (Figure V.5.).cColaming RTs (after exclusion of errors
and outlier removal using a3D cutoff) were analyzed with a one-way ANOVA withl@o
as a factor (6 different color names). The maieafdf color was significanf(s, 223)= 6.934,
p<.01) and post-hoc comparisons indicated that tfierences were a result of color names
brown and grey being slower to name than the otflexsvn was significantly slower than
blue and greem < .05 and .01 respectively, whereas grey was fggnily slower than all
colors except for brown, afis< .01). It seems unlikely that the interferenceat obtained
in both the Digit and the Numerosity Stroop taslgevmediated by the slower reaction times
to brown and grey, given that we presented alhefriumbers and dots in all of the colors.
However, in order to rule out this possibility, werformed a new ANOVA introducing mean
naming time for each color (according to each expamtal session) as a covariate. The
factors included were congruency (congruent andnigauent), stimulus type (digits, dice,
NC1 and NC2) and number (1 to 6). The covariate il reach significancep(= .623)
whereas congruency and stimulus type effects widresignificant (Fq, s33) = 190.075,p <
.001 andF, g33)= 266.211,p < .001). Moreover, the interactions also remaingdifcant:
Congruency x Stimulus Typé& g, s33y= 35.054p< .001) and Congruency x Stimulus Type X
NumberF s, g33y= 2.087,p < .01). These results rule out the possibility tin&t interference
effects were the result of differences in color magimes.
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|.2. Conclusions.

In this paper we presented the case of NM, a grapkmlor synesthete for whom
digits, but not dot patterns, elicited the subjectiexperience of colors. Our results
demonstrate Stroop-like interference for incongtiyerwolored stimuli both when NM
performed a digit Stroop task and when he perforemadmerosity Stroop task with dice and
non-canonical patterns, despite the fact that higedg denies any conscious experiences of
color for dot patterns. Moreover, both interfereraoed facilitation were stronger for the
smaller numerosities than for larger ones. Thesaltesuggest that NM may be a “higher”
synesthete for whom the associations are exphicidigits but implicit for other numerical
stimuli.

These results differ from those presented by Wadi $agiv (2007) even though both
studies suggest the same synesthetic locus of imduclrheir synesthetic participant, TD,
explicitly reported colors for digits, dice patterand fingers, and demonstrated interference
for all three types of stimuli. However, he repdrtihat he did not experience colors for
random dot patterns, and correspondingly did nawshn interference effect with these
patterns, resulting in a tight correspondence betwsubjective experience and objective
measures. In contrast, we find for the first timesymesthetic Stroop effect with non-
cannonical dot patterns. Thus, our participant Nevhdnstrates a dissociation between these
measures in the case of dot patterns. One possiplanation for the difference between the
current findings and Ward and Sagiv is a differeimcgtatistical power, as we presented twice
as many stimuli per cell. However, given that ta-significant numerical trend in their data
was the opposite of what we observed with NM, wendb believe that power alone can
explain these different findings. A second posgipilis that the way their random
configurations were created could have generatedesoverlap with the dice patterns
introducing an undesired bias in RTs (N. Sagivspeal communication 2007).

Cohen Kadostlet al. (Cohen Kadosh et al., 2005; Cohen Kadosh & HeBi)6a;
Cohen Kadosh & Henik, 2006b; Cohen, Cohen, & Her@@07) have argued that the
interference due to higher synesthesia could l#rbetional, even though conscious reports
of synesthetic experiences are almost universafliydirectional. In a single-case study,
Cohen Kadoslet al (Cohen Kadosh et al., 2005) tested the claimrnhatbers elicit colors,
but not the other way around. They presented twidsdihat were colored either congruently

or incongruently relative to the synesthete’s @8, and asked participants to indicate
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which of the two digits represented the larger niage with a key press on the
corresponding side. In the incongruent condititwe, ink colors corresponded either to digits
closer together or further apart than those preseiar the numerical judgment (e.g. a4 and a
6 in the colors of a 1 and a 9). In the incongrumatdition, where the colors were those of
numbers further apart, RTs were faster than wherséme digits were congruently colored.
They concluded that the incongruent colors wers faailitating the judgment by eliciting a
greater numerical distance, suggesting an imgdietlirectional activation.

Cohen Kadosh and collaborators have subsequenthsepted additional data
supporting an implicit bi-directional link betweenlors and analog magnitude in conditions
where colors not only created interference with adoal processing but also influenced
physical magnitudes judgments in absence of nuaderdormation (Cohen Kadosh &
Henik, 2006a; Cohen Kadosh & Henik, 2006b). In #iarapt to rule out a possible learning-
based account of their findings, Cohen Kadetsal. (Cohen Kadosh et al., 2005) trained non-
synesthetic participants in five one-hour sesstorsssociate numbers with colors. However,
it is clear that five hours of training cannot mtma lifetime of synesthetic experiences.
Although these results have been taken as evidemcan implicit bi-directional activation
between colors and digits, we argue that such osimlis are premature. Based on our own
results in a uni-directional paradigm, we have shdlat, despite the absence of overt color
report for dice and non-canonical patterns, NM slasver for those stimuli when they were
colored incongruently with his corresponding dghotisms.

Given the presence of both implicit uni- and bieditonal interference effects in
synesthesia, some account of how such interferarises must be given. One possibility is
that implicit bi-directionality in synesthesia migbe due to neural connections between color
and numerical representations, but which are stesmgigh to lead to interference, but weak
enough that such connectivity does not elicit a scmus experience (Hubbard &
Ramachandran, 2005; Cohen Kadosh & Henik, 2007yveier, another possibility, which
has not been sufficiently considered, is that theserference effects are cognitive
consequences of the primary synesthetic connectidmsh do lead to conscious experiences
(see Figure V.6.). That is, the semantic effects hage observed here are not a direct
consequence of synesthesper se (implicit synesthesia), but rather are secondary
consequences of a lifetime of associations betvadggits, colors and numerical magnitudes
(pseudosynesthesia).
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Numerosity

// Pseudosynaesthesia
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Dots Dice DigitS | m—-| Colors

Figure V.6.: Schematic representation of synesthetic and psgudsthetic connections between areas. The
bold arrows indicate the direct pathways betweeabksr numerals and numerosity processing and between
Arabic numerals and colors, present in graphemercgynesthesia. The thinner arrows from dice and do
patterns to numerosity indicate other possible \payls to access numerosity information, while thelde-
headed arrow indicates secondary pseudosynes#tssticiations between numerical information andrepbis a
result of a lifetime of experience in which Arabrmumerals simultaneously elicit color and magnitude

information.

Neuroimaging and neuroanatomical methods suggest ttie primary linkage in
number-color synesthesia is due to cross-activatetween graphemic representations and
color representations in the fusiform gyrus (Hubb@& Ramachandran, 2005; Rouw &
Scholte, 2007) Given the existence of such primargages, each time a number-color
synesthete looks at an Arabic digit, he or she alstmmatically experiences a color and
simultaneously activates the numerical magnitud®@ated with that digit. Because of the
constant association between magnitudes and ctharswo may become associated within a
broader cognitive system, despite the absencensfcoaus links between them (for a similar
line of reasoning applied linkages between differgmpes of synesthesia, see Simner &
Hubbard, 2006). Indeed, both fMRI adaptation in harparticipants (Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004) and single-unit recordimgsnonkeys (Diester & Nieder, 2007)
have demonstrated that numerosity stimuli (dotgpas) and Arabic digits map onto the same
neurons in parietal and prefrontal cortices. lis tihanner, spreading activation within the
semantic network may account for the presence i doterference for dot patterns, and
similarly, for the findings of “implicit bi-directinality” reported in previous studies. In order
to distinguish between conscious synesthetic re@ortl non-conscious associations that may
develop with repeated associative learning, we asigghat the latter be referred to as
pseudosynesthesia, indicating the fact that thepiensynesthesia, without giving rise to
conscious experiences, one of the defining featofeynesthesia. It is therefore important to
differentiate between primary synesthetic connestibetween areas, which give rise to
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secondary experiences and are probably geneticalliced, from those connections that are
the consequence of the consistent experience of e&zlch time a digit is seen, creating
secondary semantic links.

In the only study to directly compare Stroop effedue to conscious synesthetic
associations with equally strong pseudosynestlassociations, Elias and colleagues (Elias,
Saucier, Hardie, & Sarty, 2003) compared a singtesthete to two types of controls: a non-
synesthete expert in cross-stitching with eightryed experience for whom colored threads
where associated to digits, and a group of four-syresthetic control participants with no
color-number associations. In three behavioral gaskich tested for the automaticity of
color-digit associations — a standard digit Straagk, a mathematical Stroop task, and a
priming task — the congruency between color andt dwgs manipulated according to the
individual associations of each participant. Whensidering only simple RT measures, the
synesthete and the expert in cross-stitching shosepdvalent patterns of interference in
incongruent conditions in all three tasks, despit fact that the cross-stitcher reported no
conscious experience of colors in response todigis defined here, the cross-stitcher is a
clear example of pseudosynesthesia. Moreoversthdy suggests that individuals who learn
number-color associations over a sufficiently Igegiod of time may perform similarly to
synesthetes and be subject to interference whéorpeng synesthetic Stroop tasks.

Similarly, MacLeod and Dunbar (1988), trained augraf 22 participants to name
geometrical shapes using color names. The autlepasrtrthat five hours of training were
sufficient to create an interference effect whilerforming a Stroop type task with
congruently/incongruently colored shapes. After I&urs of practice, not only was the
interference very strong, but one participant eslarmed that the white shapes began to take
on the colors of their associated color names. féloé that one of MacLeod and Dunbar
participants reported colors to shapes after 2@shofitraining suggests that more extensive
training may mimic synesthetic associations inipaldr individuals.

A similar associative learning explanation could¢dant for results of Dixoret al.’s
(Dixon et al., 2000) mathematical Stroop task dbedrin the introduction (see also Jansari et
al., 2006). Certain models of numerical cognitiamggest that numbers activate a rich
network of associations that, in the context of izely task, includes both relevant and
irrelevant information (Campbell, 1994; Campbebyler, & Doetzel, 2004). As experience
increases, retrieval of simple arithmetical proldernecomes specialized to optimize
performance, creating preferential links betwedated digits (such as between 5, 2, and 7).

Every time a synesthete retrieves a given arittom@toblem, viewing or thinking of digits
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will also elicit the relevant colors creating akiimot only between the operands and the
results, but also for the appropriate sequencelofs. Therefore the interference observed by
Dixon et al may not be due to a conscious experience of adloited by the arithmetic
solution (and indeed, Dixoet al do not state whether C reported any consciousigghs)
but rather may be due to associative priming. Raiie@n numbers activating a conceptual
representation, we argue that the operands maydwated both the numerical information
and the color which would generate the interferangearallel. This conclusion is supported
by similar results in an identical paradigm testacEliaset al.’s cross-stitcher who may have
similar cognitive associations, but has never reggbany synesthetic experience (Elias et al.,
2003).

These considerations highlight that Stroop tasksnwused as objective markers for
synesthesia in the absence of corresponding sigeeports, must be treated with caution
(for a related argument see Smilek & Dixon, 200¥g are not questioning the use of Stroop-
like paradigms as a method of validating subjectegorts (indeed they have been highly
useful), but question their direct application e tstructure of synesthetic representations in
the absence of such subjective reports, giventligaéntire cognitive system will be modified
by the repeated synesthetic experiences. In thenabsf longitudinal and/or developmental
studies of synesthesia, it is impossible with a&irlike task to disentangle primary, direct
consequences of synesthesia, from secondary aidagtdb a lifetime of altered sensory
experience. We argue that results obtained witlooBtrparadigms only demonstrate the
presence of an association, which could be eitheresthetic or pseudosynesthetic.
Distinguishing between these two possibilities oaty be done through the use of subjective
reports.

In sum, we stress that synesthesia is traditionddtined as the union of the senses
where a perception in one modality triggers a seécoanscious experience in a non-
stimulated modality. We suggest that in the questuhderstanding synesthesia, reports of
additional sensations should be explicit, sinds @nly then that we can distinguish between
synesthetic phenomena and over-learned associaktwre generally, following Merikle and
colleagues (Cheesman & Merikle, 1986; Merikle et 2D01), we argue that studies of
unusual experiences should depend on not only tigemeasures, but also on subjective
report, especially given that explicit and implipitocessing may yield qualitatively different
effects (Cheesman & Merikle, 1986), or, as we sagdeere, may even arise from

gualitatively different mechanisms.

140



Chapter 6: General Conclusions.






General Conclusions

The general topic of this thesis, that is the repnéation of numerical information in
humans, was investigated from three different pmapes. The first was to study how
numbers are represented by children. Two quest@ne addressed: the first was to observe
the developmental pattern of numerical represemtain preschoolers; the second was to
differentiate a specific numerical representatioont the representation of non-numerical
ordered sequences. The results of the first stedyotistrated that the understanding of how
numbers map onto space develops long before foematation begins. At first, when a
young child is asked to position numbers on a dine will rely on an intuitive representation
where smaller numbers are overrepresented and laugebers are clustered together. With
familiarization to numbers and practice, the chHi@drns progressively to position them
regularly in a linear manner. Moreover, the abitibyposition numbers linearly is dependent
of the context. If the context given is too largeumfamiliar, the child will go back to a
intuitive representation. Support to the claim tt@itext plays an important role can be found
in the second study, where children failed on a engally small interval (1-7) that did not
conform to the base-10 reference system. Indeedhi®interval not only the numbers had to
be known but children had to deploy a numericalrgspntation independent from their
familiar reference scheme.

The focus of the second study was on the simildsgyween numerical and non-
numerical sequences. On the one hand, the devetdpimpattern observed with non-
numerical sequences showed to be similar to theldpment of the numerical representation
when tested with the positioning task. Indeed ythengest children seemed to have trouble in
positioning items on the lines and progressiveligdeon an informal representation and then
shifted to a linear positioning. The intermediai®ye of logarithmic positioning was present,
although in a small percentage. This was explamethe testing period that occurred at the
end of the school year allowing extensive practcd® graders compared to preschoolers,
and by the smaller interval range for the non-nucaésequences. Additionally, the ability in
the numerical domain was predictive of the abilityhe non-numerical domain. On the other
hand, the results were different when children wessted on the mental bisection task.
Different performance patterns were observed ametibn of the tested sequence. Only the
bisection of numerical intervals showed the cladsgignature of compressed numerical
representation. The younger children tended to nestienate more the true midpoint
compared to the older children and they were aiflaenced by the length of the interval:

that is, the longer the interval the more they weased.
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The different performance observed for the differgeguences in the mental bisection
task and the predictive character of the numesbdity on performance in the non-numerical
positioning tasks suggests that children generaheelinearity principle. They first learn to
represent items linearly in the numerical domaid anly after they extend this concept to
other sequences. This result is of particular edebecause the processing of non-numerical
sequences has been shown to produce effects éhegraarkably similar to those observed in
the numerical domain. For example, Gevers and lmmliors (2003; 2004) have shown a
SNARC-like effect with non-numerical material. Moxker, others (Fias et al., 2007; van
Opstal et al., 2007) have shown that ordinal seceeiactivate the same brain regions (i.e.,
the intraparietal sulcus) that are usually actidatdnen manipulating numerical information
or performing arithmetic tasks. These results colodd explained by the generalization
assumption: children start to understand the cdnaielnearity in the numerical domain and
with time they generalize it to other domains stiat a stable associations between the non-
numerical sequence and the numerical concept &eattpas a consequence to this continuous
association the brain areas specific to numbergsing start to be active for non-numerical

sequences even in the absence of numerical infmmat

The second perspective adopted to understand humamerical representation was to
study skilled adults with task requiring to mangtel both symbolic and non-symbolic
numerical information. The first aim was to estim#te individual value of internal Weber
fraction through a numerosity discrimination taskd do relate this value to other tasks that
putatively rely on a common (log-Gaussian) repreg@n as shown by Weber's law
signature. The second was to further understanththience of the format presentation in an
approximate calculation task.

Surprisingly, although performance in the numbenparison task shows Weber’s law
signature (size and distance effect), reactiondifaded to correlate with the Weber value.
One could argue that this failure was the resulhocdbmpatible indices. Indeed, performance
in the number comparison task was indexed by RTigreas the Weber value was estimated
from the accuracy in the numerosity discriminatiask. Alternatively, it could be argued that
the symbolic comparison task relies only partialhythe internal log-Gaussian representation.
In support of the latter hypothesis, different med# numerical processing are now leading
to the conclusion that adult numerical abilities anderpinned by two separate systems: one
would be language-based and activated for all exacterical tasks and the second would be

language independent, necessary for numerical appate processing and phylogenetically
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determined (Verguts, Fias, & Stevens, 2005; VergutBias, 2004; Spelke, 2000; Zorzi,
Stoianov, Becker, Umilta & Butterworth, submittedjor instance, the numerosity code
model assumes a linear representation of numeyogity similar way to a “thermometer”
representation (Zorzi et al., 2008). Each numeyosdt is represented by a corresponding
number of nodes which contains the smaller sub-3étis model successfully explains the
distance and size effect in number comparison. Blae the authors suggest that this model
should coexist with an approximate representationescardinality is not the only type of
mental representation of numbers. Further suppotti¢ hypothesis of a dual system comes
from a neuropsychological study (Lemer, Dehaene]kep & Cohen, 2003) on two patients
with numerical deficits. The first patient had presd abilities in approximation tasks but
failed in symbolic tasks. The second patient shothedeverse pattern of deficit, with spared
exact calculation and deficits in approximate ta3keerefore, in our study, when comparing
Arabic numbers instead of numerosities, an exachanical system would be active and
therefore hide the numerical representation desdrily the Weber value.

Moreover, in the study with adults, the data alldvie formulate a new hypothesis on
what McCrink and collaborators (2007) termed tperational momentum. They observed
that when performing approximate additions, pastiots tended to overestimate the correct
result whereas they preferred a smaller outcomenvyleeforming subtractions. To them, this
phenomenon was comparable to tlepresentational momentum which is the tendency to
remember a position of a moving object furtherhe tirection of movement than it really
was. McCrink and collaborators (2007) suggest timahputing additions and subtractions
would be equivalent to moving on the internal nuosmrepresentation as if it was a physical
line. Therefore, the movement induced by the opmrgforward for addition and backward
for subtraction) would yield the overestimation amtlerestimation. However, by crossing
symbolic and non-symbolic formats in our experiméhe results suggested an alternative
explanation to the calculation biases although matually exclusive with McCrinck and
collaborator's hypothesis. Indeed, numerous studiage shown that dot patterns are
generally underestimated and the degree of undwmigin is proportional to set size
(Ginsburg, 1978; Izard & Dehaene, 2007; Allik & Tonets, 1991; Durgin, 1995). Larger sets
are more underestimated than smaller ones. Ine&ypnon-symbolic approximation task, the
data can be accounted for more economically by radenestimation bias. When solving
additions, the operands as well as the outcomesiraterestimated and since the proposed
outcomes are numerically larger than the operaaligays the case in additions), the latter

were more underestimated, leading participants’ icghotowards the larger sets
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(overestimation). In subtraction, the numericalyger set, the more underestimated, was in
the operation and led participants to a much smaligproximated answer than the correct
one. Therefore, when choosing among the possibleeomes, participants’ choice
preferentially fell on the numerically smaller set.

Finally, in the third perspective adopted in thisrikvwe studied a NM, a number-colour
synaesthete, for whom digits, but not dot patteghisited the subjective experience of colors.
In a Stroop-like task with numbers and dot patténtexference effects were observed despite
the fact that he actively denied any conscious eepee of color for dot patterns. These
results suggest that NM may be a “higher” synestf@t whom the associations are explicit
for digits but implicit for other numerical stimuli

Other studies carried out by Cohen Kadeshl. (Cohen Kadosh et al., 2005; Cohen
Kadosh & Henik, 2006a; Cohen Kadosh & Henik, 2006bhen, Cohen, & Henik, 2007)
have argued that the interference due to higheesthiesia could be bi-directional, even
though conscious reports of synesthetic experieacesimost universally uni-directional. In
a single-case study, Cohen Kadashal. (Cohen Kadosh et al., 2005) tested the claim that
numbers elicit colors, but not the other way arouhldey presented two digits that were
colored either congruently or incongruently relatto the synesthete’s photisms, and asked
participants to indicate which of the two digitpmesented the larger magnitude with a key
press on the corresponding side. In the incongraentlition, the ink colors corresponded
either to digits closer together or further apdrant those presented for the numerical
judgment (e.g. a 4 and a 6 in the colors of a 1a®{l. In the incongruent condition, where
the colors were those of numbers further apart, Ré&e faster than when the same digits
were congruently colored. They concluded that tttemgruent colors were thus facilitating
the judgment by eliciting a greater numerical dis&g suggesting an implicit bi-directional
activation.

Given the presence of both implicit uni- and biediional interference effects in
synesthesia, some account of how such interferanses must be given. One possibility is
that implicit bi-directionality in synesthesia migbe due to neural connections between color
and numerical representations, but which are stesrayigh to lead to interference, but weak
enough that such connectivity does not elicit a scmus experience (Hubbard &
Ramachandran, 2005; Cohen Kadosh & Henik, 2007)weder, we argue that these
interference effects are cognitive consequencéiseoprimary synesthetic connections, which

do lead to conscious experiences. That is, the rsEnetfects we have observed in our study
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are not a direct consequence of synesthpaiase (implicit synesthesia), but rather are
secondary consequences of a lifetime of assocgti@iween digits, colors and numerical
magnitudes (pseudosynesthesia).

Finally, we stress that synesthesia is traditigndifined as the union of the senses
where a perception in one modality triggers a seécoanscious experience in a non-
stimulated modality. We suggest that in the questuhderstanding synesthesia, reports of
additional sensations should be explicit, sinds @nly then that we can distinguish between
synesthetic phenomena and over-learned associakiture generally, following Merikle and
colleagues (Cheesman & Merikle, 1986; Merikle et aD01), we argue that studies of
unusual experiences should depend on not only ilgemeasures, but also on subjective
report, especially given that explicit and implipitocessing may yield qualitatively different
effects (Cheesman & Merikle, 1986), or, as we sagdeere, may even arise from

qualitatively different mechanisms.
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