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Abstract

The hydraulic conductivity distribution in a natural porous media is characterized

by a great heterogeneity that makes its spatial assessment problematic and expensive.

At the same time, a detailed knowledge of the hydraulic properties, as porosity, stora-

tivity, transmissivity and hydraulic conductivity K, is fundamental for the prediction

of groundwater flow and solute transport in natural formations. Among the hydraulic

properties, being the subsurface transport phenomena in natural formations mainly

controlled by the Darcy’s law, the proper definition of the K spatial distribution at

different scales plays a fundamental role to evaluate the evolution of a contaminant

plume, to define the well-catchment areas or to monitor a landfill site. To estimate

aquifer hydraulic properties, inverse models have long been studied and, beyond the

traditional hydraulic conductivity and head measurements, tracer test analyses have

been widely adopted in the past and their use have increased in the recent years thanks

to a great improvement of geophysical techniques. Among others, the Electrical Resis-

tivity Tomography (ERT) allows to monitor a tracer test injection, providing time-lapse

informations about the plume evolution with limited cost.

Assuming that time-lapse spatially distributed data deduced from a tracer test are

available, the present work investigates different approaches aimed to the estimation

of the local K distribution. At this purpose, Kalman filter based data assimilation

techniques are coupled with the Lagrangian transport model and applied in different

synthetic contexts.
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Sommario

La distribuzione di conducibilitá idraulica in un mezzo poroso naturale é caratter-

izzata da grande eterogeneitá, che rende la sua determinazione problematica e costosa.

Allo stesso tempo, una approfondita conoscenza delle proprietá idrauliche, quali la

porositá, l’immagazzinamento specifico e la conducibilitá idraulica K, é di fondamen-

tale importanza per poter predire e analizzare il flusso sotterraneo e il trasporto di

soluti in formazioni naturali. Poiché i fenomeni di trasporto sotterraneo che si realiz-

zano negli acquiferi sono principalmente controllati dalla legge di Darcy, tra le diverse

proprietá idrauliche sopraccitate, un’opportuna definizione della distribuzione spaziale

di K gioca un ruolo fondamentale nella predizione del plume di inquinanti, e quindi as-

sume particolare rilevanza in molte attivitá di pratico interesse, quali la definizione delle

aree di salvaguardia dei pozzi o il monitoraggio di discariche. Le proprietá idrauliche

degli acquiferi sono di norma stimate con l’ausilio di modelli inversi utilizzando, oltre le

tradizionali misure di conducibilitá idraulica e piezometria, quelle derivanti da analisi

di iniezioni controllate (test con traccianti o tracer test nella comune dizione anglosas-

sone). I test con traccianti sono stati in diverse occasioni adottati nel passato ma il

loro uso é aumentato negli anni recenti grazie agli sviluppi delle tecniche geofisiche che

semplificano il monitoraggio delle prove in situ. Fra queste, la Tomografia Elettrica

Resistiva (ERT) sembra essere la piú appropriata per misurare le quantitá di inter-

esse nel caso di iniezioni di traccianti, essendo possibile acquisire un grande numero di

informazioni sull’evoluzione spazio-temporale dell’evoluzione del plume, a costi relati-

vamente limitati.

Partendo dal presupposto che siano disponibili misure derivanti da una iniezione con-

trollata in pozzo, il presente lavoro suggerisce alcuni approcci che, sulla base dei dati de-
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ducibili dalle misure ERT, permettono di stimare la distribuzione spaziale diK e verifica

la loro effettiva capacitá predittiva. Tali modelli risultano dall’accoppiamento di tec-

niche basate sul filtro di Kalman con modelli di trasporto Lagrangiano: l’applicazione

ad una estesa serie di casi sintetici ha permesso inoltre di ottenere utili indicazioni in

relazione a vantaggi e svantaggi di ciascuna delle metodologie proposte.
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Chapter 1

Introduction

This thesis investigates new techniques to assess the hydraulic conductivity distri-

bution K at local scale from tracer test data.

At the local scale, that is the scale characterized in the vertical and horizontal direction

by the order of magnitude of the aquifer thickness, the flow and transport processes

are of a three-dimensional nature (Dagan, 1986), so that the detailed knowledge of the

K distribution is fundamental for the prediction of groundwater flow and contaminant

transport. Indeed, the non-Fickian evolution of the solute plumes is mainly controlled

by K distribution and this means that its proper definition plays a fundamental role, for

example, in defining the well-catchment areas or in monitoring a landfill site. However,

in natural porous media the K is usually characterized by a great spatial variability,

making its assessment hard to achieve.

Aquifer hydraulic properties are usually estimated through inverse models and, in re-

cent years, the progresses in computational resources have opened new possibilities in

their use. At a local scale, these inverse model use data measured, for example, dur-

ing laboratory analysis of samples, slug tests, hydraulic tomographies and tracer tests.

The use of the latter in the last years has increased thanks to the development of geo-

physical method, through which extensive data can be obtained with limited cost and

non-intrusive monitoring. From geophysical interpretation of tracer tests, it is then

possible to acquire low cost informations about the spazio-temporal evolution of the

plume, that is useful not only to assess the aquifer parameters, but also to obtain a

17



1.1. Literature review Chapter 1.

better understanding of the overall transport phenomena.

Among the techniques available to solve an inverse problem, the Ensemble Kalman

Filter (EnKF) and the Ensemble Smoother (ES) are here applied and coupled with a

Lagrangian transport model to assess the local distribution of K. The solute injection

is analyzed in terms of spatio-temporal evolution of the concentrations or as travel

times monitored in a prescribed control plane. In both cases, data are considered as

deduced from an Electrical Resistivity Tomography (ERT) survey, which provides ex-

tensive information, even if it requires the resolution of a specific geophysical inversion

and an in-situ calibration of a petrophysical law to estimate the concentrations.

The thesis proves that it is possible to retrieve the hydraulic conductivity distribution

at local scale with a good accuracy through the proposed method. Some improvement

of the experimented procedure, mainly related to the reduction of numerical issues are

also presented. A comparison between EnKF and ES is realized and the inadequacy of

the ES for the analyzed problem is shown. It is also verify the possibility of avoiding

the calibration of a petrophysical relation by using travel time data.

1.1 Literature review

1.1.1 Parameter estimation by Kalman filter based methods

Inverse problems have been studied for the last forty years to estimate aquifer hy-

draulic properties and with the recent computational resources progresses their use

has developed. By using the definition of McLaughlin and Townley (1996), an inverse

model concerns the estimation of spatially variable model parameters which have phys-

ical significance but are difficult to measure, so that, under certain circumstances, these

parameters may be inferred from measurements related to the analyzed system.

The inverse model topic is really wide and it is difficult to give a complete overview

about it. Some general aspects are given hereinafter with reference to the reviews by

McLaughlin and Townley (1996), Zimmerman et al. (1998), Carrera et al. (2005), Vrugt

et al. (2008) and Hendricks Franssen et al. (2009). After that, the attention will be

focused on the use of Kalman filter based method for parameter estimation.
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Chapter 1. 1.1. Literature review

In groundwater hydrology usually we are interested in estimating the hydraulic con-

ductivity and, at this purpose, the data may come from permeability measurements,

hydraulic head measurements, tracer concentrations from tracer test measurements and

geologic information on the characteristics of the formation (Zimmerman et al., 1998).

In general, an inverse technique follows these steps: 1) define the way in which the

parametrization, i.e., the spatial variability, of the hydraulic conductivity is described;

2) determine the forward equation it uses to relate the parameters to the measurements

and the cross covariance between them; 3) choose an optimization method to find the

parameter estimation and the criterion to define “good” the parameters estimate.

A schematic mathematical development of the inverse problem considers a model A, in

which the discrete time evolution of the state vector x is described through:

xt+1 = A(xt, u, β) (1.1)

where u represent the forcings (e.g., boundary conditions), β represents the vector of pa-

rameter values and t denotes time. The available measurements are collected in the vec-

tor Zm = [zm1 , . . . , z
m
n ] being n the number of observations. Through the model A and

given an initial guess for β, the vector of model predictions Z(β) = [z1(β), . . . , zn(β)]

is computed. The aim of parameter estimation becomes finding those values of β such

that the difference between the model-simulated output and measured data is forced

to be as close to zero as possible. This corresponds to minimize an objective function,

for which different formulations are available.

To solve an inverse problem, different approaches have been elaborated even if, as ar-

gued by Carrera et al. (2005), they do not really differ from each other in their essence,

though they may differ in the computational details (for example, the search technique

they use to find a minimum). Usually the parameters depend non-linearly on measure-

ments, and most of the times non linear methods, as the maximum a posteriori methods,

the nonlinear least squares methods, the maximum likelihood methods, and the pilot

points methods, are used to solve the inverse problems. As stated by McLaughlin and

Townley (1996), they all minimize some versions of the objective function so that they

primarily differ in the search technique they use to find a minimum and in the adopted
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1.1. Literature review Chapter 1.

parametrization. Less frequent is the use of linear methods that are obtained, for ex-

ample, by approximating the operator that maps the state space x in the measurements

Z.

While dealing with inverse models, the main difficulties related to their application

have to be mentioned: 1) non-identifiability, that occurs when more than one set of

parameters leads to a given solution of the forward problem; 2) non-uniqueness, that

is present when more than one set of parameters leads to a minima of the objective

function; 3) instability, that is present when small changes in the observations lead to

large changes in the estimated parameters. When the inverse model does not suffer of

the previous problems it is said “well-posed”. Anyway most of the inverse model are

ill-posed.

In the last years, it has become common the solution of the inverse problem through

the application of the Kalman filter based technique, as the Ensemble Kalman filter

(EnKF) or the Ensemble Smoother (ES). Unlike the optimization processes that re-

quire the calculation of the derivatives of the objective function with respect to model

parameters (and this process is hard to program and highly consuming), the EnKF and

ES overcome this problems, by conditioning multiple equally likely realizations of the

state variables to the measurements.

In the EnKF the time-series of measurements are not incorporated simultaneously, but

the stochastic realizations are sequentially conditioned in an iterative process. More-

over, the efficiency of the EnKF is due to the fact that the updating process is not

based on traditional sensitivity-based optimisation, that means the objective function

derivatives, but on optimum weighting of model prediction and measurements. The

first formulation of the EnKF is given in Evensen (1994) but the first application in

groundwater problem is due to Chen and Zhang (2006). In their work, they apply the

EnKF to update the hydraulic conductivity in synthetic bi- and three-dimensional fields

by assimilating hydraulic head measurements, proving the capabilities of the method.

Afterwards, Liu et al. (2008) use the EnKF is used to estimate both the hydraulic

conductivity spatial distribution and various transport model parameter at the MADE

site (Boggs et al., 1992), through hydraulic head and tracer concentration data col-
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lected in the field. They then use the in situ flowmeter measurements to valuate the

quality of the K estimation. In Hendricks Franssen and Kinzelbach (2008), the EnKF

is used for parameter estimation (the K spatial distribution) in a synthetic study. The

purpose is to solve regional groundwater flow problems by assimilating hydraulic head

measurements. Moreover in their work, the filter inbreeding problems is investigated

in details and some solutions are proposed for its reduction. In the work by Sun et al.

(2009), a deterministic EnKF (DEnKF) is applied to assess the K field by hydraulic

head measurements, to demonstrate the capabilities of the DEnKF compared to the

traditional perturbation-based ensemble filters, as the EnKF. The difference between

these two approaches is related to the fact the in the latter a random noise is added to

each observation so that the desired analysis ensemble covariance is replicated, but for

the authors the added observation noise becomes an extra source of inaccuracy, while in

the deterministic ensemble filters the need for sample perturbation is bypassed. Nowak,

in the work (Nowak, 2009), reformulated the EnKF such that only parameters are up-

dated, introducing the need for an iterative procedure each time new measurement data

are assimilated. If only parameters are updated, it is assumed that some other sources

of uncertainty (e.g., model forcings) are negligible as compared to material parameter

uncertainty, even if the approach does not exclude the option to parametrize uncertain

model forcings and jointly update material and forcing parameters. Huang et al. (2009)

in their work use the EnKF to estimate heterogeneous hydraulic conductivity field by

assimilating hydraulic head measurements and to improve prediction of solute plume

with unknown solute source condition by assimilating measurements of concentration

at monitoring wells. In the application by Xie and Zhang (2010), the EnKF is applied

in a physical-based distributed hydrological model at a local catchment scale for the

hydrological process. The purpose is to estimate the curve number parameter, as well

as the prognostic variables such as the runoff, soil water content and evapotranspira-

tion by using mainly runoff measurements. Hendricks Franssen et al. (2011) apply the

EnKF in a complex and realist flow situation that includes an unconfined aquifer, the

unsatureted zone and river-aquifer interactions to estimate both hydraulic conductivity

and leakage coefficients.
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The work by Jafarpour and Tarrahi (2011) demonstrates the incapabilities of the EnKF

in reducing the uncertainty of the variogram model parameters through the assimila-

tion of measurements.

Some recent papers (e.g., Zhou et al., 2011; Li et al., 2012; Schoeniger et al., 2012) deal

with the Gaussian hypothesis of the variables probability distribution function, that

ensures the optimal working conditions for the Kalman filter based methods. In par-

ticular in these works it is applied a technique called Normal Score Transform through

which the probability distribution function of the variables is made Gaussian, with the

purpose of optimizing the EnKF performances.

Related to the increased use of geophysical methods, there is the paper by Camporese

et al. (2011) in which the update of the hydraulic conductivity is realized by using

electrical conductivity measurements derived from ERT imaging of a synthetic tracer

test experiment.

Another Kalman filter based technique used for parameter estimation is the Ensemble

Smoother. Compared to the EnKF, the ES is not a recursive methods and all the

collected data are assimilated at the same time, that is in only one step. The main

advantage of the ES is that it does not require an embedded procedure and it can be

applied off-line, independently to the model adopted to describe the system evolution.

So far, a limited number of ES applications is reported in literature and are related

to the identification of the hydraulic conductivity distribution (Bailey and Baú, 2010,

2012) and to the irrigation procedure assessment (Bailey et al., 2012).

1.1.2 Tracer test analysis by geophysical methods

It is known and accepted that tracer tests are useful to characterize subsurface

properties and to study the spreading of solutes in a range of scales that vary from

laboratory scale to regional field-scale. The information derived from a tracer test can

be used to estimate the transport parameter, to set up and calibrate flow and transport

models, to identify contamination pathways or also to test forward transport predic-

tions obtained from deterministic or stochastic modeling framework.

A general review about the application of tracer test for the investigation of heteroge-
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neous porous media can be found in Ptak et al. (2004). In this work, the implications

that the aquifer heterogeneity and the scale of the problem have on tracer testing are

highlighted and proper methods to perform tracer tests are described. A large vari-

ety of the tracer compounds used in tracer experiments are listed and the advantages

and disadvantages of natural or forced gradient tracer test are separately analyzed, by

recalling literature applications. Anyway, in most of the literature cases described by

Ptak et al. (2004), information on tracer solute transport is available in terms of mea-

sured concentration time series, i.e. breakthrough curves, at monitoring locations and a

large number of monitoring wells is required to properly describe the three-dimensional

spatio-temporal evolution of a plume. Usually, the evaluation approaches are based

on the breakthrough curves deduced from a multilevel sampling developed in a single

monitoring well, and the spatial moment analysis of concentrations cannot be applied

due to of the limited number of measurement locations available.

As already said, there is a certain number of examples in literature papers where tracer

test data are used in an inverse model for parameter estimation (see, just to give few

examples, Barlebo et al. (2004), Vrugt et al. (2005), Fu and Gomez-Hernandez (2009),

Huang et al. (2009), Liu et al. (2010), Dafflon et al. (2011), Camporese et al. (2011),

Kowalsky et al. (2012), Li et al. (2012), Chen et al. (2012)). Moreover, in the last

years the use of tracer test data have increased, thanks to the enhancement of geophys-

ical methods that provide more detailed measurements compared to the traditional

techniques. Indeed one of the main advantage of geophysical methods is that they

provide higher spatial resolution data than the traditional in situ techniques, even if

the signals acquired (e.g., geoelectrical, geomagnetic, seismic) do not give a direct in-

formation about the relevant hydraulic properties, requiring the identification of a link

between geophysics and hydraulics. Among other geophysical methods, the application

of the ground penetrating radar (GPR) (e.g., Annan, 2005) and the electrical resistivity

tomography (ERT) (e.g., Binley et al., 2002; Kemna et al., 2002a) in monitoring sub-

urface phenomena has expanded. This is mainly due to their capability to monitor the

changes in soil electrical properties that are linked to the variations in moisture con-

tent or solute concentration, or in other words, to achieve significant spatio-temporal
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distributed data with a (relatively) limited cost.

In this work, the attention is focused on data that can be achieved by ERT.

An ERT data acquisition system acquires a series of voltage and current measurements

from electrode arrays placed in surface or in wells. The electrode arrays consist of

electrode dipoles that communicate with other dipoles and they are fastened at regular

intervals to a supporting shaft or string. They can be spaced very close to each other,

depending upon the resolution needed. The extensive data resulting from measure-

ments taken between the electrode arrays are processed to produce electrical resistivity

time-lapse images that show spatial variations in electrical resistivity using inversion

algorithms. The inversion procedure is not straightforward, and requires proper im-

plementation and solution techniques (Kemna et al., 2002b, e.g.,), because the current

paths through the medium are dependent on the electrical conductivity structure, and

has to be solved iteratively.

The link between electrical conductivity changes in soil properties is stated by a petro-

physical relationship (Archie, 1942). The electrical conductivity σb derives from elec-

trolytic conduction in the pore fluid (water), i.e., on moisture content and pore water

salinity and can be also expressed as a function of porosity φ, water saturation Sw and

electrical conductivity of the pore water σw, according to the Archie’s law:

σb =
1

a
φmSnwσw (1.2)

with m and n empirical parameters specific for the site and a a proportionality constant

of the order of one. Since σw is proportional to the salinity, there is a direct physical link

between changes in electrical conductivity and changes in ionic solute concentration C

(∆σw ∼ ∆C), so that it is possible to monitor a tracer test through an ERT (note that

the water content and porosity variations affect the electrical conductivity changes).

ERT data are commonly collected along two-dimensional (2D) profiles or image plane,

but through a proper electrode arrays distributions, it is possible to obtain also three-

dimensional (3D) images.

This work uses the hypothesis that 3D or 2D concentration time-lapse images, deduced

from an ERT survey, are available and the specific issues related with geophysical
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inversion (e.g., Camporese et al., 2011) are not considered.

1.2 Thesis outline

Chapter 2 gives the theoretical fundamentals of the methods and the techniques

used. The first part describes the transport theory that handles the solute dispersion

problem in subsurface with a stochastic approach. Then, the Kalman filter theory is

developed, focusing on the techniques applied in this work, the Ensemble Kalman filter

(EnKF) and the Ensemble Smoother (ES).

In Chapter 3, it is investigated the possibility of retrieving the local distribution of K

from a tracer test cloud evolution by using an EnKF-based inversion approach. After a

preliminary analysis that check the effectiveness of the EnKF in dealing with an inverse

problem and explores the proper number of Monte Carlo runs, the developed model is

applied in a three-dimensional size domain that reproduces an heterogeneous aquifer.

To find a good compromise between satisfactory results and computational require-

ment, different scenarios are studied by considering the use of different variables in the

updating and assimilation procedure, carrying out different numerical tests for each

case. In a first scenario, all the measured concentrations are assimilated to update the

hydraulic log-conductivity field. Other scenarios consider the assimilation of the plume

spatial moments (second scenario), and the assimilation of concentration in a selected

number of spatial positions (third scenario). The tests carried out in the first scenario

have mainly the purpose to determine if the EnKF is able to correct an initial wrong

guess of the variance and the integral scale respect to the ones of the true field. The

results show that an error on the variance initial guess can be satisfactory arranged,

while a wrong integral scale causes problems of convergence. With the second and third

scenarios the possibility of reducing the computational cost are analyzed, but only the

the third scenario seems to give acceptable results.

Chapter 4 focuses on the numerical issues related to the application of EnKF and in-

vestigates procedures specifically developed to limit the memory amount required and

the degradation of the solution. Several numerical experiments are carried out simu-

lating tracer tests in synthetically generated heterogeneous aquifers and assimilating
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concentrations derived from a hypothetical ERT monitoring. Scenarios where all the

available concentration measurements are assimilated and the entire hydraulic conduc-

tivity field is updated are compared to other scenarios, developed in order to improve

the approach efficiency. In the latter the K values are updated only in a limited num-

ber of nodes, being the hydraulic conductivity in the rest of the domain the result of a

subsequent conditional generation. The technique is tested in an aquifer characterized

by medium and high heterogeneity. The performances in each different situation are

analyzed in details and reciprocally compared in terms of root mean square error of the

reconstructed hydraulic log-conductivity field and reproduced tracer plume evolution.

In Chapter 5, a comparison between EnKF and another Kalman Filter based technique,

the Ensemble Smoother (ES), is developed. The ES ensures a computational time lower

than the EnKF one, and it can be applied “off-line” to any transport model. The in-

vestigation refers to a two-dimensional aquifer in which a tracer test is simulated. The

issues related to non-Gaussianity of the flow and transport variables are analyzed and

different transformation of the pdf’s are considered in order to evaluate their influence

on the performances of the two method. The developed numerical analysis suggests

that the EnKF gives in all the cases better result for the hydraulic conductivity esti-

mation problem when concentration measurements are assimilated.

In Chapter 6, the EnKF technique is coupled with travel time approach, to overcome

the need of a in situ calibration of the petrophysical relation to infer concentrations

from resistivity distribution. In a synthetic anisotropic aquifer, a solute injection is re-

alized and the resistivity variations are measured in the control plane CP (transversal

to the solute moving direction). Only on the basis of the resistivity variation, i.e. with-

out using the Archie’s law, the cumulative distribution function of the solute particles

crossing the CP is assimilated during the update procedure. From the analysis it seems

that this approach represents an effective tool to estimate the main characteristics of

the hydraulic conductivity distribution.

Finally the conclusions summarize the main results of the thesis.
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Chapter 2

Theory and Model

2.1 Transport phenomena driven by heterogeneity

The evolution within an aquifer of a passive tracer, i.e., a solute that does not react

neither with the porous matrix nor with the conveying fluid, can be described by the

following form of the advection-diffusion equation:

∂C

∂t
+ V∇C = D∇2C, (2.1)

where C = C(x, t) is the solute concentration in the position x at time t, V is the

mean value of the effective velocity and D is the spatially constant dispersion ten-

sor. Theoretical results reported in literature (Dagan, 1989) have found experimental

confirmation of the validity of equation (2.1) in heterogeneous formations when:

i) the mean value of the effective velocity, that drives the solute clouds, is V =<

q > /φ, where φ is the porosity, q= q(x) is the Darcy velocity, and the symbol

< > stands for ensemble mean. The Darcy velocity q is obtained, in a steady

state context, from the solution of the fluid mass balance equation:

∇q = 0

q = −K∇h(x),

(2.2)
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where h is the piezometric head and K = K(x) is the hydraulic conductivity. In

natural sedimentary aquifers the spatial variability of φ is usually negligible with

respect to that of K (e.g., Gelhar, 1993), so that the porosity can be considered

constant in the definition of the effective velocity. Under these hypothesis the

erratic spatial variation of q is due only to the erratic spatial variation of K

ii) the generic component of the dispersion tensor is:

Dij =
1

2

dXij

dt
(2.3)

where Xij =< X ′iX
′
j > is the moment of inertia of the solute trajectories Xi =<

Xi > +X ′i, whose fluctuations are related only to the spatial variations of K.

The spatial invariance of the mean velocity and of the moment of inertia defined by

eq.2.3 requires the fulfillment of the statistical homogeneity and stationarity of the

Eulerian and Lagrangian flow fields respectively. The Lagrangian (V[Xt]) and the

Eulerian (q) flow fields are related through the well-know equation:

Xt(t; a, t0) = a + X + Xd = a +

∫ t

t0

V[Xt(t
′; a, t0)]dt′ + Xd, (2.4)

where the total trajectory Xt considers also the displacement Xd associated with the

“Brownian motion“ related to the pore scale effects of correlation length λd, whereas

X, the displacement originating from convection by the fluid, depends on the spatially

erratic fluctuations of K with correlation length λ. The coordinate a is the initial po-

sition at the injection time t0. Equation 2.4 is an approximation that results from the

worthwhile separation of Vt, that is the velocity of a fluid particle, in Vt = V + vd,

where vd is the Brownian motion component (Dagan, 1989). In natural aquifers the

integral scale of the hydraulic conductivity usually prevails on that one that character-

izes the pore-scale phenomena, so that the latter can be neglected when dealing with

transport for high Peclet values. The validity of the relation 2.3 is rigorously limited

to this case.

By describing the hydraulic conductivity K in a natural porous medium as a spatially
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random erratic variable, this randomness reflects upon the Eulerian flow field and,

through equation (2.4), upon the Lagrangian flow field. The spatial distribution of K

and the solute evolution in the aquifer are therefore linked through relation 2.3. In

other words, starting from a known statistical definition of the hydraulic conductivity

spatial distribution, it is possible to describe the velocity driven dispersion phenomena.

2.1.1 The “macroscopic” concentration approach

Assuming that at time t = t0 a solute body of concentration C0 is injected in a

volume V0, being C = 0 everywhere for any t < t0, the mass of solute dM contained in

the infinitesimal volume da inside the volume V0 is

dM = φC0(a)da (2.5)

and it moves along a trajectory of equation x = Xt(t; a, t0). The relative concentration

may be written as

∆C(x, t; a, t0) = C0(a)δ(x−Xt)da, (2.6)

where δ is the Dirac’s function and the porosity is assumed constant for simplicity in the

whole domain. In eq.2.6 and in the followings, we refer to the total displacement Xt.

According with theoretical considerations of section 2.1 (negligibility of the pore scale

dispersion contribute), it is Xt = X, i.e., the fluctuating velocity field is consequence

of the erratic spatial variability of K. From a general point of view, the validity of the

approach is kept also when the pore scale dispersion is non negligible. In this case, the

relation between the K distribution and the velocity randomness would be partially

shadowed by the pore scale contribute. Dealing with real applications, our interest is

focused to the average concentration C over a voxel ∆V of finite size whose centroid is

at x, the concentration field resulting as:

C(x, t; t0) =
1

∆V

∫
∆V

∫
V0

∆C(x′, t; a, t0)da dx′

=
1

∆V

∫
∆V

∫
V0

C0(a)δ[x′ −Xt(t; a, t0)]da dx′. (2.7)
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The size of the voxel depends on the physical device used to detect the value of C in

real cases: it may be a well diameter in which mixing occurs or may be related to the

resolution of a 3D ERT survey. In any case, equation (2.7) gives a direct connection

between the value of the “resident concentration” (Dagan, 1989) and the Lagrangian

flow field.

A schematic representation of the problem is given in figure 2.1

Figure 2.1: Schematic representation of the concentration estimation problem

In this thesis, the 3D Lagrangian transport is simulated by means of a finite volume

solver for steady state groundwater flow, coupled with the Pollock’s post-processing

algorithm for the computation of the particle trajectories (Pollock, 1988). The Eulerian

velocity field is used for the computation of the trajectories of a set of N particles

suitable for the simulation of a contaminant release. Defined as M the tracer total

mass injected at time t = t0

M = φ

∫
V0

C0(a)da = φC0V0 (2.8)

the total mass uniformly injected in the system, a dimensionless concentration field is

computed as (Crestani et al., 2010; Camporese et al., 2011):

C̃(x, t; t0) =
φ

M

∫
∆V

∫
V0

C0(a)δ[x′ −Xt(t; a, t0)]da dx′

=
1

N∆V

∫
∆V

N∑
i=1

δ[x′ −Xt(t; a, t0)]∆a dx′. (2.9)

In the tracer test simulations that will be realized in this work, only the preasimptotic

(non-Fickian) regime is taken into account. As a consequence, the concentration distri-
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bution is always non-Gaussian and a noticeable tail is manifest for large values of the

hydraulic log-conductivity variance.

To simplify the notation, in the following we will denote as C the dimensionless con-

centration C̃, defined in (2.9).

In the macrodispersion process (Rubin, 2003), instead of a smoothed evolution of the

solute cloud typical of Brownian motion, we observe a fragmentation of the plume

driven by the velocity field controlled by the spatial variability of K. In this context,

a useful representation of the plume dispersion may be given by the knowledge of its

spatial moments.

If M is defined as in 2.8, the solute mass conservation leads to the centroid position R

expressed as the spatial mean on the entire domain Ω

R(t; t0) =
φ

M

∫
Ω

x C(x, t; t0) dx

=
φ

M

∫
Ω

∫
V0

x C0(a) δ[x−Xt(t; a, t0)]da dx

=
φ

M

∫
V0

Xt (t; a, t0) C0(a) d(a) (2.10)

and to the second spatial moment Sij

Sij(t; t0) =
φ

M

∫
Ω

[xi −Ri(t; t0)][xj −Rj(t; t0)]C(x, t; t0) dx

=
φ

M

∫
Ω

∫
V0

[xi −Ri(t; t0)][xj −Rj(t; t0)] C0(a) δ[x−Xt(t; a, t0)]da dx

=
φ

M

∫
V0

[Xt,i(t; a, t0)−Ri(t; t0)][Xt,j(t; a, t0)−Rj(t; t0)] C0(a)d(a)(2.11)

In a statistically homogeneous velocity field, the injection of a solute volume V0 large

enough with respect to the correlation length λ ensures the fulfillment of the ergodic

requirements (e.g., Dagan, 1991; Papoulis and Pillai, 2002). In this case, the spatial

mean R and the second spatial moment Sij approach the expected value 〈R〉 and

the displacement tensor Xij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉, i.e., the first and the second

central moment of the Lagrangian velocity field, respectively. In the literature it is well

documented that the Xij time behavior exhibits in 3D a strong asymmetry, being its
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longitudinal component greater than the transversal components (Dagan, 1989).

2.1.2 The travel time approach

The “macroscopic concentration” approach considers spatial distributions of the

concentrations at different times. The solute transport can be described also by a

different approach. Each solute particle moving from the source, crosses a plane (CP)

located downstream in a prescribed position x̄ perpendicular to the mean flow direction

at time τ (figure 2.2) . The knowledge of the statistics of τ through which the transport

can be described is named “travel time” approach (Dagan and Nguyen, 1989; Dagan

et al., 1992; Cvetkovic et al., 1992). According with the scheme of figure 2.2, the particle

crosses the CP at the coordinates η=(η , ζ). Then, the solute transport is described

through the knowledge of η and τ in a CP located in a prescribed position downstream

the source.

Figure 2.2: Schematic representation of the travel time estimation problem

A single solute particle of mass ∆m = C0da, that comes from an instantaneous injection

of a solute body of volume V0, is considered. The particle starts from x = a at time t0

and crosses the CP in y = η (y = (y , z)) at time t = τ , being both y and t random

variables. Due to the randomness of the velocity field, the solute flux transfered through

the CP by the particle is a random function of y and t and can be expressed as:

∆q(y, z, t; x̄,a, t0) = ∆m δ(y − η) δ(z − ζ) δ(t− τ) (2.12)

The total discharge is obtained by integration on the entire CP

∆Q(t; x̄,a, t0) =

∫
CP

∆q(η, t; x̄,a, t0) dη = ∆m δ(t− τ) (2.13)
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and the total mass of solute that has crossed CP is

∆M(t; x̄,a, t0) =

∫ t

t0

∫
CP

∆q(η, t′; x̄,a, t0) dη dt′ = ∆mH(t− τ) (2.14)

where H(t− τ) is the Heaviside step function (H = 1 for t ≥ 0 and H = 0 for t < 0).

The statistical moments definition of ∆q, ∆Q and ∆M (all are random variables be-

cause of η and τ), let the development of the travel time approach. In particular, the

first moment is considered. Defined as g1(η, τ ;x,a) the probability distribution func-

tion (pdf) of the particle originating at x = a and t = t0 to cross the CP in y = η

at t = τ and G1(t; x̄,a) the corresponding cumulative distribution function (CDF), by

definition the expected value becomes then:

〈∆q〉 =

∫
CP

∫ ∞
t0

∆q g1dη dτ = ∆m g1(y, t; x̄,a, t0) (2.15)

that is, the expected value of the solute flux is proportional to the transverse displace-

ment and travel time joint pdf. In the same way, we get:

〈∆Q〉 = ∆m g1(t; x̄,a, t0) (2.16)

and

〈∆M〉 = ∆mG1(t; x̄,a, t0). (2.17)

The previous relations determined for one particle can be generalized for any input

finite injection on a volume V0. The expected value of the total mass is

〈M(t; x̄, V0, t0)〉 =

∫
V0

da

∫ t

t0

dt′
∫ ∞
t0

dτ

∫
CP

C0(a)δ(y−η)δ(t−τ)g1(η, τ ; x̄,a)dη (2.18)

where, by following Dagan et al. (1992)the joint pdf g1 can be assumed as the product

of the two independent g22 and g3

g1(η, τ ; x̄,a) = g2(τ ; x̄,a) g3(η; x̄,a) (2.19)
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Without loss of generality, the CP can be viewed as the sum of NsCP sub-control planes,

each of area Ai, that do not intersect each other, being A =
∑

iAi the total area of the

CP, so that eq. 2.18 can be written as:

〈M(t; x̄, V0, t0)〉 =

∫
V0

da

∫ t

t0

dt′
∫ ∞
t0

dτ

NsCP∑
i=1

∫
Ai

C0(a) δ(y− η) δ(t− τ) g1(η, τ ; x̄,a) dη

=

∫
V0

da

∫ t

t0

dt′
NsCP∑
i=1

C0(a)g1(t; y|Ai, x̄,a)

=

∫
V0

da

NsCP∑
i=1

C0(a)G1(t; y|Ai, x̄,a) (2.20)

In a stationary velocity field, by using the eq. 2.19 we can write

〈M(t; x̄− ax)〉 =

∫
V0

da

NsCP∑
i=1

C0(a) g3[(y − ay , z − az)|Ai; x̄− ax]G2(t; x̄− ax) (2.21)

If the injection volume reduces to an area in a plane perpendicular to the coordinate x

(the mean flow direction), we have:

〈M(t; x̄− ax)〉 = G2(t; x̄−ax)

∫
V0

C0(ay,az)g3[(y−ay , z−az)|Ai, x̄−ax]daydaz (2.22)

and when the C0 can be assumed constant on the injection area,
∫
V0
g3[(y − ay , z −

az) daydaz = P (V0|Ai) is the probability of a particle moving from V0 to cross the CP

in the area Ai at any time. Thus, the probability is related to the transverse dispersion

of the plume at time

tx =
t〈U〉
x− a

(2.23)

In a stationary context, the three dimensional transverse dispersion is limited and the

transverse displacement of the path lines can be considered negligible. Consequently

P (V0|Ai) can be assumed proportional to AV0,i, being the latter the projection of the

injection volume V0 on the CP, according to the mean flow direction.

Note finally that from the solute breakthrough curves, a variety of arrival time mea-

sures, such as peak arrival times, temporal moments of concentration, and arrival time

quantiles, can be calculated. In the following, arrival time quantiles are used. At each
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monitoring location, the quantiles τq are given implicitly by the normalized cumulative

concentration,

Q(τ) =

∫ τ
0 C(t)dt∫∞
0 C(t)dt

(2.24)

where C is concentration and t is the time. The qt quantile τq is the value of time τ at

which Q(τq) = q. For example, the 0.5 quantile or median arrival time τ0.5 is the time

when half of the solute has gone past a monitoring location.

2.2 The Kalman filter based techniques

According to Evensen (2009b), the combined parameter and state estimation prob-

lem for a dynamical model can be formulated as finding the joint pdf of the parameters

and model state, given a set of measurements and a dynamical model with known

uncertainties. Using Bayes theorem, the problem can be written in the simplified form

f (y,α|z) = γf (y,α) f (z|y,α) , (2.25)

where f (y,α) is the joint pdf for the model state y (as function of space and time) and

the parameters α, f (z|y,α) is the likelihood function of the measurements z, and γ is

a normalization constant whose computation requires the evaluation of the integral of

(2.25) over the multi-dimensional solution and parameter space. Note that in writing

equation (2.25) we implicitly assume that the only uncertainty in the model formulation

lies in the parameters, while boundary and initial conditions are perfectly known. If,

as usual, we work with a model state that is discretized in time, we can represent y

at fixed time intervals as yi = y(ti) with i = 0, 1, ..., k. If we further assume that the

model is a first-order Markov process, we can define the pdf for the model integration

from time ti−1 to ti as f
(
yi|yi−1,α

)
. Let us now assume that also the measurements

z can be divided into subsets of measurement vectors zi, collected at the same time

steps of the model ti and that the measurement errors are uncorrelated in time. Under

35



2.2. The Kalman filter based techniques Chapter 2.

these hypotheses and from Bayes theorem, equation (2.25) becomes (Evensen, 2009b)

f (y1, ...,yk,α|z) = γf (α)

k∏
i=1

f
(
yi|yi−1,α

)
f (zi|yi,α) , (2.26)

in which the pdf of the parameters f (α) is expressed explicitly. Rewriting (2.26) as a

sequence of iterations and integrating out the state variables at all previous times, we

obtain

f (yi,α|z1, ..., zi) = γf (α) f
(
yi|yi−1,α

)
f (zi|yi,α) . (2.27)

The combined parameter and state estimation can thus be formulated sequentially using

Bayesian statistics, under the condition that measurement errors are independent in

time and the dynamical model is a Markov process. Equations (2.25) and (2.27) can

be solved numerically by means of a Monte Carlo approach, which approximates the

probabilistic information conveyed by the conditional pdfs of the state, parameters,

and measurements with an ensemble of realizations of size NMC. Compared to the

traditional Kalman filter, the main advantage of this approach is that it can deal with

non-linear models and measurement operators, thanks to its capability to approximate

the probability distributions of the variables with an ensemble of realizations.

Each of the NMC state vectors is propagated in time according to the forecast model,

which can be expressed as a vector-valued discrete-time state equation:

yj(t) = A[yj(τ),αj , t, τ ]; t0 ≤ τ < t; yj(t0) = yj0, (2.28)

where yj(t) is the jth (j = 1, . . . , NMC) state vector predicted by the model at the

time t, αj is the jth set of model parameters, A is the operator relating the system

state at the current time t to the system state at the previous time τ , and yj0 is the

initial condition at time t0.

At time ti, mi measurements are available and the model describing how these measure-

ments and the system state are related is also expressed as a vector-valued discrete-time

measurement equation:

zj(ti) = Hytrue(ti) + wj(ti), (2.29)
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where H is the operator that maps the model state to the measurements, ytrue(ti)

is the true state, and zj(ti) is the jth vector of observations at the time ti, which is

obtained perturbing the mi measurements with a random noise wj(ti), representing the

measurement errors. Here we assume that wj(ti) is normally distributed with expected

value equal to zero and assigned variance σ2
meas. Under the hypothesis that the pdfs for

the model prediction as well as the likelihood are Gaussian, it is possible to update each

realization of the system state according to the following equation, which is obtained

by minimizing the model error covariance matrix (Evensen, 2009b):

yjupd(ti) = yj + PeH
T (HPeH

T + Re)
−1(zj(ti)−Hyj(ti)), (2.30)

where yjupd(ti) is the jth realization of the updated system state, Pe is the prior esti-

mate of the system state error covariance matrix, which is computed by sampling the

ensemble statistics, and Re is the measurement error covariance matrix.

Two different techniques are applied in this work to solve equation (2.30): the Ensem-

ble Kalman Filter (EnKF) and the Ensemble Smoother (ES).

Within the formulation of the ES, equation (2.25) requires that the pdfs are approxi-

mated from an integration of the ensemble through the whole assimilation time period.

In other words, all of the data are processed by equation (2.30) in one step, and the

solution is updated as a function of space and time, using the space-time covariances

estimated from the ensemble of model realizations.

On the other hand, within the EnKF formulation, equation (2.27) is a sequential ex-

pression that can be solved through incremental updates given by (2.30) with the data

at the current time step only.

Note that in both cases, when the model pdfs and the likelihood function are Gaussian,

the Bayesian formulation corresponds to the minimization of a quadratic cost func-

tion (Evensen, 2009b). The only difference is that in ES the time dimension is included

in the optimization, while in EnKF the minimization is performed at each assimilation

time. However, when the pdfs are not Gaussian, equation (2.30) is an approximation

and no longer yields optimal updates in terms of a cost function minimization, although

the general Bayesian formulation remains valid, i.e., sampling of a posterior pdf is still
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performed.

The computation of the update step implemented in this study follows initially (Chap-

ter 3) the algorithm elaborated by Keppenne (2000) and, after that, the square root

algorithm introduced by Evensen (2004).

2.3 The coupled inverse model

The NMC realizations of the random function K are generated out by an im-

proved sequential Gauss simulation algorithm (Baú and Mayer, 2008; Crestani et al.,

2010). The hydraulic conductivity field is assumed log-normally distributed (Y = lnK)

with expected value 〈Y 〉, variance σ2
Y , and exponential isotropic correlation structure

ρY = exp(−|ξ|/λ), being ξ = x2−x1 the lag distance. The flow field is then calculated

by the finite volume solver at steady state with appropriate boundary conditions that

ensure a mean gradient J = const. The Eulerian velocity field is used, by the Pollock’s

post-processing algorithm, for the computation of the trajectories of a number N of

particles suitable for the simulation of a contaminant release.

The estimation of the hydraulic log-conductivity field is realized by measurements as-

similation and using an augmented system in which only the model parameters, i.e.,

the Y values, are considered:

yj(t) = [Y1, . . . , Ycp]
j , (2.31)

In (5.1), cp is a chosen number of voxels (nodes) that can be at most equal to the total

number of nodes discretizing the domain and Y1, . . . , Ycp are the Y values in the cp

nodes.

In this thesis, three types of measurements are used in the assimilation procedure:

- the concentration C. A snapshot of the plume is realized at specified times and

all the non-zero C values are taken into account (see equation 2.9);

- the spatial moments. The moments Rx, Ry, Rz, Sx, Sy, Sz are measured and

assimilated at specified times (see equations 2.10 and 2.11);
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- the cumulative distribution function of the travel times for each subplanes in

which the control plane is divided. At specified times, all the CDF values (time-

discretized) till that time is assimilated.

The effectiveness of the Y values update is related to the cross-correlation between Y

and C, expressed by the product PeH
T in equation (2.30).

At time t0, NMC realizations of the hydraulic log-conductivity field are generated

with assigned statistical structure and the state vectors are built as in equation (5.1).

Starting with the the same initial concentration C0, for each Y field the solute plume

is propagated forward in time to the first measurement time t1, according to the La-

grangian transport model. At t1 the hydraulic log-conductivities Y1, . . . , Ycp are up-

dated to reflect the effect of the measurements z1.

The transport problem is then solved in the updated fields for the time period [t0, t2].

The whole process continues sequentially: first a propagation step over each interval

between t0 and measurement time ti and then an update step at each measurement

time ti. It has to be stressed that, in order to ensure mass conservation throughout

the simulation, after every assimilation step the plume evolves in the updated Y field

from t0 with the same initial concentration field. This recursive application of the

Kalman filter differs from the classic sequential one commonly adopted. By restarting

the plume evolution with the same initial concentration in updated Y fields distribu-

tion, we apply the predictive analysis expressed by the Kalman gain on a system state

improved at each assimilation step. This procedure is similar to the advanced first-order

second-moment (AFOSM) method adopted in risk analysis (Yen et al., 1986). As in the

AFOSM method, to overcome nonlinearity problems and the lack of Gaussianity, the

solution is recursively approached with improved values of the estimator (the Kalman

gain) corresponding to improved estimates of the solution itself.

In the ES application, there is no need for sequential updates and the parameters are

estimated in a single off-line step. At time t0, each realization of the ensemble of NMC

Y fields is initialized with the same concentration distribution C0 and the solute plume

is propagated forward in time until the last assimilation time. The measurement vectors
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are thus assembled as

zj = [z(t1), z(t2), . . . , z(ttm)]j
T
, (2.32)

i.e., the perturbed measurements for all the measurement times (tm) are stored in a

vector of dimension [
∑tm

i=1mi], for each Monte Carlo simulation. Since the ES does

not require sequential updates, the computational time is expected to be significantly

lower than in the EnKF, even though the dimension of the vectors and matrices in

equation (2.30) is significantly larger than in EnKF.
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Hydraulic conductivity

assessment via tracer test data

assimilation

3.1 Introduction

Natural aquifers are characterized by a great variability of the hydraulic properties,

such as porosity, hydraulic conductivity, and storage coefficient: as a consequence, an

exact definition of these properties is practically never possible.

In this Chapter, the applicability of the coupled model EnKF-Lagrangian transport,

developed to characterize the hydraulic conductivity distribution from a tracer test

injection at a local scale, is analyzed.

Initially, a preliminary test is performed in a quasi-one dimensional domain to analyze

the EnKF feasibility in inverse problems. After that, the same approach is applied in

a three-dimensional finite size domain reproducing an heterogeneous aquifer.

Defined as L an appropriate unit length, the domain dimensions are set to 8 L×8 L×8 L

and eight concentration images of the traveling plume are recorded and used as error-

free measurements. Different applications of the coupled Lagrangian transport - EnKF

model (as described in section 2.3) are carried out, by making different choices in the

system state variables and by assimilating different quantities.
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The main objective of this work is to explore the performance of the coupled approach

in different assimilation scenarios and to find an optimal choice for both the variables

to be assimilated and to be updated. Not only to limit the computer memory resources

and CPU time required by the method, but also to assess the implications of the

assimilation scheme for future applications with real ERT data.

3.2 Description of the scenarios

Three different scenarios of system states and assimilation variables, with their

relevant results, are taken into account.

In this Chapter, the EnKF is used as in inverse model tool and also for data assimilation.

This means that the system state vector is given by the parameters (Y values) and the

variables, so that, at each update, not only the Y fields but also the variables estimated

by the model are corrected, by means of the measurements.

In the first scenario, the system state yj(ti) consists of the concentration values C and

the log-conductivity values Y for all the n discretization nodes of the domain. For each

realization, the system state vector is:

yj(ti) = [C1, . . . , Cn, Y1, . . . , Yn]T , (3.1)

where the subscript refers to the node numbers.

Each vector yj(ti) is updated every time concentration measurements are available,

using equation (2.30), in which the measurement vector is z(ti) = [C1, . . . , Cm], where

m ≤ n is the total number of nodes in which the concentration is not zero. The

updated Y field is then used to restart the plume evolution till the next time for which

measurements are available.

In the second scenario, we drastically reduce the number of variables by limiting the

the system state dimension according to the following expression:

yj(ti) = [Rx, Ry, Rz, Sx, Sy, Sz, Y1, . . . , Ycp]
T , (3.2)
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being cp a selected number of log-conductivity values (cp ≤ n). The update is realized

by assimilating Rx, Ry, Rz and Sx, Sy, Sz that are the first and second spatial moments,

respectively, along the principal directions x, y, and z (see equations 2.10 and 2.11).

After each update, the whole Y field is re-computed through a conditioned generation

on the basis of the cp Y values updated by the EnKF assimilating the (six) plume

moments.

The third scenario can be considered as a compromise between the first and the second

ones. Concentration is assimilated only in a limited number of selected cells and the

log-conductivity values are updated only in those same cells, their position properly

chosen within the area affected by the solute evolution. The system state in this case

is thus:

yj(ti) = [C1, . . . , Ccp, Y1, . . . , Ycp]
T . (3.3)

As in the second scenario, also in this case the Y field after each update is generated

by conditioning on the cp updated Y values.

All the scenarios are summarized in table 3.1.

assimilated data system state vector
size

scenario 1 concentration values yj(ti) = [C1, . . . , Cm, Y1, . . . , Yn]T 2n
C1, . . . , Cm

scenario 2 first and second yj(ti) = [Rx, . . . , Sz, Y1, . . . , Ycp]
T ≤ (6+n)

spatial concentration moments
Rx, Ry, Rz, Sx, Sy, Sz

scenario 3 concentration values yj(ti) = [C1, . . . , Ccp, Y1, . . . , Ycp]
T ≤ 2n

C1, . . . , Ccp

Table 3.1: Summary of the scenarios carried out.

The main objective of this work is to explore the performance of the coupled approach in

the different assimilation scenarios and to find an optimal choice for both the variables

to be assimilated and to be updated. Not only to limit the computer memory resources

and CPU time required by the method, but also to assess the implications of the

assimilation scheme for future applications with real ERT data.
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3.3 Results and discussion

3.3.1 Model setup

Defined as L the unit length, the simulated domain has dimensions 8 L× 8 L× 8 L,

discretized along each direction with L/4 side cubic cells, for a total of 33× 33× 33 =

35937 nodes. The boundary conditions are as follows. Pressure head is imposed (Dirich-

let) in x = 0 and x = 8l, resulting in a mean gradient J = 0.6 along the main flow

direction, while no-flow boundary conditions (Neumann) are imposed at the remaining

sides of the domain. A reference Y field has been generated with mean < Y >= 0.025,

variance σ2
Y = 0.5, and isotropic exponential correlation structure with integral scale

λ = 1 L. Its representation is given in figure 3.1.

Figure 3.1: The hydraulic log-conductivity spatial distribution of the reference field

The solute is assumed as instantaneously injected in a well with diameter of 0.5 L,

vertical size of 5.7 L, and centered in x=0.875 L and y=4.125 L. The injection is sim-

ulated by 1104 particles distributed along the well. The concentration is proportional

to the ratio between the number of particles within a cell of the domain and the total

number of injected particles and is recorded every 0.5 T (being T an appropriate time

unit), for a total of eight concentration images.

A number of synthetic experiments are carried out to verify the capabilities of the pro-

posed approach to reproduce the reference Y field in a variety of test cases. For each

test case, we start from an ensemble of log-conductivity realizations characterized by

44



Chapter 3. 3.3. Results and discussion

initial statistical properties obviously different from those used to create the reference

field.

It is important to notice that the measurements are always perturbed with an assigned

noise (σ2
meas) to represent the errors affecting the assimilated data. The value of σ2

meas

has clearly a certain impact on the solutions. In particular, the algorithm used in this

study (Keppenne, 2000) is characterized by poor performances when σ2
meas tends to

zero.

3.3.2 Preliminary analysis

Before applying the model to the domain above mentioned, a preliminary analysis

is performed with the purpose of verifying if the EnKF can deal with the parameter es-

timation problem we want to solve. At this aim, a quasi one-dimensional case, obtained

by simplifying the previous three-dimensional one, is realized. The true field is charac-

terized by only two values of Y extracted from a normal distribution with mean zero

and variance 0.5. The first value is Y1,true=-0.3066, the second one is Y2,true=0.2421

(see figure 3.2). An injection is realized and the concentrations are measured, only till

the plume is in the first portion (Y1,true) of domain, for eight instants.

Different scenarios are elaborated by varying the mean and the variance of the normal

distribution from which the two Y values of the field are extracted. A summary is given

in Table 3.2 that gives the characteristic of the probability distribution function from

which the Y values are extracted.

NMC Y1 ∼ N(< Y1 >, σ
2
Y1

) Y2 ∼ N(< Y2 >, σ
2
Y2

) σ2
meas

reference field / Y1 ∼ N(0, 0.5) Y2 ∼ N(0, 0.5) /

preliminary test 1 2000 Y1 ∼ N(0.5, 0.75) Y2 ∼ N(−0, 5, 0.75) 0.01

preliminary test 2 2000 Y1 ∼ N(−0.3066, 0.75) Y2 ∼ N(−0, 5, 0.75) 0.01

preliminary test 3 2000 Y1 ∼ N(−0.3066, 0.75) Y2 ∼ N(−0, 5, 0.75) 0.01

preliminary test 4 2000 Y1 ∼ N(−0.0323; , 0.75) Y2 ∼ N(−0.0323; , 0.75) 0.01

Table 3.2: Summary of the preliminary tests carried out.

The results are analyzed by visualizing how the initially wrong values of Y evolve during

the measurements assimilation procedure. In Figure 3.3(a) and 3.3(b) the results for

preliminary test 2 and 3 respectively are shown (preliminary test 1 and preliminary test
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Figure 3.2: True field of the preliminary analysis

4 are not shown being analogous). In each graph it is displayed how the values of Y1,

Y2 and Y , that is the average between Y1 and Y2, are corrected during the assimilation

procedure. The true values are also reported. It can be seen that, despite the fact that

the concentration measurements involve only the first part of the domain, also the Y2

is corrected and, in particular, both the Y1 and the Y2 tend to converge toward the true

mean value.

This simple case shows that the EnKF is effective in correcting the parameters, since

the two values of the field are modified and made to converge towards the true mean

one that is necessary to guarantee that, on average, the simulated evolution of the

plume is consistent with the true one.

(a) (b)

Figure 3.3: Y1, Y2 and mean Y trend values after each update for (a) preliminary test 2 and
(b) preliminary test 3. The true Y values are also reported.
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This preliminary analysis demonstrates the EnKF capabilities in correcting an initial

wrong Y distribution, in accordance with the plume movement. Obviously, in this case

the plume does not spread and different values of Y can not be recognized in the space.

Anyway, the mean value is assessed consistently with the only information available,

that is the movement of the plume centroid.

3.3.3 First scenario

As already mentioned, in the first scenario the system state is given by the values

of concentration and log-conductivity in all the discretization nodes and concentration

measurements are assimilated.

Different experiments are carried out, varying initial variance and integral scale with

respect to the reference field. Table 3.3 summarizes all the tests. Notice that the

first three experiments are designed to study the effect of the Monte Carlo ensemble

size. For each experiment the initial approximation of the Y field is homogeneous, as

NMC < Y > σ2
Y integral scale λY σ2

meas

reference field / 0 0.5 1 /

test 1 500 0.025 0.75 1 0.01

test 2 1000 0.025 0.75 1 0.01

test 3 2000 0.025 0.75 1 0.01

test 4 2000 0.025 0.25 1 0.01

test 5 2000 0.025 0.25 1 0.0001

test 6 2000 0.025 0.75 0.5 0.01

test 7 2000 0.025 0.75 2 0.01

Table 3.3: Summary of the experiments carried out for scenario 1.

a result of the average over NMC Monte Carlo realizations, with mean and variance

as reported in Table 3.3. At each update we expect that the average log-conductivity

field converges towards the reference field.

In order to assess the ensemble size (NMC) that ensures a good performance at a

reasonable computational cost (we recall here that the convergence of Monte Carlo

processes is theoretically proportional to 1/
√
NMC), the evolution of the root mean

square error (RMSE) is evaluated for experiments 1, 2, and 3. For a generic variable
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ψ, RMSE is calculated as:

RMSE(t) =

√√√√nod∑
i=1

(ψi,enkf (t)− ψi,tf (t))2/nod, (3.4)

where nod is total number of nodes considered for the computation, ψi,enkf (t) is the

ensemble mean, and ψi,tf (t) is the “true” value (i.e., the reference field value), where

subscript i indicates the node number. RMSE(t) is computed only for the nodes in-

cluded in a limited vertical slice of the domain, where the solute plume is expected

to evolve, assuming that the log-conductivity field outside this portion does not in-

fluence the dispersive process. Figures 3.4(a) and 3.4(b) show the time evolution of

RMSE(t), i.e. the RMSE value after each update step, for the concentration and the

log-conductivity, respectively. As expected, as the ensemble size increases, the error is

(a) (b)

Figure 3.4: Time evolution of (a) the concentration root mean square error and (b) the
hydraulic log-conductivity root mean square for tests 1, 2, and 3, in a portion of the domain
limited around the plume path.

reduced. The solution accuracy improves significantly by increasing NMC from 500

to 1000, to a lesser extent for a variation from 1000 to 2000. On the basis of these

findings, an ensemble size of 2000 has been chosen for all the subsequent tests (from 4

to 7), computational costs being still affordable.

Figures 3.5 and 3.6 show the concentration profiles along the vertical cross section at

y = 4.125 L, for the reference case and test 3, respectively. The snapshots are taken at

times t = 0 T , 1.5 T , 3.0 T , and 4.0 T (corresponding to the third, sixth, and eighth

update, respectively). No visible difference can be evinced between the reference con-
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centration field and the one obtained at the end of the assimilation experiment. Figure

3.7 shows the retrieved hydraulic log-conductivity field in test 3 at the end of the sim-

ulation, i.e., after eight updates. By comparing the latter to the reference field (figure

3.1), even though from a purely qualitative standpoint, it is manifest the capability of

the proposed approach to reproduce correctly the main features of the reference field.

(a) t = 0 T (b) t = 1.5 T

(c) t = 3 T (d) t = 4 T

Figure 3.5: True concentration distribution at t = 0 T , 1.5 T , 3 T , and 4 T along the vertical
cross-section at y = 4.125 L.

A typical effect of the EnKF is the progressive decrease of the ensemble variance, which

is computed here as:

σ2
Y,i =

1

NMC

NMC∑
mc=1

(Yi,mc)
2 −

(
1

NMC

NMC∑
mc=1

Yi,mc

)2

, (3.5)

where Yi,mc is the log-conductivity value at the i-th node in the mc-th realization.

Figure 3.8 shows four snapshots of the ensemble variance spatial variability for experi-

ment 3, at times t = 0 T , 1.5 T , 3 T , and 4 T . While for t = 0 T the variance is equal,

on average, to the theoretical value initially assigned (σ2
Y = 0.75), in the subsequent

times it is progressively reduced, broadly following in time and space the plume evolu-
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(a) t = 0 T (b) t = 1.5 T

(c) t = 3 T (d) t = 4 T

Figure 3.6: Test 3: concentration distribution obtained during the assimilation procedure at
t = 0 T , 1.5 T , 3 T , and 4 T along the vertical cross-section at y = 4.125 L.

tion. In other words, the application of the EnKF progressively reduces the uncertainty

on the log-conductivity values, trying to mimic the available measurements. The field

obtained reproduces well the reference one in the area affected by the plume evolution,

while some discrepancies are manifest in positions where the ensemble variance reduc-

tion is caused only by the propagation of the updates linked to the correlated structure

of the log-conductivity field. It must be stressed however that the variance reduction

does not guarantee anywhere the convergence of the simulation to the true solution,

i.e., the reference Y field.

A good reconstruction of both the plume and the log-conductivity field is obtained also

in experiment 4 (not shown here) by assigning an initial variance lower than that of

the reference simulation.

In experiments 6 and 7 the initial value of the integral scale is varied, as well as the

variance, with respect to the characteristics of the reference field. In experiment 7,

in particular, the initial integral scale is twice as great as that of the true field, thus

the effect of the assimilation is propagated to a greater number of nodes around the

50



Chapter 3. 3.3. Results and discussion

Figure 3.7: The hydraulic log-conductivity spatial distribution obtained at the end of test 3.

plume. As a consequence, the early times assimilation procedure influences areas that

are far from the natural evolution of the plume in the reference field. The final solutions

of C and Y could be thus defined as “spurious”, with exaggerated spatial variations

of log-conductivity, both in terms of spatial extent and contrast between blocks with

different Y (Figure 3.9).

In experiment 6 (not shown), taking an initially halved integral scale with respect to the

reference field leads to equally unsatisfactory results. In this case the assimilation pro-

cedure affects only a limited part of the domain and the final result shows discrepancies

similar to those of the test case 7, even though for opposite reasons.

3.3.4 Second and third scenarios

To reduce the total number of variables and to make the coupled approach easier

to handle, we developed a second scenario, where only the first and second spatial

moments of the contaminant plume along the principal directions x, y, and z are as-

similated. The system state consists of these moments and of the conditioning values

of hydraulic conductivity, suitably selected among the total number of cells. Unfor-

tunately the results obtained are not satisfactory. The application of equation (2.30)

to the system state obtained by considering only the concentration first and second

statistical moments seems to have a poor influence on the updating procedure. The

space-time behavior of the reproduced plume differs significantly from the reference one
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(a) t = 0 T (b) t = 1.5 T

(c) t = 3 T (d) t = 4 T

Figure 3.8: Snapshots of the ensemble variance spatial distribution for test 3 at times at
t = 0 T , 1.5 T , 3 T , and 4 T .
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Figure 3.9: The hydraulic log-conductivity spatial distribution obtained at the end of test 7.

and, as a result, the reproduced log-conductivity field is even worse. Several reasons

can explain this failure: among others, it is likely that the knowledge of only the first

two concentration moments is not enough to reproduce the non-Fickian dispersion that

dominates our test cases.

For this reason we shifted to the third scenario, where the concentration in a limited

number of cells is assimilated. Again, only a selected number of log-conductivity values

is updated and the position of the assimilated concentration values is properly chosen.

The application of this scenario is related to the definition of the conditioning points

statistical properties. The main issue concerns the evaluation of the variance and the

integral scale of the conditioning points: indeed these parameters are used during the

conditioned generation to define the statistical properties of the whole domain. They

are calculated from the variogram of the conditioning points through an interpolation

of the experimental variogram with the theoretical one (obviously with an exponential

trend, as assumed). This operation is however not linear and thus is the source of

some difficulties for the determination of these parameters, related for example to the

optimal search algorithm used to perform this operation or to identify the ideal number

of conditioning points for a satisfactory experimental variogram.

In addition, this last scenario is more elaborated than the first one: the number and the

position of the cells in which the conditioning values are assigned must be conveniently

chosen within the domain. Obviously when the cp number of conditioning positions
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reach the total node number n of the entire domain, scenario 3 falls into scenario 1,

whose performance is shown in the previous section.

This scenario will be deeply analyzed in the next chapter.

3.4 Final remarks

It has been suggested a novel inverse modeling approach, developed to recover

the spatial distribution of hydraulic conductivity in heterogeneous aquifers at the lo-

cal scale, and based on the interpretation of tracer tests with a Lagrangian transport

model coupled to the ensemble Kalman filter data assimilation technique. A series of

tests, carried out with reference to a synthetic test case and several different scenarios

of system state assembling and variables assimilated, gives the following findings.

The number of Monte Carlo simulations, i.e., the ensemble size used for EnKF, must be

properly chosen to ensure an accurate reproduction of the covariance matrices, while

maintaining a reasonable computational cost. In the case examined, the analysis of the

root mean square error shows that a NMC value of 500 is not sufficient to ensure an

adequate solution, which can be obtained instead by NMC = 2000.

In all the tests concerning the first scenario, where the system state is defined by the

non-zero nodal concentrations augmented by all the log-conductivity values, the plume

retrieval is generally satisfactory and substantially unaffected by errors in the initial

definition of the aquifer properties.

When only the initial variance is varied with respect to the reference field, the method

also provides a good representation of the hydraulic conductivity field.

A less satisfactory log-conductivity field solution is obtained when an error on the ini-

tial estimate of the integral scale λ is considered. The convergence toward the “true”

solution is slow when the initial λ value is underestimated, while if the same value is

overestimated, spurious solutions can be obtained, with abnormal spatial variations of

the log-conductivity compared to the spatial behavior of the reference field. However,

it must be emphasized that we are dealing with an “inverse problem”, i.e, there are

several fields of Y that respect the plume concentration distribution and it is thus not

possible to ensure the uniqueness of the solution.
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Different scenarios have been analyzed to reduce the number of variables and the com-

putational burden. An attempt to limit the assimilated variable only to the first and

second statistical moments of the concentration field and to consider in the augmented

state only a few log-conductivity values in a properly chosen number of cells seems to

be inadequate. A more elaborated scenario, where concentration is assimilated in a

limited number of cells and the conditioning Y values are updated in the same selected

positions.

Nevertheless, the proposed approach seems to be an effective tool for estimating the

distribution of hydraulic conductivity at the local scale, although further research is

necessary, especially to identify the best combination of quantities to assimilate.
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Chapter 4

Numerical issues and possible

improvements

4.1 Introduction

The results of a detailed analysis developed to overcome numerical issues related

to the use of EnKF is reported in this Chapter. The possibility to reduce the required

memory amount by limit the number of positions where the concentration data are

assimilated and the hydraulic conductivity data are updated is investigated.

Within the same Lagrangian approach already described, the concentration data are

assimilated by means of the EnKF to deduce the K spatial distribution, focusing on

both theoretical and numerical perspectives of the hydrological inversion. We analyze

the ability of the method to reconstruct the local distribution of K in mild and strong

non-linear and non-Gaussian contexts. Moreover, we consider the opportunity to reduce

the size of the system state required by the EnKF algorithm at each update, limiting, at

the same time, the filter divergence, that implicitly affects EnKF applications. To this

aim, only a limited number of selected K values is updated and the remaining portion

of the field, whose assessment is necessary to reproduce the plume evolution, is obtained

by a conditional generation, which is then used only to fill the skeleton obtained by the

assessed K values in the conditioning points. Although the latter technique could be

included in the wide family of the “pilot-point” geostatistical inversion methods (PPM)
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(e.g., Certes and DeMarsily, 1991; Ramarao et al., 1995; Gomez-Hernandez et al., 1997;

Alcolea et al., 2006; Doherty et al., 2010), the fundamental difference is that the classic

PPM is a model-fitting method (Rubin et al., 2010), while here the EnKF algorithm,

which is a Bayesian approach, is used to update the parameters in the conditioning

points, instead of an objective function that deterministically minimizes the mismatch

between predictions and observations.

A tracer test is simulated in two synthetic aquifers, characterized by mild and strong

heterogeneity distribution of K, assuming as known the concentration distribution

thanks to a hypothetical ERT monitoring experiment. For each of the two test cases,

three scenarios are carried out: in the first scenario all the available concentration mea-

surements are assimilated and the entire hydraulic conductivity field is updated while

in the other two scenarios K is updated only in a limited number of nodes by assimi-

lating the concentrations in these same nodes, being the remaining portion of the field

conditioned to the updated K values.

4.2 The inversion model

The general methodology used is the same that the one described in section 2.3 but

hereinafter more details to describe the application of this Chapter are given.

We estimate the hydraulic log-conductivity by assimilating concentration measurements

and using an augmented system in which only the model parameters, i.e., the Y values,

are considered:

yj(t) = [Y1, . . . , Ycp]
j , (4.1)

In (5.1), cp is a chosen number of voxels (nodes) that can be at most equal to the total

number of nodes discretizing the domain and Y1, . . . , Ycp are the Y values in the cp

nodes.

At time t0, NMC realizations of the hydraulic log-conductivity field are generated

with assigned statistical structure and the state vectors are built as in equation (5.1).

Starting with the same initial concentration C0, for each Y field the solute plume is

propagated forward in time to the first measurement time t1, according to the La-
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grangian transport model. At t1 the hydraulic log-conductivities Y1, . . . , Ycp are up-

dated to reflect the effect of the concentration measurements z(t1). If cp < tnod the

hydraulic log-conductivity values in the remaining (tnod − cp) nodes are obtained by

a generation conditioned to the updated Y1, . . . , Ycp values. In other words, Y1, . . . , Ycp

correspond to the conditioning points through which, after each assimilation time, the

whole Y field is reproduced. Clearly, if cp = tnod, at each assimilation step all the Y

values are updated and there is no need for a conditional generation. The transport

problem is then solved in the updated field for the time period [t0, t2]. The whole pro-

cess continues sequentially: first a propagation step over each interval between t0 and

measurement time ti and then an update step at each measurement time ti (Figure 4.1)

plus a conditional generation, if required. It has to be stressed that, in order to ensure

mass conservation throughout the simulation, after every assimilation step the plume

evolves in the updated Y field from t0 with the same initial concentration field.

Figure 4.1: Flowchart of the proposed inversion approach.

Since one of the key points of the model is to use conditional generations, two main

issues related to the conditioning points need to be addressed. The first issue concerns

the number and position of the conditioning points: to guarantee a meaningful con-

ditional generation there must be at least one conditioning point every integral scale.
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In other words, cp has to be large enough to represent properly the EnKF covariance

matrices, while, on the other hand, the larger is cp, the larger is the memory required

by the scheme to build, store, and manipulate these covariance matrices. To assess the

best combination of number and position that assures a good solution and the trade-off

with the computational effort, various scenarios are tested, whose results are discussed

in the following section. The second issue concerns the geostatistical characterization

of the conditioning points. After each assimilation step, the Y1, . . . , Ycp values are the

result of the EnKF update and to recover the remaining (tnod − cp) values of Y , the

variance σ2
Y and the integral scale λ of the updated Y values have to be estimated.

The former is computed as:

σ2
Y =

NMC∑
mc=1

cp∑
i=1

Y 2
mc,i

NMC · cp
−

(
NMC∑
mc=1

cp∑
i=1

Ymc,i
NMC · cp

)2

, (4.2)

where Ymc,i is the Y value at the ith conditioning point for the mcth realization, while

the integral scale λ is evaluated by means of a linear regression on the ensemble averaged

experimental correlation structure.

4.3 Numerical experiments

4.3.1 Model setup

As previously mentioned, two different reference fields with medium and relatively

high σ2
Y are defined to test the proposed inversion model in a number of synthetic

experiments.

The first reference field has dimensions of 8 L × 8 L × 8 L, where L is an arbitrary

and consistent unit length, and is discretized along each directions into L/4 sided cubic

volumes (voxels), for a total of 33 × 33 × 33 = 35937 corresponding nodes. Dirichlet

boundary conditions are applied at x = 0 L (piezometric head h = 100.0 L) and at

x = 8 L (h = 95.2 L), while Neumann no-flow boundary conditions are imposed along

the remaining sides of the domain. The Y distribution of the reference field is the

result of a single unconditional generation with isotropic and exponential covariance
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structure with integral scale λ = 1 L, resulting in spatial mean 〈Y 〉 = 0.03 and variance

σ2
Y = 0.43. A representation of the reference field is given in Figure 4.2. A tracer test

is simulated by assuming an instantaneous solute injection in a well of 0.5 L diameter,

vertical size of 6 L, and centered in x = 0.875 L and y = 4.125 L (Pos0 in Figure 4.3a

and b). The solute is simulated by 4992 particles uniformly distributed in the horizontal

and vertical directions (Figure 4.3b and c), which correspond to 52 particles within each

voxel of the injection volume (uniform density of 3328 particles/L3). On the basis of a

preliminary analysis and considering the discretization of the domain and, consequently,

of the velocity field, this number of particles is adequate to properly describe the plume

evolution. The concentration, computed according to equation (2.9), i.e., proportional

to the ratio between the number of particles within a cell of the domain and the total

number of injected particles, is recorded every 0.5 T , where T is any consistent time

unit, for a total of eight concentration images. These concentration measurements are

used during the assimilation procedure.

Figure 4.2: The hydraulic log-conductivity spatial distribution for the first reference field
(8 L× 8 L× 8 L).

The generation of the second reference field, isotropic with integral scale λ = 1 L,

results in spatial mean and variance values of 〈Y 〉 = −0.08 and σ2
Y = 1.59. The

injection well position and the time intervals for the concentration measurements are
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Figure 4.3: Numerical discretization of the first test case domain with the injection positions
Pos0, Pos1 and Pos2. A1, A2, and A3 define the zone of the domain used for the result analysis.
A detail of the planimetric particle distribution is shown on the right.

the same as in the previous case. Considering the dependency of the plume dispersion

on σ2
Y (Dagan, 1989), with a larger variance we expect that the solute covers a larger

portion of the domain. The main objective of the second test case is then to investigate

the impact of a more spreaded plume on the inversion procedure. Since with large

σ2
Y values the trajectory distribution is manifestly non-Gaussian and, in the Fickian

regime, it spreads along x with a positive skewness (Salandin and Fiorotto, 1998), we

extend the longitudinal domain size to 16 L, in order to prevent the loss of particles

from the downstream boundary. However, the retrieval of the hydraulic conductivity

field is assessed only in the first half portion of the domain (i.e., up to x = 8 L), for

comparison with the results of the first test case. A proper choice of the Dirichlet

boundary conditions (h = 100.00 L at x = 0 L and h = 94.24 L at x = 16 L) ensures

the same mean velocity as in the first test case. Neumann no-flow boundary conditions

are imposed along the remaining sides of the domain.

The hydraulic log-conductivity probability distribution that initializes the procedure

is characterized by mean and variance values different from the ones of the reference

field. Number and spacing of the conditioning points, prior geostatistical parameters,

and measurement uncertainty (i.e., the variance of the measurement error σ2
meas) of the

various scenarios are reported in Tables 4.1 and 4.2. All the scenarios are simulated

with an ensemble size (NMC) of 2000. This number of realizations is computationally
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affordable and guarantees a proper description of the dispersion phenomena for the

range of log-conductivity variance used here (Bellin et al., 1992; Salandin and Fiorotto,

1998). Smaller ensemble sizes worsen the solution (Crestani et al., 2010), while the

improvements obtained with larger NMCs (e.g., NMC=5000) are not significant enough

to justify the increased computational cost (see next section 4.3.2).

Table 4.1: Main characteristics of the numerical experiments carried out for the first test case.

conditioning points cp prior statistics

number spacing (L) < Y > σ2
Y λ (L) σ2

meas

x y z x y z

Reference field 1 / / / / / / 0.03 0.43 1 /

Scenario 1 33 33 33 0.25 0.25 0.25 -0.50 0.75 1 0.01

Scenario 2 17 17 17 0.50 0.50 0.50 -0.50 0.75 1 0.01

Scenario 3 11 11 11 0.75 0.75 0.75 -0.50 0.75 1 0.01

Table 4.2: Main characteristics of the numerical experiments carried out for the second test
case.

conditioning points cp prior statistics

number spacing (L) < Y > σ2
Y λ (L) σ2

meas

x y z x y z

Reference field 2 / / / / / / -0.08 1.59 1 /

Scenario 4 65 33 33 0.25 0.25 0.25 -0.50 2.25 1 0.34

Scenario 5 33 17 17 0.50 0.05 0.50 -0.50 2.25 1 0.34

Scenario 6 22 11 11 0.75 0.75 0.75 -0.50 2.25 1 0.34

The retrieval of the hydraulic conductivity fields in the various simulated scenarios is

assessed by means of the root mean square error RMSE, computed as:

RMSE =

√∑n
i=1(Ψenkf,i −Ψtrue,i)2

n
, (4.3)

where n is the total number of nodes considered for the calculation and Ψenkf,i and

Ψtrue,i are the estimated and the true variable values at the ith node, respectively.

However, due to the erratic spatial behavior of hydraulic log-conductivity and to the

stochastic characteristics of the inversion approach adopted, it seems appropriate to

quantify the error in retrieving the Y field not only pointwise, but also on volumes

of finite size. To this aim, an aggregate RMSE for the hydraulic log-conductivity is

calculated by considering Y values averaged over small portions of the domain, i.e.,

cubic subvolumes whose side is chosen equal to an integral scale. Defined as nsv the
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number of discretization nodes included in a subvolume, the values averaged over the

subvolumes are estimated as

Ψsubv
true =

∑nsv
j=1 Ψtrue,j

nsv
Ψsubv
enkf =

∑nsv
j=1 Ψenkf,j

nsv
(4.4)

and are used in equation (5.2), in which n is now the number of subvolumes considered

in the computation of the aggregate RMSE.

We assess also the plume evolution as simulated in the reconstructed Y fields by means

of the concentration RMSE.

4.3.2 Sensitivity analyses

We present in this section some preliminary analyses carried out to determine the

optimal ensemble size and the number and distribution of particles to be released for

the simulation of the tracer test. To this aim, we test our approach in the first reference

field (8 L×8 L×8 L) with a number of conditioning points cp equal to the total number

of nodes of the domain discretization. In this case, the size of the EnKF system state

vector is maximum and the Y values in each node of the domain are updated. This

means that a conditional generation is not necessary after the updates.

Sposito and Dagan (1994) showed that the initial state of a solute plume, as defined

by its concentration distribution, affects the subsequent solute evolution due to the

velocity field. Thus, the first analysis is carried out to understand how different initial

particle distributions in the injection volume can affect the model results. The three

cases considered are illustrated in Figure 4.3c. In the first simulation, the solute is

described by 1152 particles non-uniformly distributed in the horizontal cross-section

(configuration I in Figure 4.3c) while the vertical spacing is ∆a = 1/12 L = constant).

The second simulation is carried out with the same number of injected particles, but

with a uniform horizontal distribution (configuration II in Figure 4.3c). In both cases

there are the same number of particles (12) for each element of the injection well,

ensuring the same initial concentration distribution. In the third simulation the number

of uniformly distributed particles is increased to 4992: the vertical spacing is now

∆a = 1/16 L = constant with 52 particles within each element of the injection volume.
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For all the tests an ensemble of 2000 NMC is used.

Figure 4.4, which shows the comparison between the Y and C RMSE resulting from

these assimilation experiments, demonstrates that using a uniform particle distribution

gives an improved retrieval of the hydraulic conductivity, while there are no significant

differences for the solute concentration. The best performance, both for Y and C, is

achieved in the last case, with uniform distribution and the highest number of particles.

For this reason, in all the following tests we use as the initial tracer distribution the

configuration III of Figure 4.3c.

Figure 4.4: Root mean square error of (a) hydraulic log-conductivity and (b) tracer concen-
tration, computed for the whole domain as a function of particle number and distribution.

Note that the simulation of the plume evolution is protracted, using the final Y field,

also beyond the last assimilation step, resulting in a C RMSE that increases after

t = 4 T . This issue will be discussed in detail in the following section and it is a

preliminary clue that the corrections made to the hydraulic conductivity field by the

EnKF are somewhat limited to the portion of the domain actually covered by the mean

solute passage.

The second analysis concerns the sensitivity of the inversion model to the ensemble size

NMC. The Y and C RMSE are compared for two simulations in which the ensemble

size are 2000 and 5000 (Figure 4.5). As expected, using NMC = 5000 gives better

results than using NMC = 2000 for the retrieval of the hydraulic conductivity field

but with an unaffordable computational effort and with limited differences in the plume

reproduction.

Considering the results of these preliminary analyses, all the numerical experiments
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Figure 4.5: Root mean square error of (a) hydraulic log-conductivity and (b) tracer concen-
tration, computed for the whole domain as a function of the ensemble size.

presented in the following sections are carried out with an initial tracer distribution of

4992 particles uniformly distributed and an ensemble size of 2000.

4.3.3 Scenarios with the first reference field

Three scenarios are run with the first reference field (8 L× 8 L× 8 L), varying only

number and spacing of the conditioning points, while the other simulation parameters

(prior geostatistical information and measurement error variance σ2
meas) are kept con-

stant (Table 4.1).

Figure 4.6 shows the spatial distribution of the ensemble mean and variance of Y after

the fourth and eighth (last) assimilation in scenario 1, for which all Y values are up-

dated (no conditional generation). The expectation of the lnK prior fields, i.e., the Y

fields before any update, is uniform, being the ensemble average of a statistically homo-

geneous field. After each measurement assimilation, the Y values are updated and the

zones with different hydraulic log-conductivity are progressively delineated. By com-

parison with the reference field (Figure 4.2), it can be seen how the inversion model is

able to identify the heterogeneities mainly in the portion of the domain “sampled” by

the plume, i.e., in the vertical x − z cross section corresponding to the injection well.

The ensemble variance of Y , initially uniform and equal to the prior value, shows a

gradual decrease at each assimilation, broadly following in time and space the plume

evolution. The reduction is stronger in the aquifer portion interested by the plume,

where a significant improvement of the Y field has been achieved. This indicates that
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the EnKF finds its best estimate in that portion, while, outside the influence area of

the plume, the uncertainty is still high. On the other hand, the low variances outside

the influence area of the plume, after the last assimilation, can be related to the prop-

agation of the filter inbreeding.

Figure 4.6: Scenario 1: the hydraulic log-conductivity field after (a) the fourth and (c) the
last assimilation step and Y ensemble variance after (b) the fourth and (d) the last assimilation
step.

The RMSE, as defined in equation (5.2), is used to analyze the difference between the

reference and the retrieved Y fields. Figure 4.7 shows the RMSE for scenario 1, as well

as for scenarios 2 and 3, which are reported for convenience but will be discussed later

on in this section. The results of the open loop simulation, i.e., a tracer test carried out

with the prior expected Y field, are also reported. Even though the visual comparison

between Figure 4.2 and Figure 4.6 shows a manifest improvement of the estimated Y

field at each time step, the RMSE obtained considering the values of the whole domain
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exhibits, after an initial decrease, an increasing trend and reaches values larger than

the open loop (Figure 4.7a).

Figure 4.7: Root mean square error of (a) hydraulic log-conductivity and (b) tracer concen-
tration computed pointwise for the whole domain in scenarios 1, 2, 3, and open loop.

However, as we are dealing with an ill-posed inverse problem, larger Y errors do not

necessarily imply larger errors in the plume reproduction. To highlight this aspect, the

concentration root mean square error (C RMSE), is computed according to equation

(5.2), where Ψenkf,i and Ψtrue,i are the concentration values in the i− th node of the

solute cloud in the retrieved (obtained after the last assimilation) and in the true fields,

respectively. The C RMSE analysis is extended until t = 6 T , to underline its behavior

after the time corresponding to the last assimilation (t = 4 T ). The results, reported

in Figure 4.7b, show a decreasing RMSE trend until the time corresponding to the last

update, followed by a significant increase, confirming that the correction of the Y field

is likely to be limited to the portion of the domain sampled by the plume. As previ-

ously stated, we expect that laterally only a portion of the domain (where the plume is

presumed to move) is affected by the concentration measurements and thus effectively

updated. To investigate this aspect, a local analysis is carried out in a limited domain

portion with an extension of three integral scales (we recall that λ = 1 L) along x, from

x = 1.125 L to x = 4.125 L (immediately downstream of the well), one integral scale

along y, from y = 3.625 L to y = 4.625 L, and six integral scales (the height of the well)

along z, from z = 1.125 L to z = 7.125 L (Figure 4.3). This zone is subdivided into

three subzones (defined as A1, A2, A3), each with an extension of one integral scale

along the main flow direction, to evaluate in detail the effect of the evolving plume on
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the updating of the Y values. We denote as “A” the union of A1, A2, A3.

Figure 4.8a reports the Y RMSE computed for each subzone. To underline the relation

between the RMSE in each subzone and the passage of the plume, Figure 4.8a displays

also the longitudinal component of the plume first moment R1, i.e., the location of the

plume center of mass along the x direction, and a measure of the tracer spreading S11

in the form of error bars (see equations 2.10 and 2.11 ). As a consequence of the first

two updates, a general RMSE decrease is manifest in all the subzones. At t = 1 T ,

the plume is still inside the A1 subzone: while the reduction in A1 is directly affected

by the measured data, the RMSE decrease in A2 and A3 is probably related to the

effects of the correction operated by the EnKF on the initially wrong Y ensemble mean.

The subsequent updates, when the plume leaves A1, have no significant effects on the

RMSE of subzone A1, which remains almost constant. For both subzones A2 and A3 it

is interesting to note that after the initial decrease, the corresponding RMSE remains

almost constant or tends to increase until the plume does not affect the specific sub-

zone. In the result analysis, it has to be considered that the solute cloud extension is

here approximated by the centroid position and the error bar is proportional to the

standard deviation. Overall, in comparison with the results of Figure 4.7 we can note a

marked improvement of the Y estimation in the portion of the domain directly sampled

by the tracer and a definite temporal trend of the RMSE in the three subzones that

broadly follows the plume evolution.

If we consider subzones with extension 2 L along y, i.e., laterally doubled with respect

to the previous cases, we obtain the results shown in Figure 4.8b. Even though the

improvement of the Y field estimation is still manifest, the root mean square error ap-

pears to be larger than the one calculated previously and the link between the RMSE

trend and the plume evolution is smoothed. Due to the lack of the Lagrangian velocity

correlation, the plume spreading in the transverse direction is limited and the efficacy

of the retrieved procedure in the y direction is limited to approximately one integral

scale.

Above findings are confirmed by an analysis of the plume evolution when the solute is

injected in the two alternative positions Pos1 and Pos2 (Figure 4.3), laterally shifted
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Figure 4.8: Scenario 1: root mean square error of hydraulic log-conductivity computed point-
wise in subzones A1, A2, and A3. Top graphs show the location of the true plume center of
mass along the x direction (R1) and the spreading (error bars equal to ±2

√
S11). The extension

along y of the subzones is (a) 1 L and (b) 2 L.

with respect to the Pos0 position used for the assimilation procedure. The plumes

resulting from injections carried out in Pos1 and Pos2, both in the reference and in

the retrieved Y fields, are compared in terms of the concentration RMSE (Figure 4.9).

With respect to the plume evolution starting from Pos0, the error is significantly larger

for the tracer released in Pos1 and Pos2. After the last assimilation time t = 4 T , the

RMSE related to the injection in Pos0 gradually increases, approaching the RMSE val-

ues of the plumes injected in Pos1 and Pos2. This behavior reflects the improvement

of the retrieved Y field, which is related to the dispersion characteristics: while the

plume stretches out in the longitudinal direction, affecting also a portion of the domain

beyond the centroid position, the concentration drops suddenly along the transverse

direction, with a consequent lack of lateral data.

Overall, using the proposed approach we are able to achieve a satisfactory retrieval of

the hydraulic log-conductivity field. Even if the RMSE computed using nodal Y values

gives a satisfactory error measure, it seems to be more appropriate to evaluate the

aggregate Y RMSE as defined by equations (5.2) and (4.4) with reference to unitary

subvolumes (1 L × 1 L × 1 L), corresponding to one cubic integral scale. Also this

RMSE evaluation refers to zone A and subzones A1, A2, and A3, and the results are

reported in Figure 4.10. Compared to the pointwise RMSE (Figure 4.8a), the aggregate
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Figure 4.9: Scenario 1: concentration root mean square error computed for simulations using
the retrieved hydraulic conductivity field when the solute is injected in Pos0, Pos1, and Pos2.

Y root mean square error reaches smaller values, as expected. The time evolution of

the aggregate errors is still manifest as the plume travels through the subzones but the

effect of the first two updates is highlighted for all the subzones, including A3, which

is sampled by the tracer only at late times. The aggregate Y RMSE is also displayed

for the entire zone A and reveals an average behavior between the three subzones.

Figure 4.10: Scenario 1: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graphs shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).

These results indicate that inherent uncertainties in the inversion procedure affect the
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reproduction of pointwise Y values, so that a more suitable parameter to evaluate the

retrieval is the RMSE aggregated over subvolumes representative of the Y integral scale.

In scenario 2 only one out of two nodes is included in the system state vector (Table

4.1) and the concentration measurements are sampled only in these nodes. Therefore,

these nodes are located 0.5 L (half integral scale) apart, resulting in a number of con-

ditioning points cp = 17× 17× 17 = 4913 and reducing the system state dimension to

seven times less than scenario 1, where cp = 35937 (equation (5.1)). Figure 4.11 shows

the spatial distribution of the ensemble mean and variance of Y after the fourth and

last (eight) assimilation in scenario 2 (compare with Figure 4.6 for scenario 1). The

conditional generation of the hydraulic log-conductivity values significantly limits the

loss of Y ensemble variance inherent in the EnKF procedure. The trade-off is that the

features of the estimated Y field are not as well delineated as in scenario 1 and, as a

consequence, the concentration field may be reproduced less satisfactorily. The time

evolution of the Y and C (pointwise) RMSE of scenario 2 are reported in Figure 4.7

in comparison with other scenarios. While the C RMSE in scenario 2 is larger than

in scenario 1, the Y RMSE is smaller: this fact can be ascribed to a smoothed spatial

distribution of the hydraulic log-conductivity but can be related also to the limited per-

formance of the pointwise RMSE evaluated in the whole domain. The loss of ensemble

variance can be effectively counteracted by updating only a fraction of the parameters

and using these updated parameters to generate the remaining fraction. Figure 4.12

shows the aggregate Y RMSE within zone A and subzones A1, A2, and A3 for scenario

2. Compared with scenario 1 (Figure 4.10), the correspondence between the plume

evolution and the RMSE trend is now less evident, even though the RMSE trend for

each subzone suggests again that the updates somehow “follow” the tracer.

In scenario 3 the hydraulic log-conductivity of one out of three nodes is included in

the system state vector and, as a consequence, the measurement vector dimension

is further reduced. The relevant nodes are located 0.75 L apart, i.e., 3/4 of an in-

tegral scale, resulting in a number of conditioning points (system state dimension)

cp = 11× 11× 11 = 1331, 27 times less than in scenario 1. The spatial distribution of

the ensemble mean and variance of Y for scenario 3 are shown in Figure 4.13 after the
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Figure 4.11: Scenario 2: the hydraulic log-conductivity field after (a) the fourth and (c) the
last assimilation step and Y ensemble variance after (b) the fourth and (d) the last assimilation
step.
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Figure 4.12: Scenario 2: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graph shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).

fourth and last (eighth) assimilation. With respect to scenario 2, the estimated Y field

is further smoothed and the loss of ensemble variance is slowed down, as a result of

the conditional generation of a larger number of nodes. As expected, the pointwise Y

RMSE computed over the whole domain (reported in the above mentioned Figure 4.7a,

does not significantly differ from scenario 2, but the reproduction of the concentration

field is further worsened, even though the C RMSE is still smaller than the one of the

open loop simulation (Figure 4.7b. Figure 4.14 shows the Y aggregate RMSE within

zone A and subzones A1, A2, and A3. The RMSE trend is no longer manifestly cor-

related to the plume position, but, on average, the Y RMSE decrease in A1 precedes

the one in A2, and the RMSE decrease in A2 precedes the one in A3.

Overall, we can conclude that, in our retrieval procedure, limiting the update to a frac-

tion of the total number of parameters (Y values) and estimating the remaining ones

through a conditional generation have the advantage to reduce the filter inbreeding.

On the other hand, the convergence toward the optimal estimation is slowed down and

the tracer plume is likely to be estimated less satisfactorily (Figure 4.7b.
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Figure 4.13: Scenario 3: the hydraulic log-conductivity field after (a) the fourth and (c) the
last assimilation step and Y ensemble variance after (b) the fourth and (d) the last assimilation
step.
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Figure 4.14: Scenario 3: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graph shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).

4.3.4 Scenarios with the second reference field

The proposed approach is tested also with respect to the second reference field

(16 L × 8 L × 8 L) with three numerical experiments analogous to those carried out

for the first reference field. Aside from the differences between the two reference fields

that are described in section 5.2.1, another distinction is that the σ2
meas value assigned

to the measurements during the simulations is now increased (Table 4.2). In fact, it is

reasonable to expect that a real ERT inversion applied to a more dispersed plume (as

the one resulting in this second test case) would yield concentration data affected by

more uncertainty, due to the inherent proneness of classical electrical inverse methods

to overdispersion (e.g., Camporese et al., 2011). In choosing the value of σ2
meas since the

developed scenarios are synthetic, we decide to maintain the same level of confidence

of the model prediction with respect to the measurements as the scenarios in the first

reference field, and thus to prevent the first updates from being overestimated. This

choice can be explained by considering equation (2.30), rewritten in the scalar case:

yupd(t) = y(t) +
Pe

Pe +Re
(z(t)−H y(t)), (4.5)
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where the symbols have the same meaning as in equation (2.30) but now represent scalar

quantities. The Kalman gain is now Pe/(Pe + Re) where Pe and Re are the variances

of the system state and the measurement error, respectively. In our multi-dimensional

case, increasing the prior value of σ2
Y and keeping σ2

meas unchanged corresponds to an

increase of Pe and hence of the Kalman gain, resulting in augmented updates. The

new σ2
meas is thus defined assigning to the ratio σ2

K/σ
2
meas the same value as in the first

test case, being σ2
K the hydraulic conductivity variance which is directly related to the

concentration evolution and equal to (eσ
2
Y − 1)e2〈Y 〉+σ2

Y . We deem this choice better

than keeping constant the ratio σ2
Y /σ

2
meas, which may be a reasonable approximation

only for small σ2
Y values.

Three numerical experiments corresponding to scenarios 4, 5, and 6 are carried out, and

they are designed to obtain approximately the same travel times of the tracer plume

center of mass. The Y ensemble average and variance fields are not shown, being their

general trends similar to the ones obtained in the first test case, and the results are

only analyzed in term of RMSE.

For comparison with Figure 4.7, in Figure 4.15 the pointwise Y RMSE computed for

the whole domain in scenarios 4, 5, 6, and the open loop is shown. Scenarios 5 and 6,

reported for convenience in the same Figure, will be discussed later on in this section.

Figure 4.15a shows that scenario 4, compared with the results of scenario 1 (Figure

4.7a, which is the corresponding scenario in the first test case (in both cases no condi-

tional generation is used), exhibits values always smaller than the initial (open loop)

Y RMSE.

Figure 4.15: Root mean square error of (a) hydraulic log-conductivity and (b) tracer concen-
tration computed pointwise for the whole domain in scenarios 4, 5, 6, and open loop.
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As the corresponding Figure 4.7b, Figure 4.15b shows the concentration RMSE ob-

tained by repeating the tracer injection in Pos0 (Figure 4.3) in the reconstructed Y

field. In this scenario, the C RMSE increases after t = 4 T but the trend is less evident

than in scenario 1, because of the greater plume spreading that affects a larger portion

of the domain downstream of the plume centroid.

The local analysis on the hydraulic log-conductivity RMSE is carried out in the same

portion of the domain (zone A with subzones A1, A2, and A3) as in the first reference

field but, in this case, the longitudinal plume spreading is more manifest, as a result of

the increased heterogeneity.

Figure 4.16 shows the aggregate Y root mean square error for scenario 4 in zone A

and subzones A1, A2, and A3. The effect of the plume evolution is much less appar-

ent if compared to the analogous scenario 1, even though it has to be remarked that

subzone A3 starts from a RMSE lower than A1 and A2. The improvement in A3 is

thus marginal for the first updates, while RMSE in A1 is smaller than in A2. This is

in agreement with the results observed in scenario 1, although in this case the higher

dispersion of the plume makes more difficult to interpret the RMSE trend. The plume

spreading around the centre of mass grows with σ2
Y , the assimilated data affecting a

portion of the domain larger than in the first aquifer, and the skewness of the tracer

cloud smooths away the effect due to the passage of the center of mass across different

aquifer portions. For this reason, the reduction of the Y RMSE due to the passage of

the plume center of mass across different zones is less apparent. Moreover, the positive

skewness of the concentration spatial distribution raises also issues of non-Gaussianity

for the EnKF so that the updates are affected by further approximations, in addition

to those related to the finite size of the ensemble.

This further contributes to obscure the effect on the time evolution of Y RMSE that

can be instead better observed in a less heterogeneous case.

In scenarios 5 and 6 only one out of two and one out of three nodes are considered for

the update, analogously to scenarios 2 and 3, respectively.

The pointwise Y RMSE calculated in the whole domain (reported in the previously

discussed Figure 4.15a does not show relevant differences between the two scenarios,
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Figure 4.16: Scenario 4: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graph shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).

being the values smaller than the one of the open loop in both cases. With reference

to the C RMSE behavior, its value increases as the number of conditioning points is

reduced (Figure 4.15b, as in the first test case.

Figures 4.17 and 4.18 show the time evolution of the aggregate Y RMSE in zone A and

subzones A1, A2, and A3 for scenarios 5 and 6, respectively. The results are broadly

consistent with those of scenario 4 (compare Figure 4.16), except for a progressive

smoothing due to the reducing of the updated Y values. This is again in agreement

with the results obtained in the counterparts of the first reference field, i.e, scenarios 2

and 3 (Figures 4.12 and 4.14 versus 4.10). The C RMSE for scenarios 5 and 6 (Figure

4.15b does not exhibit the same increasing trend that is manifest in scenarios 2 and 3

after t = 4 T (Figure 4.7b. Again, this effect is probably due to the large spreading

that affects the experiments in the second reference field.

Overall, it seems that the adverse effects of poor delineation of the estimated Y field

related to the conditional generation reduce as the heterogeneity increases, as shown by

less manifest RMSE differences among scenarios 4, 5, and 6 compared to the differences

among scenarios 1, 2, and 3. At the same time, the main advantages, i.e., the filter
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Figure 4.17: Scenario 5: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graph shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).

Figure 4.18: Scenario 6: aggregate root mean square error of hydraulic log-conductivity
computed in zone A and subzones A1, A2, and A3. The top graph shows the location of the
true plume center of mass along the x direction (R1) and the spreading (error bars equal to
±2
√
S11).
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inbreeding and memory requirement reduction, are still maintained.

4.4 Final Remarks

It is investigated the theoretical and numerical behavior of a hydrological inver-

sion procedure to assess heterogeneous hydraulic conductivity fields at the local scale

from the knowledge of spatio-temporal concentration distributions obtained by tracer

tests. In particular, in order to contrast filter inbreeding and to reduce the amount of

memory required by the EnKF to store and manage the system state vectors and co-

variance matrices, we investigate also the use of conditional generation to complete the

reconstruction of hydraulic log-conductivity fields starting from a limited and properly

selected number of updated Y values.

After a preliminary sensitivity analysis we elected to use an ensemble size of 2000 Monte

Carlo realizations and a uniform density of 3328 injected particles per cubic integral

scale as a good compromise between computational effort and quality of results.

For each synthetic aquifer, three different scenarios are analyzed, in which the number

of selected nodes where the C values are assimilated and Y values are updated, is pro-

gressively reduced.

In all the scenarios the reconstructed hydraulic conductivity field results in a tracer

plume evolution with a concentration root mean square error (C RMSE) smaller than

the one obtained in the open loop experiment, i.e., using the expectation of lnK prior

fields. Consistently with previous results (e.g., Hendricks Franssen et al., 2003; Cam-

porese et al., 2011), we notice that the retrieval of the hydraulic conductivity is limited

to a portion of the domain that is directly sampled by the tracer plume. As demon-

strated by a local analysis of the Y RMSE, taking into account the whole domain

results in a RMSE that is always larger than the one calculated using a limited zone

covered by the plume, due to the rapid decay of correlation between C and Y outside

the evolving solute cloud. Because of its spatial distribution this phenomenon is more

manifest in the transverse direction than in the longitudinal one. The analysis of the

root mean square error carried out on Y values averaged over cubic subvolumes with

side equal to an integral scale suggests that, for our inverse modeling framework, an
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aggregate RMSE evaluation is more suitable than a pointwise approach, as it can better

assess the retrieval of the blocks with different hydraulic log-conductivity values.

Reducing the number of updated points results in a smoothed behavior of the Y RMSE

and in a less satisfactory reproduction of the tracer plume evolution. On the other hand,

a limited number of nodes for the assimilation and the update has the advantage to

slow down the understimation of ensemble variance that commonly affects the ensemble

Kalman filter.

A larger Y variance, increasing the plume dispersion, limits the deterioration of the Y

field retrieval that affects the conditional procedure. Moreover, the procedure main-

tains the main advantages related to the filter inbreeding and the memory requirement

reduction.
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Ensemble Kalman filter versus

ensemble smoother for assessing

hydraulic conductivity via tracer

test data assimilation

5.1 Introduction

Given the importance that ensemble Kalman filter (EnKF) and ensemble smoother

(ES) are acquiring as parameter estimation modeling tools in groundwater hydrology,

there is the need to investigate in more detail their capabilities and the theoretical

implications related to their use for optimal estimation of only system states (Nowak,

2009, e.g.,). The objective of this work is thus to compare the EnKF and ES capabilities

to retrieve the hydraulic conductivity spatial distribution in a groundwater flow and

transport modeling framework. Moreover, since a fundamental hypothesis for the ap-

plication of Kalman filter-based methods is that all the variables must be distributed as

a Gaussian probability density function (pdf), the issues related to various transforma-

tions of the relevant pdfs are analyzed. EnKF and ES are here implemented in the same

Lagrangian transport modeling framework already described, in order to estimate the
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hydraulic conductivity field by assimilating concentration measurements derived from

a tracer test in a two-dimensional synthetic aquifer (the full spatio-temporal evolution

of the solute plume is known).

This problem is solved by considering a system state in which we retain only the model

parameters:

yj = [Y1, . . . , Yn]j = αj , (5.1)

where Y1, . . . , Yn are the log-transformed hydraulic conductivity values (Y = lnK) at

the n nodes discretizing the domain.

5.2 Numerical experiments

5.2.1 Model setup

A two-dimensional reference Y field is taken into account to compare the proposed

inversion models in a number of numerical experiments. The domain has dimensions

of 8 L × 8 L, where L is an arbitrary and consistent unit length, and it is discretized

along each directions into L/4 sided cells, for a total of 33 × 33 = 3297 correspond-

ing nodes. By assuming Y = ln(K), the multivariate normal Y distribution of the

reference field is the result of a single unconditional generation fitting to an isotropic

exponential covariance model with spatial mean 〈Y 〉 = 0.35, variance of σ2
Y = 0.42, and

integral scale λ = 1 L. The random function Y is generated by an improved sequential

Gaussian simulation algorithm (Baú and Mayer, 2008). The flow field is simulated

using a standard finite volume solver at steady state with appropriate boundary condi-

tions that ensure a constant mean gradient. Dirichlet boundary conditions are applied

at x = 0 L (h = 100.0 L) and at x = 8 L (h = 95.2 L), while Neumann no-flow

boundary conditions are imposed along the remaining sides of the domain. A graphic

representation of the reference field is given in Figure 5.1. A tracer test is simulated

by assuming an instantaneous solute injection with initial transversal size of 6 L (from

y = 1 L to y = 7 L) and longitudinal size of 0.5 L (centered in x = 0.875 L). The

solute is simulated by 16983 particles uniformly distributed, with the particle trajec-

tories computed by means of the Pollock’s particle tracking post-processing algorithm
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Figure 5.1: Spatial distribution of log-transformed hydraulic conductivity in the reference
field.

and the concentration computed according to equation (2.9) every 0.5 T , where T is

any consistent time unit. Figure 5.2 shows the plume evolution in the reference field at

t = 2 T and t = 4 T .

In this work, measurements of concentration are the data assimilated during the inver-

sion procedures. In particular, we include in the measurement vectors all the concentra-

tion data greater than zero, in order to use all the available information on the plume

evolution. The performances of EnKF and ES in retrieving the Y fields are compared

to one another in a number of different scenarios described in Table 5.1. In these sce-

narios we also analyze the implications of the concentration non-Gaussianity through

various marginal transformations of the pdf. The prior geostatistical parameters and

the measurement uncertainty are kept constant in all scenarios, as the objective is to

study the issues related to the effect of the pdf of the model variables on the EnKF and

the ES performances in terms of parameter estimation. In scenario 1 the concentra-

tions are assimilated without any transformation, i.e., with their original pdf, whereas

in scenarios 2, 3, and 4 different pdf transformations are used to evaluate how they

affect the parameter estimation. All scenarios are simulated using an ensemble size of

2000.

It should be noted that the ensemble of prior Y fields is synthetically generated by the
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Figure 5.2: Plume evolution in the reference field at a) t = 2 T and b) t = 4 T . The color
bar denotes dimensionless concentration C. Dotted lines show the direction along which the
cross-correlation structure between Y and C is evaluated.

Table 5.1: Description, prior geostatistical parameters, and measurement errors of the numer-
ical experiments. a Normal
score transform applied independently to the ensemble of concentration data in each assimilation node.
b Normal score transform applied to the ensemble of concentration data over all assimilation nodes.

prior statistics

assimilated data technique < Y > σ2
Y λ (L) CV

Reference field / / 0.03 0.43 1 /

Scenario 1a C EnKF -0.50 0.75 1 0.01

Scenario 1b C ES -0.50 0.75 1 0.01

Scenario 2a lnC EnKF -0.50 0.75 1 0.01

Scenario 2b lnC ES -0.50 0.75 1 0.01

Scenario 3a NST(C)a EnKF -0.50 0.75 1 0.01

Scenario 3b NST(C)a ES -0.50 0.75 1 0.01

Scenario 4a modNST(C)b EnKF -0.50 0.75 1 0.01

Scenario 4b modNST(C)b ES -0.50 0.75 1 0.01
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same algorithm used to create the true field and that the application of the Lagrangian

transport model in the true field yields exactly the true concentration distribution. The

knowledge of the true state allows us to select the concentration measurements used

during the assimilation and to evaluate the performance of EnKF and ES with respect

to a known reference.

The estimate of the hydraulic conductivity fields in the various simulated scenarios is

assessed by means of the root mean square error (RMSE), computed as

RMSE =

√∑n
i=1(Ysim,i − Ytrue,i)2

n
, (5.2)

where n is the total number of nodes of the discretized domain, Ysim,i is the ensemble

mean of the Y values estimated at the ith node, and Ytrue,i is the true Y value at the

ith node.

Finally, we also assess the plume evolution as simulated in the reconstructed Y fields

by means of the concentration RMSE, whose formulation is analogous to that of Y .

5.2.2 Results

5.2.2.1 Scenarios with untransformed concentration pdfs

In scenarios 1a and 1b, the concentration values are assimilated in the update pro-

cedure without modifying their original pdf, for both the EnKF and the ES. The spatial

distributions of Y resulting from the inversions are reported in Figure 5.3. The com-

parison between the retrieved fields and the reference field (Figure 5.1) shows that the

EnKF is quite effective in estimating the lnK field, whereas the ES performs rather

poorly.

In these scenarios, both EnKF and ES are affected by the approximations related to

the Gaussian assumption of equation (2.30), as the tracer concentration pdf at early

travel times departs significantly from the normal pdf (e.g., Salandin and Fiorotto,

1998). Nevertheless, EnKF can handle these approximations better than ES, as, at

each update, the realizations are steered toward the true solution and the Gaussian

increments of the ensemble members lead to an approximately Gaussian ensemble dis-

87



5.2. Numerical experiments Chapter 5.

Figure 5.3: Scenario 1: log-transformed hydraulic conductivity field retrieved by a) EnKF
and b) ES assimilating untransformed concentration data.

tributed around the true solution. This property of the sequential updating is not

exploited in the ES, where realizations evolve freely until the end of the simulation,

exacerbating the effects related to non-Gaussian ensemble distributions. A further

explanation for the good performance of the EnKF can be found in our recursive ap-

plication, through which, at each assimilation step, the plume is restarted with the

same initial concentration in the updated Y fields. This procedure is analogous to the

advanced first-order second-moment (AFOSM) method adopted in risk analysis (Yen

et al., 1986). As in AFOSM, also in our EnKF application the lack of Gaussianity is

overcome by approaching recursively the solution with improved values of the estimator

(the Kalman gain) corresponding to improved estimates of the solution itself.

5.2.2.2 Scenarios with log-transformed concentration pdfs

In order to evaluate if a proper rearrangement of the concentration pdf can improve

the results, in scenarios 2a and 2b we assimilate log-transformed concentration values.

Although previous analyses highlight that Beta-type pdfs can be effectively used to

reproduce the concentration distribution (Caroni and Fiorotto, 2005), the log-normal

pdf is easier to handle and often represents a reasonable assumption (e.g. Bellin et al.,

1994; Zhang et al., 2000).
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Figure 5.4: Scenario 2: log-transformed hydraulic conductivity field retrieved by a) EnKF
and b) ES assimilating log-transformed concentration data.

Figure 5.4 shows the Y fields estimated by EnKF and ES when assimilating log-

transformed concentration measurements. The EnKF produces again a good repro-

duction of the true hydraulic conductivity field, with only small differences with the

results of scenario 1a, while the ES confirms its difficulty in retrieving the Y spatial

distribution. Nonetheless, the comparison between scenarios 1b and 2b shows a slight

improvement of the ES solution, indicating that the ES is more sensitive than the EnKF

to the pdf of the assimilated variable.

5.2.2.3 Scenarios with normal score-transformed concentration pdfs

Since the log-transformation of concentration values does not ensure a normal pdf

in all cases, in scenarios 3a and 3b another type of transformation is applied to the

concentration data. Here a Gaussian pdf of the C values is obtained by applying a

normal score transform (NST) (Zhou et al., 2011). The NST is a tool through which any

cumulative probability distribution function (CDF) F (x) is mirrored to the standard

Gaussian CDF G(y). In other words, the generic variable x of the F (x) distribution

can be transformed into the corresponding normally distributed variable y through the

relation F (x) = G(y), i.e., y = G−1[F (x)]. In this case x = C and a CDF is built for

each node of the domain with the ensemble of C values simulated by the model, using
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Figure 5.5: Scenario 3: log-transformed hydraulic conductivity field retrieved by a) EnKF
and b) ES assimilating normal score-transformed concentration data.

the Hazen formula F (C) = (i− 0.5)/NMC, where i = 1, . . . , NMC is the rank of the

concentration values after sorting the data in ascending order. For each node, different

values of C are univocally associated to the CDF values, which are always the same

and depend only on NMC.

The results obtained by assimilating normal score-transformed concentration data are

reported in Figure 5.5 for both EnKF and ES. Despite the Gaussian distribution of the

model variables, the retrieved fields are not satisfactory for both the techniques and,

compared to the results of scenarios 1a and 2a, even the EnKF performs poorly.

Since in scenario 3 the approximations related to the Gaussian assumption are removed,

the results seem to suggest that the NST might corrupt the cross-correlation structure

between Y and C in the measurement locations. Indeed, when the C values are log-

transformed, the relation that maps the original pdf of C to the transformed one is

the same for all the different positions in space and thus the correlation structure is

conserved. This is not the case for scenario 3, where a different NST is independently

applied to the concentration ensemble at each node.

In order to illustrate this point, the C−Y cross-correlation structures, evaluated in the

measurement nodes by means of the product PHT in equation (2.30), are compared

for scenarios 1 and 3. The cross-correlation structures for scenario 1 at time t = 2 T
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and t = 4 T are reported in panels a) and b) of Figures 5.6 and 5.7, respectively, while

panels c) and d) of the same Figures refer to scenario 3. The analysis considers only

the longitudinal behavior of the cross-correlation, by reporting in the figures only the

results calculated along the direction shown with a dotted line in Figure 5.2. Firstly,

we note that there are relevant differences between the EnKF and ES cross-correlation

structures. The EnKF cross-correlation behavior shows always higher values at the

origin (zero lag) and a rapid decay with increasing lag, i.e., moving away from the

measurement location. This confirms that the effectiveness of the EnKF is limited in a

portion of the domain around the measurement location (Camporese et al., 2011). With

ES, the peak of correlation at the measurement location is usually smaller than with

EnKF, and the cross-correlation structure is more spread out. As the cross-correlation

between Y and C is usually significant only for a limited lag distance, proportional to

the product of the Y integral scale and the length of the area covered by the plume,

the relatively high correlation values characterizing the ES results at large lags are

probably spurious. Also for this reason the result of the ES inversion is a smoothed Y

field. Secondly, when the NST is applied (compare panels c) and d) with a) and b) in

Figures 5.6 and 5.7), there is an overall decrease of the peaks and the cross-correlation

structures are even more smoothed, showing the significant alterations operated by the

transformation.

5.2.2.4 Scenarios with modified normal score-transformed concentration

pdfs

In order to maintain the original Y − C cross-correlation structure and, at the

same time, to work with Gaussian pdfs, a modified application of the NST is proposed.

At every time step, only one cumulative distribution function is built by using the

concentration values simulated in all the measurement nodes. We underline that this

is different from the previous application of the NST, in which a relation between C

and its CDF is defined in each node independently. Now the CDF F (C), estimated at

time ti, is F (C) = (i − 0.5)/(NMC × mi), where mi is the number of measurement

locations and i = 1, . . . , NMC×mi is the rank of the concentration values after sorting
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Figure 5.6: Y −C cross-correlation at t = 2 T for the nodes located at y = 5.75 L in scenario
1a (subpanel a), scenario 1b (subpanel b), scenario 3a (subpanel c) and scenario 3b (subpanel
d). Each color corresponds to a correlation structure centered at a different node sampled by
the plume (see Figure 5.2, subpanel a)

Figure 5.7: Y −C cross-correlation at t = 4 T for the nodes located at y = 5.75 L in scenario
1a (subpanel a), scenario 1b (subpanel b), scenario 3a (subpanel c) and scenario 3b (subpanel
d). Each color corresponds to a correlation structure centered at a different node sampled by
the plume (see Figure 5.2, subpanel b)
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Figure 5.8: Scenario 4: log-transformed hydraulic conductivity field retrieved by a) EnKF
and b) ES assimilating normal score-transformed concentration data.

the data in ascending order. With this modified application of the NST we obtain a

satisfactory reproduction of the Gaussian distribution in each node, and, by using an

invariant transformation, we do not alter the Y − C cross-correlation structure.

The results of the inversions, reported in Figure 5.8 for both EnKF and ES, demonstrate

the effectiveness of the modified NST, as the estimated Y fields are now showing an

improvement (with respect to the prior fields) comparable to that in scenario 2 and

look better than those of scenario 3. As in the previous scenarios, EnKF outperforms

ES, which, however, shows significant improvements and seems to benefit more from

the application of the modified NST.

5.2.3 Discussion

In Figure 5.9, the results of all the scenarios are summarized and compared in terms

of root mean square errors of both Y and C vs time. All of the observations made in

the previous sections, which were based merely on visual comparison, are confirmed

by the RMSE profiles. The EnKF consistently outperforms the ES, regardless of the

adopted concentration pdfs, except for scenario 3a, in which the NST deteriorates the

EnKF solution due to alterations of the Y −C cross-correlation structure. This result,

which reveals the inadequacy of the NST for this application, is in accordance with the
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Figure 5.9: Root mean square error of a) the retrieved log-transformed hydraulic conductivity
field and b) the concentration distribution in the retrieved field for the all scenarios.

conclusions drawn by Schoeniger et al. (2012). In their work, Schoeniger et al. applied

the NST in conjunction with the EnKF to assimilate aquifer drawdown measurements

and showed that the dependence between these data and the parameters is higher than

the one between concentrations and parameters. The ES is more sensitive to the trans-

formations operated to the assimilated data, as indicated by the RMSE of Y in the

various scenarios, even though the same sensitivity is not reflected by the C RMSE

(Figure 5.9).

Overall, the problem of retrieving the hydraulic conductivity field through the assimi-

lation of concentration measurements is better handled by EnKF, probably due to the

following reasons. First, due to the violation of Gaussianity investigated earlier with

the different scenarios.

Second, due to the high nonlinearity of the problem we are dealing with. With EnKF,

the Y fields are progressively updated and the simulated plumes gradually converge to-

wards the true one. With ES, the plumes evolve freely in the prior fields until the end

of the simulation and, consequently, their evolution is very different from the true one,

especially at late times. To highlight this point, the true plume evolution at t = 2 T

and t = 4 T (Figure 5.2) is compared with the evolution of the ensemble mean of the

plumes simulated in the prior fields (Figure 5.10). In Figures 5.11 and 5.12 we also

show the evolution of the ensemble average of the plumes as simulated in the Y fields

estimated at t = 2 T and t = 4 T , respectively, in scenario 1a (EnKF with original

concentration pdfs). In other words, in Figure 5.11 EnKF is applied only until t = 2 T

and thereafter the plumes are let to evolve in the estimated Y fields. The progressive
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Figure 5.10: Ensemble mean of the plume evolution at t = 2 T and t = 4 T in the prior Y
fields. The color bar denotes concentration.

Figure 5.11: Ensemble mean of the plume evolution at t = 2 T and t = 4 T in the Y field
estimated at t = 2 T by EnKF in scenario 1a. The color bar denotes concentration.

correction of the mean simulated plume is evident and already at t = 2 T it is very

similar to the true one. With ES, instead, there are no recursive updates that modify

the ensemble to resemble the true Y field and the nonlinearity of the problem cannot

be captured.

5.3 Final remarks

The objective was to compare the performance of the two techniques and to ana-

lyze the effects of the lack of Gaussianity in the system variables. In the first scenarios
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Figure 5.12: Ensemble mean of the plume evolution at t = 2 T and t = 4 T in the Y field
estimated at t = 4 T by EnKF in scenario 1a. The color bar denotes concentration.

the concentrations were assimilated in the model without any manipulation, while in

the other scenarios we took into account log-transformed data and two variants of the

normal score transform (NST), analyzing also the cross-correlation structure between

log-transformed hydraulic conductivity Y and concentration C.

The main conclusion of our study is that EnKF can reproduce with good accuracy the

hydraulic conductivity field, consistently outperforming ES regardless of the probability

distribution of the concentrations. This is due to two reasons: i) the lack of Gaussianity

is overcome owing to the recursive Gaussian increments given by the EnKF updates

that eventually lead to an ensemble of members normally distributed around the true

solution; ii) the same recursive procedure continuously pulls the realizations toward

the true solution, easing the inversion problem of the strong nonlinearity of the disper-

sion process. The only case in which EnKF does not work properly is when NST is

applied to ensure that the concentration pdf is Gaussian in each node of the domain.

This is due to the consequent alteration of the Y −C cross-correlation structure, which

instead must be correctly evaluated in order to assure the effectiveness of the EnKF

inversion procedure. This suggests that NST must be applied with caution in any

Kalman-filter based inversion scheme, checking at any time for possible corruptions of

the cross-correlation between parameters and assimilation variables.

ES performs always worse than EnKF as it does not involve recursive updates of the
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Y fields. This has two consequences: i) the solute plumes are free to evolve in the

prior fields without corrections, eventually leading to significant differences from the

true plume evolution; ii) non-Gaussian contributions in the concentration pdf are not

kept under control.
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Chapter 6

Overcoming the need of in situ

calibrated petrophysical relation

6.1 Introduction

Borehole ERT monitoring of saline tracer tests allows to collect time-lapse geophys-

ical data as changes occur in an aquifer as a consequence of dynamical variations in

the hydrological state of the subsurface, and, as previously shown, it seems to be a

promising tool for the hydrological characterization of natural aquifers. Nevertheless,

ERT measurements are not directly related to the hydraulic parameters needed to pre-

dict flow and transport in porous media. The electrical conductivity field must be

reconstructed by means of a geophysical inversion on the basis of current and voltage

measurements, and the use of a petrophysical law (e.g., Archie’s law) is required to de-

duce the solute concentration and the plume evolution closely linked to the distribution

of the hydraulic properties. To retrieve the hydraulic conductivity distribution K from

an ERT monitored saline tracer test, and to overcome the need for the knowledge of the

concentration spatio-temporal evolution, it is proposed a novel approach that couples

travel time modeling of transport with the ensemble Kalman filter (EnKF) used as an

inversion tool. The definition of the solute transport in terms of travel (or residence)

times allows to analyze the sequence of changes in electrical resistivity deduced from

a ERT survey without converting the electrical data into concentrations (see section
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2.1.2), since in ERT monitored tracer tests, electrical conductivity changes in time act

as a proxy for the concentration travel times. Moreover, in the case of a multiple well

saline tracer test, only two dimensional images of electrical conductivity defining the

control planes (CP) need to be reconstructed by the geophysical inversion from current

and voltage measurements, with a noticeable saving of computer resources with respect

to the fully 3D case. Obviously, by using a single CP, only average informations can be

achieved in the travel distance from the source and the CP, but this limitation can be

theoretically overcome using more that one CP located at different travel distances.

To demonstrate the ability of the proposed approach, we consider a synthetic 3D case,

where a control plane, defined by a pair of ERT monitored boreholes, is located down-

stream from an injection well perpendicular to the mean flow direction. The CP is

properly subdivided in subareas, each of them characterized by a specific travel time

distribution. The assimilation of the travel times in a Lagrangian model of transport

whose K distribution represents the system state of the EnKF allows to update the

average hydraulic conductivity for each subarea and hence to determine the K spatial

variability with a resolution related to the one of the control plane discretization. We

report on the capability of the inversion procedure as a function of the discretization

in subareas.

6.2 Numerical experiment

6.2.1 Model setup

The reference field has dimensions of 8 L× 8 L× 8 L, where L is an arbitrary and

consistent unit length, and is discretized along each directions into L/4 sided cubic

volumes (voxels), for a total of 33 × 33 × 33 = 35937 corresponding nodes. Dirichlet

boundary conditions are applied at x = 0 L (piezometric head h = 100.0 L) and at

x = 8 L (h = 95.2 L), while Neumann no-flow boundary conditions are imposed along

the remaining sides of the domain. The Y distribution of the reference field is obtained

through a direct Fourier-transform method (Robin et al., 1993). An anisotropic and ex-

ponential covariance structure is assigned with the horizontal integral scale of λh = 8 L
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Figure 6.1: The true log-hydraulic conductivity spatial distribution

and the vertical one of λv = 1 L. The resulting field has spatial mean 〈Y 〉 = −0.18 and

variance σ2
Y = 0.24 and its representation is given in Figure 6.1.

A tracer test is simulated by assuming an instantaneous solute injection in a well of

0.5 L diameter, vertical size of 6 L, and centered in x = 0.875 L and y = 4.125 L. The

solute is simulated by 4992 particles uniformly distributed in the horizontal and vertical

directions. The CP, perpendicular to the flow direction, is located at x = 2.375 L and is

divided in a proper number n of sub-control plane (sCP), i.e., in a number of sCP that

should be high enough to characterize the Y vertical variations (see figure 6.2). This

choice is not known a priori, since the only available data are the changes of resistivity

in the CP. Starting from a guess based on the recognized areas with different resistivity

values, the proper number of sCP will be assessed on the basis of a trial procedure.

The plume is then made to evolve, and every 0.5 T , where T is any consistent time

unit, the travel time CDF value is estimated for each sCP, till all the plume has crossed

the CP (at t = 14 T in this case). It has to be highlighted that the travel time of

all the particles that compose the solute injection is computed by Pollock’s technique

in a discrete flow field (finite volume methods) and that the CDFs of the travel time

are obtained as the breakthrough curve of the plume solute mass crossing each sCP.

Indeed, as explained in section 2.1.2, for example we have the median arrival time τ50

when half of the solute has crossed the CP.

During the simulations, we start with NMC Y fields with prior statistics different
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Figure 6.2: Schematic representation of the problem: the injection well, the control plane CP
and its division in sCP are marked

from the true ones. In each field, the transport problem is solved for the time pe-

riod [t0; t1], being t1 the first measurement time and the CDF value is estimated

at the corresponding time for each sCP. The measurement vector is then z(t1) =

[CDFsCP1(t1), . . . , CDFsCPn(t1)], where CDFsCPi(tj) is the CDF value for the i− th

sCP at time tj . By using the measurements, the Y fields are updated and the trans-

port problem is solved again for the time period [t0; t2]. The CDF values are evalu-

ated in each sCP for times t1 and t2 and the measurement vector becomes z(t2) =

[CDFsCP1(t1), . . . , CDFsCPn(t1), CDFsCP1(t2), . . . , CDFsCPn(t2)], i.e., all the CDF

values till the considered measurements time are assimilated for each sCP. Note that

this application of the EnKF is different from the one previously adopted and it may

be considered as a restarted Ensemble Kalman Smoother (Evensen, 2009a). The whole

process goes on by updating the Y fields, till measurements are available.

The tests carried out have the purposes to determine the proper number of sCP to use

in order to identify the Y field. The proposed tests are reported in table 6.1.

Table 6.1: Main characteristics of the numerical experiments realized

prior statistics

number of sCP < Y > σ2
Y λh (L)

Reference field as in the corresponding test 0.18 0.24 1

test 1 4 -0.50 0.75 8

test 2 8 -0.50 0.75 8

test 3 12 -0.50 0.75 8

test 4 8 -0.50 0.75 ∞
test 5 8 -0.50 0.75 4
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(a) (b)

Figure 6.3: Test 1: comparison between a) the true and b) the retrieved log-hydraulic con-
ductivity field

The effectiveness of the model is analyzed through the retrieved Y field and the root

mean square error of the CDFs and of the plume in the retrieved Y field. In the all

tests the vertical integral scale is assumed equal to the true one.

6.3 Results

The influence of the number of sCP in capturing the main Y variations along the

vertical direction is assessed through the tests 1, 2 and 3, where CP is divided in 4,

8 and 12 sCP respectively. The number of sCP is not further increased because we

consider unhelpful to give a more refined discretization, and being also the vertical

integral scale equal to one. The retrieved fields are reported from figure 6.3 to figure

6.5 and the first noticeable result is that the main Y vertical variations are recognized

and reproduced by the method even with a rough discretization of the CP. Secondly,

as expected, by increasing the number of sCP, the definition of Y seems to improve,

since area with different Y values are more defined.

To prove the convergence of the model, i.e., if the assimilation of the CDF values im-

proves the assessment of the Y field, a first analysis observes how the simulated CDFs

converge toward the true one. We choose, as example, the fourth sCP in test 2 and

the all NMC simulated CDFs (one for each Y field) are represented after every update
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(a) (b)

Figure 6.4: Test 2: comparison between a) the true and b) the retrieved log-hydraulic con-
ductivity field

(a) (b)

Figure 6.5: Test 3: comparison between a) the true and b) the retrieved log-hydraulic con-
ductivity field
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step. From figure 6.6(a) to figure 6.6(c), the simulated CDF are represented with the

true CDF (i.e, the CDF obtained in true field and in the same sCP when 8sCP are

used), before any update (figure 6.6(a)), after t = 7/T (figure 6.6(b)) and after the last

update (figure 6.6(c)). As it can be seen, during the computed CDFs approach the true

one and after the last update, the dispersion around the true CDF is really limited.

This analysis reveal the capabilities of the model and that it is possible the update of

the Y values through the assimilation of the CDF measurements.

To evaluate the goodness of the results, the root mean square error (RMSE) of the CDF

as it comes in the retrieved Y field is calculated. It is also estimated the concentration

RMSE by realizing the injection in the retrieved field. This latter analysis can give

useful information about the capabilities of the model and it can help in identifying

the influences of the considered “variables“ (number of sCP and integral scale) on the

performances of the method but, obviously, it can be realized only during synthetic

analysis, when the concentrations are known. During an in-situ test, only the travel

time pdf is available since the C estimation and the use of a petrophysical relationship

is skipped. Figure 6.7 gives the RMSE calculated for both the CDF and the C reported,

for convenience, for the all cases. It can be seen that the differences among test 1, 2

and 3 in the CDF RMSE are limited, although the performances of test 2 are better

than those of test 1 and 3, when the concentration RMSE is considered (6.7b). The

differences in the RMSE analysis of CDF and C can be also ascribed to the pointwise

evaluation of the latter (see, example, 5.2), while to compare test cases characterized

by different horizontal integral scale and sCP number, the CDF RMSE must be eval-

uated by properly subdividing the CP. Here a first attempt was made evaluating the

CDF RMSE on each element (1/4 of the vertical integral scale) of the CP. Further

investigations have to be realized.

In all the tests examined, the solute is injected in a well that can be considered as a

vertical line solute source. In a 3D domain the transversal dispersion is negligible re-

spect to the longitudinal one, and the geometric characteristics of the injection volume

dominate the transversal size of the downstream portion of the aquifer affected by the

non-Fickian plume evolution. In our single well tracer test analysis, a vertical plane of
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(a) t = 0 T

(b) t = 7 T

(c) t = 14 T

Figure 6.6: CDFs of the travel time for the fourth sCP in test 2 at times a) t = 0 T , b)
t = 7 T , c) t = 14 T . The yellow thick line represents the CDF in the true field. All the other
thin lines represents the CDF in each simulated field
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Figure 6.7: Root mean square error RMSE of a) the CDF in the retrieved field and b) the C
in the retrieved field

the aquifer, parallel to the mean flow direction, is crossed by the solute that spreads

according to the hydraulic conductivity vertical distribution. Consequently, none infor-

mation can be retrieved in the direction transversal to the mean flow direction, unless

an array of multiple wells is considered as injection volume. Obviously these consider-

ations are strictly valid if the well injection geometry approaches a planimetric point

source, that is the horizontal integral scale of Y overcomes the well diameter. Because

of the finite planimetric size of our injection, tests 4 and 5 are realized with the purpose

to determine how an error in the definition of the horizontal integral scale influences

the goodness of the results. In both cases, 8sCP are used, since it seems to be a proper

value from the previous tests. Test 4 considers the ideal case of a perfectly-stratified

aquifer, i.e., with λh = ∞. Figure 6.8 shows that the main characteristics of the field

are still caught and the RMSE analysis confirms this results. Even when the horizontal

integral scale is underestimated (test 5), the resulting field gives a good approximation

of the true one. This result confirms that a tracer test analysis of a single well injection

can give information only about the vertical distribution of Y .

6.4 Final remarks

Although the results reported in this Chapter are preliminary and more analysis

have to be developed, the travel time approach that allows to overcame the need of

a petrophysical law, seems to be a promising technique in subsurface investigations.

Respect to the approach that uses the concentrations spatio-temporal evolution, the
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(a) (b)

Figure 6.8: Test 4: comparison between a) the true and b) the retrieved log-hydraulic con-
ductivity field

travel time approach, besides to skip the in situ calibration of the Archie’s law, requires

a less computational expensive 2D geophysical inversion, with manifest advantages in

real world applications.

Till now, it is possible to say that the comparison between the retrieved and the true

Y fields shows that the developed method is always able to identify the main vertical

variations of Y, independently to the assigned horizontal characteristics. The effective-

ness of the model is also evident through the progressive correction of all the simulated

CDFs that during the assimilation procedure tend to converge toward the correspond-

ing true CDF.

The RMSE analysis shows non appreciable differences in the reproduction of the travel

time CDFs, independently to the number of sCP.

The RMSE of the plume evolution in the retrieved Y field suggests a poorer performance

of the concentration spatial distribution when a rough sCP subdivision is adopted.

According to the stochastic transport theory, the proposed approach is able to capture

with a good approximation the vertical distribution of Y in the area surrounding the

injection also with a simple model of perfectly stratified aquifer.
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Summary and Conclusions

In this thesis several inversion procedure to assess heterogeneous hydraulic conduc-

tivity fields at the local scale from the knowledge of data obtained by tracer tests are

proposed and critically analyzed. The main goal is to suggest a method to recognize

the hydraulic conductivity spatial distribution at local scale in real world cases under

the hypothesis that the tracer test evolution is mainly controlled by the latter. The

relevance of the work is strictly related to the definition of well-catchment areas or to

the monitoring of landfill sites, where the plume evolution has to be defined at early or

mean travel time. In this condition the transport cannot be considered neither Gaus-

sian nor ergodic, and the solution is not always straightforward.

In the all cases presented Kalman filter techniques are coupled with the Lagrangian

transport model: the main differences in the proposed inversion model are related to the

Kalman filter technique used (EnKF or ES) and to the assimilated data (macroscopic

concentrations or travel time), being more subtle distinctions based on the number and

location of the assimilated variables. In all the scenarios analyzed, it is assumed that

the available measurements are deduced from a tracer test ERT survey. In other words,

the data assimilation procedure considers three-dimensional or two-dimensional time

lapse spatially distributed information, characterized by a prescribed degree of uncer-

tainty. For this reason, the focus is only on the inverse model since the ERT results are

deduced from synthetic experiments and considered as “yet available” data (this means

that in this work troubles related to the geophysical inversion of ERT data are not con-

sidered). A preliminary real field ERT analysis was developed in the experimental site

of Settolo - Valdobbiadene (Perri et al., 2012) and new experiments are currently in

preparation, but a specific application of the proposed inversion tool to these real data
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has not been developed until this time.

The main results of my work, already discussed at the end of each Chapter, can be

summarized as:

i) proof of effectiveness of the proposed tool based on the EnKF and Lagrangian

transport model in retrieving the hydraulic conductivity spatial distribution;

ii) pros and cons of the suggested procedures, mainly related to the reduction of

numerical issues, like memory amount requirements and filter inbreeding;

iii) comparison between “on-line” (EnKF) and “off-line” (ES) data assimilation tech-

niques that shows the limits of the ES whose performance is always worse than

the EnKF one. Moreover it is demonstrated that the EnKF can overcome the

lack of Gaussianity in the system variables thanks to its recursive procedure

iv) formulation of a tool, based on EnKF and travel time analysis, able to retrieve

the main hydraulic conductivity field characteristics avoiding the need of any

petrophysical relation (e.g. Archie’s law).
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