


2



Contents

1 Analysis introduction 7

1.1 Flavour Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.1 Flavour-changing neutral currents b to s l l . . . . . . 10

1.2 The decay B0 to K*0 mu+ mu- . . . . . . . . . . . . . . . . . 12
1.2.1 The angular decay rate . . . . . . . . . . . . . . . . . 14
1.2.2 The angular folding . . . . . . . . . . . . . . . . . . . 17
1.2.3 Parameter constrains . . . . . . . . . . . . . . . . . . . 18

2 LHC and CMS detector 25

2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . 25
2.2 CMS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Tracking System . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Muon Spectrometer . . . . . . . . . . . . . . . . . . . 36
2.2.4 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.5 Trigger and Data Acquisition . . . . . . . . . . . . . . 41

2.3 Monte Carlo Event Generator . . . . . . . . . . . . . . . . . . 45

3 Data collection and event selection 47

3.1 Online event selection . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Offline candidate identification . . . . . . . . . . . . . . . . . 48
3.3 Dimuon mass square binning . . . . . . . . . . . . . . . . . . 51

4 Analysis strategy 53

4.1 Probability density function . . . . . . . . . . . . . . . . . . . 54
4.2 Parameterisation of the pdf terms . . . . . . . . . . . . . . . 55

4.2.1 Fraction of mis-tagged signal events . . . . . . . . . . 55
4.2.2 Background parameterisation . . . . . . . . . . . . . . 56

4.3 The fitting sequence, components and strategy . . . . . . . . 60

5 Efficiency 63

5.1 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.1 Two-dimensional binned method . . . . . . . . . . . . 65
5.1.2 Kernel Density Estimator method . . . . . . . . . . . 66

3



4 CONTENTS

5.2 Closure test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Validation of the fit algorithm 77

6.1 Generator-level fit to simulated events . . . . . . . . . . . . . 77
6.2 Reconstruction-level fit to simulated events . . . . . . . . . . 78
6.3 Reconstruction-level fit to low statistics simulated samples . . 81

6.3.1 Data-like samples of signal MC events . . . . . . . . . 85
6.3.2 Data-like “cocktail” MC samples . . . . . . . . . . . . 85

6.4 Validation with data control channels . . . . . . . . . . . . . 88
6.4.1 Sideband fit . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.2 Fit to data control channel . . . . . . . . . . . . . . . 90

7 Systematic uncertainties 95

7.1 Limited amount of simulated events . . . . . . . . . . . . . . 96
7.2 Simulation mismodelling . . . . . . . . . . . . . . . . . . . . . 96
7.3 Efficiency shape . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Fitting Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Wrong CP assignment . . . . . . . . . . . . . . . . . . . . . . 101
7.6 Background distributions . . . . . . . . . . . . . . . . . . . . 101
7.7 Mass Distribution . . . . . . . . . . . . . . . . . . . . . . . . 104
7.8 Uncertainty from fixed pdf parameters . . . . . . . . . . . . . 104

7.8.1 Test of scale-factor dependency on toy statistics . . . 105
7.9 Angular Resolution . . . . . . . . . . . . . . . . . . . . . . . . 108
7.10 Feed-through background . . . . . . . . . . . . . . . . . . . . 109
7.11 Bivariate Gaussian fit range . . . . . . . . . . . . . . . . . . . 110
7.12 Total Systematic Uncertainties . . . . . . . . . . . . . . . . . 111

8 Fit results 115

8.1 Statistical uncertainties determination . . . . . . . . . . . . . 115
8.1.1 Feldman-Cousins method . . . . . . . . . . . . . . . . 115
8.1.2 Correlation coefficient . . . . . . . . . . . . . . . . . . 127

8.2 Results of central values . . . . . . . . . . . . . . . . . . . . . 127
8.2.1 Validation of the yield results . . . . . . . . . . . . . . 134

9 Future perspective and conclusions 135

9.1 Perspective at LHC Run II . . . . . . . . . . . . . . . . . . . 135
9.1.1 Trigger developments . . . . . . . . . . . . . . . . . . 136
9.1.2 Analysis upgrades . . . . . . . . . . . . . . . . . . . . 138

9.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Abstract

Angular distributions of the decay B0 → K∗0µ+µ− are studied using a sam-
ple of proton-proton collisions at

√
s = 8 TeV collected with the CMS detec-

tor at the LHC, corresponding to an integrated luminosity of 20.5 fb−1. An
angular analysis is performed to determine the P1 and P

′
5 parameters, where

the P ′
5 parameter is of particular interest because of recent measurements

that indicate a potential discrepancy with the standard model predictions.
Based on a sample of 1397 signal events, the P1 and P ′

5 parameters are
determined as a function of the dimuon invariant mass squared. The mea-
surements are in agreement with predictions based on the standard model.
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Chapter 1

Analysis introduction

In this thesis, I will present the angular analysis of the B0 → K∗0µ+µ− decay,
performed with the data collected by the Compact Muon Solenoid (CMS)
Experiment in the 2012 run of proton-proton (pp) collisions at a centre-of-
mass energy

√
s = 8TeV, and corresponding to an integrated luminosity of

20.5 fb−1.

Two analyses of the B0 → K∗0µ+µ− decay have been performed by the
CMS Collaboration, using the data described above. The first analysis [25]
was aiming to measure the branching fraction and to perform a partial
measurement of the angular distribution. The K∗0 longitudinal polarisation
fraction, FL, and the forward-backward asymmetry of the dimuon system,
AFB, were estimated as a function of the dimuon invariant mass squared, q2.
A combination with the results obtained with pp collision data collected in
2011, corresponding to an integrated luminosity of 5.2 fb−1 at

√
s = 7TeV,

was also performed. The results of this analysis are in good agreement with
the Standard Model (SM) predictions and with the results from previous
experiments: BaBar [14], Belle [46], CDF [8], and LHCb [2].

The first complete angular analysis was performed by the LHCb Collab-
oration [3], with the data collected in 2011 pp collisions at

√
s = 7TeV. In

this analysis the measurement has been extended to the full set of angular
parameters, which will be defined in Section 1.2.1. A tension with respect
to the SM predictions has been found in the measurement of one of these
parameters, P ′

5. The significance of this tension, without taking into account
the look-elsewhere effect, is reported to be 3.7 standard deviations.

The LHCb collaboration published also a complete angular analysis [7],
combining the data collected in 2011 and 2012 pp collisions for an over-
all integrated luminosity of 3 fb−1. The results for the P ′

5 parameter were
still showing a discrepancy with respect to the predictions, as shown in Fig-
ure 1.1. The tension is localised in the q2 region between 4GeV2 and 8GeV2,
and its significance is evaluated, using the full set of parameters, to be of
about 3.4 standard deviations.
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Figure 1.1: Results of P ′
5 angular parameter in bins of q2 from LHCb Run 1

data, compared with SM-based predictions. Image from Reference [7].

After these results, the Belle Collaboration performed an extension [10]
of its original analysis, to measure the full set of angular parameters, in
particular P ′

5. The results are in agreement with the measurements of LHCb,
but with a larger uncertainty that prevent to obtain a significant discrepancy
of the P ′

5 results with respect to the SM predictions.

The second analysis from the CMS Collaboration [42] is an extension
of the first analysis, with the goal of measuring the P ′

5 angular parameter
to provide a new independent experimental result. The expected precision
of this measurement is not as good as the latest result of the LHCb Col-
laboration, given the lower number of signal events and worse signal over
background ratio. Anyway, it will have a smaller uncertainty and a q2 bin
structure more similar to the LHCb one, with respect to the result from
Belle Collaboration. For this reason, these results could have an important
role in the process of shedding light on the matter.

In this thesis I will describes the details of this second analysis of the CMS
Collaboration. Chapter 1 will continue with the description of the theoretical
framework used to described the decays like B0 → K∗0µ+µ−, and with the
formulation of the angular distribution and few considerations about it. In
Chapter 2 the Large Hadron Collider (LHC) and the CMS experiment will be
described, focusing in particular on the aspects more related to the analyses
of Flavour Physics. The selection criteria used to reduce the contamination
from background events will be presented in Chapter 3, while in Chapter 4
the procedure used to extract the angular parameters from the selected data
will be explained in details. Chapter 5 will be dedicated to the methods used
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to describe the efficiency of the selection criteria on signal events. Several
tests have been performed to validate the analysis procedure; they will be
described in Chapter 6. The sources of systematic uncertainty that have
been investigated will be listed in Chapter 7, while the study of the statistical
uncertainty and the results of the analysis will be reported in Chapter 8.
Finally, I will conclude in Chapter 9 by describing the future prospects for
this analysis and focusing in particular on the ongoing efforts to improve it
for the data from LHC Run 2 collisions.

1.1 Flavour Physics

The sector of the Standard Model of particle physics in which the precision
of the experimental probes reached higher levels is the Flavour Physics.

In particular, it is the realm of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, i.e. the 3× 3 unitary matrix that rules the charge current weak in-
teractions between quarks. This matrix was proposed by Kobayashi and
Maskawa about 45 years ago, extending the Cabibbo 2×2 matrix to allow a
source of CP-violation to be included in the model through a non-vanishing
phase (that is not possible in a 2 × 2 unitary matrix). It allowed to fore-
see the existence of the three heavier quarks before discovering them in the
experimental facilities. Its parameters, that link the basis of weak eigen-
states with the one of Yukawa eigenstates, have been determined in the past
decades with great precision.

The unitarity of the CKM matrix is the real testing ground of the com-
pleteness of the theory. An observation of non-unitary behaviours in the
CKM parameters would open the gates to scenarios beyond the SM, sug-
gesting the presence of a forth generation of quarks. However, after many
years of B-factory probes, and few years of analyses at LHC, no cracks have
been found in the paradigm. This robust long-standing structure is not
promising for searches of phenomena of New Physics (NP).

On the other hand, few recent results from the LHCb Collaboration
raised the interest for the world of the so-called rare decays. One result
have been already mentioned before: the tension of the P ′

5 parameter mea-
sured in the angular analysis of the flavour-changing neutral current (FCNC)
B0 → K∗0µ+µ− decay. Another, very interesting, result that is showing
a discrepancy with respect to the predictions is the measurement [6] of
R(K(∗)). These parameters are defined as the branching-fraction ratios:

R(K∗) =
Br(B0 → K∗0µ+µ−)

Br(B0 → K∗0e+e−)

R(K) =
Br(B+ → K+µ+µ−)

Br(B+ → K+e+e−)

(1.1)
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expressed as a function of the dimuon invariant mass squared, q2.

In the latest LHCb results for both these ratios, a hint for tension with
respect to the SM is present. Even if this discrepancy is less significant than
the one on P ′

5, the theoretical prediction for this variables are not affected
at all by hadronic uncertainties, and it makes them very robust. One very
interesting aspect of these discrepancies is that they could be related to a
common cause, affecting one of the coefficients of the effective Hamiltonian,
the so-called Wilson coefficients.

In the following section, a brief description of the theoretical framework
used to described these FCNC decays is given.

1.1.1 Flavour-changing neutral currents b → sℓ+ℓ−

The penguin-mediated FCNC b→ sℓ+ℓ− are a set of b-hadron semileptonic
decays with a pair of non-resonant charged leptons in the final state. These
decay channels are doubly suppressed within the SM:

• they are forbidden at tree-level, since there is no neutral current in SM
allowed to violate the flavour, and the leading-order Feynman diagram
that mediates them is a weak penguin loop;

• the leading-order diagram is Cabibbo suppressed, since it is propor-
tional to the CKM elements |VtsVtb| ∼ 10−2.

These causes of suppression result in small branching fractions and they
create an ideal environment for NP searches. Any potential contribution
from physics beyond the SM that enters in the loop diagram could produce
sizeable effects in the decay branching fractions or in their angular distribu-
tions.

On the other hand, the theoretical predictions of the angular distri-
butions and branching fractions of these decays are quite susceptible to
hadronic uncertainties due to long-distance Quantum Chromodynamic (QCD)
processes. In order to separate, in the theoretical framework, the effect
from long-distance QCD and from short-distance effects, which are related
to QCD and electroweak interactions but also to NP processes, an effective
Hamiltonian is defined as follow:

Heff = −4GF√
2

(

λtH(t)
eff + λuH(u)

eff

)

(1.2)

where λi = VibV
∗
is and

H(t)
eff = C1Oc

1 + C2Oc
2 +

6
∑

i=3

CiOi +
∑

i=7,8,9,10,P,S

(CiOi + C ′
iO′

i) ,

H(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ) .
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The operators O(a)
i for i < 7 are equal to the Pi defined in the Refer-

ence [21], while for i ≥ 7 they are defined accordingly to Reference [12]:

O7 =
e

g2
mb(s̄σµνPRb)F

µν O′
7 =

e

g2
mb(s̄σµνPLb)F

µν (1.3)

O8 =
1

g
mb(s̄σµνT

aPRb)G
µν a O′

8 =
1

g
mb(s̄σµνT

aPLb)G
µν a (1.4)

O9 =
e2

g2
(s̄γµPLb)(µ̄γ

µµ) O′
9 =

e2

g2
(s̄γµPRb)(µ̄γ

µµ) (1.5)

O10 =
e2

g2
(s̄γµPLb)(µ̄γ

µγ5µ) O′
10 =

e2

g2
(s̄γµPRb)(µ̄γ

µγ5µ) (1.6)

OS =
e2

16π2
mb(s̄PRb)(µ̄µ) O′

S =
e2

16π2
mb(s̄PLb)(µ̄µ) (1.7)

OP =
e2

16π2
mb(s̄PRb)(µ̄γ5µ) O′

P =
e2

16π2
mb(s̄PLb)(µ̄γ5µ) (1.8)

where g is the strong coupling constant, mb is the running b quark mass in
the MS scheme, and PL,R = (1∓ γ5)/2 are the chirality projectors.

The set of Wilson coefficients C
(′)
i encodes the contribution from short-

distance physics and could contain NP effects. These coefficients can be
expanded and calculated in perturbation theory in powers of αs ≡ g2/4π:

Ci = C
(0)
i +

αs
4π

C
(1)
i +

(αs
4π

)2
C

(2)
i +O(α3

s) , (1.9)

Their predicted values of these expanded coefficients, both within SM and
for NP scenarios, are calculated at the scale µ = mW and then evolved down
to µ ∼ mb.

According to the SM, several of the terms in the effective Hamiltonian
are expected to vanish or be highly suppressed; this is the case for all the
primed operators, as well as for the scalar and pseudoscalar ones, OS and
OP .

If we restrict the study to a B(0,±) → K∗(0,±)ℓ+ℓ− decay, the matrix

elements of the effective Hamiltonian operators O(′)
7,9,10,S,P can be described

as a function of seven form factors, Ai(q
2), V (q2), and Tj(q

2), where 0 ≤
i ≤ 2 and 1 ≤ j ≤ 2, and q2 is the squared momentum carried by the pair of
leptons. In literature the form factor A3(q

2), which is a linear combination
of A1(q

2) and A2(q
2), is also used.

The theoretical predictions of the form factors are computed using the
QCD sum rules on the light-cone (LCSRs) [37]. With this technique, the
form factors are expanded in powers of mbmK∗/(m2

b − q2). This expansion
works well for values of q2 lower than about 8GeV2, but for higher values
the high-order terms become more relevant and the uncertainty associated
to the approximated prediction grows accordingly.
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In the B(0,±) → K∗(0,±)ℓ+ℓ− decay amplitude, not only the terms pro-
portional to the form factors are contributing. It contains additional “non-
factorisable effects”, which are related to the matrix elements of the oper-
ators not considered when defining the form factors: the purely hadronic

operators O1,2,3,4,5,6 and the chromomagnetic operators O(′)
8 , where an ad-

ditional virtual photon emission is needed to produce the lepton pair.

The contribution of these effects cannot be expressed as a function of
a new set of form factors. In the combined heavy-quark and large-energy
limits, they can be calculated using the QCD factorisation technique [18–20].

1.2 The decay B
0
d → K

∗0µ+µ−

The FCNC decay B0 → K∗0(K+π−)µ+µ− is an optimal laboratory to probe
the flavour sector of the SM. From the experimental point of view, it has
a fully charged final state, with two muons, which are easy to identify in a
multi-purpose particle detector, and two charged hadronic particles. Fur-
thermore, the charges of the hadrons in the final state determine the CP-
state of the decay, i.e. whether it is B0 → K∗0(K+π−)µ+µ− or B0 →
K∗0(K−π+)µ+µ−. From the phenomenological point of view, the angular
analysis of this decay can provide information on several components of
the effective Hamiltonian described in Section 1.1.1: the electromagnetic
and semileptonic operators, O7,9,10, and their chirality-flipped counterparts,
O7′,9′,10′ , together with scalar and pseudoscalar operators, OS,P,S′,P ′ .

The decay in the four-body final state is completely described by a set
of four kinematical variables, θl, θK , φ, and q2. The variable θl is defined as
the angle between the momentum of the µ+ (µ−) and the direction opposite
to the B0 (B0) momentum, in the dimuon rest frame:

cos θl =
(

p
(µ+µ−)
µ+

)

·
(

−p(µ
+µ−)

B0

)

for B0 decay

cos θl =
(

p
(µ+µ−)
µ−

)

·
(

−p(µ
+µ−)

B0

)

for B0 decay
(1.10)

The variable θK is defined as the angle between the direction of the kaon
and the direction opposite that of the B0 (B0), in the K∗0 (K∗0) rest frame

cos θK =
(

p
(K∗0)

K+

)

·
(

−p(K
∗0)

B0

)

for B0 decay;

cos θK =
(

p
(K∗0)

K−

)

·
(

−p(K
∗0)

B0

)

for B0 decay.
(1.11)

The variable φ is defined as the angle between the plane containing the µ+

and µ− momenta and the plane containing the momenta of the kaon and
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μ−
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Figure 1.2: Illustration of the angular variables θl (left), θK (middle), and
φ (right) for the decay B0 → K∗0(K+π−)µ+µ−.

the pion, in the B0 rest frame, with the following sign conventions:

cos(φ) =
(

p
(B0)
µ+

× p
(B0)
µ−

)

·
(

p
(B0)

K+ × p
(B0)
π−

)

and

sin(φ) =
[(

p
(B0)
µ+

× p
(B0)
µ−

)

×
(

p
(B0)

K+ × p
(B0)
π−

)]

· p(B
0)

K∗0 for B0 decay;

cos(φ) =
(

p
(B0)
µ−

× p
(B0)
µ+

)

·
(

p
(B0)

K−
× p

(B0)
π+

)

and

sin(φ) = −
[(

p
(B0)
µ−

× p
(B0)
µ+

)

×
(

p
(B0)

K−
× p

(B0)
π+

)]

· p(B
0)

K∗0 for B0 decay.

(1.12)
Finally, the variable q2 is defined as the invariant mass squared of the dimuon

system. In the Equations 1.10, 1.11, 1.12 the notation p
(b)
a indicates the

momentum of the particle a in the rest frame of the particle b.

The definition of the kinematical variables is coherent with the one used
in the previous experimental analyses performed on this decay channel. The
definition of θl differs from the one used in some phenomenological papers.
A graphic representation of the definition of the three angular variables is
shown in Figure 1.2.

The range of definition of the angular variables are [0, π], for θl and θK ,
and [−π, π], for φ.
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1.2.1 The angular decay rate

The matrix element for the B0 → K∗0(K+π−)µ+µ−, obtained from the
effective Hamiltonian in Equation 1.2, is:

M =
GFα√
2π
VtbV

∗
ts

{[

〈Kπ|s̄γµ(Ceff
9 PL + C ′eff

9 PR)b|B̄〉

− 2mb

q2
〈Kπ|s̄iσµνqν(Ceff

7 PR + C ′eff
7 PL)b|B̄〉

]

(µ̄γµµ)

+ 〈Kπ|s̄γµ(Ceff
10PL + C ′eff

10 PR)b|B̄〉 (µ̄γµγ5µ)

+ 〈Kπ|s̄(CSPR + C ′
SPL)b|B̄〉 (µ̄µ)+ 〈Kπ|s̄(CPPR + C ′

PPL)b|B̄〉 (µ̄γ5µ)
}

.

(1.13)

where the naive factorisation has been applied, by ignoring the non-factorisable
terms, and a set of effective Wilson coefficients, Ceff

i , is used. These effective
coefficients are linear combinations of the set defined in Section 1.1.1, and
their definition is described in Reference [12].

The differential decay distribution as a function of the kinematical vari-
ables can be obtained by squaring Equation 1.13. Projecting the result on
a basis of combinations of spherical harmonics of the angular variables, one
obtains the following expression for the B0 → K∗0(K−π+)µ+µ− decay:

d4Γ

dq2 d cos θl d cos θK dφ
=

9

32π

[

Is1 sin
2 θK + Ic1 cos

2 θK

+ (Is2 sin
2 θK + Ic2 cos

2 θK) cos 2θl + I3 sin
2 θK sin2 θl cos 2φ

+ I4 sin 2θK sin 2θl cosφ+ I5 sin 2θK sin θl cosφ

+ (Is6 sin
2 θK + Ic6 cos

2 θK) cos θl + I7 sin 2θK sin θl sinφ

+ I8 sin 2θK sin 2θl sinφ+ I9 sin
2 θK sin2 θl sin 2φ

]

(1.14)

where the complex angular coefficients I
(a)
i depend only on q2. The differ-

ential distribution of the opposite CP-state decay, B0 → K∗0(K+π−)µ+µ−,
has the same expression, but it is function of the weak-phase conjugated

coefficients Ī
(a)
i .

The set of angular coefficients I
(a)
i has been expressed as a function of the

effective Wilson coefficients and of the form factors, under the assumptions of
naive factorisation of the matrix element and adding corrections to describe
the effect of non-factorisable terms. In literature they are also expressed as
a function of eight K∗0 transversity amplitudes.

Unlike Wilson coefficients, form factors, and transversity amplitudes,

the angular coefficients I
(a)
i are physical observable and they can be exper-

imentally measured by the angular analysis of the B0 → K∗0(K+π−)µ+µ−

decay. However, the theoretical predictions of these coefficients are prone to
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hadronic uncertainties, derived from their strong dependency on the form
factors. For this reasons, more sophisticated bases of angular coefficients
have been defined in order to be independent from form factors at leading
order of the effective-theory expansion.

Firstly, two sets of coefficients are defined, the CP-averages:

S
(a)
i =

I
(a)
i + Ī

(a)
i

dΓ
dq2

+ dΓ̄
dq2

(1.15)

and the CP asymmetries:

A
(a)
i =

I
(a)
i − Ī

(a)
i

dΓ
dq2

+ dΓ̄
dq2

(1.16)

that are useful to disentangle potential NP effects that introduce new sources
of CP-violation from the others. Since this analysis is aiming the measure-
ment of two CP-averaged angular parameters, I will not spend time describ-

ing the basis of CP-violating coefficients but I will focus on the set of S
(a)
i

parameters.

The twelve real angular coefficients in this set can be reduced to eight, in
the approximation of negligible lepton mass with respect to q. This is true
in this analysis, since only candidates with q value greater than 1GeV are
used, as described in Section 3.3. In the massless-muon limit, the following
conditions are valid:

Ss1 = 3Ss2

Sc1 = −Sc2
3

4
(2Ss1 + Sc1)−

1

4
(2Ss2 + Sc2) = 1

Sc6 = 0 (1.17)

where the latter condition is always true within the SM, even without the
massless-muon limit, since the Sc6 term is generated by the scalar operator,
which does not exist in the SM.

The Sc1 coefficient corresponds to the fraction of K∗0 produced with lon-
gitudinal polarisation, and it is usually referred to as FL. In the same way,
the coefficient Ss6 is proportional to the forward-backward asymmetry of the
muon system, thus the parameter AFB = 3

4S
s
6 is used.

The so-called P -primed basis of angular parameters, clean from leading-
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order hadronic uncertainties, is defined as:

P1 =
2S3

1− FL

P2 =
2

3

AFB
1− FL

P3 =
−S9

1− FL

P ′
4,5,8 =

S4,5,8
√

FL(1− FL)

P ′
6 =

S7
√

FL(1− FL)

(1.18)

Using the P
(′)
i basis, with FL and its complementary FT = 1 − FL, the

differential angular distribution can be written as:

1

dΓ/dq2
d4Γ

dq2d cos θld cos θKdφ
=

9

32π

[

3

4
FT sin2 θK + FL cos

2 θK

+

(

1

4
FT sin2 θK − FL cos

2 θK

)

cos 2θl +
1

2
P1FT sin2 θK sin2 θl cos 2φ

+
√

FTFL

(

1

2
P ′
4 sin 2θK sin 2θl cosφ+ P ′

5 sin 2θK sin θl cosφ

)

−
√

FTFL

(

P ′
6 sin 2θK sin θl sinφ− 1

2
P ′
8 sin 2θK sin 2θl sinφ

)

+ 2P2FT sin2 θK cos θl − P3FT sin2 θK sin2 θl sin 2φ

]

(1.19)

S-wave contamination

Although the K+π− invariant mass must be consistent with a K∗0, there
can be contributions from a spinless (S-wave)K+π− combination. The pres-
ence of a K+π− system in an S-wave configuration, due to a non-resonant
contribution or to feed through from K+π− scalar resonances, results in
additional terms in the different decay rate.

Denoting the right-hand side of Equation 1.19 by Wp, the differential
decay rate takes the form:

1

dΓ/dq2
d4Γ

dq2d cos θld cos θKdφ

∣

∣

∣

∣

S+P

= (1− FS)Wp + (Ws +Wsp) (1.20)

where

Ws =
3

16π
FS sin

2 θl (1.21)
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and Wsp is:

Wsp =
3

16π

[

AS sin
2 θl cos θK +A4

S sin θK sin 2θl cosφ+A5
S sin θK sin θl cosφ

+ A7
S sin θK sin θl sinφ+A8

S sin θK sin 2θl sinφ
]

(1.22)

where FS is the fraction of the S-wave component in the K∗0 mass window,
and AiS are the interference amplitudes between the S-wave and the P-wave
decays [40].

1.2.2 The angular folding

The differential decay distributions, described above, contains 8 parameters
for the P-wave component, and 6 parameters for the S-wave and interfer-
ence contamination. As mentioned in the introduction, the primary goal of
this angular analysis is to measure the angular parameter P ′

5. In order to
perform this measurement in the best possible environment, it has been de-
cided to simplify the angular analysis by reducing the number of measured
parameters. This is done with the angular folding method.

In the following, I will use the expression “folding a variable x around
a” referring to the redefinition of that variable in the following way:

x→ x for x ≥ a

x→ 2a− x for x < a
(1.23)

The key of this method is to exploit the even and odd symmetries of
the terms forming the differential distribution, around some values of the
angular variables. By folding a variable around one of these values, all the
terms with an even symmetry will be unchanged after the transformation,
while all the terms with an odd symmetry will be become equal to zero. Any
folding applied around a value for which there is no symmetry, in at least
one term of the distribution, would modify the expression of that term in a
non-trivial way. In this analysis, only foldings corresponding to symmetries
of the angular decay rate are applied.

In order to preserve the term proportional to P ′
5 in the angular distri-

bution and to reduce as much as possible the total number of parameters,
two foldings have been applied. The φ variable has been folded around 0,
reducing its range from [−π, π] to [0, π]. Then, the θl variable has been
folded around π/2, reducing its range from [0, π] to [0, π/2].

Note that, according to the definition in Equation 1.23, the resulting
range of θl should have been [π/2, π]. However, for convenience this second
folding has been applied in the other way:

x→ 2a− x for x ≥ a

x→ x for x < a
(1.24)
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The effect of this alternative definition on the differential distribution is
identical to the original one.

After the application of the two foldings, the differential decay distribu-
tion can be written as:

1

dΓ/dq2
d4Γ

dq2d cos θld cos θKdφ
=

9

8π

{

2

3

[

(FS +AS cos θK)
(

1− cos2 θl
)

+A5
S

√

1− cos2 θK
√

1− cos2 θl cosφ
]

+ (1− FS)

[

2FL cos
2 θK

(

1− cos2 θl
)

+
1

2
(1− FL)

(

1− cos2 θK
) (

1 + cos2 θl
)

+
1

2
P1(1− FL)(1− cos2 θK)(1− cos2 θl) cos 2φ

+2P ′
5 cos θK

√

FL (1− FL)
√

1− cos2 θK
√

1− cos2 θl cosφ
]}

(1.25)

Now it contains 6 angular parameters: FL, P1, and P ′
5 for the P-wave

component, FS for the S-wave component, AS and A5
S for the interference

component.

1.2.3 Parameter constrains

Range of definition of interference terms

Due to their nature, the values of the interference terms As and A5
s are

limited by the amplitude of the pure P-wave and S-wave components [40].
Their allowed ranges are the following:

|As| < 2
√
3
√

FS(1− FS)FL ∗ Ftheo (1.26)

|A5
s| <

√
3
√

FS(1− FS)FT (1 + P1) ∗ Ftheo (1.27)

where Ftheo is a constant factor that depends on the selection cuts applied
to the Kπ system mass. For the selection criteria used in this analysis, as
described in Section 3.2, according to the theoretical prescriptions [40] the
value used for Ftheo is 0.89.

In order to make sure that the fitted value of the A5
s parameter is con-

tained in this range, it has been substituted in the pdf by:

A5
s → f

√
3
√

FS(1− FS)FT (1 + P1) ∗ Ftheo (1.28)

where f is a placeholder parameter defined in the range [-1;1]. The fit will
be performed with respect to f , constrained in his range of validity, and the
resulting values of A5

s will be obtained from f by reversing Equation 1.28.
In this thesis this additional step will be kept implicit: when it will be stated
that the likelihood is maximised as a function of A5

s, it will be intended that
it is maximised as a function of f .



1.2. THE DECAY B0 TO K*0 MU+ MU- 19

pdf validity in the parameter space

Using the pdf parameterisation described above it is not guaranteed that it
is physical, i.e. positive in the whole (cos θK ,cos θl,φ) space.

In order to have a working fit sequence and reliable results, the values
of the angular parameters that allow the pdf to be physical need to be
identified. As explained in Section 4.3, the angular parameters that are free
to float in the fit to the data are P1, P

′
5, and A

5
S, while the others, FL, FS ,

and AS, are kept fixed to the results of the previous CMS analysis. Thus,
the region of validity of the pdf is computed only in the three-dimensional
space of the floating parameters, assuming the values of the others fixed like
in the fit procedure.

The analytic boundaries for the pure P-wave component can be found in
literature [38] and, after the reduction to the P1, P

′
5 parameter space, they

are:
(P ′

5)
2 − 1 < P1 < 1 (1.29)

without any dependence on the value of FL.
The pure S-wave component is always positive, as can be derived from

Equation 1.21 and from the range of definition of FS , from 0 to 1. In general,
the interference terms can be also negative, so additional constraints are
needed to guarantee the positiveness of the full pdf. Since these constraints
are not available in literature in an analytic form, a numerical computation
is needed to describe them.

For each bin, eight different physical boundaries in the (P1,P
′
5) parameter

space have been computed:

• one boundary is obtained by requiring that only the P-wave component
is positive; this is just a cross-check of the validity of Equation 1.29,
since the same result is expected;

• seven boundaries are obtained by requiring the whole pdf to be posi-
tive, for seven different values of A5

s; according the convention defined
in Section 1.2.3, the seven values of the placeholder parameter f are
chosen to be [-1, -2/3, -1/3, 0, 1/3, 2/3, 1].

To compute numerically each of these physical boundaries, the P1,P
′
5

space has been scanned with a grid of step 0.01 in both directions. For each
point of this parameter grid, the values of cos θK , cos θl and φ are moved
on a three-dimensional grid with step 0.02 in each direction; if the pdf is
positive for all of the points of this angle grid, the point in the P1,P

′
5 space

is defined to be inside the physical region, otherwise it is outside.
The boundaries of the resulting physical regions, plotted in the negative

P ′
5 sector only, are shown from Figure 1.3 to Figure 1.9. The physical region

is the one with P ′
5 values smaller, in module, than the plotted boundaries,

and it is included between them and their projections in the positive P ′
5
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sector. The P-wave boundary is symmetrically reflected with respect to
P ′
5 = 0; the boundaries assigned to a value of A5

s can be reflected to the
positive P ′

5 sector, but the reflected boundary refers to the opposite value
of A5

s, as can be derived from the symmetries in Equation 1.25.

P1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
'5

-0.4

-0.2

0

0.2

0.4

0.6

Figure 1.3: Physical boundaries of the negative P ′
5 sector of q

2 bin 0. Accord-
ingly to the description in Section 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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P1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
'5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 1.4: Physical boundaries of the negative P ′
5 sector of q2 bin 1. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).

P1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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-0.8

-0.7

-0.6

Figure 1.5: Physical boundaries of the negative P ′
5 sector of q2 bin 2. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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P1
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-0.8
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-0.3

Figure 1.6: Physical boundaries of the negative P ′
5 sector of q2 bin 3. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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Figure 1.7: Physical boundaries of the negative P ′
5 sector of q2 bin 5. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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P1
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Figure 1.8: Physical boundaries of the negative P ′
5 sector of q2 bin 7. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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Figure 1.9: Physical boundaries of the negative P ′
5 sector of q2 bin 8. Ac-

cordingly to the description in Sec. 1.2.3, the magenta line is the boundary of
the P-wave physical region and the set of grey-scale lines are the boundaries
of the total-PDF physical region, for different A5

s values (black for f = −1,
lightest grey for f = 1).
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Chapter 2

The Large Hadron Collider

and the Compact Muon

Solenoid Experiment

The Large Hadron Collider (LHC) [22] is an accelerator located at the Eu-
ropean Laboratory for Particle Physics Research (CERN) in Geneva. It
has been conceived to collide proton beams at a centre-of-mass energy of√
s = 14 TeV and a nominal instantaneous luminosity of L = 1034 cm−2

s−1, representing a seven-fold increase in energy and a hundred-fold increase
in integrated luminosity over the previous hadron collider experiments. Its
main purpose is to search for rare processes like the production of Higgs
or new particles with mass of 1 TeV and beyond. Two experiments have
been installed around the LHC to pursue these results: ATLAS [1] and
CMS [23]. Furthermore, the LHCb [13] experiment studies the properties of
charm and beauty hadrons produced with large cross sections in the forward
region in collisions at the LHC, and the ALICE [9] experiment analyses the
data from relativistic heavy ion collisions to study the hadronic matter in
extreme temperature and density conditions (i.e. high quark-gluon density).

2.1 The Large Hadron Collider

The LHC has been installed in the same tunnel which hosted the e+e−

collider LEP (Large Electron-Positron collider). Accelerated electrons and
positrons suffer large energy loss due to the synchrotron radiation, which is
proportional to E4/(Rm4), where E is the electron energy, m its mass and R
the accelerator radius. To obtain energies of the order of TeV, at the fixed
accelerator radius, only massive charged particles could have been used:
protons and heavy nuclei. The energy loss is reduced by a factor (2000)4 for
a given fixed energy E for protons, respect to electrons. Another important
aspect of the LHC is the collision rate. To produce a sufficient number of

25
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Figure 2.2: Scheme representing the CERN accelerator complex.

the transverse dipole magnet section is represented in figure 2.1. More than
8000 other magnets are utilized for the beam injection, their collimation,
trajectory correction, crossing. All the magnets are kept cool by superfluid
helium at 1.9 K temperature. The beams are accelerated from 450 GeV (the
injection energy from the SPS) to 7 TeV with 16 Radio Frequency cavities
(8 per beam) which raise the beam energy by 16 MeV each round with an
electric field of 5 MV/m oscillating at 400 MHz frequency.
Before the injection into the LHC, the beams are produced and accelerated
by different components of the CERN accelerator complex. Being produced
from ionized hydrogen atoms, protons are accelerated by the linear accelera-
tor LINAC, Booster and the Proton Synchrotron (PS) up to 26 GeV energy,
the bunches being separated by 25 ns each. The beams are then injected
into the Super Proton Synchrotron (SPS) where they are accelerated up to
450 GeV. They are then finally transferred to the LHC and accelerated up
to 7 TeV energy per beam. The CERN accelerator complex is illustrated in
figure 2.2.
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Figure 2.3: LHC performance in 2012. Left: CMS detected peak luminosity;
right: CMS detected integrated luminosity.

The LHC started its operations in December 2009 with centre of mass en-
ergy for the proton-proton collision

√
s = 0.9 TeV. The centre of mass energy

was set to
√
s = 7 TeV in the 2010 and 2011 runs and raised to

√
s = 8 TeV

in the 2012 runs. Here are reported the CMS detected peak and integrated
luminosities for proton-proton runs. In 2010 the peak luminosity reached
L = 203.80Hz/µb and the integrated luminosity has been L = 40.76 pb−1,
while during 2011 the peak luminosity increased to L = 4.02Hz/nb and the
integrated luminosity has been L = 5.55 fb−1. In the 2012 runs the peak
luminosity reached L = 7.67Hz/nb and the integrated luminosity has been
L = 21.79 fb−1, as graphically summarized in figure 2.3.

2.2 CMS Experiment

The Compact Muon Solenoid [23] is a general purpose detector situated
at interaction point 5 of the CERN Large Hadron Collider. It is designed
around a 4 T solenoidal magnetic field provided by the largest superconduct-
ing solenoid ever built. The structure of CMS is shown in figure 2.4, where
particular emphasis is put on the volumes of the different subsystems: the
Silicon Pixel Detector, the Silicon Strip Tracker, the Electromagnetic and
Hadronic Calorimeters, and Muon Detectors.

We can briefly summarize the aims of the CMS detector [16]. They are
mainly:

• search for SM and MSSM Higgs boson decaying into photons, b quarks,
τ leptons, W and Z bosons,

• search for additional heavy neutral gauge bosons predicted in many
superstring-inspired theories or Great Unification Theories and decay-
ing to muon pairs,
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Figure 2.4: Transverse (left) and longitudinal (right) cross sections of the
CMS detector showing the volumes of the different detector subsystems.
The transverse cross section is drawn for the central barrel, coaxial with
the beam line, while complementary end-caps are shown in the longitudinal
view.

• search for new Physics in various topologies: multilepton events, mul-
tijet events, events with missing transverse energy1 or momentum, any
combination of the three above,

• study of the B-hadron rare decay channels (like B0
(s) → µµ) and of

CP violation in the decay of the B mesons (like B0
s → J/ψφ →

µ+µ−K+K−),

• search for B0 → µ+µ− decays,

• study of QCD and jet physics at the TeV scale,

• study of top quark and EW physics.

CMS has been therefore designed as a multipurpose experiment, with par-
ticular focus on muon, photon, and displaced tracks reconstruction. Superb
performances have been achieved overall, in particular in:

• primary and secondary vertex localization,

• charged particle momentum resolution and reconstruction efficiency in
the tracking volume,

• electromagnetic energy resolution,

1Missing transverse energy mET is the amount of energy which must be added to
balance the modulus of the vector sum of the projections of the track momenta and
calorimeter clusters in the plane perpendicular to beam axis. Its direction is opposite to
this vector sum directions.
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• isolation of leptons and photons at high luminosities,

• measurement of the direction of photons, rejection of π0 → γγ,

• diphoton and dielectron mass resolution ∼ 1% at 100GeV,

• measurement of the missing transverse energy mET and dijet mass
with high resolution,

• muon identification over a wide range of momenta,

• dimuon mass resolution ∼ 1% at 100 GeV,

• unambiguously determining the charge of muons with pT up to 1 TeV,

• triggering and offline tagging of τ leptons and b jets.

The reference frame used to describe the CMS detector and the collected
events has its origin in the geometrical centre of the solenoid. Different types
of global coordinates measured with respect to the origin2 are used:

• cartesian coordinate system, x̂ axis points towards the centre of LHC,
ŷ points upwards, perpendicular to LHC plane, while ẑ completes the
right-handed reference,

• polar coordinate system, directions are defined with an azimuthal an-
gle tanφ = y/x and a polar angle tan θ = ρ/z, where ρ =

√

x2 + y2,

• polar coordinate system, with instead of the polar angle the rapidity
y and the pseudorapidity η, obtained for any particle from

y =
1

2
ln

(

E + pz
E − pz

)

,

η = − ln

(

tan
θ

2

)

,

where E is the particle energy and pz the component of its momentum
along the beam direction.

2Global coordinates are measured in the CMS reference frame while local coordinates
are measured in the reference frame of a specific sub-detector or sensitive element.
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Figure 2.5: Layout of the CMS silicon tracker showing the relative position
of hybrid pixels, single-sided strips and double-sided strips. Figure from [23].

2.2.1 Magnet

The whole CMS detector is designed around a ∼ 4 T superconducting
solenoid [30] 12.5 m long and with inner radius of 3 m. The solenoid thick-
ness is 3.9 radiation lengths and it can store up to 2.6 GJ of energy.

The field is closed by a 104 t iron return yoke made of five barrels and
two end-caps, composed of three layers each. The yoke is instrumented
with four layers of muon stations. The coil is cooled down to 4.8 K by a
helium refrigeration plant, while insulation is given by two pumping stations
providing vacuum on the 40 m3 of the cryostat volume.

The magnet was designed in order to reach precise measurement of muon
momenta. A high magnetic field is required to keep a compact spectrometer
capable to measure 100 GeV track momentum with percent precision. A
solenoidal field was chosen because it keeps the bending in the transverse
plane, where an accuracy better than 20µm is achieved in vertex position
measurements. The size of the solenoid allows efficient track reconstruction
up to a pseudorapidity of 2.4. The inner radius is large enough to accom-
modate both the Silicon Tracking System and the calorimeters. During the
2012 acquisitions the magnet was operated at 3.8 T.

2.2.2 Tracking System

The core of CMS is a Silicon Tracking System [35] with 2.5 m diameter
and 5.8 m length, designed to provide a precise and efficient measurement
of the trajectories of charged particles emerging from LHC collisions and
reconstruction of secondary vertices.

The CMS Tracking System is composed of both silicon Pixel and Strip
Detectors, as shown in figure 2.5. The Pixel Detector consists of 1440 pixel
modules arranged in three barrel layers and two disks in each end-cap as in
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Figure 2.6: Layout of the current CMS Pixel Detector. Figure from [35].

figure 2.6. The Strip Detector consists of an inner tracker with four barrel
layers and three end-cap disks and an outer tracker with six barrel layers
and nine end-cap disks, housing a total amount of 15148 strip modules of
both single-sided and double-sided types. Its active silicon surface of about
200 m2 makes the CMS tracker the largest silicon tracker ever built.

The LHC physics programme requires high reliability, efficiency and pre-
cision in reconstructing the trajectories of charged particles with transverse
momentum larger than 1 GeV in the pseudorapidity range |η| < 2.5. Heavy
quark flavours can be produced in many of the interesting channels and a
precise measurement of secondary vertices is therefore needed. The tracker
completes the functionalities of ECAL and Muon System to identify elec-
trons and muons. Also hadronic decays of tau leptons need robust tracking
to be identified in both the one-prong and three-prongs topologies. Tracker
information is heavily used in the High Level Trigger of CMS to help reduc-
ing the event collection rate from the 40 MHz of bunch crossing to the 100
Hz of mass storage.

Silicon Pixel Detector

The large number of particles produced in 25 pile-up events3, at nominal
LHC luminosity, results into a hit rate density of 1 MHz mm−2 at 4 cm
from the beamline, decreasing down to 3 kHz mm−2 at a radius of 115 cm.
Pixel detectors are used at radii below 10 cm to keep the occupancy below
1%. The chosen size for pixels, 0.100 × 0.150mm2 in the transverse and

3Events that occur in the same bunch crossing.
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longitudinal directions respectively, leads to an occupancy of the order of
10−4. The layout of the Pixel Detector consists of a barrel region (BPIX),
with three barrels at radii of 4.4, 7.3 and 10.2 cm, complemented by two
disks on each side (FPIX), at 34.5 and 46.5 cm from the nominal interaction
point. This layout provides about 66 million pixels covering a total area
of about 1 m2 and measuring three high precision points on each charged
particle trajectory up to |η| = 2.5. Detectors in FPIX disks are tilted by 20◦

in a turbine-like geometry to induce charge sharing and achieve a spatial
resolution of about 20µm.

Silicon Strip Tracker

In the inner Strip Tracker, which is housed between radii of 20 and 55 cm, the
reduced particle flux allows a typical cell size of 0.080× 100mm2, resulting
in a 2% occupancy per strip at design luminosity. In the outer region, the
strip pitch is increased to 0.180×250mm2 together with the sensor thickness
which scales from 0.320 mm to 0.500 mm. This choice compensates the
larger capacitance of the strip and the corresponding larger noise with the
possibility to achieve a larger depletion of the sensitive volume and a higher
charge signal.

The Tracker Inner Barrel and Disks (TIB and TID) deliver up to 4 (r, φ)
measurements on a trajectory using 0.320 mm thick silicon strip sensors with
strips parallel to the beamline. The strip pitch is 0.080 mm in the first two
layers and 0.120 mm in the other two layers, while in the TID the mean
pitch varies from 0.100 mm to 0.141 mm. Single point resolution in the
TIB is 0.023 mm with the finer pitch and 0.035 mm with the coarser one.
The Tracker Outer Barrel (TOB) surrounds the TIB/TID and provides up
to 6 r − φ measurements on a trajectory using 0.500 mm thick sensors.
The strip pitch varies from 0.183 mm in the four innermost layers to 0.122
mm in the outermost two layers, corresponding to a resolution of 0.053 mm
and 0.035 mm respectively. Tracker End-Caps (TEC) enclose the previous
sub-detectors at 124cm < |z| < 282cm with 9 disks carrying 7 rings of
microstrips, 4 of them are 0.320 mm thick while the remaining 3 are 0.500
mm thick. TEC strips are radially oriented and their pitch varies from 0.097
mm to 0.184 mm.

As shown in figure 2.5, the first two layers and rings of TIB, TID and
TOB, as well as three out of the TEC rings, carry strips on both sides with
a stereo angle of 100 milliradians to measure the other coordinate: z in
barrels and r in rings. This layout ensures 9 hits in the silicon Strip Tracker
in the full acceptance range |η| < 2.4, and at least four of them are two-
dimensional. The total area of Strip Tracker is about 198 m2 read out by
9.3 million channels.
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Trajectory Reconstruction

Due to the magnetic field charged particles travel through the tracking detec-
tors on a helical trajectory which is described by 5 parameters: the curvature
κ, the track azimuthal angle φ, the pseudorapidity η, the signed transverse
impact parameter d0 and the longitudinal impact parameter z0. The trans-
verse (longitudinal) impact parameter of a track is defined as the transverse
(longitudinal) distance of closest approach of the track to the primary ver-
tex. The main standard algorithm used in CMS for track reconstruction is
the Combinatorial Track Finder (CFT) algorithm [11] which uses the recon-
structed positions of the passage of charged particles in the silicon detectors
to determine the track parameters. The CFT algorithm proceeds in three
stages: track seeding, track finding and track fitting. Track candidates are
best seeded from hits in the pixel detector because of the low occupancy,
the high efficiency and the unambiguous two-dimensional position informa-
tion. The track finding stage is based on a standard Kalman filter pattern
recognition approach which starts with the seed parameters. The trajectory
is extrapolated to the next tracker layer and compatible hits are assigned
to the track on the basis of the χ2 between the predicted and measured po-
sitions. At each stage the Kalman filter updates the track parameters with
the new hits.

The tracks are assigned a quality based on the χ2 and the number of
missing hits and only the best quality tracks are kept for further propagation.
Ambiguities between tracks are resolved during and after track finding. In
case two tracks share more than 50% of their hits, the lower quality track
is discarded. For each trajectory the finding stage results in an estimate of
the track parameters. However, since the full information is only available
at the last hit and constraints applied during trajectory building can bias
the estimate of the track parameters, all valid tracks are refitted with a
standard Kalman filter and a second filter (smoother) running from the
exterior towards the beam line. The expected performance of the track
reconstruction is shown in figure 2.7 for muons, pions and hadrons. The
track reconstruction efficiency for high energy muons is about 99% and drops
at |η| > 2.1 due to the reduced coverage of the forward pixel detector. For
pions and hadrons the efficiency is in general lower because of interactions
with the material in the tracker.

The material budget is shown in figure 2.8 as a function of pseudorapid-
ity, with the different contributions of sub-detectors and services.

The performance of the Silicon Tracker in terms of track reconstruction
efficiency and resolution, of vertex and momentum measurement, are shown
in figure 2.7 and figure 2.9 respectively. The first one, in particular, shows
the difference in reconstruction efficiency for muons and pions, due to the
larger interaction cross section of pions, which cannot be assumed to be
minimum-ionizing particles and therefore are much more degraded by the
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Figure 2.7: Global track reconstruction effciency as a function of track pseu-
dorapidity for muons (left) and pions (right) of transverse momenta of 1, 10
and 100 GeV. Figures from [23].

Figure 2.8: Material budget of the current CMS Tracker in units of radiation
length X0 as a function of the pseudorapidity, showing the different contri-
bution of sub-detectors (left) and functionalities (right). Figures from [23].
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Figure 2.9: Resolution of several track parameters as a function of track
pseudorapidity for single muons with transverse momenta of 1, 10 and 100
GeV: transverse momentum (left), transverse impact parameter (middle)
and longitudinal impact parameter (right). Figures from [23].

amount of material.

Vertex Reconstruction

The reconstruction of interaction vertices allows CMS to reject tracks coming
from pile-up events. The primary vertex reconstruction is a two-step process.
Firstly the reconstructed tracks are grouped in vertex candidates and their z
coordinates at the beam closest approach point are evaluated, retaining only
tracks with impact parameter respect to the vertex candidate less than 3 cm.
Vertices are then reconstructed through a recursive method for parameter
estimation through a Kalman filter [44] algorithm. For a given event, the
primary vertices are ordered according to the total transverse momentum
of the associated tracks,

∑

pT . The vertex reconstruction efficiency is very
close to 100% and the position resolution is of the order of O(10)µm in all
directions.

It is also possible to reconstruct the secondary vertices, for example
those from b-quark decays. The secondary vertex reconstruction uses tracks
associated to jets applying further selection cuts: the transverse impact
parameter of the tracks must be greater than 100µm, to avoid tracks coming
from the primary vertex, and the longitudinal impact parameter below 2 cm,
to avoid tracks from pile-up events.

2.2.3 Muon Spectrometer

Detection of muons at CMS exploits different technologies and is performed
by a “Muon System” rather than a single detector [31]. Muons are the
only particles able to reach the external muon chambers with a minimal
energy loss when traversing the calorimeters, the solenoid and the magnetic
field return yoke. Muons can provide strong indication of interesting signal
events and are natural candidates for triggering purposes. The CMS Muon
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Figure 2.10: Transverse and longitudinal cross sections of the CMS detector
showing the Muon System with particular emphasis on the different tech-
nologies used for detectors; the ME/4/2 CSC layers in the end-cap were
included in the design but are not currently installed. Figures from [23].

System was designed to cope with three major functions: robust and fast
identification of muons, good resolution of momentum measurement and
triggering.

The Muon System is composed of three types of gaseous detectors, lo-
cated inside the empty volumes of the iron yoke, and therefore arranged
in barrel and end-cap sections. The coverage of Muon System is shown in
figure 2.10.

In the barrel region the neutron-induced background is small and the
muon rate is low; moreover, the field is uniform and contained in the yoke.
For these reasons, standard drift chambers with rectangular cells are used.
The barrel Drift Tubes (DT) cover the |η| < 1.2 region, are divided in
five wheels in the beam direction and are organized in four stations housed
among the yoke layers. The first three stations contain 12 cell planes, ar-
ranged in two superlayers providing measurement along rφ and one superlay-
erlayer measuring along z, each of them containing four layers. The fourth
station provides measurement only in the transverse plane.

Both the muon rates and backgrounds are high in the forward region,
where the magnetic field is large and non uniform. The choice for muon de-
tectors fell upon cathode strip chambers (CSC) because of their fast response
time, fine segmentation and radiation tolerance. Each end-cap is equipped
with four stations of CSCs. The CSCs cover the 0.9 < |η| < 2.4 pseudora-
pidity range. The cathode strips are oriented radially and provide precise
measurement in the bending plane, the anode wires run approximately per-
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Figure 2.11: Resolution on pT measurement of muons with the Muon Sys-
tem, the Silicon Tracker or both, in the barrel (left) and end-caps (right).
Figures from [23].

pendicular to the strips and are read out to measure the pseudorapidity and
the beam-crossing time of a muon. The muon reconstruction efficiency is
typically 95− 99% except for the regions between two barrel DT wheels or
at the transition between DTs and CSCs, where the efficiency drops.

Both the DTs and CSCs can trigger on muons with a Level 1 pT (see
section 2.2.5) resolution of 15% and 25%, respectively. Additional trigger-
dedicated muon detectors were added to help measured the correct beam-
crossing time. These are Resistive Plate Chambers (RPC), gaseous detector
operated in the avalanche mode, which can provide independent and fast
trigger with high segmentation and sharp pT threshold over a large portion
of the pseudorapidity range. The overall pT resolution on muons is shown
in figure 2.11, with emphasis on the different contribution from the Muon
System and the Silicon Tracker.

Muon Reconstruction

Muon detection and reconstruction play a key role in the CMS physics pro-
gram, both for the discovery of New Physics and for precision measurements
of SM processes. CMS has been designed for a robust detection of muons
over the entire kinematic range of the LHC and in a condition of very high
background. The muon system allows an efficient and pure identification
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of muons, while the inner tracker provides a very precise measurement of
their properties. An excellent muon momentum resolution is made possible
by the high-field solenoidal magnet. The steel flux return yoke provides ad-
ditional bending power in the spectrometer, and serves as hadron absorber
to facilitate the muon identification. Several muon reconstruction strategies
are available in CMS, in order to fulfil the specific needs of different analyses.
The muon reconstruction consists of three main stages:

1. local reconstruction: in each muon chamber, the raw data from the
detector read-out are reconstructed as individual points in space; in
CSC and DT chambers, such points are then fitted to track segments;

2. stand-alone reconstruction: points and segments in the muon spec-
trometer are collected and fitted to tracks, referred to as “stand-alone
muon tracks”;

3. global reconstruction: stand-alone tracks are matched to compatible
tracks in the inner tracker and a global fit is performed using the whole
set of available measurements: the resulting tracks are called “global
muon tracks”.

Muon identification represents a complementary approach with respect to
global reconstruction: it starts from the inner tracker tracks and flags them
as muons by searching for matching segments in the muon spectrometer.
The muon candidates produced with this strategy are referred to as “tracker
muons”. After the completion of both algorithms, the reconstructed stand-
alone, global and tracker muons are merged into a single software object,
with the addition of further information, like the energy collected in the
matching calorimeter towers. This information can be used for further iden-
tification, in order to achieve a balance between efficiency and purity of the
muon sample.

2.2.4 Calorimetry

Identification of electrons, photons, and hadrons relies on accurate calorime-
try, which is a destructive measurement of the energy of a particle. As in
most of the particle physics experiments, a distinction is made between elec-
tromagnetic calorimetry and hadron calorimetry. Electromagnetic calorime-
try is based on the production of EM showers inside a high-Z absorber, while
hadron calorimetry measures the effects of hadron inelastic scattering with
heavy nuclei, including production of photons from neutral pions and muons,
and neutrinos from weak decays. Calorimetry must be precise and hermetic
also to measure any imbalance of momenta in the transverse plane which
can signal the presence of undetected particles such as high-pT neutrinos.

The electromagnetic calorimeter of CMS, ECAL, is a homogeneous calorime-
ter, where the absorber material is the same as the sensitive one [28]. ECAL
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Figure 2.12: Cut-away view of the CMS ECAL showing the hierarchical
structure of crystals arranged in supercystals and modules and the orien-
tation of crystals whose major axis is always directed to the origin of the
reference frame.

is composed of 61200 lead tungstate (PbWO4) crystals in the barrel region
and 7324 crystals in the end-caps, as shown in figure 2.12. The crystal
cross-section is 22 × 22mm2 at the front face, while the length is 230 mm.
End-caps are equipped with a preshower detector. Lead tungstate was cho-
sen because of its high density, 8.28 g cm−3, short radiation length, 0.89
cm, and small Molire radius, 2.2 cm. This way, the calorimeter can be kept
compact with fine granularity, while scintillation and optical properties of
PbWO4 make it fast and radiation tolerant. Signal transmission exploits
total internal reflection. Scintillation light detection relies on two different
technologies. Avalanche photodiodes (APD) are used in the barrel region,
mounted in pairs on each crystals, while vacuum phototriodes (VPT) are
used in the end-caps. The preshower detector is a sampling calorimeter
composed of lead radiators and silicon strips detectors, and it is used to
identify neutral pions in the forward region. The nominal energy resolution,
measured with electron beams having momenta between 20 and 250 GeV,
is

(

σE
E

)2

=

(

2.8%√
E

)2

+
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0.12

E

)2

+ (0.30%)2 ,

where all the energies are in GeV and the different contributions are re-
spectively: the stochastic one (S), due to fluctuations in the lateral shower
containment and in the energy released in the preshower, that due to elec-
tronics (N), digitization and pile-up, and the constant term (C), due to
intercalibration errors, energy leakage from the back of the crystal and non-
uniformity in light collection.



2.2. CMS EXPERIMENT 41

Figure 2.13: Cross section of the CMS HCAL showing the tower segmenta-
tion. Figure from [29].

The hadron calorimeter of CMS, HCAL, is a sampling calorimeter em-
ployed for the measurement of hadron jets and neutrinos or exotic particles
resulting in apparent missing transverse energy [29]. A longitudinal view of
HCAL is shown in figure 2.13. The hadron calorimeter size is constrained in
the barrel region, |η| < 1.3, by the maximum radius of ECAL and the inner
radius of the solenoid coil. Because of this, the total amount of the absorber
material is limited and an outer calorimeter layer is located outside of the
solenoid to collect the tail of the showers. The pseudorapidity coverage is
extended in the 3 < |η| < 5.2 by forward Cherenkov-based calorimeters.
The barrel part, HB, consists of 36 wedges, segmented into 4 azimuthal sec-
tors each, and made out of flat brass absorber layers, enclosed between two
steel plates and bolted together without any dead material on the full radial
extent. There are 17 active plastic scintillator tiles interspersed between
the stainless steel and brass absorber plates, segmented in pseudorapidity
to provides an overall granularity of ∆φ × ∆η = 0.087 × 0.087. The same
segmentation is maintained in end-cap calorimeters, HE, up to |η| < 1.6,
while it becomes two times larger in the complementary region. The maxi-
mum material amount in both HB and HE corresponds to approximately 10
interaction lengths λI . The energy resolution on single electron and hadron
jets is shown in figure 2.14.

2.2.5 Trigger and Data Acquisition

High bunch crossing rates and design luminosity at LHC correspond to ap-
proximately 20–25 superimposed events every 25 ns, for a total of 109 events
per second. The large amount of data associated to them is impossible to
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Figure 2.14: Left: ECAL energy resolution as a function of the electron
energy as measured from a beam test. The energy was measured in a 3× 3
crystals array with the electron impacting the central one. The stochastic,
noise and constant terms are given. Right: the jet transverse energy resolu-
tion as a function of the transverse energy for barrel jets, end-cap jets and
very forward jets reconstructed with an iterative cone algorithm with cone
radius R = 0.5. Figures from [23].

store and process, therefore a dramatic rate reduction has to be achieved.
This is obtained with two steps: the Level 1 Trigger [17] and the High Level
Trigger, HLT [26].

The Level 1 Trigger is based on custom and programmable electronics,
while HLT is a software system implemented on a ∼ 1000 commercial proces-
sors farm. The maximum allowed output rate for Level 1 Trigger is 100 kHz,
which should be even kept lower, about 30 kHz, for safe operation. Level
1 Trigger uses rough information from coarse segmentation of calorimeters
and Muon Detectors and holds the high-resolution data in a pipeline un-
til acceptance/rejection decision is made. HLT exploits the full amount of
collected data for each bunch crossing accepted by Level 1 Trigger and is
capable of complex calculations such as the off-line ones. HLT algorithms
are those expected to undergo major changes in time, particularly with in-
creasing luminosity. Configuration and operation of the trigger components
are handled by a software system called Trigger Supervisor.

The Level 1 Trigger relies on local, regional and global components. The
Global Calorimeter and Global Muon Triggers determine the highest-rank
calorimeter and muon objects across the entire experiment and transfer them
to the Global Trigger, the top entity of the Level 1 hierarchy. The latter
takes the decision to reject an event or to accept it for further evaluation by
the HLT. The total allowed latency time for the Level 1 Trigger is 3.2µs.



2.2. CMS EXPERIMENT 43

Figure 2.15: Schematic representation of the Level 1 Trigger data flow.

A schematic representation of the Level 1 Trigger data flow is presented in
figure 2.15.

Muon Trigger

All Muon Detectors – DT, CSC and RPC – contribute to the Trigger. Bar-
rel DTs provide Local Trigger in the form of track segments in φ and hit
patterns in η. End-cap CSCs provide 3-dimensional track segments. Both
CSCs and DTs provide also timing information to identify the bunch cross-
ing corresponding to candidate muons. The Local DT Trigger is imple-
mented in custom electronics. BTIs, Bunch and Track Identifiers, search
for coincidences of aligned hits in the four equidistant planes of staggered
drift tubes in each chamber superlayer. From the associated hits, track seg-
ments defined by position and angular direction are determined. TRACOs,
Track Correlators, attempt to correlate track segments measured in the two
φ superlayers of each DT chamber, enhancing the angular resolution and
producing a quality hierarchy.

The requirement of robustness implies redundancy, which introduces,
however, a certain amount of noise or duplicate tracks giving rise to false
Triggers. Therefore the BTIs, the TRACOs and the different parts of the Lo-
cal Trigger contain complex noise and ghost reduction mechanisms. The po-
sition, transverse momentum and quality of tracks are coded and transmit-
ted to the DT regional Trigger, called the Drift Tube Track Finder (DTTF),
through high-speed optical links.

The Global Muon Trigger (GMT) combines the information from DTs,
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CSCs and RPCs, achieving an improved momentum resolution and efficiency
compared to the stand-alone systems. It also reduces the Trigger rate and
suppresses backgrounds by making use of the complementarity and redun-
dancy of the three Muon Systems. The Global Muon Trigger also exploits
MIP/ISO bits4 from the Regional Calorimeter Trigger. A muon is consid-
ered isolated if its energy deposit in the calorimeter region from which it
emerged is below a defined threshold. DT and CSC candidates are first
matched with barrel and forward RPC candidates based on their spatial
coordinates. If a match is possible, the kinematic parameters are merged.
Several merging options are possible and can be selected individually for all
track parameters, taking into account the strengths of the individual Muon
Systems. Muons are back-extrapolated through the calorimeter regions to
the vertex, in order to retrieve the corresponding MIP and ISO bits, which
are then added to the GMT output and can be taken into account by the
Global Trigger (GT). Finally, the muons are sorted by transverse momentum
and quality to deliver four final candidates to the GT. The Muon Trigger is
designed to cover up to |η| < 2.4.

Global Trigger

The Global Trigger takes the decision to accept or reject an event at Level
1, based on candidate e/γ, muons, jets, as well as global quantities such
as the sums of transverse energies (defined as ET = E sin θ), the missing
transverse energy and its direction, the scalar transverse energy sum of all
jets above a chosen threshold (usually identified by the symbol HT ), and
several threshold-dependent jet multiplicities. Objects representing parti-
cles and jets are ranked and sorted. Up to four objects are available and
characterized by their pT or ET , direction and quality. Charge, MIP and
ISO bits are also available for muons. The Global Trigger has five basic
stages implemented in Field-Programmable Gate-Arrays (FPGAs): input,
logic, decision, distribution and read-out. If the Level 1 Accept decision is
positive, the event is sent to the Data Acquisition stage.

High Level Trigger and Data Acquisition

The CMS Trigger and DAQ system is designed to collect and analyse the
detector information at the LHC bunch crossing frequency of 40 MHz. The
DAQ system must sustain a maximum input rate of 100 kHz, and must pro-
vide enough computing power for a software filter system, the High Level
Trigger (HLT), to reduce the rate of stored events by a factor of 1000. In
CMS all events that pass the Level 1 Trigger are sent to a computer farm

4The MIP bit is set if the calorimeter energy is consistent with the passage og a
minimum ionizing particle, the isolation bit is set if a certain energy threshold in the
trigger towers surrounding the muon is not exceeded.
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(Event Filter) that performs physics selections, using faster versions of the
offline reconstruction software, to filter events and achieve the required out-
put rate. The various subdetector front-end systems store data continuously
in 40 MHz pipelined buffers. Upon arrival of a synchronous Level 1 Trigger
Accept via the Timing, Trigger and Control System (TTCS) the correspond-
ing data are extracted from the front-end buffers and pushed into the DAQ
system by the Front-End Drivers (FEDs). The event builder assembles the
event fragments belonging to the same Level 1 Trigger from all FEDs into
a complete event, and transmits it to one Filter Unit (FU) in the Event
Filter for further processing. The DAQ system includes back-pressure from
the filter farm through the event builder to the FEDs. During operation,
Trigger thresholds and pre-scales will be optimized in order to fully utilize
the available DAQ and HLT throughput capacity.

2.3 Monte Carlo Event Generator

Monte Carlo (MC) event generators provide an event-by-event prediction
of complete hadronic final states based on QCD calculation. They allow
to study the topology of events generated in hadronic interactions and are
used as input for detector simulation programs to investigate detector effects.
The event simulation is divided into different stages as illustrated in figure
2.16. First, the partonic cross section is evaluated by calculating the ma-
trix element in fixed order pQCD. The event generators presently available
for the simulation of proton-proton collisions provide perturbative calcu-
lations for beauty production up to NLO. Higher order corrections due to
initial and final state radiation are approximated by running a parton shower
algorithm. The parton shower generates a set of secondary partons origi-
nating from subsequent gluon emission of the initial partons. It is followed
by the hadronization algorithm which clusters the individual partons into
colour-singlet hadrons. In a final step, the short lived hadrons are decayed.
In the framework of the analysis presented here, the MC event generator
PYTHIA 6.4 [43] is used to compute efficiencies, kinematic distributions,
and for comparisons with the experimental results. This programs were run
with its default parameter settings, except when mentioned otherwise.

PYTHIA

In the PYTHIA program, the matrix elements are calculated in LO pQCD
and convoluted with the proton PDF, chosen herein to be CTEQ6L1. The
mass of the b-quark is set to mb = 4.8 GeV. The underlying event is simu-
lated with the D6T tune. Pile-up events were not included in the simulation.
The parton shower algorithm is based on a leading-logarithmic approxima-
tion for QCD radiation and a string fragmentation model (implemented in
JETSET) is applied. The longitudinal fragmentation is described by the
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Figure 2.16: Schematic view of the subsequent steps of a MC event genera-
tor: matrix element (ME), parton shower (PS), hadronization and decay.

Lund symmetric fragmentation function for light quarks and by the Peter-
son fragmentation function for charm and beauty quarks, that is

f(z) ∝ 1

z
[

1− 1
z −

εQ
(1−z)

]2 ,

where z is defined as

z =
(E + p‖)hadron

(E + p)quark
,

(E + p‖)hadron is the sum of the energy and momentum component parallel
to the fragmentation direction carried by the primary hadron, (E + p)quark
is the energy-momentum of the quark after accounting for initial state ra-
diation, gluon bremsstrahlung and photon radiation in the final state. The
parameters of the Peterson fragmentation function are set to ǫc = 0.05 and
ǫb = 0.005. In order to estimate the systematic uncertainty introduced by
the choice of the fragmentation function, samples generated with different
values of ǫb are studied. The hadronic decay chain used in PYTHIA is also
implemented by the JETSET program. For comparison, additional event
samples are generated where the EvtGen program is used to decay the b-
hadrons. EvtGen is an event generator designed for the simulation of the
physics of b-hadron decays, and in particular provides a framework to handle
complex sequential decays and CP violating decays.



Chapter 3

Data collection and event

selection

The data used for this analysis have been collected by CMS detector dur-
ing 2012 pp run, at a centre-of-mass energy

√
s = 8TeV. The integrated

luminosity collected and certified is 20.5 fb−1.

The events have been selected by two-level criteria: firstly an online
trigger selection is used during data taking, and then an offline selection and
candidate identification is performed after the events are fully reconstructed.

3.1 Online event selection

All the events used in this analysis, both for signal regions and control
regions, are selected by a single trigger. This requires the presence of at least
one pair of reconstructed muons in the event with opposite charge, each of
them with a transverse momentum greater than 3.5GeV, a pseudo-rapidity
smaller, in module, than 2.2, and a distance of closest approach with respect
to the beam axis smaller than 2 cm. The dimuon system is required to have
a transverse momentum greater than 6.9GeV, an invariant mass between
1GeV and 4.8GeV, and a distance of closest approach (DCA) between the
muons smaller than 0.5 cm. In addition, the two muons are required to form
a common vertex, with fit χ2 probability greater than 10%, a flight distance
significance with respect to the beamspot, measured in the plane transverse
to the beam axis, greater than 3, and cosα > 0.9, where α is the angle in
the transverse plane between the dimuon momentum vector and the vector
from the beamspot to the dimuon vertex.

No requirements on the hadronic particles in the final state are present
at trigger level.

47
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3.2 Offline candidate identification

In the offline selection the full final state, composed by two muons and two
hadrons, is reconstructed. A set of four reconstructed objects compatible
with those four particles is considered as a candidate. The offline cuts are
applied independently to each candidate in an event.

Candidate pre-selection cuts

The two reconstructed muons are required to have opposite charge and
match those that triggered the event. This is done by requiring ∆R =
√

(∆η)2 + (∆φ)2 < 0.1, where ∆η and ∆φ are the pseudorapidity and az-
imuthal angle differences between the directions of the muons reconstructed
at trigger level and in the offline analysis. In addition, they have to satisfy
general muon identification requirements: the muon track candidate from
the silicon tracker must match a track segment from the muon detector,
the χ2 per degree of freedom in a global fit to the silicon tracker and muon
detector hits must be less than 1.9, there must be at least 6 silicon tracker
hits, including at least 2 from the pixel detector, and the transverse and
longitudinal impact parameters with respect to the beamspot must be less
than 3 cm and 30 cm, respectively. The same requirements applied at trigger
level and described in Section 3.1 are also applied to the offline reconstructed
dimuon system.

The two charged hadron candidates are required to have opposite charge
and each of them must fail the muon identification criteria.

The B0 candidates are obtained by fitting a second time the four charged
tracks after applying a common vertex constraint. This operation is used
to improve the resolution of the track parameters. The B0 candidates is
required to have a transverse momentum greater than 8GeV, and a pseu-
dorapidity smaller, in module, than 2.2.

Since the CMS detector does not have particle identification capability,
in each candidate is still present an ambiguity: the mass of the kaon can be
assigned to the positive charged hadron track and the mass of the pion to
the negative one to reconstruct a K∗0 candidate, or viceversa to reconstruct
a K∗0 candidate. The invariant mass m of the B0 candidate is required to
be within 280MeV of the nominal B0 mass (mB

0) [39], for at least one of
the mass assignment hypothesis, K−π+µ+µ− or K+π−µ+µ−.

The mass sideband is defined as the set of B0 candidates with 3σm <
|m−mB0 | < 280MeV, where σm is the average mass resolution (≈45MeV)
as obtained from fitting the m distribution of simulated signal events with
a sum of two Gaussian functions with a common mean.
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Candidate optimised selection cuts

The two charged hadrons of the candidate are required to have a transverse
momentum greater than 0.8GeV, and a significance of the extrapolated dis-
tance d of closest approach to the beamspot in the transverse plane greater
2. The uncertainty associated to d is defined as the sum in quadrature of
the uncertainty of the track position and the beamspot transverse size.

For at least one of these two identity assignment hypotheses, the hadron
pair invariant mass is requested to be within 90MeV of the nominal K∗0

mass [39].

The B0 vertex fit χ2 probability must be larger than 10%, while the
distance from the beamspot in the transverse plane, L, must be greater than
12 times the sum in quadrature of the uncertainty on L and the beamspot
transverse size. Then, cosαxy, where αxy is the angle in the transverse
plane between the B0 momentum vector and the line-of-flight between the
beamspot and the B0 vertex, is required to be larger than 0.9994.

The values of the cuts on the hadronic track transverse momentum and
d significance, the K∗0 mass window, and the B0 candidate vertex fit prob-
ability, displacement significance and pointing angle are optimised by max-
imising the signal significance in the region |m−mB0 | < 2.5σm, using signal
event samples from simulation and background event samples from sideband
data in m.

After applying these selection criteria, about 5% of the events have more
than one candidate. For these events, a single candidate is chosen based on
the best B0 vertex χ2 probability.

Additional selection cuts

For each candidate, the dimuon invariant mass q and its uncertainty σq are
calculated. Two control samples, corresponding to the B0 → J/ψK∗0 and
B0 → ψ′K∗0 decay channels, are defined by the requirements |q−mJ/ψ| < 3σq
and |q − mψ′ | < 3σq, respectively, where mJ/ψ and mψ′ are the nominal
masses [39] of the indicated meson. On average, the value of σq is about
26MeV.

The distribution of the B0 invariant mass for the events in signal q2

regions is shown in Figure 3.1, while the same distributions for events in the
control regions are shown in Figure 3.2. The peaks corresponding to the B0

decays are clearly visible in all three distributions, and can be distinguished
from the exponential background shape.

A strong contamination from B0 → J/ψK∗0 and B0 → ψ′K∗0 decays is
still present in the sample of events passing the selections, mainly because
of unreconstructed soft photons in the charmonium decay, i.e., J/ψ or ψ′ →
µ+µ−γ. These events have q < mJ/ψ and q < mψ′ , respectively, and are
not included in the control sample described above. They also have m
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Figure 3.1: B0 invariant mass from data, computed from the whole q2 spec-
trum excluding the J/ψ and ψ′ ranges as described in the text. Just to
guide the eye the plot is fitted with a double Gaussian function with unique
mean to measure the signal yield (1232± 44 events) and with two Gaussian
functions and a double exponential to distinguish the background.

value lower than mB0 , and they can be efficiently removed by a combined
requirement on q and m. For q < mJ/ψ (q > mJ/ψ), it is required that
|(m − mB0) − (q − mJ/ψ)| > 160 (60)MeV. For q < mψ′ (q > mψ′), it is
required that |(m−mB0)− (q−mψ′)| > 60 (30)MeV. These cuts are tuned
using MC simulations, in such a way that less than 10% of the background
events with q2 values close to the control regions originate from the control
channels.

To avoid the contamination from φ → K+K− decays, we additionally
require that the invariant mass of the hadron pair, in the hypothesis that
both tracks have the kaon mass, m(K+K−), is larger than 1.035GeV. This
cut has been tuned using the data/MC comparison of the m(K+K−) distri-
bution in the B0 → J/ψ(µ+µ−)K∗0 control channel, as shown in Figure 3.3.

After applying the full set of requirements described here 3191 events
remain in the data sample, including the sideband region.

CP-state assignment

The selected four-track candidate is identified as a B0 or B0, and the corre-
sponding masses are assigned to the hadronic tracks, depending on whether
the K+π− or K−π+ invariant mass hypothesis is closest to the nominal K∗0

mass. The candidates assigned to the correct state will be called right-
tagged, while we will refer to the candidates assigned to the incorrect state
as mis-tagged. The fraction of mis-tagged events is estimated from simula-
tion to be in the range 12–14%, depending on q2.
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Figure 3.2: B0 invariant mass for both control channels, B0 →
J/ψ(µ+µ−)K∗0 (left) and B0 → ψ′(µ+µ−)K∗0 (right), from data. Just to
guide the eye the plot is fitted with a double Gaussian function with unique
mean and an exponential to describe the signal and the background respec-
tively.

3.3 Dimuon mass square binning

The q2 range used in this analysis extends from 1GeV 2 to 19GeV 2 and it
is divided in nine bins, defined in Table 3.1. The bin definition is the same
used in the previous CMS angular analysis on the same dataset and it is the
result of a compromise between being coherent with the definition used in the
previous measurements and having an expected signal yield homogeneously
distributed over the q2 bins.

Table 3.1: Range definition of the dimuon invariant mass bins.
Bin index q2 range (GeV 2/c4)

0 1-2
1 2-4.3
2 4.3-6
3 6-8.68
4 8.68-10.09 (J/Ψ region)
5 10.09-12.86
6 12.86-14.18 (Ψ′ region)
7 14.18-16
8 16-19

The selection criteria and the analysis techniques are identical for any q2

bin and in each of them the analysis is performed independently. The two
q2 bins containing the control channel regions are not used to fit the signal
events.
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Figure 3.3: Invariant mass of the two hadron tracks when the kaon mass is
assigned to both hadrons. The plot is obtained after applying all selections
but the one on the invariant mass of the two hadron tracks with kaon mass
assigned. The two superimposed plots are obtained from simulation and
data, the former with the control channel B0 → J/ψ(µ+µ−)K∗0, the latter
is background subtracted (the plot of the sidebands is subtracted from the
plot of the signal region), and no J/ψ nor ψ′ rejections are applied, therefore
the spectrum is dominated by events from the decay B0 → J/ψ(µ+µ−)K∗0.
The first peak on the left corresponds precisely to the φ particle (m(φ) =
1020MeV). Superimposed to the φ peak there is shown the Gaussian fit
(σ = 4.7± 0.1MeV). The vertical dashed line corresponds to the 1.035GeV
selection cut.



Chapter 4

Analysis strategy

The angular parameters are extracted through an unbinned fit to four vari-
ables, the K+π−µ+µ− invariant mass and the three angular variables, using
an extended maximum likelihood estimator.

A blinding procedure has been used for this analysis, to avoid any bias
due to human decisions during the set up of the analysis strategy. During the
steps of event selection, fit strategy definition and validation, and efficiency
measurement, only the MC samples and data from the mass sidebands have
been used, while the distributions of the events in the signal region were not
considered. Most of the systematic uncertainty studies have been performed
with blinded datasets. Some of these studies have been firstly defined and
tested on MC samples and data sidebands, then propagated on data sig-
nal after the unblinding step. Some other systematic uncertainties, when
specified in the description, have been studied directly on data, after the
unblinding step. After the analysis strategy and all the steps described here
were defined and approved by a committee of reviewer inside the Collabora-
tion, the data in the signal region were unblinded and the fit procedure run
on them. The estimation of the statistical uncertainty has been performed
entirely after the data unblinding.

In the following sections I will give a detailed description of the proba-
bility density function used in the fit, and of the methods used to estimate
its parameters.

53
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4.1 Probability density function

The probability density function (pdf) used in the fit has the following
expression:

pdf(m, θK , θl, φ) = Y C
S

[

SC(m)Sa(cos θK , cos θl, φ) ǫ
C(θK , θl, φ)

+
fM

1− fM
SM (m)Sa(− cos θK ,− cos θl, φ) ǫ

M (θK , θl, φ)

]

+ YB B
m(m)BθK (cos θK)Bθl(cos θl)B

φ(φ),

(4.1)

where its three terms correspond to the pdfs for right-tagged signal, mis-
tagged signal, and background events, respectively.

The pure-physics information about the angular distribution, derived
from the theoretical description of the decay presented in Section 1.2, are
contained in Sa(cos θK , cos θl, φ). This term is defined as the differential
decay distribution, which has been formulated, after the angular folding
application, in Equation 1.25.

In order to describe the data collected in the collisions, we should adapt
the theoretical differential distribution to the experimental conditions. They
include the finite resolution of the measured kinematical variables and the
distortion of the angular distributions introduced by the geometric accep-
tance of the detector and the selection criteria. All these effect are applied
by multiplying the decay distribution by the efficiency function ǫC(θK , θl, φ).

As explained in Section 3.2, there is a non-negligible probability that the
wrong CP-state is assigned to the decay and the wrong mass hypothesis is
assigned to the hadrons. However, these mis-tagged events still contain in-
formation about the decay distribution and their contribution can be taken
into account in the pdf. The choice of the wrong K and π mass hypothesis
and CP-state causes some differences in the angle definition; using the Equa-
tions 1.10, 1.11, and 1.12, one can obtain that the correct term to use in the
pdf, as a function of the reconstructed variables, is Sa(− cos θK ,− cos θl, φ).
The efficiency function for the mis-tagged events has been computed sep-
arately: ǫM (θK , θl, φ). Note that ǫM is defined as a function of the re-
constructed variables, so there is no need to correct the signs of the an-
gles. The term describing the mis-tagged event contribution is multiplied
by fM/1− fM to scale it correctly with respect to the right-tagged event
contribution.

As a last point, the pdf must be able to describe the background con-
tamination and distinguish it from the signal events. The set of functions
BθK (cos θK)Bθl(cos θl)B

φ(φ) describe the angular distribution of the back-
ground events. However, to distinguish signal and background events the
three angular variables are not useful, and a new variable is needed; the
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best kinematic variable for this use is the mass of the B0 candidate. Each
of the three terms in the pdf is then multiplied by a function describing the
mass distribution: Bm(m) for the background events, SC(m) for the right-
tagged signal events, and SM (m) for the mis-tagged signal events. Even if
mis-tagged events are events produced by a B0 decay, like the right-tagged
events, they need a different mass-shape function because the wrong mass
assignment for the hadronic tracks produce a different four-body invariant
mass value.

A factor YB is used to multiply the background term, while a factor Y C
S

is used with the signal terms, to correctly scale the two contributions. To
give a physical meaning of number of events to these two parameters, the
background term multiplying YB and the right-tagged signal term multiply-
ing Y C

S are normalised to 1 over the full phase-space. Note that, with this
definition, Y C

S stands for the number of right-tagged events, not for the total
number of signal events.

4.2 Parameterisation of the pdf terms

Each of the terms SC(m) and SM (m) is composed as the sum of two Gaus-
sian functions with different normalisation factors. For each q2 bin, all these
four Gaussian functions are constrained to have the same mean value.

The determination of the mistag fraction fM will be presented in Sec-
tion 4.2.1.

The construction of the three-dimensional functions ǫC(θK , θl, φ) and
ǫM (θK , θl, φ) will be described in Section 5.

The background mass shape Bm(m) is parameterised by an exponential
function, while the angular shapes BθK (cos θK) and Bθl(cos θl) are poly-
nomials functions, ranging from second to fourth degree depending on the
q2 bin, and Bφ(φ) is a first-order polynomial function. Some more details
on the background description are given in Section 4.2.2. The factorisa-
tion assumption of the background term in Equation (4.1) is discussed in
Section 4.2.2.

4.2.1 Fraction of mis-tagged signal events

The algorithm used to tag the CP-state of the B0 candidate, described in
Section 3, has an intrinsic percentage of failure which is referred to as mistag
fraction, fM , defined as the ratio of mis-tagged signal events divided by
the total number of signal events. The mistag fraction is determined from
simulated events, comparing the results of the tag method to the MC truth,
and by counting the number of correctly and wrongly tagged events. The
resulting mistag fractions, for each q2 bin, are shown in Table 4.1.

The mistag fraction parameter is fixed in the fit to the values evaluated
on MC simulation. Any differences between simulated and real events could
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Table 4.1: Mistag fraction as determined from simulated MC samples,
for each q2 bin. The values in q2 bins 4 and 6 are evaluated on B0 →
J/ψ(µ+µ−)K∗0 and B0 → ψ′(µ+µ−)K∗0 MC samples, respectively. For the
other q2 bins the values are evaluated on signal MC sample.

q2 bin Mistag fraction Statistical
index fM uncertainty

0 0.124 0.002
1 0.129 0.001
2 0.134 0.001
3 0.132 0.001
4 0.1373 0.0005
5 0.132 0.001
6 0.140 0.002
7 0.132 0.001
8 0.137 0.001

lead to a bias in the mistag fraction values used in the pdf, that could
propagate to a bias in the analysis results. The contribution of this effect
to the systematic uncertainty is discussed in Section 7.5.

4.2.2 Background parameterisation

Several kind of background events can contaminate the dataset used for
the fit. In this section I will present the studies performed to describe and
evaluate the many sources of this contamination.

The main contribution derives from the combinatorial background, i.e.
events in which the four particles of the final state do not come from the
same decay vertex. Since the four-body invariant mass distribution of these
events does not show any structure, their contribution can be evaluated from
the mass sidebands, and extrapolated to the full mass range.

In addition, no correlation is expected between the four-body mass dis-
tribution and the angular variable distributions. This allows to estimate
the shapes of the angular distributions on the sidebands, and assume them
valid also to describe the combinatorial background contamination in the
B0 mass region.

The pdf used to model the angular shape of this background is the prod-
uct of three uncorrelated polynomial functions, BθK (cos θK)Bθl(cos θl)B

φ(φ).
The orders of the polynomial functions are chosen individually for each q2

bin, in order to have them successfully describe any shape feature, while
keeping the degrees of freedom as low as possible, to have a converging fit
even with the low sideband statistics. The polynomial degrees that we use
are listed in the Table 4.2.
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Table 4.2: Degree of the polynomial functions used to described the angular
shape of the combinatorial background distributions, for each q2 bin.

q2 bin BθK Bθl Bφ

index degree degree degree

0 3 2 1
1 4 2 1
2 4 3 1
3 2 4 1
5 4 2 1
7 2 3 1
8 2 2 1

An example of the sideband event distributions, for q2 bin 0, are plot-
ted in Figure 4.1-4.3, together with the projections of the combinatorial
background pdf on the angular variables, after the fit to the sideband dis-
tributions described in Section 4.3.

Figure 4.1: The sideband event distribution and the projection of the back-
ground pdf as a function of cos θK , for q2 bin 0.

Other background sources has been investigated. None of them has been
found relevant enough to be require a dedicated component in the fit pdf.
In the following paragraphs I will present the studies performed on these
possible sources of contamination and the estimates on their impact on the
analysis results.
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Figure 4.2: The sideband event distribution and the projection of the back-
ground pdf as a function of cos θl, for q

2 bin 0.

Figure 4.3: The sideband event distribution and the projection of the back-
ground pdf as a function of φ, for q2 bin 0.

Feed-through background from control channels

The second background contamination for relevance is due to the “feed-
through” of events from the resonant control channels, B0 → J/ψK∗0 and
B0 → ψ′K∗0, that are not rejected by the diagonal q−m cuts and populate
the q2 bins adjacent to the resonance regions, i.e. bin 3, 5, and 7.

The pdf component needed to describe the distributions of these events
is not included in the fit, because of its complex form and the fit general
instability. A systematic uncertainty has been set up to describe the bias
introduced by this omission on the fit results. It is described in Section 7.10.
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Peaking background

Using a set of simulated MC samples, possible background sources that peak
in the B0 mass region are investigated.

A set of inclusive MC samples of B0, B0
s , B

+, and Λb hadrons decaying to
J/ψ(µ+µ−)X and ψ′(µ+µ−)X, have been probed, after applying the full set
of selection criteria, but the control region removal and the diagonal cuts.
No hints for peaking structures in the region of the B0 mass are found. The
mass distribution of these events is similar to the shape of the combinatorial
background.

The same checks are performed with a MC sample of B0
s → K∗0(K+π−)µ+µ−

decays. Normalising the area of the cluster near the B0
s mass to the cor-

rect luminosity and assuming the same branching fraction as for B0 →
K∗0(K+π−) µ+µ−, about 70 such events, integrated over q2, are present.
Since the branching fraction of the B0

s → K∗0µ+µ− decay has never been
measure, we can assume that the same ratio of branching fractions measured
for the resonant channels, B(B0

s → J/ψK∗0)/B(B0 → J/ψK∗0) ≈ 10−2, is
valid for the non-resonant channels as well. In this case, this background
can be considered negligible since we expect less than one event in the whole
q2 range.

In the same way, the MC samples containing B+ → K+µ+µ− and Λb →
pKµ+µ− events are tested. In this case the mass values assigned to the
hadrons in the final state are changed with respect to the original ones, to
one kaon mass and one pion mass, assigned according to the tagging criterion
described in Section 3.2. Both these potential sources of background are
found to be negligible.

Background from muon misidentification

A possible background contamination can come from events with hadrons
misidentified as muons, or vice-versa. To peak under in the signal mass
region, these events can be either a four-hadron final states from B me-
son decay, like the D meson mediated decays B0 → DX, with a pair of
opposite-sign hadrons misidentified as muons, or a control-channel decay
B0 → J/ψ(µ+µ−)K∗0(K+π−) in which both one of the two muons has been
misidentified as hadron and one of the two hadrons has been misidentified
as muon. These contributions are calculated to be negligible because of the
good muon identification capabilities of the CMS detector [24].

Test of factorisable background hypothesis

The result of a test on the correlation of the variable distributions for the
combinatorial background events is shown in this section.

For each angular variable, the mass sideband sample has been divided in
two sub-samples, cutting in the middle of the variable range. Then, the two
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sub-sample distributions as functions of the other variables are compared.
Furthermore, the angular variable distributions of the lower and higher side-
bands are compared.

These comparisons are performed for each signal bin, for each control
sample, and for two “special bins” that merge events in bin ranges [0-3] and
[8-9], respectively. As example, the distributions for the special q2 bin [0-3]
are showed in Figure 4.4, where four plots are shown, one for each variable,
and in each plot six distributions are compared, corresponding to the three
pair of sub-samples obtained cutting on the not-plotted variables.

For some bins the low statistics don’t allow to compare the distributions,
but in the other bins and in the merged ones the good compatibility is
probed.

Figure 4.4: Distributions of the sideband events as a function of cos θK (top
left), cos θL (top right), φ (bottom left), mKπµµ (bottom right), in the q2 bin
range [0,3]. As described in Section 4.2.2, each distribution corresponds to
a different sub-sample of the sideband events: cos θK lower half (dim green)
and upper half (grey), cos θL lower half (black) and upper half (red), φ lower
half (bright green) and upper half (blue), and low and high mass sidebands
(magenta and light blue, respectively).

4.3 The fitting sequence, components and strat-

egy

Before applying the fit procedure on data, some parameters of the pdf in
Equation 4.1 are estimated, for each q2 bin, on the simulated signal MC
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sample and kept fixed for the full fitting process. These parameters are the
mistag fraction fM , as described in Section 4.2.1, and the seven parameters
of the signal mass component of the pdf: the two widths and the relative
abundance for the double Gaussian describing the right-tagged events, the
same for the double Gaussian describing the mis-tagged events, and the
common mean. To take into account the effect of any difference between
simulated and real events, a specific systematic uncertainty have been com-
puted and will be described in Section 7.

The angular component of the signal pdf, as described by Equation (1.25),
depends on six parameters, FL, FS, AS, P1, P

′
5, and A

5
S. In order to facilitate

the convergence of the fit process, and avoid problems related to the limited
number of events and the presence of the physical boundary in the parame-
ter phase space, the angular parameters that have already been measured by
the previous CMS analysis on the same dataset, FL, FS, and AS, have been
fixed to the results of that measurement. To take into account the effect of
fixing these parameters, a systematic uncertainty has been computed and
will be described in Section 7.

The fit is performed in two steps. In the first one, the sidebands events
are fitted, using only the background component of the pdf, to obtain the
parameters of theBm(m), BθK (θK), Bθl(θl), andB

φ(φ) distributions. These
parameters are then kept fixed in the second step of the fit. To correctly
propagate the uncertainties on the background parameters to the analysis
results, a specific systematic uncertainty has been computed and will be
described in Section 7.

In the second step, the full set of events is fitted using the whole pdf.
The free parameters in this fit are the angular parameters P1, P

′
5, and A

5
S,

and the yields Y C
S and YB.

The separation of the fit in these two steps is needed to allow a stable fit
to the signal region. As described in Section 4.2.2 the angular shape of the
background events contains a high number of parameters and evaluating
them together with the signal components would lead to a very unstable
fit. Furthermore, using this two-step fit allows to keep the background
parameters fixed for any fit procedure applied on data; this has the benefit
of saving a huge amount of computing time, especially when large series of
fits are run for systematic uncertainty estimations or for finding the best-fit
values of the parameters, as described in the following paragraph.

The second step of the fit cannot be run at once, since the presence of
a physical boundary for the validity of the fitted parameters complicates
the process of numerical maximisation of the likelihood performed by mi-

nuit [33]. Especially in the q2 bins in which the likelihood maximum is
close to this boundary, the maximisation results tend to be unstable and
strongly dependent on the values of the parameters at the begin of the fit.
A strategy was then developed to avoid the effect of the physical boundary:
the bi-dimensional space P1 – P ′

5 is discretised by building a 90 × 90 rect-
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angular grid, and for each of its points the values of P1, P
′
5 are fixed in the

fit, and the likelihood is maximised as a function of the nuisance parameters
Y C
S , YB, and A

5
S. Once the likelihood has been minimised for each point of

the grid, it is fit with a bi-variate Normal distribution. The position of the
maximum of this function, limited to the physical region, corresponds to the
best estimate of the angular parameters P1, P

′
5. To avoid that any eventual

non-Gaussian behaviour of the likelihood distribution in regions far from the
maximum could introduce a bias in the results, the fit with the bi-variate
Normal distribution is limited to the grid points (P i1, P

′i
5 ) for which is valid

the following request:

logL(P i1, P ′i
5 ) > logL(Pmax

1 , P ′max
5 )− 0.5

where (Pmax
1 , P ′max

5 ) is the grid point for which the likelihood is maximum.
In this way the grid points fitted are limited to a region around the maxi-
mum position. The dependence of the fit result as a function of the region
width, has been tested and found to be negligible, as will be discussed in
Section 7.11.
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Efficiency

The efficiency for signal and for control channels is defined as the ratio
of number of events passing the selection and whose selected candidate is
matched with the generated final state, over the total number of events gen-
erated. It includes the effects of detector geometric acceptance, the trigger
selection efficiency and the offline selection efficiency, and is entirely com-
puted from MC simulation. The efficiency is built as a three-dimensional
function of the angular observables θl, θK , and φ, and computed indepen-
dently for each bin of q2, both for signal and for the control regions. The
use of such a function allows to account for any possible correlation among
the variables introduced by the selection cuts.

In the CMS official MC samples, not all the generated events are recon-
structed, to save computing resources. Before the simulation of the detector
response, some basic cuts on the generated kinematic variables, pT and η,
of the signal final state muon pair are applied to remove the majority of
events for which the final state is not completely in the geometric detector
acceptance. In this thesis I will refer to this cuts as GEN-filter.

Only the events passing the GEN-filter are then reconstructed and com-
pose the MC samples. To correctly take this into account, the efficiency is
split into two different terms:

ǫR/M (q2, θL, θK , φ) = A(q2, θL, θK , φ)× ǫreco(q
2, θL, θK , φ) =

Ngen

Dgen
× Nreco

Dreco

(5.1)
where A is called acceptance and is the fraction of generated events that

pass the GEN-filter, and ǫreco is the selection efficiency, namely the fraction
of events which pass the selection with respect to those which have been
reconstructed.

More precisely, the acceptance terms are defined as:

Dgen is the number of generated events which pass a selection pT (B
0) >

8 GeV and |η(B0)| < 2.2, in a given bin of q2;

63
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Ngen is the number of generated events with pass the above selection and,
in addition, requires both muons to have pT (µGEN ) > 3.3GeV and
|η(µGEN )| < 2.3;

This quantity is computed using only generator level quantities, as a function
of generator-level angular observables.

The selection efficiency instead, is defined as:

ǫreco(q
2, θL, θK , φ) =

Nreco

Dreco
(5.2)

where

Dreco is the number of events in the MC samples that pass the GEN-filter
and on which the reconstruction is run;

Nreco is the number of reconstructed events passing all selection cuts defined
in Sec. 3;

The Dreco is computed as a function of the generator level observables,
while Nreco is computed as a function of the reconstructed quantities. The
rationale for this choice is that the effect of the detector resolution, pass-
ing from the generated observables to the reconstructed one, is taken into
account directly into the efficiency, without the need to add an additional
term in the fitting function.

Since we cannot assume that the efficiency function is the same for events
where the correct flavour has been identified and events where it is not, it
is computed separately for candidates with correct tag (ǫR) and wrong tag
(ǫM ). The classification of an event as wrong or correct tagged is defined by
comparing the MC truth with the result of the tagging algorithm described
in Sec. 3.

Since the θK and θl variables are defined in the range [0, π], there is no
loss in information in building the efficiency as a function of θK , θl and φ,
or as a function of cos θK , cos θl and φ. Since this second choice leads to
slightly more smooth functions, it has been chosen for the construction of
the efficiency.

5.1 Parameterisation

In the first angular analysis based on this dataset, the efficiency was built
as a two-dimensional function against the angular variables θK and θl. The
method used to parameterise it was composed by two steps. Firstly, a two-
dimensional function is constructed by performing the bin-by-bin ratios of
the binned distributions of numerators and denominators. Then, this binned
efficiency is fitted with a polynomial function, which is used as parameter-
isation of the efficiency. Some complex procedures were needed in order to
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have this fit converging and to grant that the final efficiency functions were
positive in the whole range of definition.

Most of the problems in this technique were due to both the low MC
event statistics in some q2 bins, especially for the mis-tagged event efficiency,
and the large number of free parameters in the two-dimensional polynomial
function. Extending this procedure to a three dimensional efficiency would
imply the usage of three-dimensional binned distributions, with a global
decrease of the bin statistics, and the usage of a three-dimensional poly-
nomial function, with a larger number of free parameters to fit. For this
reason, the usage of this method was not considered for this analysis, but
new parameterisation techniques were tested.

Two independent approaches have been tested: a two dimensional reduc-
tion of the binned method and a parameterisation based on Kernel Density
Estimator (KDE) distributions. In this section both of them are described
and some example functions are showed. In the next section a closure test
developed to determine their accuracy is described and the better perfor-
mances of the KDE-based method will be highlighted.

5.1.1 Two-dimensional binned method

The first method is based on binned efficiency functions. Instead of building
directly a three-dimensional binned efficiency, facing the low per-bin statis-
tics, we use two-dimensional functions to compose the final efficiency. To
model the efficiency correlation between each couple of parameters, three
functions are created by integrating out, recursively, one angular variable
and building the efficiency as a function of the remaining two. The final
three dimensional efficiency is then defined as the product of the three two
dimensional ones. In formula:

ǫ(cos θl, cos θK , φ) = F × ǫ(cos θl, cos θK)× ǫ(cos θl, φ)× ǫ(cos θK , φ) (5.3)

Since the product of the three functions results not correctly normalised, it
is rescaled by a factor F , in such a way that the global efficiency, averaged
over all the angular variables, matches the simple ratio of the number of
events in the numerator and denominator distributions.

This approach has the advantage to reduce the three-dimensional prob-
lem to three two-dimensional ones, easier to deal with and less prone to lack
of statistics. The correlation among the three angular variables are taken
into account by the final product. A disadvantage is that the efficiency is
computed from binned distributions, where the bin width is determined by
the statistics of events available in the MC samples used. Any structure or
behaviour inside a given bin is not resolved, and some kind of smoothing is
needed.

The solution used to mitigate this binning problem is to use an interpo-
lation between the bins of each two-dimensional efficiencies of Equation 5.3.
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Both a linear and parabolic interpolations have been tested.

An example of the two dimension binned efficiencies after a linear inter-
polation is applied, for the q2 bin 1, are shown in Fig. 5.1.

Figure 5.1: Distribution of the two-dimensional binned efficiency of equa-
tion 5.3 after the application of a linear interpolation between the bins, for
q2 bin 1: ǫ(cos θl, cos θK) (left), ǫ(cos θl, φ) (centre), and ǫ(cos θK , φ) (right).

5.1.2 Kernel Density Estimator method

The second approach uses a non-parametric description of the efficiency
based on a Kernel Density Estimator (KDE) [32,41].

The general idea behind this method, in its simplest form for a uni-
dimensional problem, is to start from an unbinned distribution of events as
a function of a given variable x, and describe its true distribution pdfTRUE

by building a kernel, namely a function K(x) with unitary integral over the
range of definition of x, on top of every event, and use the sum of all kernels,
with proper normalisation, as a non-parametric description of pdfTRUE:

pdfKDE(x) =
1

N

N
∑

i=1

K(x− xi) (5.4)

where i is an index running over the set of events and N is the total number
of events. The kernel K(x) can be any non-negative function with unitary
integral, and can be of different type; some common examples are uniform,
triangular, or Gaussian kernels. A remarkable property of the KDE tech-
nique is that the quality of the PDF description depends rather weakly on
the kernel used. The resulting pdfKDE(x) in the limit N → ∞ is a convolu-
tion of pdfTRUE with the kernel K(x). In this analysis, we decided to use
a Gaussian kernel, because of its ability to produce a smooth pdf even in
regions where a low event statistics is available.

The KDE method can be extended to multi-dimensional problems, build-
ing a pdf as a function of a set of n variables x1, . . . , xn). In this case, the
kernel used should be n-dimensional as well.
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An implementation of KDE method using a Gaussian kernel is available,
for both the uni-dimensional and the multi-dimensional application, within
the RooFit package [45].

The advantage of the KDE over a parametric description is that no
prior assumption on the actual pdfTRUE is needed, and the structure of the
original pdf is described as accurately as the statistics allow. The last point
is particularly relevant in the case under study, since in spite of the large
statistics of events in the MC samples used to compute the efficiency, the
phase space is very large, given the number of variables considered for the
efficiency description. A disadvantage is that an unbinned distribution of
events is needed, so it is not possible to use the KDE method directly on
the efficiency, which is binned by construction, but it needs to be used on
the numerator and denominator distributions, and then the efficiency will
be defined through the ratios of these pdfs.

The efficiency at the observable boundaries is not expected to be null,
especially for φ, given its periodic nature. In such cases, the kernel estimator
would introduce a significant decreasing of the pdf, since it would behave,
close to the border, like a convolution between a step function and a Gaus-
sian function. In order to improve the behaviour of the modelling close the
observable boundaries, data are mirrored across the boundaries. It means
that, for any Gaussian function added for a data point next to a boundary,
the tail of this function that exceeds it is reflected inside the boundary.

Even if the KDE with Gaussian kernel is a non-parametric method, the
values of the widths and correlation terms of the multi-dimensional kernel
need to be determined. For simplicity, the correlation terms are kept equal
to zero; the usage of these terms could be useful when the distribution to
model shows a strong correlation between two or more of its variables, but
it is not the case for these numerator and denominator distributions. The
RooFit class used to build the pdfKDE uses a set of standard values for
the width parameters, determined as a function of the variables range of
definition. An allowed tuning is the definition of an global scale factor,
applied to the whole set of width parameters. On one hand, a wide kernel is
less sensitive to the limited statistic of the data sample and allows to produce
smoother pdfs. On the other hand, a narrow kernel reproduces in a more
accurate way the fine structures of the original distribution, especially when
this distribution is steep. Several width scale factors (1.0, 0.5, 0.3) have
been tested and the choice of the value used for the efficiency is based on
the goodness of the results of the closure test described in Section 5.2.

The procedure used to obtain the efficiency function is to use the KDE
method on each of the four distributions (Ngen, Dgen, Nreco, Dreco) used in
Equation 5.1, normalise each of the resulting pdfs to the number of events
in the original distributions, and then combine the four functions into final
efficiency. For technical reason, it is not possible, in ROOT, to save the
output of a multidimensional KDE pdf into an output file and the time
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consumption to create the efficiency function, starting from the MC event
distributions, any time the fit procedure is run is too large. For this reason,
it was decided to save a binned distribution obtained from the sampling
of the KDE pdfs: numerator and denominator functions, obtained via the
KDE algorithm, have been sampled into a three dimensional histogram, with
40×40×40 bins, then the four histograms were combined with a bin-per-bin
application of Equation 5.1 in an efficiency function, which has been finally
saved in the output file. The granularity of the bins have been chosen as
a compromise between the fine structure of the efficiency distribution and
computing time needed to perform the pdf sampling.

An example of the event distribution of the four terms of Equation 5.1,
Dgen, Ngen, Dreco, and Nreco, for right-tagged events in q2 bin 1, as func-
tions of each of the angular variables, together with the projections of the
correctly-normalised pdfs, as obtained by the KDE method with width scale
factor equal to 0.5, are shown in Fig. 5.2.

An example of the projections of the efficiency, as obtained by the KDE
method with width scale factor equal to 0.5, on each single and on each
couple of angular variables, for right-tagged events in q2 bin 1, are shown in
Fig. 5.3.
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Figure 5.2: Event distributions of the four efficiency terms of Equation 5.1,
Dgen, Ngen, Dreco, and Nreco (black dots), for right-tagged events in q2 bin 1,
together with the projections of the correctly-normalised pdfs (red line), as
obtained by the KDE method with width scale factor equal to 0.5.
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Figure 5.3: Projections of the efficiency, as obtained by the KDE method
with width scale factor equal to 0.5, on two (upper row) and one angular
variable (lower row), for right-tagged events in q2 bin 1
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5.2 Closure test

A validation of the efficiency parameterisation is performed via a closure
test based on MC samples. We compare the event distribution of the three
angular observables, cos θK , cos θl, and φ, as reconstructed after the full
simulation and after the application of the whole set of selections described
in Section 3, with the full set of generated event distribution, before the
application of the GEN-filter, weighted, event-by-event, with the tested effi-
ciency function. In order to remove any statistical correlation in the closure
test, half of each sample have been used to estimated the efficiency, and the
closure has been performed on the other half.

The equality to test is the following:

pdf(q2, cos θK , cos θl, φ)
R/M
reco = pdf(q2, cos θK , cos θl, φ)gen⊗ǫR/M (q2, cos θK , cos θl, φ)

(5.5)
The closure test has been performed for any efficiency function produced:

for each q2 bin, separately for right (R) and mis-tag (M), and for signal and
control samples.

An example of the closure test results of the first method efficiencies,
as described in Section 5.1.1, is shown, for right-tagged events in q2 bin 1,
for the linear interpolation in Fig. 5.4, and for the parabolic interpolation
in Fig. 5.5. The result quality for the linearly-interpolated efficiency does
not follow very well the original distribution where it is very steep and it
introduces a φ dependence where none is present. The quality improvement
due to the second-order interpolation is not enough to have an accurate
description of the shape in the cos θK projection and the modulation against
φ is still present. An improvement to this technique could come from an
increase in the number of bins used to build the two-dimensional components
of the efficiency, but the available statistics of the MC samples, especially
for the mis-tagged events, prevent to go further with this.

An example of the closure test results for the KDE method is shown in
Fig. 5.6 for right-tagged events in q2 bin 0, and in Fig. 5.7 for right-tagged
events in q2 bin 7, comparing three different width scale factors: 1.0, 0.5,
and 0.3. It is possible to notice that using smaller widths improves the
result quality where some steep features are present, in particular near the
boundary of cos θK for q2 bin 0, and of φ for q2 bin 7. On the other hand,
a small width tends to create fine structures due to statistic fluctuations, in
particular near the boundary of φ for q2 bin 0.

From the overall results of the closure test, the optimal parameterisation
for this analysis in the KDE method. The width scale factor is chosen to
be 0.5 for the efficiency for right-tagged events, while the scale factor of 1.0
was found to be optimal for the efficiency of mis-tagged events, for which
less statistic is available in the MC samples. An example of the closure test
results for mis-tagged events is shown in Fig. 5.8, for q2 bin 0 and q2 bin 7.
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Figure 5.4: Comparison of the reconstructed and selected MC event dis-
tributions (histogram) with generated event distributions (dots) weighted
with the efficiency, parameterised as in Equation 5.3 with linear interpola-
tion of the two-dimension efficiency functions. Both the distributions and
the efficiency refer to right-tagged events in q2 bin 1.

Figure 5.5: Comparison of the reconstructed and selected MC event distri-
butions (histogram) with generated event distributions (dots) weighted with
the efficiency, parameterised as in Equation 5.3 with parabolic interpolation
of the two-dimension efficiency functions. Both the distributions and the
efficiency refer to right-tagged events in q2 bin 1.
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Figure 5.6: Comparison of the reconstructed and selected MC event distri-
butions (histogram) with generated event distributions (dots) weighted with
the efficiency, built through the KDE method, with width scale factor set
to 1.0 (top), 0.5 (middle), and 0.3 (bottom). Both the distributions and the
efficiency refer to right-tagged events in q2 bin 0.
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Figure 5.7: Comparison of the reconstructed and selected MC event distri-
butions (histogram) with generated event distributions (dots) weighted with
the efficiency, built through the KDE method, with width scale factor set
to 1.0 (top), 0.5 (middle), and 0.3 (bottom). Both the distributions and the
efficiency refer to right-tagged events in q2 bin 7.
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Figure 5.8: Comparison of the reconstructed and selected MC event distri-
butions (histogram) with generated event distributions (dots) weighted with
the efficiency, built through the KDE method. Both the distributions and
the efficiency refer to mis-tagged events in q2 bin 0 (top) and in q2 bin 0
(bottom).
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Chapter 6

Validation of the fit

algorithm

Since the whole fit procedure is very complex, many validation checks are
performed to verify the robustness of the final result.

In this section I will present the studies performed on the fit procedure,
both on simulated MC events and on data control channels. Since all the
signal MC samples contain only events with resonant P-wave Kπ state, it
will be implicit in this section that the angular decay rate used when fitting
MC events does not have the S-wave and interference terms, while the full
decay rate is used when fitting on data control channels.

6.1 Generator-level fit to simulated events

The first validation step, presenting the minimum level of complexity, is
performed by fitting the generator-level angular distributions of the signal
MC sample, using the pure decay rate as pdf: Sa(θK , θl, φ).

The good status of the fit is considered a successful probe of the the
minimisation process and of the correct description of the generated angular
distribution through the decay rate. The angular folding operations are
applied to distributions and pdfs, but this has no effect on the result, since
the terms of the pdf are either odd or even with respect to them.

Since the “true” values of the angular parameters used to simulate the
events of the MC samples are not defined, the results of this fit will be used
as a reference value for any comparison of the following results. This fit is
clean from any effect due to finite experimental resolution, so I expect that
the fit results do not have any bias.

An example of the generator-level angular distributions and the projec-
tions of the fitted decay rate, for q2 bin 0, are shown in Fig. 6.1.

77
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Figure 6.1: Generator-level variable distributions of the MC sample before
the GEN-filter, together with the projections of the fitted pdf, as described
in Section 6.1, for q2 bin 0.

6.2 Reconstruction-level fit to simulated events

The second validation step is performed by fitting the reconstruction-level
angular distributions of the signal MC sample, after applying the criteria
of candidate selection and CP-state tag described in Section 3. This fit is
performed using only the angular terms of the signal components in the pdf
described in Equation 4.1.

The simulated sample contains both right-tagged and mis-tagged events,
which can be distinguished by using the MC truth information. As a first
step, these two categories are fitted individually, using for each of them the
corresponding angular component of the pdf, which is the decay rate times
the efficiency function. The results of the fit show that the inclusion of the
efficiency function in the fit procedure is correctly implemented.

An example of the reconstruction-level angular distributions of the signal
MC sample and the projections of the angular component of the pdf, for q2

bin 0, is shown in Figure 6.2 for right-tagged events and in Figure 6.3 for
mis-tagged events.

As a second step, the full MC sample, containing both right-tagged and
mis-tagged events, is used in the fit, and both the signal terms of the pdf

are used. The mistag fraction parameter in the pdf is fixed to the values
reported in Section 4.2.1. Since the mistag fraction values are computed
on the same MC sample used for this fit, there is a statistical correlation
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Figure 6.2: Angular variable distributions of the right-tagged MC events
after the selection criteria application, together with the projections of the
fitted pdf, as described in Section 6.2, for q2 bin 0.

Figure 6.3: Angular variable distributions of the mis-tagged MC events after
the selection criteria application, together with the projections of the fitted
pdf, as described in Section 6.2, for q2 bin 0.
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between it and the fitted distributions; anyway its effects on the fit results
are negligible because of the extremely small statistical uncertainty on this
parameter.

The fit is still limited to the three angular variables, because all the
parameters of the mass shapes and the relative abundances are fixed in the
fit and there is no information to extract from the mass distributions.

An example of the reconstruction-level angular distributions of the signal
MC sample and the projections of the angular component of the pdf, for
both right-tagged and mis-tagged events in q2 bin 0, is shown in Figure 6.4.

Figure 6.4: Angular variable distributions of all the MC events after the
selection criteria application, together with the projections of the fitted pdf,
as described in Section 6.2, for q2 bin 0.

The results of the fits performed in this section are compared with the
results of the generator-level fits.

The results of right-tagged event fit and of the generator-level fit, are
shown in Figure 6.5 for the FL parameter, in Figure 6.6 for the P ′

5 parameter,
and in Figure 6.7 for the P1 parameter. The results of mis-tagged event fit
and of the generator-level fit, are shown in Figure 6.8 for the FL parameter,
in Figure 6.9 for the P ′

5 parameter, and in Figure 6.10 for the P1 parameter.
The results of right-tagged event fit and of the generator-level fit, are shown
in Figure 6.11 for the FL parameter, in Figure 6.12 for the P ′

5 parameter,
and in Figure 6.13 for the P1 parameter.
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Figure 6.5: Results for the FL parameter from the reconstruction-level fit
to right-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

Figure 6.6: Results for the P ′
5 parameter from the reconstruction-level fit

to right-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

6.3 Reconstruction-level fit to low statistics simu-

lated samples

The fit algorithm is also validated with simulated samples having the same
statistics of the real data sample, and containing both the signal and the
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Figure 6.7: Results for the P1 parameter from the reconstruction-level fit
to right-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

Figure 6.8: Results for the FL parameter from the reconstruction-level fit
to mis-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

background components. The goal is to verify whether the analysis is able
to measure the interesting observables, in conditions as close as possible to
the real data sample.

The data events are obtained by dividing the MC samples in sub-samples
with a number of events exactly equal to the signal yield, as obtained from
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Figure 6.9: Results for the P ′
5 parameter from the reconstruction-level fit

to mis-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

Figure 6.10: Results for the P1 parameter from the reconstruction-level fit
to mis-tagged event distributions (black) and from the generator-level fit
(red), for each q2 bin. The vertical shaded regions correspond to the q2 bins
dedicated to the J/ψ and ψ′ control channels.

fitting on data the B0 mass distribution. The number of sub-samples that
we can produced is limited by the statistics available in the MC sample, and
for simplicity has been rounded down to 200 sub-samples, for each q2 bin.

The background distributions are generated with pseudo-experiments,
using the pdf described in Section 4.2.2, and parameter values measured
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Figure 6.11: Results for the FL parameter from the reconstruction-level fit
(black) and from the generator-level fit (red), for each q2 bin. The vertical
shaded regions correspond to the q2 bins dedicated to the J/ψ and ψ′ control
channels.
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Figure 6.12: Results for the P ′
5 parameter from the reconstruction-level fit

(black) and from the generator-level fit (red), for each q2 bin. The vertical
shaded regions correspond to the q2 bins dedicated to the J/ψ and ψ′ control
channels.

with data sidebands. The number of events generated for each sub-sample
are equal to the background yield, as obtained from fitting on data the B0

mass distribution. To match the signal MC sub-samples, also for background
a total of 200 sets of events have been generated, for each q2 bin.

These samples have been used to validate the fitting procedure, first us-
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Figure 6.13: Results for the P1 parameter from the reconstruction-level fit
(black) and from the generator-level fit (red), for each q2 bin. The vertical
shaded regions correspond to the q2 bins dedicated to the J/ψ and ψ′ control
channels.

ing only the signal, then merging each signal sub-sample with a background
one. I will refer to a merged sub-sample as “cocktail” MC sample.

6.3.1 Data-like samples of signal MC events

As a first step, the angular distribution of the signal sub-samples is fitted,
using only the signal components of the pdf. As for the fit to the full MC
sample, including the mass in the fitted distributions would not change the
result.

Each of the 200 MC sub-samples are fitted. An example of the distribu-
tions of the resulting parameters, for q2 bin 3, is shown in Figure 6.14.

The distributions of these results are compared with the results of the
fit to the full MC sample. Any significant difference can be an hint of biases
on the results introduced by the fit procedure.

The mean value of the result distributions are shown in Figure 6.15, in
Figure 6.16, and in Figure 6.17, for the FL, P1, and P

′
5 parameters, respec-

tively. Only the results from converging fits are included in this distributions,
so in general their number is lower than 200. The error bars assigned to the
mean values are the standard deviations of the result distributions, divided
by the square root of the number of results in them.

6.3.2 Data-like “cocktail” MC samples

As a second step, the mass and angular distributions of the 200 “cocktail”
MC samples are fitted using the full pdf function. This fit is very similar
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Figure 6.14: Distributions of the results of the fits to the 200 signal MC
sub-samples, for q2 bin 3.

Figure 6.15: Average values of the FL result distribution from the fit to 200
signal MC sub-samples (blue), together with the FL results of the fit to the
full MC sample (red). The error bars associated to the sub-sample fit results
represent the statistical uncertainty associated to the arithmetic average of
the results, as descibed in Section 6.3.1.

to the one performed on data, even if there is no S-wave component in
the signal events. For this reason, this validation check is one of the most
important steps of the procedure. As for the signal MC sub-samples, also
here the mean and the standard deviation, divided by the square root of
fits, are used to represent the “cocktail” fit results.
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Figure 6.16: Average values of the P1 result distribution from the fit to 200
signal MC sub-samples (blue), together with the P1 results of the fit to the
full MC sample (red). The error bars associated to the sub-sample fit results
represent the statistical uncertainty associated to the arithmetic average of
the results, as descibed in Section 6.3.1.

Figure 6.17: Average values of the P ′
5 result distribution from the fit to 200

signal MC sub-samples (blue), together with the P ′
5 results of the fit to the

full MC sample (red). The error bars associated to the sub-sample fit results
represent the statistical uncertainty associated to the arithmetic average of
the results, as descibed in Section 6.3.1.

The comparison between the average results of the 200 “cocktails” fit
and the fit results of Reco MC, is shown in Figure 6.18 and Figure 6.19, for
the P1 and P ′

5 parameters, respectively.
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Figure 6.18: Average values of the P1 result distribution from the fit to 200
“cocktail” samples (blue), together with the P1 results of the fit to the full
MC sample (red). The error bars associated to the cocktail-MC fit results
represent the statistical uncertainty associated to the arithmetic average of
the results, as descibed in Section 6.3.2.

Figure 6.19: Average values of the P ′
5 result distribution from the fit to 200

“cocktail” samples (blue), together with the P ′
5 results of the fit to the full

MC sample (red).The error bars associated to the cocktail-MC fit results
represent the statistical uncertainty associated to the arithmetic average of
the results, as descibed in Section 6.3.2.

6.4 Validation with data control channels

The analysis technique is validated with the data by means of the control
channels. In this way, the S-wave component of the PDF is tested, and we
have a check of the efficiency behaviour on real data.
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6.4.1 Sideband fit

The background shape is determined as for the other bins, by using the
data sidebands as a function of the angular observables. Each of the three
angular observables is fit with a polynomial with different degrees, specified
in Table 6.1. The background distributions and pdf projections are plotted
in Figure 6.20 to Figure 6.22, for the B0 → J/ψK∗0 control channel, and in
Figure 6.23 to Figure 6.25, for the B0 → ψ′K∗0 control channel.

Table 6.1: Degrees of the polynomial functions used for control channel pdfs.

q2 bin Bcos θK Bcos θl Bφ

index degree degree degree

B0 → J/ψK∗0 4 4 5
B0 → ψ′K∗0 4 3 5

Figure 6.20: Distribution of the cos θl variable in mass sidebands of the
B0 → J/ψK∗0 control channel and the background pdf projection.

In the sideband cos θK distribution of the B0 → J/ψK∗0 channel, it is
possible to note a feature around the value of cos θK = 0.7 that cannot be
described by the background pdf used. The origin of this shape has been at-
tributed to a contamination from a source of non-combinatorial background
in the sidebands, like partially reconstructed background events. Since in
the sideband distributions of the signal q2 bins the statistics is not sufficient
to appreciate whether this feature is present or not, as can been noticed in
the fits shown in Section /refsec:backg, a dedicated component in the pdf

can not be used. Adding such a component only in the fit to the control
regions would spoil the assumption that the control regions are treated in
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Figure 6.21: Distribution of the cos θK variable in mass sidebands of the
B0 → J/ψK∗0 control channel and the background pdf projection.

Figure 6.22: Distribution of the φ variable in mass sidebands of the B0 →
J/ψK∗0 control channel and the background pdf projection.

the same way as the signal regions and would make unreliable any study on
sources of systematic uncertainty performed on them.

6.4.2 Fit to data control channel

The two control channels are fitted, with Fs and As fixed, as described in
Section 4.3, while FL is kept floating. The projection plots of the fit results
are shown Figure 6.26 and Figure 6.27, for B0 → J/ψK∗0 and B0 → ψ′K∗0

channels respectively.

The results of the measurements for the control channels B0 → J/ψK∗0
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Figure 6.23: Distribution of the cos θl variable in mass sidebands of the
B0 → ψ′K∗0 control channel and the background pdf projection.

Figure 6.24: Distribution of the cos θK variable in mass sidebands of the
B0 → ψ′K∗0 control channel and the background pdf projection.

and B0 → ψ′K∗0 are summarised in Table 6.2.

Table 6.2: Results of the fit to the data control channels, as described in
Section 6.4.2. The reported uncertainty is fully statistical.

control channel FL P1 P ′

5 A5
s

B0 → J/ψK∗0 0.537± 0.002 −0.081± 0.011 −0.024± 0.007 −0.002± 0.002
B0 → ψ′K∗0 0.538± 0.008 −0.031± 0.001 −0.039± 0.001 0.005± 0.001

For both the control channels, the FL parameter has been measured in
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Figure 6.25: Distribution of the φ variable in mass sidebands of the B0 →
ψ′K∗0 control channel and the background pdf projection.
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Figure 6.26: The fitting results of the control channel J/ψ on data. The
plots show the projections of the fitting results on three different angular
variables: B0 mass, cos θl, cos θK and φ.

the previous CMS analysis and also by other experiments. The results from
this work, from the previous CMS analysis and from other experiments are
in good agreement, as shown in Table 6.3.

As further test, the fit on the two control channels has been repeated
with the FL parameter fixed, coherently with the procedure used on data
and described in Section 4.3. The results of the two kind of fits, with FL



6.4. VALIDATION WITH DATA CONTROL CHANNELS 93

) (GeV)−µ+µ−π+Κ(m
5 5.1 5.2 5.3 5.4 5.5

E
v
e

n
ts

 /
 (

 0
.0

2
8

 G
e

V
 )

0

0.5

1

1.5

2

2.5

3

3.5

3
10×

 115±Signal yield: 10492 

CMS Preliminary  (8 TeV)1−20.5 fb

2 14.18 GeV−: 12.86 2q
Data
Total fit
Corr.tag sig.
Mistag sig.

Background

)lθcos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v
e

n
ts

 /
 (

 0
.0

5
 )

0

0.2

0.4

0.6

0.8

1

1.2

3
10× CMS Preliminary  (8 TeV)1−20.5 fb

2 14.18 GeV−: 12.86 2q
Data
Total fit
Corr.tag sig.
Mistag sig.

Background

)Κθcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
v
e

n
ts

 /
 (

 0
.1

 )

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3
10× CMS Preliminary  (8 TeV)1−20.5 fb

2 14.18 GeV−: 12.86 2q
Data
Total fit
Corr.tag sig.
Mistag sig.

Background

φ
0 0.5 1 1.5 2 2.5 3

E
v
e

n
ts

 /
 (

 0
.1

5
7

0
8

 )

0

0.2

0.4

0.6

0.8

1

1.2

1.4
3

10× CMS Preliminary  (8 TeV)1−20.5 fb

2 14.18 GeV−: 12.86 2q
Data
Total fit
Corr.tag sig.
Mistag sig.

Background

Figure 6.27: The fitting results of the control channel Ψ′ on data. The
plots show the projections of the fitting results on three different angular
variables: B0 mass, cos θl, cos θK and φ.

Table 6.3: Measurements from CMS (both in this and in the previous anal-
ysis), PDG, and BaBar [15] of FL in the control channels. The first uncer-
tainty is statistical and the second is systematic.

control channel B0 → K∗0(K+π−)J/ψ(µ+µ−) B0 → K∗0(K+π−)ψ′(µ+µ−)
Experiment FL Err(stat) Err(syst) FL Err(stat) Err(syst)
This work 0.537 ±0.002 − 0.538 ±0.008 −
CMS 0.537 ±0.002 − 0.538 ±0.008 −
PDG 0.571 ±0.007 − 0.463 +0.028

−0.040 −
BaBar 0.556 ±0.009 ±0.010 0.48 ±0.005 ±0.002

either free to float or fixed, are compared in Table 6.4.

Table 6.4: Results of the fit to the data control channels, as described in
Section 6.4.2. The reported uncertainty is fully statistical.

control channel FL state P1 P ′

5 A5
s

B0 → J/ψK∗0 floating −0.081± 0.011 −0.024± 0.007 −0.002± 0.002
fixed −0.082± 0.003 −0.024± 0.002 −0.001± 0.002

B0 → ψ′K∗0 floating −0.031± 0.001 −0.039± 0.001 0.005± 0.001
fixed −0.033± 0.025 −0.040± 0.031 0.005± 0.011
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The difference between the fit results of the P1 and P ′
5 parameters are

reported in the Table 6.5. Since these differences are very small compared to
the statistical errors of the results, this test shows that the bias in the results
introduced by the choice of fixing some parameters in the pdf is negligible
in the final result.

Table 6.5: Difference between the P1 and P ′
5 results obtained from a fit

sequence with the FL parameter fixed or free to float.
control channel P1 P ′

5

B0 → J/ψK∗0 0.001 < 0.001
B0 → ψ′K∗0 0.002 0.001



Chapter 7

Systematic uncertainties

In this section the systematic uncertainties considered for this analysis are
discussed. Some of the systematics are handled in similar methods as those
discussed in the previous CMS analysis [36].

The sources of systematic uncertainties investigated are:

limited amount of simulated events: the propagation of the statistical
uncertainty of the MC sample used to compute the efficiency;

simulation mismodelling: the effect of eventual mis-modelling in the sim-
ulated angular shape;

efficiency shape: the effect of mis-modelling in the efficiency functions,
computed using the control channels;

fitting bias: the possible biases from the fitting procedures, evaluated on
data-like “cocktail” MC samples;

wrong CP assignment: the effect of wrong CP assignment on fit results;

background distributions: the effects of the background pdf uncertain-
ties, due to finite sideband statistics, on the fit results;

uncertainty from fixed pdf parameters: the propagation of the uncer-
tainties on the angular parameters FL, AS , FS ;

angular resolution: the effect of the finite reconstruction resolution on
the fit results;

feed-through background: the effect of the contamination with B0 →
JψK∗0 and B0 → ψ′K∗0 feed-through events, in q2 bins just below
and above the resonance regions;

bivariate Gauss fit range: the dependency of the results on the range of
the bivariate fit to the likelihood distribution in the P1, P

′
5 plane, when

estimating the best-fit value.

95
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In the following sections, the systematic uncertainties sources are dis-
cussed and estimated.

7.1 Limited amount of simulated events

The use of kernel density estimator to determine the numerator and de-
nominator of the efficiency is based on a sample of simulated events, and
a systematic uncertainty is expected from the limited size of the sample
used. The unbinned approach prevents the use of a simple binomial error
estimation to be propagated to the parameterisation itself.

The method used to evaluate this systematic contribution makes use
of a set of 101 efficiency function based on pseudo-experiments. For each
efficiency, we generate pseudo-experiment datasets for numerator and de-
nominator terms of the efficiency, with the same number of events as the
original samples, based on the pdf returned by the KDE description of nu-
merator and denominator, respectively. These additional datasets are then
used to compute efficiency using the same KDE approach used in the origi-
nal sample. Finally, 101 fits are performed using each of the new efficiency
functions. The spread of the fit result distributions obtained by these fits is
used as systematic uncertainty.

This method is first tested on a cocktail-MC sample, as the ones used
for the validation of the fit described in Section 6.3.1. The results of the
fits with the toy-efficiencies are compared to the result of the fit with the
original efficiency, computed both on the same cocktail-MC sample and on
the full MC sample. This comparison validates the procedure of generating
toy-efficiencies, showing that the results obtained with them are compatible
with the result obtained with the original efficiency. Then, the method is
applied to the data, after the unbinding of the signal region .

An example of the fit result distributions, for q2 bin 3, is shown in
Figure 7.1, for the fits on a cocktail-MC sample, and in Figure 7.2, for the
fits on the data sample.

The spread of the fit results are summarised in Table 7.1, for the fit on
the cocktail-MC sample, and in Table 7.2 for the fit to the data sample. The
latter are used as systematic uncertainty.

7.2 Simulation mismodelling

The effects of the simulation mismodelling is measured through the capa-
bility of the analysis to retrieve the interesting observables in extremely
favourable conditions, using pure-signal simulation with high statistics.

The fit results on generator-level MC sample are compared with the one
on reconstruction-level MC sample, as described in Section 6.2. The discrep-
ancies between them are considered as symmetric systematic uncertainties.
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Figure 7.1: Results of the fits on a cocktail-MC sample with toy-efficiency
functions, for q2 bin 3. On the left, the distributions of the FL (top), P1

(middle), and P ′
5 (bottom) parameter results are compared with the results

from the fits with the original efficiency: on the same cocktail-MC sample
(green line) and on the full MC sample (red line). On the right: the distri-
butions of the HESSE errors on the FL(top), P1 (middle), and P ′

5 (bottom)
parameters are shown.

Figure 7.2: Results of the fits on the data sample with toy-efficiency func-
tions, for q2 bin 3. On the left, the distributions of the P1 (top) and P ′

5

(bottom) parameter results are shown. On the right: the distributions of
the HESSE errors on the P1 (top) and P ′

5 (bottom) parameters are shown.

This systematic uncertainty also evaluates the impact of the non perfect
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Table 7.1: Spread values of the toy-efficiency result distributions, computed
fitting a data-like statistics cocktail-MC sample.

q2 bin index FL P1 P ′

5

0 ±0.0157 ±0.0720 ±0.0859
1 ±0.0110 ±0.1208 ±0.1070
2 ±0.0140 ±0.0726 ±0.0627
3 ±0.0047 ±0.0319 ±0.0264
5 ±0.0051 ±0.0170 ±0.0099
7 ±0.0043 ±0.0440 ±0.0384
8 ±0.0070 ±0.0790 ±0.0622

Table 7.2: Spread values of the toy-efficiency result distributions, computed
fitting real data.

q2 bin index P1 P ′

5

0 ±0.050 ±0.046
1 ±0.062 ±0.066
2 ±0.057 ±0.031
3 ±0.036 ±0.032
5 ±0.068 ±0.049
7 ±0.073 ±0.112
8 ±0.029 ±0.036

symmetry of the efficiency with respect to the angular folding applied. The
folding procedure cancels some of the angular parameters only if applied at
pdf level. The actual fit is performed at reconstruction level, taking into
account the efficiency as a function of the angular variables. The efficiency
does not have the same exact symmetries as the pdf, and this might cause
the cancellation to be incomplete. By comparing the results of the fit at
generator level, when the cancellation is exact, with that at reconstruction
level, when it is not, we evaluate the uncertainty related to the non-perfect
cancellation.

The results are summarised for each q2 bin in Table 7.3.

Table 7.3: Systematic uncertainties: simulation mismodelling.
q2 bin index FL P1 P ′

5

0 ±0.011 ±0.005 ±0.023
1 ±0.001 ±0.005 ±0.013
2 ±0.009 ±0.001 ±0.015
3 ±0.012 ±0.006 ±0.012
5 ±0.006 ±0.001 ±0.021
7 ±0.008 ±0.033 ±0.010
8 ±0.004 ±0.006 ±0.014
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7.3 Efficiency shape

The main validation of the correctness of the efficiency is performed by
comparing the efficiency-corrected results for the control channels with the
corresponding world-average values. The efficiency as a function of the
angular variables is checked by comparing the FL measurements from the
B0 → J/ψK∗0 sample, composed of 165 000 signal events. The value of FL

obtained in this analysis is 0.537 ± 0.002 (stat), compared with the world-
average value of 0.571±0.007 (stat+syst), indicating a discrepancy of 0.034,
which is used in the other q2 bins and propagated to the P1 and P ′

5 parame-
ters. In each q2 bin, a total of 200 values for the FL parameter is randomly
generated from a Gaussian distribution, with mean the value of FL used
in the fit to the data and with width the discrepancy to propagate, 0.034.
Finally, the data sample is fitted fixing the FL parameter to each of these
200 values and the RMS of the fit results is taken as systematic uncertainty.
The results are summarised in Table 7.4.

For completeness the FL variable is also measured with the B0 → ψ′K∗0

sample, obtaining a value 0.538±0.008 (stat) to be compared with the world-
average value of 0.463+0.028

−0.040 (stat+syst).

Table 7.4: Systematic uncertainties: efficiency shape.
q2 bin index P1 P ′

5

0 ±0.017 ±0.005
1 ±0.048 ±0.060
2 ±0.093 ±0.065
3 ±0.094 ±0.045
5 ±0.083 ±0.059
7 ±0.100 ±0.060
8 ±0.068 ±0.041

Cross check: branching fraction of B0 → K∗ψ′ and B0 → K∗J/ψ
A further test to validate the efficiency shape obtained from MC is to

compare the branching fraction of the two control samples: B0 → K∗ψ′ and
B0 → K∗J/ψ.

The ratio of the two BR can be computed as follow:

B(B0 → K∗ψ′)

B(B0 → K∗J/ψ)
=
Yψ′

ǫψ′

ǫJ/ψ

YJ/ψ

B(J/ψ → µ+µ−)

B(ψ′ → µ+µ−)
(7.1)

where Yψ′ and ǫψ′ are the yield and the efficiency for the ψ′ channel, and
likewise for YJ/ψ and ǫJ/ψ for J/ψ one.

The ratio of B for J/ψ(ψ′) → µ+µ− is 7.54± 0.86 (PDG). The value of

the ratio is (PDG): B(B0→K∗ψ′)
B(B0→K∗J/ψ)

= 0.484±0.018(stat)±0.011(syst)±0.012(Reeψ ).
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A first way to compute the ratio is to use directly the absolute efficiency
for the two channels as obtained from MC. The ratio we obtain with this
method is 0.476 ± 0.008(stat) ± 0.055(Rµµψ ), in very good agreement with
PDG.

However, the computation above assumes that the angular shape of the
control channel is correctly simulated in MC. To take properly into account
the real signal and efficiency shape, we repeated the same computation using
as efficiency εJ/ψ/ψ′ =

∫

phase space S(~x; ~p) × ε(~x)d~x, where S(~x; ~p) is the
signal pdf, ~p is the set of angular parameter we got from the fit on the
data on each control region, and ε(~x) is the efficiency for each region as a
function of angular variable. The result of this more detailed computation
is: 0.480 ± 0.008(stat) ± 0.055(Rµµψ ), again in very good agreement with
PDG.

The same ratio can be computed using only right tag events, only wrong
tag events, or both: in all the cases the agreement is very good.

7.4 Fitting Bias

The fitting procedure itself could generate biases in the results, in addition to
the uncertainties from the fitting components (efficiency, background shape,
pdf, etc) described above. The fitting procedure uncertainties thus arise
from the possible biases from the fitting methods and procedures.

We estimate this contribution from the fit results of the data-like simu-
lated samples, which are described in Section 6.3.2.

To evaluate the fitting bias, we compare the average result of the fits
to cocktail MC samples and the fitting result of full statistics MC sample.
These differences are used as an estimation of this systematic uncertainty.
The results are summarised in Table 7.5.

Table 7.5: Systematic uncertainties: fitting bias.
q2 bin index P1 P ′

5

0 ±0.005 ±0.040
1 ±0.007 ±0.010
2 ±0.019 ±0.119
3 ±0.019 ±0.106
5 ±0.041 ±0.052
7 ±0.071 ±0.048
8 ±0.078 ±0.031
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7.5 Wrong CP assignment

The error on mistag fraction has been estimated using the control channel
B0 → J/ψK∗0, in q2 bin 4. A full fit on this channel has been performed,
leaving also the mistag fraction free to float. This fit is possible on the control
channel thanks to its large statistics, and the result has been compared with
the mistag fraction estimated from MC sample. The difference between
these values is 0.008 and, compared with the statistical uncertainty of the
MC estimate in this bin, σ . 0.002, it results to be the dominant uncertainty
related to the mistag fraction.

To assess the propagation of this systematic effect to the physical pa-
rameter of the final fit on data, a set of fits has been performed, using
as free parameters A5

s, P1, P
′
5, the signal and background yields, and us-

ing a fixed mistag fraction. A set of 10 different values of mistag fractions
has been used, randomly generated with Gaussian distribution around the
mistag fraction estimated from MC for each q2 bin, and with σ equal to the
difference of 0.008 computed on the control channel. For each q2 bin, the
RMS of the results of the 10 fits is used as systematic uncertainty for the
fitted angular parameters, as summarised in Table 7.6.

Table 7.6: Systematic uncertainties: mistag fraction.
q2 bin index A5

s P1 P ′
5

0 0.000035 0.014 0.013
1 0.000014 0.022 0.015
2 0.0050 0.016 0.014
3 0.0025 0.0084 0.0058
5 0.0037 0.043 0.032
7 0.015 0.11 0.066
8 0.0050 0.025 0.016

7.6 Background distributions

The parameters of the background component in the pdf are estimated
on the mass sidebands and kept fixed in the fit to the full mass range, as
described in Section 4.2.2. Due to the limited statistics of the mass sideband
samples, the background parameters have a not-negligible uncertainty, that
should be propagated to the analysis results as systematic uncertainty.

The errors of the background pdf parameters are evaluated by the HESSE
algorithm running during the fit to the mass sidebands. A set of 200 back-
ground toy-functions are then generated by using the same polynomial ex-
pression described in Section 4.2.2, and randomly generating the value of
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each parameter from a Gaussian distribution, with mean and width equal
to the HESSE results of the sideband fit.

To propagate this uncertainty to the signal parameters, the fit to the
data is run 200 times, by using the new background toy-functions. The
widths of the result distributions are used as systematic uncertainties.

An example of the distributions of the toy-background fit results, for q2

bin 2, is shown in Figure 7.3.
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Figure 7.3: The results of the fits on data performed with background toy-
functions, for the q2 bin 2. The distributions of P1 (top left), P ′

5 (top right),
signal yield (bottom left), and background yield (bottom right) are shown.

The resulting uncertainties are summarised in the Table 7.7.

Table 7.7: Systematic uncertainties: background shape.
q2 bin index P1 P ′

5

0 ±0.013 ±0.010
1 ±0.031 ±0.024
2 ±0.046 ±0.030
3 ±0.022 ±0.013
5 ±0.070 ±0.049
7 ±0.069 ±0.051
8 ±0.012 ±0.015

Partially reconstructed background Since the lower sideband in the
candidate B0 mass has a value range starting at about 5GeV, it can contain
a contamination from partially reconstructed events, i.e. events in which
a B0 meson decays in a final state with more than four detectable parti-
cles and the candidate B0 is built using only four of them. The kinematic
end-point for this kind of events is between 5.1GeV and 5.15GeV. Since
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the angular distribution of these background events is expected to be dif-
ferent with respect to the distribution of the combinatorial background, a
contamination of the lower sideband would bias the fit of the background
parameters of the pdf, estimated in the first step of the fit, according to the
fit sequence described in Section 4.3. Then, the biased background pdf is
used in the second step of the fit, even though under the resonance there is
no contamination, and the fitted values of P1 and P ′

5 can be affected.

In order to check whether an eventual contamination has introduced a
significant bias in the fitted values of P1 and P ′

5, the two steps of the fit
are repeated, but with the range of the low-mass sideband starting at about
5.1GeV (exactly 1GeV more narrow than the original sideband), and the
results of the P1 and P ′

5 parameters are compared with the original fit. A
natural difference in these results can derive from the statistical fluctuation
due to the use of a sub-sample of the original dataset. For this reason,
the differences observed in this test are compared with the values of the
Background Distribution systematic uncertainty.

The results of the fits with the reduced sideband are reported in Ta-
ble 7.8, together with their absolute difference with respect to the original
results. The values of the Background Distribution systematic uncertainty
are reported in this table as well.

In the table are highlighted the differences that exceed twice the value of
the systematic uncertainty. Globally, the differences are considered compati-
ble with the systematic uncertainty. In the few bins with a larger difference,
the results of the fit with reduced sidebands are affected by the very low
statistics left in the sideband region. The worst case is bin 7, where the
sideband reduction remove about 75% of the background events.

Table 7.8: Results of the fits with the reduced sideband and their absolute
difference with respect to the results with the full sideband, as described in
Section 7.6. The values of the Background Distribution systematic uncer-
tainty, as described in Section 7.6, are reported here for comparison sake.

q2 bin P1 P ′

5

index result difference syst result difference syst
0 0.124 0.005 0.013 0.077 *0.024* 0.010
1 -0.675 0.010 0.031 -0.541 0.026 0.024
2 0.505 0.028 0.046 -0.888 *0.069* 0.030
3 -0.457 0.013 0.022 -0.689 *0.046* 0.013
5 -0.490 0.041 0.070 -0.714 0.024 0.049
7 -0.502 *0.173* 0.069 -0.705 0.069 0.051
8 -0.520 0.013 0.012 -0.565 0.006 0.015
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7.7 Mass Distribution

The parameters of the mass shape in the signal component of the pdf are es-
timated through a fit to the MC mass distribution and kept fixed in the data
fit, as described in Section 4.3. To evaluate the bias due to mis-modelling
of the MC description of the mass shapes, and propagate it to the analysis
results as a systematic uncertainty, the control channels are used. Thanks
to the high-statistics of these samples, it is possible to perform a fit with
some mass parameters free to float. The angular parameters are measured
on both control channels, at first with signal mass shape for right-tagged
events free to float, and then with signal mass shape for mis-tagged events
free to float. The difference of the angular parameter values obtained from
these fits, with respect to the results with the standard fit sequence, are
calculated. For each parameter, the largest of these differences is used as
systematic uncertainty for all the q2 bins.

The maximum difference of P1 is 0.012, of P5′ is 0.019.

7.8 Uncertainty from fixed pdf parameters

Fixing three of the six angular parameters in the fit could have an effect
of modifying the statistical uncertainties for the fitted parameters. This is
true, in general, whenever there is a correlation between any fixed parame-
ter and a free one. Since this effect could lead to an underestimation of the
statistical error, a specific systematic uncertainty has been created to com-
pensate this effect. For each measured parameter we define a scale factor as
the correction factor, greater than or equal to one, that should be applied
to the underestimated statistical error to compensate this effect.

Since it is not possible to fit the data with the FL, Fs, As parameters
free to float, this scale factor is computed on pseudo-experiments with one
hundred times the statistics of the data sample. Ten pseudo-experiments are
used, for each q2 bin, and the average of the ten resulting scale factors is used
to compute the uncertainty. The same procedure described in Sec. 8.1 to
fit a pseudo-experiment for the Feldman-Cousins (FC) method is used here
to fit each high-statistics pseudo-experiment. The only difference is that
the number of points where the 2D-likelihood is probed here is around one
hundred, in order to guarantee a more robust result. This fitting procedure
is applied twice, both fixing the FL, Fs, As parameters and leaving them
free to float. Then, two scale factors are defined, one for P1 and one for P ′

5,
as the ratio between the confidence intervals obtained with the two fits (fit
with floating parameters over fit with fixed parameters). Note that here the
custom MINOS method, defined in Sec. 8.1, is used to define the parameters’
confidence interval.

Finally, each scale-factor average was used to compute the systematic
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uncertainty. If it is smaller than one, it means that the estimated effect
of freeing the parameters is to reduce the statistical error. In this case,
no correction is applied. Otherwise, if it is larger than one, we define the
uncertainty value as the one that, if added in quadrature with the statistical
error, would increase it by this estimated factor. Thus, it is

S = σ
√

f2 − 1 (7.2)

where σ is the statistical error and f is the scale-factor average.
The scale-factor averages and the systematic uncertainty values are re-

ported in table 7.9.

Table 7.9: Scale-factor average values and systematic uncertainties com-
puted to compensate the statistical error reduction introduced fixing some
PDF parameters

q2 bin index SF(P1) P1 SF(P ′
5) P ′

5

0 1.014 0.077 1.003 0.025
1 1.116 0.211 1.099 0.148
2 1.113 0.139 1.385 0.206
3 1.082 0.103 1.028 0.041
5 1.048 0.053 1.143 0.069
7 0.982 0.000 1.090 0.072
8 1.091 0.083 0.989 0.000

To verify that the procedure of fixing those parameters in the fit is only
affecting the statistical uncertainty, but it is not introducing any significant
bias in the best-fit values, we compared the results of the fits to the sets
of pseudo-experiments, both with floating and fixed parameters, with the
input values used to generate them. An example of the plots used for this
comparison, for q2 bin 2, is shown in Figure 7.4. No significant bias are
present.

7.8.1 Test of scale-factor dependency on toy statistics

The procedure used to compute the systematic uncertainty due to the fixed
parameters, as described above, relies on the assumption that the scale
factors do not depend on the statistics of the pseudo-experiment used. This
assumption has been tested for two q2 bins, for two different q2 regimes,
bin 0 and bin 8.

The test consists in repeating the procedure to extract the scale factor
on a set of pseudo-experiments with different statistics. Defining R as the
ratio between the statistics of a pseudo-experiment and the data sample,
the procedure used for the estimation of the systematic uncertainty used
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P1

P'5

Figure 7.4: Distributions of the best-fit values of the fits performed, in
q2 bin 2, on the high-statistics pseudo-experiments used to compute the
systematic uncertainty for the fixed parameters, as described in Section 7.8.
The blue (red) histogram is the distribution of the results of the fit with fixed
(floating) FL, Fs, As parameters. The black line marks the input value used
to generate the pseudo-experiments. Top: results for P1. Bottom: results
for P ′

5.

a sample with R = 100. The test is performed with a set of 9 samples,
with R = {10, 20, . . . , 90}. The same procedure used for the systematic
uncertainty is applied on these pseudo-experiments, to extract the scale
factor for both P1 and P ′

5.
The set of scale factors obtained is shown in Figure 7.5 and Figure 7.6,

for bin 0 and bin 8 respectively. From these results, one can notice that,
besides few isolated points, all the scale factors are in agreement and there
are no evident trends as a function of the statistics.
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Figure 7.5: The error scale factors, obtained with the procedure described in
Section 7.8, are shown for P1 (left) and P ′

5 (right), in q2 bin 0, as a function
of the statistics of the pseudo-experiment used.
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Figure 7.6: The error scale factors, obtained with the procedure described in
Section 7.8, are shown for P1 (left) and P ′

5 (right), in q2 bin 8, as a function
of the statistics of the pseudo-experiment used.
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7.9 Angular Resolution

This systematic uncertainty is due to the limited detector resolution on
angular distributions. To evaluate its impact, the likelihood fit has been
performed on the full simulated dataset on reconstructed quantities after
all selections, considering only the right-tagged candidates. The same fit
has been performed on the same sample, but using the generated angular
quantities in place of the reconstructed ones. The difference between the
two results, shown in table 7.10, is used as a systematic uncertainty for each
q2 bin.

Table 7.10: Difference on the target physics observables (FL, P1, and P ′
5)

when obtained via a fit on reconstructed and generated angular distributions
after all selection, performed on full MC sample. ∆x = |xRECO − xGEN |

q2 bin index ∆FL ∆P1 ∆P ′
5

0 -3.98·10−4 -1.50·10−3 1.05·10−4

1 -7.83·10−4 -3.30·10−3 1.03·10−3

2 -8.83·10−3 -6.88·10−3 1.33·10−3

3 -4.94·10−4 -7.38·10−3 8.10·10−4

5 1.16·10−3 -1.51·10−2 2.36·10−3

7 2.90·10−4 -7.26·10−3 -8.28·10−3

8 -1.93·10−3 -6.81·10−2 1.23·10−2
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7.10 Feed-through background

The q2 bins just below and above the resonance regions may be contami-
nated by B0 → J/ψK∗0 and B0 → ψ′K∗0 feed-through events that are not
removed by the selection criteria. The potential uncertainties due to this
contamination have been evaluated.

The distribution of residual feed-through events are described by a spe-
cial pdf. The distributions in q2 bins 3 and 5 are evaluated from B0 →
J/ψK∗0 simulation, as shown in Figure 7.7 and Figure 7.8. Similarly, the
distributions in q2 bin 5 are evaluated from B0 → ψ′K∗0 simulated sample

Figure 7.7: Distributions of the feed-through events of the B0 → J/ψK∗0

MC sample and the projections of the pdf used to describe it, for q2 bin 3.

Data are then fitted with this additional component of feed through
backgrounds, as shown in Fig 7.9 and Fig 7.10.

Discrepancies on the measured observables are then conservatively con-
sidered as symmetric systematic uncertainties. There are two results for q2

bin 5, one from B0 → J/ψK∗0 and the other from B0 → ψ′K∗0. Then we
choose the bigger one as the systematic uncertainty. The result are in the
Table 7.11.

Table 7.11: Systematic uncertainties from the feed through backgrounds.
q2 bin index P1 P ′

5

3 ±0.004 ±0.012
5 ±0.012 ±0.020
7 ±0.011 ±0.024
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Figure 7.8: Distributions of the feed-through events of the B0 → J/ψK∗0

MC sample and the projections of the pdf used to describe it, for q2 bin 5.

Figure 7.9: Distributions of the data events, and the projections of the pdf
with the additional component for feed-through background, for q2 bin 3.

7.11 Bivariate Gaussian fit range

As described in Section 4.3, the procedure to get the best fit from the data
is to discretise the P1, P

′
5 space, and maximise the likelihood as a function

of nuisance parameters at fixed values of P1, P
′
5. So we have a scan of the

likelihood in the P1, P
′
5 plane. Finally, the likelihood distribution is fitted

with a bi-variate normal distribution.

In order to check the stability of the fit, as well as any possible source
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Figure 7.10: Distributions of the data events, and the projections of the pdf
with the additional component for feed-through background, for q2 bin 5.

of bias due to the procedure, the angular parameters are evaluated varying
the fit range. The range of the fit is defined as ±1σ (as computed by the
FC procedure described in Section 8.1), multiplied by a scale factor (in the
range [0.1, 2]), around the centre defined as the value of P1 or P ′

5, among
the points of the grid defined in Section 4.3, where the likelihood has an
absolute maximum.

An example of the results of these scans is shown in Figure 7.11, for
q2 bin 3. To give an element of comparison, the y-axis range in the plots
of the results is set equal to the confidence interval, as computed by the
FC procedure described in Section 8.1. The difference between the value of
P1 and P ′

5 from the absolute maximum and the normal fit is small, when
compared with statistical uncertainties and to the fit bias uncertainty. Also
the trend with respect to the fit range is small.

A quantitative difference has been extracted by comparing the value of
the position of the absolute maximum with that of a bi-variate Gaussian
fit, via linear fit in the scale factor range [0.4, 1.6], evaluated for scale factor
equal to 1. The differences are reported in table 7.12.

Since these differences have the same nature of the fit bias uncertainty,
but are smaller than it, no specific systematic uncertainty has been intro-
duced for them.

7.12 Total Systematic Uncertainties

The summary of all systematic uncertainties are shown in Table 7.13.
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Figure 7.11: Comparison between the position of the absolute maximum
of the likelihood (green line) and the results of the bi-variate Gaussian fit,
as a function of the fit range (black dots), for the P1 (left) and P ′

5 (right)
parameters, in q2 bin 3.

Table 7.12: Systematic uncertainties: bias from bi-variate Gaussian fit to
the likelihood.

q2 bin index P1 P ′

5

0 ±0.012 ±0.009
1 ±0.005 ±0.005
2 ±0.002 ±0.007
3 ±0.016 ±0.0002
5 ±0.009 ±0.020
7 ±0.010 ±0.012
8 ±0.004 ±0.001
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Table 7.13: Systematic uncertainty contributions for the measurements of
P1 and P5′. The total uncertainty in each q2 bin is obtained by adding each
contribution in quadrature. For each item, the range indicates the variation
of the uncertainty in the signal q2 bins.

Source P1(×10−3) P ′
5(×10−3)

Simulation mismodeling 1–33 10–23

Fit bias 5–78 10–120

Finite size of simulated samples 29–73 31–110

Efficiency 17–100 5–65

Kπ mistagging 8–110 6–66

Background distribution 12–70 10–51

Mass distribution 12 19

Feed-through background 4–12 3–24

FL, FS, AS uncertainty propagation 0–210 0–210

Angular resolution 2–68 0.1–12

Total 100–230 70–250
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Chapter 8

Fit results

In this section I will present the results of the fit to the data sample, after
removing the blind status to the analysis. Firstly, the methodology used to
extract the statistical uncertainty is presented. Then the best-fit values of
the parameters are reported, together with the total statistical and system-
atical uncertainties. Finally the distributions and the pdf profiles for each
q2 bin are shown.

If not otherwise specified, we are using the fitting procedures described
in Sect.4.3 and other relevant sections.

8.1 Statistical uncertainties determination

The determination of the statistical uncertainties for the measured parame-
ters cannot just be delegated to the fit software, and in particular to MINOS,
due to the presence of physical boundaries on the parameters. These bound-
aries are discussed in Section 1.2.3, and comes from the requirement that
the pdf is positive defined everywhere.

Different approaches to the problem have been explored: in the following
we describe three of them: custom MINOS, hybrid frequentist-Bayesian,
and Feldman-Cousins. For the final determination of the statistical uncer-
tainties we have used the latter, despite of its complexity and the huge CPU
time required.

In this thesis, only the Feldman-Cousins approach is described.

8.1.1 Feldman-Cousins method

The approach used for the computation of statistical uncertainties, strongly
suggested by the CMS Statistical Committee, is to apply the Feldman-
Cousins method [34] with nuisance parameters. Given the enormous time
that would be needed to build a full bi-dimensional confidence interval in
the P1-P

′
5 parameter space, we decided to perform the F-C procedure only

115
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Figure 8.1: Distribution of L in the P1, P
′
5, with contour curves at ∆ logL =

0.5 and 2.0, with the indication of the physical region. Superimposed is a
bivariate Gaussian fit, and the position of the maximums of the profiled L
(red) and that of the Gaussian fit (blue).

along the maximum of the profile along P1 and P ′
5, respectively, of the L

distribution, and extract two mono-dimensional confidence intervals.

We consider the L distribution built fitting the data, as described in Sec-
tion 4.3, and look for the maximum of that distribution along one variable,
while the other one is fixed. In general, an evaluation of the likelihood is
not available for all the points in the scan of the P1, P

′
5 plane, since, for

some P1, P
′
5 points, the fit is not converging. Thus, building the profiles of

the likelihood just looking for the maximum among the valid points leads
often to unstable results. So, we perform a bivariate Gaussian fit to the L
points available, similar to the one used to estimate the best-fit values of the
parameters, and take the two profiles of the fitted function, instead. The
profiles of the function are always restricted inside the physical region: the
results are shown in fig 8.1.

This procedure is more robust than just looking for the maximum of the
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Figure 8.2: An example for profile of logL, where it is possible to see the
two possible issues to find the minimum just scanning the results, instead
of performing a fit. Some bins are empty since the fit for those points fails,
and there is a downward fluctuation of logL which creates a fake minimum.

L on a profile, since we do not have a determination of L for every bin. This
is typically due to the fact that the physical boundary in the P1, P

′
5 region

depends on A5
s, so the fit of a particular point might converge to a set of

values outside the physical region, and so it fails. Moreover, there is the
chance that a determination of the logL has a downward fluctuation which
can be the minimum even though the shape of the logL shows a parabolic
behaviour, with a different vertex. This kind of behaviour can be seen in
Figure 8.2.

For each of the point in the scan of the P1, P
′
5 plane defined above,

thereafter referred to as GEN-points, we generate a set of 100 toy MC with
data-like statistics, using the full pdf, with P1 and P

′
5 parameters defined by

the coordinates of the GEN-point, and with nuisance parameter A5
s which

guarantees the wider physical region for P1, P
′
5, namely 0.99 or −0.99, de-

pending on the bin.

Each toy is fitted with a procedure identical to that used for the data,
the only difference is that instead of evaluating the likelihood on a 90× 90
grid in the P1, P

′
5 plane, only 20 points are scanned, in order to reduce the

time needed to perform the whole procedure. These 20 points are chosen
randomly, according to a bivariate Gaussian, around a central value. The
width of the Gaussian is the one returned by the fit on the data on the bin
under consideration, while correlation is not considered. The central value
is the result of a fit on the toy with P1, P

′
5 free to float, or, if the fit does

not converge, the GEN-point itself. If one of these points falls outside the
physical boundary, it is discarded and an additional point is generated to
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replace it. The L is evaluated in these 20 points and it is finally fitted with
a bivariate Gaussian. An example of such a fit is shown in Figure 8.3.

Eventually, for each toy of any GEN-point, a determination of the L
function is available. In order to check if the GEN-point is inside or outside
the 68% CL region, we compare the ∆ logL of the toys with the one of the
data. In particular, when computing the boundary of the parameter P1 (P

′
5),

∆ logLtoyi is defined, on the projection of logL of the toyi on the P1 (P ′
5)

axis, as the difference between the maximum of this projection and its value
at P1 = P1 GEN (P ′

5 = P ′
5 GEN), where (P1 GEN, P

′
5 GEN) are the coordinates

of the GEN-point. ∆ logLData is defined as the difference between logL of
the best fit on data and that of the GEN-point.

The ratio value is computed as the fraction of toys with ∆ logL lesser
than that of the data. A GEN point is considered inside the 1σ region,
namely the 68.27% CL region, if the ratio is lower than 68.27%. An example
of this comparison is shown in fig. 8.3.

The final 68% confidence interval for P1 and P ′
5 is found by looking at

the distribution of the ratio as a function of P1 and P ′
5, respectively, and

fitting this distribution with a linear function. The crossing of the linear
function with the 68.27% line defines the ±1σ value. In total four directions
were scanned, corresponding to lower and upper bound for P1 and P ′

5.
In order to reduce the time consumption of this procedure, we started

scanning GEN-points around the value of ∆ logL = 0.5, and then extend
the scanned region inside or outside depending on the results. In case the
slope of the linear fit was not very steep, more GEN-points were scanned to
make the result more robust.

The results of the FC procedure described above are shown in fig 8.4 to 8.10
for all the seven q2 bins considered. The intervals, as well as the central val-
ues, are summarised in table 8.1.

Table 8.1: Summary of results of P1 and P ′
5 in different q2 bins with the

±1σ statistical uncertainties as computed with the FC procedure.
P1 P ′

5

Bin Fit Fit

0 0.119 +0.46
−0.47 0.101 +0.32

−0.31

1 −0.685 +0.58
−0.27 −0.567 +0.34

−0.31

2 0.533 +0.24
−0.33 −0.957 +0.22

−0.21

3 −0.470 +0.27
−0.23 −0.643 +0.15

−0.19

5 −0.531 +0.2
−0.14 −0.690 +0.11

−0.14

7 −0.329 +0.24
−0.23 −0.664 +0.13

−0.2

8 −0.533 +0.19
−0.19 −0.559 +0.12

−0.12
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one GEN-point and comparison with ∆ logL for data, computed for that
GEN-point (bottom).
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Figure 8.6: F-C results for bin 2. Scan of the GEN-points, superimposed to
data L distribution: red points are outside the 68% CL region, the blue ones
are inside. The blue lines defines the ±1σ region (top). Ratio distribution
as a function of P1 for lower and upper bounds, with linear fit and 68%
horizontal line (middle left, right). Likewise for P ′

5 (bottom).
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Figure 8.7: F-C results for bin 3. Scan of the GEN-points, superimposed to
data L distribution: red points are outside the 68% CL region, the blue ones
are inside. The blue lines defines the ±1σ region (top). Ratio distribution
as a function of P1 for lower and upper bounds, with linear fit and 68%
horizontal line (middle left, right). Likewise for P ′

5 (bottom).
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Figure 8.8: F-C results for bin 5. Scan of the GEN-points, superimposed to
data L distribution: red points are outside the 68% CL region, the blue ones
are inside. The blue lines defines the ±1σ region (top). Ratio distribution
as a function of P1 for lower and upper bounds, with linear fit and 68%
horizontal line (middle left, right). Likewise for P ′

5 (bottom).
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Figure 8.9: F-C results for bin 7. Scan of the GEN-points, superimposed to
data L distribution: red points are outside the 68% CL region, the blue ones
are inside. The blue lines defines the ±1σ region (top). Ratio distribution
as a function of P1 for lower and upper bounds, with linear fit and 68%
horizontal line (middle left, right). Likewise for P ′

5 (bottom).
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Figure 8.10: F-C results for bin 8. Scan of the GEN-points, superimposed to
data L distribution: red points are outside the 68% CL region, the blue ones
are inside. The blue lines defines the ±1σ region (top). Ratio distribution
as a function of P1 for lower and upper bounds, with linear fit and 68%
horizontal line (middle left, right). Likewise for P ′

5 (bottom).
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8.1.2 Correlation coefficient

From the distribution of the likelihood, in Figure 8.1, it is also possible to
get the correlation coefficient between the two measured parameters, P1, P

′
5.

The L in the P1, P
′
5 plane is fitted with a bivariate Gaussian, with the

following expression:

f(x, y) =

exp

{

− 1
2(1−ρ2)

[

(

x−µx
σx

)2
− 2ρ

(

x−µx
σx

)(

y−µy
σy

)

+
(

y−µy
σy

)2
]}

2πσxσy
√

1− ρ2

(8.1)
where x = P1, y = P ′

5 etc. The ρ parameter in Equation 8.1 is the correlation
coefficient among the two parameters and it is reported in Table 8.2 for all
the bins.

Table 8.2: Correlation coefficient between P1 and P ′
5 in different q2 bins.

Bin ρ

0 −0.0526
1 −0.0452
2 +0.4715
3 +0.0761
5 +0.6077
7 +0.4188
8 +0.4621

8.2 Results of central values

The results of the fit on data are summarised in Table 8.3. The table presents
results for all five parameters that were floating in the fit, both the analysis
targets, P1 and P ′

5, and the nuisance, Y C
S , YB, and A

5
S. The errors reported

for P1 and P ′
5 are obtained from the FC procedure, while the errors returned

by MINOS are quoted for the other three parameters.
The results for P1, P ′

5 and As5 are shown in Fig 8.11, Fig 8.12, Fig 8.13.
On the plots, the predictions from two theoretical groups are also shown.
The orange band shows the predictions from Matias et al [40]. and the
pink band shows the predictions from Paul et al [27]. Both predictions are
adapted to our q2 binning scheme.

We also put the latest LHCb results [4] on the plots for comparison, also
with only statistical errors.

The results of detailed distributions in each q2 bin, together with the
projections of the pdf, are shown in the following figures from Fig. 8.14 to
Fig. 8.20.
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Figure 8.11: Fit results of the A5
S angular parameter versus q2. Only the

statistical uncertainties are shown. The vertical shaded regions correspond
to the J/ψ and ψ′ resonances.
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Figure 8.12: CMS measurements of the P1 angular parameter versus q2 for
B0 → K∗0µ+µ− decays, in comparison to results from the LHCb [5] Collab-
oration. The statistical uncertainties are shown by the inner vertical bars,
while the outer vertical bars give the total uncertainties. The horizontal
bars show the bin widths. The vertical shaded regions correspond to the
J/ψ and ψ′ resonances. The hatched regions show the predictions from two
SM calculations described in the text, averaged over each q2 bin.
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Figure 8.13: CMS measurements of the P ′
5 angular parameter versus q2 for

B0 → K∗0µ+µ− decays, in comparison to results from the LHCb [5] and
Belle [10] Collaborations. The statistical uncertainties are shown by the
inner vertical bars, while the outer vertical bars give the total uncertain-
ties. The horizontal bars show the bin widths. The vertical shaded regions
correspond to the J/ψ and ψ′ resonances. The hatched regions show the
predictions from two SM calculations described in the text, averaged over
each q2 bin.
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Figure 8.14: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 0. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.

Figure 8.15: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 1. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.
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Figure 8.16: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 2. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.

Figure 8.17: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 3. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.
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Figure 8.18: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 5. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.

Figure 8.19: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 7. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.
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Table 8.3: The measured values of signal yield Y C
S , background yield YB,

A5
S, P1, and P5

′ for the decay B0 → K∗0(→ K+π−)µµ in bins of q2. The
first uncertainty is statistical and the second (when present) is systematic.

q2 (GeV2) Y C
S YB A5

s P1 P ′

5

1.00–2.00 80± 12 95± 11 0.043± 0.066 0.119+0.46
−0.47 ± 0.058 0.101+0.32

−0.31 ± 0.116
2.00–4.30 145± 16 290± 20 0.039± 0.063 −0.685+0.58

−0.27 ± 0.088 −0.567+0.34
−0.31 ± 0.153

4.30–6.00 119± 14 216± 17 −0.052± 0.092 0.533+0.24
−0.33 ± 0.175 −0.957+0.22

−0.21 ± 0.161
6.00–8.68 247± 21 351± 23 0.057± 0.005 −0.470+0.27

−0.23 ± 0.131 −0.643+0.15
−0.19 ± 0.138

10.09–12.86 354± 23 575± 1 −0.005± 0.008 −0.531+0.2
−0.14 ± 0.215 −0.690+0.11

−0.14 ± 0.246
14.18–16.00 213± 17 185± 16 0.015± 0.063 −0.329+0.24

−0.23 ± 0.245 −0.664+0.13
−0.2 ± 0.188

16.00–19.00 239± 19 82± 0 −0.004± 0.119 −0.533+0.19
−0.19 ± 0.131 −0.559+0.12

−0.12 ± 0.072

Figure 8.20: Data distributions (black points) and the projections of the fit-
ted pdf (black curves), of its signal right-tagged component (blue curves), of
its signal mis-tagged component (green curves), and of its background com-
ponent (red curves), for q2 bin 8. The data distribution and pdf projections
are shown as functions of B0 invariant mass, cos θl, cos θK , and φ.
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8.2.1 Validation of the yield results

The yield of signal and background events in each q2 bin is compared with
the previous CMS analysis, which used the same dataset, on Table 8.4.

Table 8.4: Comparison of values of signal yield Y C
S and background yield

YB with the same values found in previous CMS analysis.

Y C
S ∆ YB ∆

q2 (GeV2) this analysis previous CMS this analysis previous CMS

1.00–2.00 80± 12 84± 11 −4± 16 95± 11 91± 12 4± 16
2.00–4.30 145± 16 145± 16 0± 23 290± 20 289± 20 1± 28
4.30–6.00 119± 14 117± 15 2± 21 216± 17 218± 18 −2± 25
6.00–8.68 247± 21 254± 21 −7± 30 351± 23 344± 23 7± 33

10.09–12.86 354± 23 362± 25 −8± 34 575± 28 567± 29 8± 40
14.18–16.00 213± 17 225± 18 −12± 25 185± 16 175± 17 10± 23
16.00–19.00 239± 19 239± 18 0± 26 82± 12 82± 12 0± 17



Chapter 9

Future perspective and

conclusions

9.1 Perspective at LHC Run II

The puzzle originated by the discrepancy observed by the LHCb collabo-
ration in the P ′

5 angular parameter is far to be resolved, both from the
theoretical side, where a better understanding of the effects of the hadronic
uncertainties is essential to have a reliable Standard Model prediction, and
from the experimental side.

In particular regarding this latter aspect, in the last few years the anal-
yses from many experiments added their contribution to the LHCb result,
to validate it and, by combining the results, improve the precision of the
experimental measurement.

Despite the large statistics collected during LHC Run I by CMS, LHCb
and ATLAS experiments, the uncertainty of the results of these analyses is
still statistically dominated. This makes this angular analysis an hot topic
for the near future.

Since 2015 LHC Run II is ongoing, and the machine is showing very
good performance, delivering an instantaneous luminosity that is increasing
year-by-year. In particular for CMS, the integrated luminosity expected
to be collected in the full Run II period, ranging from 2015 to 2018, is
150 fb−1, which is a huge value if compared to the statistics collected in Run
I, considering also that the B0 cross section increases by a factor of about
two, thanks to the higher centre-of-mass energy of the collisions:

√
s =

13TeV.

Performing the analysis on Run II data can give a large improvement
to the experimental precision reached in the measurement of the angular
parameters. In this section I will describe some new issues that an analysis
on CMS Run-II data should face, and some upgrades that could improve
the results and make them more robust.

135
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9.1.1 Trigger developments

The main negative aspect, at analysis level, of the increased LHC luminos-
ity is the trigger selections. Due to the limited availability of computing
resources, the event reconstruction can be run only on a certain amount of
data. Since it is pointless to collect data if they can never be reconstructed,
the limited number of reconstructed events can be translated in an upper
limit of the rate of events that pass the HLT system. This limit, in the first
three years of Run II, is about 1000Hz, for the data stream dedicated to
physics, and it is calculated taking into account the LHC down-times, when
the detector is not collecting data but the reconstruction process continues.

In addition, the maximum frequency at which the silicon detectors can
be read sets a limit in the L1T output rate to 100 kHz.

When LHC increases the instantaneous luminosity of the collisions, the
rate would increase as well, because the probability of having a proton-
proton interaction with final state that fires the trigger is proportional to
the luminosity. The situation is even worse when the average pileup is
increased, because some HLT algorithms, and most of the L1T ones, can
sum up the contribution of final states originated in different proton-proton
interactions. The firing probability in this case increases more than linearly,
as a function of the luminosity. Due to the rate upper limit, when the
delivered luminosity increases, we need to set tighter requirements in the
trigger algorithms.

Focusing now on the trigger selection used by the B0 → K∗0µ+µ− angu-
lar analysis, in the 2012 run there was a simple requirement on the presence
of two muons with pT > 3.5GeV and |η| < 2.2, and forming a common
displaced vertex with some quality requirements, as described in details in
Section 3.1. Since a simple increase of the pT and η threshold, to keep the
rate stable, would have led to a large drop in the signal efficiency, many stud-
ies have been performed in the selection optimisation, to achieve a sufficient
rate reduction without affecting largely the signal efficiency.

2015 and 2016 trigger

The L1T seed used during 2015 and 2016 runs is not containing any specific
improvement, but only tighter thresholds are applied on the two muons.
Two algorithms are contributing to the trigger:

• a seed with no cuts on the muon transverse momenta, and a cut on
their pseudorapidity |ηL1µ| < 1.4 (1.6). The two thresholds were used
for collisions with higher (1.4) and lower (1.6) values of instantaneous
luminosity;

• a seed with no cuts on the pseudorapidity, and a cut on muon trans-
verse momenta. During collisions at higher (lower) instantaneous lu-
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minosity, the cut on the leading muon is pT L1µ > 12 (11)GeV, and
the cut on the second muon is pT L1µ > 5 (4)GeV.

The HLT path used has a raised requirement on the transverse momenta
of the two muons, with respect to the 2012 version, pT L3µ > 4GeV. There
are not cuts on the muon pseudorapidity, while the vertexing requirements
are still present. In addition, it constraints the requirement of an additional
hadronic track, with pT h > 0.8GeV and forming a common vertex with
the muon pair. Thanks to the latter requirement, the trigger manages to
deal with the higher luminosity values reached without needing to increase
dramatically the cuts on pT .

A preliminary and underestimated prevision on the number of signal
events expected in 2016 dataset can be obtained by applying the same of-
fline selection criteria used in Run 1 analysis to the new data sample, and
adding the matching requirement between the hadronic track firing the trig-
ger and one of the two tracks used to build the candidate at reconstructed-
level. The candidate-B0 invariant mass distribution of the selected sample,
obtained from the full 2016 dataset, is shown in Figure 9.1, for the signal
and J/ψ q2 regions. Note that the selection cuts used were optimised on
the 2012 data and re-optimising them on the Run 2 data would improve the
signal over background ratio. In addition, the analysis upgrades described
in Section 9.1.2 are expected to further improve it.

Figure 9.1: Distribution of the candidate-B0 invariant mass of the 2016
dataset, for the signal (left) and J/ψ (right) q2 regions. The selection cri-
teria applied to the dataset are described in Section 9.1.1. The rough fits
are performed with a pdf obtained from the sum of a Gaussian and an
exponential function.

2017 trigger

The L1T firmware used during 2017 run allowed to exploit the correlations
between pairs of objects, giving the possibility to cut on di-object quantities,
like invariant mass and ∆R =

√

∆η2 +∆φ2. The two L1T seeds used for the
B0 → K∗0µ+µ− channel has been developed to contain cuts on the distance
between the two muons:
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• a seed with no cut on the muon transverse momenta, used a stable cut
on their pseudorapidity |ηL1µ| < 1.5 and a cut ∆Rµµ < 1.4;

• a seed with no cut on the pseudorapidity, and a cut on muon transverse
momenta, pT L1µ > 4GeV for both the leading and second muons, and
a cut on the dimuon distance, ∆Rµµ < 1.2.

In addition the quality requirement on the two muons has been increased,
with respect to 2016 version, from an intermediate quality to the highest
quality possible. These new cuts on the dimuon distance and quality allows
to keep looser thresholds on muon transverse momenta and pseudorapidity,
even if the instantaneous luminosity has been increased with respect to 2016
run.

The HLT path used in 2017 is very similar to the 2016 version. The only
difference, introduced to keep the rate at affordable values, is that the cut
on hadronic track transverse momentum is increased, pT h > 1.2GeV, and
a new requirement has been introduced on the significance of the hadronic
track impact parameter on the transverse plane with respect to the beamspot,
dxy/σ(dxy) > 2. The latter cut is identical to the one applied at recon-
structed level in the Run 1 analysis, as described in Section 3.2.

The same selections described in the previous section and applied to
the 2016 dataset, are now applied to a partial 2017 dataset, containing the
events corresponding to an integrated luminosity of 28 fb−1. The candidate-
B0 invariant mass distribution of the selected sample is shown in Figure 9.2,
for the signal and J/ψ q2 regions.

Figure 9.2: Distribution of the candidate-B0 invariant mass of a partial
2017 dataset, corresponding to 28 fb−1, for the signal (left) and J/ψ (right)
q2 regions. The selection criteria applied to the dataset are described in
Section 9.1.1. The rough fits are performed with a pdf obtained from the
sum of a Gaussian and an exponential function.

9.1.2 Analysis upgrades

On the analysis methods, there are many aspects that can be improved with
respect to the version presented in this thesis.
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The first upgrade will aim to extend the analysis to measure the full set
of angular parameters present in the decay rate. An increased number of
events in the dataset and a better or equal signal-to-noise fraction will be
crucial for this purpose. Also a better handling of the physical boundary
can help with improving the fit stability, needed to extend the measurement.

A second goal is to improve the fit performances, both in terms of time
consumption, for which parallel GPU-based computing can be used, and
in term of stability, for which a simpler efficiency parameterisation can be
tested.

Furthermore, a great improvement to the signal-to-noise ratio can be
achieved by using a selection based on multi-variate analysis, like a Neural
Network. This techniques would allow to maximise the background rejection
by a full exploitation of the information contained in the variables.

9.2 Summary

In this thesis, I have presented an important result of the CMS Collaboration
in the Flavour Physics sector. The angular analysis of the B0 → K∗0µ+µ−

decay has been performed with the data collected by the CMS Experiment in
the 2012 run of pp collisions at

√
s = 8TeV, corresponding to an integrated

luminosity of 20.5 fb−1.
After presenting a general status of the theoretical description of this

analysis and describing the LHC machine and the CMS detector, the details
of the analysis are reported.

Firstly, the selection criteria applied to the collected data, and the pa-
rameterisation of their efficiency and of the detector acceptance, evaluated
on signal simulated samples, have been described.

A complex fitting algorithm has been set up, to extract in a stable and
reliable way the P1 and P ′

5 parameters from the distributions of the K+

π− µ+ µ− invariant mass and of the three angular variables. This fitting
algorithm has been validated in many ways, by testing it on MC samples and
on data control channels, B0 → J/ψ(µ+µ−)K∗0 and B0 → ψ′(µ+µ−)K∗0.

In order to make the results as robust as possible, many sources of pos-
sible systematic uncertainty has been studied. The statistical uncertainties
have been evaluated using a simplified form of a bi-dimensional Feldman-
Cousins approach, to guarantee the correct coverage even when the result is
close to an nonphysical region in the parameter phase-space.

Finally, the fit procedure has been applied on data, and the results ex-
tracted. Currently, they are among the most precise measurements of these
parameters, they are compatible with the results from the other experiments
and they show no discrepancies to the Standard Model predictions.



140 CHAPTER 9. FUTURE PERSPECTIVE AND CONCLUSIONS



Bibliography

[1] G. et al. (ATLAS Collab.) Aad. Journal of Instrumentation, 3:8003,
August 2008.

[2] R. Aaij et al. Differential branching fraction and angular analysis of
the decay B0 → K∗0µ+µ−. JHEP, 08:131, 2013.

[3] R Aaij et al. Measurement of Form-Factor-Independent Observables in
the Decay B0 → K∗0µ+µ−. Phys. Rev. Lett., 111:191801, 2013.

[4] R. Aaij et al. Angular analysis of the B0 → K∗µ+µ− decay using 3 fb−1

of integrated luminosity. JHEP, 02:104, 2016.

[5] R. Aaij et al. Angular analysis of the B0 → K∗µ+µ− decay using 3 fb−1

of integrated luminosity. JHEP, 02:104, 2016.

[6] R. Aaij et al. Test of lepton universality with B0 → K∗0ℓ+ℓ− decays.
JHEP, 08:055, 2017.

[7] Roel Aaij et al. Angular analysis of the B0 → K∗0µ+µ− decay using 3
fb−1 of integrated luminosity. JHEP, 02:104, 2016.

[8] T. Aaltonen et al. Measurements of the Angular Distributions in the
Decays B → K(∗)µ+µ− at CDF. Phys. Rev. Lett., 108:081807, 2012.

[9] K. et al. (ALICE Collab.) Aamodt. Journal of Instrumentation, 3:8002,
August 2008.

[10] A. Abdesselam et al. Lepton-flavor-dependent angular analysis of B →
K∗ℓ+ℓ−. Phys. Rev. Lett., 118:111801, 2017.

[11] W. et al. (CMS Collab.) Adam. Track Reconstruction in the CMS
tracker. Technical Report CMS-NOTE-2006-041, CERN, Geneva, Dec
2006.

[12] Wolfgang Altmannshofer, Patricia Ball, Aoife Bharucha, Andrzej J.
Buras, David M. Straub, and Michael Wick. Symmetries and Asym-
metries of B → K∗µ+µ− Decays in the Standard Model and Beyond.
JHEP, 01:019, 2009.

141



142 BIBLIOGRAPHY

[13] A. A. et al. (LHCb Collab.) Alves, Jr. Journal of Instrumentation,
3:8005, August 2008.

[14] Bernard Aubert et al. Angular Distributions in the Decays B —¿ K*
l+ l-. Phys. Rev., D79:031102, 2009.

[15] B. Aubert et al. Time-integrated and time-dependent angular analyses
of B → J/ψKπ: A measurement of cos2β with no sign ambiguity from
strong phases. Phys. Rev. D, 71:032005, 2005.

[16] G. L. et al. (CMS Collab.) Bayatian. CMS Physics: Technical De-

sign Report Volume 1: Detector Performance and Software. Technical
Design Report CMS. CERN, Geneva, 2006.

[17] G. L. et al. (CMS Collab.) Bayatyan. CMS TriDAS project: Techni-

cal Design Report, Volume 1: The Trigger Systems. Technical Design
Report CMS.

[18] M. Beneke and T. Feldmann. Symmetry breaking corrections to heavy
to light B meson form-factors at large recoil. Nucl. Phys., B592:3–34,
2001.

[19] M. Beneke, T. Feldmann, and D. Seidel. Systematic approach to exclu-
sive B → V l+l−, V γ decays. Nucl. Phys., B612:25–58, 2001.

[20] M. Beneke, Th. Feldmann, and D. Seidel. Exclusive radiative and elec-
troweak b → d and b → s penguin decays at NLO. Eur. Phys. J.,
C41:173–188, 2005.

[21] Christoph Bobeth, Mikolaj Misiak, and Jorg Urban. Photonic penguins
at two loops and mt dependence of BR[B → Xsl

+l−]. Nucl. Phys.,
B574:291–330, 2000.

[22] O. S. et al. Bruning. 2004.

[23] S. et al. (CMS Collab.) Chatrchyan. Journal of Instrumentation, 3:8004,
August 2008.

[24] Serguei Chatrchyan et al. Performance of CMS muon reconstruction in
pp collision events at

√
s = 7 TeV. JINST, 7:P10002, 2012.

[25] Serguei Chatrchyan et al. Angular analysis of the decayB0 → K∗0µ+µ−

from pp collisions at
√
s = 8 TeV. Phys. Lett. B, 753:424, 2016.

[26] S. et al. Cittolin. CMS The TriDAS Project: Technical Design Re-

port, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger

and data-acquisition project. Technical Design Report CMS. CERN,
Geneva, 2002.



BIBLIOGRAPHY 143

[27] M. Ciuchini, M. Fedele, E. Franco, S. Mishimad, A. Paul, L. Silvestrini,
and M. Valli. B → K∗ℓ+ℓ− decays at large recoil in the Standard
Model: a theoretical reappraisal. Submitted to JHEP.

[28] CMS Collab. The CMS electromagnetic calorimeter project: Technical

Design Report. Technical Design Report CMS. CERN, Geneva, 1997.

[29] CMS Collab. The CMS hadron calorimeter project: Technical Design

Report. Technical Design Report CMS. CERN, Geneva, 1997.

[30] CMS Collab. The CMS magnet project: Technical Design Report. Tech-
nical Design Report CMS. CERN, Geneva, 1997.

[31] CMS Collab. The CMS muon project: Technical Design Report. Tech-
nical Design Report CMS. CERN, Geneva, 1997.

[32] Kyle S. Cranmer. Kernel estimation in high-energy physics. Comput.

Phys. Commun., 136:198–207, 2001.

[33] F. James, and M. Winklerc. Minuit
user’s guide. http://seal.web.cern.ch/seal/work-
packages/mathlibs/minuit/doc/doc.html, 2004.

[34] G. J. Feldman and R. D. Cousins. Unified approach to the classical
statistical analysis of small signals. Phys. Rev. D, 57:3873, 1998.

[35] V. et al. (CMS Collab.) Karimki. The CMS tracker system project:

Technical Design Report. Technical Design Report CMS. CERN,
Geneva, 1997.

[36] Vardan Khachatryan et al. Angular analysis of the decay
B0 → K∗0µ+µ− from pp collisions at

√
s = 8 TeV. 2015. Submitted to

to Phys. Lett. B.

[37] Alexander Khodjamirian. QCD sum rules for heavy flavor physics. AIP
Conf. Proc., 602:194–205, 2001. [,194(2001)].

[38] Joaquim Matias and Nicola Serra. Symmetry relations between angular
observables in B0 → K∗µ+µ− and the LHCb P ′

5 anomaly. Phys. Rev.,
D90(3):034002, 2014.

[39] K.A. Olive. Review of particle physics, 2014-2015. Chin. Phys. C,
38:090001, 2014.

[40] S. Descotes-Genon, T. Hurth, J. Matias, and J. Virto. Optimizing the
basis of b → k∗ℓ+ℓ− observables in the full kinematic range. JHEP,
1305:137, 2013.



144 BIBLIOGRAPHY

[41] David W. Scott. Multivariate density estimation : theory, practice, and

visualization. Wiley series in probability and mathematical statistics
: Applied probability and statistics section. Wiley-Interscience, New
York, Chichester, Brisbane, 1992.

[42] Albert M Sirunyan et al. Measurement of angular parameters from the
decay B0 → K∗0µ+µ− in proton-proton collisions at

√
s = 8 TeV. 2017.
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