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Abstract

In this dissertation, we investigate two main research directions towards net-
work efficiency and green communications in heterogeneous cellular networks
(HetNets) as a promising network structure for the fifth generation of mobile
systems. In order to analyze the networks, we use a powerful mathematical
tool, named stochastic geometry. In our research, first we study the perfor-
mance of MIMO technology in single-tier and two-tier HetNets. In this work,
we apply a more realistic network model in which the correlation between
tiers is taken into account. Comparing the obtained results with the com-
monly used model shows performance enhancement and greater efficiencies
in cellular networks. As the second part of our research, we apply two Cell
Zooming (CZ) techniques to HetNets. With focus on green communications,
we present a K−tier HetNet in which BSs are only powered by energy har-
vesting. Despite the uncertain nature of energy arrivals, combining two CZ
techniques, namely telescopic and ON/OFF scenarios, enables us to achieve
higher network performance in terms of the coverage and blocking probabil-
ities while reducing the total power consumption and increasing the energy
and spectral efficiencies.
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Chapter 1

Introduction

By evolving cellular communication technologies from the analog telecommu-
nications standards in 1G to digital telecommunications and very first steps
taken towards data services by introducing Short Message Service (SMS) in
2G Global System for Mobile (GSM), we reached the age of smartphones
and 3G Universal Mobile Telecommunication System (UMTS) where real-
time video calls can be supported due to higher network bandwidth.

Thereafter, mobile broadband internet access and cloud computing have
been supported by 4G Long Term Evolution-Advanced (LTE-A) systems in
order to address increasing demand of cellular networks for high data rates
and mobility. More recently, the fifth generation of mobile communication
systems, 5G, has been introduced to provide more bandwidth and lower
latency than previous generations.

Moreover, 5G has emerged not only to enhance the current system per-
formance but also to introduce several new features to the realm of cellular
communications [1, 2]. Table 1.1 gives a list of 5G requirements.

On one hand, improving the performance of current systems is always an
important motivation to move forward to the new mobile generation while
on the other hand, 5G is also expected to introduce several new features. For
instance, Internet of Things (IoT) and Machine-to-Machine (M2M) commu-
nications which are among the most promising aspects of 5G.

Different methods and technologies have been proposed for 5G in the
literature, for example Heterogeneous Networks (HetNet), millimeter-wave
(mmWave) and Massive Multiple-Input Multiple-Output (M-MIMO). In Sub-
section 1.2, we will briefly introduce the proposed methods.

5G requirements and also achievement of new features need to be fulfilled
in an affordable and sustainable way. Therefore, considerations regarding
the power and energy consumption in 5G are of particular importance from
both economic and environmental points of view. Specifically, the abundant
number of connected devices expected in 5G has made energy a main concern.

In this chapter, first we will explain our motivations toward this topic.
Then, we will summarize the existing works in this area. Presenting the
research methodology and providing a list of our contributions and achieve-
ments will conclude this chapter.
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Table 1.1: 5G Requirements [1].
Requirements Desired value Application example

Data rate 1 to 10 Gb/s Virtual reality office

Data volume

9 Gbytes/h in busy

period

500 Gbytes/mo/subscriber

Stadium

Dense urban information society

Latency Less than 5 ms Traffic efficiency and safety

Battery life One decade
Massive deployment of sensors

and actuators

Connected

devices

300, 000 devices per

AP

Massive deployment of sensors

and actuators

Reliability 99.999%
Teleprotection in smart grid network

Traffic efficiency and safety

1.1 Motivations

Along with worldwide efforts toward reducing the use of fossil fuels and con-
trolling the emission of carbon dioxide to the atmosphere, the communica-
tions community has established a way both in academia and industry to
address this issue known as green communications.

The importance of studying green communications comes from at least
two main perspectives, namely economic and environmental. On one hand,
increasing energy consumption of mobile networks along with the worldwide
rise in energy cost, increases the operator expenditure severely. On the other
hand, environmental concerns regarding the increase of carbon dioxide level
in the atmosphere and its consequent effects on global weather and human
health, encourage both academia and industry counterparts to investigate
energy efficient methods in information and communication technology (ICT)
platforms.

In particular, based on the expected perspectives for 5G, including Het-
Nets, massive MIMO (M-MIMO), D2D, IoT, etc., energy consumption in
this system would be inevitably high [3] and therefore it justifies the signifi-
cance of studying Energy Efficiency (EE) and Spectral Efficiency (SE) in 5G
scenarios.

Understanding the performance of the cellular systems requires proper
modeling which is at the same time accurate and easy to work with. Modeling
HetNets based on independent Poisson Point Processes (PPPs) has been
widely used in the literature, however this model fails to capture spatial
correlation and inherent repulsion between the network’s nodes. Thus, we
focus on a more accurate model following Poisson Hole Process (PHP) in a
part of our research.
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Although numerous advantages of MIMO systems, like spatial diversity
and higher data rates, have been proved so far, EE of MIMO systems still
needs to be investigated carefully through different network scenarios because
of the circuit energy consumption of these systems which is more than Single-
Input Single-Output (SISO) systems due to the use of multiple RF chains
and requirements for more signal processing.

It is worth mentioning that, following the Shannon capacity bounds and
due to the drastic data rate requirements in 5G, the power consumption in
the future networks will inevitably grow [3] since the EE methods only based
on spectrally efficient technologies are not enough. Therefore, designing a
network based on harvesting energy from renewable resources is promising
in 5G [4].

Although it has been shown that in current cellular networks about 80%
of Base Stations (BSs) work below their estimated peak traffic in 80% of their
lifetime, they still consume almost the same as their peak energy because of
the energy consumption related to cooling and power amplifying circuits [5–
7]. Therefore, the idea of turning off some BSs and offloading the traffic to the
neighbor ones, especially in ultra-dense networks, can cause significant energy
saving while keeping the quality-of-service (QoS) at an acceptable level. To
this aim, the concept of Cell Zooming (CZ) has been introduced which aims
to adjust the BSs coverage area and define working modes (ON/OFF) for
BSs in the network.

Consequently, in this dissertation, we investigate Energy Efficiency (EE)
and Spectral Efficiency (SE) in random cellular networks. To this end, we
study two techniques, namely Multiple-Input Multiple-Output (MIMO) and
Cell Zooming (CZ), and evaluate their performance and efficiencies in random
cellular networks with focus on green 5G. In the next subsection, we will
briefly review the related works.

1.2 Literature review
As mentioned earlier in this chapter, 5G is supposed to support up to 1000
times capacity increase, less than 5 ms round-trip latency and at least 100
billion connected devices around the world [8]. As an exciting example, we
can mention Tactile Internet which has been expected to establish through
5G. In particular, Tactile Internet (also known as Haptic communications)
aims to deliver physical haptic experiences remotely [9]. To this aim, 5G
needs to support ultra-low latency communications, ultra-responsive and
ultra-reliable network connectivity.

Several paradigms have been proposed to address these stringent require-
ments, such as mmWave communications, ultra-dense networks (UDNs),
D2D communications and M-MIMO. Note that gaining from these tech-
niques is mostly at the cost of complex signal processing and high power
consumption. Therefore, it is necessary to design a green 5G network which
is energy-efficient without sacrificing the QoS. In this regard, [3] provides an
overview on both green 5G techniques and energy harvesting for communi-
cation.
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In order to support rapidly increasing traffic load and capacity demand,
HetNets have been introduced as a promising network architecture. Depend
on the path-loss model, shortening the distance between the transmitter and
receiver by dense and random deployment of low power small cells is the key
to increase network capacity.

Mathematical analysis of large-scale wireless networks using Stochastic
Geometry as a powerful tool to model and study random structure networks
has attracted extensive attention in recent years [10]. In particular, [11, 12]
introduce a general framework for downlink analysis of K-tier HetNets. The
key assumption in these networks is to model the BS locations belonging to
different tiers as independent Poisson Point Processes (PPPs). Moreover,
transmit power, spatial density of BS deployment, supported data rate, etc.,
vary across the tiers. Leveraging the independent PPP assumption, closed-
form expressions of the outage probability and the ergodic data rate have
been derived.

Due to the analytical tractability of independent PPP distributed BSs,
the majority of the HetNet works use this model, called Homogeneous Inde-
pendent PPP (HIP) [11–15].

Although modeling the cellular network as a HIP is suitable in terms
of the random placing of the network elements and gives tractable first-
order results, it underestimates the performance of the actual deployment of
cellular network [13]. As a matter of fact, in practical network deployments,
the locations of the BSs are determined in a way to avoid close proximity
and thus intense interference.

Accordingly, several studies have focused on modeling the cellular net-
works considering the correlation between the nodes. For example, [16] stud-
ied Ginibre point process (GPP) which is a repulsive point process. Besides,
downlink performance of cellular networks, where BSs are located following
Determinantal Point Processes (DPPs), has been investigated in [17].

Recently, Poisson Hole Process (PHP) have received a lot of attention
in order to accurately model interference field in wireless networks, such as
cognitive radio networks [18], HetNets [19], and D2D communications [20,21].

As a fundamental work on the characterization of PHP, [22] developed
upper and lower bounds on the Laplace transform of interference experienced
by a typical node in the PHP. Besides, the contact distance in the PHP has
been investigated in [23].

Although PHP is a generalization of well-known and well-studied PPP,
dealing with this process is not straightforward. Thus, some techniques have
been used in the literature to analyze PHP-based wireless networks.

One approach is to approximate the PHP by a homogeneous PPP with
the same density [10]. In another technique, PHP is approximated by its
baseline PPP, i.e., the holes are overlooked [18,24].

Note that each type of PHP approximations is suitable to analyze specific
network parameters accurately while it might be imprecise for other metrics
[22]. For example, in [19], the outage performance, the per-user capacity,
and the area spectral efficiency for HetNets have been derived while authors
proposed a PCP approximation of PHP by matching the first and second
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order statistics. Moreover, in [22], tighter upper and lower bounds for the
Laplace transform of aggregate interference experienced by the typical node
in the PHP have been derived.

Almost all prior works on PHP focused on modeling and characterization
of PHP in the context of simple wireless networks. However, we apply PHP
model in a MIMO HetNet and study its performance in terms of energy and
spectral efficiencies. We compare this model with the commonly used HIP
network to highlight the effect of interference management achieved by using
PHP. In a recent work, [25] studied the performance of M-MIMO in HetNets
while approximating the PHP with its baseline PPP to avoid complexity.

Power saving in cellular networks has been considered in several works
previously. However, most of these works only focused on managing high-
power BSs, called Macro BSs (MBSs) in conventional hexagonal-shape cel-
lular networks.

As a primary work, [26] introduced the concept of CZ in carefully planned
conventional cellular networks where the power consumption of MBSs reduce
by adjusting the cell size according to the network parameters, such as traffic
load, channel conditions and required QoS. Furthermore, in [27] the authors
considered energy saving in the planning phase of cellular networks using
the CZ technique. More recently, [28] used a game theoretic approach to
optimize the cell coverage based on reduction of area power consumption in
the heterogeneous ultra-dense network.

It was shown that under low traffic scenario, reducing the number of active
MBSs energy savings in the order of 25 − 30% are achievable [29]. Besides,
BS sleeping mode has been introduced as an intermediate level between on
and off in order to save energy in cellular networks [30].

In another work, authors in [31] jointly applied stochastic geometry and
the Dynamic Programming technique to design dynamic BS active operation.
Moreover, several BS on/off algorithms were proposed [32–35].

However, all these studies are different from what we have done in our
work in terms of system models, objective functions and/or approaches to
solve their problems. Specifically, they mostly focused on energy saving
through managing high-power BS tier, Macro tier, and neglected the im-
pact of the other lower power BS tiers on the total power consumption of the
HetNets [5]. Note that due to dense deployment of small cells in HetNets,
aggregate power consumption of the lower power BS tiers can even exceed
the Macro tier.

Promising development of Energy Harvesting (EH) techniques and ef-
ficiency along with the low power consumption of small cells in HetNets
provide the opportunity of using self-powered small cell BSs with EH. There
exist several practical wireless systems which use EH, for instance the Huawei
Green Base Station [36].

Although using renewable energy resources, like solar, wind, and kinetic
activities, is environmental friendly and also an economical way to prolong
the network lifetime and improve the energy efficiency of the system [37,38],
the uncertain and intermittent nature of the energy arrivals brings significant
challenges for the system design.
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Optimal power allocation in EH systems has been studied under different
channel models [39–41]. The impact of the energy arrival rates on the cover-
age probability have been examined for K−tier EH HetNets using stochastic
geometry [42]. Downlink analysis of a HetNet with both on-grid and EH BSs
has been analyzed in [43].

However, there exist several works on wireless-powered communication,
for example [44–49]. Since we focus on green communications, we only con-
sider harvesting energy from renewable resources in our work.

1.3 Methodology
In order to study and analyze the system models adopted in our research, we
mainly use two mathematical tools, namely stochastic geometry and Markov
Chain (MC).

In recent decades, cellular networks are moving from hexagonal shape
cellular networks with high power base stations (BSs), called Macro BSs,
to heterogeneous networks that consist of an irregular deployment of BSs
overlaid by low power BSs, like Pico and Femto cells. Traditionally, cellu-
lar networks have been modeled as the BSs placed on a grid, with mobile
users either randomly scattered or located at fixed distances. Although these
models have been used extensively, they suffer from some shortages. First,
these models are highly idealized and can not capture the characteristics of
randomly structured networks. Secondly, the obtained results based on these
models are not very tractable, so they mostly rely on complex system-level
simulations in order to evaluate coverage/outage probability and rate.

Stochastic geometry gives an approach to define and compute macroscopic
properties of randomly structured networks, by averaging over all potential
geometrical patterns for the nodes. In this method, the locations of the
network components, like BSs, mobile users, relays, etc., are considered as
the realizations of some point processes. Accordingly, in the case that the
underlying random model is ergodic, the probabilistic analysis also provides
a tractable way to estimate spatial averages as functions of a relatively small
number of parameters, such as densities of the point processes and other
network parameters [50].

On the other hand, wireless networks are fundamentally dealing with
the intensity of the desired signal and interference which both depend on the
spatial location of the nodes [51]. Accordingly, stochastic geometry enables us
to derive communication-theoretic results on the connectivity, the capacity,
the outage probability, and other fundamental limits of wireless networks.
The authors in [51] and [52] provide the tutorials on stochastic geometry and
the theory of random geometric graphs with focus on wireless and cellular
networks, respectively.

In this work, since we adopt different point processes, in each chapter
first we introduce the system model and then provide the necessary terms
and theorems regarding the stochastic geometry techniques used.

As mentioned earlier in this subsection, Markov Chain is the second math-
ematical tool used in our work. The setting for this model is almost the same
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for all system models, so here we present it in detail.
Along the lines of [53], without loss of generality, we focus on a typical

cell in the cellular network for MC based modeling and performance analysis.
First we assume that the call arrivals to the system follow a Poisson process
with rate λ. Furthermore, the channel holding time TH is assumed to be
the minimum of the user session duration, TS, and the cell dwelling time,
TD, which is defined as time that the mobile user spends in a cell [54]. Both
TS and TD are random variables with exponential distributions with mean
ϑ and 1/TD respectively. Cell dwelling is . Thus we have TH = min(TS,TD),
with mean η = ϑ + 1/TD.

In order to represent the transitions between the available channels and
the unavailable channels a continuous Gilbert-Elliott channel model is adopted.
Based on definition, a channel is unavailable when its downlink SINR value is
less than a predefined threshold. Assume that the number of available chan-
nels per BS is determined as the difference of the total number of channels
and the number of unavailable channels in a cell. Besides, let the transi-
tion rate from the unavailable to the available channel be indicated by α
and the transition rate from the available channel to the unavailable one be
represented as β.

To denote the states in the MC model, a pair of nonnegative integers
(m, n) is used, where m is the number of occupied channels and n is the
total number of channels available to be allocated for users in the typical
cell, including the channels that have already been allocated (i.e., occupied).
Moreover, we define C as the maximum number of available channels in the
typical cell. Therefore, we have m ≤ n ≤ C. Fig. 1.1 depicts the Markov
Chain transition diagram.

The MC state transitions in Fig. 1.1 are given as follows:

1. (m, n) → (m+1, n): By arriving a new call, if there exists a free channel,
i.e., m < n, the number of occupied channels increments by 1.

2. (m, n) → (m − 1, n): By terminating a call served successfully, the
number of occupied channels decrements by 1.

3. (m, n) → (m, n + 1): By turning an unavailable channel to an available
one, which can be allocated to mobile users, because of the time-varying
nature of interference, the number of available channels increments by
1.

4. (m, n) → (m, n − 1): By turning an available channel to an unavail-
able one, which can not be allocated to mobile users, because of the
time-varying nature of interference, the number of available channels
decrements by 1.

A Markov process is reversible and its stationary state distribution exists
if its transition rates satisfy [55]

Λ(S1, S2) · Λ(S2, S3) · . . . · Λ(Su−1, Su) · Λ(Su, S1)
= Λ(S1, Su) · Λ(Su, Su−1) · . . . · Λ(S3, S2) · Λ(S2, S1) (1.1)
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Figure 1.1: Markov chain transition diagram [53]

for any finite sequence of states S1, S2, . . . , Su ∈ Ξ, where Ξ is the set of all
possible states in this Markov process and Λ(Sh, Sk ) denotes the transition
rate from state Sh to state Sk . It can be shown that states in Fig. 1.1 meet
Eq. (1.1) Thus, there exists a stationary state distribution.

Fig. 1.1 provides a four-state interpretation of Eq. (1.1) with purple dash
line. The left and right side of Eq. (1.1) are shown by the red arrows and
blue arrows, respectively. In this way, the product term on the left side of
Eq. (1.1) is α · η · C β · λ and η · αλ · C β on the right side. Obviously, these
two terms are equal. In a similar way, we can show that Eq. (1.1) holds for
any finite number of states in Fig. 1.1.

Moreover, leveraging queuing theory, the stationary state probabilities
are given by [53]

π(m, n) =
1

χ

(
λ

η

)m
1

m!

(
C
n

) (
α

β

)n

, (1.2)

where
(
C
n

)
is the binomial coefficient and gives the number of ways to pick n

available channels out of C, maximum number of available ones. To compute
the stationary state probabilities, given in Eq. (1.2), the ratio of α over β
is required. To find this term, we use the Gilbert-Elliott channel model in
which the probability of a channel being unavailable, ε , is

ε =
β

α + β
. (1.3)

With a simple manipulation, we have α
β =

(1−ε )
ε .

As mentioned, a channel is unavailable when its downlink SINR value
is less than a predefined threshold, therefore ε can be interpreted as out-
age probability, Pout. In the following, with respect to the system model
adopted in each chapter, we derive the coverage probability, Pcov, which is
the complement of the outage probability i.e., Pcov = 1 − Pout. We also use
the stationary state probability to obtain the blocking probability, and the
spatial and energy efficiencies.
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1.4 Contributions and main achievements

In this dissertation, we conduct our research in two directions towards green
communications in 5G.

First, we study MIMO technology in HetNets. We start with a single tier
scenario, called PVT random cellular networks. In this work, we

• study the performance of MIMO in PVT random cellular networks;

• derive the coverage probability and ergodic capacity using stochastic
geometry;

• investigate the blocking probability, EE and SSE using MC model;

• highlight the effect of path-loss exponent on noisy and noise-free sce-
narios;

• compare the obtained results with the SISO scenario under equal sum
power constraints.

In this work, we show the effect of path-loss exponent on the coverage
and blocking probabilities as well as SSE and EE which implies that a PVT
random cellular network with multiple antennas is more sensitive to inter-
ference than to noise. We also present the advantage of MIMO systems over
SISO scenario in terms of EE and SSE.

Further, we extend our work to a MIMO HetNet scenario. Inspired by
the results of the previous work, i.e., higher sensitivity to interference than
to noise, unlike most works on HetNets, the dependency between BSs tiers
is taken into account. Instead of independently deploying the small cells,
we consider an exclusion region around each high power BS and impose the
small cells to be active only outside these regions. Therefore, PBS locations
form a Poisson Hole Process (PHP). Accordingly, we

• apply more accurate model to study interference field in HetNets, which
captures the dependency among tiers;

• derive the the probability density function of the nearest distance to
the PHP;

• provide an expression for the ergodic capacity in terms of Laplace trans-
forms of the signal and interference powers;

• investigate the performance of the network and comparison between
PHP and HIP in terms of coverage probability, EE and SSE;

• show the tightness of the proposed bounds for different model param-
eters.

• highlight the EE and SSE improvement in PHP compare to the HIP;
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In this work, we show the advantage of using PHP to model HetNets. In
particular, considering exclusion region around high power BSs and deploy-
ment of the small cells outside these regions improve the performance of the
HetNets, such as EE and SSE.

In the second research direction, we study Cell Zooming (CZ) in random
cellular networks. To the best of our knowledge, previously, CZ has only
been applied in some structured patterns mostly in conventional hexagonal
shape cellular networks. We show that CZ can be a viable solution towards
green communications in random cellular networks for 5G.

Similar to previous research direction, we start with a simple network
model i.e., PVT random cellular networks. We investigate the network per-
formance and the tradeoff between network parameters. In this work, we

• study two CZ techniques in PVT random cellular networks;

• investigate the effect of coverage adjustment and independent thinning
process on EE and ASE;

• derive the ergodic capacity per user in PVT random cellular networks;

• investigate the tradeoff between EE and ASE and propose a working
region for the network accordingly.

Thereafter, we study a general model of K−tier HetNets and focus on
green communications and in order to justify some assumptions taken in the
previous part, we investigate a green HetNet in which the BSs are off-grid
and only supplied by energy harvesting (EH) from renewable resources. In
this work, we

• study the idea of drop and play BSs;

• consider the challenge of using EH in HetNets due to the uncertain and
intermittent nature of the energy arrivals;

• combine two CZ techniques to improve network performance in terms
of the coverage and blocking probabilities;

• compare the performance of EH CZ networks with the non-EH unbiased
ones in terms of coverage and blocking probabilities, EE and SE.

Also, we have done some additional research in collaboration with the
University of Tehran which is not exactly in the same direction as this dis-
sertation, so we provide it as an appendix.



Chapter 2

Efficiencies in Random MIMO
Cellular Networks

In this chapter which is the first technical part of our work, we investigate the
performance of Multiple-Input Multiple-Output (MIMO) systems in random
cellular networks in terms of Spatial Spectral Efficiency (SSE) and Energy
Efficiency (EE). In this model, M-antenna Base Stations (BS) are randomly
distributed in R2 following a Poisson Point Process (PPP). Each BS forms a
cell in this Poisson-Voronoi Tessellation (PVT) random cellular network and
serves K single-antenna Mobile Users (MUs). Firstly, we provide expressions
for the coverage probability and the ergodic capacity using stochastic geom-
etry techniques. Then, using the Markov Chain (MC) model described in
Section 1.3, we derive the blocking probability, SSE and EE in this network.
Simulation results reveal that a random network with multi-antenna nodes is
more susceptible to interference than to noise. Although a higher path-loss
exponent degrades the coverage probability in a noisy network, it results in
better coverage probability in a noise-free scenario. Besides, our results show
a higher SSE and EE of MIMO compared to Single-Input Single-Output
(SISO), while an equal sum power constraint is considered at the BSs.

2.1 Introduction

The growth of data traffic demand in mobile communication systems has
required to fundamentally re-think the cellular network structure in a totally
different way from conventional hexagonal cells. In this scenario, the notion
of abundant and almost random Base Station (BS) deployment in terms
of micro and femto cells led to the paradigm of Heterogeneous Networks
(HetNets) [56, 57]. In this respect, stochastic geometry provides powerful
tools and techniques to study this sort of random structures [58].

Moreover, the benefits of MIMO systems over SISO systems have been
proved in several aspects, such as Signal-to-Noise Ratio (SNR) enhancement,
throughput gain and power saving [59].

Novel features in next generation mobile communication systems, like
machine-to-machine (M2M) communications and ubiquitous high data-rate
coverage, inevitably require abundant energy and thus massive quantities
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of carbon footprint will be produced as a consequence. In this regard, the
studies focused on Energy Efficiency (EE) become noteworthy not only to
protect the environment but also to reduce the energy-related costs in the
mobile communication industry.

A tractable approach toward random networks using stochastic geometry
is proposed in [13]. Besides, [53] studied a Markov Chain (MC) channel ac-
cess model in Poisson-Voronoi tessellation (PVT) random cellular networks.
The coverage probability and the impact of channel estimation on the perfor-
mance of random networks are studied in [60,61]. Besides, [62] proposed an
accurate expression for the uplink outage probability in independent Poisson
fields of users and BSs. Note that all these works focused on SISO systems.

In addition, [63] proposed an approximation for the signal and interference
power distributions in MIMO systems. The downlink ergodic capacity of
the network with randomly distributed BSs cooperating in hexagonal-shape
clusters was also derived. In another work, a multi-user spatial multiplexing
cellular network was studied and compared with single stream transmission
[64]. Besides, [11] introduced a general model for downlink MIMO HetNets
and provided the ordering results for the coverage probability for the three
considered techniques. Moreover, [65] proposed a tradeoff between the area
spectral efficiency and link reliability in MIMO HetNets utilizing a Toeplitz
matrix representation.

In this work, we investigate the EE and Spatial Spectral Efficiency (SSE)
of a MIMO system in a PVT random cellular network with a MC channel
access model. To this aim, the coverage and blocking probability expressions
have been derived using stochastic geometry. The rest of the chapter is
organized as follows. In Section 2.2, the MIMO system model with imperfect
beamforming at the transmitter is introduced. Section 2.3 focuses on the
MC transition model. The coverage and blocking probabilities are derived
in Section 2.4. The EE and SSE formulation and the simulation results are
provided in Sections 2.5 and 2.6, respectively. Finally, Section 2.7 concludes
this chapter.

2.2 System Model

We consider a PVT random cellular network as depicted in Fig. 2.1. Assume
that the BSs and Mobile Users (MUs) are distributed randomly based on two
independent Poisson Point Processes (PPP), ΦB and ΦM , with density λB
and λM , respectively.

In this model, every BS is equipped with M antennas, while the MUs are
single antenna devices. Each BS serves K MUs in each time slot indepen-
dently, with K ≤ M.

Since our focus is on downlink transmission in this work, we perform our
analysis for a typical mobile user in the network. We consider the nearest
BS association scheme operated by the Control Center in the network. Thus
we sort and label the BSs based on their distance to the typical MU. Taking
advantage of PPP properties, without loss of generality, we assume that the
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Figure 2.1: An example of PVT Random Cellular Network

typical MU is located at the origin and receives the desired data from BS j
which is the nearest BS to it.

The received signal of the typical user, MSi, is given by

yi = vigH
i ju j +

∑
l∈ΦB\{ j}

K∑
k=1

vigH
ilul + n, (2.1)

where the second term is the aggregate inter-cell interference and n∼N (0, σ2)
accounts for the noise at the receiver. Furthermore, gi j =

√
(1 + xi j/D)−αhi j

is the channel vector between BS j and MSi, which captures the small-scale
i.i.d. Rayleigh channel fading, hi j ∼ CN (0, 1), and the non-singular path-
loss model, (1 + xi j/D)−α [51, 63]. In this model, xi j indicates the distance
of MSi to BS j , D denotes a reference distance and α > 2 is the path-loss
exponent. Note that all the antennas of a specific BS suffer from equal
path-loss attenuation. Additionally, u j =

∑K
k=1wk j · mk j , is composed of

the imperfect unit-norm beam alignment vectors, wk j , and the desired data
for MSi transmitted by BS j . Moreover, vi is the unit-norm receive filter at
MSi, which aims to compensate the imperfections of the transmitted beam
alignment, so that vH

i gi j ⊥ wk j,∀k , i.
Note that there is a maximum power constraint PT for each BS, which

is equally divided among the transmitting antennas. Also, xi j is a random
variable due to the random locations of the BSs in the network.

2.3 Network Model

We apply the MC process introduced in Section 1.3 to model the transitions
between channel states including available and unavailable channels in a typ-
ical cell in the PVT random cellular network. In reality, access to a channel
to initiate a successful call depends on parameters like the call arrival rate,
the maximum number of available channels, etc. As mentioned, in this MC
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model, the network state is presented by an (m, n)-tuple in which m is the
number of occupied channels and n is the total number of channels, including
free and occupied ones.

We re-write Eq. (1.2) here as follows,

π(m, n) =
1

χ

(
µ

η

)m
1

m!

(
C
n

) (1 − ε

ε

)n
, (2.2)

where µ, η and C are the call arrival rate, the mean channel holding time and
the total number of channels, respectively, and χ indicates the normalization
factor. And ε denotes the probability of a channel being unavailable.

Analogous but complementary to the definition of the coverage probabil-
ity [13], we assume a channel is “unavailable” if the Signal-to-Interference-
plus-Noise Ratio (SINR) of this link falls below predefined threshold, γ.
Therefore,

ε = P
(
SINR < γ

)
. (2.3)

Note that in some works, ε is also called the outage probability, which
is the complement of the success probability. In the next section, first the
SINR of a typical MU and the coverage probability will be derived, and then
the blocking probability will be computed.

2.4 Coverage And Blocking Probabilities

Following Eq. (2.1) the SINR of the typical MU after intra-cell interference
cancellation is given by

SINR =
(1 + r)−α |hH

i jwi j |
2∑

l∈ΦB\{ j}
∑K

k=1 |g
H
ilwkl |

2 + Kσ2/PT
(2.4)

=
(1 + r)−αS

I(ΦB) + Kσ2/PT
, (2.5)

where, I(ΦB) is the aggregate inter-cell interference and r is the link length
from the typical user, located at the origin, to the nearest BS ∈ ΦB and has
probability density function (PDF)

fr (r) = 2πλBre−πλBr2 . (2.6)

Therefore, the coverage probability can be derived along the lines of [13],

P(SINR>γ)=
∫

r>0
2πλBre−πλBr2

· P

(
S > γ(1 + r)α

(
I(ΦB) +

Kσ2

PT

)
���r
)

dr . (2.7)
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2.4.1 General Expression

Let f y (y) be the PDF of
(
I(ΦB) + Kσ2

PT

)
. Hence,

P

(
I(ΦB) +

Kσ2

PT
<

S
γ(1 + r)α

���r
)

= ES



∫ Sγ−1(1+r)−α

0
f y (y)dy


= ES

[∫ +∞
−∞

f y (y)1(0 ≤ y ≤ Sγ−1(1 + r)−α)dy
]

(a)
= ES

[∫ +∞
−∞

e−2π
Kσ2

PT
j s
LI(2π j s)

·
e2πSγ−1(1+r)−α j s − 1

2π j s
ds


(b)
=

∫ +∞
−∞

e−2π
Kσ2

PT
j s
LI(2π j s)

·
LS (−2π(γ(1 + r)α) j s) − 1

2π j s
ds. (2.8)

where, 1(·) is the indicator function and j =
√
−1. Also, (a), (b) follow

from the Plancheral-Parseval and Fubini theorems, respectively. LI(·), LS (·)
denote the Laplace transforms w.r.t. the interference and signal powers,
respectively.

Based on the assumptions in Section 2.2 , since |hi j | is drawn from a
Rayleigh distribution and the MIMO beamforming space dimension is (M −
K + 1), it can be shown that the signal power follows from the Gamma
distribution with the shape and scale parameters as S ∼ Γ(M −K + 1, 1), and
therefore we have

LS (s) = (1 + s)−(M−K+1) . (2.9)

Furthermore, [63] proves that

I(ΦB) =
∑

l∈ΦB\{ j}

K∑
k=1

|gH
ilwkl |

2 d
=

∑
l∈ΦB\{ j}

(1 + xl )−αZl, (2.10)

where, Zl ∼ Γ(K, 1) and ( d
=) stands for equality in distribution. Thus, the

Laplace transform of the aggregate interference is given by

LI(s) = EΦB,g
[
e−sI(ΦB)

]

= EΦB,Zl

[
e−s

∑
l∈ΦB\{ j }

(1+xl )−αZl
]

(a)
= EΦB



∏
l∈ΦB\{ j}

EZl

[
e−s(1+xl )−αZl

]

= EΦB



∏
l∈ΦB\{ j}

(
1 + s(1 + xl )−α

)−K
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(b)
= exp

{
−2πλB

∫ +∞
r

(
1−

(
1+s(1+x)−α

)−K )
x dx

}
= exp

{
πλB (1 + r) ·

(
(r − 1)

− (1 + r) 2F1

(
K,
−2

α
; 1 −

2

α
;−s(1 + r)−α

)
+ 2 2F1

(
K,
−1

α
; 1 −

1

α
;−s(1 + r)−α

))}
(2.11)

where (a) comes from the independence of channel fading and PPP and (b)
follows from the probability generating functional of PPP, ΦB. Moreover,
2F1(a, b; c; d) is the Gaussian hypergeometric function.

2.4.2 Special Case: Fully Loaded Network

In case the network is fully loaded, i.e., M = K , we have the following lemma.

Lemma 1. The coverage probability in a fully loaded MIMO network is

P(SINR > γ) =
∫

r>0
2πλBre−πλBr2 · e−γ(1+r)α Kσ2

PT

· exp

{
πλB (1 + r) ·

(
r − 1 − (1 + r)

· 2F1

(
K,
−2

α
; 1 −

2

α
;−γ

)
+ 2 2F1

(
K,
−1

α
; 1 −

1

α
;−γ

) )}
dr . (2.12)

Proof. In a fully loaded network, S ∼ Exp(1), and we have

P

(
S > γ(1 + r)α

(
I(ΦB) +

Kσ2

PT

)
���r
)

= EI

[
P

(
S > γ(1 + r)α

(
I(ΦB) +

Kσ2

PT

)
���r, I(ΦB)

)]

= EI

[
exp

(
−γ(1 + r)α

(
I(ΦB) +

Kσ2

PT

))]
. (2.13)

By substituting Eq. (2.13) in Eq. (2.7),

P(SINR > γ) =
∫

r>0
2πλBre−πλBr2

· e−γ(1+r)α Kσ2

PT LI
(
γ(1 + r)α

)
dr, (2.14)

where LI(·) is given by Eq. (2.11). �

The result of the previous lemma is noteworthy as it results in greatly
improved tractability and much shorter simulation time compared to con-
ventional Monte-Carlo simulation.
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Figure 2.2: Effect of path-loss exponent on coverage probability in noisy and
noise-less networks

In the following, we utilize the results obtained above to derive the block-
ing probability, which is the building block to compute SSE and EE.

By definition [53], a new call arrival will be blocked if all the available
network resources in a typical cell are already occupied, which means that
the number of active users is equal to the total number of available channels
in the cell. Thus, the blocking probability is given by

pb =
∑

m=n≤C

1

χ

(
µ

η

)m
1

m!

(
C
n

) (a
b

)n
(2.15)

where
a
b
=

1 − ε

ε
. (2.16)

and ε is given in Eq. (2.3).

2.5 SSE and EE

In this section, we aim to compute the Spatial Spectral Efficiency (SSE) and
the Energy Efficiency (EE) in the system model described in Section 2.2. It
is worth mentioning that based on Palm theory, to compute SSE and EE
of the whole network, it is sufficient to find SSE and EE for a typical MU
and BS, respectively, and then extend the results to the entire PVT random
cellular network.

The throughput of any cell with bandwidth W is

Tc = (1 − pb) ·W · C ·
∑

0≤m≤n≤C

m · π(m, n), (2.17)

where C is the Ergodic Capacity of a typical MU. Based on Eq. (2.17), cell
throughput is a function of the blocking probability, the ergodic capacity and
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Figure 2.3: Coverage probability of MIMO systems with equal sum power
constraint
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Figure 2.4: Coverage probability for M = 5 in a noisy network

the probability of finding an available channel. Accordingly,

C = E [log2(1 + SINR)] =
∫ +∞
0
P

(
log2(1 + SINR

)
> t)dt

=

∫ +∞
0
P(SINR > 2t − 1)dt (2.18)

which follows from positivity of SINR. Therefore, C can be simply obtained
in general from Eq. (2.7), and in the special case of fully loaded network
from Eq. (2.12). To compute SSE in a PVT random cellular network using
cell throughput, we have

SSE = λB · Tc (2.19)

= (1 − pb)WλB ·

∫ +∞
0
P(SINR > 2t − 1)dt
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·
∑

0≤m≤n≤C

m · π(m, n) (2.20)

Moreover, the Energy Efficiency is the total cell throughput, TLT , divided
by the lifetime energy consumption of a BS:

EE =
TLT

ELT
(2.21)

where ELT consists of three main parts, namely the consumed energy in fac-
tories during the manufacturing phase, the required energy for maintenance
and the transmission-related energy, denoted by E1, E2 and E3, respectively.
Thus,

E3 = *
,
h · PT

∑
0≤m≤n≤C

m · π(m, n) + k+
-
· tLT (2.22)

where tLT represents the lifetime of the BS. Also, h and k are the scaling
coefficients of the total transmission power, PT .

Therefore, EE in Eq. (2.21) is given by

EE =
Tc · tLT

E1+E2+
(
h ·Ptr

∑
0≤m≤n≤C m · π(m, n) + k

)
·tLT

. (2.23)

2.6 Performance Evaluation and Simulation Re-
sults

To investigate the performance of the MIMO scenario in a PVT random
cellular network, in this section we provide some simulation results.

Figs. 2.2, 2.3 and 2.4 illustrate the coverage probability of a MIMO
system in a fully loaded network. As expected, increasing the noise level
degrades the coverage probability. We consider σ2 = −20 dBm in our sim-
ulations. Moreover, Fig. 2.2 displays the effect of the path-loss exponent
on coverage probability. Although α controls the interference level, a higher
path-loss exponent degrades the coverage probability in a noisy network as it
is multiplied by the noise power in the exponent of Eq. (2.12). On the other
hand, in a noise-free scenario, increasing α improves the coverage probability,
since it makes the interference decrease.

Fig. 2.3 illustrates the coverage probability in MIMO networks with
different numbers of transmit antennas in each BS. With a fixed sum power
constraint, PT , for all types of the BSs, by increasing M, the transmission
power of each antenna reduces and thus the coverage probability degrades.
Besides, Fig. 2.4 depicts the coverage probability as a function of the BS
density, λM , for different path-loss exponents. As shown, by increasing the
BS density, the network becomes more sensitive to interference, which means
that the higher α, the better the coverage probability, due to less aggregate
interference.

In Fig. 2.5, the blocking probability for three MIMO systems in noisy
and noise-less networks is presented. As expected, the noise-free scenario
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Figure 2.5: Blocking probability in MIMO system with equal sum power
constraint
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Figure 2.6: Blocking probability in MIMO systems with antenna max power
constraint and BS sum power constraint

outperforms the system performance in the presence of noise. Additionally,
Fig. 2.6 shows the effect of different power constraints on blocking proba-
bility. As depicted, an increasing number of transmit antennas reduces the
blocking probability under both max power and sum power constraints, and
in the max power constraint scenario the blocking probability improvement
is higher as the number of transmit antennas increases. In Figs. 2.7 and 2.8,
the spatial spectral efficiencies of MIMO and SISO systems are illustrated
as a function of the call arrival rate, µ, in noise-less and noisy networks,
respectively. Besides, Figs. 2.9 and 2.10 show the effect of µ on the energy
efficiency of MIMO and SISO systems. In noise-less networks, both SSE and
EE decrease as the call arrival rate increases. However, there is a µ which
maximizes SSE and EE in noisy networks. As a matter of fact, to achieve
maximum EE and SSE, it is important to carefully consider the call arrival
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Figure 2.7: Spatial spectral efficiency of MIMO and SISO systems in a noise-
less network
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Figure 2.8: Spatial spectral efficiency of MIMO and SISO systems in a noisy
network

rate. Moreover, the simulation results reveal the SSE and EE improvement
in a MIMO rather than SISO scenario.

Finally, the last two Figs. 2.11 and 2.12 reflect the impact of the path-
loss exponent on SSE and EE in MIMO systems. As shown, similar to
incrementing the number of transmit antennas in BSs, increasing the path-
loss exponent also causes an improvement in SSE and EE, which implies that
random MIMO cellular networks are more susceptible to interference than
to noise, since α affects and degrades the aggregate interference more than
the desired signal.

To sum up, simulation results showed the effect of the path-loss exponent
on noisy and noise-free networks. Besides, coverage and blocking probability
were depicted in different scenarios. And finally, the performance of random
MIMO cellular networks in terms of EE and SSE were presented.
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Figure 2.9: Energy efficiency of MIMO and SISO systems in a noise-less
network
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Figure 2.10: Energy efficiency in MIMO and SISO systems in a noisy network

2.7 Conclusion
In this work, we have studied the performance of a MIMO system with im-
perfect beam alignment in a PVT random cellular network and derived the
coverage probability and ergodic capacity. By exploiting a MC transition
model for the network, we obtained blocking probability, energy efficiency
and spatial spectral efficiency. Our simulation results show that a PVT ran-
dom cellular network with multiple antennas is more sensitive to interference
than to noise. In fact, the higher path-loss exponent degrades the aggregate
interference more than the desired signal, and thus has positive impact on
the coverage and blocking probabilities as well as SSE and EE. Finally, con-
sidering different kinds of network infrastructures, e.g., with macrocells and
femtocells, is an interesting direction for future work.
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Chapter 3

MIMO HetNets with Inter-Tier
Dependence

In this chapter, we study the Energy Efficiency (EE) and Spatial Spectral
Efficiency (SSE) of MIMO Heterogeneous Random Cellular Networks (Het-
Nets). To this aim, we consider a 2−tier MIMO cellular network consisting
of Macro and Pico tiers whose BS locations follow a Poisson Point Process
(PPP) and a Poisson Hole Process (PHP), respectively. The idea come from
considering an exclusion region around the high power Macro BSs (MBSs)
where there is no active low power Pico BS (PBS), in order to reduce cross
tier interference [66]. As the intermediate steps toward our final goal i.e.,
obtaining EE and SSE, we evaluate the coverage/outage probability of each
tier. Moreover, we derive a new expression for the Ergodic capacity in this
network as a function of Laplace transform of the signal and interference
power. Although using PHP to model Pico BS locations is a more realis-
tic and accurate distribution model, the obtained results are more complex
than well-known homogeneous independent process (HIP). Thus, we examine
the model through numerical evaluation where we show the advantage of the
PHP model over HIP. This observation gives theoretical guidelines for BS de-
ployment for the next generation of mobile communication systems, namely
5G. For example, we show that considering the exclusion regions around high
power BSs is more effective than adding a new tier of BSs in order to increase
coverage probability.

3.1 Introduction

The fifth generation of mobile communication systems, 5G, is currently be-
ing investigated with a number of unprecedented challenges and technical
requirements which push researchers and providers to re-think the structure
of cellular networks and find the proper solutions to address them. For in-
stance, 5G is expected to offer 1000 times more capacity and to support 7
trillion connected devices [67].

The key requirements of 5G can be listed as follows: high data rate and
low end-to-end latency, massive number of connected devices and ubiquitous
coverage, compatibility with the existing cellular infrastructures, cost and
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energy efficiency, etc. [1,2,8]. To fulfill these requirements, new developments
such as massive Multiple-Input Multiple-Output (MIMO) systems and the
idea of small cells and random deployment of Base Stations (BSs) in terms of
Heterogeneous Network (HetNet) have been proposed and studied [56,57,68].

Hence, as a consequence of network densification due to the growth of data
traffic demand and of the enormous number of connected wireless devices,
the power consumption of cellular networks rapidly increases, which results
in much larger operating cost and CO2 emission levels [69]. Therefore, the
concept of green cellular networking in 5G which addresses Energy Efficiency
(EE) and environmental concerns attracts a lot of attentions recently, for
example in [35,70].

In this work, we investigate the performance of MIMO HetNets in terms of
EE and patial Spectral Efficiency (SSE). In order to study random networks,
some novel tools like stochastic geometry enable us to analyze them effi-
ciently [13,58,71]. However, due to tractability and ease of dealing with the
Poisson Point Process (PPP), most works on HetNets, e.g., [72–74], consider
independent tiers of BSs distributed based on independent PPPs, which is
popularly referred to as the Homogeneous Independent Poisson (HIP) model.
In reality, within the network planning procedure, the deployment of other
tiers of BSs is carefully taken into account. Therefore, considering spatial
correlation between different tiers in the network makes the model more real-
istic, which leads to more reliable results and insights. Note that the spatial
correlation of tiers does not contradict the random nature of HetNets. Ac-
cording to the small cell concept, BSs are arbitrarily deployed in order to
enhance coverage and satisfy the varying capacity demand [19].

In this work we consider the well-known and studied multiple-input and
multiple-output (MIMO) systems whose advantages have been proved in
terms of power saving, throughput gain, etc. [59]. Moreover, we study a
more accurate model for HetNets based on the Poisson Hole Process (PHP),
which will be introduced later. By applying MIMO in this HetNet model,
the perspective is to enable 5G to fulfill the throughput and coverage require-
ments while achieve higher EE and SSE.

Recently, a PHP model has been exploited to characterize inter-tier de-
pendence of the BSs’ locations in HetNets [19, 22]. These works analyze the
interference and outage probability in 2−tier SISO networks. Besides, [22]
proposed a new approach to approximate PHP and derived tighter bounds for
the performance of PHP networks compared to the previous approximations
in [71].

In this regard, [72] focused on coordinated beamforming techniques in
a 2−tier HetNet. Efficiency of these methods was investigated in order to
reduce intra-cell and inter-cell interference in this network. In [75], the impact
of BS density on the EE in ultra dense HetNets was studied using stochastic
geometry. Besides, [76] considered the EE and Spatial Spectral Efficiency
(SSE) in a single tier random MIMO network.

A game-theoretic approach is used in MIMO HIP networks in order to
study cooperative and non-cooperative energy efficient power control strate-
gies [73]. In addition, [74] studied the effect of the network load on EE in
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MIMO HIP networks with wireless backhaul. The results showed a signifi-
cant EE gain of a 2−tier network over one with a single tier. Moreover, [65]
proposed a tradeoff between the area spectral efficiency and link reliability
in MIMO HetNets utilizing a Toeplitz matrix representation.

To the best of our knowledge, only [25] has recently considered a PHP
model for BS distribution in massive MIMO HetNets. However, authors ap-
proximated the signal and interference power with Gamma distributions and
avoid complexity by approximating PHP with the baseband PPP. In this
work, we show the advantages of this model and provide theoretical guide-
lines for BS deployment. In particular, [11] introduced a general model for
downlink MIMO HetNets and provided the ordering results for the cover-
age probability for the three considered techniques. It also derived an up-
per bound for the coverage probability assuming a Poisson BS distribution.
However, in this work we derive the lower and upper bounds of the coverage
probability for the PHP model. We also show the tightness of these bounds
through numerical evaluations. Finally, the ergodic capacity, EE and SSE in
a 2−tier MIMO HetNet based on the PHP model are derived.

The rest of the chapter is organized as follows. In Section 3.2, the system
model will be introduced. Section 3.3 provides the network metrics includ-
ing the coverage probability, ergodic capacity, SSE and EE. The lower and
upper bounds for the Laplace transform of the aggregate interference will
be given in Section 3.4. Moreover in this section, the Laplace transform of
the aggregate interference in HIP networks is presented as a benchmark for
comparison. Finally, Sections 3.5 and 3.6 provide the numerical evaluations
and conclusions of this chapter, respectively.

3.1.1 Motivations and Contributions

In this chapter, we investigate the performance of a 2−tier HetNet in which
MBSs are located based on a homogeneous PPP and PBS’s locations follow
a PHP.

Most works in the field of multi-tier HetNets consider HIP to model the
BS locations. Although this assumption is fairly accurate in modeling the
irregularity of the BS locations in random networks, it seems inadequate to
address the spatial interference management techniques considered during
the cellular network planning procedure. This type of interference manage-
ment methods is based on the spatial interactions among different tiers of the
BSs and controls the interference by preventing the BSs from being closer
to each other than a predefined minimum distance. Note that both HetNets
and MIMO systems are typically interference-limited, therefore any attempt
to reduce or control the interference would be noteworthy.

PHP is a generalization of HIP. As will be defined later, in order to obtain
PHP, we need to define an exclusion region of radius D around high power
BSs in a HIP model. Therefore, in the special case of D = 0, PHP degenerates
to HIP. So PHP captures all the advantages of HIP and also allows to address
more general and more realistic scenarios.

To this aim, in this work we investigate the PHP model, which on one
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hand maintains the irregular feature of the BS locations in random networks
and on the other hand provides spatial interaction among the transmitters.
We will show that this model improves the network performance compared
to the HIP model.

In this chapter, we show that the 2−tier PHP model outperforms 2 and
3−tier HIP networks, which implies that instead of deploying a new tier of
high density low power BSs to improve the network throughput, interference
could be managed by defining an exclusion region around the high power BSs
and therefore achieve higher performance.

There are two ways to apply PHP model in real networks. First, consider
this model in the network planning phase. Second, in current networks, i.e.,
HIPs, by imposing small cells to follow PHP. In those networks, only the
small cells which are farther than a specific value to the MBSs remain active.

In this work, we first obtain distance distribution to the nearest interferer
BS in PHPmodel. Using this, we derive several metrics including outage/cov-
erage probability and Ergodic capacity. While these metrics are individually
important and give useful insights about the network performance, they are
adopted to obtain our primary goal in this chapter, i.e., to investigate SSE
and EE. A brief explanation of each metric and a discussion of the relations
among them are provided in Subsection 3.2.4.

In order to characterize the above mentioned metrics without sacrificing
mathematical tractability, we adopt two approximations for the PHP model
which respectively overestimate and underestimate the aggregate interference
received at a certain point. Therefore, these approximations give lower and
upper bounds for the metrics. We will show through numerical evaluations
that the proposed bounds are tight.

The proposed analytical framework to study a MIMO HetNet is provable
and more reliable than only simulation. Thanks to stochastic geometry, the
numerical evaluation of the obtained results is much faster than with Monte
Carlo simulation which needs to generate a large number of random variables
due to the dense BS deployment of different tiers and the number of MIMO
antennas.

In general, the numerical evaluations show that the Pico tier has better
performance than the Macro one. At first glance, this observation seems
to suggest to offload traffic from the MBSs to the PBSs in order to achieve
higher gain. However, considering the call arrival rate and its effects on the
EE and SSE seems an interesting topic for the future works.

3.2 System Model
In this section, we describe in detailed the system model used in this work.

3.2.1 Network Model

We consider a HetNet that consists of multiple-antenna Macro and Pico
base stations denoted as MBS and PBS, respectively. We assume that MBSs
have KM antennas and are located based on a PPP ΦM with density λM ,
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over R2. Furthermore, taking advantage of small cell concepts, KP-antenna
PBSs are distributed randomly following another independent PPP ΦP with
density λP>λM in order to enhance Quality of Service (QoS) and coverage.
Additionally, we assume that among all PBSs, only those placed outside the
exclusion region of radius D around each MBS remain active. Hence, the
locations of the active PBSs form a PHP as defined below. Following this
assumption, we can have dynamic choice of D in the network which is beyond
the scope of this chapter.

Definition 1. (Poisson Hole Process [71, Example 3.7])
Let ΦM be a PPP of density λM and ΦP be a PPP of intensity λP > λM .

For each x ∈ ΦM , remove all the points in ΦP ∩ Cx,D, where Cx,D = c(x, D)
is a circle centered at x with radius D . Then, the remaining points of ΦP
form the Poisson hole process, Φ̃P.

It can be shown [71] that the density of PHP, Φ̃P, is

λ̃P = λP exp (−λMπD2) (3.1)

In this work, the two main purposes in deploying the low power BS tier
are offloading traffic and filling coverage holes. The latter is acquired by
the higher density of the PBSs, whereas the former is obtained by managing
the exclusion region around the MBSs. In the following, MU stands for the
Macro User, e.g., a user served by the Macro tier, whereas a Pico User is
denoted by PU, which symbolizes the user served by the nearest PBS.

Since working with PHP is not as straightforward as with PPP, some
approximations and bounds on PHP have been provided in [19], [22]. Along
the lines of [22], we use a model to lower bound the interference. In this
model, only the closest hole to the typical user is carved out, thus it avoids
the issues arising due to overlap of the holes. In fact, this model maintains
a similar level of tractability as that of a PPP due to similar far field effects,
while providing the accuracy of local neighborhood near the typical user.

Additionally, in this chapter we assume that the user locations are drawn
from an independent PPP, Φu, of density λu. Focusing on downlink com-
munications, we study a typical user equipped with a single antenna device
and located at the origin. Without loss of generality, according to Slivnyak’s
theorem, the analytical results for an arbitrary point of Φu are the same as
those at the origin in the point process Φu ∪ {0} [77]. Thus, the user located
at the origin is called typical user.

3.2.2 Distance Distribution

Although considering an exclusion region around high power BSs seems an
effective way to manage interference, there is not much effort to analyze the
system undertaking this assumption and study its different aspects. There-
fore, in this part, firstly we derive the distance distribution of a typical Pico
user to the nearest interferer MBS while the distance to the serving PBS is
given. Due to the intrinsic complexity of exact characterization of PHP, we
will derive a lower bound for the probability density function of the distance
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Table 3.1: Notation and Network Parameters
Symbol Description

Φk, λk, rk,

ρk, Kk, K′k

PPP of the kth tier BS distribution,

density, distance to the nearest BS,

transmission power, number of the antennas

and number of served users, respectively.

Φ̃P, λ̃P PHP of Pico tier BS distribution, density

M, P
Indicators for the Macro and Pico

tiers, respectively.

D Radius of the exclusion region

Ŝ, Î, σ2
Signal, interference and noise power,

respectively.

α Path-loss exponent

Pcov, Pout
Coverage and outage probabilities,

respectively.

between a typical Pico user located at the origin and the nearest MBS. To
derive the lower bound, we just consider the nearest hole and ignore the rest
ones.

As shown in Fig. 3.1, given the distance to the serving BS, here denotes
as r∗, the interfering BSs belonging to the cross tier fall in the shaded area.
Assume that the typical user is served by the nearest PBS at distance r∗ = rp,
thus the interfering MBSs should be farther than rp from the typical Pico
user, and also farther than D from the serving PBS, as otherwise the PBS
would have been removed according to the definition of the PHP. In fact, we
assume that there is a virtual hole of radius D centered at the nearest PBS
location. Although this assumption gives a looser bound, we will show in the
numerical evaluations that the bounds are tight enough and the gap between
the lower and upper bounds is negligible for a wide range of D.

Lemma 2. The probability density function of the distance between a typical
user located at the origin and the nearest cross tier interferer BS is

fY (y |r∗) = 2λy cos−1 (a1) · exp
[
−λ

(
y2 cos−1(a1)

−D2 cos−1(a2) + (D2 − 2r2∗ ) cos−1(a3) −
D
2

√
a4 +

1

2

√
a5

)]
(3.2)

(3.3)

where

a1 = max

{
−1,−

y2 + r2∗ − D2

2yr∗

}
(3.4)
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Figure 3.1: A Sketch of the PHP Network

a2 = max

{
−1,−

y2 − r2∗ − D2

2r∗D

}
(3.5)

a3 = min

{
1,

D
2r∗

}
(3.6)

a4 =
〈
(2r∗−D)(2r∗+D)

〉+
(3.7)

a5 =
〈
(−y+r∗+D)(y−r∗+D)(y+r∗−D)(y+r∗+D)

〉+
(3.8)

〈·〉+ is max {0, ·} and y > max {r∗, D − r∗}.

Proof. See Appendix 3.7.1. �

Note that, in the case of D = 0, fY (y |r∗) reduces to a truncated Rayleigh,
i.e., fY (y |r∗) = 2πλy exp

[
−πλ

(
y2 − r2∗

)]
. On the other hand, for r∗ = 0 we

have fY (y |r∗ = 0) = 2πλy exp
[
−πλ

(
y2 − D2

)]
. Furthermore, for y � r∗+D,

an approximate PDF could be fY (y |r∗) = 2πλy exp
[
−πλ

(
y2 −max{r∗, D}2

)]
.

3.2.3 Propagation Model

Under the distance condition mentioned in the previous sub-section, a typical
user, MUi (or PUi) is associated to the nearest base station, MBS j (or PBS j),
which is at distance xi j . Similar to [76], a non-singular path-loss model,√

(1 + xi j )−α, with path-loss exponent α, and i.i.d. Rayleigh fading, hi j ∼

CN (0, 1), have been used in this work. The received signal at the typical
Macro User, MUi, is given by

yMU i = g
H
i ju j +

∑
η∈ΦM\{ j}

gH
iηuη +

∑
ζ∈ΦP

gH
iζuζ + n. (3.9)

Besides, (3.10) gives the received signal at the typical Pico User, PUi,

yPU i = g
H
i ju j +

∑
η∈ΦM

gH
iηuη +

∑
ζ∈ΦP\{ j}

gH
iζuζ + n, (3.10)
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where n∼N (0, σ2) represents the receiver noise with normalized power σ2,
and gi j =

√
(1 + xi j )−αhi j is the channel vector between BS j and the typical

user. Moreover, u j denotes the vector of transmitted symbols by BS j and is
of size either KM or KP and of power either ρM or ρP, according to whether it
is transmitted by MBS or PBS. Explicitly, the transmitted symbols in (3.9)
are listed below.

u j =
√
ρM

K ′M∑
n=1

sn jwn j, (3.11)

uη =
√
ρM

K ′M∑
n=1

snηwnη, (3.12)

uζ =
√
ρP

K ′P∑
n=1

snζwnζ . (3.13)

While the only difference in (3.10) is

u j =
√
ρP

K ′P∑
n=1

sn jwn j, (3.14)

where K′M ≤ KM and K′P ≤ KP are the number of served MUs and PUs by each
MBS and PBS, respectively. In addition, s and w are the unit-norm desired
data and linear zero-forcing (ZF) precoding vector, respectively. Since ZF-
precoding vector is orthogonal to the channel vectors of other users served
by the same BS, (3.9) and (3.10) can be re-written as

yMU i =
√
ρM si jgH

i jwi j +
√
ρM

∑
η∈ΦM\{ j}

K ′M∑
n=1

snηgH
iηwnη

+
√
ρP

∑
ζ∈Φ̃P

K ′P∑
n=1

snζgH
iζwnζ + n, (3.15)

yPU i =
√
ρPsi jgH

i jwi j +
√
ρM

∑
η∈ΦM

K ′M∑
n=1

snηgH
iηwnη

+
√
ρP

∑
ζ∈Φ̃P\{ j}

K ′P∑
n=1

snζgH
iζwnζ + n. (3.16)

Before moving to the next section, we provide some definitions to simplify
the flow of the derivations. Besides, Table 3.1 provides the notation and
parameters of the network.

Definition 2. In the rest of this chapter, the following integral which was
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already calculated in [76], is represented by G−function.

−2π

∫ ∞

r

*
,
1 −

1(
1 + sρ(1 + x)−α

)K ′
+
-

x dx (3.17)

=
−2π

α

∫ (1+r)−α

0

*
,
1 −

1(
1 + sρt

)K ′
+
-

(
t−

1
α − 1

) (
t−

1
α−1

)
dt

= π(1 + r)
(
(r − 1)

− (1 + r) 2F1

(
K′,
−2

α
; 1−

2

α
;−sρ(1 + r)−α

)
+2 2F1

(
K′,
−1

α
; 1 −

1

α
;−sρ(1 + r)−α

))
, G(s, r, α, ρ, K′). (3.18)

The result is derived by the change of variable (1 + x)−α = t and the use
of [78, 3.194]. 2F1(a, b; c; z) is the Gaussian hypergeometric function .

Definition 3. In this work, we use the notation of c(o, R) = Co,R to indicate
the circle of radius R and center at o. Besides, we use Cc

o,R to denote the
region outside of c(o, R).

3.2.4 Main Metrics

In this subsection, we briefly explain the main metrics which will be derived in
this work. First, we derive the Outage/Coverage probability of the network.
By definition, the probability that the received Signal-to-Interference-plus-
Noise Ratio (SINR) at a user falls below a predefined threshold is called
outage probability. Moreover, in the literature, the coverage probability is
defined as the complement of the outage probability [13]. Through this met-
ric, we will show the advantage of the 2−tier PHP based networks over 2 and
3−tier HIP ones.

As the next step, we will derive the Ergodic capacity of a 2−tier MIMO
HetNet with PPP MBSs and PHP active PBSs. By definition, the ergodic
capacity is interpreted as the average rate that is achievable by each user [79],
[80]. In this work, a lower bound for the ergodic capacity will be obtained
using a PHP approximation. In addition, it will be shown that the proposed
lower bound converges from above to the ergodic capacity of a typical PU
in the HIP networks. Therefore, restricting the Pico tier to follow PHP does
not degrade the ergodic capacity of the corresponding users.

Finally, to reach the primary goal of this chapter, we will formulate SSE
and EE for the target network. To this aim, utilizing the obtained metrics
such as ergodic capacity, we attain the cell throughput and then SSE and
EE. Numerical evaluations show that although offloading traffic of the Macro
tier to the Pico one gives higher total SSE.
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3.3 Network Metrics
In this section, we will derive the metrics which are used to evaluate a cellular
network and compare it with the others.

3.3.1 Coverage Probability

First, we derive the coverage probability, which is the complement of the
outage probability, for a typical MU and PU. As explained before, outage
occurs when the SINR becomes less than a specific threshold [13].

In this work, the SINR thresholds for MUs and PUs are denoted as τM ,
τP, respectively. Therefore,

Pcov = 1 − Pout = P (SINR > τ) , (3.19)

where τ is either τP or τM and SINR is

SINR =
Ŝ

Î + σ2
. (3.20)

In (3.20), Ŝ denotes the power of the desired signal, whereas Î and σ2 rep-
resent the aggregate interference power and the normalized noise power, re-
spectively.

According to (3.15), the signal and aggregate interference powers at a
typical MU located at the origin1 are given by

ŜM = ρM |gH
i jwi j |

2 d
=
∗

ρM (1 + xi j )−αSMU, (3.21)

ÎM = ρM

∑
η∈ΦM\{ j}

K ′M∑
n=1

|gH
iηwnη |

2 + ρP

∑
ζ∈Φ̃P

K ′P∑
n=1

|gH
iζwnζ |

2

d
=
∗

ρM

∑
η∈ΦM\{ j}

(1 + xη )−α IηM M + ρP

∑
ζ∈Φ̃P

(1 + xζ )−α IζMP, (3.22)

where “ d
=
∗

” yields equality in distribution. In fact, [11, 63, 81] have shown
that SMU , IηM M and IζMP are auxiliary random variables and have Gamma
distributions, i.e., SMU ∼ Γ(KM − K′M + 1, 1), IηM M ∼ Γ(K′M, 1) and IζMP ∼

Γ(K′P, 1).
Additionally, based on (3.16), a typical PU receives signal power and

aggregate interference power as

ŜP = ρP |gH
i jwi j |

2 d
=
∗

ρP(1 + xi j )−αSPU, (3.23)

ÎP = ρM

∑
η∈ΦM

K ′M∑
n=1

|gH
iηwnη |

2 + ρP

∑
ζ∈Φ̃P\{ j}

K ′P∑
n=1

|gH
iζwnζ |

2 (3.24)

d
=
∗

ρM

∑
η∈ΦM

(1 + xη )−α IηPM + ρP

∑
ζ∈Φ̃P\{ j}

(1 + xζ )−α IζPP. (3.25)

1Due to PPP properties, without loss of generality we can assume that the typical user
is located at the origin.
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In a similar way, we have the random variables SPU , IηPM and IζPP with Gamma
distributions, i.e., SPU ∼ Γ(KP−K′P+1, 1), IηPM ∼ Γ(K′M, 1) and IζPP ∼ Γ(K′P, 1).

As shown in [13, Appendix A], given the distance to the serving BS, rk ,
finding the outage probability in networks with Rayleigh fading is equivalent
to finding the Laplace transform of the signal and aggregate interference
power for each user as follows

P(SINRk >τk |rk ) = e−
τk
ρk

(1+rk )ασ2

· L Îk |rk

(
τk

ρk
(1+rk )α

)
. (3.26)

Appendix 3.7.2 provides a brief explanation toward this result. Note that
since the BSs are distributed following a PPP, the PDF of the distance to the
serving BS is fr (rk ) = 2πλkrk e−πλkr2

k . Moreover, in this work, we consider a
fully loaded scenario, i.e., K′M = KM , K′P = KP. According to [11, Theorem 1]
fully loaded MIMO networks have the lowest coverage probability compared
to all scenarios with fewer users. This assumption is used to evaluate the
saturation throughput, which is an important metric for network design. In
this case, the distribution of SPU and SMU can be expressed as the Exponen-
tial distribution, i.e., S∗ ∼ Γ(1, 1) = Exp(1). Therefore, the effective small
scale channel gain would be equivalent to Rayleigh fading and (3.26) is valid
in our MIMO system model, too.

Since ΦM follows a PPP, the Laplace transform of the first term in (3.22)
and (3.25) can be derived as in [76, Eq. 11]. On the other hand, finding
a closed-form expression for the Laplace transform of PHP sacrifices the
tractability of stochastic geometry. In this regard, along the lines of [22],
to maintain tractability we derive upper and lower bounds on the Laplace
transform of the interference power caused by PBSs.

It is worth mentioning that in some works, PHP has been lower bounded
by the baseline PPP, i.e., ignoring the holes [71] or approximated by a PPP
with the same density as PHP (3.1). Nevertheless, the bound coming from
the methods in [22] is tighter, since it captures PHP’s characteristics more
accurately.

3.3.2 Ergodic Capacity

In this section, we derive a general expression for the ergodic capacity in
terms of the Laplace transforms of the signal and interference power. In a
recent work, [82] presents analytical characterizations of the ergodic spectral
efficiency in MIMO cellular networks. Although the derivation of the Pcov
given in (3.26) is well-known, to the best of our knowledge, ergodic capacity
has not been presented as a function of Laplace transform before.

By definition, the ergodic capacity per user in bit/sec/Hz is given by

CE = E [log2 (1 + SINR)] . (3.27)

Theorem 1. Given the distance to the serving BS, the Ergodic capacity of
a typical user in terms of the Laplace transforms of the desired signal and
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aggregate interference power is given by

CE|r =

∫ ∞

0

e−sσ2

s
· L Î |r (s) ·

(
1 − LŜ |r (s)

)
ds (3.28)

Proof. See Appendix 3.7.3. �

Theorem 1 gives a general expression, however the following corollary
provides the ergodic capacity under effective Rayleigh fading channel.

Corollary 1. Given the distance to the serving BS, the Ergodic capacity of
a typical user in a fully loaded MIMO network,

CE|r = ρ(1 + r)−α
∫ ∞

0

e−sσ2

1 + sρ(1 + r)−α
· L Î |r (s) ds (3.29)

Proof. Directly obtained by substitution of Laplace transform of Exponential
distribution. �

Corollary 1 is applicable to the case of a fully loaded scenario in which
Ŝ has Exponential distribution. To unbind the proposed Ergodic capacity
expression, it is sufficient to take the expectation with respect to the distance
to the nearest point in a PPP.

3.3.3 SSE and EE

In the last part of this section, we use the results obtained in the previous
subsections to find spatial spectral and energy efficiency.

The throughput of each kind of cell with bandwidth W is given by

Tcell = Pcov ·W · CE, (3.30)

where Pcov and CE denote respectively the coverage probability and the er-
godic capacity obtained in the previous sections.

Therefore, the last step to find SSE is to multiply Tcell by the cell den-
sity, λM or λP. Moreover, EE is obtained as the ratio of the lifetime cell
throughput, TLT , and total energy consumption including the transmission
and non-transmission related consumed energy [53]:

EE =
TLT

Enon−trans + Etrans
. (3.31)

where TLT = Tcell · tLT in which tLT represents the lifetime of the BS. Also,
Enon−trans is assumed to be constant and independent of the traffic load and
comes from maintenance and hardware power consumption inside a BS site,
like air-conditioning. Moreover, Etrans is a function of number of served users,
K , and given by

Etrans =
(
h · ρK + k

)
· tLT, (3.32)

where, h and k are the scaling coefficients of the total transmission power, ρ.
Therefore, EE in (3.31) is given by

EE =
Tcell · tLT

Enon−trans +
(
h · ρK + k

)
· tLT

. (3.33)
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3.4 Laplace Transform of Interference Power

As shown in the previous sections, finding the Laplace transform of the in-
terference is the key to obtain the network’s main metrics.

In this section, we aim to compute the Laplace transform of the aggre-
gate interference in 2−tier HetNets while the PBSs are distributed following
a PHP model. Although considering an exclusion region around the high-
power BSs seems a simple strategy to manage the interference, it brings a
high level of complexity to analysis. Therefore, instead of deriving the exact
expression we will propose lower and upper bounds for the Laplace transform
of the aggregate interference power in PHP model. In the numerical evalua-
tion section, we show the tightness of the proposed bounds for the coverage
probability and ergodic capacity.

3.4.1 Lower Bound

In this subsection, we propose a lower bound for the Laplace transform of
the aggregate interference power which captures the effect of PHP at short
distances, while maintaining the intrinsic tractability of PPP using stochastic
geometry. To this aim, the interference caused by the Pico tier is overesti-
mated by carving out only the closest hole to the typical user, either PU or
MU.

In Lemma 3, we propose the lower bound of the aggregate interference
at the typical PU. For this purpose, we first assume that the center of the
closest hole is known, and then obtain the bound by taking the expectation
with respect to this parameter.

Lemma 3. Let Cy,D = c(y, D) represent a hole of radius D centered at a
known y ∈ ΦM . The Laplace transform of the aggregate interference at a
Pico User is lower bounded by

L ÎP |rP,y (s) ≥
(
1 + sρM (1 + y)−α

)−K ′M · exp [2λPg(s, y)]

· exp

[
λM ·G

(
s, y, α, ρM, K′M

)
+ λP ·G

(
s, rP, α, ρP, K′P

) ]
. (3.34)

where

g(s, y) =
∫ y+D

max{0,y−D}
cos−1

(
max

{
−1,

t2 + y2 − D2

2yt

})
·
(
1 −

(
1 + sρP(1 + t)−α

)−K ′P
)

t dt. (3.35)

Proof. See Appendix 3.7.4. �

It can be observed that the first term is similar to the result obtained for
a homogeneous random MIMO network.

As mentioned, to complete the lower bound of the Laplace transform, the
condition in (3.34) should be unconditioned with respect to y.
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Proposition 1. The Laplace transform of the interference power at the typ-
ical PU is lower bounded by

L ÎP |rP (s) ≥
∫ ∞

max{rP,D−rP }
L Î |rP,y (s) fY (y |rP)dy (3.36)

where fY (y |rP) is given in (3.2).

Proof. Similar to the previous lemma, here we have the expectation over the
closest distance between the typical PU and the hole center. Based on the
cell association model, a typical PU is at distance further than rP from the
closest MBS, i.e., the closest hole center. �

In the following Lemma, we will derive the lower bound for the Laplace
transform of the aggregate interference power experienced by the typical MU
located at the origin.

Lemma 4. The Laplace transform of the aggregate interference power at the
typical MU is lower bounded by

L ÎM |rM (s) ≥ exp [2λPg(s, rM )]

· exp

[
λM ·G

(
s, rM, α, ρM, K′M

)
+ λP ·G

(
s, rM, α, ρP, K′P

) ]
. (3.37)

Proof. See Appendix 3.7.5. �

3.4.2 Upper Bound

To derive the upper bound for the Laplace transform of the interference power
in PHP network, similar to [22], we suppose that all the holes are carved out
one by one ignoring the possible overlaps. Accordingly, the interference power
is underestimated because some points of the baseline PPP may be removed
multiple times due to the PPP distribution of the holes center locations.
In [22], it is shown that any attempt which aims to model more accurately
overlapping holes in PHP compromises the tractability of the results.

Lemma 5. Let B 4
=

⋃
y∈ΦM

Cy,D. The Laplace transform of the aggregate
interference power at a typical PU is upper bounded by

L ÎP |rP (s) ≤ exp
[
λP · G

(
s, rP, α, ρP, K′P

)]

· exp

−2λM

∫ ∞

max{rP,D−rP }
cos−1 *

,
max



−1,−

t2 + r2P − D2

2trP




+
-

·
(
1−

(
1 + sρM (1 + t)−α

)−K ′M · exp [2λPg(s, t)]
)

tdt
]
, (3.38)

where g(s, y) is defined in (3.35).

Proof. See Appendix 3.7.6. �
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Note that, in the previous Lemma, the intersection of each two circles
counts twice, and thus the interference is overestimated.

Lemma 6. Given the distance to the serving MBS, rM , the Laplace transform
of the aggregate interference power at a typical MU is upper bounded by

L ÎM |rM (s) ≤ exp
[
λP · G

(
s, rM, α, ρP, K′P

)
+ 2λPg(s, rM )

]

· exp

[
−2πλM

∫ ∞

rM

(
1−

(
1 + sρM (1 + t)−α

)−K ′M

· exp [2λPg(s, t)]
)

tdt
]
. (3.39)

Proof. See Appendix 3.7.7. �

3.4.3 HIP Network Analysis

To provide a benchmark for comparison, in this subsection we derive the
Laplace transform of the interference power in a K−tier Homogeneous Inde-
pendent Poisson (HIP) network.

To this aim, we focus on the typical user, Ui, which is served by BS j of
the kth tier, k = 1, . . . , K . The received signal at the typical user is given by

yi = gH
ik juk j +

∑
η∈Φk\{ j}

gH
ikηukη +

K∑
l=1
l,k

∑
ζ∈Φl

gH
ilζulζ + n, (3.40)

where n ∼ N (0, σ2) and

uk j =
√
ρk

K ′
k∑

n=1

snk jwnk j ∀k = 1, 2, . . . , K . (3.41)

Therefore,

SINR =

ρk |gH
ik jwik j |

2

ρk
∑

η∈Φk
\{ j}

K ′
k∑

n=1
|gH

ikηwnkη |
2+

K∑
l=1
l,k

ρl
∑
ζ∈Φl

K ′
l∑

n=1
|gH

ilζwnlζ |
2 + σ2

, (3.42)

in which the aggregate interference power term is

Îik j = ρk

∑
η∈Φk
\{ j}

K ′
k∑

n=1

|gH
ikηwnkη |

2+

K∑
l=1
l,k

ρl

∑
ζ∈Φl

K ′
l∑

n=1

|gH
ilζwnlζ |

2

d
=
∗

ρk

∑
η∈Φk
\{ j}

(1 + xη )−α Ikη +

K∑
l=1
l,k

ρl

∑
ζ∈Φl

(1 + xζ )−α Ilζ, (3.43)
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where Ikη denotes the interference from BSη of the kth tier. Since we focus
on a typical user located at the origin, xη and xζ represent xiη and xiζ ,
respectively. For notational simplicity Îik j will be denoted by Îk which is the
interference experienced by the typical user served by the kth tier.

Similar to the explanation in Subsection 3.3.1, we also have an effective
Rayleigh fading channel in this model. Along the lines of Appendix 3.7.2, we
will present the Laplace transform of the interference power at HIP network,
given the distance to the serving BS belonging the kth tier, as follows

L Îk |rk
(s) = E

[
exp

[
−sÎk

] ���rk
]

= exp


K∑
`=1

λ`G
(
s, rk, α, ρ`, K′`

)
, (3.44)

where rk is a random variable that corresponds to the distance to the serving
BS, i.e., the nearest BS in the kth tier. Besides, K′

`
denotes the number of

users served by each BS in the `th tier and G-function has been given in
Definition 2.

As will be shown in the following subsection, the Laplace transform of
the interference power at HIP network is exactly equal to the PHP network
in case of D = 0.

3.4.4 Special Case

In this subsection, first we find the lower and upper bounds of the Laplace
transforms of PHP interference obtained in this section for the special case
of D = 0 and then compare it with the HIP networks.

In the special case of D = 0, g(s, y) given in (3.35) is equal to zero.
Besides, we have fY (y |r) = 2πλy exp

[
−πλ

(
y2 − r2

)]
. Therefore in this case,

Proposition 1 gives

L ÎP |rP ≥ exp

[
λP ·G

(
s, rP, α, ρP, K′P

) ]

·

∫ ∞

rP
2πλy exp

[
−πλM

(
y2 − r2P

)] (
1 + sρM (1 + y)−α

)−K ′M

· exp

[
λM ·G

(
s, y, α, ρM, K′M

) ]
dy (3.45)

= exp

[
λP ·G

(
s, rP, α, ρP, K′P

) ]

·
(
− exp

[
−πλM

(
y2 − r2P

)
+ λM ·G

(
s, y, α, ρM, K′M

)] ) �����

∞

rP

(3.46)

= exp

[
λP ·G

(
s, rP, α, ρP, K′P

)
+λM ·G

(
s, rP, α, ρM, K′M

) ]
(3.47)
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Figure 3.2: Lower and upper bounds for the coverage probability of the Macro
tier in PHP model networks for different values of D

Table 3.2: Network Parameters
1st (Macro) tier 2nd (Pico) tier 3rd (femto) tier

λ 10−6 [1/m2] 10−4 [1/m2] 10−2 [1/m2]

ρ 30 W 1 W 0.1 W

K′ 64 4 1

On the other hand, Lemma 5 for D = 0 is

L ÎP |rP (s) ≤ exp
[
λP · G

(
s, rP, α, ρP, K′P

)]

· exp

[
−2πλM

∫ ∞

rP
·
(
1−

(
1 + sρM (1 + t)−α

)−K ′M
)

tdt
]

(3.48)

= exp

[
λP ·G

(
s, rP, α, ρP, K′P

)
+λM ·G

(
s, rP, α, ρM, K′M

) ]
(3.49)

Therefore, the lower bound in (3.47) matches the upper bound of (3.49) and
both are equal to the result for 2−tier HIP as given in (3.44). Similarly, we
can show that the results of Lemmas 5 and 6 for the case of D = 0 is

L ÎM |rM (s) =

exp

[
λM ·G

(
s, rM, α, ρM, K′M

)
+ λP ·G

(
s, rM, α, ρP, K′P

) ]
. (3.50)

which is equal to (3.44) for K = 2 and rk = rM .

3.5 Numerical Evaluation
In this section, we provide some figures to illustrate the results obtained
according to the analysis of the previous sections. Table 3.2 summarizes the
network parameters.
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Figure 3.3: Lower and upper bounds for the coverage probability of the Pico
tier in PHP model networks for different values of D

Numerous researchers in 5G assume an ultra dense network deployment
and Massive MIMO as valid alternatives to fulfill the requirements. In this
work, the system parameters mostly came from other references such as [53,
81]. In addition, for example, 3GPP TR36.942 reports 46 dBm maximum
BS power for a 10 MHz channel bandwidth and LTE-A supports 8Tx×8Rx
MIMO.

Figs. 3.2 and 3.3 illustrate the lower and upper bounds of the coverage
probability of PHP model for different values of D in the Macro and Pico
tiers, respectively. As provided in Subsection 3.4.4, for D = 0 the bounds
exactly match. As expected, by increasing D the gap between the bounds
grows slightly. Nevertheless, the bounds are properly matched, which means
that even by carving out all the holes around MBSs, just a slight number
of PBSs are ignored multiple times, making the approximation very good.
Besides, these tight bounds show that we can simply but accurately estimate
the coverage probability of the Pico tier using either of them. Therefore,
according to the tightness and close performance of the bounds, in order to
avoid untidiness and to focus on the other features, only the lower bounds
are plotted in the following figures. Moreover, the simulation results justify
the accuracy of the analytical derivations in this work.

In Fig. 3.4, the coverage probability in 2 and 3−tier HIP networks and its
lower bound in a 2−tier PHP network are depicted. Clearly, the PHP model
outperforms HIP in both tiers. Therefore, the PHP network achieves higher
gain in terms of coverage probability without any need to change the network
infrastructure or spend time and money to add a new tier of BSs. Note that,
even if the PHP model has not been considered in the network planning
phase, it is sufficient to turn off the Pico BSs located in the exclusion regions
around Macro BSs to achieve approximately the same results. The slight
difference comes from the BS density, which changes according to (3.1).

In order to numerically evaluate the ergodic capacity of the PHP model,
we depict its lower and upper bounds for different values of D. Figs. 3.5
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Figure 3.4: Coverage probability of 2−tier PHP with D = 300, 2 and 3−tier
HIP networks
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Figure 3.5: Lower and upper bounds for the Ergodic Capacity at the Macro
User in PHP networks for different values of D

and 3.6 give the bounds for the Macro tier and Figs. 3.7 and 3.8 present
them for the Pico tier of a PHP model. In order to provide more visibility,
we use two different serving distance regimes. On the one hand, increasing
the distance, rM or rP, degrades the ergodic capacity. On the other hand,
the gaps between the bounds and the different scenarios, regarding different
values of D, reduce as the serving distance grows.

Finally, in Figs. 3.9 and Fig. 3.10, SSE and EE for the 2−tier PHP and
HIP networks is displayed as a function of SINR threshold, respectively. As
observed in both figures, PHP outperforms the HIP model with identical
network parameters.

To sum up, we summarize the main results of this section as follows:

• Tight bounds for the coverage probability in the PHP model can be
derived (Figs. 3.2 and 3.3).
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Figure 3.6: Lower and upper bounds for the Ergodic Capacity at the Macro
User in PHP networks for different values of D
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Figure 3.7: Lower and upper bounds for the Ergodic Capacity at the Pico
User in PHP networks for different values of D

• The 2−tier PHP model outperforms 2 and 3−tier HIP networks (Fig.
3.4).

• Tight bounds for the ergodic capacity in the PHP model can be derived
(Figs. 3.5, 3.6, 3.7 and 3.8).

• The PHP model outperforms HIP networks regarding both SSE and
EE.

3.6 Conclusion
In this chapter, we investigated the performance of 2−tier MIMO HetNets in
two BS deployment scenarios, namely, using HIP and PHP network models.
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Figure 3.8: Lower and upper bounds for the Ergodic Capacity at the Pico
User in PHP networks for different values of D
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Figure 3.9: Spatial Spectral Efficiency vs. SINR Threshold in the PHP and
HIP networks

We showed that the PHP model outperforms HIP, which means that this
model can be considered as a theoretical guideline for BS deployment. In fact,
PHP can be applied either in network planning or in current HIP networks by
making the active BSs follow PHP. Moreover, Ergodic capacity, SSE and EE
were derived. Numerical evaluations were presented based on the analytical
results, showing better SSE and EE in the Pico tier than in the Macro tier.

Although in general this study encourages to offload traffic from MBSs
to the PBSs, this should be cautiously applied because of the effect of the
call arrival rate on EE. As depicted in the numerical evaluation section, the
EE of the Pico tier falls below that of the Macro tier as the call arrival rate
exceeds a certain threshold. This observation reveals that offloading traffic
to the PBSs to achieve higher SSE should be done more carefully, especially
in energy-constrained networks.
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Figure 3.10: Energy Efficiency vs. SINR Threshold in the PHP and HIP
networks

Finally, considering different cell association models and investigating
their effects on the coverage probability and the other metrics in PHP net-
works is an interesting open topic for further research.

3.7 Appendices

3.7.1 Proof of Lemma 2

Consider a virtual hole of radius D around serving BS and let F̄Y be the
CCDF of the nearest distance to the cross tier interferer BS. By definition,

F̄Y (y |r∗) = 1 − FY (y |r∗) = P(Y > y |r∗)
= P(# of cross tier interferer BS in A = 0|r∗) (3.51)

where A is the area at distance at least r∗ and at most y from the typical
user and farther than D from the serving BS. A sketch of area A in the PHP
network is depicted in Fig. 3.11.

To find A, we need to consider both cases, D ≤ 2r∗ and D > 2r∗. Ac-
cordingly, we have

A =y2 cos−1(a1) − D2 cos−1(a2) + (D2 − 2r∗2) cos−1(a3)

−
D
2

√
a4 +

1

2

√
a5, (3.52)

where a1 to a5 are defined in (3.4) through (3.8), respectively. Finally, the
PDF is obtained as fY (y |r∗) = − ∂

∂y F̄Y (y |r∗).

3.7.2 Fully Loaded Networks

By definition, the coverage probability in the kth tier is given by

P(SINRk > τk ) = P
(
ρk (1 + rk )−αSk

Îk + σ2
> τk

)
, (3.53)
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Figure 3.11: A Sketch of area A in the PHP network

where Sk ∼ Γ(Kk − K′k + 1, 1), and rk represents the distance to the serving
BS, i.e., the nearest one in the kth tier.

In fully loaded networks, i.e., K′k = Kk , the distribution of Sk simplifies
to the Exponential distribution, i.e., Sk ∼ Exp(1). Therefore,

P

(
Sk >

τk

ρk
(1 + rk )α

(
Îk + σ

2
) ���rk

)
= EÎ

[
P

(
Sk >

τk

ρk
(1 + rk )α

(
Îk + σ

2
) ���rk, Îk

)]

= EÎ

[
exp

[
−
τk

ρk
(1 + rk )α

(
Îk + σ

2
)]

���rk

]
(3.54)

=exp

[
−
τk

ρk
(1 + rk )ασ2

]

· EÎ

[
exp

[
−
τk

ρk
(1 + rk )α Îk

]
���rk

]
(3.55)

=exp

[
−
τk

ρk
(1 + rk )ασ2

]
· L Îk |rk

(
τk

ρk
(1+rk )α

)
. (3.56)

Since rk is defined as the distance to the nearest BS of kth tier, we have

P(SINRk >τk ) =
∫

rk>0
2πλkrk e−πλkr2

k

· e−
τk
ρk

(1+rk )ασ2

·L Îk |rk

(
τk

ρk
(1+rk )α

)
drk . (3.57)

3.7.3 Proof of Theorem 1

By expanding the ergodic capacity definition in (3.27) we have,

CE|r =E

[
log2

(
1 +

Ŝ

σ2 + Î

)
���r

]
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(a)
=E

[∫ ∞

0

e−z

z

(
1 − exp

[
−z ·

Ŝ

σ2 + Î

])
dz���r

]
(3.58)

(b)
=E



∫ ∞

0

e−s
(
σ2+Î

)
s

·
(
1 − exp

[
−sŜ

] )
ds���r


(3.59)

=E


∫ ∞

0

e−sσ2

s
· exp

[
−sÎ

]
·
(
1 − exp

[
−sŜ

] )
ds���r


(3.60)

(c)
=

∫ ∞

0

e−sσ2

s
· E

[
exp

[
−sÎ

] ���r
]
·
(
1− E

[
exp

[
−sŜ

] ���r
] )

ds, (3.61)

where (a) is given by [83, Lemma 1] as log(1+ x) =
∫∞
0

e−z
z (1 − e−xz)dz ; (b)

is the result of the change of variable s = z
(
σ2 + Î

)−1
. Also, (c) comes

from taking advantage of signal and interference power independence and of
non-negativity of the integrand, the expectation is switched with the integral
operation and factorized. Finally, the proof is completed by substitution of
the Laplace transform definition.

3.7.4 Proof of Lemma 3

Given the distances to the serving PBS and the nearest MBS, which repre-
sents the nearest hole center, the Laplace transform of the aggregate inter-
ference experienced by the typical PU is obtained by substituting (3.24) in
the Laplace transform definition. Therefore, we have

L ÎP |rP,y (s) = E

exp

[
− s

(
ρM

∑
η∈ΦM

K ′M∑
n=1

|gH
iηwnη |

2

+ ρP

∑
ζ∈Φ̃P\rP

K ′P∑
n=1

|gH
iζwnζ |

2
)]

(3.62)

(a)
= E

ΦM,Φ̃P


EIηPM,I

ζ
PP



∏
η∈ΦM

exp
[
−sρM (1 + xη )−α IηPM

]

·
∏

ζ∈Φ̃P\rP

exp
[
−sρP(1 + xζ )−α IζPP

]


(3.63)

(b)
≥ EΦM



∏
η∈ΦM

EIηPM

[
exp

[
−sρM (1 + xη )−α IηPM

] ]

· EΦP



∏
ζ∈ΦP\rP\Cy,D

EIζPP

[
exp

[
−sρP(1 + xζ )−α IζPP

] ]
(3.64)

(c)
= EΦM



∏
η∈ΦM

(
1 + sρM (1 + xη )−α

)−K ′M
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· EΦP



∏
ζ∈ΦP\rP\Cy,D

(
1 + sρP(1 + xζ )−α

)−K ′P


(3.65)

(e)
=

(
1 + sρM (1 + y)−α

)−K ′M

· EΦM



∏
η∈ΦM\y

(
1 + sρM (1 + xη )−α

)−K ′M


· EΦP



∏
ζ∈ΦP\rP\Cy,D

(
1 + sρP(1 + xζ )−α

)−K ′P


(3.66)

( f )
=

(
1 + sρM (1 + y)−α

)−K ′M

· exp

−λM

∫
R2\C0,y

(
1 −

(
1 + sρM (1 + xη )−α

)−K ′M
)

dxη


· exp


−λP

∫
R2\C0,rP
\Cy,D

(
1 −

(
1 + sρP(1 + xζ )−α

)−K ′P
)

dxζ


(3.67)

=
(
1 + sρM (1 + y)−α

)−K ′M

· exp

[
λM · G

(
s, y, α, ρM, K′M

) ]

· exp

−λP *

,

∫
R2\C0,rP

(
1 −

(
1 + sρP(1 + xζ )−α

)−K ′P
)

dxζ

−

∫
Cy,D

(
1 −

(
1 + sρP(1 + xζ )−α

)−K ′P
)

dxζ+
-


(3.68)

=
(
1 + sρM (1 + y)−α

)−K ′M

· exp

[
λM ·G

(
s, y, α, ρM, K′M

)
+ λP ·G

(
s, rP, α, ρP, K′P

) ]

· exp

λP

∫
Cy,D

(
1 −

(
1 + sρP(1 + xζ )−α

)−K ′P
)

dxζ

. (3.69)

Where (a) comes from (3.25) and (b) is the result of modeling PHP by
carving out just the nearest hole and overestimating the interference. Besides,
(c) is obtained from the definition of the Laplace transform for Gamma
distribution. In (e), we extract the interference term caused by the MBS
located at the known distance of y. Moreover, ( f ) follows the generating
functional of PPP, ΦM,ΦP. The proof is completed by substitution of g(s, y)
in (3.69).

3.7.5 Proof of Lemma 4

In this Lemma, the location of the serving BS is exactly the center of the
closest hole to the typical user. Therefore, given the distance to the nearest
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MBS, similar to the previous proof we have

L ÎM |rM (s) = E

exp

[
− s

(
ρM

∑
η∈ΦM\rM

K ′M∑
n=1

|gH
iηwnη |

2

+ρP

∑
ζ∈Φ̃P

K ′P∑
n=1

|gH
iζwnζ |

2
)]

(3.70)

= E
ΦM,Φ̃P


EIηMM,I

ζ
MP



∏
η∈ΦM\rM

exp
[
−sρM (1 + xη )−α IηM M

]

·
∏
ζ∈Φ̃P

exp
[
−sρP(1 + xζ )−α IζMP

]


(3.71)

≥ EΦM



∏
η∈ΦM\rM

EIMM

[
exp

[
−sρM (1+xη )−αIMM

] ]

· EΦP



∏
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[
exp

[
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] ]
(3.72)

= EΦM



∏
η∈ΦM\rM

(
1 + sρM (1 + xη )−α

)−K ′M


· EΦP



∏
ζ∈ΦP\Cy,D

(
1 + sρP(1 + xζ )−α

)−K ′P


(3.73)

= exp
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(
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λM ·G

(
s, rM, α, ρM, K′M

)
+λP ·G
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+
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·
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(
1 + sρP(1 + t)−α
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t dt
]

(3.75)
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3.7.6 Proof of Lemma 5

In this Lemma, the interference power is underestimated by carving out each
hole separately inattentive to possible overlaps. Thus, given the distance
to the serving PBS, rP, the Laplace transform of the aggregate interference
experienced by the typical PU is

L ÎP |rP (s) = E

exp


−s *.

,
ρM

∑
η∈ΦM

K ′M∑
n=1

|gH
iηwnη |

2

+ρP
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ζ∈Φ̃P\rP

K ′P∑
n=1

|gH
iζwnζ |

2+/
-




(3.76)
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∏
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∏
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∏
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∏
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= EΦM
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Where the inequality in (a) holds since the union of the holes is substituted
by the aggregation of the holes.

3.7.7 Proof of Lemma 6

Similar to the previous proof, here we have
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Chapter 4

Cell Zooming in PVT Random
Cellular Networks

In this chapter, we study the Energy Efficiency (EE) and Area Spectral
Efficiency (ASE) of green random cellular networks which utilize the Cell
Zooming (CZ) techniques. To this aim, using stochastic geometry, we derive
a tractable expression for the Ergodic Capacity in a Poisson Voronoi Tessel-
lation (PVT) random cellular network in which both Base Station (BS) and
Mobile User (MU) locations are drawn randomly from two independent Pois-
son Point Processes (PPPs). The performance of this network is examined
under different MU densities and two CZ algorithms. Numerical evaluations
show that there is an optimum transmission power, which maximizes EE in
PVT random cellular networks. On the other hand, increasing the transmis-
sion power and the cell size does not improve ASE much more after passing
a threshold. The tradeoff between EE and ASE is also presented.

4.1 Introduction

The next generation of mobile communication systems, namely 5G, intends
to improve some characteristics of the previous mobile generations, e.g., data
rate, delay and cost in addition to addressing new features, such as ubiqui-
tous coverage, device-to-device (D2D) communications, etc. Besides achiev-
ing these goals, realization of green 5G is essential for both environmental
concerns, such as air pollution and carbon dioxide footprint, and also energy-
related costs in the mobile communication industry, which are important for
end-users and telecommunication companies as well [26].

In addition, the concept of small cells and random deployment of Base
Stations (BSs) in LTE and 5G, e.g., Heterogeneous Network (HetNet), in-
troduced a new area in cellular network planning, named random cellular
networks. In this regard, stochastic geometry came up as a novel and helpful
technique to deal with these random structures [58].

Recently, random networks have been studied through several aspects in
the literature. In [13], stochastic geometry is exploited to propose a useful
approach to deal with random cellular networks. Besides, [53] studied spa-
tial spectrum and Energy Efficiency (EE) in a Poisson Voronoi Tessellation
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(PVT) random cellular network using a Markov Chain (MC) channel access
model. In another work [76], EE and Spatial Spectral Efficiency (SSE) in
random MIMO cellular networks have been analyzed.

The approach followed in this work is different from what has been done
before, and provides a new expression for ergodic capacity which is less com-
plex to compute and also to simulate.

Cell Zooming (CZ) was introduced in [26] as a technique to reduce energy
consumption in cellular networks by fine-tuning the cell size via adaptation
of the coverage radius of a BS. Nowadays in the network planning phase,
capacity and cell size are assigned statically based on the maximum trans-
mission power corresponding to the estimated peak traffic load. However, the
traffic pattern in cellular networks exhibits large fluctuations in both time
and space. This characteristic of mobile networks can be used for energy
saving purposes through range adaptation techniques [84].

More precisely, CZ is a technique to adjust the BS’s coverage area dy-
namically according to the network traffic load. [85] reported that CZ can
decrease total power consumption by approximately 20%. CZ is achieved
differently in different scenarios. For instance, when the traffic is low or the
users are concentrated around the BS, the transmission power can be reduced
without any loss in expected Quality of Services (QoS). As another exam-
ple, in a low traffic scenario some BSs can be switched off, while the others
compensate the coverage holes by increasing their power, a technique called
zooming out.

In order to address CZ, techniques such as Coverage Extension Technol-
ogy (CET) need to be adopted. In fact, CET is not only limited to increasing
transmit power, it can also be obtained by relay and cooperative multi-point
(CoMP) transmission [26]. Reference [86] gives an overview of the CZ con-
cept.

In another work [87], three algorithms were proposed to implement CZ
and their performance in a single cell scenario was studied. The three pro-
posed methods, namely Continuous, discrete and fuzzy CZ algorithms, aim
to dynamically adjust the BS transmission power in order to avoid constantly
working with maximum power emission. It was shown that all the proposed
techniques outperform the traditional approaches, assuming that the location
of the users are known or can be obtained by a location detection scheme.

Moreover, up to 57% of the total power in wireless mobile communication
is consumed by BSs [88]. Therefore, it seems crucial to find a strategy to
reduce the BS power consumption or the number of active BSs. To this aim,
turning off the serving macrocells is one of the techniques to improve the
power saving efficiency without loss of throughput [89].

To the best of our knowledge, the concept of CZ in random cellular net-
works, which is the main scope of this work, has not yet been studied. In
addition, in this chapter we consider a random distribution of Mobile Users
(MUs). To this aim, first we derive an expression for the ergodic capacity
and then use it to formulate EE and Area Spectral Efficiency (ASE) in this
setting. We finally evaluate our results by numerical methods.

The rest of the chapter is organized as follows. In Section 4.2 the system
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Figure 4.1: An example of PVT Random Cellular Network

model and two CZ algorithms are introduced. Sections 4.3 and 4.4 provide
the ergodic capacity and EE and ASE in PVT random cellular networks,
respectively. The numerical evaluations are reported in Section 4.5. Finally,
Section 4.6 concludes the chapter and discusses some future works.

4.2 System Model
In this work, we focus on downlink transmission in which each MU is as-
sociated with its nearest BS. The channel between the transmitter and the
receiver is modeled by

√
(1 + r)−αh, where h∼CN (0, 1) is an i.i.d. Rayleigh

fading channel coefficient and (1 + r)−α represents a non-singular path-loss
model; where r and α are the transmission distance and the path-loss expo-
nent, respectively. At the receiver side, there is also AWGN with normalized
power σ2.

Moreover, in our model a PVT random cellular network is considered,
where the BSs are located based on a Poisson Point Processes (PPP), called
ΦB, with density λB. Each BS forms a circular coverage area of radius
Rc ∈ Rc around itself. Fig. 4.1 sketches an example of PVT random cellular
network with the circular coverage area of radius Rc. Rc and equivalently Pt ,
the set of allowed transmission powers, will be defined later based on the CZ
scenarios. Also, we assume that MUs are randomly located based on ΦM ,
which is a PPP with density λM .

In this work, two CZ scenarios will be discussed. In the first case, a
discrete CZ is adopted where each cell is divided into N concentric circular
zones. Cell partitioning can be done in different ways, for example based on
equal distance partition, so that

Rc =

{
D
N
,
2D
N
, . . . ,

(N − 1)D
N

, D
}
,

where D is the maximum cell radius imposed by the maximum transmitted
power of a BS, Pmax and the BS density [90]. In this scenario, the set of
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allowed transmission powers is

Pt =

{
Pmax

( 1

N

)α
, Pmax

( 2

N

)α
, . . . , Pmax

}
,

which satisfies the QoS requirement of the MUs located at the cell edge
by keeping the received power at the prescribed level. Alternatively, cell
partitioning can also be determined according to an equal power split.

In the second scenario, a general CZ method is considered. In this case,
under a low traffic situation, i.e., small MU density, only a subset of the BSs
remain active, while the others turn to sleep mode. In this case, we apply
the thinning operation to the PPP of the BS distribution [77], which results
in a p-thinned point process Φ̃B with density

λ̃B = p · λB, (4.1)

where p is the retention probability, i.e., each BS switches off with probability
(1 − p), independently of the location and of the possibility that any other
BS∈ ΦB switches off or remains active. p can be determined based on the
network parameters and the traffic profile.

4.3 Ergodic Capacity
Without loss of generality, by exploiting the PPP characteristics of the BS
and MU locations, we can just focus and analyze the behavior of a typical
MU located at the origin and its typical BS. Then the obtained results will
be generalized to the whole network.

To this aim, the Signal-to-Interference-plus-Noise Ratio, SINR, experi-
enced by the typical MU associated with its nearest BS, BSi, is given by

SINR =
Pt (1 + ri)−α |hi |

2∑
j∈ΦB\{i}

Pt (1 + r j )−α |h j |
2 + σ2

, (4.2)

where the channel coefficient between the typical MU and BS` is denoted by
h`. Note that r`, which denotes the distance from the typical MU to BS`, is
a random variable due to the random location of BSs. Besides, it is assumed
that all BSs transmit with the same power Pt .

The ergodic capacity is the average rate that is achievable by each user
and is given by [79,80]

C = E [log2 (1 + SINR)] . (4.3)

Lemma 7. The ergodic capacity per user in a PVT random cellular network
is given by

C =

∫ ∞

0

e−tσ2

t

·

(
exp

[
−2πλB

∫ ∞

Rc

[
1 −

1

1 + tPt (1 + r)−α

]
rdr

]

− exp

[
−2πλB

∫ ∞

0

[
1 −

1

1 + tPt (1 + r)−α

]
rdr

])
dt, (4.4)
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where σ2 is the noise power. Besides, λB, Rc and Pt are the BS density, the
cell radius and the transmission power, respectively.

Proof. By substitution of Eq. (4.2) in Eq. (4.3), we have

C=EΦB,h


log2

*..
,
1 +

Pt (1 + ri)−α |hi |
2∑

j∈ΦB\{i}
Pt (1 + r j )−α |h j |

2 + σ2

+//
-


(a)
=EΦB,h

[∫ ∞

0

e−z

z

(
1−

exp
*..
,
−z

Pt (1 + ri)−α |hi |
2∑

j∈ΦB\{i}
Pt (1 + r j )−α |h j |

2 + σ2

+//
-

+//
-
dz


(4.5)

(b)
=EΦB,h



∫ ∞

0

e−tσ2

t

· exp *.
,
−t

∑
j∈ΦB\{i}

Pt (1 + r j )−α |h j |
2+/

-

·

(
1 − exp

(
− tPt (1 + ri)−α |hi |

2
))

dt
]

(4.6)

=EΦB,h



∫ ∞

0

e−tσ2

t

·

(
exp *.

,
−t

∑
j∈ΦB\{i}

Pt (1 + r j )−α |h j |
2+/

-

− exp *.
,
−t

∑
j∈ΦB

Pt (1 + r j )−α |h j |
2+/

-

+/
-

dt


(4.7)

(c)
=

∫ ∞

0

e−tσ2

t

·
*.
,
EΦB,h


exp *.

,
−t

∑
j∈ΦB\{i}

Pt (1 + r j )−α |h j |
2+/

-



−EΦB,h


exp *.

,
−t

∑
j∈ΦB

Pt (1 + r j )−α |h j |
2+/

-



+/
-

dt (4.8)

(d)
=

∫ ∞

0

e−tσ2

t

·
*.
,
EΦB



∏
j∈ΦB\{i}

Eh
[
exp

(
−tPt (1 + r j )−α |h j |

2
)]

−EΦB



∏
j∈ΦB

Eh
[
exp

(
−tPt (1 + r j )−α |h j |

2
)]

+/
-

dt (4.9)
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(e)
=

∫ ∞

0

e−tσ2

t
·

*.
,
EΦB



∏
j∈ΦB\{i}

1

1 + tPt (1 + r j )−α



−EΦB



∏
j∈ΦB

1

1 + tPt (1 + r j )−α



+/
-

dt. (4.10)

Where (a) comes from Lemma 1 of [83], which states that log(1 + x) =∫∞
0

e−z
z (1−e−xz)dz. The change of variable t= z

(∑
j∈ΦB\{i}Pt (1 + r j )−α |h j |

2 + σ2
)−1

gives (b). In (c), the expectation and integral can be interchanged since the
integrand is non-negative. Then, (d) and (e) follow from independence of the
PPP ΦB and Rayleigh channel fading property. The final result is obtained
by using the probability generating functional of a PPP Φ with density λ,
given by

EΦ



∏
x∈Φ

f (x)

= exp

(
−λ

∫∫
R2

(
1 − f (x)

)
dx

)
.

�

To use the result of the previous lemma in the CZ framework, we just
need to substitute the proper BS density, λB, transmission power, Pt ∈ Pt ,
and cell radius, Rc ∈ Rc.

Compared to the other works [13]- [53] which derived the ergodic capacity
in random networks, the approach and final expression in Eq. (4.4) is more
tractable and less complex to simulate in MATLAB and Mathematica. This
result also takes advantage of stochastic geometry to reduce the simulation
time compared to the conventional Monte-Carlo method.

4.4 Energy and Area Spectral Efficiency (EE &
ASE)

In this section, we investigate the performance of the CZ scenarios in random
cellular networks in terms of EE and ASE.

Along the lines of [80, 91], ASE is formulated as

ASE = λM · C, (4.11)

where λM and C are the MU density and the ergodic capacity of each user,
respectively. Note that since we consider a random distribution for the users,
we substitute the ratio of the total number of active users over the cell area
with the MU density.

Additionally, the EE of an active BS can be expressed as

EE =
W LC

aPt + Pc
, (4.12)

where W , L account for the spectral bandwidth and the total number of active
users in a cell. Besides, in the denominator of Eq. (4.12), Pc denotes the non-
transmission related power consumption, which corresponds to the hardware
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Figure 4.2: Energy efficiency of a PVT random cellular network for different
user densities
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Figure 4.3: Area spectral efficiency of a PVT random cellular network for
different user densities

power consumption such as electronic circuits, processors, air-conditioners,
rectifiers and backup batteries [80]. Also, a ≥ 1 represents a scaling factor to
compensate for the difference between consumed and radiated power, which
is caused by internal losses, like the feeders.

4.5 Performance Evaluation and Numerical Re-
sults

In this section, we evaluate the performance of a green PVT random cellular
network in terms of EE and ASE while adopting the CZ techniques. The
system parameters are summarized in Table 4.1. Note that considering EE or
ASE individually does not give a comprehensive overview about the network
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Table 4.1: Network Parameters
N 15

α 3

a 1.5

σ2 −50 [dBm]

Pmax 44.77 [dBm]

W 0.1 [MHz]

λB 1 [/km2]

λM 10 [/km2]
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Figure 4.4: Energy efficiency of a PVT random cellular network for different
retention probabilities

performance, since there is a tradeoff between the two metrics.
First, the EE of the network for different MU densities is depicted in Fig.

4.2. As shown, in general the EE improves by increasing the number of active
users, since more MUs can be served with the same power transmission level.
However, for a fixed λM , there is an optimum cell radius which maximizes EE.
The reason is that, although a larger cell size causes higher ergodic capacity,
on the other hand more transmission power is needed in this case to satisfy
the QoS requirements for the MUs located at the cell edge.

Furthermore, Fig. 4.3 shows that ASE grows monotonically with the MU
density and the cell radius, however, it almost saturates when the transmis-
sion power approaches its maximum value.

Figs. 4.4 and 4.5 illustrate the effect of the second CZ scenario for a PVT
random cellular network. Note that we assumed that there are enough re-
sources to serve the MUs even when decreasing the number of active BSs. As
mentioned in Eq. (4.1), λ̃B is proportional to the retention probability, i.e.,
decreasing p reduces the number of active BSs which serve the specific num-
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Figure 4.5: Area spectral efficiency of a PVT random cellular network for
different retention probabilities

ber of users. Therefore, EE improves as p decreases. Note that in this work
we consider a constant retention probability in order to study the perfor-
mance in a simple scenario. Obviously, more elaborated thinning operation
can enhance the results and opens a new direction for future works.

Although reducing the BS density improves EE, it degrades ASE as pre-
sented in Fig. 4.5. It is also shown that the higher the BS density the faster
the saturation of ASE.

As a significant result of this chapter, Figs. 4.6 and 4.7 illustrate the
tradeoff between EE and ASE, revealing that improving ASE does not always
accompany with an EE enhancement. In fact, concavity of the curves proves
the existence of an optimum point in tradeoff between EE and ASE. In other
words, after passing through the curve’s peaks, increasing ASE degrades
EE. Besides, it can be observed that this happens approximately when ASE
approaches its saturation region. The result of this figure gives a useful
perspective for network planning. In addition, Figs. 4.6 and 4.7 demonstrate
that as long as there are enough resources to serve the active users, it is
worth reducing the number of working BSs, a result that could not have
been obtained easily by individual analysis of the ASE and the EE.

4.6 Conclusion

In this work, we investigated the energy and area spectral efficiency in a PVT
random cellular network which utilizes cell zooming techniques in transmis-
sion strategy. To this aim, using stochastic geometry, we derived a novel
expression for the ergodic capacity in random networks, which is less com-
plex and faster to simulate compared to the ones proposed before. Two CZ
algorithms have been considered in this work.

Numerical evaluations showed that there is an optimum cell radius, and
equivalently a transmission power, which maximizes EE. Besides, they re-
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Figure 4.6: Tradeoff between energy and area spectral efficiency of a PVT
random cellular network for different BS Densities
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Figure 4.7: Tradeoff between energy and area spectral efficiency of a PVT
random cellular network for different retention probabilities

vealed that by adopting the CZ algorithm based on the thinned point pro-
cess, as the number of active BSs decreases EE increases and ASE degrades.
Also, the tradeoff between EE and ASE was demonstrated and the results
showed that as long as there are enough resources to serve the MUs, the CZ
technique based on the thinned point process provides some gains.

As future work, the effect of other CZ techniques in random cellular
networks can be investigated. Also, the concept of random MIMO cellular
network and different types of infrastructures are interesting items for future
investigation. In addition, more precise thinning and retention probability
models are an interesting topic for future works.



Chapter 5

Cell Zooming and Energy
Harvesting

In this chapter, we study the performance of K−tier heterogeneous random
cellular networks (HetNets) in terms of Energy Efficiency (EE) and Spec-
tral Efficiency (SE). In order to improve efficiency, two Cell Zooming (CZ)
techniques, namely telescopic and ON/OFF schemes, are applied to these
networks. Accordingly, we investigate multi-tier HetNets in which the Base
Stations gather their required energy from the environment. Therefore, two
important concepts in green cellular networks, namely CZ and Energy Har-
vesting (EH), are addressed in this work. Subsequently, numerical results
show the performance improvement in terms of the coverage and blocking
probabilities in addition to EE and SE.

5.1 Introduction

The notions of random cellular networks and small cell networks (SCNs) have
emerged as a viable solution to fulfill the requirements of fifth generation
mobile communication systems, 5G, such as high capacity and ubiquitous
coverage. Besides, some other new features in 5G such as machine-to-machine
(M2M) and device-to-device (D2D) communications are intrinsically based
on random networks. In this regard, random network studies have recently
become a hot research topic and are usually investigated through a powerful
mathematical tool, named Stochastic Geometry [10,12,42,58].

In such networks, low power Base Stations (BSs) play an important role.
As a matter of fact, in small cell BSs (SCBSs) short communication distances
and simpler baseband processing require lower transmission power and less
circuit (and processing) power consumption, respectively [38]. Therefore,
energy consumption of a BS in dense SCNs is much less than in present
Macro-cell BSs (MBSs). Reportedly, about 10% of the total power in a MBS
is consumed for air conditioning or cooling, which can be significantly reduced
in SCBSs [38,92].

Notice that, to fulfill the capacity and coverage requirements, dense de-
ployment of the SCBSs is inevitable. Consequently, the total power con-
sumption of the network would still be high. Hence, investigating efficient
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ways to control and possibly reduce power consumption in such networks is
essential.

In particular, green communications addresses environmental concerns,
for instance, carbon dioxide footprint. Therefore, gathering energy from re-
newable, clean and free resources such as sun, wind and geo-thermal heat
or ambient Radio Frequency (RF) signals in both BSs and Mobile Users
(MUs) is a promising technique in this regard [93]. Although there are sev-
eral reasons which may prevent the practical use of Energy Harvesting (EH)
in current high-power MBSs (e.g., the low efficiency of the harvesting devices
and the innate uncertainties of the EH sources), its ability to run low-power
BSs, e.g., Pico-BSs (PBSs) or Femto-BSs (FBSs), has been recently demon-
strated in the literature [38, 94], where it was shown that a 20% reduction
of the CO2 emissions of the communication industry may be obtained by
using EH techniques [95]. In addition, in a random deployment of SCBSs,
e.g., according to a Poisson Point Process (PPP), it might happen that some
SCBSs have no easy access to the power grid and in this case EH is a practical
solution to feed these BSs.

In [38], a hybrid solar-wind EH technique was studied. Note that, in
practice, EH is implementable only if the harvested energy is sufficient and
cost-effective. For example, the Center for White Space Communications
designed a renewable energy wireless BS, called WindFi, which is able to
achieve 99.98% reliability in rural communities using only harvested solar
and/or wind power [96].

Although the high level of co-channel interference is one of the major
constraints in ultra-dense SCNs, it can be exploited for EH purposes. Hence,
the feasibility of ambient RF energy harvesting in such networks was inves-
tigated in [94]. A mixture of on-grid SCBSs, powered by the electrical grid,
and off-grid SCBSs, powered by EH, was considered in that work. Besides,
validation of the proposed model and optimization of the corresponding por-
tion of on-grid and off-grid SCBSs were demonstrated through numerical
results.

Particularly, [42] studied a K−tier Heterogeneous Cellular Network (Het-
Net) where the BSs are powered by EH modules only. Considering the
stochastic energy arrival process and using other parameters of the network,
an achievable Availability region has been characterized, so that lying in
this region guarantees no performance degradation due to unreliable energy
sources.

Similarly, in the current study we assume that all the required energy in
the network is supplied by EH from the environment. Besides, we suppose
that the BSs are equipped with finite size batteries. Although, to improve
reliability, one can suggest that some tiers should be connected to the power
grid and serve the users without any EH constraint, this assumption degrades
the Energy Efficiency (EE) of the network and is beyond the scope of this
work. Furthermore, we will demonstrate the reliability of the proposed model
through numerical evaluations based on the availability proof [42].

Recently, Cell Zooming (CZ) techniques have been proposed to achieve
cost-effectiveness and EE in green cellular networks [?, 26, 80, 97]. Although
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the traffic pattern reveals an intense fluctuation in the spatial and temporal
domains, in present cellular networks the size and capacity of each cell are
fixed and determined based on the peak traffic load. Therefore, CZ can be
fulfilled, for example, by adjusting the coverage area of a BS or fine-tuning
the cell size and transmission power based on the traffic pattern or other
constraints in the network. It has been reported that about 20% power
consumption reduction is achieved by CZ [85]. For example, in a low traffic
scenario, a BS can shrink the coverage area by reducing its transmission
power or offload the traffic to the nearby BSs and then shut off.

In [87], CZ is implemented through different techniques, namely contin-
uous, discrete and fuzzy CZ algorithms which proposed special transmission
policies in order to avoid transmitting with maximum power corresponding to
the peak traffic load. Conditioned on the given user locations, the advantage
of the proposed schemes over the traditional approach has been shown.

Another CZ technique is known as ON/OFF scheme which has been
shown to improve the power saving efficiency without loss of throughput [89].
As a matter of fact, BSs consume up to 57% of the total power in cellular net-
works [88]. Therefore, the ON/OFF scheme is conjectured to have a strong
impact on reducing the total power consumption.

To the best of our knowledge, the concept of CZ was mostly studied in
traditional hexagonal cellular networks. However, in [97], CZ in a Poisson
Voronoi Tessellation (PVT) random cellular network has been investigated.
As an extension of [97], in this work we study EE and Spatial Spectral
Efficiency (SSE) in K−tier HetNets. Besides, we propose an EH framework
and investigate the effect of CZ on these networks.

5.1.1 Contributions and Remarks

In this subsection, we highlight the main goals and summarize the contribu-
tions and the results achieved in this work.

The original novelty of this chapter is to introduce Cell Zooming (CZ)
as a viable approach toward Green communication in randomly structured
cellular networks, known as HetNets. Our primary purpose is to investigate
EE and SE in a green communication framework, thereby addressing one
of the major concerns in 5G. Consequently, we aim to propose a technique
which keeps the network efficient despite the changing nature of wireless
networks, e.g., fluctuation in traffic pattern or weather changes in EH-based
networks. To this aim, we adopt two CZ schemes, namely telescopic and
ON/OFF schemes, and study their effects on a K−tier network scenario.

First, we study K−tier HetNets in which BSs are only powered by EH. In
fact, this scenario justifies the assumption of independent thinning process
proposed in the previous chapter. Although a general model for such net-
works has been developed in [42], in this work we focus on SSE and EE and
provide performance comparison between this model and a non-EH unbiased
network. Derivations of coverage, retention and blocking probabilities with
respect to the telescopic CZ scheme, are the other interesting intermediate
results obtained towards the final expression for the SSE and EE.
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In the best case, in past studies it was shown that under specific condi-
tions, no performance loss would occur in EH-based HetNets [42]. We will
show that, in addition, the network functionality improves in terms of cover-
age and blocking probabilities, EE and SSE. In fact, the network performance
can be enhanced while reducing the energy consumption, by applying joint
telescopic and ON/OFF CZ schemes in EH-based HetNets, which is the most
significant achievement of this work and has not been considered before.

The rest of this chapter is organized as follows. In Section 5.2, the system
model will be introduced. The K−tier HetNet with EH modules, will be in-
vestigated in Section 5.3. Then, Section 5.4 evaluates the performance of the
proposed model and discusses numerical results, and Section 5.5 concludes
the chapter.

5.2 System Model
In this piece of work, which is the extension of the previous chapter and the
work reported in [97], we investigate K−tier Heterogeneous Random Cellular
Networks (HetNets) which leverage Energy Harvesting (EH) to feed Base
Stations (BSs). Moreover, each scenario utilizes two Cell Zooming (CZ)
techniques.

In these networks, the locations of the BSs in each tier follow an indepen-
dent homogeneous Poisson Point Process (PPP), called Φk , of density λk for
k = 1, 2, . . . , K . Besides, the Mobile Users (MUs) locations are drawn from
another independent PPP, Φu, with density λu.

As mentioned, two CZ techniques are adopted in this work. In the first
case, namely the telescopic scheme, the coverage area of the cells is ad-
justable. To this aim, different techniques can be applied, for instance, tun-
ing the cell radius by controlling the power emission or adjusting a bias factor
for the received power [12].

In the second technique, called ON/OFF scheme, only a portion of the
BSs remain active. For example, those BSs that only have a light traffic
demand and are able to offload their traffic to the nearby BSs, switch off. To
model the active BS locations in the kth tier, we exploit the p−thinned point
process, Φ(a)

k , of density [10,77]

λ (a)
k = ρk · λk, (5.1)

where ρk is called the retention probability, i.e., each BS in the kth tier
switches off with probability (1 − ρk ), independently of the location and of
the possibility that any other BS∈ Φk , for k = 1, 2, . . . , K , switches off or
remains active. ρk can be determined based on the network parameters and
the traffic profile. This parameter is also named as availability in [42].

Note that, since we focus on downlink transmission, according to Slivnyak’s
theorem [77] and without loss of generality, we study a typical MU located
at the origin and then generalize the results to the whole network.

To model propagation, in this work we consider Rayleigh fading along
with the path-loss model. Therefore, the received Signal-to-Interference-plus-
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Noise Ratio (SINR) at the typical MU served by BS j located at x j ∈ Φ
(a)
k is

given by

SINRk =
Pk |h j |

2‖x j ‖
−α∑K

`=1

∑
xz∈Φ

(a)
`
\x j

P` |hz |
2‖xz ‖

−α + σ2
, (5.2)

where h(·) ∼CN (0, 1) is the fading channel coefficient between BS(·) and the
typical MU located at the origin, and α>2 and σ2 are the path-loss exponent
and the normalized power of AWGN at the receiver, respectively.

In this work, network operation is studied on two time scales, namely
short and long time scales. The former deals with the instantaneous trans-
mission and scheduling, which takes in the order of a block duration. On
the other hand, long time scale is related to the BS operational mode (ON
or OFF), and cell association, and takes a longer time in order to avoid the
“ping-pong effect” due to unnecessary handovers [12]. Therefore, we simply
assume that a BS mode remains unchanged during the short time scale.

5.3 Network Metrics

In order to apply the telescopic CZ scheme, as in [12] we assume a specific
bias multiplier for the received signal power from the BSs of each tier, called
CZ factor, Bk ≥ 1, for k = 1, 2, . . . , K . The advantage of using the CZ factor
technique is that a user may connect to a lower power (but denser) tier of
the BSs although it may receive a stronger signal from a higher power (but
less dense) BS tier. Therefore, some traffic of the high-power BSs can be
off-loaded to the low-power BSs, so that the lower transmission power does
not result in lower traffic load due to the smaller coverage area.

In addition, the energy arrival in each tier of BSs is modeled by a Poisson
process. This assumption has been validated in the literature, for example
[42, 98]. In general, the BSs in a specific tier, say the kth tier, have equal
EH rate, γk , maximum battery size, Nk , and transmit power, Pk , which are
varied across the tiers.

In this work, the temporal dynamics of the energy level at the BSs of each
tier are modeled as a birth-death process. We assume that serving a user
at each time unit requires one energy quantum. Accordingly, the maximum
number of available energy quanta at each BS of the kth tier is equal to its
battery capacity, Nk .

Moreover, the energy utilization in each BS is modeled by a Poisson pro-
cess whose rate is a function of the BS densities, transmission powers and CZ
factors. [42, Corollary 1] gives the energy utilization rate as Pcovλu (PkBk )2/α∑K

`=1 ρ`λ` (P`B` )2/α
,

which can be interpreted as the average number of serving users by each BS
in the kth tier.

Note that, due to the limited storage capacity and uncertain nature of
the harvested energy, it may happen that some BSs do not have enough
energy to serve any user. Accordingly, a general CZ technique, also known
as ON/OFF scheme [26, 97], has been utilized in this network scenario. In
other words, only a portion of BSs in each tier remain active, as imposed by
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the network parameters and the EH related constraints.
Furthermore, the SINR at the typical MU served by BS j , belonging to

the kth tier and located at x j ∈ Φ
(a)
k , is given by

SINRk =
Pk |h j |

2‖x j ‖
−α∑K

`=1

∑
xz∈Φ

(a)
`
\x j

P` |hz |
2‖xz ‖

−α + σ2
, (5.3)

We assume that a user is associated to the BS that provides the highest
Biased Received Power (BRP) on the long time scale [12]. Accordingly, the
typical MU is connected to BS j located at

x j = arg max
x∈{x∗

`
}
P`B`‖x‖−α, (5.4)

where
x∗` = arg max

x∈Φ(a)
`

P`B`‖x‖−α for ` = 1, . . . , K . (5.5)

As a matter of fact, a higher bias or CZ factor, Bk > 1, results in an
extension of the cell coverage and enables us to control the traffic load on
the lower power tiers.

5.3.1 Coverage, Retention and Blocking Probabilities

To derive the total coverage probability expression, first we obtain the per-
tier association probability, which is the probability that a typical user is
associated with a BS in a specific tier, say the kth tier. The per-tier associa-
tion probability is given by [12, Lemma 1]

Ak =
λ (a)

k (Pk Bk )2/α∑K
`=1 λ

(a)
`

(P`B`)2/α
=

ρkλk (Pk Bk )2/α∑K
`=1 ρ`λ` (P`B`)2/α

. (5.6)

Note that due to the EH constraints and applying joint CZ schemes, in this
system unlike [12] the association probability is a function of ρ as well.

Furthermore, the coverage probability of the kth tier of BSs is given by

Pcovk = P (SINRk > τk )

=

∑K
`=1 ρ`λ` (P`B`)2/α∑K

`=1 ρ`λ` (P`)2/α
(
B2/α
`
+ 2τ

α−2Bk B2/α−1
`

Fk,`
) , (5.7)

where τk is the SINR threshold in the kth tier and Fk,` is a Gaussian hyper-
geometric function, defined as

Fk,` = 2F1

[
1, 1 − 2/α; 2 − 2/α;

−τk Bk

B`

]
. (5.8)

Thus, the total coverage probability is given by

Pcov =
K∑

k=1

Ak · P
cov
k . (5.9)
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Along the lines of [42], the retention probability with respect to the system
model in this work and under the BRP cell association, is formulated as
follows ]

ρk = 1 −
*...
,

1 −
γk

∑K
`=1 ρ`λ` (P`B` )2/α

Pcovλu (PkBk )2/α

1 −
(
γk

∑K
`=1 ρ`λ` (P`B` )2/α

Pcovλu (PkBk )2/α

)Nk+1

+///
-

. (5.10)

Accordingly, [42, Theorem 2] provided a necessary and sufficient condition
for the existence of a solution for the system of equations given by Eq. (5.10),
for k = 1, 2, . . . , K , as

K∑
k=1

γkλk > P
covλu. (5.11)

Note that the energy conservation principle given in Eq. (5.11) captures
some network parameters such as battery size, CZ factor and so on. For the
next step, the blocking condition and its probability will be introduced. A
channel is assumed to be available if it is not in outage, i.e., if the SINR of
the link is greater than a threshold. An available channel can also be free
or occupied in each time slot. Therefore, an arriving call will be blocked if
the total number of available channels, n, is equal to the number of occupied
ones, m. Note that we define V as the total number of channels, so that
m ≤ n ≤ V .

Using a Markov Chain (MC) model, (m, n) represents the network state
for the transition between available and unavailable, free and occupied chan-
nel. In this respect, the steady state probability of a typical cell in the kth

tier is [76]

πk (m, n) =
1

χ

(
µ

η

)m
1

m!

(
V
n

) (
Pcovk

1 − Pcovk

)n

, (5.12)

where χ is a normalization factor, and µ and η are the call arrival rate and
mean channel holding time, respectively.

Based on the mentioned definition, the Blocking probability, Pb, is ob-
tained through summation over all cases in which the number of available
channels, n, is equal to the number of occupied ones, m. Thus, using Eq.
(5.12), we have

Pbk =
∑

m=n≤V

πk (m, n)

=
∑

m=n≤V

1

χ

(
µ

η

)m
1

m!

(
V
n

) (
Pcovk

1 − Pcovk

)n

. (5.13)

In order to evaluate the spectral efficiency in a multi-tier scenario, we
derive the Spatial Spectral Efficiency (SSE) in the following subsection. This
expression gives per tier measure and enables us to have a comparison among
different tiers. To this aim, first we introduce the cell throughput and then
provide the SSE in K−tier HetNets.
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5.3.2 Spatial Spectral Efficiency

Along the lines of [76], the throughput of a typical cell belonging to the kth

tier is given by

Tk = (1 − Pbk ) ·W · CEk ·
∑

0≤m≤n≤V

m · πk (m, n), (5.14)

where W is the bandwidth and CEk is the ergodic capacity of the kth tier BSs,
derived as

CEk = E [log2(1 + SINRk )]

=

∫ +∞
0
P

(
log2(1 + SINRk ) > τ

)
dτ

=

∫ +∞
0
P

(
SINRk > 2τ − 1

)
dτ (5.15)

where the integrand of Eq. (5.15) follows the definition of the coverage
probability in Eq. (5.7).

Finally, to obtain the SSE of the kth tier, we have

SSEk = ρk · λk · Tk . (5.16)

5.3.3 Energy Efficiency

In order to obtain EE, we adopt a model which considers both the operation
energy and the so-called “embodied” energy, which includes the initial energy
consumed during the manufacturing [99]. Accordingly, EE is defined as the
ratio of the lifetime throughput and the total energy consumption during the
lifetime of a BS. Therefore, the EE of the typical cell belonging to the kth

tier is given by

EEk =
Tk · tLT

Etot
k

, (5.17)

where tLT denotes the BS lifetime, and Etot
k is the total energy of a BS in the

kth tier, which includes the energy consumed in the factories to manufacture
the BS, Ee

k , the energy required for maintenance, Em
k , and the transmission

energy, Et
k .

The transmission energy is obtained by

Et
k =

*
,
a · Pk

∑
0≤m≤n≤C

m · πk (m, n) + b+
-
· tLT (5.18)

where a and b are the scaling coefficients.Therefore, EE in Eq. (5.17) is given
by

EEk =
Tk · tLT

Ee
k+Em

k +
(
a ·Pk

∑
0≤m≤n≤C m · π(m, n) + b

)
·tLT

. (5.19)
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Figure 5.1: Coverage probability of a K = 1−tier HetNet

Table 5.1: Network Parameters
1st tier 2nd tier 3rd tier

λk [1/m2] 10−6 10−4 10−2

Pk [dBm] 44.77 30 20

Bk [dB] 0 10 17

Nk 30 15 5

Note that, in this chapter, we adopt a model of the K−tier EH HetNets in
which the BSs are powered only by the self-contained EH modules. Accord-
ingly, all the required energy for maintenance and transmission purposes is
earned from the ambient environment and this part of the consumed energy
is not taken into account for EE computation. Therefore, in this system we
just have the first term in the denominator of Eq. (5.19).

5.4 Performance Evaluation and Numerical Re-
sults

In the following, we will provide some numerical results in order to evaluate
the performance of K−tier EH HetNets which utilize CZ. To show reliability
and the advantages of our proposed model, we compare it with a non-EH
unbiased network with identical parameters for K = 1, 2, 3. The network
parameters are provided in Table 5.1. Moreover, for simplicity we assume
that the energy arrival rate is equal to the battery size of the BSs in each
tier i.e., γk = Nk energy quanta per time unit for k = 1, 2, . . . , K .

In Figs. 5.1, 5.2 and 5.3, the coverage probabilities of the K = 1, 2, 3−tier
networks are illustrated, respectively. With reference to Table 5.1, the bias
factor of the 1st tier is equal to one, which is equivalent to an unbiased
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Figure 5.2: Coverage probability of a K = 2−tier HetNet

-60 -40 -20 0 20 40 60 80 100

SINR Threshold [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v
e

ra
g

e
 P

ro
b
a

b
ili

ty

EH CZ Net. (1
st

tier)

EH CZ Net. (2
nd

tier)

EH CZ Net. (3
rd

tier)

non-EH unbiased Net. (1
st

tier)

non-EH unbiased Net. (2
nd

tier)

non-EH unbiased Net. (3
rd

tier)

Figure 5.3: Coverage probability of a K = 3−tier HetNet

scenario. Therefore, in Fig. 5.1, the two curves are matched, which implies
that using EH with proper considerations does not degrade the performance
of such networks. Moreover, in K = 2, 3−tier networks, corresponding to
Figs. 5.2 and 5.3 respectively, the coverage probability of EH CZ networks
is higher than for the non-EH unbiased ones.

Moreover, compared to non-EH networks, the order of curves correspond-
ing to different tiers is reversed in EH CZ networks. The reason is that in
these networks, we assume a smaller BS, smaller battery size and less en-
ergy arrival rate for denser tiers due to the considered system model, which
obviously degrades the performance of such tiers. However, under these con-
straints, limited battery size and uncertain nature of the energy harvesting,
EH CZ networks outperform the non-EH ones in all tiers.

A similar description is valid for the blocking probabilities of the K =
1, 2, 3−tier networks in Figs. 5.4, 5.5 and 5.6, respectively. As shown in Fig.
5.4, a single tier EH CZ network has the same blocking probability as the
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Figure 5.4: Blocking probability of a K = 1−tier HetNet
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Figure 5.5: Blocking probability of a K = 2−tier HetNet

non-EH unbiased network. Moreover, in 2 and 3−tier networks, a new call
would be blocked with lower probability in EH CZ networks. Therefore, also
in this case, our numerical evaluations show that the energy obtained from
the environment thanks to EH has the potential to sustain the network with
no performance degradation compared to the case in which a reliable energy
source (e.g., the power grid) is available. Note that, for the same reason here
we have a reversed order for the curves corresponding to different tiers in 2
and 3−tier networks .

Figs. 5.7, 5.8 and 5.9 depict the SSE of the K = 1, 2, 3−tier networks,
respectively. As observed in Fig. 5.7, the SSE of the non-EH unbiased
network is slightly better than the K = 1−tier EH CZ network because,
according to Eq. (5.16), SSE is proportional to the retention probability,
ρ, which is equal to 0.9 in the EH CZ network according to the system
parameters. On the other hand, in the K = 2, 3−tier networks, the SSE of
the EH CZ networks outperforms the non-EH unbiased networks.
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Figure 5.6: Blocking probability of a K = 3−tier HetNet
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Figure 5.7: Spatial spectral efficiency of a K = 1−tier HetNet

Finally, Figs. 5.10, 5.11 and 5.12 illustrate the EE of the K = 1, 2, 3−tier
networks, respectively. As expected, the EE of the EH CZ networks sig-
nificantly outperforms those of non-EH unbiased networks. Unlike the other
metrics which have a close performance in the case of the single tier HetNets,
Figs. 5.1, 5.4 and 5.7, the EE of the EH CZ scenario is higher than the EE
in non-EH unbiased networks, depicted in Fig. 5.10. According to Fig. 5.11,
in 2−tier HetNets, there is only a slight gap between the EE of the 1st tier
of the EH CZ networks and the EE of the 2nd tier of the non-EH unbiased
networks. Moreover, Fig. 5.12 properly shows the advantage of the EH CZ
networks over non-EH unbiased ones in 3−tier HetNets, where the EE of the
1st tier of the EH CZ networks outperforms the EE of both the 1st and 2nd

tiers of the non-EH unbiased networks. In addition, the EE of the 2nd tier of
the EH CZ networks has a slight gap to the EE of the 3rd tier of the non-EH
biased networks.

Based on the results presented in this section, we can conclude the ad-
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Figure 5.8: Spatial spectral efficiency of a K = 2−tier HetNet
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Figure 5.9: Spatial spectral efficiency of a K = 3−tier HetNet

vantage of using EH and CZ techniques in HetNet in terms of the EE while
the performance of the networks in other aspects is guaranteed.

5.5 Conclusion

In this work, we investigated two CZ techniques, namely telescopic and
ON/OFF schemes, in K−tier energy harvesting HetNets. We showed that
although using EH in cellular networks comprises several constraints, such as
uncertainty in energy harvesting and finite size of the batteries, the system
performance does not degrade and even improves using the CZ techniques.
In this respect, the coverage and blocking probabilities of K = 1, 2, 3−tier
networks in two different scenarios, namely EH-CZ and non-EH unbiased
networks, are compared. Furthermore, SSE and EE in this scenario have
been derived and the advantage of this model over the non-EH unbiased
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Figure 5.10: Energy efficiency of a K = 1−tier HetNet
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Figure 5.11: Energy efficiency of a K = 2−tier HetNet

for K = 1, 2, 3−tier networks was highlighted through numerical evaluations.
Based on these results, an interesting item for future work is to increase our
understanding of the effects of EH technologies on green communications and
efficient cellular networks.
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Figure 5.12: Energy efficiency of a K = 3−tier HetNet
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Chapter 6

Conclusion

In this dissertation, we investigated two main approaches towards green com-
munications in 5G using stochastic geometry. For each approach, we first
studied a simple scenario of single tier PVT random cellular networks, while
in the next step, we extended our works to more accurate or general network
models.

In Chapters 2 and 3, we focused on the efficiency of MIMO technology
in HetNets. Despite higher circuit power consumption of MIMO due to
multiple RF chains and requirements for more signal processing, comparing
the obtained results with the SISO scenario in PVT random cellular networks
shows the gain of MIMO systems in terms of SSE and EE.

Unlike most works on HetNets which assume no correlation between the
locations of different BS tiers, we adopt a model in which the locations of
lower power BSs, PBSs, follow a PHP. Although PHP generalizes the PPP
where equality holds in the case of D = 0, working with this process is not as
straightforward as with PPP. Accordingly, we used two approximations which
respectively underestimate and overestimate the interference experienced by
the typical user. Tightness of the bounds has been shown through numerical
results. Moreover, the advantage of PHP based networks over commonly-
used HIP model has been indicated in terms of EE and SSE.

To overcome the sharp increase of total power consumption in HetNets
due to dense deployment of small cells (although they consume less energy
individually), we adopt two CZ techniques, namely telescopic and ON/OFF
methods, in Chapters 4 and 5.

For different CZ parameters, we have derived the tradeoff between EE
and ASE in PVT random cellular networks which revealed that improving
ASE does not always accompany with an EE enhancement. Therefore, this
tradeoff presented a network working region which is necessary to consider
for network design.

In the last technical part, we studied K−tier HetNets in which BSs are
only powered by energy harvesting. Although EH has attracted extensive
attention in recent years, the uncertain and intermittent nature of energy
arrivals makes it challenging to be practically used in cellular networks.
However, combining the two mentioned CZ techniques enables us to achieve
higher network performance in terms of the coverage and blocking probabil-
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ities while reducing the total power consumption and increasing the energy
and spectral efficiencies.

To sum up, we have focused on green 5G where heterogeneous networks
seem to be a promising structure to fulfill high capacity demand. However,
power consumption in HetNets is another important challenge facing 5G.
Thus, we have studied two techniques, namely MIMO and CZ, in order to
achieve energy and spectral efficiencies in HetNets where in both methods
we have shown their positive impacts on network performance.

Some interesting research directions for future works are listed below.

• Exact characterization of PHP in modeling wireless networks.

• Extend the concept of PHP in order to model more than 2−tier HetNets
and study the network performance accordingly.

• Develop smart CZ techniques like traffic-based or proximity-based meth-
ods in order to achieve higher efficiency.

• Study CZ scenarios for more realistic user distributions, such as non-
uniform and cluster-based user location.
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Appendix

In order to increase the network capacity and fulfill the Quality of Service
(QoS) requirements in multi-user wireless networks, Interference Alignment
(IA) has been proposed. Subsequently, Ergodic IA was introduced as a
promising scheme to achieve a Degrees of Freedom (DoF) metric equal to
1
2 , at the expense of additional delay. In this work, we study the delay-rate
trade-off in Ergodic IA and exactly compute the best Delay Exponent of
JAP-B, a state-of-the-art Ergodic IA scheme. Moreover, we derive lower and
upper bounds for the best delay exponent and show the much better tight-
ness of the proposed bounds compared to those available in the state of the
art.

7.1 Introduction
Interference Alignment (IA) was proposed and shown to be able to im-
prove the capacity of multi-user interference networks [100]. In IA literature,
to measure the multi-user performance of an interference network a metric
named Degrees of Freedom (DoFs) was defined as

DoF = lim
P→∞

C(P)
log2(P)

,

where C is the sum rate of the network, and P represents the per-node trans-
mit power [101]. Hence, DoF indicates the number of interference-free trans-
mitted data streams in a multi-user interference network and is a capacity
pre-log factor [102].

However, most of the IA schemes are only feasible in the high Signal-
to-Noise ratio (SNR) regime. Ergodic IA, on the other hand, works in any
SNR regime [103]. ?Along with these positive features, namely network size
and SNR independence, the main drawbacks of Ergodic IA are the intrinsic
time delay and global channel state information (CSI) requirement. In fact,
this scheme achieves high capacity by pairing time slots with specific channel
conditions, in which to transmit the same data stream. Therefore, Ergodic
IA may suffer a long time delay waiting for the desired channel state to occur.

To deal with global CSI requirement, authors in [104] showed that with
proper power control or rate adaptation strategies, performance of the Er-
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godic IA scheme can still outperform conventional orthogonal transmission
approaches with limited feedback. Moreover, [105] studies the available in-
terference alignment testbed implementations and explores the applications
of IA in the next generation wireless systems.

Inspired by Ergodic IA, some schemes were proposed to control delay
[106]- [107]. In [106], two schemes (JAP and JAP-B) were proposed to control
the trade-off between transmission rate and delay, and analytical bounds on
the delay exponent were provided. In this work, along the line of [103, 106],
we consider a time varying (or equivalently frequency selective) Gaussian
interference channel. Channel coefficients are quantized and form a finite field
of size q. Note that, as mentioned in [100], there is no difference between
time and frequency dimension, however the varying nature of the channel
coefficients from one channel-use to another one is an important assumption.

By definition, the expected delay is the average time needed before a
single codeword symbol from each transmitter is successfully retrieved by
the receivers. In Ergodic IA, the expected delay is exponentially scaled with
the number of users however, JAP-B scheme reduces the delay exponent
without sacrificing rate.

In [108], using the Viterbi algorithm, the optimum user allocation to
achieve the lowest delay exponent was obtained numerically. However, the
complexity of this method grows with the network size.

Compared to the original Ergodic IA scheme which decodes all users
simultaneously, JAP reduces the time delay by successively canceling the
interference matching more than two channel matrices. To this aim, in the
K-user interference network, users are placed in n groups represented by the
user allocation vector a = (a1, a2, . . . , ai, . . . , an) of length n and weight K . At
the i-th retransmission, ai users decode their data, i = 1, . . . , n, where n is the
total number of retransmissions. Using the JAP scheme, DoF = 1/(n + 1) is
achievable [106], with Ergodic IA as a special case for n = 1 and DoF = 1/2.

As an evolution of JAP, JAP-B takes advantage of beamforming to im-
prove the performance. To this aim, instead of repeating the same message,
i.e., wi, in each retransmission, transmitter i sends

(
H`i[tm]

)−1 H`i[t0]wi, where
m ∈ {1, 2, . . . , n} denotes the retransmission step and ` =

(∑m−1
i=1 ai

)
+ 1. Be-

sides, H`i[tm] represents the channel coefficient from transmitter i to user `
at time tm. Therefore, the interference suffered by the first user of each set is
canceled by using beamforming, while for all other users JAP is used. Note
that JAP-B always outperforms JAP although both adopt the same user
allocation vector1.

In this work, we derive the exact analytical expression of the lowest delay
exponent of JAP-B, which until now could only be evaluated numerically
[106, 108]. As this involves an integer truncation operation, we also derive
continuous analytical expressions of a lower bound and two upper bounds for
the delay exponent and compare them with the bounds provided in [106]. The
numerical results show the much better tightness of our proposed bounds.

1Full details about JAP and JAP-B can be found in [106].
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7.2 Exact Evaluation of the Delay Exponent
In this section we find all solutions to the problem [106]

min
a

TB (a) = min
a

max
i∈{1,...,n}

(ai − 1)(K − i − 1) (7.1)

s.t.: a = (a1, . . . , an)
n∑

i=1

ai = K ai > 0 ∀ i

where TB (a) is the delay exponent of JAP-B when the user allocation vector
a is used, which we want to minimize with respect to a. The problem can be
recast as follows. Consider n bins in which we need to fit K users. The metric
associated to bin i when j users have been placed in it is ci j = ( j−1)(K−i−1).

Consider a grid of K × n cells, arranged in K rows and n columns. We
need to fill the columns (the bins) from the bottom up by placing ai > 0
users (one per cell) in column i, with

∑n
i=1 ai = K , so that the resulting value

of TB (a) is minimized. (Note that each column will be filled without gaps
since each cell is strictly dominated by those below, i.e., ci j > cik for j > k.)

In order to do so, we can use the following algorithm. Starting from
an empty grid, we add one user at a time to the proper bin, so that the
corresponding cell being added is the one with the lowest metric among
those not yet filled. If there are multiple cells with that property, we pick
one of them at random. Once K cells have been selected, the number of users
in the different bins provide an optimal solution to problem (7.1), since the
way cells are added, choosing the bin with the lowest metric in each step,
guarantees that there is no other way which returns a lower value of TB (a).

We now characterize the solution of the problem, by studying the outcome
of the above algorithm. Note that if K ≤ n the problem is trivially solved
by any of the

(
n
K

)
solutions in which each user is in a bin by itself, for which

TB (a) = 0. In addition, K = n + 1 also leads to TB (a) = 0 for ai = 1, i =
1, . . . , K − 1, aK = 2. Therefore, in the following we assume K > n + 1.

Lemma 1: The only possible assignment of the first m < K users fills
completely an integer number of rows

⌊
m
n

⌋
plus the rightmost m− n

⌊
m
n

⌋
cells

of the next highest row.
Proof: We prove this result by induction. Obviously, first users up to

number n are assigned one per bin which result TB (a) = 0. So we focus on
the case m > n. After assignment of first n users, the n + 1-st user must be
added to bin n because a given cell strictly dominates all those to its left,
i.e., ci j > ck j for i < k, j > 1. Note that this is true not only after the first
row has been completely filled, but also after completing each row.

Now suppose m − 1 users have been assigned so that j − 1 rows are com-
pletely filled, with j−1 =

⌊
m−1

n

⌋
, and the rightmost n−i = m−1− ( j−1)n cells

of the j-th row are filled. If m − 1 is an integer multiple of n, the assignment
corresponds to j − 1 complete rows, and the next assignment necessarily fills
cell n, j, starting a new row.

If instead n − i = m − 1 − ( j − 1)n > 0, we have that row j is partially
filled. Since each cell strictly dominates all those to its left, the only possible
candidate cells for the assignment of the m-th user are cell i, j (i.e., one more
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in row j) and cell n, j + 1 (i.e., the rightmost cell of row j + 1). To see which
one is to be chosen, we evaluate

ci j − cn, j+1= ( j − 1)(K − i − 1) − j (K − n − 1)
= j (K−1) − ji − (K − i − 1) − j (K−1)+ jn
= jn − ji − K + i + 1 = ( jn − i + 1) − K − ( j − 2)i (7.2)

Note that in (7.2) we have jn− i+ 1 = m < K , so that ( jn− i+ 1)−K < 0,
and −( j − 2)i ≤ 0 (note that m > n implies j > 1), and therefore

ci j − cn, j+1 = ( jn − i + 1) − K − ( j − 2)i < 0 (7.3)

so that cell i j strictly dominates cell n, j + 1, and the assignment of user m is
unique.

From the above argument, and using the induction principle, we can
conclude that the only assignment that minimizes maxi∈{1,...,n} (ai − 1)(K − i −
1),

∑n
i=1 ai = m < K is obtained by filling successive rows right to left, moving

to row j only after row j − 1 has been completely filled. The lemma is thus
proved. �

Theorem 1: Problem (7.1) has a unique solution if K > 2n, whereas it
has exactly two solutions if n + 1 < K ≤ 2n. These solutions are:

a=




(t, . . . , t, t + 1, . . . , t + 1) if K > 2n

(t, . . . , t, t + 1, . . . , t + 1) and

(t, . . . , t, t + 1, . . . , t + 1, t + 2) if n+1<K ≤2n

(7.4)

where t =
⌊

K−1
n

⌋
, and the number of elements equal to t, t + 1 and t + 2 is

uniquely determined by the total number of users K and by the number of
bins n.

Proof: From Lemma 1, we have that the first K − 1 users are assigned
to fill t rows plus the K − 1− tn ≥ 0 rightmost cells of row t + 1. If K − 1 is an
integer multiple of n, i.e., K−1−tn = 0, then the only possible assignment for
the K-th user is in cell n, t + 1 and the lemma is proved. (Note that this case
can only occur when K > 2n, since our assumption that K > n + 1 implies
that the smallest K for which K − 1 is an integer multiple of n is K = 2n+ 1.)

If instead K−1−tn > 0, we have two possibilities to assign user K , namely
cells i j and n, j + 1, with i = (t + 1)n − (K − 1) and j = t + 1. As before, we
have that

ci j − cn, j+1 = ( jn − i + 1) − K − ( j − 2)i = −( j − 2)i (7.5)

where the last equality derives from the fact that, when assigning the last
user, jn− i + 1 = K . Therefore, if j > 2 (i.e., K > 2n), ci j − cn, j+1 < 0 and the
solution is unique, whereas if j = 2 (i.e., n + 1 < K ≤ 2n), ci j − cn, j+1 = 0 and
problem (7.1) admits two equivalent solutions. This concludes the proof of
the theorem. �

Remark: More specifically, the optimal solutions are as follows. If K >
2n, the unique solution contains (t+1)n−K ≥ 0 elements equal to t, followed
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by K − tn > 0 elements equal to t + 1. If n+ 1 < K ≤ 2n, one optimal solution
contains 2n − K ≥ 0 elements equal to 1 and K − n > 0 elements equal to 2,
and the other contains 2n − K + 1 > 0 elements equal to 1, K − n − 2 ≥ 0
elements equal to 2, and one element equal to 3.

Note that the optimal value of the delay exponent corresponds to the last
cell being filled, which is

T (K, n) = c(t+1)n−K+1,t+1 (7.6)
= t(K − 1 − ((t + 1)n − K + 1))

= (2K − 2 − (t + 1)n)t, t =
⌊

K − 1

n

⌋

The expression in (7.6) involves the use of t =
⌊

K−1
n

⌋
, which is not always

easy to handle analytically because of the truncation. For this reason, in the
following we provide some useful and tight upper and lower bounds expressed
as continuous and (infinitely) differentiable functions of K and n.

7.3 Bounds
Lemma 2:

(K−1)2

n
− (K−1) ≤ T (K, n) ≤

(K−1)2

n
− (K−1) +

n
4

(7.7)

Proof:

T (K, n) −
(

(K − 1)2

n
− (K − 1)

)
(7.8)

= (2K − 2 − (t + 1)n)t −
(K − 1)2

n
+ (K − 1)

= n

2t

(
K − 1

n

)
− t2 − t −

(
K − 1

n

)2
+

K − 1

n



= n


(
K − 1

n
− t

)
−

(
K − 1

n
− t

)2
= n(ξ − ξ2)

where ξ =
(

K−1
n − t

)
∈ [0, 1] and we have 0 ≤ (ξ − ξ2) ≤ 1

4
which concludes the proof. �
Remark: As a refinement of the previous result, note that since ξ =(

K−1
n − t

)
∈ {0, 1n,

2
n, . . . ,

n−1
n }, we have that

0 ≤ (ξ − ξ2) ≤



1
4 for n even
n2−1
4n2 =

1
4 −

1
4n2 for n odd

(7.9)

The following lemma provides an alternative upper bound.
Lemma 3:

T (K, n) ≤
(K − 1)2

n
− n (7.10)
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Proof:

T (K, n) = c(t+1)n−K+1,t+1 ≤cn,t+2 (7.11)

= (t + 1)(K − n − 1) ≤
(

K − 1

n
+ 1

)
(K − n − 1)

=
(K − 1 + n)(K − n − 1)

n
=

(K − 1)2 − n2

n

where we used the fact that all cells in row t +2 are empty and T (K, n) is less
than or equal to the value of any empty cell, and the fact that t =

⌊
K−1

n

⌋
≤

K−1
n . �

Remark: The bounds given above are always better than the bounds
provided in [106, Theorem 5]:

K (K − 2)
n

− (2K − n − 2) ≤ T (K, n) ≤
K (K − 2)

n
(7.12)

The lower bound in (7.7) is always better (i.e., higher) that the one in (7.12)
since

(K − 1)2

n
− (K − 1) −

K (K − 2)
n

+ (2K − n − 2)

= (K − 1 − n) +
1

n
> 0 (7.13)

because K ≥ n + 1.
The upper bound in (7.7) is always better (i.e., lower) that the one in

(7.12) since, for n ≥ 2,

K (K − 2)
n

−

(
(K − 1)2

n
− (K − 1) +

n
4

)
(7.14)

= K − 1 −
n
4
−

1

n
≥

3

4
n − 1 > 0

because K ≥ n + 1. For n = 1, the delay exponent can be trivially computed
as (K − 1)(K − 2), and the bound in (7.12) is K (K − 2), which is strictly
greater than the actual value, whereas our (refined) bound is exact.

Similarly, comparing the upper bound in (7.10) with that in (7.12) we
have the inequality

K (K − 2)
n

−

(
(K − 1)2

n
− n

)
= n −

1

n
≥ 0 (7.15)

which is strict if we again exclude the trivial case n = 1.
As will be shown in the results section, not only are our new bounds

always guaranteed to be better than those in [106], but they often provide a
very significant improvement.
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7.4 Asymptotic regimes
As in [106], we study the asymptotic regimes for fixed single-user rate (Regime
I – the number of DoFs is fixed to some number α ∈ (0, 1/2]) and for fixed
sum-rate (Regime II – the number of DoFs is β/K , for β > 1, and goes to
zero as the number of users grows). We have the following results.

Lemma 4: In Regime I, for fixed α and as K → ∞, the delay exponent
obeys

0 ≤ T (K, n) −
K2 −

⌊
1
α + 1

⌋
K +

⌊
1
α

⌋

⌊
1
α − 1

⌋ ≤
1

4

⌊ 1

α
− 1

⌋
(7.16)

Proof: Trivially obtained from (7.7). �

Remark: As in [106], T (K, n) scales as
(⌊

1
α − 1

⌋ )−1
K2. However, (7.16)

provides bounds with guaranteed distance 1
4

⌊
1
α − 1

⌋
,∀K .

Lemma 5: In Regime II, for fixed β and as K → ∞, the delay exponent
obeys

(β − 1)K ≤ T (K, n) ≤ min

{
β − 1 +

1

4β
, β −

1

β

}
K

≤

(
β −

4

5

)
K (7.17)

Proof: For the lower bound, since n =
⌊

K
β − 1

⌋
≤ K

β − 1, we have for any
K

T (K, n) ≥ (K−1)2
n − (K − 1) ≥ (K−1)2

K
β −1

− (K − 1) (7.18)

= (K − 1)
[
β(K−1)−(K−β)

K−β

]
(7.19)

=
(K−1)(β−1)K

K−β ≥ (β − 1)K (7.20)

For the upper bound, for K → ∞ we know from (7.7)

(K−1)2

n
− (K−1) +

n
4
∼
β(K−1)2

K
− (K−1) +

K
4β

∼

(
β − 1 +

1

4β

)
K (7.21)

and from (7.10)

(K − 1)2

n
− n ∼

β(K − 1)2

K
−

K
β
∼

(
β −

1

β

)
K (7.22)

and since both upper bounds apply we get the first result. The last inequality
is obtained by observing that

β − 1 +
1

4β
≤ β −

4

5
for β ≤ 5

4

β −
1

β
≤ β −

4

5
for β ≥ 5

4

(7.23)
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Figure 7.1: Delay Exponent in a 10-user Interference Network
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Figure 7.2: Delay Exponent in a 50-user Interference Network

which completes the proof. �

Remark: Note that in [106], the asymptotic bounds are given as (β −
2)K ≤ T (K, n) ≤ βK which diverge at a rate 2K , whereas in (7.17) the
maximum rate of divergence of the two bounds is K/5, i.e., ten times smaller.

7.5 Numerical Results and Conclusion

In Figs. 7.1 through 7.3, the exact delay exponent in (7.6) and the proposed
bounds in (7.7) and (7.10) are illustrated and compared with the bounds in
(7.12) previously proposed in [106], for K = 10, 50, 1000. As observed, in all
cases our proposed bounds are much tighter than those given in [106].

Looking closely at these figures, we observe that the better (i.e., the
lower) of the proposed upper bounds in (7.7) and (7.10) always provides
a very tight approximation of the exact delay exponent. In the four cases
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Figure 7.3: Delay Exponent in a 1000-user Interference Network

shown, the maximum errors when using such an approximation instead of
the actual value are 4.2, 11, and 12.4%, respectively.

Therefore, when dealing with mathematical developments that require
analytically tractable closed-form expressions (which prevents from using the
exact formula given in (7.4)), an excellent approximation can be achieved
using these upper bounds.
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