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1 Introduction

“What is the topic of your research?” - this is, probably, the first question a
physicist suffers when saying that he’s doing a doctorate. Well, maybe after
the most floored question: “what do you do in a doctorate?”. Skipping the
latter is always a hard task, but, at least in this case, let us do this. Un-
fortunately my answer to the first question is: “stochastic thermodynamics”
and an open mouthed reaction is undeniable. So I start again from “how do
you know about entropy?”, “and thermodynamics?”, and so on until I find
a positive answer.

Actually, stochastic thermodynamics is more actual and close to reality
than expected, as it aims at describing how real biological systems interact
and behave, but its fascination comes at the price of an illusory obscurity.

I have experienced this charm by myself at the beginning of my Ph.D.,
when we decided to focus our attention to the study of non-equilibrium sys-
tems, starting with the analysis of one of their characterizing features, the
entropy production. If initially the interest was on studying the existence of
an extremum principle for systems that operates out of equilibrium, then the
entropy production turned out to be an intriguing quantity by itself and also
not yet completely understood.

Different frameworks have been used in literature and we aim at analyzing
the entropy production, i.e. the fingerprint of non-equilibrium, in some of
these, trying to understand differences and analogies between them.

Maybe this thesis will not help me in answering any inexperienced ques-
tion, since I cannot start from scratch, but I hope it will be of help in spread-
ing the importance of the problems in which we made just a few small steps,
that can become giant leaps with the results of future researches.

1.1 Toward the stochastic thermodynamics

Classical thermodynamics studies the transformations of a system from an
initial equilibrium state to a final equilibrium one, from a macroscopic per-
spective [1]. Here we summarize in a nutshell the central results of this field.

It is a matter of fact that an isolated macroscopic system relaxes into a
state of thermodynamic equilibrium, characterized by a set of macroscopic
state variables, for example the total energy E, the volume V and the number
of particles N . Such a system can interact with its surroundings in reach-
ing its final state, leading to a change in the energy E due to macroscopic
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controllable forces (accounted in the definition of work) and to microscopic
processes (heat Q). To better understand the physical nature of the mecha-
nisms under consideration, we introduce another state variable called entropy
and denoted by S. A macroscopic system is thermodynamically characterized
by the way the entropy depends on its state, S = S(E, V,N, ...) [2].

First introduced by Clausius as a measure of the energy exchanged with
the medium in the form of heat [3], then Boltzmann gave a definition of this
quantity as a measure of the disorder of a system in terms of the number of
accessible microstates which correspond to the same macrostate [4].

This macroscopic description has its microscopic counterpart in the equi-
librium statistical mechanics. In this context arises the description in terms
of ensembles, being the latter the collection of all the possible microstates in
which the system can be found. All the thermodynamics properties can be
recovered and the entropy S gets a statistical interpretation:

S = −
∑
i

pi log(pi) (1)

where pi is the probability of finding the system in the specific microstate
i. This expression, known as Gibbs entropy, is intimately related to the def-
inition given by Boltzmann and these two are equal at equilibrium in all the
known ensembles [2, 5, 6]. Moreover it has been found to be a quantification
of the uncertainty of a randomly generated message, providing the starting
point for the development of the information theory [7, 8].

The celebrated maximum entropy principle evidences the leading role of
the entropy in thermodynamics, representing a link between equilibrium sta-
tistical mechanics and information theory. This principle states that, given
a set of conserved quantities, the most probable macroscopic state is deter-
mined by the maximization of the expression in Eq. (1) [5, 6].

So far we have summarized all the results concerning systems at thermo-
dynamic equilibrium. However, many of the interesting non-biological and
biological systems are constantly maintained away from equilibrium. Just to
cite as examples, a colloidal particle driven by external fields [9, 10, 11] as
well as actively moving micro-swimmers [12, 13, 14] or molecular machines
[15, 16].

Although the mechanisms to keep a system out of equilibrium are very
different [17, 18], e.g. electrical fields for colloids, ATP for molecular motors
and pressure gradients in rheological experiments, the stochastic thermody-
namics provide a very successful framework to describe all these processes.
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The name “stochastic” comes from the fact that, besides the macroscopic
effect of a driving force, small (mesoscopic) systems are also subject to ran-
dom fluctuations due to the coupling with the external environment. These
kinds of erratic effect is negligible for macroscopic systems, being of the order
of kBT in the energy scale. Indeed, the stochastic thermodynamics describes
systems at a mesoscopic level, considering thermodynamic quantities also
for a single stochastic trajectory, instead as only macroscopic observables
[19, 20, 21, 22, 23].

The mathematical background of this theory is represented by stochas-
tic processes, which provide a modelization of a physical system in terms of
random variables and probabilities. Until now we have used the word “meso-
scopic” without questioning the meaning of this definition. In what follows
we are going to talk about “macroscopic” dynamics as the one governed by
deterministic and (in general) irreversible evolution, whereas we will name
“mesoscopic” a dynamics based on stochastic models. The latter provides a
less coarse-grained level of description respect to the macroscopic one, even
if not yet microscopic, i.e. reversible in time.

The degree of resolution in space is of fundamental importance, but also
the timescales involved need a brief discussion. The Markovian postulate rep-
resents an important connection between statistical mechanics and stochastic
thermodynamics [24]. This can be considered as a consequence of the local
equilibrium assumption [25]. It states that, on the mesoscopic timescale, the
unobserved degrees of freedom follow an equilibrium distribution, which act
as a long-time limit attractor of a non-driven dynamics. As a consequence,
the random forces have to be sampled from an equilibrium distribution, being
thus uncorrelated with the history of the system.

We have seen so far the main theoretical reasons which reveal the need of
the introduction of the stochastic thermodynamics, evidencing the differences
between a classical, statistical and stochastic description of a system. In the
next section we will briefly expose some of the main results in this field of
interest, just to have an idea of the area in which we are going to move.

1.2 The frameworks of non-equilibrium

Differently from the classical thermodynamics, a unified set of laws describing
all non-equilibrium phenomena is still lacking. However, in recent years,
several different approaches have been used in order to characterize systems
that operate out of equilibrium.
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One of the main lines of research concerns the investigation of systems ex-
periencing small deviations from the equilibrium condition. In this context,
the so-called linear response theory allows to express the desired quantities
in terms of equilibrium correlation function [26, 27]. This paradigm lies on
the hypothesis that the macroscopic relaxation of a system back to its equi-
librium state is governed by the same physics as the spontaneous relaxation
of fluctuations around equilibrium. Fluctuation-dissipation relations at and
out of equilibrium, the Johnson-Nyquist formula for electronic white noise
[28, 29] and the Onsager reciprocity for linear response coefficients [30] are
some of the results along this way of thinking.

Another important approach consists in studying the dynamical proper-
ties of non-equilibrium systems at the level of a single stochastic trajectory.
This led to the celebrated fluctuation theorems, which express universal prop-
erties of the probability distribution of thermodynamic functionals such as
heat, work or entropy change. Although each theorem has been derived case
by case, a unified theory has been recently proposed [31, 32, 18].

Besides these two frameworks, a lot of important results have been found
aiming at “scaling down” to the mesoscopic level the framework of the macro-
scopic thermodynamics. Non-equilibrium steady states, the effects of a time-
dependent driving and systems strongly coupled to the environment are just
few examples over the myriad of paradigms studied and, nowadays, still un-
der investigation [33].

A slightly different but, nevertheless, interesting direction of research,
proposed by Jaynes, is based on the interpretation of the statistical physics
as a theory of statistical inference [5, 6]. This idea lies on the deduction
that Eq. (1) represents the entropy from the point of view of statistical
mechanics and information theory as well, as stated above. The maximum
entropy principle takes place in this more general context as a paradigmatic
fundamental law to derive and interpret the thermodynamic properties of
a system. Although this approach has been developed by Landauer and
Bennett to find a quantification of the information loss [34, 35, 36] and a
physical explanation of the Maxwell’s demon [37], it appears to be quite far
from being applicable to the area of non-equilibrium systems.

In what follows we will consider the entropy production in some of these
lines of research, evidencing its leading role and its importance in the whole
panorama of the stochastic thermodynamics.

7



1.3 Entropy production in stochastic thermodynamics

System out of equilibrium are characterized by a continuous exchange of
energy and matter with the environment via different mechanisms, thus pro-
ducing entropy at the macroscopic level [38]. We have already introduced the
concept of entropy, S, as a state variable. If the state of a system changes
during its own evolution, the entropy will change and its variation dS ac-
counts for all the irreversible phenomena involved. Naively speaking, the
entropy production, here defined as the variation of entropy for unit time
dS/dt, is a specific feature of systems out of equilibrium, which evolve to-
ward a stationary (equilibrium) state. In this sense the entropy production
can be considered as a fingerprint of a genuine non-equilibrium condition and
then it will be very interesting to analyze the properties of this quantity in
all the different frameworks of the stochastic thermodynamics.

An integral fluctuation theorem and the Hatano-Sasa relation put in ev-
idence some of the statistical features of the entropy production at the level
of a single trajectory [23, 39, 40, 41]. Another fluctuation theorem can be
derived for systems in a non-equilibrium steady state, a paradigm commonly
used to describe biological molecular motors, which states that the proba-
bility to find a microscopic trajectory with a negative entropy production is
exponentially decreasing as the time or the system size increases [42, 20, 21].
Moreover, several works have discovered and studied universal properties (in-
fima and passage probabilities) and system-dependent characteristics (mean,
variance, large deviation function), both at a mesoscopic and a macroscopic
level of description [43, 44, 45, 46, 47].

Concerning the modelization of biological systems, systems with an exter-
nal time-periodic driving has been studied to mimic the dynamics of artificial
molecular motors. In this context the entropy production can always be in-
terpreted as a “cost” of performing a given task [33, 48, 49]. Some of the
points here arisen will be discussed extensively in the next chapters and will
be subjects of investigation.

An important problem underlying to the plethora of different paradigms
deals with the foundations of the stochastic thermodynamics and concerns
the space and time resolution to describe the system of interest. Given a
particular mesoscopic (stochastic) dynamics, we can ask ourselves how many
microscopic details we are ignoring. Moreover, depending on the specific
(mesoscopic) dynamics, it is possible to cast a different definition of the en-
tropy production. The question that naturally arises is: how the entropy
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production is related to the level of coarse-graining adopted in our descrip-
tion? In the literature it has been found that the coarse-graining procedure
(both spatial and temporal) reduces the quantification of the entropy pro-
duction, as less information about the system is accessible [50, 51, 52, 53].
Further details on this topic will be discussed later on in this thesis, but, for
the moment, the message is that this problem is not completely solved, in
particular when different dynamical description (related to a different level
of coarse-graining) are compared.

Some others open problems about the entropy production come from the
Jaynes approach to statistical physics. Several attempts have been made re-
cently to develop an extremum principle for non-equilibrium systems, which
could play a similar role as the maximum entropy principle for equilibrium
ones. In 1947 Prigogine derived the so-called minimum entropy production
principle, but its applications are narrow and it is believed not to be a general
law [1]. On the other hand, both experimental observations and mathemat-
ical derivations (or justifications) have tried to propose a maximum entropy
production principle as a general optimization approach for systems out of
equilibrium [54, 55, 56, 57]. However, part of the scientific community is very
skeptic about this approach and rose many counter examples [58]. In general,
we would say that an exhaustive answer for an extremum principle in this
context is far from being found and in this thesis we will try to address also
this problem, even if not systematically, but only as a stimulus for future
discussions.

1.4 Organization of the thesis

In this section the structure of this thesis is explained, trying to put in
evidence the essential technical points, the main results and the take-home
message of each single work here contained.

In Chapter 2 we will start with a particular stochastic model, the so-
called Master Equation, aiming at describing discrete-state Markovian sys-
tems. After a brief review of the idea behind this modelization, we will
derive the formula for the entropy production for this class of systems that is
known from the seminal work of Schnakenberg. To do this we first will pass
through some previous and well-known statements on entropy and entropy
production in general, just to introduce a quantity that will be of fundamen-
tal relevance throughout this thesis. Moreover a small digression on networks
will be presented, since discrete-state systems can be described as a network
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of transitions, where each node represents a state and each link a transition
rate between two different states. In this chapter we will try to understand
how topological features of the underlying transition network influence the
value of the entropy production. Interestingly, for systems driven out of
equilibrium both by asymmetric transition rates and an external probability
current, close to equilibrium, the stationary entropy production is composed
by two contributions. The first one is related to the Joule’s law for the
heat dissipated by a classical electrical circuit properly introduced, whereas
the second contribution has a Gaussian distribution with an extensive mean
and a finite variance that does not depend on the microscopic details of the
system.

This result is interesting by itself, finding a thermodynamic validation of
the Schankenberg’s formula by comparison with the well-known Joule’s law
and a universal distribution of the contribution that stems from the asym-
metry of the transition rates. Another important consequence is that the
entropy production depends just on two parameters, the first one accounting
for the symmetric part of the transition rates and the second one related
to the asymmetry. In other words the statistical properties of the entropy
production of a system close to equilibrium can be inferred from its network
of transitions between accessible states. Moreover, these results shed some
light on the meaning of an extremum principle for systems out of equilib-
rium, since it becomes possible to compare real-world interaction topologies
with the ones that maximize/minimize the entropy production to tackle this
challenging problem from a novel perspective.

The Appendix A is dedicated on this side aspect. We used a realistic
dynamical model to understand why the topologies of most of the interac-
tion matrices of living systems exhibit the so-called property of sparsity (the
percentage of active interactions scales inversely proportional to the system
size). Although this section is manifestly different from the topic of the the-
sis, it can be somehow related to the general problem of understanding how
a living system can adapt to cope to external changes.

In Chapter 3 we will introduce a different framework of stochastic pro-
cesses: the Fokker-Planck equation, describing systems that continuously
diffuse in a medium. We will point out why this new modelization can be
seen as a coarse-grained version of the Master Equation and we will derive
the formula of the entropy production for this particular case, as obtained
by Seifert. After this technical part we will present in a nutshell a review of
some interesting results in the literature on the effects of coarse-graining in
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stochastic thermodynamics. The question we will try to answer in this chap-
ter concerns how neglecting information in describing a system can influence
the value of its entropy production. In this case we aim at comparing two
different forms of the dynamics, lying at different level of coarse-graining:
Fokker-Planck equation (FPE) and Master Equation (ME). We will find a
new formula for the entropy production of a system governed by a FPE
which, surprisingly enough, is not independent on the microscopic details
(the ones that appear in the ME). This new expression can be reduced to
the well-known Seifert’s formula when we have no information about the ME
description, but, in general, we will show that it is greater than the latter. A
simple pedagogical example will be carried out to clearly explain and inter-
pret the latter result as a consequence of the presence of extra contributions
of microscopic currents that make inroads in the system, which are neglected
during the coarse-graining procedure.

This work is very promising, since it is associated to some previous results
of the same topic, also connecting two different dynamical models. This study
provides a quite novel and simple interpretation of how the details we neglect
can change an essential non-equilibrium quantity as the entropy production,
at the same time undermining the basic notion of equilibrium at a mesoscopic
level of description.

Chapter 4 is dedicated to the problem of comparing two different frame-
works of the stochastic thermodynamics: non-equilibrium steady states and
time-periodic driving. Such a comparison is stimulated by similar features
that these two paradigms exhibit, e.g. a probability distribution that sig-
nificantly deviates from equilibrium, a constant (time-averaged) flux and a
non-vanishing entropy production in the environment. First we will recap a
previous result: a time-periodic driving can always mimic a non-equilibrium
steady states (NESS) and viceversa, in terms of probability distribution, flux
and entropy production, for discrete-state systems. Here we will try to de-
rive a similar mapping for diffusive systems described by a Fokker-Planck
equation. The main results of this chapter is that both the probability dis-
tribution and the flux can be mimicked, but the entropy production follows
an inequality stating that the time-dependent driving always produce more
entropy than a NESS.

Reminding that these two frameworks are used to describe natural (NESS)
and artificial (time-periodic driving) molecular machines, this result states
that building a device to mimic a biological diffusive system is easier from
an engeneering point of view but costs more than the original natural one in
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terms of production of entropy in the surroundings.
Finally, in the last chapter we will contextualize all our results in the

general field of stochastic thermodynamics, providing some ideas for future
research on the role of the entropy production in non-equilibrium systems.

12



2 Entropy production in systems with ran-

dom transition rates

In this chapter the entropy production of a system with a finite number
of states connected by transition rates is studied. We will use tools from
stochastic processes and network theory that will be briefly introduced in
what follows.

2.1 Master Equation and discrete-state systems

Let us consider a system with a finite number of states, say N , such that the
probability to be in the state i is pi. Suppose now that such a system follows
a continuous time Markov process via discrete jumps between states. Naively
speaking this means that the system can continuously jump from one state
to another with a certain probability per unit time. The Markov condition
formally requires that the time ordered conditional probability depends just
on the most recent event or, in other words, that each state at time t depends
just on the state at time t− dt [59, 60].

As outlined before, for a Markov process to be a reasonable model, the
memory time has to be very small respect to the observation time. In general
Markov processes can have a continuous or discontinuous sample path; in this
context we will consider just the latter case, as we are dealing with systems
that perform jumps between states in time. If all these basic assumptions
are valid, we can write the dynamics of the system under investigation as the
so-called Master Equation:

∂tpi(t) =
N∑
j=1

(wijpj(t)− wjipi(t)) (2)

where wij > 0 is the transition rate, i.e. the transition probability per
unit time, to pass from the state j to the state i. In the simple setting we
will consider in this section the transition rates does not depend on time. An
intuitive interpretation of Eq. (2) can be provided by discretizing the time
derivative:

pi(t+ dt) = pi(t) +
N∑
j=1

(wijpj(t)− wjipi(t)) dt (3)
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Thus the probability to be in the state i at time t + dt is equal to the
probability to stay in the state i at time t, pi(t), plus the probability to be in
the state j = 1, ...N performing a jump (to the state i) between t and t+ dt
with probability wijdt, minus the probability to be in the state i jumping
away from this state in the time interval [t, t+ dt].

The justification of Eq. (2) here presented stems from intuitive argu-
mentations, although a more formal derivation exists and it will be briefly
presented in the next section.

In what follows, we will consider systems for which, if wi→j 6= 0 also
wj→i 6= 0. We will justify this constraint when talking about entropy pro-
duction.

A lot of systems in Nature are amenable to be modeled via a Master
Equation. Some examples are the ATP hydrolysis, the kinetic proofreading,
the model of ions permeating a membrane through a pore and, in general,
most of the chemical and biochemical reactions [61].

Once we have defined the dynamics governing our discrete-state system,
we recall some essential features of a Master Equation. It’s worth noting that
we are only interested in the physical region, i.e. where

0 ≤ pi ≤ 1 ∀i = 1, ...N
N∑
i=1

pi = 1 (4)

since (pi)i=1,...N is a set of probabilities.
We can rewrite Eq. (2) in a more compact form as:

∂tpi(t) =
∑
j

Wijpj(t) (5)

where Wij is the following N ×N transition matrix:

Wij(t) = wij(t)− δij
N∑
k=1

wki(t) (6)

For the system to be ergodic, we need that if Wij 6= 0, also Wji 6= 0
and that all the N states of the system are dynamically accessible [33]. This
ergodic requirement will be useful in what follows.

Given the Eq. (6), it is easy to see that det (Wij) = 0 such that at least
one stationary solution exists in the physical region. Moreover, by making use
of a stability theorem proposed by Schlogl [62], it is possible to demonstrate
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that any solution that starts in the physical region will stay in the physical
region and eventually will converge asymptotically to a stable steady state.
As a by-product we get that the stationary solution is unique, since a solution
cannot be asymptotically stable respect to two different states [61].

2.1.1 Derivation from the Chapman-Kolgomorov equation

This section enlighten a technical derivation of the Master Equation [60].
Let us start from the Chapman-Kolmogorov equation, that is nothing but a
rearrangement of a probability axiom stated for Markov processes.

p(x1t1|x3t3) =

∫ ∫
dx2dt2p(x1t1|x2t2)p(x2t2|x3t3) (7)

where t1 > t2 > t3 and p(x1t1|x3t3) is the probability to be in state x1

at time t1 given that at time t3 the system was in the state x3. Eq. (7) is
qualitatively equivalent of saying that summing over all mutually exclusive
events of one kind in a joint probability will eliminate that variable, i.e.∑

B

P (A ∩B ∩ C ∩ ...) = P (A ∩ C ∩ ...) (8)

adopting the standard notation of probability theory.
For all ε > 0 we require that

lim
∆t→0

p (x, t+ ∆t|z, t)
∆t

= W (x|z, t) > 0 (9)

uniformly in x, z and t for |x − z| ≥ ε. This condition implies that the
probability of having a jump of size greater than ε in a time interval [t, t+∆t],
for ∆t → 0, is positive, so that indicating that the system is experiencing a
discontinuous stochastic process.

We have to add two additional conditions:

lim
∆t→0

1

∆t

∫
|x−z|<ε

p (x, t+ ∆t|z, t) (xi − zi) dnx = Ai (z, t) +O(ε)

lim
∆t→0

1

∆t

∫
|x−z|<ε

p (x, t+ ∆t|z, t) (xi − zi) (xj − zj) dnx = Bij (z, t) +O(ε)

(10)
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uniformly in z, ε and t, where n is the dimensionality of the state space.
Since a general process can exhibit a mixed behaviour between jumps and a
continuous sample path, these two conditions are related to the first and the
second moment of the continuous part of the process. In fact, if W (x|z, t) = 0
the Lindeberg condition is fulfilled and the process is purely continuous.
Conversely, if Ai (z, t) = 0 and Bij (z, t) = 0 the process has a discontinuous
trajectory. In what follows we will carry on the derivation in this particular
case, showing that the contribution from the discontinuous part is equivalent
to a Master Equation, Eq. (2).

Let us consider an arbitrary function f(z) that has the following expan-
sion:

f(x) = f(z)+
∑
i

(xi−zi)∂if(x)|z+
1

2

∑
ij

(xi−zi)(xj−zj)∂ijf(x)|z+|x−z|2R(x, z)

(11)
where R(x, z)→ 0 when x→ z, i.e. when ε→ 0. Then we can write the

following evolution equation for p(x, t|y, t′):

∂t

∫
f(x)p(x, t|y, t′) = lim

∆t→0

1

∆t

∫
f(x) [p(x, t+ ∆t|y, t′)− p(x, t|y, t′)] dnx

(12)
The right hand side can be rewritten as:

lim
∆t→0

1

∆t

∫
dnx

∫
dnzf(x)

[
p(x, t+ ∆t|z, t)p(z, t|y, t′)−

∫
dnzp(z, t|y, t′)f(z)

]
(13)

where we have inserted the so-called short-time propagator p(x, t+∆t|z, t)
and made use of the Chapman Kolmogorov equation, Eq. (7).

Splitting the integrals in the two regions |x − z| < ε and |x − z| ≥ ε,
inserting the expansion of f(x), Eq. (12), using the conditions (9) and (10),
and taking to zero the contribution from the continuous path of the process,
from Eq. (13) we get the following equation:

∂t

∫
f(z)p(z, t|y, t′)dnz =

=

∫
dnzf(z)

∫
|x−z|≥ε

dnx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] (14)
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Then, we suppose that the process is confined in a region R. Integrat-
ing by parts and choosing f(z) to be arbitrary but non-vanishing only in a
subregion R′ of R, Eq. (14) becomes:

∂tp(z, t|y, t′) =

∫
dnx [W (z|x, t)p(x, t|y, t′)−W (x|z, t)p(z, t|y, t′)] (15)

where, in the limit of vanishing ε (this is done to get rid of the reminder
term in Eq. (12)), we are ignoring the singular cases in which it is necessary
to consider the integral in Eq. (15) as a principal value. Note that Eq. (15)
is nothing but the continuous version of the Master Equation presented in
Eq. (2). When the state space consists in a finite number of states N , we
recover exactly the same equation.

2.1.2 Detailed balance and equilibrium

The detailed balance condition, roughly speaking, requires that, in the sta-
tionary state p∗i , each possible transition is balanced by the reversed one.
This general criterion can be formulated for the Chapman-Kolmogorov equa-
tion and, hence, for a Master Equation describing a discrete-state dynamics,
leading to the following condition:

wijp
∗
j = wjip

∗
i (16)

Inserting Eq. (16) in (2) it is easy to see that this condition implies
that around any closed cycle of states, at stationarity, there is no net flow of
probability. A necessary and sufficient condition to have detailed balance in a
discrete-state Markov process is the Kolmogorov’s criterion, which demands
that, for each loop, the product of the associated transition rates in the
forward direction must be equal to the product for the reverse direction [63].

The most important physical consequence of detailed balance is that,
when this holds, the stationary distribution coincides with the equilibrium
distribution. This can be understood since the “no net flow” condition coi-
cides with the definition of equilibrium in statistical physics.
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2.2 Entropy and entropy production: technical back-
ground

In this section we will present a review of the concepts of entropy and entropy
production, deepening the notions given in the introduction. This will be
useful to the reader to better understand the content of this section and of
this thesis in general.

2.2.1 Classical thermodynamics

We have already defined the entropy of a system as a measure of the heat
that a system exchange with a medium. In formulas, Clausius introduced
the variation of entropy in a thermodynamic system as [3]:

∆Ss =

∫
δQ

T
(17)

where δQ is the infinitesimal heat flow from the medium in a reversible
process and T is the instantaneous absolute temperature. For a reversible
process the variation of entropy depends just on the initial and final state
of the system, thus, according to Clausius equality, for a reversible cyclic
process, the integral in Eq. (17) is

∆Scycle =

∮
δQ

T
= 0 (18)

indipendently on the specific details of the process [64]. This means that,
as said in the introduction, the entropy is a state function of a thermodynamic
system, being indipendent on the particular reversible path along which we
perform the integration.

On the contrary, if we consider an irreversible process, it can be shown
that the variation of entropy along its path is no longer a function of the
state of the system and the following inequality holds:

∆Sirr
cycle =

∮
δQirr

T
≤ 0 (19)

It is worth noting that the entropy variation is defined just for reversible
process and Eq. (19) contitutes just a mathematical inequality. Thus, com-
bining this result with Eq. (18), we get a formulation of the second law of
thermodynamics:
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∆Ss ≥
∫
δQirr

T
= −∆Smed → ∆Stotal ≥ 0 (20)

where ∆Smed has the opposite sign since we have to consider the heat
flowing from the system to the medium [2]. Summarizing, the entropy of an
isolated system (thermodynamic open system plus its surrounding medium)
cannot decrease and the equality in Eq. (20) is fulfilled if only reversible
process are present. Reminding that the entropy production heuristically
quantifies the amount of irreversible dissipation during the evolution of a
system, Eq. (20) can be stated in terms of this quantity, saying that it has
to be always non-negative.

2.2.2 Irreversible thermodynamics

Now we try to go beyond the classical thermodynamics, being interested in
relating the entropy production to the irreversible phenomena which may
occur inside the system of interest [38].

First we rewrite the second law of thermodynamics for infinitesimally
small parts of a system, assuming that the same laws holds as in the macro-
scopic description. This assumption lies on the current interpretation that
local macroscopic measuements are actually measurements of the properties
of small parts of a system, which still contains a large number of particles.
Let us write:

dStotal = dSs + dSmed ≥ 0 (21)

Now we shall rewrite this equation for a system in which the densities
of extensive quantities (e.g. mass and energy) are continous function of the
space coordinates. Let us write

Ss =

∫
ρsdV (22)

dSmed

dt
=

∫
Js,totdΩ (23)

dStotal

dt
=

∫
σtdV (24)
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where ρ is the total density, s the entropy per unit mass, Js,tot the total
entropy flow per unit are and unit time and σt the entropy production per
unit volume and unit time.

Rewriting Eq. (21) in this case, also using Gauss’ theorem, we get:∫ (
∂ρs

∂t
+∇Js,tot − σt

)
= 0 (25)

Since this holds for an arbitrary volume, it follows:

∂ρs

∂t
= −∇Js,tot + σt

σt ≥ 0 (26)

Without going into details, in order to relate the variations in the physical
properties of the systems to the entropy production, we remind that the
entropy can be expressed as a function of parameters that are necessary to
determine the macroscopic state of the system, say the internal energy u, the
specific volume v and the mass fractions ck: s(u, v, ck).

Then, using the Gibbs’ relation:

Tds = du+ pdv +
∑
k

µkdck, (27)

assuming that it holds for a mass element followed along its center of
gravity motion, and expliciting the expression for du and dck, we can derive
the following general form for the entropy production:

σt =
∑
k

JkFk (28)

Eq. (28) is a bilinear form, where the first factor is a flow quantity (e.g.
heat flow, diffusion flow) and the second one is related to an external force
as a gradient of an intensive variable (e.g. temperature, chemical potential).
These quantities that multiply the fluxes are called “thermodynamic forces”.

Note that in this section we are using the name Ṡtotal for the total entropy
production, whereas in the other sections the notation Ṡ has been used. In
what follows, unless otherwise specified, the two notation must be considered
as equivalent.
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2.2.3 Statistical mechanics and information theory

Let us start from Eq. (1). This formula is equivalent to the Boltzmann
entropy [4], as we said in the introduction, and it measures the amount of
uncertainty of a probabilistic source of data. Here we try to derive and
understand the functional form and the meaning of this expression.

Consider a random variable X that can take a finite set of values ω, each
one with probability pω. The uncertainty S(X) (or entropy) of X has to
satisfy the following axioms [8]:

• S(X) has to depend just on pω;

• S(X) is maximum when the uncertainty is maximum, i.e. for a uniform
distribution;

• Let Y be a random variable that can take values on a larger set than
X, such that the probabilities are the same for the subspace of X, then
S(Y ) = S(X);

• Let X and Y be two random variables, then:

S(X, Y ) = S(X) +
∑
ω

S (Y |X = ω) (29)

where S(X, Y ) is the joint entropy and S(Y |X = ω) is the entropy of
Y conditioned on X = ω.

The only functional form of S(X) for which all these axioms are satisfied
is the following [65]:

S = −
∑
ω

pω log(pω) (30)

The formula in Eq. (30) is equivalent to the one in Eq. (1), introduced
in the first chapter as the Gibbs entropy (or Shannon entropy in the area
of information theory). It is easy to understand that this quantity can be
related to the uncertainty of a distribution. The first axiom states that we can
compare any random variable with each other, the second one is of immediate
interpretation, the third imposes that adding events of null probability to a
sample space does not change the uncertainty and, finally, the fourth axiom
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is related to the additivity of the entropy. However the latter can also be
relaxed giving birth to a plethora of different definitions of entropy that can
be used in different contexts.

From an information-theoretic point of view, the Shannon entropy can
be seen as a quantification of the number of bits needed to encode a message
[7]. On the other hand, from the point of view of the statistical mechanics,
in what follows we will consider pi as the probability of a given microstate
to occur. This latter definition will be specified later on and it will appear
to be crucial for the introduction of the notion of entropy production.

2.3 Entropy production for discrete-state systems

Consider a discrete-state system with a finite number N of accessible states,
each with probability pi, i = 1, ...N . In the spirit of an information-theoretic
approach, we can define the entropy of such a system as in Eq. (1). Since
pi is the probability to be in a given microstate i, the latter expression is
amenable to be interpreted as the entropy in statistical mechanics.

We have already seen that the dynamics of a discrete-state system can
be described by Master Equation, Eq. (2). In this case, we can introduce
the notion of entropy production, Ṡ, in three different ways, each one leading
to exactly the same expression, known in literature as Schnakenberg formula
[61]:

Ṡ =
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
wi→jpi
wj→ipj

(31)

where the sum is performed over all pairs of states i, j with non-zero transition
rates wi→j and wj→i and the factor 1/2 avoids the double counting. Note
that Eq. (31) is always positive and vanishes for systems for which detailed
balance holds, i.e. systems at equilibrium, and therefore is a good candidate
for the entropy production.

Here we describe these different methods of deriving Eq. (31), enlighten-
ing the difference between them and trying to shed some light on the physical
interpretation of this expression under investigation.

2.3.1 Information theoretic approach

Let us start from Eq. (1), which represents the information entropy of a
system. The simplest thing we could do is to define the entropy production,
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Ṡ, as the temporal derivative of this formula, using the fact that pi is governed
by a dynamics described by a Master Equation, as in Eq. (2). This leads to
the following expression:

ṠShannon =
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
pi
pj

(32)

Unfortunately this term is not always positive, then we have to add an
extra contribution to fix this problem. Although this could appear as a
handmade trick, we will validate this expression a-posteriori in this chapter.
Again, also in this case, let us choose the simplest possible solution:

Ṡ =
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
pi
pj

+
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
wi→j
wj→i

=

=
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
wi→jpi
wj→ipj

(33)

From the fact that the first term corresponds to the time derivative of
the system entropy under equilibrium conditions, i.e. the Shannon entropy,
the second term can be interpreted as the contribution due to the coupling
to an external set of thermodynamics forces which prevent the system from
achieving an equilibrium state. It is worth noting that neither the latter or
the first term are necessarily positive, but only the sum of the two, as shown
in Eq. (33) [66, 61].

2.3.2 Chemical master equation approach

This approach retraces how the formula was derived by Schnakenberg in 1976
[61, 67]. Consider a fictitious chemical system that mimics the dynamics of
a Master Equation, based on the following assumptions:

• the chemical species Xc, for c = 1, ...N constitute an open homogeneous
system;

• reactions are possible between species in the form Xc 
 Xc′ , with the
following reaction rate:

J ′cc′ = (Cc′wc′→c − Ccwc→c′) (34)
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where Cc is the concentration of the specie Xc.

• other components involved in a reaction between two species not be-
longing to the set X1, ...XN are assumed at a constant concentrations
and these values are incorporated in the transition rates;

• the thermodynamics can be applied since we are dealing with slow
rections.

It is obvious that these constraints do not define the system in a unique
way. Every system which satisfy the above presciptions is accepted.

The change in concentration of the species Xc is then:

dCc
dt

=
∑
c′

J ′cc′ (35)

By choosing pc = Cc/
∑

cCc Eq. (35) becomes formally identical to a
Master Equation, providing the substitution of J ′cc′ with Jcc′ = pc′wc′→c −
pcwc→c′ , that is proportional to the first by a factor that is independent of c
and c′.

Since the system is assumed to be homogeneous, the only irreversible
processes which can take place are the reactions between any two species.
In chemistry the “thermodynamic force” associated to a chemical reaction is
the affinity Acc′ , defined as:

Acc′ = µc′ − µc (36)

where µc is the chemical potential of the species Xc. In the case of an
ideal mixture, the chemical potential is given by:

µc = µ(0)
c + T logNc (37)

taking kB = 1. µ
(0)
c is the chemical potential at equilibrium, when the

thermodynamic forces and fluxes vanishes, so that:

Acc′ = µ
(0)
c′ − µ

(0)
c + T log

N eq
c′

N eq
c

(38)

Substituting Eq. (38) in Eq. (36) and using the detailed balance condition
(i.e. N eq

c′ wc′→c = N eq
c wc→c′), we get the following expression for the chemical

affinity:
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Acc′ = T log
pc′wc′→c
pcwc→c′

(39)

Reminding how the entropy production is related to the thermodynamics
of irreversible processes, Eq. (28), we obtain the following expression:

Ṡ =
1

2

∑
cc′

Jcc′Acc′ = αT
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
wi→jpi
wj→ipj

(40)

where α is the constant of proportionality between J ′cc′ and Jcc′ . Since
the system we are considering is fictitious and homogeneous, the choice of
the temperature will be completely irrelevent, then, again, we end up with
the Schankenberg’s formula for the entropy production, starting from the
thermodynamics of a chemical system.

2.3.3 Path-dependent entropy approach

This derivation follows the work of Seifert [23] and the philosophy can be
used also to derive an expression for the entropy production for a Langevin
dynamics, as we will see later in this thesis.

Consider a system with N accessible states in which a transition from the
state m to the state n occurs with a transition rate wm→n(λ), which depends
on an external time-dependent control parameter λ(τ). The system is driven
from λ0 to λ1 according to a given protocol. A stochastic trajectory begins
in the state n0 and ends up in state nt. We want to quantify the entropy
associated to this single trajectory.

The form of Eq. (1) suggests to propose a trajectory-dependent entropy
as:

s(τ) ≡ − log pn(τ)(τ) (41)

where pn(τ)(τ) is the solution of the Master Equation describing the sys-
tem. Then, in order to estimate s(τ) from Eq. (41), we need to evaluate the
probability to be at time τ in the state n(τ) for each trajectory.

We evaluate the time evolution of Eq. (41), obtaining:

ṡ(τ) = −∂τpn(τ)

pn(τ)
|n(τ) −

∑
j

δ (τ − τj) log
pn+

j
(τj)

pn−j (τj)
(42)
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where the first term accounts for the time interval in which the system
stays in the same state, while the second term stems from the jump at time
τj from n−j to n+

j . We split up this expression as follows:

ṡtotal(τ) = −∂τpn(τ)

pn(τ)
|n(τ) −

∑
j

δ (τ − τj) log
wn+

j →n
−
j
pn+

j
(τj)

wn−j →n
+
j
pn−j (τj)

(43)

ṡmed(τ) = −
∑
j

δ (τ − τj) log
wn+

j →n
−
j

wn−j →n
+
j

(44)

such that ṡtotal = ṡ+ ṡmed. This identification has been done in the same
spirit of the derivation in Section 2.3.1 and can be understood after averaging
over many trajectories. To do this we need the probability to perform a jump
at time τj from n−j to n+

j , that is wn−j →n
+
j
pn−j (τj). Finally, we obtain:

Ṡmed(τ) = 〈ṡmed(τ)〉 =
∑
n,k

pnwn,k log
wnk
wkn

Ṡs(τ) = 〈ṡs〉 =
∑
n,k

pnwn,k log
pn
pk

Ṡtotal(τ) = 〈ṡtotal(τ)〉 =
∑
n,k

pnwn,k log
pnwnk
pkwkn

(45)

Eq. (45) represents the Schnakenerg formula for the total entropy pro-
duction, interpreted as the average value over many trajectories.

2.4 Technical remark: network theory

Since networks play a fundamental role in modeling a plethora of different
systems [68, 69, 70, 71], we here present a brief review on some concepts
of network theory that will be useful in the rest of the chapter to describe
Master Equation systems as a network of accessible states.

Networks are around us. We can be considered netwoks as well, as an
element of a grid of social interactons, or as a biological system, that is
the outcome of a network of biochemical reactions. Networks can be both
physical objects, as electrical circuits or neural networks, and mathematical
objects, as, for example, the citation networks [72].
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Let us start with the some definitions. A graph, or network, G(N,L)
consists of two ensambles N and L, such that N ∈ N , N 6= 0, and L
contains all the connected pairs of elements in N . Each component of N is
called node of a graph, while each pair in L denotes a link between two nodes
[73].

A network is called directed (or oriented) when it consists of ordered pairs
of elements of N . This means that some connections have an orientation, i.e.
one node is connected to the other, but not necessarily viceversa. In Fig. 1a
an example of a directed network is shown.

Figure 1: a) Example of a directed graph composed by 6 nodes and 7 links. b) Example of an undirected
graph with 6 nodes and 7 links.

A graph is called undirected (or non-oriented) when L consists of un-
ordered pair of elements. As a consequence, all the connections have no
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orientation and if node i is connected to node j, also j has to be connected
to i. In Fig. 1b we have presented an example of an undirected network.

Two nodes connected by a link are called adjacent nodes. A graph can
be completely described by its adjacency matrix Aij, that is a N ×N matrix
with the following structure:

Aij = 1 if i and j are adjacent

Aij = 0 if i and j are not adjacent

In the case of an undirected graph, the adjacency matrix is symmetric,
while it is asymmetric when the graph is directed.

Another important property of a graph is the connectivity C. It is de-
fined as the percentage of active interactions among all the possible ones.
Mathematically, C = NL/N

2, where NL =
∑

ij Aij is the number of the links
in the network. In this case we are counting also the self-interactions, since
we are considering that the number of all the possible interaction is N2.

So far we have considered unweighted graph, i.e. graph where every link
has the same weight. In general, each connection can be associated to a real
coefficient which quantifies its magnitude. In order to characterize such a
weighted graph we can introduce the weight matrix W , defined as follows:

Wij = wij if i and j are connected by a link of weight wij

Wij = 0 if i and j are not adjacent

This matrix completely characterize the structure of a network.

2.4.1 Random networks - Erdos-Renyi algorithm

In this work we are going to deal with random networks, i.e. topologies that
are randomly generated owing to specific contraints (e.g. number of nodes,
connectivity). Random networks are used in literature, for example, to model
interactions in biological systems [74, 75, 76, 77]; in this present context
the idea is to provide a null model to elucidate the interplay between the
system dynamics (described by a Master Equation and encoded in a network
structure, as we will see in the next section) and the entropy production. Such
a null model can also be used as a starting point for the analysis of more
realistic biological models for which the same framework can be employed.
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In particular, we focus on Erdos-Renyi random topologies, which are good
proxies for networks with limited connectivity for which the property of small
world holds [72]. Notice that, in the (rather general) case of a system com-
posed by n elementary units, each of them taking m possible values, the
total number of states is N = nm. If the dynamics allows that each unit can
change its value once at a time, the system can pass from one state to another
through, roughly, n individual steps. This leads to a typical path distance of
the order of n = logm(N), which is actually the small world condition.

Here we present the algorithm that we used to build this kind of random
topology in the case in which the nodes are distinguishable. A single graph
is constructed by connecting nodes at random. Each element of the weight
matrix Wij (that represents a weighted link between nodes i and j) is different
from zero with probability p. In other words, all graphs with N nodes and
L links have the same probability to be built:

pM(1− p)(
n
2)−M (46)

The parameter p in this model can be seen as a weight function; as p
increases from 0 to 1, networks with an increasing number of links are more
likely to be built by this generating algorithm.

This section had just the role to introduce some basic concepts about
network theory and to motivate the use of random Erdos-Renyi networks, in
order to make the help the reader to understand the rest of this chapter.

2.5 Network representation

Now we aim at linking the discrete-state dynamics described by a Master-
Equation to the network theory. It is possible, in fact, to encode all the
dynamical information of a Master Equation system into a network repre-
sentation [61].

Consider again our system with N accessible states, whose dynamics is
characterized by the transition rates wi→j of passing from the state i to
the state j. First we associate a node to each state, building a network
of N nodes. Then, we add a link between the node i and the node j if
wi→j 6= 0, that, in our case, means that a link exist also between the nodes
j and i. As a consequence, we will deal with symmetric adjacency matrix,
i.e. undirected network. Moreover, each link has a weight, determined by
the value of the transition rate between the involved states. Mathematically
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speaking a weight matrix Wij is associated to the transition network and it
contains all the information about the dynamics. It is worth noting that
the transition network must be connected, in the sense that for any pairs
of states, there will be at least one transition connecting them, in order to
avoid the presence of non-interacting subsystems.

Before moving to our analysis within this framework, let us see some
advantages of describing a Master Equation system as a graph. First of all,
the stationary solution can be determined by a graphical method. We shall
briefly review this method without proof; anyway a detailed description was
given by Hill (1966) [78]. Let us start by defining a maximal tree T (G),
where G is our transition network. T (G) is uniquely characterized by the
following properties:

• all links of T (G) are links of G and T (G) contains all nodes of G;

• T (G) is connected;

• T (G) contains no cyclic sequences of edges.

In Fig. 2a an example of how to build all possible maximal tree is shown.

Figure 2: a) Example for constructing maximal trees from the graph on the right with 4 nodes and 5
links. b) 1-directed version of the maximal trees in the Panel a. c) Fundamental sets of circuits of the
first maximal tree in Panel a.
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Let us denote the set of all possible maximal trees by T (k)(G), with k =
1, 2, ...M . From each of the maximal trees T (k)(G) we obtain its i-directed

version T
(k)
i (G) by directing all links toward the node i. Since T (k)(G) is a

maximal tree, this is a unique procedure to build the set of T
(k)
i (G), for each

node i. Fig. 2b shows the i-directed version of all the maximal tree for i = 1.
We can assing an algebraic value A(T

(k)
i (G)) to each T

(k)
i (G) by multi-

plying all the transition rates of the network. Then the steady state solution
is given by:

p∗i =

∑M
k=1A(T

(k)
i (G))∑N

i=1

∑M
k=1A(T

(k)
i (G))

(47)

It is easy to see that all the p∗i are normalized and p∗i ∈]0, 1[.
Another important advantage of using this framework is that we can

express the steady state value of the entropy production as a bilinear form
as follows [61]:

Ṡ =
ν∑

α=1

A(~Cα)F (~Cα) (48)

where ~Cα are the fundamental cycles. Each of these is obtained by adding
to T (k)(G) one of the excluded link and giving an orientation to the cycle
generated in this way. In Fig. 2c an illustrative example is provided. Eq.
(48) here is given without proof, but we evidence its main features:

• A(~Cα) and F (~Cα) are uniquely determined by the fundamental cycle
~Cα;

• A(~Cα) is independent of the steady state probability p∗i ;

• A(~Cα) = 0 for all α is equivalent to F (~Cα) = 0 for all α which in turn is
equivalent to the detailed balance condition, i.e. to the thermodynamic
equilibrium;

• if the steady state is a thermodynamic equilibrium, there is a linear
relation between A(~Cα) and F (~Cα) near equilibrium:

A(~Cα) =
∑
β

LαβF (~Cβ) (49)

31



with Lαβ = Lβα.

This findings link the microscopic description in terms of a Master Equa-
tion to the macroscopic thermodynamic description in terms of forces A(~Cα)

and fluxes F (~Cα), enforced by the parallelism between Lαβ and the Onsager’s
coefficients. In the next sections we will focus on this mapping between mi-
croscopic and macroscopic thermodynamics from a different perspective aim-
ing at providing a physical validation of the Schnakenberg’s formula for the
entropy production.

2.6 Introduction to the model

Now we introduce the question we will try to answer in this chapter. We want
to study the statistical property of the entropy production at stationarity of
a discrete-state system described by a Master Equation, using a model that
is independent of the specific details of the dynamics. We focus on system
close to equilibrium, nevertheless finding very interesting results.

The dynamical model under investigation is the following [79]:

ṗi =
N∑
j=1

(wj→ipj − wi→jpi) + J(t)(δi,1 − δi,N) (50)

where N is the number of accessible states. This represents a generic
Master Equation with the injection of a current J(t) in one of the states.
Stationarity in ensured by the ejection of J(t) by another arbitrary state of
the system and imposing that J(t→∞) = J , i.e. constant at stationarity.

In our case the current enters in node 1 and exits through nodesN without
loss of generality. The external current J(t) can also be mimicked by two
asymmetric transtion rates between nodes 1 and N ,

J(t) = pN(t)ωN→1(t)− p1(t)ω1→N(t) (51)

where

ωN→1(t) =
(J(t) + ω1→Np1(t))

pN(t)
(52)

becomes constant at stationarity.
First of all we will study networks with symmetric transition rates, i.e.

where wi→j = wj→i, deriving a fascinating mapping with a classical electrical
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circuit, composed only by resistors. The latter allows us to derive also a
thermodynamic validation of the Schnakenberg’s formula and provides an
estimation of the entropy production which depends on a unique topological
parameter.

Then we will focus on system with asymmetric transition rates, deriving
that the stationary entropy production has a distribution which depends on
just two parameters, the first one accounting for the topology of the system,
and the second one keeping track of the asymmetry of the transition rates.

In the next section we will analyze in details these two points.

2.7 Symmetric transition rates

Consider first the case in which wi→j = wj→i. Writing ∆p = p1 − pN , we
define the equivalent transition rate as

weq = J/∆p > 0 (53)

which can be understood as a generalized Ohm’s law for ME systems.
Indeed, weq is the strength of a symmetric transition rate in a network

composed exclusively by nodes 1 and N that leads to the same ∆p for a
given current J , and depends on the topology of the underlying network (see
Fig. 3). It is also useful to introduce the parameter α = p1 + pN , so that
p1 = (α + ∆p)/2 and pN = (α −∆p)/2. At equilibrium (i.e. when J = 0),
p∗i = 1/N , and therefore α = 2/N . In terms of the new variables,

ωN→1 = ω1→N +
2J (weq + ω1→N)

αweq − J
. (54)

It is worth noting that at stationarity the Schnakenberg entropy produc-
tion reduces to [80]:

Ṡ =
1

2

∑
〈i,j〉

(wi→jpi − wj→ipj) log
wi→jpi
wj→ipj

(55)

From eq. (55), it can be seen that internal links do not contribute to the
entropy production, and that the only contribution comes from the transition
rates between nodes 1 and N :

Ṡ∗ = J log

(
ωN→1

ω1→N

)
≡ Ṡω. (56)
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We compute the entropy production at stationarity for the system close
to equilibrium, i.e. for small values of J . Introducing the explicit form of
ωN→1 in terms of J , eq. (54), and expanding for small values of the current,
J � N−1, we obtain that up to the leading order the entropy production is:

Ṡ∗ = N

(
1

weq

+
1

ω1→N

)
J2 ≡ ṠJ , (57)

an expected result since Ṡ∗ ≥ 0 and so the linear contribution in J has
to be absent.

Eq. (57) consists of two contributions: the first depends on the charac-
teristics of the system itself, encoded in the value of weq, while the second
term keeps track explicitly of the dissipation phenomena in the environment,
represented by the transition rates responsible for the external current J(t).

A physical interpretation of the form of ṠJ (eq. (57)) can be provided us-
ing a parallelism with classical electrical circuit. In fact, any electrical circuit
composed exclusively by multiple resistors can be mapped into a ME system,
and its corresponding entropy production turns out to be proportional to the
heat dissipation rate, hence resembling by the so-called Joule’s law. Here the
parameter weq turns out to be proportional to the equivalent conductance,
and then can be directly estimated by the structure of the transition network.
Eq. (57) takes into account also the heat dissipated by the battery which
induce a current into the system, where the ideal battery case corresponds
to the limit ω1→N =∞.

Such a parallelism also works in the opposite way, as the stationary state
p∗i can be retrieved from a variational principle as the one that minimizes the
entropy production, with the constraint imposed by the external flux.

2.7.1 Mapping: from an electrical circuit to a ME

Let us explain how the mapping can be constructed. Consider a circuit
C composed of N nodes connected by multiple resistors, with conductances
equal to cij. When a difference of potential ∆V = V1−VN is applied between
nodes 1 and N , the potential at each node i, Vi, is given by Kirchoff’s law,
which ensures the minimization of the heat dissipation [81]:

Q̇ =
∑
〈i,j〉

cij(Vi − Vj)2 (58)

34



where the sum is performed over all pairs of nodes i, j.
One can then build a fictitious dynamics for the potentials, whose sta-

tionary state corresponds to the physical state of C. To proceed, we fix V1

and VN (with V1−VN = ∆V ), and consider the following dynamics for nodes
i = 2, ..., N − 1:

τ V̇i(t) = −∂Q̇
∂Vi

=
N∑
j=1

cij (Vj − Vi) . (59)

An arbitrary time scale τ can be introduced without changing the sta-
tionary state. Notice that eq. (59) leads to the state which minimizes Q̇, as

Q̈(t) =
∑

i
∂Q̇
∂Vi
V̇i = −2τ

∑
i V̇

2
i < 0.

Let us notice that, despite its analogy, eq. (59) is not a master equation,
since

∑N
i=1 V̇i(t) 6= 0 for arbitrary t, and therefore normalization is not con-

served. However, one can relax the constraint on nodes 1 and N to be obeyed
only at stationarity. Defining the normalized potentials, vi = Vi/

∑
i Vi =

Vi/VT and introducing the new parameters c1→N and cN→1 (c1→N 6= cN→1 in
general), we study the following ME dynamics:

τ v̇i(t) =
∑
j

cij(vj − vi) + (cN→1vN − c1→Nv1) (δi,1 − δi,N) (60)

for i = 1, ..., N , where cN→1 and c1→N have to be chosen to ensure v1 −
vN = ∆V/VT at stationarity.

Notice that
∑N

i=1 v̇i = 0 for arbitrary t in eq. (60), which has an equivalent
form to eq. (2). In addition, it leads to the state minimizing the heat
dissipated by the circuit.

Note that this mapping has a meaning only in the stationary state, where
the fictitious dynamics of the circuit leads to a physical solution that resem-
bles the same characteristics of the steady state of a given Master Equation.

Without loss of generality we can fix τ = 1.
The normalized current, J = cN→1vN − c1→Nv1 = ceq∆V/VT = I/VT ,

where ceq is the conductance of the equivalent circuit formed by one single
resistor and I is the supplied electrical current. For small values of the
external current, Schnakenberg’s entropy production at stationarity is given
by eq. (57):

Ṡ∗ = N

(
1

ceq

+
1

c1→N

)
J2, (61)
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which corresponds to Eq. (57) with ceq = weq and c1→N = ω1→N . Writ-
ten in terms of the heat dissipated by the circuit, Q̇ = I2/ceq, the entropy
production of the associated ME dynamics is:

Ṡ∗ =
N

V 2
T

(
1 +

ceq

c1→N

)
Q̇. (62)

Its important to note that the relation given by eq. (62) is determined
up to the specific choice of parameters VT and c1→N , as this is an intrinsic
ambiguity of the mapping. Furthermore, there is a dissipation contribution
coming from the battery, which vanishes in the the limit of a “perfect” bat-
tery, c1→N →∞.

Eq. (62) enlighten a thermodynamic meaning for the Schnakenberg en-
tropy production, being this related, as expected, to the heat dissipated by a
circuit in the same state (at stationarity) and, in turn, resembling the Joule’s
law in terms of probability current and transition rates [81].

p1 p6

p1 p6

Master equation system

p1

p2

p3
p4

p5
p6

Symmetric network

Asymmetric network

Figure 3: (Left) A master equation (ME) system as a graph in which nodes correspond to states and
links to transition rates between them (sketched here as a 6-nodes network). An external probability
current J enters into the system by one of the states and exits from another one to ensure stationarity.
(Right) In symmetric ME systems (wi→j = wj→i), the entropy production can be computed from an
equivalent network composed by the external nodes linked by a symmetric transition rate of strength weq.
Equivalently, the entropy production of slightly asymmetric networks can be found from an equivalent
system composed by the external nodes and two asymmetric links weq(1±σεeq). Both weq and εeq encode
the topological structure of the underlying network.

Before moving to the more general case of non-symmetric transition rates
and also for later comparison reasons we have checked numerically the validity
of eq. (57) on randomly generated ME systems of size N and connectivity K
(defined as the fraction of non-directed connections respect to the N(N−1)/2
links in the fully-connected case). In the symmetric case, each non-null entry
of wi→j is taken from a Gaussian distribution with average w and standard
deviation wσ, with the constraint that wi→j = wj→i for each pair of links. We
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numerically integrate the corresponding ME by a finite-difference integration
method and compute the entropy production at stationarity. The result is
compared with eq. (57), where all the dependency on the network topology
in eq. (57) is encapsulated in the parameter weq. Results are shown in Top
panel of Fig. 4 (in log-log scale), evidencing that eq. (57) perfectly works
for a wide range of values of J .

2.8 Asymmetric transition networks

Now we want to generalize the simple result given by eq. (57) to networks
generated as in the symmetric case but taking wi→j and wj→i as independent
random variables. For each topology, weq is simply estimated taking wi→j =
w. Then, we compute the entropy production of each network in the presence
of a probability current J , and compare its value with the one given by ṠJ .
Results are presented in the Bottom panel of Fig. 16 for different values of
the heterogeneity σ; the prediction given by eq. (57) fails in the limit of small
flux, as detailed balance does not holds for a general asymmetric network,
and therefore Ṡ 6= 0 when J → 0.

Deviations from eq. (57) due to asymmetries in the network can be
described within a perturbative framework when the system is close to equi-
librium.

We focus on ensembles of random Erdos-Renyi topologies of connectivity
K for which the non-null elements of wi→j are independent Gaussian random
variables of mean w and standard deviation wσ.

Introducing the adjacency matrix Aij = Θ[wi→j] (Θ is the Heaviside step
function with Θ(0) = 0), we can write wi→j = wAij(1 + σεij) in terms of
independent Gaussian variables εij of zero mean and unit variance.

The entropy production given by eq. (55) can be split into two contribu-
tions,

Ṡ∗ = Ṡint + Ṡω, (63)

where Ṡint is the one given by internal links in the network and Ṡω the one
given by the external links connecting nodes 1 and N , eq. (56). Formally,
such a separation can be done if we do not allow the presence of internal
links w1→N and wN→1, although whether considering them or not does not
significantly change the value of the entropy production in large networks.
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Figure 4: Entropy production of ME systems represented by random (Erdos-Renyi) networks,
compared to the theoretical prediction given by Eq. (57). Transition rates wi→j are randomly
generated from a Gaussian distribution with mean w = 1 and standard deviation wσ. Each dataset is
composed by 100 realizations of networks of size N = 25, fixing the parameter ω1→N = 10. The external
flux J is a random variable, being log10 J uniformly distributed in [−4,−1] (so that J ∈ [10−4, 10−1]). All
plots are in log-log scale. (Top panel) Symmetric networks, for which wi→j = wj→i for each pair of links.
The connectivity K is a uniform random variable in K ∈ [0.25, 1]. (Bottom Panel) - Non-symmetric
networks: we remove the symmetric constraint, and therefore wi→j 6= wj→i in general. In this case, we
have fixed the connectivity K = 0.5. In both panels, insets represent the same corresponding points but
using a color scale for the external probability flux J . Similar results can be obtained for other network
topologies different from the Erdos-Renyi (Eq. (57) is valid in general).

We want to show that close to equilibrium, J, σ � N−1, the entropy
production, Ṡ∗, differs from the corresponding one in absence of asymmetry,
ṠJ , as given by eq.(57), by a gaussian random variable of mean (KN − 2−
K +O(1/N))wσ2 and variance 4Kw2σ4 +O(1/N).

To show that we write the stationary state as p∗i ' (1 + σqi + Jri) /N ;
the normalization constraint implies that

∑
i qi =

∑
i ri = 0. Then, we

expand the entropy production in terms of σ and J , neglecting contributions
of order higher than σJN2, σ2N2 and J2N2. Defining the antisymmetric
matrix Dij = εij − εji (whose entries are Gaussian variables with zero mean
and standard deviation

√
2), the first order contributions to Ṡint are:
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Ṡint

wσ2
=

1

N

∑
〈i,j〉

Aij

(
D2
ij +Dij

(
qi +

J

σ
ri

))
. (64)

For large N , the first term of the r.h.s. of eq. (64), becomes a Gaussian
random variable of mean K(N − 1) and standard deviation 2

√
K by means

of the central limit theorem [60, 59]. Remarkably, this term is positive and
scales linearly with the system size N .

The second and third terms in eq. (64) require to solve the ME close to
equilibrium to obtain the values of qi and ri. Up to first order in N , we find
that qi ' − 1

KN

∑
j AijDij. Such a dependency is meaningful: if in a node

i, most of Dij = (wi→j − wj→i)/w > 0 (resp. < 0), an outgoing (incoming)
flux is expected between node i and its neighbors, and therefore p∗i < 1/N
(> 1/N).

Introduced in eq. (64), the second term gives a Gaussian random contri-
bution to Ṡint with mean −2 and standard deviation

√
8/N .

Equivalently, solving the ME we find that, up to first order in N , ri '
(δi1 − δiN)/(wK), evidencing the major role of the external nodes. This
term gives another Gaussian contribution to Ṡint which has zero mean and
standard deviation (2/

√
KN)J/σ. Assembling all the terms together, the

leading contributions give that Ṡint is normally distributed with mean and
variance given by:

〈Ṡint〉 = (KN − (2 +K))wσ2 +O(1/N) (65)

〈(Ṡint)
2〉 − 〈Ṡint〉2 = 4Kw2σ4 +O(1/N) (66)

On the other hand, the term Ṡω can be computed in terms of a gener-
alized Ohm’s law for non-symmetric networks close to equilibrium, ∆p =
J/weq + σεeq, where 1/weq = (r1 − rN)/N and εeq = (q1 − qN)/N is a net-
work parameter accounting for the asymmetry-induced unbalance between
nodes 1 and N . More precisely, εeq represents the asymmetry of an equiva-
lent network composed exclusively by nodes 1 and N with the same ∆p and
(wN→1−w1→N)/(wN→1+w1→N) = σεeq (see Fig. 3b). Notice that weq and εeq

exclusively depends on the network structure. In terms of these parameters,
the leading contributions to Ṡω are:

Ṡω(σ) = ṠJ +NεeqσJ, (67)
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Figure 5: Deviations from eq. (57) follow generic scaling relations. The relation between Ṡ∗ and
J for networks generated with different N , K, J and σ can be enlightened plotting Ṡ∗ − 〈δṠJ 〉 against
〈ṠJ 〉. All datasets collapse into the straight line y = x (with deviations around). We have generated
250 networks for each system size with a random connectivity uniformly distributed in K ∈ [0.25, 1] and
a external flux J such that log10 J is a uniform random variable in [−4,−1] (J ∈ [10−4, 10−1]); the
heterogeneity has been taken σ = J for each realization (this ensures that the current and heterogeneity
contributions to the entropy production are of the same order and therefore both have to be considered).
(Inset) We collapse the PDFs of δṠJ by subtracting the contribution given by Joule’s law, eq. (57), and
the mean w(KN − (2 +K))σ2, and dividing by the standard deviation w

√
4Kσ2 (blue, green, yellow and

red points correspond to K = 0.25, 0.5, 0.75 and 1, respectively). The corresponding weq is computed
setting wi→j = w for each network topology. All histograms collapse into a Gaussian distribution of zero
mean and unit variance (dashed line). We have generated 104 independent realizations for each set of
parameters, setting J = σ = 10−3. We have set ω1→N = 10 in both panels.

where ṠJ is defined in eq. (57). Deviations from eq. (57), δṠJ = Ṡ∗− ṠJ
are given by δṠJ = Ṡint + NεeqσJ . For large networks we found that εeq is

normally distributed, εeq ∼ N
(

0, 2/
√
KN3

)
. Consequently, deviations from

eq. (57) are essentially given by δṠJ ≈ Ṡint, which is our main result.
The relation between S∗ and J can be enlightened representing Ṡ∗ −

〈δṠJ 〉 = Ṡ∗ − (NK − (2 + K))wσ2 against 〈ṠJ 〉 = N
(
〈w−1

eq 〉+ ω−1
1→N

)
J2.

We can compute the distribution of weq for an ensemble of random networks
of size N and connectivity K; interestingly, this problem is equivalent to
computing the equivalent conductance of an electrical circuit in which resis-
tors are randomly connected. P (weq) becomes a Gaussian distribution with

mean NKw/2 and standard deviation w
√
NK(1−K)/8 for large networks,

becoming narrower when N increases (relatively to its mean). Therefore, we
can use the approximation 〈w−1

eq 〉 ' 2/(NKw) (in the next subsection we
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will present a more formal derivation of this approximation). Pairs of (S∗, J)
are represented with this procedure in the main panel of Fig. 5, evidencing
that the entropy production of non-symmetric Master Equation systems of
different sizes N , connectivity K, heterogeneity σ and external current J , all
collapse around the straight line y = x, with deviations around decreasing
for larger systems.

Finally, we check numerically that deviations from eq. (57) follow the
scaling relations given by equations (65) and (66). Subtracting the mean
and dividing by the standard deviation, all the histograms collapse into the
Gaussian distribution with zero mean and unit variance, as depicted in the
inset of Fig. 5.

At the end of this derivation we have identified two topological paramters
(weq and εeq) that play the most important role in characterizing the value
of the entropy production close to equilibrium. In this sense, Fig. 3 is
emblematic, since it schematize how a Master Equation system can be seen
in terms of this two variables only.

2.9 Derivation of the distribution of Ṡ∗

This subsection is entirely dedicated to the formal derivation of the distribu-
tion of the entropy production.

2.9.1 Calculation of Ṡint

Writing the transition rates wi→j in terms of independent Gaussian variables
εij of zero mean and unit variance, wi→j = Aijw(1 + σεij) (with Aij =
Θ[wi→j]) and introducing p∗i = (1 + σqi + Jri)/N in eq. (55), we obtain:

Ṡint =
∑
〈i,j〉

Aijw

(
(1 + σεij)

(
1

N
(1 + σqi + Jri)

)

− (1 + σεji)

(
1

N
(1 + σqj + Jrj)

))
log

(
1 + σεij
1 + σεji

)
(68)

Close to equilibrium (σ � N−1, J � N−1), the leading contributions are:
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Ṡ1
int =

wσ2

N

∑
〈i,j〉

AijD
2
ij (69)

Ṡ2
int =

wσ2

N

∑
〈i,j〉

AijDij(qi − qj) =
wσ2

N

∑
i,j

AijDijqi (70)

Ṡ3
int =

wσJ

N

∑
〈i,j〉

AijDij(ri − rj) =
wσJ

N

∑
i,j

AijDijri, (71)

where Dij = εij−εji. In the next section we compute each term separately,
and we show that the major contribution is given by Ṡ1

int, whereas the second
and the third term can be neglected for large network sizes. For convenience,
we will call N (a, b) the Gaussian distribution with mean a and standard
deviation b.

It is worth mentioning that, in our calculations, we do not distinguish
the cases in which the external nodes are or not connected also by internal
nodes (A1N = 0 and 1 respectively), as this constitutes a minor contribution
for the total entropy production.

Calculation of Ṡ1
int

For each pair of links i and j, Dij is an independent random variable of
zero mean and standard deviation

√
2. Therefore, D2

ij is distributed as a
chi-square distribution whose mean and variance can be easily calculated:

〈D2
ij〉 = 2 (72)

〈(D2
ij − 〈D2

ij〉)2〉 = 〈D4
ij〉 − 〈D2

ij〉2 = 2〈D2
ij〉2 = 8. (73)

Eq. (69) involves the sum of KN(N − 1)/2 independent variables of this
type. When N is large, by means of the Central Limit Theorem, we obtain
that Ṡ1

int follows a normal distribution:

P

(
Ṡ1

int

wσ2

)
= N

(
K(N − 1), 2

√
K

(
1− 1

N

))
' N (K(N − 1), 2

√
K).

(74)
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Calculation of Ṡ2
int

In the absence of external flux (J = 0) and for small asymmetry σ, the
stationary state can be written as p∗i = 1

N
(1 + σqi). The values of qi can be

retrieved solving the master equation at stationarity:

0 =
∑
j

Aijw

(
(1 + σεji)

(
1

N
(1 + σqj)

)
− (1 + σεij)

(
1

N
(1 + σqi)

))
,

(75)
that, up to first order in σ, leads to the implicit solution:

qi =
1

ki

(
−
∑
j

AijDij +
∑
j

Aijqj

)
, (76)

where ki =
∑

j Aij is the number of nodes connected to node i. For
convenience, we introduce self-interactions (Aii = 1), as this choice does not
change the dynamics in the master equation and leads to simpler expressions
in our notation. In the fully connected network (Aij = 1), the second term
on the r.h.s. of eq. (76) vanishes (as

∑
j qj = 0), leading to the closed form

qi = − 1
N

∑
j Dij. This result is rather intuitive: if, for instance, the average

rate of the outgoing links in a node i is greater than the ingoing one (the
same argument applies in the opposite case)

∑
j εij >

∑
j εji =⇒

∑
ij Dij >

0, there is a net outgoing flux to its neighbors and therefore qi < 0, or
equivalently, p∗i < 1/N .

For a general connectivity K, we can neglect the implicit term in eq. (76),
leading to:

qi ' −
1

ki

∑
j

AijDij, (77)

which turns out to be a rather accurate approximation, especially for
large N , as illustrated Fig. 6 (left panel). Corrections to this formula are
of O(N−1) (see Fig 6, right panel), and therefore can be neglected for large
system sizes. Indeed, notice that the approximate form of eq. (77) does not
satisfy the constraint

∑
i p
∗
i = 1 + σ

∑
i qi/N = 1 in general, but the error

vanishes when N →∞.
We can introduce eq. (77) into eq. (70), obtaining:
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Figure 6: We generate random Erdos-Renyi topologies of mean connectivity K and size N , where each
link wi→j is an independent Gaussian variable of mean w and standard deviation σw. We set w = 1
and σ = 10−2. In the absence of external flux (J = 0), we integrate numerically the associated master
equation until stationarity, and calculate qi = (Np∗i − 1)/σ. (Left panel) We compare the numerical
value of qi with the one given by the approximation of eq. (77), for all the nodes in the network and for
103 randomly generated networks. Network size has been set to N = 100. (Right panel) PDF of the
error made in eq. (77), rescaled with the system size N , for N = 50 (circles), N = 100 (solid line) and
N = 200 (triangles), for different connectivities with the same colorcode as on the left panel. For each
connectivity, the PDFs of the rescaled error N∆qi collapse into a single curve, illustrating that the error
∆qi = O(N−1).

Ṡ2
int = −wσ

2

N

∑
i

1

ki

(∑
j

AijDij

)2

. (78)

For each i,
∑

j AijDij is a Gaussian random variable with zero mean

and variance 2(ki − 1), and therefore (
∑

j AijDij)
2/ki follows a chi-squared

distribution of mean 2(1−k−1
i ) ' 2 and variance 8(1−k−1

i )2 ' 8, as k−1
i can

be neglected for large network sizes.
Finally, we have to sum over nodes i; in principle, one cannot apply

straightforwardly the Central Limit theorem, as the elements of the sum
present correlations. Think, for instance, in the simple case of a triangle
network, where one has to calculate (D12 + D13)2 + (D21 + D23)2 + (D31 +
D32)2, where Dij = −Dji. However, the number of correlated elements
in the sum becomes negligible with the number of uncorrelated ones for
large system sizes, so one can simply neglect such a correlation. After these
approximations, we find:

P

(
Ṡ2

int

wσ2

)
' N

(
−2,

√
8

N

)
. (79)
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Notice that 〈Ṡ2
int〉 is independent of N , whereas 〈Ṡ1

int〉 grows linearly with
N (eq. (74)). Therefore, the former can be neglected respect to the latter.

Calculation of Ṡ3
int

We compute Ṡ3
int following a similar approach as for Ṡ2

int. In the absence
of asymmetry, σ = 0, and for small external flux J , the stationary state is
written as p∗i = 1

N
(1 + Jri). To find ri, we solve the master equation at

stationarity:

0 =
∑
j

Aij
w

N
(rj − ri) J + J (δi1 − δiN) (80)

whose solution is:

ri =
N

wki

(
δi1 − δiN +

w

N

∑
j

Aijrj

)
. (81)

In the fully connected network (Aij = 1), the second term on the r.h.s.
vanishes (since

∑
j rj = 0), leading to ri = (δi1 − δiN)/w. This means that

all nodes have equal probabilities except for the 1st and Nth, that present
a small unbalance p1 − pN = 2J/(Nw). Consequently, weq = Nw/2 in the
fully connected network). As we did for the calculation of Ṡ2

int, we can use
this solution as an approximation for a general connectivity K,

ri '
N

wki
(δi1 − δiN) . (82)

As for the case of qi, the approximate form above does not satisfy the
constraint

∑
i p
∗
i = 1+J

∑
i ri/N = 1 in general, but the error made vanishes

when N →∞.
Plugging eq. (82) into eq. (71), we obtain:

Ṡ3
int = σJ

(
1

k1

∑
j

A1jD1j −
1

kN

∑
j

ANjDNj

)
. (83)

Let us remind that
∑

j AijDij is a Gaussian variable with zero mean and
variance 2ki. As we deal with Erdos-Renyi networks, we can assume that
k1 ≈ kN ≈ KN ; furthermore, if A1N = 0, there is no correlation between the
first and the second contribution in eq. (83); otherwise, a small correlation
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may exist for large network sizes N , but this can be neglected. With these
approximations, we finally obtain that

P

(
Ṡ3

int

σJ

)
' N

(
0,

2√
KN

)
. (84)

Observe that, 〈Ṡ3
int〉 is independent of N , and therefore this contribution

can be neglected respect to the one given by Ṡ1
int.

Figure 7: We generate random Erdos-Renyi topologies of mean connectivity K and size N , where each link
wi→j = w = 1 (i.e. no asymmetry). The external flux is set to J = 10−2. We integrate numerically the
associated master equation until stationarity, and calculate ri = (Np∗i − 1)/J . (Left panel) We compare
the numerical value of ri with the one given by the approximation of eq. (82), for all the nodes in the
network and for 103 randomly generated networks. Network size has been set to N = 100. (Right panel)
PDF of the error made in eq. (82), rescaled with the system size, for N = 50 (circles), N = 100 (solid
line) and N = 200 (triangles), for different connectivities with the same colorcode as on the left panel. In
this case, we were able to capture also the scaling with the connectivity K. When rescaled properly, the
location of the peaks approximately collapse, illustrating that the error made is ∆ri = O(K−2N−1).

Distribution of Ṡint

We can obtain the PDF of Ṡint assuming that, approximately, Ṡ1, Ṡ2 and Ṡ3

are independent random variables, so from Eqs. (74), (79) and (84) we find:

P
(
Ṡint = Ṡ1 + Ṡ2 + Ṡ3

)
'

N

(
(K(N − 1)− 2)wσ2,

√(
4K

(
1− 1

N

)
+

8

N

)
(wσ2)2 +

4

KN
(σJ)2

)
N�1−−−−−−→ N

(
(KN − (2 +K))wσ2, 2

√
Kwσ2

)
, (85)
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where in the last expression we have considered the leading contribution
for large system size N .

2.9.2 Distribution of weq

The equivalent transition rate is defined close to equilibrium as weq = J
p∗1−p∗N

when σ = 0. Introducing the explicit form of p∗i ' (1 + Jri)/N , where ri has
the form of eq. (82) in large networks, we obtain:

weq ' w
k1kN
k1 + kN

. (86)

Consequently, variability in weq comes, essentially, from the variability in
the degrees of k1 and kN . We check numerically the validity of eq. (86). To
this end, we generate master-equation systems described by random networks
of size N and connectivity K, and for each one we compare the corresponding
value of weq (obtained integrating numerically the master equation) with the
one given by eq. (86). The result is plotted in Fig. 8 in log-log scale, showing
a good agreement, especially for large network sizes and higher connectivities.

Figure 8: Comparison between weq with the approximation given by eq. (86) in symmetric master-equation
systems with networks of size N = 50, 100, 200 and connectivity K = 0.25, 0.5, 0.75, 1. All existing links in
the network has a rate value w = 1. For each network, weq has been obtained by integrating numerically
the master equation with an additional external flux J = 0.01, and then calculating weq = (p∗1 − p∗N )/J .

The distribution of weq must be computed from the degree distribution
of an Erdos-Renyi network of connectivity K, which is given by the binomial
distribution p(k) =

(
N
k

)
Kk(1−K)N−k. For large N , the binomial distribution
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behaves as a Gaussian distribution with mean NK and variance NK(1−K),
and neglecting the correlation between k1 and kN we can write:

P (weq) '
∫ ∞
−∞

∫ ∞
−∞

δ

(
weq − w

k1kN
k1 + kN

)
P (k1)P (kN)dk1dkN , (87)

where the limits of the integral have been extended the whole real axis
and P (k) represents a Gaussian distribution N (NK,

√
NK(1−K)).

The non-linear dependency of weq on k1 and kN hinders the calculation
of P (weq). However, as the Gaussian distributions becomes narrower (in
relation to their mean) when N increases, we can calculate the PDF in the
limit of large N using a saddle-point approximation. First, we write the delta
function in terms of its Fourier representation:

P (weq) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1

2π
exp

[
−iα

(
weq − w

k1kN
k1 + kN

)]
P (k1)P (kN)dk1dkNdα.

(88)
Inserting the explicit form of P (k), using the change of variables: x1 =

k1

KN
− 1, xN =

kN
KN

− 1, and introducing the intensive variable ŵeq =
weq

N
,

we obtain:

P (weq) =
NK

(2π)2(1−K)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp [N (−iα (ŵeq

−wK (1 + x1)(1 + xN)

2 + x1 + xN

)
− K

2(1−K)
(x2

1 + x2
N)

)]
dx1dxNdα

≡ NK

(2π)2(1−K)

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp [NF (x1, xN , α)] dx1dxNdα. (89)

The saddle-node approximation states that the integral
∫
ddz exp[NF (~z)] '

(2π/N)d/2(− detH(F )|~z∗)−1/2 exp[Nf(~z∗)] in the limit of large N , where ~z∗

is the stationary point of F , d its dimension and H the Hessian matrix of
F . Imposing ∂x1F = ∂xNF = ∂αF = 0, we can find that in our case the

stationary point is located at x∗1 = x∗N = 2 ŵeq

KN
− 1, α∗ = 4i kw−2ŵeq

k(1−k)w2 . After
some calculations, and written in terms of the original variable weq, we find:
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P (weq) ' 1√
2πNK(1−K)

8
w2
(

3− 2wKN
2weq

) exp

[
−
(
weq − wKN

2

)2

2NK(1−K)
8

w2

]
. (90)

As the PDF concentrates around weq ' wKN
2

whenN increases,
(

3− 2wKN
2weq

)
'

1. Therefore, we finally obtain that

P
(weq

w

)
' N

(
NK

2
,

√
1

8
NK(1−K)

)
. (91)

We can collapse data of weq for different ensembles into a single PDF by
substracting the mean and rescaling by the standard deviation as obtainable
from eq. (91). Results are shown in Fig. 9. Deviations from a perfect
collapse (that are higher for smaller networks) must stem from finite size
corrections to the scaling formulas (see Section 2.9.2).

Figure 9: Collapse of the PDF for 9 datasets of weq, for K = 0.25 (blue), K = 0.5 (green) and K = 0.75
(yellow), and for each one, for N = 50 (circles), N = 100 (triangles) and N = 200 (squares) (same datasets
of Fig. 8), obtained by subtracting the corresponding meanNKw/2 and dividing by the standard deviation
NK(1−K)w/8 on each data (Eqs. (93) and (94) for the left panel and Eqs. (95) and (96) for the right
one). Dashed lines represent a Gaussian distribution of zero mean and unit variance. Deviations stem
from finite size corrections, and indeed PDFs for larger system sizes fit better the Gaussian distribution.
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Calculation of 〈f(weq)〉

We can calculate the expected value of some general function f(weq) using the
asymptotic form of P (weq), Eq. (91). However, it can be useful to calculate
next-to-leading order terms as it follows. We first write the expected value
as

〈f(weq)〉 =

∫ ∞
−∞

∫ ∞
−∞

f

(
w

k1kN
k1 + kN

)
P (k1)P (kN)dk1dkN

=
∞∑

n,m=0

µ2nµ2m

(2n)!(2m)!

∂f

∂k2n
1 ∂k2m

N

∣∣∣∣
k1=kN=KN

, (92)

where µi is the i-th central moment of a Gaussian distribution of mean
KN and variance NK(1 − K), and them simply truncate the series at the
desired order. Using this expression, it is straightforward to calculate 〈weq〉
expanding k1kN

k1+kN
up to the the forth moment:

〈weq〉 = w

(
KN

2
− 1−K

4

)
− (1−K)2

8KN
+O(N−2) (93)

and its variance 〈〈w2
eq〉〉 = 〈w2

eq〉−〈weq〉2 from the expansion of
(

k1kN
k1+kN

)2

:

〈〈w2
eq〉〉 =

w2

8

(
NK(1−K) + 2(1−K)2

)
+O(N−1). (94)

As expected, the leading orders agree with the mean and variance of
P (weq), eq. (91). Similarly, it is also useful to compute the mean and variance
of w−1

eq using the similar procedure; the result is:

〈w−1
eq 〉 =

2

wKN

(
1 +

1−K
KN

)
+O(N−3) (95)

〈〈(w−1
eq )2〉〉 =

2(1−K)

w2(KN)3

(
1 + 20

1−K
KN

)
+O(N−5). (96)

Let us notice that the leading term of 〈w−1
eq 〉 is the one used in the bottom

panel of Fig. 5.
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2.9.3 Distribution of εeq

To compute the unbalance parameter εeq, we set the external current to
J = 0. In this setting, and for small asymmetry values, σ � 1, the stationary
probability can be written as p∗i = 1/N(1 + σqi), so εeq can be computed as:

εeq =
p∗1 − p∗N

σ
=
q1 − qN
N

. (97)

Introducing the approximation given by eq. (77) into the equation above,
one finds the explicit formula:

εeq =
1

N

(
1

kN

∑
j

ANjDNj −
1

k1

∑
j

A1jD1j

)
. (98)

At this step, we neglect the heterogeneity in the connectivity degree and
set k1 ' kN ' KN . Reminding that Dij = −Dji are independent Gaussian
variables for each pair of links with zero mean and variance 2, for large
networks the Central Limit Theorem gives:

P (εeq) ' N
(

0,
2

N
√
KN

)
, (99)

where we have neglected a small correction arising if nodes 1 and N are
connected (i.e. when A1N = 1); in such a case the first and second term in
eq. (98) would not be completely uncorrelated, as D1N = −DN1. In any
case, this correction is negligible for large N.

2.9.4 Deviations from Joule’s law

Close to equilibrium, we can write the total entropy production for asymmet-
ric systems at stationarity as Ṡ∗ = ṠJ +NεeqσJ + Ṡint (see text). Therefore,
deviations from Joule’s law, δṠJ = Ṡ∗ − ṠJ can be obtained combining the
Gaussian distributions of εeq (eq. (99)) and Ṡint (eq. (85)):

P
(
δṠJ = Ṡint +NεeqσJ

)
'

N

(
(NK − (2 +K))wσ2,

√
4K (wσ2)2 +

4

KN
(σJ)2

)
NK�1−−−−−−−→ N

(
NKwσ2, 2

√
Kwσ2

)
. (100)
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Figure 10: Collapse of different P (εeq) for asymmetric master-equation systems in ensembles of 104

networks of size N = 50 (circles), N = 100 (triangles) and N = 200 (squares), and for each one, for
connectivities K = 0.25 (blue), K = 0.5 (green) and K = 0.75 (yellow). Link weights in the network are
independent Gaussian variables of mean w = 1 and standard deviation wσ = 0.01. For each network, εeq
has been obtained by integrating numerically the master equation with the external flux J = 0, and then
calculating εeq = (p∗1 − p∗N )/σ. Dark dashed line represents the Gaussian distribution of zero mean and
unit variance. The collapse has been obtained by dividing each value of εeq by its corresponding standard

deviation obtained analytically, 2/(N
√
KN).

We can see that, for large systems, the contribution given by εeq is negli-
gible, obtaining the same result as in eq. (85).

2.10 Another thermodynamic validation

In literature there exist different justifications of the expression given by
Schnakenberg for the entropy production [66, 23, 67, 61], but in this context
we are interested in the ones lying on thermodynamic principles. Here we
present a physical validation in terms of forces and fluxes, which acts also
as an endorsement of the interpretation of Eq. (48) given in the original
work and exposed in this chapter [80]. This constitutes a complete different
approach from the one proposed before, but, again, it aims at understanding
the thermodynamics behind the Schnakenberg’s formula.

Consider a system amenable to be described by a Master Equation. Now
we place this system in contact with two reservoirs with distinct sets of
thermodynamic fields. This procedure keeps the system out of equilibrium.

In order to proceed further, we need to know the specific form of the
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transition rates. Consider then a system for which the stationary state is an
equilibrium state, i.e. the detailed balance holds. The transition rates are of
the form:

wi→j = kij

(
p∗i
p∗j

)1/2

(101)

with kij = kji, such that wi→j/wj→i = p∗i /p
∗
j .

The equilibrium probability distribution is assumed to be the Gibbs dis-
tribution describing a system in contact with a reservoir exchanging heat and
particles [82]:

p∗i ∝ exp−β(Ei−µNi) (102)

where Ei and Ni are respectively the energy and the number of particles
of the system, β = 1/T , where T is the temperature of the reservoir and kB
is taken equal to 1, and µ is the chemical potential of the reservoir.

Since in this model the system is in contact with two different reservoirs,
we should have the following class of transition rates, each one belonging to
a different reservoir:

w
(r)
i→j = k

(r)
ij exp

−βr[(Ei−Ej)−µr(Ni−Nj)]/2 (103)

where the index r = 1, 2 indicates the reservoir.
Moreover, the system can also perform internal transitions that do not

depend on the external reservoirs. Assume that these transitions can be
described by:

w
(3)
i→j = w

(3)
j→i when Ei = Ej and Ni = Nj

w
(3)
i→j = 0 otherwise (104)

Let us now evaluate the stationary entropy production, given by Eq. (55).
It is easy to see that the only contribution is given by the two reservoirs, since
the internal transitions produce no entropy at stationarity.

Since the flux of energy from the reservoir r into the system can be written
as:

JE =
∑
ij

γ
(r)
ij w

(r)
i→jp

∗
j(Ei − Ej) (105)
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where γ
(r)
ij is a projection operator that is equal to 1 if the transition

between i and j is due to the class of transitions r (r = 1, 2 are the reservoirs,
r = 3 is the internal class of transitions). Analogously, the flux of particles
is:

JN =
∑
ij

γ
(r)
ij w

(r)
i→jp

∗
j(Ni −Nj) (106)

Putting togheter all the formulas we obtain the following bilinear form
for the stationary entropy production:

Ṡ∗ = XEJE +XNJN (107)

where XE = 1/T2−1/T1 and XN = µ1/T1−µ2/T2 are the thermodynamic
forces conjugated to the energy and particle flux respectively. Summarizing,
starting from the Schnakenberg’s formula, we ended up with an expression
of the stationary entropy production in terms of the thermodynamic fluxes
and forces.

2.11 The meaning of an extremum principle

The framework proposed in our work provides a null-model on which com-
pare the entropy production of specific systems and dynamics. In particular,
some biological systems seem to have evolved in order to dissipate energy
and produce entropy at the minimum or maximum possible rate [54, 57, 83].
It could be interesting to analyse the topological features of real dynamics
(in particular the values of weq and εeq) with what we obtained for random
networks, which have not been obtained through optimization/evolution pro-
cesses.

The strong point is that we have to control just two parameters in order
to understand the statistical properties of the entropy production of a system
at stationarity. Nevertheless, a proper comparison with real-world systems
could imply the application of this framework beyond the Erdos-Renyi ran-
dom networks, and it could give us a deeper understanding on the meaning
of an extremum principle of the entropy production.

This idea that living systems can adapt to cope with environmental
changes can be analyzed also from a different perspective. In the Appendix
A we present a work on this topic [77]. This collateral study is not related
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to the analysis of the entropy production, but aim at justifying some empiri-
cal observations on the topology of the interaction network of living systems
from the point of view of an optimization process.

In the next chapter we will try to go beyond the Master Equation dy-
namics and we will investigate the entropy production of system described
by a Fokker-Planck equation.
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3 Entropy production for coarse-grained dy-

namics

Countless works in the literature have investigated how coarse-graining influ-
ences our prediction of the physical properties of a system [51, 52, 50, 53]. In
particular, we will focus on the coarse-graining of the dynamics. In fact, the
Fokker-Planck equation can be obtained from a Master Equation, following a
coarse-graining procedure [84, 60, 59, 85]. Here we aim at understanding how
the entropy production changes passing from one description to the other by
neglecting microscopic information.

3.1 Fokker-Planck equation

The Fokker-Planck equation is a second order partial differential equation
describing how the probability to find a system in a certain position at a
certain time evolves, starting from a given initial distribution [59, 60]. The
general form is the following:

∂p(z, t)

∂t
= −

∑
i

∂

∂zi
[ai(z, t)p(z, t)] +

1

2

∑
ij

∂2

∂zizj
[bij(z, t)p(z, t)] (108)

where ai(z, t) and bij(z, t) are called, respectively, drift and diffusion coef-
ficient. We have to add to this equation the initial condition on p(z, t). Note
that we are considering the general case of a n-dimensional state space.

The main difference between this description and the one provided by a
Master Equation is constituted by the fact that here we are considering a
probability distribution p(z, t) which can change continuously, without per-
forming jumps between states.

We note that Eq. (108) can also be written as a continuity equation:

∂p(z, t)

∂t
+
∑
i

∂

∂zi
Ji(z, t) = 0 (109)

where Ji(z, t) is a probability flux. Eq. (109) has the form of a conser-
vation law. Supposing that p(z, t) is defined over a volume Ω, the normal-
ization condition,

∫
Ω
dnzp(z, t) = 1, can be interpreted as the absence of net

flux across the boundaries of Ω:
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0 = −
∫

Ω

∑
i

∂

∂zi
Ji(z, t)d

nz = −
∫
∂Ω

~J · ~ndS (110)

Also in this case, as for the Master Equation, we are interested only in
the physical region, i.e. where p(z, t) is non negative. Since Eq. (108) is
linear in p(z, t), a theorem on the second order partial derivatives ensures
that there are no negative solutions to this equation [85].

In this section we will derive the Fokker-Planck equation following two dif-
ferent approaches, the first one consists in the derivation from the Chapman-
Kolmogorov equation, while the second one lies on the so-called Kramers-
Moyal expansion, which allows us to pass from a Master Equation dynamics
to a Fokker-Planck equation, by making use of a coarse-graining procedure.

3.1.1 Derivation from Chapman-Kolmogorov equation

Consider the Chapman-Kolmogorov equation, Eq. (7), as introduced in the
previous chapter. Let us remind that it is nothing but a rearrangement of
the probability axiom in Eq. (8) for Markov processes. We have considered
three working hypothesis, Eq.s (9) and (10). In the previous chapter we were
interested in the derivation of the dynamical description of a jump process
in term of probabilities, on the contrary here we want to describe a purely
continous process. In other words, we want to avoid discrete jumps between
states, let the probability p(z, t) follow a continuous sample path [59, 60].

In order to do this, as already mentioned, we have to impose W (z|x, t) =
0, keeping Ai(z, t) and Bij(z, t) in general different from zero.

Let us consider again an arbitrary function f(z) that can be expanded
as shown in Eq. (11). Following the same strategy as for the derivation of
the Master Equation, and imposing the conditions that the process has a
continous sample path, we obtain the following equation:

∂t

∫
f(z)p(z, t|y, t′)dnz =

=

∫ [
−Ai(z, t)∂if(z) +

1

2
Bij(z, t)∂ijf(z)

]
p(z, t|y, t′)dnz (111)

where, for sake of simplicity, the sum is intended on repeated indices.

57



Then, we suppose that the process is confined in a region R. Integrat-
ing by parts and choosing f(z) to be arbitrary but non-vanishing only in a
subregion R′ of R, Eq. (14) becomes:

∂p(z, t)

∂t
= − ∂

∂zi
[Ai(z, t)p(z, t)] +

1

2

∂2

∂zizj
[Bij(z, t)p(z, t)] (112)

This equation has exactly the same form of Eq. (108), identifying Ai(z, t)
and Bij(z, t) with ai(z, t) and bij(z, t), respectively.

3.1.2 Derivation from Master Equation: Kramers-Moyal expan-
sion

Here we show another possible derivation of the Fokker-Planck equation. The
latter, in fact, can be obtained as a limit of a Master Equation under proper
conditions. The standard procedure to pass from one description to another
is called Kramers-Moyal expansion [59, 60, 84, 85].

Consider a Master Equation system which performs jumps in a continuous
state space. The dynamics describing this kind of process is shown in Eq.
(15). Since in what follows we will deal with one-dimensional system, for
sake of simplicity, let us write the following 1D continuous Master Equation:

∂tp(y, t) =

∫
dy′ (W (y|y′)p(y′, t)−W (y′|y)p(y, t)) (113)

where W (y|y′) is the rate related to the transition from the state y′ to
the state y. The latter can be rewritten in terms of the jump size r = y − y′
as follows:

∂tp(y, t) =

∫
dr (W (y − r, r)p(y − r, t)−W (y,−r)p(y, t)) (114)

where W (y, r) is the transition rate of a particle that starts from y and
performs a jump of size r.

Suppose, now, that we can expand Eq. (114) around r ≈ 0 up to the
second order in r. This procedure lies on the assumption that the transition
rates have to decay fast enough in space, such that this series expansion can
capture all the dynamical information of the system. It is worth noting that
we are passing from the description of a process with a discontinuous sample
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path to the one of the same process as having a continuous sample path
without losing, at least at this point, any information about the dynamics.
The expansion around r ≈ 0 leads to the following equation:

∂tp(y, t) = −∂y
(∫

drrW (y, r)p(y, t)

)
+

1

2
∂y2

(∫
drr2W (y, r)p(y, t)

)
(115)

that has the form of a Fokker Planck equation, making the following
positions:

∫
drrW (y, r) = a(y, t)∫
drr2W (y, r) = b(y, t) (116)

where the dependence of t in the transition rates has been omitted for
sake of simplicity.

It is evident that we are keeping track just of the first two “pseudo-
moments” of W (y, r). We call them “pseudo-moments” because W (y, r)
does not represent a probability distribution. In other words, we have ob-
tained a mapping between two different levels of description: the mesoscopic
parameters (the drift a(y, t) and the diffusion coefficient b(y, t)) can be esti-
mated starting from the microscopic ones (W (y, r)) by getting rid of a certain
amount of information, i.e. considering just the first two “pseudo-moments”.

Here we have obtained a Fokker-Planck equivalent description for a Mas-
ter Equation system, by neglecting some information about the shape of the
transition rates W (y, r). In this sense, the Kramers-Moyal expansion can
be considered as a coarse-graining procedure of the dynamics, which can in-
fluence (and it does, as we will show later) our estimation of the physical
features characterizing the system of interest, in particular the value of the
entropy production.

3.2 Stochastic differential equations (SDE)

There is another equivalent way to obtain a Fokker-Planck equation, which
is based on the theory of the stochastic differential equations. Since this is
a fundamental topic that will be useful by itself throughout this chapter, we
have dedicated this section to its analysis [59, 60].
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Let us start by considering a particle on which act two different kinds
of forces, a deterministic and a stochastic one. The physical meaning of a
stochastic force has to be intended as the result of the effect of many degrees
of freedom that cannot be controlled by a specific dynamics. Let us think to
the simple example of a Brownian particle. The stochastic force represents
nothing but the incessant impact of the “small” (respect to the particle)
molecules of the surrounding liquid on the particle. The general equation
describing a situation of this kind is called Langevin equation, it is classified
as a stochastic differential equation (SDE) and it has the following general
form:

dx

dt
= α(x, t) + β(x, t)ξ(t) (117)

where α(x, t) identifies the deterministic motion, β(x, t) is a known func-
tion related to the stochastic motion and ξ(t) a rapidly fluctuating random
term. Mathematically speaking, this means that, for t 6= t′, ξ(t) is statisti-
cally independent from ξ′(t). Adding also the requirement that 〈ξ(t)〉 = 0,
since any non-zero mean can be absorbed in α(x, t), we obtain:

〈ξ(t)ξ(t′)〉 = δ(t− t′) (118)

The formal solution of Eq. (117), as a SDE, is:

x(t)− x(0) =

∫ t

0

α(x(t′), t′)dt′ +

∫ t

0

β(x(t′), t′)dW (t′) (119)

where dW (t) is defined as ξ(t)dt and, formally speaking, it is the differ-
ential of a Wiener process.

Before moving on, let us summarize the main features of a Wiener process:

• a Wiener process is a stochastic process whose probability distribution
satisfy the following Fokker-Planck equation:

∂tp(w, t) =
1

2
∂w2p(x, t) (120)

• The probability distribution of a Wiener process is then:

p(w, ti|w′, t′i) =
1√

2π(ti − t′i)
exp

− 1
2

(w−w′)2

ti−t′i (121)
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In order to understand how dW (t) has to be interpreted, let us start by
discretizing Eq. (117):

x(ti) = x(ti−1) + α(x(ti−1), ti−1)∆ti + β(x(ti−1), ti−1), ti−1)∆W (ti). (122)

Then we can write a discrete version of Eq. (119):

x(tn) = x(t0) +
n∑
i=1

∆tiα(x(ti−1), ti−1) +
n∑
i=1

β(x(t̄i), t̄i)∆W (ti) (123)

Note that the first summation represents the discretization of a standard
integral, so we can arbitrarily choose to evaluate the function α(x, t) at the
initial point of the dicrete interval [ti−1, ti]. On the contrary, the last summa-
tion involves a stochastic integral, so that, in principle, our choice of the point
in which to evaluate β(x, t) can influence its value. Indeed let us consider:

t̄i = γti + (1− γ)ti−1 (124)

t̄i can take values in the whole discrete integral [ti−1, ti], depending on
the specific value of γ.

In order to understand if there exist a explicit dependence on γ in the
value of the stochastic integral, let us take a specific example: β(x, t) = W (t).
Now we want to compute the mean value as follows:

〈Sn〉 =
n∑
i=1

〈W (t̄i) (W (ti)−W (ti−1))〉 (125)

Note that it is easy to evaluate the correlation function ofW (t), obtaining,
from Eq. (121), the following:

〈W (ti)W (si)〉 =

∫
dwdw′ww′p(w, ti;w

′, si|w0t0)

=

∫
dww2p(w,min(ti, si)|w0t0) = w2

0 + min(ti − t0, si − t0) (126)

where we have used the fact that we are dealing with Markov processes.
Resembling the mean of Sn, we get:
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〈Sn〉 =
∑
i

[t̄i − ti−1] = γ(tn − t0) (127)

From Eq. (127) it is evident that the mean value of the stochastic integral
depends on γ, i.e. on the point in which we decide to evaluate the argument
of the stochastic integral. To avoid this problem, we have to choose a specific
presciption to perform this integral and, as a consequence, we have to find a
way to consistently connect all the possible choices.

3.2.1 Ito prescription and Fokker-Planck equation

The first prescription we introduce is named by Ito, and it corresponds to
the choice γ = 0. Mathematically speaking, we can define an Ito stochastic
integral as follows:∫

dW (τ)G(τ)
L2

−→ Sn =
∑
i

G(ti−1) (W (ti)−W (ti−1)) (128)

where L2 is the notation for the L2-convergence, i.e.

lim
n→∞
〈
(
Sn −

∫
dW (τ)G(τ)

)2

〉 = 0 (129)

In this section we briefly review the properties of the Ito prescription:

• one can show that an Ito stochastic integral exists whenever the func-
tion G(τ) is continuous and non-anticipating, that is, for all s and t,
with t < s, G(t) is statistically independent of W (s)−W (t);

• if x(t) follows a Langevin dynamics as in Eq. (117), an arbitrary func-
tion f(x(t)) will obey to the following equation (the so-called Ito’s
formula):

df(x(t)) =

[
α(x(t), t)f ′(x(t)) +

1

2
β(x(t), t)2f ′′(x(t), t)

]
dt

+β(x(t), t)f ′(x(t))dW (t) (130)

Note that the standard rules for the ordinary calculus do not hold in
this case.

62



• It is possible to derive a Fokker-Planck equation from a Langevin dy-
namics as follows:

〈df(x)〉 = 〈α(x, t)∂xf +
1

2
β(x, t)∂x2f(x)〉dt =

∫
dxf(x)∂tp(x, t|x0, t0)

(131)

where p(x, t|x0, t0) is the conditional probability density of x(t). Now,
as for the Chapman-Kolmogorov equation, we suppose that the process
is confined in a region R. Choosing f(x) to be arbitrary and non-
vanishing only in a subregion R′ of R, we can integrate by parts and
neglect surface terms to obtain:

∫
dx

[
−∂x

(
α(x, t)p(x, t|x0, t0) +

1

2
∂x2
(
β(x, t)2p(x, t|x0, t0)

))]
f(x) =∫

dx∂tp(x, t|x0, t0)f(x) (132)

Noting that this equation has to hold for any f(x), we recover the
standard form of a Fokker-Planck equation, Eq. (108), identifying:

α(x, t) = a(x, t)

β2(x, t) = b(x, t) (133)

3.2.2 Stratonovich prescription and Fokker-Planck equation

The second prescription we introduce is relative to the choice γ = 1/2 and
it is called Stratonovich prescription. As for the Ito’s case, we define the
Stratonovich stochastic integral by a L2 convergence as follows:

∫
dW (τ)G(τ)

L2

−→ Sn =
∑
i

G

(
ti + ti−1

2

)
(W (ti)−W (ti−1)) (134)

It is worth noting that in general there is no connection between Eq.s
(134) and (128), since a stochastic integral has a meaning only after the
specification of what kind of prescription we are using.

Here we summarize the main features of the Stratonovich stochastic in-
tegral:
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• it can be show that a Langevin equation, Eq. (117), interpreted in
the Stratonovich sense, is equivalent to the following Langevin equa-
tion, interpreted in the Ito sense, i.e. where the integrals have to be
performed with the Ito prescription:

ẋ = α(x, t) +
1

2
β(x, t)β′(x, t) + β(x, t)ξ(t) (135)

• Using the mapping between Ito and Stratonovich prescription one can
show that, in this case, the rules of ordinary differential calculus hold.
In fact, if x(t) follows a Langevin dynamics as in Eq. (117) interpreted
in the Stratonovich sense, an arbitrary function f(x(t)) will obey to
the following dynamics:

df(x(t)) = [α(x(t), t)dt+ β(x(t), t)dW (t)] f ′(x(t)) (136)

• From a Langevin equation it is easy to derive a Fokker-Planck equation
of the system also in this case, obtaining the following equation:

∂tp(x, t) = −∂x (α(x, t)p(x, t)) +
1

2
∂x (β(x, t)∂x (β(x, t)p(x, t))) (137)

The main physical difference between the choice γ = 0 or γ = 1/2 is
that, in the latter case, we are supposing that our knowledge of the future
can somehow influence the knowledge of the present, being also the end
point of the discrete time interval ti involved. This may sound to be not a
physical reasonable approach, nevertheless it has a substantial mathematical
advantage: the differential calculus can be performed in the ordinary way.

3.3 Entropy production for continuous systems

We have already shown the relevance of the entropy production and its role in
different fields, from classical to stochastic thermodynamics. In this section
we will define the entropy production for a continuous Master Equation and
for a Fokker-Planck equation, since we aim at comparing these two different
dynamical description.
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3.3.1 For continuous Master Equation

Let us start from Eq. (15), that is the continuous version of the discrete-
state Master Equation. We are interested in defining a measure of the entropy
production in this continuous case.

The simplest form we can guess for the entropy production is a continuous
version of the Schnakenberg formula:

Ṡ =

∫
dzdx

(
W (z|x)P (x, t) log

(
W (z|x)P (x, t)

W (x|z)P (z, t)

))
(138)

Eq. (138) has the form of a Kullback-Leibler divergence [86], then it is al-
ways positive and equal to zero if detailed balance holds, i.e. W (z|x, t)p(x, t|y, t′) =
W (x|z, t)p(z, t|y, t′). For these reasons, at first glance, Eq. (138) seems to be
a good guess for the entropy production. We will justify further this formula
a-posteriori, connecting our results to previous findings in literature.

In what follows, for sake of simplicity, we neglect the information about
the initial conditions in the probability distribution.

3.3.2 For Fokker-Planck equation

The entropy production for a Fokker Planck equation has been found by
Seifert [23] and here we aim at retracing the main steps of such a derivation.

The common definition of the Gibbs entropy in the continuous case 1

Ss(t) = −
∫
dxp(x, t) log p(x, t) (139)

suggests the existence of a trajectory-dependent entropy, following the
same procedure exposed for Master Equation systems:

ss(t) = − log p(x(t), t) (140)

where the probability p(x(t), t) obtained from the Fokker-Planck equation
has to be evaluated along the stochastic trajectory x(t) determined by the
Langevin dynamics.

In this context we consider the following dynamics:

1in Eq. (139) the argument of the logarithm is not dimensionless. This problem has
been widely discussed in literature [5, 6], and a possible solution is to use the relative
entropy, defining a prior distribution to which compare p(x, t) [86]. Here we use the
definition, according to the derivation in [23].
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∂tp(x, t) = −∂xj(x, t) = −∂x (µF (x, λ)−D∂xp(x, t)) (141)

where F (x, λ) is the external force, the diffusion coefficient is constant
and λ is an external control parameter.

The rate of change of Eq. (140) is:

ṡs(t) = −∂tp(x, t)
p(x, t)

|x(t) −
∂xp(x, t)

p(x, t)
|x(t)ẋ

= −∂tp(x, t)
p(x, t)

|x(t) +
j(x, t)

Dp(x, t)
|x(t)ẋ−

µF (x, λ)

D
|x(t)ẋ (142)

The last term can be related to the rate of the heat dissipated in the
medium [18]:

q̇(t) = F (x, λ)ẋ = T ṡmed(t) (143)

where we are associating the heat dissipation into the medium to an
increase in entropy at a certain temperature T = D/µ. We can then write
the following balance equation:

ṡtot(t) = ṡs(t) + ṡmed(t) = −∂tp(x, t)
p(x, t)

|x(t) +
j(x, t)

Dp(x, t)
|x(t)ẋ (144)

in analogy to what we have shown in the previous section.
Upon averaging, the total entropy production has to become positive.

Then, we first average over all the trajectories which at time time t are in
the position x(t), leading to:

〈ẋ|x, t〉|x(t) =
j(x, t)

p(x, t)
(145)

After this, we average over the probability distribution p(x, t), obtaining:

Ṡtot = 〈ss(t)〉 =

∫
dx

j(x, t)2

Dp(x, t)
(146)

Eq. (146) represents the total entropy production for a system described
by a Fokker-Planck equation in terms of only the drift and the diffusion
coefficients, i.e. the mescoscopic variables.
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3.4 Entropy production and coarse-graining in litera-
ture

Let us start now talking about the central problem of this chapter: the
relation between coarse-graining and entropy production.

It is a well-known result that a coarse-graining procedure on a Master
Equation leads to an underestimation of the entropy production. Since our
work will present similar findings, even if from a completely different point
of view, in this section we briefly review some previous results, aiming at
helping the reader to understand the idea behind our analysis.

Consider a laboratory system whose dynamics can be described by a Mas-
ter Equation, which is embedded in an environment [50]. Let us assume that
the global system (laboratory plus environment) is amenable to be described,
again, by a different Master Equation. If this global system is assumed to be
isolated, the corresponding transition rates have to be symmetric, i.e.

wc→c′ = wc′→c (147)

where c is a possible configuration of the global system. This assumption
lies on the fact that if the total system is finite and ergodic, the laboratory
system can sustain a non-equilibrium state just for a transient period and it
will eventually relax to an equilibrium state, in which detailed balance holds.

Since the laboratory is a part of the global system, there should be a map
from its configurations i to the global configurations c:

Π : c→ i = Π(c) (148)

that, in general, is not injective. This is intuitive, because for a given
system configuration i there are many possible configurations c of the global
system.

It is clear that the probabilities of a given system configuration can be
obtained by coarse-graining over the possible global probabilities Π(c) as
follows:

pi(t) =
∑
c∈i

pc(t) (149)

where the sum is intended over all the configurations c with Π(c) = i.
If we define the probability current Ji→j(t) = pi(t)wi→j, the same rule

holds also for these quantities:
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Ji→j(t) =
∑
c∈i

∑
c′∈j

Ji→j(t) (150)

3.4.1 Instantaneous relaxation of the environment

We first consider the situation in which the environment equilibrates instan-
taneously, that is all the probability pc belonging to the same laboratory
state i are equal to pc|i.

The entropy production of the global system can be written as:

Ṡglobal =
∑
c

∑
c′

Jc→c′ log
pc
pc′

=
∑
i

∑
j

∑
c∈i

∑
c′∈j

Jc→c′ log
pc
pc′

(151)

Using the equilibration condition we obtain:

Ṡglobal =
∑
ij

pc|i log
pc|i
pc′|j

∑
cc′

wc→c′ (152)

It is easy to see that, in this case, the Schnakenberg entropy production
of this system can be reduced exactly to the same expression:

Ṡ =
∑
ij

Ji→j log
Ji→j
Jj→i

=
∑
ij

(
pc|i
∑
cc′

wc→c′

)
log

pc|i
∑

cc′ wc→c′

pc′|jwc′→c

=
∑
ij

pc|i log
pc|i
pc′|j

∑
cc′

wc→c′ = Ṡglobal (153)

3.4.2 Schankenberg’s formula as a lower bound

In the more general case, we can derive an inequality between the Schnaken-
berg entropy production and the entropy production of the global system.
To this aim let us define a function h(x, y) = (x− y) log(x/y). Then, we can
write:

Ṡ =
1

2

∑
ij

(Ji→j − Jj→i) log
Ji→j
Jj→i

=
1

2

∑
ij

h(Ji→j, Jj→i) (154)

Analogously, we obtain:
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Ṡglobal =
1

2

∑
cc′

h(Jc→c′ , Jc′→c) (155)

Assuming that ni is the number of global configuration c consistent with
the laboratory state i and n = ninj, it is possible to derive the following
inequality:

h(Ji→j, Jj→i) = h

(
1

n

ni∑
c∈i

nj∑
c′∈j

Jc→c′ ,
1

n

ni∑
c∈i

nj∑
c′∈j

Jc′→c

)

=
1

n
h

(
ni∑
c∈i

nj∑
c′∈j

Jc→c′ ,

ni∑
c∈i

nj∑
c′∈j

Jc′→c

)
≤ 1

n

ni∑
c∈i

nj∑
c′∈j

h(Jc→c′ , Jc′→c) (156)

Summing over i and j on both sides, eliminating the factor 1
n

and dividing
by 2, we straightforwardly obtain the following inequality between the values
of the entropy productions:

Ṡ ≤ Ṡglobal (157)

Here we have presented an estimation of the entropy production by em-
bedding our system into a larger environment. We have shown that the for-
mula found by Schnakenberg is exact only in the case of instantaneous equi-
libration, since Schnakenberg himself derived this formula by using methods
of equilibrium thermodynamics.

Moreover, another possible interpretation of this results is that, by coarse-
graining the system (neglecting the information about c and c′, keeping only
the ones on i and j), we can just underestimate the entropy production, at
least in this setting where we are assuming that our system is amenable to
be described as a discrete-state Markov process obeying a Master Equation.

The work here presented is not the only result on the relation between
entropy production and coarse-graining. In particular, it is worth citing the
work done by Esposito using a thermodynamic setting [51], then developed
further in the context of hidden entropy production [87, 88, 89] and the
work done by Bo and Celani where the coarse-graining is performed on the
temporal scale [53].
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3.5 Introduction to the problem

So far we have introduced two different definitions of the entropy production,
each one referring to a different underlying dynamical model.

On one hand, for a Master Equation type of dynamics, we can estimate
the entropy production by using the Schnakenberg formula, Eq. (31), which
has been extensively analyzed in the previous chapter; on the other hand, if
the system obeys a Langevin dynamics, which in turn can be mapped into a
Fokker-Planck equation, the value of entropy production is predicted by the
Seifert’s formula, given in Eq. (146).

We have also seen that it is possible to describe the same system both
using a Master Equation and a Fokker-Planck equation, passing from one to
the other using the Kramers-Moyal expansion. To some extent, this proce-
dure constitutes a coarse-graining procedure performed on the system, since
we neglect all the details of the transition rates W (y, r), keeping only its first
two “pseudo-moments”.

In this section we want to address the following basic question: how Eq.
(31) and Eq. (146) are related?

Since both these formulas give an estimation of the entropy production
for the same system, but described at a different level of coarse-graining,
naively we could expect a relation between the two. Nevertheless, we know
that the coarse-graining can play a non trivial role in the estimation of the
entropy production, than we would like to quantify this effect in this case.

Note that the main difference of this approach is that we are dealing
with a coarse-graining at the level of the dynamics, in the sense that we
are comparing two different, but related, descriptions. We aim at finding
a refinement of the Seifert’s formula for the entropy production which can
include the corrections given by all the neglected information.

3.6 An illustrative example: n-step random walk

Let us first consider the very simple model of a one-dimensional random walk
on a ring that can make jumps of length k = 1, 2, ..., n at any time in both
directions, as sketched in Fig. 11 (for n = 2). Jump rates are:

wi→j =

{
W±kδj,i+k, k = 1, ..., n
0 otherwise.

(158)
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The associated master equation can be written in terms of the incoming
and outgoing probability currents on each node,

ṗi(t) = J in
i (t)− J out

i (t) (159)

where we have used the following definition for the ingoing and outgoing
currents:

J in
i (t) =

∑
k

J (k)
i−k(t), (160)

J out
i (t) =

∑
k

J (k)
i (t) (161)

with J (k)
i (t) is the microscopic probability current of the node i:

J (k)
i (t) = W+kPi(t)−W−kPi+k(t), k = 1, ...n. (162)

Note that this definition of the current is slightly different respect to the
one used before in this chapter, but it is just a matter of convenience.

Schnackenberg’s entropy production can be written in terms of these mi-
croscopic currents as:

ṠME = −
∑
i

∑
k

J (k)
i (t) log

(
1− J (k)

i (t)

W+kPi(t)

)
. (163)

We are interested in the continuous limit of the Master Equation and, as
a consequence, of Eq. (175). To this aim, consider this random walk to be
in a continuous space, so we have to understand how the currents and the
transition rates scale with the space interaval ∆x.

Moreover, performing a Kramers-Moyal expansion of the Eq. (159), we
end up with a Fokker-Planck equation with a certain drift and diffusion coef-
ficient. In order to obtain a macroscopic contribution for the latter two quan-
tities, the terms J (k)

i should scale with ∆x−1 and W±k with ∆x−2. Therefore,
the argument of the logarithm approaches to 1 in when ∆x→ 0. Expanding
in series of ∆x and taking the continuous limit, the entropy production is:

Ṡ∆x→0
ME =

∑
k

∫
dx
J (k)(x, t)2

D(k)p(x, t)
, (164)
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where we have defined the following quantities in the continuous limit:

J (k)(x, t) = lim
∆x→0

kJ (k)
i(x)∆x (165)

D(k) = lim
∆x→0

k2W+k∆x
2. (166)

with J (k)(x, t) the probability current (crossing the point x at time t) that
should appear in the Fokker-Planck equation if we consider just the particular
process with steps of size k. Since the whole process contains jumps of size
k = 1, ...n, the probability current of the Fokker-Planck equation is actually∑n

k=1 J (k).
Notice that, when ∆x→ 0, W+k ≈ 1

2
(W−k +W+k), and therefore D(k) is

the diffusion coefficient for the process with jump of size k. Also in this case
the whole process, in a Fokker-Planck type of description, has a diffusion
coefficient that is

∑n
k=1 D

(k). In this example we are considering a constant
diffusion coefficient as in the setting proposed by Seifert to derive his seminal
expression for the entropy production.

Now we introduce an alternative way to write the master equation. Let
us consider the current accounting for all the probability flux crossing a
fictitious barrier located at node i (see Figure):

Ji(t) =
∑
k

J (k)
i−k(t) +

∑
k>1

k−1∑
m=1

J (k)
i−m(t) =

∑
k

k∑
m=1

J (k)
i−m, (167)

so that ṗi(t) = −(Ji+1(t)− Ji(t)). Remarkably, Ji(t)∆x gives in the con-
tinuous limit the probability current J(x, t) in the Fokker-Planck equation,
Eq. (108).

As the first remarkable point in this work, notice that if J (k)
i = 0 at

stationarity (microscopic detailed balance condition) then Ji = 0 (mesoscopic
detailed balance), but not the other way round. Consequently, mesoscopic
equilibrium does not necessarily indicate that the underlying microscopic
dynamics is also at equilibrium.

Let us now write the entropy production for the same system, described
in the framework of a Fokker-Planck equation, as derived by Seifert:

ṠFPE =

∫
dx

(
∑

k J (k))2∑
kD

(k)p(x, t)
=

∫
dx

J(x, t)2

Dp(x, t)
(168)
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where D is the constant diffusion coefficient (here named D instead of
b(x, t) for sake of clarity).

Note that Eq. (164) has the same form as Eq. (168), but for each “sub”-
process involving jumps of only size k, with the sum performed over the
number of different “sub”-processes.

Between Eq.s (164) and (168) he following inequality holds:

Ṡ∆x→0
ME ≥ ṠFPE (169)

The prove of Eq. (169) is performed by considering the following integral:

∫ ∑
k

[(
J (k)(x, t)

D(k)
− J(x, t)

D

)2
D(k)

p(x, t)

]
dx = ṠME − ṠFPE ≥ 0 (170)

3.6.1 Deriving the correction

We have demonstrated in general (also far from the steady state) that an in-
equality holds between the Schankenberg entropy production and the Seifert
entropy production relative to the same system. Here we try to derive an
explicit expression for the discrepancy at the stationarity.

For convenience, we rewrite the transition rates W±k in terms of the new
variables wk and αk (k = 1, 2). Considering also the right scaling with the
space interval ∆x, we obtain:

W−k =
wk

∆x2
(171)

W+k = (1 + αk∆x)
wk

∆x2
. (172)

With this choice, the Kramers-Moyal expansion leads to a Fokker-Planck
equation with

a(x, t) = α1w1 + 2α2w2

b(x, t) ≡ D = w1 + 4w2 (173)

Higher-order terms are proportional to ∆xn+1 (n > 0), and therefore can
be neglected in the expansion.
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It is easy to check that the stationary solution to the master equation with
Eq. (175) corresponds to the homogeneous state p∗i = 1/N , and therefore
the Schnakenberg entropy production at stationarity is:

Ṡ∗ME =
α1w1

∆x
log (1 + α1∆x) +

α2w2

∆x
log (1 + α2∆x) , (174)

that, expanding in series of ∆x and taking the continuous limit ∆x→ 0,
can be simply written as:

Ṡ∗ME = α2
1w1 + α2

2w2. (175)

Figure 11: We use a two-step random walk as a simple example to derive the inequality between the entropy
production evluated starting from the Master Equation and the one derived by a Fokker-Planck mesoscopic
description. a) The microscopic model is sketched: the red lines indicate the one-step microscopic process,
while the blue lines represent all the jumps of size 2. b) In coarse-graining the system we need to estimate
the global current passing through a single state. The Kramers-Moyal expansion gives the exact expression
of this quantity as the sum of one contribution due to the one-step process and two contribution from the
two-step process, as depicted in the panel. The signs of the current depends on the particular choice for
the transition rates, which is arbitrary and does not affect the results.

On the other hand, Seifert’s formula for the entropy production in the
mesoscopic dynamics (Eq. (146)) at stationarity leads to :

Ṡ∗FPE =
(α1w1 + 2α2w2)2

w1 + 4w2

= Ṡ∗ME −
w1w2

w1 + 4w2

(2α1 − α2)2 (176)
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We can see that the two differs by a positive amount that keeps into
account all the neglected information in passing from the microscopic de-
scription to the mesoscopic one. The extra term is zero, as expected, when
there are no two-step jumps (w2 = 0). Moreover, it is possible to explain
this discrepancy as the contribution of the microscopic currents induced by
the interplay between the one-step and the two-step process.

Interestingly, the previous result evidences that the definition of equilib-
rium depends on the level of description. Indeed, if α1w1 = −2α2w2 (α1,2

can be also negative), we obtain that ṠME > 0 whereas ṠFP = 0. Conse-
quently, the system may seem at equilibrium in a mesoscopic description,
while detailed balance is violated at the microscopic level.

3.7 Refinement of the entropy production

In this section we aim at generalizing the conclusions stated in the simple
example of a n-step random walk.

Let us start directly from the continuous expression of the Schankenberg
entropy production, Eq. (138). We can rewrite this equation in terms of
the jump size r = y − y′ as we did for the continuous Master Equation.
Then we can perform the Kramers-Moyal expansion, taking the first and the
second order around r ≈ 0. Note that this procedure lies on the assumption
previously stated that the transition rates should decay fast enough in space.

Since the derivation is quite cumbersome, let us consider for the moment
the terms up to the first order:

Ṡ
(0)
KM + Ṡ

(1)
KM =

∫
dydr

(
W (y, r)P (y, t) log

(
W (y, r)

W (y,−r)

)
− r ∂

∂y
[W (y, r)P (y, t)]

−r ∂
∂y

[W (y, r)P (y, t)] log

(
W (y, r)

W (y,−r)

))
(177)

Now we introduce the following quantities:

75



J(y, t) = −a(y, t)P (y, t) +
1

2

∂

∂y
[b(y, t)P (y, t)]

J0(y, r, t) =
1

2
(W (y, r)−W (y,−r))P (y, t) log

(
W (y, r)

W (y,−r)

)
J1(y, r, t) =

1

2
(W (y, r) +W (y,−r))P (y, t) log

(
W (y, r)

W (y,−r)

)
J2(y, r, t) =

1

2

∂

∂y
[(W (y, r)−W (y,−r))P (y, t)] log

(
W (y, r)

W (y,−r)

)
(178)

The first term is nothing but the probability flux of the Fokker-Planck
equation, while the other terms keep track of the internal probability flux of
the system due to the asymmetry between the transition rates.

The idea is to express the entropy production in terms of the known
quantity of the FPE (a(y, t) and b(y, t)). If this were possible, it will mean
that no other iformation about the microscopic transition rates are needed
and the coarse-graining will have no effect on this physical quantity. Since
we know that this is not the case, we obtain:

Ṡ
(0)
KM + Ṡ

(1)
KM =

∫
dydrJ0 −

∫
dy

∂

∂y

(∫
drrW (y, r)P (y, t)

)
−
∫
dydr

1

2

∂

∂y
[r(W (y, r) +W (y,−r))P (y, t)] log

(
W (y, r)

W (y,−r)

)
=

=

∫
dydrJ0 −

∫
dy

∂

∂y
[a(y, t)P (y, t)]−

∫
drrJ1|ext

+
1

2

∫
dydrr(W (y, r) +W (y,−r))P (y, t)

∂yW (y, r)W (y,−r)−W (y, r)∂yW (y,−r)
W (y, r)W (y,−r)

=

=

∫
dydrJ0 −

∫
dy

∂

∂y
(a(y, t)P (y, t))−

∫
drrJ1|ext

+

∫
dydrr

(
1 +

W (y,−r)
W (y, r)

)
P (y, t)

∂

∂y
[W (y, r)] (179)

where |ext indicates that the quantity is evaluated at the extrema of the
integration.

Now we want to add also the second order of the expansion, getting the
following expression:
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Ṡ
(2)
KM =

1

2

(∫
dydr

∂2[r2W (y, r)P (y, t)]

∂y2
+
∂2[r2W (y, r)P (y, t)]

∂y2
log

(
W (y, r)

W (y,−r)

)
+
∂[r2W (y, r)P (y, t)]

∂y

∂ log (W (y, r)P (y, t))

∂y

)
=

=
1

2

∫
dy

∂2

∂y2

(∫
drr2W (y, r)P (y, t)

)
+

1

2

∫
dr
∂[r2W (y, r)P (y, t)]

∂y
log

(
W (y, r)

W (y,−r)

)∣∣∣∣
ext

−1

2

∫
dydr

(
∂[r2W (y, r)P (y, t)]

∂y

∂

∂y
log

(
W (y, r)P (y, t)

W (y,−r)P (y, t)

)
−∂[r2W (y, r)P (y, t)]

∂y

∂

∂y
log (W (y, r)P (y, t))

)
=

=
1

2

∫
dy

∂2

∂y2
(b(y, t)P (y, t)) +

1

2

∫
drr2J2|ext+

+
1

2

∫
dydrr2∂[W (y, r)P (y, t)]

∂y

∂

∂y
log (W (y,−r)P (y, t)) (180)

Then, joining Eq.s (179) and (180), we obtain:

ṠKM =

∫
dr

(∫
dyJ0 − rJ1|ext +

1

2
r2J2|ext

)
−
∫
dy

∂

∂y

(
a(y, t)P (y, t)− 1

2

∂

∂y
(b(y, t)P (y, t))

)
+

∫
dydrr

(
1 +

W (y,−r)
W (y, r)

)
P (y, t)

∂

∂y
[W (y, r)]

+
1

2

∫
dydrr2∂[W (y, r)P (y, t)]

∂y

∂ log (W (y,−r)P (y, t))

∂y
(181)

Notice that the argument of the second integral is nothing but the gradi-
ent of the flux in the Fokker-Planck, J(y, t).

The expression in Eq. (181) is manifestly different from the one in Eq.
(146) and this is the first central result of this chapter: since we are not ne-
glecting a-priori some microscopic information (indeed starting from a Master
Equation description), there are some different contributions that arise. This
is a completely new definition of entropy production at an intermediate level
of coarse-graining between Schnakenberg’s and Seifert’s formulas. If during
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this coarse-graining procedure we are not losing any information about the
system, then Eq. (181) and Eq. (146) should be exactly equal; we will
then show than the latter is a very singular situation, while in general an
inequality between the two expressions can be stated.

3.7.1 Gaussian transition rates

In order to evaluate Eq. (181) for a specific model, we need to propose a form
of the transition rates W (y, r). The simplest choice is to consider Gaussian
transition rates:

W (y, r) =
1√

2πDε
exp

(
−(r − a(y)ε)2

2Dε

)
(182)

With this choice for the transition rate the drift and diffusion coefficient
of the corresponding Fokker-Planck equation are:

a(y, t) = a(y)ε

b(y, t) = Dε+O(ε2) (183)

It is worth noting that ε is a new scale defined such that ε → 0 resem-
bles the continous limit. Note also that the first and the second “pseudo-
moments” of W (y, r) are of the same order in ε, while all the higher ones are
O(εη>1). This setting justifies a truncation of the Kramers-Moyal expansion
up to the second order in r, which corresponds to the first order in ε.

Inserting Eq. (182) in Eq. (181) it is possible to see that:

ṠKM(τ) = ṠFPE(τ) =

∫
dy
J(y, τ)2

Dp(y, τ)
(184)

In writing this equation we have absorbed the expansion parameter ε in
the time scale: τ = εt.

Then there exist some particular forms of the transition rates for which
our coarse-grained version of the entropy production is equal to the one
obtained directly from a Fokker Planck equation. Physically speaking this
means that, at least in the continuous limit, the value of the entropy pro-
duction is not affected by any microscopic contribution. The form of W (y, r)
that leads to Eq. (184) is not unique, so the Gaussian shape is just a simple
example.
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3.8 Entropy production inequality

To extend this framework over the Gaussian case, we propose a more general
form of W (y, r) with the property that the first two “pseudo-moments” are
of order ε and all the higher ones are of O(εη>1), as before. Our suggested
expression is:

W (y, r) =
1√
εD

e
−f
(
r−A(y)ε√

εD

)
(185)

where f is an arbitrary function. Also in this case the first two “pseudo-
moments” of W (y, r) are the only ones of order ε, while the other are of order
higher than ε. This justifies the truncation of the Kramers-Moyal expansion
up to the first order in ε.

After some (quite general) conditions on the function f , we obtain the
following inequality:

lim
ε→0

(
ṠKM(τ)− ṠFP (τ)

)
≥ 0 (186)

where again τ = εt is a new time scale. In the next section we will provide
the derivation of this inequality.

This equation constitutes the main result of this chapter, evidencing that,
for a quite general choice of the transition rates, W (y, r), neglecting a-priori
the microscopic contributions leads to an underestimation of the entropy
production. In other words, there exist some microscopic fluxes that make
inroads in the system that cannot be ignored in a coarse-grained approxima-
tion of the dynamics.

As an example, we can choose f(z) = |z|. In this particular case it is
possible to see that:

ṠKM(τ) = ṠFP (τ) + 2

∫
dy
a(y)2

D
p(y, τ) (187)

where the correction term is a positive quantity.
The interpretation of Eq. (186) comes in the same spirit as in the simple

example of the n-step random walk. As we can see in the next section, the
only term that give this extra contribution is

∫
dr
∫
dyJ0. This has explicitly

the form of an entropy production generated by a system in which P (y −
r, t) = P (y, t) + O (ε2). We see that this is analogous to an infinite system
where locally the probability is roughly the same, but the main contribution
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to the entropy production stems from the unbalance between W (y, r) and
W (y,−r); remarkably, in the previous example, the source of the discrepancy
is given exactly by the same term.

3.8.1 Derivation of the inequality

In order to deal with the most general case, we can introduce a space depen-
dence also in the diffusion coefficient:

W (y, r) =
1√
εD(y)

e
−f
(
r−A(y)ε√
εD(y)

)
(188)

First of all we calculate the coefficient of the Fokker-Planck equation that
the transition rates in Eq. (188) will generate. Here, for sake of simplicity,
a(1)(y) = a(y, t) and a(2)(y) = b(y, t), expliciting the fact that they represents
the first two “pseudo-moments” of W (y, r).

a(n)(y) =

∫
rnW (y, r)dr → z =

r − A(y)ε√
D(y)ε

→
∫
dz

n∑
k=0

(
n

k

)
zn−ke−f(z)A(y)kD(y)

n−k
2 ε

n+k
2 =

=
n∑
k=0

(
n

k

)
< zn−k > A(y)kD(y)

n−k
2 ε

n+k
2 (189)

where:

< zn >=

∫
zne−f(z)dz such that < z >= 0 (190)

We will see that we need the ansatz < z >= 0. Indeed, up to the first
order in ε, we get:

a(1) =< z >
√
D(y)ε+ < z0 > A(y)ε =< z0 > A(y)ε

a(2) =< z2 > D(y)ε+ < z0 > A(y)2ε2 =< z2 > D(y)ε

a(n>2) = O
(
ε
n
2

)
= 0 (191)

Now we want to introduce some other approximations that will be useful
in what follows:
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z =
r√
εD(y)

+O(
√
ε)→ ∂yz(y) ≈ −1

2

1√
εD

∂yD(y)

D(y)
r (192)

f

(
−r − A(y)ε√

εD(y)

)
= f(−z)−

√
ε

2A(y)√
D(y)

∂zf(−z) +O(ε) (193)

Furthermore, because < z > has to be null, the leading term in ε of f(z)
should be even, i.e. we guess that

f(z) =
2N∑
n=0

cnz
n =

2N∑
n=0

cn
rn√
εD(y)

n ≈ c2N
r2N√
εD(y)

2N

∂zf(−z) ≈ c2N2N(−z)2N−1 ≈ −∂zf(z) (194)

Now we can consider term by term the entropy production in Eq. (181).
To this aim we first split the entropy production in several terms, knowing,
from the case of a Gaussian W (y, r), which term is related to which one in
the Seifert’s formula. Then we ask ourselves whether the correction to each
term due to this more general form of W (y, r) is greater or equal to zero. If
so, the Seifert’s formula will be a lower bound for the entropy production of a
stochastic system, neglecting the microscopic contributions which come from
the detailed Master Equation dynamics. We proceed through the derivation
of these terms, by splitting Eq. (181) as follows:

• Part 1 of ṠKM → terms a(y), b(y) and c(y);

∫
r2

2
∂y(W (y, r)P (y, t))∂y(log(W (y,−r)P (y, t)))dydr =

∫
a(y)

(∂yP (y, t))2

P (y, t)
dy+

+

∫
b(y)P (y, t)dy + 2

∫
c(y)∂yP (y, t)dy (195)

where:
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a(y) =

∫
r2

2
W (y, r)dr

b(y) =

∫
r2

2

(∂yW (y,−r))(∂yW (y, r))

W (y, r)
dr

c(y) =

∫
r2

2

(
W (y,−r)
W (y, r)

+ 1

)
∂yW (y, r)dr (196)

• Part 2 of ṠKM → term g(y);

−
∫
r∂yJ1(y, r, t)dydr =

∫
g(y)∂yP (y, t)dy +

∫
∂yg(y)P (y, t)dy

(197)

where:

g(y) = −
∫

r

2
(W (y, r) +W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr

(198)

• Part 3 of ṠKM → term h(y);

∫
r

(
1 +

W (y,−r)
W (y, r)

)
∂yW (y, t)P (y, t)dydr =

∫ (
∂ya

(1)(y) + h(y)
)
dy

(199)

where:

h(y) =

∫
r
W (y,−r)
W (y, r)

∂yW (y, r)dr (200)

• Part 4 of ṠKM → terms e(y) and m(y);

∫
r2

2
∂yJ2(y, r, t)dydr =

∫
e(y)∂2

yP (y, t)dy +

∫
∂ym(y)P (y, t)dy+

+

∫
(m(y) + ∂ye(y)) ∂yP (y, t)dy (201)
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where:

e(y) =

∫
r2

2
(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr

m(y) =

∫
r2

2
∂y(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr (202)

• Part 5 of ṠKM → term d(y);∫
J0(y, r, t)dydr =

∫
d(y)P (y, t)dy (203)

where:

d(y) =

∫
(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr (204)

Now we want to analyze each of these terms separately and compare
them with the value that they will get if the Seifert expression were valid
(evidenced by a S as apex). In order to do this, we have to return to the
simple case in which the diffusion coefficient does not depend on space, i.e.
a(2) = 〈z2〉Dε, as in the original work of Seifert [23].

• term a(y) = a(y)(S) +O(ε2) = 1
2
a(2) +O(ε2)

a(y) =

∫
r2

2
W (y, r)dr =

1

2
a(2)(y) (205)

• term b(y) ≥ b(y)(S) = 0
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b(y) =

∫
r2

2

(∂yW (y,−r))(∂yW (y, r))

W (y, r)
dr =

=

∫
dr
r2

2

√
εDef(z)∂y

(
1√
εD

e−f(z)

)
∂y

(
1√
εD

e
−
(
f(−z)−

√
ε
2A(y)√
D
∂zf(−z)

))
=

=

∫
dr
r2

2

1√
εD

ef(z)∂y
(
e−f(z)

)
∂y
(
e−f(z)

)
=

=

∫
dr
r2

2

1√
εD

e−f(z)∂zf(z)∂yz(y) =

=

∫
dr
r2

2

1√
εD

e−f(z)∂zf(z)

(
−1

2

1√
εD

∂yD

D
r

)
= 0 (206)

This term has no counterpart in the Seifert’s formula, so it is enough
to see that it is of order ε2.

• term c(y) ≥ c(y)(S) = 0

c(y) =

∫
r2

2

(
W (y,−r)
W (y, r)

+ 1

)
∂yW (y, r)dr =

= ∂ya
(2) +

∫
dr
r2

2

e
−
(
f(−z)−

√
ε
2A(y)√
D
∂zf(−z)

)
e−f(z)

∂y

(
1√
εD

e−f(z)

)
=

= 0 +

∫
dr
r2

2

1√
εD

e
−
(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

)
e−f(z)

e−f(z)∂zf(z)∂yz(y) = 0 (207)

• term g(y) = g(y)(S) +O(ε2) = −2εA(y)
∫
W (y, r)dr +O(ε2)

g(y) = −
∫

r

2
(W (y, r) +W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr =

= −
∫
dr

1√
εD

(
e−f(z) + e

−
(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

))
log

(
e−f(z)

e
−
(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

)
)

=

= −
∫
dr
r

2

2√
εD

e−f(z)
√
ε
2A(y)√
D

∂zf(z) =

= −2A(y)ε

∫
dze−f(z)z∂zf(z) = −2A(y)ε〈1〉 = −2a(1) (208)
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• term h(y) = h(y)(S) +O(ε2) = ∂ya
(1)(y) +O(ε2)

h(y) =

∫
r
W (y,−r)
W (y, r)

∂yW (y, r)dr =

=

∫
drr

e
−
(
f(−z)−

√
ε
2A(y)√
D
∂zf(−z)

)
e−f(z)

∂y

(
1√
εD

e−f(z)

)
=

= ∂ya
(1) +

∫
drr

1√
εD

e
−
(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

)
e−f(z)

e−f(z)∂zf(z)∂yz(y) = ∂ya
(1)

(209)

• term e(y) ≥ e(y)(S) = 0

e(y) =

∫
r2

2
(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr =

= −
∫
dr
r2

2

1√
εD

(
e−f(z) − e−

(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

))
log
(
e
−
√
ε
2A(y)√
D
∂zf(z)

)
=

=

∫
dr
r2

2

1√
εD

e−f(z)
√
ε
2A(y)√
D

∂zf(z)
√
ε
2A(y)√
D

∂zf(z) =

= 2A(y)2ε2
∫
dze−f(z)z2 (∂zf(z))2 = 0 +O(ε2) (210)

• term m(y) ≥ m(y)(S) = 0

m(y) =

∫
r2

2
∂y(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr =

=

∫
dr
r2

2

1

D
e−f(z)∂y (2A(y)∂zf(z))

√
ε
2A(y)√
D

∂zf(z) =

= 2A(y)ε2
∫
dzz2e−f(z)∂y (A(y)∂zf(z)) ∂zf(z) = 0 +O(ε2) (211)

• term d(y) ≥ d(y)(S) =
(
a(1)
)2
/a(2)
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d(y) =

∫
1

2
(W (y, r)−W (y,−r)) log

(
W (y, r)

W (y,−r)

)
dr =

= −
∫
dr

1

2

1√
εD

(
e−f(z) − e−

(
f(z)+

√
ε
2A(y)√
D
∂zf(z)

))
log
(
e
−
√
ε
2A(y)√
D
∂zf(z)

)
=

= 2
A(y)2

D
ε

∫
e−f(z) (∂zf(z))2 dz =

= 2

(
a(1)
)2

a(2)

< z2 >

< 1 >2

∫
(∂zf(z))2 e−f(z)dz =

= 2

(
a(1)
)2

a(2)
〈z2〉0〈(∂zf(z))2〉0 (212)

where:

〈·〉0 =
〈·〉
〈1〉

(213)

Putting all these terms togheter in the entropy production and using the
Holder inequality, we obtain:

Ṡ = 2

∫
dy

(a(1)P (y)− a(2)

2
∂yP (y))2

a(2)P (y)
+ 2

∫
dy

(
a(1)
)2

a(2)

(
〈z2〉0〈(∂zf(z))2〉0 − 1

)
≥

≥ ṠSeifert + 2

∫
dy

(
a(1)
)2

a(2)

(
|〈z∂zf〉0|2 − 1

)
≥ ṠSeifert (214)

where we have written the Seifert’s formula in terms of the drift and
diffusion coefficient. In particular,

Ṡ = ṠSeifert iff ∂zf(z) ∝ z → Gaussian transition rates (215)

This result confirms the finding of the previous section about the Gaus-
sian transition rates and clearly shows that our entropy production is in
general greater than the Seifert’s entropy production. Our intuition about
this finding is that the microscopic contributions play a fundamental role
in determining the entropy production of a system and any coarse-graining
process will necessarily generate an underestimation of this quantity, as pre-
viously stated in other works in literature.
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3.9 Entropy production with a space-dependent diffu-
sion coefficient

Our formula for the entropy production is valid in general, also when the
diffusion coefficient depends on space. Although in this particular case we
cannot compare directly our entropy production with the one derived by
Seifert, it is interesting to note that, guessing the simple Gaussian form for
the transition rate W (y, r) as follows:

W (y, r) =
1√

2πD(y)ε
exp

(
−(r − a(y)ε)2

2D(y)ε

)
(216)

we end up with an expression for the entropy production that is composed
by two terms: the first one is formally equivalent to the one derived by Seifert,
while the second one is a correction which depends on the space dependence
of D(y):

Ṡ = 2

∫
dy

(
a(1)P (y)− ∂y

(
a(2)

2
P (y)

))2

a(2)P (y)
+

3

4

∫
dy

(∂yD(y))2

D(y)
P (y) (217)

3.10 Conclusions

In this chapter we have derived a refinement of the formula for the estimation
of the entropy production of a system whose dynamics can be described
by a Fokker-Planck equation. It is clear that this new expression is useful
only when some details on the microscopic underlying process are known,
otherwise it will be impossible to keep track of the neglected information
during the Kramers-Moyal expansion.

From a more general point of view, this result states that the process
of coarse-graining leads to an underestimation of the entropy production, as
pointed out by other works in literature [50, 53, 51, 52]. The main difference,
as we said before, is that we have performed the coarse-graining at the level of
the dynamics. In other words, one can pass from one dynamics to the other
by ignoring details on the transition rates, leading to different formulations
of the entropy production. The two different formulas that we obtain can
nevertheless become equal for particular choices of the transition rates (e.g.
Gaussian case).
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Another important result which it is worth noting is that our framework
enlighten the fact that the definition of equilibrium strongly depends on the
level of description we are adopting, especially when we compare a Master
Equation and a Fokker-Planck equation type of dynamics.

It will be very interesting, in the future, to see wheter this new formulation
could lead to novel insights in all the cases in which additional microscopic
information can be added in the physical modeling.
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4 Mimicking non-equilibrium steady states with

time-periodic driving

In this chapter we aim at connecting two different frameworks used to de-
scribe systems that operate out of equilibrium: the time-periodic driving
and the non-equilibrium steady states. We will see that these two share a
lot of common features that stimulate a possible mapping between them. In
particular we briefly review some results derived for discrete-state Master
Equation systems and then we formulate analogous results for continuous
systems described by a Fokker-Planck equation.

4.1 Time-periodic driving

We already know that any ergodic system coupled to a thermal environment
will spontaneously relax into an equilibrium state, which is well characterized
by statistical mechanics and thermodynamics [38]. However, since many in-
teresting phenomena, both in the microscopic and mesoscopic world, involve
system constantly maintaned out of equilibrium [15, 16, 57, 54], we need a
framework to characterize them.

A way to maintain a system out of equilibrium is to drive it by time-
periodic changing some external parameters in the presence of a thermal
reservoir. Typically, it is assumed that the dynamics satisfy detailed balance
at every instant in time. In other words, if the parameters were suddenly
frozen at their instantaneous values, the system would relax to an equilibrium
state, satisfying detailed balance with the forces corresponding to the frozen
parameters. We call this kind of procedure stochastic pumping (SP) or, in
general, time-periodic driving.

A periodically driven system reaches a time-periodic state with a non-
vanishing value of the current averaged over a period. These currents stems
from the periodic variation of the parameters, and the cost associated to their
generation is represented by the work invested in driving the parameters.
Eventually, the energy provided by this work is dissipated into the thermal
reservoir, resulting in a positive production of entropy.

The study of time-periodic driving has been stimulated by experiments on
artificial molecular machines, which are controlled by the variation of external
parameters (e.g. temperature, pressure, pH) to achieve some desired behavior
[48, 49]. For instance, in experiments on mechanically interlocked ring-like
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molecules the aim was to produce unidirectional rotation of one ring around
the other [90]. Theoretical investigations have focused on weakly or slowly
driven pumps [91, 92, 93], no-pumping theorems [94, 95, 96, 97, 98], the role
of interactions and fluctuations [99, 100], and the ability to extract work
from stochastic pumps [101]. The underlying aim is to produce controlled
motion at the molecular level, where the fluctuations are large. The focus
on time-dependent driving is mainly motivated by the difficulty of building
artificial molecular systems driven by chemical potential differences, i.e. by a
non detailed balance condition. It is often simpler to manipulate the system
by varying external parameters.

4.1.1 Discrete-state description

Consider a system with N accessible states which obeys to a Master Equation
with time-periodic transition rates:

∂tpi(t) =
N∑
j=1

(wj→i(t)pj(t)− wi→j(t)pi(t)) (218)

Eq. (218) can be rewritten as follows:

∂t~p(t) =W(t)~p(t) (219)

where W(t) is a N ×N matrix such that W(t) = W(t + T ), with T the
period of the external driving, encoded in the time dependence of the rate
matrix W .

We also know that, for a fixed value of the time t, W(t) has to admit a
unique stationary solution ~π, such that:

Wij(t)πj −Wji(t)πi = 0 (220)

This is just a restatement of the detailed balance condition, implying that
~π is an equilibrium state for a particular time t.

Under Eq. (219) the system evolves asymptotically to a unique time
periodic state ~pps(t) = ~pps(t + T ). For any solution of this kind, we can
define the following time periodic quantities:
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Jpsij (t) =Wijp
ps
j −Wjip

ps
i

σpsij (t) = Jij log
Wijp

ps
j

Wjip
ps
i

(221)

representing, respectively, the instantaneous probability flux and the in-
stantaneous entropy production for each pair of connected states i and j.
Note that the entropy production has been evaluated using the Schnaken-
berg’s formula.

Since we will be interested in comparing this scenario of time-periodic
driving with the one provided using the framework of non-equilibrium steady
states (that we will discuss in the next section), we introduce the following
time-averaged quantities that will be useful in what follows [33]:

ppsi =
1

T

∫
dtppsi (t)

Jpsij =
1

T

∫
dtJpsij (t)

σpsij =
1

T

∫
dtσpsij (t) (222)

A stochastic pumping protocol can be identified in terms of these three
quantities only.

4.1.2 Fokker-Planck description

In the same vein as for discrete-state systems, we can extend the description
to continuous systems.

Consider a system described as a diffusion process on a ring x ∈ [−L,L]
with the end points identified (periodic boundary conditions). First of all,
we need a Fokker-Planck equation which is time-dependent and such that,
for any fixed time t, it admits an equilibrium solution, i.e. a Boltzmann
distribution [82]:

π(x) = N exp−βU(x,t) (223)

where β is the inverse temperature (with kB = 1), N is the normalization
factor and U(x, t) is the value of the potential at time t.
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It is easy to see that the following Fokker-Planck equation has all the
required properties:

∂tp(x, t) = γ∂x ((∂xU(x, t))p(x, t)) +D∂x2p(x, t) (224)

where U(x, t) = U(x, t + T ) and U(−L, t) = U(L, t). In this model
the temporal variation of the parameters is encoded in the time dependent
potential, while the diffusion coefficient D is kept constant.

By Floquet theory [102], the probability distribution p(x, t) of such a
system converges into a unique periodic state, both in x and t. We denote
this unique periodic solution by P ps(x, t).

A probability distribution p(x, t) evolving under Eq.(224) can be associ-
ated with a probability current, J(x, t) defined by:

J(x, t) = −D [∂xp(x, t) + βp(x, t)∂xU(x, t)] , (225)

such that the probability obeys a continuity equation,

∂tp(x, t) + ∂xJ(x, t) = 0. (226)

Of special interest (in analogy to the discrete-state case) will be the cur-
rent associate with the periodic solution, which we denote by Jps(x, t) and
which is given by:

Jps(x, t) = −D [∂xp
ps(x, t) + βpps(x, t)∂xU(x, t)] . (227)

It is worth noting that, by construction, the time-averaged value of Jps(x, t)
must be constant in x: indeed, if we integrate the continuity equation Eq.(226)
we get:

∫ T

0

(
∂tp

ps(x, t) + ∂xJ
ps(x, t)

)
dt =

= pps(x, T )− pps(x, 0) + ∂xJps(x, t) = 0. (228)

The first two terms cancels due to the temporal periodicity of pps, hence
Jps(x, t) must be x independent. This implies that the same total probability
flux must flow through all positions in a cycle.
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In addition to probability densities and currents, we will be interested in
the environment’s entropy production given by

Ṡps(t) =

∫
dx

Jps(x, t)2

Dpps(x, t)
(229)

In this case the entropy production has been evaluated using the Seifert’s
formula [23], since we have no information about the microscopic details
of the process (see the previous chapter). Moreover, note that in this case
we have defined the entropy production by integrating over the probability
distribution p(x, t), while, for a discrete-state system, we have considered the
entropy production for each possible transition between states.

Again, also in this case, we define the following time-averaged quantities
(over a period), which fully characterize, in our setting, a stochastic pumping
protocol for a diffusive system:

pps(x) =
1

T

∫
dtpps(x, t)

Jps =
1

T

∫
dtJps(x, t)

Ṡps =
1

T

∫
dtṠps(t) (230)

4.2 Non-equilibrium steady states (NESS)

Although we have already introduced the concept of non-equilibrium steady
states in the previous sections, here we will try to understand the main
features which characterize them.

Consider a system coupled with more than one environment, e.g. sev-
eral baths with different equilibrium properties as temperature or chemical
potential. The constant fluxes between the baths can drive the system into
a steady state which is not an equilibrium state, since it can be maintaned
only at the cost of some thermodynamic resources (e.g. heat, fuel, photons)
consumed by the baths. These steady states exhibit non-vanishing currents,
reflecting the violation of detailed balance, and they are referred as non-
equilibrium steady states (NESS). They can by used to model a variety of
systems, from photo-syntesis in which photons are consumed in the carbon
fixation process, through the syntheses of ATP by an ATP-synthase where
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the chemical potential difference of H+ ions between the two sides of the
membrane is used to convert ADP+Pi into an ATP molecule, to molecu-
lar motors as kynesin, which consumes ATP molecules to generate directed
motion, responsible for much of the transport in the cell [15, 16].

4.2.1 Discrete-state description

Suppose that the evolution of the system is governed by the following Master
Equation:

∂tpi(t) =
N∑
j=1

(wj→ipj(t)− wi→jpi(t)) (231)

where N is the number of accessible states. This can be rewritten in a
more compact form:

∂t~p(t) = Rp(t) (232)

where R is a time independent N × N transition matrix, in analogy to
Eq. (219).

Eq. (232) has a unique steady state solution, that we denote by ~pss. In
this case we must have that this solution does not satisfy detailed balance,
in order to let the system exhibit a stationary probability current for each
possible transition (for each link of the interaction network), defined as:

Jssij = wj→ip
ss
j − wi→jpssi (233)

We are also interested in the entropy production associated with these
currents:

σssij = Jssij log
wj→ip

ss
j

wi→jpssi
(234)

Again we have a characterization of the NESS of the system in terms of
the same quantities considered for a system with time-periodic driving [33].

4.2.2 Fokker-Planck description

Consider now a diffusive system acting on a ring x ∈ [−L,L], with periodic
boundary conditions. In order to describe a NESS in this context, we have
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to inroduce a dynamics which violates detailed balance, therefore admitting
a non-equilibrium steady state as unique solution.

Consider the following Fokker-Planck equation:

∂tp(x, t) = γ∂x

(
(∂xU(x, t)) p(x, t)

)
+D∂xxp(x, t) + v∂xp(x, t) (235)

where U(x) is a spatially periodic potential, U(−L) = U(L), which, in
this case, does not depend on time, since we have no temporal variation of
external parameters. In this case v can be interpreted as a characteristic
velocity of the probability flow. The term v∂xP (x, t) violates the detailed
balance condition for any v 6= 0. In other words v is an additional linear
potential which breaks the periodic boundary condition of the potential U(x).

For a finite v and bounded U(x), Eq.(235) has a unique steady state solu-
tion, denoted by pss(x). In analogy with the probability current J defined in
Eq. (225), we can define, for any probability p(x, t) evolving under Eq.(235),
a probability current as:

J = −D
[
∂xp(x) + βp(x)∂x

(
U(x) +

v

βD
x

)]
(236)

such that J and p(x) satisfy the continuity equation Eq.(226). Note that
this definition reduces to Eq.(225) when v = 0. Of special interest is the
probability current associate with the steady state:

Jss = −D
[
∂xp

ss(x) + βpss(x)∂x

(
U(x) +

v

βD
x

)]
(237)

Note that Jss is x independent since ∂xJ
ss(x) = −∂tpss(x) = 0.

The constant entropy production rate for NESS is estimated according
to the Seifert’s formula [23], as for the case of time-periodic driving. In this
case it can be simplified into:

Ṡss = (Jss)2

∫
dx

Dpss(x)
(238)

It is worth noting that also in the NESS scenario, the entropy production
of a diffusive system has no spatial dependence, since we are integrating over
the probability pss(x).
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4.3 Mapping for Master Equation systems

Let us start our analysis on the comparison between NESS and time-periodic
driving with the case of a discrete-state system, whose evolution can be
described by a Master Equation [33].

Then we want to study the following problem: given a time-independent
rate matrix R, corresponding to the steady state quantities ~pss, Jssij and σssij ,
we want to build a time-periodic detailed balance rate matrix W(t), whose
periodic state is characterized by the same quantities, after averaging over
time. Mathematically speaking we have to require that:

pssi = ppsi =
1

T

∫ T

0

dtppsi (t)

Jssij = Jpsij =
1

T

∫ T

0

dtJpsij (t) (239)

σssij = σpsij =
1

T

∫ T

0

dtσpsij (t)

We are also interested in solving the reverse problem: given a time-
dependent detailed balance rate matrix W(t), we want to construct a time-
independent rate matrix R such that Eq. (239) holds.

Once R and W(t) were found such that they give rise to dynamics that
satisfy Eq. (239), we will say that the time-periodic driving mimics the
NESS, and viceversa.

4.3.1 From time-periodic driving to NESS

In this section we consider the reverse problem first. Let us suppose to have
a given time-dependent rate matrixW(t), so that ppsi , Jpsij and σpsij are known.

To build a R with the required properties, we introduce the following rate
matrix decomposition [63]:

R =

(
S +

1

2
J ss
)
· P−1 (240)

where S is a symmetric matrix whose elements in each column sum up
to zero, with negative entries only in the diagonal, J ss is the antysimmetric
matrix of the currents, where each element is equal to Jssij , and P = diag(~pss),
i.e. a diagonal matrix with elements Pii = pssi .
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Note that when J ss = 0 there are no currents flowing in the system and
R satisfy the detailed balance condition.

From Eq. (240), it is easy to see that if all the currents in the graph are
non-zero, then pssi , Jssij and σssij uniquely determine R. In order to see this,
let us write the entropy production using the rate matrix decomposition [33]:

σssij = Jssij log
Sij + 1

2
Jij

Sij − 1
2
Jij

(241)

Jssij and σssij uniquely determine S if all the currents are non-zero. Other-
wise some elements of S can be arbitrarily chosen, since they are not deter-
mined by the currents and the entropy production only.

Then we can combine S with the probability matrix P to get R.
We can conclude that, one we have fixed currents, entropy production

and probabilities to match the condition in Eq. (239), the time-independent
rate matrix R can be readily found using the strategy shown above.

4.3.2 From NESS to time-periodic driving

Now, let us suppose that a time-independent rate matrix R is given.

Current loops

In order to construct a time-periodic driving that mimics a given NESS, we
need to understand first the main difference between these two frameworks
for what concerns the currents. In fact, the steady state currents of a NESS
must form at least one current loop. To see this let us consider a current
going out from the node i, say to the node j. Now, from the site j, for the
conservation of the probability, there should be at least one current going
out, let us say, to the node k and so on. Since the number of states is finite
and equal to N , after no more than N steps the current has to come back to
the initial node i, then forming a current loop.

On the contrary, a current loop is inconsistent with detailed balance for
any instantaneous solution of the time-periodic driving. To show this, let
us decompose the rate matrix W = SΠ−1, where Π is the diagonal ma-
trix associated to the equilibrium solution ~π. The current generated by an
instantaneous distribution ~q on the link forming the loop i, j, k, ...m, i satisfy:
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Jij
Sij

= π−1
j qj − π−1

i qi

Jjk
Sjk

= π−1
k qk − π−1

j qj

...

Jmi
Smi

= π−1
i qi − π−1

m qm (242)

Summing up these equations we get zero on the r.h.s. This means that,
since Sij > 0, not all the current can have the same sign around the loop,
being consistent with the no current loop condition.

The main consequence of this finding is that we cannot match all the
currents with a “single driving”, since it is impossible to build current loops
using a stochastic pumping. We then split the whole period T in two halves,
building the currents in a way that just the average over T will form the
required current loops, not the current along each single half [33].

Constructing the currents

Let us start by choosing an equilibrium state for the first half of the period,
~πa, and a symmetric rate matrix S̃ from which we can construct the rate
matrix W̃a = S̃(Πa)−1. Then we choose another distribution ~qa such that:∣∣∣∣log

πai q
a
j

πaj q
a
i

∣∣∣∣ < ∣∣∣∣log
Rijp

ss
j

Rijpssi

∣∣∣∣ (243)

We will see that this condition is crucial further on.
For the second half of the period let us choose an equilibrium distribution

such that πbi = 1/πai and a distribution qb = 1/qai , such that the rate matrix
is W̃b = S̃(Πb)−1.

It is easy to see that the current generated by W̃a,b and ~qa,b, J̃aij and J̃ bij
respectively, have opposite sign.

Along all the edges that involve no loop, we can compare the required
current Jssij with J̃a,bij and set the value of the currents for each half of the
period as follows [33]:

• if the direction of Jssij is the same as J̃aij, in the first half of the period
we set Jaij = (2 + αij)J

ss
ij , while in the second half J bij = −αijJssij ;
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• if the direction of the NESS current Jssij is not the same as J̃aij, in the
first half of the period we set Jaij = −αijJssij and J bij = (2 + αij)J

ss
ij .

In this way, Ja,bij has the same direction as J̃a,bij for each half of the period
and, moreover, they have the correct average over T , since:

1

2

(
Jaij + J bij

)
= Jssij (244)

Assuming for now that the probability distribution in the first and second
half of the period are given by ~qa and ~qb respectively, and that the equilibrium
distribution are ~πa,b, the entropy production generated by the currents Ja,bij
are:

σa,bij = Ja,bij log
πa,bi qa,bj

πa,bj qa,bi
(245)

Imposing that the entropy production has the required average over the
whole period, σaij + σbij = 2σssij , we get an equation for determining αij:

αij =

∣∣∣∣∣
(

log
πai q

a
j

πaj q
a
i

)−1

log
Rijp

ss
j

Rijpssi

∣∣∣∣∣− 1 (246)

Eq. (243) ensures the positivity of αij.

Choosing the symmetric part of W̃

So far we have constructed the currents for both half cycles with the same
directions as the currents of W̃a,b with ~qa,b. We now want to transform the
symmetric part S̃ into a new matrix S, such that the currents generated by
Ŵa,b = S(Πa,b)−1 with ~qa,b have the constructed value Ja,bij , not only the same
directions.

To this aim, we have to make the following choice [33]:

Sa,bij =
Ja,bij

(πa,bj )−1qa,bj − (πa,bi )−1qa,bi
(247)
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Finding a periodic solution

Up to now we have a rate matrix Ŵa,b which produces the desired currents
and entropy production with the distribution ~qa,b. However the time average
of the latter is different from ~pss, also because ~qa,b are not solutions of the
master equation: ∂t~q

a,b 6= Ŵa,b~qa,b.
First of all we have to build the probability distributions ~pa,b with the

right temporal average. It can be shown that the following is a good choice:

pai (t) = pssi −
T

4
ma
i +ma

i t

pbi(t) = pssi −
3T

4
mb
i +mb

it (248)

where ~ma,b = Ŵa,b~qa,b are the temporal slopes during each half of the
period. Moreover, we have to choose T such that 0 < pssi ± (T/4)ma,b

i < 1,
∀i, in order to have a probability between 0 and 1 [33].

Since we want ~pa,b to be a solution of the Master Equation, ∂t~p
a,b =

Wa,b~pa,b, we have introduce a rate matrix Wa,b such that

• Ŵa,b~qa,b =Wa,b~pa,b in order to match the right temporal slopes;

• if Ŵ is detailed balance, then so does W ;

• the instantaneous current generated by Ŵa,b with ~qa,b are the same
as the ones generated by Wa,b with ~pa,b, and the same holds for the
instantaneous entropy production along each link.

It is possible to see that the following definition has all the required
properties:

W(t) =

{
Sa(Πa)−1Qa(Pa)−1(t), t < T/2
Sb(Πb)−1Qb(Pb)−1(t), t > T/2

(249)

where Qa,b and Pa,b are the diagonal matrices associated to ~qa,b and pa,b

respectively.
This completes the mapping between NESS and time-periodic driving,

since we have found a protocol to build a time-dependent rate matrix which
satisfies all the conditions in Eq. (239). In [33] this mapping is presented for
an illustrative, although quite general, example.
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4.4 Mapping for Fokker-Planck equation systems

In this section we want to address the problem of the mapping between NESS
and time-periodic driving when the system obeys a diffusive Fokker-Planck
equation.

The problem can be stated as follows: given a NESS and a SP character-
ized by the quantities defined above, we will consider them equivalent if the
following conditions hold:

pps(x) =
1

T

∫ T

0

dtpps(x, t) = P ss(x)

Jps =
1

T

∫ T

0

dtJps(x, t) = Jss (250)

In principle, an exact equivalence between NESS and time-periodic driv-
ing should also include an equation for the time averaged entropy production,
since we normally can interpret the probability density and the currents as
the desired output and the entropy production as the cost to keep the system
out of equilibrium. However, as we will discuss below, a similar equality for
the entropy production cannot hold simultaneously with the two conditions
in Eq.s (250). Mathematically speaking:

Ṡps =
1

T

∫ T

0

dtṠps(x, t) 6= Ṡss (251)

In the next section we will see that an inequality can be stated for the
entropy production.

4.4.1 Entropy production inequality

Let us start by understanding why the entropy production cannot be matched
between as in the discrete-state case.

Given Jss(x), P ss(x), Jps(x, t) and P ps(x, t), by Eqs. (229) and (238),
the values of the entropy production Ṡss and Ṡps(t) are automatically set.
Therefore, in diffusive systems with a uniform diffusion constant D we can no
longer impose an independent condition on the entropy production, as before
for system described by a Master Equation. This constitutes a fundamental
difference between continuous and discrete-state systems. Let us see if we
can nevertheless say something about this quantity in this case.
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Let us suppose, for the moment, the existence of a mapping between NESS
and time-periodic driving in the sense of Eqs.(250). Under this assumption,
we can compare the entropy production of the two different scenarios. To
this aim, consider the following integral:

I =
1

DT

∫
dt

∫
dx

(
Jps(x, t)

pps(x, t)
− Jss

pss(x)

)2

pps(x, t) ≥ 0 (252)

I is non-negative as it is the integral of a non-negative function. Ex-
panding the square root in the integral and rewriting each term, using Eqs.
(229) and (238), after some simple manipulations, it is possible to derive the
following inequality:

I =
1

T

∫
dtṠps(x, t)− Ṡss = Ṡps − Ṡss ≥ 0 (253)

As a first result of this chapter, we can thus state that a NESS always
has a lower entropy production with respect to a time-periodic driving with
the same time-averaged probability densities and the same time-averaged
probability current.

4.4.2 From time-periodic driving to NESS

So far we have seen that maintaining a given (time averaged) current and
probability density with time-periodic driving generates at least the same
amount of entropy as maintaining the same current and probability using
a NESS. In this section, we show that mimicking a time-periodic state of a
system with a NESS is possible, namely that a NESS can generate the same
currents and probability distributions as using stochastic pumping.

Let us suppose that we have a given time-periodic driving, i.e. pps(x)
and Jps. We remind that the Fokker-Planck equation allowing a NESS is
determined by a potential U(x) and a velocity parameter v which breaks
detailed balance. To build a mapping, we aim at finding U(x) and v such
that Eqs. (250) holds.

The explicit solution of Eq. (235) can be written as:

pss(x) = N
(
e−βU(x)− v

D
x +

Jss

D
e−βU(x)− v

D
x

∫ x

eβU(y)+ v
D
ydy

)
(254)
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where N is a normalization factor, which can be interpreted as a shift in
the potential. We can always choose U(x) such that N = 1, and hence we
will ignore it from here on.

Imposing Jss = Jps as required, Eq. (254) gives the following expression
for P ps(x):

P ps(x, t) =
Jps(x, t)

D
e−βU(x)− v

D
x

∫ x

eβU(y)+ v
D
ydye−βU(x)− v

D
x (255)

This equation, which should be solved for v and a periodic U(x), can be
easily inverted by writing it in terms of a new variable Φ(x) = βU(x) + v

D
x:

Φ(x) =
Jps(x, t)

D

∫ x 1

pps(y, t)
dy − log pps(x, t) (256)

Imposing periodicity on U(x), we derive the following expression for U(x)
and v:

βU(x) =
Jps(x, t)

D

∫ x 1

pps(y, t)
dy − log pps(x, t)− v

D
x

v =
Jps(x, t)

2L

∫ L

−L

1

pps(y, t)
dy (257)

These equations determine how to build a system such that its NESS
corresponds to the desired time-periodic state of a system with time-periodic
driving, in the sense of Eqs. (250).

4.4.3 From NESS to time-periodic driving

In the previous section we have shown how to construct a NESS that mimics a
given time-periodic driving. This direction was relatively easy since we could
use the explicit solution of the NESS, Eq. (254). In this section we consider
the opposite problem of mimicking a given NESS using a system driven by
a time-periodic potential, in which detailed balance holds instantaneously.
Unfortunately, there is no simple explicit solution for the time periodic sys-
tem, hence the construction is more complicated. An implicit solution has
been analytically derived in [103], in the context of no-pumping theorem, but
it provides no particular advantages in building a map for diffusive systems.
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Current Loop

In discrete systems, a useful constraint on periodic driving is set by the con-
dition of no current loop, which implies that if a system satisfies the detailed
balance condition at any instant, then it has no current loops regardless of
the instantaneous probability distribution.

A similar condition holds also for 1D diffusive systems. In fact, given
the instantaneous values of p(x, t) and J(x, t), we can consider the following
integral:

L =

∫ L

−L

J(x, t)

P (x, t)
dx (258)

This integral vanishes if and only if the system satisfy the detailed balance
condition. To show this, we start considering the general relation between
the current and the probability given by Eq.(236):

L = −D
∫ L

−L
∂x

(
log p(x, t) + βU(x, t) +

v

D
x
)
dx = −2vL (259)

where we have used the spatial periodicity of p(x, t) and U(x, t). Thus, an
instantaneous current pattern J(x, t) can be driven by a detailed balance dif-
fusion operator and probability distribution p(x, t) only if the corresponding
L is zero.

In periodic driving, v = 0 hence Lps = 0. As pps(x, t) is always positive,
the only way Lps can vanish is that Jps(x, t) changes its sign as a function of
x. This implies that we cannot hope to achieve the equality Jps(x, t) = Jss at
each time. Rather, the periodic current must be non-trivially time dependent.

Importantly, given arbitrary instantaneous normalized probability density
p(x, t) and current pattern J(x, t), there exist a periodic potential U(x, t) that
will drive the current J(x, t) for the probability p(x, t) if and only if L = 0.
This can be seen by solving for U(x, t) in Eq. (225):

U(x) = U(−L) +

∫ x

−L

(
∂x logP (x)− J(x)

DβP (x)

)
dx

= U(−L) + logP (x)
∣∣∣x
−L
−
∫ x

−L

J(x)

DβP (x)
dx (260)

For x = L, this implies
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U(L) = U(−L)− L
Dβ

(261)

Thus, U(x) is periodic if and only if L = 0.

Compatibility of P (x, t) with detailed balance

As we have seen, any pss(x) and v can be maintained by a NESS. It is thus
natural to ask: can any smooth, periodic and normalized p(x, t) be driven
by periodically varying the potential U(x, t)? As we next show, this indeed
can be done for arbitrary (normalized, smooth and periodic) p(x, t). First,
given p(x, t) we construct the corresponding current, J(x, t). For p(x, t) and
J(x, t) to solve the continuity equation (Eq. (226)) we must have:

J(x, t) = J(−L, t)−
∫ x

−L
∂tp(x

′, t)dx′ (262)

As p(x, t) is normalized at each t, any J(−L, t) is compatible with p(x, t)
and the continuity: the only constraint on J(x, t) is its spatial periodicity,

J(−L, t) = J(L, t), which always holds since ∂t
∫ L
−L p(x

′, t)dx′ = 0 for nor-
malized probabilities.

Next, we note that, although any J(−L, t) is compatible with p(x, t) and
the continuity equation, not any J(−L, t) and p(x, t) are compatible with the
constraint posed by detailed balance, namely that L = 0. Substituting Eq.
(262) in the definition of L gives:

L =

∫ L

−L

J(−L, t)−
∫ x
−L ∂tp(x

′, t)dx′

p(x, t)
dx (263)

Choosing

J(−L, t) =

(∫ L

−L

1

p(x, t)
dx

)−1 ∫ L

−L

∫ x
−L ∂tp(x

′, t)dx′

p(x, t)
dx (264)

assures that L = 0, hence that p(x, t) can be driven by a periodic potential
U(x, t) and this is always possible by choosing an appropriate value for the
flux at the boundary J(−L, t).
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Building the map

Given a target NESS, we can construct a time-periodic driving such that the
mapping conditions in Eqs. (250) holds.

As we have shown in the previous section, any normalized p(x, t) can
be driven by some periodic potential U(x, t), namely by a detailed balance
time dependent driving. Given p(x, t), Eq. (264) expresses the correspond-
ing value of J(−L, t). Since, for the periodic solution pps(x, t), the average
current is position independent, all we have to do is to find a periodic (in x
and t) p(x, t) that will average, over a period, to P ss(x), and such that the
time average of the corresponding current given in Eq. (264) will be equal
to Jss. This can be done by choosing

pps(x, t) = f

(
x− x0

(
t

T

))
(265)

for any f(x) which is positive and normalized. f
(
x− x0

(
t
T

))
has a con-

stant shape that translates with time, at a velocity dx0/dt. We next find
x0(t) such that:

x0(0) = −L (266)

x0(1) = L (267)

1

T

∫ T

0

f

(
x− x0

(
t

T

))
dt = pss(x) (268)

The last demand can be written as an integral over x0 rather than as a
function of t:

∫ L

−L
f(x− x0)

dt

dx0

dx0 = P ss(x) (269)

The left hand side of the above equation is a convolution between f(x)
and t(x), hence given a pss(x) and a chosen f(x) we can solve for t(x0) and
invert into x0(t). Note, however, that not any f(x) will work with every
pss(x): dt/dx0 must be positive, and f(x) must have all the Fourier modes
that P ss(x) has for the convolution to be possible.

Lastly, from pps(x, t) we solve for J(−L, t) through Eq. (264). The time
average of this current is the position independent current associated with
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the driving. In general, it will not have the desired value, namely it will not
be equal to Jss. However, J(−L, t) is inversely proportional to T because
of the time derivative, whereas the solution for x0(t/T ) is T independent.
Hence, by changing T we can tune the average J to have any required value,
and equate it with Jss.

In this section we have derived a solution for our mapping that can be
applied to any target NESS. However, although this procedure ensures that
a mapping is always possible, finding it along this line could be quite de-
manding both numerically and analytically. In the next section we will show
another way to build the mapping and we will provide a numerical proof.

Building the map using Fourier expansion

A simple way to approach the problem is to exploit the periodicity of pps(x, t)
and Jps(x, t) in both x and t, expanding them in Fourier modes [104]. Hence
we write:

pps(x, t) =
∑
k,ω

pk,ωe
ik π
L
xeiω

2π
T
t

Jps(x, t) =
∑
k,ω

jk,ωe
ik π
L
xeiω

2π
T
t (270)

Let us write all the conditions for the probability distribution and the
currents, as well as the relations between them, in terms of the Fourier coef-
ficients. First, the definition of the flux can be recasted as:

jk,ω = −ω
k
pk,ω ; jk,0 = 0 (271)

Additional requirement is that the normalization of pps(x, t) does not
change in time. In Fourier coefficients, this implies p0,ω 6=0 = 0.

Next, we rephrase the mapping, Eq.s (250), in the Fourier coefficients.
First we expand the target steady state distribution in Fourier modes:

pss(x) =
∑
k

pke
ik π
L
x. (272)

With these coefficients we can write:
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pk,0 = pk ; j0,0 = Jss (273)

Finally, to complete the mapping, we have to impose that the integral L
vanishes. To do this we propose a Fourier series expansion also for U(x, t),
with the coefficients uk,ω. Since, by construction, if the potential is periodic
in space and time, also L = 0, we formally rewrite Eq. (225) in terms of the
Fourier coefficients, obtaining the following linear equation:

−D (β(iku ∗ p)k,ω + ikpk,ω) = jk,ω (274)

where the notation “∗” indicates the convolution. This equation has to
be solved for the variables uk,ω that fully describe the unknown time-periodic
potential.

Note that all the variables in Eq. (274) but pk and Jss have to be specified,
so we can solve the equation iteratively by numerical integration. Although
in principle an infinite number of unknowns has to be taken into account,
we guess that a limited number of them is sufficient to find an approximate
solution to the mapping. In the next section a simple numerical example is
carried out to evalidate our theoretical approach.

Numerical example

Let us consider a NESS characterized by the following probability density
and current:

pss =
1

2π
+

1

4π
cos(x) Jss = −0.011 (275)

We aim at solving Eq. (274) to find a time-periodic potential U(x, t)
which allows a time-periodic state with the same time-averaged quantities.
To do this we use the following approach: first we limit the number of pa-
rameters, i.e. we suppose that only some of the k and ω have a non-zero
corresponding coefficient. In particular, we guess that:

pk,ω = 0 if |k| > 2 , |ω| > 2

uk,ω = 0 if |k| > 4 , |ω| > 4 (276)
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Then we solve the equation for uk,ω, fixing all the arbitrary component of
pk,ω (the ones that are not fixed by Eq. (273)). Finally we plug this solution
in the same equation and we solve for pk,ω, and so forth using a least square
algorithm. In this case this simple method provides a good approximate
solution (see Fig. 12) and it is easy to understand that increasing the num-
ber of fitted parameters, i.e. the number of k and ω for which the Fourier
coefficient are non-zero, will increase the accuracy of the solution.

Figure 12: Numerical validation of the mapping, using an approximate solution for the potential U(x, t).

Panel A - A comparison between the time-averaged probability density, pps(x, t), obtained by numerical
integration and the analytical expected one of the given NESS, pss(x) (dashed red curve) for different
choice of the discretization in the numerical simulation. The green diamonds represents the time-averaged
probability current obtained by numerical simulation with a discretization of 50 points for x between
[−π, π] and 500 for t with T = 2π, the yellow squares refers to 250 points for x and 2500 points for t, and
the blue circles is related to the simulation carried out with 650 points for x and 6500 for t. Panel B - Value
of the time-averaged probability current, Jps(x, t), for the same choices of points for the discretization of x
and t (the same colorcode as in Panel A has been adopted). It is easy to see that a more fine discretization

leads to a better estimation of Jps(x, t), which, by definition, should be constant in x. The red dashed
line represents the theoretical value of the current of the given NESS, Jss.
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4.5 Conclusions

In this chapter we have shown that a stochastic pump (SP) can mimic a
nonequilibrium steady state, having the same time-averaged probability den-
sity function and the same time-averaged probability current also for diffusive
systems. Although the exact form of the time-periodic potential U(x, t) to
build this mapping can be easily found only numerically (with a certain de-
gree of approximation), the inverse mapping of a SP with a NESS is rather
simple. In fact we have shown that an analytical solution exist for the po-
tential U(x) and the velocity v of a system without detailed balance, whose
NESS mimicks a given time-periodic driving.

Moreover, we want to point out an interesting result on the entropy pro-
duction which can be found only in the continuous case. Indeed, we have
derived an inequality, finding that the entropy production rate of a system
with time-periodic driving is always higher than the one of NESS with the
same time-averaged probability densities and currents. This result consti-
tutes an unavoidable limitation in building an artificial machine for diffusive
systems to mimic a given NESS.

Many important aspects were not discussed here and they could be sub-
jects of future investigations, mainly a map between NESS and time-periodic
driving to match some other important features (e.g. heat or work) [33], and
a more in-depth discussion on the entropy production inequality. On the
latter, some further analysis could reveal wheter it is just a consequence of
the coarse-grained approach of a Fokker-Planck equation or wheter it lies on
different theoretical justifications.

It is worth noting that we assumed a constant diffusion coefficient D, in
order to use the epression for the entropy production given by Seifert. An-
other interesting generalization could involve the analysis of a time-periodic
driving with a time-dependent diffusion coefficient which, indeed, preserves
detailed balance at any instant.
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5 General conclusions

In this last chapter we will summarize the conclusions derived from the works
presented in the thesis, evidencing the connection between them and their
relevance in the general context of stochastic thermodynamics.

In Chapter 2 we have derived some statistical properties of the entropy
production for a system whose dynamics can be described by a Master Equa-
tion. This kind of systems can be modeled as transition networks, encoding
all the information about the dynamics. Interestingly, close to equilibrium,
we are capable to evaluate the entropy production from two topological pa-
rameters of such a network, weq and εeq. The first one keeps track of the
symmetric part of the transition rates, while the second one is related to
asymmetry between each forward and backward transitions. From the point
of view of the stochastic thermodynamics, this result is remarkable by itself,
since it give birth to a novel universal behaviour of the entropy production
for a large variety of systems. Another important application of this find-
ing is related to the maximum (minimum) entropy production principle. In
fact, it could be interesting to compare the dynamical adaptive evolution of
different living systems with what we expect from an extremum principle of
the entropy production, studying how the topology of the transition network
changes to cope with external perturbations.

Another important result of this first part of the thesis is the thermody-
namic validation of the Schnakenberg’s formula for the entropy production,
carried out using a mapping between transition networks and classical elec-
trical circuits.

These findings stimulate the onset of an interesting question: what can
we say about systems amenable to be described by different dynamics, for
example a Fokker-Planck equation? In Chapter 3 we aim at answering this
question, by starting from the entropy production of a Master Equation sys-
tems and studying how this expression changes when the dynamics is mapped
into a Fokker-Planck equation. The latter can be seen as a coarse-grained
version of a discrete-state Markov process: in the continuum limit we can
get the same Fokker-Planck equation, with its entropy production, starting
from different Master Equations, each one with a different value of Ṡ. In
this chapter we derive a fundamental inequality: neglecting some informa-
tion about the dynamics, i.e. after a coarse-graining procedure, we can only
underestimate the entropy production. The novel proposed formula for Ṡ
keeps track not only of the coarse-grained parameters of the Fokker-Planck
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(as the Seifert’s formula does), but it depends on the microscopic transition
rates. This is a theoretical result on the fundaments of the stochastic ther-
modynamics and it could be interesting to see how this new insight on the
entropy production changes our understanding of phenomena in which some
details of the microscopic dynamics are known, although usually neglected.

This inequality has a consequence also on the meaning of a maximum
(minimum) entropy production principle. Since talking about an extremum
principle in general becomes even more difficult when dealing with coarse-
grained dynamics, it could be considered not a general law or we may need
a refinement of its statement, depending, again, on the micrscopic details we
are neglecting.

In the last Chapter we deal with the problem of mimicking a non equi-
librium steady states (NESS) with time-periodic driving (e viceversa). This
problem is of fundamental importance in building artificial molecular ma-
chines, in which the system is driven out of equilibrium by the variation of
an external parameter, to simulate biological motors. This mapping has been
studied for discrete-state systems and in this thesis we have derived an analo-
gous mapping for diffusive systems. In the latter case the entropy production,
usually associated to the cost of maintain a certain probability distribution
and a certain flux, cannot be mapped. In other words, an artificial molecu-
lar machine, i.e. a system with time-periodic driving, always produce more
entropy than its biological counterpart, i.e. a system in a NESS. Wheter this
inequality is just a consequence of the coarse-graining, in the same spirit of
the results discussed in Chapter 2, or has a more fundamental basis, related
to the external parameters that we can control in this diffusive systems, is
something that needs to be investigated in the future.

The most unlucky point is that any contribution that we add to our
knowledge of the entropy production has the inescapable consequence of pro-
ducing entropy in the world of non-equilibrium physics, then we can just aim
at evaluating the cost of our understanding, trying to reduce it at its mini-
mum. Unfortunately we are far from this point, but maybe this thesis can
help along this line... and I feel that this could be the main contribution of
my work!
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A Appendix: the origin of sparsity in living

systems

In this section we aim at understanding the self-adaptation of living systems
from a different perspective respect to the stochastic thermodynamics. Here,
in particular, we will try to build a theoretical framework to justify an em-
pirical evidence on the topology of many living system: the sparsity, i.e. the
percentage of active interactions scales inversely proportional to the system
size.

A.1 Introduction to the problem

In inanimate matter, elementary units, such as spins or particles, always
have their mutual interactions turned on (with the intensity decaying with
their relative distance). Thus, the interaction network is dense, with all
connections present, i.e. particles do not have the freedom to adjust or
change their interactions unless they change their relative distances. In
contrast, living systems are composed of interacting entities, such as genes
[105, 106, 107, 108], metabolites [105, 109, 110], individuals [111, 112, 113]
and species [114, 108, 115, 116, 117, 118], with the ability to rearrange and
tune their own interactions in order to achieve a desired output [105]. In-
deed, thanks to advances in experimental techniques, which are generating an
increasing volume of publicly available ecologically and biologically relevant
data, several studies indicate that interaction networks in living systems pos-
sess a non-random architecture characterised by the emergence of recurrent
patterns and regularities [114, 115, 119, 68].

Analysing different data sets of ecological, gene-regulatory, metabolic and
other biological interaction networks [115, 106, 105, 120, 116, 121, 122] (see
Supplementary section for details), we find that one ubiquitous emergent
pattern is sparsity, i.e. the percentage of the active interactions (connec-
tivity) scales inversely proportional to the system size (illustrated in Fig.
13). For example, in the case of ecological systems, species interact selec-
tively even when they coexist at short distances and most of the interactions
are turned off. A generic system formed by S interacting units may have
a maximum number of interactions equal to S2 (including self-interactions),
i.e. a connectivity C (defined as the fraction of active interactions) equal
to 1. On the other hand, the minimum number of interactions that guar-
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antees that the interaction network is connected is of the order of S, that
is C ∼ 1/S, corresponding to the percolation threshold of random networks
[123]. Thus, in this range of possible connectivities, it is quite surprising that
the observed ones in the analysed interaction networks all correspond to the
lowest possible values. However, it is not known if this recurrent property
gives any advantage or reward to the system and a theoretical framework to
understand the origin of sparsity is still lacking.

Guided by such an intriguing observation, the main goal of our work is to
shed some light on why this pattern emerges and to study, from a theoretical
point of view, if the sparsity of interactions confers any advantage to the
system. In this context, variational principles have been proven to be a useful
tool to elucidate some of the recurrent patterns in Nature [124, 115]. In the
same vein, in this work we propose an optimisation approach to describe the
role of active interactions in living systems. We show that sparse networks
offer, at the same time, a maximum capability of the system to visit as
many stable attractors as possible by simply tuning the interaction strengths
(explorability), as well as the largest robustness of the underlying dynamics,
guaranteeing that such attractors remain stable (dynamical robustness).

Figure 13: Sparsity of interactions in living systems. The connectivity, C, is defined as the fraction
of active interactions among the S2 possible links (including self-interactions), whereas the system size,
S, refers to the number of nodes in the graph. We plotted C as a function of S in log-scale for 83 bio-
logical networks (ecological mutualistic communities and food webs, gene-regulatory networks, metabolic
networks and others). The data show a clear emergent pattern of sparsity in empirical biological networks,
as evidenced by the red line C = c1/S (with c1 = 3.8 ± 0.2). Details on the database are given in the
Supplementary section.
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A.2 Mathematical framework

We consider a system composed of S nodes (e.g. species, metabolites, genes)
characterised by dynamical variables, x = (x1, x2, ..., xS) (e.g. populations,
concentrations, levels of expression), following a generalised Lotka-Volterra
(GLV) dynamics:

ẋi = Gi(xi)Fi

(
S∑
j=1

wijxj

)
for i = 1, . . . , S. (277)

In the simplest caseGi(x) = x, Fi(x) = αi+x, we recover the classic S species
Lotka-Volterra equations and we refer to the parameter αi as the growth rate.
In this case the interaction of node i with node j is encoded in the matrix
element wij, whose diagonal entries set the scale of the interaction strengths,
which for the sake of simplicity [125] we set to −1. For convenience, we also
introduce the adjacency matrix Aij, whose entries are 1 if the corresponding
wij 6= 0 and 0 otherwise. A non-trivial stationary point of the dynamics of
Eq.(277), x∗, is determined by the interactions within the system, i.e. when
Fi(
∑S

j=1wijx
∗
j) = 0, x∗ = −w−1α, and its stability is guaranteed if all the

eigenvalues of the Jacobian matrix evaluated at this point, Jij = x∗iwij, have
a negative real part. GLV dynamics have been used to model the time evolu-
tion of ecological systems [125, 126], human microbiota dynamics [127], gene
expression[128] and other biological systems [129], where xi represents the
density of the i-th species, and therefore we focus on the stable and feasible
stationary solutions of the dynamics [125, 122] (x∗i > 0). For simplicity, here
we focus on the simpler case with Gi(x) = x, Fi(x) = αi+x, but in the Sup-
plemetary section we recast all the results for the more general non-linear
dynamics, Eq. (277).

A.3 Explorability

Depending on the model parameters, the dynamics of (277) exhibits different
fixed points, ẋ∗i = 0, that may correspond to feasible/non-feasible and either
stable/unstable solutions. We do not study more complicated possibilities
such as limit cycles or chaotic strange attractors, as this would require to
go beyond linear stability analysis. Focusing on the interaction strengths as
our tuning parameters, by varying them we can pass from one fixed point
to another, and change its feasibility and stability. In brief, we take the
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Figure 14: Measuring explorability and dynamical robustness. We considered a system of S nodes
representing species, genes, metabolites, ... (S = 7 in the picture), whose state x = (x1, ..., xS) obeys a

non-linear dynamics of the type ẋi = Gi(xi)Fi(
∑S
j=1 wijxj), with wij encoding the network structure and

the strength of the interactions. (Panel A) We started from a tree-like network with S links, represented
by the blue-colored links, and, for such a topology, we searched for the feasible and stable fixed points
as we varied the interaction strengths. (Panel B) The spanned volume sketched by the blue-shaded
region (a 2D projection of the S-dimensional space) corresponds to the network explorability. (Panel C)
The dynamical stability quantifies the robustness of the system to perturbations of the dynamics itself,
(G + δG)(F + δF), and should not be confused with the standard stability or resilience that measures the
response to perturbations on the fixed point (which is already implicit in the measure of explorability).
Starting from an interaction matrix whose fixed point of the underlying dynamics is at the edge of stability,

denoted by wedge
ij (for which <(λ)max = 0, black dot in the picture), the dynamics was perturbed, and the

stability of the new fixed point was evaluated in order to test the dynamical robustness of the system. As
demonstrated in the Supplementary section, this can be simply encompassed by computing the principal
eigenvalue <(λ′)max of the perturbed Jacobian matrix, J ′ij = ξ′iwij , where ξ′ depends on the details of

the perturbation, that we take to be a random vector. The histogram of <(λ′)max is sketched in panel C
as the dynamics ξ′ is varied. Finally, we increased the connectivity of the network by including additional
fixed strengths, εij (red edges in the graph), to the network. The same previous analysis was performed
again by varying the strengths of the blue links and the corresponding results are shown in red in the
panels on the right. By randomly sampling the location and strengths of the added links, we investigate
if the explorability and dynamical robustness statistically increase or diminish for higher values of the
connectivity.

explorability as the volume of feasible and stable fixed points spanned by
modifying the link weights, while all other model parameters are kept fixed.
The explorability resembles the concepts of robustness and adaptability in the
context of evolutionary dynamics, which make up the number of ‘phenotypes’
(attractors of the dynamics) that can be reached by mutations in the space
of ‘genotypes’ (interaction networks) [130, 131]. Nevertheless, in our case the
system has only one stable and feasible fixed point (‘phenotype’) once the
weights wij are fixed (w is invertible). Therefore, for any change of a link
weight (a ‘mutation’ of w) we have a different fixed point (‘phenotype’), i.e.
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in our setting there are not ’neutral’ mutations.
More specifically, we can define the explorability for interacting systems

described by a GLV dynamics (Eq. (277)) and for a given topology (i.e.,
an ensemble of interaction networks having the same adjacency matrix A,
but in general different links weights wij) of the interaction network. The
explorability VE is the volume in R

S spanned by all the feasible and stable
fixed points as one varies wij while keeping all other parameters fixed (see
Fig. 14). Notice that, with such a definition, the fully connected network has
the largest possible explorability, since any other topology is attainable by
making some of the matrix entries arbitrarily close to zero. However, might
the optimal or quasi-optimal solutions indeed be the ones where most of the
interactions are turned off, as suggested by the observational data? Moreover,
in the fully connected case, many interaction parameters have to be specified
(there are S2 matrix elements that can be varied), and then spanning all the
possible fixed points becomes a complicated, fine-tuning problem, which does
not seem to be feasible in biological systems [132]. Therefore, we pose the
following questions: what is the relationship between explorability and the
interaction network topology? Is there an optimal network structure that
maximises explorability? To answer these questions, we started by analysing
the extreme case of a sparse topology with just S links, i.e. a tree-like network
with connectivity C = 2/S (see Fig. 14) (the factor 2 comes from the fact
that we also count the self-interactions). However, even in this simple case,
measuring the explorability requires us to scrutinise an S-dimensional space
of parameters (corresponding to the S entries of the interaction matrix).
Furthermore, one still has to choose the values of αi, which are intrinsic
parameters of the dynamics (e.g. species growth rates) and should be set a
priori (in contrast to the interactions wij, which are tuning parameters in our
approach). For this reason, we introduced various degrees of approximations
in our setting. We first considered the simplest uni-parametric case, αi = α,
that we can fix without a loss of generality to α = 1 (we checked that our
conclusions are still valid for other choices of αi, see below). In addition, we
first restricted the analysis to the subspace of fixed points with homogeneous
components, i.e. x∗i = x∗. Under these approximations, computing the
explorability becomes a much simpler task and we were able to develop an
analytical solution to this problem (see the proper section below). This
approach, although a priori seems too drastic, leads to rather reasonable
estimates of the explorability. As a second step, we enlarged the region
explored by introducing some heterogeneity into the components of x∗.
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Most probably, the volume of feasible and stable fixed points may become
infinite. However, we are always interested in comparing such volumes for
different topologies. Indeed, in the simple homogeneous situation, we ob-
served that in almost all the cases (100 per cent for tree-like networks and,
e.g., more than 98 per cent for C = 0.5), we can identify two regions along
x∗i = x∗: fixed points become unstable for small x∗ and stable for large x∗,
with a marginally stable fixed point intersecting at a single value x∗c , for which
<(λ)max = maxi=1,..,S <(λi) = 0, where λi are the eigenvalues of the Jacobian
matrix J (see Supplementary section for more details). Therefore, we can
take VE = V0 − x∗c as a proxy for the explorability, where V0 is a sufficiently
large constant (V0 = 1 in our analysis), which allows for comparison between
different topologies. With this definition, we can compute analytically the
explorability of a tree-like network with S links (see Supplementary section),
finding that, among all the possible tree-like topologies, the one with just a
loop composed of three nodes leads to the optimal explorability, VE = 2/3.
This structure (which we refer to as the optimal tree-like network) constitutes
our reference network when increasing the connectivity.

As a third step, we analysed the explorability of networks with higher
connectivities. This enormously increases the number of matrix entries that
have to be modified when computing the spanned volume of feasible and
stable fixed points. For this reason, we adopted the following approach (see
Fig. 14): starting from the tree-like topology, we introduced additional links
to the tree-like topology of weights εij for any extra links between nodes i
and j, and then computed the explorability, fixing the values of all εij and
tuning the other matrix elements. Sampling different values of the added link
weights (but not their locations), we can construct a histogram of the ex-
plorabilities, P (VE|{εij}). In addition, we are not interested in distinguishing
different topologies with the same connectivity C, so we also sampled over
different locations of the added links, leading to P (VE|C) (see the subsec-
tion below for technical details). For numerical reasons, we have tested that
our results are robust for network sizes S < 100. However, it is important
to mention that network size is a significant factor in the spectrum of fixed
points [133] and that more complex phenomenology could be found in very
large systems.

Numerical results are represented in Fig. 15 (left panel), illustrating that
the explorability of the optimal tree-like network is indeed statistically higher
than the one for denser networks. Furthermore, the average explorability de-
creases as the connectivity of the interaction network increases (Fig. 15, cen-
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tral panel). We were able to prove this result for some particular topologies
of small networks, for which the explorability can be calculated analytically
(see Supplementary section). In conclusion, our results suggest that, on aver-
age, explorability decays with the connectivity of the system, and therefore,
sparse networks generally lead to higher values of explorability.

A.3.1 Measuring explorablity

The explorability of a tree-like network with S links (C = 2/S) can be found
by studying the following inverse problem: by fixing the parameters αi and
moving along the space of fixed points, one can retrieve the non-zero S values
of wij according to the fixed point equation

∑
j wijx

∗
j = −αi and this can

then be used to check the stability of the associated fixed point x∗. The
solution exists if for each node, i, there is at least a node j, such that wij 6= 0
(see Supplementary section). The same procedure can be applied to the
more general case where extra links are added to the network, each one with
a given fixed strength εij (see Supplementary section for more detail).

A.4 Dynamical robustness

Another crucial property of complex interacting systems is their robustness
to perturbations [134, 135]. Understanding the role of network architecture
in the stability of a system with many degrees of freedom is an important
challenge, since it impacts on our capacity both to prevent system failures
and to design more robust networks to tolerate perturbations to the system
dynamics.

The standard measure of stability (known as asymptotic resilience in
ecology [136, 137]) is defined as the capacity of the system to return to the
original stationary state after a perturbation of it, x∗+δx, while the dynamics
is kept fixed. Let us note that our definition of explorability already takes
into account this kind of stability, i.e. explorability is defined only for stable
system dynamics.

Alternatively, we can study how the stability of the system is modified
as a result of a perturbed dynamics, ẋ = (G+ δG) (F + δF ) (x), where δG
and δF represent the perturbations with respect to the original dynamics.
This can be understood as including further non-linear effects that were
not present before. As a consequence of this kind of perturbation, both the
original stationary states and their degree of stability are modified. We then
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Figure 15: Explorability and dynamical robustness for different connectivities (Left panel)
Probability distribution functions (PDF) of the explorability VE for the optimal tree-like graphs and
networks with C = 0.5 obtained by adding extra links with random (uniformly distributed) locations and
weights εij taken from a zero-mean Gaussian distribution with the standard deviation σε = 0.1, for a
network size S = 20. First, we computed VE in the simple setting of uniform concentrations and growth
rates, i.e. x∗i = x∗ independent of i and αi = 1. The explorability VE = 2/3 of the tree-like network
(calculated analytically - solid blue line) is larger than the one corresponding to graphs with higher density
(red curves were computed by taking 103 independent realizations of the added links). Similar results hold
also in the more general setting of non-uniform concentrations and growth rates (sampled from Gaussian
distributions with zero mean and standard deviation σx = σα = 0.1, see the subsection below). Even with
such a variability, the tree-like network (cyan curve) generally exhibits higher values of the explorability
than more dense networks (orange curve for C = 0.5). (Center panel) Mean value of the explorability
(computed from the PDF of VE) as a function of the connectivity in the homogeneous case (x∗i = x∗ and

αi = 1). (Right panel) Given wedge
ij (see Fig. 14C), we calculated the Jacobian matrix of the perturbed

dynamics J ′ij = ξ′iw
edge
ij . The corresponding eigenvalue with the largest real part (<(λ′)max) gave the

degree of stability for the new fixed point, from which we measured the dynamical robustness of the system
(see the proper section in the text). We generated 103 configurations of εij ’s as done for the left panel
(εij = 0 corresponds to a tree-like network), and for each one, 103 values of ξ′ (encoding the perturbation
of the dynamics) from a uniform distribution in [0, 1], and then computed the system response through
the distribution P (<(λ′)max|C). Both homogeneous and non-homogeneous settings were analyzed for the
tree-like network and C = 0.5 (same color code as for the left panel). In all cases, we found that increasing
the network connectivity shifted the distribution of <(λ′max) towards the less stable region. Qualitatively
similar results were obtained for larger values of σε, σx and σα (see Supplementary section).

quantify the capacity of the system to re-organize after a perturbation of the
dynamics such that the new stationary state of the system is close to the
original one and still stable. We refer to this as the dynamical robustness
of the system (to avoid confusing this new measure of stability with the
standard resilience).

We found the pleasing result that the Jacobian matrix evaluated at the
new stationary state, J ′ij, retained a similar form than for the original dynam-
ics, i.e. J ′ij = ξ′iwij, where ξ′ depends on the specific details of the perturbed
dynamics (see Supplementary section). Focusing on the worst case, which
corresponds to marginally stable fixed points for which <(λ)max = 0 (denoted
by wedge), we perturbed the dynamics and computed the maximum real part
of the eigenvalues of J ′ij at the new stationary point, <(λ′)max. For a given
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deterministic perturbation of the dynamics ξ′ and topology, <(λ′)max can
be taken as a measure of the dynamical robustness (see Fig. 14, panel C).
Since we wanted to keep the analysis as general as possible, we studied the
dynamical robustness against random perturbations of the dynamics (gen-
erated from a distribution P (ξ′)). In particular, for each connectivity C,
we fixed the additional links to εij and then looked for the set of matrices
wedge({εij}) at the edge of stability (for which, by definition, <(λ)max = 0).
Taking different realisations of εij and ξ′i, we compared the distributions
P (<(λ′)max|C) (see Fig. 14). We can then define a statistical measure R of
the dynamical robustness by taking the value of −<(λ′)max located at the
fifth percentile, R = −<(λ′)5th

max. In this way, we have an indicator of how
much stability could be gained under random perturbations of the dynamics.
Other choices of this measure can be taken, e.g. based on the 10th, 20th
and 50th percentiles, leading qualitatively to the same conclusion. However,
lower percentile values generally enhance the differences between topologies
(see Supplementary section).

The right panel of Fig. 15 shows the histogram of <(λ′)max for different
connectivities. Again, it can be seen that the case of a tree-like network leads
to the best performance, whereby the fixed point of the perturbed dynamics
generally becomes stable, i.e. <(λ′)max is negative, and the modulus reaches
larger values than in the corresponding case of networks with higher con-
nectivity. Therefore, our analysis shows that sparse tree-like networks have
both a larger explorability and a larger dynamical robustness than random
networks with higher connectivity.

A.4.1 Increasing heterogeneity

We also calculated the explorability increasing the heterogeneity in both the
dynamics parameter (αi) and the fixed points (x∗i ) that were sampled: we
took random realizations of αi = α + qi, where the qi’s were independent
Gaussian random variables with zero mean and standard deviation σα (as
for the simple case, we set α = 1); for each realization, we also enlarged the
region explored around the homogeneous state by taking different realizations
of x∗i = x∗ + pi (where the pi’s are distributed as the qi’s with standard
deviation σx). Varying the value of x∗, we counted all the fixed points at the
edge of stability (within a small error |<(λ)max| < 10−2), and for each one
we evaluated VE = 1 −

∑
i x
∗
i /S as the most straightforward generalization

of our previous definition of VE; then, we constructed the histogram of VE.
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The curves in Fig. 15 for the case with heterogeneity were obtained using
102 independent realizations of εij, and, for each one, 10 realizations of pi
and qi, respectively.

A.5 Optimisation approach

We then went one step further and compared the explorability and dynamical
robustness of tree-like networks with graphs constructed via an optimisation
process rather than randomly generated.

In the optimisation, weight values εij were changed accordingly to a
stochastic hill climbing algorithm [138], whereas their locations were kept
fixed. Introducing a random Gaussian perturbation with zero mean and
standard deviation δε in all εij, the new configuration was accepted if the
quantity to optimise (either VE or R) increased, and the process was iter-
ated for T time steps. Our results are robust for different choices of δε in
the range [10−3, 10−1]. We restricted our analysis to the homogeneous case
(x∗i = x∗, αi = α), using network sizes of S = 10 to facilitate the convergence
of the optimisation algorithms. Still, the landscape of VE(εij) and R(εij)
appeared to be highly irregular with many local minima when increasing the
connectivity.

Fig. 16 represents the initial random-generated networks with connec-
tivities in the range C ∈ [0.25, 0.75] (blue dots) and the corresponding opti-
mised values for the explorability and the dynamical robustness (green and
magenta dots, respectively). Qualitatively similar results are found using dif-
ferent schedules of the simulated annealing algorithm [139]. The explorability
reached for networks with connectivities larger than the one for tree-like net-
works turned out to be very close to the corresponding value for the optimal
tree-like topology. However, in general, such networks exhibited low values of
dynamical robustness. Similarly, when optimising the dynamical robustness
we ended up with values very close to that of the optimal tree-like network,
but remarkably, without improving the explorability.

We also implemented a multi-objective optimisation algorithm, in which
a perturbation in εij was only accepted if it increased simultaneously both
the explorability and the dynamical robustness of the network. However,
this method worked only for tree-like networks with one or two additional
links (see red dot in Fig. 16), while it was totally inefficient for more dense
structures. Slightly better (but still suboptimal) results were obtained when
both tasks were optimised one at a time in alternating periods.
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In conclusion, sparse networks provide quasi-optimal values for both the
explorability and dynamical robustness without fine-tuning many of the in-
teraction strengths.

A.6 Self-similarity

Finally, we proved that the property of sparsity is self-similar, since on ag-
gregating sparse interacting communities, we obtained larger sparse commu-
nities (see Supplementary section for details). For example, joining two net-
works with a tree-like topology using a single link led again to a network with
a tree-like topology. Similarly, if sparse networks with S nodes have aS − b
links, with a and b integer constants, then joining two such networks with S
and S ′ nodes using b links leads again to a sparse network with a(S+S ′)− b
links. Therefore, the optimal features of sparsity are conserved on assem-
bling or disassembling processes, thereby avoiding any drastic change in the
stability [140].

Figure 16: Optimisation of random generated networks of size S = 10 and with different connectivities
in the range [0.25, 0.75] (blue dots) in the explorability (green dots) and dynamical robustness (magenta
dots). The optimal tree-like network is represented by the orange dot. The red dot in the right top corner
represents a tree-like network with one additional link, obtained using a multi-objective optimization for
both the explorability and the dynamical robustness; such a method appeared to be inefficient for higher
values of the connectivity. Each network was optimized using a stochastic hill climbing algorithm [138]
with parameters T = 200 and δε = 0.01.

A.7 Discussion

Our approach provides a theoretical insight into why sparsity is an observed
common feature in living interacting systems. Sparse networks generally of-
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fer optimal values of both explorability and dynamical robustness, whereas
denser networks can only perform better if interactions are selectively tuned.
Nevertheless, we observed that finding dense optimal networks with higher
values of both explorability and dynamical robustness was barely feasible
due to the multiplicity of the parameters that must be simultaneously tuned.
Moreover, typically, the final networks have values of explorability and dy-
namical robustness comparable to those achievable for tree-like networks
structures without the need to tune any parameters.

The results presented support the idea that sparsity is an emergent pat-
tern of living interaction networks and this has implications for the under-
standing of the relationship between stability and complexity in real ecosys-
tems. Indeed, sparsity may play a key role in the resolution of the so-called
complexity-stability paradox [74, 76], in which highly biodiverse ecosystems
will probably be unstable. The essence of the argument [74, 76] can be
summarised as follows. The linearised dynamics for the population den-
sity around a stationary state depends on what is known as the community
matrix, M . If all the eigenvalues of M have negative real parts, then the
stationary point is also stable against small perturbations of the stationary
populations. A null model corresponds to assume that M is a random matrix
with diagonal elements (the self-interactions) equal to −d < 0, whereas the
off-diagonal elements are zero with probability 1−C and with probability C
are drawn from a probability distribution with zero mean and variance σ2.
Under this null hypothesis, one finds (see [74, 76] and references therein for
rigorous results) that the stationary point is unstable with probability 1 if
σ
√
CS > d, where S is the number of species in the ecosystem (a measure of

its biodiversity). This result holds if S is assumed to be large enough. Thus if
σ and d do not have a peculiar scaling with the network size, highly complex
ecosystems (i.e. with high CS) are not stable: a prediction in contradic-
tion to empirical data [140, 115, 141]. However if the interaction network is
sparse, i.e. C ∼ 1/S, the above inequality becomes independent of S and the
stability of the ecosystem is not threatened by high biodiversities: sparsity
in ecological interaction networks allows for stable large living interacting
systems [140, 115, 122]. As a matter of fact, such a scaling relationship is
supported by the empirical observation (see Fig. 13).

Recent theoretical findings show that an increase in the interconnectivity
between multiple systems composed themselves of interacting units can have
a strong impact on the vulnerability of the whole system [142]. In the same
vein, our results provide a theoretical understanding of this feature. We
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suggest that sparsity is a key feature allowing living systems to be poised in
a state that confers both robustness and adaptability (explorability) to best
cope with an ever-changing environment and to promptly react to a wide
range of external stimuli and to resist to perturbations.

Our ideas could be applied to understand the emergence of sparsity in
some non-biological systems, as it has been empirically observed in human-
built networks [143]. The underlying hypothesis of our approach is that living
system interactions, unlike physical interactions (e.g. electromagnetic inter-
actions among charged particles), can evolve/adapt to turn themselves on or
off. The same idea holds for many non-biological networks, i.e. interactions
can be selective and change in time, although the equations governing the
underlying dynamics can be unknown.

Finally, we stress that our results do not depend on the specific details of
the system and thus can be applied in many other fields. For example, a pos-
sible application might be in the design of artificial learning machines, such as
deep neural networks [144, 145]. There is mounting evidence that deep learn-
ing often finds solutions with good generalisation properties [146, 144] and
it has been shown recently [147] that to achieve such a good performance, it
is crucial to have regions of the optimisation landscape that are both robust
and accessible, independent of the particular task or of the training data
set. On the other hand, maximisation of computation efficiency is a cru-
cial point when designing learning machines: deep networks are very dense
as each node is connected to all other nodes of the adjacent layers [145],
which makes multilayer neural networks computationally hard to train. Our
solution suggests that designing sparse neural networks will increase the ex-
plorability of the system while improving the convergence and robustness
properties of the existing optimisation algorithms.
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A.8 Supplementary to the Appendix

In this section we present some supplementary analytical and numerical re-
sults on the Appendix, in order to give a complete picture of our theoretical
approach to explain the sparsity of living systems.

A.8.1 Experimental data

The following table lists all experimental datasets used in Figure 1 of the
text, indicating details of the corresponding networks.

Type of network Name Nodes Edges Connectivity

Neural network Brain C.Elegans [148] 252 509 0.00805
Gene-regulation TRN Yeast-1 [148] 4441 12873 0.000653

TRN Yeast-2 [148] 688 1079 0.00228
TRN E.Coli-1 [148] 1550 3340 0.00139
TRN E.Coli-2 [148] 418 519 0.00298

TRN S.Cerevisiae [106] 723 2158 0.00413
Trust College student [148] 32 96 0.0968

Prison inmate [148] 67 182 0.0411
Protein interaction Drugs-Targets [106] 1282 3186 0.00194

ncRNA human [106] 188 498 0.0142
ncRNA 6-organisms [106] 523 1294 0.00474

Metabolic E.Coli [148] 2275 5763 0.00111
S.Cerevisiae [148] 1511 3833 0.00168
C.Elegans [148] 1173 2864 0.00208

FW Host-Parasite Altuda 1979 [149] 47 122 0.0564
Marathon 1979 [149] 78 346 0.0576

Britain 1991 [150] 94 232 0.0265
Finland 1991 [150] 69 190 0.0405

FW Plants-Herbivors Cold lake [151] 50 182 0.0743
Lake of the woods [152] 175 768 0.0252

Lake Huron [153] 130 632 0.0377
Smallwood reservoir [154] 31 106 0.114

Parsnip river [155] 66 228 0.0531
McGregor river [155] 70 316 0.0654

Mutualistic Cordn del Cepo [115] 185 722 0.0212
Cordn del Cepo [115] 107 392 0.0346
Cordn del Cepo [115] 61 162 0.0443

Central New Brunswick [115] 114 334 0.0259
Princeton [115] 26 62 0.0954

Mount Missim [115] 38 204 0.145
Caguana [115] 39 128 0.0864
Cialitos [115] 52 174 0.0656

Cordillera [115] 36 94 0.0746
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Fronton [115] 34 96 0.0856
Pikes Peak [115] 371 1846 0.0134

Tropical rainforest [115] 77 268 0.0458
Hickling [115] 78 292 0.0486

Shelfanger [115] 52 170 0.0641
Tenerife [115] 49 212 0.0901

Latnjajaure [115] 142 484 0.0242
Zackenberg [115] 107 912 0.0804

Mauritius Island [115] 27 104 0.148
Mtunzini [115] 24 182 0.330

Santa Genebra Reserve [115] 23 62 0.122
Santa Genebra Reserve [115] 62 238 0.0629

North Negros Forest Reserve [115] 63 394 0.101
Doñana National Park [115] 205 824 0.0197

Hazen Camp [115] 110 358 0.0299
Hato Ratn [115] 31 182 0.196

Snowy Mountains [115] 127 538 0.0336
Campeche State [115] 30 84 0.0965

Hazen Camp [115] 111 380 0.0311
Ashu [115] 770 2386 0.00403

Kuala Lompat [115] 84 890 0.128
Gabon [115] 25 122 0.203

CMBRS [115] 62 124 0.0328
Laguna Diamante [115] 66 166 0.0387

Rio Bianco [115] 95 250 0.0280
Bristol [115] 104 598 0.0558

Melville Island [115] 29 76 0.0936
Monteverde [115] 208 1322 0.0307

North Carolina [115] 57 286 0.0896
Galapagos [115] 159 408 0.0162

Nava Correhuelas [115] 56 214 0.0695
Nava Noguera [115] 44 174 0.0920

Flores [115] 22 60 0.130
Hestehaven [115] 49 124 0.0527
Garajonay [115] 84 290 0.0415

KwaZulu-Natal region [115] 64 198 0.0491
Jamaica [115] 97 356 0.0382

Arhur’s pass [115] 78 240 0.0400
Cass [115] 180 748 0.0232

Craigieburn [115] 167 692 0.0250
Daphn [115] 797 5866 0.00925

Guarico State [115] 86 218 0.0298
Canaima National Park [115] 97 312 0.0335

Yakushima Island [115] 33 52 0.0492
Brownfield [115] 40 130 0.0833
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Ottawa [115] 47 282 0.130
Chilo [115] 156 624 0.0258

Tropical rainforest [115] 62 414 0.109
Intervales and Saibadela [115] 315 2106 0.0213

Great Britain [115] 23 60 0.118

A.8.2 Measuring explorability

We detail the method developed in the text to estimate the explorability of a
given topology. The section is organized as follows: i) We solve analytically
the uniparametric case αi = α, computing the volume of feasible and stale
fixed points as a function of the threshold of stability, moving along the
bisector x∗i = x∗. By investigating the tree-like structures, we find an optimal
tolopology that maximizes the explorability. ii) We increase the connectivity
by including additional links to the optimal tree-like network, whose weights
are fixed. In the case in which we add a few edges, we are able to find
some particular interaction matrices which enlarge the value of explorability
respect to the sparsest tree-like case. iii) We increase the explored region
around the bisector and study the stability of the attractors as a function
of the variability introduced. iv) We analyze the explorability for a more
generic case of non-linear dynamics.

Analytical solution for a tree-like network in the uniparametric
case

We start considering the simplest case of a S×S matrix w with S off-diagonal
links, fixing the diagonal elements to wii = −1 [74, 156]. For a given value
of x∗i and αi for each i, edges weights can be determined by solving the fixed
point equation: ∑

j

wijx
∗
j = −αi. (278)

Eq. (278) has a unique solution if w has one non-diagonal entry per row,
which means that the network must have one single loop, beyond the S self
loops due to the diagonal entries. In this situation the interaction matrix is
sparse, and its connectivity C is equal to:

C =
number of links

matrix dimension
=

2

S
(279)
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In order to evaluate the explorability of this network, we first investigate the
bisector of the attractor space, setting all the components of a fixed point
equal to x∗. We also fix model parameters to αi = α for sake of simplicity. In
this case, the weights w of the S off-diagonal links in the interaction matrix
are:

w =
x∗ − α
x∗

(280)

Eq. (280) does not depend on the specific position of the S links. In order to
analyze the stability of a fixed point x∗, we have to write the characteristic
polynomial of the Jacobian matrix J and seek for the real part of its principal
eigenvalue, <(λ)max. Note that J has the same topology of w, with −x∗ as
diagonal elements and wx∗ as off-diagonal elements. One can express the
determinant of J (λ) = J − λ1 using the Grassmann variables {χi, χ∗i }Si=1

[157] in terms of the following Gaussian integral:

det J (λ) =

∫
dχ1...dχSdχ

∗
1...dχ

∗
S exp

(
χkJ

(λ)
kl χ

∗
l

)
(281)

Using the properties of the Grassmann variables [157], from Eq. (281) we
can state the following operative rules to derive the characteristic polynomial
of J (λ):

1. Represent the interaction matrix as a graph with a fixed number of
loops.

2. Associate to each self-loop a weight −x∗ − λ and to the links a weight
x∗ − α.

3. Consider all possible combinations of links forming loops reaching once
every node in the graph.

4. The weight of each of these combinations is obtained by multiplying
the weights associated to the links and a factor−1 for each loop in the
combination under consideration.

5. Sum up each of these contributions to obtain the characteristic poly-
nomial.

Using this method, it is easy to demonstrate that, for the simple unipara-
metric case of a tree-like network with one single loop, the characteristic
polynomial is:

det J (λ) = (x∗ + λ)S−l[(x∗ + λ)l − (x∗ − α)l], (282)
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where l > 1 is the number of links of the loop. The real part of the corre-
sponding roots are:

<(λk) = −x∗ + (x∗ − α) cos

(
2kπ

l

)
k = 1, ...l. (283)

By imposing that the maximum of these values to be negative, which guar-
antees that x∗ = (x∗, . . . , x∗) is a stable fixed point, we obtain the following
inequalities:

x∗ > x∗c =
α

2
if l = 2n

x∗ > x∗c =
α

3
if l = 3 (284)

x∗ > x∗c =
α

1 + φ(n)
if l = 2n+ 3

where n is a positive integer and φ(n) = −
(

cos
(

2(n+1)π
2n+3

))−1

. From equation

(284) we find that a network with one loop of length 3 provides the lowest
x∗c , and therefore maximizes the volume of feasible and stable attractors.

The threshold of stability x∗c can be used as a proxy for the volume of
explorability; the larger the value of x∗c , the smaller the explorability VE. As
we are only interested in comparing the explorability of different networks,
one possibility is to take VE = V0 − x∗c , with V0 a constant value that has
to be large enough to avoid negative values of VE. With this definition,
VE = V0 − 1

3
α for the tree-like network.

On the other hand, α is a parameter of the dynamics (e.g. the species
growth rates), that can be set to α = 1 without loss of generality (this
only sets a time-scale, although rescaling α without rescaling the weights wij
changes the location of the attractors).

Unless otherwise specified, in what follows we set V0 = α = 1, which leads
to VE = 2

3
for the optimal tree-like network.

Numerical results increasing the number of links

Starting from the solution just found, i.e. the optimal tree-like network
with a single loop of length 3, we introduce additional weighted links. If
in the tree-like network, the link leaving node i and ending at node j is
missing, we may add it with its weight denoted by εij. Following the method
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described in the previous section, we derive analytically the characteristic
polynomial of the Jacobian matrix. Because this expression clearly depends
on the positions and weights of the additional links, an exhaustive search
of solutions that improve the explorability of the optimal tree-like network
cannot be performed. However, in Fig. 17 we show two particular topologies
with VE >

2
3
.

Figure 17: Topologies improving the explorability of the optimal tree-like network: left) 2-loop interaction
matrix, right) 3-loop interaction matrix. We have set α = 1 as well as V0 = 1 in the definition of the
explorability in terms of the threshold of stability, which leads to VE = 2/3 for the optimal tree-like
network.

Although it is possible to improve the explorability of the optimal tree-like
network, this becomes harder and harder as the connectivity, C, increases.
Indeed, as illustrated in Fig. 3 in the text, taking random realizations of the
added links εij from a Gaussian distribution with zero mean and standard
deviation σε and their positions uniformly distributed, we obtain a histogram
P (VE|C) which is shifted to lower values of VE than the optimal one for a
tree-like network. Similar results are shown in Fig. 18 for different values of
the σε.

Defining a threshold of stability

In the simplest situation in which x∗i = x∗ and αi = α, we observed that,
in most cases, <(λ)max is positive for small x∗ and negative for large x∗,
intersecting <(λ)max = 0 at a single value x∗c . However, we have observed
some singular cases: some of them (less than 1% for C = 0.5 and σε = 0.1)
lead to multiple solutions for <(λ)max = 0 (see Fig. 19). For these cases
taking the threshold as the minimum value among all the possible solutions
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Figure 18: Probability distribution functions (PDF) of the explorability VE for the optimal tree-like graph
and networks with C = 0.5 obtained by adding extra links with random (uniformly distributed) locations
and weights εij taken from a zero-mean Gaussian distribution with standard deviation σε, for a network
size S = 20 and α = 1, using 103 independent realizations of the added links. Increasing the variability of
the weights of the added links the explorability generally decreases. We have set V0 = 1 in the definition
of the explorability.

lead to an overestimate of the explorability. As these cases only appear for
dense topologies, such an overestimate does not affect our conclusions.

In addition, only for dense networks, we could find some cases (less than
1% for C = 0.5 and σε = 0.1) with no feasible and stable attractors (i.e. with
<(λ)max always positive), which are not admissible cases in our analysis.

Figure 19: <(λ)max as a function of x∗ for a particular network with C = 0.5 generated using σε = 0.5
(α = 1, S = 20). The curve exhibits two solutions for <(λ)max = 0.
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Introducing variability in the explored region

In the previous sections we carried out an analysis for x∗i and αi independent
of i, i.e. moving along the bisector of the attractor space in a uniparametric
subspace. Here we enlarge the explored region of attractors, by introducing
a variability in the fixed point and in the model parameters, as follows:

x∗i = x∗ + pi

α∗i = α + qi

for i = 1, ...S, where pi and qi are independent Gaussian random variables
with zero mean and standard deviation σx and σα, respectively. In this case,
we counted all the sampled attractors at the edge of stability (within a small
error |<(λ)max| < 10−2), and for each one we evaluated VE = 1−

∑
i x
∗
i /S as

the most straightforward generalization of the measure of explorability.
Fig. 20 shows, for the case σx = σα, how the probability of being stable

changes for the optimal tree-like network and for the topologies shown in
Fig. 17. Notice that such curves become smoother and smoother as the
heterogeneity increases. In this case, simulations have been done with S = 4,
as only links forming loops contribute to the Jacobian (see Section 2.1), and
consequently similar results can be expected using larger networks with only
1, 2 and 3 loops.

Optimal tree-like network 2-loop network 3-loop network

P
ro

ba
bi

li
ty

 to
 b

e 
st

ab
le

Figure 20: Probability to be stable around the bisector for different network structures and values of
heterogeneity. Moving along the bisector x∗i = x∗, we generate 200 independent realization of (x∗ +
pi, α + qi), where pi and qi are independent Gaussian variables with zero mean and standard deviation
σx and σα, respectively. We represent the probability of these attractors to be stable as a function of
x̄∗ =

∑
i x
∗
i /S for: left) the optimal tree-like network with S = 4; middle) the 2-loop interaction matrix

in Fig. 17 and right) the 3-loop network in Fig. 17. Red-dashed line represents the homogeneous case for
comparison.

Finally, similarly to Fig. 3 of the text, Fig. 21 illustrates the histogram
of explorability, P (VE|C), for different values of σx = σα, for the tree-like
network and for a more dense topology with C = 0.5. These results show
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that the introduction of variability does not change our conclusion, that is
sparse networks generally provide larger values of explorability.

Figure 21: Probability distribution functions (PDF) of the explorability VE for the optimal tree-like graph
and networks with C = 0.5. We performed 102 independent realizations of the added links (εij = 0 for
the tree-like network), and for each one sampling 10 different choices (pi, qi). Network size S = 20 and
α = 1. Variability does not qualitatively influence our main results.

From a Lotka-Volterra model to a more general dynamics

The results presented in the previous sections implicitly refer to a generalized
Lotka-Volterra dynamical model [127, 125, 129, 158, 159, 160, 126]. We can
also generalize the dynamics to the form:

ẋi = Gi (xi)Fi

(∑
j

wijxj

)
(285)

whose fixed point is determined by Fi(−αi) = 0 leading to Eq. (278) (see

text). The Jacobian matrix of such a dynamics is Jij = Gi (x
∗
i )

dFi
dzi

∣∣∣
−αi

wij,

where zi =
∑

j wijxj. Since we have no available information of the particular
form of G and F, in the same spirit of May’s original contribution [74, 156],
we can write the Jacobian matrix as Jij = ξiwij, where ξi is a random number
uniformly distributed between 0 and 1, in analogy with the Lotka-Volterra
simple case. Fig. 22 represents the histogram of the explorability for a
tree-like matrix and C = 0.5, sampling different values of ξ.
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Figure 22: Probability distribution functions (PDF) of the explorability VE for a generic form of the
dynamics, Eq. (285), for the optimal tree-like network (blue solid curve) and C = 0.5 (orange curve).
Dashed-blue line indicates the explorability of the optimal tree-like network in the case of the Lotka-
Volterra dynamics for comparison. Still for such a generic form of the dynamics, more dense networks
customarily lead to lower values of the explorability. We performed 102 independent realizations of the
added links (εij = 0 for the tree-like network), and for each one 10 different dynamics encoded in ξ,
extracted from a uniform distribution in [0, 1]S . Parameters are set to S = 20, α = 1, σε = 0.12 and
σx = σα = 0.

A.8.3 Dynamical robustness

In this section we derive the explicit expression of the perturbed dynamics
Jacobian (see text). In addition, we discuss how to include additional in-
formation on the dynamics rather than performing a simple random-matrix
approach, and include several numerical simulations to support this method.

Perturbing the dynamics

We introduce a perturbation of the dynamics, Eq. (285), in the form ẋi =
(Gi + δGi)(Fi + δFi)(zi) where zi =

∑
j wijxj. Up to the first order in the

perturbation the dynamical equation becomes:

ẋi = Gi (xi)Fi (zi) + δGi (xi)Fi (zi) +Gi (xi) δFi (zi) . (286)

The new fixed point equation becomes (Fi + δFi)(z
′
i
∗) = 0. Now we suppose

that the new fixed point x∗i
′ of (286) differs only by a little amount δi from

the original fixed point of the unperturbed dynamics, i.e. x∗i
′ = x∗i + δi. In

this case z∗i
′ ≡

∑
j wijx

∗
i
′ = z∗i + ∆i, with ∆i ≡

∑
j wijδj. Thus to the first
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order in δF we get

δi = −
∑
j

w−1
ij

δFj(zj)

dFj(zj)/dzj

∣∣∣∣∣
zj=z∗j

(287)

We are now interested in calculating the Jacobian matrix evaluated at the
fixed point. Reminding that, by definition, Fi (zi) = 0 at x∗, and that
dFi(zi)
dxj

= dFi(zi)
dzi

dzi
dxj

= dFi(zi)
dzi

wij. As dGi(xi)
dxj

= dGi(xi)
dxi

δij and dδGi(xi)
dxj

= dδGi(xi)
dxi

δij,

the Jacobian matrix evaluated at the new fixed point can be written as:

J ′ij = ξ′iwij, (288)

where

ξ′i =

[
Gi (xi)

(
dFi (zi)

dzi
+
dδFi (zi)

dzi
+
d2Fi (zi)

dzi
2 ∆i

)
+
dFi (zi)

dzi

(
dGi (xi)

dxi
δi + δGi (xi)

)]
.

(289)

Adopting a random matrix approach (i.e. without further information about
the dynamics), ξ′i can be set to be a random variable, that, in analogy with
a Lotka-Volterra dynamics, we take uniformly distributed between 0 and 1
(see text).

Including additional information in the perturbed Jacobian matrix

For the Lotka-Volterra dynamics, ξ = x∗. In general, we can suppose that
there exists a correlation between the vectors ξ and its perturbed version ξ′

with the fixed point x∗. A simple way to introduce such a correlation is:

ξi = γri + (1− γ)x∗i (290)

ξ′i = γ′r′i + (1− γ′)x∗i (291)

where ri and r′i are random variables uniformly distributed between 0 and 1,
and γ and γ′ are parameters (between 0 and 1) controlling the correlation
for the non-perturbed and the perturbed dynamics, respectively.

Fig. 23 illustrates numerical results for the explorability when the unper-
turbed and the perturbed dynamics are respectively characterized by γ = 0.1
and γ′ = 0.5 (with this choice, the unperturbed dynamics is “closer” to a
Lotka-Volterra dynamics than the perturbed one). Analogously in Fig. 24
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we show the probability distribution of the maximum real part of the eigen-
value of the Jacobian for the perturbed dynamics for the same choice of
parameters. As it can be seen, our conclusions are still valid in this more
general situation: tree-like networks generally offer the best performance.
Qualitatively similar results are obtained for other values of γ and γ′.

P
D
F
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Figure 23: Probability distribution functions (PDF) of the explorability VE for generic dynamics char-
acterized by γ = 0.1 (Eq. (290)). Solid blue and orange curves represent the optimal tree-like network
and C = 0.5, respectively. Dashed blue line indicates the value of VE for the optimal tree-like network in
the case γ = 0. We performed 102 independent realizations of the added links (εij = 0 for the tree-like
network), and for each one 10 different dynamics ξ as given by Eq. (290). Parameters are set to S = 20,
α = 1, σε = 0.12 and σx = σα = 0.

Measuring dynamical robustness

When analyzing the dynamical robustness, we qualitatively compare the PDF
of <(λ′)max for different connectivities. Based on such distribution, we can
give a quantitative measure R of “how dynamically robust” is a certain topol-
ogy, that will be useful when implementing the optimization algorithm.

In the text we refer to the 5th percentile (with a minus sign) of the dis-
tribution of <(λ′)max as a measure of dynamical robustness, R = −<(λ′)5th

max

(with the minus sign, more robust topologies lead to larger values of R).
Naively speaking, this is a quantification of “how stable” can be the system
for such perturbed dynamics that makes the system as stable as possible.
Certainly, it is possible to define other measures of this property (e.g. the
10th, 20th and 50th percentiles) that lead, qualitatively, to the same con-
clusion, as illustrated in Fig. 25. However, lower percentile values generally
enhance the differences between topologies.
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Figure 24: Probability distribution functions (PDF) of the real part of the maximum eigenvalue of the
Jacobian matrix of the perturbed dynamics with γ′ = 0.5 whereas the non-perturbed dynamics is char-
acterized by γ = 0.1 (see Equations (290) and (291)). We performed 102 independent realizations of the
added links (εij = 0 for the tree-like network), and for each one 10 different dynamics ξ. For each matrix
at the edge of instability (within an error |<(λ′)max| < 10−2), we sampled over 103 perturbed dynamics
ξ′. Parameters are set to S = 20, α = 1, σε = 0.12 and σx = σα = 0.

A.8.4 From sparse interaction matrices to community structures

An important characteristic of sparse tree-like is their ability to remain sparse
after aggregation of many of them. Therefore, sparse systems will preserve
their optimal features after aggregation. More specifically, the characteristic
polynomial only depends on the loops of the network (see Section A.8.2),
and therefore an aggregation of sparse structures through a few links will
not dramatically change its explorability. In Fig. 26 we represent a simple
example of two tree-like topologies that can be assembled, preserving the
optimality feature.
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Figure 25: Comparison between different measures of dynamical robustness (10th, 20th and 50th per-
centiles of the distribution P (<(λ′)max)) in the case of σα = σx = 0.1 for the optimal tree-like network
and graphs of S = 20 with C = 0.5 (for which σε = 0.12). We have set α = 1. All the curves are ob-
tained as explained in Fig. 3 of the text. In all cases, the corresponding measure of dynamical robustness
decreases when increasing the connectivity.

Optimal tree-like community network

Optimal tree-like 1

Optimal tree-like 2

Figure 26: Example of two tree-like networks that can be assembled obtaining a larger community with
the same explorability as each single component.
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entropy,” Séminaire Poincaré, vol. 2, pp. 29–62, 2003.

[23] U. Seifert, “Entropy production along a stochastic trajectory and an
integral fluctuation theorem,” Physical review letters, vol. 95, no. 4,
p. 040602, 2005.

[24] O. Penrose, Foundations of statistical mechanics: a deductive treat-
ment. Courier Corporation, 2005.

141



[25] U. Seifert, “Stochastic thermodynamics of single enzymes and molec-
ular motors,” The European Physical Journal E: Soft Matter and Bio-
logical Physics, vol. 34, no. 3, pp. 1–11, 2011.

[26] R. Kubo, “The fluctuation-dissipation theorem,” Reports on progress
in physics, vol. 29, no. 1, p. 255, 1966.

[27] M. Baiesi, C. Maes, and B. Wynants, “Nonequilibrium linear response
for markov dynamics, i: jump processes and overdamped diffusions,”
Journal of statistical physics, vol. 137, no. 5, pp. 1094–1116, 2009.

[28] J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys-
ical review, vol. 32, no. 1, p. 97, 1928.

[29] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys-
ical review, vol. 32, no. 1, p. 110, 1928.

[30] L. Onsager, “Reciprocal relations in irreversible processes. i.,” Physical
review, vol. 37, no. 4, p. 405, 1931.

[31] C. Jarzynski, “Nonequilibrium equality for free energy differences,”
Physical Review Letters, vol. 78, no. 14, p. 2690, 1997.

[32] G. E. Crooks, “Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences,” Physical Re-
view E, vol. 60, no. 3, p. 2721, 1999.
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