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Riassunto

Il polinomio di Alexander di un'ipersuper�cie proiettiva V ⊂ Pn è il polinomio
caratteristico dell'azione di monodromia su Hn−1(F,C), dove F è la �bra di Milnor
di V ; tranne nel caso in cui V è liscia, il suo calcolo è un problema aperto. Le
ipersuper�ci singolari piú studiate riguardo questo problema sono proiettivizzazioni A
di con�gurazioni centrali di iperpiani A ⊂ Cn+1, perché è possibile cercare di sfruttare
la natura combinatoria di tali oggetti; senza perdita di generalitá, si puó assumere
n = 2. In questa Tesi dimostriamo che il polinomio di Alexander di con�gurazioni
di rette A ⊂ P2 che appartengono ad alcune classi di con�gurazioni di rette non
simmetriche è banale: questo è un indizio a favore della validitá di una congettura
proposta da Papadima e Suciu.

La Tesi è organizzata come segue. Il Capitolo 1 è una collezione di risultati noti su
cui ci baseremo: la discussione delle strutture di Hodge miste sui gruppi di coomologia
di varietá algebriche e il confronto tra la �ltrazione polare e quella di Hodge sono di
particolare importanza; anche la costruzione di iperrisoluzioni cubiche e il loro uso nel
de�nire la coomologia di de Rham di varietá algebriche singolari sará molto utile. Il
Capitolo 2 è diviso in due parti. La prima è dedicata principalmente a de�nire il poli-
nomio di Alexander e a presentare una formula di Libgober che ne permette il calcolo
quando V è una curva. La seconda è una panoramica di risultati noti sul problema
del calcolo del polinomio di Alexander di con�gurazioni di rette, e si chiude con una
discussione di alcuni tra gli esempi piú interessanti; cerchiamo di evidenziare come la
simmetria di una con�gurazione di rette in�uisca sul suo polinomio di Alexander. Nel
Capitolo 3 introduciamo alcune classi di con�gurazioni di rette A non simmetriche
e dimostriamo che i loro polinomi di Alexander sono banali. I metodi che usiamo
sono sostanzialmente due: uno combina la formula di Libgober con un semplice ar-
gomento di teoria della deformazione, grazie al quale possiamo ridurci a studiare un
numero �nito di `con�gurazioni rappresentative'; l'altro si basa sull'associare ad A un
threefold T �brato in super�ci su P1 e sullo studio della monodromia attorno ad una
�bra speciale di quest'ultimo. Il punto chiave del secondo metodo è la dimostrazione
dell'esistenza di un mor�smo di Gysin che mette in relazione la coomologia di T con
quella di una sua sezione di iperpiano S: questo risultato è di interesse indipendente,
perché T ed S non soddisfano le ipotesi di solito necessarie per ottenere risultati di
tipo Lefschetz.
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Abstract

The Alexander polynomial of a projective hypersurface V ⊂ Pn is the character-
istic polynomial of the monodromy operator acting on Hn−1(F,C), where F is the
Milnor �bre of V ; unless V is smooth, the problem of its computation is open. The
singular hypersurfaces that have drawn the most attention are projectivisations A of
central hyperplane arrangements A ⊂ Cn+1, as one can hope to take advantage of the
combinatorial nature of such objects; one can assume without loss of generality that
n = 2. In this Thesis we prove that the Alexander polynomials of line arrangements
A ⊂ P2 belonging to some particular non-symmetric classes are trivial: this constitutes
evidence in favour of the validity of a conjecture due to Papadima and Suciu.

The Thesis is organised as follows. In Chapter 1 we gather some known results on
which we will build upon: the discussion of mixed Hodge structures on cohomology
groups of algebraic varieties and the comparison between the polar and Hodge �ltration
are of particular importance; the construction of cubical hyperresolutions and their use
in the de�nition of algebraic de Rham cohomology for singular algebraic varieties will
be very useful too. Chapter 2 is divided in two parts. The �rst one is mainly devoted
to de�ning the Alexander polynomial and presenting a formula by Libgober for its
computation in case V is a curve. The second part is a survey of known results
around the problem of determining the Alexander polynomial of a line arrangement,
and closes with a discussion of some interesting examples; we try to highlight how
the symmetry of the arrangement a�ects its Alexander polynomial. In Chapter 3 we
introduce some classes of non-symmetric line arrangements A and prove that their
Alexander polynomials are trivial. The methods we use are essentially two: one is the
combination of Libgober's formula with an easy deformation theory argument, thanks
to which we can restrict ourselves to considering a �nite number of `representative
arrangements'; the other relies on associating to A a threefold T �bred in surfaces
over P1 and on studying the monodromy around a special �bre of the latter. A key
step of the second method is the proof of the existence of a Gysin morphism that
connects the cohomology of T to that of a hyperplane section S: this result is of
independent interest, as T and S do not satisfy the hypotheses usually required in
order to obtain Lefschetz-type results.
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Introduction

The history of the Alexander polynomial goes back to the late 1920s: in fact, it
makes its �rst appearance in Alexander's work [1], where it is de�ned as a polynomial
invariant for knots. A few years later, Zariski realised that methods similar to the ones
used by Alexander could be employed to study the topology of fundamental groups
of complements of plane projective singular curves [71, 72]: in this way he found a
connection between the irregularity of birational models of coverings of P2 branched
over certain singular curves and the fundamental groups of the complements of the
curves; in particular, he was able to exhibit two families of irreducible sextic curves
with six cusps such that no member of one family can be equisingularly deformed to
a member of the other [72].

After Zariski's works, the study of the fundamental groups of complements of
plane projective singular curves went through a long period of stagnation, with only
a few sparse results that did not generate much follow-up. It was only in the early
1980s, thanks to the then emerging �eld of singularity theory, that the interest in
this problem was revamped. Indeed, the �rst explicit de�nition of the Alexander
polynomial of a plane projective curve C appeared in Libgober's paper [42, Section 2],
while in [41] the precise connection between coverings of P2 branched over C and the
Alexander polynomial of C is worked out. This was made possible by the introduction
of constants of quasi-adjunction, which are positive rational numbers associated to
singularity types, and the closely related quasi-adjunction ideals Ak:

Theorem. Let C ⊂ P2 be a reduced curve of degree d with r irreducible components,
and let k1, . . . , km be all the constants of quasi-adjunction of C. The Alexander poly-
nomial of C is

∆C(t) = (t− 1)r−1

dkj∈Z∏
[(t− e2πikj)(t− e−2πikj)]s(kj)

where s(kj) := dimH1(P2,Akj(d− 3− dkj)). The sum of the s(kj) is the irregularity
of a resolution of singularities of a d-fold covering of P2 branched over C.

The values s(kj) can be interpreted as defects of linear systems of curves passing
through the singularities of C, so the formula above shows a dependence between
the Alexander polynomial of C and the relative position of its singularities. Indeed,
the aforementioned result of Zariski can be rephrased by saying that the Alexander
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polynomial of an irreducible sextic with six cusps is t2− t+1 if the cusps lie on a conic
and 1 otherwise.

Soon after the works [41, 42], Randell proved in [63] that the Alexander polynomial
of the curve C = V (f) coincides with the characteristic polynomial of the algebraic
monodromy action on H1(F,C), where F is the Milnor �bre of C. The latter is any
smooth �bre of the smooth locally trivial �bration

f : C3 \ f−1(0)→ C∗

which is usually referred to as Milnor �bration. For this reason, in this Thesis we
de�ne the Alexander polynomial starting from the Milnor �bration.

We point out that if we write the Alexander polynomial of a curve C as

∆C(t) = (t− 1)r−1q(t)

then it is di�cult to �nd curves for which q(t) 6= 1: those for which q(t) is indeed
non-trivial often have a rich geometry, as Libgober's result suggests.

A class of curves that has drawn a lot of interest is that of line arrangements i.e.
collections of lines in P2; we denote such objects by A, while A is used for their a�ne
cones. The reason for this interest is that one may try and take advantage of the
combinatorial nature of a line arrangement A, encoded in its intersection semilattice
L(A), to obtain information on its Alexander polynomial. Indications that such an
approach could be fruitful were obtained in the 1990s: indeed, after the introduction
of characteristic varieties [48] in an attempt to extend the theory of Alexander poly-
nomials to higher dimensions, it was realised (see [43, 50]) that these varieties have a
deep connection with the Orlik-Solomon algebra of A, which in turn depends on L(A).
The Orlik-Solomon algebra of A can also be studied by means of resonance varieties,
introduced in [25].

It must be mentioned that characteristic varieties are related to the cohomology
of certain rank one local systems [36]. This is important, as the cohomology of local
systems can be studied e�ectively using methods of de Rham and Hodge theory: for
example, one could study the de Rham complex depending on the �at connection
corresponding to a local system.

Soon after a systematic study of the Alexander polynomial of line arrangements
had started, the following problem was raised [35, Problem 9A], [38, Problem 4.145]:

Problem. Given a line arrangement A ⊂ P2, is its Alexander polynomial ∆A deter-
mined by L(A)? If so, give an explicit combinatorial formula to compute it.

As of the time of writing, it remains almost completely open. It is even still
unclear which conditions a line arrangement has to satisfy in order for q(t) to have
positive degree; however, there is evidence that such a condition is, in some sense,
symmetry. This symmetry is encoded in the combinatorial notion of k-multinet : this
is a partition of the lines ofA into k classesA1, . . . ,Ak of the same cardinality such that
the intersections between lines in di�erent classes satisfy some compatibility condition.

To the best of our knowledge, all arrangements whose Alexander polynomial has
non-trivial factor q(t) admit a k-multinet; some of these arrangements have been
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known, for di�erent reasons, for a long time: the Hesse arrangement and the Pappus
arrangement, for example, admit a 4-net and a 3-net, respectively. The former is, to
date, the only known non-central line arrangement admitting a 4-net.

Over the course of the years this Problem was tackled using a wide variety of
techniques. On the geometric side, the main tools were defects of linear systems,
logarithmic forms and mixed Hodge theory [4, 6, 13, 17, 18, 19, 44, 46]. A di�er-
ent approach, which can be applied to any curve, relies on establishing a connection
between the Alexander polynomial of a curve and the arithmetic and geometric prop-
erties of elliptic surfaces and threefolds associated to it; it was pursued, starting from
2008, by Cogolludo-Agustin, Kloosterman, Libgober et al. [5, 38]. The topological
approach can be traced back to the work of Cohen and Suciu [7, 8] on characteristic
varieties of arrangements, which builds on Arapura's theory [2] of characteristic vari-
eties of quasi-projective manifolds. Finally, combinatorial techniques allowed to �nd
a connection between multinets on a line arrangement A and complex resonance vari-
eties of its Orlik-Solomon algebra: this connection, established in [27, 53] and further
developed in [61, 69], was the key tool in may following works [10, 18, 20, 66].

A partial positive answer to the Problem above was given by Papadima and Suciu
in 2017 [59]. They proved the following:

Theorem. If A is an arrangement with only double and triple points then its Alexander
polynomial is

∆A(t) = (t− 1)|A|−1(t2 + t+ 1)β3(A)

where 0 ≤ β3(A) ≤ 2 depends only on L(A).

This result, together with the evidence gathered throughout the years, led them to
formulate the following conjecture:

Conjecture. The Alexander polynomial of a line arrangement A has the form

∆A(t) = (t− 1)|A|−1(t2 + t+ 1)β3(A)[(t+ 1)(t2 + 1)]β2(A)

where β2(A) and β3(A) depend only on L(A).

Recent works [52, 15, 22] have established the validity of this conjecture for all
complex re�ection arrangements.

In this Thesis we provide new evidence that this conjecture is true. We have focused
on line arrangements that are, in a sense, dual to those for which Papadima and Suciu
have obtained their theorem: indeed, their result concerns line arrangements having
any number of multiple points of low multiplicity, while we focus on two classes of ar-
rangements having exactly two points of high multiplicity. Another di�erence is that
the methods of Papadima and Suciu are mostly topological or combinatorial, while
the ones we use are much more geometric.

The Thesis is organised as follows. In Chapter 1 we recall known results which
will be used throughout the rest of the Thesis: the most important ones are the
content of Sections 1.2 and 1.3. In the former we illustrate the construction of cubical
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hyperresolutions, and explain their importance in the development of a good de Rham
cohomology theory for singular algebraic varieties; in the latter we report basic facts
about mixed Hodge structures on the cohomology groups of algebraic varieties. In
Section 1.4 we show the construction of the polar �ltration P on the cohomology
groups of hypersurface complements, and state a comparison result between that and
the Hodge �ltration F .

In Chapter 2, which is divided in two parts, we start discussing the Alexander poly-
nomial. In the �rst part we recall Milnor's �bration theorem and the main properties
of the Milnor �bre, and give the de�nition of Alexander polynomials of hypersurfaces.
We then introduce ideals and constants of quasi-adjunction, which are key tools in
one of Libgober's main result (see 2.1.14); we also recall the connection between the
Steenbrink spectrum of a singularity and its constants of quasi-adjunction. Lastly,
in Subsection 2.1.3 we brie�y discuss the approach of [5, 38] to the computation of
Alexander polynomials, and show that the existence of a quasi-toric decomposition of
f implies that C = V (f) has Alexander polynomial with q(t) 6= 1.

In the second part we focus our attention on line arrangements, and try to give
an overview of the methods that have been employed in their study and of the re-
sults that have been obtained. This requires us to introduce many notions from the
classical theory of hyperplane arrangements, combinatorics and topology: the inter-
section semilattice of an arrangement and the closely related Orlik-Solomon algebra,
multinets, resonance and characteristic varieties; the connection between these notions
and geometry is provided by the so-called Ceva pencils of curves. The main aim of
this part is to highlight the dependence between the existence of multinets on line ar-
rangements and the Alexander polynomial of arrangements. For this reason, the last
subsection of the chapter is devoted to the discussion of some interesting examples
of line arrangements with non-trivial Alexander polynomials; the precise statement of
the conjecture by Papadima and Suciu can also be found there.

Chapter 3 is where our results are presented. We introduce two classes of ar-
rangements that do not admit multinets, and prove that the Alexander polynomial
of arrangements belonging to such classes is trivial. The arrangements we consider
have two point P1 and P2 of high multiplicity, with all other multiple points having
multiplicity at most 3, and can contain at most one `free line' not passing through P1

or P2; we denote the number of free lines by s. We have obtained results only in the
cases s = 0, 1, as for s ≥ 2 it becomes almost impossible to control the combinatorics
of these arrangements. We now present a brief overview of the methods we used to
prove our results:

s = 1 First we show that the arrangements in this class fall into a �nite number of
deformation-equivalent classes; as the Alexander polynomial of a curve is invariant
under equisingular deformation, this allows us to reduce our study to a �nite number
of representative arrangements. Since, up to an automorphism of P2, we can freely
move the points P1 and P2 and the free line, we can use Libgober's formula (2.1.15) for
the computation of Alexander polynomials, and our result follows after a long series
of computations with Hilbert functions.
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s = 0 This case could be tackled with the same method as the case s = 1, but we
decided to look for a more geometric one; this required an unexpectedly big amount
of work, but also produced an interesting byproduct. First we associate to any ar-
rangement in this class a threefold T , and show that its fourth primitive Betti number
is (n − 1)2 + deg(q(t)) where n is the number of lines in the arrangement; then we
take a hyperplane section S of T , and bound the dimension of H4(T )prim by that of a
subspace of H2(S)prim; �nally, we show that the latter subspace has dimension (n−1)2,
which forces q(t) = 1.

In order to perform the second step we show the existence of a Gysin morphism
H2(S) � H4(T ), even though T and its hyperplane section S do not satisfy the
hypotheses usually required in order to obtain Lefschetz-type results: indeed, the
hyperplane that cuts S from T passes through a singular point of T , so it cannot be
transversal to the strata of a Whitney strati�cation of T , and T \ S is not smooth.
This is very interesting, as counterexamples to the Lefschetz hyperplane theorem can
usually be found when its hypotheses are not ful�lled. What allows us to obtain this
result is the control over the cubical hyperresolutions of T and S, which in turn is
a consequence of T and S having only ordinary multiple points as singularities; this
suggests that the existence of such a Gysin morphism could not be limited to the
arrangements we consider here.
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CHAPTER 1

Preliminaries

Throughout this chapter, unless stated otherwise, all cohomology groups are to be
understood as singular cohomology groups; when the coe�cient ring is not speci�ed, it
will either be C or, especially when dealing with Hodge theory, R: the context should
make it so that no ambiguity arises. Similarly, all varieties and schemes we consider
are over C, with the partial exception of Section 1.2.

1.1 Cohomology of complete intersections and their

complements

In this section, unless stated otherwise, V is a complete intersection of dimension
n and codimension c inside Pn+c.

Theorem 1.1.1 (Weak Lefschetz theorem). (i) The pullback morphism

Hk(Pn+c,Z)→ Hk(V,Z)

is an isomorphism for k < n and an injective morphism with torsion-free cokernel
for k = n.

(ii) If V is smooth then the Gysin morphism

Hk(V,Z)→ Hk+2c(Pn+c,Z)

is an isomorphism for k > n and a surjective morphism for k = n.

A result analogous to the weak Lefschetz theorem holds for weighted complete in-
tersections in weighted projective spaces: the proof relies on the fact that quasi-smooth
weighted complete intersections and weighted projective spaces are Q-homology man-
ifolds, so they admit all the usual duality theorems (Poincaré duality in particular).
See [16, Appendix B].

1
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Proof. The second statement is Poincaré dual to the �rst one, so we only need to prove
the latter, a proof of which can be found in [16, Theorem 5.2.6].

If c = 1 then V is a hypersurface, and the theorem above becomes what is known
as Lefschetz hyperplane theorem; the latter can be stated in a slightly more general
setting, but in order to do so we �rst need to recall two well-known results.

De�nition 1.1.2. A Stein variety is a closed analytic subvariety X of some Cn; if
X is smooth, we call it a Stein manifold. In particular, all a�ne complex algebraic
varieties are Stein.

Theorem 1.1.3 (Cartan's theorem B). If F is a coherent sheaf on a Stein manifold
X then Hk(X,F) = 0 for k > 0.

Proof. [31, Chapter VIII, Theorem 14].

Corollary 1.1.4. Let X be a Stein manifold of complex dimension n, then Hk(X) = 0
for k > n.

Proof. The holomorphic de Rham complex of X

0→ CX → OX → Ω1
X → · · · → Ωn

X → 0

is a resolution of CX by locally free sheaves, which are in particular coherent sheaves,
so by Cartan's theorem B we have H i(X,Ωj

X) = 0 for all i > 0 and for all j; this
means that the holomorphic de Rham complex is a Γ(X,−)-acyclic resolution of CX ,
from which we deduce

Hk(X) = Hk(Γ(X,Ω•X)).

This implies in particular that Hk(X) = 0 for k > n.

Theorem 1.1.5 (Lefschetz hyperplane theorem). Let X be a complex projective vari-
ety of dimension n and Y ⊂ X be an ample divisor.

(i) If X \ Y is smooth then the pullback morphism

Hk(X,Q)→ Hk(Y,Q)

is an isomorphism for k ≤ n− 2 and an injection for k = n− 1.

(ii) If both X and Y are smooth then the Gysin morphism

Hk(Y,Q)→ Hk+2(X,Q)

is an isomorphism for k ≥ n and a surjection for k = n− 1.
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Proof. A proof of (i) can be found in [68, Theorem 1.23]. Here we prove (ii), but �rst
we use the universal coe�cient theorem to switch to complex coe�cients. If we set
U := X \ Y then the usual Gysin long exact sequence reads

· · · → Hk+1(U)→ Hk(Y )→ Hk+2(X)→ · · · .
From this sequence we deduce that it is enough to prove that Hk+1(U) = 0 for k >
dim(X)− 1. Now, U is an open subset of some projective space minus a hyperplane,
so it is smooth and a�ne, and in particular a Stein manifold; since dim(U) = dim(X),
the result follows from Corollary 1.1.4.

Remark 1.1.6. The Lefschetz hyperplane theorem eases computation of cohomology
groups of smooth hypersurfaces. Let V ⊂ Pn+1 be a smooth hypersurface of degree
d: if we call N :=

(
n+2
d

)
− 1 we can consider the Veronese embedding νd : Pn → PN ,

which allows us to write

V ' νd(V ) = νd(Pn) ∩H
for some hyperplane H ⊂ PN . If we apply the Lefschetz hyperplane theorem to
X := νd(Pn) and Y := νd(Pn) ∩H we obtain

Hk(νd(Pn))→ Hk(νd(Pn) ∩H) is an isomorphism for k ≤ n− 1.
Hk(νd(Pn) ∩H)→ Hk+2(νd(Pn)) is an isomorphism for k ≥ n+ 1.

But Hk(νd(Pn) ∩H) = Hk(νd(V )) ' Hk(V ) and Hk(νd(Pn)) ' Hk(Pn); moreover we
can write Hk+2(Pn) ' Hk(Pn) (since k and k+ 2 have the same parity). From this we
get

Hk(Pn)→ Hk(V ) is an isomorphism for k ≤ n− 1.
Hk(V )→ Hk(Pn) is an isomorphism for k ≥ n+ 1.

Thus the only interesting cohomology group of V is Hn(V ).

Theorem 1.1.7 (Barth's theorem). Assume the singular locus of V has dimension
m; the map

Hk(Pn+c,Z)→ Hk(V,Z) for n+m+ 2 ≤ k ≤ 2n

is an isomorphism, given by multiplication by deg(V ).

Proof. [16, Theorem 5.2.11].

Lemma 1.1.8. The pullback map Hk(Pn+c)→ Hk(V ) is injective for 0 ≤ k ≤ 2n.

Proof. [16, Lemma 5.2.17].

De�nition 1.1.9. The cokernel of the pullback map Hk(Pn+c)→ Hk(V ) is called the
k-th primitive cohomology group of V , and it is denoted by Hk(V )prim.

We conclude this section with a result on the cohomology of the complement of a
projective hypersurface:
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Proposition 1.1.10. Let V be a hypersurface with r irreducible components of degrees
d1, . . . , dr, and denote by U its complement in Pn+1; then

H1(U,Z) ' Zr−1 ⊕ Z/gcd(d1, . . . , dr)Z.

Proof. [16, Proposition 4.1.3].

1.2 Cubical hyperresolutions and de Rham cohomol-

ogy

In this section we denote the subset {0, . . . ,m} by [m]; moreover, when we write
n we always mean n ∈ Z≥0.

De�nition 1.2.1. 1. The n-simplicial category is the category ∆n with objects
the sets [m] for 0 ≤ m ≤ n and with morphisms the non-decreasing maps
[m]→ [m′]; if we only allow strictly increasing maps as morphisms, we speak of
n-semisimplicial category 4n.

2. The n-cubical category is the category �n with objects the subsets of [n−1] and
with Hom(I, J) consisting of a single element if I ⊂ J and empty otherwise.

3. If C is any category, an n-semisimplicial C-object is a contravariant functor
K• : 4n → C, and morphisms between such objects are morphisms of the
corresponding functors; similarly, we can de�ne n-cubical C-objects K� and mor-
phisms thereof. If we consider covariant functors, we obtain the notion of n-
cosemisimplicial C-object K• and n-cocubical C-object K�.

By the above de�nitions, it follows that an n-semisimplicial C-object consists of
n + 1 objects Km := K•[m] for [m] =∈ 4n; if α : [m] → [m′] is a morphism in
4n, there exists a corresponding morphism dα : Km′ → Km. Similarly, an n-cubical
C-object consists of 2n objects KI := K�(I) for I ∈ �n; if I ⊂ J there exists a
corresponding morphism dIJ : KJ → KI .

Remark 1.2.2. For any m ∈ Z≥0 and i = 0, . . . ,m we denote by δi : [m − 1] → [m]
the i-th face map, i.e. the only strictly increasing map whose image does not contain
i; for i < j, face maps satisfy the relation δj ◦ δi = δi ◦ δj−1. Clearly, if Q• is an
n-cosemisimplicial C-object, the face maps δi give maps di := Q•(δi) : Qm−1 → Qm

satisfying the relation

dj ◦ di = di ◦ dj−1 (1.2.1)

for i < j. If C is abelian, we can set

σm :=
m∑
i=0

(−1)idi : Qm → Qm+1

and thus, thanks to (1.2.1), we obtain a complex
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CQ• := {Q0 σ0

−→ Q1 σ1

−→ . . .
σn−1

−−−→ Qn → 0}.

This construction will allow us to de�ne the cohomology of an n-semisimplicial topo-
logical space X• with values in a sheaf F• on X•.

De�nition 1.2.3. If S is any object in C, the constant n-semisimplicial C-object S
is the contravariant functor S• : 4n → C such that Sm = S for all [m] ∈ 4n, with
all morphisms Sm′ → Sm given by the identity of S. An augmentation of an n-
semisimplicial C-object K• to S is a morphism of n-semisimplicial C-objects K• → S.
If we replace 4n by �n, we obtain constant n-cubical C objects and augmentations
thereof.

The next observations will be useful in what follows:

Remark 1.2.4. 1. If X� is an n-cubical C-object we can associate to it the aug-
mented n-cubical C-object ε : X� → X∅; sometimes we will call this augmenta-
tion the natural augmentation.

2. Any (n + 1)-cubical C-object X� can be considered as a morphism Y� → Z�
of n-cubical C-objects by setting ZI := XI and YI := XI∪{n} for I ∈ �n; in
particular, a 1-cubical C-object is the datum of two objects X, Y ∈ C and a
morphism f : X → Y between them.

3. To any (n+ 1)-cubical C-object X� we can associate functorially an augmented
n-semisimplicial C-object ε : X• → Y with Y := X∅. We set:

Xk :=
∐
|I|=k+1

XI for k = 0, . . . , n.

Let β : [s] → [r] be a strictly increasing map (in particular r ≥ s). If I ∈ �n+1

has cardinality r + 1 we can write it as I = {i0, . . . , ir} with i0 < · · · < ir;
the set J := β(I) := {iβ(0), . . . , iβ(s)} is contained in I, so we have a morphism
dJI : XI → XJ . We can now de�ne the morphism

dβ : Xr → Xs s.t. (dβ)|XI = dβ(I)I .

Since for any I ⊂ [n] we have a morphism d∅I : XI → Y we obtain the desired
augmentation by setting ε|XI = d∅I .

De�nition 1.2.5. The category TopSh has objects the pairs (X,F) where X is a
topological space and F is a sheaf onX, and as morphisms the pairs (f, f#) : (X,F)→
(Y,G) where f : X → Y is a continuous function and f# : G → f∗F is a morphism
of sheaves on Y . A sheaf on an n-semisimplicial space (resp. sheaf on an n-cubical
space) is just an n-semisimplicial (resp. n-cubical) TopSh-object. In a similar manner,
we can de�ne complexes of sheaves and resolution of sheaves on n-semisimplicial or
n-cubical spaces.
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Fix an n-semisimplicial space X•, i.e. an n-semisimplicial Top-object, and consider
a sheaf of abelian groups F• on X•: the Godement complexes C•Gdm(Fm) give injective
resolutions of each Fm, and �t together to give an injective resolution of F•. This
allows us to de�ne the cohomology of an n-semisimplicial space with values in F•:
namely, the abelian groups

F p,q := Γ(Xq, CpGdm(F q)) (1.2.2)

are the entries of a double complex, with di�erentials in the p-direction coming from
the Godement resolutions and di�erentials in the q-direction given by the di�erentials
of the complex CF p,• (recall Remark 1.2.2); we de�ne

Hk(X•,F•) := Hk(s(F •,•)) (1.2.3)

where s(F •,•) is the simple complex associated to F •,•.

Remark 1.2.6. If Y is a constant n-semisimplicial space, any sheaf on Y will be
denoted by F and not by F•; likewise, the cohomology groups of Y with values in F
will be denoted by Hk(Y,F).

Suppose now that ε : X• → Y is an augmented n-semisimplicial space and F• is a
sheaf on X•. The sheaves ε∗CpGdm(F q) form a double complex of sheaves on Y , whose
associated simple complex gives

Rε∗F• := s[ε∗C•Gdm(F•)]. (1.2.4)

One can prove that the hypercohomology of the latter complex coincides with the
cohomology of X• with values in F•, i.e.

Hk(Y,Rε∗F•) = Hk(X•,F•) for any k. (1.2.5)

Recall now that if f : X → Y is a continuous map between topological spaces and G•
is a complex of sheaves on Y , we have a natural adjunction morphism in D+(Sh(Y )):

G• → Rf∗f
−1G•. (1.2.6)

De�nition 1.2.7. [9, De�nition 5.3.2] An augmented n-semisimplicial space ε : X• →
Y is of cohomological descent if for any sheaf of abelian groups F on Y the natural
adjunction morphism

F → Rε∗ε
−1F (1.2.7)

is an isomorphism.

If X� is an (n + 1)-cubical space and F� is a sheaf on X, by Remark 1.2.4(iii) to
this data we can associate an augmented n-semisimplicial space ε : X• → X∅ and a
sheaf F• on it. We set

C•(X�,F�) := Cone•[F∅ → Rε∗ε
−1F∅]. (1.2.8)
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From now on, we will take for C the category whose objects are reduced separated
schemes of �nite type over C, which we will simply call varieties, and whose morphisms
are morphisms of schemes; this is not fully consistent with the existing literature, in
which the term `algebraic variety' is usually reserved for integral separated schemes of
�nite type over some �eld.

De�nition 1.2.8. 1. An augmented n-semisimplicial variety is of cohomological
descent if this is the case for the associated augmented n-semisimplicial space.

2. Let X be a variety. An n-semisimplicial resolution of X is an n-semisimplicial
variety ε : X• → X augmented towards X such that all maps Xm → X are
proper, Xm is smooth for all m and ε is of cohomological descent.

3. An (n+ 1)-cubical variety is of cohomological descent (resp. a cubical hyperreso-
lution) if the associated augmented n-semisimplicial variety is of cohomological
descent (resp. an n-semisimplicial resolution).

Every variety admits an n-cubical hyperresolution for some n, which can be con-
structed in a standard way; before presenting a (sketch of the) proof of this fact, we
need to give some de�nitions:

De�nition 1.2.9. 1. A proper modi�cation of an n-cubical variety X� is a proper
morphism of n-cubical varieties f : X̃� → X� such that there exists an open
dense (n-cubical) subset U� ⊂ X� for which f induces an isomorphism between
f−1(U�) and U�; a resolution of X� is a proper modi�cation with X̃� smooth.

2. The discriminant of a proper morphism f : X� → S� of n-cubical varieties is the
smallest closed n-cubical subvariety D� ⊂ S� such that f induces isomorphisms
XI \ f−1(DI)→ SI \DI for all I ⊂ �n.

3. Let f : X̃� → X� be a proper modi�cation (resp. resolution) of an n-cubical
variety with discriminant D�, and set E� := f−1(D�); the discriminant square
(resp. resolution square) of X� is the (n+ 2)-cubical variety

E� //

f|E�

��

X̃�

f

��

D� // X�

where the horizontal maps are inclusions.

Theorem 1.2.10. For any variety X of dimension n there exists an (n + 1)-cubical
hyperresolution X� such that dim(XI) ≤ n− |I|+ 1 for all I ⊂ �n+1.

Proof. A full proof can be found in [30, Théorème I.2.15] or, in greater generality, in
[62, Theorem 5.26]; here we are only interested in showing how the cubical hyperres-
olution is constructed. If π1 : X̃ → X is a resolution of X with discriminant D, we
de�ne a 2-cubical variety X

(1)
� by setting
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X
(1)
∅ := X, X

(1)
{0} := X̃, X

(1)
{1} := D, X

(1)
{0,1} := π−1

1 (D);

we can see this as a morphism of 1-cubical varieties f (1) : Y
(1)
� → Z

(1)
� , with ZI smooth

for I 6= ∅. Next we consider a resolution π2 : Ỹ
(1)
� → Y

(1)
� and the corresponding

resolution square

E
(1)
�

//

��

Ỹ
(1)
�

��

D
(1)
�

// Y
(1)
�

where D
(1)
� is the discriminant of π2 and E

(1)
� := π−1

2 (D
(1)
� ); from this we obtain

E
(1)
�

//

��

Ỹ
(1)
�

π2

�� !!

D
(1)
�

// Y
(1)
�

// Z
(1)
� .

The outer commutative square of 1-cubical varieties can be considered as a 3-cubical
variety X

(2)
� by setting, for any I ⊂ [0],

X
(2)
I := Z

(1)
I , X

(2)
I∪{1} := Ỹ

(1)
I , X

(2)
I∪{2} := D

(1)
I , X

(2)
I∪{1,2} := E

(1)
I .

If we repeat this process enough times, we eventually obtain the desired cubical hy-
perresolution of X.

Remark 1.2.11. The theorem above provides us with a standard way to construct
an (n + 1)-cubical hyperresolution of a variety X of dimension n; however, X can
admit a much simpler one, as it is the case for a variety having both the discriminant
D of a resolution π : X̃ → X and its exceptional divisor E smooth: in this scenario,
X admits a 2-cubical hyperresolution (given by its resolution square) regardless of its
dimension.

Observe that if we take for C the category of n-cubical varieties and considerX ∈ C,
we can still apply the construction of Theorem 1.2.10 to X: at each step we obtain an
m-cubical variety whose entries are n-cubical varieties. More precisely, [30, Théorème
I.2.15] implies the following:

Theorem 1.2.12. Any n-cubical variety X admits a hyperresolution by an m-cubical
variety Y = {YIJ} of n-cubical varieties such that dim(YIJ) ≤ dim(X) − |I × J | + 1
for any I, J .

The following observation will be used in Chapter 3:
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Remark 1.2.13. Assume X = {X∅, X{0}, X{1}, X{01}} is a 2-cubical variety and Y is
an m-cubical hyperresolution of X, then Y can be thought of as a 2-cubical variety
Y ′ = {Y ′∅ , Y ′{0}, Y ′{1}, Y ′{01}} of (m−2)-cubical varieties; by construction, for any I ∈ �2

we have that Y ′I is an (m− 2)-cubical hyperresolution of XI .

Let X� be an (n+1)-cubical variety and ε : X• → X∅ be the associated augmented
n-semisimplicial variety: by the de�nition of cohomological descent and (1.2.8), we
deduce thatX� (equivalently,X•) is of cohomological descent if and only if C•(X�,F�)
is acyclic for any sheaf of abelian groups F� on X�.

Lemma 1.2.14. Let X� be an (n+ 1)-cubical variety and consider it as a morphism
f : Y� → Z� of n-cubical varieties; let F� be a sheaf on X� restricting to sheaves on
Y� and Z� denoted again by F�. We have

C•(X�,F�)[1] = Cone•[C•(Z�,F�)
C(f#)−−−→ Rf∗C

•(Y�,F�)].

In particular, if C(f#) is an isomorphism then C•(X�,F�)[1] is acyclic and, as a
consequence, X� is of cohomological descent.

Proof. [62, Proposition 5.27].

Corollary 1.2.15. Let X� be an (n+ 2)-cubical variety and consider it as a commu-
tative square of n-cubical varieties

Y�
f

//

a

��

Z�

b

��

T�
g

//W�.

Let F� be a sheaf on X� restricting to sheaves on Y�, Z�, T� and W� denoted by F�
too. The cone over the map of complexes

C•(W�,F�)[1]→ Cone•[Rb∗C
•(Z�,F�)⊕Rg∗C•(T�,F�)→ R(g ◦ a)∗C

•(Y�,F�)]

is isomorphic to C•(X�,F�)[2].

Proof. We can consider X� as a morphism of (n + 1)-cubical varieties (a, b) : (Y�
f−→

Z�)→ (T�
g−→ W�), with these (n+ 1)-cubical varieties being morphisms of n-cubical

varieties; this implies (we omit writing F�)

C•(X)[2] = Cone•[C•(T�
g−→ W�)→ R(a, b)∗C

•(Y�
f−→ Z�)][1] '

' Cone•[C•(T�
g−→ W�)[1]→ R(a, b)∗C

•(Y�
f−→ Z�)[1]] =

= Cone•[Cone•(C•(W�)→ Rg∗C
•(T�))→ R(a, b)∗Cone

•(C•(Z�)→ Rf∗C
•(Y�))] =

= Cone•[Cone•(C(g#))
(C(a#),C(b#))−−−−−−−−→ R(a, b)∗Cone

•(C(f#))]

by a double application of the previous lemma. Now we need the following technical
result:
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Lemma 1.2.16. If we have a commutative square of complexes

A•
i //

π′

��

B•

π

��

C•
j

// D•

in an abelian category C, then the cone over the morphism

Cone•(i)
(π′,π)−−−→ Cone•(j)

is equal to the cone over

A•[1]
(−i,π′)−−−−→ Cone•[B• ⊕ C• π+j−−→ D•].

We apply it to the commutative square of complexes of sheaves on X∅

C•(W�,F�)
C(g#)

//

C(b#)

��

Rg∗C
•(T�,F�)

C(a#)

��

Rg∗C
•(Z�,F�)

C(f#)
// R(g ◦ a)∗C

•(Y�,F�)

and we are done.

The brisk presentation of the theory of cubical hyperresolutions and cohomological
descent we have given here is motivated by two reasons:

1. As we shall see in the next section, it allows us to associate to a resolution X̃ of a
complex algebraic variety X a long exact sequence of cohomology mixed Hodge
structures that relates the cohomology of X to that of X̃, of the singular locus
Σ of X and of the exceptional divisor E (Proposition 1.3.9). This result will be
used extensively throughout this Thesis.

2. With this language one can de�ne an algebraic de Rham cohomology theory for
singular complex algebraic varieties, and recover some classical results that hold
for smooth varieties: for example, theorems of Lefschetz type on hyperplane
sections and the existence of Gysin morphisms.

The second point needs to be discussed further. One of the �rst thorough presen-
tations of the theory of the de Rham cohomology (and homology) for possibly singular
schemes X of �nite type over a �eld K of characteristic zero was given by Hartshorne
in [33]. The de�nition of the cohomology groups is the following:

De�nition 1.2.17. Let X be a scheme as above, and assume it can be globally
embedded as a closed subscheme of a scheme Y smooth over K. Denote by Y |̂X the

formal completion of Y along X and by Ω•Y |̂X the formal completion of the de Rham
complex Ω•Y of Y along X; the k-th algebraic de Rham cohomology group of X is



1.2 Cubical hyperresolutions and de Rham cohomology 11

Hk
DR(X) := Hk(Y |̂X,Ω•Y |̂X). (1.2.9)

If V is a closed subset of X, considered as a subscheme with its induced reduced
structure, the k-th algebraic de Rham cohomology group with supports in V is

Hk
DR,V (X) := Hk(Y |̂V,RΓV Ω•Y |̂X) (1.2.10)

where ΓV denotes the restriction of sections functor.

In the same article, Hartshorne proved that this de�nition is well-posed (i.e. it is
independent on the choice of the embedding, and it can be adapted to schemes that
are not globally embeddable in a smooth scheme) and that it yields a cohomology
theory with all the properties one expects: �nite-dimensionality of the cohomology
groups, functorial properties, duality with homology and so on. In the case K = C,
he also proved a comparison theorem with the cohomology groups one can de�ne on
the analytic space Xh associated to X, namely sheaf cohomology groups and analytic
de Rham cohomology groups (the latter are de�ned as in the algebraic case, but of
course one needs to replace every object by its analytic counterpart):

Theorem 1.2.18. Denoting by Xh the analytic space associated to X and by H•DR,h(Xh)
the analytic de Rham cohomology groups, there exist isomorphisms

H•(Xh,C) ' H•DR,h(Xh) ' H•DR(X). (1.2.11)

Proof. [33, Theorem IV.1.1].

In particular, we obtain an isomorphism between algebraic de Rham cohomology
groups of X and singular cohomology groups of Xh, as it happens in the smooth case.

In [30], a di�erent de�nition of algebraic de Rham cohomology groups was given
using cubical hyperresolutions:

De�nition 1.2.19. Let X be a separated scheme of �nite type over a �eld K of
characteristic zero, and let ε : X� → X be an (n + 1)-cubical hyperresolution of X
together with its natural augmentation; the de Rham complex and k-th algebraic de
Rham cohomology group of X are de�ned as

DR•X := Rε∗Ω
•
X• Hk

DR(X) := Hk(X,DR•X). (1.2.12)

If V ⊂ X is a closed subset, the k-th algebraic de Rham cohomology group of X with
supports in V is de�ned as

Hk
DR,V (X) := Hk(V,RΓVDR

•
X). (1.2.13)

In both cases, ε : X• → X is the augmented n-semisimplicial resolution ofX associated
to X�.

These de�nitions coincide with the ones given by Hartshorne in the case of an
embeddable scheme X, because the complexes computing the hypercohomology are
isomorphic by [30, Théorème III.1.3]. With this de�nition at hand the authors proved
the following results, which we shall need in Chapter 3:
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Lemma 1.2.20. If X is an a�ne separated scheme of �nite type over C, then Hk
DR(X) =

0 for k > dim(X).

Proof. [30, Corollaire III.3.11(i)].

Theorem 1.2.21. Let X be a quasi-projective separated scheme of �nite type over C
and Y be a hyperplane section of X satisfying the following hypotheses:

(I) There exists an augmented (n + 1)-cubical hyperresolution X� → X such that
Y� := X� ×X Y is an n-cubical hyperresolution of Y .

(II) For any α, there exists a closed immersion Yα ↪→ Xα of codimension 1.

Then there exists an isomorphism

DR•Y
'−→ RΓYDR

•
X [2]. (1.2.14)

Proof. [30, Proposition III.1.20].

Corollary 1.2.22. Let X be a projective separated scheme of �nite type over C and
Y be a hyperplane section of X satisfying the hypotheses of Theorem 1.2.21. There
exists a Gysin morphism

Hk
DR(Y )→ Hk+2

DR (X) (1.2.15)

that is an isomorphism for k > dim(Y ) and a surjection for k = dim(Y ).

Proof. [30, Corollaire III.3.12(i)]. Call n := dim(Y ) so that dim(X) = n+1. The long
exact sequence of the pair (X,X \ Y ) reads

· · · → H•DR,Y (X)→ H•DR(X)→ H•DR(X \ Y )→ H•+1
DR,Y (X)→ · · · .

Since X \ Y is a�ne, by the previous lemma we have Hk(X \ Y ) = 0 for k > n + 1
and we deduce that the morphism

Hk+2
DR,Y (X)→ Hk+2

DR (X)

is an isomorphism for k > n and a surjection for k = n. Since Theorem 1.2.21 yields
isomorphisms

Hk
DR(Y )→ Hk+2

DR,Y (X)

we can conclude.

Remark 1.2.23. The de�nition of the de Rham complex DR•X given in [30] is actually
di�erent from the one we presented here; in order to state it, and to show that the one
we gave is essentially the same, we need to introduce the category �∗n: this is the full
subcategory of �n whose objects are the non-empty subsets of [n − 1]. If we denote
by C the category of separated schemes of �nite type over a �eld K of characteristic
zero, we have:
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De�nition 1.2.24. [30, Dé�nition I.3.2] If X� : �n → C is an n-cubical hyperresolu-
tion of X ∈ C, with its natural augmentation X� → X, the restriction of X� to �∗n
gives a functor X�∗ : �∗n → C which has again a natural augmentation ε : X�∗ → X
to X. The latter is an n-cubical hyperresolution of X.

De�nition 1.2.25. [30, Dé�nition III.1.10, Proposition III.1.12] If X ∈ C and X�∗ is
an (n + 1)-cubical hyperresolution of X with its natural augmentation ε : X�∗ → X,
the de Rham complex of X is

DR•X := Rε∗Ω
�∗
X�∗

.

Pick nowX ∈ C. LetX� be an (n+1)-cubical hyperresolution ofX with its natural
augmentation ε : X� → X, and let ε : X• → X be the augmented n-semisimplicial
resolution associated to it. Let X�∗ be the augmented (n+ 1)-cubical hyperresolution
of X as in De�nition 1.2.24, and denote by ε : X�∗ → X its augmentation. In order
to show that De�nitions 1.2.19 and 1.2.25 are equivalent, we need to prove that

Rε∗Ω
•
X• ' Rε∗Ω

�∗
X�∗

.

But this is basically a consequence of the construction we presented in Remark 1.2.4(iii):
indeed, that construction does not involve the object X∅ of an (n+1)-cubical C-object,
hence all the objects of X�∗ can be found in X• too (`bundled together' by the co-
products); moreover, the augmentation from the objects of X• to X are combinations
of the augmentations from the objects of X�∗ to X.

1.3 Hodge theory and deformations

De�nition 1.3.1. A Hodge structure (HS) of weight m is a pair (H,F ) where:

1. H is a �nite-dimensional vector space over R.

2. F is a �nite decreasing �ltration, called Hodge �ltration, on HC := H ⊗ C.

3. HC = F pHC⊕Fm−p+1HC for any p ∈ Z, where the conjugation on HC is induced
by the complex conjugation on C.

Given a HS of weight m, for any pair (p, q) such that p + q = m we can de�ne
Hp,q := F pHC ∩ F qHC; we obtain the following equalities:

(i) HC =
⊕

p+q=mH
p,q.

(ii) Hp,q = Hq,p.

Conversely, given a �nite direct sum decomposition of HC by subspaces Hp,q satisfying
(i) and (ii) above, we can obtain a HS on H by de�ning the Hodge �ltration as

F pHC :=
⊕
s≥p

Hs,m−s.
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Given a HS of weight m, the associated Hodge numbers are de�ned, for p+ q = m, as

hp,q := dimC(GrpFHC) = dim(Hp,q).

By (ii) above, we have hp,q = hq,p.

De�nition 1.3.2. Let (H,F ) and (H ′, F ′) be HS of the same weight m. A morphism
of HS is an R-linear map φ : H → H ′ such that φ⊗1C : HC → H ′C satis�es φC(F pHC) ⊆
F ′pH ′C for all p.

It is a classical result that ifX is a compact Kähler manifold thenHm(X,R) admits
a HS of weight m, and the subspaces Hp,q are given by Hq(X,Ωp

X); in particular, for
p > dim(X) we have Hp,q = 0.

The notion of HS can be generalised as follows:

De�nition 1.3.3. A mixed Hodge structure (MHS) is a triple (H,W,F ) where:

1. H is a �nite dimensional vector space over R.

2. W is a �nite increasing �ltration, called weight �ltration, on H.

3. F is a �nite decreasing �ltration, called again Hodge �ltration, on HC with the
following property: if we de�ne GrWk H := WkH/Wk−1H and denote again by F
the �ltration induced by the Hodge �ltration on (GrWk H)C := (GrWk H)⊗C, the
pair (GrWk H,F ) is a pure HS of weight k for all k.

When the weight �ltration is trivial we obtain a HS; in this case we say that the
MHS is pure. The induced Hodge �ltration on (GrWk H)C is given by

F p(GrWk )C := (F pHC ∩WkHC +Wk−1HC)/Wk−1HC where WkHC := (WkH)⊗ C.

To a MHS (H,W,F ) we associate the mixed Hodge numbers, de�ned as

hp,q(H) := dimC(GrpFGr
W
p+qHC).

Since they are the Hodge numbers of the pure HS GrWp+q(HC) we have hp,q(H) =
hq,p(H).

Remark 1.3.4. If (V,W, F ) and (U,W ′, F ′) are MHS, we can put a MHS on Hom(V, U)
by de�ning the weight and Hodge �ltration in the following way:

WpHom(V, U) :={f : V → U |f(WnV ) ⊂ W ′
n+pU for all n}.

F pHomC(VC, UC) :={f : VC → UC|f(F nVC) ⊂ F ′n+pUC for all n}.

If the HS are actually pure of weights k and l we obtain a pure HS of weight l− k; in
particular, if we take U = R and UC = W 0,0 we get a pure HS of weight −k on the
dual V ∨ of V .
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De�nition 1.3.5. 1. Let (H,W,F ) and (H ′,W ′, F ′) be two MHS. A morphism of
MHS is an R-linear map φ : H → H ′ such that

φ(WkH) ⊆ W ′
kH
′ for all k.

φC(F pHC) ⊆ F ′pH ′C for all p.

2. Given a MHS (H,W,F ) and an integerm ∈ Z we can de�ne the MHS (H(m),W, F )
where

H(m) := H,

WkH(m) := Wk+2mH,

F pH(m)C := F p+mHC,

for any k, p ∈ Z.

3. A morphism of MHS of type (r, r) is an R-linear map φ : H → H ′ such that the
induced map φ : H → H ′(r) (equivalently, the induced map φ : H(−r)→ H ′) is
a morphism of MHS. This implies that

φ(F pHC) ⊆ F ′p+rH ′C.

φ(WkH) ⊆ W ′
k+2rH

′.

Proposition 1.3.6. If φ : H → H ′ is a morphism of MHS, then φ is strictly compatible
with both �ltrations W and F , i.e φ(WkH) = W ′

kH
′∩Im(φ) and φC(F pHC) = F ′pH ′C∩

Im(φC) for all k, p ∈ Z.

Proof. [9, Thm II.1.2.10(iii)]

The strictness of the morphisms φ of MHS implies thatKer(φ), Im(φ) and Coker(φ)
have canonically de�ned MHS. In particular, if

· · · → Hk−1 → Hk → Hk+1 → · · ·

is an exact sequence of MHS, then it remains exact after taking the GrWi , GrjF or
GrjFGr

W
i parts.

Theorem 1.3.7. For any algebraic variety X of complex dimension n there is a func-
torial MHS on H•(X,R) satisfying the following properties for all m ≥ 0:

1. The weight �ltration W on Hm(X,R) satis�es:

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2m = Hm(X,R).

Moreover, for m ≥ n we also have W2n = · · · = W2m.
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2. The Hodge �ltration F on Hm(X,C) satis�es:

Hm(X,C) = F 0 ⊇ · · · ⊇ Fm+1 = 0.

Moreover, for m ≥ n we also have F n+1 = 0.

3. If X is smooth then Wm−1 = 0 and Wm = j∗Hm(X,R) for any compacti�cation
j : X ↪→ X.

4. If X is projective then Wm = Hm(X,R) and Wm−1 = Ker(p∗) for any proper
map p : X̃ → X with X̃ smooth.

Proof. All these results are contained in [9].

From now on, in order to simplify notations, we will omit writing the coe�cients
of the various cohomology groups.

MHS arise quite naturally in geometry: in fact, most of the morphisms of cohomol-
ogy groups and long exact sequences of cohomology groups are actually morphisms and
long exact sequences of MHS. The next result summarises some of the most important
cases:

Proposition 1.3.8. (i) Let X be a complex algebraic variety and Y ⊂ X be any
subvariety. Then there is a MHS on the relative cohomology groups H•(X, Y )
such that the long exact sequence of the pair (X, Y )

· · · → H•(X, Y )→ H•(X)→ H•(Y )→ H•+1(X, Y )→ · · ·

is a long exact sequence of MHS. If Y is closed and U := X \ Y , the group
H•(X, Y ) is usually denoted by H•U(X).

(ii) Let X be a compact complex algebraic variety, Y ⊂ X be a closed subvariety and
U := X \ Y . Then

(I) The cohomology groups with compact support H•c (U) are given a MHS via
the isomorphism H•c (U)→ H•(X, Y ); in particular, by point (i) we obtain
the following long exact sequence of MHS:

· · · → H•c (U)→ H•(X)→ H•(Y )→ H•+1
c (U)→ · · · .

(II) The cup product pairings H i
c(U) ⊗ Hj(U) → H i+j

c (U) are morphisms of
MHS. In particular, if d := dim(U) then the pairing

H i
c(U)⊗H2d−i(U)→ H2d

c (U)

is a perfect pairing of MHS; as a consequence, we obtain the isomorphism
of MHS

H i
c(U) ' H2d−i(U)∨(−d) (1.3.1)
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from which we deduce, for all p and k, isomorphisms

GrpFGr
W
mH

k
c (U) ' Grd−pF GrW2d−mH

2d−k(U). (1.3.2)

Proof. [62, Sections 5.5, 6.3].

We now present some results on MHS and related notions that we shall use later
on.

Proposition 1.3.9. Let f : X̃ → X be a proper modi�cation of a complex algebraic
variety with discriminant D. De�ne E := f−1(D) and call g := f|E : E → D and

i : D ↪→ X, j : E ↪→ X̃ the inclusions; from the discriminant square

E
j

//

g

��

X̃

f

��

D
i // X

one obtains a long exact sequence of MHS

· · · → H•(X)
(f∗,i∗)−−−−→ H•(X̃)⊕H•(D)

j∗−g∗−−−→ H•(E)→ H•+1(X)→ · · ·

called the Mayer-Vietoris sequence for the discriminant square associated to f .

Proof. [62, De�nition-Lemma 5.17] shows that the 2-cubical space Y� associated to the
discriminant square of a proper modi�cation is of cohomological descent; the Propo-
sition follows then from [62, Theorem 5.35].

Proposition 1.3.10. Let X be a complex algebraic variety of dimension n with sin-
gular locus Σ. Let Z be a subvariety of dimension s of X containing Σ, and let
π : X̃ → X be a resolution of singularities of X such that D := π−1(Z) is a simple
normal crossing divisor in X̃. Then:

1. For all k ≥ n+ s we have Wk−1H
k(D) = 0.

2. If moreover Z is compact, then the MHS on Hk(D) is pure of weight k for all
k ≥ n+ s.

Proof. [62, Theorem 6.31] There exist s + 1 a�ne open subsets of X, call them
U0, . . . , Us, whose union U covers Z; being a�ne, they satisfy Hk(Ui) = 0 for k > n
for all i's by Corollary 1.1.4.

We prove by induction that Hk(U0 ∪ · · · ∪ Ut) = 0 for k > n + t. The case t = 0
is obvious; for t > 0, we write the Mayer-Vietoris sequence associated to the covering
{U0 ∪ · · · ∪ Ut−1, Ut} of U0 ∪ · · · ∪ Ut:

→ Hk−1((U0∪· · ·∪Ut−1)∩Ut)→ Hk(U0∪· · ·∪Ut)→ Hk(U0∪· · ·∪Ut−1)⊕Hk(Ut)→
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We have Hk(Ut) = 0 for k > n, and Hk(U0 ∪ · · · ∪ Ut−1) = 0 for k > n + t − 1 by
induction hypothesis. (U0∪· · ·∪Ut−1)∩Ut is union of the t−1 a�ne open sets Ui∩Ut,
so by induction hypothesis Hk−1((U0 ∪ · · · ∪ Ut−1) ∩ Ut) = 0 for k − 1 > n+ t− 1 i.e.
for k > n+ t. This proves our claim.

Now we de�ne Ũ := π−1(U) and consider the following resolution square:

D //

��

Ũ

��

Z // U.

The associated long exact sequence in cohomology reads:

· · · → Hk(U)→ Hk(Z)⊕Hk(Ũ)→ Hk(D)→ Hk+1(U)→ · · · .
For k ≥ n + s we have Hk(Z) = 0, which means that the map Hk(Ũ) → Hk(D) is
surjective for k = n + s while it is an isomorphism for k > n + s; since Ũ is smooth,
this implies that for k ≥ n + s the group Hk(D) has weights ≥ k, and in particular
Wk−1H

k(D) = 0.
If Z is compact then D is compact too, and so Hk(D) has weights ≤ k; this implies

that the MHS on Hk(D) is pure of weight k.

Proposition 1.3.11. Let X be a complex algebraic variety of dimension n with singu-
lar locus Σ, and let s := dim(Σ); for k > n+s one has Wk−1H

k(X) = 0. In particular,
if X is projective then the MHS on Hk(X) is pure for k > n+ s.

Proof. [62, Theorem 6.33] Let π : X̃ → X be a resolution of X, and de�ne D :=
π−1(Σ); for k > n+ s we have Hk(Σ) = 0 so we get the exact sequence of MHS

Hk(X̃)→ Hk(X)→ Hk(D).

As both Wk−1H
k(X̃) and Wk−1H

k(D) are zero (the former because X̃ is smooth, the
latter by the previous proposition) we deduce that Wk−1H

k(X) = 0.

We now present two easy consequences of Propositions 1.3.9 and 1.3.11:

Corollary 1.3.12. If X is a complex projective surface with singular locus of di-
mension zero and X̃ is a resolution of singularities of X, then H i(X) ' H i(X̃) for
i = 3, 4.

Proof. If X is smooth there is nothing to prove. If it is not, then H3(X) and H4(X)
have a pure HS by Proposition 1.3.11. If we denote by E the exceptional divisor of
the resolution X̃ → X, the last part of the long exact sequence of MHS associated to
the resolution square of X reads

· · · → H2(E)
α−→ H3(X)→ H3(X̃)→ 0→ H4(X)→ H4(X̃)→ 0

hence H4(X) ' H4(X̃). Since H3(X) has a pure HS of weight 3 we know that
GrWi H

3(X) = 0 for i 6= 3, but GrW3 H
2(E) = 0: this means α is identically zero, which

implies H3(X) ' H3(X̃).
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Corollary 1.3.13. If X is a complex projective surface having only ADE singularities,
then all its cohomology groups H i(X) admit a pure HS.

Proof. For i = 3, 4 this follows from the previous corollary, while for i = 0 the state-
ment is trivial. Denote by Σ the singular locus of X, by X̃ a resolution of X and by
E the exceptional divisor; from the associated resolution square we obtain

0→ H0(X)→ H0(X̃)⊕H0(Σ)→ H0(E)
σ−→ H1(X)→ H1(X̃)→

→ H1(E)→ H2(X)→ H2(X̃)→ H2(E)
α−→ H3(X)→ · · · .

The exceptional divisor we obtain from the resolution of an ADE singularity consists
of rational curves with intersection diagram coinciding with a Dynkin diagram of type
An, Dn, E6, E7 or E8; from this we deduce that H1(E) = 0. Moreover H2(E) has
pure HS by Proposition 1.3.11. As the map α is identically zero, we obtain a short
exact sequence

0→ H2(X)→ H2(X̃)→ H2(E)→ 0

which implies that H2(X) has a pure HS. The map σ is identically zero too, so we �nd

0→ H1(X)→ H1(X̃)→ 0

i.e. H1(X) ' H1(X̃) and in particular H1(X) has a pure HS.

Remark 1.3.14. The proof of the previous corollary shows that it is su�cient that
X has singularities such that H1(E) = 0 in order for the H i(X) to have a pure HS.

It is now natural to ask how MHS behave `in families', i.e. what is the relation
between the MHS on a variety X and the MHS of a deformation X ′ of it.

De�nition 1.3.15. Let X be a complex algebraic variety. A deformation of X is
given by the following data:

1. Two complex algebraic varieties X and B with B irreducible.

2. A �at, proper and surjective morphism π : X → B.

3. A point b0 ∈ B such that X ' π−1(b0) ⊂ X .

This information can be encoded in the following diagram:

X ' // π−1(b0)

��

// X

��

{b0} // B.
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For the Hodge numbers of a pure HS on a Kähler manifold we have the following
classical result:

Proposition 1.3.16. Let X be a Kähler manifold and π : X → B be a deformation
of X = π−1(b0). Then for b near b0 the �bre Xb is a Kähler manifold and hp,q(Xb) =
hp,q(X).

Proof. [67, Proposition 9.20].

If X is singular, a deformation need not preserve its singularities; the deformation
that do are called equisingular. While it is intuitively clear what `preserving the sin-
gularities' means, the precise de�nition of equisingular deformation is rather involved;
the interested reader can �nd it in any book on singularity theory, for example [28].

We are mainly interested in equisingular deformations of plane curves; we will prove
in fact that:

(i) The mixed Hodge numbers of a plane curve C ⊂ P2 are invariant under equisin-
gular deformation.

(ii) Let C ⊂ P2 be a plane curve and S be a covering of P2 branched along C; any
equisingular deformation of C induces an equisingular deformation of S, under
which the mixed Hodge numbers of S are invariant.

Thus, mixed Hodge numbers of some singular varieties behave under equisingular
deformations as Hodge numbers of Kähler manifolds behave under deformations.

(i) - Curves Let C be a projective plane curve, Σ be its singular locus, C̃ be a
resolution of C and E be the exceptional divisor. By Theorem 1.3.7 and Proposition
1.3.9 we have that:

• Both the weight and Hodge �ltrations on H0(C) are trivial, so h0,0(H0(C)) =
h0(C).

• On H1(C) the weight and Hodge �ltrations are given by

0 = W−1H
1(C) ⊂ W0H

1(C) ⊂ W1H
1(C) = H1(C).

0 = F 2H1(C) ⊂ F 1H1(C) ⊂ F 0H1(C) = H1(C).

The associated mixed Hodge numbers are thus h0,0(H1(C)) and h0,1(H1(C)) =
h1,0(H1(C)).

• The MHS on H2(C) is actually pure, i.e. the weight �ltration is trivial; the only
mixed Hodge number is thus h1,1(H2(C)) = h2(C).
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By Proposition 1.3.9, from the resolution square

E //

��

C̃

��

Σ // C

we obtain the following long exact sequence of MHS:

0→H0(C)→ H0(C̃)⊕H0(Σ)→ H0(E)→ H1(C)→
→H1(C̃)→ 0→ H2(C)→ H2(C̃)→ 0.

From this we deduce immediately that H2(C) ' H2(C̃), which implies that h2(C) is
invariant under equisingular deformation. Taking the graded parts GrWi for i = 0, 1,
we obtain:

• 0 → GrW1 H
1(C) → H1(C̃) → 0; this implies the invariance of h0,1(H1(C)) =

h1,0(H1(C)).

• 0 → H0(C) → H0(C̃) ⊕H0(Σ) → H0(E) → GrW0 H
1(C) → 0. The dimensions

of the �rst three non-zero terms of this sequence are invariant under equisingular
deformation so we deduce the invariance of h0,0(H1(C)).

(ii) - Branched coverings of P2 Let C := V (f(x0, x1, x2)) ⊂ P2 be a curve of
degree d, and de�ne the surface S := V (ym−f) ⊂ P( d

m
, 1, 1, 1) which is anm-to-1 cover

of P2 branched along C; the singular locus of S consists of the points (0 : x0 : x1 : x2)
such that (x0 : x1 : x2) is a singular point of C, so S has only isolated singularities.
We write Σ := Ssing = {P1, . . . , Pn}. We denote by S̃ a resolution of singularities of
S and by E the corresponding exceptional divisor, which we can assume to be simple
normal crossing.

Remark 1.3.17. A general deformation of C can be given by a �at, proper and
surjective holomorphic map φ : C → C where C = V (F (x0, x1, x2, t)) ⊂ P2 × C is the
total space, the �bre C0 := φ−1(0) is isomorphic to C and φ is just the projection onto
t. Under a general deformation the singularities of the starting variety might `collapse'
one into the other in some �bres, but to avoid this problem it is enough to remove a
�nite set of points ∆ from the base space of the deformation; once we have removed
these points from C and their preimages from C, we have an equisingular deformation
φ : C ′ → C \∆.

From this we immediately obtain an equisingular deformation φ′ : S → C \∆ of S
with total space S = V (ym−F (x0, x1, x2, t)) ⊂ P3×C, and by blowing up the singular
locus of the latter total space we obtain a deformation φ′′ : S̃ → C \∆ of S̃ such that
any �bre S̃t is a resolution of singularities of the �bre St. The latter deformation gives
a family of projective manifolds, for which the Hodge numbers are invariant.
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Using Proposition 1.3.9, from the diagram

E //

��

S̃

��

Σ // S

(1.3.3)

we deduce a long exact sequence of MHS:

· · · → H•(S)→ H•(S̃)⊕H•(Σ)→ H•(E)→ H•+1(S)→ · · · .

By the Lefschetz hyperplane theorem we haveH1(S) = 0, and clearly we haveH3(E) =
0 and H1(Σ) = 0; this yields the following long exact sequence of MHS:

0→ H0(S)→ H0(Σ)⊕H0(S̃)→ H0(E)→ 0→ H1(S̃)→ H1(E)→ H2(S)→
→ H2(S̃)→ H2(E)→ H3(S)→ H3(S̃)→ 0→ H4(S)→ H4(S̃)→ 0.

By Corollary 1.3.12 we know that H i(S) ' H i(S̃) for i = 3, 4, so the mixed Hodge
numbers of H3(S) and H4(S) are invariant under equisingular deformation of C. We
now have to deal with the cohomology groups H i(S) for i = 0, 1, 2; we study them by
applying GrW2 , GrW1 and GrW0 to the above long exact sequence of MHS.

Remark 1.3.18. E is a simple normal crossing divisor with k smooth components
of degrees d1, . . . , dk; if we deform C to C ′ with an equisingular deformation, the
exceptional divisor E ′ we obtain is again simple normal crossing with k smooth com-
ponents of degrees d1, . . . , dk, because it depends on data (the singularities of C ′) that
is left untouched by equisingular deformations. In particular, all cohomology groups
H i(E) and the associated mixed Hodge numbers remain invariant under equisingular
deformation of C.

• The Hodge structure on H2(E) is pure by Proposition 1.3.11, so after applying
GrW2 we obtain

0→ GrW2 H
2(S)→ H2(S̃)→ H2(E)→ 0.

The Hodge numbers of H2(S̃) are invariant under equisingular deformation of
C, and the same goes for those of H2(E), hence the mixed Hodge numbers
h2,0(H2(S)) = h0,2(H2(S)) and h1,1(H2(S)) are invariant under equisingular de-
formation.

• Applying GrW1 we obtain

0→ H1(S̃)→ GrW1 H
1(E)→ GrW1 H

2(S)→ 0

which gives the invariance under equisingular deformation of C of h1,0(H2(S)) =
h0,1(H2(S)).
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• Applying GrW0 we obtain

0→ H0(S)→ H0(Σ)⊕H0(S̃)→ H0(E)→ 0→ GrW0 H
2(S)→ 0

from which we deduce that h0,0(H2(S)) = 0 and that h0,0(H0(S)) is invariant
under equisingular deformation of C.

1.4 Polar and Hodge �ltrations on hypersurface com-

plements

1.4.1 The global case

An e�ective approach to the study of the cohomology of a (weighted) projective
hypersurface V , which was introduced �rst by Gri�ths in his celebrated paper [29]
in the projective setting, and was later extended to the weighted projective setting
by Dolgachev in [23], consists in studying the cohomology of its complement. In this
section we recall some results of this type, most of which can be found in [16, Chapter
6].

Fix an integer n ≥ 1 and weights w0, . . . , wn ∈ Z≥1, and let R := C[x0, . . . , xn].
R becomes a graded ring by setting deg(xa00 · . . . · xann ) := a0w0 + · · · + anwn, and
the C-vector space Ωp of p-forms on Cn+1 becomes a graded R-module by setting
deg(xa00 · . . . · xann dxi1 ∧ · · · ∧ dxip) := a0w0 + · · · + anwn + wi1 + · · · + wip ; their
homogeneous components of degree m are denoted by Rm and Ωp

m respectively.
Assume now we are in the usual projective setting, i.e. wi = 1 for all i = 0, . . . , n.

We denote by E the Euler vector �eld on Cn+1

E :=
n∑
i=0

xi
∂

∂xi

and by ιE the contraction by E; this means that for any x ∈ Cn+1, α ∈ Ωp and
v1, . . . , vp−1 ∈ TxCn+1 the (p− 1)-form ιE(α) on Cn+1 is given by

ιE(α)x(v1, . . . , vp−1) := α(E(x), v1, . . . , vp−1).

Taking advantage of the properties of ιE : Ωp → Ωp−1 we obtain the following:

Proposition 1.4.1. Let V ⊂ Pn be a hypersurface de�ned by a polynomial f ∈ Rd,
and de�ne U := Pn \ V ; any p-form w on U (for p > 0) can be written as

w =
ιE(γ)

f s
(1.4.1)

for some integer s > 0 and γ ∈ Ωp+1
sd .

Proof. [16, Proposition 6.1.16].
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In particular, since Ωn+1 is an R-module of rank 1 generated by wn+1 := dx0 ∧
· · · ∧ dxn, we obtain that in the same hypotheses of the proposition above any n-form
on U can be written as

w =
hΩ

f s
for h ∈ Rsd−n−1 and s > 0 (1.4.2)

where Ω is the n-form

Ω := ιE(wn+1) =
n∑
i=0

(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

From now on we will work in the weighted projective setting (to which this last
result can be extended by considering a generic set of weights for the indeterminates
xi and adjusting the de�nition of the Euler vector �eld): we write P := P(w), and
consider a hypersurface V := V (f) ⊂ P of degree d and its complement U := P \ V .

De�nition 1.4.2. If w ∈ H0(U,Ωp
P) is a rational di�erential form as in (1.4.1), the

minimal positive integer s for which such a representation of w exists is called the order
of the pole of w along the hypersurface V ; from now on this value will be denoted by
ordV (w).

We now de�ne the polar �ltration on the de Rham complex of U , that consists of
objects

Am := H0(U,Ωm
P ).

De�nition 1.4.3. The polar �ltration on (A•, d) is the decreasing �ltration P de�ned
by

P sAm :=

{
{w ∈ Am|ordV (w) ≤ m− s+ 1} if m− s+ 1 ≥ 0.

0 if m− s+ 1 < 0.

Looking back at (1.4.2), we see that there is an obvious surjective mapR(n−s)d−n−1 �
P s+1An s.t. h 7→ [hΩ/fn−s].

Proposition 1.4.4. The �ltration P has the following properties:

1. P is a �ltration of complexes, i.e. it is compatible with the di�erential:

d(P sAm) ⊂ P sAm+1.

2. P is decreasing and bounded above:

0 = P n+1A• ⊂ P nA• ⊂ · · · ⊂ P iA• ⊂ P i−1A• ⊂ · · · .

3. P is exhaustive, i.e.

A• = ∪s∈ZP sA•.
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Proof. [16, Lemma 6.1.29].

The last two bullets of this proposition imply, by the general theory of spectral
sequences, that the spectral sequence associated to the �ltration P converges toH•(U).

The inclusion of complexes P sA• ↪→ A• induces, for every m, a morphism at the
level of cohomology Hm(P sA•) → Hm(A•); this allows us to de�ne an induced polar
�ltration P on the cohomology groups H•(U) := H•(A•) by

P sHm(U) := Im{Hm(P sA•)→ Hm(A•)}.

More explicitly, we have

P sHm(U) =


{
α ∈ Hm(A•)

α has a representative w

s.t ordV (w) ≤ m− s+ 1

}
if m− s+ 1 ≥ 0.

0 if m− s+ 1 < 0.

(1.4.3)
This �ltration is clearly still decreasing. Now, since U is an algebraic variety its

cohomology groups admit a natural MHS (recall Theorem 1.3.7); we are interested in
comparing the polar �ltration P with the Hodge �ltration F on H•(U). We have the
following result:

Proposition 1.4.5. F sHm(U) ⊂ P sHm(U) for any integer s and m.

Proof. [16, Theorem 6.1.31].

Corollary 1.4.6. Any element in Hm(U) can be represented by a rational form w ∈
Am such that ordV (w) ≤ m.

Proof. [16, Corollary 6.1.32].

As a consequence of this corollary, and of the de�nition of polar �ltration and order
of the pole of a di�erential form, for m > 0 we have the following:

0 = Pm+1Hm(U) ⊆ PmHm(U) ⊆ · · · ⊆ P 2Hm(U) ⊆ P 1Hm(U) = Hm(U) (1.4.4)

and in particular

Hm(U) '
m⊕
i=1

GriPH
m(U). (1.4.5)

We conclude this section by recalling an important result on the primitive middle
cohomology groups of a (weighted) projective hypersurface. We start from the usual
projective setting. Call V := V (f) ⊂ Pn and U := Pn \ V , and denote by Ωn

Pn(sV ) the
sheaf of meromorphic n-forms on Pn having a pole of order at most s along V . For
any s = 1, . . . , n we can de�ne the map

φs : H0(Pn,Ωn
Pn(sV ))→ Hn(U) s.t. α 7→ [α]
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associating to any α its de Rham cohomology class; its image is clearly P n−s+1Hn(U).
Assume now V has degree d; since Ωn

Pn = OPn(−n − 1) and OPn(V ) = OPn(d), we
obtain a surjective map

φs : H0(Pn,OPn(sd− n− 1))� P n−s+1Hn(U)

which we can compose with the projection onto P n−s+2Hn(U) to obtain

φs : H0(Pn,OPn(sd− n− 1))� P n−s+1Hn(U)/P n−s+2Hn(U).

Proposition 1.4.7. Call Jf the Jacobian ideal of f in R. For s = 1, . . . , n, if w = hΩ
fs

with h ∈ Jfsd−n−1 then w ∈ Ker(φs).

Proof. Pick an element h :=
∑n

i=0 hi
∂f
∂xi

in Jfsd−n−1 and call w := hΩ
fs

the corresponding

meromorphic n-form on Pn; if we de�ne the (n− 1)-form ψ as

ψ :=
1

sf s−1

[∑
i<j

(−1)i+j(xihj − xjhi)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

]

a direct computation shows that

w + dψ = − Ω

f s−1

n∑
i=0

∂hi
∂xi

where the right-hand side τ is a meromorphic n-form with a pole of order at most s−1
along V . This means that [w] = [τ ] ∈ P n−s+2Hn(U) i.e. that φs(w) = 0.

From this proposition we deduce the existence of the following surjective map

(R/Jf )sd−n−1 � P n−s+1Hn(U)/P n−s+2Hn(U). (1.4.6)

If V is smooth then this map further simpli�es; we have in fact:

1. The Hodge and polar �ltration on Hn(U) coincide, as shown by Gri�ths in [29].

2. The statement in Proposition 1.4.7 becomes an if and only if.

3. We have F n−s+1Hn(U) ' F n−sHn−1(V )van ' F n−sHn−1(V )prim by the following
arguments:

• If we call j : U ↪→ Pn the inclusion, we have the short exact sequence

0→ Hn(Pn,Q)prim
j∗−→ Hn(U,Q)

Res−−→ Hn−1(X,Q)van → 0

which is compatible with the Hodge �ltration. Since Hn(Pn,C)prim = 0
and the residue is a morphism of MHS of type (−1,−1), we get the �rst
isomorphism.
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• For projective hypersurfaces the vanishing and primitive middle cohomology
coincide, so we get the second isomorphism.

This means that in the smooth case the map (1.4.6) becomes an isomorphism:

(R/Jf )sd−n−1
'−→ Hn−s,s−1(V )prim. (1.4.7)

In the weighted projective setting similar statements hold (although we need to put
some care in the de�nition of a regular form on the space P(w): if we call W the sum
of the weights wi, we obtain

(R/Jf )sd−W � P n−s+1Hn(U)/P n−s+2Hn(U). (1.4.8)

If V is quasi-smooth then the �ltrations P and F on Hn(U) coincide (this was proved
by Steenbrink in [65]) and the map above becomes the following isomorphism:

(R/Jf )sd−W
'−→ Hn−s,s−1(V )prim. (1.4.9)

1.4.2 The local case

We now want to describe a polar �ltration in the following local setting: we assume
thatX is an open ball of radius r > 0 centred at the origin of Cn and Y is a hypersurface
in X with equation g = 0 such that 0 ∈ Y ; we assume also that Y has a conic structure
in X (this can be always achieved by taking r small enough, see [16, Theorem 1.5.1]).

We denote again by g the analytic function germ g : (Cn, 0) → (C, 0); the set
{gs|s ≥ 0} can be thought of as a multiplicative system for each stalk Ωi

Cn,0. We
denote by Ω•g the associated `localised analytic de Rham complex' and de�ne the
complex A•∞ := H0(X,Ω•Cn,0); the latter can be identi�ed with the de Rham complex
of germs at the origin of Cn of meromorphic di�erential forms with poles along Y , so
any element in it has a representative ω of the form

ω =
β

gs

where β is a di�erential form whose coe�cients are function germs in OCn,0.
We can de�ne a polar �ltration P on A•∞ by setting

P sAm∞ :=

{
{ω ∈ Am∞|ordY (ω) ≤ m− s+ 1} if m− s+ 1 ≥ 0.

0 if m− s+ 1 < 0.

This �ltration has all the properties of the polar �ltration we saw in the global case;
in particular, it de�nes a spectral sequence (Er(Y ), dr) which converges to H•(X \Y ).
There is an associated polar �ltration P on Hm(X \ Y ) = Hm(A•∞) given by:

P sHm(X \ Y ) := Im{Hm(P sA•∞)→ Hm(A•∞)}.

Assume from now on that (Y, 0) is an isolated singularity. The cohomology groups
Hm(X \ Y ) also carry a Hodge �ltration, but the relation between it and the polar
�ltration is not as simple as in the global case:
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Proposition 1.4.8. For any integer s we have

F sHn(X \ Y ) ⊂ P sHn(X \ Y ).

F sHn−1(X \ Y ) ⊃ P sHn−1(X \ Y ).

Proof. [37].

We now focus our interest on a particular class of isolated singularities.

De�nition 1.4.9. The singularity (Y, 0) is weighted homogeneous if there exist coor-
dinates y1, . . . , yn on Cn around the origin and weights vi := wt(yi) such that (Y, 0)
can be de�ned by a weighted homogeneous polynomial g of degree M (for some M)
with respect to the weights v := (v1, . . . , vn).

Proposition 1.4.10. (Er(Y ), dr) degenerates at E2 if and only if the singularity (Y, 0)
is weighted homogeneous

Proof. [14, Corollary 3.10'].

Remark 1.4.11. When (Y, 0) is weighted homogeneous the terms En−t,t
2 of this spec-

tral sequence can be described easily: if we denote by M(g) the Milnor algebra of g,
which inherits the grading given by v, and by v the sum of weights of v, we have a
C-linear identi�cation

En−t,t
2 (Y ) 'M(g)tM−v

given by associating to the class of a monomial yα ∈M(g)tM−v the class of the di�er-
ential form yαg−tωn, where ωn := dy1 ∧ · · · ∧ dyn.

Since we haveHn(X\Y ) '
⊕

t∈NM(g)tM−v, if {yα = yα1
1 ·· · ··yαnn |α = (α1, . . . , αn) ∈

At} is a monomial basis for M(g)tM−v then the di�erential forms

ω(yα) :=
yα

gt
ωn

form a basis for P sHn(X \ Y ).
Since Y − {0} is a smooth divisor in X − {0} we can write the usual Gysin exact

sequence, which gives in particular

· · · → Hn(X \ {0})→ Hn(X \ Y )
Res−−→ Hn−1(Y \ {0})→ Hn+1(X \ {0})→ · · · .

X \{0} retracts onto S2n−1, so Hk(X \{0}) = 0 for k 6= 0, 2n−1; as a consequence, the
Poincaré residue map Res : Hn(X \ Y )→ Hn(Y \ {0}) is an isomorphism. Moreover,
the assumption of Y being a cone in X means that Y is contractible, so the long exact
sequence of the pair (Y, Y \ {0}) gives an isomorphism Hn−1(Y \ {0}) → Hn(Y, Y \
{0}) := Hn

{0}(Y ). Putting things together, we get isomorphisms
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Hn
{0}(Y ) ' Hn(X \ Y ) '

⊕
t∈N

M(g)tM−v. (1.4.10)

This shows that we can induce a polar �ltration P on Hn
{0}(Y ) too. This local coho-

mology group carries a natural MHS, which is actually pure of weight n when (Y, 0)
is a weighted homogeneous singularity; in the same situation, the polar �ltration P
coincides with the Hodge �ltration F (see [65]).
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CHAPTER 2

Hyperplane arrangements and their

Alexander polynomial

2.1 The Alexander polynomials of a projective hy-

persurface

2.1.1 De�nition and basic properties

Call R the ring C[x0, . . . , xn] and consider a polynomial f ∈ R such that f(0) = 0.
For real numbers ε, δ > 0 we de�ne the open ball Bε := {x ∈ Cn+1 s.t. |x| < ε} and
the punctured disk D∗δ := {x ∈ C s.t. 0 < |x| < δ}; in [40] Lê proved that:

Theorem 2.1.1. For any 0 < δ � ε su�ciently small, the map

ψ : Bε ∩ f−1(D∗δ)→ D∗δ s.t. ψ(x) := f(x) (2.1.1)

is a smooth locally trivial �bration.

The map ψ is usually called the Milnor �bration associated to the polynomial f ;
this is due to the fact that, before the work of Lê, Milnor [54] proved the existence of
a �bration equivalent to the previous one for polynomials having at worst an isolated
singularity in 0. We are interested in the case in which f is weighted homogeneous:
namely, let w := (w0, . . . , wn) be a vector of non-negative integers and assign weights
to the indeterminates xi of R by wt(xi) := wi. R becomes a graded module over itself,
and we can speak of its homogeneous components Rd of degree d. If f ∈ Rd, taking
advantage of the Euler relation f(t · x) = tdf(x) it is easy to see that the polynomial
map

f : Cn+1 \ f−1(0)→ C∗ (2.1.2)

is a smooth locally trivial �bration equivalent to ψ; its restriction over the unit circle
S1 is called global a�ne Milnor �bration, and the �bre F := f−1(1) is called global
a�ne Milnor �bre; the latter is a smooth a�ne variety of complex dimension n so it

31
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is in particular a Stein space variety. Since we will focus only on the case in which f
is weighted homogeneous, we will simply speak of Milnor �bration and Milnor �bre.

Call now V := V (f) ⊂ P(w) the weighted projective hypersurface associated to f ,
U := P(w) \ V its complement and Y := V (yd − f) ⊂ P(1, w), which is the closure of
the Milnor �bre in the weighted projective space P(1, w); clearly

Ysing = {(0 : x0 : . . . : xn|(x0 : . . . : xn) ∈ Vsing} ' Vsing.

Consider the projection map

π : Y → P(w) s.t. (y : x0 : . . . : xn) 7→ (x0 : . . . : xn). (2.1.3)

The preimage of V through π is the set {(0 : x0 : . . . : xn)|(x0 : . . . : xn) ∈ V } ' V ,
while the preimage of any point (x0 : . . . : xn) ∈ U consists of the d points (y : x0 :
. . . : xn) with y 6= 0 satisfying yd = f(x0, . . . , xn); this exhibits Y as a d-fold cover of
P(w) branched along V , and F as a d-fold cover of U . In particular, F admits as a
deck transformation the automorphism

(x0, . . . , xn) 7→ (e
2πiw0
d x0, . . . , e

2πiwn
d xn).

As it happens with any �bration over S1, to the Milnor �bration we can associate a
geometric monodromy automorphism h : F → F ; the explicit expression of h is quite
easy when f is a weighted homogeneous polynomial: we have

h(x0, . . . , xn) = (e
2πiw0
d x0, . . . , e

2πiwn
d xn) (2.1.4)

i.e. the geometric monodromy coincides with the deck transformation of F we saw
before. For any i = 0, . . . , n, the geometric monodromy h induces an automorphism
T i on the cohomology group H i(F,C), which we call i-th algebraic monodromy. We
can now give the following de�nition:

De�nition 2.1.2. The i-th Alexander polynomial of V is the characteristic polynomial
of the i-th algebraic monodromy T i : H i(F,C)→ H i(F,C). We denote it by ∆i

V (t).

As h has �nite order, the same holds for the T i's: this means the latter are diago-
nalisable, with (not necessarily primitive) roots of unity of order d as eigenvalues. The
∆i
V (t) are thus products of cyclotomic polynomials Φk(t) with k|d.

Remark 2.1.3. Denote by H i(F,C)α the eigenspace of T i relative to the eigenvalue
α. Since F is a d-fold cover of U , and since the geometric monodromy h coincides
with the generator of the group of deck transformations of F , we deduce that

H i(F,C)1 = H i(F,C)T
i ' H i(F/〈h〉,C) = H i(U,C).

If V has r irreducible components, Proposition 1.1.10 implies that

H1(F,C)1 ' Cr−1

so the �rst Alexander polynomial ∆1
V (t) will always contain the factor (t− 1)r−1. For

this reason, when ∆1
V (t) = (t− 1)r−1 we will say that the �rst Alexander polynomial

is trivial.
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We can give a di�erent, more algebraic (but equivalent) de�nition of the i-th
Alexander polynomial. Since T i has order d, we can consider H i(F,Q) as a mod-
ule over the group algebra A := Q[Z/dZ] ' Q[t]/(td − 1) in the following way: for
P (t) ∈ A and α ∈ H i(F,Q) we set P (t) · α := P (T i)(α). The A-module H i(F,Q)
decomposes then into

H i(F,Q) = (Q[t]/(t− 1))e
i
1(V ) ⊕

⊕
1<k|d

(Q[t]/Φk(t))
eik(V ). (2.1.5)

De�nition 2.1.4. The i-th Alexander polynomial of V is

∆i
V (t) := (t− 1)e

i
1(V )

∏
1<k|d

Φk(t)
eik(V ).

Most of the Alexander polynomials of a projective hypersurface are actually iden-
tical to 1. To see this, observe �rst that F = Y ∩ D(y) and V ' Y ∩ Z(y), so we
have an open immersion j : F ↪→ Y and a closed immersion i : V ↪→ Y . As we have
seen, the singular loci of Y and V have the same dimension m (as usual m := −1 if
Vsing = ∅); this means that combining Barth's theorem 1.1.7 with the weak Lefschetz
theorem 1.1.1 we obtain

H i(Y,C) ' H i(Pn+1,C) for i < n and n+m+ 2 ≤ i ≤ 2n.

H i(V,C) ' H i(Pn,C) for i < n− 1 and n+m+ 1 ≤ i ≤ 2n− 2.

Moreover, since F is a smooth a�ne hypersurface of complex dimension n by Corollary
1.1.4 we have H i(F,C) = 0 for i > n. If we combine all of this and take advantage of
Poincaré duality, we obtain the following long exact sequence of cohomology groups
with compact support (recall Proposition 1.3.8(ii)):

0→ H0(Pn+1,C)→ H0(Pn,C)→ 0→ H2(Pn+1,C)→ H2(Pn,C)→ · · ·
· · · → 0→ Hn−1(Pn+1,C)→ Hn−1(V,C)→ Hn(F,C)→ Hn(Y,C)→ Hn(V,C)→ · · ·
· · · → Hn−m−1(F,C)→ Hn+m+1(Y,C)→ Hn+m+1(Pn,C)→ Hn−m−2(F,C)→
→ Hn+m+2(Pn+1,C)→ Hn+m+2(Pn,C)→ · · · → 0→ H0(F,C)→ H2n(Pn+1,C)→ 0.

As the morphisms H i(Pn+1,C) → H i(Pn,C) are isomorphisms for i = 0, . . . , 2n − 2,
we �nd that H i(F,C) can be non-trivial (i.e ∆i

V can be di�erent from 1) only for i =
0, n−m− 1, . . . , n. For this reason, we shift the indices of the Alexander polynomials
in the following way: for i = 1, . . . ,m+ 2 we set

∆i
V (t) := det(I · t− T n−m−2+i : Hn−m−2+i(F,C)→ Hn−m−2+i(F,C)). (2.1.6)

An important feature of the Alexander polynomials is that they remain (almost) un-
changed if we substitute the hypersurface V with a generic hyperplane section V ∩H;
precisely, we have the following:
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Theorem 2.1.5. Let V ⊂ Pn be a hypersurface and let m := dim(Vsing), then

∆k
V ∩H = ∆k

V for k ≤ m and ∆m+1
V |∆m+1

V ∩H

for any generic hyperplane H ⊂ Pn.

Proof. [16, Theorem 4.1.24]

Corollary 2.1.6. Let V ⊂ Pn be a hypersurface and let m := dim(Vsing) ≥ 1, then

∆1
V = ∆1

V ∩H1∩...∩Hm

for generic hyperplanes H1, . . . , Hm ⊂ Pn.

When m = −1 (i.e. when V is quasi-smooth) the only interesting Alexander
polynomial is ∆1

V , and the problem of its computation has been long solved (see [3,
Proposition 3.5]); on the other hand, when m ≥ 0 the picture changes: it appears
that even the Betti numbers of F (i.e. the degrees of the Alexander polynomials) are
known only in some special cases (see [24, 57, 64]). This suggests that for m ≥ 0 one
should start by studying ∆1

V : by the previous corollary, in fact, we can reduce to the
case of a hypersurface V ∩ H1 ∩ . . . ∩ Hm ⊂ Pn−m having isolated singularities. We
will do just that: from now on, we will denote ∆1

V simply by ∆V , and we will call it
the Alexander polynomial of V .

We conclude this section with a result that allows to `split' the reduced cohomology
groups of the Milnor �bre of a certain class of polynomials, of which we will make use
in Chapter 3:

Theorem 2.1.7. Suppose f(x0, . . . , xn) has an isolated singularity at the origin and
g(y0, . . . , ym) has an arbitrary singularity at the origin. Call F , G and F ⊕ G the
Milnor �bres of f , g and f + g respectively, and denote by T if , T

i
g and T

i
f+g the various

monodromy operators on the cohomology groups. There is an isomorphism

H̃n+k+1(F ⊕G,Q) ' H̃n(F,Q)⊗ H̃k(G,Q) for k = 0, . . . ,m

respecting the monodromy operators: T n+k+1
f+g = T nf ⊗ T kg .

Proof. This is a consequence of [16, Lemma 3.3.20, Corollary 3.3.21].

2.1.2 Constants of quasi-adjunction and a formula for ∆V

Assume f(x0, . . . , xn) = 0 de�nes a germ of isolated hypersurface singularity at
the origin of Cn+1, and let Yf denote the associated hypersurface germ. If ω is a non-
vanishing holomorphic n-form de�ned on Yf \ {0} and π : Ỹf → Yf is a resolution of
Yf , then the n-form π∗(ω) is a priori holomorphic on Ỹf \ π−1(0) only.

De�nition 2.1.8. Choose for ω the form

ω =
dx1 ∧ · · · ∧ dxn

∂f
∂x0

. (2.1.7)

The adjoint ideal of f is the ideal of OCn+1,0 formed by elements φ ∈ OCn+1,0 such that

π∗(φω) is holomorphic on the whole Ỹf (see [56]); we denote it by Adjf .
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This local de�nition of the adjoint ideal can be extended to a global one, namely
that of adjoint ideal of a weighted projective hypersurface V . In order to keep notations
simple, we write P for P(w0, . . . , wn); moreover, we denote by i the inclusion map
V ↪→ P and by w the sum of the weights wi. Assume π : Ṽ → V is a resolution of
singularities of V with exceptional locus E, and set F := π∗(ΩṼ )(w − d) where ΩṼ is
the sheaf of holomorphic (n− 1)-forms on Ṽ :

De�nition 2.1.9. The adjoint ideal of V is the ideal sheaf AdjV := i∗F ⊂ OP.

One can check that if p ∈ Vsing and gp is the associated germ of isolated hypersurface
singularity (which we can assume to be at the origin of Cn+1), then the stalk AdjV,p is
exactly the adjoint ideal Adjgp of gp.

Assume now that f(x0, . . . , xn) = 0 de�nes a germ of isolated hypersurface sin-
gularity at the origin of Cn+1, and �x a germ of holomorphic function φ around the
origin. For any m ∈ N set fm := xmn+1 − f ; then fm = 0 de�nes a germ of isolated
hypersurface singularity at the origin of Cn+2. We de�ne the function ψφ as:

ψφ : N→ N s.t. m 7→ min{l ∈ N|xln+1φ ∈ Adjfm}. (2.1.8)

We have:

Proposition 2.1.10. For any f and φ as above there exists kφ,f ∈ Q≥0 such that
ψφ(m) = bkφ,f ·mc.

Proof. [49, Proposition 1.7]

De�nition 2.1.11. If kφ,f > 0 then this number is called the constant of quasi-
adjunction of the singularity f corresponding to the germ φ (or constant of quasi-
adjunction of φ relative to the point p ∈ V of local equation f).

In what follows we will often drop the subscript f when speaking of constants of
quasi-adjunction. Moreover, we will use the expression `constants of quasi-adjunction
of a point p (a hypersurface V )' to refer to all possible constants of quasi-adjunction
of function germs φ at the point p (at any point p ∈ Vsing).

Remark 2.1.12. Since we shall be interested in constants of quasi-adjunction of or-
dinary multiple points in the projective plane, whose local equation have the form
xm − ym = 0, we recall two ways to compute the constants of quasi-adjunction of
weighted homogeneous isolated singularities:

1. In [56] it was proved that if the singularity g(x0, . . . , xn, xn+1) = 0 is weighted
homogeneous, then the monomial xi00 · . . . · x

in+1

n+1 belongs to the adjoint ideal of g
if and only if the (n+2)-tuple (i0 +1, . . . , in+1 +1) lies in the Newton polytope of
g. This makes it easy to compute the constants of quasi-adjunction of a weighted
homogeneous singularity f(x0, . . . , xn) = 0. In particular, if f = xq00 + · · · + xqnn
the Newton polytope of g := xmn+1 − f(x0, . . . , xn) is

{
(x0, . . . , xn+1) ∈ Rn+2

∣∣ n∑
i=0

mD

qi
xi +Dxn+1 > Dm

}
where D =

n∏
i=0

qi.
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In this case the minimal l such that xi0+1
0 · . . . · xin+1

n xln+1 belongs to the adjoint
ideal of g equals bm(1 −

∑n
k=0

ik+1
qk

)c. This means that the constant of quasi-

adjunction of the monomial (function germ) xI := xi00 · . . . ·xinn relative to a point
of local equation f = xq00 + · · ·+ xqnn is

kxI ,f = 1−
n∑
k=0

ik + 1

qk
(2.1.9)

if this value is positive.

2. If f(x1, . . . , xn+1) = 0 de�nes an isolated hypersurface singularity, the Steenbrink
spectrum of f is the formal sum of rational numbers

sp(f) :=
∑
α∈Q

αν(α) (2.1.10)

where ν(α) is the dimension of the e−2πiα-eigenspace of the semisempli�cation

of the monodromy operator acting on Gr
bn−αc
F Hn(Ff ). If f is weighted homoge-

neous then the monodromy operator is diagonalisable, so one does not need to
consider its semisempli�cation in order to de�ne ν(α); moreover, if f has degree
d and weights wi then

ν(α) = dimM(f)(α+1)d−w (2.1.11)

where M(f) is the Milnor algebra of f and w is the sum of the wi's. The
spectrum is symmetric around n−1

2
and ν(α) = 0 for α /∈ (−1, n). The results in

[51] show that when n = 2 the constants of quasi-adjunction of f coincide with
the elements of sp(f) belonging to (0, n).

The results illustrated above show that the constants of quasi-adjunction of the
plane curve singularity xm − ym = 0 are

1

m
,

2

m
, . . . ,

m− 3

m
,
m− 2

m
. (2.1.12)

De�nition 2.1.13. For any k ∈ R, the ideal of quasi-adjunction Ak is the sheaf of
ideals of OP s.t. for any U ⊂ P:

H0(U,Ak) := {φ ∈ H0(U,OP)|kφ,fp < k for any p ∈ U ∩ Vsing} (2.1.13)

where fp is a local equation of V ∩ U at the point p.

For any k the ideals of quasi-adjunction are supported on Vsing, hence if we de�ne
Qk := OP/Ak and Zk := Supp(Qk) we obtain a zero-dimensional subscheme of P; it
follows that Zk = Spec(Rk) for some �nite-dimensional C-algebra Rk, so we can de�ne
the length of Zk as l(Zk) := dimC(Rk).

Now we switch back to the usual projective setting, and state the following theorem:
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Theorem 2.1.14. Let V ⊂ Pn be a projective hypersurface of degree d with isolated
singularities. For any m|d let Xm be the m-fold cover of Pn branched along V and
let X̃m be a resolution of singularities of Xm. Denote by K the set of all constants of
quasi-adjunction of V , and for any κ ∈ K de�ne δκ := dimH1(Pn,Aκ(d−n−1−dκ)).
Then

1. We have an equality

hn−1,0(X̃m) =
κm∈Z∑
κ∈K

δκ.

2. The polynomial

∆n−1,0(t) :=
κd∈Z∏
κ∈K

(t− e2πiκ)δκ

is the characteristic polynomial of the monodromy action on Hn−1,0(Hn−1(F )),
hence ∆n−1,0(t)∆n−1,0(t)|∆V (t).

3. If V is a curve (i.e. n = 2), we have the equality

∆V (t) = ∆1,0(t)∆1,0(t)(t− 1)r−1

where r is the number of irreducible components of V .

Proof. Points 1. and 2. are the content of [49, Theorem 4.1]. Here we prove 3.,
because in what follows we will be dealing with curves and because for the proof we
will introduce a construction that will be used again in Chapter 3.

Call C = V (f) ⊂ P2 the curve, F = V (f − 1) ⊂ C3 its Milnor �bre and S =
V (f − yd) ⊂ P3 the closure of F ; we have a long exact sequence of MHS

· · · → H•c (F )→ H•(S)→ H•(C)→ H•+1
c (F )→ · · ·

which gives

· · · → H2(S)
σ−→ H2(C)→ H3

c (F )→ H3(S)→ 0.

The monodromy action on F is given by (x0, x1, x2) 7→ η · (x0, x1, x2), where η is an
element of the group µd of d-th roots of unity, and it can be extended to a µd-action
on S by setting η · (y : x0 : x1 : x2) := (ηy : x0 : x1 : x2); as S/µd ' P2, we have
h2(S)µd = 1 and h3(S)µd = 0.

Clearly h2(C) = r; moreover, we notice immediately that the µd-action on C is
trivial, hence H i(C)µd = H i(C).

The fact that C ⊂ S implies that σ is non-trivial, and the fact that C is �xed by
the µd-action guarantees that it remains non-trivial when we consider its restriction to
the µd-invariant parts σ

′ : H2(S)µd → H2(C). If we consider the invariant part under
the µd-action of the previous long exact sequence, we obtain
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0→ Ker(σ′)→ H2(C)→ H3
c (F )µd → 0.

If C̃ → C is a resolution of C, by the long exact sequence associated to this resolution
we deduce that H2(C) ' H2(C̃); in particular, H2(C) is a pure HS of weight 2
that consists only of its (1, 1) part. The same is true for Ker(σ′), which is a Hodge
substructure of H2(C). This implies that H3

c (F )1 = H3
c (F )µd is a pure HS of weight 2

and type (1, 1) too; moreover, its dimension is r − 1.
If we look at the non-invariant part of the previous long exact sequence under the

µd-action, we obtain

0→ H3
c (F )6=1 → H3(S)→ 0

from which we deduce that H3
c (F ) 6=1 ' H3(S). Since the singular locus of S is zero-

dimensional, by Corollary 1.3.12 we have H3(S) ' H3(S̃) for any resolution of singu-
larities S̃ of S; this implies that H3

c (F )6=1 is a pure HS of weight 3 with parts (1, 2)
and (2, 1).

What we obtained is the following:

H3
c (F )1 = Gr1

FGr
W
2 H

3
c (F )1.

H3
c (F ) 6=1 = Gr1

FGr
W
3 H

3
c (F )6=1 ⊕Gr2

FGr
W
3 H

3
c (F ) 6=1.

If we use the isomorphism (1.3.2), the above becomes

H1(F )1 = Gr1
FGr

W
2 H

1(F )1.

H1(F ) 6=1 = Gr1
FGr

W
1 H

1(F )6=1 ⊕Gr0
FGr

W
1 H

1(F )6=1.

This means that H1(F )1 is a pure HS of weight 2 and type (1, 1) and H1(F )6=1 is a pure
HS of weight 1 and parts (1, 0) and (0, 1). We can thus writeH1(F ) = H1,1⊕H1,0⊕H1,0

and

∆C(t) = (t− 1)r−1P (t)P (t)

where P (t) is the characteristic polynomial of the monodromy action on H1,0. But by
point 2. we have P (t) = ∆1,0(t), so we are done.

Remark 2.1.15. We have the following equality:

δκ = l(Zκ)− hIκ (d− n− 1− κd) (2.1.14)

where Iκ ⊂ R denotes the homogeneous ideal corresponding to the zero-dimensional
scheme Zκ ⊂ Pn. To prove it, we start from the short exact sequence of sheaves on Pn

0→ Aκ → OPn → Zκ → 0.

Tensoring with a locally free sheaf is an exact functor, so if we tensor the above
sequence by OPn(d− n− 1− κd) we obtain
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0→ Aκ(d− n− 1− κd)→ OPn(d− n− 1− κd)→ Zκ(d− n− 1− κd)→ 0.

We have H1(Pn,OPn(d− n− 1− κd)) = 0; moreover, the sheaf Zκ(d− n− 1− κd) is
supported on the singular locus of V i.e. on a �nite set of points, so H0(Pn, Zκ(d −
n− 1− κd)) ' H0(Pn, Zκ) and from the long exact cohomology sequence of the short
exact sequence above we deduce

H1(Aκ(d− n− 1− κd)) = Coker(H0(Pn,OPn(d− n− 1− κd))→ H0(Zκ)).

Since H0(Pn,OPn(d − n − 1 − κd)) ' Rd−n−1−κd and H
0(Zκ) ' R/Iκ we obtain that

H1(Aκ(d− n− 1− κd)) is the cokernel of the projection

Rd−n−1−κd → R/Iκ.

Thus δκ is the di�erence between dim(S/Iκ) = h0(Zκ), which is by de�nition l(Zκ),
and the Hilbert function of Iκ in degree d− n− 1− κd, i.e. the so-called defect of the
linear system of hypersurfaces of degree d − n − 1 − κd whose local equations at the
points of Vsing belong to Aκ.

Since we shall be interested in the case of curves, we restate the last point of the
previous theorem in a di�erent way:

Theorem 2.1.16. Let C ⊂ P2 be a reduced curve of degree d and let k1, . . . , km be all
the constants of quasi-adjunction of C, then

∆C(t) = (t− 1)r−1

dkj∈Z∏
[(t− e2πikj)(t− e−2πikj)]s(kj) (2.1.15)

where

1. r is the number of irreducible components of C.

2. s(kj) := dimH1(P2,Akj(Nd(kj))).

3. Nd(kj) := d− 3− dkj

As before, we have

s(kj) = l(Zkj)− hIkj (Nd(kj)). (2.1.16)

2.1.3 ∆V and Mordell-Weil rank of abelian varieties

Formula (2.1.15) theoretically allows to compute the whole Alexander polynomial
of a curve C; in order to use it, however, one needs to have information on the rela-
tive position of the relevant singular points of C (those admitting constants of quasi-
adjunction), and this is often too much to ask unless one has an explicit equation for
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the curve. An approach that does not rely on this information is the following: one
associates to C a threefold H �bred over P2 having C as discriminant, and relates
∆C(t) to the Mordell-Weil rank of the Jacobian J(H) of H considered as a curve
over C(x, y); the drawback of this method, which was to be expected, is that it only
provides partial information on ∆C(t) unless C satis�es some strong hypotheses. In
this subsection we illustrate some known results of this kind, which, apart from being
interesting in their own regard, will allow us to introduce quasi-toric decompositions
and show their in�uence on the Alexander polynomial of a curve.

De�nition 2.1.17. Let f ∈ C[y0, y1, y2] be a homogeneous polynomial of degree d. A
quasi-toric decomposition of type (p, q, r) of f (of C := V (f) ⊂ P2) consists of co-prime
homogeneous polynomials f1, f2, f3 ∈ C[y0, y1, y2] such that fp1 + f q2 = f r3f ; if f3 = 1,
we speak of toric decomposition of type (p, q).

Assume C = V (f) is an irreducible curve with only nodes and cusps as singularities,
and associate to it the elliptic threefold (curve over C(x, y)) H of equation u2 + v3 =
f(x, y, 1); Cogolludo-Agustin and Libgober obtained the following result ([5, Theorems
1.1,1.2]):

Theorem 2.1.18. Under the above hypotheses and notations we have:

1. The Z-rank of the Mordell-Weil group of H is equal to the degree of ∆C(t).

2. The set of quasi-toric decompositions of type (2, 3, 6) of C has a group structure,
and it is isomorphic to Z2q where ∆C(t) = (t2 − t+ 1)q.

In particular, ∆C(t) is non-trivial if and only if C admits a quasi-toric decomposi-
tion of type (2, 3, 6).

Observe that quasi-toric decompositions of type (p, q, lcm(p, q)) correspond to the
C(x, y)-rational points of the a�ne curve E of equation up + vq − f(x, y, 1) = 0,
with toric decompositions of type (p, q) corresponding to points of E de�ned over
C[x, y]. Choose now weights w0 and w1 for u and v respectively in such a way that
h := up+vq+f is a weighted homogeneous polynomial; callX the threefold of equation
h = 0 in the weighted projective space P := P(w0, w1, 1, 1, 1). We have the following
chain of inclusions:

{
quasi-toric decompositions of

C of type (p, q, lcm(p, q))

}
⊂ J(E)(C(x, y)) ⊂ H4(X,Z)prim. (2.1.17)

Call g := up+vq, then h = g−f . We denote by Fh, Fg, Ff the Milnor �bres associated
to h, g and f , and by Th, Tg, Tf the various algebraic monodromy operators. If we write
down the long exact sequence of cohomology groups with compact support associated
to the pair (P, X), we obtain H4(X)prim ' H5

c (P \ X)∨; by Poincaré duality we can
then write H4(X)prim ' H3(P \ X), and since Fh is a covering space for P \ X we
deduce that H4(X)prim ' H3(Fh)

Th . If we combine this with Theorem 2.1.7 we can
write
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H4(X)prim ⊃ H1(Fg)
Tg ⊗H1(Ff )

Tf . (2.1.18)

Assume now that there exists a quasi-toric decomposition of f ; it corresponds to a
point p ∈ E(C(x, y)), and by the above chain of inclusions we can associate to it
an element ζ ∈ H4(X)prim i.e. an element of H3(Fh) which is left invariant by Th; by
Theorem 2.1.7, we can write ζ =

∑r
i=1 ζgi⊗ζfi with, for all i = 1, . . . , r, ζgi ∈ H1(Fg)αi

and ζfi ∈ H1(Ff )βi where αi+βi = 1. Now, Tg⊗Id is induced by the automorphism σ
of E that multiplies u and v by the appropriate roots of unity; since σ(p) 6= p we deduce
that (Tg ⊗ Id)(ζ) 6= ζ, which implies that ζ does not belong to H1(Fg)

Tg ⊗H1(Ff )
Tf .

As a consequence, there exists ζf ∈ H1(Ff ) which is not invariant under Tf . We have
thus proved the following:

Lemma 2.1.19. If C = V (f) admits a quasi-toric decomposition then ∆C(t) is non-
trivial.

The approach of [5] was generalised in two ways: in [47] (see Theorem 1.2 (2))
isotrivial abelian varieties A over C(x, y) were considered, while in [39] the elliptic
threefold u2 + v3 = f(x, y, 1) was replaced by g(u, v) − f(s, t, 1) with g weighted
homogeneous. In particular ([39, Corollary 1.2]):

Theorem 2.1.20. Assume C = V (f) is a curve of even degree with only ADE singu-
larities, and let e be a divisor of d. The Mordell-Weil rank of the group of C(x, y)-valued
points on the Jacobian of the general �bre of H : u2 = ve + f(x, y, 1) equals

2

b e−2
2
c∑

j=1

ordt=λj∆C(t)

where λj := e
2πij
e .

When e = 3 one obtains the same result of [5].

2.2 The case for hyperplane arrangements

2.2.1 Motivation

The computation of the Alexander polynomial of singular projective hypersurfaces
V := V (f) ⊂ Pn is in general a di�cult task. The class of hypersurfaces which has
drawn the most interest consists of those whose de�ning polynomial f factors into a
product of linear forms: in this situation the associated a�ne hypersurface (the cone
over V ) is a �nite collection of codimension one vector subspaces of Cn+1 i.e. a so-
called hyperplane arrangement ; we will denote these objects by A = {H1, . . . , Hn}. In
this situation V = P(A) is a �nite union of codimension one linear subspaces of Pn,
so it is a hyperplane arrangement too; thus we will usually denote V by A and write
A = {H1, . . . , Hn}.

What makes this situation easier is that we may try to take advantage of the
combinatorial nature of A, that is encoded in its intersection semilattice L(A) (de�ned
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at the beginning of the next subsection); however, even in this setting the Alexander
polynomial is not known in general.

Remark 2.2.1. Observe that ifA ⊂ Cn+1 is a hyperplane arrangement thenA ⊂ Pn is
a projective hypersurface with singular locus of dimension n−2; by Corollary 2.1.6, by
taking successive hyperplane sections we can reduce the computation of the Alexander
polynomial to the case n = 2. In this case the hypersurface A ⊂ P2 is actually a line
arrangement, so we will write A = {l1, . . . , ln} where li is the line corresponding to
the (hyper)plane Hi; moreover, the Alexander polynomial is (by (2.1.6)):

∆A(t) = det(I · t− T 1 : H1(F,C)→ H1(F,C)).

From now on, unless stated otherwise, we will consider only hyperplane arrangements
in A ⊂ C3 and the associated line arrangements A ⊂ P2.

In [35, Problem 9A] and [38, Problem 4.145], the following problem was raised:

Problem 1. Given a line arrangement A ⊂ P2, is its Alexander polynomial ∆A(t)
determined by L(A)? If so, give an explicit combinatorial formula to compute it.

In this section we gather some known results around this problem, that are inter-
esting in their own regard and also motivate the research we have been doing.

The singular locus of A consists of ordinary multiple points, which are weighted
homogeneous singularities i.e. singularities for which we know the constants of quasi-
adjunction: as we showed in Remark 2.1.12, if the point has order m they are m−1−j

m

for j = 1, . . . ,m− 2. This means that if we know the position of these multiple points
we can compute ∆A(t) using the formula provided by Theorem 2.1.16.

Example 2.2.2. Consider a line arrangement A consisting of k lines passing through
the same point (which we can assume to be (0 : 0 : 1)); the constants of quasi-
adjunction of A are cj := k−1−j

k
for j = 1, . . . , k − 2 and the corresponding values

Nk(cj) are j − 2. For any j the ideal associated to the scheme Zcj is Icj = (x, y)j, and

so we have hIcj (j − 2) = j(j−1)
2

; on the other hand, the length of Zcj is the dimension

of the vector space of polynomial function germs around (0 : 0 : 1) whose constants of

quasi-adjunction are bigger than or equal to cj, so l(Zcj) = j(j+1)
2

. This means that
δ(cj) = j for all j = 1, . . . , k− 2, so the Alexander polynomial of such an arrangement
is non-trivial and is given by

∆A(t) = (t− 1)k−1

k−2∏
j=1

[(t− e2πicj)(t− e−2πicj)]j.

If we denote by ηk a primitive k-th root of unity, we can rewrite this expression as

∆A(t) = (t− 1)k−1

k−2∏
j=1

[(t− ηk−1−j
k )(t− ηj+1

k )]j.

Fix a j1 ∈ {1, . . . , k−2}; in order to have k−1−j1 = j2 +1 we need j2 = k−2−j1, and
this is always possible given the set in which j1 varies. This means that in the above
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expression to any term (t− ηhk )j for j = 1, . . . , k− 2 corresponds a term (t− ηhk )k−2−j;
we can thus rewrite the Alexander polynomial as

∆A(t) = (t− 1)k−1

k−1∏
h=1

(t− ηhk )k−2 = (t− 1)k−1
∏

1<d|k

Φd(t)
k−2.

In view of this example, from now on we will only consider essential (or non-
central) hyperplane arrangements in C3, i.e. arrangements A such that A does not
consist of lines that intersect in a single point.

2.2.2 Combinatorics of A
The aim of this subsection is to introduce some combinatorial objects naturally

associated toA (andA), and to illustrate their interplay. We start with the intersection
semilattice L(A): this is the partially ordered set of all intersection of hyperplanes in
A, usually called �ats, ordered by reversed inclusion and ranked by codimension.
Given two �ats X, Y ∈ L(A), their join is X ∨ Y := X ∩ Y while their meet is
X ∧ Y := ∩{Z ∈ L(A)|X ∪ Y ⊆ Z}. If X ∈ L(A) is a �at, we denote by AX
the subarrangement {H ∈ A|X ⊂ H} and de�ne the multiplicity of X as |AX |. If
Lk(A) denotes the set of �ats of L(A) of rank k, we can see that there is a 1-to-
1 correspondence between L1(A) and the lines of A, and between L2(A) and the
multiple points of A.

Another useful object associated to A is its Orlik-Solomon algebra. This can be
de�ned over any noetherian ring K, but we will take for K a �eld. It is de�ned
as follows: if A = {H1, . . . , Hn} with Hi = V (fi) for fi ∈ K[x0, x1, x2]1, we let E
be the exterior algebra over K generated by e1, . . . , en and de�ne a degree −1 map
∂ : Ep → Ep−1 by

∂(ei1 ∧ . . . ∧ eip) :=

p∑
j=1

(−1)j−1ei1 ∧ . . . ∧ êij . ∧ . . . ∧ eip

The Orlik-Solomon algebra A(A,K) of A is the quotient of E by the ideal I gener-
ated by {∂(ei1 ∧ . . . ∧ eip)|{fi1 , . . . , fip} is a linearly dependent set}; when no risk of
confusion arises, we will denote it simply by A. The grading on E induces a grading
A = ⊕pAp. If we denote by wi the images of the ei in A, we see that they form a basis
for A1, so we �nd an isomorphism A1 ' K|A|.

It is clear by its de�nition that A(A,K) only depends on L(A) and on the choice
of K; however, A(A,K) also carries geometric information: indeed, it was proved in
[58] that A(A,C) is isomorphic, as graded algebra, to the de Rham cohomology ring
H∗(M(A),C), where M(A) := C3 \ A. Under this isomorphism, the generator wi of
A(A,C) is identi�ed with the logarithmic one-form d(log(αi)), where αi is any linear
form de�ning Hi (for example fi).

Remark 2.2.3. Pick a de�ning polynomial f ∈ C[x0, x1, x2]d for A: up to a change
of coordinates, we can assume that f = x0g for some g ∈ C[x0, x1, x2]d−1. If we
denote by p the usual Hopf bundle map C3 \ {0} → P2, we can see that its restriction
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p : C3 \ {x0 = 0} → P2 \ P1 ' C2 de�nes a trivial C∗-bundle; this implies that
p : M(A)→ U(A) is a trivial C∗-bundle too, with U(A) := P2 \ A. Since, as we have
already seen, the Milnor �bre F ⊂ C3 of A is a d-fold cover of U(A) whose group of
deck transformations is generated by the monodromy operator h, we can write

M(A) ' U(A)× C∗ ' (F/〈h〉)× C∗.

This shows thatM(A) carries information on the Milnor �bre of A, and motivates the
choice of the notation M(A) for C3 \ A.

If a ∈ A1 then a2 = 0 by the graded commutativity of A, so we can associate to a
a cochain complex

(A, δa) : A0
δa−→ A1

δa−→ A2
δa−→ A3 → 0 (2.2.1)

where δa(b) := a∧ b; this is called the Aomoto-Betti complex of A relative to a. These
complexes allow us to de�ne two other important notions: resonance varieties and
Aomoto-Betti numbers. The (degree q, depth r) resonance varieties of A are the
jumping loci for the cohomology of the Aomoto-Betti complexes, namely

Rq
r(A,K) := {a ∈ A1| dimKH

q((A,K), δa) ≥ r}. (2.2.2)

We will be mainly interested in the degree 1 resonance variety Rr(A,K) := R1
r(A,K)

which, by de�nition, consists of {0} together with all a ∈ A1 for which there exist
b1, . . . , br ∈ A1 such that dimK Span{a, b1, . . . , br} = r + 1 and abi = 0. The variety
R1(A) is particularly well-understood, and its main properties are summarised in the
following theorem (which is a collection of results in [50] and [7]):

Theorem 2.2.4. Over a �eld K of characteristic 0, all irreducible components of
R1(A,K) are Zariski-closed linear subspaces of Kn intersecting pairwise only at {0};
moreover, the positive-dimensional irreducible components have dimension at least two,
and the cup product map ∧ : A1 × A1 → A2 vanishes identically on each such compo-
nent.

If char(K) 6= 0 thenR1(A,K) may have irreducible components that are non-linear,
or that intersect non-trivially (see [26] for some examples). An irreducible component
ofR1(A,K) is called global if it is not contained in any coordinate hyperplane wi = 0 of
A1 ' K|A|; in this case, we say that A (or A) supports a global resonance component.

Let now σ be the element of A1 given by σ :=
∑

i=1,...,|A|wi; the Aomoto-Betti

number over K of A is de�ned as

βK(A) := dimKH
1((A,K), δσ) = max{r ∈ N|σ ∈ Rr(A,K)}. (2.2.3)

It is clear from its de�nition that βK(A) depends only on p := char(K), hence we
denote it simply by βp(A).

Recall that H1(F,Q) decomposes as a Q[Z/dZ]-module in the following way (see
(2.1.5)):
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H1(F,Q) ' Q|A|−1 ⊕
⊕
1<k|d

(Q[t]/Φk(t))
ek(A).

Aomoto-Betti numbers provide a bound on the ek(A) when k is the power of a prime:
we have in fact (see [60, Theorem 11.3]):

eps(A) ≤ βp(A) for all s ≥ 1 (2.2.4)

As we shall see, A supports a global resonance component only if it is, in some sense,
`highly symmetric'; the precise notion that allows to detect the symmetry of A is that
of multinet :

De�nition 2.2.5. Assume we have a partition N of A into k ≥ 3 subsets A1, . . . ,Ak,
a `multiplicity function' m : A → N and a subset X ⊂ L2(A); consider moreover the
following conditions:

(i) There exists d ∈ N such that
∑

H∈Aim(H) = d for all i = 1, . . . , k.

(ii) For any H ∈ Ai and H ′ ∈ Aj with i 6= j we have H ∩H ′ ∈ X .

(iii) For all l ∈ X the integer nl :=
∑

H∈Ai,l⊂H m(H) does not depend on i.

(iv) For all i = 1, . . . , k and any H,H ′ ∈ Ai, there is a sequence H = H0, . . . , H
′ = Hr

such that Hj−1 ∩Hj /∈ X .

The couple (N ,X ) (sometimes just referred to as N ) is called:

• a weak (k, d)-multinet if it satis�es (i)-(iii).

• a (k, d)-multinet if it satis�es (i)-(iv).

• a reduced (k, d)-multinet if it satis�es (i)-(iv) and m(H) = 1 for all H ∈ A.

• a (k, d)-net if it satis�es (i)-(iv) and nl = 1 for all l ∈ X ; if d = 1, the (k, 1)-net
is called a trivial k-net.

We call A1, . . . ,Ak the classes of N , X its base locus and d its weight. If (N ,X )
is a weak (k, d)-multinet on A and l ∈ L2(A), we de�ne the support of l with respect
to N as

suppN (l) := {α ∈ {1, . . . , k}|l ⊂ H∃H ∈ Aα}.

Remark 2.2.6. One can of course de�ne in the same way weak multinets on A, but
we chose to give the de�nition for A because it appeared �rst in the context of a�ne
hyperplane arrangements; however, in what follows we will often abuse notation and
speak of multinets on A, thanks to the correspondence between L1(A) and the lines
of A and between L2(A) and the multiple points of A.
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Example 2.2.7. Consider the following construction: four points of P2 in general
position together with all lines passing through two of them. The arrangement we
obtain is the so-called A3 arrangement: it has six lines and four triple points. It
admits a (3, 2)-net, as the �gure below shows, whose base locus consists of the triple
points.

Remark 2.2.8. The following are easy consequences of the above de�nitions:

(i) If (N ,X ) is a weak (k, d)-multinet on A with multiplicity functionm and c ∈ N is
a natural number, we can obtain a weak (k, cd)-multinet (N ,X ) onA by choosing
c · m as multiplicity function; this means that we can choose d to be minimal,
i.e. we can assume, without loss of generality, that gcd{m(H)|H ∈ A} = 1.

(ii) If (N ,X ) is a weak multinet on A then X is determined by N , as X = {H ∩
H ′|H ∈ Ai, H ′ ∈ Aj, i 6= j}; if (N ,X ) is a multinet on A, N is determined by
X too: if Γ is the graph with vertex set A and an edge connecting H,H ′ ∈ A if
H ∩H ′ /∈ X , then the classes Ai are the connected components of Γ.

(iii) Nets are automatically reduced multinets. Indeed, let H ∈ Ai and H ′ ∈ Aj: by
condition (ii) of De�nition 2.2.5 we have l := H ∩ H ′ ∈ X , and since nl = 1
this implies m(H) = m(H ′) = 1. This means we have the following chain of
inclusions

{weak multinets} ⊃ {multinets} ⊃ {reduced multinets} ⊃
⊃ {nets} ⊃ {trivial nets}

which are all strict.

(iv) A admits a trivial k-net N ⇐⇒ A consists of k lines meeting in a point. Implica-
tion⇐ is obvious: just partition A into k classes containing one hyperplane each.
For⇒, observe that d = 1 implies that the partitionN consists of classes contain-
ing exactly one hyperplane each; if H ∈ Ai and H ′ ∈ Aj then l := H ∩H ′ ∈ X ,
and if some H ′′ ∈ A did not pass through l condition (iii) of De�nition 2.2.5
would be violated.
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(v) Let (N ,X ) be a weak (k, d)-multinet on A and let l ∈ L2(A), then clearly either
|suppN (l)| = 1 (mono-coloured �at), or l ∈ X and so |suppN (l)| = k (multi-
coloured �at). If (N ,X ) is a reduced (k, d)-multinet, condition (iii) of De�nition
2.2.5 implies that any l ∈ X has multiplicity krl for some rl (i.e. any �at l in the
base locus belongs to rl hyperplanes from each class); if (N ,X ) is a (k, d)-net,
the same condition implies that any l ∈ X has multiplicity k (i.e. any �at in the
base locus belongs to exactly one hyperplane from each class).

The following is instead a much less trivial result, which summarises the results of
[70],[69] and [61]:

Theorem 2.2.9. Let (N ,X ) be a (k, d)-multinet on A. If |X | > 1 then k ∈ {3, 4}. In
particular, the only hyperplane arrangements admitting a (k, d)-multinet with k ≥ 5
are central hyperplane arrangements, and the multinet is actually a trivial k-net. If
|X | > 1 and (N ,X ) is non-reduced, then k = 3.

The resonance variety R1(A) is related to multinets on A by the following result:

Theorem 2.2.10. The arrangement A admits a (k, d)-multinet (N ,X ) ⇐⇒ A sup-
ports a global resonance component of dimension k − 1.

A proof of this theorem, obtained by building on the results of [50], can be found
in [27, Theorem 2.4, Theorem 2.5]; for a di�erent one, the reader can look at [53,
Theorem 3].

Remark 2.2.11. The methods used in the proofs of [27, Theorem 2.4, Theorem 2.5]
show in particular that any weak multinet can be re�ned to a multinet with the same
base locus.

We can give an alternative description of R1(A). Let S denote P1 with at least 3
points removed: a map f : M(A) → S is called admissible if it is regular, surjective
and its generic �bre is connected. Arapura [2] showed that:

Theorem 2.2.12. The correspondence f 7→ f ∗(H1(S,C)) gives a bijection between
admissible maps (up to reparametrisation of the target S) and positive-dimensional
components of R1(A).

2.2.3 Geometry of A

Theorem 2.2.10 relates something that is purely combinatorial (multinets on A)
with some irreducible components of an object that carries geometric information (the
degree 1 depth 1 resonance variety R1(A)). The connection between combinatoric and
geometry that the theory of hyperplane arrangements exhibits becomes even tighter
when pencil of plane curves enter the picture; for the following discussion, we refer
to [27, Section 3]. Pencils of plane curves are one-dimensional linear systems of plane
curves, which we can think of as lines in P(C[x, y, z]d) for some �xed degree d: thus
any two distinct plane curves (which we identify with any of their de�ning polynomials
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in C[x, y, z]d) de�ne a pencil, and any pencil is uniquely determined by any two of its
curves. This means that any pencil can be written as

aC1 + bC2 with (a : b) ∈ P1

an expression from which we deduce that any two of its curves meet exactly in X :=
C1 ∩ C2, called base of the pencil. We will always assume that X consists of a �nite
set of points, i.e. that the pencil has no �xed components.

Note that C1 and C2 determine a rational map

π : P2 99K P1 s.t. p 7→ (C2(p) : −C1(p))

whose indeterminacy locus is X . The closure of the �bre of π over (a : b) is the curve
aC1 + bC2, and each p /∈ X lies in exactly one of such curves.

A curve is called completely reducible if its de�ning polynomial has the form
Πq
i=1α

mi
i where αi are linear forms and mi ≥ 1 for all i = 1, . . . , q; the pencil we will

be mostly interested in are those for which π has some completely reducible �bres.
Consider a pencil generated by two completely reducible curves. Let φ : B → P2

be the blow-up of P2 at X , then π lifts to a regular map π′ : B → P1 ([27, Lemma
3.2(i)]) whose �bres are the strict transforms of the �bres of π under the blow-up; we
say the pencil is connected if every �bre of π′ is connected.

De�nition 2.2.13. A pencil of Ceva type (or a Ceva pencil) is a connected pencil of
plane curves with no �xed components in which three or more �bres are completely
reducible.

Now we can state the following theorem:

Theorem 2.2.14. There is a 1-to-1 correspondence between multinets (N ,X ) on hy-
perplane arrangements A ⊂ C3 and pencils of Ceva type; namely:

(i) A pencil of Ceva type induces a multinet N on the hyperplane arrangement A
consisting of the irreducible components of its completely reducible �bres Fi =∏ij

j=1 α
mi,j
i,j : its classes are Ai := {Hi,j := V (αi,j)}j=1,...,ij and m(Hi,j) := mi,j for

all i, j.

(ii) If (N ,X ) is a (k, d)-multinet on A let Ci =
∏

H∈Ai α
m(H)
H , where αH is any linear

form de�ning H; the pencil of degree d curves generated by any two of C1, . . . , Ck
contains all Ci and is connected i.e. is a Ceva pencil

Proof. Points (i) and (ii) are Theorems 3.7 and 3.11 of [27] respectively.

If N is a k-multinet on A, the Ceva pencil associated to it naturally determines
an admissible map fN : M(A) → S (see [59, Section 6.2]); one can check that the
component of R1(A) given by f ∗N (H1(S,C)) is a global component of dimension k−1.
Conversely, by [27, Theorem 2.5] all global components of R1(A) arise in this way. We
can summarise these results in the following way:

Corollary 2.2.15. The following are equivalent:
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(i) A admits a (k, d)-multinet N for some d.

(ii) A is the set of components of k ≥ 3 completely reducible �bres in a Ceva pencil
of degree d curves, for some d.

(iii) There exists and admissible map fN : M(A)→ S.

(iv) f ∗N (H1(S,C)) is a global resonance component of R1(A) of dimension k − 1.

Note that the equivalence (i)⇔(ii) still holds if one restricts to reduced multinets
and pencils of Ceva type with reduced completely reducible �bres, respectively.

At a �rst glance, it does not seem like these results have anything to do with the
problem of determining the Alexander polynomial of a hyperplane arrangement A.
This is only partially true, as a result by Libgober shows: indeed, in [46, Theorem 1.2]
he calls an arrangement A ⊂ P2 composed of a reduced pencil if there exists a pencil of
plane curves aC1 + bC2 such that three of its �bres F1, F2, F3 are completely reducible,
reduced, and V (F1F2F3) = A; he then proves the following:

Theorem 2.2.16. If A has only double and triple points then its Alexander polynomial
has a non-trivial factor Φa

3 if and only if A is composed of a reduced pencil.

Note that reducible pencils in the sense of Libgober are in particular reduced pencils
of Ceva type, so by the above result for an arrangement A with only double and triple
points being composed of a reduced pencil and admitting a reduced (3, d)-multinet is
equivalent.

The result of Libgober is a particular instance of a more general phenomenon,
namely:

Lemma 2.2.17. If A is given by the components of the k ∈ {3, 4} completely reducible
and reduced �bres in a Ceva pencil, then the Alexander polynomial of A is non-trivial.

Proof. Assume k = 3, then A = V (g) = V (g1g2g3) with gi ∈ C[y0, y1, y2] completely
reducible and reduced �bres of a Ceva pencil ah1 + bh2 with (a : b) ∈ P1; up to
reparametrisation of the pencil, we can assume that the gi correspond to the values
(1 : 0), (0 : 1) and (1 : 1).

The equation

x3 − y3 = zw(z − w)

admits the solution

x = (1− η2)(z − ηw)

y = (1− η)(z − η2w)

where η is a primitive root of unity of order three. If we substitute z with g1 and w
with g2 we obtain z−w = g3, and the corresponding polynomials x, y ∈ C[y0, y1, y2] we
�nd give a toric decomposition of type (3, 3) of g; by Lemma 2.1.19 ∆A is non-trivial.
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Assume now k = 4 and A = V (g1g2g3g4) with gi completely reducible and reduced
�bres of a Ceva pencil ah1 + bh2 with (a : b) ∈ P1 corresponding to the values (1 : 0),
(0 : 1) and (1 : 1) and (1 : λ) for some λ ∈ C; if gi ∈ C[y0, y1, y2]d then g :=

∏4
i=1 gi

belongs to C[y0, y1, y2]4d.
If we give weight d to the indeterminates x0 and x1, the polynomial x0x1(x0 −

x1)(x0 − λx1) − g(y0, y1, y2) de�nes a threefold X in the weighted projective space
P(d, d, 1, 1, 1). It can be proved, using the same `intersection method' employed in [38,
Lemma 3.8], that D := V (x0 − g1, x1 − g2) de�nes an element in H2,2(H4(X)) that
is linearly independent from the element given by a hyperplane section of X. This
implies that

h2,2(H4(X)) ≥ 2

hence by [38, Proposition 2.8] we can conclude that the Alexander polynomial of A is
non-trivial.

Corollary 2.2.18. If A admits a reduced multinet then its Alexander polynomial is
non-trivial.

Thus, the existence of a reduced multinet on A is a su�cient condition for the
non-triviality of the Alexander polynomial of A; as we shall see in the last subsection
of this chapter, however, this condition is not necessary.

2.2.4 Topology of U(A)

Let X be a locally connected topological space and G be an abelian group. A local
system of stalk G on X is a sheaf G on X which is locally isomorphic the the constant
sheaf of stalk G, i.e. such that for any U ⊂ X open we have G|U ' GU . If G is the
vector space Cn we speak of local system of rank n with C coe�cients.

It is well known (see [68, Corollary 3.10]) that for any x ∈ X there is a bijection
between the set of isomorphism classes of local systems of stalk G and the set of
representations π1(X, x) → Aut(G) modulo the action of Aut(G) by conjugation,
provided the space X is `su�ciently nice'. In particular, local systems of rank one
with C coe�cients correspond to representations ρ : π1(X, x)→ C∗ i.e. multiplicative
characters of π1(X, x), so they can be identi�ed with Hom(H1(X,Z),C∗) = H1(X,C∗).

Given a hyperplane arrangement A = {H1, . . . , Hk} ⊂ C3, we will be interested
in rank one local systems on U(A) = P2 \ A: if γi denotes the meridian around the
line `i = Hi of A, it is known that H1(U(A),Z) ' 〈γ1, . . . , γk|γ1 + . . .+ γk = 0〉Z (see
[16, Proposition 4.1.3]), so the rank one local systems on U(A) are parametrised by a
(k − 1)-dimensional torus:

Hom(H1(U(A),Z),C∗) =

{
λ := (λ1, . . . , λk) ∈ (C∗)k

∣∣ k∏
i=1

λi = 1

}
' (C∗)k−1. (2.2.5)

Local systems provide us with a di�erent way of describing the monodromy eigenspaces
ofH1(F,C) (see [7]): namely, for all j = 0, . . . , k−1 there exists a rank one local system
Lj on U(A) such that
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H1(F,C)λj = H i(U(A),Lj) where λj := e
2πik
j . (2.2.6)

For any t ∈ (C∗)k−1 we denote by Ct the associated local system on U(A). The (degree
q, depth r) characteristic variety of U(A) is

V(A)qr := {t ∈ (C∗)k−1| dimCHq(U(A),Ct) ≥ r}. (2.2.7)

Characteristic varieties Vr(A) := V1
r (A) of degree 1 are well-understood. Indeed, it

is known that Vr(A) is a �nite union of translated subtori (see [2]; this is actually
true in broader generality) and that all positive-dimensional components of Vr(A)
pass through the identity 1 := (1, . . . , 1) of (C∗)k−1 (see [43]). However, their most
important feature, at least when one deals with hyperplane arrangements, is that
the tangent cone of Vr(A) at 1 is exactly Rr(A). More speci�cally, the exponential
homomorphism exp : H1(M(A),C) → H1(M(A),C∗) gives a bijection between the
components of R1(A) and the components of Vr(A) passing through 1 (see [7],[21]);
since all positive-dimensional components P of R1(A) are obtained by pullback along
an admissible map f : M(A) → S by Theorem 2.2.12, each positive dimensional
component of Vr(A) is of the form exp(P ) = f ∗(H1(S,C∗)).

Now, assume Y is a k-fold cyclic cover of some topological space X, then it cor-
responds to a surjective homomorphism ν : π1(X) → Zk; if we �x an inclusion
i : Zk → C∗ by 1 7→ e2πi/k, we obtain a character ρ : i ◦ ν : π1(X) → C∗, and
we have the following isomorphism of C[Zk]-modules (see [66, Theorem B1]):

H1(Y,C) ' H1(X,C)⊕
⊕
1<d|k

(C[t]/Φd(t))
depth(ρk/d) (2.2.8)

where depth(ρ) := dimCH
1(X,Cρ) = max{r|ρ ∈ Vr(X)}. The Milnor �bre F of

A is a k-fold cyclic covering of U(A), and it corresponds, by [66, Theorem 4.10], to
the epimorphism ν : H1(U(A),C) → Zk s.t. ν(π∗(ah)) = 1 mod k. For any d|k we
can de�ne the character ρd : H1(U(A),C) → C∗ by ρd(ah) = e2πi/d, and the above
isomorphism becomes

H1(F,C) ' Ck−1 ⊕
⊕
1<d|k

(C[t]/Φd(t))
ed(A) (2.2.9)

where ed(A) := depth(ρd).
We can now present a su�cient condition for the non-triviality of the Alexander

polynomial of a line arrangement A due to Papadima and Suciu [59, Theorem 8.3];
the same result can be obtained by combining [27, Theorem 3.11] and [20, Theorem
3.1(i)]:

Theorem 2.2.19. Assume A admits a reduced k-multinet; if f : M(A) → S is the
associated admissible map, the following holds:

(i) The character ρk belongs to f
∗(H1(S,C∗)), and ek(A) ≥ k − 2.

(ii) If k = ps for some prime p, then ρpr ∈ f ∗(H1(S,C∗)) and epr(A) ≥ k − 2 for all
1 ≤ r ≤ s.
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This result implies in particular Corollary 2.2.18: if we add a multiplicity assump-
tion, it specialises to the following ([59, Theorem 1.6]):

Theorem 2.2.20. Assume A has no point of multiplicity 3r for r ≥ 2, then 0 ≤
e3(A) = β3(A) ≤ 2 and the following are equivalent:

(i) A supports a reduced 3-multinet.

(ii) A supports a 3-net.

(iii) e3(A) 6= 0.

As a corollary we obtain [59, Theorem 1.2]:

Corollary 2.2.21. Let A be a line arrangement with only double and triple points,
then its Alexander polynomial is

∆A(t) = (t− 1)|A|−1(t2 + t+ 1)β3(A)

where 0 ≤ β3(A) ≤ 2 depends only on L(A).

Note that this generalises Libgober's result of Theorem 2.2.16, and gives a�rmative
answer to Problem 1 when A has only double and triple points.

2.2.5 Examples

This last section is devoted to the discussion of some interesting line arrangements,
which will highlight the role multinets have in the problem determining the Alexander
polynomial.

The A3 arrangement As we have already seen, this arrangement admits a (3, 2)-net
N so its Alexander polynomial is non-trivial by Corollary 2.2.18. Up to an automor-
phism of P2, we can assume that the four triple points are {(1 : 0 : 0), (0 : 1 : 0), (0 :
0 : 1), (1 : 1 : 1)}, so an equation of A is given by

xyz(x− y)(x− z)(y − z) = 0.

The classes of N are A1 := {y, x − z}, A2 := {z, x − y} and A3 := {x, y − z};
observe that in accordance with Theorem 2.2.14 the lines in each Ai are the three
irreducible components of the Ceva pencil given by base curves C1 := V (x(y− z)) and
C2 := V (y(x− z)). The Alexander polynomial of this arrangement can be computed
with Theorem 2.1.16: ∆A(t) = (t− 1)5(t2 + t+ 1).
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The Hesse arrangement The Hesse pencil

a(x3 + y3 + z3)− bxyz for (a : b) ∈ P1

is a connected pencil with four reduced completely reducible �bres F1, . . . , F4, corre-
sponding to the values (a : b) = {(1 : 3η)|η3 = 1} ∪ {(0 : 1)}; it is thus a Ceva pencil,
and by Theorem 2.2.14 the line arrangement A given by the irreducible components
of the Fi's admits a (4, 3)-net with classes Ai = {irreducible components of Fi} and
base locus given by the base locus of the pencil (i.e. nine points of order four). A has
equation

xyz
2∏

i,j=0

(ηix+ ηjy + z) = 0

and it can be pictured in the real plane in the following way:

An alternative way of obtaining this arrangement is by considering the twelve lines
passing through triples of in�ection points of an elliptic curve E ⊂ P2.

In accordance with Corollary 2.2.18 A has non-trivial Alexander polynomial: in-
deed, ∆A(t) = (t− 1)11[(t+ 1)(t2 + 1)]2.

Remark 2.2.22. 1. The Hesse arrangement is the only known example of non-
central line arrangement admitting a 4-net.

2. If the lines of any of the classes Ai are removed from the Hesse arrangement, one
obtains the Pappus arrangement of nine lines with three triple points on each
line. The latter admits a 3-net, and its Alexander polynomial is (t−1)8(t2+t+1).

A particular simplicial arrangement The arrangement A of twelve lines given
by

xz(x± 2z)(x± 4z)(y ± z)(y + x± 3z)(y − x± 3z) = 0

admits a reduced (3, 4)-multinetN which is not a net, whose classes areA1 := {x, z, y+
z, y − z} (red), A2 := {x + 4z, x + 2z, y − x + 3z, y + x − 3z} (blue) and A3 :=
{x−4z, x−2z, y−x−3z, y+x+3z} (green); the line z = 0 is portrayed at in�nity. The
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base locus ofN consists of one point of order six (in (0 : 1 : 0)) and twelve triple points:
{(±4 : ±1 : 1), (±2 : ±1 : 1), (1 : ±1 : 0), (0 : ±3 : 1)}. As predicted by Corollary
2.2.18 the Alexander polynomial of A is non-trivial: in fact, it is (t− 1)11(t2 + t+ 1).

The B3 arrangement This is the arrangement of equation

xyz(x− y)(x− z)(y − z)(x+ y)(x+ z)(y + z) = 0.

It admits a non-reduced (3, 4)-multinet N with classes A1 := {x, y − z, y + z} (red),
A2 := {y, x− z, x + z} (blue), A3 := {z, x− y, x+ y} (green) and multiplicities 2 for
the lines x, y, z and 1 for the other lines; the line z = 0 is portrayed at in�nity. Its base
locus is given by three points of order four in (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) and
four points of order three in (1 : 1 : 1), (1 : 0 : −1), (1 : −1 : 0) and (1 : −1 : 1)}. The
Alexander polynomial of this arrangement is trivial, so the hypotheses of Corollary
2.2.18 cannot be weakened.

Full monomial arrangements Consider the family of arrangements {Am}m≥1 de-
�ned by equations

Qm := (xm − ym)(xm − zm)(ym − zm) = 0.
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Each Am admits a (3,m)-net, with classes consisting of the irreducible factors of each
factor of Qm: there are three mono-coloured points of multiplicity m and m2 multi-
coloured triple points. Direct computations via [59, Lemma 3.1] show that if 3 - m
then β3(Am) = 1 while 3|m gives β3(Am) = 2. In the former case Theorem 2.2.20
implies that e3(Am) = 1, while in the latter we need to distinguish two cases:

• If m = 3 we can invoke again Theorem 2.2.20 to conclude that e3(A3) = 2.

• If m = 3d with d > 1, the multiplicity assumption of Theorem 2.2.20 no longer
holds, but it is still possible to prove that e3(A3d) = 2.

This example shows that e3(A) can indeed take all values between 0 and 2.

Remark 2.2.23. 1. The arrangement A3 can be obtained as the dual of the nine
in�ection point of an elliptic curve E ⊂ (P2)∨, see [4, Remarks 3.2(i)] and [43,
Example 3]; in particular, it is the dual of the Hesse arrangement.

2. It can actually be shown (see [52]) that ep(Am) = βp(Am) for all primes p and
m ≥ 1.

Monomial arrangements There exist arrangements that in spite of admitting only
a non-reduced multinet still have non-trivial Alexander polynomial: consider for ex-
ample the family of arrangements {Am}m≥1 of equation

Qm := xyz(xm − ym)(xm − zm)(ym − zm) = 0.

For any m, Am admits a (3, 2m)-multinet (N ,X ) with classes

A1 = {x, factors of (ym − zm)}.
A2 = {y, factors of (xm − zm)}.
A3 = {z, factors of (xm − ym)}.

The lines x, y and z have multiplicity m, while all other lines have multiplicity 1 (in
particular, this multinet is reduced only for m = 1); X consists of the three points
(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) of multiplicity m+ 2 and of other m2 triple points.

If m = 1 we obtain the A3 arrangement, which we have already studied. For the
other values of m we have two possibilities:

• If m 6≡ 1 mod 3 then the Alexander polynomial of Am has the form (t −
1)3m−2(t2 + t + 1)e3 ; but it can be proven that β3 = 0, so from the modular
bound (2.2.4) we deduce that Am has trivial Alexander polynomial.

• If m = 3d+ 1 with d > 0 it can be proven that Am admits no reduced multinets
but it still satis�es e3(Am) ≥ 1 i.e. it has non-trivial Alexander polynomial; in
particular, Corollary 2.2.18 is not an if and only if. Observe that in this case the
multiplicities of the points in the base locus have greatest common divisor equal
to 3.
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For a thorough discussion of this example, the reader can consult [59, Example
8.11].

The results and examples presented so far led to the formulation of the following
conjecture:

Conjecture 1. Let A be an essential line arrangement, then eps(A) = 0 for all primes
p and integers s ≥ 1 with two possible exceptions:

e2(A) = e4(A) = β2(A), e3(A) = β3(A). (2.2.10)

Moreover, if ek(A) = 0 for all divisors k of |A| that are not prime powers, then the
Alexander polynomial of A is

∆A(t) = (t− 1)|A|−1(t2 + t+ 1)β3(A)[(t+ 1)(t2 + 1)]β2(A). (2.2.11)

The validity of this conjecture in the strong form (2.2.11) would give an a�rmative
answer to Problem 1.

We conclude the discussion of these examples with two remarks:

1. To the best of our knowledge, there are no line arrangements with non-trivial
Alexander polynomial that do not support multinets.

2. As we have already observed with the B3 arrangement, the existence of a multinet
on A is not a su�cient condition for the non-triviality of the Alexander polyno-
mial of A; however, the last example shows that there are indeed arrangements
with non-trivial Alexander polynomial that only admit non-reduced multinets
(Am with m = 3d + 1 and d > 1). Observe that in the former case the greatest
common divisor of the multiplicities of the points in the base locus is 1, while in
the latter case this value is 3; it is interesting to notice that this value is always
greater than 1 when A admits a reduced multinet (recall Remark 2.2.8(v)) which
is a su�cient condition for the non triviality of ∆A.



CHAPTER 3

Arrangements with two points of high order

As we have seen in Chapter 2, it seems that a line arrangement A needs to have
some symmetry properties (i.e. needs to admit at least a multinet) in order for its
Alexander polynomial to be non-trivial; the existence of a multinet on A, in turn,
imposes restrictions on the multiplicities of the singular points of A. Motivated by
this, we will focus on a class of line arrangements that do not admit multinets. Namely,
we will consider line arrangements A of n lines having the following properties:

1. n ≥ 7.

2. A has two multiple points P1 and P2 with ord(P1), ord(P2) ≥ 3.

3. If P is a multiple point of A di�erent from P1 and P2, then ord(P ) ≤ 3.

4. If P is a multiple point of A with ord(P ) = 3, then at least one of the lines
through P passes through P1 or P2.

We impose condition 1. in order to rule out the arrangement A3, as it satis�es
2.-4. and it admits a 3-net. One should think of these arrangements as possessing two
`anchor points' P1 and P2 of high order.

The complexity of such arrangements depends on the number of lines not passing
through P1 or P2, to which we shall refer as to free lines ; we will denote their number
by s. For example, if s = 0 then P1 and P2 are the only points of A of order greater
than or equal to three; if s = 1, the arrangement can have triple points di�erent from
P1 and P2, but they all belong to the free line; if s ≥ 2, the combinatorics of the triple
points becomes much more complicated.

In this chapter we will consider arrangements satisfying 1.-4. with s ∈ {0, 1}.

3.1 s = 1 with common line

We denote the free line by `. Without loss of generality, we assume that P1 has
order p, P2 has order q and p ≥ q. We assume moreover that P1 and P2 lie on a same
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line `c of the arrangement, so that p + q = n; this implies that p ≤ n − 3, so we can
write n − 3 ≥ p ≥ q ≥ 3. Note that arrangements of this type can have up to q − 1
triple points di�erent from P1 and P2, all of them lying on `.

We begin our study by showing that arrangements of this type are indeed non-
symmetric:

Lemma 3.1.1. An arrangement A of this type does not support weak (α, β)-multinets.

Proof. Since any weak multinet can be re�ned to a multinet (recall Remark 2.2.11),
it is enough to prove that A cannot support a multinet; moreover, since A is non-
central, by Theorem 2.2.9 it is enough to prove that it cannot support (k, d)-multinets
for k ∈ {3, 4}. If A supported a (4, d)-multinet (N ,X ) with classes A1, . . . ,A4, then
all points of X would have multiplicity at least 4 (recall that for any p ∈ X there exists
li ∈ Ai such that p ∈ li); now we have to distinguish two cases:

• P2 has order 3. In this case X = {P1} and P1 is the only multi-coloured point of
A. Assume ` ∈ A1: since P1 is multi-coloured, there is a line `′ through P1 such
that `′ ∈ Aj with i 6= j. This means the point P := ` ∩ `′ belongs to X , which
is impossible because ord(P ) ≤ 3.

• P2 has order 4 or bigger. The cases X = {P1} and X = {P2} are impossible
by the same reasoning as above, so it remains to rule out the possibility that
X = {P1, P2}. Again, since P1 and P2 are multi-coloured we can �nd `1 ∈ A1

through P1 and `2 ∈ A2 through P2; this means P := `1∩ `2 ∈ X , which is again
impossible because ord(P ) ≤ 3.

Assume now A supports a (3, d)-multinet with classes A1,A2,A3. Assume P1, P2 ∈
X , then they are multi-coloured and we can �nd `1 through P1 and `2 through P2 such
that `1 ∈ A1, `2 ∈ A2 and `c ∈ A3; this means that P := `1∩`2 belongs to X . If A has
no triple points other than (possibly) P1 and P2 this is impossible, otherwise the only
way this can happen is by having ` ∈ A3 and P ∈ `. Now, if other lines belonging to
A2 or A3 passed through P2 then their intersection with `1 would be in X , but this is
impossible because that intersection point has multiplicity two; we deduce that all the
q − 2 lines through P2 di�erent from `2 and `c must belong to A1 and, by symmetry,
all the p−2 lines through P1 di�erent from `1 and `c must belong to A2. These groups
of lines intersect in (q − 2)(p − 2) multi-coloured points, but ` can pass through at
most q − 2 of them (since it already passes through P ); this would imply that there
are multi-coloured points of multiplicity two, impossible.

Assume P1 ∈ X and P2 /∈ X , then P2 is mono-coloured and we can assume that
all lines through it belong to A2. Let now `1 be a line through P1 di�erent from `c
and belonging to A1 (or to A3): its intersection with the lines through P2 gives q − 1
points that must belong to the base locus, but since they lie on the same line this is
impossible (the free line ` can only pass through one of them). By symmetry, P2 ∈ X
and P1 /∈ X is impossible too.

Thus the only possibility that remains is that X contains only triple points P
di�erent from P1 and P2. But if P ∈ X is such a triple point we can �nd `1 through P1

and P belonging to A1 and `2 through P2 and P belonging to A2; regardless of which
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class `c belongs to, we obtain that at least one between P1 and P2 belongs to X , and
we have shown that this is impossible.

Now we state a result that allows to obtain information on the Alexander polyno-
mial of a curve from the �rst Betti number of a smooth projective surface associated
to it; it is an immediate consequence of points 1. and 3. of Theorem 2.1.14, but since
we focus on the case of curves we present a proof for the convenience of the reader.

Theorem 3.1.2. Let C := V (f(x0, x1, x2)) ⊂ P2 be a reduced curve of degree d; for
any l|d the l-fold cover of P2 branched along C is the surface Sl of equation y

l = f in
the weighted projective space P(d

l
, 1, 1, 1). If we call S̃l a resolution of Sl and write the

non-trivial part of the Alexander polynomial of C as
∏

1<k|d Φαk
k , we have

2q(S̃l) = b1(S̃l) =
∑
1<k|l

deg(Φk)αk. (3.1.1)

This theorem tells us that the value h1(S̃l) gives information on the degree of the
product of the factors of the Alexander polynomial of C that vanish on the l

k
-th root

of unity e2πi k
l . In particular, if q(S̃d) = 0 then the Alexander polynomial of C is trivial.

Note that the right-hand side of (3.1.1) is always even, which is no surprise: Φk

has even degree for k ≥ 3, and Φ2 can only appear in the Alexander polynomial with
an even α2 by formula (2.1.15).

Proof. If we denote by F the Milnor �bre of C then Sl is the closure of F in P(d
l
, 1, 1, 1),

thus F = Sl ∩D(y) and C = Sl ∩ Z(y); in particular, the singular locus of Sl consists
of a �nite number of points. By Proposition 1.3.8(ii) we have a long exact sequence of
MHS

· · · → H•c (F )→ H•(Sl)→ H•(C)→ H•+1
c (F )→ . . .

which gives

· · · → H2(Sl)→ H2(C)→ H3
c (F )→ H3(Sl)→ 0

The monodromy action on F is given by (x0, x1, x2) 7→ η · (x0, x1, x2), where η is
an element of the group µl of l-th roots of unity, and it can be extended to a µl-action
on Sl by setting η · (y : x0 : x1 : x2) := (η−

d
l y : x0 : x1 : x2); as Sl/µl ' P2, we have

h2(Sl)
µl = 1 and h3(Sl)

µl = 0.
Calling r the number of irreducible components of C, we have b2(C) = r; moreover,

we notice immediately that the µl-action on C is trivial, so H i(C)µl = H i(C).
The fact that C ⊂ Sl implies that the morphism σ : H2(Sl)→ H2(C) is non-trivial,

and the fact that C is �xed by the µl-action guarantees that it remains non-trivial
when we consider its restriction to the µl-invariant parts σ

′ : H2(Sl)
µl → H2(C). If we

consider the invariant part under the µl-action of the previous long exact sequence, we
obtain then 0→ H2(C)/Im(σ′)→ H3

c (F )µl → 0; in particular H3
c (F )1 = H3

c (F )µl has
dimension r − 1. On the other hand, H3

c (F ) is Poincaré dual to H1(F ) = H1(F )1 ⊕
H1(F )6=1, and we know that H1(F )1 has dimension r− 1 too; in particular H3

c (F )1 '
H1(F )1 and H3

c (F )6=1 ' H1(F )6=1.
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More importantly, looking at the non-invariant part of the previous long exact
sequence under the µl-action we obtain 0 → H3

c (F )6=1 → H3(Sl) → 0, from which we
deduce H1(F )6=1 = H3(Sl). Since the singular locus of Sl is zero-dimensional, we have
H3(Sl) ' H3(S̃l) by Corollary 1.3.12.

From this fact and Hodge symmetry we deduce dimH1(F ) 6=1 = h3(Sl) = h3(S̃l) =
h1(S̃l) = 2q(S̃l); since dimH1(F )6=1 is, by de�nition, equal to

∑
1<k|l deg(Φk)αk, the

proof is complete.

One may ask what happens to the Alexander polynomial when we deform the
curve C. For some types of deformation, namely equisingular ones, the answer is very
simple: nothing, as the following well-known result shows:

Corollary 3.1.3. The Alexander polynomial of a curve C ⊂ P2 is invariant under
equisingular deformation.

Proof. As we noticed in Remark 1.3.17, an equisingular deformation of C induces an
equisingular deformation of Sl (for any l) and a deformation of the projective manifold
S̃l; since the Hodge numbers of a family of projective manifolds are constant, we have
proved our claim.

Remark 3.1.4. For any deformation X → C with X ⊂ PN for some N , the dimension,
degree and arithmetic genus of the �bres Xt are independent of t (see [32, Corollary
III.9.10]); this implies that all �bres of any equisingular deformation φ : C → C \∆ of
a line arrangement C are still line arrangements. In order to see this, set

• Ct := φ−1(t) for the �bres of φ; in particular, there exists t0 in C \∆ such that
C ' Ct0 (we can assume without loss of generality that 0 /∈ ∆ and t0 = 0, so
that C ' C0).

• φ̃ : X̃ → C \∆ for the deformation of C̃ ' C̃0 obtained by φ after resolving the
singular locus of X , and C̃t := φ̃−1(t) for its �bres.

Since for any plane curve C we have h2(C) = h2(C̃), if we call d the degree of our
line arrangement C ' C0 and pick any t ∈ C \∆ we can write

d = deg(C0) = h2(C0) = h2(C̃0) = h2(C̃t) = h2(Ct)

where we have used the invariance of the Hodge numbers for families of smooth man-
ifolds. Since the corollary cited above gives d = deg(Ct) we get h2(Ct) = deg(Ct),
which implies that Ct is a line arrangement.

We say that A and A′ are ED-equivalent if one can be obtained from the other by
an equisingular deformation; by the previous corollary and remark, the study of this
class of arrangements reduces to two steps:

(a) We partition the set of arrangements into ED-equivalence classes, and we choose
a suitable representative for each class.

(b) We study the Alexander polynomial of each representative.
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Up to an isomorphism of P2 we can assume that P1 = (0 : 0 : 1), P2 = (0 : 1 : 0)
and ` has equation y − z = 0. If an arrangement has t triple points, they can only
lie on `, and the only e�ect of an equisingular deformation is to move them along
that line; this means we have an ED-equivalence class Xt for every possible number of
triple points, i.e. t = 0, . . . , q− 1. As representative of X0 we choose any arrangement
A0 without triple points; as representative of Xt with t = 1, . . . , q − 1 we choose any
arrangement At whose triple points lie in (j : 1 : 1) for j = 1, . . . , t. This takes care of
step (a).

For step (b) observe that since we know the position of the points of At of multi-
plicity three or more, the Alexander polynomials ∆At can be computed using formula
(2.1.15); while the computation we need to carry out are fairly easy, for the sake of
clarity it is better to establish some notations and lemmas before moving on.

We call R := C[x, y, z] and A := (x, y), B := (x, z) the ideals of P1 and P2. We
denote the triple points of At, whose ideals are Ij := (y − z, x − jy) for j ≤ t, by
Tj ; the intersection between r of the Ij will be denoted by IIr. Now we recall some
well-known results from algebra.

Proposition 3.1.5. If I, J ⊂ R are monomial ideals, say I = (m1, . . . ,mr) and
J = (n1, . . . , ns), then I ∩ J = (lcm(mi, nj)|i = 1, . . . , r, j = 1, . . . , s); in particular,
for any a ∈ Z≥0 we have (I ∩ J)a = Ia ∩ Ja.

Proposition 3.1.6. Let f, g, h ∈ R such that gcd(f, h) = gcd(g, h) = 1, then (f, g) ∩
(f, h) = (f, gh

gcd(g,h)
).

Proof. The inclusion ⊃ is obvious. For the other inclusion, pick a polynomial Q ∈
(f, g)∩ (f, h) and use the division algorithm to write it as Q = fQ̄+ gp1 = fQ̄+ hp2,
so that hp2 = gp1; this gives both h|gp1 i.e. h

gcd(g,h)
|p1 and g|hp2 i.e. g

gcd(g,h)
|p2 so we

are done.

Lemma 3.1.7. For any two ideals J1, J2 ⊂ R there exists a short exact sequence

0→ R/J1 ∩ J2
ρ−→ R/J1 ⊕R/J2

π−→ R/(J1 + J2)→ 0 (3.1.2)

where ρ([f ]) := ([f ], [f ]) and π([f ], [g]) := [f − g].

Proof. We begin by showing that ρ and π are well-de�ned.
Pick [f ] ∈ R/J1∩J2; if [f ] = [f ′] in R/J1∩J2 for some f ′ 6= f then f−f ′ ∈ J1∩J2,

and we get ρ([f ])−ρ([f ′]) = ([f−f ′], [f−f ′]) = ([0], [0]). This proves ρ is well-de�ned.
Pick now [f ] ∈ R/J1 and [g] ∈ R/J2; if [f ] = [f ′] in R/J1 for some f 6= f ′ and

[g] = [g′] in R/J2 for some g 6= g′ then f − f ′ ∈ J1 and g − g′ ∈ J2. This means that
π([f ], [g])− π([f ′], [g′]) = [f − f ′ − (g − g′)] = [0] because f − f ′ − (g − g′) ∈ J1 + J2;
this proves π is well-de�ned.

ρ is injective because ρ([f ]) = ([0], [0]) if and only if [f ] = [0] in both R/J1 and
R/J2 i.e if and only if f ∈ J1 and f ∈ J2. π is surjective because any element
[f ] ∈ R/(J1 + J2) can be written as π([f ], [0]). The inclusion Im(ρ) ⊆ Ker(π) is
obvious; we only need to show that Ker(π) ⊆ Im(ρ) in order to conclude.

Pick ([f ], [g]) ∈ Ker(π), then [f − g] = [0] in R/(J1 + J2) i.e. f − g ∈ J1 + J2; this
means there exist h1 ∈ J1 and h2 ∈ J2 such that f − g = h1 + h2, and this allows us
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to write f − h1 = g + h2. Now, clearly [f ] = [f − h1] in R/J1 and [g] = [g + h2] in
R/J2, so we can write ([f ], [g]) = ([f −h1], [g+h2]); but since f −h1 = g+h2, we can
actually write ([f ], [g]) = ([f − h1], [g + h2]) = ([g + h2], [g + h2]) = ρ([g + h2]). This
proves the lemma.

Corollary 3.1.8. If J1 and J2 are homogeneous ideals, the previous short exact se-
quence remains exact after taking the homogeneous parts of any �xed degree; in par-
ticular, for any m ∈ Z one has

hJ1∩J2(m) = hJ1(m) + hJ2(m)− hJ1+J2(m). (3.1.3)

In order to use formula (2.1.15) we need to understand which constants of quasi-
adjunction of the Ai can actually contribute to the Alexander polynomial ∆Ai , and

whether they are relative to one or more multiple points of Ai; this requires us to take
into consideration the divisibility relations between 3, p, q and n. Since p+ q = n, any
integer d dividing two of p, q and n actually divides all three of them, so gcd(p, q) =
gcd(p, n) = gcd(q, n) = gcd(p, q, n); we denote this integer by d, and write p = dp′,
q = dq′ and n = dn′.

By Remark 2.1.12, the constants of quasi-adjunction relative to P1 are j
p
for j =

1, . . . , p− 2; however, j
p
can only contribute to the Alexander polynomial if n j

p
∈ Z>0

i.e. n′ j
p′
∈ Z>0. Since (p′, n′) = 1, this means that the only constants of quasi-

adjunction j
p
we need to consider have the form jp′

p
= j

d
for j = 1, . . . , d − 1 (unless

d = p, in which case j = 1, . . . , d−2). Likewise, the only constants of quasi-adjunction
relative to P2 that can contribute to the Alexander polynomial have the form jq′

q
= j

d

for j = 1, . . . , d− 1 (unless d = q, in which case j = 1, . . . , d− 2).
If d < q then all the constants of quasi-adjunction j

d
with j = 1, . . . , d − 1 we

need to consider are relative to both P1 and P2. If d = q then the constants of quasi-
adjunction relative to P2 that we need to consider are j

q
with j = 1, . . . , q − 2 but we

have to distinguish two cases:

1. If p > q we have to consider the constant of quasi-adjunction q−1
q

too, and that
one is only relative to the point P1.

2. If p = q, all the constants of quasi-adjunction we have to consider are j
q
with

j = 1, . . . , q − 2 and they are relative to both P1 and P2.

Lastly, the constant of quasi-adjunction 1
3
relative to the triple points has to be

considered if and only if 3|n. In order to maintain the exposition as organised as
possible, we separate the cases p = q and p 6= q and start from the former.

3.1.1 p = q

In this scenario we have p = q = d and n = 2d, so 3|n if and only if 3|d. We will
show the following:

Theorem 3.1.9. The Alexander polynomial of each At is trivial.
We separate cases again, depending on whether 3 divides n or not, and show that

Theorem 3.1.9 holds in each of them.
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3 - d

The constants of quasi-adjunction we need to consider are cj := d−1−j
d

for j =
1, . . . , d−2. For each of them we need to compute the length of the associated scheme
Zcj and the Hilbert function in degree N2d(cj) = 2d − 3 − 2dcj = 2j − 1 of the
associated ideal Icj . If cj >

1
3
we have Icj = Aj ∩ Bj = (A ∩ B)j, while for cj ≤ 1

3
we

have Icj = IIt ∩ Aj ∩Bj = IIt ∩ (A ∩B)j.

Lemma 3.1.10. Consider a, b ∈ Z>0 such that a ≥ b; a minimal system of generators
for the ideal Aa∩Bb is given by monomials xa−iyi for i = 0, . . . , a− b and xb−iya−b+izi
for i = 1, . . . , b.

Proof. Since A and B are monomial ideals, certainly Aa∩Bb is generated by monomials
lcm(xa−iyi, xb−hzh) for i = 0, . . . , a and h = 0, . . . , b; we will extract our desired
minimal system of generators from this one.

Assume that i = 0, . . . , a − b: we have lcm(xa−iyi, xb−hzh) = xa−iyizh for any
h = 0, . . . , b but clearly all these monomials are multiples of xa−iyi; this gives our �rst
group of generators.

Consider now terms in Aa like xb−iya+i−b for i = 1, . . . , b: we have

lcm(xb−iya+i−b, xb−hzh) =

{
xb−iya+i−bzh if h ≥ i.

xb−hya+i−bzh otherwise.

For a �xed i, the monomials we get for h ≥ i are all multiples of xb−iya+i−bzi, and this
gives our second group of generators; in order to conclude, we need to prove that for
any �xed i ∈ {1, . . . , b} the terms xb−hya+i−bzh with h < i are multiples of generators
from the �rst or second group. Fix an i ∈ {1, . . . , b}. If h = 0 then we get xbya+i−b

which is multiple of xbya−b; if 0 < h < i the monomial xb−hya+i−bzh is multiple of
xb−hya+h−bzh, and the latter monomial is in the second group of generators since we
can write it as xb−iya+i−bzh for h = i.

Lemma 3.1.11. hIcj (m) = j(j + 1) for any m ≥ j

Proof. By Lemma 3.1.10 we have Icj = (xa(yz)b|a, b ≥ 0, a + b = j) so a non-zero
monomial xaybzc in (R/Icj)m needs to satisfy a = j − h for some h ∈ {1, . . . , j}
because xj ∈ Icj ; moreover, since xj−hyhzh ∈ Icj , it needs to have b < h or c < h (or
both), so we can write b (or c) as h− l for some l ∈ {1, . . . , h}, and this forces c (or b)
to be m− (j − h+ h− l) = m− j + l. Since h = 1, . . . , j and l = 1, . . . , h, we obtain

hIcj (m) =
∑j

h=1 2(
∑h

l=1 1) = 2
∑j

h=1 h = 2 j(j+1)
2

= j(j + 1).

Corollary 3.1.12. The constants of quasi-adjunction cj s.t. cj >
1
3
do not contribute

to ∆At for all t.

Proof. The local ring of the scheme Zcj at both P1 and P2 consists of all the germs of
holomorphic functions whose constant of quasi-adjunction at P1 (or P2) is bigger than
or equal to cj, so it is the vector subspace of R generated by the monomials xayb for
a, b ≥ 0 and a + b ≤ j, while the local ring of Zcj at the Ti is trivial because triple
points admit only 1

3
as constants of quasi-adjunction for constant function germs. This
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means that for any cj >
1
3
we have l(Zcj) = 2(

∑j
h=1 h) = 2 j(j+1)

2
= j(j + 1). Since

2j − 1 ≥ j (because j ≥ 1), by Lemma 3.1.11 we get hIcj (2j − 1) = j(j + 1) too and
we are done.

Now we need to study the contribution of the constants of quasi-adjunction cj ≤ 1
3
:

in this situation we have j ≥ d2d−3
3
e and Icj = IIt ∩ Aj ∩Bj.

Remark 3.1.13. Before moving on, note that it must be t < 2j. If t ≥ 2j in fact we
would get t ≥ 2d2d−3

3
e = 2dd− 1− d

3
e ≥ 2(d− 1) = 2d− 2; but 2d− 2 > d− 1 as long

as d > 1, which is true in our scenario. Since the Ai can have at most d − 1 triple
points, we would get a contradiction.

Lemma 3.1.14. For any r ≥ 2 we have R/(IIr−1 + Ir) ' C[y]/(yr−1). In particular
hIIr−1+Ir(m) is 1 for m < r − 1 and 0 otherwise.

Proof. By Proposition 3.1.6 we have IIr−1 = (y−z,
∏r−1

i=1 (x− iy)) so IIr−1 +Ir = (y−
z,
∏r−1

i=1 (x−iy), x−ry) and we get R/(IIr−1+Ir) ' C[y]/(
∏r−1

i=1 (ry−iy)) = C[y]/(yr−1).
The last assertion is obvious.

Proposition 3.1.15. For any m ∈ Z≥0 and any r ≥ 2 we have

hIIr(m) = r −
r∑
i=2

dim(C[y]/(yi−1))m. (3.1.4)

In particular, for m ≥ r − 1 we have hIIr(m) = r.

Proof. We proceed by induction on r. When r = 2 the proposition follows immediately
from the previous lemma and the short exact sequence

0→ R/II2 → R/I1 ⊕R/I2 → R/(I1 + I2)→ 0

since R/Ii ' C[y] for any i. Now we assume the proposition holds true for r−1. From
the short exact sequence

0→ R/IIr → R/IIr−1 ⊕R/Ir → R/(IIr−1 + Ir)→ 0

we obtain, using the induction hypothesis and the previous lemma, that

hIIr(m) = hIIr−1(m) + hIr(m)− hIIr−1+Ir(m) =

= r − 1−
r−1∑
i=2

dim(C[y]/(yi−1))m + hIr(m)− dim(C[y]/(yr−1))m

= r −
r∑
i=2

dim(C[y]/(yi−1))m.

Lemma 3.1.16. Assume a, b ∈ Z>0, then hIIt+Aa∩Bb(m) = 0 for any m ≥ a+ b− 1.
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Proof. We can assume without loss of generality that a ≥ b. Thanks to Lemma 3.1.10
we can write

R/(IIt + Aa ∩Bb) ' C[x, y]/I ⊂ C[x, y]/I ′

where I is generated by the homogeneous degree t polynomial
∏t

i=1(x − iy) and by
monomials xa−hyh for h = 0, . . . , a − b and xb−hya−b+2h for h = 1, . . . , b while I ′ is
only generated by the latter two sets of monomials; it is clearly su�cient to prove that
hI′(m) = 0 for m ≥ a+ b− 1.

Monomials xa−hym−a+h with h = 0, . . . , a−b belong to I ′ if and only ifm−a+h ≥ h
i.e. if and only if m ≥ a, and this holds since b ≥ 1 and m ≥ a + b − 1. Similarly,
monomials xb−hym−b+h with h = 1, . . . , b belong to I ′ if and only ifm−b+h ≥ a−b+2h
i.e. if and only if m ≥ a − h; but the maximum possible value for a − h when
h ∈ {1, . . . , b} is a− 1, and by hypothesis we have m ≥ a+ b− 1 ≥ a− 1.

Corollary 3.1.17. The constants of quasi-adjunction cj s.t. cj ≤ 1
3
do not contribute

to ∆At for all t.

Proof. Arguing as in Corollary 3.1.12 we can say that the sum of the dimensions of
the local rings of Zcj at the points P1 and P2 is j(j + 1); however, since cj ≤ 1

3
the

local ring of Zcj at the Ti has dimension one. This means that for any cj ≤ 1
3
and for

all t we have l(Zcj) = j(j + 1) + t.
Now we need to compute hIcj (2j − 1): we do it using the short exact sequence

0→ R/Icj → R/IIt ⊕R/(Aj ∩Bj)→ R/(IIt + Aj ∩Bj)→ 0.

Since by Remark 3.1.13 we have 2j−1 ≥ t, Proposition 3.1.15 and Lemmas 3.1.10 and
3.1.16 allow us to conclude that hIcj (2j − 1) = j(j + 1) + t too, so we are done.

Corollaries 3.1.12 and 3.1.17 together imply Theorem 3.1.9.

3|d

If 3|d we write d = 3d′ (with d′ > 1 since 2d = n ≥ 7) and notice that only
two things are di�erent from the case 3 - d. First, the constant of quasi-adjunction
1
3
is now one of the cj and it could give a non-trivial factor Φe3

3 in the Alexander
polynomial; second, the inequality in Remark 3.1.13 becomes much simpler: we need
to prove that we cannot have t ≥ 2j for j ≥ 2d′ − 1, and in this situation we have
2j ≥ 4d′ − 2 = d + d′ − 2 > d− 1 since d′ > 1 so that is indeed impossible. All other
computations go through without any change, so we can conclude that Theorem 3.1.9
holds in this case too.

3.1.2 p 6= q

We write n = d(q′ + p′). If d < q then the constants of quasi-adjunction we
have to consider are d−j

d
with j = 1, . . . , d − 1, and they are all relative to both

P1 and P2. If d = q the constants of quasi-adjunction we have to consider are q−j
q

with j = 1, . . . , q − 1; they are all relative to both P1 and P2 save for q−1
q

which is
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only relative to P1. If 3 - n we know that the constant of quasi-adjunction 1
3
does

not contribute to the Alexander polynomial; if 3|n the constant of quasi-adjunction 1
3

might contribute to the Alexander polynomial, but we have to distinguish two cases:

• If 3|d then 1
3
is one of the d−j

d
: indeed, d−j

d
= 1

3
for j = 2

3
d, and 2

3
d ≤ d − 1 if

and only if d ≥ 3; since 3|d, this holds.

• If 3 - d then we have to study 1
3
separately.

Before starting with the computations, we prove two easy lemmas:

Lemma 3.1.18. Let a, b ∈ Z≥0, then hAa+Bb(m) = 0 for any m ≥ a+ b− 1.

Proof. We can assume, without loss of generality, that a ≥ b. In order for xc1ym−c1−c2zc2

to be non-zero in (R/(Aa + Bb))m it must be c1 = b − j for some j ∈ {1, . . . , b} and
c2 = j − h for some h ∈ {1, . . . , j} (since xb−jzj ∈ Bb for j = 0, . . . , b); this implies
that m− c1 − c2 = m− b + h. The monomial xb−jya−(b−j) belongs to Aa, so we need
to have m− b+ h < a− (b− j) i.e. m < a+ j − h; the biggest value j − h can take is
b− 1, but by hypothesis we have m ≥ a+ b− 1 so the lemma is proved.

Lemma 3.1.19.

hAa(m) =

{
a(a+1)

2
if m ≥ a.

(m+1)(m+2)
2

otherwise.
hBb(m) =

{
b(b+1)

2
if m ≥ b.

(m+1)(m+2)
2

otherwise.

Proof. It is clearly enough to prove the lemma for Aa. If m < a then we need to count
all monomials xc1yc2zc1+c2+c3 with c1 +c2 +c3 = m, and they are

(
m+3−1

2

)
= (m+1)(m+2)

2
.

If m ≥ a, in order for xc1yc2zm−c1−c2 to be non-zero in (R/Aa)m it must be c1 = a− j
for some j ∈ {1, . . . , a} and c2 = j − h for some h ∈ {1, . . . , j}; the number of these

monomials is
∑a

j=1

∑j
h=1 1 = a(a+1)

2
.

Using these lemmas, we will prove that

Theorem 3.1.20. The Alexander polynomial of each At is trivial.

As before, we distinguish various cases and show that Theorem 3.1.20 holds in each
of them.

d < q and 3 - n

In this case triple points cannot contribute to the Alexander polynomial with a term
Φe3

3 , but we still need to consider them when studying constants of quasi-adjunction
that are less than or equal to 1

3
.

The constants of quasi-adjunction we need to consider are cj := d−j
d

for j =
1, . . . , d−1, and they are all relative to both P1 and P2; we have Nn(cj) = p′j+q′j−3.

Since d−j
d

= p−p′j
p

= p−1−(p′j−1)
p

and d−j
d

= q−q′j
q

= q−1−(q′j−1)
q

we have

1. If cj >
1
3
then Icj = Ap

′j−1 ∩Bq′j−1.
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2. If cj ≤ 1
3
then Icj = IIt ∩ Ap

′j−1 ∩Bq′j−1.

Lemma 3.1.21. The constants of quasi-adjunction cj s.t. cj >
1
3
do not contribute to

∆At for all t.

Proof. Since (p′j − 1) + (q′j − 1) − 1 = p′j + q′j − 3, we can use Lemma 3.1.18 to
conclude that hAq′j−1+Bp′j−1(q′j + p′j − 3) = 0; from the short exact sequence

0→ R/Icj → R/Ap
′j−1 ⊕R/Bq′j−1 → R/(Ap

′j−1 +Bq′j−1)→ 0

we deduce that hIcj (p
′j+q′j−3) = hAp′j−1(p′j+q′j−3)+hBq′j−1(p′j+q′j−3). Now, if

q′j ≥ 2 then p′j+q′j−3 ≥ p′j−1 and by Lemma 3.1.19 we get hAp′j−1(p′j+q′j−3) =
p′j(p′j−1)

2
; if j = q′ = 1 then p′j + q′j − 3 = p′ − 2 and p′j − 1 = p′ − 1, so by Lemma

3.1.19 we get again hAp′j−1(p′j + q′j − 3) = p′j(p′j−1)
2

. Since a similar argument works

for the ideal Bq′j−1 too, we can conclude that

hIcj (p
′j + q′j − 3) =

p′j(p′j − 1)

2
+
q′j(q′j − 1)

2
.

The local ring at P1 of the scheme Zcj contains all germs of holomorphic function whose

constant of quasi-adjunction is bigger than or equal to cj; since
q−j
q

= p−1+(p′j−1)
p

,

it is the vector subspace of R generated by the monomials xayb for a, b ≥ 0 and
a + b = h for all h ≤ p′j − 1, so it has dimension p′j(p′j−1)

2
. Similarly, the local ring

at P2 of Zcj has dimension q′j(q′j−1)
2

. The local ring of Zcj at the Ti is trivial instead,
since the only constant of quasi-adjunction of a triple point is 1

3
> cj. This implies

l(Zcj) = p′j(p′j−1)
2

+ q′j(q′j−1)
2

= hIcj (p
′j + q′j − 3) so we are done.

Now we need to study the cj such that cj ≤ 1
3
, which give Icj = IIt∩Ap

′j−1∩Bq′j−1.

Remark 3.1.22. In order to have cj ≤ 1
3
we need j ≥ 2d

3
, but since 3 - d and j

must be an integer we can actually write j ≥ 2d+1
3

. This means that p′j + q′j − 3 ≥
2d+1

3
(p′+ q′)− 3 = 2p+2q+p′+q′

3
− 3 ≥ 2(q+2)+2q+p′+q′

3
− 3 = 4q+p′+q′+4

3
− 3; the right-hand

side is bigger than or equal to q− 1 if and only if q + p′ + q′ ≥ 2, which is clearly true
in our situation.

Lemma 3.1.23. The constants of quasi-adjunction cj s.t. cj ≤ 1
3
do not contribute to

∆At for all t.

Proof. Using Lemma 3.1.16 we can conclude that hIIt+Ap′j−1∩Bq′j−1(p′j + q′j − 3) = 0,
while using Lemma 3.1.18 we can write hAp′j−1∩Bq′j−1(p′j+q′j−3) = hAp′j−1(p′j+q′j−
3) + hBq′j−1(p′j + q′j − 3). Combining the two things, we get

hIcj (p
′j + q′j − 3) = hIIt(p

′j + q′j − 3) + hAp′j−1(p′j + q′j − 3) + hBq′j−1(p′j + q′j − 3).

Remark 3.1.22 together with Proposition 3.1.15 gives

hIcj (p
′j + q′j − 3) = t+

p′j(p′j − 1)

2
+
q′j(q′j − 1)

2
.



68 Arrangements with two points of high order

Arguing as in Lemma 3.1.21 we can say that the sum of the dimensions of the local
rings of Zcj at the points P1 and P2 is p′j(p′j−1)

2
+ q′j(q′j−1)

2
; however, since cj ≤ 1

3
the

local ring of Zcj at the Ti has dimension one. This means that for any cj ≤ 1
3
and for

all t we have l(Zcj) = p′j(p′j−1)
2

+ q′j(q′j−1)
2

+ t. Since this value coincides with l(Zcj) we
are done.

Lemmas 3.1.21 and 3.1.23 imply Theorem 3.1.20.

d < q and 3|n

The triple points Ti can contribute to the Alexander polynomial with the constant
of quasi-adjunction 1

3
. If 3|d the constant of quasi-adjunction 1

3
is one of the cj, so we

can assume 3 - d. The computations for the constants of quasi-adjunction cj are the
same as before, so they do not contribute to the ∆At by Lemmas 3.1.21 and 3.1.23;
we only need to study 1

3
. If we write n = 3n′ we obtain Nn(1

3
) = 2n′ − 3.

In order for 1
3
to be greater than or equal to a constant of quasi-adjunction p−1−j

p

of P1 (respectively, a constant of quasi-adjunction q−1−h
q

of P2), we need j ≥ 2p−3
3

(respectively, h ≥ 2q−3
3

); we call tp := 2p−3
3

and tq := 2q−3
3

. Since the indices j and
h have to be integers, and neither tp nor tq is an integer, we actually need j ≥ dtpe
and h ≥ dtqe; this means that I 1

3
= IIt ∩ Adtpe−1 ∩ Bdtqe−1. We need to compute

l(Z 1
3
)− hI 1

3

(2n′ − 3).

Lemma 3.1.24. The constant of quasi-adjunction 1
3
does not contribute to ∆At for

all t.

Proof. Since tp+tq = 2n′−2 ∈ Z we have tp+tq = dtp+tqe and dtp+tqe+1 = dtpe+dtqe;
this implies that 2n′ − 3− (dtpe+ dtqe − 3) = 2n′ − dtpe − dtqe = 2n′ − 1− dtp + tqe =
2n′ − 1− tp − tq = 2n′ − 1− (2n′ − 2) = 1 ≥ 0, so by Lemma 3.1.18 we conclude that
hAdtpe−1+Bdtqe−1(2n′ − 3) = 0.

We have 2n′−3 ≥ tp if and only if q ≥ 3, which is true under our hypotheses; since
tp /∈ Z implies that tp ≥ dtpe − 1, we can conclude that 2n′ − 3 ≥ dtpe − 1. With the
same argument we can prove that 2n′ − 3 ≥ dtqe − 1. In particular, from the usual
short exact sequence

0→ R/Adtpe−1 ∩Bdtqe−1 → R/Adtpe−1 ⊕R/Bdtqe−1 → R/(Adtpe−1 +Bdtqe−1)→ 0

and Lemma 3.1.19 we deduce that

hAdtpe−1∩Bdtqe−1(2n′ − 3) =
dtpe(dtpe − 1)

2
+
dtqe(dtqe − 1)

2
.

Now we need to use the short exact sequence

0→ R/I 1
3
→ R/IIt ⊕R/Adtpe−1 ∩Bdtqe−1 → R/(IIt + Adtpe−1 ∩Bdtqe−1)→ 0.

Since 2n′ − 3 = tp + tq − 1 = dtp + tqe − 1 = dtpe + dtqe − 2, using Lemma 3.1.16 we
can conclude that hIIt+Adtpe−1∩Bdtqe−1(2n′ − 3) = 0.
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Now, we have q − 1 ≤ bn
2
c − 1 = n′ − 1 + bn′

2
c, and 2n′ − 3 ≥ n′ − 1 + bn′

2
c if and

only if n′ − 2 ≥ bn′
2
c. If n′ is even this is true if and only if n′ ≥ 4, which holds under

our hypotheses (n′ = 2 would give n = 6, contradiction); if n′ is odd then bn′
2
c = n′−1

2
,

so that inequality holds if and only if n′ ≥ 3 (which is the case under our hypotheses,
since n ≥ 7 implies n′ ≥ 3). In any case we can conclude that 2n′ − 3 ≥ q − 1 ≥ t, so
using Proposition 3.1.15 and what we found above we obtain

hI 1
3

(2n′−3) = hIIt(2n
′−3)+hAdtpe−1∩Bdtqe−1(2n′−3) = t+

dtpe(dtpe − 1)

2
+
dtqe(dtqe − 1)

2
.

The local ring at P1 of the scheme Z 1
3
contains all germs of holomorphic function whose

constant of quasi-adjunction is bigger than or equal to 1
3
; by the relation we saw above

between 1
3
and the constants of quasi-adjunction of P1, this is the vector subspace of

R generated by the monomials xayb for a, b ≥ 0 and a + b = h for all h ≤ dtpe − 1,

so it has dimension dtpe(dtpe−1)

2
. Similarly, the local ring at P2 of Z 1

3
has dimension

dtqe(dtqe−1)

2
. The local ring of Z 1

3
at any triple point is simply C, since constants are

the only functions whose constant of quasi-adjunction around a triple point is greater
than or equal to 1

3
.

As l(Z 1
3
)− hI 1

3

(2n′ − 3) = 0 we are done.

Lemmas 3.1.24, 3.1.21 and 3.1.23 imply Theorem 3.1.20.

d = q and 3 - d

In this case the triple points cannot contribute to the Alexander polynomial with
a term Φe3

3 , but we still need to take them into account when studying constants of
quasi-adjunction which are less than or equal to 1

3
. The constants of quasi-adjunction

we need to consider are the cj := q−j
q

for j = 1, . . . , q − 1, so Nn(cj) = p′j + j − 3.

Since q−j
q

= p−p′j
p

= p−1−(p′j−1)
p

and q−j
q

= q−1−(j−1)
q

we obtain:

1. If cj >
1
3
then Icj = Ap

′j−1 ∩Bj−1.

2. If cj ≤ 1
3
then Icj = IIt ∩ Ap

′j−1 ∩Bj−1.

Lemma 3.1.25. The constants of quasi-adjunction cj s.t. cj >
1
3
do not contribute to

∆At for all t.

Proof. First we study c1. Since q ≥ bn
2
c ≥ 3 we have c1 >

1
3
, so Ic1 = Ap

′−1 and

l(Zc1) = p′(p′−1)
2

(arguing as usual); since hAp′−1(p′− 2) = p′(p′−1)
2

by Lemma 3.1.19, we
can conclude that c1 does not contribute to the Alexander polynomial.

Assume now that j ≥ 2. Since (p′j − 1) + (j − 1) − 1 = p′j + j − 3, we can use
Lemma 3.1.18 to conclude that hAp′j−1+Bj−1(p′j + j − 3) = 0; from the short exact
sequence

0→ R/Icj → R/Ap
′j−1 ⊕R/Bj−1 → R/(Ap

′j−1 +Bj−1)→ 0
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we deduce that hIcj (p
′j + j − 3) = hAp′j−1(p′j + j − 3) + hBj−1(p′j + j − 3). Since we

are in the case j ≥ 2, applying Lemma 3.1.19 we obtain

hIcj (p
′j + j − 3) =

p′j(p′j − 1)

2
+
j(j − 1)

2
.

Arguing as in Lemma 3.1.21 we �nd l(Zcj) = p′j(p′j−1)
2

+ j(j−1)
2

= hIcj (p
′j+ j− 3)so we

are done.

Now we study the cj ≥ 1
3
, for which Icj = IIt ∩ Ap

′j−1 ∩Bj−1.

Remark 3.1.26. In order to have cj ≤ 1
3
we need j ≥ 2q

3
, but since 3 - q and j

must be an integer we can actually write j ≥ 2q+1
3

. This means that p′j + j − 3 ≥
2q+1

3
p′ + 2q+1

3
− 3 = 2p+2q+p′+1

3
− 3 ≥ 2(q+2)+2q+p′+1

3
− 3 = 4q+p′+5

3
− 3; the right-hand

side is bigger than or equal to q − 1 if and only if q + p′ ≥ 1, which is clearly true in
our situation.

Lemma 3.1.27. The constants of quasi-adjunction cj s.t. cj ≤ 1
3
do not contribute to

∆At for all t.

Proof. Using Lemma 3.1.16 we can conclude that hIIt+Ap′j−1∩Bj−1(p′j + j − 3) = 0,
while using Lemma 3.1.18 we can write hAp′j−1∩Bj−1(p′j + j − 3) = hAp′j−1(p′j + j −
3) + hBj−1(p′j + j − 3). Combining the two things, we get

hIcj (p
′j + j − 3) = hIIt(p

′j + j − 3) + hAp′j−1(p′j + j − 3) + hBj−1(p′j + j − 3).

Remark 3.1.26 together with Proposition 3.1.15 gives

hIcj (p
′j + j − 3) = t+

p′j(p′j − 1)

2
+
j(j − 1)

2
.

Arguing as in Lemma 3.1.23 we �nd that this value is exactly l(Zcj), so we are done.

Lemmas 3.1.25 and 3.1.27 imply Theorem 3.1.20.

d = q and 3|d

The triple points can contribute to the Alexander polynomial with a factor Φe3
3 , so

we also need to consider the constant of quasi-adjunction 1
3
. By Lemmas 3.1.25 and

3.1.27 we know that the constants of quasi-adjunction cj = q−j
q

for j = 1, . . . , q− 1 do

not contribute to ∆At . If 3|q the constant of quasi-adjunction 1
3
is one of the cj, so we

have nothing to do; if 3 - q then we do have to study the constant of quasi-adjunction
1
3
, but the computations we need to do are the same we did in Lemma 3.1.24.

In any case Theorem 3.1.20 is still true.
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3.2 s = 1 without common line

Now we consider arrangements in which no line passes through both P1 and P2;
we assume that P1 has order p and P2 has order q, and we still denote by ` the free
line. The argument we use is the same as before: the ED-equivalence classes of such
arrangements are �nite, as we have one for each number of triple points these ar-
rangements can have (i.e. classes At for t = 0 . . . ,m := min{p, q}), and the Alexander
polynomial of each At can be determined using formula (2.1.15). The results we obtain
are also the same as before:

Theorem 3.2.1. The Alexander polynomial of each At is trivial.

From this we conclude that the Alexander polynomial of any arrangement of this
type is trivial using Corollary 3.1.3; but �rst, we show that these arrangements are
indeed non-symmetric:

Lemma 3.2.2. An arrangement A of this type does not support weak (α, β)-multinets.

Proof. Any line r through P1 meets the lines l1, . . . , lq through P2 in at least q − 1
double points, which cannot belong to the base locus of a weak multinet; this means
r and the li must belong to the same class, say A1. Since this argument holds for
any line through P1, we deduce that A−A1 = {`} which is impossible because weak
multinets must have at least three classes.

As we did before we call dp := (p, n), dq = (q, n) and write p = p′dp, q = q′dq,
n = dpnp = dqnq; we obtain that if dp > 1 (resp. dq > 1) the constants of quasi-
adjunction we have to consider are:

Relative to P1: cpj :=
dp − j
dp

with j =

{
1, . . . , dp − 1 if dp 6= p.

2, . . . , p− 1 if dp = p.
(3.2.1)

Relative to P2: cqh :=
dq − h
dq

with h =

{
1, . . . , dq − 1 if dq 6= q.

2, . . . , q − 1 if dq = q.
(3.2.2)

Relative to triple points:
1

3
(if and only if 3|n).

This situation however is more complicated than before: since there is no common
line, we have p + q = n − 1, which means in particular that the equality dp = dq no
longer holds; in fact, we actually have (dp, dq) = 1. This means that no constant of
quasi-adjunction cpj will ever coincide with a constant of quasi-adjunction cqh.

3.2.1 Only one of dp and dq is greater than 1

Without loss of generality we can assume dp > 1 and dq = 1. For any constant of
quasi-adjunction c we study the di�erence l(Zc)−hIc(Nn(c)) where Nn(c) = n−3−nc.

We have equalities
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cpj =
dp − j
dp

=
p− 1− (p′j − 1)

p
=
q − 1− (j q

dp
− 1)

q
.

Moreover, in order to have cpj ≤ 1
3
(resp. cqh ≤ 1

3
) we need j ≥ tp := 2p−3

3
(resp.

h ≥ tq := 2q−3
3

). This implies the following:

1. For cpj >
1
3
and j q

dp
< 2 we have Icpj = Ap

′j−1.

2. For cpj >
1
3
and j q

dp
≥ 2 we have Icpj = Ap

′j−1 ∩Bbj
q
dp
c−1

.

3. For cpj ≤ 1
3
and j q

dp
≥ 2 we have Icpj = Ap

′j−1 ∩Bbj
q
dp
c−1 ∩ IIt.

4. (To be considered if and only if 3|n and 3 - dp) I 1
3

= Adtpe−1 ∩Bdtqe−1 ∩ IIt.

Remark 3.2.3. It cannot happen that cpj ≤ 1
3
and j q

dp
< 2: indeed, cpj ≤ 1

3
if and

only if j ≥ 2
3
dp which implies j q

dp
≥ 2q

3
≥ 2 because q ≥ 3.

Lemma 3.2.4. None of the constants of quasi-adjunction satisfying one of 1.-3. con-
tributes to ∆At.

Proof. We proceed case-by-case:

Case 1. Nn(cpj) = npj − 3 so Nn(cpj) ≥ p′j − 1 if and only if j(np − p′) ≥ 2. If
np−p′ ≥ 2 this is true. np−p′ = 0 cannot happen, as it would give n = p. If np−p′ = 1
then Nn(cpj) = p′j + j − 3: j = 1 gives Nn(cpj) = p′ − 2 and p′j − 1 = p′ − 1, while
j ≥ 2 guarantees Nn(cpj) ≥ p′j − 1. In any case we can conclude by Lemma 3.1.19

that hIcpj (Nn(cpj)) = p′j(p′j−1)
2

. l(Zcpj) can be computed by the same reasoning we

used so far, and turns out to be p′j(p′j−1)
2

. Hence these constants of quasi-adjunction
do not contribute to ∆At .

Case 2. Nn(cpj) ≥ (p′j − 1) + (bj q
dp
c − 1) − 1 if and only if j(np − p′) ≥ bj q

dp
c,

and it is enough to prove that j(np − p′) ≥ j q
dp

i.e. np − p′ − q
dp
≥ 0; but this

is true, since that di�erence is 1
dp
. By Lemmas 3.1.18 and 3.1.7 we conclude that

hIcpj (Nn(cpj)) = hAp′j−1(Nn(cpj)) + h
B
bj q
dp
c−1(Nn(cpj)).

Proceeding as in Case 1. we can show that hAp′j−1(Nn(cpj)) = p′j(p′j−1)
2

.
Nn(cpj) ≥ bj q

dp
c − 1 if and only if npj − bj q

dp
c ≥ 2, and it is enough to prove that

npj − j q
dp
≥ 2 i.e j p+1

dp
≥ 2. If dp = p then j ≥ 2 and p+1

dp
= p+1

p
> 1, so that holds; if

dp < p we must have dp ≤ p
2
so p+1

dp
≥ 2

p
(p + 1) ≥ 2 and we are done. In any case we

can conclude, by Lemma 3.1.19, that h
B
bj q
dp
c−1(Nn(cpj)) =

bj q
dp
c(bj q

dp
c−1)

2
.

We have obtained

hIcpj (Nn(cpj)) =
p′j(p′j − 1)

2
+
bj q

dp
c(bj q

dp
c − 1)

2
and since this value coincides with l(Zcpj) we can conclude that these constants of
quasi-adjunction do not contribute to ∆At .
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Case 3. As before, we have Nn(cpj) ≥ (p′j − 1) + (bj q
dp
c − 1) − 1, so by Lem-

mas 3.1.7, 3.1.16 and 3.1.18 we conclude that hIcpj (Nn(cpj)) = hAp′j−1(Nn(cpj)) +

h
B
bj q
dp
c−1(Nn(cpj)) + hIIt(Nn(cpj)).

Proceeding as in Case 1. we can show that hAp′j−1(Nn(cpj)) = p′j(p′j−1)
2

, while

proceeding as in Case 2. we can show that h
B
bj q
dp
c−1(Nn(cpj)) =

bj q
dp
c(bj q

dp
c−1)

2
.

Nn(cpj) ≥ t−1 if and only if npj−t ≥ 2, and it is enough to prove that npj−m ≥ 2;
observe that cpj ≤ 1

3
implies j ≥ 2

3
dp, so npj−m ≥ 2

3
n−m = 2

3
(p+q+1)−m. Since the

right-hand side of the last inequality is symmetric in p and q, we can assume without
loss of generality that p < q i.e. m = p; we obtain npj −m ≥ 2

3
(q + 1)− 1

3
p > q

3
+ 2

3
.

Since q ≥ 3 and npj −m is an integer we are done. By Proposition 3.1.15, we have
hIIt(Nn(cpj)) = t.

We have obtained

hIcpj (Nn(cpj)) =
p′j(p′j − 1)

2
+
bj q

dp
c(bj q

dp
c − 1)

2
+ t

and since this value coincides with l(Zcpj) we can conclude that these constants of
quasi-adjunction do not contribute to ∆At .

Now, if 3 - n the cpj are the only constants of quasi-adjunction we have to consider,
so Lemma 3.2.4 implies immediately Theorem 3.2.1. If 3|n we have to consider the
constant of quasi-adjunction 1

3
too, but we need to distinguish two cases: if 3|dp then

1
3
is one of the cpj, so we actually have already taken care of it, while if 3 - dp we do

have to study the constant of quasi-adjunction 1
3
.

Lemma 3.2.5. The constant of quasi-adjunction 1
3
does not contribute to ∆At.

Proof. If we write n = 3n′ we �nd Nn(1
3
) = 2n′ − 3. In order to prove that 2n′ − 3 ≥

(dtpe − 1) + (dtqe − 1)− 1 it is enough to prove that 2n′ ≥ tp + tq + 2; the right-hand

side is 2p−3
3

+ 2q−3
3

+ 2 = 2(n−1)
3

= 2n′− 2
3
, so it is indeed smaller than 2n′. By Lemmas

3.1.7, 3.1.16 and 3.1.18 we deduce that hI 1
3

(2n′−3) = hAdtpe−1(2n′−3)+hBdtqe−1(2n′−
3) + hIIt(2n

′ − 3).
Now, 2n′ − 3 ≥ tp if and only if p ≥ 3, which is true under our hypotheses; as

tp ≥ dtpe−1, this implies 2n′−3 ≥ dtpe−1 (and the same goes for tq). 2n′−3 ≥ m−1
if and only if 2p+2q+2

3
− 2−m ≥ 0, and we can assume without loss of generality that

m = q; in this case, the left-hand side is 2p−q−4
3
≥ p−4

3
. p = 3 cannot happen, as it

would force q = 3 and n = 7, so that value is indeed greater than or equal to zero.
By Lemma 3.1.19 and Proposition 3.1.15, we �nd

hI 1
3

(2n′ − 3) =
dtpe(dtpe − 1)

2
+
dtqe(dtqe − 1)

2
+ t

and since this value coincides with l(Z 1
3
) we can conclude that the constant of quasi-

adjunction 1
3
does not contribute to ∆At .

Hence Theorem 3.2.1 holds when 3|n too.
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3.2.2 dp, dq > 1

We certainly have to consider the constants of quasi-adjunction cpj in (3.2.1) and
cqh in (3.2.2), and only these if 3 - n. If 3|n we have to consider the constant of
quasi-adjunction 1

3
too; however, if 3|dp (resp. 3|dq) then 1

3
is one of the cpj (resp.

cqh), so we have nothing to do, while if 3 - dp, dq we do have to study the constant
of quasi-adjunction 1

3
. As before, for any constant of quasi-adjunction c we study the

di�erence l(Zc)− hIc(Nn(c)) where Nn(c) = n− 3− nc.
We have equalities

cpj =
dp − j
dp

=
p− 1− (p′j − 1)

p
=
q − 1− (j q

dp
− 1)

q
.

cph =
dq − h
dq

=
q − 1− (q′h− 1)

q
=
p− 1− (h p

dq
− 1)

p
.

and in order to have cpj ≤ 1
3
(resp. cqh ≤ 1

3
) we need j ≥ tp := 2p−3

3
(resp. h ≥ tq :=

2q−3
3

). This implies the following:

1. For cpj >
1
3
and j q

dp
< 2 we have Icpj = Ap

′j−1.

2. For cpj >
1
3
and j q

dp
≥ 2 we have Icpj = Ap

′j−1 ∩Bbj
q
dp
c−1

.

3. For cpj ≤ 1
3
and j q

dp
≥ 2 we have Icpj = Ap

′j−1 ∩Bbj
q
dp
c−1 ∩ IIt.

4. (To be considered if and only if 3|n and 3 - dp, dq) I 1
3

= Adtpe−1 ∩Bdtqe−1 ∩ IIt.

5. For cqh >
1
3
and h p

dq
< 2 we have Icqh = Bq′h−1.

6. For cqh >
1
3
and h p

dq
≥ 2 we have Icqh = Bq′h−1 ∩ Abh

p
dq
c−1

.

7. For cqh ≤ 1
3
and h p

dq
≥ 2 we have Icqh = Bq′h−1 ∩ Abh

p
dq
c−1 ∩ IIt.

Again, it cannot happen that cpj ≤ 1
3
and j q

dp
< 2: indeed, cpj ≤ 1

3
if and only if

j ≥ 2
3
dp which implies j q

dp
≥ 2q

3
≥ 2 because q ≥ 3. Likewise, we cannot have cqh ≤ 1

3

and h p
dq
< 2.

Now we should do computations analogous to those we did to prove Lemmas 3.2.4
and 3.2.5. In the cases 1. − 4. the computations are actually exactly the same of the
previous Lemmas; in cases 5.− 7., we just need to switch the roles of p (resp. A) and
q (resp. B). The result is again that none of the constants of quasi-adjunction listed
above contributes to ∆At , which means Theorem 3.2.1 holds under these hypotheses
too.
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3.3 s = 0

We consider arrangements A with no free lines in which any line passes through
only one of P1 or P2. Without loss of generality, we may assume that P1 = (0 : 0 : 1),
P2 = (0 : 1 : 0) with p := ord(P1) ≥ q := ord(P2); we deduce that n− 3 ≥ p ≥ q ≥ 3
and p + q = n. Arrangements of this type cannot support weak multinets, because
double points must be mono-coloured, and this would force all the lines of A to belong
to the same class. We will prove that

Theorem 3.3.1. The Alexander polynomial of arrangements of this type is trivial.

While this could be done via direct computation using formula (2.1.15), like we did
in Sections 3.1 and 3.2 of this chapter, we will resort to a more geometric argument,
which can be summarised as follows:

(i) We call g := yn+zn and we associate to A = V (f) the threefold T := V (g−f) ⊂
P4; we show that from the latter we obtain a �bration ψ : T ′ → P1 with a surface
S ⊂ P3 as generic �bre. We explicitly compute the geometric monodromy of ψ
around a pole of the �bration, which we denote by φ; the action of the algebraic
monodromy T φ on H•(S) clearly extends to H•(P3 \ S).

(ii) We prove the existence of a surjective Gysin morphism H2
DR(S) � H4

DR(T ),
which yields by Theorem 1.2.18 a surjective Gysin morphism γ : H2(S) �
H4(T ) too; using the global invariant cycle theorem we prove that γ(H2(S)) =
γ(H2(S)T

φ
), and then we show that everything restricts to the primitive coho-

mology groups: this gives

H2(S)T
φ

prim � H4(T )prim. (3.3.1)

(iii) AsH2(S)prim is isomorphic toH3(P3\S) '
⊕3

i=1Gr
i
PH

3(P3\S), where P denotes
the polar �ltration (recall (1.4.4)), and the map (1.4.6) is compatible with T φ,
we can bound the dimension of H2(S)T

φ

prim and, in turn, of H4(T )prim; moreover,
the eigenspaces of H1(Fg,C) under the action of the algebraic monodromy Tg
can be explicitly computed. Since H4(T,C)prim ' H3(Fg−f ,C)Tg−f , we can use
Theorem 2.1.7 to deduce information on the eigenspaces of H1(Ff ,C) under the
algebraic monodromy Tf (i.e. on the Alexander polynomial of A). This allows
us to conclude.

3.3.1 Part (i) - The �bred threefold T ′ and its monodromy

A polynomial f ∈ C[x0, x1, x2] describing an arrangement of this type can be
written as

f =

p∏
i=1

(x0 − λix1)

q∏
i=1

(x0 − µix2) λi 6= 0, µi 6= 0.
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Any hyperplane V (αx1 − βx0) ⊂ P4 cuts a surface from T ; if we assume α 6= 0 and
call s := β/α then this surface, which we denote by Ss, is a hypersurface of P3 de�ned
by the polynomial

fs := yn + zn − h(s)xp0

q∏
i=1

(x0 − µix2) where h(s) :=

p∏
i=1

(1− λis).

If α = 0 we denote the corresponding surface by S∞, whose de�ning polynomial as
hypersurface of P3 is

f∞ := yn + zn − (−1)n

(
p∏
i=1

λi

q∏
i=1

µi

)
xp1x

q
2.

If we call B the blow-up of P2 at P1 and set T ′ := T ×P2 B, we can write

B = {(t0 : t1 : t2)× (α : β) s.t. t0β = t1α} ⊂ P2 × P1,

T ′ = {(y : z : x0 : x1 : x2)× (t0 : t1 : t2)× (α : β) s.t. (x0 : x1 : x2) = (t0 : t1 : t2),

t0β = t1α, y
n + zn − f(x0, x1, x2) = 0} =

= {(y : z : x0 : x1 : x2)× (x0 : x1 : x2)× (α : β) s.t.

x0β = x1α, y
n + zn − f(x0, x1, x2) = 0} '

' {(y : z : x0 : x1 : x2)× (α : β) s.t. x0β = x1α, y
n + zn − f(x0, x1, x2) = 0},

and we can write the following diagram

T P2

T ′ B

P1

pr

ψ

π2

π1

where pr is the rational map given by (y : z : x0 : x1 : x2) 7→ (x0 : x1 : x2), πi is the
projection from B onto Pi, ψ is given by (y : z : x0 : x1 : x2)× (α : β) 7→ (α : β) and
the maps from T ′ are the projections. ψ : T ′ → P1 is the �bration we want: we have
in fact

ψ−1(1 : s) = {(y : z : x0 : sx0 : x2)× (1 : s)|yn + zn − h(s)xp0

q∏
i=1

(x0 − µix2)} ' Ss.

ψ−1(0 : 1) = {(y : z : 0 : x1 : x2)× (0 : 1)|yn + zn − (−1)n

(
p∏
i=1

λi

q∏
i=1

µi

)
xp1x

q
2} ' S∞.
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Now we examine the singular loci of T and of the various Ss; this discussion will come
into play in Part (ii). We have

Tsing = {(0 : 0 : a : b : c)|(a : b : c) is a multiple point of A}.

Sssing =

{
{(0 : 0 : 0 : 0 : 1)} if h(s) 6= 0.

Ls := {(0 : 0 : a : as : b)} if h(s) = 0.

S∞sing = {(0 : 0 : 0 : 0 : 1), (0 : 0 : 0 : 1 : 0)}.

In particular the point (0 : 0 : 0 : 0 : 1) is a singular point of both T and any surface
S cut out from it by hyperplanes V (αx0 − βx1).
A has nodes at the points (1 : 1

λj
: 1
µh

). If we �x j0 ∈ [1, p], h0 ∈ [1, q] and perform

the change of coordinates x1 7→ x1 + 1
λj0
x0, x2 7→ x2 + 1

µh0
x0 we can rewrite f as

x1x2λj0µh0
∏
j 6=j0

[(
1− λj

λj0

)
x0 − x1

] ∏
h6=h0

[(
1− µh

µh0

)
x0 − x2

]
.

If we restrict to the local chart x0 6= 0 and introduce a�ne coordinates v := λj0x1

∏
j 6=j0 [(1−

λj
λj0

) − x1] and w := µh0x2

∏
h6=h0 [(1 −

µh
µh0

) − x2], we can write the local equation of

A around (1 : 1
λj

: 1
µh

) as vw. This means that the singularities of T at the points

Pj,h := (0 : 0 : 1 : 1
λj

: 1
µh

) are topologically equivalent to yn + zn − v2 − w2 = 0.

A has a point of order p at P1 = (0 : 0 : 1). If we restrict to the chart {x2 6= 0}
and change coordinates by v := x0

p
√∏q

h=1(x0 − µh), w := x1
p
√∏q

h=1(x0 − µh) we can
write the local equation of A around P1 as

∏p
j=1(v − λjw). This means that the

singularity of T at the point Pp := (0 : 0 : 0 : 0 : 1) is topologically equivalent to
yn + vn− vp−wp = 0. In a similar fashion, we can see that the singularity of T at the
point Pq := (0 : 0 : 0 : 1 : 0) is topologically equivalent to yn + vn − vq − wq = 0.

Now we deal with S∞. If we restrict to the a�ne chart {x2 6= 0} and change
coordinates by introducing v := p

√
(−1)n(

∏p
i=1 λi)(

∏q
i=1 µi)x1 we see that the point

(0 : 0 : 0 : 0 : 1) has local equation yn+zn−vp = 0, while if we restrict to the a�ne chart
{x1 6= 0} and change coordinates by introducing v := q

√
(−1)n(

∏p
i=1 λi)(

∏q
i=1 µi)x2 we

see that the point (0 : 0 : 0 : 1 : 0) has local equation yn + zn − vq = 0.
As for the Ss, assume �rst that h(s) 6= 0. In the a�ne chart {x2 6= 0} the

surface Ss is given by yn + zn − h(s)xp0
∏q

i=1(x0 − µi) = 0; since for x0 = 0 we have∏q
i=1(x0−µi) 6= 0, the coordinate change v := x0

p
√
h(s)

∏q
i=1(x0 − µi) is holomorphic,

and turns the previous equation into yn + zn − vp = 0.
The surfaces Ss with h(s) = 0 are given by yn + zn = 0, so they consist of n planes

containing the line Ls (so they are not even normal).
Assume s1 and s2 are not roots of h(s), then we can �nd a di�eomorphism Ss1 →

Ss2 . Pick in fact (y : z : x0 : s1x0 : x2) ∈ Ss1 , which satis�es yn+zn−h(s1)xp0
∏q

i=1(x0−
µix2) = 0: we can �nd (αy : βz : x0 : s2x0 : x2) ∈ Ss2 for simple values of α and β.
Namely, in order to have (αy : βz : x0s2x0 : x2) ∈ Ss2 the equation αnyn + βnzn −
h(s2)xp0

∏q
i=1(x0−µix2) = 0 must be satis�ed; as xp0

∏q
i=1(x0−µix2) = yn+zn

h(s1)
, we need

to �nd α and β satisfying
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αnyn + βnzn − h(s2)
yn + zn

h(s1)
= 0⇐⇒ yn

(
αn − h(s2)

h(s1)

)
= zn

(
βn − h(s2)

h(s1)

)
and this gives αn = βn = h(s2)

h(s1)
=: γ. The inverse di�eomorphism Ss2 → Ss1 is clearly

given by (y : z : x0 : s2x0, x2) 7→ (α−1y : β−1z : x0 : s1x0 : x2).
If we call ∆ := {(0 : 1)} ∪ {(1 : s)|h(s) = 0} we obtain a locally trivial �bration

ψ′ : T ′ \ ψ−1(∆) → P1 \ ∆, with the Ss with h(s) 6= 0 as generic �bres. We now
compute the monodromy of ψ around one of the special �bres, i.e. the Ss with s ∈ ∆:

Lemma 3.3.2. If Ss is any generic �bre of ψ, the geometric monodromy around a
special �bre of ψ is given by

Ss → Ss s.t. (y : z : x0 : sx0 : x2) 7→ (ηny : ηnz : x0 : sx0 : x2) (3.3.2)

where ηn is an n-th primitive root of unity.

Proof. Assume the special �bre we are considering is S 1
λ1

. Consider a loop s(t) =
1
λ1

+ re2πit around 1
λ1
: by the above discussion, the di�eomorphism between Ss(0) and

Ss(t) is governed by

γt :=
h(s(t))

h(s(0))
= e2πit

p∏
i=2

λ1 − re2πitλ1λi − λi
λ1 − rλ1λi − λi

We can choose branch cuts for the n-th root function in such a way that, for r small
enough, the loop s(t) remains in a zone of the complex plane in which the n-th root
is a single-valued function. The only indeterminacy lies then in the term e2πit; since
we look for automorphisms φt : Ss(0) → Ss(t) giving the identity for t = 0, we deduce
that the monodromy action φ on Ss(0) is given by y 7→ ηny, z 7→ ηnz, and this clearly
holds for any Ss with h(s) 6= 0.

3.3.2 Part (ii) - The Gysin morphism

We can rephrase Corollary 1.2.22 in the following way:

Theorem 3.3.3. Assume X is a quasi-projective separated scheme of �nite type over
C and Y is a hyperplane section of X satisfying the following hypotheses:

(I) There exists an augmented n-cubical hyperresolution X� → X such that Y� :=
X� ×X Y is an n-cubical hyperresolution of Y .

(II) For any α, there exists a closed immersion Yα ↪→ Xα of codimension 1.

Then there exists a map Hk
DR(Y ) → Hk+2

DR (X) that is an isomorphism for k >
dim(Y ) and a surjection for k = dim(Y ).

We want to apply this corollary our situation, so the �rst step is to �nd a cubical
hyperresolution of T and to check that its section by the hyperplane H de�ning S is
a cubical hyperresolution of S.



3.3 s = 0 79

Property (I) - Resolution of T and S

The singular points of T not belonging to S are the Pj,h and Pq, whose local
equations are yn + zn − vk − wk with k = 2, q respectively; Pp is a singular point of
both T and S, with local equation yn+zn−vp−wp. For this reason we will show how to
resolve the singularity at the origin of the a�ne threefold T := V (yn+zn−vk−wk) ⊂ C4

and of its hyperplane section S := T ∩ V (w) ' V (yn + zn − vk) ⊂ C3; recall that by
our hypotheses on the arrangements we have k ≤ n − 3. The blow-up of C4 at the
origin is by de�nition

X1 := Bl0C4 =

{
(y, z, v, w)× [a : b : c : d]

∣∣∣ yb = za, yc = va, yd = wa
zc = vb, zd = wb, vd = wc

}
⊂ C4 × P3.

X1 can be covered by the four a�ne charts Xa
1 := X1 ∩ (C4 × D+(a)), Xb

1 := X1 ∩
(C4×D+(b)), Xc

1 := X1∩ (C4×D+(c)) and Xd
1 := X1∩ (C4×D+(d)), all of which are

isomorphic to C4. The blow-up map π : X1 → C4 can be easily read when restricted
to these a�ne charts; we have in fact:

πa1 : Xa
1 ' C4 → C4 s.t. (y, p, q, r) 7→ (y, py, qy, ry) with p := b

a
, q := c

a
, r := d

a
.

πb1 : Xb
1 ' C4 → C4 s.t. (s, z, t, u) 7→ (sz, z, tz, uz) with s := a

b
, t := c

b
, u := d

b
.

πc1 : Xc
1 ' C4 → C4 s.t. (i, j, v, l) 7→ (iv, jv, v, lv) with i := a

c
, j := b

c
, l := d

c
.

πd1 : Xd
1 ' C4 → C4 s.t. (m, k, o, w) 7→ (mw, kw, ow,w) with m := a

d
, k := b

d
, o := c

d
.

We will denote the intersections of the strict transforms T1 and S1 (and of the ex-
ceptional divisors E1 and F1) with the various charts by the appropriate apexes. We
obtain:

(a) T a1 = V (yn−k + yn−kpn − qk − rk), which is singular along La = {(0, p, 0, 0)}, and
Ea

1 = {(0, p, q, r)|qk + rk = 0} = {(0, p, ηr, r)|ηk = −1} i.e. k planes containing
La; Sa1 = {(y, p, q, 0)|yn−k + yn−kpn− qk = 0} = T a1 ∩V (r), which is singular along
La too, and F a

1 = {(0, p, q, 0)|qk = 0} = Ea
1 ∩ V (r) = La.

(b) T b1 = V (zn−ksn + zn−k − tk − uk), which is singular along Lb = {(s, 0, 0, 0)}, and
Eb

1 = {(s, 0, t, u)|tk + uk = 0} = {(s, 0, ηu, u)|ηk = −1} i.e. k planes containing
Lb; Sb1 = {(s, z, t, 0)|zn−ksn + zn−k − tk = 0} = T b1 ∩ V (u), which is singular along
Lb too, and F b

1 = {(s, z, t, 0)|tk = 0} = Eb
1 ∩ V (u) = Lb.

(c) T c1 = V (vn−kin+vn−kjn−1−lk), which is smooth, and Ec
1 = {(i, j, 0, l)|lk = −1} =

{(i, j, 0, η)|ηk = −1} i.e. k disjoint planes; Sc1 = {(i, j, v, 0)|vn−kin + vn−kjn + 1 =
0} = T c1 ∩ V (l), which is smooth, while F c

1 = ∅ = Ec
1 ∩ V (l).

(d) T d1 = V (wn−kmn +wn−kkn− ok− 1), which is smooth, and Ed
1 = {(m, k, o, 0)|ok =

−1} = {(m, k, η, 0)|ηk = −1} i.e. k disjoint planes; in this chart Sd1 = F d
1 = ∅.

Thus, after blowing up 0 we obtain a threefold T1 which is singular along a line L
not meeting Xc

1, X
d
1 , and whose exceptional divisor E1 consists of k planes containing
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L. Moreover, there is a hyperplane H passing through L and not meeting Xd
1 that cuts

S1 from T1 and F1 from E1. Now we have to blow up the line L. To ease computations,
we will blow up Lb in the chart Xb

1 (as the situation in Xa
1 is analogous), but �rst we

set h1 := n− k and rewrite

T1 = V (ynzh1 + zh1 − vk − wk), S1 = V (w, ynzh1 + zh1 − vk).
E1 = {(y, 0, ηw, w)|ηk = −1}, L = V (z, v, w).

By de�nition, the blow-up of C4 along L is

X2 := BlLC4 = {(y, z, v, w)× [a : b : c]|zb = va, zc = wa, vc = wb} ⊂ C4 × P2.

X2 can be covered by charts Xa
2 , X

b
2 and Xc

2, and the expression of the blow-up map
π2 : X2 → C4 when restricted to these charts is:

πa2 : Xa
2 ' C4 → C4 s.t. (y, z, p, q) 7→ (y, z, pz, qz) with p := b

a
, q := c

a
.

πb2 : Xb
2 ' C4 → C4 s.t. (y, r, v, s) 7→ (y, rv, v, sv) with r := a

b
, s := c

b
.

πc2 : Xc
2 ' C4 → C4 s.t. (y, t, u, w) 7→ (y, tw, uw,w) with t := a

c
, u := b

c
.

Observe that now we have to keep track not only of the exceptional divisors E2 ⊂ T2

and F2 ⊂ S2, but also of the strict transform stL(E1) of E1 (only that of E1 because
F1 is the center of the blow-up). We need to distinguish three cases.

k < h1 With the same convention on notations as before, we obtain:

(a) T a2 = V (ynzh1−k + zh1−k − pk − qk) whose singular locus is contained in La :=
(y : 0 : 0 : 0) and Ea

2 = {(y, 0, p, q)|pk + qk = 0} = {(y, 0, ηq, q)|ηk = −1} i.e. k
planes containing La; Sa2 = {(y, z, p, 0)|ynzh1−h2 + zh1−h2 − ph2 = 0} = T a2 ∩ V (q),
whose singular locus is contained in La too, and F a

2 = {(y, 0, p, 0)|ph2 = 0} =
Ea

2 ∩ V (q) = La; stL(E1)a = ∅.

(b) T b2 = V (ynrh1vh1−k + rh1vh1−k − 1− sk) smooth and Eb
2 = {(y, r, 0, s)|sk = −1} =

{(y, r, 0, η)|ηk = −1} i.e. k disjoint planes; stL(E1)b = {(y, 0, v, η)|ηk = −1}
i.e. k disjoint planes, and stL(E1)b ∩ Eb

2 = {(y, 0, 0, η)|ηk = −1} i.e. k disjoint
lines. Sb2 = {(y, r, v, 0)|ynrh1vh1−h2 + rh1vh1−h2 − 1 = 0} = T b2 ∩ V (s) smooth and
F b

2 = ∅ = Eb
2 ∩ V (s).

(c) T c2 = V (ynth1wh1−k + th1wh1−k−uk− 1) smooth and Ec
2 = {(y, t, u, 0)|uk = −1} =

{(y, t, η, 0)|ηk = −1} i.e. k disjoint planes; stL(E1)c = {(y, 0, η, w)|ηk = −1} i.e. k
disjoint planes and stL(E1)c ∩ Ec

2 = {(y, 0, η, 0)|ηk = −1} i.e. k disjoint lines. We
have Sc2 = F c

2 = ∅.

Thus, after the blow we obtain a threefold T2 whose singular locus is contained
in a line L not meeting Xb

2 and Xc
2, with E2 = ∪ki=1Z

(1)
i and stL(E1) = ∪kj=1Z

(0)
j not
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meeting Xa
2 . S2 is singular with S2sing ⊂ L too; moreover, F2 = L. The Z

(1)
i meet in

L, while the Z
(0)
j are disjoint. We have

Z
(1)
i ∩ Z

(0)
j =

{
a line if i = j.

∅ if i 6= j.

If we set h1 := h1−k, we can see that T a2 ⊂ Xa
2 is in the same situation as T b1 ⊂ Xb

1, the

only di�erence being that now each Z
(1)
i making up Ea

2 meets the plane Z
(0)
i ⊂ stL(E1)

in a line; since the Z
(0)
i do not meet L, they remain untouched under the blow-up of

L.

k = h1 With the same convention on notations as before, we obtain:

(a) T a2 = V (yn + 1− pk − qk) and Ea
2 = {(y, 0, p, q)|yn + 1− pk − qk = 0} are smooth;

Sa2 = {(y, z, p, 0)|yn+1−pk = 0} = T a2 ∩V (q) and F a
2 = {(y, 0, p, 0)|yn+1−pk = 0}

are smooth; stL(E1)a = ∅.

(b) T b2 = V (ynrk+rk−1−sk) and Eb
2 = {(y, r, 0, s)|ynrk+rk−1−sk = 0} are smooth;

Sb2 = {(y, r, v, 0)|ynrk+rk−1 = 0} = T b2∩V (s) and F b
2 = {(y, r, 0, 0)|ynrk+rk−1 =

0} = Eb
2∩V (s) are smooth; stL(E1)b = {(y, 0, v, η)|ηk = −1} i.e. k disjoint planes,

and stL(E1)b ∩ Eb
2 = {(y, 0, 0, η)|ηk = −1} i.e. k disjoint lines.

(c) T c2 = V (yntk+ tk−uk−1) and Ec
2 = {(y, t, u, 0)|yntk+ tk−uk−1 = 0} are smooth,

while Sc2 = F c
2 = ∅; stL(E1)c = {(y, 0, η, w)|ηk = −1} i.e. k disjoint planes and

stL(E1)c ∩ Ec
2 = {(y, 0, η, 0)|ηk = −1} i.e. k disjoint lines.

T2 is smooth, and its `total exceptional divisor' DT := E2 ∪ stL(E1) consists of a

smooth surface and k disjoint planes Z
(0)
1 , . . . , Z

(0)
k not meeting Xa

2 , with each Z
(0)
i

intersecting E2 in a line. Moreover, there is a hyperplane H meeting neither Xc
2 nor

stL(E1) (the latter fact can be read in Xb
2) that cuts S2 (which is smooth) from T2;

the `total exceptional divisor' of S2 is DS := F2 i.e. a smooth curve which is cut from
E2 by H. We have thus obtained a resolution of both T and S.

If we get to this point after having gone through the step k < h1 for s times, the
only di�erence is that the k planes Z

(0)
i are replaced by a `string' of planes Z

(0)
i ∪Z

(1)
i ∪

· · · ∪ Z(s)
i with

Z
(t1)
i ∩ Z(t2)

j =

{
a line if i = j and t1 = t2 ± 1.

∅ otherwise.

Z
(t)
i ∩ E2 =

{
a line if t = 0.

∅ otherwise.

k > h1 With the same notations as before, we obtain

(a) T a2 = V (yn + 1− pkzk−h1 − qkzk−h1) smooth and Ea
2 = {(σ, 0, p, q)|σn = −1} i.e. n

disjoint planes, Sa2 = {(y, z, p, 0)|yn + 1 − pkzk−h1 = 0} = T a2 ∩ V (q) smooth and
F a

2 = {(σ, 0, p, 0)|σn = −1} = E2 ∩ V (q) i.e. n disjoint lines; stL(E1)a = ∅.
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(b) T b2 = V (ynrh1 + rh1 − vk−h1 − skvk−h1) whose singular locus is contained in
Hb := (y, 0, 0, s) and Eb

2 = Hb ∪ {(σ, r, 0, s)|σn = −1} i.e. the plane Hb together
with n disjoint planes meeting Hb in the n lines {(σ, 0, 0, s)|σn = −1}. Sb2 =
{(y, r, v, 0)|ynrh1 + rh1 − vk−h1 = 0} = T b2 ∩V (s) whose singular locus is contained
in Lb := {(y, 0, 0, 0)} = Hb∩V (s) and F b

2 = Lb∪{(σ, r, 0, 0)|σn = −1} = Eb
2∩V (s)

i.e. the line Lb together with n disjoint lines Li meeting Lb in {(σ, 0, 0, 0)|σn = −1}.
stL(E1)b = {(y, 0, v, η)|ηk = −1} with stL(E1)b ∩ Hb = {(y, 0, 0, η)|ηk = −1} (k
disjoint lines) and stL(E1)b ∩ Eb

2 = {(σ, 0, 0, η)|σn = −1, ηk = −1} (nk points
belonging to Hb).

(c) T c2 = V (ynth1 + th1 − ukwk−h1 −wk−h1) whose singular locus is contained in Hc :=
{(y, 0, u, 0)} and Ec

2 = Hc ∪ {(σ, t, u, 0)|σn = −1} i.e. the plane Hc together with
n disjoint planes meeting Hc in the n lines {(σ, 0, u, 0)|σn = −1}. Sc2 = F c

2 = ∅.
stL(E1)c = {(y, 0, η, w)|ηk = −1} with stL(E1)c ∩ Hc = {(y, 0, η, 0)|ηk = −1} (k
disjoint lines) and stL(E1)c ∩ Ec

2 = {(σ, 0, η, 0)|σn = −1, ηk = −1} (nk points
belonging to Hc).

Thus T2 is singular with T2sing ⊂ H, where H is a plane not meeting Xa
2 . The

exceptional divisor generated by the two blow-ups consists of the plane H, n dis-
joint planes Y1, . . . , Yn and k disjoint planes Z

(0)
1 , . . . , Z

(0)
k not meeting Xa

2 such that

stL(E1) = ∪ki=1Z
(0)
i . H ∩ Yi gives a line Li, H ∩Z(0)

j gives a line Rj. S2 is cut from T2

by a hyperplane H ′ (not meeting Xc
2) that cuts H in the line L containing S2sing; H

′

also cuts F2 from E2.
Again, if we get to this point after having gone through the step k < h1 for s

times, the only di�erence is that the k planes Z
(0)
i are replaced by a `string' of planes

Z
(0)
i ∪ Z

(1)
i ∪ · · · ∪ Z

(s)
i with

Z
(t1)
i ∩ Z(t2)

j =

{
a line if i = j and t1 = t2 ± 1.

∅ otherwise.

Z
(t)
i ∩H =

{
the line Ri if t = 0.

∅ otherwise.

Next we blow up the plane H. We will blow up Hb in the chart Xb
2, which is the chart

that meets all exceptional divisors generated so far.

Remark 3.3.4. By the discussion above, the only planes Z
(t)
i a�ected by the blow-up

of H are the Z
(0)
i i.e. those that make up stL(E1), hence we can assume without loss

of generality that s = 0.

Before starting the computations, we set h2 := k − h1 and rewrite

T2 = V (ynzh1 + zh1 − vh2 − vh2wk), S2 = V (w, ynzh1 + zh1 − vh2).
H = V (z, v), E2 = H ∪ {(σ, z, 0, w)|σn = −1}, stL(E1) = {(y, 0, v, η)|ηk = −1}.

L = V (z, v, w), F2 = L ∪ {(σ, z, 0, 0)|σn = −1} = E2 ∩ V (w).
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By de�nition, the blow-up of C4 at H is

X3 := BlHC4 = {(y, z, v, w)× [a : b]|zb = va} ⊂ C4 × P1

and it can be covered by charts Xa
3 and Xb

3; the expression of the blow-up map π3 :
X3 → C4 when restricted to these charts is:

πa3 : Xa
3 ' C4 → C4 s.t. (y, z, r, w) 7→ (y, z, rz, w) with r := b

a
.

πb3 : Xb
3 ' C4 → C4 s.t. (y, s, v, w) 7→ (y, sv, v, w) with s := a

b
.

At this point we need to distinguish three cases, again.

h2 < h1 We obtain

(a) T a3 = V (ynzh1−h2 + zh1−h2 − rh2 − rh2wk) whose singular locus is contained in
Ha := {(y, 0, 0, w)} and Ea

3 = {(y, 0, r, η)|ηk = −1}. Sa3 = V (w, ynzh1−h2 +
zh1−h2 − rh2) = T a3 ∩ V (w) with singular locus contained in La := {(y, 0, 0, 0)} =
Ha ∩ V (w) and F a

3 = La = Ea
3 ∩ V (w). stH(E2)a = {(σ, z, 0, w)|σn = −1},

stH(F2)a = {(σ, z, 0, 0)|σn = −1} = stH(E2)a ∩ V (w) and stH(stL(E1))a = ∅.

(b) T b3 = V (ynsh1vh1−h2 + sh1vh1−h2 − 1−wk) smooth and Eb
3 = {(y, s, 0, η)|ηk = −1}.

Sb3 = V (w, ynsh1vh1−h2 +sh1vh1−h2−1) = T b3 ∩V (w) smooth and F b
3 = Eb

3∩V (w) =
∅. stH(stL(E1))b = {(y, 0, v, η)|ηk = −1} and stH(E2)b = stH(F2)b = ∅.

The exceptional divisors of T3 we have obtained are:

• A plane H not meeting Xb
3.

• k disjoint planes Z
(0)
1 , . . . , Z

(0)
k ⊂ E3 meeting both Xa

3 and Xb
3 and intersecting

H in k lines Ri not meeting Xb
3.

• n disjoint planes Y
(0)

1 , . . . , Y
(0)
n ⊂ stH(E2) not meeting Xb

3 and intersecting H in
n lines Li (not meeting Xb

3).

• k disjoint planes Z
(1)
1 , . . . , Z

(1)
k ⊂ stH(stL(E1)) not meeting Xa

3 with Z
(1)
i inter-

secting Z
(0)
j in a line if and only if i = j (clearly these lines too do not meet

Xa
3 ).

For S3 we have

• A line L = H ∩ V (w) not meeting Xb
3.

• n disjoint lines K
(0)
i := Y

(0)
i ∩ V (w) such that ∪ni=1K

(0)
i = stH(F2) = stH(E2) ∩

V (w); the K
(0)
i do not meet Xb

3 and intersect L in n points.

Observe that the Z
(1)
i do not intersect H, hence they are not a�ected by blow ups

with center H.
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h2 > h1 We obtain

(a) T a3 = V (yn+1−rh2zh2−h1−rh2zh2−h1wk) smooth and Ea
3 = {(σ, 0, r, w)|σn = −1}.

Sa3 = V (w, yn + 1 − rh2zh2−h1) = T a3 ∩ V (w) smooth and F a
3 = {(σ, 0, r, 0)|σn =

−1} = Ea
3∩V (w). stH(E2)a = {(σ, z, 0, w)|σn = −1}, stH(F2)a = {(σ, z, 0, 0)|σn =

−1} = stH(E2)a ∩ V (w) and stH(stL(E1))a = ∅.

(b) T b3 = V (ynsh1 + sh1 − vh2−h1 − vh2−h1wk) whose singular locus is contained in
Hb := {(y, 0, 0, w)} and Eb

3 = Hb ∪ {(σ, s, 0, w)|σn = −1}. Sb3 = V (w, ynsh1 +
sh1 − vh2−h1) = T b3 ∩ V (w) singular in Lb := {(y, 0, 0, 0)} = Hb ∩ V (w) and
F b

3 = Lb ∪ {(σ, s, 0, 0)|σn = −1} = Eb
3 ∩ V (w). stH(E2)b = stH(F2)b = ∅ and

stH(stL(E1))b = {(y, 0, v, η)|ηk = −1}.

The exceptional divisors of T3 we have obtained so far are:

• A plane H not meeting Xa
3 .

• n disjoint planes Y
(0)

1 , . . . , Y
(0)
n ⊂ E3 meeting both Xa

3 and Xb
3 and intersecting

H in n lines Li not meeting Xa
3 .

• n disjoint planes Y
(1)

1 , . . . , Y
(1)
n ⊂ stH(E2) not meeting Xb

3 with Y
(0)
i intersecting

Y
(1)
j in a line if and only if i = j (clearly these lines too do not meet Xb

3).

• k disjoint planes Z
(0)
1 , . . . , Z

(0)
k ⊂ stH(stL(E1)) not meeting Xa

3 and intersecting
H in k lines Ri not meeting Xa

3 .

Fr S3 we have

• A line L = H ∩ V (w) not meeting Xa
3 .

• n disjoint lines K
(0)
i := Y

(0)
i ∩ V (w) such that ∪ni=1K

(0)
i = F3 = E3 ∩ V (w); the

K
(0)
i intersect L in n points.

• n disjoint lines K
(1)
i := Y

(1)
i ∩ V (w) such that ∪ni=1K

(1)
i = stH(F2) = sth(E2) ∩

V (w); the K
(0)
i do not meet Xb

3, and K
(0)
i intersects K

(1)
j in a point if and only

if i = j.

Observe that the Y
(1)
i do not intersect H, hence they are not a�ected by blow ups

with center H.

h2 = h1 If we set h := h1 = h2 we obtain

(a) T a3 = V (yn+1−rh−rhwk) and Ea
3 = {(y, 0, r, w)|yn+1−rh−rhwk = 0} are smooth.

Sa3 = V (w, yn + 1 − rh) = T a3 ∩ V (w) and F a
3 = {(y, 0, r, 0)|yn + 1 − rh = 0} =

Ea
3∩V (w) are smooth. stH(E2)a = {(σ, z, 0, w)|σn = −1} (this was to be expected,

as in Xb
2 the plane H is a hyperplane of V (v) with {(σ, z, 0, w)|σn = −1} ⊂ V (v)),

stH(F2)a = {(σ, z, 0, 0)|σn = −1} = stH(E2)a ∩ V (w) and stH(stL(E1))a = ∅.
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(b) T b3 = V (ynsh + sh − 1 − wk) and Eb
3 = {(y, s, 0, w)|ynsh + sh − 1 − wk = 0} are

smooth. Sb3 = V (w, ynsh+sh−1) = T b3∩V (w) and F b
3 = {(y, s, 0, 0)|ynsh+sh−1 =

0} = Eb
3 ∩ V (w) are smooth. stH(E2)b = stH(F2)b = ∅ and stH(stL(E1))b =

{(y, 0, v, η)|ηk = −1}.

Thus T3 is smooth with exceptional divisors:

• The smooth surface E3 meeting both Xa
3 and Xb

3.

• n disjoint planes Y
(0)
i not meeting Xb

3 with Y
(0)

1 ∪ · · ·∪Y (0)
n = stH(E2); each Y

(0)
i

intersects E3 in the line Li.

• k disjoint planes Z
(0)
i not meeting Xa

3 with Z
(0)
1 ∪ · · ·∪Z

(0)
k = stH(stL(E1)); each

Z
(0)
i intersects E3 in the line Ri.

S3 is smooth too, with exceptional divisors:

• The smooth curve F3 = E3 ∩ V (w) meeting both Xa
3 and Xb

3.

• n disjoint lines K
(0)
i := Y

(0)
i ∩ V (w) not meeting Xb

3 with K
(0)
1 ∪ · · · ∪ K

(0)
n =

stH(F2) = stH(E2) ∩ V (w); each K
(0)
i intersects F3 in a point.

Conclusion At each step of the resolution one of the hi decreases, so we are guar-
anteed that this procedure terminates at either the step h1 = k or the step h1 = h2

with T̃ and S̃ = T̃ ∩ V (w) smooth; if we have performed the steps k < h1, h2 < h1

and h2 > h1 respectively s, r and u times we end up with the following divisors:

• For T̃ :

� A smooth surface E.

� Planes Z
(t)
i with i = 1, . . . , k and t = 0, . . . , s+ r such that

Z
(t1)
i ∩ Z(t2)

j =

{
a line if i = j and t1 = t2 ± 1.

∅ otherwise.

Z
(t)
i ∩ E =

{
the line Ri if t = 0.

∅ otherwise.

� Planes Y
(t)
i with i = 1, . . . , n and t = 0, . . . , u such that

Y
(t1)
i ∩ Y (t2)

j =

{
a line if i = j and t1 = t2 ± 1.

∅ otherwise.

Y
(t)
i ∩ E =

{
the line Li if t = 0.

∅ otherwise.

Y
(t1)
i ∩ Z(t2)

j = ∅.
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• For S̃:

� A smooth curve F = E ∩ V (w).

� Lines K
(t)
i = Y

(t)
i ∩ V (w) with i = 1, . . . , n and t = 0, . . . , u such that

K
(t1)
i ∩K(t2)

j =

{
a point if i = j and t1 = t2 ± 1.

∅ otherwise.

K
(t)
i ∩ F =

{
a point if t = 0.

∅ otherwise.

Property (I) - The cubical hyperresolutions

Assume T has d points of type Pj,h; if we denote by ΣT and ΣS the singular loci
of T and S respectively, then ΣT = {Pp, Pq} ∪ {P1, . . . , Pd} and ΣS = {Pp}.

p = q = n/2 In this case n is even, and we write n = 2n′. The exceptional divisors

we have generated on T̃ in order to resolve ΣT are:

• (Resolution of Pp) A smooth surface Ep and p disjoint planes Yi meeting Ep in
the lines Li.

• (Resolution of Pq) A smooth surface Eq and q disjoint planes Zj meeting Eq in
the lines Rj.

• (Resolution of each Pk) A smooth surface Ek
2 and planes W k

h,l for h = 1, 2 and

l = 1, . . . , n′ − 1 such that the W k
h,1 meet Ek

2 in lines V k
h,1, the W

k
h,l meet the

W k
h,l−1 in lines V k

h,l and V
k

1,l1
∩ V k

2,l2
= ∅.

We call DT the union of all the divisors above. In order to construct a cubical
hyperresolution of T we start with the following resolution square, where T̃ denotes
the resolution of T we found:

DT
//

��

T̃

��

ΣT
// T

Since DT is not smooth, we proceed to resolve the 1-cubical variety (DT → ΣT ). The
easiest way to do so is by separating its irreducible components, so we set

D′T :=

(
Ep
∐(

p∐
i=1

Yi

))∐(
Eq
∐(

q∐
j=1

Zj

))∐(
d∐

k=1

(
Ek

2

∐(
h=1,2∐

l=1,...,n′−1

W k
h,l

)))
.
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The discriminant of the map (D′T → ΣT )→ (DT → ΣT ) of 1-cubical varieties is given
by (KT → ΣT ), where

KT =

(
p⋃
i=1

Li

)⋃(
q⋃
j=1

Rj

)⋃(
d⋃

k=1

(
h=1,2⋃

l=1,...,n′−1

V k
h,l

))
.

In order to obtain a resolution square of (DT → ΣT ), we set

K ′T :=

(
p∐
i=1

L0
i

∐
L1
i

)∐(
q∐
j=1

R0
j

∐
R1
j

)∐(
d∐

k=1

(
h=1,2∐

l=1,...,n′−1

V k,0
h,l

∐
V k,1
h,l

))

where the apexes distinguish between the variety being thought as belonging to one
or the other of the irreducible components of DT in which it is contained. We can now
complete the square with (K ′T → ΣT ), obtaining

(K ′T → ΣT ) τ //

σ

��

(D′T → ΣT )

��

(KT → ΣT )
γ

// (DT → ΣT )

The maps γ and σ are simply inclusions, with σ sending the L0
i 's into Ep and each L1

i

into the plane Yi and τ(L0
i ) = τ(L1

i ) = Li (the same goes for all other lines in K ′T ).
The picture we have now is the following:

K ′T D′T K ′T D′T

ΣT ΣT ΣT ΣT

a a

a a

KT DT T̃ KT T̃

ΣT ΣT T ΣT T

and if we contract the diagram using the dashed maps we obtain our desired cubical
hyperresolution of T .

For S the situation is much simpler: its only singular point is Pp, and its resolution
generates on S̃ a smooth curve F as exceptional divisor. If we cut all terms of the
cubical hyperresolution of T above by the hyperplane H determining S, we obtain
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∅ F

ΣS ΣS

∅ S̃

ΣS S

which is a cubical hyperresolution of S. Note, however, that Property (II) of 1.2.21 is
not satis�ed: for example, the closed immersions ΣS ↪→ ΣT have codimension zero.

General case The only di�erence with the previous case is that the resolution of
Pp generates a string of sp groups of k planes with pairwise intersection in lines (resp.
a string of up groups of n planes with pairwise intersection in lines) where sp (resp.
up) is the number of times the steps k < h1 and h2 < h1 (resp. h2 > h1) are executed
during the resolution; the same goes of course for the resolution of Pq. Moreover, on
S̃ now we have also a string of up groups of n lines with pairwise intersection. If we
de�ne DS, KS and K ′S in the same way we did in the previous case, we obtain the
hyperresolutions

K ′T D′T K ′S D′S

ΣT ΣT ΣS ΣS

a a

a a

KT T̃ KS S̃

ΣT T ΣS S

where the one of S is the section of the one of T by the hyperplane H. Property (II)
of 1.2.21 is not satis�ed in this situation either: the closed immersions ΣS ↪→ ΣT still
have codimension zero.

Property (II) - A workaround

We want to �nd a surjective `Gysin morphism'

γ : H2(S)� H4(T ). (3.3.3)
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Our strategy is to �rst obtain a Gysin morphism H2
DR(S) ↪→ H4

DR(T ) at the level of
algebraic de Rham cohomology and then use Theorem 1.2.18 to �nd the one in singular
cohomology. After all, while it is true that hypothesis (II) of Theorem 1.2.21 does not
hold in our situation, the only problem lies in codimension zero closed immersions
ΣS ↪→ ΣT between zero-dimensional varieties: it is thus reasonable to hope that
the failure of property (II) will only prevent us from �nding the Gysin morphisms
Hk
DR(S)→ Hk+2

DR (T ) for small values of k.
A resolution square for S is the 2-cubical variety

DS
//

��

S̃

��

ΣS
// S.

(3.3.4)

By Theorem 1.2.12 and Remark 1.2.13 we can �nd an m-cubical hyperresolution Y� of
(3.3.4) which, as 2-cubical variety of (m− 2)-cubical hyperresolutions, can be written
as

DS�
f

//

a

��

S̃�

b

��

ΣS�
g

// S�.

(3.3.5)

Being a hyperresolution, Y� is in particular of cohomological descent: hence, if CY�
denotes the constant sheaf on Y� then C•(Y�,CY�

) is acyclic, and the same is true of
C•(Y�,CY�

)[2]; by Corollary 1.2.15 we deduce the existence of an isomorphism

C•(S�,CS�
)
'−→ Cone•[Rb∗C

•(S̃�,CS̃�
)⊕Rg∗C•(ΣS�,CΣS�

)
(C(a#),C(b#))−−−−−−−−→

(C(a#),C(b#))−−−−−−−−→ R(g ◦ a)∗C
•(DS�,CDS�

)][−1].

If we shift by−1 the short exact sequence of the cone over the morphism (C(a#), C(b#))
we obtain

0→ R(g ◦ a)∗C
•(DS�,CDS�

)[−1]→ Cone•[Rb∗C
•(S̃�,CS̃�

)⊕Rg∗C•(ΣS�,CΣS�
)→

(C(a#),C(b#))−−−−−−−−→ R(g ◦ a)∗C
•(DS�,CDS�

)][−1]→ Rb∗C
•(S̃�,CS̃�

)⊕Rg∗C•(ΣS�,CΣS�
)→ 0

so using the isomorphism above we get the short exact sequence

0→ R(g ◦ a)∗C
•(DS�,CDS�

)[−1]→ C•(S�,CS�
)→

→ Rb∗C
•(S̃�,CS̃�

)⊕Rg∗C•(ΣS�,CΣS�
)→ 0.
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Now, since the (m− 2)-cubical hyperresolution ε : S� → S is of cohomological descent
C•(S�,CS�

) is acyclic; hence, if we denote by S• the (m − 3)-semisimplicial space
associated to S� we can write the following isomorphism in D+(Sh(S)):

CS
'−→ Rε∗CS• .

Since all elements of the (m− 3)-semisimplicial variety S• are smooth, in D+(Sh(S•))

we have an isomorphism CS•

'−→ Ω•S• , so we can substitute Rε∗CS• with Rε∗Ω
•
S• ; the

same can of course be done with the other three (m − 2)-cubical hyperresolutions in
Y�.

In this way we obtain a short exact sequence of objects of D+(Sh(S))

0→ R(g ◦ a)∗DR
•
DS

[−1]→ DR•S → Rb∗DR
•
S̃
⊕Rg∗DR•ΣS → 0 (3.3.6)

which yields the long exact sequence of algebraic de Rham cohomology groups

· · · → H•DR(ΣS)⊕H•DR(S̃)→ H•DR(DS)→ H•+1
DR (S)→ · · · . (3.3.7)

We want to apply a similar argument to T . A resolution square for T is the 2-cubical
variety

DT
//

��

T̃

��

ΣT
// T

(3.3.8)

and as before we can associate to it an m′-cubical hyperresolution X� which, as a
2-cubical variety of (m′ − 2)-cubical hyperresolutions, can be written as:

DT�
f

//

a

��

T̃�

a

��

ΣT�
g

// T�.

(3.3.9)

We observe the following:

(a) irreducible components of DT and DS and intersections thereof are smooth, and
each irreducible component of DS is an hyperplane section of an irreducible com-
ponent of DT .

(b) ΣT and ΣS are smooth, with the latter being a hyperplane section of the former.
The same goes for T̃ and S̃.

These facts imply that considering in each entry of X� the corresponding hyper-
plane section yields precisely Y�, so there is a natural closed immersion Y� ↪→ X�;
hence we can consider the restriction of sections functor ΓY� : Sh(X�) → Sh(X�).
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From this, passing to semisimplicial objects, we deduce the existence of the restric-
tion of sections functor ΓY• : Sh(X•) → Sh(X•) and of its total derived functor
RΓY• : D+(Sh(X•)) → D+(Sh(X•)). The same reasoning applies to all the entries of
(3.3.5) and (3.3.9), and yields the restriction of sections functors ΓS• , ΓS̃• , ΓΣS• and
ΓDS• (plus the corresponding total derived functors).

Now we apply the same argument as before to the complex of sheaves on Y� given
by RΓY�CX�

.

Remark 3.3.5. We have the following commutative diagram of functors:

Sh(T•)
ΓS• //

ε∗

��

Sh(T•)

ε∗

��

Sh(T )
ΓS // Sh(T ).

From this we deduce the equality of the total derived functors R(ε∗◦ΓS•) = R(ΓS ◦ε∗).
But pushforwards preserve injective objects, and the same holds for ΓS• because S• is
closed in T•; since injective objects are adapted to any functor, we obtain isomorphisms

Rε∗ ◦RΓS• ' R(ε∗ ◦ ΓS•) = R(ΓS ◦ ε∗) ' RΓS ◦Rε∗. (3.3.10)

Of course this commutativity holds for all the restriction of sections functors previously
listed.

As before we have isomorphisms

RΓSCT ' RΓSRε∗CT• ' RΓSRε∗Ω
•
T• = RΓSDR

•
T

(that have counterparts for all the (m′ − 2)-cubical hyperresolution X� is composed
of). Thus we obtain the short exact sequence of objects of D+(Sh(T ))

0→ R(g ◦ a)∗RΓDS•DR
•
DT •

[−1]→ ΓS•DR
•
T• → Rb∗ΓS̃DR

•
T̃
⊕Rg∗ΓΣSDR

•
ΣT
→ 0
(3.3.11)

which yields the long exact sequence of algebraic de Rham cohomology groups with
supports

· · · → H•DR,ΣS(ΣT )⊕H•
DR,S̃

(T̃ )→ H•DR,DS(DT )→ H•+1
DR,S(T )→ · · · . (3.3.12)

Now we need to �nd a way to compare the long exact sequences (3.3.7) and (3.3.12);
in order to do this, we will consider some particular hyperresolutions of the entries of
(3.3.4) and (3.3.8).

We start from (3.3.4), and we assume �rst that p 6= q. ΣS and S̃ are smooth, so
they are already 0-cubical hyperresolutions. DS instead is not smooth, and it �ts in
the resolution square
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K ′S
//

��

D′S

��

KS
// DS

which is a 2-cubical variety DS�; since discriminant squares are of cohomological
descent (see [62, Lemma-De�nition 5.17]), this is a 2-cubical hyperresolution of DS.

Similarly, ΣT and T̃ are smooth whileDT �ts in the resolution square (i.e. 2-cubical
hyperresolution) DT� given by

K ′T
//

��

D′T

��

KT
// DT .

Hence we can write closed immersions ΣS ↪→ ΣT of codimension zero, S̃ ↪→ T̃ of
codimension one and DS� ↪→ DT�, with the latter giving a codimension one closed
immersion if restricted to any irreducible component of any entry of DS�.

If we switch to 2-semisimplicial varieties, we can write closed immersions

DS• ↪→ DT •
S̃ ↪→ T̃ of codimension 1,

ΣS ↪→ ΣT of codimension 0.

By [33, Lemma 3.1] the corresponding trace maps

Ω•DS• → RΓDS•Ω
•
DT •

[2]

Ω•
S̃
→ RΓS̃Ω•

T̃
[2]

Ω•ΣS → RΓΣSΩ•ΣT

are isomorphisms (the reader can �nd the explicit construction of the trace maps in
[34, Chapter VI, Section 4.2]). These extend to isomorphisms of the associated de
Rham complexes DR•, because the latter do not depend on the particular choice of a
hyperresolution (see [30, Proposition III.1.12(i)]), and yield isomorphisms of algebraic
de Rham cohomology groups

H•DR(DS)
'−→ H•+2

DR,DS
(DT )

H•DR(S̃)
'−→ H•+2

DR,S̃
(T̃ )

H•DR(ΣS)
'−→ H•DR,ΣS(ΣT ).

(3.3.13)
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When p = q we have to do the same, but this time DS is already smooth, so the
cubical hyperresolution DS� we construct is somewhat arti�cial. For DT we consider
the same 2-cubical hyperresolution as in the case p 6= q. For DS, we �rst obtain a
1-cubical variety by considering the identity morphism DS → DS; then we choose
points Q0 ∈ DS and Q ∈ KT , with the latter that belongs to the intersection U ∩W
of irreducible components of DT . The 2-cubical variety

{Q} a //

id

��

DS

id

��

{Q} c // DS

where a and c send everything to Q0 is a discriminant square for DS, so it is of
cohomological descent and since all its entries are smooth we conclude that it is a
2-cubical hyperresolution DS� of DS. In this way, we obtain a closed immersion
DS� ↪→ DT� with the same properties as in the case p 6= q and, reasoning as before,
morphisms of cohomology groups like in 3.3.13.

At this point we can write the following diagram

H1
DR(S̃) α //

'
��

H1
DR(DS)

β
//

'

��

H2
DR(S) δ // H2

DR(S̃) σ //

'
��

H2
DR(DS)

'

��

H3
DR,S̃

(T̃ ) α′// H3
DR,DS

(DT )
β′
// H4

DR,S(T ) δ′ // H4
DR,S̃

(T̃ ) σ′// H4
DR,DS

(DT ).

(3.3.14)

The two squares are commutative. Indeed, by construction the trace maps are functo-
rial so the same holds for the isomorphisms of cohomology groups they yield, which are
the vertical maps of this diagram; as the horizontal maps are obtained from resolution
squares of S and T they are functorial too, and this gives the commutativity of the
squares. This implies in particular that Ker(α) ' Ker(α′) (hence Im(α) ' Im(α′)
too) and Ker(σ) ' Ker(σ′), from which we deduce isomorphisms

Ker(δ) = Im(β) ' H1
DR(DS)/Ker(β) = H1

DR(DS)/Im(α) '
' H3

DR,DS
(DT )/Im(α′) = H3

DR,DS
(DT )/Ker(β′) ' Im(β′) = Ker(δ′)

H2
DR(S)/Ker(δ) ' Im(δ) = Ker(σ) ' Ker(σ′) = Im(δ′) ' H4

DR,S(T )/Ker(δ′).

From this we obtain the existence of an isomorphism

H2
DR(S) ' Ker(δ)⊕H2

DR(S)/Ker(δ) ' Ker(δ′)⊕H4
DR,S(T )/Ker(δ′) ' H4

DR,S(T ).

We will choose a particular isomorphism θ : H2
DR(S)→ H4

DR,S(T ). Namely:

1. We send any basis of Ker(δ) to any basis of Ker(δ′) (no actual choice here).
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2. Call h the isomorphism H2
DR(S̃) → H4

DR,S̃
(T̃ ). If x ∈ H2

DR(S)/Ker(δ) then

δ(x) ∈ Ker(σ) and h(δ(x)) ∈ Ker(σ′); this means there exists y ∈ H4
DR,S(T )/Ker(δ′)

s.t. δ′(y) = h(δ(x)). We set θ(x) := y, so that in particular δ′ ◦ θ = h ◦ δ. This
de�nes an isomorphism between H2

DR(S)/Ker(δ) and H4
DR,S(T )/Ker(δ′).

With this choice of θ, we can rewrite diagram (3.3.14) as

H1
DR(S̃) α //

'
��

H1
DR(DS)

β
//

'

��

H2
DR(S) δ //

θ

��

H2
DR(S̃) σ //

'
��

H2
DR(DS)

'

��

H3
DR,S̃

(T̃ ) α′// H3
DR,DS

(DT )
β′
// H4

DR,S(T ) δ′ // H4
DR,S̃

(T̃ ) σ′// H4
DR,DS

(DT ).

(3.3.15)

Observe that all squares of this diagram, with the exception of the second from the
left, are commutative.

Now, T \ S is a�ne so Hk
DR(T \ S) = 0 for k ≥ 4 by Lemma 1.2.20; writing down

the long exact sequence of algebraic de Rham cohomology groups associated to the
pair (T, T \ S), we �nd

· · · → H3
DR(T \ S)→ H4

DR,S(T )→ H4
DR(T )→ 0

so there is a surjective morphism H4
DR,S(T ) � H4

DR(T ). If we pre-compose it with θ
we obtain H2

DR(S)� H4
DR(T ), so by Theorem 1.2.18 we obtain the desired surjective

morphism γ : H2(S)� H4(T ) as in (3.3.3).
Now we need to study how the induced monodromy action T φ on H2(S) interacts

with the Gysin morphism we just found; in order to do this, we will make use of the
global invariant cycle theorem:

Theorem 3.3.6. Let τ : X → Y be a morphism between smooth projective vari-
eties such that the general �bre is smooth and connected; set B := {y ∈ Y |Xy :=
τ−1(y) is singular}, call F := Xy for some y /∈ B and denote by i the closed immer-
sion F ↪→ X. The image of the restriction map

i∗ : Hk(X,Q)→ Hk(F,Q)

is the invariant part of Hk(F,Q) under the monodromy action π1(Y, y)→ Aut(Hk(F,Q)).

Proof. [68, Theorem 4.24].

Corollary 3.3.7. The image of the Gysin morphism Hk(F,Q) → Hk+2(K,Q) does
not change if we restrict it to the invariant part of Hk(F,Q) under the monodromy
action.

Proposition 3.3.8. We have γ(H2(S)) = γ(H2(S)T
φ
), so there is a surjective mor-

phism

H2(S)T
φ

� H4(T ). (3.3.16)
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Proof. First, we denote by φ′ the extension of the monodromy action from the �bration
T ′ → P1 to T̃ → P1, and by T φ

′
the induced automorphism of the cohomology groups

of T̃ and of the generic �bre S̃. If we denote by γ̃ the usual Gysin morphism H2(S̃)→
H4(T̃ ) then by the global invariant cycle theorem we have

γ̃(H2(S̃)) = γ̃(H2(S̃)T
φ′

).

From the resolution square of T we obtain the exact sequences of MHS

· · · → H3(DT )→ H4(T )→ H4(T̃ )→ · · · ;

since the Hodge structure on H4(T ) is pure by Proposition 1.3.11 and H3(DT ) has
weights up to 3 by Theorem 1.3.7, we deduce that H4(T )→ H4(T̃ ) is injective.

Now we observe that the diagram

H2(S)
γ

// //

��

H4(T )� _

��

H2(S̃)
γ̃

// // H4(T̃ )

(3.3.17)

is commutative. This can be read o� the following diagram (there is a slight abuse
of notation: we have switched to singular cohomology, but we maintain the names we
gave to morphisms in the algebraic setting):

H2(S) θ //

δ

��

H4
S(T ) // //

δ′

��

H4(T )� _

��

H2(S̃) ' // H4
S̃
(T̃ ) // // H4(T̃ ).

The left square is commutative, because it is simply the equivalent, in singular coho-
mology, of the third square of diagram (3.3.15); the right square is commutative too,
because the vertical maps are pullbacks and the horizontal maps come from the long
exact sequences of the pairs (T, T \S) and (T̃ , T̃ \ S̃) respectively, which are functorial.
Since the compositions of the maps on the top and on the bottom give exactly the
Gysin morphisms γ and γ′, we obtain the commutativity of diagram 3.3.17.

The pullback morphism H2(S) → H2(S̃) maps the subspace V ⊂ H2(S) which is
not T φ-invariant to the subspace Ṽ ⊂ H2(S̃) which is not T φ

′
-invariant, and the latter

is sent to zero by γ̃ by the global invariant cycle theorem; since the diagram (3.3.17)
is commutative and H4(T )→ H4(T̃ ) is injective, we deduce that γ(V ) = 0.

The commutativity of (3.3.17) actually allows us to further re�ne this result. Since
H2(S̃) is a pure HS of weight 2, the kernel of H2(S)→ H2(S̃) containsW1H

2(S); this,
together with the injectivity of H4(T ) → H4(T̃ ) and the commutativity of (3.3.17),
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implies that W1H
2(S) ⊂ Ker(γ). The same holds true if we restrict to the invariant

part of H2(S) under the action of T φ, which proves that

γ(H2(S)T
φ

) = γ(W2H
2(S)T

φ

). (3.3.18)

Remark 3.3.9. The Gysin morphism (3.3.3) restricts to primitive cohomology groups
yielding a surjective map H2(S)prim � H4(T )prim. This can be seen in the following
way. Assume H0 is the hyperplane of P4 that cuts S from T , and choose another
hyperplane H of P4 such that H ∩ Tsing = ∅; we can �nd a resolution of singularities
πT : T̃ → T such that S̃ := T̃ ∩ π−1

T (H0) is smooth. If we call πS : S̃ → S the
restriction of πT to S̃, we can write functorial morphisms

π∗S : H2(S)→ H2(S̃) (pullback)

π∗T : H4(T )→ H4(T̃ ) (pullback)

γ̃ : H2(S̃)� H4(T̃ ) (Gysin).

Since π−1
T (H) ' H and π−1

S (H0 ∩ H) ' H0 ∩ H we deduce that γ̃([π−1
S (H0 ∩ H)]) =

[π−1
T (H)]; moreover, the functoriality of the pullback maps implies that π∗T ([H]) =

[π−1
T (H)] and π∗S(H0 ∩H) = [π−1

S (H0 ∩H)].
The commutativity of (3.3.17) now implies that γ([H0 ∩ H]) can be written as

[H] +Ker(π∗T ), but since π∗T is injective it must be γ([H0 ∩H]) = [H]; this proves our
claim.

In particular, reasoning as before we obtain a surjective morphism

γ : H2(S)T
φ

prim � H4(T )prim (3.3.19)

satisfying

γ(H2(S)T
φ

prim) = γ(W2H
2(S)T

φ

prim). (3.3.20)

3.3.3 Part (iii) - Final computations

If we call U := P4 \ T then from the long exact sequence of MHS associated to the
pair (P4, T ) we deduce

· · · → H4(P4)→ H4(T )→ H5
c (U)→ 0.

By using Poincaré duality and the isomorphism of homology and cohomology we ob-
tain the isomorphism H5

c (U) ' H3(U)∨; since the map H4(P4) → H4(T ) is injective
we obtain H4(T )prim ' H3(U)∨. This implies in particular that dimH4(T )prim =
dimH3(Fg−f )

Tg−f .
If S ⊂ P3 is any of the surfaces cut out from T by the hyperplanes V (ax0 − bx1)

and we call U ′ := P3 \ S, then from the long exact sequence of MHS associated to the
pair (P3, S) we deduce

· · · → H2(P3)→ H2(S)→ H3
c (U ′)→ 0
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and we obtain H2(S)prim ' H3
c (U ′) at the level of vector spaces. Since we will need to

study in detail the MHS on H2(S)prim we write the Poincaré duality isomorphism at
the level of MHS: by (1.3.1) we have

H2(S)prim ' H3(U ′)∨(−3). (3.3.21)

In order to simplify notations we call V := H2(S)prim. The isomorphism above implies
the following equality of mixed Hodge numbers:

hp,q(V ) = h3−p,3−q(H3(U ′)). (3.3.22)

V is a mixed Hodge substructure of H2(S), so it has weights ≤ 2 and its Hodge
�ltration can be written as

0 = F 3V ⊂ F 2V ⊂ F 1V ⊂ F 0V = V

while for H3(U ′) we have

0 = F 4H3(U ′) ⊂ F 3H3(U ′) ⊂ F 1H3(U ′) ⊂ F 0H3(U ′) = H3(U ′).

On H3(U ′) we also have the polar �ltration (recall 1.4.4):

0 = P 4H3(U ′) ⊂ · · · ⊂ P 1H3(U ′) = H3(U ′).

Since the action of T φ is compatible with all these �ltrations, from (3.3.22), the in-
clusion F kH3(U ′) ⊆ P kH3(U ′) given by Proposition 1.4.5 and the symmetry of mixed
Hodge numbers we deduce

h2,0(V Tφ) + h1,0(V Tφ) + h0,0(V Tφ) ≤ dimP 3H3(U ′)T
φ

h2,0(V Tφ) + 2h1,0(V Tφ) + h0,0(V Tφ) + h1,1(V Tφ) ≤ dimP 2H3(U ′)T
φ

.
(3.3.23)

We call now R := C[y, z, x0, x2], fS ∈ R the polynomial de�ning S and JfS ⊂ R the
associated Jacobian ideal; in this case the map (1.4.6) reads, for t = 1, 2, 3, as

(R/JfS)tn−4 � Gr4−t
P H3(U ′) = P 4−tH3(U ′)/P 5−tH3(U ′). (3.3.24)

Any class in P kH3(U ′) has a representative of the form

ωh :=
hΩ

fkS
with h ∈ Rkn−4

(where Ω = ydz ∧ dx0 ∧ dx2 − zdy ∧ dx0 ∧ dx2 + x0dy ∧ dz ∧ dx2 − x2dy ∧ dz ∧ dx0),
and T φ acts on it by multiplying y and z by ηn; this means that if h(y, z, x0, x2) is an
element of (R/JfS)kn−4 such that

h(y, z, x0, x2)yzx0x2 = h(ηny, ηnz, x0, x2)η2
nyzx0x2 (3.3.25)

then the cohomology class [ωh] ∈ H3(U ′) is �xed by T φ. If we denote by ((R/JfS)tn−4)T
φ

the elements of (R/JfS)tn−4 satisfying condition (3.3.25), from (3.3.24) we deduce
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(R/JfS)T
φ

tn−4 � Gr4−t
P H3(U ′)T

φ

= P 4−tH3(U ′)T
φ

/P 5−tH3(U ′)T
φ

for t = 1, 2, 3.
(3.3.26)

Let us compute the dimensions of the (R/JfS)T
φ

tn−4: a monomial yazbxc0x
d
2 satis�es

condition (3.3.25) if and only if

e
2πi(a+1)

n e
2πi(b+1)

n = 1⇐⇒ a+ b = kn− 2 ∃k ∈ Z. (3.3.27)

Since JfS contains yn−1 and zn−1, a monomial yazbxc0x
d
2 ∈ (R/JfS)tn−4 can satisfy

(3.3.27) only for k = 1; this implies in particular that (R/JfS)T
φ

n−4 = 0. From this we
deduce that

Gr3
PH

3(U ′)T
φ

= P 3H3(U ′)T
φ

= 0

which implies Gr2
PH

3(U ′)T
φ

= P 2H3(U ′)T
φ
; by (3.3.23) we obtain

dimV Tφ = h1,1(V )T
φ ≤ dimGr2

PH
3(U ′)T

φ

.

Since there are n− 1 choices of non-negative a, b < n− 1 that give a+ b = n− 2, we
have (n− 1)2 monomials in (R/JfS)2n−4 satisfying condition (3.3.25); this gives

dimV Tφ ≤ (n− 1)2. (3.3.28)

Now we compute the dimension of H1(Fyn+zn) by studying the Steenbrink spectra
of the homogeneous isolated singularities of C given by yn = 0 and zn = 0. Recall
(Remark 2.1.12) that if h(y1, . . . , ym+1) = 0 is an isolated weighted homogeneous
singularity of degree d and weights wi, the Steenbrink spectrum of h is the formal sum

sp(h) :=
∑
α∈Q

αν(α) with ν(α) = dimM(h)(α+1)d−w (3.3.29)

and that ν(α) is also the dimension of the e−2πiα-eigenspace of the monodromy operator

acting on Gr
bm−αc
F Hm(Fh).

For yn we have d = n, w = 1 and M(yn) = C⊕Cy ⊕ · · · ⊕Cyn−2, so the non-zero
parts ofM(yn) have weights 0, . . . , n−2 and dimension 1. In order to have (α+1)n−1 =
j for j ∈ [0, n − 2] we need α = j+1−n

n
, which implies sp(yn) =

∑n−2
j=0 ( j+1−n

n
); this

means the monodromy operator on H0(Fyn ,C) has n − 1 eigenspaces of dimension 1
with eigenvalues ηan for a ∈ [1, n− 1] (and the same goes for H(Fzn)).

By Theorem 2.1.7 we deduce that H1(Fyn+zn) has dimension (n− 1)2 and it is the
direct sum of monodromy eigenspaces with eigenvalues ηa+b

n for a, b ∈ [1, n − 1]. The
equality ηa+b

n = ηkn is satis�ed by n − 2 choices of the couple (a, b) for k 6= 0, while
for k = 0 the choices are n − 1: this means that in H1(Fyn+zn) the �xed part under
the monodromy action has dimension n− 1, while all the other n− 1 eigenspaces have
dimension n− 2.

Theorem 2.1.7 also allows us to write
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H3(Fg−f )
Tg−f =

⊕
0≤α<1

H1(Fg)1−α ⊗H1(Ff )α

where the subscript α indicates the eigenspace relative to e2πiα. If we denote by εi
the dimension of H1(Ff )ηin then ε0 = n − 1, so we can write the dimension of the
right-hand side as

(n− 1)2 +
n−1∑
i=1

(n− 2)εi = (n− 1)2 + (n− 2)
n−1∑
i=1

εi

From the surjective Gysin morphism (3.3.19) and from (3.3.28) we deduce that

dimH3(Fg−f )
Tg−f ≤ (n− 1)2

so εi = 0 for all i 6= 0, which means exactly that the Alexander polynomial of the
arrangements we consider is trivial.

This concludes the proof of Theorem 3.3.1.

Remark 3.3.10. While at the beginning of this section we assumed that A does not
contain the line connecting P1 and P2, the proof we have given can be applied to that
case too.
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