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IntroduzioneLo s
hema di Hilbert Hilb2(P1 � P1) parametrizza i sottos
hemi 
hiusi zerodimensionali di lunghezza due di P1 � P1 e risulta essere lis
io, irridu
ibilee 4-dimensionale. In questa tesi diamo una presentazione espli
ita della suaCoomologia Quantum Pi

ola. Inoltre elaboriamo un algoritmo (parziale)
he 
i permetta di 
al
olarne an
he la Coomologia Quantum Grande, purnon essendo in grado di darne una presentazione espli
ita.Entrambe le 
oomologie quantum sono una deformazione dell'usuale anellodi 
oomologia H�(Hilb2(P1 � P1);Q). Si ottengono aggiungendo oppor-tune variabili formali e de�nendo un prodotto � 
he estende il prodotto[ dell'anello di 
oomologia stesso.Per ottenere i suddetti risultati utilizziamo la teoria degli spazi di modulidi mappe stabili, 
he sono degli sta
k nel senso di Deligne-Mumford. Inparti
olare usiamo te
ni
he tipi
he della teoria delle deformazioni oltre 
he
al
oli di 
lassi fondamentali virtuali per sta
k di Deligne-Mumford. Tutto
i�o �e giusti�
ato dal fatto 
he i 
oeÆ
ienti del prodotto � sono gli invariantidi Gromov-Witten dello s
hema di Hilbert in esame. In questo 
aso, essihanno un signi�
ato enumerativo, i.e. 
ontano il numero di 
urve razionali
he soddisfano 
erte propriet�a di intersezione, 
ome ad esempio passare perun �ssato numero di punti. In parti
olare mentre la Coomologia QuantumGrande 
oinvolge gli invarianti 
orrispondenti ad un numero n � 3 di 
on-dizioni di in
idenza, per quella Pi

ola n = 3.In�ne abbiamo dimostrato 
ome si possano 
ontare le 
urve iperellitti
hesu P1 � P1, di genere g � 2 e bi-grado (d1; d2) �ssati, 
he passano perun 
erto numero di punti per mezzo degli invarianti di Gromov-Wittendi Hilb2(P1 � P1). Quest'ultimo risultato �e un'appli
azione dei 
al
oli di
oomologia quantum ed estende l'analogo risultato ottenuto da Tom Graberper le 
urve iperellitti
he piane in [Gr℄.Riteniamo 
he il metodo usato per trovare questi risultati abbia raggiunto ilsuo limite naturale 
on lo studio di Hilb2(P1�P1). Il tentativo di estenderloallo s
hema di Hilbert di due punti sul blowup di P2 in un punto o su Pnsi �e rivelato ineÆ
a
e a 
ausa della pi�u 
ompli
ata struttura degli spazi dimoduli da prendere in 
onsiderazione, per i quali non disponiamo di unabuona des
rizione geometri
a.
i
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Introdu
tionOver the last de
ades a great interest in the Quantum Cohomology of amanifold has grown out of the work of physi
ists (see [W1℄, [W2℄), provid-ing a ri
h �eld of investigation for mathemati
ians. In parti
ular given asmooth 
omplex proje
tive variety X (or a symple
ti
 manifold), there aretwo di�erent obje
ts whi
h 
an be 
alled Quantum Cohomology of X; theseare the Big Quantum Cohomology ring and the Small Quantum Cohomologyring.The Big Quantum Cohomology ring is a �-produ
t stru
ture on V 
 R,where V = H�(X;Q) and R is a power series ring, whi
h makes V 
R intoa R-algebra and redu
es to the 
up produ
t when putting all the variablesto zero. The Small Quantum Cohomology ring is de�ned by setting equalto zero some of the formal variables, for more details see [F-P℄, [G-P℄.The �-produ
t is de�ned in terms of the (genus zero) Gromov-Witten in-variants of X, i.e. the virtual number of genus zero m-pointed stable maps� : C ! X with pres
ribed ��[C℄ that meet m general 
y
les on X. Weuse the word \virtual" be
ause the Gromov-Witten invariants need not haveenumerative signi�
an
e in general. In the Small Quantum Cohomology ringonly the 3-point Gromov-Witten invariants appear. The quantum produ
t
an be shown to be 
ommutative, asso
iative, with unit. From the asso-
iativity relations one gets a system of quadrati
 equations known as theWDVV-equations (so named after E. Witten, R. Dijkgraaf, H. Verlinde, E.Verlinde by B. Dubrovin). Kontsevi
h and Manin in [K-M℄ remark that,under good hypotheses on X, the WDVV-system admits a unique solutionon
e a few starting data are known, and it is in fa
t very overdetermined.QuantumCohomology 
an be expli
itly 
omputed using various tools. WhenH�(X;Q) is generated by H2(X;Q) the same authors prove the First Re-
onstru
tion Theorem: it gives an algorithm to �nd re
ursively all the genuszero Gromov-Witten invariants from the 2-point invariants by means ofthe WDVV-equations. The most famous appli
ation is due to Kontsevi
h[Kon℄. He 
al
ulates the number of rational 
urves of degree d in P2 go-ing through 3d � 1 points. He only needs as starting datum the number oflines through two points. Other examples of 
omputations exploiting theWDVV-equations 
an also be found in [DF-I℄.There are some examples of varieties for whi
h the Big and/or the Smalliii



iv CONTENTS
Quantum Cohomology rings have been 
omputed, su
h as Pn, P1�P1 [F-P℄,the blowup of P2 in r points [G-P℄, Grassmannians [Ber℄, 
ag varieties [CF℄,rational surfa
es [C-M℄, some 
omplete interse
tions [B℄, the moduli spa
e ofstable bundles over Riemann surfa
es [Mu℄, some proje
tive bundles [Q-R℄and some blowups of proje
tive bundles [Ma℄.A smooth variety X is 
alled 
onvex if H1(P1; f�TX) = 0 for all genus zerostable maps f : P1 ! X. Convexity ensures that the Gromov-Witten in-variants are enumerative. Only few of the varieties mentioned above arenon-
onvex.A signi�
ant example of a non-
onvex variety is represented by the Hilberts
heme Hilbn(X) of n points on a smooth 
omplex proje
tive surfa
e X.It parametrizes the 
losed 0-dimensional subs
hemes of X of length n; itis smooth, proje
tive, 2n-dimensional. For n = 1; 2 it is easy to des
ribe;Hilb1(X) is X itself and Hilb2(X) is obtained by blowing up X �X alongthe diagonal and then taking the quotient by the obvious lifted a
tion of theinvolution. The 
ase where n = 2, X = P2 has been studied by Graber in[Gr℄. The author gives a presentation of the Small Quantum Cohomologyring of the Hilbert s
heme by means of quantum deformations of the rela-tions de�ning the Chow ring A�(Hilb2(P2);Q). Moreover he gets enumera-tive results on the hyperellipti
 plane 
urves passing through an opportunenumber of points by studying the moduli spa
e of genus zero stable mapsinto Hilb2(P2).The aim of this thesis is to study the Quantum Cohomology of the Hilberts
heme Hilb2(P1�P1) and to give some enumerative appli
ations extendingGraber's results to the 
ase of hyperellipti
 
urves on P1�P1. The stru
tureof the work is the following.Chapter 1 is devoted to des
ribing the Hilbert s
heme we are working on.In x1.1 we follow the above mentioned 
onstru
tion of the Hilbert s
hemeas a quotient by the a
tion of an involution and we give the 
orrespond-ing presentation of its Chow ring whi
h is isomorphi
 to the 
ohomologyring. In x1.2 we prove that Hilb2(P1 � P1) 
an be seen as a blowup of theGrassmannian of lines in P3 along two lines and also in this 
ase we give the
orresponding presentation of its Chow ring. In parti
ular it turns out thatthe Chow ring is not generated by the divisor 
lasses, but we need to add a
y
le 
lass in 
odimension two to get a 
omplete set of generators. Then westudy the indu
ed a
tion of the automorphism group of P1�P1. The Hilberts
heme Hilb2(P1 � P1) is not homogeneous but only almost-homogeneous,i.e. it has a �nite number of orbits forming a strati�
ation. This propertyis good enough to make enumerative geometry on it, as shown in x1.3. Inparagraph 1.4 we analyse the homogeneous part of degree 1 of the Chow ringof Hilb2(P1�P1). In the following x1.5 we give the generators of the e�e
tive
one, postponing a detailed des
ription of some 
onne
ted e�e
tive 
urves tox1.8. Paragraphs 1.6 and 1.7 are dedi
ated to the des
ription of two spe
ialdivisors on the Hilbert s
heme whi
h are related to the orbit strati�
ation.



CONTENTS v
Finally in x1.9 we study the 
y
le whose points are 
losed subs
hemes of di-mension zero and length 2 in
ident to a given point of P1�P1. It representsa 
y
le 
lass in A2(Hilb2(P1 � P1)) whi
h will be of 
ru
ial importan
e forappli
ations in Chapter 4.In Chapter 2 we re
all the notion of moduli spa
e of stable maps (x2.1)with a brief review of deformation theory in x2.2. Paragraph 2.3 
olle
tssome results about the virtual fundamental 
lass of a moduli spa
e and inx2.4, x2.5, x2.6 we apply the general theory to some moduli spa
es of genuszero stable maps into Hilb2(P1 � P1). The 
hapter �nishes with the generalde�nition of the Gromov-Witten invariants (x2.7) and the 
al
ulation (x2.8)of some invariants on the Hilbert s
heme we are interested in. In parti
ular,we 
arry out some ex
ess 
al
ulations on the moduli spa
es mentioned aboveinvolving their obstru
tion bundles.Chapter 3 
olle
ts some of the main results. We re
all the de�nition ofthe Big Quantum Cohomology ring of a non-
onvex variety and the te
h-niques we want to use in order to obtain a presentation of it for Hilb2(P1�P1)(x3.1). Then after �xing the notations in x3.2, we 
onstru
t the Small Quan-tum Cohomology ring and give a presentation of it in x3.3 and x3.4. Thisis possible only after making some expli
it 
omputation of Gromov-Witteninvariants using both te
hniques from 
lassi
al enumerative geometry andthe WDVV-equations. We 
on
lude the 
hapter restri
ting our attention tothe subalgebra S of the Chow ring generated by the divisors 
lasses. Thisallows us to write a (partial) algorithm 
al
ulating re
ursively all the genuszero Gromov-Witten invariants of Hilb2(P1 � P1) starting from few initialdata. The idea is to divide the problem into two parts. The invariants withall the arguments in the subring S are known by the First Re
onstru
tiontheorem, only those involving the generating 
y
le 
lass in 
odimension twoare left and for them we use the WDVV-equations.Chapter 4 presents our main result (theorem 4.3.1) whi
h solves the prob-lem of 
ounting the hyperellipti
 
urves of given genus and bi-degree onP1 � P1 passing through a 
ertain number of points whi
h may also be hy-perellipti
al 
onjugated (theorems 4.3.5, 4.3.10). In parti
ular in x4.1 we
onstru
t a spa
e parametrizing maps from a hyperellipti
 
urve to P1 � P1with good properties. In x4.2 we prove it is 
anoni
ally isomorphi
 to thespa
e of stable maps from irredu
ible rational 
urves into Hilb2(P1 � P1)with good interse
tion properties with the strati�
ation. This means thatwe 
an redu
e an enumerative problem in higher genus to a question aboutrational 
urves. Finally our main theorem is stated and proved in the lastparagraph 4.3. It extends the result obtained by Graber in [Gr℄, Theorem2.7, as well as its appli
ations to the enumerative problem.The main te
hni
al di�eren
es between P1 � P1 and P2 are related to theproblem of �nding a presentation of the Quantum Cohomology rings, sin
ethe Chow ring of P1 � P1 is not generated by the divisor 
lasses. As saidabove, we (partially) su

eeded in solving the problem dividing it in two
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parts and using two powerful tools as the First Re
onstru
tion Theoremand the WDVV-equations. Moreover the des
ription of the e�e
tive 
oneof Hilb2(P1 � P1) is more 
ompli
ated, and requires to give two geometri
aldes
riptions of the Hilbert s
heme. We also need to 
onsider more e�e
tive
urves for the 
al
ulation of the initial data of the algorithm 
omputing(almost) all the Gromov-Witten invariants. This is be
ause the group ofautomorphism of P1�P1 has more orbits. In parti
ular we have to be 
are-ful about interse
tion properties of 
urves with the indu
ed strati�
ation(theorem 2.4.5).We think that the te
hniques we used in this thesis have rea
hed their nat-ural limits and they 
an not be su

essfully applied to �nd any enumerativeresult for example in the 
ase where X = Pn; n � 3, or BlpP2. In fa
t we
onsidered Pn, and found out that problems arise from studying the 
ompo-nents of ex
ess dimension of the moduli spa
e of genus zero stable maps intoHilb2(Pn). Instead for the blowup of P2 in a point we were not able to �nda simple geometri
al des
ription of the e�e
tive 
one of the 
orrespondingHilbert s
heme. Moreover also in this 
ase the Chow ring of Hilb2(BlpP2)is not generated by the divisor 
lasses. Finally the orbits of the indu
eda
tion of the automorphisms group of BlpP2 give a strati�
ation with nogood interse
tion properties.A
knowledgements: I would like to thank Professor Barbara Fante
hi forhaving introdu
ed me to the topi
 of this thesis and for the time she spentdis
ussing with me about it.I am grateful to Professor Angelo Vistoli be
ause he made possible my visitto the Dipartimento di Matemati
a at the Universit�a di Bologna. Duringmy staying there I 
ould learn a lot about the fas
inating world of sta
ks.I thank Professor Bruno Chiarellotto, the Co-ordinator of my Ph.D. 
ourseat the Universit�a di Padova, who gave me the opportunity to visit peoplefrom other universities.In parti
ular I would like to thank all the friends from SISSA and ICTPwho made the last months of my Ph.D. unforgettable.



Chapter 1
Some properties ofHilb2(P1 � P1)
In this 
hapter we will �x notations and present some results on the Hilberts
heme H :=Hilb2(P1 � P1) whose points are represented by 0-dimensionallength-2 
losed subs
hemes Z of P1 � P1. There are two possible geometri
des
riptions of H, as a desingularization of the se
ond symmetri
 produ
tSym2(P1 � P1) (see [Fo℄) and as a blow up of the Grassmannian Grass(2; 4)of lines in P3 (see x1.2). We will give a des
ription of both 
onstru
tionswith the 
orresponding Chow rings. Then we will study how some parti
ulardivisors and e�e
tive 
urves on H look like, so that we will have a detailedpi
ture of the ambient spa
e we are going to work on.Notations and 
onventions: we work over C and we identify the varietyP1 � P1 with its image under the Segre embedding P1 � P1 ! P3, i.e. thesmooth quadri
 Q in P3. We have two rulings on Q, if q1; q2 are the two pro-je
tions on P1, then q�11 (p) represents the �rst ruling and q�12 (p) the se
ondone.We 
onsider Chow rings with Q-
oeÆ
ients. All the varieties under 
onsid-eration in this 
hapter have a 
ellular de
omposition, hen
e their Chow ringsare isomorphi
 to their even-
odimension 
ohomology rings, [Ful℄ Example19.1.11. In parti
ular we 
an identify them.Given a ve
tor bundleE we denote by P(E) the proje
tive bundle Proj(SymE)where E is the sheaf of se
tions of E. Geometri
ally, points of P(E) 
orre-spond to hyperplanes in the �bers of E.We indi
ate a non-redu
ed 0-dimensional subs
heme Z of length 2 of Q asa pair (p; v) where p 2 Q is the support of Z and v 2 P(TQ;p) is a dire
tion.We 
all it a non-redu
ed point of H. 1



2 CHAPTER 1. SOME PROPERTIES OF HILB2(P1 � P1)
1.1 The Hilbert s
heme as a quotientThe following des
ription of the Hilbert s
heme H is valid for all Hilberts
hemes of 2 points on a smooth variety [F-G℄.Let U be the produ
t Q�Q, pr1; pr2 the two proje
tions, ~U the blowup ofU along the diagonal Æ � U . The group Z2 a
ts on U �xing Æ, so there isan indu
ed a
tion on the blowup ~U . The Hilbert s
heme H is the quotients
heme ~U=Z2, hen
e it is smooth, proje
tive, irredu
ible and 4-dimensional.We have the following diagram:~Æ j - ~U � - HÆbljÆ ? i - Ubl? pr1 -pr2 - Qwith i; j the natural in
lusions, bl the blowup map, � the quotient map and~Æ the ex
eptional divisor.Remark 1.1.1. Given the quotient map � : ~U ! H = ~U=Z2, we have twoindu
ed homomorphisms:�� : A�(H) - (A�( ~U))Z2 � A�( ~U)�� : A�( ~U) - A�(H)They are su
h that ���� = 2 id = ����. More pre
isely:���� : A�(H) - A�(H)
 - 2
���� : A�( ~U ) - A�( ~U)Z2� - �+ ��(�)where � : ~U ! ~U is the natural involution de�ned by �(� 
 �) = � 
 �. Itfollows that the map ����jA�( ~U)Z2 is the multipli
ation by 2 homomorphism.Note that �� is an isomorphism of Q-algebras whi
h does not respe
t thedegree: A4(H) degH- QA4( ~U)Z2�� ? deg ~U- Q�2?Moreover by proje
tion formula �� is A4(H)-linear, where A4( ~U ) is madeinto an A4(H)-algebra via ��.
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First des
ription of A�(H)As pointed out in (1.1.1), �� indu
es an isomorphism of A�(H) withA�( ~U )Z2.Then to write down expli
itly the Chow ring of H we need to know A�( ~U ).Lemma 1.1.2. Let � be the 
lass 
1(N~Æj ~U) = [~Æ℄j~Æ whi
h has degree �1 ona �ber of the blowup map over Æ. Then:A�(~Æ) = A�(Æ)[�℄�2 +P2i=1(�1)i
i(TQ)�2�i = 0Proof. As ~Æ is the proje
tivization of the rank-2 ve
tor bundle NÆ=U we
an use [G-H℄ p.606. Moreover by the isomorphism Æ �= Q and the exa
tsequen
e: 0! TÆ ! i�TU ! NÆjU ! 0we have 
i(NÆjU ) = 
i(TQ).Lemma 1.1.3. Let � be the 
lass of the ex
eptional divisor ~Æ in ~U . Set 
sto be su
h that j�(
s) = (�1)s
s(TQ), for s = 1; 2. Then:A�( ~U ) = A�(Q)
2[�℄(�
 � � � 
 �)� = 0 8�; � 2 A�(Q)�2 +P2s=1 
s�2�s = 0 (1.1)In parti
ular, as a ve
tor spa
e A�( ~U) is simply A�(Q)
A�(Q)�A�(Q)�.Proof. The exa
t sequen
e (see [Ful℄ p.114-115):0! A�(Æ)! A�(U)�A�(~Æ)! A�( ~U)! 0gives the equality: A�( ~U) = A�(U)�A�(~Æ)A�(Æ) (1.2)By the K�unneth formula, the Chow rings of Æ and U are isomorphi
 toA�(P1) 
 A�(P1) and A�(Q) 
 A�(Q), respe
tively. Let h1; h2 be the 
y
le
lasses of the two rulings on Q. We write h0 = [Q℄; h1; h2, h3 := h1h2 forthe basis of A�(Q) and hr 
 hs, with 0 � r; s � 3, for the basis of A�(U).Then: A�(Æ) = A�(Q) = Z[h1℄h21 
 Z[h2℄h22By Lemma 1.1.2: A�(~Æ) = A�(Q)[�℄�2 � (2h1 + 2h2)� + 4h1h2 = 0 (1.3)The pullba
k of the divisor 
lass � via the natural embedding j is exa
tlythe 
lass � in A1(~Æ). Moreover the quotient (1.2) means that for ea
h �; �
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in A�(Q) we have to identify the element � 
 � 2 A�(U) pulled ba
k to Æwith the produ
t 
lass �� 2 A�(Q), i.e. (�
 � � � 
 �)� = 0. Then we getthe formula (1.1).Remark 1.1.4. Writing expli
itly the se
ond relation at denominator in(1.1) we get:�2 = (2h1 
 1 + 2h2 
 1)� � (h3 
 1 + 1
 h3 + h1 
 h2 + h2 
 h1)Let [Æ℄ 2 A�(U) be the 
lass of the diagonal and �hi be the dual basis withrespe
t to the interse
tion pairing on A�(Q). Then:[Æ℄ = 3Xi=0 �hi 
 hiMoreover i�[Æ℄ = 4h3 = 
2(TQ), so that we 
an write �2 + 
1� + [Æ℄ = 0.Remark 1.1.5. We 
an identify ����(hi
1) with the element hi
1+1
hiin A�( ~U), obviously ����(�) = 2� sin
e it is invariant under involution.Proposition 1.1.6. A basis for A�(H) is given by the elements:hi 
 hj + hj 
 hi; (hi 
 1)�with 0 � i; j;� 3.Proof. A basis is given by all the elements in A�( ~U) whi
h are invariant forthe Z2-a
tion.We 
an write the following table:A0(H) A1(H) A2(H) A3(H) A4(H)S0 = 1 S1 S3 S7 S9S2 S4 S8S10 S5 S13S6S11S12
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The 
y
le 
lasses are de�ned to be:S0 = [H℄S1 = h1 
 1 + 1
 h1S2 = h2 
 1 + 1
 h2S3 = h3 
 1 + 1
 h3S4 = h1 
 h2 + h2 
 h1S5 = h1 
 h1S6 = h2 
 h2S7 = h1 
 h3 + h3 
 h1S8 = h2 
 h3 + h3 
 h2S9 = h3 
 h3S10 = �S11 = (h1 
 1)�S12 = (h2 
 1)�S13 = (h3 
 1)�Remark 1.1.7. We work with 
oeÆ
ients in Q so �� : A�(H) ! A�( ~U)Z2is an isomorphism and we 
an identify the 
lass Sj 2 A�(H) with the 
orre-sponding element ��Sj 2 A�( ~U)Z2, being 
areful about the degrees.Poin
ar�e Duality on ~U gives:S1 S2 S10S8 2 0 0S7 0 2 0S13 0 0 �1

S3 S4 S5 S6 S11 S12S3 2 0 0 0 0 0S4 0 2 0 0 0 0S5 0 0 0 1 0 0S6 0 0 1 0 0 0S11 0 0 0 0 0 1S12 0 0 0 0 1 0Dividing by 2 the above values we obtain the 
oeÆ
ients for the interse
tionpairing on H.Proposition 1.1.8. As a Q-algebra A�(H) is generated by S1; S2; S3; S10and it is de�ned by the relations:S31 = S32 = S33 = 0 S1S3S10 = S2S3S10 = 0S21S3 = S22S3 = 0 S1S2S3 = S23S21S10 = S22S10 = 0 S1S2S10 = 2S3S10S23S1 = S23S2 = S23S10 = 0 S21S2 = 2S1S3S210 = (S1 + S2)S10 � S1S2 S22S1 = 2S2S3
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Proof. The following equalities hold:S4 = S1S2 � S3S5 = 12S21S6 = 12S22S7 = S1S3S8 = S2S3S9 = 12S23S11 = 12S1S10S12 = 12S2S10S13 = 12S3S10It goes straightforward that the relations in the statement de�ne A�(H) hasa Q-algebra.1.2 The Hilbert s
heme as a blow upIn the following we will prove that the Hilbert s
heme H 
an be obtained asa blow up of the smooth proje
tive 4-dimensional Grassmannian Grass(2; 4)of lines in P3. We use the symbol G to denote su
h a Grassmannian.Lemma 1.2.1. There exists a surje
tive morphism ' : H ! G de�ned bymapping a point Z 2 H to its asso
iated line lZ .Proof. Let Grass(2; 4) be the fun
tor represented by G and ZH � H�P3 bethe universal family with proje
tions p1; p2 toH and P3 respe
tively. Denoteby L the sheaf p�2OP3(1). The natural morphism  : (p1)�L ! (p1)�LjZHis surje
tive. Moreover (p1)�L is a trivial bundle sin
e it is 
asque ([G-D℄3.2.1), with �ber over Z 2 H 
anoni
ally isomorphi
 to H0(P3;OP3(1)).Also (p1)�LjZH is a ve
tor bundle on H, it has rank 2. Then  is an elementof Grass(2; 4)(H). On the �ber over Z 2 H,  is the surje
tion:H0(P3;OP3(1)) - H0(Z;OZ(1))with kernel H0(P3;IZ(1)) the spa
e of homogeneous linear forms whi
h van-ish on Z. It 
orresponds to the surje
tive morphism ' : H! G whi
h mapsea
h point Z to its asso
iated line lZ .There are two spe
ial lines W1;W2 � G whi
h are disjoint. A point li 2Wirepresents a line on the i-th ruling of Q, i = 1; 2. Denote by W the disjointunion of these spe
ial lines, i.e. W = fl 2 G : l � Qg. Let V be the opensubset G�W .Lemma 1.2.2. The morphism ' is birational.
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Proof. The inverse map '�1 is well de�ned on the open subset V . It isgiven by '�1(r) = r \ Q, for all r 2 V . Sin
e G is the Hilbert s
hemeof lines in P3, there is a universal family ZG � G � P3. The morphism� : ZG\ (G�Q)! V is a 
at family of 0-dimensional length-2 subs
hemesof Q, then by the universal property of H, there exists a unique morphismV ! H whi
h has to be '�1. This shows that ' is birational.In parti
ular 1.2.2 says that there is an isomorphism between H� '�1(W )and G � W . If r 2 W then the inverse image '�1(r) is Sym2(r) �= P2,so that '�1(W ) is a Cartier divisor in H. Hen
e we have a 
ommutativediagram: H 9! � //'

##G
GGGGGGGG BlWG�

��Gwhere � is the blowup morphism.Lemma 1.2.3. The morphism � is an isomorphism.Proof. Sin
e both H and BlWG are smooth, � is an isomorphism if andonly if it is bije
tive. It is obviously bije
tive on V . To verify bije
tivity onthe ex
eptional lo
us it is enough to look at the restri
tion�1 : '�1(W1)! ��1(W1) = P(NW1jG)If r 2 W1, then �1 : Sym2(r) ! P(NW1jG)r is a morphism from P2 intoitself. Then it is de�ned by a triple of homogeneous polynomials of somedegree n without 
ommon zeros. By expli
it 
al
ulations it 
an be veri�edthat n = 1. This implies that the generi
 �ber of �1 is a point, i.e. �1 is abije
tion.Theorem 1.2.4. The Hilbert s
heme H is isomorphi
 to the blow up of theGrassmannian G along W .Proof. It follows from Lemmas 1.2.1, 1.2.2, 1.2.3.This result permits us to write the Chow ring of H by means of A�(G).The Chow ring of the GrassmannianWe re
all the des
ription of A�(G) by S
hubert 
y
les [Ful℄ x14.7.Fix a 
ag in P3: p 2 r � � � P3where p is a point, r a line and � a plane. Then:. A0(G) has basis: �0;0 = fl 2 G : l \ � 6= ;g = [G℄



8 CHAPTER 1. SOME PROPERTIES OF HILB2(P1 � P1)
. A1(G) has basis: �1;0 = fl 2 G : l \ r 6= ;g. A2(G) has basis: �1;1 = fl 2 G : l � �g, �2;0 = fl 2 G : p 2 lg. A3(G) has basis: �2;1 = fl 2 G : p 2 l � �g. A4(G) has basis: �2;2 = fl 2 G : p 2 l = rg = [pt℄Proposition 1.2.5. A�(G) is generated by �1;0; �2;0, as a Q-algebra. Thering stru
ture is de�ned by the relations:�1;0�2;0 = �1;0�1;1 = �2;1 �21;0 = �1;1 + �2;0�22;0 = �21;1 = �1;0�2;1 = 1 �2;0�1;1 = 0Proof. See [G-H℄ Chap.1 x5.Se
ond des
ription of A�(H)In the following we will refer to the diagram:~Wk jk - HWk'k='jWk ? ik - G'?where ' is our blowup map, ik is the in
lusion and ~Wk is P(NWkjG), fork = 1; 2. We denote by ~W the ex
eptional divisor ~W1 t ~W2. As in theprevious se
tion, to write down A�(H) we use the short exa
t sequen
e:0! A�(W )! A�(G)�A�( ~W )! A�(H)! 0So we have to 
al
ulate the quotient:A�(H) = A�(G)�A�( ~W )=A�(W )= A�(G)�A�( ~W1)�A�( ~W2)=A�(W1)�A�(W2) (1.4)We need to know the rings A�(Wk); A�( ~Wk). Wk is a proje
tive line thenA�(Wk) = A�(P1). Denote by lk the pullba
k via 'k of the generator of thisChow ring.Lemma 1.2.6. Let �k = 
1(N ~WkjH) be su
h that its pullba
k to a �ber '�1k (r)is represented by a line of degree �1. Let NWkjG be the normal bundle ofWk in G. Then:A�( ~Wk) = A�(Wk)[�k℄�3k +P3i=1(�1)i 
i(NWkjG) �3�ik = 0= Z[lk; �k℄(l2k; �3k � 6lk�2k) (1.5)
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Proof. As ~Wk is a proje
tivization of the ve
tor bundle NWkjG the lemmafollows by applying [G-H℄ p.606.By formula (1.4), we have the following des
ription of A�(H):A0(H) A1(H) A2(H) A3(H) A4(H)[H℄ = 1 �1;0 �1;1 �2;0 �2;1 �2;2�1 �3 �7�2 �4 �8�5�6The 
y
le 
lasses are de�ned as:�r;s = '�(�r;s)�1 = j1�(1 ~W1) and j�1�1 = �1�2 = j2�(1 ~W2) and j�2�2 = �2�3 = j1�(l1)�4 = j2�(l2)�5 = j1��1�6 = j2��2�7 = j1�(l1�1)�8 = j2�(l2�2)There are two more 
y
le 
lasses in 
odimension 3 whi
h we are interestedin: �9 = j1��21 and �10 = j2��22 .Remark 1.2.7. Note that the 
lass �li�i is represented by a line in the�ber of 'i over a point r 2Wi su
h that '�i [r℄ = li, for i = 1; 2.Theorem 1.2.8. 1) As a Q-algebra A�(H) is generated by �1;0; �2;0; �1; �2.2) As a A�(G)-algebra A�(H) is equal to the quotient:A�(H) = A�(G)[�1; �2℄Rwhere R is the set of relations:�1 � �2 = 0�1 � �2;0 = �2 � �2;0 = 0�1 � (�21;0 � �2;0) = �2 � (�21;0 � �2;0) = 0�31 = 2�1;0�2;0 + 3�21�1;0�32 = 2�1;0�2;0 + 3�22�1;0
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Proof. The relations among the elements of the basis of A�(G) hold also forthe pulled ba
k elements in A�(H). Moreover:�3 = 12�1 � �1;0�4 = 12�2 � �1;0�5 = �21�6 = �22�7 = 12�21 � �1;0�8 = 12�22 � �1;0Then the statement 1) is true.Statement 2) follows from previous 
al
ulations.Finally the 
oeÆ
ients for the interse
tion pairing on H are:�1;2 �7 �8 �9 �10�1;0 1 0 0 2 2�1 0 1 0 6 0�2 0 0 1 0 6

�1;1 �2;0 �3 �4 �5 �6�1;1 1 0 0 0 0 0�2;0 0 1 0 0 0 0�3 0 0 0 0 1 0�4 0 0 0 0 0 1�5 0 0 1 0 6 0�6 0 0 0 1 0 6Remark 1.2.9. In 1.4.1 and 1.8.1 we will make expli
it the relationshipbetween the two di�erent sets of generators of A�(H) we found.In x3.1 we will 
hoose the more 
onvenient basis of the Chow ring of Hin order to make easier 
al
ulations in the (Small) Quantum Cohomolgyring. The basis will 
onsist of elements taken from both the presentationsof A�(H) we gave.1.3 The a
tion of Aut(Q) on HLet A be the group of automorphisms of Q andM be the group of automor-phisms of P1, i.e. PGL(2). We denote by � = (�1; �2) an element inM�Mand by � : P1 � P1 ! P1 � P1 the involution de�ned by �(p; q) = (q; p). Thegroup A a
ts on Q and then on U . Blowing up the diagonal, the a
tion liftsto ~U . Sin
e H is the quotient of ~U by the involution, we have an indu
eda
tion of A on it. In this se
tion we study this indu
ed a
tion and exploitit to get a transversality result.Proposition 1.3.1. The 
onne
ted 
omponent A0 � A 
ontaining the iden-tity is exa
tly M�M.
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Proof. There exists an embedding Q ! P3 given by a multiple of the anti-
anoni
al divisor, i.e. su
h that P3 = P(H0(Q;�12KQ)). Any element of Aa
ts on P3 too (sin
e KQ is 
anoni
al). This implies that:A = f� 2 PGL(4) : �(Q) = QgA is smooth be
ause we work in 
hara
teristi
 zero, and TA is a trivialbundle so dim A0 = dim TA;Id. To prove the statement it is enough to showthat the tangent spa
e TA;Id is 6-dimensional as well as M�M.If we think of Q as the set fv 2 P3 : tv � v = 0g, an element of PGL(4) in Ahas to satisfy F (A) = tA � A � �Id = 0. Hen
e an element of the tangentspa
e TA;Id is of type Id + sB (mod s2) with B 2 M(4 � 4) and it has toful�l: F (Id+ sB) � 0 (mod s2) (1.6)Put ~F (A) = tA �A� Id = 0. We 
an 
onsider the following equation whi
his equivalent to (1.6), up to s
alars:~F (Id+ sB) = s( tB +B) = �Id for B 2M(4� 4)In order to have a solution, �must be divisible by s, that is to say there existsa 2 C su
h that tB+B = a�Id. Consider the map ' :M(4�4)!M(4�4),de�ned by mapping a matrixB into the sum tB+B. It is easy to see that theinverse image under ' of the subgroup generated by the identity matrix is 7-dimensional. Hen
e the tangent spa
e TA;Id is 6-dimensional. We 
on
ludethat A0 has the same dimension as M�M, then they 
oin
ide.Note that A0 6= A sin
e � 2 A is not an element of A0. In fa
t it is easy tosee that the group A has exa
tly two 
onne
ted 
omponents: A0 and �A0.Des
ription of the orbits for the A-a
tionWe give a des
ription of the orbits with respe
t to the A-a
tion on thevarieties under 
onsideration. We have three orbits on U :�1 = f(p; q)� (a; b) : (p; q) = (a; b)g = Æ�2 = f(p; q)� (a; b) : p = a; q 6= bg [ f(p; q)� (a; b) : p 6= a; q = bg�3 = f(p; q)� (a; b) : p 6= a; q 6= bgwhere p; q; a; b are points on P1.The lifted a
tion on ~U has the ex
eptional divisor ~Æ (
orresponding to theorbit �1) as invariant lo
us. Moreover ~Æ is the disjoint union of two orbits:~Æ1 = fZ : Supp Z = p; lZ 2 Qg~Æ2 = fZ : Supp Z = p; lZ =2Wi; i = 1; 2gNote that in turn ~Æ1 is the disjoint union of two 
losed subsets:~Æi1 = fZ : Supp Z = p; lZ 2Wig; i = 1; 2
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H is the quotient of ~U by the involution so we have four orbits on it:�2 ( ~Æ1) �3 ( ~Æ2) �3 ( �2) �4 ( �3)Here indexes are 
hoosen equal to the dimensions of the orbits. We 
an givea des
ription of them:�4 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ * Qg�3 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ � Qg�3 = fZ 2 H : Supp Z = p; lZ * Qg�2 = fZ 2 H : Supp Z = p; lZ � QgThe 
losed orbit �2 is the disjoint union of two 
losed subvarieties �i2,i = 1; 2, 
orresponding to ~Æi1 in ~U .The 
losure �3 = �2 t�3 is the subvariety of H of non-redu
ed points, i.e.Z su
h that Supp Z is only one point.The orbit �3 is the disjoint union �13 t �23 where�i3 = fZ 2 H : Supp Z = fp; qg; p 6= q; lZ 2WigIn parti
ular the 
losures �13, �23 are the two ex
eptional divisors ~W1, ~W2respe
tively, of the blowup map ' : H! G. Hen
e the 
losure �3 is equalto the disjoint union ~W1 t ~W2.Finally the orbit �4 is open and dense in H.These orbits form a strati�
ation of H:�2

}}||
||

||
||

!!B
BB

BB
BB

B�3
!!B

BB
BB

BB
B

�3
}}||

||
||

||�4where an arrow A! B means A � B.A transversality resultThe a
tion of A is obviously transitive on ea
h orbit, but not on H. Wesay that H is an almost-homogeneuos spa
e sin
e it has a �nite number oforbits for the A-a
tion and they form a strati�
ation. Note that the a
tionis transitive on H� (�3 [ �3).A slightly modi�ed version of the Kleiman-Bertini theorem holds for almosthomogeneous spa
es and gives us a transversality result.
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Lemma 1.3.2. (Position Lemma) Let A be a smooth, almost-homogeneousspa
e under the a
tion of an integral group G, f : B ! A a morphism withB smooth. Let � be a smooth 
y
le on A whi
h interse
ts the strati�
ationproperly, and �reg be the lo
us in � where the interse
tion with the strati�-
ation is transversal. Then:1. for a generi
 g 2 G, f�1(g�) is of pure dimension equal to the expe
tedone;2. the open set (possibly empty) f�1(g�reg) is smooth.For a proof of this lemma see [Gr℄ Lemma 2.5.Remark 1.3.3. If in the hypotheses of 1.3.2 we do not ask B smooth butonly pure dimensional we 
an 
onsider its desingularization � : ~B ! B.Then by applying the Position Lemma to the 
omposition map ~f : ~B ! A weget that 
od ( ~f�1(g�) � ~B) is the expe
ted one, i.e. equal to 
od (g� � A).Sin
e: 
od ( ~f�1(g�) � ~B) � 
od (f�1(g�) � B)we have that 1.3.2-1) holds with the inequality
od (f�1(g�) � B) � 
od (g� � A)Remark 1.3.4. The group A is not integral, so we 
an not apply the Posi-tion Lemma for anyA-a
tion. But we 
an 
onsider the 
onne
ted 
omponentA0 � A 
ontaining the identity. Note that it de�nes a strati�
ation of Hwith six orbits: �12

  A
AA

AA
AA

A

��

�22
~~}}

}}
}}

}}

��

�3
��

�13
  A

AA
AA

AA
A

�23
~~}}

}}
}}

}}�41.4 Divisor 
lasses of HWe want to des
ribe the Pi
ard group Pi
 (H). We need to 
hoose betweenthe two possible sets of generators of A1(H) we presented in the previousse
tions. To do this we introdu
e some 3-
odimensional 
y
le 
lasses with\good" interse
tion properties.
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Geometri
al des
ription of the divisor 
lassesIn x1.1 we showed that S1; S2; S10 generate A1(H). We know a geometri
des
ription for ea
h of these divisor 
lasses:- S1 = [fZ : Supp Z \ l1 6= ;; l1 2W1 �xed lineg℄- S2 = [fZ : Supp Z \ l2 6= ;; l2 2W2 �xed lineg℄- 2S10 = [fZ : Supp Z = ptg℄In x1.2 the generating divisor 
lasses are �1;0; �1; �2. The �rst 
lass 
an berepresented by the irredu
ible subvariety fZ : lZ \ r 6= ;; r � P3 given lineg.The 
lasses �i, i = 1; 2 are su
h that their restri
tion to a �ber of the blowupmaps 'i; i = 1; 2, is represented by a line in the plane Sym2(li) for someli 2Wi, with stru
ture sheaf OSym2(li)(�1) (see x1.2 for notations).Note that given a proje
tive line l, Sym2(l) is the Hilbert s
heme Hilb2(l).The 
hoi
e of a basis for A1(H) and A3(H)We de�ne three 3-
odimensional 
y
le 
lasses and 
al
ulate their interse
tionprodu
t with all of the divisors.Fix a point l1 2 W1 and let C(l1) be a line in the plane Sym2(l1). Wewant to stress that all the points Z of H 
ontained in C(l1) are su
h thatSupp Z � l1. We denote by C1 the 
orresponding 
y
le 
lass in A3(H). Wedo the same for the 
lass C2. Finally �x a point p0 2 Q and 
onsider theline C(p0) = P(TQ;p0) = fZ : Supp Z = p0g. Let F be the 
orresponding
y
le 
lass in A3(H). The 
urves C(l1); C(l2); C(p0) are e�e
tive in H. Wehave the following interse
tion produ
ts:S10 S2 S1 �1;0 �1 �2C1 1 1 0 0 �1 0C2 1 0 1 0 0 �1F �1 0 0 1 1 1From now on we will use the following notations:- generators of A1(H): T1 := S1, T2 := S2, T3 := �1;0- generators of A3(H): C1, C2, FT1 T2 T3C1 0 1 0C2 1 0 0F 0 0 1Throughout this work the symbol (a; b; 
) will be intended as a 
urve in Hof 
lass aC1 + bC2 + 
F .
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Remark 1.4.1. From the �rst table we obtain:�1 = T3 � T2; �2 = T3 � T1; S10 = T1 + T2 � T3:Remark 1.4.2. We des
ribedH as the blowup ofG alongW , so we 
an usethe formula given in [G-H℄ p.608 to 
al
ulate the �rst Chern 
lass 
1(TH):
1(TH) = '�
1(TG)� (n� k � 1) ~Wwith n =dim G = 4; k =dim W = 1. By 1.4.1 we obtain:
1(TH) = 2(T1 + T2)The following proposition gives a 
omplete des
ription of the 
one of e�e
tive
urves in H.Proposition 1.4.3. An e�e
tive 
urve in H is of 
lass aC1+bC2+
F witha; b; 
 � 0.Proof. The proof 
onsists of two steps. First we show that the linear sys-tems asso
iated to T1; T2; T3 are base-points-free and then we look at theirinterse
tion produ
t with the e�e
tive 
lasses C1; C2; F .The linear system asso
iated to T3 is obviously base-points-free, be
ause T3is the pullba
k of an ample divisor 
lass of G. Let Dli 2 jTij, i = 1; 2, bethe divisor represented by the setfZ 2 H : Supp Z \ li 6= ;; li 2Wi �xed linegGiven a point Z 2 H, we have two possibilities for its support either it
onsists of a single point p or of two distin
t points p; q. In both 
ases thereexists a divisor Dli with Z =2 Dli . In fa
t it is enough to 
hoose li 2 Wisu
h that either p =2 li or li 2 Wi � fli(p); li(q)g, with li(p); li(q) the onlylines in Wi through p and q respe
tively. This shows that also T1; T2 arebase-points-free divisor 
lasses.The interse
tion produ
t between an arbitrary e�e
tive 
urve and a base-points-free divisor is always non-negative. Sin
e:C1 � T2 = 1; C2 � T1 = 1; F � T3 = 1and all other possible interse
tions give zero, an e�e
tive 
urve in H is of
lass aC1 + bC2 + 
F with a; b; 
 � 0.1.5 The lo
us � of non-redu
ed points of HIn x1.3 we des
ribed the 
losure �3 as the set of non-redu
ed points of H.Sin
e it is 
losed and 3-dimensional, it is a divisor. Let us denote it by �.We will use the same notation also for the asso
iated 
y
le 
lass in A1(H)and we will refer to it as to the diagonal of H. In this se
tion we will givea 
omplete des
ription of su
h a divisor and of its Chow ring.
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Geometri
al des
riptionAs a divisor 
lass in H, the diagonal � is ���, hen
e by 1.1.1 and 1.4.1:� = 2S10 = 2(T1 + T2 � T3) (1.7)This means that � = ~Æ = P(TQ). In parti
ular there exists a map s : �! Qwhi
h is a P1-bundle. It maps a non redu
ed point to its support so we will
all it the support map. We dedu
e that � is irredu
ible. Obviously it isinvariant for the A-a
tion.It will be useful for our subje
t to know how the interse
tion of � with a �berof the blowup morphism ' looks like. Then 
all D the image of � in G via'. It is a union D0tD1, where D0 = fl 2 G : l\Q = ptg and D1 =W1tW2are disjoint. The inverse image '�1(D0) is the orbit �3 isomorphi
 to D0while for ea
h l 2 D1, '�1(l) is the interse
tion Sym2(l) \ �. We want todes
ribe the in
lusion map:P1 �= Sym2(l) \� ,! Sym2(l) �= P2Proposition 1.5.1. The diagonal � de�nes a 
oni
 in a �ber over the blownup lo
us.Proof. We 
an look at Sym2(l) as at the spa
e of all the quadrati
 forms onthe 2-dimensional ve
tor spa
e V de�ning l up to s
alars. Then Sym2(l)\�is the spa
e of linear forms on the same ve
tor spa
e V , up to s
alars. Thein
lusion map has to be de�ned by mapping a form f to the square powerf2, i.e. into the sublo
us of quadrati
 forms with a unique root. This impliesthat the in
lusion maps a point (x : y) 2 P1 to the point (x2 : xy : y2) 2 P2.This de�nes a 
oni
 in the plane Sym2(l).Chow ring and e�e
tive 
urves in �We will refer to the following 
ommutative diagram:� j - ~U pr1 -pr2 - Q��id? i - H� ?Note that p1 Æ j = p2 Æ j is the support map.In 1.1 we have already 
al
ulated the Chow ring A�(P(TQ)) = A�(�), werefer to that se
tion for notations. A basis is given by:A0(�) A1(�) A2(�) A3(�)[�℄ h1 h1� h1h2�h2 h2�� h1h2
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The 
lasses h1�; h2� are the liftings of the two rulings on Q and h1h2 is the
lass of a �ber of s, (here we identify hi = s�(hi)). The sets:L1 = fZ = (p; v) : p 2 lZ = l1; l1 2W1 given lineg �= l1L2 = fZ = (p; v) : p 2 lZ = l2; l2 2W2 given lineg �= l2L3 = fZ = (p0; v) : p0 �xed pointg = P(TQ;p0)are e�e
tive 
urves in �. Moreover, they are su
h that the 
orresponding
lasses in A1(H) are the Poin
ar�e dual 
lasses of 2C1; 2C2; F , sin
e � de�nesa 
oni
 on a �ber Sym2(li); i = 1; 2, and F is the 
lass [P(TQ;p)℄ for somep 2 Q. In parti
ular A1(�) is generated by these e�e
tive 
lasses.Finally we want to des
ribe the e�e
tive 
urves in H whi
h are a
tually
ompletely 
ontained into �. We need to �nd a relationship between thedivisor 
lasses in � and the pullba
ks i�T1, i�T2, i�T3.Proposition 1.5.2. We 
an write:Pi
(�) = h12T1; 12T2; T3iwhere Tj = i�Tj, by abuse of notation.Proof. Note that by de�nition:h1 = j�p�1(h1) = j�(h1 
 1) = 12j�����(h1 
 1) = 12j�(h1 
 1 + 1
 h1)A

ording to our notation h1 
 1 + 1 
 h1 = ��T1 in ~U , so we 
on
ludeh1 = 12 i�T1 and by symmetry h2 = 12 i�T2. Then it is easy to verify that theinterse
tion produ
t gives: i�T1 i�T2 i�T3L1 0 2 0L2 2 0 0L3 0 0 1The thesis follows.Remark 1.5.3. By the adjun
tion formula and 1.4.2 we get:
1(T�) = 
1(H)j� ��j� = 2T3Proposition 1.5.4. The e�e
tive 
urves in H whi
h are 
ontained into �are of type (a; b; 
) with a; b; 
 � 0 and a; b even.Proof. Let C � � be an e�e
tive 
urve of 
lass (�; �; 
), then i�C is ane�e
tive 
urve in H of 
lass (a; b; 
) for some non negative integers a; b; 
.By the proje
tion formula, deg�12T1 � C = a2 is an integer number equal to�, hen
e a is even. The same is true for b, by symmetry.
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1.6 The divisor �In this se
tion we study the 
losure of the 3-dimensional orbit �3. We willdenote it by � throughout this work. It is the divisor given by the disjointunion ~W1t ~W2 of the two ex
eptional divisors of the blowup map ' : H! G,(see x1.3). Ea
h ~Wi is isomorphi
 to P2�P1 be
ause it is the relative Hilberts
heme Hilb2(Q=P1).Chow ring of ~Wi and e�e
tive 
urves in �Note that ~W1 and ~W2 are 
ompletely symmetri
, so let us 
onsider only ~W1.We have a good des
ription of ~W1 as a divisor in H (see 1.4.1) and of itsChow ring by (1.5). In parti
ular:~W1 = �1 = T3 � T2Pi
( ~W1) = hl1; �1iA1( ~W1) = h�l1�1; �21iProposition 1.6.1. We 
an write:Pi
( ~W1) = hT3 � T2; 12T3iwhere Ti = j�1Ti, by abuse of notation.Proof. By de�nition j�1�1 = �1 and as one 
an easily 
he
k j�1T3 �(�l1�1) = 0,j�1T3 � �21 = 2.Remark 1.6.2. By the adjun
tion formula and 1.4.2, the �rst Chern 
lasses
1(T ~W1); 
1(T�) are:
1(T ~W1) = 
1(TH)j ~W1 � ~W1j ~W1 = 3T2 + T3
1(T�) = 
1(TH)j� � ( ~W1 + ~W2)j� = 3(T1 + T2)� T3As in the previous se
tion we are interested in the e�e
tive 
urves in Hwhi
h are the pushforward of e�e
tive 
urves in �. So we need to know thee�e
tive 
one of �, i.e. of ~W1 and ~W2.Proposition 1.6.3. The e�e
tive 
one in ~W1 is generated by �l1�1 = (1; 0)and 4(�l1�1) + �21 = (4; 1).Proof. The in
lusionmap j1 indu
es a ring homomorphismA1( ~W1) (j1)�- A1(H).The 
lasses �(j1)�l1�1; (j1)��21 are su
h that:T1 T2 T3�(j1)�l1�1 0 1 0(j1)��21 2 4 2



1.6. THE DIVISOR � 19
It follows that �(j1)�l1�1 = C1 and (j1)��21 = �4C1 + 2C2 + 2F . So thepushforward map is de�ned by:(j1)�(�ah1�1 + b�21) = (a� 4b)C1 + 2bC2 + 2bC3Suppose that �ah1�1 + b�21 is an e�e
tive 
urve, sin
e (j1)� maps e�e
tive
urves to e�e
tive 
urves, it holds:a � 4b; b � 0We already know that a 
urve of 
lass �h1�1 = (1; 0) is e�e
tive, sin
e it isa line in a �ber of '1 (see 1.2.7). We have to look for a se
ond generator ofthe e�e
tive 
one in ~W1. Let us �x two lines l02; l002 2 W2 and let C be thefollowing 
urve:fZ : Supp Z = fp; qg; 9 l1 2W1 with p = l1 \ l02; q = l1 \ l002gIt is isomorphi
 to W1. Write [C℄ = �al1�1 + b�21 , then:(j1)�[C℄ � T3 = 2b = 2) b = 1(j1)�[C℄ � T2 = a� 4b = 0) a = 4(j1)�[C℄ � T1 = 2b = 2The last equality tells us that C interse
ts a divisor in jT1j in a point withmultipli
ity. Sin
e C is e�e
tive, we �nd that the e�e
tive 
one in ~W1 is theset fa(1; 0) + b(4; 1) : a; b � 0g.Proposition 1.6.4. The e�e
tive 
urves in H whi
h are a
tually e�e
tive
urves in ~W1 are of 
lass (a; b; 
) with a; b; 
 � 0; b = 
 even.Symmetri
ally, the e�e
tive 
urves in H 
ontained into ~W2 are of 
lass(a; b; 
) with a; b; 
 � 0; a = 
 even.These 
onditions des
ribe all e�e
tive 
urves in H 
ontained into �.Proof. It is enough to write the homomorphism Aeff1 ( ~W1)! Aeff1 (H):N(1; 0) � N(4; 1) (j1)�- NC1 � NC2 � NF(1; 0) 7! C1(4; 1) 7! 2C2 + 2Fa(1; 0) + b(4; 1) 7! aC1 + 2bC2 + 2bF
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1.7 Des
ription of some e�e
tive 
urvesWe des
ribe all the e�e
tive 
onne
ted 
urves in some 
y
le 
lasses in A1(H).In the following 
hapters we will make expli
it 
al
ulations on the modulispa
es of stable maps involving su
h 
urves.Notations : if A1; A2; : : : ; An are 
lasses in A1(H) we will say that an e�e
-tive 
urve has 
lass A1 [A2 [ : : : [An to mean that these are the 
lasses ofits irredu
ible 
omponents (eventually 
ounted with multipli
ity). A linear
ombination A1+A2+ : : :+An will denote the 
lass of an irredu
ible 
urve.All the 
oeÆ
ients are understood to be non-negative.If p 2 Q is a point we will denote by li(p) the unique line of the i-ruling onQ going through p.We will use Propositions 1.5.4 and 1.6.4 without expli
it referen
e through-out.Curves of 
lass (0; 0; 
)i) Given a point p0 2 Q, the 
urve C(p0) = P(TQ;p0) is of 
lass (0; 0; 1),(see x1.4). In parti
ular it is entirely 
ontained into �, be
ause it is a�ber of the support map s : �! Q. Note that ea
h point Z 2 C(p0)has support Supp Z = p0. Conversely a 
urve of 
lass (0; 0; 1) isirredu
ible and 
ontained into �. Its pushforward to Q is zero. Hen
eit is 
ompletely 
ontained in a �ber of the support map s, sin
e it is
onne
ted. This shows that all the 
urves of su
h a 
lass look likeC(p0) for some p0 in Q. Moreover also a 
urve of 
lass (0; 0; 
) is
ontained into �. It is a 
-
over of a C(p0) 
urve. The interse
tionprodu
t gives: (0; 0; 
) �� = �2
(0; 0; 
) � � = 2
Curves of 
lass (1; 0; 
), (0; 1; 
)Sin
e the 
lasses (1; 0; 
); (0; 1; 
) are symmetri
 under the involution we 
ananalyse only one of them. We 
hoose (1; 0; 
).ii) A 
urve of 
lass � = (1; 0; 0) is ne
essarily irredu
ible.Let ~' : H! BlW1G be the natural map. Then ~'�(1; 0; 0) = 0. Hen
eif C has 
lass (1; 0; 0) it must be 
ontained in a positive dimensional�ber of ~'. Su
h a �ber is Hilb2(l1) for some l1 � Q, so C is a linein it. We denote it by C(l1), (see x1.4). All Z 2 C(l1) are su
h thatSupp Z � l1. The interse
tion produ
t gives:(1; 0; 0) � ~W1 = �1 (1; 0; 0) � ~W2 = 0
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It is 
ontained into ~W1. It interse
ts the diagonal � in at most twopoints, sin
e � restri
ted to the �ber of the blowup map ' : H ! Gover l1 is a 
oni
 (see x1.5).iii) Fix a point p1 2 Q and a line l1 2 W1 su
h that p1 =2 l1. The 
urveC(p1; l1) = fZ 2 H : Supp Z = (p1; q); q 2 l1g is irredu
ible of 
lass� = (1; 0; 1) = C1 + F . It is disjoint from �. Sin
e:(1; 0; 1) � ~W1 = 0 (1; 0; 1) � ~W2 = 1we 
on
lude that it is disjoint from ~W1 and not 
ontained into ~W2 (byx1.6). It interse
ts � in a unique point Z = (p1; l1 \ l2(p1)) 2 ~W2. Itis easy to see that these are all the possible irredu
ible 
urves of this
lass. In fa
t let C be an irredu
ible 
urve of 
lass (1; 0; 1). Sin
e it isdisjoint from � we 
an 
onsider the 
urve ~C de�ned by the 
artesiandiagram: ~C ,! ~U bl- U = Q�Q�C? ,! H�?Also ~C is disjoint from �, then it is isomorphi
 to the image 
urvebl( ~C). We 
an identify them and work on U .~C has 
lass h1
h3+h3
h1 on U (see Lemma 1.1.3 for notations). Itis symmetri
 under the natural involution. If it has two 
omponentsthen these are of 
lass h1 
 h3, h3 
 h1 respe
tively. This implies thatC is a 
urve C(p1; l1) for some p1 2 Q, l1 2W1, p1 =2 l1.If ~C has only one 
omponent then there is a morphism ~C ! l1, gener-i
ally of degree 1, for some l1 2 W1. By symmetry, we 
onl
ude thatit is an irredu
ible 
urve 
ontained in l1 � l1 su
h that it does notinterse
ts the diagonal. This is impossible.Let (1; 0; 1) be the 
lass of a redu
ible 
urve C. Then C is the unionC(l1) [ C(p) for some l1 2 W1 and p 2 l1 with p 2 C(l1) \�j'�1(l1).It is 
ontained into � [ �.iv) A 
urve of 
lass � = (1; 0; 
), 
 � 2, 
an be written as a union ofirredu
ible e�e
tive 
omponents. A priori we have three possibilitiesto do that:- C1 + 
F is the 
lass of an irredu
ible 
urve;- C1 [ 
1F [ 
2F with 
1 + 
2 = 
- (C1 + 
1F ) [ 
2F with 
1 + 
2 = 
The �rst 
ase implies that a (C1 + 
F )-
urve is 
ontained into � andthis is impossible be
ause 1 is odd (see x1.5). So the third one is alsoimpossible be
ause we know that if 
1 = 1, a (C1 + F )-
urve does notinterse
t �. The se
ond de
omposition represents 
urves with support
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C(l1)[C(p)[C(q) or C(l1)[C(p) for some l1 2W1 and p; q points inC(l1) \�j'�1(l1). We 
on
lude that for 
 � 2 there are only redu
ible
urves of 
lass (1; 0; 
) entirely 
ontained into � [ �.Remark 1.7.1. To have a des
ription of 
urves of type (0; 1; 
) it is enoughto inter
hange ea
h l1 appearing in the above dis
ussion with a line l2. Inparti
ular, �xing p2 2 Q and l2 2W2 su
h that p2 =2 l2:C(p2; l2) = fZ 2 H : Supp Z = (p2; q); q 2 l2gis an irredu
ible 
urve of 
lass (0; 1; 1) = C2 + F and all su
h 
urves are ofthis kind.Curves of 
lass (1; 1; 
)v) Conne
ted 
urves of 
lass (1; 1; 0) do not exist. In fa
t if the 
urveis redu
ible then it is a union C(l1) [ C(l2), but su
h 
urves 
annotinterse
t. If it is irredu
ible, then it is 
ontained into �, sin
e(1; 1; 0) � � = �2but this is impossible by what we showed in x1.6.vi) Let C be a redu
ible 
urve of type (1; 1; 1). We have three possiblede
ompositions:- C1 [ C2 [ F is represented by a 
urve 
ontained into � [ � of theform C(l1(p)) [ C(l2(p)) [ C(p) with p a point of Q;- (C1 + F ) [ C2 is the 
lass of a 
urve C(p; l1) [ C(l2(p)) for a givenline l1 and a given point p 2 Q, with C(l2(p)) a line in Hilb2(l2(p))passing through (p; q); q = l1 \ l2(p);- (C2 + F ) [C1 similarly.If C is irredu
ible, then it interse
ts � in two points with multipli
ityand it is disjoint from �, in fa
t:(1; 1; 1) �� = 2 (1; 1; 1) � � = 0There are two possible families of irredu
ible 
urves of 
lass (1; 1; 1).In fa
t let C be irredu
ible of su
h a 
lass and 
onsider the blowupmorphism ' : H ! G. The image 
urve '(C) is isomorphi
 to Cbe
ause C is disjoint from �, and we 
an identify them. It is of 
lass�2;1, then we know a geometri
al des
ription of it (see x1.2). Fix aplane � � P3 and a generi
 point q 2 �, q =2 Q. Then the interse
tion� \Q is a 
oni
. There are two possibilities: the plane is generi
 andthe 
oni
 is irredu
ible or � is tangent to Q at a point p and the 
oni
is the union l1(p) [ l2(p). In the �rst 
ase C 
orresponds to a line
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in Hilb2(� \ Q) whose points are the 
losed subs
hemes Z su
h thatSupp Z � (� \Q), q 2 lZ . We will denote it as follows:�(l) = fZ 2 H : Z 2 l; l � Hilb2(� \Q) a linegIn the se
ond 
ase we get an irredu
ible 
urve determined by 
hoosinga plane tangent to Q and a point q 2 � su
h that q =2 � \ Q. Itspoints are the 
losed subs
hemes Z su
h that Supp Z \ l1(p) 6= ;,Supp Z \ l2(p) 6= ; and q 2 lZ . Su
h a 
urve has only 4 moduli, whilethe expe
ted dimension is 5.The 
lass C1 +C2 + F 
an be represented by a 
urve �(l).vii) If a 
urve of 
lass (1; 1; 2) is redu
ible, we have:- C1 [ C2 [ 
1F [ 
2F with 
1 + 
2 = 2 is the 
lass of some 
urveC(l1(p)) [C(l2(p)) [ 
1C(p)[ 
2C(q) with q the support of a point inC(li) \�j'�1(li) for i = 1 or 2. Su
h a 
urve is 
ompletely 
ontainedinto � [ �;- (C1+F )[ (C2+F ) is either the 
lass of C(p1; l1(p2))[C(p2; l2(p1)),with p1 6= p2, or C(p; l1) [ C(p; l2) with l1; l2 not passing through p.Note that ea
h 
omponent is not 
ontained into � [ �;- (C1 + F ) [ C2 [ F with C1 + F = [C(p1; l1)℄, C2 the 
lass of a linein Hilb2(l2(p1)) through (p1; l2(p1)\ l1) and F = [C(q)℄ where q is thesupport of Z 2 C(l2) \�j'�1(l2);- (C2 + F ) [ C1 [ F similarly;- (C1 +C2 + F )[ F is the 
lass of a 
urve �(l) [C(p) with p 2 l \�.If a 
urve of type (1; 1; 2) is irredu
ible, then it is disjoint from �, andnot 
ontained into �:(1; 1; 2) �� = 0 (1; 1; 2) � � = 2By 
onsidering the pushforward to the produ
t Q�Q, it 
an be shownthat there are only two possible families of irredu
ible 
urves of 
lass(1; 1; 2). The �rst one is:�(p) = fZ 2 H : p 2 Supp Z;� \Q \ Supp Z 6= ;gwhere p is a �xed point of Q and � � P3 a given generi
 plane, p =2 �.The se
ond one is determined by the following data: one �xes twolines l1 2 W1 and l2 2 W2 on Q with p = l1 \ l2 and an isomorphismf : l1 ! l2 su
h that f(p) 6= p. The 
urve is:C(l1; l2; f) = f(q; f(q)) : q 2 l1gIt is isomorphi
 to P1 and interse
ts � in (p; f(p)) and (f�1(p); p).viii) For 
 > 2, irredu
ible 
urves of type (1; 1; 
) do not exist, be
ause theyshould be 
ontained into � being:(1; 1; 
) �� = 2� 2
 < 0 (1; 1; 
) � � = 2
� 2
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So they are redu
ible and be
ause of 
onne
tedness they 
an onlyde
ompose as:- C1 [C2 [ 
1F [ 
2F [ 
3F with 
1 + 
2 + 
3 = 
;- (C1 + F ) [C2 [ 
1F [ 
2F with 
1 + 
2 = 
� 1;- (C2 + F ) [C1 [ 
1F [ 
2F as above;- (C1 + C2 + F ) [ 
1F [ 
2F with 
1 + 
2 = 
� 1.All the 
urves representing these 
lasses are not 
ompletely 
ontainedinto � [ � but the �rst one.Remark 1.7.2. Note that irredu
ible 
urves of 
lass C1+F , C2+F , C1+C2 + F interse
t the strati�
ation properly.Curves of 
lass (2; 0; 
), (0; 2; 
)We 
on
lude with the des
ription of the 
onne
ted 
urves of 
lass (2; 0; 
),(0; 2; 
). As before these 
lasses are symmetri
 under the natural involution,so we study only the 
lass (2; 0; 
).ix) A 
urve of 
lass (2; 0; 0) is always 
ontained into �. It 
an be repre-sented by a 
oni
 in the plane Hilb2(l1) for some l1 2 W1. So it 
anbe irredu
ible or not. The interse
tion produ
t gives:(2; 0; 0) �� = 4 (2; 0; 0) � � = �2x) There are no irredu
ible 
urves of 
lass (2; 0; 1), be
ause the interse
-tion produ
t with ~W1 gives �1, but su
h a 
urve 
an not be 
ontainedinto ~W1 be
ause 1 6= 0 is odd. We have only one possibility for aredu
ible 
urve, it is a union of two 
omponents of 
lass 2C1 and Frespe
tively, hen
e it is 
ompletely 
ontained into � [�.xi) If a (2; 0; 2)-
urve is redu
ible we have two possibilities:- 2C1 [ 
1F [ 
2F with 2C1 the 
lass of a 
oni
 in some Hilb2(l1) and
1+
2 = 2; the 
orresponding 
urve is 
ompletely 
ontained into �[�;- (C1+F )[(C1+F ) is the 
lass of a 
urve C(p1; l1(p2))[C(p2; l1(p1)),p1 6= p2, by 
onne
tedness. It is disjoint from � and not in �.Sin
e we have:(2; 0; 2) �� = 0 (2; 0; 2) � � = 2 (2; 0; 2) � ~W1 = 0an irredu
ible and redu
ed 
urve of 
lass 2C1 + 2F is disjoint from~W1 and it 
an be 
ontained into �. In fa
t, denote by F2 the inverseimage of a �xed l1 � Q via the support map s : � ! Q. Then F2is the rational ruled surfa
e de�ned by the sheaf O � O(�2) on P1.There exist irredu
ible 
urves C � F2 of type D1+2D3, with D3 = Fthe 
lass of a �ber of s and L(D1) �= OF2 (1), [Har℄ Chap.V Cor. 2.18.Moreover we know that 2C1 + 2F = D1 + 2D3 in �.
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We do not know a geometri
 des
ription of su
h a 
urve. We 
an onlysay that if it is not 
ontained into � then it is disjoint from it.Irredu
ible non redu
ed 
urves of 
lass 2(C1 + F ) are disjoint from �and not 
ontained into �, their image in H is the same image of the
orresponding (C1 + F )-
urves.xii) Irredu
ible 
urves of 
lass (2; 0; 
); 
 � 3 are all redu
ed and 
ontainedinto �, in fa
t:(2; 0; 
) �� = 4� 2
 < 0 (2; 0; 
) � � = 2
� 2The redu
ible ones 
an be de
omposed as:- 2C1[
1F [
2F [
3F [
4F withP 
i = 
, this is the 
lass of a 
urve
ompletely 
ontained into � [ �;- (2C1 + 
1F ) [ C, where C is the union of an opportune number of
lasses 
iF , i � 2, with Pi�1 
i = 
; 
1 � 2.1.8 Subs
hemes in
ident to a given pointWe 
on
lude the 
hapter with the des
ription of a 2-
odimensional 
y
le onH whi
h is of great interest for our work.Let �(p) be the set f[Z℄ 2 H : p 2 Supp Z; p 2 Q given pointg. It is theblowup of Q in p, so it is smooth and 2-dimensional. It represents the 
lassS3 2 A2(H). We �x on
e for all the following notation T4 := S3 = [�(p)℄.Lemma 1.8.1. Then: T4 = �2;0 � �3 � �4Proof. Consider the restri
tion ' of the blowup map ' : H! G to �(p):H ' - G[ [�(p) '- �2;0(p)�= P2Let V = �2;0(p)nfl1(p); l2(p)g, where l1(p); l2(p) are the two lines in Qthrough p. We have:- ' : �(p)! �2;0(p) is surje
tive- ' : '�1(V )! V is an isomorphism�(p) 
ontains an open dense subset isomorphi
 to V via '. For k = 1; 2 theinterse
tion �(p)\'�1(lk(p)) is the line fZ 2 Sym2(lk(p)) : p 2 Supp Zg. So�(p) is isomorphi
 to the blowup of the proje
tive plane in two points. Notethat we have the following s
heme-theoreti
al de
omposition in irredu
ible
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omponents '�1(�2;0(p)) = '�1(V ) [ '�1(l1) [ '�1(l2).Sin
e ['�1(lk(p))℄ = �k+2, with k = 1; 2, we have:�2;0 = [�(p)℄ + �3 + �4Hen
e the lemma is proved.Remark 1.8.2. Sin
e the degree of T 24 in H is half the degree that it hasin ~U (see 1.1.1), we dedu
e that T 24 2 A4(H) is the 
lass of a point.Remark 1.8.3. For any p 2 Q the 
y
le �(p) interse
ts the strati�
ationproperly. In fa
t �(p) \ �4 �= Q � (l1(p) [ l2(p)) is obviously a properinterse
tion and �(p) \ �2 = f(p; Tl1(p);p); (p; Tl2(p);p)g is 0-dimensional.Sin
e these interse
tions are non-empty, it is also satis�ed �(p) * �3 t�3.We set �reg to be the lo
us of �(p) where the interse
tion with the strati�-
ation is transversal.Lemma 1.8.4. Given a point p 2 Q, the lo
us �reg is the open subset of�(p) of points with redu
ed support.Proof. We �rst prove that �k2 \ �(p), k = 1; 2, is not transversal. �k2 is asurfa
e in ~Wk, it is the pullba
k of the diagonal � via the in
lusion mapjk : ~Wk ,! H. Then it is a divisor in ~Wk. By the proje
tion formula weobtain �k2 = 4lk � 2�k. It is easy to verify that �(p) interse
ts �k2 only inone point, but the degree of the interse
tion produ
t T4 � (jk)��k2 in H is 2,this means the interse
tion is not transversal.We now 
onsider the interse
tion �(p) \ �3. Sin
e �3 is open in � and� = ~W1t ~W2, we 
an work with a divisor ~Wk. The quotient map � : ~U ! His an isomorphism between Q � Q � Æ and H � �. The inverse image��1(�(p) � (�(p) \�)) is isomorphi
 to the disjoint union of two 
opies ofQ� p. So in order to study the di�erential of the map �(p)! H away from� it is enough to study the di�erential of Q � p ! Q � Q � Æ de�ned byq 7! (p; q). As Q = P1 � P1 we 
an 
hoose 
oordinates on both P1's so thatthe above map be
omes:A 2 � f(p1; p2)g - A 4(q1; q2) 7! (p1; p2; q1; q2)where p = (p1; p2). We denote by x1; x2; y1; y2 the 
oordinates on A 4 . Then��1( ~Wk) is the set f(x1; x2; y1; y2) : xk = ykg in A 4 so that the tangentspa
e T(p;q) ~Wk is the 3-dimensional aÆne spa
e de�ned by the equationxk � yk = 0. Besides �(p)�� is the set f(x1; x2; y1; y2) : x1 = p1; x2 = p2g,so it is isomorphi
 to A 2 and the tangent spa
e T(p;q)(�(p) � �) is the 2-dimensional aÆne spa
e de�ned by the equations x1 = 0; x2 = 0. Then forea
h (p; q) 2 �(p) \ ~Wk ��, the spa
e T(p;q)(�(p) ��) is not 
ontained inT(p;q) ~Wk, that is to say �(p) interse
ts �3 transversally.
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Finally 
onsider the 
losed immersion f : Q ! Q � Q, f(q) = (p; q). By[Har℄, Chap.II Cor. 7.15, there is a unique 
losed immersion ~f su
h that thefollowing diagram is 
ommutative:BlpQ ~f - ~U � - H	Q? f- Q�Q?where BlpQ = ��1(�(p)). Let y1; : : : ; y4 be lo
al 
oordinates in H andx1; : : : ; x4 lo
al 
oordinates in ~U su
h that the diagonal � is the zero lo
usfy4 = 0g and ~Æ = fx4 = 0g. Then the quotient map � : ~U ! H is given by�(x1; : : : ; x4) = (x1; x2; x3; x24) and the di�erential d� has matrix:0BB� 1 0 0 00 1 0 00 0 1 00 0 0 2x4 1CCAFor ea
h (p; v) 2 ��1(�), the image d�p(T(p;v) ~U) is 
ontained into T�(p;v)�.As ~f is a 
losed immersion and �3 is open dense in �, it follows that �(p)does not interse
t �3 transversally.
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Chapter 2Gromov-Witten InvariantsThis 
hapter is devoted to des
ribing the more general set-up in whi
h one
an de�ne the Gromov-Witten Invariants. Moreover we present some resultsabout the way of 
omputing some parti
ular invariants we will need in thefollowing.2.1 Moduli spa
e of stable mapsFix a smooth proje
tive variety X and a 
lass � 2 A1(X).De�nition 2.1.1. A n-pointed stable map to X of type � 
onsists of thefollowing data:- a 
onne
ted proje
tive redu
ed 
urve C with at most ordinary doublesingular points, arithmeti
 genus g and n � 0 pairwise distin
t non-singular marked points x1; : : : ; xn;- a map � : C ! X su
h that ��[C℄ = �,su
h that the tuple (C; x1; l : : : ; xn;�) has only �nitely many automorphisms.There is a Deligne-Mumford sta
k Mg;n(X;�), 
alled the moduli spa
e ofstable maps, whi
h is a �ne moduli spa
e parametrizing these maps (see[B-M℄). We will denote its points by [C; x1; : : : ; xn; �℄.Let Mg;n(X;�) be the open substa
k parametrizing the stable maps fromsmooth irredu
ible 
urves, we 
an think ofMg;n(X;�) as a 
ompa
ti�
ationof this subspa
e even ifMg;n(X;�) does not need to be dense inMg;n(X;�).The moduli spa
e of stable maps 
omes equipped with some natural mor-phism. For ea
h marked point one 
an de�ne:evi :Mg;n(X;�)! Xby evi[C; x1; : : : ; xn; �℄ = �(xi). We will denote by:ev = (ev1; ev2; : : : ; evn)29
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the morphism mapping to Xn and 
all it the evaluation map.The 
at morphism: � :Mg;n+1(X;�)!Mg;n(X;�)whi
h forgets the last marked point and eventually stabilizes the 
urve,realizes Mg;n+1(X;�) as the universal 
urve over Mg;n(X;�), with evn+1the universal map to X: Mg;n+1(X;�) evn+1- XMg;n(X;�)�?In parti
ular, for ea
h subset I of the index set f1; : : : ; ng one 
an de�ne ananalogous map forgetting only the points labelled by I. It is a 
omposition ofuniversal families, then it is 
at of relative dimension equal to the 
ardinalityof I. We are prin
ipally interested in the 
ase I = f1; : : : ; ng and we willdenote su
h a map again by �.Finally for n+ 2g � 3 � 0 there is a morphism:Mg;n(X;�)!Mg;nwhi
h simply forgets the map and stabilizes the 
urve if ne
essary. LetMg;nbe the smooth Artin sta
k parametrizing quasi-stable 
urves of genus g withn markings. It has dimension equal to 3g�3+n andMg;n is an open densesubset of Mg;n. One de�nes a natural morphism:� :Mg;n(X;�)!Mg;nby forgetting the map to X (without stabilizing).2.2 Deformation theory on M 0;n(H; �)The lo
al stru
ture of the moduli spa
e M0;n(H; �) 
an be studied by de-formation theory. In [L-T℄ Li and Tian proved that to every point m inthe moduli spa
e one 
an asso
iate two �nite dimensional spa
es: a tan-gent spa
e T and an obstru
tion spa
e E. In parti
ular at a �xed point[C;�℄ 2M0;0(H; �): T = Ext1(��
H ! 
C ;OC)E = Ext2(��
H ! 
C ;OC)
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(see Propositions 1.4-1.5 in [L-T℄). Moreover T and E �t into the exa
tsequen
e:0! Ext0(
C ;OC)! H0(C;��TH)! T �- Ext1(
C ;OC)!! H1(C;��TH)! E ! 0 (2.1)whi
h we 
all the tangent-obstru
tion sequen
e.The spa
e Ext0(
C ;OC) = H0(C; TC) is the spa
e of automorphisms of thenodal 
urve C while Ext1(
C ;OC) is the spa
e of �rst order deformationsof C [H-M℄, Ch.2 xB.3. H0(C;��TH) is the relative tangent spa
e andH1(C; ��TH) the relative obstru
tion spa
e of M 0;0(H; �) over [C℄ 2M0;0,by [K℄ Thm.II.1.7. They en
ode the possibility of deforming a map from a�xed nodal 
urve to H. Note that if H1(C;��TH) = 0 then the deformationis unobstru
ted, i.e. we 
an always lift a n-order deformation of the stablemap to a (n+ 1)-order deformation. This vanishing 
ondition implies thatM0;0(H; �) is smooth at that point, be
ause E = 0. In a more generalsetting the following result 
an be proved (see [K℄ Thm.II.1.7):Theorem 2.2.1. If � : C ! H is an n-pointed stable map su
h thatH1(C; ��TH) = 0, then the forgetful morphism � : Mg;n(H; �) ! Mg;nis smooth at [C; x1; : : : ; xn; �℄.Remark 2.2.2. A smooth varietyX is 
alled 
onvex ifH1(P1; f�TX) = 0 forall genus zero stable maps f : P1 ! X. IfX is 
onvex then H1(C; f�TX) = 0for all maps f : C ! X, C a genus zero rational 
urve. Hen
e the modulispa
eM 0;0(X;�) is smooth of dimension equal to the expe
ted one, [Al℄ I.3.Remark 2.2.3. Consider M0;0(H; (a; b; 
)), with (a; b; 
) 6= 0, and �x apoint [P1; �℄ in it, then: T = H0(P1; N�)E = H1(P1; N�)where N� is de�ned as the 
okernel of the di�erential map d� : TP1 ! ��TH,[H-M℄ Chap.3 xB p.96. This follows by 
omparing (2.1) with the long exa
tsequen
e in 
ohomology asso
iated to the exa
t sequen
e:0! TP1 ! ��TH ! N� ! 0Smoothening the nodesLet C be a prestable 
urve. The spa
e Ext1(
C ;OC) of �rst order deforma-tions of the nodal 
urve C �ts into the exa
t sequen
e:0! H1(C; TC )! Ext1(
C ;OC)! H0(Ext1(
C ;OC))! 0 (2.2)where H1(C; TC ) is the spa
e of �rst order deformations of C whi
h donot smoothen the nodes. H0(Ext1(
C ;OC)) parametrizes the �rst order
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deformations of the nodes. It is isomorphi
 to Lp nodeOC;p.Let C be the universal 
urve over the unpointed moduli spa
e M0;0(H; �).Let M0 be a smooth open subset of M 0;0(H; �) su
h that there exist ase
tion � : M0 ! C su
h that �(m) is a node on the 
orresponding 
urveCm and the indu
ed map TM0;m ! Ext1(
Cm ;OCm) has as image the kernelK of the natural proje
tion h : Ext1(
Cm ;OCm)! Ext1(
Cm ;OCm)�(m).It is easy to see that the following proposition holds:Proposition 2.2.4. Fix a point [C;�℄ 2 M0 and let p = �([C;�℄) be thenode whi
h 
an not be smoothened. Consider the tangent-obstru
tion se-quen
e (2.1). Then:1. 
oker � = Ext1(
C ;OC)p;2. there exists an inje
tive map ' : Ext1(
C ;OC)p ! H1(C;��TH) su
hthat 
oker ' = E.Proof. By de�nition we get an exa
t sequen
e:0! K g- Ext1(
C ;OC) h- Ext1(
C ;OC)p ! 0 (2.3)The natural map K ! H1(C;��TH) is identi
ally zero, be
ause the defor-mations of C inK do not smoothen the node p. Then there is no obstru
tionto extend � to a given deformation of C lo
ally trivial near p. There existsan inje
tive map ' : Ext1(
C ;OC)p ! H1(C;��TH), be
ause an element ofthe domain spa
e 
orresponds in a unique way to an obstru
tion to extendthe map �, as it is a smoothing of the node. Finally there is a surje
tive mapf : T ! H1(C; TC), sin
e [C;�℄ 2M0 is su
h that C 
an not be smoothenedat p.: : : // T � //f

��

Ext1(
C ;OC)  //h ((QQQQQQQQQQQQQ
H1(C;��TH) // E // 00 // K g 99sssssssssss

��

Ext1(
C ;OC)p'OO
// 00 0OOSin
e (2.3) is exa
t, the proposition follows.Remark 2.2.5. If we assume that we have n no-smoothenable nodes on C,we get dim 
oker � = n and E �ts into the exa
t sequen
e:0! Mp node Ext1(
C ;OC)p '- H1(C;��TH)! E ! 0We will only use the 
ase n = 2 in 2.6.10.
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2.3 The virtual fundamental 
lassThe expe
ted dimension of a moduli spa
e may not 
oin
ide with the a
tualone. We may think of this as if the moduli spa
e is a subspa
e of someambient spa
e and it is 
ut out by a set of equations whose vanishing lo
i donot meet properly. To de�ne the Gromov-Witten invariants on H we needto work in the right dimension, so that we need the existen
e of a Chowhomology 
lass in M0;n(H; �) of the expe
ted dimension. It is 
alled thevirtual fundamental 
lass and denoted by [M 0;n(H; �)℄vir .An algebrai
 approa
h to the problem of 
onstru
ting su
h a 
lass was de-veloped by Behrend and Fante
hi [B-F℄ as well as by Li and Tian [L-T℄. Thebasi
 idea 
omes from the ex
ess interse
tion theory [Ful℄.Ex
ess interse
tion theoryWe re
all some results from [Ful℄ Chap.6.Given an algebrai
 variety X, a 
losed regular imbedding i : Z ! X of
odimension e and a morphism f : V ! X from a purely k-dimensionals
heme V , it happens that in general the s
heme W de�ned by the 
artesiandiagram: W j - V�Zg ? i - Xf?has not the expe
ted dimension dim V �
od (Z � X). Anyway the pullba
kbundle N = g�NZ=X has rank e and it 
omes with a natural proje
tionp : N ! W indu
ing an isomorphism p� : Ad(W ) ! Ad�e(N) for alld. In parti
ular p� as an inverse s�, the Gysin map indu
ed by the zerose
tion of N , [Ful℄ Thm.3.3.a)-Def.3.3. There exists a 
losed imbedding ofC = CWN , the normal 
one to W in N , as a sub
one of N . Sin
e Cis purely k-dimensional, the 
lass [C℄ is a k-
y
le on N . The interse
tionprodu
t [Z℄�[V ℄ 2 A�(W ) is de�ned to be the 
lass obtained by \interse
ting[C℄ with the zero se
tion of N":[Z℄ � [V ℄ = s�[C℄In parti
ular s�[C℄ 2 Ak�e(W ) has the expe
ted dimension. One de�ness�[C℄ to be the virtual fundamental 
lass of W .The intrinsi
 normal 
oneIn [B-F℄, [L-T℄ the authors de�ne for Deligne-Mumford sta
ks an analogueof the normal 
one. So on Mn := M0;n(H; �) one 
an use te
hniques sim-ilar to those seen above in order to 
onstru
t the 
lass [Mn℄vir of the right
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dimension.Denote by L� the 
otangent 
omplex of Mn (see [Il℄ for its de�nition ons
hemes and [L-MB℄ for its generalization to algebrai
 sta
ks). Re
all thatgiven a homomorphism d : S0 ! S1 of abelian sheaves on a Deligne-Mumford sta
k, one may 
onsider it has a 
omplex on the sta
k. One 
ande�ne the quotient sta
k: h1=h0(S�) = [S1=S0℄be
ause S0 a
ts on S1 via d. If S� is a 
omplex of abelian sheaves of arbitrarylength, one 
onsider the two-term 
ut-o�:�[0;1℄S� = [
oker (S�1 ! S0)! ker (S1 ! S2)℄and de�nes h1=h0(S�) := h1=h0(�[0;1℄S�).De�nition 2.3.1. The sta
k N := h1=h0((L�)_) is the intrinsi
 normalsheaf of Mn.To 
onstru
t the analogue of the normal 
one one needs to 
onsider lo
alembeddings of Mn.De�nition 2.3.2. A lo
al embedding of Mn is a diagram:U i- XMnf ?where:- U is an aÆne s
heme of �nite type,- f is an �etale morphism,- X is a smooth aÆne s
heme of �nite type,- i is a lo
al immersion.There is a well de�ned normal 
one CUX of U inX. The tangent spa
e i�TXa
ts naturally on it by translation. There exists a unique 
losed sub
onesta
k C � N that lo
ally is given by the sta
k quotients CjU = [CUX=i�TX ℄,[B-F℄ Cor.3.9. Moreover this 
onstru
tion is independent of the lo
al em-beddings. C has pure dimension zero.De�nition 2.3.3. C is the intrinsi
 normal 
one of Mn.Let F � be a 
omplex of OMn -modules 
on
entrated in degrees �1 and 0su
h that hi(F �) is 
oherent for i = �1; 0.
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De�nition 2.3.4. If there is a morphism � : F � ! L� in DbCoh(Q
ohMn)su
h that h0(�) is an isomorphism and h�1(�) is surje
tive, the map � (orF �) is 
alled a perfe
t obstru
tion theory for Mn.Fix a perfe
t obstru
tion theory � : F � ! L�. Let F �_ = [F0 '- F1℄with F0 = F 0_ and F1 = F�1_ . Then � indu
es a 
losed immersion [B-F℄Prop.2.6: �_ : N! h1=h0((F �)_)Hen
e the intrinsi
 normal 
one is a 
losed sub
one sta
k of [F1=F0℄. Thisis a ve
tor bundle sta
k on Mn. Moreover F1 is a presentation of it and
ontains a 
losed sub
one C(F �) with a map over C smooth of relativedimension rkF0.De�nition 2.3.5. The virtual fundamental 
lass [Mn℄vir is the interse
tionof C(F �) with the zero se
tion of F1.De�nition 2.3.6. Let F � be a perfe
t obstru
tion theory for Mn as above.For ea
h 
losed point m 2Mn one de�nes Ker 'm = T and Coker 'm = Eto be the tangent spa
e and the obstru
tion spa
e of Mn at m, respe
tively.The di�eren
e rkF0�rkF1 =dim T -dim E is 
alled the expe
ted dimensionof Mn.The virtual 
lass [Mn℄vir has the expe
ted dimension rkF0 � rkF1, [B-F℄p.76. Proposition 5.10 in [B-F℄ ensures that it behaves well under pullba
k:Proposition 2.3.7. If � is the 
at morphism forgetting the marked points,then: [M0;n(H; �)℄vir = ��[M0;0(H; �)℄virIf the moduli spa
e is smooth, there is an easier des
ription of the virtualfundamental 
lass.Theorem 2.3.8. If the moduli spa
e Mn is smooth, given a perfe
t ob-stru
tion theory F � with (F �)_ = [F0 '- F1℄, then the sheaf 
ohomologyh1(F �_) =Coker(') is lo
ally free and:[Mn℄vir = 
top(h1(F �_)) � [Mn℄ (2.4)This is Proposition 5.6 in [B-F℄. Note that h1(F �_)m is the obstru
tionspa
e at m 2Mn.De�nition 2.3.9. We will denote h1(F �_) = E and we will 
all it theobstru
tion bundle of Mn.Remark 2.3.10. Throughout the paper we will often refer to the obstru
-tion bundle by simply naming its �bers. So we will possibly write thetangent-ostru
tion sequen
e (2.1) with E instead of E as last term.
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As proved in [Beh℄, sin
e there is a 
anoni
al map � : Mn ! M0;n whi
his an open substa
k of a relative spa
e of morphisms, there exists a relativeobstru
tion theory. This 
onsists of a map � : F � ! L�Mn=M0;n su
h thatL�Mn=M0;n is the relative 
otangent 
omplex, h0(�) is an isomorphism andh�1(�) is surje
tive.Proposition 2.3.11. With respe
t to the diagram:M0;1(H; �) ev - HM0;0(H; �)� ?F � = (R��(ev�TH))_ is a perfe
t relative obstru
tion theory for M 0;0(H; �).Proof. This is Proposition 5 in [Beh℄.The intrinsi
 normal 
one 
onstru
tion 
an be extended to the relative 
ase,so that one 
an de�ne the virtual fundamental 
lass [M0;0(H; �)℄vir as theinterse
tion of the relative intrinsi
 normal 
one with the zero se
tion ofh1=h0(R��(ev�TH)), [Beh℄ p.606. In parti
ular it has the expe
ted dimension[Beh℄ p.605. Note that the (relative) obstru
tion bundle is E = R1��(ev�TH).Remark 2.3.12. The results stated in 2.3.7, 2.3.8 and 2.3.11 imply that inorder to 
al
ulate the virtual fundamental 
lass of M0;n(H; �) it is enoughto study the perfe
t obstru
tion theory (R��(ev�TH))_ on the unpointedmoduli spa
e. Moreover, on the smooth lo
us of M0;0(H; �) it is enough to
al
ulate the top Chern 
lass of the obstru
tion bundle E = R1��(ev�TH).A formula for the expe
ted dimensionWe denote by edH the expe
ted dimension of M0;0(H; (a; b; 
)). Choose apoint [C;�℄ of the moduli spa
e. Then by the tangent-obstru
tion sequen
e(2.1) we know that edH is given by:edH = �(��TH)� (dim Ext0(
C ;OC)� dim Ext1(
C ;OC))We apply Riemann-Ro
h to 
al
ulate the �rst term of the algebrai
 sum,while the se
ond one is known to be equal to 3� 3gC . Hen
e we get:edH = dim H+ Z(a;b;
) 
1(TH)� 3 = 2a+ 2b+ 1 (2.5)The a
tual dimension of the unpointed moduli spa
e will always be denotedby dH.
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Remark 2.3.13. The map M0;n(H; �) ! M0;0(H; �) has relative dimen-sion equal to n be
ause it is the 
omposition of n universal families. Thenthe expe
ted dimension of M0;n(H; �), with � = (a; b; 
), is:dim H+ Z� 
1(TH)� 3 + n = 2a+ 2b+ 1 + nWe will denote it again by edH, if no 
onfusion arises.2.4 A smoothness resultH is an almost-homogeneous spa
e under the a
tion of A. We 
an exploitthis a
tion to get transversality results (as the Position Lemma) and to
ontrol the smoothness of the moduli spa
e M 0;n(H; �).Re
all that as H is not a 
onvex spa
e, in general the moduli spa
e does nothave the expe
ted dimension:exp.dim M0;n(H; (a; b; 
)) = edH = 2a+ 2b+ 1 + nLemma 2.4.1. � is 
onvex.Proof. Re
all that � = ~W1 t ~W2. Sin
e ~Wk is the relative Hilbert s
hemeHilb2(Q=P1), it is isomorphi
 to P2 � P1 and it 
omes with two naturalproje
tions p1; p2. If � : P1 ! ~Wk is a point in M0;n( ~Wk; �), for some �,then f�(T ~Wk) = f�p�1TP2�f�p�2TP1 is a �ber bundle of positive degree on P1and the higher 
ohomology vanishes. This implies the thesis.Corollary 2.4.2. The moduli spa
e of n-pointed genus zero stable maps to� is smooth of the expe
ted dimension whi
h is equal to:d� = dim �+ Z� 
1(T�)� 3 + n = 3(a+ b)� 2
+ nfor � = (a; b; 
).Proof. It follows from 2.2.2 and 1.6.2.Lemma 2.4.3. � is 
onvex.Proof. The support map s : �! Q gives the exa
t sequen
e:0! T�=Q ! T� ! s�TQ ! 0Let � : P1 ! � be a stable map, then to show that H1(P1; ��T�) = 0 itsuÆ
es to prove that H1(P1; ��T�=Q) = 0, sin
e Q is homogeneous. We 
anthink of � as the ex
eptional divisor ~Æ in ~U . With notations as in x1.1:~Æ ,! ~U bl- U pr1-pr2- Q
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Denote by p the restri
tion of pr1; pr2 to the diagonal Æ � U . By theadjun
tion formula and the exa
t sequen
e written above we get:T�=Q = p�K�Q 
 (�2~Æ)j~Æ = 2h1 + 2h2 � 2�The generators of the 
one of e�e
tive 
urves in � are su
h that the degreeof T�=Q restri
ted to ea
h of them is non-negative, so deg ��T�=Q � 0 andH1(P1; ��T�=Q) = 0. We 
on
lude that � is 
onvex.Corollary 2.4.4. The moduli spa
e of n-pointed genus zero stable maps to� is smooth of the expe
ted dimension whi
h is equal to:d� = dim �+ Z� 
1(T�)� 3 + n = 2
+ nfor � = (a; b; 
).Proof. As before it follows from 2.2.2 and 1.5.3.Sin
e the expe
ted dimension is the lowest possible dimension for a modulispa
e, whenever d� > edH or d� > edH we should have 
omponents ofM0;n(H; �) of ex
ess dimension. Those inequalities are equivalent to the
onditions � �� < 0 or � � � < 0. Geometri
ally this means that the ex
essdimension is due to 
omponents entirely mapped into � or into �. Thefollowing theorem formalizes su
h a statement.Theorem 2.4.5. If � : C ! H is a stable map from a genus 0 
urve su
hthat no 
omponent of C is mapped entirely into �[�, then the moduli spa
eM0;0(H; �) is smooth at [C;�℄ of the expe
ted dimension.Proof. H� (�[�) is �4, the open dense orbit for the a
tion on H indu
edby A. The a
tion on �4 is transitive, so we 
an say that TH is generi
allygenerated by global se
tions on H. Let � : C ! H be as in the hypotesis,then ��TH is generi
ally generated by global se
tions on C. This means thatH1(C;��TH) = 0 and the moduli spa
e M0;0(H; �) is smooth at [C;�℄ ofthe expe
ted dimension by 2.2.1.2.5 The moduli spa
e M 0;0(H; (0; 0; 
))Here and in the following se
tion we prove some results on the obstru
tionbundles of two moduli spa
es whi
h we will use later on to make expli
it
al
ulations.For 
 � 1, a 
urve of 
lass (0; 0; 
) in H is represented by a 
-sheeted 
overof P1 and it is 
ontained into � whi
h is 
onvex. Then the moduli spa
eM0;0(H; (0; 0; 
)) is smooth of dimension 2
 bigger than the expe
ted one,
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edH = 1. The obstru
tion bundle E = R1��(ev�TH) has rank 2
� 1 and by2.3.8 the virtual fundamental 
lass is:[M 0;0(H; (0; 0; 
))℄vir = [M0;0(H; (0; 0; 
))℄ � 
2
�1(E)Proposition 2.5.1. If 
 = 1 then E = �KQ and we get:[M0;0(H; (0; 0; 1))℄vir = [Q℄ \ 
1(�KQ)Proof. For 
 = 1, (0; 0; 1) is the 
lass of a �ber of the support map s : �! Q.So we 
an work on � be
ause of the diagram:��=M0;1(H; (0; 0; 1)) ev- HQs ? �=M0;0(H; (0; 0; 1))� ?By the 
onvexity of � and the exa
t sequen
es:0! T� ! THj� ! N�=H ! 00! T�=Q ! T� ! s�TQ ! 0we obtain R1s�(ev�TH) = R1s�(N�=H) = R1s�(O�(�2)). Finally [Har℄Chap.III ex.8.4-
) gives:E = R1s�(O�(�2)) = �2TQ = �KQProposition 2.5.2. Let g : M0;0(H; (0; 0; 
)) ! Q be the map de�ned byg([C;�℄) = Supp �(C). In general it holds:
2
�1(E) = �g�KQ � 
2
�2( ~E) (2.6)where ~E is su
h that: 
2
�2( ~Ejg�1(p)) = 1
3 (2.7)for any point p 2 Q.Proof. In the general 
ase, E = R1��(ev�TH) has stalk H1(C;��TH) at thepoint [C;�℄ 2M0;0(H; (0; 0; 
)). We get H1(C;��TH) = H1(C;��OP1(�2)).Let ~ev :M0;1(H; (0; 0; 
)) ! � be the evaluation map into � su
h that the
omposition with the in
lusion � ,! H is ev : M0;1(H; (0; 0; 
)) ! H. By[L-Q℄ Lemma 3.2, E sits in the exa
t sequen
e:0! g�OQ(�KQ)! E ! R1�� ~ev�(s�TQ 
O�(�1)) = ~E ! 0
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Hen
e we get: 
2
�1(E) = �g�KQ � 
2
�2( ~E)Note that the inverse image g�1(p); p 2 Q, is isomorphi
 to M0;0(P1; 
),with P1 �=M2(p) the pun
tual Hilbert s
heme of points on Q at p.With respe
t to the diagram:M0;1(P1; 
) ev1 - P1M0;0(P1; 
)f ?the restri
tion ~Ejg�1(p) is isomorphi
 to R1f�ev�1(OP1(�1)�OP1(�1)) [L-Q℄Rmk.3.1. By Theorem 3.2 in [Man℄:
2
�2(R1f�ev�1(OP1(�1)�OP1(�1))) = 1
3This 
on
ludes the proof.2.6 The moduli spa
e M 0;0(H; (1; 0; 
))The moduli spa
e M0;0(H; (1; 0; 
)) has expe
ted dimension edH = 3. Inparti
ular if 
 = 0, then M0;0(H; (1; 0; 0)) is smooth of the expe
ted dimen-sion, be
ause (1; 0; 0) is the 
lass of a 
urve 
ontained into � whi
h is 
onvexandM0;0(�; (1; 0; 0)) has the same expe
ted dimension (see 2.4.1 and 2.4.2).Remark 2.6.1. In x1.5 we showed that � de�nes a 
oni
 on a �ber overthe blown up lo
us of the map ' : H! G. A 
urve of 
lass (1; 0; 0) 
an berepresented by a line in the proje
tive plane Hilb2(l1) for a �xed line l1 2W1(see x1.4), so that it interse
ts � in at most two points.If 
 � 1, the ex
ess dimension 
omes from the 
omponents of the modulispa
e whi
h parametrize stable maps with redu
ible domain. We know thatthe only irredu
ible 
urves are of type (1; 0; 1) and disjoint from � (see x1.7iii)).Lemma 2.6.2. The moduli spa
e M 0;0(H; (1; 0; 1)) is the disjoint union oftwo 
omponents both of the expe
ted dimension.Proof. We have two possibilities for the sour
e 
urves of a stable map inM0;0(H; (1; 0; 1)). The 
urve 
an be irredu
ible or not. Hen
e we have two
omponents of the moduli spa
e. One parametrizes stable maps from theirredu
ible 
urves and it is smooth of the expe
ted dimension. The se
ondone parametrizes stable maps with redu
ible domain and has the expe
teddimension. These two 
omponents are obviously disjoint.
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We need to study only the 
ase 
 � 2. A 
urve of 
lass (1; 0; 
) with 
 � 2is always redu
ible. We 
onsider the morphism:� :M0;0(H; (1; 0; 
)) - M0;0(H; (1; 0; 0))It is de�ned by forgetting the 
omponents mapping to �.The a
tion indu
ed by A0 (see x1.3) on M0;0(H; (1; 0; 0)) has two orbits
orresponding to the geometry of the sour
e 
urve for a stable map in thatmoduli spa
e. By 2.6.1 the open dense orbit parametrizes the stable maps[C; f ℄ su
h that f(C) is a line interse
ting in two distin
t points the 
oni
de�ned by � on the 
orresponding �ber of the blowup map. The 
losedorbit parametrizes the stable maps from 
urves representing a line tangentto the 
oni
 de�ned by � sin
e � is A0-equivariant. The morphism � is 
atover the open orbit.De�nition 2.6.3. Let [C; f ℄ be a point in the open orbit ofM0;0(H; (1; 0; 0)).We denote by M
 the �ber ��1([C; f ℄).De�nition 2.6.4. We denote by M(
), 
 � 1, the spa
e parametrizing thedata of a degree 
 stable map to P1 with a marked point mapping to theorigin. It is the �ber of the evaluation map M0;1(P1; 
)! P1 over the originand it is smooth of dimension 2
� 2. Let M(0) be a point.Lemma 2.6.5. There is an isomorphism:M
 �= a
1+
2=

i�0 M(
1)�M(
2)In parti
ular � is smooth over the open dense orbit.Proof. Let M
 be the �ber over [C; f ℄ 2M0;0(H; (1; 0; 0)) as in 2.6.3. Withnotations as in x1.4, let C(l1) be the 
urve f(C) of 
lass (1; 0; 0) su
h thatit interse
ts �\Hilb2(l1) in two points p1 6= p2. Let C(pi) = P(TQ;pi), fori = 1; 2, be 
ontained into �. It is of 
lass (0; 0; 1). A point [D;�℄ 2 M
 isa stable map from a nodal 
urve D = D0 [D1 [D2 with D \Di = qi su
hthat: � : D0 �=- C(l1)� : Di 
i:1- C(pi)�(qi) = piSin
e C(l1) is �xed as well as its interse
tion points with the diagonal, theonly moduli 
omes from the 
hoi
e of the sheeted 
overs of the (0; 0; 1)-
urves. In parti
ular for i = 1; 2, the 
urve [Di; �jDi ℄ is a point of M(
i)with qi mapping to the origin pi of C(pi).
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Remark 2.6.6. The 
omposition of the in
lusion:M(
1)�M(
2)!M
 !M 0;0(H; (1; 0; 
))with the forgetful map M0;0(H; (1; 0; 
)) ! M0;0 is smooth on its imagewhi
h 
onsists of:- the divisor parametrizing 
urves with a node in p1 if 
2 = 0 or in p2 if
1 = 0;- the (smooth) lo
us of 
odimension 2 parametrizing 
urves with twonodes p1; p2 if 
1; 
2 > 0.Remark 2.6.7. The spa
e M(
) is smooth of dimension 2
� 2.Then M(0)�M(
) has dimension 2
� 2 and M(
1)�M(
2) has dimension2
� 4.Remark 2.6.8. Sin
e M0;0(H; (1; 0; 
)) has expe
ted dimension edH = 3and � is smooth on the open dense orbit, a �berM
 has expe
ted dimensionequal to zero. Sin
e M
 is the disjoint union of the 
omponents M(
1) �M(
2), its virtual fundamental 
lass [M
℄vir := [M 0;0(H; (1; 0; 
))℄vir��[C; f ℄is equal to the sum of the virtual fundamental 
lasses of all 
omponents.Moreover ea
h of them must have expe
ted dimension equal to zero.To 
al
ulate the virtual fundamental 
lass of M
 we 
an use the formula(2.4). Then we need to know the obstru
tion bundle E at a point [D;�℄in M
. The following lemma gives a des
ription of the spa
e H1(D;��TH)whi
h will permit us to express E as the 
okernel of an inje
tion (see 2.6.10).Let [D;�℄ 2M
 be as in the proof of 2.6.5:� : D0 �=- C(l1)� : Di 
i:1- C(pi)�(qi) = pi 2 C(l1) \ C(pi)Lemma 2.6.9. Let Li be the invertible sheaf ��OC(pi)(�2) of degree �2
i,i = 1; 2. Then: H1(D;��TH) �= H1(D1;L1)�H1(D2;L2)Proof. We tensor by �
OD ��TH the following exa
t sequen
e:0! OD ! OD0 �OD1 �OD2 ! Oq1 �Oq2 ! 0We 
onsider the long exa
t sequen
e in 
ohomology::::! H0(Tq1 � Tq2)! H1(D;��TH)! Li=1;2H1(Di; ��THjDi)! 0
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where we use the 
onvexity of � to dedu
e H1(D0; ��THjD0) = 0.Analogously, � is 
onvex so H1(Di; ��T�jDi) = 0, i = 1; 2. The supportmap s : �! Q is a P1-bundle, so the tangent sheaf T� restri
ted to a �berl of s is T�jl = Ol(2)�O�2l . The usual exa
t sequen
e:0! T� ! THj� ! N�=H ! 0restre
ted to the �ber l gives N�=Hjl = Ol(�2). Hen
e we get:H1(Di; ��THjDi) = H1(Di; ��OC(pi)(�2))Let Li, i = 1; 2 be as in the hypothesis, then H1(Di;Li) has dimension2
i � 1 and the above sequen
e be
omes:0! Tq1 � Tq2 ! H1(D;��TH) #- Mi=1;2H1(Di;Li)! 0Then # is a surje
tive morphism between two ve
tor spa
es of the samedimension, i.e. it is an isomorphism.Proposition 2.6.10. Let Li, i = 1; 2, be the line bundle 
orresponding tothe deformation whi
h resolves the i-th node. Then the obstru
tion bundleE �ts in the exa
t sequen
e:0! Mi=1;2Li ! Mi=1;2H1(Di;Li)! E ! 0 (2.8)In parti
ular it has rank P2i=1(2
i � 2).Proof. We 
an not smoothen all the nodes ofD (see x2.2), then we know thatthe map � : T ! Ext1(
D;OD) in the tangent-obstru
tion sequen
e (2.1)has a 2-dimensional 
okernel and it fa
tors through a surje
tive morphismf as in the diagram: Tf

��

� // Ext1(
D;OD)H1(D;TD) g 77nnnnnnnnnnnnThe map g sits in the exa
t sequen
e de�ning the spa
e of �rst order defor-mations of the nodal 
urve D (2.2):0! H1(D;TD) g- Ext1(
D;OD) h- H0(Ext1(
D;OD))! 0where H0(Ext1(
D;OD)) = Li=1;2 Li, Li �= OD;qi . By remark 2.2.5,
oker � = L1 � L2 and by 2.6.9 the sequen
e (2.8) is exa
t.
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For ea
h i, let E
i be the 
okernel of the inje
tion Li ! H1(Di;Li). It is ave
tor bundle of rank 2
i � 2 on M(
i). It is the one we �nd when we haveonly one node on D. Sin
e E
1 �E
2 and E �t into the same exa
t sequen
e,it holds 
top(E) = 
top(�E
i).In [Gr℄, Graber 
onstru
ts a variety X by blowing up P2 in a point andthen blowing up a point on the ex
eptional divisor. He gets two ex
eptionaldivisors meeting in a node. Let A be the (-1)-
urve, B the (-2)-
urve and�
 = A+ 
B. Then he shows that the moduli spa
e M0;0(X;�
) is smoothof expe
ted dimension zero and isomorphi
 to M(
). Besides its virtualfundamental 
lass 
an be realized as the top Chern 
lass of a ve
tor bundle~E
 whi
h sits in the same exa
t sequen
e de�ning the bundle E
. Then
top(E
) = 
top( ~E
).Proposition 2.6.11. (Graber) For all 
 � 2, 
top( ~E
) = 0.Proof. This is Proposition 3.5 in [Gr℄.Remark 2.6.12. Let M�(
) be the �ber over (0;1) of the evaluation mapev = (ev1; ev2) :M0;2(P1; 
)! P1�P1. Denote by E�
 the obstru
tion bundleof M�(
). The following diagram is 
ommutative:M�(
) f - M(
)M0;2(P1; 
)? g- M0;1(P1; 
)?where g and f forget the point mapping to 1.Lemma 2.6.13. With notations as in 2.6.12, E�
 is the pullba
k bundle f�E
of the obstru
tion bundle of M(
). In parti
ular 
top(E�
 ) = 0 for 
 � 2.Proof. We will prove that H1(C;��TH) and H1(C 0; (�0)�TH) are 
anoni
allyisomorphi
. It is enough to study what happens for a stable map [C;�℄ inM0;2(P1; 
) su
h that C has a 
omponent 
ontra
ted by f . We 
an writeC = D[D1 [D2 with D the 
ontra
ted 
omponent, �(D) = x, p = D1 \Dand q = D2\D two nodes. Let [C 0 = D1[D2; �0℄ be the image under f , i.e.�0 Æ f = �. There exists a morphism � : (�0)�TH ! f�f�(�0)�TH = f���TH,[Har℄ Chap.II ex.1.18.a) If � is an isomorphism then H1(C 0; (�0)�TH) �= H1(C 0; f���TH).b) If Rif�(��TH) = 0 for all i > 0, H1(C 0; f���TH) �= H1(C;��TH) by[Har℄ Chap.III ex.8.1To prove our 
laim it is enough to verify the hypothesis of a), b). We 
anwork in a small neighbourhood and assume D1;D2 aÆne, i.e. C 0 aÆne.The exa
t sequen
e:0! OD1(�p)! OC ! OD[D2 ! 0
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gives H1(C;��TH) = H1(D [D2; ��THjD[D2), be
ause D1 is aÆne. Sin
e�(D) is a point, the sheaf ��THjD is trivial: H0(D;��THjD) = H0(q; (��TH)q).The exa
t sequen
e:0! OD[D2 ! OD2 �OD ! Oq ! 0indu
es an isomorphismH0(D[D2; ��THjD[D2) �= H0(D2; ��THjD2). Then:H1(D [D2; ��THjD[D2) �= H1(D2; ��THjD2)�H1(D;��THjD)We 
on
lude that H1(C;��TH) = 0, be
ause D2 is aÆne and ��THjD istrivial. Then R1f���TH = 0 by [Har℄ Chap.III Prop. 8.5.To verify a), we tensor by �
 (�0)�TH the following exa
t sequen
e:0! OD1(�x)! OC0 ! OD2 ! 0and we get:0! H0(D1; (�0)�THjD1 
OD1(�x))! H0(C 0; (�0)�TH)!! H0(D2; (�0)�THjD2)! 0Sin
e the �rst ve
tor spa
e is isomorphi
 to H0(D1; ��THjD1
OD1(�p)) andthe third one to H0(D2; ��THjD2), we get H0(C;��TH) �= H0(C 0; (�0)�TH).Then ��TH and f�(�0)�TH have the same se
tions, i.e. � is an isomorphism.The 
laim is proved.Theorem 2.6.14. The virtual fundamental 
lass of a 
omponent of a �berM
 of � is given by:[M(
1)�M(
2)℄vir = [M(
1)�M(
2)℄ if 0 � 
1; 
2 � 1[M(
1)�M(
2)℄vir = 0 otherwiseProof. If 
1; 
2 are 0 or 1 then M(
1) �M(
2) is smooth of the expe
teddimension equal to zero and the virtual fundamental 
lass 
oin
ide with theusual fundamental 
lass. If 
1 or 
2 is bigger than or equal to 2 then by2.6.11 the top Chern 
lass of the obstru
tion bundle vanishes.Corollary 2.6.15. If 
 � 2, then the virtual fundamental 
lass of M
 isgiven by: [M2℄vir = [M(1)�M(1)℄[M
℄vir = 0 if 
 � 3Proof. It follows from 2.6.8 and 2.6.14.
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2.7 Gromov-Witten InvariantsWe re
all the de�nition and some properties of the Gromov-Witten (GW)invariants on a d-dimensional smooth 
omplex proje
tive variety X.Let � 2 A1(X) be the 
lass of an e�e
tive 
urve and 
onsider the modulispa
e Mg;n(X;�) of genus g, n-pointed stable maps into X, g; n � 0 andn+ 2g � 3 � 0. It has expe
ted dimension equal to:edX = (dim X � 3)(1 � g) + Z� 
1(TX) + nNow we �x n 
y
le 
lasses 
1; : : : ; 
n 2 A�(X) and 
onsider the 
ohomology
lass ev�(
1� : : :�
n), where ev :Mg;n(X;�)! Xn is the usual evaluationmap. We 
all GW invariant the number:h
1 � : : : � 
ni� := Z[Mg;n(X;�)℄vir ev�(
1 � : : : � 
n)This is the \virtual" number of 
urves of genus g and 
lass � inX interse
tingthe homology 
y
les �i, where the Poin
ar�e dual of �i is 
i, for all i =1; : : : ; n. If g = 0; n � 3 we speak about genus zero GW invariants.If no 
onfusion arises, we will omit the symbol \ � " among the arguments
i of the invariant.The GW invariants have some ni
e properties su
h as to be invariant underdeformation. Moreover they are zero if the following equality is not satis�ed:Xi 
od 
i = edXLet 
n = 1X 2 A0(X) be the fundamental 
lass, then:h
1 � : : : � 
ni� = � RX 
1 [ 
2 if � = 0; n = 30 otherwiseFinally we will often use the so 
alled divisor axiom. Let 
1 2 A1(X) and� 6= 0, then: h
1 � : : : � 
ni� = (Z� 
1) � h
2 � : : : � 
ni�For an exhaustive treatment of the invariants and their properties see [K-M℄.In this general setting Proposition 5.6 in [B-F℄ (see 2.3.8) implies:Theorem 2.7.1. Let � : Mg;n(X;�) ! Mg;0(X;�) be the usual map for-getting the markings and ev = (ev1; : : : ; evn) be the evaluation map. LetE be the obstru
tion sheaf on Mg;0(X;�). Choose 
y
les �1; : : : ;�n in Xrepresenting the 
ohomology 
lasses 
1; : : : ; 
n su
h that ev�1i (�i) interse
t
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generi
ally transversally. Then if A = ��(\iev�1i (�i)) is a 
y
le in thesmooth lo
us of Mg;0(X;�):h
1 � : : : � 
ni� = Z[Mg;n(X;�)℄ ev�(
1 � : : :� 
n) � ��
top(E) (2.9)Remark 2.7.2. The above integral is equal to the degree of the top Chern
lass of the obstru
tion sheaf restri
ted to the 
y
le A:h
1 � : : : � 
ni� = ZA 
top(E)2.8 Some invariantsWe prove some vanishing results for the GW invariants whi
h are related tothe parti
ular geometry of the e�e
tive 
urves involved.Let S3 = [�(p)℄; S4; S5; S6; S11; S12 be the 
y
le 
lasses forming a basis forA2(H) whi
h we found in x1.1.Proposition 2.8.1. For k = 3; 4; 5; 6, hSki(0;0;
) = 0.Proof. Suppose 
 = 1. A 
urve (0; 0; 1) is in
ident to the 
y
le �(p) if it isthe 
urve of non-redu
ed subs
hemes supported on p, i.e. if it is the �berover p of the support map s:� �=M0;1(H; (0; 0; 1)) s- M0;0(H; (0; 0; 1)) �= QLet ev be the evaluation map M0;1(H; (0; 0; 1)) ! H.Sin
e s is 
at, s�(p) = s�1(p) and it is of 
odimension 2 inM0;1(H; (0; 0; 1)).As a set ev�1(�(p)) = s�1(p), so ev�(S3) = �s�(p) has 
odimension 2.hS3i(0;0;1) = Z[M0;1(H;(0;0;1))℄vir ev�(S3) = �Z[M0;1(H;(0;0;1))℄ s�[p � 
top(E)℄ = 0where E is the obstru
tion bundle on M0;0(H; (0; 0; 1)) and it has rankdim M0;0(H; (0; 0; 1)) � 1 = 1, so that p � 
top(E) = 0 on M0;0(H; (0; 0; 1)).Curves of type (0; 0; 
) interse
ting �(p) are multiple 
overs of (0; 0; 1), sohS3i(0;0;
) = 0.The 
y
le 
lass S4 
an be represented by the set of subs
hemes whose sup-port is in
ident to two lines l1; l2 with lk 2 Wk, k = 1; 2. A 
urve (0; 0; 1)
an meet su
h a 
y
le only if it is the 
urve supported on the in
ident pointl1 \ l2. The previous argument works and hS4i(0;0;
) = 0.The 
y
le 
lasses S5; S6 are represented by the sets of subs
hemes with sup-port in
ident to two lines in the same ruling, so a 
urve (0; 0; 1) 
an nevermeet these 
y
les. This 
on
ludes the proof.
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Let T8 be the 
y
le 
lass S21 +S1S2�2S11 and T9 = S22 +S1S2�2S12. Theyare symmetri
. We 
onsider only T8.Lemma 2.8.2. For ea
h 
 � 1, hT8i(0;0;
) = 4
2Proof. Consider the diagram:M0;1(H; (0; 0; 
)) ~ev //�

��

� i //s
��

HM0;0(H; (0; 0; 
)) g // Qwhere g([C;�℄) = Supp �(C). Set ev to be the 
omposition map i Æ ~ev.We know that 
2
�1(E) = �g�KQ � 
2
�2( ~E), where E is the obstru
tionsheaf on M0;0(H; (0; 0; 
)) and ~E is the sheaf de�ned in 2.5.2. So we have to
al
ulate:hT8i(0;0;
) = Z[M0;1(H;(0;0;
))℄ ev�T8 � ��(g�(�KQ) � 
2
�2( ~E))Note that a point [C; x; �℄ 2 M0;1(H; (0; 0; 
)) is su
h that the support of�(C) = �(x) = Z is a point p 2 Q, be
ause a 
urve of 
lass (0; 0; 
) is amultiple 
over of a �ber of s.The above diagram is 
ommutative, let f be the 
omposition g Æ � = s Æ ~ev.It is easy to verify that i�T8 = 2 � s�h1 � � (with notations as in (1.3)). Thenwe have to 
al
ulate the degree:Z[M0;1(H;(0;0;
))℄ 2f�(�KQ � h1) � ~ev�� � ��(
2
�2( ~E))Sin
e �KQ � h1 = 2h3 where h3 is the point-
lass in A2(Q), we get:f�(�KQ � h1) � ~ev�� = 2 ~ev�(� � s�h3)Let x 2 � be a point, we denote byM1 the inverse image ~ev�1(x) and byM0its image �(M1) = g�1(s(x)) in M 0;0(H; (0; 0; 
)). The restri
ted morphism~� :M1 !M0 has degree 
. In parti
ular:~��[M1℄ = 
[M0℄ = 
 � g�[s(x)℄Sin
e � � s�h3 = [x℄ is the point-
lass in �, by the proje
tion formula andwhat we said in x2.5, our invariant is:hT8i(0;0;
) = Z[M0;1(H;(0;0;
))℄ 4 ~ev�(� � s�h3) � ��
2
�2( ~E)= Z[M1℄ 4~��
2
�2( ~E) = Z[M0℄ 4
 � 
2
�2( ~E)= 4
 � 
2
�2( ~Ejg�1(s(x))) = 4
2
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The study of the obstru
tion bundle in se
tion 2.6 gives us the tools forproving another vanishing result.Remark 2.8.3. With notations as in x2.6, let M� be the 
losed subset ofM0;0(H; (1; 0; 
)), 
 � 2, of stable maps � : D ! H where the domain 
urveis redu
ible and �(D0) = C(l1) is tangent to the 
oni
 de�ned by � inHilb2(l1), (see 2.6.1). Consider the following maps:M0;3(H; (1; 0; 
)) �- M 0;0(H; (1; 0; 
)) �- M0;0(H; (1; 0; 0))The map � forgets the marked points and (eventually) stabilizes the 
urve.The map � is de�ned by restri
ting the stable map to the (1; 0; 0) 
omponent.In parti
ular it is surje
tive. If we denote by U
1;
2 the open subset ofM0;0(H; (1; 0; 
)) of points [D;�℄ su
h that:�(D0) is not tangent to �[�(D1)℄ = 
1 � (0; 0; 1)[�(D2)℄ = 
2 � (0; 0; 1)thenM0;0(H; (1; 0; 
)) is the union over all 
1 � 
2, 
1+
2 = 
 of the 
losuresU 
1;
2 . Fix U 
1;
2 then the restri
ted map � : U 
1;
2 ! M0;0(H; (1; 0; 0)) issurje
tive with �bers:if 
1; 
2 > 0 � M(
1)�M(
2) qM(
2)�M(
1) generi
 �berM(
1)�M(
2) �ber over M�if 
2 = 0 � M(
) qM(
) generi
 �berM(
) �ber over M�� is 
onvex and a 
urve of 
lass (1; 0; 0) is 
ontained into it, then the modulispa
e M0;0(H; (1; 0; 0)) is smooth of the expe
ted dimension dH = 3. More-over it is a P2-bundle over P1 �=W1, with �bers the Hilbert s
heme Hilb2(l1)over a point l1 2W1. Then it is irredu
ible. Also U 
1;
2 is irredu
ible, thenall the �bers of � are 3-
odimensional.Proposition 2.8.4. If 
 > 2 then all GW invariants h
1
2
3i� for 
urvesof type (1; 0; 
); (0; 1; 
) vanish.Proof. The two 
ases are symmetri
. We 
onsider only (1; 0; 
).We have seen that su
h a 
urve is redu
ible. It has a 
omponent of 
lass(1; 0; 0) not 
ontained into � and it de
omposes as:(1; 0; 
) = (0; 0; 
1) + (0; 0; 
2) + (1; 0; 0)with 
1; 
2 � 0; 
1 + 
2 = 
.We are free to 
hoose a basis of A�(H) su
h that every 
y
le 
lass 
an be



50 CHAPTER 2. GROMOV-WITTEN INVARIANTS
represented by 
y
les interse
ting the strati�
ation properly. It is enoughto prove that GW invariants involving su
h 
lasses vanish. Choose threeof them 
1; 
2; 
3 satisfying P 
od 
i = 6. This 
ondition means we arelooking at three possible 3-uples of elements whose 
odimensions, up to apermutation of indexes, are:(1; 1; 4); (1; 2; 3); (2; 2; 2)Consider the diagram: A - 
1 � 
2 � 
3M0;3(H; (1; 0; 
))? ev - H3?where A = ev�(
1�
2�
3). By the Position Lemma 
od A � 6 (see 1.3.3).Let � be the 
at map forgetting pointsM0;3(H; (1; 0; 
)) !M0;0(H; (1; 0; 
))and B = �(A). Then 
od B � 3: If 
od B > 3, the GW invariants vanishesfor dimensional reasons, so we 
an assume 
od B = 3.Let � : M 0;0(H; (1; 0; 
)) ! M0;0(H; (1; 0; 0)) be the map de�ned in 2.8.3.If the 
lass of a map [f ℄ is in B, then all the points in ��1(�([f ℄)) are inB, be
ause they di�er only by the 
hoi
e of a multiple 
over of (0; 0; 1) andthis does not a�e
t in
iden
e 
onditions. The 
odimension of a �ber of � isalready equal to 3, so B is a union of �nitely many 
omponents of �bers of� . With notations as in x2.6 the set B is:B = a
1+
2=

i�0 M(
1)�M(
2)where M(0) is a point. If 
 > 2 then there exists i su
h that 
i > 1. By2.6.14: h
1; 
2; 
3i(1;0;
) = 0



Chapter 3Quantum CohomologyQuantum Cohomology is a deformation of the 
up produ
t of A�(H) involv-ing the genus zero GW invariants. Moreover from the asso
iativity law we
an get some formulas for 
omputing these invariants re
ursively. In this
hapter we re
all how to de�ne the new produ
t (see e.g. [G-P℄) and we givea des
ription of the ring we obtain.Notations: the 
up produ
t in A�(H) will be denoted by � [ �. We willuse the symbol hT ni� to denote the GW invariant hT � : : : � T| {z }n i�.3.1 The Big Quantum Cohomology RingLet T0 = 1; T1; : : : ; T13 be a homogeneous Q-basis for A�(H) su
h thatT1; T2; T3 generate A1(H). We denote by (gij) the matrix (RH Ti [ Tj) andby (gij) its inverse. We introdu
e formal variables fy0; q1; q2; q3; y4; : : : ; y13gwhi
h we will abbreviate as q; y. For � an e�e
tive 
lass in A1(H), thefollowing expression de�nes a power series in the ring Q [[q; y℄℄:�(q; y) := Xn4+���+n13�0X� 6=0hT n44 � : : : � T n13m i� � qR� T11 qR� T22 qR� T33 mYi=4 yniini!In the 
ase of a homogeneous spa
e, substituting qi = eyi we get the quan-tum part of the potential fun
tion of [K-M℄ modulo some relation in the yi.The symbol �i will denote qi ��qi if i = 1; 2; 3, the partial derivative ��yi oth-erwise. If f 2 Q [[q; y℄℄ then we set fijk = �i�j�kf .Consider the free Q [[q; y℄℄-module A�(H)
QQ [[q; y℄℄ generated by T0; : : : ; T13.We de�ne a Q [[q; y℄℄-linear produ
t on it, 
alled the �-produ
t :Ti � Tj = Ti [ Tj + 13Xe;f=0�ijegefTfIt yields a Q [[q; y℄℄-algebra stru
ture.51
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De�nition 3.1.1. The Big Quantum Cohomology ring of H is the ring:QH�(H) = (A�(H)
Q Q [[q; y℄℄; �)Remark 3.1.2. By formal 
al
ulation, using the divisor axiom and thelinearity of the GW invariants, we obtain:�ijk =Xn�0X� 6=0 1n!h
nTiTjTki� � qR� T11 qR� T22 qR� T33where 
 = y4T4 + � � �+ y13T13. Note that if one of the indexes i; j; k is zero,then the expression vanishes, be
ause of the 
ondition � 6= 0.De�nition 3.1.3. The symbol �ijk is de�ned as the sum hTiTjTki0 +�ijk.In the homogeneous 
ase, it 
orresponds to the 3-partial derivative of thepotential fun
tion of [K-M℄.We 
an write the �-produ
t in a more 
ompa
t way:Ti � Tj = 13Xe;f=0�ijegefTfSin
e the partial derivatives are symmetri
 in the subs
ripts and GW invari-ants are invariant under a permutation of the arguments, it is evident thatthe �-produ
t is 
ommutative. Moreover it has T0 = 1 as unit element:T0 � Tj = 13Xe;f=0�0jegefTf = 13Xe;f=0 gjegefTf = TjThe quantum produ
t is also asso
iative. A proof 
an be found in [K-M℄or, in the homogeneous 
ase, in [F-P℄. Asso
iativity is equivalent to thefollowing equality: 13Xe;f=0�ijegef�fkl = 13Xe;f=0�ikegef�fjlWriting down expli
itly what it means in terms of GW invariants and usingthe splitting prin
iple (see [K-M℄), it turns out that this equality holds sin
eit translates the 
ondition of linear equivalen
e between pairs of points onP1. For further porposes, it seems useful to write expli
itly the generalasso
iativity equation in terms of the GW invariants.Let 
1; : : : ; 
n be 
ohomology 
lasses on H, � 2 A1(H) the 
lass of ane�e
tive 
urve and A;B sets of indexes. Then the asso
iativity reads:XhTi � Tj � Te �Ya2A 
ai�1 gef hTk � Tl � Tf �Yb2B 
bi�2 ==XhTi � Tk � Te �Ya2A 
ai�1 gef hTj � Tl � Tf �Yb2B 
bi�2 (3.1)
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where the sum is over all the possible partitions A [ B = [n℄ of n indexes,all possible sums �1 + �2 = � with �i e�e
tive and over e; f = 0; : : : ; 13.On the left hand side, the terms 
orresponding to �1 or �2 equal to zero sumup to: hTi � Tj � Tk [ Tl � nY1 
si� + hTk � Tl � Ti [ Tj � nY1 
si� (3.2)An analogous expression gives the �i = 0 terms for the right hand sideof the equality. By means of these equations and of the divisor axiom, in[K-M℄ Kontsevi
h and Manin proved the First Re
onstru
tion Theorem: ona variety whose 
ohomology is generated by the divisor 
lasses all the genuszero GW invariants 
an be uniquely re
onstru
ted starting from the 2-pointinvariants h
1 � 
2i� .If the 
ohomology ring is not generated by divisors, we 
an restri
t ourattention to the subring S these 
lasses generate. Then the 
ited theoremholds anyway and we 
an re
onstru
t all the GW invariants involving 
lassesin S from the 2-point invariants. To know the 
omplete tree level GW-systemwe have to 
al
ulate the invariants in
luding the 
lasses we disregarded. Thisis the te
hnique we are going to explain in x3.5.3.2 A good Q -basis for A�(H)We 
hoose on
e for all the following Q-basis for the Chow ring A�(H):A0(H) A1(H) A2(H) A3(H) A4(H)T0 T1 T4 T10 T13T2 T5 T11T3 T6 T12T7T8T9The 
y
les 
lasses are de�ned by:T0 = 1 T7 = S22T1 = S1 T8 = S1�1;0T2 = S2 T9 = S2�1;0T3 = �1;0 T10 = S2S3T4 = S3 T11 = S1S3T5 = S1S2 T12 = S3�1;0T6 = S21 T13 = S23By 1.1.8 and 1.4.1, we know that A�(H) is the Q-algebra:Q [T1 ; T2; T3; T4℄(fi)i=1;:::;17
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where the relations are:1) T 23 � (T1 + T2)T3 � T1T2 = 02) T 31 = 03) T 32 = 04) T 21 T2 � 2T1T4 = 05) T 21 T3 � 2T1T4 = 06) T 22 T1 � 2T2T4 = 07) T 22 T3 � 2T2T4 = 08) T1T2T3 � 2T3T4 = 09) T 34 = 010) T 24 T1 = 011) T 24 T2 = 012) T 24 T3 = 013) T 21 T4 = 014) T 22 T4 = 015) T1T2T4 � T 24 = 016) T1T3T4 � T 24 = 017) T2T3T4 � T 24 = 0In parti
ular A�(H) is not generated by the divisor 
lasses.The matrix (gij) is the inverse of (gij) = (RH Ti [ Tj):(gij) = 0BBBB� 1ABA1

1CCCCAwhere 1 = RH T0 [ T13, A and B are the matri
es indu
ed by the Poin
ar�eduality A1(H)�A3(H) and A2(H)�A2(H) respe
tively.A = 0� 0 �1 1�1 0 11 1 �1 1AB = 0BBBBBB� 2 �1 0 0 0 0�1 0 �12 �12 12 120 �12 0 0 0 120 �12 0 0 12 00 12 0 12 0 �120 12 12 0 �12 0
1CCCCCCAThroughout the paper, we will understand that the sum in Ti � Tj is overe; f = 0; : : : ; 13 and we will use the 
onvention:q� = qR� T11 qR� T22 qR� T33
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Remark 3.2.1. We note that all the 
lasses Ti 
an be generated by 
y
lesinterse
ting the strati�
ation properly.Remark 3.2.2. There are some symmetri
 
y
le 
lasses: T1 and T2, T6 andT7, T8 and T9, T10 and T11. This is be
ause they depend on the 
hoi
e ofone of the two rulings on Q.Remark 3.2.3. The 
lasses T10, T11, T12 are the 
lasses C2 + F , C1 + F ,C1+C2+F respe
tively. They 
an be represented by the irredu
ible 
urvesC(p2; l2), C(p1; l1), �(l) respe
tively (see x1.7)3.3 The Small Quantum Cohomology RingThe Small Quantum Cohomology ring QH�s (H) of H in
orporates only thegenus zero 3-point GW invariants in its produ
t and it is de�ned by settingto zero all the formal variables ex
ept those 
orresponding to the divisor
lasses. This means that we 
onsider (A�(H) 
Q Q [[q1 ; q2; q3℄℄; �) with theprodu
t given by: Ti � Tj = 13Xe;f=0�ijegefTfwhere: �ijk = RH Ti [ Tj [ Tk + �ijk�ijk = P� 6=0hTiTjTki� � qR� T11 qR� T22 qR� T33The last equality is a 
onsequen
e of putting yi = 0 in �ijk (see 3.1.2).The produ
t yields a 
ommutative, asso
iative graded Q [[q1 ; q2; q3℄℄-algebrastru
ture with T0 as unit. The variables qi; Tj are graded by the followingdegrees: deg qi = R�i 
1(TH)deg Tj = 
od Tjwhere �i is the dual 
lass to Ti for i = 1; 2; 3, i.e. C2; C1; F , respe
tively. Inparti
ular q1; q2 have degree 2, while deg q3 = 0.Lemma 3.3.1. Sin
e q1; q2 have positive degree, we have:Ti � Tj 2 A�(H)
Q Q [q1 ; q2℄[[q3℄℄ � A�(H)
Q Q [[q1 ; q2; q3℄℄Proof. In the produ
t Ti � Tj , for a �xed e the invariant hTiTjTei� is zerounless the sum of the 
odimensions is equal to �� �KH+4. For � = (a; b; 
)e�e
tive, the 
ondition implies that �� �KH = 2a + 2b is a �xed number.Then there are only �nitely many possible values for a; b whi
h are theexponents of the variables q2; q1, respe
tively. The only exponent having nobound is that of q3.
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De�nition 3.3.2. We de�ne the Small Quantum Cohomology ring of H tobe: QH�s (H) = (A�(H)
Q Q [q1 ; q2℄[[q3℄℄; �)It is a deformation of A�(H) in the usual sense, in fa
t we 
an re
over theChow ring of H by setting all the qi equal to zero.Let Q [Z℄ = Q [Z1 ; : : : ; Z4℄ and letA�(H) = Q [Z℄(f1; : : : ; fs)be a presentation with arbitrary homogeneous generators f1; : : : ; fs for theideal of relations. Finally let Q(q; Z) = Q [q1 ; q2; Z1; : : : ; Z4℄[[q3℄℄. The fol-lowing proposition is a slightly modi�ed version of [F-P℄ x10 Prop.11.Proposition 3.3.3. Let f 01; : : : ; f 0s be any homogeneous elements in Q(q; Z)su
h that:(i) f 0i (0; 0; 0; Z1 ; : : : ; Z4) = fi(Z1; : : : ; Z4) in Q(q; Z),(ii) f 0i (q1; q2; q3; Z1; : : : ; Z4) = 0 in QH�s (H).Then the 
anoni
al map Q(q; Z)(f 01; : : : ; f 0s) '- QH�s (H)is an isomorphism.Proof. As in [F-P℄ we 
an use a Nakayama-type indu
tion. First we observethat given a homogeneous map  : M ! N between two �nitely generatedQ(q; Z)-modules su
h that the indu
ed map:M=(q3)(q1; q2)  1;2- N=(q3)(q1; q2)is surje
tive, then  3 : M=(q3) ! N=(q3) is surje
tive, be
ause q1; q2 havepositive degree. Sin
e the ideal (q3) is 
ontained into the radi
al of Ja
obsonof Q(q; Z) and N =  (M) + (q3)N , by surje
tivity of  3, it follows that is surje
tive ([A-M℄ Cor. 2.7). Hen
e by hypothesis (i) our map ' issurje
tive. If ~Ti, i = 0; : : : ; 13 are homogeneous lifts to Q [q1 ; q2℄[[q3℄℄ of abasis of A�(H), exa
tly the same argument of passing to the quotients showsthat their images in Q(q; Z)=(f 01 ; : : : ; f 0s) generates this Q [q1 ; q2℄[[q3℄℄-module.But QH�s (H) is free over Q of rank 14, so ' is an isomorphism.
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3.4 A presentation of QH�s (H)A

ording to Proposition 3.3.3, to have a presentation of the Small QuantumCohomology ring of H we need to �nd some equations lifting the relationsde�ning A�(H) and vanishing in QH�s (H). Let ffigi=1;:::;17 be the relationslisted at the end of x3.1 and denote by f�i the ith-relation 
al
ulated usingthe �-produ
t. We will show that the f�i 's are the equations we are lookingfor.We 
al
ulate all the monomials arising from the �-produ
t of two generatorsof A�(H), disregarding T4 � T4 for the moment.We distinguish di�erent 
ases.T3 � T3 = T3 [ T3 +X
�1 2 f2T5 + T6 + T7 � T8 � T9g q
3 ++X
�0 
2 �hT13i(1;0;
)q2q
3 + hT13i(0;1;
)q1q
3	T0where we use 2.8.1, 2.8.2 and 3.2.2.If Ti is a divisor 
lass with i 6= 3:Ti � T3 = Ti [ T3 +X
�0 
hT13i� � T0 � q� with � = (1; 0; 
) or (0; 1; 
)If Ti; Tj are divisor 
lasses with i; j 6= 3:Ti � Tj = Ti [ Tj +X
�0hTiTjT13i� � T0 � q� with � = (1; 0; 
) or (0; 1; 
)If Ti is a divisor 
lass with i 6= 3:Ti � T4 = Ti [ T4 + X
od Te=3
�0 hTiT4Tei�gefTf � q� with � = (1; 0; 
) or (0; 1; 
)Finally:T3 � T4 = T3 [T4+ X
od Te=3
�0 
hT4Tei�gefTf � q� with � = (1; 0; 
) and (0; 1; 
)where we use 2.8.1 again.This list points out that we need to know the value of some GW invari-ants involving T4; T13 in order to write down the f�i 's. By the vanish-ing result 2.8.4 it is enought to 
al
ulate hT13i� and hT4; 
od 3i� with� = (1; 0; 
); (0; 1; 
); 0 � 
 � 2.We will use the same notation �xed in x1.7.
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The invariant hT13i(1;0;
)If E is the rank dH � 3 obstru
tion bundle on M0;0(H; (1; 0; 
)), we have to
ompute: hT13i(1;0;
) = Z[M0;1(H;(1;0;
))℄ ev�T13 � ��
dH�3(E)= Zev�1(Z) ��
dH�3(E)where Z is a generi
 point of H representing the 
lass T13 and � is the mapforgetting a point and stabilizing.If 
 = 0, we know thatM 0;0(H; (1; 0; 0)) is smooth of the expe
ted dimensiondH = 3, sin
e ea
h 
urve of 
lass (1; 0; 0) is 
ontained into �. In parti
ularthe top Chern 
lass of E gives 1. We 
an 
hoose a representative Z of the
lass T13 su
h that lZ =2 W1, then the �ber ev�1(Z) is empty and the GWinvariant vanishes.If 
 = 1, by 2.6.2 we have to analyse separately what happens on thetwo 
omponents of the moduli spa
e. We 
an 
hoose Z =2 � [ �, withSupp Z = fp0; q0g, so that redu
ible 
urves of type C1 [ F give no 
on-tribution to the invariant. Let us 
onsider a stable map with image anirredu
ible 
urve of 
lass C1 + F . It is a smooth point for the modulispa
e M0;1(H; (1; 0; 1)) whi
h is 4-dimensional in it. Denote by M irr theirredu
ible 
omponent parametrizing su
h maps, then ev(M irr) = H. Therestri
ted map ev :M irr ! H has degree two, be
ause an irredu
ible 
urveC of 
lass (1; 0; 1) is 
ompletely determined by 
hoosing a line l1 2W1 anda point p1 =2 l1 and all its points are redu
ed. The �ber over Z 
ontainstwo points: the isomorphism 
lasses [P1; x; �℄ where P1 �= C(p0; l1(q0)) orP1 �= C(q0; l1(p0)). In the �rst 
ase, �(t) = (p0; f(t)), with f : P1 ! Q aparametrization of l1(q0) su
h that f(x) = q0. Similarly for the other map.Then we have a 
ontribution equal to 2 to the GW invariant.If 
 = 2, all the 
urves of 
lass (1; 0; 2) are redu
ible 
ontained into � [ �,
hoosing Z =2 � [� the �ber ev�1(Z) is empty and the GW invariant van-ishes.By symmetry the same results hold for hT13i(0;1;
).The invariant hT4Tii(1;0;
)We want to 
al
ulate:hT4Tii(1;0;
) = Z[M0;2(H;(1;0;
))℄ ev�(T4 � Ti) � ��
dH�3(E)
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where Ti lives in 
odimension 3, � has relative dimension equal to 2 andev = (ev1; ev2) is the evaluation map with image in H �H. By linearityof the GW invariants we 
an 
onsider only the generators T10; T11; T12 ofA3(H). Choose on
e for all a representative �(p) for the 
lass T4, withp 2 Q a generi
 point.If 
 = 0, as before 
top(E) = 1. Let C(p1; l1) represent T11 su
h that p 6= p1and p =2 l1 (see 3.2.3). Sin
e all the points of a 
urve of 
lass (1; 0; 0) havethe same asso
iated line, it never interse
ts a 
urve of 
lass T11. The GWinvariant for maps � : C ! H with ��[C℄ = (1; 0; 0) vanishes. The sameholds for the invariant involving T10, be
ause for a generi
 representativeC(p2; l2) of that 
lass p 6= p2 and p =2 l2. Finally, if �(l) represents T12, thenit is disjoint from � and also this invariant is zero.Let 
 = 1 and 
onsider the 
omponent of the moduli spa
e parametrizingmaps from irredu
ible 
urves. An irredu
ible 
urve of 
lass (1; 0; 1) neverinterse
ts both a �(p) and a C(p1; l1) 
y
le generi
ally 
hosen. The 
ontri-bution to the invariant hT4T11i(1;0;1) is zero.If C(p2; l2) represents T10, then ev�(T4 � T10) is a unique redu
ed point,the 
lass of the stable map [P1; x1; x2; �℄ determined by P1 �= C(p2; l1(p)),�(t) = (p2; f(t)) with f : P1 ! Q a parametrization of l1(p) su
h thatf(x1) = p; f(x2) = l1(p) \ l2.Let �(l) represent T12, then for a general plane p =2 �. Moreover the linel1(p) interse
ts the hyperplane se
tion � \Q exa
tly in a point q1. The setfZ 2 Hilb2(� \Q) : Supp Z 3 q1g is a line in Hilb2(� \Q) tangent to the
oni
 de�ned by � on that Hilbert s
heme. It interse
ts l in a point (q1; q2)with q1 6= q2, be
ause we 
hose l generi
. Hen
e the 
urve P1 �= C(q2; l1(p))interse
ts �(p) in Z = (q2; p) and �(l) in Z = (q2; q1). We 
on
lude thatthere is exa
tly one 
lass [P1; x1; x2; �℄ satisfying the in
iden
e 
onditions.The stable map � is de�ned by �(t) = (q2; f(t)) where f : P1 ! Q is aparametrization of l1(p) su
h that f(x1) = p, f(x2) = q1.Now we have to 
ount the 
ontribution 
oming from the redu
ible 
urves of
lass (1; 0; 1). All these are 
ontained into � [ �. Let D = C(l) [ C(q) beone of them. We want to interse
t it with a 
y
le �(p) and a 
y
le C(p1; l1).Interse
tion points 
an not lie all on one 
omponent, be
ause everything isgeneri
. The only possibility is that the interse
tion with �(p) is on theF -
omponent and the other one on the C1-
omponent. Then q = p andl = l1(p). The se
ond equality prevents any other point of C(l) from inter-se
ting the 
y
le C(p1; l1), sin
e in general p1 =2 l1(p). Then there are noredu
ible 
urves satisfying these in
iden
e 
onditions, i.e. the 
ontributionto the GW invariant is zero.The same holds for the invariant involving T10.Finally, the 
y
le �(l) representing T12 is su
h that the generi
 plane � doesnot 
ontain any line of Q. Then there does not exist any point Z on the C1-



60 CHAPTER 3. QUANTUM COHOMOLOGY

omponent of D lying in Hilb2(�\Q). The interse
iton with �(l) must be apoint on the F -
omponent. �(l) interse
ts � in at most 2 points Zi with sup-port qi. Suppose q = q1, then C(l) is a line in Hilb2(l1(q1)). Sin
e p =2 l1(q1),for general points, we 
on
lude that there are no 
urves D satisfying boththe in
ident 
onditions. The 
ontribution to the GW invariant is again zero.If 
 = 2, all the 
urves are of type C1[
1F [
2F , with 
1+
2 = 2. As beforethe interse
tion points do not lie on the same 
omponent. In parti
ular theinterse
tion with �(p) is a point on a F -
omponent. Besides the interse
tionwith C(p1; l1), C(p2; l2) or �(l) has to be on the C1-
omponent, be
ause �does not 
ontain any line in Q and all Z 2 C(pi; li), i = 1; 2, are redu
ed.Then as for the redu
ible 
urve in the 
ase 
 = 1, all the GW invariantsvanish.We 
an summarize our results in a table:
 = 0 
 = 1 
 = 2 
 > 2hT13i(1;0;
) 0 2 0 0hT4T10i(1;0;
) 0 1 0 0hT4T11i(1;0;
) 0 0 0 0hT4T12i(1;0;
) 0 1 0 0Remark 3.4.1. For � = (0; 1; 
) we have the same table, inter
hanging thevalues obtained for the invariants involving T10; T11.We �nd the following expressions:T3 � T3 = T 23 + 2(q1 + q2)q3T0 + P
�1 2f2T5 + T6 + T7 � T8 � T9gq
3T1 � T1 = T 21 + 2q1q3T0T1 � T2 = T1T2T1 � T3 = T1T3 + 2q1q3T0T2 � T2 = T 22 + 2q2q3T0T2 � T3 = T2T3 + 2q2q3T0T1 � T4 = T1T4 + q1q3T2T2 � T4 = T2T4 + q2q3T1T3 � T4 = T3T4 + q2q3T1 + q1q3T2Applying asso
iativity to the f�i equations of x3.2 will permit us to 
al
ulatealmost all the GW invariants we need to write them expli
itly. For example
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the identity (T1 � T1) � T2 = T1 � (T1 � T2) gives:2q1q3T2 + X
od Te=3
�0 hT6Tei(1;0;
)gefTf � q2q
3 = X
od Te=3
�0 hT5Tei(0;1;
)gefTf � q1q
3
By 
omparing the 
oeÆ
ients of the variables and by 2.8.4 we �nd:
 = 0 hT5Tei(0;1;0) = 0 hT6Tei(1;0;0) = 0 for all Te 2 A3(H)
 = 1 hT5T10i(0;1;1) = 0hT5T11i(0;1;1) = 2hT5T12i(0;1;1) = 2 hT6Tei(1;0;1) = 0 for all Te 2 A3(H)
 � 2 hT5Tei(0;1;
) = 0 hT6Tei(1;0;
) = 0 for all Te 2 A3(H)By symmetry we have:
 = 0 hT5Tei(1;0;0) = 0 hT7Tei(0;1;0) = 0 for all Te 2 A3(H)
 = 1 hT5T10i(1;0;1) = 2hT5T11i(1;0;1) = 0hT5T12i(1;0;1) = 2 hT7Tei(0;1;1) = 0 for all Te 2 A3(H)
 � 2 hT5Tei(1;0;
) = 0 hT7Tei(0;1;
) = 0 for all Te 2 A3(H)The values in the se
ond table arise also from the asso
iativity applied toT2 � T2 � T1.
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The only ne
essary invariants we 
an not 
ompute with this te
hnique are:1) hT8i(0;0;
) 
 � 12) hT11T6i(0;1;
) hT10T7i(1;0;
) 2 � 
 � 03) hT4 
od 3i(0;1;
) hT4 
od 3i(1;0;
) 2 � 
 � 04) hT13i(1;0;
) hT13i(0;1;
) 2 � 
 � 05) hT13T10i(2;0;
) hT13T11i(0;2;
) 
 � 06) hT13T10i(0;2;
) hT13T11i(2;0;
) 
 � 07) hT13 
od 3i(1;1;1)8) hT13T10i(1;1;
) hT13T11i(1;1;
) 
 � 29) hT4T4T4i(1;0;
) hT4T4T4i(0;1;
) 2 � 
 � 010) hT13T4T4i(1;1;
) 
 � 111) hT13T4T4i(2;0;
) hT13T4T4i(0;2;
) 
 � 112) hT13T13T4i� � = (3; 0; 
); (0; 3; 
); (2; 1; 
); (1; 2; 
) 
 � 0By symmetry, to 
al
ulate all the above invariants it is enough to 
onsideronly those on the left side of the list, in parti
ular for the last one we have tostudy only the 
ases with � = (3; 0; 
); (2; 1; 
). Note that we already knowthe values of the GW invariants 1), 3), 4) by previous 
al
ulations.The last four values 
an be 
al
ulated using the asso
iativity equation (3.1),(see x3.5). Sin
e they are not so diÆ
ult, here we work them out by hand.Lemma 3.4.2. All the invariants number 12) are zero.Proof. We 
an 
hoose generi
 representatives Z0, Z 00 for the two point-
lasses. None of the (3; 0; 0)-
urve 
an interse
t both of them. Moreoverthere are only redu
ible 
urves of 
lass (3; 0; 
) for 
 = 1; 2 and they areof type 3C1 [ F , 3C1 [ 
1F [ 
2F , 
1 + 
2 = 2, respe
tively. Then for thesame 
hoi
e of generi
 Z0; Z 00 none of them interse
t su
h 
y
les. If 
 = 3we 
hoose Z0 generi
 and Z 00 2 �. Redu
ible 
urves of 
lass (3; 0; 3) aredisjoint from � or they live in the wrong dimension. Finally irredu
ible
urves are disjoint from �. Then also in this 
ase the invariant is zero. For
 � 4 all the 
urves are redu
ible of type 3C1 [ C, where C is a union ofan appropriate number of 
iF -
urves. Then for a generi
 representative we
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have no 
ontribution to the GW invariant. An analogous argument showsthat also for stable maps of 
lass (2; 1; 
), 
 � 0, everything vanishes.Remark 3.4.3. Sin
e in the proof we do not make use of the 
y
les repre-senting T4, we proved something more, pre
isely:hT13T13 
od 2i� = 0for � = (3; 0; 
); (2; 1; 
) .A similar argument yields:hT13T4 
od 2i(2;0;
) = 0for all 2-
odimensional 
lasses and 
 � 0. In parti
ular hT13T4T4i(2;0;
) = 0,for all 
 � 1.By means of 2.8.4 and generi
ity assumptions it is very easy to see that forall 
 � 0: hT4T4T4i(1;0;
) = 0Finally the invariant hT13T4T4i(1;1;
) gives 2 for 
 = 2 and zero otherwise [P℄.The invariant hT11T6i(0;1;
)We want to 
al
ulate:hT11T6i(0;1;
) = Z[M0;2(H;(0;1;
))℄ ev�1(C(p1; l1)) � ev�2(
) � ��(
dH�3(E))where 
 = fZ 2 H : Supp Z \ l01 6= ;;Supp Z \ l001 6= ;g is a 
y
le repre-senting T6, for �xed lines l01; l001 2 W1, and E is the obstru
tion bundle onM0;0(H; (0; 1; 
)). Both representatives of T6 and T11 
an be 
hoosen generi
.It is very easy to see that for 
 = 0 the invariant gives 1, be
ause of thegeometry of a 
urve of 
lass (0; 1; 0).If 
 = 1 we do not have any 
ontribution from the irredu
ible 
urves bythe generi
ity assumptions. Let C be a redu
ible 
urve of 
lass (0; 1; 1). Ithas to be a union C(l2) [ C(p) for some p 2 Q and l2 2 W2. Sin
e allthe points on C(p1; l1) and 
 are redu
ed, C 
an interse
ts them only alongC(l2). The line l2 = l2(p1) is then determined. The 
urve C(l2) is the linein Hilb2(l2(p1)) through (p1; l2 \ l1) and (l2 \ l01; l2 \ l001 ). Moreover there aretwo possible points for atta
hing C(p). This gives a 
ontribution 2 to theinvariant.
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If 
 = 2 we know that ea
h stable map � has a redu
ible domain 
urveD, in parti
ular �(D) is a 
urve of 
lass C2 [ 
1F [ 
2F with 
1 + 
2 = 2.The F -
omponents are points of M(
1) and M(
2) respe
tively. As beforethe interse
tion points with C(p1; l1) and 
 lie on the C2-
omponent whi
his 
ompletely determined. It interse
ts � in at most two points Zi, withSupp Zi = qi. Then by proposition 2.8.4 there is only a point satisfying allthe in
ident 
onditions [D;x1; x2; �℄ 2M0;2(H; (0; 1; 2)):D = D0 [D1 [D2 yi = D0 \Di; i = 1; 2��[D0℄ = C2 ��[Di℄ = [C(qi)℄; i = 1; 2�(x1) = (p1; l2(p1) \ l1) �(x2) = (l2(p1) \ l01; l2(p1) \ l001 )�(yi) = qi; i = 1; 2It is a redu
ed point so it 
ounts with multipli
ity one.We summarize our results in the following table:
 = 0 
 = 1 
 = 2hT11T6i(0;1;
) 1 2 1The invariants hT13T10i(2;0;
) and hT13T11i(2;0;
)To 
al
ulate hT13T10i(2;0;
) and hT13T11i(2;0;
) for 
 � 0 is equivalent to solveproblems 5) and 6).If 
 = 0, �xing a generi
 Z0 representing T13, there are no stable maps oftype (2; 0; 0) satisfying all the in
ident 
onditions in both 
ases. Then theGW invariants vanish.If 
 = 1, 
urves of 
lass (2; 0; 1) are all redu
ible. Fix Z0 as above, then no
urves of type 2C1 [ F 
an interse
t it. Also in this 
ase our invariants arezero.Let 
 = 2 and Z0 be a non-redu
ed point with support p0. Note that thepoints on the 
urve C(p1; l1) are all redu
ed as well as those of C(p2; l2).In order to 
al
ulate the GW invariants we have to add the 
ontributionsgiven by maps of type 2C1 [ 
1F [ 
2F , (C1+F )[ (C1+F ), 2(C1+F ) and2C1 + 2F . If a redu
ible 
urve 2C1 [ a1F [ a2F interse
ts Z0, then its sup-port is 
ompletely determined by l1(p0) and it does not interse
t C(p1; l1)or C(p2; l2).Curves of type (C1+F )[ (C1+F ) are disjoint from � as well as 2(C1+F ),so they do not give any 
ontribution.Finally, if a 
urve 2C1 + 2F is in � it does not interse
ts C(li; pi), i = 1; 2,
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otherwise it does not pass through Z0.If 
 > 2, we 
an 
hoose Z0 in �. Then we have to analyze only the 
ontribu-tions given by maps from irredu
ible 
urves of type 2C1+ 
F 
ontained into� and from redu
ible ones of type 2C1 [ a1F [ a2F [ a3F [ a4F , P ai = 
.By the same argument used above, the GW invariants vanish.hT13T10i(2;0;
) = 0 8 
 � 0hT13T11i(2;0;
) = 0 8 
 � 0The invariant hT13; 
od 3i(1;1;1)Choosing generi
 representatives for the 
lasses T10, T11, T12, T13, sta-ble maps from redu
ible 
urves of 
lass (1; 1; 1) give no 
ontribution be-
ause the expe
ted dimension ofM0;2(H; (1; 1; 1)) is 7 while redu
ible 
urveshave less moduli. Then we restri
t to study what happens on the 
ompo-nentM0;2(H; (1; 1; 1))irr parametrizing maps from irredu
ible 
urves of 
lass(1; 1; 1), whi
h is smooth of the expe
ted dimension. Fix a generi
 point Z0of H representing T13 with Supp Z0 = fp0; q0g.Lemma 3.4.4. If (ev1; ev2) :M0;2(H; (1; 1; 1))irr ! H�H is the evaluationmap and A = fZ 2 H : lZ \ lZ0 6= ;g. Then [A℄ = (ev2)�ev�1 [Z0℄.Proof. Let (C; x1; x2; �) 2 ev�11 (Z0) with Z0 = �(x1) and Z1 = �(x2). Themap � is an isomorphism with the image 
urve �(l), whi
h is a line l inHilb2(� \Q) for � generi
 plane in P3. Sin
e both Z0 and Z1 are in �\Q,lZ1 \ lZ0 6= ;, be
ause they lie on the same plane, then ev2(ev�11 Z0) � A.The set ev�11 (Z0) is 3-dimensional as well as A, in parti
ular [A℄ = T3. Themap ev2 has degree 1 over A, in fa
t given a generi
 point Z 2 A, the lineslZ0 ; lZ generate a unique plane �. It 
uts a se
tion �\Q on Q and there is aunique line l �Hilb2(�\Q) through Z0; Z. A 
urve �(l) with two markingsis uniquely determined. Hen
e the �ber over Z 
onsists of a unique point[P1; x1; x2; �℄ where � : P1 ! H is an isomorphism with �(l) su
h that��1(Z0) = x1, ��1(Z) = x2. Then ev2(ev�11 (Z0)) is 3-dimensional. Thisproves the lemma.Corollary 3.4.5. For all Te 2 A3(H):hT13Tei(1;1;1) = ZH T3 � TeProof. It follows from 3.4.4 and 2.7.1.The invariant hT13T10i(1;1;
) for 
 � 2We 
an �x generi
 representatives for the 
lasses T13; T10, in parti
ularZ0 = fp0; q0g, C(p2; l2) with p0 =2 l2 and p0; q0 6= p2.
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If 
 = 2, all redu
ible 
urves of 
lassC1 [C2 [ 
1F [ 
2F with 
1 + 
2 = 2(C1 + F ) [ (C2 + F )(C1 + F ) [C2 [ F(C2 + F ) [C1 [ F
an not interse
t Z0; C(p2; l2) sin
e they have less moduli then the expe
teddimension. Instead redu
ible 
urves of type (C1+C2+F )[F give a 
ontri-bution equal to 2. In fa
t both the markings have to lie on the C1+C2+F -
omponent and the previous 
al
ulation showed there is exa
tly one stablemap of su
h a 
lass ful�lling the in
ident 
onditions. Moreover we have twopossible 
hoi
es for adding the F -
omponent. Instead irredu
ible 
urves�(p) of type C1 + C2 + 2F give 
ontribution zero be
ause the interse
tionwith Z0 �xes p = p0 and q0 2 � \ Q while the se
ond evaluation map im-poses p0 2 l2. This is impossible be
ause of the hypothesis of generi
ity. Asimilar argument shows that also irredu
ible 
urves C(l1; l2; f) do not giveany 
ontribution to the invariant.A 
urve of type (1; 1; 
) with 
 � 3 is ne
essarily redu
ible. There 
an bea 
ontribution only from those not 
ompletely 
ontained into � [ �, fordimensional reasons. By means of the vanishing result 2.8.4, it is easy tosee that the GW invariant is equal to 1 for 
 = 3 and vanishes otherwise.We have the following table: 
 = 2 
 = 3 
 � 4hT13T10i(1;1;
) 2 1 0Relations de�ning QH�s (H)The relations f�i de�ning QH�s (H) are:T3 �T3� (T1+T2)�T3+T1 �T2�P
�1 2q
3(2T1T2+T 21 +T 22 �T1T3�T2T3) = 0T1 � T1 � T1 � q1(T3 � T1) + 2q1q3(2T1 + T2) + q1q23(T1 + 2T2 � T3) = 0T2 � T2 � T2 � q2(T3 � T2) + 2q2q3(T1 + 2T2) + q2q23(2T1 + T1 � T3) = 0T1 � T1 � T2 � 2T1 � T4 = 0T1 � T1 � T3 � 2T1 � T4 � 2q1q3(T1 + T3)� 2q1q23(T1 + 2T2 � T3) = 0
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T2 � T2 � T1 � 2T2 � T4 = 0T2 � T2 � T3 � 2T2 � T4 � 2q2q3(T2 + T3)� 2q2q23(2T1 + T2 � T3) = 0T1 � T2 � T3 � 2T3 � T4 = 0T4 � T4 � T4 � 2q1q2q23T4 = 0T4 � T4 � T1 � 2q1q3T2T4 � q1q2q3T3 + 2q1q2q23(2T1 + T2)+�q1q2q33(2T1 + 2T2 � T3) = 0T4 � T4 � T2 � 2q2q3T1T4 � q1q2q3T3 + 2q1q2q23(T1 + 2T2)+�q1q2q33(2T1 + 2T2 � T3) = 0T4 � T4 � T3� 2(q1q3T2T4+ q2q3T1T4)� q1q2q3T3� 2q1q2q23(2T1 +2T2� T3)+�3q1q2q33(2T1 + 2T2 � T3) = 0T1�T1�T4� 12q1(T2T3�T1T2)�q1q3(2T1T2+T 22 )� 12q1q23(T1T2+2T 22 �T2T3)+�q1q2q3(1 + 2q3)T0 = 0T2�T2�T4� 12q2(T1T3�T1T2)�q2q3(2T1T2+T 21 )� 12q2q23(T1T2+2T 21 �T1T3)+�q1q2q3(1 + 2q3)T0 = 0T1 � T2 � T4 � T4 � T4 � q1q3T 22 � q2q3T 21 � q1q2q3(1 + 2q3)T0 = 0T1�T3�T4�T4�T4�q1q3(T1T2+T 22+T2T3)�q2q3T 21�q1q23(T1T2+2T 22�T2T3)+�q1q2q3(1 + 4q3 + 3q23)T0 = 0T2�T3�T4�T4�T4�q2q3(T1T2+T 21+T1T3)�q1q3T 22�q2q23(T1T2+2T 22�T1T3)+�q1q2q3(1 + 4q3 + 3q23)T0 = 0In fa
t they satisfy the hypothesis of 3.3.3. In parti
ular we 
an write:QH�s (H) = Q [q1 ; q2; T1; T2; T3; T4℄[[q3℄℄(f�i )i=1;��� ;17Remark 3.4.6. In the ring QH�s (H) the identity T 24 = T13 
orresponds to:T4 � T4 = T13 + 2q1q2q23T03.5 The subring generated by the divisor 
lassesWe apply the First Re
onstru
tion Theorem (FRT) to the subalgebra of theChow ring of H generated by the divisor 
lasses. So we 
an 
al
ulate all the
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tree level GW invariants whi
h do not have T4 among the arguments. Thenwe present a (partial) algorithm whi
h permit us to 
ompute (almost) allthe genus zero GW invariants for H.Let S denote the subalgebra of A�(H) generated by T1; T2; T3. All the 
lassesin the �xed basis of A�(H) 
an be written as some produ
t of the divisor
lasses ex
ept T4. Then T4 is not in S.We 
an 
onsider the asso
iated subring QS in QH�(H) and apply FRT toit. It says we 
an 
ompute all the genus zero GW invariants with argumentsin S by knowing few initial values. These are determined as follows. Letev : M0;2(H; �) ! H2 be the usual evaluation map For 
1; 
2 2 S we haveto 
al
ulate: Z[M0;2(H;�)℄vir ev�(
1 � 
2)Sin
e 
od ev�(
1 � 
2) has to be equal to 2a + 2b + 3 and 
od 
i � 4 fori = 1; 2, we �nd the upper-bound a + b � 2. So we have to 
onsider onlythe following 
ases:� (0; 0; 
) (1; 0; 
) (0; 1; 
) (1; 1; 
) (2; 0; 
) (0; 2; 
)(
od 
1; 
od 
2) (1; 2) (1; 4) (1; 4) (3; 4) (3; 4) (3; 4)(2; 3) (2; 3)In x2.7 and x3.3 we 
al
ulated some of these invariants. The left ones areobtained by means of the asso
iativity applied to the equations f�i . Then weknow all of them. This implies that we 
an 
al
ulate all the GW invariantson H without T4 among the arguments.An algorithm for the tree level GW invariantsTo have a 
omplete knowledge of the genus zero GW-system on H we needan algorithm 
omputing invariants of type hTm4 
1 � : : : � 
ni�, with 
i 2 Ssu
h that 4 � deg 
1 � : : : � deg 
n � 2.We use equation (3.1) and by indu
tion we suppose to know all the invari-ants: hT r4 
1 � : : : � 
ni� with r < mhT r4 
1 � : : : � 
si� with r + s < m+ nhTm4 ~
1 � : : : � ~
ni� with deg ~
n < deg 
nhTm4 
1 � : : : � 
ni�0 with � � �0 > 0 e�e
tiveIf m = 0, there is no problem be
ause ea
h 
i is in S.If m = 1 and n = 0, then we know hT4i(0;0;
) = 0, for all 
 � 1.
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If m = 1 and n = 1, then 
1 lives ne
essarily in 
odimension 3 and we havealready 
al
ulated all the invariants in x3.3.If m = 1 and n � 2, we use (3.1):XhTi � Tj � Te �Ya2A 
ai�1 gef hTk � Tl � Tf �Yb2B 
bi�2 ==XhTi � Tk � Te �Ya2A 
ai�1 gef hTj � Tl � Tf �Yb2B 
bi�2By indu
tion, we know all the invariants with �i 6= 0, i = 1; 2. We look onlyto the terms with either �1 or �2 equal to zero, i.e. on the left-hand side:hTi � Tj � Tk [ Tl � nY1 
si�| {z }I1 + hTi [ Tj � Tk � Tl � nY1 
si�| {z }I2on the right-hand side:hTi � Tk � Tj [ Tl � nY1 
si�| {z }I3 + hTi [ Tk � Tj � Tl � nY1 
si�| {z }I4Sin
e 
i 2 S, there exists a de
omposition 
n = � [ �1 with �1 2 A1(H)and deg � = deg 
n � 1. We 
hoose:Ti = T4; Tj = 
1; Tk = �; Tl = �1; R = 
2 � : : : � 
n�1Then I1 is the value hT4
1 � : : : � 
ni� we want to know (this will alwaysbe the 
ase). Up to a s
alar (possibly zero) I2 is hT4 [ 
1 � � � Ri�, all itsarguments are in S. Analogously I4 is proportional to the known invarianthT4 [ � � 
1 � Ri�. Finally in I3 = hT4 � � � 
1 [ �1 � Ri� the minimal degreede
reased by one. Then we 
an write I1 as a 
ombination of lower degreeterms. After a �nite number of steps we 
an redu
e our problem to theprevious 
ase with n = 1.Ifm � 2 and n = 1, then we have three possibilities for 
od 
1. If 
od 
1 = 4,we 
an suppose 
1 = T13. We 
hoose:Tk; Tl 2 A2(H) \ S with Tk [ Tl = T13Ti = Tj = T4R = Tm�24We obtain that in I2 = hTm�24 T13TkTli� we have a lower number of T4's aswell as in I3 and I4, sin
e T4 [ Tk, T4 [ Tl are in S. We 
an redu
e theproblem to �nd hT4T13
i� , with 
 2 A2(H) \ S, i.e. m = 1.
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If 
od 
1 = 3, then we 
an de
ompose it as 
1 = � [ �1, with �1 2 A1(H)as above. Fixing:Ti = T4; Tj = T4; Tk = �; Tl = �1; R = Tm�24we get I2 proportional to hTm�24 T13�i� , and we know it by indu
tion. Theinvariant I3 = hTm�14 � �T4[�1i� has less T4-
lasses and the minimal degreeis lower. Finally I4 is proportional to hTm�14 T13i� , then it is known.If 
od 
1 = 2, we use the same tri
k with:Ti = T4; Tj = T4; Tk = �1; Tl = �2; R = Tm�24where �1; �2 are two divisors su
h that �1 [ �2 = 
1. Also in this 
ase we
an redu
e our problem to the 
ase m = 1.If m � 2 and n � 2, then we write 
n = �[�1, �1 2 A1(H) and we 
hoose:Ti = T4; Tj = 
1; Tk = �; Tl = �1; R = Tm�14 
2 � : : : � 
n�1Then I2; I4 are invariants with less T4's and in I3 the minimal degree isdeg � = deg 
n � 1. By indu
tion we redu
e to the 
ase n = 1 or m = 1.To 
omplete the algorithm we need to �nd the invariants with m � 2 andn = 0. For dimensional reasons m has to be odd. At the moment we arenot able to give a re
ursion formula to evaluate these invariants.



Chapter 4Enumerative appli
ationsWe use the results on the Small Quantum Cohomology obtained in theprevious 
hapter to 
ount how many hyperellipti
 
urves on Q of given genusand bi-degree pass through a �xed number of generi
 points. Basi
ally weredu
e a question in higher genus to a question about rational 
urves onthe Hilbert s
heme H, as in [Gr℄. To do this we need to �nd a relationshipbetween our hyperellipti
 
urves and some rational 
urves on H.With the word hyperellipti
 we will mean an irredu
ible 
urve with a 
hoi
eof hyperellipti
 involution.4.1 The moduli spa
e of hyperellipti
 
urves map-ping to QWe start with two lemmas, a proof of the �rst one 
an be found in [Gr℄.Lemma 4.1.1. If f : C ! Pr is a morphism from a hyperellipti
 
urvesu
h that it does not fa
tor through the hyperellipti
 map � : C ! P1 thenHi(C; f�O(1)) = 0 for all i > 0.A similar result holds for maps to Q.Lemma 4.1.2. Let pi : Q ! P1 be the two proje
tions and � : C ! Qbe a morphism from a hyperellipti
 
urve su
h that �i := pi Æ � : C ! P1,i = 1; 2, does not fa
tor through the hyperellipti
 map.Then Hi(C;��TQ) = 0 for all i > 0.Proof. Consider the Euler sequen
e:0! O ! O(1)�2 ! TP1 ! 0Sin
e TQ = p�1(TP1)� p�2(TP1), a surje
tion is de�ned:H1(C;��p�1O�2(1) � ��p�2O�2(1))! H1(C;��TQ)! 0By hypothesis Hj(C;��p�iO�2(1)) = 0 for j > 0, so Hj(C;��TQ) = 0.71
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LetMg;0(Q; (d1; d2)) be the moduli spa
e of maps � : C ! Q from a smoothirredu
ible proje
tive 
urve C of genus g su
h that ��[C℄ = (d1; d2). Let Mgbe the moduli spa
e of semistable proje
tive 
urves of genus g. We denoteby Hg the sub-lo
us parametrizing hyperellipti
 
urves. If C is hyperellipti
then the 
y
li
 group of order 2 a
ts on the spa
e of universal deformationsU of C. It 
an be proved that the �xed lo
us V � U is the universaldeformation spa
e of C as a hyperellipti
 
urve and it is obviously smooth.It follows that Hg �Mg is a smooth substa
k. The 
artesian diagram:~Hg(Q; (d1; d2)) - HgMg(Q; (d1; d2))? - Mg?de�nes the spa
e ~Hg(Q; (d1; d2)) parametrizing maps � : C ! Q from ahyperellipti
 
urve C of genus g with ��[C℄ = (d1; d2). We are interested inthe open subset Hg(Q; (d1; d2)) of maps � su
h that the 
omposition maps�i = pi Æ � : C ! P1; i = 1; 2 do not fa
tor through the hyperellipti
 map.Theorem 4.1.3. The natural morphism � : Hg(Q; (d1; d2))! Hg is smooth.Proof. It follows from the vanishing result 4.1.2; for ea
h � : C ! Q inHg(Q; (d1; d2)), we have H1(C;��TQ) = 0. Then by theorem 2.2.1, the for-getful morphismMg;0(Q; (d1; d2))!Mg is smooth in [�℄. Sin
e smoothnessis a lo
al property, the theorem follows.Corollary 4.1.4. Hg(Q; d) is smooth and irredu
ible.Proof. Smoothness is a dire
t 
onsequen
e of the theorem, sin
e both Hgand � are smooth.Sin
e Hg is irredu
ible, it is enough to prove the �bers of � are irredu
ibleof 
onstant dimension. A �ber ��1(C) is the set of all � : C ! Q of bi-degree (d1; d2) su
h that both �1; �2 do not fa
tor through the hyperellipti
map. They are two morphisms to the proje
tive line, so they 
orrespondto two line bundles on C of degree d1; d2 respe
tively. We get a morphismf = (f1; f2) : ��1(C) ! Pi
d1(C)�Pi
d2(C). By Lemma 4.1.1 Im(fi) is asubset of fLi : Li is spanned; h1(Li) = 0g. Conversely, for i = 1; 2, let Wibe the subset of Pi
di(C) of sheaves Li su
h that Li is spanned, h1(Li) = 0and Li is not a multiple of g12 . Then ea
h Li 2 Wi is in the image Im(fi).Wi is open and dense (if not empty), be
ause Pi
di(C) is irredu
ible. Hen
eIm(fi) 
ontains the open subset Wi and therefore it is irredu
ible (be
auseWi is). It follows that Im(f) is irredu
ible of dimension 2g. Ea
h �berf�1(L1;L2), Li 2 Wi, is a produ
t V1 � V2, where Vi is the open set ofpairs of global se
tions (s1i ; s2i ) of Li without 
ommon zeros, modulo s
alars.
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Hen
e these �bers are irredu
ible and they have the same dimension equalto 2(d1 + d2) � 2g, be
ause the �rst 
ohomology of Li vanishes. Therefore��1(C) is irredu
ible of dimension 2(d1 + d2).4.2 The basi
 
orresponden
eAn element in Hg(Q; (d1; d2)) is a diagram:C � - QP1� 2:1?where � is the hyperellipti
 map and ��[C℄ has bi-degree (d1; d2) on Q.De�ne � : C ! P1 �Q by �(p) = (�(p); �(p)). Then Z = Im(�) is 
losedbe
ause � is proper and it is irredu
ible be
ause � is regular. It 
omes witha natural map pr1 : Z ! P1 whi
h is a 
at morphism, by [Har℄ Chap. IIIProp. 9.7. The generi
al �ber of pr1 is a set with two distin
t points, that isto say pr1 is a 
at family over P1 with �bers subs
hemes of Q of dimensionzero and length two. By the universal property of H there exists a uniquemorphism g making the following diagram 
artesian:Z //pr1

��

Uu
��

// QP1 g // Hwhere U is the universal family over H.So we asso
iate to � a morphism g : P1 ! H 
anoni
ally. This is wellde�ned for ea
h point [C;�℄ 2 Hg(Q; (d1; d2)).Conversely, given a map g : P1 ! H we 
an pull it ba
k via u:C //�
��

�
++Uu2:1

��

// QP1 g // Hwhere C = U �H P1 and � is a 2 : 1 
at morphism. Then we get a diagram:C � - QP1� 2:1?
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If g(P1) � �, then C is not a hyperellipti
 
urve be
ause it would not beredu
ed. If g(P1) meets � transversally, then C is a smooth hyperellipti

urve. Interse
tion points g(P1) \ � 
orrespond to bran
h points for thehyperellipti
 map � : C ! P1, be
ause � is the bran
h lo
us of u.The genus of C is given by the Hurwitz formula:2gC � 2 = deg � � (2gP1 � 2) + [g(P1)℄ ��Let g(P1) be a 
urve of 
lass (a; b; 
), then gC = a+ b� 
� 1.Remark 4.2.1. Sin
e the genus is non-negative, a+ b > 
.Finally we 
al
ulate the bi-degree of �(C). It is given by the interse
tionof �(C) with the generi
 
oni
 (1; 0) + (0; 1) on Q. It 
orresponds to theinterse
tion produ
t of the 
y
le 
lass (a; b; 
) with the two divisors T1; T2 ofH: d1 = (a; b; 
) � T1 = bd2 = (a; b; 
) � T2 = aRemark 4.2.2. Sin
e [g(P1)℄ � � = 2(gC + 1) > 0 there is rami�
ation forthe map � and C is 
onne
ted.Then a hyperellipti
 
urve C on Q of genus g and bi-degree (d1; d2) is rep-resented by a rational 
urve in H of 
lass (d2; d1; d1 + d2 � g � 1). We willmake this senten
e more rigorous after �xing some more notation.Let us 
onsider parti
ular rational 
urves, those parametrized by the opensubset M tr0;0(H; �) � M0;0(H; �) of maps from irredu
ible rational 
urvesful�lling:i. they interse
t � transversallyii. they are not 
ontained in �iii. they are disjoint from �2Let Htrg (Q; d) � Hg(Q; d) be the open subset parametrizing maps � su
hthat:a) C is a smooth hyperellipti
 
urve (! i.)b) both �i do not fa
tor through � (! ii.)
) both di�erentials d�i are inje
tive on rami�
ation points of � (! iii.).Remark 4.2.3. Conditions de�ning Htrg (Q; d) are equivalent to say that� : C ! P1�Q is an embedding, i.e. Z is 
losed, redu
ed and irredu
ible.Theorem 4.2.4. There is a 
anoni
al isomorphism:Htrg (Q; (d1; d2)) �=M tr0;0(H; (d2; d1; d1 + d2 � g � 1))Proof. The proof of theorem 2.4 in [Gr℄ never makes use of the fa
t that the
urves are in P2, then it works also for hyperrellipti
 
urves on Q.
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4.3 The main theoremBy what we have showed so far, to 
ount hyperellipti
 
urves on Q of bi-degree (d1; d2) and genus g passing through r = 2d1+2d2+1 general points isequivalent to 
ount irredu
ible rational 
urves of type (d2; d1; d1+d2�g�1)inH whi
h are transversal to � and meet r general translates of �(p), p 2 Q.So we might expe
t a relationship between the number we want to 
ountand the Gromov-Witten invariants hT r4 i�. In general, the moduli spa
eM0;r(H; (d2; d1; d1 + d2 � g � 1)) 
an have some 
omponents whose generalelement 
orresponds to a redu
ible 
urve, moreover these 
omponents 
anhave dimension as large or larger than the expe
ted one. Then there 
anbe undesired 
ontributions to the number we want to �nd. The followingtheorem gives us a pi
ture of the 
urves in H we are 
ounting.Theorem 4.3.1. Fix an e�e
tive 
lass � = (a; b; 
) 2 A1(H), a + b � 1,and r general points p1; : : : ; pr on Q with:r = 2a+ 2b+ 1Then:1. there exists at most a �nite number of irredu
ible rational 
urves of
lass � in
ident to all the 
y
les �(pi);2. all su
h 
urves interse
t � [ � in points disjoint from the �(pi);3. given any arbitrary stable map � : C ! H of 
lass � in
ident to allthe 
y
les �(pi), then C has a unique irredu
ible 
omponent whi
h isnot entirely mapped into �[�, su
h a 
omponent is of 
lass (a; b; 
0),where 
0 � 
.Consequen
es : the theorem tells us that given a stable map � : C ! Hsatisfying all in
ident 
onditions, aside from the distinguished 
omponentof C of 
lass (a; b; 
0), all other 
omponents are of type (0; 0; 
0) and theyare entirely mapped into �. So they are multiple 
overs of P1. Moreover,adding a 
omponent of type (0; 0; 
0) to a stable map 
an never 
ause it tobe in
ident to any extra �(q), sin
e it would for
e another 
omponent of the
urve to meet the 
orresponding 
y
le. Finally, di�erent (0; 0; 
0) 
omponentsare disjoint, sin
e they are di�erent �bers of the support map s, then theymust be in
ident to the distinguished 
omponent, C been 
onne
ted.We 
on
lude that the sour
e 
urve looks like a 
omb, with the 
omponentof 
lass (a; b; 
0) as the handle and the 
omponents of 
lass (0; 0; 
0) as theteeth. We get exa
tly the same pi
ture obtained in [Gr℄.There is a �nite number of su
h 
urves. Infa
t, if C is irredu
ible, thenthe theorem 
on�rms our assertion. If C is redu
ible, we have only a �nitenumber of possibilities for the multiple 
overs of a (0; 0; 1)-
urve and only a
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�nite number of points of interse
tion of the distinguished 
omponent with�. So there are only �nitely many potential image 
urves for stable mapsin
ident to all of the 
y
les. In parti
ular, if we denote by A the lo
us inM0;0(H; (a; b; 
)) de�ned by �(ev�11 �(p1)\ : : :\ ev�1r �(pr)) , where � is theusual map forgetting the markings (and stabilizing) and ev = (ev1; : : : ; evr)is the evaluation map onHr, then A is a union of �nitely many 
omponents.In fa
t the theorem says that the only moduli in the 
hoi
e of a stable mapmeeting all the �(pi) 
omes from the 
hoi
e of multiple 
overs of the (0; 0; 1)
urve. Then as a set, ea
h 
omponent of A de
omposes as a produ
t:M(
1)�M(
2)� : : : �M(
m)with 
1 + : : : + 
m = 
 and M(
i) as in x2.6. In pari
ular A is 
ontained inthe smooth lo
us of M0;0(H; (a; b; 
)).Before going on with the proof of the theorem we need a lemma.Lemma 4.3.2. With notations as in the theorem, let C be an irredu
ible ra-tional 
urve meeting all the 
y
les �(pi) and the orbit �4. Then it interse
ts� [ � in points disjoint from all the �(pi).Proof. Let r = 2a + 2b + 1 and M � M0;r(H; (a; b; 
)) be the open subsetof points [C;�; xj ℄j=1;:::;r su
h that C �= P1, �(C) \ �4 6= ;. It is smooth ofdimension 2r. The map M !M0;0(H; (a; b; 
)) whi
h forgets the markingsand stabilizes fa
tors through:M �i- M0;1(H; (a; b; 
)) - M0;0(H; (a; b; 
))where �i is the map forgetting all the markings but xi and stabilizing. It issurje
tive onto its image Im(�i) = U1 whi
h is the universal 
urve over thesmooth lo
us U0 of M0;0(H; (a; b; 
)). Then �i : M ! U1 is 
at of relativedimension r�1. The set N = f[C;�; x℄ : �(x) 2 �[�g is a 
losed subset ofU1, as it is the inverse image ev�1(�[�). Its 
omplementary U1nN is openand interse
ts all the 1-dimensional �bers of U1 ! U0, then it is dense. Thisimplies that N is a proper 
losed subset, equivalently it has dimension lowerthan r + 1. Moreover the inverse image Mi = ��1i (N) has dimension dimMi < dim M = 2r be
ause also the restri
ted map �i : Mi ! N is 
at ofrelative dimension r � 1. Let ~Mi be the resolution of singularities of Mi. Ithas the same dimension as Mi. Set � =Qri=1 �(pi), for generi
 �xed pointsp1; : : : ; pr 2 Q and 
onsider the inverse image of � in ~Mi via the evaluationmap, i.e. the 
omposition:evi : ~Mi �Mi ev- HrWe apply the Position Lemma to evi with the group A0, the 
onne
ted
omponent of A 
ontaining the identity, a
ting on H. Then ev�1i (�) haspure dimension equal to dim Mi � 
od(� � Hr) < 0, that is to say it isempty. In parti
ular ev�1(�) \Mi = ;.
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Remark 4.3.3. Note that Hr is almost homogeneous be
ause there is agroup a
ting on ea
h fa
tor and globally we have a �nite number of orbits.Proof of the Main Theorem and appli
ationsWe are ready to give a proof of the theorem. We will use indu
tion on thenumber of 
omponents of the sour
e 
urve C and we will apply the PositionLemma with respe
t to the a
tion of A0 on H.Proof. STEP 1. Let C be a rational, irredu
ible 
urve with r markings andlet � : C ! H be a stable map of 
lass � = (a; b; 
) su
h that �(C) * �[�.Set � = Qri=1 �(pi). Note that the moduli spa
e M0;r(H; �) is smooth in[C;�℄ of the expe
ted dimension. Then we 
an 
onsider the restri
tion ofthe evaluation map to the smooth open subset:M = f[C;�; xj ℄ : C �= P1; �(C) * � [ �g �M0;r(H; �)We 
an apply the Position Lemma:ev�1(�) - �M? ev - Hr?It follows that dim ev�1(�) = 0 sin
e M is of the expe
ted dimension 2r.STEP 2. Suppose that C is irredu
ible and �(C) � �, then in � we have��[C℄ = ~� = (a2 ; b2 ; 
) by what we showed in x1.5. Let a0 = a2 ; b0 = b2 . Wehave a 
urve D of 
lass a0[L1℄ + b0[L2℄ + 
[L3℄ in � and we 
an 
onsiderits proje
tion to Q. The image B is a 
urve of genus zero and of bi-degree(a0; b0) on Q. In fa
t Li maps to li for i = 1; 2 and L3 maps to a point. The
y
les �(pi) restri
ted to � have 
odimension 2 and the 
urve D is in
identto all of them if and only if the image 
urve B goes through all the points pi.A rational 
urve on Q of bi-degree (a0; b0) passes through at most s generi
alpoints of Q, where:2s = dim Q+ Z(a0;b0) 
1(TQ)� 3 + s) s = 2a0 + 2b0 � 1 = a+ b� 1We have s < r = 2a + 2b + 1, so the irredu
ible 
urves �(C) � � give no
ontribution to our 
al
ulations.If C is redu
ible and �(C) � � then we 
an write C = C1 [ : : :[Ck. Everyirredu
ible 
omponent Cj is su
h that �(Cj) meets at most sj = aj + bj � 1
y
les �(pi), where P ai = a;P bi = b. This means that �(C) interse
ts atmost P si = a + b � k < r points. Also these 
urves give no 
ontributionsto our 
al
ulations.
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STEP 3. Now we analyse the 
ontribution from irredu
ible rational 
urvesC su
h that �(C) � �. Sin
e � is the disjoint union ~W1t ~W2 and �(C) is irre-du
ible, it is enough to 
onsider the 
ase �(C) � ~W1. The pushforward 
lass��[C℄ in ~W1 is (a; b2 ) with b even. Denote by 'r1 the map ~W r1 '1�:::�'1- W r1indu
ed by the blowup H! G. Then we have a 
omposition map:M0;r( ~W1; (a; b=2)) ev- ~W r1 'r1- W r1 � GrIf a 
urve of 
lass (a; b=2) interse
ts all the 
y
les �(pi) then its image via'1 is of 
lass ('1)�(a; b=2) = b2 [W1℄ = b[�2;1℄ be
ause W1 is a quadri
 in G,and it goes through all the points l1(pi) 2 G. Su
h a 
urve passes throughat most s �xed points in G, with s given by the formula:4s = dim G+ Zb[�2;1℄ 
1(TG)� 3 + s) s = 1 + 4b3Sin
e s < r we verify that irredu
ible 
urves mapped into � give no 
ontri-bution to our 
omputation.Suppose that C is the union of k irredu
ible 
omponents and �(C) � �.Sin
e ~W1; ~W2 are disjoint, if an irredu
ible 
omponent is mapped into ~Withen all the 
omponents are a
tually mapped into the same divisor ~Wi, by
onne
tedness. We 
an assume �(C) � ~W1. The number k of 
omponents isbounded. In fa
t ��[C℄ = (a; b; b) in H, with b even, then k is at most equalto a + b2 . This implies that �(C) goes through at most s = k+4b3 � 2a+9b6
y
les. We get s < r also in this 
ase.Lemma 4.3.2 
on
lude the proof of 1.-2.STEP 4. Suppose C is redu
ible and �(C) � � [ �. In parti
ular assumethat C has k irredu
ible 
omponents Ci su
h that:Ci � �3 for 1 � i � k1Ci � ~W1 for k1 + 1 � i � k2Ci � ~W2 for k2 + 1 � i � kWe �x the notations:D1 = Sk1i=1 Ci is of 
lass (a1; b1; 
1)D2 = Sk2i=k1+1Ci is of 
lass (a2; b2; 
2)D3 = Ski=k2+1Ci is of 
lass (a3; b3; 
3)The 
onditionsP aj = a; P bj = b; P 
j = 
 hold. The image 
urve �(Dj)interse
ts rj 
y
les. By the previous results we know that rj � 2aj +2bj forall j then r1 + r2 + r3 � 2a + 2b < r. The 
urve C does not interse
ts allthe 
y
les �(pi).
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STEP 5. Note that a point [C;�; xj ℄ su
h that C = SCi and ea
h Ciinterse
ts the dense orbit �4 lives in the smooth lo
us of M0;r(H; (a; b; 
)).The subset R parametrizing all su
h stable maps is a proper 
losed subsetof the smooth lo
us, then it has dimension lower than 2r. Then for generi
points pi the interse
tion R \ ev�1(�) is empty.We have to analyse only the 
ontribution from stable maps � : C ! H withrational redu
ible domain and �(C) * � [ � but su
h that there is ex
essat the point [C;�; xi℄, i.e. there exists at least one 
omponent of C mappedinto �[�. We 
an write C = C0 [C1 with C0 \C1 = fpg a point mappedin �[�. Set [�(Ci)℄ = (ai; bi; 
i) in H, withP ai = a; P bi = b; P 
i = 
.Suppose (ai; bi) 6= (0; 0) for i = 0; 1 and let �(C) be in
ident to all the 
y
les�(pi). We know that �(Ci) interse
ts ri = 2ai + 2bi + 1 � ki 
y
les, withk0 + k1 � 1. We 
an assume r0 = 2a0 + 2b0 + 1 and r1 = 2a1 + 2b1. Byindu
tion, C0 has a unique irredu
ible 
omponent of 
lass (a0; b0; �
0), with�
0 � 
0, not entirely mapped into � [ � and interse
ting all the 
y
les. Allthe other 
omponents are of 
lass (0; 0; 
j). There is only a �nite numberof possible values for �
0 then there are �nitely many possible images of C0.In parti
ular �(C0) \ (� [ �) 
an be 
ontained in a �nite number of 
y
lesof the form �(qj) with qj =2 fp1; : : : ; prg, by statement 2. The 
urve �(C1)meets at least one of the �(qj), be
ause �(p) 2 �[�. So it interse
ts r1+1
y
les and a point of interse
tion is in � [ �. This is impossible. Thena1 = b1 = 0.We 
an write expli
itly the relationship between Gromov-Witten invariantson H and enumerative geometry of hyperellipti
 
urves on Q.De�nition 4.3.4. Let E((d1; d2); g) be the number of hyperellipti
 
urvesof genus g and bi-degree (d1; d2) on Q passing through 2d1 + 2d2 + 1 = rgeneral points, 
ounted with multipli
ity.Theorem 4.3.5. With � = (d2; d1; d1 + d2 � g � 1) and r as above, theenumerative numbers E((d1; d2); g) satisfy the equation:hT r4 i� =Xh�g�2h+ 2h� g �E((d1; d2); h) (4.1)Proof. We write � = (a; b; 
) where a = d2; b = d1; 
 = d1 + d2 � g � 1.Fixed r general points p1; : : : ; pr the invariant hT r4 i� is given by the degreedeg(ev�1(Q�(pi)) where ev�1(Q�(pi)) is a �nite set of points by 4.3.1.Ea
h of them 
orresponds to a hyperellipti
 
urve whi
h then 
omes witha multipli
ity. By the results of se
tion 2.6, the only 
ontribution to theinvariant 
omes from the zero dimensional 
omponent of the moduli spa
eM0;r(H; �) 
orresponding to stable maps from 
urves whi
h look like 
ombs.These are the union of an irredu
ible (a; b; 
0)-
urve, 
0 � 
, in
ident to allthe 
y
les �(pi) with 
 � 
0 rational 
urves mapping isomorphi
ally onto a
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(0; 0; 1)-
urve. Hen
e the number of stable maps is equal to the number ofpossible irredu
ible 
urves of 
lass (a; b; 
0) times the number of 
hoi
es forthe atta
hment points of the (0; 0; 1)-
urves. We have to 
hoose 
�
0 pointsamong the 2(a + b � 
0) ones in the interse
tion (a; b; 
0) � �. The formulathen follows from the relationship between (a; b; 
) and (d1; d2; g).Remark 4.3.6. We expe
t that for generi
 data the hyperellipti
 
urves ofgiven genus and bi-degree passing through r points have always multipli
ityequal to one. This is equivalent to the 
ondition that a general irredu
iblerational 
urve in H interse
ts the strati�
ation trasversally. At the momentwe 
an only partially prove su
h a statement. Roughly speaking the ideais that given a stable map � : C ! H su
h that �(C) is as in the hypoth-esis, the sheaf ��(TH) is generated by global se
tions. We 
an move the
urve away from any 2-dimensional 
losed orbit �i2 and make it interse
ttransversally any 3-dimensional orbit. So let M be the smooth open subsetofM0;0(H; (a; b; 
)) of the expe
ted dimension r = 2a+2b+1, parametrizingthe stable maps � : C ! H su
h that C �= P1 and �(C) \ �4 6= ;. We de-note by Ni the 
losed subsets of M de�ned by the 
ondition �(C)\�i2 6= ;,i = 1; 2. We need to prove that ea
h Ni has dimension lower than r, i.e.given a point in Ni there exists a deformation of it whi
h is not in Ni. Ea
hmap � 2M is a free morphism in the sense of [K℄, (Chap. II, Def. 3.1) andea
h orbit �i2 is of 
odimension 2 in H, then we 
an apply [K℄ PropositionII.3.7 and 
on
lude that Ni is a 
losed proper subset. Transversality for theinterse
tion with the orbits �3 and �3 is more subtle (see [P℄).Remark 4.3.7. We note that the sum in 4.3.5 is �nite, in fa
t the valuesof h are equal to d1 + d2 � 
0 � 1 with 
0 � 
. We 
an re
over the valuesE((d1; d2); g) by knowledge of all the GW invariants hT r4 i(d2;d1;d1+d2�g�1).Remark 4.3.8. At the moment we do not know how to 
ompute all theinvariants hT r4 i(d2;d1;d1+d2�g�1), (see x3.5).Remark 4.3.9. The numbers E((d1; d2); g) are zero for small values ofd1; d2; g. In fa
t E((d1; d2); g) is less then or equal to S((d1; d1); g), thenumber of smooth 
urves of bi-degree (d1; d2) of genus g passing through rpoints. S((d1; d1); g) is zero if d1d2�d1�d2�1 < 0. Then the �rst possiblynonzero GW invariants are hT 114 i(3;2;2) and hT 114 i(2;3;2).We 
an also extend [Gr℄ Theorem 3.7 to our 
ase, as follows. Fix k generalpoints pi on Q and l general pairs of points qj; q0j with k + 3l = r, r as inthe previous theorem. We want to 
ount how many hyperellipti
 
urves onQ of genus g and bi-degree (d1; d2) pass through all the points and satisfyalso the 
ondition that for some 
hoi
e of the hyperellipti
 involution qi ishyperellipti
ally 
onjugate to q0i for all i. Let El((d1; d2); g) be the solutionof this problem. A hyperellipti
 
urve on Q will meet hyperellipti
ally 
on-jugated points q; q0 if and only if the 
orresponding rational 
urve on H will
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meet the point Z with support fq; q0g. Choosing a representative of thepoint 
lass T13 outside � [ �, 
urves moving in ex
ess dimension 
annotsatisfy this 
ondition, so theorem 4.3.1 is true also for 
y
les representingT13. The same argument used in the proof of [Gr℄ Thm.3.7. will hold forthe Gromov-Witten invariants involving the point 
y
le 
lass. In parti
ular:Theorem 4.3.10. With notations as in theorem 4.3.5:hT l13 � T r�3l4 i� =Xh�g�2h+ 2h� g �El((d1; d2); h) (4.2)Remark 4.3.11. Also in this 
ase the sum over h is �nite. By what weshowed in x3.5 if l � 1 then we 
an 
ompute all the invariants hT l13 �T r�3l4 i�.Therefore we 
an invert the formula (4.2) to get the numbers El((d1; d2); h).



82 CHAPTER 4. ENUMERATIVE APPLICATIONS



Bibliography[Al℄ Quantum 
ohomology at the Mittag-Le�er Institute ed. P. AluÆ, Ap-punti della S
uola Normale Superiore di Pisa (1997)[A-M℄ M. F. Atiyah, I. G. Ma
donald, Introdu
tion to Commutative Algebra,Addison-Wesley Publishing Comp. In
. (1969)[B℄ A. Beauville, Quantum 
ohomology of 
omplete interse
tions, R.C.P.25, Vol. 48 pp. 57-68, Pr�epubl. Inst. Re
h. Math. Av. 1997/42, Univ.Louis Pasteur, Strasbourg (1997)[Beh℄ K. Behrend, Gromov-Witten Invariants in Algebrai
 Geometry, Inv.Math. 127 (1997), n. 3 pp. 601-617[B-M℄ K. Behrend, Yu. Manin, Sta
k of stable maps and Gromov-WittenInvariants, Duke Math. J. 85 (1996), n. 1 pp.1-60[Ber℄ A. Bertram, Quantum S
hubert 
al
ulus, Adv. Math. 128 (1997), n. 2pp. 289-305[B-F℄ K. Behrend, B. Fante
hi, The intrinsi
 normal 
one, Invent. Math.128 (1997), n. 1 pp. 45-88[CF℄ I. Cio
an-Fontanine, Quantum 
ohomology of 
ag varieties, Intern.Math. Res. Noti
es (1995), n. 6 pp. 263-277[C-M℄ B. Crauder, R. Miranda, Quantum 
ohomology of rational surfa
es,in The moduli spa
e of 
urves, ed. R. Dijkgraaf, C. Faber, G. van derGeer, Progress in Mathemati
s 129 (1995), pp. 33-80[DF-I℄ P. Di Fran
es
o, C. Itzykson, Quantum interse
tion rings, in Themoduli spa
e of 
urves, ed. R. Dijkgraaf, C. Faber, G. van der Geer,Progress in Mathemati
s 129 (1995), pp. 81-148[F-G℄ B. Fante
hi, L. G�otts
he, The 
ohomology ring of the Hilbert s
hemeof 3 points on a smooth proje
tive variety, J. Reine Angew. Math. 439(1993), pp. 147-158 83



84 BIBLIOGRAPHY
[F-P℄ W. Fulton, R. Pandharipande, Notes on stable maps and quantum
ohomology, in Algebrai
 Geometry-Santa Cruz 1995, Amer. Math.So
. (1997), pp. 45-96[Fo℄ J. Fogarty, Algebrai
 families on an algebrai
 surfa
e, Amer. J. Math.90 (1968), pp. 511-520[Ful℄ W. Fulton, Interse
tion Theory, Se
ond Edition, Springer (1998)[G-D℄ A. Grothendie
k, J. Dieudonn�e, El�ements de G�eometrie Alg�ebriqueIII, Publ. Math. IHES 11 (1961)[G-H℄ P. GriÆths, J. Harris, Prin
iples of Algebrai
 Geometry, New YorkWiley (1978), 409[G-P℄ L. G�otts
he, R. Pandharipande, The quantum 
ohomology of blow-upsof P2 and enumerative geometry, J. Di�erential Geom. 48 (1998), n. 1pp. 61-90[Gr℄ T. Graber, Enumerative geometry of hyperellipti
 plane 
urves, J. Al-gebrai
 Geom. 10 (2001), pp. 725-755[Har℄ R. Hartshorne, Algebrai
 Geometry, Springer-Verlag (1977), GTM 52[H-M℄ J. Harris, I. Morrison, Moduli of 
urves, New York, Springer-Verlag(1998), GTM 187[Il℄ L. Illusie, Complexe 
otangent et d�eformations I, Springer-Verlag(1971), SLN 239[K℄ J. Koll�ar, Rational Curves on Algebrai
 Varieties, Springer (1996)[Kon℄ M. Kontsevi
h, Enumeration of rational 
urves via torus a
tions, inThe moduli spa
e of 
urves, ed. R. Dijkgraaf, C. Faber, G. van derGeer, Progress in Mathemati
s 129 (1995), pp. 335-368[K-M℄ M. Kontsevi
h, Y. Manin, Gromov-Witten Classes, Quantum Coho-mology, and Enumerative Geometry, Comm. Math. Phys. 164 (1994),pp. 525-562[L-MB℄ G. Laumon, L. Moret-Bailly, Champs alg�ebriques, Berlin, Springer-Verlag (2000)[L-Q℄ W.-P. Li, Z. Qin, On 1-point Gromov-Witten invariants of the Hilberts
hemes of points on surfa
es, Turk. J. Math. 26 (2002), pp. 53-68[L-T℄ J. Li, G. Tian, Virtual moduli 
y
les and Gromov-Witten invariantsof algebrai
 varieties, J. Amer. Math. So
. 11 (1998), n. 1 pp. 119-174



BIBLIOGRAPHY 85
[Ma℄ M. Maggesi, On the Quantum 
ohomology of blow-ups of proje
tivespa
es along linear subspa
es, preprint arXiv:math.AG/9810150[Man℄ Y. I. Manin, Generating fun
tions in algebrai
 geometry and sumsover trees, in The Moduli Spa
e of Curves, ed. R. Dijkgraaf, C. Faber,G. van der Geer, Progress in Mathemati
s 129 (1995), pp. 401-417[Mu℄ V. Mu~noz, Quantum 
ohomology of the moduli spa
e of stable bundlesover a Riemann surfa
e, Duke Math. J. 98 (1999), n. 3 pp. 525-540[P℄ D. Pontoni, in preparation[Q-R℄ Z. Qin, Y. Ruan, Quantum 
ohomology of proje
tive bundles over Pn,Trans. Amer. Math. So
. 350 (1998), n. 9 pp. 3615-3638[W1℄ E. Witten, Two-dimensional gravity and interse
tion theory on modulispa
e, Surveys in Di�. Geom. 1 (1991), pp. 243-310[W2℄ E. Witten, The Verlinde algebra and the 
ohomology of the Grassman-nian, in Geometry, topology and physi
s, Intern. Press. Cambridge,MA, (1995), pp. 357-422


