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Introduzione

Lo schema di Hilbert Hilb?(P! x P!) parametrizza i sottoschemi chiusi zero
dimensionali di lunghezza due di P! x P! e risulta essere liscio, irriducibile
e 4-dimensionale. In questa tesi diamo una presentazione esplicita della sua
Coomologia Quantum Piccola. Inoltre elaboriamo un algoritmo (parziale)
che ci permetta di calcolarne anche la Coomologia Quantum Grande, pur
non essendo in grado di darne una presentazione esplicita.

Entrambe le coomologie quantum sono una deformazione dell’usuale anello
di coomologia H*(Hilb?(P' x P'),Q). Si ottengono aggiungendo oppor-
tune variabili formali e definendo un prodotto x che estende il prodotto
U dell’anello di coomologia stesso.

Per ottenere i suddetti risultati utilizziamo la teoria degli spazi di moduli
di mappe stabili, che sono degli stack nel senso di Deligne-Mumford. In
particolare usiamo tecniche tipiche della teoria delle deformazioni oltre che
calcoli di classi fondamentali virtuali per stack di Deligne-Mumford. Tutto
cio e giustificato dal fatto che i coefficienti del prodotto * sono gli invarianti
di Gromov-Witten dello schema di Hilbert in esame. In questo caso, essi
hanno un significato enumerativo, i.e. contano il numero di curve razionali
che soddisfano certe proprieta di intersezione, come ad esempio passare per
un fissato numero di punti. In particolare mentre la Coomologia Quantum
Grande coinvolge gli invarianti corrispondenti ad un numero n > 3 di con-
dizioni di incidenza, per quella Piccola n = 3.

Infine abbiamo dimostrato come si possano contare le curve iperellittiche
su P! x P!, di genere g > 2 e bi-grado (dy,ds) fissati, che passano per
un certo numero di punti per mezzo degli invarianti di Gromov-Witten
di Hilb?(P! x P'). Quest’ultimo risultato ¢ un’applicazione dei calcoli di
coomologia quantum ed estende ’analogo risultato ottenuto da Tom Graber
per le curve iperellittiche piane in [Gr].

Riteniamo che il metodo usato per trovare questi risultati abbia raggiunto il
suo limite naturale con lo studio di Hilb?(P! x P!). Tl tentativo di estenderlo
allo schema di Hilbert di due punti sul blowup di P? in un punto o su P"
si e rivelato inefficace a causa della piu complicata struttura degli spazi di
moduli da prendere in considerazione, per i quali non disponiamo di una
buona descrizione geometrica.
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Introduction

Over the last decades a great interest in the Quantum Cohomology of a
manifold has grown out of the work of physicists (see [W1], [W2]), provid-
ing a rich field of investigation for mathematicians. In particular given a
smooth complex projective variety X (or a symplectic manifold), there are
two different objects which can be called Quantum Cohomology of X; these
are the Big Quantum Cohomology ring and the Small Quantum Cohomology
ring.

The Big Quantum Cohomology ring is a x-product structure on V ® R,
where V = H*(X,Q) and R is a power series ring, which makes V ® R into
a R-algebra and reduces to the cup product when putting all the variables
to zero. The Small Quantum Cohomology ring is defined by setting equal
to zero some of the formal variables, for more details see [F-P], [G-P].

The x-product is defined in terms of the (genus zero) Gromov- Witten in-
variants of X, i.e. the virtual number of genus zero m-pointed stable maps
p: C — X with prescribed u,[C] that meet m general cycles on X. We
use the word “virtual” because the Gromov-Witten invariants need not have
enumerative significance in general. In the Small Quantum Cohomology ring
only the 3-point Gromov-Witten invariants appear. The quantum product
can be shown to be commutative, associative, with unit. From the asso-
ciativity relations one gets a system of quadratic equations known as the
WDV V-equations (so named after E. Witten, R. Dijkgraaf, H. Verlinde, E.
Verlinde by B. Dubrovin). Kontsevich and Manin in [K-M] remark that,
under good hypotheses on X, the WDV V-system admits a unique solution
once a few starting data are known, and it is in fact very overdetermined.
Quantum Cohomology can be explicitly computed using various tools. When
H*(X,Q) is generated by H?(X,Q) the same authors prove the First Re-
construction Theorem: it gives an algorithm to find recursively all the genus
zero Gromov-Witten invariants from the 2-point invariants by means of
the WDVV-equations. The most famous application is due to Kontsevich
[Kon]. He calculates the number of rational curves of degree d in P? go-
ing through 3d — 1 points. He only needs as starting datum the number of
lines through two points. Other examples of computations exploiting the
WDV V-equations can also be found in [DF-I].

There are some examples of varieties for which the Big and/or the Small
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Quantum Cohomology rings have been computed, such as P*, P! x P! [F-P],
the blowup of P? in r points [G-P], Grassmannians [Ber], flag varieties [CF],
rational surfaces [C-M], some complete intersections [B], the moduli space of
stable bundles over Riemann surfaces [Mu], some projective bundles [Q-R]
and some blowups of projective bundles [Ma].

A smooth variety X is called convez if H'(P!, f*T'x) = 0 for all genus zero
stable maps f : P! — X. Convexity ensures that the Gromov-Witten in-
variants are enumerative. Only few of the varieties mentioned above are
non-convex.

A significant example of a non-convex variety is represented by the Hilbert
scheme Hilb™(X) of n points on a smooth complex projective surface X.
It parametrizes the closed 0-dimensional subschemes of X of length n; it
is smooth, projective, 2n-dimensional. For n = 1,2 it is easy to describe;
Hilb!(X) is X itself and Hilb?(X) is obtained by blowing up X x X along
the diagonal and then taking the quotient by the obvious lifted action of the
involution. The case where n = 2, X = P? has been studied by Graber in
[Gr]. The author gives a presentation of the Small Quantum Cohomology
ring of the Hilbert scheme by means of quantum deformations of the rela-
tions defining the Chow ring A*(Hilb?(P?), Q). Moreover he gets enumera-
tive results on the hyperelliptic plane curves passing through an opportune
number of points by studying the moduli space of genus zero stable maps
into Hilb?(IP2).

The aim of this thesis is to study the Quantum Cohomology of the Hilbert
scheme Hilb?(P! x P!) and to give some enumerative applications extending
Graber’s results to the case of hyperelliptic curves on P' x P'. The structure
of the work is the following.

Chapter 1 is devoted to describing the Hilbert scheme we are working on.
In §1.1 we follow the above mentioned construction of the Hilbert scheme
as a quotient by the action of an involution and we give the correspond-
ing presentation of its Chow ring which is isomorphic to the cohomology
ring. In §1.2 we prove that Hilb?(P' x P') can be seen as a blowup of the
Grassmannian of lines in P? along two lines and also in this case we give the
corresponding presentation of its Chow ring. In particular it turns out that
the Chow ring is not generated by the divisor classes, but we need to add a
cycle class in codimension two to get a complete set of generators. Then we
study the induced action of the automorphism group of P! x P'. The Hilbert
scheme Hilb?(P! x P!) is not homogeneous but only almost-homogeneous,
i.e. it has a finite number of orbits forming a stratification. This property
is good enough to make enumerative geometry on it, as shown in §1.3. In
paragraph 1.4 we analyse the homogeneous part of degree 1 of the Chow ring
of Hilb?(P! x P!). In the following §1.5 we give the generators of the effective
cone, postponing a detailed description of some connected effective curves to
§1.8. Paragraphs 1.6 and 1.7 are dedicated to the description of two special
divisors on the Hilbert scheme which are related to the orbit stratification.
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Finally in §1.9 we study the cycle whose points are closed subschemes of di-
mension zero and length 2 incident to a given point of P! x P!. It represents
a cycle class in A?(Hilb?(P' x P')) which will be of crucial importance for
applications in Chapter 4.

In Chapter 2 we recall the notion of moduli space of stable maps (§2.1)
with a brief review of deformation theory in §2.2. Paragraph 2.3 collects
some results about the virtual fundamental class of a moduli space and in
§2.4, §2.5, §2.6 we apply the general theory to some moduli spaces of genus
zero stable maps into Hilb?(P! x P'). The chapter finishes with the general
definition of the Gromov-Witten invariants (§2.7) and the calculation (§2.8)
of some invariants on the Hilbert scheme we are interested in. In particular,
we carry out some excess calculations on the moduli spaces mentioned above
involving their obstruction bundles.

Chapter 3 collects some of the main results. We recall the definition of
the Big Quantum Cohomology ring of a non-convex variety and the tech-
niques we want to use in order to obtain a presentation of it for Hilb?(P! x P!)
(§3.1). Then after fixing the notations in §3.2, we construct the Small Quan-
tum Cohomology ring and give a presentation of it in §3.3 and §3.4. This
is possible only after making some explicit computation of Gromov-Witten
invariants using both techniques from classical enumerative geometry and
the WDV V-equations. We conclude the chapter restricting our attention to
the subalgebra S of the Chow ring generated by the divisors classes. This
allows us to write a (partial) algorithm calculating recursively all the genus
zero Gromov-Witten invariants of Hilb?(P! x P') starting from few initial
data. The idea is to divide the problem into two parts. The invariants with
all the arguments in the subring S are known by the First Reconstruction
theorem, only those involving the generating cycle class in codimension two
are left and for them we use the WDV V-equations.

Chapter 4 presents our main result (theorem 4.3.1) which solves the prob-
lem of counting the hyperelliptic curves of given genus and bi-degree on
P! x P! passing through a certain number of points which may also be hy-
perelliptical conjugated (theorems 4.3.5, 4.3.10). In particular in §4.1 we
construct a space parametrizing maps from a hyperelliptic curve to P! x P!
with good properties. In §4.2 we prove it is canonically isomorphic to the
space of stable maps from irreducible rational curves into Hilb?(P! x P!)
with good intersection properties with the stratification. This means that
we can reduce an enumerative problem in higher genus to a question about
rational curves. Finally our main theorem is stated and proved in the last
paragraph 4.3. It extends the result obtained by Graber in [Gr|, Theorem
2.7, as well as its applications to the enumerative problem.

The main technical differences between P! x P! and P? are related to the
problem of finding a presentation of the Quantum Cohomology rings, since
the Chow ring of P! x P! is not generated by the divisor classes. As said
above, we (partially) succeeded in solving the problem dividing it in two
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parts and using two powerful tools as the First Reconstruction Theorem
and the WDV V-equations. Moreover the description of the effective cone
of Hilb?(P! x P') is more complicated, and requires to give two geometrical
descriptions of the Hilbert scheme. We also need to consider more effective
curves for the calculation of the initial data of the algorithm computing
(almost) all the Gromov-Witten invariants. This is because the group of
automorphism of P! x P! has more orbits. In particular we have to be care-
ful about intersection properties of curves with the induced stratification
(theorem 2.4.5).

We think that the techniques we used in this thesis have reached their nat-
ural limits and they can not be successfully applied to find any enumerative
result for example in the case where X = P",n > 3, or BlpIP’Z. In fact we
considered P", and found out that problems arise from studying the compo-
nents of excess dimension of the moduli space of genus zero stable maps into
Hilb?(P"). Instead for the blowup of P? in a point we were not able to find
a simple geometrical description of the effective cone of the corresponding
Hilbert scheme. Moreover also in this case the Chow ring of Hilb?(BI,P?)
is not generated by the divisor classes. Finally the orbits of the induced
action of the automorphisms group of BlpIP2 give a stratification with no
good intersection properties.
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discussing with me about it.

I am grateful to Professor Angelo Vistoli because he made possible my visit
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at the Universita di Padova, who gave me the opportunity to visit people
from other universities.

In particular T would like to thank all the friends from SISSA and ICTP
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Chapter 1

Some properties of
Hilb?(P! x P

In this chapter we will fix notations and present some results on the Hilbert
scheme H :=Hilb?(P' x P') whose points are represented by 0-dimensional
length-2 closed subschemes Z of P! x P!. There are two possible geometric
descriptions of H, as a desingularization of the second symmetric product
Sym?(P! x P!) (see [Fo]) and as a blow up of the Grassmannian Grass(2, 4)
of lines in P? (see §1.2). We will give a description of both constructions
with the corresponding Chow rings. Then we will study how some particular
divisors and effective curves on H look like, so that we will have a detailed
picture of the ambient space we are going to work on.

Notations and conventions: we work over C and we identify the variety
P! x P! with its image under the Segre embedding P! x P! — P3, ie. the
smooth quadric @ in P3. We have two rulings on Q, if ¢1, g2 are the two pro-
jections on P!, then qfl(p) represents the first ruling and qgl(p) the second
one.

We consider Chow rings with Q-coefficients. All the varieties under consid-
eration in this chapter have a cellular decomposition, hence their Chow rings
are isomorphic to their even-codimension cohomology rings, [Ful] Example
19.1.11. In particular we can identify them.

Given a vector bundle E we denote by P(E) the projective bundle Proj(Sym¢)
where £ is the sheaf of sections of E. Geometrically, points of P(E) corre-
spond to hyperplanes in the fibers of F.

We indicate a non-reduced 0-dimensional subscheme Z of length 2 of @) as
a pair (p,v) where p € @ is the support of Z and v € P(Tg ) is a direction.
We call it a non-reduced point of H.



2 CHAPTER 1. SOME PROPERTIES OF HILB?(P! x P!)

1.1 The Hilbert scheme as a quotient

The following description of the Hilbert scheme H is valid for all Hilbert
schemes of 2 points on a smooth variety [F-G].

Let U be the product Q x Q, pry,pro the two projections, U the blowup of
U along the diagonal 6 C U. The group Zj acts on U fixing J, so there is
an induced action on the blowup U. The Hilbert scheme H is the quotient
scheme U /Z4, hence it is smooth, projective, irreducible and 4-dimensional.
We have the following diagram:

i—2 o' .\
bltg\ bl
5 - U pT1 Q
t pr2

with 4, j the natural inclusions, bl the blowup map, 6 the quotient map and
0 the exceptional divisor.

Remark 1.1.1. Given the quotient map 6 : U — H = U/ZQ, we have two
induced homomorphisms:

6 : A*(H) — (4*(0))%> € A*(U)
0, : A*(U) — A*(H)

They are such that 0,0* = 2 id = 6*0,. More precisely:

0,0* : A*(H) — A*(H)
v 2y
00, :A*(U) — A (U)"

« — a+o*(®)

where o : U — U is the natural involution defined by o(a ® ) = f® a. Tt
follows that the map 6*6, A (0722 is the multiplication by 2 homomorphism.
Note that 6* is an isomorphism of (Q-algebras which does not respect the
degree:

AY(H) S
0" 2

A0y 2 g

Moreover by projection formula 6, is A*(H)-linear, where A*(U) is made
into an A*(H)-algebra via 0*.
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First description of A*(H)
As pointed out in (1.1.1), #* induces an isomorphism of A*(H) with A*(U)72.

Then to write down explicitly the Chow ring of H we need to know A*(U).

Lemma 1.1.2. Let ¢ be the class 01(/\/'5‘(7) = [5]|5 which has degree —1 on
a fiber of the blowup map over 6. Then:

Y — AT(0)[¢] —
¢+ Xim (F)ie(Tg)¢* =0

Proof. As § is the projectivization of the rank-2 vector bundle N5/U we
can use [G-H] p.606. Moreover by the isomorphism § = @ and the exact
sequence:

0—=>Ts —i"Ty —)./\/‘5‘[]—>0

we have ¢;(Ns ) = ¢i(Tq). O

Lemma 1.1.3. Let & be the class of the exceptional divisor & in U. Set s
to be such that 7*(vs) = (=1)°cs(Tq), for s =1,2. Then:

A(Q)**[¢]
(a®f-Fa)g=0 Vo, f € A(Q)
&+ 1 =0

In particular, as a vector space A*(U) is simply A*(Q) @ A*(Q) & A*(Q)E.

A*(U) = (1.1)

Proof. The exact sequence (see [Ful] p.114-115):
0— A*(0) = A*(U) @ A*(8) — A*(U) = 0

gives the equality: B

~ A*(U) @ A*(9)

A* =

U= ="50)

By the Kiinneth formula, the Chow rings of § and U are isomorphic to

A*(PY) ® A*(P') and A*(Q) ® A*(Q), respectively. Let hi, ho be the cycle

classes of the two rulings on Q. We write hg = [Q], h1, hg, hg := hihg for

the basis of A*(Q) and h, ® hs, with 0 < r,s < 3, for the basis of A*(U).
Then:

(1.2)

we) =4 - Gel e 52
By Lemma 1.1.2:

T (2 — (2hy + 2ha)¢ + 4h1hy =0

The pullback of the divisor class { via the natural embedding j is exactly
the class ¢ in A'(9). Moreover the quotient (1.2) means that for each «, 3
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in A*(Q) we have to identify the element a ® § € A*(U) pulled back to o
with the product class aff € A*(Q), i.e. (a® - L@ a)f =0. Then we get
the formula (1.1). O

Remark 1.1.4. Writing explicitly the second relation at denominator in
(1.1) we get:

2 =02h ®1+2hy@1)¢ — (h3®@1+1®h3 +hy @ hy + hy ® hy)

Let [6] € A*(U) be the class of the diagonal and h; be the dual basis with
respect to the intersection pairing on A*(Q). Then:

Moreover i*[§] = 4hs = c2(Tg), so that we can write £2 + 1€ + [§] = 0.

Remark 1.1.5. We can identify 0*0,(h; ® 1) with the element h; ® 1+1Q h;

in A*(U), obviously 6*6,(¢) = 2¢ since it is invariant under involution.
Proposition 1.1.6. A basis for A*(H) is given by the elements:

hi @ hj + hj ® hi, (h; ® 1)
with 0 < 4,7, < 3.

Proof. A basis is given by all the elements in A*(U) which are invariant for
the Zq-action. O

We can write the following table:

A'(H) | AY(H) | A%2(H) | A3(H) | AY(H)
1

S[] = Sl 53 S7 SQ
So Sy Sg
S10 Ss S13
Se
S
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The cycle classes are defined to be:

So = [H]
Si=hel+1mn
So=ho®1+1R hy
S3:h3®1+1®h3
Sy =h1 ®ha+hy®hy
S5 =h1 @ hy

Se = ho ® ha
S7=h1 ® hs+ hs® h;
Sg = ho @ hg + h3 ® ho

Sg = h3 ® hs
S10=¢

S = (h1 ®1)§
Si2 = (ha ® 1)¢

(
Si3 = (hg &® 1)

Remark 1.1.7. We work with coefficients in Q so 6* : A*(H) — A*(U)%>
is an isomorphism and we can identify the class S; € A*(H) with the corre-
sponding element §*S; € A*(U)%2, being careful about the degrees.

Poincaré Duality on U gives:

S3 Sy S5 Se¢ Suu Si2

S 2 0 0 0 0 0

5 ‘821 %2 Sg“ S410 2 0 0 0 0
58 P SS|1o0o o o 1 0 0
s 1o o 1 Ss |0 0 1 0 0 0
13 S:10 o 0 0 0o 1
S0 0 0 0 1 0

Dividing by 2 the above values we obtain the coefficients for the intersection
pairing on H.

Proposition 1.1.8. As a Q-algebra A*(H) is generated by Si,S2, S35, S10
and it is defined by the relations:

S3=83=83=0 S185510 = S285510 = 0
st3 = 5353 =0 S18585 = S2

S S1 = S Sy = S?%Slg =0 528y = 251853
St = (S1+82)S10— 5182 S551 = 25,853
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Proof. The following equalities hold:

Sy = 5152 — 53
S5 =182
S5 = 152
S7 = 5153
Sg = 5253
Sy = 182

Si1 = 151510
Si2 = £55S10
Si3 = 553510

It goes straightforward that the relations in the statement define A*(H) has
a Q-algebra. O

1.2 The Hilbert scheme as a blow up

In the following we will prove that the Hilbert scheme H can be obtained as
a blow up of the smooth projective 4-dimensional Grassmannian Grass(2,4)
of lines in P2. We use the symbol G to denote such a Grassmannian.

Lemma 1.2.1. There exists a surjective morphism ¢ : H — G defined by
mapping a point Z € H to its associated line lz.

Proof. Let Grass(2,4) be the functor represented by G and Zi C H x P3 be
the universal family with projections py, po to H and P3 respectively. Denote
by L the sheaf p5Ops(1). The natural morphism ¢ : (p1).L — (p1)+L|2g
is surjective. Moreover (p1).L is a trivial bundle since it is flasque ([G-D]
3.2.1), with fiber over Z € H canonically isomorphic to H?(P3, Ops(1)).
Also (p1)«L]|zy is a vector bundle on H, it has rank 2. Then 4 is an element
of Grass(2,4)(H). On the fiber over Z € H, 1 is the surjection:

H(P?, Ops(1)) — H®(Z,02(1))

with kernel H(IP?,Z(1)) the space of homogeneous linear forms which van-
ish on Z. It corresponds to the surjective morphism ¢ : H — G which maps
each point Z to its associated line [ . ]

There are two special lines W1, Wy C G which are disjoint. A point [; € W;
represents a line on the i-th ruling of @), ¢ = 1,2. Denote by W the disjoint
union of these special lines, i.e. W ={l € G : [ C Q}. Let V be the open
subset G — W.

Lemma 1.2.2. The morphism ¢ is birational.
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Proof. The inverse map ¢ ! is well defined on the open subset V. It is

given by ¢~'(r) = rN Q, for all r € V. Since G is the Hilbert scheme
of lines in P3, there is a universal family Zg C G x P3. The morphism
m: Z2aN(G x Q) — V is a flat family of 0-dimensional length-2 subschemes
of ), then by the universal property of H, there exists a unique morphism
V — H which has to be ¢p~!. This shows that ¢ is birational. U

In particular 1.2.2 says that there is an isomorphism between H — ¢~ 1 (W)
and G — W. If r € W then the inverse image ¢~ !(r) is Sym?(r) = P2
so that ¢ !(W) is a Cartier divisor in H. Hence we have a commutative
diagram:

H—% BlyG

RN

G

where p is the blowup morphism.
Lemma 1.2.3. The morphism « is an isomorphism.

Proof. Since both H and Bly G are smooth, « is an isomorphism if and
only if it is bijective. It is obviously bijective on V. To verify bijectivity on
the exceptional locus it is enough to look at the restriction

ar o (W) = p H(Wh) = PNy, i)

If € Wi, then a; : Sym?(r) — P(Nw,|g)r is a morphism from P? into
itself. Then it is defined by a triple of homogeneous polynomials of some
degree n without common zeros. By explicit calculations it can be verified
that n = 1. This implies that the generic fiber of a; is a point, i.e. oy is a
bijection. O

Theorem 1.2.4. The Hilbert scheme H is isomorphic to the blow up of the
Grassmannian G along W.

Proof. 1t follows from Lemmas 1.2.1, 1.2.2, 1.2.3. O

This result permits us to write the Chow ring of H by means of A*(G).

The Chow ring of the Grassmannian

We recall the description of A*(G) by Schubert cycles [Ful] §14.7.
Fix a flag in P3:
peErCnC P3

where p is a point, r a line and 7 a plane. Then:

. A%(G) has basis: ggg={l€G:lN7#0} =[G]
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. AY(G) has basis: o10={l€ G :lNr#0}

. A%(G) has basis: 011 ={l€G:1Cn}, o99={l€G:pel}
. A3(G) has basis: 091 ={l€G:pelCn}

. AY(G) has basis: 090 ={l€ G :p€l=r}=pt]

Proposition 1.2.5. A*(G) is generated by 010,020, as a Q-algebra. The
ring structure is defined by the relations:

_ _ 2 _
01,002,0 = 01,001,1 = 02,1 Oip = 01,1 + 020
2 _ 2 _ _ —
030 = 01,1 = 01,0021 =1 020011 =0
Proof. See [G-H] Chap.1 §5. O

Second description of A*(H)

In the following we will refer to the diagram:

W, —* ~H
Pr=0|w, @
W, — G

Uk

where ¢ is our blowup map, i; is the inclusion and Wy, is P(Nw,|g), for

k = 1,2. We denote by W the exceptional divisor Wi U Ws. As in the
previous section, to write down A*(H) we use the short exact sequence:

0 A*(W) = A*(G) @ A*(W) — A*(H) =0

So we have to calculate the quotient:

A'(H) = A(G)s A" (W)/A"(W)
= AY(G) @ A (W) @ A* (W) /A" (W) @ A*(Wy)  (1.4)
We need to know the rings A*(W}), A*(Wy). W} is a projective line then

A*(Wy) = A*(P'). Denote by I, the pullback via ¢ of the generator of this
Chow ring.

Lemma 1.2.6. Let &, = ¢p (NWk\H) be such that its pullback to a fiber ¢, * (r)
is represented by a line of degree —1. Let NWk\G be the normal bundle of
Wi in G. Then:

(W A (W) [é]
A - -
" &+ (1) 6We) &7 =0

LIk, &)
(12,63 — 61,E37)
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Proof. As Wy, is a projectivization of the vector bundle ./\/Wk‘g the lemma
follows by applying [G-H] p.606. O

By formula (1.4), we have the following description of A*(H):

AYH) | AYH) | A%2(H) | A3(H) | A*(H)
H]=1| o010 |o011 020 | 021 09,2
m 13 nr
2 Yz 78
5
N6

The cycle classes are defined as:

Or,s = *(Ur,s)

m = jix(lyp,)  and jim =&
n2 = ja«(lyy,)  and jime =&
N3 = Jix (ll)

N4 = J2+(l2)

5 = j1*§1

N6 = J2+82

nr = jl*(llgl)
ng = J2x (l2£2)

There are two more cycle classes in codimension 3 which we are interested
e A 2 — i g2
n: 79 = j1:&7 and N1 = Jo2u&3.

Remark 1.2.7. Note that the class —[;§; is represented by a line in the
fiber of ¢; over a point r € W; such that ¢}[r] =1;, for i =1,2.

Theorem 1.2.8. 1) As a Q-algebra A*(H) is generated by 010,020,101, 72.
2) As a A*(G)-algebra A*(H) is equal to the quotient:

A" (G)[n1, n2]

A () = 520

where R is the set of relations:

m-n2 =70

n - 020="2 020=0

m - (039 —020) =12 (079 —020) =0
n = 201,002,0 + 3nfo1 0

n3 = 201,002,0 + 33010
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Proof. The relations among the elements of the basis of A*(G) hold also for
the pulled back elements in A*(H). Moreover:
_ 1
N3 = 51N 01,0
N4 = %772 “ 01,0

N5 =M

ne = N3

nr=int- o0
1.2

ng = 373 01,0

Then the statement 1) is true.
Statement 2) follows from previous calculations. O

Finally the coefficients for the intersection pairing on H are:

oi,1 020 N3 N4 15 T

i sii] 10 0 0 0 0

1,2 M7 Mg | M9 Mo 02,0 0 1 0 0 0 0

so] 1 0 02 2 0 o0 0 o0 1 o
73

mo( 0 1036 0 O 0 0 0 0 1
m | 0 0 1]0 6 "4

s | 0 0 1 0 6 0

w1 0 0 0 1 0 6

Remark 1.2.9. In 1.4.1 and 1.8.1 we will make explicit the relationship
between the two different sets of generators of A*(H) we found.

In §3.1 we will choose the more convenient basis of the Chow ring of H
in order to make easier calculations in the (Small) Quantum Cohomolgy
ring. The basis will consist of elements taken from both the presentations
of A*(H) we gave.

1.3 The action of Aut(Q) on H

Let A be the group of automorphisms of () and M be the group of automor-
phisms of P!, i.e. PGL(2). We denote by ¢ = (¢1, $2) an element in M x M
and by ¢ : P! x P! — P! x P! the involution defined by «(p, q) = (¢,p). The
group A acts on () and then on U. Blowing up the diagonal, the action lifts
to U. Since H is the quotient of U by the involution, we have an induced
action of A on it. In this section we study this induced action and exploit
it to get a transversality result.

Proposition 1.3.1. The connected component Ay C A containing the iden-
tity is exactly M x M.
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Proof. There exists an embedding Q — P3 given by a multiple of the anti-
canonical divisor, i.e. such that P* = P(H(Q,—1Kg)). Any element of A
acts on IP? too (since K¢ is canonical). This implies that:

A={¢ e PGL4): $(Q) = Q}

A is smooth because we work in characteristic zero, and T4 is a trivial
bundle so dim Ag = dim T4 ;4. To prove the statement it is enough to show
that the tangent space T 4 14 is 6-dimensional as well as M x M.
If we think of @ as the set {v € P3: 'y =0}, an element of PGL(4) in A
has to satisfy F(A) = 'A. A — AId = 0. Hence an element of the tangent
space T4 14 is of type Id + sB (mod s?) with B € M (4 x 4) and it has to
fulfil:

F(Id+ sB) =0 (mod s?) (1.6)

Put F(A) = 'A-A—Id = 0. We can consider the following equation which
is equivalent to (1.6), up to scalars:

F(Id+sB)=s('!B+ B)=Xd for Be M(4x 4)

In order to have a solution, A must be divisible by s, that is to say there exists
a € Csuch that ‘B+B = a-Id. Consider the map ¢ : M (4x4) — M(4x4),
defined by mapping a matrix B into the sum !B+ B. It is easy to see that the
inverse image under ¢ of the subgroup generated by the identity matrix is 7-
dimensional. Hence the tangent space T4 74 is 6-dimensional. We conclude
that Ap has the same dimension as M x M, then they coincide. O

Note that Ay # A since ¢ € A is not an element of Ay. In fact it is easy to
see that the group A has exactly two connected components: Ag and tAp.

Description of the orbits for the A-action

We give a description of the orbits with respect to the A-action on the
varieties under consideration. We have three orbits on U:

o1 ={(p,q) x (a,b) : (p,q) = (a,b)} =4
o2 = {(p,q) x (a,b) :p=a,q# b} U{(p,q) x (a;b) : p # a,q = b}
03:{(p7q) X (avb) p#aaq#b}

where p, ¢, a, b are points on P )
The lifted action on U has the exceptional divisor 4 (corresponding to the
orbit o) as invariant locus. Moreover ¢ is the disjoint union of two orbits:

01 ={Z : Supp Z =p, Iz € Q}
bo={Z:Supp Z=p, lz ¢ W;, i =1,2}

Note that in turn &; is the disjoint union of two closed subsets:

O ={Z:Supp Z=p, lzeW;}, i=1,2
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H is the quotient of U by the involution so we have four orbits on it:

Ay (~ 01) Az (w 52) Y3 (> 02) 34 (v 03)

Here indexes are choosen equal to the dimensions of the orbits. We can give
a description of them:

Yy={ZecH:Supp Z ={p,q},p#q,lz £ Q}
Y3={Z c€H:Supp Z = {p,q},p # q,1z C Q}
As={Ze€H:Supp Z =p,lz; £ Q}
Ay ={Z € H:Supp Z =p,lz C Q}

The closed orbit Ay is the disjoint union of two closed subvarieties AL,
1 = 1,2, corresponding to 61 inU.

The closure Az = Ay LI Az is the subvariety of H of non-reduced points, i.e.
Z such that Supp Z is only one point.

The orbit X3 is the disjoint union ¥} U %2 where

t={ZeH:Supp Z={p.q}.p#q. Iz € W;}

In particular the closures f;, §§ are the two exceptional divisors Wl, Wo
respectively, of the blowup map ¢ : H — G. Hence the closure %3 is equal
to the disjoint union Wl L WQ.

Finally the orbit X4 is open and dense in H.

These orbits form a stratification of H:

/\
\/

where an arrow A — B means A C B.

A transversality result

The action of A is obviously transitive on each orbit, but not on H. We
say that H is an almost-homogeneuos space since it has a finite number of
orbits for the A-action and they form a stratification. Note that the action
is transitive on H — (A3 U X3).

A slightly modified version of the Kleiman-Bertini theorem holds for almost
homogeneous spaces and gives us a transversality result.
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Lemma 1.3.2. (Position Lemma) Let A be a smooth, almost-homogeneous
space under the action of an integral group G, f : B — A a morphism with
B smooth. Let I" be a smooth cycle on A which intersects the stratification
properly, and Lyey be the locus in I' where the intersection with the stratifi-
cation is transversal. Then:

1. for a generic g € G, f~1(gT) is of pure dimension equal to the expected
one;

2. the open set (possibly empty) f=1(glreq) is smooth.
For a proof of this lemma see [Gr] Lemma 2.5.

Remark 1.3.3. If in the hypotheses of 1.3.2 we do not ask B smooth but
only pure dimensional we can consider its desingularization v : B — B.
Then by applying the Position Lemma to the composition map f : B — Awe
get that cod (f~1(¢T') C B) is the expected one, i.e. equal to cod (T’ C A).
Since:

cod (f~(gT) € B) < cod (f7'(gT) C B)
we have that 1.3.2-1) holds with the inequality
cod (f~'(gT) € B) > cod (¢ C A)

Remark 1.3.4. The group A is not integral, so we can not apply the Posi-
tion Lemma for any A-action. But we can consider the connected component
Ay € A containing the identity. Note that it defines a stratification of H

with six orbits:
A A3
A3

%3 >3

N

X4

1.4 Divisor classes of H

We want to describe the Picard group Pic (H). We need to choose between
the two possible sets of generators of A'(H) we presented in the previous
sections. To do this we introduce some 3-codimensional cycle classes with
“good” intersection properties.
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Geometrical description of the divisor classes

In §1.1 we showed that Si,Ss, S1g generate A'(H). We know a geometric
description for each of these divisor classes:

-S1=[H{Z:Supp ZnNly #£0, l; € W fixed line}]
- Sy =[{Z:Supp ZNly #0, ly € W, fixed line}]
- 2810 = [{Z : Supp Z = pt}]

In §1.2 the generating divisor classes are o1,,71,72. The first class can be
represented by the irreducible subvariety {Z : Iz Nr # 0,r C P? given line}.
The classes 7;, © = 1,2 are such that their restriction to a fiber of the blowup
maps ;, i = 1,2, is represented by a line in the plane Sym?(/;) for some
li € Wi, with structure sheaf Ogy,2(,)(—1) (see §1.2 for notations).

Note that given a projective line [, Sym?(l) is the Hilbert scheme Hilb?(1).

The choice of a basis for A'(H) and 4%(H)

We define three 3-codimensional cycle classes and calculate their intersection
product with all of the divisors.

Fix a point Iy € Wiy and let C(l;) be a line in the plane Sym?(l;). We
want to stress that all the points Z of H contained in C(I;) are such that
Supp Z C I;. We denote by C; the corresponding cycle class in A%(H). We
do the same for the class Cs. Finally fix a point pg € @) and consider the
line C(po) = P(Tq,p,) = {Z : Supp Z = po}. Let F' be the corresponding
cycle class in A3(H). The curves C(l1), C(l2), C(po) are effective in H. We
have the following intersection products:

| S0 S2 Si|oe m
Ch 1 1 0 0 -1 0
Cy 1 0 1 0 0 -1
F | -1 0 0 1 1 1

From now on we will use the following notations:
- generators of A'(H): T} := Sy, Ty := So, T3 := 01,0

- generators of A3(H): Cy, Cy, F

T T, T
Ci | 0 1 0
Cy | 1 0 O
F |0 0 1

Throughout this work the symbol (a,b,c) will be intended as a curve in H
of class aC; + bCy + cF'.
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Remark 1.4.1. From the first table we obtain:
m=T3 =T, no=T3-T1, Sio="1T1+To—T;.

Remark 1.4.2. We described H as the blowup of G along W, so we can use
the formula given in [G-H] p.608 to calculate the first Chern class ¢; (Tw):

ca(Ty) =¢*a1(Tg) — (n—k - 1)W
with n =dim G =4, k =dim W = 1. By 1.4.1 we obtain:
Cl(TH) = 2(T1 + TQ)

The following proposition gives a complete description of the cone of effective
curves in H.

Proposition 1.4.3. An effective curve in H is of class aCy 4+ bCo + cF with
a,b,c > 0.

Proof. The proof consists of two steps. First we show that the linear sys-
tems associated to Ty, 75, T3 are base-points-free and then we look at their
intersection product with the effective classes C1, Cy, F'.

The linear system associated to T3 is obviously base-points-free, because T3
is the pullback of an ample divisor class of G. Let D), € |T;|, i = 1,2, be
the divisor represented by the set

{Z €eH :Supp ZNl; #0, l; € W fixed line}

Given a point Z € H, we have two possibilities for its support either it
consists of a single point p or of two distinct points p, ¢. In both cases there
exists a divisor D;, with Z ¢ D,;,. In fact it is enough to choose l; € W;
such that either p ¢ [, or [; € W; — {l;(p),li(q)}, with l;(p),li(q) the only
lines in W; through p and ¢ respectively. This shows that also 77,75 are
base-points-free divisor classes.

The intersection product between an arbitrary effective curve and a base-
points-free divisor is always non-negative. Since:

C,-Th=1Co- T =1, F- Ty =1

and all other possible intersections give zero, an effective curve in H is of
class aCy + bCy + ¢F with a,b,¢c > 0. O

1.5 The locus A of non-reduced points of H

In §1.3 we described the closure A3 as the set of non-reduced points of H.
Since it is closed and 3-dimensional, it is a divisor. Let us denote it by A.
We will use the same notation also for the associated cycle class in A'(H)
and we will refer to it as to the diagonal of H. In this section we will give
a complete description of such a divisor and of its Chow ring.
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Geometrical description
As a divisor class in H, the diagonal A is 6., hence by 1.1.1 and 1.4.1:
A =25 = 2(T1 + T — T3) (17)

This means that A = § = P(Tg). In particular there exists a map s : A — @
which is a P'-bundle. It maps a non reduced point to its support so we will
call it the support map. We deduce that A is irreducible. Obviously it is
invariant for the A-action.

It will be useful for our subject to know how the intersection of A with a fiber
of the blowup morphism ¢ looks like. Then call D the image of A in G via
@. It is a union Dy Dy, where Dy = {l € G : INQ = pt} and D; = W UWs
are disjoint. The inverse image ¢ !(Dy) is the orbit Aj isomorphic to Dg
while for each [ € Dy, p~!(I) is the intersection Sym?(l) N A. We want to
describe the inclusion map:

P' = Sym?(l) N A — Sym?(l) = P?

Proposition 1.5.1. The diagonal A defines a conic in a fiber over the blown
up locus.

Proof. We can look at Sym?(l) as at the space of all the quadratic forms on
the 2-dimensional vector space V defining [ up to scalars. Then Sym?(I)NA
is the space of linear forms on the same vector space V., up to scalars. The
inclusion map has to be defined by mapping a form f to the square power
f2, i.e. into the sublocus of quadratic forms with a unique root. This implies
that the inclusion maps a point (z : y) € P! to the point (22 : zy : y?) € P2.
This defines a conic in the plane Sym?(l). O

Chow ring and effective curves in A

We will refer to the following commutative diagram:

pri

A—L L@ Q
pr2
id O 0
A H

i
Note that p; o j = pg 0 7 is the support map.

In 1.1 we have already calculated the Chow ring A*(P(Ty)) = A*(A), we
refer to that section for notations. A basis is given by:

A%(A) | AN(A) | A%(A) | A¥(A)
[A] hy hi¢ | hihaoC
ha ha(
¢ hyhso
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The classes hi(, ho( are the liftings of the two rulings on Q) and hihs is the
class of a fiber of s, (here we identify h; = s*(h;)). The sets:

Ly ={Z = (p,v) :p €lz =11, Iy € Wi given line} =1,
Ly ={Z = (p,v) :p € lz =y, Iy € Wy given line} = [y
L3 ={Z = (po,v) : py fixed point} = P(Tg p,)

are effective curves in A. Moreover, they are such that the corresponding
classes in A;(H) are the Poincaré dual classes of 2C1, 2C5, F, since A defines
a conic on a fiber Sym?(l;), i = 1,2, and F is the class [P(Tg,)] for some
p € Q. In particular A;(A) is generated by these effective classes.

Finally we want to describe the effective curves in H which are actually
completely contained into A. We need to find a relationship between the
divisor classes in A and the pullbacks i*Ty, i*Ty, i*T3.

Proposition 1.5.2. We can write:

1 1
pZC(A) = <§T1, §T2,T3>

where T; = 1*T}, by abuse of notation.

Proof. Note that by definition:
= j'pi(l) = " (i ©1) = 5j°0°0.(h ® 1) = 55" (M © 1+ 1 ® ha)

According to our notation hy ® 1 + 1 ® hy = 0*T} in U, so we conclude
hy = %i*Tl and by symmetry ho = %'L.*TQ. Then it is easy to verify that the
intersection product gives:

Ty i T

L4 0 2 0
Lo 2 0 0
Lj 0 0 1
The thesis follows. U

Remark 1.5.3. By the adjunction formula and 1.4.2 we get:
Cl(TA) = Cl(H)|A — A|A = 2T3

Proposition 1.5.4. The effective curves in H which are contained into A
are of type (a,b,c) with a,b,c > 0 and a,b even.

Proof. Let C C A be an effective curve of class (o, 3,7), then i,C is an
effective curve in H of class (a,b,c) for some non negative integers a, b, c.
By the projection formula, degA%Tl -+ C = § is an integer number equal to
«, hence a is even. The same is true for b, by symmetry. O
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1.6 The divisor X

In this section we study the closure of the 3-dimensional orbit 3. We will
denote it by ¥ throughout this work. It is the divisor given by the disjoint
union W, UW, of the two exceptional divisors of the blowup map ¢ : H — G,
(see §1.3). Each W; is isomorphic to P2 x P! because it is the relative Hilbert
scheme Hilb%(Q/P!).

Chow ring of W, and effective curves in ¥

Note that W, and Wy are completely symmetric, so let us consider only Wi.
We have a good description of Wy as a divisor in H (see 1.4.1) and of its
Chow ring by (1.5). In particular:

W =m=T3-15
Pic(Wh) = (I, &)
Ay(Wh) = (=&, &7)
Proposition 1.6.1. We can write:
- 1
P’LC(Wl) = <T3 — TQ, §T3>

where T; = jiT;, by abuse of notation.

Proof. By definition jin; = & and as one can easily check jiT5-(—11&1) = 0,
% 2 _

Remark 1.6.2. By the adjunction formula and 1.4.2, the first Chern classes
c1(Tyy,): c1(Tx) are:

c1(Ty,) = e1(Ta)lyp, = Wily, = 3T + Ty

Cl(TZ) = CI(TH)‘E — (Wl + WQ)‘E = 3(T1 +T2) — T3

As in the previous section we are interested in the effective curves in H
which are the pushforward of effective curves in 3. So we need to know the
effective cone of X, i.e. of Wy and Ws.

Proposition 1.6.3. The effective cone in Wy is generated by —11&; = (1,0)
and 4(—[151) + f% = (4, 1).

Proof. The inclusion map j; induces a ring homomorphism A; (W) G, A (H).
The classes —(51)«l1&1, (41)«&7 are such that:

T T, Ty
—()+h& | 010
Gt |2 4 2
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It follows that —(j1).l1& = Cy and (j1)«&2 = —4C; + 203 + 2F. So the
pushforward map is defined by:

(j1) (—ahi& + b€7) = (a — 4b)Cy + 2bC5 + 2bC3

Suppose that —ahi&; + bé? is an effective curve, since (j1). maps effective
curves to effective curves, it holds:

a>4b, b>0

We already know that a curve of class —h1&; = (1,0) is effective, since it is
a line in a fiber of ¢ gsee 1.2.7). We have to look for a second generator of

the effective cone in Wy. Let us fix two lines l;,l;’ € Wy and let C be the
following curve:

{Z :Supp Z ={p,q}, 3l € Wy withp=11Nly, ¢ =1 Ny}

It is isomorphic to Wi. Write [C] = —al1£1 + b&2, then:

The last equality tells us that C intersects a divisor in |T3[ in a point with
multiplicity. Since C is effective, we find that the effective cone in W is the
set {a(1,0) +b(4,1) : a,b > 0}. O

Proposition 1.6.4. The effective curves in H which are actually effective
curves in W are of class (a,b,c) with a,b,c >0, b= c even.
Symmetrically, the effective curves in H contained into Wy are of class
(a,b,c) with a,b,c >0, a = c even.

These conditions describe all effective curves in H contained into X.

Proof. Tt is enough to write the homomorphism A%/ (W) — A%/ (H):

N(1,0) ®N4,1) Y% NOy @ NG, @ NF
(1,0) — Ch
(4,1) - 20y + 2F
a(1,0) +b(4,1) =  aCy +2bCs + 2bF
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1.7 Description of some effective curves

We describe all the effective connected curves in some cycle classes in A; (H).
In the following chapters we will make explicit calculations on the moduli
spaces of stable maps involving such curves.

Notations : if A, Ag, ..., A, are classes in A;(H) we will say that an effec-
tive curve has class A; U As U...U A, to mean that these are the classes of
its irreducible components (eventually counted with multiplicity). A linear
combination A + Ay + ...+ A, will denote the class of an irreducible curve.
All the coefficients are understood to be non-negative.

If p € Q is a point we will denote by I;(p) the unique line of the i-ruling on
Q@ going through p.

We will use Propositions 1.5.4 and 1.6.4 without explicit reference through-
out.

Curves of class (0,0, c)

i) Given a point py € @, the curve C(pg) = P(Tq,,) is of class (0,0, 1),
(see §1.4). In particular it is entirely contained into A, because it is a
fiber of the support map s: A — Q. Note that each point Z € C(pg)
has support Supp Z = pg. Conversely a curve of class (0,0,1) is
irreducible and contained into A. Its pushforward to () is zero. Hence
it is completely contained in a fiber of the support map s, since it is
connected. This shows that all the curves of such a class look like
C(po) for some pg in Q. Moreover also a curve of class (0,0,¢) is
contained into A. It is a c-cover of a C(pg) curve. The intersection
product gives:

(0,0,¢) - A =—2¢
(0,0,¢) - ¥ =2¢

Curves of class (1,0,¢), (0,1,c)

Since the classes (1,0, c), (0, 1, ¢) are symmetric under the involution we can
analyse only one of them. We choose (1,0, ¢).

ii) A curve of class § = (1,0,0) is necessarily irreducible.
Let ¢ : H — Bly, G be the natural map. Then ¢,(1,0,0) = 0. Hence
if C has class (1,0,0) it must be contained in a positive dimensional
fiber of ¢. Such a fiber is Hilb?(l;) for some I; C Q, so C is a line
in it. We denote it by C(l1), (see §1.4). All Z € C(l;) are such that
Supp Z C ;. The intersection product gives:

(1,0,0) - W, = -1 (1,0,0) - Wy =0
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iii)

iv)

It is contained into Wi. It intersects the diagonal A in at most two
points, since A restricted to the fiber of the blowup map ¢ : H —» G
over [ is a conic (see §1.5).

Fix a point p; € @ and a line I; € W such that p; ¢ l;. The curve
C(p1,l1) ={Z € H: Supp Z = (p1,q),q € l1} is irreducible of class
B =1(1,0,1) = C; + F. Tt is disjoint from A. Since:

(1,0,1) - Wy, =0 (1,0,1) - Wy =1

we conclude that it is disjoint from W, and not contained into W (by
§1.6). It intersects ¥ in a unique point Z = (p1,l; Nla(p1)) € Wo. Tt
is easy to see that these are all the possible irreducible curves of this
class. In fact let C' be an irreducible curve of class (1,0,1). Since it is
disjoint from A we can consider the curve C defined by the cartesian

diagram:
C
C

Also C is disjoint from A, then it is isomorphic to the image curve
bl(C). We can identify them and work on U.

C has class hy @ hs+hs ®hy on U (see Lemma 1.1.3 for notations). It
is symmetric under the natural involution. If it has two components
then these are of class h; ® h3, hs ® h; respectively. This implies that
C is a curve C(p1,l1) for some p; € Q, Iy € Wy, p1 ¢ [1.

If C has only one component then there is a morphism C =1, gener-
ically of degree 1, for some Iy € W;. By symmetry, we conlcude that
it is an irreducible curve contained in Iy X 1 such that it does not
intersects the diagonal. This is impossible.

Let (1,0,1) be the class of a reducible curve C. Then C is the union
C(l) U C(p) for some I € Wy and p € Iy with p € C(l1) N A-1(,).
It is contained into A U 3.

o U0—%U=9QxQ

I

O
— H

A curve of class f§ = (1,0,¢), ¢ > 2, can be written as a union of
irreducible effective components. A priori we have three possibilities
to do that:

- C1 + cF is the class of an irreducible curve;

-CiUciFUcF withe +c9=c

-(Cr+aF)UcF withep + ¢ =c¢

The first case implies that a (C 4+ ¢F')-curve is contained into A and
this is impossible because 1 is odd (see §1.5). So the third one is also
impossible because we know that if ¢; = 1, a (Cy + F')-curve does not
intersect A. The second decomposition represents curves with support
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C(l)uC(p)UC(q) or C(l1)UC(p) for some I; € Wy and p, g points in
C(l1) N Afy-1(,). We conclude that for ¢ > 2 there are only reducible
curves of class (1,0, ¢) entirely contained into A U X.

Remark 1.7.1. To have a description of curves of type (0, 1, ¢) it is enough
to interchange each [; appearing in the above discussion with a line 5. In
particular, fixing ps € @ and Iy € W5 such that py ¢ lo:

C(p2,l2) ={Z € H: Supp Z = (p2,q).q € Iz}

is an irreducible curve of class (0,1,1) = Cy + F and all such curves are of
this kind.

Curves of class (1,1,¢)

v) Connected curves of class (1,1,0) do not exist. In fact if the curve
is reducible then it is a union C(l;) U C(l2), but such curves cannot
intersect. If it is irreducible, then it is contained into 3, since

(1,1,0) - £ = —2

but this is impossible by what we showed in §1.6.

vi) Let C be a reducible curve of type (1,1,1). We have three possible
decompositions:
- C1 Uy U F is represented by a curve contained into A U Y of the
form C(l1(p)) U C(l2(p)) U C(p) with p a point of Q;
- (C1 4+ F) U Cy is the class of a curve C(p,l1) U C(l2(p)) for a given
line /; and a given point p € Q, with C(l2(p)) a line in Hilb%(l3(p))
passing through (p,q), ¢ =11 Nia2(p);
- (Cy + F) U Cy similarly.
If C is irreducible, then it intersects A in two points with multiplicity
and it is disjoint from 3, in fact:

(1,1,1)-A=2 (1,1,1)- =0

There are two possible families of irreducible curves of class (1,1,1).
In fact let C be irreducible of such a class and consider the blowup
morphism ¢ : H — G. The image curve ¢(C) is isomorphic to C
because C is disjoint from ¥, and we can identify them. It is of class
02,1, then we know a geometrical description of it (see §1.2). Fix a
plane A C P? and a generic point ¢ € A, ¢ ¢ Q. Then the intersection
AN @ is a conic. There are two possibilities: the plane is generic and
the conic is irreducible or A is tangent to () at a point p and the conic
is the union /;(p) Uls(p). In the first case C corresponds to a line



1.7. DESCRIPTION OF SOME EFFECTIVE CURVES 23

vii)

viii)

in Hilb?(A N Q) whose points are the closed subschemes Z such that
Supp Z C (AN Q), q € lz. We will denote it as follows:

Al)={Z€H:Z¢cl, | CHib*(ANQ) a line}

In the second case we get an irreducible curve determined by choosing
a plane tangent to (Q and a point ¢ € A such that ¢ ¢ AN Q. Its
points are the closed subschemes Z such that Supp Z Niy(p) # 0,
Supp Z Nly(p) # 0 and g € lz. Such a curve has only 4 moduli, while
the expected dimension is 5.

The class C; + Cy + F can be represented by a curve A(l).

If a curve of class (1,1,2) is reducible, we have:

- Ch1UCyUcF UcyF with ¢ + ¢ = 2 is the class of some curve
C(li(p)) UC(la(p)) Uci1C(p) UcaC(q) with g the support of a point in
C(l;) N Alp-1(,y for i = 1 or 2. Such a curve is completely contained
into A U X;

- (C1+ F)U(Cy+ F) is either the class of C(p1,11(p2)) UC(p2,l2(p1)),
with p1 # po, or C(p,l1) U C(p,ls) with I1,l5 not passing through p.
Note that each component is not contained into A U X

- (Ch1+ F)UCy UF with Cy + F = [C(p1,11)], Co the class of a line
in Hilb?(l2(p1)) through (p1,l2(p1) Nl1) and F = [C(q)] where q is the
support of Z € C(l2) N Alg-1(,);

- (Ca+ F) U Cy U F similarly;

- (C1+ Cy+ F) U F is the class of a curve A(l) UC(p) with p € INA.
If a curve of type (1,1,2) is irreducible, then it is disjoint from A, and
not contained into >.:

(1,1,2) - A=0 (1,1,2)-5=2

By considering the pushforward to the product @ x @, it can be shown
that there are only two possible families of irreducible curves of class
(1,1,2). The first one is:

Ap)={Z € H :pe Supp Z,ANQ N Supp Z # 0}

where p is a fixed point of Q and A C P? a given generic plane, p ¢ A.
The second one is determined by the following data: one fixes two
lines I € W7 and s € Wy on Q with p = [; Nly and an isomorphism
f 11 = Iy such that f(p) # p. The curve is:

Cli,la, f) ={(g, f(q)) : g € L1}
It is isomorphic to P! and intersects ¥ in (p, f(p)) and (f~'(p),p).

For ¢ > 2, irreducible curves of type (1, 1, ¢) do not exist, because they
should be contained into A being:

(1,1,¢) - A=2-2c¢<0 (1,1,¢)-E=2c—2
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So they are reducible and because of connectedness they can only
decompose as:

-C1UCyUciFUcF UcsF with ¢p + ¢34+ c3 =¢;

- (01+F)UCQU01FUCQF with ¢ +¢cos = ¢ — 1;

- (Cy+ F)UCy Ut FUcyF as above;

- (01+CQ+F) UcitFUcF withep +¢cp =c¢— 1.

All the curves representing these classes are not completely contained
into A UX but the first one.

Remark 1.7.2. Note that irreducible curves of class C; + F, Co + F, C; +
Cy + F intersect the stratification properly.

Curves of class (2,0,¢), (0,2,c)

We conclude with the description of the connected curves of class (2,0, c),
(0,2,¢). As before these classes are symmetric under the natural involution,
so we study only the class (2,0, ¢).

ix)

xi)

A curve of class (2,0,0) is always contained into X. It can be repre-
sented by a conic in the plane Hilb?(l;) for some I; € W;. So it can
be irreducible or not. The intersection product gives:

(2,0,0)-A=4 (2,0,0) % =-2

There are no irreducible curves of class (2,0, 1), because the intersec-
tion product with W; gives —1, but such a curve can not be contained
into Wi because 1 # 0 is odd. We have only one possibility for a
reducible curve, it is a union of two components of class 2Cy and F
respectively, hence it is completely contained into A U X..

If a (2,0,2)-curve is reducible we have two possibilities:

- 2C1 U1 F U caF with 2C; the class of a conic in some Hilb?(l;) and
c1+c2 = 2; the corresponding curve is completely contained into AUY;
- (C14+F)U(Cy+F) is the class of a curve C(p1, l1(p2)) UC (p2, 11 (p1)),
p1 # p2, by connectedness. It is disjoint from A and not in X.

Since we have:

(2,0,2)-A=0 (2,0,2)-2=2 (2,0,2)-W; =0

an irreducible and reduced curve of class 2C7 + 2F is disjoint from
Wi and it can be contained into A. In fact, denote by Fy the inverse
image of a fixed Iy C @ via the support map s : A — @. Then Fy
is the rational ruled surface defined by the sheaf O @ O(—2) on P!.
There exist irreducible curves C' C Fy of type Dy + 2D3, with D3 = F
the class of a fiber of s and £(D;) = Op, (1), [Har] Chap.V Cor. 2.18.
Moreover we know that 2C + 2F = Dy + 2D3 in A.
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We do not know a geometric description of such a curve. We can only
say that if it is not contained into A then it is disjoint from it.
Irreducible non reduced curves of class 2(C; + F') are disjoint from A
and not contained into X, their image in H is the same image of the
corresponding (C} + F')-curves.

xii) Irreducible curves of class (2,0, ¢),c¢ > 3 are all reduced and contained
into A, in fact:

(2,0,¢) - A=4-2c<0 (2,0,¢)-X=2c—2

The reducible ones can be decomposed as:

-2C1 U FUcoFUcgFUcyF with ) ¢; = ¢, this is the class of a curve
completely contained into A U ¥;

- (2C1 + 1 F) U C, where C' is the union of an opportune number of
classes ¢;F', 1 > 2, with ) .o, ci=¢, ¢1 > 2.

1.8 Subschemes incident to a given point

We conclude the chapter with the description of a 2-codimensional cycle on
H which is of great interest for our work.

Let I'(p) be the set {[Z] € H: p € Supp Z, p € @ given point}. It is the
blowup of @) in p, so it is smooth and 2-dimensional. It represents the class
S3 € A%(H). We fix once for all the following notation Ty := S3 = [['(p)].

Lemma 1.8.1. Then:
Ty =020—13 — M4
Proof. Consider the restriction @ of the blowup map ¢ : H— G to I'(p):

H——* .G
U U

T(p) —2 090(p)= P2

Let V = o20(p)\{li(p),l2(p)}, where [;(p),l2(p) are the two lines in @
through p. We have:

- p:[(p) = 020(p) is surjective

: ¢ (V) — V is an isomorphism

S|

['(p) contains an open dense subset isomorphic to V' via ¢. For k = 1,2 the
intersection I'(p) N~ ! (Ix(p)) is the line {Z € Sym?(lx(p)) : p € Supp Z}. So
['(p) is isomorphic to the blowup of the projective plane in two points. Note
that we have the following scheme-theoretical decomposition in irreducible
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components ¢~ (a2,0(p)) = ¢ ' (V ) ) U (i)
Since [0~ (Ix(P))] = Nrr2s w1th k= we have:

02,0 = [I'(p)] + 13 + n4
Hence the lemma is proved. ]

Remark 1.8.2. Since the degree of T? in H is half the degree that it has
in U (see 1.1.1), we deduce that T? € A*(H) is the class of a point.

Remark 1.8.3. For any p € @ the cycle I'(p) intersects the stratification
properly. In fact I'(p) N X4 = Q — (l1(p) U la(p)) is obviously a proper
intersection and T'(p) N Az = {(p, T3, () p)s (P, Tiy(p)p)} is O-dimensional.
Since these intersections are non-empty, it is also satlsﬁed I'(p) € B3 U As.

We set I'reg to be the locus of I'(p) where the intersection with the stratifi-
cation is transversal.

Lemma 1.8.4. Given a point p € Q, the locus I'yyy is the open subset of
T(p) of points with reduced support.

Proof. We first prove that A NT(p), k = 1,2, is not transversal. A} is a
surface in Wy, it is the pullback of the diagonal A via the inclusion map
x : Wi < H. Then it is a divisor in Wj. By the projection formula we
obtain A5 = 4l — 2¢;. Tt is easy to verify that T'(p) intersects A% only in
one point, but the degree of the intersection product Ty - (ji)«A% in H is 2,
this means the intersection is not transversal.

We now consider the intersection I'(p) N ¥3. Since X3 is open in ¥ and
Y =Wu Wg, we can work with a divisor W. The quotient map 6 : U—H
is an isomorphism between ) X Q — 0 and H — A. The inverse image
6=1(T'(p) — (T'(p) N A)) is isomorphic to the disjoint union of two copies of
@ — p. So in order to study the differential of the map I'(p) — H away from
A it is enough to study the differential of Q — p — Q x @ — § defined by
q— (p,q). As Q@ =P! x P! we can choose coordinates on both P!’s so that
the above map becomes:

A2 — {(p1,p2)} — A
(q,2) = (pP1,p2,q1,92)

where p = (p1,p2). We denote by x1, 2,1, y2 the coordinates on A*. Then
0= (Wy) is the set {(x1,z2,y1,92) : Tx = yp} in A? so that the tangent
space T(p’q)Wk is the 3-dimensional affine space defined by the equation
zr —yr = 0. Besides I'(p) — A is the set {(z1,%2,y1,y2) : ©1 = p1, T2 = pa},
so it is isomorphic to A? and the tangent space Ty, ) (I'(p) — A) is the 2-
dimensional affine space defined by the equations z; = 0,29 = 0. Then for
each (p,q) € T'(p) N Wy, — A, the space T(p,¢)(T(p) — A) is not contained in

T(p’q)Wk, that is to say I'(p) intersects X3 transversally.
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Finally consider the closed immersion f : Q@ — Q x Q, f(q) = (p,q). By

[Har|, Chap.IT Cor. 7.15, there is a unique closed immersion f such that the
following diagram is commutative:

BlL,QL—~0—".m
O
f
Q—Laxq

where Bl,Q = 0~ (I'(p)). Let y1,...,ys be local coordinates in H and
T1,...,%4 local coordinates in U such that the diagonal ~A is the zero locus
{ys = 0} and 6 = {z4 = 0}. Then the quotient map 6 : U — H is given by
O(x1,-..,24) = (71,72, 73,22) and the differential df has matrix:

100 0

01 0 O

0O 01 O

0 0 0 214

For each (p,v) € #~'(A), the image de(T(p’v)U) is contained into Ty, ,)A.
As f is a closed immersion and Aj is open dense in A, it follows that ['(p)
does not intersect Az transversally. O
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Chapter 2

Gromov-Witten Invariants

This chapter is devoted to describing the more general set-up in which one
can define the Gromov-Witten Invariants. Moreover we present some results
about the way of computing some particular invariants we will need in the
following.

2.1 Moduli space of stable maps

Fix a smooth projective variety X and a class f € A;(X).

Definition 2.1.1. A n-pointed stable map to X of type 8 consists of the
following data:

- a connected projective reduced curve C with at most ordinary double
singular points, arithmetic genus g and n > 0 pairwise distinct non-
singular marked points x1,...,%n;

- a map p:C — X such that u.[C] = B,
such that the tuple (C,x1,1 ..., zy; 1) has only finitely many automorphisms.

There is a Deligne-Mumford stack M, ,(X, ), called the moduli space of
stable maps, which is a fine moduli space parametrizing these maps (see
[B-M]). We will denote its points by [C, z1,..., Ty, u].

Let My ,(X, /) be the open substack parametrizing the stable maps from
smooth irreducible curves, we can think of M, (X, 3) as a compactification
of this subspace even if M, (X, ) does not need to be dense in M, (X, ).
The moduli space of stable maps comes equipped with some natural mor-
phism. For each marked point one can define:

evi: Mgn(X,0) = X
by ev;[C,x1, ..., xn, u] = p(z;). We will denote by:

ev = (evy, evy, ..., euvy,)

29
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the morphism mapping to X™ and call it the evaluation map.
The flat morphism:

™ Mg,n+1(Xa 6) - Hg,n(X, 6)

which forgets the last marked point and eventually stabilizes the curve,
realizes Mg ,41(X, ) as the universal curve over M, , (X, (), with ev,i;
the universal map to X:

Mg,n-l—l(Xa /3) St X

Mgn(X,B)

In particular, for each subset I of the index set {1,...,n} one can define an
analogous map forgetting only the points labelled by I. It is a composition of
universal families, then it is flat of relative dimension equal to the cardinality
of I. We are principally interested in the case I = {1,...,n} and we will
denote such a map again by 7.

Finally for n + 2g — 3 > 0 there is a morphism:

MQ,H(X7 IB) — Mg,n

which simply forgets the map and stabilizes the curve if necessary. Let 9, ,,
be the smooth Artin stack parametrizing quasi-stable curves of genus g with
n markings. It has dimension equal to 3g —3+n and Hg,n is an open dense
subset of M, ,,. One defines a natural morphism:

n: Mg,n(Xa/B) - SD’tg,n

by forgetting the map to X (without stabilizing).

2.2 Deformation theory on M,,(H, 3)

The local structure of the moduli space Mgm(H, B) can be studied by de-
formation theory. In [L-T] Li and Tian proved that to every point m in
the moduli space one can associate two finite dimensional spaces: a tan-
gent space T and an obstruction space E. In particular at a fixed point

[Cv M] € MO,O(Ha /3)

T = E:I:tl(u*QH — Qc,0¢)
E = Eztz(,u*QH — Qc, Oc)
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(see Propositions 1.4-1.5 in [L-T]). Moreover T' and E fit into the exact
sequence:

0 — Ext®(Qc, Oc) — H(C, 1" Ta) — T —2+ Ext'(Qc, Oc) —
— H'(C,*Tg) - E =0 (2.1)

which we call the tangent-obstruction sequence.

The space Ext®(Qc, O¢) = H(C, T¢) is the space of automorphisms of the
nodal curve C' while Ext'(Qc, O¢) is the space of first order deformations
of C [H-M], Ch.2 §B.3. HY(C,u*Tw) is the relative tangent space and
H'(C,u*Ty) the relative obstruction space of Mg (H, ) over [C] € M0,
by [K] Thm.I1.1.7. They encode the possibility of deforming a map from a
fixed nodal curve to H. Note that if H'(C, 4*Tyg) = 0 then the deformation
is unobstructed, i.e. we can always lift a n-order deformation of the stable
map to a (n + 1)-order deformation. This vanishing condition implies that
MO,O(H,ﬁ) is smooth at that point, because £ = 0. In a more general
setting the following result can be proved (see [K] Thm.I1.1.7):

Theorem 2.2.1. If 4 : C — H is an n-pointed stable map such that

HY(C,u*Tu) = 0, then the forgetful morphism n : My ,(H,8) — My,
is smooth at [C,xzq,. .., Ty, .

Remark 2.2.2. A smooth variety X is called convez if H (P!, f*Tx) = 0 for
all genus zero stable maps f : P! — X. If X is convex then H'(C, f*Tx) = 0
for all maps f : C — X, C a genus zero rational curve. Hence the moduli
space M o(X, 3) is smooth of dimension equal to the expected one, [Al] L.3.

Remark 2.2.3. Consider Mg (H, (a,b,c)), with (a,b,c) # 0, and fix a
point [P!, u] in it, then:

T = H°(PY,N,)

E=H'(P',N,)
where NN, is defined as the cokernel of the differential map dpu : Tpr — p*Thy,
[H-M] Chap.3 §B p.96. This follows by comparing (2.1) with the long exact
sequence in cohomology associated to the exact sequence:

0—=Tp1r = p'Tg - N, —0

Smoothening the nodes

Let C be a prestable curve. The space Ext!(Q¢, O¢) of first order deforma-
tions of the nodal curve C fits into the exact sequence:

0— H'(C,Tc) = Ext'(Qc, Oc) — HY(Ext' (Qc, Oc)) = 0 (2.2)

where H'(C,T¢) is the space of first order deformations of C' which do
not smoothen the nodes. H(Ext!(Qc,O¢)) parametrizes the first order
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deformations of the nodes. It is isomorphic to @ Oc¢,.
p node

Let C be the universal curve over the unpointed moduli space MO,O(H, B).
Let Mg be a smooth open subset of Mg o(H, /) such that there exist a
section v : My — C such that v(m) is a node on the corresponding curve
Cm and the induced map T, m — Ext!(Qc,,, Oc,,) has as image the kernel
K of the natural projection h : Ext!(Q¢, ,Oc, ) — Ext'(Qe,, . Oc,n ) v(m)-

It is easy to see that the following proposition holds:

Proposition 2.2.4. Fiz a point [C,u] € Mg and let p = v([C, p]) be the
node which can not be smoothened. Consider the tangent-obstruction se-
quence (2.1). Then:

1. coker ¢ = Ext! (Qq, Oc)p;

2. there exists an injective map ¢ : Ext! (Qc, Oc)p, — HY(C, p*Ta) such
that coker ¢ = E.

Proof. By definition we get an exact sequence:
0= K —2+ Bxt!(Qc, Oc) —r E2t(Qe, Oc), — 0 (2.3)

The natural map K — H'(C, u*Ty) is identically zero, because the defor-
mations of C' in K do not smoothen the node p. Then there is no obstruction
to extend p to a given deformation of C' locally trivial near p. There exists
an injective map ¢ : Ext'(Qc, Oc), — H'(C, u*Tw), because an element of
the domain space corresponds in a unique way to an obstruction to extend
the map u, as it is a smoothing of the node. Finally there is a surjective map
f:T — HYC,T¢), since [C, u] € My is such that C' can not be smoothened
at p.

e T — 2 Bxt (Qe, Oc) — HY(C, 1" Te) —— E — 0

I S

0—K 5$t1 Qc,Oc) —0
0 0
Since (2.3) is exact, the proposition follows. O

Remark 2.2.5. If we assume that we have n no-smoothenable nodes on C,
we get dim coker ¢ = n and F fits into the exact sequence:

0= P Ext'(Qc,0c), ——~ H'(C, " Tu) — E — 0

p node

We will only use the case n = 2 in 2.6.10.
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2.3 The virtual fundamental class

The expected dimension of a moduli space may not coincide with the actual
one. We may think of this as if the moduli space is a subspace of some
ambient space and it is cut out by a set of equations whose vanishing loci do
not meet properly. To define the Gromov-Witten invariants on H we need
to work in the right dimension, so that we need the existence of a Chow
homology class in My ,(H, ) of the expected dimension. It is called the
virtual fundamental class and denoted by [M,(H, 8)]"".

An algebraic approach to the problem of constructing such a class was de-
veloped by Behrend and Fantechi [B-F] as well as by Li and Tian [L-T]. The
basic idea comes from the excess intersection theory [Full.

Excess intersection theory

We recall some results from [Ful] Chap.6.

Given an algebraic variety X, a closed regular imbedding ¢ : Z — X of
codimension e and a morphism f : V — X from a purely k-dimensional
scheme V', it happens that in general the scheme W defined by the cartesian
diagram:

w—1 Ly
9 O f
7 X

7

has not the expected dimension dim V' —cod (Z C X). Anyway the pullback
bundle N = g*Nz,x has rank e and it comes with a natural projection
p : N — W inducing an isomorphism p* : A3(W) — Ay .(N) for all
d. In particular p* as an inverse s*, the Gysin map induced by the zero
section of N, [Ful] Thm.3.3.a)-Def.3.3. There exists a closed imbedding of
C = CwN, the normal cone to W in N, as a subcone of N. Since C
is purely k-dimensional, the class [C] is a k-cycle on N. The intersection
product [Z]-[V] € A, (W) is defined to be the class obtained by “intersecting
[C] with the zero section of N”:

[Z] - [V] = s*[C]
In particular s*[C] € Ag (W) has the expected dimension. One defines
s*[C] to be the virtual fundamental class of W.
The intrinsic normal cone

In [B-F], [L-T] the authors define for Deligne-Mumford stacks an analogue
of the normal cone. So on M,, := My ,(H,3) one can use techniques sim-
ilar to those seen above in order to construct the class [M,]""" of the right
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dimension.

Denote by L* the cotangent complex of M, (see [I] for its definition on
schemes and [L-MB] for its generalization to algebraic stacks). Recall that
given a homomorphism d : S° — S! of abelian sheaves on a Deligne-
Mumford stack, one may consider it has a complex on the stack. One can
define the quotient stack:

h'/h0(8%) = [S'/S")

because S” acts on S! via d. If S*® is a complex of abelian sheaves of arbitrary
length, one consider the two-term cut-off:

T0,1]8" = [coker (871 = 8% — ker (S' = S?)]
and defines h!/hO(S*) := h! /(1191 S*).

Definition 2.3.1. The stack M := h'/h°((L*)V) is the intrinsic normal
sheaf of M,,.

To construct the analogue of the normal cone one needs to consider local
embeddings of M,,.

Definition 2.3.2. A local embedding of M,, is a diagram:

U—"+x

Mp

where:

- U is an affine scheme of finite type,

- f is an étale morphism,

- X is a smooth affine scheme of finite type,
- 1 15 a local immersion.

There is a well defined normal cone Cy X of U in X. The tangent space ¢*T'x
acts naturally on it by translation. There exists a unique closed subcone
stack € C N that locally is given by the stack quotients €|y = [Cy X/i*Tx],
[B-F] Cor.3.9. Moreover this construction is independent of the local em-
beddings. € has pure dimension zero.

Definition 2.3.3. € is the intrinsic normal cone of M,,.

Let F'* be a complex of Oxy, -modules concentrated in degrees —1 and 0
such that h*(F*) is coherent for i = —1,0.
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Definition 2.3.4. If there is a morphism ® : F* — L* in D%, (Qcoh,,)
such that h(®) is an isomorphism and h='(®) is surjective, the map ® (or
F*) is called a perfect obstruction theory for M,,.

Fix a perfect obstruction theory & : F* — L*. Let F*V = [F) —— F|]
with Fy = FO and F = F~1". Then ® induces a closed immersion [B-F|
Prop.2.6:

YN — n'/KO(F)Y)
Hence the intrinsic normal cone is a closed subcone stack of [Fy/Fp]. This
is a vector bundle stack on M,,. Moreover Fj is a presentation of it and

contains a closed subcone C(F*®) with a map over € smooth of relative
dimension rkFj.

Definition 2.3.5. The virtual fundamental class [M,,]""" is the intersection
of C(F*) with the zero section of Fy.

Definition 2.3.6. Let F'* be a perfect obstruction theory for M, as above.
For each closed point m € M,, one defines Ker ¢, =T and Coker ¢, = E
to be the tangent space and the obstruction space of M, at m, respectively.
The difference rkFy —rkF; =dim T-dim E is called the expected dimension
of M,,.

The virtual class [M,]"" has the expected dimension rkFy — rkF, [B-F]
p.76. Proposition 5.10 in [B-F] ensures that it behaves well under pullback:

Proposition 2.3.7. If 7 is the flat morphism forgetting the marked points,
then: o ‘ o ‘
[Mon(H, B)]"" = 7" [Mo,o(H, 8)]""

If the moduli space is smooth, there is an easier description of the virtual
fundamental class.

Theorem 2.3.8. If the moduli space My is smooth, given a perfect ob-

struction theory F* with (F*)Y = [Fy AN Fi], then the sheaf cohomology
hY(F*V) =Coker(yp) is locally free and:

[Mn]mr = ctOp(hl(F.v)) - [My] (2.4)

This is Proposition 5.6 in [B-F]. Note that h'(F*V),, is the obstruction
space at m € M,,.

Definition 2.3.9. We will denote h'(F*V) = & and we will call it the
obstruction bundle of M,,.

Remark 2.3.10. Throughout the paper we will often refer to the obstruc-
tion bundle by simply naming its fibers. So we will possibly write the
tangent-ostruction sequence (2.1) with £ instead of E as last term.
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As proved in [Beh], since there is a canonical map n : M, — My, which
is an open substack of a relative space of morphisms, there exists a relative

obstruction theory. This consists of a map ¢ : F* — L;\An/gROn such that
L;\An /Mo.n is the relative cotangent complex, h’(¢) is an isomorphism and

h~1(¢) is surjective.

Proposition 2.3.11. With respect to the diagram:

My, (H,B) e : |

MO,U (Ha 6)
F* = (Rm.(ev*Twu))" is a perfect relative obstruction theory for Mg o(H, ).
Proof. This is Proposition 5 in [Beh]. O

The intrinsic normal cone construction can be extended to the relative case,
so that one can define the virtual fundamental class [Mg o(H, 3)]*"" as the
intersection of the relative intrinsic normal cone with the zero section of
h'/hO(Rm,(ev*Tw)), [Beh] p.606. In particular it has the expected dimension
[Beh] p.605. Note that the (relative) obstruction bundleis £ = Rl (ev*TH).

Remark 2.3.12. The results stated in 2.3.7, 2.3.8 and 2.3.11 imply that in
order to calculate the virtual fundamental class of My, (H, 3) it is enough
to study the perfect obstruction theory (Rm.(ev*Tq))Y on the unpointed
moduli space. Moreover, on the smooth locus of Mmo(H, B) it is enough to
calculate the top Chern class of the obstruction bundle & = Rlr, (ev*Th).

A formula for the expected dimension

We denote by edy the expected dimension of Mg o(H, (a,b,c)). Choose a
point [C, p] of the moduli space. Then by the tangent-obstruction sequence
(2.1) we know that edy is given by:

edyg = x(p*Ta) — (dim Ext®(Q¢, O¢) — dim Ext!(Q¢, O¢))

We apply Riemann-Roch to calculate the first term of the algebraic sum,
while the second one is known to be equal to 3 — 3gc. Hence we get:

edy = dim H + / c1(Ta) —3=2a+2b+1 (2.5)
(a,b,c)

The actual dimension of the unpointed moduli space will always be denoted
by dg.
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Remark 2.3.13. The map My, (H, 3) — Mo(H, ) has relative dimen-
sion equal to n because it is the composition of n universal families. Then
the expected dimension of M ,(H, 8), with 8 = (a,b, c), is:

dimH+/c1(TH)—3+n:2a+2b+1+n
B

We will denote it again by edy, if no confusion arises.

2.4 A smoothness result

H is an almost-homogeneous space under the action of A. We can exploit
this action to get transversality results (as the Position Lemma) and to
control the smoothness of the moduli space My ,(H, ).

Recall that as H is not a convex space, in general the moduli space does not
have the expected dimension:

exp.dim Mg, (H, (a,b,c)) =edu =2a+2b+1+n
Lemma 2.4.1. ¥ is convez.

Proof. Recall that 3 = Wy U Ws. Since Wy is the relative Hilbert scheme
Hilb?(Q/P!), it is isomorphic to P2 x P! and it comes with two natural
projections p1,po. If u : P! — W is a point in Mo,n(Wk,ﬁ), for some f3,
then f*(TWk) = f*piTp2 @ f*piTe1 is a fiber bundle of positive degree on P!
and the higher cohomology vanishes. This implies the thesis. U

Corollary 2.4.2. The moduli space of n-pointed genus zero stable maps to
Y. is smooth of the expected dimension which is equal to:

dz:dimZ—l—/cl(Tg)—3+n:3(a+b)—20+n
g
for B = (a,b,c).
Proof. 1t follows from 2.2.2 and 1.6.2. U
Lemma 2.4.3. A is convex.
Proof. The support map s: A — @ gives the exact sequence:
0= Ta/g—Ta—sTg—0

Let u : P! — A be a stable map, then to show that H'(P', u*Ta) = 0 it
suffices to prove that Hl(IP’l,,u*TA/Q) = 0, since @) is homogeneous. We can

think of A as the exceptional divisor ¢ in U. With notations as in 81.1:

PR L
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Denote by p the restriction of pri,pro to the diagonal § C U. By the
adjunction formula and the exact sequence written above we get:

TajQ =P Ko ® (=20)|; = 2h1 + 2ha — 2¢

The generators of the cone of effective curves in A are such that the degree
of T /g restricted to each of them is non-negative, so deg u*Th;o > 0 and
H'(P', p*Tp,q) = 0. We conclude that A is convex. O

Corollary 2.4.4. The moduli space of n-pointed genus zero stable maps to
A is smooth of the expected dimension which is equal to:

dA:dimA+/cl(TA)—3+n:2c+n
B

for B =(a,b,c).
Proof. As before it follows from 2.2.2 and 1.5.3. O

Since the expected dimension is the lowest possible dimension for a moduli
space, whenever dy, > edyg or dy > edy we should have components of
Mo.n(H,p) of excess dimension. Those inequalities are equivalent to the
conditions f-A < 0 or 8- < 0. Geometrically this means that the excess
dimension is due to components entirely mapped into A or into 3. The
following theorem formalizes such a statement.

Theorem 2.4.5. If p: C — H is a stable map from a genus 0 curve such
that no component of C is mapped entirely into AUY, then the moduli space
Mo o(H, B) is smooth at [C, ] of the expected dimension.

Proof. H— (AUZX) is ¥4, the open dense orbit for the action on H induced
by A. The action on ¥4 is transitive, so we can say that Ty is generically
generated by global sections on H. Let p : C — H be as in the hypotesis,
then p*Ty is generically generated by global sections on C'. This means that
HY(C,pu*Tu) = 0 and the moduli space Mg (H, ) is smooth at [C, u] of
the expected dimension by 2.2.1. O

2.5 The moduli space M ,(H, (0,0,c))

Here and in the following section we prove some results on the obstruction
bundles of two moduli spaces which we will use later on to make explicit
calculations.

For ¢ > 1, a curve of class (0,0, ¢) in H is represented by a c-sheeted cover
of P! and it is contained into A which is convex. Then the moduli space
My o(H,(0,0,c)) is smooth of dimension 2c bigger than the expected one,
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edg = 1. The obstruction bundle £ = Rz, (ev*Ty) has rank 2¢ — 1 and by
2.3.8 the virtual fundamental class is:

[Mo,0(H, (0,0, ¢))]"" = [Mo,0(H, (0,0,¢))] - cac—1(£)
Proposition 2.5.1. If c =1 then £ = —Kg and we get:
[Mo,0(H, (0,0,1))]"" = [Q] Nei(—Kq)

Proof. For ¢ =1, (0,0,1) is the class of a fiber of the support map s : A — Q.
So we can work on A because of the diagram:

A= Mo, (H,(0,0,1)) = H
|
Q = Mo(H,(0,0,1))

By the convexity of A and the exact sequences:

0—Ta = Tala = Nag — 0
0—>TA/Q—>TA—>3*TQ—>0

we obtain Rls,(ev*Ty) = Rls*(NA/H) = R!s5,(0Oa(—2)). Finally [Har]
Chap.III ex.8.4-c) gives:

£ =R's.(0a(-2)) = ATy = —-Kq
O

Proposition 2.5.2. Let g : Moo(H, (0,0,c)) — Q be the map defined by
9([C, u]) = Supp p(C). In general it holds:

Coe1(€) = —9"Kq - cae2(€) (2.6)

where € is such that:
020—2(5|g*1(p)) = — (27)

for any point p € Q.

Proof. In the general case, £ = Rz, (ev*Ty) has stalk H'(C, u*Tx) at the
point [C, ] € Mo o(H, (0,0,c)). We get H'(C, p*Ta) = H' (C, p*Op1(—2)).
Let €v: Mo 1(H, (0,0,c)) — A be the evaluation map into A such that the
composition with the inclusion A — H is ev : Mg (H, (0,0,¢)) — H. By
[L-Q] Lemma 3.2, £ sits in the exact sequence:

0= g*0g(-Kg) — & — Rlmév* (s"Tg ® Oa(=1)) =€ = 0
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Hence we get:

ca—1(E) = —g"Kq - cae—2(€)
Note that the inverse image g='(p), p € Q, is isomorphic to Mg (P!, c),
with P! 2 My(p) the punctual Hilbert scheme of points on @ at p.
With respect to the diagram:

ev1

M[],l (Pl, C) —_— Pl
f
ngo(Pl, C)

the restriction g|971(p) is isomorphic to R! f.ev} (Opi(—1) @ Opi(—1)) [L-Q]
Rmk.3.1. By Theorem 3.2 in [Man]:

coea(RL frevt (Opi(—1) @ Opi(~1))) = i3

C

This concludes the proof. ]

2.6 The moduli space M (H, (1,0, c))

The moduli space Mgo(H, (1,0,c)) has expected dimension edy = 3. In
particular if ¢ = 0, then Mg o(H, (1,0,0)) is smooth of the expected dimen-
sion, because (1,0, 0) is the class of a curve contained into 3 which is convex
and Mg (3, (1,0,0)) has the same expected dimension (see 2.4.1 and 2.4.2).

Remark 2.6.1. In §1.5 we showed that A defines a conic on a fiber over
the blown up locus of the map ¢ : H — G. A curve of class (1,0,0) can be
represented by a line in the projective plane Hilb?(l,) for a fixed line I; € W
(see §1.4), so that it intersects A in at most two points.

If ¢ > 1, the excess dimension comes from the components of the moduli
space which parametrize stable maps with reducible domain. We know that
the only irreducible curves are of type (1,0,1) and disjoint from A (see §1.7

iii)).
Lemma 2.6.2. The moduli space M o(H, (1,0,1)) is the disjoint union of
two components both of the expected dimension.

Proof. We have two possibilities for the source curves of a stable map in
Mo(H,(1,0,1)). The curve can be irreducible or not. Hence we have two
components of the moduli space. One parametrizes stable maps from the
irreducible curves and it is smooth of the expected dimension. The second
one parametrizes stable maps with reducible domain and has the expected
dimension. These two components are obviously disjoint. O
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We need to study only the case ¢ > 2. A curve of class (1,0,c) with ¢ > 2
is always reducible. We consider the morphism:

T: Moo(H, (1,0,c)) — Mo o(H,(1,0,0))

It is defined by forgetting the components mapping to A.

The action induced by Ay (see §1.3) on Mg o(H, (1,0,0)) has two orbits
corresponding to the geometry of the source curve for a stable map in that
moduli space. By 2.6.1 the open dense orbit parametrizes the stable maps
[C, f] such that f(C) is a line intersecting in two distinct points the conic
defined by A on the corresponding fiber of the blowup map. The closed
orbit parametrizes the stable maps from curves representing a line tangent
to the conic defined by A since 7 is Ag-equivariant. The morphism 7 is flat
over the open orbit.

Definition 2.6.3. Let [C, f] be a point in the open orbit of M o(H, (1,0,0)).
We denote by M. the fiber 7-([C, f]).

Definition 2.6.4. We denote by M(c), ¢ > 1, the space parametrizing the
data of a degree c stable map to P' with a marked point mapping to the
origin. It is the fiber of the evaluation map ngl(Pl, c) — P! over the origin
and it is smooth of dimension 2¢ — 2. Let M(0) be a point.

Lemma 2.6.5. There is an isomorphism:

M= J] M(er) x M(cy)
c1+co=c
c; >0
In particular T is smooth over the open dense orbit.

Proof. Let M, be the fiber over [C, f] € M (H, (1,0,0)) as in 2.6.3. With
notations as in §1.4, let C'(I;) be the curve f(C) of class (1,0,0) such that
it intersects ANHilb%(l;) in two points p1 # pa. Let C(p;) = P(Tg,,), for
i = 1,2, be contained into A. It is of class (0,0,1). A point [D,u] € M, is
a stable map from a nodal curve D = Dy U D1 U Dy with D N D; = ¢; such
that:

p: Do — C(l)

i1
p: D == C(p:)
1(gi) = pi

Since C(ly) is fixed as well as its intersection points with the diagonal, the
only moduli comes from the choice of the sheeted covers of the (0,0,1)-
curves. In particular for ¢ = 1,2, the curve [D;, u|p,] is a point of M (¢;)
with ¢; mapping to the origin p; of C(p;). O
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Remark 2.6.6. The composition of the inclusion:
M(c1) x M(c3) = M. — Moo(H, (1,0,c))

with the forgetful map Mgo(H, (1,0,c)) — Mo, is smooth on its image
which consists of:

- the divisor parametrizing curves with a node in py if ¢ = 0 or in py if
c1=0;

- the (smooth) locus of codimension 2 parametrizing curves with two
nodes p1,po if 1,9 > 0.

Remark 2.6.7. The space M (c) is smooth of dimension 2¢ — 2.
Then M (0) x M(c) has dimension 2¢ — 2 and M (¢1) X M(cz) has dimension
2c — 4.

Remark 2.6.8. Since Mg o(H,(1,0,c)) has expected dimension edy = 3
and 7 is smooth on the open dense orbit, a fiber M, has expected dimension
equal to zero. Since M, is the disjoint union of the components M (cy) x
M (c2), its virtual fundamental class [M]""" := [Mg(H, (1,0,¢))]"" 7*[C, f]
is equal to the sum of the virtual fundamental classes of all components.
Moreover each of them must have expected dimension equal to zero.

To calculate the virtual fundamental class of M, we can use the formula
(2.4). Then we need to know the obstruction bundle £ at a point [D, y
in M,. The following lemma gives a description of the space H'(D, u*Tt)
which will permit us to express £ as the cokernel of an injection (see 2.6.10).
Let [D, u] € M, be as in the proof of 2.6.5:

M DU i C(ll)
p: D il C(pi)
1(qi) = pi € C(l) N C(p;)

Lemma 2.6.9. Let L; be the invertible sheaf p*Oc(p,y(—2) of degree —2c;,
1=1,2. Then:

HYD,pu*Ty) = HY(D1, £1) ® HY (Do, £3)
Proof. We tensor by — ®o,, 1*Ta the following exact sequence:
0—0Op—0Op,®0p, ®O0p, = Oy, ® Oy, — 0
We consider the long exact sequence in cohomology:

.. = HYT,, ®T,) - H'(D,u*Ta) - @ H"(D;,*Tulp,) — 0
i=1,2
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where we use the convexity of ¥ to deduce H*(Dy, u*Ta|p,) = 0.
Analogously, A is convex so H'(D;, u*Talp,) = 0, i = 1,2. The support
map s : A — @ is a P'-bundle, so the tangent sheaf Ta restricted to a fiber
lof sis Tal; = O)(2) ® (’)1@2. The usual exact sequence:

0—Tha _>TH‘A _>NA/H —0
restrected to the fiber I gives Ny /uli = Oy(—2). Hence we get:
Hl(DiaM*TH‘Di) = Hl(Diaﬂ*OC’(pi)(_Q))

Let £;, i = 1,2 be as in the hypothesis, then H'(D;,L;) has dimension
2¢; — 1 and the above sequence becomes:

0Ty &Ty, - H' (D, ui*Trr) —— @ H'(Di.£;) =0
i=1,2

Then ¢ is a surjective morphism between two vector spaces of the same
dimension, i.e. it is an isomorphism. U

Proposition 2.6.10. Let L;, i = 1,2, be the line bundle corresponding to
the deformation which resolves the i-th node. Then the obstruction bundle
& fits in the exact sequence:

0 @@ Li—» P H(Di,Li) »E—0 (2.8)

i=1,2 i=1,2
In particular it has rank 2521(201- - 2).

Proof. We can not smoothen all the nodes of D (see §2.2), then we know that
the map ¢ : T — Ext'(Qp,Op) in the tangent-obstruction sequence (2.1)
has a 2-dimensional cokernel and it factors through a surjective morphism
f as in the diagram:

T 4¢> Eth(QD, OD)

fl/

Hl(-DaTD)

The map g sits in the exact sequence defining the space of first order defor-
mations of the nodal curve D (2.2):

0= HY(D,Tp) —2~ Ext!(Qp,Op) ——~ H(Ext'(Qp, Op)) — 0

where H(Ext'(Qp,Op)) = @D,—12Li, Li = Op,,. By remark 2.2.5,
coker ¢ = L1 & Ly and by 2.6.9 the sequence (2.8) is exact. O
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For each i, let &, be the cokernel of the injection L; — H*(D;, £;). Tt is a
vector bundle of rank 2¢; — 2 on M(c;). It is the one we find when we have
only one node on D. Since &, @ &, and £ fit into the same exact sequence,
it holds ciop(E) = crop (BE¢;)-

In [Gr], Graber constructs a variety X by blowing up P? in a point and
then blowing up a point on the exceptional divisor. He gets two exceptional
divisors meeting in a node. Let A be the (-1)-curve, B the (-2)-curve and
B. = A+ cB. Then he shows that the moduli space M (X, /) is smooth
of expected dimension zero and isomorphic to M (c). Besides its virtual
fundamental class can be realized as the top Chern class of a vector bundle
fjc which sits in the same exact sequence defining the bundle £.. Then

Ctop (50) = Ctop (50)
Proposition 2.6.11. (Graber) For all ¢ > 2, ¢;op(E.) = 0.
Proof. This is Proposition 3.5 in [Gr]. O

Remark 2.6.12. Let M*(c) be the fiber over (0, oc) of the evaluation map
ev = (evy, evq) : Mo 2(P', ¢) — P! xPL. Denote by £ the obstruction bundle
of M*(c). The following diagram is commutative:

M*(c) —L— M(c)

| |

MO’Q(PI, C) _g» MO,I (Pl, C)
where g and f forget the point mapping to oo.

Lemma 2.6.13. With notations as in 2.6.12, £} is the pullback bundle f*E.
of the obstruction bundle of M(c). In particular ciop(EF) =0 for ¢ > 2.

Proof. We will prove that H'(C, u*Ty) and H'(C', (1')*Tq) are canonically
isomorphic. It is enough to study what happens for a stable map [C, u] in
MO’Q(PI,C) such that C has a component contracted by f. We can write
C = DUD;UDy with D the contracted component, u(D) =z, p= Dy N D
and ¢ = Dy N D two nodes. Let [C' = Dy U Dy, p'] be the image under f, i.e.
p' o f = p. There exists a morphism « : (' )* Ty — fof*(1')* Ty = fop*Ta,
[Har|] Chap.II ex.1.18.

a) If a is an isomorphism then H'(C', (u')*Tya) = HY(C', fou*Ta).

b) If Rf,(*Tu) = 0 for all i > 0, H(C', fuu*Ta) = H'(C, n*Ta) by
[Har] Chap.III ex.8.1
To prove our claim it is enough to verify the hypothesis of a), b). We can
work in a small neighbourhood and assume D1, Dy affine, i.e. C’ affine.
The exact sequence:

0— ODI(—p) — OC — ODUp2 —0
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gives HY(C, u*Tu) = H'(D U Dy, i*Tsa| pup, ), because Dy is affine. Since
(D) is a point, the sheaf p* Ty |p is trivial: H(D, u*Tu|p) = H(q, (1*Ta),)-
The exact sequence:

0_>ODUD2 —>0D2690D—>0q—>0
induces an isomorphism H°(DUDy, i* T | pup,) & H(Do, u*Ta|p,). Then:
H'(D U Dy, i*Tu|pup,) =2 H (D2, 14" Tra|p,) ® H' (D, 1 Ta|p)

We conclude that H'(C,u*Tg) = 0, because Do is affine and p*Ty|p is
trivial. Then R!f,u*Ty = 0 by [Har] Chap.ITT Prop. 8.5.
To verify a), we tensor by — ® (u')*Tg the following exact sequence:

0— ODl(—LE) — OCI — OD2 —0

and we get:
0 — H%(Dy, (1) Tl p, ® Op,(—2)) = H(C", (u)*Ta) —
- HO(DQa (:U‘I)*TH|D2) -0

Since the first vector space is isomorphic to H(Dy, u*Ta|p, ® Op, (—p)) and
the third one to H°(Ds, u*Ta|p,), we get HO(C, u*Ty) = HY(C', (1')* Ta).
Then p*Ty and f,(u')*Ty have the same sections, i.e. « is an isomorphism.
The claim is proved. O

Theorem 2.6.14. The virtual fundamental class of a component of a fiber
M. of T is given by:

[M(cy) x M(c2)]""" = [M(c1) x M(c3)] if 0<ecr,e0<1
[M(cy) x M(cg)]"" =0 otherwise

Proof. If ¢1,¢cq are 0 or 1 then M(c1) x M(cz) is smooth of the expected
dimension equal to zero and the virtual fundamental class coincide with the
usual fundamental class. If ¢; or ¢ is bigger than or equal to 2 then by
2.6.11 the top Chern class of the obstruction bundle vanishes. O

Corollary 2.6.15. If ¢ > 2, then the virtual fundamental class of M, is
given by:
[Ma]"" = [M(1) x M(1)]

[M]'" =0 if ¢>3

Proof. 1t follows from 2.6.8 and 2.6.14. U
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2.7 Gromov-Witten Invariants

We recall the definition and some properties of the Gromov-Witten (GW)
invariants on a d-dimensional smooth complex projective variety X.

Let B € A1(X) be the class of an effective curve and consider the moduli
space M,,(X,[) of genus g, n-pointed stable maps into X, g,n > 0 and
n + 29 — 3 > 0. It has expected dimension equal to:

edy = (dim X — 3)(1 — g) + /cl(TX) tn
B

Now we fix n cycle classes v1,...,v, € A*(X) and consider the cohomology
class ev*(7y1 X ... x vy), where ev : My, (X, 8) — X" is the usual evaluation
map. We call GW invariant the number:

<71-----7n)/3==/_ Cevt (1 X X )
[Mg,n(X,B8)]Vi

This is the “virtual” number of curves of genus ¢g and class 8 in X intersecting
the homology cycles I';, where the Poincaré dual of I'; is «;, for all ¢ =
1,...,n. If g =0,n > 3 we speak about genus zero GW invariants.

If no confusion arises, we will omit the symbol “ - 7 among the arguments
v; of the invariant.

The GW invariants have some nice properties such as to be invariant under
deformation. Moreover they are zero if the following equality is not satisfied:

Z cod v; = edx

1

Let v, = 1x € A°(X) be the fundamental class, then:

_J JxmUy ifg=0mn=3
s _{ 0 otherwise

Finally we will often use the so called divisor axiom. Let y; € A'(X) and
B # 0, then:

<71'---'7n>6:(/671)'<'72'---"7n>6

For an exhaustive treatment of the invariants and their properties see [K-M].
In this general setting Proposition 5.6 in [B-F] (see 2.3.8) implies:

Theorem 2.7.1. Let 7 : My, (X,8) = M,o(X, ) be the usual map for-
getting the markings and ev = (evy,...,ev,) be the evaluation map. Let
& be the obstruction sheaf on Mgo(X,B). Choose cycles T'y,...,I'y in X
representing the cohomology classes vi,...,vn such that ev;I(Fi) intersect
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generically transversally. Then if A = me(Niev; H(Ty)) is a cycle in the
smooth locus of Mg0(X,[):

(el = [ v (1 X X)) (2.9)
[Mg,n(X.5)]

Remark 2.7.2. The above integral is equal to the degree of the top Chern
class of the obstruction sheaf restricted to the cycle A:

M- a)s = /A Cropl€)

2.8 Some invariants

We prove some vanishing results for the GW invariants which are related to
the particular geometry of the effective curves involved.

Let S3 = [I'(p)], S4, S5, S¢, S11, S12 be the cycle classes forming a basis for
A%(H) which we found in §1.1.

Proposition 2.8.1. For k = 3,4,5,6, (Sk)(0,0,c) = 0-

Proof. Suppose ¢ = 1. A curve (0,0, 1) is incident to the cycle T'(p) if it is
the curve of non-reduced subschemes supported on p, i.e. if it is the fiber
over p of the support map s:

A= ngl(H, (0, 0, ].)) —s’ MO,U(Ha (Oa 07 1)) = Q

Let ev be the evaluation map My 1(H, (0,0,1)) — H.
Since s is flat, s*(p) = s~ !(p) and it is of codimension 2 in M ; (H, (0,0,1)).
As a set ev ™ (I'(p)) = s '(p), so ev*(S3) = As*(p) has codimension 2.

(S3)(0,0,1) = /_ ev™(S3) = A/_ s*[p - crop(€)] =0
[MOJ(H7(070’1))}U“. [MOJ(Ha([LO’l)H

where £ is the obstruction bundle on Mgo(H,(0,0,1)) and it has rank
dim Mg o(H, (0,0,1)) —1 = 1, so that p - c1p(£) = 0 on M o(H, (0,0,1)).
Curves of type (0,0, c) intersecting I'(p) are multiple covers of (0,0,1), so
(S3)(0,0,¢) = 0.

The cycle class Sy can be represented by the set of subschemes whose sup-
port is incident to two lines ly,ls with I € Wy, kK = 1,2. A curve (0,0,1)
can meet such a cycle only if it is the curve supported on the incident point
I1 N lz. The previous argument works and (S4)(g,0,) = 0.

The cycle classes S5, .Sg are represented by the sets of subschemes with sup-
port incident to two lines in the same ruling, so a curve (0,0,1) can never
meet these cycles. This concludes the proof. O
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Let Ty be the cycle class S% + 8183 — 2511 and Tg = S% + 5159 —2515. They
are symmetric. We consider only Tg.

Lemma 2.8.2. For each ¢ > 1, (Ts)(,0,c) = 5
Proof. Consider the diagram:

Mo (H,(0,0,¢)) &>A—>H

MU,O(Ha (Ov 0, C)) o Q

where g([C, p]) = Supp u(C). Set ev to be the composition map i o €v.

We know that coc.—1(&) -9'Kq - ¢oe—2(€), where & is the obstruction

sheaf on Mg o(H, (0,0,c)) and £ is the sheaf defined in 2.5.2. So we have to
calculate:

(Ts)0.0.0) = / 0" Ts - 1*(g" (~ KQ) - cae—2(€))
[Mo,1(H,(0,0,c))]

Note that a point [C,z,u] € Mo1(H,(0,0,c)) is such that the support of
u(C) = p(x) = Z is a point p € Q, because a curve of class (0,0,c) is a
multiple cover of a fiber of s.

The above diagram is commutative, let f be the composition gom = so ev.
It is easy to verify that i*Ty = 2 s*h; - ( (with notations as in (1.3)). Then
we have to calculate the degree:

/ 2f*(—Kg - h) - 60*C - T (ee—2(E))
[Mo,1(H,(0,0,c))]
Since —K¢ - hy = 2h3 where hj is the point-class in A?(Q), we get:
[*(=Kgq - h1) - ev*( = 2ev*(C - s*h3)
Let z € A be a point, we denote by M the inverse image ¢v ' (z) and by My

its image m(M1) = g~ '(s(z)) in Moo (H, (0,0,c)). The restricted morphism
7 : My — My has degree c. In particular:

7. [M1] = c[Mp] = ¢ g*[s(z)]

Since ¢ - s*hg = [z] is the point-class in A, by the projection formula and
what we said in §2.5, our invariant is:

(T8) (0,0,c) = / 4év* (¢ - 8*hg) - T eae—2(E)
[MoJ(H,(O,U,C))}

_ / 47" coen(E) = / dc - cae—2(€)

[M1] [Mo]

~ 4
= e coc—a(Elg1s(2)) =



2.8. SOME INVARIANTS 49

O

The study of the obstruction bundle in section 2.6 gives us the tools for
proving another vanishing result.

Remark 2.8.3. With notations as in §2.6, let M* be the closed subset of
Moo(H, (1,0,c)), ¢ > 2, of stable maps y : D — H where the domain curve
is reducible and u(Dg) = C(I1) is tangent to the conic defined by A in
Hilb?(l;), (see 2.6.1). Consider the following maps:

M0,3(Hv (1,0,0)) T MO,U(Ha (1,0,0)) — MU,O(Ha (1,0,0))

The map 7 forgets the marked points and (eventually) stabilizes the curve.
The map 7 is defined by restricting the stable map to the (1,0, 0) component.
In particular it is surjective. If we denote by U, ., the open subset of
Moo(H, (1,0,c)) of points [D, u] such that:

u(Dyg) is not tangent to A
[1(D1)] = e1-(0,0,1)
[1(D3)] = ¢+ (0,0,1)

then MO’U(H, (1,0,¢)) is the union over all ¢; > ¢, ¢1+¢3 = ¢ of the closures
Uci,co- Fix Ug, ¢, then the restricted map 7 : U, ¢, = Moo(H, (1,0,0)) is
surjective with fibers:

. >0 M(e1) X M(c2) T M(cq) X M(c1) generic fiber
e M(c1) x M(cy) fiber over M*

oo — 0 M (c) I1 M(c) generic fiber

be= M/(c) fiber over M*

Y is convex and a curve of class (1,0, 0) is contained into it, then the moduli
space M o(H, (1,0,0)) is smooth of the expected dimension dg = 3. More-
over it is a P?-bundle over P! = Wy, with fibers the Hilbert scheme Hilb? ()
over a point [y € W;. Then it is irreducible. Also UCI’CQ is irreducible, then
all the fibers of 7 are 3-codimensional.

Proposition 2.8.4. If ¢ > 2 then all GW invariants (yi1y27y3)g for curves
of type (1,0, ¢), (0,1,c) vanish.

Proof. The two cases are symmetric. We consider only (1,0, ¢).
We have seen that such a curve is reducible. It has a component of class
(1,0,0) not contained into A and it decomposes as:

(11070) = (anacl) + (010a02) + (11030)

with ¢1,c9 > 0, ¢1 +¢co = c.
We are free to choose a basis of A*(H) such that every cycle class can be



50 CHAPTER 2. GROMOV-WITTEN INVARIANTS

represented by cycles intersecting the stratification properly. It is enough
to prove that GW invariants involving such classes vanish. Choose three
of them 71, v9,73 satisfying Y cod ; = 6. This condition means we are
looking at three possible 3-uples of elements whose codimensions, up to a
permutation of indexes, are:

(1,1,4), (1,2,3), (2,2,2)

Consider the diagram:

Y1 X Y2 X3

My 3(H, (1,0,¢)) — H3

where A = ev*(y1 X 2 X y3). By the Position Lemma cod A > 6 (see 1.3.3).
Let 7 be the flat map forgetting points Mg 3(H, (1,0, ¢)) — Mo (H, (1,0,c))
and B = m(A). Then cod B > 3. If cod B > 3, the GW invariants vanishes
for dimensional reasons, so we can assume cod B = 3.

Let 7 : Moo(H, (1,0,c)) — Moo(H,(1,0,0)) be the map defined in 2.8.3.
If the class of a map [f] is in B, then all the points in 77! (7([f])) are in
B, because they differ only by the choice of a multiple cover of (0,0,1) and
this does not affect incidence conditions. The codimension of a fiber of 7 is
already equal to 3, so B is a union of finitely many components of fibers of
7. With notations as in §2.6 the set B is:

B= [ M(c1)x M(cy)

cy1+co=c
c; >0

where M (0) is a point. If ¢ > 2 then there exists 7 such that ¢; > 1. By
2.6.14:

{(v1: 72, 73) (1,0,c) = 0



Chapter 3

Quantum Cohomology

Quantum Cohomology is a deformation of the cup product of A*(H) involv-
ing the genus zero GW invariants. Moreover from the associativity law we
can get some formulas for computing these invariants recursively. In this
chapter we recall how to define the new product (see e.g. [G-P]) and we give
a description of the ring we obtain.

Notations: the cup product in A*(H) will be denoted by a U 8. We will
use the symbol (T™)g to denote the GW invariant (T"-...-T)g.
N —’

n

3.1 The Big Quantum Cohomology Ring

Let Ty = 1,Ty,...,T13 be a homogeneous Q-basis for A*(H) such that
Ty, T>, Ts generate A'(H). We denote by (g;;) the matrix ([;; 7; UTj) and
by (¢%) its inverse. We introduce formal variables {yo, q1, 2,93, y4,-.-,%13}
which we will abbreviate as ¢,y. For ( an effective class in A;(H), the
following expression defines a power series in the ring Q[[q, y]]:

m n;
Play) = 3 So@p.. 1wy gl Mgl P ™ H%

na+--+n13>0 B#£0 i=4 Y
In the case of a homogeneous space, substituting ¢; = e¥’ we get the quan-
tum part of the potential function of [K-M] modulo some relation in the y;.
The symbol 9; will denote qia%i if 1 = 1,2, 3, the partial derivative % oth-
erwise. If f € Q[[q,y]] then we set f;;x = 0;0;0f.
Consider the free Q[[g, y]]-module A*(H)®qQ|[q, y]] generated by Ty, ... . Tis.
We define a Q[[q, y]]-linear product on it, called the *-product:

13
T;xT; =T, UTj + Z Fijegefo
e, f=0

It yields a Q[[q, y]]-algebra structure.

o1



52 CHAPTER 3. QUANTUM COHOMOLOGY

Definition 3.1.1. The Big Quantum Cohomology ring of H is the ring:
QH"(H) = (A" (H) @ Qllg. y]], )

Remark 3.1.2. By formal calculation, using the divisor axiom and the
linearity of the GW invariants, we obtain:

1 [T [3T [,T5
Tije =Y > ("B T)s 0" )" ay’
n>0 840
where v = y4Ty + - - - + y137T13. Note that if one of the indexes i, 7, k is zero,
then the expression vanishes, because of the condition 5 # 0.

Definition 3.1.3. The symbol ®;;;, is defined as the sum (T;T;Ty)o + L.
In the homogeneous case, it corresponds to the 3-partial derivative of the
potential function of [K-M].

We can write the *-product in a more compact way:

13
Ti * Tj = Z éijegefo
e, f=0
Since the partial derivatives are symmetric in the subscripts and GW invari-

ants are invariant under a permutation of the arguments, it is evident that
the x-product is commutative. Moreover it has Ty = 1 as unit element:

13 13
ToxTj= Y Dojeg™ Ty =Y gjegTs = T;
e,f:[] C,f:()

The quantum product is also associative. A proof can be found in [K-M]
or, in the homogeneous case, in [F-P]. Associativity is equivalent to the
following equality:

13 13
> BijegTBpr = Y Bikeg By
e, f=0 e, f=0

Writing down explicitly what it means in terms of GW invariants and using
the splitting principle (see [K-M]), it turns out that this equality holds since
it translates the condition of linear equivalence between pairs of points on
P'. For further porposes, it seems useful to write explicitly the general
associativity equation in terms of the GW invariants.

Let 7y1,...,7, be cohomology classes on H, § € A;(H) the class of an
effective curve and A, B sets of indexes. Then the associativity reads:

AT Ty-Te- [ vads 67T -T0- Ty - [ w)so =

a€A beB

=Y AT T Te- [ vads 9T - T Ty - [T w5 (3.1)

acA beB
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where the sum is over all the possible partitions A U B = [n] of n indexes,
all possible sums (31 + B2 = § with j; effective and over e, f =0,...,13.
On the left hand side, the terms corresponding to 5, or B3 equal to zero sum
up to:

n n
(T, Ty - T UTy - [ [ds + (T T -0 Ty [ ) (3.2)
1 1
An analogous expression gives the 8; = 0 terms for the right hand side
of the equality. By means of these equations and of the divisor axiom, in
[K-M] Kontsevich and Manin proved the First Reconstruction Theorem: on
a variety whose cohomology is generated by the divisor classes all the genus
zero GW invariants can be uniquely reconstructed starting from the 2-point
invariants (71 - y2)g-
If the cohomology ring is not generated by divisors, we can restrict our
attention to the subring S these classes generate. Then the cited theorem
holds anyway and we can reconstruct all the GW invariants involving classes
in S from the 2-point invariants. To know the complete tree level GW-system
we have to calculate the invariants including the classes we disregarded. This
is the technique we are going to explain in §3.5.

3.2 A good Q-basis for A*(H)

We choose once for all the following Q-basis for the Chow ring A*(H):

A'H) | AYH) | A2(H) | A*H) | AYH)
Ty Ty Ty Tio T3
Ty T5 Ty
T3 Ts Tio
Tz
T3
Ty
The cycles classes are defined by:
Ty =1 T; = S2
T, =S Ty = Si01p
Ty = S Ty = Sa01
T3 =01y Tio = 5253
Ty = S3 T = 5153
Ts =515  Tiz = S301,0
T = S? T3 = 53

By 1.1.8 and 1.4.1, we know that A*(H) is the Q-algebra:

Q[Tl 3 TQa T3a T4]
(fi)i=1,..17
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where the relations are:

) Ti-(M+T)T3-TiT,=0
2) T$=0

3) T3=0

4) T - 2Ty =0
5) T3 —200Ty =0
6) TT) —2T,Ty =0
7 T9T3 — 20Ty =0
8) TTeT3 — 2137, =0
9) T;=0

10) TTy =0

11) T, =0

12) TiT; =0

13) T?Ty =0

14) TiTy =0

15) TWILTy — T =0
16) TWT3Ty— T =0
17) TyI3Ty, —T? =0

In particular A*(H) is not generated by the divisor classes.
The matrix (¢%/) is the inverse of (gi;) = ([ T UT}):

1
A
(97) = B
A
1

where 1 = fH To UTi3, A and B are the matrices induced by the Poincaré
duality A'(H) — A3(H) and A%(H) — A%(H) respectively.

0 -1 1
A= -1 0 1
11 -1
2 -1 0 0 0 0
1 1 1 1
PR
_| 0 —3 P
B=1 9 —2 0 0 4 0
o + o 4+ o -1
0 3 3 0 —3 0

Throughout the paper, we will understand that the sum in T} * T} is over
e,f=0,...,13 and we will use the convention:

JoT [3To [3Ts
qﬁ — qla qZB q3ﬁ
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Remark 3.2.1. We note that all the classes T; can be generated by cycles
intersecting the stratification properly.

Remark 3.2.2. There are some symmetric cycle classes: 17 and T5, Tg and
T7, Tg and Ty, T1o and T71. This is because they depend on the choice of
one of the two rulings on Q.

Remark 3.2.3. The classes Ty, T11, T12 are the classes Cy + F, C1 + F,
C1 + Cy + F respectively. They can be represented by the irreducible curves
C(p2,12), C(p1,11), A(l) respectively (see §1.7)

3.3 The Small Quantum Cohomology Ring

The Small Quantum Cohomology ring QH(H) of H incorporates only the
genus zero 3-point GW invariants in its product and it is defined by setting
to zero all the formal variables except those corresponding to the divisor
classes. This means that we consider (A*(H) ®g Q[[q1, g2, ¢3]], *) with the

product given by:
13

T« Tj= Y ijeg Ty
e,/=0

where: _ _
(I)ijk = le UTj UTy, + F”k
H

k= S (GTTs -0 a ap "
470

The last equality is a consequence of putting y; = 0 in I';;;, (see 3.1.2).
The product yields a commutative, associative graded Q[[q1, g2, g3]]-algebra
structure with Ty as unit. The variables ¢;, T; are graded by the following
degrees:

deg g; = [ c1(Th)

deg T; = cod T}

where f; is the dual class to T; for i = 1,2, 3, i.e. Cy,Cy, F, respectively. In
particular ¢, g2 have degree 2, while deg g3 = 0.

Lemma 3.3.1. Since q1,q2 have positive degree, we have:

T; + Tj € A*(H) ®q Qla1, ¢2)[[g3]] € A*(H) ®¢ Qllg1, 92, 43]]

Proof. In the product T; * Tj, for a fixed e the invariant (T;T;T,)s is zero
unless the sum of the codimensions is equal to —f3- Kgg +4. For = (a,b,¢)
effective, the condition implies that —f3 - Kg = 2a + 2b is a fixed number.
Then there are only finitely many possible values for a,b which are the
exponents of the variables g9, g1, respectively. The only exponent having no
bound is that of ¢s. O
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Definition 3.3.2. We define the Small Quantum Cohomology ring of H to
be:

QH;(H) = (A"(H) ®q Qlq1, g2]l[gs]], %)

It is a deformation of A*(H) in the usual sense, in fact we can recover the
Chow ring of H by setting all the g; equal to zero.
Let Q[Z] = Q[Z1,...,Z4] and let

Q7]
(fla---afs)

be a presentation with arbitrary homogeneous generators fi,..., fs for the
ideal of relations. Finally let Q(q, Z) = Q[q1, 92, Z1, ..., Z4][[g3]]. The fol-
lowing proposition is a slightly modified version of [F-P] §10 Prop.11.

A*(H) =

Proposition 3.3.3. Let fi, e ,f; be any homogeneous elements in Q(q, Z)
such that:

(Z) le(O’O?O’Zl?’Z‘l):fl(Zl"Z4) mn Q(qaZ)7
(ZZ) le(QIanaq&ZlaaZZl):o in QH:(H)
Then the canonical map

Qlq, 2)

, — Y. QH!H
Gy O

18 an isomorphism.

Proof. As in [F-P] we can use a Nakayama-type induction. First we observe
that given a homogeneous map 1 : M — N between two finitely generated
Q(q, Z)-modules such that the induced map:

M/(g3) w1> N/(g3)
(a1, q2) (q1,42)

is surjective, then 13 : M/(q3) — N/(qs3) is surjective, because ¢i, g2 have
positive degree. Since the ideal (g3) is contained into the radical of Jacobson
of Qlg, Z) and N = (M) + (g3)N, by surjectivity of 13, it follows that
¢ is surjective ([A-M] Cor. 2.7). Hence by hypothesis (i) our map ¢ is
surjective. If Tj, i = 0,...,13 are homogeneous lifts to Q[qi,¢2][[¢3]] of a
basis of A*(H), exactly the same argument of passing to the quotients shows
that their images in Q(q, Z)/(fy, ..., f,) generates this Qg1 , g2][[g3]]-module.
But QH}(H) is free over Q of rank 14, so ¢ is an isomorphism. O
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3.4 A presentation of QH}(H)

According to Proposition 3.3.3, to have a presentation of the Small Quantum
Cohomology ring of H we need to find some equations lifting the relations
defining A*(H) and vanishing in QH} (H). Let {f;}i=1,.. 17 be the relations
listed at the end of §3.1 and denote by f; the ith-relation calculated using
the x-product. We will show that the f;’s are the equations we are looking
for.

We calculate all the monomials arising from the *-product of two generators
of A*(H), disregarding Ty * Ty for the moment.
We distinguish different cases.

Ty Ty = T3 UTs+ »  2{2T5 + T5 + Tr — Ts — To} g5 +
c>1

+ Z ? {(T13>(1,0,C)Q2Q§ + <T13)(0,1,C)Q1Q§} Ty
c>0

where we use 2.8.1, 2.8.2 and 3.2.2.
If T; is a divisor class with ¢ # 3:

T+ T3 =T,UTs + > c(Tis)s-To-q” with 8= (1,0,¢) or (0,1,c)
c>0

If T;, T are divisor classes with 4,7 # 3:

T« Ty =T,UTy+ Y (TT;Tig)g - To - ¢°  with 8= (1,0,¢) or (0,1,c)
c>0

If T; is a divisor class with 4 # 3:

TixTy=T,UTi+ Y (TiTiT.)sg Ty -q°  with 8= (1,0,¢) or (0,1,c)
cod Te=3
c>0

Finally:

Ty+Ty=TsUTi+ Y o(TyT.)sg™ Tr-q° with B = (1,0,c) and (0,1,¢)

cod Te=3

c>0

where we use 2.8.1 again.
This list points out that we need to know the value of some GW invari-
ants involving 7Ty, Ti3 in order to write down the f’s. By the vanish-
ing result 2.8.4 it is enought to calculate (Ti3)g and (Ty,cod 3)g with
B=1(1,0,¢),(0,1,¢), 0 <c<2.
We will use the same notation fixed in §1.7.
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The invariant (T13)q0,)

If € is the rank dy — 3 obstruction bundle on M o(H, (1,0, c)), we have to
compute:

(T13)(1,0,0) = /_ ev* T3 - gy —3(E)
[MO,I(H7(17O:C))}

_ / a3 (€)
ev=1(Z)

where Z is a generic point of H representing the class T3 and 7 is the map
forgetting a point and stabilizing.

If ¢ = 0, we know that Mg (H, (1,0,0)) is smooth of the expected dimension
dyg = 3, since each curve of class (1,0,0) is contained into X. In particular
the top Chern class of £ gives 1. We can choose a representative Z of the
class Ty3 such that Iz ¢ Wy, then the fiber ev™!(Z) is empty and the GW
invariant vanishes.

If ¢ = 1, by 2.6.2 we have to analyse separately what happens on the
two components of the moduli space. We can choose Z ¢ A U X, with
Supp Z = {po,qo}, so that reducible curves of type Cy U F' give no con-
tribution to the invariant. Let us consider a stable map with image an
irreducible curve of class Cy + F. It is a smooth point for the moduli
space Mg 1(H,(1,0,1)) which is 4-dimensional in it. Denote by M*" the
irreducible component parametrizing such maps, then ev(W) = H. The
restricted map ev : M¥" — H has degree two, because an irreducible curve
C of class (1,0,1) is completely determined by choosing a line [; € W; and
a point p; ¢ [; and all its points are reduced. The fiber over Z contains
two points: the isomorphism classes [P!,z, ;] where P! = C(pg,l1(qo)) or
P! = C(qo,11(po)). In the first case, u(t) = (po, f(t)), with f : P! — Q a
parametrization of [1(qg) such that f(z) = go. Similarly for the other map.
Then we have a contribution equal to 2 to the GW invariant.

If ¢ = 2, all the curves of class (1,0, 2) are reducible contained into A U 3,
choosing Z ¢ A UY the fiber ev™!(Z) is empty and the GW invariant van-
ishes.

By symmetry the same results hold for (Ti3)(g,1,c)-

The invariant (7,7;) (1.0,

We want to calculate:

(TuTi)(1,00) = /_ ev'(Ty X Tj) - m"cqgq—3(€)
[MU,Q(H’(LU!C)H
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where T; lives in codimension 3, 7w has relative dimension equal to 2 and
ev = (evy, evq) is the evaluation map with image in H x H. By linearity
of the GW invariants we can consider only the generators Tig, 711,112 of
A3(H). Choose once for all a representative I'(p) for the class Ty, with
p €  a generic point.

If ¢ = 0, as before ¢4, (€) = 1. Let C(p1,!1) represent 17, such that p # p;
and p ¢ Iy (see 3.2.3). Since all the points of a curve of class (1,0,0) have
the same associated line, it never intersects a curve of class T3;. The GW
invariant for maps p : C — H with p,[C] = (1,0,0) vanishes. The same
holds for the invariant involving 7o, because for a generic representative
C(pa,l2) of that class p # ps and p ¢ ls. Finally, if A(l) represents T12, then
it is disjoint from X and also this invariant is zero.

Let ¢ = 1 and consider the component of the moduli space parametrizing
maps from irreducible curves. An irreducible curve of class (1,0,1) never
intersects both a I'(p) and a C(p1,11) cycle generically chosen. The contri-
bution to the invariant <T4T11)(170,1) is zero.

If C(po,l2) represents Tyo, then ev*(Ty x Tyg) is a unique reduced point,
the class of the stable map [P!, z1,z9, ] determined by P! = C(pa, 1 (p)),
p(t) = (p2, f(t)) with f : P! — Q a parametrization of I;(p) such that
f(z1) =p, f(z2) = l1(p) N 2.

Let A(l) represent Tio, then for a general plane p ¢ A. Moreover the line
l1(p) intersects the hyperplane section A N @ exactly in a point g;. The set
{Z € HiIb> (AN Q) : Supp Z 3 ¢} is a line in Hilb?(A N Q) tangent to the
conic defined by A on that Hilbert scheme. It intersects [ in a point (¢, ¢2)
with g, # g2, because we chose I generic. Hence the curve P! = C(qq,11(p))
intersects T'(p) in Z = (q2,p) and A(l) in Z = (q2,q1). We conclude that
there is exactly one class [P, 21, zo, 1] satisfying the incidence conditions.
The stable map p is defined by u(t) = (go, f(t)) where f : P! — Q is a
parametrization of I1(p) such that f(z1) = p, f(z2) = q1.

Now we have to count the contribution coming from the reducible curves of
class (1,0,1). All these are contained into A UX. Let D = C(I) U C(q) be
one of them. We want to intersect it with a cycle I'(p) and a cycle C(p1,11).
Intersection points can not lie all on one component, because everything is
generic. The only possibility is that the intersection with I'(p) is on the
F-component and the other one on the Ci-component. Then ¢ = p and
[ =11(p). The second equality prevents any other point of C(I) from inter-
secting the cycle C'(p1,11), since in general p; ¢ l1(p). Then there are no
reducible curves satisfying these incidence conditions, i.e. the contribution
to the GW invariant is zero.

The same holds for the invariant involving 7.

Finally, the cycle A(l) representing T}s is such that the generic plane A does
not contain any line of (). Then there does not exist any point Z on the Cj-



60 CHAPTER 3. QUANTUM COHOMOLOGY

component of D lying in Hilb2(AN Q). The interseciton with A(l) must be a
point on the F-component. A(l) intersects A in at most 2 points Z; with sup-
port g;. Suppose g = g1, then C(I) is a line in Hilb?(I;(q;)). Since p ¢ 11(q1),
for general points, we conclude that there are no curves D satisfying both
the incident conditions. The contribution to the GW invariant is again zero.

If ¢ = 2, all the curves are of type C1Uc1 F'UcoF', with ¢; +c3 = 2. As before
the intersection points do not lie on the same component. In particular the
intersection with I'(p) is a point on a F-component. Besides the intersection
with C(p1,11), C(p2,l2) or A(l) has to be on the Ci-component, because A
does not contain any line in @ and all Z € C(p;,l;), i = 1,2, are reduced.
Then as for the reducible curve in the case ¢ = 1, all the GW invariants
vanish.

We can summarize our results in a table:

c=0 ¢c=1 ¢c=2 ¢>2
(T13)(1,0,0) 0 2 0 0
(TyT10)(1,0,0) 0 1 0 0
(TyTi1)(00 | O 0 0 0
(TuTi2)(100) | O 1 0 0

Remark 3.4.1. For 8 = (0,1, ¢) we have the same table, interchanging the
values obtained for the invariants involving 1o, T11.

We find the following expressions:

Ts«Ts = Ti+2(q1 + q2)g3To + 2;1 2{2T5 + Ts + T7r — Ty — Ty } g5
C

Ty« Ty = TE+2q193To

T1 * TQ = TlTQ

Ty T3 = TiT3 + 2q193T0

Ty« Ty = T3+ 2q2q3T0

Ty xT5 = 15715 + 2q2q3To

T +Ty = TVTy+ quq3T

To Ty = 1Ty + qaq3T

T3 Ty = T3T4 + qoqsTy + qigsT>

Applying associativity to the f; equations of §3.2 will permit us to calculate
almost all the GW invariants we need to write them explicitly. For example
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the identity (77 * T1) * Ty = Ty x (T} * Th) gives:

213 Ta + Y (T6To) (10,09 Tr 205 = > (TsTe) 01,09 T - 0145

cod Te=3 cod Te=3
c>0 c>0

By comparing the coefficients of the variables and by 2.8.4 we find:

c=20 <T5Te>(0’1’0) =0 <T6Te>(1’0’0) =0 fOI' all Te S A3 (H)

(T5T10)(0,1,1)

[Rat]

=0
c=1| (TsTu) 1) =2 (T6Te)(1,01) =0 for all T, € A*(H)
=2

[Rat]

(T5T12)(0,1,1)

[Rat]

¢>2 | (T5Te)p,1,e) = 0 (TsTe)(1,0,c) =0 for all T, € A*(H)

By symmetry we have:

¢=0| (T5Te)(1,0,0) = 0 (T7Te)(0,1,0) =0 for all T, € A*(H)

(T5T10)(1,0,1) = 2
c=1] (TsTu)uo =0 (T¥Te) 0,1,y =0 for all T, € A*(H)
(T5T12)(1,0,1) = 2

¢>2 | (T5Te)(1,0,) = 0 (TrTe)(o,1,c) =0 for all T, € A*(H)

The values in the second table arise also from the associativity applied to
TQ * TQ * Tl.
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The only necessary invariants we can not compute with this technique are:

1) (T8) (0,0, c>1
2)  (TuTs)o,1,0) (T10T7)(1,0,0) 2>¢>0
3)  (Tyicod 3)o1,e) (T4 cod 3)(1,0,0 2>c¢>0
4)  (T13)(1,0,0) (T13)(0,1,0) 2>¢>0
5 (T13T0)(2,0,) (T13T11)(0,2,¢) c>0
6) (T13T10)(0,2,c) (T13T11) (2,0,0) c>0

7)  (Tiz cod 3)(1.1,1)

8)  (T13T10)(1,1,0) (T13Ti1) (1,10 c>2
9)  (TaTyT)(1,0,) (TyTyTy)(0,1,0) 2>¢>0
10) (T13TuT4)(11,0) c>1
11) (Ti3TaTa)20,6)  (T13TuT4)(0.2,0) c>1
12) (T13Ti3T4)p B =1(3,0,¢),(0,3,¢),(2,1,¢),(1,2,¢) ¢>0

By symmetry, to calculate all the above invariants it is enough to consider
only those on the left side of the list, in particular for the last one we have to
study only the cases with 8 = (3,0,¢),(2,1,¢). Note that we already know
the values of the GW invariants 1), 3), 4) by previous calculations.

The last four values can be calculated using the associativity equation (3.1),
(see §3.5). Since they are not so difficult, here we work them out by hand.

Lemma 3.4.2. All the invariants number 12) are zero.

Proof. We can choose generic representatives Zp, Z(') for the two point-
classes. None of the (3,0,0)-curve can intersect both of them. Moreover
there are only reducible curves of class (3,0,c¢) for ¢ = 1,2 and they are
of type 3C1 U F, 3C1 UciF U cF, ¢ + co = 2, respectively. Then for the
same choice of generic Zj, Z(') none of them intersect such cycles. If ¢ = 3
we choose Zy generic and Z; € A. Reducible curves of class (3,0,3) are
disjoint from A or they live in the wrong dimension. Finally irreducible
curves are disjoint from A. Then also in this case the invariant is zero. For
¢ > 4 all the curves are reducible of type 3C; U C, where C is a union of
an appropriate number of ¢; F-curves. Then for a generic representative we
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have no contribution to the GW invariant. An analogous argument shows
that also for stable maps of class (2,1, ¢), ¢ > 0, everything vanishes. O

Remark 3.4.3. Since in the proof we do not make use of the cycles repre-
senting Ty, we proved something more, precisely:

(T13T13 cod 2)g =0
for 5= (3,0,¢),(2,1,¢c) .
A similar argument yields:
(T13Ty cod 2)(20,c) =0

for all 2-codimensional classes and ¢ > 0. In particular <T13T4T4>(270,C) =0,
for all ¢ > 1.
By means of 2.8.4 and genericity assumptions it is very easy to see that for
all ¢ > 0:

(TyTyTy)(1,0,c) = 0

Finally the invariant (T1374T4)(1,1,¢) gives 2 for ¢ = 2 and zero otherwise [P].

The invariant (T1175)0,1,0)

We want to calculate:

(T11T6)(0,1.0) = / evy (C(p1, 1)) - evy () - 7 (cag-3(E))
[Mo,2(H,(0,1,¢))]

where v = {Z € H : Supp Z N1} # 0,Supp Z N1, # 0} is a cycle repre-
ﬁnting Tg, for fixed lines lll,llll € Wy, and & is the obstruction bundle on
My o(H, (0,1,c)). Both representatives of Ts and 77, can be choosen generic.

It is very easy to see that for ¢ = 0 the invariant gives 1, because of the
geometry of a curve of class (0,1,0).

If ¢ = 1 we do not have any contribution from the irreducible curves by
the genericity assumptions. Let C' be a reducible curve of class (0,1,1). Tt
has to be a union C(ly) U C(p) for some p € Q and Iy € Wy. Since all
the points on C(p1,11) and «y are reduced, C can intersects them only along
C(l2). The line Iy = l3(p1) is then determined. The curve C(l2) is the line
in Hilb2(I3(py)) through (p1,l> N1y) and (I N1, 1o N1}). Moreover there are
two possible points for attaching C(p). This gives a contribution 2 to the
invariant.
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If ¢ = 2 we know that each stable map p has a reducible domain curve
D, in particular (D) is a curve of class Cy U 1 F U coF with ¢; + co = 2.
The F-components are points of M(c;) and M (cg) respectively. As before
the intersection points with C'(p1,l1) and 7 lie on the Cs-component which
is completely determined. It intersects A in at most two points Z;, with
Supp Z; = ¢;- Then by proposition 2.8.4 there is only a point satisfying all
the incident conditions [D,z1, 12, u] € Mo o(H, (0,1,2)):

D:DUUD1UD2 yi:DUﬂDi,i:1,2

N*[DU] =0 M*[Dz] = [C(Qi)]ﬂ 1=1,2
p(@1) = (pr.la(pr) N1)  p(@a) = (la(p1) N1y, la(p) N1Y)
w(yi) = qi, 1 =1,2

It is a reduced point so it counts with multiplicity one.

We summarize our results in the following table:

c=0|c=1|c=2

(TuT6)(0,1,c) | 1 2 1

The invariants <T13T1[]>(270,C) and <T13T11>(270,c)

To calculate (T13T10)(2,0,¢) and (T13T11)(2,0,¢) for ¢ > 0 is equivalent to solve
problems 5) and 6).

If ¢ = 0, fixing a generic Z; representing 773, there are no stable maps of
type (2,0,0) satisfying all the incident conditions in both cases. Then the
GW invariants vanish.

If ¢ = 1, curves of class (2,0, 1) are all reducible. Fix Zj, as above, then no
curves of type 2C; U F' can intersect it. Also in this case our invariants are
zero.

Let ¢ = 2 and Zj be a non-reduced point with support py. Note that the
points on the curve C(p1,[1) are all reduced as well as those of C(p2,l2).
In order to calculate the GW invariants we have to add the contributions
given by maps of type 2C; Uc; FUcoF, (C1 +F)U(Ci1+ F), 2(Cy + F) and
2C1 + 2F. If a reducible curve 2C; U a1 F U aoF intersects Zj, then its sup-
port is completely determined by I;(pg) and it does not intersect C(p1,1;)
or C(pa,1s).

Curves of type (C1+ F)U(Cy + F) are disjoint from A as well as 2(C; + F),
so they do not give any contribution.

Finally, if a curve 2Cy + 2F is in A it does not intersects C(l;, p;), i = 1,2,



3.4. A PRESENTATION OF QH¢(H) 65

otherwise it does not pass through Zj.

If ¢ > 2, we can choose Zj in A. Then we have to analyze only the contribu-
tions given by maps from irreducible curves of type 2C + ¢F' contained into
A and from reducible ones of type 2C; Ua1F UayF UasF UagF, > a; = c.
By the same argument used above, the GW invariants vanish.

(T13T10)(2,0,) =0 V>0
(T13T11)(2,06) =0 V>0

The invariant (7'3, cod 3) 11

Choosing generic representatives for the classes Tig, 111, 112, Ti3, sta-
ble maps from reducible curves of class (1,1,1) give no contribution be-
cause the expected dimension of Mg (H, (1,1,1)) is 7 while reducible curves
have less moduli. Then we restrict to study what happens on the compo-
nent Mo »(H, (1,1,1))" parametrizing maps from irreducible curves of class
(1,1,1), which is smooth of the expected dimension. Fix a generic point Z;
of H representing T3 with Supp Zy = {po, q0}-

Lemma 3.4.4. If (evy,evq) : Moo(H, (1,1,1))"" — HxH is the evaluation
map and A={Z € H:lz; Ny, # 0}. Then [A] = (eva).evi[Zy].

Proof. Let (C,zy1,29,1) € evy *(Zy) with Zy = p(x1) and Z; = p(zg). The
map g is an isomorphism with the image curve A(l), which is a line [ in
Hilb?(A N Q) for A generic plane in P3. Since both Zy and Z; are in AN Q,
lz, Nz, # 0, because they lie on the same plane, then 6’()2(6?)1_12[]) C A.
The set ev; ' (Zy) is 3-dimensional as well as A, in particular [A] = T3. The
map eve has degree 1 over A, in fact given a generic point Z € A, the lines
lz,,lz generate a unique plane A. It cuts a section AN on @ and there is a
unique line | CHilb?(AN Q) through Zy, Z. A curve A(l) with two markings
is uniquely determined. Hence the fiber over Z consists of a unique point
[P!, 21,29, ] where pu : P! — H is an isomorphism with A(l) such that
1 (Zy) = x1, pY(Z) = 3. Then evy(evy'(Zp)) is 3-dimensional. This
proves the lemma. O

Corollary 3.4.5. For all T, € A*(H):
(T13Te)(10,1) = /HT?,'Te
Proof. 1t follows from 3.4.4 and 2.7.1. U

The invariant (7137%0) (1,1, for ¢ > 2

We can fix generic representatives for the classes Ti3,7T1g, in particular
Zo = 1{po,qo}, C(p2,l2) with po ¢ lo and po, go # pa.
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If ¢ = 2, all reducible curves of class

CiUCyUciFUcF withep +c9 =2
(Ci+F)U(Ca+ F)
(C1+F)UCyUF

(Cz—i—F)UClUF

can not intersect Zy, C(pa,l2) since they have less moduli then the expected
dimension. Instead reducible curves of type (C; + Co+ F) U F' give a contri-
bution equal to 2. In fact both the markings have to lie on the Cy 4+ Cy + F-
component and the previous calculation showed there is exactly one stable
map of such a class fulfilling the incident conditions. Moreover we have two
possible choices for adding the F-component. Instead irreducible curves
A(p) of type Cy + Cy + 2F give contribution zero because the intersection
with Zj fixes p = pg and g € A N Q while the second evaluation map im-
poses pg € lo. This is impossible because of the hypothesis of genericity. A
similar argument shows that also irreducible curves C(ly,ls, f) do not give
any contribution to the invariant.

A curve of type (1,1,¢) with ¢ > 3 is necessarily reducible. There can be
a contribution only from those not completely contained into A U X, for
dimensional reasons. By means of the vanishing result 2.8.4, it is easy to
see that the GW invariant is equal to 1 for ¢ = 3 and vanishes otherwise.

We have the following table:

(Ti3T10)(1,1,0) | 2 1 0

Relations defining QH!(H)

The relations f; defining QH;(H) are:

T3+ T3 — (T +To) s T3+ Ty T — ;2q§(2T1T2 +T2+ T2 —TyT3—TyT3) =0
c>

Ty« Ty« Ty — i (Ts — Th) + 2q1g3(2T) + To) + q1g5(Th + 2T — T3) =0

Ty« Ty Ty — q2(T5 — To) + 2qog3(T1 + 215) + q23 (2T + Ty — T3) = 0

Tl*Tl*T2—2T1*T4:0

Ty * Ty Ty — 2T % Ty — 2q1g3(Th + T3) — 2q1q3(Th + 2T» — T3) =0
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ToxThxT) —2T5 Ty, =0

Ty« Ty x Ty — 2T + Ty — 2q2q3(To + T3) — 29293 (2T1 + T» — T3) = 0
TixToxT3 —2T3 T, =0

Ty Ty« Ty — 2q1g2q3T1 = 0

Ty x Ty * T — 2q1¢3To Ty — q1g2q3Ts + 2919203 (2T + To)+
—q1q2q3 (2T + 2T — T3) =0

Ty + Ty x Ty — 2g2g3T1 Ty — q192q3T5 + 2q19243 (11 + 215)+
—q1q2q3 (2T + 2T, — T3) = 0

Ty + Ty Ty — 2(q1g3ToTs + q2g3T1 Tu) — q1G2g3T5 — 2q192q3 (2T + 215 — Ts)+
—3Q1QQq§(2T1 + 2T2 — T3) = 0

Ty +Ty Ty — 51 (To T — Ty To) — qugs TV To + T5) — 3 q103 (TV To + 275 — To T3 )+
—q1g2q3(1 + 2¢3)Ty =0

ToxTox Ty — 5qo(TyT5s — Ty To) — qaq3 (2T To+ T2) — 3203 (T To + 2T — Ty Ts ) +
—q1q2q3(1 + 2¢3)Tp = 0

Ty« Ty x Ty — Ty % Ty — q1gsT5 — q2qsT7 — q1g2q3(1 + 2¢3)Tp =0

Ty T3+ Ty —TyxTy—q1q3(Ty To+T2+ToTs) — qoqs T2 —q1 g3 (T To+2T3 —ToT3) +
—q192q3(1 + 4q3 + 3¢3) Ty = 0

Tox T3+ Ty —TyxTy—qoqs(Ti To+TE+TiT5) —q1qs T3 — qoqi (Ty To+2T5 —T1 T3 ) +
—q192q3(1 + 4g3 + 3¢3)Tp = 0

In fact they satisfy the hypothesis of 3.3.3. In particular we can write:

Qla1,q2,T1, To, T3, Ty][[q3]]
(f5)i=1, 17

Remark 3.4.6. In the ring QH}(H) the identity T = Ty3 corresponds to:

QHS(H) =

Ty + Ty = Ti3 + 201243 T

3.5 The subring generated by the divisor classes

We apply the First Reconstruction Theorem (FRT) to the subalgebra of the
Chow ring of H generated by the divisor classes. So we can calculate all the
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tree level GW invariants which do not have Tj among the arguments. Then
we present a (partial) algorithm which permit us to compute (almost) all
the genus zero GW invariants for H.

Let S denote the subalgebra of A*(H) generated by Ty, T, T5. All the classes
in the fixed basis of A*(H) can be written as some product of the divisor
classes except Ty. Then T} is not in S.

We can consider the associated subring @S in QH*(H) and apply FRT to
it. It says we can compute all the genus zero GW invariants with arguments
in S by knowing few initial values. These are determined as follows. Let
ev : Mo2(H,3) — H? be the usual evaluation map For 7,72 € S we have

to calculate:
/ e (y1 X 72)
[Mo,2(H,3)]vir

Since cod ev*(y; X 72) has to be equal to 2a + 2b + 3 and cod ~; < 4 for
i = 1,2, we find the upper-bound a + b < 2. So we have to consider only
the following cases:

B (0,0,¢) | (1,0,¢) | (0,1,¢) | (1,1,¢) | (2,0,¢) | (0,2,¢)

(cod v1,cod 7v2) | (1,2) (1,4) (1,4) (3,4) (3,4) (3,4)

(2,3) (2,3)

In §2.7 and §3.3 we calculated some of these invariants. The left ones are
obtained by means of the associativity applied to the equations f;. Then we
know all of them. This implies that we can calculate all the GW invariants
on H without Ty among the arguments.

An algorithm for the tree level GW invariants

To have a complete knowledge of the genus zero GW-system on H we need
an algorithm computing invariants of type (T}"yi - ... vn)g, With y; € S
such that 4 > deg v; > ... > deg vy, > 2.

We use equation (3.1) and by induction we suppose to know all the invari-
ants:

(Tfvi-.---vm)p withr <m
(Tfyi-...-7vs)pg withr+s<m+n
(T{"1 ... An)p  with deg 4, < deg vy
(T/"y1 - )y with B — B > 0 effective

If m = 0, there is no problem because each +; is in S.
If m =1 and n = 0, then we know (Ty) 0,y = 0, for all ¢ > 1.
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If m =1 and n = 1, then v lives necessarily in codimension 3 and we have
already calculated all the invariants in §3.3.
If m=1andn > 2, weuse (3.1):

AT Ty T[] vadse 97Tk -T0- Ty - T w0 =

a€A beB
=TT Te - [ [ vadse 0(Ty - T0- Ty - ] w)se
acA beB

By induction, we know all the invariants with §; # 0, ¢ = 1,2. We look only
to the terms with either 8y or £y equal to zero, i.e. on the left-hand side:

n n
(T T T UTy - [[)s + (LU T T Ti- [ 906
1 1

~ » ~ »
~ ~

I Ip)

on the right-hand side:

n n
(T Tp TUT - [[ s + (T UTe- T Ti- [[ 706
1 1

~ » ~ »
~ ~

I3 14

Since 7; € S, there exists a decomposition v, = a U a; with a1 € A'(H)
and deg a = deg v, — 1. We choose:

Ti=Ty, Tj=m, Thr=a, Ti=a, R=7y... Y1

Then I; is the value (Tyyi - ... - yn)g we want to know (this will always
be the case). Up to a scalar (possibly zero) Iy is (Ty U~y - a - R)g, all its
arguments are in S. Analogously I, is proportional to the known invariant
(Ty Ua-y1 - R)g. Finally in I3 = (T4 - a- y1 U a1 - R)3 the minimal degree
decreased by one. Then we can write I; as a combination of lower degree
terms. After a finite number of steps we can reduce our problem to the
previous case with n = 1.

If m > 2 and n = 1, then we have three possibilities for cod ~;. If cod y; = 4,
we can suppose y; = T13. We choose:

Ty, T) € A2(H) NS with T, UT) = T3
T, =T, =Ty
R=T""

We obtain that in I = (T4m*2T13Tle)5 we have a lower number of Ty’s as
well as in I3 and Iy, since Ty U Ty, T, UT; are in S. We can reduce the
problem to find (TyT137)s, with v € A2(H) NS, i.e. m = 1.
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If cod ;1 = 3, then we can decompose it as 71 = a U oy, with o € A'(H)
as above. Fixing:

Ti=Ty Tj=Tiy Tr=a, Tj=a;, R=T; >

we get I proportional to (T)"~*Tj3a)s, and we know it by induction. The
invariant I3 = (Tf“loz -TyU 1) has less Ty-classes and the minimal degree
is lower. Finally I, is proportional to <T£n_1T13>g, then it is known.

If cod v; = 2, we use the same trick with:

T,=Ty, Tj=Tiy, Tp=ai, Tj=ay, R=T">

where oy, ay are two divisors such that a; U as = ;. Also in this case we
can reduce our problem to the case m = 1.
If m > 2 and n > 2, then we write 7, = aUay, oy € A'(H) and we choose:

T,=Ty, Tj=m, Tr=a Ti=a;, R=T" ... v

Then I, I, are invariants with less T4’s and in I3 the minimal degree is
deg o = deg v, — 1. By induction we reduce to the case n =1 or m = 1.

To complete the algorithm we need to find the invariants with m > 2 and
n = 0. For dimensional reasons m has to be odd. At the moment we are
not able to give a recursion formula to evaluate these invariants.



Chapter 4

Enumerative applications

We use the results on the Small Quantum Cohomology obtained in the
previous chapter to count how many hyperelliptic curves on @) of given genus
and bi-degree pass through a fixed number of generic points. Basically we
reduce a question in higher genus to a question about rational curves on
the Hilbert scheme H, as in [Gr]. To do this we need to find a relationship
between our hyperelliptic curves and some rational curves on H.

With the word hyperelliptic we will mean an irreducible curve with a choice
of hyperelliptic involution.

4.1 The moduli space of hyperelliptic curves map-
ping to @)
We start with two lemmas, a proof of the first one can be found in [Gr].

Lemma 4.1.1. If f : C — P" is a morphism from a hyperelliptic curve
such that it does not factor through the hyperelliptic map © : C — P! then
H'(C, f*O1)) =0 for all i > 0.

A similar result holds for maps to Q).

Lemma 4.1.2. Let p; : Q — P! be the two projections and p : C — Q
be a morphism from a hyperelliptic curve such that p; == p;op: C — P!,

1= 1,2, does not factor through the hyperelliptic map.
Then H'(C,p*Tg) =0 for all i > 0.

Proof. Consider the Euler sequence:
050—01)% 5T =0
Since T = pi(Tp1) ® p5(Tp1), a surjection is defined:
H'(C,u*piO0%*(1) @ p'p30%%(1)) = H' (C, " Tg) = 0
By hypothesis H7(C, u*p;O%%(1)) = 0 for j > 0, so H/(C,y*Tg) =0. O

71
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Let My0(Q, (di,d2)) be the moduli space of maps p : C — @ from a smooth
irreducible projective curve C of genus g such that p,[C] = (d1,d2). Let M,
be the moduli space of semistable projective curves of genus g. We denote
by H, the sub-locus parametrizing hyperelliptic curves. If C' is hyperelliptic
then the cyclic group of order 2 acts on the space of universal deformations
U of C. Tt can be proved that the fixed locus V' C U is the universal
deformation space of C as a hyperelliptic curve and it is obviously smooth.
It follows that H, C M, is a smooth substack. The cartesian diagram:

ﬁg(Qa (dladQ)) - Hg

Mg(Qa (dla d2)) - Mg

defines the space ﬁg(Q, (d1,ds)) parametrizing maps pu : C — @Q from a
hyperelliptic curve C' of genus g with u,[C] = (dy,d2). We are interested in
the open subset Hy(Q, (d1,d2)) of maps g such that the composition maps
pi=piop:C — P i=1,2do not factor through the hyperelliptic map.

Theorem 4.1.3. The natural morphism v : Hy(Q, (d1,d2)) — Hg is smooth.

Proof. Tt follows from the vanishing result 4.1.2; for each p : ¢ — @ in
Hy(Q,(dy,dp)), we have H'(C, u*Tg) = 0. Then by theorem 2.2.1, the for-
getful morphism M o(Q, (d1,ds)) — M, is smooth in [u]. Since smoothness
is a local property, the theorem follows. ]

Corollary 4.1.4. H,(Q,d) is smooth and irreducible.

Proof. Smoothness is a direct consequence of the theorem, since both H,
and v are smooth.

Since H, is irreducible, it is enough to prove the fibers of v are irreducible
of constant dimension. A fiber v~ 1(C) is the set of all u : C — Q of bi-
degree (dy,ds) such that both puq, e do not factor through the hyperelliptic
map. They are two morphisms to the projective line, so they correspond
to two line bundles on C' of degree dj, ds respectively. We get a morphism
f = (f1,f2) : v 1(C) = Pich (C)xPic®(C). By Lemma 4.1.1 Im(f;) is a
subset of {L£; : £; is spanned, h'(L;) = 0}. Conversely, for i = 1,2, let W;
be the subset of Pic%(C) of sheaves £; such that £; is spanned, h'(L;) = 0
and £; is not a multiple of gi. Then each £; € W; is in the image Im(f;).
W; is open and dense (if not empty), because Pic% (C) is irreducible. Hence
Im(f;) contains the open subset W; and therefore it is irreducible (because
W; is). It follows that Im(f) is irreducible of dimension 2¢g. Each fiber
f YLy, La), L; € W;, is a product Vi x Vi, where V; is the open set of

pairs of global sections (s}, 322) of £; without common zeros, modulo scalars.
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Hence these fibers are irreducible and they have the same dimension equal
to 2(dy + dy) — 2g, because the first cohomology of £; vanishes. Therefore
v~1(C) is irreducible of dimension 2(d; + da). O
4.2 The basic correspondence

An element in Hy(Q, (d1,d2)) is a diagram:

c—" .0
o | 2:1

IEDl

where 7 is the hyperelliptic map and u.[C] has bi-degree (di,ds) on Q.
Define a: C — P! x Q by a(p) = (n(p), u(p)). Then Z = I'm(a) is closed
because « is proper and it is irreducible because « is regular. It comes with
a natural map pr; : Z — P! which is a flat morphism, by [Har|] Chap. III
Prop. 9.7. The generical fiber of pry is a set with two distinct points, that is
to say pr; is a flat family over P! with fibers subschemes of @ of dimension
zero and length two. By the universal property of H there exists a unique
morphism g making the following diagram cartesian:

Z—U—Q

P1—9>H

where U is the universal family over H.

So we associate to x a morphism g : P! — H canonically. This is well
defined for each point [C, u] € Hy(Q, (d1,d2)).

Conversely, given a map ¢ : P' — H we can pull it back via u:

where C = U xg P! and 7 is a 2 : 1 flat morphism. Then we get a diagram:

c—r +Q
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If g(P') C A, then C is not a hyperelliptic curve because it would not be
reduced. If g(P') meets A transversally, then C is a smooth hyperelliptic
curve. Intersection points g(P') N A correspond to branch points for the
hyperelliptic map 7 : C — P!, because A is the branch locus of u.

The genus of C is given by the Hurwitz formula:

2gc — 2 = deg 7 - (2gp1 — 2) + [g(P")] - A
Let g(P') be a curve of class (a,b,c), then gc =a +b—c— 1.
Remark 4.2.1. Since the genus is non-negative, a + b > c.

Finally we calculate the bi-degree of u(C). It is given by the intersection
of p(C) with the generic conic (1,0) + (0,1) on Q. It corresponds to the
intersection product of the cycle class (a, b, ¢) with the two divisors Ty, T of
H:

dl = (a,b,c) Ty = b

d2 = (aabac) 'TZ =a
Remark 4.2.2. Since [g(P')] - A = 2(ge + 1) > 0 there is ramification for
the map 7 and C is connected.

Then a hyperelliptic curve C' on @ of genus g and bi-degree (dy,ds) is rep-
resented by a rational curve in H of class (do,dy,dy +dy — g — 1). We will
make this sentence more rigorous after fixing some more notation.

Let us consider particular rational curves, those parametrized by the open
subset MSTO(H,B) C Myo(H, ) of maps from irreducible rational curves
fulfilling:

i. they intersect A transversally
ii. they are not contained in X

iii. they are disjoint from A,

Let H;F(Q,d) C Hy(Q,d) be the open subset parametrizing maps p such
that:

a) C'is a smooth hyperelliptic curve («w i.)
b) both u; do not factor through 7 (e~ ii.)

c¢) both differentials du; are injective on ramification points of m (e iii.).

Remark 4.2.3. Conditions defining H;F(Q,d) are equivalent to say that
a:C — P! x Q is an embedding, i.e. Z is closed, reduced and irreducible.

Theorem 4.2.4. There is a canonical isomorphism:
HgtT(Qa (dla d?)) = Mg,TU(H? (an dla dl + d2 -9 - 1))

Proof. The proof of theorem 2.4 in [Gr] never makes use of the fact that the
curves are in P2, then it works also for hyperrelliptic curves on Q. O
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4.3 The main theorem

By what we have showed so far, to count hyperelliptic curves on () of bi-
degree (dy, ds) and genus g passing through r = 2d; +2ds+1 general points is
equivalent to count irreducible rational curves of type (dg,dy,d; +ds —g—1)
in H which are transversal to A and meet r general translates of I'(p), p € Q.
So we might expect a relationship between the number we want to count
and the Gromov-Witten invariants (T7)s. In general, the moduli space
Mo, (H, (d2,dy,dy + dy — g — 1)) can have some components whose general
element corresponds to a reducible curve, moreover these components can
have dimension as large or larger than the expected one. Then there can
be undesired contributions to the number we want to find. The following
theorem gives us a picture of the curves in H we are counting.

Theorem 4.3.1. Fiz an effective class = (a,b,c) € A;(H), a+b > 1,
and v general points p1,...,p, on Q with:

r=2a+2b+1
Then:

1. there exists at most a finite number of irreducible rational curves of
class B incident to all the cycles T'(p;);

2. all such curves intersect AU Y in points disjoint from the T'(p;);

3. given any arbitrary stable map p : C — H of class B incident to all
the cycles T'(p;), then C has a unique irreducible component which is
not entirely mapped into AUX, such a component is of class (a, b, cy),
where ¢y < c.

Consequences : the theorem tells us that given a stable map p: C - H
satisfying all incident conditions, aside from the distinguished component
of C of class (a,b,cp), all other components are of type (0,0,¢') and they
are entirely mapped into A. So they are multiple covers of P'. Moreover,
adding a component of type (0,0,c’) to a stable map can never cause it to
be incident to any extra I'(g), since it would force another component of the
curve to meet the corresponding cycle. Finally, different (0,0, ¢') components
are disjoint, since they are different fibers of the support map s, then they
must be incident to the distinguished component, C' been connected.

We conclude that the source curve looks like a comb, with the component
of class (a,b,cp) as the handle and the components of class (0,0,¢’) as the
teeth. We get exactly the same picture obtained in [Gr].

There is a finite number of such curves. Infact, if C' is irreducible, then
the theorem confirms our assertion. If C' is reducible, we have only a finite
number of possibilities for the multiple covers of a (0,0, 1)-curve and only a
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finite number of points of intersection of the distinguished component with
A. So there are only finitely many potential image curves for stable maps
incident to all of the cycles. In particular, if we denote by A the locus in
Mo,0(H, (a,b,c)) defined by 7(evy 'T'(p1) N...Nev, 'T(p,)) , where  is the
usual map forgetting the markings (and stabilizing) and ev = (evy, ..., ev,)
is the evaluation map on H", then A is a union of finitely many components.
In fact the theorem says that the only moduli in the choice of a stable map
meeting all the T'(p;) comes from the choice of multiple covers of the (0,0, 1)
curve. Then as a set, each component of A decomposes as a product:

M(c1) X M(cg) X ... x M(cp)

with ¢1 + ... 4+ ¢ = ¢ and M(c;) as in §2.6. In paricular A is contained in
the smooth locus of M (H, (a,b,c)).

Before going on with the proof of the theorem we need a lemma.

Lemma 4.3.2. With notations as in the theorem, let C' be an irreducible ra-
tional curve meeting all the cycles T'(p;) and the orbit ¥4. Then it intersects
A UY in points disjoint from all the T'(p;).

Proof. Let 7 = 2a +2b+ 1 and M C M, ,(H, (a,b,c)) be the open subset
of points [C, p1, z;]j=1,..r such that C' = P, u(C)NXy # 0. Tt is smooth of
dimension 2r. The map M — Mg o(H, (a,b,c)) which forgets the markings
and stabilizes factors through:

M " Mo 1 (H, (a,b,¢)) — Mo o(H, (a,b,c))

where 7; is the map forgetting all the markings but z; and stabilizing. It is
surjective onto its image Im(m;) = U; which is the universal curve over the
smooth locus Uy of M o(H, (a,b,c)). Then m; : M — U, is flat of relative
dimension r — 1. The set N = {[C, u,z] : p(z) € AUX} is a closed subset of
Uy, as it is the inverse image ev ! (AUYX). Tts complementary U;\ N is open
and intersects all the 1-dimensional fibers of Uy — Uy, then it is dense. This
implies that N is a proper closed subset, equivalently it has dimension lower
than r 4+ 1. Moreover the inverse image M; = m; '(N) has dimension dim
M; < dim M = 2r because also the restricted map m; : M; — N is flat of
relative dimension r — 1. Let Mi be the resolution of singularities of M;. It
has the same dimension as M;. Set ' = [[;_, I'(p;), for generic fixed points
P1, ..., Pr € Q and consider the inverse image of I' in M; via the evaluation
map, i.e. the composition:

~ ev
ev; : M; - M; — H"

We apply the Position Lemma to ev; with the group Ag, the connected
component of A containing the identity, acting on H. Then ev;I(I‘) has
pure dimension equal to dim M; — cod(I" C H") < 0, that is to say it is
empty. In particular ev ™! (') N M; = 0. O
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Remark 4.3.3. Note that H" is almost homogeneous because there is a
group acting on each factor and globally we have a finite number of orbits.

Proof of the Main Theorem and applications

We are ready to give a proof of the theorem. We will use induction on the
number of components of the source curve C' and we will apply the Position
Lemma with respect to the action of Ay on H.

Proof. STEP 1. Let C be a rational, irreducible curve with r markings and
let o : C — H be a stable map of class 8 = (a, b, ¢) such that u(C) € AUX.
Set ' = []i_, T'(p;). Note that the moduli space Mg, (H, ) is smooth in
[C, 1] of the expected dimension. Then we can consider the restriction of
the evaluation map to the smooth open subset:

M ={[C.pa;]: C =P, u(C) ¢ AU} C Mo, (H. §)
We can apply the Position Lemma:

ev }(T) ——T

M H"

ev

It follows that dim ev!(T') = 0 since M is of the expected dimension 2.
STEP 2. Suppose that C' is irreducible and p(C) C A, then in A we have
1[C] = B = (%,%,0) by what we showed in §1.5. Let o’ = §,b' = % We
have a curve D of class a'[L1] 4+ b'[La] + ¢[L3] in A and we can consider
its projection to (). The image B is a curve of genus zero and of bi-degree
(a',b') on Q. In fact L; maps to [; for s = 1,2 and L3 maps to a point. The
cycles T'(p;) restricted to A have codimension 2 and the curve D is incident
to all of them if and only if the image curve B goes through all the points p;.
A rational curve on @ of bi-degree (a',b’) passes through at most s generical
points of (), where:

2s:dimQ+/ a(Tg)—3+s=>s=2d+20 —1=a+b-1
(a’,0")

We have s < r = 2a + 2b + 1, so the irreducible curves u(C) C A give no
contribution to our calculations.

If C is reducible and pu(C) C A then we can write C = C1 U...UCy. Every
irreducible component C; is such that p(C;) meets at most s; = a; +b; — 1
cycles I'(p;), where > a; = a, ) b; = b. This means that p(C') intersects at
most > s; = a+b—k < r points. Also these curves give no contributions
to our calculations.
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STEP 3. Now we analyse the contribution from irreducible rational curves

C such that p(C) C X. Since X is the disjoint union W1 UW3 and p(C) is irre-

ducible, it is enough to consider the case u(C) C W;. The pushforward class
r Y1 X...XP1

(14[C] in Wy is (a, 5) with b even. Denote by ¢} the map Wi R W
induced by the blowup H — G. Then we have a composition map:

Mo, (Wi, (a,b/2)) —2e WI -2 W7 C G7

If a curve of class (a,b/2) intersects all the cycles I'(p;) then its image via
1 is of class (1)« (a,b/2) = E[W;] = bloa,1] because W) is a quadric in G,
and it goes through all the points /1(p;) € G. Such a curve passes through
at most s fixed points in G, with s given by the formula:

1+ 4b
4s:dimG+/ cl(TG)—3+s;»s:+—
bloa,1] 3

Since s < r we verify that irreducible curves mapped into ¥ give no contri-
bution to our computation.

Suppose that C is the union of k irreducible components and p(C) C X.
Since Wl, W, are disjoint, if an irreducible component is mapped into W,
then all the components are actually mapped into the same divisor w;, by
connectedness. We can assume y(C) C Wi. The number & of components is
bounded. In fact p.[C] = (a,b,b) in H, with b even, then k is at most equal
to a + % This implies that u(C) goes through at most s = % < %TJF%
cycles. We get s < r also in this case.

Lemma 4.3.2 conclude the proof of 1.-2.

STEP 4. Suppose C is reducible and p(C) C A UX. In particular assume

that C has k irreducible components C; such that:

ngAg fOI‘lS?:Skl
C; CWy for by +1 <4<k
C; CWy forks+1<:<k

We fix the notations:

D, = Ugl C; is of class (a1, b1, c1)

Dy = Uk2k1+1 C; 1is of class (ag, b, c2)

1=
D3 = Uf:k2+1 C; is of class (a3, b3, c3)

The conditions ) a; =a, > b; =b, Y ¢; = chold. The image curve u(D;)
intersects r; cycles. By the previous results we know that r; < 2a; + 2b; for
all j then r1 + 19 + r3 < 2a 4+ 2b < r. The curve C does not intersects all
the cycles I'(p;).
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STEP 5. Note that a point [C,y, ;] such that C = |JC; and each C;
intersects the dense orbit X4 lives in the smooth locus of My, (H, (a,b,c)).
The subset R parametrizing all such stable maps is a proper closed subset
of the smooth locus, then it has dimension lower than 2r. Then for generic
points p; the intersection R Nev™!(I') is empty.

We have to analyse only the contribution from stable maps s : C — H with
rational reducible domain and (C) € A U X but such that there is excess
at the point [C, u, z;], i.e. there exists at least one component of C' mapped
into AU Y. We can write C' = Cy U Cy with Cy N Cy = {p} a point mapped
in AUX. Set [u(Cy)] = (a;,bi,¢;) in H, with > a; =a, > b;=0b, Y. ¢; =c.
Suppose (a;, b;) # (0,0) for i = 0,1 and let u(C) be incident to all the cycles
[ (p;). We know that u(C;) intersects r; = 2a; + 2b; + 1 — k; cycles, with
ko + k1 < 1. We can assume g = 2ag + 2bg + 1 and 1 = 2aq1 + 2b;. By
induction, Cy has a unique irreducible component of class (ag, by, ¢g), with
¢o < ¢, not entirely mapped into A U 3 and intersecting all the cycles. All
the other components are of class (0,0, ¢;). There is only a finite number
of possible values for ¢y then there are finitely many possible images of Cj.
In particular x(Cp) N (A U X) can be contained in a finite number of cycles
of the form I'(g;) with ¢; ¢ {p1,...,p,}, by statement 2. The curve pu(C)
meets at least one of the I'(¢;), because u(p) € AUX. So it intersects ry + 1
cycles and a point of intersection is in A U X. This is impossible. Then
a] = b1 =0. O

We can write explicitly the relationship between Gromov-Witten invariants
on H and enumerative geometry of hyperelliptic curves on Q.

Definition 4.3.4. Let E((dy,d2),g) be the number of hyperelliptic curves
of genus g and bi-degree (dy,ds) on Q passing through 2dy + 2ds +1 = r
general points, counted with multiplicity.

Theorem 4.3.5. With = (do,dy,dy +dy — g — 1) and r as above, the
enumerative numbers E((dy,dz),g) satisfy the equation:

wa =3 (5 2) P (4.1)

h>g

Proof. We write 8 = (a,b,c) where a = dy,b=dy,c=dy +dy —g— 1.

Fixed r general points p,...,p, the invariant (T])s is given by the degree
deg(ev (] T'(p;)) where ev='([]'(p;)) is a finite set of points by 4.3.1.
Each of them corresponds to a hyperelliptic curve which then comes with
a multiplicity. By the results of section 2.6, the only contribution to the
invariant comes from the zero dimensional component of the moduli space
Mo (H, B) corresponding to stable maps from curves which look like combs.
These are the union of an irreducible (a, b, ¢p)-curve, ¢y < ¢, incident to all
the cycles I'(p;) with ¢ — ¢y rational curves mapping isomorphically onto a
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(0,0,1)-curve. Hence the number of stable maps is equal to the number of
possible irreducible curves of class (a, b, cy) times the number of choices for
the attachment points of the (0,0, 1)-curves. We have to choose ¢— ¢ points
among the 2(a + b — ¢p) ones in the intersection (a, b, cy) - A. The formula
then follows from the relationship between (a, b, c) and (dy, ds, g). O

Remark 4.3.6. We expect that for generic data the hyperelliptic curves of
given genus and bi-degree passing through r points have always multiplicity
equal to one. This is equivalent to the condition that a general irreducible
rational curve in H intersects the stratification trasversally. At the moment
we can only partially prove such a statement. Roughly speaking the idea
is that given a stable map p : C — H such that u(C) is as in the hypoth-
esis, the sheaf pu*(Ty) is generated by global sections. We can move the
curve away from any 2-dimensional closed orbit A} and make it intersect
transversally any 3-dimensional orbit. So let M be the smooth open subset
of M o(H, (a,b,c)) of the expected dimension r = 2a+2b+ 1, parametrizing
the stable maps p : C' — H such that C = P! and u(C) N4 # 0. We de-
note by N; the closed subsets of M defined by the condition u(C) N A% # 0,
1 = 1,2. We need to prove that each N; has dimension lower than r, i.e.
given a point in N; there exists a deformation of it which is not in V;. Each
map u € M is a free morphism in the sense of [K], (Chap. II, Def. 3.1) and
each orbit A} is of codimension 2 in H, then we can apply [K] Proposition
I1.3.7 and conclude that N; is a closed proper subset. Transversality for the
intersection with the orbits A3 and X3 is more subtle (see [P]).

Remark 4.3.7. We note that the sum in 4.3.5 is finite, in fact the values
of h are equal to dy + dy — cg — 1 with ¢y < ¢. We can recover the values
E((d1,d2), g) by knowledge of all the GW invariants (T} ) (dy,d,,dy +d2—g—1)-

Remark 4.3.8. At the moment we do not know how to compute all the
invariants (77)(4,,d,,d,+ds—g—1)» (see §3.5).

Remark 4.3.9. The numbers E((d;,ds),g) are zero for small values of
dy,ds,g. In fact E((dy,ds),g) is less then or equal to S((dy,d1),g), the
number of smooth curves of bi-degree (d;,dy) of genus g passing through r
points. S((dy,dy),g) is zero if dydy —dy —dy — 1 < 0. Then the first possibly
nonzero GW invariants are <T411>(372,2) and <T411>(273,2).

We can also extend [Gr] Theorem 3.7 to our case, as follows. Fix k general
points p; on @ and [ general pairs of points qj,q;- with £+ 3l = r, r as in
the previous theorem. We want to count how many hyperelliptic curves on
@ of genus g and bi-degree (di,ds) pass through all the points and satisfy
also the condition that for some choice of the hyperelliptic involution g¢; is
hyperelliptically conjugate to ¢} for all i. Let E'((dy,ds),g) be the solution
of this problem. A hyperelliptic curve on @ will meet hyperelliptically con-
jugated points ¢, ¢’ if and only if the corresponding rational curve on H will
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meet the point Z with support {g,q'}. Choosing a representative of the
point class Ti3 outside A U X, curves moving in excess dimension cannot
satisfy this condition, so theorem 4.3.1 is true also for cycles representing
Ti3. The same argument used in the proof of [Gr] Thm.3.7. will hold for
the Gromov-Witten invariants involving the point cycle class. In particular:

Theorem 4.3.10. With notations as in theorem 4.3.5:
2h + 2
Tl Ty 3 = E'((dy,dy), b 4.2
(1l -1y };(h_g) ((dr, o). 1) (42)

Remark 4.3.11. Also in this case the sum over h is finite. By what we
showed in §3.5 if [ > 1 then we can compute all the invariants (T} -Tj ') 5.
Therefore we can invert the formula (4.2) to get the numbers E'((dy, d2), h).
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