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Riassunto

Questa tesi sviluppa gli aspetti teorici basilari dellegoreta elettroniche dei nanotubi
di carbonio che sono necessari per una comprensione datdadélle misure di carat-
terizzazione ottica tramite fotoluminescenza e spetopiscRaman. Nella prima parte
di questo lavoro vengono introdotte le nozioni generalir@notubi di carbonio, la loro
struttura geometrica e i fondamenti delle proprieta edaithe ed ottiche. Queste pro-
prieta sono state descritte sulla base di un calcolo tigiding svolto in spazio reciproco,
noto anche come schemzane-folding che & stato ampiamente utilizzato negli studi
teorici sulla struttura elettronica dei nanotubi. In paotare, si & posta grande attenzione
ai punti speciali della zona di Brillouin che giocano un ratitico nella densita degli
stati e negli elementi di matrice elettrone-fotone dei nabba parete singola, dando
cosi il contributo essenziale dominante agli spettri dioalsimento ottico di questi sis-
temi. La conoscenza dei vettori d’onda critici nella zon®dilouin e di fondamentale
importanza per un’applicazione saggia dell’approcciocdistallo piccolo émall crystal
approach), che costituisce il contributo originale di questa teshe wiene introdotto nel
Cap. 4. Partendo da una porzione finita del reticolo realeppamente scelta con con-
dizioni periodiche al contorno appropriate, I'approcsioall crystalconsente di trovare
I'insieme piu piccolo di punti della zona di Brillouin che@so sufficienti per calcolare
il profilo essenziale degli spettri ottici di sistemi pericidcome i nanotubi a parete sin-
gola. Il Cap. 4 stabilisce I'equivalenza completa tra i ndeth tipo small crystale zone
folding, applicati ai calcoli tight-binding della struttura elettica per semplici sistemi
modello e nanotubi a parete singola. La visione in spazile n@@sente nell’approccio
del cristallo piccolo consente di superare le limitazior@renti ai metodi in spazio re-
ciproco, quando si debbano considerare effetti di rotturalk di simmetria nella struttura
elettronica dei nanotubi di carbonio, come interazionitedee-elettrone, difetti puntu-
ali e interazioni intertubo dipendenti dall’'orientaziodei tubi costituenti, quest’ultimo
nel caso particolare dei nanotubi a parete doppia. | Cap Bestrano I'applicazione
dell’approccio small crystal a questi problemi e i risul@ttenuti vengono discussi in
relazione alle attuali conoscenze sperimentali e teoridimeparticolare, i nanotubi a
parete doppia sono ampiamente studiati per le prometteplicazioni biologiche e na-
noelettromeccaniche. Un’adeguata modellizzazioneatslbppiamento intertubo dipen-
dente dall'orientazione delle pareti costituenti queistesni &€ necessaria per interpretare
le caratterizzazioni sperimentali Raman di questi sistelbata la sua formulazione in
spazio reale, I'approccio small crystal offre la flessthildi variare I'orientazione mu-
tua delle pareti costituenti e i parametri che descrivomtdhsita dell'interazione inter-
tubo. | nostri calcoli mostrano variazioni importanti negpettri di assorbimento ottici
dei nanotubi a parete doppia, che rendono conto delle dtfiismlitamente riscontrate
nell’assegnazione dei picchi Raman ai diametri e chaaliéi tubi costituenti. Infine,
le proprieta eccitoniche dei nanotubi costituisconoddesquestione piu discussa nella
scienza dei nanotubi, sia teorica che sperimentale. |l Gamende in rassegna re-



centi calcoli presenti in letteratura su questo problemaostra I'applicazione ultima
dell'approccio small crystal per introdurre gli effetti dorrelazione coulombiana nella
descrizione di particella singola, secondo il modello dibHard. Selezionando una
porzione sufficientemente piccola del reticolo reale copoofune condizioni periodiche
al contorno, si puo impostare un calcolo many-body coroptbe consente di ottenere
una descrizione qualitativa delle proprieta elettroaidei nanotubi a parete singola che
risulta essere consistente con I'attuale descrizioneiwidlileccitonici di questi sistemi
fornita dalle tecnichab initio. Anche se limitata da stringenti requisiti computazionali
sulla dimensione dei sistemi trattati, che potranno essaperati con tutta probabilita
usando algoritmi piu raffinati, la semplice implementazdornita in questa tesi con-
ferma che per questo metodo si possono certamente praspateressanti sviluppi per
lo studio delle proprieta di stato eccitato di tubi a diamajrande e per la trattazione
dell'inclusione di difetti puntuali in questi sistemi.
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Abstract

This thesis develops the basic theoretical aspects of durehic properties of carbon
nanotubes which are necessary for a detailed understanéliogtical characterization
measurements by photoluminescence and Raman spectrosodgpe first part of this
work | introduced the general facts about carbon nanotuheg, geometrical structure
and the fundamentals of their electronic and optical prisg®r These properties have
been described on the basis of a tight-binding calculatahreme carried in reciprocal
space, also callezbne-foldingscheme, which has been widely adopted in theoretical in-
vestigations on nanotube electronic structure. In pdeicgreat attention has been paid
to the special Brillouin zone points which play a criticalean the density of states and
electron-photon matrix elements of single-walled nanes,lihus giving the essential
dominant contribution to the optical absorption spectrdhefse systems. The knowl-
edge of the critical wavevectors in the Brillouin zone is ohdlamental importance for
a wise application of themall crystal approachwhich constitutes the original contri-
bution of this thesis and is introduced in Chapt. 4. Starfirogh a wisely chosen finite
portion of the real lattice with proper boundary conditiptiee small crystal approach
allows to find the minimal set of Brillouin zone points, whiahe sufficient for comput-
ing the essential features of the optical spectra of parisgtems, such as single-walled
nanotubes. Chapt. 4 establishes the full equivalence leetamall crystal and zone fold-
ing methods applied to tight-binding electronic structoaéculations for simple model
systems and single-walled nanotubes. The real space \@sivedded in small crystal
approach allows to overcome some limitations inherent¢grecal space based meth-
ods, when dealing with local symmetry breaking effects ia &hectronic structure of
carbon nanotubes, such as electron-electron interactamst-defects and orientation-
dependent intertube interactions, the last one in thequaati case of double-walled nan-
otubes. Chapters 5 and 6 show the application of small drgpfaoach to these issues
and discuss the obtained results with respect to the ciyravdilable experimental and
theoretical findings. In particular, double-walled nar@s are widely investigated due
to promising biological and nanoelectromechanical apgibms. An adequate modeling
of the orientation dependent interwall coupling effectstloa optical spectra is neces-
sary for interpreting experimental Raman characterinatiof these systems. Given its
real space formulation, the small crystal approach offieesflexibility of changing the
mutual orientation of the constituent walls and the paransetlescribing the strength
of the interwall interaction. Our calculations show thapontant changes occur in the
optical absorption spectra of double-walled nanotubeskvhan account for the usual
difficulty in assigning experimental Raman features to tlaengters and chiralities of the
constituent tubes. Finally, excitonic properties of saglalled nanotubes are perhaps
the most debated issues both in experimental and thednetinatube science. Chapt. 6
reviews recent literature many-body calculations on thigext and shows the ultimate
application of small crystal approach for introducing Goub correlation effects in the
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single-particle picture, according to the Hubbard modglsBlecting a sufficiently small

portion of the real lattice with suitable boundary condigpa full many-body calculation

can be set up which allow to obtain a qualitative descriptibthe electronic properties
of single-walled nanotubes, which is found to be consistétit the current picture of

excitonic levels for these systems providedabyinitio techniques. Although limited by

strict computational requirements on the system size, hare likely to be overcome

by using more refined algorithms, the simple implementgdiamvided in this thesis con-

firms that interesting developments can be certainly prcsplefor this method, in order
to investigate excited state properties of larger diametees and treating the inclusion
of point defects in these systems.
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Chapter 1

Introduction

In this chapter we give a general overview abepit-hybridized carbon materials. In
particular, we focus on nanotube structural propertiespg@ration and characterization
techniques. In the final section, we provide a general dlesgon of the main compu-

tational methods, which are heavily adopted in computatiomaterials science for the
investigation the electronic properties of these systems.

1.1 Carbon and its allotropic forms

Carbon is one of the most abundant chemical species in therseiand the fundamental
building block of all organic structures and living orgamis together with hydrogen,
oxygen and nitrogen. This is mainly due to the special pmsiticcupied by this element
in the periodic table, which allows a single C atom to form agdur covalent bonds
to its neighboring atoms. Until the Eighties, it was bel@wtbat the only crystalline
allotropic forms were diamond and graphite. This pictuestetd to change in 1985 with
the discovery of fullerenes [1], when it became clear thab@a can form other stable
crystalline forms. After the identification of carbon namoés in 1991 by lijima [11], the
list of observed and hypothetically proposed carbon nauncistres started to grow soon,
including double- and multi-shell fullerenes and nanotubaad many other structures,
some of which will be presented in the final part of this settio

1.1.1 Hybridization of carbon orbitals

The electronic configuration of a free carbon atom 482s%2p%. The electrons in the

1s orbitals are the core electrons, while the remaining foectebns in the and 2
orbitals are the valence electrons and are available to ¢bemical bonds. We recall that
the electronic wavefunction of an atom can be obtained asgemstate of the angular
momentum operator. Thepalegenerate orbitals have identical geometrical shape for
the three different orientations, as shown in Fig. 1.1. &ltgh the 2 are filled in the

1
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ground state by two electrons, the energy difference bet@eand the three degenerate
2p orbitals is small enough, that hybridization of these @isibccurs in several ways.
Depending on the hybridization, different structures carnobtained, since a different
number of nearest neighbour atoms are required.

e Hybridization of the2s with one2p orbital gives a set of twsporbitals in diamet-
rically opposed directions.

25p,) = % (125)+[2p,)) (1.1)

25ps) = % (125)—12p,))

Thisis the so calledp-hybridization(n = 1), which is relevant for organic molecules
(acetylene), but not for crystalline carbon structures.

Hybridization of the2s with two 2p orbital results in three equivalesp? orbitals
arranged in plane and pointing each at an angle6f from one another:

2e0) = —= (129) + V220.)) (12)
1 2 V3,
‘25pb> - ﬁ (‘2S> - \/5 + \/5 )

o1 (1 20 Vl2m,)
|2spc>—ﬁ<|2> s )

These orbitals can form strong covalenbonds with neighboring carbon atoms
giving rise to planar crystalline structures. The remagnimhybridizedp. orbital

is perpendicular to the plane and forms the so called valerarbitals with other
parallelp. orbitals of neighboring atoms. Valeneeorbitals are strongly delocal-
ized, therefore they are responsible for the electronicaptital properties of the
sp? structures in the visible range (1-3 eV), as it happens widiphijte.

Hybridization of the2s with all three2p orbital results in four equivalenp?® or-
bitals in a tetrahedral arrangement at an angl&)6f5° (tetrahedral angle):

1

[25p0) = 5 (128)+12p2) +12py) +2p-)) (1.3)
2593) = 5 (125)-+1202)~120,)~1202))
2592) = 5 (125~ 12p2) +28,)~1202))
259) = 5 (125~ [2p2) ~[20,)+120.))
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These orbitals form four strong covalemtbonds with the neighboring carbon
atoms but are electronically inactive because of their Ioergy. Hence the result-
ing material will have very stiff geometry and insulatingperties, as for instance
diamond.

According to the type of hybridization, carbon materiala b& classified into diamond-
like and graphite-like materials, if the hybrid orbital®ap® or sp?, respectively. This
give rise to two different kind of crystalline structuresefrahedral structure for diamond
and a layered structure for graphite (Fig. 1.1). The graplayers are held together by
weakvan der Waaldorces, which allow them to slide against each other withiméi
friction.

25 | 1 28 | 2p, |
2p, 2p. s

e.g.
9,,‘:.
9.‘.' a

acetylene graphite

Fig. 1.1: The three hybridized form of carbosp hybridization occurs only in some
organic compunds (i. e. alkyneskp? hybridization gives planar structures such as
graphitic layerssp? hybridization forms diamond-like structures. Image takem Ref.
[123].

A single graphitic layer is called graphene. From this tvimehsional structure a
whole pletora of structures can be derived, as shown in F&y.The in-planer-bonds of
sp? hybridized carbon are stiff with respect to longitudinaides, but allow for angular
deformation. In a graphene layer this is the cause for thergbd ripples [4]. More gen-
erally, this flexibility opens the way for a large family oifile graphitic nanostructures,
with a mixedsp?-sp? hybridization. The mixing degree is expressed by the pydatiza-
tion angle, which is highest for systems with lowest dimenality, such as fullerenes,
which are zero-dimensional. As previously noticed, tharbitals are close to the Fermi
energy, leading to either conducting or semiconductingeries, according also to the
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degree of curvature of these systems. This opens up the gpatlgteat deal of poten-
tial applications in future nanoelectronics [44]. In thddwing section we will give a
more detailed overview of the structural properties of grapmaterials, with some hints
about their preparation techniques.

Fig. 1.2: Hypothetical construction of various graphitic stures. Starting from frag-

ments of two-dimensional planar graphene (top), quasi-Qllerenes (bottom left) and

qguasi-1 D nanotubes (bottom center) are obtained. Stacksaphene sheets give 3D
graphite (bottom right). Image taken from Ref. [5].

1.1.2 Graphite

Graphite is the most stable carbon allotrope. Usually ibisnfd in nature in polycrys-
talline form with small grains of size up to a few micrometelisis mechanically soft,
since individual layers can slide easily against each ptheking graphene an impor-
tant lubricant in tribological applications. It is electily conducting, with a highly
anisotropic conductivity due to its layered structure: ithplane conductivity is much
larger than the conductivity perpendicular to the layersudlly it is not used as ther-
mal energy source, because it is hard to ignite. The firstgmton based on x-ray
diffraction of the hexagonal layered structure of grapmites given by A. W. Hull in
1917 [45]. Then, in 1924 J. D. Bernal completed the picturadantifying the indi-
vidual planar layers [46]. Graphite consists of parall@prene sheets with interlayer
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spacingdiyterlayer = 3.4 A. There are two possible stackings of the layered structure:
the Bernal stackingwith alternation ABAB and thehombohedral stackingvith alter-
nation ABCABC. Although the latter form has never been igsdait has been shown
that natural graphite often contains a certain amount ofmtb@hedral stacking, which
has been explained as an intermediate state in the tranfitim graphite to diamond.

A further modification isturbostratic graphite which has the individual layers rotated
by random angles againts each other. In this case the sysiteimecconsidered a sort of
quasi-crystalline structure.

1.1.3 Graphene

Single layer graphene was discovered experimentally onl®004 and is actually the
basic building block for the theoretical understanding lbfother sp?-hybridized car-
bon structures, such as graphite, fullerenes and nanotéeesrding to the theoretical
prediction by Mermin and Peierls [47, 48], two-dimensioagstems with long-range
order cannot exist in nature, because of the logarithmierdence associated with the
guantum-mechanical fluctuations of the atomic displaceésénly in three dimensions
the displacements would converge with the distance, atigwhe formation of a stable
crystal. However, this theoretical argument does not prefreely suspended graphene
sheets to exist, since the structure can be stabilized inhihé dimension by ripples,
which were actually observed by electron diffraction [4¢d<-ig. 1.3). Thus graphene
can be considered effectively as a truly two-dimensiongdtel. It is characterized by a
honeycomb structure, with the distance between neighpatoms beinglc = 1.42 A
and the lattice constant = v/3dcc ~ 2.46 A. For further details about the graphene
structure both in real and reciprocal space, the readewvisedlto consult Sect. 2.1 in the
following chapter. Graphene crystals can break at cryskgés in two ways, by forming
either a zigzag edge, which runs parallel to a graphenedaté&ctor, or an armchair edge,
which runs parallel to the carbon bonds (see Fig. 1.4). Thye sthtes are especially rel-
evant for finite width graphene nanoribbons, as we will seiaéndedicated subsection.

Synthesis Historically, it took a long time before the first successéalation of single
graphene layers [2]. However, this fact is even more sungi$ we consider the simple
approach that led to success: the exfoliation method. §rti@thod, a scotch tape is used
repeatedly to peel off flakes from pyrolytic graphite thatdrae thinner with each step
until finally, there is a single layer left that can be placedaoclean surface for further
handling [3, 4]. The main difficulty with this technique isathsuch thin structures are
generally invisible by optical means and, consequentltehs no electronic signature
that would simplify the search. Thus samples have to be setetediously via atomic
force microscopy (AFM). An alternative way to exfoliate gheene can be achieved by
wet chemistry [6], which has started to show promising tssuBesides exfoliation,



6 CHAPTER 1. INTRODUCTION

Fig. 1.3: lllustration of the rippled structure of a suspendeabpyene sheet (left) and
TEM-image of a few-layer graphene membrane near its edgkt)ri The out-of-plane
fluctuations are supposed to be necessary for the stalilizatthe 2D structure. Image
taken from Ref. [4].

Fig. 1.4: STM image of an exfoliated graphene monolayer. Thetargsiges have either
zigzag (blue) or armchair (red) edges. Image taken from [Sgf.

which is a top-down process, one can prepare graphene bynibaip techniques, such
as epitaxial growth. Actually, this procedure has beeniagpo graphite already 40
years ago, by using pyrolisis of methane on Ni crystals [7he Technique has been
refined to produce graphene sheets on various crystal ssréaa ribbons of well defined
width (1.3 nm) [8]. Alternatively, epitaxial growth of gripne can also been achieved by
segregation of C atoms from inside a substrate (Pd, Ni, Bi $iits surface [9, 10]. In
general, with these epitaxial growth methods, very higlstayqualities can be obtained,
sometimes pseudomorphically with respect to the subdttitee constant. Successful
attempts to lift off epitaxially grown graphene from the fege are not known at the
moment, but there isn’t any fundamental obstacle prevgntimeach this in the future.

1.1.4 Fullerene

Fullerenes were discovered in 1985 by the team of H. W. KrdtdR. Heath, S. C.
OBrien, R. F. Curl, and R. E. Smalley [1] and named after thegsic domes by archi-
tect R. Buckminster Fuller. Fullerenes are zero-dimerainanostructures. They consist
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of a varying number of carbon atoms, forming 12 pentagond,aamarying number of

hexagons in a sphere. Perhaps the most studied fullerene speéhe highly symmet-

ric Cg¢o molecule, also named bucky ball, forming a truncated icededn, which is the

structure of a soccer ball. Fullerenes form crystals cdildldrites that occur naturally
within shungite (Fig. 1.5). Fullerenes were later found¢ow naturally, as for example
in regular candle soot. The arc-discharge method allowsdlsg production of grams of
fullerenes, although they have to be purified.

Fig. 1.5: Face centered cubic crystal@f, (fullerite). Image taken from Ref. [43].

1.1.5 Single-wall and multi-wall nanotubes

Nanotubes were discovered officially in 1991 by lijima and/odkers [11]. However, the
credit for the discovery of these nanostructures has be&saea of recent hot discussion
in literature [13]. The first images of multiwall carbon namoes were actually published
in 1952 by the Soviet team of L. V. Radushkevich and V. M. Lukyéch [14]. Later,
they were rediscovered in 1976 by A. Oberlin, M. Endo and Ty&oa [15]. In both
cases, the discovery was largely unrecognized for its fsogmice until the real boom of
nanotube research initiated by the work of S. lijima in thadlies. The first observation
of a single-wall CNT was reported soon afterwards in 1993Naydroups independently:
S. lijima and T. Ichihashi [12] as well as D. S. Bethune [16].

A single-walled carbon nanotube can be described as a graptfigbon rolled up in
cylindrical fashion, such that both edges are joined to fartmbe with a well-defined
chirality. Each of the various ways of forming a tube can b&uely specified by the
chiral vector (n, m). This vector is a lattice vector of thegnene sheet which corre-
sponds exactly to the circumference of the rolled-up tubendke detailed description
of the geometrical structure of a single-wall nanotube (SWakccording to the way the
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graphene sheet is wrapped up is given in Chapt. 2. If moradwytal shells are nested
into one another, then the structure is a multiwall nano{M&NT), where the interwall
distance is similar to the interlayer distance of graptiitg,..; ~ 3.34 A. The simplest
carbon MWNT is a double-walled carbon nanotube (DWCNT),chitwill be considered
in detail in Chapt. 5. This kind of structure is the reasonihehlhe extreme mechanical
strength in longitudinal direction, which even exceeds tialiamond: for instance, the
predicted value of the Young’s modulus (1 TPa) is the higkestvn among all materials
[89, 44]. This theoretical property alone has inspired atitugle of potential applica-
tions ranging from ultra-strong textiles and compound miaieto the famous idea of the
space-elevator. Besides, the main reason for this trenusndterest in carbon nanotube
reserach is related to their unique electronic properfié®y can be semiconducting or
metallic according to their geometrical structure, whigbasically specified by diameter
and chirality. The understanding of these aspects will henddmental step towards the
advent of an all-carbon-based nanoelectronics. Recemwswabout CNTs electronic
and transport properties and their applications can bedfauRefs. [44, 49].

The smallest freestanding SWCNTSs typically observed iregxrpent have a diameter of
0.7 nm, corresponding to @;, molecule [17]. However, smaller tubes down to 0.4 nm
have been observed either as innermost shell of MWCNTs [28,04 embedded in
porous crystals such as zeolite [20]. The largest obserVe@I$T have a diameter of
up to 7 nm [21], even though their section is no longer cincbi elliptical, as they have
the tendency to collapse.

As stated above, MWCNTSs were experimentally discoverelibedihan SWNTs. Due to
their greater abundance, larger diameter and the consiygeesier handling, far more
experimental results are available for MWNTs than SWNT4.orethe theoretical side,
much effort has been devoted to the investigation of SWNT&reas due to the greater
complexity of MWNTS, the theoretical understanding of tifiees of the combination
of several walls still remains an open issue [176].

Synthesis It is generally believed that CNTs exist only as a synthetatarial. How-
ever, there are also indications that natural carbon sautow certain amounts of these
structures mixed in with all other forms of amorphous carli®ecently, it has been found
that nanotube synthesis may actually have been accessibkdieval times already, even
though the producers of the legendary Damascus sabers §8]agrtainly not aware of
the nanosized structures embedded in their manufacts.elfollowing, we will briefly
describe the three major methods adopted for nanotube giioduarc discharge, laser
ablation, chemical vapour depositiorThe arc discharge methodonsists in driving a
100 A DC current through graphite electrodes immersed in tA®sphere at 400 mbar.
Anyway, the production can be done in open air, as well. ligssmethod originally used
in 1991 by S. lijima [11], who discovered carbon nanotubethansoot. Later, the ef-
ficiency of the method was improved to yield macroscopic tjtiaa of nanotubes [23].
Although the method is easy to set up, it provides very lichdentrol over the production
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Fig. 1.6: Schematic structure of a capped single-wall nanotigfe@ énd TEM image of

a SWNT bundle (right).

Fig. 1.7: TEM pictures of bundled double-wall nanotubes (lefijl @f a multiwall nan-

otube (right).

parameters: the nanotubes are generally very short, haigeadvgtribution of diameters
and mixed with amorphous carbon. Arc discharge nanotulpesatlyy have few defects.
Thelaser ablation methowvas pioneered by R. E. Smalley in 1995 [24]. Pure graphite is
thermally evaporized by high-powered laser pulses. Bydimeq the parameters, yields
of high purity nanotubes can be achieved and the nanotulbsetia distribution can be
controlled. The main drawback of this method is the need Xpeasive equipment and
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high power laser sources. Tlemical vapor deposition meth@g@VD) is the most
commonly used low-cost method for the growth of carbon nalmes. Indeed, this is the
method that was used by A. Oberlin and M. Endo for their firgestation of carbon
nanotubes in 1976 [15]. Generally, this method is based ®thérmal decomposition of
hydrocarbons species such@d, (methane)C,H;OH ethanol,CH;OH methanol, into
atomic carbon from a chemical compound and depositing it cetaytic surface where
nanotube can then grow in very controlled ways. The type aadity of the grown nan-
otubes depends delicately on the growth parameters. ltssilple to selectively grow a
narrow diameter range of single-wall tubes [25] or doublhtubes [26], control the di-
rection of growth [27] or grow highly aligned arrays of tuj28]. A common drawback
of CVD methods is the contamination by catalyst particles the relatively high defect
rate.

1.1.6 Other graphitic nanostructures

In the final part of this section we will provide a brief oveswi of the three most studied
new graphitic nanostructures which are closely relatecatban nanotubes. Other new
interesting carbon nanostructures can be found in gerarigws, such as Refs. [35, 42,
43].

Graphene nanoribbons (GNRs) were initially considered as a theoretical toy model
for studying the electronic and phononic edge states inhgmag, without much concern-
ing about how such structures could realistically be predu@0]. In 2002, however,
before the first successfull graphene isolation by exfiol|mtT. Tanakaet al. indeed
managed to grow well-defined, narrow GNRs on a TiC surfaceraabsured its phononic
edge modes [29]. Soon after the graphene boom, both thealratid experimental inter-
est in GNRs began to rise, since ribbons are nowadays coedide a serious alternative
to carbon nanotubes (CNTs) as quantum wires and devices [31]

Peapods are hybrid hierarchical structures, which consist in fidiees encased in single-
walled nanotubes. They were discovered in 1998 by Letal. in a sample of acid-
purified nanotubes [32]. The material is calleglapod because its structure resembles
miniature peas in a pod. A total energy electronic structateulation [33, 34] showed
that the encased fullerene molecules are energeticaljystable, since an energy gain of
~ 0.5eV is involved during peapod formation, while when ttig, molecule physisorbs
on the outer surface of the tube, the energy gain is enly09 eV. As for the formation
mechanism, the general consensus, also supported by rawldgnamic simulations, is
that fullerenes enter the nanotubes through the open entintial use of nano-peapods
range from nanometer-sized containers for chemical i@astio nanoscale autoclaves,
data storage and possibly high-temperature supercondudee Ref. [42] and refer-
ences therein). As an interesting application, peapodsbeaturned into high-purity
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double-walled nanotubes by coalescence of the encapddldierenes achieved by elec-
tron irradiation aB20 kV [36, 37].

Scrolls are rolled up graphene sheets with an exposed edge. Fomudtéoscroll re-
quires both the energy to form the two edges along the endiseaad the strain energy to
roll up the graphene sheets. A scroll will be stable as lonthanergy gain due to the
interwall interaction upon the rolling up of the sheet outys the energy cost due to the
exposed edges [35]. The existence of such structures wasdng high-resolution trans-
mission electron microscopy (HRTEM) investigations onedéife MWNTSs [38], where
scrolled structures could not be discriminated from MWNTighwine defects analo-
gous to edge dislocation in 3D crystals. It is commonly ategphat less stable scroll
structures may exists as a precursor state to multi-walbtudres and that the scroll-
to-nanotube conversion occurs through a zipper-like foansation at the atomic scale,
involving opening and reconnection of the carbon bondseiriterface between the ex-
posed edge and the curved tube wall [35, 39]. A new synthesi® iwas also devised
for the production of scrolls from polymeric suspensiong@Ephite intercalated alkali
compounds (GICs) [40] and graphite ball-milling [41], inder to obtain nanotubes by
exploiting the scroll/nanotube conversion mechanism.

{m) {b)

Fig. 1.8: Schematic structure of a carbon peapod (left) and viea) @ scroll, b) a
multiwall nanotube, and c) a defect separating the two muggjies within one tube
(right). Images taken from Ref. [35, 42]

1.2 Nanotube characterization techniques

1.2.1 Characterization techniques

In general, carbon nanotubes and related graphitic mistdréve been investigated by
a variety of characterization techniques, which allow tob@, even simultaneously in
a single experiment, their structural and electronic prigge High resolution X-ray
diffraction (HRXRD) and electron diffraction from transssion electron microscopy
(HRTEM) have been widely used for the pure structural chtaraation of carbon nan-
otubes [51]. A complete identification of the nanotube dhies from the indexing of the
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diffraction patterns could be achieved on the basis of satmris of the x-ray intensity
diffraction patterns for systems with helical symmetry,[5@]. While diffraction-based
techniques provide a reciprocal space picture of carboatnae structure, scanning tun-
neling microscopy (STM) provides direct access to the latamic structure of the side-
wall, thanks to the reconstruction of maps of the electrahiarge density of the tube
surface in real space [53, 54]. Moreover, if scanning tungedpectroscopy (STS) is per-
formed by measurement of current-voltage characterjsties can also probe the local
electronic density of states at a given location, thus allgwo obtain a direct corre-
lation between electronic and structural information. rag tunneling spectroscopy
measurements were performed in 1998 by Odom and Lieber glesivalled nanotubes,
which proved the electronic one-dimensionality of thessteays [55]. Despite the high-
resolution structural information provided by these chtsazation techniques, however
their use for routine characterization work is quite impicable for several reasons,
mainly the need of ultra-high vacuum operation conditiond experimental apparatus
costs. Moreover, in the case of STM, in order to obtain ebsitr structure informa-
tion, STS can be performed exclusively on an isolated tubdeerdfore, less expensive
and non-destructive analysis techniques, such as oppeat®scopical techniques, be-
come preferable when probing electronic and structurggntees on statistical nanotube
samples in an unique experiment. In the following we williesw the basics of the two
main optical characterization techniques used in nanatesearch, namely photolumi-
nescence (PL) and resonance Raman spectroscopy.

1.2.2 Photoluminescence and optical absorption measurems

As stated previously, SWNTs can be either metallic or sendoeting, depending on
their geometrical structure. In the case of semicondudtibgs, the energy gap is ap-
proximately proportional to the inverse of the tube diamatel photoluminescence (PL)
from the recombination of electron-hole pairs at the baagd-can be expected, accord-
ing to the usual band picture for semiconducting materiaig.(1.9). The discovery of
band-gap fluorescence by M. O’'Connetlal. occurred on acqueous micelle-like sus-
pension of SWNTSs [56]. Thus, spectrofluorimetric measurgmare a valid and not so
expensive experimental tool for extracting nanotube digeelectronic properties from
bulk measurements and correlate them to their chirality. [5fowever, nanotubes are
generally bundled because of the van der Waals interacindshormally contain both
metallic and semiconducting species. Metallic SWNTSs actasradiative channels for
the luminescence of semiconducting tubes. Therefore,ytaftan occur that no PL sig-
nal is observed for SWNT bundles. In order to observe PL, tiiglles must be separated
into individual tubes. In order to achieve this separatseyeral techniques have been
developed: ultrasonication treatment of the nanotubds sutfactants (e.g. sodium do-
decyl sulfate or SDS) in acqueous suspensions, growth ofichchl tubes in channels
of zeolite, alternating current dielectrophoresis of thaisated suspensions and other
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techniques based on chemical functionalization for séjpgranetallic and semicon-
ducting tubes [59]. Spectroscopic measurements are peztbwith spectrofluoremeter
equipped with InGaAs near-infrared detector cooled byitiqutrogen. Emission inten-
sity is measured as a function of both excitation wavelerffydm 300 to 900 nm) and
emission wavelength (from 810 to 1550 nm), to give the rssstiiown in the contour
plot of Fig. 1.9. The different intensities in Fig. 1.9 comterh the chiral and diame-
ter dependent distribution of SWNTs in the sample and/ateel electron-photon and
electron-phonon interaction strengths. On the other hareisurements of the optical

1000 1100 1200 1300 1400

0 i 1500
Emission wavelength (nm) [c, v, transition]

) 2 4 8 8
Density of Electronic Statss

Fig. 1.9: Photoluminescence mechanism in a SWNT according tbahd picture (left)
and contour plot (right) of the fluorescence emission enesgijhe excitation energy for
acqueous suspended SWNTs. Pictures taken from Baetdlb [57]

absorption of bundled SWNTSs in trasmission or reflectionngetwy show the presence
of the spectral features of both metallic and semicondgdtibes. In Fig. 1.10 a typical
absorption spectrum of SWNT bundles is shown, taken from F3&f. Three peaks can
be seen, which are attributed to the van Hove singularitigdbe joint density of states
(see Chapt. 3). Tight-binding calculations suggest thatttvo lower peaks can be at-
tributed to SWNTSs with transition energié%’, and E5,, while the third peak originates
from metallic nanotubes with transition energy’ .

1.2.3 Resonant Raman spectroscopy

This is one of the most powerful tools for characterizingatabes and other graphitic
materials, since it doesn’t require sample preparationaaiagt non-destructive analysis
is possible. Unlikely PL, metallic nanotubes can also beepled. For general reviews
about this technique applied to carbon nanotubes in theslagears see Refs. [119, 120].
Raman spectroscopy allows to probe the vibrational progseof a material by measuring
the energy shift of the inelastically scattered radiationfthe energy of the incident light
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Fig. 1.10: Experimental optical absorption spectrum (solié)iaf a sample of SWNTs
of all chiralities. The dotted line represents the resulthaf simulation based on tight-
binding calculations. Taken from Ref. [58]

(the so calledRaman effegt The energy shift can be positive (absorption of a phonon)
or negative (emission of a phonon), also referred to as@tokes and Stokes processes,
respectively. If the energy of either the incoming or thetterad photon matches the
energy of a real electronic state, the process is c&#tiessbnanRaman scattering (RRS)
[98]. First and second order Raman scattering are definedhbyaod two scattering
events, respectively. In particular, in 2nd order Ramarttegdag we can have either two
phonon scattering processes or one phonon and one (dedéelt&ted) elastic scattering
processes. In first order Raman scattering only phonon mweidks; ~ 0 are probed
and the phonon dispersion cannot be provided, because theyegior of the incoming
photon is too small to create phonons with large momentuatjsidistant from the center
of the Brillouin zone. In 2nd order Raman scattering thisdibon can be removed
because two phonons (or one phonon and one defect) are éavsivthe process with
the sum of the respective wavevectors giving total zero wester. Also, in all Raman
scattering processes, we have the absorption of the ingppmioton and the emission of
a photon after electron-hole pair recombination. Thus engbneral expression for the
resonant Raman scattering event, the electron-photoraatien element appears two
times, while the electron-phonon coupling element can appiher one or two times,
according to the order of RRS. The general formula used tliateathe Raman intensity
for a 1st order resonance Raman scattering is:

Mpia (K) M, (K) Mg (k)

I (E aser) — vibe
( : ) / | (Elaser - F (k) - ZFT) (Elaser =+ Evib - F (k) - ZFT)
The electron-photon matrix elements ar, , (k) and My, , (k) for photon absorption

and emission, respectivelyM; (k) denotes the electron-phonon matrix element for

2dk.  (1.4)
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Fig. 1.11: a) Non-resonant, b) single- and c) double-resonantaRascattering. Solid
lines are real electronic states, dashed lines represgnahMelectronic states (i. e. they
are not eigenstates of the system). In the non-resonanegsde), both intermediate
electronic states are virtual. If the laser energy matcheslaelectronic transition [first
step in (b)], the Raman process is single resonant. If theiagpmondition (c) is met, i.e.,
in addition to (b) another electronic transition matches phonon energy, a double- or
triple-resonance occurs. Taken from Ref. [90].

a photoexcited electron in the conduction band. For phormorgtion (anti-Stokes)
we havep = A, for phonon emission (Stokes) we have= E. The factors in the
denominator describe the resonance energy differenceebatimcident and scattered
light, where the+ (—) sign applies to the anti-Stokes (Stokes) process for a phoho
energyE,;,. [, gives the inverse lifetime for the scattering process. ¢ Eil2 a Raman
spectrum obtained from a SWNT sample is reported. The ficddraspectral features of
a SWNT consist of only two strong bands, the radial breatinmogle (RBM) at about
200 cm~! and the graphite derived tangential mode or G band at abi®@tcm—!. A
typical second order spectral feature is the D band at al®ibtcm ! for 2.41 eV laser
energy and th&:’ band at2700 cm~!. Two relevant characteristics of the D band are
that (1) the intensity of the D band depends on the defect concemtratiSWNTs and
(2) its frequency increases with increasing laser energy [@0].the other hand, th@’
band intensity is independent on defect concentration amdmparable to the G band
intensity. The radial breathing mode is perhaps the mostesting phonon mode used
for nanotube characterization [126], since it depends em#notube diameter through

the relation
A

WrpMm = 5 + B (1.5)
dy
whereA andB parameters are determined experimentally. Note that ¢hagion is not
valid for nanotube diameters belawm, for which a chirality dependence of;z,; ap-
pears due to the distorsion of the nanotube lattice. For plgrfor an isolated SWNT on
Si/SiO, substrate the experimental value of A is found t2bg@cm ! andB = 0 cm ™!



16 CHAPTER 1. INTRODUCTION

[128]. Furthermore environmental effects due to tempeeaturfactant, bundling and/or
intertube interactions in DWNTs and MWNTSs causes a frequenadification of the
RBM mode [131]. By plotting the measured transition energiamed from PL or RRS
at different laser excitation energies versus the SWNT diamthe so-called Kataura
plots are obtained [127], which are widely adopted for theegdnental investigation of
the properties of these systems [129, 153]. These plotslsarba obtained from theo-
retical calculations, so that chirality assignment of dééens and transition energies can
be performed through the comparison with experimentali®eglB2, 133] (Fig. 1.13).
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Fig. 1.12: Raman spectrum of single-walled nanotubes (left)radal breathing mode
(RBM) (right). Taken from Ref. [59].
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Fig. 1.13: Kataura plot for metallic and semiconducting SWN&akén from Ref. [132]).
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1.3 Electronic structure computational methods

The role of computational materials science has becomenaofaimental importance not
only for the advancement of basic research but also in théeabfield of nanotech-
nology. Theoretical modeling and computer simulations d@ectly access with high
accuracy the shortest length and time scales of nanoscggtienss and phenomenons.
Boosted by the rapidly increasing computing power, nariesimulations have thus be-
come a predictive tool for the design of novel devices and nadelling is an integral
part of interdisciplinary materials research. In orderttalg the electronic behaviour of
carbon materials, one has to solve the basic equation oftgjmamechanics, the many-
electron Schrodinger equation. However, in spite of thpremssive computer power at
our disposal, solving this equation remains a difficult task requires a deep physical
and chemical understanding of many-electrons systems.bamg these notions with
modern mathematical concepts leads to algorithms thab@xpke characteristics of the
electronic systems under investigation to provide poweww electronic structure meth-
ods. Adapting these methods for modern computer archiectuill result in powerful
programs which aid the research of many systems. A wide rahgemputational meth-
ods is available for the theoretical modeling and simufabbcarbon materials proper-
ties. These methods are actually based on approximatioveriaus level of detail of
the complicate many-body problem, thus they can be coresideicompromise between
efficiency and accuracy. In general, they can be classifiedtimee groupsab initio,
semi-empirical, tight-binding and effective methods. e following, we will briefly
outline a general overview of the methods used in electretriacture calculations to-
gether with the respective advantages/disadvantagdmuwritjoing into technical details
for which the reader can consult more specific reference$, asi Ref. [93].

Ab initio methods allow the computation of materials properties from firshpiples,
without the need of parameters to be adjusted or fitted torarpatal input data, apart
from the fundamental physical constants and atomic ma$éesgeneral advantage atb
initio methods is the high accuracy of the quantitative results.fmain disadvantages are
represented by the high computational cost and the diffiaflgetting a deeper under-
standing of the calculated phenomena. They can be furthesified intovavefunction
methodsanddensity functional methodsee for example Ref. [60]).

Wavefunction methods solve self-consistently, in a meeld-fipproximation, the many-
electron Schrodinger equation by expanding the manyrele@ntisymmetrized wave-
function in Slater determinants, formed by a set of orthorarone-electrons orbitals
¢; (r). This constitutes the basics of Hartree-Fock (HF) methazhfiguration interac-
tion (ClI) and coupled-cluster methods (CC) go beyond thisllef approximation and
have been widely used in quantum chemistry for treatingme correlations, but also
implementations for periodic systems (oxides and crysialsmall organic molecules)
have been set up. HF theory is less appropriate for systethshigh electron density
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such as transition metal systems or with highly delocalstates and fails completely to
account for the collective Coulomb screening in a perfediménclusion of correlation
effects reduces the system size accessible to calculatiewthundred atoms, depending
on the level of theory. The most accurate correlated methoeisestricted to molecules
with just a few atoms and are also too slow for performing dyical simulations even
for small molecules and time-scales in the pico-secondeaang

Density functional theoryDFT) is another independent-particle method, whose basic
were formulated in two fundamental papers, the first publisih 1964 by P. Hohenberg
and W. Kohn [61], and the second in 1965 by W. Kohn and J. L. Sfg@h The basic
idea behind these works is that the ground-state electem@yy (and therefore all other
related ground-state properties) is a functional of thetedaic density. Then a set of
single-particle equations, the so called Kohn-Sham egustiare derived by applying
a variational principle to the electronic energy. Electedectron interactions are again
treated in an average way according to several availabl®zippations to the functional
dependence of the exchange-correlation energy on dewsiigh actually constitutes the
main source of variations in DFT calculations. Actuallye tHohenberg-Kohn theorem
doesn't specify the form of the functional to be used, but genfirms that it exists.
Starting from a trial density given by the square moduluswEsged wavefunctions, the
energy functional of the Kohn-Sham hamiltonian is obtaiaad then minimized until
self-consistency is reached for the input and output graaiatk charge densities. DFT
calculations can be considered the workhorse oélllnitio methods, as they can pro-
vide accurate predictions of structural, electronic, aitamal and magnetic properties for
a wide range of systems, from molecules and clusters togieramd amorphous solids,
either metals, semiconductors or insulators. Densitytfanal calculations are possible
for systems of the order of 100 atoms, but by exploiting sytnyn&lso calculations for
clusters of over 1000 atoms can be performed [63]. Althou§iT 3 computationally
less demanding than HF methods, it has to be pointed outriHaET calculations the
number of variational parameters needed for the expansithreavavefunction adopted
for constructing the trial ground-state density is quitgéa thus other methods are re-
quired for achieving more efficient calculations and tregsystems with larger size.
Soon after the discovery of carbon nanotubes in 1991, tloéretec properties of single-
walled nanotubes were investigated by density functiorethods [64, 65], before the
electronic density of states could be actually measuredli®/i§ 1998 by Odom. These
calculations also showed that important hybridizatior&# of theo* and 7* orbitals
could occurr in small radius carbon nanotubes, which coelcekevant for the prediction
of metallicity in these systems [66]. Subsequently, calttahs were performed also for
more complex systems such as double- and multi-wall naestlundles of single-wall
nanotubes and carbon peapods [67, 68, 69].



1.3. ELECTRONIC STRUCTURE COMPUTATIONAL METHODS 19

Semiempirical methods comprise a wide class of self-consistent field HF methods
which take into account again Coulomb repulsion, exchamgeraction and the full
atomic structure of the system, but make use of fewer variati parameters if com-
pared to HF and DFT and not all the integrals needed to seteupléimiltonian matrix
are calculated. Instead they are parametrized accordiegp@erimental data. According
to the exact number of neglected integrals and the kind @matrization used, different
scheme of semi-emprical calculations have been developest, based on the modified
neglect of diatomic overlap (MNDO) (for an extensive treatrnof the derived methods
see Ref. [93] or other quantum chemistry books). Clearyréfasons behind the develop-
ment of these methods is the need of finding a compromise bate@mputational effi-
ciency and the physical correctness of the adopted appatxins. A quantum-chemical
semi-empirical electronic structure calculation on nabetfragments can be found for
instance in Ref. [134].

Tight-binding methods make use of a parametric Hamiltonian with a minimum set
of parameters, which is parametrized with respect to the@tpositions and solve the
Schrodinger equation in an atomic-like basis set. In thisss, they’re similar to semi-
empirical methods, yet they are not self-consistent. Uguhé values for the chosen
parameters are obtained from fitting calculations to expenital orab initio density func-
tional results (DFTB) [71]. A small number of basis functsoare used, which roughly
correspond to the atomic orbitals in the energy range ofeste Therefore, compared
with the ab initio techniques, these atomistic models can be generally hdimdth far
less computational effort and the general understandintgeotunderlying physics and
symmetry properties is facilitated. However, the quatitieeresults always depend on the
parameters needed as input and obviously, due to the redweoebler of variational pa-
rameters and exact integral evaluations, the accuracglusesl if compared withb initio
calculations. Parametrized models like TB methods can bptad both for the treatment
of electronic and vibrational properties of solids. For tlescription of mechanical and
vibrational properties, the most common TB-like metho@sarce-constant modelsle-
scribing the mechanical forces between neighboring atarashiarmonic approximation
[72]. Several works concerning the vibrational propertiegraphene and nanotubes cal-
culated with this approach have been published (for a rezmnprehensive list of refer-
ences see Ref. [73]). For the atomistic description of thetsdnic structure, the concept
of thelinear combination of atomic orbitald.CAQ) is adopted within the TB scheme.
This independent-particle method was introduced by SttdrKoster [74], and is today
used for efficient, flexible and fairly accurate computasioh both model and real sys-
tems (for a general review see for instance [75]). Anothgrartant parametrized model
used for treating strongly correlated electrons in condeémsatter is the Hubbard model,
which is indeed a many-body model developed in order to adctmu Coulomb repul-
sion between electrons. The Hubbard model is presented imaietail in Chapt. 6 of
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this thesis. TB calculations with different level of appimations have been widely used
for exploring the electronic properties of graphite anctrgstalline modifications: with
Bernal stacking (Weiss and Slonczewski, 1958 [77]), rhonelolwal stacking (McClure,
1957 [78]), simple hexagonal and turbostratic graphiteaf@r, 1991 [79, 80]). Soon af-
ter the nanotube discovery by lijima, the first tight-bingizalculations on single-walled
nanotubes focused on the folding of the electronic disperisands of graphene over the
nanotube reciprocal space [81]. Later more refined and gkaealytical expressions for
electronic dispersion for graphene and SWNTs of any giverality were obtained by
Saito and Dresselhaus [89, 90], as shown more in detail ipChaSymmetry-adapted
TB schemes have also been successfully applied by Popoafgdpamnjanovi&t al.
[85] for addressing curvature and hybridization effectsrmall diameter single-wall nan-
otubes of any chirality. Tight-binding methods were alsplegal to the investigation of
the electron-photon and electron-phonon coupling strefaytunderstanding resonance
Raman spectral features in SWNTs [141, 146]. There have &lserearly studies con-
cerning the electronic structure of double-walled nanesu[d55, 169], although these
attempts were strongly limited by the selected geometnesh@miltonian parametriza-
tions (see the related Chapter in this thesis). After thé&exic nature of optical transi-
tions in SWNTs was experimentally established in 2003 by §\&ard Dukovic [197], the
band picture provided by TB calculations turned out to bewetsally incorrect. Noneth-
less still many experimental results, such as Kataura jtatsbe interpreted through TB
calculations, with adequate modifications of the calcataparameters [204, 205].

Effective models represent another class of methods which do not take intouatc
the detailed atomic structure, but give a simple, althoyggr@ximate, description of the
electronic structure and optical properties. This oftéoved the advantage of an analyt-
ical treatment of the physical problems, which can imply ap understanding of the
results than provided by purely numerical methods. Effeatnodels have been recently
used for the investigation of the electronic structure apipene [5], where electrons
can be described as massless relativistic particles, andrakeveral works by T. Ando
within the £ - p scheme about carbon nanotubes electronic properties nattwghout
correlations and disorder effects (for a comprehensivievesee Ref. [86]).

1.4 Summary

In this chapter, starting from the hybridization of carbehitals, we gave a general sum-
mary of the most studied graphitic materials, which will be potential building-blocks
of an all-carbon based nanoelectronics in forthcomings/ear particular, we focused
on single and multiwall carbon nanotubes, for which a moteaitisl description of syn-
thesis and characterization techniques was provided.c@&pectroscopic techniques,
such as Photoluminescence and Resonant Raman Spectrdsa@pghown to be capa-
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ble of providing chirality and diameter specific informatiabout the electronic structure
of individual single-walled nanotubes in bundled bulk séespwithout the need of a
particularly expensive laboratory or separation treatsiemn the final part, a general
classification scheme for computational electronic stmgctmethods was presented, to-
gether with the historically most relevant bibliographédarences about the calculation
of electronic properties of nanotubes and related strastur






Chapter 2

Geometry of single-wall carbon
nanotubes

A single-wall carbon nanotube (SWNT) can be considered aaghgne sheet (a single
layer of graphite, with a 2D hexagonal lattice) which candiked up with any given ori-
entation into a seamless cylinder with a diameter of a fevonaaters and a macroscopic
length of several micrometers. The electronic properti€®BNTs, as well as any other
physical property, are deeply related to their geometstraicture, which can be defined
in terms of diameter, wrapping angle of the graphene sheknhamber of atoms con-
tained in the unit cell.

In this chapter, starting from the graphene sheet, we shewabkic definitions for charac-
terizing the geometry of a SWNT, in real and reciprocal spéceeview of the different
algorithms presented in literature for determining therdowtes of the atoms in the unit
cell, both in 2D and 3D, is also given together with a genevaraew of the symmetry
classifications based on group theory for these systemsnésirconventions we follow
those used in Saito’s and Dresselhaus’ works (see for iostRef. [89]), except where
explicitly stated for different choices.

2.1 Graphene lattice in real and reciprocal space

The honeycomb geometry of a graphene sheet can be descyiloethdidering an ideal
infinite 2D hexagonal Bravais lattice. The lattice unit \westare defined by

alzgfwgg (2.1)
ay— V30 %5
2 2
wherea = v3ace = 0.246nm = |a;| = |ay] is the lattice constant of the graphene

sheetacc = 0.142nm is the carbon-carbon bond length af¥d y) are the unitary ba-

23
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sis vectors of the Cartesian coordinate system. Using thedavectorsa; anda,, the
graphene unit cell can be obtained. The unit vectors defisegbave make an angle of
60°. The unit cell can be chosen in several ways, a possible ehsia rhombus that
contains twanequivalentatoms from the sublattices of A- and B-type as shown in gray
in Fig. 2.1(left). By using the terrmequivalentone means that the A and B sites in the
unit cell cannot be connected by unit vectagsanda,. In the graphene lattice each atom
of type A is surrounded by three nearest neighbor atoms & B/and viceversa. The
reciprocal lattice of the graphene sheet is defined by thevectorsb; andb,, which

are related to the real lattice unit vectassanda, by the standard definition:

aj bj = 27’(’52"]‘, (22)

whereJ; ; is the Kronecker delta function. By substituting Eq. (2/fpiEq. (2.2), the
reciprocal lattice unit vectors; andb, are otained:

27 27
by =—%x+—y, 2.3
1 \/gal a y ( )
2 2
by = % 3.
3a a

The unit vectord; andb, make an angle of20° and define the graphene first Brillouin
zone (BZ). The BZ has the same hexagonal shape as the hexabaimstile the real
space, but is rotated af/6. Consequently, the armchair direction in real space, which
runs parallel to the carbon bond, corresponds to the zigragtin in reciprocal space.
Vice versa, the zigzag direction in real space, which paatts/6 from the armchair
one, corresponds to the armchair direction in reciprocatsgsee Fig. 2.2). The high-
symmetry points in the graphene BZ are the center of the loexg- (0, 0), the corners
K = (27/v3a,27/a) and the midpoint of the hexagonal edy¢ = (27/v/3a,0).
Notice that there are twmequivalentk points in the BZ which are denoted ¥ and
K'. As always, equivalent points are obtained by translatadnsteger multiples of the
unit vectorsb; andb.,. In the next chapter about the electronic structure of ggaphwe
will show that these points correspond to the Fermi surfadetp, which are responsible
for the metallic character of the system.

2.2 Nanotube unit cell in real space

There are many possible ways of rolling up a graphene shegtairtylinder, so that
nanotubes with quite different structures can be obtaiéd.geometry of a SWNT can
be uniquely specified by introducing the chiral indi¢esm), which are integer multiples
of the real space unit vectoss anda,. In this way the circumferential or chiral vector
C,, is defined as:

C, = naj +mag = (n,m). (2.4)



2.2. NANOTUBE UNIT CELL IN REAL SPACE 25
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Fig. 2.1: Graphene unit cell (left) and first Brillouin zone (riyhThe shaded rhombus
with the two sites A and B is the unit cell of graphene, the lgexal lattice is defined
by the unit vectora; anda,. The reciprocal space is defined by the unit vectarand
b,. The center of the BZ is thE point and the corners are th€ and K’ points. The
midpoints are th&/1 points. Equivalent k-points are connected to each otheetiprocal
lattice vectors.

The chiral vector defines the translational azimuthal gkeity along the circumference
of the graphene cylinder. Moreover, every other nanotulmengéric quantities can be
specified starting from these indices, as it will be showrhm following. The circum-
ference length is given by = /C,, - C; and the nanotube diameterds = L/ =

g\/n2 + nm + m?2. The chiral angl® is defined as the angle between the chiral vector
s
C,, and the unit vectoa; and can be obtained with the aid of Eq. (2.4), thatis

a 2n +m
= arccos

. 2.5
Calla] SVE T nE (2:5)

0 = arccos

For the special casés= 0 andd = /6 the tubes are referred to aigzagandarmchair,
respectively. Zigzag tubes hawe = 0, whereas armchair tubes have= n. Because
of their mirror symmetry along the tube axis, they are aldledachiral tubes. In order

to avoid confusion related to the handedness of the rollm@futhe graphene sheet in
two opposite directions (for a detailed discussion see Réfl]), the structural indices
can be defined in the ran@e< m < n and the chiral angle in the range< 6 < 30°.
Obviously achiral SWNTs have no handedness, implying thatsample the amount of
chiral SWNTSs for eaclin, m) pair is twice the amount of achiral ones. An alternative
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way to Eq. (2.5) for defining the chiral angleone can consider the angle= /6 — ¢
between the chiral vectdr; and the closest of the three armchair chains in the graphene
sheet of Fig. 2.2. The translational periodicity along tkis @f an ideal infinitely long
SWNT is given by the translational vect®y, which is orthogonal t&;, and is defined as

2m +n 2n+m
a —
drp " dr

wheredr = ged (2n + m, 2m + n), the functionged (7, j) denotes the greatest common
divisor of the two integersand; and the integer coefficients andt, for the components
of T have been found using the orthogonality relat@p - T = 0. The division by
the integerdr ensures that the shortest lattice vector along the SWNT dixection is
chosen. Additionally, if we define the integér= gcd (n, m) and apply Euclid’s lawto
dr, the following relations are obtained

dr = d if mod (n —m,3d) # 0 (2.7
dr = 3d if mod (n —m, 3d) = 0.

T = t1a1 -+ t2a2 = as (26)

In the above equation the modulo function gives the remaiofi@n integer division. The
SWNT unit cell is spanned by the real space vectdrsandT and can be obtained by
the cross produdil’ x C;| = | (t;m — tan) (a1 X ag) |. Dividing the area of the SWNT
cell by the area of the biatomic graphene unit ¢l x a,|, one gets the numbeéy of
graphene unit cells inside the SWNT unit cell

2 (n% +nm + m?)
dr

Note that/V is an even number and that zigzag and armchair SWNTs havéwsnitadells

if compared to chiral SWNTs with approximately the same diten In fact, for pairs of
type (n,0) and(n,n) there are2n graphene cells in the nanotube unit cell, therefbre
carbon atoms.

Finally, substituting the above expression fothe relations for the circumference length
L and the length of the unit cell along the tube akis- /T - T can be rewritten as

[dr N [3N V3L
a 5 and ay/ 5 " " (2.9)

2.3 Nanotube reciprocal space: the cutting lines

(2.8)

N:tlm—th:

As shown in Section 2.1, again with the aid of Eq. (2.2), onestdl construct recipro-
cal lattice vectors which can be conveniently used in a dyioal reference frame, i.e.

1Euclid’s law state thagcd (i, j) = ged (i — 7, 5)
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Fig. 2.2: Graphene lattice with armchair and zigzag directiagblilghted and geometry
of a(4, 2) single-walled nanotube. The large shaded cell is the SWNtTalh, defined by
the chiral vectorC, and the axial vector, with N atoms of type A (B). The symmetry
vectorR is also shown (see Sect. 2.4.1). The chiral arfgie the angle between the
armchair direction and the chiral vect@y,. All vectors are expressed in multiplesaf
anda,.

along the circumferential and axial direction of the nahetuespectively. Therefore, in
SWNTSs the chiral vecto€,;, and the axial vectdl play the role of graphene real space
unit vectorsa; anda,, whereas the nanotube reciprocal space ved&arandK, play
the role of graphene reciprocal space unit veckgrandb,. The new reciprocal vectors
K; andK, are defined as follows:

Kl'TZO,KI'Ch:27T,Kz'TZQW,Kz'Ch:O. (210)
Using the definitions given in Eq. 2.4 and Eq. 2.6, one obtains

B tlbz — tgbl
B N
mb1 - nb2

N

from which it can be verified thdk, is perpendicular td" and parallel taC,,, whereas
K is parallel toT and perpendicular t€y,. The lengths oK; andK, are given by
27 2 2

Ky

(2.11)

K, =
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According to the first equation of (2.11), two vectors whidffed by NK, are equivalent,
as this corresponds to a reciprocal lattice vector of gmaph&hereforeV wavevectors
of typeuK; with . = 0,1,..., N —1 will give rise to N discrete lines of lengt{K,| and
spacing|K,|, in the graphene BZ. Therefore, one can think of the nanotetigrocal
space as the result of sectioning the graphene BZ into a $étldd BZs orcutting lines
(see Ref. [116] for a general review), such that the poskibkdues in the SWNT BZ are
given by

K, T T
k=uK;+k—withpy=0,....N—1land — = <k, < —. 2.13
R e with g and — T (2.13)
For any giverk the following relation also holds
k-Cy, =27mu (2.14)

which represents the periodic boundary condition of quantenfinement around the
tube circumference. This means that only stationary stzesg an integer number

of wavelengths with perio# = 27/ are allowed around the circumferential direction.
Moreover, from the definition of Eq. (2.13), the possiblasea for the azimuthal quantum
numbery are discrete, whereas the linear momenfyrohanges continuously along the
cutting lines as a consequence of the translational pertmalindary conditions along the
tube axis.

Fig. 2.3: The first Brillouin zone of (4, 2) SWNT is given by a set/8f= 28 cutting
lines of nanotube superimposed on the extended graphen€&h@zorigin at thd™ point
is marked by a dot. Nanotube reciprocal lattice veclisand K,, whose norm give
the spacing between cutting line and the length of eachngulitie, respectively, are also
shown. The borders of the SWNT BZ are the cutting lines withidas;, = —13 and
w=14.
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2.4 Generating coordinates of SWNTs

The task of generating the coordinates of anym) SWNT unit cell is a complex one,
because of the high degree of symmetry of the nanotube sygteam large number of
symmetry elements), as it will be shown in the last sectiothisf chapter. In literature
several different algorithms for calculating the atomioi@bnates both in the 2D unrolled
and 3D unit cell can be found, which rely on different choit@sthe symmetry vectors
generating the whole cell. The purpose of this section isomdy intended as &ade-
mecumfor practical use in the computations, but aims also at gin insight into the
three most cited (and documented) geometrical conventionanotube science. More
specifically, we will overview first the convention used irettvorks by the Saito and
Dresselhaus’ group [89, 141], then the convention used lgédeand Cuniberti’'s group
[123] and finally the one by Damnjanovic’s group [90], whiefil be helpful for intro-
ducing symmetry elements in nanotubes in the next sectismafotube literature is now
quite vast, also different recipes by other authors can bydaund out, however most
of the times they’re limited to achiral SWNTs or not expligiset up into integer-based
formulas to be tried straightforwardly. Thus it has beendkxt not to take into account
these cases.

2.4.1 Saito and Desselhaus’ convention

In order to generate coordinates of SWNTSs, Saito introdtleesymmetry vectaR with
indices(p, q), which satisfies the three following conditions:

() R=patgae (b) "=l () y<nT<l (219
Condition (a) means th& is a real-space lattice vector, whose component alGnds
equal toL /N according to condition (b), and it’s inside the unit cell aating to condi-
tion (c) . Making the appropriate substitutions into coiwhis (b) and (c) of Eq. (2.15),
the (p, ¢) indices of vectorR can be completely determined by solving the following
system:

gti —pto =1 and 1< mp—ng<N. (2.16)
By translating a graphene unit cell bR withi = 0,..., N — 1 we go over all graphene
unit cells inside the 2D unrolled nanotube unit cell, thatvi® atoms in a graphene
sheet are equivalent if they’re connected by a translatio&WR. In a 3D rolled up
SWNT, applying the symmetry vect® means moving around the tube axis in spiral-
like fashion. The pitch- and the angle) of the spiral are given by the following cross
products:
o IR x Cy| _ (mp—nq)T
L N
T x R|2r 27
T L N

(2.17)

(8
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Additionally, the symmetry vectaR applied N times can be related to translations by
integer multiples of the axial vect@r, according to the following relation:

NR =C,+ MT with M =mp—ng. (2.18)

Now we have all the necessary elements for generating(any:) SWNT unit cell,
both in 2D and 3D. In a rigth-handed Cartesiayx—coordinate system, we choose the
graphene layer to lie in they plane. The coordinates of the atomic sites of the 2D
unrolled nanotube unit cell are then obtained as follows:

Ry, =uT +hR — [hM/N]T —r',/2 (2.19)

where theu-th unit cell, theh-th graphene biatomic cell and tke¢h atomic site (A or B)
inside each graphene cell are labelled by the corresporsdibgcripts. By the notation
(€] we mean the integer part of the argumérindr?, is a vector pointing from a given
s-site (e. g. A) to its first nearest-neighbdr(e. g. B). In order to obtain the coordinates
of the SWNT in 3D, the above 2D unit cell needs to be rolled umlgning the tube
along thez axis. This is done through the rotation operatars (o = z, y, z) about the
Cartesian principal axes:

0= (0012 (5 -0) 2% (3) (2.20)

The rotation operatof,, (g) is applied to align the cylinder along tlzeaxis, then the

graphene layer in thez plane is rotated by, (% — 9) to account for the SWNT chi-

rality. Finally the rolling up of the graphene layer is oloiadl by placing the atomic sites
around thez axis of the cylinder by the operatér, (¢}, ), wherey;, , is the angular
coordinate of the atomic sitR; . on the cylindrical surface of the nanotube ahds
related to the handedness of the rolling up done to the gregplager, from the front to
the back(© = +1) or from the back to the front® = —1). The angular coordinates of
the atomic siteg, ; are given by:

Phs = d% [Qy (% - 9) Q, (g) Rz,s] % = 27h/N — }/2 (2.21)
with ol = —pb = (2@/\/§dt) cos (/6 — 0).

where the angular shiftg’, on the cylindrical surface between nearest-neighbor carbo
atoms have been introduced. The general expression fa& ihgs/en by

2 s s
I _ 0 SR QU e
0, = 7 [Qy <6 «9) Q. (2> rs] X (2.22)
These formulas can be straightforwardly implemented infmater programs for calcu-

lating any set of atomic coordinates of a givenm) SWNT. The above described pro-
cedure is found in Ref. [141] and is far more elegant than treepyoposed in the sample
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code shown in the appendix of Saito’s book [89], which is ctatgby based on floating-
point arithmetic, therefore bearing the risk of roundingpes. However, apart from the
procedure, the main point to remember is that in both retaethe symmetry vectét
is used for generating atomic coordinates of a SWNT.

2.4.2 Nemec and Cuniberti’s convention

Nemec and Cuniberti’'s pure integer-based procedure [t&3rly steers away from in-
troducing any additional symmetry vector, and focuses belleg the graphene unit
cells inside the unrolled nanotube unit cell. By indexingapdene cell or plaguette by
a pair of indiceg/;, [5), each cell around the tube is uniquely identified by the dioi
0 <l +1, < n+m. New indices for the coordinates are introduced as

Now the only fundamental step to generate the coordinatdmisach plaquette is part
of the unit cell if the following condition holds:

0<lim—Iln<tim—tn (224)

0<jm—(i—j)n <tym—tyn (2.25)
in <j(n+m)<in+ (tym —tn)
For everyi we have the following condition fqgr
mn Sj<m—i-i§1m—tgn (2.26)
n—+m n—+m
Finally the plane coordinates of all atoms can be computedtgxwith pure integer
operations counting over the indicgsj| as follows:
v =jei+ (i —j)ey = (e1 +ez) /6 (2.27)

In the above equation the lattice vectersande, are expressed in cylindrical coordinates
as:

e — (27Tt2, —mT) / (tgn — tlm) (228)
€y — (27Tt1, —nT) / (tlm — ntg) .

where the following identities are verified

ne; + meg = (2m,0) (2.29)
t1e1 + toeq = (0, T) .

Thus expressions for the cylindrical coordlna(t@sz)[ jare obtained, which can be used
together with the tube radiys= L /27 to derive the 3D Cartesian atomic coordinates.
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2.4.3 Damnjanovt’s convention

In the previous sections, we saw that the minimum numberasfisg atoms needed to
generate the SWNT can be at most 2, the number of atoms in d@ph@ne unit cell.
However, Damnjanovéet al. [90, 124] pointed out that these two atoms are actually
mapped onto each other by a rotationll3y® around an axi§) perpendicular to the tube
axis. Therefore, only one atom is needed to generate theavtbbé, which is referred
to asorbit, and carbon nanotubes are definegiagle orbit systemsThus, unlikely the
previous methods, Damnjanowt al. obtain the full set of coordinates starting from a
single atom and applying to it the symmetry operators of e ¢§roup of the SWNT,
which will be described in detail in the next section. Forth@ment, it's sufficient to say
that these operators are the screw roto-translation gmnéﬁm%d), the pure-rotations
operatorC,; and the above mentioned rotation1®0° around the horizontal axig. By
covention, theJ axis is chosen to coincide with theaxis. We recall that, within the
notation of this thesisd is the greatest common divisor of the SWNT chiral indices
(n,m), N is the number of graphene cells inside the unit cell &nd the norm of the
tube axial vectoiT, which is quite different from the notation used in Damnjats
work (n, g, a respectively, for a given SWNT pair indices, n,). The parametew
which appears in the screw operator is given by:

d n—m d (n—m\fd1
w:N/dFr[NdR/d(?)—Q - )_I_E( 7 ) (2.30)

whereFr is the fractional part of a rational number andm) is the Euler functiof In
cylindrical coordinates the position of the starting at@given by

. (9. B, Z0) 5 ( n+m ) n—m .
e 5 s g s v 5 .
000 = 1 For 20 g 2(n*+nm+m?) /)" 2,/3 (n%+nm + m?)
(2.31)

. I T . .
and by acting on it with the compound opera(c@]“\;tC;U“ﬁdW) the new atomic posi-
tion is obtained at:

u wt s u td
Tigy = |:p> (_1) Oy + 27 (W + 8) ) (—1) Zo + NT‘| (2.32)

where the indicessu are definedag =0,1,s=0,1,...,d—1,andt = 0, +1,£2, .. ..
Thus counting over the indiceéss andu, with the help of Eq. (2.32), any single-walled
nanotube can be constructed.

2Eulery (m) gives the number of positive integers less than or equalidnich are relatively prime to
m.
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2.5 Symmetry of SWNTs

The symmetry of systems which exhibit translational pedibgin one dimension, such
as carbon nanotubes and stereoregular polymers have bewibdd by the so calldihe
groups which were introduced by Damnjanowt al. [124] and later adopted by Thom-
sen and Reich [90] for the investigation of second-ordesmaace Raman scattering on
SWNTSs. Line groups are the full space group of one-dimeraisystems. In addition
to point-group symmetries like rotations and reflectiohgytinclude pure translations
and screw operations. In Sect. 2.4.3 it was shown thatjrggarom a single atom, the
whole tube could be obtained by repeatedly applying the sginynoperations of the line
group. In this section we will briefly review the basics of ygnmetry of a SWNT from

a crystallographic point of view. For further details abgubup symmetry applied to
SWNTs the reader is referred to the above mentioned refeseldg Damnjanovi¢ and
Reich and to the comprehensive review of Ref. [118]. In otdefind the symmetry
groups of carbon nanotubes, one has to look for the symmpémations of the graphene
sheet which are preserved when the layer is rolled up intdiadsr. Namely, transla-
tions by multiples of the axial translational periddof the graphene sheet parallelTo
remain translations of the nanotube parallel to the tubs. aXhey form a subgrou@
containing the pure translations of the system. Transigtarallel to the chiral vector
C,, become pure rotations of the nanotube about its axis. If asiderd lattice points
belonging toC), , the nanotube can be rotated by multiple@ofd. Thus the SWNT has

d pure rotations in its symmetry group which are denoted’pwith s = 0,1,...,d — 1.
The pure rotations form again a subgratipof the full line group. Translations of the
graphene sheet along any other direction are combinatibtrartslations along and
C,.. Therefore, when the graphene sheet is rolled up, theytiedwhnslations combined
with rotations about the nanotube axis, hence the helicahsgtry of carbon nanotubes,
due to the presence of screw operators. On the unrolled gnaptheet this corresponds
to primitive translations of typer/NC,,+d/N'T. The order of these screw axis operators
is equal to the number of graphene céllsnside the nanotube unit cell. Therefore, as
shown in the previous section, we denote the screw operiayof§'y|d7"/N)" with the
parametetv defined as in Eq. (2.30). Moreover, by considering the foraaepf(2.8) and
the ratioN/d which is always> 2, it can be shown that the nanotube line group always
contain the screw axis. In achiral tub®sd = 2 andw = 1, so the screw axis operation
consists of a rotation by /d followed by a translation by. Also, one can observe that
from the six-fold rotation of the hexagon about its centenponly the two-fold rotation

is preserved as a symmetry operation in carbon nanotubés isTéictually the two fold
rotational axis, previously denoted Bs which is perpendicular to the tube axis and is
present both in chiral and achiral nanotubes. Uhaxis points through the midpoint of a
hexagon, perpendicularly to the cylinder surface, theragljaivalent two-fold axi¢/’ is
found at the midpoint of a bond between two carbon atoms.dviptanes perpendicular
to the graphene sheets must either contain the tube axis @&rpendicular to it. Thus
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Fig. 2.4: Symmetry elements in a SWNT according to Damnjaneviél. Taken from
Ref. [124].

we have vertical mirror planes denoteddy and horizontal mirror planes,. However,
both kinds of planes are present only in achiral tubes. N@&s#t, = Uo,. They contain
the center points of the graphene hexagons. Additionadlgtical and horizontal mir-
ror planes through the midpoints of the covalent bonds foentical glide planego, )
and horizontal rotoreflection planés;) (Fig. 2.4). The general element for any carbon
nanotube line group can be written as

Td
[(t,u,s,v) = (CN| ) cyU" oy (2.33)

with the values forw, d, N given in the previous equations and the inditas s, v de-
fined as

t=0,+£1,..., (2.34)
u=0,1;
s=0,1,...,d -1,
L { 0,1 achiral
0 chiral

The elements in Eq. (2.33) form the line groupswhich are generally given by the
product of a point group and an axial group. More specificdfly achiral and chiral

3Sometimes in the papers by Damnjanaefl. this can be found denoted as.
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tubes we have the following line groups:

Laz=%,Dan achiral tubes (2.35)
Le =30y chiral tubes

Note that, since carbon nanotubes line groups always cotfitaiscrew axis, they aren-
symmorphigroups and the isogonal point group (i. e. a point group vinéhdame order
of the principal rotational axis, where the rotations imlduhe screw-axis operations) is
not a subgroup of the full symmetry group. The point groupgdal to the respective
nanotube line groups are given by

Dy for chiral tubes (2.36)
o4, forachiral tubes

We conclude this section by reminding that for most applcest of symmetry in nan-

otube science, such as optical spectroscopy or first-orderaR scattering, where only
the center of the Brillouin zone is probed, it’s sufficientttork with the (isogonal) point

group. This can be done safely because electronic and mbehteigenfunctions at the
I' point always transform as irreducible representationb®ifsogonal point group.

2.6 Summary

In this chapter the geometry of a single-walled carbon nam®tvas completely defined
both in real and reciprocal space, starting from the rollipgof a graphene sheet. The
Brillouin zone was indexed in terms of a set of discrete atirauguantum numberg
and continuous wavevectoks, which give rise to a set of so calleditting linesin k-
space. It was also shown how the atomic structure could beplevety derived from
a given chiral vectofn, m) according to three different symmetry choices. Finally, fo
completeness, a list of the symmetry elements which arepté@s carbon nanotube was
given and related to the full symmetry line group classifarator these systems.






Chapter 3

The zone folding method

This chapter introduces the simplest models for descriliregelectronic and optical
properties of single-walled carbon nanotubes within reabte approximations. It's es-
sential to understand the development of this thesis andetisdns behind the choices
we will perform in the following chapters. First we reviewetlderivation of a simple
analytical expression for the electronic structure of geage, based on the tight-binding
approximation for crystalline solids andelectrons. On the basis of the nanotube Bril-
louin zone construction of the previous chapter, the zahdifig method is applied to
the graphene band structure, in order to obtain a genera¢ssipn for calculating the
electronic structure of SWNTs of any chirality. We also shwow optical matrix ele-
ments for interband transitions and dipole selection roéesbe obtained from graphene
eigenvectors in order to compute the tight-binding optatedorption spectra of SWNTSs.
This chapter covers mainly literature materials from RE¥S, 141, 142, 144, 145].

3.1 Electronic structure of a graphene sheet

As stated in the first chapter, the tight-binding approxioraTBA) gives a simplified but
rather good and efficient description of the electronic bstndcture of covalent solids,
such as for instance 3D inorganic semiconductors (C, Si, S&#2s), organic molecules
(butadiene, polyacetylene, etc.) and transitidibdnd metals. In the TB method a set of
localized atomic orbitals is adopted as basis for expantiegrystal wavefunctions and
the exact many-body hamiltonian operator is replaced wiplarametrized hamiltonian
matrix. Actually, the use of the tertight-bindingis related to the atomic-like wavefunc-
tions, which ardightly boundto the atoms. In general, only a small number of basis
functions are used, which approximately correspond to thia orbitals in the energy
range of interest. For instance, when modelling covaldmlyd carbon based materials,
such as diamond and graphitic derivatives, thatbmic orbitals related to the core elec-
trons can be reasonably neglected and oslgril the thre@p,, 2p, , 2p. orbitals for each
of the four valence electrons can be safely taken into adcoun

37
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3.1.1 Schibdinger equation within the tight-binding framework

We consider now the biatomic graphene cell with the basisiagdenoted by A and
B and the above mentioned four atomic orbital$or the valence electrons for each
atom. In total we have eight atomic orbitals labelled by ttwraindex and the atomic-
like wavefunctions, namelys*, 2p7', 2p;}, 2p2 and2s”, 2p2, 2pl, 2p2, from which eight
bands are obtained from solving the single-particle Sdimger equation for the extended
periodic system (Fig. 3.1 a) ). In order to obtain the eleutraispersion relation of
a periodic system such as the graphene sheet, one has talsel{tene-independent)
single-particle Schrodinger equation in presence of tatefe periodic potential:

HV (k,r) = E° (k) ¥° (k, 1), (3.1)

whereH = T + V (r) is the single-particle Hamiltonian, given by the kineticcegy
operatofT and the effective periodic potentitl(r). In the spirit of LCAO, the electronic
wavefunction for each of the eight bands can be written as:

cho d,, (k,r) (3.2)

whereb is the band index and the sum is taken over the eight orbitsdésdllabove. The
¢? are wavefunction coefficients for the functiods, (k, r), which can be put in Bloch
form as follows:

U—-1
@, (k1) = % S exp (ik - Rue)d (7 — Ro) (3.3)
u=0

whereU is the number of graphene cells inside the crystal@nag — R.,;) is the atomic
orbitals centered at the atomic coordinRtg,. According to the Rayleigh-Ritz variational
principle, the ground state energy is found by minimizatbthe energy functional with
respect to the wavefunction coefficients (k)

OE" b (PPIH|Y)

80—;’7‘0/ = 0 Where E = W
After the functional minimization, the stationary Schiriger equation for the Bloch am-
plitude coefficients is obtained, which can be put in matopaf as follows:

Z Hs’o’so (k Cso Z Eb s o’so ) CZO (k) (35)

(3.4)

Here the Hamiltoniarfl, 5, (k) and the overlap, s, (k) matrices are given by

soso ZeXp Zk - /925 H¢o< - us)dr (36)

Zexp (ik - —~ /¢ o) Hoo (1 — Rys) dr
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The orthonormality condition for the electron wavefunaotmf Eg. (3.2) becomes

/ U (k1) U (k,r)dr =) 0> e (K) Svoso (K) (k) = 6y, (3.7)

s'o’  so

whered, y is the Kronecker delta function. Before solving the matrodgem of Eq. (3.5),
the integrals of Eq. (3.6) need to be parametrized as fumsid the interatomic vector
R = R, v —R,; and the symmetry and relative orientation of the involvdditats¢?, (r)
ando, (r):

%:/%MH%WW (3.8)
tos (R) = [ 6,(r) Ho (r = R)dr
5ot (R) = / 63 (r) 6 (r — R) dr

Now we can find the eigenvalues &f (k) by solving the secular equation for tRe< 8
hamiltonian matrixH ., (k) and the overlap matrify s, (k)

det [Hy s (k) — E* (k) Syors0 (k)] = 0. (3.9)

Before proceeding with the solution of the secular equaitiotine next subsection, we
have to consider in detail the dependence on the symmetrgragatation of the atomic
orbitals of the transfet,, (R) and the overlap,, (R) integrals. We recall that in
graphene thesatomic orbitals mix with thep, and2p, orbitals to form the hybridized

o molecular orbitals, which in turn give the covalent bondshef hexagonal lattice. The
2p. atomic orbitals form ther-molecular orbitals which point normal to the graphene
plane and are uncoupled from themolecular orbitals. Unlikely thés atomic orbital,
which is spherically symmetric, th& atomic orbital has the symmetry of the spherical
harmonicYs; (6, ¢), so it can be decomposed along two mutually orthogonal tilines,
namely perpendicular and parallel to the interatomic velRtar hese directions are again
referred to asr and o, respectively. From this point on, tie orbital will be simply
denoted for brevity as. To determine the hopping, (R) and the overlag,, (R) in-
tegrals, one has to consider first all the possible pairs d@mtwheo’ = s, o, 7 and the

o = s,o, orbitals, which amount to nine possible pairs, as we canrséggi 3.1 c).
Among these, foufo’o = s, s, om, wo) give transfer and overlap integral identically
zero by simmetry requirements. For the remaning five paivS= ss, so, os, o0, 7r),
the two pairsoo’ = so andos give transfer and overlap integrals of opposite signs and
same magnitude. Therefore there are only four independers(po’ = ss, so, oo, 7m)
and the total number of tight-binding parameters is ten: til@ atomic orbital ener-
gies (g2, €2;), the four hopping integralg; (R) ,ts, (R) ,too (R) , trr (R) and the four
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Fig. 3.1: a) Schematic of thés, 2s, 2p,, 2p,, and2p, atomic orbitals of the carbon
atom. b) Thes andr projections of thep atomic orbital. c) (left) The five molecular
orbital configurations’o = ss, so, 0s, oo, nm that give nonvanishing transfgy, (R) and
overlap integrals,, (R). The two configurations’o = so, os connected by a dashed
line yield the transfer and overlap integrals of equivateagnitudes and opposite signs.
c) (right) The remaining four configuration® = s, ws, ow, wo for which the transfer
and overlap integrals are identically zero by symmetry reqoeents. The dashed lines
connect the equivalent configurations. Taken from Ref. 122
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overlap integralss (R) , sso (R) , So0 (R) , szx (R). Additionally, we note that within
the orthogonal tight-binding model the parameteys(R) are set to zero. Usually the
numerical values for the tight-binding parameters areinbthfrom a fit to amab initio
calculation or experimental measurements. Because #ral molecular orbitals are
decoupled, as noted previously, thex 8 HamiltonianH ., (k) and overlap matrices
Sy¢oso (k) are decomposed into@x 6 and a2 x 2 for the o and7 molecular orbitals,
respectively. For graphitic materials, the electronic aptical properties are determined
by ther energy bands, which lie near the Fermi level on the energg ¢see Fig. 3.3),
thus it's sufficient to take into account only tBex 2 subblock for the solution of the

secular determinant.
20.0 \/c* \/

10.0 F

Energy [eV]

0.0

-10.0 |

Fig. 3.2: Electronic dispersion relation for graphene alongihe I' — M — K lines of
the 2D BZ. Taken from Ref. [89]

3.1.2 Graphene electronic hamiltonian forr-electrons

Now we can solve the secular equation within the framewortkheftight-binding model
for 7 electrons in the biatomic graphene cell, in order to obtasimaple analytical ex-
pression for the electronic dispersion of graphene oveRiéBZ. Additionally, only
nearest-neighbor interactiof® = ac¢) are taken into account in the Bloch phase fac-
tors of Eq. (3.6), so any atom of a given type (A or B) has thregrest neighbors of the
opposite type. Obviously, within the same A (or B) sublattice nearest neighbor inter-
actions are absent and the diagonal hamiltonian and overddix element are simply:

HAﬂ'Aﬂ' - HB?TBﬂ' =£ (310)

SAT(AT(‘ - SBﬂ'BT(‘ =1
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For the H 4, 5, and S 4, 5, matrix elements, first the interatomic vectots= r, = —rly
from one atom A to its three nearest neighbors (or viceversat be explicitly written
down and substituted into the above cited Bloch exponeptiate factors, as follows:

ry = (a; +a3) /3 ra=(a; —2ay)/3 13 =(-2a;+ay)/3 (3.11)
Thus we obtain for the off-diagonal hamiltonian and overtegdrix elements:

Harsr = tf (k) and  Hpear = £ (K) (3.12)
SATI’BT(' = Sf (k) and SBﬂ'Aﬂ' = Sf* (k) )

wheref (k) is the sum of the phase factors over the three nearest negbiven by:

k.a kea k,a kea k,a
k)=exp|i—= | +exp | —i—— + ZL) + ex (—i T ’LL) 3.13
f (k) = exp ( ﬁ) p ( N R P55 (3.13)
We note that the hamiltonian and overlap matrices are heamiThe Schrodinger equa-
tion in matrix form becomes:

et () e (1 sF0)) ([ Ch(k)
TR ANE SN A AN IR A e S
(3.14)
Solving the secular equatio yields the energy dispersiatioa for graphene valence and

conduction bands :

B (k) e £ tw (k)

= TTou (o with  (+) = v, (—) = ¢ (3.15)

wherev andc indicate the valence and conduction bands far0, respectivelyw (k) is
the absolute value of the phase facfdik), that is:

w(k) =+/f*(k) f(k) = \/1 + 4 cos \/ikxa Ccos % + 4 cos? kg_a. (3.16)

We must point out that the on-site energy parameteran arbitrary reference energy
point for the Fermi level, in the orthogonal tight-bindingbdel it is set equal t0 eV
together with the parametsrwhich is set to zero and quantifies the degree of asimmetry
of the valence and conduction bands with respect to the Hexl. Therefore, in the

7 orthogonal tight-binding model, the analytic expressionthe graphene electronic
dispersion reduces to a simpler form

£ (k) = £tw (k) = £t/ f* (k) f (k) = \/1 + 4 cos \/32/%(1 cos % + 4 cos? %.
(3.17)
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Substituting the energy eigenvalués (k) of Eq. (3.15) into Eq. (3.14) yields Bloch
amplitudesC’, (k) andC%, (k) for each atomic site in the graphene unit cell. For the
wavefunction of the valence and conduction bands of eaehveit get the following
relations:

v f(k) v
i = +\/2w W(t+swk) B~ +\/zw )

o f (k) e fr (k)
Cln = +\/2w K (—swk) b= \/2w 09 (1 —sw (k)

As shown in the final sections of this chapter, these Blochefeawction amplitudes play
an important role for the calculation of the optical spectir& WNTSs, because they enter
directly into the calculation of the graphene and SWNT titesrsdipole matrix elements.
At the I point, wherek = 0, the amplitudes for the valence band becattie = C%_,
while for the conduction band we hav&, = —C%_. Thus the valence band wave-
function isV¥ « ¢4, + P, and the corresponding molecular orbital has bonding
character, while the conduction band wavefunctio®isx ®4, — 5, and the corre-
spondingr™* molecular orbital has antibonding character. Obviouslyanyk # T', the
Bloch wavefunctions of Eqg. (3.3) have, in general, difféqgmase factors for both A and
B sublattices.

"; " (k) (3.18)

1+ sw(k))’

3.1.3 Graphene electronic band structure forr-electrons

As shown in Fig. 3.3, the valence and conduction bands toaich ether at the corneks
andK’ of the 2D hexagonal Brillouin zone, also called Dirac paifitse touching points
are called Fermi points and denotedlasandky. They are defined by the setting the
phase factorf (k) = 0. Also the Fermi level passes through the Fermi points, tsrau
in the orthogonal TB model the on-site energy is set as0 eV. This property arises
because in the unit cell there are two carbon atoms and tlst@energy parameter is
the same for both A and B sites. If there were two differentratospecies, such as in
the case of hexagonal BN, which has the same crystal steucfigraphite, a gap would
occur since the secular equation at the BZ cor€end K’ would be

det( 5A7rA7r_E(K) 0

; cprmn — E(K) ) =0 (3.19)

with the corresponding eigenvaluegK) = ¢ 4,4, andE (K) = e, px-

By inspection of Fig. 3.3, the density of the electronicesaDOS) goes to zero at the
Fermi level, thus graphene is a zero-gap semiconductorth®nanteresting character-
istic of graphene is its linear dispersion relation arouma Dirac pointdK andK’. By
making an expansion around these points in power seriéskph and Ak,a up to the
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Fig. 3.3: Electronic dispersion relations of a graphene shesingby Eq. (3.17) with

STB parameters = 3.033eV, s = 0.129, ande = 0 eV (a) throughout the entire first
Brillouin zone and (b) along the high-symmetry directiomshie first Brillouin zone. The

valence and conduction bands are labeled/landc, respectively. (c) The density of
electronic states (DOS). The Fermi level is shown by thezooitial line at zero energy.
Taken from Ref.[122]

second order, we havwe = @Aka, whereAk = /AkZ + AkZ is the distance from
the K (X”) point of the electron wavevector kt= K + (Ak,, Ak, ). Substitutingo (k)
into Eq. (3.15), yields the following electronic dispersieelations linear inAk for the
graphene valenceand conductiort bands

E(Ak)=cF ? (es —t) aAk with (=)=, (+)=c¢ (3.20)

This fact, in addition to the increased electronic mohildifferentiates graphene from
conventional semiconductors, which have indeed paralkeoigy bands. Actually the
effective mass approximation of the non-relativistic $chinger equation, used for these
materials with parabolic bands, is not applicable to graphelnstead, conduction-
electrons in graphene behave like massless fermions, wWiedsaviour is described by
the relativistic Dirac equation. As a matter of fact, sintsediscovery in 2004, graphene
has built the bridge between high-energy physics and casdkematter physics, namely
relativistic condensed matter physics [5].

3.2 Electronic structure of SWNTSs

In order to calculate the-electronic band structure for SWNTSs, a good approximation
is represented by the zone-folding the 2D Brillouin zonerafodpene, i. e. by sectioning
the graphene dispersion relatiéfi”? (k,, k,) along the cutting lines found with the aid
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of EQ. (2.13). This concept is sketched in Fig. 3.4 below, nehbe cutting-lines are
superimposed on the 3D graphene electronic dispersion &ectrons. Therefore, the
general form for anyn, m) SWNT is given by

K
E(u k) = B (uKl + kﬁ) (3.21)

Fig. 3.4: Graphical representation of the zone-folding methgaliad to a chiral (4,2)
SWNT: the cutting-lines are superimposed on the 3D dispereglations and can be
seen also on the 2D BZ. Taken from Ref. [122]

For a given SWNT, there areN2r-electronic bands, originating from the wavevector
guantization along the nanotube circumference. The tlyp@eal electronic structures of
an armchair, zigzag and chiral SWNTSs thus obtained are showig. 3.5 below.

The electronic density of states (DOS) profiles in Fig. 3ralie metallic (5,5) and semi-
conducting (5,0) SWNTs show the peaks of van Hove singidar{t’Hs), where the dis-
persion is flat and hence the DOS diverges. Moreover, oneasthat for metallic tubes
the DOS is constant at Fermi level, whereas it is zero for senuucting SWNTs. The
VHSs are a signature of the one-dimensionality charactdredd systems and are relevant
for understanding the nanotube electronic interband itians. However, details about
DOS and related quantities, such as the joint density oésta@DOS) will be discussed
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Fig. 3.5: Electronic band structures of SWNTs for the three regmtatives geometries
obtained by zone-folding method: armchair (5,5) (left uppeigzag (5,0) (upper right)

and chiral (4,2) (bottom). Calculations reproduced froni. R89] with TB parameters

tr =29¢eV,s=0,ands, = 0eV.

in the third subsection, while in the next two subsections will consider in detail the

metallicity condition for SWNTs and the important k-poibtdonging to the cutting lines
near the Fermi energy, where the vHs in the DOS, important®ioptical spectra, are
found. Moreover, it will be shown that a particular nanotwessification arises from
this cutting line analysis which relates the SWNT geomatrstructure to these special
BZ points [125, 122, 121].

3.2.1 Metallicity condition for SWNTs

By inspection of Fig. 3.7 (left), clearly a SWNT is metallf@icutting line passes through
a Dirac pointK or K'. In other words, the SWNT is metallic if its circumferencedn-
mensurate with the metallic wavefunction of graphene. Mathtically, for any SWNT
chiral pair indicegn, m), this is expressed again by the condition of periodicityuach
the tube circumference of Eq. (2.14)

K-C, =2mu, (p integer) (3.22)
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Fig. 3.6: Density of electronic states for a semiconducting)(8edt) and metallic (5,5)
SWNT (right) calculated by zone-folding method.

where now the coordinates of the Dirac point have been gutesfias

2b; + by
3 .

Using the geometrical definitions for the real an reciprdatiice vectors of Chapter 2,
one obtains the important result

K = (3.23)

2n +m = 3pu, (3.24)
which can also be expressed in the form

n—m = 3pu, (3.25)

if we consider that2n + m) — (2m + n) = n — m. Moreover, calculation of the normal
distance from the: = 0 cutting line (i. e. the one which crosses thoint) to theK
point in units ofK; gives

K, Ky 3
which confirms Eq. (3.24). Thus, if — m is multiple of 3 the SWNT is metallic, other-
wise it's semiconducting. In the latter case, Eq. (3.26),rtbrmal distances from cutting
line ;» = 0 to the cutting lines closest i are found, as follows

(3.26)

K- K;
K; K;

=mod (2n+m,3)=1 (S1) or mod (2n+m,3)=2 (52) (3.27)

from which the classification of semiconducting SWNTSs infijpet 1 or type 2 is derived.
Note that if the conventiomod (2m + n,3) or mod (n — m, 3) is used, the abovB1
andS2 definitions are swapped, i. e. a former S1 SWNT would be an 82 and so on.
In the following, we will always stick with the defintion of Sind S2 types according to
the values ofnod (2n + m, 3).
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mod(2n+m,3)=0 mod(2n+m,3)=1  mod(2n+m,3)=2
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K point

K' paint

Fig. 3.7: Three possible configurations of the cutting lines i titinity of the Dirac
points depending on the value nfod (2n + m, 3). The dashed lines indicate the KM
directions which are the boundaries of the first BrillouimeoTaken from Ref. [122].

The values of constartn + m are also used in optical experiments to identify families
of SWNTs of approximately the same diameter, which sharedasibehavior in photo-
luminescence spectra. By plotting the SWNT chiral indice®dhe graphene lattice, we
could actually identify each family with a straight linepong chiral indices of the same
2n + m = const . The above condition also implies that the number of sentiaoting
SWNTs is twice as the amount of metalllic tubes, which is a#§ useful in photolu-
minescence experiments. To summarize, a SWNT is metaltioif (2n + m,3) = 0
and semiconducting ifnod (2n +m,3) = 1 or 2. In the nowadays accepted nan-
otube classification, these three types are referred to asSM@nd S2, respectively. In
Fig. 3.7, the three different configurations of the cuttimge$ near the Dirac points
andK'’ are shown, together with the corresponding valuenofl (2n + m, 3). On the
basis of other geometrical relations, this classificatias further developed into several
subtypes, namely M1+, M1-, M2+, M2-, S1+, S1-, S2+, S2-, gdared in the next
subsection. However, only SWNTs of type MO, S1 and S2 havevslistinct optical
properties in various spectroscopic measurements, wiele twas no experimental evi-
dence of any difference among the above mentioned subtfoe®r practical purposes,
it's sufficient to keep in mind only types MO, S1 and S2.
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3.2.2 Critical k-points giving van Hove singularities

The purpose of this subsection is to make clear which k-pdistonging to the cutting
lines near the Fermi energy of SWNTSs give van Hove singigarin the density of states,
according to the specific geometry of a nanotube. This ity important for under-
standing which k-points dominates the optical spectra @¢tsystems and it will be the
subject of the next chapters of this thesis. We recall th@hiapter 2, SWNTs were classi-
fied into two categoriesiy = 3d if mod (n —m, 3d) = 0 anddy = d in all other cases.
For MO SWNTs, eitheklr = 3d or dgp = d (metallic zigzag SWNTSs) can always be
satisfied, because the conditiorvd (n — m, 3d) = 0 implies alsomod (n — m, 3) = 0.
Instead, for S1 and S2 SWNTs the conditidf = d is always mantained. Thus, MO
SWNTs divide into subtypes M1 and M2, for whieh;, = d anddr = 3d, respec-
tively. Metallic zigzag SWNTSs are always of subtype M1, verdrmchair belong to M2
subtype. Furthermore, M1 SWNTs can be classified as M1+ or dépending upon
mod ((2n +m) /d,3) = 1 or 2 and M2 SWNTSs can be either M2+ or M2- according to
whethermod (3m/dg,3) = 1 or 2. Finally, SWNTs of type S1 (S2) divide into S1+ and
S1- (S2+ and S2-) subtypes for whiafvod (N, 3) = 1 or 2. As stated in the previous
subsection, these further classification did not show exysetal relevance. However,
there exists a significative difference between zigzag SWhifTtypes M1, S1, S2 and
armchair M2 tubes, concerning the critical wavevectorsngiwHs in the DOS, and this
will be discussed in the following. For zigzag nanotubes, ¢htical wavevectors? at
which the vHs at energy? are found always at the center of the 1D Brillouin zone of
the (n,0) SWNT. For metallic zigzag tubd8n, 0) also the Fermi point appears at the
zone center, hende- = 0. Formally, this can be obtained by evaluating the projectio
of 'K onto K5, which gives(I'K - K5) / (K5 - K3) = m/dg. Since for M1, S1 and S2
dr = d, the ratiom/dg is an integer and the Fermi points appear at the center of2he 1
BZ. Moreover, the critical wavevectors for these SWNTSs, ali as the Fermi points, are
doubly degenerate, thati$ = k¥ = 0 andkr = k. = 0, since the electronic disper-
sion relations around the Dirac poiris and K’ are isotropic. For M2 SWNTSs, which
include armchair nanotubes, we halg = 3d, which impliesmod (m,dr) = 1 or 2.
The Fermi wavevectors;: thus appear at two-third of the distance from the centerdo th
edge of the 1D Brillouin zonef K5 /3, which stems from the shortening in real space of
the length of the translational vector T by a factor of 3. ltdws thatkr = +K,/3 and

kfp = —Ky/3 for M2+ SWNTS, whilekr = —K,/3 andkj, = +K,/3 for M2- SWNTSs.

In general, for a giverin, m) nanotube the condition for the critical Fermi wavevectors
kr = 0 or kp = +K5/3 are not mantained. Moreover, note that the degeneracy of the
critical wavevectorsk? and k¥, holds only for achiral single-walled nanotubes due to
the presence of a horizontal mirror plane [118]. For chirAINETs, the anisotropy of
the electronic dispersion relation around the Dirac paifh@snd K’, which is neglected
by the linear approximation showed in Eq. (3.20), lifts tlegeneracy:? = —kY # 0.
Moreover, the critical points for M2 SWNTs are shiftéfl = —k # +K,/3. This
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anisotropy is also callettigonal warping effectand is intrinsic to the complete TB or-
thogonal model [135]. To understand the trigonal warpirfgasf it's sufficient to look
at the equi-energy contours around tgoint, which are actually not circular but show
a triangular distortion. Let’'s consider also the two cugtimes closest to thK point in
a (chiral) metallic nanotube, as shown in Fig. 3.8. Thoughdiitting lines occur at the
same distance froid, however the two points contributing to the lowest vks andk’,,
lie on different equi-energy contour. As a consequencetrigenal warping effect in-
duces a small splitting in the vHs peaks. The splitting igéat for zigzag nanotubes and
equal to zero for armchair nanotubes, where the cutting lare parallel to the vertical
K — M line and the energies &y andk’ are actually equal. The origin of the triangular
distortion beyond the linear approximation of Eq. (3.20) ba understood by expanding
w (k) of Eq. (3.16) up to the second order aroundkhpoint
3 2

w = %gaAk - éaQ Ak z@kmAky = ?aAk + % cos 3pa? Ak?. (3.28)
wherey is the angle betwee(Ak,, Ak,) and the directiol'K, Ak, = Aksing and
Ak, = Ak cos . Thus, the triangular symmetry of the equi-energy contauosind the
K point is explained with the factebos 3¢ in the expansion above.

S1 S2 ‘
M MM MM metal )
XK 7 e
ki 2 W
%

Fig. 3.8: Difference of the position of the touching poiktsandk, of the cutting lines
with the equienergy contour lines in semiconducting typed H and metallic SWNTSs.
In semiconducting type S1 (S2) thh#, occurs outside (inside) the first 2D BZ. In metallic
SWNTs, EM is split due to the trigonal warping effect, since touchimgnps belonging
to cutting lines equidistant lie on different equienergytowrs. Taken from Ref. [121].

3.2.3 Density of electronic states

As introduced in the beginning of this section, the flat regiof the electronic bands
give rise to spikes in the electronic density of states, Wwhie known as van Hove singu-
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larities (vHs). The vHs dominate the density of electronates (DOS) of 1D-systems.
Moreover, in the next section we will see that, if a given ithénd transition is allowed

by dipole selection rules, the profile of the optical absorpspectra of SWNTSs is also
dominated by the joint density of states (JDOS) betweemeal@nd conduction bands,
which is a DOS-related quantity. In general, in order to obthe DOS of a solid as a
function of the energy (F), one needs to scan the whole energy range into small inter-
vals of finite amplitudel £, counting all over the states within each inter\al £ + dE].
Thus the general profile of the DOS as a function of energy idd arystal with volume

V is obtained as
E)=1/VY Y 25(E-E}), (3.29)
o bk

whereb is the usual band index, the wavevector index in the BZ and the sum ower
accounts for the spin degeneracy, that is at most two elecirith opposite spin can be
accomodated in each k-state. Then, the full DOS profile ferSWNT is obtained from

integrating the zone-folding band structure of Eq. (3.28greeach 1D BZ and summing
over the bands, as follows

J2m)Y > Z/F/Tdk: 5 (B — E" (1, k) (3.30)

o b=v,c p=0

Similarly, for the JDOS between valence and conductiorestat

=1/VY N 6 (E— (B — EY)), (3.31)

o kX’

which can be expressed for SWNTs as

/(2m)Y Z /W/Tdk: §(E— (B (). k) — B (u, k). (3.32)

o p,u'=0

For numerical evaluations, the delta functions in Eqq.@B.&nd (3.32) can be more
conveniently expressed in the form of a Lorentzian func{see for example Appendix
G.5.1 in Ref. [94]) with broadening parameter

5(F— ') = lim (1 b ) (3.33)
50 m(E - E)’ + B

In the next section, it will be shown that, according to thiegkations of Refs. [139, 141],

for light polarization parallel to the tube axis opticalristions occur between vHs of

valence and conduction bands havjng- /', whereas for perpendicular polarization the

selection rule ig// = p + 1. If the energy of an incoming photon matches the energy

difference between two vHs, in the conduction and in then@ddand, respectively, the
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optical absorption is largely enhanced due to the high nurmbelectronic states. Thus
it is possible to observe from an isolated SWNT and even pgkip resonant signal
from only a few specific SWNTs in a sample with many differémntmn) chiralities. By
changing the laser energy different SWNTSs chiralities carsélectively probed. For
electronic states near the Dirac poittsand K’, Mintmire and White [65, 137] have
derived very simple scaling relations for the lowest traasienergiesr — 7* at the vHs
with indexi, both for metallic and semiconducting nanotubes:

s 2atgi 2v/3at i

1 \/gdt dt )
Itis clear that the energy gap at the vHs with indesinversely proportional to the SWNT
diameterd; and that the first metallic transition occurs at three tintes énergy of a
semiconducting SWNT. More accurate predictions for thessesitions have been derived
by Reichet al. taking into account the trigonal warping effect into thedpansion of the
energy dispersion around thé point [138]. We conclude this panoramic discussion
about DOS and related quantities by pointing out that thatettare other techniques
(e.g. therecursion method76, 80]) which allow to obtain the density of states even
without the need of having at disposal the complete banctstrel. This can be the case
for instance of non-periodic systems or with open boundamyddions. In literature
about transport properties of carbon nanotubes, thesaitpas take advantage of the
calculation of the local density of states (LDOS) for eadnafrom the Green’s function
for the hamiltonian, which is often found formulated in rephce representation. In this
case, the fundamental relation between LDOS and Greencsifumis [95, 149, 150]

and EY =

(i=1,2,3). (3.34)

grpos (F) = —lIm G (E),] (3.35)

™

from which several interesting quantities for transpodparties, such as transmission,
can be derived.

3.3 Optical properties of graphene and SWNTs

In this section the matrix elements for the electron-phatderaction for graphene and
single-walled carbon nanotubes are derived from first gpeeturbation theory [96]. As
anticipated, these elements together with the joint dgmdistates are used for the cal-
culation of the absorption spectra for the optically allovansitions in the visible range
which occur between the bonding and ther* antibonding molecular orbitals.

3.3.1 Electron-photon interaction and dipole approximaton

The general form for the hamiltonian of a particle with cleaegand massnin an elec-
tromagnetic field with time-dependent vector potenfiglt) and an external potentisl,
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such as the periodic crystal potentialr) is given by [121, 96]

H= — [ChV — AP +V (r). (3.36)
2m

In the above expression the vector potential associatddtigt electomagnetic field acts
as a time-dependent perturbation upon the eigenfunctiétis) of the unperturbed crys-
tal HamiltonianH, = —%AJH/ (r). Neglecting the quadratic termsn(¢)* and using
the gaugeVv - A (¢t) = 0 in the expansion of Eqg. (3.36), the perturbative term aabing
the electron and causing its transition from valence to ootidn band is

— EAA t)-v . (3.37)

The vector potential associated with the quantized ele@gmetic field can be expressed
in second quantization formalism as [122]

h

A? )= ————
(.7, 7) 2kkoVw (K)

(VnA (k) exp (+1kr — w (k) t)PA (3.38)
+v/n* (k) + Llexp (—ikr + w (K) t)PA*) ,

wherek is the dielectric constant of the material, is the vacuum dielectric permit-
tivity, V is the quantization volume for the electromagnetic fieltl(x) andw (k) are
the photon occupation number and the photon frequency feewvegtors, respectively,
andP* is the photon polarization vector. The-(—)” sign in the frequency phase fac-
tors in Eq. (3.38) corresponds to the emission (absorptdma) photon with frequency
w. Within first-order perturbation theory, the general formn the matrix element for an
optical transition from an initial stateatk; to a final staté atk, is obtained as

My (kg w,%) = (W7 (kyp v, t) [ Hpy |97 (ki 1)) (3:39)

pert

(0 (eyor,0)| LA (1) - V] (k1)
m
The spatial part of the above integral is expressed by thaalyector
D/ (ks, +k,k;) = (V7 (kf, 1) |@ exp (fikr) V| (k;, 1)). (3.40)
m

In the dipole approximatiorns is neglected and is set = 0, and the optical dipole
transitions are verticak;, = k; = k. Therefore, the optical dipole transition matrix
elements for the light absorption (A) and spontaneous eomgE) processes can be
expressed as

| h I
MY (kp k) = 1

P D™ (k, k; 3.41
mw \| 24/Kkoc (ky ki), ( )
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wherel is the radiant flux density of the light beam. Fermi's GoldemeRgives the
transition probability between the initial statend the final statefor the electron-photon
interaction timer of the perturbation

, 17 .
W (kg k) = 2| /0 dt M? (kg ki) [* o (3.42)

sin® [(E/ (ky) — B' (ki) £ B*) 5]
(BY () — BV (k) £ B

o |P- D™ (ks k;) |2

For long interaction time — oo thesmcfunctlonSln (Ot‘t) — § (). Therefore Eq. (3.42)
expresses the energy conservatioh(k;) — E' (k) + E* = 0. In the following two
sections we will show the expressions obtained in Refs.,[132, 121, 142, 144, 145]
for the dipole vector of a graphene sheet and SWNTSs, respéctiAlso, we discuss the
k-points in the BZ which are relevant for the optical absmnpbf these systems.

3.3.2 Dipole vector in graphene

As stated in the first part of this chapter, the features ofgpt@electronic spectra of
graphitic systems around the Fermi level are dominated bgtreins withr character.
Accordingly, the optical dipole transitions in the visilslnge occur between thebond-

ing and ther* antibonding molecular orbitals. The dipole selection sybeohibit an
optical transition within &p. orbital at the same carbon atom, because of the odd sym-
metry of the transition dipol®/? in x, yandz, whereas it is allowed betweép. orbitals

on adjacent carbon atoms in graphene and SWNTs. Furthermewsa in the case of
transition between nearest neighbor atomsztbemponent oD/? is zero for all atomic
matrix elements, since trecomponent ofD/? has odd symmetry. Substituting the
wavefunctions of Eq. (3.2) for valence and conduction banwesget

DY (ks ki) = (¥° (kp) [V[¥' (k) = (3.43)
= cp (ky) ¢ (ki) (Pp (ky, 1) [V]@a (ki 1)) + ¢ (Kf) ¢ (ki) (Pa (kp, 1) [V[Pp (ki 1)),
Expressing the Bloch sums for thg_2orbitals centered at A and B sites as in Eq. (3.3)
and splitting the coordinates of all atoms over the A and Badtibes, we obtain

Uu-1 3

D% (k. k,) _ ZZ < (ky) e (k) exp [1(k; — k) - RYy ] x (3.44)

) _>< exp (—iky - r%) (¢ (r— rlA) [V]p (r)) +
+ ¢ (ky) e (k) exp [o (ks — ky) - Ri| exp (—iky - vl5) (0 (r — ) [V]g (r))]

where we have introduced the vectdy (r’;), which connects nearest neighbour atoms
starting from an A (B) atom and defined as

=RiL+rh  RL =R, +r}, (1=1,2,3). (3.45)
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For vertical transitions the selection rdte = ks = k, so the exponential phase factors
exp [+ (k; — ky) - R);] are equal to one and Eq. (3.44) is simply given by

D (k) = (¥° (k) [V " (K)). (3.46)

The atomic dipole vectors for the= A, B sublattices are defined as [141, 121, 122]

d, = /go* (r—r)) Vo (r) dr = —7‘[9. (3.47)

For dipole transitions involving only first nearest neighbmderactiongr!| = a/v/3. An
important consequence of the assumption introduced wit(&E47) is that the contri-
bution to the susceptibility coming from two orbitals pldcen the same atom can be
neglected [101]. This is a reasonable approximation becthespolarisability of a free
atom is much smaller than that of the corresponding mateSiaice Eq. (3.47) involves
the product between localized atomic wavefunctions andetgsative, which decreases
quickly with increasing distance between atoms, it's sigfit considering only nearest
neighbour coupling, as already assumed for the electrospedsion relationmn,. is the
atomic matrix element for nearest neighbour carbon panssadefined as

B
Mot = (i (v = 1) [ 5] (¥))- (3.48)

Usually, the value ofn,, is obtained analytically from Gaussian functions fittedhe t
2p. wavefunctions previously obtained by a LDA calculation]1240]. The estimate
obtained in Ref. [121] givesy,,, = 0.21 [a.u.]_l (1 atomic unit is0.529 A). Other esti-
mates obtained in Refs. [122, 152] give similar values. Hexgt’s not particularly rel-
evant to know the exact value of this parameter, as it can bgidered simply a constant
to normalize the resulting values of the dipole matrix eletag¢l51]. Thus the graphene
dipole vector of Eqg. (3.44) for vertical transitions and mesa neighbour coupling can be
written in extended form as

\/gmopt

a

3 3
D% (k) = — [ccgc”A Z exp (ik - vyl + el Z exp (tk - rg)rlB] (3.49)
1 I

= cjcyda (k) + ¢ cpdp (k)

By simmetry considerations upon the sign of the wavefumsticoefficients, it follows
thatc ey, = — (¢%¢4)". Moreover, the following relation for the atomic dipole e
holds:d4 (k)" = —dp (k). Therefore, Eq. (3.49) can be cast in the following shordene
form:

D (k) = —%Re
a

¢ (k) ¢y (k) Y exp (1k - rlA)rlA] (3.50)
l
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Eqg. (3.50) asserts th@“’ (k) is a real vector, whose direction dependskonThere-
fore, one can always find a polarization vecByrwhich is perpendicular t®“’ and
which prevents some special k points from contributing tdptical absorptiof (k).
Refs.[142, 143] shows that nodes in the optical absorptionral theK andK’ points
arise in graphene as a consequence of the linear electrspiergion relation around the
Fermi and the mutual orthogonality relation between thetlmgplarization vectoP and

the real-valued dipole vectd@ (k). This characteristic is unique to graphene and can
be observed in optical experiments on graphite nanorihbbnsonventional semicon-
ductors the leading term in the energy dispersion relatsvesquadratic ik, and k,,
therefore nodes i’ (k) cannot be observed in these materials. In Fig. 3.9 the plot of
the vectorial field oD’ on the 2D BZ is shown together with the contour plot of the os-
cillator strengthO (k) = /D<* (k) - D<v (k) in units ofm,,. Around the Dirac points,
D runs parallel to the equi-energy contour: aroundkhpoint the rotational direction

is clockwise, aroundK’ is counterclockwise. The oscillator strength has a mininatiih
point and reaches its maximum valueMt points, although it's considerable large also
around theK andK’ points, which are relevant for the electronic propertielsispoint

will be extremely important for the discussion of the depamaze ofD<” onk for single-
walled nanotubes in the following section and its relatiohte critical wavevectors for
the electronic DOS.

-1.0 a 1.0
Ky

Fig. 3.9: Vectorial field of transition dipole vector (left) andmtour plot of os-
cillator strength (right) in graphene. Calculations refuced from Ref. [121] with
Mathematic& 5.2.
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3.3.3 Dipole vector in SWNTs

In order to obtain the optical dipole matrix element for SWA\dne can follow a treat-
ment similar to that delined for graphene, as explained its.R&41, 143]. In this case,
one needs to place the atomic dipole vectdrsk) on the cylindrical surface of the
nanotube sidewall. This task can be accomplished by apgplyirthe nearest-neighbor
interatomic vectors’ of d, the rotation operator® of Eq. (2.20), introduced in Chap-
ter 2.4.1. Actually, the operatér cannot be applied to the nearest-neighbor veatpos
the exponential phase factors of Eq. (3.49), since they alfgpied by the wavevectors
k; andk; of the 2D reciprocal space of the unrolled graphene layegraiing to the zone
folding scheme. Moreover, curvature effects on the atongold matrix element due to
the cylindrical sidewall of the nanotube are neglected aeddctorm,, is the same used
for graphene. Therefore, we have

cv \/_mo c v . U e o
D (k) = aNUpt Z Z (k) Fhadpa + ¢ e Z Z et k) Risdy,p
=1 k= u=1 h=1
(3.59)

whered, 4, andd, i are the rotated atomic dipole vectors for optical transgirom the
A atom in thehth hexagon to its neighboring atoms, and from th& atom in thehth
hexagon to its neighboriryatoms, respectively. The general expressions for theatotat
atomic dipole vectord, s (h=1,...,Nands = A, B) are

dps = Q. (Opp,s) ds, (3.52)
4= > e (k1) 2, (- 0) o (Z) 1,
where fory,, s we have used the expression given in Eq. (2.2l)(s = A, B) are the
atomic dipole vectors in the unrolled graphene layer andoeanritten explicitly as
ds = (dg,0,d,) and dp = (—d:,0,—d}). (3.53)
According to Eq. (3.52), the explicit expressions dry andd,, 5 then become

dpa = (cos (ppa)dy, Osin (@pa)d., d.) (3.54)
th = (— COS (‘PhB)d —Osin ((phB)d d*)

3.3.4 Dipole selection rules in SWNTs

Now we discuss the selection rules for general transitionslving valence and conduc-
tion bands within the zone-folding scheme applied to SWNeEw&en including curvature
effects, these selection rules aren’t affected in any wayst Wwe define the change in
azimuthal index (cutting-line ;. = 1 — 1; and axial wavevectahk, = k.; — k.;. The
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change in total wavevector is this — k; = —AuK; — Ak,K,/U. Thenk; — k; and
R}, as givenin Eqg. (2.19) are substituted into Eq. (3.51). Tmersation over the SWNT
unit cellsu can be factored out in the fordm."_, exp [—1 (AuK, + Ak.K,/U) - uT].
By using the relations between nanotube real and reciptattade vectors as given in
Eq. (2.10), the previous sum ovarbecomesy ., exp [~ (2ru/U) Ak.], which is
equal to zero except fak, = 0, where in such case the sum givd@sThus the first
selection rule for the electronic wavevector along the SV@XIE is obtained aa k., = 0.

In order to obtain the selection rule for the cutting lineerg:;, a more involved proce-
dure is necessary. First we have to perform the summationtbegegraphene unit cells
inside the SWNT unit cell, labelled by the indé&x The phase factors of Eq. (3.51)
can be simplified to the formxp [—:AuK; - (hR — r!/2)]. Substituting the symme-
try vector NR = C;, + MT and using again the relations of Eqg. (2.10), we obtain
exp [—1Ap2wh/N +1ApK; - rl/2], whereK; - rl = !l. By writing the cos (¢5,s) and
sin (¢ns) terms of Eq. (3.54) into sums and differences of complex egptals, the gen-
eral expressions for the y, zcomponents of the nanotube dipole vedaran be obtained
as

1
D, = 5 (Cy1Sp1+C15), (3.55)

1
Dy =07 (CiaSi1 = C18),
D, = CySy,

where the terms);, Cy, C; are defined as in the following:

N
1
Si= ; exp —1 (Ap — 1) 27h/N (3.56)

\/§mo * g * 4 pkoek
Co = Tpt [Cé chd & — CQ Cdeﬁo}

\/gm t * g * 1 Jk %
a - [CJ; ydy&er — CQ Cle:cgili|

&G =expr(Ap—1)py/2

Cir =

We recall that the optical matrix element, as defined in EgL1(8 is proportional to the
scalar product of the light polarization vect®f, (p = A, E') and the dipole vector given
by Eg. (3.55). From this equation one can see that the ligl#rized parallel to the
SWNT axis(P, = z) selects the terny, in the matrix element, while the light polarized
perpendicular to the SWNT axi®, = x or y) selects the terms,; and S_,. The
presence of the terifi, (I = 0,+1) implies the azimuthal optical selection rulg, = I,
which can also be expressed explicitly;as— 1 + (. Thus the dipole selection rules for
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interband optical transitions in SWNTs and linearly paed light are:

Ap =0 for parallel polarization P||z (3.57)
Ap = +1 for perpendicular polarizationP||x or y.

These rules were formerly derived by Ajiki and Ando [139],addditionally discussed

the role of depolarization effects in suppressing almostmetely the perpendicular po-
larized component in real optical absorption experimeuntstd self-consistent screening
effects. Therefore, in order to analize the optical absonpspectra of SWNTs one is

usually interested into the selection rules for light pizkad parallel to the SWNT axis

and optical dipole vector between initial statend final staté is found expressed with

thezcomponent highlighted as

D (ky, ki) = (¥ (k) V.9 (ky)) (3.58)

Actually for our purposes in the following chapter, we wake into account only this
component. However, in spite of the depolarization effeitts predicted selection rules
could be confirmed experimentally by Resonance Raman $geopy studies on iso-
lated SWNTs when changing the light polarization vecto3]15election rules for cir-
cularly polarized were also obtained [141], which are int@or for understanding other
effects such as circular dichroism and birefringence imatlf8WNTs, but they will not
be considered in this thesis.

3.3.5 SWNT optical matrix elements and critical wavevectas

In order to study the profile of the optical dipole matrix eksts over the SWNT Bril-
louin zone and extract information about general trendslifif@rent chiralities and spe-
cial k wavevectors, analytical expression for these materents have also been derived
by several authors, which are actually easier to evaluadepbot than Eqg. (3.51). Here,
for consistency with the previous notation, we consideathaytical expression obtained
in the work of J. Jiang, A. Grune#t al. [144] for thez-component of the optical matrix
element for a single-walled nanotube of gmy, n) chirality. Similar results and conclu-
sions follow also from other authors [145, 148]. In order bdain this expression within
the zone-folding scheme from the expression for graphepelalivector of Eq. (3.49),
one has to consider that:

¢ all A (B) atoms have the sanzeomponent of the atomic dipole vectelg, (d,z),

e each of the three nearest-neighbor atoms has the samegeeatirdinate from the
original atoms,

e the directions of these nearest-neighbor atoms are detednly by the chiral
angled by which the graphene sheet is wrapped into a SWNT (see Hig).3.
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Fig. 3.10: The positions for an A atom at the origin and its thresest neighbor B atoms.
The angles between these bonds and the chiral vé€&iand translatiorT vectors are
also shown. Picture taken from Ref. [144].

As a consequence, the functiaiﬁ% anddﬁz are dependent only on the projection angle
I, (0),

3
d;z (0) = ;exp (zk . r%)rlﬁl —_ % [— exp (%) sin <% — 9) (3.59)

1kya  akya kya  ikya T
~+ exp (—2\/§+T)0059—exp( 2\/§_T>COS<§_9>]’
B Ax
dg,z ((9) = _dg7z ((9) :

Substituting the expressions givenin Eq. (3.59) togetlitrtive eigenvectors of EQ. (3.18)
into EqQ. (3.50), the component of the dipole vector for the unrolled nanotube celi
on the 2D BZ of graphene is given in analytical form by

opt Ok 2 Oy it k k.
D. (k) = % lsin (% — «9) X {cos kya — cos %a cos \/32 a} (3.60)

+v/3 cos (E — «9) sin V3ksa sin @]
6 2 2
One can see that this expression includes the dependente dippble vector on botk
wavevector and chiral angtein addition to the selection rules for parallel polarizatad
the light. One can see immediately from Eqg. (3.60) that= 0 at theI" point and at the
Dirac pointsK andK'. In Fig. 3.11 contour plots ob, (k), over the 2D hexagonal BZ
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Fig. 3.11: Contour plot over the 2D BZ of the value of the dipoleteeparallel to the
SWNT axis for an armchair (left) and zigzag (right) SWNT, is zero at the corners
of the BZ. White and black colours mean (strongly) positind aegative values ab.,
respectively, while an intermediate gray level means thsiga change inD, occurs.
Calculations reproduced from Ref. [144] with Mathemdtica2.

are shown for zigzag and armchair nanotubes, respectively.

By superimposing the cutting lines on these contour ploith the aid of Eq. (2.13), one
obtains the dependence bf. over the 1D nanotube BZ for a given band or cutting line
i, as shown in Fig. 3.12. For armchair SWNTSs, Eg. (3.60) gibes= 0 for k&, = 0

or k, = 0. Moreover, for all interband transitions, = 0 atk, = 0. Also, D, = 0
for all k. values for the two optical transition connecting non-degate A-symmetry
bandg0 — 0) and(5 — 5). Note that in(n, n) SWNTS, the cutting lines (which are also
parallel tok, andK,) with index . = n always cross th& or K’ point. Actually, these
cutting-lines are parallel to tH& — M — K’ edge of the hexagonal 2D BZ. Thus, we can
draw the conclusion that at the Fermi leve] = 0 for armchair nanotubes. For zigzag
metallic nanotubes, the situation is similar, with = 0 at the Fermi level and close
to zero in the proximity, whereas for semiconducting zigpagotubesD, # 0. The
reasons whyD, is vanishing near the Fermi level for metallic nanotubesaaréollows.
We recall that for graphite, around the Dirac poilisand K’ of the 2D BZ, there are
nodes in the optical absorption, which lie one a line cragsire Dirac point and parallel
to the light polarization direction. When the graphene tageolled up into a nanotube,
the nanotube axis is parallel to the cutting lines. Thus,lifgtt polarization parallel
to the nanotube axis, if there is a cutting line crossingKhpoint, as it happens with
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Fig. 3.12: Dependence of the dipole vector componenand energy E on the 1D wave
vector k, for an armchair (5,5) (left) and a zigzag (6, 0) nanotubehfjidgor various
interband optical transitions for parallel polarizatidrttee light. Taken from Ref. [144].

metallic nanotubes, then there is no optical absorptiortierinvolved k-point. For the
purposes of this thesis, however, it is important to nothed in zigzag nanotubes, has
maximum absolute values &t values of the 1D wavevector of eaghth band where
van Hove singularities occur, that is the critical wavewe¢t, k., = 0). Thus, one draws
the conclusion that the strong optical absorption in zig8®#gNTs is due not only to a
singularity in the joint density of states but also to the maxm matrix element value
at the same vHs. The 2D contour plotsiof of Fig. 3.11 show also other interesting
features. For all nanotube geometries except the armchairibis seen that, for vHs
away from theK point,|D,| values at the vHs decrease inside the BZ and increase outside
(Fig. 3.11 right). For armchair nanotubes, Fig. 3.11 (Isftpws thaiD.| has a mirror
simmetry with respect to th&K — M — K' line. Thus,|D,| values near a vHs away
from the K point will increase as we move away from the vHs on both sideth®
singularity. In Fig. 3.13 values dfD,| calculated at the first, second, third vHs (the so
called £y, E»s, E33) are shown for semiconducting nanotubes as a function aftihral
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angled of the corresponding SWNTs. The main result is that we hasendit optical
properties for semiconducting tubes of type S1 (or 1) (Fi§33d) and S2 (or ) (Fig. 3.13
a), as anticipated in Sect.3.2.2. For type S1 semiconduatmotubes, the second and
third vHs points are inside and outside the BZ, respectiv@bnsequently, th®, values
at the second vHs will decrease inside the BZ and the third wHsncrease outside
the BZ. E, transitions will have smalleD. | values thanFs; transitions. For type S2
semiconducting nanotubes the situation is specular. Mereit can be noticed thaD. |
for the Fy; transitions has a weaker chiral index dependence compatbedhat of the
E5, and E33 transitions. Finally, we observe that, in the region of lowkiral angle,
the D, values have larger differences among e, F», and E33 transitions, while the
differences become very small when the chiral angle appexac/6 (armchair tubes).
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Fig. 3.13: | D,| dependence on chiral index for (b) type S1 (or I) and (a) tyRed®
II) semiconducting nanotubes. The nanotube diameter isdrégion ofl nm < d; <
2nm. Circle, square and diamond points denote, respectivaty, for £, Es,, and E33
transitions. The size of the symbols represents the matmidéithe nanotube diameter.
Figure taken from Ref. [144]. Be aware that the conventi@dukroughout this paper for
semiconducting SWNTSs of type S1 and S2iisd (n — m, 3), which is different from
that adopted in this thesis (see Sect. 3.2.1).

In conclusion, it can be stated that in order to calculateenbly and understand the
optical absorption features of a SWNT, one has to considefudsy both the van Hove
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singularities in the joint density of states and the behaviaf the optical absorption
matrix elements at the critical wavevectors which give vHshe optical dipole matrix
element at the critical k point is zero, the transition wi#l forbidden and therefore the
contribution of the vHs to the absorption spectrum will b@messed; otherwise, the
transition will be dipole-allowed and the intensity of thetical absorption peak will be
proportional to the absolute square of the respective alghatrix element.

3.4 Summary

In this section a general review of the zone-folding methppliad to the tight-binding
calculation of the electronic and optical properties ofteawalled nanotubes was given,
according to the most relevant scientific results publisimedanotube literature. Par-
ticular attention was dedicated to the analysis of the &iilh zone for understanding
the relevant k-points which determines the basic featufdeedSWNT optoelectronic
spectra, according to the different SWNT chiralities. Tasult recalled in this analysis
will be of fundamental importance for understanding theicg® made in the following
chapters, which present the original work developed inttiesis.



Chapter 4

Small crystal approach

In the previous chapter the general principles behind gte-inding framework and the
zone-folding technique were introduced for calculating éhectronic and optical prop-
erties of graphene and single-walled carbon nanotubes droeciprocal space point of
view. In this section we re-obtain those properties froma space point of view by
applying the so called small crystal approach to SWNTs. Mershow how several is-
sues of actual interest both in experimental and theotetaraotube science can be easily
treated by this method. Note that the validity of the thaoagtreatment presented in this
chapter is quite general and can be applied to nanotubey ahénalities. The examples
and calculations presented in the present chapter and ichtéqger about DWNTSs are
referred to zigzag nanotubes just for convenience reabohsan be as well extended to
other nanotube geometries. The importance of the choicigphg geometry is essential
for the developments shown in the chapter about many-bddgtef where the choice is
crucial both for the computational feasibility of the prebl with our computer resources.

4.1 Basic facts behind the Small Crystal Approch

Many calculations in solid state physics, either by pertive techniques or variational
approach, involve the averaging over the Brillouin zone p&gdodic function. Such cal-
culations are often very complicated and computationadyanding, as they require in
principle the knowledge of the value of the function at eagioknt in the Brillouin zone.
In practice the functional values are known or determinegt aset of points in the zone
and the values at the other points are found by using vangesdf approximations and
interpolation methods. To obtain sufficient accuracy irséhealculations, it is necessary
in general to know the functional values over a large set aftpoThus the choice of the
sampling grid of the first Brillouin zone of a periodic syst&rextremely important for
the accurate prediction of the electronic and vibratiomapprties of the system. On the
other hand, the computational effort in memory and timeaases as the spacing of the
sampling grid is reduced. However, it has to be pointed attribt all the k-points chosen

65
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for the sampling contribute significatively to the compupedperty. For example, in the
previous chapter, we saw that the van Hove singularitiesiiai® the optical spectra of
SWNTSs and that the main contribution to the vHs spikes isrghsethose k-points which
lie exactly on or close to the extrema of the dispersion csiniere the inverse derivative
and, hence, the DOS diverges. Techniques for samplingregsitelly the BZ have been
developed; they determine special sets of wavevector poirthe BZ, which are most
efficientin calculating the averages of the periodic functions efficientin this case one
means determining the average of a function to an arbitregyes of accuracy with the
least number of sampled wavevector points [94, 99, 100].sThugeneral, one would
like to find out a method to get those few special k-points Whaillow the most accurate
description of the investigated property of the extendexiesyi. As Falicov pointed out,
however, regardless of the technique, sampling in a set adibtpin reciprocal space is
always essentially equivalent to solving the problem inl space in a minicrystal of N
sites with periodic boundary conditions [91]. The real spaethod adopted in this work
takes advantage of this finite sampling - finite cluster dyaBy a finite sampling oN
points in reciprocal space, the problem can be reduced tttidy in real space of a clus-
ter with N sites and periodic boundary conditions. Hence the nomenmelsmall crystal
(SC) approach. Periodic boundary conditions employed énS@ approach guarantee
that the discrete spectrum obtained for the periodic sgitiesn gives the correct band-
structure energies at the selected symmetry points. Therecaboundaries or surfaces
in this formalism, and the correct Bloch states are obtaiileover, by exploiting the
presence of symmetry in the system, the problem is reducsitiLtations in which it can
be solved sometimes even exactly, with symbolic solutid@8]. It should be noticed
that the present formalism is not equivalent to usual cittgfee calculations typical of
guantum-chemical approaches. There, a large moleculeerstanding cluster yields
a discrete electronic spectrum that bears little resencblam solid (see for instance in
the case of zigzag carbon nanotubes Ref. [134]). SC modeks dleeady been suc-
cessfully used to solve a variety of problems, ranging fraghttbinding calculations to
many-body problems, including the Hubbard model appliedeieeral different model
[105, 106] and real systems, including 1D systems (chaayester salts, polyacetilene)
[108, 109, 110, 111, 112, 113, 114], semiconductor compe{ibd7], metallic alloys
and heavy fermion systems [104].

In the next paragraph we show how this real space approadtsarsimpler toy models
in the tight-binding approximation (TBA), namely the (irife) 1D periodic chain and the
2D square lattice. Then the case of a single-walled nanatilbbe examined in detail
and the comparison with the zone-folding method will beldgthed. Finally, an expres-
sion for the optical matrix elements relevant for SWNTs Wwél obtained on the basis of
this approach, which will be used for calculating the optsgeectra of these systems.
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4.2 SC approach applied to simple 1D and 2D models

In Chapter 3 we introduced for SWNTSs the general theory otthealled Tight-Binding
Approximation (TBA). We recall here that the basic assumpin TBA is the use of
atomic-like orbitals as basis for expanding the crystalefanctions. Now, to understand
how to apply the SC approach to carbon nanotubes in TBA appaion, we consider
first the simplest possible case, a linear periodic chairiaha. First we will derive the
the electronic energy band dispersion for this system froeci@rocal-space diagonaliza-
tion of the TB hamiltonian. Then, the generalization to a-thimensional square lattice
will be performed. We follow the usual treatment reportediost theoretical solid-state
textbooks, such as Ref. [94]. Finally, the real-space diagipation of the hamiltonian,
put in real-space form, will be performed for these systentsthe connection between
both approaches will be established.

N x N sites

N-sites infinite periodic linear chain ininite square lattice
B
---@ @ ’ e
/
N / \ -
~ -~ \ 1
Periodic boundary conditions boundary | /

conditions ~ 4

Fig. 4.1: Periodic linear chain (left) and square lattice (r)ght

4.2.1 Reciprocal space diagonalization

In the simplest approximation, we assume that the lineandies only one type of atom
and only one orbital associated with each atom. The firstistépe construction of the
crystal wavefunctions as done for the general case of ChapBecause of the simplicity
of the model, there are no summations over the orbital tydeeas! (i.e. there is only
one type of orbital for each atom indexedlpand over atoms per unit cell indice§.e.
there is only one atom per unit cell). The basis for the ciygévefunctions in this case
will be

Xk (x) = Z e* ¢y (z — na) 4.2)
where the notation has been further simplified since we aaérdewith a 1D example:
the position vector has been set equal to the positiooon the 1D axis, the reciprocal-
space vectok has been set equal kpwhile the lattice vectorR are given byna, with a
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lattice constant andinteger number [94]. The atomic wavefunctiahsx) have eithes-
like or p-like character. With these states the matrix elements earaleculated as well as
the band structure for this model. The TBA with an orthogduzedis and nearest neighbor
interactions implies that the overlap matrix elements ame-zero only for orbitalg, on
the same atom, that is

(¢ () |1 (x —na)) = dno. (4.2)
Similarly, nearest neighbor interactions require thatttmiltonian matrix elements are

non-zero only for orbitals that are on the same or neighlgastoms. If the orbitals are
on the same atom, the hamiltonian matrix element is defined as

(¢1 (z) |[HP |y (x — na)) = 16n0, 4.3)
if they are on neighboring atoms, thatis= +1, we have
(o1 () |HP|py (x — na)) = tidna, (4.4)

wheres andt,; are the on-site hamiltonian matrix element and the hoppiaigirelement,
respectively. The crystal wavefunctions are obtained ftioengeneral expression for the
wavefunctions, already found in Chapter 3, that is

Uy (1) = crxu () - (4.5)

where only the index has survived due to the simplicity of the model. Inserting th
wavefunctions into the secular equations of Eq. (3.9), we firat we have to solve a
1 x 1 matrix, because we have only one atom per unit cell and ontabper atom. With
the above definitions for the matrix elements between atonitals¢,;, we obtain

({1 () |H8p|¢z( ) —er{xm () [xm (x) ek =0 (4.6)
= Z mm x) |H"|¢ (x — na)) = 5kZ ka (¢ () | (x — na))

ikna ikna
= E e 1000 + t0n+1 = €k E e 00
n n

The solution to the last equation is straightforward, giMine electronic energy band for
the monoatomic periodic linear chain
€, = & + 2t; cos ka. 4.7)

The energy eigenvalues for the two-dimensional squaredattith either ones-like or
onep-like orbital per atom and one atom per unit cell are givenmmlar fashion by

e = & + 2t; cos (kya + kya) (4.8)

where now we are dealing with a two-dimensional wavevekterk,x + k,y. We make
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Fig. 4.2: Electronic dispersion relation for a periodic chain &ffect of the sign of the
hopping matrix elements farorbitals (left) ando orbitals (right).

now briefly some considerations on the sign of the hoppingimatements and the
dispersion of the bands. Thseorbitals are spherically symmetric and have everywhere
the same sign, so the overlap between nearest neighbobitglsiis positive. In order to
produce an attractive interaction between these orbitddsh contributes to the cohesive
energy of the solid, the hopping matrix element must be megat

ty = /gb: (x) H? ¢ (x — a)dz < 0. (4.9)

The negative sign in Eq. (4.9) is due to the hamiltonian,esithe product of the wave-
functions is positive. The band structure for the 1D modéhwnes-like orbital per unit
cell is shown in Fig. 4.2 (left). On the other hand, fherbitals have a positive and a
negative lobe, as shown in Fig. 4.2 (right); consequertily,dverlap betweep orbitals
situated at nearest neighbor sites and oriented in the sanse sis required by transla-
tional periodicity is negative, because the positive lobere is closest to the negative
lobe of the next. Therefore, in order to produce an attradtiteraction between these
orbitals, the hopping matrix element must be positive,rgvi

t, = /gzﬁ;; (x) H?¢, (x — a)dx > 0. (4.10)

Thus, the band structure for a 1D model in the first BZ,for/a < k < 7/a, with one
s-like orbital per unit cell will have a maximum &t= +r/a and a minimum at = 0,
while that of thep-like orbital will have the positions of the extrema revetse
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4.2.2 Real space diagonalization

In order to deal with a real space representation of the TBilk@man for the 1D system,
it's more convenient to turn it into second-quantized form

Hyuna = €1 Z c;(,cw + 2t Z (c;aciﬂ,g + c}il’Ucl-’(,) (4.11)
i?J:T7l Z7J:T7l

where the index labels the unit cells or the sites in the linear crystais the index

for spin up and spin down electron$,andc are the fermionic creation and annihilation
operators, respectively, which act on the many-particdéestof this half-filled system
(remember that each site is occupied by one electron on geerd._et's make some
further elaboration on the dispersion relation of the pryesiparagraph. This will be
helpful for establishing the link between the real- and theiprocal-space approach.
Let's assume that the 1D crystal is composed of a finite nuimfeguivalent translational
unit cells, that is, we are dealing with a periodic linearioh@ N atoms. We shall also
assume for convenience thdtis even. The translation operations are given in terms of
the translation vectors

t, = ma with m=12,...,N (4.12)

while the k-vectork can be expressed in terms of the reciprocal-space latticgestor
a* and the translational quantum number

k = ka"/N with k=1,2,...,N (4.13)

Because of the periodicity iN of x, we can use different equivalent choices of intervals
for it. For instance, in addition to the one in the previousiampn, we can choose a
symmetric interval

N N N
el 2, 4.14
K; 2+ ) 2+ ) 72 ( )

or another non-symmetric one

k=0,1,2,...,N — 1. (4.15)

Remembering that - «* = 27 and substituting Eq. (4.13) into Eq. (4.7), the dispersion
relation for the periodic chain df atoms becomes

e = €, + 2t;cos (2mk/N). (4.16)
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Now we come back to Eq. (4.11) and write the hamiltonian, @efin the single-particle
orbital basis, in form of a sparse symmetric hermitdarx N matrix:

el 1 0o ... ... 4
tl £l tl 0

0 ... tl &l tl 0
0 ... 0 tl €l tl
4] 0 ... 0 4] €l

Eq. (4.17) shows that the on-site hamiltonian matrix elesiane located on the main
diagonal, the inter-site hopping matrix elements appeatherupper and lower diago-
nals, while the hopping matrix elements due to periodic lolauy conditions are on the
upper-right and lower-left corners. Solving the secularagpn for this matrix, either by
a symbolic or numeric diagonalization, one obtdwsigenvalues antll corresponding
eigenvectors for the smal-sites 1D periodic crystal, which in turn give information
about the sampled energy values and the related k-vecttosdmeg to the first BZ of
the finite system, respectively. In Fig. 4.3 the sampled sanf the energy dispersion
relation for a four-site periodic chain and the correspogdi-vectors and k-quantum
numbers in the first BZ are shown, superimposed on the digpecsirve obtained by
reciprocal-space exact diagonalization.

k
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Fig. 4.3: k-points of the 1D BZ of a four-site periodic chain saathby SC approach
superimposed on the electronic dispersion relation obthby reciprocal space diago-

nalization.

Actually, it can be shown that the knowledge of the k-quantwmbers and, hence, the
sampled k-vectors, can be achieved systematically thraub discrete Fourier trans-
form of the eigenvectors obtained by diagonalizing e N hamiltonian matrix. This
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technique gives also direct information about the degemeseaof the sampled states.
Fig. 4.4 shows the intensity patterns of the Fourier tramséal eigenvectors of a periodic
chain with N = 4 sites, together with the-quantum numbers assigned to the non-zero
Fourier components (red colour). The states at the cehter () or x = 0) and at the
edge of the Brillouin zonek( = 7/a or k = N/2 = 2) are always non degenerate, the
remaning onesi(= +m/2a or k = £1) inside the BZ are doubly degenerate. Similarly,
the electronic problem in TBA approximation for the permbli-sites 2D square lattice
can be approached with the aid of a two dimensional Fourstorm for assigning to
each eigenstate its own wavevectors,(or k, , ) .

We recall that the experimental optical spectra of dimerizaif-filled organic 1D charge
transfer compounds could be accounted for by a SC model viwtl-aite periodic chain,
which allows to sample points at the center and at the edgeeolD BZ, respectively
[109, 110]. Later, more refined models based on tetramer®etagners were also suc-
cessfully employed for an improved comparison with lineat aon-linear spectroscopic
measurements for-conjugated compounds, such as trans-polyacetylene [12l, In-
terestingly, one can verify that the BZ points sampled witkteamer can be alternatively
obtained by a periodic two-site chain witlkeriodic(PBC) orantiperiodic(APBC) bound-
ary conditions. Byantiperiodicwe mean that the hopping matrix element involving the
opposite ends of the chain has a negative sign or, equilyglent exponential complex
phase equal te. This property can be extended in a general way to chains2wnitites,
which can be investigated by applying (A)PBCs to reducednchgstems witm-sites.
The use of (A)PBCs will be shown also in Sect. 4.5 and in thetraabout correlation
effects investigated with the Hubbard model for 2D smalbtdus (Sect. 6.2.3). This is
extremely useful when computing the optical propertiesxbéreded correlated systems
involving a huge number of states.

4.3 SC approach for one unit cell SWNT clusters

In the previous chapter we showed that according to the bentare the optical spectra
of SWNTs are dominated by the van Hove singularities in th©3DThe vHs can be
related to vertical transitions between valence and cdi@tubands characterized by the
same azimuthal quantum number or cutting lineMoreover the main contribution to
electronic spectra of the DOS is obtained in those regiontteflD BZ (., quantum
number) where the band dispersion is flat (minimum or a mawirimuthe energy disper-
sion), that is, where the density of states diverges. If vok lat the plot of the energy
dispersion of zigzag carbon nanotubes obtained by zonenfpldethod, we can verify
very easily that these states giving vHs in the DOS are fourttieacentre of the 1D
BZ, i.e. k, = 0. Moreover the optical matrix elements calculated at thepeifts for
this kind of tubes are always nonzero, except for the cutimegwith azimuthal quantum
numbery = 0, which crosses the graphehepoint, where the velocity matrix element



4.3. SC APPROACH FOR ONE UNIT CELL SWNT CLUSTERS 73

K quantum numbers

) .
ENE .

| . .
-1 1] 1 2

Fig. 4.4: Periodicity analysis of the eigenvectors of a 4-siteagaechain by Discrete
Fourier Transform. The non-zero Fourier components of thesformed hamiltonian
eigenvectors are coloured in red and assigned to the réspeduantum numbers, from
which the k wavevectors in the 1D BZ can be derived.
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is zero. So in principle, in the tight-binding approximatiave could compute the op-
tical and electronic properties for a zigzag nanotube bintakxclusively into account
the k., = 0 states: we expect that the resulting spectra would be fainylar to those
obtained by fully integrating the bands along the cuttimgé and summing over them,
as usually done within zone-folding method. In Fig. 4.5 typbical spectra for the same
zigzag nanotubéb, 0) calculated by zone folding method are shown for comparison:
spectrum a) is obtained by using Eq. (3.17), spectrum b) dwdliing onlyk, = 0 states
in Eq. (3.17). Apart from the broadening of the peaks and tbhermy of the spectra, the
two profiles are identical, as far as the energy position efghaks is concerned. By
applying the SC approach to this type of system one actualkspp in a very efficient
way the smallest piece of graphene lattice and the apptes&t of periodic boundary
conditions for sampling exactly thos$g, k,) states which dominate the tight-binding op-
toeletronic spectrum of a zigzag nanotube. In principlis, wll allow to address several
issues of interest in nanotube science, such as:

¢ the inclusion of the Coulombian interaction into the norratting model and the
treatment of the electronic correlation effects, such ag@xs;

¢ the handling of the intertube hopping interaction in morenpbcated structures
such as doublewalled carbon nanotubes (DWNTSs) and thelaatruof the elec-
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Fig. 4.5: Optical absorption intensity of (5, 0) tube calculdbyda) zone-folding method
including onlyk, = 0 points and by b) full BZ integration of the dispersion reati

tronic spectra for these systems;

¢ the treatment of doping and of the local breaking of the tetimal periodicity in
disordered SWNTSs.

4.3.1 Choice of the cluster and hamiltonian diagonalizatio

After determining the k-wavevectors related to the nanetgdometry we are interested
in, the further step is to select the appropriate subsetaylggne lattice points atuster
from the infinite ideal graphene sheet. As stated previgpastpnvenient choice to start
with is the zigzag unit cell, shown in Fig. 4.6 for the tul@e0). Here we recall that
a zigzag(n, 0) cluster containdn sites and2n biatomic graphene cells. The graphene
ribbon is rolled up along the circumferential direction gretiodic boundary conditions
are applied along the axial direction to account for thediational periodicity. Thus
the (4n x 4n) real space tight-binding hamiltonian matrix in single etorbital basis
can be obtained in a straightforward manner similar to tiahe periodic 1D chain or
the 2D square lattice. As done in Chapter 3, we choosepomebital per carbon atom
and consider only nearest-neighbor interactions. Theearhtight-binding parameters are
e, = 0 eV for the on-site energy integral anid = —2.9 eV for the nearest neighbor
hopping integral, respectively [89, 90]. By diagonalipatof the real symmetric hamil-
tonian matrix, we see that the obtained setlofeigenvalues correspond exactly to the

zone-folding energies evaluated/fat = 0, for each of the2n bands labelled by:, as
shown in Fig. 4.6 (right).
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Fig. 4.6: Nanotube Brillouin zone for tube (5, 0) (left) and k4ptsi sampled with a one
unit cell cluster (right). The one unit cell cluster (5,0) the graphene lattice is shown
above.

4.3.2 Symmetry analysis of the sampled eigenstates

In order to verify if the sampled eigenstates of the zizgaglkorystal hamiltonian corre-
spond effectively to thé, = 0 states of the zone-folding electronic bandstructure, e-car
ful symmetry analysis of the numerical eigenvectors hags lbeaducted in this work. As
a matter of fact, when working with real space methods, weinaat our disposal an an-
alytical expression similar to that of graphene electraligpersion energy of Eq. (3.17),
which puts in a biunivocal relation a given reciprocal spéce k,)-wavevector and the
corresponding points of the 2D energy dispersion. Thagsrdason why a symmetry
analysis of the eigenstates becomes necessary in a realrsg#tod to allow for a com-
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plete identification and classification of the quantum nurabe, &, ) associated with the
energy eigenstates of the nanotube SC hamiltonian. Two tays been individuated:
the firstis based on the form of the Bloch wavefunction of B¢3) for carbon nanotubes,
the second relies upon the application of the two-dimeradiDiscrete Fourier Transform
(DIFT) to the numerical eigenvectors. In the following batlethods will be described in
detail. By using the tight-binding expression for the namet wavefunction of Eq. (3.3)
for carbon nanotubes, we insert into this the quantum nusipek, = 0), (Quessed by
comparison of the sampled energy eigenvalues with those -at0 of the zone folding
method), and combine the traveling waves in form of sin- avsilike stationary waves.
At this point one can already verify that the obtained Blooefticients have the same
Fourier transform intensity pattern and the same azimyabdicity as the eigenvectors
of the4n x 4n real space hamiltonian. Alternatively, the azimuthal quemnumben.
of the obtained eigenstates can be derived by fitting thelBéoefficients of these clus-
ter eigenvectors as a function of the azimuthal coordigatef the corresponding sites
labelled byi (Fig. 4.7). The functional form used for the fitting is a sioige with am-
plitudeA equal to the inverse square rootdof (i.e. number of sites), azimuthal peripd
and a generic phage (this one is just an adjustable fitting parameter):

[sin (ugp; + A) + cos (uo; + A)] for i=1,2,...,2n (4.18)

1
C; \/E
The resulting periodicity of the fitted stationary wave @ke integer number of wave-
lengths by which a period @fr around the nanotube is covered (up to multiple integers of
2m). Note that the actual number of Bloch coefficients to bedits€n and notdn because
of the higher symmetry implied by, = 0 states, that is, eigenvector coefficients referring
to the same cylindrical coordinate but different axial cboates, have the same value.
Moreover, Fig. 4.7 shows how the azimuthal Fourier compten= 0,1,...,2n — 1
are in relation with th&n-graphene unit cells inside the cluster unit cell. By appdyihe
DIiFT procedure, after appropriately indexing the obtained-zero Fourier coefficients,
the eigenvectors can be straightforwardly assigned tg #mamuthal quantum numbers.
From the above analysis, one can conclude that the eigesstatividuated by the peri-
odic SC approach describe correctly the symmetry ofithe 0 states giving van Hove
singularities in the density of states for a zigzag nanatube

4.4 SC approach using supercells

In this section we will see how it's possible to explore motleen points inside the 1D
BZ with clusters, in addiction to the previously fouiad = 0 states. Finally, in the
second part of this section we will show the complete twoethsional Fourier analysis
developed for a full classification of thg:, k. = 0) quantum numbers associated with
the cluster eigenstates.
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Fig. 4.7: Fitting and Discrete Fourier Transform analysis ofc¢hester eigenvectors

4.4.1 Choice of the cluster

To start with, we consider a super-cluster with the unit delibled along th& vector.
We then construct the double-sized hamiltonian matrix asedwefore, but now transla-
tional periodic boundary conditions are applied for sitésol have a distance equal to
2T. From the diagonalization of th&n x 8n) hamiltonian matrix we expect to sample
8n points in the nanotube Brillouin zone, but now for each of2hdbands, indexed by
1, morek, points are sampled in addition to the zone center. To be npmeftc, these
new points are located at the edges of the 1D BZ,at +x /T (see Fig. 4.8).

If the size of the cluster is doubled again alohgwve obtain al 6n-site cluster with trans-
lational period equal td7" and with a(16n x 16n) matrix to be diagonalized. Therefore,
in addiction to the states @, k. = 0, +x /7)), states akz = +x /27 are sampled. In
general, for a super-cluster of kirfd, 0) made ofN unit cells and translational period
equal toNT, thek, wavevectors sampled in the 1D BZ for each of 2hdbands are given
by a relation similar to the Eq. (4.16) for the periodic ininchain, adapted in this case
to describe the quasi-1D nature of the nanotube system:

B 27K

_ﬁ :‘4}:0,1,2,...,]\]—1 (419)

k = (u, k) with k.



78 CHAPTER 4. SMALL CRYSTAL APPROACH

oo ——e u=4
<0 >—e u=3

K @ u=2

A

E (V)
=
=

Fig. 4.8: Nanotube Brillouin zone for tube (5, 0) and k-points pled with a two unit
cell cluster (left), superimposed on the zone-folding etedc band structure (right).

4.4.2 Symmetry analysis of the eigenstates

At this point, we are able to identify explicitly tHe, . )-wavevectors inside the nanotube
Brillouin zone by performing a discrete Fourier transforfitbee hamiltonianin N-sized
eigenvectors along the azimuthal and axial directions.(#i§). Here we summarize
briefly the procedure used for a super-cluster zigzag witlar@itrary number of unit
cells. For determining the azimuthal quantum numbereach set ofin NV coefficients
forming any eigenvector is partitioned inkb subsets ofin coefficients, as indicated in
the upper panel of Fig. 4.9. Then 1D DIFT is performed for aigzag chain along
the circumferential direction and the band indebs obtained from the non-zero Fourier
components (see example of Fig. 4.9 lower panel). For datergik., each set of the
4nN coefficients which form any eigenvector is partitioned ittosubsets ofN coeffi-
cients (see Fig. 4.9 upper panel). Then 1D discrete Foudnstorm is performed along
the axial direction and the non-zero Fourier componentsifig quantum number, (see
example of Fig. 4.9 b lower panel). Finally the axial wavaweeé. is obtained with the
aid of Eq. (4.19). Thus, by a two-dimensional DiFT of the engctors mapped onto the
real graphene lattice we could obtain a complete classoitaf the BZ-points associated
with the sampled eigenstates of the cluster.
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Fig. 4.9: Application of two-dimensional Discrete Fourier Tséorm analysis on eigen-
vector coefficients (coloured sites) for zigzag superaellsrder to obtain the azimuthal
guantum numbey (left) and the axial quantum numbky (right).

4.5 SC approach with a Bloch phase factor

In principle, one would like to solve the electronic problémna cluster of limited size,
without having to build up and diagonalize very large haomian matrices to sample
any k-point inside the 1D BZ. However, Bloch’s theorem foripdic lattices states that,
under a crystal translation which carries a poitd r + T, the following relation for the
wavefunction of a periodic system holds:

Uy (r+T) = e®Te® Ty (r + T) = e Ty (v) (4.20)

because (r + T) = uy (r) is a function with the period of the crystal lattice. Therefo
exp (ik - T) is the phase factor by which a Bloch function is multipliedemha crystal
lattice translation is performed. This general fact cangygiad to the case of the zigzag
cluster with a single unit cell i.e. withn sites. We consider the hamiltonian matrix
elements related to translational periodic boundary dmrdi and multiply each of them
by a complex exponential phase factor of peribd Also the hamiltonian matrix is
required to be both symmetric and hermitian. Therefore iesé matrix elements the
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following relation holds:
hij = },l;* with h; j =ty exp (i¢) for —m < ¢ <mand |r; —r;+(0,0,7)| < 1.1lacc

We can recover the points = +7 /7 using a phase = =+; this kind of condition is
also calledantiperiodic(APBC), while periodic boundary conditions (PBC), employed
in the two previous sections, imply = 0. For points at., = +7 /27 we need to apply

a phasep = +x/2 . In general, for any other point & = +x/nT the phase to be
applied isp = +x/n. At this stage, the complete electronic dispersion can beptly
obtained by swapping the phasever the2r range and verify that the SC band structure
corresponds exactly to the band structure of the correspgiahe known from the zone-
folding approach, as shown in Fig. 4.10.
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Fig. 4.10: Nanotube band structure for tube (5, 0) obtained by @oach superimposed
on that obtained by zone-folding method. Full corresponddretween the two methods
is obtained.

4.6 SC optical absorption matrix elements and spectra

In Chapter 3 a general literature overview of zone-foldiagdxl numerical and analytical
expressions for the optical absorption matrix elementalfgto the tube axis was pre-
sented. It has been highlighted that a pure JDOS calculétittin constant dipole matrix
elements) isn’'t enough to describe correctly the tightdhig optical spectra of carbon
nanotubes and that the dipole selection rules and the legpegzendence of the value of
the dipole matrix elements must be taken into account idstelere we want to obtain
the same quantity relevant for zigzag nanotubes using thgepties of the clusters found
in the previous paragraph. Moreover we will show how therlrded optical selection
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rules follow straightforwardly from the use of the apprepei cluster and periodic bound-
ary conditions, which allow the sampling of correct k-ssaté/e recall here that, in order
to obtain the optical matrix element of Eq. (3.58) within tB€ approach, we need to
calculate the transition dipole vectDr defined by [122, 141, 121, 142, 144, 145]

D/ = (U;|V.|¥,) (4.21)

which in turns requires the knowledge of the electronic ilavetionsU/, wherej labels
a generic valence or conduction state. In the SC approach these wavefunctions are
the eigenfunctions of the hamiltonian which, accordinguomrevious choice for zigzag
nanotubes, selects all tihe = 0 points, which are those relevant both for the JDOS and
the z-component of the dipole matrix elements of these Bystén the TB approximation
(LCAO) the nanotube wavefunctions are actually linear coration of thep, orbitals
weighted by the real space eigenvector coefficients olddirmen the SC hamiltonian
diagonalization; clearly these can be related to the at@iés in the cluster unit cell,
as shown in the Fourier analysis of the wavefunctions of SetB and 4.4. In what
follows, we will label the real space eigenvector coeffitsenreferring to the coordinates
of the atomic sites of the one unit cell cluster,0), according to the convention of
Sect. 2.4.1. Therefore,= 0, ... U —1 denotes the nanotube unit cells inside the clusters,
h = 0,...N —1 the biatomic graphene unit cells within a nanotube unit egltls = A, B
the atomic sites within each graphene unit cell. Inside thster lattice, each site of type
A (B) is surrounded by three nearest neighbour sites of typ&)Bas usual. In the LCAO
Ansatz the cluster eigenfunctions for valence or conduadtiand states are written as
U-1N-1

=D > ) cheu(r—Ryy), (4.22)

u=0 h=0 s=A,B
where the correct k-point dependence is included thankset&C sampling, unlikely in
Eq. (3.2) and Eq. (3.3), where we needed the Bloch phaser ficexpress the k-space
dependence. We assume as done in Chapter 3 that the intespacal transition is
vertical, that isAk, = 0. Substituting Eq. (4.22) into Eq. (4.21), we get in prineipl

U-1N-1 U-1N-1
=33 N @SS S (6l = RYL)VL6).(r — Ry, (4.23)
u'=0 h'=0s'=A,B u=0 h=0 s=A,B

which can be simplified by first dropping the summations oherindicesu, v, if we
work with a one unit cell cluster. We also assume that onlyestaneighbour interactions
are relevant for these matrix elements; thus we can get tltecs§um over’ and maintain
only the sum oveh by introducing the index = 1,2, 3, which labels the interatomic
vectorsd%s = R, s — Ry,s pointing from one site A (B) in thé-th graphene cell to each
of the three nearest neighbors B (A). Then we get

(U V. [0°) = Z Z Z s Z chs{@:(r — R V2. (r — R} ).

h=0 1=1,3s'=A,B s=A,B
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Table 4.1: Implementation of the calculation of Eq. (4.25) forzag cluster (5,0) with
periodic boundary conditions along thaxis included.

h site numbs s=AB n.n s z-component
1 1 A 2,18,20  —1/2,-1/2,+1
1 2 B 1,3,5 +1/2,—1,+1/2
2 3 A 2,4,20 +1,-1/2,—1/2
2 4 B 3,57 +1/2,—1,+1/2
3 5 A 2,4,6 —1/2,+1,-1/2
3 6 B 57,9 +1/2,—1,+1/2
4 7 A 4,6,8 —1/2,+1,-1/2
4 8 B 7,9,11 +1/2,—1,+1/2
5 9 A 6,8, 10 -1/2,+1,-1/2
5 10 B 9,11,13  +1/2,—1,+1/2
6 11 A 8,10,12  —1/2,+1,—1/2
6 12 B 11,13,15  +1/2,—1,+1/2
7 13 A 10,12,14  —1/2,41,-1/2
7 14 B 13,15,17  +1/2,—1,+1/2
8 15 A 12,14,16  —1/2,+1,—1/2
8 16 B 15,17,19 +1/2,—1,+1/2
9 17 A 14,16,18 —1/2,+1,—1/2
9 18 B 1,17,19 +1/2,4+1/2,-1
10 19 A 16,18,20 —1/2,+1,—1/2
10 20 B 1,3,19 —1,+1/2,+1/2

The matrix element between-like atomic orbitalsy. (r — R}, ) is written as [141, 115,
101, 121, 122]
a

(p=(r — RZS/>‘VZ‘¢Z(T - RZ,J) = mom%?"h,s (4.24)

wherem,,, is the atomic dipole transition matrix element, parallelthe interatomic
vectorrﬁbvs = R+ — Ry, s and evaluated at the first nearest-neighbor distagge=
0.142 nm. For simplicity, it can be considered a constant to nornedle resulting values
of the dipole matrix elements [121, 122, 151, 152]. Deveigghe summation over
and s’ in terms of the contribution to the dipole matrix elementfré-sites to B-sites
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and viceversa, we obtain

D = {¢.(r = Ri\,)| V.[o.(r — R}..)) = (4.25)
a N—-1 N—-1
Mo 721D D cnona (ha), + 2 D chachs (rhop).
h=0 1=1,3 h=0 [=1,3

where the projection along the tube axisas been considered. Again, periodic boundary
conditions along the nanotube axis must be included whefonpeing the summation

in Eq. (4.25), as indicated in Table 4.6, which shows an exanmpplementation. The
selection rules for vertical transitions involving a given k. = 0) valence band state and
another(y/, k, = 0) conduction band state are automatically obtained throwpl4=25),

in full accord with the zone-folding selection rules [1222] 141, 142] :

Sy =0=>D.=0 (4.26)
5/1,#/ = 1/\(”,,&’750) :>DZ7£O

The exception case in the second selection rule involvegaktransitions between non-
degenerate states lying exactly at graphErmoint, (i. e. (x = 0,k, = 0) in the frame

of nanotube BZ), where one can verify that the dipole matiexnent is exactly zero, as
seen in Chapter 3. We will see in the following chapters, thatsymmetry-breaking
effect due to the intertube hopping interactions in dowédled nanotubes (DWNTS)
or the presence of defects will affect these rules, so thet till no longer hold, as a
direct consequence of the mixing of the states related tonther and outer shells in
DWNTs and the lifting of the band degeneracies both in DWN& defected SWNTSs.
The following symmetry relation between the two terms cbuting to Eq. (4.25) holds:

N-1 N-1
Z Z ¢l BCh,A (TL’A)Z = Z Z Cl ACh,B (7"273)2. (4.27)

h=0 1=1,3 h=0 1=1,3

This follows from the fact that 1) conduction band statesaataally antisymmetric linear
combinations of atomic orbitals, unlikely valence bandestavhich are fully symmetric,
and that 2) the following relation between nearest neigivectors joining A sites to B
sites and viceversa holds:

(rﬁm)z = — (rﬁhB)Z. (4.28)

Before comparing the numerical values for the dipole matiements obtained from
Eq. (4.25) with those from zone-folding method, it has to bimfed out that an equivalent
result could be obtained using the axial component of thecisi operator written in
second-quantization formalism [92, 102, 110], insteadef(E.25), which still involves
the position of the atomic orbitals. In this case, the exgioesfor thez-component of the
dipole matrix element is:

(T V|07 = (T, |0") (4.29)
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where the velocity operator is written as:

v, = —Z% [CZUCJ‘,U - c;pci,g . (4.30)
(i.4),0
This form will also be used in the last chapter about the datmn of the optical spec-
tra of the periodic cluster with the inclusion of the Colurbicorrelation effects in a
Hubbard-like fashion. The quantum-mechanical derivatbrhe form of Eq. (4.30)
from the commutatofH, r|_ of the hamiltonian and the position operator is shown in
Appendix. Within this formalism, this operator is no long#Fpendent on the choice
of the origin of the system reference frame and, therefdsermore appropriate for the
description of the optical properties of a periodic clu$i€0]. For this reason the nu-
merical values of the dipole matrix element involving ertttee position as in Eq. (4.25)
or the velocity operator as in Eq. (4.30) cannot be expecidée the same. However, the
optical selection rules reported previously, can still befied for both approaches. For
the case ok, = 0 states of a zigzag cluster, one can recover the same nuinezicas
of the zcomponent of the dipole matrix elements from both appreachs explained in
the following. The eigenfunctions we are dealing withi/atk. = 0) have pure rotational
symmetry. In other words, the eigenvector coefficients glttre tube axis are all con-
stant, thus their 1D Fourier transform gives zero. Theesfqg. (4.25) has to be putin a
condition independent of the choice of origin of the systefenence frame, taking into
account the rotational symmetry of the zigzag system. Thensation of Eq. (4.25) must
be evaluated for every rotationally equivalent assignnoétite conduction band eigen-
vector coefficients to the cluster sites, while keeping fittexlassignment of the valence
band coefficients to the underlying lattice. Practicalby,d zigzag cluster of one unit cell,
this is simply obtained by a ciclic permutation within every/ N radians of the sequence
of coefficients which form each eigenvector. For every cipérmutation, Eq. (4.25) is
evaluated and a value for the dipole matrix element is obthiwhich always involves a
vertical transition between, k., = 0 states. Finally, th&l collected values of the dipole
matrix element are fitted by a sinusoidal function of the a#hmal shift of2x /N

d; = Alsin (ug; + A) + cos (up; + A)] with  i=1,2,...,N. (4.31)

where the amplitud@ gives the value of the dipole matrix element we wished to ob-
tain (the same as that obtained by the velocity operatoi}, the azimuthal period of
the stationary wave and thus the band quantum numbes, as always an adjustable
fitting parameter. In Table 4.6 we compare the absolute sabfithe dipole matrix ele-
ments calculated by Eqg. (4.25) with the above describedeoiae with those obtained
by the zone-folding scheme of Refs. [142, 144, 141, 145]. vidiees show a very good
correspondence beyond the numerical accuracy due to the diagonalization and the
fitting procedure routine employed in the SC approach. Mageall the symmetry prop-
erties, such as degeneracies and values at special k-fgriayphrend’ point), are verified.
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Table 4.2: Comparison of the absolute value of the z-componentpfiel matrix ele-
ments for electron-photon interaction evaluated.at 0 for (5, 0) tube by SC approach
with Eq. (4.25) and ZF method.

(u, k. =0) |D. /M, [A] (SC) |D. /M, [A] (ZF)
uw=0 0. 0.
uw=19 0.191765 0.190983
w=2,8 0.693811 0.690983
n=>5 2.00818 2.0
w=4,6 1.81642 1.80902
w=3,7 1.31437 1.30902

Moreover, we verified that the values obtained by zone-fgl@nd those obtained by SC
approach with the velocity operator are exactly the samegnhown). The calculation
of the optical absorption spectrum can be obtained by themwnstates (SOS) method
[154]. All possible transitions and optical matrix elemebetween valence and con-
duction states are included in the calculation. Using a himian function the optical
absorption intensity for light polarizatidd parallel to the tube axis can be expressed as

2N 2N
I(E) Z > KPP VL) 26 (B - [ES - EY) (4.32)
2N Z2_N " F/’H‘

~ YD TP VL) ;
i=1 j=1 (E—[Bf - EY]) +17
Now the indiced andj identify a generic valence band state and conduction baatd st
respectively within the set of th2N available eigenstates obtained by diagonalizing the
(2N x 2N) hamiltonian. In Fig. 4.11 we compare the optical absorpsipectrum of the
periodic zigzag cluster (5, 0) based on a SC calculatiorh(@ither dipole matrix element
from position operator or velocity operator) to that ob&liwith the ZF approach. The
results show that the same fundamental features (tramstiergies and relative intensi-
ties of the transitions) are obtained. One can conclude&@approach properly samples
the first Brillouin zone of SWNT and that, therefore, the tighoice of the cluster allows
to obtain the full results of the zone folding approach usingal space approach.

4.7 Summary

In this chapter the basics of small crystal approach have pessented, which consists
in a finite sampling of the Brillouin zone of a periodic systeiith a cluster of finite size
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Fig. 4.11: Optical absorption intensity of (5, 0) tube calculdty a) SC approach includ-
ing only k£, = 0 points and by b) full BZ integration of ZF dispersion relatio

and suitable periodic boundary conditions. First the methas been applied torasite
periodic chain, then to a single-walled nanotube. The spheese of zigzag clusters has
been considered for which it's simpler to sample the criitkepoints which give the van
Hove singularities in the density of states and nonzerocaptnatrix elements. By a
minimal calculation based on few k-points, we have showhdh#he important features
of the optical spectra, known by reciprocal space basedadetbch as zone folding,
could be completely recovered by this method.



Chapter 5

Double-wall carbon nanotubes

In this section the small-crystal approach is applied tobdiuvalled nanotubes for the
tight-binding calculation of their electronic dispersigeiation and optical spectra. We
will also show that the SC provides the flexibility of changithe orientation of the

constituent walls, unlikely other reciprocal space-basethods, which cannot include in
a general way the local symmetry breaking due to a non-nbfgigtertube interaction.

As a consequence, the dependence of the optical propentithe @eometric correlation
between the walls can be investigated in a simpler way. Tloelkegions show how the

resulting optical spectra are visibly affected by theseaf with the appearing of new
transitions and suggest a revision of the Kataura plots taetihe interpretation of the

Raman spectra of DWNTSs.

5.1 Introductory remarks

Double-wall carbon nanotubes (DWNTSs) can be consideregithplest form of multi-
wall nanotubes (MWNTS), as they consist of two coaxial geagghcylinders with very
weak van der Waals type interaction between the two wallsywth strong covalent
bonds between atoms within each constituent tube. Accgtdithe commonly adopted
geometrical convention, the geometrical structure of a DVi\specified by the notation
(n,m) @ (n',m'), which means that the constituent inner tube with chiraicesi(r, m)

is inserted into the outer wall with indicés’, m’). Recently, much theoretical and exper-
imental interest has been generated for DWNTS, since theydymay an essential role
in future nanoelectronic device applications and biolabapplications [44, 157, 160].
From a physicist’s standpoint, they can be considered rmtde@nalogues to coaxial
cables. Actually, a metallic@semiconducting (M@S) or a isenducting@metallic
(S@M) DWNT can be, respectively, a molecular conductiveevaovered by an insu-
lator or a molecular capacitor in a device [155]. It is bedidthat these structures would
exhibit enhanced field emission, mechanical and thermadgrties when compared to
SWNTSs [156]. Some examples of DWNT-based nanometer-steatad@mechanical mo-

87
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tors (NEMS) have recently been proposed in two theoretiapeps, namely a molecular
motor driven by temperature variation [158] and carbon hap®electron windmills
which exploit the torque generated by applying a poteniif&tnce to the outer tube,
causing the inner tube to rotate if the generated torqueasgimto overcome the fric-
tional forces existing between the walls of the DWNT [159]ofa a chemist’s point
of view, the structure of a DWNT can be considered that of a Svpibtected by the
external SWNT on which functionalization can be operatetheit affecting the prop-
erties of the internal tube [160]. This opens the route toeh@veparation techniques
which allow the solubilization of the outer SWNT system iffelient environments (e.g.
cell membranes) without affecting the properties of theemshell. Therefore, in re-
cent years the production and characterization of DWNT<® ldrawn the attention of
numerous scientists. As explained in the introductory tdrapf this thesis, DWNTs
can be produced by several techniques: the arc dischargwd)ehe catalytic chemical
vapour deposition method and the fusion of fullerenes eseclon peapods by TEM irra-
diation or temperature. The last method [37] provides a DWMId greater than 95%
and high-quality samples. The two constituent tubes of YWND' can be characterized
by Raman spectroscopy [161, 162] and high-resolution tngsson electron microscopy
(HRTEM) [163], since the atomic positionsin a DWNT cannotieasured by STM/STS
directly, as only the outermost nanotube contributes tatheeling conductance. As
usual, in Raman measurements the indices of the two coayiatd of a DWNT can
be assigned based on the respective radial breathing megigefncies [165, 166] of the
non-interacting constituent SWNTSs. It was shown experi@gnby optical absorption
and PL measurements that the interaction between the w@mrdtiayers influences the
optical transitions of the inner and outer tubules [164].weswill see in the following,
understanding the role and magnitude of the interlayeracten and its relation with
the geometry of the constituent walls is one of the most egleissues concerning in
particular the modeling of DWNT electronic properties.

5.2 Structure and symmetry properties

DWNTs can be commensurate (C) or incommensurate (1) if the od the translational
periods of the constituent SWNTSs is a rational or irratiomamber, respectively. Ac-
cording to this definition, DWNTSs with both armchair or zigzaanotubes are always
commensurate, while a DWNT with a zigzag tube inserted imt@m@mchair one is in-
commensuraté?; /T4 = /3). Experimentally, it has been found, that DWCNTSs pro-
duced by arc discharge show no correlation in the chiraliethe walls [163], so both
commensurate and incommensurate combinations are equaas$yble. In DWNTS the
experimental interlayer spacing has been found ranginmg BatA (the interlayer spac-
ing of graphite) to 4.4 [167]. A complete treatment of the symmetries in DWNTs and
MWNTs was presented by Damnjanowdt al. [124], based on the line group classifi-
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cation scheme already applied to SWNTs (see Sect. 2.5). Wowe specific study of
the symmetry in commensurate DWNTs (CDWNT) can be found iotlzer paper by
the same authors [177], which also considered the geordefrgndent symmetry break-
ing effect due to the interaction between the walls. Here wse $ummarize the main
results of these papers, which will be useful for understapthe choices operated in
the SC calculations presented in the following. In this witr&y consider a sample of
1280 carbon SWNTs with diameter rang8 A < d, < 50 A and right-handed chiral-
ity. For each tube taken as innermost wall, all possibleroutiees are searched such
that the intertube spacm@lOUT df™) /2 differs from the graphite interlayer spacing
A=3444 by at mosi).2 A. It turns out that among the selected 1280 tubes which give
rise to 42236 possible pairs, there are only 318 pairs withroensurate walls, which
can give CDWNTSs (less than 1%). In general, the symmetrymgoda double-wall (and
even multi-wall) nanotube (W®&’) can be found as intersection of the symmetry groups
of the constituent SWNTsLyw = Ly N Ly.. Therefore, any geometrical transfor-
mation common to both walls leaves the DWNT system invaridhe specific form of

a DWNT group depends on the relative position of the wallgnewhen the constituent
tubes are coaxial, there are special high symmetry positidetermined by the relative
cylindrical coordinate$®, ), which specify the azimuthal and translational shift of the
outer wall with respect to the inner shell. However, thisecefers only to some special
symmetry elements, callgoarities which are determined by the coincidence of hori-
zontal axesy,U’) and (in achiral pairs) mirror, glide or roto-reflection pés. Instead,
the roto-translational symmetries symmetries are the $amadl coaxial positions. For
the specific formulas defining the roto-translational grot@DWNTSs the reader is ad-
vised to consult Ref. [177], since for the purposes of thesihit’s actually more relevant
considering the high-symmetry positio(, ) at which these parities occur. In their
works, Damnjanovict al. pointed out that, according to the topological analysis of
the symmetry breaking developed by Abud and Sartori [1T@],nhost stable configura-
tions (corresponding to the minima of the invariant intenait pairwise Lennard-Jones
potential) occur at the positions with maximal symmetry.sTiopological argument is
extremely powerful, since it allows to determine the stagalsition of the walls by a sym-
metry analysis without the need to specify the pairwiseration potential between the
walls and finding its minima. In order to find these speciahlsgmmetry positions, the
so calledsymmetry breaking groupas to be found out which actually contains the sym-
metry of the interaction potential. The breaking group déss the maximal symmetry
of the interaction potential. This can be understood by élewing considerations. The
interaction potential between the walls is

V(R,R) = =D > v (rpus T (5.1)

tsu t',s" u’
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Table 5.1: Stable configurations for incommensurate and commatesDWNTSs found
by symmetry analysis by Damnjanowtal. A is the translational period of the DWNT.
[178]

type of DWNT d, Zo
IDWNT Py =0 Z arbitrary
CDWNT with chiral walls =0 Zo =10
(9,0)@ (18,0) and(5,5) @ (10, 10) by = 71/AN Zy=A/4
(n#9,00@Q(n+9,0),(n #5,n)Q(n+5n+5) dy =0 Zy= A4

where the atomic positions in the inner wall coordinate eystfor the inner tube are
expressed by Eqg. (2.32) and for the outer tube by

w wt s
Tisu = | P <_1) q)O + 2 (W + a

) + @, (=1)"Zy + %TJFZ : (5.2)
according to Damnjanovic’s convention. This potentiahisariant under the transforma-
tions generated by all the symmetry of both wallst” (R, R’) = V (II'R, [I'R’) for each

[ € Ly andl’ € Ly~. Only the transformation from the intersectibiyy, N Ly leave
both walls invariant, while all other transformations cbarthe relative position of the
walls, despite the invariance of the potential. Thereftire,symmetry of the potential is
the groupL, generated by bothy, andLyy.. Since the symmetry groups of the walls are
much larger than the symmetry group of the CDWNT, the brealioup is very large,
also for its roto-translational part. In other words, whhe roto-translational symmetry
of the DWNT is greatly reduced in comparison to those of thiksathe breaking group is
much greater. In fact, the following relation holds for thrd@rs of the symmetry groups:

Ly | L5 | = [Ty || L (5.3)

whereL{¥, . refers to the roto-translational part (RT) of the DWNT syntrpeyroup,
I_,gT to the breaking group anﬂfv?VT(W,) to the §ymmetry group of each wall. This rela-
tion shows that the greater symmetry remaining in the DWIN&,less the order of the
breaking group. This means that the periods of the intenagiotential alon@ and®,

decrease with the translationabnd rotationalzj (WwhereN = GCD ('™, n"T)) pe-

riods of the DWNT. An incommensurate tube, which is actuatlyaperiodic structure,
represents the limiting case in which the potential®, ) is Z independent and thus
remains unaffected by translations parallel tozlais (superslippery along the DWNT
axis). In Table 5.1 we report the stable configurations folendhe studied DWNTSs by
the symmetry analysis of Damnjanowtal.[177, 178]. As already stated above, these
positions are all special and the resulting symmetry granpsnlarged by a factor of 2,
since in these cases (especially for achiral walls) one ean the coincidence of tHg
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axes which implies the coincidence of vertical or horizontaror planes with other mir-
ror or glide planes. These predictions, although based o&gummetry arguments and
not on total energy calculations, can be helpful when canrsid total electronic energy
profiles before computing optical spectra for some selectetlial configurations of the
constituent walls.

5.3 Small crystal approach for the electronic structure of
DWNTs

In Chapt. 3 we saw how the TB zone-folding method can providergple but power-
ful insight into the electronic structure of ideal singlellxcarbon nanotubes. By taking
into account ther orbitals in the hamiltonian, this method can also be extdriddan-
clude curvature effects, which play a significant role in ¢hectronic structure of small
diameter nanotubesi( < 0.7A ), since Eqg. (3.21) overestimates the respective band
gaps [83, 84]. A reciprocal space approach like this, howdwels difficulties for prob-
lems in which a local symmetry is broken like in the case ofcfionalization, doping
and other disorder effects, such as orientation-dependtmactions among nanotubes
and with the surrounding environment. This is the case withes attempts present in
literature to solve the TB hamiltonian in reciprocal spagceDWNTs, which could be
obtained however only for a very restricted number of nabetgeometries with higher
symmetry [155, 169, 168]. Formulating the single-partalectronic hamiltonian in real
space representation can be an appropriate way to allovidéotréatment of symmetry
breaking effects due to the geometry-dependent interwtdlaction. In some cases, a
real space approach was tried [170], which had also beemopisdy adopted for single-
wall nanotubes as well [149], but poor attention was paidh® ibfinite translational
periodicity of the nanotube: instead, a sufficiently longtjpm of the graphene cylinder
is selected, such that boundary effects could be disredawitbin reasonable approxi-
mations. This is usually done for investigating the tramspooperties of finite-length
single and double-wall nanotubes [175]. Moreover, a dedagnalysis of variations on
the electronic structure and optical absorption featutestd any change in the relative
positions of the constituent walls is lacking in DWNT litexee, except for some limited
configurations presented in two papers by Landtial. [169] and Hoet al. [172, 174].
However, in these papers, the choice of the selected coafigns was not supported by
total electronic energy calculations or topological syntmpéased arguments, like those
formulated by Damnjanovi€. In this section we show how tBeaproach can be applied
to double-wall nanotube with the possibility of addressatighe previously mentioned
issues, with the flexibility of changing the mutual orierdas of the constituent walls in
any(®, Z) position.
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5.3.1 Electronic band structure and stable configurations

We consider CDWNTSs obtained with zig-zag nanotubes for twhie cluster and the
boundary conditions to study the relevant electronic state simpler, as recalled in
Chapt. 4, but the calculations can be done for all other typeootubes as well. Fur-
thermore, among all possible ways to combine SWNTs into D\/NWie consider those
with an interlayer distance betweer34 nm (graphite interlayer spacing) add360 nm,
as it was experimentally found recently [163]. For zigzag BV¢, we find in this in-
terval all combinations of typén,0)@(»n’, 0) such that. — »’ = 9 which have an in-
terlayer of0.352 nm, for CC' bond-length o0f0.142nm. We consider in our examples
a semiconductor-semiconductor (S-S) DWNT, such as (5, D¥@Q) and a metallic-
metallic (M-M) one, such as (9, 0)@(18, 0). The TB hamilteniar a DWNT can be
written as a sum of the TB hamiltonians corresponding totiiner and outer nanotubes
plus a perturbative termdl;,,,.,. for the electronic hopping from a siteon the inner tube
to another siten on the outer tube.

HDWNT - Hin + Hout + Hinter with (54)
2Nt 2Nt
Hin(out) = Z Z Ex Z cZUci,o +ix Z Z (cj}ocj,g + cwc;’g) (5.5)
t=IN,OUT o=1,| =1 i=1 jen.n

The intertube interaction is considered to decay expoakintvith the distance/, ,,, be-
tween the sites according to:

out,in

HinrER = Br Z 08 Oy m exp [(dym — A) /4] (clTJcm,g + CZJCIM,) (5.6)

(Iym),o

In the above expression fdid;nrrr, A IS the interlayer spacing (semidifference be-
tween diameters)j, is the decay constant for orbitals, 6, ,,, is the angle between
orbitals pointing perpendicularly to the tubes’ surfagds the intertube hopping ampli-
tude integral. According to literature, values féy can range front, /8 to 1.0eV and

0 = 0.045nm [171, 180, 181]. We recall that the intertube hopping intgcen depends
on the mutual orientation of the constituent coaxial SWNiamnely on the azimuthal
angleA® and the translatioth Z parallel to the tube axis. Therefore, we can write:

(917m = Hl,m (A(I)) dl,m = dl,m (A(I), AZ) (57)

When setting up the periodic SC hamiltonian, one has to kefdahat no intertube ma-
trix elements are dropped by restricting the length cutbfihterwall coupling only to
first or second nearest neighbouring atoms. In this casempesed no restrictions on
the interatomic distance between atoms on different tuhstgad a cutoff limit was set
on the energy value of intertube matrix elements to be staregemory for the diagonal-
ization: Hrnrer (I, m) > 1073 eV. No significative difference was found between the
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eigenvalues computed by storing the full intertube offgdiaal block matrix and the one
with the cutoff.

k, kz
—g'-?'lflTl —=S2T| 0 =/2[T] ?'fng! —r/IT| —n/2|T| 0 x/2|IT| x/|T|
i ' i of ‘ ‘ 79
or 1° 6/ 6
- il IN - S 3 I | 3
:Er ] 0 :Er 2 0 0
w 7 17 " w -3 -3
6F {-6
-67 -6
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-9 ‘ -9
- —nf? 1} w2 x - —7/2 0 n/2 T

Fig. 5.1 Electronic band structure of (5, 0)@(14, 0) (left) aBdR)@(10, 10) (right)
DWNT at default configuratiofyp = 0, AZ = 0) with non interacting costituent SWNTs
(left panel) and with intertube hopping (right pangl, = 1.0eV). Color legend for
(5,00@(14,0): black (inner SWNT), red (outer SWNT), greBWNT with interaction
on). Color legend for (5,5)@(10,10): green (outer SWNTheiNnSWNT not shown for
clarity (coincidence with some bands of outer SWNT), orafig@/NT with interaction
on)

In Fig. 5.1 (left) the electronic dispersion relation obtd from diagonalization of the
hamiltonian block matrix for DWNT (5,0)@(14,0) is shown fibre default configura-
tion (AP =0,AZ =0) using(, = 1.0eV. The main effect ofH;yrgr is the lifting
of the doubly degenerate bands and the breaking of the symwievalence and con-
duction bands with respect to the Fermi level. This is moideaw far from Fermi level
and stronger for valence bands, rather than conductionsbartus effect is also called
electron-hole asymmetry. A tiny gap of the order of the me¥l# opened in metal-
lic (9,0)@(18,0) DWNT, due to the degeneracy splitting o thands, as predicted in
Ref. [68], but it has not been reported here since it is diffit notice in the picture.
However it can be more easily seen in the DOS profile (Fig., 5vBich will be discussed
in the following. Early tight-binding investigations of gomensurate DWNTSs overlooked
this asymmetry due to an over-simplified modeling of therintdl coupling [155], while
for more recent models and parametrizations which adogotine of Eq. (5.6) this fea-
ture is already included [171, 175]. Unlikely in armchair DWVs (see Fig. 5.1 right), the
band structure of the zigzag systems remains almost umpedunear the Fermi energy.
The explanation can be found by considering that the dis@egjular momentum asso-
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ciated with these states depends on the tube circumferemlctha rotational symmetry
of each of the constituent shells. Thus, in principle, bamettsted to different walls have
different rotational symmetry and in general the combin®dNDI' system does not share
the rotational symmetry of the individual shells (see fastamce the case in which the
orders of the principal rotational axes of the walls have mmmon divisor except unity).
As long as the interwall coupling is sufficiently weak and st one can reasonably
expect that the original symmetry will be preserved and ytwilization between states
belonging to inner and outer wall will be minimal. We can noansider how the to-
tal 7 electronic energy varies as a function of the orientatig@abmeters, namely the
azimuthal shiftA® and the translational shithZ. As noted in the previous section,
Damnjanovicet al. [177] found, by symmetry arguments, a minimum in total egpexty
AdP = /36 andAZ = A/4 for (9,0)@Q(18,0), and atA® = 0 andAZ = A/4 for
(5,0)@Q(14,0) (in zigzag nanotubed = |7'| = 0.426 nm).

—0.995 T T T T T T T —1.0080 — T
1.000 a) b)
o~ =1, —1.0085
@ & /36
g —1.005] d {”
= @ —1.0090 q
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= —-1.010¢ H
-1.0095
-1.0150 . . . .
0 E 7 3?“ 27{ -1.0100 ") = a‘z J‘R 2"[
Azimuthal shift AJ® i Azimuthal shift AZ ’
—0.995 — . T T —0.995 —
c) d)
=1.000 -
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X X
—-1.005} 1 —-1.005} .
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-1.0150 . . . —-1.0150 . . :
—A[2 —Af4 0 Afd Af2 —Af2 —Af4 0 Afd Af2
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Fig. 5.2: (Color online) Dependence of total electronic energy ak, = 0 on a,

b) azimuthalA® and c, d) translational\Z for DWNTs (5,0) @ (14,0) (left) and
(9,0) @ (18,0) (right) with 5, = 1.0eV (blue color). Energy data are normalized to ab-
solute values of the total electronic energy of the respective non-interacting gtresit
SWNTSs (purple color).

Figg. 5.2 (a-d) shows some of our results summing to conneryéher electronic en-
ergy eigenvalues of the valence states obtained by chatiggnghase of the boundary



5.3. SMALL CRYSTAL APPROACH FOR THE ELECTRONIC STRUCTURE @WWNT05

condition. According to Damnjanoviét al. one observes in Figg. 5.2 ¢) and d) that the
dependence oA Z has two minima around:A/4 usingA® = 0 for (5,0)@(14,0) and
AP = 7/36 for (9,0)@(18,0). On the other hand, the dependencesh atAZ = A/4
(Figg. 5.2 a) and b), shows a periodic oscillatory behaviaith an energy minimum
located atA® = 7/36, only for (9,0)@(18,0). Similar plots for the dependence of the
total 7 electronic energy oA ®, AZ) have been obtained by considering onlythe-= 0
states in the 1D BZ, which therefore represent the leadingitwition to the total energy
profile. In the following calculations of DOS and optical aljstion spectra we will use
AZ = A/4for both DWNTs and\® = 0 andr /36 for (5,0)@(14,0) and(9,0)@(18,0),
respectively. Interestingly, in this case the electradiyaaost stable configurations are
found to coincide with the most stable configurations fronmystallographic point of
view, reported in Table 5.1.

5.3.2 Optical properties

By inspection of the electronic band structure of Fig. 5rie oan see that the lowest en-
ergy VHs for zigzag DWNTSs are still determined by the= 0 states in the 1D BZ. This
fact allows us to compute the optical spectra with minimé&reby including only this
k-points into the JDOS and the optical matrix elements withgum over states method,
as donein Sect. 4.6. Instead, in armchair DWNTSs, the extdmalence and conduction
band giving vHs do not occur at the same k-point, becauseeo$titonger distorsion at
Fermi level introduced by the interlayer coupling. This Wwbrequire to include more
k-points from the 1D BZ, in particular a more refined samplingundy = 27 /3, where
kr occurs for the unperturbed armchair SWNTs. However, tlsigaswill be addressed
in future work, since we have chosen to focus mainly on ziggaegies, in order to intro-
duce electronic correlation effects (see next chapteo)time tight-binding hamiltonian.
By comparing DOS profiles for the choséd, Z) configurations for both DWNT ge-
ometries, one can observe that the azimuthal shift doeBattahe DOS structure (not
shown), while the translational shift alters considerahly spectra for both geometries
with respect to the default configuration&¥ = 0. Fig. 5.3 reports the DOS by chang-
ing AZ from 0 to A/4 together with the DOS spectra of the constituent non-icterg
SWNTSs. One can see important variations, also at low ergrfyieboth type of DWNTs
suggesting that also the optical spectra will have new featwith respect to that of
the constituent SWNTSs. In particular one observes thatthls®OS at the Fermi level
E = 0, which is constant in the case of the metallic tubes and mutatled as a peak in
our calculation for (9,0)@(18,0) due to the finite samplifighe Brillouin zone, suffers
important changes.

Now, we consider the inclusion of the optical matrix elemiemd the JDOS spectrum
for the zigzag DWNTSs for determining the SC absorption speetfor these systems.
Starting from the DWNT eigenvectors, in which the inner aniteo tube wavefunction
electron characters are mixed dueHoyrgr, the dipole matrix elements for z-polarized
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Fig. 5.3: (Color online) Electronic density of stateg,( = 1.0eV) for (5,
0)@(14, 0) (left) with(A® =0,AZ =0) (upper) and(AP =0,AZ = A/4) (bot-
tom). DOS spectra for (9, 0)@(18, 0) (right) with® = 7/36, AZ = 0) (upper) and
(AP = 7/36,AZ = A/4) (bottom). Color legend: inner SWNT (black), outer SWNT
(red), DWNT with intertube interaction (green).

light are calculated with the aid of Eq. (4.25) for each ctaetht SWNT, that is

DV N (WYL = (5.8)
t=1in,out
Nt—1

S NS Y G Y Gl — Riy) VL6 — Ra)).

t=in,out h=0 [=1,3s'=A,B s=A,B

where the perturbed nature of the DWNT eigenfunctions ha® leenphasized by the
use of the tilde. Contributions of mixed type betwegrorbitals belonging to different
nanotube shells can be safely ignored due to the fast detapfaher orbitals: as a
matter of fact, the absolute valuewf,, is already very small at a distance of2: and
is practically zero at the typical graphitic interlayertdisce of0.344 nm for all kinds
of molecular orbital configurations [122]. Thus the resigtoptical matrix elements are



5.3. SMALL CRYSTAL APPROACH FOR THE ELECTRONIC STRUCTURE @WWNTS7

obtained according to the following approximation

My = (Wi [P - Ve Wy ) 2 2 [(U5, [P VLW ) 2+ [(U5, [P - V. [W7,)[* (5.9)

z n out

As the degree of wavefunction mixing due to the intertubetebmic coupling is quite
weak because of the different azimuthal symmetries invbfee the two shells, one can
reasonably expect that for a given— c vertical transition one of the two addends will be
dominating over the other. Ratios [@f¢, |P - V_|WY )| /|(¥E,,|P - V. [¥ )| ~1+107*

or inverse could be verified for@, 0)@(14,0) DWNT. Eventually the optical absorption
intensity can be again calculated for DWNTs employing the&sS@ethod, as shown in
Eq. (4.32) for SWNTSs. As previously noticed for the DOS oftb8WNT species, the
effect of geometrical parameters on the optical absorjectra are more pronounced
when a translational shith 7 is considered with respect to the default configuration at
(A® =0, AZ = 0), rather than an azimuthal shit® (Fig. 5.4). In general, additional
absorption peaks can be found originating from the liftifghe@ band degeneracies due
to the symmetry breaking effect &f; yrrr. In (5,0)@Q(14,0) with (A® = 0, AZ = 0)
however the peak corresponding to thig transition of SWNT (14,0) is poorly affected
by the intertube coupling, while the new features are masibhg around the?s, transi-
tion region, where two peaks are now found.

The lowestEy, peak, originating from th&'?, peak of (14,0), is also slightly downshifted
in energy if compared with the one of the non-interactingesys The estimated mag-
nitude of the downshift is 025 meV, while the new highests, peaks are upshifted of
100 meV. Instead, for the configuratiom\@® = 0, AZ = A/4) the newE?, peak is
downshifted o200 meV. As a matter of fact, RRS measurements on DWNTs samples
have confirmed that the most important changes on the spisatares of the constituent
SWNTs are found in thé’3, transition energy region of the Kataura plot [166]. More-
over, by inspecting the transition energy interval arouraX?, of the (5,0) tube, which
is also close to thé&s, range of the outer tube, it can be stated that the change tirbyg
the intertube hopping interaction alters more consisggh# inner tube electronic struc-
ture rather than the outer tube one (Fig. 5.4), as discusséef. [166]. For metallic
DWNT (9,0)@(18,0) the spectral features are richer bottraximity of £/ and £/ of
the (18,0) tube, but there are also new low energy peaksatigg from the gap open-
ing at the Fermi level, as observed in the DOS spectra. kinak also compare the
(5, 0)@(14, 0) DWNT optical spectra for three different \edof the intertube hopping
amplitude (see Fig. 5.5), namely= ¢, /8 [171], 3 = t,/4 and = 1.0eV [180, 181].
All the observations made above are still valid for the imtediate valuef = ¢, /4, while
for 5 = t,/8 only the spectral region abo0 eV, is visibly affected by the intertube
coupling, as shown in Fig. 5.6, where a shifted peak relaie¢le inner tube is found.
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Fig. 5.4: (Color online) Absorption spectrad{ = 1.0eV) for (5, 0)@(14, 0)
(left) with (A® =0,AZ =0) (upper) and(A® =0,AZ = A/4) (bottom). Ab-
sorption spectra for (9, 0)@(18, 0) (right) witl\® = 7 /36, AZ = 0) (upper) and
(A® = 7/36, AZ = A/4) (bottom). Intensity is given in arbitrary units. Color legk
inner SWNT (black), outer SWNT (red), DWNT with intertubéenaction (green).

5.3.3 Conclusions, summary and future perspectives

As recalled in the introduction, besides Photoluminesegesonance Raman spec-
troscopy allows to characterize the nanotubes presentamale by assigning their ra-
dial breathing modes (RBM). The assignment is based on leaécliKataura plots [127]
which correlate SWNT electronic excitations with theirrdieters. A similar route was
also attempted, with less success, for DWNTSs [166], withod&ic assumption that these
systems can be modelled as two almost non-interacting SWRadsed on this assump-
tion, the electronic structure of a DWNT is simply the sumfué £lectronic structures
of the constituent tubes. Perturbative effects due to wetstube electronic coupling
are considered negligible or at least responsible for dsBgift on the single-particle
transition energies around Fermi level. By applying the $Praach to DWNTs, we
have shown that this picture is only partially correct anat tew transitions can be ex-
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Fig. 5.5: (Color online) Absorption spectra for (5, 0)@(14, Oeft) with
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Fig. 5.6: (Color online) Absorption spectra for (5, 0)@(14, Oeft) with
(AP =0,AZ = 0) calculated for non interacting SWNT constituefls = 0.¢V) and
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pected originating from the symmetry breaking of the bargkederacies in particular in
the visible range. The optical spectral features have beanrsto be strongly affected by
the orientational configuration of the constituent tubestipularly by the translational
shift parallel to the DWNT axis. The results allow to undarst the usual difficulties in
assigning the Resonance Raman spectra of double wall n@@ss$ince important varia-
tions of the electronic spectra of these carbon nanotulgefoand with respect to those
of the constituent single wall nanotubes. Moreover, algtovariations of the spectra
can be found for all the values of the intertube hopping patars found in literature
(Fig. 5.5), a careful evaluation of this parameter must aiabd for an appropriate elec-
tronic structure calculation for DWNTSs. As a matter of fabe widely used value of the
intertube hopping parametgr= ¢, /8 adopted since the work by Rockeal. [171], was
introduced ten years earlier by Lamlghal. [169], who in turn obtained it from fittingb
initio calculations for turbostratic graphite [79, 80], which lwejproduced experimental
results for this system. In other cases, suclyas 1.0eV by M. Grifoni and S. Wang
[180, 181], the reasons behind the choice have not been neateat all. Several fulab
initio calculations of the electronic properties of double-walhatubes have also been
done [182, 183, 176, 184], although they’re notoriouslficlilt because of the large unit
cells involved in the computation, but still a well- docuntexhtight-binding parametriza-
tion from fitting DFT calculations for the interlayer coupdj in DWNTSs could not be
found. Finally, we point out that the experimental Raman suneaments on DWNTS ac-
tually provide averaged electronic spectra of these systeince each wall can assume
in principle any orientation with respect to the other sheHlis holds in particular for in-
commensurate DWNT pairs, for which geometric correlatepaor and frictionless dy-
namics has been predicted [185] and experimentally ve(ifi@d]. On the other hand, for
deep minima in total energy, which occur prevalently in cansurate DWNTS, one can
reasonably expect that the corresponding geometric coatigas will play a dominant
role in determining the resulting spectral profile, since tlonstituent walls will hardly
change their mutual positions, because of the higher dpteatergy barrier. Therefore
more accurate molecular dynamics calculations which tateaccount also this aspect
need to be performed in the future in order to obtain reliddd¢aura plots for these
systems.



Chapter 6

Electronic correlation effects

In this chapter, starting from experimental evidence, wk imtroduce the issue of the
electronic correlation effects in single-walled nanosibehich are reflected in the ex-
citonic nature of their optical spectral features. Thettremnt of many-body effects in
these systems requires the necessity of going beyond tijle garticle approximation of
tight-binding methods. The first section presents a briehaew of the main theoretical
approaches developed in order to treat excitonic effe @SVWINTSs, together with a discus-
sion of their most relevant results and drawbacks of thea@s@ methods. In the second
section we will present the method developed in this thedisch combines the simple
but powerful description of the Hubbard model for corredigfiermionic systems with the
features of the small crystal approach for the treatmenkigineled periodic systems. A
whole section has also been devoted to the description afdhmputational implemen-
tation and issues behind the method. In the final part thdtsestithe calculations for
small-size systems are presented and discussed in relatibea most relevant literature
works. Then, future work directions are suggested for rtiesearch developments.

6.1 Many-body effects and electronic correlationsin SWNTs

6.1.1 Experimental evidence for the limits of tight-binding

In Chapt. 3 the tight-binding method was introduced in orgeprovide a simple but
realistic description of the optical properties of SWNTs the introductory chapter
we highlighted the importance of tight-binding methodsuipgorting the interpretation
of experimental Kataura plots obtained by Raman and phaiiolescence spectroscopy.
We recall that these tools are widely used in nanotube sei@rcassigning the spec-
tral features (i.e. the measured transition energies)a@adbpective SWNT diameters
and chiralities. Early Raman studies on SWNTs were intéegren terms of the sim-
ple tight-binding (STB) scheme far-electrons according to the zone-folding method
applied to the graphene sheet, as presented in Chapt. 3.sdlesne however doesn'’t
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take into account long-range interactions, curvaturecteffando-7 rehybridization ef-
fects, which cannot be neglected in small diameter nanstus a consequence, more
refined tight-binding based methods have been developextder to provide accurate
and reliable interpretations of the experimental Katalo#éspalso in the small diameter
range. In particular, we mention the symmetry-adaptedarttimegonal TB method by V.
N. Popov [84], which takes into account nanotube curvatacestructural optimization
effects in the electronic hamiltonian. Soon afterwardspalar approach was followed
by Saito’s group [122, 132], with the so-calledtended tight-bindingnethod (ETB).
Within this framework, they use the tight-binding pararzettion for carbon determined
from density-functional theory with local density appnardtion and a local orbital ba-
sis set [70, 71]. Then they include curvature-induced redyation by alignment of
the atomic orbitals along directions normal and tangemtidhe SWNT sidewall. Sub-
sequently, geometrical structure optimization is peridnby minimization of the total
energy of the system with respect to the atomic degrees efldéma. In general, the
constructed ETB Kataura plot showed a good agreement bakthfinst principles cal-
culations (long-range interactions are taken into acqoamd with experimental PL and
RRS Kataura plots, in particular for the spreads of the SWéMflilies of constartn+m
(Fig. 6.1). This experimental family spread is attributedte relaxation of the geomet-
rical structures of the SWNTs [122, 132].
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Fig. 6.1: Experimental Kataura plots derived from PL (uppe) laftd RRS (upper right)
measurements on HIPCO SWNTs suspended by SDS surfactaogue@us solution.
The numbers show the families of constant+m. ETB Kataura plot (bottom) as a func-
tion the inverse diametér/d,: long-range atomic interactions, curvature effects arad ge
metrical optimizations are taken into account in the catah. Taken from Ref. [122].

However, in spite of a good agreement in the family spreath Ba and RRS exper-
imental Kataura plots exhibit an overall blueshift of thansition energies by about
200 — 300 meV from the ETB Kataura plot. Moreover, thgy, to E7; ratio in the ex-
perimental Kataura plots tends i in the large diameted, limit (where the family



6.1. MANY-BODY EFFECTS AND ELECTRONIC CORRELATIONS IN SWNHL03

spread is small), while in the ETB predicted Kataura plot Ejg/ £, ratio for larged,
tends to2. These can be considered the two main effects of the many-6odlomb
interactions on the single-particle transition enerdigs which cannot be accounted by
ETB method.

6.1.2 Theoretical investigations of exciton photophysias SWNTs

Although many-body were already investigated in 1997 inesthtical work by T. Ando
based on the effective-mass approximation [194], only id2@became definitely clear
that electron interactions play an important role in deteing the optical transition en-
ergies in these systems [197]. As previously explained, thippened because the ex-
periments were always interpreted in the framework of sanmn-interacting models,
such as tight-binding calculations. Because of the spatiafinement of electrons in
the quasi-one dimensional structure of the SWNTs and, cpresgly, the poor dielectric
screening, the Coulomb interactions between photoexeltsdrons and electrons in the
ground state are strongly enhanced if compared to bulk ssmdictors [187]. As pointed
out in the pionieristic work by Ando, the electron-elect(ere interactions lead to two
competing opposite effects: a) the increase of the singtégbe transition energy by the
guasi-particle self-energy and b) the binding of photaextelectrons and photogener-
ated holesd-h) into excitons whose binding energies are comparable lgkitsl smaller
than the quasi-particle self-energies. The resultingcefiethus a moderate blueshift of
the single-particle transition energies due to the Coulerghinteractions and the exci-
ton e-h attraction, together referred to as the many-body intemast A more detailed
analysis of the many-body effects was conducted in a semaar by Kane and Mele
[196], starting from an effective-mass theory for staticatreened interacting electrons
in graphene. In this work they examine the many-body inteyas separately: a) on
scales larger than the tube circumferenck, where bothe-e and e-h Coulomb inter-
actions have 1D long-range character; b) on length scalélentlaan =d,, where the
many-body interactions have 2D short-range characterrefdre, in principle one can
write for the transition energy;; including many-body effects:

Eii — EZ + EiQiDee + EiliDee o Evi2iDeh o EiliDehv (61)

whereFE, is the single-particle transition enerdy;’ is the quasiparticle self-energy and
E¢t is the binding energy of the lowest bright exciton. As expéal above, boths
and £¢" in Eq. (6.1) are split into two terms competing to short-®u@D) and long-
range (1D) interactions, respectively. Th& < self-energy is given by the logarithmic
correction term [196, 122]

3 A
E2Pee — g (es—1t) Akia% In
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where € = 5.372 eV, s = 0.151, t = 3.370 eV) are the values for the ETB parameters
used in Saito’s papers [123],is the Coulomb interaction parameter, akds an ultra-
violet interaction cutoff, all of which depend on the dighgx constants of the SWNT
environment, and\k; is the critical wavevector measured from the K point in theEi>
louin zone. The latter is given bik? = 2/(3d;), AkS = 4/(3d;), andAkM = 6/(3d;)
for the E7,, E5,, and B} transition energies, respectively. Th&P<" binding energy
in Eg. (6.1) vanishes due to the absence of excitons in thehgree sheet. The e
and EP¢" terms scale with the SWNT diametéy, the reduced mass of the exciton
(which is diameter and chirality dependent), and the digteconstants of the SWNT
environment. Thus, th&lPe and E1P¢" energies develop family patterns. In small di-
ameter SWNTSs, thé&’Pec and E1P¢" terms significantly exceed thBZP< self-energy
of Eq. (6.1) due to a strong spatial confinement of the Coulo@raction. Neverthless,
as shown by Kane and Melé;.Pe¢ and EP" nearly perfectly cancel each other. If
we assume that that these energy terms completely cancetloigh is actually a good
approximation, then Eq. (6.1) becomBs = ES + E2P° and the resulting values for
the transition energies are moderately blueshifted fromBmB single-particle values,
as found experimentally. The difference between the expantal £;; and the ETBE,
transition energies as a function of the wavevediér with the to the functional form of
Eq. (6.2). This yields the following values for the fittingrpeeters, which are reported
in Saito’s papersy = 1.7 andA = 3.5 nm ™! [122], in good agreement with Kane and
Mele’s values [196]. Sinc&?P< only depends ow; and is independent ¢f, Saito and
Dresselhaus in their work again interpret the experimdfadhura plots of SWNTs (and
DWNTs as well) on the basis of ETB calculations: the singdetiple transition energies
are simply shifted by 00 — 300 meV to account for the logarithmig-dependent (ac-
cording to the environment) correction of thP<¢ term [132, 204, 205, 166].

However, besides Ando’s effective-mass approximatiornoe{194, 86, 211], in these
years several other theoretical studies were carried ootder to explore the photo-
physics of excitons in SWNTs. Among first-principles methasivo different classes of
calculation scheme for excitons can be found in nanotubgaliire: density-functional
calculations with Dyson’s equation for self-energy andhgeBalpeter equation (BSE)
for the electron-hole correlation, performed by the grobpaded by S.G. Louie [199]
and E. Molinari [200, 203], respectively; Hartree-Fock Gguration Interaction with
single-excited basis set, performed by the group headed ldya8umdar [208, 210]. Ad-
ditionally, other schemes were adopted first by Pederset] [[@20variational approach,
in which a Gaussian trial wavefunction is used to estimatatexic binding energies)
and later by Perebeinag al. [202] (a semi-empirical excitonic calculation based on a
tight-binding modeling of quasi-particle energies and &m@potential for electron-hole
interaction) for determining exciton scaling relationghese systems. Later, ETB calcu-
lations with BSE were also performed by the group of Saito@resselhaus [204, 205].
In the following we will overview only first-principles caltations, since at the moment
only these methods are capable of providing a reasonablyatecdescription of the rich
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excitonic structure in SWNTS.

BSE-based schemes|In the ab-initio calculations performed by Louie [199] thatioal
absorption spectra with electron-hole excitations areutated in three steps: (i) the
electronic ground state is obtained via pseudopotenti@itdefunctional theory within
local density approaximation (LDA) and with a plane-wavsibaet; (ii) the quasiparticle
energiesk,, are obtained within th&W approximation for the electron self-energy
by solving the Dyson equation

v2
|:_7 + ‘/ion + VHartree +X (Enk)} \Ijnk = Enkank (63)

and finally (iii) the coupled electron-hole excitation egies(2® and relative spectrum are
calculated by solving the Bethe-Salpeter equation of tleepiarticle Green’s function

(Bac — Eud) A + Y (vek| K0/ ¢K) Ay = Q5 AL, (6.4)

k/v'c!

whereA?, is the exciton amplitudes“" is the electron-hole interaction kernel, oK)
and|vk) are the quasi-electron and quasi-hole states, respsactivieis method can ac-
count for the ratio problem, the large self-energy cormwit~ 20% of the single-particle
gap) and exciton binding energigs i — 1.0eV) found in photophysics experiments on
SWNTs [197, 198]. Although very accurate, BSE-based mettawd computationally
very intensive, since they scale as the number of atoms tétthpower. As a matter of
fact, Louieet al. reported that the calculation for the (8,0) tube (with 32naadn the
unit cell) was very challenging, as well as (4,2) tube (wiBheboms), which was far more
difficult.

Soon later, a more efficient BSE-based scheme was proposttlgroup headed by
E. Molinari [200, 203] to handle the computation of (4,2) gd6¢#) tubes. They used a
symmetrized basis set taking advantage of the screw symwofetanotube systems. This
approach also allows for a better physical understanditigegbroblem, since it allows to
characterize the symmetry of excitonic wavefunctions ahetiwvtransitions are allowed
or forbidden by certain selection rules [198].

Neverthless, the calculations reported until now by thesearch groups have been per-
formed just for very few tubes: this points out that the solutof the Bethe-Salpeter
equation for larger diameter SWNTs lap initio techniques is still a formidable task,
even by exploiting helical symmetries in SWNTs. Additidgahlthough Bethe-Salpeter
methods attempt to go beyond mean-field approximation, éneylimited to consider
only single-excitatione-1h bounded excitons, making a full many-body calculation for
all excitations still impracticable for these systems. btorer, from these calculations it’s
notoriously difficult to extract an effective estimate oé ttrength of the electron-electron
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Coulomb interaction, which is a fundamental key parametefdrmulating general pre-
dictions and establishing a comparison with experimerdtd dr other theoretical meth-
ods, such as in Ando’s and Mazumdar’s works, where the @iroal strength instead is
an independent input parameter.

Hartree-Fock Configuration Interaction method In the first-principles calculations
by Mazumdar’s group [208, 210], electronic correlationSWNTSs are investigated by
a Hartree-Fock method with single-configuration inte@c{{SCI) approximation and a
semi-empirical Pariser-Parr-Pople (PRR¢lectron Hamiltonian, that was also used for
excitonic properties of-conjugated polymers. The PPP model Hamiltonian is given by

H=H,+H,, (6.5)
Hle = —¢ Z CI,O'C;O' + h.c.,

(i,4),0

1
Heo=UY mign, + 3 > Vi (ni=1)(n; = 1)
7 @]

where H,, is the one-electron tight-binding Hamiltonian afd_, is thee-einteraction
term.c;a creates ar electron of spirr on carbon atom, (. . .) denotes nearest neighbors,

n=>y. Cj—,acw is the total number of electrons on siteé The parameters U, andV;

are the nearest-neighbor hopping integral, and the orasdantersite Coulomb interac-
tions, respectivelyV;; value is chosen according to the standard Ohno paramétrizat

v, - v (6.6)

ky/1+0.6117R,

where R;; is the distance between C atomandj in A and x is a screening parame-
ter. Calculations have been performed foft = 1.9,2.5,3.33,4.0 andx = 1 and 2,
with similar qualitative conclusions in all cases [208]. ®vhonly first nearest-neighbor
interactions are considered in the PPP hamiltonian, thikoexbinding energy is deter-
mined almost entirely by the difference in Coulomb paramseté — V. In this case
(Ri; = acc), the calculated value is of the order@f eV fort = 2.4 eV, U = 8 eV
andx = 2 [209]. Several chiralities have been considered for sengiuoting nanotubes:
seven zigzadn, 0) nanotubes witm ranging from 7 to 17, and three chiral SWNTSs,
namely (6,2), (6,4) and (7,6). Although both longitudinatidransversal excitons have
been investigated with this method, we report here the nesnlts for the electronic
structure for dipole-allowed excitons polarized along thiee axis. The energy spec-
tra of SWNTSs consist of a series of energy manifolds, whoseggnincrease with their
indexn (see Fig. 6.2). Clearly, in the non-interacting limit théfelient manifolds are
independent from one another. This picture still continteebe meaningful even with
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non-zeroH._., because of the relatively weak mixing between the diffenssxcitation
manifolds. Within each energy manifold, the single opticallowed (bright) exciton
and several dark excitons occur, as well as a continuum bapatated from the optical
exciton by a characteristic exciton binding energy, as showFig. 6.2. Interestingly,
according to these calculations, the highest state in theeficited manifold is strongly-
dipole allowed, while all the remaining states underneaéhdark (dipole-forbidden).
Due to the non-zero value @f._. the four-degenerate optically-allowed single-particle
excitations between the highest occupied and lowest upiedwne-electron levels are
splitinto a series of levels, with the highest one collegaimost all the oscillator strength
[208], as sketched in Fig. 6.9. The calculated exciton lnigeéinergies for large diameter
SWNTs compare well with the experimental spectrofluorimetreasurements by Wang
and Dukovic [197], whereas a large disagreement is foundifor 0.75nm, due to
the breakdown of the-electron approximation. Also, disagreements betweerutated
and experimentak,; are larger, since it should be necessary to include higtusrdzi

in order to achieve greater precision. Actually, SCI appr@ation works best for lower
energy regions; as the energy increases higher order gangacontribute more to the
wavefunctions. This requires at least double excited Gichanore computationally in-
tensive calculations which are beyond todays capabilitiesuch extended systems. The
splitting between bright and dark excitonsin= 1 manifold has also been considered, in
virtue of several recents experimental measurements vadfeamed values between few
millielectronvolts and).14 eV (see [210] and references therein). Anyway, a theoretical
estimation was difficult to be obtained within HF-SCI beauo$ convergence problems
due to the small-size of the bright-dark exciton gap.

In conclusion, unlikely BSE-baseab initio calculations, the HF-SCI method adopted
by Mazumdar allows the understanding of some importantifeatof the excitonic elec-
tronic structure for a larger set of SWNTs. Moreover, thighod can account for the
large exciton binding energies in these systems on the bhaisimple parametrization
for w-electrons and a semi-empirical hamiltonian (appropfietéarge diameter tubes),
already applied successfully teconjugated polymers. By including higher orders con-
figuration interaction terms more reliable results couldaiely be obtained, although
this implies prohibitively increasing the computationahgplexity of the problem.
Clearly, for a proper treatment of many-body effects otheptetical models are needed,
which allow both to go beyond mean-field approximation andaféull inclusion of all
possible correlation excitations in the single-particentiitonian.

6.2 Hubbard model and SC approach

In the previous section, we saw that in SWNTs the many-bodsections to the mea-
sured single-particle transition energies are actualigrde@ned by the short-range electron-
electron interactions, since the electron-hole Coulortégrattion and the long-range con-
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Fig. 6.2: Schematic of the excitonic electronic structure of misenductor SWNT for
n = 1 andn = 2 manifolds. Ex and Dn are dipole-allowed and -forbidden excitons,
respectively. Shaded areas indicate continuum band fdr samifold. Note that all
levels of then = 2 manifold should be buried in the = 1 continuum band; however for
clarity then = 1 continuum band end is represented below D2. Taken from R@9,[
210].

tribution to the self-energy cancel perfectly. In this sative will show that the Hubbard
model [188], although in somewhat oversimplified manneiLides all the necessary fea-
tures for describing electronic correlation effects in ampum lattice system and going
beyond mean-field approximation. Moreover, given the spalee formulation of the
Hubbard model, the small crystal approch can be appropriated to investigate the
problem of the many-body electronic correlation effectshanoptical spectra of periodic
systems such as SWNTSs.

6.2.1 The physics of the Hubbard model

The model introduced by J. Hubbard [188] in 1963 is perhaps airthe simplest yet
physically powerful descriptions of the many-body effeicigiuantum mechanical sys-
tems. For this reason since its formulation it has been otigeaihost extensively studied
microscopic models for correlated electron systems, sscforminstance high-- su-
perconductors [189], transition metal oxides displayingtMnsulator transition [190],
organic one-dimensional conductors [210] and recently lal dimensional systems in-
cluding quantum dots [191, 192]. Unfortunately the exaduitsan is not known aside
from the ground state in the one dimensional model [193]cbeme depend on approx-
imations and/or computer simulations for investigatingencomplex systems. The rich
physics of the Hubbard model is determined by the interpktyvben the kinetic and
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potential energy of the electrons in the system latticectvis captured by the following
Hamiltonian:
H=—t E (c;(,cjva + h.c) +U E (RTURR (6.7)

(i,4),0

wherei andj are site indices(i, j) are all pairs of nearest neighbor sites, = CLUCM is
the number of electrons on siteith sping, cjﬁ andc; , are electron creation and annihi-
lation operators, antdandU are positive interaction constants. Tteerm describes the
hopping process of electrons localized on atomic-liketafbibetween nearest neighbor
sites and models the kinetic energy of the system. This paterived from the tight-
binding approximation, which was extensively treated ia pinevious chapters: since it
is an independent particle theory, it contains no many-tdedjures. ThéJ-term mod-
els the Coulomb repulsion between two electrons with oppagin in the same orbital,
hence it gives a potential energy contribution to the hamién. Whereas other methods
based on mean-field approximations (such as density furatibeory) replace this in-
teraction with an average one, retaining an effective shpgirticle picture, the Hubbard
model incorporates the Coulomb potential as a pair intenacivhich effectively allows
to include all the relevant many-body features in the hamiéin. The potential energy
term is diagonal in real space and tends to immobilize thetreles at certain positions
of minimum energy, whereas the kinetic energy term is diagmnmomentum space and
tries to move around the electrons. The basic formulatich@Hubbard hamiltonian in
Eq. (6.7) can be extended in several ways, which have beeglydiscussed in litera-
ture. The most natural are the introduction of an off-sitelldmb interaction between
nearest-neighbor orbitals

Hy =V nn; (6.8)

(i.4)

and/or the addition of hopping terms beyond first nearegfihi@r sites, such as second
nearest neighbor hopping

Ht/ = —t, Z <C;[700j,g + hC) (69)
((@.3)),0
where((z, j)) are all pairs of second nearest neighbor sites. However Weaatidiscuss
these terms.

Since the Hubbard model describes the interplay of poteartkinetic energy, depend-
ing on the ratio of//t either the Coulomb interaction or the kinetic energy dort@saln
case ofU/t < 1 and systems of dimension > 1 we retain the results of the TBA for
independent particles with small corrections and thus tak-kmown cosine band pre-
sented in Chapt. 4. The system therefore is metallic untesband is completely filled.
Electrons are delocalized all over the system and their i@vetions can to good ap-
proximation be written as Slater determinantsl/Jft < 1 the movement of one electron



110 CHAPTER 6. ELECTRONIC CORRELATION EFFECTS

is influenced by the locations of all other electrons in thstey since double occupa-
tion of a site is energetically expensive and thus they trgvuoid each other. Hence the
independent-electron approximation cannot be used angt@ahsolution of the prob-
lem cannot be easily found out. Usually wave functions fosthsystems generally have
to be computed numerically. This regime is said tocberelated If the ratioU/t > 1

it is even calledstrongly correlated Electrons try to distribute themselves as uniformly
as possible on the sites in order to minimize the CoulombggneAt half-filling, i.e.

at a mean electron density of one electron per site, the ciitiopebetween kinetic and
potential energy has particularly interesting considenst because of the strong on-site
Coulomb repulsion, the simultaneous occupation of a sitéalmyelectrons is strongly
disfavored, thus each site will be occupied exactly by oretsdn. In other words, every
hopping process of a single electron implies a large enesgilL for the system; there-
fore, all the electrons are localized and the system is imanlating state, generated by
pure electron-electron interactions, namely it latt-Hubbard insulator

In summary, the Hubbard model and its other numerous demgand counterparts
(e.g. Heisenberg model for ferromagnetic systems), athouith a rather simple formu-
lation, provide all the necessary features to treat thetreleic correlations of quantum-
mechanical many-body systems, such as an electron gas ystaldattice; hence the
nomenclaturguantum lattice modebften used referring to these methods.

In principle, in order to treat the quantum mechanics ofraxténg electrons, which are
actually indistinguishable particles, one has to constiiue multiparticle states by su-
perpositions of products of single-particle states, tgkirio account the Pauli exclusion
principle (Slater determinants). In the Hubbard model thgle-particle states are elec-
tron wavefunctions localized at lattice sites. Howeves,gacond quantization formalism,
which has already been implicitly introduced in Eq. (6. #pvpdes us with a suitable ba-
sis for dealing with the problem without the explicit spezafion of the wavefunction
determinant. This basis in the Hilbert space is orthonoandlis calledccupation num-
ber basigor Fock space). This set includes states describing adliplesdistributions of
N electrons oveM lattice sites. There are 4 possible electron occupancieadt site
(unoccupied, singly occupied either for spin up or down,llgwccupied with one spin
up and one spin down). Since the possible configurations gfinp are independent of
the configurations of the down spin, th&;.....« SPace of all possible configurations is
just the direct product of the Hilbert space of down spifisand that of up-spin%:

Hrubbard = HT ® Hl- (610)

A convenient way to represent and generate these multfeastiates is to keep the spin
up and spin down configurations separately by assigning kediote site a 1 if the site
is occupied or zero if it is nothft-string coding. In this way, every multiparticle state
is described by the occupancy numbers of the single-padieltes for a given spin. For
example, a generic state in this basis having 5 electrons @msée lattice with 3 up and



6.2. HUBBARD MODEL AND SC APPROACH 111

2 down spin is coded as
|00101010)|00100100), (6.11)

where the spin up electrons are found at sites 3, 5, 7, the dpuarelectrons are found at
sites 3 and 6 and the remaining sites are unoccupied. Fgtrtreke states can be gener-
ated by applying second quantization creation and antitmaperators to the vacuum
0)

cLlck2 . .CJ/LN |0) etc., (6.12)
where(kq, ks ... ky) is an orderedN-tuple of indices and; is the index of the corre-
sponding single-particle state. The antisymmetry of thenfenic states is taken into
account via the operator algebra expressed by the folloamigommutation rules

[Cl, C;rn] = 5l,m7 (613)
e, =0,

lcr, em] = 0.

The operatorcL generates a single-particle wavefunctign(r) within the multiparticle
state if that wavefunction is not present yet; otherwisesésultis 0. The adjoint operator
¢ annihilates the single-particle wavefunction if presetiterwise it returns 0. The Pauli
exclusion principle follows from].cl. = 0. Since the Hubbard Hamiltonian is represented
by non-commutative products of creation and destructiomi@nic operators as well,
one can reasonably expect that the corresponding Hanahanatrix can be constructed
algebraically. In the following section we will show how taild up the Hamiltonian
matrix for the one-dimensional Hubbard model applied to aking example, namely
a chain withM sites and periodic boundary conditions. This will help irdarstanding
the construction of the working code developed in this thési small periodic clusters,
presented in Sect. 6.3.

6.2.2 The Hubbard model for a periodic M-site chain

The Hubbard Hamiltonian for a chain wii sites and periodic boundary conditions is

M M
H=—t Z Z <C;-f7o.cz’+1,cr + cLlpci,g) +U Z N 11| (6.14)

with the periodic boundary conditions expressedcb,yﬂﬂ = cJ{,U andcyy10 = €10

Here,n,;, = cjﬂci,a yields the value 1, if an electron with spinis located at the sitg
otherwisen, , yields the value 0. Now the basis set in the occupation nurfiaberalism
has to be constructed. First, however, one has to label tigesparticle states upon
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which constructing the multi-particle states and definertbeder. For the order of the
single-particle states, we choose the following convenitidi 9]

(11,21, M 1y {1 1,2 L., M 1) (6.15)

Thus, the generic multiparticle state in the example of BEdLX) in second quantization
is written as
{00101010} , {00100100}) = ¢k el ek \cf el [0). (6.16)

If the operatorc}’g is applied to a multiparticle state, then one has to swapojesator

with the operatorsiw, using the algebra of Eq. (6.13), until the sequence is reedvia
the correct order as in Eqg. (6.15). By this procedure oned@itains the sign of the state.
For example, we get

em | {1,0,...,0},4{0,...,0,1}) —chcchMl|0 (6.17)

= _CHCMLCMHO

= _ClT|O

Generally, when applying , or ¢, to a statén) = | {nyy,...,nar}, {nujs- ... nan ),

the number of particles to the left & determines the sign. Therefore, one can define
the sign function in the following way:

)
)
= _Cn‘o> + CnchcMHO)
)
)

-1

sign (lo,n) = (—1)% Zm it (1) me (6.18)

This function produces as many factors -1 as there are nanezgries inn in front of
the position/, o. This fact allows us to write the effect of the creation operas

ch In) = (1 = nyy)sign (loyn) [ {ngq, .., 1, b, (6.19)

where the number 1 is at the positibnand the facto(1 — n;,) ensures that there is no
double occupancy of the same state. On the other hand, falefteuction operator we
get

o n) = nsign (loyn) [ {ny, ..., 0, nar }), (6.20)

which annihilates the state. In order to obtain the Hamiltonian matrix, one needs to
obtain the scalar product between any multiparticle statie Fock spacen;| with
H]n;). In general, the Hubbard matrix is mostly filled with zerosl @ahe on-diagonal
elements can be obtained in a very straightforward mannardpecting the number of
doubly-occupied sites in each multiparticle state and iplylhg this double-occupancy
number byU, the Coulomb repulsion energy. If two states) and (n;| differ by the
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hopping of one electron from a given site to its nearest r@gh then the corresponding
off-diagonal matrix element i with the sign determined by the chosen convention for
the hopping. In the computer program presented in Ref. [2b@] following rule was
adopted for the sign of the off-diagonaimatrix elements: if the hopping involves just
nearest neighbor sites which are not related by periodiadaty conditions (unlikely
those at the opposite ends of the chain), then the matrixeziem set equal te-t, oth-
erwise it is set equal te-t. However, other conventions can be adopted as well, without
affecting the resulting eigenvalues obtained from the xaiagonalization. Similarly,
one can construct the matrix for the velocity operatgy (or correspondingly the current
operator), needed for the calculation of the optical mattement between the ground
state|vy) and any other eigenstate,, | of the Hubbard matrix. For a chain wit¥l sites
and periodic boundary conditions this operator is defind@2215, 216]

M
1t

This allows us to compute the intensity of the optical absongspectrum for the Hubbard
chain with the SOS method as a spectral function

I(E) =" [(Wmlvip|vo)|? (B + By — Ey) = (6.22)

r
2+ (F+ Ey— En)’

Y

— rli% Z | (¥mv1p|0) |

whereL) is the ground-state energy of the system &hgdthe energy of any other eigen-
state|t,,) obtained from exact diagonalization (ED) of the hamiltonia his general
procedure can be extended as well to higher-dimensiontdregs although it is rather
unpracticable from a computational point of view, sincerthenber of states in the basis
to be stored grows exponentially with the number of sitebendystems, as discussed in
the following section.

6.2.3 Reduction of the basis size and application to smallwdters

As stated previously, every site of the Hubbaidsite chain has four possible states:
empty, singly occupied by either one spin up or spin downtesec or doubly occupied
with electrons having opposite spins. Thus there are atege’ multiparticle states
in the occupation number basis and the Hamiltonian is tbegef4 x 4 matrix. For
instance, forM/ = 16 there arel 294 967 296 states in this basis and the Hamiltonian ma-
trix has overl.8 x 10 elements. Although Hubbard matrices are generally verysspa
clearly the number of nonzero elements is still very large thieir storage in a computer
memory is well beyond what is possible, even with today’sstdlfiies. In order to make
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the problem more tractable, one can use symmetries to hliagenalize the Hamilto-
nian in smaller submatrices along the diagonal. If we nedaddahe ground state energy,
we can simply find the smallest eigenvalue from each of thes#ler submatrices. In
general, for quantum many-body lattice models in condensater physics, such as the
Hubbard model, the following symmetries are considered:cthnservation of the total
number of electronhl, the conservation of the number of electrons with a pamicspin
N,, the quantum number of total spin and eventually spatialsgtries. In this way the
size of the Hilbert space for the occupation number basisaatly reduced, hence the
matrices to diagonalize turn out to be smaller. In the foitaywve will always consider
half-filled systems, for which the number of electrdwss fixed and equal to the number
of sitesMin the system, i.e. averagely one electron per site. Momedke conserva-
tion of IV, is also required, such tha&, = N, = N/2. Thus the size of the obtained
Hamiltonian block is given by

N! NN N
1:[ N, (N —N,)! (NT!NL!) with - A== 6.23)

Again, for a half-filled system witldl/ = 16 sites, the size of the Hamiltonian block to
diagonalize i965 636 900 , which is still a very large number to be handled by today-s or
dinary personal computer. Remember that 16 is the numbdoofsainside the unit-cell
of the (4,0) nanotube, which still remains experimentatiidentified up to date, because
of the very small diameter and high curvature which are lyiginifavourable for the en-
ergetic stability of the system.

At this point the use of spatial symmetries plays a fundaaleote for further reducing
the number of sites and, consequently, the basis size. Ilbawever, the huge num-
ber of states restricts our choice to small lattice clustere. with M < 12 sites. In
order to avoid problems due to finite size effects, a goodash to take advantage of
the lattice periodicity and other symmetries, so that theperties of the infinite system
can be extrapolated from that of the finite system with reaBlyngood approximations.
Usually in exact diagonalization studies, in order to simellthe infinite number of sites
in the crystaperiodiqPBC) orantiperiodic boundary condition®&PBC) are introduced,
by connecting the left boundary of the finite lattice to itght-boundary (as in a chain)
and/or its lower edge to its upper edge, as already explamétapt. 4.

In the case of zigzag clusters the number of sites neededigeaorrectly théu, k. = 0)
BZ points (which are relevant for the optical properties) & reduced fromn to 2n,
as depicted in Fig. 6.3, thus allowing us to perform exaqjalalization studies for half-
filled systems with 8 sites for a (4,0) SWNT and with 10 sitesa@5,0) SWNT on an
ordinary PC. This fact can be explained with the presencenafrder-two rotation axis
(U andU’ axis according to Damnjanovi¢ symmetry classification @ftS2.5), perpen-
dicular to the tube axis and centered on a C-C bond or a grapemagon for (4,0) and
(5,0) SWNTSs, respectively.
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Fig. 6.3: Zigzag (4,0) (upper) e (5,0) (bottom) clusters véithsites and azimuthal peri-
odic boundary conditions to samplg, k£, = 0) points in the nanotube BZ. Points with
the same color mean same index site.

On the basis of these developments and the definitions gMehapt. 4, one can ver-
ify that by applying PBCs (i.e. with phage= 0) along the azimuthal directior, = 0
points with;, even are sampled, while by applying APBCs (i.e. with phasen) k, = 0
points withy, odd are sampled (see Fig. 6.4). This fact can be appliedéardhstruction
of both the Hubbard hamiltonian matrix and the velocity nxaffor polarization along
the tube axis), according to the chosen phase. We recaliahtite optical properties of
nanotubes it is relevant considering only light polariaatparallel to the tube axis, for
which the selection rulé\y, = 0 holds. Computing the spectral function separately for
(A)PBCs with the aid of Eq. (6.22), adapted to 2D graphenstels, implies again the
automatic fulfilment of the selection ruls;, = 0, since each of the two velocity oper-
ators always acts on states with the same parity. On theargnthe optical spectrum
for perpendicular polarization of the light, for which thaection rulex, — x4+ 1 holds,
cannot be obtained this way, since the velocity operatoesl ne act between states of
different parities, therefore always returning zero. ltksly that this case can be treated
by computing the full matrices for the true zigzag cell wiih sites, i.e. considering a
larger set of states, with both parities implicitly incladeHowever, this requires more
sophisticated computational techniques and facilitiebwvaii be addressed in the future.
Thus one can expect that in the tight-binding lidfit= 0, the optical spectrum of @, 0)
zigzag nanotube with light polarization parallel to theduwdxis can be obtained exactly
by the superposition of the spectral functions calculateth2n-site clusters with peri-
odic and antiperiodic boundary conditions, respectivEhis is shown in the final section
of this chapter where the calculated results for (4,0) ar@) SWNTSs are reported.
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Fig. 6.4: BZ sampling with &n-site zigzag(n,0) cluster: by applying azimuthal
PBCs, (1 even, k, = 0) points (purple color) are sampled, by applying azimuthat AP
BCs (i odd, k, = 0) points (blue color) are sampled.

6.3 Computational details

In this section we show the computer algebra implementatfdhe exact diagonaliza-
tion technique for the Hubbard model applied to small chsstth periodic boundary
condition. The algorithm was developed for the computeelalg systenMathematic&
[218] and is taken from Ref. [219]. Another more complete waxbatile package based
on similar principles is the SNEG library [220], a Mathensatpackage developed in the
Ljubljana University, which provides a framework for parfang calculations using the
operators of the second quantization with an emphasis oarttieommuting fermionic
operators in the context of solid-state and atomic physitathematic is particularly
suitable for formulating the representation of the operakgebra of Eq. (6.13) according
to EqqQ. (6.19-6.20). As a working example we consider agart+ubbard chain witM
sites and periodic boundary conditions. NMfathematicathe multiparticle states can be
defined by using the headerinstead of the ket symb#l . .), as in the following:

s [arg], where arg={{ni,....,na},{n1y,...,na}} andny, € {0,1}.
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We need the headsrbecause we have to perform the addition and multiplicatich@®
states by scalars by manipulating the argumerg.otf we were to perform these op-
erations on the lisar g itself, we would get incorrect results. For example, actuyd
to Mathematicaconventions for lists, one obtaimg, from arg [[sigma, 1]] with 1 = |,
sigma = 1 andsigma = 2 respectively, for =7 ando =|.

After specifying the numbers of sité4, spin-up/N; and spin-downV, electrons, we can
use the function®ermutations|...] andTable|...] to generate the lisindex, which
contains all possible multiparticle states, coded in kjirfarm. This procedure can be
implemented as in the following code lines, for spin-up apit-<lown particles.

(» Left (spin up particles) =)
| eft =Permut ati ons[ Tabl e[| f[j <=spi nup, 1,0],{j,1,sites}];

(» Right (spin down particles) *)
ri ght =Pernut ati ons[ Tabl e[| f[j <=spi ndown, 1, 0],{], 1,si tes}]];

(» Left and Right (spin up and down particles) =)
i ndex =Fl atten[ Tabl e[ {I ef t [[il], ri ght[[i]] },{1, 1,Length[l eft]},
{J,1,Lengt h[ri ght]}], 1];

The operatorcl*o has to generate a 1 in the right location specified bgnd si gma
in the argument o§. This is done by the functiopl us. Correspondingly, the function
m nus generates a 0.

pl us[k_si gma][arg]: = Repl acePart [ar g, 1,{si gna, k}]
m nus[k_si gma_][ar g_]: = Repl acePart [ar g, 0, {si gma, k}]

Using the sign function introduced in Eq. (6.18), we can nefirgk in a functional form
the second quantization operatof;‘. andc;,, which are going to act on the states as in
Eq. (6.19) and Eq. (6.20).

sign[l sigma_arg]:=(-1)" (spi nup*(si gma-1)) *
(-1 Sunfargl([si gma,jll.{j 1,1 -1}])

cdagger [l _,sigma][factor_ *s[arg_]]: =factor*(1-arg[[sigma,|]])*
sign[l ,si gma, ar g]*s[pl us[l ,si gma][ar g]]

c[l .,sigma][factor_. *s[larg]]: =factor*arg[[sigma,|]]*
sign[l ,si gma, ar gJ*s[m nus][l ,si gma][arg ]]

The parametef act or _. is set by default to the value 1 Mathematicaif the state
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does not have an additional factor. Since these operatoralaays generate the value O
(e.glmjl. c}] {1,...},{...}) = 0), cdagger andc have to be defined for the number 0 as
well:

cdagger |l _,sigma_][0]: =0
c[l .,sigma][0]: =0

Additionally, we still need the operatay,:

nfl_sigm][0]:=0
nfl_sigm][factor_ *s[arg]]:=factor*arg[[sigma,|]]=*s[ar(g]

Periodic boundary conditions for the chain can be expreased

cdagger[sites+l, signma][any_]:=cdagger[1, sigma][any_]
c[sites+l,sigma][any]:=c[1,sigma][any]

Eventually, the Hamiltonian (Eq. 6.14) of the Hubbard chaan simply be written as:

H vect or ] =Expand|

-t+*Sunf cdagger[l,sigma][c[| +1, sigma][vector]] +
cdagger[| +1,sigma][c[l,sigm][vector]],
{I,1,sites}, {sigm, 1, 2}] +
usSun{n[l,1][n[l,2][vector]],{l,1,sites}]

]

More complicated Hamiltonians, such as those considergdisnwork for the zigzag
clusters with2n sites can be expressed in a similar way, by writing expliditle site
index needed for the nearest neighbor hopping terms witltdheect translational and
azimuthal periodic boundary conditions included. In ordesbtain the Hamiltonian ma-
trix, we need to compute the scalar produgis H|n;) of each statén;) with H|n;).
Since the multiparticle states are already orthonormalpmbg need to define the linear-
ity of the scalar product:

scal arproduct[a_., 0]:=0

scal arproduct[a., b_ + c_]:=scalarproduct[a,b] +
scal ar product [ a, c]

scal arproduct[s[argl],factor_.s[arg2]]:=
factorxlf[argl==arg2, 1, 0]

where the comparison of two states, which is expressed bgattmgarison of two nested
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lists, is written in a very compact manner by usarggl==ar g2.
The desired Hamiltonian matripn;| 7 |n;) can be computed by first defining the follow-
ing table:

hlist=Table[H s[index[[j]]1]], {j, 1, end}];

and then setting up in the sparse matrix as with the helfpafr seArr ay as in the
following lines:

h=SparseArray[{i ,,j .} —scal arproduct[s[index[[j]]].,hlist[[j]]],
{end, end}]

The upper limit for the loop indices, which also provides #ize of the basis or the
number of multiparticle states can be determinedend = Lengt h[ i ndex] , soon
after the construction of the basis set listdex. The computed matrices are Hermitian
and symmetric, thus their eigenvalues are real and onlypperudiagonal part needs to
be computed and stored. One can choose among several filatfosnitable for sparse
matrix storage on the hard-disk, such as the NIST Matrixiaflarmat (.mtx) [221],
which allows to specify the non-zero entries for the matheneents and its transposition
rules (Hermitian, symmetric, skew-symmetric or gener&djhen the*.mtx file is im-
ported and the diagonalization method (see the commiaingensyst emfor obtaining
the eigenvalue-eigenvector pair) is called by the systdathematicadetects automati-
cally the (hermitian symmetric) structure of the matrix awdtches to the most efficient
routine for the numerical diagonalization. In order to peni the sparse matrix numeri-
cal diagonalization within thathematicasystem [218], one can choose between either
LAPACK [222] or Arnoldi (also known as ARPACK or Lanczos [A2&lgorithms. The
Lapack is the default method for accurately computing theeset of eigenvalues and
eigenvectors and works well when the order of the matrix &z maximum between
10* and10°. In this work it was used for the diagonalizationd®00 x 4900 matrices for a
periodic 8-sites half-filled zigzag (4,0) cluster, since themory requirements for storing
on disk the full eigenvector set (needed by the velocity afpg) were not prohibitive at
all (500 MBs). The Arnoldi method is an iterative method, algusuitable for sparse
matrices, used for finding a few eigenvalues of a large mafice in our case we need
to find only the lowest eigenpairs of the Hubbard matrix (theimber should usually
be less thar0% of the matrix size) for calculating the low energy opticatspum, this
method can be applied to the periodic 10-sites half-fillgzag (5,0) cluster, whose ma-
trix dimensions aré3504 x 63504. In Mathematicahis task can be accomplished in the
following way!

lUnfortunately, theMathematicadocumentation on this subject is very sparse and not vegyldédt so
these lines are intended as a short tutorial on the mattéelping in reproducing calculations
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{ei genval ues, ei genvect or s}=- Ei gensyst en{ - hubmat ri x, 200,
Met hod— {Arnol di, Maxlterations— 10"5,Criteria+— Real Part}]

As shown in the code lines abovelathematicahas the ARPACK library built in and
all the options for that library apply, which are passed ly¢bmmandvet hod. Since
we know that our matrix is Hermitian and that the eigenvakresall real, one can use
the real part as a criterion for computing the smallest eigei®. Moreover, with the
above instructions, one can see that the (200) largest\alyess of- hubmat ri x (by
real part) correspond to the (200) smallest eigenvaludsibirat r i x. This allows to
avoid Mathematicadefault setting, which always computes the smallest e@jes in
absolute value, consequently with a large waste of comipuagtresources.

To summarize, in this section we have shown how to implenteneékact diagonalization
method for the Hubbard model on ordinary personal compierseriodic clusters with
8 and 10 sites with the aid dflathematicaa system which is suitable mainly for com-
puter algebra but also for numerical computing. The moshisive and time-consuming
part of the computational procedure is represented by thetaaction of the Hubbard
and velocity matrices: for a 10 sites periodic cluster iktéige days to write the upper-
diagonal part of th&3504 x 63504 matrix on an ordinary personal computer. This is
partly due to the fact thavlathematicais based on an interpreted language, which is
100-200 slower than compiled languages like Fortran or Gdawever, the main advan-
tages of choosing an interpreted system Nkathematicaor treating small clusters are
represented by a gain in user productivity, i.e. a large arholitime spared in coding
the algorithms and a minimized risk of programming errdrspmpared with low-level
languages usually adopted in scientific computation (Rorémd C/C++). Clearly, in or-
der to cope with systems with larger size we have to depam friaerpreted languages
and look for other implementation techniques. Expresssonplates for quantum me-
chanical operators have already been implemented in dizedi&++ libraries to allow
even non-expert users to define and use easily Hamiltoniahsther operators in sec-
ond quantization formalism, so that matrix elements candmeputed more efficiently
with less programming effort by the user [224]. Additioyalbne has to face the prob-
lem of storing on disk huge matrices, from which the diag@adion routines read the
needed elements. Sometimes, even if the matrix can be sboredmputers with fast
and capable hard disks, the difficulty is that the 1/0 speeddilistoo slow compared to
the computational speed. To avoid these problems with trage, the matrix elements
have to be calculated efficientbn the flyat each Lanczos iteration. These algorithms are
also suitable for parallelization techniques and haveadlydeen implemented efficiently
for exact diagonalization on strongly correlated quantystesns with up to 36 sites (see
PALM++). Recently, the international open-source project ALP§)¢Athms and Li-
braries for Physics Simulations, http://alps.comp-pbrgs[225, 226]) was established
with the purpose of developing and merging also severatiegislifferent algorithms
(such as PALM-+) and libraries for simulating the properties of stronglyretated
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systems within a wide range of theoretical approaches,tehkagonalization included.
Certainly, the ALPS libraries will be a very interesting amkful tool for applying the
ideas presented in this thesis to larger zigzag clustegs &(7,0) cluster with 14 sites)
and it is likely that exact diagonalization calculationsikcbbe carried out on full zigzag
unit cells with parallel and/or supercomputing facilities

6.4 Results

In this section we present the results of the applicatiomefliubbard model combined
with the small crystal approach for the investigation of th#ical spectra of zigzag
SWNTSs, according to the choices for the clusters formulateithe previous sections:
a (4,0) zigzag cluster with 8 sites and a (5,0) cluster witlsit€s, with translational pe-
riodic boundary conditions and (anti)periodic azimuthalibdary conditions to sample
nanotube BZ points dt, = 0 andu even (odd), respectively.

SC calculations were all performed based on the simplestitation of the Hubbard
model hamiltonian of Eq. (6.7), that is, with only first nestraeighbor hopping interac-
tionst and on-site Coulomb repulsidanh

In order to test the correctness of the developed compubgrams, we first performed
exact diagonalization (ED) calculations for both clustetsie noninteracting limit/ = 0
and compare the resulting transition energies in the dpsjpectra (for light polariza-
tion parallel to the tube axis) to those obtained accordinthé classical tight-binding
(LCAO) formulation, by either the zone-folding (Chapt. 3)tbe real space SC approach
(Chapt. 4). In Fig. 6.5 we report the (4,0) and (5,0) optigacra computed with the
SOS method (Eg. (6.22)) after ED of the Hubbard matricesindtaby switching alter-
natively between periodic and antiperiodic boundary cboiis to sample even or odd
azimuthal band quantum numbers. Additionally, the full@pson spectra calculated
as explained in Chapt. 4 (LCAO scheme) are shown for compari©ne can see that
the absorption profiles of the full LCAO calculation are cdetely recovered by the ED
spectra with APBCs and PBCs considered together. In Tab)ev@ compare the numer-
ical values of the interband transition energies for botjzag systems calculated from

ED with U = 0 and classical TB method (ZF or SC) with the same value of happa-
rametert,, = 2.9 eV and verify the perfect matching of the energy values for iffergnt
i, k., = 0 BZ points involved in the interband transitions.

Having tested the validity of our ED method in the non-intgirg limit, we can include
the electronic correlations by setting # 0 for the on-site screened Coulomb repul-
sion term in the Hubbard Hamiltonian. In Fig. 6.6 the optispéctra for both cluster
geometries are reported, where the Hubbard parameters@thia the work by Cinet
al [212] have been used. These parameters were deduced frmg digticulations on
the experimental Auger spectra of graphite and carbon naeet For carbon nanotubes
the obtained parameter values are= 2.6eV andU = 4.6eV. It has to be stressed
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Fig. 6.5: Optical absorption spectra for (4,0) and (5,0) zigZagter with2n sites cal-
culated by ED method and azimuthal periodic (blue) and antylic (red) boundary
conditions in the non-interacting limif = 0. The chosen values for the parameters are:
t. = 2.9eV andU = 0eV. The full absorption spectra (black) calculated as in Chépt
are also shown and scaled for better comparison.

Table 6.1: Comparison of the calculated transition energies i{h @ (4,0) and (5,0)
zigzag clusters obtained from ED methad & 2.9eV andU = 0eV) with those from
classical tight-binding method (ZF and SGC,= 2.9¢V).

Eiz'; D, (O or 7£ 0) (/L, k, = 0) E;; from E;; from
SWNT (4,0) TB(ZF, SC)[eV]  ED with/ = 0 [eV]
Ei,D,#0 3,5 2.40244 2.40244
Es, D, #0 2,6 5.8 5.8
Fos, D. 0 4 5.8 5.8
Es3,D, #0 1,7 14.00244 14.00244
Eu, D, #0 0 17.4 17.4

Eii> D, (O or 7é 0) (,u, k, = 0) E;; from E;; from
SWNT (5,0) TB (ZF, SC)[eV]  ED with/ = 0 [eV]
Ei,D,#0 3,7 2.2154 2.2154
Es, D, #0 4,6 3.5846 3.5846
Fas, D. 20 5 5.8 58
Ewu,D,#0 2,8 9.3846 9.3846
Ess, D, #0 1,9 15.1846 15.1846

Eg¢s, D, # 0 0 17.4 17.4
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out that Cini has verified a very small dependence of the tadioa parametet) on
nanotube diameter: no substantial changes were found ithéoeetical Auger spectra
of (10,10) and (20,20) SWNTs, and by comparing the experiatekuger spectra of
SWNTs with average diameter @fhm with the theoretical ones for tubes with average
diameter ofl .3 nm. We note that the value for the screened Coulomb interasti@mgth

is well above the perturbative ones used in the effectivesnagproximation calculations
by Ando (0.1 — 0.2eV) [211]. Moreover, the values of the bare (unscreened) Gohlo
interactionU used by Cini /®___ = 14.6eV) [213] have magnitude comparable to those
used by Sgrensen [214] for the Hubbard ED studie€ gnisomers, in particular car-
bon rings {, = 2.36eV, U = 10.1eV) and nanobowlst{ = 3.16eV, U = 10.3¢eV),
which have degree of curvature similar to nanotube wall@nfour calculated optical
spectra of Fig. 6.6, we can see that the inclusion of the tanetectron-electron Coulomb
interactions produces an evident blueshift of all the @ptiansition peaks with respect
to those obtained in the tight-binding limit. This is cornerg with both experimental
[195, 196] and theoretical findings [194]. One can also moti@at the blueshift affects
more considerably thé’;; transition energy rather than thg, transition energy: this
fact is particularly evident in the spectral profile of (4¢gl)ster.

—_ (4,0) zigzag cluster ] —_
& 200 - Hubbard parameters taken b & 200 -
from M. Cini et al. (2008) S

(5,0) zigzag cluster
Hubbard parameters taken
from M. Cini et al. (2008)
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Fig. 6.6: Optical absorption spectra for cluster (4,0) (leftdgb,0) (right) from ED
with (anti)periodic BCs in the non-interacting limift = 0 (black) and for the value
U = 4.6 eV for the Hubbard correlation parameter obtained by M. @tral(red) [212].

In order to study the dependence of the allow&tl and E5, on the electron correlation
strengthU/ /t, we performed several ED calculations for differéhvalues of the on-site
Coulomb interaction, whose results are presented in Frg.l6.the case of (4,0) geom-
etry, one can actually see that in intermediate-low cogpiegime (//t < 2) the Fy;
transition energies increase faster thgns, which have almost a constant trend. On the
other hand, for cluster (5,0) in the same coupling regime sthpes of bottt;; and Ey,
curves are similar. This can be explained by consideringriverse proportionality re-
lation between energy gap and diameter in SWNTSs, as distuisSeB approximation:
(5,0) cluster describes a SWNT having a larger diameter th#&), hence more values
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Fig. 6.7: Dependence on the correlation strength of £, and E, transition energies
for (4,0) (left) and (5,0) (right) zigza@n-site clusters obtained from ED method with
azimuthal APBCs (red) and PBCs (black).

for the azimuthal quantum number are allowed and the aleseluergy difference be-
tween bands with different index are lower than in small diameter tubes. However, if
we consider a wider range in coupling strendgth'{ < 5), the same general behaviour
of cluster (4,0) is found also for (5,0) geometry, i.e. #ig trend increases at a slower
rate thanky,. In this regime one can verify that the rati, / 7, is actually lower than
2, therefore it's consistent with the previously summatie&perimental and theoretical
findings about theatio problemin correlated SWNTSs, although these actually refer to
large diameter nanotubes.

In general, in the low-coupling regime the use of APBCs pitesialways lower values
of the transition energies than PBCs do. This fact can be st by considering
that in the TB limit, the use of azimuthal APBCs allows to s#érrillouin points with

(@ odd, k., = 0) and that the azimuthal quantum number of the energy gap lfaidsis
actually always odd in semiconducting zigzag tubes (see[RET]).

Looking at the plots of Fig. 6.7, one can also observe thategrsion occurs dt' /t ~ 4

for the transition energies of both geometries: the trarsiénergies obtained from ED
with APBC, which were formerly labelled b¥?,, become larger in magnitude than the
former E3, obtained from ED with PBCs. Thus, in strong coupling regitne toles
played by APBCs and PBCs fd@?, and £, are exchanged.

In order to compare the structure of the lowest excited gnlenggls obtained from the
SC-ED method developed in this thesis with the excitonielewbtained by Mazumdar
[210, 206], it’s interesting to look at the energy scale mibthe calculated eigenvalues
in the very low coupling regimé//t < 0.4 (with APBCs) for cluster (4,0), which is
shown in Fig. 6.8. We set the ground state energy to zero oplth@rdinata, so all the
reported energy data are relative to the ground state en&hgyground state is always
non-degenerate for all values of the correlation couplingngth. In the noninteracting
limit U = 0, the excited levels are grouped on the energy scale andphyultegener-

10
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Fig. 6.8: Excited energy levels as a function of the correlatimmpdingU /¢ in the limit of
very low coupling strength for cluster (4,0) and APBCs. 3alvmanifolds are obtained
whose bandwidth increase with coupling strength. The tageecited level of the low-
est manifold starting from the ground state is always brfghtone photon absorption,
therefore providing the optical transition energy, .
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Fig. 6.9: Schematic structure of the lowest excited manifoldémigonducting zigzag
nanotubes in very low coupling limit{/¢t = 0.04) obtained in this work (left) and in
Mazumdar’s work (right)[208]: the manifold obtained frorardED comprises eight ex-
cited states. With increasing/t the level spacings change and degeneracies of levels
formerly at nearly the same energy are eventually liftedite gight distinct states.
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ate, in particular the lowest excited energy level inclueight degenerate states, which
are all optically active (bright) for one photon absorptidrhis fact can be verified also
for (5,0) cluster and can be explained as it follows. The gajpes of semiconducting
zigzag nanotubes are always doubly-degenerate. Thubamersingle-excitation elec-
tronic transitions are allowed between each of the two vadrand states and each of the
two conduction band states. Since each band can be fillechtvitiost two electrons with
opposite spin, by taking into account spin degeneracy, we ftax 2) x 2 =4 x 2 =8
states, as found in our calculations. This degeneracy istylifted off by switching on
the Coulomb interaction with/ > 0.

In general, one can observe for edclit > 0 the appearence of several distinct en-
ergy level manifolds, whose energy bandwidth becomesiavgh increasing coupling
strength (Fig. 6.8). Fot//t > 1 the higher energy manifolds are mixed with the lower
energy ones and cannot be distinguished anylonger. Ititegls one can verify that for
each value of the correlation coupling strengtht in the very low regimé//t < 1 the
highest energy level belonging to the lowest excited energgifold is always bright and
non-degenerate. The same result could be verified for cl(B@) andU /¢t = 0.4. This
result actually gives a similar picture of the lowest exaitomanifold given by Zhao and
Mazumdar in Ref. [208] and reported in Fig. 6.9, togethehwaitschematic representa-
tion of the energy level structure obtained in this work.

In order to get a deeper understanding of the correlatedtstei of these eigenstates,
a charge distribution analysis over the cluster sites wa®meed for the ground state,
the bright state and the dark states belonging to the mahiféVe considered which
occupation number basis states are related to the largeabgolute value) eigenstate
coefficients. Although this method could seem rather routgdctually provides an es-
sentially correct picture, which is also confirmed by a mamerfal method involving the
calculation of the charge density correlation function dogiven eigenstate, as we will
see in the following. In general, we observed that the grasatt and the remaining dark
states in this manifold have uniform charge distributiondoy U/t in low-intermediate
coupling regime. On the other hand, the optically activeestas a strongly non-uniform
charge distribution over the cluster sites: the occupatiomber states giving the domi-
nating contribution are actually represented by doublgupeed sites regularly alternated
with empty sites, as sketched schematically in Fig. 6.1@ligster (4,0). This is actually
the pattern of a charge-density wave (CDW).

As stated above, the peculiarity of this bright state is cédéié in particular in the values
of the charge-density correlation function and in the detdahpty site correlation func-
tion calculated for a given eigenstate. The general exjgressr a correlation function
is [217]

- (WOl
O =T (6.24)
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Fig. 6.10: Schematic representation of the charge distribditiotne optically active state
giving the £} transition: doubly occupied sites alternate regulariyhveitnpty sites.

wheret); is any eigenstate wavefunction addis a generic quantum mechanical oper-
ator. For charge density wave correlation functions betwstes of separatiop O is
expressed by

N 1
Ocow = + > (nig 4 niy) (igsg + i), (6.25)

wherelL is the number of sites in the system. Similarly, we can deftherauseful cor-
relation functions, such as the doubly occupied corratafimction?, the empty site
correlation functior?, the spinS. correlation functiorf and the above mentioned double-
empty correlation function, which is expressed by

Oed = % Z (1 — nm) (1 — nm) n,-+j7Tn,-+j7l. (626)
In Fig. 6.11 we report the values for the charge and the emptyle correlation func-
tions calculated foj = 1 (i.e. considering only nearest neighbor sites) for eacbrestate
of the lowest excited manifold of cluster (4,0) obtainedr&D with APBCs. For the
Hubbard parameters we used those computed byeCaili, hence we are in an interme-
diate coupling regime. However, we verified that the sitwais similar also for other
values ofU/ /¢ in low-intermediate coupling (not shown). The light bullmgyol is used to
highlight the bright state. One can see a strong deviatidheotalue related to the opti-
cally active state from the average of the other dark statelsdth correlation functions.
The energy spacings between the bright state in this margfiodl the immediately two
underlying dark states have been also considered for bastect with PBCs and APBCs
and compared with some recently available experimentakaremnents by photolumi-
nescence microscopy reported in Ref. [206]. The measure@v&und in this exper-
imental paper are reported in Fig. 6.12, together with tisellts from our ED: the two

204 = 7 32, Mi i, | Wit 1 i, |
%0e = 257, (L=mnip) (L =ni 1) (L= nigg1) (1= nigg))
*Ospw = £ 2, (nig —ni,y) (Rigj1 — nits)
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Fig. 6.11: Charge and empty-double correlation function wita 1 for the eigenstates

in the lowest excited manifold (APBCs) of cluster (4,0) cédted from ED with the
Hubbard parameters by M. Ciat al[212]. The values calculated for each eigenstate are
normalized to the ground state value. The optically actisigess represented by the light
bulb symbol.

dark states are 40 meV and 110 meV under the bright stategatdggly. Our ED cal-
culations with Cini's Hubbard parameters actually prowd&ies which agree well with
these estimates: for cluster (5,0) the dark states are bat®@@meV and 90 meV under
the optically active state, while for (4,0) they are locad@dmeV and 330 meV under the
bright state.

The situation is different for the bright state involvedhk, transition. In low-coupling
limit (where PBCs have to be used) the optical absorptiok pelated to this transition is
related to two degenerate states for cluster (4,0) and om@lagenerate state for cluster
(5,0). This fact can be traced back to the different paritysyetries for the two systems.
With increasing’/t¢ the charge distribution associated with these states bexaniform
more quickly than observed if;; states. Moreover, the dominating contribution to the
charge distribution profile over the cluster sites is givgitbasis states with a low degree
of double occupancy, with at most one or no doubly occupitss sit all. In particular,
in the case of cluster (4,0) fd@r/t in intermediate-strong coupling limit one can verify
that one of the two degenerate bright states has a non-omigbarge distribution (i.e
similar to that of £1;), while the other state has a uniform one, with single ocoapa
almost everywhere. This suggests that in low-intermedidenelU/t < 2, whereU is
still comparable to the system bandwidth the low energy eigenstates are dominated
by the kinetic energy term of the Hubbard hamiltonian. Thalgrge fluctuations with
a high degree of double occupancy (3-4 doubly occupied sitas3-site cluster) domi-
nate the optically active state;;. On the other hand, the higher energy states, such as
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Fig. 6.12: Schematic diagram of manifolds & 1,2) of excitonic states (horizontal
lines) and electron-hole continuum bands (shaded areasjmiconducting SWNTSs (left)
and the results obtained for cluster (5,0) with Cini’'s paggens in this thesis (right).
One-photon optically active excitons are associated wathsition energie®’;; and Fos.
Dark states lie 40 and 140meV (left) and 70 and 90 meV(rigbtpw the £;; state,
respectively. Notice that in our analysis both states franith APBCs and PBCs were
considered. The picture on the left is taken from Ref. [206].

those involved inky,, are closer to the point-zero energy and thus are mostlyrgede
by the Coulomb repulsion tertd, which tends to minimize double occupancy as much
as possible. Additional ED calculations were performedifors> w, where the system
bandwidth is specified by = 2zt, with zbeing the system coordination number= 3

for graphene and nanotubes). One can notice from Fig. 6dt3rthhis limit the highest
energy dark states below tlig; bright state are found very deep in energy at about 7 eV
from this state. The excited electronic structure in thisrgg coupling limit is clearly
different from the one found previously for low-intermeiaoupling strength, since a
large optical gap can be observed in this case.

This investigation actually confirms that in strong couglimit, whereU is significa-
tively higher than the system bandwidth, a charge redidiob occurs such that double
occupancy is avoided as much as possible. Charge fluctgati@enfrozen and at most
only states with one double occupied site are allowed inrai@eninimize the total en-
ergy. In this case the system can be considered to be Mdieinsulatorregime.

Thus, we can conclude that for intermediate correlatiopting the two competing terms
in the Hubbard hamiltonian act differently df1; and E», bright states, allowing consis-
tent charge fluctuations in the lowest part of the electrgpctrum and minimal charge
repulsion at higher energy. Although our approach can béegpat the moment only to
small systems with a limited number of sites, all these tegdint out for the validity of
the method developed in this thesis and the necessity dfduimvestigations in this di-
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Fig. 6.13: Structure of the energy manifolds in strong couplimgtiwith U > w, calcu-
lated for cluster (4,0) anti /t = 9.6.

rection for larger size systems, since the important feataf the excitonic description of
the electronic structure in SWNTSs, as provided by Mazunsda€I-HF calculations for
large diameter tubes, could be recovered by a small crystabberd model calculation.

6.5 Other applications: doping and defects

In this last section we report some basic facts and prelimiresults of the application
of TB-SC approach for treating the effects of electronicidg@nd point defects on the
electronic structure of SWNTs. We recall that the issue cdlsymmetry breaking of the
lattice due to impurities or doping is usually treated witfiiclilty by reciprocal space
based methods.

First, we consider the case of electron doping, namely thiitiad or subtraction of
electrons to ther-system. In real experiments, this happens with chargestea dop-
ing, which can be achieved by intercalation of the SWNT wiltalh metals, and with
electrochemical doping, by varying the potential at the SMdéntact interface with an
electrolytic solution. We limit our considerations to seonducting SWNTSs, to which
we apply the usual TB treatment for calculating the corresptg electronic and optical
properties. We recall here that the state€/gt and £, in semiconductor SWNTSs are
doubly degenerate and that every valence or conduction leaetican be filled with at
most two electrons, with opposite spin. Since one expeatdiinsitions related to states
which are involved in doping will be suppressed, four eletsrhave to be added or re-
moved to find the complete suppression of a transition. Gle&mve fill (deplete) the
conduction (valence) band with two electrons with oppositie, we expect aiv?, peak
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with lower absorption intensity, since one channel is atililable for the electronic tran-
sition. In order to test this hypothesis, we performed attlghding calculation within
small-crystal approach using the exact-diagonalizatoatvesie used for the Hubbard cal-
culations on (4,0) clusters. This allows us to have a direntrol on the number of input
electrons which are necessary for constructing the baists g multiparticle states and
the hamiltonian matrix. As usual with ED, we apply PBCs or AF3Bo0 samplé:, = 0
points withx even or odd. By increasing the number of input electronssitteof the ba-
sis set becomes smaller, because of the increased aveag®aocy of the sites. Hence
the hamiltonian and velocity matrices are smaller. In Fig46nve report ED optical ab-
sorption spectra with 2 and 4 electrons added to the systmpectively. By comparison
of these results with the TB spectra of Fig. 6.5 one can veg§pectively the partial
intensity reduction of théZ?, absorption peak when two electrons (with opposite spin)
added to the system and the total suppression when fourateare added, as expected.
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Fig. 6.14: Effect of electrochemical doping with two (upper )efhd four (upper right)
electrons on the tight-binding optical spectrum of clu¢4e®): the intensity of the lowest
energy peak is clearly reduced and suppressed. The origjiegitrum unaffected by
doping (bottom) is also shown for better comparison.

Besides pure electronic doping, the modeling of point defand their effects on the nan-
otube electronic structure is another relevant issue grsearch field. Since the elec-
tronic properties of SWNTs are deeply related with the dai@ation of ther-electron

system, one can actually tune the properties of the systeahbgsing the appropriate



132 CHAPTER 6. ELECTRONIC CORRELATION EFFECTS

type of modification affecting the system delocalization. Several characterizations of
nanotube point-defects have been performed experimgmtadl theoretical calculations
have confirmed that vacancies, topological defects suck@tatjon-pentagon pairs, sub-
stitutional impurities like B or N and lattice deformatiodse tosp* hybridized carbon
atoms saturated with hydrogen or oxygen can substantiallifmthe electronic density
of states of the system. For example, nitrogen-doped SWK paxticularly interesting
in nanotube chemistry, as they can be synthesized in large@irand because less dras-
tic reaction conditions can be adopted for the sidewall fionalization [228]. Moreover
since their first discovery they have been the subject ofrakétieeoretical investigation
concerning nanotube transport properties bothlbinitio and tight-binding methods (see
[229] and references therein).

In TBA, a point defect can be modeled by assigning to a pddiaite a value of the on-
site energy: .., which differs significatively from the values of other sitegich are set
by default to the same value (e.g. for SWNefs= 0€V) [227]. In this work we applied
the periodic SC approach both to N- and B-substituted zighasgers. When replacing a
C atom, B or N not only act as hole or electron dopants, respadgtbut also introduce
lattice distortions due to deviations of their atomic radand atomic number from those
of the C atom. This fact has to be carefully considered wheosimg the appropriate
TB parametrization for the defect site. The effect of a défe on-site energy has been
studied in the past [229], but only recently the effect offeedent hopping has been taken
into account [230]. However, we considered in adf B calculations only the change in
on-site energy ., related to the N (B) impurity. Assuming C on-site energy tabeo,
the local energy of a N occupied site should be modeled aginegaecause of the larger
atomic number of N if compared with C. On the contrary, for aubstitution, the on-site
energy is positive. The following values have been usedHherTiB parametrization of
the substitutional impuritys%; & = F0.525[¢7 | [230], thatise} j; = F1.5225 eV for
itZ, ™| = 2.9eV. The SC approach can be applied either via the classical L&@me,
as explained in Chapt.4, or the more computationally expertsD method, described
in the previous sections of this chapter. Experimentallypamal atomic impurity con-
centration is estimated to be abaljt, very high concentrations are aboi®’%. For
instance, in (5,0) SWNT with one unit cell cluster with one B) @tom every 20 sites,
we get an impurity concentration 6%, a quite strong doping condition. The electronic
band structures in Fig. 6.15 show clearly a weak overalhtifof the band degeneracies
due to the symmetry breaking of the lattice. These plots shaiveven for this strongly
doped system the electronic properties are dominated &yain = 0 states. Usually,
one of the main effects of the substitution of a C atom by atspecies with a different
number of valence electrons is the introduction in the DO&dafitional states. This can
be clearly seen for the nitrogen substitution in the DOSolgistm superimposed on the
plot for the perfect tube: the nitrogen state is located exiprately 150 t@200 meV be-
low the first van Hove singularity in the conduction band af tmdoped tube. Thus N
acts as a donor impurity and if ionization occurs such sendaoting tubes are defined
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asn-type. For the B substitution, the situation is symmetriaalthe acceptor level is lo-
cated one hundred meV above the first vHS in the valence bahid tre empty B states
are occupied holes are created at the edge of the valenceabdnithe semiconducting
tube isp-type (Fig. 6.16). This suggests that the SC optical spéatréne chosen cluster
are virtually the same for both heteroatoms. The exactiposif the nitrogen or boron
states depends in general on the diameter, helicity and euaitheteroatoms incorpo-
rated in the SWNT. The optical spectra for this system canlteimed by applying the
SOS method within one of the two methods described prewdus§lAO or ED scheme).
The optical absorption spectrum reported for cluster (@j@) a B impurity is reported in
Fig. 6.17, where one can recognize the appearance of atalitransition peaks around
the transition energy peak of the perfect tube. Becauseeofisle of periodic boundary
conditions and the use of cluster of different size, the S@@gch allow us to calculate
the electronic density of states by properly tuning the ctefencentration. In Fig. 6.18
the linear dependence on the impurity concentration of tieegy position of the donor
(acceptor) state with respect to the conduction (valersgglpitted for a (5,0) supercluster
with a number of unit cells between 1 and 10. The intercepg¢gihe conduction (va-
lence) band energy for the tube without impurity. AlthoudP+BB calculations provide
an oversimplified picture of the effects of defects on thetetamic structure of SWNTSs,
they can be useful for a basic interpretation of electrodbahspectra of substitution-
ally doped or functionalized nanotubes. Clead, initio calculations provide a more
accurate and realistic treatment of electronic chargeiyedsstribution and structural
deformation around the defected sites and are necessaayriore specific parametriza-
tion of the on-site energies for heteroatoms of differemtroltal species. Moreover, the
inclusion of electronic correlation effects accordinghie Hubbard model, will allow to
interpret the effects of the breaking of the lattice perdgliin the framework of the ex-
citonic picture for SWNTs. This will be however the subjetfudure investigations with
more refined theoretical and computational tools.

6.6 Conclusions, summary and future perspectives

In this chapter we presented the main experimental factshwgoint out for the presence
of relevant excitonic correlation effects in the opticaéspal features of single-walled
nanotubes. First the basic features, results and limitatad the currently available the-
oretical methods for treating excitonic effects in thesstems have been reviewed and
discussed. Where possible, attention was also paid to ffezadit parametrizations of
the Coulomb correlation strength adopted in these metraxifhis is a key parameter
for the comparison between experimental data and the cenesictalculations. In order
to overcome the limitations inherent to the currently afalg theoretical methods, we
considered the Hubbard model, one of the simplest and yet poegerful methods for
treating full many-body hamiltonians beyond mean field agpnation. In the central
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Fig. 6.15: Introduction of a point defect in zigzag cluster (5v@h one unit cell
(left: substitutional B atom withey = 1.52eV,right: substitutional N atom with
ey = —1.52eV) and its effects on the TB electronic band structure. Theallvhft-
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Fig. 6.16: Introduction of a point defect in zigzag cluster (5v@h one unit cell
(left: substitutional B atom witheg = 1.52eV; right: substitutional N atom with
ey = —1.52eV) and its effects on the TB electronic density of states (Ibliséogram)
compared to the DOS of the ideal tube (orange histogram).

part of this chapter we have showed how to apply the smaltargpproach to zigzag
clusters with a small number of sites (8 and 10 sites for (d:@) (5,0) SWNTSs) for the
exact diagonalization of the Hubbard hamiltonian and thematation of the one-photon
optical spectra for the relevat, k, = 0) points. Although our small crystal Hubbard
model was applied to such small test systems, for which remiigible curvature effects
were not taken into account, we could verify that the outecmndescription of the ex-
cited electronic energy levels is consistent with the SEl+Elsults obtained by Mazum-
dar for large diameter tubes. In particular, we were ablestdfywtwo main effects of the
introduction of the Coulomb correlations: the expectedebhift of the single-particle
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Fig. 6.17: Introduction of a point defect in zigzag cluster (40th one unit cell (substi-
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number of unit cell in the super-cluster (left: substitnabB atom, acceptor states; right:
substitutional N atom, donor states.

transition energies and the presence of a strong dipadeatl excited state, which is
found at the highest energy level in the first excited madife},. We showed that this
state is characterized by strong charge fluctuations ogehadensity waves for low and
intermediate correlation coupling strengths. Moreoves,could verify that the energy
spacings between thigight state and each of the two underlying dipole-forbidden state
are consistent with experimental measurements from plnoiokescence microscopy on
isolated SWNTSs. In the final part we also showed a prelimisargle-particle treatment
of electronic doping and the inclusion of point defects viaticeak the lattice periodicity.
These aspects are of fundamental importance for understatite electronic properties
of functionalized systems.

All these results point out for the validity of the approa@veloped in this thesis and the
necessity of performing calculations for larger size @ustin order to establish deeper
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and more accurate comparisons with experimental resultarfger diameter tubes. This
opens up the way for other interesting extensions and aifits, such as the treatment
of more complicated many body hamiltonians, including f@tance an electron-phonon
coupling term, triplet excitations, point defects and tbmputation of two-photon optical
absorption spectra, for both parallel and transversalrizalion of the light. Certainly,
all these developments would allow for an overall deepeetstdnding of the excitonic
properties of these systems.



Chapter 7

Summary and Conclusions

This thesis examined the theoretical aspects of the el@ctppoperties of carbon nan-
otubes which are necessary for a detailed understandirfge@&Xperimental optical fea-
tures of these systems and the relation with their geonagtsicucture. A real space
based method, callesimall crystal(SC) approach has been introduced for carrying on
electronic structure calculations with a minimal samplsigategy of reciprocal space
points. In this way, local symmetry breaking effects which asually difficult to con-
sider in reciprocal space can be handled more easily. Twao eagplications of this
method were shown in this thesis: orientation dependeeitirtie interactions in double-
walled nanotubes and Coulomb electron-electron coraglatiDoping and point defects,
which break the lattice periodicity of the nanotube, weratonsidered as additional
applications. In the following we summarize the key poimntd ¢he main conclusions of
this thesis and suggest future directions for further dgwalents.

In the first part of this work we introduced basic notions aboarbon nanotubes and
related graphitic nanostructures, including a generahaee of the most used experi-
mental characterization techniques and theoretical ndstfay electronic structure calcu-
lations and a whole chapter dedicated to nanotube geonmeteal and reciprocal space
(Chap. 1-2). From atheoretical point of view, nanotubetebsic structure in its simplest
approximation can be described on the basis of tight-bgndaiculation scheme carried
in reciprocal space, also called zone-folding scheme, hwhias reviewed in detail in
Chapt. 3. Matrix elements for electron-photon coupling lbambtained in this way, thus
allowing to simulate the optical absorption spectra of Engalled nanotubes (SWNTS).
By comparing experimental and theoretical Kataura plotsciwshow family patterns of
measured/calculated transition energies with nanotudraeter, a structural assignment
of nanotube chiralities to their optical signatures can tenapted. More refined tight-
binding methods which include curvature effects and tat@account optimized geome-
tries can actually improve the agreement between theatetitd experimental Kataura
plots of SWNTs of a wide diameter range.

However, in Chapt. 4 we pointed out that tight-binding cidtions carried in recip-
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rocal space usually find difficulties when considering loganmetry breaking in the
electronic structure. This is the case with orientationesiglent intertube interactions
in double-walled nanotubes and, more generally, Coulomttin-electron correlations
(as treated in the Hubbard model) and point defects in reatade systems, for which a
real space approach can accomplish these tasks more flekit@gmall crystal approach
allows to sample a finite set ofrelevant Brillouin zone points in reciprocal space start-
ing from a finite lattice oh sites (cluster) with appropriate periodic boundary cands,
which ensure that the obtained energy eigenvalues andstajes of the corresponding
Hamiltonian describe correctly the properties of an inéirsiystem with translational pe-
riodicity. After describing the SC approach applied to pdit chains withn sites, we
turned to finite-size graphene cluster in order to re-obtiaénelectronic band structure
of SWNTSs according to the tight-binding scheme. A full cependence between small
crystal approach and zone-folding method could be estadisn a general way. We
stressed the special case of zigzag nanotubes, in whichitlmalovavectors in the 1D
BZ giving both van Hove singularities and maximum absolategs of the optical matrix
elements are always found at the centre of the 1DBZL 0). This is a particularly con-
venient choice for performing hamiltonian diagonalizaiavith minimal computational
effort, both in the case of double-walled nanotubes and Hubtreatment of many-body
effects, because of the relatively small number of sitehienunit cell, due to the high
symmetry in geometrical structure. As a main result of Chdpthe optical absorption
profiles of a zigzag SWNT calculated from a full BZ samplinghwaone-folding method
and with onlyk, = 0 points considered by SC approach are actually the samer, as fa
the energy position and relative intensity absorption efttansition peaks are concerned.
In Chapt. 5 we showed the application of SC approach to thel@&renic structure cal-
culation of zigzag double-walled nanotubes (DWNTS), with possibility of changing
the mutual orientation of the walls along the azimuthal axdlalirections AP, AZ).
The orientational effects on the DWNT electronic structuage never been fully taken
into account in previous TB calculations for these systefg pairs (5,0)@(14,0) and
(9,0)0@(18,0) were selected, for which the highest symmgtsitions giving the most
stable geometrical configurations were considered, ascuptd both a symmetry-based
analysis and a total electronic energy calculation performed by SC approacke. eléc-
tronic density of states and optical absorption profilesveatculated for theseN®, A7)
positions and compared to those at default positidx® & 0, AZ = 0). Significative
changes in the spectral profiles were found, in particulamadntranslational shift parallel
to the tube axis was considered. Calculations were alsomeed for different values of
the intertube hopping strength, which all affected the ltegysprectra, although in dif-
ferent manner. The changes affected mostly the energy ianglging the £2* transition
energy for the outer tube and thg' transition energy for the inner tube. The appearance
of additional spectral features besides those recogrdatmn the constituent SWNTs
is explained with the lifiting of the band degeneracies duth&intertube hopping in-
teraction, which mixes inner and outer tube wavefunctidndight of these results the
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DWNT optical spectra cannot be simply considered the surhnebptical spectra of the
constituents, because of relevant effects related to teetube hopping strength and ge-
ometric correlations between the constituent walls. Thaspwaint out the necessity of
revising Kataura plots of DWNTSs, which have been constdiat&il now on the basis of
the hypothesis of negligible intertube interactions. Hesvethis step will require a more
accurate parametrization of the intertube hopping stremghich has not been obtained
yet by density functional methods, and the averaging of fhtecal absorption intensity
over all geometrical configurations, each with its own epgngbability weight.

In Chapt. 6 the issue of the electronic correlation effegtSWNTs was introduced on
the basis of the most relevant literature experimentalrigsti ratio problem and blueshift
of the single-particle transition energies. We also sunmadrthe current theoretical ad-
vances towards a deeper understanding of the excitoniarpi¢or these systems and
highlighted the limitations o&b initio methods in providing a full many-particle descrip-
tion of the problem. The Hubbard model was introduced withghrpose of performing
a full many-body calculation on SWNTSs, for which it was comfed that short-range
electron-electron repulsions play a dominant role in aeteing the optical features of
these systems. By choosing appropriate zigzag latticeerhusvith a sufficiently small
number of sites (less than a dozen) and applying (anti)gerezimuthal boundary con-
ditions, we showed how the small crystal approach allowstaig the Hubbard hamilto-
nian matrix for the usual selectéd = 0 critical points, including the Coulombian effects
as an effective pair interaction in real space. The SC dmigsorption spectra with the
many-body Coulomb interaction could then be obtained bypding the optical matrix
element from the velocity operator between the Hubbardmgistate and each of the low-
est energy eigenstates. We showed that this simple modelaaunt for the blueshift
of the single-particle transition energies and more ngtabuld reproduce the manifold
structure of the excited electronic states, as found in theS&I calculations by Mazum-
dar. Results for thé’!! and £2? dipole-allowed states were shown for several values of
the Coulomb interaction strength. In particular, our cidtian confirmed that the lowest
optically allowed state (bright) is found at the highestiee@energy level in the first man-
ifold starting from the ground state, as in Mazumdar’s pap&toreover, the calculated
energy spacings of the two underlying dark states from/Ahebright state were found
to be consistent with the measured PL values reported inentexxperimental paper
by Kiowski. The different correlation regimes were finallgclissed for supporting the
charge density wave pattern of thig! bright state and the all-singly occupied structure
of the E*2 bright state. We pointed out the severe limitations impdasaemmputer mem-
ory requirements needed for treating larger systems wikl@iHubbard model, due to the
exponential increase of the multiparticle basis size with number of sites in the sys-
tem. This limited our computer algebra implementation efékact diagonalization (ED)
method to consider periodic clusters with 8 and 10 siteq4f@) and (5,0) tubes. Further
advances towards a better and wider comparison with expatahand theoretical results
will be certainly possible if also larger diameter tubes barireated with more powerful
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algorithms and computer architectures. Besides exacbodagation for a larger set of
tubes, calculations can also be performed for other retepaysical observables, such
as two-photon absorption spectra, ED with triplet excitiedes and one-photon optical
absorption spectra for transversal polarization of thktlign the last section of Chapt.
6, we also reported some preliminary results of the appdinaif the TB-SC approach to
the investigation of doping effects on the electronic dtitee of SWNTSs, which will be
helpful for the interpretation of electrochemical specirdefected and/or functionalized
nanotubes.

In conclusion, on the basis of the present work we prospeth&small crystal approach
a wide range of promising developments in the field of thecsehanotube science.



Appendix A

Here we show how to obtain the form of the velocity operatoreipressing the optical
matrix elements of a periodic Hubbard chain wiithites in second quantization formal-
ism. Then the derivation will be extended to two-dimensigaiodic clusters, as those
considered in this work.

A.1 Velocity operator for a periodic Hubbard chain

Recall that the real part of the optical conductivityw) is directly proportional to the lin-
ear optical absorption coefficieat(w), hence it gives the optical absorption spectrum of
the system. Standard time-dependent perturbation thewey the Kubo formula for the
optical conductivity which is related to the equilibriumroent-current correlation func-
tion x (w) by the fluctuation-dissipation theorem. Here we omit foviiyethe deriva-
tion procedure, which is reported in standard many-bodilsthte textbooks, such as
[92, 97]. Here we just outline the fundamental steps in otdearrive at the definitions
of the current and velocity operator, as in Ref. [215, 216]je Tetarded current-current
correlation function is defined by

o i[53 0)] ) (A1)

~

wherej () is the Heisenberg current operator for the unperturbeesysthe current-
current correlation function can be spectrally decompasadrms of exact eigenstates
|n) and energy level&,, of the Hubbard hamiltonian.

- 1 1
V@ SO | ) A

As usual0) andE, denote the ground-state and the ground-state energyctaghe ~ is
a phenomenological positive broadening parameter of $wances at = + (E,, — Ey).
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The real part of the conductivity is thus given by

Re {0 ()} = Im{x o<2|n|j|o 5 (w— (B — Fo)) — 6 (w + (Ey — Fo))]

(A.3)
which is positive for allv.
With the aid of Heisenberg equation of motion, the currerdrafor; can be expressed
in terms of the following commutatdr

8P 1
ot h
where we have introduced the polarization operates —e Zl " chl ~ClLo- INaperiodic

linear chain withl sites and lattice spacing we halkg,; — R, = a, thus we can write
R; = la and the polarization operator becontes- —ca ", o l] oClo

The velocity operator is simply given by'e, thus by developing the commutator in Eq.
A.4 for the Hubbard chain we obtain

5= [P, H] , (A.4)

= [P/e H} (A.5)

T T T _
ti—a Z le) ,Cro, —1 Z (Cz+1,acl,o + Cl,aClJrl,O) +U Z nmnu] =
l,o l,o l
1
_ﬁat Z (chl’Ucl’U — C;JCHLC,)

l,o
Clearly, only the first term of the Hubbard hamiltonian cdnites to the velocity (cur-
rent) operator, since it describes a hopping from one siits toearest neighbor. THe
term contains only the position operatar,, which clearly commutes with itself, so its
contribution to the velocity operator is zero.

A.2 Velocity operator generalized to two-dimensional sys-
tems

Consider a general 2D infinite lattice specifieddgndb directions where, ; are the
unit vectors andi, anda, be the lattice parameters along these directions, respbcti
The position vector of any site in the 2D lattice is definedag, = (l,a,) i+ (lpap) j
Thus the polarization vector can be written as

P=—ea ) c i Cloipo |i(lata) + 5 (lbay)| - (A.6)

la,lb,a'

1We note that elsewhere the current operator can be founessgu in equivalent form with the com-
mutator of the hamiltonian and the position operéatef n; , = cj_acl,(,, as in Ref.[215]
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In order to write the form for the 2D tight-binding hamilt@m, in principle we have to
consider that there are two kinds of hopping parameterfiéa andb directions, namely
t, for hopping occurring between nearest-neighbor sitesgedadlirection (,a; position
is fixed), andt;, for hopping occurring between nearest-neighbor sitesgabodirection
(l,a, position fixed). Thus the tight-binding hamiltonian is camspd of two contributing
terms, each decoupled from the other

_ T i
Hy = Z —tq <Cla,lb,dcla+1vlb70' + Clo+t1,1y,0Caslb,0 + (A.7)
lavlbvg
—1 cT C +CT C
b\ “lg,1y,0%aslbt+1,0 la,lp+1,0%a,lp,0
la>lb>‘7

From this point on, we assume for simplicity that the systensotropic along both
directionsa andb, namelya, = a, = a andt, = t, = t. This is actually the case
considered in this thesis.

At this point we have to calculat%ﬁ/e, H} commutators of the general form

T T T
[Cl&,l/bﬂclfzvl;ﬂa’ (Cla,lbﬂclaJrl’lb"’ + Cla+17lb,acl“’lb’g>:| ’ (A8)
where the following cases have to be considered:
° l;:la, l;):lb = 5lgla:17 5%11):1.
.i.
Clo .0 Clat1,ly,0 — CzTa+1,zb,gcla,lb,a (A.9)
° l;:la—i—l, lg:lb = 5l{1la+1:]‘7 5l{)lb:1-
_Cg‘a,lb,o'cla""lvlbvo' + cja+1,lb,gclavlbva (Alo)
o =1, L=L+1 = 0y, =1, oute1 = 1.
T T
_Cla,lb,o'clllvlb+1va + cla,ler].,O'clanvU' (A'll)

One can notice that the above intermediate results in EqQ§-AALO) of the commutation
have all the same structure, so we can label them, oy 7, . Then the second quanti-
zation expressions for the velocity operators alarandb directions can be written in a
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more compact form as:

! ?
Vg = ﬁta Z I, 1, (5z;la5z'bzb - 5lgla+15z'bzb) = ﬁta Z I(l,—1l,—1)= (A12)

la»lbva la7lb70

? 1 T

B _ﬁm Z Clalp,o ClatLlp,0 ~ Clag1,0,0Clasly,0
la,lp,0
. 1
/
vy = ﬁta g Iy (5l;la5l’blb - 5l&la5121b+1) - ﬁm Z L=l =1)=(A13)

lo oo la,lp,0

[ Z + T
= _ﬁta (Cla,lb,O'Cl(l7lb+17U - Cla,le’,l,o-clan,O')



Appendix B

In the following we report for practical use the extendedrespions of the Hamiltonian
and velocityv, operators written in second quantization formalism forzamy clusters
(4,0) and (5,0) within (full unit cell) and2n sites with the proper boundary conditions.

B.1 Cluster (4,0) with4 n sites

Here translational periodic boundary conditions are uskdre/the phasenr < ¢ < 7
for sweeping the whole 1D BZ.

Fig. B.1: Cluster (4,0) within sites.

H = Z CLJCQ,U + exp (19) 02700370 + 027005,,, + (h.c.terms) + (B.1)

T

C3.5Ch0 T c;[,cw’a + clgcgw + cggcﬁ,a h.c.terms)

i i i
ChoCrio XD (10) Cg o Cr.0 + €1 4Cs.0

+(
+
02.7009,0 + 0;009,,, + 63061070 + (h.c.terms
+
+

|

+
h.c.terms) +

+

Cg 5Cl1,0 + choclgﬁ + exp (10) c{oyo_cu,g +

)
)

h.c.terms) +

h.c.terms
f L L L
€10,6€13,0 T C12,5C13,0 T €13 5C14,0 T €1 ;Cl4,0

0127001570 + 01570016,0 + exp (1) 0147001570- + c}aclﬁ,g + (h.c.terms)
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t 1 1
b= (—5) s XD (16) (1) h s+ 5650 + (hctorms)  (B.2)
=Tl

o=

1 1
+ (——> c;(,czl?a + (—§> cggcm,g + (—1) CLUC57O- + (—5) c;ac&g + (h.c.terms) +
L) i L\ i
5 € 5C1,0 + XD (19) (—1) Co.0CT,0 T ~3 Cp oC8,0 T (h.c.terms) +
1 1
(5) 0270097(, +(-1) 02700970 + <—§) c;acm,g + (h.c.terms) +

1 1
(—) ;0611,0 + (——) chaclgﬁ + exp (19) (—1) 01070011’0 + (h.c.terms) +

2 2
1 1 1
<§> L)’Uclg,g + (—1) 0127001370 + <—§> 01370014,0 + (—5) 17001470 + (h.c.terms) +
Ly s LY 4 f f
5 ) Cl2.0C150 + —5 ) Ci5.0C160 +exp (19) (1) c1y o C15.6 + (+1) €1 yC16,6 + (h.c.terms) .

B.2 Cluster (5,0) with4 n sites

Here translational periodic boundary conditions are uskdre/the phasenr < ¢ < 7
for sweeping the whole 1D BZ.

Fig. B.2: Cluster (5,0) within sites.
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H = Z 0100270 + exp (1) c;(,cg,a + c;,acg)’(, + (h.c.terms) + (B.3)
o=T.l
02;00470 + 0200570 + CE’O_CG’O— + (h.c.terms) +
0100770 + exp (1) 027007,0 + c;ﬂc&g + (h.c.terms) +
02700970 + 0270.0970- + 057001070 + (h.c.terms) +
cg,gcnva + chgcmﬁ + exp (1) c{opcup + (h.c.terms) +
0107001370 + 0127001370 + 0137001470 + (h.c.terms) +

¥ ¥ T T
Cl2.5C15,0 + Cl5 ,Cl6,0 + XD (10) €14 ,C150 + €1y 5C17,6 + (h.C.terms)
¥ 7 1 T
€1 5Cl8,0 + €1 5C20,0 + C3,5C20,0 + Clg ,C17,0 + (h.c.terms) +

f f f f
Ci6,0C19,0 T C17,5C18,0 + €XP (10) Clg o C19.0 + Cig oC20,0 + (h.C.terms) .

) 02700570 + (h.c.terms) +  (B.4)

N | —

it 1
’UZ = —E Z (_§> C-LO—CQ,O' _I_ eXp (Z¢) (_1) C;,chvo- + (
o=T,l

1 1
(—5) c§7ac470 +(—1) 010057(, + <—§> 0300670 + (h.c.terms) +

1 1
_CLUC?,U +exp (19) (—1) 0237007,0 =+ (——) C;JC&G + (h.c.terms) +

2 2
1 1
5027009,0 +(-1) 0;7009,0 + (—§> c;(,cw,g + (h.c.terms) 4+
1 1
50;0011’0 + (—§> chgclg,o + exp (19) (—1) cloﬁcu,g + (h.c.terms) +
LY i i L\ i
5 ) Cl0.0C13.0 + (1) clgpC13,0 + —5 ) CiseCiao + (h.c.terms) +

1 1 1
5012’001570 + (—5) 615’061670 +exp (20) (—1) 014,0015,0 + 5014,0017,(7 + (h.c.terms)

1 1
(—§> c}acl&a + (+1) 01]:7002070- + (—5) 03002070 +(-1) 01670017,5 + (h.c.terms) +

1 1 1
5016,001970 -+ (—5) 01770018,0 + exp (Z¢) (—1) 618,001970 + <—§) 01970620,5, + (h.c.terms) .
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B.3 Cluster (4,0) with 2n sites

Here azimuthal (anti)periodic boundary conditions areduseorder to samplé, = 0
points on cutting lines with, even (odd), where the phage= 0, ..., 2n7 for PBCs and
¢==m, ...,£(2n+ 1) 7 for APBCs.

Fig. B.3: Cluster (4,0) witl2n sites.

H=—t Z 01700270 + 02700370 + 02700570 + (h.c.terms) + (B.5)
o=T,1
03004,0 + 01’005,0 + cg,ocﬁ,o + (h.c.terms) +

02007,0 + cg’och, + c;’oc&g + (h.c.terms) +

exp (19) [ciac&a + C;O.C&U + C-{’UCﬁ’o— + exp (—1¢) [h.c.terms]

t 1 1
v, = —% —503002,0 + (—1) c;(,c:;,a + 502700570 — (‘h.c.terms) +  (B.6)
o=T,l
L) i L\ i
=5 ) GoCro + (1) 3,050 + —5 ) Guos — (h.c.terms) +

1 1
501,007,0 +(=1) CI;,UC?,U + (—5) C;,Uc&g — (h.c.terms) +

1 1
exp (1) [(—H) cLGc&U + (—5) c;(,c&a + <—§) 6106670] — exp (—¢) [h.c.terms] .
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B.4 Cluster (5,0) with 2n sites

Here azimuthal (anti)periodic boundary conditions areduseorder to samplé, = 0
points on cutting lines with, even (odd), where the phage= 0, ..., 2n7 for PBCs and
¢==m, ...,£(2n+ 1) 7 for APBCs.

Fig. B.4: Cluster (5,0) witl2n sites.

H=—t Z cigcg’o + c;(,cgﬂ + 62700570 + (h.c.terms) + (B.7)
o=T1,l
0300470. + 0200570 + cggc(w + (h.c.terms) +

clgcw + 02700770 + C;UC&U + (h.c.terms) +

02,00970 + 02,00970 + 03001070 + (h.c.terms) +

exp (19) [CLJC&U + 0170010,0 + cgacloﬁ] + exp (—¢) [h.c.terms] .

12 1 1
v == Z —503002,0 +(—1) c;Uc&g + 5027005,0 — (h.c.terms) +  (B.8)
o=l

1 1
(——) 03004,0 +(—1) 01700570 + (—5) cg,ac&g — (h.c.terms) +

[\]

1 1
501007,0 +(=1) Cg,gczg + (—5) c;ac&g — (h.c.terms) +

1 1
502‘,009,0 +(=1) 05,009,0 + (—§> C;Ucloyg — (h.c.terms) +

1 1
exp (19) {(—5) c}o_c&a +(—1) c}o_clo,a + (—5) cgﬂclo,a] — exp (—¢) [h.c.terms] .
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