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Summary

In this work, we consider the problem of finding, among the solutions of a generalized
moment problem à la Byrnes/Georgiou/Lindquist, the best approximation to a given
spectrum, with respect to different notions of distance. After an in-depth discussion
of the moment problem in question, we first review the scalar spectrum approxima-
tion in the Kullback-Leibler metric. Then we pose and solve a similar problem with
respect to the Hellinger distance. We show that the latter distance admits a nice
extension to the case when multivariate spectra come into play, and we solve the re-
sulting, generalized approximation problem. Finally, we present in detail a matricial
version of the Newton algorithm designed to solve the corresponding dual problem,
that eventually leads to an useful solution, and provide an application to multivariate
spectrum estimation, testing it against well-known identification methods.

This work contains the result of three years of collaboration between my advisors Au-
gusto Ferrante and Michele Pavon, and me. In essence, it is an assembly of four papers
we have written together, namely [22], [21], [20], and [51], with minor corrections and
improvements. Without their teaching, support, and continuous encouragement, I
would have published nothing, and this thesis would consist of a few blank pages.
For the time spent together, to them goes my gratitude.

Also, we wish to thank Prof. Anders Lindquist and Prof. Tryphon Georgiou for an en-
during, enlightening correspondence that helped us develop our results, and for their
willingness to suggest and discuss these subjects during the time they were in Padova.

Padova, January 20, 2009

Federico Ramponi
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Chapter 1

A generalized moment problem

1.1 Introduction

1.1.1 Previous work of the Byrnes, Georgiou and Linquist
school

ARMA identification methods usually lead to nonconvex optimization problems for
which global convergence is not guaranteed, cf. e.g. [43, 55, 56, 17]. Although these
algorithms are simple and perform effectively, as observed in [56, p.103], [42, Section
1], no theoretically satisfactory approach to ARMA parameter estimation appears to
be available. Alternative, convex optimization approaches have been recently pro-
posed by Byrnes, Georgiou, Lindquist and co-workers [6, 36] in the frame of a broad
research effort on analytic interpolation with degree contraint, see [3, 5, 8, 9, 10, 11,
12, 7, 18, 28, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35] and references therein. In particular,
[7] describes a new setting for spectral estimation. The so-called THREE algorithm
introduced there appears to allow for higher resolution in prescribed frequency bands
and to be particularly suitable in case of short observation records. It effectively
detects spectral lines and steep variations (see [47] for a recent biomedical applica-
tion). An outline of this method is as follows. A given realization of a stochastic
process (a finite collection of data y1...yN) is fed to a suitably structured bank of
filters, and the steady-state covariance matrix of the resulting output is estimated
by statistical methods. Only zeroth-order covariance lags of the output of the filters
need to be estimated, ensuring statistical robustness of the method. Finding now an
input process whose rational spectrum is compatible with the estimated covariance
poses naturally a Nevanlinna-Pick interpolation problem with bounded degree. The
solution of this interpolation problem is considered as a mean of estimating the spec-
trum. A particular case described in the paper is the maximum differential entropy
spectrum estimate, which amounts to the so-called central solution in the Nevanlinna-
Pick theory. More generally, the scheme allows for a non constant a priori estimate
Ψ of the spectrum. The Byrnes-Georgiou-Lindquist school has shown how this and
other important problems of control theory may be advantageously cast in the frame
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4 CHAPTER 1. A GENERALIZED MOMENT PROBLEM

of convex optimization. These problems admit a finite dimensional dual (multipliers
are matrices!) that can be shown to be solvable. The latter result, due to Byrnes
and Lindquist [12] (see also [20]) is, however, nontrivial since the optimization occurs
on an open, unbounded set of Hermitian matrices. The numerical solution of the
dual problem is also challenging [7, 18, 46], since the gradient of the dual functional
tends to infinity at the boundary of the feasible set. Finally, reparametrization of the
problem may lead to loss of global concavity, see the discussion in [34, Section VII].

This work adds to this effort in that we consider estimation of a multivariate
spectral density in the spirit of THREE [7], but employing a different metric for the
optimization part, namely the Hellinger distance as in [21]. In papers [10, 11], Byrnes,
Gusev and Lindquist chose the Kullback-Leibler divergence as a frequency weighted
entropy measure, thus introducing a broad generalization of Burg’s maximum entropy
method. More recently, this motivation was supported by the well-known connection
with prediction error methods, see e.g. [57, 42]. In the multivariable case, a Kullback-
Leibler pseudodistance may also be readily defined [30] inspired by the von Neumann’s
relative entropy [60, 59] of statistical quantum mechanics. The resulting spectrum
approximation problem, however, leads to computable solutions of bounded McMillan
degree only in the case when the prior spectral density is the identity matrix [30, 21]
(maximum entropy solution). On the contrary, with a suitable extension of the scalar
Hellinger distance introduced in [21], the Hellinger approximation generalizes nicely
to the multivariable case for any prior estimate Ψ of the spectrum.

1.1.2 A generalized moment problem and the search for a
solution

The method we propose to estimate a multivariate spectrum relies on the solution of
a constrained spectrum approximation problem. Let us explain in simple words what
this means.

Consider the following situation: a discrete-time, wide-sense stationary, m-dimensional
random process y is fed to an asymptotically stable system with transfer function
G(z) = (zI − A)−1B. The asymptotic state covariance matrix of the system will be:

Σ =

∫ π

−π
G(ejϑ)Φ(ejϑ)G>(e−jϑ)

dϑ

2π
(1.1)

where Φ is the spectrum of y. We consider the following moment problem:

Given G and Σ, find a spectral density Φ for which (1.1) holds.

Moment problems are generally considered as “inverse” problems (where the term
“inverse” stems from the observation that the simple computation of Σ, given G and
Φ, should be regarded as “direct”). Recall that a problem is said to be well posed, in
the sense of Hadamard, if the following properties hold:

• a solution to the problem exists;
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• such solution is unique;

• the solution depends continuously on the data.

Inverse problems such as the one we are considering (where “data” means the pair
G, Σ) are typically not well posed. In particular, there may be no solution, and when
a solution exists, usually there are infinitely many.

Thus, given (G, Σ), the question arises as whether there are solutions Φ to (1.1),
and if this is the case, to find and eventually parameterize the family of such solutions.
Being geared toward system-theoretic applications, we further ask whether rational
solutions exist and, moreover, if the complexity of such solutions (their MacMillan
degree) can be bounded a priori. A full answer to these questions has been given by
Georgiou, Lindquist and their collaborators.

Let us change our point of view from a theoretical to a practical perspective.
Suppose that we can choose G(z) = (zI − A)−1B, with the only constraints of A
being a stability matrix and (A,B) being reachable. Here G(z) models a bank of
filters. Now a realization of the system with transfer function G(z) is “physically
there”, and we feed it with a finite chunk of the process y, say {y1, ..., yN}. Observing
the states of the system, say {x1, ..., xN}, we then compute a Hermitian and positive
definite estimate Σ̂ of the asymptotic state covariance. Given G, our question is now
how to exploit the estimated Σ̂ to make inferences about the true spectrum Φ of y.
That is, we want to provide an estimate of Φ, taking into account that the state
variance we have obtained is Σ̂. The issues are manifold:

1. The set of the Σ’s for which a solution exists is, in general, a thin set. Therefore,
if we set Σ = Σ̂, (1.1) will be usually unfeasible. Thus, we need to find a second
estimate Σ̄, near to the first, that belongs to this set.

2. Having done so, the solutions Φ to problem (1.1) with Σ = Σ̄ will however be
infinitely many. Thus, in order to make inferences about Φ, we will have to
choose one solution Φ̂, satisfying some optimality criterion, and elect it as an
estimate of Φ.

3. Moreover, for practical purposes we require this particular solution to be rational
and with bounded degree.

4. Finally, we may ask if tuning G(z) we can somehow obtain better inferences
about Φ.

This work is mainly devoted to the second issue, and precisely to a suitable choice
of the optimality criterion.

One more or less obvious such choice is the maximum entropy principle. Adding
milestones to a path that was pioneered by Burg, in [27] Georgiou has provided an
explicit expression for the spectrum Φ̂ that exhibits maximum entropy rate among the
solutions of (1.1), when they exist.
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But, following [34], let us add another ingredient to the problem. Suppose that
some information about Φ becomes available under the form of a prior spectrum Ψ.
That is, suppose we are said that the spectrum Ψ is “near” to Φ, for some notion
of distance. Now given G, Σ, and Ψ, we search the spectrum Φ̂, which is closest
to Ψ, among the solutions of (1.1). In the following we choose this as the optimality
criterion, and we call the search for such a solution a spectrum approximation problem,
subject to the constraint (1.1).

The paper [34] poses and solves a variational problem in this very spirit. It deals
with the case when y is a scalar process, and employs the minimization of the Kullback-
Leibler pseudo-distance from Ψ to Φ as the optimality criterion. This approach has
relevant advantages, namely that it leads to a simple, rational expression for the
optimal solution, and with bounded degree. Moreover, it admits Georgiou’s maximum
entropy solution as a particular case (Ψ ≡ 1, when y is scalar). But it has a major
drawback: For any notion of multivariable extension of the Kullback-Leibler pseudo-
distance that can be regarded as “natural”, the analysis that is proposed there seems
impossible to be carried through. That is, this approach cannot be employed in the
multivariate case.

The main contribution of this work, which in essence is a rewriting of papers [21]
and [51], is a multivariable extension of another metric, namely the Hellinger distance,
in which the variational analysis can be carried through, and is relatively simple. The
spectrum Φ̂ which is closest to Ψ with respect to this distance is again rational, and
with bounded degree.

1.1.3 Structure of the work

The rest of Chapter 1 contains a more precise statement of the moment problem in
question, and some properties of the vector space of the matrices Σ for which it admits
solutions.

Chapter 2 presents a review of spectrum approximation in the Kullback-Leibler
pseudo-distance, and an explanation of why is difficult to extend it to the multivariable
case.

Chapter 3 introduces the Hellinger distance, and presents the variational analysis
that leads to the minimizing spectrum both in the scalar and in the multivariable case.
In either setting, however, the optimal spectrum depends on the Lagrange parameter
Λ. To meet the constraint (1.1) and come to a true solution, one must pursue the
solution of the dual problem, which is now finite-dimensional.

Chapter 4 contains a detailed description of a matricial version of the Newton
algorithm suited to solve the dual problem.

Finally, Chapter 5 presents an application to multivariable spectrum estimation,
tests it through simulation, and deals in some measure with the first and fourth issues
of the previous section, namely the choice of a suitable estimate of Σ and the tuning
of G(z).
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1.2 A generalized moment problem

We consider the following basic set-up patterned after [27, 34, 30]. Let Sm×m+ (T) be
the family of bounded, coercive, Cm×m-valued spectral density functions on the unit
circle. Thus, a measurable, bounded matrix valued function Φ belongs to Sm×m+ (T) if
it satisfies the following properties:

• the values of Φ are m×m, Hermitian, non negative definite matrices;

• there exists a positive constant cΦ such that Φ(eiϑ)− cΦI is positive definite a.e.
on T.

Notice that Φ ∈ Sm×m+ (T) if and only if Φ−1 ∈ Sm×m+ (T). Let Ψ ∈ Sm×m+ (T) represent
an a priori estimate of the spectrum of an underlying zero-mean, wide-sense stationary
m-dimensional stochastic process {y(n), n ∈ T}. We consider a rational transfer
function

G(z) = (zI − A)−1B, A ∈ Cn×n, B ∈ Cn×m, (1.2)

where A is a stability matrix, B is full column rank, and (A,B) is a reachable pair.
Suppose moreover that we know the asymptotic state covariance Σ > 0 of the system
with transfer function G and input the unknown process y. In other words, we suppose
we know the covariance of the n- dimensional stationary process {xk; k ∈ T} satisfying

xk+1 = Axk +Byk, k ∈ T. (1.3)

In general, Ψ is not consistent with Σ, and it is necessary to find Φ in Sm×m+ (T) that
is closest to Ψ in a suitable sense among spectra consistent with Σ, namely satisfying∫

GΦG∗ = Σ, (1.4)

where star denotes transposition plus conjugation. Here, and throughout the work,
integration takes place on [−π, π] with respect to the normalized Lebesgue measure
dϑ/2π, i.e.: ∫

f :=

∫ π

−π
f(ejϑ)

dϑ

2π

The question of existence of Φ ∈ Sm×m+ (T) satisfying (1.4) and, when existence is
granted, the parametrization of all solutions to (1.4), may be viewed as a generalized
moment problem.

Here, “generalized” stands for the fact that the classical moment problem, where
we search Φ ∈ S1×1

+ (T) under constraints on its moments
∫

Φ,
∫

ejϑΦ,
∫

e2jϑΦ, ...,
is a particular case of this. More precisely, in the case m = 1, take G(z) with k-th
component Gk(z) = zk−n−1. Take moreover



8 CHAPTER 1. A GENERALIZED MOMENT PROBLEM

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

 , B =


0
0
...
0
1

 ,

Σ =



c0 c1 c2 . . . cn−1

c̄1 c0 c1
. . . cn−2

c̄2
. . . . . . . . . . . .

...
. . . . . . . . . . . .

c̄n−1 c̄n−2
. . . . . . c0


,

(1.5)

where ck := E{y(n)ȳ(n + k)}. This is the covariance extension problem, where
the information available on the process y is the finite sequence of covariance lags
c0, c1, . . . , cn−1. It is known that the set of densities consistent with the data is
nonempty if Σ ≥ 0 and contains infinitely many elements if Σ > 0 (see for instance
[37]).

As another example, again in the case m = 1, take Gk(z) = 1
z−pk

, or

A =


p1 0 0 . . . 0
0 p2 0 . . . 0
...

...
. . .

...
0 0 0 . . . 0
0 0 0 . . . pn

 , B =


1
1
...
1
1

 (1.6)

where the pi’s lie inside the unit circle, and let Σ be the Pick matrix with elements

Σi,j =
wi + w̄j
1− pip̄j

where

wk =
1

4π

∫ π

−π

e−iθ + pk
e−iθ − pk

Φ(eiθ)dθ, k = 1, 2, . . . , n.

In this case the problem is a Nevanlinna-Pick interpolation problem. Solutions exist
if and only if Σ ≥ 0, and the solution is unique if and only if Σ is singular.

1.2.1 Existence of solutions

Existence of Φ ∈ Sm×m+ (T) satisfying constraint (1.4) is a nontrivial issue. It was
shown in [28] that such family is nonempty if and only if there exists H ∈ Cm×n such
that

Σ− AΣA∗ = BH +H∗B∗, (1.7)
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or, equivalently, the following rank condition holds:

rank

(
Σ− AΣA∗ B

B∗ 0

)
= 2m. (1.8)

Remark 1.2.1 Since we develop our theory under the assumption that Σ > 0, without
loss of generality we can always assume Σ = I. Indeed, if Σ 6= I, it suffices to replace
G with G′ := Σ−1/2G and (A,B) with (A′ = Σ−1/2AΣ1/2, B′ = Σ−1/2B). Thus,
throughout the rest of the work, (1.4) will read∫

GΦG∗ = I. (1.9)

We wish to give an alternative formulation of the existence result (1.7). Let ΠB =
B(B∗B)−1B∗ denote the orthogonal projection onto RangeB.

Proposition 1.2.2 A necessary and sufficient condition for the existence of spectra
in Sm×m+ (T) satisfying (1.9) is that the following relation holds

(I − ΠB) (I − AA∗) (I − ΠB) = 0. (1.10)

When (1.10) is satisfied, there exists Φ ∈ Sm×m+ (T) satisfying (1.9) of McMillan degree
less than or equal to 2n.

Proof. Necessity: Suppose there exists y m-dimensional, wide-sense stationary with
spectral density Φ ∈ Sm×m+ (T) satisfying (1.9). Let x be defined by (1.3). Taking
covariances on both sides of (1.3), we get

I = AA∗ + AE{xky∗k}B∗ +BE{ykx∗k}A∗ +BE{yky∗k}B∗.

Now taking AA∗ to the left-hand side of the equation, and pre- and post-multiplying
each side by (I − ΠB), we obtain (1.10).
Sufficiency: We adapt the argument in [27, p.1814]. For a given purely non determin-
istic m-dimensional process y with spectrum Φ, define the process w as the output of
the linear stable system

xk+1 = Axk +Byk,

wk = (B∗B)−1B∗xk+1

(1.11)

Inverting the system (1.11), we get

xk+1 = (I − ΠB)Axk +Bwk,

yk = −(B∗B)−1B∗Axk + wk.
(1.12)

Write (1.10) as a Lyapunov identity

I = (I − ΠB)AA∗ (I − ΠB) + ΠB. (1.13)
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Since (A,B) is controllable, so is the pair
(
(I − ΠB)A,B(B∗B)−1/2

)
. It now follows

from (1.13) that (I −ΠB)A has all eigenvalues in the open unit disc D. Thus, system
(1.12) is stable, (B∗B)−1B∗G(z) is minimum phase and the processes y and w are
causally equivalent. It follows that if we choose w to be a white noise sequence with
intensity E{wkw∗k} = (B∗B)−1 and y to be defined by (1.12) then:

1. (1.12) is the innovation representation of y;

2. the state covariance of the steady-state Kalman filter (1.12) satisfies the Lya-
punov equation (1.13) and is therefore the identity;

3. the spectral density of y is given by

Φy = W (z)(B∗B)−1W (z)∗, (1.14)

where
W (z) = I − (B∗B)−1B∗A (zI − (I − ΠB)A)−1B,

is the transfer function of (1.12).

We conclude that if we feed G in (1.11) with such a process y, the filter state x will
have the required covariance, namely the identity matrix, and (1.9) will be satisfied.
Moreover, Φy is rational of McMillan degree at most 2n and it belongs to Sm×m+ (T)
since its values and the values of Φ−1

y on T are positive definite matrices.

The geometric condition (1.10) seems more amenable to generalization than (1.8).
The spectrum (1.14) has been shown in [27, Section III] to be the maximum entropy
spectrum among those satisfying (1.9). This is there accomplished in a clever way,
by relating the constrained maximum entropy problem to a special one-step-ahead
prediction problem.

1.3 Feasibility and the operator Γ

In this section, we discuss in depth the feasibility of (1.4). We adopt the following
notation for the vector space of all the n× n Hermitian matrices:

H(n) := {M ∈ Cn×n : M = M∗}. (1.15)

Let C(T;H(m)) be the space of H(m)-valued continuous functions defined on the unit
circle, and let the operator Γ : C(T;H(m))→ H(n) be defined as follows:

Γ(Φ) :=

∫
GΦG∗ (1.16)

We are interested in the range of the operator Γ which, having to deal with Hermitian
matrices, we consider as a vector space over the reals.
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Proposition 1.3.1 The following facts hold:

1. Let Σ = Σ∗ > 0. The following are equivalent:

• There exists H ∈ Cm×n such that identity (1.7) holds.

• There exists Φ ∈ Sm×m+ (T) such that
∫
GΦG∗ = Σ.

• There exists Φ ∈ C(T;H(m)), Φ > 0 such that Γ(Φ) = Σ.

2. Let Σ = Σ∗ (not necessarily positive definite). There exists H ∈ Cm×n such that
identity (1.7) holds if and only if Σ ∈ Range Γ.

3. X ∈ Range Γ⊥ if and only if G∗(ejϑ)XG(ejϑ) = 0 ∀ϑ ∈ [0, 2π].

Proof. As stated above, it was proved in [28] that there exists H ∈ Cm×n such that
identity (1.7) holds with Hermitian and positive definite Σ if and only if Σ =

∫
GΦG∗

for some Φ ∈ Sm×m+ (T), Φ > 0. The proof of Fact 1 is straightforward once we
note that the “if” part of the proof of Proposition 1.2.2 is constructive, and exhibits
a continuous spectrum. Hence, the fact that there exists a spectrum Φ such that
Σ =

∫
GΦG∗ is equivalent to there exists a continuous spectrum such that the same

holds.
As for the second assertion, let Σ ∈ Range Γ. Then there exists Φ ∈ C(T;H(m))

such that

Σ =

∫
GΦG∗ =

∫
G(Φ+ − Φ−)G∗

=

∫
GΦ+G

∗ −
∫
GΦ−G

∗ = Σ+ − Σ−

where Φ+ and Φ− are two spectra such that Φ+ − Φ− = Φ (they can be chosen to
be bounded away from zero) and where Σ+ and Σ− are symmetric positive definite.
Hence Σ is a difference of positive matrices for which (1.7) holds. This establishes
(1.7) for Σ itself. Vice versa, suppose that (1.7) holds for an Hermitian Σ. Let Σα be
the unique solution of the following Lyapunov equation:

Σα − AΣαA
∗ = B (αB∗) + (αB∗)∗B∗ = 2αBB∗

where α ∈ R. Then Σα depends linearly upon α, i.e. Σα = αΣ1, where Σ1 > 0 since
(A,B) is reachable. Thus, there exists an α such that Σα > 0 and Σα > Σ. Let
Σ− = Σα − Σ. Then Σ− > 0, and since (1.7) holds for Σ and Σα, it also holds for
Σ−. Then assertion 1 implies that there exist Φα > 0 and Φ2 > 0 in C(T;H(m)) such
that Σα =

∫
GΦαG

∗ and Σ− =
∫
GΦ2G

∗, hence Σ =
∫
G(Φα−Φ2)G∗ and assertion 2

follows.
The third assertion is a simple geometrical fact: If X ∈ Range Γ⊥, then for any

Φ ∈ C(T;H(m))

0 =

〈
X,

∫
GΦG∗

〉
= trX

∫
GΦG∗ = tr

∫
(G∗XG)Φ

and the conclusion follows.
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Remark 1.3.2 The underlying statement in Proposition 1.3.1, Facts 1 and 2, is that
if we defined Γ over the vector space of finite linear combinations of functions in
Sm×m+ (T), its range would remain the same. Let us restate this in another way. Let
Γ be an extension of Γ to spanSm×m+ , defined exactly as in (1.16). Given a spectrum
Φ ∈ spanSm×m+ (recall that this implies that Φ is bounded), there exists a uniformly
bounded sequence of continuous functions {Φn

c } ⊂ C(T;H(m)) that converges to Φ in
the L1 topology. Then there exists a subsequence {Φni

c } that converges to Φ pointwise,
and by dominated convergence it holds limi→∞ ||Γ(Φni

c ) − Γ(Φ)|| = 0. Thus, any
Σ ∈ Range Γ̄ is a limit point of Γ(C(T;H(m))) ≡ Range Γ. But Range Γ, being finite
dimensional, hence closed, already contains all its limit points.

Remark 1.3.3 Proposition 1.3.1 shows that Range Γ is the set of all the Hermitian
matrices Σ for which there exists H such that (1.7) holds. This fact will be useful
in numerical computations. Indeed, Range Γ is obviously finite-dimensional, and if
{H1, ..., HN} is a base of Cm×n, then the corresponding solutions {Σ1, ...,ΣN} of (1.7),
considered as a discrete-time Lyapunov equation in the unknown Σ, generate Range Γ.
Note that {Σ1, ...,ΣN} are not necessarily linearly independent.



Chapter 2

Approximation in the
Kullback-Leibler distance

2.1 Scalar spectrum approximation

In [34], the Kullback-Leibler measure of distance for spectra in S+(T) := S1×1
+ (T) was

introduced:

D(Ψ‖Φ) =

∫
Ψ log

(
Ψ

Φ

)
.

As is well known, this pseudo-distance originates in hypothesis testing, where it repre-
sents the mean information for observation for discrimination of an underlying prob-
ability density from another [41]. It also plays a central role in information theory,
identification, stochastic processes, etc., see e.g. [39, 16, 15, 23, 2, 13, 59, 50] and
references therein. It is also known in these fields as divergence, relative entropy,
information distance. etc. If ∫

Φ =

∫
Ψ,

we have D(Ψ‖Φ) ≥ 0. The choice of D(Ψ‖Φ) as a distance measure, even for spectra
that have different zeroth moment, is discussed in [34, Section III]. It is observed
there that the constraint (1.4) often fixes the zeroth Fourier coefficient of feasible
spectra (this happens for sure when A is singular). In that case, rescaling Ψ, we
are guaranteed that the index is nonnegative and equal to zero if and only if the
two spectra are equal. T. Georgiou has kindly informed us that even when A is
nonsingular, under a rather mild assumption, it is possible to modify the index so
that all Φ satisfying the constraint have the same zeroth moment. In any case, the
method entails a rescaling of the a priori density Ψ, so that the optimization problem
amounts to approximating the “shape” of the a priori spectrum. This is of course
sensible to pursue in several engineering applications such as speech processing.

We mention that, in the same spirit, Georgiou has very recently investigated other
distances for power spectra, [32, 33]. Motivated by classical prediction theory, where

13
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the optimal one step ahead predictor does not depend on the L1 norm of the spec-
trum, he seeks natural distances between rays of spectral densities. Considering the
degradation of performance when an optimal predictor for one stochastic process is
employed to predict a different stochastic process, he is naturally led to introduce a
certain metric on rays.

Note that minimizing Φ → D(Ψ‖Φ) rather than Φ → D(Φ‖Ψ) is unusual with
respect to the statistics-probability-information theory world. Besides leading to a
more tractable form of the optimal solution, however, it also includes as special case
(Ψ ≡ 1) maximization of entropy [27]. In [34], the following problem is considered:

Problem 2.1.1 Given Ψ ∈ S+(T), find Φ̂ that solves

minimize D(Ψ‖Φ)

over

{
Φ ∈ S+(T) |

∫
GΦG∗ = I

}
.

(2.1)

Remark 2.1.2 In the context of the covariance extension problem (1.5), the mini-
mizers in Problem 2.1.1, when Ψ ranges over positive trigonometric polynomials of
degree n, are precisely the coercive spectra consistent with the first n covariance lags
and of degree at most 2n, [10, 11, 24, 25]. This illustrates the role of the “a priori
parameter” Ψ in obtaining a description of all solution to the moment problem of
prescribed complexity.

2.1.1 Optimality conditions

Consider Problem 2.1.1. With minor notational differences, the variational analysis
in [34] is outlined as follows (see also [49]). Let

LKL := {Λ ∈ H(n) | G∗ΛG > 0,∀eiϑ ∈ T}. (2.2)

For Λ ∈ LKL, consider the Lagrangian function

L(Φ,Λ) = D(Ψ‖Φ) +

〈
Λ,

∫
GΦG∗ − I

〉
= D(Ψ‖Φ) + tr

(
Λ

(∫
GΦG∗ − I

))
= D(Ψ‖Φ) +

∫
G∗ΛGΦ− tr(Λ)

(2.3)

Consider the unconstrained minimization of the strictly convex functional L(Φ,Λ):

minimize{L(Φ,Λ) | Φ ∈ S+(T)} (2.4)

This is a convex optimization problem. The variational analysis yields the following
result.
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Theorem 2.1.3 The unique solution Φ̂ to problem (2.4) is given by

Φ̂ =
Ψ

G∗ΛG
. (2.5)

Moreover, suppose Λ̂ ∈ LKL is such that∫
G

Ψ

G∗Λ̂G
G∗ = I. (2.6)

Then Φ̂ given by

Φ̂ =
Ψ

G∗Λ̂G
(2.7)

is the unique solution of the approximation Problem (2.1.1).

Thus, the original Problem 2.1.1 is now reduced to finding Λ̂ ∈ LKL satisfying (2.6).
This is accomplished via duality theory. Consider the dual functional

Λ 7→ inf{L(Φ,Λ) | Φ ∈ S+(T)}.

For Λ ∈ LKL, the dual functional takes the form

Λ 7→ L

(
Ψ

G∗ΛG
,Λ

)
=

∫
Ψ logG∗ΛG− tr(Λ) +

∫
Ψ. (2.8)

Consider now the maximization of the dual functional (2.8) over LKL. Let, as in [34],

JΨ(Λ) := −
∫

Ψ logG∗ΛG+ tr(Λ) (2.9)

The dual problem is then equivalent to

minimize {JΨ(Λ) | Λ ∈ LKL}. (2.10)

The dual problem is also a convex optimization problem. In [34], Λ is further restricted
to belong to the range of the operator Γ defined in section 1.3 (equation (1.16)). The
problem then becomes

minimize {JΨ(Λ) | Λ ∈ LKLΓ } (2.11)

where
LKLΓ := LKL ∩ Range Γ. (2.12)

The reason for this is that, in the Lagrangian (2.3), the term
∫
GΦG∗ between brackets

belongs to Range Γ by construction, while I belongs to Range Γ by the feasibility
assumption. Then it is natural, though not strictly necessary, to restrict also Λ to
Range Γ, thus excluding any component belonging to Range Γ⊥. It should be clear
from fact 3 in Proposition 1.3.1 that any such component would not play any role in
the Lagrangian.

The functional JΨ is shown in [34] to be strictly convex on the restricted domain
LKLΓ . It is also shown in [12] that JΨ has a unique minimum point in LKLΓ . This
result implies that, under the feasibility assumption, there exists a (unique) Λ̂ in LKLΓ

satisfying (2.6). Such a Λ̂ then provides the optimal solution of the primal problem
(2.1.1) via (2.7).
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2.2 An existence theorem

In [34] the existence of a minimum of JΨ on LKLΓ is established resorting to a profound
homeomorphism result for continuous maps between open, connected sets of the same
dimension. In this section we want to show a different proof, based on less abstract
results.

Let us consider the closure of LKL, given by

LKL = {Λ = Λ∗ ∈ Cn×n : G∗ΛG ≥ 0,∀eiϑ ∈ T},

and the closure of LKLΓ , given by

LKLΓ = LKL ∩ Range Γ (2.13)

On the convex set LKLΓ , we define the sequence of functions

JΨ
n(Λ) := tr(Λ)−

∫
Ψ log

(
G∗ΛG+

1

n

)
. (2.14)

Lemma 2.2.1 The pointwise limit JΨ
∞(Λ) = limn JΨ

n(Λ) exists and defines a lower

semicontinuous, convex function on LKLΓ with values in the extended reals.

Proof. For each n, JΨ
n is a continuous, convex function on the closed convex set

LKLΓ . Hence epi (JΨ
n), the epigraph of JΨ

n, is a closed, convex subset of Cn×n × R.

Moreover, for Λ ∈ LKLΓ , JΨ
n(Λ) < JΨ

n+1(Λ). Hence, JΨ
∞ is well defined and in fact

JΨ
∞(Λ) = supn JΨ

n(Λ). It follows that epi (JΨ
∞) = ∩n epi (JΨ

n) is also closed and

convex. We conclude that JΨ
∞ is lower semicontinuous and convex on LKLΓ .

Lemma 2.2.2 Assume that the feasibility condition (1.7) holds. Then,

1. JΨ
∞ is bounded below on LKLΓ ;

2. JΨ
∞(Λ) = JΨ(Λ) on LKLΓ ;

3. JΨ
∞(Λ) is finite on all of LKLΓ \ {0}.

Proof. By (1.7), there exists Φ1 ∈ S+(T) satisfying (1.9), namely
∫
GΦ1G

∗ = I.
Hence, tr(Λ) can be written as tr(Λ

∫
GΦ1G

∗) =
∫
G∗ΛGΦ1, and we get

JΨ
n(Λ) =

∫ [
G∗ΛGΦ1 −Ψ log

(
G∗ΛG+

1

n

)]
=

∫
Φ1

[
G∗ΛG− Ψ

Φ1

log

(
G∗ΛG+

1

n

)]
.
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Since the function x− β log(x+ 1
n
) with β > 0 attains its minimum at x = β − 1

n
, we

get

JΨ
n(Λ) =

∫
Φ1

[
G∗ΛG− Ψ

Φ1

log

(
G∗ΛG+

1

n

)]
≥
∫
ψ − 1

n

∫
Φ1 − D(Ψ||Φ1).

We conclude that JΨ
∞ ≥

∫
ψ − D(Ψ||Φ1) on all of LKLΓ . To establish 2, notice that,

by Beppo Levi’s theorem,

JΨ
∞(Λ) := tr(Λ)−

∫
lim
n→∞

Ψ log

(
G∗ΛG+

1

n

)
, Λ ∈ LKLΓ . (2.15)

To prove 3, observe that for 0 6= Λ ∈ ∂LKLΓ , the boundary of LKLΓ , G∗Λ̄G is a nonzero
rational spectral density so that logG∗Λ̄G is integrable over T [52, pag. 64]. Since Ψ
is bounded, also Ψ logG∗Λ̄G is integrable.

In view of these lemmata, we extend JΨ(Λ) to all of LKLΓ by setting JΨ(Λ) := JΨ
∞(Λ)

on ∂LKLΓ . Notice that, by (2.15), JΨ is finite and given by (2.9) on LKLΓ \ {0}, and it
is +∞ in Λ = 0.

Lemma 2.2.3 Assume that the feasibility condition (1.7) holds. Then

lim
‖Λ‖→+∞

JΨ(Λ) = +∞. (2.16)

Proof. Recall that by (1.7), there exists Φ1 ∈ S+(T) satisfying (1.9), and, conse-
quently, tr(Λ) =

∫
G∗ΛGΦ1 > 0,∀Λ ∈ L+. Suppose Λk is a sequence of matrices in

LKLΓ such that limk→∞ ||Λk|| = +∞. Define the normalized sequence Λ0
k := Λk

||Λk||
(of

course, we can assume Λk 6= 0,∀k). Since tr Λ0
k > 0,

η := lim inf
k→+∞

tr Λ0
k ≥ 0.

Consider a sub-sequence such that the limit of its trace is η. This subsequence contains
a convergent sub-subsequence {Λ0

km
} since Λ0

k belongs to the surface of the unit ball,
which is compact. Let Λ∞ := limm→∞ Λ0

km
. Since G∗Λ0

nG > 0 on T, G∗Λ∞G ≥ 0 on T.
Moreover, Λ∞ ∈ Range Γ, since Range Γ is finite-dimensional, and hence closed. This
implies that G∗Λ∞G cannot be identically zero. In fact, if so, Λ∞ ∈ LKLΓ = Range Γ⊥.
Then Λ∞ ∈ Range Γ ∩ Range Γ⊥ = {0}, which is a contradiction since ‖Λ∞‖ = 1.
Thus

η = lim
n→∞

tr Λ0
n = tr Λ∞ =

∫
G∗Λ∞GΦ1 > 0 (2.17)

Hence, there exists a K such that tr Λ0
k > η/2 for all k ≥ K. Finally, since G∗Λ0

kG ≤
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G∗G, we obtain:

lim inf
k→∞

JΨ(Λk) = lim inf
k→∞

||Λk|| tr Λ0
k −

∫
Ψ log ||Λk||G∗Λ0

kG

= lim inf
k→∞

||Λk|| tr Λ0
k − (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗Λ0

kG

≥ lim inf
k→∞

||Λk|| tr Λ0
k − (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗G

≥ lim inf
k→∞

||Λk||
η

2
− (∫ Ψ) log ||Λk|| −

∫
Ψ logG∗G

= lim inf
k→∞

η

2

(
||Λk|| −

∫ Ψ

η/2
log ||Λk||

)
−
∫

Ψ logG∗G

= +∞.

Theorem 2.2.4 Assume that the feasibility condition (1.7) is satisfied. Then the
problem of minimizing the functional JΨ(Λ) = tr Λ−

∫
Ψ logG∗ΛG over LKLΓ admits

a unique solution Λ̂ ∈ LKLΓ .

Proof. In view of Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.2.3, the functional JΨ is
inf-compact on the closed set LKLΓ , and therefore it admits a minimum point Λ̂ there.

We show next that Λ̂ ∈ LKLΓ . Of course, Λ̂ is not the zero matrix since JΨ(0) = +∞.
Let 0 6= Λ ∈ ∂LKLΓ . By Lemma 2.2.2, JΨ(Λ) is finite. Observe that, by (1.7), I ∈ LKLΓ .

By convexity of LKLΓ , it then follows that Λ+ ε(I−Λ) ∈ LKLΓ , ∀ε ∈ [0, 1]. We compute
the one-sided directional derivative or hemidifferential

J
′

Ψ+
(Λ; I − Λ) := lim

ε↘0

[
JΨ(Λ + ε(I − Λ))− JΨ(Λ)

ε

]
= tr(I − Λ) +

∫
Ψ−

∫
G∗GΨ

G∗ΛG
= −∞.

(2.18)

Hence, Λ cannot be a minimum point. We conclude that Λ̂ ∈ LKLΓ .

2.3 The Pavon-Ferrante algorithm

In general, the optimal solution of the dual problem needs to be computed numerically.
This is a delicate problem because of the unboundeness of the gradient of JΨ at the
boundary of LKL, see (2.18). The approaches proposed in [34] and references therein
involve some preliminary reparametrization of LKL, which may imply loss of global
convexity.

In [49], a different matricial iterative method was proposed that appears to be
very fast and numerically robust. This method does not restrict the search of Λ̂ to
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LKLΓ and indeed it normally converges to a Λ̂ 6∈ Range Γ. We show below that this
method may be viewed as a modified gradient descent method with fixed step size.
This method is described as follows.

Let

M := {M ∈ LKL | 0 ≤M ≤ I, tr[M ] = 1}, (2.19)

M+ := {M ∈M | M > 0}. (2.20)

For M ∈M, define the map Θ by

Θ(M) :=

∫
M1/2G

[
Ψ

G∗MG

]
G∗M1/2. (2.21)

Theorem 2.3.1 [49]. The map Θ maps M into M and M+ into M+.

Consider the following iterative algorithm.

Algorithm. Let M0 = 1
n
I. Note that M0 ∈M+. Define the sequence {Mk}∞k=0 by

Mk+1 := Θ(Mk). (2.22)

Notice that, by Theorem 2.3.1, Mk ∈ M+ for all k. Moreover, since Mk ∈ M,∀k,
the sequence is bounded. Hence it has at least one accumulation (limit) point in the
closure M̄ of M.

Theorem 2.3.2 Suppose that the sequence {Mk}∞k=0 has a limit M̂ ∈ M+. Then
M̂ ∈ LKL and satisfies (2.6), and therefore provides the optimal solution of the ap-
proximation problem via (2.7).

Notice that even when the sequence generated by (2.22) converges to a singular matrix
M̂ ∈ M, it is still possible, though not guaranteed, that such a matrix solves the
original problem. We next show that the algorithm may be viewed as a modified
gradient descent method. To this aim, rewrite (2.22) as

Mk+1 = Mk +M
1/2
k

[∫
GΨG∗

G∗MkG
− I
]
M

1/2
k . (2.23)

Proposition 2.3.3 Define

∆Mk := M
1/2
k

[∫
GΨG∗

G∗MkG
− I
]
M

1/2
k , (2.24)

so that (2.23) reads Mk+1 = Mk + ∆Mk. Then, ∆Mk is a descent direction at Mk for
JΨ.
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Proof. Let

∇JΨ(Mk) = I −
∫

GΨG∗

G∗MkG

denote the “gradient” of JΨ at Mk. Then,

〈∇JΨ(Mk),∆Mk〉 = tr (∇JΨ(Mk)∆Mk) = − tr
(
M

1/4
k ∇JΨ(Mk)M

1/4
k

)2

.

By Theorem2.3.1, Mk > 0, for all k. It follows that tr (∇JΨ(Mk)∆Mk) < 0, unless
∇JΨ(Mk) = 0 in which case Mk is a fixed point of the iteration which solves the dual
problem by Theorem(2.3.2).

One could implement the matricial iteration as

Mk+1 = Mk + αk∆Mk, (2.25)

where 0 < αk ≤ 1 is determined through backstepping, see e.g. [4]. Our extensive
simulation (see e.g. [49]), however, shows that convergence in fact occur with αk ≡ 1.
Indeed, the algorithm appears to perform numerically very well. In fact, at each
step the integral (2.21) may be computed very precisely and efficiently via a spectral
factorization technique that only requires to solve an algebraic Riccati equation and
a Lyapunov equation, both of dimension n. We have performed an extensive number
of simulations where the sequence generated by (2.22) never failed to converge. In a
very small number of cases, we have observed convergence toward a singular matrix
which, however, satisfied (2.6), and therefore provided the optimal solution of the
approximation problem.

2.4 Difficulties in extending to the multivariate case

In this section, we state and derive some results on multivariable spectrum approxi-
mation where a “natural” generalization of the scalar Kullback-Leibler is employed.
We also point out the difficulties involved in this approach which bring to a sudden
stop the variational analysis.

Multivariable Kullback-Leibler approximation has been investigated in [27, 30],
whereas [3] deals with the multivariate Nevanlinna-Pick problem. In statistical quan-
tum mechanics, the state of an n-level system is represented by a density matrix ρ,
namely a Hermitian, positive-semidefinite matrix in Cn×n with unit trace [54]. The
convex set of density matrices has as extreme points the one dimensional projections.
The latter can be identified with the pure states of the system |ψ〉, where ψ is a unit
vector in Cn, via ρ = 〈ψ, ·〉ψ. Quantum analogues of entropy-like functionals have
been considered since the early days of quantum mechanics [60]. Recently, renewed in-
terest has originated in Quantum Information applications [48]. The quantum relative
entropy between two density matrices is defined by:

D(ρ||σ) := tr(ρ(log ρ− log σ)). (2.26)
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Klein’s inequality yields that D(ρ||σ) ≥ 0, and D(ρ||σ) = 0 if and only if ρ = σ.
Moreover, as in the classical case, the quantum relative entropy is jointly convex in
its arguments. We are then led to the following definition: Given Φ and Ψ in Sm×m+ (T),
the relative entropy D(Ψ||Φ) is given by

D(Ψ||Φ) =

∫
tr (Ψ(log Ψ− log Φ)) . (2.27)

First of all, we need to worry about nonnegativity of D(Ψ||Φ) and whether it is zero
iff Ψ = Φ.

Proposition 2.4.1 Let Φ,Ψ ∈ Sm×m+ (T). Define Ψ1 = Ψ/ tr Ψ and Φ1 = Φ/ tr Φ.
Then

D(Ψ||Φ)=D(tr Ψ|| tr Φ)+

∫
(tr Ψ) tr (Ψ1(log Ψ1−log Φ1)) . (2.28)

It follows that when
∫

tr Ψ =
∫

tr Φ, then D(Ψ||Φ) ≥ 0. Moreover, D(Ψ||Φ) = 0 if
and only if the two spectra coincide.

Proof.

D(Ψ||Φ) = tr

∫
Ψ (log Ψ− log Φ)

= tr

∫
tr(Ψ)Ψ1 (log tr(Ψ)Ψ1 − log tr(Φ)Φ1)

= tr

∫
tr(Ψ)Ψ1 ((log tr(Ψ))I + log Ψ1

− (log tr(Φ))I − log Φ1)

= tr

∫
tr(Ψ)Ψ1 (log Ψ1 − log Φ1)

+tr

∫
tr(Ψ)Ψ1 ((log tr(Ψ))−(log tr(Φ))) I

=

∫
tr(Ψ) tr (Ψ1 (log Ψ1 − log Φ1))

+

∫
tr(Ψ1) tr Ψ log

tr Ψ

tr Φ

=

∫
tr(Ψ) tr (Ψ1 (log Ψ1 − log Φ1))

+D(tr Ψ|| tr Φ).

Since tr Ψ1(eiϑ) = tr Φ1(eiϑ) = 1,∀ϑ ∈ [−π, π], it follows from Klein’s inequality that

tr Ψ1(eiϑ)
(
log Ψ1(eiϑ)− log Φ1(eiϑ)

)
≥ 0, ∀ϑ.

The latter implies that ∫
(tr Ψ) tr (Ψ1 (log Ψ1 − log Φ1)) ≥ 0.
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When
∫

tr Ψ =
∫

tr Φ, we also have D(tr Ψ|| tr Φ) ≥ 0. Thus, when
∫

tr Ψ =
∫

tr Φ,
D(Ψ||Φ) is the sum of two nonnegative terms and the conclusion follows.

Consider again Problem 2.1.1.

Problem 2.4.2 For Ψ ∈ Sm×m+ (T)

minimize D(Ψ‖Φ) (2.29)

over

{
Φ ∈ Sm×m+ (T) |

∫
GΦG∗ = I

}
, (2.30)

where D(Ψ‖Φ) is defined by (2.27). As in the scalar case, an a posteriori rescaling of
the prior density is in general necessary. In the light of Proposition 2.4.1, if Φ̂ is the
solution of (2.4.2), the new prior is

Ψ̂ =

∫
tr Φ̂∫
tr Ψ

Ψ.

For Λ ∈ Cn×n Hermitian such that G∗ΛG is positive definite on all of T, define
again the Lagrangian

L(Φ,Λ) = D(Ψ‖Φ) + tr

(
Λ

(∫
GΦG∗ − I

))
= D(Ψ‖Φ) + tr

∫
G∗ΛGΦ− tr(Λ).

(2.31)

The following step, entailing the unconstrained minimization of the strictly convex
functional L(Φ,Λ) on Ψ ∈ Sm×m+ (T), is a stumbling block. The optimality condition
reads [30, Section IV]∫ ∞

0

(Φ̂KL + τI)−1Ψ(Φ̂KL + τI)−1dτ = G∗ΛG. (2.32)

In general, an explicit expression for Φ̂KL in terms of Ψ and Λ cannot be obtained, and
the variational analysis ends here. We mention that the minimization with respect to
the first argument of the relative entropy can instead be carried out explicitly, leading
to a solution of the exponential form

Φo = c exp(log Ψ−G∗ΛG),

see [30, Section IV]. Homotopy like methods are described in [30] to find Λ, when it
exists, such that Φo satisfies the constraint.

These difficulties in solving the approximation problem in the multivariable case,
with respect to the Kullback-Leibler metric, motivated the search for other distances
between spectra that could be regarded as “natural”, and in which the variational
analysis could be carried through. This lead us to the Hellinger distance, which is
described in the next chapter.



Chapter 3

Approximation in the Hellinger
distance

3.1 The Hellinger distance

The Hellinger distance between two probability densities p and q, defined over a set
X ⊂ R, is defined as follows:

dH(p, q) :=

√∫
X

(√
p(x)−

√
q(x)

)2

dx

Let us apply the same concept to spectral density functions. Given Φ ≥ 0 and Ψ ≥ 0
in L1(T), we define the Hellinger distance between them by

dH(Φ,Ψ) :=

[∫ π

−π

(√
Φ(eiθ)−

√
Ψ(eiθ)

)2 dθ

2π

]1/2

.

The following properties hold:

Proposition 3.1.1 dH is a bona fide distance.

Proof. Since Φ and Ψ belong to L1(T),
√

Φ and
√

Ψ belong to L2(T), and dH(Φ,Ψ)
is nothing more than the L2 distance between

√
Φ and

√
Ψ. Thus:

• dH(Φ,Ψ) ≥ 0,

• dH(Φ,Ψ) = 0 if and only if Φ = Ψ a.e., because the square root is injective,

• the symmetry is obvious, and

• dH(Φ,Ψ) = ||
√

Φ−
√

Ψ||2 ≤ ||
√

Φ−
√

Ω||2+||
√

Ω−
√

Ψ||2 = dH(Φ,Ω)+dH(Ω,Ψ)
for any Φ, Ψ, Ω, which proves the triangular inequality.

23
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Proposition 3.1.2 Consider Φ,Ψ ∈ S+(T). Then

1. dH(Φ,Ψ) ≤
√
‖Φ‖1 + ‖Ψ‖1;

2. dH(Φ,Ψ)2 ≤ ‖Φ−Ψ‖1;

3. ‖Φ−Ψ‖1 ≤
(√
‖Φ‖1 +

√
‖Ψ‖1

)
dH(Φ,Ψ).

Proof. Observe that∫ π

−π

(√
Φ−
√

Ψ
)2 dθ

2π
=

∫ π

−π

(
Φ + Ψ− 2

√
ΦΨ
) dθ

2π

≤
∫ π

−π
(Φ + Ψ)

dθ

2π

which proves 1). Also∫ π

−π
|Φ−Ψ|dθ

2π
=

∫ π

−π
|
√

Φ−
√

Ψ||
√

Φ +
√

Ψ|dθ
2π

≥
∫ π

−π
|
√

Φ−
√

Ψ||
√

Φ−
√

Ψ|dθ
2π

which proves 2). Finally∫ π

−π
|Φ−Ψ|dθ

2π
=

∫ π

−π
|
√

Φ−
√

Ψ||
√

Φ +
√

Ψ|dθ
2π

≤ dH(Φ,Ψ)

[∫ π

−π

(
Φ + Ψ + 2

√
ΦΨ
) dθ

2π

]1/2

≤ dH(Φ,Ψ)

[∫ π

−π
(Φ + Ψ)

dθ

2π
+ 2

√∫
Φ

∫
Ψ

]1/2

=
(√
‖Φ‖1 +

√
‖Ψ‖1

)
dH(Φ,Ψ),

where we have used the Cauchy-Schwarz inequality twice. This establishes 3).

Remark 3.1.3 On a finite-dimensional statistical manifold, endowed with the Fisher
information as the metric tensor, both the Hellinger distance and the Kullback-Leibler
pseudo-distance can be viewed as instances of the broader concept of α-divergences
between two points, which arise from the so-called Amari connections. In particular,
the 0-divergence, which indeed is the Hellinger distance, arises from the Levi-Civita
connection. See [1, p. 66 and following].
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3.2 Scalar approximation

As was said before, the choice of the Hellinger distance was motivated by the fact that
it generalizes nicely to the case when Φ and Ψ are multivariate spectra. More precisely,
the scalar distance, the scalar variational analysis, the result of such analysis, and the
existence proof for the optimum of the dual problem, will all be particular cases of
their multivariable counterparts.

Nevertheless, in order to bridge between the scalar Kullback-Leibler and the mul-
tivariable Hellinger theories, let us show how to compute the solution to the problem
of finding the scalar spectrum Φ that is closest to the scalar Ψ with respect to the
classical Hellinger distance we have just introduced.

3.2.1 Variational analysis

The fast-paced variational analysis that follows will omit some details, results and
proofs which will be given when we will consider the multivariable case. The reader
will notice many similarities with the Kullback-Leibler analysis that was shown in
Chapter 2.

Problem 3.2.1 Let Ψ ∈ S+(T), and suppose that the feasibility condition (1.7) holds
(i.e. I ∈ Range Γ). Find Φ̂ that solves

minimize d2
H(Φ,Ψ)

over

{
Φ ∈ S+(T) |

∫
GΦG∗ = I

}
,

(3.1)

Define
LH := {Λ ∈ H(n) | 1 +G∗ΛG > 0 ∀eiθ ∈ T}.

For Λ ∈ LH , consider the Lagrangian function

L(Φ,Λ) = d2
H(Φ,Ψ) +

〈
Λ,

∫
GΦG∗ − I

〉
= d2

H(Φ,Ψ) + tr

(
Λ

(∫
GΦG∗ − I

))
= d2

H(Φ,Ψ) +

∫
G∗ΛGΦ− tr Λ.

(3.2)

Next, consider the unconstrained minimization of L(Φ,Λ).

minimize{L(Φ,Λ) | Φ ∈ S+(T)} (3.3)

Remark 3.2.2 First of all, observe that S+(T) is an open, convex set. Second, notice
that, for each Λ, the functional

Φ 7→ L(Φ,Λ)

is strictly convex. Thus, (3.3) is a convex optimization problem. Finally, observe that
L(Φ,Λ) Gâteaux is differentiable at Φ in any direction δΦ ∈ L1(T).
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It then follows from a basic result of convex optimization that Φ̂ ∈ S+(T) solves
problem (3.3) if and only if it satisfies the condition

δL(Φ̂,Λ; δΦ) = 0, ∀δΦ ∈ C(T). (3.4)

Here, δL(Φ̂,Λ; δΦ), the first variation of L at Φ̂ in direction δΦ, is defined by

δL(Φ̂,Λ; δΦ) = lim
ε→0

1

ε

[
L(Φ̂ + εδΦ,Λ)− L(Φ̂,Λ)

]
.

Proposition 3.2.3 The unique solution Φ̂ to problem (3.3) is given by

Φ̂ =
Ψ

(1 +G∗ΛG)2
. (3.5)

Proof. For Φ ∈ S+(T), we get

δL(Φ,Λ; δΦ) =

∫ (
1−Ψ1/2Φ−1/2 +G∗ΛG

)
δΦ.

By (3.4), Φ̂ ∈ S+(T) solves (3.3) if and only if∫ (
1−Ψ1/2Φ−1/2 +G∗ΛG

)
δΦ = 0, ∀δΦ ∈ L1(T). (3.6)

We get

Φ̂1/2 =
Ψ1/2

1 +G∗ΛG
, (3.7)

from which (3.5) follows.

In the spirit of Lagrange, we get the following elementary, albeit fundamental, result
.

Theorem 3.2.4 Suppose Λ̂ ∈ LH is such that∫
G

Ψ

(1 +G∗Λ̂G)2
G∗ = I. (3.8)

Then Φ̂ given by

Φ̂ =
Ψ

(1 +G∗Λ̂G)2
(3.9)

is the unique solution of the approximation problem (3.2.1).

Proof. Let Φ ∈ S+(T) satisfy the constraint∫
GΦG∗ = I. (3.10)

By Proposition (3.2.3), and by the strict convexity of the functional L(·, Λ̂), we get

d2
H(Φ,Ψ) = L(Φ, Λ̂) > L(Φ̂, Λ̂) = d2

H(Φ̂,Ψ).

By (3.8), Φ̂ in (3.9) satisfies the constraint (3.10). Hence it is optimal for the original
constrained problem.

Thus, the original problem (3.2.1) is now reduced to finding Λ̂ ∈ LH satisfying (3.8).
This is accomplished via duality theory.
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3.2.2 The dual problem

In view of Proposition 3.2.3, for Λ ∈ LH , the dual functional takes the form

Λ 7→ L

(
Ψ

(1 +G∗ΛG)2
,Λ

)
=

∫
ΨG∗ΛG

1 +G∗ΛG
− tr(Λ). (3.11)

We consider the maximization of (3.11) over LH . Let

JΨ(Λ) := tr Λ−
∫

ΨG∗ΛG

1 +G∗ΛG

The dual problem is then equivalent to

minimize {JΨ(Λ) | Λ ∈ LH}. (3.12)

Remark 3.2.5 Notice that LH is convex. Moreover, JΨ(Λ) is convex on LH , but, in
general, not strictly convex.

JΨ is indeed strictly convex when restricted to Range Γ. This can be established
along the lines of [34, Section V], and will be shown in detail in the treatment of the
multivariable case. Observe that LH is an open subset of H(n) and JΨ is Gâteaux
differentiable in any direction δΛ ∈ H(n).

Hence, Λ̂ ∈ L solves (3.12) if and only if, for all δΛ ∈ H, we have

δJψ(Λ̂; δΛ) = tr

[(
I −

∫
GΨG∗

(1 +G∗Λ̂G)2

)
δΛ

]
= 0. (3.13)

Arguing as in the minimization of the Lagrangian, we get the following result.

Proposition 3.2.6 Λ̂ ∈ L solves (3.12) if and only if it satisfies (3.8).

Remark 3.2.7 Existence of a minimum of Jpsi on LH may be established along the
lines of [34], or in a similar fashion to Section 2.2. Such a Λ̂ then provides the optimal
solution of the primal problem (3.2.1).

As for the Kullback-Leibler case, a closed form solution of the dual problem may be
obtained only in certain specific cases. In general, one needs to resort to an iterative
scheme.

3.3 A näıve multivariable generalization

Recall that, for a positive semidefinite Hermitian matrix M , the square root M1/2

of M is the unique Hermitian matrix whose square is M . If V is a unitary ma-
trix that diagonalizes M so that M = V ∗ diag(α2

1, . . . , α
2
m)V , then simply M1/2 =
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V ∗ diag(α1, . . . , αm)V . Motivated by the analogy with the Kullback-Leibler case, and
by the scalar case, we define the Hellinger distance for Φ and Ψ in Sm×m+ (T) to be

d2
H(Φ,Ψ) :=

∫ π

−π
tr
[
Φ1/2(eiϑ)−Ψ1/2(eiϑ)

]2 dϑ
2π
. (3.14)

Notice that (3.14) appears also as the natural generalization of the Hellinger distance
for density operators of statistical quantum physics introduced in [44]. Consider again
the strictly convex Problem 3.2.1:

minimize d2
H(Φ,Ψ) (3.15)

over

{
Φ ∈ Sm×m+ (T) |

∫
GΦG∗ = I

}
, (3.16)

where d2
H(Φ,Ψ) is now given by (3.14). Define LH by

LH := {Λ ∈ H(n) | I +G∗ΛG > 0 a.e.onT}. (3.17)

For Λ ∈ LH , consider the Lagrangian

L(Φ,Λ) = d2
H(Φ,Ψ) + tr

(
Λ

(∫
GΦG∗ − I

))
.

The unconstrained minimization of the strictly convex functional L over Φ ∈ Sm×m+ (T),

however, leads to an optimality condition (expressing the unique optimum Φ̂H in terms
of Ψ and Λ) that does not appear to be useful.

To obtain such optimality condition, we first need an expression for the directional
derivative of the matrix square root. More precisely, given P = P ∗ > 0 let S(P ) :=
P 1/2 and δP = δP ∗: We want to compute

δS(P, δP ) := lim
ε→0

(P + εδP )1/2 − P 1/2

ε

Employing the chain rule, it is easy to see that

δS(P, δP )P 1/2 + P 1/2δS(P, δP ) = δP

so that

δS(P, δP ) =

∫ ∞
0

exp(−P 1/2t)δP exp(−P 1/2t)dt. (3.18)

Taking (3.18) into account, we get the optimality condition∫ ∞
0

[
exp(−Φ̂

1/2
H t)

(
Φ̂

1/2
H −Ψ1/2

)
exp(−Φ̂

1/2
H t)

]
dt+

1

2
G∗ΛG = 0. (3.19)

The integral in (3.19) is the unique solution of the Lyapunov equation

Φ̂1/2X +XΦ̂1/2 = Φ̂1/2 −Ψ1/2. (3.20)
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Equations (3.19)-(3.20) now yield

−1

2
Φ̂1/2(G∗ΛG)− 1

2
(G∗ΛG)Φ̂1/2 = Φ̂1/2 −Ψ1/2,

which in turn gives

Φ̂1/2 (I +G∗ΛG) + (I +G∗ΛG) Φ̂1/2 = 2Ψ1/2. (3.21)

Since I +G∗ΛG > 0 almost everywhere on T, we finally get

Φ̂1/2 = 2

∫ ∞
0

exp [−(I +G∗ΛG)t] Ψ1/2 exp [−(I +G∗ΛG)t] dt. (3.22)

The maximization of the dual functional Λ 7→ L(Φ̂,Λ), however, appears quite prob-
lematic.

3.4 Hellinger distance and spectral factorization

This section and the following one are the core of the whole work. We show in this
section that it is possible to define a sensible Hellinger distance for matricial functions
that leads to a full unraveling of the complexity of the optimization problem. This will
be accomplished by connecting this problem to a most classical topic at the hearth of
systems and control theory, namely the spectral factorization problem.
Let F be a measurable function defined on the unit circle T and taking values in
Cm×p. Then F belongs to the Hilbert space Lm×p2 if it satisfies

∫
tr(FF ∗) < ∞. For

F,G in Lm×p2 , the scalar product is defined by

〈F,G〉2 =

∫
tr(FG∗),

so that ‖F‖2
2 =

∫
tr(FF ∗). Let Φ ∈ Sm×m+ (T). Then a measurable Cm×p-valued

function W is called a spectral factor of Φ if it satisfies

W (eiϑ)W (eiϑ)∗ = Φ(eiϑ), a.e. on T.

Notice that necessarily p ≥ m and W (eiϑ) is a.e. full row rank. Moreover, W is
bounded on T, and therefore it belongs to Lm×p2 . When p = m, W−1 is also bounded
and, consequently, W−1 ∈ Lm×m2 . Any Φ ∈ Sm×m+ (T) satisfies the Szegö condition∫ π

−π
log det Φ(eiϑ)

dϑ

2π
> −∞,

and admits therefore spectral factorsW inHm×m
2 , namely the Hardy space of functions

in Lm×m2 that possess an analytic extension in |z| > 1, see e.g. [52, 38].
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Let W1 and W2 be spectral factors of the same Φ ∈ Sm×m+ (T) with W1 square.
Then trivially U := W−1

1 W2 is a m× p all-pass function, i.e

U(eiϑ)U(eiϑ)∗ = I, ∀eiϑ ∈ T.

For Φ,Ψ ∈ Sm×m+ (T), consider the following function

DH(Φ,Ψ) = inf
{
‖WΨ −WΦ‖2 : WΨ,WΦ ∈ Lm×m2 ,

WΨW
∗
Ψ = Ψ, WΦW

∗
Φ = Φ} .

(3.23)

Theorem 3.4.1 The following facts hold true:

1. For any square spectral factor W̄Ψ of Ψ, we have:

DH(Φ,Ψ) = inf
{
‖W̄Ψ −WΦ‖2 : WΦ ∈ Lm×m2 ,

WΦW
∗
Φ = Φ} .

(3.24)

2. The infimum in the above equation is a minimum: Indeed the unique spectral
factor of Φ minimizing (3.24) is given by

ŴΦ := Φ1/2
(
Φ1/2ΨΦ1/2

)−1/2
Φ1/2W̄Ψ.

3. DH is a bona fide distance function.

4. DH coincides with the Hellinger distance in the scalar case.

Proof.
1) First of all, observe that, once fixed the spectral factor W̄Ψ, any square spectral
factor WΨ of Ψ can be written as WΨ = W̄ΨU , where U is a m×m all-pass. Hence,∫

tr(WΨ −WΦ)(WΨ −WΦ)∗dϑ

=

∫
tr(W̄Ψ −WΦU

∗)(W̄Ψ −WΦU
∗)∗dϑ.

Observe, moreover, that WΦU
∗ is a square spectral factor of Φ, so that (3.24) holds.

2) To show that the infimum in (3.24) is a minimum, notice that (3.24) may be
rewritten in the form

DH(Φ,Ψ)2 = inf

{∫
tr(W̄Ψ − Φ1/2V )(W̄Ψ − Φ1/2V )∗dϑ :

V ∈ Lm×m∞ , V V ∗ = I

}
.

(3.25)

We shall solve this problem by unconstrained minimization of the Lagrangian

L =

∫
tr[(W̄Ψ − Φ1/2V )(W̄Ψ − Φ1/2V )∗ + ∆(V V ∗ − I)],
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where ∆ = ∆∗ > 0. The first variation of the Lagrangian (at V in direction δV ∈
Lm×m∞ ) is

δL(V ; δV )=

∫
tr[(∆V −Φ1/2WΨ)δV ∗+δV (∆V −Φ1/2WΨ)∗]

The second variation of the Lagrangian is

δ2L(V ; δV ) = 2

∫
tr[Φ1/2δV δV ∗Φ1/2 + ∆1/2δV δV ∗∆1/2].

Hence, L is strictly convex and therefore V is a minimizer of the unconstrained min-
imization problem if and only if:

δL(V ; δV ) = 0, ∀ δV. (3.26)

Condition (3.26) is clearly equivalent to ∆V − Φ1/2WΨ = 0 or to

V = ∆−1Φ1/2WΨ.

Thus, if there exists ∆ = ∆∗ > 0 such that

V V ∗ = ∆−1Φ1/2ΨΦ1/2∆−1 = I,

then V minimizes (3.25). Such a ∆ is readily seen to be given by

∆ = [Φ1/2ΨΦ1/2]1/2.

In conclusion, the infimum in (3.24) is a minimum and

ŴΦ = Φ1/2V̂ = Φ1/2[Φ1/2ΨΦ1/2]−1/2Φ1/2W̄Ψ

is the unique minimizer.
3) The distance properties of DH are easy to check: (i) Symmetry is an immediate
consequence of the definition of DH . (ii) It is clear that DH(Φ,Φ) = 0. Conversely, if
DH(Φ,Ψ) = 0, then Φ and Ψ share a.e. a common spectral factor and are, therefore,
a.e. the same spectral density. (iii) The triangular inequality is inherited by the
definition of DH as the infimum of the L2 distance among spectral factors. Thus,
given Φ, Ψ and Υ and chosen an arbitrary square spectral factor WΥ of Υ, we have

DH(Φ,Ψ) = inf
WΦ,WΨ

‖WΦ −WΨ‖2

≤ inf
WΦ,WΨ

[‖WΦ −WΥ‖2 + ‖WΨ −WΥ‖2]

= inf
WΦ

‖WΦ −WΥ‖2 + inf
WΨ

‖WΨ −WΥ‖2

= DH(Φ,Υ) +DH(Ψ,Υ)

where the last equality is a consequence of point 1).
4) By choosing W̄Ψ = Ψ1/2, it is immediate to check that in the scalar case (m = 1)
V̂ ≡ 1 and hence DH coincides with the Hellinger distance dH .
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3.5 DH-optimal multivariable spectrum approxima-

tion

Theorem 3.4.1 shows that DH is a natural extension to the multivariable case of the
Hellinger distance. The corresponding multivariable version of Problem 3.2.1 is the
following:

Problem 3.5.1 Given Ψ ∈ Sm×m+ (T), find Φ̂ ∈ Sm×m+ (T) that solves

minimize DH
2(Φ,Ψ) (3.27)

subject to

∫
GΦG∗ = I. (3.28)

It is in this form that the optimization problem is amenable to the variational analysis
even in multivariable version. Let

LH := {Λ ∈ H(n) | I +G∗ΛG > 0 ∀eiϑ ∈ T}, (3.29)

and
LHΓ := LH ∩ Range Γ (3.30)

The following is our main result.

Theorem 3.5.2 Assume condition (1.8) (or, equivalently, condition (1.10)) is satis-
fied. Then there exists a unique Λ̂ ∈ LHΓ such that∫

G(I +G∗Λ̂G)−1Ψ(I +G∗Λ̂G)−1G∗ = I. (3.31)

The unique solution of the constrained approximation Problem 3.5.1 is then given by

Φ̂H := (I +G∗Λ̂G)−1Ψ(I +G∗Λ̂G)−1. (3.32)

Remark 3.5.3 Let Ψ0 ∈ S+(T) and suppose Ψ = Ψ0I has the form of a scalar
matrix. Then, a simple calculation shows that (3.32) and (3.22) give the same form
for the optimal solution Φ̂.

We break the proof of Theorem 3.5.2 into three parts: First, by unconstrained
minimization of the Lagrangian function, we obtain an expression for a spectral factor
of the optimal Φ depending on the Lagrange multiplier matrix Λ (Lemma 3.5.5).
Second, we establish some regularity properties of the functional JΨ, in particular its
strict convexity (Theorem 3.5.8). Third, we establish existence of a unique Λ ∈ LHΓ
satisfying (3.31) (Theorem3.5.10).

We begin by recalling a few basic definitions and facts from multivariate analysis.
A function f : S ⊂ RN → RM is (Fréchet) differentiable on the open set S if for all
x ∈ S there exists a linear map Lx : RN → RM such that

lim
h→0

||f(x+ h)− f(x)− Lx(h)||
||h||

= 0.
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A function f is said to be C0(S) if it is continuous on S. Also, f is said to be C1(S)
if it is differentiable at each x ∈ S and if the operator Df defined by

Df(x) := Lx

is C0(S). Now the derivativeDf : S → L(RN ,RM) ' RMN is itself a function between
finite-dimensional spaces. If Df is C1(S), then f is said to be C2(S). Proceeding
in this way, the Ck-differentiability of f can be defined. Finally, f is said to be of
class C∞(S) if it is Ck(S) for all k ∈ N. A standard result in analysis states that
f ∈ C1(S) if and only if the partial derivatives ∂fm

∂xn
(where fm is the m-th component

of f) exist and are continuous on S (see for instance [53, Theorem 9.21]). It follows
that f ∈ Ck(S) if and only if f has in S continuous partial derivatives of any order
up to k, that is:

∂hfm
∂xn1 · · · ∂xnh

∈ C0(S)

for all m,ni, h s.t. 1 ≤ m ≤M , 1 ≤ ni ≤ N , and 0 ≤ h ≤ k.

Remark 3.5.4 In the following, we will deal with functionals, such as the Lagrangian
and (the opposite of) the dual functional JΨ : LHΓ → R. In particular, with respect to
JΨ the role of the above partial derivatives is played by the directional (or Gâteaux)
derivatives,

δhJΨ(Λ; δ̄Λn1 , ..., δ̄Λnh
)

where 1 ≤ ni ≤ d and {δ̄Λ1, ..., δ̄Λd} is a fixed orthonormal base of Range Γ. A
fortiori, if we show that JΨ has on LHΓ continuous directional derivatives of any order
up to k, taken in whatever directions {δΛ1, ..., δΛk} ⊂ Range Γ, then we can say that
JΨ ∈ Ck(LHΓ ).

Finally, a standard result in the theory of convex functions states that if a function
f : S ⊂ RN → R is C2(S) (where S is open), then f is strictly convex on S if and
only if its Hessian Hx is positive definite at each x ∈ S.

For Λ ∈ LH , WΨ a spectral factor of Ψ, and W,W−1 ∈ Lm×m∞ (T), form the
Lagrangian function:

L(W,Λ) = tr

∫
(W −WΨ) (W −WΨ)∗

+ tr Λ

(∫
GWW ∗G∗ − I

)
.

(3.33)

Consider the unconstrained minimization problem:

min
W

{
L(W,Λ) | W,W−1 ∈ Lm×m∞ (T)

}
(3.34)
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Lemma 3.5.5 The unique solution to problem (3.34) is given by

Ŵ = (I +G∗ΛG)−1WΨ. (3.35)

Proof. The first variation (or directional derivative) of the Lagrangian in an arbi-
trary direction δW1 ∈ Lm×m∞ (T) is:

δL(W,Λ; δW1) = tr

∫
[δW1 (W −WΨ)∗ + (W −WΨ) δW ∗

1

+ Λ (GδW1W
∗G∗ +GWδW ∗

1G
∗)]

= tr

∫
(W −WΨ +G∗ΛGW ) δW ∗

1

+

(
tr

∫
(W −WΨ +G∗ΛGW ) δW ∗

1

)∗
(3.36)

As W varies in a bounded subset of Lm×m∞ (T), δL(W,Λ; δW1) is a bounded quan-
tity. As a function of W , δL(W,Λ; δW1) is therefore the sum of a constant term
(− tr

∫
δW1W

∗
Ψ + WΨδW

∗
1 ) and of a bounded linear functional. Hence, in the vari-

able W it is a continuous functional. By taking into account the cyclic property of
the trace operator, the second variation of the Lagrangian in an arbitrary direction
δW2 ∈ Lm×m∞ (T) is easily seen to be given by

δ2L(W,Λ; δW1, δW2) = tr

∫
δW ∗

1 (I +G∗ΛG) δW2 + tr

∫
δW ∗

2 (I +G∗ΛG) δW1

(3.37)
This second variation does not depend on W , hence it is trivially continuous as a func-
tion of W . In particular, the second variation taken two times in the same direction
δW is:

δ2L(W,Λ; δW ) = 2 tr

∫
δW ∗ (I +G∗ΛG) δW (3.38)

which is clearly positive for any Λ ∈ LH and δW 6= 0. Resuming, on any finite-
dimensional subspace of Lm×m∞ (T), both δL(W,Λ; δW1) (the “gradient” of L) and
δ2L(W,Λ; δW1, δW2) (the “Hessian” of L) are continuous in the variable W , and the
second is a positive definite bilinear form. Hence L is strictly convex with respect to
W on any finite-dimensional subspace of Lm×m∞ (T), and therefore on Lm×m∞ (T) itself,
which implies that any minimum is unique. Finally, the set LH is open and convex.
To find the minimum point of L, we impose δL(W,Λ; δW ) = 0 in each direction δW .
This yields (3.35).
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We now consider the question of existence of a matrix Λ̂ ∈ LH satisfying (3.31).
To this end, we introduce the dual functional

L(Ŵ ,Λ) = tr

∫ (
(I +G∗ΛG)−1WΨ −WΨ

)
×

×
(
(I +G∗ΛG)−1WΨ −WΨ

)∗
+ tr

[
Λ

(∫
G(I +G∗ΛG)−1WΨ×

× W ∗
Ψ(I +G∗ΛG)−1G∗ − I

)]
= tr

∫
Ψ− (I +G∗ΛG)−1Ψ− tr Λ, Λ ∈ LH .

(3.39)

Instead of maximizing (3.39), we consider the equivalent problem of minimizing the
functional:

JΨ(Λ) := −L(Ŵ ,Λ) + tr

∫
Ψ

= tr

∫
(I +G∗ΛG)−1Ψ + tr Λ, Λ ∈ LH .

(3.40)

In order to establish the fundamental properties of JΨ, we need two other lemmas.

Lemma 3.5.6 Let H ∈ H(n) and m be its minimum eigenvalue. The map H 7→ m
is continuous.

Proof. See Appendix A, Lemma A.0.1.

Lemma 3.5.7 Define QΛ(z) = I + G∗(z)ΛG(z). Consider a sequence Λn ∈ LHΓ
converging to Λ ∈ LHΓ . Then Q−1

Λn
are well defined and continuous on T and converge

uniformly to Q−1
Λ on T.

Proof. Observe that, for Λ ∈ LHΓ , QΛ is a positive definite, continuous matrix func-
tion on T. By Lemma 3.5.6, there exists a continuous function mΛ(ejϑ) > 0 such
that QΛ(ejϑ) ≥ mΛ(ejϑ)I for each ϑ. Hence, QΛ(ejϑ) ≥ mΛI,∀ϑ, where mΛ :=
minϑmΛ(ejϑ) > 0. Let δΛ ∈ B(0, ε), the closed ball of radius ε centered in 0. Now,

||G∗(ejϑ)δΛG(ejϑ)|| ≤ ||δΛ||MG ≤ εMG

where

MG = max
ϑ
||G∗(ejϑ)|| ||G(ejϑ)||.

Thus, if we choose ε < mΛ/MG, then ||G∗(ejϑ)δΛG(ejϑ)|| < mΛ. Hence, I + G∗(Λ +
δΛ)G describes, as (δΛ, ϑ) varies in B(0, ε) × [−π, π], a compact set that does not
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contain any singular matrix. Now recall that the matrix inversion operator is contin-
uous at any nonsingular matrix. Hence, Q−1

Λ+δΛ(ejϑ) admits a uniform bound M(Λ, ε)
on B(0, ε)× [−π, π]. Since Λn → Λ, for n sufficiently large, (Λn−Λ) ∈ B(0, ε). Then

sup
ϑ
‖Q−1

Λn
−Q−1

Λ ‖ = sup
ϑ
‖Q−1

Λn
[G∗(Λ− Λn)G]Q−1

Λ ‖

≤M2 sup
ϑ
‖G∗(Λ− Λn)G‖

≤M2εMG.

This implies that Q−1
Λn
→ Q−1

Λ uniformly on T.

Theorem 3.5.8 Consider JΨ : LHΓ ⊂ Range Γ→ R. Then

1. JΨ ∈ C∞(LHΓ ).

2. JΨ is strictly convex on LHΓ .

Proof.
Let I : A 7→ A−1 be the matrix inversion operator. Making use of

δI(A; δA) = −A−1δAA−1, (3.41)

the first variation of JΨ(Λ) in an arbitrary direction δΛ1 is found to be:

δJΨ(Λ; δΛ1) = − tr

∫
Q−1

Λ G∗δΛ1GQ
−1
Λ Ψ + tr δΛ1

=

〈
I −

∫
GQ−1

Λ ΨQ−1
Λ G∗, δΛ1

〉 (3.42)

The linear functional ∇JΨ,Λ(·) := δJΨ(Λ; ·) defined by (3.42) is the gradient of JΨ at
Λ. To prove that JΨ ∈ C1(LHΓ ) we must show that, for any fixed δΛ1, δJΨ(Λ; δΛ1)
is continuous in the variable Λ (it follows that ∇JΨ,Λ(·) is also continuous in Λ).
Consider a sequence Mn ∈ Range Γ converging to 0. By Lemma 3.5.7, Q−1

Λ+Mn
converge

uniformly to Q−1
Λ . Recall that Ψ is bounded. Applying elementwise the bounded

convergence theorem, we get

lim
n→+∞

∫
Q−1

Λ+Mn
G∗δΛ1GQ

−1
Λ+Mn

Ψ =

∫
Q−1

Λ G∗δΛ1GQ
−1
Λ Ψ

Hence, for all δΛ1 ∈ Range Γ, δJΨ(Λ; δΛ1) is continuous, i.e. JΨ ∈ C1(LHΓ ). The
second variation of JΨ, say in direction δΛ2, is easily obtained applying (3.41) and
the chain rule to (3.42):

δ2JΨ(Λ; δΛ1, δΛ2)

= tr

∫
W ∗

ΨQ
−1
Λ G∗δΛ2GQ

−1
Λ G∗δΛ1GQ

−1
Λ WΨ

+ tr

∫
W ∗

ΨQ
−1
Λ G∗δΛ1GQ

−1
Λ G∗δΛ2GQ

−1
Λ WΨ

(3.43)
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The bilinear form HΛ(·, ·) := δ2JΨ(Λ; ·, ·) is the Hessian of JΨ at Λ. Again, continuity
of δ2JΨ(Λ; δΛ1, δΛ2) can be established by the previous argument in view of Lemma
3.5.7. Similarly, it can be shown that JΨ has continuous directional derivatives of any
order. Thus JΨ ∈ Ck(LHΓ ) for any k, and the first assertion follows. Finally, we show
that JΨ is strictly convex on LHΓ . A standard result in the theory of convex functions
states that if a function f : S ⊂ RN → R is C2(S) (where S is open), then f is
strictly convex on S if and only if its Hessian Hx is positive definite at each x ∈ S.
Consider HΛ(δΛ, δΛ) = δ2JΨ(Λ; δΛ, δΛ) for δΛ ∈ Range Γ \ {0}. Since the integrand
in (3.43) is positive semidefinite, it follows that HΛ(δΛ, δΛ) ≥ 0. In view of Point 3 in
Proposition 1.3.1, the integrand is not identically zero and HΛ(δΛ, δΛ) > 0. It follows
that JΨ is strictly convex.

As an immediate consequence of the above theorem, we have the following corollary.

Corollary 3.5.9 The dual problem

Find Λ ∈ LHΓ minizing JΨ(Λ) (3.44)

admits at most one solution. Moreover, (3.31) is necessary and sufficient for Λ̂ to
solve the dual problem (3.44).

We now tackle the existence issue for the dual problem. Although this is a finite-
dimensional, convex optimization problem, the existence question is quite delicate
since the set LHΓ is open and unbounded. The proof of the following theorem is partially
inspired by the proof of the corresponding result for the scalar, Kullback-Leibler case
in [12, Section 2].

Theorem 3.5.10 If Problem 3.5.1 is feasible, i.e. (1.8) (or, equivalently, condition
(1.10)) is satisfied, then the dual functional (3.40) has a unique minimum point in
LHΓ .

Proof. In view of Corollary 3.5.9, we only need to show that JΨ takes a minimum
value on LHΓ . First, we observe that JΨ is continuous on its domain. Second, we show
that JΨ is bounded below on LHΓ . Indeed, by feasibility, there exists a Φ̄ ∈ Sm×m+ (T)
such that

∫
GΦ̄G∗ = I. Hence, for all M ∈ Cn×n,

∫
GΦ̄G∗M = M , which implies

trM = tr

∫
Φ̄1/2G∗MGΦ̄1/2. (3.45)

Recalling that, for Λ ∈ LHΓ , I +G∗(eiϑ)ΛG(eiϑ) is positive definite for all ϑ ∈ [0, 2π),
and using the monotonicity property of the trace, we get

tr Λ = tr

∫
Φ̄1/2G∗ΛGΦ̄1/2 > − tr

∫
Φ̄, ∀Λ ∈ LHΓ . (3.46)
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Define f̄ := − tr
∫

Φ̄ < 0. We get

JΨ(Λ) := tr

∫
(I +G∗ΛG)−1Ψ + tr Λ

= tr

∫
Ψ1/2(I +G∗ΛG)−1Ψ1/2 + tr Λ

> f̄, ∀Λ ∈ LHΓ ,

(3.47)

where we have used tr
∫

Ψ1/2(I +G∗ΛG)−1Ψ1/2 > 0. on LHΓ .
Finally, we show that JΨ is inf-compact i.e. the sub-level sets J−1

Ψ (−∞, r] are
compact. This implies existence of a minimum point. Indeed, observing that JΨ(0) =
tr
∫

Ψ, we can then restrict the search for a minimum point to the compact set
J−1

Ψ (−∞, tr
∫

Ψ]. Existence for the latter problem then follows from a version of
Weierstrass Theorem since an inf-compact function has closed level sets and is there-
fore lower semicontinuous [40, p.56]. To prove inf-compactness of JΨ, we proceed to
show that:

1.
lim

Λ→∂LH
Γ

JΨ(Λ) = +∞,

where ∂LHΓ denotes the boundary of LHΓ ;

2.
lim
‖Λ‖→∞

JΨ(Λ) = +∞.

To prove property 1), notice that ∂LHΓ is the set of Λ in Range Γ for which: (i)
I +G∗ΛG is positive semidefinite on T and (ii) ∃ϑ̄ s.t. I +G∗(eiϑ̄)ΛG(eiϑ̄) is singular.
Thus, for Λ → ∂LHΓ , all the eigenvalues of [I + G∗ΛG]−1 are positive on T and, at
least one of them, has a pole tending to the unit circle ([I +G∗ΛG] and [I +G∗ΛG]−1

are rational matrix functions!). Since Ψ is fixed and coercive, then also Ψ1/2[I +
G∗ΛG]−1Ψ1/2 has all eigenvalues positive on T and, at least one of them with a pole
tending to the unit circle as Λ → ∂LHΓ . Rewrite now JΨ, as in (3.47), in the form
JΨ = tr

∫
Ψ1/2(I+G∗ΛG)−1Ψ1/2 +tr Λ. Since tr Λ is bounded below in view of (3.46),

we get the conclusion.
Point 2) is more delicate. Let Λk ∈ LHΓ be a sequence such that limk→∞ ‖Λk‖ =∞.

Let Λ0
k := Λk

‖Λk‖
. It is easy to see that if Λ ∈ LHΓ , then αΛ ∈ LHΓ for all α ∈ [0, 1].

Hence, for sufficiently large k, we have Λ0
k ∈ LHΓ .

Let η = lim inf tr Λ0
k. We want to show that η is strictly positive. We first observe

that η ≥ 0. In fact, tr Λ0
k = 1

‖Λk‖
tr Λk >

1
‖Λk‖

f̄ → 0, where we have used (3.46).

Consider a sub-sequence of Λ0
k such that the limit of its trace is η. Since this

sub-sequence remains on the surface of the unit ball ∂B := {Λ = Λ∗ : ‖Λ‖ = 1},
which is compact, it has a sub-sub-sequence converging in ∂B. Let Λ0

ki
be such a

sub-sub-sequence, and let Λ∞ ∈ ∂B be its limit. Clearly,

lim
i→∞

tr Λ0
ki

= tr Λ∞ = η. (3.48)
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We now prove that Λ∞ ∈ LHΓ . To this aim, notice that Λ∞ is the limit of a sequence
in the finite dimensional linear space Range Γ and hence it belongs to the same space
Range Γ. It remains to show that (I + G∗Λ∞G) is positive definite on T. Indeed,
since (the unnormalized sub-sequence) Λki

belongs to LHΓ , we have that (I +G∗Λki
G)

is positive definite on T so that ( 1
‖Λki

‖I + G∗Λ0
ki
G) is also positive definite on T for

each i. Taking the limit for i → ∞, we get that G∗Λ∞G is positive semi-definite on
T so that (I +G∗Λ∞G) is strictly positive definite on T. This proves that Λ∞ ∈ LHΓ .
The latter, together with (3.45) yields

tr Λ∞ = tr

∫
Φ̄1/2G∗Λ∞GΦ̄1/2. (3.49)

As seen before, G∗Λ∞G is positive semi-definite on T. Moreover, G∗Λ∞G is not
identically zero since Λ∞ ∈ Range Γ, and Λ∞ 6= 0 (it is not the zero matrix) since
Λ∞ ∈ ∂B . We conclude, in view of (3.48) and (3.49), that η = tr Λ∞ > 0.

Finally, we have

JΨ(Λk)=tr

∫
Ψ1/2(I +G∗ΛkG)−1Ψ1/2+tr Λk ≥ ‖Λk‖ tr Λ0

k. (3.50)

Since ‖Λk‖ → ∞ and lim inf tr Λ0
k > 0, we get

lim
k→∞

JΨ(Λk) = +∞. (3.51)

Let Λ̂ ∈ LHΓ be the unique solution of the dual problem whose existence has just
been proven in Theorem 3.5.10. We show below that it also provides via (3.32) the
unique solution to the primal problem 3.5.1.
Proof of Theorem 3.5.2: Let WΨ be any spectral factor of Ψ. Let Ŵ = (I +
G∗ΛG)−1WΨ as in (3.35). Let W , belonging toLm×m∞ (T) together with its inverse,
satisfy the constraint ∫

GWW ∗G∗ = I. (3.52)

By Lemma (3.5.5), and by the strict convexity of the functional L(·, Λ̂), we get

‖Ŵ −WΨ‖2
2 = L(Ŵ , Λ̂) < L(W, Λ̂) = ‖W −WΨ‖2

2.

Thus, Ŵ minimizes the L2 distance to WΨ among W belonging to Lm×m∞ (T) together
with their inverse and satisfying constraint (3.52). Theorem 3.4.1 now shows that
Φ̂H = ŴŴ ∗ (coinciding with Φ̂H in (3.32)), is the unique solution to the multivariate
approximation Problem 3.5.1.

Remark 3.5.11 Consider the important covariance extension problem when, as it is
often the case, the process y is real-valued. Then A and B are real matrices and Ψ is
a real spectral density, i.e. Ψ(z) is real (and symmetric) for all z ∈ T. In this case,
Λ̂ is a real symmetric matrix.
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Chapter 4

A matricial Newton algorithm

4.1 The Newton algorithm

The Newton algorithm is an iterative procedure for the search of roots of a function
or the minimization of a functional. With respect to the latter objective, it can be
formulated as follows. Let f : S → R be a functional defined over S ⊂ Rn. In order
to find an estimate x̂ of a minimum point x∗ of f ,

1. Make an initial guess x0, possibly near the minimum point.

2. At each iteration, compute the Newton step

∆xi = −H−1
xi
∇fxi

(4.1)

whereHxi
is the Hessian of f at xi and∇fxi

is the gradient of f at xi (understood
as a column vector).

3. Set t0i = 1, and let tk+1
i = tki /2 until both of the following conditions hold:

xi + tki ∆xi ∈ S (4.2)

f(xi + tki ∆xi) < f(xi) + αtki∇f>xi
∆xi (4.3)

where α is a real constant, 0 < α < 1/2.

4. Set xi+1 = xi + tki ∆xi.

5. Repeat steps 2, 3 and 4 until |∇fxi
| < ε, where ε is a (small) tolerance threshold,

then set x̂ = xi.

In its “pure” form, the iteration of the Newton algorithm only consists in step 2,
which is indeed its essential part. Step 3 is the so-called backtracking procedure. For
small t, if f is sufficiently regular, we have f(xi + t∆xi) ' f(xi) + t∇f>xi

∆xi. Since
∇f>xi

∆xi = −∇f>xi
H−1
xi
∇fxi

< 0, condition (4.3) must hold for small t, hence step 3

41
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must terminate at some iteration. Since ∇f>xi
∆xi < 0, (4.3) implies f(xi + tki ∆xi) <

f(xi). That is, {f(xi)} is a strictly decreasing sequence.
In essence, the “pure” Newton algorithm works very well when the starting point

happens to be near the minimum and the function f is there effectively approximated
by a quadratic form, but it can suffer from numerical problems when this is not the
case. The backtracking line search is a remedy to this drawback; moreover it can
be shown that, under certain regularity assuptions on f , which hold in our case (see
Section 4.3), after a finite number of iterations step 3 always selects the multiplier
t = 1, that is, the full step. During the latter stage, the convergence to the minimizing
solution is quadratic, meaning that there exists a constant C such that ||xi+1−x∗|| ≤
C||xi − x∗||2. This rate of convergence makes the Newton algorithm often preferable
over other minimization methods (see [4]).

4.2 Hellinger distance minimization with the New-

ton Algorithm

We must minimize the functional JΨ(Λ) over the set LHΓ . As initial condition, we can
safely choose 0. Hence, set

Λ0 = 0. (4.4)

It turns out that, although the problem is finite-dimensional, the inversion of the
Hessian is more demanding than inverting a matrix. In order to compute the Newton
step ∆Λi, we must solve at Λi the following linear equation:

HΛi
(∆Λi, ·) = −∇JΨ,Λi

(·) (4.5)

where, once fixed Λi, ∇JΨ,Λi
(·) and HΛi

(·, ·) must be understood as a linear and a
bilinear form, defined by (3.42) and (3.43) respectively. Comparing with the above
definitions, (4.5) reduces to:∫

GQ−1
Λi

[
(G∗(∆Λi)GQ

−1
Λi

Ψ) + (G∗(∆Λi)GQ
−1
Λi

Ψ)∗
]
Q−1

Λi
G∗

=

∫
GQ−1

Λi
ΨQ−1

Λi
G∗ − I

(4.6)

In principle, equation (4.6) is not difficult to solve. We suggest the following procedure:

• At the beginning of the procedure, take a base {H1, ..., Hk, ..., HN} of Cm×n. 1

Then compute the solutions {Σ1, ...,Σk, ...,ΣN} of the following discrete-time
Lyapunov equations:

Σk − AΣkA
∗ = BHk +H∗kB

∗

1Actually, it suffices to take the {Hk} to be a base of Cm×n	Ker R, where the map R is defined
by

R : H 7→ BH + H∗B∗.
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As shown before, these solutions generate Range Γ.

• To compute ∆Λi at each step,

1. Compute the integral

Y =

∫
GQ−1

Λi
ΨQ−1

Λi
G∗ − I (4.7)

2. For each Σk in the precomputed generators, compute the following integral:

Yk =

∫
GQ−1

Λi

[
(G∗ΣkGQ

−1
Λi

Ψ)

+(G∗ΣkGQ
−1
Λi

Ψ)∗
]
Q−1

Λi
G∗

(4.8)

3. Solve, by means of linear algebraic methods (the Moore-Penrose pseudoin-
verse), the equation ∑

k

αkYk = Y (4.9)

4. By linearity, the solution to (4.6) is

∆Λi =
∑
k

αkΣk. (4.10)

It is clear that the real difficulty here is the computation of the integrals (4.7)
and (4.8). This task requires extensive use of the following results of linear stochastic
systems theory.

Lemma 4.2.1 Let A be a stability matrix and W (z) = C(zI−A)−1B+D a minimal
realization of a spectral factor of Φ(z). Let Π be the unique solution to the Lyapunov
equation

Π = AΠA∗ +BB∗ (4.11)

Then the following hold:

1.
∫ π
−π Φ(ejϑ)dϑ

2π
= CΠC∗ +DD∗.

2. Z(z) = C(zI − A)−1(AΠC∗ + BD∗) + 1
2
(CΠC∗ + DD∗) is a realization of the

causal part of Φ(z); that is, Z(z) is analytic outside the unit circle and Φ(z) =
Z(z) + Z∗(z).

Lemma 4.2.2 Let Z(z) = C(zI−A)−1G+ 1
2
Σ be a minimal realization of the causal

part of a spectrum Φ(z). Let P− be the stabilizing solution of the following Algebraic
Riccati Equation (ARE):

P = APA∗ + (G− APC∗)(Σ− CPC∗)−1(G∗ − CPA∗) (4.12)

Let moreover D = (Σ − CP−C
∗)1/2 and B = (G − AP−C

∗)D−1. Then W (z) =
C(zI − A)−1B + D is the minimum phase spectral factor of Φ(z); that is, W (z) is
stable and with stable causal inverse, and Φ(z) = W (z)W ∗(z).
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Lemma 4.2.3 Let F (z) = C(zI − A)−1B + D be a square transfer function, where
D is invertible. Then

F−1(z) = −D−1C
(
zI − (A−BD−1C)

)−1
BD−1 +D−1 (4.13)

is a realization of its inverse.

Lemma 4.2.4 For all matrices P = P ∗ ∈ Cn×n the following identity holds:

[
B∗(z−1I − A∗)−1 I

] [ A∗PA− P A∗PB
B∗PA B∗PB

]
×

×
[

(zI − A)−1B
I

]
= 0

(4.14)

Lemma 4.2.5 Let A be a stability matrix and H(z) = C(zI−A)−1B+D be a minimal
realization. Let P be the solution of the Lyapunov equation

P = A∗PA+ C∗C. (4.15)

Let

[
K
J

]
be an ortho-normal basis of ker

[
A∗P 1/2 C∗

]
i.e.

[
A∗P 1/2 C∗

] [K
J

]
= 0,

[
K∗ J∗

] [K
J

]
= I. (4.16)

Let G := P−1/2K and

H1(z) := (D∗C +B∗PA)(zI − A)−1G+B∗PG+D∗J. (4.17)

Then, H∗(z)H(z) = H1(z)H∗1 (z).

Lemmas 4.2.1, 4.2.2 and 4.2.3 are standard results (see for example [19]). The
proof of Lemma 4.2.4 can be found in [14, Appendix A]. The proof of Lemma 4.2.5
can be found in Appendix A, Lemma A.0.2.

Remark 4.2.6 Lemma 4.2.5 not only gives us a tool to compute a left factor from a
right factor of a given spectrum. It also works in the opposite direction. Indeed, let
W (z) = C(zI − A)−1B +D be a minimal realization, and let ζ = z−1. Then

Φ(z) = W (z)W ∗(z)

= (C(zI − A)−1B +D)(B>(z−1I − A>)−1C> +D>)

= (B>(ζ−1I − A>)−1C> +D>)>(B>(ζI − A>)−1C> +D>)

= (B>(ζI − A>)−1C> +D>)∗(B>(ζI − A>)−1C> +D>)

:= H∗(ζ)H(ζ)
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Applying Lemma 4.2.5 we can find an H1(ζ) = H(ζI−F )−1G+K such that H∗(ζ)H(ζ) =
H1(ζ)H∗1 (ζ). Now turning back to z:

H1(ζ)H∗1 (ζ)

= (H(ζI − F )−1G+K)(G>(ζ−1I − F>)−1H> +K>)

= (G>(z−1I − F>)−1H> +K>)>(G>(zI − F>)−1H> +K>)

= (G>(zI − F>)−1H> +K>)∗(G>(zI − F>)−1H> +K>)

= W ∗
1 (z)W1(z) = Φ(z)

4.2.1 Factorization of Q−1
Λ (z)

The first problem to solve is to obtain a spectral factor of Q−1
Λ (z), where QΛ(z) =

(I +G∗(z)ΛG(z)). To this end, note that

QΛ(z) =
[
B∗(z−1I − A∗)−1 I

] [ Λ 0
0 I

]
×

×
[

(zI − A)−1B
I

] (4.18)

Applying lemma 4.2.4, we can rewrite (4.18) as

QΛ(z) =
[
B∗(z−1I − A∗)−1 I

]
×

×
[
A∗PA− P + Λ A∗PB

B∗PA B∗PB + I

]
×

×
[

(zI − A)−1B
I

] (4.19)

Now, the following linear matrix inequality:

[
A∗PA− P + Λ A∗PB

B∗PA B∗PB + I

]
=

[
M∗

N∗

] [
M N

]
≥ 0

(4.20)

is solvable for P = P ∗ > 0 if and only if such is the following ARE:

P = A∗PA− A∗PB(B∗PB + I)−1B∗PA+ Λ (4.21)
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The stabilizing solution P of (4.21) gives a realization for the square, minimum phase
co-analytic spectral factor of Q(z). We have:

N = N∗ = (B∗PB + I)1/2

M = (B∗PB + I)−1/2B∗PA

∆Λ(z) =
[
M N

] [ (zI − A)−1B
I

]
= (B∗PB + I)−1/2B∗PA(zI − A)−1B

+ (B∗PB + I)1/2

QΛ(z) = ∆Λ
∗(z)∆Λ(z)

(4.22)

and finally Q−1
Λ (z) = ∆Λ

−1(z)∆Λ
−∗(z) where, by means of lemma 4.2.3,

∆Λ
−1(z) = −(B∗PB + I)−1B∗PA(zI − Γ)−1B×

× (B∗PB + I)−1/2 + (B∗PB + I)−1/2

Γ = A−B(B∗PB + I)−1B∗PA

(4.23)

4.2.2 Computation of the integrals in (4.7) and (4.8)

By virtue of Lemma 4.2.5 and Remark 4.2.6, we can switch from a right factorization
of a spectrum (Φ = H∗H) to a left factorization (Φ = WW ∗), and vice versa. We will
now show that both (4.7) and (4.8) can be reduced to integrals of the form∫

G(z)∆Λ
−1(z)Φ(z)∆Λ

−∗(z)G∗(z) (4.24)

where Φ(z) is a spectrum. Indeed, let ΦΨ(z) = ∆Λ
−∗(z)Ψ(z)∆Λ

−1(z). Then∫
G(z)Q−1

Λ (z)Ψ(z)Q−1
Λ (z)G∗(z)

=

∫
G(z)∆Λ

−1(z)
(
∆Λ
−∗(z)Ψ(z)∆Λ

−1(z)
)

∆Λ
−∗(z)G∗(z)

(4.25)

which has the form (4.24) with Φ = ΦΨ. Applying Lemma 4.2.5 we obtain a (left)
spectral factor of ΦΨ(z):

ΦΨ(z) = ∆Λ
−∗(z)(WΨ(z)W ∗

Ψ(z))∆Λ
−1(z)

= ∆Λ
−∗(z)(H∗Ψ(z)HΨ(z))∆Λ

−1(z)

= (HΨ(z)∆Λ
−1(z))∗(HΨ(z)∆Λ

−1(z))

= W1(z)W ∗
1 (z)

(4.26)

Finally, (4.25) can be computed obtaining a realization of G(z)∆Λ
−1(z)W1(z) and

applying Lemma 4.2.1. Now, let ΦΣ(z) = ∆Λ
−∗(z)G∗(z)ΣG(z)∆Λ

−1(z), where Σ is
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one of the precomputed generators of Range Γ. Then∫
GQ−1

Λ

[
(G∗ΣGQ−1

Λ Ψ) + (G∗ΣGQ−1
Λ Ψ)∗

]
Q−1

Λ G∗

=

∫
G∆Λ

−1∆Λ
−∗ [(G∗ΣG∆Λ

−1∆Λ
−∗Ψ)

+ (Ψ∆Λ
−1∆Λ

−∗G∗ΣG)
]

∆Λ
−1∆Λ

−∗G∗

=

∫
G∆Λ

−1
[
(∆Λ

−∗G∗ΣG∆Λ
−1∆Λ

−∗Ψ∆Λ
−1)

+ (∆Λ
−∗Ψ∆Λ

−1∆Λ
−∗G∗ΣG∆Λ

−1)
]

∆Λ
−∗G∗

=

∫
G∆Λ

−1 [ΦΣΦΨ + ΦΨΦΣ] ∆Λ
−∗G∗

=

∫
G∆Λ

−1 [(ΦΣ + ΦΨ)(ΦΣ + ΦΨ)

− ΦΨΦΨ − ΦΣΦΣ] ∆Λ
−∗G∗

=

∫
G∆Λ

−1 [(ΦΣ + ΦΨ)(ΦΣ + ΦΨ)] ∆Λ
−∗G∗

−
∫
G∆Λ

−1 [ΦΨΦΨ] ∆Λ
−∗G∗ −

∫
G∆Λ

−1 [ΦΣΦΣ] ∆Λ
−∗G∗

(4.27)

which is a difference of integrals of the form (4.24). To compute (4.27), we must
obtain (left) spectral factors of ΦΨΦΨ

∗, ΦΣΦ∗Σ and (ΦΣ + ΦΨ)(ΦΣ + ΦΨ)∗. Suppose,
first, that Σ > 0. For the first spectrum we have

ΦΨΦΨ
∗ = W1(W ∗

1W1)W ∗
1 = W1(H1H

∗
1 )W ∗

1

= (W1H1)(W1H1)∗
(4.28)

For the second, we have

ΦΣ = (∆Λ
−∗G∗Σ1/2)(Σ1/2G∆Λ

−1) = H∗ΣHΣ = WΣW
∗
Σ

ΦΣΦ∗Σ = WΣ(W ∗
ΣWΣ)W ∗

Σ = WΣ(KΣK
∗
Σ)W ∗

Σ

= (WΣKΣ)(WΣKΣ)∗
(4.29)

And for the third:

(ΦΣ + ΦΨ)(ΦΣ + ΦΨ)∗

= (ZΣ + Z∗Σ + Z1 + Z∗1)(ZΣ + Z∗Σ + Z1 + Z∗1)∗

= ((ZΣ + Z1) + (ZΣ + Z1)∗)((ZΣ + Z1) + (ZΣ + Z1)∗)∗

= (Z1Σ + Z∗1Σ)(Z1Σ + Z∗1Σ)∗

= W1Σ(W ∗
1ΣW1Σ)W ∗

1Σ

= W1Σ(H1ΣH
∗
1Σ)W ∗

1Σ

= (W1ΣH1Σ)(W1ΣH1Σ)∗

(4.30)
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where Z1 is the causal part of ΦΨ, Z1Σ = Z1 +ZΣ, W1Σ is a left factor of the spectrum
Z1Σ + Z∗1Σ, H1Σ is a left factor of the spectrum W ∗

1ΣW1Σ, and where we used Lemma
4.2.1 to obtain the causal part of ΦΣ and ΦΨ from their spectral factors, and Lemma
4.2.2 to obtain the minimum phase spectral factor of the sum ΦΣ +ΦΨ from its causal
part. Thus, if Σ > 0, we really have all the tools to compute integral (4.27).

Now, Σ is not necessarily positive definite, but if −λ < 0 is the minimum between
the eigenvalues of all the generators Σk, then Σ + (λ+ 1)I is positive definite. Thus,
in the general case, by linearity (4.27) can be reduced to:

∫
G∆Λ

−1 [ΦΣΦΨ + ΦΨΦΣ] ∆Λ
−∗G∗

=

∫
G∆Λ

−1
[
ΦΣ+(λ+1)I−(λ+1)I ΦΨ

+ ΦΨ ΦΣ+(λ+1)I−(λ+1)I

]
∆Λ
−∗G∗

=

∫
G∆Λ

−1
[
ΦΣ+(λ+1)I ΦΨ + ΦΨ ΦΣ+(λ+1)I

]
∆Λ
−∗G∗

− (λ+ 1)

∫
G∆Λ

−1 [ΦI ΦΨ + ΦΨ ΦI ] ∆Λ
−∗G∗

(4.31)

which is a difference of integrals with the same structure of (4.27), and that are
computable with the above tools (obviously

∫
G∆Λ

−1 [ΦI ΦΨ + ΦΨ ΦI ] ∆Λ
−∗G∗ needs

to be computed only once). This enables us to solve equation (4.5).

4.2.3 Computations in the backtracking step

The backtracking stage involves similar, though easier, computations. We must check
the following conditions:

Λi + tki ∆Λi ∈ LHΓ (4.32)

JΨ(Λi + tki ∆Λi) < JΨ(Λi) + αtki∇JΨΛi
∆Λi (4.33)

Checking (4.32) is really a matter of checking whether we can factorize I+G∗(Λi+
tki ∆Λi)G. Thus tki must be halved until the ARE (4.21) is solvable having Λ =
Λi + tki ∆Λi.

Finally, to check (4.33), we need to compute JΨ. This can be done in a way similar
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to the above computations:

JΨ(Λ) = tr

∫
(I +G∗ΛG)−1Ψ + tr Λ

= tr

∫
∆Λ
−1∆Λ

−∗WΨW
∗
Ψ + tr Λ

= tr

∫
∆Λ
−∗(WΨW

∗
Ψ)∆Λ

−1 + tr Λ

= tr

∫
∆Λ
−∗(H∗ΨHΨ)∆Λ

−1 + tr Λ

= tr

∫
(HΨ∆Λ

−1)∗(HΨ∆Λ
−1) + tr Λ

= tr

∫
WW ∗ + tr Λ

(4.34)

4.3 Proof of global convergence

Given that the minimum of JΨ exists and is unique, we investigate global convergence
of our Newton algorithm. First, we recall the following

Definition: a function f(x) twice differentiable in a set S is said to be strongly
convex in S if there exists a constant m > 0 such that H(x) ≥ mI for x ∈ S, where
H(x) is the Hessian of f at x.

We restrict our analysis to a sublevel set of JΨ. Let Λ0 = 0. The set

S :=
{

Λ ∈ LHΓ : JΨ(Λ) ≤ JΨ(Λ0) = tr ∫ Ψ
}

(4.35)

is compact (as it was shown in [21, Section VII]). Because of the backtracking in
the algorithm, the sequence JΨ(Λ0), JΨ(Λ1), ... is decreasing. Thus Λn ∈ S, ∀n ≥ 0.
We now wish to apply a theorem in [4, 9.5.3, p. 488] on convergence of the Newton
algorithm with backtraking for strongly convex functions on Rn. This theorem ensures
linear decrease for a finite number of steps, and quadratic convergence to the minimum
after the linear stage, thus establishing global convergence of the Newton algorithm
with backtracking. We proceed to establish first strong convexity of JΨ on S. To do
that, we employ the following result.

Lemma 4.3.1 Let f(x) be defined over an open convex subset D of a finite-dimensional
linear space V . Assume that f is twice continuously differentiable and strictly convex
on D. Then f is strongly convex on any compact set S ⊂ D.

Proof.
First, recall that since f is twice continuously differentiable and strictly convex,

its Hessian Hx is an Hermitian positive-definite matrix at each point x. By Lemma
3.5.6, the mapping from H to its minimum (real) eigenvalue is continuous. It follows
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that the mapping from x to the minimum eigenvalue of the Hessian of f at x is also
continuous, being a composition of continuous functions. Hence the latter admits a
minimum m in the compact set S by Weierstrass’ theorem. Thus m is the minimum
of the eigenvalues of all the Hessians computed in S, and m cannot be zero, since
otherwise there would be an x with Hx singular, and this cannot happen since f is
strictly convex. Hence Hx ≥ mI ∀x ∈ S, i.e. f is strongly convex on S.

Remark 4.3.2 By an argument similar to that of Lemma 3.5.6, it can be shown that
for a twice continuously differentiable function which is strictly convex on D, there
exists M > 0 such that Hx ≤ MI for all x ∈ S. Moreover, strong convexity on a
closed set S implies boundedness of the latter. Thus, strong convexity and boundedness
of the Hessian are intertwined, and both are essential in the proof of Theorem 4.3.3
(see [4]).

Theorem 4.3.3 The following facts hold true:

1. JΨ is twice continuously differentiable on S;

2. JΨ is strongly convex on S;

3. the Hessian of JΨ is Lipschitz-continuous over S;

4. the sequence {Λi; i ≥ 0} generated by the Newton algorithm of Section 4.2 (4.4)-
(4.33) converges to the unique minimum point of JΨ in LHΓ .

Proof.
Property 1 is a trivial consequence of Theorem 3.5.8. To prove 2, remember that

JΨ is strictly convex on LHΓ , hence also on S, and apply Lemma 4.3.1. As for property
3, what it really says is that the following operator:

H : Λ 7→ HΛ(·, ·)

is Lipschitz continuous on S. Theorem 3.5.8 implies that JΨ ∈ C3(LHΓ ) or, which is the
same, that H ∈ C1(LHΓ ). The continuous differentiability of H implies its Lipschitz
continuity over an arbitrary compact subset of LHΓ , hence also over the sublevel set S,
and property 3 follows. Finally, to prove 4, notice that all the hypotheses of [4, 9.5.3,
p. 488] are satisfied. Namely, the function to be minimized JΨ is strongly convex
on the compact set S, and its Hessian is Lipschitz-continuous over S. It remains to
observe that JΨ is defined over a subset of the linear space Range Γ which has finite
dimension d over R (recall that Range Γ is spanned by a finite set of matrices. See
Proposition 1.3.1 and Remark 1.3.3, where d ≤ N). Thus, once we choose a base in
Range Γ, to every Λ ∈ LHΓ there corresponds a vector in Rd, to every positive definite
bilinear form over Range Γ there corresponds a positive definite matrix in Rd×d, and
to every compact set in LHΓ there corresponds a compact set in Rd. Hence, every
convergence result that holds in Rd must also hold in the abstract setting, in view of
the homeomorphism between one space and the other.



Chapter 5

An application to spectrum
estimation

5.1 A spectral estimation procedure

Following the purposes of the THREE method presented in [7], now we describe
an application of the above approximation algorithm to the estimation of spectral
densities. Consider first the scalar case, and suppose that the finite sequence y1, ..., yN
is extracted from a realization of a zero-mean, weakly stationary discrete-time process
{yt}+∞

t=−∞. We want to estimate the spectral density Φy(e
jϑ) of y. The idea is the

following:

• Fix a transfer function G(z) = (zI−A)−1B, feed the data {yi} to it, and collect
the output data {xi}.

• Compute a consistent, and possibly unbiased, estimate Σ̂ of the covariance ma-
trix of the outputs {xi}. Note that some output samples x1, ..., xM should be
discarded so that the filter can be considered to operate in steady state.

• Choose as “prior” spectrum Φ̂y a coarse, low-order, estimate of the true spectrum
of y obtained by means of another (simple) identification method.

• “Refine” the estimate Φ̂y by solving the approximation problem (3.5.1) with

respect to G(z), Σ = Σ̂, and Ψ = Φ̂y (“rescaling” G(z) in order to obtain
Σ→ I, as in Remark 1.2.1).

To be clear, the result of the above procedure is the only spectrum, compatible with
the output variance Σ̂, which is closest to the rough estimate Φ̂y in the dH distance.
Note that we are left with significant degrees of freedom in applying the above proce-
dure: The method for estimating Φ̂y, in particular its degree, and the whole structure
of G(z) = (zI−A)−1B, which has no contraints other than A being a stability matrix
and (A,B) being reachable.

51
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The coarsest possible estimate of Φy is the constant spectrum equal to the sample

variance of the {yi}, i.e. Φ̂y(e
jϑ) ≡ σ̂2

y, where σ̂2
y = 1

N−1

∑N
i=1 |yi|2. The resulting

spectrum has the form σ̂2
y(1 +G∗Λ̂G)−2. Another simple choice is Φ̂y = W (z)W ∗(z),

where W (z) = σ̂e
c(z)
a(z)

is a low-order AR, MA or ARMA model estimated from y1, ..., yN
by means of predictive error minimization methods or the like.

The flexibility in the choice of G(z) is more essential, and has more profound
implications. As described in [7], [34], [22] and [21], Moreover, the following choice:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

 , B =


0
0
...
0
1

 (5.1)

implies that the steady-state variance Σ is a Toeplitz matrix whose diagonals contain
the lags c0, c1, ..., cn−1 of the covariance signal of the input, and the corresponding
problem of finding any spectrum that satisfies (3.52) is a covariance extension problem.

These facts justify the theoretical interest in algorithms for constrained spectrum
approximation, if for no other reason, as tools to compute at least one solution to a
Nevanlinna-Pick interpolation or to a covariance extension problem, respectively. But
the freedom in choosing G(z) has implications also in the above practical application
to spectral estimation, where the key properties, not surprisingly, depend on the poles
of G(z), i.e., the eigenvalues of A. In general, as described in [7], the magnitude of
the latter has implications on the variance of the sample covariance Σ̂: The closer the
eigenvalues to the origin, the smaller that variance (see [7, Section II.D]). Moreover,
at least as far as THREE [7] is concerned, the phase of the eigenvalues influences
resolution capability: More precisely, the spectrum estimation procedure has higher
resolution in those sectors of the unit circle where more eigenvalues are located. Ac-
cording to simulations, the latter statement appears to be true also in our setting
(the fundamental difference being that the metric which is minimized is the Hellinger
distance instead of the Kullback-Leibler one).

Remark 5.1.1 In the above setting Σ̂ is a consistent estimate of the true steady-state
variance. Although Σ̂ must belong to Range Γ as N → +∞ (this being the case even
if y is the sum of a purely nondeterministic process and some sinusoids, as in the
simulations that follow), it is almost certainly not the case that Σ̂ ∈ Range Γ when
we have available only the finitely many data xM+1, ..., xN . Strictly speaking, this
implies that the contraint (3.52) with Σ = Σ̂ is almost always not feasible. It turns
out that, increasing the tolerance threshold in its step 5, the Newton algorithm exhibits
some kind of robustness in this respect. That is, it leads to a Λ whose corresponding
spectrum Φ̂ is close to satisfying the constraint.

Nevertheless, we prefer a clear understanding of what the resulting spectrum really
is. Thus, we choose to enforce feasibility of the approximation problem, at least as per-
mitted by machine number representation, before starting the optimization procedure.
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To this end, following the same approach employed in [7], we pose the approximation
problem not in terms of the estimated Σ̂, but in terms of its orthogonal projection Σ̂Γ

onto Range Γ, which can be easily computed by means of algebraic methods. That is
to say: We cannot approximate in the preimage Γ−1(Σ̂), because that set is empty,
thus we choose to approximate in Γ−1(Σ̂Γ), where Σ̂Γ is the matrix closest to Σ̂ such
that its preimage is not empty. This seems a reasonable choice and by the way it
is, mutatis mutandis, what the Moore-Penrose pseudoinverse does for the “solution”
x̂ = A†b, when the linear system Ax = b is not solvable.

Note that it is not guaranteed at all that the projection of a positive definite matrix
onto a subspace of the Hermitian matrices is itself positive definite. In practice, this
is not really a problem, inasmuch Σ̂ is “sufficiently positive” and close to Range Γ.
The positivity of Σ̂Γ must anyway be checked before proceeding. This approach and the
considerations on the positivity issue should be compared to [7, Section II.D], which
deals with the particular case when Range Γ is the space of Toeplitz matrices, and to
[31, Section 4], where, to find a matrix a Σ̂Γ close to Σ̂, a Kullback-Leibler criterion
is adopted instead of least squares.

5.2 Simulation results

5.2.1 Simulation results: Scalar case
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Estimate w/constant prior
Estimate w/AR3 prior

Figure 5.1: Estimation of an ARMA(6,4) spectrum by means of Hellinger-distance
spectrum approximation, constant prior and AR(3) prior.

Figure 5.1 shows the results of the above estimation procedure with G(z) struc-
tured according to the covariance extension setting (5.1) with 6 covariance lags (i.e.
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n = 6, A is 6× 6), run over 500 samples of the following ARMA process:

y(t) = 0.5y(t− 1)− 0.42y(t− 2) + 0.602y(t− 3)

− 0.0425y(t− 4) + 0.1192y(t− 5)

+ e(t) + 1.1e(t− 1) + 0.08e(t− 2)− 0.15e(t− 3)

(poles in 0.9,−0.2± 0.7j,±0.5j) where e(t) is a zero-mean Gaussian white noise with
unit variance. Two priors, both estimated from data, have been considered: the
constant spectrum Φ̂y(e

jϑ) ≡ σ̂2
y and the spectrum Φ̂y = WAR(z)W ∗

AR(z), where

WAR(z) = σ̂e

a(z)
is an AR model of order 3 obtained from the data by means of the

Predictive Error Method procedure in Matlab’s System Identification toolbox.
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Figure 5.2: Spectral estimates of two sinusoids with superimposed noise by means of
Hellinger-distance spectrum approximation, constant prior. Compare with [7, Section
IV.B, Example 1].

Figure 5.2 shows the performance of the above procedure in a setting that resem-
bles that of [7, Section IV.B, Example 1]. The estimation procedure was run on 300
samples of a superposition of two sinusoids in colored noise:

y(t) = 0.5 sin(ω1t+ φ1) + 0.5 sin(ω2t+ φ2) + z(t)

z(t) = 0.8z(t− 1) + 0.5ν(t) + 0.25ν(t− 1)

with φ1, φ2 and ν(t) independent normal random variables with zero mean and unit
variance, ω1 = 0.42 and ω2 = 0.53. The prior here considered is the constant spectrum
equal to the sample variance of the {yi} data. Following [7], A was chosen real block-
diagonal with the following poles (equispaced in a narrow range where the frequencies
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of the two sinusoids lie, to increase resolution in that region):

0, 0.85,−0.85,

0.9e±j0.42, 0.9e±j0.44, 0.9e±j0.46, 0.9e±j0.48, 0.9e±j0.50

(and B a column of ones). It can be seen that Hellinger-distance based approximation
does a good job, as does the THREE algorithm, at detecting the spectral lines at
frequencies ω1 and ω2.

5.2.2 Simulation results: Multivariate case

We now consider spectral estimation for a multivariate process. Here, 100 samples of
a bivariate process with a high order spectrum were generated by feeding a bivariate
Gaussian white noise with mean 0 and variance I to a square (stable) shaping filter
of order 40. The latter was constructed with random coefficients, except for one fixed
conjugate pair of poles with radius 0.9 and argument 0.52, and one fixed conjugate pair
of zeros with radius 1−10−5 and argument 0.2. The transfer function G(z) was chosen
with one pole in the origin and 4 complex pole pairs with radius 0.9 and frequencies
equispaced in the range [0, π]. Then the above estimating procedure was applied,
with prior spectrum chosen as the constant density equal to the sample covariance of
the bivariate process y. Figure 5.3 shows a plot of Φ11(ejϑ), Re Φ12(ejϑ), Im Φ12(ejϑ)
and Φ22(ejϑ), respectively for the true spectrum and for the estimation of the latter
based on one run of 100 samples. In Figure 5.4 we compare the performances of
various spectral estimation methods in the following way. We consider four estimates
Φ̂H, Φ̂ME, Φ̂PEM, and Φ̂N4SID of Φ. The spectral density Φ̂H is the estimate obtained
by the procedure described above in Subsection 5.1. The spectral density Φ̂ME is the
maximum entropy estimate [27] obtained using the same G(z) employed to obtain our
estimate. The spectral densities Φ̂PEM and Φ̂N4SID are the estimates of Φ obtained by
using “off-the-shelf” Matlab procedures for the Prediction Error Method (see i.e. [55]
or [43]) and for the N4SID method (see [58] or [43]): The former is a multivariable
extension of the classical approach to ARMAX identification, while the latter is a
standard algorithm in the modern field of subspace identification. In order to obtain
a comparison reasonably independent of the specific data set, we have performed 50
independent runs each with 100 samples of y. In such a way we have obtained 50
different estimates Φ̂M,i, M = H,ME,PEM,N4SID, i = 1, 2, . . . , 50, for each method.

We have then defined

EH(ϑ) :=
1

50

50∑
i=1

‖Φ̂H,i(e
jϑ)− Φ(ejϑ)‖, (5.2)

where ‖ · ‖ denotes the spectral norm. This is understood as the average estimation
error of our method at each frequency. Similarly, we have defined the average errors
EME(ϑ), EPEM(ϑ), and EN4SID(ϑ) of the other methods. In the each of the plots
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Figure 5.3: Estimation of the spectrum of a bivariate process with rich dynamics by
means of Hellinger-distance spectrum approximation, constant prior.

of Figure 5.4, we depict the average error of our method EH(ϑ) together with the
average error of one of the other methods. More explicitly, the first diagram shows the
error for the Hellinger approximation method and for the maximum entropy spectrum
described in [27]. The second diagram shows the error for the Hellinger approximation
and for the spectrum obtained via MATLAB’s PEM identification method. The
third diagram shows the same for Hellinger approximation and MATLAB’s N4SID
method. The Hellinger approximation based approach appears to perform better
or much better than the other methods. The simulation yields similar results with
N = 200 data points. With N = 300 data samples, PEM and N4SID perform as well
as our method.

Of course, one should always take into account the complexity of the resulting
spectrum. In this example, G(z) being of order 9, the resulting spectral factor (or
“model”) produced by the Hellinger approximation has order 18, whereas the corre-
sponding maximum entropy model has order 9 and both N4SID and PEM usually
choose order 10.

In our simulation, the norm of the difference of two estimates produced by PEM
or by N4SID is sometimes very large when compared to the norm of the difference
between any two of the estimates produced by our method. That is, although PEM
and N4SID are provably consistent as N → ∞, when few data are available both of
them may introduce occasional artifacts, which are well visible as “peaks” in figure
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Figure 5.4: Estimation of the spectrum of a bivariate process with rich dynamics by
means of various methods. Comparison between the spectral norm of the differences
Φ̂H − Φ, Φ̂ME − Φ, Φ̂PEM − Φ, and Φ̂N4SID − Φ (average over 50 simulations).

5.4 (a “peak” in the 50-run average is due to a very high error in one of the runs, not
to a systematic error). Our method appears to be more robust in this respect.
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Appendix A

Proofs of some technical lemmas

Lemma A.0.1 Let H ∈ H(n) and m be its minimum eigenvalue. The map H 7→ m
is continuous.

Proof. The map from a matrix H to the vector of coefficients of its characteristic
polynomial a(s) = det(sI − H) = a0 + ... + an−1s

n−1 + sn is continuous. Indeed,
each of the coefficients of a(s) is obtained by means of sums and products of elements
of H. Moreover, it is a well-known fact (see for example [45]) that the mapping
from the coefficients of a monic polynomial to its roots is continuous, in the following
sense: Given a(s) = sn +

∑n−1
i=0 ais

i, let λi be the zeros of a(s) and νi the respective
multiplicities. For all ε > 0, there exists δ > 0 such that if b(s) = sn +

∑n−1
i=0 bis

i and
|bi − ai| < δ for all i = 0, 1, . . . , n− 1, then b(s) has νi zeros in the ball centered in λi
with radius ε. In conclusion, if H is Hermitian, the mapping from H to its minimum
(real) eigenvalue is continuous.

Lemma A.0.2 Let A be a stability matrix and H(z) = C(zI − A)−1B + D be a
minimal realization. Let P be the solution of the Lyapunov equation

P − A∗PA = C∗C. (A.1)

Let

[
K
J

]
be an ortho-normal basis of ker

[
A∗P 1/2 C∗

]
i.e.

[
A∗P 1/2 C∗

] [K
J

]
= 0,

[
K∗ J∗

]
i

[
K
J

]
= I. (A.2)

Let G := P−1/2K and

H1(z) := (D∗C +B∗PA)(zI − A)−1G+B∗PG+D∗J. (A.3)

Then, H∗H = H1H
∗
1 .

59
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Proof. Let Q := C(zI −A)−1G+ J . We first show that QQ∗ = I, so that Q is inner.
We then prove that Q∗H = H∗1 , concluding the proof. We have

Q∗Q = G∗(z−1I − A∗)−1C∗C(zI − A)−1G+

+G∗(z−1I − A∗)−1C∗J + J∗C(zI − A)−1G+ J∗J
(A.4)

Now let P > 0 be the solution of the Lyapunov equation (A.1). Then,

C∗C = −(z−1I − A∗)P (zI − A)+

+ (z−1I − A∗)Pz + z−1P (zI − A)
(A.5)

Substituting (A.5) into (A.4) we obtain

Q∗Q = −G∗PG+G∗Pz(zI − A)−1G+

+G∗(z−1I − A∗)−1z−1PG+

+G∗(z−1I − A∗)−1C∗J + J∗C(zI − A)−1G+ J∗J

(A.6)

Moreover,

z(zI − A)−1 = I + A(zI − A)−1 and

(z−1I − A∗)−1z−1 = I + (z−1I − A∗)−1A∗
(A.7)

so that

Q∗Q = (J∗C +G∗PA)(zI − A)−1G+

+
(
(J∗C +G∗PA)(zI − A)−1G

)∗
+G∗PG+ J∗J

(A.8)

Taking (A.2) into account, it is easy to see that Q∗Q = I. Therefore, H∗H =
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H∗QQ∗H. Recalling (A.5) and (A.7), we eventually get

Q∗H =

= (G∗(z−1I − A∗)−1C∗ + J∗)(C(zI − A)−1B +D)

= −G∗(z−1I − A∗)−1(z−1I − A∗)P (zI − A)(zI − A)−1B

+G∗(z−1I − A∗)−1(z−1I − A∗)Pz(zI − A)−1B

+G∗(z−1I − A∗)−1z−1P (zI − A)(zI − A)−1B

+G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= −G∗PB +G∗Pz(zI − A)−1B

+G∗(z−1I − A∗)−1z−1PB

+G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= −G∗PB +G∗P
(
I + A(zI − A)−1

)
B

+G∗
(
I + (z−1I − A∗)−1A∗

)
PB

+G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= G∗PB +G∗PA(zI − A)−1B

+G∗(z−1I − A∗)−1A∗PB

+G∗(z−1I − A∗)−1C∗D + J∗C(zI − A)−1B + J∗D

= G∗(z−1I − A∗)−1(C∗D + A∗PB)

+(G∗PA+ J∗C)(zI − A)−1B +G∗PB + J∗D

= G∗(z−1I − A∗)−1(C∗D + A∗PB) +G∗PB + J∗D

= H∗1 (A.9)
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