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Sommario

Nell” articolo [6] Filipovic’ e Zabczyk presentano un approccio per ottenere I’analogo in tempo
discreto della struttura a termine affine a tempo continuo, considerando il tasso spot r(t)
come una catena di Markov (MC) con uno spazio degli stati discreto. Quando il tasso spot
¢ una MC a tempo discreto, il numero dei salti in un qualsiasi intervallo temporale fissato &
deterministico.

Tuttavia, nel mercato reale, il tasso spot non cambia generalmente ad istanti fissi ma
"salta" ad istanti aleatori.

Questo suggerisce di considerare il tasso spot come una catena di Markov a tempo continuo
(CTMC) con uno spazio degli stati finito £ = {r',7%,.... 7N} NeN,r € R, i=1,..., N.
Seguendo la procedura conosciuta come martingale modeling, assumiamo che sotto una misura
di martingala P 1a matrice delle intensita di transizione sia data da Q= {qiaj}i,jzl,m N Fissata
una maturitd 7" e una data di valutazione ¢, il numero di salti del tasso spot tra t e T (indicato
con vy ), ovvero il numero delle transizioni della MC, ¢ aleatorio e puo assumere un valore
arbitrariamente grande.

L’obiettivo del nostro lavoro ¢ di ottenere, nel caso in cui il tasso spot evolve come una
CTMC, delle formule esplicite (facilmente implementabili per ottenere risultati numerici) per
il prezzaggio dei bond e dei derivati come i cap, le swaption e le bond option. La difficolta
maggiore nel nostro studio ¢ data dall’aleatorieta dei tempi di salto. Nel caso in cui si considera
un modello diffusivo con salti per il tasso spot, I’articolo di Bjérk-Kabanov-Runggaldier [1]
illustra come, assumendo una struttura a termine affine, il prezzo di un bond pud essere
espresso in termini della soluzione di un sistema di equazioni differenziali ordinarie. Questo
approccio € interessante dal punto di vista teorico, tuttavia non considera i prezzi dei derivati
e risulta difficile da implementare nella pratica. Nell’articolo di Eberlein and Kluge [5], dove
si considera un modello generale di Levy, sono prezzati anche i cap e le swaption; gli autori
ottengono inoltre delle formule analitiche esplicite che richiedono degli strumenti matematici
abbastanza sofisticati. La maggiore differenza con il nostro lavoro consiste nel fatto che noi
riusciamo a prezzare con un approccio unificato sia i bond che i derivati sui tassi d’interesse,
pur considerando dei processi stocastici meno generici.

Nella tesi verra mostrato come i prezzi dei bond e dei derivati sui tassi d’interesse, come
anche quello delle opzioni sui bond, sono particolari casi del prezzo di uno strumento fi-
nanziario fittizio detto "Prodotto Prototipo", legato concettualmente al prezzaggio dei titoli
Arrow-Debreu. Il prezzaggio del prodotto Prototipo rappresenta un approccio che prezza in
modo unificato diversi prodotti finanziari sui tassi d’interesse e che permette una facile im-



plementazione. Considereremo una approssimazione superiore del prezzo la cui differenza col
prezzo reale del prodotto in questione € trascurabile.

Un Prodotto Prototipo ¢ un prodotto finanziario che garantisce la consegna alla sca-
denza T di un certo payoff J¢(r(T")) che dipende dal valore assunto dal tasso spot nella data

di scadenza T': N

= wil{_y with ' € E and w; € {0} URy..
=1

Per un determinato stato attuale r* € E (1 < i < N), indicato genericamente con v, ricor-
diamo che

e il tempo di interarrivo & una variabile aleatoria esponenzialmente distribuita con parametro
. o N
(intensita) g(v) £ ¢ = Zj:Lj;&i 4i,j;

e le probabilita di transizione dallo stato v allo stato u = 7 ¢

o B pij =% ifi]
o pi; =0 ifi=j.

Inoltre, indicando con 14 il numero di salti della CTMC fino al tempo t ed
M £ {9:E—{0}UR, | I() =21 willy,_ iy, wi€{0}URy, Vi=1,.,N} dotato della norma del sup, otte-
niamo i seguenti risultati:

Proposition 0.1 Sotto una misura di martingala I@’, il prezzo del prodotto Prototipo all’istante
t < T puo essere rappresentato come

Vﬁo,tT Tl/t Zﬂk TVt VtT = k’rl/t) (1)

dove le funzioni Uy sono ottenute ricorsivamente dopo k passi iterando ’operatore T :

Tﬂ(v)é/Rq( ~(wHg(v))s (pr )ds ¥ € M.

uekE

Proposition 0.2 L’operatore T : 9 — I & un operatore contraente con punto fisso 9* =0
e costante di contrazione y = SUDycE %.
Per quanto riguarda la distribuzione di 147 otteniamo la seguente

Proposition 0.3 Valgono le sequenti formule

N
ED(ULT = ki|’l“l,t = T‘m) = Z eqmt—qikT@k(Q) . ‘Pk(t,T, Q) ( )
L 2
T seees ip=1

~ 1AM 270, i i1
P(vyr =0|ry, =1r™) = e~ am(T—1)



dove m é un intero in {1,..., N}, Uy é lintegrale multiplo

T T T
U (t, T, Q) 2 / e(dip —am)t1 / e(ia—aiy)t2 / e(ql‘k*‘likq)tkdtk ... dtodty (3)
t ¢

1 tk—1

or(Q) = Amyiy - Qig_q i

La formula (1) contiene un numero infinito di termini da calcolare: tuttavia, poiché le funzioni

¥ sono ottenute applicando k volte l'operatore contraente alla funzione vy, esiste -per un e
. . € A Ne m

piccolo a piacere- un numero naturale n, tale che Vg , 7(rv,) = > 320 Ok (r,)P(vr,r = klry,)

¢ una buona approssimazione del prezzo reale Vy, ; 7 nel senso che

|V§O¢,T(rw) — Vot 7(r,)| < € uniformemente a (¢,7,7,,). (4)

Il prezzaggio dei bond e degli altri derivati sui tassi d’interesse puo essere ottenuto come segue:

P1 :un bond che matura al tempo 7" puo essere visto come un prodotto Prototipo con payoff
wo(+) = Zf\il w;ly._,iy dove w; = 1:il prezzo di un T-bond valutato all’istante ¢ ¢ uguale

a Vipo,t,1;

P2 :iprezzi dei caplet e delle swaption possono essere rappresentati come combinazioni lineari
di diversi N prodotti Prototipo Vyp 7 con payoff ¢f definiti, per ogni n € {1,..., N},

da N
Yo() = Zi0:1 Wig (n)I{-:riO}
0, 1 n

Un risultato analogo si ottiene per il prezzo delle opzioni sui bond.

Inoltre, sulla base del risultato in (4), riusciamo ad ottenere delle formule esplicitamente
calcolabili per i prodotti finanziari sopra indicati:

P1, :una "buona" approssimazione del prezzo del bond é ottenuta considerando V;O 7 invece
della quantita Vi, ; r indicata in P1;

P2, : "buone" approssimazioni dei prezzi di caplet, swaption e opzioni sui bond sono ottenute
considerando VTZSLJ’T invece delle quantita Viyp .7, per ogni n € {1,..., N}, enunciate
in P2.

Generalizziamo inoltre il modello unifattoriale precedentemente presentato considerando
un modello multifattoriale in cui il tasso spot dipende da diverse CTMC correlate tra loro.
Considerando un particolare modello multifattoriale, i bond, i caplet, le swaption e le opzioni
sui bond possono essere visti come particolari casi di un prodotto Prototipo il cui prezzo é
rappresentabile da una formula esplicita e calcolabile anche quando il tasso spot dipende da
piu fattori. Il modello multifattoriale puo essere inoltre applicato al prezzaggio dei defaultable
bond (ovvero bond soggetti al rischio che 'emittente sia incapace di far fronte al pagamento)
dove la formula di prezzaggio dipende dal tasso spot e dal tasso di fallimento, fornendo una
rappresentazione esplicita del prezzo di questi contratti.



Infine deriviamo dei risultati numerici per mostrare la performance del nostro approccio.
In particolare consideriamo un altro approccio numerico per prezzare i bond e i derivati sui
tassi d’interesse nel caso unifattoriale: il metodo basato sugli alberi ricombinanti. Paragoniamo
la bonta del nostro metodo con quella del metodo ad albero ricombinante quando entrambi
sono usati per il prezzaggio dei bond in una struttura a termine affine in tempo continuo.
Evidenziamo il fatto che, mentre i metodi ad albero funzionano bene per modelli scalari senza
la presenza dei salti, il nostro approccio ¢ applicabile senza difficolta aggiuntive sostanziali
anche al caso multivariato e puo essere usato per approssimare i prezzi in modelli a tempo
continuo con salti. Inoltre il nostro approccio é specificamente ideato per modelli in cui il
tasso spot & una CTMC, che sembra essere piil realistico di un modello diffusivo con salti o
di un modello a tempo discreto con istanti di salto deterministici.



Summary

In their article [6] Filipovic’ and Zabczyk present an approach to obtain in discrete time the
analog of the affine term structure model in continuous time. They consider the spot rate r(t)
a Markov chain (MC) with a finite state space. Since the short rate is a MC in discrete time,
the number of jumps in a fixed time interval is deterministic.

However, in real markets the spot rate does generally not change at deterministic times
but it rather "jumps" at random times.

This suggests to model the spot rate as a continuous time Markov chain (CTMC) with
a finite state space £ = {r!,72,....7N}, N € N, 7® € R, i = 1,...,N. Following the
procedure known as martingale modeling, we assume that under a martingale measure P the
transitions intensity matrix of the chain is given by @ = {qi7j}i7j:17...7N. For a maturity T
and an evaluation time ¢, the number of jumps of the spot rate between ¢ and T' (denoted by
v, 1), namely the number of transition of the MC, is random and can take arbitrarily large
values.

The purpose of our study is now to obtain, in a setup where the short rate evolves as
a continuous time Markov process, explicit formulae for bond prices and derivatives such as
caps, swaptions and bond options that can be easily implemented to obtain numerical results.
The major difficulty to this effect is given by the randomness of the jump times. For the case
of jump diffusions the article by Bjork-Kabanov-Runggaldier [1] illustrates how, by assuming
an affine structure, the bond price can be expressed in terms of solutions of a system of ODE’s.
This approach is theoretically interesting but does not consider derivative prices and it turns
out to be difficult to implement in practice. For a more general Levy driven model, the article
by Eberlein and Kluge [5] considers also Caps and Swaptions. Here the authors obtain explicit
analytic solution formulae that however require rather sophisticated mathematical tools. The
main difference with our setup is that, while ours is less general, it leads however to a unified
approach for the pricing of bonds and interest rate derivatives.

The pricing of bonds and interest derivatives as well as bond options will be shown to be
particular cases of the pricing of a fictitious financial product, namely the "Prototype prod-
uct"that is related to Arrow-Debreu prices. The pricing of the Prototype product represents
a unified approach to the pricing of interest rate related products and which can be imple-
mented by rather elementary calculations. We shall actually consider un upper approximation
price such that the difference with the true price of this product is negligible.

We call Prototype product a financial product which guarantees to deliver at maturity
T a certain payoff Jo(r(7T")) which depends on the value taken by the spot rate at the date of



maturity T
N .
= Zwil{.:ri} with r* € E and w; € {0} UR,..
i=1
Recall that for a given current state r* € E (1 <4 < N) which below we generically denote
by v:

e the time to the next jump is an exponential random variable with parameter (intensity)
N
q(v) g = Ejzl,#i di,j5

e the transition probability to the next state u = 7 is
A “_{p@j:q;;j ifi#
Pow =P = gy =0 ifi=.
Furthermore, let 1; denote the number of jumps of the CTMC up to time t and
M 2 {9:E—{0}UR, | I() =210, willy,_ iy, wie{0}URy, Vi=1,..,N} endowed with the sup norm. We
have now the following results:

Proposition 0.1 For a martingale measure ]?’, the price of the Prototype product at time
t <T can be represented as

Vﬁo,t,T Tl/t Zﬁk’ th VtT k’TVt) (1)

where the functions ¥y are obtained recursively, after k steps, by iterating the operator T :

Tﬁ(v)é/Rq(v ~(v+a(v))s (vau )ds v e M.

uekE

Proposition 0.2 The operator T : I — M is a contraction operator with fized point 9* =0
and contraction constant vy = SUP,cE %.
For the distribution of v, 7 we have:

Proposition 0.3 The following holds

N
IFD(Vt,T = k”rw = Tm) = Z eth—qikT@k(Q) ' \Ilk(tv Ta Q) ( )
B o 2
DY seees ip=1

~ 1FM i A0, ik 1
P(vyr =0|ry,, =1™) = e~ am(T—1)
where m is a fized index in {1,..., N}, Uy is the multiple integral
T T T
U, T,Q) £ / e(qil—qm)tl/ o\diag—aiy)t2 . / el =it gt dtodty (3)
t t1 271

and
Or(Q) = Gmiiy - -+ Qg

10



Formula (1) involves an infinite number of terms to compute; however, since the s are
obtained by applying k times a contraction operator on o, there exists -for an arbitrarily small
e a natural number ne such that Vi , p(ry,) £ 3 o Ik(ry)P(vrr = kl|r,,) approximates
arbitrarily well the real price Vy, ;7 in the sense that

’V't;o,t,T(th) - Vﬁo,t,T(TVt)’ <€ uniformily in (t7 T’ TVt)' (4)

The pricing of bonds and other interest rate derivatives can now be obtained as follows

P1 : a bond which matures at time T can be viewed as a Prototype product with payoff
wo(+) = Zf\il w;ly._,iy where w; = 1: the price of a T-bond evaluated at time ¢ is equal
t0 Vipo,t,1

P2 : the prices of both caplets and swaptions can be represented as linear combinations of
the prices of N Prototype products Vyp ¢ with payoffs ¢ defined as follows for each
ne{l,...,N}

N
b5 () = 2ig=1 Wio ()L —yioy

wio(n):{ 0, ig #n

1, io =N
An analogous result is obtained for the price of bond options.

Moreover, on the basis of the result in (4), we are able to obtain computable expressions for
the financial products already mentioned above:

P1. : a "good" approximation of the bond price is obtained by considering ngo,t,T instead of
Vipo,t, 7 in the expression for P1;

P2, : "good" approximations of the prices of caplets, swaptions and bond options are obtained
by considering Vig,t,T instead of Vyn ;1 for each n € {1,..., N} in the expression for
P2.

We furthermore generalize the one-factor short rate model discussed above by considering a
multi-factor short rate model in which the spot rate depends on several correlated CTMCs.
Under a particular multi-factor short rate model, bonds, caps, swaptions and bond options can
be viewed as particular cases of a Prototype product whose price admits a computable explicit
formula also when the short rate is driven by more factors. The multi-factor short rate model
can also be applied to the pricing of defaultable bonds, where the pricing formula depends on
the short rate and default intensity processes, and we give an explicit representation of the
prices of these contracts in the scalar case.

Finally we derive numerical results to illustrate the performance of our approach. In par-
ticular we consider also another numerical approach to compute prices of bonds and interest
rate derivatives, namely the approach based on a recombining tree. We compare the perfor-
mance of our method with that of a tree-based method when both are considered for the price
of a bond in a continuous time affine term structure model. We point out that, while tree
methods work well for scalar models without jumps, our approach is applicable without sub-
stantial additional difficulties also to the multivariate case and it can be used to approximate

11



prices in continuous time models involving jumps. We also would like to stress the fact that
our approach is specifically designed for CTMC models for the short rate which appears to be
more realistic than diffusion-type models or discrete time models with fixed time instants.

12



Chapter 1

Introduction

In their article [6] Filipovic’ and Zabczyk present an approach to obtain in discrete time the
analog of the affine term structure model in continuous time. They consider the spot rate r(t)
a Markov chain (MC) with a finite state space. Since the short rate is a MC in discrete time,
the number of jumps in a fixed time interval is deterministic.

In real markets the spot rate does not generally change at deterministic times but it rather
"jumps" at random times. This suggests to model the spot rate as a continuous time Markov
chain (CTMC) with a finite state space E = {r',72,...,7N}, Ne N, r" € R, i =1,...,N.
Under a martingale measure P equivalent to the physical measure P, the transition intensity
matrix of the chain is given by Q = {¢; ; }i,j=1,--- N- Such a modeling approach appears also to
be more realistic with respect to the traditional diffusion-type models for the short rate. The
innovation introduced by this model with respect to [6] is represented by the fact that the
number of jumps of the spot rate between an evaluation time ¢ and a maturity 7" (denoted by
v, T), namely the number of transition of the MC, is random and can take arbitrarily large
values.

Continuous-time term structure models that allow also for jumps have already been con-
sidered in the literature. We limit ourselves to mention here just a couple of them. For the case
of jump diffusions the article by Bjoérk-Kabanov-Runggaldier [1] illustrates how, by assum-
ing an affine structure, the bond price can be expressed in terms of solutions of a system of
ODE’s. This approach is theoretically interesting but does not consider derivative prices and
it turns out to be difficult to implement in practice. For a more general Levy driven model, the
article by Eberlein and Kluge [5] considers also Caps and Swaptions. Here the authors obtain
explicit analytic solution formulae in the scalar case that require however rather sophisticated
mathematical tools; moreover their numerical results do not concern the prices as such, which
is our main goal.

On the other hand, in our setup where the short rate evolves as a continuous time Markov
process, we are able to obtain explicit formulae for bond prices and derivatives such as caps,
swaptions and bond options that can actually be implemented to obtain numerical results.
In fact, the pricing of bonds and interest derivatives as well as bond options will be shown
to be particular cases of the pricing of a fictitious financial product, namely the "Prototype
product". The pricing of the Prototype product represents a unified approach to the pricing

13



of interest rate related products and which can be implemented by rather elementary cal-
culations. We shall actually consider un upper approximation price such that the difference
with the true price of this product is negligible. We obtain a computable expression of the
price of the Prototype product by using a technique based on a contracting operator and on
the distribution of v; 7. Even though by our approach we face a difficulty represented by the
randomness of the jump times of the spot rate, we are able to give an explicitly computable
formula for the distribution of v 7.

We furthermore generalize the one-factor short rate model discussed above by considering
a multi-factor short rate model in which the spot rate depends on several correlated CTMCs.
Under a particular multi-factor short rate model, bonds, caps, swaptions and bond options
can be viewed as particular cases of the Prototype product whose price admits a computable
explicit formula also when the short rate is driven by more factors. The multi-factor short
rate model can also be applied to the pricing of defaultable bonds, where the pricing formula
depends on the short rate and default intensity processes, and we give an explicit represen-
tation of the prices of these contracts. Finally we derive numerical results to illustrate the
performance of our approach. In particular we consider also another numerical approach to
compute prices of bonds and interest rate derivatives in the scalar case, namely the approach
based on a recombining tree. We compare the performance of our method with that of a tree-
based method when both are considered for the price of a bond in a continuous time affine
term structure model. We point out that, while tree methods work well for scalar models
without jumps, our approach is applicable without substantial additional difficulties also to
the multivariate case and it can be used to approximate prices in continuous time models in-
volving jumps. We also would like to stress the fact that our approach is specifically designed
for CTMC models for the short rate which appears to be more realistic than diffusion-type
models or discrete time models with fixed time instants.

In Chapter 2 we discuss the pricing approach based on the Prototype product when the
short rate is a CTMC; in Chapter 3 we derive the prices of bonds, caps, swaptions and bond
options by using the results obtained for the Prototype product pricing. In Chapter 4, by
assuming that the short rate depends on several CTMCs, we discuss the pricing of both
bonds and other interest rate derivatives, also in a defaultable setup, by starting from the
pricing of the Prototype product under a particular multi-factor short rate model. To conclude,
in Chapter 5, the numerical results are presented in support of the theory developed in the
previous chapters.

14



Chapter 2

Pricing of interest rate derivatives
with a Markov short rate: the
Prototype product

2.1 Market model

Let a filtered probability space be given by (Q, F, (F)er, P) where P is the physical measure.

Consider the price p(t,T) at time ¢ of a zero coupon bond that matures in 7' > ¢. In a
general setting the bond price has the following representation

p(t,T) = EP [emp( — /tTr(u)du) |]:t}

where, in order to avoid arbitrage, Pisa martingale measure equivalent to P. If we assume a
Markov short rate, p(¢,T) can be expressed by means of specific quantities that we are going
to introduce. In particular, we consider the spot rate r(¢) a continuous time Markov chain
(CTMC) with a state space £ = {r!,72,...,rN}, Ne€ Nand r' € RT, i=1,...,N. Denote

e Q = (qij)i<ij<n the transition intensity kernel independent with respect to the time;

e g = Z%l ¢ij, i=1,..., N the intensities associated with the state 7¢;
JFT

e the transition probabilities from the state 7% to rJ

R qi,' . . .
{pom w7 (2.1
Dij = 0 if i = J-

Hence r(t) is a stochastic process with right-continuous piecewise constant trajectories where
the jump times T; (i = 1,2, ...) are random variables and, conditionally on a generic value "
(h =1,...,N) of the process at time T;, the interarrival times T;y; — T; are exponentially
distributed, namely

(Tit1 = Talr(Ti) = 1) ~ Exp(ap) (2.2)

15



Therefore

Z/T—l

p(t,T) = I["Eﬁ [emp(rl,t (t — Tl,t))e:cp< — Z ri(Tig1 — Ti) — 7o, (T — TVT)> ]‘Fﬂ (2.3)

i:Vt

where, for a generic time s, v5 denotes the number of jumps of the Markov process until s,
r(s) =r; for s € [Ty, T;41) and, since {T; < s} € F! where T; is an F"-stopping time, we let

Fr, ={A e FplAn{T; <s} € F;,Vs <T}.

For simplicity of notation we denote JF the o—algebra Ff. and, since the factor exp(r,, (t —
T,,) in formula (2.3) can be explicitly computed on the basis of the information at time ¢,
we assume without lost of generality that t = T,,; consequently the bond price p(¢,T") can be
written as

p(t.T) = EP [egcp( _ Vi ri(Tivt — T3) — 1 (T — T,,T)> yf;;} (2.4)

where F, = F;'. More generally, given two generic times s and s such that s <'s, denote by
Vs the number of jumps in the interval [s,5).

The expression of the bond price in (2.4) leads to the idea of introducing a fictitious
financial product which we call Prototype product and that is related to Arrow-Debreu prices:
we are able to obtain an expression of the price of both bond and interest rate derivatives as
linear combinations of Prototype Products. In the following section we consider at the pricing
of the Prototype product.

2.2 Prototype product pricing: Vi, ;7(-) = >, ﬁk(-)@(yt,T = k|)

The representation of the bond price given by (2.4) suggests introducing a new financial
product of which the zero-coupon bond is a particular case: the Prototype product.

Definition 2.1 A Prototype product is a financial product which guarantees to deliver a
certain payoff Vo(ry,) at maturity T': this payoff depends on the value taken by the spot rate
at the date of maturity T

Its price at time t < T s represented by

vp—1

Voot () = B [eap( = 7 milTiss = T0) = rug (T = Tup) JUo(r )17, | (25)

1=Vt

and the Prototype payoff ¥o(-) is supposed to have the following form

N
Yo(-) = Y wil oy, € B, w; € {0} UR (2.6)
=1
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Let us now introduce Vﬂo,t,T and V., ;7 as un upper and a lower approximation respectively
of the price of the Prototype Product. They are defined as

l/T—l

Voo £ EF [exp( = D rilTup = 1)) do(run)I 75, . (27)

i:Vt
by dropping the last term in the sum in (2.5), and

vr

Vgorr = EP [69619( - Z 7i(Tip1 — Ti))ﬁo(?”uT)\f,ft} (2.8)

1=Vt

where the last term in the sum in (2.5) is extended up to T,,.. We shall give sufficient conditions
to have the difference 7 = Vg, 17 — Vg, anegligible quantity (see Remark 2.5 and Lemma
2.13 below) and we shall see that 7 ~ 0 in many cases such as in the numerical results
described in Chapter 5. For this reason, from now on we shall concentrate on the upper
approximation Vgojt,T instead of the true price Vy, ; 7, which is easier to compute and, for
simplicity of notation, we will denote V@mt,T by Vot 1-

The representation of the upper approximation of the Prototype product price given by
(2.7) motivates us to consider particular functions ¥, defined as in the following Lemma:

Lemma 2.2 Let r(t) be a CTMC with state space E and Yy(-) the Prototype payoff as in
(2.6). Let the sequence of functions Uy (-) be defined recursively as follows: for fized k,n € N,
put

In(rpaen) 2 EF [ mmenonTusnonis =Tkt (1 )| ) (2.9)
Vh=1,...,k '
then
_ n+k—1
E]P [earp( — Z T'i<Ti+1 — Ti)>190('r'n+k)’]:;} = ﬁk(ﬁq) (2.10)
i=n

Proof We denote F} = Fr, ={A € Fr|AN{T; < s} € F],Vs < T}. Let us show that
for h < k, namely T}, < T, one has F; C Fj.. More generically, for two stopping times 7 and
o with 7 < ¢ it follows that Fr C F,. In fact, for any ¢ < T one has that {o <t} C {7 <t}.
By taking A € F; it follows that A € F, because

An{fo<t}=An{oc<t}n{r<t}=An{r<t}h)n{oc<t}e F

where in the last passage we use the fact that AN {r < t} € F and {0 < t} € F by
hypothesis. The statement is proved.

Inspired by Filipovi¢-Zabcezyk [6], we can divide the proof into k steps:
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1t STEP

_ n+k—1
EP [exp( — Z ri(Tig1 — Ti)>190(7"n+k)|-7:77;']
i=n
o n+k—1
= EP [EP [emp( — Z ri(Tip1 — Ti)>190(Tn+k)|-F;+k—1 v ‘F'r’]Iival} ]:77;]
i=n
o n+k—2
- EP [Eﬂ” [e—TnJrkfl(Tn+k_Tn+k*1)ezp< = > ri(Tig1 — Ti))190(7"n+k)|]:;+k—1 vV Fyikl }-:]]
i=n
_ n+k—2 -
= E° [easp( = > ri(Tiga — T¢)>EP [e7mmn=1 ok =Ttk =090 (ry 1) | F oy V F e J—'f,]
i=n
_ ntk—-2 .
= EP [exp( — Z ri(Tig1 — TQ)EP [67"'n+k—1(Tn+k*Tn+k—1)ﬁO(rn+k)|rn+k_1] ’]-—;] (2.11)
i=n

where the last passage is due to the fact that, for a generic ¢ € N, conditionally on F; V .7-"?,
both the distributions of the interarrival time T;;; — T; and of the visited state ;41 depend
only on the initial state r; by the properties of the CTMC’s;

hence
(2.9) _ n+k—2
(211) =" E° {€$p< = > ri(Tip1 — Ti))ﬂl(rnJrkfl)‘f;] : (2.12)
i=n
2nd STEP
N n+k—2
(2.11) =EF [emp( — Z ri(Tig1 — Ti)>ﬁ1(rn+k71)‘f;]
i=n
o ntk—2
= ]E]P [EP [exp( — Z Ti(Ti+1 - Ti))ﬂl (T7J+k71)|}—:]+k—2 Vv FE—Q—I@—Q] .7:;]
i=n
PO n+k—3
= E [EP [eﬂ”*’“”(T”*’“’l7T”+’“*2)191(Tn+k—1)exp( = > ri(Tiy1 = Ti)) | Frih—2V Foira] ‘Fﬂ
i=n
_ n+k—3 _
_ EE [e:cp( _ Z Ti(Ti+1 _ Ti))EP [e_rn+k—2(T77+k‘,—l_T77+k_2)191(7’7]+k71)|f;+k72 \Y% fnT+k72] ‘.F,ﬂ
i=n
. ntk-3 .
= EF [ezp( - Z ri(Tiy1 — Tz‘))IE]P [e—Tn+k72(Tn+k—1—Tn+k72),,91 (Tn+k71)|7“n+k—2] ‘]:;]
i=n
_ n+k—3
= Effep(= > ni(Tis - Ti))ﬂg(rwrk,g)‘}';] (2.13)
i=n

where the last passage is again justified by the properties of the CTMC’s recalled in the first
step;
hence, recursively until the last step, we obtain

k" STEP
~ n+k—1
B [ean(— D0 rilTinn = T0)do(rpa)| 5] =+ =
_ ngr;le
EP {ezp( - Z Ti(Ti+1 - Ti))ﬁk—l(Tn-Q—k—(k—l))‘f;] =
i=n

~ 2.9
P {er,,@ﬁl7T1,>19k_1(rn+1)’]:j]] (2.9) Vi (rn)-
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The introduction of functions of the type ¥ in Lemma 2.2 gives the possibility to repre-
sent Vi, as an expectation of 9, ,.

Lemma 2.3 The price at time t of the Prototype product with maturity T admats the following
representation

Vﬁo,tT TVt Zﬁk Tl/t VtT = k’rl/t) (214)

where vy = v — Vg represents the number of jumps occurring in the interval [t,T] and the
quantity Vg (ry,), for each k € N, is recursively defined by relation (2.9) with n = vy.

Proof The upper approximation Vy, ;7 of the price of Prototype product can be repre-
sented as follows

Vio,t,7 (1) e :exp< B VTZ_:I 7i(Tiy1 — Ti))ﬂo(rwﬂfzﬁ]

=

_ EP :E@ [exp< B mit—l ri(Tiey — Ti))ﬁo(rl,T)\}"ﬁt v a{yt,T}} !FL}
=

= B[ [ean( - mit—l ri(Tiss = T3) ) 9o (rug ) 15, V o {1

i:Vt

= B (r)lr] (2.15)

where in the last passage we have considered the result of Lemma 2.2 with n = v; and k = v 7;
since vy 7 is a discrete random variable, we can write the expectation as the following sum

Vﬁo,t,T rl/t Z’lgk‘ rl/t VtT — k’rl/t)

a

In order to evaluate the difference between the upper and lower approximations of the Pro-
totype product in Remark 2.5, in the next Remark we suggest a useful representation of the
lower approximation Vi, ;1

Remark 2.4 The lower approzimation V. .1 of the price of the Prototype product defined
by (2.8) admits the following representation

l/T—l

Vipar =B [eop(= Y nilTis = T0) )0 (o) 175, (2.16)

1=Vt

where ¥1(-) is given by formula (2.9) with h=1, n=v; and k = v 7.

19



Remark 2.5 Denoting by 7 the difference between Vﬂmt’T — Vot 75 we have that

vp—1

m =B [eap( = Y ri(Tinn = T)) (o(rur) — 910 )) |75, (2.17)

1=Vt

in accordance with the representations in (2.7) and (2.16). We will give a sufficient condition
to have a negligible m in Subsections 2.2.2 where we will suggest explicit formulae for the
functions 9o(+) and ¥1(-).

As regards the quantity Vy, 7, the representation (2.14) stresses the fact that we need
to know both the distribution of 147 and an explicit expression of the functions 9, which
we shall study later on, and that to obtain a computable expression for Vy, ;7 one has to
truncate the infinite sum. For this purpose we are going to introduce a contracting operator
which gives the possibility to approximate the price of the Prototype product by a truncated
series.

2.2.1 A computable expression of Vj,,r based on a contracting operator

Inspired by formula (2.9) for the functions 95, we consider a function space 9t defined by
M= {¥: F— {0} UR,} (2.18)

so that ¥(v) = Zi\;1 wilg,—piy where w; € {0}UR,, Vi =1,..., N. We introduce the operator
T on M

{ TI(v) £ Eyle v I(u)]

T~ Exp(q(v)), €M (2.19)

where, by considering a generic ¢ € N, the quantities introduced in the above definition can
be interpreted as follows:

e v and u are the spot rate r; at jump time T; and 7;41 at jump time T respectively,

e ¢(v) is the intensity associated with each v of state space E.

We show how the functions (94)pen defined as in Lemma 2.2 can be expressed in terms of
the operator T

Corollary 2.6 Let r(t) be a CTMC with state space E such that the interarrival times
Tit1 — T; are exponentially distributed as in (2.2) for i € N.

If ¥y, are as defined in Lemma 2.2 and O¢ is the Prototype payoff as in (2.6) , then also the
I ’s are elements of MM and they can be obtained by iterating the operator T defined by (2.19):

O =TVOh_1 €M
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Proof Comparing (2.9) and (2.19) it is clear that the two representations are equivalent
if we assume that v = r;, u = r;11 and (Ti+1 - T,-) ~ Exp(q(r;)) for every natural number i.
It remains to prove that ¥, € MM, Vk € N by induction.
Base Case (h =0): Y9 € MM by definition (2.6) in accordance with the hypothesis.
Inductive Step: let

N
Ono1(u) = Y wi Tepmy € Mwp'; € {0}UR YVm =1,...,N | (2.20)
m=1
then
2.19 v
() = TIha(v) 2 Eyle %1 (w)]
N
(2.20) —v
i=1
N N
= Z Z wh Rl Liyriylv = 1Ly pmy
m=1 i1=1
N
= > whI_m (2.21)
m=1
with wl 2 SN wh IE[e—vT . Liy—riylv =7r"] €R for every m=1,..., N. 0

In the following Propositions we shall show that the contraction property of 7 allows to
obtain a computable approximation of the real Prototype product price Vy, ;7 that can be
made arbitrarily close:

Proposition 2.7
a) The function space I is closed w.r.t. 7, namely T : M — M
b) 7 is a contracting operator: For ¥, ¥ € M we have
T = TV < A|[0 - | (2.22)

with the norm || - || defined by ||f|| £ supyep |f(v)|, E the finite state space and

¥ £ SUDycE Ujlr(qv(l)) <1

c) The fixed point of T is identically equal to zero: 79" = U* where ¥* = 0.

Proof
a) Being ¥(u) € M it can be represented as follows:

N
ﬁ(u) = Z me{u:rm}
m=1
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Analogously to (2.21) we obtain that

T90) 2 BT - 9(w)]
N
= D Dnlpem
m=1
with @, = Zfil w;E[e™ "% . Liy—yiylv =r"] € R for every m=1,..., N.

b)

[ T9(v) = TV (v) |
()]
Eole™%]- IW( ) — ()|
/0 - e q(v)e” 3 ds - |9 (u) — ' (u)|

= 1)) — )]

v+ q(v)

Eulle™*[ - [0(u) — ¢'(u)
Ev[le_”TlsupW() '

IN N

taking now the supremum over v € E we obtain

1T9(0) = T ()] < yl[9(u) = I'(u)|

q(v)
vtq(v)
q(v)

It is easy to observe that the quantity o) < 1 for every v in E because ¢(v) and v are
always positive quantities: 7 is strictly lower than 1.

with v £ sup,cp

c¢) By considering 9(-) = 0 in definition (2.19) we obtain TU(v) = E,[e™"* - 0] = 0. By
its unicity the fixed point of the operator 7 is thus equal to zero. 0

Proposition 2.8 Let the functions 9y be defined as in Lemma 2.2 for a given vg. For an
arbitrarily small €, for vy as in b) of Proposition 2.7 and for n. € N such that

log(e(1 = 7)) supyeg [91(v) = Jo(v)|
‘= log () log(7)

, (2.23)

we have that

Vo1 (i) Zﬁk o) P(vir = klry,) (2.24)

approzimates the real price of the Prototype product defined as in (2.14) in the sense that

]Vgoyt’T(rl,t) — Vit 1(1,)| < € uniformily in (¢t,T,r,,) (2.25)
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Proof Denote the norm ||f(v)|| = sup,eg |f(v)| for every f € . We consider the
contracting map 7 on the functions 9, defined as in Lemma 2.2. Hence we use a classical
result of the contracting map theory, that is

n

T |19y — o]
-

— 9* <
[0 —9°]| < §

where ~y and 19* are defined as in b) and c) of Proposition 2.7 respectively. By takingn = n. € N
such that ; |]191 Yol| < €, namely

- log(e(1 —7))  [[¥1 — Yol
log(¥) log(7)

which is a condition equivalent to (2.23), we assure that the sup-norm distance between 9,
and ¥* = 0 is smaller than € for all n € {n. +1,n+2,...}:

l|Un]| <€ Vn e (ne,+oo)NN. (2.26)
Furthermore
(2.26) = sup |V, (v)| < e = |Up(v)| <€ YveE,
vER
so we have
—e < Up(v) <€, Vn € NNjne, +o0f, Yo € E (2.27)

Now we consider the price of the Prototype product at time ¢:

—+o00
2.14 ~
Vi) 203 0(r )Pl = Klr,)
k=0

== Zﬂk TVt VtT_k‘th Z 19]{ TVt VtT_k‘th)
k=n+1
and we define Vg tT(rl,t) £ "‘ ﬂk(r,,t)IP’(utT = klry,) = Voo e 1(10,) — Zk et 1 Vi (ry,)
]P)(I/t 7 = k|ry,); by observing that by (2.27),

400 " 400 »
Z —eP(vy 1 = k|ry,) < Z Vg (ry,)P l/tT = k|r,,) < Z eP(ve,r = klry,)
k=n+1 k=n+1 k=n+1
I
ne
—6(1 — ZIP’(Z/,:,T = k|ry,) ) Z Vg (ry,)P VtT =k|ry,) < e(l — Z]P’ v = k\ryt)>
k=0 k=n¢+1 k=0

and that > ;< (Vt T = k|ry,,) < 1, we obtain the following confidence interval for Vi,  7(r, ):

VﬂoﬂZT (th) E]vﬂo,t,T(th) -6 Vﬂo,t,T(Tw) + 6[’
Since ne does not depend on (¢, T, 7,,,14), we finally conclude that

]V;;O’t’T(rw) — Viyo.t.7(7,)| < € uniformily in (¢, 7, r,,).
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Remark 2.9 In the proof above we have observed that, in practice, it is not possible to com-
pute the price of the (upper approzimation of the) Prototype Product Vi, :1(ry,) but only its
approzimation V5, p(1,). Moreover the explicit representation of Vi , r(ru,) uses the fact
that the operator T defined in (2.18) is contracting.

In the Chapter "Numerical results” we will discuss a "full simulation” approach which com-
putes directly the price Vi, 1 7(rw,) and does not require the contraction property of the operator

T.

2.2.2 The functions 1, explicit formula

We are going to give a computable representation for the ¥;’s that are necessary to obtain a
closed formula of Vi, ¢ 7(ry,).

Lemma 2.10 Let r(t) be a CTMC with state space E and transition kernel Q = (¢i j)1<i j<N-
Given the Prototype payoff defined by Yo(-) = Zgzl wig Ly _yioy with wi, ..., wy € {0} UR,
N non negative real values, the functions Uy defined as in Lemma 2.2 satisfy the following
formula

N
Or() =Y whTy _ay, k>1 (2.28)
=1
where, form=1,..., N,
( N q )
1 2 , 'mig _
wm_zwzorm+qma k=1
ig=1
oFm . (2.29)
E & m,iy iy in_1
wy = w; : , k>1
m , Z ZOTm_|_qm Hrlh +Qih
B yenns ig_1=1 h=1
10F1 eyl —17M

Proof We consider w.l.o.g the functions 9, evaluated in r;, the state of the process at a
generic transition time T;. Let us prove the statement by an induction method.

Base Case (k=1)

o) ) EF [Tt =T090 (i 1) ]

N N
(2:6) ]EIP [e—Ti(Ti+1_Ti) Z in I{TiJrl:riO} ‘Tl]

i0=1
N g .
= D wi BF e Tt mTIL, -y [ = v T, (2.30)
i0,i1=1
Now

EP [o—7i(Tit1—T4) ] —_ gP [efri(Tmei)

r; = 7"‘1}Eﬁ |:I{T,Z_+1:ri0}|7’i = Til]
(2.31)

. ]
I{TiJrl:TZO}{rZ =T
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because, conditionally on 7;, the interarrival time T;;1 —T; and 741 (the value of the process
at the transition time T;;1) are independent by the properties of the CTMCs.
Moreover we have that

. [e_ri(TiH_Ti) ri = ril] =Jo e_rilu%‘&_qilud“ = Tilqulqil
because T;11 — T; is exponentially distributed in accordance with (2.2),
o EF |:I{Ti+1:7,i0}|712' = ril} = ﬁ(’f’i.},.l = ri|r; = rt) = p;, ;, the transition probability from
state ! to 7‘"0;
hence
Pl —ri(Tiz1—T; ; (2.31) qi
E [e i )I{Ti+1:7"i0}‘m - T“} = Piio ri —Zi-l(hd
(2.1) iy sio . .
== .77, Vl 1 232
b iz (23
We obtain that
(230 Gir -
O1(r) =7 Y wig T iy = Y wi Ty (2.33)
= T+ gy ;
ig,i1=1 i1=1
10#£i1
where w] = Z%Zl Wiy -0 defined as in (2.29).
ioF#i1 Tty
Inductive step
By Lemma 2.2

~ - N
Ok(ri) = B [e7 0100y (i) [ri] = BF e ™ % Tl iy |(239)

ip—1=1
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By the induction hypothesis

N k—1
P| —ri(Tiy1—T:) ) Qip, jip—1
(2.34) =FE [ +1 > wi, [Hl o I

iQemri_ 1 =1
10701 5yl 2F0k 1

N k—1

. Qip, jip—1

iQsesif_1=1 h=1 th
10701 eyl 2701

N N k—1

_ ] H iy, yin—1

=1 iQseesif_1=1 h=1 h
10701 eyl —2 70k —1

E’ [e_m(TiH_Ti)I{THl:Tik*l } ’ri - Tik] I{Tif’““}}

N N
(2.32) Qi iy .

ikil B0seees ip_1=1
10701 551 — 1 70

{Ti+1:7"ik—1} ’TZ]

EP[ —T‘Z( i+1— T)I

{riq1=r'k—1} ‘7“1]

k—1
H Qip ip_1
h=1 Tzh + qzh

N k Gi N
_ Thylh—1 X _ k X
= Z H ’[“Zh + q {ri:rlk} - Z wzkI{Ti:le}
B0 seens 1k 1 h=1 ’Lkzl
10FUL 5l — 17k
where wk = > wiy 2 | TT 2221 | defined as in (2.29). 0
LA P g | Tt g,
B(0)yeees ip_1=1 h=1

10701 eyl — 170k

By Corollary 2.6 we know that the ¥x(-) belong to 9, Vk € N because the Prototype

payoff ¥o(-) € M. In the previous Lemma we have proved that Jx(-) Z wlkI{ —riry With
’Lk 1
coefficients wfk known when the initial values wq, ..., wy are given. We present now a simpler

representation for Jx(-) by introducing vector notation:

Definition 2.11 Let r = [rl, ey TN]’ be the N-dimensional vector with components the val-
ues of state space E and define

o Oo(r) = [wr,...,wN] where the components correspond to the Prototype payoff Jo(-)

o Oi(r) = [wh, ..., wk], with wk, defined in Lemma 2.10.

In other terms, for k € N, {ﬁk(ri)}{rieE} is the collection of all possible values assumed by
the function ¥y, and, for a fived r* € E, U1(r%) is the i-th component of vector 0;(r).

Lemma 2.12 Let r(t) be a CTMC with state space E and transition kernel Q = (¢; j)1<i j<N-
The vectors O (r) in Definition 2.11 admit, for k € N, the representation

Ox(r) = QF - 0o(r),k € N (2.35)
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with @0 £ Iy the identity matriz and

0
g2,1
r24q2

dN-1,1

q1,2 q1,3
ritq ritq
0 42,3
m24q2
dN-1,2

4dN,1
L rNign

Proof

rN=14qn_

1 N l4gn_g

4dN,2
N tqn

We prove the statement by an induction method.

Base Case k=0
By Definition 2.11 we have

Oo(r) = [wr, ...

Inductive step

Observing that relation (2.35) is equivalent to

q1,N 7
T
r+q1
‘h,]gf
r24q2
0 gqN—1,N
rN=l4gn_1
gN,N—1 0
N tqy .

,wn] = Q" - y(r)

Or(r) = Q- Ox_1(r), k>0

(2.36)

(2.37)

it is sufficient to prove (2.37) by using the induction hypothesis 6_1(r) = Q1 -6y(r). Letting

D(§) = {i1 # io, ..

.y ig—2 # &} we have in fact

N

2.

Qs 1 =1
107015yl 171

N
00yl —1=1

107,y — 172

N

>

T
10F01 eyl —1£N

27

k—1

ws 1,0y H iy ip—1
%0 .1 + ih + g
r q1 r qiy,

h=1

k—1
q2,ij,_4 iy ip—1
wig 11

h=1 TZh + qzh

k—1
ws AN ij_q H Qip, ip—_1
i :
CrN + gy L rin 4 g,

h=1




92,1 {
r2+q2

N
41, Z
rt+q £
105l =1
107415yl 270k —1
N
42,i,_, Z
72 + g2 £
o oeip =t
10741 eyl — 270k —1
N
4N, 1 Z
™V +qn =
H0rth =1
101 eyl — 270k —1
q2,ip_o

iy, ,ip_1 }+'_.+
rih 4 g4, r

) Qij_1ip—2 H Qip, jip—1
io 7 -

le—l + qik71 i rth _|_ qih
) Qij_qip—o H Qip, jip—1
io 7 -

rtk—1 4 Gip 4 P rih 4 iy,

Qij_qip—2

iy, jip—1

i -
0 Tzk_l + qik—l

k—2 N
- Qo H Qip,in—1 } q92,N Z ws
Orl4q rih + g 2+ q2 ©

h=1 h iyt _=1
D(N)
k—2 N
qi,ip_o H iy ip—1 } dN—-1,N { Z
rltq v+ gy, rN=14gn_y —
= QQyeeifg 2=
D(N-1)
r k—2 T
Z w: A1,ip_o H iy in_1
0 ;
- rl+q o T
i(05ees if_2 =
D(1)
N k—2
2 : q2,if,_o H Qip, jip—1
Urldgy Lt g 5
i0yeerig—o h=1 h =Q-
D(2)
N k—2
z : AN ,i_o H Qipip—1
T rth i
iQseeeyif—2 TaN h=1 T Qi
D(N) i

k—2
h=1

i 4 g,

AN ,if_o

kIZIZ

Qip,,ip 1 }
N N T+ gy,

qN,ij,_o

k—2
H Qip,,ip 1 }
N 4N T+ gy,

Or—1(r)

O

The explicit representation of the functions ¥ in Lemma 2.10 allows us to evaluate the quan-
tity 7 introduced in Remark 2.5. We are able to give a sufficient condition to have m ~ 0 in
the cases in which we are interested, that is when the Prototype payoff ¥o(:) = Zf\il wilf._piy
has coefficients w; =1 fori=1,...,N.

Lemma 2.13 Let r(t) be a CTMC with state space E € RN and let us suppose that the
= Zf\il wilf_iy with w; = 1,4 =1,...,N, then the quantity 7 in

Prototype payoff ¥o(+)
(2.17) is negligible if

—~0
qi

(2.38)



where ' € E and q; represents the intensity associated to the state r°.

Proof By Remark 2.5 we have that

7 =EF [e:np( - Vil 7i(Tip1 — Ti)) (Do (ruvy) — F1(rup))IF,

A sufficient condition to obtain 7 ~ 0 is then given by the following relation

19()(7’) - (7‘) ~ (), rekb. (2.39)
By the explicit formulae of the functions ¥g and 91 given in Lemma 2.10 we obtain
N N Gii
_ L .o .
900 =01) = 3 {ur= 3w ey
B iodki
N N Gii
10F£T
N 0 N 1
= St e =2 e e
i=1 "+ q; i=1 o1
where in the second passage we have used the hypotheses w; = 1, ¢ = 1,..., N. Hence,
Po(-) — ¥1(-) = 0 if and only if 1 — ri1+1 ~ 0 for each i = 1,..., N, which is equivalent to
a4
(2.38). 0

Remark 2.14 The condition (2.38) can be seen to be satisfied when the short rate takes values
that are relatively small with respect to the intensities, which is e.g. the case when there are
frequent jumps. In the numerical results this condition is satisfied and in fact the short rate
frequently jumps.

2.2.3 Distribution of v,

The discrete random variable v; 7, as we have introduced it at the beginning of the chapter,

represents the number of jumps of the process r(-) between t and T'. We now compute P(v; 7 =
k|r,, = r™), namely the probability of k& jumps occurring in the interval [t, T] when the process
r(-) at time ¢ is equal to 7", for all k € Nand r™ € E, m € {1,...,N}.

Lemma 2.15 Let r(t) be a CTMC with state space E and transition kernel Q = (¢i j)1<ij<N,
then, for every positive k € N and r™ € E with m € {1,..., N}, we have

~ N T ~ .

P(v,r = klry, =) = Z qmi/ e~ IRy, p =k — 1|r,, = r')ds, witht <T. (2.40)
i=1 t
i#Em
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Proof Let us denote the first jump time after ¢ as the random variable 7, that is
7 =inf{u > 0: veyu > Vyqy)- b By properties of CTMC’s we observe that (7|r,, = r™) ~
Exp(gm). Consider now the random variable 7 defined as follows:

TET 4+t

since the density function of 7 is P(7 € ds|r,, = ™) = gme 9m°ds, the density function of 7
is given by

P(r € ds|ry, = ™) = P(F+t € ds|ry, = ™) = gme " ds, s > t. (2.41)

We can now proceed to prove the statement. In fact, by the law of total probability, we have
that

T N
Py = klr,, =r") = / ZP(T eds,ry, =1'|ry, =r")Pvsr =k —1|r,, =7r") (2.42)
t =1
where 7' (i = 1,..., N) are all possible states reachable at the jump time 7. By properties of

CTMC’s, the random variables 7 and r,_ are, conditionally on r,,, independent and so

ﬁ(r cds,r,. =7r'r, =r") = ﬁ(T € ds|ry,, = rm)ﬁ(rw = rilr, =r™)
(241) qme_qm(s_t)pmids.

Hence, by (2.42), we obtain

T N

@(VLT = k:|TVt = rm) = / meriqme_qm(s_t)]ﬁ(ljsﬂﬂ = ]{ - 1|’I"VS = T‘i)dS
toi=1
21) T ~ ‘
D S O T
— t
iEm

We derive now an explicit expression for the probabilities defined in (2.40).

Lemma 2.16 Under the same hypotheses of Lemma 2.15, assuming w.l.o.g that vy = h € N
and denoting m = iy, for simplicity of notations, it follows that

N

I/EP;(Vt’T = k‘|’l"1,t = T‘ih) = Z eqz‘htiqih+kT¢h7k(Q) . \Ijh,k‘(t7 T’ Q)
iy =1 (2,43)

~ ' Tht 170 h it 2 ht 1 se st kPt k—1
P(Vt,T = O‘Tyt — ,rlh) — 6*qz‘h (T,t)
with iy, a fized index in {1,..., N}, Uy the following multiple integral
T T
3 k'(ta T, Q) S / €(qih+1 ~Gip,)tht1 / e(‘h'h+2_q¢h+1)th+2 R
t

tht1

T
.. / e(qih-Hc_qih+k—1)th+kdth+k o dtppodtn i
thyk—1
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and
A
SOh,k(Q) = Qipyinsr " Diprk—1,0ntk-

Proof The case k = 0 is proved directly by properties of CTMC’s. Let us prove by an
induction method the general case for k > 1.

Base Case (k=1)

(240) & T

~ . _ i (thi—t)S _ o

P(Vt,T = 1lr,, = 1) = E : Qipying1 / et )]P)(VtthhT = O|TVth+1 =" )dlp 41
t

P
iht17in

N T
= E i sinsn / B*Qih(tthl*t)e_qih-&-l(T_th+l)dth+1
t

it
ihy17in

N T
— § qz’h,thﬁle(%h Qip 41 ) / e(th+1 th) h+1 dth+1

) t
ina=t
ih17n

Inductive step:

> (2.40) N T -

Plvr = klry, = 1) "= Z Qip in1 / eiqih(thﬂit)P(VthH,T =k - 1|TVth+1 = ") dtp 4
¢

o
ih+170n

N T
—qi, (thyp1—t
= § qimihﬂ/ e din (i =1).
t

tht1=1
iht170n

N
i t —q; T
{ Z eq ht1bht1—Tip g, ‘ph—l—l,k—l(Q) . \I’h—f—l,k—l(th—&-laTa Q)}dth—I—l
it =1

Th 2 h 4 1,0+ 37 425 sTh b kT hp k—1

N
i t—qi T
= > Ginsinr €0 06T 0p 4 k- 1(Q)

] o ih+1z"'7ih+k‘:1 )
U170 h b 27 ht 5o T ht b F Ttk —1

T
/ einta 7qih)th+l\1’h+1,k—1(th+17 T,Q)dth+1
t

N
= > etk T ooy 1 (Q) W (t, T, Q)i

‘ Cingpeeingk=l
U170 h T h 4 27 ht 1se T ht b F Utk —1

where in the last passage we have used the fact that
Ph.k

Prt1,k=1 = Dipy1signinyr1 0 gy 4 -1 -1t D)+ (o—1) — .
q”’h’lh+l
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and

T T
Uit k-1(the1, T,Q) = / e(qih+2_qih+1)th+2/ linss~Gin2)tnes
t

h+1 thyo

T
.. / e(qthrlc7qih+k—1)th+kdth+k o dtpsdty o
thik—1

Remark 2.17 In the previous Lemma, the dependence of the probability IF)(Vt’T = k|r,, = ri)
on h = vy (the number of jumps occurred until the time t) is due only to technical reasons
during the proof. In fact the following representation of these probabilites is equal to the one

given by (2.43):

N
vz = Klry, = ') = >, etot =0T 0 (Q) - Wi(t, T, Q) (2.44)
iq,eip=1

i1740,12701 - ip Flp—1

with ig a fized index in {1,..., N}, Uy the following multiple integral

T T T
U(t, T, Q) A / e(dip —gig)t1 / e(din—ai )tz ., / e(qz'k—fhk_l)tkdtk L dtodly (2.45)
t t tg—1

1

and
e(Q) £ Gigyiy - Qig_y.in-

We recall now an interesting property of an homogeneous time CTMC -namely a CTMC with
transition kernel Q = (¢; j)1<i j<n independent with respect the time- which is very useful in
our context:

Remark 2.18 Let v, be the discrete random variable which represents the number of jumps
until T such that 7 = T —t with t,T € Ry. When the process r(-) is an homogeneous time

CTMC -as in our case- the random variable vy is equivalent in law to v: = vy . Hence, by
Remark 2.17,

P(vyr = klr, =1°) = P(up_, = k|r(0) = r'0) (2.46)
N
= > e T (Q) - Wi(0,T — 1,Q)
Q15 ip=1

1AM A2 70, P —1

where the quantities involved are defined as in the previous Remark.
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2.2.4 Price of Prototype product Vy,7: closed formula

We are now able to give an explicit representation of the price of the Prototype product
represented as in Lemma 2.3 and its approximation Vi , r introduced in Proposition 2.8.

Proposition 2.19 Under the same hypotheses and notations of Proposition 2.8 and Lemma
2.10 and assuming that at the evaluation time t the spot rate is equal to a fized r* € E, the
Prototype product price Vi, 17(ry,) and its approrimation Vi , 1(ry,) admit respectively the
following representations

—+00
Voot (1)l =i = D Q% - 00(0)iP (v = Klry, = 17), (2.47)
k=0
and
Vot (T, =ri = Z Q% - 00 (0))iP(ver = Klry, = 1), (2.48)
k=0

where Q is defined as in (2.56), Oy(r) is as in Definition 2.11 and [v]; denotes, for a generic
vector v, its i-th element.

Proof By formulas (2.14) and (2.35) we have that

Voot (rve)lr,,=ri = EF[[Q"7 - 0o (r))lry, = r'];

it follows that

“+o00

Voot (rv) )i = > _IQF - O0(0)liP(ver = Klry, =17). (2.49)
k=0

We obtain a similar expression for Vi , 7(ry,), that is

e

Voot (o) =t = BE[QT - O0(0)lr, =] = Q- o(0))iP vz = Kl =17)
k=0

O

We are able to give a simpler explicit formula of the price of the Prototype Product in the
particular case when the matrix @ in (2.36) is diagonalizable:

Proposition 2.20 Let us suppose that @ defined by (2.36) is diagonalizable. Under the same
hypotheses and notations of Proposition 2.8 and Lemma 2.10, Vy, +1(ry,) defined as in (2.14)
and Vgoﬁt’T(r,,t) admit respectively the following representations

EP[d T |r,, = #1] 0 0
Vﬁo,t,T(th)‘rytzri = e; S 0 e 0 .81 Qo(f), (2.50)
0 0 EP[d o ry, =1l
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and

EF[d" |1y, =77 0 0
Vot () lr, =i = €S- 0 - 0 -S7 . 0y(r), (2.51)
0 0 E?[dﬁ’ﬂrw =]

where S is an N x N matriz the columns of which are the eigenvectors of C~2, (dj)j=1,..N are the

etgenvalues of @, e; is the " unit wvector, Oo(r) is as in Definition 2.11 and

E?[d”tﬂr,,t =ri| 237, deF’(Vt,T = k|r,, = ') for a real number d and n. given by (2.23).

Proof By (2.35) we have 0, ,.(r) = QT - By(r) and it follows that w;""(Q), the it

element of 6y, ,.(r), is equal to [QV+7 - 6(r)];: hence

Dy, (1) = [Q"7 - o (1)) (2.52)

By formula (2.15) we have

Vﬁo’t’T(th)’r'/t:Ti = EP[ﬁVt,T (TVt)|TVt = ri]

=" EN(QT - bo(r)lilru =]

= EP[[S . pveT . S_le()(f)]i‘ryt _ T’i]
=[S ED"Tn, =1 S 6o(n)):
= 62 .S, E@[_DVLTM'* — T‘i] . S—l . eo(ﬁ)

EF[d"" |ry, =7"] 0O 0
= -5 0 0 =S 0o(r)
0 0 EP[dg"|ry, =]

where in the second passage we have diagonalized the matrix @ = SDS™! with S the matrix
of eigenvectors and D the diagonal matrix with diagonal elements (d;);=1,.. n. Analogously

we obtain an explicit matrix representation for Vi , p(ru,) = > 3o Ok (10, )P(ve,r = klru,).

2.2.5 The Prototype product pricing under a more general market model

So far we have considered a market model under which the spot rate is assumed to be a
CTMC. It is possible to generalize this framework by considering the above interest rate as a
renewal process. In fact, by definition, a renewal process is a point process characterized by the
fact that the successive interarrival times are independent identically distributed (the CTMC
is a renewal process where the interarrival times are exponentially distributed in accordance
with (2.2)).

The pricing formula for the Prototype Product Vi, 1 7(ry,) = Y125 ﬁk(rl,t)]?”(ytj = k|ry,)
given by (2.14) holds also when the spot rate r(t) is a general renewal process which takes
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values in a finite set £ = {r!,... rV}. In this case we are going to show that the approach to
price the Prototype Product does not change but the quantities ¥4 (r,,) and P(v,r = k|ry,)
have a different representation with respect to the previous sections.

Functions Jy(r,,):
for a fixed k, ¥x(ry,) can be represented recursively, as in Corollary 2.6, by using an
operator T defined similarly to the one introduced in (2.19), namely

T~ F(qv)), vemMm (253)

{ TO(v) £ B e %0(u)]
where T represents the interarrival time with a general distribution F' which depends
on the parameter ¢(v) and 9 is defined by (2.18) (see Subsection 2.2.1 for the other
notations used in formula (2.53)).

The contraction constant v of 7, depending on the distribution F', could also be greater
than 1 (contrary to the case in which the random variable ¥ is exponentially distributed
and, according to point b) of Proposition 2.7, v £ SUD,c % < 1). Nevertheless,
recalling Remark 2.9, we are able to compute numerically the price of the Prototype

Product even if T is not a contraction map.

Probabilities P(vy1 = k|r,, ):
the probabilities ﬁ(l/t,T = k|r,,) can be obtained by a formula similar to (2.40). More
precisely, while in the proof of Lemma 2.15 the time 7 is exponentially distributed (see
formula (2.41)), in this case 7 is distributed according to F'.

Hence the price of the Prototype Product Vy, ;7 can be explicitly represented also when the

spot rate is assumed to be a more general point process, namely a renewal process, with a
finite state space FE.
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Chapter 3

Bond, Cap, Swaption and Bond
Option pricing with a Markov short
rate

Once we have presented the Prototype product pricing under the assumption that the spot
rate is a CTMC, we are able to give, for specific contracts (bond, cap, swaption and bond
option), a representation of the price as a linear combination of Prototype products.

3.1 Bond pricing

3.1.1 The pricing formula

The bond price p(t,T) is simply a Prototype product with a particular payoff ¥y. We shall
denote p(t,T) always by p(t,T;7(t)) because a T-bond price evaluated at time ¢ depends on
the value of the spot rate at time t.

Proposition 3.1 Let r(t) be a CTMC with state space E and transition kernel
Q = (gi,j)1<ij<n; let its value, at the initial time t when v, jumps have occurred, be r(t) = r*

for a fizted i = 1,...,N. A zero-coupon bond which matures at time T can be viewed as a
Prototype product characterized by the following payoff:
N
wi, =1, ip=1,...,N ’

Hence the bond price admits the following representation

—+00

p(t, T (D))lry=ri = Y _[Q" - O0(0)|iP(vsr = Klry, = 1) (3:2)
k=0

where Q is defined as in (2.36), Oo(r) = [1,...,1] € RN, the distribution of v, condition-
ally on r(t) is given by (2.44) and [v]; denotes, for a generic vector v, the i-th element of v.
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Moreover, under the assumption that @ 15 diagonalizable, we have an alternative representa-
tion:

EF[d T |r(t) = 1] O 0 1
p(t, T57(8)) | py=ri = €5-S- 0 0 S| (33)
0 0 Ep[d]y\’}’”r(t) =rf] 1

where the columns of S are the eigenvector of @, (dj)j=1,..~n are the eigenvalues of@ and e;
is the it" unit vector.

Proof Assuming () = 7% and the payoff ¥y given by ¢ as in (3.1), by (2.4) we have

b Tir(0) = B [ean( ~ Z (i — ) 175
= EP[EP[eap( - i (T — ) |7, v ofva} || 7
= EP[EP [ean( - f; (T — T0)) bo(rug )| 5, V o {wn,}] | 75,
= E@[%,T<m>\f;]l:—wEﬁ[qﬁyt,T<r<t>>rr<t>] (3.4)

where the last two passages follow by Lemma 2.2 when we set n = v, k = vpr — vy = vy 1
and we denote the functions ¥y by ¢y. Looking at formula (2.15) of Vi, + 7(7,,), we have that
p(t,T;r(t)) = Vyorr(r(t)). Hence, under the assumptions of Proposition 2.19, by formula
(2.47) the bond price can be written as follows

—+00

P T () eyt = S 1GF - OBz = ki, = 1)
k=0

where

e the components of 0y(r), according to Definition 2.11, are given by the coefficients wj,
of ¥g(-) that in our case are equal to 1 by (3.1);

e v 7, conditionally on r(¢), is distributed as in (2.44).

In the case of @ diagonalizable, by using the results and the notations of Proposition 2.20,
the bond price has the following explicit expression

EF[d T |r(t) =71 0 0
Pt T; () |rpy=ri = €} S 0 0 S~10o(r)
0 0 EF[dy"|r(t) =]
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3.1.2 A computable bond pricing formula

An analogous result can be achieved when we look for a computable approximation of the
bond price:

Proposition 3.2 Under the same hypotheses and notations of Proposition 3.1, for an arbi-
trarily small € and ne € N such that

[ttt —n)) supep | Yoiny (72 — 1)Ijumyy
T log(y) log(7) ’

(3.5)

it follows that, if we denote by ¢y the functions given by relation (2.9) with the starting point
equal to ¢g, the quantity pe(t,T;r(t)) £ Y 1<y du(r(t)P(ver = Kk|r(t) = %) approzimates the
real bond price p(t,T;r(t)) represented by (3.3) in the sense that

|pe(t, T57r(t)) — p(t, T;r(t))| < € uniformly in (t,T,7(t)). (3.6)

Moreover, the approzimating price p.(t,T;r(t)) can be written as follows

e

Pe(t, T5r(E) | (py=rt = D _[Q* - Oo(r)iP(ve;r = Klry = 1) (3.7)

k=0

and, assuming the diagonalizability of @, it admits the representation below

EF[d/ T |r(t) =71 0 0 1
pﬁ(t7 T T(t))|r(t):ri = 6; S 0 . 0 S_l (38)
0 0 Eldy"|r(t) =] 1
with BE[d" r(t) = r'] £ Spe dbP(vp = klr(t) =1%), j=1,...,N.

Proof By hypothesis let us denote the ¥xs in Lemma 2.2 by the ¢ys with the starting
point defined by the Prototype payoff as in (3.1): then we have that

N
o) = do() = D wilipsy = ZI{ =)
i=1

and
(2.28),(2.29) N Gir i
= )= a0y
'191() - ¢1( ) - 1021 wlO Til T qil I{-:r"l}
i1
(3.1) N Giv i N
= _Givio _y o
= Z ’]"il + qil I{':T’ll} - Z 7"“ 4 q ( Z (]@1710)1{ _Tll}
o i1=1 ip=1
107#11 s

N

= > L,
Lpigg T
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Recalling Proposition 2.8, the condition (2.23) on n. then becomes

log(e(1 =) _ sWven | Xt (g = D=y
log(7) log(7)

€

and we obtain that
|pe(t, T57r(t)) — p(t, T;7(t))| < € uniformly in (¢, T, 7(t))

where the uniformly convergence with respect to (¢, 7, 7(t)) is due to the independence of n.
on the triple (¢,T,7(t)).

In addition, an explicit expression for p.(t,7;7(t)) is obtained directly by the closed for-
mula of Vi§ , 7(r(t)) in (2.48) (or by the explicit formula in (2.51) when @ is diagonalizable)
analogously to the previous Proposition. 0

To conclude this section, we observe how, by considering the spot rate () as an homogeneous
time CTMC, the price of a T-bond evaluated at the time ¢ does not depend separately on ¢
and T but only on the length T" — ¢: this result will be very useful in the pricing of interest
rate derivatives.

Proposition 3.3 Let r(t) be a CTMC with state space E and stationary transition kernel
Q = (4i,j)1<i,j<N, then the price of a T-bond evaluated at the time t with the initial value of
the spot rate equal to r"™ € E admits the following representation

p(taT;T(t))|r(t):rm = p(’l“m,T*t) (39)

where p(r™, T —t) £ p(0,T — t;7(0)|,(0)=rm. The same property is valid for pc(t, T;r(t)),
defined as in Proposition 3.2, which approzimates the bond price:

Pe(t, T;7 () |ry=pm = pe(r™, T —1) (3.10)
with pe(r™, T —t) £ pc(0,T — t;7(0)) ] (0)=rm -
Proof Looking at (3.4) in the proof of Proposition 3.1, we have that
_ +o00 »
Tl = B 6 (P(O)Ir(E) = 7] = - (™) Bltr = Kir(6) = ™).
k=0
Taking into account (2.46) in Remark 2.18, it follows that

+oo
Pt T5 () ymrm = D dr(r™P(vr—y = k[r(0) = ™) = p(0, T — £;7(0)) ()=
k=0

The quantity p(0,7" — #;7(0))|r(0)=rm is indicated by p(r™,T — t) because we want to
emphasize that the representation of the probability P(vp_y = k[r(0) = ™) in (2.46)
highlights the independence of the bond price on the time of evaluation. In an analogous
way (3.10) is proved. 0
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3.1.3 An approach based on the affine term structure representation

The affine term structure models have been successful in the interest rate theory because they
allow computations to be carried out more easily. We now use the result in |1] (Proposition
below) to calculate the bond price in our context.

Definition 3.4 An interest rate model is said to have an affine term structure if bond prices
can be described as

p(t, T;r(t)) = explA(t,T) — B(t,T)r(t)] (3.11)

where A, B are deterministic functions and r(t) is the spot rate.

Assumption 3.5 The short rate r(t) is solution of the following stochastic differential equa-
tion under a martingale measure Q)

dr(t) = a(t,r(t))dt + b(t, r(t))th + / q(t,r(t), z)u(dt,dx) (3.12)
D
where p(dt,dz) is a point process measure on the mark space D and a(t,r), b(t,r), q(t,r,x)
are given deterministic functions. The process Wy is Wiener under QQ and p has a predictable
Q-intensity
Mw, t,dz) = A\(t,r(t™),dx) (3.13)

where \(t,r,dx) is a deterministic measure for each t and r.

Proposition 3.6 Suppose that the r-dynamics under Q are given by (3.12) and the parame-
ters a,b,q and X have the following structure

a(t,r) = ai(t) + a(t)r (3.14)
b(t,r) = /Bi(t) + Ba(t)r (3.15)
q(t,r,x) = q(t,x) (3.16)
At,rydx) = 1i(t,dx) + l2(t, dx)r. (3.17)

Then the model has an affine term structure of the form (3.11) where the functions A(-,T)
and B(-,T) solve the following system of ODE’s on [0,T]

PBUT) | 0BT~ Soa()B*0,T) +unlt, BT)) = —1
B(T,T) = 0 (3.18)
(Mg;T) +ai1(t)B(t,T) + %Bl(t)BQ(t,T) +41(t,B(t,T)) = 0
AT, T) = 0 (3.19)
and
it y) = / (1 vt} (e d) i = 1,2, (3.20)
D
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We show now that this result can be used in our context where r(t) is assumed to be a
CTMC with finite state space E. We consider the simplest case, namely 7(¢) is a CTMC with
E = {rl,r?} (r! =1, 7> = 2) and transition kernel Q = (gi,j)1<i j<2 such that g2 = —qi1 =
@1 = A and g2;1 = —q2,2 = q2 = jt where A, ;p > 0.

Lemma 3.7 Let r(t) be a CTMC with a state space E = {1,2} and transition kernel

Q= ( _,u)\ —)\M >, then the spot rate is solution of the following SDE

dr(t) = q(t,7(t),1)dN} — q(t,7(t), —1)dN? (3.21)

where q(t,r(t),1) =1, q(t,7(t),—1) = —1 and N} ~ Poiss(\i(r(t_))), i = 1,2 such that

w2 ={ o S )
and
0 frit-)=1

M), 2 X0 = { T =

Proof The SDE (3.21) is a particular case of (3.12) if r(¢) is considered a continuous
Markov chain. In fact a continuous time Markov chain is a "pure jump" process: it can be
represented by a SDE of form (3.12) without the diffusive part (a = b = 0). In our case the
state space E = {1,2} and the mark space D = {1, —1}, which contains all possible jump
sizes, are discrete sets, so that the dynamics of r(t) are given by

dr(t) =Y q(t,r(t), k)u(dt, k)

keD
with
q(t,r,1) =1, q(t,r,—1) = -1
and dN} ~ Poiss(\H(r(t2))) ifk=1
puldt, k) = { AN? ~ PoissO2(r(t))) if k= —1
such that

Mo ={ o i),
) =1

0 ifr(t_
s ={ ) i)

The choice of these parameters is motivated by the following argument: at time ¢_ the process
r can take two values

- if r(t_) = 1 then the jump occurs according to the Poisson process N} with intensity A
and the jump size is equal to 1 (¢(t,7,1) = 1) to reach r(t) = 2;

- if 7(t_) = 2 then the jump occurs according to the Poisson process N? with intensity u
and the jumps size is equal to —1 (¢q(¢t,r,—1) = —1) to reach r(¢t) = 1. 0O
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Corollary 3.8 Suppose that the r-dynamics under Q is given by (3.21), then we are in the
presence of an affine term structure where A(-,T) and B(-,T) solve (3.18)-(3.19) with

a1(t) = aa(t) = Bi(t) = Ba(t) =0
Pi(t,y) =2A(1 —e™Y) — pA(1 —¢¥) (3.22)
Pa(t,y) = =M1 —e7Y) 4+ ur(1 —eY).

1.€.
OBUT) M1 — e PO 41— P67 =
B(T,T) = 0, (3.23)
QAT L or(1 = e PED) -1 = 26T = g
AT, T) = 0. (3.24)

Proof Assuming r(t) solution of (3.21), by Lemma 3.7 we obtain
Q(t, 1) £ Q(t,’l”, 1) = 11 Q(t, _1) = Q(ta T, _1) =-1

A (r(t_)) = { 3 i :Eﬁ L =S M) =22 - Ar(r) (3.25)
o) ={ ) R Ty = B = ko) (3.26)

The Lemma is proved by verifying the hypotheses of Proposition 3.6 and showing that with
r-dynamics as given by (3.21), the results of that Proposition lead to (3.23)-(3.24):

o a(t) = as(t) = B1(t) = Pa(t) = 0 because there is no diffusive part in (3.21);
e the components of the intensities A} and \? are

Lt 1) = 2, la(t,1) = —A
ll(t72) =K l2(t7 2) = I3

by (3.25) and (3.26);

e the ¥’s in (3.20), with a discrete mark space D | become
sz)l (tv y) = Z(l - eq(t7k)y)l1(ta k)

keD
— 2A(1—eY) - p(l— ),

Ya(ty) = D (1= etM)ia(t k)

keD
= “A1l—-eY)+pu(l—-e).
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Equations (3.18) and (3.19) now become (3.23) and (3.24). 0

Remark 3.9 The functions A(-,T) and B(-,T), solutions of (3.23)-(3.24), can be expressed
by explicit but very complicated formulas: for this reason it is practically not possible to develop
an interest rate derivatives theory based on the affine term structure (3.11) when the spot rate

is a CTMC.

3.2 Cap pricing

Following the notations in Brigo-Mercurio [2], let us consider a set of payment dates
Sa.p = {Sa+1,...,938}, @ < B € Nsuch that, for a fixed date t > 0, ¢ < Sy < Sa41 < ... < Sg
and this implies a set of tenors {s; £ S; —S;_1;i = a+1,..., 8}. For the cap pricing we limit
ourselves to the caplets because the cap is viewed as a sum of caplets.

3.2.1 Caplet pricing

For a fixed i € {a + 1,...,8}, the i-th caplet is a call option on the Libor rate
Li(t) & L(t,8i-1,5:) = S%(ps(fgz)l) — 1). Assuming a unitary nominal capital, we have on
the given filtered probability space (Q, F, (F)ier, P) with P a martingale measure

- Si
Cpl(t, S;) = s;EF [em’p(— / r(u)du) (Li(Si_1) — K)*‘]—“t} (3.27)
t
where K is the strike price. We derive now an alternative representation for the caplet price
as a bond put option:

Cpl(t, Sz) (3§7) SZ'EHB _e* ftsi T(u)du(Li(Si—l) o K)+)Ft:|

= SEP [P I (LS, y) — K)F|Fs, ]

k3

d

- . +
B[P [ = 5 rwydu, — fsi rdu (1= p(Sic1, 5i) (1 + Ksi)
s;E _IE [e t e 1 ( P A ) ‘]:gi 1]

7

= B e (R ) e )]
_ gP [e— fo T g, Si)(l - p(sg(éf,)gf Ks¢)>+‘f t]
. Ksi)Eﬁ [6_ ftSi_l r(u)du <1_|_1K'3 —p(Si-1, SZ)) " ‘]:t} (3.28)

We shall denote Cpl(t,S;) always by Cpl(t,S;;r(t)) because the price of the i-th caplet
evaluated at time ¢ depends on the value of the spot rate at time ¢. Considering the spot
rate as a CTMC, we can particularize the formula (3.28) as we have done for the bond pricing
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in (2.4):

1/51.71—1

> ri(Tim _Tj)) (%Ksz —p(Si-1,5: T(Sz'—l))) i

Jj=vi

Cpl(t, Sy (1)) = (1+ K's;)EF [exp (— 7

(3.29)
where p(S;_1,5;;7(S;—1)) denotes the bond price p(S;_1,S;) which depends on the value of
the spot rate at time S;_1.

We have shown in the previous chapter that the bond price can be viewed as a particular
Prototype product. We are now going to show that the caplet price can be written as a linear
combination of the prices of N different Prototype products.

Proposition 3.10 Let r(t) be a CTMC with state space E and transition kernel
Q = (¢ij)1<ij<nN; let its value, at the initial time t when v; jumps have occurred, be r(t) = 1!
for a fited Il = 1,...,N. The price Cpl(t,S;;r(t)) of the i-th caplet can be represented as
follows

N +

1

Cpl(t, S5 (D) lr(py=rt = (1+ Ks) D <1 e —p(rm,si>> Vigsia (') (3.30)
m=1 ¢

where, for each m € {1,...,N}, p(r'™,s;) is defined by (3.9) and Vym 1 s, , represents the
price of a Prototype product with payoff Vg defined by

() = Do) = Ligmr wio (M) yioy
w; (m) = { 0, ip #m (3.31)

1, i0=m

Proof By (3.29) we have

r v 1
Cpl(t, Si: 7 (t) . i 1 +
pl_|_[{s:) = }EP _exp ( — Fz;t Tj(Tj+1 — Tj)) <m — p(SZ;l, Si;’l"(Sz;l))) ‘Ht]

I N v 1
=E* ZGXP<— > Tj(Tj+1—Tj))
L m=1 J=vt
1 +
(s, ~ P50 560™) T =l ]
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I
M) =

{(1 +1Ksi —P(Si—l,SiQTm))+

m=1
vs;, ;1
E]P exp(— Z rj(Tj-‘rl_Tj)>I{TuSi_1=Tm}‘f§t]}
J=ut
Zy (e —plrms))
1+ Ks —p\r -, S
m=1
Vsi_lfl
E]P exp(— Z rj(Tj"rl_Tj)>I{Tusi_1=Tm}‘f§t]}
J=ut
where, by setting in Lemma 22 n = w, k = vs,, — 1 = v45,_, and choosing

Yo(ry+x) = Yo(ry+x) as defined in (3.31), we have that

r vs;_ 11

B e (- Y rj(TjH—Tj))I{%i1_Tm}]f;;]

L J=vt

r vs;_1—1

(3.31) P m

2 B e (= 3 (T - )6 () f*f]

L Jj=vt

Mo vs; 1

- EP Ep[exp ( — Z i (Tj1 — Tj))%n(”si_l)u:;t v U{Vt’sifl}} ‘]:’2]
J=vt

(210) B[ m » 7 (2.15)
=B e rlF] P Vi s ()

Hence, when r(t) = r!, it follows that

N +
Cpl(t, Si;r(t))|ry=rt = (1 + K3si) Z < (rm,si)> V%nmsi_l(rl).

m=1

].‘l-KSZ

3.2.2 A computable caplet pricing formula

Since p(r™, s;) and Viym t.5;_, have to be computed as infinite sums, similarly to the bond
pricing, we are interested in a computable approximation of the caplet price.

Proposition 3.11 Under the same hypotheses and notations of Proposition 3.10 and recalling
the definition of v in point b) of Proposition 2.7, let us consider an arbitrarily small € and
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(N )m=1,..N € N such that

m s | 1o8(e( =) _ sUPuen [V1'(v) - wwq with

n
‘ log(7) log(7)
N Gin i N m=1,...,N,
N i1,i N

77/}7171(1]) = Z Wig (m)ﬁl{v:ril}a ¢6n(v) = Z Wiy (m)I{v:'riO}

igyi1=1 n io=1

10741

(3.32)

then, letting pe(r™, s;) be as in (3.10) and Vim .5, s in (2.51) for 9o = Yi*, T = Si_1,

N +

1

Cplelt, S r(O)hrt 2 (14 Ksi) Y <1+K$_—p€<rm,5i>> Viprs (') (3.33)
m=1 t

is a good approzimation of the caplet price defined as in (3.30) in the sense that

e—0

Cple(t, Si;r(t)) — Cpl(t, Si;r(t)) uniformly in (t, S;—1,Si, r(t)). (3.34)

Proof Recalling the representation of the caplet price as in (3.30) of Proposition 3.10
and the definition of Cpl(¢, Si;7(t)) in (3.33),to prove the convergence in (3.34) it is sufficient
to prove that

e—0

1. pe(r™,S; — Si—1) — p(r™, S; — Si—1) uniformly in (S;—1, S;, ™)

e—0

2. qugb’tisiil(rl) — V¢$7t,5i71(rl) uniformly in (¢,8;_1,7!), Vm=1,...,N

The first statement follows directly from Proposition 3.2 taking into account that, according
to Proposition 3.3, pe(t, T57(t))|t)=pm = pe(r™, T —t) and p(t, T;7(t))|,t)=pm = p(r'™, T —1).
The second statement is proved by considering Proposition 2.8 : for an arbitrarily small € and
n € N such that the condition (3.32) is satisfied, we obtain that Vl/ia”,t,Si_lﬂ represented by
the closed formula in (2.51) for Jo = g and T'= Sj_1, converges to Viym ; s, , in the sense of
(2.25). Hence it follows that

Vi o5, () 8 Vg s,s, (1) uniformly in (¢, Si—1, 7).

3.3 Swaption pricing

Using the same notations as in Section 3.2, a swaption is the option to enter into an interest
rate swap at a specified future date S,. The payoff can be written not only in terms of
the forward swap rate but also in terms of an IRS (Interest Rate Swap), a contract which
exchanges payments between two differently indexed legs. In the Payer IRS (i.e. PFS) the
contract owner pays the "fixed leg" and receives the "floating leg" defined as follows:
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fixed leg: Zfzaﬂ Ks;p(t, S;), that is the value at time ¢ of the total amount to be paid with
a fized interest rate K along the set of payments dates S, g

floating leg: Ef:aﬂ L;(t)s;p(t,S;), that is the value at time t of the total amount to be
received at a floating rate (namely the Libor rate L;(t) for i = a+1,..., ) along S, 3.

It can be easily seen that the value of the PFS at time ¢ can be expressed as

B
PFSS(t,K) = p(t,Sa) — p(t,S5) = K > sup(t, Sp). (3.35)
h=a+1

3.3.1 The swaption pricing formula

The swaption can now be viewed also as the option of entering the PFS, so its price can be
represented, similarly to the caplet price in (3.29), by

_ vs,—1
Swopty(Se, Se.p;r(t)) = EF [exp < - Z (T4 — Tj)) (PFSP(Sa, K))Jr‘]:?,"t] (3.36)
J=vt

More precisely, the swaption price can be expressed as a linear combinations of the prices of
N Prototype products with maturity S, and payoff ¢g* (m =1,...,N) defined as in (3.31),
namely we have

Proposition 3.12 Let r(t) be a CTMC with state space E and transition kernel
Q = (gi,j)1<ij<n; let its value, at the initial time t when v; jumps have occurred, be r(t) = rt
for a fitedl=1,...,N. The price Swopts(Sa, Sa,p;7(t)) can be represented as follows

N B +
Swopti(Sas Sa,p;7(t)) |r)=rt = Z (1 —p(r'™, 85 — Sa) — K Z spp(r™, Sp — Sa)) Vi 1,5, (r)

m=1 h=1+«a

(3.37)
where, for each m € {1,...,N}, p(r™, Sy — Sa) is defined by (3.9) while Vym 1 s, represents
the price of a Prototype product with payoff 1g" defined by (3.31).

Proof Let us denote p(t,T) by p(t,T;r(t)) because a T-bond price evaluated at time ¢
depends on the value of the spot rate at time £.
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By (3.36) and (3.35) we have

g, —1

exp ( - Z (T — Tj)> :

J=vt

Swopt(Sa, Sap;r(t)) = E@

B
.<1 P(Sar S5i7(S0) = K3 5mp(Sr Sni 7(S0))

N———
_F
<1
.

h=a+1
I N vsq—1
= ]EP Z exp ( — Z Tj(Tj.H — Tj)) .
m=1 J=vt

B +
. <1 — p(Sa, Sg; Tm) - K Z Shp(Sa, Sh; Y’m)> I{rl’sa =rm} ’f;t]
h=a+1

N B +
= Z { (1 — p(Sq, Sp; ™) — K Z ShP(SmSh;Tm))

m=1 h=a+1
B Vs, —1
EF [eXp < = > (T - Tj))I{rusa =rm}’]:5t] }
J=vt
(3.9) N m ’ m i
= Z <l—p(7’ .S —8a) — K Z spp(r 7Sh_SOé)>
m=1 h=a+1
_ |
EF [exp ( - Z ri(Tjp1 — Tj)>I{7",,SQ rm}‘}—;t] }
J=vt

where, by setting in Lemma 2.2 n = 14, k = vg, — 14 = 14,5, and choosing ¥y (7“77+k) as defined
in (3.31), we have that

_ vs,—1
E” [eXP ( = D (T - Tj))I{n,Sa =rm}‘f7§t = Vg 1,50 (1)
J=vt

similarly to the proof of Proposition 3.10. By considering r(t) = r! we obtain

N B +
Swopty(Sas Sas; (8| riyrt = D <1—p(7“m,Sg—Sa)—K > shp(rm,Sh—Sa)> Vi 1.5, ().

m=1 h=1+a«a

O

3.3.2 A computable swaption pricing formula

Again, since the exact expressions for p(r™,-) and Viyr 1., are based on an infinite sum, we
present also for the swaptions a computable approximation of the price represented by (3.37).
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Proposition 3.13 Under the same hypotheses and notations of Proposition 3.12 and recalling
the deﬁnitz’on of v in point b) of Proposition 2.7, let us consider an arbitrarily small € and
(n)m=1,...~ € N such that

s | 108l = 7)) supuer [V (v) - wg%v)w it

© T log(v) log(7)
N Gir i m=1,...,N,
N i1,
%Z)T(U) = Z Wi (m) ril —1|-(Z_Z {v=ri1}> ¢O Z wlo I{’U rio}
ig,i1= 1
g)0721'11 o=

then, by letting pe(r™, S, — Sa) be as in (3.10) and Vim 1,5, a8 in (2.51),

N B +
Swopt;(Sa; Sa,g; () |ry=rt = Z <1 —pe(r™, Sg — Sa) — K Z sppe(r™, Sp — Sa)> :
h=14+a

Vi 1.5, (3.38)

is a good approzimation of the swaption price defined as in (3.37) in the sense that

m=1

Swopt;(Sa, Sa,p;7(t)) =3 Swopt(Sa, Sa,p;7(t)) uniformly in (t,Sa, Sa.g,7(t)).  (3.39)

Proof Completely analogous to the proof of Proposition 3.11. 0

3.4 Bond option pricing

The approach used to price caps and swaptions in the previous Sections is valid also for
generic bond options. Consider an option, written on a S-maturity bond, which matures at
time T' < S its price is given by

OptBondy (T, S) = [ — sy (T,S))|.7-"t} (3.40)

where h(-) is a generic payoff. In our situation it can be equivalently represented as

exp ( — VTX_:I ri(Tit1 — T,)) (p(T,S;r(T ‘ ]

i:Vt

OptBond(T, S;r(t)) = EF

where we have denoted OptBond:(T,S) by OptBond:(T, S;r(t)) because the price of a bond
option evaluated at time ¢ depends on the value of the spot rate at time t.

In fact, we can compare the above expression with formulas (3.29) and (3.36) obtained re-
spectively for caplets and swaptions (which can be viewed as particular cases of bond options).
Hence we achieve similar results as were obtained for caplets and swaptions:
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Proposition 3.14 Let r(t) be a CTMC with state space E and transition kernel
Q = (gij)1<ij<n; let its value, at the initial time t when v; jumps have occurred, be 7(t) = rt
for a fized | =1,...,N. The price OptBond(T,S;r(t)) can be represented as follows

N
OptBondy(T, S;7(t))|pipy=rt = Y h(p(r™, S = T))Vym 1. 7(r) (3.41)

with p(r™, S —T) defined as in (3.9) and Vi 17 as in (2.50) for 9o = ¢g° with ¥g* as in
(3.31).

Proof It is sufficient to choose in Proposition 3.10 S;—1 = T, S; = S and to consider
h(p(T,S)) instead of the particular function (1 + Ksl)(%m — p(Si=1,5;))": in fact, looking
at the proof, the representation obtained for the caplet price is independent of the payoff that
is being considered. 0

Proposition 3.15 Under the same hypotheses and notations of Proposition 3.14 and with ~
as defined in point b) of Proposition 2.7, let us consider an arbitrarily small € and
(n)m=1,...~ € N such that

m s |log(e(l —7)) _ SuPwep |7 (v) — ¥ (v)]

Ne = y with
log(7) log(7)
R N y m=1,...,N,
Yt (v) = Z wio(m)ﬁ {v=ri1}> vg' (v szo I{v rio}
ig,ip=1 i0=1

10741
then, letting p.(r™, S —T) be as in (3.10) and Vi er as in (2.51),

N
OptBond; (T, S;7(1))|y=rt 2 D hlpe(r™, S = T))Viip o (') (3.42)
m=1

is a good approzimation of the bond option price defined in (3.41) in the sense that

e—0

OptBond; (T, S;r(t)) — OptBond(T, S;r(t)) uniformly in (t,T,S,r(t)). (3.43)

Proof Analogous to the proof of Proposition 3.11. 0
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Chapter 4

Pricing of interest rate derivatives
when the short rate depends on
several correlated CTMCs: a
multi-factor approach

Until now we have considered the pricing of interest rate derivatives when the short rate is
given by a single CTMC. However one can suppose that the value of the short rate depends
on several factors (such as e.g. the credit spread, inflation rate, etc.) to obtain a more flexible
model for the evolution of the spot rate. In the following we will present a two-factor model
in which the short rate can be represented by a linear combination of two correlated CTMC’s
and we shall see how the approach developed in the Chapter 2 can be generalized when more
factors are considered.

4.1 Market model

As in the previous chapters we assume that the stochastic processes which we are going to in-
troduce evolve under a martingale measure IP in accordance with the theory of the "martingale
modeling".

As a means to introduce correlation we consider two CTMCs X and Y with the respective
transition kernels dependent on a discrete random variable Z taking values in
Z = {z1,...,zm} with distributions 7 = {m,...,7u} = {P(Z = #1),...,P(Z = zm)}.
We make the following assumptions

Assumption 4.1 X (t; Z) denotes a CTMC with state space EX = {x',... 2N} and tran-
sition intensity matriz Q~ (Z) = (q(Z)i(j)lgi,jgN in the following sense: given a fized value
z € Z, the process X(t) = (X(t; Z)|Z = 2) is a CTMC with state space EX = {z!,... 2V}
(N €N and z* € R for eachi=1,...,N) where

e QX(2) = (q(Z)fj)lgmgN is the transition kernel homogeneous with respect the time
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(with q(Z);XJ eR),

o ¢(2)X = Z%l q(i)i)f;, i=1,...,N is the intensity associated with the state x'.
JF1

Moreover, being TZX the random time at which the i-th jump of X (t; Z) occurs, we have that

e given a generic value " (h = 1,... N) of the process X(t;Z) at time TZ-X, the
interarrival time Tfil - TiX 15 exponentially distributed with parameter q(,?),)f under

the measure P (namely (TX, — T X(T;) = a") ~ Exp(q(2)iY));
e for a generic time s > 0, v(2)X denotes the number of jumps of X (t; Z) until s;

e for each s € [Tf(,Tfil), the filtration generated by the process X at the stopping time
T is denoted by Hpx = {A € FX|AN{TX <s} € FX,Vs < T} and X; £ X(s,7)

(similarly X;(2) £ X (s, 2) if we consider a realization Z of the r.v. Z);

o for two generic times s and S such that s <'s, V(E)gg denotes the number of jumps in
the interval [s,5).

Assumption 4.2 Y (t;Z) (analogously to the definition of X(t;Z)) denotes a

CTMC with state space EY = {yl,...,yﬁ} (N € N) and transition intensity matriz

QY (2) = (q(Z)Zj)KiKN. The notations introduced for the stochastic process X are also
valid for Y (t; Z), but now the filtration generated by the process Y at a generic time stopping
time TY > s is denoted by Gpv = {A € GLIAN{TY <s}l e GY Vs <T} and Y; £ Y (s,2)

(similarly Y;(Z) 2 Y (s, 2) if we consider a realization Z of the r.v. Z).

Remark 4.3 From the Assumptions 4.1-4.2 it follows implicitly that, conditionally on Z, the
CTMCs X(t;Z) and Y (t; Z) are mutually independent.

Furthermore we consider the short rate as given by
r(t) =aX(t; Z)+b0Y (t;Z) a,beR, t>0. (4.1)
This particular representation for the short rate suggests the following remark:

Remark 4.4 In the real market it is reasonable that the short rate depends on two factors
which are correlated: according to the formula above the factors X and Y both depend on the
random variable Z. In general, it could become complicated to price interest rate derivatives
when one chooses a short-rate model depending on two correlated factors, but in our situation
this is not the case because of the conditional independence of Y (t; Z) and X (t;Z).

We are now able to give a representation for the bond price in this market model. Let us
assume without lost of generality that ¢t = Tlf(x = TIX, as we have done for the one-factor case
t t

in Chapter 2. Given the filtered probability space (Q,F, (F)ier,P) where F; £ H, V G, =
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HTX \% QTY , the price of a zero coupon bond at time ¢ that matures in 7' > t can be

represented by

_ v(Z)7 —1
p(ta T7 XutX7YutY) = EP [€$p< —a Z Xi (Tl+1 Tz)() - aXV%( (T - TV,%() (42)
i:l/tx
v(Z)¥ -1
Y T -1y )7
Jj= Vt

In this Chapter we will consider upper approximations of the price p(t, T’ XVtX’YVtY) and of
the Prototype product price analogously to what we had done in the scalar case (see beginning
of Section 2.2). We essentially consider the following discount factor

v(Z)F -1 v(Z)¥ -1
exp(—a Z X( i+1 TX —b Z ]+1 TY))

i, X
1=V

instead of the true one

v(Z2)¥ -1 v(Z)¥ -1
exp(—a Y XiTR-T)—aX,x(T-T,x)=b Y Yj(Th- T}/)—be%z(T—Tl%))

i, X Y
1=V j=v

and we justify this choice with the same motivations given for the one-factor case in Chapter
2. By considering a two-factor model where the short rate evolves according to (4.1), the price
of the Prototype Product introduced in Section 2.2 will be represented differently because
now the Prototype payoff and the discount factor in formula (2.7) both depend on X and Y.
In the following Section we shall see how, by choosing a two-factor short-rate model, one can
generalize the definition of the Prototype Product and obtain a closed formula for its price.

4.2 The Prototype product and an explicit representation for
the pricing formula

In order to generalize the price of the Prototype Product as in (2.7), we present a result which
will be useful to reduce the problem of the Prototype Product pricing to one that is simpler
to treat:

Lemma 4.5 Let X(Z) = (X(s,Z),Hs)scp,m and Y(Z) = (Y (s, Z), Gs)se|t,1] be two stochas-
tic processes of which the dynamics depend on a random wvariable Z taking values in
Z = {z1,...,z2m} with distribution m = {m1,...,7p}. By assuming that, conditionally on
Z, the processes X and'Y are independent, it follows that

EP[F(X(2)g(Y (2))H: v Gi) = ZEH” (z0)) HIE [g(Y (zn))|Gelmn, VT > >0 (43)
where f,g: R — R are two generic functions.
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Proof By the tower property of conditional expectations it follows that
EF (X (2)g(Y (Z))[He v G = BF [BF (X (Z2)g(Y (D)|oAZ} v H vV GI[H v G (44)
Hence

(44) = E° [E@[ FX(Z)|o{Z2YV He v GIEP[g(Y (2))|0{Z) V Hy V Gi] "Ht v gt]

— ZEP INNZ = 2, Hy V GIEE[g(Y (2)|Z = 2, Hy NV G B(Z = 21| He V Gr)

= Z X () [He v GEF[g(Y (21))[He v GIB(Z = 21) (4.5)

where in the first passage we use the fact that, conditioned on o{Z} V H; V Gy, f(X(2))
and ¢g(Y(Z)) are independent and the last passage is motivated by the independence of Z
on the o-algebra H; V G;. By the hypothesis, f(X(z3)) is independent by G; and g(Y (zp,)) is
independent by H; because we have fixed Z = zj, so

ZEP (20)) [HAEF[g(Y (28))|Gilmn (4.6)

where 7, denotes the probability P(Z = z,). 0
From now on we will use the following notations:

Notation 4.6 We represent the CTMCs defined as in Assumptions 4.1 and 4.2
on the time interval [t,T] with the following notation: X(Z) = (X(s,Z),Hs)sej,r) and
Y(Z) = (Y(5,2),Gs)scp,m- In fact we are interested in the dynamics of both processes X
and Y only for times included between t and T because our purpose is to price interest rate
deriwatives which mature at time T and that are evaluated at the date t.

We introduce now the Prototype Product when the short rate is given by (4.1) and X (Z) and
Y (Z) are CTMCs as in Notation 4.6:

Definition 4.7 A Prototype product is a financial product which guarantees to deliver a
certain payoff ©g at maturity T. This payoff depends on the value taken by the spot rate at
the date of maturity T. Under the two-factor short-rate model (4.1) with the factors X and
Y defined as in Assumptions 4.1 and 4.2, the price of the Prototype product at time t < T,
analogously to (2.7), is represented by

V@(),tT(XVtx,YVEz):EP[DF(t,T;r)-@O(XV( 25 Yoy )|Htvgt] (4.7)
where
v(2)3
e DF(t,T;r) = e:cp( —a Z Xi( Tz+1 T — b Z j+1 TY)> is the discount
i= VtX Jj= Vt
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factor;

e Qg is the Prototype payoff supposed to have the following form

N N

Oo(,y) ZZ“’ZU}JI{I e fy=yiy> @' '€ B, ¢ € BV, wi,wj € {0} URy (4.8)
=1 j=1

The price of the Prototype Product defined above can be represented, by using the results of
Lemma 4.5, by an expression similar to the pricing formula of the Prototype Product in the
one-factor short-rate model (see formula (2.7)):

Lemma 4.8 Let us suppose the dynamics of the short rate to be given by (4.1) and the
factors X and Y to be defined as in Assumptions 4.1 and 4.2 respectively. Then the price
V@O,t,T(XVX,YVY) at time t of the Prototype Product with maturity T and Prototype payoff

O9 deﬁned by (4 8) admits the following representation:

M
Voot (X%, Yir) = > Usoem(Xyx,20)Ug, o (Yoy s 20) (4.9)
h=1
where
V(zh)
UﬂOatyT(Xl/tX’Zh) = E |:€$p( Z X Zh Z+1 :LX)),l?O(X Zh)T )|Ht:| (4 10)
1= Vt

with 9o(-) 2 S wil _piy, 7' € BX,

and
v(zp)¥—1 B
Uy, o0 (Yo 2n) = Ep[exp(—b Z Y;(zn) (TJ.YH—T}f))ﬂO(YV(Zh)%)ygt )
j= Vt

with Yo(-) & SN WLy, 3 € BY.
Moreover, the Prototype payoff ©g can be expressed in terms of the functions 9¢ and Jo as
Oo(-, %) = V()0 (*) (4.12)

Proof Formula (4.12) follows directly from the definitions of Og, ¥y and 50.
Hence we proceed to prove that the price of the Prototype product can be represented as in
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(4.9): by Definition 4.7 and using ¥y (-) and Jo(-) as in (4.10) and (4.11)

v(Z)x -1 v(Z)¥ -1
V@o,t,T(XugﬁYVtY) = E° [63317(—@ Z Xi( TH—I TX —b Z g+1 TY))'
J= Vt

X
’LI/t

N N
{Zszw]I{x o= Y, )y = yj}}mtvgt]

=1 j=1

Z)¥71

= [{6’1‘29< —a Xz(Tz+1 ;) ) ZwlI{X (X = wl}}
i= I/tX i=1
v(Z)¥ -1 N

{exp< —b Z Y}(T;/H — Tf)) Zw I{y e yj}}\Ht \Y gt]
j:VtY Jj=1
_ v(Z)X -1
= EP [{exp(—a Z Xi(Tfil _T;X)),ﬁo(Xy(Z)%()} )
X

v(Z)y -1
{e:cp< —b Y V(T - Tf)) 190<Yy<z>;>}mt v gt] (413)

Hence, by considering Lemma 4.5 when the processes X(Z) = (X(s,Z),Hs)se,r) and
Y(Z) = (Y(s,2),Gs)selt,r) denote the two CTMCs specified as in Assumptions 4.1 and 4.2
respectively and given two real functions f and g

v(Z)X -1

[(X(2)) = ewp( —a 3 x(TE, —TzX)>190(Xy(Z)gf)>

., X
1=Vy

v(2)}—

9(v(Z >>—e:cp( b Z = T)do(, W))
Jj= Vt

we obtain that

M v(zn)7 —1
(4.13) = Y E° [eazp( —a > Xi(m) (T, - Tf())ﬁo(XV(Zh);T<)|Ht] :
h=1 i=vX
_ v(zp)¥ -1 B
EP [exp( —b Z Y}(Zh) . (T}/+1 — T?))ﬁo(YV(zh)¥)‘gt] T,
j=vy
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Remark 4.9 We can compare formula (4.10) (or equivalently (4.11)) with the representation
of the Prototype Product in the one-factor short-rate model (formulas (2.6)-(2.7)):

e assuming the short rate is given by the CTMC denoted by X(zp), the quantity
Ugmt’T(thx,zh) can be viewed as the price of the Prototype product with the function
Yo defined by (4.10) as the Protoype payoff;

e similarly, by considering the CTMC denoted by Y (z1,) as the short rate, the quantity
Uﬁo,t,T(YutY?Zh) can be viewed as the price of the Prototype product with the function 9
defined by (4.11) as the Protoype payoff;

It follows that all the results on the Prototype Product pricing under a one-factor short-
rate model (Chapter 2) can be easily carried over to give an explicit representation of the
ezpectations UﬁojtyT(XVtX,Zh) and Uy, T(Yyty, zp) for each zp with h = {1,...,M}.

Hereafter we present all the results -derived by the Lemmas proved in Chapter 2- useful to
give an explicit expression to formula (4.10) (and similarly to (4.11)):

Lemma 4.10 (analog of Lemma 2.2)
Let X(Z) be a CTMC defined as in Assumption 4.1 and a a real number. For fived k,n € N
and Z = z, let

{ O ( Xk, 21) A gP [e—aXnJrkfh(Tiikth—Tﬂkfh)ﬁh,l(Xn+k,h+1, Z)‘Z = zl,Hf](_,_k_h] (4.14)
Vh=1,...,k '

with starting point independent of Z and given by the function ¥o(-) defined as in (4.10), then

~ n+k—1
B [eap(—a - XT3N, = T) ) 00(Xyur)|Z = 2,155 | = 04(Xs, 2) (4.15)
i=n

Proof The proof is similar to the proof of Lemma 2.2: instead of the filtrations F; (for
each i € {n,...,n+k —1}) we consider the o-algebra {Z = z;, X } where we have denoted
HX the o-algebra Hyx for simplicity of notation (we choose {Z = z;, H:* } because the func-
tions 95, do not depena only on the value of X at the step n+ k — h, but also on the value z;
assumed by the random variable Z). 0

Proposition 4.11 (analog of Proposition 2.8)
Consider the same hypotheses of Lemma 4.10, given an arbitrarily small €, by defining for

X
l=1,...,M the constant v(z;) = sup %’X and letting nX () € N be such that

ie{l,..,N} ax’ + q(z1);
log(e(1 —v(21)))  SUPigf1,...N} 91 (2", 21) — Jo(a")]

og(7(21)) og(7(2) (4.16)

nX(zl) >
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n (z1) ™

we have that U§ , +(X,x, 21) = 33207 Ie(Xyx, zl)IP’(I/(zl)f,(T = k| X, x) approzimates the real
value of U1907t7T(XV£x,zl) defined in (4.10), in the sense that

Ubo e (X 21) = Ugo 0 (X,x, 20)| < € uniformily in (¢, T, X x), V2 € Z (4.17)

Proof See the proof of Proposition 2.8. 0

Lemma 4.12 (analog of Lemma 2.10)
Consider the same hypotheses of Lemma 4.10. Recalling that the function 9o(-) = Zf\; wily_giy

defined in (4.10) has the coefficients w; independent of Z, the functions 9 satisfy the following
formula

N
V(- 21) = Z wfk(zl)l{,:xik}, k> 1, for every fized z € Z, (4.18)
ip=1
where, form=1,... N,
( N X
q(z1)m.
1 é . m,i0 k=1
Wi (21) g_:l Wio gm 4 q(z)X
07
T WX, [ ek, (419)
Wk 2 Y wy— el ] i | s
" e Parm o g(a)y | axih + q(z)) |
QQsenns Q1= =
\ 10F01 ik 1M
Proof See the proof of Lemma 2.10. 0

Lemma 4.13 (analog of Lemma 2.16)
Under the same hypotheses of Lemma 4.10, assuming w.l.o.g that viX = h € N and considering
X,x =a' for a fived index iy € {1,..., N}, it follows that

N
B0 = kIX,x = a™) = > exp (203t — a2, T):

ihtk
‘ Cingreeingr=l
U170 h i h 4 27 h4 15 bt kF Utk —1 (4.20)

one(QX (20))Uni(t, T, Q% (2));

P(v(20)fp = 01X, x = a™) = ¢ 00T,

with Wy, i the following multiple integral

T T
U6, T,Q% () 2 / Lo, =07, ) / NCCIE LW LEEI
t th+1
T x x
/ e(q(zl)imrk q<zl)ih+k—1)th+kdth+k...dth+2dth+1
thyk—1
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and
X X X
@h,k(Q (21)) £ Q(Zl)ih,ih+1 Tt Q(Zl)thrk,l,thrk'

Proof See the proof of Lemma 2.16. 0

Proposition 4.14 (analog of Propositions 2.19-2.20)

Consider the same hypotheses and notations of Proposition 4.11 and Lemma 4.12. Assuming
that, at the evaluation time t, the process X is equal to a fivred x* € EX, then the quantities
Ugojt’T(thX ,21) and their approzimations UEOLT(X%X , 21) admit respectively the following rep-
resentations

+o0
~ k ~ .
Usot (X, 2) = 1@ (1) - Oo(X)iP(v(20)7 = K| X, x =), (4.21)
k=0
and
nX(z) L B .
Usyer(Xoz) = S 105" - 0B = MX,x =), (422)
k=0
where
h O
L4 QX(ZZ) == (a(zl)z)g)lgl,j,g]\/ é axi+q(zl)ix’ J ) VZ - ]-a .. 7M;.
0, =7
e 0p(X) = [wi,...,wn] whose components w; are the coefficients of the function Yo

defined by (4.10);
e the probabilities ]?)(I/(Zl)i(T = k;|XVtX = 2') are given by (4.20);

o nX(2) is given by (4.16).

Assuming that Q% (z) is diagonalizable for each | € {1,..., M}, we obtain

Eﬁ[d( V(Zl)fT i
21)1 | X,x =2'] 0 0 wy
U1907t,T($ivzl) :eg'S' 0 0 .9~ L. :
~ X
0 0 Efldz)y " IX,x = o N
(4.23)
and
P V(Zl)?‘{T i
Ee [d(zl)l |Xl/tx =T ] 0 0 w1
Uéo,t,T(QTinl) =¢-S- 0 0 .§ L. :
~ (2% )
0 Effd(z) "X x = ] wN
(4.24)
where S is a N x N matriz the columns of which are the eigenvectors of Q~(z),

(d(z1)j)j=1,..~ are the eigenvalues of QX(z), e is the i unit wvector and

E?[d”(zl)fﬂrytx =22 Zziém) dkﬁ’(u(zl)fT = k| X, x = x%) for a real number d.
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Proof See the proof of Propositions 2.19 and 2.20. 0

Remark 4.15 From now on we will give the representation of the price of the Prototype

Product in terms of Uy, and Uj , 1 defined as in (4.21) and (4.22) and of the analogous

quantities U@O c and Uéa o by implying that, in the case when @X(zl) 1s diagonalizable for
gl 0,0,

each l € {1,..., M}, we can consider also the representations as in (4.23) and (4.24).

We are now able to give an explicit representation of the price of the Prototype product:

Proposition 4.16 Under the same hypotheses of Lemma 4.8, let us assume that the CTMCs
X and Y both satisfy the assumptions of Proposition 4.14. Assuming that thx = z" and
YVtY = y™, the price of the Prototype product V®07t7T(XVtX7YVtY) as in (4.7) with Prototype

(4.8) N .
payoff GO(XV(Z)¥’YV(Z)¥) = Zi\il Zévzl U}i’ll)jI{Xu(Z)X:xi}I{YU(Z)Y:yj} can be represented
T T
as u
Voo r (X, Yor)lx, x=on Y,y =ym = > Usgur(@”,z0)Us, (4™, 20)mn (4.25)
h=1
where, Yz € Z,
too & »
Ugpe(a",2n) = D 1Q% (1) - (O] P(v(zn)iy = kI X, x = 2") (4.26)
k=0
and
too k- N v
Ug, 0™ 2n) = SIQ ) - o mBo(en)y = KlY,y = g™ (427)
k=0

with the following notations

lI>

~ RGN
° QX(Zh) = (qu(zh)’i(j)lﬁi,jé]v azi+q(z); Vh=1,... ,M,‘

0, i =
_ i NEEC

* QV(z) = (q(’zh)z},/j)lgi,j,gﬂf = 8yl+q(zh)}” 7 Vh=1,...,M;
) =7

e 0p(X) = [wy,...,wy]" and éO(X) 2 [y, .. LWy whose components w; and w; are the
coefficients of the function Yo defined by (4.10) and of 9o defined by (4.11) respectively;

e the probabilities ﬁ(v(zh)f’(T = k\X,/tx = z") and ]TD(V(Z}L)ZT = k|Y,y =y™) relative to
the processes X (zp) and Y (zp,) respectively in formula (4.20), are given by Lemma 4.13;

Proof The proof follows directly from Lemma 4.8 and Proposition 4.14:

e according to Lemma 4.8 the price of the Prototype product Vg, 1 can be represented

as in (4.9) with Uy, ¢ defined by (4.10) and Uy, - defined by (4.11);
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e by result (4.21) in Proposition 4.14, Uy, ;7 and, analogously, Uﬁo . admit the repre-
sentations (4.26) and (4.27) respectively.

a

As we have done in Chapter 2, we finally present a computable expression of the price of
the Prototype product suggested by the result of Lemma 4.11:

Proposition 4.17 Consider the same hypotheses and notations of the previous Proposition.
For an arbitrarily small €, we define the approzimation of the real price of the Prototype
product as

M
Véo,t,T(thX7YV2/)‘XVtX =Yy =y = Z Uo e (2" 20)U5, |, (6™ zn) (4.28)
h=1
where, Yz, € Z,
nZ (zn) _ . _
Uor(z"s2n) = [Q% (21)" - Oo(X))nP (v (z)iy = k| X, x = a") (4.29)
k=0
and
n¥ (zp) _ b B
Us, 2™ 2n) = QY (zn) - OV P(v(2n) {7 = KIY,y = y™) (4.30)
k=0
with
X log(e(1—7(zr))) SUP;e{1,...,N} [01 (2 21) =00 (z")|
ne (zn) = { g0 Gr)) oz () )
N Q(Zh)@X
Y(zn) & sup ————,
(1) ieq1,..N}y az’ + q(zp)*
and
y log(e(1=9(z))) _ SPjeqr,.. iy 91007,2n) =Do(y?)
ne (zn) 2 { log(w(zh)g ’ Tog(v(zn)) ’
a(zn)Y
Y(zn) = sup !

_ .7}/-
jeqt,...ny by’ +alen);
Then V§, , (X, x,Y,x) is a good approzimation of Voot (X, x,Y,x) in the sense that
e—0

Véo,t,T(Xz/thYz/f) — V907t,T(Xy§vatY) uniformily in (t,T, XVtX,YVtY). (4.31)

Proof By the definition of V{§ , ;- as in (4.28), to prove the convergence in (4.31) it is
sufficient to prove that, Vz, € Z,

0 . P
L Ug, e r(X,x, 2n) = Ugo,t,7(X,x, 21,) uniformily in (¢, 7, X, x),
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(Yyy.2n) =5 Uz, , oYy, 2) uniformily in (£, T,Y,y).

€
2. U Sot.T

50,7f,T

The result now follows immediately from Proposition 4.11. 0

4.3 Bond, Cap, Swaption and Bond Option pricing under a
two-factor short-rate model

We can now proceed to price bonds and the other interest rate derivatives in the presence of
a two-factor short-rate model (by considering upper approximation prices as we have done in
the scalar case by using Remark 2.5 and the results in Lemma 2.13).

We will see that -as we have shown in Chapter 3 when we have considered the short rate as
a CTMC- bonds, caps, swaptions and bond options can be represented as linear combinations
of Prototype products. We will omit the bond option pricing for sake of similarity with the
caplet and swaption ones, but we additionally will give a representation for defaultable bonds.

4.3.1 Bond pricing

Since the bond price depends on the spot rate at the date of evaluation ¢, that is on the
values assumed by X (¢) and Y (¢), from now on we denote p(¢t,T) by p(¢t,T; X (t),Y(t)). Let
us see the representation of the bond price in Proposition 4.18 and a computable bond pricing
formula in Proposition 4.19:

Proposition 4.18 Let us suppose that the dynamics of the short rate are given by (4.1) and
the factors X and Y are defined as in Assumptions 4.1-4.2 respectively. Assuming that, at
the evaluation time t, X(t) = x" for a fited n € {1,...,N} and Y(t) = y™ for a fived
m € {1,...,N}, a zero-coupon bond which matures at time T can be viewed as a Prototype
product characterized by the following payoff:

O (- #) = ol %) £ 30, SN wii Iy T ysy
wi=1i=1,...,N (4.32)

Wj=1,j=1,...,N

In other terms the price of a T-bond admits the following representation

M

p(t,T;ny,Yyty)‘XVtX:mmYVg/:ym = Uppar(a™, 20U, (W™ 20)h (4.33)
h=1

where, by using the same notations as in Proposition 4.16, for each zp € Z we have that

oA k ™ n
U a,r (@™, 2n) = Y 251Q% (1) Qo(X)]nP(v(2)iy = kI X, x = a™)

c _ (4.34)
Us, o™ 1) = SESIQY (o) - Bo(V) B (o(za) Yy = MY,y = y™)

with 0o(X) = [1,...,1] € RY and p(Y) =[1,...,1] € RV,
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Proof Using the same notations of Definition 4.7 of the Prototype Product, we can write
the price of a bond which matures at time T" as the price of a Prototype Product with the
same maturity:

Pt T: X, Y,y) 2 BF[DF@ T M, v G|
= Ef {DF(YZ T;r) - O0(X,z)x: Yoz )[He V Gi
= Vouur(X,x,Y,y) (4.35)
where the second passage is due to the fact that, by definition (4.32), ©q(z%,y?) = 1 for each

pair (4, j) such that i € {1,..., N} and j € {1,..., N}. Hence the statement is proved directly
by the results of Proposition 4.16. 0

Proposition 4.19 Consider the same hypotheses and notations of the previous Proposition.
For an arbitrarily small €, we define the approximation of the price of a T-bond at the date of
evaluation t as

M
pe(ta T; th)(’YVt)/)‘XVt)(:x’VL’YVE/:ym = ZUéo,t,T(xnﬂzh)U{;'mt’T(ym:zh)"rh (4.36)
h=1
where, Vzp, € Z, U§ ,p(z", zn) and Us tT(ym,zh) are giwen by (4.29) and (4.50) with
’7 0,0,

0o(X)=[1,...,1] e RN and §p(Y) =[1,...,1] € RY respectively.

It follows that pe(t, T XVtX’YVtY) 1 a good approzimation of the actual bond price
p(t,T; XVtX’YVtY) in the sense that

e—0

pe(t, T XVtX,Yng) — p(t, T, XVtX,YVty) uniformily in (t,T, XVtx,YVty). (4.37)
Proof See proof of Proposition 4.17. 0

We conclude by giving a result due to the time homogeneity property of the factors X (¢, Z)
and Y(¢, Z) on which the spot rate depends:

Proposition 4.20 Under the same hypotheses of Proposition 4.18, a T-bond price and its
approximation can be written as follows

{ p(t, T; XVtX s YVtY)|XutX :xn’YutYZym = p(T —t;x", ym)

4.38
pe(taT;thX7YytY)|Xut)(:£En,YUty:'ym :pE(T_t7 xn7ym) ( )

where p(T — t; 2™, y™) = p(0,T — t; X(0),Y(0))| x(0)=zn,v (0)=ym and pe(T — t;2",y™) =
pé(oa T -t X(0)7 Y(O))‘X(O):x"7Y(0):ym'

Proof Remark 2.18 holds also for the probabilities in formula (4.34) because X and Y
are both CTMC homogeneous with respect to the time. Therefore, similarly to the proof of
Proposition 3.3, we are able to prove (4.38). 0
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4.3.2 Defaultable bonds: an application of the Prototype Product pricing
approach

Until now we have solved the bond pricing problem, under the assumption of a "default free
market”, when the short rate is considered a single CTMC (see Section 3.1) or when it is taken
as a linear combination of two correlated CTMCs (see Subsection 4.3.1). We are however also
able to give a representation of the price of defaultable bonds by using the Prototype Product
pricing approach introduced in Section 4.2.

In a general setting of the reduced form approach to credit rigk, the price of a defaultable
bond at time of today ¢ and maturity 7' can be written as

(1, T) = Lo EFel 70002000 ) (4.39)

where the processes 7 and A represent the spot rate and the default intensity respectively, 7
is the time of default and F; is the filtration generated by the two-dimensional process (7, A).

Let us suppose that r(t) = X (¢, Z) as defined in Assumption 4.1 and the default intensity
At) =Y (t, Z) as defined in Assumption 4.2: under these assumptions, the price of a default-
able bond II(t,7") admits a representation as in (4.2) with a = b = 1 which is the pricing
formula of a default free bond when the spot rate depends on two correlated CTMCs X (t, Z)
and Y (¢,7). In this way we can adapt all the results presented in Subsection 4.3.1 to the
pricing of defaultable bonds.

4.3.3 Cap pricing

As we have done in Section 3.2, we bring back the cap pricing to the that of a caplet and we
are going to use the same notations of Subsection 3.2.1.

To this purpose we generalize the pricing formula of the i-th caplet given by (3.28) when
we consider that the spot is given by (4.1) under the Assumptions 4.1-4.2:

. _ p . L . v
Cpllt, 815 X6, Vo) = (1+ Ks)BF [ DE(t, 81 157) (1+T —p(Si1 S X,y Yoy ) |Hevl
(4.40)
where
V(Z)g(i_lfl V(Z)gi_lfl
DF(t,S;_1;7) = emp( —a Z Xi(TE, =T —b Z Yj(T}/H — Tf))
i:ViX j:VtY

is the discount factor previously introduced in Definition 4.7.

We are able to give the representation of the caplet price as a linear combination of the
prices of N x N Prototype Products:

Proposition 4.21 Let us consider the spot rate given by relation (4.1) and that, at the date
of evaluation t, X, x =" and Y,y = y™ for fived n € {1,...,N} and m € {1,...,N}, then
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the price of the i-th caplet can be written as
Opl(t, 855 Xy, Yoy )lx, x=am v,y =ym v

N N 1 +
1+ Ks; £ ; (1 T Ks; p(Slax Y )) \I/é’J,t,Sif1(x Y )

(4.41)
where we use the notation introduced in Proposition 4.20 for the bond prices p(si;at,y?) and

the quantity \I’lo’] s as follows

1,5 N ~ .
\IIOJ('a *) - Zﬁgzl Z?{:l Wiy (l)wil (J)I{:xio}l{*:yh}v (4 A )
0, ig # 1 o 0, iy #j 42
wlo(l):{ 1 Zgil andwi1<]): 1 Zii]
Proof By (4.40) we have
Ol 5 X Yor) _ g [pps, s 1 Si 1. S X, x LY "
].+KSZ - |: (t7 i—lvr)<1+KSi _p( i—1y P Véi;l’ Vé,1)> ‘Ht\/gt]
[ N N 1 n
=EF - (S ol
E [g; F(t,Si—1;r <1+K3,~ p(Si—1,Si; 2",y ))
'I{XVX —IZ}I{YY *yj} Ht V gt]
Si—1 Si—1
N
1 N+
_ZZ{<1+K5 p(Si—l’Si;xl’y])>
=1 j=1 ¢

EF DF(t, Sifl;T)I{X < :.Z’l}I{YY =yi} Hi V Qt] }
Y81 vs

(4.38)N N 1 I +
=22 (I—I—Ksz p(s“x’y)) ’

15=1

~

E¥ | DF(t, Si_l;T)I{X v =iy, =y MtV gt] }
VSi_1 vs

(4.42)N N 1 BN
SSHR(CE

=1 j=1

~

EP

DF(tvsi—l;r)\péj(Xué(_ 17YV§, 1)

)

N N 1 +
Al
- Z <1 + Ksi B p(8i7 v ’y])> V‘Pé’j,t,si,I(th)(ayygl)

=1 j=1

where the last passage is due to the Definition of the price of the Prototype Product at time
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t with maturity S;_1 and payoff \Ilé’j . Hence, when XVtX = z" and YVtY =y it follows that

Opl(t; S5 X, Yoy )lx x=an iy =ym NN * .
e =S (e i) Va0

=1 j=1

a

To obtain a computable price of the already mentioned i-th caplet, it suffices to apply the
results obtained in Proposition 4.17 to the Prototype Product prices V. whi LS, with payoffs

Wh7 defined by (4.42) for each [ € {1,...,N} and j € {1,...,N}:

Proposition 4.22 Under the assumptions of the previous Proposition we define, for an ar-
bitrarily small €, the approzimation of the price of the i-th caplet Cpl(t, Si;th)(,YVty) as

C l t,S,X ,Y —rn —,m N N +
PO I 2 53 (s~ posst) Vi 6207)
1+ Ks; = = 14+ Ks; AT Uh SN

where, for each couple of indezes (1,j), V\IE/”tS is defined by (4.28) with Oy = \I/f)’j and

T = Si—1. It follows that Cpl(t,Si; X VX Yty) 18 a good approrimation of the real price
Cpl(t,Si;thx,Yyty) in the sense that

Cpl(t, Si; X, X, YY) =9 Cpl(t, Si; X, X5 YY) uniformly in (t, Si_l,Si,Xl,tX,YytY). (4.43)

Proof The statement is proved directly by the results of Proposition 4.17. 0

4.3.4 Swaption pricing

Hereafter we give an explicit formula for the price of a swaption under the market model
introduced at the beginning of this Chapter. By using the same notations of Section 3.3, we
apply the general formula of a swaption given by (3.36), namely

Swopty(Sa, Sa,p; XI/tX’Yl/tY) — EP DF(t, Sq; r)(PFSg(Sa, K))+"Ht Vv gt] (4.44)
where
Z/(Z)‘;(afl I/(Z)gafl
o DF(t,Sq;1) £ emp( —a > X(T{ -TH-b > V(T - Tf)) is the
X . Y

1=V J=v;

discount factor (analogously to (4.40));

o PFSH(t, K) 2 p(t, Sa; X,x, Y,y ) = pl(t, S X, Yoy ) = K Y54y sup(t, S X,x, Y,y )
which has the same meaning as that introduced in Section 3.3 (see (3.35)).
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Similarly to the caplet pricing, we get the representation of the price of a swaption and its
approximation:

Proposition 4.23 Let us consider the spot rate given by relation (4.1) and that, at the date
of evaluation t, X, x =a" and Y,y = y™ for fizedn € {1,...,N} and m € {1,..., N}, then

the price of the swaption can be written as

Swoptt(SOmSaﬁaX X YY)‘XX x”Yy =y™ _ZZ Savsa,ﬂ;xlayj)) V\I/é],t,S ( n7ym)
=1 j=1

~ (4.45)
where, for eachl € {1,...,N} and j € {1,...,N},
g(son Sa,5§xla yj) =1- p(SB — Sa; xl,yj) - KZQZQ_H Shp(Sh — Sa; xl,yj)’
e p(Sy — Sa; 2, y7) = p(Sa, Sn; X, X Yy )| x i _xzyy —yi, Vh = a+1,...,8 by using

the same notations introduced in Proposztzon 4 20,

. ‘llé’j is defined by (4.42).

Proposition 4.24 Under the assumptions of the previous Proposition we define, for an
arbitrarily small €, the approzimation of the price of the swaption Swopt;(Sa, Sa,s; Xz/thYutY)
as

N
Swopt;(Sa; Sa,p: XutX ) ng’)|XVtX:ac”,YV3/:ym = Z Z (Sa Sa, 85 a! Y ))+V£é,j’t7si_1 (=", y™)
=1 j=1
where §°(Sa, Sa,g; 2, y7) = 1 — pe(Sp — Sasal,y?) — K S5_ o1 50Pe(Sh — Sai 2!, y7) and, for
each pair of indezes (1, j), V‘;l,]- Lo i defined by (4.28) with ©¢ = \I/é’j and T = S,. It follows
0 WP

that Swopt§(Sa, Sa,p; Xl,tx,YVty) is a good approximation of the actual price
Swopt(Sa, Sayﬁ;Xyg(,Yyty) in the sense that

Swopt§(Sa, Sapi Xy, Yoy ) =% Swopti(Sa, Sa,p: X,x, Y,y ) uniformly in (t, Sa, Sap, X,x,Y,x).
- (4.46)

We omit the proof of the Propositions above for sake of similarity to Propositions 4.21 and
4.22.
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Chapter 5

Numerical results

The aim of this chapter is to test numerically the pricing approach proposed up to now for
bonds and other interest rate derivatives under the assumption that the spot rate is a CTMC
(or more generally the spot rate is a linear combination of several correlated CTMCs). In what
follows we call it "Prototype Product Approach". In the following sections we present
numerical results both for the one-factor short rate model and the two-factor one.

5.1 Numerical results when the short rate is a single-factor
CTMC

For the numerical tests we shall treat only the pricing of zero-coupon bonds because, as seen
in the previous chapters, in our approach the prices of caps and swaptions can be written as
functions of prices of bonds and other Prototype Products (this holds also for bond options).
We shall test numerically the validity of our approach by proceeding as follows: consider a
continuous time short-rate model for which the bond price admits an explicit closed formula
and compare this exact price obtained with the one given by (3.7) after approximating the
short rate by a CTMC so as to apply the Prototype Product Approach.

Let us choose the following continuous-time affine model, known as the Cox-Ingersoll-Ross
(CIR) or square-root model, for the short rate:

{ dza(;) :~k(0 —r(t))dt + a\/@th (5.1)
r(0) =7

where W; is a Wiener process under an equivalent martingale measure P as introduced in
Chapter 2 and the long-run mean 6, the rate of mean reversion k, the volatility ¢ and the
initial spot rate 7 are positive constants. Moreover, to ensure that the process remains positive,
the following condition has to be satisfied

2k0 > o°. (5.2)

The CIR model is largely used in finance to model the short rate: it guarantees the positivity
of the square-root process in (5.1) and the bond price admits a closed formula.
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First approximate the square-root process by a CTMC by using a suitable approximation
that we call "Kushner approzimation” (which we are going to introduce next), so that we
can apply the Prototype Product Approach to compute the bond price and compare it with
the exact price. We shall price zero-coupon bonds with the Prototype Product Approach
both by computing explicit formulae and by a full simulation approach based on Monte
Carlo techniques. Moreover, in order to have a further possibility of comparison, we shall also
consider a widely used approach, namely the lattice method, to compute approximations of the
bond price starting from the continuous-affine term short rate model. We shall thus compute
prices in the following four ways:

a) Ezxplicit Closed formula
b) Lattice Method

c) Prototype Product Approach (after approximating the diffusion by a CTMC with the
Kushner approzimation):

c.1) Ezxplicit Formulae
c.2) Monte Carlo simulations

We are now going to describe in more detail each of the just mentioned alternatives:

5.1.1 Explicit Closed formula

Under the CIR affine term structure model, the price at time t of a zero-coupon bond with
maturity T is given by

p(t,T) = A(t, T)e” PETI®) (5.3)
with
oh (k+h)(T—t) 20%9
AT) = (2h+(kz+h)(eh(T*t)—1)>
B(t,T) = 2" "1 (5.4)

" 2h+(k+h)(eMT-D) 1)
h = Vk? + 202,

For more details see Brigo-Mercurio [2].

5.1.2 Lattice Method

The lattice method is widely used in finance and it consists in building a recombining tree
which approximates the evolution of a diffusion process (in this case the short rate as given
by the CIR model).

Here we consider the lattice algorithm suggested in Costabile-Leccadito-Massabo [3]: they
propose an approach based on a direct discretization of the process r(t) by means of a recom-
bining binomial tree with a number of nodes that grows linearly with the number of steps;
then, by an argument based on absence of arbitrage, they compute the bond price by working
backwards along the tree. To solve a frequent problem in lattice methods, namely that the
transition probabilities have to belong in [0, 1], the authors introduce multiple upward and
downward jumps that satisfy an appropriate matching condition.
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5.1.3 Prototype Product Approach

If we consider a CIR affine term structure model as in (5.1) for the short rate, in order to
apply the Prototype Product Approach (namely all the theory developed in Chapter 3) to the
bond pricing, we have first to approximate the short rate, which is a diffusion process, by a
CTMC: we propose the Kushner approximation as described e.g. in Di Masi-Runggaldier [4]
which is appropriate for this purpose. The name derives from the fact that this approximation
was developed by H. Kushner and coworkers (for a reference see [8]).

Kushner approximation: let us consider the square-root process as in (5.1) and denote by
rh7(t) the CTMC obtained by first discretizing with respect to the space variable (with
spatial step length h) the infinitesimal generator of the diffusion r(¢), thus obtaining a
denumerable CTMC {r”(¢)}, and then stopping r"(¢) at the boundary of the interval
I = (0,N) (with N £ hn suitably chosen where n represents the number of subintervals
in which I is divided).

We have that the state space of 7" (t) is given by
Erm =9 Ny ={0,h,...,h(n—1),hn} € RV*! (5.5)

and the transition intensity kernel is represented by the matrix Q™" = (QZ}n){lgi,jSNH}
with the first and last rows identically equal to zero (absorption at the boundary) and
with the i-th row given by

[0,...,0,¢""(r"), " ("), " (1), 0,.. . 0], (5.6)
where ¢""(r?) is in the diagonal and

g (i) = COSH 4 o

h 2h2
gPn(ri) = Bl gt (5.7)

han i R
q+n(7“l) — (k( hT N a2h7"2
with (-)* and ()~ denoting the positive and negative parts respectively. Moreover, the
intensity associated with a generic state 7* € E™™ can be represented by

N+1
h7 h7 3 ;
= S0 = ). 5.9
j=1
J#
The CTMC r"™(t) converges to r(t) as n — +oo and h — 0 in the sense of weak
convergence of the induced probability measures.

Once discretized, the short rate becomes a CTMC and so we can compute the bond price
with the Prototype Product Approach by using either the explicit formulae given in Chapter
3 or by using an approach based on the simulation of the trajectories of the process " (t).
Below we refer to the first alternative as "Explicit Formulae" and the second as "Monte
Carlo simulations"”.
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Remark 5.1 If we have the spot rate as the CTMC r™™(t) given by the Kushner approz-
imation, the upper approximation price of the zero-coupon bond is a good approrimation of
its true price: we can apply Lemma 2.13 because the sufficient condition to have a negligible
difference between the upper and lower approximations of the true price holds. In fact in this
case condition (2.38) is equivalent to have

rt h(i—1)

_ | i =1,...,N+1. (5.9)
h,n (et |k(0—h(i—1)) o2 v ’ ’
()~ FORED) | ot

By considering h at most of the order of 1072, h(i— 1) at most equal to 0.03 and suitable CIR
parameters as in the following numerical results, the expression in (5.9) is close to zero.

Prototype Product Approach (Explicit Formulae)

According to (3.7), for an arbitrarily small €, a computable price of a T-bond at time ¢ (under
the market model where 7" (¢) is supposed to be the short rate) is given by

e

pe(t, T T'h’n(t))‘rh,n(t):ri = Z[Qh’” o (e P(ver = K|k =17 (5.10)
k=0

where

e 7' € EM is the value assumed by the spot rate at time t;

e the matrix Q" takes a simpler form with respect to its general definition (2.36) because
of the tridiagonal structure of the transition kernel Q™™ the first and the last rows are
identically equal to zero and the j-th row is given by

" (1) 4" ()
0,....0,— 0, — ,,o...,o]
=) T )
where the (j 4+ 1)-th and the (j — 1)-th terms are different from zero;
o Op(r"™) £1,...,1] € RNFL

e for a fixed k € {0} UN,, the probability @(Vt,T = k|r’,}t’" = r?) is given by (2.44) when
we set g j = qZ ]n as the general element of the transition kernel and ¢; = qzh ™ as the
intensity associated with the state r* for each i,j € {1,..., N + 1};

e 7. is a natural number such that

N+l (_a" _
log(e(l _ ,Y)) B SUPye phon ‘ Zi:l ( 1)I{v:r’}|

i h,n
i y r +qi
> b
log(7) log(7)
A ;"
with 7 = supy <<y 41 #qh"
J
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We are going now to see how the quantities involved in (5.10) can be computed in practice:

—k
e the i-th element of the vector Q%" - 0y(r"") is easy to compute for each k: in fact the
following recurrence relation holds

{ ag = Oo(r™")

ap = QM a1 k=1,2,...

—~k
where ag, ar, € RVT! and aj, = Q" - 0y(r™);

e the probabilities IF(V,:,T = k\rﬁt’n = r%) can be computed exactly only for not too large
values of k: the computational complexity relative to these probabilities, for A which
goes to zero and n which grows, increases because it requires the solution of the k(N +1)
multiple integrals Wy (t, T, Q™") in (2.45).

For each choice of the pair (h,n), there exists a certain natural number k such that

- up to k it is numerically feasible to compute exactly the probabilities IAEY’(VLT = k]rﬁt’n =
r') by the recursion as in Lemma 2.15,

- beyond k the probabilities ﬁ)(ljt,T = k|rl}ft’n = %) are more conveniently computed as in
(2.44) where we use a multidimensional Monte Carlo integration for the quantities

\Ijki (ta T, Qhﬂ)'

Prototype Product Approach (Monte Carlo simulations)

Instead of considering the relation (3.7) which gives a computable pricing formula for a zero-
coupon bond, we can consider the full pricing formula as in (3.2), that is

X - ,
p(t T3 () |prn =t = Y _[QP - O ("™ )iP (v = Klry™ = 17) (5.11)
k=0
or equivalently
PrrAna tT n n i
p(t, T3 ™" () [ (iy=pe = EF[[QP - o (e ™ ilryy™ = 7). (5.12)

An approach to compute the price in the above expression can then also be obtained by using
the MonteCarlo technique, that is based on

M

1 SV n 00 n 5

2 IR o M T )y Boas(513)
=1

where uiT is the I-th simulation outcome of the random variable v; 7. Hence, by recalling that
the probability transition matrix of the imbedded Markov chain 7" (see (2.1)) is given by
q].l’.n
h, = ifi#yg
P = () i<ijeniy 24 a 7
0 ifi=j

we are going to describe the algorithm used to simulate 47 when rhn(t) = rm.
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Algorithm to simulate 14 1

- initialize number_of_jumps = 0

- generate the value interarrival_time by simulating a random variable with the distribution
Exp(an”)

- initialize current_index = m (index of the currently visited state)
- initialize arrival_time =t + interarrival_time
- if (arrival_time > T)

return number_of_jumps

- while (arrival_time < T)

initialize the vector [m1,...,mn41] = current_indez-th row of the transition proba-
bility matrix Ph"

generate the value 77 by simulating a discrete random variable taking values in the
state space E™" with distributions [y, ..., Tx11]

generate the value interarrival_time by simulating a random variable with the dis-
tribution Exp(q?’n)

- set current_index = j

set arrival_time = arrival_time + interarrival _time

- set number_of_jumps = number_of_jumps + 1

- return number_of_jumps.

We present now some tables where the bond prices, for several maturities and several values
of the CIR parameters in (5.1), are obtained as follows:

CF: the exact closed formula;

RBT: the lattice method, namely the recombining binomial tree according to [3], where we
have chosen a number of steps "stepsRBT" always equal to 500;

PPA(EF)+K-A: the Prototype Product Approach after discretizing the short rate with the
Kushner approximation (K-A) and by using the explicit formulae (EF') discussed in our
study;

PPA(MC)+K-A: the Prototype Product Approach after discretizing the short rate with
the Kushner approximation (K-A) and by using a full simulation approach based on
the Monte Carlo technique (MC). We have chosen the number of steps for the Monte
Carlo simulations "stepsRBT", namely M in formula (5.13), always equal to 500.
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As regards the other parameters, we have considered the date of today as ¢t = 0 years, three
different times of maturity 7' (namely 0.5, 2 and 5 years) and the parameters of the CIR
model such that the condition (5.2) is verified. In Table 1 and Table 2 the numerical results
relative to CF, RBT and PPA(MC)-+K-A are presented when the values of the initial spot
rate 7 and the mean-reversion constant ¢ in formula (5.1) are of the order of one hundredth;
in Table 3 we present also some results relative to PPA(EF)+K-A when 7 and 6 are of the
order of one tenth.

Remark 5.2 In Tables 1-2, the bond prices computed with PPA(EF)+K-A are not con-
sidered because of a theoretical reason due to the Kushner approximation. When we consider
7 and 0 of the order of one hundredth, a more accurate K-A is required to well discretize
the diffusion process: the number n of the steps in which the state space E™" is divided
(denoted by "n(K-A)") has then to be taken of the order of one thousand and the spatial
step length h (denoted by "h(K-A)") of the order of 10~* (107> in some cases). It follows
that, in accordance with relation (5.7), the elements of the transition kernel Q"™ and the in-
tensities associated with each state of E™™ are of the order of 10°. Consequently, if we use the
approach PPA (EF)+K-A, when we have to evaluate the probability P(VtT = 0[rl™ = 1)
as in (2.43) and the probabilities P(VtT = klrl™ = i) for k > 1 as in (2.40), we face an
error of "Overflow" because the negative exponential functions in formulas (2.43) and (2.40)
respectively cannot take numbers of the order of 10° as inputs. The above problem is avoided
when we consider 7 and 0 of the order of one tenth: in fact a less accurate K-A is then required
to well approzimate the square-root process by a CTMC.

We have performed the numerical simulations on a single core Intel x86 Linux machine
equipped with 2GB of RAM and we have implemented a C/C++ framework by using the
well-known GNU Scientific Library to handle the data structure.

Table 1: bond prices with CF, RBT and PPA(MC)+K-A (stepsMC=stepsRBT=500)
(for n(K-A) and h(K-A) see Remark 5.2)

T(years) 0.5 2 5 0.5 2 5

T 0.01 0.01 0.01 0.02 0.02 0.02

0 0.01 0.01 0.01 0.02 0.02 0.02

k 0.8 0.8 0.8 0.5 0.5 0.5

o 0.1 0.1 0.1 0.05 0.05 0.05

n(K-A) 600 600 700 600 600 700

h(K-A) 0.00005 0.00005 0.00005 0.0001 0.0001 0.0001

CF 0.995014 | 0.980245 | 0.951463 | 0.990051 | 0.960822 | 0.905047
RBT 0.995042 | 0.980302 | 0.951556 | 0.99007 | 0.960898 | 0.905226
PPA(MC)+K-A | 0.995024 | 0.980276 | 0.951621 | 0.990143 | 0.960734 | 0.905318
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Table 2: bond prices with CF, RBT and PPA(MC)-+K-A (stepsMC=stepsRBT=500)

T (years) 0.5 2 5 0.5 2 5

T 0.03 0.03 0.03 0.02 0.02 0.02

0 0.03 0.03 0.03 0.02 0.02 0.02

k 1.1 1.1 1.1 1.2 1.2 1.2

o 0.1 0.1 0.1 0.1 0.1 0.1

n(K-A) 600 600 700 600 600 700

h(K-A) 0.00015 0.00015 0.00015 0.0001 0.0001 0.0001

CF 0.985116 | 0.941861 | 0.861095 | 0.990053 | 0.960849 | 0.905072
RBT 0.985146 | 0.941974 0.86135 0.990072 | 0.960926 | 0.905251
PPA(MC)+K-A | 0.985128 | 0.941968 | 0.861319 | 0.990059 | 0.95647 | 0.90193

Table 3: bond prices with CF, RBT,PPA(MC)+K-A and PPA(EF) +K-A
(stepsM C=stepsRBT=500)

T(years) 0.5 0.5 0.5 0.5
r 0.1 0.1 0.2 0.3
0 0.1 0.1 0.2 0.3
k 0.1 0.4 0.2 0.3
o 0.1 0.05 0.2 0.3
n(K-A) 300 300 300 300
h(K-A) 0.01 0.01 0.02 0.03
CF 0.951249 | 0.951234 | 0.904977 | 0.86114
RBT 0.951343 | 0.951329 | 0.905157 | 0.861394
PPAMC)+K-A | 0.951022 | 0.950859 | 0.905229 | 0.861104
PPA(EF)+K-A | 0.951324 | 0.951723 | 0.905012 | 0.861756

Remark 5.3 Both results with PPA(EF)+K-A and PPA(MC)+K-A are competitive
with the RBT method and they generally differ only at the fourth decimal digit. In fact,
in spite of the Kushner approrimation which is necessary for the comparison with the prices
of the continuous affine term structure model given in (5.3)-(5.4), our methods based on the
Prototype Product pricing work roughly as the lattice method which does not require previously
any approzimation to be applied and consequently does not feel the effect of the error due to
K-A. Furthermore, PPA(EF)+K-A and PPA(MC)+K-A work sometimes better than the
lattice methods (see results in bold). In any case our approach is designed for r given directly
by a CTMC and the Kushner approzimation was introduced only for comparison purposes.

Moreover it is known that lattice methods work well under a one-factor short rate model,
but it becomes more difficult to implement them if the short rate depends on several correlated
processes. On the contrary, the Prototype Product Approach applies well also to a particular
multi-factor short rate model (see Chapter 4) and in this case it can be easily implemented.
In the following section we are going to show an example of a short rate model depending on
two correlated factors and we will discuss the numerical results obtained for this case.
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5.2 Numerical results under a two-factor short rate model

We present now a simple example of numerical result for the bond pricing under a multi-
factor short rate model. This choice is motivated by the fact that, by considering the market
model proposed in Section 4.1, there exist no closed formula nor other lattice approaches to
be compared with the Prototype Product approach when the short rate is defined as in (4.1).

We consider a "bull and bear” market described by a random variable Z which takes two
values {z1, 22} = {0, 1} with probabilities {m1,m2} = {0.4,0.6}; then we define the spot rate
as a linear combination of two correlated processes:

H(t) = X(6:2) + Y (1 2)
where X (t; Z) and Y (t; Z) are CTMCs depending on Z in the following sense:

e the state space of X(¢;72) is EX = {2!,22 23 2*} = {0.005,0.01,0.015,0.02} and the
transition kernel QX (Z) is such that

(05 05 0 0
061 _0(.)54 —0('):.))8 0(.)3 it 2 ==
Xz =1 L _(1) 1 0 00.8 80.8
065 _2'6 7055 0(.)5 if 2=z
0 0 02 -02

e the state space of Y (¢;Z) is EY = {y',v%,v%,v*} = {0.005,0.01,0.012,0.016} and the
transition kernel QY (Z) is such that

[ 0.7 07 0 0
067 _0(.)28 —06%5 0(.)3 2 ==
Q"(2) = :—8.4 094 8'3 (70'3
08 13 05 0|,
0 0 01 —0.1

We present below the prices of zero-coupon bonds, at the date of evaluation ¢t = 0 years and
maturities 0.5, 2 and 5 years, obtained by applying the Prototype Product approach with
both the Explicit Formulae and the Monte Carlo simulations. We use the same notations of
Section 5.1.

Table 4 (stepsMC—100000)

T (years) 0.5 2 5
PPA(MC) | 0.990106 | 0.961139 | 0.905623
PPA(EF) | 0.990086 | 0.961048 | 0.905008
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Remark 5.4 In Table 4 we have chosen a number of stepsMC (100000) greater than the
number of stepsMC' considered in the previous subsections (that is 500). In Tables 1-2-3 we
have presented the prices of bonds obtained with the Prototype Product Approach after the
diffusion process had been discretized by r™™ with the K-A approach. By construction, the
transition intensities associated with each state of EM"™ (namely the quantitics qzh’n defined in
(5.8)) turn out to be of the order of 10*: since the interarrival times between two successive
jumps of r™™ are exponentially distributed with parameter qf”n, the average time at which a
Jjump occurs is qh% (namely the process r™™ jumps frequently). It follows that, by having a

7

large number of jumps for each simulation VZ’T of the random variable v; T, a number of Monte
Carlo simulation stepsMC= 500 is sufficient to obtain convergence in formula (5.18). On
the contrary, in Table 4 we consider CTMCs with transition intensities of the order of 1071:
we need 100000 stepsMC' to obtain an acceptable convergence for the bond price.

5.3 Conclusions

We briefly sum up the results obtained in this chapter: if we consider a one-factor short rate
model, the Prototype Product Approach, by using either the explicit formulae or the Monte
Carlo simulations, is competitive with the lattice method which is widely used to compute the
price of zero-coupon bonds. To allow for such a comparison we had to start from a continuous
time diffusion model which required a preliminary discretization to obtain a CTMC for which
our methods are designed. Moreover we are able to obtain numerical results for prices of caps,
swaptions and bond options with the same complexity as required for the computation of
bond prices (considered as a particular case of Prototype Product) because all the prices of
these interest rate derivatives can be viewed as linear combinations of Prototype Product
prices (see Sections 3.2-3.3-3.4).

Under the two-factor short rate model specified in Chapter 4, we are able to price zero-
coupon bonds without additional computational complexity with respect to the one-factor
case and the results obtained with the Explicit Formulae PPA(EF) or the Monte Carlo
simulations PPA (MC) coincide up to the third decimal digit (see Table 4). Furthermore,
also when the short rate depends on two correlated factors, we are able to compute prices
of caps, swaptions and bond options as linear combinations of Prototype Product prices (see
Section 4.3).
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Appendix A

Particular cases

The purpose of this section is to consider two particular cases:

e the case when the number of elements of the state space F is N = 2;

e the case when the CTMC r(t) reduces to a Poisson process, namely when instead
of a transition intensity matrix () we have just a jump intensity A and the random
variable v; 7 -studied in Section 2.2.3- becomes a Poisson random variable distributed
with parameter A\(T" — t).

In the first statement, namely in Corollary A.1 we present the expression of the distribution
of vy 7 when r(-) is a CTMC with two states and transition intensities A and p; in Corollary
A.3, we show that this CTMC becomes a Poisson process with parameter A when p converges
to A.

Corollary A.1 Let r(t) be a CTMC with state space E = {1,2} and Q = ( _M)\ —>\u ),
then assuming w.l.o.q. that v, = h € N, it follows that

]"f»(,/t’T =klrp=1)=pzA2¢e” (T_t)‘l’h k(T N) ,k even
Pluyr=kirp=1)=p2 A2 e "THNG, (8T, 1, A) Lk odd

ﬁ’(ut’T =klr,=2) = /\guge*“(T*t)\I/hyk(t,T,u, A) ,k even
Plrgr =klr, =2) = N7 52 e T+, (6T 1, ) Lk odd

where ¥y, 1. denotes the following multiple integral

\I/hk t T ,u,7 / / / / exp Z ( ) ()\ /J) )dtthk dth+3dth+2dth+1(A.l)
thi1 Jthio thtk—1 i

Proof At first we recall that the notations for a CTMC with two states 7! = 1 and r2 = 2
are the following
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e the transition kernel elements are 12 = A, @21 = 1, q1,1 =S —23:1 q1,j = —A and
7#1

2
(225 =351 qag = —p
J#2

e the intensities defined by ¢; = Zﬁil gij, © = 1,...,N become ¢ = —q1;1 = A and
J#i
g2 = —q2,2 = M-
Hence we are going to use the results of Lemma 2.16 applied to a CTMC with two states: let

us divide the proof into four cases (r,, = r' and k even, r,, = > and k even, 7, = r! and k
odd, r,, = r? and k odd).

1) Case r,, =" = 71! and k even

2
P(Vt,T = ]{3|7"h = ’I“l) = Z eqltiqih+kT@h7k(Q) . \Ijh,k‘(t7 T’ Q)

‘ Cingpeeingk=l
Th 17 L 127 Ut 15Tt kTRt k—1

Hence, by observing that every index can take only one specific value, (i.e

iht1 = 2,0p42 = 1,ip43 = 2,...,ipyk = 1 because ipy1 # 1,ip42 7 ihitls - oo thik 7 thik—1
and p41,. .., 4k € {1,2}), the sum has only one term,
Pvr = klrn = r') = e 100y 4 (Q) - U i (t, T, Q) (A.2)

where W, (¢, T, Q) and @3, ,(Q) are the following quantities

T T T
‘I’h,k(t7 T,Q) :/ el2—a1)th i1 / e(t1—a2)thia . . / e(q1_q2)th+kdth+k o dtpyodtn g
t

th+1 thtk—1
T T T h+k
:/ / / exrp Z g1 — o)t i)dth—l-k o dtpygdtpgodtpyg,
t Jtpyr Jtpyo thik—1 i=h+1
SOh,Ic(Q) = Qip1Binsayinee 0 Qingrr_1,0nen
E ok
= Q1241 -.--"¢21 = Qf,gq;ﬁ
so we have
ko k
(A2) = g5 1970 T
h+k A
/ / / / exp Z (=D)"(¢ —QQ)ti>dth+k-~-dth+3dth+2dth+1
the1 Jthao thak—1 i=h+1

= Mi)‘ie_ (T_t)\IJh,k(tv T, Hy )‘)

where Wy, (¢, T, i1, A) is as defined in (A.1).
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2) Case ry, =14, = r2 and k even

2
P(Vt,T = k‘|7"h = 7"2) E Z eq2t—qih+kT@h7k(Q) . \Ilh,k’(ty T’ Q)

‘ et k=l
4172, 427 bt 1y st hp kTR R —1

Hence, by observing again that every index takes only one specific value (i.e. ipy; = 1,
iht2 = 2,ip43 = 1,...,ip+k = 2), the sum has only one term,

Plvir = klrp = %) = e 2T 0 1(Q) - Wi (1. T, Q) (A.3)
with

T T T
Uy (t, T, Q) :/ e(01—a2)thi1 / el@2=a)thia . / e(q2_q1)th+kdth+k o dtpodty i
¢

th+1 thtk—1
T T T h+k
=/ / / erp Z @ —q)t i>dth+k oo dbpysdtpyodtpyg,
t Jlpypr Jtpya thyk—1 i=h+1
‘Pfhk(Q) = Qipp1Qinsringe " Qingr—1intk
E ok
= @1 Q2 - Q2 = 43191 9
so we have
ko k T
(A3) = afpa5,e =T
h+k
/ / / / exp Z (—1)"(g2 —q1)t )dth+k o dtpyzdtpodty
thy1 Jthy2 thtk—1 i=h+1
= Af/’tieiu(Tit)‘I,h,k (t7 T7 )\7 M)
where Uy, (¢, T, A, p) is again defined as in (A.1).
3) Case ry, =r;, =1 and k odd
2
~ g T
P(vr = klrp =7') = > ™ Tkl oy 1(Q) - U i(t, T, Q)
1o rip =1
U417 L 2 1o s bk F R k—1
where now ip11 = 2,ip10 = 1,ip03 = 2,...,ip1x = 2; therefore
P(vyr = klrn = r') = e 27400 1 (Q) - Uy 4 (¢, T, Q) (A4)

with Up, (¢, T, Q) the same as in the first case and ¢, 1 (Q) is defined as follows

onk(Q) = Qlyipg1 " Ding1singe - Qipgpp—1,in4n
Bl k-1
— — 2 2 .
= @291 ---q12=415 427
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so we have
k+1 k-1

(A.4) _ q2qulTe—Q2T+(Z1t

/ / / / exp Z( 1) (q1 — g2)t )dth+k - dtpy3dtpiading
tht1 Jthyo thyk—1 i=

= T AT TG (8, T, N)
where Uy, (¢, T, 1, A) is as defined in (A.1).

4) Case 1y, =i, =% and k odd

2

IF}(”t,T = k|7"h = 7‘2) = Z qutfqthrkTgph’k(Q) . \Ijh,k(ty T’ Q)

‘ i lethpk=l
T 172y 42 15Ttk F TR k—1

where now ip41 = 1,tp42 = 2,943 = 1,..., 41k = 1; therefore
P(uyr = klry, = r2) = e 074020 p, 1 (Q) - Uy 1 (4, T, Q)

with Wy, (¢, T, Q) the same as in the second case and ¢, (Q) defined as follows

SOh,k(Q) = Q2ipq  Dipgasinge - Qipgr—1,0intk
Bl ko1
= @192 ---"¢21 = q2,21 qlé )
so we have
k=1 k+1
(A5) = q1% 0, 2 e~ T+azt)
h+k

(A.5)

/ / / / exp Z (—1)(q2 _QI)ti)dth—i-k---dth+3dth+2dth+1
th+1 Y lht2 thtk—1 i—

k=1 k41

= 2 pu e 7)‘T+Mt\I/h k(t T\ M)
where Uy, (¢, T, A\, 1) is again defined as in (A.1).

Remark A.2 A CTMC with a state space E = {1,2} and relative intensities X\ and u, for p

which tends to X\, becomes a Poisson process with parameter .

In this case we have the following result that allows us to check the correctness of the formulas
in the previous Corollary by showing that this result coincides with the known result for the

Poisson case:

Corollary A.3 For a Poisson process with parameter A, the probabilities of Lemma 2.16 have

the following representation

~ ~ _ k
P(vir = klry, = 1) = P(ver) = klry, = 2) = [A(Tk‘t)]e—w—t).
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Proof By Remark 2.17 the multiple integral Wy, ;, does not really depend on h: Wy, ,, = ¥y,
where Wy, is defined as in (2.45). Analogously, in the case when 7(-) is a CTMC with only two
states, the quantity Wy, ;, defined as in (A.1) does not depend on h: if we denote Wy, y|p—0 = ¥y,

we show that
[N (T — t)k

\Ijk(taT7/J’7/\) = k! ) (AG)

then the Corollary is proved.

By the definition of ¥ and the dominated convergence theorem (let A > p w.l.o.g., then there
h+k Qg

always exists C' € Ry such that }e(/\f“) i (D < eCT(k—1)

observe that

which is a constant), we

SN T pT T T
‘llk(t, T, )\) — Vk(t, T) = / / / ... / dty .. .dtszdtodtq,
t t1 to

te—1

so we show that

T —t)*
v =20 (A7)
by an induction method.
Proof by induction of (A.7)
Base Case k=1 .
Vi(t,T) :/ dt; =T —t
t
Inductive step
T T T T
Vk(t, T) £ / / / ... / dty . ..dtsdtodty
t t1 Ji2 te—1
T
—/ kal(tl,T)dtl
t
/T (T . tl)(k—l) (T _ t)k
‘ (k—1)! k!
by using the induction hypothesis in the third passage.
Ul
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