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Sommario

Nell' articolo [6] Filipovic' e Zabczyk presentano un approccio per ottenere l'analogo in tempo
discreto della struttura a termine a�ne a tempo continuo, considerando il tasso spot r(t)
come una catena di Markov (MC) con uno spazio degli stati discreto. Quando il tasso spot
è una MC a tempo discreto, il numero dei salti in un qualsiasi intervallo temporale �ssato è
deterministico.

Tuttavia, nel mercato reale, il tasso spot non cambia generalmente ad istanti �ssi ma
"salta" ad istanti aleatori.

Questo suggerisce di considerare il tasso spot come una catena di Markov a tempo continuo
(CTMC) con uno spazio degli stati �nito E = {r1, r2, . . . , rN}, N ∈ N, ri ∈ R, i = 1, . . . , N.
Seguendo la procedura conosciuta comemartingale modeling, assumiamo che sotto una misura
di martingala P̃ la matrice delle intensità di transizione sia data da Q = {qi,j}i,j=1,··· ,N . Fissata
una maturità T e una data di valutazione t, il numero di salti del tasso spot tra t e T (indicato
con νt,T ), ovvero il numero delle transizioni della MC, è aleatorio e può assumere un valore
arbitrariamente grande.

L'obiettivo del nostro lavoro è di ottenere, nel caso in cui il tasso spot evolve come una
CTMC, delle formule esplicite (facilmente implementabili per ottenere risultati numerici) per
il prezzaggio dei bond e dei derivati come i cap, le swaption e le bond option. La di�coltà
maggiore nel nostro studio è data dall'aleatorietà dei tempi di salto. Nel caso in cui si considera
un modello di�usivo con salti per il tasso spot, l'articolo di Björk-Kabanov-Runggaldier [1]
illustra come, assumendo una struttura a termine a�ne, il prezzo di un bond può essere
espresso in termini della soluzione di un sistema di equazioni di�erenziali ordinarie. Questo
approccio è interessante dal punto di vista teorico, tuttavia non considera i prezzi dei derivati
e risulta di�cile da implementare nella pratica. Nell'articolo di Eberlein and Kluge [5], dove
si considera un modello generale di Levy, sono prezzati anche i cap e le swaption; gli autori
ottengono inoltre delle formule analitiche esplicite che richiedono degli strumenti matematici
abbastanza so�sticati. La maggiore di�erenza con il nostro lavoro consiste nel fatto che noi
riusciamo a prezzare con un approccio uni�cato sia i bond che i derivati sui tassi d'interesse,
pur considerando dei processi stocastici meno generici.

Nella tesi verrà mostrato come i prezzi dei bond e dei derivati sui tassi d'interesse, come
anche quello delle opzioni sui bond, sono particolari casi del prezzo di uno strumento �-
nanziario �ttizio detto "Prodotto Prototipo", legato concettualmente al prezzaggio dei titoli
Arrow-Debreu. Il prezzaggio del prodotto Prototipo rappresenta un approccio che prezza in
modo uni�cato diversi prodotti �nanziari sui tassi d'interesse e che permette una facile im-
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plementazione. Considereremo una approssimazione superiore del prezzo la cui di�erenza col
prezzo reale del prodotto in questione è trascurabile.

Un Prodotto Prototipo è un prodotto �nanziario che garantisce la consegna alla sca-
denza T di un certo payo� ϑ0(r(T )) che dipende dal valore assunto dal tasso spot nella data
di scadenza T :

ϑ0(·) =
N∑
i=1

wiI{·=ri} with r
i ∈ E and wi ∈ {0} ∪ R+.

Per un determinato stato attuale ri ∈ E (1 ≤ i ≤ N), indicato genericamente con v, ricor-
diamo che

• il tempo di interarrivo è una variabile aleatoria esponenzialmente distribuita con parametro
(intensità) q(v) , qi =

∑N
j=1,j ̸=i qi,j ;

• le probabilità di transizione dallo stato v allo stato u = rj è

pv,u , pi,j =

{
pi,j =

qi,j
qi

if i ̸= j

pi,j = 0 if i = j.

Inoltre, indicando con νt il numero di salti della CTMC �no al tempo t ed
M , {ϑ:E→{0}∪R+ | ϑ(v)=

∑N
i=1 wiI{v=ri}, wi∈{0}∪R+, ∀i=1,...,N} dotato della norma del sup, otte-

niamo i seguenti risultati:

Proposition 0.1 Sotto una misura di martingala P̃, il prezzo del prodotto Prototipo all'istante
t < T può essere rappresentato come

Vϑ0,t,T (rνt) =

+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (1)

dove le funzioni ϑk sono ottenute ricorsivamente dopo k passi iterando l'operatore T :

T ϑ(v) ,
∫
R
q(v)e−(v+q(v))s

(∑
u∈E

pv,uϑ(u)
)
ds, ϑ ∈ M.

Proposition 0.2 L'operatore T : M → M è un operatore contraente con punto �sso ϑ∗ = 0
e costante di contrazione γ , supv∈E

q(v)
v+q(v) .

Per quanto riguarda la distribuzione di νt,T otteniamo la seguente

Proposition 0.3 Valgono le seguenti formule
P̃(νt,T = k|rνt = rm) =

N∑
i1,...,ik=1

i1 ̸=m,i2 ̸=i1,...,ik ̸=ik−1

eqmt−qikTφk(Q) ·Ψk(t, T,Q)

P̃(νt,T = 0|rνt = rm) = e−qm(T−t)

(2)
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dove m è un intero in {1, . . . , N}, Ψk è l'integrale multiplo

Ψk(t, T,Q) ,
∫ T

t
e(qi1−qm)t1

∫ T

t1

e(qi2−qi1 )t2 · · ·
∫ T

tk−1

e(qik−qik−1
)tkdtk . . . dt2dt1 (3)

e

φk(Q) , qm,i1 · . . . · qik−1,ik .

La formula (1) contiene un numero in�nito di termini da calcolare: tuttavia, poiché le funzioni
ϑk sono ottenute applicando k volte l'operatore contraente alla funzione ϑ0, esiste -per un ϵ
piccolo a piacere- un numero naturale nϵ tale che V

ϵ
ϑ0,t,T

(rνt) ,
∑nϵ

k=0 ϑk(rνt)P̃(νt,T = k|rνt)
è una buona approssimazione del prezzo reale Vϑ0,t,T nel senso che

|V ϵ
ϑ0,t,T (rνt)− Vϑ0,t,T (rνt)| < ϵ uniformemente a (t, T, rνt). (4)

Il prezzaggio dei bond e degli altri derivati sui tassi d'interesse può essere ottenuto come segue:

P1 : un bond che matura al tempo T può essere visto come un prodotto Prototipo con payo�
φ0(·) =

∑N
i=1wiI{·=ri} dove wi ≡ 1: il prezzo di un T -bond valutato all'istante t è uguale

a Vφ0,t,T ;

P2 : i prezzi dei caplet e delle swaption possono essere rappresentati come combinazioni lineari
di diversi N prodotti Prototipo Vψn

0 ,t,T
con payo� ψn0 de�niti, per ogni n ∈ {1, . . . , N},

da 
ψn0 (·) =

∑N
i0=1wi0(n)I{·=ri0}

wi0(n) =

{
0, i0 ̸= n
1, i0 = n

Un risultato analogo si ottiene per il prezzo delle opzioni sui bond.

Inoltre, sulla base del risultato in (4), riusciamo ad ottenere delle formule esplicitamente
calcolabili per i prodotti �nanziari sopra indicati:

P1ϵ : una "buona" approssimazione del prezzo del bond è ottenuta considerando V ϵ
φ0,t,T

invece
della quantità Vφ0,t,T indicata in P1;

P2ϵ : "buone" approssimazioni dei prezzi di caplet, swaption e opzioni sui bond sono ottenute
considerando V ϵ

ψn
0 ,t,T

invece delle quantità Vψn
0 ,t,T

, per ogni n ∈ {1, . . . , N}, enunciate
in P2.

Generalizziamo inoltre il modello unifattoriale precedentemente presentato considerando
un modello multifattoriale in cui il tasso spot dipende da diverse CTMC correlate tra loro.
Considerando un particolare modello multifattoriale, i bond, i caplet, le swaption e le opzioni
sui bond possono essere visti come particolari casi di un prodotto Prototipo il cui prezzo è
rappresentabile da una formula esplicita e calcolabile anche quando il tasso spot dipende da
più fattori. Il modello multifattoriale può essere inoltre applicato al prezzaggio dei defaultable
bond (ovvero bond soggetti al rischio che l'emittente sia incapace di far fronte al pagamento)
dove la formula di prezzaggio dipende dal tasso spot e dal tasso di fallimento, fornendo una
rappresentazione esplicita del prezzo di questi contratti.
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In�ne deriviamo dei risultati numerici per mostrare la performance del nostro approccio.
In particolare consideriamo un altro approccio numerico per prezzare i bond e i derivati sui
tassi d'interesse nel caso unifattoriale: il metodo basato sugli alberi ricombinanti. Paragoniamo
la bontà del nostro metodo con quella del metodo ad albero ricombinante quando entrambi
sono usati per il prezzaggio dei bond in una struttura a termine a�ne in tempo continuo.
Evidenziamo il fatto che, mentre i metodi ad albero funzionano bene per modelli scalari senza
la presenza dei salti, il nostro approccio è applicabile senza di�coltà aggiuntive sostanziali
anche al caso multivariato e può essere usato per approssimare i prezzi in modelli a tempo
continuo con salti. Inoltre il nostro approccio è speci�camente ideato per modelli in cui il
tasso spot è una CTMC, che sembra essere più realistico di un modello di�usivo con salti o
di un modello a tempo discreto con istanti di salto deterministici.
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Summary

In their article [6] Filipovic' and Zabczyk present an approach to obtain in discrete time the
analog of the a�ne term structure model in continuous time. They consider the spot rate r(t)
a Markov chain (MC) with a �nite state space. Since the short rate is a MC in discrete time,
the number of jumps in a �xed time interval is deterministic.

However, in real markets the spot rate does generally not change at deterministic times
but it rather "jumps" at random times.

This suggests to model the spot rate as a continuous time Markov chain (CTMC) with
a �nite state space E = {r1, r2, . . . , rN}, N ∈ N, ri ∈ R, i = 1, . . . , N. Following the
procedure known as martingale modeling, we assume that under a martingale measure P̃ the
transitions intensity matrix of the chain is given by Q = {qi,j}i,j=1,··· ,N . For a maturity T
and an evaluation time t, the number of jumps of the spot rate between t and T (denoted by
νt,T ), namely the number of transition of the MC, is random and can take arbitrarily large
values.

The purpose of our study is now to obtain, in a setup where the short rate evolves as
a continuous time Markov process, explicit formulae for bond prices and derivatives such as
caps, swaptions and bond options that can be easily implemented to obtain numerical results.
The major di�culty to this e�ect is given by the randomness of the jump times. For the case
of jump di�usions the article by Björk-Kabanov-Runggaldier [1] illustrates how, by assuming
an a�ne structure, the bond price can be expressed in terms of solutions of a system of ODE's.
This approach is theoretically interesting but does not consider derivative prices and it turns
out to be di�cult to implement in practice. For a more general Levy driven model, the article
by Eberlein and Kluge [5] considers also Caps and Swaptions. Here the authors obtain explicit
analytic solution formulae that however require rather sophisticated mathematical tools. The
main di�erence with our setup is that, while ours is less general, it leads however to a uni�ed
approach for the pricing of bonds and interest rate derivatives.

The pricing of bonds and interest derivatives as well as bond options will be shown to be
particular cases of the pricing of a �ctitious �nancial product, namely the "Prototype prod-
uct"that is related to Arrow-Debreu prices. The pricing of the Prototype product represents
a uni�ed approach to the pricing of interest rate related products and which can be imple-
mented by rather elementary calculations. We shall actually consider un upper approximation
price such that the di�erence with the true price of this product is negligible.

We call Prototype product a �nancial product which guarantees to deliver at maturity
T a certain payo� ϑ0(r(T )) which depends on the value taken by the spot rate at the date of
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maturity T :

ϑ0(·) =
N∑
i=1

wiI{·=ri} with r
i ∈ E and wi ∈ {0} ∪ R+.

Recall that for a given current state ri ∈ E (1 ≤ i ≤ N) which below we generically denote
by v:

• the time to the next jump is an exponential random variable with parameter (intensity)
q(v) , qi =

∑N
j=1,j ̸=i qi,j ;

• the transition probability to the next state u = rj is

pv,u , pi,j =

{
pi,j =

qi,j
qi

if i ̸= j

pi,j = 0 if i = j.

Furthermore, let νt denote the number of jumps of the CTMC up to time t and
M , {ϑ:E→{0}∪R+ | ϑ(v)=

∑N
i=1 wiI{v=ri}, wi∈{0}∪R+, ∀i=1,...,N} endowed with the sup norm. We

have now the following results:

Proposition 0.1 For a martingale measure P̃, the price of the Prototype product at time

t < T can be represented as

Vϑ0,t,T (rνt) =
+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (1)

where the functions ϑk are obtained recursively, after k steps, by iterating the operator T :

T ϑ(v) ,
∫
R
q(v)e−(v+q(v))s

(∑
u∈E

pv,uϑ(u)
)
ds, ϑ ∈ M.

Proposition 0.2 The operator T : M → M is a contraction operator with �xed point ϑ∗ = 0
and contraction constant γ , supv∈E

q(v)
v+q(v) .

For the distribution of νt,T we have:

Proposition 0.3 The following holds
P̃(νt,T = k|rνt = rm) =

N∑
i1,...,ik=1

i1 ̸=m,i2 ̸=i1,...,ik ̸=ik−1

eqmt−qikTφk(Q) ·Ψk(t, T,Q)

P̃(νt,T = 0|rνt = rm) = e−qm(T−t)

(2)

where m is a �xed index in {1, . . . , N}, Ψk is the multiple integral

Ψk(t, T,Q) ,
∫ T

t
e(qi1−qm)t1

∫ T

t1

e(qi2−qi1)t2 · · ·
∫ T

tk−1

e(qik−qik−1
)tkdtk . . . dt2dt1 (3)

and

φk(Q) , qm,i1 · . . . · qik−1,ik .
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Formula (1) involves an in�nite number of terms to compute; however, since the ϑks are
obtained by applying k times a contraction operator on ϑ0, there exists -for an arbitrarily small
ϵ- a natural number nϵ such that V ϵ

ϑ0,t,T
(rνt) ,

∑nϵ
k=0 ϑk(rνt)P̃(νt,T = k|rνt) approximates

arbitrarily well the real price Vϑ0,t,T in the sense that

|V ϵ
ϑ0,t,T (rνt)− Vϑ0,t,T (rνt)| < ϵ uniformily in (t, T, rνt). (4)

The pricing of bonds and other interest rate derivatives can now be obtained as follows

P1 : a bond which matures at time T can be viewed as a Prototype product with payo�
φ0(·) =

∑N
i=1wiI{·=ri} where wi ≡ 1: the price of a T -bond evaluated at time t is equal

to Vφ0,t,T ;

P2 : the prices of both caplets and swaptions can be represented as linear combinations of
the prices of N Prototype products Vψn

0 ,t,T
with payo�s ψn0 de�ned as follows for each

n ∈ {1, . . . , N}: 
ψn0 (·) =

∑N
i0=1wi0(n)I{·=ri0}

wi0(n) =

{
0, i0 ̸= n
1, i0 = n

An analogous result is obtained for the price of bond options.

Moreover, on the basis of the result in (4), we are able to obtain computable expressions for
the �nancial products already mentioned above:

P1ϵ : a "good" approximation of the bond price is obtained by considering V ϵ
φ0,t,T

instead of
Vφ0,t,T in the expression for P1;

P2ϵ : "good" approximations of the prices of caplets, swaptions and bond options are obtained
by considering V ϵ

ψn
0 ,t,T

instead of Vψn
0 ,t,T

for each n ∈ {1, . . . , N} in the expression for
P2.

We furthermore generalize the one-factor short rate model discussed above by considering a
multi-factor short rate model in which the spot rate depends on several correlated CTMCs.
Under a particular multi-factor short rate model, bonds, caps, swaptions and bond options can
be viewed as particular cases of a Prototype product whose price admits a computable explicit
formula also when the short rate is driven by more factors. The multi-factor short rate model
can also be applied to the pricing of defaultable bonds, where the pricing formula depends on
the short rate and default intensity processes, and we give an explicit representation of the
prices of these contracts in the scalar case.

Finally we derive numerical results to illustrate the performance of our approach. In par-
ticular we consider also another numerical approach to compute prices of bonds and interest
rate derivatives, namely the approach based on a recombining tree. We compare the perfor-
mance of our method with that of a tree-based method when both are considered for the price
of a bond in a continuous time a�ne term structure model. We point out that, while tree
methods work well for scalar models without jumps, our approach is applicable without sub-
stantial additional di�culties also to the multivariate case and it can be used to approximate
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prices in continuous time models involving jumps. We also would like to stress the fact that
our approach is speci�cally designed for CTMC models for the short rate which appears to be
more realistic than di�usion-type models or discrete time models with �xed time instants.
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Chapter 1

Introduction

In their article [6] Filipovic' and Zabczyk present an approach to obtain in discrete time the
analog of the a�ne term structure model in continuous time. They consider the spot rate r(t)
a Markov chain (MC) with a �nite state space. Since the short rate is a MC in discrete time,
the number of jumps in a �xed time interval is deterministic.

In real markets the spot rate does not generally change at deterministic times but it rather
"jumps" at random times. This suggests to model the spot rate as a continuous time Markov
chain (CTMC) with a �nite state space E = {r1, r2, . . . , rN}, N ∈ N, ri ∈ R, i = 1, . . . , N.
Under a martingale measure P̃ equivalent to the physical measure P, the transition intensity
matrix of the chain is given by Q = {qi,j}i,j=1,··· ,N . Such a modeling approach appears also to
be more realistic with respect to the traditional di�usion-type models for the short rate. The
innovation introduced by this model with respect to [6] is represented by the fact that the
number of jumps of the spot rate between an evaluation time t and a maturity T (denoted by
νt,T ), namely the number of transition of the MC, is random and can take arbitrarily large
values.

Continuous-time term structure models that allow also for jumps have already been con-
sidered in the literature. We limit ourselves to mention here just a couple of them. For the case
of jump di�usions the article by Björk-Kabanov-Runggaldier [1] illustrates how, by assum-
ing an a�ne structure, the bond price can be expressed in terms of solutions of a system of
ODE's. This approach is theoretically interesting but does not consider derivative prices and
it turns out to be di�cult to implement in practice. For a more general Levy driven model, the
article by Eberlein and Kluge [5] considers also Caps and Swaptions. Here the authors obtain
explicit analytic solution formulae in the scalar case that require however rather sophisticated
mathematical tools; moreover their numerical results do not concern the prices as such, which
is our main goal.

On the other hand, in our setup where the short rate evolves as a continuous time Markov
process, we are able to obtain explicit formulae for bond prices and derivatives such as caps,
swaptions and bond options that can actually be implemented to obtain numerical results.
In fact, the pricing of bonds and interest derivatives as well as bond options will be shown
to be particular cases of the pricing of a �ctitious �nancial product, namely the "Prototype
product". The pricing of the Prototype product represents a uni�ed approach to the pricing
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of interest rate related products and which can be implemented by rather elementary cal-
culations. We shall actually consider un upper approximation price such that the di�erence
with the true price of this product is negligible. We obtain a computable expression of the
price of the Prototype product by using a technique based on a contracting operator and on
the distribution of νt,T . Even though by our approach we face a di�culty represented by the
randomness of the jump times of the spot rate, we are able to give an explicitly computable
formula for the distribution of νt,T .

We furthermore generalize the one-factor short rate model discussed above by considering
a multi-factor short rate model in which the spot rate depends on several correlated CTMCs.
Under a particular multi-factor short rate model, bonds, caps, swaptions and bond options
can be viewed as particular cases of the Prototype product whose price admits a computable
explicit formula also when the short rate is driven by more factors. The multi-factor short
rate model can also be applied to the pricing of defaultable bonds, where the pricing formula
depends on the short rate and default intensity processes, and we give an explicit represen-
tation of the prices of these contracts. Finally we derive numerical results to illustrate the
performance of our approach. In particular we consider also another numerical approach to
compute prices of bonds and interest rate derivatives in the scalar case, namely the approach
based on a recombining tree. We compare the performance of our method with that of a tree-
based method when both are considered for the price of a bond in a continuous time a�ne
term structure model. We point out that, while tree methods work well for scalar models
without jumps, our approach is applicable without substantial additional di�culties also to
the multivariate case and it can be used to approximate prices in continuous time models in-
volving jumps. We also would like to stress the fact that our approach is speci�cally designed
for CTMC models for the short rate which appears to be more realistic than di�usion-type
models or discrete time models with �xed time instants.

In Chapter 2 we discuss the pricing approach based on the Prototype product when the
short rate is a CTMC; in Chapter 3 we derive the prices of bonds, caps, swaptions and bond
options by using the results obtained for the Prototype product pricing. In Chapter 4, by
assuming that the short rate depends on several CTMCs, we discuss the pricing of both
bonds and other interest rate derivatives, also in a defaultable setup, by starting from the
pricing of the Prototype product under a particular multi-factor short rate model. To conclude,
in Chapter 5, the numerical results are presented in support of the theory developed in the
previous chapters.
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Chapter 2

Pricing of interest rate derivatives

with a Markov short rate: the

Prototype product

2.1 Market model

Let a �ltered probability space be given by (Ω,F , (F)t∈R,P) where P is the physical measure.

Consider the price p(t, T ) at time t of a zero coupon bond that matures in T > t. In a
general setting the bond price has the following representation

p(t, T ) = EP̃
[
exp
(
−
∫ T

t
r(u)du

)
|Ft
]

where, in order to avoid arbitrage, P̃ is a martingale measure equivalent to P. If we assume a
Markov short rate, p(t, T ) can be expressed by means of speci�c quantities that we are going
to introduce. In particular, we consider the spot rate r(t) a continuous time Markov chain
(CTMC) with a state space E = {r1, r2, . . . , rN}, N ∈ N and ri ∈ R+, i = 1, . . . , N . Denote

• Q = (qi,j)1≤i,j≤N the transition intensity kernel independent with respect to the time;

• qi =
∑N

j=1

j ̸=i
qi,j , i = 1, . . . , N the intensities associated with the state ri;

• the transition probabilities from the state ri to rj{
pi,j =

qi,j
qi

if i ̸= j

pi,j = 0 if i = j.
(2.1)

Hence r(t) is a stochastic process with right-continuous piecewise constant trajectories where
the jump times Ti (i = 1, 2, . . .) are random variables and, conditionally on a generic value rh

(h = 1, . . . , N) of the process at time Ti, the interarrival times Ti+1 − Ti are exponentially
distributed, namely

(Ti+1 − Ti|r(Ti) = rh) ∼ Exp(qh) (2.2)
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Therefore

p(t, T ) = EP̃
[
exp(rνt(t− Tνt))exp

(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT (T − TνT )
)
|Fr
t

]
(2.3)

where, for a generic time s, νs denotes the number of jumps of the Markov process until s,
r(s) = ri for s ∈ [Ti,Ti+1) and, since {Ti ≤ s} ∈ Fr

s where Ti is an Fr-stopping time, we let

Fr
Ti

= {A ∈ Fr
T |A ∩ {Ti ≤ s} ∈ Fr

s ,∀s ≤ T}.

For simplicity of notation we denote Fr
i the σ−algebra Fr

Ti
and, since the factor exp(rνt(t−

Tνt) in formula (2.3) can be explicitly computed on the basis of the information at time t,
we assume without lost of generality that t = Tνt ; consequently the bond price p(t, T ) can be
written as

p(t, T ) = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT (T − TνT )
)
|Fr
νt

]
(2.4)

where Fr
νt ≡ Fr

t . More generally, given two generic times s and s such that s < s, denote by
νs,s the number of jumps in the interval [s, s).

The expression of the bond price in (2.4) leads to the idea of introducing a �ctitious
�nancial product which we call Prototype product and that is related to Arrow-Debreu prices:
we are able to obtain an expression of the price of both bond and interest rate derivatives as
linear combinations of Prototype Products. In the following section we consider at the pricing
of the Prototype product.

2.2 Prototype product pricing: Vϑ0,t,T (·) =
∑+∞

k=0 ϑk(·)P̃(νt,T = k|·)

The representation of the bond price given by (2.4) suggests introducing a new �nancial
product of which the zero-coupon bond is a particular case: the Prototype product.

De�nition 2.1 A Prototype product is a �nancial product which guarantees to deliver a

certain payo� ϑ0(rνT ) at maturity T : this payo� depends on the value taken by the spot rate

at the date of maturity T .
Its price at time t < T is represented by

Vϑ0,t,T (rνt) = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)− rνT (T − TνT )
)
ϑ0(rνT )|F

r
νt

]
(2.5)

and the Prototype payo� ϑ0(·) is supposed to have the following form

ϑ0(·) =
N∑
i=1

wiI{·=ri}, r
i ∈ E, wi ∈ {0} ∪ R+ (2.6)
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Let us now introduce V ϑ0,t,T and V ϑ0,t,T as un upper and a lower approximation respectively
of the price of the Prototype Product. They are de�ned as

V ϑ0,t,T , EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT )|F

r
νt

]
, (2.7)

by dropping the last term in the sum in (2.5), and

V ϑ0,t,T , EP̃
[
exp
(
−

νT∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT )|F

r
νt

]
(2.8)

where the last term in the sum in (2.5) is extended up to TνT . We shall give su�cient conditions
to have the di�erence π , V ϑ0,t,T −V ϑ0,t,T a negligible quantity (see Remark 2.5 and Lemma
2.13 below) and we shall see that π ≃ 0 in many cases such as in the numerical results
described in Chapter 5. For this reason, from now on we shall concentrate on the upper
approximation V ϑ0,t,T instead of the true price Vϑ0,t,T , which is easier to compute and, for
simplicity of notation, we will denote V ϑ0,t,T by Vϑ0,t,T .

The representation of the upper approximation of the Prototype product price given by
(2.7) motivates us to consider particular functions ϑh de�ned as in the following Lemma:

Lemma 2.2 Let r(t) be a CTMC with state space E and ϑ0(·) the Prototype payo� as in

(2.6). Let the sequence of functions ϑh(·) be de�ned recursively as follows: for �xed k, η ∈ N,
put {

ϑh(rη+k−h) , EP̃[e−rη+k−h(Tη+k−h+1−Tη+k−h)ϑh−1(rη+k−h+1)
∣∣Fr

η+k−h
]

∀h = 1, . . . , k
(2.9)

then

EP̃
[
exp
(
−
η+k−1∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)|Fr

η

]
= ϑk(rη) (2.10)

Proof We denote F r
k , F r

Tk
= {A ∈ Fr

T |A ∩ {Ti ≤ s} ∈ Fr
s ,∀s ≤ T}. Let us show that

for h < k, namely Th < Tk, one has F r
h ⊂ F r

k. More generically, for two stopping times τ and
σ with τ ≤ σ it follows that Fτ ⊂ Fσ. In fact, for any t ≤ T one has that {σ ≤ t} ⊂ {τ ≤ t}.
By taking A ∈ Fτ it follows that A ∈ Fσ because

A ∩ {σ ≤ t} = A ∩ {σ ≤ t} ∩ {τ ≤ t} = (A ∩ {τ ≤ t}) ∩ {σ ≤ t} ∈ Ft

where in the last passage we use the fact that A ∩ {τ ≤ t} ∈ Ft and {σ ≤ t} ∈ Ft by
hypothesis. The statement is proved.

Inspired by Filipovi¢-Zabczyk [6], we can divide the proof into k steps:
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1st STEP

EP̃
[
exp

(
−

η+k−1∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)|Fr

η

]

= EP̃
[
EP̃[exp(−

η+k−1∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)

∣∣Fr
η+k−1 ∨ FT

η+k−1

]∣∣∣Fr
η

]

= EP̃
[
EP̃[e−rη+k−1(Tη+k−Tη+k−1)exp

(
−

η+k−2∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)

∣∣Fr
η+k−1 ∨ FT

η+k−1

]∣∣∣Fr
η

]

= EP̃
[
exp

(
−

η+k−2∑
i=η

ri(Ti+1 − Ti)
)
EP̃[e−rη+k−1(Tη+k−Tη+k−1)ϑ0(rη+k)

∣∣Fr
η+k−1 ∨ FT

η+k−1

]∣∣∣Fr
η

]

= EP̃
[
exp

(
−

η+k−2∑
i=η

ri(Ti+1 − Ti)
)
EP̃[e−rη+k−1(Tη+k−Tη+k−1)ϑ0(rη+k)

∣∣rη+k−1

]∣∣∣Fr
η

]
(2.11)

where the last passage is due to the fact that, for a generic i ∈ N, conditionally on Fr
i ∨ FT

i ,
both the distributions of the interarrival time Ti+1 −Ti and of the visited state ri+1 depend
only on the initial state ri by the properties of the CTMC's;
hence

(2.11)
(2.9)
= EP̃

[
exp
(
−
η+k−2∑
i=η

ri(Ti+1 − Ti)
)
ϑ1(rη+k−1)

∣∣∣Fr
η

]
. (2.12)

2nd STEP

(2.11) = EP̃
[
exp

(
−

η+k−2∑
i=η

ri(Ti+1 − Ti)
)
ϑ1(rη+k−1)

∣∣∣Fr
η

]

= EP̃
[
EP̃[exp(−

η+k−2∑
i=η

ri(Ti+1 − Ti)
)
ϑ1(rη+k−1)

∣∣Fr
η+k−2 ∨ FT

η+k−2

]∣∣∣Fr
η

]

= EP̃
[
EP̃[e−rη+k−2(Tη+k−1−Tη+k−2)ϑ1(rη+k−1)exp

(
−

η+k−3∑
i=η

ri(Ti+1 − Ti)
)∣∣Fr

η+k−2 ∨ FT
η+k−2

]∣∣∣Fr
η

]

= EP̃
[
exp

(
−

η+k−3∑
i=η

ri(Ti+1 − Ti)
)
EP̃[e−rη+k−2(Tη+k−1−Tη+k−2)ϑ1(rη+k−1)

∣∣Fr
η+k−2 ∨ FT

η+k−2

]∣∣∣Fr
η

]

= EP̃
[
exp

(
−

η+k−3∑
i=η

ri(Ti+1 − Ti)
)
EP̃[e−rη+k−2(Tη+k−1−Tη+k−2)ϑ1(rη+k−1)

∣∣rη+k−2

]∣∣∣Fr
η

]

= EP̃
[
exp

(
−

η+k−3∑
i=η

ri(Ti+1 − Ti)
)
ϑ2(rη+k−2)

∣∣∣Fr
η

]
(2.13)

where the last passage is again justi�ed by the properties of the CTMC's recalled in the �rst
step;
hence, recursively until the last step, we obtain

kth STEP

EP̃
[
exp

(
−

η+k−1∑
i=η

ri(Ti+1 − Ti)
)
ϑ0(rη+k)|Fr

η

]
= · · · =

EP̃
[
exp

(
−

η+k−k∑
i=η

ri(Ti+1 − Ti)
)
ϑk−1(rη+k−(k−1))

∣∣∣Fr
η

]
=

EP̃
[
erη(Tη+1−Tη)ϑk−1(rη+1)

∣∣∣Fr
η

]
(2.9)
= ϑk(rη).
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The introduction of functions of the type ϑk in Lemma 2.2 gives the possibility to repre-
sent Vϑ0,t,T as an expectation of ϑνt,T .

Lemma 2.3 The price at time t of the Prototype product with maturity T admits the following

representation

Vϑ0,t,T (rνt) =

+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (2.14)

where νt,T = νT − νt represents the number of jumps occurring in the interval [t, T ] and the

quantity ϑk(rνt), for each k ∈ N, is recursively de�ned by relation (2.9) with η = νt.

Proof The upper approximation Vϑ0,t,T of the price of Prototype product can be repre-
sented as follows

Vϑ0,t,T (rνt)
(2.7)
= EP̃

[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT )|F

r
νt

]

= EP̃
[
EP̃
[
exp
(
−
νt,T+νt−1∑

i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT )|F

r
νt ∨ σ{νt,T }

]
|Fr
νt

]

= EP̃
[
EP̃
[
exp
(
−
νt,T+νt−1∑

i=νt

ri(Ti+1 − Ti)
)
ϑ0(rνT )|F

r
νt ∨ σ{νt,T }

]
|rνt
]

= EP̃[ϑνt,T (rνt)|rνt ] (2.15)

where in the last passage we have considered the result of Lemma 2.2 with η = νt and k = νt,T ;
since νt,T is a discrete random variable, we can write the expectation as the following sum

Vϑ0,t,T (rνt) =

+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt)

In order to evaluate the di�erence between the upper and lower approximations of the Pro-
totype product in Remark 2.5, in the next Remark we suggest a useful representation of the
lower approximation V ϑ0,t,T :

Remark 2.4 The lower approximation V ϑ0,t,T of the price of the Prototype product de�ned

by (2.8) admits the following representation

V ϑ0,t,T = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
ϑ1(rνT )|F

r
νt

]
(2.16)

where ϑ1(·) is given by formula (2.9) with h = 1, η = νt and k = νt,T .
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Remark 2.5 Denoting by π the di�erence between V ϑ0,t,T − V ϑ0,t,T , we have that

π = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
(ϑ0(rνT )− ϑ1(rνT ))|F

r
νt

]
(2.17)

in accordance with the representations in (2.7) and (2.16). We will give a su�cient condition

to have a negligible π in Subsections 2.2.2 where we will suggest explicit formulae for the

functions ϑ0(·) and ϑ1(·).

As regards the quantity Vϑ0,t,T , the representation (2.14) stresses the fact that we need
to know both the distribution of νt,T and an explicit expression of the functions ϑk, which
we shall study later on, and that to obtain a computable expression for Vϑ0,t,T one has to
truncate the in�nite sum. For this purpose we are going to introduce a contracting operator
which gives the possibility to approximate the price of the Prototype product by a truncated
series.

2.2.1 A computable expression of Vϑ0,t,T based on a contracting operator

Inspired by formula (2.9) for the functions ϑh, we consider a function space M de�ned by

M , {ϑ : E → {0} ∪ R+} (2.18)

so that ϑ(v) =
∑N

i=1wiI{v=ri} where wi ∈ {0}∪R+, ∀i = 1, . . . , N . We introduce the operator
T on M: {

T ϑ(v) , Ev[e−vTϑ(u)]
T ∼ Exp(q(v)), ϑ ∈ M

(2.19)

where, by considering a generic i ∈ N, the quantities introduced in the above de�nition can
be interpreted as follows:

• v and u are the spot rate ri at jump time Ti and ri+1 at jump time Ti+1 respectively,

• q(v) is the intensity associated with each v of state space E.

We show how the functions (ϑh)h∈N de�ned as in Lemma 2.2 can be expressed in terms of
the operator T :

Corollary 2.6 Let r(t) be a CTMC with state space E such that the interarrival times

Ti+1 − Ti are exponentially distributed as in (2.2) for i ∈ N.
If ϑh are as de�ned in Lemma 2.2 and ϑ0 is the Prototype payo� as in (2.6) , then also the

ϑh's are elements of M and they can be obtained by iterating the operator T de�ned by (2.19):

ϑh = T ϑh−1 ∈ M
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Proof Comparing (2.9) and (2.19) it is clear that the two representations are equivalent
if we assume that v = ri, u = ri+1 and

(
Ti+1 −Ti

)
∼ Exp(q(ri)) for every natural number i.

It remains to prove that ϑh ∈ M, ∀k ∈ N by induction.
Base Case (h = 0): ϑ0 ∈ M by de�nition (2.6) in accordance with the hypothesis.
Inductive Step: let

ϑh−1(u) =

N∑
m=1

wmh−1I{u=rm} ∈ M, wmh−1 ∈ {0} ∪ R+ ∀m = 1, . . . , N , (2.20)

then

ϑh(v) = T ϑh−1(v)
(2.19)
= Ev[e−vTϑh−1(u)]

(2.20)
= Ev[e−vT ·

N∑
i=1

wh−1
i I{u=ri}]

=
N∑
m=1

N∑
i=1

wh−1
i E[e−vT · I{u=ri}|v = rm]I{v=rm}

=

N∑
m=1

whmI{v=rm} (2.21)

with whm ,
∑N

i=1w
h−1
i E[e−vT · I{u=ri}|v = rm] ∈ R for every m = 1, . . . , N .

In the following Propositions we shall show that the contraction property of T allows to
obtain a computable approximation of the real Prototype product price Vϑ0,t,T that can be
made arbitrarily close:

Proposition 2.7

a) The function space M is closed w.r.t. T , namely T : M → M

b) T is a contracting operator: For ϑ, ϑ′ ∈ M we have

||T ϑ− T ϑ′|| ≤ γ||ϑ− ϑ′|| (2.22)

with the norm || · || de�ned by ||f || , supv∈E |f(v)|, E the �nite state space and

γ , supv∈E
q(v)
v+q(v) < 1

c) The �xed point of T is identically equal to zero: T ϑ∗ = ϑ∗ where ϑ∗ ≡ 0.

Proof

a) Being ϑ(u) ∈ M it can be represented as follows:

ϑ(u) =
N∑
m=1

bmI{u=rm}
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Analogously to (2.21) we obtain that

T ϑ(v) (2.19)
= Ev[e−vT · ϑ(u)]

=
N∑
m=1

w̃mI{v=rm}

with w̃m ,
∑N

i=1wiE[e−vT · I{u=ri}|v = rm] ∈ R for every m = 1, . . . , N .

b)

|T ϑ(v)− T ϑ′(v)| ≤ Ev[|e−vT| · |ϑ(u)− ϑ′(u)|]
≤ Ev[|e−vT| sup

u∈E
|ϑ(u)− ϑ′(u)|]

= Ev[e−vT] · ||ϑ(u)− ϑ′(u)||

=

∫ +∞

0
e−vsq(v)e−q(v)sds · ||ϑ(u)− ϑ′(u)||

=
q(v)

v + q(v)
· ||ϑ(u)− ϑ′(u)||;

taking now the supremum over v ∈ E we obtain

||T ϑ(v)− T ϑ′(v)|| ≤ γ||ϑ(u)− ϑ′(u)||

with γ , supv∈E
q(v)
v+q(v) .

It is easy to observe that the quantity q(v)
v+q(v) < 1 for every v in E because q(v) and v are

always positive quantities: γ is strictly lower than 1.

c) By considering ϑ(·) = 0 in de�nition (2.19) we obtain T ϑ(v) = Ev[e−vT · 0] = 0. By
its unicity the �xed point of the operator T is thus equal to zero.

Proposition 2.8 Let the functions ϑk be de�ned as in Lemma 2.2 for a given ϑ0. For an

arbitrarily small ϵ, for γ as in b) of Proposition 2.7 and for nϵ ∈ N such that

nϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
− supv∈E |ϑ1(v)− ϑ0(v)|

log(γ)

⌉
, (2.23)

we have that

V ϵ
ϑ0,t,T (rνt) ,

nϵ∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) (2.24)

approximates the real price of the Prototype product de�ned as in (2.14) in the sense that

|V ϵ
ϑ0,t,T (rνt)− Vϑ0,t,T (rνt)| < ϵ uniformily in (t, T, rνt) (2.25)

22



Proof Denote the norm ||f(v)|| = supv∈E |f(v)| for every f ∈ M. We consider the
contracting map T on the functions ϑh de�ned as in Lemma 2.2. Hence we use a classical
result of the contracting map theory, that is

||ϑn − ϑ∗|| ≤ γn

1− γ
||ϑ1 − ϑ0||

where γ and ϑ∗ are de�ned as in b) and c) of Proposition 2.7 respectively. By taking n = nϵ ∈ N
such that γn

1−γ ||ϑ1 − ϑ0|| < ϵ, namely

nϵ >
log(ϵ(1− γ))

log(γ)
− ||ϑ1 − ϑ0||

log(γ)

which is a condition equivalent to (2.23), we assure that the sup-norm distance between ϑn
and ϑ∗ = 0 is smaller than ϵ for all n ∈ {nϵ + 1, nϵ + 2, . . .}:

||ϑn|| < ϵ ∀n ∈ (nϵ,+∞) ∩ N. (2.26)

Furthermore
(2.26) ⇒ sup

v∈E
|ϑn(v)| < ϵ⇒ |ϑn(v)| < ϵ ∀v ∈ E,

so we have
−ϵ < ϑn(v) < ϵ, ∀n ∈ N∩]nϵ,+∞[, ∀v ∈ E (2.27)

Now we consider the price of the Prototype product at time t:

Vϑ0,t,T (rνt)
(2.14)
=

+∞∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt)

=

nϵ∑
k=0

ϑk(rνt)P̃(νt,T = k|rνt) +
+∞∑

k=nϵ+1

ϑk(rνt)P̃(νt,T = k|rνt)

and we de�ne V ϵ
ϑ0,t,T

(rνt) ,
∑nϵ

k=0 ϑk(rνt)P̃(νt,T = k|rνt) = Vϑ0,t,T (rνt)−
∑+∞

k=nϵ+1 ϑk(rνt)

P̃(νt,T = k|rνt); by observing that, by (2.27),

+∞∑
k=nϵ+1

−ϵP̃(νt,T = k|rνt) <
+∞∑

k=nϵ+1

ϑk(rνt)P̃(νt,T = k|rνt) <
+∞∑

k=nϵ+1

ϵP̃(νt,T = k|rνt)

⇓

−ϵ
(
1−

nϵ∑
k=0

P̃(νt,T = k|rνt)
)
< −

+∞∑
k=nϵ+1

ϑk(rνt)P̃(νt,T = k|rνt) < ϵ
(
1−

nϵ∑
k=0

P̃(νt,T = k|rνt)
)

and that
∑nϵ

k=0 P̃(νt,T = k|rνt) < 1, we obtain the following con�dence interval for Vϑ0,t,T (rνt):

Vϑ0,t,T (rνt) ∈]V ϵ
ϑ0,t,T (rνt)− ϵ, V ϵ

ϑ0,t,T (rνt) + ϵ[.

Since nϵ does not depend on (t, T, rνt , νt), we �nally conclude that

|V ϵ
ϑ0,t,T (rνt)− Vϑ0,t,T (rνt)| < ϵ uniformily in (t, T, rνt).
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Remark 2.9 In the proof above we have observed that, in practice, it is not possible to com-

pute the price of the (upper approximation of the) Prototype Product Vϑ0,t,T (rνt) but only its

approximation V ϵ
ϑ0,t,T

(rνt). Moreover the explicit representation of V ϵ
ϑ0,t,T

(rνt) uses the fact

that the operator T de�ned in (2.18) is contracting.

In the Chapter "Numerical results" we will discuss a "full simulation" approach which com-

putes directly the price Vϑ0,t,T (rνt) and does not require the contraction property of the operator

T .

2.2.2 The functions ϑk, explicit formula

We are going to give a computable representation for the ϑk's that are necessary to obtain a
closed formula of Vϑ0,t,T (rνt).

Lemma 2.10 Let r(t) be a CTMC with state space E and transition kernel Q = (qi,j)1≤i,j≤N .

Given the Prototype payo� de�ned by ϑ0(·) =
∑N

i0=1wi0I{·=ri0} with w1, . . . , wN ∈ {0} ∪ R+

N non negative real values, the functions ϑk de�ned as in Lemma 2.2 satisfy the following

formula

ϑk(·) =
N∑
ik=1

wkikI{·=rik}, k ≥ 1 (2.28)

where, for m = 1, . . . , N ,

w1
m ,

N∑
i0=1

i0 ̸=m

wi0
qm,i0

rm + qm
, k = 1

wkm ,
N∑

i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=m

wi0
qm,ik−1

rm + qm

[
k−1∏
h=1

qih,ih−1

rih + qih

]
, k > 1

(2.29)

Proof We consider w.l.o.g the functions ϑk evaluated in ri, the state of the process at a
generic transition time Ti. Let us prove the statement by an induction method.

Base Case (k = 1)

ϑ1(ri)
(2.9)
= EP̃[e−ri(Ti+1−Ti)ϑ0(ri+1)

∣∣ri]
(2.6)
= EP̃[e−ri(Ti+1−Ti)

N∑
i0=1

wi0I{ri+1=ri0}
∣∣ri]

=
N∑

i0,i1=1

wi0EP̃[e−ri(Ti+1−Ti)I{ri+1=ri0}
∣∣ri = ri1

]
I{ri=ri1} (2.30)

Now

EP̃
[
e−ri(Ti+1−Ti)I{ri+1=ri0}

∣∣ri = ri1
]
= EP̃

[
e−ri(Ti+1−Ti)

∣∣ri = ri1
]
EP̃
[
I{ri+1=ri0}

∣∣ri = ri1
]

(2.31)
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because, conditionally on ri, the interarrival time Ti+1−Ti and ri+1 (the value of the process
at the transition time Ti+1) are independent by the properties of the CTMCs.
Moreover we have that

• EP̃
[
e−ri(Ti+1−Ti)

∣∣ri = ri1
]
=
∫∞
0 e−r

i1uqi1e
−qi1udu =

qi1
ri1+qi1

because Ti+1 − Ti is exponentially distributed in accordance with (2.2),

• EP̃
[
I{ri+1=ri0}

∣∣ri = ri1
]
= P̃(ri+1 = ri0 |ri = ri1) = pi1,i0 the transition probability from

state ri1 to ri0 ;

hence

EP̃
[
e−ri(Ti+1−Ti)I{ri+1=ri0}

∣∣ri = ri1
]

(2.31)
= pi1,i0

qi1
ri1 + qi1

(2.1)
=

qi1,i0
ri1 + qi1

, ∀i0 ̸= i1 (2.32)

We obtain that

ϑ1(ri)
(2.30)
=

N∑
i0,i1=1

i0 ̸=i1

wi0
qi1,i0

ri1 + qi1
I{ri=ri1} =

N∑
i1=1

w1
i1I{ri=ri1} (2.33)

where w1
i1
=
∑N

i0=1

i0 ̸=i1
wi0

qi1,i0
ri1+qi1

de�ned as in (2.29).

Inductive step

By Lemma 2.2

ϑk(ri) = EP̃[e−ri(Ti+1−Ti)ϑk−1(ri+1)
∣∣ri] = EP̃

[
e−ri(Ti+1−Ti)

N∑
ik−1=1

wk−1
ik−1

I{ri+1=r
ik−1}

]
.(2.34)
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By the induction hypothesis

(2.34) = EP̃

[
e−ri(Ti+1−Ti)

N∑
i0,...,ik−1=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0

[
k−1∏
h=1

qih,ih−1

rih + qih

]
I{ri+1=r

ik−1}
∣∣ri]

=

N∑
i0,...,ik−1=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0

[
k−1∏
h=1

qih,ih−1

rih + qih

]
EP̃
[
e−ri(Ti+1−Ti)I{ri+1=r

ik−1}
∣∣ri]

=

N∑
ik=1

{
N∑

i0,...,ik−1=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0

[
k−1∏
h=1

qih,ih−1

rih + qih

]

EP̃
[
e−ri(Ti+1−Ti)I{ri+1=r

ik−1}
∣∣ri = rik

]
I{ri=rik}

}
(2.32)
=

N∑
ik=1

{
N∑

i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=ik

wi0
qik,ik−1

rik + qik

[
k−1∏
h=1

qih,ih−1

rih + qih

]}
I{ri=rik}

=
N∑

i0,...,ik=1

i0 ̸=i1,...,ik−1 ̸=ik

wi0

[
k∏

h=1

qih,ih−1

rih + qih

]
I{ri=rik} =

N∑
ik=1

wkikI{ri=rik}

where wkik =

N∑
i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=ik

wi0
qik,ik−1

rik + qik

[
k−1∏
h=1

qih,ih−1

rih + qih

]
de�ned as in (2.29).

By Corollary 2.6 we know that the ϑk(·) belong to M, ∀k ∈ N because the Prototype

payo� ϑ0(·) ∈ M. In the previous Lemma we have proved that ϑk(·) =
N∑
ik=1

wkikI{·=rik} with

coe�cients wkik known when the initial values w1, . . . , wN are given. We present now a simpler
representation for ϑk(·) by introducing vector notation:

De�nition 2.11 Let r = [r1, . . . , rN ]′ be the N -dimensional vector with components the val-

ues of state space E and de�ne

• θ0(r) , [w1, . . . , wN ]
′ where the components correspond to the Prototype payo� ϑ0(·)

• θk(r) = [wk1 , . . . , w
k
N ]

′, with wkm de�ned in Lemma 2.10.

In other terms, for k ∈ N, {ϑk(ri)}{ri∈E} is the collection of all possible values assumed by

the function ϑk and, for a �xed ri ∈ E, ϑk(r
i) is the i-th component of vector θk(r).

Lemma 2.12 Let r(t) be a CTMC with state space E and transition kernel Q = (qi,j)1≤i,j≤N .
The vectors θk(r) in De�nition 2.11 admit, for k ∈ N, the representation

θk(r) = Q̃k · θ0(r), k ∈ N (2.35)
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with Q̃0 , IN the identity matrix and

Q̃ =


0

q1,2
r1+q1

q1,3
r1+q1

· · · q1,N
r1+q1

q2,1
r2+q2

0
q2,3
r2+q2

· · · q2,N
r2+q2

...
...

. . .
...

...
qN−1,1

rN−1+qN−1

qN−1,2

rN−1+qN−1
· · · 0

qN−1,N

rN−1+qN−1
qN,1

rN+qN

qN,2

rN+qN
· · · qN,N−1

rN+qN
0

 . (2.36)

Proof

We prove the statement by an induction method.

Base Case k = 0
By De�nition 2.11 we have

θ0(r) = [w1, . . . , wN ]
′ = Q̃0 · θ0(r)

Inductive step

Observing that relation (2.35) is equivalent to

θk(r) = Q̃ · θk−1(r), k > 0 (2.37)

it is su�cient to prove (2.37) by using the induction hypothesis θk−1(r) = Q̃k−1 ·θ0(r). Letting
D(ξ) = {i1 ̸= i2, . . . , ik−2 ̸= ξ} we have in fact

θk(r) =


wk1
wk2
...
wkN

 (2.29)
=



N∑
i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=1

wi0
q1,ik−1

r1 + q1

k−1∏
h=1

qih,ih−1

rih + qih

N∑
i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=2

wi0
q2,ik−1

r2 + q2

k−1∏
h=1

qih,ih−1

rih + qih

...
N∑

i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=N

wi0
qN,ik−1

rN + qN

k−1∏
h=1

qih,ih−1

rih + qih


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=



N∑
ik−1=1

ik−1 ̸=1

q1,ik−1

r1 + q1

{
N∑

i0,...,ik−2=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0
qik−1,ik−2

rik−1 + qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}
N∑

ik−1=1

ik−1 ̸=2

q2,ik−1

r2 + q2

{
N∑

i0,...,ik−2=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0
qik−1,ik−2

rik−1 + qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}

...
N∑

ik−1=1

ik−1 ̸=N

qN,ik−1

rN + qN

{
N∑

i0,...,ik−2=1

i0 ̸=i1,...,ik−2 ̸=ik−1

wi0
qik−1,ik−2

rik−1 + qik−1

k−2∏
h=1

qih,ih−1

rih + qih

}



=



q1,2
r1+q1

{ N∑
i0,...,ik−2=1

D(2)

wi0

q2,ik−2

r2 + q2

k−2∏
h=1

qih,ih−1

rih + qih

}
+ · · ·+

q1,N

r1 + q1

{ N∑
i0,...,ik−2=1

D(N)

wi0

qN,ik−2

rN + qN

k−2∏
h=1

qih,ih−1

rih + qih

}

q2,1
r2+q2

{ N∑
i0,...,ik−2=1

D(1)

wi0

q1,ik−2

r1 + q1

k−2∏
h=1

qih,ih−1

rih + qih

}
+ · · ·+

q2,N

r2 + q2

{ N∑
i0,...,ik−2=1

D(N)

wi0

qN,ik−2

rN + qN

k−2∏
h=1

qih,ih−1

rih + qih

}
...

qN,1

rN+qN

{ N∑
i0,...,ik−2=1

D(1)

wi0

q1,ik−2

r1 + q1

k−2∏
h=1

qih,ih−1

rih + qih

}
+ · · ·+

qN−1,N

rN−1 + qN−1

{ N∑
i0,...,ik−2=1

D(N−1)

wi0

qN−1,ik−2

rN + qN

k−2∏
h=1

qih,ih−1

rih + qih

}



= Q̃ ·



N∑
i0,...,ik−2

D(1)

wi0
q1,ik−2

r1 + q1

k−2∏
h=1

qih,ih−1

rih + qih

N∑
i0,...,ik−2

D(2)

wi0
q2,ik−2

r2 + q2

k−2∏
h=1

qih,ih−1

rih + qih

...
N∑

i0,...,ik−2

D(N)

wi0
qN,ik−2

rN + qN

k−2∏
h=1

qih,ih−1

rih + qih



= Q̃ · θk−1(r)

The explicit representation of the functions ϑk in Lemma 2.10 allows us to evaluate the quan-
tity π introduced in Remark 2.5. We are able to give a su�cient condition to have π ≃ 0 in
the cases in which we are interested, that is when the Prototype payo� ϑ0(·) =

∑N
i=1wiI{·=ri}

has coe�cients wi ≡ 1 for i = 1, . . . , N .

Lemma 2.13 Let r(t) be a CTMC with state space E ∈ RN and let us suppose that the

Prototype payo� ϑ0(·) =
∑N

i=1wiI{·=ri} with wi ≡ 1, i = 1, . . . , N , then the quantity π in

(2.17) is negligible if
ri

qi
≃ 0 ∀i = 1, . . . , N (2.38)
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where ri ∈ E and qi represents the intensity associated to the state ri.

Proof By Remark 2.5 we have that

π = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
(ϑ0(rνT )− ϑ1(rνT ))|F

r
νt

]
.

A su�cient condition to obtain π ≃ 0 is then given by the following relation

ϑ0(r)− ϑ1(r) ≃ 0, r ∈ E. (2.39)

By the explicit formulae of the functions ϑ0 and ϑ1 given in Lemma 2.10 we obtain

ϑ0(·)− ϑ1(·) =

N∑
i=1

{
wi −

N∑
i0=1

i0 ̸=i

wi0
qi,i0
ri + qi

}
I{·=ri}

=

N∑
i=1

{
1−

N∑
i0=1

i0 ̸=i

qi,i0
ri + qi

}
I{·=ri}

=

N∑
i=1

{
1− qi

ri + qi

}
I{·=ri} =

N∑
i=1

{
1− 1

ri

qi
+ 1

}
I{·=ri}

where in the second passage we have used the hypotheses wi = 1, i = 1, . . . , N . Hence,
ϑ0(·) − ϑ1(·) ≃ 0 if and only if 1 − 1

ri

qi
+1

≃ 0 for each i = 1, . . . , N , which is equivalent to

(2.38).

Remark 2.14 The condition (2.38) can be seen to be satis�ed when the short rate takes values

that are relatively small with respect to the intensities, which is e.g. the case when there are

frequent jumps. In the numerical results this condition is satis�ed and in fact the short rate

frequently jumps.

2.2.3 Distribution of νt,T

The discrete random variable νt,T , as we have introduced it at the beginning of the chapter,

represents the number of jumps of the process r(·) between t and T . We now compute P̃(νt,T =
k|rνt = rm), namely the probability of k jumps occurring in the interval [t, T ] when the process
r(·) at time t is equal to rm, for all k ∈ N and rm ∈ E, m ∈ {1, . . . , N}.

Lemma 2.15 Let r(t) be a CTMC with state space E and transition kernel Q = (qi,j)1≤i,j≤N ,
then, for every positive k ∈ N and rm ∈ E with m ∈ {1, . . . , N}, we have

P̃(νt,T = k|rνt = rm) =

N∑
i=1
i̸=m

qm,i

∫ T

t
e−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds, with t < T. (2.40)
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Proof Let us denote the �rst jump time after t as the random variable τ̂ , that is
τ̂ = inf{u > 0 : νt+u > ν(t+u)−}. By properties of CTMC's we observe that (τ̂ |rνt = rm) ∼
Exp(qm). Consider now the random variable τ de�ned as follows:

τ , τ̂ + t;

since the density function of τ̂ is P̃(τ̂ ∈ ds|rνt = rm) = qme
−qmsds, the density function of τ

is given by

P̃(τ ∈ ds|rνt = rm) = P̃(τ̂ + t ∈ ds|rνt = rm) = qme
−qm(s−t)ds, s > t. (2.41)

We can now proceed to prove the statement. In fact, by the law of total probability, we have
that

P̃(νt,T = k|rνt = rm) =

∫ T

t

N∑
i=1

P̃(τ ∈ ds, rντ = ri|rνt = rm)P̃(νs,T = k − 1|rνs = ri) (2.42)

where ri (i = 1, . . . , N) are all possible states reachable at the jump time τ . By properties of
CTMC's, the random variables τ and rντ are, conditionally on rνt , independent and so

P̃(τ ∈ ds, rντ = ri|rνt = rm) = P̃(τ ∈ ds|rνt = rm)P̃(rντ = ri|rνt = rm)

(2.41)
= qme

−qm(s−t)pm,ids.

Hence, by (2.42), we obtain

P̃(νt,T = k|rνt = rm) =

∫ T

t

N∑
i=1

pm,iqme
−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds

(2.1)
=

N∑
i=1
i̸=m

qm,i

∫ T

t
e−qm(s−t)P̃(νs,T = k − 1|rνs = ri)ds.

We derive now an explicit expression for the probabilities de�ned in (2.40).

Lemma 2.16 Under the same hypotheses of Lemma 2.15, assuming w.l.o.g that νt = h ∈ N
and denoting m = ih for simplicity of notations, it follows that

P̃(νt,T = k|rνt = rih) =

N∑
ih+1,...,ih+k=1

ih+1 ̸=ih,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eqih t−qih+k
Tφh,k(Q) ·Ψh,k(t, T,Q)

P̃(νt,T = 0|rνt = rih) = e−qih (T−t)

(2.43)

with ih a �xed index in {1, . . . , N}, Ψh,k the following multiple integral

Ψh,k(t, T,Q) ,
∫ T

t
e(qih+1

−qih )th+1

∫ T

th+1

e(qih+2
−qih+1

)th+2 · · ·

· · ·
∫ T

th+k−1

e(qih+k
−qih+k−1

)th+kdth+k . . . dth+2dth+1
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and

φh,k(Q) , qih,ih+1
· . . . · qih+k−1,ih+k

.

Proof The case k = 0 is proved directly by properties of CTMC's. Let us prove by an
induction method the general case for k ≥ 1.

Base Case (k = 1)

P̃(νt,T = 1|rνt = rih)
(2.40)
=

N∑
ih+1=1

ih+1 ̸=ih

qih,ih+1

∫ T

t
e−qih (th+1−t)P̃(νth+1,T = 0|rνth+1

= rih+1)dth+1

=

N∑
ih+1=1

ih+1 ̸=ih

qih,ih+1

∫ T

t
e−qih (th+1−t)e−qih+1

(T−th+1)dth+1

=

N∑
ih+1=1

ih+1 ̸=ih

qih,ih+1
e(qih t−qih+1

T )
∫ T

t
e(qih+1

−qih )th+1dth+1

Inductive step:

P̃(νt,T = k|rνt = rih)
(2.40)
=

N∑
ih+1=1

ih+1 ̸=ih

qih,ih+1

∫ T

t
e−qih (th+1−t)P̃(νth+1,T = k − 1|rνth+1

= rih+1)dth+1

=

N∑
ih+1=1

ih+1 ̸=ih

qih,ih+1

∫ T

t
e−qih (th+1−t) ·

·
{ N∑

ih+2,...,ih+k=1

ih+2 ̸=ih+1,ih+3 ̸=ih+2,...,ih+k ̸=ih+k−1

eqih+1
th+1−qih+k

Tφh+1,k−1(Q) ·Ψh+1,k−1(th+1, T,Q)
}
dth+1

=

N∑
ih+1,...,ih+k=1

ih+1 ̸=ih,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

qih,ih+1
eqih t−qih+k

Tφh+1,k−1(Q)

∫ T

t
e(qih+1

−qih )th+1Ψh+1,k−1(th+1, T,Q)dth+1

=

N∑
ih+1,...,ih+k=1

ih+1 ̸=ih,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eqih t−qih+k
Tφh,k(Q)Ψh,k(t, T,Q)dth+1

where in the last passage we have used the fact that

φh+1,k−1 = qih+1,i(h+1)+1
· . . . · qi(h+1)+(k−1)−1,i(h+1)+(k−1)

=
φh,k
qih,ih+1
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and

Ψh+1,k−1(th+1, T,Q) =

∫ T

th+1

e(qih+2
−qih+1

)th+2

∫ T

th+2

e(qih+3
−qih+2

)th+3 · · ·

· · ·
∫ T

th+k−1

e(qih+k
−qih+k−1

)th+kdth+k . . . dth+3dth+2

Remark 2.17 In the previous Lemma, the dependence of the probability P̃(νt,T = k|rνt = ri0)
on h = νt (the number of jumps occurred until the time t) is due only to technical reasons

during the proof. In fact the following representation of these probabilites is equal to the one

given by (2.43):

P̃(νt,T = k|rνt = ri0) =
N∑

i1,...,ik=1

i1 ̸=i0,i2 ̸=i1,...,ik ̸=ik−1

eqi0 t−qikTφk(Q) ·Ψk(t, T,Q) (2.44)

with i0 a �xed index in {1, . . . , N}, Ψk the following multiple integral

Ψk(t, T,Q) ,
∫ T

t
e(qi1−qi0 )t1

∫ T

t1

e(qi2−qi1 )t2 · · ·
∫ T

tk−1

e(qik−qik−1
)tkdtk . . . dt2dt1 (2.45)

and

φk(Q) , qi0,i1 · . . . · qik−1,ik .

We recall now an interesting property of an homogeneous time CTMC -namely a CTMC with
transition kernel Q = (qi,j)1≤i,j≤N independent with respect the time- which is very useful in
our context:

Remark 2.18 Let ντ be the discrete random variable which represents the number of jumps

until τ such that τ = T − t with t, T ∈ R+. When the process r(·) is an homogeneous time

CTMC -as in our case- the random variable νt,T is equivalent in law to ντ ≡ ν0,τ . Hence, by
Remark 2.17,

P̃(νt,T = k|rνt = ri0) = P̃(νT−t = k|r(0) = ri0) (2.46)

=

N∑
i1,...,ik=1

i1 ̸=m,i2 ̸=i1,...,ik ̸=ik−1

e−qik (T−t)φk(Q) ·Ψk(0, T − t,Q)

where the quantities involved are de�ned as in the previous Remark.

32



2.2.4 Price of Prototype product Vϑ0,t,T : closed formula

We are now able to give an explicit representation of the price of the Prototype product
represented as in Lemma 2.3 and its approximation V ϵ

ϑ0,t,T
introduced in Proposition 2.8.

Proposition 2.19 Under the same hypotheses and notations of Proposition 2.8 and Lemma

2.10 and assuming that at the evaluation time t the spot rate is equal to a �xed ri ∈ E, the
Prototype product price Vϑ0,t,T (rνt) and its approximation V ϵ

ϑ0,t,T
(rνt) admit respectively the

following representations

Vϑ0,t,T (rνt)|rνt=ri =
+∞∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri), (2.47)

and

V ϵ
ϑ0,t,T (rνt)|rνt=ri =

nϵ∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri), (2.48)

where Q̃ is de�ned as in (2.36), θ0(r) is as in De�nition 2.11 and [v]i denotes, for a generic

vector v, its i-th element.

Proof By formulas (2.14) and (2.35) we have that

Vϑ0,t,T (rνt)|rνt=ri = EP̃[[Q̃νt,T · θ0(r)]i|rνt = ri];

it follows that

Vϑ0,t,T (rνt)|(rνt )=ri =
+∞∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri). (2.49)

We obtain a similar expression for V ϵ
ϑ0,t,T

(rνt), that is

V ϵ
ϑ0,t,T (rνt)|rνt=ri = EP̃

ϵ [[Q̃
νt,T · θ0(r)]i|rνt = ri] =

nϵ∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri)

We are able to give a simpler explicit formula of the price of the Prototype Product in the
particular case when the matrix Q̃ in (2.36) is diagonalizable:

Proposition 2.20 Let us suppose that Q̃ de�ned by (2.36) is diagonalizable. Under the same

hypotheses and notations of Proposition 2.8 and Lemma 2.10, Vϑ0,t,T (rνt) de�ned as in (2.14)

and V ϵ
ϑ0,t,T

(rνt) admit respectively the following representations

Vϑ0,t,T (rνt)|rνt=ri = e′i · S ·

 EP̃[d
νt,T
1 |rνt = ri] 0 0

0
. . . 0

0 0 EP̃[d
νt,T
N |rνt = ri]

 · S−1 · θ0(r), (2.50)
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and

V ϵ
ϑ0,t,T (rνt)|rνt=ri = e′i ·S ·

 EP̃
ϵ [d

νt,T
1 |rνt = ri] 0 0

0
. . . 0

0 0 EP̃
ϵ [d

νt,T
N |rνt = ri]

 ·S−1 · θ0(r), (2.51)

where S is an N×N matrix the columns of which are the eigenvectors of Q̃, (dj)j=1,...,N are the

eigenvalues of Q̃, ei is the ith unit vector, θ0(r) is as in De�nition 2.11 and

EP̃
ϵ [d

νt,T |rνt = ri] ,
∑nϵ

k=0 d
kP̃(νt,T = k|rνt = ri) for a real number d and nϵ given by (2.23).

Proof By (2.35) we have θνt,T (r) = Q̃νt,T · θ0(r) and it follows that w
νt,T
i (Q), the ith

element of θνt,T (r), is equal to [Q̃νt,T · θ0(r)]i: hence

ϑνt,T (r
i) = [Q̃νt,T · θ0(r)]i. (2.52)

By formula (2.15) we have

Vϑ0,t,T (rνt)|rνt=ri = EP̃[ϑνt,T (rνt)|rνt = ri]

(2.52)
= EP̃[[Q̃νt,T · θ0(r)]i|rνt = ri]

= EP̃[[S ·Dνt,T · S−1θ0(r)]i|rνt = ri]

= [S · EP̃[Dνt,T |rνt = ri] · S−1 · θ0(r)]i
= e′i · S · EP̃[Dνt,T |r∗ = ri] · S−1 · θ0(r)

= e′i · S ·

 EP̃[d
νt,T
1 |rνt = ri] 0 0

0
. . . 0

0 0 EP̃[d
νt,T
N |rνt = ri]

 · S−1 · θ0(r)

where in the second passage we have diagonalized the matrix Q̃ = SDS−1 with S the matrix
of eigenvectors and D the diagonal matrix with diagonal elements (dj)j=1,...,N . Analogously

we obtain an explicit matrix representation for V ϵ
ϑ0,t,T

(rνt) =
∑nϵ

k=0 ϑk(rνt)P̃(νt,T = k|rνt).

2.2.5 The Prototype product pricing under a more general market model

So far we have considered a market model under which the spot rate is assumed to be a
CTMC. It is possible to generalize this framework by considering the above interest rate as a
renewal process. In fact, by de�nition, a renewal process is a point process characterized by the
fact that the successive interarrival times are independent identically distributed (the CTMC
is a renewal process where the interarrival times are exponentially distributed in accordance
with (2.2)).

The pricing formula for the Prototype Product Vϑ0,t,T (rνt) =
∑+∞

k=0 ϑk(rνt)P̃(νt,T = k|rνt)
given by (2.14) holds also when the spot rate r(t) is a general renewal process which takes
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values in a �nite set E = {r1, . . . , rN}. In this case we are going to show that the approach to
price the Prototype Product does not change but the quantities ϑk(rνt) and P̃(νt,T = k|rνt)
have a di�erent representation with respect to the previous sections.

Functions ϑk(rνt): for
for a �xed k, ϑk(rνt) can be represented recursively, as in Corollary 2.6, by using an
operator T de�ned similarly to the one introduced in (2.19), namely{

T ϑ(v) , EP̃
v [e

−vTϑ(u)]
T ∼ F (q(v)), ϑ ∈ M

(2.53)

where T represents the interarrival time with a general distribution F which depends
on the parameter q(v) and M is de�ned by (2.18) (see Subsection 2.2.1 for the other
notations used in formula (2.53)).
The contraction constant γ of T , depending on the distribution F , could also be greater
than 1 (contrary to the case in which the random variable T is exponentially distributed

and, according to point b) of Proposition 2.7, γ , supv∈E
q(v)
v+q(v) < 1). Nevertheless,

recalling Remark 2.9, we are able to compute numerically the price of the Prototype
Product even if T is not a contraction map.

Probabilities P̃(νt,T = k|rνt): for

the probabilities P̃(νt,T = k|rνt) can be obtained by a formula similar to (2.40). More
precisely, while in the proof of Lemma 2.15 the time τ is exponentially distributed (see
formula (2.41)), in this case τ is distributed according to F .

Hence the price of the Prototype Product Vϑ0,t,T can be explicitly represented also when the
spot rate is assumed to be a more general point process, namely a renewal process, with a
�nite state space E.
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Chapter 3

Bond, Cap, Swaption and Bond

Option pricing with a Markov short

rate

Once we have presented the Prototype product pricing under the assumption that the spot
rate is a CTMC, we are able to give, for speci�c contracts (bond, cap, swaption and bond
option), a representation of the price as a linear combination of Prototype products.

3.1 Bond pricing

3.1.1 The pricing formula

The bond price p(t, T ) is simply a Prototype product with a particular payo� ϑ0. We shall
denote p(t, T ) always by p(t, T ; r(t)) because a T -bond price evaluated at time t depends on
the value of the spot rate at time t.

Proposition 3.1 Let r(t) be a CTMC with state space E and transition kernel

Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have occurred, be r(t) = ri

for a �xed i = 1, . . . , N . A zero-coupon bond which matures at time T can be viewed as a

Prototype product characterized by the following payo�:{
ϑ0(·) = ϕ0(·) ,

∑N
i0=1wi0I{·=ri0}

wi0 = 1, i0 = 1, . . . , N
(3.1)

Hence the bond price admits the following representation

p(t, T ; r(t))|r(t)=ri =
+∞∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri) (3.2)

where Q̃ is de�ned as in (2.36), θ0(r) = [1, . . . , 1]′ ∈ RN , the distribution of νt,T condition-

ally on r(t) is given by (2.44) and [v]i denotes, for a generic vector v, the i-th element of v.
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Moreover, under the assumption that Q̃ is diagonalizable, we have an alternative representa-

tion:

p(t, T ; r(t))|r(t)=ri = e′i ·S ·

 EP̃[d
νt,T
1 |r(t) = ri] 0 0

0
. . . 0

0 0 EP̃[d
νt,T
N |r(t) = ri]

·S−1 ·

 1
...

1

 (3.3)

where the columns of S are the eigenvector of Q̃, (dj)j=1,...,N are the eigenvalues of Q̃ and ei
is the ith unit vector.

Proof Assuming r(t) = ri and the payo� ϑ0 given by ϕ0 as in (3.1), by (2.4) we have

p(t, T ; r(t)) = EP̃
[
exp
(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
|Fr
νt

]

= EP̃
[
EP̃
[
exp
(
−
νt+k−1∑
i=νt

ri(Ti+1 − Ti)
)∣∣Fr

νt ∨ σ{νt,T }
]∣∣∣Fr

νt

]

= EP̃
[
EP̃
[
exp
(
−
νt+k−1∑
i=νt

ri(Ti+1 − Ti)
)
ϕ0(rνT )

∣∣Fr
νt ∨ σ{νt,T }

]∣∣∣Fr
νt

]
= EP̃[ϕνt,T (rνt)|F

r
νt ] = EP̃[ϕνt,T (r(t))|r(t)] (3.4)

where the last two passages follow by Lemma 2.2 when we set η = νt, k = νT − νt = νt,T
and we denote the functions ϑk by ϕk. Looking at formula (2.15) of Vϑ0,t,T (rνt), we have that
p(t, T ; r(t)) = Vϕ0,t,T (r(t)). Hence, under the assumptions of Proposition 2.19, by formula
(2.47) the bond price can be written as follows

p(t, T ; r(t))|r(t)=ri =
+∞∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri)

where

• the components of θ0(r), according to De�nition 2.11, are given by the coe�cients wi0
of ϑ0(·) that in our case are equal to 1 by (3.1);

• νt,T , conditionally on r(t), is distributed as in (2.44).

In the case of Q̃ diagonalizable, by using the results and the notations of Proposition 2.20,
the bond price has the following explicit expression

p(t, T ; r(t))|r(t)=ri = e′i S

 EP̃[d
νt,T
1 |r(t) = ri] 0 0

0
. . . 0

0 0 EP̃[d
νt,T
N |r(t) = ri]

S−1θ0(r)
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3.1.2 A computable bond pricing formula

An analogous result can be achieved when we look for a computable approximation of the
bond price:

Proposition 3.2 Under the same hypotheses and notations of Proposition 3.1, for an arbi-

trarily small ϵ and nϵ ∈ N such that

nϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈E |
∑N

i=1

( qi
ri+qi

− 1
)
I{v=ri}|

log(γ)

⌉
, (3.5)

it follows that, if we denote by ϕk the functions given by relation (2.9) with the starting point

equal to ϕ0, the quantity pϵ(t, T ; r(t)) ,
∑nϵ

k=0 ϕk(r(t))P̃(νt,T = k|r(t) = ri) approximates the

real bond price p(t, T ; r(t)) represented by (3.3) in the sense that

|pϵ(t, T ; r(t))− p(t, T ; r(t))| < ϵ uniformly in (t, T, r(t)). (3.6)

Moreover, the approximating price pϵ(t, T ; r(t)) can be written as follows

pϵ(t, T ; r(t))|r(t)=ri =
nϵ∑
k=0

[Q̃k · θ0(r)]iP̃(νt,T = k|rνt = ri) (3.7)

and, assuming the diagonalizability of Q̃, it admits the representation below

pϵ(t, T ; r(t))|r(t)=ri = e′i S

 EP̃
ϵ [d

νt,T
1 |r(t) = ri] 0 0

0
. . . 0

0 0 EP̃
ϵ [d

νt,T
N |r(t) = ri]

S−1

 1
...

1

 (3.8)

with EP̃
ϵ [d

νt,T
j |r(t) = ri] ,

∑nϵ
k=0 d

k
j P̃(νt,T = k|r(t) = ri), j = 1, . . . , N .

Proof By hypothesis let us denote the ϑks in Lemma 2.2 by the ϕks with the starting
point de�ned by the Prototype payo� as in (3.1): then we have that

ϑ0(·) = ϕ0(·) =
N∑
i=1

wiI{·=ri}
(3.1)
=

N∑
i=1

I{·=ri}

and

ϑ1(·) = ϕ1(·)
(2.28),(2.29)

=

N∑
i0,i1=1

i0 ̸=i1

wi0
qi1,i0

ri1 + qi1
I{·=ri1}

(3.1)
=

N∑
i0,i1=1

i0 ̸=i1

qi1,i0
ri1 + qi1

I{·=ri1} =

N∑
i1=1

1

ri1 + qi1

( N∑
i0=1

i0 ̸=i1

qi1,i0

)
I{·=ri1}

=

N∑
i=1

qi
ri + qi

I{·=ri}
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Recalling Proposition 2.8, the condition (2.23) on nϵ then becomes

nϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈E |
∑N

i=1

( qi
ri+qi

− 1
)
I{v=ri}|

log(γ)

⌉
,

and we obtain that

|pϵ(t, T ; r(t))− p(t, T ; r(t))| < ϵ uniformly in (t, T, r(t))

where the uniformly convergence with respect to (t, T, r(t)) is due to the independence of nϵ
on the triple (t, T, r(t)).

In addition, an explicit expression for pϵ(t, T ; r(t)) is obtained directly by the closed for-
mula of V ϵ

ϑ0,t,T
(r(t)) in (2.48) (or by the explicit formula in (2.51) when Q̃ is diagonalizable)

analogously to the previous Proposition.

To conclude this section, we observe how, by considering the spot rate r(·) as an homogeneous
time CTMC, the price of a T -bond evaluated at the time t does not depend separately on t
and T but only on the length T − t: this result will be very useful in the pricing of interest
rate derivatives.

Proposition 3.3 Let r(t) be a CTMC with state space E and stationary transition kernel

Q = (qi,j)1≤i,j≤N , then the price of a T -bond evaluated at the time t with the initial value of

the spot rate equal to rm ∈ E admits the following representation

p(t, T ; r(t))|r(t)=rm = p(rm, T − t) (3.9)

where p(rm, T − t) , p(0, T − t; r(0)|r(0)=rm. The same property is valid for pϵ(t, T ; r(t)),
de�ned as in Proposition 3.2, which approximates the bond price:

pϵ(t, T ; r(t))|r(t)=rm = pϵ(r
m, T − t) (3.10)

with pϵ(r
m, T − t) , pϵ(0, T − t; r(0))|r(0)=rm.

Proof Looking at (3.4) in the proof of Proposition 3.1, we have that

p(t, T ; r(t))|r(t)=rm = EP̃[ϕνt,T (r(t))|r(t) = rm] =

+∞∑
k=0

ϕk(r
m)P̃(νt,T = k|r(t) = rm).

Taking into account (2.46) in Remark 2.18, it follows that

p(t, T ; r(t))|r(t)=rm =
+∞∑
k=0

ϕk(r
m)P̃(νT−t = k|r(0) = rm) = p(0, T − t; r(0))|r(0)=rm .

The quantity p(0, T − t; r(0))|r(0)=rm is indicated by p(rm, T − t) because we want to

emphasize that the representation of the probability P̃(νT−t = k|r(0) = rm) in (2.46)
highlights the independence of the bond price on the time of evaluation. In an analogous
way (3.10) is proved.
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3.1.3 An approach based on the a�ne term structure representation

The a�ne term structure models have been successful in the interest rate theory because they
allow computations to be carried out more easily. We now use the result in [1] (Proposition
below) to calculate the bond price in our context.

De�nition 3.4 An interest rate model is said to have an a�ne term structure if bond prices

can be described as

p(t, T ; r(t)) = exp[A(t, T )−B(t, T )r(t)] (3.11)

where A, B are deterministic functions and r(t) is the spot rate.

Assumption 3.5 The short rate r(t) is solution of the following stochastic di�erential equa-

tion under a martingale measure Q

dr(t) = a(t, r(t))dt+ b(t, r(t))dW̃t +

∫
D
q(t, r(t), x)µ(dt, dx) (3.12)

where µ(dt, dx) is a point process measure on the mark space D and a(t, r), b(t, r), q(t, r, x)

are given deterministic functions. The process W̃t is Wiener under Q and µ has a predictable

Q-intensity
λ(ω, t, dx) = λ(t, r(t−), dx) (3.13)

where λ(t, r, dx) is a deterministic measure for each t and r.

Proposition 3.6 Suppose that the r-dynamics under Q are given by (3.12) and the parame-

ters a, b, q and λ have the following structure

a(t, r) = α1(t) + α2(t)r (3.14)

b(t, r) =
√
β1(t) + β2(t)r (3.15)

q(t, r, x) = q(t, x) (3.16)

λ(t, r, dx) = l1(t, dx) + l2(t, dx)r. (3.17)

Then the model has an a�ne term structure of the form (3.11) where the functions A(·, T )
and B(·, T ) solve the following system of ODE's on [0, T ]

∂B(t, T )

∂t
+ α2(t)B(t, T )− 1

2
β2(t)B

2(t, T ) + ψ2(t, B(t, T )) = −1

B(T, T ) = 0 (3.18)

∂A(t, T )

∂t
+ α1(t)B(t, T ) +

1

2
β1(t)B

2(t, T ) + ψ1(t, B(t, T )) = 0

A(T, T ) = 0 (3.19)

and

ψi(t, y) =

∫
D
{1− e−yq(t,x)}li(t, dx) , i = 1, 2. (3.20)
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We show now that this result can be used in our context where r(t) is assumed to be a
CTMC with �nite state space E. We consider the simplest case, namely r(t) is a CTMC with
E = {r1, r2} (r1 = 1, r2 = 2) and transition kernel Q = (qi,j)1≤i,j≤2 such that q1,2 = −q1,1 =
q1 = λ and q2,1 = −q2,2 = q2 = µ where λ, µ > 0.

Lemma 3.7 Let r(t) be a CTMC with a state space E = {1, 2} and transition kernel

Q =

(
−λ λ
µ −µ

)
, then the spot rate is solution of the following SDE

dr(t) = q(t, r(t), 1)dN1
t − q(t, r(t),−1)dN2

t (3.21)

where q(t, r(t), 1) = 1, q(t, r(t),−1) = −1 and N i
t ∼ Poiss(λit(r(t−))), i = 1, 2 such that

λt(t, r(t−), 1) , λ1t (r(t−)) =

{
λ if r(t−) = 1
0 if r(t−) = 2

and

λt(t, r(t−),−1) , λ2t (r(t−)) =

{
0 if r(t−) = 1
µ if r(t−) = 2

Proof The SDE (3.21) is a particular case of (3.12) if r(t) is considered a continuous
Markov chain. In fact a continuous time Markov chain is a "pure jump" process: it can be
represented by a SDE of form (3.12) without the di�usive part (a = b = 0). In our case the
state space E = {1, 2} and the mark space D = {1,−1}, which contains all possible jump
sizes, are discrete sets, so that the dynamics of r(t) are given by

dr(t) =
∑
k∈D

q(t, r(t), k)µ(dt, k)

with
q(t, r, 1) = 1, q(t, r,−1) = −1

and

µ(dt, k) =

{
dN1

t ∼ Poiss(λ1t (r(t−))) if k = 1
dN2

t ∼ Poiss(λ2t (r(t−))) if k = −1

such that

λ1t (r(t−)) =

{
λ if r(t−) = 1
0 if r(t−) = 2

λ2t (r(t−)) =

{
0 if r(t−) = 1
µ if r(t−) = 2

The choice of these parameters is motivated by the following argument: at time t− the process
r can take two values

- if r(t−) = 1 then the jump occurs according to the Poisson process N1
t with intensity λ

erwi and the jump size is equal to 1 (q(t, r, 1) = 1) to reach r(t) = 2;

- if r(t−) = 2 then the jump occurs according to the Poisson process N2
t with intensity µ

erwi and the jumps size is equal to −1 (q(t, r,−1) = −1) to reach r(t) = 1.

41



Corollary 3.8 Suppose that the r-dynamics under Q is given by (3.21), then we are in the

presence of an a�ne term structure where A(·, T ) and B(·, T ) solve (3.18)-(3.19) with

α1(t) = α2(t) = β1(t) = β2(t) = 0

ψ1(t, y) = 2λ(1− e−y)− µλ(1− ey) (3.22)

ψ2(t, y) = −λ(1− e−y) + µλ(1− ey).

i.e.

∂B(t, T )

∂t
− λ(1− e−B(t,T )) + µ(1− eB(t,T )) = −1

B(T, T ) = 0, (3.23)

∂A(t, T )

∂t
+ 2λ(1− e−B(t,T ))− µ(1− eB(t,T )) = 0

A(T, T ) = 0. (3.24)

Proof Assuming r(t) solution of (3.21), by Lemma 3.7 we obtain

q(t, 1) , q(t, r, 1) = 1, q(t,−1) , q(t, r,−1) = −1

λ1t (r(t−)) =

{
λ if r(t−) = 1
0 if r(t−) = 2

⇒ λ1t (r(t−)) = 2λ− λr(t−) (3.25)

λ2t (r(t−)) =

{
0 if r(t−) = 1
µ if r(t−) = 2

⇒ λ2t (r(t−)) = −µ+ µr(t−). (3.26)

The Lemma is proved by verifying the hypotheses of Proposition 3.6 and showing that with
r-dynamics as given by (3.21), the results of that Proposition lead to (3.23)-(3.24):

• α1(t) = α2(t) = β1(t) = β2(t) = 0 because there is no di�usive part in (3.21);

• the components of the intensities λ1t and λ
2
t are

l1(t, 1) = 2λ, l2(t, 1) = −λ
l1(t, 2) = −µ, l2(t, 2) = µ;

by (3.25) and (3.26);

• the ψ's in (3.20), with a discrete mark space D , become

ψ1(t, y) =
∑
k∈D

(1− eq(t,k)y)l1(t, k)

= 2λ(1− e−y)− µ(1− ey),

ψ2(t, y) =
∑
k∈D

(1− eq(t,k)y)l2(t, k)

= −λ(1− e−y) + µ(1− ey).
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Equations (3.18) and (3.19) now become (3.23) and (3.24).

Remark 3.9 The functions A(·, T ) and B(·, T ), solutions of (3.23)-(3.24), can be expressed

by explicit but very complicated formulas: for this reason it is practically not possible to develop

an interest rate derivatives theory based on the a�ne term structure (3.11) when the spot rate

is a CTMC.

3.2 Cap pricing

Following the notations in Brigo-Mercurio [2], let us consider a set of payment dates
Sα,β = {Sα+1, . . . , Sβ}, α < β ∈ N such that, for a �xed date t > 0, t < Sα < Sα+1 < . . . < Sβ
and this implies a set of tenors {si , Si−Si−1; i = α+1, . . . , β}. For the cap pricing we limit
ourselves to the caplets because the cap is viewed as a sum of caplets.

3.2.1 Caplet pricing

For a �xed i ∈ {α + 1, . . . , β}, the i-th caplet is a call option on the Libor rate

Li(t) , L(t, Si−1, Si) = 1
si

(p(t,Si−1)
p(t,Si)

− 1
)
. Assuming a unitary nominal capital, we have on

the given �ltered probability space (Ω,F , (F)t∈R, P̃) with P̃ a martingale measure

Cpl(t, Si) = siEP̃
[
exp
(
−
∫ Si

t
r(u)du

)
(Li(Si−1)−K)+

∣∣∣Ft] (3.27)

where K is the strike price. We derive now an alternative representation for the caplet price
as a bond put option:

Cpl(t, Si)
(3.27)
= siEP̃

[
e−

∫ Si
t r(u)du(Li(Si−1)−K)+

∣∣∣Ft]
= siEP̃

[
EP̃[e−

∫ Si
t r(u)du(Li(Si−1)−K)+|FSi−1 ]

∣∣∣Ft]
= siEP̃

[
EP̃
[
e−

∫ Si−1
t r(u)due

−
∫ Si
Si−1

r(u)du
(1− p(Si−1, Si)(1 +Ksi)

sip(Si−1, Si)

)+∣∣∣FSi−1

]∣∣∣Ft]
= EP̃

[
e−

∫ Si−1
t r(u)du

(1− p(Si−1, Si)(1 +Ksi)

p(Si−1, Si)

)+
EP̃[e

−
∫ Si
Si−1

r(u)du|FSi−1 ]
∣∣∣Ft]

= EP̃
[
e−

∫ Si−1
t r(u)dup(Si−1, Si)

(1− p(Si−1, Si)(1 +Ksi)

p(Si−1, Si)

)+∣∣∣Ft]
= (1 +Ksi)EP̃

[
e−

∫ Si−1
t r(u)du

( 1

1 +Ksi
− p(Si−1, Si)

)+∣∣∣Ft] (3.28)

We shall denote Cpl(t, Si) always by Cpl(t, Si; r(t)) because the price of the i-th caplet
evaluated at time t depends on the value of the spot rate at time t. Considering the spot
rate as a CTMC, we can particularize the formula (3.28) as we have done for the bond pricing
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in (2.4):

Cpl(t, Si; r(t)) = (1+Ksi)EP̃

[
exp
(
−
νSi−1

−1∑
j=νt

rj(Tj+1−Tj)
)(

1

1 +Ksi
−p(Si−1, Si; r(Si−1))

)+∣∣∣Fr
νt

]
(3.29)

where p(Si−1, Si; r(Si−1)) denotes the bond price p(Si−1, Si) which depends on the value of
the spot rate at time Si−1.

We have shown in the previous chapter that the bond price can be viewed as a particular
Prototype product. We are now going to show that the caplet price can be written as a linear
combination of the prices of N di�erent Prototype products.

Proposition 3.10 Let r(t) be a CTMC with state space E and transition kernel

Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have occurred, be r(t) = rl

for a �xed l = 1, . . . , N . The price Cpl(t, Si; r(t)) of the i-th caplet can be represented as

follows

Cpl(t, Si; r(t))|r(t)=rl = (1 +Ksi)

N∑
m=1

(
1

1 +Ksi
− p(rm, si)

)+

Vψm
0 ,t,Si−1

(rl) (3.30)

where, for each m ∈ {1, . . . , N}, p(rm, si) is de�ned by (3.9) and Vψm
0 ,t,Si−1

represents the

price of a Prototype product with payo� ψm0 de�ned by
ψm0 (·) = ϑ0(·) ,

∑N
i0=1wi0(m)I{·=ri0}

wi0(m) =

{
0, i0 ̸= m
1, i0 = m

(3.31)

Proof By (3.29) we have

Cpl(t, Si; r(t))

1 +Ksi
= EP̃

[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)( 1

1 +Ksi
− p(Si−1, Si; r(Si−1))

)+∣∣∣Fr
νt

]

= EP̃

[
N∑
m=1

exp
(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)

( 1

1 +Ksi
− p(Si−1, Si; r

m)
)+

I{rνSi−1
=rm}

∣∣∣Fr
νt

]
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Cpl(t, Si; r(t))

1 +Ksi
=

N∑
m=1

{( 1

1 +Ksi
− p(Si−1, Si; r

m)
)+

EP̃

[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSi−1

=rm}

∣∣∣Fr
νt

]}

(3.9)
=

N∑
m=1

{( 1

1 +Ksi
− p(rm, si)

)+
EP̃

[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSi−1

=rm}

∣∣∣Fr
νt

]}

where, by setting in Lemma 2.2 η = νt, k = νSi−1 − νt = νt,Si−1 and choosing
ϑ0(rη+k) = ψ0(rη+k) as de�ned in (3.31), we have that

EP̃

[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSi−1

=rm}

∣∣∣Fr
νt

]

(3.31)
= EP̃

[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)
ψm0 (rνSi−1

)
∣∣∣Fr

νt

]

= EP̃

[
EP̃
[
exp

(
−
νSi−1

−1∑
j=νt

rj(Tj+1 − Tj)
)
ψm0 (rνSi−1

)|Fr
νt ∨ σ{νt,Si−1}

]∣∣∣Fr
νt

]
(2.10)
= EP̃

[
ψmνt,Si−1

(rνt)|Fr
νt

]
(2.15)
= Vψm

0 ,t,Si−1
(rνt)

Hence, when r(t) = rl, it follows that

Cpl(t, Si; r(t))|r(t)=rl = (1 +Ksi)

N∑
m=1

(
1

1 +Ksi
− p(rm, si)

)+

Vψm
0 ,t,Si−1

(rl).

3.2.2 A computable caplet pricing formula

Since p(rm, si) and Vψm
0 ,t,Si−1

have to be computed as in�nite sums, similarly to the bond
pricing, we are interested in a computable approximation of the caplet price.

Proposition 3.11 Under the same hypotheses and notations of Proposition 3.10 and recalling

the de�nition of γ in point b) of Proposition 2.7, let us consider an arbitrarily small ϵ and
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(nmϵ )m=1,...,N ∈ N such that
nmϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈E
∣∣ψm1 (v)− ψm0 (v)

∣∣
log(γ)

⌉
, with

ψm1 (v) ,
N∑

i0,i1=1

i0 ̸=i1

wi0(m)
qi1,i0

ri1 + qi1
I{v=ri1}, ψ

m
0 (v) ,

N∑
i0=1

wi0(m)I{v=ri0}

m = 1, . . . , N,

(3.32)
then, letting pϵ(r

m, si) be as in (3.10) and V ϵ
ψm
0 ,t,Si−1

as in (2.51) for ϑ0 = ψm0 ,T = Si−1,

Cplϵ(t, Si; r(t))|r(t)=rl , (1 +Ksi)

N∑
m=1

(
1

1 +Ksi
− pϵ(r

m, si)

)+

V ϵ
ψm
0 ,t,Si−1

(rl) (3.33)

is a good approximation of the caplet price de�ned as in (3.30) in the sense that

Cplϵ(t, Si; r(t))
ϵ→0−→ Cpl(t, Si; r(t)) uniformly in (t, Si−1, Si, r(t)). (3.34)

Proof Recalling the representation of the caplet price as in (3.30) of Proposition 3.10
and the de�nition of Cplϵ(t, Si; r(t)) in (3.33),to prove the convergence in (3.34) it is su�cient
to prove that

1. pϵ(r
m, Si − Si−1)

ϵ→0−→ p(rm, Si − Si−1) uniformly in (Si−1, Si, r
m)

2. V ϵ
ψm
0 ,t,Si−1

(rl)
ϵ→0−→ Vψm

0 ,t,Si−1
(rl) uniformly in (t, Si−1, r

l), ∀m = 1, . . . , N

The �rst statement follows directly from Proposition 3.2 taking into account that, according
to Proposition 3.3, pϵ(t, T ; r(t))|r(t)=rm = pϵ(r

m, T − t) and p(t, T ; r(t))|r(t)=rm = p(rm, T − t).
The second statement is proved by considering Proposition 2.8 : for an arbitrarily small ϵ and
nmϵ ∈ N such that the condition (3.32) is satis�ed, we obtain that V ϵ

ψm
0 ,t,Si−1

, represented by

the closed formula in (2.51) for ϑ0 = ψ0 and T = Si−1, converges to Vψm
0 ,t,Si−1

in the sense of
(2.25). Hence it follows that

V ϵ
ψm
0 ,t,Si−1

(rl)
ϵ→0−→ Vψm

0 ,t,Si−1
(rl) uniformly in (t, Si−1, r

l).

3.3 Swaption pricing

Using the same notations as in Section 3.2, a swaption is the option to enter into an interest
rate swap at a speci�ed future date Sα. The payo� can be written not only in terms of
the forward swap rate but also in terms of an IRS (Interest Rate Swap), a contract which
exchanges payments between two di�erently indexed legs. In the Payer IRS (i.e. PFS) the
contract owner pays the "�xed leg" and receives the "�oating leg" de�ned as follows:
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�xed leg:
∑β

i=α+1Ksip(t, Si), that is the value at time t of the total amount to be paid with
a �xed interest rate K along the set of payments dates Sα,β

�oating leg:
∑β

i=α+1 Li(t)sip(t, Si), that is the value at time t of the total amount to be
received at a �oating rate (namely the Libor rate Li(t) for i = α+1, . . . , β) along Sα,β .

It can be easily seen that the value of the PFS at time t can be expressed as

PFSβα(t,K) = p(t, Sα)− p(t, Sβ)−K

β∑
h=α+1

shp(t, Sh). (3.35)

3.3.1 The swaption pricing formula

The swaption can now be viewed also as the option of entering the PFS, so its price can be
represented, similarly to the caplet price in (3.29), by

Swoptt(Sα, Sα,β ; r(t)) = EP̃

[
exp

(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
(PFSβα(Sα,K))+

∣∣∣Fr
νt

]
(3.36)

More precisely, the swaption price can be expressed as a linear combinations of the prices of
N Prototype products with maturity Sα and payo� ψm0 (m = 1, . . . , N) de�ned as in (3.31),
namely we have

Proposition 3.12 Let r(t) be a CTMC with state space E and transition kernel

Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have occurred, be r(t) = rl

for a �xed l = 1, . . . , N . The price Swoptt(Sα, Sα,β ; r(t)) can be represented as follows

Swoptt(Sα, Sα,β ; r(t))|r(t)=rl =
N∑
m=1

(
1− p(rm, Sβ − Sα)−K

β∑
h=1+α

shp(r
m, Sh − Sα)

)+

Vψm
0 ,t,Sα(r

l)

(3.37)

where, for each m ∈ {1, . . . , N}, p(rm, Sh − Sα) is de�ned by (3.9) while Vψm
0 ,t,Sα represents

the price of a Prototype product with payo� ψm0 de�ned by (3.31).

Proof Let us denote p(t, T ) by p(t, T ; r(t)) because a T -bond price evaluated at time t
depends on the value of the spot rate at time t.
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By (3.36) and (3.35) we have

Swoptt(Sα, Sα,β ; r(t)) = EP̃

[
exp

(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
·

·
(
1− p(Sα, Sβ; r(Sα))−K

β∑
h=α+1

shp(Sα, Sh; r(Sα))

)+∣∣∣Fr
νt

]

= EP̃

[
N∑
m=1

exp
(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
·

·
(
1− p(Sα, Sβ ; r

m)−K

β∑
h=α+1

shp(Sα, Sh; r
m)

)+

I{rνSα
=rm}

∣∣∣Fr
νt

]

=
N∑
m=1

{(
1− p(Sα, Sβ ; r

m)−K

β∑
h=α+1

shp(Sα, Sh; r
m)

)+

EP̃

[
exp

(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSα

=rm}

∣∣∣Fr
νt

]}

(3.9)
=

N∑
m=1

{(
1− p(rm, Sβ − Sα)−K

β∑
h=α+1

shp(r
m, Sh − Sα)

)+

EP̃

[
exp

(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSα

=rm}

∣∣∣Fr
νt

]}

where, by setting in Lemma 2.2 η = νt, k = νSα − νt = νt,Sα and choosing ϑ0(rη+k) as de�ned
in (3.31), we have that

EP̃

[
exp

(
−
νSα−1∑
j=νt

rj(Tj+1 − Tj)
)
I{rνSα

=rm}

∣∣∣Fr
νt

]
= Vψm

0 ,t,Sα(rνt)

similarly to the proof of Proposition 3.10. By considering r(t) = rl we obtain

Swoptt(Sα, Sα,β ; r(t))|r(t)=rl =
N∑
m=1

(
1−p(rm, Sβ−Sα)−K

β∑
h=1+α

shp(r
m, Sh−Sα)

)+

Vψm
0 ,t,Sα(r

l).

3.3.2 A computable swaption pricing formula

Again, since the exact expressions for p(rm, ·) and Vψm
0 ,t,Sα are based on an in�nite sum, we

present also for the swaptions a computable approximation of the price represented by (3.37).
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Proposition 3.13 Under the same hypotheses and notations of Proposition 3.12 and recalling

the de�nition of γ in point b) of Proposition 2.7, let us consider an arbitrarily small ϵ and
(nmϵ )m=1,...,N ∈ N such that

nmϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈E
∣∣ψm1 (v)− ψm0 (v)

∣∣
log(γ)

⌉
, with

ψm1 (v) ,
N∑

i0,i1=1

i0 ̸=i1

wi0(m)
qi1,i0

ri1 + qi1
I{v=ri1}, ψ

m
0 (v) ,

N∑
i0=1

wi0(m)I{v=ri0}

m = 1, . . . , N,

then, by letting pϵ(r
m, Sh − Sα) be as in (3.10) and V ϵ

ψm
0 ,t,Sα

as in (2.51),

Swoptϵt(Sα, Sα,β ; r(t))|r(t)=rl =

N∑
m=1

(
1− pϵ(r

m, Sβ − Sα)−K

β∑
h=1+α

shpϵ(r
m, Sh − Sα)

)+

·

·V ϵ
ψm
0 ,t,Sα

(rl) (3.38)

is a good approximation of the swaption price de�ned as in (3.37) in the sense that

Swoptϵt(Sα, Sα,β ; r(t))
ϵ→0−→ Swoptt(Sα, Sα,β ; r(t)) uniformly in (t, Sα, Sα,β , r(t)). (3.39)

Proof Completely analogous to the proof of Proposition 3.11.

3.4 Bond option pricing

The approach used to price caps and swaptions in the previous Sections is valid also for
generic bond options. Consider an option, written on a S-maturity bond, which matures at
time T < S: its price is given by

OptBondt(T, S) = EP̃
[
e−

∫ T
t r(s)dsh(p(T, S))|Ft

]
(3.40)

where h(·) is a generic payo�. In our situation it can be equivalently represented as

OptBondt(T, S; r(t)) = EP̃

[
exp

(
−
νT−1∑
i=νt

ri(Ti+1 − Ti)
)
h(p(T, S; r(T )))

∣∣∣Fr
νt

]

where we have denoted OptBondt(T, S) by OptBondt(T, S; r(t)) because the price of a bond
option evaluated at time t depends on the value of the spot rate at time t.

In fact, we can compare the above expression with formulas (3.29) and (3.36) obtained re-
spectively for caplets and swaptions (which can be viewed as particular cases of bond options).
Hence we achieve similar results as were obtained for caplets and swaptions:
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Proposition 3.14 Let r(t) be a CTMC with state space E and transition kernel

Q = (qi,j)1≤i,j≤N ; let its value, at the initial time t when νt jumps have occurred, be r(t) = rl

for a �xed l = 1, . . . , N . The price OptBondt(T, S; r(t)) can be represented as follows

OptBondt(T, S; r(t))|r(t)=rl =
N∑
m=1

h(p(rm, S − T ))Vψm
0 ,t,T

(rl) (3.41)

with p(rm, S − T ) de�ned as in (3.9) and Vψm
0 ,t,T

as in (2.50) for ϑ0 = ϕm0 with ψm0 as in

(3.31).

Proof It is su�cient to choose in Proposition 3.10 Si−1 = T , Si = S and to consider
h(p(T, S)) instead of the particular function (1+Ksi)(

1
1+Ksi

− p(Si−1, Si))
+: in fact, looking

at the proof, the representation obtained for the caplet price is independent of the payo� that
is being considered.

Proposition 3.15 Under the same hypotheses and notations of Proposition 3.14 and with γ
as de�ned in point b) of Proposition 2.7, let us consider an arbitrarily small ϵ and

(nmϵ )m=1,...,N ∈ N such that
nmϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈E
∣∣ψm1 (v)− ψm0 (v)

∣∣
log(γ)

⌉
, with

ψm1 (v) ,
N∑

i0,i1=1

i0 ̸=i1

wi0(m)
qi1,i0

ri1 + qi1
I{v=ri1}, ψ

m
0 (v) ,

N∑
i0=1

wi0(m)I{v=ri0}

m = 1, . . . , N,

then, letting pϵ(r
m, S − T ) be as in (3.10) and V ϵ

ψm
0 ,t,T

as in (2.51),

OptBondϵt(T, S; r(t))|r(t)=rl ,
N∑
m=1

h(pϵ(r
m, S − T ))V ϵ

ψm
0 ,t,T

(rl) (3.42)

is a good approximation of the bond option price de�ned in (3.41) in the sense that

OptBondϵt(T, S; r(t))
ϵ→0−→ OptBondt(T, S; r(t)) uniformly in (t, T, S, r(t)). (3.43)

Proof Analogous to the proof of Proposition 3.11.
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Chapter 4

Pricing of interest rate derivatives

when the short rate depends on

several correlated CTMCs: a

multi-factor approach

Until now we have considered the pricing of interest rate derivatives when the short rate is
given by a single CTMC. However one can suppose that the value of the short rate depends
on several factors (such as e.g. the credit spread, in�ation rate, etc.) to obtain a more �exible
model for the evolution of the spot rate. In the following we will present a two-factor model
in which the short rate can be represented by a linear combination of two correlated CTMC's
and we shall see how the approach developed in the Chapter 2 can be generalized when more
factors are considered.

4.1 Market model

As in the previous chapters we assume that the stochastic processes which we are going to in-
troduce evolve under a martingale measure P̃ in accordance with the theory of the "martingale

modeling".

As a means to introduce correlation we consider two CTMCs X and Y with the respective
transition kernels dependent on a discrete random variable Z taking values in
Z = {z1, . . . , zM} with distributions π = {π1, . . . , πM} = {P̃(Z = z1), . . . , P̃(Z = zM )}.
We make the following assumptions

Assumption 4.1 X(t;Z) denotes a CTMC with state space EX = {x1, . . . , xN} and tran-

sition intensity matrix QX(Z) = (q(Z)Xi,j)1≤i,j≤N in the following sense: given a �xed value

z̄ ∈ Z, the process X(t) , (X(t;Z)|Z = z̄) is a CTMC with state space EX = {x1, . . . , xN}
(N ∈ N and xi ∈ R+ for each i = 1, . . . , N) where

• QX(z̄) = (q(z̄)Xi,j)1≤i,j≤N is the transition kernel homogeneous with respect the time
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(with q(z̄)Xi,j ∈ R),

• q(z̄)Xi =
∑N

j=1

j ̸=i
q(z̄)Xi,j , i = 1, . . . , N is the intensity associated with the state xi.

Moreover, being TXi the random time at which the i-th jump of X(t;Z) occurs, we have that

• given a generic value xh (h = 1, . . . , N) of the process X(t; z̄) at time TXi , the

interarrival time TXi+1 − TXi is exponentially distributed with parameter q(z̄)Xh under

the measure P̃ (namely (TXi+1 − TXi |X(Ti) = xh) ∼ Exp(q(z̄)Xh ));

• for a generic time s ≥ 0, ν(z̄)Xs denotes the number of jumps of X(t;Z) until s;

• for each s ∈ [TXi ,T
X
i+1), the �ltration generated by the process X at the stopping time

TXi is denoted by HTX
i

= {A ∈ FX
T |A ∩ {TXi ≤ s} ∈ FX

s ,∀s ≤ T} and Xi , X(s, Z)

(similarly Xi(z̄) , X(s, z̄) if we consider a realization z̄ of the r.v. Z);

• for two generic times s and s such that s < s, ν(z̄)Xs,s denotes the number of jumps in

the interval [s, s).

Assumption 4.2 Y (t;Z) (analogously to the de�nition of X(t;Z)) denotes a

CTMC with state space EY = {y1, . . . , yÑ} (Ñ ∈ N) and transition intensity matrix

QY (Z) = (q(Z)Yi,j)1≤i,j≤Ñ . The notations introduced for the stochastic process X are also

valid for Y (t;Z), but now the �ltration generated by the process Y at a generic time stopping

time TYi ≥ s is denoted by GTY
i
= {A ∈ GYT |A ∩ {TYi ≤ s} ∈ GYs ,∀s ≤ T} and Yi , Y (s, Z)

(similarly Yi(z̄) , Y (s, z̄) if we consider a realization z̄ of the r.v. Z).

Remark 4.3 From the Assumptions 4.1-4.2 it follows implicitly that, conditionally on Z, the
CTMCs X(t;Z) and Y (t;Z) are mutually independent.

Furthermore we consider the short rate as given by

r(t) = aX(t;Z) + bY (t;Z) a, b ∈ R, t ≥ 0. (4.1)

This particular representation for the short rate suggests the following remark:

Remark 4.4 In the real market it is reasonable that the short rate depends on two factors

which are correlated: according to the formula above the factors X and Y both depend on the

random variable Z. In general, it could become complicated to price interest rate derivatives

when one chooses a short-rate model depending on two correlated factors, but in our situation

this is not the case because of the conditional independence of Y (t;Z) and X(t;Z).

We are now able to give a representation for the bond price in this market model. Let us
assume without lost of generality that t = TX

νXt
= TY

νYt
as we have done for the one-factor case

in Chapter 2. Given the �ltered probability space (Ω,F , (F)t∈R, P̃) where Ft , Ht ∨ Gt ≡
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HTX

νXt

∨ GTY

νYt

, the price of a zero coupon bond at time t that matures in T > t can be

represented by

p(t, T ;XνXt
, YνYt ) = EP̃

[
exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )− aXνXT

(T − TνXT
) (4.2)

−b
ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )− bYνYT

(T − TνYT
)

)
|Ft
]

In this Chapter we will consider upper approximations of the price p(t, T ;XνXt
, YνYt ) and of

the Prototype product price analogously to what we had done in the scalar case (see beginning
of Section 2.2). We essentially consider the following discount factor

exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )

)

instead of the true one

exp

(
−a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1−TXi )−aXνXT

(T−TνXT
)−b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1−TYj )−bYνYT (T−TνYT

)

)

and we justify this choice with the same motivations given for the one-factor case in Chapter
2. By considering a two-factor model where the short rate evolves according to (4.1), the price
of the Prototype Product introduced in Section 2.2 will be represented di�erently because
now the Prototype payo� and the discount factor in formula (2.7) both depend on X and Y .
In the following Section we shall see how, by choosing a two-factor short-rate model, one can
generalize the de�nition of the Prototype Product and obtain a closed formula for its price.

4.2 The Prototype product and an explicit representation for

the pricing formula

In order to generalize the price of the Prototype Product as in (2.7), we present a result which
will be useful to reduce the problem of the Prototype Product pricing to one that is simpler
to treat:

Lemma 4.5 Let X(Z)
.
= (X(s, Z),Hs)s∈[t,T ] and Y (Z)

.
= (Y (s, Z),Gs)s∈[t,T ] be two stochas-

tic processes of which the dynamics depend on a random variable Z taking values in

Z = {z1, . . . , zM} with distribution π = {π1, . . . , πM}. By assuming that, conditionally on

Z, the processes X and Y are independent, it follows that

EP̃[f(X(Z))g(Y (Z))|Ht ∨ Gt] =
M∑
h=1

EP̃[f(X(zh))|Ht]EP̃[g(Y (zh))|Gt]πh, ∀T > t ≥ 0 (4.3)

where f, g : R → R are two generic functions.
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Proof By the tower property of conditional expectations it follows that

EP̃[f(X(Z))g(Y (Z))|Ht ∨ Gt] = EP̃
[
EP̃[f(X(Z))g(Y (Z))|σ{Z} ∨ Ht ∨ Gt]

∣∣∣Ht ∨ Gt
]

(4.4)

Hence

(4.4) = EP̃
[
EP̃[f(X(Z))|σ{Z} ∨ Ht ∨ Gt]EP̃[g(Y (Z))|σ{Z} ∨ Ht ∨ Gt]

∣∣∣Ht ∨ Gt
]

=
M∑
h=1

EP̃[f(X(Z))|Z = zh,Ht ∨ Gt]EP̃[g(Y (Z))|Z = zh,Ht ∨ Gt]P̃(Z = zh|Ht ∨ Gt)

=
M∑
h=1

EP̃[f(X(zh))|Ht ∨ Gt]EP̃[g(Y (zh))|Ht ∨ Gt]P̃(Z = zh) (4.5)

where in the �rst passage we use the fact that, conditioned on σ{Z} ∨ Ht ∨ Gt, f(X(Z))
and g(Y (Z)) are independent and the last passage is motivated by the independence of Z
on the σ-algebra Ht ∨ Gt. By the hypothesis, f(X(zh)) is independent by Gt and g(Y (zh)) is
independent by Ht because we have �xed Z = zh, so

(4.5) =

M∑
h=1

EP̃[f(X(zh))|Ht]EP̃[g(Y (zh))|Gt]πh (4.6)

where πh denotes the probability P̃(Z = zh).

From now on we will use the following notations:

Notation 4.6 We represent the CTMCs de�ned as in Assumptions 4.1 and 4.2

on the time interval [t, T ] with the following notation: X(Z)
.
= (X(s, Z),Hs)s∈[t,T ] and

Y (Z)
.
= (Y (s, Z),Gs)s∈[t,T ]. In fact we are interested in the dynamics of both processes X

and Y only for times included between t and T because our purpose is to price interest rate

derivatives which mature at time T and that are evaluated at the date t.

We introduce now the Prototype Product when the short rate is given by (4.1) and X(Z) and
Y (Z) are CTMCs as in Notation 4.6:

De�nition 4.7 A Prototype product is a �nancial product which guarantees to deliver a

certain payo� Θ0 at maturity T . This payo� depends on the value taken by the spot rate at

the date of maturity T . Under the two-factor short-rate model (4.1) with the factors X and

Y de�ned as in Assumptions 4.1 and 4.2, the price of the Prototype product at time t < T ,
analogously to (2.7), is represented by

VΘ0,t,T (XνXt
, YνYt ) = EP̃

[
DF (t, T ; r) ·Θ0(Xν(Z)XT

, Yν(Z)YT
)|Ht ∨ Gt

]
(4.7)

where

• DF (t, T ; r) , exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 −TXi )− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 −TYj )

)
is the discount
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factor;

• Θ0 is the Prototype payo� supposed to have the following form

Θ0(x, y) =

N∑
i=1

Ñ∑
j=1

wiw̃jI{x=xi}I{y=yj}, x
i ∈ EX , yj ∈ EY , wi, w̃j ∈ {0} ∪ R+ (4.8)

The price of the Prototype Product de�ned above can be represented, by using the results of
Lemma 4.5, by an expression similar to the pricing formula of the Prototype Product in the
one-factor short-rate model (see formula (2.7)):

Lemma 4.8 Let us suppose the dynamics of the short rate to be given by (4.1) and the

factors X and Y to be de�ned as in Assumptions 4.1 and 4.2 respectively. Then the price

VΘ0,t,T (XνXt
, YνYt ) at time t of the Prototype Product with maturity T and Prototype payo�

Θ0 de�ned by (4.8) admits the following representation:

VΘ0,t,T (XνXt
, YνYt ) =

M∑
h=1

Uϑ0,t,T (XνXt
, zh)Uϑ̃0,t,T (YνYt , zh)πh (4.9)

where
Uϑ0,t,T (XνXt

, zh)
.
= EP̃

[
exp
(
− a

ν(zh)
X
T −1∑

i=νXt

Xi(zh) · (TXi+1 − TXi )
)
ϑ0(Xν(zh)

X
T
)|Ht

]
with ϑ0(·) ,

∑N
i=1wiI{·=xi}, x

i ∈ EX ,

(4.10)

and
U
ϑ̃0,t,T

(YνYt , zh)
.
= EP̃

[
exp
(
− b

ν(zh)
Y
T −1∑

j=νYt

Yj(zh) · (TYj+1 − TYj )
)
ϑ̃0(Yν(zh)YT

)|Gt
]

with ϑ̃0(·) ,
∑Ñ

j=1 w̃jI{·=yj}, y
j ∈ EY .

(4.11)

Moreover, the Prototype payo� Θ0 can be expressed in terms of the functions ϑ0 and ϑ̃0 as

Θ0(·, ∗) = ϑ0(·)ϑ̃0(∗) (4.12)

Proof Formula (4.12) follows directly from the de�nitions of Θ0, ϑ0 and ϑ̃0.
Hence we proceed to prove that the price of the Prototype product can be represented as in
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(4.9): by De�nition 4.7 and using ϑ0(·) and ϑ̃0(·) as in (4.10) and (4.11)

VΘ0,t,T (XνXt
, YνYt ) = EP̃

[
exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )

)
·

·

{
N∑
i=1

Ñ∑
j=1

wiw̃jI{X
ν(Z)X

T
=xi}I{Y

ν(Z)Y
T
=yj}

}
|Ht ∨ Gt

]

= EP̃

[{
exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )

)
N∑
i=1

wiI{X
ν(Z)X

T
=xi}

}
·

{
exp

(
− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )

)
Ñ∑
j=1

w̃jI{Y
ν(Z)Y

T
=yj}

}
|Ht ∨ Gt

]

= EP̃

[{
exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )

)
ϑ0(Xν(Z)XT

)

}
·

{
exp

(
− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )

)
ϑ̃0(Yν(Z)YT

)

}
|Ht ∨ Gt

]
(4.13)

Hence, by considering Lemma 4.5 when the processes X(Z)
.
= (X(s, Z),Hs)s∈[t,T ] and

Y (Z)
.
= (Y (s, Z),Gs)s∈[t,T ] denote the two CTMCs speci�ed as in Assumptions 4.1 and 4.2

respectively and given two real functions f and g

f(X(Z)) = exp

(
− a

ν(Z)XT −1∑
i=νXt

Xi(T
X
i+1 − TXi )

)
ϑ0(Xν(Z)XT

)

)

g(Y (Z)) = exp

(
− b

ν(Z)YT −1∑
j=νYt

Yj(T
Y
j+1 − TYj )

)
ϑ̃0(Yν(Z)YT

)

)

we obtain that

(4.13) =

M∑
h=1

EP̃

[
exp
(
− a

ν(zh)
X
T −1∑

i=νXt

Xi(zh) · (TXi+1 − TXi )
)
ϑ0(Xν(zh)

X
T
)|Ht

]
·

·EP̃

[
exp
(
− b

ν(zh)
Y
T −1∑

j=νYt

Yj(zh) · (TYj+1 − TYj )
)
ϑ̃0(Yν(zh)YT

)|Gt

]
πh
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Remark 4.9 We can compare formula (4.10) (or equivalently (4.11)) with the representation

of the Prototype Product in the one-factor short-rate model (formulas (2.6)-(2.7)):

• assuming the short rate is given by the CTMC denoted by X(zh), the quantity

Uϑ0,t,T (XνXt
, zh) can be viewed as the price of the Prototype product with the function

ϑ0 de�ned by (4.10) as the Protoype payo�;

• similarly, by considering the CTMC denoted by Y (zh) as the short rate, the quantity

U
ϑ̃0,t,T

(YνYt , zh) can be viewed as the price of the Prototype product with the function ϑ̃0
de�ned by (4.11) as the Protoype payo�;

It follows that all the results on the Prototype Product pricing under a one-factor short-

rate model (Chapter 2) can be easily carried over to give an explicit representation of the

expectations Uϑ0,t,T (XνXt
, zh) and Uϑ̃0,t,T (YνYt , zh) for each zh with h = {1, . . . ,M}.

Hereafter we present all the results -derived by the Lemmas proved in Chapter 2- useful to
give an explicit expression to formula (4.10) (and similarly to (4.11)):

Lemma 4.10 (analog of Lemma 2.2)
Let X(Z) be a CTMC de�ned as in Assumption 4.1 and a a real number. For �xed k, η ∈ N
and Z = zl, let{
ϑh(Xη+k−h, zl) , EP̃[e−aXη+k−h(T

X
η+k−h+1−TX

η+k−h)ϑh−1(Xη+k−h+1, Z)
∣∣Z = zl,HX

η+k−h
]

∀h = 1, . . . , k
(4.14)

with starting point independent of Z and given by the function ϑ0(·) de�ned as in (4.10), then

EP̃
[
exp
(
− a

η+k−1∑
i=η

Xi(T
X
i+1 − TXi )

)
ϑ0(Xη+k)|Z = zl,HX

η

]
= ϑk(Xη, zl) (4.15)

Proof The proof is similar to the proof of Lemma 2.2: instead of the �ltrations Fr
i (for

each i ∈ {η, . . . , η + k − 1}) we consider the σ-algebra {Z = zl,HX
i } where we have denoted

HX
i the σ-algebra HTX

i
for simplicity of notation (we choose {Z = zl,HX

i } because the func-
tions ϑh do not depend only on the value of X at the step η+ k− h, but also on the value zl
assumed by the random variable Z).

Proposition 4.11 (analog of Proposition 2.8)
Consider the same hypotheses of Lemma 4.10, given an arbitrarily small ϵ, by de�ning for

l = 1, . . . ,M the constant γ(zl) , sup
i∈{1,...,N}

q(zl)
X
i

axi + q(zl)
X
i

and letting nXϵ (zl) ∈ N be such that

nXϵ (zl) ≥

⌈
log(ϵ(1− γ(zl)))

log(γ(zl))
−

supi∈{1,...,N} |ϑ1(xi, zl)− ϑ0(x
i)|

log(γ(zl))

⌉
(4.16)
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we have that U ϵϑ0,t,T (XνXt
, zl) =

∑nX
ϵ (zl)
k=0 ϑk(XνXt

, zl)P̃(ν(zl)Xt,T = k|XνXt
) approximates the real

value of Uϑ0,t,T (XνXt
, zl) de�ned in (4.10), in the sense that

|U ϵϑ0,t,T (XνXt
, zl)− Uϑ0,t,T (XνXt

, zl)| < ϵ uniformily in (t, T,XνXt
), ∀zl ∈ Z (4.17)

Proof See the proof of Proposition 2.8.

Lemma 4.12 (analog of Lemma 2.10)
Consider the same hypotheses of Lemma 4.10. Recalling that the function ϑ0(·) =

∑N
i=1wiI{·=xi}

de�ned in (4.10) has the coe�cients wi independent of Z, the functions ϑk satisfy the following
formula

ϑk(·, zl) =
N∑
ik=1

wkik(zl)I{·=xik}, k ≥ 1, for every �xed zl ∈ Z, (4.18)

where, for m = 1, . . . , N ,

w1
m(zl) ,

N∑
i0=1

i0 ̸=m

wi0
q(zl)

X
m,i0

axm + q(zl)Xm
, k = 1

wkm(zl) ,
N∑

i0,...,ik−1=1

i0 ̸=i1,...,ik−1 ̸=m

wi0
q(zl)

X
m,ik−1

axm + q(zl)Xm

[
k−1∏
h=1

q(zl)
X
ih,ih−1

axih + q(zl)
X
ih

]
, k > 1

(4.19)

Proof See the proof of Lemma 2.10.

Lemma 4.13 (analog of Lemma 2.16)
Under the same hypotheses of Lemma 4.10, assuming w.l.o.g that νXt = h ∈ N and considering

XνXt
= xih for a �xed index ih ∈ {1, . . . , N}, it follows that

P̃(ν(zl)Xt,T = k|XνXt
= xih) =

N∑
ih+1,...,ih+k=1

ih+1 ̸=ih,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

exp
(
q(zl)

X
ih
t− q(zl)

X
ih+k

T
)
·

·φh,k(QX(zl))Ψh,k(t, T,Q
X(zl));

P̃(ν(zl)Xt,T = 0|XνXt
= xih) = e

−q(zl)Xih (T−t),

(4.20)

with Ψh,k the following multiple integral

Ψh,k(t, T,Q
X(zl)) ,

∫ T

t
e

(
q(zl)

X
ih+1

−q(zl)Xih
)
th+1

∫ T

th+1

e

(
q(zl)

X
ih+2

−q(zl)Xih+1

)
th+2 · · ·

· · ·
∫ T

th+k−1

e

(
q(zl)

X
ih+k

−q(zl)Xih+k−1

)
th+kdth+k . . . dth+2dth+1
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and

φh,k(Q
X(zl)) , q(zl)

X
ih,ih+1

· . . . · q(zl)Xih+k−1,ih+k
.

Proof See the proof of Lemma 2.16.

Proposition 4.14 (analog of Propositions 2.19-2.20)
Consider the same hypotheses and notations of Proposition 4.11 and Lemma 4.12. Assuming

that, at the evaluation time t, the process X is equal to a �xed xi ∈ EX , then the quantities

Uϑ0,t,T (XνXt
, zl) and their approximations U ϵϑ0,t,T (XνXt

, zl) admit respectively the following rep-

resentations

Uϑ0,t,T (XνXt
, zl) =

+∞∑
k=0

[Q̃X(zl)
k
· θ0(X)]iP̃(ν(zl)Xt,T = k|XνXt

= xi), (4.21)

and

U ϵϑ0,t,T (XνXt
, zl) =

nX
ϵ (zl)∑
k=0

[Q̃X(zl)
k
· θ0(X)]iP̃(ν(zl)Xt,T = k|XνXt

= xi), (4.22)

where

• Q̃X(zl) = (q̃(zl)
X
i,j)1≤i,j,≤N ,

{
q(zl)

X
i,j

axi+q(zl)
X
i
, i ̸= j

0, i = j
, ∀l = 1, . . . ,M ;

• θ0(X) , [w1, . . . , wN ]
′ whose components wi are the coe�cients of the function ϑ0

de�ned by (4.10);

• the probabilities P̃(ν(zl)Xt,T = k|XνXt
= xi) are given by (4.20);

• nXϵ (zl) is given by (4.16).

Assuming that Q̃X(zl) is diagonalizable for each l ∈ {1, . . . ,M}, we obtain

Uϑ0,t,T (x
i, zl) = e′i ·S ·


EP̃[d(zl)

ν(zl)
X
t,T

1 |XνX
t

= xi] 0 0

0
.

.

. 0

0 0 EP̃[d(zl)
ν(zl)

X
t,T

N |XνX
t

= xi]

 ·S−1 ·

 w1

.

.

.

wN


(4.23)

and

U ϵϑ0,t,T (x
i, zl) = e′i ·S ·


EP̃
ϵ [d(zl)

ν(zl)
X
t,T

1 |XνX
t

= xi] 0 0

0
.

.

. 0

0 0 EP̃
ϵ [d(zl)

ν(zl)
X
t,T

N |XνX
t

= xi]

 ·S−1 ·

 w1

.

.

.

wN


(4.24)

where S is a N × N matrix the columns of which are the eigenvectors of Q̃X(zl),
(d(zl)j)j=1,...,N are the eigenvalues of Q̃X(zl), ei is the ith unit vector and

EP̃
ϵ [d

ν(zl)
X
t,T |rνXt = xi] ,

∑nX
ϵ (zl)
k=0 dkP̃(ν(zl)Xt,T = k|XνXt

= xi) for a real number d.
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Proof See the proof of Propositions 2.19 and 2.20.

Remark 4.15 From now on we will give the representation of the price of the Prototype

Product in terms of Uϑ0,t,T and U ϵϑ0,t,T de�ned as in (4.21) and (4.22) and of the analogous

quantities U
ϑ̃0,t,T

and U ϵ
ϑ̃0,t,T

by implying that, in the case when Q̃X(zl) is diagonalizable for

each l ∈ {1, . . . ,M}, we can consider also the representations as in (4.23) and (4.24).

We are now able to give an explicit representation of the price of the Prototype product:

Proposition 4.16 Under the same hypotheses of Lemma 4.8, let us assume that the CTMCs

X and Y both satisfy the assumptions of Proposition 4.14. Assuming that XνXt
= xn and

YνYt = ym, the price of the Prototype product VΘ0,t,T (XνXt
, YνYt ) as in (4.7) with Prototype

payo� Θ0(Xν(Z)XT
, Yν(Z)YT

)
(4.8)
=

∑N
i=1

∑Ñ
j=1wiw̃jI{Xν(Z)X

T
=xi}I{Y

ν(Z)Y
T
=yj} can be represented

as

VΘ0,t,T (XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym =
M∑
h=1

Uϑ0,t,T (x
n, zh)Uϑ̃0,t,T (y

m, zh)πh (4.25)

where, ∀zh ∈ Z,

Uϑ0,t,T (x
n, zh) =

+∞∑
k=0

[Q̃X(zh)
k
· θ0(X)]nP̃(ν(zh)Xt,T = k|XνXt

= xn) (4.26)

and

U
ϑ̃0,t,T

(ym, zh) =
+∞∑
k=0

[Q̃Y (zh)
k
· θ̃0(Y )]mP̃(ν(zh)Yt,T = k|YνYt = ym) (4.27)

with the following notations

• Q̃X(zh) = (q̃(zh)
X
i,j)1≤i,j,≤N ,

{
q(zl)

X
i,j

axi+q(zh)
X
i
, i ̸= j

0, i = j
∀h = 1, . . . ,M ;

• Q̃Y (zh) = (q̃(zh)
Y
i,j)1≤i,j,≤Ñ ,

{
q(zl)

Y
i,j

byi+q(zh)
Y
i
, i ̸= j

0, i = j
∀h = 1, . . . ,M ;

• θ0(X) , [w1, . . . , wN ]
′ and θ̃0(Y ) , [w̃1, . . . , w̃Ñ ]

′ whose components wi and w̃i are the

coe�cients of the function ϑ0 de�ned by (4.10) and of ϑ̃0 de�ned by (4.11) respectively;

• the probabilities P̃(ν(zh)Xt,T = k|XνXt
= xn) and P̃(ν(zh)Yt,T = k|YνYt = ym) relative to

the processes X(zh) and Y (zh) respectively in formula (4.20), are given by Lemma 4.13;

Proof The proof follows directly from Lemma 4.8 and Proposition 4.14:

• according to Lemma 4.8 the price of the Prototype product VΘ0,t,T can be represented
as in (4.9) with Uϑ0,t,T de�ned by (4.10) and U

ϑ̃0,t,T
de�ned by (4.11);
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• by result (4.21) in Proposition 4.14, Uϑ0,t,T and, analogously, U
ϑ̃0,t,T

admit the repre-

sentations (4.26) and (4.27) respectively.

As we have done in Chapter 2, we �nally present a computable expression of the price of
the Prototype product suggested by the result of Lemma 4.11:

Proposition 4.17 Consider the same hypotheses and notations of the previous Proposition.

For an arbitrarily small ϵ, we de�ne the approximation of the real price of the Prototype

product as

V ϵ
Θ0,t,T (XνXt

, YνYt )|XνXt
=xn,Y

νYt
=ym ,

M∑
h=1

U ϵϑ0,t,T (x
n, zh)U

ϵ
ϑ̃0,t,T

(ym, zh)πh (4.28)

where, ∀zh ∈ Z,

U ϵϑ0,t,T (x
n, zh) =

nX
ϵ (zh)∑
k=0

[Q̃X(zh)
k
· θ0(X)]nP̃(ν(zh)Xt,T = k|XνXt

= xn) (4.29)

and

U ϵ
ϑ̃0,t,T

(ym, zh) =

nY
ϵ (zh)∑
k=0

[Q̃Y (zh)
k
· θ̃0(Y )]mP̃(ν(zh)Yt,T = k|YνYt = ym) (4.30)

with 
nXϵ (zh) ≥

⌈
log(ϵ(1−γ(zh)))

log(γ(zh))
− supi∈{1,...,N} |ϑ1(xi,zh)−ϑ0(xi)|

log(γ(zh))

⌉
,

γ(zh) , sup
i∈{1,...,N}

q(zh)
X
i

axi + q(zh)
X
i

,

and 
nYϵ (zh) ≥

⌈
log(ϵ(1−γ(zh)))

log(γ(zh))
−

sup
j∈{1,...,Ñ} |ϑ̃1(yj ,zh)−ϑ̃0(yj)|

log(γ(zh))

⌉
,

γ(zh) , sup
j∈{1,...,Ñ}

q(zh)
Y
j

byj + q(zh)
Y
j

.

Then V ϵ
Θ0,t,T

(XνXt
, YνYt ) is a good approximation of VΘ0,t,T (XνXt

, YνYt ) in the sense that

V ϵ
Θ0,t,T (XνXt

, YνYt )
ϵ→0−→ VΘ0,t,T (XνXt

, YνYt ) uniformily in (t, T,XνXt
, YνYt ). (4.31)

Proof By the de�nition of V ϵ
Θ0,t,T

as in (4.28), to prove the convergence in (4.31) it is
su�cient to prove that, ∀zh ∈ Z,

1. U ϵϑ0,t,T (XνXt
, zh)

ϵ→0−→ Uϑ0,t,T (XνXt
, zh) uniformily in (t, T,XνXt

),
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2. U ϵ
ϑ̃0,t,T

(YνYt , zh)
ϵ→0−→ U

ϑ̃0,t,T
(YνYt , zh) uniformily in (t, T, YνYt ).

The result now follows immediately from Proposition 4.11.

4.3 Bond, Cap, Swaption and Bond Option pricing under a

two-factor short-rate model

We can now proceed to price bonds and the other interest rate derivatives in the presence of
a two-factor short-rate model (by considering upper approximation prices as we have done in
the scalar case by using Remark 2.5 and the results in Lemma 2.13).

We will see that -as we have shown in Chapter 3 when we have considered the short rate as
a CTMC- bonds, caps, swaptions and bond options can be represented as linear combinations
of Prototype products. We will omit the bond option pricing for sake of similarity with the
caplet and swaption ones, but we additionally will give a representation for defaultable bonds.

4.3.1 Bond pricing

Since the bond price depends on the spot rate at the date of evaluation t, that is on the
values assumed by X(t) and Y (t), from now on we denote p(t, T ) by p(t, T ;X(t), Y (t)). Let
us see the representation of the bond price in Proposition 4.18 and a computable bond pricing
formula in Proposition 4.19:

Proposition 4.18 Let us suppose that the dynamics of the short rate are given by (4.1) and

the factors X and Y are de�ned as in Assumptions 4.1-4.2 respectively. Assuming that, at

the evaluation time t, X(t) = xn for a �xed n ∈ {1, . . . , N} and Y (t) = ym for a �xed

m ∈ {1, . . . , Ñ}, a zero-coupon bond which matures at time T can be viewed as a Prototype

product characterized by the following payo�:
Θ0(·, ∗) = Φ0(·, ∗) ,

∑N
i=1

∑Ñ
j=1wiw̃jI{·=xi}I{∗=yj}

wi = 1, i = 1, . . . , N

w̃j = 1, j = 1, . . . , Ñ

(4.32)

In other terms the price of a T -bond admits the following representation

p(t, T ;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym =

M∑
h=1

Uϑ0,t,T (x
n, zh)Uϑ̃0,t,T (y

m, zh)πh (4.33)

where, by using the same notations as in Proposition 4.16, for each zh ∈ Z we have thatUϑ0,t,T (xn, zh) =
∑+∞

k=0[Q̃
X(zh)

k
· θ0(X)]nP̃(ν(zh)Xt,T = k|XνXt

= xn)

U
ϑ̃0,t,T

(ym, zh) =
∑+∞

k=0[Q̃
Y (zh)

k
· θ̃0(Y )]mP̃(ν(zh)Yt,T = k|YνYt = ym)

(4.34)

with θ0(X) = [1, . . . , 1]′ ∈ RN and θ̃0(Y ) = [1, . . . , 1]′ ∈ RÑ .
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Proof Using the same notations of De�nition 4.7 of the Prototype Product, we can write
the price of a bond which matures at time T as the price of a Prototype Product with the
same maturity:

p(t, T ;XνXt
, YνYt )

(4.2)
= EP̃

[
DF (t, T ; r)|Ht ∨ Gt

]
= EP̃

[
DF (t, T ; r) ·Θ0(Xν(Z)XT

, Yν(Z)YT
)|Ht ∨ Gt

]
= VΘ0,t,T (XνXt

, YνYt ) (4.35)

where the second passage is due to the fact that, by de�nition (4.32), Θ0(x
i, yj) = 1 for each

pair (i, j) such that i ∈ {1, . . . , N} and j ∈ {1, . . . , Ñ}. Hence the statement is proved directly
by the results of Proposition 4.16.

Proposition 4.19 Consider the same hypotheses and notations of the previous Proposition.

For an arbitrarily small ϵ, we de�ne the approximation of the price of a T -bond at the date of

evaluation t as

pϵ(t, T ;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym ,
M∑
h=1

U ϵϑ0,t,T (x
n, zh)U

ϵ
ϑ̃0,t,T

(ym, zh)πh (4.36)

where, ∀zh ∈ Z, U ϵϑ0,t,T (x
n, zh) and U ϵ

ϑ̃0,t,T
(ym, zh) are given by (4.29) and (4.30) with

θ0(X) = [1, . . . , 1]′ ∈ RN and θ̃0(Y ) = [1, . . . , 1]′ ∈ RÑ respectively.

It follows that pϵ(t, T ;XνXt
, YνYt ) is a good approximation of the actual bond price

p(t, T ;XνXt
, YνYt ) in the sense that

pϵ(t, T ;XνXt
, YνYt )

ϵ→0−→ p(t, T ;XνXt
, YνYt ) uniformily in (t, T,XνXt

, YνYt ). (4.37)

Proof See proof of Proposition 4.17.

We conclude by giving a result due to the time homogeneity property of the factors X(t, Z)
and Y (t, Z) on which the spot rate depends:

Proposition 4.20 Under the same hypotheses of Proposition 4.18, a T -bond price and its

approximation can be written as follows{
p(t, T ;XνXt

, YνYt )|XνXt
=xn,Y

νYt
=ym = p(T − t;xn, ym)

pϵ(t, T ;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym = pϵ(T − t;xn, ym)
(4.38)

where p(T − t;xn, ym) , p(0, T − t;X(0), Y (0))|X(0)=xn,Y (0)=ym and pϵ(T − t;xn, ym) ,
pϵ(0, T − t;X(0), Y (0))|X(0)=xn,Y (0)=ym .

Proof Remark 2.18 holds also for the probabilities in formula (4.34) because X and Y
are both CTMC homogeneous with respect to the time. Therefore, similarly to the proof of
Proposition 3.3, we are able to prove (4.38).
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4.3.2 Defaultable bonds: an application of the Prototype Product pricing

approach

Until now we have solved the bond pricing problem, under the assumption of a "default free

market", when the short rate is considered a single CTMC (see Section 3.1) or when it is taken
as a linear combination of two correlated CTMCs (see Subsection 4.3.1). We are however also
able to give a representation of the price of defaultable bonds by using the Prototype Product
pricing approach introduced in Section 4.2.

In a general setting of the reduced form approach to credit risk, the price of a defaultable
bond at time of today t and maturity T can be written as

Π(t, T ) = I{τ>t}EP̃[e
∫ T
t r(s)+λ(s)ds|Ft] (4.39)

where the processes r and λ represent the spot rate and the default intensity respectively, τ
is the time of default and Ft is the �ltration generated by the two-dimensional process (r, λ).

Let us suppose that r(t) ≡ X(t, Z) as de�ned in Assumption 4.1 and the default intensity
λ(t) ≡ Y (t, Z) as de�ned in Assumption 4.2: under these assumptions, the price of a default-
able bond Π(t, T ) admits a representation as in (4.2) with a = b = 1 which is the pricing
formula of a default free bond when the spot rate depends on two correlated CTMCs X(t, Z)
and Y (t, Z). In this way we can adapt all the results presented in Subsection 4.3.1 to the
pricing of defaultable bonds.

4.3.3 Cap pricing

As we have done in Section 3.2, we bring back the cap pricing to the that of a caplet and we
are going to use the same notations of Subsection 3.2.1.

To this purpose we generalize the pricing formula of the i-th caplet given by (3.28) when
we consider that the spot is given by (4.1) under the Assumptions 4.1-4.2:

Cpl(t, Si;XνX
t
, YνY

t
) = (1 +Ksi)EP̃

[
DF (t, Si−1; r)

(
1

1 +Ksi
− p(Si−1, Si;XνX

Si−1

, YνY
Si−1

)
)+∣∣∣Ht ∨ Gt

]
(4.40)

where

DF (t, Si−1; r) , exp

(
− a

ν(Z)XSi−1
−1∑

i=νXt

Xi(T
X
i+1 − TXi )− b

ν(Z)YSi−1
−1∑

j=νYt

Yj(T
Y
j+1 − TYj )

)

is the discount factor previously introduced in De�nition 4.7.

We are able to give the representation of the caplet price as a linear combination of the
prices of N × Ñ Prototype Products:

Proposition 4.21 Let us consider the spot rate given by relation (4.1) and that, at the date

of evaluation t, XνXt
= xn and YνYt = ym for �xed n ∈ {1, . . . , N} and m ∈ {1, . . . , Ñ}, then
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the price of the i-th caplet can be written as

Cpl(t, Si;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym

1 +Ksi
=

N∑
l=1

Ñ∑
j=1

(
1

1 +Ksi
− p(si;x

l, yj)

)+

V
Ψl,j

0 ,t,Si−1
(xn, ym)

(4.41)
where we use the notation introduced in Proposition 4.20 for the bond prices p(si;x

l, yj) and

the quantity Ψl,j
0 is as follows

Ψl,j
0 (·, ∗) =

∑N
i0=1

∑Ñ
i1=1wi0(l)w̃i1(j)I{·=xi0}I{∗=yi1},

wi0(l) =

{
0, i0 ̸= l
1, i0 = l

and w̃i1(j) =

{
0, i1 ̸= j
1, i1 = j.

(4.42)

Proof By (4.40) we have

Cpl(t, Si;XνXt
, YνYt )

1 +Ksi
=EP̃

[
DF (t, Si−1; r)

( 1

1 +Ksi
− p(Si−1, Si;XνXSi−1

, YνYSi−1

)
)+∣∣∣Ht ∨ Gt

]
=EP̃

[
N∑
l=1

Ñ∑
j=1

DF (t, Si−1; r)
( 1

1 +Ksi
− p(Si−1, Si;x

l, yj)
)+

·

·I{X
νX
Si−1

=xl}I{Y
νY
Si−1

=yj}

∣∣∣Ht ∨ Gt

]

=
N∑
l=1

Ñ∑
j=1

{( 1

1 +Ksi
− p(Si−1, Si;x

l, yj)
)+

·

·EP̃

[
DF (t, Si−1; r)I{X

νX
Si−1

=xl}I{Y
νY
Si−1

=yj}

∣∣∣Ht ∨ Gt

]}

(4.38)
=

N∑
l=1

Ñ∑
j=1

{( 1

1 +Ksi
− p(si;x

l, yj)
)+

·

·EP̃

[
DF (t, Si−1; r)I{X

νX
Si−1

=xl}I{Y
νY
Si−1

=yj}

∣∣∣Ht ∨ Gt

]}

(4.42)
=

N∑
l=1

Ñ∑
j=1

{( 1

1 +Ksi
− p(si;x

l, yj)
)+

·

·EP̃

[
DF (t, Si−1; r)Ψ

l,j
0 (XνXSi−1

, YνYSi−1

)
∣∣∣Ht ∨ Gt

]}

=

N∑
l=1

Ñ∑
j=1

(
1

1 +Ksi
− p(si;x

l, yj)

)+

V
Ψl,j

0 ,t,Si−1
(XνXt

, YνYt )

where the last passage is due to the De�nition of the price of the Prototype Product at time
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t with maturity Si−1 and payo� Ψl,j
0 . Hence, when XνXt

= xn and YνYt = ym, it follows that

Cpl(t, Si;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym

1 +Ksi
=

N∑
l=1

Ñ∑
j=1

(
1

1 +Ksi
− p(si;x

l, yj)

)+

V
Ψl,j

0 ,t,Si−1
(xn, ym)

To obtain a computable price of the already mentioned i-th caplet, it su�ces to apply the
results obtained in Proposition 4.17 to the Prototype Product prices V

Ψl,j
0 ,t,Si−1

with payo�s

Ψl,j
0 de�ned by (4.42) for each l ∈ {1, . . . , N} and j ∈ {1, . . . , Ñ}:

Proposition 4.22 Under the assumptions of the previous Proposition we de�ne, for an ar-

bitrarily small ϵ, the approximation of the price of the i-th caplet Cpl(t, Si;XνXt
, YνYt ) as

Cplϵ(t, Si;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym

1 +Ksi
,

N∑
l=1

Ñ∑
j=1

(
1

1 +Ksi
− pϵ(si;x

l, yj)

)+

V ϵ
Ψl,j

0 ,t,Si−1
(xn, ym)

where, for each couple of indexes (l, j), V ϵ
Ψl,j

0 ,t,Si−1
is de�ned by (4.28) with Θ0 = Ψl,j

0 and

T = Si−1. It follows that Cplϵ(t, Si;XνXt
, YνYt ) is a good approximation of the real price

Cpl(t, Si;XνXt
, YνYt ) in the sense that

Cplϵ(t, Si;XνXt
, YνYt )

ϵ→0−→ Cpl(t, Si;XνXt
, YνYt ) uniformly in (t, Si−1, Si, XνXt

, YνYt ). (4.43)

Proof The statement is proved directly by the results of Proposition 4.17.

4.3.4 Swaption pricing

Hereafter we give an explicit formula for the price of a swaption under the market model
introduced at the beginning of this Chapter. By using the same notations of Section 3.3, we
apply the general formula of a swaption given by (3.36), namely

Swoptt(Sα, Sα,β ;XνXt
, YνYt ) = EP̃

[
DF (t, Sα; r)(PFS

β
α(Sα,K))+

∣∣∣Ht ∨ Gt

]
(4.44)

where

• DF (t, Sα; r) , exp

(
− a

ν(Z)XSα
−1∑

i=νXt

Xi(T
X
i+1 − TXi ) − b

ν(Z)YSα
−1∑

j=νYt

Yj(T
Y
j+1 − TYj )

)
is the

discount factor (analogously to (4.40));

• PFSβα(t,K) , p(t, Sα;XνXt
, YνYt )− p(t, Sβ ;XνXt

, YνYt )−K
∑β

h=α+1 shp(t, Sh;XνXt
, YνYt )

which has the same meaning as that introduced in Section 3.3 (see (3.35)).
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Similarly to the caplet pricing, we get the representation of the price of a swaption and its
approximation:

Proposition 4.23 Let us consider the spot rate given by relation (4.1) and that, at the date

of evaluation t, XνXt
= xn and YνYt = ym for �xed n ∈ {1, . . . , N} and m ∈ {1, . . . , Ñ}, then

the price of the swaption can be written as

Swoptt(Sα, Sα,β ;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym =
N∑
l=1

Ñ∑
j=1

(g(Sα, Sα,β ;x
l, yj))+V

Ψl,j
0 ,t,Sα

(xn, ym)

(4.45)
where, for each l ∈ {1, . . . , N} and j ∈ {1, . . . , Ñ},

• g(Sα, Sα,β ;x
l, yj) = 1− p(Sβ − Sα;x

l, yj)−K
∑β

h=α+1 shp(Sh − Sα;x
l, yj),

• p(Sh − Sα;x
l, yj) = p(Sα, Sh;XνXSα

, YνYSα
)|X

νX
Sα

=xl,Y
νY
Sα

=yj , ∀h = α + 1, . . . , β by using

the same notations introduced in Proposition 4.20,

• Ψl,j
0 is de�ned by (4.42).

Proposition 4.24 Under the assumptions of the previous Proposition we de�ne, for an

arbitrarily small ϵ, the approximation of the price of the swaption Swoptt(Sα, Sα,β ;XνXt
, YνYt )

as

Swoptϵt(Sα, Sα,β ;XνXt
, YνYt )|XνXt

=xn,Y
νYt

=ym =
N∑
l=1

Ñ∑
j=1

(gϵ(Sα, Sα,β ;x
l, yj))+V ϵ

Ψl,j
0 ,t,Si−1

(xn, ym)

where gϵ(Sα, Sα,β ;x
l, yj) = 1− pϵ(Sβ − Sα;x

l, yj)−K
∑β

h=α+1 shpϵ(Sh − Sα;x
l, yj) and, for

each pair of indexes (l, j), V ϵ
Ψl,j

0 ,t,Sα
is de�ned by (4.28) with Θ0 = Ψl,j

0 and T = Sα. It follows

that Swoptϵt(Sα, Sα,β ;XνXt
, YνYt ) is a good approximation of the actual price

Swoptt(Sα, Sα,β ;XνXt
, YνYt ) in the sense that

Swoptϵt(Sα, Sα,β ;XνX
t
, YνY

t
)
ϵ→0−→ Swoptϵt(Sα, Sα,β ;XνX

t
, YνY

t
) uniformly in (t, Sα, Sα,β , XνX

t
, YνY

t
).

(4.46)

We omit the proof of the Propositions above for sake of similarity to Propositions 4.21 and
4.22.
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Chapter 5

Numerical results

The aim of this chapter is to test numerically the pricing approach proposed up to now for
bonds and other interest rate derivatives under the assumption that the spot rate is a CTMC
(or more generally the spot rate is a linear combination of several correlated CTMCs). In what
follows we call it "Prototype Product Approach". In the following sections we present
numerical results both for the one-factor short rate model and the two-factor one.

5.1 Numerical results when the short rate is a single-factor

CTMC

For the numerical tests we shall treat only the pricing of zero-coupon bonds because, as seen
in the previous chapters, in our approach the prices of caps and swaptions can be written as
functions of prices of bonds and other Prototype Products (this holds also for bond options).
We shall test numerically the validity of our approach by proceeding as follows: consider a
continuous time short-rate model for which the bond price admits an explicit closed formula
and compare this exact price obtained with the one given by (3.7) after approximating the
short rate by a CTMC so as to apply the Prototype Product Approach.

Let us choose the following continuous-time a�ne model, known as the Cox-Ingersoll-Ross
(CIR) or square-root model, for the short rate:{

dr(t) = k(θ − r(t))dt+ σ
√
r(t)dWt

r(0) = r̃
(5.1)

where Wt is a Wiener process under an equivalent martingale measure P̃ as introduced in
Chapter 2 and the long-run mean θ, the rate of mean reversion k, the volatility σ and the
initial spot rate r̃ are positive constants. Moreover, to ensure that the process remains positive,
the following condition has to be satis�ed

2kθ > σ2. (5.2)

The CIR model is largely used in �nance to model the short rate: it guarantees the positivity
of the square-root process in (5.1) and the bond price admits a closed formula.
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First approximate the square-root process by a CTMC by using a suitable approximation
that we call "Kushner approximation" (which we are going to introduce next), so that we
can apply the Prototype Product Approach to compute the bond price and compare it with
the exact price. We shall price zero-coupon bonds with the Prototype Product Approach
both by computing explicit formulae and by a full simulation approach based on Monte
Carlo techniques. Moreover, in order to have a further possibility of comparison, we shall also
consider a widely used approach, namely the lattice method, to compute approximations of the
bond price starting from the continuous-a�ne term short rate model. We shall thus compute
prices in the following four ways:

a) Explicit Closed formula

b) Lattice Method

c) Prototype Product Approach (after approximating the di�usion by a CTMC with the
Kushner approximation):

c.1) Explicit Formulae

c.2) Monte Carlo simulations

We are now going to describe in more detail each of the just mentioned alternatives:

5.1.1 Explicit Closed formula

Under the CIR a�ne term structure model, the price at time t of a zero-coupon bond with
maturity T is given by

p(t, T ) = A(t, T )e−B(t,T )r(t) (5.3)

with 
A(t, T ) =

(
2he

(k+h)(T−t)
2

2h+(k+h)(eh(T−t)−1)

) 2kθ
σ2

B(t, T ) = 2e(e
h(T−t)−1)

2h+(k+h)(eh(T−t)−1)

h =
√
k2 + 2σ2.

(5.4)

For more details see Brigo-Mercurio [2].

5.1.2 Lattice Method

The lattice method is widely used in �nance and it consists in building a recombining tree
which approximates the evolution of a di�usion process (in this case the short rate as given
by the CIR model).

Here we consider the lattice algorithm suggested in Costabile-Leccadito-Massabò [3]: they
propose an approach based on a direct discretization of the process r(t) by means of a recom-
bining binomial tree with a number of nodes that grows linearly with the number of steps;
then, by an argument based on absence of arbitrage, they compute the bond price by working
backwards along the tree. To solve a frequent problem in lattice methods, namely that the
transition probabilities have to belong in [0, 1], the authors introduce multiple upward and
downward jumps that satisfy an appropriate matching condition.
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5.1.3 Prototype Product Approach

If we consider a CIR a�ne term structure model as in (5.1) for the short rate, in order to
apply the Prototype Product Approach (namely all the theory developed in Chapter 3) to the
bond pricing, we have �rst to approximate the short rate, which is a di�usion process, by a
CTMC: we propose the Kushner approximation as described e.g. in Di Masi-Runggaldier [4]
which is appropriate for this purpose. The name derives from the fact that this approximation
was developed by H. Kushner and coworkers (for a reference see [8]).

Kushner approximation: let us consider the square-root process as in (5.1) and denote by
rh,n(t) the CTMC obtained by �rst discretizing with respect to the space variable (with
spatial step length h) the in�nitesimal generator of the di�usion r(t), thus obtaining a
denumerable CTMC {rh(t)}, and then stopping rh(t) at the boundary of the interval
I = (0, N) (with N , hn suitably chosen where n represents the number of subintervals
in which I is divided).

We have that the state space of rh,n(t) is given by

Eh,n = {r0, . . . , rN} = {0, h, . . . , h(n− 1), hn} ∈ RN+1 (5.5)

and the transition intensity kernel is represented by the matrix Qh,n = (qh,ni,j ){1≤i,j≤N+1}
with the �rst and last rows identically equal to zero (absorption at the boundary) and
with the i-th row given by

[0, . . . , 0, qh,n− (ri), qh,n(ri), qh,n+ (ri), 0, . . . , 0], (5.6)

where qh,n(ri) is in the diagonal and

qh,n− (ri) = (k(θ−ri))−
h + σ2ri

2h2

qh,n(ri) = − |k(θ−ri)|
h − σ2ri

h2

qh,n+ (ri) = (k(θ−ri))+
h − σ2ri

2h2

(5.7)

with (·)+ and (·)− denoting the positive and negative parts respectively. Moreover, the
intensity associated with a generic state ri ∈ Eh,n can be represented by

qh,ni =

N+1∑
j=1

j ̸=i

qh,ni,j = −qh,n(ri). (5.8)

The CTMC rh,n(t) converges to r(t) as n → +∞ and h → 0 in the sense of weak
convergence of the induced probability measures.

Once discretized, the short rate becomes a CTMC and so we can compute the bond price
with the Prototype Product Approach by using either the explicit formulae given in Chapter
3 or by using an approach based on the simulation of the trajectories of the process rh,n(t).
Below we refer to the �rst alternative as "Explicit Formulae" and the second as "Monte

Carlo simulations".
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Remark 5.1 If we have the spot rate as the CTMC rh,n(t) given by the Kushner approx-

imation, the upper approximation price of the zero-coupon bond is a good approximation of

its true price: we can apply Lemma 2.13 because the su�cient condition to have a negligible

di�erence between the upper and lower approximations of the true price holds. In fact in this

case condition (2.38) is equivalent to have

ri

qh,n(ri)
=

h(i− 1)
|k(θ−h(i−1))|

h + σ2

h2

i = 1, . . . , N + 1. (5.9)

By considering h at most of the order of 10−2, h(i−1) at most equal to 0.03 and suitable CIR

parameters as in the following numerical results, the expression in (5.9) is close to zero.

Prototype Product Approach (Explicit Formulae)

According to (3.7), for an arbitrarily small ϵ, a computable price of a T -bond at time t (under
the market model where rh,n(t) is supposed to be the short rate) is given by

pϵ(t, T ; r
h,n(t))|rh,n(t)=ri =

nϵ∑
k=0

[Q̃h,n
k
· θ0(rh,n)]iP̃(νt,T = k|rh,nνt = ri) (5.10)

where

• ri ∈ Eh,n is the value assumed by the spot rate at time t;

• the matrix Q̃h,n takes a simpler form with respect to its general de�nition (2.36) because
of the tridiagonal structure of the transition kernel Qh,n: the �rst and the last rows are
identically equal to zero and the j-th row is given by

[
0, . . . , 0,

qh,n− (rj)

rj − qh,n(rj)
, 0,

qh,n+ (rj)

rj − qh,n(rj)
, 0, . . . , 0

]
where the (j + 1)-th and the (j − 1)-th terms are di�erent from zero;

• θ0(r
h,n) , [1, . . . , 1]′ ∈ RN+1;

• for a �xed k ∈ {0} ∪ N+, the probability P̃(νt,T = k|rh,nνt = ri) is given by (2.44) when

we set qi,j = qh,ni,j as the general element of the transition kernel and qi = qh,ni as the

intensity associated with the state ri for each i, j ∈ {1, . . . , N + 1};

• nϵ is a natural number such that

nϵ ≥

⌈
log(ϵ(1− γ))

log(γ)
−

supv∈Eh,n |
∑N+1

i=1

( qh,ni

ri+qh,ni

− 1
)
I{v=ri}|

log(γ)

⌉
,

with γ , sup1≤j≤N+1
qh,nj

rj+qh,nj

.
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We are going now to see how the quantities involved in (5.10) can be computed in practice:

• the i-th element of the vector Q̃h,n
k
· θ0(rh,n) is easy to compute for each k: in fact the

following recurrence relation holds{
a0 = θ0(r

h,n)

ak = Q̃h,n · ak−1 k = 1, 2, . . .

where a0, ak ∈ RN+1 and ak = Q̃h,n
k
· θ0(rh,n);

• the probabilities P̃(νt,T = k|rh,nνt = ri) can be computed exactly only for not too large
values of k: the computational complexity relative to these probabilities, for h which
goes to zero and n which grows, increases because it requires the solution of the k(N+1)
multiple integrals Ψk(t, T,Q

h,n) in (2.45).
For each choice of the pair (h, n), there exists a certain natural number k such that

- up to k it is numerically feasible to compute exactly the probabilities P̃(νt,T = k|rh,nνt =
ri) by the recursion as in Lemma 2.15,

- beyond k the probabilities P̃(νt,T = k|rh,nνt = ri) are more conveniently computed as in
(2.44) where we use a multidimensional Monte Carlo integration for the quantities
Ψk(t, T,Q

h,n).

Prototype Product Approach (Monte Carlo simulations)

Instead of considering the relation (3.7) which gives a computable pricing formula for a zero-
coupon bond, we can consider the full pricing formula as in (3.2), that is

p(t, T ; rh,n(t))|rh,n(t)=ri =
+∞∑
k=0

[Q̃h,n
k
· θ0(rh,n)]iP̃(νt,T = k|rh,nνt = ri) (5.11)

or equivalently

p(t, T ; rh,n(t))|rh,n(t)=ri = EP̃[[Q̃h,n
νt,T

· θ0(rh,n)]i|rh,nνt = ri]. (5.12)

An approach to compute the price in the above expression can then also be obtained by using
the MonteCarlo technique, that is based on

1

M

M∑
l=1

[Q̃h,n
νlt,T · θ0(rh,n)]i

M→∞−→ p(t, T ; rh,n(t))|rh,n(t)=ri P̃− a.s. (5.13)

where νlt,T is the l-th simulation outcome of the random variable νt,T . Hence, by recalling that

the probability transition matrix of the imbedded Markov chain rh,n (see (2.1)) is given by

P h,n = (ph,ni,j ){1≤i,j≤N+1} ,


qh,ni,j

qh,ni

if i ̸= j

0 if i = j,

we are going to describe the algorithm used to simulate νt,T when rh,n(t) = rm.
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Algorithm to simulate νt,T

- initialize number−of−jumps = 0

- generate the value interarrival−time by simulating a random variable with the distribution
Exp(qh,nm )

- initialize current−index = m (index of the currently visited state)

- initialize arrival−time = t+ interarrival−time

- if (arrival−time > T )

return number−of−jumps

- while (arrival−time < T )

- initialize the vector [π1, . . . , πN+1] = current−index-th row of the transition proba-
bility matrix P h,n

- generate the value rj by simulating a discrete random variable taking values in the
state space Eh,n with distributions [π1, . . . , πN+1]

- generate the value interarrival−time by simulating a random variable with the dis-
tribution Exp(qh,nj )

- set current−index = j

- set arrival−time = arrival−time+ interarrival−time

- set number−of−jumps = number−of−jumps+ 1

- return number−of−jumps.

We present now some tables where the bond prices, for several maturities and several values
of the CIR parameters in (5.1), are obtained as follows:

CF: the exact closed formula;

RBT: the lattice method, namely the recombining binomial tree according to [3], where we
have chosen a number of steps "stepsRBT" always equal to 500;

PPA(EF)+K-A: the Prototype Product Approach after discretizing the short rate with the
Kushner approximation (K-A) and by using the explicit formulae (EF) discussed in our
study;

PPA(MC)+K-A: the Prototype Product Approach after discretizing the short rate with
the Kushner approximation (K-A) and by using a full simulation approach based on
the Monte Carlo technique (MC). We have chosen the number of steps for the Monte
Carlo simulations "stepsRBT", namely M in formula (5.13), always equal to 500.
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As regards the other parameters, we have considered the date of today as t = 0 years, three
di�erent times of maturity T (namely 0.5, 2 and 5 years) and the parameters of the CIR
model such that the condition (5.2) is veri�ed. In Table 1 and Table 2 the numerical results
relative to CF, RBT and PPA(MC)+K-A are presented when the values of the initial spot
rate r̃ and the mean-reversion constant θ in formula (5.1) are of the order of one hundredth;
in Table 3 we present also some results relative to PPA(EF)+K-A when r̃ and θ are of the
order of one tenth.

Remark 5.2 In Tables 1-2, the bond prices computed with PPA(EF)+K-A are not con-

sidered because of a theoretical reason due to the Kushner approximation. When we consider

r̃ and θ of the order of one hundredth, a more accurate K-A is required to well discretize

the di�usion process: the number n of the steps in which the state space Eh,n is divided

(denoted by "n(K-A)") has then to be taken of the order of one thousand and the spatial

step length h (denoted by "h(K-A)") of the order of 10−4 (10−5 in some cases). It follows

that, in accordance with relation (5.7), the elements of the transition kernel Qh,n and the in-

tensities associated with each state of Eh,n are of the order of 109. Consequently, if we use the
approach PPA(EF)+K-A, when we have to evaluate the probability P̃(νt,T = 0|rh,nνt = ri)

as in (2.43) and the probabilities P̃(νt,T = k|rh,nνt = ri) for k ≥ 1 as in (2.40), we face an

error of "Over�ow" because the negative exponential functions in formulas (2.43) and (2.40)

respectively cannot take numbers of the order of 109 as inputs. The above problem is avoided

when we consider r̃ and θ of the order of one tenth: in fact a less accurate K-A is then required

to well approximate the square-root process by a CTMC.

We have performed the numerical simulations on a single core Intel x86 Linux machine
equipped with 2GB of RAM and we have implemented a C/C++ framework by using the
well-known GNU Scienti�c Library to handle the data structure.

Table 1: bond prices with CF, RBT and PPA(MC)+K-A (stepsMC=stepsRBT=500)
(for n(K-A) and h(K-A) see Remark 5.2)

T (years) 0.5 2 5 0.5 2 5

r̃ 0.01 0.01 0.01 0.02 0.02 0.02

θ 0.01 0.01 0.01 0.02 0.02 0.02

k 0.8 0.8 0.8 0.5 0.5 0.5

σ 0.1 0.1 0.1 0.05 0.05 0.05

n(K-A) 600 600 700 600 600 700

h(K-A) 0.00005 0.00005 0.00005 0.0001 0.0001 0.0001

CF 0.995014 0.980245 0.951463 0.990051 0.960822 0.905047

RBT 0.995042 0.980302 0.951556 0.99007 0.960898 0.905226

PPA(MC)+K-A 0.995024 0.980276 0.951621 0.990143 0.960734 0.905318
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Table 2: bond prices with CF, RBT and PPA(MC)+K-A (stepsMC=stepsRBT=500)

T (years) 0.5 2 5 0.5 2 5

r̃ 0.03 0.03 0.03 0.02 0.02 0.02

θ 0.03 0.03 0.03 0.02 0.02 0.02

k 1.1 1.1 1.1 1.2 1.2 1.2

σ 0.1 0.1 0.1 0.1 0.1 0.1

n(K-A) 600 600 700 600 600 700

h(K-A) 0.00015 0.00015 0.00015 0.0001 0.0001 0.0001

CF 0.985116 0.941861 0.861095 0.990053 0.960849 0.905072

RBT 0.985146 0.941974 0.86135 0.990072 0.960926 0.905251

PPA(MC)+K-A 0.985128 0.941968 0.861319 0.990059 0.95647 0.90193

Table 3: bond prices with CF, RBT,PPA(MC)+K-A and PPA(EF)+K-A
(stepsMC=stepsRBT=500)

T (years) 0.5 0.5 0.5 0.5

r̃ 0.1 0.1 0.2 0.3

θ 0.1 0.1 0.2 0.3

k 0.1 0.4 0.2 0.3

σ 0.1 0.05 0.2 0.3

n(K-A) 300 300 300 300

h(K-A) 0.01 0.01 0.02 0.03

CF 0.951249 0.951234 0.904977 0.86114

RBT 0.951343 0.951329 0.905157 0.861394

PPA(MC)+K-A 0.951022 0.950859 0.905229 0.861104

PPA(EF)+K-A 0.951324 0.951723 0.905012 0.861756

Remark 5.3 Both results with PPA(EF)+K-A and PPA(MC)+K-A are competitive

with the RBT method and they generally di�er only at the fourth decimal digit. In fact,

in spite of the Kushner approximation which is necessary for the comparison with the prices

of the continuous a�ne term structure model given in (5.3)-(5.4), our methods based on the

Prototype Product pricing work roughly as the lattice method which does not require previously

any approximation to be applied and consequently does not feel the e�ect of the error due to

K-A. Furthermore, PPA(EF)+K-A and PPA(MC)+K-A work sometimes better than the

lattice methods (see results in bold). In any case our approach is designed for r given directly

by a CTMC and the Kushner approximation was introduced only for comparison purposes.

Moreover it is known that lattice methods work well under a one-factor short rate model,
but it becomes more di�cult to implement them if the short rate depends on several correlated
processes. On the contrary, the Prototype Product Approach applies well also to a particular
multi-factor short rate model (see Chapter 4) and in this case it can be easily implemented.
In the following section we are going to show an example of a short rate model depending on
two correlated factors and we will discuss the numerical results obtained for this case.
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5.2 Numerical results under a two-factor short rate model

We present now a simple example of numerical result for the bond pricing under a multi-
factor short rate model. This choice is motivated by the fact that, by considering the market
model proposed in Section 4.1, there exist no closed formula nor other lattice approaches to
be compared with the Prototype Product approach when the short rate is de�ned as in (4.1).

We consider a "bull and bear" market described by a random variable Z which takes two
values {z1, z2} = {0, 1} with probabilities {π1, π2} = {0.4, 0.6}; then we de�ne the spot rate
as a linear combination of two correlated processes:

r(t) = X(t;Z) + Y (t;Z)

where X(t;Z) and Y (t;Z) are CTMCs depending on Z in the following sense:

• the state space of X(t;Z) is EX = {x1, x2, x3, x4} = {0.005, 0.01, 0.015, 0.02} and the
transition kernel QX(Z) is such that

QX(Z) =




−0.5 0.5 0 0
0.1 −0.4 0.3 0
0 0.5 −0.8 0.3
0 0 0.8 −0.8

 if Z = z1


−1 1 0 0
0.5 −0.6 0.1 0
0 2 −2.5 0.5
0 0 0.2 −0.2

 if Z = z2

• the state space of Y (t;Z) is EY = {y1, y2, y3, y4} = {0.005, 0.01, 0.012, 0.016} and the
transition kernel QY (Z) is such that

QY (Z) =




−0.7 0.7 0 0
0.7 −0.8 0.1 0
0 0.2 −0.5 0.3
0 0 0.3 −0.3

 if Z = z1


−0.4 0.4 0 0
0.8 −1.3 0.5 0
0 3 −4 1
0 0 0.1 −0.1

 if Z = z2

We present below the prices of zero-coupon bonds, at the date of evaluation t = 0 years and
maturities 0.5, 2 and 5 years, obtained by applying the Prototype Product approach with
both the Explicit Formulae and the Monte Carlo simulations. We use the same notations of
Section 5.1.

Table 4 (stepsMC=100000)

T (years) 0.5 2 5

PPA(MC) 0.990106 0.961139 0.905623

PPA(EF) 0.990086 0.961048 0.905008
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Remark 5.4 In Table 4 we have chosen a number of stepsMC (100000) greater than the

number of stepsMC considered in the previous subsections (that is 500). In Tables 1-2-3 we

have presented the prices of bonds obtained with the Prototype Product Approach after the

di�usion process had been discretized by rh,n with the K-A approach. By construction, the

transition intensities associated with each state of Eh,n (namely the quantities qh,ni de�ned in

(5.8)) turn out to be of the order of 104: since the interarrival times between two successive

jumps of rh,n are exponentially distributed with parameter qh,ni , the average time at which a

jump occurs is 1

qh,ni

(namely the process rh,n jumps frequently). It follows that, by having a

large number of jumps for each simulation νit,T of the random variable νt,T , a number of Monte

Carlo simulation stepsMC= 500 is su�cient to obtain convergence in formula (5.13). On

the contrary, in Table 4 we consider CTMCs with transition intensities of the order of 10−1:

we need 100000 stepsMC to obtain an acceptable convergence for the bond price.

5.3 Conclusions

We brie�y sum up the results obtained in this chapter: if we consider a one-factor short rate
model, the Prototype Product Approach, by using either the explicit formulae or the Monte
Carlo simulations, is competitive with the lattice method which is widely used to compute the
price of zero-coupon bonds. To allow for such a comparison we had to start from a continuous
time di�usion model which required a preliminary discretization to obtain a CTMC for which
our methods are designed. Moreover we are able to obtain numerical results for prices of caps,
swaptions and bond options with the same complexity as required for the computation of
bond prices (considered as a particular case of Prototype Product) because all the prices of
these interest rate derivatives can be viewed as linear combinations of Prototype Product
prices (see Sections 3.2-3.3-3.4).

Under the two-factor short rate model speci�ed in Chapter 4, we are able to price zero-
coupon bonds without additional computational complexity with respect to the one-factor
case and the results obtained with the Explicit Formulae PPA(EF) or the Monte Carlo
simulations PPA(MC) coincide up to the third decimal digit (see Table 4). Furthermore,
also when the short rate depends on two correlated factors, we are able to compute prices
of caps, swaptions and bond options as linear combinations of Prototype Product prices (see
Section 4.3).
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Appendix A

Particular cases

The purpose of this section is to consider two particular cases:

• the case when the number of elements of the state space E is N = 2;

• the case when the CTMC r(t) reduces to a Poisson process, namely when instead
of a transition intensity matrix Q we have just a jump intensity λ and the random
variable νt,T -studied in Section 2.2.3- becomes a Poisson random variable distributed
with parameter λ(T − t).

In the �rst statement, namely in Corollary A.1 we present the expression of the distribution
of νt,T when r(·) is a CTMC with two states and transition intensities λ and µ; in Corollary
A.3, we show that this CTMC becomes a Poisson process with parameter λ when µ converges
to λ.

Corollary A.1 Let r(t) be a CTMC with state space E = {1, 2} and Q =

(
−λ λ
µ −µ

)
,

then assuming w.l.o.g. that νt = h ∈ N, it follows that{
P̃(νt,T = k|rh = 1) = µ

k
2λ

k
2 e−λ(T−t)Ψh,k(t, T, µ, λ) , k even

P̃(νt,T = k|rh = 1) = µ
k−1
2 λ

k+1
2 e−µT+λtΨh,k(t, T, µ, λ) , k odd{

P̃(νt,T = k|rh = 2) = λ
k
2µ

k
2 e−µ(T−t)Ψh,k(t, T, µ, λ) , k even

P̃(νt,T = k|rh = 2) = λ
k−1
2 µ

k+1
2 e−λT+µtΨh,k(t, T, µ, λ) , k odd

where Ψh,k denotes the following multiple integral

Ψh,k(t, T, µ, λ) ,
∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(λ− µ)ti

)
dth+k . . . dth+3dth+2dth+1(A.1)

Proof At �rst we recall that the notations for a CTMC with two states r1 = 1 and r2 = 2
are the following
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• the transition kernel elements are q1,2 = λ, q2,1 = µ, q1,1 , −
∑2

j=1

j ̸=1
q1,j = −λ and

q2,2 , −
∑2

j=1

j ̸=2
q2,j = −µ

• the intensities de�ned by qi =
∑N

j=1

j ̸=i
qi,j , i = 1, . . . , N become q1 = −q1,1 = λ and

q2 = −q2,2 = µ.

Hence we are going to use the results of Lemma 2.16 applied to a CTMC with two states: let
us divide the proof into four cases (rνt = r1 and k even, rνt = r2 and k even, rνt = r1 and k

odd, rνt = r2 and k odd).

1) Case rνt = rih = r1 and k even

P̃(νt,T = k|rh = r1) =
2∑

ih+1,...,ih+k=1

ih+1 ̸=1,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eq1t−qih+k
Tφh,k(Q) ·Ψh,k(t, T,Q)

Hence, by observing that every index can take only one speci�c value, (i.e
ih+1 = 2, ih+2 = 1, ih+3 = 2, . . . , ih+k = 1 because ih+1 ̸= 1, ih+2 ̸= ih+1, . . . , ih+k ̸= ih+k−1

and ih+1, . . . , ih+k ∈ {1, 2}), the sum has only one term,

P̃(νt,T = k|rh = r1) = e−q1(T−t)φh,k(Q) ·Ψh,k(t, T,Q) (A.2)

where Ψh,k(t, T,Q) and φh,k(Q) are the following quantities

Ψh,k(t, T,Q) =

∫ T

t
e(q2−q1)th+1

∫ T

th+1

e(q1−q2)th+2 · · ·
∫ T

th+k−1

e(q1−q2)th+kdth+k . . . dth+2dth+1

=

∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q1 − q2)ti

)
dth+k . . . dth+3dth+2dth+1,

φh,k(Q) = q1,ih+1
qih+1,ih+2

· . . . · qih+k−1,ih+k

= q1,2 · q2,1 · . . . · q2,1 = q
k
2
1,2q

k
2
2,1;

so we have

(A.2) = q
k
2
2,1q

k
2
1,2e

−q1(T−t)∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q1 − q2)ti

)
dth+k . . . dth+3dth+2dth+1

= µ
k
2λ

k
2 e−λ(T−t)Ψh,k(t, T, µ, λ)

where Ψh,k(t, T, µ, λ) is as de�ned in (A.1).
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2) Case rνt = rih = r2 and k even

P̃(νt,T = k|rh = r2) =
2∑

ih+1,...,ih+k=1

ih+1 ̸=2,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eq2t−qih+k
Tφh,k(Q) ·Ψh,k(t, T,Q)

Hence, by observing again that every index takes only one speci�c value (i.e. ih+1 = 1,
ih+2 = 2, ih+3 = 1, . . . , ih+k = 2), the sum has only one term,

P̃(νt,T = k|rh = r2) = e−q2(T−t)φh,k(Q) ·Ψh,k(t, T,Q) (A.3)

with

Ψh,k(t, T,Q) =

∫ T

t
e(q1−q2)th+1

∫ T

th+1

e(q2−q1)th+2 · · ·
∫ T

th+k−1

e(q2−q1)th+kdth+k . . . dth+2dth+1

=

∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q2 − q1)ti

)
dth+k . . . dth+3dth+2dth+1,

φh,k(Q) = q2,ih+1
qih+1,ih+2

· . . . · qih+k−1,ih+k

= q2,1 · q1,2 · . . . · q1,2 = q
k
2
2,1q

k
2
1,2;

so we have

(A.3) = q
k
2
1,2q

k
2
2,1e

−q2(T−t)∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q2 − q1)ti

)
dth+k . . . dth+3dth+2dth+1

= λ
k
2µ

k
2 e−µ(T−t)Ψh,k(t, T, λ, µ)

where Ψh,k(t, T, λ, µ) is again de�ned as in (A.1).

3) Case rνt = rih = r1 and k odd

P̃(νt,T = k|rh = r1) =
2∑

ih+1,...,ih+k=1

ih+1 ̸=1,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eq1t−qih+k
Tφh,k(Q) ·Ψh,k(t, T,Q)

where now ih+1 = 2, ih+2 = 1, ih+3 = 2, . . . , ih+k = 2; therefore

P̃(νt,T = k|rh = r1) = e−q2T+q1tφh,k(Q) ·Ψh,k(t, T,Q) (A.4)

with Ψh,k(t, T,Q) the same as in the �rst case and φh,k(Q) is de�ned as follows

φh,k(Q) = q1,ih+1
· qih+1,ih+2

· . . . · qih+k−1,ih+k

= q1,2 · q2,1 · . . . · q1,2 = q
k+1
2

1,2 q
k−1
2

2,1 ;
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so we have

(A.4) = q
k+1
2

2,1 q
k−1
2

1,2 e−q2T+q1t∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q1 − q2)ti

)
dth+k . . . dth+3dth+2dth+1

= µ
k−1
2 λ

k+1
2 e−µT+λtΨh,k(t, T, µ, λ)

where Ψh,k(t, T, µ, λ) is as de�ned in (A.1).

4) Case rνt = rih = r2 and k odd

P̃(νt,T = k|rh = r2) =

2∑
ih+1,...,ih+k=1

ih+1 ̸=2,ih+2 ̸=ih+1,...,ih+k ̸=ih+k−1

eq2t−qih+k
Tφh,k(Q) ·Ψh,k(t, T,Q)

where now ih+1 = 1, ih+2 = 2, ih+3 = 1, . . . , ih+k = 1; therefore

P̃(νt,T = k|rh = r2) = e−q1T+q2tφh,k(Q) ·Ψh,k(t, T,Q) (A.5)

with Ψh,k(t, T,Q) the same as in the second case and φh,k(Q) de�ned as follows

φh,k(Q) = q2,ih+1
· qih+1,ih+2

· . . . · qih+k−1,ih+k

= q2,1 · q1,2 · . . . · q2,1 = q
k+1
2

2,1 q
k−1
2

1,2 ;

so we have

(A.5) = q
k−1
2

1,2 q
k+1
2

2,1 e−q1T+q2t)∫ T

t

∫ T

th+1

∫ T

th+2

. . .

∫ T

th+k−1

exp
( h+k∑
i=h+1

(−1)i(q2 − q1)ti

)
dth+k . . . dth+3dth+2dth+1

= λ
k−1
2 µ

k+1
2 e−λT+µtΨh,k(t, T, λ, µ)

where Ψh,k(t, T, λ, µ) is again de�ned as in (A.1).

Remark A.2 A CTMC with a state space E = {1, 2} and relative intensities λ and µ, for µ
which tends to λ, becomes a Poisson process with parameter λ.

In this case we have the following result that allows us to check the correctness of the formulas
in the previous Corollary by showing that this result coincides with the known result for the
Poisson case:

Corollary A.3 For a Poisson process with parameter λ, the probabilities of Lemma 2.16 have

the following representation

P̃(νt,T = k|rνt = 1) = P̃(νt,T ) = k|rνt = 2) =
[λ(T − t)]k

k!
e−λ(T−t).
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Proof By Remark 2.17 the multiple integral Ψh,k does not really depend on h: Ψh,k ≡ Ψk

where Ψk is de�ned as in (2.45). Analogously, in the case when r(·) is a CTMC with only two
states, the quantity Ψh,k de�ned as in (A.1) does not depend on h: if we denote Ψh,k|h=0 = Ψk,
we show that

Ψk(t, T, µ, λ)
µ 7→λ7→ (T − t)k

k!
, (A.6)

then the Corollary is proved.
By the de�nition of Ψ and the dominated convergence theorem (let λ > µ w.l.o.g., then there

always exists C ∈ R+ such that
∣∣e(λ−µ)∑h+k

i=h+1(−1)iti
∣∣ ≤ eCT (k−1) which is a constant), we

observe that

Ψk(t, T, µ, λ)
µ7→λ7→ Vk(t, T ) ,

∫ T

t

∫ T

t1

∫ T

t2

. . .

∫ T

tk−1

dtk . . .dt3dt2dt1,

so we show that

Vk(t, T ) =
(T − t)k

k!
(A.7)

by an induction method.

Proof by induction of (A.7)

Base Case k = 1

V1(t, T ) =

∫ T

t
dt1 = T − t

Inductive step

Vk(t, T ) ,
∫ T

t

∫ T

t1

∫ T

t2

. . .

∫ T

tk−1

dtk . . .dt3dt2dt1

=

∫ T

t
Vk−1(t1, T )dt1

=

∫ T

t

(T − t1)
(k−1)

(k − 1)!
dt1 =

(T − t)k

k!

by using the induction hypothesis in the third passage.
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