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INTRODUCTION

Several observations, such as those referring to the magnitude-redshift relation

for type-Ia Supernovae (SNIa) [1–3], Cosmic Microwave Background (CMB) tem-

perature anisotropies [4–6] and Baryonic Acoustic Oscillations (BAO) features

in galaxy clustering [7, 8], suggest that the universe is currently undergoing an

accelerated expansion phase, caused by the presence of a positive cosmological

constant or a more general Dark Energy (DE) component or a suitable modi-

fied gravity model. Assuming that the matter distribution is dominated by Cold

Dark Matter (CDM), the simplest model that reproduces this effect and fits

present data is the so-called ΛCDM one, based on the existence of a cosmologi-

cal constant term that fills the gap between the matter energy density and the

critical one. Even though the presence of a cosmological constant term Λ is fully

consistent with General Relativity, its value appears too small to be explained

by fundamental physics [9]. Thus, cosmologists explored alternative theories by

e.g., modifying the Einstein-Hilbert action:

S =
M2

pl

2

∫
d4x
√
−g R+

∫
d4xLM , (1)

where Mpl represents the reduced Planck mass. A representative list of the

models investigated is quintessence [10, 11], f(R) gravity (for a review see [12]),

massive gravity [13], scalar-tensor theories [14], Brane-World models (e.g. [15])

and others (see [16] and references therein).

Few years ago a new class of scalar-tensor theories was introduced by Nicolis

et al. [17], the so-called Galileon. This model was constructed as an effective
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Introduction

field theory, which is based upon and aims at extending the decoupling limit of

the Dvali-Gabadadze-Porratti model (DGP) [18]. Originally the Galileon was

proposed as the most general theory containing second-order derivatives in the

scalar field that preserves the Galilean shift symmetry (π → π + bµx
µ + c, with

bµ and c constants) and avoids the Ostrogradski instabilities [19]. Unfortunately,

in the original model, these properties were respected only in flat space-time.

Then, the works by Deffayet et al. [20,21] found a way to generalize Galileons to

curved space-times. To do this, it is necessary to break the Galilean symmetry

and to add certain extra terms which couple the scalar field with curvature

terms. The result is a scalar-tensor theory, the Covariant Galileon, which keeps

the equations of motion up to second-order in time-derivatives (i.e. it avoids

Ostrogradski instabilities) and preserves the shift symmetry (π → π + c) in a

curved space-time. In addition, a fundamental property is that on non-linear

scales the self-interactions of the Galileon field screen the fifth force through the

Vainshtein mechanism [22, 23], see also [24] for a discussion in the most general

second order scalar-tensor theory. The essence of this mechanism lies in the non-

standard kinetic terms (i.e. 2π∂µπ∂µπ), which decouple the scalar field from

gravity at small scales (r � rV , where rV is a characteristic scale around a matter

source, named “Vainshtein radius”). On the other hand, on linear scales (r � rV )

the Galileon is coupled with gravity causing observable modifications w.r.t. the

standard gravity. DGP theory is one example that allows us to understand the

magnitude of the Vainshtein radius. It possesses a Vainshtein radius defined by

rV = (rsr
2
c )

1/3 (where rs is the Schwarzschild radius of the source, rc is a coupling

constant which defines the crossover scale between a 5-dimensional Minkowsky

space and the embedded 4-dimensional space-time).

Many literature has recently appeared on these models and their general-

izations [25–40]. Galileon models have been extensively studied at late-times

[41–57] and a subclass of these models has been already compared by observa-

tions [58–60]. Even though in this paper focus on the effects of the late-time

cosmic acceleration produced by the scalar field, it is worth mentioning that the

importance of the Galileon field also relies on the fact that it can inspire some

“inflationary-like” model [61–68].

In this thesis we have analyzed, using Perturbation Theory (PT) and semi-

analytical methods, some aspects of the growth of structures in Galileon cosmolo-
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gies [51, 56]. Working at the late-times we consider the universe filled by Dark

Matter (DM), radiation and a field responsible for the accelerated expansion of

the universe (the Galileon). Baryonic matter is subdominant w.r.t. DM, thus it

will be included in the total amount of DM.

This work is organized as follows.

In Chapter 1 we outline the main ideas to construct the lagrangian of the

Covariant Uncoupled Galileon [17, 20, 21]. Then we add some explicit coupling

between the Galileon and the matter fields, i.e. the Coupled Galileon [50]. Finally

we calculate the equations of motion that will be used in the next Chapters.

In Chapter 2 we study the background evolution for the Galileon models in a

Friedmann-Lemaître-Robertson-Walker (FLRW) universe. In Sec. 2.1 we use the

tracker solution found in [46]. This solution is an attractor and ensures a stable de

Sitter (dS) point after the radiation and the matter dominated epochs. Moreover,

it is parameter independent, thus the cosmology is fixed and the parameters of

the theory will be used only to control the results at the perturbation level. This

approach will be used to study the spherical collapse model in Chapter 6. In

Sec. 2.2 we study the background evolution of the Cubic Galileon using a general

solution, to have some freedom in the the background evolution. The results of

this section will be used in Chapter 4, when we will show the DM bispectrum.

In Chapter 3 we study the linear evolution of the DM density perturbations.

In Sec. 3.1 we use the tracker solution to show the time evolution of the modified

Newton’s constant. Then, in Sec. 3.2 we analyze the linear perturbations with

the background of Sec. 2.2. We derive the equations of motion of the Cubic

Galileon in a general gauge. We are able to single out an equation for the DM

density perturbations. For this equation we find two integral solutions for the

growing and the decaying modes, and we study the growth rate.

In Chapter 4 we move to the weakly non-linear regime. We study the late-

time non-Gaussianities (NG) of the matter distribution arising from gravitational

instability in the cubic covariant Galileon theory. It is well known that NG can

be classified in primordial and late-time. The primordial ones come from non-

linearities encoded in the inflationary perturbations [69]; these are imprinted in

the CMB and in the Large-Scale Structure (LSS) of the universe [70–76], and

should be constrained by present and future surveys [77,78]. The late-time non-

Gaussianity in the LSS is generated classically by gravitational instability, when

v



Introduction

cosmological perturbations enter non-linear scales. While a Gaussian universe

can be completely described by the power-spectrum, the deviations from Gaus-

sianity are encoded in higher-order statistics, such as the bispectrum and the

trispectrum [79,80].

The interest in studying the dark matter bispectrum in the Galileon model

comes from the possibility to measure the signature of modifications from stan-

dard gravity.1 If this is the case, the bispectrum can be used to lift degeneracies

among different models giving rise to the same observed power spectrum and

the same background cosmology. We choose Gaussian initial conditions, in or-

der to extract only the late-time non-Gaussianity. In particular, we will focus

on the dark matter bispectrum calculated at tree-level (second-order perturba-

tions), since it gives the leading contribution in the weakly non-linear regime.

Even though we consider models with important modifications in the background

and in the growth rate w.r.t. ΛCDM, we will show that the matter bispectrum

deviations that we obtain are less than 5%. We think that this suppression is

connected with a compensation effect when the equation of state is w . −0.8.

Our results are obtained by using a semi-analytic technique both at first and

second-order in perturbations.

In Chapter 5, using the same techniques of Chapter 4, we calculate the DM

bispectrum of the Coupled Galileon theory. Using the conformal time an the

Poisson gauge, we only provide the analytical results. Further investigation of

this aspect is left for future work.

In Chapter 6 we focus on perturbations in a highly non-linear regime. This

regime allows us to study the spherical collapse model (e.g. [85–87]), which ana-

lyzes the evolution of a spherical Dark Matter (DM) overdensity to explain the

formation of cosmic structures. We will use the top-hat approximation, taking

into account the energy non-conservation problem noted in [86]. This problem

affects theories with a time-dependent dark energy component, and it can sub-

stantially modify the virialisation process. Our results include the calculation of

the linearized density contrast and the virial overdensity, quantities that can be

related with observables such as the halo mass function and bias.

In Conclusions we draw our conclusions and provide some comments. In

1For other works on the dark matter bispectrum within other modified gravity models

see [81–84].
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Appendix A we set out the components of the stress-energy tensor found in

Chapter 1. In Appendix B we give some useful functions involved in the linear

perturbation theory (Sec. 3.1) and in the highly non-linear regime (Sec. 6.1).

In Appendix C we derive an equation for the first-order DM perturbations in

different gauges (Sec. 3.2). In Appendix D we provide the source terms of the

second-order field equations (Sec. 4.1). In Appendix E we show the coefficients

of the kernel of the second-order DM fluctuations (Sec. 4.1.1).

Throughout the paper we adopt units c = ~ = G = 1, except where explicitly

indicated; our signature is (−,+,+,+). Greek indices run over {0, 1, 2, 3}, de-
noting space-time coordinates, whereas Latin indices run over {1, 2, 3}, labelling
spatial coordinates.
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CHAPTER1
LAGRANGIAN AND FIELD

EQUATIONS

In this chapter we want to briefly outline the construction, the main ideas and

the results of the most general action for the Galileon models [17]. As stated

before, this action should preserve the galilean shift symmetry and should avoid

Ostrogradski instabilities (i.e. no more than second-order time derivatives in the

equations of motion) in a flat space-time. Following [17], the Galilean shift

symmetry is respected if the equation of motion takes this form

δLπ
δπ

= F (∂µ∂νπ) , (1.1)

where F is a non-linear Lorentz invariant function. The generic term that satisfies

this condition contains n = 1 . . . 5 powers of the Galileon field π and 2n−2 space-

time derivatives. One peculiarity is the fact there are only five distinct operators

in a 4-dimensional space-time of this kind. Then, each lagrangian term of order

n in π can be schematically written as
(
∂2π

)n−2
∂π∂π. Here, the central point

to note is, because of the conserved current associated with the shift symmetry,
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Chapter 1

the equation of motion can be written as a total derivative. Then, the authors

proceed in demonstrating that this total derivative is unique and in finding the

form of each lagrangian operator.

This construction is done in a flat-space time, and these properties hold

exactly. However, if we consider a curved space-time it is necessary to introduce

some coupling terms between gravity and the Galileon in order to prevent third-

order derivatives in the equations of motion. In this case the shift symmetry is

preserved, while the galilean symmetry is softly broken. The resulting theory is

the covariant Galileon [20,21,46]

S =

∫
d4x
√
−g

[
M2

pl

2
R+

1

2

5∑
i=1

ciLi

]
+

∫
d4xLM , (1.2)

where c1−5 are dimensionless constants. We consider LM as the Lagrangian of a

pressurless perfect fluid with density ρ and four-velocity uµ. The five Lagrangian

densities for the scalar field are

L1 =M3π (1.3)

L2 =(∇π)2 (1.4)

L3 =(�π)(∇π)2/M3 (1.5)

L4 =(∇π)2
î
2(�π)2 − 2π;µνπ

;µν −R(∇π)2/2
ó
/M6 (1.6)

L5 =(∇π)2[(�π)3 − 3(�π)π;µνπ
;µν + 2π;µ

νπ;ν
ρπ;ρ

µ+

− 6π;µπ
;µνπ;ρGνρ]/M

9 , (1.7)

where M is a constant with dimensions of mass. Here, L1 can be intended as a

linear potential, while L2 is the standard kinetic term. L3 comes directly from

the decoupling limit of DGP theory. L4 and L5 provide the full generalization of

an action containing at most second derivatives w.r.t. Galilean shift symmetry

in a flat space-time.

The galilean shift symmetry imposes severe constraints on the form of the

action, however further freedom remains if we add a direct coupling with matter.

It was shown in [88] that a linear coupling between π and the stress-energy tensor

of matter enters the effective action in the decoupling limit of DGP. In [50] a linear

and a derivative coupling were first introduced in the context of the covariant

4



Lagrangian and Field equations

Galileon. Thus the action, Eq. (1.2), becomes

S =

∫
d4x
√
−g

[
M2

pl

2
R+

1

2

5∑
i=1

ciLi − Lm −
cG

MplM3
Tµνπ;µπ;ν −

c0

Mpl
πT

]
.

(1.8)

where the lagrangians Li have the same form as in Eq. (1.2) and c0 and cG are

two new coupling parameters. For our purposes it is convenient to write Eq.

(1.8) in the Jordan frame, where the direct coupling between the Galileon and

the matter is removed through a metric redefinition (see Appendix A of [50]) and

the stress-energy tensor is covariantly conserved. The Jordan frame action reads

S =

∫
d4x
√
−g

[Ç
1− 2c0

π

Mpl

å
M2

pl

2
R+

1

2

5∑
i=1

ciLi −
Mpl

M3
cGG

µνπ;µπ;ν − Lm

]
.

(1.9)

It is important to note that, in a flat space-time, the new terms trivially preserve

the galilean shift symmetry, since they vanish.

In the following we will refer to the action (1.2) as the Uncoupled Galileon,

since it has no direct coupling with the matter fields. Instead we will call the

Cubic Galileon Eq. (1.2), provided c4,5 = 0. Eq. (1.9) will be considered as the

Coupled Galileon.

Varying the action Eq. (1.9) w.r.t. the metric gµν and the scalar field π we

obtain the equations of motion. For the metric we obtain

Gµν = M−2
pl

[
T

(m)
µν + T

(π)
µν

]
, (1.10)

where we have written the Galileon contribution in terms of a stress-energy tensor

given by

T
(π)

µν =
5∑
i=1

ciT
(i)
µν + c0T

(0)
µν + cGT

(G)
µν . (1.11)

Here the terms T (i,G,0)
µν are listed in Appendix A. Instead, varying w.r.t. the scalar

field, we obtain

5∑
i=1

ciξ
(i) + c0ξ

(0) + cGξ
(G) = 0 , (1.12)

where ξ(i,G,0) are also listed in Appendix A.

5



Chapter 1

In the following our matter fluid will be a pressureless perfect fluid, which

includes the Dark Matter and the Baryonic components

T
(m)

µν =ρmuµuν . (1.13)

In the Jordan frame the stress-energy tensor continuity equation reads

∇µT (m)µ
ν = 0 . (1.14)

6



CHAPTER2
BACKGROUND EVOLUTION

In this chapter we study the background evolution of Eq. (1.2), the Uncoupled

Galileon. We perform the analysis in two different contexts.

In Sec. 2.1 we use a flat Friedmann-Lemaître-Robertson-Walker (FLRW) met-

ric with the physical time t

ds2 = −dt2 + a2(t)δijdx
idxj . (2.1)

The Hubble parameter is defined, as usual, by H(t) = a′(t)/a(t). In Eq. (1.2) we

define the value ofM asM3 ≡MplH
2
dS. HdS is the value of the Hubble parameter

H(t) in a FLRW universe at the de Sitter fixed point. Indeed, as we will see, [46]

found a tracker solution that ends at a stable point called “de Sitter point”, at

which the energy density of the scalar field dominates. L1 can be understood

as a potential term and for this reason we set c1 = 0, since we are interested in

analyzing the contribution of the new kinetic terms (the case in which a standard

minimally coupled scalar field is introduced in the field equations was already

studied in [89]). Moreover, with this choice we can employ the tracker solution

given in [46], that is not admitted if c1 6= 0.

7



Chapter 2

In Sec. 2.2 we use a FLRW background with the conformal time τ . In this

case the metric reads

ds2 = a2(τ)
î
−dt2 + δijdx

idxj
ó
, (2.2)

and we use the the Hubble parameter defined by H(τ) = a′(τ)/a(τ). We do

not use the tracker solution in order to have more freedom in the evolution of

the background. In Chapter 4 we shall use the solutions found in this section to

study the matter bispectrum generated at late-times by gravitational instability.

Our objective is to study how the non-linear Galileon terms in the lagrangian

modify the bispectrum, thus, as a first step, we can set c4−5 = 0, i.e. the Cubic

Galileon.

2.1 Tracker solution

Calling π ≡ π(t) and ρ ≡ ρm(t) + ρr(t), the background scalar field and back-

ground matter and radiation density respectively, the field equations, Eqs. (1.10)

and (1.12), read

3M2
plH

2 = ρπ + ρm + ρr , (2.3)

3M2
plH

2 + 2M2
plḢ = −Pπ − ρr/3 , (2.4)

and

c2 [3Hπ̇ + π̈]− 3c3

M3
π̇
î
3H2π̇ + Ḣπ̇ + 2Hπ̈

ó
+

18c4

M6
Hπ̇2

î
3H2π̇+ (2.5)

+2Ḣπ̇ + 3Hπ̈
ó
− 15c5

M9
H2π̇3

î
3H2π̇ + 3Ḣπ̇ + 4Hπ̈

ó
= 0 ,

where

ρπ ≡−
c2

2
π̇2 +

3c3

M3
Hπ̇3 − 45c4

2M6
H2π̇4 +

21c5

M9
H3π̇5 , (2.6)

Pπ ≡−
c2

2
π̇2 − c3

M3
π̇2π̈ +

3c4

2M6
π̇3[8Hπ̈ + (3H2 + 2Ḣ)π̇]+

− 3c5

M9
Hπ̇4[5Hπ̈ + 2(H2 + Ḣ)π̇] , (2.7)

are scalar field density and pressure, respectively.

As in [46], to study the background we work with the new variables

r1 ≡ π̇dSHdS/(π̇H) , r2 ≡ (π̇/π̇dS)4/r1 , Ωr = ρr/(3M
2
plH

2) , (2.8)

8



2.1 Tracker solution

where π̇dS is the time derivative of the scalar field at the dS point. At this point

Eqs. (2.3) and (2.4) becomes

c2x
2
dS = 6 + 9α− 12β , (2.9)

c3x
3
dS = 2 + 9α− 9β , (2.10)

where xdS ≡ π̇dS/(HdSMpl). These equations give two conditions for the coef-

ficients c2 and c3. We also set α ≡ c4x
4
dS and β ≡ c5x

5
dS; therefore our free

parameters become α, β and xdS. For simplicity, the assumption xdS = 1 will be

often used in the next chapters. An approximation we have done is HdS ' H0,

where H0 is the value of the Hubble parameter today.

As we already mentioned, [46] found a stable tracker solution (r1 = 1), which

drives the universe expansion from the radiation-dominated epoch (r2 � 1, Ωr =

1), through the matter-dominated epoch (r2 = 1, Ωr � 1), until the dS point

(r2 = 1, Ωr = 0). Note that along r1 = 1, Ωπ ≡ ρπ/(3M
2
plH

2) = r2. Following

this solution, Eqs. (2.4) and (1.12) with our new variables can be written as

r′2 =
2r2 (3− 3r2 + Ωr)

1 + r2
, Ω′r =

Ωr (Ωr − 1− 7r2)

1 + r2
, (2.11)

where primes denote differentiation w.r.t. N = ln a. In Fig. 2.1 we show the

numerical solution of these equations with boundary conditions Ωr0 = 4.8 · 10−5

and ΩΛ0 = 0.74, where Ωr0 and ΩΛ0 are the density parameter values today,

for the radiation and the dark energy component, respectively. These equations

cannot be solved analytically; however we have found two analytic functions that

approximate the numerical results with an accuracy better than 1.2% at redshift

z . 21

r2(N) ' 1 +

(1− ΩΛ0)2

2ΩΛ0

− 1− ΩΛ0

2
√

ΩΛ0

·

√
4e6N +

(1− ΩΛ0)2

ΩΛ0

 · e−6N , (2.12)

and

Ωr(N) ' 2Ωr0e
−N
(
1− ΩΛ0 +

»
4ΩΛ0e

6N + (1− ΩΛ0)2
)−1

. (2.13)

To study the stability of the solution r1(N) = 1, Eqs. (2.3), (2.4) and (2.5)

can be expanded at linear order in perturbations δr1, δr2 and δΩr. Thus, it can

be obtained

δr1
′(N) = −9 + Ωr(N) + 3r2(N)

2 [1 + r2(N)]
δr1(N) , (2.14)

9



Chapter 2

-10 -8 -6 -4 -2 2
N

0.2

0.4

0.6

0.8

1.0

Wr, WΦ

Figure 2.1: In the figure we show the evolution of Ωr (red line) and Ωπ (green line), functions

of N = ln a.

which reads

δr1(N) = δr1(0) exp

ñ
−
∫ N

0
dN ′

9 + Ωr(N
′) + 3r2(N ′)

2 (1 + r2(N ′))

ô
≤ f0 e

− 9
2
N . (2.15)

f0 is a finite integration constant, and this relation proves that any solution that

approaches r1(N) = 1, finally reaches it. Therefore we shall suppose that at least

after the matter-dominated epoch the evolution of the universe can be described

by δr1 � 1.

In [46], the authors also find constraints on the parameters α and β (assum-

ing xdS = 1). These constraints follow from the requirement of ghost avoidance.

They study scalar (S) and tensor (T) perturbations, expanding the action Eq.

(1.2) at second-order in perturbation theory (see [90, 91], for the complete pro-

cedure), finding conditions for the sign of the kinetic term (QS and QT ) and the

squared sound speed (c 2
S and c 2

T ). Thus, in every epoch we have four condi-

tions that must be satisfied. Reminding that α and β are constants, we can find

a region of parameter space where no ghost modes exist. This area is bounded

by the analytic functions 

α > 2β

α < 2β + 2/3

α < 12
√
β − 9β − 2

α > 12/13β + 10/13 .

(2.16)

10



2.2 General solution

2.2 General solution

In this section we study the non-tracker background evolution of Eqs. (1.10) and

(1.12) in the context of the Cubic Galileon theory. Let π ≡ π(τ) be the Galileon

field at the background level and ρm(τ) and ρπ(τ) the background matter and

the Galileon energy density respectively. The (0, 0) and the (i, i) components of

the Einstein equations read

3M2
plH2

a2
= ρm + ρπ , (2.17)

M2
pl

a2

Ä
H2 + 2H′

ä
= −pπ , (2.18)

where primes represent derivatives w.r.t. the conformal time τ and

ρπ ≡−
c1M

3

2
π − c2

2a2
π′2 +

3c3

M3a4
Hπ′3 , (2.19)

pπ ≡
c1M

3

2
π − c2

2a2
π′2 − c3

M3a4
π′2
(
π′′ −Hπ′

)
, (2.20)

are the scalar field density and pressure, respectively. The equation of motion

for the Galileon, Eq. (1.12), becomes

c1M
3

2
+
c2

a2

[
π′′ + 2Hπ′

]
− 3c3

M3a4
π′
[
2Hπ′′ +H′π′

]
= 0 . (2.21)

Here, without loss of generality, we have defined M3 ≡ MplH2
0. Here H0 is the

value of the Hubble parameter H(τ) in a FLRW universe today.

We have studied the background evolution solving Eqs. (2.18) and (2.21).

The initial conditions are determined fixing an initial vacuum energy density

ρπ(τi) and using the background equations in the regime ρπ(τ) � ρm(τ). The

DM and the DE energy densities today are Ωm(τ0) ≡ ρm(τ0)/(3M2
plH2

0) = 0.27

and Ωπ(τ0) ≡ ρπ(τ0)/(3M2
plH2

0) = 0.73 respectively [5]. We take into account

the parameter c1 6= 0, which is the most general potential term preserving the

Galilean shift symmetry. It acts as a cosmological constant in the case π′ → 0.

In Fig. 2.2 we show the evolution of H(a), Ωπ(a) and the equation of state

wπ(a) ≡ ρπ(a)/pπ(a) for the models we are considering. In the limit c1 → 0

(green line) we have noted that the evolution of the background is c2 and c3

independent. This behavior is expected because if c2 (or c3) is absorbed through

11
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Figure 2.2: Background evolution of the Galileon model. In the top panels we plot the

deviations of the Hubble parameter w.r.t. the Hubble parameter in ΛCDM and the evolution

of the DE density. In the bottom panel we plot wπ(a) ≡ ρπ(a)/pπ(a). The parameter values

are: c1 = 1.6, c2 = 0.04, c3 = 10−3 (red line); c1 = 1.5, c2 = 0.04, c3 = 10−3 (blue line);

c1 = 11, c2 = 3.8, c3 = 1 (purple line); c1 = 6, c2 = 3.6, c3 = 1 (yellow line); c1 = 10−4,

c2 = 3.3, c3 = 1 (green line); ΛCDM (black line).

a redefinition of the Galileon field, c3 (or c2) is constrained by the condition

Ωπ(τ0) = 0.73. In order to have a free parameter that allows to decrease the

difference between ΛCDM and our Galileon models it is crucial to impose c3 ∼
c1 6= 0.
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CHAPTER3
LINEAR PERTURBATION

THEORY

In this Chapter we focus on the linear perturbation theory. In Sec. 3.1 we solve

the linear equations using the tracker solution and the notation given in Sec. 2.1.

In Sec. 3.2 we analyze the linear growth rate using the general solution and the

notation given in Sec. 2.2.

3.1 Tracker solution

In this section we study the evolution of the scalar perturbations on sub-horizon

scales. Our work focuses on the dynamics of a spherically symmetric perturbed

metric. Let us choose the Newtonian gauge,

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdx
idxj . (3.1)

Perturbations of the energy density and the scalar field are given by

ρ(~x, t) ≡ ρ0(t) + δρ(~x, t) π(~x, t) ≡ π0(t) + ϕ(~x, t) . (3.2)

13



Chapter 3

In the following we will drop the suffix “0”. In this regime there are two valid

approximations that simplify the field equations. The first one is the sub-horizon

approximation O(∇2Φ/a2) � O(H2Φ). The second one is the quasi-static ap-

proximation, which allows us to neglect time derivatives of perturbations com-

pared with space derivatives, assuming we are working with non-relativistic mat-

ter at short distances.

Replacing physical gradients with comoving gradients, at linear order Eqs.

(1.10) and (1.12) become (∇ denotes a spatial gradient):Ä
2M2

pl + π̇2γ1(t)
ä
∇2Φ = −δρ+ γ2(t)∇2ϕ , (3.3)Ä

2M2
pl + 3γ3(t)

ä
∇2Φ +

Ä
2M2

pl + π̇2γ1(t)
ä
∇2Ψ = 3γ4(t)∇2ϕ , (3.4)

and

γ5(t)∇2ϕ+ γ2(t)∇2Ψ + 3γ4(t)∇2Φ = 0 , (3.5)

where γi(t) are functions of the background, whose explicit form is given in

Appendix B. It is important to note that one of the differences between these

equations and those for the kinetic braiding model studied in [87] is the presence

of an anisotropic stress in the RHS of Eq. (3.4).

Manipulating Eqs. (3.3) and (3.4), we obtain the modified Poisson equationÄ
2M2

pl + π̇2γ1

ä2
2M2

pl + 3γ3
∇2Ψ = δρ−

[
γ2 − 3γ5

2M2
pl + π̇2γ1

2M2
pl + 3γ3

]
∇2ϕ . (3.6)

Using Eqs. (3.5), (3.3) and (3.6), the differential equation for the evolution of

the scalar field takes the form

∇2ϕ = A(t) δρ(t, ~r), (3.7)

where

A(t) ≡ γ2(t)γ7(t)− 3γ4(t)γ6(t)

γ2(t)2γ7(t)− γ5(t)γ6(t)2 − 6γ2(t)γ4(t)γ6(t)
, (3.8)

with

γ6(t) ≡
î
2M2

pl + π̇2γ1(t)
ó

(3.9)

14



3.1 Tracker solution

γ7(t) ≡
î
2M2

pl + 3γ3(t)
ó
. (3.10)

Considering a spherically symmetric object of radius RS , we can easily integrate

Eq. (3.7) to obtain an analytic expression for the evolution of the scalar field.

Defining m(t, r) ≡ 4π
∫ r

0 dr′r′2δρ, we obtain

dϕ

dr
=
A(t)m(t, r)

4πr2
+
C

r2
, (3.11)

where C is an integration constant that, outside the source, can be viewed as an

increase in Ms ≡ m(t, RS). While this term is present in ϕ′, it does not enter

in ∇2ϕ, so that the gravitational potential is not affected by our choice of C.

Therefore, for our purposes we can set C = 0.

3.1.1
The Vainshtein mechanism and the linear regime

The Vainshtein mechanism works by screening the effects of the scalar field on the

gravitational potential at small distances, so that one can satisfy the constraints

coming from solar-system tests, while preserving the accelerated expansion of

the universe on cosmological scales. The difference between this mechanism

and the Chamaleon one is that the first also works by using non-linearities of the

perturbations to this aim. At large distances (r � rV , where rV is the Vainshtein

radius of the source) linear terms of the scalar field become dominant, while for

r � rV non-linear terms become dominant (these terms will be shown in Eqs.

(6.1), (6.2) and (6.3)). This is called “self-screening effect”. A discussion about

the magnitude of the Vainshtein radius (rV ) of a spherically symmetric source

will be given later (Sec. 6.1.1).

A first approach is to study within the linear approximation the contribution

of the scalar field to the gravitational potential. Recalling Eq. (3.6), to have a

qualitative knowledge that outside the Vainshtein radius the scalar field drives

the late time cosmic acceleration, we have to compare the contribution of the

gravitational with the scalar field intensity [92]. Indeed, our request is that the

two are comparable:

ϕ′(r)

Ψ′(r)
' 1 . (3.12)
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It can be shown that the above ratio is a monotone function, which starts from

' 0 during the radiation-matter-dominated epoch. At the dS point, recalling Eq.

(3.7) with xdS = 1, we obtain∣∣∣∣∣ϕ′(r)Ψ′(r)

∣∣∣∣∣
dS

=

∣∣∣∣∣A(tdS)

4π

∣∣∣∣∣ =

∣∣∣∣∣ 1

24πMpl(2β − α)

∣∣∣∣∣ . (3.13)

Taking into account the region in the plane (xdS = 1, β, α) bounded by the no-

ghost condition (2.16), it can be shown that the magnitude of the last ratio at

the dS point is bounded by

1

4
√

2π
<

∣∣∣∣∣ϕ′(r)Ψ′(r)

∣∣∣∣∣
dS

< +∞ (3.14)

This result means that the contribution of the scalar field at the dS point on

scales r � rV is always important, and the importance can be set choosing

proper values for α and β. In particular we can find a couple (α, β) which

satisfies Eq. (3.12).

With Eq. (3.7) we can write the modified Poisson equation (3.6) in a more

convenient form

∇2Ψ = 4πGπδρ(t, ~r) , (3.15)

where

Gπ(t) =
γ5(t)γ7(t) + 9γ4(t)2

4π
î
6γ2(t)γ4(t)γ6(t)− γ2(t)2γ7(t) + γ5(t)γ6(t)2

ó . (3.16)

The modified gravitational constant assumes the value of the Newtonian one

during the radiation-matter-dominated era, while it is

Gπ(tdS) =
G

3(α− 2β)
(3.17)

at the dS point (when xdS = 1). The limit xdS → 0 gives us the usual GR result

Gπ(tdS) = G. Instead, the limit xdS → ∞ gives Gπ(tdS) → 0, which means,

as expected, that the effective gravitational constant becomes small w.r.t. the

Newtonian one (G ∝ M−2
pl ). The plots in Figs. 3.1, 3.2 and 3.3 show that we

can vary the asymptotic value of Gπ as we desire, to obtain, in principle, any

reasonable model for the late time cosmic acceleration. The difference between

the three graphs is the value of the parameter xdS, which sets the contribution of
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3.2 General solution

the Galileon field at the dS point. This result also agrees with the expectations

of Eq. (3.14), quantifying the effective contribution of the scalar field at large

distances on observables quantities. Of course, these results do not represent any

realistic model, we are only interested here in investigating the range of possi-

bilities offered by the Galileon theory. Moreover, astrophysical and cosmological

constraints on the Galileon model have just started being considered [93–96].

- 2 - 1 1 2
N

1.5

2.0

2.5

3.0

GΠ � G

Figure 3.1: This plot shows the evolution of Gπ, with xdS = 1, in different cases.The values

for (α, β) are: (−1,−0.55), blue dashed line; (−0.45,−0.4), red line; (−0.2,−0.2), green line;

(−0.55,−0.4), blue solid line; (0.1,−0.1), red dashed line.

3.2 General solution

In this section we give some definitions needed to analyze the evolution of the

DM perturbations on sub-horizon scales [97]. Without choosing any gauge the

metric can be written as

ds2 = a(τ)2
î
−(1 + 2ψ)dτ2 + 2ω̂idx

idτ + [(1− 2φ)δij + χ̂ij ] dx
idxj
ó
. (3.18)

Here the dependence of all the perturbations on both the conformal time τ and

the spatial coordinates ~x is implicit. The symmetric trace-free perturbation χ̂ij
and ω̂i can be decomposed as

ω̂i ≡ωi + ∂iω , (3.19)
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Figure 3.2: The same as in Fig. 3.1, but with xdS = 0.3.

χ̂ij ≡χij + ∂iχj + ∂jχi +Dijχ , (3.20)

where ωi and χi are transverse vectors (i.e. δij∂iωj = 0), χij is a trace-free

transverse symmetric tensor (δijχij = δij∂iχjk = 0) and Dij is a trace-free

operator defined by Dij ≡ ∂i∂j−(1/3)δij∇2. Perturbations of the energy-density

and the four-velocity of the DM fluid can be written as

ρ(~x, τ) ≡ ρ(0)(τ) [1 + δ(~x, τ)] , (3.21)

uµ(~x, τ) ≡ 1

a

î
δµ0 + vµ(~x, τ)

ó
. (3.22)

We can expand any perturbation up to the desired order in this way

π ' π(0) + π(1) +
1

2
π(2) + . . .+

1

n!
π(n) . (3.23)

In the following we will drop the suffix “0”. At first-order we can safely neglect

vector and tensor perturbations. In fact the first-order vector perturbations have

decreasing amplitudes and are not generated by the presence of a scalar field.

Moreover, the first-order tensor perturbations give a negligible contribution to

second-order perturbations. This result cannot be generalized to second-order

perturbations, since second-order vector and tensor perturbations are generated

by products of first-order scalars.
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Figure 3.3: The same as in Fig. 3.1, but with xdS = 1.2.

Perturbing the well-known relation uµuµ = −1, these useful equations can

be obtained

v(1)0 = −ψ(1) , (3.24)

v(2)0 = −ψ(2) + 3ψ(1)2
+ 2∂iω

(1)∂iv(1) + ∂iv
(1)∂iv(1) . (3.25)

At the linear level from Eq. (1.10) we obtain four independent equations, the

(0, 0), the (0, i), the trace and the traceless of (i, j) parts. These are, respectively,

2Mpl
2∇2φ(1) +

1

3
Mpl

2∇2∇2χ(1) −
(

6Mpl
2H− 3c3π

′3

M3a2

)
φ(1)′

−
(

2Mpl
2H− c3π

′3

M3a2

)
∇2ω(1) = a2ρmδ

(1) +

(
c2π
′2 + 6Mpl

2H2 − 12c3π
′3H

M3a2

)
ψ(1)

− c3π
′2∇2π(1)

M3a2
− 1

2
c1M

3a2π(1) +

(
−c2π

′ +
9c3π

′2H
M3a2

)
π(1)′ , (3.26)

− 2Mpl
2φ(1)′ −

(
2Mpl

2H− c3π
′3

M3a2

)
ψ(1) − 1

3
Mpl

2∇2χ(1)′ = a2ρmv
(1)

+ a2ρmω
(1) +

(
c2π
′ − 3c3π

′2H
M3a2

)
π(1) +

c3π
′2π(1)′

M3a2
, (3.27)
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2

3
Mpl

2∇2
Å
ψ(1) − φ(1) + ω(1)′ + 2Hω(1) − 1

6
∇2χ(1)

ã
+ 2Mpl

2φ(1)′′

+

(
2Mpl

2H2 + 4Mpl
2H′ − c2π

′2 − 4c3π
′′π′2

M3a2
+

4c3π
′3H

M3a2

)
ψ(1)

+

(
2Mpl

2H− c3π
′3

M3a2

)
ψ(1)′ = −

(
c2π
′ +

2c3π
′′π′

M3a2
− 3c3π

′2H
M3a2

)
π(1)′

+ 4Mpl
2Hφ(1)′ +

1

2
c1M

3a2π(1) − c3π
′2π(1)′′

M3a2
, (3.28)

χ(1)′′ + 2Hχ(1)′ +
1

3
∇2χ(1) − 2ω(1)′ − 4Hω(1) + 2φ(1) − 2ψ(1) = 0 . (3.29)

The equation of motion for the linear perturbation of the Galileon field, Eq. (1.12),

readsÑ
c2 −

2c3

Ä
π′′ +Hπ′

ä
M3a2

é
∇2π(1) =

Ç
2c2H−

6c3π
′H′

M3a2
− 6c3π

′′H
M3a2

å
π(1)′

+

Ç
c2 −

6c3π
′H

M3a2

å
π(1)′′ +

(
−2c2π

′′ − 4c2π
′H+

12c3π
′2H′

M3a2
+

24c3π
′′π′H

M3a2

)
ψ(1)

+

(
−c2π

′ +
9c3π

′2H
M3a2

)
ψ(1)′ +

c3π
′2∇2ψ(1)

M3a2
+

(
−3c2π

′ +
6c3π

′′π′

M3a2
+

9c3π
′2H

M3a2

)
φ(1)′

+
3c3π

′2φ(1)′′

M3a2
+

(
−c2π

′ +
2c3π

′′π′

M3a2
+

3c3π
′2H

M3a2

)
∇2ω(1) +

c3π
′2∇2ω(1)′

M3a2
.

(3.30)

From the time and the space components of the stress-energy tensor continuity

equation, Eq. (1.14), we obtain

δ(1)′ = 3φ(1)′ −∇2v(1) , (3.31)

ω(1)′ + v(1)′ +Hω(1) + ψ(1) +Hv(1) = 0 . (3.32)

There are many ways to decouple these equations . First of all, it is convenient

to work in Fourier space. From Eqs. (3.29) we can immediately obtain ψ(1). In the

sub-horizon (k2 � H2) and quasi-static (|φ′′| . H |φ′| � k2 |φ|) approximation,

the relevant equations we need are (3.26), (3.30) and the derivative of (3.31)

2Mpl
2k2
Å
φ(1) − 1

6
k2χ(1)

ã
−
(

2Mpl
2H− c3π

′3

M3a2

)
k2ω(1)
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= −ρmδ(1)a2 − c3π
′2k2π(1)

M3a2
, (3.33)Ç

c2 −
2c3π

′′

M3a2
− 2c3π

′H
M3a2

å
π(1) +

(
c2π
′ − 2c3π

′′π′

M3a2
− c3π

′2H
M3a2

)
ω(1)

=
c3π
′2

M3a2

Å
φ(1) − 1

6
k2χ(1)

ã
, (3.34)

δ(1)′′ + δ(1)′H+ k2
Å
φ(1) − 1

6
k2χ(1)

ã
−Hk2ω(1) = 0 . (3.35)

Combining Eqs. (3.33) and (3.34) to eliminate φ(1) and χ(1) it is straightforward

to obtain(
c2Mpl

2 +
c3

2π′4

2M6a4
− 2c3Mpl

2 (π′′ +Hπ′)
M3a2

)
k2
î
π(1) + π′ω(1)

ó
= −c3ρmπ

′2δ(1)

2M3
.

(3.36)

Finally, using Eqs. (3.33), (3.35) and (3.36) we are able to single out an equation

for the DM perturbation δ(1)

δ(1)′′ +Hδ(1)′ = 4πG

(
1− c3

2π′4

2c2M6M2
pla

4α

)
a2ρmδ

(1) , (3.37)

where G ≡ (8πM2
pl)
−1 is Newton’s constant and we have defined

α(τ) ≡ 1− 2c3

c2M3a2

(
π′′ +Hπ′

)
+

c3
2π′4

2c2M6M2
pla

4
. (3.38)

The crucial difference between Eq. (3.37) and the one obtained in the ΛCDM

model is that the Galileon acts modifying the Newton’s constant at late-times.

To recover the standard Newton’s constant it is sufficient to set c3 = 0. On the

left hand side of Eq. (3.37) the other modification lies inside the friction term

(Hδ(1)′) due to the evolution of the Hubble parameter. As shown in Fig. 2.2

these differences cannot be neglected and should play an important role in the

growth of structures.

Eq. (3.37), which describes the dynamics of DM perturbations on sub-horizon

scales, together with Eqs. (3.31), (3.32), (3.34) and (3.36) forms our complete set

of equations that allow to solve the dynamics of the fluctuations at first-order. In

Appendix C we show how to obtain the same result in the Poisson, spatially flat
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and synchronous gauges. In particular it is important to pay attention doing the

sub-horizon approximation in the synchronous gauge, due to the residual gauge

freedom.

Eq. (3.37) can be divided in the linear combination of two independent solu-

tions

δ(1)(~k, τ) = c+D+(τ)δ(1)(~k) + c−D−(τ)δ(1)(~k) , (3.39)

where δ(1)(~k) is the primordial amplitude of the density contrast perturbation.

We have also added explicitly two integration constants, c+ and c−. D+(τ)

and D−(τ) are the growing and the decaying modes and they depend on the

coefficients ci. In the next subsection we will find an integral solution for these

modes.

3.2.1
Integral solutions for the growing and the decaying modes of DM

perturbations

To solve Eq. (3.37) it is convenient to redefine

A(τ) ≡ 4πG

H2

(
1− c3

2π′4

2c2M6M2
pla

4α

)
ρm . (3.40)

We can also use the scale factor as the new time variable

d2δ(a)

da2
+

Ç
2

a
+

1

H(a)

dH(a)

da

å
dδ(a)

da
= A(a)δ(a) . (3.41)

After that we can perform the change of the variable

δ(a) = u(a)

√
H0

a2H(a)
. (3.42)

After a straightforward calculation we shall obtain Eq. (3.37) in its normal form

d2u(a)

da2
− I(a)u(a) = 0 , (3.43)

where (−I(a)) is often called the invariant of the equation

I(a) = A(a) +
1

aH(a)

dH(a)

da
− 1

4H(a)2

Ç
dH(a)

da

å2

+
1

2H(a)

d2H(a)

da2
. (3.44)
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Now, suppose we have to solve

d2y(a)

da2
+ g(a)

dy(a)

da
+
dg(a)

da
y(a) = 0 . (3.45)

After the substitution

Y (a) = y(a)e
+ 1

2

∫ a
am

da′g(a′)
, (3.46)

where am is some initial time deep inside the matter dominated era, we obtain

d2Y (a)

da2
+

1

2

ñ
dg(a)

da
− 1

2
g2(a)

ô
Y (a) = 0 . (3.47)

We can choose g(a) to be a solution of

dg(a)

da
− 1

2
g2(a) + 2I(a) = 0 , (3.48)

which is a particular Riccati equation. In this case Eqs. (3.43) and (3.47) become

equals. Thus, we can relate the solutions of Eq. (3.45) with the ones of Eq. (3.37)

through

δ(a) =
y(a)

a

√
H0

H(a)
e

+ 1
2

∫ a
am

da′g(a′)
. (3.49)

It is straightforward to integrate Eq. (3.45) the first time

dy(a)

da
+ g(a)y(a) = a2, (3.50)

where a2 is the first integration constant. A second integration is also possible,

giving us the solutions for y(τ) in their integral form

y(τ) = κ1γ
2(a) + κ2γ

2(a)

∫ a

am

da′

γ2(a′)
, (3.51)

where

γ2(a) = e
−
∫ a
am

da′g(a′)
. (3.52)

From Eq. (3.51) we have two independent solutions of Eq. (3.37) in their integral

form

D1(a) =
γ(a)

a

√
H0

H(a)
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D2(a) =
γ(a)

a

√
H0

H(a)

∫ a

am

da′

γ2(a′)
. (3.53)

To determine the growing and the decaying modes it is important to note that

there is an additional degree of freedom due to the boundary condition in Eq.

(3.48). If we want to separate them we have to choose carefully the behavior of

g(a) at early times. As shown in Fig. 2.2, during the matter dominated epoch

the contribution of the Galileon field can be neglected, leading to an Einstein-de

Sitter (EdS) universe. Indeed, during this epoch we expect that DEdS
+(a) ∝

a, and DEdS
−(a) ∝ H(a)/a ∝ a−3/2. We can impose D1(a) = DEdS

+(a) =

a, obtaining g(a) = −7/(2a). Taking into account the right coefficients, we

can extend this result to the general solution, i.e. valid also after the matter-

dominated epoch

D+(a) = am
7/4D1(a) =

am
7/4γ(a)

a

√
H0

H(a)

D−(a) = am
−3/4D1(a)− 5

2am7/4
D2(a)

=
γ(a)

am3/4a

√
H0

H(a)

Ç
1− 5

2am

∫ a

am

da′

γ2(a′)

å
. (3.54)

These solutions are important because they are valid in every modified gravity

theory in which the evolution of first-order DM perturbations, Eq. (3.37), is

scale-independent. In Fig. 3.4 we show the evolution of our integral solution, Eq.

(3.54), vs. the numerical solution of Eq. (3.37) for various and arbitrary initial

conditions. It is important to note that every numerical solution approaches

D+(a), this proves that the first line of Eq. (3.54) is the pure growing mode

of Eq. (3.37). In Fig. 3.5 we plot the deviations of the Galileon growth rate,

f(a) ≡ d lnD/d ln a, w.r.t. the growth rate of the ΛCDM model. For models in

which the value of c3 is negligible w.r.t. the value c1 the deviations are large (up

to about 100%), while, increasing c3 the deviations decrease reaching ' 10%.
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Figure 3.4: Evolution of D+(a) (black dashed line), Eq. (3.54), and D(a) (the other lines),

solutions of Eq. (3.37) with different initial conditions (for a fixed background corresponding

to c1 = 1.5, c2 = 0.04 and c3 = 10−3).
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Figure 3.5: Growth rate f(a) of the Galileon compared with the growth rate of ΛCDM. The

values for the parameters c1, c2 and c3 are the same as in Fig. 2.2.
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CHAPTER4
THE WEAKLY NON-LINEAR

REGIME (CUBIC GALILEON)

After the analysis of the linear perturbation theory, it would be interesting to

go beyond, in order to investigate some aspects on the weakly non-linear regime,

i.e. the non-Gaussianities. In particular, our purpose is to calculcate the DM

bispectrum at tree-level generated at late-times by gravitational instability. We

use the notation and the results given in Sec. 2.2 and Sec. 3.2.

4.1 Second-order equations

By perturbing the Einstein and the Galileon field equations, Eqs. (1.10) and

(1.12), at second order we can study the dynamics of the DM fluctuations in the

weakly non-linear regime. The structure of these equations is the same as in the

linear case, up to additional source terms formed by product of first-order scalar

quantities that we will indicate with S(n) (their explicit expression in a general

gauge can be found in Appendix D). From the Einstein equations we obtain,
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respectively, the (0, 0), (0, i) the trace and the traceless part of (i, j)

2Mpl
2∇2φ(2) −

(
6Mpl

2H− 3c3π
′3

M3a2

)
φ(2)′ −

(
2Mpl

2H− c3π
′3

M3a2

)
∇2ω(2)

+
1

3
Mpl

2∇2∇2χ(2) = a2ρmδ
(2) +

(
c2π
′2 + 6Mpl

2H2 − 12c3π
′3H

M3a2

)
ψ(2)

− c3π
′2∇2π(2)

M3a2
− 1

2
c1M

3a2π(2) +

(
−c2π

′ +
9c3π

′2H
M3a2

)
π(2)′ − S(1) , (4.1)

− 2Mpl
2∇2φ(2)′ −

(
2Mpl

2H− c3π
′3

M3a2

)
∇2ψ(2) = a2ρm∇2v(2) + a2ρm∇2ω(2)

+
1

3
Mpl

2∇2∇2χ(2)′ +

(
c2π
′ − 3c3π

′2H
M3a2

)
∇2π(2) +

c3π
′2

M3a2
∇2π(2)′ + S(2) , (4.2)

2

3
Mpl

2∇2
Å
ψ(2) − φ(2) + ω(2)′ + 2Hω(2) − 1

6
∇2χ(2)

ã
+ 2Mpl

2φ(2)′′

+ 4Mpl
2Hφ(2)′ +

(
2Mpl

2H2 + 4Mpl
2H′ − c2π

′2 − 4c3π
′′π′2

M3a2
+

4c3π
′3H

M3a2

)
ψ(2)

+

(
2Mpl

2H− c3π
′3

M3a2

)
ψ(2)′ = −

(
c2π
′ +

2c3π
′′π′

M3a2
− 3c3π

′2H
M3a2

)
π(2)′

+
1

2
c1M

3a2π(2) − c3π
′2π(2)′′

M3a2
+ S(3) , (4.3)

∇4
Å

1

2
χ(2)′′ +Hχ(2)′ +

1

6
∇2χ(2) − ω(2)′ − 2Hω(2) + φ(2) − ψ(2)

ã
= S(4) . (4.4)

Eq. (1.12), for the Galileon field fluctuations, becomesÇ
c2 −

6c3π
′H

M3a2

å
π(2)′′ +

Ç
2c2H−

6c3π
′H′

M3a2
− 6c3π

′′H
M3a2

å
π(2)′

−

Ñ
c2 −

2c3

Ä
π′′ +Hπ′

ä
M3a2

é
∇2π(2) +

(
−c2π

′ +
9c3π

′2H
M3a2

)
ψ(2)′

+

(
−2c2π

′′ − 4c2π
′H+

12c3π
′2H′

M3a2
+

24c3π
′′π′H

M3a2

)
ψ(2)

+
c3π
′2∇2ψ(2)

M3a2
+

(
−3c2π

′ +
6c3π

′′π′

M3a2
+

9c3π
′2H

M3a2

)
φ(2)′ +

3c3π
′2φ(2)′′

M3a2

+

(
−c2π

′ +
2c3π

′′π′

M3a2
+

3c3π
′2H

M3a2

)
∇2ω(2) +

c3π
′2∇2ω(2)′

M3a2
= S(5) . (4.5)
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4.1 Second-order equations

The stress-energy tensor continuity equation reads

δ(2)′ = 3φ(2)′ −∇2v(2) + S(6) , (4.6)

∇2
(
ω(2)′ + v(2)′ +Hω(2) + ψ(2) +Hv(2)

)
= S(7) . (4.7)

In Eqs. (4.2), (4.4) and (4.7) second-order vector and tensor perturbations were

present. In order to decouple scalar from vector and tensor perturbations we

have used the operator ∂i in Eqs. (4.2) and (4.7), while we have used ∂i∂j in Eq.

(4.4). Once the equations of motion for the scalar perturbations are obtained

the steps to obtain the evolution for δ are the same as in the linear case. The

result is

δ(2)′′ +Hδ(2)′ − 4πG

(
1− c3

2π′4

2c2M6M2
pla

4α

)
a2ρmδ

(2) = S(δ) , (4.8)

where

S(δ) =−
(

1− c3
2π′4

2c2M6Mpl
2a4α

) ñ
S(1)

2Mpl
2 −

S(4)

k2

ô
+

c3π
′2S(5)

2c2M3Mpl
2a2α

+ S(6)′ +HS(6) − S(7) (4.9)

4.1.1
Solution of the evolution equation for the second-order DM density

contrast

In this section we study the behavior of Eq. (4.8). It is clear that the homogeneous

part of this equation is equal to Eq. (3.37). Thus, using Green’s method, and Eqs.

(3.54), we can find an analytical (in its integral form) solution for the evolution

of the second-order DM density perturbations. Using Eqs. (C.3), (C.4), (C.5),

(3.31) and (3.37), in the Poisson gauge the Fourier transform of the source term

Eq. (4.9) becomes

S(δ)(a,~k) =

∫
d3k1d

3k2δ
(3)(~k − ~k1 − ~k2)K(a,~k1,~k2)δ(1)(a,~k1)δ(1)(a,~k2) .

(4.10)

Here, the symmetrized kernel K(a,~k1,~k2) reads

K(a,~k1,~k2) ≡ γ1(a) + γ2(a)

Ä
~k1 · ~k2

ä Ä
k1

2 + k2
2
ä

k1
2k2

2 + γ3(a)

Ä
~k1 · ~k2

ä2
k1

2k2
2
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+ γ4(a)
a2H2

Ä
~k1 · ~k2

ä
k1

2k2
2 + γ5(a)

a2H2

k2
+ γ6(a)

Ç
a2H2

k1
2 +

a2H2

k2
2

å
+ γ7(a)

a2H2
Ä
k1

4 + k2
4
ä

k2k1
2k2

2 + γ8(a)
a4H4

k1
2k2

2 , (4.11)

where the background functions γ1(a), γ2(a) and γ3(a) are shown in the next

section, while the other γi(a) are listed in Appendix E. Finally, using Green’s

method with the homogeneous solutions, Eq. (3.54), we can find the evolution

of the second-order density fluctuations

δ(2)(a,~k) = D+(a)δ(2)(~k)−D+(a)

∫ a

am

da′
D−(a′)S(δ)(a′,~k)

a′2H2(a′)W (a′)

+D−(a)

∫ a

am

da′
D+(a′)S(δ)(a′,~k)

a′2H2(a′)W (a′)
, (4.12)

where W is the Wronskian

W (a) ≡ D+(a)D−
′(a)−D−(a)D+

′(a) = − 5H0

2a2H(a)
, (4.13)

am is some initial time deep inside the matter dominated era and δ(2)(~k) is the

initial second-order DM perturbation. It is interesting to see that in this relation

there is no explicit dependence on the coefficients ci.

4.2 Dark Matter Bispectrum

To describe the DM distribution of the universe the first statistical interesting

quantity is the power-spectrum¨
δ(a,~k1)δ(a,~k2)

∂
≡ (2π)3δ(3)(~k1 + ~k2)P (a, k1) , (4.14)

where δ(3)(~k1 + ~k2) is the three dimensional Dirac delta function and 〈. . .〉 indi-
cates ensemble averaging. Note that, under the assumption of spatial isotropy,

the power-spectrum depends only on the absolute value of ~k1. By the Wick the-

orem, for Gaussian distributed fluctuations the power-spectrum contains all the

information about the DM distribution. The linear power-spectrum, calculated

using first-order equations, reads

P (a, k) ∝ |D+(a)|2T 2(k)

Å
k

H0

ãns
, (4.15)
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where ns is the scalar spectral index of primordial fluctuations and T (k) is the

transfer function (for which we use for simplicity the fit provided in [98]). In

the following computations we will take ns = 0.96 [6]. The second statistic of

interest is the bispectrum, defined by¨
δ(a,~k1)δ(a,~k2)δ(a,~k3)

∂
≡ (2π)3δ(3)(~k1 + ~k2 + ~k3)B(a, k1, k2, k3) , (4.16)

where the Dirac delta function imposes that only closed triangle configurations

are to be considered. Since we are interested in studying the contribution gener-

ated by gravitational instability at late times in the Galileon theory, we impose

Gaussian initial conditions. It is convenient to use the reduced bispectrum [99],

defined by

Q(a, k1, k2, k3) ≡ B(a, k1, k2, k3)

P (a, k1)P (a, k2) + cyc.
, (4.17)

which has the property that it remove most of the scale dependence to lowest-

order (tree-level) in non-linear perturbation theory. Using the results of the

previous sections we can write the density contrast perturbation as 1

δ(a,~k) ≡ δ(1)(a,~k) +
1

2
δ(2)(a,~k) = D+(a)δ(1)(~k)

+

∫
d3q1

∫
d3q2δ

(3)(~k − ~q1 − ~q2)F (a, ~q1, ~q2)δ(1)(a, ~q1)δ(1)(a, ~q2) , (4.18)

where

F (a, ~q1, ~q2) =

∫ a

am

da′
D+

2(a′) [D−(a)D+(a′)−D+(a)D−(a′)]

2a′2H2(a′)W (a′)D+
2(a)

KSH(a′, ~q1, ~q2)

=
a
»
H(a)

γ(a)

∫ a

am

da′
Ç∫ a

a′

da′′

γ2(a′′)

å
γ3(a′)

a′3
»
H(a′)

KSH(a′, ~q1, ~q2)

2H2(a′)
. (4.19)

The kernel KSH(a′, ~q1, ~q2) is the leading order of Eq. (4.11) taking into account

that we are working on scales much smaller than the horizon (ki2 � a2H). This
kernel can be recast in a more convenient form as

KSH(a, ~q1, ~q2)

2H2(a)
= γ1(a) + γ2(a)

Ä
~k1 · ~k2

ä Ä
k1

2 + k2
2
ä

k1
2k2

2 + γ3(a)

Ä
~k1 · ~k2

ä2
k1

2k2
2 , (4.20)

1Notice that in the following we neglect the contribution proportional to the initial second-

order DM perturbation δ(2)(~k) in Eq. (4.12). δ(2)(~k) contains both a possible primordial NG,

and a non-primordial contribution, see, e.g. [70, 100]. However the non-primordial term gives

a negligible contribution to our final results on the scales of the quasi-static regime.
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where

γ1(a) ≡ f2(a) +
ρma

2

2M2
plH2

− c2
3a

2H2π′4ρm
4c2M6M4

plα
+
c4

3a
2H4π′6ρ2

m

8c3
2M

12M6
plα

3

γ2(a) ≡ f2(a) +
ρma

2

4M2
plH2

− c2
3a

2H2π′4ρm
8c2M6M4

plα

γ3(a) ≡ f2(a)− c4
3a

2H4π′6ρ2
m

8c3
2M

12M6
plα

3

f(a) = 1 +
3pπ

4 (ρm + ρπ)
+

1

2
ah(a) . (4.21)

Here we introduce h(a) = g(a) + 7/(2a), where g(a) is the solution of Eq.

(3.50), to parametrize the contribution of the accelerated expansion on the

growth rate. Eq. (4.20) is one of the main results of our paper. It reduces to

the usual form of the Newtonian kernel in the limit of an EdS universe [79, 80].

It shows that the different contributions to the bispectrum have the same scale

dependence as in EdS and ΛCDM, while they are modulated by time dependent

coefficients that depend on the particular Galileon model. Looking at Eq. (4.20)

we can recognize three kind of modifications w.r.t. the ΛCDM kernel. The first

is due to the different evolution of the growth rate w.r.t. ΛCDM and, as stated

before, should produce deviations in the bispectrum that can reach ' 100%. The

second comes from the different evolution of the background, while the third is

related to the parameters c2 and c3.

The reduced bispectrum, Eq. (4.17), assumes the standard form

Q(a, k1, k2, k3) =
2F (a,~k1,~k2)P (a, k1)P (a, k2) + cyc.

P (a, k1)P (a, k2) + cyc.
. (4.22)

The scales at which our approximations can give valid results are

10−4h Mpc−1 � k . 10−1h Mpc−1. The first inequality follows from the sub-

horizon approximation, while the second excludes the scales at which highly non-

linear effects become non-negligible. In Figs. 4.1 and 4.3 we show the angular

dependence of the reduced bispectrum for different Galileon models, at a = 1

and at a = 0.6 respectively, fixing k1 = k2, θ being the angle between ~k1 and ~k2

(~k1 ·~k1 = k1k2 cos θ). In Fig. 4.2 and 4.4 we show the angular dependence of the

reduced bispectrum, at a = 1 and at a = 0.6 respectively, fixing k1 = const.× k2

and k2 = 10−3 h Mpc−1.
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Figure 4.1: In the left panels we plot the reduced bispectrum for some Galileon models as a

function of the angle θ, fixing k1 = k2 at a = 1. In the right panels we plot the relative

deviations of the bispectrum of the Galileon w.r.t. the one of ΛCDM. The parameter values

are: c1 = 1.6, c2 = 0.04, c3 = 10−3 (red line); c1 = 1.5, c2 = 0.4, c3 = 10−3 (blue line);

c1 = 11, c2 = 3.8, c3 = 1 (purple line); c1 = 6, c2 = 3.6, c3 = 1 (yellow line); c1 = 10−4,

c2 = 3.3, c3 = 1 (green line).

In Fig. 4.5 we show the evolution of

G(a′, a) ≡ D+
2(a′) [D−(a)D+(a′)−D+(a)D−(a′)]

a′2W (a′)D+
2(a)

KSH(a′, ~q1, ~q2)

2H2(a′)
(4.23)

for an equilateral configuration at a = 1 (left panel) and a = 0.6 (right panel).
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Figure 4.2: The same as Fig. 4.1 fixing k1 = const.× k2 and k2 = 0.001 h Mpc−1.

This configuration is useful to understand the behavior of the reduced bispec-

trum, Eq. 4.22, because it is totally independent of the power-spectrum, in fact

Q(a, k1, k1, k1) = 2F (a,~k1,~k1). As one can see in the left panel of Fig. 4.5 the

function G(a = 1, a′) contains a compensation effect that reduces the deviations

w.r.t. the ΛCDM model in the bispectrum, as shown in Figs. 4.1, 4.2, 4.3 and

4.4. Let us notice that, for a′ . 0.4, the line of every Galileon model we con-

sider lies below the ΛCDM line; viceversa, for a′ & 0.4, except for the red and

blue lines, for which we find the strongest deviations, the Galileon lines lie above
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Figure 4.3: In the left panels we plot the reduced bispectrum for some Galileon models as a

function of the angle θ, fixing k1 = k2 at a = 0.6. In the right panels we plot the relative

deviations of the bispectrum of the Galileon w.r.t. the one of ΛCDM. The parameter values

are: c1 = 1.6, c2 = 0.04, c3 = 10−3 (red line); c1 = 1.5, c2 = 0.4, c3 = 10−3 (blue line);

c1 = 11, c2 = 3.8, c3 = 1 (purple line); c1 = 6, c2 = 3.6, c3 = 1 (yellow line); c1 = 10−4,

c2 = 3.3, c3 = 1 (green line).

the ΛCDM line (up to the present epoch). Consequently, when we integrate

G(a = 1, a′), the deviations that we have obtained studying the background and

the power-spectrum are attenuated considerably. Instead, when w & −0.85 –

corresponding to the red and blue lines, see Fig. 2.2 – we see a minimum be-
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Figure 4.4: The same as Fig. 4.3 fixing k1 = const.× k2 and k2 = 0.001 h Mpc−1.

low the ΛCDM around a′ ' 1. This feature decreases the compensation effect

and produces larger deviations in the dark matter bispectrum. This could be

explained by the fact that the universe is not accelerating enough today and the

evolution of the growth rate is strongly modified (see Fig. 3.5). For these cases

the deviations we find in the bispectrum are about ' 5%. Instead, computing

B(a, k1, k2, k3) before the acceleration of the universe, the compensation effect is

conserved because the contribution of the Galileon is negligible and all models

are indistinguishable (see for example the right panel of Fig. 4.5 and the tiny
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Figure 4.5: The integrand of Eq. 4.19 for an equilateral configuration at a = 1 (left panel)

and a = 0.6 (right panel). The models we plot are the same as in Fig. 2.2, while the black line

represents the ΛCDM

model.

deviations seen in Figs. 4.3 and 4.4).
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CHAPTER5
THE WEAKLY NON-LINEAR

REGIME (COUPLED

GALILEON)

In the previous Chapter we have found interesting results, as the suppression

effect of the bispectrum w.r.t. the power spectrum. This property can be a par-

ticular behavior of the Galileon models or a more universal effect. Therefore, to

conlcude this thesis, it is interesting to study the DM bispectrum of the Coupled

Galileon theory, Eq. (1.9), i.e. the most general Galileon theory in literature. In

this Chapter we shall first review the background and the linear perturbation

theory (a detailed analysis can be found in [50, 52]). Here we only provide the

analytical results and a brief discussion on the form of the equations. The last

section is devoted to the second-order equations and the analytic form of the DM

bispectrum calculated at tree-level.
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5.1 Background evolution

Using the conformal time and the metric given in Eq. (3.18), the Friedmann

equations for Eq. (1.9) read

3Mpl
2H2

a2
=ρm +

1

2
c1M

3π +
c2π
′2

2a2
− 3c3π

′3H
M3a4

+
45c4π

′4H2

2M6a6

− 21c5π
′5H3

M9a8
− 9cGMplπ

′2H2

M3a4
+

6c0MplH (π′ +Hπ)

a2
, (5.1)

Mpl
2

a2

Ä
H2 + 2H′

ä
=
c1M

3

2
π − c2π

′2

2a2
− c3π

′2 (π′′ −Hπ′)
M3a4

+
3c4π

′3

2M6a6

Ä
8Hπ′′ − 7H2π′ + 2H′π′

ä
− 3c5Hπ′4

M9a8

Ä
5Hπ′′ − 5H2π′

+2H′π′
)
− cGMplπ

′

M3a4

Ä
2H′π′ + 4Hπ′′ − 3H2π′

ä
+

2c0Mpl

a2

Ä
π′′ +H2π +Hπ′ + 2H′π

ä
. (5.2)

The background Galileon field equation reads

− c1M
3

2
− c2

a2

(
π′′ + 2Hπ′

)
+

3c3π
′

M3a4

(
2Hπ′′ +H′π′

)
− 18c4Hπ′2

M6a6

(
3Hπ′′

−2H2π′ + 2H′π′
ä

+
15c5H2π′3

M9a8

Ä
4Hπ′′ + 3H′π′ − 4H2π′

ä
+

6cGMplH
M3a4

(
Hπ′′ + 2H′π′

)
=

6c0Mpl

a2

Ä
H2 +H′

ä
. (5.3)

5.2 Linear perturbation theory

At the linear level the first interesting equations in order to study the evolution

of the DM perturbation in the Poisson gauge and on sub-horizon scales are the

(0, 0) and the traceless part of the Einstein equations

α1φ
(1) = −ρmδ

(1)a2

2Mpl
2k2
− α2

π(1)

Mpl
, (5.4)

α1ψ
(1) = α4φ

(1) + 2α3
π(1)

Mpl
. (5.5)
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The equation for the Galileon takes this form

α5
π(1)

Mpl
+ 4α3φ

(1) − 2α2ψ
(1) = 0 , (5.6)

where αi ≡ αi(τ) are dimensionless background functions

α1 ≡ 1− 3c4π
′4

2M6Mpl
2a4

+
3c5Hπ′5

M9Mpl
2a6

+
cGπ

′2

M3Mpla2
− 2c0π

Mpl
, (5.7)

α2 ≡ c0 −
c3π
′2

2M3Mpla2
+

6c4Hπ′3

M6Mpla4
− 15c5H2π′4

2M9Mpla6
− 2cGHπ′

M3a2
, (5.8)

α3 ≡ c0 +
c4π
′2

M6Mpla4

(
3π′′ − 2Hπ′

)
− 3c5π

′3

2M9Mpla6

(
4Hπ′′ +H′π′

−4H2π′
ä
− cGπ

′′

M3a2
, (5.9)

α4 ≡ 1 +
c4π
′4

2M6Mpl
2a4

+
3c5π

′4

M9Mpl
2a6

(
π′′ −Hπ′

)
− cGπ

′2

M3Mpla2
− 2c0π

Mpl
, (5.10)

α5 ≡ − c2 +
2c3

M3a2

(
π′′ +Hπ′

)
− 2c4π

′

M6a4

Ä
12Hπ′′ + 6H′π′ − 5H2π′

ä
+

12c5Hπ′2

M9a6

Ä
3Hπ′′ + 2H′π′ − 3H2π′

ä
+

2cGMpl
(
H2 + 2H′

)
M3a2

. (5.11)

In the Jordan frame the stress-energy tensor of the DM component is decoupled

from the Galileon field, therefore it is covariantly conserved and the results given

in Eqs. (3.31) and (3.32) also hold in this case

δ(1)′′ +Hδ(1)′ + k2ψ(1) = 0 . (5.12)

It is important to note these equations have some structural differences w.r.t.

the corresponding equations in Sec. 3.2. In particular, on sub-horizon scales

and using the Poisson gauge, each new term (c4, c5, c0 and cG) in Eq. (1.9)

contributes to produce an anysotropic stress in Eq. (5.5) w.r.t. Eq. (3.29). The

other difference is the presence of the gravitational potential φ(1) in the Galileon

field equation, Eq. (5.6).

From Eqs. (5.4), (5.5), (5.6) and (5.12), it is straightforward to single out

an equation for the evolution of the DM perturbations at the linear level. The

result reads

δ(1)′′(τ) +Hδ(1)′(τ)− 4πGπ(τ)a2ρmδ
(1)(τ) = 0 , (5.13)
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where we have absorbed the modifications due to the Galileon field into a modi-

fied Newton’s constant

Gπ(τ) =
8α3

2 − α4α5

8α1α2α3 − 2α2
2α4 − α1

2α5
. (5.14)

5.3 Second-order equations and Dark Matter

bispectrum

As explained in the previous Chapter, in order to calculate the leading contribute

to the DM bispectrum (tree-level) on weakly non-linear scales we also need the

second-order field equations. The procedure to decouple the equations is the

same as in Sec. 5.2, but the result should contain a source term

δ(2)′′(τ) +Hδ(2)′(τ)− 4πGπ(τ)a2ρmδ
(2)(τ) = S(δ) . (5.15)

After a Fourier transform the source term can be expressed as

S(δ)(τ,~k) =

∫
d3k1d

3k2δ
(3)(~k − ~k1 − ~k2)K(τ,~k1,~k2)δ(1)(τ,~k1)δ(1)(τ,~k2) . (5.16)

Even though in principle the source contains a huge quantity of terms, it is

possible to simplify the calculation by expanding in (k1,2τ)−1 � 1 up to the

leading order. This is allowed despite the fact that in Eq. (5.16) k1,2 cover the

full momenta-space (not only the sub-horizon scales). In fact, we know that,

when calculating the bispectrum, the integrals in Eq. (5.16) are solved. Then

the kernel K(τ,~k1,~k2) reads

K(τ,~k1,~k2) ≡
î
2H2f2 + 8πGπa

2ρm − (8π)3Gπ
3a2ρm

2γ(τ)
ó

+
î
2H2f2 + 4πGπa

2ρm
ó Ä~k1 · ~k2

ä Ä
k1

2 + k2
2
ä

k1
2k2

2

+
î
2H2f2 + (8π)3Gπ

3a2ρm
2γ(τ)

ó Ä~k1 · ~k2

ä2
k1

2k2
2 , (5.17)

where γ(τ) is a function defined by

γ(τ) ≡ (2α1α3 − α2α4)

(8α3
2 − α4α5)3

î
3 (2α1α3 − α2α4)

Ä
8α3

2 − α4α5

ä
η1

− 3 (2α1α3 − α2α4) (−4α2α3 + α1α5) η2 + 2(2α1α3 − α2α4)2η3
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+3 (−4α2α3 + α1α5)
Ä
8α3

2 − α4α5

ä
η4

ó
, (5.18)

and η1−4 read

η1(τ) ≡ cGMpl
3

M3
− 3c4Mpl

2π′2

M6a2
+

6c5Mpl
2π′3H

M9a4
(5.19)

η2(τ) ≡ − cGMpl
3

M3
+
c4Mpl

2π′2

M6a2
− 6c5Mpl

2π′2

M9a4

(
π′′ −Hπ′

)
(5.20)

η3(τ) ≡ c3Mpl
3

M3
− 6c4Mpl

3π′′

M6a2
+

6Mpl
3c5π

′

M9a4

Ä
2Hπ′′ +H′π′ − 2H2π′

ä
(5.21)

η4(τ) ≡ 3c5Mplπ
′4

2M9a4
(5.22)

We are now ready to calculate the reduced DM bispectrum generated at late-

times by gravitational instability. We use the well known definitions, Eqs. (4.16)

and (4.17), to obtain

Q(τ, k1, k2, k3) =
2F (τ,~k1,~k2)P (τ, k1)P (τ, k2) + cyc.

P (τ, k1)P (τ, k2) + cyc.
, (5.23)

where P (τ, ki) is the power spectrum and the time dependence part of F (τ,~k1,~k2)

read

F (τ) ≡
∫ τ

τm

dτ ′
[D−(τ)D+(τ ′)−D+(τ)D−(τ ′)]D+

2(τ ′)

[D+(τ ′)D−
′(τ ′)−D−(τ ′)D+

′(τ ′)]D+
2(τ)
K(τ ′) . (5.24)

Here we have neglected, as in Eq. 4.12, the contribution proportional to the

initial second-order DM perturbations, since it gives a negligible contribution to

the bispectrum on sub-horizon scales. The kernel shown in Eq. (5.17) agrees with

the result obtained in [56] and Eq. (4.20) for the Cubic Galileon and also with the

standard results for an EdS universe and the ΛCDM model [79, 80]. Comparing

Eq. (5.17) with Eq. (4.20) we can recognize the same form, where the interesting

time-dependent functions involved in the bispectrum are three. The first is the

usual contribution coming from the growth rate, the second is linearly dependent

on the modified Newton’s constant (∝ Gπa
2ρm), while the third involves more

non-linearities (∝ Gπ3a2ρm
2γ). In the Cubic Galileon models we noted that the

three terms give a comparable contribution on the DM bispectrum today. The

next step will be to resolve numerically the bispectrum in order to understand if

the new parameters introduced here can modify this behavior.
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CHAPTER6
THE HIGHLY NON-LINEAR

REGIME

This Chapter is focused on the analysis of the collapse of a spherical DM density

perturbation. This analysis involves highly non-linear effects, thus we have to

take into account every non-linear term in the equations of motion. We use the

notation and the results given in Sec. 2.1 and Sec. 3.1.

6.1 Non-Linear regime

When perturbations grow, Eqs. (3.3), (3.4) and (3.5) must be rewritten taking

into account every perturbation term. Neglecting time-derivatives of perturba-

tions and assuming that the characteristic scale of the perturbation is well within

the Hubble radius, the fully non-linear equations areÄ
2M2

pl + π̇2γ1(t)
ä
∇2Φ = −δρ+ γ2(t)∇2ϕ+ γ1(t)

[
(∇2ϕ)

2
+

−∇ijϕ∇
j
iϕ
ó

+ η1(t)
[
(∇2ϕ)

3
+ 2∇ijϕ∇

j
kϕ∇

k
iϕ+

45



Chapter 6

−3∇2ϕ∇ijϕ∇
j
iϕ
ó
− 3

2
π̇2η1(t)
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iϕ
ó
, (6.1)
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− 3
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î
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iϕ
ó
. (6.2)

Eq. (3.5), instead, takes the form

γ5(t)∇2ϕ+ γ2(t)∇2Ψ + 3γ4(t)∇2Φ + η3(t)
[
(∇2ϕ)

2 −∇ijϕ∇
j
iϕ
]
−

− η4(t)
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3
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kϕ∇
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iϕ− 3∇2ϕ∇ijϕ∇
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iϕ
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+

+ 2γ1(t)
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∇2ϕ∇2Ψ−∇ijΨ∇

j
iϕ
ó

+ 6η2(t)
î
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j
iϕ
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− 3
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π̇2η1(t)

î
∇2Ψ∇2Φ−∇ijΦ∇
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iΨ
ó

+ 3η1(t)
[
(∇2ϕ)

2∇2Ψ−

−2∇2ϕ∇ijϕ∇
j
iΨ−∇

2Ψ∇ijϕ∇
j
iϕ+ 2∇ijϕ∇

j
kϕ∇

k
iΨ
ó

= 0 , (6.3)

where the ηi(t) functions are listed in B.

Eqs. (6.1), (6.2) and (6.3) are more complicated than in the linear case, how-

ever, assuming spherical symmetry, they are in fact integrable. The boundary

values of the perturbations can be determined by resorting to the physical mean-

ing to these fields. For example, from GR we know that the physical solution of

the Poisson equation is

ΨGR
′(t, r) =

Gm(t, r)

r2
. (6.4)

Recalling the definition of the mass function, m(t, r) ≡ 4π
∫ r

0 dr′r′2δρ(t, r), if

there are no singularities at r = 0 for the density perturbation, this relation tells

us that ΨGR
′(t, 0) = 0 (to violate this limit we have to choose δρ(r) ∝ r−n,

with n ≥ 3). At small scales we want to recover GR, so the physical meaning of

Ψ(t, r) should be that of gravitational potential (Ψ′(t, r) ' ΨGR
′(t, r)). Indeed,

the natural assignment is Ψ′(t, 0) = 0. The same argument applies to Φ′(t, r →
0) ' −ΨGR

′(t, r → 0). Instead, the scalar field and its perturbations are not

directly observable quantities, so we have to choose the correct boundary value

by mathematical arguments or by its effect on measurable physical quantities.

As in Eq. (3.11), at r → 0 there should be some divergent term. However, the

same reasoning used in the linear case allows us to consider ϕ′(r → 0) finite.
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Integrating Eqs. (6.1), (6.2) and (6.3) for a spherically symmetric object, we

obtain

γ6
Φ′

r
= −m(t, r)

4πr3
+ γ2

ϕ′

r
+ 2γ1

ϕ′2

r2
+ 2η1

ϕ′3

r3
− 2η1

ϕ′(0)3

r3
− 3π̇2η1

ϕ′Φ′

r2
(6.5)
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r
+ γ6
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= 3γ4

ϕ′

r
+ 6η2
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r2
(6.6)
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+ 6η1

ϕ′2Ψ′

r3
+ 12η2

ϕ′Φ′

r2
− 3π̇2η1

Φ′Ψ′

r2
= 0 , (6.7)

Note that we have not yet analyzed the case in which the scalar field has a

boundary value ϕ′(r = 0) finite, but different from zero; to do this we have to

impose a physical condition. From Eq. (6.6), we can write

ϕ′(r)

r
= − γ4

4η2
+
π̇2η1

4η2
· Ψ′(r)

r
+
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r
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8
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Ä
2M2

pl + π̇2γ1

ä Ψ′(r)

r

ô1/2

; (6.8)

here we have chosen the solution which matches the linear one (3.11) when r →
∞. Without any loss of generality, the metric perturbations can be written as

Ψ′(r) = Ψ′GR(r) [1 + δΨ(r)] =
Gm(t, r)

r2
[1 + δΨ(r)] (6.9)

Φ′(r) = Φ′GR(r) [1 + δΦ(r)] = −Gm(t, r)

r2
[1 + δΦ(r)] . (6.10)

In this case, ΨGR(r) can be understood as the gravitational potential generated

by a perturbation in the ΛCDM model. When r � rV , δΨ and δΦ have to be

small by solar-system constraints (δΨ , δΦ . 10−3), so we can treat them as small

perturbations. In this limit, at first-order, Eq. (6.8) becomes

ϕ′(r)

r
'− γ4

4η2
+
π̇2η1Ψ′GR(r)

4η2r
+

Sgn(γ4)f(t, r)

4η2
+
π̇2η1Ψ′GR(r)

4η2r
δΨ(t, r)+

+
Sgn(γ4)Ψ′GR(r)

12η2f(t, r)r

ñ
3π̇4η1

2 Ψ′GR(r)

r
− 3π̇2γ4η1 + 4γ6η2

ô
δΨ(t, r)+

− Sgn(γ4)γ7Ψ′GR(r)

f(t, r)r
δΦ(t, r) , (6.11)
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where

f(t, r) ≡
[
γ4

2 + π̇4η1
2 Ψ′GR(r)2

r2
− 8γ3η2

Ψ′GR(r)

r
− 2π̇2γ4η1

Ψ′GR(r)

r
+

+
8

3
π̇2γ1η2

Ψ′GR(r)

r

ô1/2

. (6.12)

From Eq. (6.11), we are now ready to choose a reasonable boundary value for

ϕ′(r). It is sufficient to suppose that neither δΨ nor δΦ diverge in the limit r → 0,

to show that ϕ′(r → 0) = 0.

6.1.1
Vainshtein radius

Having obtained the non-linear equations of motion, we are now ready to investi-

gate the radius at which non-linearities become important. The simplest way to

estimate rV is to plug-in the linear solutions into the non-linear equations, and

estimate when the non-linear terms become comparable with the linear ones.

First, considering Eq. (6.5), from the quadratic term we obtain

2
γ1

γ2
· ϕ
′

r

∣∣∣∣∣
r=rV1

' 1 . (6.13)

To solve this equation, we need to know the matter density profile. However,

using Eq. (3.11), in the general case we find

rV1
3 =

γ1(t)A(t)

2πγ2(t)
[m(t, r) + ∆m(t, r, rV1)] , (6.14)

where ∆m(t, r, rV1) = 4π
∫ rV1
r dr′r′2δρ. The interior solution for a top-hat profile

leads to an r-invariant equation. The simple consideration is that, depending

on the epoch and on the choice of the background parameters, we can have this

region all inside or all outside the Vainshtein region. Instead, outside a source of

mass Ms we find (defining RV ≡ rV (R))Å
RV1
R

ã3

=

∣∣∣∣∣2γ1

γ2
· A(t)Ms

4πR3

∣∣∣∣∣ . (6.15)

The same procedure for the cubic term leads toÅ
RV2
R

ã3

=

∣∣∣∣∣
 

2η1

γ2
· A(t)Ms

4πR3

∣∣∣∣∣ . (6.16)
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6.1 Non-Linear regime

Comparing the two Vainshtein radii we see that they are comparable. This means

that we have an exterior linear region, but, when we enter the non-linear one,

quadratic and cubic terms can both dominate. Indeed, the contribution derived

from the terms c4 and c5 influences in a non-negligible way the scalar field profile.

This also proves that at sufficiently large distances we recover the predictions of

the linear theory, discussed in Sec. 3.1.

Other three important Vainshtein radii, coming from Eqs. (6.6) and (6.7),

are Å
RV3
R

ã3

=
2η2

γ4
· A(t)Ms

4πR3
, (6.17)

Å
RV4
R

ã3

=
2η3

γ5
· A(t)Ms

4πR3
. (6.18)

and Å
RV5
R

ã3

=

 
2η4

γ5
· A(t)Ms

4πR3
. (6.19)

Here we have neglected non-linear interactions which couple ϕ with Φ and

Ψ, because they produce results analogous to the previous ones. The Vainshtein

radius can be set as RV ≡ Max(RVi), where i = 1, .., 11. It is straightforward to

prove thatRV (t→ −∞)→ +∞, whileRV (t→ +∞) = f(α, β, xdS)Ms/(4πMplH
2
dS),

where f is a generic function of the background parameters. This result agrees

with the predictions of [86] and [87].

6.1.2
Galileon field evolution

In this section we study the Galileon field evolution, starting from Eqs. (6.5),

(6.6) and (6.7). These are three algebraic equations in Ψ′(r), Φ′(r) and ϕ′(r),

so it is straightforward to obtain a sixth-order polynomial equation in ϕ′(r) (to

simplify the problem we will work under the assumption that xds = 1)

ϕ′6

r6
+ λ1(t)

ϕ′5

r5
+ λ2(t)

ϕ′4

r4
+ [λ3(t)δm + λ4(t)]

ϕ′3

r3
+ [λ5(t)δm+

+λ6(t)]
ϕ′2

r2
+ [λ7(t)δm + λ8(t)]

ϕ′

r
+ λ9(t)δm + λ10(t)δm

2 = 0 , (6.20)

49



Chapter 6

where λi are background functions, combinations of γi and ηi. From Eq. (6.20)

it follows that ϕ′(r) has six branches of solutions. What is the correct one?

Remembering the Vainshtein effect, we want that the physical solution reduces

to Eq. (3.11) at large distances. Of course, this condition cannot be verified

analytically, but it is sufficient to choose between the real solutions of Eq. (6.20).

Are we sure that, for a given couple (α, β), Eq. (6.20) has at least a couple of

solutions during the whole evolution of the universe? Obviously this condition is

not sufficient to ensure the existence of the physical solution, but it is a necessary

condition. In the linear regime the existence of a physical solution was proved

in Sec. 3.1, thus the problems can be inside the Vainshtein radius. As proved in

Sec. 6.1.1, at small distances non-linear terms become dominant for the evolution

of the scalar field. In particular, instead of Eq. (6.20), we can work with the

equation

ϕ′6

r6
+ λ1(t)

ϕ′5

r5
+ λ2(t)

ϕ′4

r4
+ λ10(t)δm

2 = 0. (6.21)

Also in this case we do not have an analytic solution for the scalar field; however

Eq. (6.21) gives new constraints on the allowed region in the parameter space

(α, β).

Consider a function as

f(x) = x6 +Ax5 +B x4 + C , (6.22)

where A, B, C 6= 0 are real coefficients. The RHS of this equation has the same

form as Eq. (6.21), after the substitution ϕ′(t, r)/r → x. It was demonstrated

that there is no analytic method to find a solution for f(x) = 0, when f(x) is a

fifth or higher degree polynomial. However, since

lim
x→±∞

f(x) = +∞ , (6.23)

it is sufficient to require that a minimum of this function is < 0, to be sure to

have at least a couple of real solutions. The points which satisfy f ′(x) = 0 are

x1,2,3 = 0 x4,5 = − 5

12
A±

 
25

144
A2 − 2

3
B . (6.24)

The zeros of Eq. (6.20) can be understood as six perturbative terms around xi.

Let us assume that, for the purpose of this section, these perturbations are small.
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6.1 Non-Linear regime

The set of parameters for which f(x) = 0 has at least a couple of solutions, which

are given by

f(x1) < 0 ∨ f(x4) < 0 ∨ f(x5) < 0 . (6.25)

Substituting our background functions into the parameters A, B, C, we must

pay attention to the dependence on t, because the previous inequalities have to

be hold true ∀ t. The first one becomes

f(x1) =
H12

ds M
6
Pl

144 π̇4 β2
·

Ä
π̇

HdsMPl

ä4 ï
α+ 6β

Å
π̈

H2
ds
MPl

ãò
− 2

4 +
Ä

π̇
HdsMPl

ä4 ï−5α+ 42β

Å
π̈

H2
ds
MPl

ãòδm(t)2 < 0 . (6.26)

It can be proved that this condition is verified ∀ t, when
α < 4/5

α . 5.22β + 1.93

α . −3.73β + 4.83 .

(6.27)

These relations were obtained evaluating the above expression at some critical

times, when f(x1) results maximized/minimized. We were able to do this because

f(0) takes a simple form, but this is not the case for f(x4) and f(x5). In fact,

the form of these functions at the points x4,5 is

f(x4,5) =C − 2

126

Ä
±5A+

√
25A2 − 96B

ä4 Ä
5A2 − 24B+

±A
√

25A2 − 96B
ä
. (6.28)

In our case, the parameter C depends on the matter-density perturbation, so the

inequalities which follow from the above expression have to be evaluated in two

distinct cases. The first one is when the density term dominates on the other

terms (the analysis is the same as in f(0) < 0 case), the second one when it

is subdominant. The latter case involves more complicated expressions for the

parameters α and β, so we were only able to solve it numerically. Combining

these results with the no-ghost condition given in [46], the constraints on the

parameters α and β become 

α > 2β

α < 2β + 2/3

α < 4/5

α . 5.7β + 2.62 ,

(6.29)

and are represented in Fig. 6.1.
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Figure 6.1: In this figure we show the allowed region in the plane (β, α) obtained by mixing

the no-ghost conditions and the conditions for the existence of the scalar field in the

non-linear regime.

6.2 Spherical collapse

In this section we will restrict our analysis to a top-hat matter configuration

ρ(r) =

 ρ0 + δρ r ≤ R
ρ0 r > R

, m(r) =

 δM (r/R)3 r ≤ R
δM r > R

. (6.30)

The mass δM is the total mass of the density perturbation δρ, while M ≡
4/3π (ρ0 + δρ)R3. The two masses are related by

δM =
δ

1 + δ
M , (6.31)

where δ ≡ δρ/ρ0 is the density contrast.

To study the dynamics of a spherical matter perturbation we need the well

known equation

δ̈ − 4

3

δ̇2

1 + δ
+ 2Hδ̇ = (1 + δ)∇2Ψ , (6.32)
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6.2 Spherical collapse

which follows from the non-linear continuity and the Euler equation for a pres-

sureless fluid of non-relativistic matter in a top-hat configuration [85]. Eqs. (6.1),

(6.2) and (6.3) tell us that, inside a top-hat density perturbation, Ψ′(r) ∝ r,

which means that ∇2Ψ will be r-independent. Indeed, a top-hat profile, remains

a top-hat profile during its whole evolution despite the non-validity of Birkhoff’s

theorem.

To solve Eq. (6.32), we have followed [85]; here we briefly summarize the

main steps. Assuming the total mass conservation, R3 ρ0 (1 + δ) = const., Eq.

(6.32) can be rewritten in terms of R

R̈

R
= H2 + Ḣ − 1

3
∇2Ψ . (6.33)

From this equation we can distinguish all the sources that affect the collapse

dynamics: H2 + Ḣ contains the contribution of the background (matter and

dark energy), while ∇2Ψ contains the contribution of matter and scalar field

perturbations. Using N = ln a as a time variable and defining

y ≡ R

Ri
− a

ai
, (6.34)

where Ri and ai are the initial radius of the perturbation and the initial scale

factor, Eq. (6.33) becomes

y′′ +
H ′

H
y′ −

Ç
1 +

H ′

H

å
y = −1

3

Ä
y + eN−Ni

ä
∇2Ψ , (6.35)

where a prime denotes differentiation w.r.t. N . The density contrast is

δ = (1 + δi) ·
Ä
eNi−Ny + 1

ä−3 − 1 . (6.36)

Eq. (6.35) can be solved numerically setting the initial conditions. From Eq.

(6.34) we know that yi = 0 and y′i = −δ′i/(3(1 + δi)). Supposing that the

perturbations start growing linearly during matter-dominance, the linearization

of Eq. (6.32) can be solved analytically. The growing mode is δ ∝ a, so δ′ = δ,

thus the second initial condition becomes y′i = −δi/3. We also set ai = 10−5,

while the initial density perturbation is set to collapse exactly at a0 = 1.
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6.2.1
Virialisation

The Virial Theorem states that a stable system must satisfy the relation

W + 2T = 0 , (6.37)

where

T ≡ 1

2

∫
d3xρv2 =

3

10
MṘ2 (6.38)

is the kinetic energy (the last equality holds true for a top-hat profile), while

W ≡ −
∫
d3xρm(~x)~x · ∇Ψ = −3M

R3

∑
i

∫ R

0
dr · r3 dΨi(r)

dr
(6.39)

is the trace of the potential energy tensor. As in the previous equation the last

equality holds true only for a top-hat profile. Ψi(r) denotes each component that

contributes to the total gravitational potential.

Usually energy conservation is used, but, as noted in [86], for a time-dependent

dark energy model, energy is not strictly conserved. So, during the collapse phase,

the virial radius can be estimated as the radius at which the virial condition (6.37)

is satisfied.

Important quantities that can be extrapolated from the dynamics of the col-

lapse are the linearized density contrast δc, and the virial overdensity

∆vir ≡
ρvir

ρcollapse
= [1 + δ(Rvir)] ·

Å
acollapse
avir

ã3

. (6.40)

6.2.2
Numerical Results

Case β = 0, xdS = 1.

This is the case in which the fifth term of Eq. (1.2) gives no contribution. Eqs.

(6.5), (6.6) and (6.7) become simpler. In particular, the modified Poisson equa-

tion reads

∇2Ψ =3ΩmH
2
dSa
−3x4 2x4 − α

2x4 + 3α
δ+
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6.2 Spherical collapse

− 3H2
dSx

2
[
2x4(2 + α) + α(−2 + 15α)

]
− 36α(2x4 + 3α)Ḣ

H2
dSMpl(2x4 + 3α)2 · ϕ

′

r
+

− 12αx2(2x4 − 3α)

H2
dSM

2
pl(2x

4 + 3α)2 ·
ϕ′2

r2
, (6.41)

with x ≡ H/HdS, and ϕ′ is a solution of

α1 ·
ϕ′3

r3
+ α2 ·

ϕ′2

r2
+ (α3 + α4δ) ·

ϕ′

r
+ α5δ = 0 , (6.42)

with

α1 =4αx2
Ä
4x8 + 24x4α− 45α2

ä
(6.43)

α2 =2Mpl

î
H2

dSx
2
Ä
4x4(2 + 3α)(x4 + 6α)− 9α2(2− 21α)

ä
+ (6.44)

+6α
Ä
4x8 − 24αx4 − 45α2

ä
Ḣ
ó

α3 =− 2H2
dSM

2
pl

î
H2

dSx
2
î
2x8(2 + α) + x4

Ä
−4 + 8α+ 21α2

ä
+

+α
Ä
2− 21α+ 45α2

äó
−
î
4x8(2 + 3α) + 27α2(−2 + 5α)+

+12x4α(−2 + 9α)
ó
Ḣ
ó

(6.45)

α4 =− 8e−3nH4
dSM

2
plΩmx

4
Ä
2x4 − 3α

ä
α (6.46)

α5 =− e−3nH4
dSM

3
plΩmx

2
î
H2

dSx
2
Ä
2x4(2 + α) + α(−2 + 15α)

ä
+

−12α
Ä
2x4 + 3α

ä
Ḣ
ó
. (6.47)

Of course, among the solutions we want the one that reduces to Eq. (3.11)

when r � rV .

Although this is a particular case, it is interesting to show the role of L4 in

Eq. (1.2). In Fig. 6.2 we have plotted the solution of Eq. (6.35) for various α. It

should be noted that modifications w.r.t. the ΛCDM model are present during

the collapse phase. This is, as expected, an effect of the increasing contribution

from the scalar field. In Tab. (6.1) we show the values assumed by the linearized

density contrast and the virial overdensity.

Case α = 0, xdS = 1.

In this paragraph we analyze another particular case, the one which shows the

role of L5, Eq. (1.2), in the dynamics of the collapse. Compared to the previous
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Model δi (10−5) δc atur Rtur/Ri ∆tur avir Rvir/Ri ∆vir

ΛCDM 2.220 1.674 0.553 28840 42 0.919 13910 371

α = 0 2.205 1.689 0.551 28990 41 0.914 14170 351

α = 1/10 2.243 1.723 0.537 28380 44 0.899 14500 328

α = 1/5 2.272 1.757 0.527 27930 46 0.884 14850 305

α = 1/3 2.300 1.801 0.515 27470 48 0.863 15430 272

α = 1/2 2.327 1.847 0.504 27020 51 0.836 16150 238

α = 2/3 2.345 1.882 0.495 26680 53 0.812 16710 215

Table 6.1: Here we show numerical results of physical interesting quantities in the case β = 0,

xdS = 1 for various α

paragraph, when β 6= 0 Eq. (6.20) cannot have an analytic solution. By the

parameter conditions, Eqs. (2.16) and (6.29), −1/3 ≤ β ≤ 0, so, to investigate

the parameter region in which β > 0 we need to set α > 0.

The dynamics of the collapse is shown in Fig. 6.3, while the linearized density

contrast and the virial overdensity for various β can be found in Table (6.2). It

is important to note that the onset of the fifth term in Eq. (1.2) plays a crucial

role in the virialisation process. In fact we can see that varying the parameter β

there is a substantial modification of ∆vir w.r.t. the ΛCDM model.

Case α 6= 0, β 6= 0, xdS = 1.

This is the most general case, despite the assumption xdS = 1. Here we can

evaluate the sum of the contribution of the terms L4 and L5, Eqs. (1.6) and

(1.7), in the whole parameter region defined by Eq. (6.29). The dynamics of the

collapse is shown in Fig. 6.4. In Table (6.3) it can be noted that as α and β grow

we obtain a larger δc, thus it should be easy to remove a large piece of parameter

space from the allowed region.
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6.2 Spherical collapse

Model δi (10−5) δc atur Rtur/Ri ∆tur avir Rvir/Ri ∆vir

ΛCDM 2.220 1.674 0.553 28840 42 0.919 13910 371

β = 0 2.205 1.689 0.551 28990 41 0.914 14170 351

β = −0.005 2.219 1.700 0.547 28800 42 0.907 14410 334

β = −0.01 2.227 1.707 0.544 28680 42 0.911 13810 380

β = −0.02 2.238 1.717 0.540 28500 43 0.910 13600 398

β = −0.05 2.263 1.742 0.531 28120 45 0.895 14050 361

β = −0.07 2.277 1.757 0.527 27910 46 0.883 14470 330

β = −0.1 2.296 1.780 0.520 27620 47 0.866 15060 293

β = −0.2 2.356 1.857 0.501 26740 52 0.813 16440 225

β = −0.3 2.412 1.928 0.484 25980 57 0.769 17150 198

Table 6.2: Here we show numerical results of physically interesting quantities, in the case

α = 0, xdS = 1 for various β

Model δi (10−5) δc atur Rtur/Ri ∆tur avir Rvir/Ri ∆vir

ΛCDM 2.220 1.674 0.553 28840 42 0.919 13910 371

α β

0.1 −0.1 2.323 1.815 0.511 27220 50 0.862 14760 311

−0.2 −0.2 2.356 1.831 0.499 26710 52 0.791 17230 195

−0.45 −0.4 2.383 1.875 0.492 26400 54 0.763 17820 177

−0.55 −0.4 2.362 1.851 0.496 26660 53 0.773 17710 180

Table 6.3: Here we show numerical results of physically interesting quantities in the case

α = 0, xdS = 1 for various β
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Figure 6.2: In the figure we plot the solution of Eq. (6.35), in terms of the normalized radius

R/Ri of the top-hat perturbation, when β = 0 and xdS = 1. The initial density for each model

is shown in Tab. (6.1).
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Figure 6.3: In the figure we plot the solution of Eq. (6.35), in terms of the normalized radius

R/Ri of the top-hat perturbation, when α = 0 and xdS = 1. The initial density for each model

is shown in Tab. (6.2).
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Figure 6.4: In the figure we plot the solution of Eq. (6.35), in terms of the normalized radius

R/Ri of the top-hat perturbation, when α 6= 0, β 6= 0 and xdS = 1. The initial density for each

model is shown in Tab. (6.3). The values for (α, β) are: ΛCDM blue dashed line;

(−0.45,−0.4) red line; (−0.2,−0.2) green line; (−0.55,−0.4) blue thick line; (0.1,−0.1) red

dashed line.
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CONCLUSIONS

In this thesis we have investigated certain aspects of the formation and the growth

of cosmic structures within the context of the Galileon field theory [51,56].

A central topic of this thesis is the study of the collapse of a spherical top-hat

DM density perturbation in the highly non-linear regime. With this objective

we have first reviewed the background evolution of the Galileon model, following

the tracker solution found in [46]. The peculiarity of this tracker solution is that

it ensures a dS stable point independent of the ci parameters of Eq. (1.2). This

assumption simplifies our equations, but it should also be easy to generalize our

work to a more general background evolution. Once c1 is set to zero, in Eq. (1.2)

should remain only kinetic terms for the scalar field, thus the Galileon cannot be

considered as a deviation from the ΛCDM model. It should work as a substitute

of the cosmological constant, mimicking the effects of Λ on cosmological scales.

Later, we have found two analytic functions that describe the evolution of the

components of the universe at late-times (Sec. 2.1).

Then, in Sec. 3.1 we have shown that, in the linear approximation the scalar

perturbations of a FLRW universe lead to a time-dependent gravitational con-

stant Gπ(t), that modifies the gravitational potential generated by a distant

or, equivalently, small source. The results we give do not represent a realistic

model, i.e. they are not required to satisfy the observational bounds, rather they

are chosen in order to display what one can generally expect from this theory.

The purpose of this work was the study of the role the new terms L4 and L5

have on the spherical collapse. It would be interesting to relate the linearized
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Conclusions

density contrast and the virial overdensity with observable quantities such as the

halo mass function and bias. However, a better understanding of how Galileon

field cosmologies confront observation is needed before proceeding to these de-

tailed predictions. Our results indeed represent the first mandatory step in this

direction.

The Galileon model can be successful because it possesses a Vainshtein mech-

anism, by which we can consider two distinct regions; the first one at large scales,

where the linear approximation applies and the Galileon drives the cosmic ac-

celeration, the second one where non-linearities are dominant. We have also

shown how to recover a Vainshtein radius in agreement with the one of DGP and

other simpler models (Sec. 6.1.1). Even though the study of the perturbations

in a highly non-linear regime can not be completely analytic, we found some

constraints, whose fulfillment allows Eq. (6.21) to have at least a couple of real

solutions (Sec. 6.1.2).

Chapter 6 is devoted to the study of the collapse of a spherical top-hat matter

perturbation. We have shown that the new terms L4 and L5 affect in a non-

negligible way the dynamics of the collapse and the value of δc and ∆vir. To

study the virialisation process we paid attention to the energy non-conservation

problem, calculating point by point the virial condition Eq. (6.37).

Another important aspect of the growth of structures we discussed in this

thesis is the DM modified bispectrum within the context of the cubic covariant

Galileon theory [56]. We worked on sub-horizon scales at second-order in the

perturbations, to show the leading contribution in the weakly non-linear regime.

We have first studied the background with the most general potential that

preserves the Galilean shift symmetry in a flat space-time. The contribution of

c3 is crucial to drive the late-time cosmic acceleration, however the deviations

w.r.t. the ΛCDM model are smaller if c1 ∼ c3 (Sec. 2.2).

At the linear level we have studied the evolution of the DM perturbations

finding semi-analytical expressions for the growing and the decaying modes. In

Fig. 3.5 we plot the deviations of the Galileon growth rate w.r.t. the growth rate

of the ΛCDM model. For models in which the value of c3 is negligible w.r.t. the

value of c1 the deviations are large (until about 100%), while, increasing c3 the

deviations decrease reaching ' 10% (Sec. 3.2).

Then, in Chapter 4 we have extended our analysis to second-order perturba-
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tions in order to calculate the DM bispectrum. Eq. (4.20), is one of our main

results. It shows that the overall ~k-dependence of the bispectrum is the same

as in the ΛCDM model, with time dependent coefficients which depend on the

particular Galileon model. We noted that, in general, there is a compensation

effect (see Fig. 4.5) in the integrand of Eq. (4.20), G(a, a′), that reduces the

deviations w.r.t. the ΛCDM model in the bispectrum. This effect is conserved if

we compute B(a, k1, k2, k3) before the accelerated phase of the universe (see the

right panel of Fig. 4.5), because the contribution of the Galileon is negligible and

all models are indistinguishable. If the bispectrum is evaluated today and the

model has w . −0.85, the compensation effect is preserved, giving deviations

up to ' 1%. Instead, we noted that this effect is less strong for those models

which have w & −0.85, allowing for larger deviations in the bispectrum up to

' 5%. We argue that the Vainshtein mechanism can be a possible explanation

for the overall suppression of the deviations w.r.t. the ΛCDM model in the DM

bispectrum and we leave for future work further investigation of this aspect.

In Chapter 5 we have calculated the DM bispectrum of the Coupled Galileon

to extend the analysis of Chapter 4. Even though we only give the analytical

result, it is important to recognize in Eq. 5.17 the same form of Eq. 4.20. In fact it

has the same overall ~k-dependence and the same structure of the time-dependent

functions in the kernel of the Cubic Galileon.

There are two main reasons to extend our analysis to a more general frame-

work, i.e. the Coupled Galileon. The first is that comparisons with observational

data prefer the Coupled Galileon, imposing severe constraints on the Uncoupled

Galileon [59]. The second reason is that it is fundamental to answer the follow-

ing question: is the suppression effect found in [56] a particular property of the

Galileon models or a more universal effect? Note that a similar result was found

for f(R) theories in [84].

In order to explain this suppression effect, there are alternative directions that

can be explored. First one can investigate the DM bispectrum using improve-

ments as the renormalized perturbation theory [101], resummed perturbation

theory or time-RG [102], to take into account more non-linear effects. In this

regime the Vainshtein mechanism should play a key role, increasing the suppres-

sion effect we see on weakly non-linear scales. Another interesting test would

be to extend our analysis using a General Relativistic approach, i.e. relaxing the

iii



Conclusions

sub-horizon approximation, in order to get closer to the horizon. In this regime

the Vainshtein mechanism should lower its effect, increasing the deviations of the

modified DM bispectrum w.r.t. the DM bispectrum of the ΛCDM model.
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APPENDIXA
STRESS-ENERGY TENSOR

AND GALILEON FIELD

EQUATION COMPONENTS

The terms of the stress-energy tensor of the scalar field read

T
(0)
µν =2Mpl [πGµν + gµν2π − π;µν ] (A.1)

T
(G)
µν =

Mpl

M3

î
gµν(2π)2 − 22ππ;µν − gµνπ;αβπ

;αβ + 2π;µαπ
;α
ν

− 2gµνR
αβπ;απ;β + 2Rµανβπ

;απ;β −Gµνπ;απ
;α

+2Rναπ
;απ;µ + 2Rµαπ

;απ;ν −Rπ;µπ;ν ] (A.2)

T
(1)
µν =

1

2
M3gµν π (A.3)

T
(2)
µν =− π;µ π;ν +

1

2
gµν (∇π)2 (A.4)

T
(3)
µν =− 1

M3

î
π;µ π;ν �π − π;{µ π;ν}α π

;α + gµν π
;α π;αβ π

;β
ó

(A.5)

T
(4)
µν =− 2

M6

ï
−1

2
Rπ;µ π;ν (∇π)2 + 2π;µα π

;α π;νβ π
;β

vii
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−2π;µν π
;α π;αβ π

;β + 2π;{µ π;ν}α π;β π
;βα − π;µ π;ν π;αβ π

;αβ

−gµν Rαβ π;α π;β (∇π)2 +Rµανβ π
;α π;β (∇π)2 +

1

2
gµν (�π)2 (∇π)2

−2gµν π;α π
;β π;βγ π

;αγ − π;µν �π (∇π)2 − 2π;{µ π;ν}α π
;α�π

+π;µ π;ν (�π)2 − 1

2
gµν π;αβ π

;αβ (∇π)2 + 2gµν π
;α π;αβ π

;β �π

+Rα{µ π;ν} π
;α (∇π)2 − 1

4
Gµν(∇π)4 + π;µα π

α
;ν (∇π)2

ò
(A.6)

T
(5)
µν =− 2

M9

î
3π;µγ π

γ
;ν π;α π;αβ π

;β − 3π;µα π;νγ π
;γ π;β π

;βα

+
3

2
π;µν Rαβ π

;α π;β (∇π)2 − 3

2
Rα{µ π;ν}β π

;α π;β (∇π)2

+
3

4
Rπ;{µ π;ν}α π

;α (∇π)2 +
3

2
Gµν π

;α π;αβ π
;β (∇π)2

−3

2
R α
β π;{µ π;ν}α π

;β (∇π)2 − 3π;µα π;νβ π
;α π;γ π

;βγ

−3π;µα π
;αβ π;νβ (∇π)2 + 3π;µν π;α π

;αβ π;γβ π
;γ

−3π;{µ π;ν}α π
;αβ π;γβ π

;γ +
3

2
Rαβ π;µ π;ν π

;αβ (∇π)2

+π;µ π;ν π
β

;α π;βγ π
;αγ +

3

4
Rπ;µ π;ν �π (∇π)2

+
3

2
π;µν π;αβ π

;αβ (∇π)2 +
3

2
π;{µ π;ν}α π

;α π;βγ π
;βγ

−3

2
π;µ π;ν π;αβ π

;αβ �π +
3

2
Rαγβ{µ π

α
;ν} π;β π;γ (∇π)2

−3

2
Rα{µ π;ν} π;β π

;βα (∇π)2 − 3

2
Rαγβ{µ π;ν} π

;γ π;αβ (∇π)2

−3

2
Rπ;µ π;ν �π (∇π)2 +

3

2
Rα{µ π;ν} π

;α�π (∇π)2

+3gµν π;α π;β π
;αγ π;γτ π

;βτ + 3gµν Rγβ π;α π
;γ π;αβ (∇π)2

−3

2
Rµναβ π;γ π

;α π;βγ (∇π)2 − 3Rµβνγ π;α π
;γ π;αβ (∇π)2

+
3

2
gµν Rαγβτ π

;α π;β π;γτ (∇π)2 + gµν π
;α
β π;αγ π

;βγ (∇π)2

+3π;µα π
;α π;νβ π

;β �π − 3π;µν π
;α π;αβ π

;β �π +
1

2
gµν(�π)3(∇π)2

+3π;{µ π;ν}α π
;βα π;β �π + 3π;µα π

α
;ν �π (∇π)2

−3

2
gµν Rαβ π

;α π;β �π (∇π)2 +
3

2
Rµανβ π

;α π;β �π (∇π)2

−3

2
π;µν (�π)2 (∇π)2 − 3

2
π;{µ π;ν}α π

;α (�π)2 +
1

2
π;µ π;ν (�π)3

−3

2
gµν π

;α π;αβ π
;β π;γτ π

;γτ − 3

2
gµν π;αβ π

;αβ �π (∇π)2

viii
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−3gµν π;α π
;γ π;γβ π

;αβ �π +
3

2
gµν π

;α π;αβ π
;β (�π)2

ò
. (A.7)

The terms appearing in the equation of motion for the scalar field read

ξ(0) =−MplR (A.8)

ξ(G) =
2Mpl

M3
Gµνπ

;µν (A.9)

ξ(1) =
M3

2
(A.10)

ξ(2) =−�π (A.11)

ξ(3) =
1

M3

î
−(�π)2 +Rµν π

;µ π;ν + π;µν π
;µν
ó

(A.12)

ξ(4) =
1

M6

î
2Rπ;µ π;µν π

;ν − 8Rνα π
;µ π;ν π α

;µ − 2Rµν π
;µν (∇π)2

−4Rµανβ π
;µ π;ν π;αβ − 4π ν

;µ π α
;ν π;µ

α +R (∇π)2�π

+4Rµν π
;µ π;ν �π + 6π;µν π

;µν �π − 2(�π)3
ó

(A.13)

ξ(5) =
1

M9

ï
3

2
R (∇π)2 (�π)2 + 3Rπ;µ π;µν π

;ν �π

+3R α
µ Rνα π

;µ π;ν (∇π)2 − 3

2
RRµν π

;µ π;ν (∇π)2

+3Rµν Rαµβν π
;α π;β (∇π)2 − 3

2
R αβγ
µ Rναβγ π

;µ π;ν (∇π)2

−3Rπ;µ π;ν π;µα π
α

;µ −
3

2
Rπ;µν π

;µν (∇π)2 − (�π)4

+3Rµν π
;µ π;ν (�π)2 − 12Rµα π

;µ π;ν π α
;ν �π

+6Rαβ π
;µ π;ν π α

;µ π β
;ν + 6Rµν π

;µα π ν
;α (∇π)2

+6π;µν π;µα π
;αβ π;νβ − 8π;µν π;να π

α
;µ �π

+12Rνβ π
;µπ;ν π;µα π

;αβ − 6Rµν π
;µν (∇π)2�π

−6Rµν π
;µν π;α π;αβ π

;β + 6π;µν π
;µν (�π)2 − 3Rαβ π

;α π;β π;µν π
;µν

−3(π;µν π
;µν)2 + 6Rµανβ π

;µ π;ν π;γα π β
;γ − 6Rµανβ π

;µ π;ν π;αβ �π

+12Rµανβ π
;γ π;µ π ν

;γ π;αβ + 3Rµανβ π
;µν π;αβ (∇π)2

ó
(A.14)
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APPENDIXB
BACKGROUND FUNCTIONS

Background functions involved in the linear perturbation theory (Sec. 3.1)

γ1(t) ≡3 (α− 2xdSβ)
π̇2

H4
dSM

2
pl

(B.1)

γ2(t) ≡
Ä
2 + 9α− 9β − 12xdSα+ 15x2

dSβ
ä π̇2

H2
dSMpl

(B.2)

γ3(t) ≡− π̇4

3H4
dSM

2
pl

Ç
α+ 6β

π̈

H2
dSMpl

å
(B.3)

γ4(t) ≡− 2π̇2

3H2
dSMpl

(2α− 3xdSβ)

Ç
xdS +

3π̈

H2
dSMpl

å
(B.4)

γ5(t) ≡− 6− 9α+ 12β − 26x2
dSα+ 4xdS (2 + 9α− 9β) + 24x3

dSβ

+ 2 [2 + 9α− 9β − 6xdS (α− xdSβ)]
π̈

H2
dSMpl

(B.5)

Background functions involved in the non-linear dynamics (Sec. 6.1)

η1(t) ≡ 2β

H6
dSM

3
pl

π̇2 (B.6)

η2(t) ≡ π̇2

3H4
dSM

2
pl

Ç
α− 6β

π̈

H2
dSMpl

å
(B.7)
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η3(t) ≡ 1

H2
dSMpl

ñ
2 + 9α− 9β − 6 (α− xdSβ)

Ç
xdS +

π̈

H2
dSMpl

åô
(B.8)

η4(t) ≡ 2

H4
dSM

2
pl

Ç
α− 2β

π̈

H2
dSMpl

å
(B.9)
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APPENDIXC
GAUGES IN LINEAR

APPROXIMATION

Poisson Gauge

This gauge is very useful because in many cases the scalar metric perturbation

ψ can be interpreted as the Newtonian potential. It can be obtained suppressing

the off-diagonal terms of the metric

χ(1) = 0

ω(1) = 0 . (C.1)

From Eq. (3.29), we obtain the standard result

ψ(1) = φ(1) , (C.2)

while Eq. (3.32) reads

ψ(1) + v(1)′ = 0 . (C.3)

xiii



Chapter C

In sub-horizon approximation the field equation for the galileon, Eq. (3.30)

reads Ç
c2 −

2c3π
′′

M3a2
− 2

c3Hπ′

M3a2

å
k2π(1) − c3π

′2

M3a2
k2ψ(1) = 0 . (C.4)

Using also the time-time component of the Einstein equations, Eq. (3.26), we

obtain (
1 +

c2
3π
′4

2c2M6M2
pla

4
− 2c3π

′′

c2M3a2
− 2c3Hπ′

c2M3a2

)
k2ψ(1)

+

(
1

2M2
pl

− c3π
′′

c2M3M2
pla

2
− c3Hπ′

c2M3M2
pla

2

)
a2ρmδ

(1) = 0 . (C.5)

Substituting Eqs. (C.3) and then (C.2) into the derivative of Eq. (3.31), in

sub-horizon approximation we obtain

δ(1)′′ +Hδ(1)′ = −k2ψ(1) . (C.6)

Using Eq. (C.5) to eliminate the metric perturbation φ in Eq. (C.6), the result

is

δ(1)′′ +Hδ(1)′ = 4πG

(
1− c3

2π′4

2c2M6M2
pla

4α

)
a2ρmδ

(1) . (C.7)

This equations studies the dynamics of the DM perturbation δ(1), and it is

the same equation obtained without choosing a gauge, Eq. (3.37).

Spatially Flat Gauge

The spatially flat gauge can be obtained by considering the spatial scalar fluctu-

ations equal to zero

φ(1) = 0

χ(1) = 0 . (C.8)

In this gauge Eq. (3.32) remains the same, while from Eq. (3.29) and its

derivative we can solve for ψ(1)

ψ(1) = −ω(1)′ − 2Hω(1) . (C.9)

xiv



Gauges in linear approximation

To separate the galileon perturbation we use Eq. (3.30) in sub-horizon ap-

proximationÇ
c2 −

2c3π
′′

M3a2
− 2c3Hπ′

M3a2

å
π(1) +

Ç
c2π
′ − 2c3π

′π′′

M3a2
− c3Hπ′2

M3a2

å
ω(1) = 0 . (C.10)

Using the last equation in Eq. (3.26), after a sub-horizon approximation, to

eliminate the galileon field π(1) we obtainÇ
c2 −

2c3π
′′

M3a2
− 2c3Hπ′

M3a2

å
a2ρmδ

(1)

=

(
2c2M

2
plH+

c2
3Hπ′4

M6a4
−

4c3M
2
plHπ′′

M3a2
−

4c3M
2
plH2π′

M3a2

)
k2ω(1) . (C.11)

Finally, to find the dynamics of δ(1) we have to substitute ω(1) from the last

equation in the derivative of Eq. (3.31). It is straightforward to show that also

in this gauge the result is identical w.r.t. Eq. (3.37).

Synchronous Gauge

The synchronous gauge is a gauge that, at first-order, leaves only the spatial

scalar perturbations

ψ(1) = 0

ω(1) = 0 . (C.12)

It is slightly different from the other gauges described, because it has a resid-

ual gauge freedom. From Eq. (3.32) we find that the velocity v(1) must satisfy

v(1)′ +Hv(1) = 0 . (C.13)

One can fix the residual gauge freedom imposing the additional condition

v(1) = 0. However we do not need to fix it to decouple on sub-horizon scales the

DM density fluctuation δ(1). Taking the difference between Eq. (3.28) and Eq.

(3.26), and performing a sub-horizon approximation the result is

6M2
plφ

(1)′′ +

Ç
6M2

plH+
3c3π

′3

M3a2

å
φ(1)′ = a2ρmδ

(1) +
c3π
′2

M3a2
k2π(1) . (C.14)

xv



Chapter C

In this gauge Eq. (3.30) reads

3c3π
′2

M3a2
φ(1)′′ +

Ç
6c3π

′π′′

M3a2
+

9c3Hπ′2

M3a2
− 3c2π

′
å
φ(1)′

= −
Ç
c2 −

2c3π
′′

M3a2
− 2c3Hπ′

M3a2

å
k2π(1) . (C.15)

Combining Eqs. (C.14) and (C.15) to eliminate the galileon field π(1) we

obtain

(
6c2M

2
pl +

3c2
3π
′4

M6a4
−

12c3M
2
pl (π′′ +Hπ′)
M3a2

)[
φ(1)′′ +Hφ(1)′

]
=

Ç
c2 +

2c3 (π′′ +Hπ′)
M3

å
a2ρmδ

(1) . (C.16)

It is now straightforward to use this equation, Eq. (C.13) and the derivative

of Eq. (3.31),

δ(1)′′ +Hδ(1)′ = 3
(
φ(1)′′ +Hφ(1)′

)
, (C.17)

to obtain Eq. (3.37).
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APPENDIXD
SOURCE TERMS FOR THE

SECOND-ORDER EQUATIONS

OF MOTION

In the following we give the explicit expression in a general gauge of the source

terms found in Sec. 4. They reads

S(1) ≡ c2π
(1)′2 + 6Mpl

2φ(1)′2 +
1

12
Mpl

2∇2χ(1)′2 +
2

3
Mpl

2H∇2χ(1)′∇2χ(1)

+
1

9
Mpl

2∇2∇2χ(1)∇2χ(1) + 4Mpl
2φ(1)′∇2ω(1) − 1

3
Mpl

2∇2χ(1)′∇2ω(1)

− 4

3
Mpl

2H∇2χ(1)∇2ω(1) +
2

3
Mpl

2∇2χ(1)∇2φ(1) + 8Mpl
2H∇2ω(1)ψ(1)

+ 16Mpl
2∇2φ(1)φ(1) +

8

3
Mpl

2∇2∇2χ(1)φ(1) − 8Mpl
2H∇2ω(1)φ(1)

− 24Mpl
2φ(1)′Hφ(1) − 4c2π

′π(1)′ψ(1) + 24Mpl
2φ(1)′Hψ(1) +Mpl

2∇2ω(1)2

+ 4c2π
′2ψ(1)2

+ 24Mpl
2H2ψ(1)2

+
18c3π

′2π(1)′φ(1)′

M3a2
− 18c3π

′π(1)′2H
M3a2
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− c3π
′3∇2χ(1)′∇2χ(1)

3M3a2
+

4c3π
′π(1)′∇2π(1)

M3a2
+

2c3π
′2∇2χ(1)∇2π(1)

3M3a2

+
6c3π

′2π(1)′∇2ω(1)

M3a2
+

2c3π
′3∇2χ(1)∇2ω(1)

3M3a2
+

12c3π
′3φ(1)′φ(1)

M3a2

+
4c3π

′2∇2π(1)φ(1)

M3a2
+

4c3π
′3∇2ω(1)φ(1)

M3a2
− 24c3π

′3φ(1)′ψ(1)

M3a2

+
72c3π

′2π(1)′Hψ(1)

M3a2
− 4c3π

′2∇2π(1)ψ(1)

M3a2
− 8c3π

′3∇2ω(1)ψ(1)

M3a2

− 72c3π
′3Hψ(1)2

M3a2
+

2c3π
′2∂iω

(1)∂iπ(1)′

M3a2
+

2

3
Mpl

2∂iω
(1)∂i∇2χ(1)′

+ 4Mpl
2∂iω

(1)∂iφ(1)′ − 5

12
Mpl

2∂i∇2χ(1)∂i∇2χ(1) − 4c3π
′2∂iπ

(1)∂i∇2χ(1)

3M3a2

+
8

3
Mpl

2H∂iω(1)∂i∇2χ(1) − 4c3π
′3∂iω

(1)∂i∇2χ(1)

3M3a2
+ c2∂iπ

(1)∂iπ(1)

+
2c3π

′H∂iπ(1)∂iπ(1)

M3a2
+

12c3π
′2H∂iπ(1)∂iω(1)

M3a2
− c2π

′2∂iω
(1)∂iω(1)

− 6Mpl
2H2∂iω

(1)∂iω(1) +
12c3π

′3H∂iω(1)∂iω(1)

M3a2
− 2c3π

′2∂iπ
(1)∂iφ(1)

M3a2

+ 4Mpl
2H∂iω(1)∂iφ(1) − 2c3π

′3∂iω
(1)∂iφ(1)

M3a2
+ 6Mpl

2∂iφ
(1)∂iφ(1)

+ 4Mpl
2H∂iω(1)∂iψ(1) − 2c3π

′3∂iω
(1)∂iψ(1)

M3a2
+ 4Mpl

2H∂j∂iχ(1)∂j∂iω
(1)

− 2ρma
2∂iω

(1)∂iv(1) − 2ρma
2∂iv

(1)∂iv(1) − 1

4
Mpl

2∂j∂
iχ(1)′∂j∂iχ

(1)′

− 2Mpl
2H∂j∂iχ(1)∂j∂iχ

(1)′ +
c3π
′3∂j∂

iχ(1)∂j∂iχ
(1)′

M3a2

− 1

3
Mpl

2∂j∂
iχ(1)∂j∂i∇2χ(1) − 2c3π

′2∂j∂
iχ(1)∂j∂iπ

(1)

M3a2

− 2c3π
′3∂j∂

iχ(1)∂j∂iω
(1)

M3a2
−Mpl

2∂j∂
iω(1)∂j∂iω

(1) − 2Mpl
2∂j∂

iχ(1)∂j∂iφ
(1)

+
1

4
Mpl

2∂k∂
j∂iχ(1)∂k∂j∂iχ

(1) +Mpl
2∂j∂

iω(1)∂j∂iχ
(1)′ (D.1)

S(2) ≡ 4

3
Mpl

2φ(1)′∇2∇2χ(1) +
1

18
Mpl

2∇2χ(1)′∇2∇2χ(1) − 2

3
Mpl

2∇2φ(1)′∇2χ(1)

− 1

9
Mpl

2∇2∇2χ(1)′∇2χ(1) + 2c2π
(1)′∇2π(1) − 4Mpl

2φ(1)′∇2ψ(1)

− 1

3
Mpl

2∇2∇2χ(1)∇2ω(1) + 8Mpl
2φ(1)′∇2φ(1) +

1

3
Mpl

2∇2χ(1)′∇2φ(1)

− 2Mpl
2∇2ω(1)∇2φ(1) +

1

3
Mpl

2∇2χ(1)′∇2ψ(1) − 2Mpl
2∇2ω(1)∇2ψ(1)
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Source terms for the second-order equations of motion

+ 8Mpl
2∇2φ(1)′φ(1) +

4

3
Mpl

2∇2∇2χ(1)′φ(1) − 8Mpl
2∇2φ(1)′ψ(1)

− 4

3
Mpl

2∇2∇2χ(1)′ψ(1) − 4c2π
′∇2π(1)ψ(1) − 12c3π

′π(1)′H∇2π(1)

M3a2

− 16Mpl
2H∇2ψ(1)ψ(1) +

4c3π
′π(1)′∇2π(1)′

M3a2
+

6c3π
′2φ(1)′∇2π(1)

M3a2

+
2c3π

′∇2π(1)2

M3a2
+

2c3π
′2∇2π(1)∇2ω(1)

M3a2
− 6c3π

′2π(1)′∇2ψ(1)

M3a2

− 8c3π
′2∇2π(1)′ψ(1)

M3a2
+

24c3π
′2H∇2π(1)ψ(1)

M3a2
+

12c3π
′3∇2ψ(1)ψ(1)

M3a2

− 2

3
ρm∇2χ(1)∇2v(1)a2 + 2ρm∇2ω(1)δ(1)a2 − 2ρm∇2v(1)ψ(1)a2

+
2

3
Mpl

2∂iφ
(1)∂i∇2χ(1)′ − 4ρm∇2v(1)φ(1)a2 − 4ρm∇2ω(1)ψ(1)a2

+
4c3π

′∂iπ
(1)′∂iπ(1)′

M3a2
+ 2c2∂iπ

(1)∂iπ(1)′ − 12c3π
′H∂iπ(1)∂iπ(1)′

M3a2

+
6c3π

′2∂iπ
(1)∂iφ(1)′

M3a2
+ 16Mpl

2∂iφ
(1)∂iφ(1)′ − 12Mpl

2∂iψ
(1)∂iφ(1)′

− 7

18
Mpl

2∂i∇2χ(1)∂i∇2χ(1)′ + 2ρma
2∂iδ

(1)∂iω(1) − 4c2π
′∂iπ

(1)∂iψ(1)

+ 2ρm∇2v(1)δ(1)a2 − 2Mpl
2∂iψ

(1)∂i∇2χ(1)′ − 2

3
Mpl

2∂iω
(1)∂i∇2∇2χ(1)

+
8

3
Mpl

2∂iφ
(1)′∂i∇2χ(1) +

4

3
ρma

2∂iv
(1)∂i∇2χ(1) − 2c3π

′2∂iω
(1)∂i∇2π(1)

M3a2

+ 4Mpl
2H∂iω(1)∂i∇2ω(1) − 2c3π

′3∂iω
(1)∂i∇2ω(1)

M3a2
− 4Mpl

2∂iω
(1)∂i∇2φ(1)

+
24c3π

′2H∂iπ(1)∂iψ(1)

M3a2
− 4ρma

2∂iω
(1)∂iψ(1) − 16Mpl

2H∂iψ(1)∂iψ(1)

+
12c3π

′3∂iψ
(1)∂iψ(1)

M3a2
− 4ρma

2∂iφ
(1)∂iv(1) + 4Mpl

2H∂j∂iω(1)∂j∂iω
(1)

− 2ρma
2∂iψ

(1)∂iv(1) −Mpl
2∂j∂

iφ(1)∂j∂iχ
(1)′ −Mpl

2∂j∂
iψ(1)∂j∂iχ

(1)′

+ 2Mpl
2∂j∂

iχ(1)∂j∂iφ
(1)′ +

1

3
Mpl

2∂j∂
iχ(1)∂j∂i∇2χ(1)′

− 1

6
Mpl

2∂j∂
iχ(1)′∂j∂i∇2χ(1) − 1

3
Mpl

2∂j∂
iω(1)∂j∂i∇2χ(1)

− 2c3π
′∂j∂

iπ(1)∂j∂iπ
(1)

M3a2
− 4c3π

′2∂j∂
iπ(1)∂j∂iω

(1)

M3a2
+ 2ρma

2∂iδ
(1)∂iv(1)

− 2c3π
′3∂j∂

iω(1)∂j∂iω
(1)
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− 2Mpl

2∂j∂
iω(1)∂j∂iφ

(1)

+ 2ρma
2∂j∂

iχ(1)∂j∂iv
(1) +

1

2
Mpl

2∂k∂
j∂iχ(1)∂k∂j∂iχ

(1)′
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− 14c3π
′2∂iψ

(1)∂iπ(1)′

M3a2
+ 2Mpl

2∂j∂
iω(1)∂j∂iψ

(1) (D.2)

S(3) ≡ −12c3π
(1)′′π′π(1)′

M3a4
− 6c3π

′′π(1)′2

M3a4
+

18c3π
′2π(1)′ψ(1)′

M3a4
+

18c3π
′π(1)′2H

M3a4

+
24c3π

(1)′′π′2ψ(1)

M3a4
+

48c3π
′′π′π(1)′ψ(1)

M3a4
+
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2∇2∇2χ(1)∇2χ(1)

9a2

− 36c3π
′3ψ(1)′ψ(1)

M3a4
− 72c3π

′2π(1)′Hψ(1)

M3a4
− 72c3π

′′π′2ψ(1)2
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− 3c2π
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+
72c3π
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2φ(1)′2
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+
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2φ(1)′ψ(1)′

a2
+
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2∇2χ(1)′2
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3a2
+
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+
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2ψ(1)′∇2ω(1)
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3a2
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2∇2χ(1)∇2φ(1)

3a2

− 4Mpl
2∇2χ(1)∇2ψ(1)
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+
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+
12c2π
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+
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+
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+

16Mpl
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+
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+
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+

48Mpl
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+
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+
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+
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+
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+
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2∂iω
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+
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2∂iω

(1)∂i∇2χ(1)′
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+
8Mpl

2∂iω
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+
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+
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′H∂iπ(1)∂iπ(1)
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+
12c3π

′′π′∂iπ
(1)∂iω(1)

M3a4
− 12c3π

′2H∂iπ(1)∂iω(1)

M3a4
+
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′∂iπ
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+
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M3a4
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+
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− 12Mpl
2H′∂iω(1)∂iω(1)
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(1)∂iω(1)
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− 2c3π

′2∂iπ
(1)∂iψ(1)

M3a4

+
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2H∂iω(1)∂iφ(1)

a2
+
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2∂iφ

(1)∂iφ(1)
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2∂j∂
iχ(1)∂j∂iχ
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a2

− 4c3π
′3∂iω

(1)∂iψ(1)

M3a4
+

8Mpl
2H∂iω(1)∂iψ(1)

a2
+

4Mpl
2∂iφ

(1)∂iψ(1)

a2

− 5Mpl
2∂j∂

iχ(1)′∂j∂iχ
(1)′

4a2
− 4Mpl

2H∂j∂iχ(1)∂j∂iχ
(1)′

a2

+
Mpl

2∂j∂
iω(1)∂j∂iχ

(1)′

a2
+

4Mpl
2∂j∂

iχ(1)∂j∂iω
(1)′

a2
+

4Mpl
2∂iψ

(1)∂iψ(1)

a2

− Mpl
2∂j∂

iχ(1)∂j∂i∇2χ(1)

3a2
− 2Mpl

2∂j∂
iχ(1)∂j∂iφ

(1)

a2
+ 2ρm∂iω

(1)∂iv(1)

+
8Mpl

2H∂j∂iχ(1)∂j∂iω
(1)
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− Mpl

2∂j∂
iω(1)∂j∂iω

(1)

a2
+ 2ρm∂iv
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2∂j∂
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(1)
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+
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2∂k∂
j∂iχ(1)∂k∂j∂iχ
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4a2
(D.3)

S(4) ≡ 1

2
∇2χ(1)′∇2φ(1)′ − 1

2
∇2χ(1)′∇2ψ(1)′ − φ(1)′∇2∇2χ(1)′ + ψ(1)′∇2∇2χ(1)′

− 1

3
∇2χ(1)′∇2∇2χ(1)′ − 4φ(1)′H∇2∇2χ(1) − 1

6
∇2χ(1)′′∇2∇2χ(1)

− 2φ(1)′′∇2∇2χ(1) − 1

3
H∇2χ(1)′∇2∇2χ(1) +

4

3
H∇2∇2ω(1)∇2χ(1)

+
2

3
∇2ω(1)′∇2∇2χ(1) +

1

36
∇2∇2χ(1)2 − 2φ(1)′∇2∇2ω(1) − 2ψ(1)′∇2∇2ω(1)

+
1

6
∇2χ(1)′∇2∇2ω(1) + 2H∇2φ(1)′∇2χ(1) − 1

6
∇2∇2χ(1)′′∇2χ(1)

− 1

3
H∇2∇2χ(1)′∇2χ(1) +

2

3
∇2∇2ω(1)′∇2χ(1) − 1

18
∇2∇2∇2χ(1)∇2χ(1)

− 1

3
∇2∇2φ(1)∇2χ(1) +

2

3
∇2∇2ψ(1)∇2χ(1) − 3c2∇2π(1)2

Mpl
2 +∇2φ(1)′∇2ω(1)

+
4

3
H∇2∇2χ(1)∇2ω(1) − 3c2π

′∇2π(1)∇2ω(1)

Mpl
2 + 8H∇2ω(1)∇2φ(1)

+∇2φ(1)′′∇2χ(1) +∇2ψ(1)′∇2ω(1) +
2

3
∇2∇2χ(1)′∇2ω(1) −∇2∇2ω(1)∇2ω(1)

+∇2χ(1)′′∇2φ(1) + 2H∇2χ(1)′∇2φ(1) + 4∇2ω(1)′∇2φ(1) − 2
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+
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+
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+
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+
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+
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a2

Mpl
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+
1

6
∂i∇2χ(1)′∂i∇2χ(1)′ +

1

3
H∂i∇2χ(1)∂i∇2χ(1)′ +

1
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7
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3
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M3Mpl
2a2
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4c3π
′′∂iπ

(1)∂i∇2π(1)

M3Mpl
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+
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+
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M3Mpl
2a2

− 2c3π
′2∂iπ

(1)′∂i∇2ω(1)

M3Mpl
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Mpl
2
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(1)′∂i∇2ω(1) − 2

3
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2

+
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M3Mpl
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+
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6
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′2∂iπ

(1)∂i∇2ψ(1)

M3Mpl
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+
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M3Mpl
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+
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M3Mpl
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6
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iω(1)∂j∂i∇2ω(1) + ∂j∂

iχ(1)∂j∂i∇2φ(1)

− 2∂j∂
iχ(1)∂j∂i∇2ψ(1) − c2∂j∂

iπ(1)∂j∂iπ
(1)

Mpl
2 +

c3π
′′∂j∂

iπ(1)∂j∂iπ
(1)

M3Mpl
2a2

+
2c3π

′H∂j∂iπ(1)∂j∂iπ
(1)

M3Mpl
2a2

− c2π
′∂j∂

iπ(1)∂j∂iω
(1)

Mpl
2 +

3c3π
′2H∂j∂iπ(1)∂j∂iω

(1)

M3Mpl
2a2

+ 16H∂j∂iω(1)∂j∂iφ
(1) − 15∂j∂

iφ(1)∂j∂iφ
(1) +

2c3π
′2∂j∂

iπ(1)∂j∂iψ
(1)

M3Mpl
2a2

+
ρma

2∂j∂
iω(1)∂j∂iv

(1)

Mpl
2 − 14H∂j∂iω(1)∂j∂iψ

(1) +
c3π
′3∂j∂

iω(1)∂j∂iψ
(1)

M3Mpl
2a2

+ 8∂j∂
iφ(1)∂j∂iψ

(1) − 7∂j∂
iψ(1)∂j∂iψ

(1) +
ρma

2∂j∂
iv(1)∂j∂iv

(1)

Mpl
2

+
1

2
∂k∂

j∂iχ(1)∂k∂j∂iχ
(1)′′ +

1

2
∂k∂

j∂iχ(1)′∂k∂j∂iχ
(1)′ +H∂k∂j∂iχ(1)∂k∂j∂iχ

(1)′
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Chapter D

− ∂k∂j∂iω(1)∂k∂j∂iχ
(1)′ − 5

2
∂k∂

j∂iχ(1)∂k∂j∂iω
(1)′ − 1

6
∂k∂

j∂iχ(1)∂k∂j∂i∇2χ(1)

− 5H∂k∂j∂iχ(1)∂k∂j∂iω
(1) + ∂k∂

j∂iω(1)∂k∂j∂iω
(1) +

1

2
∂k∂

j∂iχ(1)∂k∂j∂iφ
(1)

− 5

2
∂k∂

j∂iχ(1)∂k∂j∂iψ
(1) − 1

4
∂l∂

k∂j∂iχ(1)∂l∂k∂j∂iχ
(1) (D.4)

S(5) ≡ π(1)′ψ(1)(8c2H−
48c3π

′H′

M3a2
− 48c3π

′′H
M3a2

) + π(1)′′ψ(1)(4c2 −
48c3π

′H
M3a2

)

+ π(1)′ψ(1)′(2c2 −
36c3π

′H
M3a2

) + π(1)′φ(1)′(6c2 −
12c3π

′′

M3a2
− 36c3π

′H
M3a2

)

+ π(1)′∇2ω(1)(2c2 −
4c3π

′′

M3a2
− 12c3π

′H
M3a2

) +∇2π(1)φ(1)(4c2 −
8c3π

′′

M3a2
− 8c3π

′H
M3a2

)

+∇2χ(1)∇2π(1)(
2

3
c2 −

4c3π
′′

3M3a2
− 4c3π

′H
3M3a2

) +∇2π(1)ψ(1)(
8c3π

′′

M3a2
+

8c3π
′H

M3a2
)

+ ψ(1)2
(−8c2π

′′ − 16c2π
′H+

72c3π
′2H′

M3a2
+

144c3π
′′π′H

M3a2
) + φ(1)′φ(1)(12c2π

′

− 24c3π
′′π′

M3a2
− 36c3π

′2H
M3a2

) +∇2ω(1)φ(1)(4c2π
′ − 8c3π

′′π′

M3a2
− 12c3π

′2H
M3a2

)

+∇2χ(1)∇2ω(1)(
2

3
c2π
′ − 4c3π

′′π′

3M3a2
− 2c3π

′2H
M3a2

) +∇2χ(1)′∇2χ(1)(−1

3
c2π
′

+
2c3π

′′π′

3M3a2
+
c3π
′2H

M3a2
) +∇2ω(1)ψ(1)(−4c2π

′ +
16c3π

′′π′

M3a2
+

24c3π
′2H

M3a2
)

+ φ(1)′ψ(1)(−12c2π
′ +

48c3π
′′π′

M3a2
+

72c3π
′2H

M3a2
) + ψ(1)′ψ(1)(−8c2π

′ +
108c3π

′2H
M3a2

)

− 12c3φ
(1)′′π′π(1)′

M3a2
+

6c3H′π(1)′2

M3a2
− 12c3π

(1)′′π′φ(1)′

M3a2
− 4c3π

′∂j∂
iπ(1)∂j∂iω

(1)

M3a2

− 2c3π
′2∂j∂

iω(1)∂j∂iω
(1)

M3a2
+

6c3π
′2φ(1)′2

M3a2
+

18c3π
′2φ(1)′ψ(1)′

M3a2
+

12c3π
(1)′′π(1)′H
M3a2

+
c3π
′2∇2χ(1)′2

3M3a2
− 4c3π

′π(1)′∇2ω(1)′

M3a2
+
c3π
′2∇2χ(1)′′∇2χ(1)

3M3a2

− 2c3π
′2∇2ω(1)′∇2χ(1)

3M3a2
− 4c3π

(1)′′∇2π(1)

M3a2
+

8c3π
′φ(1)′∇2π(1)

M3a2

+
4c3π

′ψ(1)′∇2π(1)

M3a2
− 4c3π

(1)′H∇2π(1)

M3a2
− 2c3π

′∇2χ(1)′∇2π(1)

3M3a2
+

2c3∇2π(1)2

M3a2

− 4c3π
(1)′′π′∇2ω(1)

M3a2
+

8c3π
′2φ(1)′∇2ω(1)

M3a2
+

6c3π
′2ψ(1)′∇2ω(1)

M3a2

− 2c3π
′2∇2χ(1)′∇2ω(1)

3M3a2
+

4c3π
′∇2π(1)∇2ω(1)

M3a2
+

2c3π
′2∇2ω(1)2

M3a2

− 4c3π
′π(1)′∇2ψ(1)

M3a2
− 2c3π

′2∇2χ(1)∇2ψ(1)

3M3a2
− 12c3φ

(1)′′π′2φ(1)

M3a2
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− 4c3π
′2∇2ω(1)′φ(1)

M3a2
− 4c3π

′2∇2ψ(1)φ(1)

M3a2
+

24c3φ
(1)′′π′2ψ(1)

M3a2

+
8c3π

′2∇2ω(1)′ψ(1)

M3a2
+

8c3π
′2∇2ψ(1)ψ(1)

M3a2
+

4c3∂iπ
(1)′∂iπ(1)′

M3a2

− 8c3H∂iπ(1)∂iπ(1)′

M3a2
+ 4c2∂iω

(1)∂iπ(1)′ − 24c3π
′H∂iω(1)∂iπ(1)′

M3a2

− 8c3π
′∂iψ

(1)∂iπ(1)′

M3a2
+ 2c2∂iπ

(1)∂iω(1)′ − 12c3π
′H∂iπ(1)∂iω(1)′

M3a2

+ 2c2π
′∂iω

(1)∂iω(1)′ − 18c3π
′2H∂iω(1)∂iω(1)′

M3a2
+

2c3π
′2∂iφ

(1)∂iω(1)′

M3a2

+
8c3π

′∂iπ
(1)∂iφ(1)′

M3a2
+

8c3π
′2∂iω

(1)∂iφ(1)′

M3a2
+

4c3π
′∂iπ

(1)∂i∇2χ(1)′

3M3a2

+
4c3π

′2∂iω
(1)∂i∇2χ(1)′

3M3a2
+

4c3π
′2∂iω

(1)′∂i∇2χ(1)

3M3a2
− 4

3
c2∂iπ

(1)∂i∇2χ(1)

+
8c3π

′′∂iπ
(1)∂i∇2χ(1)

3M3a2
+

8c3π
′H∂iπ(1)∂i∇2χ(1)

3M3a2
− 4

3
c2π
′∂iω

(1)∂i∇2χ(1)

+
8c3π

′′π′∂iω
(1)∂i∇2χ(1)

3M3a2
+

4c3π
′2H∂iω(1)∂i∇2χ(1)

M3a2

+
4c3π

′2∂iψ
(1)∂i∇2χ(1)

3M3a2
− 2c3H′∂iπ(1)∂iπ(1)

M3a2
+ 4c2H∂iπ(1)∂iω(1)

− 12c3π
′H′∂iπ(1)∂iω(1)

M3a2
− 12c3π

′′H∂iπ(1)∂iω(1)

M3a2
+ 2c2π

′′∂iω
(1)∂iω(1)

+ 4c2π
′H∂iω(1)∂iω(1) − 12c3π

′2H′∂iω(1)∂iω(1)

M3a2
− 24c3π

′′π′H∂iω(1)∂iω(1)

M3a2

− 2c2∂iπ
(1)∂iφ(1) +

4c3π
′′∂iπ

(1)∂iφ(1)

M3a2
+

4c3π
′H∂iπ(1)∂iφ(1)

M3a2
− 2c2π

′∂iω
(1)∂iφ(1)

+
4c3π

′′π′∂iω
(1)∂iφ(1)

M3a2
+

6c3π
′2H∂iω(1)∂iφ(1)

M3a2
+ 2c2∂iπ

(1)∂iψ(1)

+
4c3π

′H∂iπ(1)∂iψ(1)

M3a2
− 2c2π

′∂iω
(1)∂iψ(1) +

18c3π
′2H∂iω(1)∂iψ(1)

M3a2

+
2c3π

′2∂iφ
(1)∂iψ(1)

M3a2
+

6c3π
′2∂iψ

(1)∂iψ(1)

M3a2
− c3π

′2∂j∂
iχ(1)∂j∂iχ

(1)′′

M3a2

− c3π
′2∂j∂

iχ(1)′∂j∂iχ
(1)′

M3a2
+ c2π

′∂j∂
iχ(1)∂j∂iχ

(1)′ − 2c3π
′′π′∂j∂

iχ(1)∂j∂iχ
(1)′

M3a2

− 3c3π
′2H∂j∂iχ(1)∂j∂iχ

(1)′

M3a2
+

2c3π
′∂j∂

iπ(1)∂j∂iχ
(1)′

M3a2
+

2c3π
′2∂j∂

iω(1)∂j∂iχ
(1)′

M3a2

+
2c3π

′2∂j∂
iχ(1)∂j∂iω

(1)′

M3a2
− 2c2∂j∂

iχ(1)∂j∂iπ
(1) +

4c3π
′′∂j∂

iχ(1)∂j∂iπ
(1)

M3a2

+
4c3π

′H∂j∂iχ(1)∂j∂iπ
(1)

M3a2
− 2c3∂j∂

iπ(1)∂j∂iπ
(1)

M3a2
− 2c2π

′∂j∂
iχ(1)∂j∂iω

(1)
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Chapter D

+
4c3π

′′π′∂j∂
iχ(1)∂j∂iω

(1)

M3a2
+

6c3π
′2H∂j∂iχ(1)∂j∂iω

(1)

M3a2
+

2c3π
′2∂j∂

iχ(1)∂j∂iψ
(1)

M3a2

(D.5)

S(6) ≡− 1

3
∇2χ(1)′∇2χ(1) + 6φ(1)′δ(1) − 2∇2v(1)δ(1) + 12φ(1)′φ(1) − 2∇2v(1)ψ(1)

− 2∂iω
(1)∂iω(1)′ − 2∂iω

(1)∂iv(1)′ − 4∂iv
(1)∂iv(1)′ − 2∂iδ

(1)∂iv(1)

− 2H∂iω(1)∂iv(1) + 6∂iφ
(1)∂iv(1) − 2H∂iv(1)∂iv(1) + ∂j∂

iχ(1)∂j∂iχ
(1)′

− 4∂iv
(1)∂iω(1)′ − 4∂iψ

(1)∂iv(1) (D.6)

S(7) ≡ 2

3
∇2v(1)′∇2χ(1) − 2δ(1)′∇2ω(1) + 6φ(1)′∇2ω(1) + 2ψ(1)′∇2ω(1) − 2δ(1)′∇2v(1)

+ 10φ(1)′∇2v(1) +
2

3
∇2χ(1)′∇2v(1) +

2

3
H∇2χ(1)∇2v(1) − 2∇2ω(1)∇2v(1)

− 2∇2v(1)2 − 2∇2ω(1)′δ(1) − 2∇2v(1)′δ(1) − 2H∇2ω(1)δ(1) + 4H∇2ω(1)ψ(1)

− 2∇2ψ(1)δ(1) − 2H∇2v(1)δ(1) + 4∇2v(1)′φ(1) + 4H∇2v(1)φ(1) + 4∇2ω(1)′ψ(1)

+ 4∇2ψ(1)ψ(1) + 2H∇2v(1)ψ(1) − 2∂iω
(1)∂iδ(1)′ − 2∂iv

(1)∂iδ(1)′ − 2∂iδ
(1)∂iω(1)′

+ 4∂iψ
(1)∂iω(1)′ + 6∂iω

(1)∂iφ(1)′ + 10∂iv
(1)∂iφ(1)′ + 2∂iω

(1)∂iψ(1)′

+ 2∂iψ
(1)∂iv(1)′ − 4

3
∂iv

(1)∂i∇2χ(1)′ − 4

3
∂iv

(1)′∂i∇2χ(1) − 2∂j∂
iv(1)∂j∂iv

(1)

+ 2∇2v(1)′ψ(1) + 4∂iφ
(1)∂iv(1)′ − 2∂iδ

(1)∂iψ(1) + 2H∂iψ(1)∂iv(1) − 2∂iδ
(1)∂iv(1)′

− 4

3
H∂iv(1)∂i∇2χ(1) − 2∂iω

(1)∂i∇2v(1) − 4∂iv
(1)∂i∇2v(1) − 2H∂iδ(1)∂iω(1)

+ 4H∂iω(1)∂iψ(1) + 4∂iψ
(1)∂iψ(1) − 2H∂iδ(1)∂iv(1) + 4H∂iφ(1)∂iv(1)

− 2∂j∂
iv(1)∂j∂iχ

(1)′ − 2∂j∂
iχ(1)∂j∂iv

(1)′ − 2H∂j∂iχ(1)∂j∂iv
(1) (D.7)
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APPENDIXE
BACKGROUND QUANTITIES

FOR THE SECOND-ORDER

DM KERNEL

In the following we give the explicit expression for the background functions γi(a)

found in the kernel (4.11). They reads

γ4(τ) ≡ −5ρmf
2

2Mpl
2 +

7c3
6ρm

2π′12

64c2
3M18Mpl

10α3H2a10
+

3c3
5ρm

2α′π′9

8c2
3M15Mpl

8α4H2a8

+
7c3

5ρm
2π′9

16c2
3M15Mpl

8α3Ha8
− 3c3

5ρm
2π′9f

8c2
3M15Mpl

8α3Ha8
− 35c3

4ρm
2π′6

2c2
3M12Mpl

6α3a6

+
6c3

4ρm
2π′6f

c2
3M12Mpl

6α3a6
− c3

4ρm
2π′6f2

2c2
3M12Mpl

6α3a6
− c3

4ρm
2α′2π′6

2c2
3M12Mpl

6α5H2a6

+
7c3

4ρm
2π′8

32c2
2M12Mpl

8α3H2a6
+

9c3
4ρm

2π′8

16c2
2M12Mpl

8α2H2a6
+

2f2H2

a2
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Chapter E

+
c3

4ρm
2π′6H′

4c2
3M12Mpl

6α3H2a6
− 6c3

4ρm
2α′π′6

c2
3M12Mpl

6α4Ha6
+

2c3ρmπ
′3f

M3Mpl
4αHa2

+
c3

4ρm
2α′π′6f

c2
3M12Mpl

6α4Ha6
+

c3
3ρmπ

′7f

c2M9Mpl
6αHa6

− 8c3
2ρmπ

′4f

c2M6Mpl
4αa4

+
5c3

2ρmπ
′4f2

4c2M6Mpl
4αa4

+
c3

3ρm
2α′π′5

c2
2M9Mpl

6α4H2a4
− 7c3

3ρm
2α′π′5

4c2
2M9Mpl

6α3H2a4

+
6c3

3ρm
2π′5

c2
2M9Mpl

6α3Ha4
− 71c3

3ρm
2π′5

8c2
2M9Mpl

6α2Ha4
− c3

2ρmα
′π′4f

c2M6Mpl
4α2Ha4

− c3
3ρm

2π′5f

c2
2M9Mpl

6α3Ha4
+

3c3
3ρm

2π′5f

4c2
2M9Mpl

6α2Ha4
− 2H′f2

a2
− 2c3ρmπ

′3f

M3Mpl
4Ha2

− c3
2ρm

2π′4

2c2M6Mpl
6α3H2a2

+
25c3

2ρm
2π′4

16c2M6Mpl
6α2H2a2

− 25c3
2ρm

2π′4

16c2M6Mpl
6αH2a2

(E.1)

γ5(τ) ≡ 3ρmf
2

2Mpl
2 +

15c3
6ρm

2π′12

64c2
3M18Mpl

10α3H2a10
− 3c3

5ρm
2α′π′9

8c2
3M15Mpl

8α4H2a8

− 33c3
5ρm

2π′9

16c2
3M15Mpl

8α3Ha8
+

3c3
5ρm

2π′9f

8c2
3M15Mpl

8α3Ha8
+

15c3
4ρm

2π′8

32c2
2M12Mpl

8α3H2a6

− 3c3
4ρm

2π′8

4c2
2M12Mpl

8α2H2a6
− 3c3

2ρmπ
′4f2

4c2M6Mpl
4αa4

+
3c3

3ρm
2α′π′5

4c2
2M9Mpl

6α3H2a4

+
33c3

3ρm
2π′5

8c2
2M9Mpl

6α2Ha4
− 3c3

3ρm
2π′5f

4c2
2M9Mpl

6α2Ha4
− 15c3

2ρm
2π′4

16c2M6Mpl
6α2H2a2

+
3c3

2ρm
2π′4

16c2M6Mpl
6αH2a2

+
3ρm

2a2

4Mpl
4H2

(E.2)

γ6(τ) ≡ 15ρmf

2Mpl
2 −

15ρmf
2

4Mpl
2 −

9c2ρmπ
′2

2Mpl
4H2

+
9c2ρmπ

′2

4Mpl
4αH2

+
9c2αρmπ

′2

4Mpl
4H2

+
3ρmH′

2Mpl
2H2

+
59c3

6ρm
2π′12

128c2
3M18Mpl

10α3H2a10
− 9c3

5ρm
2α′π′9

16c2
3M15Mpl

8α4H2a8

+
21c3

4ρmπ
′10

16c2M12Mpl
8αH2a8

− c3
6ρm

3π′10

16c2
4M18Mpl

10α4H2a8
− 157c3

5ρm
2π′9

32c2
3M15Mpl

8α3Ha8

+
9c3

5ρm
2π′9f

16c2
3M15Mpl

8α3Ha8
+

5c3
4ρm

2π′6

c2
3M12Mpl

6α3a6
− 5c3

4ρm
2π′6f

2c2
3M12Mpl

6α3a6

− c3
4α′′ρm

2π′6

4c2
3M12Mpl

6α4H2a6
− 3c3

3ρmα
′π′7

2c2M9Mpl
6α2H2a6

+
79c3

4ρm
2π′8

64c2
2M12Mpl

8α3H2a6

− 17c3
4ρm

2π′8

16c2
2M12Mpl

8α2H2a6
− 5c3

4ρm
2π′6H′

4c2
3M12Mpl

6α3H2a6
− 7ρm

2a2

8Mpl
4H2
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+
9c3

4ρm
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