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Abstract

This thesis focuses on the unconstrained and constrained minimum time problems,
in particular on regularity, numerical approximation, feedback and synthesis aspects.

We first consider the problem of small-time local controllability for nonlinear finite-
dimensional time-continuous control systems in presence of state constraints. More
precisely, given a nonlinear control system subject to state constraints and a closed set
S, we provide sufficient conditions to steer to S every point of a suitable neighborhood
of S along admissible trajectories of the system, respecting the constraints, and giving
also an upper estimate of the minimum time needed for each point to reach the target.

Then in framework of control affine nonlinear systems, sufficient conditions to reach
a target for a suitable discretization of a given dynamics are provided. We make use of
an approach based on Hamilton-Jacobi theory to prove the convergence of the solution
of a fully discrete scheme to the (true) minimum time function, together with error
estimates. We also design an approximate suboptimal discrete feedback and provide an
error estimate for the time to reach the target through the discrete dynamics generated
by this feedback.

We next propose a new formulation of the minimum time problem in which we
employ the signed minimum time function positive outside of the target, negative in
its interior and zero on its boundary. Under some standard assumptions, we prove the
so called Bridge Dynamic Programming Principle (BDPP) which is a relation between
the value functions defined on the complement of the target and in its interior. Then
owing to BDPP, we obtain the error estimates of a semi-Lagrangian discretization of
the resulting Hamilton-Jacobi-Bellman equation.

The remainder of this thesis is devoted to introducing an approach to compute the
approximate minimum time function of control problems which is based on reachable
set approximation. In particular, the theoretical justification of the proposed approach
is restricted to a class of linear control systems and uses arithmetic operations for
convex sets. The error estimate of the fully discrete reachable set is provided by em-
ploying Hausdorff distance. The detailed procedure solving the corresponding discrete
problem is described. Under standard assumptions, by means of convex analysis and
knowledge of regularity of the true minimum time function, we estimate the error of its
approximation. Finally, we reconstruct discrete suboptimal trajectories which reach a
set of supporting points from a given target for a class of linear control problems and
also proving the convergence of discrete optimal controls by the use of nonsmooth and
variational analysis.
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Riassunto

La tesi è dedicata a problemi di tempo minimo finito dimensionali, sia con vincoli di
stato che senza, con particolare riguardo alla regolarità all’approssimazione numerica
e ad aspetti collegati di sintesi.

Si considera in primo luogo il problema della controllabilità locale per tempi piccoli
con vincoli di stato: si forniscono condizioni sufficienti per portare ad un bersaglio in
tempo finito una traiettoria del sistema dato, senza violare i vincoli, e si dà una stima
del tempo necessario.

Nell’ambito di problemi affini rispetto al controllo, si danno condizioni sufficienti
per la controllabilità a rispetto ad una particolare discretizzazione della dinamica. Tale
risultato è motivato da un approccio all’approssimazione del tempo minimo T basato
sulla sua caratterizzazione mediante un’equazione di Hamilton-Jacobi. Il contributo di
questa parte della tesi consiste in un risultato teorico che estende la teoria esistente
al caso in cui T non sia Lipschitz (cioè sotto ipotesi deboli di controllabilità) e nella
costruzione di un feedback approssimato con la relativa stima dell’errore.

Si propone inoltre una nuova formulazione del problema del tempo minimo, nella
quale si fa uso di un tempo negativo quando la traiettoria è penetrata all’interno del
bersaglio, allo scopo di ridurre l’errore di approssimazione vicino alla frontiera. Si
dimostra una nuova versione del principio della programmazione dinamica (il “Principio
Ponte”), che stabilisce una relazione tra il tempo minimo all’interno e all’esterno del
bersaglio. Si studia poi una discretizzazione della corrispondente equazione di Hamilton-
Jacobi e si forniscono stime dell’errore.

La parte finale della tesi è dedicata all’introduzione di un nuovo approccio per il
calcolo approssimato di T basato sull’approssimazione degli insiemi raggiungibili medi-
ante l’aritmetica degli insiemi convessi, valido per sistemi lineari. Si fornisce una stima
dell’errore mediante la distanza di Hausdorff per gli insiemi raggiungibili e per il tempo
minimo. Si costruiscono inoltre traiettorie subottimali discrete e si prova la convergenza
dei corrispondenti controlli al controllo ottimo.
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4.2 Hölder continuity of the minimum time function . . . . . . . . . . . . . 47

II Approximation of minimum time function 51

5 A Hamilton–Jacobi–Bellman approach under weak controllability as-
sumptions 53
5.1 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Discrete controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 A further result on discrete controllability . . . . . . . . . . . . . . . . 61
5.4 The discrete dynamic programming approach and convergence . . . . . 64
5.5 Fully discrete scheme and error estimates . . . . . . . . . . . . . . . . . 65

xi



Contents

5.6 Approximate feedback controls and suboptimal trajectories . . . . . . . 69
5.7 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Bridge dynamic programming and a new Hamilton–Jacobi–Bellman
approach 77
6.1 A new formulation of the minimum time problem . . . . . . . . . . . . 78
6.2 Discretization and error estimates . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 A test in 1d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Tests in 2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Reconstruction of the minimum time function through the approxi-
mation of reachable sets for linear control systems 93
7.1 Description and main properties of reachable sets . . . . . . . . . . . . 94
7.2 Computation of the numerical minimum time function . . . . . . . . . 98

7.2.1 Set-valued discretization methods . . . . . . . . . . . . . . . . . 98
7.2.2 Implementation and error estimate of the reachable set approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2.3 Error estimate of the minimum time function . . . . . . . . . . 107

7.3 Convergence of open loop controls and reconstruction of discrete trajec-
tories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4.1 Linear examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4.2 A nonlinear example . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 129

xii



Contents

Basic notations

C(Rn) the set of convex, compact,
nonempty subsets of Rn;

‖x‖1 =
∑n

1 |xi| the l1-norm of x ∈ Rn;

〈x, y〉 :=
n∑
i=1

xiyi the scalar product in Rn;

‖x‖ :=
√
〈x, x〉 the Euclidean norm in Rn;

‖M‖ := supx∈Rn
x 6=0

‖Mx‖
‖x‖ the lub-norm of M

with respect to ‖ · ‖;
∂S, intS, S the topological boundary,

interior and closure of S;
diam(S) := sup{‖z1 − z2‖ : z1, z2 ∈ S} the diameter of S;

Sn−1 := {w ∈ Rn : ‖w‖ = 1} the unit sphere
(centered at the origin);

B(y, r) = Br(y) := {z ∈ Rn : ‖z − y‖ < r} the open ball centered
at y of radius r;

dK(y) = d(y,K) := min{‖z − y‖ : z ∈ K} the distance of y from K;
dH(S,K) the Hausdorff distance

between S and K;
πK(y) := {z ∈ K : ‖z − y‖ = dK(y)} the set of projections of y

onto K;

co(S) :=
⋂

C convex
C⊇S

C the convex hull of S;

Sc := Rn \ S the complement of S;
Sδ := B(S, δ) := {y ∈ Rn : dS(y) ≤ δ} the δ-neighborhood of S;
S−δ := {x ∈ Rn : dSc(x) ≥ δ} the δ-shrinking of S;

NP
K(x) the proximal normal cone

to K at x ;
dom f := {x ∈ X : f(x) < +∞} the domain of f ;

epi f := {(x, β) ∈ X × R : x ∈ dom f, β ≥ f(x)} the epigraph of f ;
hypo f := {(x, α) ∈ X × R : x ∈ dom f, α ≤ f(x)} the hypograph of f ;

∂Pf(x), ∂Pf(x) the proximal subdifferential,
the proximal superdifferential
of f at x (see Definition 2.2.4);

xiii



Contents

Ck,α
loc (U) see Definition 2.2.2;

IdRn the identity function in Rn;
[·, ·] Lie bracket;

χS(y) :=

{
1, if y ∈ S,
0, otherwise.

the characteristic function of S;

IA(x) =

{
0 if x ∈ A
+∞ otherwise

the indicator function of A;

]a, b[ = (a, b) = {x : a < x < b} an open interval in R;
[a, b[ = [a, b) = {x : a ≤ x < b} an haft-closed interval in R.

xiv



Chapter 1

Introduction

Consider the control system

ẏ(t) = f(y(t), u(t)) (1.1)

with u(t) ∈ U for a.e. t, U ⊂ Rm a compact set, together with the initial condition

y(0) = ξ. (1.2)

Under standard assumptions, for any u(·) measurable and any ξ, the solution y(·, ξ, u) of
(1.1) and (1.2) is unique and globally defined. By associating (1.1), (1.2) with different
cost functions, one can formulate a variety of optimal control problems, e.g., infinite
horizon problem, Bolza problem, minimum time problem, etc.

Let S ⊂ Rn be a nonempty closed set, the target and x ∈ Rn. The unconstrained
minimum time problem consists in finding a measurable control u ∈ U to reach S
by following the dynamics (1.1), (1.2) in the smallest amount of time, TS(ξ). Here
TS(ξ) is called the unconstrained minimum time function. Furthermore, if y(·, ξ, u)
is restricted to stay in Ω, where Ω ∈ Rn is a given open subset, we obtain the so-
called constrained minimum time problem. Then the minimum time function complying
with the restriction of state space is referred to as the constrained minimum time
function, TS,Ω(ξ). It is obvious if Ω is the whole space Rn, the problem turns back
to the unconstrained case. From now on, for the sake of shortness, we will omit the
adjective unconstrained when applicable.

This thesis is focused on the unconstrained and constrained minimum time problems,
which are studied by several authors in different aspects such as: regularity, numerical
approximation, feedback and synthesis, sensitivity analysis, necessary conditions... This
thesis contains contributions on the three first topics. The scope of this work is devoted
to the following main issues:

1) small-time controllability on S (STCS), i.e. studying sufficient conditions on
f, U , S and Ω ensuring that all the points sufficiently near to S can be steered
to S by admissible trajectories of the system in finite time TS, (TS,Ω for the
constrained case), and establishing suitable continuity properties of TS.
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1.1. Controllability

2) providing efficient approaches to compute TS(x) approximately in different con-
texts and designing discrete, both open and closed loop, suboptimal controls to-
gether with trajectories.

1.1 Controllability

In the absence of state constraints, one of the most common assumptions ensuring con-
trollability is Petrov’s condition, which can be stated as follows in the case of compact
target S: there exist δ, µ > 0, such that for every x ∈ Rn \S whose distance dS(x) from
S is less than δ there exist u ∈ U and a point x̄ ∈ S with ‖x− x̄‖ = dS(x) and

〈x− x̄, f(x, u)〉 ≤ −µdS(x).

When the function dS(·) is differentiable at x /∈ S, the above condition can be written as
〈∇dS(x), f(x, u)〉 ≤ −µ. In a smooth setting, we can interpret Petrov condition in the
following way: for each point sufficiently near to x there exists an admissible trajectory
which points sufficiently well towards to the target. Petrov condition later referred to
as the first order one is very strong, and it is well known that it is equivalent to the
local Lipschitz continuity of the minimum time function TS(·) in a neighborhood of the
target (see, e.g., [16, Section 4.1], [23, Section 8.2]). Moreover, it is equivalent for any
given x near to the target to the existence of an admissible trajectory starting from x
and reaching the target in time less than CdS(x) for a suitable C > 0 depending on µ
but not on x.

Chapter 3: Continuous small-time controllability. Roughly speaking, Petrov
condition guarantees the existence of an admissible trajectory along which the distance
decreases in a neighborhood of S. An idea generalizing Petrov condition could be the
following one: given x as above we look for a curve t 7→ yx(t) such that yx(t) can be
reached from x in time t and such that

dS(yx(t))− dS(x) ≤ −r with r > 0, (1.3)

without paying any attention to the behavior of the distance along the admissible tra-
jectory joining x and yx(t). Such the map t 7→ yx(t) is called an A -trajectory. The
first step in this direction was taken by Krastanov-Quincampoix in [53]. The later
papers, see, e.g., [54, 61, 63], treat the case under various degrees of requirements on
the smoothness of the terms appearing in the expression of an A -trajectory and the
regularity of the target set S.

One of difficulties in this approach is to describe the set of A -trajectories on which
the conditions for STCS must be checked. Fortunately, if we confine to control-affine

systems, i.e., the dynamics is given by ẋ(t) = f0(x(t)) +
N∑
i=1

ui(t)fi(x(t)), ‖ui‖L∞ ≤ 1,

additional information can be obtained by studying the Lie algebra generated by the

2



1.1. Controllability

vector fields {f0 ± fi}i=1,...,N . Observe that the presence of a nontrivial drift term f0

breaks the time-reversal symmetry (which would hold if f0 = 0), which is an essential
ingredient for many results obtained by means of Lie algebraic methods in the 60’s and
in the 70’s by Kalman, Hermes, Sussmann, Hörmander and many other authors. We
refer to [53] for a brief history of these results.

Most of the results in this direction, see, e.g, [53,54,61,63], are obtained for systems
in which the state space is the whole of Rn. The first paper investigating the problem of
STCS in the presence of restriction on the state space was [22]. The authors extended
first-order Petrov’s condition to such kind of systems by assuming on the boundary
of the constraint an inward pointing condition. In its simplest form (i.e., the system
is autonomous and the constraint is given by Ω, where Ω is an open bounded subset
of Rn), this condition amounts to ask that at every point of ∂Ω there are admissible
velocities belonging to the interior of the tangent cone to Ω (see Remark 3.3 in [22]). It
turns out that even in its full general version this condition implies that ∂Ω is locally
Lipschitz continuous (see Remark 3.2 in [22]).

Our first aim is to weaken the smoothness assumptions on the terms appearing in the
expression of the A -trajectory and also the regularity hypothesis on S. Moreover, the
presence of the additional state constraint yx(t) ∈ Ω, where Ω is an open subset of Rn

with Ω̄\S 6= ∅, is taken into account. The first result, contained in Theorem 3.1.6, relies
on the assumption of the existence of certain A -trajectories fulfilling suitable properties
and respecting the state constraints. The presence of state constraints would affect only
the existence of such curves, which is assumed to be granted. So, in particular, state
constraints do not play explicitly any role in the proof of this first result. Furthermore,
we also show that several main results from [53,54,61,63] are covered by Theorem 3.1.6.

After proving such general STCS results, we turn our attention to control-affine
systems in presence of state constraints. By providing an approximate representation
formula for the elements of the set of A -trajectory, we are able to prove a better
sufficient condition for STCS in this case. The presence of state constraints is taken
into account by means of a condition different from the inward pointing condition of [22].
Here we assume some smoothness of the distance function near to the boundary of the
constraint, which in particular allows us to treat systems with a class of constraints
whose boundaries are not necessarily Lipschitz continuous. The main ingredient of
this part is a suitable approximate representation formula for the expansion of the
distance function along the trajectories of control-affine systems with nontrivial drift.
The comparison between the inward pointing condition of [22] and ours is postponed
to the end of Section 3.3.

Chapter 4: Regularity of the minimum time function under weak controlla-
bility assumptions. Besides Petrov condition discussed above, finer controllability
conditions are well known in the literature, in particular when S is an equilibrium
point of the dynamics and f(x, u) = f0(x) +

∑M
i=1 fi(x)ui, M ∈ N \ {0}. They are

called higher order conditions, in the sense that for every x close enough to S there
exists a Lie bracket of the vector fields which points towards S. If this Lie bracket can

3
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be approximated by admissible trajectories of the controlled dynamics, by switching
between suitable controls ±u, then one can prove that it is possible to reach S in finite
time from a neighborhood, and TS is Hölder continuous with a suitable exponent de-
pending on the maximal order of the Lie brackets. This is the case, for example, if S
is the origin and the dynamics is linear and satisfies the classical Kalman rank condi-
tion. More in general, in [61,63], see also references therein, higher order controllability
conditions were established for a rather general target and some classes of nonlinear,
control affine, dynamics, and several examples were presented. In this chapter we will
recall some sufficient conditions appearing in [63] such that the reachable set RS be a
neighborhood of S and TS is Hölder continuous in RS. Moreover, we will also provide
sufficient conditions guaranteeing robustness of the controllability condition with respect
to a suitable shrinking S−σ of S. This result will be used for the discrete controllability
and approximate feedback control construction in Chapter 5.

1.2 Approximation of the minimum time function

To our knowledge, there are two main approaches to compute the minimum time func-
tion TS numerically. The first one is based on direct methods and the approximate
solutions constructed in this way in general depend strongly on an initial guess. There-
fore such methods in most of cases are able to provide only local results, see, e.g., [30]
for more details. The second one employs tools from PDE solvers which in contrary
can give global results. This thesis is focused on the latter approach.

Chapter 5: A Hamilton-Jacobi-Bellman approach under weak controllability
assumptions. The work [15] opened the door to the approximation of the minimum
time function TS through numerical schemes for a suitable boundary value problem
of Hamilton-Jacobi type. The first paper on this subject was [17], where a semidis-
crete scheme was developed under the assumption of Lipschitz continuity of TS in a
neighborhood of S, or equivalently the Petrov controllability condition.

However, as discussed in Section 1.1, TS(x) is merely Hölder continuous in many
situations under some higher order controllability condition. Therefore, it is natural
generalizing to the case of higher order controllability numerical methods which were
established under the first order condition [17]. The idea is first considering a one step
discretization method for the dynamics, namely a discrete controlled dynamical system
which approximates the given continuous time system. If one can reach the target S,
subject to this approximate discrete dynamics, within a time which is bounded by a
fractional power of the distance to S of the initial point, then the approximate time
converges to the true one as the time discretization step tends to zero. What remains to
do, then, is transferring to a suitable discrete approximate dynamics the controllability
which holds for the continuous time system. In the k-th (k ≥ 1) order case, at each step
the gain in the distance to the target is a k-th power of the time length. Thus, the order
of the numerical scheme must be at least k+1, in order not to destroy this gain. This is

4



1.2. Approximation of the minimum time function

exactly what is done here: we prove that some controllability conditions on the original
dynamics are also sufficient for a suitable one step discretization to reach the target and
prove the desired estimate on the time (see Sections 5.1, 5.2, and 5.3). That given, a
fully discrete approximation together with error estimates follows from well established
arguments (see Sections 5.4 and 5.5). The remainder part of Chapter 5 is devoted
to the design of an approximate feedback. It is well known that the steepest descent
feedback (i.e., the feedback u(x) suggested by the dynamic programming equation, see,
e.g., [25]) is - in general - discontinuous, and so the O.D.E. ẋ = f(x, u(x)) may not
admit solutions. Moreover, it is well known that generalized solutions (of Krasovskĭı
or Filippov type) are not always satisfactory, as they even may not reach the target
(see, e.g., [67]). Following a well established method (see, e.g., [34, 37, 38]), the idea is
substituting the continuous time dynamical system with a discrete one: this way, the
problem of existence of solutions is bypassed. The approximate feedback is obtained,
as one can expect, by choosing a control which minimizes a discretized Hamiltonian.
Of course the point is proving that this strategy is suboptimal. To this aim, in order
to be sure to reach the desired target S, one needs to consider the problem of reaching
a suitable shrinking of S. In Chapter 4 we show that higher order sufficient conditions
for both discrete and continuous time controllability are indeed robust with respect to
a shrinking of S, provided the target is regular enough. Essentially we allow S to be
nonsmooth but rule out outward angles and inward cusps; technically, we require S to
be wedged and to satisfy a uniform internal sphere condition. To illustrate the approach
numerical examples are presented.

Chapter 6: Bridge dynamic programming and a new Hamilton-Jacobi-
Bellman approach. The global solution of the minimum time problem – after a
transformation – is efficiently obtained via the solution of the associated Hamilton-
Jacobi-Bellman equation. Indeed, the unique viscosity solution of this equation is the
optimal value function of the problem, whose knowledge can in a subsequent step be
used in order to synthesize the optimal control functions. For the numerical solution
of this Hamilton-Jacobi-Bellman equation, semi-Lagrangian schemes – which consist of
a semi-discretization in time followed by a finite element discretization in space – are
particularly attractive because they are unconditionally stable and allow to combine
different discretization methods in space and time [37]. Most importantly, however,
the semi-discretization is directly linked to a discrete time approximation to the origi-
nal minimum time problem, which facilitates both the interpretation of the numerical
results and the synthesis of approximately optimal feedback laws from the numerical
approximation.

Nevertheless, one of the main disadvantages of the semi-Lagrangian approach is the
fact that the semi-discretization of the standard minimum time problem leads to a
piecewise constant optimal value function whose discontinuities pose problems, e.g., for
the subsequent spatial discretization. The discontinuities stem from the fact that the
optimal value function is fixed to be 0 on the target set of the minimum time problem.
In order to improve the approximation, it does hence appear to be a good idea to use
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1.2. Approximation of the minimum time function

a formulation of the minimum time problem which avoids setting the optimal value
function to 0 by extending the problem inside the target in a meaningful way. This is
what is done in Chapter 6, which presents the theoretical foundations of a new formu-
lation of the minimum time problem as well as its numerical discretization including an
error analysis of the resulting semi-Lagrangian scheme. Numerical examples show that
under suitable conditions the new formulation is indeed able to significantly reduce the
numerical error compared to the classical approach.

Chapter 7: Reconstruction of the minimum time function through the ap-
proximation of reachable sets for linear control systems. Reachable sets have
attracted several mathematicians for a longer time both in theoretical and in numerical
analysis. One common definition collects end points of feasible solutions of a control
problem starting from a common inital set and reaching a point up to a given end
time, the other definition is similar but prescribes a fixed end time in which the point
is reached.

Reachable sets with and without control constraints appear in control theory (e.g., in
stability results), in optimal control (e.g., in analysis for robustness) and in set-valued
analysis. For reachable sets at a given end time of linear or nonlinear control problems,
properties like convexity for linear control problems at a given end time (due to Au-
mann and his study of Aumann’s integral for set-valued maps in [6]), closedness and
connectedness under weak assumptions for nonlinear systems (see, e.g., [5,29]), . . . are
well-known. The Lipschitz continuity of reachable sets with respect to the initial value
is also established and is a result of the Filippov theorem which proves the existence of
neighboring solutions for Lipschitz systems.

The approaches for the numerical computation of reachable sets mainly split into
two classes, those for reachable sets up to a given time and the other ones for reachable
sets at a given end time. We will list here only some of them, since the literature is very
rich. There are methods based on overestimation and underestimation of reachable sets
based on ellipsoids [55], zonotopes [3, 44] or on approximating the reachable set with
support functions resp. supporting points [14, 52, 58]. Other popular and well-studied
approaches involve level-set methods, semi-Lagrangian schemes and the computation of
an associated Hamilton-Jacobi-Bellman equation, see, e.g., [16, 21, 34, 37, 45] . Further
methods [8, 13, 14] are set-valued generalizations of quadrature methods and Runge-
Kutta methods are initiated by [31–33,73,76]...

Here, we will focus on set-valued quadrature methods and set-valued Runge-Kutta
methods with the help of support functions or supporting points, since they do not suffer
on the wrapping effect or on an exploding number of vertices and the error of restricting
computations only for finitely many directions can be easily estimated. Furthermore,
they belong to the most efficient and fast methods (see [3, Sec. 3.1], [57, Chap. 9, p. 128])
for linear control problems to which we restrict the computation of the minimum time
function TS(x).

In the HJB approach, the minimal requirement on the regularity of TS(x) is the
continuity, see, e.g., [17,26,47]. The solution of a HJB equation with suitable boundary
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conditions gives immediately – after a transformation – the minimum time function and
its level sets provide a description of the reachable sets. A natural question occurring is
whether it is also possible to do the other way around, i.e. reconstruct the minimum time
function TS(x) if knowing the reachable sets. One of the attempts was done in [20,21],
where the approach is based on PDE solvers and on the reconstruction of the optimal
control and solution via the value function. On the other hand, our approach in this
work is completely different. It is based on very efficient quadrature methods for convex
reachable sets as described in Section 7.2.

In the last chapter we present a novel approach for calculating the minimum time
function. The basic idea is to use set-valued methods for approximating reachable sets at
a given end time with computations based on support functions resp. supporting points.
By reversing the time and start from the convex target as an initial set we compute the
reachable sets for times on a (coarser) time grid. Due to the strictly expanding condition
for reachable sets, the corresponding end time is assigned to all boundary points of the
computed reachable sets. Since we discretize in time and in space (by choosing a finite
number of outer normals for the computation of supporting points), the vertices of
the polytopes forming the fully discrete reachable sets are considered as data points of
an irregular triangulated domain. On this simplicial triangulation, a piecewise linear
approximation yields a fully discrete approximation of the minimum time function. The
well-known interpolation error and the convergence results for the set-valued method
can be applied to yield an easy-to-prove error estimate by taking into account the
regularity of the minimum time function. It requires at least the continuity and involves
the maximal diameter of the simplices in the used triangulation. A second error estimate
is proved without explicitely assuming the continuity of the minimum time function and
depends only on the time interval between the computed (backward) reachable sets. The
computation does not need the nonempty interior of the target set in contrary to the
Hamilton-Jacobi-Bellman approach, for singletons the error estimate even improves. It
is also able to compute discontinuous minimum time functions, since the underlying
set-valued method can also compute lower-dimensional reachable sets. There is no
explicit dependence of the algorithm and the error estimates on the smoothness of
optimal solutions or controls. These results are devoted to reconstructing discrete
optimal trajectories which reach a set of supporting points from a given target for a
class of linear control problems and also proving the convergence of discrete optimal
controls by the use of nonsmooth and variational analysis. The main tool is Attouch’s
theorem that allows to benefit from the convergence of the discrete reachable sets to the
time-continuous one. To illustrate the error estimates and to demonstrate differences
to other numerical approaches we consider a series of numerical examples which either
allow higher order of convergence or where the regularity cannot be sufficiently granted.
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1.3 Structure of the thesis

This thesis consists of seven chapters. The first two chapters are devoted to the in-
troduction and the background of this work. All of the main results are described in
Chapters 3 – 7:

• Chapter 3 is based on [56].

• Chapters 4 and 5 are taken from [26].

• Chapter 6 is presented in [47].

• Chapter 7 is derived from [11,12].

8



Chapter 2

Preliminaries

This chapter is devoted to introducing some definitions, notations and basic knowledge
which are used through this work. Let S ⊂ Rn be a closed set, ‖ · ‖ be the Euclidean
norm and 〈·, ·〉 the inner product in Rn and δ > 0 be given. We set, for x ∈ Rn,

d(x, S) = dS(x) := min{‖y − x‖ : y ∈ S}

and
Sδ = {x ∈ Rn : dS(x) ≤ δ}.

Denoting Sc as the complement of S, Sc = Rn \ S, we also define

S−δ = {x ∈ Rn : dSc(x) ≥ δ}.

Of course S−δ may be empty, but we will consider mainly cases where this behavior
does not occur. Let C(Rn) be the set of convex, compact, nonempty subsets of Rn,
B(x0, r) or Br(x0) be the (Euclidean) ball with radius r > 0 centered at x0 and Sn−1

be the unique sphere in Rn. Let A be a subset of Rn, M be an n× n real matrix, then
B(A, r) :=

⋃
x∈AB(x, r), ‖M‖ denotes the lub-norm of M with respect to ‖ · ‖, i.e. the

spectral norm. The convex hull, the boundary and the interior of a set A are signified
by co(A), ∂A, int(A) respectively. The characteristic function of S is defined as

χS(y) =

{
1, if y ∈ S,
0, otherwise.

.

The following recalls the definition of multi-index notation.

Definition 2.0.1 (Multi-index). Given n ∈ N \ {0}, an n-dimensional multi-index
is a n-tuple (α1, . . . , αn) ∈ Nn with αi 6= 0 for all i = 1, . . . , n. For n-dimensional
multi-indices α, β and x = (x1, x2, . . . , xn) ∈ Rn, we define:

1. Componentwise sum and difference: α± β = (α1 ± β1, α2 ± β2, . . . , αn ± βn);

2. Partial order: α ≤ β if and only if αi ≤ βi ∀ i ∈ {1, . . . , n};
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2.1. Control theory

3. Length: |α| = α1 + α2 + · · ·+ αn;

4. Factorial: α! = α1! · α2! · · ·αn!;

5. Binomial coefficient:
(
α
β

)
=
(
α1

β1

)(
α2

β2

)
· · ·
(
αn
βn

)
= α!

β!(α−β)!
;

6. Multinomial coefficient:
(
k
α

)
= k!

α1!α2!···αn!
= k!

α!
, where k := |α|;

7. Power: xα = xα1
1 x

α2
2 . . . xαnn ;

8. Higher-order derivative ∂α = ∂α1
1 ∂α2

2 . . . ∂αnn , where ∂αii := ∂αi/∂xαii .

2.1 Control theory

We now are going to recall some basic notations of control theory. Consider the con-
trolled dynamics and its inversed one in Rn

{
ẏ(t) = f(y(t), u(t))

y(t0) = y0

, (2.1)

{
ẏ−(t) = −f(y−(t), u(t))

y−(t0) = y−0
, (2.2)

where u(t) ∈ U for a. e. t > t0 ≥ 0, U ⊂ Rm a nonempty compact set, the control
set. Under standard assumptions, the existence and uniqueness of (2.1) as well as (2.2)
are guaranteed for any u(·) measurable and any y0, y

−
0 ∈ Rn. Let S ⊂ Rn, a nonempty

compact set, be the target and the set of admissible controls

U := {u : [t0,+∞)→ U, measurable}.

Let y(·, y0, u), y−(·, y−0 , v) be the solution of (2.1), (2.2) initiating from y0, y
−
0 and fol-

lowing the controls u, v ∈ U respectively. We define the minimum time to reach S and
to Sc by following some u(·) ∈ U from y0 /∈ S and y−0 /∈ Sc respectively

tS(y0, u) = min{t ≥ t0 : y(t, y0, u) ∈ S} ≤ +∞,
tSc(y

−
0 , u) = min{t ≥ t0 : y−(t, y−0 , u) ∈ Sc} ≤ +∞.

(2.3)

Then the minimum time functions to reach S and to Sc from y0 and y−0 are defined as

TS(y0) = inf
u∈U
{tS(y0, u)},

TSc(y
−
0 ) = inf

u∈U
{tSc(y−0 , u)}.

Under standard assumptions, the infimum is attained, provided it is not +∞. We also
define the reachable sets for fixed end time t ≥ t0, up to time t, up to a finite time
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2.2. Nonsmooth and variational analysis

respectively as follows:

RS(t) := {y0 ∈ Rn : there exists u ∈ U , y(t, y0, u) ∈ S},

RS
≤(t) :=

⋃
s∈[t0,t]

RS(s) = {y0 ∈ Rn : there exists u ∈ U , y(s, y0, u) ∈ S for some s ∈ [t0, t]},

RS := {y0 ∈ Rn : TS(y0) < +∞} =
⋃

t∈[t0,∞)

RS(t),

RSc := {y−0 ∈ Rn : TSc(y
−
0 ) < +∞}.

By definition
RS
≤(t) = {y0 ∈ Rn : TS(y0) ≤ t} (2.4)

is a sublevel set of the minimum time function. We define level sets in a neighborhood
of ∂S by setting, given τ > 0,

S+
τ = {x /∈ S, TS(x) < τ},
S−τ = {x /∈ Sc, TSc(x) < τ}.

(2.5)

Given an open subset Ω ⊆ Rn. In presence of state constraint Ω, i.e.
ẏ(t) = f(y(t), u(t)), for a.e. t > t0,

y(t0) = y0 ∈ Ω,

y(t) ∈ Ω, t ≥ t0.

(2.6)

We introduce the following additional definition which used in Chapter 3 as follows.
Given the system (2.6), we define the state constrained reachable set from y0 ∈ Ω at
time τ ≥ t0:

RS,Ω
y0

(τ) :=
{
y(τ) : y(·) is a solution of (2.6) defined on [t0, τ ]

}
.

The state constrained minimum time function from y0 ∈ Ω is

TS,Ω(y0) :=

{
+∞, if RS,Ω

y0
(τ) ∩ S = ∅ for all τ ≥ t0,

inf{τ ≥ t0 : RS,Ω
y0

(τ) ∩ S 6= ∅}, otherwise.

Throughout this work, we reserve the letters U, U , S for the control set, the admissible
control set and the target set respectively. We will let t0 = 0 except for Chapter 7.

2.2 Nonsmooth and variational analysis

The followings are some concepts of nonsmooth analysis which will be needed in this
sequel. Among many reference books on the subject we choose to quote here [24], which
also contains an introduction to control problems.
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2.2. Nonsmooth and variational analysis

Let S ⊂ Rn be a closed set. We say that v ∈ Rn is a proximal normal to S at x ∈ S
if there exists σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ ‖y − x‖2 , ∀y ∈ S.

The set of such vectors is the proximal normal cone to S at x, NP
S (x). The cone of

limiting normals is denoted by NL
S (x), and consists of those v ∈ Rn for which there exist

sequences {xi} ⊂ S, and {vi}, with vi ∈ NP
S (xi), such that xi → x and vi → v. This

cone never trivializes if x ∈ ∂S, the boundary of S. If S is convex, then NP
S = NL

S = NS,
the normal cone of Convex Analysis. The Clarke normal cone NC

S (x) equals the closed
convex hull of NL

S (x). Let A be a subset in Rn and f : A→ R ∪ {+∞} be a function.
The epigraph of f be defined as

epi f = {(x, r) ∈ Rn × R : x ∈ A, r ≥ f(x)}. (2.7)

Definition 2.2.1. If X is a topological vector space, we say that f : X → R ∪ {+∞}
is lower semicontinuous (l.s.c.) if epi f is closed in X × R with respect to the product
topology on X × R, i.e.,

lim inf
y→x

f(y) ≥ f(x).

A function g : X → R ∪ {−∞} is called upper semicontinuous (u.s.c.) if −g is l.s.c.

Definition 2.2.2. Given the Banach spaces X and Y , U ⊆ X, V ⊆ Y be open,
0 ≤ α ≤ 1, a function f : U → V is said to be a Hölder continuous function of
exponent α or α-Hölder continuous (f ∈ C0,α(U)) if there exists C > 0, such that for
every x1, x2 ∈ U

‖f(x1)− f(x2)‖Y ≤ C‖x1 − x2‖αX .
A function f : U → V is called locally Hölder continuous of exponent α or locally
α-Hölder continuous (f ∈ C0,α

loc (U)) if it is Hölder continuous with exponent α on every
compact set of U . We will call Lip(U) := C0,1(U) (resp. Liploc(U) := C0,1

loc (U)) the
set of Lipschitz continuous functions (resp. locally Lipschitz continuous functions). If
f ∈ Lip(U) or f ∈ Liploc(U), the constant C > 0 appearing in the definition is called a
Lipschitz constant for f .

Given k ≥ 1, we define the sets

Ck,α(U) :={g : U → Y : g is k times continuously differentiable with α-Hölder continuous

k-th differential},
Ck,α

loc (U) :={g : U → Y : g is k times continuously differentiable with locally α-Hölder

continuous k-th differential}.

We recall the following classical result on regularity of Lipschitz functions in finite-
dimensional spaces (the proof can be found e.g., in Corollary 4.19 p.148 of [24]):

Theorem 2.2.3 (Rademacher’s Theorem). Let X be a finite-dimensional Banach space,
V ⊆ X be open, and f : V → R be a locally Lipschitz function. Then f is differentiable
almost everywhere.
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2.2. Nonsmooth and variational analysis

Definition 2.2.4 (Proximal subdifferential). Let Ω ⊆ Rn be given and f : Ω → R ∪
{+∞} be a lower semicontinuous map, x ∈ dom(f), and v ∈ Rn. We say that v is a
proximal subgradient of f at x if (v,−1) ∈ NP

epi(f)(x, f(x)). The possibly empty set of

all proximal subgradients of f at x will be denoted by ∂Pf(x) and called the proximal
subdifferential of f at x. The following proximal inequality formula gives another
characterization of ∂Pf(x):

v ∈ ∂Pf(x) iff there exist σ, η > 0 s.t. f(y) ≥ f(x) + 〈v, y − x〉 − σ‖y − x‖2,

for all y ∈ B(x, η). Symmetrically, it is possible to define the proximal superdifferential
∂Pg(x) of an upper semicontinuous function g : Rn → R ∪ {−∞} by taking ∂Pg(x) =
{v ∈ Rn : (−v, 1) ∈ NP

hypo (g)(x)}. In this case the proximal inequality formula becomes

v ∈ ∂Pg(x) iff there exist σ, η > 0 s.t. g(y) ≤ g(x) + 〈v, y − x〉+ σ‖y − x‖2,

for all y ∈ B(x, η).

Our controllability results will be largely based on some properties of the distance
function, in connection with suitable regularity assumptions on the target. We now
recall such assumptions.

Definition 2.2.5. (1) Let S ∈ Rn be closed and let ρ > 0. We say that S satisfies a
ρ–internal sphere condition if S is the union of closed spheres of radius ρ, i.e., for any
x ∈ S there exists y such that x ∈ Bρ(y) ⊂ S.
(2) Let K ⊆ Rn be closed, a ∈ K, C be a nonempty compact subset of Rn with K∩C 6= ∅.
We set

reach(K, a) := sup{r ≥ 0 : πK(y) is a singleton for every y ∈ B(a, r)},
reachC(K) := inf

a∈K∩C
reach(K, a),

reach(K) := inf
a∈K

reach(K, a).

We say that K has locally positive reach if for every compact C with K ∩ C 6= ∅ we
have reachC(K) > 0, equivalently there exists an open set U ⊇ K such that for every
y ∈ U there exists a unique x ∈ K with dK(y) = ‖y − x‖. If reach(K) > 0 we say that
K has positive reach. If reach(K, a) = ρ > 0 for every x ∈ S, we say that S has reach
ρ, it can be proved that there exists a neighborhood V of a such that dS(·) is of class
C1,1(V \ S). This class of sets was introduced in [39], and has been extensively studied
by many authors both in finite and infinite dimensions. We refer the reader to [27]
and [62] for further details and extension of such kind of results.

Relations between the above concepts were studied in detail in [64]. We recall, in
particular, that if S has reach ρ, then the closure of its complement, Sc, satisfies a ρ–
internal sphere condition, but the converse is not true in general. The main property of
the distance we are going to use is its semiconcavity. We say that a function f : Ω→ R
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2.2. Nonsmooth and variational analysis

is locally semiconcave if for every x ∈ Ω there exists a ball Br(x) and a positive constant
C such that

λf(y) + (1− λ)f(y′) ≤ f(λy + (1− λ)y′) + C ‖y − y′‖2
(2.8)

for all y, y′ ∈ Br(x) and all λ ∈ [0, 1]. Global semiconcavity means that the above
inequality is satisfied by every y, y′ ∈ Ω such that the segment [y, y′] ⊂ Ω with the same
constant C. The constant C appearing in (2.8) is labeled as semiconcavity constant.
We say that f is locally semiconvex if −f is locally semiconcave.

Semiconcave functions enjoy some remarkable properties, summarized in the follow-
ing.

Proposition 2.2.6. Let f : Ω→ R be a function. Then

1. f is semiconcave if and only if there exists c > 0 such that f(x)− c‖x‖
2

2
is concave

in every convex subset of Ω.

2. If f : Ω→ R is both semiconcave and semiconvex, then f ∈ C1,1(Ω).

3. Let f : Ω → R be semiconvex. Then f is locally Lipschitz in Ω and ∂Pf(x) =
∂f(x) at every x ∈ Ω. In particular, the proximal subdifferential ∂Pf(x) 6= ∅ at
each point. If f is semiconcave, the same results hold, with the proximal superdif-
ferential instead of the proximal subdifferential.

4. If f is semiconcave, then it is twice differentiable a.e. in the domain.

Alternative characterizations of semiconcave functions can be given (see [23]).

Proposition 2.2.7. Let Ω be an open subset of Rn, f : Ω → R be a function, and
c ≥ 0. The following are equivalent:

1. f is semiconcave with semiconcavity constant c;

2. for every p ∈ ∂Pf(x) we have

f(y)− f(x) ≤ 〈p, y − x〉+ c‖y − x‖2;

3. for any w ∈ Rn such that ‖w‖ = 1 we have
∂2v

∂w2
≤ c in the sense of distributions

in Ω.

The following results are well known (see, e.g., Proposition 2.2.2 in [23] and Section
4 in [39]).

Proposition 2.2.8. Let S ⊂ Rn be closed. Then the distance function dS satisfies the
following properties:
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(i) dS is locally semiconcave in Rn \ S. More precisely, given a set K ⊂ Rn \ S such
that infx∈K dS(x) = δ > 0, dS is semiconcave in K with semiconcavity constant
equal to 1

δ
.

(ii) If S satisfies a ρ- internal sphere condition, then dS is semiconcave in Sc with
semiconcavity constant 1

ρ
.

(iii) If S has reach ρ > 0, then dS is differentiable, and ∇dS is locally Lipschitz, in
Sρ \ S.

(iv) d2
S is semiconcave on the whole of Rn with semiconcavity constant equal to 2.

Using the metric projection, i.e., the set

πS(x) = {y ∈ S : ‖y − x‖ = dS(x)},

it is possible to characterize the (super-)differential of the distance function (see, e.g,
Corollary 3.4.5 in [23] and Section 4 in [39]). We have, for all x ∈ Rn \ S,

∂PdS(x) =
x− co πS(x)

dS(x)
,

where ”co” denotes the convex hull. Moreover, if S has reach ρ > 0 and x ∈ Sρ \ S,
then πS(x) is a singleton and

∇dS(x) =
x− πS(x)

dS(x)
,

and ∇dS(x) ∈ NP
S (πS(x)).

Some basic notions of variational analysis which are needed in constructing and
proving the convergence of controls are now introduced. The main references for this
part are [24,69]. Let A ⊂ Rn, then the indicator function of A be defined as

IA(x) =

{
0 if x ∈ A
+∞ otherwise

.

Proposition 2.2.9. Let A be a closed, convex and nonempty set. Then IA is a lower
semicontinuous, convex function and epi IA is a closed, convex set.

Proof. see e.g. [24, Exercise 2.1].

Definition 2.2.10 ((Painlevé-Kuratowski) convergence of sets in [69, Sec. 4.A–4.B]).
For a sequence {Ai}i∈N of subsets of Rn, the outer limit is the set

lim sup
i→∞

Ai = {x : lim sup
i→∞

d(x,Ai) = 0},
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and the inner limit is the set

lim inf
i→∞

Ai = {x : lim inf
i→∞

d(x,Ai) = 0},

The limit of the sequence exists if the outer and inner limit sets are equal:

lim
i→∞

Ai := lim inf
i→∞

Ai = lim sup
i→∞

Ai.

We also need two more convergence terms for set-valued maps and functions.

Definition 2.2.11 (graphical and epi-graphical convergence). Consider A ⊂ Rn and
the set-valued map F : A⇒ Rn. Then the graph of F is defined as

gphF := {(x, y) ∈ Rn × Rn : y ∈ F (x), x ∈ A}.

A sequence of functions f i : Rn → R ∪ {∞}, i ∈ N, converges epi-graphically, if the
outer and the inner limit of their epigraphs (epi f i)i∈N coincide. The epi-limit is the
function whose epigraph epi f coincides with the set limit of the epigraphs in the sense
of Painlevé-Kuratowski (see [69, Definition 7.1]).

We say that the sequence of set-valued maps (F i)i∈N with F i : Rn ⇒ Rn con-
verges graphically to a set-valued map F : Rn ⇒ Rn if and only if its graphs, i.e. the
sets (gphF i)i∈N, converge to gphF in the sense of Definition 2.2.10 (see [69, Defini-
tion 5.32]).

We cite here Attouch’s theorem in a reduced version which plays an important role
for convergence results of discrete optimal controls and solutions.

Theorem 2.2.12 (see [69, Theorem 12.35]). Let (f i)i and f be lower semicontinuous,
convex, proper functions from Rn to R ∪ {∞}.
Then the epi-convergence of (f i)i∈N to f is equivalent to the graphical convergence of
the subdifferential maps (∂Pf

i)i∈N to ∂Pf .

2.3 Operations on sets and Aumann integral

In this section we will recall definitions as well as basic knowledge of convex analysis
for later use especially in Chapter 7. We define the support function, the supporting
points in a given direction and the set arithmetic operations as follows.

Definition 2.3.1. Let A ∈ C(Rn), l ∈ Rn. The support function and the supporting
face of A in the direction l are defined as, respectively,

δ∗(l, A) := max
x∈A
〈l, x〉,

Y(l, A) := {x ∈ A : 〈l, x〉 = δ∗(l, A)}.

An element of the supporting face is called supporting point.
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Definition 2.3.2. Let A,B ∈ C(Rn), λ ∈ R, M ∈ Rm×n. Then the scalar multipli-
cation, the image of a set under a linear map and the Minkowski sum are defined as
follows:

λA := {λa : a ∈ A},
MA := {Ma : a ∈ A},

A+B := {a+ b : a ∈ A, b ∈ B}.

In the following propositions we will recall known properties of the convex hull,
the support function and the supporting points when applied to the set operations
introduced above (see e.g. [5, Chap. 0], [4, Sec. 4.6, 18.2], [3, 7, 57]). Especially, the
convexity of the arithmetic set operations becomes obvious.

Proposition 2.3.3. Let A,B ∈ Rn, M ∈ Rm×n and λ ∈ R. Then,

co(A+B) = co(A) + co(B),

co(λA) = λ co(A),

co(MA) = M co(A).

Proposition 2.3.4. Let A,B ∈ C(Rn), λ ≥ 0, M ∈ Rm×n and l ∈ Rn.
Then λA, A+B ∈ C(Rn) and MA ∈ C(Rm). Moreover,

δ∗(l, λA) = λδ∗(l, A), Y(l, λA) = λY(l, A),
δ∗(l, A+B) = δ∗(l, A) + δ∗(l, B), Y(l, A+B) = Y(l, A) + Y(l, B),

δ∗(l,MA) = δ∗(MT l, A), Y(l,MA) = M Y(MT l, A).

By means of the support function or the supporting points, one can fully represent
a convex compact set, either as intersection of halfspaces by the Minkowski duality or
as convex hull of supporting points.

Proposition 2.3.5. Let A ∈ C(Rn). Then

A =
⋂

l∈Sn−1

{
x ∈ Rn : 〈l, x〉 ≤ δ∗(l, A)

}
,

A = co

( ⋃
l∈Sn−1

{y(l, A)}
)
,

∂A =
⋃

l∈Sn−1

{Y(l, A)},

where y(l, A) is an arbitrary selection of Y(l, A).

We also recall the definition of Hausdorff distance which is the main tool to measure
the error of reachable set approximation.
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Definition 2.3.6. Let C,D ∈ C(Rn), x ∈ Rn. Then the Hausdorff distance between C
and D is defined as

dH(C,D) := max{max
x∈C

dD(x),max
y∈D

dC(y)},

or equivalently

dH(C,D) := min{r ≥ 0: C ⊂ B(D, r) and D ⊂ B(C, r)}.

The next proposition will be used for a special form of the space discretization of
convex sets via the convex hull of finitely many supporting points.

Proposition 2.3.7 ( [9, Proposition 3.4]). Let A ∈ C(Rn), choose ε > 0 with a finite
set of normed directions

S∆
n−1 :=

⋃
k=1,...,Nn

{lk} ⊂ Sn−1

with Nn ∈ N, dH(Sn−1, S
∆
n−1) ≤ ε and consider the approximating polytope

A∆ = co{
⋃

k=1,...,Nn

{y(lk, A)}} ⊂ A,

where y(lk, A) is an arbitrary selection of Y(lk, A), k = 1, . . . , Nn. Then

dH(A,A∆) ≤ 2 diam(A) · ε,

where diam(A) stands for the diameter of the set A.

We also recall the notion of Aumann’s integral [6] of a set-valued mapping defined
as follows.

Definition 2.3.8. Consider tf ∈ [t0,∞) and the set-valued map F : [t0, tf ]⇒ Rn with
nonempty images. With the help of the set of integrable selections

F := {f : [t0, tf ]→ Rn : f is integrable over [t0, tf ] and f(t) ∈ F (t) for a.e. t ∈ [t0, tf ]}

the Aumann’s integral of F (·) is defined as∫ tf

t0

F (s)ds := {
∫ tf

t0

f(s)ds : f ∈ F}.

18



Part I

Controllability
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Chapter 3

Continuous small-time
controllability

In this chapter, we deal with the problem of small-time controllability on S (STCS) for
nonlinear finite-dimensional time-continuous control systems in presence of state con-
straints. More precisely, given a nonlinear control system subjected to state constraints
and a closed set S, our aim is to provide sufficient conditions to steer to S every point of
a suitable neighborhood of S through admissible trajectories of the system, respecting
the constraints, and giving also an upper estimate of the minimum time needed for each
point to reach the target.

The chapter is structured as follows: in Section 3.1 we state and prove our general
results on STCS with state constraints. Section 3.2 is devoted to a detailed comparison
between the results of [53, 54, 61, 63] and ours. In Section 3.3 we turn our attention to
control-affine systems, providing some explicit sufficient conditions for STCS. Finally,
in Section 3.4 we give an example illustrating our approach.

3.1 A general result for small-time controllability

Given an open subset Ω ⊆ Rn and a compact set U ⊆ Rm, we will consider the following
state constrained control system:

ẏ(t) = f(y(t), u(t)), for a.e. t > 0,

y(0) = x0 ∈ Ω,

y(t) ∈ Ω, t ≥ 0.

(3.1)

where for every compact K there exists L = LK > 0 such that f : Rn × Rm → Rn

satisfies

‖f(x, u)− f(y, u)‖ ≤ LK‖x− y‖, for all x, y ∈ K, u ∈ U,

u(·) ∈ U = {v : [0,+∞[→ U : v is measurable}, and a closed subset S ⊆ Rn (called the
target set) with S ∩ Ω 6= ∅ is given.
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3.1. A general result for small-time controllability

A special case of the above system is given by the following state constrained control-
affine system: 

ẏ(t) = f0(y(t)) +
N∑
i=1

ui(t)fi(y(t)), for a.e. t > 0,

y(0) = x0 ∈ Ω,

y(t) ∈ Ω, t ≥ 0,

(3.2)

where f0, fi ∈ C1,1
loc (Rn), ui ∈ U , with i = 1, . . . , N and

U = {v : [0,+∞[→ [−1, 1] : v is measurable}.

If Ω = Rn, in both cases we will omit the adjective constrained and we will write simply
RS
x(t) and TS(x).

Remark 3.1.1 (Estimates on trajectories). Consider the system 3.1. Let x̄ ∈ Rn,
δx̄ > 0. Choose

Mx̄ ≥ max{‖f(z, u)‖ : z ∈ B(x̄, δx̄), u ∈ U}.

Then for any 0 < δ′ < δx̄ we have RS
x(t) ⊆ B(x̄, δx̄) for all x ∈ B(x̄, δ′) and 0 ≤

t ≤ δx̄ − δ′

Mx̄

. The proof is classical, and is based on Schauder’s fixed point theorem and

Gronwall’s inequality. See e.g. Section 5 in Chapter III of [16].

The property in which we are interested is the following (see also [53], [54], [63]).

Definition 3.1.2 (STCS). We say that S is small-time controllable for the system
(3.1) if for any T > 0 there exists an open neighborhood UT ⊆ Rn of S such that
TS,Ω(x) ≤ T for all x ∈ UT ∩ Ω.

Remark 3.1.3. A sufficient condition for STCS is to be able to bound from above the
minimum time function TS,Ω(·) in a relative neighborhood of the target by a continuous
increasing function of the distance from the target itself, and vanishing exactly on the
target.

Lemma 3.1.4 (Localization). Consider system (3.1) with closed target S ⊆ Rn. As-
sume that for every x̄ ∈ ∂S ∩ Ω there exists a continuous increasing function ωx̄ :
[0,+∞[→ [0,+∞[ and 0 < δx̄ < +∞ such that

1. ωx̄(p) = 0 if and only if p = 0,

2. TS,Ω(x) ≤ ωx̄(dS(x)) for all x ∈ B(x̄, δx̄) ∩ Ω.

Then STCS holds. If moreover ∂S ∩ Ω is compact, then ωx̄(·) and δx̄ can be chosen
independently on x̄.
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3.1. A general result for small-time controllability

Proof. Let T > 0 be fixed. For any x̄ ∈ ∂S ∩Ω there exists rx̄ > 0 such that ωx̄(s) ≤ T
for all s ∈ [0, rx̄]. Set Ux̄ := B(x̄, δx̄) ∩ Srx̄ , and notice that, in particular, if x ∈ Ux̄ ∩Ω
we have TS,Ω(x) ≤ ωx̄(dS(x̄)) ≤ T . Moreover, trivially, we have TS,Ω(x) ≤ T for all
x ∈ S. Defined

UT :=

 ⋃
x̄∈∂S∩Ω

Ux̄ ∪ S

 ,

we have that UT ∩ Ω is an open neighborhood of S in the topology of Ω and, by
construction, we have TS,Ω(x) ≤ T for all x ∈ UT ∩ Ω. So STCS holds.

In the compact case, we can cover ∂S ∩ Ω by finitely many balls {B(x̄i, δx̄i) : i =
1 . . . , N}, where x̄i ∈ ∂S ∩ Ω and δx̄i > 0, thus we can set ω(p) = max

i=1,...,N
ωx̄i(p) and

δ = min
i=1,...,N

δx̄i .

The following simple result will be extensively used in our analysis.

Lemma 3.1.5. Let δ > 0 be a constant, λ : [0,+∞[×[0,+∞[→ R, θ : [0,+∞[→
[0,+∞[ be continuous functions such that

1. r 7→ θ(r)

λ(θ(r), r)
is bounded from above by a nonincreasing nonnegative function

β(·) ∈ L1(]0, δ[);

2. λ(θ(r), r) > 0 for 0 < r < δ, and λ(0, r) = 0 for r > 0 .

Consider any sequence {ri}i∈N in [0, δ] satisfying for all i ∈ N:

(S1) ri+1 − ri ≤ −λ(θ(ri), ri).

(S2) θ(ri) 6= 0 implies ri 6= 0.

Then we have

a.) ri → 0,

b.)
∞∑
i=0

θ(ri) ≤
∫ r0

0

β(r) dr.

Proof. According to (S1), the sequence {ri}i∈N is monotonically decreasing and bounded
from below, thus it admits a limit. Let r∞ = lim

i→+∞
ri, it is evident that 0 ≤ r∞ < δ.

Now we would like to show that r∞ = 0. Assume, by contradiction, r∞ > 0. By passing
to the limit for i → +∞ in (S1) and recalling that λ(·, ·) is a continuous function and
λ(θ(ri), ri) ≥ 0, we obtain that 0 = λ(θ(r∞), r∞) and this contradicts the fact that
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λ(θ(r), r) > 0 for any 0 < r < δ, thus r∞ = 0. Since if θ(ri) 6= 0 we have ri 6= 0 and
ri − ri+1

λ(θ(ri), ri)
≥ 1, we obtain

∞∑
i=0

θ(ri) =
∞∑
i=0

θ(ri)6=0

θ(ri) ≤
∞∑
i=0

θ(ri) 6=0

θ(ri)

λ(θ(ri), ri)
(ri − ri+1)

≤
∞∑
i=0

θ(ri)6=0

β(ri)(ri − ri+1) ≤
∫ r0

0

β(r)dr,

recalling the monotonicity property of r 7→ β(r).

We will apply this Lemma to the following situation: take a sequence of points
{xi}i∈N, define ri = d2

S(xi) for all i ∈ N, and assume that the time needed to reach xi+1

from xi is θ(ri). Then we can bound from above
∞∑
i=0

θ(ri), and thus the time needed

to steer x0 to S, provided that we are able to construct λ(·) fulfilling the assumptions
of Lemma 3.1.5. If the bound is locally uniform in a neighborhood of S, STCS follows
from Remark 3.1.3.

The map λ(t, r) will measure the decrease of the squared distance from the target
starting from a point that is at distance r from the target after having followed a
particular admissible trajectory for time t. Roughly speaking, if the decrease of the
distance is too slow, we will not be able to reach the target in finite time, so we need a
quantitive bound of the ratio between the time passed and the amount of the decrease
of the distance.

It is clear that, in the above discussion, we can replace the squared distance d2
S(·)

with a general nonnegative locally Lipschitz continuous function ΦS(·) (satisfying some
extra regularity assumptions) and such that S = {x ∈ Rn : ΦS(x) ≤ 0}.

We state and prove now a first general result on STCS in the spirit of Remark 3.1.3.

Theorem 3.1.6 (General controllability). Consider the system (3.1). Let x̄ ∈ ∂S ∩Ω,
δx̄ > 0 and assume that

S ∩B(x̄, δx̄) := {x ∈ B(x̄, δx̄) : ΦS(x) ≤ 0},

where ΦS : Rn → R is a locally Lipschitz function. Set Φx̄ = max
x∈B(x̄,δx̄)

{ΦS(x)}, denote

by L(r) > 0 a Lipschitz constant of ΦS(·) on B(x̄, δx̄)∩ {x : ΦS(x) ≤ r}, and let Mx̄ =
max
v∈U

z∈B(x̄,δx̄)

{‖f(z, v)‖}. Let σ, δ, µ, χ : [0,+∞[×[0,+∞[→ [0,+∞[, and τ, θ : [0,+∞[→

[0,+∞[ be continuous function. We assume that:

1) τ(r) = 0 iff r = 0, 0 < θ(r) ≤ τ(r) for every 0 < r < Φx̄;
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3.1. A general result for small-time controllability

2) for any x ∈ (B(x̄, δx̄) ∩ Ω) \ S and 0 < t ≤ τ(ΦS(x)) the following holds

2.a) [RS,Ω
x (t)]δ(t,ΦS(x)) ∩ S2δx̄ 6= {x},

2.b) if RS,Ω
x (t) ∩ S = ∅, there exists yt,x ∈ [RS,Ω

x (t)]δ(t,ΦS(x)) ∩B(x, χ(t, r)) with

min
ζ∈∂PΦS(x)

〈ζ, yt,x − x〉+K‖yt,x − x‖2 ≤ −µ(t,ΦS(x)) + σ(t,ΦS(x));

2.c) ΦS(·) is semiconcave on B(x̄, δx̄) with semiconcavity constant K = Kx̄ > 0.

3) the continuous function λ : [0,+∞[×[0,+∞[→ R, defined as

λ(t, r) := µ(t, r)− σ(t, r)− (L(r) +Kδ(t, r) + 2Kχ(t, r)) δ(t, r),

satisfies the following properties:

(3.a) 0 < λ(θ(r), r) < r, λ(0, r) = 0 for all 0 < r < Φx̄;

(3.b) r 7→ θ(r)

λ(θ(r), r)
is bounded from above by a nonincreasing nonnegative func-

tion β(·) ∈ L1(]0,Φx̄[).

Then, if we set

ω(r0) :=

∫ r0

0

β(r) dr,

we have that there exists δ′x̄ > 0 such that TS,Ω(x) ≤ ω(ΦS(x)) for any x ∈ B(x̄, δ′x̄) ∩
Ω \ S.

Before the proof of Theorem 3.1.6, we make some comment on the assumptions.

i. Assumption (1) is just technical, and fix an upper bound τ(ΦS(x)) on time sam-
pling, depending only on the level set of ΦS(·) to which the considered starting
point x belongs.

ii. Assumption (2.a) states that sufficiently near to the target there are no points
where the unique admissible trajectory is the constant one. This is quite reasonble,
since if x̄ would be one of such points, we would have TS(x̄) = +∞, so STCS
could not hold.

iii. Assumption (2.b) provides a quantitative estimate of the variation of the ΦS

between two sampling times in the case that we are not able to reach the target
in the sampling time τ(ΦS(x)).

iv. Assumption (2.c) gives the technical assumptions on ΦS(·) (see also Remark 3.1.7).

v. Assumption (3) ensures that between two sampling times the function ΦS actually
decreases with a decreasing rate fast enough to reach the target in finite time,
thanks to Lemma 3.1.5.
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3.1. A general result for small-time controllability

Proof. If Φx̄ = 0 then B(x̄, δx̄) ⊆ S, and so TS,Ω(x) = 0 for all x ∈ B(x̄, δx̄) ∩ Ω, and

there is nothing to prove. We suppose now Φx̄ > 0. Since f is bounded on B(x̄, δx̄), by
Remark 3.1.1 we can choose 0 < δ′x̄ <

δx̄
2

such that, if we set

Tδ′x̄ = max
x∈B(x̄,δ′x̄)\S

∫ ΦS(x)

0

β(s) ds,

we have RS
x(t) ⊆ B(x̄, δx̄) for all 0 < t ≤ Tδ′x̄ and x ∈ B(x̄, δ′x̄), recalling that, by

continuity of ΦS(·), by the definition of S, and by the fact that β ∈ L1, we have
Tδ′x̄ → 0+ as δ′x̄ → 0+. Moreover, we have also RS

x(t) ⊆ B(x,Mx̄t) for all 0 < t ≤ Tδ′x̄ .
We define a sequence of points and times {(xi, ti, ri)}i∈N by induction as follows.

We choose x0 ∈ (B(x̄, δ′x̄) ∩ Ω) \ S, and set r0 = ΦS(x0), t0 = θ(r0). Suppose to have
defined xi, ti, ri. We distinguish the following cases:

1. if xi ∈ S, we define xi+1 = xi, ti+1 = 0, ri+1 = 0.

2. if xi /∈ S

(a) if RS,Ω
xi

(ti) ∩ S 6= ∅, take xi+1 ∈ RS,Ω
xi

(ti) ∩ S and define ri+1 = 0, ti+1 = 0.

(b) if RS,Ω
xi

(ti)∩S = ∅, we choose yi ∈ [RS,Ω
xi

(ti)]δ(ti,ri)∩B(xi, χ(xi, ri)) such that

min
ζxi∈∂PΦS(xi)

〈ζxi , yi − xi〉+ ‖yi − xi‖2 ≤ −µ(ti, ri) + σ(ti, ri).

We select xi+1 ∈ RS,Ω
xi

(ti) such that ‖yi − xi+1‖ ≤ δ(ti, ri), and define ri+1 =
ΦS(xi+1), ti+1 = θ(ri+1). According to the semiconcavity of ΦS(·) (with
semiconcavity constant K), we have that there exists ζxi ∈ ∂ΦS(xi) such
that

ri+1 − ri ≤ 〈ζxi , xi+1 − xi〉+K‖xi+1 − xi‖2

≤ 〈ζxi , xi+1 − yi + yi − xi〉+K‖(xi+1 − yi) + (yi − xi)‖2

≤ 〈ζxi , xi+1 − yi + yi − xi〉+K‖xi+1 − yi‖2

+ 2K‖xi+1 − yi‖‖yi − xi‖+K‖yi − xi‖2.

By recalling that by assumption 2b) and the selection of xi+1, we have ‖yi−
xi‖ ≤ χ(ti, xi) and ‖xi+1 − yi‖ ≤ δ(ti, xi). Therefore

ri+1 − ri ≤ 〈ζxi , xi+1 − yi〉+ 〈ζxi , yi − xi〉+Kδ2(ti, xi) (3.3)

+ 2Kδ(ti, xi)χ(ti, xi) +K‖yi − xi‖2

≤ L(ri)δ(ti, ri) +
(
〈ζxi , yi − xi〉+K‖yi − xi‖2

)
+Kδ2(ti, xi) + 2Kδ(ti, xi)χ(ti, xi)

≤ L(ri)δ(ti, ri)− µ(ti, ri) + σ(ti, ri) +Kδ2(ti, xi) + 2Kδ(ti, xi)χ(ti, xi)

≤
(
L(ri) +Kδ(ti, ri) + 2Kχ(ti, ri)

)
δ(ti, ri)− µ(ti, ri) + σ(ti, ri) = −λ(ti, ri),

recalling that ‖ζxi‖ ≤ L(ri) by definition of L(·). We notice that in this
case xi+1 /∈ S since xi+1 ∈ RS,Ω

xi
(ti) and RS,Ω

xi
(ti) ∩ S = ∅, thus ti+1 > 0 and

ri+1 > 0.
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The assumptions of Lemma 3.1.5 are satisfied:

1. ri+1 − ri ≤ −λ(θ(ri), ri),

2. it is obvious that θ(ri) 6= 0 implies ri 6= 0. Indeed, assume that ri = 0. Since
0 ≤ θ(r) ≤ τ(r), and τ(r) = 0 iff r = 0 , we have θ(0) = 0.

3. by assumption, there exists β ∈ L1(]0, δ0[) such that
θ(s)

λ(θ(s), s)
≤ β(r).

Applying Lemma 3.1.5, we have that

a.) ri → 0,

b.)
∞∑
i=0

θ(ri) ≤
∫ r0

0

β(r) dr.

Since
∞∑
i=0

ti ≤
∞∑
i=0

θ(si), we have
∞∑
i=0

ti ≤
∫ r0

0

β(r) dr ≤ Tδ′x .

Noticing that {xi}i∈N ⊆ RS
x

(
∞∑
i=0

ti

)
and

∞∑
i=0

ti ≤ Tδ′ , we have that {xi}i∈N ⊆

B(x̄, δx̄), thus is bounded. Up to subsequence, still denoted by {xi}i∈N, we have that
there exists x∞ ∈ Rn such that xi → x∞. Since ΦS(xi) → 0, we have x∞ ∈ S and so

TS,Ω(x0) ≤
∞∑
i=0

ti ≤ ω(ΦS(x0)).

Remark 3.1.7. Recalling Proposition 2.2.8, for every general closed set S we can take
ΦS(·) = d2

S(·) with K = 2 and L(r) = 2
√
r. In this case, given x /∈ S, we have

ζ ∈ ∂Pd2
S(x) if and only if ζ = 2dS(x)ξ with ξ ∈ ∂PdS(x). If S satisfies the ρ-internal

sphere condition, we can take ΦS(·) = dS(·) with K = 1/ρ, L(r) ≡ 1.

We will show now that the following well-known controllability condition can be
fitted in the framework of the above result.

Corollary 3.1.8. [Petrov’s condition: the free case] Consider the system (3.1) with
Ω = Rn, U compact, S closed, and f ∈ C1,1

loc (Rn × U ;Rn). Assume that for any x̄ ∈ ∂S
there exist ηx̄ > 0 and δx̄ > 0 with

min
u∈U

ζx∈∂P dS(x)

〈ζx, f(x, u)〉 < −ηx̄, ∀x ∈ B(x̄, δx̄) \ S,

then STCS holds. Moreover, if S is compact, there exist δ′, C ′ > 0 such that TS(x) ≤
C ′dS(x) for all x ∈ Sδ′.
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Proof. Take ΦS(·) = d2
S(·), K = Kx̄ = 2, L(r) = 2

√
r. Let Mx̄ > 0 be such that

Mx̄ > ‖f(z, v)‖+ ‖∇f(z, v)‖ for all v ∈ U , z ∈ B(x̄, δx̄).
Fix x̄ ∈ ∂S and define the continuous functions:

δ(t, r) :=
M2

x̄

2
t2, µ(t, r) := 2t

√
rηx̄, σ(t, r) = 2M2

x̄t
2, χ(t, r) = Mx̄t.

and set β(r) =
1√
rηx
∈ L1(]0,Φx̄[). Then, λ(·, ·) is defined as in Theorem 3.1.6 (3), we

have

λ(t, r) = 2t
√
rηx̄ − 2M2

x̄t
2 −

(
2
√
r + 2

M2
x̄

2
t2 + 4Mx̄t

)
M2

x̄

2
t2.

We notice that there exists a constant C > 0, independent of r, such that t
√
rηx ≤

λ(t, r) < r for all 0 ≤ t ≤ C
√
r =: τ(r) and r ≥ 0. Furthermore, we choose 0 < δ′x̄ <

δx̄
2

such that, if we set Φx̄ := sup
z∈B(x̄,δ′x̄)

ΦS(x) = (δ′x̄)
2, for all 0 < t < τ(Φx̄) and x ∈ B(x̄, δ′x̄)

we have Mx̄t ≤
δx̄
2

, and so RS
x(t) ⊆ B(x̄, δx̄).

Take x ∈ B(x̄, δ′x̄) \ S, and choose ux ∈ U and ξx ∈ ∂PdS(x) such that

〈ξx, f(x, ux)〉 < −ηx̄. (3.4)

Consider the solution yx(·) of (3.1) starting from x at time t = 0 and generated by any
constant control u(t) ≡ ux ∈ U , and set yt,x = x+ tf(x, ux).

We have

‖yx(t)−yt,x‖ ≤
∫ t

0

‖f(yx(s), ux)−f(x, ux)‖ ds ≤Mx̄

∫ t

0

‖yx(s)−x‖ ds =
M2

x̄

2
t2 = δ(t, r),

thus yt,x ∈ [RS
x(t)]δ(t,ΦS(x)).

If x /∈ S, choose ζx ∈ ∂Pd2
S(x) such that ζx = 2dS(x)ξx with ξx ∈ ∂PdS(x) realizing

(3.4). Thus

〈ζx, yt,x − x〉+ 2‖yt,x − x‖2 ≤ 2dS(x)t〈ξx, f(x, ux)〉+ 2M2
x̄t

2

≤ −2dS(x)tηx + 2M2
x̄t

2 = −µ(x,ΦS(x)) + σ(x,ΦS(x))

Recalling that for all x ∈ B(x̄, δ′x̄) \ S and 0 < t ≤ τ(r) we have 0 < λ(θ(r), r) < r,
λ(0, r) = 0 for all 0 < r < Φx̄, we can take θ(r) = τ(r). Clearly, (1)-(2) in Theorem
3.1.6 are satisfied.

We notice that
θ(r)

λ(θ(r), r)
≤ 1√

rηx̄
= β(r),

thus also (3) in Theorem 3.1.6 holds, and so, applying Theorem 3.1.6,

TS(x) ≤
∫ ΦS(x)

0

1√
rηx̄

dr =
2

ηx̄
dS(x).

The last part of the statement comes from Lemma 3.1.4.
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3.2 Comparison with previous results

In order to apply Theorem 3.1.6 we need to prove some estimate on the set RS,Ω
x (t) for x

sufficiently near to S and t sufficiently small. A natural choice is to assume the existence
of a selection (t, x) 7→ yx(t) of the set-valued map (t, x) 7→ RS,Ω

x (t) satisfying yx(0) = x
along which the distance (squared) from S is strictly decreasing. Further assumptions
ensuring that the selection satisfies certain smoothness property are requested in or-
der to estimate decreasing rate of the distance. Finally, if the aforementioned rate is
sufficiently high, we obtain STCS.

In the free case (i.e., without state constraints), this strategy was employed in several
papers, among which we mention [53, 54, 61, 63], under different degrees of generality
and geometric assumptions on the target S. The aim of this section is to show that all
these results can be seen as consequences of Theorem 3.1.6.

We recall this definition.

Definition 3.2.1 (A Ω-trajectory). Let x̄ ∈ Rn, T > 0. We say that a continuous
curve yx̄ : [0, T ] → Rn is an A Ω-trajectory starting from x̄ if we have yx̄(0) = x̄ and
yx̄(t) ∈ RS,Ω

x̄ (t) for any t ∈ [0, T ] (see also Section 3.1 in [53]). If Ω = Rn we will omit
it.

Remark 3.2.2. The small-time controllability studied in this chapter is sometimes
referred to as small-time local attainability, see, e.g., [53, 54].

The following is the main result of [53], and was proved for the first time in Theorem
3.1 of that paper.

Corollary 3.2.3 (Krastanov-Quincampoix). Let S be a closed subset of Rn. Let α, s >
0, r0 and T0 > 0 be given. Let x̄ ∈ ∂S. We assume the following conditions:

(A1) starting from any x from B(x̄, r0) \ S, there exists a A -trajectory x(·) such that
for every t ∈ [0, T0] it holds

x(t) = x+ a(t;x) + tαA(x) + o(tα;x) ∈ RS
x(t); (3.5)

(A2) there exist positive constants N and β such that

max
x∈B(x̄,r0)\S

‖o(tα;x)‖ ≤ N tα+β;

(A3) there exists some Lipschitz continuous negative function b(·) with a Lipschitz con-
stant Lb on B(x̄, r0) \ S such that

max
x∈B(x̄,r0)\S
πx∈π(x)

〈
x− πx
‖x− πx‖

, A(x)

〉
≤ b(x) < 0;
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3.2. Comparison with previous results

(A4) there exists L0 > 0 such that for all x, y ∈ B(x̄, r0) \ S

‖A(x)− A(y)‖ ≤ L0‖x− y‖;

(A5) there exists a Lipschitz continuous nonnegative function c(·) such that

max
x∈B(x̄,r0)\S

‖a(t;x)‖ ≤ tsc(x), and lim
dS(x)→0

x∈B(x̄,r0)\S

c(x) = 0.

Then for every sufficiently small T > 0 there exists a neighborhood B(x̄, θ) of x̄,
with θ > 0, such that for every point x ∈ B(x̄, θ) \ S there exists t ∈ [0, T0] such
that RS

x(t) ∩ S 6= ∅.

Proof. The proof will follow the argument of Corollary 3.1.8. We set δx̄ = r0.
Fix x̄ ∈ ∂S, and take Mx̄ = max{‖f(z, v)‖ : v ∈ U, z ∈ B(x̄, δx̄)}, ` = 1 +

max
x∈B(x̄,δx̄)

‖A(x)‖, µ = − max
x∈B(x̄,δx̄)

b(x) > 0.

Take ΦS(·) = d2
S(·), thus, according to the notations of Theorem 3.1.6, we have

Kx̄ = 2, L(r) = 2
√
r, Φx̄ = δ2

x̄, and (2.c) in Theorem 3.1.6 is satisfied.
Define

δ(t, r) := Ntα+β, µ(t, r) := 2µ
√
rtα,

χ(t, r) := kts
√
r + `tα, σ(t, r) = 2krts + 2χ2(t, r),

and set as in Theorem 3.1.6 (3)

λ(t, r) := µ(t, r)− σ(t, r)− (L(r) +Kδ(t, r) + 2Kχ(t, r)) δ(t, r).

We notice that there exist C > 0, independent on r, and ρ̄ > 0 such that if we define
τ(r) = (Cr)1/2α we have 0 ≤ µ

√
Cr ≤ λ(τ(r), r) < r for all 0 < r < ρ̄.

Clearly, (1) and (3) in Theorem 3.1.6 are satisfied by taking θ(r) = τ(r) and β(r) =
θ(r)

µ
√
Cr

. Moreover, there exists C ′′ > 0 such that

ω(p) =

∫ p

0

β(r) dr = C ′′p1/2α.

We check now (2.a) and (2.b) in Theorem 3.1.6. Choose 0 < δ′x̄ < min{ρ̄, δx̄/2} such
that Mx̄ω(δ′2x̄) < δx̄/2 and ω(δ′2x̄) ≤ T0. This implies that RS

x(t) ⊆ B(x̄, δx̄) for all
0 < t ≤ ω(ΦS(x)) and x ∈ B(x̄, δ′x̄). Given x ∈ B(x̄, δ′x̄) \ S, according to (A1)− (A2)
we have

yt,x := x+ a(t;x) + tαA(x) ∈ [RS
x(t)]δ(t,ΦS(x)).

Since the assumption (A5) implies that there exists k > 0 such that |c(x)| ≤ kdS(x),
where k > 1 is a suitable constant greater than the Lipschitz constant of c(·), we have

‖yt,x − x‖ = ‖a(t;x) + tαA(x)‖ ≤ ts|c(x)|+ `tα ≤ ktsdS(x) + `tα,
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Choosing ζx ∈ ∂Pd2
S(x), if x /∈ S we have ζx = 2dS(x)ξx with ξx ∈ ∂PdS(x), thus

〈ζx, yt,x − x〉+ 2‖yt,x − x‖2 ≤ 2dS(x)〈ξx, a(t;x) + tαA(x)〉+ 2‖yt,x − x‖2

≤ 2dS(x)‖a(t;x)‖+ 2dS(x)tα〈ξx, A(x)〉+ 2‖yt,x − x‖2

≤ 2dS(x)ts|c(x)|+ 2dS(x)tα〈ξx, A(x)〉+ 2‖yt,x − x‖2

≤ 2kd2
S(x)ts + 2dS(x)tα〈ξx, A(x)〉+ 2(ktsdS(x) + `tα)2.

So, according to (A3) and (A5), we have

min
ζx∈∂P dS(x)

〈ζx, yt,x − x〉+ 2‖yt,x − x‖2 ≤ −2µdS(x)tα + 2kd2
S(x)ts + 2(ktsdS(x) + `tα)2

= −µ(t,ΦS(x)) + σ(t,ΦS(x)),

fulfilling (2.b) in Theorem 3.1.6. So by Theorem 3.1.6 we obtain

TS(x) ≤ ω(Φ2
S(x)) = C ′′d

1/α
S (x)

for all x ∈ B(x̄, θ) with θ = δ′x̄.

In our framework we can prove also the following refinement of Corollary 3.2.3,
which was proved firstly by Krastanov in Theorem 3.1 of [54] improving also the results
of [61], which allowed also the scalar product between the proximal normal ζx and the
leading term of the A -trajectory, to vanish sufficiently slowly as dS(x) → 0, while in
(A3) of Corollary 3.2.3 the same quantity was strictly negative and bounded away from
zero.

Corollary 3.2.4 (Krastanov). In the same assumptions of Corollary 3.2.3, assume
α ≥ 1, β > 0, and 0 < s ≤ α and define

σ1(α, s, β) =


α + β, if α = s;

α

α− s
, if α > s;

σ2(α, β) =


α + β, if β ≥ α;

α

α− β
, if α > β;

σ3(α, s, β) =


α + β, if β + s ≥ α;

α

α− β − s
, if β + s < α.

σ̃(α, s, β) = min

{
σ1(α, s, β), σ2(α, β), σ3(α, s, β), 1 +

min{s, 1}
2α−min{s, 1}

}
.

Choose 1 ≤ λ < σ̃(α, s, β), and replace (A3) with the following condition
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(A3’) there exists δ > 0 such that

max
x∈B(x0,r0)\S
πx∈π(x)

〈 x− πx, A(x)〉 ≤ −δdλS(x) < 0.

Then the same conclusion of Corollary 3.2.3 holds true.

Proof. We notice that 1 ≤ λ < 2. Without loss of generality, we can assume 0 < δx̄ < 1.
The proof follows exactly the same line of the corresponding proof of Corollary 3.2.3,
replacing the constant µ by the function µ̃(r) = δr

λ−1
2 in the definition of µ(t, r) and

setting τ(r) = θ(r) = Crλ/2α, where C > 0 is a suitable positive constant to be

determined. So we have µ(τ(r), r) := 2δCαrλ, δ(τ(r), r) := NCα+βrλ
α+β
2α , χ(t, r) =

kCsr
1
2

+ λs
2α + `Cαr

λ
2 , and

σ(τ(r), r) = 2kCsr
λs
2α

+1 + 2(kCsr
1
2

+ λs
2α + `Cαr

λ
2 )2 = `2C2αrλ + o(rλ),

recalling the choice of λ. We observe that, still by the choice of λ, we have also

r
1
2

+λα+β
2α = o(rλ), δ2(τ(r), r) = o(rλ), and χ(τ(r), r)δ(τ(r), r) = o(rλ). Thus, recalling

the definition of λ(t, r) given in Theorem 3.1.6 (3), we have

λ(τ(r), r) := µ(τ(r), r)− σ(τ(r), r)− (L(r) +Kδ(τ(r), r) + 2Kχ(τ(r), r)) δ(t, r)

= Cα(2δ − `2Cα)rλ + o(rλ),

so there exists ρ̄ > 0 such that for all 0 < r < ρ̄ we have λ(τ(r), r) ≤ 2Cαδrλ. We choose
C > 0 such that 2Cαδ < 1 and `2Cα ≤ δ, thus, recalling that λ ≥ 1 and 0 < r ≤ 1, we
have Cαδrλ ≤ λ(τ(r), r) < rλ ≤ r, so we can take θ(r) = τ(r). We have

θ(r)

λ(θ(r), r)
≤ Cr

λ
2α

Cαδrλ
=
C1−α

δ
rλ( 1

2α
−1) =: β(r),

and so there exists C ′ > 0 such that

TS(x) ≤
∫ d2

S(x)

0

β(r) dr = C ′[dS(x)]2+ λ
α
−2λ,

and STCS holds.

In Example 5.21 of [63] is presented a situation where Corollary 3.2.4 cannot be
used, since the requirement (A4) of Lipschitz continuity of the function A(·) prevents
the choice of λ. This requirement was essential in the proof of Theorem 3.1 in [54]. The
first main result of [63], i.e., Theorem 5.10 in [63], used a different argument which do
not require that Lipschitz condition, but it works only under the additional assumption
of the internal sphere condition of the target S. This was the case of Example 5.21
in [63], to which that result can be applied
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3.3. Controllability conditions for control-affine systems

In our proof of Corollary 3.2.4 and 3.2.3, based on Theorem 3.1.6, we never used
(A4) and we do not impose any internal sphere condition on the target, thus generalizing
also Theorem 5.10 of [63].

However, the second main results of [63] which exploits also generalized curvature
of the target S – which is supposed sufficiently smooth to have dS at least of class C1,1

in a neighborhood of it – is still not covered by Theorem 3.1.6, as shown by Example
5.22 in [63], where Theorem 5.10 of [63] fails even if the target S is smooth, since to
have STCS is essential to exploit also its curvature properties.

3.3 Controllability conditions for control-affine sys-

tems

We turn now our attention to control-affine systems described in (3.2). For such kind of
systems it turns out that it is possible to construct explicit approximations of RS,Ω

x (t),
on which we are going to check the conditions of Theorem 3.1.6.

Our aim is to provide for these system conditions on the data of problem (i.e., on
vector fields fj, on S and on Ω as appear in (3.2)) ensuring the applicability of Theorem
3.1.6 for a given system.

The problem can be split in two parts:

1. construct suitable approximated A -trajectories of the systems approaching the
target sufficiently fast;

2. among the previous trajectories, select the ones along which it is possible to pro-
vide a suitable lower bound of the distance from Ωc, thus granting the fulfillment
of the state constraints.

The first issue is strictly related to the possibility of providing a description at least of
some suitable subsets of RS

x(t) for any x ∈ Rn near to the target and t > 0 sufficiently
small.

The second issue amounts to provide a quantitative estimate of the variation of the
(squared) distance function from Ωc along the A -trajectories, in a very similar way as
it was done with the (squared) distance function from the target S, or, more generally,
of ΦS(·). While in the latter case we provided an upper estimate by means of a semi-
concavity inequality satisfied by ΦS, in the first case we will need the reverse inequality,
i.e., a semiconvexity inequality to bound the (squared) distance function from below.
Without any extra smoothness hypothesis, the (squared) distance from a set is not
semiconvex, thus, while for the upper bound we do not put any smoothness assumption
on S, for the lower bound we will need some regularity hypothesis on Ωc.
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3.3. Controllability conditions for control-affine systems

Definition 3.3.1 (Characters, alphabet and words). We consider a nonempty finite
set of symbols X := {x0, . . . , xN}, called the alphabet. The elements of X will be called
characters. A word on X is any finite sequence of characters w = xi1xi2 . . . xiM , where
ij ∈ {0, . . . , N} for all j ∈ {0, . . . ,M}. In this case, |w| = M is called the length of
the word. The empty word is the unique word of length 0 and will be denoted by Λ.
If w = xi1xi2 . . . xiM 6= Λ, we will define I = (i1, . . . , iM) ∈ NM and write w = xI .
Given two words xI = xi1 . . . xiM and xJ = xj1 . . . xjH , we define their concatenation
xIJ = xIxJ = xi1 . . . xiMxj1 . . . xjH . We have clearly xIΛ = ΛxI = xI for all words
xI . The set Σ(X) of all words on X together with the operation of concatenation is a
monoid, since this operation is associative (but in general noncommutative) with Λ as
the identity element. Given k ∈ N, we will denote by Σk(X) the subset of Σ(X) made
of words of length less or equal than k.

Definition 3.3.2 (Free Lie algebras). Given an alphabet X and the set of words Σ(X),
we can consider the free module on R generated by Σ(X), i.e., the set of all formal

finite linear combinations of words
P∑
h=1

chwh, where wh ∈ Σ(X) and ch ∈ R, with

the usual identifications: i.e., if c = 1 then cw = w for all w ∈ Σ(X), and for all

w1, . . . , wP ∈ Σ(X), c1, . . . , cP ∈ R, we have
P∑
h=1

chwh =
P∑
h=1
h6=j

chwh if cj = 0. The free

module on R generated by Σ(X) together with the operation of concatenation is the
free algebra A(X) generated by Σ(X), namely, the product of two words is given by
(c1xI)(c2xJ) = c1c2xIJ for all c1, c2 ∈ R and xI , xJ ∈ Σ(X). On A(X) × A(X), we
define the Lie bracket (or commutator) by setting [w, z] = wz− zw ∈ A(X) for every
w, z ∈ Σ(X), where wz is the concatenation of w and z; and then extending it on the
whole of A(X) by linearity. The Lie bracket operation gives to A(X) the structure of
a Lie algebra. Given k ∈ N, we will denote by Ak(X) the subset of A(X) made of all
finite linear combinations of words in Σk(X) with real coefficients.

Definition 3.3.3 (Chen-Fliess series). Given the alphabet X := {x0, . . . , xN}, consider
now the following Cauchy problem in A(X)


Ṡ(t) = S(t) ·

(
N∑
j=0

uj(t)xj

)
, t > 0,

S(0) = Λ,

(3.6)

where the maps uj ∈ U for any j = 0, . . . , N and · denotes here the concatenation
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operation. Given u(·) = (u0(·), . . . , uN(·)) ∈ UN+1, t > 0, we set

ΥΛ(t, u) = 1,

Υxj(t, u) =

∫ t

0

uj(s) ds, for j = 0, . . . , N,

Υwxj(t, u) =

∫ t

0

Υw(s, u)uj(s) ds, for w ∈ Σ(X), j = 0, . . . , N.

This defines by recurrence a map Υ : Σ(X) × [0,+∞[×UN+1 → R, which can be
extended by linearity to a map Υ : A(X) × [0,+∞[×UN+1 → R. With this definition,
the explicit solution of (3.6) is given by Chen-Fliess series

S(t) =
∑
n∈N

∑
w∈Σ(X)
|w|=n

Υw(t, u)w.

Remark 3.3.4. The number of terms appearing in
∑

w∈Σ(X)
|w|=n

Υw(t, u)w increases very

rapidly with n. Since many terms turn out to be repeated or can collected into terms
involving possibly nested commutators of lower-length words w′, w′′, this motivates the
need of finding alternative description for the Chen-Fliess series, exploiting as much as
possible the symmetries in the iterated products and factorizing the words w appearing
in the sum with respect to suitable Lie algebra basis (e.g. Hall-Viennot basis) for which
the terms can be computed efficiently.

We want to link now the above abstract setting to the original control-affine system
(3.2). We will give an idea of this connection, referring the reader to [50] for the details.

Definition 3.3.5. Consider the system (3.2), and let X = {x0, . . . , xN}. Assume that
f0, . . . , fN are of class Ck,1 for some k ≥ 1. Define a map ψ on Σk(X) by setting for
all j = 0, . . . , N , w ∈ Σk−1(X) and ϕ ∈ C∞(M)

ψ(Λ)ϕ = ϕ,

ψ(xj)ϕ = fjϕ,

ψ(wxj)ϕ = ψ(w)(fjϕ),

where fjϕ is the usual action of the vector field fj on M as a differential operator on
the function ϕ. By linearity, we can extend ψ by linearity on the whole of A(X).

Remark 3.3.6. Fixed a coordinate system around x0 on the d-dimensional manifold
M , and chosen ϕh as the h-th coordinate function, it has been proved by Sussmann that,
when all the vector fields are analytic, the vector-valued series

(ψ(S(t))ϕ)(x0) := ((ψ(S(t))ϕ1)(x0), . . . , (ψ(S(t))ϕd)(x0))
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converges exactly to the solution of (3.2) (we set u0 ≡ 1). When the vector fields are
not analytic, we cannot expect convergence of this series in any sense, not even if they
are C∞, however its truncation yields an approximation of the solution.

When we consider M = Rn, we can take the coordinate functions ϕ = (ϕ1, . . . , ϕd)
to be the identity function. In this case, we can identify a differential operator acting on
ϕ with a map from Rn to Rn. We will use systematically this identification for systems
in Rn.

Lemma 3.3.7. Consider the system (3.2) in Rn, and let X = {x0, . . . , xN}. Assume
that f0, . . . , fN are of class Ck,1

loc (Rn) for some k ≥ 1. Consider the m-th partial sum
with 0 ≤ m ≤ k

Sm(t) =
∑

w∈Σm(X)

Υw(t, u)w.

Then for each compact neighborhood K of x, there exists tK > 0 and CK > 0 such that

‖ψ(S(t))(x)− ψ(Sm(t))(x)‖ ≤ CKt
m+1, for any 0 < t < tK ,

thus, in particular, we have that ∑
w∈Σm(X)

Υw(t, u)ψ(w)(x) : t ∈]0, tK [, u(·) = (1, u1(·), . . . , uN(·)) ∈ UN+1

 ⊆ [RS
x(t)]δ

with δ = CKt
m+1.

Proof. The result is a special case in Rn of equation (2.13) of Section 2.4.4 in [1] obtained
by choosing ϕ = IdRn and the identification for any w ∈ Σm(X) of the differential
operator ψ(w) acting on ϕ with a map ψ(w)(·) from Rn to Rn.

Remark 3.3.8. Of course, in Lemma 3.3.7 we can choose convenient subsets C of
UN+1 to obtain similar inclusions. For instance, we can restrict ourselves to use only
piecewise constant controls in order to simplify the computation of the iterated integrals
appearing in Υw(t, u). This will give a tool to check in practice condition (2.b) of
Theorem 3.1.6.

Lemma 3.3.9. Fix t > 0, a partition 0 = t0 < · · · < tN = T of [0, t], {λi}i=1,...,N ∈ R.
Define Ii = [ti−1, ti], `i = ti − ti−1 for i = 1, . . . , N and u(·) = (u1(·), . . . , uN(·)) with
ui(τ) = λiχIi(τ) for all τ ∈ [0, t], i = 1, . . . , N . Let X = {x1, . . . , xN} and consider
w ∈ Σ(X) \ {Λ}. Then

1. if Υw(τ, u) 6= 0 with w = xj1 . . . xjn, the sequence {jh}nh=1 must be nondecreasing;

2. if w = xα1
h1
xα2
h2
. . . xαmhm , with αi ∈ N \ {0} and h1 < · · · < hm, then

Υw(t, u) =
m∏
h=1

(λjh`jh)αh

αh!
.

36



3.3. Controllability conditions for control-affine systems

Proof. With the above choice of u(·), given w = xj1 . . . xjn ∈ Σ(X), and according to
the definition of Υw(τ, u), we have

Υw(τ, u) = λj1 · · ·λjn
∫
. . .

∫
0≤sn≤...s1≤t

χIj1 (sn) . . . χIjn (s1) dsn . . . ds1

d

dτ
Υwxj(τ, u) = λjχIj(τ)Υw(τ, u), for all τ ∈ [0, t] \ {tj−1, tj}.

In particular, Υwxj(τ, u) = Υwxj(tj, u) for all tj ≤ τ ≤ t. Similarly, if 0 ≤ τ ≤ tjn−1 we
have Υw(τ, u) = Υw(0, u) = 0.

1. consider Υvxixj(τ, u) with a given v ∈ Σ(X). If j < i, Υvxi(τ, u) = 0 for τ ∈
]tj−1, tj[ since tj ≤ ti−1. Then

d

dτ
Υvxixj(τ, u) = λjχIj(τ)Υvxi(τ, u) = 0, for all τ ∈]tj−1, tj[.

Due to absolute continuity of Υvxixj(·, u), Υvxixj(·, u) is constant in ]tj−1, tj[ and
hence on the whole of [0, t]. Thus Υvxixj(τ, u) = Υvxixj(0, u) = 0. By induction,
this implies that if j < i we have Υvxixjv′(τ, u) = 0 for all τ ∈ [0, t] and v′ ∈ Σ(X).
Therefore if Υw(τ, u) 6= 0, the sequence {jh}nh=1 must be nondecreasing.

2. assume now w = xα1
h1
xα2
h2
. . . xαmhm , with αi ∈ N \ {0} and 0 < h1 < · · · < hm. Recall

Υw(τ, u) = 0 for 0 ≤ τ ≤ thm−1 and Υw(τ, u) = Υw(thm , u) for thm ≤ τ ≤ t. Given
τ ∈]thm−1, thm [, we have for all 0 < α ≤ αm.

dα

dτα
Υw(τ, u) = λαj Υw′xαm−αhm

(τ, u),

where w′ = xα1
h1
xα2
h2
. . . x

αm−1

hm−1
. In particular, recalling the smoothness of Υw(·, u),

we have

lim
τ→t+hm−1

dα

dτα
Υw(τ, u) =


0, for 0 < α < αm,

λαmj Υw′(thm−1 , u), for α = αm,

0, for α > αm.

The third case is obtained since τ ∈]thm−1, thm [, which has an empty intersection
with Ihm−1 by the assumption hm > hm−1, and Υw′(τ, u) is constant if τ /∈ Ihm−1 .
This implies

Υw(τ, u) =



0, if 0 ≤ τ ≤ tjm−1,

(λ(τ − tjm−1))αm

αm!
Υw′(τ, u), if tjm−1 ≤ τ ≤ tjm ,

(λjm`jm)αm

αm!
Υw′(τ, u), if tjm ≤ τ ≤ t.

The assertion now follows by repeating the argument on w′ and choosing τ = t.
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Example 3.3.10. Consider the system in Rn

ẋ(t) = u0(t)f0(x(t)) + u1(t)f1(x(t)) + u2(t)f2(x(t)). (3.7)

Define

ẋ(t) = ū1(t)g1(x(t)) + ū2(t)g2(x(t)) + ū3(t)g3(x(t)) + ū4(t)g4(x(t)), (3.8)

where g1(x) = f0(x) + f1(x), g2(x) = f0(x) + f2(x), g3(x) = f0(x) − f1(x), g4(x) =
f0(x) − f2(x). Consider the partition {t0 = 0, t1 = t/4, t2 = t/2, t3 = 3t/4, t4 = t}, set
λi = 1, `i = t/4, and define ūi(s) = χ[ti−1,ti](s), for all i = 1, . . . , 4, s ∈ [0, t]. We
consider the alphabet X = {x1, x2, x3, x4}. In this case,

Σ2(X) = {Λ, x1, x2, x3, x4, x1x1, x1x2, x1x3, x1x4, x2x1, x2x2, x2x3, x2x4, x3x1,

x3x2, x3x3, x3x4, x4x1, x4x2, x4x3, x4x4}.

According to Lemma 3.3.9, the contribution to the Chen-Fliess series comes only from
those words whose sequence of letters is nondecreasing, i.e.

{Λ, x1, x2, x3, x4, x1x1, x1x2, x2x2, x1x3, x2x3, x3x3, x1x4, x2x4, x3x4, x4x4}.

Thus in this case we have

ψ ◦ S(t)(x) =x+
t

4
(g1 + g2 + g3 + g4)(x) +

t2

16
(g1g2 + g1g3 + g1g4 + g2g3 + g2g4+

+ g3g4)(x) +
t2

32
(g1g1 + g2g2 + g3g3 + g4g4)(x) + o(t2).

Notice that for each choice of {ūi}, there exists a corresponding one of {ui} such that
the right hand side of (3.7) and (3.8) coincide. Thus if we substitute the expression of
gi, we obtain again

ψ ◦ S(t)(x) = x+ tf0(x) +
t2

16
(8f0f0 + 2[f1 + f2, f0] + [f1, f2]) (x) + o(t2),

as before. The drifless case can be deduced from the above formula by taking f0 = 0
or noticing that all the words containing x0 give no contribution, since the coefficient
Υw(t, u) vanishes because of the presence of u0(s) ≡ 0. Thus we have the well-known
formula for the commutator of the flows of f1 and f2, i.e.,

ψ ◦ S(t)(x) = x+
t2

16
[f1, f2](x) + o(t2).

Motivated by the above examples, the following result allows us to construct the
desired approximation of RS

x(t) using Lemma 3.3.9.
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3.3. Controllability conditions for control-affine systems

Lemma 3.3.11. Consider the system (3.2) in Rn with f0, fi ∈ Ck,1
loc (Rn), i = 1, . . . , N ,

0 < m ≤ k.
Let M > 0, X := {x1, . . . , xM}, σ = (σ1, . . . , σM) ∈ {1, . . . , N}M , ` = (`1, . . . , `M) ∈

]0, 1]M such that
∑M

j=1 `j = 1, λ = (λ1, . . . , λM) ∈ [−1, 1]M . Define g = (g1, . . . , gM) by
setting gi = f0 + λifσi, i = 1, . . . ,M .

Given a word v ∈ Σ(X), define

ψ̃v(t) =


t|α|

(`i)
α

α!
(gi)

α, if i1 < i2 < · · · < ih,

IdRn , if v = Λ,

0, otherwise,

where if v 6= Λ we wrote it in a unique way as v = xα1
i1
. . . xαhih with ij ∈ {1, . . . ,M}, αj ∈

N\{0} and ij 6= ij+1 for all j = 1, . . . , h−1, and we have denoted (`i)
α = `i1

α1 . . . `ih
αh,

and (gi)
α = gα1

i1
. . . . . . gαhih .

Then, if we set

Pm,M,`,λ,σ
x (t) := x+

∑
w∈Σm\{Λ}

ψ̃w(t)(x),

for any compact neighborhood K of x there exists tK > 0 and CK > 0 such that
x+ PM,`,λ,σ

x (t) ∈ [RS
x(t)]CKtm+1 for all 0 < t < tK.

Proof. Indeed, for each t > 0 we consider the partition t0 = 0 < t1 < · · · < tM = t,
where ti− ti−1 = `it. We set Ii = [ti−1, ti], and define uσi(s) = λiχIi(s) for i = 1, . . . ,M .
This is equivalent to consider the system ẋ(s) =

∑M
i=1 µi(s)gi(x(s)), where µσi(s) =

χIi(s) for i = 1, . . . ,M . According to Lemma 3.3.9, Chen-Fliess series in this case
truncated at order m is Pm,M,`,λ,σ

x (t) and, together with the error estimate of Lemma
3.3.7, this concludes the proof.

Remark 3.3.12. x + Pm,M,`,λ,σ
x (t) is the approximation at m-th order of the point

reached at time t by an admissible trajectory using piecewise constant controls activating
at each time only one controlled vector field and with total amount of switchings equal
to M . Some variants are possible, for example we may consider λ, σ are M × N
constant matrices with λij ∈ [−1, 1], σij ∈ {1, ..., N}, i = 1, ...,M, j = 1, ..., N and

define accordingly gi = f +
∑N

j=1 λijfσij , i = 1, . . . ,M , keeping inalterate the definitions

of ψ̃v and of Pm,M,`,λ,σ
x (t). The result still holds exactly with the same proof, and in this

way we drop the restriction to use only one controlled vector field at each time.

Definition 3.3.13. Consider the system (3.2) in Rn with f0, fi ∈ Ck,1
loc (Rn), i =

1, . . . , N , 0 < m ≤ k. Define

T m
x :=

{
Pm,M,`,λ,σ
x (·) : M > 0, σ ∈ {1, . . . , N}M , ` ∈]0, 1]M ,

M∑
j=1

`j = 1, λ ∈ [−1, 1]M

}
.

According to Lemma 3.3.11, given Px(·) ∈ T m
x , for any compact neighborhood K of x

there exists tK > 0 and CK > 0 such that x+ Px(t) ∈ [RS
x(t)]CKtm+1 for all 0 < t < tK.
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3.3. Controllability conditions for control-affine systems

Now we state the second main result of the paper, concerning sufficient conditions
for STCS in the control-affine case (3.2).

Theorem 3.3.14 (Local STCS for constrained control-affine systems). Consider the
system (3.2) with f0, f1, . . . , fN ∈ Ck,1

loc (Rn;Rn). Fix x̄ ∈ ∂S ∩ Ω, δx̄ > 0, and assume
that

S ∩B(x̄, δx̄) ∩ Ω := {x : ΦS(x) ≤ 0},
B(x̄, δx̄) ∩ Ωc := {x : ΨΩc(x) ≤ 0},

for suitable locally Lipschitz functions ΦS,ΨΩc : Rn → R. Let Cx̄ > 0, τx̄ > 0 be the
constants appearing in Definition 3.3.13 by taking B(x̄, δx̄) as a compact neighborhood
of x̄.

Assume that ΦS(·) is semiconcave on B(x̄, δx̄) with semiconcavity constant Kx̄ > 0.
Define Φx̄, L(·) > 0, Mx̄, K = Kx̄, σ, µ, χ, τ, θ, β as in Theorem 3.1.6. If x̄ ∈ ∂S ∩ ∂Ω,
suppose that ΨΩc is semiconvex on B(x̄, δx̄).

Let ε :]0,+∞[×]0,+∞[→ R be a continuous function such that lim
t→0+

ε(t, r)

t2
= +∞,

uniformly w.r.t. r ∈

]
0, max

z∈B(x̄,δx̄)
{ΨΩc(z)}

]
.

Assume that for every x ∈ Ω ∩ B(x̄, δx̄) \ S there exist 0 < kx ≤ k, Px(·) ∈ T kx
x ,

and ζx ∈ ∂PΦS(x), θx ∈ ∂PΨΩc satisfying for all 0 ≤ t ≤ τ(ΦS(x)):

(App) approaching condition:

〈ζx, Px(t)〉+K‖Px(t)‖2 ≤ −µ(t, dS(x)) + σ(t, dS(x)),

(Con) constraint condition: if x̄ ∈ ∂Ω we require also that

〈θx, Px(t)〉 > ε(t,ΨΩc(x)), for all x ∈ Ω ∩B(x̄, δx̄) \ S.

Moreover, set δ(t, r) = Cx̄t
k and suppose that (1), (3) in Theorem 3.1.6 are satisfied.

Then there exists 0 < δ′′x̄ <
δx̄
2

and a continuous increasing function ωx̄ : [0,+∞[→
[0,+∞[ such that ωx̄(0) = 0 and TS,Ω(x) ≤ ωx̄(ΦS(x)) for every x ∈ B(x̄, δ′′x̄) ∩ Ω.

Before proving the theorem, we make some comments on the assumptions.

1. We are considering the approximation of RS
x(t) provided by all the truncation

of Chen-Fliess series obtained by using piecewise constant controls, this gives a
family of A -trajectories, among which we assume to be able to apply Theorem
3.1.6, ignoring for the moment any state constraint.

2. The semiconvexity assumption on ΨΩc together with Assumption (Con) yields a
quantitative estimate of the variation of Ψc(·) along the A -trajectory.
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3.3. Controllability conditions for control-affine systems

3. The assumptions on ε(·) will prevent the vanishing of Ψc(·), thus implying that
the unconstrained A -trajectory will satisfy also the state constraint, and so that
it is actually an A Ω-trajectory.

Proof. Without loss of generality, we may assume that if x̄ ∈ ∂S∩Ω we have B(x̄, δx̄)∩

Ωc = ∅ and

∫ Φx̄

0

β(r) dr < 1. As in the proof of Theorem 3.1.6, we can choose 0 < δ′x̄ <

δx̄
2

such thatRS
x(t) ⊆ B(x̄, δx̄) for all x ∈ B(x̄, δ′x̄) and 0 < t ≤ max

x∈B(x̄,δ′x̄)\S

∫ ΦS(x)

0

β(r) dr,

where β(·) ∈ L1 is a function as in Theorem 3.1.6.
Given Px(·) ∈ T kx

x as in the statement, we can find P ′x(·) ∈ T k
x such that ‖P ′x(t)−

Px(t)‖ = o(tkx). We set yt,x = x + P ′x(t). Then we apply Theorem 3.1.6 ignoring the

state constaint to obtain the upper bound TS(x) ≤
∫ ΦS(x)

0

β(r) dr.

If x̄ ∈ ∂S ∩Ω the proof is concluded, recalling that in this case RS
x(t) = RS,Ω

x (t) for
all 0 ≤ t ≤ TS(x), and so TS(x) = TS,Ω(x).

Assume that x̄ ∈ ∂Ω∩∂S, and take x ∈ B(x̄, δ′x̄)∩Ω\S. Let C, τC > 0 and yx(·) be
an admissible trajectory for the unconstrained system such that ‖yx(t)− (x+Px(t))‖ ≤

Ct2 for 0 < t ≤ τC . By taking 0 < δ′′x̄ < δ′x̄ such that

∫ ΦS(x)

0

β(r) dr < τC for all

x ∈ B(x̄, δ′′x̄) ∩ Ω, we will show that yx(t) ∈ Ω for all 0 ≤ t ≤ TS(x).
We denote by Ψx̄ the semiconvexity constant of ΨΩc on B(x̄, δx̄). For 0 < t < TS(x),

there exists θx ∈ ∂PΨΩc(x) such that

ΨΩc(yx(t)) ≥ ΨΩc(x) + 〈θx, yx(t)− x〉 −Ψx̄‖yx(t)− x‖2

≥ ΨΩc(x) + 〈θx, Px(t)〉 − ‖θx‖Ct2 −Ψx̄(‖Px(t)‖2 + 2Ct2‖Px(t)‖+ C2t4).

Since ΨΩc(·) is locally Lipschitz continuous, we have that ‖θx̄‖ is uniformly bounded

in B(x̄, δ′′x̄), furthermore, by the smoothness of the vector fields, we have that
‖Px(t)‖

t
is uniformly bounded for all x ∈ B(x̄, δ′′x̄) and t ∈]0, TS(x)]. In particular, there exists
D > 0 and τD > 0 such that for all 0 < t < τD we have

ΨΩc(yx(t)) ≥ ΨΩc(x) + ε(t,ΨΩc(x))−Dt2 ≥ ΨΩc(x) > 0,

for all x ∈ B(x̄, δ′′x̄) due to the assumptions of ε(·). Thus we take 0 < δ′′x̄ < δ′x̄ such that∫ ΦS(x)

0

β(r) dr < min{τC , τD} for all x ∈ B(x̄, δ′′x̄) ∩ Ω.

This implies that xi and xi+1, constructed as in the proof of Theorem 3.1.6 for
the unconstrained system starting from x ∈ B(x̄, δ′′x̄) ∩ Ω, are actually connected by
an admissible trajectory also for the constrained system for every i ∈ N, since ΨΩc is
nondecreasing, and so in particular it remains strictly positive. Thus also in this case
we have

TS,Ω(x) ≤
∫ ΦS(x)

0

β(r) dr,
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3.3. Controllability conditions for control-affine systems

for all x ∈ B(x̄, δ′′x̄) ∩ Ω.
Finally, assume that x̄ ∈ ∂Ω ∩ ∂S, and take x ∈ B(x̄, δ′′x̄) ∩ ∂Ω \ S. We can find

a sequence of points {zi}i∈N ⊆ B(x̄, δ′′x̄) ∩ Ω \ S, a sequence of admissible trajectories
{yzi(·)}i∈N and a sequence of times{Ti}i∈N, such that yzi(0) = zi, yzi(t) ∈ Ω ∩ B(x̄, δx̄)

for all 0 ≤ t ≤ Ti, yzi(Ti) ∈ S, and Ti ≤
∫ ΦΩ(zi)

0

β(s) ds.

It is well known (see e.g. Theorem 1.11 in Chapter 4 of [24]) that up to passing to a
subsequence, we have that {yzi(·)}i∈N uniformly converges to an admissible trajectory
yx(·) satisfying yx(0) = x, and Ti → T∞. Since the constraint and the target set are
closed, we have also yx(t) ∈ Ω ∩B(x̄, δ′′x̄) for all 0 ≤ t ≤ T∞ and yx(T∞) ∈ S. Thus

TS,Ω(x) ≤ T∞ ≤ lim
i→∞

∫ ΦS(zi)

0

β(r) dr =

∫ ΦS(x)

0

β(r) dr.

Applying Lemma 3.1.4, we can give a global STCS estimate.

Corollary 3.3.15 (Global STCS for constrained control-affine systems). Consider the
system (3.2). Assume that at every x̄ ∈ ∂S ∩ Ω the assumptions of Theorem 3.3.14
are satisfied, then STCS holds. Moreover, if ∂S ∩ Ω is compact we have that there
exists δS > 0 and a continuous function ω : [0,+∞[→ [0,+∞[ such that ω(0) = 0 and
TS,Ω(x) ≤ ω(dS(x)) for every x ∈ SδS ∩ Ω.

Proof. It is a straightforward application of Lemma 3.1.4.

As already said, if we want to take ΨΩc = dΩc , we have to assume some smoothness
property on the constraint Ω. To this end we give the following remarks.

Remark 3.3.16. Given r ≥ 0, we have 0 ≤ r < reach(K, a) if and only if every
y ∈ B(a, r) admits an unique closest element in K. For instance, if K is closed and
convex it is known that every point of Rn has an unique projection on K, hence in
this case r can be chosen arbitrary large, so reach(K, a) = ∞ for all a ∈ K, thus
reach(K) = +∞ (the class of sets with positive reach contains all convex sets). More
generally, even if K is smooth, it may no longer possible to choose arbitrary large r. If
K := {(x, y) : y ≤ x2}, we have that the point (0, z) projects uniquely on (0, 0) if and
only if z < 1/2, so reach(K, (0, 0)) ≤ 1/2, (actually it can be proved that equality holds).
On the other hand, if K = {(x, y) : y ≤ |x|}, we have that the points zn := (0, y) have
two projections on K for every y > 0, so reach(K, (0, 0)) = 0. Positive reach property
at a ∈ K is strictly related to local smoothness of the distance function in B(a, r) \K,
as shown in [39].

Remark 3.3.17 (Comparison of the inward pointing condition of [22] and ours). In
Section 2 of [22], given a closed subset S ⊆ Rn and x ∈ S the following definition of
tangent cone is given:

TanS(x) :=

v ∈ Rn : lim sup
y→x
t→0+

dS(y + tv)− dS(y)

t
= 0

 .
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According to Remark 3.2 of [22], assumption (3.1) of [22] implies that int(TanΩ(x)) 6= ∅
at all x ∈ ∂Ω. The classes of wedged sets and of sets whose complement has locally
positive reach are distinct (even if smooth C1,1 sets belong to both of them). In par-
ticular, if in R2 we take Ω1 =] − 1, 1[×] − 1, 1[, we have that Ωc

1 can not have positive

reach at (±1,±1) because the sequence of points

{(
1− 1

n
, 1− 1

n

)}
n∈N
⊆ Ω1 con-

verges to (1, 1) but each element of the sequence has two projections on Ωc
1. The other

vertices can be treated similarly. However, the set Ω1 is convex, so by [24] we have that
TanΩ1

(x) = {v : 〈v, w〉 ≤ 0 for all w ∈ NP
Ω1

(x)}. We deduce that TanΩ1
(x) coincides

with an half space at every point x ∈ ∂Ω1 different from the vertices, and with the
intersection of two half spaces at the vertices with nonparallel boundaries. In both
cases, it has nonempty interior, so Ω1 is wedged. Conversely, if we take f(x) =

√
|x|

and Ω2 = R2 \ epif , we have that Ωc
2 = epi f has positive reach, while Ω2 = hypo f is

not wedged, since ∂Ω2 is not Lipschitz continuous. We conclude that the class of ad-
missible constraints of our work and [22] are different, thus the results are not directly
comparable. For other relevant properties of tangents and normal to sets with positive
reach, we refer the reader to [39] or [28].

3.4 An example

In this section we present an example illustrating our approach.

Example 3.4.1. In R3 we consider the control-affine system (3.2) with N = 2, and
set

S := B(0, 1/2),

f0(x1, x2, x3) =
1

8
(−x2, x1, 0),

f1(x1, x2, x3) = (x1x3, x2x3, 0),

f2(x1, x2, x3) = (0, 0, 1),

Ω :=

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 >

1

16

}
.

We take ΦS(x) = ‖x‖ − 1/2. This map agrees with dS(·) on Rn \ S and is smooth on

Rn \ {0}. We have ∇ΦS(x) =
x

‖x‖
for all x 6= 0. Moreover, ∂PΦS(x) =

{
x

‖x‖

}
for all

x 6= 0, and ΦS(·) is semiconcave of constant K = Kx̄ = 2 in every ball B(x̄, δx̄) with
x̄ ∈ ∂S and δx̄ ≤ 1/4 according to Proposition 2.2.8. Finally, we have L(r) = 1 by
1-Lipschitz continuity of ΦS(·). Notice that the constraint has positive reach, thus we
take ΨΩc(x) = dΩc(x) =

√
x2

1 + x2
2 − 1

4
. We consider now the unconstrained problem.

We notice that at every point (x1, x2, x3) ∈ ∂S we have

〈∇ΦS(x), (f0(x) + u1f1(x) + u2f2(x)〉 = 2x3((x2
1 + x2

2)u1 + u2) (3.9)
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For any x̄ ∈ D := ∂S ∩ Ω \ {x3 = 0}, there exists δx̄ > 0 such that Petrov’s condition
for any x ∈ B(x̄, δx̄): indeed, by choosing u2(s) = −sign(x3), −1 ≤ u1 ≤ 1, we have
that 3.9 is continuous and strictly negative on D thus every point of D possesses a
neighborhood where the above expression remains bounded away from 0. Given t > 0,

we consider the following choice of controls:

u1(s) =


1, if 8s/t ∈ [0, 1] ∪ [6, 7],

−1, if 8s/t ∈ [2, 3] ∪ [4, 5],

0, elsewhere,

u2(s) = u1(s− t/8).

Given x ∈ R3, in this case Chen-Fliess series yields an A -trajectory of the form

ỹx(t) = x+ tf0(x) +
t2

32
(16f0f0 + [f1, f2])(x) + o(t2)

and, by the smoothness of the vector fields, there exists L > 0 such that ‖o(t2)‖ ≤ Lt3

for every x ∈ B(0, 1) ⊃ S. Set Px(t) = tf0(x) +
t2

32
(16f0f0 + [f1, f2])(x). We notice

that, by the smoothness of the vector fields, the map x 7→ Px(t) is continuous. Given
x = (x1, x2, 0) ∈ ∂S, we have

〈∇ΦS(x), Px(t)〉+ 2‖Px(t)‖2 =
t2(−128 + 64(x1 + x2))

16384
+ o(t2) ≤ −t

2

256
+ o(t2).

In particular, there exist τ, C > 0 such that for 0 ≤ t ≤ τ and every x = (x1, x2, 0) ∈ ∂S

〈∇ΦS((x), Px(t)〉+ 2‖Px(t)‖2 < −2Ct2.

Thus every point x̄ ∈ ∂S ∩ {x3 = 0} possesses a neighborhood Vx̄ such that

〈∇ΦS((x), Px(t)〉+ 2‖Px(t)‖2 < −Ct2.

Thus we can define kx = 2, µ(t, r) = Ct2, δ(t, r) = Lt3, σ(t, r) = 0, χ(t, r) = 1,

τ(r) = θ(r) = min

{
τ,

1

L
,

1

2C

√
r

}
. Condition (App) thus holds at these points, and

by Theorem 3.3.14 and Corollary 3.3.15, we obtain that there exists C ′ > 0 such that
TS(x) ≤ C ′d

1/2
S (x) on a suitable neighborhood of S. Now we pass to consider the

constraints. Since ∂S ∩ Ω ∩ {x3 = 0} = ∅, for any x̄ ∈ ∂S ∩ Ω there exists δx̄ > 0 such
that Petrov’s condition holds at every x ∈ B(x̄, δx̄) \ S by taking u2 = −sign(x3) and
−1 ≤ u1 ≤ 1. Moreover, for all x ∈ Ω ∩B(x̄, δx̄) \ S we have

〈∇ΨΩc(x1, x2, x3),f0(x1, x2, x3) + u1f1(x1, x2, x3)− sign(x3)f2(x1, x2, x3)〉 =

= u1

√
x2

1 + x2
2 x3 ≥

u1x3

4
.

By taking u1 = sign(x3) we have that the above expression is strictly positive at any
point of Ω ∩ B(x̄, δx̄) \ S, thus both (App) and the constraint condition are fulfilled,

so TS,Ω(x) ≤ C ′d
1/2
S (x) on a suitable neighborhood of S in Ω by Theorem 3.3.14 and

Corollary 3.3.15.
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Chapter 4

Regularity of the minimum time
function under weak controllability
assumptions

The first section is devoted to giving some estimates on bang-bang trajectories which are
needed in Section 4.2. The remainder part is reserved for recalling some controllability
conditions appearing in [63], as well as providing sufficient conditions for robustness of
controllability with respect to a suitable shrinking of S. Throughout this chapter we
consider the affine control system in Rn

ẋ = f0(x) +
M∑
i=1

fi(x)ui, (4.1)

where f0, fi : Rn → Rn are C∞-maps and u = (u1, ..., uM) ∈ [−1, 1]M , together with the
initial condition

x(0) = ξ. (4.2)

For the sake of simplicity , we set f(x, u) := f0(x) +
∑M

i=1 fi(x)ui . The standard
assumptions on f0, ..., fM and the target set S we need are the following:

Assumptions 4.0.2. (1) f0, fi are C∞ and all partial derivatives are Lipschitz with
Lipschitz constant L > 0, i = 1, ...,M ; moreover,

‖f0(y)‖ , ‖fi(y)‖ ≤ K0(1 + ‖y‖)

for all y ∈ Rn, where K0 is a positive constant.
(2) S is compact.

Such assumptions will be always supposed to be satisfied in this chapter and also in
Chapter 5 and we label them as standard assumptions on the dynamics.
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4.1. Lie brackets and estimates on bang-bang trajectories

4.1 Lie brackets and estimates on bang-bang tra-

jectories

Given the target S ⊂ Rn, we will state some sufficient conditions in order to reach S
from every ξ in a neighborhood in finite time and give an upper bound for the minimum
time TS(ξ). Such conditions involve Lie brackets of the vector fields f0, ..., fM . We recall
their definition for general C1 vector fields X, Y . We set

[X, Y ](x) = ∇Y (x)X(x)−∇X(x)Y (x),

and higher order brackets are defined recursively, provided X, Y are smooth enough.
Let now ΦX

t and ΦY
t , t ≥ 0, be the flows generated by the vector fields X and Y , namely

ΦX
t (ξ), respectively ΦY

t (ξ), are the solution at time t of the Cauchy problems

ẋ = X(x), x(0) = ξ; ẋ = Y (x), x(0) = ξ.

It is well known that ΦX
t (·) and ΦY

t (·) are diffeomorphisms for all t ≥ 0 small enough.
The formal Lie bracket between ΦX

t and ΦY
t is defined by setting

[ΦX ,ΦY ]t(ξ) = (ΦY
t )−1 ◦ (ΦX

t )−1 ◦ (ΦY
t ) ◦ (ΦX

t )(ξ)

The procedure may be iterated and the order of such iterations can defined by induction.
If Φ is either ΦX

t (·) or ΦY
t (·), then ord(Φ) = 1; otherwise, if A and B are nested Lie

brackets of ΦX
t (·) and ΦY

t (·), we set ord([A,B]) = ord(A) + ord(B). The power of
a Lie bracket B, pw(B), is set to 1 if B consists of a single diffeomorphism, while
pw([A,B]) = 2 × pw(A) + 2 × pw(B). The following classical result establishes a
relation between the two types of Lie brackets.

Theorem 4.1.1. Let {Xi}i∈N be smooth vector fields and let B be a nested formal Lie
bracket of order k̄ ∈ N of the corresponding flows {ΦXi

t }i∈N, for t > 0 small enough,
B = B(ΦXi1 , ...,ΦXik ), k ≤ k̄. Then

∂j

∂tj
B(ΦXi1 , ...,ΦXik ) |t=0 = 0, ∀1 ≤ j < k̄,

1

k̄!

∂k̄

∂tk̄
B(ΦXi1 , ...,ΦXik ) |t=0 = B(Xi1 , ..., Xik).

In what follows we will consider iterated Lie brackets of the vector fields f0 ± fi,
i = 1, ...,M , where f0, fi appear in (4.1), possibly with f0 ≡ 0. We denote by L the set
of all iterated Lie brackets of the above vector fields.

Let B be such a non-vanishing Lie bracket with order k, ord(B) = k, and power
pw(B). Let xBξ (·) be the trajectory of (4.1) and (4.2) corresponding to B, namely the
trajectory which uses bang-bang controls ±1, according to the vector fields appearing
in B. We obtain immediately from Theorem 4.1.1 the following expansion:

xBξ (pw(B)t) = ξ +B(ξ)tk + o(tk), t→ 0+, (4.3)
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4.2. Hölder continuity of the minimum time function

where for each compact C containing ξ, there exists KC > 0 such that∥∥o(tk)∥∥ ≤ KCt
k+1 for all t small enough. (4.4)

Now we proceed by applying the above approximation (4.3) to an estimate of the
distance from the target of suitable trajectories of (4.1).

Proposition 4.1.2. Let S be a closed set and let ξ /∈ S. Let B be a non-vanishing Lie
bracket of order k of the vector fields f0±fi, i = 1, ...,M . Let xBξ (·) be the corresponding
trajectory of (4.1) and (4.2). Let t > 0 and assume that xBξ (s) /∈ S for all s ∈ [0, t].
Let ζ ∈ ∂PdS(ξ). Then we have, for every compact set C containing ξ,

dS

(
xBξ (pw(B)t)

)
≤ dS(ξ) + 〈ζ, B(ξ)〉tk +K

(
tk+1 +

t2k

dS(ξ)

)
, (4.5)

where K depends only on the constant KC appearing in (4.4).
Moreover, if S satisfies a ρ-internal sphere condition, then 1

dS(ξ)
can be substituted

by 1
ρ
, and xBξ (·) may touch S.

Proof. Set xBξ (pw(B)t) = xt. By putting together Proposition 2.2.8 (i), (ii) and (4.3),
(4.4) we obtain

dS(xt) ≤ dS(ξ) + 〈ζ, xt − ξ〉+
K

dS(ξ)
‖xt − ξ‖2

≤ dS(ξ) + 〈ζ, B(ξ)〉tk +K ′tk+1 +
K̄t2k

dS(ξ)
,

for suitable constants K ′, K̄ satisfying the desired properties.

Remark 4.1.3. The regularity requirements on f0 and fi can be weakened if Lie brackets
only up to a fixed order k are considered. Actually, in most of our results we need only
that, for a given k ∈ N, f0 and fi, i = 1, . . . ,M , are of class Ck and all partial
derivatives up to the order k are Lipschitz with the same constant.

4.2 Hölder continuity of the minimum time func-

tion

We state here two controllability results, proved in [63], which are at the basis of our
results. We treat separately the case where the target S satisfies an internal and an
external sphere condition.

We say that a Lie bracket B is compatible with the controlled dynamics (4.1) if the
(direct and reversed) flows appearing in the formal Lie bracket of Theorem 4.1.1 are
flows of (4.1). A simple sufficient condition ensuring compatibility is, of course, the
drift f0 to be zero. More in general, compatibility can be seen as a time reversibility
of the dynamics. In Section 4.3, controllability conditions which do not require time
reversibility will be given for the case of second order Lie brackets.
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4.2. Hölder continuity of the minimum time function

Theorem 4.2.1 (see Corollaries 5.9 and 5.11 in [63]). Let S be compact and let one of
the two following assumptions be valid. Either,

(IS) let S be satisfying a ρ–internal sphere condition and assume there exist δ > 0,
µ > 0, and k ∈ N such that for every ξ ∈ S2δ \ S there exist ζξ ∈ ∂PdS(ξ) and a
compatible Bξ ∈ L, with ord(Bξ) ≤ k, enjoying the following property:

〈ζξ, Bξ(ξ)〉 ≤ −µ. (4.6)

Or, alternatively,

(ES) let S have reach ρ > 0 and assume there exist 0 < δ < ρ
2
, µ > 0, and k ∈ N such

that for every ξ ∈ Sδ \ S there exists a compatible Bξ ∈ L, with ord(Bξ) ≤ k,
enjoying the following property:

〈∇dS(ξ), Bξ(ξ)〉 ≤ −µ. (4.7)

Then the minimum time function to reach S from ξ subject to the dynamics (4.1),
TS(ξ), is (finite and) Hölder continuous with exponent 1

k
on Sδ. More precisely, there

exists a constant Λ, depending only on ρ, δ, µ and on the vector fields f0, fi, i = 1, ...,M ,
such that for all ξ1, ξ2 ∈ Sδ it holds

|TS(ξ1)− TS(ξ2)| ≤ Λ ‖ξ1 − ξ2‖1/k . (4.8)

Remark 4.2.2. Observe that assumptions (IS) and (ES) are of a different nature,
because an external sphere condition is assumed either on the closure of the complement
of S (case (IS)), or on S (case (ES)). If S satisfies both an internal and an external
sphere condition, then its boundary is of class C1,1.

In Chapter 5 we will need to ensure that small time controllability holds not only
with respect to S, but also to a suitable shrinking or enlargement of S. The following
are the relevant statements. The first one requires, in addition to the internal sphere
condition, a uniform external cone condition (see (4.10) in Theorem 4.2.3 below). Of
course, such additional requirement is satisfied if the boundary of the target is of class
C1,1.

Theorem 4.2.3. Let the assumption (IS) hold and let k, ρ, δ, µ > 0 be as in (IS). Let
LL be the Lipschitz constant of all B ∈ L, ord(B) ≤ k, on Sδ and set

CB := max{‖B(x)‖ : x ∈ Sδ, B ∈ L, ord(B) ≤ k}. (4.9)

Assume furthermore that there exists 0 < µ′ < µ
2

such that

max
{
‖ζ ′ − ζ‖ : ‖ζ‖ = ‖ζ ′‖ = 1, ζ, ζ ′ ∈ NC

S (x), x ∈ S
}
<

µ′

CB
. (4.10)
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4.2. Hölder continuity of the minimum time function

Then there exists 0 < σ̄ < ρ, depending only on µ′, CB and LL, such that for all
0 < σ < σ̄ assumption (IS) holds for S−σ. More precisely, for every ξ ∈ Sδ \ S−σ there
exist ζξ ∈ ∂PdS−σ(ξ) and Bξ ∈ L, with ord(Bξ) ≤ k, enjoying (4.6) with min{µ, µ′}
in place of µ. Consequently, if the Lie brackets appearing in (IS) are compatible, the
minimum time function to reach S−σ is finite and Hölder continuous with exponent 1

k

on Sδ. Moreover, the constant Λ appearing in (4.8) can be chosen independently of σ.

Proof. We claim first that if 0 < σ̄ < ρ, then S−σ̄ satisfies a uniform (ρ − σ̄)-internal
sphere condition. Indeed, recalling Corollaries 16 and 19 in [64], the external cone
condition implies that (intS)c has ρ-positive reach. Therefore, if 0 < σ̄ < ρ, then
(intS−σ̄)c has (ρ − σ̄)-positive reach. Invoking again Corollaries 16 and 19 in [64] we
obtain that S−σ̄ satisfies a uniform (ρ− σ̄)-internal sphere condition.

Consequently, in order to prove that the minimum time function to reach S−σ (0 <
σ < σ̄) is Hölder on Sδ it is enough to establish the analogue of (4.6) for S−σ as claimed
in the statement of the theorem.

To this aim, fix first ξ ∈ Sδ \ S. We claim that

∂PdS(ξ) = ∂PdS−σ(ξ).

Indeed, set ξ̄ = πS(ξ). Since Sc has positive reach, S has at ξ̄ both an internal and an

external nontrivial proximal normal. Thus ζ̄ :=
ξ̄ − ξ
dS(ξ)

is the unique unit normal to Sc

at ξ̄. Define, for 0 ≤ t < ρ, ξt = ξ̄ + tζ̄. Observe that, by the internal ρ-positive reach
condition, ξ̄ is the unique projection of ξt onto Sc, so that, in particular, dSc(ξt) = t.
Therefore, ξσ ∈ S−σ, and so dS−σ(ξ) ≤ dS(ξ) + σ. On the other hand, for all ξ′ ∈ S−σ
one has obviously ‖ξ′ − ξ‖ ≥ dS(ξ) + σ, whence

dS−σ(ξ) = dS(ξ) + σ, (4.11)

and the claim follows. By (IS), there exist Bξ ∈ L, ord(Bξ) ≤ k, and ζξ ∈ ∂PdS(ξ),
such that (4.6) holds. Since ∂PdS(ξ) = ∂PdS−σ(ξ) the proof is completed for the case
ξ ∈ Sδ \ S. Observe that in this case one can choose µ′ = µ.

Fix now ξ ∈ S \S−σ. Let x be the unique projection of ξ onto Sc. Assume first that
NP
S (x) 6= {0} and let ζ be the (unique) unit vector in NP

S (x). Let xn = x + ζ
n
, n ∈ N.

Then, since ∇dS(xn) = ζ for all n large enough, the assumption (IS) yields that there
exist Bn ∈ L, ord(Bn) ≤ k, such that

〈ζ, Bn(xn)〉 ≤ −µ, ∀n large enough.

Since the order of the Bn’s is bounded, up to a subsequence we may assume that
Bn(x) = B(x) is independent of n. Therefore, by passing to the limit we obtain

〈ζ, B(x)〉 ≤ −µ. (4.12)

Let now NP
S (x) = {0} and let ζ ∈ NL

S (x), ‖ζ‖ = 1. By definition of limiting normal,
there exist sequences {xn} ⊂ S, {ζn} ⊂ Rn such that ζn ∈ NP

S (xn), ‖ζn‖ = 1, xn → x,
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4.2. Hölder continuity of the minimum time function

and ζn → ζ as n→∞. Then, for every n there exists Bn ∈ L, ord(Bn) ≤ k, such that

〈ζn, Bn(xn)〉 ≤ −µ.

By passing to the limit as above, we obtain (4.12).
Now we wish to prove that an inequality of the type (4.12) holds at ξ. Recalling

that x = πSc(ξ). As before, we assume first that NP
S (x) 6= {0}. Then, since S has

both an inner and an outer nonvanishing proximal normal at x, we have that NP
S (x) =

ζR+ = −NP
Sc

(x) for a suitable unit vector ζ, and

dS−σ(ξ) = σ − dSc(ξ). (4.13)

Thus dS−σ is differentiable at ξ and moreover

∇dS−σ(ξ) = −∇dSc(ξ) = ζ.

By the uniform Lipschitz continuity of Lie brackets of order ≤ k, we obtain from (4.12)
that

〈ζ, B(ξ)〉 ≤ 〈ζ, B(x)〉+ LL ‖ξ − x‖ ≤ −µ+ LLσ.

Therefore, if σ < σ̄ := µ−µ′
LL

we obtain

〈ζ, B(ξ)〉 ≤ −µ′,

which was to be proved.
Assume now again that NP

S (x) = {0}. Recalling Lemma 5 in [72]1, we have that
NC
S (x) = −NP

Sc
(x). Therefore, by (4.13), ζ ′ := ∇dS−σ(ξ) = x−ξ

‖x−ξ‖ ∈ NC
S (x). By the

assumption (IS), there exist a unit vector ζ ∈ NL
S (x) and a Lie bracket B ∈ L, with

ord(B) ≤ k, such that 〈ζ, B(x)〉 ≤ −µ. Recalling (4.10) we obtain ‖ζ − ζ ′‖ < µ′

CB
. By

putting the above inequalities together, we finally have

〈ζ ′, B(ξ)〉 = 〈ζ ′ − ζ, B(ξ)〉+ 〈ζ, B(x)〉+ 〈ζ, B(ξ)−B(x)〉 < µ′ − µ+ LLσ.

Therefore, if σ ≤ σ̄ := µ−2µ′

LL
we finally reach 〈ζ ′, B(ξ)〉 < −µ′. The proof is concluded.

The second perturbation result is concerned with the case where the target S has
positive reach.

Proposition 4.2.4. Let the assumption (ES) of Theorem 4.2.1 hold and let 0 < σ < δ.
Then the minimum time to reach Sσ from Sδ \ Sσ (is finite and) satisfies (4.8), where
the constant Λ is independent of σ.

Proof. It is enough to observe that if ξ ∈ Sδ \ Sσ, then dSσ(ξ) = dS(ξ)− σ.

Remark 4.2.5. Observe that, under the assumptions of Proposition 4.2.4, the enlarge-
ment of Sσ satisfies an internal sphere condition, and so, as far as it is enough to
consider an approximation of the target, one can concentrate only on the (IS) case.

1The statement of Lemma 5 in [72] actually requires S to be convex, but this is used only to provide
wedgedness, which indeed we assume.
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Part II

Approximation of minimum time
function
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Chapter 5

A Hamilton–Jacobi–Bellman
approach under weak controllability
assumptions

This chapter is devoted to designing a suitable fully discrete scheme for the approxi-
mation of TS. We follow the well established method based on dynamic programming,
which was first designed by Bardi and Falcone [17] (see also [18], [16], and [36] and
references therein). We apply to TS the Kružkov transform and then, through discrete
dynamic programming, we approximate the viscosity solution of a suitable boundary
value problem. Since, due to controllability assumptions which are based on higher
order Lie brackets, TS is not locally Lipschitz, we need to use a scheme which is of a
suitably high order in time and of first order in space.

This chapter is divided into a number of sections. First we present a higher order
one step semidiscrete scheme for our dynamics (4.1), taking controls subject to suitable
switchings. Given a step size h, for every initial condition ξ we construct a discrete
trajectory which converges as h → 0 to a suitable trajectory of (4.1). Moreover, the
time needed to reach the target is bounded by a fractional power of dS(ξ) (discrete
controllability). Next we apply Kružkov transform to TS, and relying on a discrete
dynamic programming principle and a convergence results due to [17] we prove that a
discrete value function vh converges to the transformation vS of TS, also providing an
error estimate. Finally, we introduce a fully discrete scheme and prove its convergence
and a related error estimate. The standard assumptions 4.0.2 is assumed to be fulfilled
in this whole chapter.

5.1 Time discretization

Given the control system (4.1), (4.2), we write

ẋ = f(x, u), x(0) = ξ, (5.1)
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5.1. Time discretization

where f(x, u) = f0(x) +
∑M

i=1 fi(x)ui, u = (u1, ..., uM) ∈ [−1, 1]M . Given a fixed step
h > 0 small enough, we approximate (5.1) by a one step (q+ 1)-th order scheme which
has the form {

yn+1 = yn + hΦ(yn, An, h)

y0 = ξ
(5.2)

where An is a M × l matrix, An = (u1
n, ..., u

l
n) with uin ∈ [−1, 1]M . Here l > 0 depends

on the specific method. We make the following assumptions on the method:{
lim
h→0

Φ(ξ, (ū, ..., ū), h) = f(ξ, ū) (l copies of ū),

‖Φ(ξ1, A, h)− Φ(ξ2, A, h)‖ ≤ LΦ ‖ξ1 − ξ2‖ .
(5.3)

In order to prove the discrete controllability, we now consider the following Cauchy
problem, instead of (5.1)

ẋ = f(x, υ) = f0(x) +
M∑
i=1

fi(x)ui, x(0) = ξ (5.4)

where υ = (u1, ..., uM), ui ∈ {−1, 1}, is supposed to be constant in an interval [0, τ ],
0 < τ ≤ 1. Let 0 < h < τ and k ∈ N, k ≥ 1, be given. Here k will play the role of
the order of a suitable Lie bracket which will be identified later. We consider the one
step order scheme (5.2) for (5.4). In this case, the control matrix A is generated by l
copies of υ, therefore the conditions (5.3) can be rewritten, by an abuse of notation, in
the following way: {

lim
h→0

Φ(ξ, υ, h) = f(ξ, υ),

‖Φ(ξ1, υ, h)− Φ(ξ2, υ, h)‖ ≤ LΦ ‖ξ1 − ξ2‖ .

Furthermore, we require a suitably high order of approximation, namely

‖xυ(h, ξ)− (ξ + hΦ(ξ, υ, h))‖ ≤ CΦh
q+2, (5.5)

where q ≥ k and xυ(·, ξ) is the exact solution of (5.4). The classical Runge-Kutta
method, for example, enjoys the above properties (see [48]). Set{

ξ0 = ξ,

ξn+1 = ξn + hΦ(ξn, υ, h),
(5.6)

and, for N ∈ N, N ≥ 1,

h =
τ

N
. (5.7)

Then there exists CΦ such that

‖xυ(τ, ξ)− ξN(τ, ξ, υ)‖ ≤ CΦh
q+1, (5.8)
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for all h small enough (see, e.g., Theorem 3.6 in [48]). Observe that the point ξN(τ, ξ, υ)
defined through (5.6) and (5.7) depends on the M -tuple υ. We denote this point by
y(υ, τ, h, ξ), i.e.,

y(υ, τ, h, ξ) := ξN(τ, ξ, υ).

Let p ∈ N, p ≥ 1. We consider now a p-tuple u of M -tuples of controls ui ∈ {−1, 1},
namely u = (υ1, ..., υp), where υj = (uj1, ..., u

j
M) ∈ {−1, 1}M and subsequently apply

the process (5.6), with υj in place of υ, N times for each j. More precisely, we set
y1 = y(υ1, τ, h, ξ),

...

yj = y(υj, τ, h, yj−1),

(5.9)

where j = 2, ..., p. We denote the point yp constructed above by yp(u, τ, h, ξ).
Let xu(τ, ξ) be the final point of the exact solution of (5.4) corresponding to the

p-tuples of controls u. More precisely, we set
x1 = xυ1(τ, ξ),

...

xm = xυm(τ, xm−1), m = 2, . . . , p.

By applying (5.8) subsequently on p intervals of length τ , we obtain

‖xp − yp‖ ≤ Cph
q+1, (5.10)

where Cp is a suitable constant depending only on p,Φ.

5.2 Discrete controllability

The following result falls in the framework of (approximate) discrete controllability:
under assumptions including either (IS) or (ES), given 0 < η < δ, for all ξ ∈ Sδ \Sη we
construct a finite sequence of points of the types yp described just above, say y1, ..., yn(ξ),
and of increasing times ti, i = 0, ..., n(ξ) − 1, such that dS(yn(ξ)) < η and the time to

reach yn(ξ), namely
∑n(ξ)−1

i=0 pi+1(ti+1 − ti), is bounded from above by dS(ξ)1/k. The
number of discretization steps, namely [(ti+1 − ti)/h] where h > 0 is fixed, will be
labeled here for simplicity as N .

Theorem 5.2.1. Let S ⊂ Rn be closed and let δ, ρ, µ > 0, k ∈ N, k ≥ 1 be given, with
δ < 1. Assume that for every ξ ∈ S2δ \ S there exist ζξ ∈ ∂PdS(ξ) and a compatible
Bξ ∈ L, with ord(Bξ) ≤ k, such that

〈ζξ, Bξ(ξ)〉 ≤ −µ. (5.11)
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Let 0 < η < δ be given and consider a one step (q + 1)-th order scheme with q ≥ k.
Then for every ξ ∈ Sδ \Sη there exist a number of steps N , independent of ξ, and finite
sequences of natural numbers pi+1, of pi+1-tuples {ui+1} of M-tuples of ±1, of points
{yi}, and of times {ti}, ti+1 > ti, i = 0, ..., n(ξ)− 1, satisfying the properties

t0 = 0, y0 = ξ,

yi+1 = ypi
(
ui+1, pi+1(ti+1 − ti),

ti+1 − ti
N

, yi

)
,

i = 0, ..., n(ξ)− 1,

yn(ξ) ∈ Sη,

n(ξ)−1∑
i=0

pi+1(ti+1 − ti) ≤ C
(
dS(ξ)

)1/k
, (5.12)

for a suitable constant C independent of ξ. Here ypi is defined according to (5.9).

Proof. Fix ξ ∈ Sδ \Sη. By our assumptions, there exist ζξ ∈ ∂PdS(ξ) and a Lie bracket
Bξ ∈ L with ord(Bξ) ≤ k such that (5.11) holds. Now we are going to prove that there
exist a time 0 < t1 ≤ 1, a number p1 ≥ 1, a (finite) sequence of M -tuples of ±1, say
u1 = (υ1

1, ..., υ
p1

1 ), υj1 ∈ {−1, 1}M , corresponding to Bξ through Theorem 4.1.1, such

that the trajectory x
Bξ
ξ (·) of (4.1), (4.2) associated to this sequence of controls satisfies

the following properties for all t ∈ [0, t1]:
dS

(
x
Bξ
ξ (p1t)

)
>
dS(ξ)

2
,

dS

(
x
Bξ
ξ (p1t)

)
≤ dS(ξ)− µtk +K

(
tk+1 +

2t2k

dS(ξ)

)
,

(5.13)

whereK is the constant appearing in (4.5). Indeed, in order to obtain the first inequality
in (5.13), recalling (4.3), (4.4), and (4.9) it is enough to choose 0 < t1 ≤ 1 such that

(CB +KSδ)t
k
1 ≤

dS(ξ)

2
, (5.14)

where KSδ is the constant appearing in (4.4) with Sδ in place of C, while the second one
follows from (4.5) in Proposition 4.1.2 together with (5.11). In particular, we obtain

0 < dS

(
x
Bξ
ξ (p1t1)

)
< 2δ.

Observe furthermore that there exists a constant pk (the maximal power of a Lie bracket
of order ≤ k in Rn) depending only on k, such that

p1 ≤ pk.

56



5.2. Discrete controllability

Let N ∈ N, N ≥ 1, and set h1 = t1
N

. We assume N to be so large that the dis-
cretization error corresponding to the step size h1 satisfies (5.8). Let y1 be the point
yp1(u1, p1t1, h1, ξ) constructed according to (5.6), (5.9). By (5.10) we have∥∥∥xBξξ (p1t1)− y1

∥∥∥ ≤ Cpkh
q+1
1 . (5.15)

Remembering that q ≥ k and putting together the above inequality and (5.13), we
receive

dS(y1) ≤ dS(ξ)− µtk1 +K
(
tk+1
1 +

2t2k1
dS(ξ)

)
+ Cpk

( t1
N

)k+1

.

We rewrite the above estimate as

dS(y1) ≤ dS(ξ)− µtk1 +
(
K +

Cpk
Nk+1

)
tk+1
1 +

2K

dS(ξ)
t2k1

=: dS(ξ)− µtk1 +K1t
k+1
1 +

K2

dS(ξ)
t2k1 .

(5.16)

By imposing the supplementary conditions

t1K1 +
K2

dS(ξ)
tk1 ≤

µ

2
and Cpkt

k+1
1 ≤ Nk+1dS(ξ)

4
, (5.17)

we obtain from (5.13), (5.15), and (5.16)

dS(ξ)

4
≤ dS(y1) ≤ dS(ξ)− µ

2
tk1. (5.18)

Observe that all conditions previously imposed on t1 (in particular (5.14) and (5.17))
are satisfied if

0 < t1 = min

1, k

√
Nk+1dS(ξ)

4Cpk
, k

√
µdS(ξ)

4K2

,
µ

4K1

, k

√
dS(ξ)

2(CB +KSδ)

 . (5.19)

Assume now that we have constructed recursively times ti, numbers pi, controls ui =
(υ1
i , ..., υ

pi
i ), υji ∈ {−1, 1}M and points yi up to i = ī, such that

ti−1 < ti,

ti − ti−1 = min{t1, k

√
Nk+1dS(yi−1)

4Cpk
, k

√
µdS(yi−1)

4K2

, k

√
dS(yi−1)

2(CB +KSδ)
},

and
dS(yi−1)

4
≤ dS(yi) ≤ dS(yi−1)− µ

2
(ti − ti−1)k. (5.20)

We are now going to construct the next step. By the assumptions, there exist a Lie
bracket Byī and ζyī ∈ ∂PdS(yī) such that 〈ζyī , Byī(yī)〉 ≤ −µ. By applying again
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5.2. Discrete controllability

Proposition 4.1.2 and the argument designed for t1 we find a time t̄i+1, a number
pī+1 ≤ pk, a control uī+1 ∈ {−1, 1}M×pī+1 , and a point yī+1 satisfying the properties

0 < t̄i+1 − t̄i < t1, (5.21)

t̄i+1 := t̄i + min{ k

√
Nk+1dS(yī)

4Cpk
, k

√
µdS(yī)

4K2

, k

√
dS(yī)

2(CB +KSδ)
}, (5.22)

from which, taking into account (5.21) and (5.22), we obtain finally

dS(yī)

4
≤ dS(yī+1) ≤ dS(yī)−

µ

2
(t̄i+1 − t̄i)k,

which concludes our construction. Now we are going to show that we can reach Sη after
finitely many iterations n(ξ) and that (5.12) holds. To this aim, set

α = min{1, µ

4K1

}, β = min{ 1
k
√

2(CB +KSδ)
, k

√
Nk+1

4Cpk
, k

√
µ

4K2

}.

Then, for every i ∈ N, we have ti+1 − ti = min{α, β k
√
dS(yi)}. Observe that (5.20)

implies that the sequence {dS(yi)} is strictly decreasing. Therefore, there exists an
index ī such that for all i ≥ ī we have

ti+1 − ti = β k
√
dS(yi). (5.23)

Let d = limi→∞ dS(yi). From (5.20) and (5.23) we obtain, for all i ≥ ī,

dS(yi+1)− dS(yi) ≤ −
µβk

2
dS(yi),

from which necessarily d = 0. Therefore, there exists some index n(ξ) such that
dS(yn(ξ)) ≤ η. Finally, we deal with (5.12). Owing again to (5.20) and (5.23), we
have for all i ≤ n(ξ)− 1

dS(yi+1)− dS(yi) ≤ −
µ

2
(ti+1 − ti)k = −µ

2
min

{
αk−1, βk−1dS(yi)

k−1
k

}
(ti+1 − ti).

Thus,

ti+1 − ti ≤
2

µ

(
dS(yi)− dS(yi+1)

βk−1dS(yi)
k−1
k

+
dS(yi)− dS(yi+1)

αk−1

)
.

By summing the above inequalities and recalling that pi ≤ pk for each i, we obtain

n(ξ)−1∑
i=0

pi+1(ti+1 − ti) ≤
2pk
µ

n(ξ)−1∑
i=0

(
dS(yi)− dS(yi+1)

βk−1 dS(yi)
k−1
k

+
dS(yi)− dS(yi+1)

αk−1

)

≤ 2pk
µ

∫ dS(ξ)

0

(
1

βk−1r
k−1
k

+
1

αk−1

)
dr

≤ 2pk
µ

(
k

βk−1

k
√
dS(ξ) +

1

αk−1
dS(ξ)

)
,
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5.2. Discrete controllability

which, recalling that dS(ξ) < δ < 1, implies (5.12) and concludes our proof.

The second result of this section requires some regularity on the target S. Under
suitable conditions we prove that the discretized trajectory reaches the target (not a
neighborhood) after finitely many steps of constant length, and establish an estimate
of the type (5.12). Such upper bound will be used in the proof of the convergence
of a suitable discretized value function to the viscosity solution of a Hamilton-Jacobi
equation.

To this aim, we define the discrete minimum time as follows. Given a step size h > 0
and a sequence of control matrices {Ai} ⊂ [−1, 1]Ml, we recall the discrete dynamics
defined in the previous section for the control system (5.1){

yn+1 = yn + hΦ(yn, An, h)

y0 = ξ.
(5.24)

We define the function

nh({Ai}, ξ) = min{n ∈ N : yn ∈ S} ≤ +∞, (5.25)

where nh = ∞ if yn never reaches S. Let Nh(ξ) be the minimum number of steps to
reach S, namely,

Nh(ξ) = min
{Ai}∈[−1,1]Ml

{nh({Ai}, ξ)}. (5.26)

The discrete minimum time function is now defined by setting

Th(ξ) = hNh(ξ). (5.27)

We define also the discrete reachable set RS
h by RS

h = {ξ ∈ Rn : Nh(ξ) < +∞}.

Theorem 5.2.2. Let the assumptions of Theorem 4.2.3 hold and let the target S, ρ, σ,
k be as S, ρ, σ̄, k in Theorem 4.2.3. Consider the discrete dynamics (5.24), generated
by a one step scheme Φ which satisfies (5.3) and (5.5) for some q ≥ k, and the discrete
minimum time function (5.27).

Then there exist δ̄, h̄, C > 0 such that for every 0 < δ < δ̄, h ≤ h̄, ξ ∈ Sδ \ S, we
have

Th(ξ) ≤ C k
√
dS(ξ). (5.28)

Proof. Fix x0 ∈ ∂S and consider ξ ∈ Bσ/2(x0)\S. Recalling the proof of Theorem 4.2.3,
we obtain that S−σ satisfies a (ρ − σ)-internal sphere condition, and so the distance
function to S−σ, dS−σ(·), is semiconcave with constant (ρ− σ)−1. According to (4.11),
∂PdS−σ(ξ) = ∂PdS(ξ). Then, for each ζξ ∈ ∂PdS(ξ) we obtain

dS−σ(y) ≤ dS−σ(ξ) + 〈ζξ, y − ξ〉+
1

ρ− σ
‖y − x‖2

for every y ∈ Bσ(x0).
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5.2. Discrete controllability

Recalling (4.3) and (4.4), we can find p ≥ 1, a sequence of bang-bang controls {±1},
say u = (υ1, ..., υp) ∈ {−1, 1}M×p and t ∈ (0, 1], such that the corresponding trajectory

x
Bξ
ξ (·) of (4.1), (4.2) has the form (4.3), i.e.,

x
Bξ
ξ (pt) = ξ +Bξt

k + o(tk), (5.29)

where ‖o(tk)‖ ≤ KBσt
k+1. If furthermore (CB + KBσ)tk < σ

2
, where we recall that

CB was defined in (4.9), then putting together (5.29), (4.5) and the estimate on the
semiconcavity constant of dS−σ we have also

dS−σ

(
x
Bξ
ξ (pt)

)
≤ dS−σ(ξ)− µtk +KBσt

k+1 +

(
CB +KBσ

)2

ρ− σ
t2k. (5.30)

Set t = Nh, N ∈ N, and let y be the point yp(u, pNh, h, ξ) constructed according to
(5.6), (5.9). From (5.10) we receive∥∥xBξ (pNh)− y

∥∥ ≤ Cph
q+1. (5.31)

By putting together (5.30) and (5.31), we obtain now

dS−σ(y) ≤ dS−σ(ξ)− µ(Nh)k +
(
KBσ + Cp

)
(Nh)k+1 +

(
KBσ + CB

)2

ρ− σ
(Nh)2k.

Then
dS−σ(y) ≤ dS−σ(ξ)− µ

2
(Nh)k,

provided

Nh < min{1, k

√
σ

2(CB +KBσ)
,

µ

4(KBσ + Cp)
, k

√
µ(ρ− σ)

4
(
KBσ + CB

)2} =: α. (5.32)

On the other hand, we want to impose the condition dS−σ(ξ) − µ
2
(Nh)k ≤ σ, which

yields dS−σ(y) ≤ σ and so y ∈ S. This condition, in view of (4.11), is equivalent to

Nh ≥ k

√
2dS(ξ)

µ
. (5.33)

Now, in order to make (5.32) and (5.33) compatible, we impose a condition on dS(ξ),
namely

2
dS(ξ)

µ
≤ 2

δ

µ
< αk.

Then, to reach S it is enough to choose N? ∈ N and h? so that

N?h? = k

√
2dS(ξ)

µ
.
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5.3. A further result on discrete controllability

Due to the compactness of S, we finally obtain

Th(ξ) ≤ pN?h? = p k

√
2dS(ξ)

µ
≤ C k

√
dS(ξ),

for a suitable constant C, which is the desired estimate.

Remark 5.2.3. A result similar to Theorem 5.2.2 can be proved without restrictions
on δ > 0 (except δ < 1).

Indeed, the following statement can be proved.
Under the assumptions of Theorem 5.2.2, let 0 < δ < 1, k ∈ N be such that for

every ξ ∈ Sδ \ S there exist ζξ ∈ ∂PdS(ξ) and Bξ ∈ L, with ord(Bξ) ≤ k, such that
(5.11) holds. Let 0 < σ < δ. Then for every step size h small enough, there exists a
number N? such that for every ξ ∈ Sδ \ S we can find controls υ1, ..., υN? for which we
can reach Sδ by N? iterations of (5.24).

The proof is a combination of arguments of the proofs of Theorems 5.2.1 and (5.2.2).

5.3 A further result on discrete controllability

We consider now the case where the approximation of trajectories of (4.1), (4.2) with
Lie brackets contains also lower order terms. This case occurs in general when the drift
term f0 does not vanish or when the system is not necessarily time reversible. Our
reference is the second order controllability result proved by [61]. For simplicity we
treat only one of the sufficient conditions proved in [61, Proposition 4], but an entirely
similar result can be obtained with the other one.

Proposition 5.3.1 (Proposition 4 in [61]). Consider the controlled system (4.1), (4.2)
with M = 1 and let the target S satisfy the ρ-internal sphere condition. Let δ, µ > 0
be given and assume that for all x ∈ Sδ \ S there exists a control u ∈ [−1, 1], and
ζx ∈ ∂PdS(x) such that the following inequalities hold:
Either
(IS.0) 〈f0(x) + f1(x)u, ζx〉 ≤ −µ,
or
(IS.1) 〈f0(x), ζx〉 ≤ 0,
(IS.2) 〈2∇f0(x)f0(x) + u[f1, f0](x), ζx〉+ 4

ρ
‖f0(x)‖2 ≤ −µ.

Then RS contains S in its interior and TS is Hölder continuous with exponent 1/2 in
RS.

Remark 5.3.2. Robustness of the controllability condition of Proposition 5.3.1 with
respect to a shrinking S−σ of the target.

Let ρ > σ > 0 and S satisfy the same properties as in Theorem 4.2.3, namely
ρ-internal sphere condition and wedgedness. By the same arguments as in the proof
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of Theorem 4.2.3, for every ξ ∈ Sδ \ S−σ the inequality (IS.2) still holds with some
ζξ ∈ ∂PdS−σ(ξ) and a suitable µ′ ≤ µ in place of µ. In order to preserve the discrete
controllability under a shrinking of the target, the condition (IS.1), instead, needs to
be strengthened as follows:
(IS’.1) for all ξ ∈ Sδ \ S−σ there exists ζξ ∈ ∂PdS−σ such that 〈f0(x), ζx〉 ≤ 0.

The following result contains our second order discrete controllability condition in
the case where the drift term cannot be neglected.

Theorem 5.3.3. Let the target S, and ρ, δ, σ be as S, ρ, δ, σ̄ in Theorem 4.2.3 and let
the assumptions (IS.0), (IS’.1) and (IS.2) hold true for x ∈ Sδ \ S−σ. Consider the
discrete dynamics (5.24) generated by the one step scheme Φ which satisfies (5.3) and
(5.5) for some q ≥ 2, and the discrete minimum time function (5.27).

Then there exist δ̄, h̄, C > 0 such that for every 0 < δ1 < δ̄, h ≤ h̄, ξ ∈ Sδ1 \ S, we
have

Th(ξ) ≤ C
√
dS(ξ).

Proof. Fix x0 ∈ ∂S and consider ξ ∈ Bσ/2(x0) \ S. By the same argument as at the
beginning of the proof of Theorem 5.2.2, for each ζξ ∈ ∂PdS(ξ) we obtain

dS−σ(y) ≤ dS−σ(ξ) + 〈ζξ, y − ξ〉+
1

ρ− σ
‖y − x‖2 (5.34)

for every y ∈ Bσ(x0). Assume first that (IS’.1) and (IS.2) hold at ξ. Recalling Lemma
1 in [61], for every ū ∈ [−1, 1] and t ∈ (0, 1], if we follow first the flow of f0 + ūf1 and
then of f0− ūf1, each one for a time t, the corresponding trajectory xξ(·) of (4.1), (4.2)
has the form

xξ(2t) = ξ + 2tf0(ξ) + t2
(
2Df0(ξ)f0(ξ) + u[f1, f0](ξ)

)
+ o(t2), (5.35)

where ‖o(t2)‖ ≤ KBσt
3, for a suitable constant KBσ . Set now

Cf := max{‖f0(x)‖ : x ∈ Sδ \ S−σ},
Cff := max{‖Df0(x)f0(x)‖ : x ∈ Sδ \ S−σ},
Cfg := max{‖[f1, f0](x)‖ : x ∈ Sδ \ S−σ},

and M1 = (2Cf + 2Cff + Cfg + KBσ) and assume that M1t <
σ
2
. Then, by putting

together (5.35), (5.34), (IS’.1), and (IS.2) we have also

dS−σ

(
xξ(2t)

)
≤ dS−σ(ξ)− µt2 +KBσt

3 +
M2

2

ρ− σ
t4, (5.36)

where M2 := 2Cff + Cfg +KBσ .
Consider now the one step method (5.2) with q = 2 and set t = Nh and u := {ū,−ū}.
Then let y := y(u, 2Nh, h, ξ) be the final point of the discrete dynamical system (5.9)
after choosing ū for the first N iterations and −ū for other N . From (5.10) we receive

‖xξ(2Nh)− y‖ ≤ C2h
3. (5.37)
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5.3. A further result on discrete controllability

By putting together (5.36) and (5.37), we obtain now

dS−σ(y) ≤ dS−σ(ξ)− µ(Nh)2 +
(
KBσ + C2

)
(Nh)3 +

M2
2

ρ− σ
(Nh)4,

so that
dS−σ(y) ≤ dS−σ(ξ)− µ

2
(Nh)2,

provided

Nh < min{1, σ

2M1

,
µ

4(KBσ + C2)
,

√
µ(ρ− σ)

4M2
2

} =: α. (5.38)

On the other hand, we want to impose the condition dS−σ(ξ) − µ
2
(Nh)2 < σ, which

yields dS−σ(y) ≤ σ and so y ∈ S. This condition, in view of (4.11), is equivalent to

Nh ≥

√
2dS(ξ)

µ
. (5.39)

Now, in order to make (5.38) and (5.39) compatible, we impose

2
dS(ξ)

µ
≤ 2

δ

µ
< α2.

Then, to reach S it is enough to choose N? ∈ N and h? so that

N?h? =

√
2dS(ξ)

µ
.

where h? < h̄, δ1 < δ̄ := min{1, σ, µα2

2
}. Due to the compactness of S, we finally obtain

Th(ξ) ≤ 2N?h? = 2

√
2dS(ξ)

µ
,

which is the desired estimate.
Assume now that (IS.0) holds at x. In this case (5.34) yields, for a suitable constant

M3

dS−σ

(
xξ(t)

)
≤ dS−σ(ξ)− µt+

M3

ρ− σ
t2.

Then the argument is analogous and simpler than the previous one. Note that in this
case the estimate on the discrete time is

Th(ξ) ≤ CdS(ξ).
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5.4 The discrete dynamic programming approach

and convergence

Following the well established literature on the dynamic programming approach (see
[17], [37] and references therein) we consider the Kružkov transformation, namely we
define

vS(x) =

{
1− e−TS(x) x ∈ RS,

1 x /∈ RS,
(5.40)

and recall that vS is the unique bounded viscosity solution of the boundary value
problem {

vS(x) + supu∈[−1,1]M{〈−f(x, u),∇vS(x)〉} = 1 in Rn \ S,
vS(x) = 0 on S

(5.41)

where f(x, u) = f0(x)+
∑M

i=1 fi(x)ui (see Theorem IV.2.6 and Proposition II.2.5 in [16]).
We define also, for a given step size h > 0,

vh(x) = 1− e−Th(x), (5.42)

where Th(x) is the discretized minimum time function which was defined in (5.27).
Observe that vh(x) is the value function of a discrete optimal control problem, namely,

vh(x) =

{
min{Ai}⊂[−1,1]Ml Jhx ({Ai}) for x ∈ RS

h

1 for x /∈ RS
h ,

(5.43)

where

Jhx ({Ai}) = 1− e−hnh({Ai},x) =
( nh({Ai},x)−1∑

j=0

e−jh
)

(1− e−h)χSc(x), (5.44)

and χSc(x) = 1 if x /∈ S and 0 otherwise. Following Theorem 2.3 in [17], we observe
that vh is the unique bounded solution of the following problem:{

V (x) = A(V (x)) ∀x ∈ Rn \ S
V (x) = 0 ∀x ∈ S

(5.45)

where A(V (x)) = infA∈[−1,1]Ml{e−hV (x+ hΦ(x,A, h))}+ 1− e−h.
Furthermore, owing to (5.28) and Remark 5.2.3, there exists a constant C such that

Th(x) ≤ C k
√
dS(x),∀x ∈ RS.

Therefore, by Theorem 3.3 in [17], we obtain the following

Theorem 5.4.1. Let the assumptions of Theorem 5.2.2 hold and let vS, vh be defined
according to (5.40), (5.42), respectively. Then vh → vS locally uniformly in Rn and
hNh → TS locally uniformly in RS.
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5.5 Fully discrete scheme and error estimates

Let S ⊂ Rn be a compact nonempty set and let the assumptions of Theorem 5.2.2 or
of Theorem 5.3.3 hold on some compact neighborhood of S, Sδ. Before continuing, we
observe that it is enough to consider any one step method which has at least (k+ 1)-th
order of convergence. To make a slightly more general approach, in the sequel we always
consider a method with order higher or equal to k+1. We will describe our results only
for the case of Theorem 5.2.2, since the other one requires only small modifications. We
recall that error estimates for pursuit evasion differential games, under Hölder continuity
assumptions but with a first order time discretization, were obtained in [70].

We recall that, according to Theorem 4.2.1, under our assumptions the minimum
time TS is Hölder continuous on Sδ and there exists a constant C such that

TS(x) ≤ C k
√
dS(x), ∀x ∈ Sδ \ S. (5.46)

This inequality implies that vS(x) ∈ C0,1/k(Sδ) (see, e.g., [16, Remark 1.7, p. 230]).
Moreover, the discrete minimum time function Th is finite on Sδ and satisfies

Th(x) ≤ C k
√
dS(x), ∀x ∈ Sδ \ S, (5.47)

provided h > 0 is small enough (see Theorem 5.2.2).
We consider the dynamical system (5.1) and its corresponding one step (q + 1)-th

order scheme (5.2). We make the following assumptions on the scheme to preserve the
order of the method:

(A.1) For any x ∈ Rn and any measurable u : [0, h) → [−1, 1]M there exists a M × l
(where l depends on the chosen method) matrix A ∈ [−1, 1]Ml such that

‖y(h, x, u)− yh(h, x,A)‖ ≤ Chq+2, (5.48)

where C is a constant, q ≥ k, and y(h, x, u) stands for the exact solution of (5.1)
following the control u and yh(h, x,A) = x+ hΦ(x,A, h).

Conversely,

(A.2) for any matrix A ∈ [−1, 1]Ml, there exists a measurable control u : [0, h) →
[−1, 1]M such that (5.48) holds.

Such assumptions are used, for example, in [36, 40]. Higher order one step methods
satisfying (5.48) for control systems of the type considered here are constructed in [46].
The assumption (A.2) is satisfied by taking u to be piecewise constant (with entries of
A) on subsequent intervals of length h/l.

We now deal with space discretization. For convenience we recall that vh(x) =
1− e−Th(x) is the unique bounded solution of the problem{

vh(x) = infA∈[−1,1]Ml{e−hvh(x+ hΦ(x,A, h))}+ 1− e−h on Rn \ S
vh(x) = 0 on S

(5.49)
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provided that h > 0 is small enough.
Let Γ = {xi : i = 1, ..., I} be a space grid for the domain Ω ⊂ RS, with Ω = ∪jSj,

such that the diameter of each cell Sj corresponding to Γ is less than or equal to ∆x.
Let

W k = {ω : Ω→ R : ω(·) ∈ C(Ω), Dω(x) = aj,∀x ∈ Sj, ∀j}
be the class of piecewise linear functions on Ω. We look for an approximate solution
of (5.49) belonging to W k. For any φ(·) defined on Ω, let I1

Γ[φ](x) =
∑I

i λi(A)φ(xi),

where x =
∑I

i λi(A)xi, λi(A) ∈ [0, 1],
∑I

i=1 λi(A) = 1 for any A ∈ [−1, 1]Ml, see [34]
for more information.

Now we are going to replace (5.49) with its fully discrete version by substituting
vh(xi + hΦ(xi, A, h)) with

I1
Γ[vh](xi + hΦ(xi, A, h)).

More precisely, in order to construct a fully discretized minimum time function we set
Γ? := {x ∈ Γ : there exists a control matrix A such that x + hΦ(x,A, h) ∈ Ω} and
consider the problem

v∆x
h (x) = minA∈[−1,1]Ml{e−hI1

Γ[v∆x
h ](x+ hΦ(x,A, h))}+ 1− e−h if x ∈ Γ? \ S,

v∆x
h (x) = 0 if x ∈ Γ? ∩ S,
v∆x
h (x) = 1 if x ∈ Γ \ Γ?.

(5.50)
Let V be a function on the grid Γ and define the operator A∆x

h [V ](x) by setting, for all
x ∈ Γ \ S,

A∆x
x [V ](x) = min

A∈[−1,1]Ml
{e−hI1

Γ[V ](x+ hΦ(x,A, h))}+ 1− e−h.

By using the same arguments of Section 5.2 in [37], it not difficult to prove that A∆x
h is

monotone, namely if V1(x) ≤ V2(x) for all x ∈ Γ, then

A∆x
h [V1](x) ≤ A∆x

h [V2](x).

Moreover, A∆x
h [·] considered componentwise is a contraction from RI to RI with con-

traction coefficient e−h. Therefore the fixed point problem (5.50) has indeed a unique
solution for all 0 < h < 1 and ∆x > 0, which we label v∆x

h . Notice that v∆x
h is computed

only at the grid nodes, but it can be extended by interpolation over the whole of Ω.
More precisely, from now on, for every x ∈ Ω v∆x

h (x) means that{
v∆x
h (x) is the solution of (5.50) if x ∈ Γ,

v∆x
h (x) = I1

Γ[v∆x
h ](x) if x ∈ Ω \ Γ.

(5.51)

The next results are devoted to error estimates. The first lemmas deal with the
(semi)discrete minimum time function. More precisely we will prove that ‖vS−vh‖∞,Ω ≤
Ch

q+1
k . We denote by ‖·‖∞,Ω the usual supremum norm taken on Ω and recall that the

functions n({Ai}, x) and Nh(x) were defined in (5.25) and (5.26), respectively.
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Lemma 5.5.1. Assume that (5.46) holds in a neighborhood Sδ of the target S (in
particular this happens under the assumptions of Theorem 5.2.2), together with (A.2).
Then there exist two positive constants h̄ and C such that

TS(x)− hNh(x) ≤ Ch
q+1
k , for any x ∈ Ω, h ≤ h̄.

Proof. For any fixed x ∈ Ω, we choose a sequence of control matrices {Ai} ⊂ [−1, 1]Ml

such that n({Ai}, x) = Nh(x). According to (A.2) and to the fact that x belongs to
the compact set Ω, there exists a measurable control u, with ui(t) ∈ [−1, 1]M a.e., such
that

‖y(hNh(x), x, u)− yh(hNh(x), x, {Ai})‖ ≤ CΦh
q+1.

By choosing h ≤ q+1

√
δ
CΦ

, we obtain y(hNh(x), x, {ui}) ∈ Sδ. Then due to (5.46) we

obtain the inequality
TS(x) ≤ hNh(x) + C(CΦh

q+1)1/k.

Equivalently, TS(x)− hNh(x) ≤ Ch
q+1
k , for a suitable constant C.

The analogous estimate for hNh(x)−TS(x) can be obtained by using (A.1) in place
of (A.2).

Lemma 5.5.2. Assume that (5.47) and (A.1) hold in a neighborhood Sδ of the target
S. Then there exist h̄ and C > 0 such that

hNh(x)− TS(x) ≤ Ch
q+1
k , for any x ∈ Ω, h ≤ h̄.

Proof. Let u be an optimal control steering x to S and fix a discretization step h >
0 small enough. By (A.1), there exists a sequence of control matrices {An}, n =
0, . . . , N < +∞, with entries in [−1, 1] such that

‖y(TS(x), x, u)− yh(TS(x), x, {An})‖ ≤ CΦh
q+1.

Then by choosing h ≤ q+1

√
δ
CΦ

, we obtain yh(hNh(x), x, {An}) ∈ Sδ. Thus by (5.47), we

receive
hNh(x) ≤ TS(x) + Ch

q+1
k

and the proof is concluded.

In the sequel, for the sake of simplicity, we will sometimes use the same letter for
different constants. Combining Lemma 5.5.1 and (5.5.2), we obtain

|hNh(x)− TS(x)| ≤ Ch
q+1
k (5.52)

and applying the mean value theorem, from (5.52) we obtain

|vS(x)− vh(x)| ≤ Ch
q+1
k . (5.53)
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Remembering that C may depend on |x|, we can choose a global constant C such that
(5.53) holds for every x ∈ Ω. Thus we obtain a uniform estimate for vS, namely

‖vS − vh‖∞,Ω ≤ Ch
q+1
k . (5.54)

The following result is devoted to establishing an error estimate for the fully discrete
value function, namely an upper bound for

∥∥vS − v∆x
h

∥∥
∞,Ω.

Theorem 5.5.3. Assume that the assumptions of Lemmas 5.5.2 and 5.5.1 hold. Then
there exist suitable constants C1, C2, h̄ such that for every h ∈ (0, h̄]

∥∥vS − v∆x
h

∥∥
∞,Ω ≤ C1h

q+1
k
−1 + C2

(∆x)1/k

h
.

Proof. Recalling the semidiscrete and the fully discrete dynamic programming principle,
for any x ∈ Γ \ S we have

vh(x) = inf
A∈[−1,1]Ml

{e−hvh(x+ hΦ(x,A, h))}+ 1− e−h, (5.55)

v∆x
h (x) = inf

A∈[−1,1]Ml
{e−hI1

Γ[v∆x
h ](x+ hΦ(x,A, h))}+ 1− e−h. (5.56)

Let A? be an optimal control matrix in (5.55). Then for any x ∈ Γ we obtain

v∆x
h (x)− vh(x) ≤ e−hI1

Γ[v∆x
h ](x+ hΦ(x,A?, h))− e−hvh(x+ hΦ(x,A?, h))

≤ e−h
(∣∣I1

Γ[v∆x
h ](x+ hΦ(x,A?, h))− I1

Γ[vh](x+ hΦ(x,A?, h))
∣∣

+
∣∣I1

Γ[vh](x+ hΦ(x,A?, h))− I1
Γ[vS](x+ hΦ(x,A?, h))

∣∣
+
∣∣I1

Γ[vS](x+ hΦ(x,A?, h))− vS(x+ hΦ(x,A?, h))
∣∣

+
∣∣vS(x+ hΦ(x,A?, h))− vh(x+ hΦ(x,A?, h))

∣∣)
≤ e−h

∥∥v∆x
h − vh

∥∥
∞,Γ + C2(∆x)1/k + C1h

q+1
k

where in the last inequality we used the monotonicity of I1
Γ[·], the Hölder continuity of

vS(·), and (5.54). In an entirely similar way, we also obtain

vh(x)− v∆x
h (x) ≤ e−h

∥∥v∆x
h − vh

∥∥
∞,Γ + C1h

q+1
k + C2(∆x)1/k.

Thus (1 − e−h)
∥∥vh − v∆x

h

∥∥
∞,Γ ≤ C1h

q+1
k + C2(∆x)1/k. Since 1 − e−h = h + O(h2), by

possibly modifying C1 and C2 we receive, for all x ∈ Γ,

∥∥vh − v∆x
h

∥∥
∞,Γ ≤ C1h

q+1
k
−1 + C2

(∆x)1/k

h
.
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Therefore, for every x ∈ Ω,

v∆x
h (x)− vh(x) ≤ |I1

Γ[v∆x
h ](x)− I1

Γ[vh](x)|+ |I1
Γ[vh](x)− I1

Γ[vS](x)|
+ |I1

Γ[vS](x)− vS(x)|+ |vS(x)− vh(x)|
≤
∥∥v∆x

h − vh
∥∥
∞,Γ + ‖vh − vS‖∞,Ω + |I1

Γ[vS](x)− vS(x)|
+ ‖vS − vh‖∞,Ω

≤ C1h
q+1
h
−1 + C2

(∆x)1/k

h
.

Analogously, we receive the same estimate for the reversed direction, i.e.,

vh(x)− v∆x
h (x) ≤ C1h

q+1
h
−1 + C2

(∆x)1/k

h
.

Thus, we have ∥∥v∆x
h − vh

∥∥
∞,Ω ≤ C1h

q+1
k
−1 + C2

(∆x)1/k

h
, (5.57)

for every x ∈ Ω. Putting together (5.54) and (5.57), we obtain the error estimate of
the fully discrete value function∥∥vS − v∆

h

∥∥
∞,Ω ≤ C1h

q+1
h
−1 + C2

(∆x)1/k

h

The proof is complete.

5.6 Approximate feedback controls and suboptimal

trajectories

This section is devoted to constructing (approximate) suboptimal feedback controls,
together with obtaining an error estimate for the related cost function.

Recall that the semidiscrete dynamic programming principle (SDDPP) was stated
in (5.49). The semidiscrete feedback is defined, for a given time discretization step h,
by picking any control matrix Ah(x) such that

Ah(x) ∈ argminA∈[−1,1]Ml{e−hvh(x+ hΦ(x,A, h))}.

We define also a sequence of control matrices Ah(ym), where ym is the solution of the
discrete dynamical system{

ym+1 = ym + hΦ(ym, Ah(ym), h)

y0 = x.

According to (A.2), there exists a measurable control uh(ym), corresponding to each
Ah(ym), such that

‖y(h, ym, uh(ym))− yh(h, ym, Ah(ym))‖ ≤ Chq+2.
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5.6. Approximate feedback controls and suboptimal trajectories

Let S−σ be a shrinking of the target S. Consider the (SDDPP) for S−σ, namely

vh,σ(x) = inf
A∈[−1,1]Ml

{e−hvh,σ(x+ hΦ(x,A, h))}+ 1− e−h, vh,σ(x) = 0 on S−σ. (5.58)

Let Ah,σ(ym), uh,σ(ym) be defined as Ah(ym), uh(ym) above and set

A?,mh,σ := Ah,σ(ym) and u?h,σ(s) := uh,σ(ym), (5.59)

for s ∈ [mh, (m+ 1)h), m = 1, . . .. Set also

J(u, x) = 1− e−tS(u,x), Jh,σ({Ai}, x) = 1− e−hnh,σ({Ai},x),

where tS(u, x) was defined in (2.3) and nh,σ is the smallest integer n (if any) such
that yh(nh, x, {Ai}) belongs to S−σ. The first result of this section is concerned with
an error estimate for the cost function J(u?h,σ(·), x) compared with infu(·)∈U J(u(·), x),
under suitable assumptions.

Proposition 5.6.1. Assume that there exists h̄ > 0 such that, for 0 < h < h̄, (A.1),
(A.2), and the assumptions of Theorem 5.2.2 hold, where σ is chosen sufficiently small.
Then J(u?h,σ(·), x) ≤ infu(·)∈U J(u(·), x) + ε(σ, h) for every x ∈ Ω, where ε(σ, h)→ 0, as
σ, h→ 0.

Proof. Recall that, according to Theorem 5.2.2, for all x̄ ∈ S \ S−σ we have

Th,σ(x̄) ≤ C k
√
σ =: ω(σ), (5.60)

where k is the maximal order of Lie brackets appearing in Theorem 5.2.2. Let x ∈
Ω \ S and assume there exists N ∈ N and a sequence of control matrices {A?,mh,σ },
m = 1, . . . , N , constructed according to (5.59) such that yh(Nh, x, {A?,mh,σ }) ∈ S−σ.
By the assumption (A.2), there exists a corresponding control u?h,σ(·) ∈ U such that

y(Nh, x, u?h,σ) ∈ S with 0 < h < h̄, whence we obtain

J(u?h,σ(·), x) ≤ Jh,σ({A?,mh,σ }, x) = vh,σ(x).

Thus

J(u?h,σ(·), x)− inf
u(·)∈U

J(u(·), x) ≤ Jh,σ({A?,mh,σ }, x)− vS(x)

= vh,σ(x)− vh(x) + vh(x)− vS(x) ≤ ε(σ, h),

where we used the mean value theorem and (5.60), together with (5.54). Note that
the desired estimate is trivial for any x ∈ Ω where there does not exist any sequence
of control matrices {A?,mh,σ } which steers x to S−σ or for any x ∈ S ∩ Ω. The proof is
complete.

We consider now the fully discrete version of (5.58) and use it to define our approx-
imate feedback.
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Definition 5.6.2. Let the space mesh Γ, with cell diameter ∆x, for the domain Ω and
σ > 0 and h > 0 be fixed. For each x ∈ Ω \ S−σ we define the approximate (fully
discrete) feedback Aσ∆x,h(x), relative to ∆x, h and S−σ, by picking any

Aσ∆x,h(x) ∈ argminA∈[−1,1]Ml{e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,A, h))}. (5.61)

As we did for the semidiscrete case, we consider the sequence of control matrices
Aσ∆x,h(ym), where ym is computed by{

ym+1 = ym + hΦ(ym, A
σ
∆x,h(ym), h)

y0 = x.

Again, according to (A.2), there exists a measurable control uσ∆x,h(ym) corresponding
to Aσ∆x,h(ym) such that∥∥y(h, ym, u

σ
∆x,h(ym))− yh(h, ym, Aσ∆x,h(ym))

∥∥ ≤ Chq+2. (5.62)

Let
u?,σ∆x,h(s) := uσ∆x,h(ym), A?,σ,m∆x,h := Aσ∆x,h(ym) (5.63)

for s ∈ [mh, (m+ 1)h), m = 1, . . . , N .
We are interested in estimating the difference between the cost J(u?,σ∆x,h(·), x), resp.

Jh({A?,σ,m∆x,h }, x), and the value function vS(x). We prove first a preliminary lemma,
similar to Theorem 1.7 in [34].

Lemma 5.6.3. Let v∆x
h,σ(·) and A?,σ,m∆x,h be defined, respectively, by (5.51) and (5.63).

Then, for every x ∈ Ω, Jh,σ({A?,σ,m∆x,h }, x) ≤ v∆x
h,σ(x) + ε(h,∆x)

1−e−h , where

ε(h,∆x) := C1h
q+1
k
−1 + C2

(∆x)1/k

h
.

Proof. Recall that for all x ∈ Γ \ S the equality

v∆x
h,σ(x) = e−hI1

Γ[v∆x
h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h

holds. We are now interested in estimating the difference between v∆x
h,σ(x) and

e−hI1
Γ[v∆x

h,σ]
(
x+ hΦ(x,Aσ∆x,h(x), h)

)
+ 1− e−h

for every x ∈ Ω \ S. Recalling that the dynamic programming principle for S−σ reads
as

vS,σ(x) = min
u∈U
{e−hvS,σ(y(h, x, u)) + 1− e−h},

let
u?σ(x) ∈ argminu∈U{e−hvS,σ(y(h, x, u)) + 1− e−h}
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5.6. Approximate feedback controls and suboptimal trajectories

and A?σ ∈ [−1, 1]Ml be such that

‖y(h, x, u?σ(x))− yh(h, x,A?σ(x))‖ ≤ Chq+2.

Then we have

e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − v∆x
h,σ(x)

≤ e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − vS,σ(x) + |vS,σ(x)− v∆x
h,σ(x)|

≤ e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,A?σ(x), h)) + 1− e−h − (e−hvS,σ(y(h, u?σ, x)) + 1− e−h)

+ |vS,σ(x)− v∆x
h,σ(x)|

≤ e−h|I1
Γ[v∆x

h,σ](x+ hΦ(x,A?σ(x), h))− I1
Γ[vS,σ](x+ hΦ(x,A?σ(x), h))|

+ |I1
Γ[vS,σ](x+ hΦ(x,A?σ(x), h))− vS,σ(x+ hΦ(x,A?σ(x), h))|

+ |vS,σ(x+ hΦ(x,A?σ(x), h))− vS,σ(y(h, u?σ, x))|+ |vS,σ(x)− v∆x
h,σ(x)|

≤ C1h
q+1
k
−1 + C2

∆x1/k

h
.

Therefore, for every x ∈ Ω \ S we obtain

e−hI1
Γ[v∆x

h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) + 1− e−h − v∆x
h,σ(x) ≤ C1h

q+1
k
−1 + C2

∆x1/k

h
,

or equivalently

1− e−h ≤ v∆x
h,σ(x)− e−hI1

Γ[v∆x
h,σ](x+ hΦ(x,Aσ∆x,h(x), h)) +C1h

q+1
k
−1 +C2

∆x1/k

h
. (5.64)

By multiplying both sides of (5.64) by e−mh and taking x = ym, we obtain

e−mh(1− e−h) ≤ e−mh
(
v∆x
h,σ(ym)− e−hI1

Γ[v∆x
h,σ](ym + hΦ(ym, A

?,σ,m
∆x,h )

)
+ e−mhε(h,∆x).

Let N be the minimum number of steps to reach S−σ(h) by {ym}. Then, by summing
over m, we obtain

N−1∑
m=0

e−mh(1− e−h) ≤
N−1∑
m=0

e−mh
(
v∆x
h,σ(ym)− e−hI1

Γ[v∆x
h,σ](ym + hΦ(ym, A

?,σ,m
∆x,h , h))

)
+ ε(h,∆x)

N−1∑
m=0

e−mh.

After simplifying, the proof is complete.

Now we are ready to state and prove the main result of this section. It shows that
the feedback defined by (5.61) through numerical approximation is suboptimal. For the
sake of clarity, we choose ∆x = hq+1 and set γ := q+1

k
− 1 (> 0).
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Theorem 5.6.4. Let the assumptions of Proposition 5.6.1 hold. Then, for every x ∈ Ω,

J(u?,σ∆x,h(·), x) ≤ inf
u(·)∈U

J(u(·), x) +R(σ, h),

moreover,

Jh({A?,σ,m∆x,h }, x) ≤ inf
u(·)∈U

J(u(·), x) +R(σ, h),

where R(σ, h) = C
(

hγ

1−e−h + ω(σ)
)

, C being a suitable constant, and u?,σ∆x,h(·), {A?,σ,m∆x,h }
and ω(σ) are defined according to (5.63), (5.60), respectively.

Proof. From (5.57) we obtain ∥∥v∆x
h,σ − vh,σ

∥∥
∞,Ω ≤ C ′hγ,

whence, recalling Lemma 5.6.3 we have

Jh,σ({A?,σ,m∆x,h }, x)− vh,σ(x) ≤ v∆x
h,σ(x) +

ε(h,∆x)

1− e−h
− vh,σ(x) ≤ Chγ

1− e−h
. (5.65)

If {A?,σ,m∆x,h } does not steer x to S−σ through {ym}, then Jh,σ({A?,σ,m∆x,h }, x) = 1. Thus
J(u?,σ∆x,h(·), x) ≤ Jh,σ({A?,σ,m∆x,h }, x). Otherwise, let N? be the minimum number of steps
to reach S−σ by {ym}. By the assumption (A.2), there exists a control u?,σ∆x,h(·) ∈ U

such that y(hN?, x, u?,σ∆x,h) ∈ S for 0 < h < h̄ small enough, and so J(u?,σ∆x,h(·), x) ≤
Jh,σ({A?,σ,m∆x,h }, x). Therefore

J(u?,σ∆x,h(·), x)− inf
u(·)∈U

J(u(·), x) ≤ Jh,σ({A?,σ,m∆x,h }, x)− vS(x)

= Jh,σ({A?,σ,m∆x,h }, x)− vh,σ(x) + vh,σ(x)− vh(x)

+ vh(x)− vS(x)

≤ R(σ, h),

(5.66)

where the last inequality is due to (5.65) and the mean value theorem, together with
(5.60), and (5.54) as in the proof of Proposition 5.6.1. To prove Jh({A?,σ,m∆x,h }, x) ≤
infu(·)∈U J(u(·), x) + R(σ, h), we just remark that Jh({A?,σ,m∆x,h }, x) ≤ Jh,σ({A?,σ,m∆x,h },
x), then by following the same procedure as (5.66) the proof is concluded.

Remark 5.6.5. The idea of using the argmin of the discretized Hamiltonian in order to
construct approximate feedbacks is classical and was used [34,35,37,41] in the framework
of infinite horizon problems. Adapting this idea to minimum time problems requires
to handle the discontinuity of the semidiscrete value function and to make use of a
shrinking of the target. To this aim, we used the robust discrete controllability result of
Theorem 4.2.3.
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5.7 Numerical tests

This section is devoted to showing the output of an implementation of our scheme to
two examples where the minimum time function is not Lipschitz. The papers [61, 63]
contain several cases – including the two ones we are going to describe – where the
assumptions of Theorem 4.2.1 are satisfied. Since in our examples the target is smooth,
the assumptions of Theorem 4.2.3, on which all results of the Sections 5.5 and 5.6
devoted to algorithms are based, are satisfied as well.

The simplest example where our method applies is the well known double integrator,
ẍ = u, |u| ≤ 1. It is well known that the minimum time to reach the origin subject
to this dynamics is Hölder continuous with exponent 1/2 on the whole of R2. Our
method applies when the target satisfies the assumptions of Theorem 5.3.3. In the
second example contained in [61, Section 6], it is shown that such assumptions are
satisfied (with k = 2) if the target is a ball centered at the origin with any radius
r small enough. Figure 5.1 shows the discrete trajectories obtained via the numerical
feedback (left) and the graph of the value function (right, after Kružkov transformation).
The computed trajectories agree with the theoretical computations which can be made
through Pontryagin’s Maximum Principle. In particular, the two optimal trajectories
which reach the target tangentially are correct. For this example, we refer to Section
6.3 for the error table, which is presented in comparison with a new approach.
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Figure 5.1: Double integrator: computed optimal trajectories (only trajectories issuing
from the two horizontal segments are shown) and graph of the value function with
radius of the target r = 0.1, h = 0.025, ∆x = 0.02, 3rd order Runge-Kutta scheme

The second example is bilinear and is taken from [63, Example 5.19], up to the
factor 1/8 in place of 10−3. The dynamics is{

ẋ1 = −x2

8
− x2u

ẋ2 = x1

8
+ 2x1u,

(5.67)

where |u| ≤ 1, and the target is the unit ball. In [63] the authors prove that the
assumptions of Theorem 5.3.3 are satisfied with k = 2. To be more precise, it is not
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difficult to prove that the first order condition (IS.0) is satisfied in the complement of
the union of two strips centered at the axes, while in the two strips the second order
conditions (IS’.1) and (IS.2) hold. Figure 5.2 is the analogue of Figure 5.1 for the
dynamics (5.67). Observe that if the initial point is close enough to the target, the
estimated optimal trajectory is a ”bang” one, while otherwise the estimated trajectory
has some switchings. The plot of the value function reveals that the time to reach the
target is rapidly decreasing. This is not surprising, since the minimum time function,
due to the second order controllability condition, is majorized only by the square root
of the distance to the target. Equivalently, approaching to the target is very slow (like
a sailor which has to beat to windward and therefore proceeds slowly in the desired
direction). Since the true solution is not available, we obtain the following error table
by using the solution on a fine grid as a reference. The table shows that the error
behavior of the solution is the same as that of the first example (see Table 6.3) due to
switchings, the Hölder continuity of the (true) solution.

∆x h Error
0.015 0.05 0.1046
0.015 0.025 0.0578
0.015 0.0125 0.0550
0.015 0.00625 0.0853

Table 5.1: Error estimates for Example (5.67) (r = 1, 3rd order Runge-Kutta scheme)
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Figure 5.2: Dynamics (5.67): computed optimal trajectories (only trajectories issuing
from the two horizontal segments are shown) and graph of the value function resp. with
h = 0.05, ∆x = 0.027, 3rd order Runge-Kutta scheme. .
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Chapter 6

Bridge dynamic programming and
a new Hamilton–Jacobi–Bellman
approach

The chapter is organized as follows. Section 6.1 introduces the new formulation of the
minimum time problem from a theoretical point of view and proves the bridge dynamic
programming principle (BDPP) as the main technical tool for the subsequent analysis.
In Section 6.2 the discretization is introduced and the numerical error is analyzed. The
performance of the new approach is finally illustrated by several numerical examples in
Section 6.3.

In this chapter, we consider the following controlled dynamics and its reversed one
in Rn {

ẏ(t) = f(y(t), u(t))

y(0) = ξ
, (6.1)

{
ẏ−(t) = −f(y−(t), u(t))

y(0) = ξ
. (6.2)

The following assumptions are supposed to be satisfied throughout this chapter.

Assumptions 6.0.1.

a) f(x, u) is globally Lipschitz continuous in x, uniformly in u and satisfies ‖f(x, u)‖ ≤
K(1 + ‖x‖), for all x ∈ Rn, u ∈ U ∈ Rm, where K is a positive constant,

b) S is a compact set with C2 boundary,

c) (f, U), (−f, U) are small time controllable on S, Sc respectively. Moreover, as-
sume TS(·), TSc(·) are locally Hölder continuous with exponent 1

k
in RS, RSc,

k ∈ N \ {0}, i.e., for all compact subsets KS ⊂ RS and KSc ⊂ RSc there exists a
constant L > 0 such that

|TS(x)− TS(y)| ≤ L ‖x− y‖
1
k for all x, y ∈ KS

|TSc(x)− TSc(y)| ≤ L ‖x− y‖
1
k for all x, y ∈ KSc .

(6.3)
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6.1. A new formulation of the minimum time problem

Remark 6.0.2. Readers can find the definition of small-time controllability in [16],
and sufficient conditions which guarantee the Hölder continuity of the minimum time
function in, for instance, [16, 59, 61, 63]. If k = 1, TS, TSc are Lipschitz continuous.

6.1 A new formulation of the minimum time prob-

lem

Our aim in this section is to introduce a new approach to the minimum time problem,
so that it is possible to design a numerical scheme to solve its corresponding discrete
problem more efficiently in some cases. For x ∈ RS, consider the control system (6.1)
and the target set S. Let y+(·, ξ, u) with some u ∈ U be the solution (6.1) for the sake
of clarity in this chapter. Under our assumptions, recall that for all TS(x) ≥ t > 0 the
function TS(x) satisfies the dynamic programming principle

TS(x) = inf
α∈U
{t+ TS(y+(t, x, α))} (6.4)

and is the unique viscosity solution of the following boundary value problem (see [16])
supu∈U{−f(x, u)∇TS(x)} − 1 = 0 in RS \ S
TS(x) = 0 on ∂S

TS(x) = +∞ as x→ x0 ∈ ∂RS.

(6.5)

In the classical approach described in Chapter 5 (see also, e.g., [17,34]), one does care
only what happens in Sc, and, by definition, TS(x) is set to be zero whenever x ∈ intS,
where intS is the interior of S. Then, after the Kruzkov transform (5.40) vS(x) satisfies
the dynamic programming principle

vS(x) = inf
α∈U
{
∫ t

0

e−sds+ e−tvS(y+(t, x, α))} (6.6)

for all TS(x) ≥ t > 0 and is the unique bounded viscosity solution of (5.41), i.e.{
vS(x) + supu∈U{−f(x, u)∇vS(x)} − 1 = 0 in Rn \ S
vS(x) = 0 on S.

(6.7)

The full discretization of (6.7) can be constructed by a semi-Lagrangian approach [37].
In this approach, first proposed for the minimum time problem in [17,18], the problem
is first discretized in time and then in space. More specifically, here we follow the
approach in [26] which uses a high order one step numerical approximation in time
and a first order interpolation in space. We refer to Chapter 5 for more details. As
already observed in [17], when applied to this procedure (6.7), the semi-discretization
in time is a piecewise constant function with jumps of size ≈ h, a fact which may
deteriorate the convergence properties of the subsequent spatial discretization. From the
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interpretation of the semi-discrete problem as a discrete time optimal control problem
(see, e.g., [17, Section 2]) it is easily seen that this piecewise constant behavior stems
from the fact that the approximate solution of (6.7) is equal to 0 on intS. Our goal is
thus to reformulate the problem so that this issue is reduced, at least, for some classes
of the control systems. To this aim, instead of letting TS(x) be zero in intS, we do as
in what follows. For x ∈ RSc , consider the reversed dynamics (6.2) and the new target
set as the closure of the complement of the original target set S, Sc. Due to the same
arguments as above, TSc(x) is the unique viscosity solution of

supu∈U{f(x, u)∇TSc(x)} − 1 = 0 in RSc \ Sc

TSc(x) = 0 on ∂Sc

TSc(x) = +∞ as x→ x0 ∈ ∂RSc .

(6.8)

Now we are going to redefine the minimum time function as

T (x) =



TS(x) if x ∈ RS

0 if x ∈ ∂S
−TSc(x) if x ∈ RSc

+∞ if x→ x0 ∈ ∂RS,

−∞ if x→ x0 ∈ ∂RSc

(6.9)

and the value function as

v(x) =


1− e−T (x) if x ∈ Rn \ S
0 if x ∈ ∂S
eT (x) − 1 if x ∈ Rn \ Sc.

(6.10)

Then the minimum time problem is reformulated as T (x) is the unique viscosity solution
of 

supu∈U{−f(x, u)∇T (x)} − 1 = 0 in RS \ S or RSc \ Sc

T (x) = 0 on ∂S

T (x) = +∞ as x→ x0 ∈ ∂RS or ∂RSc .

(6.11)

It is easy to check that the transformation (6.10) satisfies the required properties of
Proposition 2.5 in [16], thus v(x) is the unique bounded viscosity solution of

v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in Sc

−v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in intS

v(x) = 0 on ∂S,

(6.12)

The remaining part of this section is devoted to proving some results necessary for error
estimates later on. It is easy to see that T and v satisfy the dynamic programming
principles (6.4) and (6.6) whenever the optimal trajectories y+ on the right hand side of
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these principles stay in Sc. Likewise, it is straightforward to see that (6.4) and (6.6) with
y− in place of y+ hold for −T and −v, respectively, whenever y− stays in S. However, it
remains to be clarified how these principles change for trajectories crossing ∂S. To this
end, observe that under the assumptions on S, there exists ρ > 0, such that S satisfies
both the ρ-internal and the ρ-external sphere condition and Sρ ∈ RS, S−ρ ∈ RSc . Let
τ1 = minx∈∂Sρ TS(x), τ2 = minx∈∂S−ρ TSc(x) and τ = min{τ1, τ2}.

Proposition 6.1.1 (Bridge Dynamic Programming Principle (BDPP) for T ).
Under Assumptions 6.0.1,

T (x) = inf
α∈U
{t+ T (y+(t, x, α))} for x ∈ S+

τ , TS(x) < t ≤ τ, (6.13)

T (x) = sup
α∈U
{−t+ T (y−(t, x, α))} for x ∈ S−τ , TSc(x) < t ≤ τ. (6.14)

Proof. By means of (6.9), (6.13) can be rewritten as

TS(x) = inf
α∈U
{t− TSc(y+(t, x, α))}.

Fix α ∈ U such that t = tS(x, α) + tSc(z, ᾱ), where ᾱ(s) = α(t − s), z = y+(t, x, α).
Then

tS(x, α) = t− tSc(z, ᾱ) ≤ t− TSc(z),

by taking the infimum over U ,

TS(x) ≤ inf
α∈U
{t− TSc(y+(t, x, α))}.

Now let α, α1 ∈ U , such that t = tS(x, α) + tSc(y, α1) and TSc(y) ≥ tSc(y, α1) − ε for
any fixed ε > 0, where y = y+(t, x, ᾱ),

ᾱ(s) =

{
α(s) s ≤ tS(x, α)

α1(t− s) s > tS(x, α),

then tS(x, ᾱ) = t − tSc(y, α1) ≥ t − TSc(y) − ε. By letting ε → 0+ and taking the
infimum over U ,

TS(x) ≥ inf
α∈U
{t− TSc(y+(t, x, α))}

which completes the proof (6.13).
For (6.14), by exchanging the roles of S and Sc, we obtain, from (6.13),

TSc(x) = inf
α∈U
{t− TS(y−(t, x, α))},

or, equivalently, −TSc(x) = supα∈U{−t+ TS(y−(t, x, α))}, i.e (6.14).
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Proposition 6.1.2 (BDPP for v).
Under Assumptions 6.0.1,

v(x) = inf
α∈U
{
∫ t

0

e−sds+ e−T (x)v(y+(t, x, α))} for x ∈ S+
τ , TS(x) < t ≤ τ, (6.15)

v(x) = sup
α∈U
{−
∫ t

0

e−sds+ e−T (x)v(y−(t, x, α))} for x ∈ S−τ , TSc(x) < t ≤ τ. (6.16)

Proof. To start with, we prove (6.15). Let J(x, α) =
∫ tS(x,α)

0
e−sds, by definition, v(x) =

infα∈U J(x, α). Let α ∈ U such that t = tS(x, α)+tSc(z, ᾱ) and tS(x, α) ≤ TS(x)+ε (< t)
for any fixed ε > 0 small enough, where z = y+(t, x, α), ᾱ(s) = α(t− s). We have

J(x, α) =

∫ t

0

e−sds−
∫ t

tS(x,α)

e−sds =

∫ t

0

e−sds+ e−tS(x,α)(e−(t−tS(x,α)) − 1)

=

∫ t

0

e−sds+ e−tS(x,α)(e−tSc (z,ᾱ) − 1)

≤
∫ t

0

e−sds+ e−tS(x,α)v(y+(t, x, α))

≤
∫ t

0

e−sds+ e−TS(x)−εv(y+(t, x, α)).

(6.17)

From (6.17), by letting ε→ 0+ and taking the infimum over U , we obtain

v(x) ≤
∫ t

0

e−sds+ e−TS(x)v(y+(t, x, α)).

Let α, α1 ∈ U , such that t = tS(x, α) + tSc(z, α1) and tSc(z, α1) ≤ TSc(z) + ε for any
fixed ε > 0, where z = y+(t, x, ᾱ),

ᾱ(s) =

{
α(s) s ≤ tS(x, α)

α1(t− s) s > tS(x, α)
.

Then

J(x, ᾱ) =

∫ t

0

e−sds+ e−tS(x,α)(e−tSc (z,α1) − 1)

≥
∫ t

0

e−sds+ e−tS(x,α)(e−TSc (z)−ε − 1)

≥
∫ t

0

e−sds+ e−TS(x)(e−TSc (z)−ε − 1).

(6.18)

By taking the infimum over U and letting ε→ 0+ in (6.18), we receive

v(x) ≥
∫ t

0

e−sds+ e−TS(x)v(y+(t, x, α)).

Thus (6.15) is proved. Analogously for (6.16), the proof is completed.
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Remark 6.1.3. We remark that the factor e−T (x) in front of v in (6.15) and (6.16) is
different from the factor e−t in the “usual” dynamic programming principle (6.6). This
is due to the fact that the Kruzkov transform, i.e., the exponential transformation in
(6.10), acts with different signs inside and outside S and the different factor is needed
as a correction term when the optimal trajectories are crossing ∂S.

6.2 Discretization and error estimates

In this section, we are going to introduce the semi- and fully discrete version of (6.12)
constructed by means of a high order one step numerical approximation in time and
a first order interpolation in space. We will also provide error estimates of the value
function ‖vh − v‖∞,Ω , ‖v∆ − v‖∞,Ω, where ‖·‖∞,Ω is a usual supremum norm taken on
Ω and vh, v∆, Ω will be specified later, carried out under the continuity property of
v, the local error of the numerical scheme, in conjunction with Propositions 6.1.1 and
6.1.2.

6.2.1 Discretization

Fix h > 0 sufficiently small and let q > 0 be a given integer number. We approxi-
mate (6.1),(6.2) by means of a one step q−th order numerical scheme which is fully
described in Chapter 5. The numerical approximations of (6.1),(6.2) can be written in
the following classical forms, respectively,

{
y+
n+1 = y+

n + hΦ+(y+
n , An, h)

y+
0 = ξ

, (6.19)

{
y−n+1 = y−n + hΦ−(y−n , An, h)

y−0 = ξ
, (6.20)

where An is an m × l control matrix, An ∈ U l, and l ∈ N \ {0} depends on the
specific method. The increment functions Φ+, Φ− satisfy the properties as those of Φ
in Section 5.1. We also need the assumptions (A.1) and (A.2) (see Section 5.5) on the
schemes (6.19), (6.19) to preserve the order of the method for proving error estimate
later. Let recall them for convenience.

Assumptions 6.2.1.

(O.1) For any x ∈ Rn and any measurable u, υ : [0, h)→ U there exists m× l matrices
A, Ā ∈ U l such that ∥∥y+(h, x, u)− y+

h (h, x,A)
∥∥ ≤ Chq+1,∥∥y−(h, x, υ)− y−h (h, x, Ā)
∥∥ ≤ Chq+1,

(6.21)

where C is a constant.

Conversely,
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(O.2) for any two matrices A, Ā ∈ U l, there exists measurable controls u, υ : [0, h)→ U
such that (6.21) holds.

For the construction of higher order one step methods satisfying Assumptions 6.2.1
for some classes of control systems we refer to in [46]. We only remark that the simplest
scheme satisfying Assumptions 6.2.1 (with q = 1) is the Euler scheme with A = u and
Φ+(y, u, h) = f(y, u), Φ−(y, u, h) = −f(y, u).

Consider the following problem as the discrete version of (6.12)
vh(x) = infA∈U l{e−hvh(x+ hΦ+(x,A, h))}+ 1− e−h for x ∈ Sc

vh(x) = supA∈U l{e−hvh(x+ hΦ−(x,A, h))}+ e−h − 1 for x ∈ intS

vh(x) = 0 for x ∈ ∂S.
(6.22)

Now we are going to show that (6.22) has a unique bounded solution vh by a contraction
mapping argument, and vh can be considered as an approximation of v by proving that
an upper bound of the error estimate ‖vh − v‖∞,Ω on some compact domain is bounded
by some function depending on h continuously.

Theorem 6.2.2. The problem (6.22) admits a unique bounded solution υ ∈ L∞(Rn).
Moreover, ‖υ‖∞ ≤ 1.

Proof. Denoting

BL∞(0, r) = {υ ∈ L∞(Rn) : ‖υ‖∞ ≤ r},
(Soutυ)(x) = inf

A∈U l
{e−hυ(x+ hΦ+(x,A, h))}+ 1− e−h,

(Sintυ)(x) = sup
A∈U l
{e−hυ(x+ hΦ−(x,A, h))}+ e−h − 1,

(Sυ)(x) =

{
(Soutυ)(x) for x ∈ Sc

(Sintυ)(x) for x ∈ intS,

(6.22) can be rewritten as
υ(x) = (Soutυ)(x) for x ∈ Sc

υ(x) = (Sintυ)(x) for x ∈ intS

υ(x) = 0 for x ∈ ∂S

or equivalently {
υ(x) = (Sυ)(x) for x ∈ Sc ∪ intS

υ(x) = 0 for x ∈ ∂S.

We will divide the proof into two main steps. We first prove that S maps BL∞(0, 1) into
BL∞(0, 1) and then that S is a contraction mapping. Then the existence of a unique
solution follows from Banach’s fixed point theorem.
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Step 1: S : BL∞(0, 1)→ BL∞(0, 1). For ‖υ‖∞ ≤ 1, we observe that

(Soutυ)(x) ≤ e−h ‖υ‖∞ + 1− e−h ≤ 1,

(Soutυ)(x) ≥ −e−h ‖υ‖∞ + 1− e−h ≥ 1− 2e−h > −1.

Similarly, we also have

(Sintυ)(x) ≤ e−h ‖υ‖∞ + e−h − 1 ≤ 2e−h − 1 < 1,

(Sintυ)(x) ≥ −e−h ‖υ‖∞ + e−h − 1 ≥ −1.

Then, ‖Soutυ‖∞ ≤ 1, ‖Sintυ‖∞ ≤ 1 for υ ∈ BL∞(0, 1) and therefore ‖Sυ‖∞ ≤ 1
and thus Sυ ∈ BL∞(0, 1).

Step 2: S is a contraction mapping. Let u, v be bounded and u = v = 0 on ∂S. Let
x /∈ S, A be a control matrix such that

(Soutυ)(x) ≥ e−hυ(x+ hΦ+(x,A, h)) + 1− e−h − ε,

for any fixed ε > 0. Then

(Soutu)(x)− (Soutυ)(x) ≤ e−h(u(x+ hΦ+(x,A, h))

− υ(x+ hΦ+(x,A, h))) + ε

≤ e−h ‖u− v‖∞ + ε,

which implies

‖Soutu− Soutv‖∞,Sc ≤ e−h ‖u− v‖∞ + ε. (6.23)

Analogously,

‖Sintu− Sintv‖∞,intS ≤ e−h ‖u− v‖∞ + ε?. (6.24)

Putting together (6.23), (6.24) and owing to u = v = 0 on ∂S, we obtain, for
ε, ε? → 0+,

‖Su− Sv‖∞ ≤ α ‖u− v‖∞ , where α = e−h < 1, (6.25)

i.e., S is a contraction mapping. Consequently, there exists a unique bounded
solution of (6.22).

Let us turn to the discretization in space. To this end, as in Section 5.5, let Ω
containing S be a compact subset of RS. We construct a grid over Ω with space
step ∆x. Set Γ = {x1, x2, ..., xI}, where I is a number of the grid points. In order to
construct a numerical algorithm for (6.12), (6.22) has to be discretized in state variables
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as well. To do this, we use, for simplicity, the first order interpolation, see Section 5.5
or [34] for the details. The fully discrete problem of (6.12) reads as

v∆(x) = infA∈U l{e−hI1
Γ[v∆](x+ hΦ+(x,A, h))}+ 1− e−h for x ∈ Sc

v∆(x) = supA∈U l{e−hI1
Γ[v∆](x+ hΦ−(x,A, h))}+ e−h − 1 for x ∈ intS

v∆(x) = 0 for x ∈ ∂S,
(6.26)

where I1
Γ[v∆](x) =

I∑
1

βiv∆(xi) if provided x =
I∑
1

βixi and
I∑
1

βi = 1, βi ≥ 0.

After solving (6.26), we obtain the numerical solution over the whole domain Ω.
However, if one is interested in the solution defined on only Sc, one can recover it by
taking all of the values of v∆(x) with x ∈ Γ ∩ Sc the due to the construction.

6.2.2 Error estimate

To begin with, notice that Hölder continuity of T implies Hölder continuity of v with
the same exponent. We will employ this property of v in the next theorems. Under
Assumptions 6.2.1, the construction of the discrete problem, together with the results
proved in Section 6.1, we are now able to provide error estimates as follows.

Theorem 6.2.3. Under Assumptions 6.0.1 and 6.2.1,

‖vh − v‖∞,Ω ≤ C1h
q+1
k
−1 + C2h,

where v, vh are solutions of (6.12), (6.22) respectively and C1, C2 are positive constants.

Proof. In this proof, we consider two cases as follows

case 1: let x /∈ S. If T (x) ≥ h, let u ∈ U be the minimizer of

v(x) = inf
α
{e−hv(y+(h, x, α)) + 1− e−h},

and A be an m× l control matrix such that |y+(h, x, α)−y+
h (h, x,A)| ≤ Chq+1. Then

vh(x)− v(x) ≤ e−h(vh(x+ hΦ+(x,A, h))− v(y+(h, x, u)))

≤ e−h
(
vh(x+ hΦ+(x,A, h))− v(x+ hΦ+(x,A, h))

+ v(x+ hΦ+(x,A, h))− v(y+(h, x, u))
)

≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k .

(6.27)

If T (x) < h, let ū be the minimizer of

v(x) = 1− e−h + inf
α
{e−T (x)v(y+(h, x, α))},
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and Ā be an m× l control matrix such that

|y+(h, x, α)− y+
h (h, x, Ā)| ≤ Chq+1.

We receive

vh(x)− v(x) ≤ e−hvh(x+ hΦ+(x, Ā, h))− e−T (x)v(y+(h, x, ū))

≤ e−h
(
vh(x+ hΦ+(x, Ā, h))− v(x+ hΦ+(x, Ā, h))

+ v(x+ hΦ+(x, Ā, h))− v(y+(h, x, ū))
)

+ (e−h − e−T (x))v(y+(h, x, ū))

≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2(h− T (x))2

≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2.

(6.28)

From (6.27), (6.28),

vh(x)− v(x) ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2.

Similarly, we can prove the reverse inequality, i.e.

v(x)− vh(x) ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2.

Therefore,

‖vh − v‖∞,Sc ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2 for x /∈ S. (6.29)

case 2: let x ∈ intS. By applying the corresponding formulas of v(x), vh(x) with
respect to x ∈ intS and follow the similar technique as that of Case 1, we have

‖vh − v‖∞,intS ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2 (6.30)

By putting (6.29), (6.30) together, we derive

‖vh − v‖∞,Ω ≤ e−h ‖vh − v‖∞,Ω + C1h
q+1
k + C2h

2, (6.31)

Consequently,

‖vh − v‖∞,Ω ≤ C1h
q+1
k
−1 + C2h.

Theorem 6.2.4. Under Assumptions 6.0.1 and 6.2.1,

‖v∆ − v‖∞,Ω ≤ C1
∆x

1
k

h
+ C2h

q+1
k
−1 + C3h,

where v, v∆ are solutions of (6.12), (6.26) respectively and C1, C2, C3 are positive con-
stants.
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Proof. We divide the proof into two cases as follows

case 1: consider x /∈ S ∩ Γ. If T (x) ≥ h, let u ∈ U be the minimizer of

v(x) = 1− e−h + inf
α
{e−hv(y+(h, x, α))},

and A be an m× l control matrix such that |y+(h, x, α)−y+
h (h, x,A)| ≤ Chq+1. Then

v∆(x)− v(x) ≤ e−h
(
I1

Γ[v∆](x+ hΦ+(x,A, h))− v(y+(h, x, u))
)

≤ e−h
(
I1

Γ[v∆](x+ hΦ+(x,A, h))− I1
Γ[v](x+ hΦ+(x,A, h)) + I1

Γ[v](x+ hΦ+(x,A, h))

− v(x+ hΦ+(x,A, h)) + v(x+ hΦ+(x,A, h))− v(y+(h, x, u))

)
≤ e−h ‖v∆ − v‖∞,Γ + C1∆x

1
k + C2h

q+1
k .

(6.32)
If T (x) < h, let ū be the minimizer of

v(x) = 1− e−h + inf
α
{e−T (x)v(y+(h, x, α))},

and Ā be an m× l control matrix such that

|y+(h, x, α)− y+
h (h, x, Ā)| ≤ Chq+1.

We have

v∆(x)− v(x) ≤ e−hI1
Γ[v∆](x+ hΦ+(x, Ā, h))− e−T (x)v(y+(h, x, u))

≤ e−h
(
I1

Γ[v∆](x+ hΦ+(x, Ā, h))− I1
Γ[v](x+ hΦ+(x, Ā, h))

+ I1
Γ[v](x+ hΦ+(x, Ā, h))− v(x+ hΦ+(x, Ā, h))

+ v(x+ hΦ+(x, Ā, h))− v(y+(h, x, u))

)
+ (e−h − e−T (x))v(y+(h, x, ū)) ≤ e−h ‖v∆ − v‖∞,Γ
+ C1∆x

1
k + C2h

q+1
k + C3h

2.

(6.33)

From (6.32),(6.28), we obtain

v∆(x)− v(x) ≤ e−h ‖v∆ − v‖∞,Γ + C1∆x
1
k + C2h

q+1
k + C3h

2.

The proof of the reverse inequality is similar, so we dismiss it. Conclusively,

‖v∆ − v‖∞,Sc∪Γ ≤ e−h ‖v∆ − v‖∞,Γ + C1∆x
1
k + C2h

q+1
k + C3h

2. (6.34)
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case 2: consider x /∈ Sc ∩ Γ. In the same way, we derive

‖v∆ − v‖∞,intS∪Γ ≤ e−h ‖v∆ − v‖∞,Γ + C1∆x
1
k + C2h

q+1
k + C3h

2. (6.35)

(6.34),(6.35) imply

‖v∆ − v‖∞,Γ ≤ C1
∆x

1
k

h
+ C2h

q+1
k
−1 + C3h for x ∈ Γ.

Let x ∈ Ω, we have

v∆(x)− v(x) ≤ |I1
Γ[v∆](x)− I1

Γ[v](x)|+ |I1
Γ[v](x)− v(x)| ≤ C1

∆x
1
k

h
+ C2h

q+1
k
−1 + C3h.

and, analogously,

v(x)− v∆(x) ≤ C1
∆x

1
k

h
+ C2h

q+1
k
−1 + C3h.

Finally,

‖v∆ − v‖∞,Ω ≤ C1
∆x

1
k

h
+ C2h

q+1
k
−1 + C3h.

6.3 Numerical tests

In this section we illustrate the performance of our proposed scheme compared to the
classical approach described in [26, 34]. We first consider a one-dimensional example
which illustrates that the size of the jumps in the semi-discretization vh is indeed reduced
by our new approach. Afterwards we evaluate the numerical error of the schemes for
three two-dimensional examples for which the exact solutions are known.

6.3.1 A test in 1d

The first test we perform uses the simple one dimensional dynamics

ẋ = u, u ∈ [−1, 1]. (6.36)

We consider this example on Ω = [−1, 1] with target S = [−0.25, 0.25]. In one space
dimension, it is possible to make the spatial step size ∆x so small that the resulting ap-
proximation very accurately represents the semi-discretization vh. The resulting graphs
in Figure 6.1 indicate that the size of the jumps in the solution in the new approach
(right) is only half as large as in the classical approach (left). This observation can also
be explained analytically if we look at the jump at ∂S. For the classical approach, it
is easily seen that the smallest cost vh(x) for x /∈ S is 1 − e−h = h + O(h2). On the
other hand, for the new approach, we can use the fact that the system moves fastest
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towards ∂S for u ≡ 1 in case x < 0 and for u ≡ −1 for x > 0 and the observation
that y+

h (h, x, u) = x+ hu and y−h (h, x, u) = x− hu holds for any Runge-Kutta scheme.
Thus, for each x /∈ S sufficiently close to S, the bridge dynamic programming principles
(6.15) applied to x /∈ S and (6.16) applied to y+(h, x, u) ∈ S yield

vh(x) = e−h(e−hvh(x) + e−h − 1) + 1− e−h ⇒ vh(x) =
(1− e−h)2

1− e−2h
=
h

2
+O(h2).

While for this example with the chosen parameters the improvement in accuracy is
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Figure 6.1: Example (6.36): positive part of the value function obtained by the
classical approach (left) and by the proposed new approach (right) (Ω = [−1, 1],
S = [−0.25.0.25], ∆x = 0.0002, h = 0.02).

almost precisely equal to h/2, in the next section we will see that for more reasonable
(i.e., larger) choices of ∆x the improvement can be substantially larger, which is due
to the fact that smaller jumps in vh do not only improve the accuracy of the semi-
discretization vh itself (which is what is visible here) but also have a significant positive
effect on the accuracy of the subsequent spatial discretization.

6.3.2 Tests in 2d

Next we consider three numerical examples to see the error behavior of the solutions
obtained by the new and the classical approaches. In all examples, we take Ω = [−2, 2]2,
S as a ball with radius r centered at the origin and a third order Runge-Kutta method.
For each example, the table shows the L∞ numerical errors of the recovered numerical
solutions of both approaches. Moreover, we provide two plots for the value function
computed by the proposed new approach for each example. The first figure shows the
graph of the value function on the whole set Ω, while the second shows the graph on
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Ω \ S. The first example uses the dynamics

ẋ1 = u1, ẋ2 = u2, (u1, u2) ∈ [−1, 1]2. (6.37)

The dynamics of the second example is

∆x h new approach classical approach
0.02 0.1 0.0495 0.0948
0.02 0.05 0.0126 0.0484
0.02 0.025 0.0076 0.0243
0.02 0.0125 0.0045 0.0168
0.01 0.1 0.0498 0.0951
0.01 0.05 0.0250 0.0487
0.01 0.025 0.0059 0.0246
0.01 0.0125 0.0036 0.0123

Table 6.1: Comparison of error estimates for Example (6.37) (r = 0.5)

Figure 6.2: Example (6.37): value function on Ω and on Ω\S resp. obtained by the new
approach (radius of the target r = 0.25, h = 0.025, ∆x = 0.01, 3rd order Runge-Kutta
scheme).

ẋ1 = −x2 + x1 u, ẋ2 = x1 + x2 u, u ∈ [−1, 1]. (6.38)

It is easy to check that the Petrov condition holds for the first and second examples,
thus TS is Lipschitz continuous.
The last example is the classical double integrator, i.e.
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∆x h new approach classical approach
0.02 0.1 0.0212 0.0944
0.02 0.05 0.0113 0.0480
0.02 0.025 0.0059 0.0364
0.02 0.0125 0.0084 0.0358
0.01 0.1 0.0253 0.0950
0.01 0.05 0.0117 0.0486
0.01 0.025 0.0051 0.0245
0.01 0.0125 0.0029 0.0190

Table 6.2: Comparison of error estimates for Example (6.38) (r = 0.5)

Figure 6.3: Example (6.38): value function on Ω and on Ω\S resp. obtained by the new
approach (radius of the target r = 0.25, h = 0.01, ∆x = 0.01, 3rd order Runge-Kutta
scheme).

ẍ = u, u ∈ [−1, 1]. (6.39)

TS is Hölder continuous (see [61]). Therefore, Assumptions 6.0.1 are satisfied and the
new approach works for all the examples. In conclusion, we observe that in the
first two examples the numerical errors obtained by means of the new approach are
reduced significantly in comparison with the classical one. This is due to the fact that
in this examples the Petrov condition is fulfilled, hence the optimal value functions are
Lipschitz. This implies that the discretization error is of the order O(h) which is exactly
the order of the size of the jumps. Consequently the jumps in vh are a dominant error
source and their reduction has a visible effect on the error. In the last example the
situation is different since v is only Hölder continuous along a curve extending from the
target S to the boundary of Ω, which is also the place where the maximal errors are
located. Due to the non-Lipschitzness, in this example, the order of the error is larger
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∆x h new approach classical approach
0.016 0.05 0.0786 0.0818
0.016 0.025 0.0760 0.0795
0.016 0.0125 0.0778 0.0783
0.016 0.00625 0.0815 0.0819
0.008 0.05 0.0858 0.0887
0.008 0.025 0.0716 0.0741
0.008 0.0125 0.0702 0.0718
0.008 0.00625 0.0705 0.0709

Table 6.3: Comparison of error estimates for Example (6.39) (r = 0.1)

Figure 6.4: Example (6.39): value function on Ω and on Ω\S resp. obtained by the new
approach (radius of the target r = 0.1, ∆x = 0.016, h = 0.01, 3rd order Runge-Kutta
scheme).

than O(h). Hence, the reduction of the jumps which yields a reduction of the error of
order O(h) is hardly visible here because it is dominated by the larger error along the
curve where the solution is merely Hölder continuous.
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Chapter 7

Reconstruction of the minimum
time function through the
approximation of reachable sets for
linear control systems

The plan of this chapter is as follows. In Section 7.1 the convexity of the reachable set
for linear control problems and the characterization of its boundary via the level-set
of the minimum time function is the basis for the algorithm formulated. Section 7.2
is devoted to constructing the approximate minimum time function. First we briefly
introduce the reader to set-valued quadrature methods and Runge-Kutta methods and
their implementation and discuss the convergence order for the fully discrete approxi-
mation of reachable sets at a given time both in time and in space. Then we present
the error estimate for the fully discrete minimum time function which depends on the
regularity of the continuous minimum time function and on the convergence order of the
underlying set-valued method. Another error estimate expresses the error only on the
time period between the calculated reachable sets. Section 7.3 discusses the construc-
tion of discrete optimal trajectories and convergence of discrete optimal controls. The
remainder of this chapter presents some numerical examples to illustrate this approach.

In this chapter, we will consider a special class of control systems (2.1), the linear
time-variant controlled dynamics in Rn,

ẏ(t) = A(t)y(t) +B(t)u(t) for a.e. t ∈ [t0,∞),

u(t)∈ U for a.e. t ∈ [t0,∞),

y(t0) = y0.

(7.1)

The coefficients A(t), B(t) are n × n and n ×m matrices respectively, y0 ∈ Rn is the
initial value, U ∈ C(Rm) is the set of control values.

For a given maximal time tf > t0 and some t ∈ I = [t0, tf ], RS(t) is the set of points
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reachable from the target in time t by the time-reversed system

ẏ(t) = Ā(t)y(t) + B̄(t)u(t), (7.2)

y(t0) ∈ S, (7.3)

where Ā(t) := −A(t0 + tf − t), B̄(t) := −B(t0 + tf − t) for shortening notations. In
other words, RS(t) equals the set of starting points from which the system can reach
the target in time t. Sometimes RS(t) is called the backward reachable set which is also
considered in [20] for computing the minimum time function by solving a Hamilton-
Jacobi-Bellman equation.

The following standing hypotheses are assumed to be fulfilled in the sequel.

Assumptions 7.0.1.

(i) A(t), B(t) are n× n, n×m real-valued matrices defining integrable functions on
any compact interval of [t0,∞).

(ii) The control set U ⊂ Rm is convex, compact and nonempty, i.e. U ∈ C(Rm).

(iii) The target set S ∈ Rn is convex, compact and nonempty, i.e. S ∈ C(Rn).
Especially, the target set can be a singleton.

(iv) RS(t) is strictly expanding on the compact interval [t0, tf ], i.e.RS(t1) ⊂ intRS(t2)
for all t0 ≤ t1 < t2 ≤ tf

Remark 7.0.2. The reader can find sufficient conditions for Assumption 7.0.1(iv) for
S = {0} in [49, Chap. 17], [59, Sec. 2.2–2.3]. Under this assumption, it is obvious that

RS(t) = RS
≤(t).

7.1 Description and main properties of reachable

sets

Under our standard hypotheses, the control problem (7.2) can equivalently be replaced
by the following linear differential inclusion

ẏ(t) ∈ Ā(t)y(t) + B̄(t)U for a.e. t ∈ [t0,∞) (7.4)

with absolutely continuous solutions y(·) (see [71, Appendix A.4].
All the solutions of (7.3)–(7.4) are represented as

y(t) = Φ(t, t0)y0 +

∫ t

t0

Φ(t, s)B̄(s)u(s)ds

for all y0 ∈ S, u ∈ U , and t0 ≤ t <∞, where Φ(t, s) is the fundamental solution matrix
of the homogeneous system

ẏ(t) = Ā(t)y(t), (7.5)
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with Φ(s, s) = In, the n × n identity matrix. Using the Minkowski addition and the
Aumann’s integral, the reachable set can be described by means of Aumann’s integral
as follows

RS(t) = Φ(t, t0)S +

∫ t

t0

Φ(t, s)B̄(s)Uds. (7.6)

For time-invariant systems, i.e. Ā(t) = Ā, we have Φ(t, t0) = eĀ(t−t0).
For the linear control system (7.1) the reachable set at a fixed end time is convex

which allows to apply support functions or supporting points for its approximation.
Furthermore, the reachable sets change continuously with respect to the end time. The
following theorem will summarize the needed properties.

Theorem 7.1.1. Let the Assumptions 7.0.1(i)–(iii) be fulfilled and consider the linear
control process (7.1) in Rn. Then RS(t) is convex, compact and nonempty. Moreover,
RS(t) varies continuously with t0 ≤ t <∞.

Proof. Recall that for t ≥ t0

RS(t) = Φ(t, t0)S +

∫ t

t0

Φ(t, s)B̄(s)Uds. (7.7)

Observe that the integral term
∫ t
t0

Φ(t, s)B̄(s)Uds is actually the reachable set at time
t ≥ t0 initiating from the origin, it is compact and convex due to the convexity of
Aumann’s integral, see e.g. [6]. The same properties hold for the reachable set RS(t)
due to Proposition 2.3.4 (see also [59, Sec. 2.2, Theorem 1]) and the assumptions on S.
This reference also states the continuity of the set-valued map t 7→ RS(t). The proof is
completed.

Lemma 7.1.2. Under the same assumptions as in Theorem 7.1.1, the map t 7→ RS
≤(t)

has nonempty compact images and varies continuously with respect to t ∈ I = [t0, tf ].

Proof. The integrable linear growth condition holds due to Assumptions 7.0.1(i) so that
the Filippov-Gronwall theorem in [42, Theorem 2.3] applies yielding the compactness
of the closure of the set of solutions in the maximum norm on I. As a consequence the
compactness of RS

≤(t) follows easily.
Let s, t ∈ [t0, tf ] and consider x ∈ RS

≤(s). Then, there exists s̃ ∈ [t0, s] with
x ∈ RS(s̃). We distinguish two cases.

case (i): s̃ ≤ t

d(x,RS
≤(t)) ≤ d(x,RS(s̃)) = 0

case (ii): s̃ > t

d(x,RS
≤(t)) ≤ d(x,RS(t)) ≤ sup

x∈RS(s̃)

d(x,RS(t)) ≤ dH(RS(s̃),RS(t))
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For every ε > 0 there exists δ > 0 such that for all s ∈ [t − δ, t + δ] ∩ [t0, tf ] we
have

dH(RS(s),RS(t)) ≤ ε

which also holds for s̃ instead of s, since 0 ≤ s̃− t ≤ s− t.

This proves the continuity of RS
≤(·).

The following proposition is to provide the connection between RS(t) and the level
set of TS(·) at time t which is essential for this approach. We will benefit from the
sublevel representation in (2.4). The result is related to [20, Theorem 2.3], where the
minimum time function at x is the minimum for which x lies on a zero-level set bounding
the backward reachable set.

Proposition 7.1.3. Let Assumption 7.0.1 be fulfilled and t ∈ (t0, tf ]. Then

∂RS(t) = {y0 ∈ Rn : TS(y0) = t}. (7.8)

Proof. ”⊂”: Assume that there exists x ∈ ∂RS(t) with x /∈ {y0 ∈ Rn : TS(y0) = t}.
Clearly, x ∈ RS

≤(t) and (2.4) shows that TS(x) ≤ t. By definition there exists s ∈ [t0, t]
with x ∈ RS(s). Assuming s < t we get the contradiction x ∈ RS(s) ⊂ intRS(t) from
Assumption 7.0.1(iv).

”⊃”: Assume that there exists x ∈ {y0 ∈ Rn : TS(y0) = t} (i.e. TS(x) = t) be such
that x /∈ ∂RS(t). Since x ∈ RS(t) by (2.4) and we assume that x /∈ ∂RS(t), then
x ∈ int(RS(t)).

Hence, there exists ε > 0 with x+ εB1(0) ⊂ RS(t). The continuity of RS(·) ensures
for t1 ∈ [t− δ, t+ δ] ∩ I that

dH(RS(t),RS(t1)) ≤ ε

2
.

Hence,

x+ εB1(0) ⊂ RS(t) ⊂ RS(t1) +
ε

2
B1(0).

The order cancellation law in [65, Theorem 3.2.1] can be applied, since RS(t1) is convex
and all sets are compact. Therefore,

(x+
ε

2
B1(0)) +

ε

2
B1(0) ⊂ RS(t1) +

ε

2
B1(0)

⇒ x+
ε

2
B1(0) ⊂ RS(t1)

Hence, x ∈ int(RS(t1)) with t1 < t so that TS(x) ≤ t1 < t which is again a contradiction.
Therefore, {y0 ∈ Rn : TS(y0) = t} ⊂ ∂RS(t). The proof is completed.
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In the previous characterization of the boundary of the reachable set at fixed end
time the assumption of monotonicity of the reachable sets played a crucial role. As
stated in Remark 7.0.2, Assumption 7.0.1(iv) also guarantees that the union of reachable
sets coincides with the reachable set at the largest end time and is trivially convex. If we
drop this assumption, we can only characterize the boundary of the union of reachable
sets up to a time under relaxing the expanding property (iv) while demanding convexity
as can be seen in the following proposition.

Proposition 7.1.4. Let t > t0, Assumptions 7.0.1(i)–(iii) and Assumption

(iv)’ RS
≤(t) has convex images and is strictly expanding on the compact

interval [t0, tf ], i.e.

RS
≤(t1) ⊂ intRS

≤(t2) for all t0 ≤ t1 < t2 ≤ tf .

Then
∂RS

≤(t) = {x ∈ Rn : TS(x) = t} (7.9)

Proof. For the first inclusion ”⊃” consider x ∈ Rn with TS(x) = t. Assume by contra-
diction that x /∈ ∂RS

≤(t), so that x ∈ intRS
≤(t) and there exists ε > 0 with

x+ εB1(0) ⊂ RS
≤(t).

The continuity of RS
≤(·) due to Lemma 7.1.2 ensures for t1 ∈ [t− δ, t+ δ] ∩ I that

dH(RS
≤(t),RS

≤(t1)) ≤ ε

2
.

Hence,

x+ εB1(0) ⊂ RS
≤(t) ⊂ RS

≤(t1) +
ε

2
B1(0).

Again, the order cancellation law

(x+
ε

2
B1(0)) +

ε

2
B1(0) ⊂ RS

≤(t1) +
ε

2
B1(0)

⇒ x+
ε

2
B1(0) ⊂ RS

≤(t1)

in [65, Theorem 3.2.1] can be applied, since RS
≤(t1) is assumed to be convex and all

sets are compact. Hence, x ∈ int(RS
≤(t1)) with t1 < t and TS(x) ≤ t1 < t which is not

possible so that x must lie in ∂RS
≤(t).

For the opposite inclusion ”⊂” let x ∈ ∂RS
≤(t) and assume by contradiction that

TS(x) < t. Observe that TS(x) is continuous in RS due to Assumption (iv)’, see [16,
Chap. IV, Proposition 1.6]. Then by the continuity of TS(x) there exist δ > 0 and a
neighborhood U(x) of x such that TS(y) ≤ t−δ < t for all y ∈ U(x). The neighborhood
exists, since RS has nonempty interior by Assumption (iv)’. By (2.4) x ∈ U(x) ⊂
RS
≤(t− δ) ⊂ intRS

≤(t) which contradicts x ∈ ∂RS
≤(t).
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Remark 7.1.5. Assumption (iv)’ implies that the considered system is small-time con-
trollable, see [16, Chap. IV, Definition 1.1]. Moreover, under the assumption of small-
time controllability the nonemptiness of the interior of RS and the continuity of the min-
imum time function in RS are consequences, see [16, Chap. IV, Propositions 1.2, 1.6].
Assumption (iv)’ is essentially weaker than (iv), since the convexity of RS

≤(t) and the
strict expandedness of RS

≤(·) follows by Remark 7.0.2.

In the previous proposition we can allow that RS
≤(t) is lower-dimensional and are

still able to prove the inclusion ”⊃” in (7.9), since the interior of RS
≤(t) would be empty

and x cannot lie in the interior which also creates the (wanted) contradiction.

For the other inclusion ”⊂” the nonemptiness of the interior of RS(t) in Propo-
sition 7.1.3 resp. the one of RS

≤(t) in Proposition 7.1.4 is essential. Therefore, the
expanding property in Assumptions (iv) resp. (iv)’ cannot be relaxed by assuming only
monotonicity in the sense

RS(s) ⊂ RS(t) or RS
≤(s) ⊂ RS

≤(t) (7.10)

for s < t.

7.2 Computation of the numerical minimum time

function

7.2.1 Set-valued discretization methods

Consider the linear controlled dynamics (7.1). For a given x ∈ Rn, the problem of
computing approximately the minimum time TS(x) to reach S by following the dy-
namics (7.1) is deeply investigated in literature. It was usually obtained by solving
the associated discrete Hamilton-Jacobi-Bellman equation (HJB), see Chapter 5, 6 and
references therein. Neglecting the space discretization we obtain an approximation of
TS(x). In this paper, we will introduce another approach to treat this problem based
on approximation of the reachable set of the corresponding linear differential inclusion.
The approximate minimum time function is not derived from the PDE solver, but from
iterative set-valued methods or direct discretization of control problems.

Our aim now is to compute RS(t) numerically up to a maximal time tf based on
the representation (7.6) by means of set-valued methods to approximate Aumann’s
integral. There are many approaches to achieving this goal. We will describe three
known options for discretizing the reachable set which are used in the following.

Consider for simplicity of notations an equidistant grid over the interval I = [t0, tf ]

with N subintervals, step size h =
tf−t0
N

and grid points ti = t0 + ih, i = 0, . . . , N .

(I) Set-valued quadrature methods with the exact knowledge of the fundamental so-
lution matrix of (7.5) (see e.g. [14, 32,73], [7, Sec. 2.2]):
As in the pointwise case, we replace the integral

∫ t
t0

Φ(t, s)B̄(s)Uds by some
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quadrature scheme of order p with non-negative weights. Therefore, (7.6) is ap-
proximated by

RS
h(tN) = Φ(tN , t0)S + h

N∑
i=0

ciΦ(tN , ti)B̄(ti)U (7.11)

with weights ci ≥ 0, i = 0, . . . , N . Moreover, the error estimate

dH(

∫ tN

t0

Φ(tN , s)B̄(s)Uds, h
N∑
i=0

ciΦ(tN , ti)B̄(ti)U) ≤ Chp

holds. Obviously, the following recursive formula is valid for i = 0, . . . , N − 1

RS
h(ti+1) = Φ(ti+1, ti)RS

h(ti) + h

1∑
j=0

c̃ijΦ(ti+1, ti+j)B̄(ti+j)U, (7.12)

RS
h(t0) = S (7.13)

with suitable weights c̃ij ≥ 0 due to the semigroup property of the fundamental
solution matrix, i.e.

Φ(t+ s, t0) = Φ(t+ s, s)Φ(s, t0) for all t ∈ I, s ≥ t0 with s+ t ∈ I.

For example, the set-valued trapezoidal rule uses the settings

c0 = cN =
1

2
, ci = 1 (i = 1, 2, . . . , N − 1)

c̃ij =
1

2
(i = 0, 1, . . . , N − 1, j = 0, 1).

(II) Set-valued combination methods (see e.g. [14], [7, Sec. 2.3]):
We replace Φ(tN , ti) in method (I) by its approximation (e.g. via ODE solvers of
the corresponding matrix equation) such that

a) Φh(tm+n, t0) = Φh(tm+n, tm)Φh(tm, t0) for allm ∈ {0, . . . , N}, n ∈ {0, . . . , N−
m}
The use of e.g. Euler’s method or Heun’s method yields

Φh(ti+1, ti) = In + hA(ti), (7.14)

Φh(ti+1, ti) = In +
h

2
(A(ti) + A(ti+1)) +

h2

2
A(ti+1)A(ti), (7.15)

respectively for i = 0, 1, . . . , N − 1.

b) sup0≤i≤N ‖Φ(tN , ti)− Φh(tN , ti)‖ ≤ Chp.
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The following global resp. local recursive approximation together with (7.13) holds
for the discrete reachable sets:

RS
h(tN) = Φh(tN , t0)S + h

N∑
i=0

ciΦh(tN , ti)B̄(ti)U, (7.16)

RS
h(ti+1) = Φh(ti+1, ti)RS

h(ti) + h
1∑
j=0

c̃ijΦh(ti+1, ti+j)B̄(ti+j)U. (7.17)

(III) Set-valued Runge-Kutta methods (see e.g. [8, 9, 33,74,76]):
We can approximate (7.4) by set-valued analogues of Runge-Kutta schemes. The
discrete reachable set is computed recursively with the starting condition in (7.13)
for the set-valued Euler scheme (see e.g. [33]) as

RS
h(ti+1) = Φh(ti+1, ti)RS

h(ti) + hB(ti)U (7.18)

with (7.14) or with (7.15) for the set-valued Heun’s scheme with piecewise constant
selections (see e.g. [74]) as

RS
h(ti+1) = Φh(ti+1, ti)RS

h(ti) +
h

2

(
(I + hA(ti+1))B(ti) +B(ti+1)

)
U. (7.19)

For linear differential inclusions these methods can be regarded as perturbed set-
valued combination methods (see [8]).

Further options are possible, for instance, methods based on Fliess expansion and
Volterra series [40,46,51,60,68].

The purpose of this paper is not to focus on the set-valued numerical schemes
themselves, but on the approximative construction of TS(·). Thus we just choose the
scheme described in (II) and (III) to present our idea from now on. In practice, there
are several strategies in control problems to discretize the set of controls U , see e.g. [9].
Here we choose a piecewise constant approximation Uh for the sake of simplicity which
corresponds to use only one selection on the subinterval [ti, ti+1] in the corresponding
set-valued quadrature method. This choice is obvious in the approaches (7.18), (7.19)
and e.g. for set-valued Riemann sums in (7.11) or (7.16). In the recursive formulas for
the set-valued Riemann sum, this means that c̃i1 = 0 for i = 0, 1, . . . , N − 1. Recall
that from (II) the discrete reachable set reads as follows.

RS
h(tN) = {y ∈ Rn : there exists a piecewise constant control uh ∈ Uh and y0 ∈ S

such that y = Φh(tN , t0)y0 + h
N∑
i=0

ciΦh(tN , ti)B̄(ti)uh(ti)}

or equivalently

RS
h(tN) = Φh(tN , t0)S + h

N∑
i=0

ciΦh(tN , ti)B̄(ti)U.
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We set

th(y0, y, uh) = min{tn : n ∈ N, y = Φh(tn, t0)y0 + h

n∑
i=0

ciΦh(tn, ti)B̄(ti)uh(ti)}

for some y ∈ Rn, y0 ∈ S and a piecewise constant grid function uh with uh(ti) = ui ∈ U ,
i = 0, . . . , n. If there does not exist such a grid control uh which reaches y from y0 by
the corresponding discrete trajectory, th(y0, y, uh) = ∞. Then the discrete minimum
time function Th(·) is defined as

Th(y) = min
uh∈Uh
y0∈S

th(y0, y, uh).

Proposition 7.2.1. In all of the constructions (I)–(III) described above, RS
h(tN) is a

convex, compact and nonempty set.

Proof. The key idea of the proof of this proposition is to employ the linearity of (7.4), in
conjunction with the convexity of S, U and Proposition 2.3.4. In particular, it follows
analogously to the proof of [9, Proposition 3.3].

Theorem 7.2.2. Consider the linear control problem (7.3)–(7.4). Assume that the
set-valued quadrature method and the ODE solver have the same order p. Further-
more, assume that Ā(·) and δ∗(l,Φ(tf , ·)B̄(·)U) have absolutely continuous (p − 2)-nd
derivative, the (p− 1)-st derivative is of bounded variation uniformly with respect to all
l ∈ Sn−1 and

∑N
i=0 ci ‖B(ti)U‖ is uniform bounded for N ∈ N. Then

dH(RS(tN),RS
h(tN)) ≤ Chp, (7.20)

where C is a non-negative constant.

Proof. See [14, Theorem 3.2].

Remark 7.2.3. For p = 2 the requirements of Theorem 7.2.2 are fulfilled if A(·), B(·)
are absolutely continuous and A′(·), B′(·) are bounded variation (see [31], [7, Secs. 1.6,
2.3]).

The next subsection is devoted to the full discretization of the reachable set, i.e. we
consider the space discretization as well. Since we will work with supporting points,
we do this implicitly by discretizing the set Sn−1 of normed directions. This error
will be adapted to the error of the set-valued numerical scheme caused by the time
discretization to preserve its order of convergence with respect to time step size as
stated in Theorem 7.2.2. Then we will describe in detail the procedure to construct the
graph of the minimum time function based on the approximation of the reachable sets.
We will also provide the corresponding overall error estimate.

101



7.2. Computation of the numerical minimum time function

7.2.2 Implementation and error estimate of the reachable set
approximation

For a particular problem, according to its smoothness in an appropriate sense we are
first able to choose a difference method with a suitable order, say O(hp) for some
p > 0, to solve (7.5) numerically effectively, for instance Euler scheme, Heun’s scheme
or Runge-Kutta scheme etc. Then we approximate Aumann’s integral in (7.6) by a
quadrature formula with the same order, for instance Riemann sum, trapezoid rule, or
Simpson’s rule etc. to obtain the discrete scheme of the global order O(hp).

We implement the set arithmetic operations in (7.17) only approximately as indi-
cated in Proposition 2.3.7 and work with finitely many normed directions

S∆
R := { lk : k = 1, . . . , NR }⊂ Sn−1,
S∆
U := { ηr : r = 1, . . . , NU }⊂ Sm−1

(7.21)

satisfying

dH(Sn−1, S
∆
R) ≤ Chp,

dH(Sm−1, S
∆
U ) ≤ Chp

to preserve the order of the considered scheme approximating the reachable set.
With this approximation we generate a finite set of supporting points of RS

h(·) and
with its convex hull the fully discrete reachable set RS

h∆(·). To reach this target, we
discretize the target set S and the control set U appearing in (7.13) and (7.17), e.g. along
the line of Proposition 2.3.7:

S̃∆ :=
⋃
lk∈S∆

R
{y(lk, S)}, S∆ := co(S̃∆)

Ũ∆ :=
⋃
ηr∈S∆

U
{y(ηr, U)}, U∆ := co(Ũ∆)

(7.22)

Hence, S∆, U∆ are polytopes approximating S resp. U .
Let Th∆(·) be the fully discrete version of TS(·) (it will be defined later in details).

Our aim is to construct the graph of Th∆(·) up to a given time tf based on the knowledge
of the reachable set approximation. We divide [t0, tf ] into K subintervals each of length
∆t. Setting

∆t =
tf − t0
K

, h =
∆t

N
,

we have tf − t0 = KNh and compute subsequently the sets of supporting points
Yh∆(∆t),. . . , Yh∆(tf ) by the algorithm described below yielding fully discrete reach-
able sets RS

h∆(i∆t), i = 1, . . . , K. Here K decides how many sublevel sets of the graph
of Th∆(·) we would like to have and h is the step size of the numerical scheme computing
Yh∆(i∆t) starting from Yh∆((i− 1)∆t).

Due to (7.7) and (7.8), the description of each sublevel set of TS(·) can be formulated
only with its boundary points, i.e. the supporting points of the reachable sets at the
corresponding time. For the discrete setting, at each step, we will determine the value
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of Th∆(x) for x ∈ Yh∆(·). Therefore, we only store this information for constructing the
graph of Th∆(·) on the subset [t0, tf ] of its range.

Algorithm 7.2.4.

step 1: Set Yh∆(t0) = S̃∆, RS
h∆(t0) := S∆ as in (7.22), i = 0.

step 2: Compute Ỹh∆(ti+1) as follows

Ỹh∆(ti+1) = Φh

(
ti+1, ti

)
Yh∆

(
ti
)

+ h

N∑
j=0

cjΦh(ti+1, tij)B̄(tij)Ũ∆,

R̃S
h∆(ti+1) = co

(
Ỹh∆(ti+1)

)
,

where

ti = t0 + i∆t, tij = ti + jh (j = 0, 1, . . . , N). (7.23)

step 3: Compute the set of the supporting points
⋃
lk∈S∆

R
{y(lk, R̃S

h∆(ti+1))} and set

Yh∆(ti+1) =
⋃

lk∈S∆
R

{
y
(
lk, R̃S

h∆(ti+1)
))}

(7.24)

where y(lk, R̃S
h∆(ti+1)) is an arbitrary element of Y(lk, R̃S

h∆(ti+1)) and set

RS
h∆(ti+1) := co(Yh∆(ti+1)).

step 4: If i < K − 1, set i = i+ 1 and go back to step 2. Otherwise, go to step 5.

step 5: Construct the graph of Th∆(·) by the (piecewise) linear interpolation based on
the values ti at the points Yh∆(ti), i = 0, . . . , K.

The algorithm computes the set of vertices Yh∆(ti) of the polygon RS
h∆(ti) which

are supporting points in the directions lk ∈ S∆
R . The following proposition is the error

estimate between the fully discrete reachable set RS
h∆(·) and RS(·).

Proposition 7.2.5. Let Assumptions 7.0.1(i)–(iii), together with

dH

(
RS
h(ti),RS(ti)

)
≤ Csh

p (7.25)

for the set-valued combination method (7.16) in (II), be valid. Furthermore, finitely
many directions S∆

U , S
∆
R ⊂ Sn−1 are chosen with

max(dH(Sn−1, S
∆
U ), dH(Sn−1, S

∆
R)) ≤ C∆h

p.
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Then, for h small enough,

dH

(
RS
h∆(ti),RS

h(ti)
)
≤ Cfh

p,

dH

(
RS
h∆(ti),RS(ti)

)
≤ Cfh

p,
(7.26)

where Cs, C∆, Cf are some positive constants and ti = t0 + i∆t, i = 0, . . . , K.

Proof. Recall that by construction we have

Ỹh∆(ti+1) = Φh

(
ti+1, ti

)
Yh∆

(
ti
)

+ h

N∑
j=0

cjΦh(ti+1, tij)B̄(tij)Ũ∆,

and by definition together with the semigroup property of RS
h(·) in (7.17)

RS
h(ti+1) = Φh(ti+1, ti)RS

h(ti) + h
N∑
j=0

cjΦh(ti+1, tij)B̄(tij)U,

where we used the notations (7.23) in Algorithm 7.2.4.
Setting CS := 2C∆ diam(S), CU := 2C∆ diam(U) and Cli := 2C∆ diam(RS

h∆(ti)),
i = 1, . . . , K.

The reachable sets RS(ti) are all bounded by some constant CR (see e.g. [10]) so
that

‖RS
h∆(ti)‖ ≤ ‖RS

h(ti)‖ ≤ dH(RS
h(ti),RS(ti)) + ‖RS(ti)‖ ≤ Csh

p + CR.

Therefore, the doubled diameters of the fully discrete reachable setsRS
h∆(ti) are bounded

by some constant Cl. We first observe that

dH(S∆, S) ≤ CSh
p, dH(U∆, U) ≤ CUh

p, (7.27)

dH(R̃S
h∆(ti),RS

h∆(ti)) ≤ Clih
p ≤ Clh

p, i = 1, . . . , K, (7.28)

since RS
h∆(ti) := co

(⋃
lk∈S∆

R
{y(lk, R̃S

h∆(ti)}
)

by definition and Proposition 2.3.7 holds.

Let

CA := max
t∈[t0,tf ]

∥∥A(t)T
∥∥ , CB = max

t∈[t0,tf ]

∥∥B(t)T
∥∥ ,

C0 := max{Cl, CS},

Ci := e∆t·CA(1 + Ch)
(
Ci−1 + ∆t · CBCU

)
, i = 0, 1, . . . , K − 1.

(7.29)

We will prove the following by induction

dH

(
RS
h∆(ti),RS

h(ti)
)
≤ Cih

p, i = 0, . . . , K. (7.30)
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Since RS
h(t0) = S, RS

h∆ = S∆, CS ≤ C0 and (7.27) hold, the inequality (7.30) trivially
follows for i = 0. Assume that (7.30) holds up to the index i ≥ 0 with i ≤ K− 1. Since
Φ(t, s) is the fundamental solution matrix of (7.5), we have

Φ(τ, s) = Φ(s, s) +

∫ τ

s

Ā(v)Φ(v, s)dv.

We have ∥∥Φ(τ, s)T
∥∥ ≤ ∥∥Φ(s, s)T

∥∥+

∫ τ

s

∥∥Φ(v, s)T
∥∥∥∥A(t0 + tf − v)T

∥∥ dv,
therefore, Gronwall’s inequality yields∥∥Φ(τ, s)T

∥∥ ≤ e
∫ τ
s ‖A(t0+tf−v)T‖dv ≤ e(τ−s)CA ,

Since R̃S
h∆(ti), RS

h(ti) ∈ C(Rn), we have

dH(R̃S
h∆(ti+1),RS

h(ti+1)) = max
l∈Sn−1

|δ∗(l, R̃S
h∆(ti+1))− δ∗(l,RS

h(ti+1))|

= max
l∈Sn−1

∣∣∣∣∣δ∗(l, co{Φh

(
ti+1, ti

)
Yh∆(ti) + h

N∑
j=0

cjΦh(ti+1, tij)B̄(tij)Ũ∆}
)

− δ∗
(
l,Φh

(
ti+1, ti

)
RS
h(ti) + h

N∑
j=0

cjΦh(ti+1, tij)B̄(tij)U
)∣∣∣∣∣

= max
l∈Sn−1

∣∣∣∣∣δ∗(Φh

(
ti+1, ti

)T
l, co(Yh∆(ti))

)
+ h

N∑
j=0

cjδ
∗
(

(Φh(ti+1, tij)B̄(tij))
T l, co(Ũ∆)

)
= −δ∗

(
Φh

(
ti+1, ti

)T
l,RS

h(ti)
)
− h

N∑
j=0

cjδ
∗
(

(Φh(ti+1, tij)B̄(tij))
T l, U

)
= max

l∈Sn−1

∣∣∣∣∣δ∗(Φh

(
ti+1, ti

)T
l,RS

h∆(ti)
)
− δ∗

(
Φh

(
ti+1, ti

)T
l,RS

h(ti)
)∣∣∣∣∣

+ h
N∑
j=0

cj max
l∈Sn−1

∣∣∣∣∣δ∗((Φh(ti+1, tij)B̄(tij))
T l, U∆

)
− δ∗

(
(Φh(ti+1, tij)B̄(tij))

T l, U)
)∣∣∣∣∣

≤ max
l∈Sn−1

∥∥∥Φh

(
ti+1, ti

)T
l
∥∥∥max

ξ

∣∣∣∣∣δ∗(ξ,RS
h∆(ti)

)
− δ∗

(
ξ,RS

h(ti)
)∣∣∣∣∣

+ h
N∑
j=0

cj max
l∈Sn−1

∥∥(Φh(ti+1, tij)B̄(tij))
T l
∥∥max

ξ

∣∣∣∣∣δ∗(ξ, U∆

)
− δ∗

(
ξ, U

)∣∣∣∣∣
≤
∥∥∥Φ
(
ti+1, ti

)T
+ InCh

p
∥∥∥max

ξ

∣∣∣∣∣δ∗(ξ,RS
h∆(ti)

)
− δ∗

(
ξ,RS

h(ti)
)∣∣∣∣∣
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+ h
N∑
j=0

cj
∥∥((Φ(ti+1, tij) + InCh

p)B̄(tij))
T
∥∥max

ξ

∣∣∣∣∣δ∗(ξ, U∆

)
− δ∗

(
ξ, U)

)∣∣∣∣∣
≤
∥∥∥Φ
(
ti+1, ti

)T
+ InCh

p
∥∥∥max

ξ

∣∣∣∣∣δ∗(ξ,RS
h∆(ti)

)
− δ∗

(
ξ,RS

h(ti)
)∣∣∣∣∣

+ h
N∑
j=0

cj
∥∥Φ(ti+1, tij)

T + InCh
p
∥∥∥∥B̄(tij)

T
∥∥max

ξ

∣∣∣∣∣δ∗(ξ, U∆

)
− δ∗

(
ξ, U)

)∣∣∣∣∣
≤ (e∆tCA + Chp) max

ξ

∣∣∣∣∣δ∗(ξ,RS
h∆(ti)

)
− δ∗

(
ξ,RS

h(ti)
)∣∣∣∣∣

+ h

N∑
j=0

cj(e
∆tCA + Chp)CB max

ξ

∣∣∣∣∣δ∗(ξ, U∆

)
− δ∗

(
ξ, U)

)∣∣∣∣∣
≤ (e∆tCA + Chp)

(
dH(RS

h∆(ti),RS
h(ti)) + h

N∑
j=0

cjCB dH(U∆, U)
)

≤ e∆tCA(1 + Ch)
(
Ci + ∆t · CBCU

)
hp,

since the order of convergence of the quadrature method is at least 1 so that h
∑N

j=0 cj =
∆t. Hence,

dH(R̃S
h∆(ti+1),RS

h(ti+1)) ≤ Ci+1h
p. (7.31)

It remains to estimate the constant Ci uniformly for all i = 0, 1, . . . , K as

Ci ≤ ei∆t·CA(1 + Ch)i(C0 + i∆t · CBCU) (i = 0, 1, . . . , K)

which follows per induction.
For i = 0 this estimate is obvious. Assume that it holds up to some i ≥ 0 with i < K.
Then,

Ci+1 = e∆t·CA(1 + Ch)
(
Ci + ∆t · CBCU

)
≤ e∆t·CA(1 + Ch)

(
ei∆t·CA(1 + Ch)i

(
C0 + i∆t · CBCU

)
+ ∆t · CBCU

)
≤ e∆t·CA(1 + Ch)ei∆t·CA(1 + Ch)i

(
C0 + i∆t · CBCU + ∆t · CBCU

)
= e(i+1)∆t·CA(1 + Ch)i+1(C0 + (i+ 1)∆t · CBCU)

so that

Ci ≤ eCA(tf−t0)
(

1 + C
∆t

N

)i
(C0 + CBCU(tf − t0))

≤ eCA(tf−t0)eCK
∆t
N (C0 + CBCU(tf − t0)),

Ci ≤ C := e(CA+C)(tf−t0)(C0 + CBCU(tf − t0)) (i = 0, 1, . . . , K). (7.32)
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Putting (7.31), (7.28) together and noticing that Hausdorff distance satisfies triangle
inequality, we receive

dH(RS
h∆(ti+1),RS

h(ti+1)) ≤ max{Cl, Ci+1}hp ≤ Ci+1h
p, (7.33)

therefore, (7.30) holds for i = 0, . . . , K. Moreover, taking into account the estimate
(7.32), (7.33) becomes

dH

(
RS
h∆(ti),RS

h(ti)
)
≤ Chp for i = 0, . . . , K. (7.34)

In conclusion, denoting Cf = max{C,Cs} and combining (7.34) with (7.25) we have

dH(RS
h∆(ti),RS(ti)) ≤ Cfh

p.

The proof is completed.

Remark 7.2.6. If S is a singleton, we do not need to discretize the target set. The
overall error estimate in (7.26) even improves in this case, since

dH
(
R̃S

h∆(t0),RS
h(t0)

)
= 0.

As we can see in this subsection the convexity of the reachable set plays a vital role.
Therefore, this approach can only be extended to special nonlinear control systems with
convex reachable sets.

In the following subsection, we provide the error estimation of Th∆(·) obtained by the
indicated approach under Assumptions 7.0.1, the regularity of TS(·) and the properties
of the numerical approximation.

7.2.3 Error estimate of the minimum time function

After computing the fully discrete reachable sets in Subsection 7.2.2, we obtain the
values of Th∆(x) for all x ∈

⋃
i=0,...,K Yh∆(ti), ti = t0 + i∆t. For all boundary points

x ∈ ∂RS
h∆(ti) and some i = 1, . . . , K, we define

Th∆(x) = ti for x ∈ ∂RS
h∆(ti), (7.35)

together with the initial condition

Th∆(x) = t0 for x ∈ S∆.

The task is now to define a suitable value of Th∆(x) in the computational domain

Ω :=
⋃

i=0,...,K

RS
h∆(ti),

if x is neither a boundary point of reachable sets nor lies inside the target set. First we
construct a simplicial triangulation {Γj}j=1,...,M over the set Ω \ int(S) of points with
grid nodes in

⋃
i=0,...,K Yh∆(ti). Hence,
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• Γj ⊂ Rn is a simplex for j = 1, . . . ,M ,

• Ω \ int(S) =
⋃
j=1,...,M Γj,

• the intersection of two different simplices is either empty or a common face

• all supporting points in the sets {Yh∆(ti)}i=0,...,K are vertices of some simplex,

• all the vertices of each simplex have to belong either to the fully discrete reachable
set RS

h∆(ti) or to RS
h∆(ti+1) for some i = 0, 1, . . . , K − 1.

For the triangulation as in Figure 7.1, we introduce the maximal diameter of simplices
as

∆Γ := max
j=1,...,M

diam(Γj).

Assume that x is neither a boundary point of one of the computed discrete reachable

Figure 7.1: part of the triangulation

sets {RS
h∆(ti)}i=0,...,K nor an element of the target set S and let Γj be the simplex

containing x. Then

Th∆(x) =
n+1∑
ν=1

λνTh∆(xν), (7.36)

where x =
∑n+1

ν=1 λνxν ,
∑ n+1

ν=1 λν = 1 with λν ≥ 0 and {xν}ν=1,...,n+1 being the vertices
of Γj.

If x lies in the interior of Γj, the index j of this simplex is unique. Otherwise,
x lies on the common face of two or more simplices due to our assumptions on the
simplicial triangulation and (7.36) is well-defined. Let i be the index such that Γj ∈
RS
h∆(ti) \ int(RS

h∆(ti−1)).
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Since Th∆(xν) is either ti or ti−1 due to (7.35), we have

Th∆(x) =
n+1∑
ν=1

λνTh∆(xν) ≤ ti,

∂RS
h∆(ti) = {y ∈ Rn : Th∆(y) = ti}.

The latter holds, since the convex combination is bounded by ti and equality to ti only
holds, if all vertices with positive coefficient λν lie on the boundary of the reachable set
RS
h∆(ti).

The following theorem is about the error estimate of the minimum time function
obtained by this approach.

Theorem 7.2.7. Assume that TS(·) is continuous with a non-decreasing modulus ω(·)
in RS, i.e.

|TS(x)− TS(y)| ≤ ω(‖x− y‖) for all x, y ∈ RS. (7.37)

Let Assumptions 7.0.1 be fulfilled, furthermore assume that

dH(RS
h∆(t),RS(t)) ≤ Chp (7.38)

holds. Then
‖TS − Th∆‖∞,Ω ≤ ω(∆Γ) + ω(Chp). (7.39)

where ‖·‖∞,Ω is the supremum norm taken over Ω.

Proof. We divide the proof into two cases.

case 1: x ∈ ∂RS
h∆(ti) for some i = 1, . . . , K.

Let us choose a best approximation x̄ ∈ ∂RS(ti) of x so that

‖x− x̄‖ = d(x, ∂RS(ti)) ≤ dH(∂RS
h∆(ti), ∂RS(ti)) = dH(RS

h∆(ti),RS(ti)),

where we used [75] in the latter equality. Clearly, (7.8), (7.36) show that Th∆(x) =
TS(x̄) = ti. Then

|TS(x)− Th∆(x)| ≤ |TS(x)− TS(x̄)|+ |TS(x̄)− Th∆(x)|
≤ ω(‖x− x̄‖) ≤ ω

(
dH(RS

h∆(ti),RS(ti))
)
≤ ω(Chp) (7.40)

due to (7.38).

case 2: x ∈ int
(
RS
h∆(ti)

)
\ RS

h∆(ti−1) for some i = 1, . . . , K.
Let Γj be a simplex containing x with the set of vertices {xj}j=1,...,n+1. Then

Th∆(x) =
n+1∑
j=1

λjTh∆(xj),
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where x =
∑n+1

j=1 λjxj,
∑n+1

j=1 λj = 1, λj ≥ 0. We obtain

|TS(x)− Th∆(x)| = |TS(x)−
n+1∑
j=1

λjTh∆(xj)|

≤ |TS(x)−
n+1∑
j=1

λjTS(xj)|+ |
n+1∑
j=1

λjTS(xj)−
n+1∑
j=1

λjTh∆(xj)|

≤
n+1∑
j=1

λj

(
|TS(x)− TS(xj)|+ |TS(xj)− Th∆(xj)|

)
≤ ω(∆Γ) + ω(Chp),

where we applied the continuity of TS(·) for the first term and the error estimate (7.40)
of case 1 for the other.

Combining two cases and noticing that TS(x) = Th∆(x) = t0 if x ∈ S∆, we get

‖TS − Th∆‖∞,Ω := max
x∈Ω
|TS(x)− Th∆(x)| ≤ ω(∆Γ) + ω(Chp). (7.41)

The proof is completed.

Remark 7.2.8. Theorem 7.2.2 provides sufficient conditions for set-valued combination
methods such that (7.38) holds. See also e.g. [33] for set-valued Euler’s method resp.
[74] for Heun’s method. If the minimum time function is Hölder continuous on Ω,
(7.39) becomes

‖TS − Th∆‖∞,Ω ≤ C
(

(∆Γ)
1
k + h

p
k

)
(7.42)

for some positive constant C. The inequality (7.42) shows that the error estimate is
improved in comparison with the one obtained in [26] and does not assume explicitly
the regularity of optimal solutions as in [18]. One possibility to define the modulus
of continuity satisfying the required property of non-decrease in Theorem 7.2.7 is as
follows:

ω(δ) = sup{|TS(x)− TS(y)| : ‖x− y‖ ≤ δ}
An advantage of the methods of Volterra type studied in [26] which benefit from non-
standard selection strategies is that the discrete reachable sets converge with higher order
than 2. The order 2 is an order barrier for set-valued Runge-Kutta methods with piece-
wise constant controls or independent choices of controls, since many linear control
problems with intervals or boxes for the control values are not regular enough for higher
order approximations (see [74]).

Remark 7.2.9. There are many different triangulations based on the same data. Among
them, we can always choose the one with a smaller diameter close to the Hausdorff dis-
tance of the two sets by applying standard grid generators. For example, from the same
set of data we can build the two following grids and it is easy to see in Figure 7.2 that the
left one (for which only three edges are emerging from the corner of the bigger reachable
set) gives a better approximation, since the maximal diameter in the triangulation at
the right is much bigger.
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Figure 7.2: two triangulations for the linear interpolation of the minimum time function

Proposition 7.2.10. Let the conditions of Theorem 7.2.7 be fulfilled. Furthermore
assume that the step size h is so small such that Chp in (7.38) is smaller than ε

3
, where

RS(ti) + εB1(0) ⊂ intRS(ti+1) for all i = 0, . . . , K − 1. (7.43)

Then

RS
h∆(ti) +

ε

3
B1(0) ⊂ intRS

h∆(ti+1) (7.44)

and
‖TS − Th∆‖∞,Ω ≤ 2∆t. (7.45)

where ‖·‖∞,Ω is the supremum norm taken over Ω.

Proof. For some i = 0, . . . , K − 1 we choose a constant Mi+1 > 0 such that RS(ti+1) ⊂
Mi+1B1(0). Since RS(ti) does not intersect the complement of intRS(ti+1) bounded
with Mi+1B1(0) and both are compact sets, there exists ε > 0 such that

RS(ti) + εB1(0) ⊂ intRS(ti+1) ⊂Mi+1B1(0). (7.46)

We will show that a similar inclusion as (7.46) holds for the discrete reachable sets for
small step sizes. If the step size h is so small that Chp in (7.38) is smaller than ε

3
, then

we have the following inclusions:

intRS(ti+1) ⊂ int
(
RS
h∆(ti+1) + ChpB1(0)

)
= intRS

h∆(ti+1) + Chp intB1(0),

RS(ti) + εB1(0) ⊂ intRS(ti+1) ⊂ intRS
h∆(ti+1) +

ε

3
B1(0).

By the order cancellation law of convex compact sets in [65, Theorem 3.2.1]

RS(ti) +
2

3
εB1(0) ⊂ intRS

h∆(ti+1)
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and

RS
h∆(ti) +

ε

3
B1(0) ⊂

(
RS(ti) +

ε

3
B1(0)

)
+
ε

3
B1(0) ⊂ intRS

h∆(ti+1). (7.47)

We have

|TS(x)− Th∆(x)| =
n+1∑
j=1

λj|TS(x)− Th∆(xj)|, (7.48)

in order to obtain the estimate, we observe that

1) xj ∈ ∂RS
h∆(ti), then tν ≤ TS(xj) ≤ ti+1 with ν = max{0, i− 1}.

2) x ∈ int(RS
h∆(ti)) \ RS

h∆(ti−1), then tν < TS(x) ≤ ti+1 with ν = max{0, i− 2}.

To prove 1) the inequality TS(xj) >= t0 is clear. Assume that TS(xj) < ti−1 for some
i > 1. Then xj ∈ RS(ti−1). By the estimates (7.38), (7.47) and Chp < ε

3
, it follows that

xj ∈ RS
h∆(ti−1) + ChpB1(0) ⊂ intRS

h∆(ti)

which is a contradiction to the assumption xj ∈ ∂RS
h∆(ti). Hence, TS(xj) ≥ ti−1.

Assume that TS(xj) > ti+1. Then, xj /∈ RS(ti+1). Furthermore, xj cannot be an
element of RS

h∆(ti), since otherwise

xj ∈ RS
h∆(ti) ⊂ RS(ti) + ChpB1(0) ⊂ intRS(ti+1)

which is a contradiction to xj /∈ RS(ti+1).
Therefore, xj /∈ RS

h∆(ti) which contradicts xj ∈ ∂RS
h∆(ti). Hence, the starting assump-

tion TS(xj) > ti+1 must be wrong which proves TS(xj) ≤ ti+1.
To prove 2) if we assume TS(x) ≤ ti−2 for some i ≥ 2, then x ∈ RS(ti−2) and

x ∈ RS
h∆(ti−2) + ChpB1(0) ⊂ intRS

h∆(ti−1)

by estimate (7.38). But this contradicts x /∈ RS
h∆(ti−1). Therefore, TS(x) > ti−2.

Assuming TS(x) > ti+1 for some i < K − 1, then x /∈ RS(ti+1). Furthermore, if x is
an element of RS

h∆(ti),

x ∈ RS
h∆(ti) ⊂ RS(ti) + ChpB1(0) ⊂ intRS(ti+1)

which is a contradiction to x /∈ RS(ti+1).
Therefore, x /∈ RS

h∆(ti) which contradicts x ∈ int(RS
h∆(ti)) \ RS

h∆(ti−1). Hence, the
starting assumption TS(x) > ti+1 must be wrong which proves TS(x) ≤ ti+1. Conse-
quently, 1) and 2) are proved.
Notice that

a) the case 1) means

TS(xj) ∈ [ti−1, ti+1] (i ≥ 1),

TS(xj) = t0 (i = 0),

and |TS(xj)− Th∆(xj)| ≤ ∆t due to Th∆(xj) = ti, i = 0, . . . , K.
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b) from the case 2), we obtain

TS(x) ∈ (ti−2, ti+1] (i ≥ 2),

Th∆(xj)− TS(x) < ti − ti−2 = 2∆t,

Th∆(xj)− TS(x) > ti−1 − ti+1 = −2∆t.

Therefore, |TS(x)−Th∆(xj)| ≤ 2∆t for i ≥ 2 (similarly with estimates for i = 0, 1).

Altogether, (7.45) is proved.

7.3 Convergence of open loop controls and recon-

struction of discrete suboptimal trajectories

In this section we first prove the convergence of the normal cones of RS
h∆(·) to the ones

of the continuous-time reachable set RS(·) in an appropriate sense. Using this result we
will be able to reconstruct discrete optimal trajectories to reach the target from a set of
given points and also derive the proof of L1-convergence of discrete optimal controls. In
this section only convergence under weaker assumptions and no convergence order 1 as
in [2] are proved (see more references therein for the classical field of direct discretization
methods). We also restrict to linear minimum time problems.

The following theorem plays an important role in this reconstruction and will deal
with the convergence of the normal cones. If the normal vectors of RS

h∆(·) converge to
the corresponding ones of RS(·), the discrete optimal controls can be computed with
the discrete Pontryagin Maximum Principle under suitable assumptions.

For the remaining part of this section let us consider a fixed index i ∈ {1, 2 . . . , K}.
We choose a space discretization ∆ = ∆(h) with O(∆) = O(hp) (compare with [7,
Sec. 3.1]) and often suppress the index ∆ for the approximate solutions and controls.

Theorem 7.3.1. Consider a discrete approximation of reachable sets of type (I)–(III)
with

lim
h↓0

dH(RS
h∆(ti),RS(ti)) = 0. (7.49)

Under Assumptions 6.0.1, the set-valued maps x 7→ NRSh∆(ti)(x) converge graphically to

the set-valued map x 7→ NRS(ti)(x) for i = 1, . . . , K.

Proof. Let us recall that, under Assumptions 6.0.1 and by the construction in Sub-
sec. 7.2.1, RS

h∆(ti), RS(ti) are convex, compact and nonempty sets. Moreover, we also
have that the indicator functions IRSh∆(ti)(·), IRS(ti)(·) are lower semicontinuous convex

functions (see Proposition 2.2.9). By [69, Example 4.13] the convergence in (7.49) with
respect to the Hausdorff set also implies the set convergence in the sense of Defini-
tion 2.2.10. Hence, [69, Proposition 7.4(f)] applies and shows that the corresponding
indicator functions converge epi-graphically. Since the subdifferential of the (convex)
indicator functions coincides with the normal cone by [69, Exercise 8.14], Attouch’s The-
orem 2.2.12 yields the graphical convergence of the corresponding normal cones.
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7.3. Convergence of open loop controls and reconstruction of discrete trajectories

The remainder deals with the reconstruction of discrete optimal trajectories and the
proof of convergence of optimal controls in the L1-norm, i.e.

∫ ti
0
‖û(t)− ûh(t)‖1dt→ 0

as h ↓ 0 for û(·), ûh(·) being defined later, where the `1-norm is defined for x ∈ Rn as
‖x‖1 =

∑n
i=1 |xi|. To illustrate the idea, we confine to a special form of the target and

control set, i.e. S = {0}, U = [−1, 1]m, t ∈ [0, ti] and the time invariant time-reversed
linear system {

ẏ(t) = Āy(t) + B̄u(t), u(t) ∈ [−1, 1]m,

y(0) = 0.
(7.50)

Algorithm 7.2.4 can be interpreted pointwisely in this context as follows. For any
y(i−1)N ∈ Yh∆(ti) there exists a sequence of controls {ukj}k=1,...,i−1

j=0,...,N such that{
y(k−1)N = Φh

(
tk, tk−1

)
y(k−1)0 + h

∑N
j=0 ckjΦh(tk, t(k−1)j)B̄u(k−1)j,

y00 = 0
(7.51)

for k = 1, . . . , i. Thus

y(i−1)N = h
i∑

k=1

N∑
j=0

ckjΦh(ti, t(k−1)j)B̄u(k−1)j.

The continuous-time adjoint equation of (7.50) written for n-row vectors reads as{
η̇(t) = −η(t)Ā

η(ti) = ζ,
(7.52)

and its discrete version, approximated by the same method (see [43, Chap. 5]) as the one
used to discretize (7.50), i.e. (7.51), can be written as follows. For k = i−1, i−2, . . . , 0
and j = N,N − 1, . . . , 1, {

ηk(j−1) = ηkjΦh(tkj, tk(j−1))

η(i−1)N = ζh,
(7.53)

where ζ, ζh will be clarified later. By the definition of tkj (see Algorithm 7.2.4) the
index k0 can be replaced by (k− 1)N , the solution of (7.53) in backward time is there-
fore possible. Here, the end condition will be chosen subject to certain transversality
conditions, see the latter reference for more details.

Due to well-known arguments (see e.g. [59, Sec. 2.2]) the end point of the time-
optimal solution lies on the boundary of the reachable set and the adjoint solution η(·)
is an outer normal at this end point. Similarly, this also holds in the discrete case.
The following proposition formulates this fact by a discrete version of [59, Sec. 2.2,
Theorem 2]. The proof is just a translation of the one of the cited theorem in [59] to
the discrete language. For the sake of clarity, we will formulate and prove it in detail.
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Proposition 7.3.2. Consider the system (7.50) in Rn with its adjoint problem (7.52)
as well as their discrete pendants (7.51), (7.53) respectively. Let {ukj} be a sequence of
controls, {ykj} be its corresponding discrete solution. Then under Assumptions 6.0.1,
for h small enough, y(i−1)N ∈ Yh∆(ti) if and only if there exists nontrivial solution {ηkj}
of (7.53) such that

ηkjB̄ukj = max
u∈U
{ηkjB̄u}

for k = 0, ..., i− 1, j = 0, ..., N , where Yh∆(ti) is defined as in Algorithm 7.2.4.

Proof. Assume that {ujk} is such that y(i−1)N by the response

y(i−1)N = h

i∑
k=1

N∑
j=0

ckjΦh(ti, t(k−1)j)B̄u(k−1)j.

Since RS
h∆(ti) is a compact and convex set by construction, there exists a supporting

hyperplane γ to RS
h∆(ti) at y(i−1)N . Let ζh be the outer normal vector of RS

h∆(ti) at
y(i−1)N . Define the nontrivial discrete adjoint response (7.53), i.e.{

ηk(j−1) = ηkjΦh(tkj, tk(j−1))

η(i−1)N = ζh,

Then η0 = η(i−1)NΦh(ti, 0) = ζh Φh(ti, 0). Noticing that Φh(tkj, tk(j−1)) is a perturbation
of the identity matrix In, there exists h̄ such that Φh(tkj, tk(j−1)) is invertible for h ∈
[0, h̄] and so is Φh(ti, 0). Therefore, η(i−1)N = η0Φ−1

h (ti, 0). Now we compute the inner
product of η(i−1)N , y(i−1)N :

η(i−1)N y(i−1)N = η0Φ−1
h (ti, 0)

(
h

i∑
k=1

N∑
j=0

ckjΦh(ti, t(k−1)j)B̄u(k−1)j

)
= h

i∑
k=1

N∑
j=0

ckjη0Φ−1
h (ti, 0)Φh(ti, t(k−1)j)B̄u(k−1)j

= h

i∑
k=1

N∑
j=0

ckjη0Φ−1
h (t(k−1)j, 0)Φ−1

h (ti, t(k−1)j)Φh(ti, t(k−1)j)B̄u(k−1)j

= h

i∑
k=1

N∑
j=0

ckjη0Φ−1
h (t(k−1)j, 0)B̄u(k−1)j = h

i∑
k=1

N∑
j=0

ckjη(k−1)jB̄u(k−1)j

Now assume that ηkjB̄ukj < maxu∈U{ηkjB̄u} for some indices k, j. Then define another
sequence of controls as follows

ũkj =

{
ukj if ηkjB̄ukj = maxu∈U{ηkjB̄u}
maxu∈U{ηkjB̄u} otherwise.
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Let ỹ(i−1)N be the end point of the discrete trajectory following {ũkj}. We have

η(i−1)N ỹ(i−1)N = h

i∑
k=1

N∑
j=0

ckjη(k−1)jB̄ũ(k−1)j

which implies that η(i−1)N y(i−1)N < η(i−1)N ỹ(i−1)N or η(i−1)N(ỹ(i−1)N − y(i−1)N) > 0
which contradicts the construction of η(i−1)N = ζh, an outer normal vector of RS

h∆(ti)
at y(i−1)N . Therefore, ηkjB̄ukj = maxu∈U{ηkjB̄u}.
Conversely, assume that for some nontrivial discrete adjoint response η(i−1)N = η0Φ−1

h (ti, 0),
the controls satisfies

ηkjB̄ukj = max
u∈U
{ηkjB̄u} (7.54)

for every indices k = 0, ..., i − 1, j = 0, ..., N . We will show that the end point y(i−1)N

of the corresponding trajectory {ykj} will lie at the boundary of RS
h∆(ti), not at any

point belonging to its interior. Suppose, by contradiction, y(i−1)N lies in the interior of
RS
h∆(ti). Let ỹ(i−1)N be a point reached by a sequence of controls {ũkj} in RS

h∆(ti) in
such that

η(i−1)Ny(i−1)N < η(i−1)N ỹ(i−1)N . (7.55)

Our assumption (7.54) implies that

ηkjB̄ũkj ≤ ηkjB̄ukj (7.56)

for all k, j. As above, due to (7.56), we show that η(i−1)N ỹ(i−1)N ≤ η(i−1)Ny(i−1)N which
is a contradiction to (7.55). Consequently, y(i−1)N ∈ ∂RS

h∆(ti) = Yh∆(ti).

Motivated by the outer normality of the adjoints in continuous resp. discrete time
and the maximum conditions, we define the optimal controls û(t), ûh(t) as follows

û(t) = sign(η(t)B̄)> for (t ∈ [0, ti]),

ûh(t) = ûkj if t ∈ [tkj, tk(j+1)), k = 0, ..., i− 1, j = 0, ..., N − 1,

ûh(t) = û(i−1)(N−1) for t = t(i−1)N ,

(7.57)

where ûkj = sign(ηkjB̄)>, k = 0, ..., i− 1, j = 0, ..., N and

w := sign(v) with wµ =


1 if vµ > 0,

0 if vµ = 0,

−1 if vµ < 0

is the signum function and v, w ∈ Rm, µ = 1, . . . ,m.
Owing to Theorem 7.3.1, we have that the set-valued maps (NRSh∆(ti)(·))h converge

graphically to NRS(ti)(·) which implies that for every sequence (y(i−1)N , η(i−1)N)N in the
graphs there exists an element (y(ti), η(ti)) of the graph such that

(y(i−1)N , η(i−1)N)→ (y(ti), η(ti)) as h ↓ 0, (7.58)
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where η(i−1)N ∈ NRSh∆(ti)(y(i−1)N), η(ti) ∈ NRS(ti)(y(ti)). Thus ζ, ζh are chosen such

that (7.58) is realized. Then it is obvious that ηkj → η(tkj) as h ↓ 0 with k = 0, ..., i− 1
uniformly in j = 0, ..., N .

For a function g : I → Rm, we denote the total variation V (g, I) :=
∑m

1 V (gi, I),
where V (gi, I) is a usual total variation of the i-th components of g over a bounded
interval I ∈ R. Now if we assume furthermore that if the system (7.50) is normal, ûh(t)
converges to û(t) in the L1-norm.

Proposition 7.3.3. Consider that the minimum time problem with the dynamics (7.50)
in Rn. Assume that the normality condition holds, i.e.

rank{Bω,ABω, . . . , An−1Bω} = n (7.59)

for each (nonzero) vector ω along an edge of U = [−1, 1]m or along the two end points
of the interval U = [−1, 1] if m = 1. Then, under Assumptions 6.0.1,

∫ ti
0
‖û(t) −

ûh(t)‖1dt→ 0 as h→ 0 for any i ∈ {1, . . . , K}.

Proof. Due to (7.59) û(t) defined as in (7.57) on t0 ≤ t ≤ ti is the optimal control to
reach the state ŷ(ti) of the corresponding optimal solution from the origin. Moreover,
it has a finite number of switchings see [59, Sec. 2.5, Corollary 2]. Therefore, the total
variation, V (û(t), [t0, ti]), is bounded. Let Ikj = [tkj, tk(j+1)), for k = 0, . . . , i − 1, j =
0, . . . , N − 1, and except for I(i−1)(N−1) = [t(i−1)(N−1), t(i−1)N ]. Then∫

Ikj

‖û(t)− ûh(t)‖1dt ≤
∫
Ikj

(‖û(t)− û(tkj)‖1 + ‖û(tkj)− ûh(tkj)‖1)dt

≤ hV (û(t), Ikj) + h‖ sign(η(tkj)B̄)> − sign(ηkjB̄))>‖1

(7.60)

Taking a sum over k = 0, . . . , i− 1, j = 0, . . . , N − 1 we obtain∫ ti

t0

‖û(t)− ûh(t)‖1dt ≤ hV (û(t), [t0, ti]) + h
i−1∑
k=0

N−1∑
j=0

‖ sign(η(tkj)B̄))>− sign(ηkjB̄))>‖1.

Since û(t) has a finite number of switchings and ηkj, η(tkj) are non-trivial with the
convergence ηkj → η(tkj) as h → 0 for k = 0, . . . , i, j = 0, . . . , N , the variation

V (û(t), [t0, ti]) and
∑i

k=0

∑N−1
j=0 ‖ sign(η(tkj)B̄))>−sign(ηkjB̄))>‖1 are bounded. There-

fore, ∫ ti

t0

‖û(t)− ûh(t)‖1dt→ 0 as h→ 0.

The proof is completed.

7.4 Numerical tests

This section is devoted to illustrating the performance of the error behavior of our pro-
posed approach. We consider several linear examples with various target and control
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sets and study different levels of regularity of the corresponding minimum time func-
tion. The control sets are either one- or two-dimensional polytopes (a segment or a
square) or balls and are varied to study different regularity allowing high or low order
of convergence for the underlying set-valued quadrature method. In all linear examples,
we apply a set-valued combination method of order 1 and 2 (the set-valued Riemann
sum combined with Euler’s method resp. the set-valued trapezoidal rule with Heun’s
method). For the last nonlinear example, we would like to approximate the reversed
dynamics of (7.66) directly by Euler’s and Heun’s method. This example demonstrates
that this approach is not restricted to the class of linear control systems. The space
discretization follows the presented approach in Subsection 7.2.2 and uses supporting
points in directions

lk :=

(
cos

(
2π

k − 1

NR − 1

)
, sin

(
2π

k − 1

NR − 1

))>
, k = 1, . . . , NR

ηr :=

{
−1 + 2(r − 1) if U = [−1, 1], r = 1, . . . , NU ,

lr if U ⊂ R2, r = 1, . . . , NU

and normally choose either NU = 2 for one-dimensional control sets or NU = NR for
U ⊂ R2 in the discretizations of the unit sphere (7.21).

The comparison of the two applied methods is done by computing the error with re-
spect to the L∞-norm of the difference between the approximate and the true minimum
time function evaluated at test points. The true minimum time function is delivered
analytically by tools from control theory. The test grid points are distributed uniformly
over the domain G = [−1, 1]2 with step size ∆x = 0.02.

7.4.1 Linear examples

In the linear, two-dimensional, time-invariant Examples 7.4.1–7.4.4 we can check As-
sumption 7.0.1(iv)

RS(t) is strictly expanding on the compact interval [t0, tf ], i.e. RS(t1) ⊂
intRS(t2) for all t0 ≤ t1 < t2 ≤ tf

in several ways. From the numerical calculations we can observe this property in the
shown figures for the fully discrete reachable sets. Secondly, we can use the available
analytical formula for the minimum time function resp. the reachable sets or check the
Kalman rank condition

rank
[
B,AB

]
= 2

for time-invariant systems if the target is the origin (see [49, Theorems 17.2 and 17.3]).
We start with an example having a Lipschitz continuous minimum time function

and verify the error estimate in Theorem 7.2.7. Observe that the numerical error here
is only contributed by the spatial discretization of the target set or control set.
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Example 7.4.1. Consider the control dynamics , see [19,47],

ẋ1 = u1, ẋ2 = u2, (u1, u2)> ∈ U with U := B1(0) or U := [−1, 1]2 . (7.61)

We consider either the small ball B0.25(0) or the origin as target set S. This is a simple

time-invariant example with Ā =

[
0 0

0 0

]
, B̄ =

[
−1 0

0 −1

]
. Its fundamental solution

matrix is the identity matrix, therefore

RS(t) = Φ(t, t0)S +

∫ t

t0

Φ(t, s)B̄(s)U = S + (t0 − t)U,

and any method from (I)–(III) gives the exact solution, i.e.

RS
h(t) = RS(t) = S + (t− t0)U

due to the symmetry of U . For instance, the set-valued Euler scheme with h =
tj+1−tj

N

yields {
RS
h(tj+1) = RS

h(tj) + h(ĀRS
h(tj) + B̄U) = RS

h(tj)− hU,
RS
h(t0) = S,

therefore, RS
h(tN) = S −NhU = S + (tN − t0)U and the error is only due to the space

discretizations S∆ ≈ S, U∆ ≈ U and does not depend on h (see Table 7.1). The error
would be the same for finer step size h and ∆t in time or if a higher-order method is
applied. Note that the error for the origin as target set (no space discretization error)
is in the magnitude of the rounding errors of floating point numbers.

We choose tf = 1, K = 10 and N = 2 for the computations. The set-valued
Riemann sum combined with Euler’s method is used.

It is easy to check that the minimum time function is Lipschitz continuous, since one
of the equivalent Petrov conditions in [66], [16, Chap. IV, Theorem 1.12] with U = B1(0)
or [−1, 1]2 hold:

0 > min
(u1,u2)>∈U

〈∇d(x, S), (u1, u2)>〉,

0 ∈ int

( ⋃
u∈U

f(0, u)

)
with f(x, u) = Ax+Bu.

Moreover, the support function with respect to the time-reversed dynamics (7.61)

δ∗(l,Φ(t, τ)B̄(τ)U) =

{
‖l‖ if U = B1(0),

|l1|+ |l2| if U = [−1, 1]2

is constant with respect to the time t, so it is trivially arbitrarily continuously differen-
tiable with respect to t with bounded derivatives uniformly for all l ∈ Sn−1. In Figure
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7.4. Numerical tests

NR = NU U = B1(0), U = [−1, 1]2, U = [−1, 1]2,
S = B0.25(0) S = B0.25(0) S = {0}

100 6.14× 10−4 4.9× 10−4 8.9× 10−16

50 24× 10−4 19× 10−4 8.9× 10−16

25 0.0258 0.0073 8.9× 10−16

Table 7.1: error estimates for Example 7.4.1 with different control and target sets

7.3 the minimum time functions are plotted for Example 7.4.1 for two different control
sets U = B1(0) (left) and U = [−1, 1]2 (right) with the same two-dimensional target set
S = B0.25(0). The minimum time function is in general not differentiable everywhere.
Since it is zero in the interior of the target, one has at most Lipschitz continuity at
the boundary of S. In Figure 7.4 the minimum time function is plotted for the same
control set as in Figure 7.3 (right), but this time the target set is the origin and not a
small ball.
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Figure 7.3: minimum time functions for Example 7.4.1 with different control sets

We now study well-known dynamics as the double integrator and the harmonic
oscillator in which the control set is one-dimensional. The classical rocket car example
with Hölder-continuous minimum time function was already computed by the Hamilton-
Jacobi-Bellman approach in [34, Test 1] and [26, 47], where numerical calculations are
carried out by enlarging the target (the origin) by a small ball.

Example 7.4.2. a) The following dynamics is the double integrator, see e.g. [26].

ẋ1 = x2, ẋ2 = u, u ∈ U := [−1, 1]. (7.62)
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Figure 7.4: minimum time function for Example 7.4.1 with U = [−1, 1]2, S = {0}

We consider either the small ball B0.05(0) or the origin as target set S. Then the
minimum time function is 1

2
–Hölder continuous for the first choice of S see [26,61] and

the support function for the time-reversed dynamics (7.62)

δ∗(l,Φ(t, τ)B̄(τ)[−1, 1]) = δ

(
l,

[
1 −(t− τ)

0 1

][
0

−1

]
[−1, 1]

)
=
∣∣(t− τ,−1) · l

∣∣
is only absolutely continuous with respect to τ for some directions l ∈ S1 with l 6= 0.
Hence, we can expect that the convergence order for the set-valued quadrature method
is at most 2. We fix tf = 1 as maximal computed value for the minimum time function
and N = 5.

In Table 7.2 the error estimates for two set-valued combination methods are com-
pared (order 1 versus order 2). Since the minimum time function is only 1

2
–Hölder

continuous we expect as overall convergence order 1
2

resp. 1. A least squares approx-
imation of the function Chp for the error term reveals C = 1.37606, p = 0.4940 for
Euler scheme combined with set-valued Riemann sum resp. C = 22.18877, p = 1.4633
(if p = 1 is fixed, then C = 2.62796) for Heun’s method combined with set-valued
trapezoidal rule. Hence, the approximated error term is close to the expected one by
Theorem 7.2.7 resp. Remark 7.2.8. Very similar results are obtained with the Runge-
Kutta methods of order 1 and 2 in Table 7.3 in which the set-valued Euler method is
slightly better than the combination method of order 1 in Table 7.2, and the set-valued
Heun’s method coincides with the combination method of order 2, since both methods
use the same approximations of the given dymanics.

Here we have chosen to double the number of directions NR each time the step size
is halfened which is suitable for a first order method. For a second order method we
should have multiplied NR by 4 instead. From this point it is not surprising that there
is no improvement of the error in the fifth row for step size h = 0.0025. As in
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7.4. Numerical tests

Euler scheme Heun’s scheme
h NR & Riemann sum & trapezoid rule

0.04 50 0.2951 0.2265
0.02 100 0.1862 0.1180
0.01 200 0.1332 0.0122
0.005 400 0.1132 0.0062
0.0025 800 0.0683 0.0062

Table 7.2: error estimates for Ex. 7.4.2 a) for combination methods of order 1 and 2

h NR set-valued Euler method set-valued Heun method
0.04 50 0.2330 0.2265
0.02 100 0.1681 0.1180
0.01 200 0.1149 0.0122
0.005 400 0.0753 0.0062
0.0025 800 0.0318 0.0062

Table 7.3: error estimates for Ex. 7.4.2 a) for Runge-Kutta meth. of order 1 and 2

Example 7.4.1 we can consider the dynamics (7.62) with the origin as a target (see the
minimum time function in Figure 7.6 (left). In this case, the numerical computation by
PDE approaches, i.e. the solution of the associated Hamilton-Jacobi-Bellman equation
(see e.g. [34]) requires the replacement of the target point 0 by a small ball Bε(0) for
suitable ε > 0. This replacement surely increases the error of the calculation (compare
the minimum time function in Figure 7.5 for ε = 0.05). However, the proposed approach
works perfectly regardless of the fact whether S is a two-dimensional set or a singleton.

b) harmonic oscillator dynamics (see [59, Chap. 1, Section 1.1, Example 3])

ẋ1 = x2, ẋ2 = −x1 + u, u ∈ U := [−1, 1]. (7.63)

Since the Kalman rank condition

rank
[
B,AB

]
= 2,

the minimum time function TS(·) is also continuous. The plot for TS(x) for the harmonic
oscillator with the origin as target, tf = 6, NR = 100, N = 5 and K = 40 is shown in
Figure 7.6 (right).

According to Section 7.3 we construct open-loop time-optimal controls for the dis-
crete problem with target set S = {0} by Euler’s method. In Fig. 7.7 the corresponding
discrete open-loop time-optimal trajectories for Examples 7.4.2a) (left) and b) (right)
are depicted.
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Figure 7.5: minimum time function for Example 7.4.2a) with target set B0.05(0)
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Figure 7.6: minimum time functions for Example 7.4.2a) resp. b)

The following two examples exhibit smoothness of the support functions and would
even allow for methods with order higher than two with respect to time discretization.
The first example has a special linear dynamics and is smooth, although the control set
is a unit square.

Example 7.4.3. In the third linear two-dimensional example the reachable set for
various end times t is always a polytope with four vertices and coinciding outer normals
at its faces. Therefore, it is a smooth example which would even justify the use of
methods with higher order than 2 to compute the reachable sets (see [13, 14]). It is a
variant of [13, Example 2].

Again, we fix tf = 1 as maximal time value and compute the result with N = 2.
We choose NR = 50 normed directions, since the reachable set has only four different
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Figure 7.7: approximate optimal trajectories for Example 7.4.2a) resp. b)

vertices. [
ẋ1

ẋ2

]
=

[
0 −1

2 3

][
x1

x2

]
+

[
1 −1

−1 2

][
u1

u2

]
, (7.64)

where (u1, u2)> ∈ [−1, 1]2. Let the origin be the target set S. The fundamental solution
matrix of the time-reversed dynamics of (7.64) is given by

Φ(t, τ) =

[
2e−(t−τ) − e−2(t−τ) e−(t−τ) − e−2(t−τ)

−2e−(t−τ) + 2e−2(t−τ) −e−(t−τ) + 2e−2(t−τ)

]
.

This is a smooth example in the sense that the support function for the time-reversed
set-valued dynamics of (7.64),

δ∗(l,Φ(t, τ)B̄(τ)[−1, 1]2) = e−(t−τ)|l1 − l2|+ e−2(t−τ)|l1 − 2l2|,

is smooth with respect to τ uniformly in l ∈ S1 .
The analytical formula for the (time-continuous) minimum time function is as fol-

lows:

TS((x1, x2)>) = max{t : t ≥ 0 is the solution of one of the equations

x2 = −2x1 ± (e−t − 1), x2 = −x1 ± 1/2(1− e−2t)}.

A least squares approximation of the function Chp for the error term reveals C =
2.14475, p = 0.8395 for the set-valued combination method of order 1 and C = 23.9210,
p = 1.7335 (if p = 2 is fixed, then C = 70.1265) for the one of order 2. The values are
similar to the expected ones from by Remark 7.2.8, since the minimum time function
(see Figure 7.8 (left)) is Lipschitz (see [16, Sec. IV.1, Theorem 1.9]).

Similarly, another variant of this example with a one-dimensional control can be
constructed by deleting the second column in matrix B. The resulting (discrete and
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7.4. Numerical tests

continuous-time) reachable sets would be line segments. Thus, the algorithm would
compute the fully discrete minimum time function on this one-dimensional subspace.
The absence of interior points in the reachable sets is not problematic for this approach
in contrary to common approaches based on the Hamilton-Jacobi-Bellman equation,
see [12].

Euler scheme Heun’s scheme
h & Riemann sum & trapezoid rule

0.05 0.170 0.1153
0.025 0.095 0.0470
0.0125 0.0599 0.0133
0.00625 0.0285 0.0032

Table 7.4: error estimates for Example 7.4.3 for methods of order 1 and 2
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Figure 7.8: minimum time functions for Examples 7.4.3 and 7.4.4

The next example involves a ball as control set and leads naturally to a smooth
support function.

Example 7.4.4. The following smooth example is very similar to the previous example.
It is given in [9, Example 4.2], [14, Example 4.4][

ẋ1

ẋ2

]
=

[
0 −1

2 3

][
x1

x2

]
+B1(0) (7.65)
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7.5. Outline

and uses a ball as control set. This is a less academic example than Example 7.4.3 (in
which the matrix B(t) was carefully chosen), since a ball as control set often allows the
use of higher order methods for the computation of reachable sets (see [8, 14]). Here,
no analytic formula for the minimum time function is available so that we can study
only numerically the minimum time function (see Figure 7.8 (right)). Obviously, the
support function is again smooth with respect to τ uniformly in all normed directions l,
since

δ∗(l,Φ(t, τ)B1(0)) = ‖Φ(t, τ)>l‖.

7.4.2 A nonlinear example

The following special bilinear example with convex reachable sets may provide the hope
to extend our approach to some class of nonlinear dynamics.

Example 7.4.5. The nonlinear dynamics is one of the examples in [47].

ẋ1 = −x2 + x1u, ẋ2 = x1 + x2u, u ∈ [−1, 1]. (7.66)

With this dynamics, after computing the true minimum time function we observe that
TS(·) is Lipschitz continuous and its sublevel set, which is exactly the reachable set at
the corresponding time, satisfies the required properties. The target set S is B0.25(0).

We fix tf = 1 as maximal computed value for the minimum time function and N = 2.
Estimating the error term Chp in Table 7.5 by least squares approximation yields the
values C = 0.3293133, p = 1.8091 for the set-valued Euler method and C = 0.5815318,
p = 1.9117 for the Heun method.

The unexpected good behavior of Euler’s method stems from the specific behavior
of trajectories. Although the distance of the end point of the Euler iterates for halfened
step size to the true end point is halfened, but the distance of the Euler iterates to
the boundary of the true reachable set is almost shrinking by the factor 4 due to the
specific tangential approximation. In Figure 7.9 the Euler iterates are marked with ∗
in red color, while Heun’s iterates are shown with ◦ marks in blue color. The symbol •
marks the end point of the corresponding true solution.

Observe that the dynamics originates from the following system in polar coordinates

ṙ = ru, ϕ̇ = 1, u ∈ [−1, 1].

Hence, the reachable set will grow exponentially with increasing time. The minimum
time function for this example is shown in Figure 7.10.

7.5 Outline

Although the underlying set-valued method approximating reachable sets in linear con-
trol problems is very efficient, the numerical implementation is a first realization only
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Figure 7.9: Euler and Heun’s iterates for Example 7.4.5
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Figure 7.10: minimum time function for Example 7.4.5
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h NR set-valued Euler scheme set-valued Heun’s scheme
0.5 50 0.0848 0.1461
0.1 100 0.0060 0.0076
0.05 200 0.0015 0.0020
0.025 400 0.00042 0.000502
0.0125 800 0.000108 0.000126

Table 7.5: error estimates for Example 7.4.5 with set-valued methods of order 1 and 2

and can still be considerably improved. Especially, step 3 in Algorithm 7.2.4 can be
computed more efficiently as in our test implementation. Furthermore, higher order
methods like the set-valued Simpson’s rule combined with the Runge-Kutta(4) method
are an interesting option in examples where the underlying reachable sets can be com-
puted with higher order of convergence than 2, especially if the minimum time function
is Lipschitz. But even if it is merely Hölder-continuous with 1

2
, the higher order in the

set-valued quadrature method can balance the missing regularity of the minimum time
function and improves the error estimate.
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[53] Mikhail Krastanov and Marc Quincampoix. Local small time controllability and
attainability of a set for nonlinear control system. ESAIM: Control, Optimisation
and Calculus of Variations, 6:499–516, 2001.

[54] Mikhail Ivanov Krastanov. High-order variations and small-time local attainability.
Control and Cybernetics, 38(4B):1411–1427, 2009.

[55] A. B. Kurzhanski and P. Varaiya. Dynamics and Control of Trajectory Tubes. The-
ory and Computation. Systems & Control: Foundations & Applications. Springer,
Cham–Heidelberg–New York–Dordrecht–London, 2014.

[56] Thuy T.T. Le and A. Marigonda. Small-time local attainability for a class of
control systems with state constraints, 2014.

[57] C. Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous
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