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Riassunto

Il problema dell’apprendimento della reppresentazione ottima per un task specifico è
divenuto un importante argomento nella comunità dell’apprendimento automatico.

In questo campo, le architetture di tipo deep sono attualmente le più avanzate tra i
possibili algoritmi di apprendimento automatico. Esse generano modelli che utilizzando
alti gradi di astrazione e sono in grado di scoprire strutture complicate in dataset anche
molto ampi. I kernel e le Deep Neural Network (DNN) sono i principali metodi per
apprendere una rappresentazione di un problema in modo ricco (cioè deep).

Le DNN sfruttano il famoso algoritmo di back-propagation migliorando le prestazioni
degli algoritmi allo stato dell’arte in diverse applicazioni reali, come per esempio il
riconoscimento vocale, il riconoscimento di oggetti o l’elaborazione di segnali.

Tuttavia, gli algoritmi DNN hanno anche delle problematiche, ereditate dalle classiche
reti neurali e derivanti dal fatto che esse non sono completamente comprese teoricamente.
I problemi principali sono: la complessità della struttura della soluzione, la non chiara
separazione tra la fase di apprendimento della rappresentazione ottimale e del modello, i
lunghi tempi di training e la convergenza a soluzioni ottime solo localmente (a causa dei
minimi locali e del vanishing gradient).

Per questi motivi, in questa tesi, proponiamo nuove idee per ottenere rapprensetazioni
ottimali sfruttando la teoria dei kernel. I metodi kernel hanno un elegante framework che
separa l’algoritmo di apprendimento dalla rappresentazione delle informazioni. D’altro
canto, anche i kernel hanno alcune debolezze, per esempio essi non scalano e, per come
sono solitamente utilizzati, portano con loro una rappresentazione poco ricca (shallow).
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In questa tesi, proponiamo nuovi risultati teorici e nuovi algoritmi per cercare di
risolvere questi problemi e rendere l’apprendimento dei kernel in grado di generare rappre-
sentazioni più ricche (deeper) ed essere più scalabili.

Verrà quindi presentato un nuovo algoritmo in grado di combinare migliaia di kernel
deboli con un basso costo computazionale e di memoria. Questa procedura, chiamata
EasyMKL, supera i metodi attualmente allo stato dell’arte combinando frammenti di
informazione e creando in questo modo il kernel ottimale per uno specifico task.

Perseguendo l’idea di creare una famiglia di kernel deboli ottimale, abbiamo creato una
nuova misura di valutazione dell’espressività dei kernel, chiamata Spectral Complexity.
Sfruttando questa misura siamo in grado di generare famiglia di kernel deboli con una
struttura gerarchica nelle feature definendo una nuova proprietà riguardante la monotonicità
della Spectral Complexity.

Mostriamo la qualità dei nostri kernel deboli sviluppando una nuova metologia per il
Multiple Kernel Learning (MKL). In primo luogo, siamo in grado di creare una famiglia
ottimale di kernel deboli sfruttando la proprietà di monotinicità della Spectral Complexity;
combiniamo quindi la famiglia di kernel deboli ottimale sfruttando EasyMKL e ottenendo
un nuovo kernel, specifico per il singolo task; infine, siamo in grado di generare un modello
sfruttando il nuovo kernel e kernel machine (per esempio una SVM).

Inoltre, in questa tesi sottolineiamo le connessioni tra Distance Metric Learning,
Feature Larning e Kernel Learning proponendo un metodo per apprendere la famiglia
ottimale di kernel deboli per un algoritmo MKL in un contesto differente, in cui la regola
di combinazione è il prodotto componente per componente delle matrici kernel. Questo
algoritmo è in grado di generare i parametri ottimali per un kernel RBF anisotropico. Di
conseguenza, si crea un naturale collegamento tra il Feature Weighting, le combinazioni
dei kernel e l’apprendimento della metrica ottimale per il task.

Infine, l’importanza della rappresentazione è anche presa in considerazione in tre task
reali, dove affrontiamo differenti problematiche, tra cui: il rumore nei dati, le applicazioni
in tempo reale e le grandi moli di dati (Big Data).



Abstract

The problem of learning the optimal representation for a specific task recently became an
important and not trivial topic in the machine learning community.

In this field, deep architectures are the current gold standard among the machine
learning algorithms by generating models with several levels of abstraction discovering
very complicated structures in large datasets. Kernels and Deep Neural Networks (DNNs)
are the principal methods to handle the representation problem in a deep manner.

A DNN uses the famous back-propagation algorithm improving the state-of-the-art
performance in several different real world applications, e.g. speech recognition, object
detection and signal processing.

Nevertheless, DNN algorithms have some drawbacks, inherited from standard neural
networks, since they are theoretically not well understood. The main problems are: the
complex structure of the solution, the unclear decoupling between the representation
learning phase and the model generation, long training time, and the convergence to a
sub-optimal solution (because of local minima and vanishing gradient).

For these reasons, in this thesis, we propose new ideas to obtain an optimal represen-
tation by exploiting the kernels theory. Kernel methods have an elegant framework that
decouples learning algorithms from data representations. On the other hand, kernels also
have some weaknesses, for example they do not scale and they generally bring a shallow
representation.

In this thesis, we propose new theory and algorithms to fill this gap and make kernel
learning able to generate deeper representation and to be more scalable. An algorithm able
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to combine thousands of weak kernels with low computational and memory complexities
is proposed. This procedure, called EasyMKL, outperforms the state-of-the-art methods
combining the fragmented information in order to create an optimal kernel for the given
task.

Pursuing the idea to create an optimal family of weak kernels, we create a new measure
for the evaluation of the kernel expressiveness, called spectral complexity. Exploiting this
measure we are able to generate families of kernels with a hierarchical structure of the
features by defining a new property concerning the monotonicity of the spectral complexity.

We prove the quality of these weak families of kernels developing a new methodology
for the Multiple Kernel Learning (MKL). Firstly we are able to create an optimal family of
weak kernels by using the monotonically spectral-complex property; then we combine the
optimal family of kernels by exploiting EasyMKL, obtaining a new kernel that is specific
for the task; finally, we are able to generate the model by using a kernel machine.

Moreover, we highlight the connection among distance metric learning, feature learning
and kernel learning by proposing a method to learn the optimal family of weak kernels
for a MKL algorithm in the different context in which the combination rule is the product
element-wise of kernel matrices. This algorithm is able to generate the best parameters for
an anisotropic RBF kernel and, therefore, a connection naturally appears among feature
weighting, combinations of kernels and metric learning.

Finally, the importance of the representation is also taken into account in three tasks
from real world problems where we tackle different issues such as noise data, real-time
application and big data.
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1. Introduction

Machine learning’s purpose is to create algorithms able to optimize a performance criterion
using examples from data or from past experience [8]. Given a model defined by some
parameters, learning is the execution of a method to optimize them exploiting the training
data. The model obtained should be able to make predictions in the future or to extract
knowledge from data.

The theory of statistics is the most important tool exploited by machine learning in
order to build mathematical models, since one of machine learning crucial tasks is making
inference from a sample. Inference is the process of deriving logical conclusions from
premises known, or assumed to be true (i.e. training examples). On the other hand, machine
learning is more than only inference from a set of past experiences.

In fact, computer science is the second tool exploited by machine learning with two
principal roles. Firstly, in training, where the efficiency of the algorithms is fundamental
to solve the optimization problem and to store the solutions. Secondly, once we have a
model, its representation and solution for inference needs to be efficient as well.

When we have to deal with a machine learning problem, the first step is to define a
representation of the task, i.e. we have to select how to describe the known information.
Typically, this pre-training step is performed to describe the problem that we have to solve
in the best way possible by defining a set of features (explicitly or implicitly). In real world
applications, the efficiency of the learning and the space and time complexity required by
the methods have the same importance as to the predictive accuracy of the model.

In the following sections, the contextualization of the thesis will be presented, starting
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from the introduction of the tackled problem.

1.1 The Representation Problem

The data representation plays a key role in the success of machine learning methods. Due
to the current data growth in size, heterogeneity and structure, the new generation of
algorithms are expected to solve increasingly challenging problems. This must be done
under growing constraints such as computational resources, memory budget and energy
consumption. The representation should ideally distill the relevant information about a
learning problem in a compact manner, such that it becomes possible to learn the model
from a small number of examples.

In the past, the research community has been focused on investigating new algorithms
to obtain a model from a fixed a priori representation. In fact, the learning process was
considered mainly the process of choosing an appropriate function from a given set of
functions [188].

A new point of view is arising in this last decade, and the problem of learning the
optimal representation has become a hot topic in the most important conferences and
journals. When dealing with the representation of a task, a plethora of questions arise.
Some questions are simple to be formulated but the answers are not easy to be found. The
first questions are: how can we find automatically a good representation for a specific task?
How can we compare two representations to assert that one is better than another?

The research community has addressed the representation of a task by injecting some
reasonable priors in general-purpose fashion. Examples of these injected priors are several,
the most commonly used has been described by Bengio et al. in [28]:

• Smoothness: the assumption that the model to be learned can be described by a
smooth function f , i.e. if two examples x and y are similar (x≈ y) then the model
has to produce similar outputs: f (x)≈ f (y);
• Multiple explanatory factors: the idea that a single factor can not describe the

model and the underlying factors of variation have to be recovered (i.e the idea of
the distributed representations);
• Hierarchical organization of the explanatory factors: the concept of a hierarchi-

cal organization of data with more abstract concepts higher in the hierarchy;
• Shared factors across tasks: the existence of shared factors among the tasks (e.g.

Multitask learning, Transfer Learning);
• Manifolds: the assumption that a task can be represented using a manifold of smaller

dimensionality than the original representation;
• Sparsity: the idea that only a small fraction of all the possible factors is really

relevant.
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Finally, the main assumption is that if we are able to use an optimal representation, all the
explanatory factors can be related using simple (e.g. linear) models.

The most ingenuous way to take advantage of a good representation for a specific (not
general-purpose) task is the simple feature engineering. An expert of the task has to create
a set of features ad hoc in order to solve the problem at the best of his knowledge. This
approach is time consuming, sub-optimal and it contains a strong bias derived from the
personal experience of the expert. However, in some real world applications, where the
task to tackle is well understood, this methodology is currently applied with good results
[102, 167].

Problems exist where we are not able to exploit the knowledge of an expert, nor to create
specific features for a single task. For example, when dealing with speech recognition
our brain does operations that we are not able to describe and it is not possible to create
features of phenomena that we do not understand in depth.

In this context, a new branch of algorithms became famous in the last years, called
deep learning algorithms [125]. Deep learning generates models that are composed by a
sequence of layers to learn representations of data with several levels of abstraction. The
gold standard algorithms in the deep learning framework are represented by the Deep
Neural Networks (DNNs). The DNNs are able to discover very complicated structures in
large datasets by exploiting the back-propagation algorithm. These methods have changed
the perspective in the machine learning community and improved the state-of-the-art in
several different fields of application (e.g. speech recognition, visual object recognition,
object detection and many others). Moreover, the deep convolutional neural networks
have dramatically increased the performance of the machine learning algorithms when
dealing with the processing of images, video, audio, text and speech (i.e. sequential or
space-temporal data).

However, the biggest problem with deep learning is the very complex structure of
the solution that imposes the utilization of the results as a sort of black box. Also, the
convergence to the optimal solution is not theoretically guaranteed in these algorithms, and
they suffer the same problems the standard neural networks [162, 67, 29, 135, 183, 209,
92, 146, 94, 93, 124]:

• They are theoretically not well understood;
• There is not a clear decoupling between the representation and the model generation;
• They have a high training time (more than 10 layers are difficult to be handled also

using a non-common GPU cluster);
• They converge to a sub-optimal solution because of the local minima and the vanish-

ing gradient issues;

For these reasons, new ideas are required to find deep solutions that do not suffer these
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issues.

A possible solution is to exploit the more solid theoretical framework concerning
kernels. In a general spaceX, a kernel function K : X×X→ R is a positive semi-definite
function and represents a dot product in an implicitly defined Hilbert space X (a.k.a.,
feature space). K represents a similarity measure between the elements in X. Given a
kernel K, its feature mapping is a (typically non linear) embedding φφφ : X→ X . The kernel
K can be written in the form:

K(x,y) = φφφ(x) ·φφφ(y), ∀x,y ∈ X. (1.1)

So, given a kernel, the explicit evaluation of the vector φφφ(x) is avoidable and we are able
to obtain a significant improvement in the performance of the kernel methods.

In the past, kernels have consistently outperformed previous generations of learning
techniques because they provided a flexible and expressive learning framework that has
been successfully applied to a wide range of real world problems. For example, kernel
methods are widely applied in machine learning for structured data because, unlike the
majority of machine learning techniques, their application to any type of data is painless
as long as a kernel function for such data is defined. Kernel methods offer an elegant
framework that decouples learning algorithms from data representations. On the other
hand, kernels have lost some of their initial appealing in the research community, due to
some of their weaknesses:

• The scaling problem and the high computational complexity: dealing with kernel
based methods imposes the storage in memory of a kernel matrix, i.e. a matrix with
a number of entries quadratic with respect to the number of examples. So, kernel
methods are not able (in general) to tackle a task when the number of examples
becomes huge;
• The shallowness of the representation: the representation implicitly defined by a

shallow kernel does not take into account several layer of abstraction and is fixed a

priori.

Moreover, the so called local kernels suffer the curse of dimensionality [27], i.e. the
problem of learning a model in a high dimensional space. This concept was coined by
Bellman [25] and it refers to the exponential growth of hyper-volume as a function of
dimensionality. Formally, we consider a local kernel K a kernel function with the following
behavior:

lim
‖x−xi‖2→+∞

K(x,xi) =Ci, (1.2)

where x is a test example, xi is a training example and Ci is a constant that does not depend
on x. For example, in the RBF kernel this constant equals 0. In the binary classification
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problem, as consequence of this behavior of the local kernels, the models generated by a
kernel machine collapse to constant models (i.e. classifiers with the same output for all the
examples) or to nearest neighbor models (i.e. the predicted class of an example is defined
only by the nearest neighbor example in the high-dimensional space). In both cases, the
obtained models have poor prediction (constant or highly local). Moreover, when x is a
high-dimensional vector, the nearest neighbor example is not much closer than the other
examples, due to the geometrical properties of the high-dimensional spaces highlighted by
Bellman.

New solutions have been recently presented with the aim to circumvent the difficulties
concerning the scaling and the computational efficiency issues. For example, the random
approximations of the kernels in order to avoid computational and memory issues are
presented in [53, 174, 208]. These techniques consist in the approximation of the features of
the Reproducing Kernel Hilbert Space (RKHS) to generate a linear kernel that approximates
the original one. This new kernel can be used as a linear kernel in the original space and can
be easily scaled-up. Using a linear kernel, the computational efficiency arises in a natural
way exploiting the very efficient and distributed linear kernel machines (e.g. Pegasos
[170]).

As pointed out before, the second critical issue about kernels is that they bring shallow
and local information. In theory, kernels learn non-linear functionsφ in the input spaceX
and then they appear to be flexible as much as the DNN algorithms. However, traditionally,
kernels were used to implement only a linear function in a pre-defined RKHS (the feature
space). Starting from a fixed a priori kernel on a space X, the entire learning phase is
performed in a single step by exploiting the implicit representation φφφ K(x) of the examples
x ∈ X, as summarized in the following scheme:

x ∈ X→K f ixed ∼ φφφ K(x)→ wlearned ·φφφ K(x).

Learning the weight vector w implicitly can been seen as a single layer learning and it is in
contrast with the deep learning paradigm. In practice, the φφφ K is fixed a priori using the
validation of the hyperparameters of the kernel (e.g. the parameter γ of the RBF kernel).
This methodology is not the best way to proceed if we are interested in finding the optimal
representation because the fixed kernel is typically not the optimal kernel for a specific
task.

Learning a new implicit representation defined by a kernel is one the current challenges
in the machine learning research community. A theoretical connection between kernels
and deep networks has already been highlighted in the past [142] building a sequence of
deeper and deeper kernels that reproduce the mapping performed by more and more layers
of the deep network and measuring how these increasingly complex kernels fit the learning
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problem.

Kernel learning has the goal to learn the optimal kernel (and then the best implicit
feature map φ ) given a specific task or set of tasks. Multiple Kernel Learning (MKL) [79]
is one of the most popular approach to kernel learning. MKL algorithms are designed to
combine a set of weak kernels to obtain a better one. MKL has the support of a theoretical
framework [51] that claims a fundamental rule to overcome the shallowness of the single
kernel representation. In particular, it has been proved that combining a large number of
different kernels produces just a minor penalty in the generalization bounds. This result
suggest that it is possible to combine thousands or millions of kernels without falling in
the overfitting problem. A kernel can been seen as a different point of view of a task and
then, the combination of millions of different point of views can be a solution to create a
sort of deeper kernel, i.e. a kernel that is not shallow.

1.2 Aim and original contributions of this thesis

This thesis is focused on feature and kernel learning, aiming it improving the state-of-the-
art on MKL and feature engineering in general. The original contribution of this thesis is
four-fold:

1. Analysis of the MKL framework pursuing the idea of the deeper kernel. The
problem of MKL is the computational complexity (in time and memory) and the
creation of too shallow kernels. In Chapter 7, we propose a new algorithm able to
combine thousands of kernels, called EasyMKL. A new scenario can be tackled in
MKL where the weak kernels contain only a fragment of the information and the
goal is to combine these fragments to obtain a deeper representation. Exploiting
this new methodology, we obtain a MKL algorithm that outperforms both the strong
average baseline and the state-of-the-art MKL methods. Finally, EasyMKL also
seems quite robust with respect to the noise introduced by features which are not
informative and works well even when exploiting the classical MKL framework,
with a small number of weak kernels.

2. Study of the importance of the expressiveness of the family of weak kernels in
order to inject a structure of expressiveness on them. MKL optimizes the margin
among the examples and does not take into account the complexity of the combined
kernels in the weak family. In this sense, a new technique is provided to measure
the kernel complexity, called spectral complexity, in Chapter 8. This measure is
easy to be evaluated and we exploit it to improve the MKL performance by creating
optimal weak kernels families as a sort of pre-training of the data. Exploiting this
measure, we define a new property of the weak families of kernels considering
the monotonicity of the spectral complexity. This property imposes a hierarchical
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structure among the features contained in different weak kernels. We show that using
these families, EasyMKL improves its results in term of AUC and we apply this
methodology in two contexts: dot-product kernels, namely the kernels in the form
K(x,z) = f (x · z) and the ODD graph-kernel. In both cases, our approach improves
the state-of-the-art results (see Chapter 9).
These results open a new scenario in MKL, that is beyond the combination of a large
number of weak kernels. Performing the creation of the correctweak family we are
adding a third layer in the learning phase. In fact, this methodology have three steps:

(a) The first step is to create a good (and possibly large) family of weak kernels
starting from the raw information;

(b) Then, the second step is to combine all the weak kernels by exploiting MKL
algorithms in order to fix the final representation;

(c) Finally, the last step is to create a model using a kernel machine.

Practically, the methodology can be summarized as:

x ∈ X→{K1, . . . ,KR}learned︸ ︷︷ ︸
a

→Klearned =
R

∑
i=1

µiKi ∼ φφφ K(x)︸ ︷︷ ︸
b

→ wlearned ·φφφ K(x)︸ ︷︷ ︸
c

.

It is important to note that the first step of this procedure (x∈X→{K1, . . . ,KR}learned)
is performed by considering only the hierarchical structure of the features, implicitly
defined in the RKHS.

3. Connections of kernel learning, metric learning, feature learning and MKL. Study-
ing the representation problem from different point of views, some of these connec-
tions naturally arise, for example:

• Learning a metric to create new kernels or to perform explicit feature weighting;
• Using single feature kernels (i.e. 1−rank or 1−feature kernels) in a weak

family to connect MKL to the Group Lasso feature learning.

In Chapter 10, we study a new algorithm that is able to learn the hyperparameters of
an Anisotropic RBF exploiting the connection among feature weighting, distance
metric learning and MKL. This algorithm can also be seen as a MKL algorithm
where the rule for the combination of the weak kernels is the entry-wise product of
the weak matrices. We consider each weak kernel as a 1−feature RBF (i.e. RBF
kernel that considers only 1 feature) and we optimize the parameters of these family
of RBFs. Exploiting this methodology, we are able to create an optimal family of
weak kernels for this previously fixed MKL rule.

4. Real world tasks. The applicability of the new methods is widely important, not
only on benchmark datasets. We prove our ideas in different real situations:
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• In Chapter 11, a biomedical application will be presented, concerning the
segmentation of brain MRI volumes. A new two-steps model is applied in
order to exploit the domain knowledge in a priori manner and using this model
the different underlying factors of variation for this task are automatically
highlighted improving the previous state-of-the-art results.
• In Chapter 12, an application for smartphone will be presented, called Climb

The World. The machine learning goal of this application is to count in real-time
the number of stair-steps performed by a user by exploiting the sensors of the
device. An extensive work of feature engineering and feature selection has been
performed, using EasyMKL, to obtain optimal results under the constraints of
battery consumption, imposed by the devices. The results achieved the goal
of a very good real-time classification of the stairsteps and, at the best of our
knowledge, this is the first algorithm that is able to solve this very difficult task.
• In Chapter 13, a new Multitask Learning (MTL) algorithm will be presented

dealing with large scale datasets by using the alternating direction method
of multipliers (ADMM). In the MTL context, this algorithm outperforms
the previous state-of-the-art methods used in the classification of large scale
dataset.

1.2.1 Structure of the thesis

This thesis is divided in four different parts. In Part I, the problem of representation in
machine learning is presented. The principal notations are discussed in Chapter 2 and the
state-of-the-art of the topics covered by this thesis are presented in Chapters 3, 4, 5 and 6.

In Part II, the original results of this thesis are depicted in four different chapters,
concerning the creation of new algorithms to generate the optimal representation of a
specific task:

• A new MKL algorithm is presented in Chapter 7. This algorithm is able to combine
thousands of kernels using a fix amount of memory and with linear computation
complexity and is called EasyMKL;
• A new measure for kernel complexity is defined in Chapter 8, called spectral

complexity. This new measure has a strict connection to the empirical Rademacher

complexity;
• In Chapter 9, a new methodology is applied to generate good families of weak kernels

by exploiting the spectral complexity in two different cases. Firstly, in the space of
the Dot-Product Polynomials (DPP) and then in the context of graph-kernels;
• In Chapter 10, a new algorithm is depicted that is able to learn the parameters of

an Anisotropic Radial Basis Function (ARBF) kernel highlighting the connection
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between metric learning, MKL and feature learning.

In Part III, three different real world applications are presented. In Chapter 11, a
biomedical application about the segmentation of brain MRI volumes is presented. A new
two-steps model is applied to exploit the domain knowledge in a priori manner.

In Chapter 12, an applications for smartphone is presented, called Climb The World.
The learning task in this application was to count the number of stair-steps performed by
a user by exploiting the sensors of the device. An extensive work of feature engineering
and feature selection has been performed, using EasyMKL, to generate an optimal model
under the constraints of battery consumption, imposed by the devices.

Finally, in Chapter 13, a new Multitask Learning (MTL) algorithm is presented that
is able to deal with large scale datasets by using the Alternating Direction Method of
Multipliers (ADMM).

In Part IV, conclusions and future work of this thesis are drawn.

1.3 Publications

A large part of this thesis has been presented in the following international peer-reviewed
journals and conferences:

1.3.1 Journals

• (submitted) Increasing People Physical Activity using a Mobile Application.
Fabio Aiolli, Matteo Ciman, Michele Donini and Ombretta Gaggi. Pervasive and

Mobile Computing 2015.

• EasyMKL: a scalable multiple kernel learning algorithm. Fabio Aiolli and
Michele Donini. Neurocomputing 2015.

1.3.2 Conferences

• (submitted) Distributed Variance Regularized Multitask Learning. Michele
Donini, David Martinez-Rego and Massimiliano Pontil. IJCNN 2016.

• (submitted) Learning the Kernel in the Space of Dot Product Polynomials. Michele
Donini and Fabio Aiolli. ECML 2016.

• Advances in Learning with Kernels: Theory and Practice in a World of grow-
ing Constraints. Luca Oneto, Nicolo Navarin, Michele Donini, Fabio Aiolli and
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Davide Anguita. ESANN 2016.

• Measuring the Expressivity of Graph Kernels through the Rademacher Com-
plexity. Luca Oneto, Nicolo Navarin, Michele Donini, Sperduti Alessandro, Fabio
Aiolli and Davide Anguita. ESANN 2016.

• Multiple Graph-Kernel Learning. Fabio Aiolli, Michele Donini, Nicoló Navarin
and Alessandro Sperduti. SSCI 2015.

• Feature and kernel learning. Verónica Bolón-Canedo, Michele Donini and Fabio
Aiolli. ESANN 2015.

• ClimbTheWorld: Real-time stairstep counting to increase physical activity.
Fabio Aiolli, Matteo Ciman, Michele Donini and Ombretta Gaggi. MOBIQUI-

TOUS 2014.

• Learning Anisotropic RBF Kernels. Fabio Aiolli and Michele Donini. ICANN

2014.

• Easy multiple kernel learning. Fabio Aiolli and Michele Donini. ESANN 2014.

• A Serious Game to persuade people to use stairs. Fabio Aiolli, Matteo Ciman,
Michele Donini and Ombretta Gaggi. Persuasive 2014.

• Stacking Models for Efficient Annotation of Brain Tissues in MR Volumes.
Fabio Aiolli, Michele Donini, Enea Poletti and Enrico Grisan. Medicon 2013.



2. Notation

In this chapter, we will introduce the main notations used in this thesis. The principal
mathematical notations exploited in this thesis are presented in Table 2.1. In Section 2.1,
the notations concerning the binary classification problem are depicted. Finally, in Section
2.2, the notations about graphs are introduced.

2.1 Binary Classification Problem

Considering the classification task, we define the training examples as {(xi,yi)}l
i=1, and

test examples as {(xi,yi)}L
i=l+1, xi in a generic set X, yi with values +1 or −1. The matrix

K∈RL×L is the complete kernel matrix containing the values of the kernel of each (training
and test) data pair. Further, we indicate with an hat, like for example ŷ ∈ Rl or K̂ ∈ Rl×l ,
the submatrices (or subvectors) obtained considering training examples only.

Fixed a training set, Γ̂ will denote the domain of probability distributions γγγ ∈ Rl
+

defined over the sets of positive and negative training examples:

Γ̂ = {γγγ ∈ Rl
+ |∑

i∈⊕
γi = 1, ∑

i∈	
γi = 1}, (2.1)

where ⊕ (resp. 	) is the set of the indices of the positive examples (resp. negative
examples). Note that any element γγγ of the set Γ̂ corresponds to a pair of points, the first
in the convex hull of positive training examples x+ = ∑ j∈⊕ γ jx j, and the second in the
convex hull of negative training examples x− = ∑ j∈	 γ jx j.
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Symbol

M The bold capital letter are used to identify the matrices

M[i, j] The MatLab notation identifies the element in position i, j of the matrix M

M[:, j] The column j of the matrix M

M[i, :] The row i of the matrix M

v The bold lower case letter are used to represent vectors

‖ · ‖1 The 1-norm of a matrix or a vector

‖ · ‖2 The 2-norm of a matrix or a vector

‖ · ‖F The Frobenious norm of a matrix

‖ · ‖T The Trace norm of a matrix

eig(M) The set of the eigenvalues of a matrix

1L A vector in RL where all the elements are equal to 1

IL The identity matrix in RL×L

√
D The element-wise squared root of a matrix D

E The average of a variable

Var The variance of a variable

sign(·) A function R→{−1,1} that returns 1 if the argument is positive, −1 otherwise⊗
The element-wise product of vectors or matrices

∑ The element-wise summation of scalars, vectors or matrices

∏ The Capital Pi notation for a product of sequences of scalars, vectors or matrices

O The big O notation

a ∝ b The two quantities a,b ∈ R are proportional

Table 2.1: Mathematical symbols.
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R Usually, it is possible to consider the generic set X equal to Rm. Then, X ∈ RL×m

denotes the matrix where examples are arranged in rows and X̂ ∈ Rl×m is the sub-
matrix obtained considering training examples only. In this case, the ith example is
represented by the ith row of X, namely X[i, :].

2.1.1 Quality measures for binary classifications

Dealing with classification task, we are interested in finding which method has the best
performance. The choice of an appropriate measure is very important to evaluate correctly
the quality of a specific algorithm. The most important measures of quality are: accuracy,
precision, recall, Fβ and AUC1.

Accuracy

The accuracy of a model is the fraction of examples that are correctly classified using that
model. It is a widely used metric for the performance of a classification algorithm. Despite
the popularity of this measure, the accuracy suffers of some critical drawbacks:
• It assumes equal cost for both false positive and false negative errors;
• The base rate problem: in the case of unbalanced dataset, a classifier that predicts

constantly the predominant class could have a good accuracy;
• It does not consider the percent reduction in error (i.e. an improvement in accuracy

of 0.1 from 0.8 to 0.9 is a reduction in error of 50%, on the other hand, an increase
of accuracy of 0.01 from 0.99 to 1.0 is a reduction in error of 100%).

Precision, Recall and Fβ

In a classification task, the precision for a class is the number of true positives (i.e. the
number of items correctly labeled as belonging to the positive class) divided by the total
number of elements labeled as belonging to the positive class (i.e. the sum of true positives
and false positives, which are items incorrectly labeled as belonging to the class). Recall
is defined as the number of true positives divided by the total number of elements that
actually belong to the positive class (i.e. the sum of true positives and false negatives,
which are items which were not labeled as belonging to the positive class but should have
been).

The analytic formulas for these measures are:

precision =
T P

T P+FP

recall =
T P

T P+FN

where T P stands for True Positives, FP as False Positives and FN as False Negatives.
1http://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf

http://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf
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Fβ is a measure that consider a combination of precision and recall. This combination
is weighted by a parameter β ∈ R. The analytic formula of Fβ is:

Fβ = (1+β
2)

precision · recall
β 2 precision+ recall

.

AUC

Solving a classification problem, the large part of the algorithms learn a model that is able
to return a score value for each example. The union of all these scores can be seen as a
ranking of the examples. The goal of a good model is to force the positive examples at the
highest positions of the ranking. The Area Under Curve (AUC) is a metric that exploits the
ranking given by the model.

Firstly, we have to define the Receiver Operating Characteristic (ROC) curve. The
ROC curve is a graphical plot that illustrates the performance of a binary classifier system
as its discrimination threshold is varied. The curve is created by plotting the true positive
rate against the false positive rate at various threshold settings. The true-positive rate is
also known as sensitivity or recall. The false-positive rate is also known as the f all−out

and can be calculated as: 1−specificity. The ROC curve is thus the sensitivity as a function
of fall-out. The AUC is the (estimated) integral of the ROC Curve.

Given the prediction scores of m examples, r ∈ Rm, we can define analytically the
Receiver Operating Characteristic Area Under Curve metric (AUROC or AUC) as:

AUC(r) = ∑
m
i=1 ψ(xi)

2 np nn
∈ [0,1], (2.2)

where we define np and nn as the number of positive and negative examples, and the
function ψ(xi) as:

ψ(xi) = |{x j : y j 6= yi,r j < ri, j = 1, . . . ,m}| if yi = 1, (2.3)

ψ(xi) = |{x j : y j 6= yi,r j > ri, j = 1, . . . ,m}| if yi =−1. (2.4)

The AUC represents the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one (assuming positive ranks higher than
negative).

2.1.2 Datasets for Binary Vectorial Classification

In this section, we will present the 15 datasets used as benchmark in this thesis. These
datasets are different for typology of the information, number and typology of the features
and number of examples.

The following list contains a brief description of the benchmark datasets:
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• Haberman: The dataset contains cases from a study that was conducted between
1958 and 1970 at the University of Chicago’s Billings Hospital on the survival of
patients who had undergone surgery for breast cancer.
• Liver: This dataset is about BUPA liver disorders. The first 5 variables are all

blood tests which are thought to be sensitive to liver disorders that might arise from
excessive alcohol consumption.
• Diabetes: Diabetes patient records were obtained from two sources: an automatic

electronic recording device and paper records. The automatic device had an internal
clock to timestamp events, whereas the paper records only provided "logical time"
slots (breakfast, lunch, dinner, bedtime). This dataset contain has been prepared
for the use of participants for the 1994 AAAI Spring Symposium on Artificial
Intelligence in Medicine.
• Abalone: Predicting the age of abalone from physical measurements. The age of

abalone is determined by cutting the shell through the cone, staining it, and counting
the number of rings through a microscope. Other measurements, which are easier to
obtain, are used to predict the age. From the original data examples with missing
values were removed.
• Australian: This file concerns credit card applications. All attribute names and

values have been changed to meaningless symbols to protect confidentiality of the
data. This dataset is interesting because there is a good mix of attributes: continuous,
nominal with small numbers of values, and nominal with larger numbers of values.
• Pendigits: A digit database by collecting 250 samples from 44 writers. The authors

used a WACOM PL-100V pressure sensitive tablet with an integrated LCD display
and a cordless stylus. The tablet sends x and y tablet coordinates and pressure level
values of the pen at fixed time intervals (sampling rate) of 100 milliseconds. These
writers are asked to write 250 digits in random order inside boxes of 500 by 500
tablet pixel resolution. This dataset has been binarized for the classification problem
of even vs. odd.
• Heart: This dataset is a heart disease database.
• German: This dataset classifies people described by a set of attributes as good or

bad credit risks.
• Ionosphere: This dataset consists of a phased array of 16 high-frequency antennas

with a total transmitted power on the order of 6.4 kilowatts. The targets were free
electrons in the ionosphere. Received signals were processed using an autocorrela-
tion function whose arguments are the time of a pulse and the pulse number. There
were 17 pulse numbers for the Goose Bay system. Instances in this database are
described by 2 attributes per pulse number, corresponding to the complex values
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returned by the function resulting from the complex electromagnetic signal.
• Splice: Splice junctions are points on a DNA sequence at which superfluous DNA is

removed during the process of protein creation in higher organisms. The problem
posed in this dataset is to recognize, given a sequence of DNA, the boundaries
between exons (the parts of the DNA sequence retained after splicing) and introns
(the parts of the DNA sequence that are spliced out).
• Sonar: The task is to train a network to discriminate between sonar signals bounced

off a metal cylinder and those bounced off a roughly cylindrical rock.
• Mush: This dataset includes descriptions of hypothetical samples corresponding to

23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is
identified as definitely edible, definitely poisonous, or of unknown edibility and not
recommended. This dataset has been binarized.
• Batch2: This binarized dataset contains 1244 measurements from 16 chemical

sensors exposed to 6 gases at different concentration levels. This dataset has been
binarized.
• Colon: This dataset contains expression levels of 2000 genes taken in 62 different

samples. For each sample it is indicated whether it came from a tumor biopsy or not.
• Gisette: This dataset is about a handwritten digit recognition problem. The problem

is to separate the highly confusable digits ’4’ and ’9’. This dataset is one of five
datasets of the NIPS 2003 feature selection challenge. A truncated version of this
dataset, called GisetteT, is also used with a random sampling of 4000 examples
from the original Gisette dataset.

Finally, in Table 2.2, the principal information about the datasets are summarized and
in Table 2.3, the links to download the datasets are provided.

2.2 Graphs

In this section we summarize the principal notations about graphs used in this thesis (in
Section 9.5) . Firstly, we can introduce a formal definition of a graph G:

Definition 2.2.1 A graph G can be descried as triplet G = (VG,EG,LG) where VG is the
set of vertices, EG the set of edges and LG a function mapping nodes to labels.

Now, we are ready to define a list of the most used definitions and properties concerning
graphs:

• A graph is undirected if (vi,v j) ∈ EG⇔ (v j,vi) ∈ EG, otherwise it is directed.
• A path p(vi,v j) of length n in a graph G is a sequence of nodes v1, . . . ,vn, where

v1 = vi, vn = v j and (vk,vk+1) ∈ EG for 1≤ k < n.
• A cycle is a path for which v1 = vn. A graph is acyclic if it has no cycles.
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Dataset Source Features Examples

Haberman UCI [18] 3 306
Liver UCI 6 345
Diabetes UCI 8 768
Abalone UCI 8 4177
Australian Statlog 14 690
Pendigits UCI 16 4000
Heart UCI 22 267
German Statlog 24 1000
Ionosphere UCI 34 351
Splice UCI 60 1000
Sonar UCI 60 208
Mush UCI 112 2000
Batch2 [190] UCI 128 1244
Colon UCI 2000 62
GisetteT NIPS03 5000 4000
Gisette [82] NIPS03 5000 13500

Table 2.2: Datasets information: name, source, number of features and number of examples.

Dataset URL

Haberman archive.ics.uci.edu/ml/datasets/Haberman's+Survival

Liver archive.ics.uci.edu/ml/datasets/Liver+Disorders

Diabetes archive.ics.uci.edu/ml/datasets/Diabetes

Abalone archive.ics.uci.edu/ml/datasets/Abalone

Australian www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/australian

Pendigits archive.ics.uci.edu/ml/machine-learning-databases/pendigits/

Heart archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

German archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

Ionosphere archive.ics.uci.edu/ml/datasets/Ionosphere

Splice www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/splice_scale

Sonar www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/sonar_scale

Mush archive.ics.uci.edu/ml/datasets/Mushroom

Batch2 archive.ics.uci.edu/ml/machine-learning-databases/00270/

Colon www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html

Gisette archive.ics.uci.edu/ml/datasets/Gisette

Table 2.3: URLs of the datasets.

archive.ics.uci.edu/ml/datasets/Haberman's+Survival
archive.ics.uci.edu/ml/datasets/Liver+Disorders
archive.ics.uci.edu/ml/datasets/Diabetes
archive.ics.uci.edu/ml/datasets/Abalone
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/australian
archive.ics.uci.edu/ml/machine-learning-databases/pendigits/
archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
archive.ics.uci.edu/ml/datasets/Ionosphere
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/splice_scale
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/sonar_scale
archive.ics.uci.edu/ml/datasets/Mushroom
archive.ics.uci.edu/ml/machine-learning-databases/00270/
www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html
archive.ics.uci.edu/ml/datasets/Gisette
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• A Directed Acyclic Graph (DAG) is a tree where each node has at most one
incoming edge.
• The root of a tree T is represented by r(T ).
• The children of a node v ∈VT are all the nodes v′ s.t. (v,v′) ∈ ET . chv[ j] refers to

the j-th child of v.
• The maximum number of children in a tree is called ρ .
• A proper subtree rooted at node v comprises v and all its descendants.

2.2.1 Datasets

In this thesis, we compared different methods for the classification of structured data
using five real-world graph datasets from bioinformatics: CAS2, CPDB [91], AIDS [198],
NCI1 [194] and GDD [63]. The first four datasets represent chemical compounds: nodes
represent atoms and are labeled according to the atom type, and edges represent bonds
between atoms. GDD is a dataset of proteins. In this case, each node in a graph represents
an amino acid and is labeled according to the amino acid type. In GDD, there is an
edge connecting two nodes if the corresponding amino acids are less than 6 apart in
the 3-dimensional folding of the protein. All the datasets encode binary classification
problems.

2http://www.cheminformatics.org/datasets/bursi



3. Topics

Finding the best representation of the data has been an active research area in the last
few decades obtaining success in many different applications. For example, with the
advent of big data, the adequate identification of the relevant information has converted
representation learning in an even more indispensable step. An important part of this thesis
is concerning the representation given by feature and kernel learning.

In kernel methods, features are implicitly represented by means of feature mappings
and kernels. It has been shown that the correct selection of the kernel is a crucial task,
as long as an erroneous selection can lead to poor performance. Unfortunately, manually
searching for an optimal kernel is a time-consuming and a sub-optimal choice.

This chapter is concerned with the background of the methods exploited in this thesis
to learn automatically features, kernels and new representations from the data. Firstly, we
can introduce a taxonomy of these methods in two families: Explicit Feature Learning

(EFL) and Implicit Feature Learning (IFL).

3.1 Explicit and Implicit Feature Learning

It is possible to divide the representation learning methods in two different families. In
the first family are contained the methods where the features are learned explicitly in the
original space. We call the methods in this family the Explicit Feature Learning (EFL)
algorithms. EFL methods exploit the combination of the information contained in the data
in an explicit way. They highlight clearly which features is more important than the others,
and due to this particular behavior, the EFL methods are useful to identify the motivation
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behind the importance of the information. In real wold application, EFL methods have a
widely success because of the simple interpretation of the results.

On the other hand, there are a plethora of methods that are, indirectly, able to exploit
the information in the RKHS (or in a different non linear feature space). We can call this
second family of methods Implicit Feature Learning (IFL). This family contains methods
that are more complex and sophisticated than the EFL methods. IFL becomes popular only
few years ago and nowadays the research community is very active on this topic.

In the following sections, the topics covered by this thesis will be presented, starting
from a brief overview of kernel learning, feature learning and metric learning. Finally,
a deep analysis of the EFL and IFL families will be depicted, concerning the principal
methods exploited in Part II and Part III.

3.1.1 Kernel Learning

Kernel machines and kernel-based algorithms are very popular in machine learning and
have shown state-of-the-art performance. Kernel methods have been used to tackle a
variety of learning tasks (e.g. classification, regression, clustering and more). In these
algorithms the features are provided intrinsically using a positive semi-definite kernel
function that can be interpreted as a similarity measure (i.e. a scalar product) in a high
dimensional Hilbert space. The goal of Kernel Learning (KL) is to create methods able to
provide automatically good kernels for a particular problem and avoiding, in this way, the
arbitrary user’s choice of a kernel function. A bad choice of the kernel function can make
learning very difficult because it corresponds to a sub-optimal choice of the features.

KL is often adopted within a semi-supervised learning setting [44, 212, 50, 130] and
tries to learn the kernel matrix using all the available data (labeled and unlabeled examples)
optimizing an objective function that improves the accordance between the kernel and
the set of i.i.d. labeled data. Different ways have been investigated to obtain this result,
e.g. maximizing the alignment [123, 52] or exploiting bounds on the (local) Rademacher

complexity [48]. Conversely, unlabeled data are typically used to regularize the models
avoiding the non-smoothness of the discriminant function.

Evaluation of the KL methods

The performance evaluation of a KL algorithm applied to a binary classification task
can be computed by exploiting one of the several measures of quality, e.g, accuracy,
precision, recall, Fβ and more. In this thesis, the experimental evaluation of a kernel will
be performed by using the Receiver Operating Characteristic Area Under Curve metric

(AUC). The AUC represents the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one (assuming positive ranks
higher than negative). We have chosen the AUC measure because we are able to avoid the
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validation of the threshold parameter. This parameter is influenced by the kernel machine
(i.e. the classifier) and not by (the quality) of the kernel.

3.1.2 Metric Learning

It is well known that different features typically have unequal impact and importance in
solving a given classification task. This motivates several feature selection methods to
select or weight different features in different ways. While feature selection is generally
very difficult to perform with nonlinear kernels, one can learn the metric directly from data
more easily [24]. This task is known as Distance Metric Learning (DML). For example,
many researchers (see [75], [76], [169], [64]) have proposed a number of algorithms for
the optimization of the Mahalanobis distance. Specifically, they replace the common
Euclidean metric with the more powerful distance

(xi−x j)
>M(xi−x j) (3.1)

and try to learn the combination matrix M. The learned distance is typically optimized
for (and used in) a nearest neighbors setting. The high number of free parameters to learn
together with the fact that these methods are used with nearest neighbors, make these
approaches prone to overfitting, in particular when the training sample is small.

3.1.3 Feature Learning

In the last few years, several datasets with high dimensionality have become publicly
available on the Internet. This fact has brought an interesting challenge to the research
community, since for the machine learning methods it is difficult to deal with a high
number of input features. To cope with the problem of the high number of input fea-
tures, dimensionality reduction techniques can be applied to reduce the dimensionality
of the original data and improve learning performance. These dimensionality reduction
techniques usually come in two flavors: feature selection and feature extraction.

Feature selection and feature extraction each have their own merits [211]. On the one
hand, feature extraction techniques achieve dimensionality reduction by combining the
original features. In this manner, they are able to generate a set of new features, which is
usually more compact and of stronger discriminating power. It is preferable in applications
such as image analysis, signal processing, and information retrieval, where model accuracy
is more important than model interpretability. On the other hand, feature selection achieves
dimensionality reduction by removing the irrelevant and redundant features. It is widely
used in data mining applications, such as text mining, genetics analysis, and sensor data
processing. Due to the fact that feature selection maintains the original features, it is
especially useful for applications where the original features are important for model
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interpretation and knowledge extraction.

Feature selection methods are usually divided into three major approaches based upon
the relationship between a feature selection algorithm and the inductive learning method
used to infer a model [81]. Filters rely on the general characteristics of training data and
carry out the feature selection process as a pre-processing step independently from the
induction algorithm. On the contrary, wrappers involve optimizing a predictor as a part of
the selection process. In between them one can find embedded methods, which perform
feature selection in the process of training and are usually specific to given learning
machines. Popular and widely-used feature selection methods are Correlation-based
Feature Selection (CFS) [86], minimum Redundancy Maximum Relevance (mRMR) [150],
or Support Vector Machine - Recursive Feature Elimination (SVM-RFE) [83], among the
others.

As for feature extraction, the most popular method is Principal Component Analysis
(PCA) [109], which converts a set of observations of possibly correlated features into a set
of values of linearly uncorrelated features called principal components. The number of
principal components is less than or equal to the number of original features.

3.2 Explicit Feature Learning

3.2.1 Feature Selection methods

New feature selection methods have been steadily appearing during the last few decades.
The proliferation of feature selection algorithms, however, has not brought about a general
methodology that allows for intelligent selection from existing algorithms. Nevertheless,
although a vast body of feature selection methods exists, some of them have been able to
stand out and their use has become very popular among researchers. A brief description of
them can be found in Table 3.1.

Filter/Embedded Ranker/Subset Reference
Chi-Squared Filter Ranker Liu and Setiono [131]
F-score (Fisher score) Filter Ranker Duda et al. [65]
Information Gain Filter Ranker Quinlan [155]
ReliefF Filter Ranker Kononenko [121]
mRMR Filter Ranker Peng et al. [150]
SVM-RFE Embedded Ranker Guyon et al. [83]
CFS Filter Subset Hall [86]
FCBF Filter Subset Yu and Liu [206]
INTERACT Filter Subset Zhao and Liu [210]
Consistency Filter Subset Dash and Liu [60]

Table 3.1: Frequently used feature selection methods.
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These methods are usually present in the review papers that appear in the literature for
feature selection. In [161], classical feature selection techniques are provided in the form
of a basic taxonomy and their applicability to bioinformatics applications is discussed.
Another work on comparing state-of-the-art feature selection methods when dealing with
thousands of features, using both synthetic data and real data, is presented in [98]. Brown et
al. [38] presented a unifying framework for feature selection based on information theory,
covering up to 17 different methods. More recently, the performance of well-known feature
selection methods in the presence of several complications (such as noise, redundancy or
interaction between attributes) was tested in [33].

Recent contributions

There exist numerous papers and books proving the benefits of the feature selection process
[81]. In [161], classical feature selection techniques are provided in the form of a basic
taxonomy and their applicability to bio-informatics applications is discussed. Another
work on comparing state-of-the-art feature selection methods when dealing with thousands
of features, using both synthetic data and real data, is presented in [98]. Brown et al.
[38] presented a unifying framework for feature selection based on information theory,
covering up to 17 different methods. More recently, the performance of well-known feature
selection methods in the presence of several complications (such as noise, redundancy or
interaction between attributes) was tested in [33].

However, since none of the existing methods mentioned has demonstrated significantly
superiority over the others, researchers are usually focused on finding a good method
for a specific problem setting. Therefore, new and novel feature selection methods are
constantly appearing using different strategies. In the last few years, the review of the
literature has shown a tendency to mix algorithms, either in the form of hybrid methods
[187, 97, 126, 200] or ensemble methods [88, 203, 204, 114, 34].

Applications

Feature selection methods are currently being applied to problems of very different areas.
In the next paragraphs we will describe some of the most popular applications that are
promoting the use of feature selection:

• Computational biology. Bio-informatic tools have been widely applied to ge-
nomics, proteomics, gene networks, structure prediction, disease diagnosis and drug
design. DNA microarrays have been widely used in simultaneously monitoring
mRNA expressions of thousands of genes in many areas of biomedical research.
These data sets typically consist of several hundred samples as opposed to thousands
of genes, whereby feature selection is paramount. Because of this, a myriad of works
in the feature selection field have been devoted to help in the classification of DNA
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microarrays. A complete review of up-to-date feature selection methods developed
for dealing with microarray data can be found in [32].
• Face recognition. The recognition of a human face has a wide range of applications,

such as face-based video indexing and browsing engines, biometric identity authen-
tication, human-computer interaction, and multimedia monitoring/surveillance. An
important issue in this field is to determine which features from an image are the
most informative for recognition purposes, so feature selection algorithms for face
recognition have been recently suggested [129, 134, 9, 158, 137, 111]
• Health studies. The recent explosion in data available for analysis is as evident

in health care as anywhere else. Private and public insurers, health care providers,
particularly hospitals, physician groups and laboratories, and government agencies
are able to generate far more digital information than ever before. Many health
studies are longitudinal: each subject is followed over a period of time and many
covariates and responses of each subject are collected at different time points. Feature
selection has proven effective in helping with the diagnosis of several diseases, such
as retinopathy of prematurity [12], evaporative dry eye [160], pulmonary nodules
[127] or cardiac pacemaker implantation [103], among others.
• Financial engineering and risk management. Technological revolution and trade

globalization have introduced a new era of financial markets. Over the last three
decades, an enormous number of new financial products have been created to meet
customer demands. The stock market trend is very complex and is influenced
by various factors. Therefore it is very necessary to find out the most significant
factors of the stock market and feature selection can be applied to achieve this goal
[99, 116, 128, 186].
• Text classification. The categorization of documents into a fixed number of pre-

defined categories has become a popular problem in Internet applications such as
Spam email or shopping. Each unique word in a document is considered as a feature,
so it is highly important to select a subset of all the possible features, allowing to
reduce the computational requirements of learning algorithms. In the last few years,
a number of works which promote the use of feature selection for text categorization
have been presented [70, 115, 59, 71, 187].

3.2.2 Distance Metric Learning

Distance metric learning (DML) methods try to learn the best metric for a specific input
space and dataset. The performance of a learning algorithm (nearest-neighbors classifiers,
kernel algorithms etc.) mostly depends on the metric used. Many DML algorithms have
been proposed. All of them try to find a positive semi-definite (PSD) matrix M ∈ Rm×m
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such that the induced metric

dM(xi,x j) = (xi−x j)
>M(xi−x j) (3.2)

is optimal for the task at hand. For example, the Euclidian distance is a special case where
M = I. There are three principal families of DML algorithms [197]: eigenvector methods,
convex optimization and neighborhood component analysis.

In the eigenvector methods, the matrix M is parameterized by the product of a real
valued matrix with its transposed, namely M = L>L, in order to maintain the matrix
positive semi-definite. In this case, the matrix M is called Mahalanobis metric. These
methods use the covariance matrix to optimize the linear transformation xi→ Lxi that
projects the training inputs. Finding the optimal projection is the task of eigenvector
methods with a constraint that defines L as a projection matrix: LL>= I. These algorithms
do not use the training labels and then they are totally unsupervised.

Convex optimization algorithms represent another family of DML algorithms. It is
possible to formulate a DML as a convex optimization problem over the cone of correct
matrices M. This cone is the cone of positive semi-definite matrices

M= {M ∈ Rm×m : ∀τ ∈ eig(M),τ ≥ 0}. (3.3)

Algorithms in this family are supervised and optimal positive semi-definite matrix M is
obtained optimizing the square root of the Mahalanobis metric and enforcing the SDP
constraint M� 0. There are also online versions of convex optimization algorithms for
DML, like POLA [169] for example.

Another family of algorithms for DML is called neighborhood component analysis. In
[76], for example, the authors try to learn a Mahalanobis metric from the expected leave-
one-out classification error. In this case they use a stochastic variant of k-nearest neighbor
with Mahalanobis metric. This algorithm has an objective function that is not convex and
can suffer from local minima. Metric Learning by Collapsing Classes (MLCC) [75] is an

evolution of the above mentioned method that can be formulated by a convex problem
but with the hypothesis that the examples in each class have only one mode. Another
important algorithm in this family is the Large Margin Nearest Neighbor Classification
(LMNNC) [197] that learns a Mahalanobis distance metric with a k-nearest neighbor by
semi-definite programming and also in this case we have the semi-positive constraint for
M in the optimization problem. Finally, a generalization of the LMNNC is the Gradient
Boosted LMNNC (GB-LMNNC) [113] that learns a non-linear transformation directly in
the function space. Specifically, it extends the Mahalanobis metric between two examples
(e.g.: ‖Lxi−Lx j‖2) by using a non linear transformation φ to define the new Euclidian
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distance ‖φφφ(xi)−φφφ(x j)‖2. Given the non linearity of φφφ , GB-LMNNC uses the gradient
boosted regression tree in order to change the metric (GBRT) [72]. So, the algorithm learns
and combines an ensemble of multivariate regression trees (that are weak learners) using
gradient boosting that minimizes the original LMNN objective function in the function
space.

3.3 Implicit Feature Learning

3.3.1 Transductive Feature Extraction with Non Linear Kernels

Algorithms in this class of KL methods are able to perform feature extraction in the feature
space defined by a non linear kernel. In this case, the feature mapping from the input
space to the feature space is not explicitly defined. A popular solution is given by Kernel

Principal Component Analysis (KPCA) [164]. KPCA uses the kernel trick to implicitly find
the projections on the eigenvectors (principal directions) and the corresponding eigenvalues
of the covariance matrix in feature space. KPCA can also be considered as an unsupervised
manifold learning technique mapping data points into a lower-dimensional space.

The intrinsic problem of these algorithms is the transductive environment that they
require (i.e. both training and test example needs to be available before training the classi-
fier). This problem can be overcome by using Out-Of-Sample techniques to approximate
the kernel values on new examples. Empirical experiments have shown that errors on
examples in the Out-Of-Sample set and examples in the In-Sample set are similar [30].

3.3.2 Spectral Kernel Learning

These methods are founded on the spectral decomposition of the Laplacian graph L, that is
an undirected graph that contains the manifold structure of the data. By using these methods
we are interested in finding the smoothest components ofL (i.e. the eigenvectors with the
smaller eigenvalues) and hence building a kernel which penalizes large changes between
strongly connected nodes. This can be made by changing the spectral representation of L
rescaling the eigenvalues in according to the semi-supervised information, for examples
using linear programming [132]. More specifically, these algorithms are based on the
possibility to write a semi-positive definite matrix L ∈ Rl×l using the equation of its
spectral decomposition:

L =
l

∑
s=1

λsusuT
s = UDλλλ UT (3.4)

where λs > 0 ∀s = 1, . . . , l are the eigenvalues, with their corresponded eigenvectors
{us}l

s=1,U is the matrix of the eigenvectors in rows and Dλλλ is a diagonal matrix with
the eigenvalues as non-null entries. The matrices defined by uiuT

i are 1−rank projection
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matrices and are kernels obtained from L. Then, the matrix L is a weighted sum of 1−rank
matrices where the weights are the eigenvalues. A nonparametric spectral transformation τ :
λs→ µs optimized to the specific task is performed using the semi-supervised information
contained in L. Basically, a new set of features are created using the spectral embedding,
and the matrix of the examples (where a row is an example) is now defined by

X = U
√

Dµµµ ∈ Rl×l. (3.5)

In particular, the ith example is defined by xi = [
√

µsui,s]
l
s=1 highlighting the relationship

between feature learning and spectral kernel learning. Clearly, changing the eigenvalues,
the algorithm is indirectly changing the weight of the features of the spectral embedding.

3.3.3 Multiple Kernel Learning (MKL)

MKL [79] is one of the most popular paradigm used to learn kernels in real world applica-
tions [39, 213, 196, 181]. The kernels generated by these techniques are combinations of
previously defined weak kernels K1, ...,KR with a constraint in the form:

Hq
R = {x 7→ w ·φφφ K(x) : K =

R

∑
k=1

µkKk,µµµ ∈ Γq,‖w‖6 1} (3.6)

with Γq = {µµµ : µµµ < 0,‖µµµ‖q = 1} and considering the functionφφφ K as the feature mapping
from the input space to the feature space. The value q being the kind of mean used, is
typically fixed to 1 or 2.

Using this formulation, we can be interested in the meaning of a sum of kernels in the
feature space. It is well know that the sum of two kernels can be seen as the concatenation
of the features contained in both the RKHS [172]. Extending the same idea, the weighted
sum of a list of weak kernels can be seen as a weighted concatenation of all the features
contained in all the RKHS (where the weights are the square roots of the learned weights
µk).

These algorithms are supported by several theoretical results that bound the estima-

tion error (i.e. the difference between the true error and the empirical margin error).
These bounds exploit the Rademacher complexity applied to the combination of kernels
[51, 101, 118, 110]. Existing MKL approaches can be divided in two principal categories.
In the first category, Fixed or Heuristic, some fixed rule is applied to obtain the combina-
tion. They usually get results scalable with respect to the number of kernels combined but
their effectiveness will critically depend on the domain at hand. On the other hand, the Op-

timization based approaches learn the combination parameters by solving an optimization
problem that can be integrated in the learning machine (e.g. structural risk based target
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function) or formulated as a different model (e.g. alignment, or other kernel similarity
maximization) [157, 189, 117, 202, 182, 17, 179].

In the Fixed or Heuristic family there are some very simple (but effective) solutions.
In fact, in some applications, the average method (that equal to the sum of the kernels
[23]) can gives better results than the combination of multiple SVMs each trained with one
of these kernels [148]. Another solution, can be the element-wise product of the kernel
matrices contained in the weak family.

Some heuristic methods exploit the notion of kernel alignment [55]. This similarity
measure can be seen as the cosine of the angle between two kernels. Formally, given two
kernels K1 and K2 their kernel alignment is:

A(K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F〈K2,K2〉F
, (3.7)

where 〈K1,K2〉F = ∑
L
i=1 ∑

L
i=1 K1[i, j]K2[i, j]. For example, Qiu and Lance [154] exploits

the kernel alignment to propose the following heuristic rule for the kth weight:

µk =
A(Kk, ŷŷt)

∑
R
h=1 A(Kk, ŷŷt)

, (3.8)

where ŷŷt is the ideal kernel for a binary classification task. This formula sets the weight
of the kth kernel in the weak family proportional to its alignment with respect to the ideal
kernel.

The second family of MKL algorithms are defined exploiting an optimization problem.
Unexpectedly, finding a good kernel by solving an optimization problem turned out to be a
very challenging task, e.g. trying to obtain better performance than the simple average of
the weak kernels is not an easy task1. Moreover, the Optimization based MKL algorithms
have a high computational complexity, for example using semidefinite programming or
quadratically constrained Quadratic Programming (QP).

The most famous MKL algorithms in the Optimization based family are the following:

• Simple MKL (SMKL) An iterative algorithm by Rakotomamonjy [157] that imple-
ments a linear approach with kernel weights in a simplex. Basically SMKL works
by repeating two main steps:

– A SVM optimization problem defined on current weights.
– Updating of the kernel weights using a gradient function.

• Generalized MKL (GMKL) This algorithm, by Varma and Babu [189], is called
Generalized Multiple Kernel Learning (GMKL). GMKL exploits a nonlinear ap-
proach and tackles the problem with a technique that regularizes both the hyperplane

1www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf

www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf
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weights and the kernel combination weights. This algorithm tries to optimize a non
convex problem, different from SMKL but, in general, with better results [79].
• Lasso-based MKL (GLMKL) The algorithm, by Kloft [117] and Xu [202] consid-

ers a regularization of kernel weights with 1-norm and finds the kernel weights by
solving a small QP problem at each iteration.
• SMO Projected Gradient Descent Generalized MKL (SPG-GMKL) This algo-

rithm is inspired by the GMKL and learns simultaneously both kernel and SVM
parameters. This particular algorithm [104] exploits an efficient and highly scalable
implementation and is a state-of-the-art method with respect to the computational
performance.
• Localized MKL (LMKL) This method combines kernels using weights calculated

from a gating model. The optimization problem is not convex and a two-step
alternate optimization procedure is used to find the classifier parameters and the
gating model parameters [78].
• Non Linear MKL (NLMKL) This algorithm, by Cortes et al. [49], exploits a non-

linear kernel combination based on kernel ridge regression (KRR) and polynomial
combination of kernels.

In Table 3.2, these algorithm are summarized with respect to their computation com-
plexity.

Learner Complexity Reference
SimpleMKL SVM Gradient + QP Rakotomamonjy et al. [157]
GMKL SVM Gradient + QP Varma and Babu [189]
GLMKL SVM Analytical + QP Kloft et al. [117]
SPG-GMKL SVM Gradient + QP Jain et al. [104]
LMKL SVM Gradient + QP Gönen and Alpaydin [78]
NLMKL KRR Gradient + Matrix Inversion Cortes et al. [49]

Table 3.2: Frequently used MKL Optimization based methods.

In the last years, the importance of combining a large amount of kernels becomes clear
creating the idea of deeper kernel2. New methods can combine thousands of kernels with
acceptable computational complexity contrasting the previous idea that KL is shallow in
general. In fact, having MKL algorithms which are scalable opens a new scenario for
MKL. While standard MKL algorithms typically cope with a small number of strong
kernels and try to combine them (each kernel representing a different view of the same
task). In this case, the kernels are individually well designed by experts and their optimal
combination hardly leads to a significant improvement of the performance with respect to,
for example, a simple averaging combination. In the new scenario, the MKL paradigm

2 http://videolectures.net/roks2013_shawe_taylor_kernels/

http://videolectures.net/roks2013_shawe_taylor_kernels/
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can be exploited to combine a very large amount of weak kernels, aiming at boosting their
combined accuracy in a way similar to feature weighting.

Theoretical results prove that the combination of a large number of kernels using the
MKL paradigms is able to add only a small penalty in the generalization error, as presented
in [101]. In fact, if we consider the class of linear function in the feature space of a kernel
K as

FK = {x→ w ·φK(x) : ‖w‖2 = 1}, (3.9)

the bound on the generalization error of MKL gives only a logarithmic additive dependence
with respect to the number of kernels if we learn a function in the family:

F = {
R

∑
i=1

ai fi : fi ∈ FKi,ai ∈ R≥ 0,
R

∑
i=1

ai ≤ B}. (3.10)

In this way, tacking a set of linear weak kernels that are evaluated over a single feature,
the connection between MKL and feature learning is clear. The single kernel weight is,
in fact, the weight of the feature. Using this framework, we can weight the information
contained into bunch of features, evaluated in different ways (i.e. using different kernels
that can consider different subsets of features) [16, 106]. Also Cortes3 highlighted, in the
last few years, the connection between MKL and feature selection with Group-Lasso.

Hierarchical Kernel Learning

Hierarchical Kernel Learning (HKL) [13] is a generalization of the MKL framework. The
idea is to design a hierarchy over the given weak kernels. The key assumption of the HKL
is that the base kernels can be embedded in a Directed Acyclic Graph (DAG). Under this
constraint, the HKL algorithms maintain an acceptable polynomial complexity (otherwise
the number of base kernels grow exponentially with respect to the number of features).
The key advantage of HKL is the ability to perform non-linear feature selection.

In fact, the weak kernels can be embedded on a DAG by exploiting a norm regularization
over the associated RKHS. This regularization has to be able to induce a specific sparsity
pattern over the selected weak kernels. In the context of HKL the weak kernel are also
called basis or local kernels.

Many kernels can be written as a sum of base kernels indexed by a certain set V , in the
form:

K(x,z) = ∑
i∈V

Ki(x,z). (3.11)

RBF and polynomial kernels can be written in this form. Two simplified examples are the
following:

3http://www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf

http://www.cse.msu.edu/~cse902/S14/ppt/MKL_Feb2014.pdf
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• RBF for the case x = x ∈ R, by exploiting the eigen-decomposition of the non
centered covariance operator for a normal distribution with variance 1/4a [199]:

K(x,z) =
∞

∑
k=0

(b/A)k

2kk!
Ω(x)Ω(z) (3.12)

where Ω(x) = exp(−b
a(a+ c)x2Hk(

√
2cx)), c2 = a2 +2ab, A = a+b+ c and Hk is

the kth Hermite polynomial function.
• Polynomial kernel of degree q and coefficient c:

Kq,c(x,z) =
q

∑
d=0

(
q
d

)
cq−d(x · z)d. (3.13)

HKL assumes one separate predictor wi for each kernel Ki and then, the final prediction
can be written as a function f such that:

f (x) = ∑
i∈V

wi ·φφφ i(x). (3.14)

HKL imposes a `1− `2 norm using the following regularizer:

∑
g∈G
‖wg‖2 = ∑

g∈G

√
∑
j∈g

(w j)2, (3.15)

where G is a partition of the features. When we have not a previously fixed partition
of the features (from a priori knowledge), a structured matrix factorization has been
proposed in [15, 107] in order to obtain a strictured regularization of the base kernels. This
regularization can be used to obtain a very sparse decomposition, solving an optimization
problem.

This implies that the prediction function involves very few kernels. Considering
the condition of strictly positivity of the kernels, it can be shown that this hierarchical
penalization induces a strong sparsity property [105]: if a kernel is not selected, then none
of the kernels associated with its descendants are selected. Also, the weight of a kernel
associated to a specific node is always greater than the weight of the kernels associated
with its descendants.

These limitations are a serious problem of the HKL algorithms, in fact, they lead to
selection of many redundant features. In [105] two evolutions of the HKL are presented:
the Generalized HKL (gHKL) and the Generalized HKL for MTL (gHKLMT ). The gHKL
framework has a more flexible kernel selection pattern by exploiting a `1/`p regularizer,
with p ∈ (1,2), maintaining the polynomial complexity of the method. This regularizer
mitigates the weight bias towards the kernels that are nearer to the sources of the DAG,
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improving the overall performance.

Applications of MKL

• Object Recognition. The goal of visual object recognition is to determine if a
given image contains one or more objects belonging to the class of interest (without
necessarily locating the position of the object in the image). It is a challenging task
because of the large variations in the visual appearance of objects from the same
class caused by viewpoint variation and occlusion, articulation, background clutter,
illumination, and pose change. A number of studies have shown that MKL is a
useful tool for object recognition, where each image is represented by multiple sets
of features and MKL is applied to combine different feature sets. It is well known
that given a sufficient number of training examples and feature/kernel types, MKL is
more effective for object recognition than simple kernels combination (e.g., choosing
the best performing kernel or average of kernels) [205, 40].
• Biomedical applications. In biomedical applications, there are usually a small

number of sources and most of these data sources are carefully selected and prepro-
cessed. They thus often are directly relevant to the problem. In these cases, using a
MKL approach to combine the source of information is a useful way to improve the
performance of the biomedical applications. For example when we have to deal with
the biomedical data fusion [43].
• Health studies. When we have to exploit the health care data, the most important

step is to correctly select the helpful information from the noise. Nowadays, we
have the possibility to obtain large amount of health data than ever before. So, given
a specific task, it is mandatory to use only the really useful information. From the
different sources of the health information, MKL is able to rank which is the most
important point of views in order to solve a specific task [207, 133].



4. Graph Kernels

Historically, the machine learning community has been focused on data represented as
vectors, because they are a flexible and mathematically convenient representation. However,
in the last few years, there has been an increasing interest for data represented in a structured
form. Indeed, in many application domains, it is easy to define a representation for the data
as a structure. For example, XML files have a natural representation as trees, as well as the
tree of a sentence in natural language processing. Unfortunately, it is not straightforward
to define vectorial representations that are general enough and that do not force a loss
of information. Graphs are a very convenient way to store information, and they can
encode concepts and relationships from very different application domains in a natural
way. Recently, different ambitious projects have been started with the aim to build a graph
database that encodes (some of the) human knowledge, such as the Google knowledge
graph [177] or NELL [139]. In Chemoinformatics a chemical compound can be easily
represented as a graph, with nodes that represent atoms and edges that represent bonds
between atoms. In computer vision, recent advances in image segmentation and semantic
parsing gave a viable way to construct a graph representation of an image.

Dealing with data represented as graphs is not simple, since even the basic operations
can be computationally expensive (see for example the graph isomorphism problem [159]).
The approach that most graph kernels follow is to compare two graphs with respect to
the substructures they share. In order to be computationally efficient, the considered
substructures are limited to particular types, for which the computation of the isomorphism
is efficient. This comes at the cost of a reduced discriminative ability of the kernel.



48 Chapter 4. Graph Kernels

Moreover, in order to control the complexity, the kernels usually depend on a parameter
that regulates the size of the considered structures. In this way, they balance the tradeoff
between efficiency and expressiveness of the kernel (i.e. how a kernel is able to discriminate
between similar examples). An open problem, when we have to deal with kernels for
structured data, is the weight given to each feature. The particular weighting policy to
apply can strongly influence the predictive performance of the kernel. At the moment,
the policy is usually integrated in the kernel definition, possibly including also strong
regularization terms, and no much work has been done to evolve this methodology. In
addition to that, among the different graph kernels that have been proposed in literature,
usually it is not straightforward to decide which one will be most suited for a specific task.

4.1 An introduction to Graph kernels

The vast majority of kernels for structured data are based on the convolution framework.
The idea is to decompose a structure into a set of simpler structures (where a base kernel
between these structures is given) and to define the kernel as a function of the base kernels.
More formally, let X be a space of objects (that are our data points) and let each object x

be associated with a finite subset X′x of a space X′. Furthermore, assume that a kernel over
this domain k : X′×X′→R is defined. To define an R−convolution kernel, Haussler [89]
assumed a finite relation R⊆ X′×X, and let

K(x,y) = ∑
(x′,x)∈R

∑
(y′,y)∈R

k(x′,y′).

Many recently defined graph kernels are members of this general framework.
Many graph kernels depend on a parameter h that defines the maximum depth of the

considered substructures. Usually, too small values of h do not allow the kernel to capture
enough global information about the structure of the graphs, resulting in poor predictive
performances. In the same way, too high values of h tend to obfuscate the contributions
of the small substructures. Moreover, the higher the h, the slower the calculation of the
kernel becomes.

4.1.1 Ordered Decomposition DAG Kernels for Graphs

This section briefly describes the framework of ODD-Kernels for graphs, proposed in [57].
The idea of the ODD kernel framework is to decompose the input graph into a set of
substructures for which the isomorphism can be computed efficiently, i.e. subtrees.

In order to map the graphs into trees, two intermediate steps are needed:
1. map the graph G into a multiset of DAGs {DDvi

G|vi ∈VG}, where DDvi
G is obtained

by keeping each edge in the shortest path(s) connecting vi with any v j ∈ VG. The



4.1 An introduction to Graph kernels 49

Decomposition DAGs kernel for graphs can be defined as

DDKKDAG(G1,G2) = ∑
D1∈DDG1

∑
D2∈DDG2

KDAG(D1,D2). (4.1)

2. Since the vast majority of DAG kernels are extensions of kernels for ordered trees, a
strict partial order between DAG nodes in DDvi

G has been defined yielding Ordered
Decomposition DAGs ODDvi

G. The ordering function considers the label of the
vertex L(v) and, recursively, the labels of the children of v [57].

3. Finally, any Ordered DAG (ODD) is mapped into a multiset of trees. Let us define
T (vi) as the tree resulting from the visit of ODDvi

G starting from node vi: the visit
returns the nodes reachable fromvi in ODDvi

G. Note that if a nodev j can be reached
more than once, more occurrences of v j will appear in T (vi). Also, the tree visit
T (vi) can be stopped when the tree T (vi) reaches a maximum height r. Such tree is
referred to as Tr(vi).

In [57] the Ordered Decomposition DAGs kernel is defined as:

ODDK(G1,G2) = ∑
OD1∈ODDG1
OD2∈ODDG2

r

∑
j=1

∑
v1∈VOD1
v2∈VOD2

C(r(Tj(v1)),r(Tj(v2))) (4.2)

where C is a function defining a tree kernel. Among the kernels for trees defined in
literature, the one employed in the paper is the Subtree kernel [192], which counts the
number of shared proper subtrees between the two input trees. In this case, the C function
is defined as follows:

CST (v1,v2) =



λ if L(v1) = L(v2) and

ρ(v1) = ρ(v2) = 0

λϒ(v1,v2) if L(v1) = L(v2) and

ρ(v1) = ρ(v2) 6= 0

0 otherwise

(4.3)

where λ is a weighting parameter, that will be discussed in more detail in the next section,
and

ϒ(v1,v2) =
ρ(v1)

∏
j=1

CST (chv1[ j],chv2[ j]). (4.4)

The resulting kernel will be referred to as ODDST .

Summarizing, Ordered Decomposition DAGs kernel consider as features all the proper
subtrees of the trees resulting from breadth-first visits starting from each node in the graph.
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In [56] the authors have shown that it is possible to efficiently compute the explicit feature
space representation for such a kernel. Let us assume that a bijective function h mapping
labeled trees to integers is given (or equivalently, an enumeration of all possible labeled
trees). Then, given a value for r, the i−th component of φφφ(G) is defined as

φi(G) = |{h(Tj(v)) = i : j ≤ r,v ∈ D,D ∈ ODDG}| ·λ size(h−1(i)),

For ease of notation, size(G) = |VG|. Finally, it is important to note that the property
h(s) = i is equivalent to the isomorphism between trees, which can be solved in polynomial
time.

4.1.2 ODD kernels and feature weighting

The proposed approach exploits two convenient considerations:

1. when a tree is present in the feature space representation of a graph, then all its
proper subtrees are in the same space as well;

2. the bigger is the tree, the higher is the number of its subtrees that occur.

As a direct consequence, kernels that count common substructures suffer an issue of
diagonally dominant gram matrix, i.e. the number of substructures shared by a graph
with itself (and thus the corresponding kernel value) is usually much higher than the
number of shared substructures between two different instances. This negatively affects the
support vector classifier, since the classification of an instance may be dominated by the
contribution of the most similar example, leading to a behavior similar to a nearest neighbor
classifier. A possible solution for this issue is the down-weighting of big structural features.
Usually this is accomplished with a function of the size of a feature, i.e. to the number of
co-occurring features. The (down)weighting function, firstly proposed for tree kernels [46],
for a feature f is defined as:

w( f ) =
√

λ size( f ) · f req( f ), (4.5)

where f req( f ) is the frequency of a feature in the considered example, and size( f ) is
the size of the sub-structure associated to the feature f . Here, the weight of a feature
grows with its frequency in the example, and exponentially decreases (if λ < 1) with its

size. Note that the selection of an appropriate λ parameter is a key step in the successful
application of this weighting scheme. This weighting scheme intuitively makes sense, but
there is no reason why other schemes cannot be more suited for a specific task. In a recent
work [58], another weighting scheme for graph kernels has been proposed:

w( f ) = tanh(σ · f req( f ) · size( f )). (4.6)
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However, testing different weighting schemes is unpractical for different reasons. Firstly,
when we test different weighting schemes we are adding a new parameter to validate.
In addition, it is not clear which weight distributions one should test. Finally, in noisy
datasets, where the selection for the optimal parameters is a problem, the gap in predictive
performance between the different schemes may be not enough to justify the added
complexity. Moreover, the kernel may be more prone to overfitting.

From a theoretical point of view, if enough examples are available, the weighting policy
should be irrelevant because the weight of each feature should be adjusted by the learning
algorithm. However, especially when dealing with real-world graph datasets, this is not
the case, and the dependencies among features makes the learning even more difficult.





5. Optimization of the Margin Distribution

In this chapter an algorithm to learn a model that optimizes the margin in a classification
task is presented. This algorithm, called Kernel Optimization of the Margin Distribution

(KOMD), is presented in [6] as a game theoretic interpretation as a two-player zero-
sum game. KOMD has been proposed for the problem of margin maximization in a
classification task. Specifically, the classification task has been split in two phases. Firstly,
in the ranking phase, a total order of the examples is introduced and then, the pure binary
classification is performed by applying a threshold to the ranking of the examples obtained
in the first phase.

5.1 Playing with the margin

In the first phase of the algorithm (ranking phase), the task is to learn a unitary norm vector
w such that

w>(φφφ(x⊕)−φφφ(x	))> 0 (5.1)

for most of positive (x⊕) and negative (x	) instance pairs in the training data. The game
basically consists of one player that has to choose one vector of unitary norm w and the
other that picks pairs of positive-negative examples according to two distributionsγγγ+ and
γγγ− over the positive and negative examples, respectively. The value of the game is the
expected margin obtained using these variables, that is w>(φφφ(xp)−φφφ(xn)),xp ∼ γγγ+,xn ∼
γγγ−. The goal of the first player is to maximize this value while the second player wants to
minimize it. This problem is equivalent to the hard SVM and can be solved efficiently by
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optimizing a simple linearly constrained convex function on variables γγγ ∈ Γ̂, namely,

min
γγγ∈Γ̂

γγγ
>ŶK̂Ŷγγγ︸ ︷︷ ︸
Q(γγγ)

. (5.2)

It can be seen that the vector γγγ∗ ∈ Γ̂ minimizing Q(γγγ) identifies the two nearest points in
the convex hulls of positive and negative examples, respectively, in the feature space of the
kernel K.

Furthermore, a quadratic regularization over γγγ is introduced, namely, R(γγγ) = γγγ>γγγ , that
makes the player to prefer optimal distributions (strategies) with low variance. In fact, let
p (resp. n) the number of positive examples (resp. negative examples) in the training set,
then

E[γγγ+] =
1
p

(5.3)

E[γγγ−] =
1
n

(5.4)

is always true by construction, and E[v] denotes the expected value of elements in a vector
v. It follows that

Var(γγγ+) = E[γγγ2
+]−E[γγγ+]2 = ||γγγ+||2− p−2 (5.5)

Var(γγγ−) = E[γγγ2
−]−E[γγγ−]2 = ||γγγ−||2−n−2, (5.6)

obtaining R(γγγ) ∝ Var(γγγ+)+Var(γγγ−).

The final best strategy for γγγ will be given by solving the optimization problem

min
γγγ∈Γ̂

(1−Λ)Q(γγγ)+ΛR(γγγ). (5.7)

The regularization parameter Λ has two critical points: Λ = 0 and Λ = 1. When Λ = 0, as
we have shown before, there is no regularization, so the solution is the same as the hard
SVM one, whereas when Λ = 1 the minimization problem reduces to

min
γγγ∈Γ̂

R(γγγ) (5.8)

and the optimal solution is analytically defined by the vector of uniform distributions over
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positive and negative examples, that is

γ
u
i =

1
p

when yi =+1 (5.9)

γ
u
i =

1
n

when yi =−1. (5.10)

In this case, the objective solution is the squared distance from the positive and negative
centroids in feature space. The external parameter Λ ∈ (0,1) allows to select the correct
trade-off. Clearly, a correct selection of this parameter is fundamental if we are interested in
finding the best performance for a classification task and this is usually made by validating
on training data. In Figure 5.1, an example of the found solutions is depicted for a toy
problem varying the value of Λ.
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KOMD toy example
Positive examples
Negative examples
Komd with lambda = 1.0
Komd with lambda = 0.9
Komd with lambda = 0.0

Figure 5.1: KOMD solutions of the first phase found using different Λ in a simple toy
classification problem. The ranking among the examples is performed evaluating the
orthogonal projection of the examples over the line defined by the solution.

Once the model is learned from training data, the evaluation on a new generic example
x is obtained by:

f (x) = w>φφφ(x) = ∑
i

yiγiK(xi,x) = Ktr(x)Ŷγγγ, (5.11)

where Ktr(x) = [K(x1,x), . . . ,K(xl,x)]>, i.e. the vector containing the kernel values with
the training examples for x.

When a pure binary classification is required, which is not the case in this thesis, then
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the second phase of the algorithm is also performed. The threshold is set corresponding to
the point standing in the middle between the optimal point in the convex hull of positive
examples and the one in the convex hull of negative examples, that is

θ =
1
2
(∑

i∈⊕
γi f (xi)+ ∑

i∈	
γi f (xi)) =

1
2 ∑

i
γi f (xi) =

1
2

γγγ
>K̂Ŷγγγ.

Note that, when Λ = 0 this choice corresponds exactly to the optimal hyperplane of SVM.
Finally, a new example x will be classified according to sign( f (x)−θ).

In the following we will refer to the first phase of the algorithm discussed in this section
as KOMD (Kernelized Optimization of the Margin Distribution).



6. Rademacher Complexity

The complexity of the hypothesis has a crucial importance for a machine learning method
allowing a control of the learning process and a trade-off of between underfitting and
overfitting in model inference.

The Rademacher complexity theory[119, 21] has been developed in last few years as
a data-dependent measure which takes advantage of the actual distribution of the data,
differently from the VC-Dimension [10], which is independent from data. Moreover, a
data-dependent measure of complexity and a data-dependent hypothesis space have a
well known importance in machine learning [171]. A local version of the Rademacher
complexity has been developed, called local Rademacher complexity by exploiting the
idea of taking into account only the function that will be most likely chosen by the learning
algorithm for the given sample for measuring the complexity of the class, [20, 120]

In the following, we will present the principal ideas concerning the Rademacher

complexity.

6.1 The expressiveness of a class of functions

Controlling the expressiveness of a class of functions is important in order to avoid the
identification of spurious patterns by the learning algorithm. One of the most insidious
problem in machine learning is the possibility of detecting pattern in noise (i.e. the learning
of a false pattern). It is important to remember that a machine learning algorithm detects a
model from data in a probabilistic manner and then is always possible detecting a pattern
in noise if the class of functions exploited by the algorithm is not correctly defined.
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The Rademacher complexity estimates the ability of a class of functions to learn noise.
Hence controlling this measure of capacity will intuitively guard against the problem of
learning noise.

Now, we are ready to introduce the formal definition of Rademacher complexity,
starting from the definition of empirical Rademacher complexity:

Definition 6.1.1 For a sample S = {x1, ...,xl} generated by a distributionD on a set X
and a real-valued function class F with domain X, the empirical Rademacher complexity

of F is the random variable

R̂l(F) = Eσσσ

[
sup
f∈F

∣∣∣∣∣2l l

∑
i=1

σi f (xi)

∣∣∣∣∣ |x1, . . . ,xl

]
, (6.1)

where σσσ = σ1, ...,σl are independent uniform ±1−valued (Rademacher) random vari-
ables.

The Rademacher complexity of F is

Rl(F) = ES

[
R̂l(F)

]
= ESσσσ

[
sup
f∈F

∣∣∣∣∣2l l

∑
i=1

σi f (xi)

∣∣∣∣∣
]
. (6.2)

R The supremum over f ∈ F measures the best correlation that can be found between a
function of the class F and the random labels.

The following theorem is the most important result concerning the Rademacher com-

plexity, where we denote the input space with Z, so in the case of supervised learning we
would have Z= X×Y:

Theorem 6.1.1 ([172], Theorem 4.9) Fix δ ∈ (0,1) and let F be a class of functions
mapping from Z to [0,1]. Let z1, . . . ,zl be drawn independently according to a probability
distribution D. Then with probability at least 1−δ over random draws of samples of
size l, every f ∈ F satisfies

ED[ f (z)]≤ Ê[ f (z)]+Rl(F)+

√
ln(2/δ )

2l
(6.3)

≤ Ê[ f (z)]+ R̂l(F)+3

√
ln(2/δ )

2l
. (6.4)

where ED is the expectation with respect to the underlying distribution, while Ê is the
empirical expectation measured on a particular sample.

From this theorem, we can observe that with high probability the difference between the
true and empirical error of the pattern function is bounded by theRademacher complexity
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of the pattern function class, modulo a small additional square root factor. Moreover, we
can use directly the empirical Rademacher complexity value on the given training set.

In the following, some properties of the Rademacher complexity will be depicted. Let
F,F1, . . . ,Fn and G be classes of real functions,

• Monotonicity with respect to the inclusion: F ⊆ G⇒ R̂l(F)≤ R̂l(G);
• Multiplication for a constant: ∀c ∈ R, R̂l(F) = |c|R̂l(F);

• Sum with a new function: ∀h, R̂l(F+h)≤ R̂l(F)+2
√

Ê[h2]/l;
• Sum of classes: R̂l(∑

R
i=1Fi)≤ ∑

R
i=1 R̂l(Fi).

Now, we are ready to highlight the connection between the empirical Rademacher

complexity and (the complexity of) kernels. Firstly, the class of functions that we consider
are linear functions with bounded norm

FB = {x j→ w ·φφφ(x j) : ‖w‖2 ≤ B} (6.5)

where φφφ is the feature mapping for the kernel K. The following bound theorem for the
complexity of FB holds:

Theorem 6.1.2 ([172], Theorem 4.12). Given a kernel K, evaluated over a set of points
X, the empirical Rademacher complexity of the class FB satisfies

R̂(FB)≤
2B
l

√
tr(K). (6.6)

Equation 6.6 shows that the empirical Rademacher complexity is proportional to the trace
of the kernel.

6.1.1 Local Rademacher complexity

In this part, the definition of the local Rademacher complexity will be introduced. This
measure of complexity takes into account only the function that will be probably chosen
by the learning algorithm by using the given sample. For this reason, we are able to obtain
sharper (fast-rate) bounds than the global Rademacher analysis.

Definition 6.1.2 For any r > 0, the local Rademacher complexity of a class of functions
F is:

Rl(F;r) = Rl(F)({ f ∈ F : E[ f 2]≤ r}). (6.7)

A similar definition can be used for the empirical local Rademacher complexity by
exploiting the empirical Rademacher complexity:

Definition 6.1.3 For any r > 0, the local Rademacher complexity of a class of functions
F is:

R̂l(F;r) = R̂l(F)({ f ∈ F : E[ f 2]≤ r}). (6.8)
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A connection exists with respect to the kernels also by dealing with the local Rademacher

complexity. In fact, the following theorem holds:

Theorem 6.1.3 ([47], Theorem 3) Given a kernel function K with eigenvalues in de-
scending order {λi}∞

i=1, the local Rademacher complexity of the class FB=1 =:F satisfies

E[Rl(F;r)]≤

√√√√2
l

l

∑
i=1

min(r,λi). (6.9)

From this theorem, we can note that the local Rademacher complexity for kernels can
be determined by the tail sum of the eigenvalues.
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Motivation

Multiple Kernel Learning (MKL, see Section 3.3.3) is a popular paradigm used to learn
kernels. The kernel computed by these techniques are (generally linear) combinations of
previously defined weak kernels. The main rationale behind this kind of methods is that
they can alleviate the user’s effort on defining good kernels for a given problem. Using
the MKL framework, the algorithm itself is able to select the best combination among a
battery of predefined and reasonable weak kernels.

According to [79] the majority of existing MKL approaches can be divided into the
following two categories. Fixed or Heuristic rule and Optimization based approaches.

Generally speaking, best performing approaches to MKL necessitate of complex
optimization including semidefinite programming (SDP), or quadratically constrained
quadratic programming (QCQP), just to name a few, thus making these approaches un-
practical when the number of kernels to be combined is large, say in the order of hundreds.
Furthermore, these methods often need to keep in memory the whole set of weak kernels,
or at least the submatrices corresponding to the training data pairs. This will exhaust the
memory soon when coping with hundreds of examples and hundreds of weak kernels.

The MKL idea can be used in different scenarios. In the first and more popular case, a
small number of strong kernels have to be combined each representing a different (possibly
orthogonal) view of the same task. Typically these kernels are individually well designed
by experts and their optimal combination hardly leads to a significant improvement of the
performance with respect to, for example, a simple averaging combination. Alternatively,
the MKL paradigm can be exploited to combine an optimized family of weak kernels
created to obtain the best performance of the MKL algorithm.

A first possibility is to generate a very large set of random weak kernels aiming at
boosting their accuracy. In this way, the final combination will represent a weighted
combination of the different subsets of features. At least in principle, it can boost the
performance basically performing a data-driven feature learning/selection/weighting.

With this possibility in mind, we see that for MKL to be effective we need to combine
many kernels. For this reason, being non scalable becomes a stringent issue for a MKL
method. On the other side, simpler fixed rule algorithms are definitely more scalable in
general but they are far less flexible and tend to become ineffective when coping with many
kernels and noise. In Chapter 7, we propose a very efficient algorithm, called EasyMKL,
which is able to cope with thousands of kernels efficiently and we empirically demonstrate
the effectiveness of the methods proposed that is almost always more accurate than the
baselines especially when noise is present in the weak kernels.

Beyond this possibility, we can create automatically the best family of weak kernels
by exploiting a hierarchical structure of the features, in order to obtain a set of kernels
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with different levels of abstraction. In literature, some possibilities have been already
tested. The most important are the Hierarchical Kernel Learning (HKL) algorithms [13]
and their evolution: the Generalized HKL (gHKL) [105], presented in Section 3.3.3. These
methods perform a non-linear feature selection exploiting the assumption that it is possible
to generate a DAG from the features. Each node of the DAG represents a weak kernel and
a hierarchical structure is imposed to obtain a sparse combination of them.

However, a fundamental aspect was not taken into account until this point: the expres-
siveness of the weak kernels. We are interested in finding the connection between the
performance of MKL and the expressiveness of the given family of weak kernels. Firstly,
we need a correct measure of the expressiveness of the weak kernels family. In this context,
some questions arise: how can we evaluate the expressiveness of a kernel (or a family of
kernels)? Is the expressiveness of a family of kernels important in order to achieve better
results applying MKL?

The natural way to create a measure of expressiveness of a kernel is to define a measure
that take into account the empirical Rademacher complexity of the linear function (with
bounded norm) of the RKHS:

FB = {x j→ w ·φφφ(x j) : ‖w‖2 ≤ B}, (6.10)

where φφφ is the feature mapping for the kernel K. We will base our observations starting
from a famous bound theorem for the complexity of FB. This theorem ([172], Theorem
4.12) shows how the empirical Rademacher complexity R̂ is proportional to the trace of
the kernel:

R̂(FB)≤ O(B
√

tr(K)). (6.11)

From these results, in Chapter 8, we will define a new measure for the kernel complexity
called spectral complexity . In practice, we can consider the expressiveness of a kernel as
an estimation of the number of possible labelings that a kernel machine can handle using
that kernel as measure of similarity.

The designing of a measure of kernel expressiveness is useful in order to create families
of weak kernels using a principled methodology. In Chapter 9, we will construct family of
weak kernels defining a new property, exploiting the definition of spectral complexity for
the family of Dot-Product Polynomials (DPP) kernels and for graph-kernels.

We will prove that it is possible to generate families of weak kernels with increasing
spectral complexity, by defining a property on the monotonicity of the spectral complexity.
Several experiments will highlight that using these families of weak kernels improves the
performance of EasyMKL.
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Also, our results are generalizable to all the dot-product kernels of the form

K(x,z) = f (x · z), (6.12)

where f : R→ R, such that it defines a kernel. From this hypothesis, f can be written
using the Maclaurin expansion as a DPPs with positive coefficients (i.e. our results are not
limited to the polynomial kernels). In fact, the wide class of dot-product kernels contains
commonly used kernels, like the polynomial kernel and RBF kernel.

Finally, in Chapter 10, we will deal with the combination of a family of weak kernels
in a different MKL framework. We will combine the family as a element-wise product of
the weak kernels:

K =
R⊗

r=1

Kr. (6.13)

We will create an optimal family of weak kernels for this fixed combination rule. Specifi-
cally, we combine a set of RBF kernels evaluated using a single feature for each kernel.
Using this methodology, we are learning the parameter of an Anisotropic RBF kernel
(ARBF), i.e. a generalization of the standard RBF kernel.

The Python code of our algorithms can be downloaded from the following website:
https://github.com/jmikko/EasyMKL/

https://github.com/jmikko/EasyMKL/




7. EasyMKL

The goal of Multiple Kernel Learning (MKL) is to combine kernels derived from multiple
sources in a data-driven way with the aim to enhance the accuracy of a target kernel
machine. State-of-the-art methods of MKL have the drawback that the time required to
solve the associated optimization problem grows (typically more than linearly) with the
number of kernels to combine. Moreover, it has been empirically observed that even
sophisticated methods often do not significantly outperform the simple average of kernels.
In this chapter, we propose a time and space efficient MKL algorithm that can easily cope
with hundreds of thousands of kernels and more. The proposed method has been compared
with other baselines (random, average, ecc.) and three state-of-the-art MKL methods
showing that our approach is often superior. We empirically show that the advantage of
using the method proposed in this chapter is even clearer when noise features are added.
Finally, we have analyzed how our algorithm performances change with respect to the
number of examples in the training set and the number of kernels combined.

A summary of this chapter is the following. In Section 7.1 the proposed multiple
kernel learning algorithm, namely EasyMKL, is presented. In Section 7.2, experiments are
presented with respect to different dimensions, namely, the effectiveness, the scalability,
and the stability of the method proposed against different baselines and state-of-the-art
methods. Finally, in Section 7.3 we draw the conclusions.

Part of this chapter has been published in [2, 4]1.

1Python implementation of EasyMKL: https://www.researchgate.net/publication/

280640138_EasyMKL_-_Python_Source

https://www.researchgate.net/publication/280640138_EasyMKL_-_Python_Source
https://www.researchgate.net/publication/280640138_EasyMKL_-_Python_Source
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7.1 A new scalable MKL algorithm

In MKL we want to find the best combination parameters for a set of predefined kernel
matrices. In our context, this is done by learning a vector of coefficients ηηη that forms the
combined kernel according to:

K =
R

∑
r=1

ηrKr, ηr ≥ 0. (7.1)

Clearly, we must restrict the possible choices of such a matrix K and this can be made
by regularizing the learning process. So, we pose the problem of learning the kernel
combination as a min-max problem over variables γγγ and ηηη . Specifically, we propose to
maximize the distance between positive and negative examples with a unitary norm vector
ηηη as the weak kernel combination vector, that is

max
ηηη :||ηηη ||2=1

min
γγγ∈Γ

(1−Λ)γγγ>Ŷ(
R

∑
r

ηrK̂r)Ŷγγγ +Λ||γγγ||22︸ ︷︷ ︸
Q(ηηη ,γγγ)

. (7.2)

Considering d(γγγ) the vector with the rth entry defined as

dr(γγγ) = γγγ
>ŶK̂rŶγγγ, (7.3)

we obtain that Q(ηηη ,γγγ) is equal to (1−Λ)ηηη>d(γγγ)+Λ||γγγ||22 and we can rewrite the original
problem in Equation 7.2 as

min
γγγ∈Γ

max
ηηη :||ηηη ||2=1

Q(ηηη ,γγγ) = min
γγγ∈Γ

max
||ηηη ||2=1

(1−Λ)ηηη>d(γγγ)+Λ||γγγ||22. (7.4)

Now, it is possible to see that the vector ηηη∗ maximizing the function Q(ηηη ,γγγ) above
has a simple analytic solution:

ηηη
∗ =

d(γγγ)
||d(γγγ)||2

. (7.5)

Plugging this solution into the min-max problem, we obtain

min
γγγ∈Γ

Q(ηηη∗,γγγ) = min
γγγ∈Γ

(1−Λ)||d(γγγ)||2 +Λ||γγγ||22. (7.6)

The optimal γγγ will be the (regularized) minimizer of the 2-norm of the vector of distances.
This minimizer is not difficult to find as this is a convex function though not quadratic.
In order to simplify the problem further we prefer to minimize an upper-bound instead
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corresponding to the 1-norm of the vector of distances, thus obtaining

min
γγγ∈Γ

(1−Λ)||d(γγγ)||1 +Λ||γγγ||22 = min
γγγ∈Γ

(1−Λ)γγγ>Ŷ(
R

∑
r

K̂r)Ŷγγγ +Λ||γγγ||22. (7.7)

Interestingly, the obtained minimization problem is the same as the KOMD problem,
introduced in Chapter 5, where the kernel matrix has been replaced with the simple sum
of the weak kernel matrices. This will turn out to be very important for the efficiency
(especially in terms of space) of the method as will be explained later on. In the following,
we refer to this algorithm as EasyMKL.

From a more theoretical point of view, modifying the original problem using the 1-norm
upper-bound, in fact, we are changing the optimal solution ηηη∗ in the initial problem (in
Equation 7.4) with a new η̃ηη∗, where

η̃ηη∗ =ηηη
∗‖d(γγγ)‖1

‖d(γγγ)‖2
. (7.8)

Consequently, the problem that we are solving is

min
γγγ∈Γ

(1−Λ)η̃ηη∗d(γγγ)+Λ||γγγ||22 = min
γγγ∈Γ

(1−Λ)ηηη∗
‖d(γγγ)‖1

‖d(γγγ)‖2
d(γγγ)+Λ||γγγ||22. (7.9)

From this new formulation, we note that, in fact, we have just added a multiplicative
coefficient ‖d(γγγ)‖1

‖d(γγγ)‖2
to the original optimal solution ηηη∗. From the Hölder’s inequality this

coefficient is bounded by the number of kernels and we have that:

1≤ ‖d(γ
γγ)‖1

‖d(γγγ)‖2
≤
√

R. (7.10)

The value of the ratio between the 1-norm and the 2-norm tends to 1 if the vector d(γγγ) is
very sparse, while, it tends to

√
R when the values in the vector d(γγγ) are similar. In other

words, using the proposed formulation, we are promoting sparse solutions of the vector
d(γγγ) solving the minimum problem. Then, solving the problem in Equation 7.9, the vector
of the weight ηηη∗ = d(γγγ)

‖d(γγγ)‖2
will result sparser than the solution of the original problem.

Clearly, the problem in Equation 7.9 has the same solution as the EasyMKL minimum
problem in Equation 7.7.

A final consideration we can do here is that the quality of a kernel does not change
if it is multiplied by a positive constant. However, our formulation makes particularly
clear that, if kernels with different traces are present in the combination, they have unequal
impact in the MKL optimization problem. In fact, most of the bounds related to the
difference between the true error and the empirical margin error (i.e. estimation error)
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change linearly with respect to the square root of the maximal trace among the combined
kernels. Moreover, if we have that ∃T > 0 such that

T 2 ≥ Kr(x,x) ∀r = 1, ...,R ∀x (7.11)

the estimation error (fixed a specific task and without constants) is O(T ) [51, 101]. Thus,
if not differently motivated, different traces should be avoided.

7.2 Experiments and Results

In this section, the experiments we have performed to validate the EasyMKL approach
(i.e. solving the optimization problem in Equation 7.7) are presented. First of all, an
introduction of the experimental setting is given in Section 7.2.1. In Section 7.2.2 we show
some results confirming that the maximization of the separation in feature space is a good
criterion to pursue to obtain effective kernels. Moreover, an overview of the baselines
and state-of-the-art methods is given in Section 7.2.3. In Section 7.2.4 we compare our
algorithm against other methods with respect to the AUC over ranking tasks. In Section
7.2.5 we perform experiments concerning time and memory performance of EasyMKL.
We tested the stability of EasyMKL by adding different amounts of noise in the data in
Section 7.2.6. In Section 7.2.6 we analyze how the cardinality of the training set influences
our algorithm. Finally, in Section 7.2.7 we describe experiments that we have performed
to understand the difference in performance obtained by changing the number of weak

kernels.

7.2.1 Experimental setting

Experiments have been performed comparing the proposed methods with other state-of-
the-art MKL algorithms with respect to accuracy and computational performance. A
total of 7 benchmark datasets with different characteristics and 7 different MKL methods
have been considered. Namely, the datasets considered areDiabetes, Australian, German,
Splice, Batch2, Mush, Gisette, that are summarized in Table 7.1 (see Section 2.1.2 for
further details). Data have been scaled to the[−1,+1] interval and the number of training
examples selected for the training part is approximately 10% of the dataset. We decided to
use relatively small training sets obtaining a final accuracy less influenced by the classifier
(on which the combined kernel is applied) and more influenced by the real quality of a
kernel. Further, we preferred having larger test sets and many different splits of each single
dataset aiming at improving the significance of the overall evaluation.

In this work we want to demonstrate that we can efficiently perform kind of feature
selection/weighting via MKL and this can be done by selecting a very large set of weak
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Data set Source Features Examples Ntr

Diabetes UCI 8 768 77
Australian Statlog 14 690 69
German Statlog 24 1000 100
Splice UCI 60 1000 100
Batch2 UCI 128 1244 124
Mush UCI 112 2000 200
Gisette NIPS03 5000 13500 1350

Table 7.1: Datasets information: name, source, number of features, number of examples
and cardinality of the training set.

kernels each one individually defined using a small subset of the original features.
Let d ∈ N and β > 0 two parameters, then the rth kernel is constructed by random

picking of a bag (replica are allowed) of features Fr, such that |Fr| ≤ d, and constructing
an RBF based weak kernel defined according to

Kr[i, j] = ∏
f∈Fr

e−
β

|Fr | (x
( f )
i −x( f )

j )2
. (7.12)

R Note that, using Equation 7.12 we are generating a family of weak kernels containing
a large number of kernels with poor performance. The original information contained
in the raw dataset is maintained but it is shuttered, fragmented and then randomly
distributed among the weak kernels. The goal of our algorithm is to combine this
information in the best way possible, creating a sort of deeper kernel. This new kernel
has to be able to highlight (implicitly) which non linear combination, of the original
features, is more important.

7.2.2 Is data separation a good criterion to maximize?

In this section, we present results showing that the maximization of the distance between
positive and negative examples is a good criterion to pursue as it is positively correlated
with the AUC obtained in a binary ranking task.

In particular, we designed a simple greedy algorithm which constructs a series of
kernels with monotonically increasing data separation. For reader’s convenience, we recall
the formula of separation:

min
γγγ∈Γ̂

γγγ
>ŶK̂Ŷγγγ. (7.13)

The algorithm starts with a null kernel and considers sequentially the available weak
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kernels. At each iteration, the current kernel is updated with a weak kernel only if this
addition increases the separation of training data. Note that, this algorithm corresponds to
have ηηηr ∈ {0,1}. The algorithm is described in detail in Algorithm 1.

Algorithm 1 A greedy MKL algorithm which aims at greedily maximizing the separation
of positive and negative examples in the training set.
Require: Λ ∈ [0,1]
Ensure: A kernel matrix K∗ and a vector γγγ∗

1: K∗ =O, c = 1, d∗ = 0
2: for r = 1 to rmax do
3: pick a new Kr such that tr(Kr) = k
4: set K = 1

c+1(cK∗+Kr)

5: set γγγ∗ = KOMD(K̂,Λ)
6: compute current distance d = γγγ∗>ŶK̂Ŷγγγ∗

7: if d > d∗ then
8: d∗ = d, K∗ = 1

c+1(cK∗+Kr), c = c+1
9: end if

10: end for
11: return K∗ , γγγ∗ = KOMD(K̂∗,Λ)

In Figure 7.1, an example of a plot obtained applying the greedy algorithm on the Splice

dataset, using 10,000 weak kernels and generated as described in Section 7.2.1(d = 5), is
given. This experiment clearly shows the strong correlation between the data separation
and the AUC obtained in the test set using the produced kernel.

7.2.3 Methods

We have then considered three baseline methods for our experiments. The first method
SVM is the classical SVM trained with all the features. This is reported for the sake of
completeness and to give an idea of the difficulty of the datasets. Note that, the feature
space in this case is different from MKL methods and we can consider these results as a
very strong baseline. The second method, called Random Kernel (Random), consists of
random picking from available kernels, which is equivalent to set only one ηr equal to 1
and all the others equal to 0. We decided to add this baseline as an indicator of how much
information is brought from single kernels. Intentionally, the performance of this baseline
could be really poor. Finally, the last baseline method is the Average Kernel (Average)
where the same weightηr is given to all the availableweak kernels. Despite its simplicity,
it is known (see [201]) that this is a strong baseline that beats other more advanced
techniques quite often and can obtain very good results. We have then considered three
state-of-the-art algorithms of MKL with SVM: Simple MKL (SMKL) [157], Generalized

MKL (GMKL) [189], Lasso-based MKL (GLMKL) [117, 202]. All these three algorithms
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Figure 7.1: Value of the quality function (Separation) versus the AUC obtained using the
greedy algorithm over the Splice dataset.

are in the optimization based family of MKL methods. A MATLAB implementation 2 of
these methods by Mehmet Gönen and Ethem Alpaydin [79] has been used. Moreover, a
very efficient MKL method called SMO Projected Gradient Descent Generalized MKL

(SPG-GMKL) [104] has been used in order to compare che computational complexity in
time and memory.

The validation of the methods was performed before each type of experiment. A subset
of examples (validation set) was selected for each method and dataset and was only used to
select the best hyperparameters. The kernel machines (SVM and KOMD) were validated
using the same subset of data to obtain a fair comparison. The performance of SVM and
KOMD were similar in most of the cases, thus confirming the findings in [6].

7.2.4 AUC comparisons

The quality of the different combined kernels has been evaluated by means of AUC (Area
Under Curve), which measures how good the induced ranking order is with respect to the
target classification task. In this way, we do not necessitate of a threshold setting which is
an additional, and useless, degree of freedom when evaluating kernels performance. Weak
kernels have been generated according to the method depicted in Section 7.2.1. A number
of 10,000 weak kernels have been constructed for each dataset. Two different values for d,

2 http://www.cmpe.boun.edu.tr/~gonen/mkl.

http://www.cmpe.boun.edu.tr/~gonen/mkl
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Average AUC (RBF all features)
Algorithm Diabetes Australian German
SVM 80.39% 91.37% 70.79%

Average AUC (RBF all features)
Algorithm Splice Batch2 Mush
SVM 86.12% 95.20% 98.52%

Table 7.2: AUC results on three datasets of SVM (RBF all features).

that is d ∈ {5,10}, have been used in the generation algorithm with the RBF parameter β0

obtained by model selection on a standard SVM. The experimental setting is summarized
below:

1. Repeat for r = 1 to R = 10,000: pick a random p ∈ {1, ...,d} and generate a weak

kernel Kr using p features picked randomly (with replacement).
2. Combine {Kr}R

r=1 with a MKL algorithm to obtain a kernel K.
3. Rank test examples using K and SVM (KOMD for the proposed method) and

evaluate the quality of the ranking with the AUC metric.

The same experiments have been repeated 1,000 times averaging the AUC results in order
to improve the significance of the evaluation. Aiming at setting our experiments as fair
as possible, the KOMD algorithm has been used with the kernel produced by our MKL
method, while SVM has been used on all the others. For what concerns the SVM baseline,
RBF kernels with all the features have been used in this case. The obtained results are
summarized in Table 7.2 .

The results obtained with the MKL algorithms are summarized in Tables 7.3 and 7.4
(for d = 5 and d = 10) showing that standard MKL methods do not have performances
significantly better than the simple kernel averaging. On the other side, EasyMKL has
significantly better AUC in four out of six datasets. Also, EasyMKL has a small standard
deviation (std) with respect to the other methods and this fact highlights the stability of
our algorithm. This trend is confirmed in Table 7.5 where the proposed method is always
significantly better than the average baseline. Unfortunately, given the relatively large
number of examples of the Gisette dataset, it was not possible to run state-of-the-art MKL
methods on this data without running out the memory.

7.2.5 Performance in time and memory

We have also performed experiments3 to evaluate the computational time and the memory
used by EasyMKL. We compared our algorithm with a state-of-the-art algorithm called

3For these experiments we used a CPU Intel Core i7-3632QM @ 2.20GHz 2.20GHz
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Average AUC (RBF subset d = 5)
Algorithm Diabetes Australian German
Random 62.13±6.20% 65.56±21.32% 49.59±11.68%
Average 63.01±0.41% 92.09±0.51% 73.04±0.37%
SMKL 77.52±2.11% 91.64±3.18% 69.71±2.78%
GMKL 75.43±3.23% 90.37±4.01% 69.53±3.87%
GLMKL 70.95±2.75% 85.27±3.56% 68.61±3.02%
EasyMKL 79.91±0.13% 92.17±0.11% 72.71±0.21%

Average AUC (RBF subset d = 5)
Algorithm Splice Batch2 Mushrooms
Random 52.61±10.22% 81.14±11.83% 28.58±24.56%
Average 86.56±0.25% 95.35±0.43% 98.45±0.49%
SMKL 83.48±2.15% 94.82±2.18% 97.49±3.41%
GMKL 83.70±4.24% 92.53±3.99% 97.39±4.89%
GLMKL 85.36±1.98% 94.54±3.34% 96.38±4.72%
EasyMKL 87.87±0.18% 98.98±0.21% 97.91±0.24%

Table 7.3: AUC±std results on three datasets of various MKL methods and baselines (RBF
feature subset d = 5).

Average AUC (RBF subset d = 10)
Algorithm Diabetes Australian German
Random 71.44±7.05% 70.36±12.59% 56.93±7.14%
Average 71.94±0.34% 92.11±0.42% 73.33±0.36%
SMKL 75.21±3.41% 87.94±2.12% 70.92±2.56%
GMKL 72.01±5.76% 86.88±3.17% 70.89±3.01%
GLMKL 71.85±5.01% 84.80±2.09% 69.75±2.78%
EasyMKL 79.61±0.16% 92.17±0.11% 73.21±0.11%

Average AUC (RBF subset d = 10)
Algorithm Splice Batch2 Mushrooms
Random 56.76±8.52% 85.30±8.24% 44.58±37.26%
Average 90.42±0.34% 94.70±0.53% 98.86±0.19%
SMKL 86.84±3.42% 95.07±4.87% 97.48±2.37%
GMKL 84.48±6.02% 94.92±6.97% 96.99±4.32%
GLMKL 86.41±5.51% 94.18±6.09% 95.25±3.12%
EasyMKL 91.19±0.18% 97.08±0.16% 98.29±0.12%

Table 7.4: AUC±std results on three datasets of various MKL methods and baselines (RBF
feature subset d = 10).
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Algorithm RBF d = 5 RBF d = 10 RBF d = 20
Average 95.52±0.15% 94.72±0.13% 93.65±0.13%
EasyMKL 95.83±0.12% 95.40±0.10% 94.64±0.11%

Table 7.5: Average AUC±std on the Gisette (NIPS2003 feature selection challenge) of
EasyMKL (with RBF subset) and comparison with the Average baseline.

SPG-GMKL [104]. A C++ implementation of SPG-GMKL provided by the authors4

has been used. SPG-GMKL with this implementation is more than 100 times faster than
Simple MKL [104]. The Splice dataset has been selected for this experiment with 100
training examples. A variable number of RBF kernels has been generated with a parameter
β picked randomly in (0,1) and using all the 60 features of the Splice dataset. We have
studied the performance in time and memory, fixed an upper bound of 2 GB for the memory.
Results are reported in Figure 7.2.

Based on our experiments, the time complexity of SPG-GMKL is linear with the
number of kernels, with a constant of 0.15 seconds per kernel. EasyMKL has a linear
increase in time too, with 0.17 seconds per kernel. The memory used by SPG-GMKL has a
sub-linear growth with the number of kernels and has reached 2 GB with only 400 kernels.
Viceversa, the memory used by our algorithm is independent from the number of kernels to
combine. This is due to the fact that the optimization in our algorithm consists of a simple
KOMD optimization on the sum of kernels. The computation of this sum of matrices can
be easily implemented incrementally and only two kernel matrices need to be stored in
memory. It follows that, with our method, we can use an unlimited number of different
kernels with only a small memory requirement (e.g. 47 MB for the Splice dataset).

7.2.6 Stability with noisy features

In this set of experiments we injected artificial noise features, that is, features uncorrelated
with the label of the example, to study the robustness of EasyMKL with respect to the
Average Kernel method.

Similarly to [82], given a dataset of L examples, each new noise feature h is created
using three simple steps:

1. Pick a feature f randomly from the set of the original features.
2. Let F = {x( f )

i : i = 1, ...,L} be the list of values of f (with replica).
3. For each example xi with i = 1, ...,L, define the value of x(h)i as a randomly picked

value from F.
Using this method we have created features with a distribution that is similar to the
original features but uncorrelated with the labels (i.e. permutations of the feature val-

4http://www.cs.cornell.edu/∼ashesh/pubs/code/SPG-GMKL/download.html
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Figure 7.2: Time and memory used by SPG-GMKL and EasyMKL with different amounts
of kernels combined. The kernels are created using all the features of the Splice dataset.
The experiment with 500 kernels of SPG-GMKL is not reported as it exceeds the limit of
2 GB of memory.
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ues). We have generated noise features in different percentages of the original fea-
tures. With these new datasets we have repeated the same experiments described in
Section 7.2.4 with the RBF weak kernels created using d equals to 5 and 10 and three
datasets: Splice, Batch2, and Mush. We have fixed the percentages of noise features
p ∈ {0,50,100,150, ...,900,950,1000}. Finally, we compared EasyMKL against the Av-
erage Kernel algorithm.

Figure 7.3: AUC comparisons with standard deviation of EasyMKL against the Average
Kernel algorithm with respect to different percentages of additional noise features using
different datasets (Splice, Batch2 and Mush) and two different values of d (5 and 10).

The results are summarized in Figure 7.3. We can note that our algorithm obtains good
results even with a 1,000% of additional noise features and it outperforms the baseline
algorithm. EasyMKL increases the gap from the baseline monotonically with respect to
the increase of the percentage of noise features. However, quite surprisingly, these results
confirm that the Average Kernel algorithm is still a very strong baseline.
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Performance with respect to different cardinalities of the training set

In this section we have analyzed how the size of the training set influences the performance
of EasyMKL. We compared our results against the Average Kernel method, that is used as
baseline. We performed these experiments over the Gisette dataset using the same experi-
mental setting as in Section 7.2.4 but with different sizes of the training set. Specifically,
we have selected the size of the training set varying from 10 to 200 examples. For each
size, the result reported in Figure 7.4 has been obtained evaluating the average on a large
number of runs.

Figure 7.4: AUC comparisons (left figures) with standard deviation (right figures) of
EasyMKL against the Average Kernel algorithm with respect to different cardinality of the
training set using the Gisette dataset and three different values of d (5,10 and 20).

From these results, it is clear that our algorithm outperforms the Average Kernel
algorithm when the training set is sufficiently large. This is due to the fact that EasyMKL
effectively uses the training set to learn which features are more important (see experiments
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in Section 7.2.6) and, when data are abundant, it can exploit this information to outperform
the baseline. Not surprisingly, when the size of the training set is small the two algorithms
perform similarly (and the standard deviation is too big to claim any result).

7.2.7 Performance changing the number of weak kernels

We also performed experiments analyzing the performance of EasyMKL against the
Average Kernel method using different numbers of weak kernels. The kernels have been
generated using the same setting described in Section 7.2.4. The number of generated
kernels R was selected ranging from R = 10 to R = 200 (with a step of 10 kernels). We
performed the experiments fixing d = 5 (i.e. very weak kernels) and using two datasets:
Splice and German.

Figure 7.5: AUC comparisons with standard deviation of EasyMKL against the Average
Kernel algorithm with respect to different number of weak kernels using the German
dataset (24 features) and the Splice dataset (60 features) with d = 5.
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The experiments have been repeated several times for each value of R and the results
are reported in Figure 7.5. We can observe that EasyMKL outperforms the Average
Kernel method and these experiments confirm that our algorithm also works well when
combining a small number of weak kernels. In particular, EasyMKL obtains a steeper gain
in performance with the first weak kernels (i.e. from 10 to 30 weak kernels).

7.3 Summary of the results

In this chapter we have proposed the EasyMKL algorithm which is able to cope efficiently
with a very large number of different kernels. The experiments we reported have shown
that the proposed method is more accurate than MKL state-of-the-art methods. We have
also discussed time and memory requirements with respect to the number of combined
kernels showing that EasyMKL uses only a constant amount of memory and it has only
a linear time complexity. Finally, EasyMKL seems also quite robust with respect to the
noise introduced by features which are not informative and works well even if used with a
small number of weak kernels.





8. Spectral Complexity

In this chapter, a new measure of kernel complexity will be defined. This measure, called
spectral complexity, is connected to the empirical Rademacher complexity and, for this
reason, to the generalization error as well. The spectral complexity is related to the
expressiveness of the family of linear functions with bounded norm implicitly defined by
the kernel. Intuitively, this expressiveness can be seen as the quantity of different labelings
that a family of functions is able to shatter.

8.1 A good measure for kernel complexity

Dealing with kernel complexity, we are interested in the expressiveness of a family of linear
function in the Reproducing Kernel Hilbert Space (RKHS) defined by the kernel. These
linear functions are in the form FB = {x j→w ·φφφ(x j) : ‖w‖2 ≤ B} where φφφ is the mapping
from X to the RKHS. This definition highlights a connection between the measures for
kernel complexity and R̂, i.e. the empirical Rademacher complexity. In fact, the following
inequality holds:

R̂(FB)≤ O(B
√

tr(K)). (8.1)

Given a kernel matrix, a good complexity measure for kernels should be easy to com-
pute and satisfies some properties. For example, a correct measure for kernel complexity
should be invariant to the multiplicative constants. It is well know, and it is a reasonable
property, that the kernel K has the same expressivity as the kernel cK ∀c > 0.

In literature, the trace of a kernel is often used as (part of the) bounds on the general-
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ization error [122]. However, the simple trace is not a good measure for the estimation of
the kernel expressivity. In fact, if two kernels differ only for a multiplicative constant, they
have different traces.

It is also possible to defined the extreme cases of a good measure, i.e. the kernel
matrices with minimal and maximal expressiveness. Excluding the kernel matrix with all
the entries equal to zero, the kernel matrix with lower complexity is the matrix defined
by 1L1>L ∈ RL×L. This matrix has only an eigenvalue different from zero and, in fact, it
admits only two types of labeling (all the examples have to be positive or negative). On the
other hand, the matrix with the highest complexity has to be the identity matrix IL. The
identity matrix admits all the possible labelings of the examples and, in fact, using this
matrix as similarity measure in a large margin kernel machine (e.g. KOMD, Chapter 5),
every classification task becomes separable in training data, as explained in the following
preliminary section.

8.2 Eigenvalues and Data Separation

Given two generic points in the convex hulls of positive and negative training examples in
feature space, specified by a vector γγγ ∈ Γ̂ (see Chapter 2), then their squared distance can
be computed by

D = ||∑
i∈⊕

γiφφφ(xi)−∑
i∈	

γiφφφ(xi)||2 = ||∑
i

yiγiφφφ(xi)||2 =
l

∑
i=1

l

∑
j=1

yiy jγiγ jK̂i j (8.2)

= γγγ
>ŶK̂Ŷγγγ (8.3)

and Ŷ = diag(ŷ). It follows that the minimum distance between the convex hulls of
positive and negative examples can be computed by

Dmin = min
γγγ∈Γ̂

γ
>ŶK̂Ŷγγγ (8.4)

and similarly the maximum squared distance between pairs of positive and negative
examples can be obtained by:

Dmax = max
γγγ∈Γ̂

γ
>ŶK̂Ŷγγγ. (8.5)

R It is interesting to note that the value Dmin is obtained solving the objective function
Q from the not regularized version of KOMD presented in Chapter 5.
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Using well know properties of symmetric positive semidefinite matrices [172], we can
give a lower bound of the minimum distance as follows:

min
γγγ∈Γ

γγγ
>ŶK̂Ŷγγγ ≥ λl min

γγγ∈Γ̂

||Ŷγγγ||2 ≥ 2
l

λl (8.6)

and λl is the minimum eigenvalue of the matrix K̂. This implies that, when the kernel
matrix is not singular, then any random labeling can be shattered by an hyperplane in
feature space as the distance between the convex hulls is strictly larger than zero, and this
is true for any labeling.

Similarly, we can give an upper bound to the maximum distance of training examples
which depends on the maximal eigenvalue this time, that is

max
γγγ∈Γ

γγγ
>ŶK̂Ŷγγγ ≤ λ1 max

γγγ∈Γ
||Ŷγγγ||2 ≤ λ1. (8.7)

At a first glance these results would suggest that a kernel is a “good” kernel when is able to
maximize the minimum distance (separation of training data) and minimize the maximum
distance (spreading of training data). Looking now at the kernel spectrum, this is typical
when the difference between the maximum eigenvalue and the minimum eigenvalue is
small. As an extreme example, this happens with the identity matrix. However, these kinds
of kernels simply overfit the training data, i.e. they will be very bad when used on new
data. So, we see that the spectrum of a kernel can give precious information about the
complexity of the kernel. Note that the trace of the matrix alone is not able to capture this
information as there can be matrices with very different complexity and same trace.

Now we are ready to introduce, in a formal way, our new measure of kernel complexity.

8.3 A new measure for kernel complexity

The spectral complexity for a positive semidefinite matrix K is defined as the ratio between
the 1-norm and the 2-norm of its eigenvalues, or equivalently, as the ratio between its trace
norm ||K||T and its Frobenius norm ||K||F .

This measure can be computed in several ways:

C(K) =
∑

L
i=1 λi√

∑
L
i=1 λ 2

i

=
||K||T
||K||F

=
tr(K)√

∑i j K[i, j]2
, (8.8)

since, for a positive definite matrix, the Frobenius norm is equal to the 2-norm of its
eigenvalues and the trace is equal to the sum of its eigenvalues.

Note that, the (squared) spectral complexity can also be seen as an approximation of
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the rank of a matrix. In fact, from a result in [180]:

||K||F ≤ ||K||T ≤
√

rank(K)||K||F , (8.9)

we can easily derive the following strict bounds:

1≤ C(K)≤
√

rank(K). (8.10)

In particular, the spectral complexity C(K) has the following nice properties:

• the identity matrix IL having rank equal to L has the maximal spectral complexity
with C(IL) =

√
L,

• the kernel K = 1L1>L having rank equal to 1 has the minimal spectral complexity
with C(1L1>L ) = 1,
• it is invariant to multiplication with a positive scalar as

C(αK) = C(K), ∀α > 0.

An equivalent standardized version can also be used with values in the interval [0,1],
that is

Cs(K) =
R(K)−1√

L−1
∈ [0,1]. (8.11)

Now, we are ready to introduce an important definition for a family of weak kernels K
(or for a class of kernel functions):

Definition 8.3.1 A class of kernel functions K is Monotonically Spectral-Complex
(MSC) iff, the elements of the class can be ordered (K= {K1,K2, . . .}) in such a way
that, for any possible row-normalized dataset X and for any pair of indexes i < j, the
following holds:

C(K(i)
X )≤ C(K( j)

X ), (8.12)

where K(i)
X is the kernel matrix evaluated on data X using the kernel function Ki.

R A row-normalized dataset X is a dataset where each example is normalized with
respect to the 2−norm, i.e

‖X[i, :]‖2 = 1,∀i. (8.13)

Geometrically, a row-normalized dataset have all the examples on the surface of an
hyper-sphere.
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8.3.1 A toy example using the RBF kernel

We consider the widely used RBF kernel in the form

Kγ

RBF(x,y) = exp(−γ‖x−y‖2
2) with γ ≥ 0. (8.14)

It is well known that with γ = 0 the kernel matrix becomes equal to 1L1>L . On the
other hand, for γ → +∞ the kernel matrix equals to IL. In this section, we will use two
benchmark datasets (Heart and Sonar) to compare empirically the spectral complexity with
other baseline measures:

• the rank(K) of the kernel matrix (i.e. the number of eigenvalues different from
zero):

rank(K) = |{λi : λi > 0, i = 1, . . . ,L}|, (8.15)

• the number of eigenvalues that are greater than a fixed threshold of 10−5:

treshold(K) = |{λi : λi > 10−5, i = 1, . . . ,L}|, (8.16)

• the entropy evaluated over the list of the eigenvalues (i.e. how much the eigenvalues
are uniformly distributed):

entropy(K) =
L

∑
i=1

λi ∗ log(λi). (8.17)

The results has been standardized in the range [0,1] and are depicted in Figure 8.1 for
Heart and Sonar, using γ ∈ {2i : i =−15,−14, . . . ,14,15}.

All the evaluated measures increase their values monotonically with the parameter
γ . rank and threshold are similar to a step function considering only the cardinality of a
set of eigenvalues, without take into account the distribution of them. On the other hand,
the entropy is more similar to our spectral complexity Cs but it requires the entire list of
eigenvalues.

At least empirically, we have shown that a family of weak kernels K defined as

K= {Kγ

RBF : γ ∈ {2i : i =−15,−14, . . . ,14,15}} is a MSC family. (8.18)

Now we are ready to introduce an important property of the spectral complexity. In
fact, the spectral complexity is strictly connected to the empirical Rademacher complexity

as proven in the following section.
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Figure 8.1: The spectral complexity Cs compared to the rank of the kernel matrix (rank), the
number of the eigenvalues greater than 10−5 (threshold) and the entropy of the eigenvalues
using an RBF kernel function with γ ∈ {2i : i =−15,−14, . . . ,14,15} for Heart and Sonar.

8.4 Connection to the Rademacher complexity

Firstly, we define the set of the vectors with fixed 1-norm

Ψ = {ααα ∈ RL s.t. ‖ααα‖1 = 1}. (8.19)

Then, the class of functions that we consider are linear functions with bounded norm

{x j→
l

∑
i=1

αiKi, j : ααα
T Kααα ≤ B2, ∀ααα ∈Ψ} ⊆ (8.20)

⊆ {x j→ w ·φφφ(x j) : ‖w‖2 ≤ B}= FB, (8.21)

where φφφ is the feature mapping for the kernel K. The following bound theorem for the
complexity of FB holds:

Theorem 8.4.1 ([172], Theorem 4.12). Given a kernel K, evaluated over a set of points
X, the empirical Rademacher complexity of the class FB satisfies

R̂(FB)≤ O(B
√

tr(K)). (8.22)

Equation 8.27 shows that the empirical Rademacher complexity is proportional to the trace
of the kernel. Now, we are ready to introduce important observations about the value of
αααT Kααα , for a general kernel K. In fact, the following proposition holds:

Proposition 8.4.2 Let K be a kernel matrix in RL×L with eigenvalues λ1 ≥ ·· · ≥ λL ≥ 0,
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then
∀ααα ∈Ψ, ααα

T Kααα ≤ λ1 ≤ ‖K‖F . (8.23)

and λ1 is the tightest bound possible.

Proof. We can exploit the spectral decomposition of a kernel matrix and rewrite

ααα
T Kααα =

L

∑
i=1

λi(ααα
T ui)

2, (8.24)

where ui is the eigenvector with eigenvalue λi. Then, it is easy to see that:

(αααT ui)
2 = cos(θααα,ui)

2‖ααα‖2
2, (8.25)

where θααα,ui is the angle between the vector ααα and the eigenvector ui. Using the properties
of the norms (‖ααα‖2

2 ≤ ‖ααα‖2
1 = 1) and the fact that the eigenvectors ui are an orthonormal

base we can obtain the final result:

ααα
T Kααα ≤

L

∑
i=i

λi cos(θααα ,ui)
2‖ααα‖2

1 ≤ λ1 ≤

√
L

∑
i=1

λ 2
i = ‖K‖F .

The bound is reached when the kernel matrix K has only one eigenvalue different from
zero, its eigenvector is parallel to the vector ααα and ααα is such that ‖ααα‖2 = ‖ααα‖1. �

Finally, from the previous results the following corollary holds:

Corollary 8.4.3 Let K be a kernel matrix in RL×L with eigenvalues λ1 ≥ ·· · ≥ λL ≥ 0,
then

∀ααα ∈Ψ,
αααT Kααα

‖K‖F
≤ 1. (8.26)

From Proposition 8.4.2 and using Theorem 8.4.4, given a kernel with the Frobenius norm
equal to 1, we have that the upper bound of the empirical Rademacher complexity is equal
to R̂(FB)≤ O(

√
tr(K)), fixing B2 = B = 1. Then, the trace of kernels with this property

is a good estimator for their empirical Rademacher complexity.

Corollary 8.4.3 highlights a method to normalize a kernel obtaining ‖K‖F = 1. Finally,
we are ready to prove the following theorem:

Theorem 8.4.4 Given a kernel K, evaluated over a set of points X, the empirical
Rademacher complexity R̂ of the class of linear functions F= {x j→∑

l
i=1 αiK[i, j],ααα ∈

Ψ} satisfies
R̂(F)≤ O(

√
C(K)). (8.27)
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Proof. From the definition of the spectral complexity, we have that
√
C(K) =

√
tr(K)
‖K‖F

=√
tr( K
‖K‖F

). Then, the spectral complexity is the trace of the kernels with Frobenious norm

equal to 1, i.e. in the form K
‖K‖F

. Using the Corollary 8.4.3 we can claim that B = B2 = 1 is
a good value as upper bound of αααT K

‖K‖F
ααα ≤ 1. Then, from Theorem 8.4.4, for the family

F1 the following inequality holds:

R̂(F1)≤ O(

√
tr(

K
‖K‖F

)) = O(
√

C(K)).

Finally, we can conclude observing that F1 = F for each kernel defined as K
‖K‖F

. �

In this chapter we have presented a new measure for kernel complexity, called spectral

complexity. This new measure is easy to evaluate and is strictly connected to the empirical

Rademacher complexity as proved in Theorem 8.4.4.



9. Weak kernels optimization

In this chapter, we focus on principled ways to design base kernels and make their super-
vised combination effective. In particular, we propose to design base kernels of increasing
expressiveness (complexity) in a way that the supervised MKL algorithm can detect those
components which are really useful to the task at hand. For this, the spectral complexity
will be exploited as a principled measure of the expressiveness of a kernel.

Intuitively, low complexity kernels correspond to kernels defined on popular features,
while, high complexity kernels correspond to kernels defined on more elaborated features
that are observed on very few examples. We show how spectral complexity is also very
nice at capturing this kind of dependencies between features used by different kernel
functions. The hypothesis, similarly to the assumption of the HKL (see Section 3.3.3),
is that the features (or the base kernels) can be embedded in a hierarchically connected
structure (e.g. a DAG).

Summarizing, the chapter contribution is three-fold:

• Starting from a characterization of the wide class of dot-product kernels K(x,z) =
f (x ·y) as dot-product polynomials (DPP), firstly, we show how common kernels,
like the polynomial kernel and RBF, are instances of the class of DPPs and they
only differ for the values of the coefficients given to the different terms of the
DPP. We propose a MKL approach to learn the coefficients of a general DPP
and we empirically show that this approach outperforms the baselines, sometimes
significantly, against ten benchmark datasets in terms of AUC;
• We present empirical evidence that building base kernels exploiting the structure
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of the features and their dependencies, makes the combined kernel improve upon
alternatives which do not exploit this structure;
• We apply the same methodology to kernel for structures, specifically to the ODD

graph-kernel. The intrinsic structure of the kernel is used to define a MSC family
of weak kernels, as defined in Chapter 8. This gives a principled way to divide the
structural features in bunches of increasing spectral complexity.

In the following, the assumption that the datasets are row-normalized is considered. An
example x in a row-normalized dataset is such that ‖x‖2 = 1 and so, it lives on the surface
of a hyper-sphere of radius 1.

9.1 Dot-product Polynomial Kernels

A generalized polynomial kernel can be built on the top of any other valid base kernel as
in K(x,z) = p(K0(x,z)), where the base kernel K0 is any valid kernel and p : R−→ R is a
polynomial function with non-negative coefficients, that is p(x) =∑

d
s=0 asxs. In this chapter,

we focus on Dot-Product Polynomials (DPP) which is the class of generalized polynomial
kernels where the simple dot product is used as base kernel, that is K(x,z) = p(x · z).

Using a result from harmonic theory [163, 112], we are able to show that a large family
of kernels can be formulated as DPP kernels.

Theorem 9.1.1 A function f : R→ R defines a positive definite kernel K : B(0,1)×
B(0,1)→ R as K : (x,z)→ f (x · z) iff f is an analytic function admitting a Maclaurin
expansion with only non-negative coefficients i.e. f (x) = ∑

∞
s=0 asxs,as ≥ 0.

Basically, this theorem guarantees that any dot product kernel of the form K(x,z) =
f (x ·z), x and z defined in the unitary ball, can be characterized by its Maclaurin expansion
with non-negative coefficients, that is a DPP. On the other hand, any choice of non negative
coefficients of a DPP induces a new valid kernel.

Classical vector kernels can be formulated as a DPP where the coefficients are fixed
(in the worst case using an infinite sum):
• The polynomial kernel, KD,c(x,z) = (x · z+ c)D ∀c≥ 0 ∈ R,D ∈ N is a DPP kernel.

In fact, resorting to the binomial theorem expansion [172], we obtain:

KD,c(x,z) =
D

∑
d=0

(
D
d

)
cD−d(x · z)d =

D

∑
d=0

ad(x · z)d (9.1)

where ad =
(D

d

)
cD−d,d ∈ {0, . . . ,D} are the coefficients of a DPP. Selecting the

particular case with c = 0, we obtain the homogeneous polynomial kernel (HPK):

KD(x,z) = (x · z)D (9.2)
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which is also a DPP having only one non null coefficient aD = 1.

• The RBF kernel, Kγ

RBF(x,z) = e−γ||x−z||2 ∀γ ≥ 0 ∈ R is another instance of DPP.
In fact, when data are normalized, using the Taylor expansion, we can show the
following:

Kγ

RBF(x,z) = e−γ||x||2e−γ||z||2e2γx·z (9.3)

= e−2γe2γx·z (9.4)

= e−2γ
∞

∑
s=0

(2γ)2s

s!
(x · z)s. (9.5)

(9.6)

Moreover, the list of possible kernels that can be decomposed in the DPP form also
contains: linear kernel, ANOVA kernel and others.

9.2 MKL for learning the DPP coefficients

Interestingly, in all the cases above, the obtained kernel matrix can be decomposed as a
(possibly infinite) non negative combination of HPK matrices, that is:

K =
∞

∑
s=0

asK(s)

where K(s)[i, j] = (xi ·x j)
s, and this fact makes this decomposition suitable to a solution

based on multiple kernel learning. In practice, given a task, we propose to learn the
coefficients of a generic DPP in a supervised manner, in a way to specialize the resulting
kernel to the task at hand.

As presented in Section 3.3.3, many different algorithms for MKL have been proposed
in the last years, including [157, 189, 117, 202, 182, 17, 4]. In principle, any of these
algorithms can be used for our purpose. In the next sections, we will exploit the EasyMKL
algorithm, presented in Chapter 7 as our MKL algorithm. EasyMKL is very efficient and
is able to combine a large number of kernels in a fast way, for this reason is suitable for
our purposes.

R In general, EasyMKL does not take into account the complexity of the weak kernels
but it only focuses on the margin obtained by their combination.
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9.3 Exploiting the structure of the features

In this section, we define MSC families of weak kernels starting from the structure of the
HPKs.

Structure of Polynomial Kernels

The parameter d of a HPK of the form K(x,z) = (x · z)d induces a MSC family of kernel
functions. More formally:

Proposition 9.3.1 Let KD = {K0, . . . ,KD} the family of kernel functions, where Kd(x,z)=
(x · z)d is the d-degree homogeneous polynomial kernel. Then, for any row-normalized
dataset X, the family KD is MSC.

Proof. Let i, j be two indexes such that 0≤ i < j, we need to prove that C(K(i)
X )≤ C(K( j)

X )

for any row-normalized dataset X. Since data are normalized, for any d and for any x,
Kd(x,x) = (x ·x)d = 1d = 1. Then, the d-degree HPK is also normalized and the trace is a
constant that does not depend on d. So, we only need to prove the following:

||K(i)
X ||F ≥ ||K

( j)
X ||F

which is easy to show, since:

||K(i)
X ||F =

L,L

∑
i, j
(xi ·x j)

2i ≥
L,L

∑
i, j
(xi ·x j)

2 j = ||K( j)
X ||F

where we used the fact that xi ·x j ≤ 1 since the vectors are normalized. Moreover, zi ≥ z j

when i < j and |z| ≤ 1. �

Note that, since the feature space of a d-degree HPK is constructed with all possible
d-degree monomials. Then, there is a clear dependence from features of higher order HPKs
towards features of lower order HPKs. For example, the value of the feature x1x4x5x9 in
the 4-degree HPK depends on the values of the features x1, x4, x5 and x9 in the 1-degree
HPK. An example is depicted in Figure 9.1. In general, the higher the order of the HPK,
the sparser is the kernel matrix produced. This explains why the Frobenius norm of the
kernel matrix decreases with the HPK order.

9.3.1 Margin and Complexity: an example

The structure of the features imposes a particular behavior of the weights assigned by
EasyMKL. In fact, EasyMKL assigns the weight of a specific base kernel proportionally
with respect to its contribution to the margin. Given one point in the convex hull of positive
examples x+ and one point in the convex hull of the negative examplesx−, i.e. defining a
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x1x4x5x9

x1x4x5 x1x4x9 x1x5x9 x4x5x9

x1x4 x1x5 x1x9 x4x5 x4x9 x5x9

x1 x4 x5 x9

4-degree

3-degree

2-degree

1-degree

Figure 9.1: Example of dependencies of the features. The arrows represent the depen-
dencies among the features of different degrees. The nodes in red, starting from the top
represent the diffusion of the zeros (i.e. the sparsity): if the value of x4 is zero then the
value of all the dependent features is also zero. Conversely, if the value of the root x1x4x5x9
is different from zero then all the features in the graph have values different from zero.

distribution γγγ ∈ Γ such that

x+ = ∑
i∈⊕

γiφφφ K(xi) and x− = ∑
j∈	

γ jφφφ K(xi), (9.7)

it is possible to write the squared distance between them, in the feature space of a base
kernel function K as

D2
K(x

+,x−) =‖x+‖2
2 +‖x−‖2

2−2x+ ·x−

= ∑
i, j∈⊕

γiγ jφφφ K(xi) ·φφφ K(x j)+ ∑
i, j∈	

γiγ jφφφ K(xi) ·φφφ K(x j)

−2 ∑
i∈⊕, j∈	

γiγ jφφφ K(xi) ·φφφ K(x j)

= ∑
i, j∈⊕

γiγ jK(xi,x j)+ ∑
i, j∈	

γiγ jK(xi,x j)

−2 ∑
i∈⊕, j∈	

γiγ jK(xi,x j).

When we deal with a normalized HPKs family of base kernel KD = {K0, . . . ,KD}, the
sum of the first two terms of this equation is equal to 2 when d = 0 and is monotonically
decreasing with respect to d. In fact, we have that Kd+1(xi,x j) ≤ Kd(xi,x j), ∀d ≥ 0.
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Moreover, for a sufficiently large value of d < ∞, the two terms converge to ∑i∈⊕ γ2
i +

∑i∈	 γ2
i > 0.

On the other hand, the third term of the equation, that is

−2 ∑
i∈⊕, j∈	

γiγ jKd(xi,x j), (9.8)

is a monotonically increasing function with respect to the value of the degree d. In fact,
it is equal to −2 when d = 0 and it increases monotonically its value until 0 (also in this
case because of the monotonicity of the value Kd(xi,x j)).

We define F(d) :=D2
Kd
(x+,x−) and from the previous observations, we can claim that

for a sufficiently large d, the value of the squared distance converge to limd→+∞ F(d)(x+,x−)=
∑i∈⊕ γ2

i +∑i∈	 γ2
i > 0. Now, we are interested in showing a case in which the maximal

distance is greater than this value (the maximal margin is not reached using the maximal
complexity). We impose the following hypothesis:

- Kernels We use as kernels the normalized HPKs;
- Reasonable labels. We impose the property xi ·x j ∈ [1− ε,1] and xs ·xt ∈ [0,ε] when

yiy j > 0 and ysyt < 0 for a fixed 0 < ε < 1
2 and we suppose a balanced labeling

(specifically, we consider n positive and n negative examples);
- Uniform distribution in Γ. We select the uniform distribution γγγuni f ∈ Γ in order to fix

the two points x+ and x− as the two centroids of the convex hulls of positive and
negative examples.

We have to prove the existence of a d∗ such that ∀d > d∗, F(d +1)−F(d)< 0. In our
case, we have that:

F(d +1)−F(d) =
1
n2 ∑

i, j∈⊕
(xi ·x j−1)Kd(xi,x j)+

1
n2 ∑

i, j∈	
(xi ·x j−1)Kd(xi,x j)

− 2
n2 ∑

i∈⊕, j∈	
(xi ·x j−1)Kd(xi,x j).

Now, we are ready to point-out the following interesting facts: (a) when d is sufficiently
large the values of Kd(xi,x j) becomes similar to 0 if i 6= j; (b) in the case of i = j we have
that (xi · x j− 1) is equals to 0; (c) (xi · x j− 1) > (xs · xt − 1) and Kd(xi,x j) > Kd(xs,xt)

when yiy j > 0 and ysyt < 0.

Changing ε sufficiently small, we are able to impose that

(xi ·x j−1)Kd(xi,x j)

(xs ·xt−1)Kd(xs,xt)
≥

(xi ·x j−1)(1− ε)d

(xs ·xt−1)εd > 1 if d is sufficiently large.

In fact, the values (xi · x j − 1) and (xs · xt − 1) are fixed and Kd(xi,x j) = (xi · x j)
d ≥
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(1− ε)d > εd ≥ (xs ·xt)
d = Kd(xs,xt).

Then, the third term of F(d + 1)−F(d) (that is the positive term) becomes 0 more
rapidly with respect to the first two terms (that are the two negative terms). Then, for a
certain d∗ the value of F(d + 1)−F(d) ∀d > d∗ becomes negative and F(d) ∀d > d∗

decreases its value. This prove that, for at least one d ≤ d∗, the value of F(d) is larger
with respect to limd→+∞ F(d)(x+,x−) and consequently the largest margin is not obtained
exploiting the highest complexities.

In conclusion, when the problem has a reasonable labeling the plot of the assigned
weights to the normalized HPKs will follow a curve with a maximal value that is greater
then ∑i∈⊕ γ2

i +∑i∈	 γ2
i (i.e. greater than the margin obtained using the maximal complex-

ity). In Section 9.4.2, we will show some examples of assigned weights that confirm our
observations (see Figure 9.7).

9.4 Experimental Work

In the following sections, first we will show empirically that KD is effectively a good
choice in practice as family of weak kernels and then we will show the importance of
the MSC structure of KD. Experiments have been performed for a total of ten different
benchmark datasets. Further details about the datasets are summarized in Table 2.2.

The AUC results are obtained using a stratified nested 10-fold cross validation. Specifi-
cally we used the following procedure:

• Each dataset has been divided in 10 folds f1, . . . , f10 respecting the distribution of
the labels, where fi contains the list of indices of the examples in the fold ith;
• One fold f j is selected as test set;
• The remaining nine out of ten folds v j =

⋃10
i=1,i6= j fi are selected as validation set

for the choice of hyper-parameters, applying a new 10-fold cross validation over v
respecting the distribution of the labels;
• The set v j is selected as training set to generate a model (using the validated hyper-

parameters);
• The test fold f j is used as test set to evaluate the performance of the model;
• The reported results are the averages (with standard deviations) obtained repeating

this procedure over all the 10 possible test sets f j (i.e. for each j in {1, . . . ,10}).
.

9.4.1 MKL for learning DPP

In this section we describe the experiments we performed to test the accuracy in terms of
AUC of the kernel generated by learning the coefficients of a dot-product polynomial using
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KD = {K0, . . . ,KD} as base HPKs, and varying the value of D. This method is indicated
with KMKL. For each D, we compare our algorithm against other weighting rules:

• KD, where the weight ηD is set to 1 (and all the other weights are set to 0). This
corresponds to the kernel defined in Equation 9.2;
• Ksum, where the weights are set uniformly over the base kernels, that is ηd = 1

D+1

for d ∈ {0,1, . . . ,D} (as pointed before, this is generally a strong baseline);
• KD,c, where the weights for the base kernels are assigned using the polynomial

kernel rule (see Equation 9.1):

ηd ∝

(
D
d

)
cD−d, d ∈ {0, . . . ,D}. (9.9)

The value for c has been selected as the one from the set {0.5,1,2,3} which obtained
the best AUC on the test set.
• Kγ

RBF , where the weights for the weak kernels are assigned according to the truncated

RBF rule (see Equation 9.6):

ηd ∝
(2γ)2s

s!
, d ∈ {0, . . . ,D}. (9.10)

The value for γ has been selected as the one from the set {2i : i∈ {−5,−4, . . . ,0,1}}
which obtained the best AUC on the test set.

Note that, the results depicted in the following for KD,c and Kγ

RBF are optimistic estimates
of the real performance because of the a posteriori selection of the best parameters c and
γ , respectively.

As described above, a stratified nested 10-fold cross validation has been performed
selecting the EasyMKL hyper-parameter Λ from the set of values:

Λ ∈ {0.0,0.1, . . . ,0.9,1.0}.

The AUC results of these experiments are depicted in Figures 9.2, 9.3, 9.4 for all
datasets. As the reader can see from the figure, our method consistently and significantly
outperforms both the single base kernel solution KD and the average solution Ksum,
especially for high polynomial degrees where KD and Ksum tend to overfit. Moreover, our
solution is always comparable and often better than the optimistic AUC performance of
KD,c and Kγ

RBF weighting rules.

9.4.2 Is the HPK structure important?

In this section, we empirically show that the structure present in HPKs is indeed useful in
order to obtain good results using our MKL approach. With this aim, we built two alterna-
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Figure 9.2: AUC with standard deviation among all the ten benchmark datasets for
different values of D. A stratified nested 10-fold cross validation has been performed with
the Λ hyper-parameter of EasyMKL selected from {0.0,0.1, . . . ,0.9,1.0}. Our proposed
solution KMKL (solid red line) has been compared against the baselinesKD and Ksum and
the optimistic AUC results ofKD,c and Kγ

RBF where a posteriori optimal c ∈ {0.5,1,2,3}
and optimal γ ∈ {2i : i =−5,−4,−3,−2,−1,0,1} have been selected, respectively.
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Figure 9.3: AUC with standard deviation among all the ten benchmark datasets for
different values of D. A stratified nested 10-fold cross validation has been performed with
the Λ hyper-parameter of EasyMKL selected from {0.0,0.1, . . . ,0.9,1.0}. Our proposed
solution KMKL (solid red line) has been compared against the baselinesKD and Ksum and
the optimistic AUC results ofKD,c and Kγ

RBF where a posteriori optimal c ∈ {0.5,1,2,3}
and optimal γ ∈ {2i : i =−5,−4,−3,−2,−1,0,1} have been selected, respectively.
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Figure 9.4: AUC with standard deviation among all the ten benchmark datasets for
different values of D. A stratified nested 10-fold cross validation has been performed with
the Λ hyper-parameter of EasyMKL selected from {0.0,0.1, . . . ,0.9,1.0}. Our proposed
solution KMKL (solid red line) has been compared against the baselinesKD and Ksum and
the optimistic AUC results ofKD,c and Kγ

RBF where a posteriori optimal c ∈ {0.5,1,2,3}
and optimal γ ∈ {2i : i =−5,−4,−3,−2,−1,0,1} have been selected, respectively.



102 Chapter 9. Weak kernels optimization

1 2 3 4 5

0.76

0.76

0.77

0.77

0.78

Polynomial Degree

10
-f

ol
d

A
U

C

Abalone
QD RD

1 2 3 4 5

0.92

0.94

0.96

0.98

1

Polynomial Degree

10
-f

ol
d

A
U

C

Ionosphere
QD RD

Figure 9.5: Nested 10-fold AUC with standard deviation using EasyMKL with QD and RD
with different values of D.

tive sets of base kernels QD = {K(Q)
0 , . . . ,K(Q)

D } and RD = {K(R)
0 , . . . ,K(R)

D }. Specifically,
for the two families of base kernels, we considered the same set of features (monomials
with degrees less or equal to D), but they are assigned to the base kernels in the family in a
different way. When generating QD, the features are assigned to the kernels according to
the degree rule, that is features of degree d are assigned to the kernel K(Q)

d . On the other
hand, when generating RD, the features are assigned randomly to one of its base kernels.

It is well known that the number of all the possible combinations with repetition of
d ∈ {0, . . . ,D} features, picked from a set of m features, is equal to Nd = md . Exploiting
Nd we are able to define the following distribution over the D degrees:

π(d) =
Nd

∑
D
j=0 N j

, d ∈ {0, . . . ,D}. (9.11)

Algorithm 2 gives an effective procedure to generate families of D+1 base kernels
using the features of HPKs of degrees less or equal to a given D. Basically, the algorithm
draws a random feature from the feature space and assign it to a base kernel selected with
a function S which is a parameter of the algorithm. In particular, we invoked the algorithm
using S(d) = d for the base kernel family QD and S(d) = random(0, . . . ,D) for the base
kernel family RD. Finally, it normalizes all the base kernels generated.

Sets QD and RD have been generated for different values of D, with number of steps
fixed to 10,000 for two different datasets. The stratified nested 10-fold cross validation
results are reported in Figure 9.5 for the Abalone and the Ionosphere datasets.

At least empirically, these results highlight the importance of the principled structure
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Algorithm 2 Approximation of weak kernels family.
The symbol

⊙
stands for the entry-wise multiplication among vectors of the same dimen-

sion.
Require: X,D,steps,S : {0, . . . ,D}→ {0, . . . ,D}
Ensure: A kernel family KD = {K0, . . . ,KD}.

1: for s = 0 to D do
2: Ks =O
3: end for
4: for i = 1 to steps do
5: pick d ∈ {0, . . . ,D} according to the distribution π(d)
6: if d = 0 then
7: H = 1L1>L ∈ RL×L

8: else
9: set f a list of random values in [1, . . . ,m] (with replica)

10: xf =
⊙

j∈f X[:, j]
11: H = xf ·xT

f
12: end if
13: set s = S(d) ∈ {0, . . . ,D} (apply the selector)
14: Ks = Ks +H
15: end for
16: for s = 0 to D do
17: Normalize the kernel matrix Ks
18: end for
19: return {K0, . . . ,KD}
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imposed to QD to obtain good results with EasyMKL. As presented in the previous sections,
EasyMKL exploits only the margin in its objective function and has a fixed amount of
weight to distribute (i.e. the vector of the weights has a fixed norm). With a MSC family
of weak kernels, EasyMKL is allowed to exclude the kernels with a spectral complexity C

that is too high or too low to generate margin between positive and negative examples.

The idea can be explained by using a simple example. In the case of binary vectors,
monomial of low degree can be considered "simple" (or "popular") features as likely they
have value 1 on many examples. Monomials of high degree are considered "elaborated"
(or "rare") features since they have value 1 on very few examples. The intuition is that nor
the simpler features neither the more complex ones can be optimal to get a large margin for
many examples. In this sense, MKL helps us to find the best combination of such groups
of features (kernels).

Studying the weights assigned by EasyMKL, we noticed that the best solution that
EasyMKL is able to find for the family RD is near to the average kernel (i.e. all the weights
are proportional to 1

D+1 ). This means that using the EasyMKL approach with this family
of weak kernels is not effective. These results highlight how a principled splitting of the
information can make the difference on MKL results.

Analysis of the spectral complexity

In this section, the study we have performed about is presented KMKL, KD and Ksum

spectral complexities on the benchmark datasets. For all the values of D, KMKL have
shown a complexity trapped between the spectral complexity KD and the one of Ksum.
Figure 9.6 summarizes these results.

These results confirm the theoretical finding about the monotonicity of the spectral
complexity for weak kernels in KD (i.e. the MSC property of KD).

Analysis of the weights assigned to the weak kernels

In this section, we present an analysis of the weights that EasyMKL assigns to the kernels
in the weak family KD for different values of D. Figure 9.7 reports the histograms weights
for D = 3,5,10 and for two datasets: Heart and Splice.

These results show how the optimal distribution of the weights, learned by EasyMKL,
is not the trivial choice of a single value of complexity but is a combination of different
kernels with different complexities. In Heart, the weights are anti-correlated with respect
to the degree of the weak kernels. However, this behavior is not true in general, in fact, for
the Splice dataset, most of the weight is shared among weak kernels of degree in the range
[1,5].
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Figure 9.6: Spectral complexity evaluated for all the ten benchmark datasets for different
values of D. Our proposed solution KMKL (solid red line) has been compared to the
baselines KD and Ksum.
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Figure 9.7: The assigned weights µi by using EasyMKL for the weak kernels in the families
KD for D = 3,5,10 of Heart and Splice datasets.
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Dataset KMKL gHKL1.1 gHKL1.5 gHKL2.0
Haberman 0.716±0.014 0.617±0.166 0.518±0.110 0.556±0.070
Liver 0.689±0.056 0.565±0.109 0.583±0.110 0.623±0.038
Diabetes 0.842±0.027 0.636±0.118 0.733±0.058 0.766±0.046
Australian 0.924±0.081 0.923±0.101 0.918±0.049 0.920±0.045

Table 9.1: Nested 10-fold AUC±std using EasyMKL (KMKL) with K10 as weak family
compared to gHKLρ with ρ ∈ {1.1,1.5,2.0}.

9.4.3 A comparison with the Generalized Hierarchical Kernel Learning

The Generalized Hierarchical Kernel Learning (gHKL) is a generalization of the MKL. A
graph among the features is created to obtain better combination of kernels, as depicted in
Section 3.3.3. In this section, a performance comparison between EasyMKL with DPP
families of weak kernels and the gHKL algorithm will be presented. In these experiments,
we used the implementation of the gHKLρ algorithm provided by the authors1.

We performed a 10-fold cross validation for the AUC evaluation, tuning the parameter
C of the SVM for gHKLρ [105] with a 3-fold cross validation selecting C in {10i : i =

−3, . . . ,3}. The same procedure has been repeated forρ ∈ {1.1,1.5,2.0}. The number of
weak kernels is fixed to 2m, where m is the number of features, as in the original paper
[105]. It is important to point out that, with ρ = 2 the HKL formulation of Bach [14] is
obtained.

For our algorithm, we fixed D = 10 (i.e. the family of MSC weak kernels is K10) and
performed the validation of the parameter Λ of EasyMKL by using the same methodology
(3-fold cross validation) with Λ ∈ {0.0,0.1, . . . ,0.9,1.0}.

In Table 9.1, the AUC results are presented. From these results, we can note how our
solution (KMKL) outperforms the gHKLρ method in this task.

9.5 Weak kernels on the ODD Graph-Kernel

Kernels for structures, including graphs, generally suffer of the diagonally dominant gram
matrix issue, the effect by which the number of sub-structures, or features, shared between
instances are very few with respect to those shared by an instance with itself. A parametric
rule is typically used to reduce the weights of largest (more complex) sub-structures.

The particular rule which is adopted is in fact a strong external bias that may strongly
affect the resulting predictive performance. Thus, in principle, the applied rule should be
validated in addition to the other hyper-parameters of the kernel. Nevertheless, for the
majority of graph kernels proposed in literature, the parameters of the weighting rule are

1http://www.cse.iitb.ac.in/~pratik.j/ghkl/

http://www.cse.iitb.ac.in/~pratik.j/ghkl/
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fixed a priori.

In the following sections, we will describe a principled way to define MSC families of
weak kernels starting from the state-of-the-art ODD kernel framework [57].

The benefits of our approach are twofold. Firstly, with our approach, we do not need
a parametric weighting rule for the graph kernel. Instead, the EasyMKL algorithm will
automatically tune the weight of different kernels. Secondly, the performance of the
resulting kernel empirically improves upon the base kernel. Moreover, the computational
complexity of the resulting learning procedure is the same as the classical approach
(consisting in the kernel computation and the application of an SVM).

9.5.1 Generating the weak kernels

When an explicit RKHS representation is available, it is possible to define a function
mapping features to a limited set of natural numbers, corresponding to buckets. Then, each
weak kernel is defined as the dot product that considers just the features belonging to a
particular bucket.

More formally, we recall that h has been defined as a bijective function mapping
features (trees in our setting) to natural numbers. Let us define a (possibly non injective)
function d : H→ Σ, where H is the RKHS and Σ = {0,1,2, . . . ,n}, mapping trees to a
finite set of buckets. This function assigns each feature to a specific bucket. Also, d will
be used to define the weak kernels, i.e. features that are mapped to the same value will be
part of the same kernel. Let us define the j−th component of the i−th weak kernel in the
sequence as:

φ
i
j(G) = φ j(G)δ (d(h−1( j)), i) (9.12)

where δ is the Kronecker’s delta function.
Then we define the i-th weak kernel as

Ki(G1,G2) = 〈φφφ i(G1),φφφ
i(G2)〉. (9.13)

Let us consider the ODDST kernel defined in Section 4.1.1 and its corresponding explicit
feature space representation. Every feature in this space encodes a specific labeled tree.
Intuitively, the strategy we decided to employ is to generate a weak kernel corresponding
to each possible height of the tree features, i.e. we group in a particular weak kernel all the
trees in the RKHS having the same height.

The motivation of such a choice is the following. The features of ODDST are not
independent because, as detailed in Section 4.1.1, if a tree is present in the explicit feature
space representation of a graph, then all its proper subtrees will do. This relation describes
a partial order relation between features, where a<̇b if and only if a is isomorphic to a
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Figure 9.8: Example of hierarchy among tree features. Thick arrows encodes the “has as
proper subtree” relationship.

sub-tree of b. Figure 9.8 shows an example of some features and draws the partial order
relationship induced by the “has as proper subtree” relationship. A necessary condition for
two features to be in the relationship is that the height of the first feature is greater than the
height of the second feature. Thus, the simplest way to define a d() function in such a way
that two dependent features do not end up in the same bucket is to defined(t) = height(t)

where height(t) is a function returning the height of a tree (that is the maximum distance
between the root and a leaf node).

Then, the j-th weak kernel K j comprehends all the tree-features with a fixed height
j. Let us recall that the original ODDST kernel depends on the r parameter, determining
the maximum height of the performed DAG visits, and on aλ parameter, determining the
weight of the features as a function of their size. With our proposed approach, for a fixed
kernel, r weak kernels will be generated, indexed with h ∈ {0,1, . . . ,r}. The λ parameter
is no longer required, since the learning algorithm will weight the different buckets of
features. This formulation is particularly convenient from a computational point of view
and the weak kernels can be generated from a slight modification of the original kernel
algorithm. The resulting explicit feature space representation of the i-th kernel is:

φ
i
j(G) = φ j(G)δ (height(h−1( j)), i). (9.14)

This feature grouping scheme is simple, but it is designed in order to behave in a very
specific way. In fact, each sub-kernel will have a weight assigned by exploiting EasyMKL.
This means that the features in the same bucket will share the same weight. Since all the
proposed feature weighting schemes depend in some sense from the size of the features, it
is reasonable to maintain this intuition in our bucketing function.
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h/data
CAS CPDB AIDS NCI1 GDD

r∗ = 3 r∗ = 3 r∗ = 8 r∗ = 4 r∗ = 2
0 0.002 0.008 0.004 0.001 0.005
1 0.006 0.025 0.009 0.004 0.183
2 0.021 0.080 0.023 0.012 0.999
3 0.151 0.480 0.110 0.089
4 0.229 0.368
5 0.306
6 0.375
7 0.468
8 0.683

Ksum 0.015 0.051 0.074 0.017 0.061
KMKL 0.095 0.215 0.275 0.165 0.281

Table 9.2: spectral complexity of the weak kernels, for each dataset and for each value of
h≤ r∗ compared to the spectral complexity of Ksum and KMKL.

Complexity of the weak kernels

For all the weak kernels combined using EasyMKL we have evaluated the spectral com-
plexity. For each dataset, the weak kernels evaluated are K1, . . . ,Kr∗ , where r∗ is the best
hyper-parameter r obtained in validation. The results are shown in Table 9.2 and Figure
9.9. The results highlight how our segmentation of the features induces a structure on the
kernels based on their spectral complexity. In particular, the h parameter of the single weak
kernel is monotonically connected to the spectral complexity. This result is correlated to
the popularity2 of the features among the graphs of the dataset. In general, sub-structures
that are simpler (i.e with low r) exist among a larger number of graphs with respect to
features that are more complex (i.e. with high r).

The kernel Ksum uses all the features contained in the weak kernels with the same
weight and it obtains a very low spectral complexity. Table 9.2 shows that the difference
between Ksum and KMKL is large in terms of spectral complexity. Specifically, for all the
datasets the spectral complexity of KMKL is bigger with respect to the one of Ksum and is
lower than the one of the weak kernel Kr∗ (i.e. R(Kr∗)> R(KMKL)> R(Ksum)). We have
empirically proved that neither using all the weak kernels summed with the same weight
nor using only the more complex features (contained inKr∗) is the optimal solution given
a specific task.

2The popularity is an estimation of the probability of the existence of a specific feature in a randomly
picked example from the dataset.
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Figure 9.9: spectral complexity of the weak kernels, for each dataset and for each value of
h≤ r∗.

9.6 Experiments

In this section, we compare our proposed ODD-MKL approach to the ODDST kernel that
we considered as the base kernel. This kernel has shown state-of-the-art predictive perfor-
mances [57]. Moreover, as baseline of the grouping method of the features, we created
random splits of features of ODDST generating weak kernels without any hierarchical
structure. We compared the MKL results obtained using this family of weak kernels with
our proposed method that, on the other hand, adopts a principled way to split the features
among the different weak kernels.

For the original ODDST kernel, we adopted an SVM classifier [149] given its state-
of-the-art predictive performances. The C parameter has been selected in the range
{0.001,0.01, . . . ,10000}, and the parameters of the kernel:

• h ∈ {1,2, . . . ,8},
• λ ∈ {0.5,0.6, . . . ,1.6}.

As for the methods adopting the MKL approach, the Λ parameter of EasyMKL has been
validated in {0,0.1,0.2, . . . ,1.0}. We compared the different methods on five real-world
graph datasets from bioinformatics: CAS3, CPDB [91], AIDS [198], NCI1 [194] and
GDD [63] (see Section 2.2.1)

3http://www.cheminformatics.org/datasets/bursi
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Data/Kernel ODDST ODD-MKL
CAS 0.8982±0.0017 0.9049±0.0008
CPDB 0.8442±0.0067 0.8564±0.0056
AIDS 0.8262±0.0052 0.8515±0.0031
NCI1 0.9069±0.0010 0.9144±0.0008
GDD 0.8473±0.0038 0.8498±0.0026

Table 9.3: Average AUC results±std of the original ODDST kernel and the proposed
ODD-MKL kernel, in nested 10-fold cross validation.

9.6.1 Results

Table 9.3 reports the AUC results of the base kernel (ODDST ) and our proposed MKL
approach in nested 10-fold cross validation, where the hyper-parameters of the different
methods are selected using the training dataset only, using an inner 10-fold cross validation
for each split of the 10-fold. The whole procedure has been repeated 10 times, and we
reported the average and standard deviation of the 10 runs. From the table emerges that
the proposed approach is able to improve the predictive performance with respect to the
baseline in all the considered datasets.

In order to investigate if the proposed bucketing function makes sense, or if the
performance improvements are due just to the fact that the algorithm has more degrees
of freedom, we compared the proposed feature grouping method with a random method.
We set, for each dataset, the best performing kernel parameter r∗ (i.e. the parameter that
defines the maximum height of the extracted tree). We computed a new feature bucketing
function that randomly assigns each feature to one of buckets. We repeated the experiment
with different random seeds in order to mitigate the fluctuations in performance due to the
random assignments of the features. Table 9.4 reports the results of such an experiment. In
all the datasets the random approach performs worse than out proposed method, and in 4
out of 5 datasets it performs worse than the base kernel. These results confirms that the
hierarchical relationship in the feature grouping criterion is a key factor in the definition of
the weak kernels to successfully apply MKL.

Data/Kernel ODDST ODD-MKL ODD-MKL-random
CAS 0.8983 0.9049 0.8762
CPDB 0.8576 0.8676 0.8386
AIDS 0.8401 0.8706 0.8480
NCI1 0.9085 0.9159 0.8782
GDD 0.8426 0.8507 0.8299

Table 9.4: Average AUC results of the original ODD ST kernel, the proposed ODD-MKL
kernel, and the random split MKL kernel in 10-fold cross validation.
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9.7 Summary of the results

In this chapter, we have proposed a new point of view in the MKL framework.
Firstly, we have introduced a new general method to learn the kernel as a combination

of base homogeneous polynomial kernels of different inherent complexities, exploiting
their structure. Our method learns the coefficients of a dot-product polynomial kernel, a
class of kernels that includes the polynomial kernels and the Gaussian kernel (RBF). We
have given empirical evidence that our method is always competitive and often perform
better than state-of-the-art kernels on ten benchmark datasets.

Secondly, we proposed a way to improve the predictive performance of graph kernels.
We have generated a set of weak kernels from a graph kernel (ODDST ) grouping the
features on the basis of the associated MSC set of weak kernels, and then applied MKL to
the weak kernels.

From the experimental results, we can claim that the new kernels outperform the base
kernels with respect to the AUC measure. It is important to highlight that this result is
reached using our principled grouping of the features injected to the weak kernels. In fact,
using random bunches of features the new kernels obtained from the MKL algorithm have
unsatisfying performances (that are even worse than the individual base kernels).





10. Learning the Anisotropic RBF

In this chapter, we propose to combine ideas from Distance Metrical Learning (DML),
Kernel Learning (KL) and Multiple Kernel Learning (MKL). Specifically, we focus on the
family of anisotropic RBF kernels, that are a generalization of the RBF kernels. Following
the same idea presented in Chapter 9, we propose to use our method to create an optimal
family of weak kernels for a MKL algorithm with fixed rule. This rule is implicitly defined
by the structure of the anisotropic RBF kernel.

Part of this chapter has been published in [3].

10.1 Connection between MKL and DML

The most popular kernel is undoubtedly the RBF kernel, which is a general purpose kernel
that is based on the Euclidean distance between examples. Similarly to the Euclidean
distance, the RBF kernel gives an equal weight to different features and the strength of this
weight depends on a single external parameter that needs to be tuned against validation
data. However, it is well known that different features typically have unequal impact and
importance in solving a given classification task.

Combining ideas from DML, KL and MKL, we focus on the family of anisotropic
RBF kernels in the form:

K(xi,x j) = exp(−(xi−x j)
T M(xi−x j)), (10.1)

where M = diag(βββ ) is the diagonal matrix created using the vector βββ ∈ Rm of parameters
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(one value for each feature) to learn. The method proposed extends the KOMD method
(see Chapter 5) to learn an Anisotropic RBF (ARBF) from data maintaining the same
game theoretical setting where players compete and the value of the game consists of the
separation between positive and negative training data.

10.2 Extending the game to features

We propose to extend the game illustrated in Section 5.1 by considering an additional
player which selects the kernel matrixK from the family of Anisotropic RBF kernel. The
RBF kernel is defined by

K(xi,x j) = exp(−β0‖xi−x j‖2
2) = exp(−(xi−x j)

>
β0I(xi−x j)) (10.2)

where β0 ∈ R+ is an external parameter. The RBF kernel can also be seen as using the
trivial metric M = β0I = diag(β0, ...,β0). In the anisotropic RBF we have a generalized
metric M = diag(β (1), ...,β (m)) and we can write the anisotropic RBF as:

Kβ (xi,x j) =
m

∏
r=1

exp(−β
(r)(x(r)i −x(r)j )2), βββ ∈ Rm

+ (10.3)

where x(r)i is the rth feature of the ith example and β (r) ∈ R+.

This new formulation has a greater number of degrees of freedom than the classical
RBF kernel. A useful observation is that Kβββ (·, ·) can be seen as a element-wise product of
kernels evaluated on a single feature. More formally:

Kβββ =
m⊗

r=1

K
β (r) (10.4)

with K
β (r) the RBF kernel defined on the rth feature only with parameter β (r).

From this point of view, we are looking for the best family of weak kernels {K
β (r) : r =

1, . . . ,m} in order to apply a MKL algorithm with a fixed heuristic rule. In this case, the
rule is the entry-wise multiplication of the kernels K

β (r) as in Equation 10.4.

Note that one can also interpret the Anisotropic RBF as a standard RBF where the norm
‖·‖ is not the basic Euclidean norm, but it is a weighted 2-norm of the form ‖z‖β =

√
ztMz

with diagonal matrix M = diag(βββ ). In fact, any symmetric positive definite matrix M
could be used to define an admissible norm. Using matrix notation, the anisotropic RBF
can be written as

Kβ (xi,x j) = exp(−(xi−x j)
tdiag(βββ )(xi−x j)). (10.5)
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Then, finding the best parameters for anAnisotropic RBF is a DML problem and we need
to optimize the kernel representation by finding a trade-off between the components ofβββ .

Starting from the KOMD framework, we define an additional player that sets the
parameters of the anisotropic RBF. This player will prefer uncorrelated features so to avoid
redundancies. For this reason we define a redundancy (or correlation matrix) C among
the features f1, ..., fm, defined using an RBF kernel with parameter τ and normalized with
respect to the number of features. The correlation matrix C ∈ Rm×m

+ can be generated
using the following rule:

C[i, j] = exp(− τ

m
‖fi− f j‖2

2) ∀i, j = 1, ...,m. (10.6)

Finally, we propose to use the following regularized optimization problem as objective
for the player βββ :

max
βββ∈Rm

+

Q(βββ ,γγγ)−µC(βββ ) (10.7)

where Q(βββ ,γγγ) = γγγ>YK(βββ )Yγγγ and C(βββ ) = 1
2βββ tCβββ .

Note that, the proposed type of regularizer differs significantly from the usual trace
regularizer used in kernel learning. As already noted, the trace regularizer does not
represent the notion of complexity of a kernel in terms of the space of functions that
can be generated using that kernel. For example, all RBF kernels have the same trace
independently from the RBF parameter weighting the distance between examples, while
the complexity of the resulting kernels can be dramatically different. On the other side, the
correlation of the features on the parameters βββ that we propose, well fits the idea that good
features are more useful if they represent different points of view of the examples.

Summarizing, the extended game we propose has value Q(βββ ,γγγ) and the two players
individually aim at optimizing their strategies according to the following optimization
problems:

Pγγγ : minγγγ∈Γ (1−Λ)Q(βββ ,γγγ)+Λ||γγγ||2 (10.8)

Pβββ : max
βββ∈Rd

+
Q(βββ ,γγγ)−µC(βββ ) (10.9)

In the following, we give the simple alternating algorithm we used to solve the multi-
objective problem given above.
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Algorithm 3 ARBF algorithm
Find the best β0 and Λ with KOMD validation
for t=1,...,T do

Set βββ = βββ t−1 and generate a solution γγγ t optimizing the problem in Eq. 10.8
Set γγγ = γγγ t and generate a solution βββ t optimizing the problem in Eq. 10.9

end for

The first step, i.e. the optimization of γγγ t , is performed by solving the Equation 10.8
and it is equal to solve a KOMD optimization problem using the kernel K(βββ t−1).

10.2.1 Gradient based optimization for Pβββ

The function Q(βββ ) in Eq. 10.9 has the rth component of the gradient equal to:

∂Q(βββ )

∂β (r)
=−∑

i, j
yiy jγiγ jKβ (xi,x j)(x

(r)
i −x(r)j )2 =−γγγ

>Y(Dr⊗Kβ )Yγγγ, (10.10)

where Dr ∈Rn×n is the symmetric matrix of pairwise squared differences of the rth feature,
that is, Dr[i, j] = (x(r)i −x(r)j )2. Then, the partial derivative of Eq. 10.9 with respect to β (r)

will be:
∂Q(βββ )

∂β (r)
−µC[r, :]βββ , (10.11)

where C[r, :] is the rth row of C.

10.2.2 Concavity of Pβββ

It is simple to evaluate that the Hessian matrix H of the function Q(βββ ,γγγ)−µC(βββ ) can be
written as:

H[i, j] = γ
T Y(Di⊗D j⊗Kβ )Yγ−µC[i, j]. (10.12)

Then, we can claim that with a sufficiently large value of µ and τ the function Q(βββ ,γγγ)−
µC(βββ ) is concave. In fact, the following proposition holds:

Proposition 10.2.1 Let be H the Hessian matrix of the function Q(βββ ,γγγ)− µC(βββ ), then
∃ϒ,Ψ ∈ R+ such that ∀µ ≥ ϒ,τ ≥Ψ, the matrix H is negative definite.

Proof. We have that a diagonal entry of the matrix H is in the form

H[i, i] = γ
T Y(Di⊗Di⊗Kβ )Yγ−µ, (10.13)

observing that C[i, i] = 1 for definition. Now, we will prove that the matrix −H is positive
definite. Firstly, we can find the bounds for the values outside the diagonal of −H
using the eigenvalues gi, j

1 ≥ gi, j
2 ≥ ·· · ≥ gi, j

m of the matrix Di⊗D j ⊗Kβ . Due to the
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particular structure of this matrix, we have that gi, j
m = −gi, j

1 ≤ 0. Also, we can define
gh = max{gi, j

h : i, j = 1, . . . ,m} ∀h = 1, . . . ,m. Then, the following bounds hold:

−H[i, j] =−γ
T Y(Di⊗D j⊗Kβ )Yγ +µC[i, j]≤ 2g1 +µC[i, j], (10.14)

−H[i, j]≥ 2gm =−2g1. (10.15)

Secondly, we can define the bounds for the diagonals entry of −H:

−H[ j, j]≤ 2g1 +µ, (10.16)

−H[ j, j]≥ 2gm +µ =−2g1 +µ. (10.17)

We are interested in finding a value ϒ such that ∀µ ≥ ϒ the matrix −H is diagonally
dominant. The definition of a matrix diagonally dominant in this case is equivalent to:

m

∑
i=1
i 6= j

(2g1 +µC[i, j])≤ |−2g1 +µ| ∀ j = 1, . . . ,m. (10.18)

−H[ j, j]≥ 0 ∀ j = 1, . . . ,m. (10.19)

Now, we can fix µ ≥ 2g1 in order to satisfy the condition 10.19 and then we have that:

|−2g1 +µ|= µ−2g1 ∀ j = 1, . . . ,m. (10.20)

So, the Equation 10.18 is equivalent to the following:

g1(2m+2)≤ µ(1−
m

∑
i=1
i 6= j

C[i, j]) ∀ j = 1, . . . ,m. (10.21)

We have now to observe that (1−∑
m
i6= j C[i, j])≤ 1 but is also possible to fix a τ such that

(1−∑
m
i6= j C[i, j])> 0 for every j = 1, . . . ,m. In fact, this is true if and only if

m

∑
i=1
i 6= j

C[i, j]< 1 ⇐⇒
m

∑
i=1
i6= j

exp(− τ

m
‖fi− f j‖2

2)< 1 ⇐⇒
m

∑
i=1
i 6= j

(
exp(− 1

m
‖fi− f j‖2

2)

)τ

< 1.

(10.22)
Excluding the case where ∃i 6= j : ‖fi− f j‖2

2 = 0 (i.e we have two times the same feature)
and due to the monotonicity of the inequality with respect to τ , it is possible to evaluate
numerically a Ψ such that the inequality holds if τ ≥Ψ. We are now ready to solve the two
conditions (Equations 10.16 and 10.17) of the diagonally dominant matrices with respect
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to µ:

µ ≥ (2m+2)
1−∑

m
i=1 C[i, j]

g1 ≥ 2g1 =, ∀ j = 1, . . . ,m. (10.23)

Then, we can define the bound ϒ for µ as:

ϒ :=
(2m+2)

1−maxm
j=1 ∑

m
i=1 C[i, j]

g1. (10.24)

Finally, ϒ is such that ∀µ ∈ ϒ, −H is diagonally dominant. −H is also a real symmetric
matrix with only positive values as diagonal entries. These conditions are sufficient to
claim that the matrix −H is positive definite.

�

10.2.3 Reducing the problem Pβββ to an unconstrained optimization problem

It is well known that solving a constrained optimization problem with gradient based
optimization techniques is particularly difficult. For this, we reduced the problem to
an unconstrained one by performing a simple change of variables, that is β (r) = e−α(r)

.
Computing the gradient with respect to variables α(r) we obtain

∂Q(α)

∂α(r)
=

∂Q(βββ )

∂β (r)

∂β (r)(α)

∂α(r)
= (γγγ>Y(Dr⊗Kβ )Yγγγ)e−α(r)

∂C(α)

∂α(r)
=

∂C(βββ )

∂β (r)

∂β (r)(α)

∂α(r)
= C[r, :]βββe−α(r)

which leads to the following update

β
(r)← e

−α(r)−µ(
∂Q(α)

∂α(r) −
∂C(α)

∂α(r) ) = β
(r)

∆
β (r), (10.25)

where we set ∆
β (r) = e

−µ(
∂Q(α)

∂α(r) −
∂C(α)

∂α(r) ).
The simple update above leads to an easy update for the kernel as in the following,

Kβββ ←Kβββ ⊗ exp((1−∆
β (r))Dr), (10.26)

where exp(M) denotes the element-wise exponential of a matrix M.

10.3 Experiments and Results

We have performed the evaluation of our algorithm against six benchmark datasets of
varying size, typology and complexity, and we have compared our performances with
the same experiments performed using other techniques. The datasets used are Splice,
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Dataset KOMD K-Raw K-LMNN K-GB-LMNN ARBF20 ARBF50

Australian 93.2±1.5 79.2±4.8 79.1±5.3 92.4±9.2 93.8±2.1 94.1±1.6
German 79.5±2.2 66.3±2.6 65.5±3.0 78.9±5.6 80.5±4.1 80.7±2.5
Splice 93.7±1.5 68.1±4.7 79.7±3.5 95.1±2.8 94.2±1.5 95.1±1.4
Heart 90.6±3.4 76.6±9.5 74.1±11.2 92.6±7.5 91.1±6.0 93.8±3.7
Diabetes 84.0±1.9 72.0±5.5 70.9±5.8 86.3±4.6 86.9±3.2 87.1±3.1
Ionosphere 97.5±1.4 88.4±3.8 89.3±4.3 97.3±3.8 97.7±3.5 98.0±3.5

Table 10.1: AUC % (average±std) obtained against 6 datasets with Ne examples and N f
features.

Ionosphere, and Diabetes, German, Australian and Heart (see Section 2.1.2 for further
details). The datasets have all the features scaled to the interval [−1,1]. For each dataset,
we constructed several splits containing 70% of the examples for the training set, 10% of
the examples for the validation set and used the remaining 20% of the examples as the test
set.

We compared our algorithm ARBF at different number of steps T , against the following
baselines and state-of-the-art techniques:
• KOMD: in this case, model selection has been used to find the best parameters

Λ ∈ {0,0.1,0.5,0.9} and β0 ∈ {0.01,0.1,0.5,1.0}. A KOMD with standard RBF
(shape parameter β0) has been trained.
• K-Raw: this is kNN without learning any new metric, with validation and model

selection to find the best k.
• K-LMNN and K-GB-LMNN: we used the implementation made by the authors1

and we performed a model selection in order to find the best k for kNN.
Concerning our method, KOMD validation has been used to obtain the initial parame-

ters (β0 and Λ, see Algorithm 3). The parameters µ ∈{1,10,100} and τ ∈{1,10,100,1000}
as been selected by model selection. For each technique a ranking over the examples in
the test set is obtained (a function from the test set to R). AUC metric is used to measure
the performance of such a ranking function. We evaluated AUC metric for each data set
with different techniques and we have obtained the results in Table 10.1 (using T = 20 and
T = 50, called respectively ARBF20 and ARBF50) and the convergence curves in Figure
10.1 with the AUC values for each iteration of our algorithm up to T = 150.

According to these results, our method obtains the best performance in all the six
datasets and significantly improve on the baseline (KOMD) and other state-of-the-art
techniques.

1http://www.cse.wustl.edu/~kilian/code/code

http://www.cse.wustl.edu/~kilian/code/code
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Figure 10.1: AUC % values for each iteration of ARBF compared to the KOMD baseline
(red dots).
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Summary

Dealing with real world problems is the real challenge for the machine learning experts.
In this part, three different applications will be presented, where choosing a correct
representation is the key in order to obtain an improvement with respect the state-of-the-art
solutions.

In Chapter 11, the problem tackled is the segmentation of the Magnetic Resonance
Imaging (MRI). MRI allows the acquisition of high-resolution images of the brain. The
diagnosis of various brain illnesses is supported by the distinguished analysis of the
different kind of brain tissues, which imply their segmentation and classification. Brain
MRI is organized in volumes composed by millions of voxels (at least 65.536 per slice,
for at least 50 slice), hence the problem of the labeling of the brain tissue classes in the
composition of atlases and ground truth references [153], which are needed for the training
and the validation of machine-learning methods employed for brain segmentation. We
propose a stacking classification scheme that does not require any other anatomical a

priori information to identify the 3 classes, Gray Matter (GM), White Matter (WM) and
Cerebro-Spinal Fluid (CSF). We employed two different MR sequences: FLuid Attenuated
Inversion Recovery (FLAIR) and Double Inversion Recovery (DIR). The former highlights
both gray matter (GM) and white matter (WM), the latter highlights GM alone. Features
are extracted by means of a local multi-scale texture analysis, computed for each pixel of
the DIR and FLAIR sequences. The 9 textures considered are average, standard deviation,
kurtosis, entropy, contrast, correlation, energy, homogeneity, and skewness, evaluated
on a neighborhood of 3x3, 5x5, and 7x7 pixels. Two stacked classifiers were created
exploiting the a priori knowledge about DIR and FLAIR images. The results highlight
an improvement in classification performance with respect to using all the features in
a state-of-the-art single classifier. The proper use of a priori information was further
developed and we noted that the better performance depends on the a priori decision to
use the two different images in a hierarchical manner with a specific order.

The task tackled in Chapter 12 is concerning a serious game, called ClimbTheWorld,
which uses a machine learning based technique to recognize and count stairsteps and
aims at persuading people to use stairs instead of elevators or escalators. The widespread
positioning of smartphones in the users’ pockets allows to sense their movements thus
monitoring the amount of physical activity they do. But, it also gives the possibility to use
these devices to persuade people to change their behaviors. We perform a fine-grained
analysis by exploiting smartphone sensors to recognize single stairsteps by exploiting
various techniques, i.e.:

• The smoothing and the standardization of the raw signals;
• The segmentation of the data by using a data-dependent window;
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• The creation of the features using an ad hoc analysis (i.e. feature engineering);
• The standardization of the generated features;
• The feature selections by exploiting a MKL technique.

Finally, energy consumption is widely investigated to avoid exhausting smartphone battery.
Finally, Chapter 13 is concerning Multitask Learning (MTL). Past research on MTL

has focused mainly on devising adequate regularizers and less on its scalability. We present
a new method to scale up a MTL method based on regularization functionals similar to
those used in support vector machines is presented. It builds upon the alternating direction
method of multipliers (ADMM) to decouple different tasks in the objective function. This
allows for an optimization process in which different tasks are independently solved in
parallel and subsequently corrected to pool information from other tasks. This new method
converges and outperforms the state-of-the-art methods. In fact, experiments on large
URL classification data show that MTL can obtain superior performance over learning a
common model or independent task learning both in typical and cold start situations.

Parts of these chapters have been published in [5, 1].



11. MRI Segmentation

11.1 Motivation and importance of the MRI Segmentation

The diagnosis of various brain illnesses, is supported by the distinguished analysis of the
White Matter (WM), Gray Matter (GM) and Cerebro-Spinal Fluid (CSF). In this work
we present a semi-supervised method to segment WM, GM, and CSF from MRI data that
combines DIR and FLAIR scans, without exploiting any anatomical a priori information,
and with the specific objective of preserving the lesions belonging to their correct tissue.

There exist widely available and commonly used brain tissue segmentation software,
such as the segmentation tool in SPM [11] and FAST in FSL [178], which use both intensity
and a priori anatomic information. However, having been designed for general use, they
are not necessarily optimized for specific pulse sequences or for application to images
from patients with a specific disease. For example, as observed in [144, 73], when used to
segment MR images of MS patients, these tools occur in misclassification of MS lesions
as GM due to overlapping intensities, which then requires time-consuming manual editing
and introduces operator variability into the measurements.

Hence, manual delineation remains the gold standard procedure in studies where brain
segmentation of MR data sets is required, especially when dealing with specific populations
(e.g. [80, 173, 184, 84, 74, 166]). However, it is expert dependent, observer demanding
and time consuming, and essentially not transferable. Automated techniques are necessary
to overcome these obstacles, especially when large cohorts of data sets are involved [ 80].
Moreover, given the growing interest in translational studies in neuroscience, the need for
building annotated gold standard segmentation and atlases on non human data ([138, 41])
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Figure 11.1: (Leftmost column) two slices of the DIR sequence; (central column) the
corresponding FLAIR slices; (rightmost column) manual ground truth segmentations
provided by the experts

has further stressed the demand for automatic techniques or fast annotation methods.
We propose a supervised classification method that exploits the texture information of

the brain tissue provided by the two sequences FLAIR and DIR [152] (11.1). The former
is characterized by the suppression of CFS and by the consequent enhancement of both
GM and WM, which are however difficult to be distinguished one from the other; the latter
has two inversion recoveries that allow suppressing the contribution of both CSF and WM,
thus enhancing GM. We thus avoid using T1-w sequence, which, even if characterized by
high spatial resolution, proved inadequate for tissue segmentation when brain lesions are
present. In addition, the method does not need population-derived location-based priors,
registration to template space, or explicit bias field modeling.

11.2 Material

Twenty-four slices (256× 256), from z = 20 to z = 44, from both DIR and FLAIR se-
quences acquired on a patient affected by MS [191], have been taken into account. In each
slide, the three classes GM, WM and CSF were manually labeled.

11.2.1 Feature Extraction

The rationale of the feature extraction approach is to use the peculiar texture characteristic
of a pixel neighborhood in order to obtain information about the pixel tissue class [152].
Image texture analysis has been subject of intense study and has been employed in a variety
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Figure 11.2: Upper row: 8 textures extracted from the DIR slice. Lower row: 8 textures
extracted from the FLAIR slice. Columns, from left to right: mean, standard deviation,
skewness, kurtosis, contrast, homogeneity, entropy, energy. The scale employed is 5 (5×5
pixel block analysis). Original DIR and FLAIR slices are the one in Fig. 11.1; the slice is
at z = 33.

of applications; however, there is no general agreement upon definition of texture. For our
specific application, we assume that a region in an image has a constant texture if a set of
local statistics or other local properties of the picture function are almost constant.

Depending on the number of pixels defining the local feature, the statistical methods
can be respectively classified as 1st-order, 2nd-order and higher-order statistics. 1st-order
statistics measure the likelihood of observing a specific gray value at a random location
in the image (hence directly computable from the image histogram). 2nd-order statistics
measure the likelihood of observing a specific pair of gray values in a randomly placed
dipole of pixels (computable from the gray level co-occurrence matrices (GLCM) [87]).
Method proposed in [193] employed three 1st-order statistics: skewness, median and
median absolute deviation, which, on T1-w images, are approximately independent of
bias field and of scanner gain. In order to increase the discriminability of the classes,
and at the same time couple at best with the double source of information at disposal
(i.e., the DIR and the FLAIR sequences), we opted to employ as features four 1st-order
statistics and five 2nd-order statistics. The 1st-order statistics considered in this work are
mean, standard deviation, skewness, and kurtosis, while the 2nd-order ones are contrast,
correlation, homogeneity, entropy and energy.

First-order Statistics

Equations 11.1-11.4 show the mathematical formulations of the 1st-order statistics em-
ployed in this work: one ordinary moment and three central moments (two of which are
standardized). These measures are computed on an image block I with dimension N×N,
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so the total number of pixels considered is N2.

µ = E [I] =
1

N2 ∑
x,y

I[x,y] (11.1)

σ =
√
E [(I−µ)2] =

√
1

N2 ∑
x,y

(I[x,y]−µ)2 (11.2)

γ1 = E

[(
I−µ

σ

)3
]
=

1
N2σ3 ∑

x,y
(I[x,y]−µ)3 (11.3)

γ2 = E

[(
I−µ

σ

)4
]
−3 =

1
N2σ4 ∑

x,y
(I[x,y]−µ)4−3 (11.4)

We chose this set of values because it can accurately characterize a probability dis-
tribution in all its properties: while the 1st moment, expected value or mean (Eq. 11.1),
describes the central location of the data, central moments relate only to the spread and
shape of the distribution. The standard deviation, i.e., the square of the 2nd central moment
(Eq. 11.2), measures the dispersion of the data from the average. The skewness (Eq. 11.3)
and the kurtosis (Eq. 11.4) measure respectively the asymmetry and the peakedness (or the
heaviness of the tails) of the distribution. These two last statistics are based on the stan-
dardization (with respect to the standard deviation) of the 3rd and the 4th central moment,
and hence are scale invariant and dimensionless.

Second-order Statistics

In order to compute the 2nd-order statistics, GLCM has to be defined (Eq.11.5). If G is
the number of gray levels of the image I[x,y], the GLCM Cd for a displacement vector
d = (dx,dy) is a square matrix G×G so that the entry Cd[i, j] is the number of occurrences
in I of the pair of gray levels i and j that are a distance d apart.

Cd[i, j] = ∑
x,y

 1, if

{
I[x,y] = i,

I[x+dx,y+dy] = j

0, otherwise

(11.5)

As it can be appreciated in Eq. 11.6-11.9, 2nd-order statistics can be thought as weighted
sums of the GLCM cell contents, where the weights express the relative importance of the
cell values. In that sense, it is worth noting that the diagonal elements of C represent all
pixel pairs with no grey level difference; the farther away from the diagonal, the greater
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the difference between pixel grey levels.

Contrast = ∑
i, j

C[i, j](i− j)2 (11.6)

Homogeneity = ∑
i, j

C[i, j]
1

1+ |i− j|
(11.7)

Entropy =−∑
i, j

C[i, j] lnC(i− j) (11.8)

Energy = ∑
i, j

C[i, j]2 (11.9)

The contrast (i.e., the sum of squares variance, Eq. 11.6) exponentially weights C
as |i− j| increases, while in the homogeneity definition (Eq. 11.7) the weights decrease
exponentially away from the diagonal. Entropy (Eq. 11.8) and energy (Eq. 11.9) are
measure related to orderliness (regularity or commonness) of the data: the weights are
constructed related to how many times a given pair occurs. Since C[i, j] are already
a measure of commonness of occurrence, it makes that they are used as weights for
themselves.

We extract the local texture information at 3 different scales from blocks of N×N

pixel, with N = 3, 5, and 7. For each 2nd-order texture, 4 GLCMs are constructed,
with d = (dx,dy) ∈ {(0,1),(1,1),(1,0),(1,−1)}. Then, to make the textures invariant to
rotation, the obtained matrices are averaged over the 4 angles. Since the feature extraction
is performed on both DIR and FLAIR images, the final feature vector associated to each
pixel is composed by 56 values (2 original sequence pixel values, plus 9 textures× 3 scales
× 2 sequences).

11.2.2 Classification

State-of-the-art algorithms typically cast the multi-class problem of classifying CSF, GM
and WM with a one against all technique. The classifier system consists of three binary
classifiers. The classifier hc is trained with all the available labeled examples giving a
positive label to examples of classc and a negative label to examples of other classes. All
the features for each image (DIR and FLAIR) are used to build these three classifiers. The
prediction is made by comparing the scores of the three classifiers and predicting the class
whose corresponding classifier maximizes this score.

However, once considering the a priori knowledge we have about our specific problem,
thinking in this way can be counter intuitive. In fact, using the approach described above,
we are not exploiting the fact that different types of features (DIR and FLAIR) contain
diverse information and each one is naturally tailored to a more specific task. FLAIR
based features highlight both gray matter (GM) and white matter (WM), then they can be
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Algorithm Accuracy
One-Against-All (OAA) 0.688±0.005
Stacked All Features (SAF) 0.689±0.005
Stacked Disjoint Features (SDF) 0.704±0.005

Table 11.1: Accuracy±std results for our method, i.e. Stacked Disjoint Features (SDF),
compared to the Stacked All Features (SAF) and to the One-Against-All (OAA)

more useful to discriminate CSF and not-CSF (GM or WM). On the other side, DIR based
features highlight GM alone and thus can be more useful to discriminate between GM and
WM when we already know that a particular voxel is not of class CSF.

Here, we consider a two-step stacked system that creates, in a first step, a binary classi-
fier hCSF using the FLAIR image features only to select the subset of voxel corresponding
to CSF. In a second step, it creates a binary classifier hWM that selects the WM from the
not-CSF part of voxel. The remaining part of voxels are classified as GM.

11.2.3 Experimental Setting

We compared three classification settings using a dataset consisting of ten manually labeled
slices. Specifically,

1. One-Against-All (OAA, [7]), where each binary classifier is trained with all features
(DIR and FLAIR)

2. Stacked All Features (SAF, [45]), where stacking is performed as described above
and all the features are used in both levels

3. Stacked Disjoint Features (SDF), where stacking is performed as described above.
FLAIR features used in the first level only and DIR features used in the second level.

KOMD (see Chapter 5) with RBF kernel (γ = 0.01) has been used for all different
settings. On each experiment:

1. We randomly select few (5) labeled examples for each class (CSF, GM and WM).
2. We train all the binary classifiers using these labeled data as training data.
3. We classify all the unlabeled data.

We have repeated the steps above for 1000 times to increase the significance of our
experiments and we calculated the average accuracy and standard deviation.

11.3 Results

Results for all the three settings are summarized in Table 11.1.

We can see that our two-step stacking algorithm has a significantly better accuracy than
state-of-the-art methods. We have also demonstrated that a significant improvement can be
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Figure 11.3: Histogram of accuracy for our method, i.e. Stacked Disjoint Features (SDF),
compared to the Stacked All Features (SAF) and to the One-Against-All (OAA)

obtained by using a priori knowledge on the task at hand. Moreover, the baseline (OAA)
method requires the training of three binary classifiers and all the features, while our two-
step algorithm needs only two binary classifiers, each one working with a halved number
features. The proposed approach provided both better results and better computational
performance.

11.4 Discussion and Conclusion

An experiment was performed to prove the importance of a reasoned choice of a priori

information. We have reversed the hierarchical order of the two classifiers in our two-step
algorithm and we obtained a significant decrease in performance. In the future we plan
to improve our two-step algorithm in two principal ways: by exploiting the physical
topology of the problem and by improving the active learning structure of the algorithm.
For the first task we can create a graph representation of the brain that contains the
topological information of physical neighborhood. From the first experiments we can
see an improvement in the results using these topological information on each slice. As
far as the latter task is concerned, it is worth mentioning that in the proposed algorithm,
an error in the first pixel selection step is propagated directly in the second step. As for
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the two-step structure of the algorithm the second classifier starts with a minimum error
that is greater than or equal to the error from the first classifier. In order to improve the
overall performance, we will study a first-step active learning algorithm that selects the
best pixels for the labeling. From the histogram in Figure 11.3, we can see that there
are more outstanding performances (with accuracy over 0.8) in our two-step algorithm
than the others so we plan to implement an active learning algorithm that chooses in an
unsupervised manner the best pixels eligible for the training set. Hopefully, in this way we
will increase even further the performance of our two-step algorithm.



12. Climb the world

ClimbTheWorld is a serious game which uses a machine learning based technique to
recognize and count stairsteps in real-time. It aims at persuading people to use stairs instead
of elevators or escalators. We perform a fine-grained analysis by exploiting smartphone
sensors to recognize single stairsteps. Energy consumption is widely investigated to avoid
exhausting smartphone battery.

12.1 Motivation

The aim of ClimbTheWorld is to persuade people to choose stairs instead of escalators,
thus increasing their physical activity, using gamification, i.e., providing a way to have fun
while climbing stairs. The whole design process of the game followed the Fogg Behaviour

Figure 12.1: Five screenshots of ClimbTheWorld
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Figure 12.2: Pipeline overview of the system

Model (FBM) [69] to improve game’s persuasiveness. FBM shows that three elements
must converge at the same moment for a behaviour to occur: Motivation, Ability and
Triggers. Since the game is not intended for impaired people, Ability is not a problem since
our target audience is able to climb the stairs. But it is also true that, even if climbing the
stairs can be considered an easy activity, it can become tiring or even frustrating if the goal
is too far away. For this reason, we add sub-goals to ClimbTheWorld, denoted by the stars
in Figure 12.1(a), to encourage users to never give up.

In the same way, to avoid discouraging the users, the game proposes different difficulty
levels: easier levels correspond to a lower number of stairsteps necessary to reach the top
of the building. Each stairstep in real life corresponds to one (or more) stairstep in the
game: higher difficulty means less stairsteps in the game. Once the user reaches the top of
the building, a slideshow of pictures is displayed, showing the view from the top of the
building. Different difficulty levels also bring different quality and number of provided
photos. Figure 12.1(e) shows a screenshot of the gallery of the Eiffel Tower.

12.2 Pipeline overview

In this section, we give a broad overview of our system for recognition and counting of
stairsteps whose modules will be discussed in detail in the following sections.

The application’s pipeline is shown in Figure 12.2. When active, the application
constantly acquires data from smartphone sensors to identify whether the user is climbing
or descending stairs. Since it is very important to provide real time feedback to increase
user engagement, we do not rely on a server that analyzes data and provides classification
output, but everything is performed by the smartphone. In this way, we avoid problems
of network availability and delay. Moreover, the use of a server can create a bottleneck
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in the system. On the other side, if all the computational tasks reside on the smartphone,
then energy consumption have to be considered and deeply investigated to avoid wasting
energy and drain smartphone battery.

The first step of the pipeline is data acquisition: the smartphone acquires data about
movements of the device through its accelerometer and rotation sensor.

The second step of the pipeline, called “data-smoothing & standardization”, initially
cleans data by reducing sensor noise and variability. This operation helps to increase the
accuracy of the classification. Then data is standardized, since data acquired by sensors
can change a lot depending on how the user carries the smartphone as we will discuss
in Section 12.4, and we do not impose to the user a smartphone position. To overcome
this problem, we translate smoothed data to a fixed coordinate system, using information
from the rotation sensor. In this way, the same user activity data have the same pattern
independently from the orientation of the smartphone.

The segmentation step splits the standardized data into consecutive segments or win-
dows. In this module, a window segmentation technique based on data analysis (i.e.,
without fixing size of a window) is used to reduce the computational cost, thus reducing
energy consumption, and improve the accuracy. The proposed method allows to consider
time as a parameter. In this way, windows that do not fall into a predefined time duration,
i.e., the time necessary to complete a stairstep, can be automatically labeled as not a
stairstep without forwarding it to the next step (thus, reducing energy consumption).

After segmentation, the extraction and standardization of the features for the classifier
takes place.

We cast the stairstep recognition task in a classification setting where we have two
possible labels (“STAIR” and “NO_STAIR”) and the examples consist of vector represen-
tations of segmented windows. Note that, the training of the model is performed offline
only once (one single model shared by all different users), while the recognition phase
have to be made in real-time. This implies that the classification outputs must be promptly
provided to the user without delays. We must note here that a simple high-pass filter or
a peak detection algorithm would not be sufficient in our context. In fact, as it is shown
in Figure 12.3b and in Figure 12.3c, a stairstep and a step have almost the same shape,
that is, a data peak on one axis. For this reason, we need a more complex method able to
distinguish between this two different activities.

In the following sections, we provide a deep analysis of the main modules compounding
the complete system. Finally, we present the results of the classification algorithms in a
simulation of the system and an analysis of issues related to energy consumption.
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(a) Noise that affects
accelerometer data

(b) Example of a step (c) Example of a
stairstep

(d) Example of a
stairstep using data
smoothing

Figure 12.3: Several examples of data acquired from the accelerometer

12.3 Data smoothing

One of the biggest problem that affects data retrieved from the accelerometer and any
other sensor of a smartphone acquiring real-time information from the environment is the
noise that affects these data. This noise is caused, for example, by sensor precision and
sensibility, or by the external environment itself. Let us consider, for example, data from
the accelerometer. If we put the smartphone on a table with the screen facing out the sky
and we record data from the accelerometer, what we expect to register is a series of vectors
equal to v = (0.0,0.0,9.8), where X and Y axes should record values equals to 0.0 m/s2,
since there is no movement, and with the gravity force that influences only the Z axis,
whose value should be equal to 9.8 m/s2.

What actually happens is shown in Figure 12.3a. Each accelerometer axis is affected
by both background noise and sensor sensibility that make the signal very unstable. The
presence of this noise makes the classification task more difficult as data is affected by this
background error that disturbs the recording of the real movement that we want to measure.
The idea behind the data smoothing step is to reduce the effect of background noise and
hence to have cleaner data.

The idea is simple. We use a buffer which stores the accelerometer records related to
the last 300ms. The time length of the buffer is short enough to keep all useful information
for the classification task (e.g. it is shorter than the time length of a stairstep). Let us
suppose that a new vector value a = (ax,ay,az) of acceleration data is received from the
accelerometer sensor. If the buffer is not full, i.e. its time length is lower than 300ms, then
we simply store the vector a into the buffer and nothing more happens. If the buffer is full,
we calculate the average vector m = (mx,my,mz) of every readings stored in the buffer and
the vector m is sent forward to the data standardization step. Then, we store the original
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(a) Raw data acquired from the accelerometer:
same activity but different axis values after ro-
tation of the smartphone

(b) Our method applied to a walking activity while
rotating the smartphone

(c) Native linear acceleration plus rotation
method

Figure 12.4: The comparison among the raw signal (a) and the signal from the methods for
the orientation-independence: our method (b), Linear (c). The instant in which the rotation
takes place is denoted by the letter “R”. Each line represents data acquired with reference
to one axis X, Y and Y
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vector a into the buffer. In particular, we use a cyclic buffer, so the first element of the
buffer is deleted when a new record is added to the buffer. In this way, the background
noise is reduced since variations of a single reading is smoothed from all the other readings.

The result of this technique in a stairsteps pattern is shown in Figure 12.3, where it
is possible to see the same pattern of a stairstep without (Figure 12.3c) and with (Figure
12.3d) the data smoothing step. As we can see, the signal is much less disturbed and clearer
after the data smoothing step, making the learning task, and hence the classification task,
easier and more accurate.

12.4 Data standardization

One of the main issue it is necessary to address when working with activity recognition
using data from smartphone sensors like the accelerometer, is smartphone orientation.
This problem is related to the fact that data from motion sensor changes depending on
how the smartphone is carried on by the user. Consider for example a walking activity as
depicted in Figure 12.4a. When the smartphone is rotated to a different position from the
initial one (the “R” arrow), the data completely changes. In particular, we can observe
how accelerometer data completely switches data of the three axis. Consequently, the
learning task of the classifier becomes extremely difficult. One of the possible solution to
this problem is to force users to keep the smartphone in a particular position. In fact, some
earlier works followed this approach, but this is clearly a strong limitation, since imposing
a fixed smartphone position reduces pervasiveness of our application and its persuasive
power. Another solution would be to train the classifier with every possible orientation of
the smartphone. This is clearly an unpractical solution, since there are infinite possible
orientations and thus training a classifier of this type becomes infeasible.

One method to solve the problem above was previously proposed by Mizell [141]. The
idea is the following: given a sampling interval, the gravity component g= (gx,gy,gz)∈R3

on each axis can be estimated by averaging over data read on each axis. When an
accelerometer produces the original signal a = (ax,ay,az) ∈ R3, it is possible to calculate
the so called dynamic component of a as d = (ax−gx,ay−gy,az−gz) where the influence
of the gravity is eliminated.

Here, we propose a new method to increase the precision of the transformation and
preserving the orientation-invariance property. How this method works and how it changes
the signal acquired by the accelerometer is shown in Figure 12.4b. The fixed target
coordinate system is the following: the X axis is defined as the one tangential to the
ground pointing approximately toward East. The Y axis is tangential to the ground pointing
toward the geomagnetic North. Finally, the Z axis is orthogonal to the ground plane and
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points toward the sky1. To implement our method, we need the rotation vector sensor in
addition to the accelerometer of the smartphone, and a buffer used to estimate the gravity
component acting on each axis.

Firstly, we remove the gravity component from the accelerometer signal using a buffer
which stores data acquired during the last 500ms, and averaging over the axes. The vector
g= (gx,gy,gz) is used to compute the dynamic component vector d= (ax−gx,ay−gy,az−
gz) where a = (ax,ay,az) is the original accelerometer reading. Once the vector d has been
computed, it is rotated to the fixed coordinate system using information coming from the
rotation vector sensor. This sensor provides information about the current orientation of the
device with a three-component vector, where each component represents a rotation angle
around an axis. Now, we can apply a three dimensional rotation to the vector d= (dx,dy,dz)

to obtain a new vector d′ = (d′x,d
′
y,d
′
z) representing the real movement of the user with

respect to our target coordinate system. As we can see in Figure 12.4b, the signal remains
affected from the rotation for a very short interval of time only which is bounded by the
buffer size.

Android natively supports the automatic gravity removal using the linear acceleration
sensor that directly retrieves the dynamic component vector d. Starting from this vector
and using the rotation data as described above, linear acceleration readings can be rotated
to our fixed coordinate system. An illustration of the rotation-sensor based method applied
on the Android native solution is provided in Figure 12.4c. As we will see in Section 12.7.1
and in Section 12.7.2, our method performs better that the native solution both in terms of
precision and energy consumption.

A positive aspect of our approach is that, using a buffer to calculate and remove gravity,
data from the accelerometer can be represented as a smoothed line which permits us to
avoid the problem of sensitivity and calibration of different smartphone sensors, which
varies on different models. With our approach this error is smoothed. We made several tests
with a Samsung Galaxy i9250, acquiring data from the accelerometer and then applying our
approach, and from the linear sensor. The smartphone was placed with the screen pointing
to the sky. Data acquired at 125Hz for 5 minutes, and the readings averaged on each axis.
Since the smartphone was not moving, the theoretical result is At = (0.0,0.0,0.0). As
mentioned before, this is only a theoretical result since every sensor has its own noise. The
final average values obtained were Al = (−0.04869,0.01913,0.62103) using the linear
sensor and Ao = (0.03083,−0.01564,0.42016) using our method. As we can see, even
if we were not able to completely remove the noise from the accelerometer sensor, its
influence on the final data is reduced.

1http://developer.android.com/guide/topics/sensors/sensors_overview.html

http://developer.android.com/guide/topics/sensors/sensors_overview.html
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Figure 12.5: Sliding windows using time

Figure 12.6: Data-dependent sliding windows

Figure 12.7: The comparison between the segmentation in windows of possible stairsteps
obtained from the time-driven sliding windows (a) and the data-dependent sliding windows
(b)

12.5 Segmentation with data-dependent window

Once data is standardized to a fixed coordinate system, then the data segmentation step is
used to divide data into time segments, i.e. windows, from which we capture the features
that the algorithm uses to understand if the user is climbing stairs or not.

The standard approach for data segmentation is based on sliding windows, that is a set
of readings of a fixed interval of time, usually a time length sufficiently long to contain
the activity one wants to recognize. Since the activity could start in any moment inside a
sliding window, an improvement can be obtained by using the overlapping sliding windows

in order to increase the recognition probability. In this case, even if time duration remains
the same, the sliding windows overlaps, typically on about 50% of the total time duration.
Figure 12.5 gives an example of a segmentation using sliding windows which overlaps on
50% of the time length.

The approaches described above have several drawbacks. First of all, since time
duration is fixed, there is no user adaptation, especially for short activities, e. g., the time
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necessary to perform a stairstep may vary between a child and an old man. Another issue is
that, since data pattern inside a window is not considered, windows are always considered
for classification, even when it is clear that they are not the target activity. Therefore,
this approaches waste energy, since battery is consumed for activities and analysis which
are not strictly needed. Moreover, the usage of overlapping sliding windows requires to
consider the same data twice (for two different windows).

Our approach focuses on data patterns (and not on time) in order to decide the starting
point and the ending point of a sliding window. Since the data pattern of a stairstep is
generally the same, i.e., a local maximum followed by a negative local minimum for the
Z-axis, while the X-axis and the Y -axis get a much smaller variation, we suggest to use this
pattern to divide data coming from sensors into windows. We must note here that, thanks
to the previous orientation-independence step, this pattern is not affected by smartphone
orientation. An example of how windows are built is provided in Figure 12.6.

Since time length of the windows is no more fixed but becomes variable, it can be
used for energy consumption purposes. Analyzing the training set with stairsteps, we
found out that, on average, people need a time span between 300ms and 2 seconds to
complete a stairstep. Using this information, all the windows that do not fall into this time
length interval can be automatically discarded and considered as not stairsteps, even when
they follow the data pattern. In this case, we can omit the real classification step of our
pipeline, hence saving energy. Finally, our approach adapts a classification task to the user
variability, since the window are appropriately re-sized to contain a stairstep without the
need of a previous step of calibration. For a deeper analysis of our approach see [1].

12.6 Representation and features standardization

In the representation phase, the dynamic window resulting from the segmentation phase
is transformed into a vector of real values representing the information obtained by the
device sensors contained in that particular time window. This mapping will permit a natural
application of standard machine learning methods to our task of recognizing whether the
user is climbing stairs or not. The way data are represented is crucial for the effectiveness
of a learning algorithm. Specifically, a good representation method will be able to maintain
the information which is really relevant for the task and reduce the noise in the data as
much as possible.

In the following we formally describe our choices for the representation module. In
particular, let the frequency of sampling be fixed. Then, each window obtained by the
segmentation step will consist of a sequence of n vectors, vi = (xi,yi,zi) ∈R3, i ∈ {1, ..,n},
each one consisting of the standardized values of acceleration with respect to the three
axes.
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We also consider two additional computed values that, in our opinion, can carry
precious information. Firstly, we consider the norm of the vectorvi which well represents
the global amount of activity being performed and, secondly, the average value of horizontal
accelerations, namely xi+yi

2 which combines the horizontal activities in our fixed coordinate
system in a single value.

More formally, for any single standardized vector vi of a dynamic window, a new
vector si ∈ R5 can be built as follows:

vi = (xi,yi,zi) 7→ si = (xi,yi,zi,‖vi‖2,
xi + yi

2
)

Now, the entire sequence of observations in a window can be represented in the matrix
S ∈ R5×n where the vectors si are accommodated in columns. Finally, the representation
of the sequence corresponding to the entire dynamic window is obtained by applying a
simple transformation Φ : R5×n→R79, by evaluation of different statistical estimates over
the rows of S.

Specifically, the 79 dimensions of Φ(S) are created evaluating standard statistics (i.e.
average, standard deviation, variance and difference between minimal and maximal values)
which are very common in time series analysis or evaluating the ratio among the statistical
features above and the correlations from different sources [175, 151].

Table 12.1 presents a detailed description of the entire set of features we decided to
compute in order to represent a sequence of acceleration measures in a dynamic window.
The first set of 20 features considers standard statistics computed over the rows S j of the
sequence matrix S. The next group of 40 features considers the ratio of the same statistics
computed on different rows. An additional group of 9 features (61-69) takes in account
other important ratio statistics (among vertical and horizontal activities and the norm of the
total activity), and two other features, the Magnitude Area (MA) and the Signal Magnitude
Area (SMA) of {S1,S2,S3}. Finally, the last 10 features correspond to the value of the
correlation between pairs of rows. For reason of computational complexity and energy
consumption we did not use the features in the Fast Fourier Transform (FFT) family.

In order to fairly compare our orientation-independence supporting method with other
methods presented earlier in this chapter, we used a similar representation mapping. In
particular, exactly the same mapping is used for the Linear method. Concerning the
Mizell method, that returns two measurements vectors instead of one, we have considered
the natural extension of the function Φ applied to the two vectors independently and
concatenating the resulting vectors, thus obtaining a new vector of dimension 79×2 = 158.

Finally, it is well-known that the classification algorithms are badly influenced by
features with different orders of magnitude. For this reason, we have rescaled all the
features from the dynamic windows used to train the classifiers between [−1,1] with a
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Features No. Description
1−5 Ave(S j), j ∈ {1, . . . ,5}

6−10 Std(S j), j ∈ {1, . . . ,5}
11−15 Var(S j), j ∈ {1, . . . ,5}
16−20 Max(S j)−Min(S j), j ∈ {1, . . . ,5}
21−30 Ave(S j)

Ave(Sh)
, j,h ∈ {1, . . . ,5}, j > h

31−40 Std(S j)
Std(Sh)

, j,h ∈ {1, . . . ,5}, j > h

41−50 Var(S j)
Var(Sh)

, j,h ∈ {1, . . . ,5}, j > h

51−60 Max(S j)−Min(S j)
Max(Sh)−Min(Sh)

, j,h ∈ {1, . . . ,5}, j > h

61 Max(S3)
Max(S5)

62 |Min(S3)
Min(S5)

|
63

√
Ave(S1)2 +Ave(S2)2 +Ave(S3)2

64 Ave(|S1|+ |S2|+ |S3|)
65 Std(s1)

2

Std(s4)

66 Std(s2)
2

Std(s4)

67 Std(s3)
2

Std(s4)

68 (Std(s1)+Std(s2))
2

Std(s3)

69 (Std(s1)+Std(s2))
2

Std(s4)

70−79 Corr(S j,Sh), j,h ∈ {1, . . . ,5}, j > h

Table 12.1: The 79 features extracted from dynamic windows

linear transformation, in order to improve the classification results from the classifiers.
The linear transformations (that are fixed and different for each feature) are applied to
all the features before the classification takes place in order to improve the classification
performance.

12.7 Experiments and results

In this section, we present experimental results we have obtained considering classification
performances, energy consumption and users evaluation.

12.7.1 Classification setting and results

Our dataset was acquired through direct data collection from 6 different users using
different smartphones. This data is recorded keeping the devices consistent with the body
movement2 (e.g. hand held, in a backpack or in a handbag) and without other constraints

2In this chapter, we consider a device movement consistent with the body movement whenever the device
movement is negligible relatively to the body’s barycenter
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Frequency 20Hz
Mizell rotation Linear rotation Our rotation method Smoothed + Our rotation method

Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std
DT 0.81 0.84 0.825±0.012 0.67 0.70 0.685±0.024 0.77 0.79 0.780±0.015 0.73 0.71 0.720±0.010

KNN 0.80 0.77 0.785±0.010 0.87 0.77 0.817±0.024 0.80 0.75 0.774±0.012 0.81 0.81 0.810±0.009
KOMD 0.83 0.84 0.835±0.011 0.83 0.83 0.830±0.018 0.84 0.85 0.845±0.008 0.84 0.90 0.869±0.007

Frequency 30Hz
Mizell rotation Linear rotation Our rotation method Smoothed + Our rotation method

Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std
DT 0.82 0.86 0.840±0.012 0.80 0.78 0.790±0.024 0.82 0.73 0.772±0.015 0.73 0.71 0.720±0.010

KNN 0.83 0.84 0.835±0.010 0.88 0.61 0.721±0.024 0.90 0.78 0.836±0.011 0.87 0.85 0.860±0.009
KOMD 0.89 0.85 0.870±0.010 0.86 0.83 0.845±0.018 0.90 0.88 0.890±0.008 0.91 0.91 0.910±0.007

Frequency 50Hz
Mizell rotation Linear rotation Our rotation method Smoothed + Our rotation method

Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std Prec Rec F1±std
DT 0.70 0.77 0.733±0.012 0.82 0.89 0.854±0.023 0.81 0.75 0.779±0.015 0.86 0.83 0.845±0.009

KNN 0.82 0.85 0.835±0.009 0.81 0.84 0.825±0.024 0.90 0.78 0.836±0.011 0.82 0.85 0.835±0.009
KOMD 0.85 0.88 0.865±0.010 0.79 0.86 0.824±0.018 0.91 0.90 0.905±0.008 0.92 0.92 0.920±0.006

Table 12.2: Experimental results of Precision (Prec), Recall (Rec) and F1±std score for the
algorithms and methods used with frequency of sampling of 20Hz, 30Hz and 50Hz. The
result highlighted has the largest value of F1

with respect to where or how to keep the device when the data was collected. All the
methods presented in Section 12.6 have been used to compute a vector of features for each
dynamic window contained in the whole dataset. Data has been then manually labeled in
order to use it with the supervised learning algorithms.

We use algorithms from three different families to tackle this task:

• Decision Trees (DT) generated using the C4.5 algorithm,
• K-nearest neighbors (KNN) and
• Kernel Optimization of the Margin Distribution (KOMD) that is described in Chapter

5, with RBF as the kernel.

For the KOMD algorithm, we used our own implementation, while for the decision trees
and the k-nearest neighbors we used the Weka [85] implementation.

Raw data was sampled with at three different frequencies, namely 50Hz, 30Hz and
20Hz, with the aim to explore the relation between performance and energy consumption
and finding the best trade-off. Higher frequencies correspond to more accurate information
given to the system, but obviously, they also correspond to an higher energy consumption
for the device.

In our application, we face with the binary classification task of stairstep recognition.
The distribution of different labels in this case is very imbalanced since we have far more
negative examples than positive ones. For this, we evaluated Precision and Recall, instead
of accuracy, to obtain a more proper performance estimation and comparison of different
experimental settings. Then, we used the Fβ -score (with β = 1.0) to combine recall and
precision in a single aggregated effectiveness score.

Starting from the original datasets with manually assigned labels for each dynamic
window, the experiments are performed using a nested stratified 10-fold cross validation.
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Firstly, the dataset has been divided in 10 partitions (each partition with the same distribu-
tion of stairsteps). The best parameters are selected for each algorithm using the classical
10-fold cross validation among the windows contained in 9 out of the 10 partitions (i.e.
the training set). Finally, the machine learning algorithms are trained to generate a model
using the best parameters and the classification statistics are evaluated among the windows
contained in the remaining partition, used as test set. This procedure is repeated selecting
all the 10 partitions as test set and evaluating the average of the performance. The obtained
results over the test set are summarized in Table 12.2 for different rotation methods: Linear,
Mizell, our method without the smoothing of the data and our method with the smoothing
of the data.

These results show that smoothing of data improves our proposed method for the
support to the orientation-independence. This technique, when combined with the KOMD
classification algorithm, obtains the best performances against any other combination of
methods and algorithms. The results are satisfactory considering the high difficulty of the
classification task and given the small training sample obtained on each single dynamic
window. We are also interested in finding the best trade-off between energy consumption
and performances. On this respect, we can see that the best compromise is obtained at
30Hz, as we can notice that the difference in performances between 50Hz and 30Hz is
not statistically significant considering the standard deviation. Moreover, our method with
KOMD shows an higher F1 score at 30Hz than any other classifier at 50Hz.

12.7.2 Energy consumption results

When dealing with smartphone devices and applications, energy consumption is one of
the key aspects to consider. One of the most important aspect for mobile devices users is
battery lifetime, meaning that it is not possible to develop an application that wastes a lot
of energy and asks the user to recharge smartphone more than once a day. This kind of
situation usually takes the user to remove the application.

A deep analysis of each step of the pipeline is a fundamental requirement during design
and development. In our particular case, we wanted to study how resources are used and
which are the computationally expensive tasks. Furthermore, we wanted to understand how
data frequency acquisition from the accelerometer and the rotation sensor affects energy
consumption and in which measure, how much energy the data-smoothing step requires
and how well the data segmentation technique performs with respect to the sliding window
technique.

To measure the energy consumption, we used the Monsoon Power Monitor3. Dif-
ferently form other approaches like background application running on the smartphone

3http://www.msoon.com/LabEquipment/PowerMonitor/

http://www.msoon.com/LabEquipment/PowerMonitor/
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Energy consumption (µAh)
Mizell Linear Rotation Smoothing and

method rotation method
9289±36 10003±21 9923±3 9949±8

Figure 12.8: Energy consumption of the four different methods

(see [140, 147]) that could introduce an unknown and not fixed overhead that could affect
measured data, the Monsoon Power Monitor is an external device that directly measures
the “requested” energy from the smartphone to the battery. In this way, no overhead is
introduced.

Our tests have been performed using a Samsung Galaxy i9250 with a 1750mAh battery.
Even if this smartphone is not up to date, we considered this not a real problem since we
do not want to consider absolute values of energy consumption, but we want to compare
energy consumption of different methods to determine which is the less expensive.

Figure 12.8 reports the energy consumption measurements. Each experiment lasted
two minutes and we repeated each test three times for each method. We tested our method
using the selected frequency of 30Hz.

The first evidence we can note from our results is that the Mizell method is the less
consuming one. This is not surprising since this method gets data from the accelerometer
sensor only, thus requiring less energy. On the other side, this method shows a significantly
poorer performance (see Table 12.2).

Comparing our method, which uses both the rotation sensor and the accelerometer, and
the linear method, which use the rotation sensor and the linear sensor, we can note that the
usage of the accelerometer is less demanding than the usage of the linear sensor. These
results along with the ones presented in Table 12.2 demonstrate that our solution is able to
improve both the accuracy in terms of stairstep recognition and the energy consumption
with respect to the linear solution. Moreover, when adding the data smoothing phase, the
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Segmentation approach
Time-based Data-driven

window window
Energy

consumption 14535±17 12554±14
(µAh)

Figure 12.9: Energy consumption comparison between time-based and data-driven win-
dows

performance in accuracy are further improved without affecting the energy consumption
(only about +0,26%).

Another key aspect of our pipeline is the use of data-driven windows that, differently
from standard time-based windows, uses the data pattern to determine how to segment data
coming from sensors. To compare the two methods in terms of energy consumption, we
tested both of them acquiring data at 30Hz and using KOMD as the classification algorithm.
For time-based windows, a time length of 500ms and overlapping at 50% were used. Final
results are reported in Figure 12.9.

As we can see from our data, data-driven windows allow us to save more energy
(more than 15%) with respect to the time-based sliding windows. This is because in the
time-based approach every windows have to be classified, while, in our method, only the
ones that contains the correct pattern are taken into consideration. Moreover, the time filter
let us further reduce the number of analyzed windows, and cannot be applied to standard
windows. Clearly, less windows analyzed by the classifier means less energy consumption.

12.7.3 Irrelevant features

A further analysis has been performed to investigate on which features are more useful
for our specific task. The motivation for this is three-fold. On one hand we wanted to
understand what kind of information is sufficient to recognize stairsteps. On the other
hand, removing useless features allows a classifier to learn more quickly, that is, it needs
fewer examples to obtain the same performance in classification [145]. Finally, having
fewer features to compute can be beneficial from the point of view of energy consumption.

We applied the MKL approach for feature selection, using EasyMKL (see Chapter 7).
Pursuing the connection between feature selection and MKL, the weak kernels in our case
are obtained from single features.

Specifically, we have generated a family of 79 weak linear 1−rank kernels F =

{K1, . . . ,K79} by using the 79 features (i.e. Ki = X[:, i]T X[:, i]). Then, we applied
EasyMKL to find the optimal combination of these kernels. The weight µi, and hence
the importance, of the feature ith is given by the value obtained in the linear combination
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returned by EasyMKL. From this point of view, given in input the whole dataset, EasyMKL
returns an order of the features (from the best to the worst) for our specific classification
task.

Our experiments have shown that we can achieve a performance that is very similar to
the one obtained using the whole set of 79 features (F1 score of 0.905±0.009) by keeping
only the first 49 most important features. Specifically, the following features: 69, 31, 13,
48, 49, 17, 47, 24, 76, 1, 27, 73, 7, 64, 35, 39, 47, 72, 53, 67, 59, 66, 55, 33, 45, 25, 37, 23,
21 and 57 have been discarded (the indexes refer to the Table 12.1 and they are sorted in
order of importance).

In Figure 12.10, we depicted the weight assigned to each feature by EasyMKL, sorted
in order of importance. The distribution of the weights highlights that a set of the evaluated
features are useless for this task (i.e. their corresponding weights are zero). On the other
hard, the most important features play a key role in the solution of the classification
problem and obtain an high weight.

A second experiment has been performed. We have trained KOMD several times,
initially only using the best feature and sequentially adding, at each step, the next feature
in the ranking. In Figure 12.11, the F1 results are presented for this experiment. An anti-
correlation is pointed out by analyzing the behavior of the model performance compared to
the ranking of the weights, highlighting the efficacy and the correctness of our approach.
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Figure 12.10: The weights µi, i = 1, . . . ,79 of the linear 1−rank kernels, given by
EasyMKL, sorted in order of importance. The vertical dotted line represents the se-
lected number of considered features (i.e. 49) used to generate the final model of our
application
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Figure 12.11: F1 using a different number of features by adding at each step the next best
feature in the EasyMKL ranking. The vertical dotted line represents the selected number
of considered features (i.e. 49) used to generate the final model of our application





13. Distributed Variance Regularized MTL

A key goal of this chapter is to equip one of the most widespread MTL methods presented
in [68] with a parallel optimization procedure. For this purpose, we employ the alternating
direction method of multipliers (ADMM), see for example [66, 36] and references therein.
We focus on MTL methods which involve the variance of the task weight vectors as the
regularizer. We show that the optimization process can be efficiently implemented in a
distributed setting, in that the different tasks can first be independently solved in parallel
and subsequently corrected to pool information from other tasks. We report on numerical
experiments, which indicate that the method works well and converges in few distributed
iterations. We empirically observe that the number of iterations is nearly independent of
the number of tasks, yielding a computational gain of O(T ) over standard solvers. We also
present experiments on a large URL classification dataset, which is challenging both in
terms of volume of data points, dimensionality and number of different tasks. Our results
confirm that MTL can obtain superior performance over either learning a common model
or independent task learning.

13.1 The importance of the Multitask Learning

Multitask Learning (MTL) is nowadays an established area of machine learning that has
shown its benefits in many applications. MTL aims at simultaneously learning models
for multiple related tasks by inducing some knowledge transfer between them. A typical
MTL algorithm introduces a regularization term or prior that imposes an adequate shared
bias between the learning tasks. This idea was inspired by research on transfer learning
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in psychology, which brought up the hypothesis that the abilities acquired while learning
one task (e.g. to walk, to recognize cars, etc.) presumably apply when learning a similar
task (to run, to recognize trucks, etc.) [176, 185] and was first coined inside the machine
learning community in the 90’s [42, 185]. The notion of what “task relatedness" means
in practice is still not completely clear but theoretical studies support the intuition that
training simultaneously from different related tasks is advantageous when compared to
single task learning [22] [26] [136]. The benefits usually include more efficient use of
small data sets in new related tasks and improved generalization bounds when learning
simultaneously.
Recent successful studies on large datasets suggest that the use of models whose training
process can be scaled up in terms of the size of the database is key to obtain good results.
In large scale learning scenarios, the reduction of the estimation error that can be achieved
by leveraging bigger datasets compensates the bias introduced by the use of simpler models
such as linear classifiers [35]. This trend has produced several algorithms that put the
focus on scaling up the training of simple linear models such as support vector machines
to PB of data, see [168] and references therein. Despite this success, the MTL community
has targeted the formulation of different regularizers that foster the correct information
sharing between tasks in specific situations, overlooking their scalability. Nevertheless,
MTL formulations apply very naturally to many large scale scenarios where we expect
heterogeneous (although related) regimes to be present in the data.
Scalability of MTL can be challenged from two different angles. Recent applied studies on
MTL [31] [61] [19] [100], tackle scenarios such as preference learning, ranking, advertising
targeting and content classification. Those studies mainly focus on the scalability when the
number of examples increases. But scalability issues can also be encountered when the
number of tasks grows. Think for example about learning: i) the preferences of a client on
a per client basis, ii) the categorization of webpages on a per host basis or iii) the relevance
of a query-document pair for a specific combination of user aspects like region, sex, age,
etc. A common feature of these applications is that: (a) many tasks suffer a lack of data
to learn from, and (b) the number of free parameters to learn grows with the number of
tasks. The first issue has been one of the main motivations of multitask learning, namely
to leverage data from similar tasks in order to improve accuracy. On the other hand, the
second challenge could impose a limitation on the learning process if the number of tasks
grows big since it means a larger amount of data to transfer on the network, stored and
managed by the learning algorithms. Thus, if we combine MTL with parallel optimization,
we would obtain a practical process that is expected to obtain higher accuracy.
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13.2 Multitask Learning Framework

When we refer to multitask learning (MTL) we mean the following situation. We have T

learning tasks and we assume that all data from these tasks lie in the same space Rd×Y ,
where Y = {−1,1} for binary classification and Y = R for regression. Associated with
each task t we have mt data points

(x1t ,y1t),(x2t ,y2t), . . . ,(xmt t ,ymt t) (13.1)

sampled from a distribution Pt on X×Y . We assume that this distribution Pt is different
for each task but that different Pt are related. The goal is to learn T functions h1,h2, . . . ,hT

such that the average error 1
T

T
∑

i=1
E(x,y)∼Pt [`(y,ht(x))] is low for a prescribed loss function

`. Note that when T = 1, this framework includes the single task learning problem as a
specific case.

In [68] an intuitive formulation for relatedness between tasks inspired by a hierarchical
bayesian perspective was presented. This formulation assumes that the hypothesis class of
each individual task is formed by the set of linear predictors (classifiers) whose parameter
vectors are related by the equations

wt = vt +w0, t = 1, . . . . ,T. (13.2)

The vector vt models the bias for task t and the vector w0 represents a common (mean)
classifier between the tasks. Within this setting, the tasks are related when they are similar
to each other, in the sense that the vectors vt have small norms compared to the norm of the
common vector w0. Note also that this setting may be useful in a transfer learning setting,
in which we do not have data for a new task but we can still make predictions using the
common average w0.

In the above setup, an optimal w0 and a set of optimal vt for each task is found by
solving the following optimization problem which is an extension of linear SVMs for a
single task (which corresponds to the case T = 1), namely

min
w0,vt

{
T

∑
t=1

ft(w0+vt)+
λ1

T

T

∑
t=1
‖vt‖2

2 +λ2‖w0‖2
2

}
(13.3)

where ft(·) = ∑
mt
i=1 `(yit ,〈·,xit〉), the empirical error for the task t.

Define the variance of the vectors w1, . . . ,wT as

Var(w1, . . . ,wT ) =
1
T

T

∑
t=1

∥∥∥wt−
1
T

T

∑
s=1

ws

∥∥∥2

2
.
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It can be shown [68, Lemma 2.2] that problem (13.3) is equivalent to the problem

min
wt

{
T

∑
t=1

(
ft(wt)+ρ1‖wt‖2

2

)
+ρ2T Var(w1, . . . ,wT )

}
(13.4)

where the hyperparameters are linked by the equations

ρ1 =
1
T

λ1λ2

λ1 +λ2
, ρ2 =

1
T

λ 2
1

λ1 +λ2
.

This connection makes it apparent that the regularization term encourages a small magni-
tude of the vectors wt (large margin of each SVM) while simultaneously controlling their
variance.

13.3 Distributed MTL via ADMM

The utility of problem (13.4) is that its objective function – unlike that in problem (13.3)
– is almost separable across the different tasks. Namely, the only term in the objective
function in (13.4) that prevents decoupling is the last summand, which makes the gradients
for different tasks dependent. If we could remove this dependency, both the data and
weight vectors for different tasks could be maintained in different nodes of a computer
cluster without the need of centralizing any information and so making the method scalable.
For this purpose we use an optimization strategy based on the alternating direction method
of multipliers (ADMM), see for example [36, 66] and references therein. This method
solve the general convex optimization problem

minimize
w,z

f (w)+g(z)

subject to Mw = z
(13.5)

where f and g are two convex functions. Different algorithms have been proposed to tackle
this optimization with different convergence characteristics, see, for example, [36, 143,
90, 95]. In this chapter, we employ the ADMM algorithm outlined in [66]. Although
potentially faster algorithms exists, such as [77], their convergence analysis require stronger
assumptions which are not meet in our problem.

We define the augmented Langrangian function Lη at w,z,y as

Lη(w,z,y) = f (w)+g(z)+ 〈y,Mw− z〉+ η

2
‖Mw+ z‖2

2
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where η is a positive parameter. Each ADMM step requires the following computations

wk = argmin
x

Lη(w,zk−1,yk−1)

zk = argmin
z

Lη(wk,z,yk−1)

yk = yk−1 +η(Mwk− zk)

(13.6)

where k is a positive integer and z0, y0 are some starting points. We call each round of
(13.6) an ADMM iteration. This process is repeated until convergence.

A convenient identification between problem (13.4) and the ADMM objective function
(13.5) shows that the multitask objective can be efficiently optimized through this strategy.
Namely, problem (13.4) is of the form (13.5) for the choice M = I and

f (w) =
T

∑
t=1

ft(wt)+
ρ1

2

T

∑
t=1
‖wt‖2

2

g(z) = ρ2T Var(z1, . . . ,zT )+
ρ1

2
‖z‖2

2

where we set w to be the concatenation of the weight vectors wt for all the tasks, and we
force z = w in order to make f (w)+g(z) equal to the original objective in the feasible
region.

The augmented Lagrangian for this specific case is

Lη(w,z,y) =
T

∑
t=1

ft(wt)+
ρ1

2

T

∑
t=1

(‖wt‖2
2 +‖zt‖2

2)

+ρ2T Var(z1, . . . ,zT )+ 〈y,w− z〉+ η

2
‖w− z‖2

2.

Using this expression, the first three updating equations in the ADMM optimization strategy
(13.6) become

wk = argmin
w

{ T

∑
t=1

ft(wt)+
T

∑
t=1

ρ1

2
‖wt‖2

2 + 〈yk−1
t ,wt〉+

η

2
‖wt− zk−1

t ‖2
2

}
zk = argmin

z

{
ρ2T Var(z1, . . . ,zT )+

ρ1

2
‖z‖2

2−〈yk−1,z〉+ η

2
‖wk−1− z‖2

2

}
yk = yk−1 +η(wk− zk).

(13.7)

We are left to analyze how to solve the first two optimization steps to obtain wk and zk. It
is noticeable that in the first of these steps the optimization over the tasks is completely
decoupled, that is the component vectors wk

t can be computed independently of each other
– we discuss how to do this in Section 13.5. Thus, the update of each task’s weight vector
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can be run in parallel with no communication involved once data is distributed by tasks. As
we shall see in Section 13.4.2 the second optimization step, in which the only information
sharing between the tasks occurs, can also be carried out with minimal communication
just by averaging the vectors for the different tasks, hence leading to an scalable strategy.

13.4 Algorithm

In the previous section we showed how the MTL problem in equation (13.3) or (13.4) can
be solved by the iterative scheme (13.6). In this section, we analyse the minimization
problems for wk and zk, noting that both can be computed in a distributed fashion.

13.4.1 Optimization of each individual task

The update formula for the weights w in (13.7) can be implemented with different methods.
The optimization of the weights completely decouple across the tasks wt and each can be
compute by solving the problem

min
wt

{
ft(wt)+

ρ1 +η

2
‖wt‖2

2 + 〈yt−ηzt ,wt〉
}
. (13.8)

One natural approach is to use (sub)gradient descent, possibly in a stochastic setting when
the number of datapoints of a task is large. In this chapter we consider the case that ` is the
hinge loss, namely`(y,y′) = h(yy′), where h(·) = max(0,1−·). In Section 13.5 we detail
a stochastic gradient descent method to solve problem.

13.4.2 Optimization of the auxiliary variables

The update step for the auxiliary variable zk is more advantageous computationally since
we can work out a closed formula. The objective function is given by

ρ2

T

∑
t=1

∥∥∥zt−
1
T

T

∑
s=1

zs

∥∥∥2

2
+

ρ1

2
‖z‖2

2 + 〈yk,wk− z〉+ η

2
‖wk− z‖2

2

for fixed wk and yk. Removing constant terms that do not depend on z, this can further be
rewritten as

F(z) =
〈
z,
(
ρ2DT D+

ρ1

2
I
)
z
〉
−〈yk,z〉+ η

2

(
‖z‖2

2−2〈wk,z〉
)
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where matrix D ∈ RT d×T d is given in block form as

D =



DM D0 D0 · · · D0

D0 DM D0 · · · D0

D0 D0 DM · · · D0

...
...

...
...

...

D0 D0 D0 · · · DM


, (13.9)

being d the number dimensions of a block and T the number of blocks. Finally, DM =
T−1

T Id×d and D0 =− 1
T Id×d , where Id×d is the d×d identity matrix.

If we take the derivative of the above objective function we can see that the optimal
solution can be found by solving the system of linear equations

(2ρ2DT D+(ρ1 +η)I)zk = (yk +ηwk).

The following proposition shows that the inverse E = (2ρ2DT D+(ρ1 +η)I)−1 has a
convenient closed analytical formula. where EM and E0 are the d×d matrices

Proposition 13.4.1 Let E = (2ρ2DT D+(ρ1 +η)I)−1, where matrix D ∈ RT d×T d is de-
fined equation (13.9). The matrix E has the following structure

E =



EM E0 E0 · · · E0

E0 EM E0 · · · E0

E0 E0 EM · · · E0

· · · · · · · · · · · · · · ·

E0 E0 E0 · · · EM


∈ RT d×T d

where EM and E0 are:

EM =
1
T

(
1

η +ρ2
+

T −1
η +2ρ1 +ρ2

)
Id×d,

E0 =
2ρ1

T (η +ρ2)(η +2ρ1 +ρ2)
Id×d.

Proof. We have to prove that (2ρ2DT D+(ρ1 +η)I)E = E(2ρ2DT D+(ρ1 +η)I) = I ∈
RT d×T d . The first observation of the proof is the particular structure of the matrix D that is
an idempotent symmetric matrix and then DT D = D2 = D. So, the matrix 2ρ2DT D+(ρ1+
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η)I is also equal to G = 2ρ2D+(ρ1 +η)I and has the following structure in RT d×T d


GM G0 · · · G0

G0 GM · · · G0

· · · · · · · · · · · ·

G0 G0 · · · GM

 (13.10)

where G0 = 2ρ2D0, GM = 2ρ2DM +(ρ1 +η)Id×d , where Id×d is the identity matrix in d

dimensions. Then, we can evaluate the block product between E and G. This product
generates a block matrix where each block on the diagonal is

(T −1)E02ρ2D0 +EM(2ρ2DM +(ρ1 +η)Id×d) = Id×d,

and the off-diagonal block are zero, since

(T −2)E02ρ2D0 +E0(2ρ2DM +(ρ1 +η)Id×d)+EM2ρ2D0 = 0d.

�

This formula reveals that the optimization over z1, . . . ,zT can also be run in parallel.

First, we can reduce the vectors from all the tasks to a single vector w = E0
T
∑

t=1
wt . Then,

each vector can be updated in parallel by using again EM and E0. Similarly to the
optimization of wt , this operation can be readily done in a framework such as MapReduce
to speed up computations with a very reduced need of broadcasting information.

13.4.3 Convergence

We comment on the convergence properties of our method. Our observations are a direct
consequence of the general analysis in [66]. Specifically, [66, Theorem 8] applies to our
problem, with (using their notation) ρk = 1 for every k ∈N, their p equal to our y and their
λ equal our η . The theorem requires that the matrix M is full rank, f and g are closed
proper convex functions and the sum of the errors of the inner optimization problems is
finite. All these hypothesis are meet in our case. In particular, the optimization over z is
performed exactly as discussed in Section 13.4.2. The optimization over w are the parallel
SVMs which we can solve to arbitrary precision using for example gradient descent. As
we will see in our numerical experiments only few iterations are sufficient to reach a
good suboptimal solution and gradient descent may be replaced by its stochastic version
(discussed below) without affecting the good convergence of the algorithm.
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13.5 SGD Optimization of each individual task

When we have to solve problems with a large number of points, it is not computationally
feasible to solve the optimization of each individual task with batch algorithms. In this
section, we observe that it is possible to exploit a Stochastic Gradient Descent (SGD)
strategy for our proposed method. Firstly, we show that the optimal solution of the
optimization problem is contained inside a convex ball. From this results, we are able to
satisfy the hypothesis of convergence of the SGD technique for strongly convex functions
[156, 168]. Specifically, we prove the boundedness of the directions followed in the SGD
optimization of w, in each outer step k≥ 0 of the ADMM strategy.

Algorithm 4 depicts the optimization of the weight vectors wt using the SGD for
strongly convex functions. The optimization for each task presented in Equation 13.8 is
equivalent to the problem minwt Ft(wt), where

Ft(wt) = Lt(wt)+
γt

2
‖wt‖2

2,

Lt(wt) =
1

mt

(
mt

∑
i=1

h(yit〈wt ,xit〉)+ 〈yt−ηzt ,wt〉

)
and γt = (ρ1 +η)/mt . In order to be able to apply SGD we need to sample a direction ut

at each step q such that E[ut |wt ] is a subgradient of Ft at wt . If at each step we sample
randomly and with replacement a patternxit from the training set, the following sequence
of directions complies with the above restriction

ut =

γtwt+
1
m(yt−ηzt) if yit〈wt ,xit〉 ≥ 1,

−yitxit + γtwt+
1
m(yt−ηzt) otherwise.

In the following proposition, we show that the optimal solution of the original opti-
mization problem resides inside a convex ball.

Proposition 13.5.1 If w∗ is the optimal solution of problem (13.4) then ‖w∗‖2 ≤
√

T M
2λ1

,

where M =
T
∑

t=1
mt .

Proof. Let µ = T λ2
λ1

. We make the change of variables w =
(√

µw0,v1, . . . ,vT
)
∈R(T+1)d

and introduce the map φ : Rd×{1, . . . ,T} 7→ R(T+1)d , defined as

φ(x, t) =
(

x
√

µ
,0, . . . ,0,x,0, . . . ,0

)
. (13.11)

Following [68] we rewrite problem (13.3) as a standard SVM problem in the extended
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input space for the feature map (13.11), namely

min
w

{
C

M

∑
i=1

h(yi〈w,φ(xi, ti)〉)+
1
2
‖w‖2

2

}

where C = T
2λ1

and M =
T
∑

t=1
mt . Since at the optimum the gap between the primal and dual

objective vanishes, there exists α∗ ∈ [0,C]M such that

1
2
‖w∗‖2

2 +C
M

∑
i=1

h(yi〈w,φ(xi, ti)〉) =
M

∑
i=1

α
∗
i −

1
2
‖w∗‖2

2.

Using the fact that
M
∑

i=1
h(yi〈w,φ(xi, ti)〉)≥ 0 we conclude that ‖w∗‖2

2 ≤ ∑
M
i=1 α∗i ≤MC =

T M
2λ1

= β . �

This proposition thus proves that in Algorithm 4 it is safe to restrict the set of feasible
solutions to the ball B := {x ∈ Rd : ‖x‖2

2 ≤ β} with β = max(
√

T M/(2λ1),
√

M/(2λ1))

and it justifies the projection step at line 7 of the algorithm.

Algorithm 4 Optimization of each individual task
Require: Dataset {(xit ,yit), i = 1, . . . ,mt} for task t, parameters ρ1, γt , η , zt , yt , T , M
Ensure: Optimal weight vector wt

1: w0
t = 0

2: γt =
ρ1+η

mt
3: for q = 1 to n do
4: δ = 1

qγt

5: Choose a random pattern (xit ,yit) from the set

6: wq+ 1
2

t = wq
t −δut

7: wq+1
t = min

(
1,β 1

‖w
q+ 1

2
t ‖2

)
wq+ 1

2
t

8: end for
9: return ŵt =

2
n

n
∑

q= n
2+1

wq
t

Now, we analyze the convergence of Algorithm 1 and we base our proof on a recent
result presented in [156, 168] which states (adapting their result to our notation) that the
aforementioned strategy converges with the rate E[Ft(ŵt)]−Ft(wt)≤ ρ2

2γtn
after n iterations,

provided when Ft(w) is γt-strongly convex and E[‖ut‖2]≤ ρ2 for some finite constant ρ .
Clearly, the objective function Ft is strongly convex with constant γt =

ρ1+η

mt
, see [168,

Lemma 13.5]. We are left to prove that the directions ut followed in the SGD optimization
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of w in each outer step k ≥ 0 of the ADMM strategy are bounded, which we state in the
following theorem.

Theorem 13.5.2 If all the examples xit satisfy ‖xit‖2
2 ≤ R then for every iteration k ∈ N

of the outer ADMM scheme and every inner iteration q, there exists ρ > 0 such that the
directions of the SGD in Algorithm 1 are bounded in average, E[‖uk

t ‖2
2]≤ ρ2 <+∞ for

every t = 1, . . . ,T .

Proof. At each outer step k, the direction for the task t is:

uk
t =

γtwk
t +

1
m(y

k
t −ηzk

t ) if `k
it = 0,

−yitxit + γtwk
t +

1
m(y

k
t −ηzk

t ) if `k
it > 0

where we use the shorthand `k
it = yit〈wt ,xit〉.

We are interested in finding a bound for the quantity ‖uk
t ‖2

2. From the definition we
have that

‖uk
t ‖2

2 ≤ ‖yitxit‖2
2 + γ

2
t ‖wk

t ‖2
2 +

1
m2 (‖y

k
t ‖2

2 +η
2‖zk

t ‖2
2).

We have already shown that ‖wk
t ‖2

2≤ β and from the hypothesis we have that ‖yitxit‖2
2≤

R. Now, we are interested in finding a finite bound for the quantity ‖yk
t ‖2

2 +η2‖zk
t ‖2

2.
From the initialization of the algorithm, we have that ‖y1

t ‖2
2 +η2‖z1

t ‖2
2 < +∞. In fact,

‖y1
t ‖2

2 < +∞ and ‖z1
t ‖2

2 < +∞. We can use the induction for the value ‖yk
t ‖2

2 +η2‖zk
t ‖2

2

changing the step k. We can exploit the hypothesis that

‖yi
t‖2

2 +η
2‖zi

t‖2
2 <+∞, ∀i < k

and then ‖yi
t‖2

2 <+∞ and η2‖zi
t‖2

2 <+∞, ∀i < k.

By definition, the following inequalities hold

‖yk
t ‖2

2 ≤ ‖yk−1
t ‖2

2 +‖ηwk−1
t ‖2

2 +‖ηzk−1
t ‖2

2 ≤ ‖yk−1
t ‖2

2 +η
2
β +η

2‖zk−1
t ‖2

2

≤ ‖y1
t ‖2

2 +
k−1

∑
i=2

η
2(β +‖zi

t‖2
2) =: Φ

k
t .

By the induction hypothesis the value Φk
t <+∞. Also, we have that

‖zk
t ‖2

2 ≤ ‖E‖2
2(‖yk

t ‖2
2 +η

2‖wk
t ‖2

2),

where E = (2ρ2DT D+(ρ1 +η)I)−1 is symmetric and then ‖E‖2
2 is its spectral radius
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rE ∈ R+. Then, we can claim that

‖zk
t ‖2

2 ≤ rE(‖yk
t ‖2

2 +η
2
β )≤ rE(Φ

k
t +η

2
β ) =: Ψ

k
t <+∞.

Finally, the following bound holds:

‖uk
t ‖2

2 ≤ R+ γ
2
t β +

1
m2 (Φ

k
t +η

2
Ψ

k
t ) := ρ

2 <+∞.

�

13.6 Experimental results

In this section present numerical experiments which highlight the computational efficiency
of our algorithm, and report on the advantage offered by the MTL strategy in formula
(13.3) in a challenging url classification dataset. Our implementation is available at
https://github.com/torito1984/MTLADMM.

13.6.1 Artificial data

In the first experiment we generated an artificial dataset which is captured by the model
(13.2) and, in addition, introduces a set of irrelevant features.

The number of relevant and irrelevant features was set to 8 and 100, respectively. The
dataset is made of 400 different binary classification tasks, 5 of which have 1000 patterns
and the rest 16 patterns. To generate the data we first sample the components w01, . . . ,w0d

of the mean vector w0 iid form a zero mean Gaussian with variance σ = 0.25. Then, we
randomly pick 5 of the relevant features and create a vector wt for each task by adding a
Gaussian perturbation with zero mean and standard deviation σi = 2w0i. Next for each
task, we generate a balanced set of points on each side of the classification hyperplane. To
generate a point we: (1) pick a sign s with a 50% chance, (2) starting from the origin, move
in a random direction sd where d is the normal vector of the classification hyperplane and
p ∈ N(5,0.1) (this generates a well behaved dataset with some random margin violations),
(3) finally we choose a random direction in the subspace of dimension d−1 parallel to
the classification hyperplane and make a jump with magnitude sampled from N(0,20).
Since we are generating patterns with a low margin covering many different directions in
the parallel subspace, only the tasks with 1000 patterns have enough data to achieve high
test accuracy by their own. For the rest of the tasks – which account for around 55% of
the dataset – the number of points is insufficient to achieve a reasonable solution and they
should benefit from an MTL approach. We will see that a similar situation arises in the
real dataset we cover hereunder.

https://github.com/torito1984/MTLADMM
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Figure 13.1: Classification performance for the artificial classification dataset

Returning to formula (13.3), it is instructive to observe that, for a fixed λ1 > 0, if we let
λ2→ ∞, the optimization problem is equivalent to training separate linear SVMs on each
task. In this situation and in high dimension, the method will overfit the dataset. On the
other hand, for a fixed λ2 > 0, if we let λ1→ ∞, the optimization problem is equivalent to
training a single linear SVMs on the full dataset, which may underfit the data. In practical
situations, we expect the optimal hyperparameters to lay in between these two situations,
and obtaining lower accuracy for both extremes.

Classification performance

Figure 13.1 depicts the average test accuracy for a 10-fold CV in the aforementioned
dataset. Solid lines depict the accuracy of the proposed algorithm for different values of
λ1 and λ2. As expected, the optimal hyperparameters lay in between both extremes for
λ2/λ1 and overfitting arises for when λ2� λ1. The dotted line depicts the accuracy of a
single SVM trained with a state of the art optimization algorithms for linear SVMs in [96].
We can observe that, with appropriate hyperparameters, MTL is superior to single task
learning thanks to the information sharing.

Convergence

One question that may arise is how many ADMM iterations are needed to achieve a good
result in practice. This would be the major bottleneck of the proposed method since
ADMM iterations are sequential. We ran experiments with the same data generation
strategy and varying the dimensionality. The number of relevant features was kept at 10%
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of the dimensionality.
First, in Figure 13.2, it can be observed that a higher dimension slows down the

convergence to the optimum in the first iterations, an order of tens of iterations is enough
to obtain a good accuracy. Second, we compared a MatLab implementation of the standard
MTL called MALSAR1 in performance and computational complexity varying the number
of different tasks in the set {20,40,60,80,100,200,400,800,1200}. We keep the sample
sizes per task fixed and measure MALSAR running time. For our method, we are interested
in finding the number of outer ADMM iterations needed to converge to the same accuracy
of MALSAR with a tolerance of 10−4.

In Table 13.1, a comparison of the computational complexities is presented. We
collected the CPU time required by the standard MTL implementation in order to find the
optimal solution, varying the number of tasks. We compared these values with respect to
the number of outer ADMM steps that our algorithm required to reach the same solution.
For this purpose, we introduce the variableα = λ2

λ1+λ2
. This variable imposes the quantity

of shared information among the tasks. In fact, when α is equal to zero, we are training
a single SVM for all the tasks, on the other hand, with α = 1 we are training a different
SVM for each single task.

In comparison we observed that the CPU time of MALSAR varies quadratically
with number of tasks. For example for alpha=0.5 the CPU was of 3.3, 4.8,..., secs. for
T=20,40,...,1200

From these results, we are able to claim that the standard MTL implementation has a
quadratic complexity with respect to the number of tasks, whereas our ADMM implemen-
tation is able to reach the same optimal solution in a fixed number of outer steps.

Tasks
MALSAR time (s) ADMM steps

α = 0.5 α = 0.0 α = 0.1 α = 0.5 α = 1.0
20 3.3 21 16 10 10
40 4.8 21 16 11 11
60 6.4 21 16 10 10
80 8.3 21 16 10 10

100 10.7 21 16 10 10
200 33.1 21 16 11 11
400 95.8 21 16 11 11
800 342.5 21 16 11 11

1200 698.3 21 16 10 10

Table 13.1: CPU time of MALSAR algorithm and number of outer steps of our ADMM
algorithm in order to reach the same accuracy of MALSAR, with different amounts of
tasks. The variable α is equal to α = λ2

λ1+λ2

1MALSAR code: http://www.public.asu.edu/ jye02/Software/MALSAR
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Figure 13.2: Performance of ADMM with different dimensionality

13.6.2 URL classification

The next dataset was extracted from a production environment in an online advertising
firm. For online targeting, a data provider supplies data to an advertiser indicating which
users are interested in specific product classes. In order to determine the interest of each
user, web pages are first classified into interest categories (eg ‘fashion’, ‘photography’ etc).
Thereafter the browsing behavior of users can be used to predict their interests. One way
of achieving it is to predict the category of a page from the contents of a url. We can tackle
this task using a bag-of-words strategy [108]. Modern URLs carry enough information to
identify the page contents thanks to Search Engine Optimization strategies. Before being
able to apply this, words should be detected and segmented into meaningful n-grams. This
process can be easily achieved though a Viterbi-like strategy. The details of the algorithm
used can be found in [165, Ch. 4]. It calculates the most likely segmentation of a string
containing text with no spaces based on a Viterbi-like probability maximization process
and the prior probabilities of different n-grams extracted from the 1 Trillion words dataset
gathered by Google [37]. Once the URL is segmented, a bag-of-words representation is
built.
The dataset treated is a collection of URLs extracted from the client base at Skimlinks

labeled by humans as related to fashion or not. The dataset is a compound of over 500,000
URLs extracted from 4,326 different client hosts embedded in a 150,000 dimension bag of
words vector space. Thus, we have a binary classification task for a set of different tasks
(clients/hosts). We hypothesize that different clients may use different vocabularies and
ways of building URLs, but that the underlying set of n-grams that indicate fashion should
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Figure 13.3: # of patterns per task (client) in the URL classification dataset.

be shared between all of them. In addition, we can see in Figure 13.3 that the number of
URLs extracted from each client is highly skewed, so most tasks do not have enough data
to build a reliable model in such a high dimensional space. This problem’s scenario is
similar to the artificial case previously treated and so we expect that sharing information
between tasks could be beneficial.

Table 13.2 summarizes the results for the categorization dataset when compared to its
single task and individual tasks counterparts. As it can be observed in the third column,
there is an expected gain of 6% accuracy when compared with a single SVM model trained
for all the the tasks and of 3% when compared to an SVM trained individually for each task.
When comparing these results with the distribution of patterns per task, we can observe
that there is enough variety between tasks that hinders SVM capacity to adapt to all of
them. On the other hand, for less populated tasks there is not enough data to achieve a high
accuracy and so all the information is not exploited. The capacity to transfer information
embedded in MTL seems to balance the right amount of regularization and information
sharing, giving the best results.

One of the questions in systems where an individualised response is needed is what
to do in a cold start situation, i.e. what response to provide when we do not have data for
some individual task. Single model training would advocate to use the same model as
for all the tasks, whereas if we choose to have individualised models, we would lack the
model for that case. It seems natural to think that the average modelw0 in formula (13.2),
which constitutes the bias for any task in the context, would be the right answer. In the
previous dataset we discarded 29753 patterns from unpopulated task. So these tasks would
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Method Validation Train Test
Linear SVM
single task 0.780±0.014 0.813±0.021 0.768±0.083

Linear SVM
individual tasks 0.793±0.001 0.926±0.027 0.811±0.001

ADMM5 0.801±0.001 0.918±0.007 0.814±0.001
ADMM30 0.817±0.001 0.887±0.003 0.836±0.001
ADMM50 0.817±0.001 0.891±0.003 0.835±0.001

Table 13.2: Classification Accuracy±std for Skimlinks dataset.

be a sample of “cold start" of tasks we do not have data on. The accuracy of w0 and of the
single task SVM previously obtained are 82% and 80% respectively. When unified with
the results in Table 13.2, we can see that MTL shows a good adaptation to individual tasks
and, at the same time, a good prior bias is also discovered.
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14. Conclusions

In this thesis we have focused on the representation in machine learning problems and
proposed new theories and algorithms to learn better representations exploiting the structure
of the feature space of kernels.

The main contribution of the thesis is a new perspective on MKL. MKL algorithms
combine predefined kernels. The effectiveness of traditional approaches are questionable.
In fact, even if theoretically well founded, the empirical results on real problems do not
always confirm this theoretical findings. For instance, in many task they performed more
or less like very simple baselines, e.g. the simple average of kernels. In this thesis, we have
investigated on principled criteria to use when defining the set of base kernels in such a
way to improve the MKL combination effectiveness. Specifically, criteria like the structure
of the feature space and the orthogonality of the features have been studied.

We firstly introduced a new MKL algorithm in Chapter 7, called EasyMKL. This
algorithm is able to combine thousands of weak kernels in a very efficient way, i.e. using a
fixed amount of memory and with linear computational complexity in time. Given its nice
scalability, EasyMKL can be used in a setting where one wants to combine a large number
of weak kernels with a fine-grained (and possibly diverse) information. Having many
small pieces of information allows EasyMKL to recompose the information with the best
combination possible by maximizing the obtained margin. With this new methodology, our
MKL algorithm outperformed both the (strong) average baseline and all the state-of-the-art
MKL methods it was compared with. Finally, EasyMKL also seems very robust with
respect to the noise introduced by features which are not informative and works well even
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in the classical MKL framework, where a small number of weak kernels is used.

The EasyMKL algorithm, like the majority of state-of-the-art MKL methods, optimizes
the margin and does not take into account directly the complexity (or expressiveness) of
the combined kernels. In this thesis, a new measure for the complexity of a kernel function
called spectral complexity is also proposed in Chapter 8. The spectral complexity is an easy
to evaluate measure of expressiveness and we proved its strict connection with the empirical

Rademacher complexity and hence, with the generalization error. Intuitively, kernel
functions built on simpler and more popular features will have lower complexity while
kernel functions built on more elaborated and rare features will have higher complexity.
Typically, classifiers defined on too simple features are not able to discriminate correctly
the class and, similarly, too complex features cannot guarantee a large margin for many
examples in the training set. This intuition has motivated the idea of a MKL combination
of weak kernels of increasing complexity.

For this, a property on sets of (weak) kernels (MSC property) has been defined. This
property guarantees a hierarchical structure among the features spaces of different weak

kernels. The idea is then to exploit the structure of the set of weak kernels in order to
improve the MKL performance.

In Chapter 9, experiments have been performed to highlight the importance of the
hierarchical structure guaranteed by the MSC property.

In a first setting, weak kernel optimization has been applied to dot-product kernels, that
is kernels in the form K(x,z) = f (x · z). We have shown that popular kernels, like RBF
and Polynomials, are indeed contained in this wide class of kernels and can be represented
as a dot-product polynomial with fixed polynomial coefficients. The proposed approach is
able to learn a kernel in the space of dot-product polynomials. We have shown empirical
evidence that our approach outperforms the baselines, sometimes significantly, against ten
benchmark datasets. We have also demonstrated that building weak kernels by exploiting
the structure of the features and their dependencies, makes the generated kernel improved
upon alternatives which do not exploit this structure.

In a second setting, the same methodology has been applied to the ODD graph-kernel,
a state-of-the-art kernel for graphs. In this case, a MSC set of weak kernels has been
defined exploiting the definition of the kernel. In particular, its tree structured features
have been grouped based on their height. This leads to a set of week kernels of increasing
spectral complexity (MSC). Also in this case, our experiments have confirmed that this
methodology improves the results of EasyMKL and outperforms the original ODD graph-
kernel.

These findings open a new scenario in MKL beyond the combination of a large number
of weak kernels. The idea is to perform a pre-training step consisting of the optimization
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of the set of weak kernels to combine. The entire processing can be summarized in the
following three steps:

1. Define a good (and possibly large) family of weak kernels starting from the raw
information;

2. Combine all the weak kernels by exploiting MKL algorithms in order to fix the final
representation;

3. Create a model using a kernel machine.

Schematically, the methodology can be summarized as in the following:

x ∈ X→{K1, . . . ,KR}learned︸ ︷︷ ︸
1

→Klearned =
R

∑
i=1

µiKi ∼ φφφ K(x)︸ ︷︷ ︸
2

→ wlearned ·φφφ K(x)︸ ︷︷ ︸
3

.

It is important to note that in the first step of this procedure (x ∈ X→{K1, . . . ,KR}learned)
only the hierarchical structure implicitly defined in the RKHS is exploited.

Pursuing the same idea, a new algorithm has been presented in Chapter 10 to learn the
parameters of an anisotropic RBF kernel. This algorithm can be seen as a MKL algorithm
where the rule for the combination of the weak kernels is the entry-wise product of the
weak matrices. We considered each weak kernel as a 1−feature RBF (i.e. RBF kernel that
considers only 1 feature) and optimized the parameter of this family of RBFs. Exploiting
this methodology, an optimal family of weak kernels has been created. The obtained results
are very good compared to the state-of-the-art DML methods in term of AUC. Moreover,
our algorithm can be used also for an explicit feature weighting/selection by using the
weights assigned by EasyMKL to the 1−feature RBFs.

In the final chapters, our expertise in representation learning has been challenged by
real world tasks: noise or large scale datasets and real-time applications. Specifically,
solutions for three different real world applications have been described. In Chapter 11, a
biomedical application is considered, concerning the segmentation of brain MRI volumes.
A two-steps model is applied in order to exploit the domain knowledge a priori. Using
this model, the different underlying factors of variation for this task are manually detected.
We have shown that this two-step model improves on the previous state-of-the-art results.
In Chapter 12, an applications for smartphones has been presented, called Climb The

World. The machine learning goal of this application was the counting in real-time of the
number of stair-steps performed by a user by exploiting the sensors of the device. An
extensive work of feature engineering and feature selection has been performed. EasyMKL
has been used for this task with nice results under the constraint of battery consumption,
imposed by the device. We achieved the goal of a very good real-time classification of the
stairsteps and, at the best of our knowledge, this was the first algorithm able to solve this
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very difficult task. Finally, in Chapter 13, a new Multitask Learning (MTL) algorithm has
been presented dealing with large scale datasets by using the alternating direction method
of multipliers (ADMM). In the MTL context, this algorithm outperforms the previous
state-of-the-art methods used in the classification of large scale datasets.



15. Future work

In this thesis, we have proposed several ideas trying to unify different fields of machine
learning under the same challenging task of the representation learning.

Based on our analysis, the idea to be followed should be the creation of a novel
theoretical framework that could include and highlight the connection between feature
learning, kernel learning, manifold learning and the analysis of the complexity as different
shades of the same task. As highlighted in Part II, the unification among these (apparently)
different fields becomes clear in several cases:

• Comparing the MKL `1 algorithms with respect to the Group Lasso feature selection
methods;
• Considering the MKL methods applied to 1−rank kernels and their connection to the

feature weighting. We can consider the 1−rank kernels as linear kernels evaluated
by exploiting only one feature1. Also, the 1−rank kernels naturally appear in the
spectral embedding decomposition (see Section 3.3.2);
• Exploiting the complexity as a measure to create optimal weak families of kernels

for the MKL problem.

Starting from our experience with kernel and feature learning algorithms, the priority
milestones should be:

Kernel approximation. A problem that often afflicts the kernel methods is the difficulty
of their scaling with big data. The representations given by kernels (or combinations

1Corinna Cortes, Can learning kernels help performance? http://static.googleusercontent.

com/media/research.google.com/it//pubs/archive/36227.pdf

http://static.googleusercontent.com/media/research.google.com/it//pubs/archive/36227.pdf
http://static.googleusercontent.com/media/research.google.com/it//pubs/archive/36227.pdf
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of kernels) are very powerful but useless when they have to tackle huge amounts
of data. A possible solution in literature is to efficiently approximate the original
kernel [174]. Another possible solution is to investigate a greedy (sparse) method to
select the explicit features of the kernel. These randomly generated features (e.g. the
features of the RBF kernels [54]) have the property to approximate very quickly the
original kernel and obtaining the linearity of the final model.

Optimal weak kernels families. As proven in Chapter 9, Multiple Kernel Learning re-
sults are improved by providing an optimal family of weak kernels. A generalization
of the Monotonically Spectral-Complex (see Chapter 8) can be studied in order to
exploit the connection to the hierarchical structure of the features. Furthermore, new
methods can be developed to automatically generate MSC families, not only starting
from DPP kernels. For example, the Recommender System framework represents
an optimal application for this development. In this context, the users represent the
features and the items are the examples. By applying the MSC idea, we can divide
the users in bunches of different spectral complexity injecting a new sense in the
definition of expressiveness: users are less complex if their preferences are more
popular.

MKL and features learning. The MKL algorithms paradigm can be exploited to com-
bine a very large set of weak kernels aiming at boosting their accuracy, as shown
in Chapter 7 with EasyMKL. In this way, the final combination will represent a
weighted combination of the different subsets of features and the method performs
a data-driven feature learning/selection/weighting. EasyMKL can be modified in
order to combine a weak family generated by considering only one feature for each
kernel, as in Chapter 12. The theoretical and practical applications of this paradigms
have to be deeply investigated.

Distance metric learning and kernel learning. In Chapter 10, a method has been pre-
sented with a connection with these two research fields. It is well known that the
performance of a learning algorithm (nearest-neighbors classifiers, kernel algorithms
etc.) mostly depends on the metric used [195]2. The idea is to develop these concepts
in order to create new algorithms that are able to inject automatically the optimal
metric information directly in the kernel.

Real world applications. In the last few years, several datasets with high dimensionality
have become publicly available on the Internet. This fact has brought an interesting
challenge to the research community, since for the machine learning methods it is
difficult to deal with a high number of input. In fact, in real world application we

2Barbara Hammer, Metric Learning and Model Interpretability, https://lecture2go.uni-hamburg.
de/veranstaltungen/-/v/16627

https://lecture2go.uni-hamburg.de/veranstaltungen/-/v/16627
https://lecture2go.uni-hamburg.de/veranstaltungen/-/v/16627
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have to deal with a big and complex amount of data and the correct selection of the
information is crucial in order to avoid an exponential growth of the computational
time.

In summary, the final goal is to make new algorithms that should be automatically able
to generate the optimal representation of the data (given a specific task, a specific space or
a set of tasks) avoiding the arbitrary choice from the users that is sub-optimal and time
consuming, especially when dealing with big data.
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