
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria dell'Informazione

SCUOLA DI DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE

INDIRIZZO IN SCIENZA E TECNOLOGIA DELL'INFORMAZIONE

CICLO XXVIII

ON SPACE CONSTRAINED COMPUTATIONS

Direttore della Scuola

 Ch.mo Prof. Matteo Bertocco

Coordinatore d’indirizzo

Ch.mo Prof. Carlo Ferrari

Supervisore

Ch.mo Prof. Gianfranco Bilardi

Dottorando : Lorenzo De Stefani

On space constrained computations

Lorenzo De Stefani

Advisor: Ch.mo Prof. Gianfranco Bilardi

Department of Information Engineering, University of Padova

January, 2016

Sommario

A partire dall’avvento del calcolatore digitale (computer), la sua tecnologia cos-

titutiva è stata caratterizzata da un ritmo di sviluppo costante e impressionante.

Sebbene la maggior parte dei parametri siano ancora in via di miglioramento, vi è

un crescente consenso che i limiti fisici alla velocità di propagazione dei segnali ed

alla dimensione dei dispositivi integrati stiano diventando sempre più significativi.

In definitiva, il tempo di accesso alla memoria associata ad un calcolatore digitale è

destinato ad aumentare con la dimensione della memoria.

Pertanto, quando è richiesta una memoria di grandi dimensioni, risulta conve-

niente organizzarla gerarchicamente in più livelli, caratterizzati da dimensione e

tempo di accesso progressivamente crescenti. Tipicamente, i livelli di gerarchia di

memoria comprendono i registri della CPU, due o tre livelli di cache, la memoria

principale (RAM) e i dischi. Rispetto ai registri della CPU, le memorie cache sono

qualche centinaia di volte più lente, la memoria RAM è qualche migliaio di volte

più lenta, mentre i dischi sono qualche milione di volte più lenti. L’uso efficace dei

livelli più veloci della gerarchia di memoria è pertanto un punto chiave nella pro-

gettazione ed implementazione di algoritmi. I limiti fisici sono un problema anche

nel contesto delle architetture multiprocessore e del calcolo parallelo, a causa del

ritardo introdotto dalla velocità dei segnali usati per la comunicazione tra le varie

unità di elaborazione. Inoltre, nonostante la Legge di Moore predica un aumento di

velocità esponenziale per l’hardware in generale, il tasso di miglioramento annuale

del tempo-per-operazione-aritmetica (miglioramento CPU), nel corso degli anni, ha

costantemente superato quella del tempo-per-lettura/scrittura-dato. Appare legit-

timo aspettarsi che la percentuale di tempo consumata per la comunicazione diventi

sempre più rilevante, costituendo sempre più un collo di bottiglia per le prestazioni

sia delle memorie multilivello che delle architetture di calcolo parallelo.

Nel valutare la complessità degli algoritmi, si devono pertanto considerare due

tipi di costo: il costo aritmetico, che dipende dal numero di passi computazionali

richiesti, ed il costo di comunicazione (I/O), che dipende dal movimento dei dati

richiesto nell’ambito dell’esecuzione di un algoritmo, tra livelli diversi della gerarchia

di memoria (nel caso sequenziale), o nella rete di collegamento tra diversi processori

(nel caso parallelo). In entrambi questi scenari applicativi, la componente di I/O ha

spesso un impatto sulle prestazioni dell’algoritmo molto più significativo del tempo

della componente aritmetica.

È quindi di grande interesse indagare da un lato lo spazio di memoria minimo

richiesto per il calcolo di un algoritmo (space complexity), e dall’altro il tradeoff

tra lo spazio di memoria effettivamente utilizzato e il volume di comunicazione dei

dati necessari per l’esecuzione dell’algoritmo (I/O complexity). Oltre all’interesse

puramente teorico di tale analisi, il perseguimento di buone tecniche per individuare

limiti inferiori (lower bounds techniques) è anche fondamentale per il perseguimento

di algoritmi ad alte prestazioni, in quanto consentono di valutare la distanza di una

soluzione proposta dal livello ottimale.

Nel nostro studio ci focalizziamo sui calcoli eseguiti con programmi straight-line

(in contrapposizione ai programmi branching) in modalità indipendente dai dati,

dove quindi la successione delle operazioni da eseguire non è influenzata dal valore

specifico di valori di ingresso (in contrapposizione alle computazioni data-dependent),

che possono essere rappresentati grafi diretti aciclici computazionali (CDAG) G(I ∪
V,E), i cui vertici rappresentano operazioni (sia di input/output che di elaborazione)

e i cui archi rappresentano dipendenze tra i dati (data dependencies) [58]. In questa

tesi analizziamo vari aspetti dei calcoli di CDAG, tra cui i loro requisiti di memoria

e la quantità di movimento di dati (tra diversi livelli di una gerarchia di memoria o

tra diversi processori che eseguono un programma in parallelo) richiesti in situazioni

in cui è disponibile solo una quantità limitata di spazio di memoria.

La tesi è organizzata come segue. Nel Capitolo 1, si introduce la notazione e le

principali definizioni che verranno utilizzati nella presentazione.

Nel Capitolo 2, si studiano limiti inferiori (lower bounds) per le dimensioni dello

spazio di memoria che è necessario per calcolare vari CDAGs. Introduciamo il Pebble

Game, uno strumento concettuale utilizzato in letteratura per studiare i requisiti di

spazio di memoria dei calcoli su CDAG. Successivamente si descrive l’approccioMark-

ing Rule (Regola di Marcatura) originariamente introdotta da Bilardi et. al. [10], e

lo si applica per ottenere limiti inferiori (lower bounds) per la lo spazio di memoria

necessario per la valutazione dei CDAG Superconcentrators-Stack [68, 40] . Al fine di

studiare i limiti dell’approccio con Marking Rule, introduciamo il concetto di visita

di un CDAG, e dimostriamo vari limiti superiori (upper bounds) per lo spazio di

memoria necessario per visitare un CDAG in condizioni appropriate.

Nel Capitolo 3, si studiano limiti superiori (upper bounds) per lo spazio di memo-

ria minimo necessario per calcolare qualsiasi CDAG. Dopo aver esaminato i principali

contributi della letteratura [35, 40, 43], si presenta un nuovo algoritmo che permette

di valutare (pebble) qualsiasi CDAG con |E| = m archi usando al massimo uno spazio

di memoria O (m logm).

Nel Capitolo 4, si rivolge l’attenzione al costo legato alla comunicazione I/O cost

per le computazioni di CDAG, inteso come scambio di dati tra i diversi livelli di

una gerarchia di memoria, o come la comunicazione di dati tra diversi processori

che eseguono un programma in parallelo. In particolare, otteniamo limiti inferiori

(lower bounds) per la complessità di ingresso-uscita (I/O) dei calcoli di CDAG, in

relazione al modello classico di Hong e Kung [37]. Si studiano quindi le esecuzioni

sequanziali dell’ algoritmo di Strassen per la moltiplicazione di matrici quadrate

su una piattaforma equipaggiata con una memoria gerarchica a due livelli. In tale

modello, si ottiene quindi un limite inferiore (lower bound) per la complessità di

I/O dell’algoritmo di Strassen, sotto il vincolo che nessun risultato intermedio venga

calcolato più di una volta durante l’esecuzione dell’algoritmo. Sebbene il limite

inferiore ottenuto sia già stati presentato in letteratura [7, 62], la nostra tecnica

permette di ottenere dimostrazioni più pulite, basate sulla struttura ricorsiva degli

algoritmi anziché sulle proprietà combinatorie dei CDAG che li rappresentano.

Sempre per il modello sequenziale, nel contributo principale del Capitolo 4, si for-

nisce un nuovo limite inferiore (lower bound) per la complessità di I/O dell’algoritmo

di moltiplicazione matriciale di Strassen, che vale per tutte le possibili computazioni,

senza vincoli sul numero di volte in cui un risultato immediato può essere calcolato.

Sfruttando la stessa tecnica usata per il risultato appena menzionato, si ottiene un

limite inferiore per la complessità di I/O per computazioni dell’algoritmo di Strassen

eseguite in parallelo da P , ciascuno equipaggiato con una memoria finita, processori

connessi tra loro. Nessuna assunzione è necessaria riguardo l’iniziale distribuzione

dei dati di input fra i P processori.

Nel Capitolo 5, si considera l’effetto di un utilizzo opportuno della memoria

nel contesto di algoritmi resilienti agli errori (di memoria), che forniscono soluzioni

(quasi) corrette anche quando si verificano errori di memoria “silenziosi (corruzioni di

dati memorizzati), ovvero che non causano il blocco dell’esecuzione del programma.

In particolare, si va a fornire una panoramica dei risultati ottenuti nell’articolo [22].

Abstract

Since the advent of the digital computer, its supporting technology has been charac-

terized by steady and impressive growth. Although most parameters are still being

improved, there is an emerging consensus that physical limitations to signal propa-

gation speed and device size are becoming increasingly significant. Ultimately, the

access time to the memory associated to a digital computer is bound to increase

with the size of the memory. Therefore, when a large overall memory is required,

it becomes convenient to organize it hierarchically into a sequence of levels whose

size and access time increase progressively. Typically, the levels of memory hierar-

chy include the CPU registers, two or three cache levels, main memory and disks.

Compared to the CPU registers, main memory is a few hundred times slower and

disks are a few million times slower, hence, effective use of the fastest levels of the

memory hierarchy is becoming a key concern in the design and implementation of

algorithms.

Physical limitations are a concern also in the context of multiprocessor archi-

tectures and parallel computing, due to the delay introduced by the speed of the

signals used for the communication between the various processing units. Further-

more, while Moore’s Law predicts an exponential speedup of hardware in general,

the annual improvement rate of time per-arithmetic-operation has, over the years,

consistently exceeded that of time-per-word read/write. The fraction of running time

spent on communication is thus expected to increase further, becoming more and

more of a bottleneck for the performance of both multi-level memory and parallel

computing architectures.

When considering the complexity of algorithms, two kinds of costs are therefore

to be considered: the arithmetic cost which depends on the number of required

computational steps, and the communication cost which depends on the required

movement of data within the execution of an algorithm, either between levels of a

memory hierarchy (in the sequential case), or over a network connecting processors

(in the parallel case). In both of these applicative scenarios, the communication

component of an algorithm often costs significantly more time than its arithmetic

component.

It is therefore of interest to investigate the minimum memory space required for

computation of algorithms on the one hand (the space complexity), and then the

tradeoff between the memory space actually being used and the data communication

needed for the algorithm execution (the I/O complexity).

In addition to a purely theoretic interest of such an analysis, the pursuit of

good lower bounds techniques is also crucial for the pursuit of high performances

algorithms, since they enable to evaluate the distance from optimality of a proposed

solution.

In our study we focus on computations done with straight-line programs (op-

posed to branching programs) in a data-independent fashion, where the succession

of the operations to be executed is thus not influenced by the specific value of in-

put values (opposed to data-dependent computations), which can be modeled as

Computational Directed Acyclic Graph (CDAG) G(I ∪ V,E), whose set of vertices

represents operations (of both input/output and processing type) and whose set of

edges represents data dependencies [58]. In this thesis we investigate various aspects

of CDAG computations, among which their memory requirements and the amount

of data movement (either between levels of a memory hierarchy or between various

processors executing a program in parallel) required in situations in which only a

limited amount of memory space is available. This thesis is organized as follows. In

Chapter 1, we introduce the notation and the main definitions which will be used

through the presentation.

In Chapter 2, we study lower bounds on the size of the memory space which is

necessary to compute various CDAGs. We introduce the Pebble Game, a theoretical

device used in literature to study the space requirements of CDAGs computations.

We then describe the Marking Rule approach originally introduced by Bilardi et. al.

in [10] and we apply it in order to obtain lower bound on the space complexity of

Superconcentrators-Stack CDAGs[68, 40]. In order to study the limits of the Marking

Rule approach, we introduce the concept of visit of a CDAG, and we prove various

upper bounds on the memory space required for visiting a CDAG under appropriate

conditions.

In Chapter 3, we study upper bounds on the minimum memory space necessary to

compute any CDAG. After reviewing the main contributions in literature [35, 43, 40],

we present a novel algorithm which allows to pebble any CDAG with |E| = m edges

using at most O(m logm) memory space.

In Chapter 4, we direct our attention towards the “inpu-output cost” (I/O cost)

of CDAGs computations, intended either as the data exchange between different

levels of a memory hierarchy, or as the communication of data between various

processors executing a program in parallel. In particular, we obtain lower bounds

for the input-output (I/O) complexity of CDAGs computations with respect to the

classical model by Hong and Kung [37]. We begin by studying the I/O complexity

of Strassen’s algorithm when executed sequentially on a machine equipped with a

two level memory hierarchy. We provide an alternative technique to those in [4]

and [62] to obtain a tight lower bound to the I/O complexity of Strassen’s matrix

multiplication algorithm for computations in which no intermediate result is ever

recomputed. We then obtain the first asymptotically tight lower bound to the I/O

complexity of Strassen’s algorithm for general computations, that is, computations

without any restriction on the recomputation of intermediate values. Our technique

is based on a novel application of Gigoriev’s information flow concept [33]. We

also study the I/O complexity of Strassen’s algorithm when executed in parallel

by P processors each equipped with a finite memory. We obtain an lower bound

which holds for any computation (no restriction on recomputation), without any

assumption regarding the distribution of the input data among the P processors at

the beginning of the computation.

Furthermore, in the main contribution of Chapter 4, we provide a novel lower

bound for the I/O complexity of Strassen’s matrix multiplication algorithm, which

holds for all possible computations, without constraints on the number of times an

immediate result can be computed.

In Chapter 5, we consider the effect of opportune memory utilization in the

context of error resilient algorithms, which provide (almost) correct solutions even

when silent memory errors occur. In particular, we provide a brief overview of the

results published by the author in [22].

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Professor

Gianfranco Bilardi, which has been a tremendous mentor for me. I would like to

thank him for encouraging my research and for allowing me to grow as a research

scientist. His advice on both research as well as on my career have been priceless. I

want to thank my academic siblings and collaborators at the University of Padova,

Francesco Silvestri, Michele Shimd, Nicola Zago and Emanuele Milani for the many

interesting conversations and exchanges regarding research. I would also like to

thank Professor Eli Upfal form Brown University whit whom I had the chance to

work during my period abroad doing stimulating and interesting research.

A special thanks to my family. Words cannot express how grateful I am to my

mother and father for all the sacrifices that they have made on my behalf and for

all their understanding and support during these years. I would also like to thank

my friends, especially Dario and Andrea, who supported me during these years,

reminding me to have fun and enjoy this period of my life.

Last, but definitely not least, I would like to express my most sincere thanks to

my beloved soon to be wife Megumi whose support and encouragement was crucial

especially during the conclusion of my studies.

Contents

Chapter 1: Preliminaries 1

1.1 Straight line programs and Computational Directed Acyclic Graphs . 1

1.2 CDAG computations . 4

Chapter 2: Studying the space complexity of CDAGs using the

visit method 5

2.1 Space Complexity of a CDAG . 5

2.1.1 The pebble game . 6

2.1.2 Pebbling technicalities . 8

2.1.3 Hardness of the space complexity problem 9

2.2 The marking rule approach . 10

2.2.1 Description of the method . 10

2.2.2 The singleton and topological marking rule 12

2.2.3 Application of the marking rule approach 12

2.3 Visits of a CDAG . 16

2.3.1 Definition of Visit of a CDAG 16

2.3.2 The reach and enabled reach concepts 18

2.3.3 Relation between markings and visits 19

2.3.4 h -schedule of a directed acyclic graph 21

2.3.5 Proof method . 22

2.3.6 Upper bound on the maximum boundary size of a h(top)-visit . 24

2.3.7 Upper bound on the maximum boundary size of a h(sing)-visit 28

2.4 Conclusion . 34

Chapter 3: Upper bound to the space complexity of CDAG com-

putations 35

3.1 Our contribution . 36

3.2 Construction of the partition . 36

3.3 Construction of the computation . 43

3.3.1 The pebbling subroutine . 43

i

ii Contents

3.3.2 Challenging vertices . 45

3.3.3 Composition of C . 45

3.4 Analysis of the space requirements of C 45

3.5 Conclusion . 53

Chapter 4: On the I/O complexity of Strassen’s matrix multipli-

cation algorithm 55

4.1 The square matrix multiplication function 56

4.1.1 Problem definition . 56

4.1.2 Information flow property of matrix multiplication 57

4.1.3 Matrix multiplication algorithms 58

4.2 Strassen’s matrix multiplication algorithm 60

4.2.1 Description of the algorithm 60

4.2.2 Construction of the CDAG of Strassen 61

4.3 Communication model . 64

4.4 Previous work . 67

4.5 Lower bound for computations with no recomputation 69

4.6 Lower bound for general computations 74

4.6.1 Technical lemmas . 76

4.6.2 Proof of the main theorem . 82

4.7 Lower bound to the I/O complexity of Strassen’s algorithm in the

parallel model . 85

4.8 Conclusion . 86

Chapter 5: Algorithms resilient to memory faults 89

5.1 Our contribution . 90

5.2 The extended FRAM model . 91

5.3 Resilient sorting algorithm . 91

5.4 Resilient priority queue . 92

5.5 Conclusion . 93

Chapter 6: Conclusion and future work 95

Bibliography 97

Appendix 105

List of Figures

2.1 Pebble game played on a binary tree CDAG 6

2.2 Relationship among complexity classes 9

2.3 h-schedule of a CDAG and β-block partition 21

2.4 Construction of the visit using the pivot vertex method 31

2.5 Paul-Tarjan-Celoni CDAG [48] . 34

4.1 Representation of the information flow for a function f(·) 57

4.2 Evolution of the bound on ω . 59

4.3 Basic constructing blocks of Strassen’s algorithm CDAG 62

4.4 Strassen’s H2×2 CDAG . 62

4.5 Recursive construction of Strassen’s H2n×2n CDAG 63

4.6 Detail of the Enc sub-CDAG . 78

iii

iv List of Figures

Chapter 1

Preliminaries

In our work we focus on computations executing straight-line programs (opposed

to branching programs) in a data-independent fashion, where the succession of the

operations to be executed is thus not influenced by the specific value of input values

(opposed to data-dependent computations).

1.1 Straight line programs and Computational Di-

rected Acyclic Graphs

Definition 1.1 (Straight-line program). A straight-line program is a set of steps,

each associated with a distinct integer number i from 1 to n:

• input step: denoted as (s: READ x), where x denotes an input variable;

• computation step: denoted as (s: OP o1, . . . , ok), where OP identifies the

operation executed and o1, . . . , ok denote its operand;

• output step: denoted (s OUTPUT y), where y denotes an output variable;

The operation executed at the i-th step can have as input operator only values which

have been either computed during previous computational steps or acquired trough a

previous input step.

Algorithms for many important problems such as Fast Fourier Transform (FFT)

and matrix multiplication are naturally computed by straight-line programs.

The requirement that each computation step operates on results produced in pre-

ceding steps ensures that each such program can be modeled as a Directed Acyclic

Graph (DAG), also called Computational Directed Acyclic Graph (CDAG) or circuit,

1

2 Chapter 1. Preliminaries

whose vertices (also called gates) represent operations (of both input and computa-

tional type) and whose arcs represent data dependencies.

Trough this thesis we study the optimization of the implementation of a com-

putation which has been specified in terms of a CDAG. The main advantage of the

CDAG model for the present investigation is that it specifies neither the order in

which the operations have to be executed nor the memory locations where data have

to be stored. We leave to the implementor essentially two degrees of freedom: the

definition of the schedule of execution of the operations, possibly including repeti-

tions (i.e., recomputations), and the memory management, that is, the assignment

of a memory location to each value produced in the computation during the time

between the generation and last use of that value.

We now introduce the notation for CDAGs used by Bilardi and Peserico in [9],

which we will use trough the thesis.

Definition 1.2 (Computational Directed Acyclic Graph). A computation directed

acyclic graph (CDAG) is a 4-tuple (I, V, E,O) of finite sets such that:

• I is the set of input vertices;

• V is the set of operation vertices;

• all vertices in V have at least one incoming edge;

• I ∩ V = ∅;

• O ⊆ I ∪ V is the set of output vertices;

• E ⊆ (I + V)× V is the set of directed edges;

• G (I ∪ V,E) is a directed acyclic graph (DAG).

In the following, we will use the simplified notation G(I∪V,E), or the shorter G,
for the CDAG. All the graphs discussed in this thesis are CDAGs unless otherwise

stated. Informally, with each vertex in I ∪ V we associate a value: for a vertex in I,

the value is externally supplied and hence considered an input to the computation;

for a vertex in V , the value is the result of an operation whose operands are provided

by the predecessors of that vertex. The set O denotes which values, among all the

ones being input or computed, form the desired output set. We say that two vertices

u and v in I ∪ V are adjacent in G if there is an edge connecting them. For every

directed edge (u, v) in E we say that u is a predecessor (or immediate predecessor,

parent) of v (u ≺ v), and v is a successor (or immediate successor, child) of u (v ≻ u).

We denote the set of all the predecessor of a vertex v by pa(v) and the set of all its

1.1. Straight line programs and Computational Directed Acyclic Graphs 3

successors by ch(v). The set pa(v) represents all the operands of the operation that

produces v and the set ch(v) represents all the operation to whom v participates as

an operand.

For a given vertex v ∈ I ∪ V its in-degree (resp., out-degree) d−(v) (resp., d+(v))

it the number of its predecessors (resp., successors) d−(v) = |pa(v)|(resp., d+(v) =
|ch(v)|. In this thesis we assume that vertices of in-degree (resp., out-degree) equal

to zero constitute the set I of input vertices (resp., O ⊆ I ∪V of the output vertices)

of the CDAG. The total-degree of a vertex v, denoted as d(v) corresponds to the

total number of its adjacent vertices: d(v) = d−(v) + d+(v). The maximum in-

degree (resp., out-dregree) of a CDAG G is defined as d− = maxv∈V (d−(v)) (resp.,

d+ = maxv∈I∪V (d+−(v))). Finally the maximum degree of G is defined as d =

maxv∈I∪V (d−(v) + d+(v)).

A path p between two distinct vertices u and v in I ∪ V is a sequence of distinct

vertices in which the first vertex is u, the last one is v and two consecutive vertices

are connected by an edge, that is p = (v0 = u, v1 . . . , vm−1, vm = v) where (vi−1, vi)

are edges in E for i = 1, . . . ,m and vi ̸= vj for all i ̸= j. We say that a path between

two distinct vertices u and v in V is directed if all the directed edges in the path

point at the direction toward v. We say that u is an ancestor of v (u ≺⋆ v) and v is

a descendant (v ≻⋆ u) of u if there is a directed path from u to v in G. The set of

all ancestors of v will be denoted as an(v). The depth of a given CDAG corresponds

to maximum length of any directed path connecting an input vertex to an output

vertex.

Topological partitions and topological orderings of CDAG

For a given CDAG G(I ∪ V,E), a family of subsets of I ∪ V , {V (1), V (2) . . . , V (i)}, is
called a partition of G if ∪ij=1V

(j) = I ∪ V and for every pair a, b ∈ {1, 2, . . . , i} we

have V (1) ∩ V (b) = ∅.

Definition 1.3 (Topological partition of a CDAG). For a given CDAG G(I ∪V,E),

a family of subsets of I ∪ V , {V (1), V (2) . . . , V (i)}, is called a partition of G if it is a

partition of G and for any k ∈ {1, 2, . . . , i} no vertex in ∪ij=kV (j) is a predecessor of

a vertex in cupkj=1V
(j).

Let us consider all possible permutations (or orderings) of the vertices of a given

CDAG G.

Definition 1.4 (Topological ordering). A permutation π of the vertices of a CDAG

G(I ∪V,E) is a topological ordering (or permutation) of G if and only if any prefix-

suffix partition of π is a topological partition of G.

4 Chapter 1. Preliminaries

1.2 CDAG computations

A computation (or schedule) of G(I ∪ V,E) specifies a particular scheduling of the

operations associated with its vertices, which satisfies data dependencies, and a par-

ticular memory management.

A standard computation of a CDAG G(I∪V,E) starts with the values of all input

vertices stored in memory and must calculate the values of all output vertices by

performing a sequence of vertices evaluations which correspond each to the execution

of the operation associated to a vertex v, provided that all the vertices in pa(v) are

in memory. Input values can be removed from the memory but once they have been

removed they cannot be recalled in memory. At the end of the computation all values

of the output vertices must have been evaluated and stored in memory.

We will consider also another class of computations called free-input computa-

tions. A free-input computation starts with an initially empty memory, and every

time an input value is needed it can be produced invoking a special load instruc-

tion. Furthermore, it is not necessary to maintain the value of the computed outputs

stored in memory once they have been computed.

Read-once computations capture aspects of both standard and free-input com-

putations. One such computation starts with an initially empty memory, and every

time and each input value can be obtained once invoking a special load instruction.

In general it is possible that during a computations the same intermediate result

is computed more than once. Doing so could allow to reduce the number of elements

which have to be maintained in memory by the program during its execution at the

cost of a possible increase in the number of computational steps required. Any such

computation is particularly useful in all those situations in which the main priority

is given to achieving the minimum execution time. We refer to computations in

which no intermediate result is computed more than once as computations with no

recomputation for short, nr-computations. The nr-computations of a CDAG are in

one-to-one correspondence with the possible topological orderings of its vertices. It

should be noted that in free-input nr-computations, the input values can be obtained

just once by using the special load instruction (as in the read-once class). The

key observation concerning this class of computations is that once an input value

is loaded in memory or an intermediate result is calculated, then said value must

remain available until the result of each operation which uses it as an input argument

has been evaluated. In our work we will study how recomputation can affect both

the performance and the analysis of straight line programs.

Chapter 2

Studying the space complexity of

CDAGs using the visit method

In most computations the memory space available, be it the number of CPU registers

or the cache memory size, is not sufficient to hold all the data on which a program

operates. The same memory locations must be reused or the available space must be

increased leading respectively to an increase or to a reduction of the number of the

necessary computational steps (time). In this and the next chapter, we study CDAG

computations in the RAM model [58] with a memory of unbounded size whose cells

are addressed by natural numbers starting from 0. We refer as size of the memory

to the number of words which can be stored in the memory, where we assume that

one word can be stored in one memory cell. In this chapter, we focus on the study

of the minimum space requirements for straight line algorithms expressed by means

of a CDAG.

2.1 Space Complexity of a CDAG

Definition 2.1 (Space Complexity of a CDAG). The space complexity of a given

computational directed acyclic graph G(I ∪ V,E), denoted by S(G) is defined as the

minimum memory space strictly required by any standard computation of G.

Since in standard computations all input values need to be stored in memory in

memory at the start of the computation and all the output values need to be stored

in memory at the end of it, for every CDAG G the following lower bound holds:

S(G) ≥ max{|I| , |O|}.

We can formalize an analogous concept for free-input computations:

5

6 Chapter 2. Studying the space complexity of CDAGs using the visit method

Figure 2.1: Pebble game played on a binary tree CDAG

Definition 2.2 (Free Input Space Complexity of a CDAG). The space complexity of

a given computational directed acyclic graph G(I ∪ V,E), denoted by Sfree(G) is de-

fined as the minimum memory space strictly required by any free-input computation

of G.

Clearly, for any given CDAG G we have that S(G) ≥ Sfree(G). In our work

we will mostly focus on the analysis of the free-input space complexity of CDAGs.

It is possible to define a concept that captures the minimum space requirement of

nr-computations as follows:

Definition 2.3 (Space complexity of a CDAG for computations with no recompu-

tation). The space complexity (resp., free-input space complexity) of a given CDAG

G(I ∪ V,E) for computations without recomputation, denoted by Snr(G) (resp.,

Sfree−nr(G)) is defined as the minimum memory space strictly required by any stan-

dard (resp., free-input) nr-computation of G.

2.1.1 The pebble game

The pebble game (also called black pebble game), introduced by Paterson and Hewitt

in [47] is a simple yet power tool which allows us to study various types of computa-

tions and enables us to investigate the time and space requirements for the evaluation

of a CDAG. The pebble game is a game played on directed acyclic graphs, which

captures the dependencies of straight-line programs: pebbles are placed on vertices

of a CDAG in a data-independent order to indicate that the value associated with

a certain node is currently stored in memory. For a given CDAG G(I ∪ V,E), the

rules for the pebble game are the following:

(R0) Initialization: at the beginning of the game no vertex is carrying a pebble

(R1) Input : a pebble can be placed on an input vertex in I at any time

(R2) Computation step: a pebble can placed on (or slided to) any non-input vertex

in V only if all its immediate predecessors carry pebbles

2.1. Space Complexity of a CDAG 7

(R3) Pebble deletion: a pebble can be removed at any time

(R4) Goal : each output vertex must be pebbled at least once

The placement of a pebble on an input vertex (rule (R1)) models the loading in

memory of the input data, while the placement of a pebble on a non-input vertex

corresponds to the computation of the value associated with the vertex (rule (R2)).

The removal of a pebble (rule (R3)) models the deletion or the overwriting of the

value previously stored in memory.

Allowing pebbles to be placed on input vertices at any time (rule R1) reflects the

assumption that inputs are readily available. This, together with the rule according

to which at the beginning of the game no pebble is placed on the CDAG (rule

(R0)), is the key condition that associates the executions of the pebble game to the

free-input computations rather than to the standard computations. This condition

creates a certain distance between the pebble game and most of practical situations

in which all input values must actually reside in memory. The model, however,

maintains however a high degree of interest since it provides a lower bound to the

space complexity when operating with a high degree of freedom.

The condition that all immediate predecessor vertices should carry pebbles in

order to place a pebble on a vertex (rule (R2)) models the natural requirement that

an operation can be performed only if all its arguments are available in main memory.

Moving (or sliding) a pebble to a vertex from an immediate predecessor reflects the

design of CPUs that allow the result of a computation to be placed in a memory

location holding an operand.

Finally, rule (R4) represents the fact that all the output values of the correspond-

ing straight line program have to be computed.

The execution of the rules of the pebble game on the vertices of a CDAG G is

called a pebble strategy or simply pebbling. A pebbling is said to be complete if it

satisfies rule (R4) (i.e. it is complete). Each complete pebble strategy corresponds

to a free-input computation for G. Each step of the computation is associated to

each placement of a pebble, ignoring steps on which pebbles are removed. The steps

of a strategy can then be numbered consecutively from 1 to T , where T corresponds

to the time required by the strategy. For any given CDAG G(I∪V,E), any pebbling

strategy will require at least |I ∪ V | steps. The space requirement of a pebbling

strategy is the minimum number S of pebbles which are necessary for the execution

of the strategy itself. A strategy has minimum spate requirement (or is minimal) if

no other strategy has lower space requirement. The free-input space complexity of a

CDAG G corresponds to the space requirement of a minimum pebbling strategy for

the pebble game played on G.

8 Chapter 2. Studying the space complexity of CDAGs using the visit method

Pebbling strategies with no repebblings

nr-computations correspond to pebbling strategies in which each vertex receives a

pebble just once, and remains pebbled until all its successors have been pebbled as

well. This fact provides a very strong insight on the ”lifespan” of a pebble placed

on a specific vertex of a CDAG and, correspondingly, of data stored in memory. We

refer to this class of pebbling strategies as nr-pebblings (which is short for “pebbling

strategies with no repebblings”).

The nr-pebblings of a CDAG are in one-to-one correspondence with the possi-

ble topological orderings of its vertices, and therefore with the corresponding nr-

computations of the CDAG.

2.1.2 Pebbling technicalities

Unconditional and Conditional pebblings

In some setting, it may prove useful to relax rule (R0) and allowing some pebbles to

be already placed on the CDAG at the beginning of the game. These pebblings are

referred in literature as conditional pebblings, while pebblings for which no pebble is

assumed to be placed in the CDAG are referred as unconditional [45]. In our study

we use the assumption that no pebble is placed in the graph at the beginning of the

computation (i.e. we focus on unconditional pebblings) just as in the original pebble

game.

Visiting and Permanent pebblings

A variation of the pebbling game according to which in order to achieve a complete

pebbling all the output vertices must hold a pebble is known in literature as perma-

nent pebbling game [45]. In this thesis we refer to the original version of the pebbling

game as previously presented, sometimes referred as visiting pebbling game, for which

a in a complete pebbling strategy all vertices are to be pebbled at least once, but it

is not required to maintain a pebble on all output vertices.

Variations of the pebble game

Variations of the basic pebble game have been introduced to study different as-

pects of CDAG computations. Hong and Kung [37] introduced the red-blue pebble

game, which we describe in Chapter 4, which remains to this date the main point

of departure of most lower bound analysis for hierarchical memory performance.

The black-white pebble game was introduced by Cook and Sethi [18] to study the

2.1. Space Complexity of a CDAG 9

Figure 2.2: Relationship among complexity classes

space requirement of CDAG computations which can utilize non-deterministic steps.

A two-person game introduced by Venkateswaran and Tompa [69] models parallel

complexity classes.

2.1.3 Hardness of the space complexity problem

It is generally very hard to determine the space complexity of a CDAG. Rather

than a general approach, specific pebbling strategies have to be tailored on the

particular CDAG structure [58]. In terms of the traditional hierarchy of complexity

classes, the problem of finding the minimum number of pebbles needed to pebble a

CDAG can be modeled as a language consisting of strings each of which contains

the description of a CDAG G, a vertex v ∈ V and an integer S with the property

that v can be pebbled with S or fewer pebbles. Gilbert, Lengauer, and Tarjan [32]

and Loui [43] have shown that the languages associated with minimal pebblings of

CDAGs are PSPACE-complete. PSPACE is the class of decision problems that are

decidable by a Turing machine in space polynomial in the size of the input and are

potentially much more complex of problems in P. The hardest problems in PSPACE

are PSPACE-complete problems, in the sense that any PSPACE problem can be

reduced to a PSPACE-complete problem in polynomial time by a Turing machine.

Although it is not know whether this is the case, these problems are widely suspected

to be outside of the more famous complexity classes P and NP, but that is not known.

PSPACE-complete problems, however, are currently as infeasible as NP-complete

problems, since both are solvable in exponential time and polynomial space [58].

10 Chapter 2. Studying the space complexity of CDAGs using the visit method

2.2 The marking rule approach

When studying the space complexity of CDAGS, the possibility of evaluating the

same vertex multiple times, greatly complicates the analysis with respect to what

constitutes a valid schedule and to what must be in memory at any given step

of the schedule. In [10], Bilardi et al. introduced the Marking Rule technique, a

general framework for obtaining lower bounds to the free-input space complexity of

a CDAG. In this method, the authors aim to show a correspondence between each

possible computation of the CDAG to a permutation of its vertices, which in general

is not a topological ordering of its vertices. Such correspondence is obtained using a

marking rule which is a criterion to associate each vertex to a family of subsets of it

successors.

2.2.1 Description of the method

A marking rule for a given CDAG G is a function f : I ∪ V → 22
V
for which:

• q ∈ f(v) =⇒ q ⊆ ch(v);

• v ∈ O =⇒ f(v) = {∅};

• v ∈ V \O =⇒ ∅ /∈ f(v).

The marking rule associates every vertex v ∈ I ∪ V to a family of subsets of its

successors. We refer to f(v) as the enabling family of v, and to each q ∈ f(v) as

an enabling set for v. Let G(I ∪ V,E) be a CDAG such that |I ∪ V | = n, and let

ϕ = ϕ1ϕ2 . . . ϕn be a permutation of all the vertices in I ∪ V so that {ϕi : 1 ≤ i ≤
n} = I ∪ V . ϕ is a legal f -marking of G for a marking rule f if and only if for every

1 ≤ i ≤ n there exist q ∈ f(ϕi) such that q ⊆ {ϕi : i ≤ j ≤ n}.
The i-boundary of ϕ is then defined as the set Bf

ϕ(i) of all the vertices v ∈ V \O
that satisfy the following properties:

• v ∈ {ϕ1, . . . , ϕi}

• there exists q ∈ f(v) such that q ⊆ {ϕi+1, . . . , ϕn}.

Where Bf
ϕ(i) represents the set of vertices v ∈ V \O such that vϕi+1 . . . ϕn is the

suffix of a legal f -marking of G.

In [10], a relation is the shown between the space complexity of the free-input

computations of a CDAG G and the size of the boundaries of its f -marking. Let FG

denote the set of marking rules for G and Φf (G) the set of legal f -markings of G.

2.2. The marking rule approach 11

Theorem 2.4 (Lower bound for space complexity - Theorem 1 from [10]). For any

given CDAG G(I ∪ V,E) we have:

Sfree(G) ≥ max
f∈FG

min
ϕ∈Φf (G)

max
1≤i≤|I∪V |

∣∣∣Bf
ϕ(i)

∣∣∣ . (2.1)

Proof Consider an arbitrary marking function f ∈ FG and a T -step free-input par-

simonious computation C for G(I ∪ V,E). Let vt be the vertex evaluated at step

t of C, for 1 ≤ t ≤ T . It is possible to obtain the corresponding f -marking of

C ϕ = ϕ1ϕ2 . . . ϕn by sweeping backward the steps of the computation using the

following loop:

j = n;

for t = T down-to 1 do

if (vt /∈ {ϕj+1, . . . ϕn}) and (∃q ∈ f(vt) : q ⊆ {ϕj+1, . . . ϕn})
then ϕj = vt; j = j − 1;

It can be easily verified that the sequence ϕ obtained at the end of the loop is

indeed a f -marking for G(I ∪ V). In order to prove the accuracy of the bound, it

must be shown that, fixed an index i, 1 ≤ i ≤ n with ϕi = vt for some t, the value of

the vertex in Bf
ϕ(i) must actually be in memory at the end of step t of the compu-

tation C. Let v ∈ Bf
ϕ(i). The definition of Bf

ϕ(i) and the fact that the computation

C being used is parsimonious, implies that there exist two indices t1 and t2, with

1 ≤ t1 ≤ t ≤ t2 ≤ n, such that vt1 = v, vt2 ∈ ch(v), and vj ̸= v for every t1 ≤ j ≤ t2.

As a consequence, the value of v computed at step t1 of C is used to compute vt2

and therefore it must reside in memory at the end of step t. Since i was chosen

arbitrarily, it is possible to conclude that the space required by C is not less than

max1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣. The theorem follows by minimizing over all possible ϕ ∈ Φf (G)

and by maximizing over all possible f ∈ FG. □

Note that the lower bound obtained is generally not tight: while considering the

vertex ϕi of a given f -marking it can be said that all the nodes that belong to the

boundary Bf
ϕ(i) must be located in memory immediately after the evaluation of ϕi,

it is not however possible to conclude that all the nodes that are in memory at

that step of the computation will actually appear in the boundary Bf
ϕ(i). While in

topological ordering each vertex must appear before all of his successors, in generic

f -marking this constraint is relaxed, with every vertex appearing before at least one

of its enabling sets.

12 Chapter 2. Studying the space complexity of CDAGs using the visit method

2.2.2 The singleton and topological marking rule

One disadvantage of this approach is given by the high number of possible marking

rules to be analyzed |FG|. Among these, however, there are two rules which are of

natural interest and particular importance:

• the singleton marking rule f (sing) which associates each vertex to an enabling

family composed by the singleton sets containing each one of its successors:

f (sing)(v) =

{
{{u}|u ∈ ch(v)} ∀v ∈ V \O
{∅} ∀v ∈ O

For any f ∈ FG we have Φf (G) ⊆ Φf (sing)(G). For any f ∈ FG and any

ϕ ∈ Φf (G) we have:

max
1≤i≤n

∣∣∣Bf (sing)

ϕ (i)
∣∣∣ ≥ max

1≤i≤n
|Bϕ(i)|.

• the topological marking rule f (top) which associates each vertex to to an enabling

family composed by just the set of all its predecessors:

f (top)(v) =

{
{ch(v)} ∀v ∈ V \O
{∅} ∀v ∈ O

Φf (top)(G) corresponds to the set of all topological orderings of the vertices of

the CDAG, and therefore to the set of all possible nr-pebblings. For any f ∈ FG

we have Φf (top)(G) ⊆ Φf (G). For any f ∈ FG and any ϕ ∈ Φf (G) we have:

max
1≤i≤n

∣∣∣Bf (top)

ϕ (i)
∣∣∣ ≤ max

1≤i≤n
|Bϕ(i)|.

f (sing) and f (top) are somehow at the opposite ends of the spectrum of all possible

marking rules. However, they both exhibit a regular and general criterion in their

definition, while using intermediate rules may require an analysis tailored on specific

characteristics of a given CDAG.

2.2.3 Application of the marking rule approach

In this section, we show how the marking rule approach can be used to obtain a

novel lower bound to the space complexity of a specific family of CDAGs. We start

by introducing the building blocks of our family of CDAGs.

2.2. The marking rule approach 13

Definition 2.5 (Superconcentrator CDAG). A CDAG S(n) with n input vertices

and m output vertices is said to be an n-superconcentrator if n = m and for any

couple of subset A and B of the input and output vertices respectively with |A| =
|B| = c, there exist c vertex disjoint paths in G connecting each vertex in A to a

vertex in B.

Superconcentrators were originally introduced by Leslie Valiant [68] which proved

that n-superconcentrators of linear size (intended as the number of vertices and

edges) with respect to n can actually be built. Explicit constructions which ensures

depth O(log n)1 and constant degree for the vertices for linear-size n-superconcentra-

tors were later provided by Pippenger [52] and Gabber and Galil [30]. We shall now

study the space requirement of the family of superconcentrators stack CDAGs which

is defined as follows:

Definition 2.6 (n-superconcentrators r-stack). An n-superconcentrators r-stack

CDAG, denoted as ST (n, r), is obtained by composing r linear-size n- superconcen-

trators S1(n), S2(n), ..., Sr(n) by merging each output vertex of Si with a distinct input

vertex of Si+1 for 1 ≤ i < r. The input vertices of S1(n) and the output vertices of

Sr(n) act respectively as the input and the output vertices of the complete CDAG.

The family of superconcentrators stack CDAGs were studied by Lengrauer and

Tarjan in [40]. In the paper, the authors discuss trade-offs between the memory

space and the time necessary for the computation of such CDAGs.

We now discuss a property of ST (n, r) which will be the key to obtain the lower

bound on the space complexity using the marking rule approach.

Lemma 2.7. Let I and O denote respectively the set of input and output vertices of

ST (n, r). Let p be the set of vertices which constitute a path from a vertex vi ∈ I to

an output vertex vo ∈ O, in ST (n, r). It is possible to partition I \ {vi} in two sets

A and B such that:

• there exists |A| ≥ min{n−1, r} paths, denoted as PA, which connect each vertex

in A to a vertex in p which are vertex-disjoint amongst themselves, except for

the vertices in p;

• there exists |B| ≥ n − |A| − 1 vertex-disjoint paths, denoted as PB, which

connect each vertex in B with an output vertex of ST (n, r). The paths in PB

are vertex-disjoint with respect to p and all the paths in PA.

Proof The proof is by induction on r. In the following, we will assume n ≥ 2.

1 Through this thesis, we use the notation “log x” as short for “log2 x”.

14 Chapter 2. Studying the space complexity of CDAGs using the visit method

Base: For ST (n, 1) let us consider the vertex vi which is the first vertex of the path

p which connects vi to vo. Let us consider the subset C = I \ {vi} and an arbitrary

subset D of the output vertices of ST (n, 1) such that vo ∈ D and |D| = |C|. For the
superconcentrator property there will be |C| vertex disjoint paths connecting each

vertex in |C| to a vertex in |D|. Among these paths there will be at least one sharing

a vertex with p (the path form a vertex vj ∈ C to vo). Therefore there will be one

or more paths PA starting form vertices in A ⊆ C to vertices in p which do not

share any vertex besides those in p itself with |A| ≥ 1. Additionally there will be

|C|− |A| = n−1−|A|, vertex-disjoint paths PB from vertices in B = C \A which do

not have any vertex in common with p. Since r = 1 for the base case the statement

is verified.

Induction: Proceeding in the proof we will assume that the statement of the

lemma is verified for ST (n, r − 1) for r > 1 and we will verify that the lemma

holds for ST (n, r) as well.

Let us consider the sub-CDAG ST (n, r)′ constituted by the first r − 1 n- super-

concentrators sub-CDAGs starting from the one whose input vertices correspond to

those of the whole ST (n, r). We call p′ the sub path of p from a vertex vi in I to an

output vertex v′o of ST (n, r)′. Since ST (n, r)′ is in fact a stack of r − 1 linear-size

n-superconcentrators the inductive hypothesis applies for the path p′ and then there

will be the sets A′ and B′ of inputs of ST (n, r)′ (and therefore ST (n, r) as well) such

that there will be |A′| ≥ min{max{n
2
, n − r − 1}, r − 1} paths P ′A from vertices in

A′ ⊆ I to vertices in the sub-path p′ which are vertex-disjoint amongst themselves

except for the vertices in p′. Additionally there will be |B′| = n−|A′| paths P ′B from

vertices in B′ ⊆ I to outputs of ST (n, r)′, to whom we will refer as C, which are

vertex disjoint amongst themselves and the paths in P ′A and p′.

If |A′| = n − 1, then we can assume A = A′, thus PA = P ′A and the statement

is therefore easily verified for ST (n, r) as well. Otherwise |A′| ≥ r − 1 and |C| ≥
1. Let D be a subset of the output vertices of ST (n, r) with vo ∈ D and |D| =
|C|. Since vertices in C are the input vertices of an n-superconcentrator (the r-

th superconcentrator of the stack ST (n, r)), from the superconcentrator property

follows that there will be |C| = |D| vertex-disjoint path in Sr(n) connecting each

vertex in C to a distinct vertex in D. Since vo ∈ D, at least one of these paths

will encounter a vertex in p (at least in vo). p to |π| − |π′| additional paths may

in fact arrive to vertices in p while being vertex disjoint amongst themselves, we

refer to these paths as PCA and to the input vertices of Sr(n) from which each of

these paths is starting as CA ⊆ C. Besides from the paths already mentioned,

2.2. The marking rule approach 15

for the superconcentrator property there will be |C| − |CA| paths from vertices in

CB = C \CA to output vertices of Sr(n) (an therefore of ST (n, r)) as well, to whom

we will refer as PCB , which do not encounter any vertex in p and are vertex disjoint

amongst themselves and all the paths in PCA .

Since for the inductive hypothesis each vertex in C is connected to a vertex in

B′ ⊂ I by the paths in P ′B, by composing each path in PCA with the corresponding

paths from B′′ ⊆ B′ to CA we obtain the paths PA′′ starting from B′′ ⊆ I to vertices in

p with |PA′′ | ≥ 1. Similarly, by composing each path in PCB with the corresponding

paths from B′ \ B′′ to CB we obtain the vertex-disjoint paths PB starting from

B′ \B′′ ⊆ I and connected to the output of ST (n, r). By construction, paths in P ′A
will not have any vertex in common with the paths in PA′′ . By putting them together

we obtain the set of paths PA = P ′A ∪ PA, starting form vertices in A = A′ ∪B′′ and
connected to vertices in p which do not have any vertex in common besides those in

p. Since for the inductive hypothesis |A′| ≥ min{n, r − 1} and it was proven that

|B′′| ≥ 1, we can conclude that |A| ≥ r − 1 + 1 and therefore |A| ≥ r. Finally, we

have the set PB of vertex-disjoint paths starting from B = B′ \ B′′ ⊆ I to output

vertices of ST (n, r) which do not share any of the vertices on the paths in PA, with

|B| = |B′| − |B′′| = n− 1− |A′| − |B′′| = n− 1− |A|.
□

We will now prove the lower bound on the space complexity for a ST (n, r) CDAG

by using the marking rule approach and the previously presented lemma.

Theorem 2.8 (Lower bound free-input space complexity for ST (n, r)). For any

given r-stack of n-superconcentrator CDAG ST (n, r) we have:

Sfree (ST (n, r)) ≥ min{n− 1, r}+ 1 = min{n, r + 1}. (2.2)

Proof Let us consider now any f (sing)-marking ϕ = ϕ1ϕ2 . . . ϕN of ST (n, r), where N

is the total number of vertices. In particular, if the superconcetrators being used in

the construction of the stack are linear we have N = O (rn). Let ϕ′ = ϕ1ϕ2 . . . ϕN ′

be the longest prefix of ϕ such that ϕ′ contains all input vertices of ST (n, r). ϕN ′ will

therefore be an input vertex. Given the structure of ST (n, r) and the properties of

the singleton marking rule, in the suffix ϕN ′+1 . . . ϕN there will be all the vertices of a

path p from vi = ϕN ′ to an output vertex vo which goes through all the r linear-size

n-superconcentrators of ST (n, r).

From Lemma 2.7 follows that there are Ω (min{n− 1, r}) vertex disjoint paths

from vertices in I \ {vi}, to vertices of the path p. Since all vertices in I \ {vi} are

16 Chapter 2. Studying the space complexity of CDAGs using the visit method

in the prefix and vertices in p are in the suffix every such path includes a node in

Bf (sing)

ϕ (N ′). From Theorem 2.4 we get:

Sfree (ST (n, r)) ≥ min
ϕ∈Φ

f(sing) (ST (n,r))
max
1≤i≤n

∣∣∣Bf
ϕ(i)

∣∣∣ ≥ min{n− 1, r}+ 1 = min{n, r+ 1}

□

2.3 Visits of a CDAG

While the marking rule approach is quite versatile and powerful, the question of

whether it is possible to attain significant lower bounds to the space complexity

(i.e., the obtained lower bound is asymptotically correspondent to the true space

complexity), remains open. In order to investigate this aspect of the marking rule

technique we developed the concept of visit of a CDAG. In this section we describe

how visits of a CDAG relate to the marking method and to the space complexity of

a CDAG. We then use this method to study the bounds attainable using the f (sing)

and f (top) marking rules.

2.3.1 Definition of Visit of a CDAG

A visit of the CDAG G(I ∪ V,E) is an |I ∪ V | = n-step traversal of G which reaches

all its vertices proceeding according to a series of “legal” steps. The i-th step, with

1 ≤ i ≤ n, is said to be legal if the vertex vi ∈ V visited during the i-th step is enabled

for the visit after the previous 1, . . . , i − 1 steps (if any). In order to establish the

conditions which enable a vertex to be visited we will use the notion of visit rule. A

visit rule for a given CDAG G is a function h : I ∪ V → 22
V
for which:

• q ∈ h(v) =⇒ q ⊆ pa(v);

• v ∈ I =⇒ h(v) = {∅};

• v ∈ V =⇒ ∅ /∈ h(v).

A visit rule h for G associates every vertex v ∈ I ∪ V to a family of subset of

pa(v) such that if v ∈ I, h(v) contains only the empty set, and if v ∈ V then h(v)

can not contain the empty set and must contain at least one subset of pa(v). We

denote the set of all possible visit rules for a given CDAG G as HG. A permutation

2.3. Visits of a CDAG 17

ψ = ψ1ψ2 . . . ψn is an h-visit of G iff for every 1 ≤ i ≤ n there exists q ∈ h(ψi) such

that q ⊆ {ψ1, . . . , ψi−1}. We denote as Ψh (G) as the set of all h-visits on G.

The i-boundary of a h-visit ψ is defined as the set:

Bh
ψ(i) = {v ∈ V \{ψ1, . . . , ψi−1}|∃q ∈ pa(v) s.t. q ⊆ {ψ1, . . . , ψi−1}} .

Bi
ψ(ψi) is the set of vertices which are enabled to be visited after the i−1-th visit

step. We refer as the maximum boundary size of a h-visit ψ as Bh
ψ:

Bh
ψ = max

i∈{1,...n}

∣∣Bh
ψ(i)

∣∣ . (2.3)

The input vertices must be handled with care: a straightforward application of

the previous criteria would impose Bh
ψ(i) ∈ Ω (|I|). We will however consider a “free-

input” model for our visits: input vertices, which are enabled to be visited since the

beginning of the computation, do not participate in the boundary Bh
ψ.

In the following we will consider three main classes of visit rules:

• the topological visit rule h(top) which associates each vertex to an enabling

family composed by just the set of all its predecessors:

h(top)(v) =

{
{pa(v)} ∀v ∈ V

{∅} ∀v ∈ I

ΨG(h
(top)) corresponds to the set of all topological orderings of the vertices of

the CDAG. For any h ∈ HG we have ΨG(h
(top)) ⊆ ΨG(h). For any h ∈ HG and

any ψ ∈ ΨG(h) we have:

max
1≤i≤n

∣∣∣Bh(top)

ψ (i)
∣∣∣ ≤ max

1≤i≤n
|Bψ(i)|.

• the singleton visit rule h(sing) which associates each vertex to an enabling family

composed by the singleton sets containing each one of its predecessors:

h(sing)(v) =

{
{{u}|u ∈ pa(v)} ∀v ∈ V

{∅} ∀v ∈ I

For any h ∈ HG we have ΨG(h) ⊆ ΨG(h
(sing)). For any h ∈ HG and any

ψ ∈ ΨG(h) we have:

max
1≤i≤n

∣∣∣Bh(sing)

ψ (i)
∣∣∣ ≥ max

1≤i≤n
|Bψ(i)|.

18 Chapter 2. Studying the space complexity of CDAGs using the visit method

• intermediate visit rules h which do not behave as previous rules.

2.3.2 The reach and enabled reach concepts

Given a vertex v ∈ I ∪ V we define its reach R(v) as the set of all its descendants:

R(v) = {u ∈ V |∃ ⟨v, u⟩ ∈ E ∨ ∃ ⟨v′, u⟩ ∈ E with v′ ∈ R(v)} .

We define an additional concept of reach called enabled reach with reference to a

specific h-rule and to a set ψpre ⊆ I ∪ V to which we refer to as pre-visit (i.e., a

prefix of a complete visit ψ). The h-enabled reach of a vertex v ∈ V given a pre-visit

ψpre is the subset of the descendants of v not already visited in ψpre which can be

visited starting from v and ψpre:

Rh
ψpre

(v) =
{
u ∈ R(v)|∃q ∈ f (v) s.t. q ⊆ Rh

ψpre
(v) ∪ ψpre

}
.

To give an useful intuition of the concept of h-enabled reach, we can think of it as

the set of all the vertices which can be reached by an h-visit starting form the vertex

v and a pre-visit ψpre. The enabled reach exhibits the following crucial property:

Lemma 2.9. Let G be any n-vertex CDAG G(I ∪ V,E). For any v ∈ I ∪ V and for

any given visit rule h, let ψpre be a legal sub h-visit from any input vertex in I to v.

Let G′(V ′, E ′) be the sub-CDAG induced by the h-enabled reach of v given ψpre:

• V ′ = Rh
ψpre

(v)

• I ′ = {v}

• E ′ the subset of the edges in E which have both endpoints in V ′

The following conditions hold:

1. Any visit ψ′ of G′ which is legal with respect to h, does not enable the visit of

any vertex not in Rh
ψpre

(v).

2. Consider the partial visit ψpreψ
′ of length m ≤ n and let it be the prefix of a

complete h-visit ψ of the entire CDAG G. Then for i = 1, 2, . . . ,m, the vertices

appearing in the boundary Bh
ψ(i) are either vertices in ψpre ∪ψ′ which have not

yet been visited by the i-th step, or vertices in V \ (ψpre ∪ ψ′) which have an

enabling subset entirely contained in ψpre.

Proof

2.3. Visits of a CDAG 19

1. In order for a vertex u /∈ Rh
ψpre

(v) to become enabled for being visited after any

visit of G′, one of the enabling subsets of umust be contained in ψpre∪Rh
ψpre

(v).

If that is the case, according to the the definition of enabled h-reach, either

u ∈ ψpre and has therefore already been visited, or u must be in Rh
ψpre

(v).

2. From point (1) we have that any visit ψ′ of G′ which is legal with respect to

h, does not enable the visit of any vertex not in Rh
ψpre

(v). By the definition of

boundary none of these vertices can therefore appear in the boundary Bh
ψ(i).

□

It is interesting to observe that for the singleton marking rule the enabled reach

and the reach of a vertex coincide (save for the vertices in the pre-visit).

2.3.3 Relation between markings and visits

In this section, we discuss the relation between the visits just described and the visit

method discussed in the previous section.

Definition 2.10 (Reverse CDAG). Given a computational directed acyclic graph

G(I ∪ V,E) its reverse CDAG GR(IR ∪ VR, ER) is another directed graph on the

same set of vertices such that:

• IR = O;

• VR = I ∪ (V \O);

• OR = I;

• ER ⊆ (IR ∪ VR) × VR is the set of edges whose orientation is reversed with

respect to G:

ER = {(u, v) ∈ (IR ∪ VR)× VR|(v, u) ∈ E}

• GR(IR ∪ VR, ER) is a directed acyclic graph.

Note that G and GR have the same number of vertices and edges. Since the

orientation of the edges is inverted from G to GR, for each vertex v ∈ I ∪ V we have

that its in-degree d−(v) (resp., out-degree d+) in G will be equal to the out-degree

(resp., in-degree) of the same vertex in GR. Correspondingly, the maximum in-degree

(resp., out-degree) of G will correspond to the maximum out-degree (resp., in-degree)

of GR. Our definition is obtained from the more generic definition of reverse directed

graph [24]. GR is sometimes referred as the converse of G, because the reversal

20 Chapter 2. Studying the space complexity of CDAGs using the visit method

of arrows corresponds to taking the converse of an implication in logic [34], or as

transpose of G because the adjacency matrix of the transpose directed graph is the

transpose of the adjacency matrix of the original directed graph [21].

Definition 2.11 (Correspondence between marking and visit rules). Given a CDAG

G(I ∪ V,E) and its reverse GR(IR ∪ VR, ER) we say that a visit rule h ∈ HG corre-

sponds to a marking rule f ∈ FGR
if ∀v ∈ I ∪ V we have h(v) = f(v).

In the previous definition the role of G and GR can be switched. Since all the visit

rules in HG and all the marking rules in FGR
are distinct, one h ∈ HG corresponds to

exactly one marking rule f ∈ FGR
and vice versa. In particular, we have that h(sing)

(resp., h(top)) on G corresponds to f (sing) (resp., f (top)) on GR. The correspondence

between visit rules and marking rules implies a correspondence between the h-visit

of G and the f -markings of GR. For any corresponding pair (h, f) with h ∈ HG

and f ∈ FGR
, every visit ψ ∈ Ψh(G) coincides with a marking rev(ψ) ∈ Φf (GR),

where rev(ψ) denotes a permutation in which the elements appear in the opposite

order of ψ. Furthermore, according to the respective definitions of boundary, we

have that for any corresponding pair (ψ, ϕ) with ψ ∈ Ψh(G) and rev(ϕ) ∈ Φf (GR)

and h corresponding to f we have:

Bh
ψ(i) = Bf

rev(ϕ)(i), ∀i ∈ {1, . . . , |I ∪ V |}

This implies that for any corresponding pair (h, f) with h ∈ HG and f ∈ FGR
we

have:

min
ψ∈Ψh(G)

max
1≤i≤|I∪V |

∣∣Bh
ψ(i)

∣∣ = min
ϕ∈Φf (GR)

max
1≤i≤|I∪V |

∣∣∣Bf
ϕ(i)

∣∣∣ (2.4)

The result in Theorem 4.7 can be restated in terms of visits:

Lemma 2.12 (Lower bound for space complexity based on visits). For any given

CDAG G(I ∪ V,E) we have:

Sfree(G) ≥ max
h∈HGR

min
ψ∈Ψh(GR)

max
1≤i≤|I∪V |

∣∣Bh
ψ(i)

∣∣ . (2.5)

The proof follows from Theorem 4.7 and from the correspondence between mak-

ings an visits we just discussed.

Besides their intrinsic interest, visits on a CDAG provide also an alternative way

to study the space complexity of the reverse CDAG. In the following sections we will

study an upper bound to the boundary size achievable for visits using respectively

the singleton and topological visit rules. These results will then provide an upper

bound to maximum lower bound obtainable using the marking rule approach.

2.3. Visits of a CDAG 21

Figure 2.3: h-schedule of a CDAG and β-block partition

2.3.4 h -schedule of a directed acyclic graph

Given a CDAG G(V,E) and a rule h a h-schedule Lh(G) is a partition of the vertices

of V in levels Lh1 , . . . , L
h
j built according the following inductive rule:

Lh1 = I

Lhi =

{
v ∈ V |∃q ∈ f(v) s.t. q ⊆

∪
k=1,...,i−1

Lhk ∧ ∄q ∈ f(v) s.t. q ⊆
∪

k=1,...,i−2

Lhk

}
.

The h-schedule for G can be easily built inductively starting with the initial level

composed just by the input vertices of G. It is crucial to note that for a given DAG

G and a given marking rule h, Lh(G) is unique. The main idea behind the schedule

is that each level Lhi , with 1 ≤ i ≤ ℓ “shields” the vertices in ∪i−1i=1L
h
i from the

vertices ∪ℓi=i+1L
h
i . This “shielding” condition corresponds to fact that for all vertices

v ∈ ∪ℓi=i+1L
h
i no enabling set of v is a subset of ∪ℓi=i+1L

h
i .

22 Chapter 2. Studying the space complexity of CDAGs using the visit method

Let β ∈ R be an arbitrarily chosen integer value such that 1 ≤ β ≤ n, we call

β − bottlenecks of a h-schedule of G all the levels Lhi such that
∣∣Lhi ∣∣ ≤ β. The

number of non-β-bottleneck levels of a h-schedule ϖ is therefore upper bounded by

0 ≤ ϖ < n/β < n. The β-block partition of Lh(G) is obtained partitioning the levels

of Lh(G) into β-blocks such that the i-th β-block contains all the levels whose index is

smaller than the index of the i-th β-bottleneck level Lh(G) and greater or equal than

the index of the i− 1-th β-bottleneck level Lh(G)(if any). An example of h-schedule

and β-block partition is presented in Figure 2.3. According to this definition the

first β-block is the only one for whom the first level may not be a β-bottleneck level.

All the other β-blocks, if any, thus obtained are composed by a single β-bottleneck

level and by at most ⌊n
β
⌋ ≤ n

β
non-β-bottleneck levels. The β-block partition of Lh

induces a partition of I ∪ V in subsets composed by all the vertices associated to

levels in the same β-block. Said partition is again unique since it descends form the

unique Lh schedule of G. Lh
(top)

(G) is in fact a greedy schedule for G (V,E) whose

number of levels corresponds to the depth of G(V,E). Additionally, the number of

levels of the h(sing)-schedule will be always less or equal than the number of levels in

any other h-schedule. The number of levels of the h(top)-schedule will vice-versa be

higher or equal to the number of levels in any other h-schedule.

2.3.5 Proof method

The final goal of the study in this section is to show that is possible to construct

h-visits which admit bounded maximum boundary size. We describe now a blueprint

of the overall proof structure which we will use to achieve this goal, while later we

get into the details of which results can be achieved for specific h-rules. The notions

of h-schedule and β-block partition which we just introduced are crucial for our

method.

Theorem 2.13 (Theorem blueprint). Given an n-vertex CDAG G(I ∪ V,E), a real

value 1 ≤ β ≤ n, and a visit rule h ∈ HG, ∃ψ ∈ Ψh(G) s.t. Bh
ψ ≤ f(n, β) + 2β ,

where f is a function of n and β which takes values in R.

Proof sketch We begin by building a the h-schedule Lh(G), and we obtain the cor-

responding β-block partition. In order to verify that the statement of the theorem

holds it will be sufficient to show that the following two lemmas are verified:

Lemma 2.14 (Block lemma for h). Let us consider the β-block partition of the h-

schedule of a given n-vertex CDAG G(I ∪ V,E), with 1 ≤ β ≤ n. For any block in

the β-block partition, let B denote the subset of vertices of I ∪ V which are entirely

2.3. Visits of a CDAG 23

contained in the block. Let G′ (I ′ ∪ V ′, E ′) be a sub-CDAG of G such that E ′ =

{(u, v) ∈ E|u, v ∈ B}, I ′ = {v ∈ B|∀u ∈ B, ∄(u, v) ∈ E ′} and V ′ = B \ I ′. Then

∃ψ′ ∈ Ψh(G
′) s.t. Bh

ψ′ ≤ f(n, β), where f is a function of n and β which takes values

in R.

Lemma 2.15 (Connection lemma). Given the n-vertex CDAG G, consider the

β-block partition of Lh(G). Suppose without loss of generality that the schedule

has k blocks. Let ψ(i) be sub-visits, legal with respect to h, for the sub-CDAGs

G(i)
(
V (i), E(i)

)
induced each by one of k blocks of the β-block partition of Lh. Then

the visit ψ = ψ(1)ψ(2) . . . ψ(k) is an h-visit of G.

Furthermore, for any prefix-suffix partition of ψ = ψ1 . . . ψj|ψj+1 . . . ψn such that

ψj ∈ ψ(i), the following conditions hold:

• at most β of vertices which do not belong to ψ(i) participate in the boundary

Bh
ψ(j);

• at most β vertices corresponding to the first level of the i-th block will appear

in the boundary Bh
ψ(j);

Let ψ(1), ψ(2), . . . , ψ(k) be sub-visits for the sub-DAGs G(i)
(
V (i), E(i)

)
of G in-

duced by the β-block partition of G (V,E) for which the Block lemma 2.14 holds.

Since the Connection lemma 2.15 holds as well, the visit ψ = ψ(1)ψ(2) . . . ψ(k) is a

visit on G and the for any prefix-suffix partition of ψ = ψ1 . . . ψiψi+1 . . . ψn we have

boundary size Bh
ψ(i) ≤ f(n, β) + 2β. The theorem follows.

This blueprint allows us to divide the effort in proving the final results in two key

lemmas. While the proof of the Block lemma will depend on the specific visit rule h

being used, it is possible to provide a general proof for the Connection lemma which

holds for any h-rule and any value β ∈ R+.

Proof of the Connection Lemma 2.15 In order to verify that ψ is an actually a

h-visit on G we have to ensure that all vertices in I ∪ V occur exactly one time

in ψ and that for every 1 ≤ j ≤ n, with ψ = ψ1 . . . ψjψj+1 . . . ψn, ∃q ∈ h (ψj) s.t.

q ⊆ {ψ1, . . . , ψj}. Since the β-block partition induces a partition of the vertices of

I∪V and ψ is obtained by cascading visits on the sub-CDAGs induced by the blocks

partition all vertices in I ∪ V occur exactly one time in ψ.

Let G(i)
(
I(i) ∪ V (i), E(i)

)
be the sub-CDAG induced by the i-th block of the β-

block partition of G and let ψ(i) be a visit for G(i). Each vertex v ∈ I(i) ∪ V (i) is

visited in ψ(i) iff in the previous steps all the vertices composing at least one of the

enabling sets in h (v) have already been visited either in the previous steps of ψ(i)

24 Chapter 2. Studying the space complexity of CDAGs using the visit method

or during the sub-visits of the previous blocks ψ(1) . . . ψ(i−1) (if any). This property

remains verified for the complete visit ψ, this allows us to conclude that ψ is actually

a h-visit for G.

Let us now consider a vertex ψj in the global h-visit ψ with ψ = ψ1 . . . ψjψj+i . . . ψn

and let ψ(i) be the sub-visit for which ψj ∈ ψ(i). Consider the boundary set Bh
ψ (j):

since all the vertices in the blocks with index lower than i have already been vis-

ited, none of them will participate in the boundary; on the other hand, none of

the vertices relative to blocks of index higher than i + 1 will be enabled for a visit

after ψ(1) . . . ψ(i) since all the vertices relative to the block of index i + 1 are yet to

be visited. Therefore only vertices of the blocks of index i and i + 1 can appear in

Bh
ψ (j). By construction of ψ no vertex of ψ(j+1) is visited until after ψ1 . . . ψi. For the

properties of the h-schedule we can conclude that only input vertices of the sub-DAG

induced by the i+1-th block can appear in the Bh
ψ (j). All the vertices corresponding

to the initial level of the i-th block can appear in the boundary. Recall however that,

according to our definition, the input vertices of G, which correspond to the first

level of the first block, never appear in the boundary. According to the construction

of the β-block partition, the first level of any other block is a β-bottleneck, and the

number of vertices of said level which can appear in the boundary is upper bounded

by β. By the construction of the β-block partition we can conclude that all these

vertices are contained in the initial β-bottleneck level and there will be at most β

such vertices. The lemma follows.

In the following sections we will verify that the Block Lemma 2.14 is indeed

verified for some relevant visit rules. We will then use these results to obtain an

upper bound on the boundary space required by the relative visits.

2.3.6 Upper bound on the maximum boundary size of a

h(top)-visit

In this section we will prove that for any given n-vertex CDAG G(I ∪ V,E), ∃ψ ∈
Ψh(top) (G) such that Bh(top)

ψ ≤
√
8d+n, where d+ denotes the maximum out-degree

of G. In order to do so, we will first prove amore general result according to which

for any given n-vertex CDAG G and for any real positive value β ≤ n there exists a

schedule ψ ∈ Ψh(top) (G) such that Bh(top)

ψ ≤ αd+ n
β
+ β. To prove this result we will

follow the steps described in the Blueprint Theorem 2.13.

We first introduce the following auxiliary lemma:

Lemma 2.16. Given i ≥ 1 consecutive levels of the Lh
(top)

schedule for an n-vertex

CDAG G with maximum in-degree d+, there exists a h(top)-visit ψ′ s.t. Bh(top)

ψ′ ≤

2.3. Visits of a CDAG 25

(d+ − 1) (i− 1).

Proof The proof is by induction on the number of levels i.

Base: Let us consider the base case i = 1, any permutation of the vertices of

the initial (and only) level constitutes a visit of G(I ∪ V,E). As the only level is

also the first level of the h(top)-schedule it will contain just input values of G. As, by

construction, the input vertices do not appear in the boundary, any such visit has

maximum boundary size zero. This concludes the proof for the base case.

Inductive step: Let us assume that the inductive hypothesis is verified for i ≥ 1,

we will show that it still holds for i + 1. The visits begins by visiting any vertex

a1 ∈ I. If none of the direct successors of a are enabled for being visited. The

visit proceeds by selecting another vertex of I. Suppose instead at least one of the

successors of a1 is enabled for being visited. a1 has up to d+ distinct successors

b1, b2, . . . , bd+(a1) which may be enabled for being visited after visiting a1. All such

vertices will therefore appear in the boundary after a1 has been visited. Without loss

of generality, let us assume our visit proceeds to b1. Let Rh
ψpre

(b1) be the enabled

reach of b1 in G given the pre-visit ψpre = a1.

Let G′ be the sub-CDAG of G induced by the vertices in Rh
ψpre

(b1). For the

construction of the h(top)-schedule of G, all the vertices of G′ belong to the at most

i levels of index higher than one of Lh
(top)

(G). Let us consider the h(top)-schedule

for G′: Lh
(top)

(G′) will have at most i levels, with the first one containing just b1.

By applying the inductive hypothesis we can find a h(top)-sub-visit ψb1 for G′ which

admits maximum boundary sizeB
f ((top)
ψb1

≤ (d+−1)(i−1). Note that if
∣∣∣Rh

ψpre
(a1)

∣∣∣ = 0

all the previous considerations are still verified with ψb1 being an empty visit.

We then re-evaluate which successors of a1 are enabled for being visited given

the pre-visit aψb1 . We then select another vertex from this set and we repeat the

operations previously described for b1. At the i-th step, when evaluating the enabled

reach of bi we do so with respect to the pre-visit a1ψb1 . . . ψbi−1
composed during the

previous steps. These operations are repeated until there are no more successors of

a enabled for being visited. This process leads to the visit ψa1 = a1ψb1ψb2 As

stated in Lemma 2.9, a visit of the enabled reach of a vertex will not enable vertices

outside the enabled reach itself, as at most d+ − 1 successors of a1 can be in the

boundary through ψa1 we can conclude that the maximum boundary size for ψa1

will be Bf (top)

ψa1
≤ (d+ − 1) + (d+ − 1) (i− 1). We then select another vertex from I

and we repeat the operations previously described for a1 until all the vertices in I

have been visited. At the j-th step, for j > 1, when evaluating the enabled reach

of aj we do so with respect to the pre-visit composed during the previous steps

ψpre = psia1ψa2 . . . ψaj−1aj.

26 Chapter 2. Studying the space complexity of CDAGs using the visit method

Let ψ be the complete visit obtained following this scheme. During each of the

psiai sub-visits all and only the vertices in the enabled reach of ai are visited (with

respect to appropriate pre-visit). As stated in Lemma 2.9, a visit of the enabled

reach of a vertex will not enable vertices outside the enabled reach itself. We can

therefore conclude Bh(top)

ψ ≤ (d+ − 1)i. The lemma follows. □

This auxiliary lemma leads to an easy proof for the Block lemma for h(top):

Lemma 2.17 (Block lemma for h(top)). Let us consider the β-block partition of the

h(top)-schedule of a given n-vertex CDAG G(I ∪ V,E), with 1 ≤ β ≤ n. For any

block B in the β-block partition, let G′ (I ′ ∪ V ′, E ′) be a sub-CDAG of G such that

E ′ = {(u, v) ∈ E|u, v ∈ B}, I ′ = {v ∈ B|∀u ∈ B, ∄(u, v) ∈ E ′} and V ′ = B \ I ′.
Then ∃ψ′ ∈ Ψh(top)(G

′) s.t. Bh(top)

ψ′ ≤ (d+ − 1)n
β
.

Proof Let G′ be the CDAG corresponding to any block of a β-block partition of

Lf
(top)

(G). As each block has just one β-bottleneck level, and at most n/β non-β-

bottleneck levels the Lf
(top)

(G′) has at most n/β+1 total levels. From Lemma 2.16 fol-

lows that there exists ψ′ ∈ Ψh(top)(G
′) s.t. Bh(top)

ψ′ ≤ (d+−1)
(
n
β
+ 1− 1

)
≤ (d+−1)n

β
.

□

Following the proof technique detailed in blueprint Theorem 2.13, it is possible to

use the results given by the Block Lemma for h(top) (Lemma 2.17) and the Connection

Lemma 2.15 to obtain the following result:

Theorem 2.18 (General upper bound to boundary size of h(top)). Given an n-vertex

CDAG G(I ∪ V,E), a real value 1 ≤ β ≤ n, and a visit rule h ∈ HG, ∃ψ ∈ Ψh(G)

s.t. Bh
ψ ≤ (d+ − 1)n

β
+ 2β.

Proof Let Lh
(top)

be the h(top)-schedule for G (the greedy schedule for G). For a

fixed β we can obtain a β-block partition of Lh
(top)

(G). Let ψ(1), ψ(2), . . . , ψ(k) be

sub-visits for the sub-DAGs G(i)
(
V (i), E(i)

)
of G induced by the β-block partition

of G (V,E) for which the Block lemma 2.17 for H(top) holds. Since the Connection

lemma 2.15 holds as well, the visit ψ = ψ(1)ψ(2) . . . ψ(k) is an h(top)-visit on G and

the for any prefix-suffix partition of ψ = ψ1 . . . ψiψi+1 . . . ψn we have boundary size

Bh(top)

ψ ≤ (d+ − 1)n
β
+ 2β. The theorem follows. □

For β =
√

(d+ − 1)n/2, we have (d+ − 1)n
β
= 2β and the value of the upper

bound of Theorem 2.18 is minimized.

2.3. Visits of a CDAG 27

Corollary 2.19. Given an n-vertex CDAG G(I ∪ V,E), there exists a visit ψ ∈
Ψh(top)(G) s.t. B

h(top)

ψ ≤
√

8(d+ − 1)n. And therefore:

min
ψ∈Ψ(top)

h (G)

max
1≤i≤|I∪V |

∣∣∣Bh(top)

ψ (i)
∣∣∣ ≤√8(d+ − 1)n

Extension to topological-like visit rules

We say that a visit rule h(top−l) is topological-like if it associates to each vertex v ∈ V

a family constituted just by one subset of its predecessors:

h(top−l)(v) =

{
{q|q ⊆ pa(v)} ∀v ∈ V

{∅} ∀v ∈ I

Clearly, the h(top) visit rule satisfies this requirement.

We can extend the results previously presented for the h(top) visit rule to all

topological-like visit rules:

Lemma 2.20. Given an n-vertex CDAG G(I ∪ V,E), and any topological-like visit

rule h(top−l), there exists a visit ψ ∈ Ψh(top−l)(G) s.t. Bh(top−l)

ψ ≤
√

8(d+ − 1)n.

Proof Let G′(I ′ ∪ V ′, E ′) be the sub-CDAG of G for which:

• E ′ = {(u, v) ∈ E|u ∈ q ∧ q ∈ h(top−l)(v)};

• I ′ = {u ∈ I ∪ V |∄(w, u) ∈ E ′};

• V ′ = {u ∈ V \ I ′}.

We therefore have |I ′ ∪ V ′| = n. By Corollary 2.19 it is possible to find a visit

ψ ∈ Ψh(top)(G′) with maximum boundary size
√

8(d+ − 1)n. As none of the edges in

E \E ′ appear in any enabling set for any vertex of G, we have that ψ ∈ Ψh(top−l)
(G)

and at each step the boundary set for the visit ψ in G′ will correspond to the bound-

ary of the visit in G. □

Impact on lower bound methods for space complexity using the topolog-

ical visit rule

Recall that the maximum out-degree of the reverse CDAG G′ corresponds to the

maximum in-degree d− of G. The result in Lemma 2.20 implies that using the

topological-like visit rule in order to study the free-input space complexity of a given

28 Chapter 2. Studying the space complexity of CDAGs using the visit method

CDAG with n vertices according to Theorem 2.12 leads to a lower bound, which is

at most Ω
(√

(d− − 1)n
)
.

Furthermore, given the relationship between visits and markings described in

Section 2.3.3 we have a corresponding result for the f (top) marking rule:

Corollary 2.21. For any given n-vertex CDAG G(I ∪ V,E) there exists a marking

ϕ ∈ Φf (top)(G) s.t. B
f (top)

ϕ ≤
√

8(d− − 1)n. And therefore:

min
ϕ∈Φ

f(top)
(G)

max
1≤i≤|I∪V |

∣∣∣Bf (top)

ϕ (i)
∣∣∣ ≤ √

8d−n

Proof Given an n-vertex CDAG G, let us consider its inverse CDAG GR. Recall

that the maximum out-degree of the reverse CDAG G′ corresponds to the maximum

in-degree d− of G. From Theorem 2.18 and from the relation between markings and

visits in equation (2.4):

min
ϕ∈Φ

f(top)
(G)

max
1≤i≤|I∪V |

∣∣∣Bf (top)

ϕ (i)
∣∣∣ = min

ψ∈Ψ(top)
h (GR)

max
1≤i≤|I∪V |

∣∣∣Bh(top)

ψ (i)
∣∣∣ ≤√8(d− − 1)n

□

This result implies that using the topological marking rule in order to study the

free-input space complexity of a given CDAG with n vertices according to Theo-

rem 2.4 leads to a lower bound which is at most Ω
(√

d−n
)
. The same result holds

for all topological-like marking rules, each of which corresponds to the appropriate

topological-like visit rule previously defined.

2.3.7 Upper bound on the maximum boundary size of a

h(sing)-visit

In this section we will prove that given an n-vertex CDAG G(I ∪ V,E), ∃ψ ∈
Ψh(sing) (G) s.t. Bh(sing)

ψ ≤ α
√
d+n for some constant α ∈ R+.

An important characteristic of the h(sing) visit rule is that, according to its defini-

tion, once a vertex has been visited all its successors are enable for being visited. This

implies that for any vertex v ∈ I∪V , its h(sing)-enabled reach given any pre-visit ψpre

will correspond to the entire reach of v (minus the vertices already visited in ψpre).

Hence, if there exists a path connecting two vertices in G (i.e., one is a descendant

of the other), then it will always be possible to visit such path with a h(sing)-visit

following the sequence of the vertices in the path. Because of this property of h(sing),

in this section we use the lighter notation R(v) to denote the h(sing)-enabled reach

2.3. Visits of a CDAG 29

of a vertex v.

In the following proof, we use the notion of pivot vertex of a CDAG. Given an

n-vertex CDAG G(I ∪ V,E), we say that a vertex v∗ ∈ I ∪ V is an pivot vertex for

G if its reach is strictly greater than n/2 (|R(v∗)| > n/2), and all its immediate

successors u ∈ ch(v∗) have reach smaller or equal than n/2 (i.e., R(u) ≤ n′/2).

Lemma 2.22 (Existence of a pivot). Let G(I ∪ V,E) be an n-vertex CDAG with

n ≥ 3 with |I| = 1. Then there is at least one pivot vertex in G.

Proof Suppose G has no pivot vertices. Consider the unique input vertex: since it

is not a pivot, it must have at least one successor whose reach is higher than n/2.

As this vertex itself it is not a pivot, it must have at least one successor with reach

higher than n/2 − 1. For any vertex v and any of its direct successors u ∈ ch(v),

from the properties of the h(sing)-enabled reach we have that R(u) ≤ R(v)− 1.

Suppose we repeat this scheme for n/2 steps; then al the successors of the ver-

tex v∗ considered at the n/2-th step must have reach smaller or equal than n/2.

Furthermore, since v∗ was chosen by the process at the (n/2 − 1)-th step, we have

R(v∗) > n/2. v∗ is therefore a pivot vertex for G. This leads to a contradiction. □

We shall now prove that for any n-vertex CDAG there exists h(sing) which requires

O (d+n) space. In the proof, we use a variation of the steps outlined in the Blueprint

Theorem 2.13.

Theorem 2.23 (Upper bound for h(sing) visit). Given an n-vertex CDAG G(I∪V,E)
there exists a visit ψ ∈ Ψh(sing) (G) s.t. Bh(sing)

ψ ≤ α
√
d+n for α = 3

√
2(
√
2 + 1).

Proof The proof is by induction on n.

Base: For n = 1, it will possible to visit the unique vertex v of G with a visit

ψ = v s.t. Bh(sing)

ψ′ = 1 ≤ α
√
d+n.

Inductive step: Let us assume that the statement is verified for n−1 ≥ 1, we will

show that it still holds for n. We start by building the h(sing)-schedule for G, which

coincides with the breadth-first schedule for G. We fix β =
√
d+n and we obtain a√

d+n-block partition. Each of the
√
d+n-blocks in the partition will be composed by

at most
√
n/d++1 levels. We will now consider each of the blocks of the

√
d+n-block

partition separately. We will show that it is possible to visit the i-th sub-CDAGs of

G each corresponding to the i-th block of the schedule with a visit ψ(i) which admits

boundary size
√
d+n+ α

√
n
2
. Let us consider the i-th block B(i) of the

√
d+n-block

partition and let G(i)
(
I(i) ∪ V (i), E(i)

)
be the corresponding sub-CDAG of G such

that E(i) = {(u, v) ∈ E|u, v ∈ B(i)}, I(i) = {v ∈ B|∀u ∈ B(i),∄(u, v) ∈ E(i)} and

V (i) = B(i) \ I(i).

30 Chapter 2. Studying the space complexity of CDAGs using the visit method

As discussed in Section 2.3.2, the block partition ensures a shielding between the

levels of each block. In the following we can consider independently the sub-CDAG

corresponding each to a different block. From the properties of h(sing), we have that

for any given vertex v in the block B(i), there will be a directed path from one of the

vertices in the initial level of B(i) to v whose length (in terms of number of vertices

of the path) will correspond to the index of the level on which v is collocated with

respect to the blockB(i). As a first thing we shall evaluate the reach of every vertex

v ∈ I(i) with respect to G(i). For the properties of h(sing) the reach of a vertex is a

superset of the enabled reach of that vertex given any possible pre-visit, including

the empty pre-visit. There are two possible scenarios:

• (for all v ∈ I(i) we have |R(v) ∩ V (i)| ≤ n
2
) In this case we can construct a

visit for G(i) as follows. We pick any vertex a1 ∈ I(i) and we consider the sub-

CDAG Ga1 corresponding to the reach of a1 in G
(i). We can apply the inductive

hypothesis to Ga1 to obtain an h(sing) visit ψa1 for it with maximum boundary

size α
√
d+n/2. We then select a second vertex a2 ∈ I(i) and we repeat the

same operations with respect to the sub-CDAG corresponding to the vertices

in the reach of a2 in G
(i) which have not already been visited (i.e., the vertices

in its h(sing)-enabled reach given the pre-visit ψa1). Let ψ(i) = ψa1ψa1 . . . be the

complete visit forG(i) obtained following this scheme. As verified in Lemma 2.9,

a visit of the enabled reach of a vertex will not enable vertices outside the

enabled reach itself. We can therefore conclude that the maximum boundary

size for ψ(i) will be α
√
d+n/2.

• (there is a least one v ∈ I(i) such that |R(v) ∩ V (i)| > n
2
) In this case we

can construct a visit for G(i) as follows. We pick any vertex ac ∈ I(i) such that

|R(ac) ∩ V (i)| > n
2
and we consider the sub-CDAG Gac induced by all vertices

in R(ac)∩V (i). By Lemma 2.22 there will be at least one pivot vertex v∗ of Gac

in one of the levels of the h(sing) schedule corresponding to the block B(i). Let

us assume without loss of generality that v∗ is placed in the k-th level of the

block B(i), for 1 ≤ k ≤
√

n
d+
. For the construction of the schedule, there will

be a path ψpre = v1v2 . . . vk−i . . . v
∗ from a vertex v1 = a1 in the first level of

the block, to v∗ such that the vertices vj in the path belong each to a different

level of index for 1 < j < k in B(i). Note that a1 can in general be different

from ac. For the properties of the h(sing) rule, it is possible to visit the path

ψpre with the corresponding visit.

Since each block of an
√
d+n-block partition of Lh

(sing)
has at most

√
n/d++1

levels, any such path will have length
√
n/d++1. Every vertex vj ∈ ψpre, being

2.3. Visits of a CDAG 31

Figure 2.4: Construction of the visit using the pivot vertex method

visited in the path will enable all its at most d+ successors (unless they have

already been visited). The maximum boundary generated by ψpre is therefore√
d+n (the successors of v∗ in the boundary are accounted separately). Let us

consider a vertex u1 ∈ ch(v∗), let Gu1 be the sub-CDAG of G(i) induced by the

vertices of Rh(sing)

ψ′ (u1) which are in G(i). From the definition of pivot vertex

follows that
∣∣∣Rh(sing)

ψ′ (u1) ∩ V (i)
∣∣∣ ≤ n/2. From the inductive hypothesis we have

a visit ψu1 for G
u1 s.t. Bh(sing)

ψu1 ≤ α
√
d+n/2. The same operations are repeated

for all the ui children of v∗ in G(i), each time considering the h(sing)-enabled

reach of ui limited to G(i) given the pre-visit ψprei = ψpreψu1ψu2 . . . ψui−1
. This

process leads to the visit ψv∗ = ψu1ψu2 Furthermore, since the sub-visit

ψuj will not enable any vertex in G(i) which is not in Rh(sing)

ψ′ (uj), we have

Bh(sing)

ψ′ψv∗ ≤
√
d+n+ α

√
d+n/2.

In order to complete the visit of G(i), we proceed by considering the vertices

enabled by the pre-visit ψ)pre and not visited in ψv∗ which are themselves in

G(i). We proceed starting from the successors of vk−1 up to the successors of

v1. By the definition of pivot all these vertices will now have a reach smaller

than n/2. A visit ψb can therefore be constructed by simply reproducing the

previously described step.

Finally, we consider the sub-CDAG induced by the vertices remaining in G(i)

and not already visited in the previous steps. Since a there will be less than n/2

such vertices, we can apply again the inductive hypothesis and obtain a visit

32 Chapter 2. Studying the space complexity of CDAGs using the visit method

ψr which admits maximum boundary α
√
dn/2. The properties of the enabled

reach discussed in Lemma 2.9 ensure that visit of the enabled reach of a vertex

will not enable vertices outside the enabled reach itself. We can therefore

conclude that the maximum boundary size for the visit ψ(i) = ψpreψv∗ψ
bψR,

obtained by composing the previously described sub-visits, will be
√
d+n +

α
√
d+n/2.

We have therefore obtained an h(sing)-visit for the block B(i) whit boundary size

Bh(sing)

ψ(i) ≤
√
d+n+ α

√
d+n/2.

We can apply the same steps for obtaining h(sing)-visits for the sub-CDAGs of G

each corresponding to one of the blocks of the
√
d+n-block partition of the h(sing)-

schedule for G. All of these visits will have boundary size upper bounded by
√
d+n+

α
√
d+n/2.

For the Connection Lemma 2.15, the visit ϕ obtained by concatenating the sub-

visits ϕ(1)ϕ(2) . . . it is indeed an h(sing)- visit for G and admits an upper bound for

its maximum boundary size given by:

Bh(sing)

ψ(i) ≤
√
d+n+ α

√
d+n/2 + 2

√
d+n ≤ α

√
d+n

for α ≥ 3
√
2(
√
2 + 1). □

Extension to singleton-like visit rules

We say that a visit rule h(sing−l) is singleton-like if it associates to each vertex v ∈ V

a family of sets each containing some of its predecessors:

h(sing−l)(v) =

{
{{u}|u ∈ q ⊆ pa(v)} ∀v ∈ V

{∅} ∀v ∈ I

Clearly, the h(sing) visit rule satisfies this requirement. We can extend the results

previously presented for the h(sing) visit rule to all singleton-like visit rules:

Lemma 2.24. Given an n-vertex CDAG G(I ∪ V,E), and any singleton-like visit

rule h(sing−l), there exists a visit ψ ∈ Ψh(sing−l)(G) s.t. Bh(sing−l)

ψ ≤ 6(
√
2− 1)

√
d+n.

Proof Let G′(I ′ ∪ V ′, E ′) be the sub-CDAG of G for which:

• E ′ = {(u, v) ∈ E|{u} ∈ h(sing−l)(v)};

• I ′ = {u ∈ I ∪ V |∄(w, u) ∈ E ′};

2.3. Visits of a CDAG 33

• V ′ = {u ∈ V \ I ′}.

We therefore have |I ′ ∪ V ′| = n. By Theorem 2.23 it is possible to find a visit

ψ ∈ Ψh(sing)
(G′) with maximum boundary size 6(

√
2 − 1). As none of the edges in

E \E ′ appear in any enabling set for any vertex of G, we have that ψ ∈ Ψh(sing−l)
(G)

and at each step the boundary set for the visit ψ in G′ will correspond to the bound-

ary of the visit in G. The lemma follows. □

Impact on lower bound methods for space complexity using the singleton

visit rule

Recall that the maximum out-degree of the reverse CDAG G′ corresponds to the

maximum in-degree d− of G. The result in Lemma 2.24 implies that using the

topological-like visit rule in order to study the free-input space complexity of a given

CDAG with n vertices according to Theorem 2.12 leads to a lower bound which is

at most Ω
(√

d−n
)
.

Furthermore, given the relationship between visits and markings described in

Section 2.3.3 we have a corresponding result for the f (sing) marking rule:

Corollary 2.25. For any given n-vertex CDAG G(I ∪ V,E) there exists a marking

ϕ ∈ Φf (sing)(G) s.t. B
f (sing)

ϕ ≤ 6(
√
2− 1)

√
d−n. And therefore:

min
ϕ∈Φ

f(top)
(G)

max
1≤i≤|I∪V |

∣∣∣Bf (top)

ϕ (i)
∣∣∣ ≤ √

8d−n

Proof Given an n-vertex CDAG G, let us consider its inverse CDAG GR. Recall

that the maximum out-degree of the reverse CDAG G′ corresponds to the maximum

in-degree d− of G. From Theorem 2.23 and from the relationships between markings

and visits in equation (2.4):

min
ϕ∈Φ

f(top)
(G)

max
1≤i≤|I∪V |

∣∣∣Bf (top)

ϕ (i)
∣∣∣ = min

ψ∈Ψ(top)
h (GR)

max
1≤i≤|I∪V |

∣∣∣Bh(top)

ψ (i)
∣∣∣ ≤ √

8d−n

□

This result implies that using the singleton marking rule in order to study the free-

input space complexity of a given CDAG with n vertices according to Theorem 2.4

leads to a lower bound which is at most Ω
(√

d−n
)
. The same result holds for all

singleton-like marking rules, each of which corresponds to the appropriate singleton-

like visit rule previously defined.

34 Chapter 2. Studying the space complexity of CDAGs using the visit method

2.4 Conclusion

Figure 2.5: Paul-Tarjan-Celoni CDAG: in the figure we represent the recursive con-
struction of the PTC(n) CDAG with n inputs. PTC(n) is constructed using two
linear n/2-superconcentrators S(n/2) CDAGs and two copies of PTC(n/2) CDAGS.
The base of the recursive construction is given for PTC(28) = S(28) [48].

In this Chapter we studied the space complexity of computational directed acyclic

graphs using the marking rule (Section 2.2) and the our novel visit rule approach

(Section 2.3). We have furthermore shown that using the main visit (and therefore

marking) rules can not lead to finding lower bounds for the space complexity of

a CDAG higher than Ω
(√

d−n
)
. To the best of our knowledge the only CDAG

proposed in literature that admits higher space complexity was introduced by Paul,

Tarjan and Celoni in [48] and is here shown in Figure 2.5. In particular, said CDAG

has free input space complexity Ω (n/ log n). The construction of the CDAG proposed

in their paper based on a composition of superconcentrator CDAGS. This CDAG is

particularly relevant as its space complexity matched the general upper bound on

space complexity obtained by Hopcroft et al. in [35]. The study of this upper bound

will be the main focus of the next chapter.

It is important to remark that our analysis of singleton and topological visit rules

does not imply that the general visit approach as a whole does not suffice to provide

asymptotically tight bound to the free-input space complexity of a generic CDAG.

Rather, it suggests that for some families of CDAGS, such as the Paul-Tarjan-Celoni

CDAG in [48], a more in depth analysis using some visit rule other than topological

or singleton-like may be necessary.

Chapter 3

Upper bound to the space

complexity of CDAG computations

While in the previous chapter we studied lower bounds on the space requirements

for the computation of a straight line program represented by means of a CDAG, in

this chapter we investigate an upper bound to the space complexity of any CDAG

in the family G(m, d−) of CDAGS with maximum in-degree d− and m edges.

This question was originally studied by Hopcroft, Paul and Valiant in [35]. The

authors showed that any CDAG with n vertices and maximum in-degree d− can

be pebbled using at most d− n
logn

pebbles1. An explicit construction of one such

pebbling strategy is although not provided. In [48] provide give a recursive algo-

rithm “BEST-PEBBLE” for pebbling any directed acyclic graph with n vertices

using c1(d
− log d−)n/ log n pebbles (c1 > 0 is a sufficiently large constant). An im-

proved version of “BEST-PEBBLE”, called “FAST-PEBBLE” was later introduced

by Lengrauer and Tarjan in [40]. This algorithm allows to pebble any directed acyclic

graph using S = c2(d
− log d−)n/ log n in time:

T ≤ S(c3d
−)c

(d−+1)n8
4

In [43] Micheal Loui, presented an alternative explicit construction of a pebbling

strategy which allows to pebble any CDAG using at most d− n
logn

pebbles. His con-

struction is based on the notion of layered partition of a CDAG. While in the paper

the author presents a proof that a layered partition with the desired properties does

indeed exists for any CDAG, no algorithm that actually constructs such layered

partition is provided.

1 Through this thesis, we use the notation “log x” as short for “log2 x”.

35

36 Chapter 3. Upper bound to the space complexity of CDAG computations

3.1 Our contribution

In this chapter we present an algorithm that, for any given CDAG G(I ∪ V,E) ∈
G(m, d−) constructs an explicit schedule for its computation which requires

O(m logm+ d−) space. Our algorithm requires as input just the CDAG G and any

topological ordering of the vertices of G. It proceeds by obtaining a partition of the

vertices of the CDAG which is then used in constructing a compete pebbling strategy

which requires O (m logm+ d−) pebbles.

3.2 Construction of the partition

For the given CDAG G(I ∪ V,E) ∈ G(m, d−), let ϕ = ϕ1, . . . , ϕn, where n = |I ∪ V |,
be any topological ordering of the vertices of I ∪V . ϕ can be obtained with a simple

exploration of G, such as a topological visit of G (described in Section 2.3.1) in

O (n) time. Any topological ordering of the vertices is a permutation of the vertices

in I∪V such that for any prefix-suffix partition of ϕ all the edges connecting vertices

in the prefix to vertices in the suffix are exiting vertices in the prefix and entering

vertices in the suffix (i.e., directed from the left to the right part of the permutation).

Furthermore any such topological ordering corresponds to a complete computation

of the CDAG for which every vertex is computed just once. In the following we

denote as ϕi the i-th vertex in ϕ, while ϕ(v) denotes the position occupied by the

vertex v in the permutation ϕ. Let us consider any possible sub-permutation ϕi→j =

ϕiϕi+1 . . . ϕj−1ϕj of ϕ obtained by selecting all the elements with index greater or

equal to i and smaller or equal to j. ϕi→j is a topological ordering of all the vertices

in ϕi→j.

Here we present the partitioning algorithm Part which divides the input CDAG

G into a family of sub-CDGSs of G which is then used to construct a pebbling

strategy for G which requires at most (c + 2) m
logm

+ d− pebbles, where c ∈ R+ is a

constant value with c > 13. The algorithm requires as input the CDAG G which is

to be partitioned, a topological ordering ϕ of its vertices, and a value c ≥ 13. In the

following, we use Bϕ(i) to denote the number of vertices in the prefix ϕ1 . . . ϕi which

are connected to vertices in the suffix ϕi+1 . . . ϕn.

The algorithm proceeds evaluating whether for all prefix-suffix partitions of the

topological ordering ϕ, the number of vertices of the prefix which have successors in

the suffix is smaller or equal to c m
logm

. If that is the case, then the pebbling strategy

whose steps follow the order of ϕ and for which, at each step only the vertices which

have a successor in the suffix remain pebbled, is a complete pebbling for G which

uses at most c m
logm

+ d− pebbles. The algorithm returns the entire set of vertices of

3.2. Construction of the partition 37

Algorithm 1 Partitioning Algorithm
Input: G(I ∪ V,E), ϕ, c

1: procedure Part(G(I ∪ V,E), ϕ, c)
2: m← |E|
3: n← |I ∪ V |
4: i← 1
5: while i ≤ m and Bϕ(i) ≤ c m

logm
do

6: i← i+ 1

7: if i ≥ m then
8: return (G,ϕ)
9: else
10: V (p) ← ϕ1→i

11: E(p) ← {(u, v) ∈ E|u, v ∈ ϕ1→i}
12: V (s) ← ϕi+1→n

13: E(s) ← {(u, v) ∈ E|u, v ∈ ϕi+1→n}
14: Part(G(p)(V (p), E(p)), ϕ1→i, c);Part(G

(s)(V (s), E(s)), ϕi+1→n, c)

G and the topological ordering ϕ without splitting it further. If instead there is at

least one prefix-suffix partition of ϕ for which Bϕ(i) > c m
logm

then the computation

corresponding to ϕ requires more than c m
logm

memory space. The initial CDAG G is

then divided in two parts by splitting the vertices of G in two sets: V (p) corresponding

to the vertices in the prefix ϕ1 . . . ϕi, and V (s) corresponding to the vertices in the

suffix ϕi+1 . . . ϕn. We then select the subset of edges Epref ⊆ E (resp., Esuff ⊆ E)

whose endpoints are bot vertices in the prefix ϕ1 . . . ϕi (resp., the suffix ϕi+1 . . . ϕn).

The partitioning algorithm is then invoked recursively for the two generated sub-

CDAGs G(p)(V (p), E(p)) and G(s)(V (s), E(s)) using ϕ1 . . . ϕi (resp., ϕi+1 . . . ϕn) as a

topological ordering of the vertices in V (p) (resp., V (s)).

The vertices of the starting CDAG are partitioned into the subsets V (p) and V (s)

such that V = V (p) ∪ V (s) and V (p) ∩ V (s) = ∅. In the division of the set of edges

E in the sub-sets E(p) and E(s), the at least c m
logm

+ 1 edges which are exiting from

vertices in Bϕ(i) in the prefix and entering vertices in the suffix are removed such

that |E(p)|+ |E(s)| ≤ |E|−⌈c m
logm

⌉. For a fixed constant c, Part splits a CDAG with

m edges in two parts only if m > 2c. If m ≤ 2c we would in fact have c m
logm

≥ m,

and the condition for the split would therefore not be verified.

Les S =
(
G(1)(V (1), E(1)), ϕ(1)

)
;
(
G(2)(V (2), E(2)), ϕ(2)

)
; . . . ;

(
G(j)(V (j), E(j)), ϕ(j)

)
be sequence of sub-CDAGs of G obtained as output of Part. The following proper-

ties hold:

Lemma 3.1. The family of subsets {V (1), . . . , V (j)} is topological partition of G.

Proof When Part splits the set of vertices of a CDAG into two sub-sets it does

so by partitioning realizing a prefix-suffix partition of a topological ordering of the

CDAG itself. By definition (1.4) each such partition is a topological partition. The

lemma follows. □

38 Chapter 3. Upper bound to the space complexity of CDAG computations

Lemma 3.2. Let ℓ(m) be the maximum number of sub-CDAGs of any given m-edge

CDAG G returned as output by Part(G, ϕ, c). If c ≥ 7, we have:

ℓ(m) = 1, for m ≤ 2c (3.1)

ℓ(m) ≤ m

(logm)2
, for m > 2c (3.2)

Proof The proof is by induction on the value of m.

Base: the base case is for m ≤ 2c. In this case we have c ≥ logm and therefore,

according to the functioning of Part, we have that no split can occur and the entire

CDAG is returned as output.

Inductive step: in our inductive hypothesis we assume that the statement is

verified for m − 1, we shall now verify that it holds for m > 2c as well. Note that

the function x/(log x)2 is monotonically increasing for values of x ≥ e2. Since we are

considering the case for which m > 2c, for any c ≥ 7 we have m > 128 > e2. The

function x/(log x)2 is therefore monotonically increasing with m > 2c

For m > 2c, Part may split the initial CDAG in two sub-CDAGs G(p)(V (p), E(p))

and G(s)(V (s), E(s)) while removing at least ⌈cm/ logm⌉ edges.

|E(p)|+ |E(s)| ≤ m− ⌈c m

logm
⌉

As in this analysis we aim for an upper bound to the number of sub-CDAGs gen-

erated by Part, in the following we assume without loss of generality that the

minimum possible number of edges ⌈cm/ logm⌉ are removed by Part and therefore

that |E(p)|+ |E(s)| = m− ⌈c m
logm

⌉. All following considerations are verified as well if

more edges are removed. The split is in general not balanced:

|E(p)| = m− ⌈c m

logm
⌉ − α

|E(s)| = α

for α ∈ {1, 2, . . . ,m− ⌈c m
logm

⌉}. Part is then invoked for the two sub-CDAGs G(p)

and G(s) separately. We thus have:

ℓ(m) ≤ max
α∈{0,1,...,m−⌈c m

logm
⌉}
ℓ

((
m− ⌈c m

logm
⌉
)
− α

)
+ ℓ(α) (3.3)

Let us first consider the case for 2c < m ≤ 2c+1. If the Part splits G into two

3.2. Construction of the partition 39

sub-CDAGs G(p) and G(s) we have:

E(p)|+ |E(s)| ≤ m− ⌈c m

logm
⌉ ≤ m

(
1− c

logm

)
≤ m

(
1− c

c+ 1

)
≤ m

c+ 1

For c ≥ 7 this implies:

E(p)|+ |E(s)| ≤ 2c

This fact ensures that Part will not split any further either G(p) nor G(s). By

inductive hypothesis we have:

ℓ(m) = 2

For c ≥ 7 we have:

m

(logm)2
≥ 2c

(c+ 1)2
≥ 128

64
= ℓ(m) = 2

This conclude the analysis for 2c < m ≤ 2c+1.

We now consider the case for m > 2c+1. In our study of equation (3.3) we

first consider the cases for which the split is unbalanced with α ∈ {0, 1, . . . , 2c,m−
⌈c m

logm
⌉ − 2c, . . . ,m − ⌈c m

logm
⌉ − 1,m − ⌈c m

logm
⌉}. Because of the relation between

the terms in equation (3.3), the case for α = i is equivalent to the case for α =

m − ⌈c m
logm

⌉ − i, for i ∈ {0, 1, . . . , 2c}. For any of these cases, we have that one of

the sub-CDAGs generated by Part from G has size lower or equal than 2c and is

therefore guaranteed not to be split any further. From (3.3) we thus have:

ℓ(m) ≤ max
α∈{0,1,...,2c}

ℓ

((
m− ⌈c m

logm
⌉
)
− α

)
+ 1

If m− ⌈c m
logm

⌉ − α ≤ 2c then both sub-CDAGs are not divided by the recursive

invocations of Part. We therefore have ℓ(m) = 2 and the result seen for 2c < m ≤
2c+1 holds for any c ≥ 7.

If instead, m− ⌈c m
logm

⌉ − α > 2c, by inductive hypothesis we have:

ℓ(m) ≤
m− ⌈c m

logm
⌉(

log
(
m− ⌈c m

logm
⌉
))2 + 1

Since the function x/(log x)2 is monotonically increasing for x ≥ 2c we have:

m− ⌈c m
logm

⌉ − α(
log
(
m− ⌈c m

logm
⌉ − α

))2 ≤
m− c m

logm(
log
(
m− c m

logm

))2

40 Chapter 3. Upper bound to the space complexity of CDAG computations

To verify that condition (3.2) is verified, it is thus sufficient to show that:

m

(logm)2
≥

m− c m
logm(

log
(
m− c m

logm

))2 + 1

holds for any value of m > 2c+1. Through some algebraic manipulations we have:

m

(logm)2
≥

m− c m
logm(

log
(
m− c m

logm

))2 + 1

m

(logm)2
≥ m

(logm)2

1− c
logm(

1 +
log(1− c

logm)
logm

)2 + 1

m

(logm)2

1−
1− c

logm(
1 +

log(1− c
logm)

logm

)2

 ≥ 1

m

(logm)2

1− (logm)2

(logm)2

1− c
logm(

1 +
log(1− c

logm)
logm

)2

 ≥ 1

m

(logm)2

1− (logm)2 − c logm(
log
(
m− c m

logm

))2
 ≥ 1

m

(logm)2


(
log
(
m− c m

logm

))2
− (logm)2 + c logm(

log
(
m− c m

logm

))2
 ≥ 1

m

(logm)2


(
log
(
1− c

logm

))2
+ 2 logm log

(
1− c

logm

)
+ c logm(

log
(
m− c m

logm

))2
 ≥ 1

m

(logm)2


(
log
(
1− c

logm

))2
+ logm

(
c+ 2 log

(
1− c

logm

))
(
log
(
m− c m

logm

))2
 ≥ 1

3.2. Construction of the partition 41

Since
(
log
(
1− c

logm

))2
≥ 0 and m ≥ 2c+1 we have:

m

(logm)2


(
log
(
1− c

logm

))2
+ logm

(
c+ 2 log

(
1− c

logm

))
(
log
(
m− c m

logm

))2


≥ m

(logm)2

(
logm (c− 2 log (c+ 1))

(logm)2

)
m

(logm)2

(
logm (c− 2 log (c+ 1))

(logm)2

)
=

m

(logm)3
(c− 2 log (c+ 1))

For m > 2c+1 with c ≥ 7 we have m
(logm)3

(c− 2 log (c+ 1)) > 1 and the condition

(3.2) is therefore verified.

Finally, we consider the case for m > 2c+1, for which the split is executed accord-

ing to α ∈ {2c, 2c + 1, . . . ,m− ⌈c m
logm

⌉ − 2c − 1,m− ⌈c m
logm

⌉ − 2c}.
In order to simplify the analysis of (3.2) we analyze the function:

f(α) =
m− c m

logm
− α(

log
(
m− c m

logm
− α

))2 +
α

(logα)2

for values of α ∈ [2c,m−⌈c m
logm

⌉−2c]. Note that since x/(log x)2 is monotonically

increasing for x ≥ 2c, and that {2c, 2c+1, . . . ,m−⌈c m
logm

⌉−2c−1,m−⌈c m
logm

⌉−2c} ⊆
[2c,m− ⌈c m

logm
⌉]− 2c, we have:

max
α∈[2c,m−⌈c m

logm
⌉−2c]

f(α) ≥ max
α∈{2c,...,m−⌈c m

logm
⌉}−2c

m− ⌈c m
logm

⌉ − α(
log
(
m− ⌈c m

logm
⌉ − α

))2 +
α

(logα)2

ℓ(m− ⌈c m

logm
⌉ − α) + ℓ(α)

ℓ(m)

(3.4)

In order to find the value of α which maximizes the value of f(α) we shall evaluate

its derivative in α. I

d

dα
f(α) = (ln(2))2

− ln
(
m− c m

logm
− α

)
+ 2(

ln
(
m− c m

logm
− α

))3 +
ln (α)− 2

(lnα)3


The derivative has value zero for α =

(
m− c m

logm

)
−α = 1

2

(
m− c m

logm

)
, by studying

42 Chapter 3. Upper bound to the space complexity of CDAG computations

the sign of the derivative we can verify that f(a) is indeed maximized for α =
1
2

(
m− c m

logm

)
. Note that the boundary values 2c and m − ⌈c m

logm
⌉ − 2c could also

maximize f(α) even though the derivative is not zero. We therefore have that ∀α ∈
[2c,m− ⌈c m

logm
⌉]− 2c]:

f(α) ≤ max{2
m−c m

logm

2(
log
(
m−c m

logm

2

))2 ,
((
m− c m

logm

)
− 2c

)
(
log
((
m− c m

logm

)
− 2c

))2 +
2c

(log 2c)2
}

Since the limit values 2c and m− ⌈c m
logm

⌉ − 2c have already been studied for the

case α ∈ {0, 1, . . . , 2c,m− ⌈c m
logm

⌉ − 2c, . . . ,m− ⌈c m
logm

⌉ − 1,m− ⌈c m
logm

⌉}, we shall

focus on the case α 1
2

(
m− c m

logm

)
.

Through some algebraic manipulations we have:

2

m−c m
logm

2(
log
(
m−c m

logm

2

))2 =
m
(
1− c 1

logm

)
(
logm+ log

(
1− c 1

logm

)
− 1
)2 =

m

(logm)2

(
1− c 1

logm

)
(
1 +

log(1−c 1
logm)−1

logm

)2

To verify that condition (3.2) is verified, it is thus sufficient to show that:

m

(logm)2
≥ m

(logm)2

(
1− c 1

logm

)
(
1 +

log(1−c 1
logm)−1

logm

)2

Which in turn holds if:

1− c
1

logm
≤

1 +
log
(
1− c 1

logm

)
− 1

logm

2

(logm)2
(
1− c

1

logm

)
≤
(
logm+ log

(
1− c

1

logm

)
− 1

)2

logm

(
2− 2 log

(
1− c

1

logm

)
− c

)
≤ log

(
1− c

1

logm

)(
log

(
1− c

1

logm

)
− 2

)
+ 1

(3.5)

As log
(
1− c 1

logm

)(
log
(
1− c 1

logm

)
− 2
)
≥ 0, we have that (3.5) is verified if:

2− 2 log

(
1− c

1

logm

)
− c ≤ 1

1− 2 log (c+ 1)− c ≤ 0

3.3. Construction of the computation 43

which holds for c ≥ 7. The lemma follows. □

3.3 Construction of the computation

Let (G(1), ϕ(1)); . . . ; (G(j), ϕ(j)) be the family of sub-CDAGs of G, each paired with a

topological ordering of their respective vertices, obtained as output of the partitioning

algorithm Part when a topological ordering of its vertices ϕ and a constant value

c ≥ 7 are provided as input. We shall now show how to use these subsets in order to

construct a complete pebbling strategy C for G. We shall then show that C requires

at most O
(

m
logm

)
+ d pebbles where |E| = m.

3.3.1 The pebbling subroutine

We describe C in terms of its corresponding pebbling strategy (see Section 2.1).

The main building block of the computation is the pebbling procedure Pebb whose

pseudocode is reported in Algorithm 2.

Algorithm 2 Pebbling subroutine

Input: a target vertex v ∈ V (k),G(k), ϕ(k) the topological ordering of the vertices in V (j).
1: procedure Pebb(v,G(k), ϕ(k))
2: i← 1
3: n← ϕ(v)
4: while i ≤ n do
5: if pa(v) ⊈ V (k) then

6: for all u ∈ pa(v) \ V (k) do
7: Let V (u) bet the subset s.t. u ∈ V (u)

8: Pebb(u,G(u), ϕ(u))

9: Pebble ϕi
10: Remove any pebble placed on vertices in pa(v) \ V (k)

11: Remove any pebble placed on vertices of ϕ1→i which do not have a successor in the suffix ϕi+1→n

12: Remove all pebbles placed by the execution of Pebb on vertices in V (k), except for v

The Pebb procedure receives as input values a target vertex to be pebbled v, the

sub-CDAG G(k) obtained using the partitioning algorithm Part for which v ∈ V (k)

with 1 ≤ k ≤ j, and the corresponding topological ordering ϕ(j) for G(k). Pebb

proceeds by a series of pebbling steps which are compliant to the rules of the pebbling

game until the target vertex v is pebbled. The pebbling strategy followed by Pebb

proceeds by pebbling vertices following the steps of ϕ(k). In particular, once the

steps corresponding to a prefix of ϕ(k) have been executed, the only vertices carrying a

pebble are those which have at least successor in the corresponding suffix. Proceeding

according to this scheme ensures that whenever a vertex in V (k) is about to be

pebbled, all its predecessors which are in V (k) are carrying pebbles as well. Let

44 Chapter 3. Upper bound to the space complexity of CDAG computations

v∗V (k) be a the vertex which is to be pebbled next according to ϕ(k), if at least one

of its predecessor is not in V (k) (and therefore, not pebbled) we proceed as follows:

1. we interrupt, the execution of ϕ(k), none of the pebbles residing on vertices of

V (k) are removed;

2. we consider one such predecessor u ∈ pa(v∗s): we invoke the subroutine Pebb

using u as the target vertex. Notice that since the partition of G obtained

using Part is topological, u will belong to a subset V (l) with l < j. When this

invocation of Pebb terminates, the vertex u is pebbled;

3. the steps in 2. are repeated until all the predecessors of v∗ are carrying a

pebble:

4. v∗ is pebbled;

5. pebbles are removed from all predecessors of v∗ not in V (k);

6. we reprise the execution of ϕ(k).

We say that an execution of Pebb is active if it has not terminated yet. We say

that two Pebb executions are concurrently active if both of them are active and if

one of the two has been triggered by the other either directly, or as a result of a chain

of Pebb invocations. This definition can be straightforwardly extended to multiple

concurrent executions of Pebb.

Lemma 3.3. Let G(1), . . . , G(j) be the family of sub-CDAGs of G obtained as output

of the partitioning algorithm Part when a topological ordering of its vertices ϕ and

a constant value c ≥ 7 are provided as input. At any time during the execution of

the Pebb there may be at most j ≤ ℓ(m) concurrently active executions of Pebb,

where m is the number of edges in G.

Proof As pointed out in 2. an execution of Pebb which has as a target a vertex in

the k-th sub-CDAG of G, for 1 ≤ k ≤ j, may trigger another execution of Pebb

whose target vertex will belong to the l-th sub-CDAG of G with 1 ≤ l < k. From

Lemma 3.2 we have that for any CDAG with at most m edges, the number of sub-

CDAGs returned as output by Part is upper bounded by l(m). The lemma follows.

□

3.4. Analysis of the space requirements of C 45

3.3.2 Challenging vertices

Recall that according to the (R2) rule of the pebble game described in Section 2.1,

in order to put a pebble on a vertex of V it is necessary for all its predecessors to be

carrying a pebble as well. This implies that a CDAG with maximum in-degree d−

requires at least d− pebbles in order to be computed. We say that a vertex v ∈ V is

challenging if and only if its in-degree is higher than logm. The set of challenging

vertices C(G) ⊆ V is defined as such:

C(G) = {v ∈ V |d−(v) ≥ logm}

Clearly as the total number of edges in G is |E| = m, we have |C(G)| ≤ m/ logm.

Suppose the vertices in C(G) to be ordered according to their position in ϕ, we denote

as C(G)i the i-th vertex in C(G) according to such ordering. Note that such ordering

correspond to a topological ordering of the challenging vertices of G. Once the value

corresponding to a challenging vertex is computed it is never removed from memory

until the very end of the computation. We therefore reserve a certain number of

pebbles (i.e., memory space) for challenging vertices, in order for each of them to

be always available in memory for the following steps of the computation once they

have been evaluated.

3.3.3 Composition of C

In our strategy for the construction of the computation C of G(I ∪ V,E) we initially

pebble each of the challenging vertices of G using the pebbling subroutine Pebb in

conjunction with the family of sub-CDAGs G(1); . . . ;G(j) of G obtained using the

partitioning algorithm Part. In particular, we pebble the vertices in C(G) one at a

time proceeding according to their order. Once a challenging vertex is pebbled, said

vertex remains pebbled until the end of the computation. After all the challenging

vertices have been pebbled we proceed by pebbling the remaining vertices of the

CDAG which may have not been pebbled yet. We start by pebbling the vertices

in V (j) using the pebbling subroutine and we then proceed backwards to vertices in

V (j−1) until all vertices in V (1) have been pebbled. A sketch for the construction of

C is provided in Algorithm 3.

3.4 Analysis of the space requirements of C

While the computation C obtained using the construction in Algorithm 3 is generally

not optimal in terms of the number of pebbling steps, we will show that it allows to

46 Chapter 3. Upper bound to the space complexity of CDAG computations

Algorithm 3 Construction of C
Input: The CDAG G(I ∪ V) to be pebbled, ϕ a topological ordering of the vertices of G, a constant c ≥ 7.

1: (G(1), ϕi); . . . ; (G(j), ϕi)← Part(G(I ∪ V,E), ϕ, c)
2: k ← number of sub-CDAGs generated by Part
3: C(G)← challenging vertices of G ordered according to their position in ϕ
4: i← 1
5: while i ≤ |C(G)| do ▷ challenging vertices are pebbled one at a time
6: v∗ ← the i-th vertex of C(G)
7: G(∗)(V (∗), E(∗))← the sub-CDAG for which v∗ ∈ V (∗)

8: Pebb(v∗, G(∗), ϕ(∗))
9: i← i+ 1

10: while k > 0 do ▷ pebbling of the remaining vertices of G
11: v ← the last vertex of ϕ(k)

12: Pebb(v,G(k), ϕ(k))
13: k ← k − 1

pebble the entire CDAG G(I ∪ V,E) using O
(

m
logm

+ d−
)
pebbles.

Let (G(1), ϕ(1)); . . . ; (G(j), ϕ(j)) be the family of sub-CDAGs of G (paired with the

respective topological ordering of their vertices) obtained as output of the partition-

ing algorithm Part when a topological ordering of its vertices ϕ and a constant value

c ≥ 7 are provided as input.

Lemma 3.4. For any 1 ≤ k ≤ j, let C(k) be the pebbling strategy which follows the

steps in ϕ(k) and for which, at each step, the only vertices carrying a pebble are those

which have at least a successor which has yet to be pebbled. C(k) is a valid pebbling

strategy for the CDAG G(k)(V (k), E(k)) and requires at most min{c |E
(k)|

log |E(k)| , |E
(k)|}

pebbles.

Proof From the properties of Part, we have that for any prefix-suffix partition of

ϕ(k) the number of vertices in the prefix which have at least a successor in the suffix

is at most min{c |E
(k)|

log |E(k)| , |E
(k)|}. As stated in Section 2.1, each topological ordering

of the vertices of a CDAG correspond to a complete nr-pebbling strategy for the

CDAG itself. Once the pebbling steps corresponding to any prefix of ϕ(k) have been

executed, any pebble placed on a vertex of the prefix which has no successor in the

prefix is useless (as no successor is yet to be pebbled) and can be therefore safely

removed. Each vertex of G(k) is thus pebble once, and it remains pebbled until all

its successors have been pebbled as well. □

Lemma 3.5. For c ≥ 7 we have:

min{m, c m

logm
} ≥

j∑
k=1

min{c |E(k)|
log |E(k)|

, |E(k)|} (3.6)

for some value c ≥ 2, where m = |E|.

3.4. Analysis of the space requirements of C 47

Proof Let us analyze the partitioning algorithm Part. We can think of the cri-

terion used in dividing the input CDAG as if Part was managing a budget of

min{⌊c m
logm

⌋,m} pebbles. Part evaluates whether its budget is sufficient to peb-

ble the CDAG G(I ∪ V,E) using the schedule which follows the steps in ϕ and for

which, at each step, only the vertices for whom not all the successors have been

pebbled remain pebbled. If this is the case Part stops returning the entire CDAG

G and the lemma is trivially verified. If that is not the case then Part divides the

CDAGs in two sub-CDAGs G(p)(V (p), E(p)) and G(s)(V (s), E(s)) according to the rules

discussed in Section 3.2, with |E(p)| + |E(s)| ≤ m − ⌈c m
logm

⌉. To each of these sub-

CDAGs it is then assigned a budget depending on the respective number of edges:

respectively min{⌊c|E(p)|/ log |E(p)|⌋, |E(p)|} and min{⌊c|E(s)|/ log |E(s)|⌋, |E(s)|}. In
order to verify that the lemma holds, we need to verify that for any CDAG G with

m edges the original budget allocated is greater or equal to the cumulative budget

allocated for G(p) and G(s):

min{m, c m

logm
} ≥ min{|E(p)|, ⌊c |E(p)|

log |E(p)|
⌋}+min{|E(s)|, ⌊c |E(s)|

log |E(s)|
⌋} (3.7)

The proof is by induction on the value of m:

Base: the base case is for m ≤ 2c. In this case the budget min{c m
logm

,m} = m is

sufficient for pebbling the original CDAG. Part returns the entire CDAG G which

can clearly be pebbled with m pebbles.

Inductive step: in our inductive hypothesis we assume that the statement is

verified for m − 1, we shall now verify that it holds for m > 2c as well. If the

budget min{m, ⌊c m
logm

⌋}, is deemed sufficient for the pebbling of G the lemma is

verified as Part returns only the entire G. If this is not the case, Part splits the

initial CDAG in two sub-CDAGs G(p)(V (p), E(p)) and G(s)(V (s), E(s)) while removing

at least ⌈cm/ logm⌉ edges.

|E(p)|+ |E(s)| ≤ m− ⌈c m

logm
⌉

Since the cumulative budget is a nondecreasing function of |E(p)| + |E(s)|, in the

following, we assume without loss of generality that the minimum possible number

of edges ⌈cm/ logm⌉ are removed by Part and therefore that |E(p)| + |E(s)| =

m−⌈c m
logm

⌉. All, considerations are verified as well if more edges are removed in the

48 Chapter 3. Upper bound to the space complexity of CDAG computations

split. Said split in general is not balanced:

|E(p)| = m− ⌈c m

logm
⌉ − α

|E(s)| = α

for α ∈ {1, 2, . . . ,m − ⌈c m
logm

⌉}. Part is then invoked for the two sub-CDAGs

G(p) and G(s) separately. By hypothesis, the cumulative budget assigned to the

sub-CDAGs generated by Part is therefore given by:

min{m− ⌈c m

logm
⌉ − α, c

m− ⌈c m
logm

⌉ − α

log
(
m− ⌈c m

logm
⌉ − α

)}+min{α, c α

logα
}. (3.8)

We shall consider different cases according to the value of m:

• For 2c < m ≤ 22c, from the inductive hypothesis we have that the cumulative

budget assigned to the sub-CDAGs generated by Part is upper bounded by:

min{|E(p)|, c |E(p)|
log |E(p)|

}+min{|E(s)|, c |E(s)|
log |E(s)|

} ≤ |E(p)|+ |E(s)| < m−c m

logm

We therefore have that the condition in equation (3.6) is surely verified if the

cumulative budget assigned to the sub-CDAGs generated by Part is less or

equal than the budget originally assigned for the entire CDAG c m
logm

:

c
m

logm
≥ m− c

m

logm

2c
m

logm
≥ m

Since for 2c < m ≤ 22c we have logm ≤ 2c, the condition is clearly verified.

• Let us now assume m > 22c, we first consider the cases for which the split is

unbalanced with α ∈ {0, 1, 2,m− ⌈c m
logm

⌉ − 2,m− ⌈c m
logm

⌉ − 1,m− ⌈c m
logm

⌉}.
Because of the relation between |E(p)| and |E(s)|, the case for α = i is equivalent

to the case for α = m− ⌈c m
logm

⌉ − i, for i ∈ {0, 1, 2}. For any of these cases we

have that the cumulative budget assigned to G(p) and G(s) is upper bounded

by:

min{m− ⌈c m

logm
⌉ − α, c

m− ⌈c m
logm

⌉ − α

log
(
m− ⌈c m

logm
⌉ − α

)}+ α ≤ c
m− c m

logm

log
(
m− c m

logm

) + 2

3.4. Analysis of the space requirements of C 49

To verify that condition (3.7) is verified, it is thus sufficient to show that:

c
m

logm
≥ c

m− c m
logm

log
(
m− c m

logm

) + 2

c
m

logm
≥ c

m

logm

1− c
logm

1 +
log(1− c

logm)
logm

+ 2 (3.9)

Through some algebraic manipulations, we have:

c
m

logm

1−
1− c

logm

1 +
log(1− c

logm)
logm

 ≥ 2

c
m

logm

1− logm

logm

1− c
logm

1 +
log(1− c

logm)
logm

 ≥ 2

c
m

logm

1− logm− c

logm+ log
(
1− c

logm

)
 ≥ 2

c
m

logm

 c+ log
(
1− c

logm

)
logm+ log

(
1− c

logm

)
 ≥ 2

Since m > 22c we have:

c
m

logm

(
c− 1

logm

)
≥ c

m

logm

 c+ log
(
1− c

logm

)
logm+ log

(
1− c

logm

)


For any c ≥ 7 we have c m
logm

(
c−1
logm

)
≥ 2 and the constraint in (3.9) is therefore

verified.

Finally, we consider the case for m > 22c, for which the split is executed

according to α ∈ {2, 3, . . . ,m− ⌈c m
logm

⌉ − 2− 1,m− ⌈c m
logm

⌉ − 2}. In order to

simplify the analysis we study the value of (3.8) we analyze the function:

f(α) =
m− c m

logm
− α

log
(
m− c m

logm
− α

) +
α

logα

for values of α ∈ [2,m−⌈c m
logm

⌉− 2]. Note that since x/ log x is monotonically

increasing for x ≥ 2, and that {2, . . . ,m−⌈c m
logm

⌉− 2} ⊆ [2,m−⌈c m
logm

⌉]− 2,

50 Chapter 3. Upper bound to the space complexity of CDAG computations

we have:

max
α∈[2,m−⌈c m

logm
⌉−2]

f(α) ≥ max
α∈{2,...,m−⌈c m

logm
⌉}−2

m− ⌈c m
logm

⌉ − α(
log
(
m− ⌈c m

logm
⌉ − α

))2 +
α

(logα)2

(3.10)

In order to find the value of α which maximizes the value of f(α) we shall

evaluate its derivative in α. I

d

dα
f(α) = ln(2)

− ln
(
m− c m

logm
− α

)
+ 1(

ln
(
m− c m

logm
− α

))2 +
ln (α)− 1

(lnα)2


The derivative has value zero for α =

(
m− c m

logm

)
− α = 1

2

(
m− c m

logm

)
, by

studying the sign of the derivative we can verify that f(a) is indeed maximized

for α = 1
2

(
m− c m

logm

)
. Note that the boundary values 2 and m− ⌈c m

logm
⌉ − 2

could also maximize f(α) even though the derivative is not zero. We therefore

have that ∀α ∈ [2,m− ⌈c m
logm

⌉]− 2]:

f(α) ≤ max{2
m−c m

logm

2(
log
(
m−c m

logm

2

))2 ,
((
m− c m

logm

)
− 2c

)
(
log
((
m− c m

logm

)
− 2c

))2 +
2c

(log 2c)2
}

Since the boundary values α = 2 and α = m − ⌈c m
logm

⌉ − 2 have already

been studied for the case α ∈ {0, 1, 2,m− ⌈c m
logm

⌉ − 2, ,m− ⌈c m
logm

⌉ − 1,m−
⌈c m

logm
⌉}, we shall focus on the case α 1

2

(
m− c m

logm

)
. Through some algebraic

manipulations, we have:

2

m−c m
logm

2

log
(
m−c m

logm

2

) =
m
(
1− c 1

logm

)
logm+ log

(
1− c 1

logm

)
− 1

=
m

logm

(
1− c 1

logm

)
(
1 +

log(1−c 1
logm)−1

logm

)
To verify that condition (3.8) is verified, it is thus sufficient to show that:

m

logm
≥ m

logm

(
1− c 1

logm

)
(
1 +

log(1−c 1
logm)−1

logm

)

3.4. Analysis of the space requirements of C 51

Through some algebraic manipulations, we have:

m

logm
≥

m− c m
logm

log
(
m− c m

logm

)
− 1

m

logm
≥

m
(
1− c 1

logm

)
log
(
m
(
1− c 1

logm

))
− 1

m

logm
≥ m

logm

1− c 1
logm

1 +
log(1−c 1

logm)
logm

− 1
logm

1 ≥
1− c 1

logm

1 +
log(1−c 1

logm)
logm

− 1
logm

Which is verified if:

1 +
log
(
1− c 1

logm

)
logm

− 1

logm
≥ 1− c

1

logm

log

(
1− c

1

logm

)
≥ 1− c

Since logm > 2c we have:

log

(
1− c

1

logm

)
≥ log

(
1

2

)
≥ 1− c

which is verified for any c ≥ 7.

□

Using these two lemmas we can provide the proof for the main result of this

chapter.

Theorem 3.6 (General upper bound to pebbling cost for CDAGs). For any given

CDAG G(I ∪ V,E) ∈ G(m, d−), there exists a complete pebble strategy for G which

requires at most min{n, (c+ 1) m
logm

+ d−} for c ≥ 7, where |I ∪ V | = n.

Proof If n ≤ c m
logm

+ d−, then any pebbling strategy that follows the steps corre-

sponding to a topological ordering of the vertices is a complete pebbling for G and

requires at most n pebbles.

For n ≥ c m
logm

+d−, let us consider the pebbling strategy C whose construction has

been described in Section 3.3.3. C is a complete pebbling of G. As d− is the maximum

52 Chapter 3. Upper bound to the space complexity of CDAG computations

in-degree of G, this implies that there is at least a vertex in G with d− predecessor. It

is therefore necessary to use at least d− pebbles in C. According to the construction

of C in Section 3.3.3, the challenging vertex of G are pebbled one at a time according

to their topological ordering with respect to G. Furthermore, once a challenging

vertex is pebbled, it remains pebbled until the end of C. This fact ensures that at

each time during the execution of C there it will never therefore be necessary to

concurrently accumulate the predecessors of two challenging vertices with in-degrees

higher than logm. Clearly, d− pebbles will be necessary to accumulate the input of

any challenging vertex.

Consider now the family of sub-CDAGs of G (G(1), ϕ(1)); . . . ; (G(j), ϕ(j)) obtained

as output of the execution of Part(G, ϕ, c). From Lemma 3.4 we have that each

of the G(∗) sub-CDAGs can be pebbled following the steps in C(∗) using at most

min{c|E(∗)|/ log |E(∗)|, |E(∗)|}. C is obtained by combining the C(∗) as described in

Section 3.3.3.

As discussed in Section3.3.1, at any time during the execution of one of the Pebb

subroutine there can be at most j concurrently active executions of Pebb. Each of

these concurrent executions will operate on a different sub-CDAG G(∗) according to

the steps in C(∗) (as described in detail in the description of the pebbling subrou-

tine Pebb).The maximum number of pebble being concurrently used by the sub-

computations C(∗) will therefore be at most
i∑

j=1

min{c|E(j)|/ log |E(j)|, |E(j)|}. From

Lemma 3.5, for c ≥ 7 we have that

c
m

logm
≥

j∑
k=1

min{|E(k)|, c |E(k)|
log |E(k)|

}

According to the construction of C, for each of the at most j concurrently active

invocations of Pebb it is necessary to accumulate pebbles on all the predecessors

of each of the triggering vertices that have triggered one of the concurrently active

executions of Pebb. As previously discussed, our strategy for the challenging vertices

ensures that at most one of these triggering vertices is challenging while all the others

will have at most logm predecessors. From Lemma 3.2, for c ≥ 7 we have j ≤ m
(logm)2

.

The maximum number of pebbles necessary for pebbling the predecessors of the

triggering vertices will therefore be upper bounded by:

logm
m

(logm)2
+ d− =

m

logm
+ d−

By combining these observations, we can therefore conclude that the maximum

3.5. Conclusion 53

number of pebbles required by C is upper bounded by:

c
m

logm
+

m

logm
+ d− = (c+ 1)

m

logm
+ d−.

The Theorem follows. □

3.5 Conclusion

In this chapter we described an explicit construction of a pebbling strategy which

allows to pebble any CDAG G(I∪V,E) ∈ G(m, d−) using min{n,O (m/ logm+ d−)}
pebbles, where n = |I ∪ V | and m = |E|. In order to construct said strategy, only

a topological ordering of the vertices of G is required. This result implies an upper

bound on the pebbling cost of any CDAG in the family G(m, d−). In our result,

the maximum in-degree d− of the CDAG appears as an additive term to the main

m/ logm component of the upper bound rather than a multiplicative term as in

results previously presented in literature [35, 43]. As n ≤ m ≤ d−|I ∪ V | = d−n, if

for a given CDAG we have m = Θ(dn) our bound corresponds to the d− n
logn

upper

bound in [43, 35]. Note however that said bounds quickly go to O (n) even if a

single node has in-degree greater or equal to log n, therefore losing significance. Our

bound, may still retain significance for some CDAGs for which m = o(d−n), even if

a limited number of edges has high (i.e., greater than log n) in-degree. For instance,

for any CDAGs for which m = Θn and which constant number of vertices with high

degree our approach still allows to obtain a significant bound.

54 Chapter 3. Upper bound to the space complexity of CDAG computations

Chapter 4

On the I/O complexity of

Strassen’s matrix multiplication

algorithm

When considering the complexity of algorithms two kinds of costs are therefore to be

considered: the arithmetic cost which depends on the number of required computa-

tional steps, and the communication cost which depends on the required movement

of data within the execution of an algorithm, either between levels of a memory

hierarchy (in the sequential case), or over a network connecting processors (in the

parallel case).

We can generally intend communication as the movement of data within the

execution of an algorithm, either between levels of a memory hierarchy (in the se-

quential case), or over a network connecting processors (in the parallel case). In both

of this applicative scenarios, the communication component of an algorithm often

costs significantly more time than its arithmetic. Furthermore, while Moore’s Law

predicts an exponential speedup of hardware in general, the annual improvement

rate of time per-arithmetic-operation has, over the years, consistently exceeded that

of time-per-word read/write. The fraction of running time spent on communication

is thus expected to increase further becoming more and more of a bottleneck for the

performance of both multi-level memory and parallel computing architectures. It is

therefore of interest to investigate the tradeoff between the memory space being used

and the data communication needed for the algorithm execution (the input-output

(I/O) complexity), and to design and implement algorithms which optimize the use

of memory in order to minimize communication and attaining these lower bounds

on the other hand. In particular, given the observation that the communication cost

rather than the arithmetic cost constitutes the true bottleneck in the performance

55

56 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

of algorithms, the question on whether computing more than one time intermediate

values can allow to achieve a reduction of the minimum number of required I/O

operations is of great interest.

Given its critical importance, this field of study has been largely investigated in

literature. In the following sections, we provide a rigorous definition for our commu-

nication model which is based on the original work by Hong and Kung [37]. We then

focus on the squared matrix multiplication problem and in particular on Strassen’s

matrix multiplication algorithm, the analysis of which constitutes the main part of

this chapter. We begin by studying the I/O complexity of Strassen’s algorithm when

executed sequentially on a machine equipped with a two level memory hierarchy.

We provide an alternative technique to those in [4] and [62] to obtain a tight lower

bound to the I/O complexity of Strassen’s matrix multiplication algorithm for com-

putations in which no intermediate result is ever recomputed. We then obtain the

first asymptotically tight lower bound to the I/O complexity of Strassen’s algorithm

for general computations i.e., computations without any restriction on the recompu-

tation of intermediate values. Our technique is based on an application of Gigoriev’s

information flow concept [33].

We also study the I/O complexity of Strassen’s algorithm when executed in par-

allel by P processors each equipped with a finite memory. We obtain a novel tight

lower bound which holds for any computation (no restriction on recomputation),

without any assumption regarding the distribution of the input data among the P

processors at the beginning of the computation.

4.1 The square matrix multiplication function

The problem of interest for our analysis in the following sections is the square matrix

multiplication which is introduced in this section. In the first part we present a

rigorous definition for the problem and we discuss properties of relevance for our

analysis. We then provide a brief survey of the algorithms which have been proposed

in literature for its computation.

4.1.1 Problem definition

A matrix of size m × n over a set R is a rectangular array of elements drawn from

R consisting of m of rows and n of columns. Rows are indexed by integers from the

set {1, 2, 3, . . . ,m} and columns are indexed by integers from the set {1, 2, 3, . . . , n}.
Given a matrix A, we denote as ai,j the entry in the i-th row and j-th column of A.

A square matrix is an n× n matrix for some integer n.

4.1. The square matrix multiplication function 57

Figure 4.1: Representation of the information flow for a function f(·)

In the following, we focus on the set of matrices whose entries are drawn from a

ring R.

Definition 4.1 (Matrix Multiplication Function over the ring R). The matrix mul-

tiplication function f (n) : A × B : R(m+p)n → Rmp multiplies an m × n matrix

A = [ai,j] by an n × p matrix B = [bi,j] to produce the m × p product matrix

C = f
(n)
AB(A,B) = A×n B = [ci,j], where:

ci,j =
n∑
k=1

ai,kbk,j. (4.1)

The square matrix multiplication is therefore a special case of the general function

for which the input factor matrices have size n×n for a given integer n and therefore

A,B,C ∈ Rn2
. In order to simplify the notation, in the following presentation we

use fn×n instead of f
(n)
A⋊B to denote the product of two square matrices n× n.

4.1.2 Information flow property of matrix multiplication

We introduce here a characterization of the information flow of functions. We say

that a function f : An → Am has a large information flow from input variables in

X1 to output variables in Y1 if there are values for input variables in X0 = X \X1

such that many different values can be assumed by Y1 as the values of the inputs in

X1 range over all the possible A|X1| values.

The concept of information flow of functions was originally introduced by Grig-

oriev [33] and was used in deriving timespace tradeoffs for the execution of straight-

line programs represented by CDAGs. A revised version of the same concept was

later presented by Savage [56] and used to derive lower bounds on area-time tradeoffs

58 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

for VLSI algorithms. We use here the definition due to Savage as presented in [58].

Definition 4.2 (Information flow of a function). A function f : An → Am has

a w (u, v)-flow if for all subsets X1 and Y1 of its n input and m output variables,

with |X1| ≥ u and |Y1| ≥ v, there is a sub-function h of f obtained by making some

assignment to variables of f not in X1 and discarding output variables not in Y1 such

that h has at least |A|w(u,v) points in the image of its domain.

A lower bound on the information flow for the square matrix multiplication was

presented by Savage in [58].

Lemma 4.3 (Information flow of matrix multiplication over the ring R [58]). The

matrix multiplication function fn×n : R2n2 → Rn2
over the ring R has a w (u, v)-flow,

where:

wn×n (u, v) ≥
1

2

(
v − (2n2 − u)

2

4n2

)
(4.2)

Proof A complete proof can be found in [58](Theorem 10.5.1). □

It is important to remark that the information flow result just discussed is a

property of the squared matrix multiplication function itself, regardless of the specific

algorithm which is to be used in order to compute it.

As previously mentioned, Grigoriev’s method (and its extension due to Tompa [65,

66]) based on the information flow properties of functions has been principally used

to study area-time tradeoffs for VLSI algorithms [56] and time-space tradeoffs for

various functions such as: matrix-vector product[65], polynomial multiplication[65],

cyclic shift [59], integer multiplication [59], transitive closure [66].

In our work we will show an interesting new way of using the information flow

property of functions in order to obtain lower bounds on their performance when

run on a hierarchical memory machine.

4.1.3 Matrix multiplication algorithms

Various algorithms have been proposed in literature to compute the product of two

matrices. In this section, we provide a brief survey of the main contributions in

literature extracted from [70], before focusing on Strassen’s fast matrix multiplication

algorithm [63].

The Naive algorithm for computing the squared matrix multiplication product,

computes each entry of the product matrix C through three nested loops requires

O (n3) arithmetic operations for input matrices of size n× n.

4.1. The square matrix multiplication function 59

Figure 4.2: Evolution of the bound on ω

More efficient algorithms for “fast matrix multiplication” have however been pro-

posed in literature starting from 1969, when Strassen [63] gave the first sub-cubic

time algorithm for matrix multiplication, running in O (n2.808) time. This discovery

opened a long line of research which gradually reduced the matrix multiplication ex-

ponent ω over time. In 1978, Pan [46] proposed an algorithm with achieves ω < 2.796

while, in the following year, Bini et al. [12] introduced an algorithm for approximate

matrix multiplication based on the notion of border rank achieving ω < 2.78. In [60]

Schonhage combined his works with ideas from [46] and he showed that ω < 2.522.

This result was improved shortly afte by Romani [55], by achieving ω < 2.517.

Coppersmith and Winograd [19] were the first to break the 2.5 threshold with

ω < 2.496. Strassen decreased again the bound to ω < 2.479 using his new laser tech-

nique [64]. In 1987 Coppersmith and Winograd combined Strassens laset technique

with a novel form of analysis based on large sets avoiding arithmetic progressions,

and obtained the famous Coppersmith-Winograd algorithm [20] which achieves the

bound of ω < 2.376. In 2003, Cohn and Umans [17] introduced a new, group-

theoretic framework for designing and analyzing matrix multiplication algorithms

which led, through the collaboration with Kleinberg and Szegedy [16], to several novel

matrix multiplication algorithms which however were not able to improve over the

Coppersmith-Winograd algorithm. In 2014 Vassilevska-Williams [70] presented new

tools for analyzing matrix multiplication constructions similar to the Coppersmith-

Winograd construction, obtaining a new improved bound on ω < 2.372873.

60 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

Despite the consistent asymptotical improvement provided by these fast matrix

multiplication algorithms over the naive algorithm, the latter is still largely used in

practice. This fact can be explained by analyzing two common drawbacks of fast

matrix multiplication algorithms. First, the reduction in the number of arithmetic

operations with respect to the Naive algorithm comes at the price of a reduced

numerical stability [44]. Second, the constants terms of the upper bounds hidden by

the asymptotic notation are so big that a true performance improvement would be

achievable only for extremely big matrices, which are of little to none interest for

todays applications.

4.2 Strassen’s matrix multiplication algorithm

In this section, we present in detail the first fast matrix multiplication algorithm

introduced by Volk Strassen in 1969 [63], which is the focus of our analysis.

4.2.1 Description of the algorithm

Let A, B be the two factor square matrices whose entries are drawn from the ring

R, and let C be the product matrix. It is possible to partition A, B and C into 4

equally sized bloc matrices as follows:

A =

[
A1,1 A1,2

A2,1 A2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
, C =

[
C1,1 C1,2

C2,1 C2,2

]
(4.3)

Strassen’s algorithm computes the following seven matrix products:

M1 = (A1,1 + A2,2) (B1,1 +B2,2)

M2 = (A2,1 + A2,2)B − 1, 1

M3 = A1,1 (B1,2 −B2,2)

M4 = A2,2 (B2,1 −B1,1)

M5 = (A1,1 + A1,2)B2,2

M6 = (A2,1 − A1,1) (B1,1 +B1,2)

M7 = (A1,2 − A2,2) (B2,1 +B2,2)

(4.4)

It is then possible to compute the sub-matrices Ci,j as a combination of the

4.2. Strassen’s matrix multiplication algorithm 61

products Mk:

C1,1 = M1 +M4 −M5 +M7

C1,2 = M3 +M5

C2,1 = M2 +M4

C2,2 = M1 −M2 +M3 +M6

(4.5)

This division process is iterated recursively log n times (recursively) until the

sub-matrices degenerate into single numbers (elements of R).

Given two factor matrices A and B of size n×n, with n > 1, Strassen’s algorithm

generates seven sub-problems for which the input matrices have size n
2
× n

2
. Following

this recursive structure, the number of sub-problems for which the input matrices

have size n
2i
× n

2i
will be:

7
log

(
n
n
2i

)
= 7i (4.6)

Given how entries of A and B are used to generate the input of the seven sub-

problems, some of the input values of the latter will correspond to values of A and

B. It should however be remarked that none of the seven sub-problem generated

share any of their input. Applying this consideration to the 7i sub-problems with

input of size n
2i
× n

2i
generated by the recursive structure of Strassen’s algorithm we

can conclude that none of them have any common input value.

The number of additions and multiplications required in the Strassen’s algorithm

can be calculated through a simple recurrence equation. Let f(n) be the number

of operations required for computing the product of two n × n matrices. Then by

recursive application of the Strassen’s algorithm, we see that f(n) = 7f(n/2) + ln2,

for some constant l that depends on the number of additions performed at each

application of the algorithm. We thus have f(n) = (7 + o (1))logn, and we can

therefore conclude that the asymptotic complexity for multiplying matrices of size

n× n using the Strassen algorithm is:

O (7 + o (1))logn ≈ O (n)log 7 (4.7)

4.2.2 Construction of the CDAG of Strassen

The execution of Strassen’s algorithm on a given input can be modeled as a CDAG

where each vertex represents either a value of one of the input matrices A and B,

an intermediate result computed during the execution of the algorithm, or a value

of the output matrix C; each edge represent a functional dependence between two

values.

Let Hn×n denote the CDAG of Strassen’s algorithm for input matrices of size

62 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

(a) EncA (b) Encb (c) Dec

Figure 4.3: Basic constructing blocks of Strassen’s algorithm CDAG. Note that EncA
and EncB are isomorphic.

Figure 4.4: Strassen’s H2×2 CDAG: blue vertices represent combinations of the input
values from the factor matrices A and B which are then used as input values for the
sub-problems; red vertices represent the output of the seven sub-problems which are
then used to compute the output values of the product matrix C.

n×n. For n > 2, the CDAG Hn×n can be obtained by appropriately combining seven

copies of Hn/2×n/2 using a recursive construction which mirrors the recursive struc-

ture of Strassen’s algorithm. The base of the construction, reported in Figure 4.4,

is the CDAG H2×2 which corresponds to the multiplication of two 2 × 2 matrices

using Strassen’s algorithm. Entries from A and B are combined (i.e., “encoded) into

seven pairs of inputs of the seven sub-products Mi, using an encoder sub-CDAG

EncA (Figure 4.3a) for the values from the factor matrix A, and respectively EncB

(Figure 4.3b) for the values from the factor matrix B. The output values of the

sub-products Mi are then combined using a decoder Dec sub-CDAG (Figure 4.3c)

in order to compute the output values corresponding to the entries of the product

matrix C. Note that the structure of EncA and EncB correspond to how entries of

A and B are combined to generate the inputs to the M1,M2, . . . ,M7 products; while

the structure of Dec corresponds to how the products M1,M2, . . . ,M7 are combined

in order to compute the values of the output matrix C. Note furthermore that while

4.2. Strassen’s matrix multiplication algorithm 63

Figure 4.5: Recursive construction of Strassen’s H2n×2n CDAG: blue vertices rep-
resent combinations of the input block sub-matrices of A and B which are then
used as input values for the sub-problems Hn×n; white vertices represents an input
matrix for one of the sub-problems Hn×n which corresponds to one of the block sub-
matrices of the input matrices A and B; the output vertices represent the four sub
block-matrices of C.

EncA and EncB are isomorphic, they are not isomorphic to Dec.

The CDAG H2n×2n, which represents the Strassen’s algorithm for input matrices

of size 2n × 2n, can be constructed by composing seven copies of Hn×n, each of

which corresponds to one of the seven sub-products generated by the algorithm. A

schematic representation od the construction is presented in Figure 4.5. Entries from

the factor matrices A and B are combined into seven pairs of input matrices of size

n × n for the seven sub-products Hn×n
i , with i ∈ {1, 2, . . . , 7}. This combination

is realized by using 2log(2n)−1 = n vertex-disjoint copies of, respectively, the encoder

CDAGs EncA and EncB. The encoders are used to connect the input vertices of

H2n×2n (which correspond to the input values of the global product) to the opportune

input vertices of the seven sub-CDAGs Hn×n
i . The outputs of the seven sub-products

are then combined to compute the output matrix C. Said combination is realized

in the CDAG by connecting the vertices corresponding to the output of each of the

64 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

seven sub-CDAGsHn×n
i to the opportune output vertices of the entireH2n×2n CDAG

using 2log(2n)−1 = n copies of the decoder sub-CDAG Dec.

In Strassen’s algorithm, we have that some of the input values of the seven sub-

problems Mi correspond to the input values of the main problem. This situation is

represented in the encoder CDAGs by an output which is connected by just one out-

put. Although the provided “layered” representation is useful to gain some intuition

on the structure of Strassen’s CDAG, it is important to keep in mind that any pair

of vertices such that one of the two has the other as unique predecessor, actually

corresponds to one unique vertex.

As previously stated, the 7i sub-problems with input of size n
2i
× n

2i
generated by

the recursive structure of Strassen’s do not share any input values. The correspond-

ing Hn/2i×n/2i do not therefore share any input vertex. From this observation and

the recursive construction of Strassen’s algorithm CDAG we can state the following

lemma.

Lemma 4.4. Let Hn×n denote the CDAG of Strassen’s algorithm for input matrices

of size n × n. For 0 ≤ i ≤ log n − 1, there are exactly 7i sub-CDAGs Hn/2i×n/2i

which do not share any vertex in Hn×n (i.e., they are vertex disjoint sub-CDAGs of

Hn×n).

4.3 Communication model

In our analysis, we assume that sequential computations are executed on a system

with a two-layer memory hierarchy consisting of a fast memory of limited sizeM (i.e.,

the cache memory) and a slow memory of unlimited size. In the following, we use the

expression “size of the memory space” to indicate the number of words which can

maintained in the memory. The execution of a straight-line program on this model

can be analyzed via the Red-Blue pebble game proposed by Hong and Kung [37],

which is played on the corresponding CDAG. Here we present it according to its

formalization in [58].

The red (hot) pebbles identify values held in the cache while the blue (cold)

pebbles identify values held in a secondary memory. Correspondingly, the number

of available red pebbles is given by the maximum number of words which can be

maintained in the cache (hence M), while unlimited blue pebbles are available. We

assume the values identified with the pebbles as words. A pebble placed on a vertex

identifies that the value associated to that vertex (input, output, intermediate result)

in a location of the corresponding type of memory. At the instant before the game

starts, blue pebbles reside on all input vertices, while there are no red pebbles on

4.3. Communication model 65

the CDAG. The goal of the game is to place a blue pebble on each output vertex,

that is, to compute the values associated with these vertices and write them in the

slow memory. These assumptions capture the idea that is initially stored in the

slow memory (synthesized in rule R1), and that the results, once computed, must be

deposited there as well (synthesized in rule R4). The rules of the Red-Blue pebble

game are the following:

(R1) Initialization: A blue pebble can be placed on an input vertex at any time.

(R2) Computation Step: A red pebble can be placed on a vertex if all its immediate

predecessors carry red pebbles.

(R3) Pebble Deletion: A pebble can be deleted from any vertex at any time.

(R4) Goal: A blue pebble must reside on each output vertex at the end of the game.

(R5) Input form secondary memory: A red pebble can be placed on any vertex

carrying a blue pebble.

(R6) Output to secondary memory: A blue pebble can be placed on any vertex

carrying a red pebble.

Rule (R2) formalizes the requirement that all the arguments on which a function

depends must reside in primary memory before the function can be computed. The

third rule (R3) allows the removal of a pebble from a vertex, which corresponds

to the deletion of the corresponding value from the memory (either cache or slow

depending on the color of the pebble). If a pebble is removed from a vertex that later

needs a red pebble, then said vertex has to be repebbled. Rules (R5) and (R6) model

the communications between cache and slow memory. The execution of a “read”

operation from slow memory to the cache is captured by R5, while the execution of

a “write” operation of a value contained in the cache to slow memory by R6. In the

following we refer to both read and write as I/O operations.

Each pebbling strategy corresponds therefore to a computation of the algorithm,

such that the execution of each step in the pebbling game correspond to the execution

of either a computational or I/O operation for the computation.

A pebbling strategy P is given by the succession of the executions of the rules

of the pebble game on the vertices of a given CDAG. We refer to each element a

pebbling strategy as “step”. For a given P its computational time, i.e., the number

of computations executed, corresponds to the number of executions of the (R2)

rule, while its I/O time corresponds to the number of executions of the (R4) and

66 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

(R5) rules. Different pebbling strategies the same CDAG may differ greatly in their

computational and I/O time.

The I/O complexity IOG(M) of a straight line program represented by the CDAG

G is defined as the minimum number of I/O operation necessary for its execution on a

platform equipped with a cache of sizeM and unlimited slow memory. A lower bound

for this quantity can be obtained as the minimum number of I/O operations executed

by any of the possible pebbling strategies for the pebble game played with M red

pebbles on the CDAG G corresponding to the algorithm. Expanding this definition

we have that the I/O complexity of a problem is the minimum I/O complexity of

any algorithm which computes the solution to said problem.

Access complexity A variation of the I/O complexity concept called Access com-

plexity of an algorithm, was introduced by Bilardi and Preparata in [11]. The main

difference with the definition of I/O complexity is given by the fact that, before the

beginning of the computation up to M input values can be stored in the cache. This

would imply a slight modification of the blue pebble game, as it would be possible for

up toM red pebbles to be placed on input vertices of the CDAG before the beginning

of the game. Let QG(M) denote the access complexity of a CDAG G (and therefore

of the corresponding algorithm) when executed on a platform equipped with a cache

of size M and unlimited slow memory. Clearly we have IOG(M) ≥ QG(M).

Pebbling strategies with or without restrictions on recomputation The

rules of the red-blue pebble game allow to remove any red pebble placed on a vertex

at a certain step s1 without placing a blue pebble on it, and then place again a red

pebble on the same vertex during a subsequent step s2 even though the vertex is not

carrying a blue pebble at s2 − 1.

Such “repebbling” operation corresponds to multiple evaluations (recomputations)

of the value of the operation associated to a vertex during the execution of the

algorithm. Recomputing intermediate values during the computation may allow for

some saving on the I/O time at the price of an increase of the computational time.

An important class of computations are those for which no intermediate value is

ever computed more than once. We refer to pebbling strategies in this class as

computations without recomputations or nr-computations for short. Corresponding

to the nr-computations, we define the nr-pebbling strategies for the red-blue pebble

game as those strategies for which, once a pebble either red or blue have been has

been placed on a vertex, said vertex retains a pebble, either red or blue, until a

red pebble has been placed on all its successors. A variant of the original red-blue

pebble game for which only nr-pebbling strategies are allowed could be obtained by

4.4. Previous work 67

modifying rule (R2):

(R2-NR) No-repebbling condition: A red pebble can be placed on a vertex if all its

immediate predecessors carry red pebbles and if no red pebble was placed on

the vertex during previous steps.

nr-pebbling strategies are of practical interest since they achieve minimum com-

putational time.

Note that the assumption of no recomputation provides a very strong control

over the lifetime of data in memory. Under this assumption, once the intermediate

result of an operation has been computed for the first time, it is mandatory to keep

it stored in memory until all the values of the operations which use it as an operand

have been computed. Such values can either be kept in cache or moved back and

forth from the slow memory through the use of I/O operations. Because of this

strength, the assumption of no recomputation has frequently been used in literature

to study the I/O complexity of algorithms. In particular, all previous result on the

I/O complexity of Strassen’s matrix multiplication algorithm have been obtained

under the no-recomputation assumption [7, 62].

4.4 Previous work

Besides formalizing the Red-Blue pebble game in their seminal work [37], Hong and

Kung proposed the S − partitioning technique to obtain lower bounds to the I/O

complexity of straight line programs. In the same work, they applied their technique

to obtain lower bounds on the I/O complexity of various algorithms such as the

FFT, and the naive algorithms for computing the vector-matrix and the product of

rectangular matrices. In [57] Savage introduced an extension of the Red-Blue pebble

game to multiple levels of memory hierarchy and a lower bound technique based on

the concept of S-Span of a CDAG. This is a measure that intuitively represents the

maximum amount of computation that can be done after loading data in a cache

at some level without accessing higher level memories. Applications of the S-Span

technique was used Savage et al. to obtain lower bounds to the I/O complexity of

r-pyramids CDAGs in [53]. In [10], Bilardi et al. presented the S-covering partition

technique which merges and extends aspects from both [37] and [57]. A further

generalization of the model by Hong e Kung [37] called Hierarchical Memory Machine

(HMM) was introduced by Aggarwal, Alpern, Chandra, and Snir in [1].

In [9] Bilardi and Preparata introduced a variation of the concept of I/O complex-

ity called “Access Complexity” (discussed in Section 4.3). In [11] the same authors

68 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

introduced the “Dichotomy Width” technique which allows to obtain lower bounds

to the Access complexity of algorithms under the assumption that no intermediate

value is computed more than once (no-recomputation assumption). In Ranjan et al.

introduced the “Boundary Flow” technique and used it to derive lower bounds for the

I/O complexity for the Binomial and FFT Computation Graphs for computations

with no recomputations. Ballard et al. generalized the results on matrix multiplica-

tion of Hong and Kung [37] in [6, 5] by using the approach proposed in [36] based

on the Loomis-Whitney geometric theorem [42, 67], by embedding segments of the

computation process into a three dimensional cube. In the same work, the authors

obtained algorithms and matching I/O complexity lower bounds for various classical

linear algebra algorithms such as LU factorization, Cholesky factorization, LDLT

factorization, QR factorization, as well as algorithms for eigenvalues and singular

values. These results hold for dense matrix algorithms (most of them have O(n3)

complexity), as well as sparse matrix algorithms (whose running time depends on

the number of non-zero elements, and their locations). In [23] Elango et al. pro-

posed a technique allowing the combination of lower bounds on the I/O complexity

of sub-CDAGS assuming that no intermediate value can be recomputed.

A lower bound to the I/O complexity of the naive O(n3) algorithm was originally

obtained in the seminal work by Hong and Kung [37]. While naive implementa-

tions of this algorithm are non communication-efficient, communication-minimizing

sequential [14] and parallel [29] algorithms have been presented in memory. Since

the asymptotic complexity of these algorithms matches the lower bounds respectively

in [37] and in [36] these algorithms are optimal. The first results on Strassen’s algo-

rithm was achieved by Ballard et al. [7] using the “edge expansion approach”. This

technique relates the I/O-complexity of an algorithm to the edge expansion proper-

ties of the undirected underlying graph corresponding to the CDAG representing the

algorithm. This technique can be extended to Strassen-like algorithms, but fails for

algorithms with base graphs (correspondent to H2×2) containing disconnected ecoder

or decoder graphs. The edge expansion approach was later extended [4] to fast re-

cursive matrix multiplication algorithms for rectangular matrices whose base graphs

consist of multiple equal-size connected components. The “path routing” technique

introduced by Scott et al. [62] allows to obtain the same lower bound for Strassen’s

algorithm obtained in [7]. This new technique can however be generalized to any

recursive fast matrix multiplication algorithms involving arbitrary base graphs, as

long as the same base graph is used at each recursive step. While the lower bounds

for the naive algorithm in [37, 36] hold for any possible computation, all known lower

bounds on the I/O complexity of Strassen’s (and Strassen-like) algorithm, including

4.5. Lower bound for computations with no recomputation 69

those in [7, 62] were obtain under no-recomputation assumption. A communica-

tion avoiding implementation of Strassen’s algorithm whose performance matches

the lower bound for nr-computations [7, 62], was proposed by Ballard et al. [3].

In our contribution, we present an alternative, much simpler, technique to achieve

the state of the art asymptotical lower bound for nr-computations. We then extend

this result by removing the restrain on recomputation to obtain a novel tight lower

bound for all possible pebbling strategies for Strassen’s matrix multiplication algo-

rithm.

4.5 Lower bound for computations with no recom-

putation

In this section, we present a lower bound on the I/O complexity of Strassen’s matrix

multiplication algorithm for computations for which no intermediate value is com-

puted more than once (i.e., nr-computations) as defined in Chapter 1. This class of

computations correspond to the class of recomputation restrained pebbling strate-

gies in the red-blue pebble game as described in Section 2.1. Although our bound

corresponds asymptotically to the one presented in [7, 62], our proof technique is

much simpler than the ones previously presented in literature. Previous results on

the I/O complexity for Strassen’s algorithm are based on the analysis of specific

combinatorial properties of the CDAG Hn×n representing the algorithm’s execution

such as the edge expansion [7] or the path routing property [62]). Our approach

instead relates the I/O complexity of the algorithm to its recursive structure and in

particular to the number of sub-problems generated.

Recall from Section 2.1 that the free input space complexity of nr-computations

of the CDAG Sfree−nr(G) is defined as the minimum memory space necessary for

execution of any free-input nr-computation of G in which no intermediate value is

computed twice (i.e., in the pebble game no vertex is pebbled twice).

For the square matrix multiplication function fn×n : R2n2 → Rn2
defined over the

ringR, there is significant relationship between the information flow property of fn×n

and the free input space complexity for nr-computations of any CDAG G(I ∪ V,E)
which corresponds to a straight line program which computes fn×n. Recall that use

the expression “size of the memory space” to indicate the number of words which

can maintained in the memory. We assume furthermore that any memory word can

be used to memorize a single value of the ring R.

Lemma 4.5. Let Gn×n(I ∪ V,E) be the CDAG corresponding to the execution of

70 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

any straight line program for the square matrix product function fn×n defined over

the ring R. We have:

Sfree−nr(Gn×n) ≥
n2

4
. (4.8)

Proof Consider any free input pebbling strategy C which computes the product

matrix C = AB without recomputing any intermediate result during its execution

with A,B,C ∈ Rn×n. Let Cp be the shortest prefix of C during which a total of α2n2,

for 0 ≤ α ≤ 1, distinct input vertices of G are pebbled (i.e. distinct input values of A

or B loaded into memory). Let Ss the corresponding suffix. The maximum number

of complete rows of A or columns of B loaded into memory during the execution

of Sp is 2αn. In order to compute one of the entries of ci,j of the product matrix

C it is necessary to load into fast memory all the values in the i-th row of A and

of the j-th column of B. The maximum number of values form C which can be

computed in Sp is therefore α2n2 while the remaining n2 − α2n2 will be computed

during the execution of Ss. From Lemma 4.3 we have that the information flow

wn×n (α2n
2, n2 (1− α2)) between the α2n2 input values loaded into memory during

Sp and the n2 (1− α2) output values computed during Ss is at least:

wn×n
(
α2n2, n2

(
1− α2

))
≥ 1

2

(
n2
(
1− α2

)
− (2n2 − α2n2)

2

4n2

)
=

1

2

(
n2 (1− α) (1 + α− (1− α))

)
= n2 (1− α)α.

In order to determinate the value of α which maximizes wn×n (α2n
2, n2 (1− α2))

we shall consider it derivative in α:

d

dα
wn×n

(
α2n2, n2

(
1− α2

))
=

d

dα
n2 (1− α)α = n2 (1− 2α) (4.9)

For α = 1/2 the derivative in equation 4.9 equals zero, and the quantity

wn×n (α2n
2, n2 (1− α2)) is maximized:

wn×n

(
n2,

3

4
n2

)
=
n2

4
.

Let X0 and X1 denote the set input values loaded in memory respectively during

Cp and Cs. Also let Y1 denote the set of output values computed during Cs. By

definition, there exists an assignment to the X0 inputs such that such that the Y1

outputs can assume at least Rwn×n(n2, 3
4
n2) = Rn2

4 different values. Suppose a mem-

ory space of size less than wn×n
(
n2, 3

4
n2
)
is being used during the computation,

4.5. Lower bound for computations with no recomputation 71

the values Y1 assume more values than those which can be maintained in memory.

Since no intermediate result computed during Cp can be computed a second time

during Cs there are at least the memory space required by the computation is at

least wn×n
(
n2, 3

4
n2
)
= n2/4. □

Sfree−nr(G) can be used to obtain a straightforward lower bound to the I/O

complexity for nr-pebbling strategies of G itself.

Lemma 4.6. Let us consider the execution of an algorithm corresponding to a CDAG

G(I ∪ V,E) in a system with a two level memory hierarchy, where the fast memory

(cache) has size M . We have:

IOG(M) ≥ 2max{0, Sfree−nr(G)−M} (4.10)

Proof By definition, any schedule with no recomputation for G uses at least Sfn(G)

memory space, since the fast memory has size M it will be necessary to use at least

Sfree−nr(G)−M slow memory cells. Furthermore, usage of slow memory will require

both a write and a read operation hence the constant 2 in the bound. □

A generalization of this result was introduced by Bilardi et al. [10]:

Theorem 4.7 (Theorem 2 [10]). Let G be a CDAG with h-vertex-disjoint sub-

CDAGs G1, G2, . . . , Gh. We have:

IOG(M) ≥
h∑
i=1

2max{0, Sfree−nr(Gi)−M}. (4.11)

Proof Let us consider any standard nr-computation C of G and let C⟩ be the free in-
put sub-computations relative to each of the sub-CDAGs Gi. For the same reasoning

used in the proof of Lemma 4.6 we have that at least Sfree−nr(Gi) distinct memory

cells are accessed to read/write values of Gi. Since the cache has size M , it will

be necessary to use at least Sfree−nr(G) −M slow memory cells. Finally, since the

sub-CDAGs are vertex-disjoint, they do not share any values. The lemma follows.

□

We shall now use these results to obtain a lower bound on the access complexity

for nr-computations of Strassen’s matrix multiplication algorithm.

Theorem 4.8 (Lower bound I/O complexity Strassen’s matrix multiplication for

computations with no recomputation). Consider Strassen’s matrix multiplication al-

gorithm being used to multiply two square matrices of size n × n whose entries are

72 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

drawn from the ring R. Assuming no intermediate result is ever computed more than

once, the I/O-complexity of Strassen’s algorithm when run on a sequential machine

with fast memory of size M is:

IOHn×n(M) ≥ 1

7

(
n√
M

)log2 7

M (4.12)

Proof In the following proof we assume without loss of generality that n = 2a and√
M = 2b for some a, b ∈ N. At least 3M I/O operations are necessary in order to

read all the 2n2 input values form slow memory to the cache and to write the n2

output values to the slow memory once they have been computed. The statement of

the theorem is therefore trivially if n ≤ 2
√
M . In the following we will consider the

case for n ≥ 4
√
M Let us consider one of the sub-problems generated by the recursive

structure of Strassen’s algorithm which has input matrices of size α
√
M × α

√
M ,

where α is a constant such that α
√
M is a power of two. From Lemma 4.4 we have

that the CDAG Hn×n which corresponds to the execution of Strassen’s algorithm

for input matrices of size n × n contains
(
n/α

√
M
)log 7

vertex-disjoint sub-CDAGs

Hα
√
M×α

√
M . Each of these sub-CDAGs corresponds to one of the distinct sub-

problems with input size α
√
M × α

√
M generated by Strassen’s algorithm at the

log(n/α
√
M)-th level of the recursion. Let us now consider one such sub-CDAGs

Hα
√
M×α

√
M . From Lemma 4.5, we have Sfree−nr(H

α
√
M×α

√
M) ≥ α2M/4. Since the(

n/α
√
M
)log 7

of Hα
√
M×α

√
M are vertex-disjoint we can apply Theorem 4.7:

IOHn×n(M) ≥
(n
αM)

log2 7∑
i=1

2
(
Sfree−nr(H

α
√
M×α

√
M)−M

)
= c

(
n√
M

)log2 7

M (4.13)

where:

c =
1

2

(
α2 − 4

alog 7

)
In order to determinate the value of α which maximizes 4.13, we study the deriva-

tive of c in α:

d

dα
c =

1

2

(
2α1+log2 7 − (α2 − 4) log2 7α

log2 7−1

a2 log2 7

)
.

Through some algebraic manipulation, we can see that the previous derivative

goes to zero for:

α∗ =

√
4 log 7

log 7− 2
= 3.7294639034.

4.5. Lower bound for computations with no recomputation 73

By further studying the sign of the derivative, we can conclude that c assumes maxi-

mum value for α∗. We must chose α in such a way that α
√
M is still a power of two.

Since we are studying the case for n ≥ 4
√
M , we select α = 4 and we thus obtain

c = 1/7. □

Our proof technique is based on the analysis of the recursive structure of Strassen’s

algorithm and on the identifications of the sub-CDAGs corresponding to the various

sub-problems. The only property of these sub-CDAGs we consider is their being

vertex-disjoint with respect to the overall CDAG.

On mixed matrix multiplication strategies

An interesting aspect of our proof technique is that no constraint is placed on the

specific straight-line algorithm which is to be used for computing the sub-problems

of size α
√
M × α

√
M . The lower bound on the free input space complexity for

nr-computations obtained in Lemma 4.5 holds in fact for any straight line program

being used to compute the square matrix multiplication function.

This observation implies that the I/O complexity of mixed algorithmic strategies

in which Strassen’s algorithm is initially used to generate sub-problems of smaller

size (e.g., sub-problems which can be entirely computed in cache) which are then

computed using a different algorithm (e.g. the naive algorithm) can still be captured

by our technique. The following Lemma formalizes this observation:

Lemma 4.9. Consider a mixed matrix multiplication strategy for which Strassen’s

algorithm is initially used to reduce the input matrices of size n × n, whose en-

tries are drawn from the ring R, by generating
(
n/2i

√
M
)log2 7

sub-products of size

2i
√
M × 2i

√
M for 0 ≤ i ≤ log2(n/2

√
M). The single sub-product are then com-

puted using any straight line algorithm for matrix multiplication. Let Hn×n,i denote

the CDAG corresponding to this mixed strategy. Assuming no intermediate result is

ever computed more than once, the I/O complexity any such strategy when run on a

sequential machine with fast memory of size M is:

IOHn×n,i(M) ≥
(

n

2i
√
M

)log2 7 M

4

(
2i − 1

)
(4.14)

The proof of this lemma is given by a simple extension of the proof of Theo-

rem 4.8. Although this bound is in general much more loose than the one pro-

vided by theorem 4.8, it provides an interesting indication of the I/O complexity for

Strassen-mixed strategies.

74 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

Generalization to Strassen-like algorithms

Let us now consider a class of algorithms based on a recursive strategy according to

which a matrix multiplication with input matrices of size n×n is solved by generat-

ing recursively ω sub-products of size n/β × n/β and then combining the results of

the sub-problems to obtain the final result. Let Gn×n be the CDAG corresponding

to this algorithm, if the sub-CDAGs corresponding each to one of the sub-problems

generated at the i-th step of the recursion are all vertex-disjoint, we say that the

straight line algorithm corresponding to Gn×n is (ω, β) Strassen-like. A straightfor-

ward extension of the result of Theorem 4.8 leads to the following, more general,

lower bound for the I/O complexity of (ω, β) Strassen-like algorithms.

Theorem 4.10 (Lower bound I/O complexity Strassen-like algorithms for computa-

tions without recomputation). Let H(ω,β),n×n be the CDAG corresponding to a given

(ω, β) Strassen-like matrix multiplication algorithm being used to multiply two square

matrices of size n × n whose entries are drawn from the ring R. Assuming no in-

termediate result is ever computed more than once, the I/O-complexity of the given

algorithm when run on a sequential machine with fast memory of size M is:

IOH(ω,β),n×n(M) = Ω

((
n√
M

)logβ ω

M

)
(4.15)

It is interesting to observe that the standard bloc matrix multiplication algo-

rithm (also referred as Cannon algorithm), despite its recursive structure, it is not

a Strassen-like algorithm since pairs of sub-problems may share some of their input

values.

4.6 Lower bound for general computations

While the assumption of no recomputation appears reasonable when the goal is to

minimize the computational time of a computation, it leaves open the question on

whether a strategy in which an intermediate result can be computed multiple times

(i.e., the correspondent vertex in the CDAG can be re-pebbled) can achieve a lower

I/O time. Ideally, the possibility of computing certain results multiple times, could

avoid the necessity of moving those between cache and slow memory. Besides the

purely theoretical interest of the question, the possibility of achieving better I/O

performances even at the cost of increase of the computational load would be very

interesting in order to improve the performance of actual implementations.

In this section, we introduce a novel tight lower bound for the I/O complex-

4.6. Lower bound for general computations 75

ity of Strassen’s matrix multiplication algorithm which, differently from the result

presented in Section 4.5 and previous similar results [7, 62], holds for any possi-

ble execution schedule without any restriction on the possibility of computing an

intermediate value more than once.

Theorem 4.11 (Lower bound I/O complexity Strassen’s matrix multiplication al-

gorithm). Consider Strassen’s matrix multiplication algorithm being used to multiply

two square matrices of size n × n whose entries are drawn from the ring R. The

I/O-complexity of Strassen’s algorithm when run on a sequential machine with fast

memory of size M is:

IOHn×n (M) ≥ 1

14

(
n√
M

)log2 7

M. (4.16)

The following sections will be devoted to the proof of Theorem 4.11. We provide

here a high-level outline of our proof technique as a guide for the reader through the

next sections.

Proof sketch for Theorem 4.11. Let Hn×n be the CDAG corresponding the com-

putation of the product of two matrices A and B of size n × n using Strassen’s

algorithm. For n ≤ 2
√
M the statement is easily verified. If n > 2

√
M , in Hn×n

there are
(

n
2
√
M

)log2 7
distinct sub-CDAGs H2

√
M×2

√
M each corresponding to one of

the sub-problems for which the input matrices have size 2
√
M × 2

√
M .

Let Z denote the set of the 4M
(

n
2
√
M

)log 7
output vertices of the H2

√
M×2

√
M

sub-CDAGs. Vertices in Z represent the output values of the corresponding sub-

problems. All the vertices in Z are pebbled at least once by any pebbling strategy

for Hn×n in the red-blue pebble game.

Let P be any pebbling strategy (computation) for the Red-Blue pebble game

played on Hn×n withM available red pebbles. We partition P in segments such that

exactly 4M distinct vertex from Z are pebbled for the first time in each of them. In

the main part of the proof, we will then show that at least M/2 IO operations must

occur during each sub-computation corresponding to one of the segment. Since P is

dividend into 1
7

(
n√
M

)log2 7
M segments, we will conclude that at least M

2

(
n

2
√
M

)log 7
IO operations will be executed in P .

Before delving into the details of the proof of Theorem 4.11, it is important to

stress why the proof technique discussed in Section 4.5 can not be directly used to

achieve the more general result. Clearly, the result in Lemma 4.5 does not hold if

the restriction on recomputation is removed. There may exists in fact schedules that

require less memory space as some intermediate results are computed multiple times

starting from the input vertices. There exists in fact pebbling strategies for Hn×n

76 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

which require space O(log n). It is therefore not possible to apply Theorem 4.7 to

obtain the desired result.

4.6.1 Technical lemmas

We present here some technical lemmas, which we will then use for the proof of

Theorem 4.11.

Relation between information flow of a function and dominator set

The dominator set concept was originally introduced in [37].

Definition 4.12 (Dominator set). Given a CDAG G(I ∪V,E), A dominator set for

V ′ ⊆ I ∪ V is a set of vertices in V such that every path from a vertex in I to the

vertices in V ′ contains at least a vertex of the set. A minimum dominator set for V ′

is a dominator set with minimum cardinality.

In our proof we will use a specular concept, commonly referred as post-dominator

set in literature.

Definition 4.13 (Post-dominator set). Given a CDAG G(I ∪ V,E), let O ⊂ V

denote the set of output vertices. A post-dominator set for V ′ ⊆ V \ O with respect

to O′ ⊆ O is defined to be a set of vertices in V such that every path from a vertex

in V ′ to the output vertices in O′ contains at least a vertex of the set. A minimum

post-dominator set for V ′ ⊆ V \ O with respect to O′ ⊆ O is a post-dominator set

with minimum cardinality.

The next lemma highlights an interesting relation between the information flow of

a function f(·) and the minimum size of the post-dominator of a subset of the input

vertices of the CDAG corresponding to the straight line program used to compute

f(·).

Theorem 4.14. Let G(I ∪ V,E) be the CDAG corresponding to any straight line

algorithm that computes a given function f(·) : An → Am defined on the ring A with

information flow wf (u, v). Let I ⊂ V and O ⊂ V denote respectively the set of input

and output vertices of G. Any minimum post-dominator set for any subset I ′ ⊆ I

with respect to any subset O′ ⊆ O has size at least wf (|V ′|, |O′|).

Proof The proof is by contradiction. Given I ′ ⊆ I and O′ ⊆ O, suppose the values

of the input variables corresponding to vertices in I \ I ′ to be fixed. Let Γ be a

post-dominator set for I ′ with respect to O′. According to the hypothesis on the

4.6. Lower bound for general computations 77

information flow of the function f , there exists an assignment of the input vari-

ables corresponding to vertices in I ′ such that the output variables in O′ can assume

|A|wf (|I′|,|O′|). As there is no path from I ′ to O′ which has not a vertex in Γ, the

values of the outputs in O′ can be determined by the inputs in I \I ′, which are fixed,

and the values corresponding to the vertices in Γ. If Γ < wf (|I ′|, |O′|), the outputs

in O′ can assume more values than can be taken by the |Γ| values corresponding to

the post-dominator Γ, which leads to a contradiction. □

Connection properties of Enc sub-CDAGs

Here we discuss a property of the encoder sub-CDAGs EncA and EncB which will

be then used in the latter stages of the proof.

Lemma 4.15. Given an encoder CDAG, for any subset Y of its output vertices,

there exists a sub-set X of its input vertices of size g(|Y |) ≤ |X| ≤ |Y | such that

each vertex in X can be connected to a distinct vertex in Y .

|Y | 0 1 2 3 4 5 6 7

g(|Y |) 0 1 2 2 3 3 4 4

Proof We provide the proof for EncA, a the results holds for EncB as they are

isomorphic. Note that in EncA there are some pairs of input-output vertices u, v for

which the input vertex u is the only predecessor of the output vertex v. This implies

that the two vertices are really one unique vertex. With a little abuse of notation,

we will still say that u can be connected to v via a single edge.

We assign an index to each of the output vertices of EncA according to how is

indicated in Figure 4.6. Note that the index assigned to each output corresponds

to the index of the sub-problem generated by Strassen’s algorithm for which the

corresponding value is used as in input (see Figure 4.4 and Figure 4.5 in Section 4.2.2).

In order to verify that this lemma holds, we study all possible compositions of

a subset Y of the output vertices of EncA. Each of these compositions is identified

by a vector y with seven components, where yi = 1 if the i-th output of EncA is in

Y or zero otherwise, for i ∈ {1, 2, . . . , 7}. In order to improve the presentation, we

associate to each of the possible 128 compositions a code given by
∑7

i=1 yi2
7−i. In

Table 1 (presented in the Appendix), we study each of the 128 possible compositions

of Y , which are ordered by the value of |Y | and by their code. The value in the last

column c(y) denotes the maximum size of a sub-set X of the input vertices of EncA

such that each vertex in X can be connected to a distinct vertex in the subset Y

corresponding to y. Each of these values can be obtained through a straightforward

78 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

Figure 4.6: Detail of the Enc sub-CDAG.

analysis of EncA. The value of g(|Y |) can then be obtained as the minimum value

of c(y) for all compositions of Y with the same cardinality:

g(a) = min
y∈{0,1}7s.t. |y|=a

c(y)

The lemma follows. □

Lemma 4.15 ensures therefore that, for any given subset Y of the output vertices

there exists at least a subset X of the input vertices of the encoder, with |Y | ≥ |X| ≥
g(|Y |), such that each vertex of X an be connected each to a distinct vertex in Y

using vertex-disjoint paths, were each such path will be composed by just one edge.

Minimum size of a dominator set for subsets of Hn×n

Lemma 4.16. Let Hn×n be the CDAG which corresponds to the execution of Strassen’s

matrix multiplication algorithm for input matrices of size n × n whose entries are

drawn from the ring R, with n ≥ 2
√
M . Let Y (resp., Z) denote the set of input

(resp., output) vertices of the
(
n/2

√
M
)log2 7

sub-CDAGs H2
√
M×2

√
M . Suppose fur-

thermore that γ pebbles are placed on internal vertices (i.e., not input nor output

vertices) of any of any of the sub-CDAGs H2
√
M×2

√
M . For any subset Z ⊆ Z such

that |Z| ≥ 2γ there exists a set Y ⊂ Y with |Y | ≥ 4
√
M (|Z| − 2γ) such that each

vertex in Y is connected to at least a vertex in Z by a pebble-free path. Let X denotes

the set on input vertices of Hn×n. There exists a subset X ⊆ X , with |X| = |Y | such
that vertices in Y can be connected to vertices in X through vertex disjoint paths.

Proof The proof is by induction on the size of the input matrices being multiplied.

4.6. Lower bound for general computations 79

Base: In the base case we have n = 2
√
M . We therefore haveHn×n = H2

√
M×2

√
M

and the sets Y and X coincide. For any possible placement of the γ pebbles on

internal vertices of Hn×n, let X0 ⊆ X denote the set of input of Hn×n which are not

connected to the outputs vertices in Z by any pebble free path. The set of vertices

carrying the γ pebbles is therefore a post-dominator for X0 with respect to Z. From

Theorem 4.14 we have that any post-dominator for X0 with respect to Z must have

size at least w2
√
M×2

√
M (|X0|, |Z|). Since such post-dominator is constituted by the

γ pebbled vertices, the following condition must hold:

w2
√
M×2

√
M ≤ γ

From Lemma 4.3 we have:

1

2

(
|Z| − (8M − |X0|)2

16M

)
≤ γ

Let X1 = X \X0 denote the set of input values which are connected by pebble free

paths to vertices in Z. Since the input size is X = 2×4M , we have |X1| = 8M−|X0|.
We therefore have:

1

2

(
|Z| − |X1|2

16M

)
≤ γ

|X1| ≥ 4
√
M (|Z| − 2γ)

This concludes the proof for the base case.

Inductive step: Let us now assume that the statement is verified for Hn×n, with

n ≥ 2
√
M . We shall show that the statement is verified for H2n×2n as well. Let

Hn×n
1 , Hn×n

2 , . . . , Hn×n
7 denote the seven sub-CDAGs of H2n×2n, each corresponding

to the seven sub-products generated by Strassen’s algorithm. Let Zi (resp., Yi) de-
note the subset of Z (resp., Y) which correspond to vertices in Hn×n

i . Note that,

according to the structure of Strassen’s algorithm, the subsets Z1,Z2, . . . ,Z7 (resp.,

Y1,Y2, . . . ,Y7) are a partition of Z (resp., Y). Recall that the seven sub-CDAGs

Hn×n
i (and thus, all the sub-CDAGs H2

√
M×2

√
M) are vertex disjoint among them-

selves. This implies
∑7

i=1 γi = γ. Let δi = max{0, |Zi| − 2γi, we have δ =
∑7

i=1 δi ≥
|Z| − 2γ.

Applying the inductive hypothesis to each sub-CDAG Hn×n
i , we have that there

is a subset Yi ⊆ Yi with |Yi| ≥ 4
√
Mδi such that vertices of Yi are connected via

to vertices in Zi via pebble free paths. Furthermore each of these paths can be

extended to a subset Ki of the input vertices of Hn×n with |Ki| = |Yi|, such that all

80 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

vertices in Yi can be connected to vertices in Ki using vertex-disjoint paths. Since

the sub-CDAGs Hn×n
i are vertex disjoint, so are the paths connecting vertices in Yi

to vertices in Ki.

In order to conclude our proof we need to show that is possible to extend at least

4
√
M (|Z| − 2γ) of these paths to vertices in X while still being vertex disjoint. As

described in Section 4.2.2, vertices in K1, K2, . . . , K7 are connected to vertices in X
by means of n2/2 encoding sub-CDAGs Enc. None of these encoding sub-CDAGs

share any input or output vertex. For any given encoder sub-CDAGs each of its

output vertices belongs to a different sub-CDAG Hn×n
i . This fact ensures that for a

single sub-CDAG Hn×n
i it is possible to connect all the vertices in Ki to a subset of

the vertices in X via vertex disjoint paths.

For each of the n2/2 encoder sub-CDAG, let us consider the vector yj ∈ {0, 1}7

associated with the j-th encoder sub-CDAG. We have that yj[i] = 1 if the corre-

sponding i-th output vertex (according to the numbering indicated in Figure 4.6)

is in Ki or yj[i] = 0 otherwise. That is, yj[i] = 1 iff there is a pebble free path

connecting the i-th output of the j-th encoder sub-CDAG to a vertex in Z. From

Lemma 4.15, we have that there exists a subset Xj ∈ X of the input vertices of the

j-th encoder sub-CDAG, with |Xj| ≥ g(|yj|), for which is possible to connect each

vertex in Xj to a distinct output verticex of the j-th encoder sub-CDAG using vertex

disjoint paths, each constituted by a singular edge. From Lemma 4.15 we have:

|y| 0 1 2 3 4 5 6 7

g(|y|) 0 1 2 2 3 3 4 4

The number of vertex disjoint paths connecting vertices in ∪7
i=1Ki, to vertices in

X is therefore at least
∑2n2

j=1 g(|yj|), under the constraint that
∑2n2

j=1 yj[i] = 4
√
Mδi.

Without loss of generality, let us assume that δ1 ≥ δ2 ≥ . . . ≥ δ7. As previously

stated, it is possible to connect all vertices in K1 to vertices in X through vertex

disjoint paths. Consider now all possible dispositions of the vertices in ∪7
i=2Ki over

the outputs of n2/2 encoders. Recall that the output vertices of an encoder sub-

CDAG belong each to a different Hn×n sub-CDAG. From Lemma 4.15, we have that

for each encoder, there exists a subset Xj ⊂ X of the input vertices of the j-th

encoder sub-CDAG, with

|Xj| ≥ g(|yj|) ≥ yj[1] + ⌈
∑7

i=2 yj[i]

2
⌉ ≥ yj[1] +

∑7
i=2 yj[i]

2
,

for which is possible to connect all vertices in Xj to the |yj| output vertices of the
j-th encoder sub-CDAG which are in ∪7

i=1Ki using |Xj| vertex disjoint paths. As all

the Enc sub-CDAGs are vertex disjoint, we can sum their contributions and we can

4.6. Lower bound for general computations 81

therefore conclude that the number of vertex disjoint paths connecting values in X
to vertices in ∪7

i=1Ki is at least:

|K1|+
1

2

7∑
i=2

|Ki| = 4
√
M

(√
δ1 +

1

2

7∑
i=2

√
δi

)
(4.17)

Squaring this quantity leads to:(
4
√
M

(√
δ1 +

1

2

7∑
i=2

√
δi

))2

= 16M

δ1 +√δ1

7∑
i=2

√
δi +

(
1

2

7∑
i=2

√
δi

)2


As by assumption, δ1 ≥ δ2 ≥ . . . ≥ δ7, we have that
√
δ1
√
δi ≥ δ1, for i =

2, 3, . . . , 7. We thus have:(
4
√
M

(√
δ1 +

1

2

7∑
i=2

√
δi

))2

≥ 16M
7∑
i=1

δi

≥
(
4
√
M (|Z − 2γ|)

)2
There are therefore at least 4

√
M (|Z − 2γ|) vertex disjoint paths connecting ver-

tices in X to vertices in ∪7
i=2Ki (and therefore to vertices in ∪7

i=2Zi). The lemma

follows. □

Lemma 4.17. Let Hn×n be the CDAG which corresponds to the execution of Strassen’s

matrix multiplication algorithm for input matrices of size n × n whose entries are

drawn from the ring R, with n ≥ 2
√
M . Let Y (resp., Z), denote the set of input

(resp., output) vertices of the
(
n/2

√
M
)log2 7

sub-CDAGs H2
√
M×2

√
M . Suppose fur-

thermore that γ pebbles are placed on vertices of Hn×n. For any subset Z ⊆ Z such

that |Z| ≥ 2γ there exists a set Y ⊂ Y with |Y | ≥ 4
√
M (|Z| − 2γ) such that each

vertex in Y is connected to at least a vertex in Z by a pebble-free path. Let X denotes

the set on input vertices of Hn×n. There exists a subset X ⊆ X , with |X| = |Y | such
that vertices in Y can be connected to vertices in X through vertex disjoint paths.

Proof Let 0 ≤ γ′ ≤ γ be the number pebbles be placed on “internal” vertices of

any of any of the sub-CDAGs H2
√
M×2

√
M . The remaining γ − γ pebbles may be

placed anywhere in Hn×n. From Lemma 4.16 we have that there exist at least

4
√
M (|Z| − 2γ′) pebble free paths that connecting a subset X ⊆ X of global input

vertices to vertices in Z passing through a subset Y ⊆ Y and that the sub-paths of

such paths that connect vertices in Y to vertices in X are vertex disjoint. One of

82 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

these paths can be blocked by one of the “external” γ−γ′ if one of the vertices in the

sub-path connecting X and Y is pebbled. Since said sub-paths are vertex disjoint,

each of the γ − γ′ pebbled vertices can block at most one of the paths connecting X

to Y (and therefore Z). The number of pebble free paths from X to Z will therefore

be at least:

4
√
M (|Z| − 2γ′)− (γ − γ′)

let us raise this quantity to the second power:(
4
√
M (|Z| − 2γ′)− (γ − γ′)

)2
=

= 16M (|Z| − 2γ′) + (γ − γ′)
2 − 8

√
M (|Z| − 2γ′) (γ − γ′)

≥ 16M (|Z| − 2γ′)− 8
√
M (|Z| − 2γ′) (γ − γ′)

≥ 16M (|Z| − 2γ) + 32M (γ − γ′)− 8
√
M (|Z| − 2γ′) (γ − γ′)

≥ 16M (|Z| − 2γ) + (γ − γ′)
(
32M − 8

√
M (|Z| − 2γ′)

)
Since, by hypothesis |Z| − 2γ′ ≤ 4M we have:(

4
√
M (|Z| − 2γ′)− (γ − γ′)

)2
≥ 16M (|Z| − 2γ)

and we can thus conclude:

4
√
M (|Z| − 2γ′) ≥ 4

√
M (|Z| − 2γ)

The lemma follows. □

Corollary 4.18. Any subset Z ⊆ Z, with |Z| = 4M has a dominator set of size at

least |Z|/2 = 2M .

Lemma 4.17 and Corollary 4.18 provide us the tools required to complete the

proof of the main Theorem 4.11.

4.6.2 Proof of the main theorem

Proof of Theorem 4.11 In the following proof we assume without loss of generality

that n = 2a and
√
M = 2b for some a, b ∈ N. At least 3M I/O operations are

necessary in order to read all the 2n2 input values form slow memory to the cache

and to write the n2 output values to the slow memory once they have been computed.

The statement of the theorem is therefore trivially verified if n ≤ 2
√
M .

4.6. Lower bound for general computations 83

In the following, we will consider the case for n ≥ 4
√
M Let Y (resp., Z),

denote the set of input (resp., output) vertices of the
(
n/2

√
M
)log2 7

sub-CDAGs

H2
√
M×2

√
M of Hn×n. Let P any pebbling strategy for the Red-Blue pebble game

played on Hn×n using M red pebbles. We partition P into segments according to

the following criteria:

• the first segment σ0 is the shortest prefix of P during which 4M distinct values

of Z are pebbled for the first time.

• for i > 1, let Pi denote the suffix of P which starts after the end of the i− 1-

th segment. The i-th segment, is the shortest prefix of Pi during which 4M

distinct values of Z are evaluated for the first time. We denote the set of

vertices corresponding to these 4M values as Zi

According to our previous considerations we have |Z| = 4M
(

n
2
√
M

)log 7
and there

will thus be a total of
(

n
2
√
M

)log 7
segments.

We shall now verify that at least M I/O operations are to be executed in every

segment σi of the overall pebbling strategy P . The proof is by contradiction. Let

Γi be the set of vertices which are either carrying a red pebble at the beginning of

σi, or receive a red pebble during σi by means of a read from the slow memory. At

the beginning of any segment σi at most M vertices can carry a red pebble. Sup-

pose during each interval at most M − 1 vertices receive a red pebble though a read

from secondary memory (R5). This implies |Gamma| ≤ 2M − 1. In order for the

4M values from Zi to be computed during the segment without any additional I/O

operation, there must be no path connecting any vertex in Z to any input vertex of

Hn×n which does not have at least one vertex in Γ. According to the terminology

in [37], this is equivalent to saying that Γ has to be a dominator set of Zi. From

Corollary 4.18, we have that any sub-set of 4M elements of Z has dominator size at

least 2M . This leads to a contradiction. At least M I/O operations are thus exe-

cuted during each segment σi. Since, by construction, the
(

n
2
√
M

)log 7
segments are

not overlapping, we can therefore conclude that at least M
(

n
2
√
M

)log 7
are necessary

for the execution of any pebbling strategy P for the Strassen’s algorithm. □

Our lower bound to the I/O complexity of Strassen’s matrix multiplication algo-

rithm corresponds asymptotically to the ones proposed in [7, 62] for recomputation

nr-computations. In [3] Ballard et al. presented a version of Strassen’s algorithm

whose I/O cost matches, up to a constant, the one indicate by our bound, which

is therefore tight. Furthermore, our result implies that the version of Strassen’s

84 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

algorithm presented by Ballard et al. in [3], is indeed optimal even without any

restriction on multiple evaluations of some intermediate result as its asymptotical

I/O cost matches our lower bound. As in the optimal algorithm presented in [3]

no intermediate result is ever recomputed, we can conclude the use of recomputa-

tion can lead at most to a constant factor reduction of the I/O complexity for the

execution of Strassen’s matrix multiplication algorithm.

Constant term in the lower bound

We will now discuss some extension of the previous results similar to those we pre-

sented for the result in Section 4.5.

Our proof technique for Theorem 4.11 could be modified in order to focus our

analysis on sub-problems of size α
√
M × α

√
M , for α ≤ n/

√
M , instead of sub-

problems 2
√
M × 2

√
M . The form of the obtained lower bound would be:

IOHn×n (M) ≥ α2 − 2

2αlog2 7

(
n√
M

)log2 7

M. (4.18)

Under the constraint that α
√
M is a power of two, the choice of α = 2 maximizes

the constant term of equation 4.18.

On mixed matrix multiplication strategies

In our technique, no constraint is imposed on the specific algorithm being used to

compute the results of the α
√
M×α

√
M sub-products. This allows to generalize our

result to mixed algorithmic strategies in which Strassen’s algorithm is initially used

to generate sub-problems of smaller size (e.g., sub-problems which can be entirely

computed in cache) which are then computed using a different algorithm (e.g. the

naive algorithm) can still be captured by our technique.

Lemma 4.19. Consider a mixed matrix multiplication strategy for which Strassen’s

algorithm is initially used to reduce the input matrices of size n×n, whose entries are
drawn from the ring R, by generating

(
n/2i

√
M
)log2 7

sub-products of size 2i
√
M ×

2i
√
M for 0 ≤ i ≤ log2(n/2

√
M). The single sub-product are then computed using

any straight line algorithm for matrix multiplication. Let Hn×n,i denote the CDAG

corresponding to this mixed strategy. The I/O complexity any such strategy when run

on a sequential machine with fast memory of size M is:

IOHn×n,i(M) ≥
(

n

2i
√
M

)log2 7 M

4

(
2i − 1

)
(4.19)

4.7. Lower bound to the I/O complexity of Strassen’s algorithm in the parallel
model 85

The proof of this lemma is given by a simple extension of the proof of Theo-

rem 4.11 by focusing the analysis on the sub-problems with input size 2i
√
M×2i

√
M .

Although this bound is in general much more loose than the one provided by theo-

rem 4.8, it provides an interesting indication of the I/O complexity for Strassen-mixed

strategies.

4.7 Lower bound to the I/O complexity of Strassen’s

algorithm in the parallel model

As suggested in the introduction of this chapter, the I/O complexity of an algorithm

can also be studied with respect to its parallel execution on multiple processors. For

parallel computations we consider a model with P processors each equipped with a

local memory of size M , all P processors are connected by means of a network. We

assume that the input is initially distributed among all processors, so MP has to be

at least as large as the input, we do not however assume anything about how the

input is distributed among the P processors. In this context, we therefore have that

the read and write operations, which model the communication between fast and

slow memory, are replaced by communications (respectively, incoming and outgoing)

between processors.

The I/O cost of an algorithm in this model (also referred as bandwidth cost in

literature) will therefore be given by the number of messages (i.e., words or values)

communicated between processors along the critical path as defined in [71], that is

two values that are communicated simultaneously are counted only once. This metric

is closely related to the total running time of the algorithm.

Theorem 4.20. Consider Strassen’s matrix multiplication algorithm being used to

multiply two square matrices of size n× n whose entries are drawn from the ring R.

The I/O-complexity of Strassen’s algorithm when run on a parallel machine with Ps

processors each equipped with a local memory of size M is:

IOHn×n(M) = Ω

((
n√
M

)log2 7 M

P

)
(4.20)

Proof Let Z denote the set of the 4M
(

n
2
√
M

)log 7
output vertices of the H2

√
M×2

√
M

sub-CDAGs. Vertices in Z represent the output values of the corresponding sub-

problems. All the values corresponding to the vertices in Z are computed at least

once during the execution of the algorithm. Among the P processors, at least one

86 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

shall compute at least 1
P
4M

(
n

2
√
M

)log 7
of these values. Let us assume, without loss

of generality, that P1 is such processor. We denote as Z1 the subset of values in

Z computed by P1. We shall now focus on the computation C1 executed by P1.

We partition C1 into segments according to the following criteria such that dur-

ing each segment 4M distinct values from Z1 are computed for the first time. As

|Z1| ≥ 1
P
4M

(
n

2
√
M

)log 7
there will be at least 1

P
4M

(
n

2
√
M

)log 7
We shall now verify

that at least M I/O operations are to be executed during every segment σi of C∞.
The proof is by contradiction. At the beginning of any segment σi, at most M val-

ues each corresponding to a vertex of Hn×n can be maintained in the memory of P1.

Suppose during each interval P1 acquires at most M − 1 through communications

with other processors. In order for the 4M values from Z to be computed during the

segment without any additional I/O operation, there must be no path connecting any

vertex in Z1 to any input vertex of Hn×n. That is, the vertices corresponding set of

the at most 2M −1 values either present in memory at the beginning of the segment

or acquired via communications with other processors must be a dominator set of

the vertices corresponding to the 4M values from Z computed during the segment.

From Corollary 4.18, we have that any sub-set of 4M elements of Z has dominator

size at least 2M . This leads to a contradiction. At least M I/O operations are thus

executed during each segment σi. Since, by construction, the 1
P

(
n

2
√
M

)log 7
segments

are not overlapping, we can therefore conclude that at least M
P

(
n

2
√
M

)log 7
communi-

cations are necessary for the execution of any computation of Strassen’s algorithm. □

Our lower bound to the I/O complexity of Strassen’s matrix multiplication algo-

rithm corresponds asymptotically to the ones proposed in [7, 62] which have been

obtained under the assumption that no intermediate value is computed more than

once (no recomputation assumption). Our results does not require any restriction on

the recomputation of intermediate values, nor any assumption on the distribution of

the input data among the P processors at the beginning of the algorithm’s execution.

The same extension can be obtained using the same argument for the results on

mixed multiplication algorithms (Lemma 4.19).

4.8 Conclusion

In this chapter, we studied the I/O complexity of Strassen’s algorithm when executed

sequentially on a machine equipped with a two level memory hierarchy. We use an

alternative technique to those in [4] and [62] to obtain a tight lower bound to the

4.8. Conclusion 87

I/O complexity of Strassen’s matrix multiplication algorithm for computations in

which no intermediate result is ever recomputed. Our proof technique relates the

I/O complexity to the recursive structure and the information flow of the function

implemented by the algorithm.

In the main contribution of the chapter we obtained the first asymptotically tight

lower bound to the I/O complexity of Strassen’s algorithm for general computations

i.e., computations without any restriction on the recomputation of intermediate val-

ues. Our technique is based on a novel application of Gigoriev’s information flow

concept [33], which used to determinate a lower bound for the size of a dominator

set of subset of the Strassen’s algorithm CDAG. As an implementation of Strassen’s

matrix multiplication algorithm whose I/O complexity matches (asymptotically) our

lower bound while never computing an intermediate value more than once has been

presented in literature [3], this allows us to conclude that our bound is tight, and

that the use of recomputation in the execution of Strassen’s matrix multiplication

algorithm can lead at most to a constant factor reduction of the I/O complexity.

We also studied the I/O complexity of Strassen’s algorithm when executed in

parallel by P processors each equipped with a finite memory. We obtain an lower

bound which holds for any computation (no restriction on recomputation), without

any assumption regarding the distribution of the input data among the P processors

at the beginning of the computation.

88 Chapter 4. I/O complexity of Strassen’s matrix multiplication algorithm

Chapter 5

Algorithms resilient to memory

faults

In this chapter we briefly presents some results regarding the effect of opportune

memory utilization in the context of error resilient algorithms, which provide (al-

most) correct solutions even when silent memory errors occur.

A complete presentation of the results mentioned in this chapter, including the

details on the mentioned algorithms and the proofs of the theoretical results, can be

found in [22]. This paper was co-authored with Francesco Silvestri.

Our analysis spawns from the observation that memories of modern computa-

tional platforms are not completely reliable. As documented in several practical ap-

plications [8, 61], various causes, such as cosmic radiations and alpha particles [8],

may lead to a transient failure of a memory unit and to a consequent loss or cor-

ruption of its content. Such memory errors are usually not detectable by the system

(i.e., they are “silent”). An application may therefore successfully terminate even if

the final output is irreversibly corrupted due to the presence of errors.

Although hardware-level countermeasures, such as Error Correcting Codes (ECC),

can be used to prevent problems originating from said memory corruptions, these are

often costly and sensibly reduce space and time performance. Algorithmic (software-

level) approaches for dealing with unreliable memory are thus very attractive and

have therefore received considerable attention in literature under different settings,

we refer to [25] for a survey. Algorithms and data structures which maintain an

“acceptable level of functionality”, tolerating the occurrence of silent memory errors

and corruptions, are called resilient. Note that what is to be considered an accept-

able level of functionality is in general dependent on the specific problem (sorting,

searching, FFT,...) being considered. While for some problems such as sorting, a

89

90 Chapter 5. Algorithms resilient to memory faults

definition of acceptable level of functionality is quite straightforward (i.e., a limited

number of un-ordered elements in the output is tolerable), the definition can be much

more challenging for other problems such as matrix multiplication and FFT [54], or

graph algorithms.

The Faulty RAM (FRAM) model, introduced by Finocchi and Italiano in [28],

has received considerable attention in literature. In this model, an adaptive adversary

can corrupt up to δ memory cells of a large unreliable memory at any time (even

simultaneously) during the execution of an algorithm. The same memory location

can be affected by multiple corruptions trough the execution of the algorithm.

Various algorithms and data structures have been designed in this designed in

this model for many problems, including sorting [26], selection [39], dynamic pro-

gramming [13], dictionaries [27], priority queues [38], matrix multiplication and FFT

[54], K-d and suffix trees [31, 15]. The practical validity of this model has also been

experimentally evaluated [51, 54, 50, 49].

5.1 Our contribution

Let δ and α denote respectively the maximum amount of faults which can happen

during the execution of an algorithm and the actual number of occurred faults,

with α ≤ δ. Previous results in the FRAM model assume the existence of a safe

memory of constant size which cannot be corrupted by the adversary and which is

used for storing crucial data such as code and instruction counters. Following up the

preliminary investigation in [13], we enrich the FRAM model with a safe memory

of arbitrary size S and then give evidence that an increased safe memory can be

exploited to improve the performance of resilient algorithms.

In particular, we present the S-Sort algorithm, which can be used to resiliently

sort n entries in O (n log n+ α(δ/S + log S)) time when a safe memory of size Θ (S)

is available in the FRAM.

Finally, we use the proposed resilient sorting algorithm for constructing a resilient

priority queue data structure. Our implementation uses Θ (S) safe memory words

and Θ (n) faulty memory words for storing n keys, and requires O (log n+ δ/S)

amortized time for each insert and minimum element removal operation Deletemin.

In addition to its theoretical interest, the adoption of such a model is supported

by recent research on hybrid systems that combine algorithmic-level resiliency with

the use of a limited amount memory protected at hardware-level using ECC [41]. In

this setting, S would denote the memory that is protected by the hardware.

5.2. The extended FRAM model 91

5.2 The extended FRAM model

Our extended FRAM model features two memories: the faulty memory whose size is

potentially unbounded, and the safe memory of size S. For the sake of simplicity, we

allow algorithms to exceed the amount of safe memory by a multiplicative constant

factor. At any time the adversary can read the content of any memory location in the

faulty memory and can corrupt the value stored in any such location up to δ times.

Said corruptions (or faults) can occur simultaneously and the adversary is allowed

to corrupt a value which was already previously altered. The adversary can read

any memory location of the safe memory as well1 but he cannot alter (corrupt) the

values stored in such memory locations. We denote with α ≤ δ the actual number

of faults (corruptions) occurred during the execution of the algorithm.

5.3 Resilient sorting algorithm

We say that a value is faithful if it has never been corrupted and that a sequence is

faithfully ordered if all the faithful values in it are correctly ordered. In the resilient

sorting problem we are given a set of n keys and the goal is to correctly order all the

faithful input keys (corrupted keys can be arbitrarily positioned).

We propose S-Sort, a resilient sorting algorithm which usesΘ (S) safe memory

words and runs in time O (n log n+ α (δ/S + log S)). While our approach is indeed

inspired by the resilient sorting algorithm in [26], several major modifications are

required in order to fully exploit the safe memory.

In particular, S-Sort forces the adversary to inject Θ (S) faults in order to in-

validate part of the computation and to increase the running time by an additive

O (δ + S logS) term. In comparison, just O (1) faults suffice to induce an additive

overhead term O (δ) to the execution time of previous algorithms [28, 26, 39], even

if a safe memory of size ω(1) is available.

We therefore have that our algorithm runs in optimal Θ (n log n) time for δ =

O
(√

Sn log n
)
and S ≤ n/ log n: this represents a Θ

(√
S
)
improvement with re-

spect to the state of the art [26], where optimality is reached for δ = O
(√

n log n
)
.

As S-Sort is based on mergesort [21], we also introduce a resilient merging

algorithm S-Merge, which exploits the available safe memory. S-Merge runs in

O (n+ α (δ/S + log S)) time using Θ (S) safe memory. The algorithm merges two

input faithfully ordered sequences of length n each with Θ (S) into one unique faith-

fully ordered output sequence.

1This constitutes the main difference with respect to a similar model adopted in [13], for which
the adversary is not allowed to read the safe memory

92 Chapter 5. Algorithms resilient to memory faults

We here provide a high-level description of the S-Merge algorithm. An incom-

plete merge of the two input sequences is initially computed with S-PurifyingMerge:
this algorithm returns a faithfully ordered sequence Z of length at least 2(n−α) that
contains a partial merge of the values of the input sequences that S-PurifyingMerge
has determined to be faithful, and a sequence F with the at most 2α remaining

input entries that S-PurifyingMerge has deemed to potentially be corrupted values

and has failed to insert faithfully into Z. The algorithm S-PurifyingMerge runs in

O (n+ αδ/S) time.

The values in F are then inserted into Z using the S-BucketSort algorithm, which

runs inO (n+ α (δ/S + log S)) time, thus obtaining the final faithfully ordered merge

of all input values.

S-Sort is then obtained by using S-Merge in the classical mergesort algorithm2 [21].

A complete description and analysis of these results, including the detailed pre-

sentation and analysis of S-PurifyingMerge and S-BucketSort, is available in our

published paper [22].

It is important to point out that the Ω (n log n+ αδ) lower bound in [28] on the

performance of resilient comparison-based sorting and merging algorithms does not

apply to S-Sort and S-Merge as the lower bound does not account for the presence

of any safe memory location.

For the complete description of the mentioned algorithms, and for the detailed

analysis of their performance, please refer to our published paper [22].

5.4 Resilient priority queue

A resilient priority queue is a data structure which maintains a set of keys that can

be managed and accessed through two main operations: Insert, which allows to add

a key to the queue; and Deletemin, which returns the minimum faithful key among

those in the priority queue or an even smaller corrupted key and then removes it

from the priority queue.

In our work [22], we constructed an implementation of the resilient priority queue

that exploits a safe memory of size Θ (S). Let n denote the number of keys in the

queue. Our implementation requires O (log n+ δ/S) amortized time per operation,

a safe memory of size Θ (S) and Θ (n) words in the faulty memory. Our resilient

priority queue is based on the fault tolerant priority queue proposed in [38], which

uses various elements of the cache-oblivious priority queue in [2].

2The standard recursive mergesort algorithm requires a stack of length O (log n) which cannot
be corrupted. It is however easy to derive an iterative algorithm where a Θ (1) stack length suffices.

5.5. Conclusion 93

The performance of the state-of-the-art implementation of resilient priority queue

proposed in [38] is here improved by exploiting the safe memory and by using the

S-Merge and S-Sort algorithms previously discussed. The Ω (log n+ δ) lower bound

in [38] on the performance of the resilient priority queue does not apply to our data

structure as the lower bound argument assumes that keys are not stored in safe

memory between operations.

The amortized time for each operation in our implementation matches the per-

formance of classical optimal priority queues in the RAM model if the maximum

number of tolerated corruptions is δ = O (S log n): we therefore obtain a Θ (S)

improvement with respect to the state of the art [38].

For the complete description of the structure of our priority queue, and for the

detailed analysis of its performance, please refer to our published paper [22].

5.5 Conclusion

In this chapter we considered how limitations on the size of the available safe memory

can affect the performance of resilient algorithms and stata structured when silent

memory errors and corruptions may occur. We provide an overview of the main

results presented in [22] among which a novel resilient sorting algorithm S-Sort, and
a novel implementation od the resilient priority queue data. These results achieve

an improvement over the respective state of the art by exploiting a safe memory

of size Θ(S). As future research, it would be interesting to investigate which other

problems could benefit from a non-constant safe memory, and then obtain tradeoffs

between the achievable performance and the size of the available safe memory.

Note in fact that the use of an S-size safe memory is not guaranteed to improve the

performance of resilient algorithms for any problem. For instance, the Ω (log n+ δ)

lower bound for searching derived in [28] applies even if a safe memory of size S ≤ ϵn,

for a suitable constant ϵ ∈ (0, 1), is available [22].

94 Chapter 5. Algorithms resilient to memory faults

Chapter 6

Conclusion and future work

In this thesis we studied various aspects related to the computation of straight-line

programs for which limitations in the available memory space play a crucial role.

In Chapter 2 and Chapter 3 we studied the memory space requirements for

straight-line programs represented by means of a Computational Directed Acyclic

Graph G(I ∪ V,E), making use of the pebble game abstraction. In Chapter 2, we

studied techniques for obtaining lower bounds to the memory space required for the

computation of a CDAG algorithm (i.e., its space complexity). We reviewed the

marking rule approach [10] and applied it in order to obtain a lower bound to the

space complexity of Superconcentrator-Stack CDAGs. In order to study the limits

of the marking rule technique, we introduced the concept of visit of a CDAG and

we showed how studying properties of the visits of a CDAG is related to its space

complexity. In our results we showed that for both the singleton and topological it

is possible to construct a visit that requires space O
(√

d−n
)
, where |I ∪ V | = n

and d− is the maximum in-degree of G. An important open question with regards to

this topic, is whether a similar result holds for intermediate (i.e., not singleton not

topologic) visit rules. If this was indeed not the case for a generic CDAG, it would

be interesting to determinate whether this is the case for some particular families of

CDAGs. As future work, we aim to study whether the marking rule technique and

the visit approach could be applied to the main variants of the basic pebble game

know in literature such as the Black-White pebble game introduced by Cook and

Sethi [18] or the two-people pebble game introduced by Tompa [65].

In Chapter 3 we moved to the analysis of an upper bound to the pebbling

cost of a generic CDAG with m edges and maximum in-degree d−. We proposed

an algorithm that allows to construct a complete pebbling strategy that requires

O (m/ logm+ d−) pebbles. While a family of CDAGs whose complexity matches

the upper bound when the maximum in-degree of a CDAG is a constant with re-

95

96 Chapter 6. Conclusion and future work

spect to the size of the CDAG has been studied in literature [48] (a CDAG in this

family is represented in Figure 2.5), it would be interesting to investigate whether

the same condition holds for non-constant maximum in-degree. The open question

of whether it is indeed possible to construct a family of n-vertex CDAGs attain-

ing space complexity Θ(n) with maximum in-degree o(n), and if so, which is the

minimum value of d− for which this is possible, is of high theoretical interest.

In Chapter 4 we studied the I/O complexity of CDAG computations in the hi-

erarchical memory setting as modeled by Hong and Jung [37]. In particular, we

focused on Strassen’s matrix multiplication algorithm [63].

We provide an alternative technique to those in [4] and [62] to obtain a tight

lower bound to the I/O complexity of Strassen’s matrix multiplication algorithm

for computations in which no intermediate result is ever recomputed. Our proof

technique relates the I/O complexity to the recursive structure of the algorithm,

rather than to specific combinatorial properties of the corresponding CDAG as done

in previous contributions [7, 62].

We then obtain the first tight lower bound to the I/O complexity of Strassen’s

matrix multiplication algorithm which does not require any restriction on the recom-

putation of intermediate values. In our technique, we use elements from Grigoriev’s

information flow method [33]. Because of the fact that an algorithm whose perfor-

mance match this bound without recomputing any intermediate value is known in

literature [3], we conclude that the use of recomputation does not allow to reduce the

I/O cost of Strassen’s algorithm for more than a constant factor. In our future work

we aim to verify whether these techniques may be applied to variants of Strassen’s

algorithm (the so called Strassen-like algorithms). The study of the characteristics

of a straight-line program, or of the CDAG corresponding to it, which may indicate

whether recomputation may or may not allow for a reduction of the I/O cost, is an

open problem of great theoretical importance. As future research, we aim to study

whether the information flow concept may shed some insight into this problem.

For what pertains algorithms and data structures resilient to memory faults,

as future research, it would be interesting to investigate which other problems can

benefit of a non-constant safe memory and propose tradeoffs between the achievable

performance and the size of the available safe memory. Such tradeoffs may also

provide useful insights for designing hybrid systems mounting both cheap faulty

memory and expensive ECC memory. Furthermore, it would be interesting to study

whether the use of the safe memory S could allow for designing resilient algorithms

which achieve efficient performance without explicit knowledge of the value of the

parameter δ (i.e., δ-oblivious).

Bibliography

[1] Aggarwal, A., Alpern, B., Chandra, A., and Snir, M. (1987). A model for hi-

erarchical memory. In Proceedings of the nineteenth annual ACM symposium on

Theory of computing, pages 305–314. ACM.

[2] Arge, L., Bender, M. A., Demaine, E. D., Minkley, B. H., and Munro, J. I. (2007).

An optimal cache-oblivious priority queue and its application to graph algorithms.

SIAM Journal Computing, 36(6):1672–1695.

[3] Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., and Schwartz, O. (2012a).

Communication-optimal parallel algorithm for strassen’s matrix multiplication.

In Proceedings of the twenty-fourth annual ACM symposium on Parallelism in

algorithms and architectures, pages 193–204. ACM.

[4] Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., and Schwartz, O. (2012b).

Graph expansion analysis for communication costs of fast rectangular matrix mul-

tiplication. In Design and Analysis of Algorithms, pages 13–36. Springer.

[5] Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. (2010). Communication-

optimal parallel and sequential cholesky decomposition. SIAM Journal on Scien-

tific Computing, 32(6):3495–3523.

[6] Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. (2011). Minimizing com-

munication in numerical linear algebra. SIAM Journal on Matrix Analysis and

Applications, 32(3):866–901.

[7] Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. (2012c). Graph expan-

sion and communication costs of fast matrix multiplication. Journal of the ACM

(JACM), 59(6):32.

[8] Baumann, R. (2005). Radiation-induced soft errors in advanced semiconductor

technologies. IEEE Trans. Devive and Materials Reliability, 5(3):305–316.

97

98 Bibliography

[9] Bilardi, G. and Peserico, E. (2001). A characterization of temporal locality and its

portability across memory hierarchies. In Automata, Languages and Programming,

pages 128–139. Springer.

[10] Bilardi, G., Pietracaprina, A., and DAlberto, P. (2000). On the space and

access complexity of computation dags. In Graph-Theoretic Concepts in Computer

Science, pages 47–58. Springer.

[11] Bilardi, G. and Preparata, F. P. (1999). Processortime tradeoffs under bounded-

speed message propagation: Part ii, lower bounds. Theory of Computing Systems,

32(5):531–559.

[12] Bini, D., Capovani, M., Romani, F., and Lotti, G. (1979). O (n 2.7799) complex-

ity for n× n approximate matrix multiplication. Information processing letters,

8(5):234–235.

[13] Caminiti, S., Finocchi, I., Fusco, E. G., and Silvestri, F. (2011). Dynamic pro-

gramming in faulty memory hierarchies (cache-obliviously). In Proc. 31st Con-

ference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), volume 13 of LIPIcs, pages 433–444.

[14] Cannon, L. E. (1969). A cellular computer to implement the kalman filter

algorithm. Technical report, DTIC Document.

[15] Christiano, P., Demaine, E., and Kishore, S. (2011). Lossless fault-tolerant data

structures with additive overhead. In Proc. 12th Workshop on Algorithms and

Data Structures (WADS), volume 6844 of LNCS, pages 243–254.

[16] Cohn, H., Kleinberg, R., Szegedy, B., and Umans, C. (2005). Group-theoretic

algorithms for matrix multiplication. In Foundations of Computer Science, 2005.

FOCS 2005. 46th Annual IEEE Symposium on, pages 379–388. IEEE.

[17] Cohn, H. and Umans, C. (2003). A group-theoretic approach to fast matrix mul-

tiplication. In Foundations of Computer Science, 2003. Proceedings. 44th Annual

IEEE Symposium on, pages 438–449. IEEE.

[18] Cook, S. and Sethi, R. (1974). Storage requirements for determinis-

tic/polynomial time recognizable languages. In Proceedings of the sixth annual

ACM symposium on Theory of computing, pages 33–39. ACM.

[19] Coppersmith, D. and Winograd, S. (1982). On the asymptotic complexity of

matrix multiplication. SIAM Journal on Computing, 11(3):472–492.

Bibliography 99

[20] Coppersmith, D. and Winograd, S. (1987). Matrix multiplication via arithmetic

progressions. In Proceedings of the nineteenth annual ACM symposium on Theory

of computing, pages 1–6. ACM.

[21] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction

to Algorithms. The MIT Press, 3rd edition.

[22] De Stefani, L. and Silvestri, F. (2015). Exploiting non-constant safe memory in

resilient algorithms and data structures. Theor. Comput. Sci., 583:86–97.

[23] Elango, V., Rastello, F., Pouchet, L.-N., Ramanujam, J., and Sadayappan, P.

(2015). On characterizing the data access complexity of programs. In Proceed-

ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 567–580. ACM.

[24] Essam, J. W. and Fisher, M. E. (1970). Some basic definitions in graph theory.

Reviews of Modern Physics, 42(2):271.

[25] Finocchi, I., Grandoni, F., and Italiano, G. F. (2007). Designing reliable algo-

rithms in unreliable memories. Computer Science Review, 1(2):77–87.

[26] Finocchi, I., Grandoni, F., and Italiano, G. F. (2009a). Optimal resilient sorting

and searching in the presence of memory faults. Theoretical Computer Science,

410(44):4457–4470.

[27] Finocchi, I., Grandoni, F., and Italiano, G. F. (2009b). Resilient dictionaries.

ACM Transactions on Algorithms, 6(1):1:1–1:19.

[28] Finocchi, I. and Italiano, G. F. (2008). Sorting and searching in faulty memories.

Algorithmica, 52(3):309–332.

[29] Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999). Cache-

oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual

Symposium on, pages 285–297. IEEE.

[30] Gabber, O. and Galil, Z. (1981). Explicit constructions of linear-sized super-

concentrators. Journal of Computer and System Sciences, 22(3):407–420.

[31] Gieseke, F., Moruz, G., and Vahrenhold, J. (2012). Resilient k-d trees: k-means

in space revisited. Frontiers of Computer Science, 6(2):166–178.

[32] Gilbert, J. R., Lengauer, T., and Tarjan, R. E. (1980). The pebbling problem

is complete in polynomial space. SIAM Journal on Computing, 9(3):513–524.

100 Bibliography

[33] Grigor’ev, D. Y. (1976). Application of separability and independence notions

for proving lower bounds of circuit complexity. Zapiski Nauchnykh Seminarov

POMI, 60:38–48.

[34] Harary, F. (2005). Structural models: An introduction to the theory of directed

graphs.

[35] Hopcroft, J., Paul, W., and Valiant, L. (1977). On time versus space. Journal

of the ACM (JACM), 24(2):332–337.

[36] Irony, D., Toledo, S., and Tiskin, A. (2004). Communication lower bounds for

distributed-memory matrix multiplication. Journal of Parallel and Distributed

Computing, 64(9):1017–1026.

[37] Jia-Wei, H. and Kung, H.-T. (1981). I/o complexity: The red-blue pebble game.

In Proceedings of the thirteenth annual ACM symposium on Theory of computing,

pages 326–333. ACM.

[38] Jørgensen, A. G., Moruz, G., and Mølhave, T. (2007). Priority queues resilient

to memory faults. In Proc. 10th Workshop on Algorithms and Data Structures

(WADS), volume 4619 of LNCS, pages 127–138.

[39] Kopelowitz, T. and Talmon, N. (2012). Selection in the presence of memory

faults, with applications to in-place resilient sorting. In Proc. 23rd International

Symposium on Algorithms and Computation (ISAAC), volume 7676 of LNCS,

pages 558–567.

[40] Lengauer, T. and Tarjan, R. E. (1979). Upper and lower bounds on time-space

tradeoffs. In Proceedings of the eleventh annual ACM symposium on Theory of

computing, pages 262–277. ACM.

[41] Li, D., Chen, Z., Wu, P., and Vetter, J. S. (2013). Rethinking algorithm-

based fault tolerance with a cooperative software-hardware approach. In Proc.

International Conference on High Performance Computing, Networking, Storage

and Analysis (SC).

[42] Loomis, L. H. and Whitney, H. (1949). An inequality related to the isoperimetric

inequality. Bull. Amer. Math. Soc., 55(10):961–962.

[43] Loui, M. C. (1979). Minimum Register Allocation Is Complete in Polynomial

Space. Massachusetts Institute of Technology, Laboratory for Computer Science.

Bibliography 101

[44] Miller, W. (1975). Computational complexity and numerical stability. SIAM

Journal on Computing, 4(2):97–107.

[45] Nordström, J. (2009). New wine into old wineskins: A survey of some peb-

bling classics with supplemental results. Manuscript in preparation. Current draft

version available at the webpage http://people. csail. mit. edu/jakobn/research.

[46] Pan, V. Y. (1978). Strassen’s algorithm is not optimal trilinear technique of

aggregating, uniting and canceling for constructing fast algorithms for matrix op-

erations. In 19th Annual Symposium on Foundations of Computer Science, pages

166–176. IEEE.

[47] Paterson, M. S. and Hewitt, C. E. (1970). Comparative schematology. In Record

of the Project MAC conference on concurrent systems and parallel computation,

pages 119–127. ACM.

[48] Paul, W. J., Tarjan, R. E., and Celoni, J. R. (1976). Space bounds for a game

on graphs. Mathematical Systems Theory, 10(1):239–251.

[49] Petrillo, U. F., Finocchi, I., and Italiano, G. F. (2010). Experimental study of

resilient algorithms and data structures. In Proc. 9th International Symposium

Experimental Algorithms, pages 1–12.

[50] Petrillo, U. F., Grandoni, F., and Italiano, G. F. (2013). Data structures re-

silient to memory faults: An experimental study of dictionaries. ACM Journal of

Experimental Algorithmics, 18.

[51] Pilla, L., Rech, P., Silvestri, F., Frost, C., Navaux, P., Sonza Reorda, M., and

Carro, L. (2014). Software-based hardening strategies for neutron sensitive FFT

algorithms on GPUs. IEEE Transactions on Nuclear Science, 61(4):1874–1880.

[52] Pippenger, N. (1977). Superconcentrators. SIAM Journal on Computing,

6(2):298–304.

[53] Ranjan, D., Savage, J., and Zubair, M. (2012). Upper and lower i/o bounds for

pebbling r-pyramids. Journal of Discrete Algorithms, 14:2–12.

[54] Rech, P., Pilla, L., Silvestri, F., Navaux, P., and Carro, L. (2013). Neutron

sensitivity and software hardening strategies for matrix multiplication and FFT

on graphics processing units. In Proc. 3rd Workshop on Fault-tolerance for HPC

at Extreme Scale (FTXS), pages 13–20.

102 Bibliography

[55] Romani, F. (1982). Some properties of disjoint sums of tensors related to matrix

multiplication. SIAM Journal on Computing, 11(2):263–267.

[56] Savage, J. E. (1984). The performance of multilective vlsi algorithms. Journal

of Computer and System Sciences, 29(2):243–273.

[57] Savage, J. E. (1995). Extending the hong-kung model to memory hierarchies.

In Computing and Combinatorics, pages 270–281. Springer.

[58] Savage, J. E. (1998). Models of computation. Exploring the Power of Computing.

[59] Savage, J. E. and Swamy, S. (1978). Space-time trade-offs on the fft algorithm.

Information Theory, IEEE Transactions on, 24(5):563–568.

[60] Schönhage, A. (1981). Partial and total matrix multiplication. SIAM Journal

on Computing, 10(3):434–455.

[61] Schroeder, B., Pinheiro, E., and Weber, W. D. (2011). DRAM errors in the

wild: a large-scale field study. Communications of the ACM, 54(2):100–107.

[62] Scott, J., Holtz, O., and Schwartz, O. (2015). Matrix multiplication i/o-

complexity by path routing. In Proceedings of the 27th ACM on Symposium on

Parallelism in Algorithms and Architectures, pages 35–45. ACM.

[63] Strassen, V. (1969). Gaussian elimination is not optimal. Numerische Mathe-

matik, 13(4):354–356.

[64] Strassen, V. (1986). The asymptotic spectrum of tensors and the exponent of

matrix multiplication. In Foundations of Computer Science, 1986., 27th Annual

Symposium on, pages 49–54. IEEE.

[65] Tompa, M. (1978). Time-space tradeoffs for computing functions, using con-

nectivity properties of their circuits. In Proceedings of the tenth annual ACM

symposium on Theory of computing, pages 196–204. ACM.

[66] Tompa, M. (1982). Two familiar transitive closure algorithms which admit no

polynomial time, sublinear space implementations. SIAM Journal on Computing,

11(1):130–137.

[67] V. A. Zalgaller, A. B. Sossinsky, Y. D. B. (1989). The American Mathematical

Monthly, 96(6):544–546.

Bibliography 103

[68] Valiant, L. G. (1975). On non-linear lower bounds in computational complexity.

In Proceedings of seventh annual ACM symposium on Theory of computing, pages

45–53. ACM.

[69] Venkateswaran, H. and Tompa, M. (1989). A new pebble game that character-

izes parallel complexity classes. SIAM Journal on Computing, 18(3):533–549.

[70] Williams, V. V. (2012). Multiplying matrices faster than coppersmith-winograd.

In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,

pages 887–898. ACM.

[71] Yang, C.-Q. and Miller, B. P. (1988). Critical path analysis for the execution of

parallel and distributed programs. In Distributed Computing Systems, 1988., 8th

International Conference on, pages 366–373. IEEE.

104 Bibliography

Appendix

Table 1: Study of the possible compositions of sub-sets of output vertices of Enc for
Lemma 4.15 in Section 4.6.1

composition code |y| y1 y2 y3 y4 y5 y6 y7 c(y)

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1

2 1 0 0 0 0 0 1 0 1

4 1 0 0 0 0 1 0 0 1

8 1 0 0 0 1 0 0 0 1

16 1 0 0 1 0 0 0 0 1

32 1 0 1 0 0 0 0 0 1

64 1 1 0 0 0 0 0 0 1

3 2 0 0 0 0 0 1 1 2

5 2 0 0 0 0 1 0 1 2

6 2 0 0 0 0 1 1 0 2

9 2 0 0 0 1 0 0 1 2

10 2 0 0 0 1 0 1 0 2

12 2 0 0 0 1 1 0 0 2

17 2 0 0 1 0 0 0 1 2

18 2 0 0 1 0 0 1 0 2

20 2 0 0 1 0 1 0 0 2

24 2 0 0 1 1 0 0 0 2

33 2 0 1 0 0 0 0 1 2

34 2 0 1 0 0 0 1 0 2

36 2 0 1 0 0 1 0 0 2

40 2 0 1 0 1 0 0 0 2

48 2 0 1 1 0 0 0 0 2

65 2 1 0 0 0 0 0 1 2

66 2 1 0 0 0 0 1 0 2

105

106 Appendix .

68 2 1 0 0 0 1 0 0 2

72 2 1 0 0 1 0 0 0 2

80 2 1 0 1 0 0 0 0 2

96 2 1 1 0 0 0 0 0 2

7 3 0 0 0 0 1 1 1 3

11 3 0 0 0 1 0 1 1 3

13 3 0 0 0 1 1 0 1 3

14 3 0 0 0 1 1 1 0 3

19 3 0 0 1 0 0 1 1 3

21 3 0 0 1 0 1 0 1 3

22 3 0 0 1 0 1 1 0 3

25 3 0 0 1 1 0 0 1 3

26 3 0 0 1 1 0 1 0 3

28 3 0 0 1 1 1 0 0 3

35 3 0 1 0 0 0 1 1 3

37 3 0 1 0 0 1 0 1 3

38 3 0 1 0 0 1 1 0 3

41 3 0 1 0 1 0 0 1 3

42 3 0 1 0 1 0 1 0 3

44 3 0 1 0 1 1 0 0 3

49 3 0 1 1 0 0 0 1 3

50 3 0 1 1 0 0 1 0 3

52 3 0 1 1 0 1 0 0 3

56 3 0 1 1 1 0 0 0 3

67 3 1 0 0 0 0 1 1 3

69 3 1 0 0 0 1 0 1 3

70 3 1 0 0 0 1 1 0 3

73 3 1 0 0 1 0 0 1 3

74 3 1 0 0 1 0 1 0 3

76 3 1 0 0 1 1 0 0 3

81 3 1 0 1 0 0 0 1 3

82 3 1 0 1 0 0 1 0 3

84 3 1 0 1 0 1 0 0 3

88 3 1 0 1 1 0 0 0 2

97 3 1 1 0 0 0 0 1 3

98 3 1 1 0 0 0 1 0 3

100 3 1 1 0 0 1 0 0 3

107

104 3 1 1 0 1 0 0 0 3

112 3 1 1 1 0 0 0 0 3

15 4 0 0 0 1 1 1 1 4

23 4 0 0 1 0 1 1 1 4

27 4 0 0 1 1 0 1 1 4

29 4 0 0 1 1 1 0 1 3

30 4 0 0 1 1 1 1 0 4

39 4 0 1 0 0 1 1 1 4

43 4 0 1 0 1 0 1 1 4

45 4 0 1 0 1 1 0 1 4

46 4 0 1 0 1 1 1 0 4

51 4 0 1 1 0 0 1 1 4

53 4 0 1 1 0 1 0 1 4

54 4 0 1 1 0 1 1 0 4

57 4 0 1 1 1 0 0 1 4

58 4 0 1 1 1 0 1 0 3

60 4 0 1 1 1 1 0 0 4

71 4 1 0 0 0 1 1 1 4

75 4 1 0 0 1 0 1 1 4

77 4 1 0 0 1 1 0 1 3

78 4 1 0 0 1 1 1 0 4

83 4 1 0 1 0 0 1 1 4

85 4 1 0 1 0 1 0 1 3

86 4 1 0 1 0 1 1 0 4

89 4 1 0 1 1 0 0 1 3

90 4 1 0 1 1 0 1 0 3

92 4 1 0 1 1 1 0 0 3

99 4 1 1 0 0 0 1 1 4

101 4 1 1 0 0 1 0 1 4

102 4 1 1 0 0 1 1 0 4

105 4 1 1 0 1 0 0 1 4

106 4 1 1 0 1 0 1 0 3

108 4 1 1 0 1 1 0 0 4

113 4 1 1 1 0 0 0 1 4

114 4 1 1 1 0 0 1 0 3

116 4 1 1 1 0 1 0 0 4

120 4 1 1 1 1 0 0 0 3

108 Appendix .

31 5 0 0 1 1 1 1 1 4

47 5 0 1 0 1 1 1 1 4

55 5 0 1 1 0 1 1 1 4

59 5 0 1 1 1 0 1 1 4

61 5 0 1 1 1 1 0 1 4

62 5 0 1 1 1 1 1 0 4

79 5 1 0 0 1 1 1 1 4

87 5 1 0 1 0 1 1 1 4

91 5 1 0 1 1 0 1 1 4

93 5 1 0 1 1 1 0 1 3

94 5 1 0 1 1 1 1 0 4

103 5 1 1 0 0 1 1 1 4

107 5 1 1 0 1 0 1 1 4

109 5 1 1 0 1 1 0 1 4

110 5 1 1 0 1 1 1 0 4

115 5 1 1 1 0 0 1 1 4

117 5 1 1 1 0 1 0 1 4

118 5 1 1 1 0 1 1 0 4

121 5 1 1 1 1 0 0 1 4

122 5 1 1 1 1 0 1 0 3

124 5 1 1 1 1 1 0 0 4

63 6 0 1 1 1 1 1 1 4

95 6 1 0 1 1 1 1 1 4

111 6 1 1 0 1 1 1 1 4

119 6 1 1 1 0 1 1 1 4

123 6 1 1 1 1 0 1 1 4

125 6 1 1 1 1 1 0 1 4

126 6 1 1 1 1 1 1 0 4

127 7 1 1 1 1 1 1 1 4

