
Head Office: Università degli Studi di Padova

Department of General Psychology

Ph.D. Course in: BRAIN, MIND AND COMPUTER SCIENCE

Curriculum: Computer Science and Innovation for Societal Challenges

XXXII SERIES

Tableaux, Automata and Games for

True Concurrency Properties

Coordinator: Prof. Giuseppe Sartori

Supervisor: Prof. Paolo Baldan

Co-Supervisor: Prof. Sara Mondini

Ph.D. student: Tommaso Padoan

September 2019

Abstract

In the formal verification of software systems, model-checking is one of the most studied

and applied techniques. Systems represented by mathematical models are checked against

properties expressed as logical formulae. When the subjects of the verification are concur-

rent and distributed systems, models and specification logics capable of faithfully capturing

the concurrent features of computations, like causal dependency and independence between

actions of the systems, can sometimes be convenient or even essential.

In this thesis we study the foundations of the model-checking problem in a logic for

true concurrency, whose formulae predicate over executability of actions in computations

and their causality and concurrency relations. The logic represents the logical counterpart

of history-preserving bisimilarity, a popular behavioural equivalence in the true concurrent

spectrum and one of the strongest known to be decidable. It includes least and greatest

fixpoint operators in mu-calculus style, making it able to express properties of infinite

computations. The logic is interpreted over event structures, a classical semantic model

for true concurrency, that describes the behaviour of systems in terms of the events that

can occur in computations and the causal dependencies and conflicts between them. It can

be naturally used over any operational model that admits a causal semantic. Of particular

interest, here, will be Petri nets. They are a widely adopted operational model allowing

for a natural representation of concurrent and distributed systems.

We prove that the model-checking problem is decidable over a class of event structures

satisfying a suitable regularity condition, and provide three decision procedures based on

three different approaches. Along the lines of some classical work for the modal mu-

calculus, we first develop a local model-checker in the form of a tableau system, for which

we prove termination, soundness and completeness. The tableau system allows for a clean

and intuitive proof of decidability, but a direct implementation of the procedure can be

extremely inefficient. On the way to a practical implementation, we then present an

automata-based model-checking technique. Given a formula and a model, a parity tree

automaton is constructed whose language is non-empty if and only if the model satisfies

the formula. The automaton is usually infinite. We discuss how it can be quotiented to

a finite automaton preserving its language via a suitable equivalence over its states. We

show how the method instantiates on finite safe Petri nets, where such equivalence can be

effectively computed. Finally, we devise a general game-theoretic approach to the solution

of systems of fixpoint equations over a wide class of lattices. This applies, in principle, to a

multitude of verification tasks, which reduce to the computation of fixpoints of monotone

functions. Being an instance of those tasks, we show how the method can be instantiated

and applied to the model-checking problem of interest in the thesis.

i

Acknowledgements

To begin with, I want to especially thank my supervisor, Paolo Baldan, who masterfully

guided and supported me during my PhD studies and, even before, in the development of

my master’s thesis. His help has been invaluable in all our projects and, particularly, for

this thesis. Indeed, most results herein originate from discussions we had together, which,

by the way, were among the most enticing research activities I have done. I would like to

thank also my co-supervisor, Sara Mondini, whose academic advice and approval allowed

me to follow my own path.

I am grateful to my external reviewers, Roland Meyer and Irek Ulidowski, for their

careful reading of the thesis and their useful comments. Their remarks and suggestions

have greatly helped to improve the final version.

A pivotal period was the time I spent abroad in Duisburg. I cannot thank enough

Barbara König for her kind hospitality and guidance during my visit. I would like to thank

also all the other members of her team, Christina Mika-Michalski, Benjamin Cabrera,

Harsh Beohar, Dennis Nolte and Richard Eggert, for so many interesting and inspiring

discussions on various topics, not limited to computer science. I am especially indebted to

Barbara and Christina for their collaboration in the work on games.

I thank all my colleagues at BMCS for the pleasant conversations and mutual support

we had. A special mention goes to Mirko Polato and Daniele Ronzani, who welcomed me

when I first arrived at the office, and with whom I had the pleasure to share many “pause

caffé” (even though I do not drink coffee) and meals.

I want to express my deepest gratitude to my parents whose financial, moral and loving

support has allowed me to become what I am. They taught me how to face life one step

at a time, never giving up, and encouraged me all along my journey. I would also like to

remember my grandfather Giuseppe, who first directed me towards science in general by

showing me the functioning of many electrical components and wiring and taught me how

to repair (almost) anything.

Lastly, above all, I wish to thank Nadia, who always rooted for me and cheered me up

over these demanding years. Especially during the last months, she tenderly took care of

me and brought me peace in the stressful moments. Thank you for making my half whole.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Contributions and structure of the thesis . 4

1.2 Origin of the chapters . 6

I Background 7

2 Preliminaries 8

2.1 Basic notation . 8

2.2 Partial orders, lattices and domains . 11

3 Models for concurrent systems 15

3.1 Event structures . 15

3.2 Petri nets . 19

3.2.1 Unfolding . 21

3.3 Behavioural equivalences . 24

4 Logics for concurrency 28

4.1 Hennessy–Milner logic . 28

4.2 Modal mu-calculus . 30

4.3 History preserving logic . 31

4.3.1 Syntax . 31

4.3.2 Semantics . 34

4.3.3 Examples . 36

4.3.4 Alternation . 38

iii

II Model Checking 41

5 Tableau system 42

5.1 Tableau rules . 42

5.2 The stop condition . 47

5.3 Soundness and completeness of the tableau system 53

5.3.1 Finiteness . 54

5.3.2 Soundness and completeness . 57

6 Automata 66

6.1 Infinite parity tree automata and their quotient 67

6.2 NPAs for model checking . 70

6.3 NPA for Petri nets . 83

6.4 A prototype tool . 87

7 Games 91

7.1 Preliminaries on ordered structures . 93

7.2 Systems of fixpoint equations . 95

7.2.1 Approximating the solution . 99

7.3 Fixpoint game . 102

7.3.1 Soundness and completeness . 104

7.4 Progress measures . 113

7.4.1 Computing progress measures . 120

7.5 Model checking Lhp . 131

7.5.1 Systems of fixpoint equations for logical formulae 131

7.5.2 Fixpoint game for model checking 135

8 Related logics 141

8.1 Event identifier logic . 141

8.1.1 Encoding EILh . 144

8.2 Separation and trace fixpoint logics . 151

8.3 A more powerful logic . 156

8.3.1 Syntax . 156

8.3.2 Semantics . 157

8.3.3 Model checking L∗⊗
hp . 159

9 Conclusions 171

Bibliography 175

iv

Chapter 1

Introduction

Concurrent and distributed software systems have by this time become essential in our

everyday lives. On the one hand, the relevance of parallel computing has been constantly

growing in the last years and supposedly this trend will be confirmed in the future. The use

of multicore/multiprocessor computers is nowadays the major means to increase computing

power, and they are adopted even in small devices like smartphones. On the other hand,

the diffusion of the internet, of mobile computing and network infrastructures has brought

distributed software, both small applications and large systems, in uncountably many fields,

from entertainment to medical devices, from home automation to industrial controls. Most

people, even unknowingly, depend on their accuracy and reliability. However, in contrast to

their sequential predecessors, concurrent and distributed systems, able to interact with each

other and the environment, are notoriously hard to design, develop, and attest. Software

testing of such systems often leads just to partial or imprecise knowledge of the system of

interest. It is for these reasons that we believe that formal methods can provide a funda-

mental contribution in this setting, both for their reliability, as mathematically grounded,

and their usability, as apt to be automated.

In this thesis we focus on the formal verification of the behaviour of concurrent and

distributed systems. From the specification or the implementation of a system it is possi-

ble to derive a formal description of its behaviour in the form of a mathematical model.

Different modelling languages allow to capture different features of the computation. In

the theory of concurrency, models have been defined along two main different currents, dis-

tinguished by their approach to concurrent computations. This major dichotomy opposes

so-called interleaving to partial order semantics. Interleaving models reduce concurrency

to the non-deterministic choice amongst all possible sequentializations of the computations.

Models following this approach include, for example, labelled transition systems [Kel76]

and Kripke structures [Kri63]. Instead, models based on partial order semantics, also called

true concurrent models, explicitly represent the causal and independence relations between

actions performed by the systems, thus allowing to capture more faithfully the concurrent

features of computations. Indeed, such models provide a mean for the study of the concur-

1

rent behaviour of systems at a more fundamental level. As it often happens in computer

science, a price has to be paid for the greater expressiveness of true concurrent models.

Indeed, with respect to the interleaving approach, many problems may become much har-

der to solve, if solvable at all, once set in a partial order semantic. Nevertheless, being

able to express concurrency as a primitive notion, true concurrent models allow for a more

compact representation of concurrent computations, mitigating the problem known as state

space explosion (see [Val98]), which instead occurs more severely in the analysis and veri-

fication of concurrent systems with the interleaving approach, where the representation of

concurrency via all the possible sequentializations can lead to an exponential blow up. In

fact, interleaving models treat the different linearisations as entirely different computations,

where instead true concurrent models recognise them for what they really are, that is, the

same unique concurrent behaviour. In addition to this, the true concurrent approach provi-

des tools for a deeper study of concurrent and distributed systems, which can be useful, if

not essential, in some particular contexts, like, for example, security protocols, distributed

software verification and system biology. Based on this motivations our work focuses on

tools and techniques following the true concurrent approach.

Several true concurrent models have been defined, each one capturing various computa-

tional aspects and having slightly different expressiveness. Examples are Petri nets [Pet62],

event structures [NPW81], asynchronous transition systems [Bed87, Shi85] and transition

systems with independence [WN95]. We will mainly concentrate on event structures, as a

reference semantic model, and on Petri nets, as a reference operational model.

Petri nets are a classical discrete formalism for concurrency and distribution, one of the

most used in many fields, even beyond computer science. Petri nets describe systems in

terms of the actions that they can perform, represented by so-called transitions, and the

resources that each action requires in input and produces in output. The independence

between actions is represented by the simultaneous presence of all the resources required by

those actions, which can then be executed independently in parallel. Furthermore, Petri nets

allow also to express conflicts between actions, that is, actions which, from a certain state,

the system could perform but not both, as executing one excludes the other. Such actions

are represented by transitions requiring the same resources, which can only be consumed

by either one.

Event structures are a widely used semantic model for concurrency that describes the

semantic behaviour of a system in terms of events. An event represents the occurrence of an

action performed by the system, therefore the same action can be associated with several

events, representing different occurrences of such action, with different past computations

leading to them. Furthermore, because of this, event structures can be infinite even if they

arise from finite state systems. The causal dependencies between events are expressed by

means of a partial order. Conflicts are also present, expressed by another relation over

events. Event structures and Petri nets have been shown to share an intimate relationship

(see [NPW81, Thi02]), such that one model can often be translated, in a suitable way, in

2

the other.

In order to formally study the behaviour of a system, for example to assess its correct-

ness, it is common practice to compare it with some specification, of the system itself, of

some of its components, or of some property of its behaviour. A specification can be given

as another model, other than that of the system, or as a logical property, characterising

some desired specific behaviour. In the first case, behavioural equivalences can be used for

checking the system model against the specification, in order to verify that the system beha-

ves as desired. Depending on the context, different computational features of the behaviour

may be relevant or not. For this reason several behavioural equivalences have been defined

over the years (see, e.g., [vGG01]), which, like models, take into account different features

of computations by abstracting the behaviour of systems. For interleaving semantics the

most classical and studied behavioural equivalence is bisimilarity [Mil80], which compares

system models only on the basis of what actions they can perform, so that two systems are

bisimilar when they can match each other’s actions, without taking into account the causal

dependencies between the performed actions. Instead, true concurrent behavioural equiva-

lences do take into account causal dependencies as well, each one to a different degree or in

a different flavour. Two popular equivalences in the true concurrent spectrum are history-

preserving bisimilarity [RT88] and hereditary history-preserving bisimilarity [Bed91]. Both

take fully into account the causal dependencies between actions in computations, but only

hereditary history-preserving bisimilarity precisely captures the interplay between conflicts,

causality and concurrency of actions. Indeed, hereditary history-preserving bisimilarity is

the finest equivalence in the true concurrent spectrum of [vGG01] and it has been shown to

arise as a canonical equivalence across a range of different models for parallel computation

[JNW96]. Its greater expressiveness, however, makes it usually unfeasible to work with. In

fact, it has been shown that hereditary history-preserving bisimilarity is undecidable even

for finite state systems [JNS03]. On the other hand, history-preserving bisimilarity has been

shown to be decidable, e.g., for finite state Petri nets [MP97].

System models can also be tested against logical properties of their behaviour. Such

properties are expressed by formulae of suitable behavioural logics. Several true concur-

rent logics have been introduced for defining causal properties of computations (see, e.g.,

[DNF90, NC95, Pen95, BF02]). Some logics are related, in a suitable sense, to behavioural

equivalences. This happens for a logic and a behavioural equivalence when equivalent sys-

tems satisfy exactly the same formulae of the logic. In this case such a logic is also called

the logical characterisation of the corresponding behavioural equivalence, which, conversely,

is said to be the equivalence induced by that logic. Recently, the logical characterisation

of true concurrent behavioural equivalences has received a renewed interest and correspon-

ding logics have been introduced [BC14, PU14], interpreted over event structures. The

expressiveness of such logics is sufficient to provide a logical characterisation of hereditary

history-preserving bisimilarity, and suitably defined fragments correspond to coarser be-

havioural equivalences. In this thesis we focus on the logic referred to as Lhp in [BC14],

3

whose induced behavioural equivalence is history-preserving bisimilarity. The logic allows

to predicate over executability of actions in computations and their dependency relations

(causality and concurrency). Furthermore, the logic is endowed with least and greatest

fixpoint operators in order to express interesting properties of infinite computations.

The formal verification of logical properties over models is usually done via so-called

model-checking methods. Model-checking is the process of deciding whether or not a given

system model satisfies a given property, expressed as a logical formula. Although model-

checking problems are among the most studied in formal verification of software, unsolved

issues still remain, especially in the case of true concurrent models and logics. For interle-

aving semantics, instead, the picture is more clear. Many methods have been defined for

the solution of model-checking problems in expressive logics from the interleaving appro-

ach (see, e.g., [Cle90, SW91] for tableaux-based methods, [EJS01] for an automata-based

method, and [Sti95] for a game-theoretic one). Model-checking procedures can be divided

into global and local ones. Global model-checking procedures iterate on the structure of

the formula to be verified exploring at each step the whole model, eventually computing

the set of all states of the model from which the formula is satisfied. Then the formula is

satisfied by the model in a specific state if the state is in such set. On the other hand, local

model-checking procedures focus on just one state of the model, usually its initial state, and

progressively explore only the part of the model necessary to establish whether the formula

is satisfied in such state or not.

The aim of this thesis is to develop an extensive and foundational study of the model-

checking problem in Lhp, proving its decidability, previously unknown, and providing formal

methods for its solution over some interesting class of event structures or other forma-

lisms which can be given a causal semantics, like Petri nets. Note that, although history-

preserving bisimilarity is known to be decidable, the model-checking problem in the corre-

sponding logic is unrelated and non-trivial, even for finite state systems, since event struc-

ture models are typically infinite and the possibility of expressing properties that depends

on the past often leads to undecidability [JNS03]. Moreover, for these reasons, we mainly

focus on local approaches which are particularly suited in this setting characterised by the

infiniteness of models.

1.1 Contributions and structure of the thesis

The main contribution of this work is represented by the development of a range of methods

for the model-checking of true concurrency properties, expressed by formulae of the logic

Lhp, and beyond. The main results can be summarised as follows.

1. A decision procedure, based on the construction of semantic tableaux, for the solution

of the model-checking problem in Lhp over a suitable class of event structures, so

providing a proof of the decidability of the problem.

4

2. An automata-theoretic method for the model-checking of Lhp, producing, when the

model complies with some finitarity constraints, an effective and efficient procedure,

applicable to formalisms like finite safe Petri nets.

3. A very general formal technique based on games for the solution of systems of fixpoint

equations over a wide class of lattices, like those arising from a multitude of verification

tasks, and, among them, the model-checking of Lhp.

The thesis consists of two parts. Part I covers the background mathematical notions

from the theories of computation and concurrency used throughout the second part, as

such it does not contain original contributions, instead, it provides a range of definitions

and reviews some results from the literature. Part II presents all the contributions of the

thesis, that is, the three formal techniques devised and some extension based on the related

work. The two parts are organised in the following manner.

Part I

Chapter 2 fixes the basic mathematical notations and gives the background material from

the theory of domains playing a fundamental role in the modelling and verification of soft-

ware systems. The concepts of partial order, lattice, monotone function and least and

greatest fixpoints are therefore introduced, along with some classical results.

Chapter 3 reviews the main models for concurrency adopted in the thesis, namely, event

structures and Petri nets. The relation between such models is made evident, leading to the

definition of a classic regularity condition. The main behavioural equivalences over these

models are also discussed, from both the interleaving and the true concurrent approach.

Chapter 4 introduces some classical modal logics from the literature, which can be seen as

the natural progenitors of the history-preserving logic of interest in this work, whose syntax

and semantics are also herein presented, along with some examples of logical properties.

Notions about the alternation of fixpoints in formulae are then discussed, which are relevant

in the design of model-checking procedures.

Part II

Chapter 5 presents the first contribution on the model-checking of Lhp: a decision proce-

dure for model-checking formulae of Lhp given in the form of a tableau system. The method

is shown to be terminating, sound and complete over a suitable class of event structures,

providing a constructive proof of the decidability of the associated model-checking problem.

Chapter 6 contains the second contribution. It first provides an abstract model-checking

technique for Lhp based on infinite nondeterministic automata in the effort to design a more

efficient procedure. It is shown that such automata can be quotiented, using a suitably defi-

ned equivalence over the states, producing a finite automaton accepting the same language

5

whenever the equivalence is of finite index. Then a concrete instantiation of the procedure

on finite safe Petri nets, based on the definition of a suitable equivalence is discussed, along

with the presentation of a tool implementing the technique.

Chapter 7 presents the third main contribution of the work. It focuses on systems of fixpoint

equations over lattices, which often arise as the formal representation of some verification

task. For such systems a general approach to the solution given in the form of a parity

game is devised. The game is proved to be sound and complete over a vast class of lattices,

and various techniques for its solution are discussed. Then, it is shown how such a general

technique can be instantiated and applied to the model-checking of Lhp over event struc-

tures, translating formulae into systems of equations. Furthermore, the relation with the

previous methods is explored.

Chapter 8 reviews some related works on other logics for true concurrency, comparing them

with Lhp. Then it is shown that Lhp and the techniques devised in the previous chapters

can be extended to include operators from those logics which are inexpressible in Lhp, de-

monstrating also the flexibility of the framework developed.

Chapter 9 is the conclusive chapter of the thesis, in which are described directions of future

research and ideas, as well as some relevant and interesting problems which remain open in

this area of study.

1.2 Origin of the chapters

The work presented in this thesis originates from a series of papers published in the last

years. The tableau-based model-checking procedure in Chapter 5 was first presented in

[BP17]. The automata-theoretic model-checking technique in Chapter 6 first appeared

in [BP18]. The game for systems of fixpoint equations in Chapter 7 was presented in

[BKMMP19]. Finally, the study of the other true concurrent logics, the extension of Lhp
and the model-checking of the extended logic in Chapter 8 has been presented in [Pad18].

6

Part I

Background

7

Chapter 2

Preliminaries

In this chapter we present the mathematical background relevant to the rest of the work.

First we fix the notation for the basic mathematical concepts which will be extensively used

in the subsequent chapters. Then we present some elements of order and domain theory

which have a fundamental role in the modelling and verification of software systems, in

particular of concurrent and distributed systems, as those of interest for this thesis.

2.1 Basic notation

Symbols for the representation of sets, relations, functions, sequences and tuples will be

hereafter introduced, along with their definitions and some operations. They are completely

standard, hence they can be skipped by the reader and used as a reference.

Sets

Informally a set is an unordered collection of elements, usually represented by an upper case

letter. Given two sets S and S′, we denote by S ∪ S′ their union, S ∩ S′ their intersection,

S ∖ S′ their difference, S × S′ their Cartesian product. We denote by |S| the cardinality of

a set S. Given a set S, a set S′ is a subset of S, or S′ is included in S, denoted by S′ ⊆ S, if

all the elements in S′ are also contained in S. When S contains some other element which

is not in S′, then S′ is strictly included in S, written S′ ⊂ S.

By ∅ we denote the empty set, i.e. the set without any element in it. A set with a single

element in it is called a singleton. We say that two sets are disjoint when their intersection

is ∅, otherwise they are overlapping. N denotes the set of the natural numbers. The interval

[m,n] is the subset of N containing exactly all natural numbers between m and n, including

m and n. We denote ordinals by Greek letters α, β, γ, Given a set S and a natural

number n, we denote by Sn the n-th Cartesian power of S, corresponding to the n-fold

Cartesian product of S with itself.

Given a set S, the powerset of S, denoted by 2S , is defined as the set of all the subsets

of S, included the empty set ∅ and S itself. Given a set of sets T , the big union
⋃︁
S∈T S

8

represents the union of all the sets in T , and similarly for the big intersection
⋂︁
S∈T S.

Relations and functions

A relation R on sets S and T is a subset of the Cartesian product S × T . We usually write

sR t to express that (s, t) ∈ R. The domain and codomain of a relation R are defined

by dom(R) = {s | ∃ t. sR t} and cod(R) = {t | ∃ s. sR t}, respectively. Given a relation

R, we denote by R−1 its inverse relation, such that tR−1 s if and only if sR t. Given two

relations R on sets S and T and R′ on T and U , the composition of R and R′ is the relation

on sets S and U defined by R◦R′ = {(s, u) | ∃ t. sR t ∧ tR′ u}. Given a relation R on sets

S and T , the restriction of R to a subset S′ ⊆ S is the relation on sets S′ and T defined by

R|S′ = {(s, t) | s ∈ S′ ∧ sR t}.

A relation R which is a subset of S2, or simply a relation over S, is reflexive if every

element of S is related to itself, i.e., ∀ s ∈ S. sR s. R is irreflexive if there is no element

of S related to itself. R is symmetric if ∀ s, t ∈ S. sR t ⇐⇒ tR s. R is antisymmetric if

∀ s, t ∈ S. (sR t ∧ tR s) =⇒ s = t. R is transitive if ∀ s, t, u ∈ S. (sR t ∧ tRu) =⇒ sRu.

The inverse of a symmetric relation is the same relation. The reflexive closure of a relation

R is defined as the smallest relation that contains R and it is reflexive. Similarly we define

also the transitive closure, denoted by R∗. A relation R is acyclic if its transitive closure is

irreflexive. Furthermore, an acyclic relation is always antisymmetric.

A relation which is reflexive and transitive is called a preorder. A preorder which is

symmetric is called an equivalence. Given a set S and an equivalence ≡ over S, we say that

two elements s, s′ ∈ S are ≡-equivalent when s ≡ s′. We call the ≡-equivalence class of an

element s ∈ S, denoted by [s]≡, the subset of S of the elements ≡-equivalent to s. We call

an element s ∈ S a representative of its equivalence class [s]≡. The set of ≡-equivalence

classes of S, that is, the set of all the disjoint subsets of S which are equivalence classes of

some element of S, is called the quotient of S by ≡ and denoted by S/≡. An equivalence is

of finite index when the corresponding quotient is finite.

Functions are a special class of relations. A function f : S → T is a relation on S and

T such that for every s ∈ S there exists at most one t ∈ T such that (s, t) ∈ f . If such a

t exists we write f(s) = t and call t the image of s through f , otherwise we say that f is

undefined on s. We extend this notation also to subsets of S, for instance, given a subset

S′ ⊆ S we write f(S′) for the set {t | ∃ s ∈ S′. f(s) = t} that is the image of S′ through f .

Given a function f : S → T , we denote by f [s ↦→ t] the update of f such that f [s ↦→ t](s) = t

and f [s ↦→ t](s′) = f(s′) for all s′ ̸= s. Given a set S, we call identity the special function

from S to S defined as the smallest reflexive relation over S.

A function f : S → T is partial if it is undefined on at least one element of S, otherwise

dom(f) = S and it is called total. A function is injective if every element of the codomain

is the image of exactly one element of the domain. A function from S to T is surjective if

every element of T is the image of at least one element of S. A function which is injective

9

and surjective is called a bijection. The inverse of a total bijection is also a total bijection.

The inverse of a partial bijection is only injective. Otherwise specified, bijections are always

intended to be total.

Sequences and tuples

A sequence is an ordered possibly transfinite collection of objects in which repetitions are

allowed. A sequence is usually enumerated by ordinals, so that it can be seen as a function

from the ordinal numbers to the set of elements it contains. Because of this, we represent

a sequence as a list of indexed elements (s1, s2, . . .), specifying the last element and its

index when the sequence is known to be finite (s1, s2, . . . , sn) and its size is n. The empty

sequence is denoted by ϵ. A subsequence of a sequence σ is a sequence obtained by deleting

some of the elements in σ and preserving the relative order of the others. Given two

sequences σ = (s1, s2, . . . , sn) and σ′ = (s′1, s
′
2, . . .), their concatenation is the sequence

σσ′ = (t1, t2, . . .) = (s1, s2, . . . , sn, s
′
1, s

′
2, . . .). Given a set S we define the Kleene star of

S, denoted by S∗, as the set of all possible finite sequences of elements of S, possibly with

repetitions, including the empty sequence ϵ.

Tuples are a special class of sequences. A tuple is a finite sequence. More precisely,

an n-tuple is a sequence of n elements, a pair is a sequence of 2 elements, a triple is a

sequence of 3 elements, and so on. Given a natural number i and tuple σ of length at least

i, we denote by πi(σ) the i-th projection of σ defined as the i-th element of σ. When clear

from the context, given a tuple σ = (s1, s2, . . . , sn), we allow to apply a function f defined

on the elements of the tuple and we write f(σ) for the tuple (f(s1), f(s2), . . . , f(sn)). We

sometimes abuse the notation and use a tuple as a set meaning the set of all the elements

appearing in the tuple. When a tuple contains only elements of the same kind, individually

denoted by the same symbol with different indices, we represent the tuple by the boldface

version of that symbol, for instance we write x for the tuple (x1, x2, . . . , xn) where all xi

are variables.

Many mathematical objects appearing in the thesis are structured objects, defined by a

tuple of components of various type. We often denote such objects by a slightly different

notation using angle brackets instead of the normal parentheses and not assigning indices to

the components, which may be of different nature, for instance, A = ⟨a,B, γ⟩ is a structured

object made of three components. When the name of an object contains a subscript, its

components usually carry the same subscript of the object. For example, to distinguish two

objects A1 and A2 structured as above, we call their components ⟨a1, B1, γ1⟩ and ⟨a2, B2, γ2⟩,
respectively.

10

2.2 Partial orders, lattices and domains

A number of paradigms and techniques in the theory of computation, in general, and in

both software analysis and verification, in particular, have been built on the solid base of

mathematical knowledge provided by the theory of orders and domains. In this section we

review the core concepts of such theory on which the mathematical models, languages and

methods discussed in the thesis are based. We first introduce the necessary notions of partial

orders and then we go over the primary mathematical structures and properties built upon

them. The definitions presented follow mainly those in [AJ94] which gives a very nice and

detailed overview of the theory of domains started by Dana Scott (see [Sco70, Sco71, Sco72]

just to mention a few).

A partial order ⊑ over a set P is a reflexive transitive antisymmetric relation on P . A

set P with a partial order ⊑ is called a partially ordered set (poset) and it is denoted by

⟨P,⊑⟩, or simply P omitting the order relation. Given two elements a and b in P , we say

that a is below b when a ⊑ b, dually we say that a is above b when b ⊑ a, if none of the

previous holds we say that a and b are incomparable. When the order relates every pair of

elements in the set, that is, there are no incomparable elements, the order is called total.

We graphically represent poset as Hasse diagrams, when it is possible given the size of the

set or the structural organisation of the order relation. Some examples of poset are shown

in Figure 2.1. Graphically, the partial order relation proceeds upwards along the lines. For

instance, the element a in Figure 2.1a is below all the other elements in the set. Instead,

elements b and c are incomparable since neither b ⊑ c nor c ⊑ b.

a

b c

d

(a) Four-element lattice

a b

c d

(b) Non-lattice poset

0

1

2

(c) Natural numbers

Figure 2.1: Examples of posets drawn as Hasse diagrams.

Let ⟨P,⊑⟩ be a poset. A subset S ⊆ P is called an upper set if for all x ∈ S and y ∈ P ,

x ⊑ y implies y ∈ S. Dually, a subset S is called a lower set if for all x ∈ S and y ∈ P ,

y ⊑ x implies y ∈ S. The upper closure of an element x ∈ P is the set of all elements of P

above x, or the smallest upper set containing x, and it is defined by ↑x = {y ∈ P | x ⊑ y}.

Dually, the lower closure of x is defined by ↓x = {y ∈ P | y ⊑ x}. Upper and lower

closures are extended to any subset S ⊆ P by taking the union of the respective closures

of every element in S. An element x ∈ P is called an upper bound for a subset S ⊆ P if

y ⊑ x for all y ∈ S. Dually, x is a lower bound for S if x ⊑ y for all y ∈ S. Given a subset

11

S ⊆ P , an element x ∈ S is called a maximal of S if for all y ∈ S, x ⊑ y implies x = y.

Dually, x ∈ S is called a minimal of S if for y ∈ S, y ⊑ x implies x = y. An element

x ∈ S is called the maximum or greatest element of S if for all y ∈ S, y ⊑ x. Dually, s ∈ S

is called the minimum or least element of S, if for all y ∈ S, x ⊑ y. The poset ⟨P,⊑⟩
is called well-ordered when every non-empty subset S ⊆ P has a least element. Given a

subset S ⊆ P , if the set of the upper bounds of S has a least element, then such element is

called the least upper bound or supremum of S, and it is denoted by
⨆︁
S. Dually, if the set

of the lower bounds of S has a greatest element, then it is called the greatest lower bound

or infimum of S, denoted by
d
S.

Definition 2.1 (complete lattice). A poset ⟨L,⊑⟩ is a lattice if every non-empty finite

subset of L has a supremum and an infimum. A lattice is complete if suprema and infima

exist for all subsets, also empty and infinite ones.

From the definition above it follows that a complete lattice L always has a greatest and

least element, called top and bottom and usually denoted ⊤ =
⨆︁
L =

d
∅ and ⊥ =

d
L =⨆︁

∅, respectively. By looking at the poset in Figure 2.1a it can be seen that it is a complete

lattice, in fact it has a top element d and a bottom element a. However the other two posets

are not. The poset in Figure 2.1b is not even a lattice since the elements a and b (or c and

d) have no least upper bound, rather they have no upper bound at all. Instead, the set of

natural numbers ordered by the usual numerical order in Figure 2.1c is a lattice but it is

not complete because it has no top element. Some classical examples of complete lattices

are shown in Figure 2.2. The simple 2-elements lattice corresponding to the boolean values

is clearly complete, its top element being T and bottom element F. A very common class

of lattices are those obtained by ordering the powerset of a set by subset inclusion. Widely

used in software verification, this kind of lattices will often recur in the thesis. Given any

set S, its powerset 2S ordered by inclusion, or simply its powerset lattice ⟨2S ,⊆⟩, is always

a complete lattice, whatever S is. The empty set ∅ is the bottom, the whole set S is the

top. Interestingly in a powerset lattice the least upper bounds and greatest lower bounds

can be easily defined just using the two common operations on sets: the supremum of some

sets is just their union and the infimum is their intersection. An example of powerset lattice

is represented in Figure 2.2b.

The techniques discussed in the thesis, and more in general the analysis and the verifi-

cation of software systems, often involve the computation of fixpoints of functions over this

kind of mathematical structures. Given a poset P , a fixpoint of a function f : P → P is

an element x ∈ P such that f(x) = x. An element x ∈ P such that x ⊑ f(x) is called a

post-fixpoint of f . Dually, x is called a pre-fixpoint of f if f(x) ⊑ x.

Almost invariably, the functions of interest comply with the following crucial property.

Definition 2.2 (monotone function). Let ⟨P,⊑⟩ be a poset. A function f : P → P is

monotone if for all x, y ∈ P , x ⊑ y =⇒ f(x) ⊑ f(y).

12

F

T

(a) Booleans

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

(b) Powerset lattice of {a, b, c}

Figure 2.2: Examples of complete lattices.

When the set of fixpoints of a function f has a minimum, such element is called the least

fixpoint of f , denoted by µf . Dually, when there is a maximum, it is called the greatest

fixpoint of f , denoted by νf . A well-known result, namely Knaster-Tarski’s theorem [Tar55],

establishes that every monotone function on a complete lattice has a least and a greatest

fixpoint.

Theorem 2.1 (Knaster-Tarski). If ⟨L,⊑⟩ is a complete lattice and f : L→ L is a monotone

function, then the set of fixpoints of f ordered by ⊑ is a non-empty complete lattice. Hence

f has a least fixpoint being the infimum of the pre-fixpoints

µf =
l

{x ∈ L | f(x) ⊑ x}

and a greatest fixpoint being the supremum of the post-fixpoints

νf =
⨆︂

{x ∈ L | x ⊑ f(x)}.

A more constructive way of defining the least and greatest fixpoints of a monotone

function over a complete lattice is provided by another famous result, often referred to as

Kleene’s theorem. Actually the original theorem by Kleene [Kle52] applies to continuous

functions on directed complete posets. It was later generalised in [CC79] for monotone

functions on complete lattices. Given a complete lattice L and a monotone function f

over L, the sequence f i(⊥) for i ranging over the natural numbers, where f0(⊥) = ⊥
and f i+1(⊥) = f(f i(⊥)), is an ascending chain ⊥ ⊑ f(⊥) ⊑ f(f(⊥)) ⊑ The chain

can be further extended into a transfinite chain over the ordinals by letting also fα(⊥) =⨆︁
β<α f

β(⊥) for α limit ordinal. The so-defined transfinite chain is still an ascending chain

and it is called the ascending Kleene chain. Then the theorem states that after a (ordinal)

number of iterations the chain stabilizes reaching a fixpoint of f , which in fact is its least

fixpoint. The greatest fixpoint can be dually characterised using the descending chain

starting from ⊤.

Theorem 2.2 (Kleene’s iteration). If ⟨L,⊑⟩ is a complete lattice and f : L → L is a

monotone function, then there exists an ordinal α such that the least fixpoint of f is µf =

fα(⊥). Dually, there exists α such that the greatest fixpoint is νf = fα(⊤).

13

This result gives us a more practical way of computing the fixpoints, least or greatest,

of monotone functions over complete lattices. To compute the least (greatest) fixpoint of a

function we just need to iterate the function “enough” starting from ⊥ (⊤). We will often

exploit this method in the techniques developed in the thesis.

Another important notion which can be formalised over partially ordered sets is that of

approximation. Intuitively any element of a poset can be composed of (or approximated

by) simpler ones. What these simpler elements are depends only on the poset itself. Here

“approximation” does not necessarily mean imprecise. In fact, the next definition explains

which elements are sufficient to correctly approximate every other element.

Definition 2.3 (basis). Let ⟨P,⊆⟩ be a poset. A subset B ⊆ P is a basis for P if for every

element x ∈ P , it holds x =
⨆︁

(B ∩ ↓x).

In words this means that every element of the poset can be precisely approximated by

the elements of the basis below it. Observe that every poset P has at least one basis since

P itself is always a basis for it. However, more useful cases are when a “small” basis can

be identified. A classical example is again the powerset lattice, where the basis can be the

set of all singletons included in the whole set. So, a good basis for the powerset lattice

in Figure 2.2b would be B = {{a}, {b}, {c}}. Notice that the bottom element ∅ is never

needed in the basis since
⨆︁

(B ∩ ↓∅) =
⨆︁
∅ = ∅. Indeed, this is true for every poset with a

bottom element. Because of this, when working on posets with a bottom element ⊥, usually

complete lattices, we will assume the associated basis not to contain ⊥.

With the notions reviewed so far we can informally define domains as special posets

admitting some useful basis. Different classes of domains can be identified depending on

their features and those of their basis. For the purpose of this thesis we do not need more

formal definitions. However, it should be noted that one of the main models involved in our

work, that is, event structures (defined in the next chapter), can be seen as a special class

of domains, namely finitary prime algebraic domains [Win87].

14

Chapter 3

Models for concurrent systems

This chapter reviews event structures, a classical semantic model for concurrency, and Petri

nets, an operational model which allows for a natural representation of concurrent and

distributed systems. In order to faithfully model the concurrent behaviour of systems we

need formalisms that represent concurrency as a primitive notion. We conclude the chapter

discussing notions of bisimulation and bisimilarity over these models, especially suited to

deal with concurrent systems.

3.1 Event structures

Prime event structures [NPW81, Win87] are a widely known model to describe the true

concurrent semantics of concurrent computational processes. They describe the behaviour

of a system in terms of events and dependency relations between such events. Each event

represents a unique occurrence of an action performed by the system and, as such, cannot

appear more than once in a computation. The corresponding action is indicated by the

label attached to the event. Two relations are used to express how events causally depend

on, or are in conflict with, the others. An event causally depends on those which must

take place before the event can occur, in this case we say that the event is caused by them.

Two events are in conflict with each other when they can never appear both in the same

computation, that is, the occurrence of one excludes the other for the rest of the execution.

Since an event causing another must take place before the other can occur, the conflict

relation is inherited by all the events caused by the ones in conflict. Throughout the thesis

E is a fixed set of events from which all events are taken, Λ is a finite set of labels ranged

over by a, b, c, . . ., and λ : E → Λ is a labelling function.

Definition 3.1 (prime event structure). A (Λ-labelled) prime event structure (PES) is a

tuple E = ⟨E,≤,#⟩, where E ⊆ E is the set of events and ≤, # are binary relations on E,

called causality and conflict respectively, such that:

1. ≤ is a partial order and ↓e is finite for all e ∈ E;

15

2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all e, e′, e′′ ∈ E,

if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure E are named

as in the definition above, possibly with subscripts.

Two PESs which are the same up to renaming of their events are considered indistin-

guishable. This is formalised via the notion of isomorphism.

Definition 3.2 (isomorphism of PESs). The PESs E1 = ⟨E1,≤1,#1⟩ and E2 = ⟨E2,≤2,#2⟩
are isomorphic, written E1 ∼ E2, when there is a bijection ι : E1 → E2 such that for all

e1, e
′
1 ∈ E1 it holds e1 ≤1 e

′
1 iff ι(e1) ≤2 ι(e

′
1), e1#1e

′
1 iff ι(e1)#2ι(e

′
1), and λ(e1) = λ(ι(e1)).

As mentioned, these models include concurrency as a primitive notion. Indeed, even

though the concurrency relation does not explicitly appear among the components of a

PES, it can be easily derived from them. The next definition explains how.

Definition 3.3 (consistency, concurrency). Let E be a PES. We say that events e, e′ ∈ E

are consistent, written e⌢ e′, if ¬(e#e′). A subset X ⊆ E is called consistent if e⌢ e′ for

all e, e′ ∈ X. We say that e and e′ are concurrent, written e || e′, if e⌢ e′, ¬(e ≤ e′) and

¬(e′ ≤ e).

Causality, concurrency and consistency will be sometimes used on set of events. Given

X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly X || e, resp.

X ⌢ e, means that for all e′ ∈ X, e′ || e, resp. e′⌢ e.

A state of the system is represented by the set of events which led to it, that is the past

computation. These states or sets of events are captured by the notion of configuration.

Definition 3.4 (configuration). Let E be a PES. A configuration in E is a finite consistent

subset of events C ⊆ E closed w.r.t. causality (i.e., ↓e ⊆ C for all e ∈ C). The set of finite

configurations of E is denoted by C(E).

Since events in conflict are not admitted in the same computation, a configuration must

be a consistent set of events. Furthermore, it must be a lower set with respect to causality

because all the causes of an event must precede the event itself in the computation. The

empty set of events ∅ is always a configuration, which can be interpreted as the initial state

of the computation. Then, the evolution of a system can be represented by a transition

system where configurations are states.

Definition 3.5 (transition system). Let E be a PES and let C ∈ C(E). Given e ∈ E ∖ C

such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X < e and Y || e, we say that there is a

transition C
X,Y <e−−−−−→λ(e) C ∪ {e}, possibly omitting the sets X,Y or the label λ(e).

Transitions are labelled by the executed event e. In addition, they can report its label

λ(e), a subset of causes X and a set of events Y ⊆ C concurrent with e. Both sets X

16

and Y are not required to include all the events in the configuration C respectively causing

or concurrent with e, in fact they can also just be empty sets. In such case they are

normally omitted, e.g., we write C
X<e−−−→λ(e) C

′ for C
X,∅<e−−−−→λ(e) C

′ and C
e−→λ(e) C

′ for

C
∅,∅<e−−−−→λ(e) C

′.

Some simple examples of PESs are depicted in Figure 3.1. Since the set of events of

a PES is partially ordered by the causality relation, it is graphically represented by the

corresponding Hasse diagram. We add to this curly lines to represent immediate conflicts.

Events are denoted by their labels, possibly with superscripts. For instance, in E3, the

events a0 and b0, labelled by a and b, respectively, are in conflict. Event c causes the events

ai and it is concurrent with bi for all i ∈ N. The PESs E1 and E2 are finite, while E3 and E4
are infinite, as suggested by the dashed lines.

a b

c

(a) E1

a b

c d

(b) E2

c
a0 b0

a1 b1

a2 b2

(c) E3

a0 b0

a1 b1

a2 b2

(d) E4

Figure 3.1: Examples of finite and infinite PESs.

Figure 3.2 shows the transition system associated with E2. It is the set of possible confi-

gurations C(E2) ordered by subset inclusion. Indeed, subset inclusion can be safely thought

of as a computational ordering on configurations. A transition just adds the executed event

to the configuration, so that the source is always strictly included in the target. Comparing

Figures 3.1b and 3.2 should also give some intuition on how PESs mitigate the state space

explosion problem.

∅

{a} {b}

{a, b} {b, d}

{a, b, c} {a, b, d}

Figure 3.2: Transition system associated with E2.

We will often need to refer to the evolution of a system starting from some state, i.e.,

after some initial computation. For a PES and a configuration this is called the residual and

it corresponds to the part of the PES that remains to be executed after the computation

17

expressed by the configuration. Since the events in the configuration have already taken

place the events included in the residual must be consistent with them.

Definition 3.6 (residual). Let E be a PES. For a configuration C ∈ C(E), the residual of

E after C is defined as E [C] = {e | e ∈ E ∖ C ∧ C ⌢ e}.

A residual E [C] endowed with the restrictions of the relations of causality and conflict

of E is defined by the structure ⟨E [C],≤|E[C],#|E[C]⟩. Since E is a PES, it is easy to see

that such a structure complies with all the requirements in Definition 3.1, and thus it can

be seen as a PES (see [BGV17, Lemma 2]). For this reason a residual E [C] will be often

confused with the corresponding PES ⟨E [C],≤|E[C],#|E[C]⟩.

Proposition 3.1 (residuals as PESs). Let E be a PES. Given a configuration C ∈ C(E),

the residual E [C] endowed with the restrictions of ≤ and # is a PES.

In general PESs can be infinite even when arising from finite state systems. Indeed, a

PES associated with a non-trivial system exhibiting a cyclic behaviour will involve an infinite

number of events, due to the fact that each occurrence of an action must be represented

by a unique event. However, it is often the case that such PESs actually include infinitely

many occurrences of finitely many sub-structures. More formally, this happens when the set

of all the possible residuals of the PES is finite up to isomorphism of PESs. Intuitively, this

is crucial for most verification tasks as it means that the possibly infinite semantic models

to check can be effectively reduced to a finite size. Furthermore, to this aim PESs should

also not have states from where infinitely many different transitions can be executed. Since

each transition corresponds to the occurrence of an event, first we clarify which events can

be executed at a given configuration.

Definition 3.7 (enabled event). Let E be a PES. Given a configuration C ∈ C(E), we say

that an event e ∈ E is enabled at C if C
e−→ C ∪ {e}. The set of enabled events at a

configuration C is defined as en(C) = {e ∈ E | C e−→ C ∪ {e}}.

Then, the number of enabled events at a configuration determines the branching beha-

viour of the PES from that configuration. In particular, it is important to know if there is

a bound on how much the PES can branch out from every configuration, in which case we

say that it is boundedly branching.

Definition 3.8 (branching). Let E be a PES. We say that E is k-boundedly branching for

some k ∈ N if |en(C)| ≤ k for all C ∈ C(E). We say that E is boundedly branching if it is

k-boundedly branching for some k ∈ N.

We can now present the definition of regular event structures, introduced by [Thi02],

capturing the class of PESs enjoying the finitary property roughly described above.

Definition 3.9 (regularity). A PES E is called regular when it is boundedly branching and

the set of residuals {E [C] | C ∈ C(E)} is finite up to isomorphism of PESs.

18

Observe that the two requirements are independent of each other. To see this, let

E = ⟨N∗,≤,#⟩ be the PES with events the set N∗ of all finite sequences of natural numbers,

all labelled by the same label, where e ≤ e′ if and only if e is a prefix of e′, and e#e′

when neither e is a prefix of e′ nor e′ is a prefix of e. Then, clearly E is a PES and the

set of its residuals {E [C] | C ∈ C(E)} has a finite number of equivalence classes, just one

in fact, since they are all isomorphic to E [∅], that is, the whole PES E itself. However, at

every configuration, an infinite number of events are enabled, one for each natural number,

thus violating the boundedly branching condition. Conversely, the PES E4 in Figure 3.1d is

boundedly branching, it has at most two enabled events at every state, but it can be seen

to have infinitely many different residuals up to isomorphism, already considering just the

residuals E4[{b0, . . . , bi}] for all i ∈ N.

Obviously all finite PESs are regular, but often even infinite ones are. As further

discussed in the next section, normally regular event structures arise as semantics of fi-

nite state systems. An example of infinite regular PES is E3 in Figure 3.1c. Indeed, E3
has just three (equivalence classes of) residuals: E3[∅] which is the whole PES E3 itself,

E3[{c}] = {a0, a1, . . . , b0, b1, . . .}, and E3[{c, a0}] = ∅. Moreover, E3 is clearly (2-)boundedly

branching.

3.2 Petri nets

In this section we introduce Petri nets [Pet62], a classical concrete formalism widely used to

model concurrent and distributed systems, and their unfolding semantics. Then we review

the close relationship they share with event structures.

A Petri net is a directed bipartite graph, where nodes are either places or transitions.

We assume that the set of transitions is a subset of a fixed set T with a labelling λN : T → Λ.

Definition 3.10 (Petri net). A Petri net is a tuple N = ⟨P, T, F,M0⟩, where P and T are

disjoint sets of places and transitions, respectively, F : (P × T) ∪ (T × P) → {0, 1} is the

flow function, and M0 : P → N is the initial marking, i.e., the initial state of the net.

In the following, we will assume that the components of a Petri net N are named as in

the definition above.

Places represent abstract resources, which can be available in a certain amount. A state

of a net is called a marking, defined by a function M : P → N, indicating for each place

how many instances, called tokens, of that resource are available in the place. Transitions

are actions that the system can perform. In order to be executed, a transition t requires

some instances of resources as specified by the flow function F (one token from each place

p ∈ P such that F (p, t) = 1). The execution of t consumes such resources and usually

produces new ones (one new token in each place p ∈ P such that F (t, p) = 1). In general,

the flow function defines the pre and postconditions of every place and transition, namely

the pre-set and post-set.

19

Definition 3.11 (pre-set, post-set). Let N be a Petri net. Given x ∈ P ∪ T , the pre-set

and post-set of x are defined by •x = {y ∈ P ∪ T | F (y, x) = 1} and x• = {y ∈ P ∪ T |
F (x, y) = 1}, respectively.

Two Petri nets are isomorphic when their places and transitions coincide, respectively,

in compliance with their flow functions, initial markings, and labels.

Definition 3.12 (isomorphism of Petri nets). The Petri nets N = ⟨P, T, F,M0⟩ and N ′ =

⟨P ′, T ′, F ′,M ′
0⟩ are isomorphic when there is a bijection ι : P ∪ T → P ′ ∪ T ′ such that

P ′ = ι(P), T ′ = ι(T), F = F ′ ◦ ι, M0 = M ′
0 ◦ ι, and for all t ∈ T it holds λN (t) = λN (ι(t)).

Examples of Petri nets are shown in Figure 3.3. We adopt the standard graphical

representation, where places are drawn as circles and transitions as boxes, denoted by their

labels on the inside, possibly with superscripts. The flow function is rendered by means

of directed arcs connecting places and transitions. The initial marking is represented by

inserting tokens (black dots) in the corresponding places. For instance, in the leftmost

net N1 from the initial marking either the transition labelled a or the one labelled b can

be executed but not both, as they both require to use the only token placed in p1. If

a is executed, it consumes the token in p1 and produces one token in both p2 and p3.

From this new state both transitions c and d can be executed concurrently. The net N1 is

acyclic and does not allow infinite computations. Instead, the other nets N2 and N3 are

cyclic and infinite computations are made possible by looping infinitely many times through

some of their transitions. For example, the only infinite computation that N2 can perform

corresponds to the infinite sequence alternating the two transitions a and b.

p1

p2 p3

a b

c d

(a) N1

p1

p2

a b

(b) N2

p1

p2
a

b

(c) N3

Figure 3.3: Examples of acyclic and cyclic Petri nets.

Formally, a transition t ∈ T is enabled at a marking M if M(p) ≥ F (p, t) for all

p ∈ P . In this case it can be fired leading to a new marking M ′ defined by M ′(p) =

M(p) + F (t, p) − F (p, t) for all places p ∈ P . This is written M [t⟩M ′. Since not all the

combinations of places and tokens can be reached through a sequence of transitions, that

is, a computation, only the so-called reachable markings are usually considered.

Definition 3.13 (reachable marking). Let N be a Petri net. A marking M is called rea-

chable if there exists a sequence of transitions (t0, . . . , tn) such that M0[t0⟩ . . . [tn⟩M . We

denote by R(N) the set of all reachable markings in N .

20

An interesting class of Petri nets are those whose reachable markings contain at most

one token in every place. These nets are called 1-safe nets, or simply safe nets.

Definition 3.14 (safe Petri net). A Petri net N is called safe if for every reachable marking

M ∈ R(N) and all p ∈ P it holds M(p) ≤ 1. A safe net is called finite if both sets P and

T are finite.

For example the nets N1 and N2 in Figure 3.3 are safe and finite. Indeed, it can be

seen that along every computation starting from their initial markings it never happens

that a place contains more than one token. The net N3 instead is not safe. From the initial

marking M0 the sequence of firing of transitions M0[a⟩M1[a⟩M2 produces a marking M2

where the place p2 contains two tokens, thus violating the requirement in the definition.

Since in safe nets places can contain at most one token, a marking M will be often

confused with the corresponding subset of places {p | M(p) = 1} ⊆ P , and used as a set

instead of a function. For instance, we might say that a transition t is enabled at a marking

M if •t ⊆ M and, after firing, it would produce the marking M ′ = (M ∖ •t) ∪ t•. Then,

we say that a set of places X is coverable if there exists M ∈ R(N) such that X ⊆M .

Safe nets are especially interesting because they are strongly related to event structures.

For this reason, hereafter we will only consider nets in this class.

3.2.1 Unfolding

The concurrent behaviour of a Petri net N can be represented by its unfolding U(N),

defined below as an acyclic net constructed inductively starting from the initial marking of

N and then adding, at each step, an occurrence of each enabled transition of N .

Definition 3.15 (net unfolding). Let N be a safe net. The unfolding of N is the least net

U(N) = ⟨P U , T U , F U ,MU
0 ⟩ such that:

• MU
0 = {(p,⊥) | p ∈M0} ⊆ P U , where ⊥ is a new element, not in P , T or F ;

• if t ∈ T and X ⊆ P U is coverable with π1(X) = •t, then (t,X) ∈ T U ;

• for every e = (t,X) ∈ T U , the set Z = {(p, e) | p ∈ t•} ⊆ P U , moreover •e = X and

e• = Z;

• for all x, y ∈ P U ∪ T U , F U(x, y) = 1 ⇐⇒ x ∈ π2(y).

Places and transitions in the unfolding represent instances of tokens and firing of tran-

sitions, respectively, of the original net. The projection π1 over the first component maps

places and transitions of the unfolding to the corresponding items of the original net N .

The second component records the “causal history”, i.e., for places the transition that gene-

rated the token (or ⊥ for tokens in the initial marking that have not been generated by any

transition) and for transitions the set of tokens required for the firing. The initial marking

21

MU
0 consists of the set of minimal places. The labels of transitions in the unfolding are

the same of the labels of the corresponding transitions of the original net, i.e., a transition

e ∈ T U is labelled by λN (π1(e)). The unfolding of a non-trivial net is usually infinite even

though the net is finite. For instance, a cyclic net allowing for infinite computations will

generate an infinite unfolding. For historical reasons transitions and places in the unfolding

are also called events and conditions, respectively.

As an example, consider the safe net N on the left of Figure 3.4, its unfolding is drawn

on the right. The transition b in N can fire multiple times in a computation, therefore in

the unfolding U(N) there are multiple instances (infinitely many) of its firing named bi for

i ∈ N. Indeed, since the net is cyclic and allows for infinite computations, its unfolding

is infinite. Interestingly in U(N) there are also multiple occurrences ai of the original

transition a, although in N such transition can fire at most one time in every computation.

This is due to the fact that different occurrences of a in the unfolding corresponds to

different conflictual computations, that is, at most one of them can actually fire, excluding

the others. The reason why they appear as different occurrences is that each one has a

different computational (causal) history.

p1

p2
p3

b

c

a

(a) N

p1

p2
p03

p13 b0

b1

c

a0

a1

(b) U(N)

Figure 3.4: A finite safe Petri net and its unfolding.

One can define causality ≤N over the unfolding as the reflexive and transitive closure

of the flow relation. Explicitly, ≤N is the smallest reflexive and transitive relation such

that x ≤N y whenever x ∈ •y. Then, conflict #N is the smallest relation such that e#Ne
′

if •e ∩ •e′ ̸= ∅ (i.e., when e and e′ compete for a common resource) and inherited along

causality, i.e., if x#Ny and y ≤N z then x#Nz.

Once endowed with causality and conflict, the events T U of the unfolding of a safe net

can be interpreted as a PES. This result originates from [NPW81] where unfoldings are

characterised as nets of a special subclass called occurrence nets.

Theorem 3.1 (PES for a net). Let N be a safe net and let U(N) = ⟨P U , T U , F U ,MU
0 ⟩ be

its unfolding. The triple defined by E(N) = ⟨T U ,≤N ,#N ⟩ is a PES.

For instance, using this construction we can see that the net N in Figure 3.4 actually

corresponds via its unfolding U(N) to the PES E3 in Figure 3.1c.

22

A configuration C ∈ C(E(N)) is a subset of transitions of the unfolding C ⊆ T U . It

is not really a sequence of firing of transitions, as we would expect from a computation

in the unfolding. However the properties of configurations of PESs ensure that there is at

least one valid firing sequence, that is compatible with the flow/causality relation. Luckily

we do not need to know the exact firing sequence of the transitions in C. The marking of

the unfolding associated with C can be simply obtained by adding to the initial marking

MU
0 all the tokens produced by transitions in C and then removing the ones consumed

by transitions in C. We denote this by C◦ = (MU
0 ∪

⋃︁
e∈C e

•) ∖ (
⋃︁
e∈C

•e). In turn, this

corresponds to a marking of the original net denoted by M(C) = π1(C
◦). For the reason

explained at the beginning of the paragraph, the markings M(C) and C◦ associated with a

configuration C ∈ C(E(N)) are always reachable in N and U(N), respectively.

Similarly to event structures, we can consider the substructure of an unfolding starting

after some reachable marking, defined as the residual net including only the places and

transitions that can still be involved in the remainder of the computation.

Definition 3.16 (residual unfolding). Let N be a safe net and let U(N) = ⟨P U, T U, F U,MU
0 ⟩

be its unfolding. For a reachable marking M ∈ R(U(N)), the residual of U(N) after M

is defined as U(N)[M] = ⟨P U
M , T

U
M , F

U
M ,M⟩, where P U

M = {b′ ∈ P U | ∃ b ∈ M. b ≤ b′},
T U

M = {e ∈ T U | ∃ b ∈M. b ≤ e}, and F U
M is the restriction of F U to (P U

M ×T U
M)∪ (T U

M ×P U
M).

It is straightforward to see that the residual U(N)[M] of an unfolding U(N) after a

reachable marking M is isomorphic to the unfolding of the net N with π1(M) as initial

marking. Moreover, since the events of the PES arising from a net are just the transitions of

the unfolding, this means that also the residual E(N)[C] after a configuration C ∈ C(E(N))

is isomorphic to the PES obtained from the unfolding of the net N with M(C) as initial

marking.

The previous facts lead to the observation that the residual of the PES arising from a

safe net after a configuration C is uniquely determined by the marking produced by C and

the net itself. Therefore, we obtain a simple but crucial result.

Proposition 3.2 (markings and residuals). Let N be a safe net. Given two configura-

tions C1, C2 ∈ E(N), if M(C1) = M(C2) then the residuals U(N)[C◦
1] and U(N)[C◦

2] are

isomorphic and E(N)[C1] ∼ E(N)[C2].

When the safe net N is finite, the set of reachable markings R(N) is necessarily also

finite, bounded at most by the size of the powerset of the places of the net. Then, Pro-

position 3.2 immediately implies that the set of all residuals of the PES E(N) is finite up

to isomorphism. Further, observe that, since N is finite, the set of transitions T is finite,

and so at most |T | transitions can be enabled at the same time. Which means that E(N)

is also boundedly branching. As already mentioned, a PES with these properties is called

regular. This is rounded up by the famous result referred to as the first half of Thiagarajan’s

conjecture [Thi02].

23

Theorem 3.2 (regularity). Let N be a finite safe Petri net. The corresponding PES E(N)

is regular.

The second half of Thiagarajan’s conjecture states conversely that if a PES E is regular,

then there exists a finite safe Petri net N such that E(N) ∼ E . While the first half can

be easily proved, as reasoned above, the second half of the conjecture has actually been

recently disproved [CC17]. This sheds new light on the relationship between finite safe

Petri nets and regular event structures, before thought to be the same, whereas the former

turned out to be a strict subclass of the latter.

3.3 Behavioural equivalences

An important task in software verification is that of checking if two systems or processes

are equivalent. This is usually done to formally test a system against its specification or

just to check if a system enjoys a desired property. The behaviour of the system can be

approximated by abstracting the operational model taking into account specific features

of the computation. To properly do this, a number of behavioural equivalences have been

defined over the years. One of the most popular equivalences, especially in concurrency

theory, is bisimilarity. It was introduced in [Mil80] as a mean to compare the behaviour of

CCS processes, and, during the same years, in [Par81] for proving the equivalence between

languages of automata on infinite sequences. Intuitively, two processes are bisimilar when

they can match each other’s moves, that is, if one can perform an action, the other can

simulate it by doing the same action. Formally, this concept is captured by the notion of

bisimulation.

Definition 3.17 (bisimulation). Let E1, E2 be PESs. A bisimulation is a relation R ⊆
C(E1) × C(E2) such that for every (C1, C2) ∈ R it holds

• if C1
e1−→a C

′
1, then C2

e2−→a C
′
2 and (C ′

1, C
′
2) ∈ R;

• if C2
e2−→a C

′
2, then C1

e1−→a C
′
1 and (C ′

1, C
′
2) ∈ R.

We say that E1 are E2 are bisimilar if there exists a bisimulation R such that (∅, ∅) ∈ R.

For our purposes, all the definitions in this section are given on event structures, despite

the fact that they could be defined for general transition systems.

Bisimilarity is the largest bisimulation relation between the states of the two systems,

that is, the one relating exactly every pair of bisimilar states. For instance, consider the

processes modelled by the PESs E5 and E6 in Figure 3.5. Both processes can only execute

a and b actions. E5 can either perform a followed by b or the opposite, b followed by

a. E6 can perform a and b in parallel, which, once linearised, means in any order. So,

both processes can only do a and b a single time in some order. In fact, despite having

different levels of parallelism, they are bisimilar. This happens because bisimilarity abstracts

24

concurrency of actions by approximating it with the nondeterministic choice between the

possible sequentializations. In this case, the bisimilarity relation between E5 and E6 would

contain the pairs (∅, ∅), ({a0}, {a}), ({b0}, {b}), ({a0, b1}, {a, b}), ({b0, a1}, {a, b}). Notably,

the presence of the pair of initial states (∅, ∅) is the proof that the two processes are indeed

bisimilar.

a0 b0

b1 a1

(a) E5

a b

(b) E6

Figure 3.5: Example of bisimilar PESs.

Since our aim is to faithfully capture the true concurrent behaviour of systems, clearly

bisimilarity is not satisfactory. In order to exploit the full expressiveness of partial order

models, like event structures, and be able to properly verify their behaviour, an equivalence

has to recognise at the very least when two transitions of a system are independent and

can be executed in parallel. Thus we need finer bisimulations. Several true concurrent

equivalences have been defined in order to capture the concurrency features of computations

to different extents (see [vGG01] for an exhaustive collection and detailed descriptions).

Here we present just two of them, those of interest in this thesis, which are among the most

important and studied.

History-preserving (hp-)bisimilarity [DDNM88, RT88, BDKP91] naturally exploits the

causal partial order over the actions of the systems. It requires that an action of one

system is simulated by an action of the other with the same causal history. In order

to characterise such behaviour we define a suitable bisimulation, called history-preserving

(hp-)bisimulation, requiring that at each step of the bisimulation there is an isomorphism

between the causal histories of the current states.

Definition 3.18 (history-preserving bisimulation). Let E1, E2 be PESs. A history-preserving

(hp-)bisimulation is a set of triples R ⊆ C(E1) × C(E2) × 2E1×E2 such that for every

(C1, C2, ι) ∈ R it holds

• if C1
e1−→a C

′
1, then C2

e2−→a C
′
2 and (C ′

1, C
′
2, ι[e1 ↦→ e2]) ∈ R;

• if C2
e2−→a C

′
2, then C1

e1−→a C
′
1 and (C ′

1, C
′
2, ι[e1 ↦→ e2]) ∈ R;

• ι is an isomorphism between the PESs ⟨C1,≤1|C1 , ∅⟩ and ⟨C2,≤2|C2 , ∅⟩.

We say that E1 are E2 are history-preserving (hp-)bisimilar if there exists a hp-bisimulation

R such that (∅, ∅, ∅) ∈ R.

The fact that the causal histories are isomorphic at each step guarantees that inde-

pendent actions cannot be confused with dependent ones, even if they represent the same

25

actions and are performed in the same order. So, looking back at the processes E5 and E6
in Figure 3.5, it can be easily seen that there is no hp-bisimulation between them inclu-

ding the initial states (∅, ∅), hence they are not hp-bisimilar. Indeed, those processes are a

simple paradigmatic example of the difference between the interleaving and true concurrent

approaches: the two PESs produce the same transition system (once causal dependencies

are forgotten) in which a and b can be executed in any order, but they clearly differ from a

true concurrent point of view since in E6, can execute a and b in parallel, while E5 cannot.

While this work is mainly focused on the verification of history-preserving properties,

below we present another behavioural equivalence which is even finer than hp-bisimilarity,

the finest in the true concurrent spectrum in fact. Hereditary history-preserving (hhp-)bi-

similarity is a strengthening of hp-bisimilarity proposed by [Bed91] and shown to arise as a

canonical equivalence across a range of different models for parallel computation [JNW96].

Hhp-bisimilarity precisely captures the interplay between branching, causality and concur-

rency by ensuring that the matching of states and transitions is not dependent on the order

in which parallel actions are linearised in the bisimulation. This further constraint is captu-

red by the addition of a backtracking requirement. First note that an action can be reversed

only if it is maximal w.r.t. the causal partial order. Then, hhp-bisimilarity requires that

for any two related computations, the states obtained by reversing a pair of related actions

must be related too. Because of this hhp-bisimilarity turns out to be especially appropriate

for systems with reversible computations [PU07, PU12, CKV13]. So, hhp-bisimilarity is

obtained by means of a hp-bisimulation with backwards steps.

Definition 3.19 (hereditary history-preserving bisimulation). Let E1, E2 be PESs. A heredi-

tary history-preserving (hhp-)bisimulation is a hp-bisimulation R such that if (C1, C2, ι) ∈ R

and C ′
1

e−→ C1 then (C ′
1, ι(C

′
1), ι|C′

1
) ∈ R. We say that E1 are E2 are hereditary history-

preserving (hhp-)bisimilar iff there exists a hhp-bisimulation R such that (∅, ∅, ∅) ∈ R.

To make clear the difference between hp-bisimilarity and hhp-bisimilarity examine the

processes E7 and E8 in Figure 3.6. They are a classic counterexample given by [Frö04] to

prove that hp-bisimilarity is in general strictly coarser than hhp-bisimilarity. Indeed, E7 and

E8 are hp-bisimilar but not hhp-bisimilar. The first statement is based on the fact that even

though E8 has more actions and branching paths to choose from, they can all be simulated

by E7 with isomorphic causal histories. In fact, E7 can simulate every action of E8 with an

isomorphic one depending on the specific event performed by E8 and those in the past. For

example, the computation of E8 corresponding to the configuration {a0, b1} is simulated by

E7 with either the configuration {a0, b1} or {a1, b0} depending on the order in which the

two actions performed by E8 have been linearised, that is, the order in which they happened

in the hp-bisimulation. From what mentioned above, it should be clear that the same is

not possible in a hhp-bisimulation, because the events a0 and b1 of E8 are independent but

the choice of matching by E7 is dependent on their order. Indeed, allowing to backtrack,

E8 could reverse one of the event and perform another one instead (with the same label) in

26

which case E7 may not be able to simulate it any more.

a1 a0 b0 b1

c

(a) E7

a2 a1 a0 b0 b1 b2

c0

c1

(b) E8

Figure 3.6: Hp-bisimilar PESs which are not hhp-bisimilar.

It is worth mentioning that hhp-bisimilarity, while being more precise, comes with a

much greater cost. In fact, as proved in [JN00], the problem of checking whether two

systems are hhp-bisimilar is undecidable for many basic models of concurrency, even for

finite state systems (e.g., finite safe Petri nets [JNS03]). On the other hand, the decidability

of hp-bisimilarity is well-established [Vog91, JM96, MP97] in particular for finite state

systems (e.g., again, finite safe Petri nets). This contrasting difference should give some

intuition on why working with history-preserving properties is more feasible than working

with the more expressive hereditary history-preserving ones.

27

Chapter 4

Logics for concurrency

Modal and temporal logics are mathematical languages used to specify properties and spe-

cifications of systems. They have a formal syntax and semantics so that one can hope to

have them automatically verified by a computer. Whereas techniques involving behavioural

equivalences, as those mentioned in the previous chapter, to check a system against its spe-

cification require to model both entities with the same language, the use of logics allows to

verify whether a system model, like, e.g., an event structure, complies with its specification

expressed as a logical property. This kind of procedure is called model-checking, and it is

the main subject of the thesis. In this chapter we review a number of modal logics especially

relevant in the specification of properties of concurrent systems.

4.1 Hennessy–Milner logic

Hennessy–Milner logic (HML) is a modal logic that was introduced by [HM85] in the study

of process calculi for concurrent systems. Differently from the traditional first and higher-

order logics, which use quantifiers and other relations, modal logics include so-called mo-

dalities, or modal operators, in addition to the boolean operators of propositional logic.

HML offers two modalities, namely the diamond and the box modality, to reason about the

capability of performing some action. These operators are parametrised by the action to

be performed.

Definition 4.1 (syntax of HML). The syntax of HML over the set of labels Λ is defined as

follows:

φ ::= T | F | φ ∧ φ | φ ∨ φ | ⟨a⟩φ | [a]φ

T and F are the always true and always false constant formulae, respectively. ∧ and

∨, called conjunction and disjunction, respectively, are the usual propositional connectives.

⟨a⟩ is the diamond modality and [a] is the box modality, where a is the action to perform,

represented by the label a ∈ Λ. Notice the absence of negation ¬, which is unnecessary

28

since the logic is given in positive form. Indeed, for every operator the logic includes its

dual.

The meanings of formulae, or more formally their semantics, is given by the set of

states satisfying them, which in the case of event structures is a subset of their possible

configurations. So, the constant T holds on every state, while F does not hold on any

state. The conjunction of two formulae holds only on states satisfying both formulae, their

disjunction holds on states satisfying at least one of them. The diamond modality ⟨a⟩φ
holds on states which affords an a-labelled transition leading to a state satisfying φ. Dually,

the box modality [a]φ holds on states from where all a-labelled transitions lead to states

satisfying φ.

Definition 4.2 (semantics of HML). Let E be a PES. The denotation of a formula in HML

is given by the function {|·|}E : HML → 2C(E) defined inductively as follows:

{|T|}E = C(E)

{|F|}E = ∅

{|φ1 ∧ φ2|}E = {|φ1|}E ∩ {|φ2|}E

{|φ1 ∨ φ2|}E = {|φ1|}E ∪ {|φ2|}E

{|⟨a⟩φ|}E = {C ∈ C(E) | ∃C ′. C
e−→a C

′ ∧ C ′ ∈ {|φ|}E}

{|[a]φ|}E = {C ∈ C(E) | ∀C ′. C
e−→a C

′ ⇒ C ′ ∈ {|φ|}E}

When C ∈ {|φ|}E we say that the PES E satisfies the formula φ in the configuration C.

When E satisfies the formula φ in the empty configuration we simply say that E satisfies φ.

From a program logic such as HML it is possible to derive an equivalence over the

systems or models involved. The idea is that different systems should be told apart by

some formula of the logic holding only on one of them. This is formalised through the

notion of logical equivalence.

Definition 4.3 (logical equivalence). Let L be a logic. We say that two systems P and Q

are logically equivalent in L if and only if they satisfy the same (closed) formulae of L.

Finer logical equivalences will arise from more expressive logics, or, in other words, the

expressive power of the logic will induce the level of abstraction of the equivalence.

One of the most interesting aspects of HML, and the root of its introduction, is that

under mild hypotheses it fully characterises bisimilarity, that is, the logical equivalence

induced by HML is bisimilarity [HM85] (for image-finite systems, i.e., systems where for

each state s and label a the set {s′ | s a−→ s′} is finite). In this way we obtain an alternative

definition of bisimilarity through the logic. It follows that one can prove that two processes

are not bisimilar by simply exhibiting a HML formula satisfied by only one of them. This

methodology turns out to be very natural and effective to establish when two processes

are not equivalent, and at the same time to reason on the causes of such difference. For

29

instance, a formula satisfied by the specification of a system but not by the system itself

easily leads to understand why and where the system would fail. We will see that also the

other more expressive logics, which will be presented later, share this kind of property with

respect to finer behavioural equivalences.

4.2 Modal mu-calculus

Although, as mentioned before, HML is expressive enough to capture bisimilarity of proces-

ses, it is not as useful to express computational properties of systems, which often consist

in temporal properties possibly of infinite computations. For this reason temporal logics

that make use of fixpoint operators have been introduced, usually called mu-calculi [BS06].

Among them we focus on the most classical one: the modal mu-calculus, or simply mu-

calculus. The modal mu-calculus, denoted by Lµ, widely adopted in the verificiation of

programs properties, was ultimately defined in [Koz83], but the use of fixpoints in program

logics originated already with [dBS69, Par69]. Roughly, fixpoints allow to add recursion to

logical formulae, so that they can express properties of unbounded and infinite computati-

ons.

In practice, the mu-calculus is obtained by extending HML with fixpoint operators. To

properly characterise recursion, such operators resort to propositional variables taken from

a denumerable set X of propositions.

Definition 4.4 (syntax of Lµ). The syntax of Lµ over the sets of proposition X and labels

Λ is defined as follows:

φ ::= T | F | φ ∧ φ | φ ∨ φ | ⟨a⟩φ | [a]φ | µZ.φ | νZ.φ | Z

The formulae µZ.φ and νZ.φ employ the newly introduced fixpoint operators, and

represent the least and the greatest fixpoint, respectively, of φ with respect to a proposition

Z from the set X . Fixpoints operators act as binders for the associated proposition Z. We

say that a formula of Lµ is closed when every proposition appearing in it is bound by some

fixpoint operator.

The semantics of formulae in Lµ are again sets of states on which the formulae hold.

However, when a formula is not closed, its denotation depends on the evaluation of its

free (not bound) propositions. The semantic interpretation of propositions is given by a

so-called proposition environment providing for each proposition a set of states. The set of

all proposition environments for a PES E is denoted by PEnvE , ranged over by π.

Definition 4.5 (semantics of Lµ). Let E be a PES. The denotation of a formula in Lµ is

given by the function {|·|}E : Lµ → PEnvE → 2C(E) defined inductively as follows, where we

30

write {|φ|}Eπ instead of {|φ|}E(π):

{|T|}Eπ = C(E)

{|F|}Eπ = ∅

{|Z|}Eπ = π(Z)

{|φ1 ∧ φ2|}Eπ = {|φ1|}Eπ ∩ {|φ2|}Eπ
{|φ1 ∨ φ2|}Eπ = {|φ1|}Eπ ∪ {|φ2|}Eπ
{|⟨a⟩φ|}Eπ = {C ∈ C(E) | ∃C ′. C

e−→a C
′ ∧ C ′ ∈ {|φ|}Eπ}

{|[a]φ|}Eπ = {C ∈ C(E) | ∀C ′. C
e−→a C

′ ⇒ C ′ ∈ {|φ|}Eπ}

{|µZ.φ|}Eπ = µ(fφ,Z,π)

{|νZ.φ|}Eπ = ν(fφ,Z,π)

where fφ,Z,π : 2C(E) → 2C(E) is the semantic function of φ, Z, π defined by fφ,Z,π(S) =

{|φ|}Eπ[Z ↦→S]. When C ∈ {|φ|}Eπ we say that the PES E satisfies the formula φ in the configu-

ration C and environment π. When φ is closed, hence the environment π is irrelevant, and

E satisfies the formula φ in the empty configuration, we simply say that E satisfies φ.

Note that the semantic functions fφ,Z,π used for fixpoint operators are guaranteed to be

monotone by the definition of the semantics and the fact that the logic is in positive form.

Then, since the powerset of configurations 2C(E) ordered by subset inclusion is a complete

lattice, the fixpoints µ(fφ,Z,π) and ν(fφ,Z,π) are guaranteed to exist by Theorem 2.1.

The model-checking problem in the mu-calculus, and thus in HML as its fragment,

has been proved to be decidable at least on finite state systems [EL86]. Furthermore, the

problem has been studied quite in depth, and many practical and efficient methods for

solving it have been developed [Cle90, SW91, SS98, EJS01].

4.3 History preserving logic

In [BC10, BC14] a logic for true concurrency was introduced whose induced logical equiva-

lence is hhp-bisimilarity. The logic was designed in a way that fragments can be identified

which correspond to other classic true concurrent behavioural equivalences in the litera-

ture. The logic studied in this work is the fragment characterising hp-bisimilarity. The

logic, called history-preserving (hp-)logic and denoted by Lhp, has formulae that predicate

over executability of events in computations and their dependency relations (causality and

concurrency).

4.3.1 Syntax

The logic includes least and greatest fixpoint operators like the mu-calculus ones, allowing

one to express temporal properties of infinite computations. Indeed, the syntax of Lhp

31

closely resembles that of the mu-calculus. However, the modalities are much more expres-

sive since they allow to convey true concurrency properties, being able to specify how the

executed actions causally depend or not with past ones. In order to do this, logic formulae

include event variables which can be bound to events in computations, taken from a fixed

denumerable set Var , ranged over by x, y, The diamond modality ⟨|x,y < a z|⟩φ holds

when in the current configuration an a-labelled event e is enabled which causally depends

on the events bound to the variables in x and is concurrent with those in y. Event e is

executed and bound to variable z, and then the formula φ must hold in the resulting con-

figuration. Dually, the box modality [[x,y < a z]]φ is satisfied when all a-labelled events

causally dependent on x and concurrent with y bring to a configuration where φ holds.

As in mu-calculus, fixpoint operators resort to propositional variables. In order to let

them interact correctly with event variables, whose values can be passed from an iteration

to the next one in the recursion, we use abstract propositions. We fix a denumerable set X a

of abstract propositions, ranged over by X, Y , . . . , that are intended to represent formulae

possibly containing (unnamed) free event variables. Each abstract proposition has an arity

ar(Z), which indicates the number of free event variables in Z. An abstract proposition

Z can be turn into a formula by specifying a name for its free variables. For x such that

|x| = ar(Z), we write Z(x) to indicate the abstract proposition Z whose free event variables

are named x. When ar(Z) = 0 we will write Z instead of Z(ϵ) omitting the trailing empty

tuple of variables. We call Z(x) a proposition and denote by X the set of all propositions.

Definition 4.6 (syntax of Lhp). The syntax of Lhp over the sets of event variables Var,

abstract propositions X a and labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨|x,y < a z|⟩φ | (µZ(x).φ)(y) | Z(x) |

F | φ ∨ φ | [[x,y < a z]]φ | (νZ(x).φ)(y)

Fixpoint formulae (ηZ(x).φ)(y), for η ∈ {µ, ν}, are referred to as η-formulae and here-

after η ranges over {µ, ν}. The formula (ηZ(x).φ)(x) will be abbreviated as ηZ(x).φ. In

[BC14, BP17, BP18] only the simplified form of the fixpoint syntax was used. This slight

extension allows for a simpler treatment of substitutions. Moreover, in the modalities, when

x or y are empty they are omitted, e.g., we write ⟨|a z|⟩φ for ⟨|∅, ∅ < a z|⟩φ. We also al-

low to use modalities referring to events with an arbitrary label represented by a wildcard

operator. Recalling that the set of labels Λ is finite, we write

⟨|x,y < z|⟩φ

to denote the formula
⋁︁

a∈Λ⟨|x,y < a z|⟩φ, and dually [[x,y < z]]φ for
⋀︁

a∈Λ[[x,y < a z]]φ.

Observe that the mu-calculus is a strict fragment of Lhp. Indeed, such fragment can be

obtained by requiring that the tuples of variables in the modalities are always empty, that

is, as if the modalities were defined just as ⟨|a z|⟩φ and [[a z]]φ. In this way event variables

can be ignored, since they are never really used, and so the fragment results to be clearly

equivalent to the mu-calculus.

32

The free event variables of a formula are defined as follows.

Definition 4.7 (free variables). The free event variables of a formula φ in Lhp, denoted
by fv(φ), are defined inductively as:

fv(T) = ∅

fv(F) = ∅

fv(φ1 ∧ φ2) = fv(φ1) ∪ fv(φ2)

fv(φ1 ∨ φ2) = fv(φ1) ∪ fv(φ2)

fv(⟨|x,y < a z|⟩φ) = (fv(φ) ∖ {z}) ∪ x ∪ y

fv([[x,y < a z]]φ) = (fv(φ) ∖ {z}) ∪ x ∪ y

fv((ηZ(x).φ)(y)) = y

fv(Z(y)) = y

We define the free abstract propositions of a formula in a similar way.

Definition 4.8 (free propositions). The free abstract propositions of a formula φ in Lhp,
denoted by fp(φ), are defined inductively as:

fp(T) = ∅

fp(F) = ∅

fp(φ1 ∧ φ2) = fp(φ1) ∪ fp(φ2)

fp(φ1 ∨ φ2) = fp(φ1) ∪ fp(φ2)

fp(⟨|x,y < a z|⟩φ) = fp(φ)

fp([[x,y < a z]]φ) = fp(φ)

fp((ηZ(x).φ)(y)) = fp(φ) ∖ {Z}

fp(Z(y)) = {Z}

The modalities act as binders for the variable representing the event executed. Similarly,

a fixpoint (ηZ(x).φ)(y) binds both the abstract proposition Z and the names x specified for

its event variables, which are instantiated with the values of the variables in y. Intuitively,

the inner fixpoint part ηZ(x).φ defines a recursive formula Z(x) whose free variables are

then instantiated with the values of y. Furthermore, in such formulae it is required that x

does not include repetitions and fv(φ) = x. We say that a formula φ of Lhp is closed when

both fv(φ) and fp(φ) are empty.

Given a formula φ and variables x, y ∈ V ar, we denote by φ[y⧸x] the formula obtained

from φ via a substitution of the free occurrences of x in φ by y. Formulae are considered

up to α-conversion of bound variables and substitution is assumed to be capture free. A

33

function σ mapping free variables of φ to other variables will be called a substitution and

we will denote by φσ the formula φ[σ(fv(φ))⧸fv(φ)].

When defining the notion of substitution of formulae for propositions some care is needed

in the treatment of variables. In fact, when replacing the proposition Z(x) in φ with some

formula ψ, actually each free occurrence Z(y) of Z must be replaced by a formula obtained

from ψ by renaming its free event variables to y. Given a proposition Z(x) ∈ X and a

formula ψ such that fv(ψ) ⊆ x, we denote by φ[Z(x) := ψ] the formula obtained from φ by

replacing each free occurrence Z(y) of Z by ψ[y⧸x].

4.3.2 Semantics

Since the logic Lhp is interpreted over PESs, the satisfaction of a formula is defined with

respect to a configuration C, representing the state of the computation and a (total) function

ρ : Var → E, called an environment, that binds free event variables in the formula to events

in C. Namely, if EnvE denotes the set of environments, the semantics of a formula will be

a set of pairs in C(E) × EnvE . Given a set of pairs S ⊆ C(E) × EnvE and two tuples of

variables x and y, with |x| = |y|, we define S[y⧸x] = {(C, ρ′) | ∃ (C, ρ) ∈ S. ρ(x) = ρ′(y)}.

In addition to environments for the event variables, the semantics of Lhp also depends on

a proposition environment providing a semantic interpretation for propositions, similar to

those mentioned for the mu-calculus. This time, however, we provide a formal definition.

Definition 4.9 (proposition environment). Let E be a PES. A proposition environment is

a function π : X → 2C(E)×EnvE such that for all abstract propositions X ∈ X a and tuples

of variables x, y with |x| = |y| = ar(X) it holds π(X(y)) = π(X(x))[y⧸x]. The set of

proposition environments, ranged over by π, is denoted PEnvE .

The condition posed on proposition environments ensures that the semantics of a formula

only depends on the events that the environment associates with its free variables and that

it does not depend on the naming of the variables.

We will often update environments in the way described in Section 2.1. However, updates

to proposition environments require a slightly different definition in order to preserve the

property above. For π ∈ PEnvE and S ⊆ C(E) × EnvE , we write π[X(x) ↦→ S] for the

proposition environment defined by

π[X(x) ↦→ S](X(y)) = S[y⧸x]

π[X(x) ↦→ S](Y (y)) = π(Y (y)) for Y ̸= X.

It will be useful to introduce a notation describing how a pair (C, ρ) can change after a

transition. For a pair (C, ρ) ∈ C(E)×EnvE and variables x, y, z, we define the (x,y < az)-

successors of (C, ρ), as

Succx,y<az
E (C, ρ) = {(C ′, ρ[z ↦→ e]) | C ρ(x),ρ(y)<e−−−−−−−−→a C

′}.

34

In words Succx,y<az
E (C, ρ) consists of the pairs (C ′, ρ′) where C ′ is a configuration reachable

from C, by executing an event e satisfying the requirement expressed by x,y < az. Namely

events in ρ(x) are causes for e and events in ρ(y) are concurrent with e. The environment

ρ′ is the update of ρ where event e has been bound to variable z.

Now we can finally give the semantics of the logic Lhp.

Definition 4.10 (semantics of Lhp). Let E be a PES. The denotation of a formula in Lhp
is given by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined inductively as follows,

where we write {|φ|}Eπ instead of {|φ|}E(π):

{|T|}Eπ = C(E) × EnvE

{|F|}Eπ = ∅

{|Z(y)|}Eπ = π(Z(y))

{|φ1 ∧ φ2|}Eπ = {|φ1|}Eπ ∩ {|φ2|}Eπ
{|φ1 ∨ φ2|}Eπ = {|φ1|}Eπ ∪ {|φ2|}Eπ
{|⟨|x,y < a z|⟩φ|}Eπ = {(C, ρ) ∈ C(E) × EnvE | Succx,y<az

E (C, ρ) ∩ {|φ|}Eπ ̸= ∅}

{|[[x,y < a z]]φ|}Eπ = {(C, ρ) ∈ C(E) × EnvE | Succx,y<az
E (C, ρ) ⊆ {|φ|}Eπ}

{|(ηZ(x).φ)(y)|}Eπ = η(fφ,Z(x),π)[y⧸x]

where fφ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is the semantic function of φ, Z(x), π defined

by fφ,Z(x),π(S) = {|φ|}Eπ[Z(x)↦→S]. When (C, ρ) ∈ {|φ|}Eπ we say that the PES E satisfies

the formula φ in the configuration C and environments ρ, π. When φ is closed, hence the

environments ρ, π are irrelevant, and E satisfies the formula φ in the empty configuration,

we simply say that E satisfies φ.

The semantics of boolean operators is as usual. The formula ⟨|x,y < a z|⟩φ holds in

(C, ρ) when from configuration C there is an enabled a-labelled event e that is causally

dependent on (at least) the events bound to the variables in x and concurrent with (at

least) those bound to the variables in y and can be executed producing a new configuration

C ′ = C ∪ {e} which, paired with the environment ρ′ = ρ[z ↦→ e], satisfies the formula φ.

Dually, [[x,y < a z]]φ holds when all a-labelled events executable from C, caused by ρ(x)

and concurrent with ρ(y) lead to a configuration where φ is satisfied.

The fixpoints corresponding to the formulae (ηZ(y).φ)(y) are guaranteed to exist by

Theorem 2.1, since the set 2C(E)×EnvE ordered by subset inclusion is a complete lattice and

the functions, of which the fixpoints are calculated, are monotone. The latter is ensured by

the definition of the semantics and the fact that the logic is in positive form.

Two standard properties on the renaming of free variables arise from the definitions

of substitutions and the semantics of formulae of the logic. The first one is about the

correspondence between syntactical and semantic substitutions of free event variables in

formulae. The second one, instead, shows how substitutions of propositions in formulae

35

corresponds to updates to proposition environments. Both items can be easily proved by

routine inductions on the formula.

Lemma 4.1 (renaming variables and propositions). Let E be a PES, let π a proposition

environments and let φ be a formula of Lhp.

1. Given two tuples of variables x,y with |x| = |y| and fv(φ) ⊆ x, then {|φ[y⧸x]|}Eπ =

{|φ|}Eπ[y⧸x].

2. For all formula ψ and abstract proposition Z ∈ X a such that fv(ψ) = z and ar(Z) =

|z|, it holds {|φ[Z(z) := ψ]|}Eπ = {|φ|}E
π[Z(z)↦→{|ψ|}Eπ]

.

From (1) above it follows that the semantics of a formula φ in Lhp only depends on

the events that the environment associates with the free variables x of the formula, i.e., if

C ∈ C(E) and ρ, ρ′ are environments such that ρ(x) = ρ′(x) pointwise then (C, ρ) ∈ {|φ|}E

iff (C, ρ′) ∈ {|φ|}E . This can be seen by considering the semantics of the trivial substitutions

{|φ[x⧸x]|}Eπ = {|φ|}Eπ[x⧸x]. Analogously, from (2) we have that the semantics of φ only

depends on the value of the proposition environment π on the free propositions of φ, while

it is independent from the interpretation of those which do not occur free in it.

4.3.3 Examples

In the logic we can easily represent the possibility of performing concurrent events, each

with its own dependencies. For instance, the formula ⟨|x,y < a z|⟩⟨|x′,y′, z < b z′|⟩φ declares

the existence of two concurrent events, with their own dependencies, labelled by a and b,

respectively, such that if we execute such events and bind them to variables z and z′,

respectively, then φ holds. In particular, the ability to perform a step consisting of two

concurrent events labelled by a and b is expressed by the formula ⟨|ax|⟩⟨|x < b y|⟩T. Dually

the formula [[x,y < a z]][[x′,y′, z < b z′]]φ states that after the execution of all pairs of

concurrent events, having the specified dependencies and labelled a and b, respectively, the

formula φ holds.

In this way we can easily specify properties of concurrent steps of the execution. For

example, the formula φ = [[x1]][[x1 < x2]][[x1, x2 < x3]]F says that in the current state

there are at most two concurrently enabled events. Adding a greatest fixpoint we can define

a formula νZ.(φ∧ [[x]]Z) stating that the level of parallelism in a system will never exceed

two.

The formula ⟨|cx|⟩(⟨|x < a y|⟩T ∧ ⟨|x < b z|⟩T) requires that, after the execution of a c-

labelled event, one can choose between a causally dependent a-labelled event and a concur-

rent b-labelled event. This is satisfied by E3 in Figure 3.1c. Instead ⟨|cx|⟩(⟨|x < a y|⟩T∧⟨|x <
b z|⟩T) requiring both events to be concurrent would be false.

As an example of property of infinite computations, consider the formula

[[bx]]νZ(x).(⟨|cw|⟩⟨|w < b z|⟩T ∧ [[x < b y]]Z(y))

36

expressing that all non-empty causal chain of b-labelled events reach a state where it is

possible to execute two concurrent events labelled c and b, respectively. Then the formula

holds in E3. Another formula satisfied by E3 is ⟨|cx|⟩⟨|x < b y|⟩νX(x, y).(⟨|y, x < b z|⟩X(x, z))

requiring the existence of an infinite causal chain of b-labelled events, concurrent with a

c-labelled event.

Now consider the formula µX.(⟨| z|⟩X∨⟨|bx|⟩⟨|x < a y|⟩νY.⟨| z|⟩Y). The formula requires

the existence of an infinite run containing a b-labelled event immediately followed by a

causally dependent a-labelled event, and it turns out to be false in E3. Intuitively this is

because any a-labelled event causally dependent on a b-labelled event is in conflict with

the rest of the infinite chain of events, and then, after its execution, the computation is

guaranteed to terminate. The formula ⟨|bx|⟩νX(x).µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)),

states that there exists an infinite chain of causally related, possibly non-consecutive, b-

labelled events and it is satisfied by E3.
We next present some examples of classical properties, related to the information flow

of concurrent and distributed systems, which can be naturally expressed using the true

concurrent operators of Lhp.
Data races typically refer to situations where the same memory location is accessed

concurrently by different processes or threads, of which at least one is writing the location

(see, e.g., [AHMN91]). Such race conditions are often undesirable as they can lead to

unexpected or erroneous behaviours. A simple safety property ensuring the absence of data

races can be expressed using the operators of the logic as follows. Let M be the (finite)

set of memory locations, and let events representing instructions reading (resp. writing)

a memory location i ∈ M be labelled by ri (resp. wi). The formula νX.(
⋀︁

i∈M [[wi x]]([[x <

ri y]]F∧ [[x < wi y]]F)∧ [[z]]X) states that from every reachable configuration it is not possible

to execute two concurrent events accessing the same memory location such that at least

one (the first in the formula) corresponds to a write operation, hence asserting the absence

of data races.

The non-interference property of information flow in [GM82] can be intuitively des-

cribed as follows. A system is viewed as consisting of components at different levels of

confidentiality, in the simplest case a high part H, which intuitively should be secret, and

a low part L, which is public. A system is deemed secure when there is no flow of infor-

mation from H to L, something which is captured by asking that the activity of H does

not determine visible effects, according to some selected observational semantics, at low

level L. The notion of non-interference given in [BG09] for safe Petri nets, roughly, re-

quires that no high level transition causes or prevents (by means of conflict) a low level

one. When the net does not contain self-loops at high level (i.e., high level transitions with

overlapping pre- and post-sets), assuming that each transition is uniquely labelled by either

Hi or Li, depending on its level, non-interference can be expressed in Lhp by the formula

νX.(
⋀︁

i,j([[Hi x]][[x < Lj y]]F ∧ ([[Lj y]]F ∨ [[Hi x]]⟨|Lj y|⟩T)) ∧ [[z]]X), where the first subformula

[[Hi x]][[x < Lj y]]F requires the absence of causal dependencies from high to low level, and

37

the second subformula ([[Lj y]]F ∨ [[Hi x]]⟨|Lj y|⟩T) states that the execution of a high level

transition cannot preclude a low level one previously enabled. Moreover, in [BC15] it is

shown that a safe net can be transformed into another one such that interference in the

original net is reduced simply to the presence of causal dependencies from high to low level

in the new one. Then, given a model without self-loops that has been preprocessed as

mentioned, letting transitions being labelled by the level they belong to, i.e., H or L, the

non-interference property can be easily expressed as νX.([[Hx]][[x < L y]]F∧ [[z]]X). Observe

that this is also possible whenever there are no direct conflicts between high and low level

transitions.

As a final example, consider the notion of atomicity based on causality defined in [FM06].

The control flow of a program with threads is modelled as a Petri net that faithfully captures

the independence and interaction between threads. The causality between events in the

partially ordered executions of the Petri net is used to define the notion of causal atomicity

for program blocks. Roughly, a program block A is causally atomic if there are no events

e1, e2 from A and e outside A such that e1 < e < e2. Assuming that each event is labelled

by the block it is in, the causal atomicity property can be expressed in Lhp as νX.([[w]]X ∧
[[Ax]]νY (x).(

⋀︁
B∈Λ∖{A}[[x < B y]][[y < A z]]F ∧ [[w]]Y (x))).

4.3.4 Alternation

A feature of the logic inherited from the mu-calculus is that least and greatest fixpoint

operators can be mixed in profitable ways. This makes the logic quite powerful, but has

effects on the complexity of most problems regarding it. Indeed, in verification problems, the

more interdependencies between fixpoints in a formula the harder the property becomes to

be proved. More specifically, two (or more) fixpoints in a formula can be either independent

of one another, just one dependent on the other, or they can be mutually dependent. For

example, consider the formulae:

φ1 = (µX.[[ax]]X) ∧ νY.⟨| y|⟩Y

φ2 = µX.((νY.⟨|a y|⟩Y) ∨ [[x]]X)

φ3 = µX.νY.(⟨|ax|⟩X ∨ ⟨|b y|⟩Y).

The first formula φ1 requires the existence of an infinite computation but not one consisting

of only a actions. In this formula the two fixpoints are completely independent. Intuitively,

this means that they can be treated separately, even in parallel. On the other hand, in

φ2 the outer least fixpoint depends on the inner greatest one. Therefore, the computation

of the outer fixpoint depends on the meaning of the inner one on the current state. Such

formula is satisfied when along every computational path a state is eventually reached from

where an infinite chain of a actions can be executed. The third formula φ3 requires the

existence of an infinite computation consisting of infinitely many b actions and finitely

many a ones, in no specific order. In this formula the two fixpoints are mutually dependent.

38

This is motivated by the fact that the proposition associated with the outer one appears in

the subformula of the inner one. Formally, this is called alternation of (least and greatest)

fixpoints. The verification of formulae with alternation is much harder because, intuitively,

the computation of each fixpoint depends on the computation of the other. Note that the

alternating fixpoints must be of different nature, i.e., least and greatest, otherwise there is

no alternation.

The levels of alternation of fixpoints in formulae define a strict hierarchy, as shown for the

mu-calculus in [Bra98]. With regards to our verification purposes it is useful to define when

a fixpoint formula depends on another, and what is the level of alternation of a formula.

More precisely, an order induced on propositions by the nesting of fixpoints and a notion

of alternation depth of formulae of Lhp will play a role in the definition of the methods

described in the following chapters. Here we adapt some definitions from [EJS01] for the

mu-calculus. Hereafter we will assume that in every formula different bound propositions

have different names, so that we can refer to the fixpoint subformula quantifying an abstract

proposition. This requirement can always be fulfilled by alpha-renaming the propositions

in the formula. This will help us to keep the notation simpler.

First, we give the definition of the subformulae of a formula of Lhp.

Definition 4.11 (subformula). The set of subformulae of a formula φ in Lhp, denoted by

sf(φ), is defined inductively as:

sf(T) = {T}

sf(F) = {F}

sf(φ1 ∧ φ2) = {φ1 ∧ φ2} ∪ sf(φ1) ∪ sf(φ2)

sf(φ1 ∨ φ2) = {φ1 ∨ φ2} ∪ sf(φ1) ∪ sf(φ2)

sf(⟨|x,y < a z|⟩φ) = {⟨|x,y < a z|⟩φ} ∪ sf(φ)

sf([[x,y < a z]]φ) = {[[x,y < a z]]φ} ∪ sf(φ)

sf((ηZ(x).φ)(y)) = {(ηZ(x).φ)(y)} ∪ sf(φ)

sf(Z(y)) = {Z(y)}

Next we formalise when a subformula of a fixpoint depends on the fixpoint itself.

Definition 4.12 (active subformula). Given an η-formula φ = (ηX(x).φ′)(y), we say that

a subformula ψ of φ is a direct active subformula, written ψ ⊏d φ, if X ∈ fp(ψ). When

ψ ⊏∗
d φ, we say that ψ is an active subformula of φ. We denote by asfη(φ) the set of active

η-subformulae of φ.

Note that ⊏d is acyclic since it refines the subformula relation and it is irreflexive, and

thus the reflexive closure of ⊏∗
d is a partial order. Using the notion of active subformula we

can define a natural number indicating the level of alternation depth of a formula.

39

Definition 4.13 (alternation depth). The alternation depth of a formula φ in Lhp, written
ad(φ), is defined inductively as:

• for a ν-formula φ, ad(φ) =
⨆︁
{1 + ad(ψ) | ψ ∈ asfµ(φ)}

• for a µ-formula φ, ad(φ) =
⨆︁
{1 + ad(ψ) | ψ ∈ asfν(φ)}

• for any other formula φ, ad(φ) =
⨆︁
{ad(ψ) | ψ ∈ sf(φ) ∖ {φ}}.

Suprema are intended in the set of natural numbers N with the standard order, so⨆︁
∅ = 0. E.g., by the first clause above, the alternation depth of νX(x).φ is 0 due to the

absence of active µ-subformulae.

As an example, consider the formula ⟨|bx|⟩νX(x). µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x))

from the previous Subsection 4.3.3 and write it as ⟨|bx|⟩φ, where φ = νX(x).ψ and ψ =

µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)). It has alternation depth 1, since ψ is a (direct) active

subformula of φ, given the fact that X ∈ fp(ψ). It is not difficult to see that all other

formulae in Subsection 4.3.3 have instead alternation depth 0. E.g., µX.(⟨| z|⟩X∨⟨|bx|⟩⟨|x <
a y|⟩νY.⟨| z|⟩Y) has alternation depth 0 despite the nesting of a ν-subformula into a µ-

subformula, since X does not appear free in the ν-subformula.

Hereafter, in order to have a simpler notation, especially in proofs, we will refer to η-

subformulae using the abstract proposition quantified in them. So, if X and X ′ are abstract

propositions quantified in η-subformulae (ηX(x).φ)(y) and (η′X ′(x′).φ′)(y′), we will write

ad(X) for ad((ηX(x).φ)(y)) and X ⊏d X ′ for (ηX(x).φ)(y) ⊏d (η′X ′(x′).φ′)(y′).

40

Part II

Model Checking

41

Chapter 5

Tableau system

The first model-checking procedure that we introduce is based on tableaux inspired by those

in [Cle90, SW91] for the propositional mu-calculus. The resulting method, while not being

one of the most efficient, allows for a clear and intuitive presentation of the solution of the

model-checking problem. Its development plays the role of preliminary, yet thorough, study

of the decidability of the model-checking in the logic Lhp.
A tableau [Hin55, Bet55] is a (finite) proof tree whose nodes are labelled by sequents.

Usually sequents are of the kind s |=M φ, where s is a state of the model M and φ is a

formula, but they can contain further elements if needed. The fact that a state s satisfies a

formula φ amounts to the existence of a tableau rooted in s |=M φ and successful, according

to a suitable definition. Therefore, the model-checking problem, for testing whether a logical

property φ is satisfied by a system model M, is solved by searching for a successful tableau

for the sequent s0 |=M φ, where s0 is the initial state of M.

The construction of tableaux involves a set of rules, called tableau rules, which, roughly,

reduce the satisfaction of a formula to that of proper subformulae. Intuitively, this allows

to divide the original problem into smaller ones, until trivial cases are reached.

In this chapter we present a tableau system for model-checking formulae of the logic

Lhp over semantic models given in the form of event structures. We prove that the tableau

rules are sound and complete over a class of regular event structures.

5.1 Tableau rules

The tableau system works on sequents C, ρ,∆ |=E φ, where φ is a formula of Lhp, C ∈ C(E)

is a configuration, ρ is an environment and ∆ is a finite set of definitions of the form

Z(x) = ψ, where x is a tuple of (distinct) event variables and fv(ψ) ⊆ x. Intuitively, a

sequent C, ρ,∆ |=E φ expresses that the formula φ holds in state C when free event variables

are associated with events as specified by ρ and free propositions represent formulae as

indicated by ∆. The triple Γ = ⟨C, ρ,∆⟩ is called the context and φ the consequent. In a

tableaux built starting from a closed formula, each proposition Z(x) in ∆ will be defined

42

as the corresponding fixpoint subformula ηZ(x). ψ where Z is quantified. For technical

reasons, we also allow ∆ to bind propositions to general formulae. This will be later used

in the proofs of soundness and completeness, where we will need to bind propositions to

suitably defined fixpoint approximants.

It will be useful to see ∆ as a function. So, when Z(x) = ψ is in ∆, we write Z(x) ∈
dom(∆) and we denote the formula ψ as ∆(Z(x)). Furthermore, we denote by ∆[Z(x) ↦→ ψ]

the updated definition set obtained from ∆ by removing the previous definition of Z, if any,

and adding Z(x) = ψ. We assume that for each abstract proposition there is at most one

definition, i.e., if Z(x) = ψ and Z(x′) = ψ′ are in ∆, then x = x′ and ψ = ψ′.

We will work with a subclass of sequents where iterating the substitution of free propo-

sitions in the formula φ with their definitions in ∆, we eventually obtain a formula without

free propositions. More precisely, let C, ρ,∆ |=E φ be a sequent. For formulae ψ,ψ′ we

write ψ →∆ ψ′ when ψ′ = ψ[Z(x) := ∆(Z(x))] for some Z(x) ∈ dom(∆). Then the class

of sequents we will work with can be defined as follows.

Definition 5.1 (well-formed sequent). A sequent C, ρ,∆ |=E φ is well-formed if φ →∗
∆ ψ

for some ψ such that fp(ψ) = ∅. In this case, we denote the formula ψ by (φ)∆.

Since we assumed that for each abstract proposition there is at most one definition in

∆, it is easy to realise that the formula (φ)∆ is well-defined, i.e., when it exists it is unique

(up to alpha-renaming of event variables).

The truth of a well-formed sequent can be now defined in the obvious way.

Definition 5.2 (truth). A well-formed sequent C, ρ,∆ |=E φ is true if (C, ρ) ∈ {|(φ)∆|}Eπ,
where π is any proposition environment.

Observe that in the definition above, the proposition environment π is irrelevant, since

C, ρ,∆ |=E φ is well-formed and thus the formula (φ)∆ does not include any free proposition.

The tableau rules will be of the form

C, ρ,∆ |=E φ

C1, ρ1,∆1 |=E φ1 . . . Ck, ρk,∆k |=E φk
δ

where k > 0 and δ is a possible side condition required to hold. The intuition is that the

truth of the sequent in the premise reduces to the truth of those in the conclusion. In the

following the index E , when clear from the context, will be dropped. Moreover, all sequents

will be, sometimes tacitly, assumed to be well-formed.

The tableau rules for the logic Lhp, are reported in Table 5.1. The rules for propositional

connectives are straightforward. For instance the truth of φ ∨ ψ is reduced to the truth of

either φ or ψ. The context is not altered.

Similarly, the truth of a modal formula is reduced to the truth of the subformula after

the modal operator, in suitable contexts chosen according to the semantics. For the formula

⟨|x,y < a z|⟩φ the rule (♢) prescribes the existence of at least one transition leading to a

43

(∧)
C, ρ,∆ |= φ ∧ ψ

C, ρ,∆ |= φ C, ρ,∆ |= ψ

(∨L)
C, ρ,∆ |= φ ∨ ψ

C, ρ,∆ |= φ
(∨R)

C, ρ,∆ |= φ ∨ ψ

C, ρ,∆ |= ψ

(♢)
C, ρ,∆ |= ⟨|x,y < a z|⟩φ
C ′, ρ[z ↦→ e],∆ |= φ

∃ e. C ρ(x),ρ(y)<e−−−−−−−−→a C
′

(□)
C, ρ,∆ |= [[x,y < a z]]φ

C1, ρ1,∆ |= φ . . . Cn, ρn,∆ |= φ

where {(C1, ρ1), . . . , (Cn, ρn)} = Succx,y<az
E (C, ρ)

(Int)
C, ρ,∆ |= (ηZ(x).φ)(y)

C, ρ,∆′ |= Z(y)
∆′ = ∆[Z(x) ↦→ ηZ(x).φ]

(Unfη)
C, ρ,∆ |= Z(z)

C, ρ[x ↦→ ρ(z)],∆ |= φ
¬γ and ∆(Z(x)) = ηZ(x).φ

Table 5.1: The tableau rules for the logic Lhp.

context where φ holds. The rule (□) for [[x,y < a z]]φ requires that all transitions lead to

contexts where φ holds. Observe that, working with boundedly branching PESs rule (□)

always has a finite number of sequents in the conclusion.

Rule (Int) reduces the truth of a fixpoint formula (ηZ(x).φ)(y) to that of the proposition

Z(y) in a context where the definition list ∆ is extended by defining Z(x) as the correspon-

ding fixpoint subformula. We will say that the node C, ρ,∆ |= (ηZ(x).φ)(y) introduces the

abstract proposition Z.

Rule (Unfη) is applied when the consequent is a proposition Z(z): it just unfolds the

proposition according to its definition in ∆. When the tableau is rooted in a closed formula,

the proposition will be always bound to a fixpoint formula. The component γ in the side

condition will be described in the next section. It is called stop condition and, as suggested

by its name, it is intended to prevent the reduction to continue unboundedly.

A simple example of tableau is depicted in Figure 5.1. Such tableau proves that the

formula ⟨|cx|⟩(⟨|x < a y|⟩T ∧ ⟨|x < b z|⟩T) from Subsection 4.3.3 was correctly claimed to

be satisfied by the PES E3 in Figure 3.1c. Notice how the state of the computation and

the environment are updated after each application of a rule for modal operators (rule (♢)

in this case). For instance, in the left-hand branch of the tableau, the configuration {c} is

updated to {c, a} after executing the event a, caused by the event ρ(x), which is then bound

44

to variable y in ρ[x ↦→ c, y ↦→ a]. No rule can be applied to the sequents labelling the leaves,

whose formula T holds in any state.

∅, ρ, ∅ |= ⟨|cx|⟩(⟨|x < a y|⟩T ∧ ⟨|x < b z|⟩T)
(♢)

{c}, ρ[x ↦→ c], ∅ |= ⟨|x < a y|⟩T ∧ ⟨|x < b z|⟩T
(∧)

{c}, ρ[x ↦→ c], ∅ |= ⟨|x < a y|⟩T
(♢)

{c, a}, ρ[x ↦→ c, y ↦→ a], ∅ |= T

{c}, ρ[x ↦→ c], ∅ |= ⟨|x < b z|⟩T
(♢)

{c, b}, ρ[x ↦→ c, z ↦→ b], ∅ |= T

Figure 5.1: A tableau for ⟨|cx|⟩(⟨|x < a y|⟩T ∧ ⟨|x < b z|⟩T) in E3.

To see that it is appropriate to unfold a proposition Z(z) into the inner formula φ of

the fixpoint where the proposition is quantified, we observe that, in a well-formed sequent,

the denotation of (φ)∆ is the same of the denotation of (Z(x))∆. Therefore, the truth of

the corresponding sequents is the same. Formally, this technical result will later be used to

show that the unfolding rule is in fact sound.

Lemma 5.1 (fixpoints and substitutions). Let C, ρ,∆ |=E φ be a well-formed sequent and

assume that ∆(Z(x)) = ηZ(x).φ. Then {|(φ)∆|}Eπ = {|(Z(x))∆|}Eπ.

Proof. Let {Y1, . . . , Yn} = fp(φ) ∖ {Z} and let

φ′ = φ[Y1(y1) := (Y1(y1))∆] . . .[Yn(yn) := (Yn(yn))∆],

Observe that

(Z(x))∆ = (∆(Z(x)))∆ = (ηZ(x).φ)∆ = ηZ(x).φ′ (5.1)

and thus

(φ)∆ = (φ′)∆ = φ′[Z(x) := (Z(x))∆] = φ′[Z(x) := ηZ(x).φ′]. (5.2)

Putting things together we have

{|(Z(x))∆|}Eπ = {|ηZ(x).φ′|}Eπ [by (5.1)]

= {|φ′|}Eπ[Z(x)↦→{|ηZ(x).φ′|}Eπ]
[by the semantics of fixpoints]

= {|φ′[Z(x) := ηZ(x).φ′]|}Eπ [by Lemma 4.1(2)]

= {|(φ)∆]|}Eπ [by (5.2)]

The tableau rules satisfy a form of backwards soundness, i.e., we can show that the

premise is true when all the sequents in the conclusion are. This property will play a basic

role in Section 5.3 for proving the soundness of the tableau system.

Lemma 5.2 (backwards soundness). Every rule of the tableau system for Lhp is backwards

sound.

45

Proof. For each rule we have to show that if the sequents in the conclusion are true then

also the sequent in the premise is true. The proof follows almost directly from the definition

of the semantics of the logic. We only inspect some cases:

• Consider the rule

(∧)
C, ρ,∆ |=E φ ∧ ψ

C, ρ,∆ |=E φ C, ρ,∆ |=E ψ

Assume that the sequents in the conclusion are true, i.e., that (C, ρ) ∈ {|(φ)∆|}Eπ
and (C, ρ) ∈ {|(ψ)∆|}Eπ, for π ∈ PEnvE . Just observe that (φ ∧ ψ)∆ = (φ)∆ ∧ (ψ)∆.

Then we immediately conclude that (C, ρ) ∈ {|(φ ∧ ψ)∆|}Eπ, i.e., that the sequent

C, ρ,∆ |=E φ ∧ ψ is true, as desired.

• Consider the rule

(♢)
C, ρ,∆ |=E ⟨|x,y < a z|⟩φ
C ′, ρ[z ↦→ e],∆ |=E φ

where e ∈ E [C] and C
ρ(x),ρ(y)<e−−−−−−−−→a C

′.

Assume that the sequent in the conclusion is true, i.e., (C ′, ρ[z ↦→ e]) ∈ {|(φ)∆|}Eπ,

for π ∈ PEnvE . By definition of the semantics, we immediately deduce that (C, ρ) ∈
{|⟨|x,y < a z|⟩ (φ)∆|}Eπ. Since (⟨|x,y < a z|⟩φ)∆ = ⟨|x,y < a z|⟩ (φ)∆, this proves that

the sequent C, ρ,∆ |=E ⟨|x,y < a z|⟩φ in the premise is true.

• Consider the rule:

(Int)
C, ρ,∆ |=E (ηZ(x).φ)(y)

C, ρ,∆′ |=E Z(y)

where ∆′ = ∆[Z(x)x ↦→ ηZ(x).φ].

Assume that the sequent in the conclusion is true, i.e., (C, ρ) ∈ {|(Z(y))∆′ |}Eπ, for π ∈
PEnvE . Just observe that (Z(y))∆′ = ((ηZ(x).φ)(y))∆′ = ((ηZ(x).φ)(y))∆ where the

last equality is motivated by the fact that ∆ and ∆′ differ only on Z, which is not free

in (ηZ(x).φ)(y) (and neither it is in any formula ψ such that (ηZ(x).φ)(y) →∗
∆ ψ).

Hence

{|(Z(y))∆′ |}Eπ = {|((ηZ(x).φ)(y))∆|}Eπ

This immediately implies that the sequent C, ρ,∆ |=E (ηZ(x).φ)(y) in the premise

is true.

• Consider the rule:

(Unfη)
C, ρ,∆ |=E Z(z)

C, ρ′,∆ |=E φ

where ∆(Z(x)) = ηZ(x).φ, for ρ′ = ρ[x ↦→ ρ(z)].

46

Assume that the sequent in the conclusion is true, i.e., (C, ρ′) ∈ {|(φ)∆|}Eπ, for some

π ∈ PEnvE . By Lemma 5.1, {|(φ)∆|}Eπ = {|(Z(x))∆|}Eπ. Thus we have

(C, ρ′) =

(C, ρ[x ↦→ ρ(z)]) ∈ {|(Z(x))∆|}Eπ =

= {|(Z(z)[x⧸z])∆|}Eπ =

= {|(Z(z))∆[x⧸z]|}Eπ =

= {|(Z(z))∆|}Eπ[x⧸z]

Thus (C, ρ) ∈ {|(Z(z))∆|}Eπ which means that the sequent in the premise is true.

5.2 The stop condition

The unfolding rule (Unfη), in absence of any countermeasure, makes the tableau construction

procedure possibly non-terminating. To solve this problem a side condition, called the stop

condition, is added that prevents the application of the rule when a context is reached that

is equivalent, in a suitable sense to be defined, to a context occurring in an ancestor of the

current node, for the same fixpoint formula.

The notion of equivalence between contexts has to be chosen carefully not to break the

soundness of the technique. Intuitively, two contexts should be equivalent for a formula

if either both satisfy it or none of them does. The satisfaction of a formula of Lhp in a

given configuration, surely depends on the future of the configuration. So, two contexts

C, ρ,∆ and C ′, ρ′,∆′ for a formula φ, in order to be considered equivalent, must have

isomorphic futures, i.e., the residuals E [C] and E [C ′] must be isomorphic as PESs. This

is not sufficient, though, since φ can express history dependent properties that relates the

future to the past events via its free event variables. Hence we additionally ask that event

variables of φ are mapped to events in C and C ′, respectively, which have the same relations

(causality and concurrency) with the corresponding futures. This motivates the notion of

pointed configuration introduced below, which, intuitively, is a configuration where some

past events are singled out.

Definition 5.3 (pointed configuration). Let E be a PES and let V be a set. A V -pointed

configuration is a pair ⟨C, ζ⟩ where C ∈ C(E) and ζ : V → C is a function.

The notion will be used instantiating V with the set of variables free in a formula and

ζ with the (restriction to such variables of the) environment in a context.

Now we can define the equivalence that we will use over contexts seen as configurations

pointed by the free variables of a formula. In general, we say that two V -pointed confi-

gurations have isomorphic pointed residuals when their residuals are related by a bijection

47

ensuring that events pointed by the same x ∈ V have the same causal relations with the

future.

Definition 5.4 (isomorphism of pointed residuals). Let E be a PES, let V be a set, and let

⟨C, ζ⟩ and ⟨C ′, ζ ′⟩ be two V -pointed configurations of E. We say that ⟨C, ζ⟩, ⟨C ′, ζ ′⟩ have

isomorphic residuals, written ⟨C, ζ⟩ ≈r ⟨C ′, ζ ′⟩, if there is an isomorphism of the residuals

ι : E [C] → E [C ′] such that for all x ∈ V , e ∈ E [C] we have ζ(x) ≤ e iff ζ ′(x) ≤ ι(e).

We will show that pointed configurations with isomorphic residuals satisfy exactly the

same formulae, when the free event variables of the formulae are associated with the pointed

events. For properly stating such property, since we will work with formulae containing free

propositions, we need to restrict to proposition environments that are well-behaved, in the

sense formalised below, with respect to the free propositions of the formulae of interest.

Definition 5.5 (saturated proposition environment). Let E be a PES. Given a formula

φ and a proposition environment π ∈ PEnvE , we say that π is saturated for φ when

for all Z ∈ fp(φ) and (C, ρ), (C ′, ρ′) ∈ C(E) × EnvE , with ⟨C, ρ|fv(φ)⟩ ≈r ⟨C ′, ρ′|fv(φ)⟩, if

(C, ρ) ∈ π(Z(y)), for some y, then (C ′, ρ′) ∈ π(Z(y)).

In words, in order to be saturated for a formula φ, a proposition environment must

assign to each free proposition in φ an evaluation that respects the equivalence ≈r over

fv(φ)-pointed configurations. Then we have the result we were looking for.

Lemma 5.3 (equisatisfaction in pointed configurations with isomorphic residuals). Let

E be a PES, let φ be a formula of Lhp, let π ∈ PEnvE be a proposition environment

saturated for φ, and let (C1, ρ1), (C2, ρ2) ∈ C(E) × EnvE . If ⟨C1, ρ1|fv(φ)⟩ ≈r ⟨C2, ρ2|fv(φ)⟩
then (C1, ρ1) ∈ {|φ|}Eπ iff (C2, ρ2) ∈ {|φ|}Eπ.

Proof. Assume ⟨C1, ρ1|fv(φ)⟩ ≈r ⟨C2, ρ2|fv(φ)⟩, via an isomorphism ι : E [C1] → E [C2]. We

prove that if (C1, ρ1) ∈ {|φ|}Eπ then (C2, ρ2) ∈ {|φ|}Eπ. Since the isomorphism ι is bijective,

the other implication follows by symmetry. The proof proceeds by induction on the formula

φ. We discuss only some representative cases:

• φ = Z(x)

Let (C1, ρ1) ∈ {|Z(x)|}Eπ = π(Z(x)). Since π is saturated for Z(x), by definition, we

get that also (C2, ρ2) ∈ π(Z(x)), as desired.

• φ = ψ1 ∧ ψ2

If (C1, ρ1) ∈ {|ψ1 ∧ ψ2|}Eπ, then by definition of the semantics (C1, ρ1) ∈ {|ψ1|}π and

(C1, ρ1) ∈ {|ψ2|}π. By inductive hypothesis we obtain (C2, ρ2) ∈ {|ψ1|}π and (C2, ρ2) ∈
{|ψ2|}π and thus (C2, ρ2) ∈ {|ψ1 ∧ ψ2|}π.

• φ = ⟨|x,y < a z|⟩ψ
Assume that (C1, ρ1) ∈ {|⟨|x,y < a z|⟩ψ|}π. By definition of the semantics there ex-

ists an event e ∈ E [C1] such that C1
ρ1(x),ρ1(y)<e−−−−−−−−−→a C

′
1 and (C ′

1, ρ
′
1) ∈ {|ψ|}π with

48

ρ′1 = ρ1[z ↦→ e]. Since ι is an isomorphism of residuals of pointed configurations

⟨C1, ρ1|fv(φ)⟩ ≈r ⟨C2, ρ2|fv(φ)⟩, we readily deduce that ι(e) is enabled at C2 and

C2
ρ2(x),ρ2(y)<ι(e)−−−−−−−−−−−→a C

′
2 (5.3)

Consider the restriction of ι to E [C ′
1] and call it ι′ : E [C ′

1] → E [C ′
2]. Clearly ι′ is

an isomorphism of PESs. Additionally, if we let ρ′2 = ρ2[z ↦→ ι(e)], it is easy to see

that for all x ∈ fv(ψ), e1 ∈ E [C ′
1], it holds ρ′1(x) ≤ e1 iff ρ′2(x) ≤ ι′(e1). Hence

⟨C ′
1, ρ

′
1|fv(ψ)⟩ ≈r ⟨C ′

2, ρ
′
2|fv(ψ)⟩. In fact, for all x ∈ fv(ψ) ⊆ fv(φ) ∪ {z}:

1. if x ∈ fv(φ) we can observe that e1 ∈ E [C ′
1] ⊆ E [C1] and ρi(x) = ρ′i(x) for i ∈

{1, 2}. Then the desired property follows from the fact that ι is an isomorphism

of residuals of the pointed configurations ⟨C1, ρ1|fv(φ)⟩ and ⟨C2, ρ2|fv(φ)⟩.

2. if x = z then ρ′1(z) = e ∈ E [C1], ρ
′
2(z) = ι(e) ∈ E [C2]. Since ι : E [C1] → E [C2] is

an isomorphism of PESs, ρ1(x) ≤ e′1 iff ρ2(x) = ι(e) ≤ ι(e′1).

Since ⟨C ′
1, ρ

′
1|fv(ψ)⟩ ≈r ⟨C ′

2, ρ
′
2|fv(ψ)⟩, by inductive hypothesis, (C ′

2, ρ
′
2) ∈ {|ψ|}π. Recal-

ling (5.3), we conclude (C2, ρ2) ∈ {|⟨|x,y < a z|⟩ψ|}π, as desired.

• φ = (ηZ(x).ψ)(y)

We know that {|(ηZ(x).ψ)(y)|}π = {|ηZ(x).ψ|}π[y⧸x]. Thus it suffices to show that if

(C1, ρ1) ∈ {|ηZ(x).ψ|}π then (C2, ρ2) ∈ {|ηZ(x).ψ|}π.

We focus on the case η = µ (the case η = ν is perfectly dual). Observe that, by

definition of the semantics, we have

{|ηZ(x).ψ|}π = µf

where f = fψ,Z(x),π : C(E) × EnvE → 2C(E)×EnvE is defined by f(S) = {|ψ|}Eπ[Z(x)↦→S].

By Theorem 2.2 we know that µf = fγ(∅) for some ordinal γ. The thesis follows

by showing that for any ordinal β, if (C1, ρ1) ∈ fβ(∅) then (C2, ρ2) ∈ fβ(∅). The

proof is by induction on β. The base case β = 0 is trivial since f0(∅) = ∅. For a

successor ordinal, if (C1, ρ1) ∈ fβ+1(∅) = f(fβ(∅)) = {|φ|}E
π[Z(x)↦→fβ(∅)]. Observe that

π′ = π[Z(x) ↦→ fβ(∅)] is saturated for ψ, as it easily follows from the fact that π is

saturated for φ and free variables of ψ are fp(ψ) ⊆ fp(φ)∪{Z} and fv(φ) = fv(ψ) = x.

Thus the only doubt could concern the proposition Z, but the condition is satisfied also

for Z, by the inner inductive hypothesis applied to fβ(∅). Therefore, we can apply the

outer inductive hypothesis to ψ to deduce that (C2, ρ2) ∈ {|φ|}E
π[Z(x)↦→fβ(∅)] = fβ+1(∅).

The case of a limit ordinal is straightforward.

Recall that the proposition environment is irrelevant for establishing the truth of a well-

formed sequent because the instantiation of its formula is always closed. This goes well

49

with the result above, since in fact every proposition environment is vacuously saturated

for a closed formula. Therefore, for well-formed sequents, when two contexts C, ρ,∆ and

C ′, ρ′,∆′ for the same formula φ, seen as pointed configurations, have isomorphic residuals

⟨C, ρ|fv(φ)⟩ ≈r ⟨C ′, ρ′|fv(φ)⟩, the lemma above ensures that the corresponding sequents have

the same truth value, as long as the two instantiations of the formula (φ)∆ and (φ)∆′ are

the same. The latter is guaranteed to happen if the sequents come from the same tableau

built starting from a closed formula.

We can now proceed with the definition of the stop condition. Given a tableau for a

closed formula and a node labelled by C, ρ,∆ |= Z(y), with Z(x) = ψ in ∆, necessarily

ψ = ηZ(x).φ and the node has some ancestor introducing Z. We will denote by ∆↑(Z) the

closest of such ancestors. The notation is slightly abused since ∆↑(Z) is not determined by

∆ but by the tableau itself, still it is suggestive since ∆↑(Z) is the node where the definition

of Z in ∆ has been updated more recently. More precisely, one can think that ∆↑(·) is an

additional component of the sequent.

Observe that, once it has been set, the definition Z(x) = ψ of a proposition remains

unchanged in the tableau and it will be referred as the definition of Z in the tableau.

Instead, the component ∆↑(Z) changes at each application of rule (Int).

Definition 5.6 (stop condition). The stop condition γ for rule (Unfη) in Table 5.1 is as

follows:

there is an ancestor of the premise C, ρ,∆ |= Z(z) labelled C ′, ρ′,∆′ |= Z(y), such that

∆↑(Z) = ∆′↑(Z) and ⟨C, ρ[x ↦→ ρ(z)]|x⟩ ≈r ⟨C ′, ρ′[x ↦→ ρ′(y)]|x⟩.

Informally, the stop condition holds when in an ancestor node in the tableau an instance

of the abstract proposition Z has been unfolded in an equivalent context, and between

such ancestor and the current node, Z has not been reintroduced. This intuitively means

that the two Z’s refer to the same fixpoint instance. In this case we can safely avoid to

continue along this path. Instead, when the stop condition fails, it makes sense to further

unfold the fixpoint since the current context is still “different enough” from those previously

encountered. Note that the equivalence of contexts is checked after renaming the variables

to those associated with Z in the fixpoint formula quantifying the proposition.

As an example, consider the formula ⟨|bx|⟩ νX(x). µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x))

from Subsection 4.3.3, which was claimed to be satisfied by E3 in Figure 3.1c. Write it as

⟨|bx|⟩φ, where φ = νX(x).ψ and ψ = µY (x).(⟨|x < b y|⟩X(y)∨⟨| z|⟩Y (x)). A tableau for the

sequent ∅, ρ, ∅ |= ⟨|bx|⟩φ is given in Figure 5.2. No rule can be applied to the bottom sequent

{b0, b1}, ρ[x ↦→ b0, y ↦→ b1], {X(x) = φ, Y (x) = ψ} |= X(y) because the stop condition

holds, hence the side condition of the unfolding rule is not satisfied. In fact, there is an

ancestor, namely {b0}, ρ[x ↦→ b0], {X(x) = φ} |= X(x), having the same introduction node

for the abstract proposition X and such that ⟨{b0, b1}, ρ[x ↦→ b1]|x⟩ ≈r ⟨{b0}, ρ[x ↦→ b0]|x⟩.
In [Cle90, SW91, CS01], the finiteness of the model is an essential ingredient that concurs

to the finiteness of the tableaux. In our case, as already mentioned, the PES model is

50

∅, ρ, ∅ |= ⟨|bx|⟩φ
(♢)

{b0}, ρ[x ↦→ b0], ∅ |= φ
(Int)

{b0}, ρ[x ↦→ b0], {X(x) = φ} |= X(x)
(Unfν)

{b0}, ρ[x ↦→ b0], {X(x) = φ} |= ψ
(Int)

{b0}, ρ[x ↦→ b0], {X(x) = φ, Y (x) = ψ} |= Y (x)
(Unfµ)

{b0}, ρ[x ↦→ b0], {X(x) = φ, Y (x) = ψ} |= ⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)
(∨L)

{b0}, ρ[x ↦→ b0], {X(x) = φ, Y (x) = ψ} |= ⟨|x < b y|⟩X(y)
(♢)

{b0, b1}, ρ[x ↦→ b0, y ↦→ b1], {X(x) = φ, Y (x) = ψ} |= X(y)

Figure 5.2: A successful tableau for ⟨|bx|⟩νX(x).µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)) in E3.

commonly infinite, even for finite state systems. When working with regular PESs, thanks

to the fact that they are boundedly branching, only a finite part of the model is used at

every step of the tableau construction. However, the stop condition is still not guaranteed

to eventually hold because regular PESs, despite having finitely many equivalence classes of

residuals, could still have possibly infinitely many pointed residuals up to isomorphism. For

this reason we constrain the model-checking procedure to a more specific class of regular

PESs defined below.

Given a configuration C ∈ C(E) and a subset of events X ⊆ C, we denote by E [C] ∪X
the PES obtained from E [C] by adding the events in X with the causal dependencies they

had in the original PES E .

Definition 5.7 (strong regularity). A PES E is called strongly regular when it is boundedly

branching and for each k ∈ N the set {E [C] ∪ {e1, . . . , ek} | C ∈ C(E) ∧ e1, . . . , ek ∈ C} is

finite up to isomorphism of PESs.

Strong regularity is obtained from the notion of regularity, by replacing residuals with

residuals extended with a bounded number of events from the past. Roughly, the require-

ment is that the PES has a finite number of extended residuals over which the computation

cycles. Clearly, every strongly regular PES is regular since the property in Definition 5.7

must hold, in particular, for k = 0. We will later show in Section 6.3 that the PESs associa-

ted with finite safe Petri nets are not only regular (Theorem 3.2) but even strongly regular

(Corollary 6.1). The class of strongly regular PESs may not be strictly included in the

regular ones, the two classes could still be the same. The problem is left open. Answering

this question is very hard, arguably harder than disproving the second half of Thiagara-

jan’s conjecture. Indeed, any example of regular but not strongly regular PES would be a

counterexample to the conjecture.

An example of strongly regular PES is E3 in Figure 3.1c. Note, e.g., that it has six

51

(equivalence classes of) residuals extended with a single event from the past E3[{c}] ∪ {c},

E3[{b0}]∪{b0}, E3[{c, b0}]∪{b0}, E3[{c, a0}]∪{c}, E3[{c, a0}]∪{a0} and E3[{c, b0, a1}]∪{b0}.

As we already observed in Subsection 3.2.1, E3 is induced by the safe Petri net N in

Figure 3.4a. Then, the easiest way to show that E3 is strongly regular is to use the mentioned

result on finite safe Petri nets (Corollary 6.1).

The relation between residuals of pointed configurations and residuals extended with

events from the past is quite trivial: the residual of a pointed configuration ⟨C, ζ⟩ can be

seen as the residual E [C] extended with the events in cod(ζ). Actually, intuitively, pointed

residuals are more concrete. For instance, consider the configuration C = {c, b0} of E3 and

let ζ1, ζ2 : {x, y} → C be defined by ζ1(x) = ζ2(y) = b0 and ζ1(y) = ζ2(x) = c. The

residuals of the {x, y}-pointed configurations ⟨C, ζ1⟩ and ⟨C, ζ2⟩ are not isomorphic since

ζ1(x) causes all events enabled at C, while ζ2(x) causes only one of them. On the other

hand, since cod(ζ1) = cod(ζ2) = C, the corresponding extended residuals are the same

E3[C] ∪ C, and thus isomorphic. Nevertheless, it can be shown that, for strongly regular

PESs, the number of equivalence classes of pointed configurations with respect to ≈r is

finite. The converse holds when the PES is boundedly branching, providing an alternative

characterisation of strong regularity.

Lemma 5.4 (strong regularity and pointed configurations). A PES E is strongly regular if

and only if it is boundedly branching and for any fixed finite set V , the equivalence ≈r is of

finite index over V -pointed configurations of E.

Proof. (⇒) Assume that E is strongly regular. Then by definition it is boundedly branching.

Let V be a finite set and let CV = {⟨C, ζ⟩ | C ∈ C(E) ∧ ζ : V → C} be the set of V -pointed

configurations.

By strong regularity, the set {E [C] ∪ ζ(V) | C ∈ C(E) ∧ ζ : V → C} is finite up to

isomorphism of PESs. This does not immediately imply that CV is finite up to ≈r. In fact,

given two V -pointed configurations ⟨C, ζ⟩, ⟨C ′, ζ ′⟩, an isomorphism of PES ι : E [C]∪ζ(V) →
E [C ′]∪ζ ′(V) is not necessarily an isomorphism of the corresponding pointed residuals. This

is certainly the case if additionally it holds ι(ζ(x)) = ζ ′(x) for all x ∈ V .

Assume, by contradiction, that CV is not finite up to ≈r. Then we can find a sequence of

V -pointed configurations ⟨Ci, ζi⟩, i ∈ N such that the PESs E [Ci]∪ζi(V) are all isomorphic,

while ⟨Ci, ζi⟩ are pairwise non-equivalent with respect to ≈r. Let ιi : E [Ci] ∪ ζi(V) →
E [Ci+1] ∪ ζi+1(V) be PES isomorphisms for all i ∈ N and denote by ιi,j : E [Ci] ∪ ζi(V) →
E [Cj] ∪ ζj(V) the isomorphism resulting as the composition ιj−1 ◦ . . . ◦ ιi+1 ◦ ιi.

The key observations are the following. Define the causal depth of an event as depth(e) =

max{depth(e′) | e′ < e}. Then

1. the events in ζi(V) have causal depth bounded by |V | in the PES E [Ci] ∪ ζi(V);

2. the PESs E [Ci]∪ζi(V) have a finite number of events of causal depth bounded by |V |,
since the PES E is strongly regular (hence b-bounded for some b ∈ N);

52

3. each isomorphism of PESs ιi preserves the causal depth of events (i.e., depth(ιi(e)) =

depth(e)).

By (1)-(3) above we deduce that there are i, j ∈ N, i ≤ j such that for all x ∈ V we

have ι1,i(ζ
1(x)) = ζi(x) and ι1,j(ζ

1(x)) = ζj(x). This implies that ιi,j(ζ
i(x)) = ζj(x) for all

x ∈ V .

Therefore it is immediate to see that ιi,j |E[Ci] : E [Ci] → E [Cj] is an isomorphism of the

residuals of the pointed configurations ⟨Ci, ζi⟩ and ⟨Cj , ζj⟩, contradicting the fact that the

pointed configurations in the sequence had all non-isomorphic residuals.

(⇐) Assume that E is boundedly branching and for all fixed finite set V , the equivalence

≈r is of finite index over V -pointed configurations of E . We have to prove that E is strongly

regular. Let k be a fixed integer and let V = {v1, . . . , vk} be a set of cardinality k. Each

“extended” residual E [C] ∪ {e1, . . . , ek}, with e1, . . . , ek ∈ C can be trivially seen as the

residual of a V -pointed configuration ⟨C, ζ⟩ with ζ(vi) = ei for i ∈ {1, . . . , k}.

Again, from the fact that ≈r is of finite index over V -pointed configurations we cannot

immediately conclude. In fact, consider two extended residuals E [C] ∪ {e1, . . . , ek} and

E [C ′]∪{e′1, . . . , e′k} such that the corresponding V -pointed configurations ⟨C, ζ⟩ and ⟨C ′, ζ ′⟩
are in the same class, i.e., ⟨C, ζ⟩ ≈r ⟨C ′, ζ ′⟩. Let ι : E [C] → E [C ′] be the corresponding

isomorphism such that for all x ∈ V , e ∈ E [C] we have ζ(x) ≤ e iff ζ ′(x) ≤ ι(e). Observe

that it is not necessarily the case that

ι[ζ(v1) ↦→ ζ ′(v1), . . . , ζ(vk) ↦→ ζ ′(vk)] : E [C] ∪ {e1, . . . , ek} → E [C ′] ∪ {e′1, . . . , e′k}

is an isomorphism of PESs, since the mapping ζ(v1) ↦→ ζ ′(v1), . . . , ζ(vk) ↦→ ζ ′(vk) does

not necessarily respect causal dependencies nor labels. However, since, up to isomorphism,

there are only finitely many partial orders with k elements, and similarly only finitely many

possible labelling, we conclude that each ≈r-class of V -pointed configurations splits in a

finite number of classes of isomorphic extended residuals and thus we conclude.

From the result above it follows that, in the construction of a tableau over a strongly

regular PES, after going sufficiently in depth, the PES starts “repeating” cyclically the

same structure even if we take into account the events pointed by free variables. This will

allow to show that the stop condition eventually holds. Later in Section 5.3, this will be

used to prove that the satisfaction of a formula can be established by checking only a finite

part of the PES.

5.3 Soundness and completeness of the tableau system

In this section we show that the truth of a formula of Lhp over a strongly regular event

structure can be reduced to the existence of a suitably defined successful tableau. First, we

formalise what is a tableau for a closed formula and a PES model.

53

Definition 5.8 (tableau for a closed formula). Let E be a PES. Given a closed formula φ

in Lhp, a tableau for φ is a tableau built applying the tableau rules for Lhp starting from a

sequent ∅, ρ, ∅ |=E φ, where ρ ∈ EnvE .

Note that the initial environment ρ can be chosen arbitrarily: it is irrelevant since the

formula has no free event variables.

A maximal tableau is a tableau where all leaves are labelled by sequents to which no furt-

her rule applies. A maximal tableau is considered successful when it satisfies the condition

given below.

Definition 5.9 (successful tableau). A successful tableau for Lhp is a finite maximal tableau

where every leaf is labelled by a sequent C, ρ,∆ |=E φ such that one of the following holds:

1. φ = T

2. φ = [[x,y < a z]]ψ

3. φ = Z(y) and ∆(Z(x)) = νZ(x).ψ.

An example of successful tableau can be found in Figure 5.2.

We will prove that in a successful tableau all leaves are labelled by true sequents, a fact

that, along with backwards soundness of the rules (Lemma 5.2), will guarantee the truth of

the sequent labelling the root.

Observe that the choice of the rule to be applied at a step of the construction of a tableau

is nondeterministic in the case of diamond modalities ⟨|x,y < a z|⟩φ and disjunctions φ∨ψ.

This means that there can be various maximal tableaux for the same sequent. However,

when we work on strongly regular PESs, the fact that they are boundedly branching ensures

that at each step the number of possible nondeterministic choices is finite and bounded.

This plays later a role for deducing that there can be only a finite number of maximal

tableaux for a sequent.

We first focus on the finiteness issue and then move on to the soundness and completeness

of the technique.

5.3.1 Finiteness

In order to have a terminating procedure we need that, given a formula and a model,

tableaux are finite and finite in numbers. We will first prove that all tableaux for a sequent

C, ρ,∆ |=E φ are finite. Then we will show that the fact that there are only finitely many

tableaux follows as a direct consequence of that. A first basic observation is that an infinite

tableau for a sequent C, ρ,∆ |=E φ necessarily includes a path where the same proposition

is unfolded infinitely many times without being reintroduced. The proof relies on some

properties of the order ⊏∗
d over propositions (see Definition 4.12).

54

Lemma 5.5 (fixpoint introduction). Let E be a PES and let τ be a tableau for a closed

formula φ in Lhp. Let n be any node in the tableau labelled by C, ρ,∆ |= X(x) for some

X(x) ∈ X .

1. If n has a descendant n′ labelled by C ′, ρ′,∆′ |= Y (y), for some Y (y) ∈ X , and Y is

not introduced between n and n′, then X ⊏∗
d Y .

2. If n has a descendant n′ that introduces X, then there is a node n′′ between n and n′

with consequent Y (y) such that X ⊏d Y (hence X ⊏∗
d Y and X ̸= Y).

Proof. 1. We prove the property by induction on the number of sequents between n and

n′ labelled by a proposition. Let ni be such nodes, labelled by Ci, ρi,∆i |= Zi(zi)

with i ∈ {1, . . . , k}. Moreover, let ηX(x′).ψ be the definition of X in the tableau.

(k = 0) The only rule applicable to node n is (Unfη), hence the successor of n will

have ψ as consequent. Since between n and n′ there are no propositions and thus no

other applications of (Unfη) and Y is not introduced, necessarily Y ∈ fp(ψ). Hence

either Y = X or X ⊏d Y . In any case, X ⊏∗
d Y .

(k > 0) Consider node n1 labelled by the sequent C1, ρ1,∆1 |= Z1(z1). By inductive

hypothesis

Z1 ⊏
∗
d Y (5.4)

Since between n and n1 there are no propositions and thus no applications of the

(Unfη) rule, there are two possibilities: either Z1 ∈ fp(ψ) or Z1 is introduced between

n and n1. In the first case, by inductive hypothesis X ⊏∗
d Z1 and thus, recalling (5.4)

we conclude X ⊏∗
d Y . In the second case, if φ1 is the definition of Z1 in the tableau,

then φ1 is a subformula of ψ, a fact that along with (5.4), again, implies X ⊏∗
d Y .

2. Let ηX(x′).ψ be the definition of X in the tableau. The only rule applicable to node

n is (Unfη), hence the successor of n will have ψ as consequent. Since all rules except

(Unfη) reduce the size of the formula, there must be between n and n′ an occurrence

of the unfolding rule applied to some Y ∈ fp(ηX(x′).ψ). By definition X ⊏d Y as

desired (hence X ⊏∗
d Y and, clearly, X ̸= Y since ⊏d is irreflexive).

For the next step we recall a classical result by König [Kön27] which applies to tableaux

since they are trees, hence connected graphs.

Lemma 5.6 (König). Let G be an infinite graph. If G is connected, i.e., there is a path

between every pair of vertices, and every vertex of G is adjacent to only finitely many other

vertices, then G contains an infinite path with no repeated vertices.

55

We already observed that the fact that strongly regular PESs are boundedly branching

implies that also the constructed tableaux are finitely branching. Then, by Lemma 5.6, an

infinite tableau necessarily includes an infinite path. Using Lemma 5.5 it is not difficult to

show that such path includes infinitely many repetitions of the same abstract proposition

without introductions, that is, we get the following property.

Lemma 5.7 (infinite occurrences of propositions in tableaux). Let E be a finitely branching

PES and φ be a closed formula in Lhp. An infinite tableau for φ contains an infinite path

where some abstract proposition Z occurs (and thus is unfolded) infinitely often without

being introduced.

Proof. Let E be a finitely branching PES and let τ be a an infinite tableau for φ. Since the

transition system of the PES is finitely branching, also the tableau τ is finitely branching.

Hence, by Lemma 5.6, it include an infinite path p. Since all tableau rules (Table 5.1)

apart from (Unfη) reduce the size of the consequent, path p must include infinitely many

application of (Unfη) and thus infinitely many sequents having a proposition as consequent.

Since the only abstract propositions that can appear are those in φ, which are finitely

many, there are abstract propositions that occur infinitely often (possibly with different

event variables).

Let P be the set of such abstract propositions and consider the suffix p′ of p, where only

abstract propositions in P occur.

Now, let X ∈ P be maximal with respect to ⊏∗
d and let p′′ be a suffix of p′ starting with

an occurrence of X. Necessarily X is never introduced in p′′, otherwise, by Lemma 5.5(2),

there would be a node n′ in p′′ with consequent Y (y) such that X ⊏∗
d Y and X ̸= Y ,

contradicting the maximality of X.

We can finally deduce the finiteness of the tableaux for a sequent that in turn implies

that the number of tableaux is finite. The proof is based on the two features of strongly

regular PESs, that is, the model is finitely (boundedly) branching and the equivalence ≈r is

of finite index over configurations pointed by the free variables. This fact is essential for the

termination of the model-checking procedure. Roughly, the proof proceeds as follows. An

infinite tableau, by Lemma 5.7, would contain an abstract proposition occurring infinitely

often in a path, without being reintroduced. By using Lemma 5.4 we would deduce that the

proposition would occur infinitely often within contexts with isomorphic pointed residuals.

This would lead to a contradiction, since at the first repetition the stop condition (see

Definition 5.6) would have required to terminate the branch.

Theorem 5.1 (tableaux finiteness). Given a strongly regular PES E and a closed formula

φ in Lhp, every tableau for a sequent C, ρ,∆ |=E φ is finite. Hence the number of tableaux

for C, ρ,∆ |=E φ is finite.

Proof. The proof proceeds by contradiction. Suppose that there is an infinite tableau τ

for the sequent C, ρ,∆ |=E φ. By Lemma 5.7, in τ there is an infinite path p where a

56

proposition Z occurs infinitely many times without being introduced. Let Z(x) = ηZ(x). ψ

be the definition of Z in the tableau.

By Lemma 5.4 the set of x-pointed configurations of E is finite up to ≈r. Since the

proposition Z is unfolded infinitely many times along p without being introduced, there

are infinitely many sequents C ′, ρ′,∆′ |=E Z(x′) for which Z↑(∆′) is the same node. Hence

the stop condition γ is necessarily satisfied at some point of the path, contradicting its

infiniteness.

We next prove that also the number of tableaux is finite. Consider a tree where nodes are

tableaux rooted C, ρ,∆ |=E φ and where the successors of each tableau τ are the tableaux

obtained by extending τ with the application of a rule. Since E is strongly regular, the tree

is finitely branching. If it were infinite, by Lemma 5.6 there would be an infinite path and

thus there would be an infinite sequence of tableaux (τi)i∈ω, such that τi+1 extends τi. This

in turn implies the existence of an infinite tableau, which contradicts the first part.

5.3.2 Soundness and completeness

We can now prove the soundness and completeness of the tableau system. For this we

use the possibility of reducing the satisfaction of a formula to the satisfaction of a finite

approximant. While on finite models this is immediate, on event structures where the space

of configurations is infinite, this does not work, in general. In fact, due to alternation, the

semantic function associated with a formula might be non-continuous (in the sense of, e.g.,

[Fon08, CFVZ14]), hence it is not guaranteed that fixpoints will be reached in at most ω

steps. However, here, for strongly regular PESs, the result can be obtained by exploiting

the finiteness of pointed configurations up to ≈r.

The idea of computing fixpoints as approximants arises directly from Kleene’s theorem

(Theorem 2.2). Indeed, the theorem tells us that by iterating enough times the seman-

tic function associated with a fixpoint formula starting from either the bottom or the top

element, depending on the type of fixpoint, we would eventually obtain its denotation. Furt-

hermore, Lemma 4.1(2) suggests that we can actually perform this iteration syntactically

instead of semantically. So, here we formally define how a fixpoint formula is iterated, that

is, unfolded, in order to obtain the corresponding approximant.

Definition 5.10 (finite approximant). Let φ = νZ(x).ψ be a fixpoint formula. The i-th

approximant φi, for i ∈ N, is inductively defined by φ0 = T and φi+1 = ψ[Z(x) := φi].

Dually, if φ = µZ(x).ψ, we define φ0 = F and φi+1 = ψ[Z(x) := φi].

We next observe that, as anticipated, despite the fact that the state space of configu-

rations is infinite, for strongly regular PESs all formulae reach the fixpoint after a finite

number of steps.

Lemma 5.8 (finite approximants properties). Let E be a strongly regular PES, let π ∈
PEnvE a saturated proposition environment and let φ = ηZ(x). ψ be a fixpoint formula.

57

Then there exists i ∈ N such that {|φ|}Eπ = {|φi|}Eπ. Hence for any configuration C ∈ C(E)

and environment ρ ∈ EnvE :

1. if φ = νZ(x).ψ and (C, ρ) /∈ {|φ|}Eπ, then (C, ρ) ∈ {|φn|}Eπ ∖ {|φn+1|}Eπ for some n ≤ i;

2. if φ = µZ(x).ψ and (C, ρ) ∈ {|φ|}Eπ, then (C, ρ) ∈ {|φn+1|}Eπ ∖ {|φn|}Eπ for some n ≤ i.

Proof. Let us first focus on the case φ = νZ(x).ψ. Clearly, for all i ∈ N, {|φ|}Eπ ⊆ {|φi|}Eπ.

Assume by contradiction that the inclusion is always strict, i.e., {|φ|}Eπ ⊂ {|φi|}Eπ for all i ∈ N.

This implies that {|φi+1|}Eπ ⊂ {|φi|}Eπ for all i ∈ N.

Therefore there is an infinite sequence of pairs (Ci, ρi) ∈ C(E) × EnvE , for i ∈ N, such

that (Ci, ρi) ∈ {|φi|}Eπ ∖ {|φi+1|}Eπ. We deduce that for each i we have (Ci, ρi) ∈ {|φi|}Eπ and

(Cj , ρj) /∈ {|φi|}Eπ for all j < i. Then, by Lemma 5.3, we would have that ⟨Cj , ρj |fv(φi)⟩ ̸≈r

⟨Ci, ρi|fv(φi)⟩ for all i ∈ N and j < i. This would mean that there are infinitely many

different equivalence classes of fv(φi)-pointed configurations with respect to ≈r. Since

|fv(φi)| ≤ |fv(φ)| = |x| and E is strongly regular this fact contradicts Lemma 5.4. Therefore

there must exist i ∈ N such that {|φ|}Eπ = {|φi|}Eπ. Point (1) then immediately follows.

If φ = µZ(x).ψ, a dual reasoning proves that there is i ∈ N such that {|φi|}Eπ = {|φi+1|}Eπ
and thus {|φ|}Eπ = {|φi|}Eπ and, again, point (2) immediately follows.

We can now show that the model-checking problem reduces to the construction of a

successful tableau. We prove separately soundness and completeness, by resorting to some

variations of the tableau system in Table 5.1 that we call ν-pseudo-tableau and µ-pseudo-

tableau systems, respectively.

As a preliminary step we need to observe how the instantiation of a formula interacts

with the approximants.

Lemma 5.9 (grounding, substitutions and approximants). Let C, ρ,∆ |= φ be a well-formed

sequent where φ = ηZ(x). ψ is a fixpoint formula. Then

1. (φ)∆ is a fixpoint formula

2. (φ)∆[y⧸x] = (φ[y⧸x])∆

3. for any n ∈ N, it holds ((φ)∆)n = (φn)∆.

Proof. Concerning point (1), reasoning as in the proof of Lemma 5.1, it is easy to see that

(φ)∆ is a fixpoint formula. In fact, let {Y1, . . . , Yn} = fp(ψ) ∖ {Z} and let

ψ′ = ψ[Y1(y1) := (Y1(y1))∆] . . .[Yn(yn) := (Yn(yn))∆].

Then, observe that

(φ)∆ = (ηZ(x).ψ)∆ = ηZ(x).ψ′.

58

We now prove point (2) (φ[y⧸x])∆ = (φ)∆[y⧸x]. Using the fact that ηZ(x).ψ =

(ηZ(x).ψ)(x), this is also almost immediate. In fact:

(φ[y⧸x])∆ = ((ηZ(x).ψ)(x)[y⧸x])∆ = ((ηZ(x).ψ)(y))∆ =

= (ηZ(x).ψ′)(y) = (ηZ(x).ψ′)(x)[y⧸x] = (φ)∆[y⧸x].

Finally, we prove point (3), i.e., for any n ∈ N, (φn)∆ = ((φ)∆)n, by induction on n. We

focus on the case η = ν (the proof is completely analogous when η = µ).

(n = 0) Immediate, since (φ0)∆ = (T)∆ = T = ((φ)∆)0.

(n > 0) Observe that

(φn)∆ = (ψ[Z(x) := φn−1])∆ = ψ′[Z(x) := (φn−1)∆],

where the last equality holds since fp(φn−1) ⊆ fp(ψ[Z(x) := φn−1]) ⊆ fp(ψ) ∖ {Z}, and

((φ)∆)n = (ηZ(x).ψ′)n = ψ′[Z(x) := ((φ)∆)n−1].

Thus we can conclude since, by inductive hypothesis, we know that (φn−1)∆ = ((φ)∆)n−1.

In words, the results above show that the instantiations of the approximants of a fixpoint

formula φ coincide with the approximants of the instantiation of φ. For this reason, in the

sequel, we will abuse the notation and write (φ)n∆ for both ((φ)∆)n = (φn)∆.

We start by showing the soundness of the tableau system. The proof will rely on the

notion of ν-pseudo-tableau introduced below.

Definition 5.11 (ν-pseudo-tableaux). The ν-pseudo-tableau system is obtained from that

in Table 5.1, by working with sequents C, ρ,∆ |= φ where the definition list ∆ contains

definitions Z(x) = (νZ(x).ψ)n and inserting the new unfolding rule below:

(Unfaν)
C, ρ,∆ |= Z(z)

C, ρ[x ↦→ ρ(z)],∆ |= ψ
¬γ and ∆(Z(x)) = (νZ(x).ψ)n

The notion of successful ν-pseudo-tableau is as in Definition 5.9, but we additionally allow

a leaf to be labelled by a sequent C, ρ,∆ |= Z(z) where ∆(Z(x)) = (νZ(x).ψ)n and (C, ρ) ∈
{|(Z(z))∆|}π for π ∈ PEnvE .

It can be easily seen that also rule (Unfaν) is backwards sound. Intuitively, the formula in

the premise corresponds to the approximant (νZ(x).ψ)n, while the formula in the conclusion

to the approximant (νZ(x).ψ)n+1. Thus if the conclusion is true, also the premise is, since

we know that {|(νZ(x).ψ)n+1|}Eπ ⊆ {|(νZ(x).ψ)n|}Eπ. More formally, assume that the sequent

in the conclusion is true, i.e.,

(C, ρ[x ↦→ ρ(z)]) ∈ {|(ψ)∆|}Eπ = {|(ψ[Z(X) := (νZ(x).ψ)n])∆|}Eπ = {|(νZ(x).ψ)n+1
∆ |}Eπ

for some π ∈ PEnvE . Now observe that (Z(x))∆ = (νZ(x).ψ)n∆. Hence

59

(C, ρ[x ↦→ ρ(z)]) ∈ {|(νZ(x).ψ)n+1
∆ |}Eπ ⊆ {|(νZ(x).ψ)n∆|}Eπ = {|(Z(x))∆|}Eπ = {|Z(z)|}Eπ[x⧸z].

Thus (C, ρ) ∈ {|Z(z)|}Eπ which means that the sequent in the premise is true.

Soundness will be an immediate consequence of the following technical result that implies

that there cannot be successful ν-pseudo-tableaux with false leaves. The central result shows

that a successful tableau with a false leaf can be “shortened” to a subtableau with the same

feature.

Lemma 5.10 (shortening ν-pseudo-tableaux). Let E be a strongly regular PES and let τ be

a successful ν-pseudo-tableau. If τ has a false leaf and for all false leaves C, ρ,∆ |= X(z),

the node ∆↑(X) is in τ , then there exists a successful ν-pseudo-tableau τ ′, strictly smaller

than τ , with a false leaf and where for all false leaves C, ρ,∆ |= X(z), the node ∆↑(X) is

in τ ′.

Proof. Since τ is successful its leaves are labelled by sequents C, ρ,∆ |= φ, where φ is

T, [[x,y < a z]]ψ or a proposition X(y) defined in τ as a greatest fixpoint or as some ν-

approximant. If φ = T then clearly the sequent is true. If φ = [[x,y < a z]]ψ, the definition

requires that the set Succx,y<az
E (C, ρ) is empty, and thus, observing that (φ)∆ = [[x,y <

a z]] (ψ)∆ we deduce that the leaf is vacuously true. Also leaves labelled by a proposition,

defined as a ν-approximant are true by definition of successful tableau.

Therefore the only possibly false leaves must have as consequent some proposition X(y)

defined as a greatest fixpoint νX(x).ψ. Amongst such false leaves choose one, labelled

C, ρ,Σ |= X(y) say, such that there is no other false leaf labelled C ′, ρ′,Σ′ |= X ′(y′) with

Σ′↑(X ′) above Σ↑(X) in τ .

Call w the node Σ↑(X). By definition of tableau the node w is labelled by a sequent

with consequent (νX(x).ψ)(y′). Let τw be the subtableau of τ rooted in the successor of

w, labelled C̃, ρ̃, ∆̃ |= X(ỹ) say.

Consider the other leaves in τw labelled by false sequents involving the same introduction

of the abstract proposition X, i.e., whose consequent is of the kind C, ρ,Σ |= X(y′′) for

suitable C, ρ, Σ, y′′, with Σ↑(X) = w. For each such leaf, the fact that the sequent is false

means (C, ρ) /∈ {|(X(y′′))∆|}E for π ∈ PEnvE . Observe that by Lemma 5.9(2)

(X(y′′))∆ = (∆(X(x))[y
′′
⧸x])∆ = (νX(x).ψ[y

′′
⧸x])∆ = (νX(x).ψ)∆[y

′′
⧸x].

Hence (C, ρ) /∈ {|(νX(x).ψ)∆[y
′′
⧸x]|}E = {|(νX(x).ψ)∆|}E [y

′′
⧸x], by Lemma 4.1(1), and

thus we have (C, ρ[x ↦→ ρ(y′′)]) ̸∈ {|(νX(x).ψ)∆|}E . In turn, by applying first Lemma 5.9(1)

and then Lemma 5.8(1), this implies that there is n ∈ N such that (C, ρ[x ↦→ ρ(y′′)]) ∈
{|(νX(x).ψ)n∆|}π ∖ {|((νX(x).ψ)n+1

∆ |}π.

Take one of such leaves l such that the corresponding n is as small as possible. Let

l be labelled with the sequent C, ρ,Σ |= X(z). Since l is a leaf, the stop condition must

be satisfied, i.e., there is an ancestor k of l labelled C ′, ρ′,Σ′ |= X(z′) such that Σ↑(X) =

Σ′↑(X) = w (hence k in τw) and ⟨C, ρ[x ↦→ ρ(z)]|x⟩ ≈r ⟨C ′, ρ′[x ↦→ ρ′(z′)]|x⟩. Furthermore,

60

since (C, ρ[x ↦→ ρ(z)]) /∈ {|(νX(x).ψ)n+1
∆ |}π and fv((νX(x).ψ)n+1

∆) ⊆ x, by Lemma 5.3 we

have

(C ′, ρ′[x ↦→ ρ′(z′)]) /∈ {|νX(x).(ψ)n+1
∆ |}π. (5.5)

Now transform the tableau τw into a new tableau τ ′w by replacing each definition list ∆ in

a sequent of τw with ∆′ defined as follows:

• if ∆↑(X) = w, then ∆′ = ∆[X ↦→ (νX(x).ψ)n],

• otherwise ∆′ = ∆.

Clearly τ ′w is a well-defined ν-pseudo-tableau. Moreover, τ ′w is successful. The only doubt

could concern leaves that in τw were labelled C ′, ρ′,∆′ |= X(y′) with ∆′↑(X) = w and thus

in τ ′w become C ′, ρ′,∆′′ |= X(y′) with ∆′′ = ∆′[X(x) ↦→ (νX(x).ψ)n]. However, these

leaves are true in τ ′w. In fact, otherwise, we would have that (C ′, ρ′) /∈ {|(X(y′))∆′′ |}π =

{|(∆′′(X(y′)))∆′ |}π = {|(νX(x).ψ)n∆′ |}π = {|(νX(x).ψ)n∆|}π, where the last equality follows

from the fact that X /∈ fp((νX(x).ψ)n). Therefore (C ′′, ρ′′[x ↦→ ρ′′(y′)]) /∈ {|(νX(x)).ψ)n|}π,

which means that there would be m < n such that (C ′′, ρ′′[x ↦→ ρ′′(y′)]) ∈ {|(νX(x).ψ)m∆ |}π∖
{|(νX(x).ψ)m+1

∆ |}π, contradicting the choice of n.

Additionally, after the transformation, the successor of the node k defined above is

labelled C ′, ρ′[x ↦→ ρ′(z′)],Σ′′ |= ψ where Σ′′ = Σ′[X ↦→ (νX(x).ψ)n]. It is easy to see

that (ψ)∆′′ = (νX(x).ψ)n+1
∆′′ = (νX(x).ψ)n+1

∆ where the last equality is motivated by the

fact that X does not occur free in (νX(x).ψ)n+1. Jointly with (5.5) this gives (C ′, ρ′[x ↦→
ρ′(z′)]) /∈ {|νX(x).(ψ)n+1

∆ |}π = {|(ψ)∆′′ |}π, namely the sequent C ′, ρ′[x ↦→ ρ′(z′)],Σ′′ |= ψ is

false, since (C ′, ρ′[x ↦→ ρ′(z′)]) /∈ {|ψ|}π′ . Therefore, by backwards soundness, some leaf of

τ ′w must be labelled by a false sequent.

Consider any such false leaf and the corresponding sequent C ′′, ρ′′,∆′ |= Y (y′). If

the corresponding leaf of τw is labelled C ′′, ρ′′,∆ |= Y (y′) we can have ∆′ = ∆[X ↦→
(νX(x).ψ)n] if ∆↑(X) = w, ∆′ = ∆ otherwise. We analyse the two cases separately:

• if ∆′ = ∆[X ↦→ (νX(x).ψ)n], then Y ̸= X because otherwise, by construction, the

leaf would be true, as observed above. Moreover, ∆′↑(Y) = ∆′↑(Y) = w′ must be in

τ ′w, i.e., a descendant of w, otherwise it would contradict the choice of w.

• if ∆′ = ∆, and thus ∆′↑(Y) = ∆′↑(Y) = w′ ̸= w, then again w′ must be after w, hence

in τ ′w, otherwise it would contradict the choice of w.

Therefore we reduced to a strictly smaller subtableau τ ′w of τ , which is successful, with

a false leaf and where all false leaves involve propositions introduced in τ ′w, as desired.

The above lemma shows that if there were a successful ν-pseudo-tableau τ where all

false leaves C, ρ,∆ |= X(z) are such that ∆↑(X) is in τ , then there would be a strict

subtableau of τ with the same features. By iterating the property indefinitely one would

obtain an infinite chain of strict sub-tableaux contradicting the fact that all tableaux are

61

finite. Therefore, this immediately implies that actually such a successful ν-pseudo-tableau

cannot include false leaves. Since a successful tableau for a closed formula is a successful

ν-pseudo-tableau with the above property, we conclude that it cannot have false leaves and

thus, by backwards soundness, all nodes, including the root, must be true, i.e., we have the

following.

Lemma 5.11 (soundness). Let E be a strongly regular PES and let φ be a closed formula

of Lhp. If φ has a successful ν-pseudo-tableau (hence in particular, if it has a successful

tableau) then E satisfies φ.

Proof. Assume that the sequent C, ρ, ∅ |=E φ has a successful tableau τ . Then τ is a

successful ν-pseudo-tableau. For all leaves (and thus for all false leaves) C, ρ,∆ |= X(z),

∆↑(X) is in τ . Therefore, if it had a false leaf, by Lemma 5.10 we could continue building

strictly smaller ν-pseudo-tableau with the same properties, contradicting the finiteness of

τ . Hence all the sequents labelling the leaves of τ must be true, a fact that, by Lemma 5.2

implies that all the nodes of τ are true and thus, in particular, the sequent C, ρ, ∅ |=E φ

labelling the root is true, as desired.

For proving completeness we resort to a variation of basic tableaux dual to ν-pseudo-

tableaux, referred to as µ-pseudo-tableaux.

Definition 5.12 (µ-pseudo-tableaux). The µ-pseudo-tableau system is obtained from that

in Table 5.1, by working with sequents C, ρ,∆ |= φ where ∆ contains definitions Z(x) =

(µZ(x).ψ)n and replacing (Unfµ) by the new unfolding rule below:

(Unfaµ)
C, ρ,∆ |= Z(z)

C, ρ′,∆′ |= ψ
¬γ and ∆(Z(x)) = µZ(x).ψ or (µZ(x).ψ)n

where ρ′ = ρ[x ↦→ ρ(z)] and ∆′ = ∆[Z(x) ↦→ (µZ(x).ψ)k] with k ∈ N such that

(C, ρ′) ∈ {|(µZ(x).ψ)k+1
∆ |}π ∖ {|(µZ(x).ψ)k∆|}π (5.6)

for π ∈ PEnvE . Moreover, if ∆(Z(x)) = (µZ(x).ψ)n it is required that k < n.

The notion of successful µ-pseudo-tableau is exactly as in Definition 5.9.

An easy but crucial observation is that rule (Unfaµ) is applicable in all and only the

situations in which the premise is true. In fact, whenever the rule is applicable, due the

existence of k ∈ N such that (C, ρ′) ∈ {|(µZ(x).ψ)k+1
∆ |}π ∖ {|(µZ(x).ψ)k∆|}π and k < n if

∆(Z(x)) is an approximant, the premise is guaranteed to be true. On the other hand,

if the premise is true, such a k is guaranteed to exists, and thus the rule is applicable.

Additionally, rule (Unfaµ) preserves the well-formedness of the sequents when applied to a

true premise, i.e., if the premise is well-formed and true then the conclusion is well-formed.

This immediately follows from the observation that for k < n it holds fp((µZ(x).ψ)k) ⊆
fp((µZ(x).ψ)n) ⊆ fp(µZ(x).ψ). Moreover, it is easy to see that rule (Unfaµ) is forwards

sound, in the sense described by the next result.

62

Lemma 5.12 (unfolding µ-fixpoints). Let C, ρ,∆ |= Z(z) be a sequent such that ∆(Z(x)) =

µZ(x).ψ or ∆(Z(x)) = (µZ(x).ψ)n. If C, ρ,∆ |= Z(z) is true and the stop condition γ

does not hold, then rule (Unfaµ) is applicable and the conclusion is true.

Proof. Assume that the stop condition γ does not hold. If the sequent C, ρ,∆ |= Z(z)

is true, i.e., (C, ρ) ∈ {|(Z(z))∆|}π for π ∈ PEnvE , then, by Lemma 4.1(1), (C, ρ′) ∈
{|(Z(x))∆|}π and since (Z(x))∆ = (∆(Z(x)))∆, then (C, ρ′) ∈ {|(∆(Z(x)))∆|}π. When

∆(Z(x)) = µZ(x).ψ some k ∈ N such that condition (5.6) holds is guaranteed to ex-

ist by applying first Lemma 5.9(1) and then Lemma 5.8(2). When instead, ∆(Z(x)) =

(µZ(x).ψ)n, we need only Lemma 5.9(3). Moreover, in this case, we have k < n, since

(C, ρ′) ∈ {|(µZ(x).ψ)n∆|}π and (C, ρ′) ∈ {|(µZ(x).ψ)k+1
∆ |}π ∖ {|(µZ(x).ψ)k∆|}π.

Since Z /∈ fp((µZ(x).ψ)k) and ∆ and the definition lists ∆′ differ only on Z, we have

that (ψ)∆′ = (ψ[Z(x) := (µZ(x).ψ)k∆])∆ = (µZ(x).ψ)k+1
∆ and thus (C, ρ′) ∈ {|(ψ)∆′ |}π, i.e.,

the successor sequent C, ρ′,∆′ |= ψ is true.

Theorem 5.1 can be easily extended to µ-pseudo-tableaux, i.e., we can prove that every

µ-pseudo-tableau is finite. Moreover, notice that a successful µ-pseudo-tableau can be

transformed into a successful tableau simply by replacing, in all sequents, the definition list

∆ with ∆′ where each approximant is substituted by the corresponding least fixpoint. More

precisely, for all X(x) ∈ dom(∆), we let ∆′(X) = µX(x).ψ if ∆(X(x)) = (µX(x).ψ)n, and

∆′(X(x)) = ∆(X(x)), otherwise. Using this fact one can prove completeness.

Lemma 5.13 (completeness). Let E be a strongly regular PES and let φ be a closed formula

of Lhp. If E satisfies φ then φ has a successful µ-pseudo tableau and thus a successful tableau.

Proof. We prove that each true sequent C, ρ,∆ |= φ admits a successful µ-pseudo-tableau.

We first construct the tableau inductively, showing which rule to apply and arguing that

the conclusion of the rule is again a true sequent. Then we will show that it is successful.

We distinguish various cases according to the shape of φ:

• φ = T

The node has no successors.

• φ = ψ1 ∧ ψ2

We apply rule (∧) which produces two successors labelled C, ρ,∆ |= ψ1 and C, ρ,∆ |=
ψ2. Clearly (φ)∆ = (ψ1)∆ ∧ (ψ2)∆, and since (C, ρ) ∈ {|(φ)∆|}π, by definition of the

semantics both sequents are true.

• φ = ψ1 ∨ ψ2

Since (C, ρ) ∈ {|(φ)∆|}π and clearly (φ)∆ = (ψ1)∆ ∨ (ψ2)∆, then by definition of

the semantics (C, ρ) ∈ {|(ψi)∆|}π, for some i ∈ {1, 2}. We apply rule (∨L) or (∨R),

accordingly, producing a single true successor labelled C, ρ,∆ |= ψi.

63

• φ = ⟨|x,y < a z|⟩ψ
Since (C, ρ) ∈ {|(φ)∆|}π and (φ)∆ = ⟨|x,y < a z|⟩ (ψ)∆, by definition of the semantics

there exists an event e ∈ E [C] such that C
ρ(x),ρ(y)<e−−−−−−−−→a C ′, ρ′ = ρ[z ↦→ e] and

(C ′, ρ′) ∈ {|(ψ)∆|}π. Then we can apply rule (♢) producing a single true successor

labelled C ′, ρ′,∆ |= ψ.

• φ = [[x,y < a z]]ψ

Let the set of successor be Succx,y<az
E (C, ρ) = {(C1, ρ1), . . . , (Cn, ρn)}. Note that

successors Succx,y<az
E (C, ρ) are finite since the PES E is strongly regular and thus

finitely branching.

If Succx,y<az
E (C, ρ) is not empty, since (C, ρ) ∈ {|(φ)∆|}π and (φ)∆ = [[x,y < a z]] (ψ)∆,

by definition of the semantics we have that (Ci, ρi) ∈ {|(ψ)∆|}π for all i ∈ [1, n].

Then rule (□) can be applied producing n true successors labelled Ci, ρi,∆ |= ψ, for

i ∈ [1, n].

Otherwise, if Succx,y<az
E (C, ρ) is empty, the node has no successor.

• φ = (ηZ(x).ψ)(z)

We apply rule (Int) that produces a single successor labelled C, ρ,∆′ |= Z(z) where

∆′ = ∆[Z(x) ↦→ ηZ(x).ψ].

We show that the sequent C, ρ,∆′ |= Z(z) is true, i.e., (C, ρ) ∈ {|(Z(z))∆′ |}π for

π ∈ PEnvE . First note that (φ)∆ = (φ)∆′ , since Z /∈ fp(φ) and ∆ and ∆′ coincide on

all propositions except Z. Therefore (Z(z))∆′ = (∆′(Z(z)))∆′ = (φ)∆′ = (φ)∆. Since

(C, ρ) ∈ {|(φ)∆|}π, we have that (C, ρ) ∈ {|(Z(z))∆′ |}π, as desired.

• φ = Z(z)

We know that the sequent C, ρ,∆ |= φ is true, i.e., (C, ρ) ∈ {|(Z(z))∆|}π for π ∈
PEnvE . If γ holds then the node has no successors. Otherwise, if γ is false, we

distinguish two cases depending on the definition of Z in ∆:

1. ∆(Z(x)) = νZ(x).ψ

Since (C, ρ) ∈ {|(Z(z))∆|}π, we have that (C, ρ′) ∈ {|(Z(x))∆|}π where ρ′ = ρ[x ↦→
ρ(z)]. By Lemma 5.1 {|(Z(x))∆|}π = {|(ψ)∆|}π and thus (C, ρ′) ∈ {|(ψ)∆|}π.

Therefore by using rule (Unfν) we produce a single true successor labelled by

C, ρ′,∆ |= ψ.

2. ∆(Z(x)) = µZ(x).ψ or (µZ(x).ψ)n

By Lemma 5.12, since the sequent C, ρ,∆ |= φ is true, we can apply rule (Unfaµ)

thus producing a true successor labelled C, ρ[x ↦→ ρ(z)],∆′ |= ψ where ∆′ =

∆[Z(x) ↦→ (µZ(x).ψ)k], for some k ∈ N such that (C, ρ′) ∈ {|(µZ(x).ψ)k+1
∆ |}π ∖

{|(µZ(x).ψ)k∆|}π which is ensured to exist.

64

Observe that above we do not need to consider the case φ = F since the sequent C, ρ,∆ |=
φ would be false.

The inductive construction produces a µ-pseudo-tableau where all sequents are true.

The only reason why it might not be successful could be the presence of a leaf labelled

C, ρ,∆ |= X(z) where ∆(X(x)) = (µX(x).ψ)k. We next show that this would imply that

C, ρ,∆ |= X(z) is false, hence it is not possible.

Assume that there is a leaf l labelled C, ρ,∆ |= X(z) where ∆(X(x)) = (µX(x).ψ)k. We

prove that C, ρ,∆ |= X(z) is false, namely that (C, ρ) /∈ {|(X(z))∆|}π for π ∈ PEnvE . Ob-

serve that (X(z))∆ = ((µX(x).ψ)k[z⧸x])∆ = (µX(x).ψ)k∆[z⧸x], hence, by Lemma 4.1(1),

we can conclude by proving that

(C, ρ[x ↦→ ρ(z)]) /∈ (µX(x).ψ)k∆. (5.7)

Since l is a leaf, it must satisfy the stop condition, i.e., it must have an ancestor v la-

belled C ′, ρ′,∆′ |= X(z′) such that ∆↑(X) = ∆′↑(X) and ⟨C, ρ[x ↦→ ρ(z)]|x⟩ ≈r ⟨C ′, ρ′[x ↦→
ρ′(z′)]|x⟩. By construction, the successor of v is labelled C ′, ρ′[x ↦→ ρ′(z′)],∆′′ |= ψ,

where ∆′′ = ∆′[X(x) ↦→ (µX(x).ψ)n] for some n ∈ N such that (C ′, ρ′[x ↦→ ρ′(z′)]) ∈
{|(µX(x).ψ)n+1

∆′ |}π ∖ {|((µX(x).ψ)n+1
∆′ |}π for π ∈ PEnvE . Recall that each time a proposi-

tion is unfolded using rule (Unfaµ), the index of the approximant strictly decreases, hence

k ≤ n. Then, we have that (C ′, ρ′[x ↦→ ρ′(z′)]) /∈ {|(µX(x).ψ)k∆′ |}π since {|(µX(x).ψ)k∆′ |}π ⊆
{|(µX(x).ψ)n∆′ |}π. Therefore, since π is vacuously saturated for (µX(x).ψ)k∆′ that has no

free propositions, by Lemma 5.3, we deduce that also (C, ρ[x ↦→ ρ(z)]) /∈ {|(µX(x).ψ)k∆′ |}π.

We then reach the desired conclusion (5.7) by showing that (µX(x).ψ)k∆′ = (µX(x).ψ)k∆.

Note that, since ∆↑(X) = ∆′↑(X), no proposition Y ∈ fp(ψ) ∖ {X} can be unfolded or

introduced along the path from v to l. Otherwise, if φX and φY are the fixpoint formula

binding X and Y , respectively, we would have φY ⊏∗
d φY ⊏

∗
d φX , while ⊏∗

d is a partial order.

Thus, since the definition list is updated only when a proposition is unfolded or introduced,

∆ and ∆′ coincide on all propositions in fp((µX(x).ψ)k) ⊆ fp(ψ)∖{X}. Clearly this implies

that (µX(x).ψ)k∆′ = ((µX(x).ψ)k)∆, as desired.

All in all, we can conclude that there is a successful µ-pseudo-tableau (hence a successful

tableau) for each true sequent.

Combining the previous lemmata we conclude the desired result.

Theorem 5.2 (soundness and completeness of the tableau system). Given a strongly regular

PES E and a closed formula φ of Lhp, the formula φ has a successful tableau if and only if

E satisfies φ.

Proof. Corollary of Lemmata 5.11 and 5.13.

65

Chapter 6

Automata

Tableaux served well for providing a constructive decidability result for the model-checking

problem in the logic Lhp. However, it is often the case that tableaux are not the most efficient

tool for practically solving this kind of problem. On the way to a practical implementation

of a model-checker for Lhp, in this chapter we develop an automata-theoretic approach

to model-checking Lhp. We show how the model-checking problem for Lhp on strongly

regular PESs can be reduced to the non-emptiness of the language of suitably generated

nondeterministic parity tree automata.

Parity tree automata [Mos85] are a class of automata on infinite trees with an acceptance

condition based on priorities assigned to the states, requiring that the highest recurring

priority in a run is even (hence their name). This class of automata is just one of the

many that have been widely adopted in problems related to temporal logics, others are:

Muller automata [Mul63], Rabin automata [Rab69], Streett automata [Str82] (see [Wol90]

for an overview of the most fundamental results for all these and more). Formally, the

choice among these classes is inconsequential as the languages definable by these automata

are the same. Nevertheless, the slight differences can make some easier to use than others

depending on the setting.

Usually automata obtained in model-checking methods are finite, mainly because of the

finiteness of the models. Instead, as we will see, the automaton that naturally arises from a

PES and a formula has an infinite number of states. We discuss how it can be quotiented to

a finite automaton accepting the same language, which can thus be used for model-checking

purposes.

We first introduce the abstract model-checking method over event structures, based on

the construction of a nondeterministic parity tree automaton. Then, we show how it can be

instantiated on finite safe Petri nets, providing a concrete effective procedure. We conclude

by presenting a prototype tool for model-checking Lhp over finite safe Petri nets.

66

6.1 Infinite parity tree automata and their quotient

Automata on infinite trees revealed to be a powerful tool for various problems in the setting

of branching temporal logics. Here we focus on nondeterministic parity tree automata with

some slightly non-standard features. We work on k-trees (rather than on binary trees), a

choice that will simplify the presentation, and we allow for possibly infinite state automata.

When automata are meant to be used for model-checking purposes it is standard to

restrict to unlabelled trees. A k-bounded branching tree, or k-tree for short, is a subset

T ⊆ [1, k]∗, such that

1. T is prefix closed, i.e., if uv ∈ T then u ∈ T

2. u1 ∈ T for all u ∈ T

3. for all i ∈ [2, k] if ui ∈ T then u(i− 1) ∈ T .

Elements of T are the nodes of the tree. The empty sequence ϵ corresponds to the root. A

sequence of the form ui corresponds to the i-th child of node u. Hence by (2) each branch

is infinite and by (3) the presence of the i-th child implies the presence of the j-th children

for j ≤ i.

Definition 6.1 (nondeterministic parity automaton). A k-bounded nondeterministic parity

tree automaton (NPA) is a tuple A = ⟨Q,−→, q0,F⟩ where

• Q is a set of states,

• −→⊆ Q×
k⋃︁
i=1

Qi is the transition relation,

• q0 ∈ Q is the initial state,

• F = (F0, . . . , Fh) is the acceptance condition, where F0, . . . , Fh ⊆ Q are mutually

disjoint subsets of states. A state q ∈ Q has priority i if q ∈ Fi for some i ∈ [0, h].

Transitions are written as q −→ (q1, . . . , qm) instead of (q, (q1, . . . , qm)) ∈ −→.

An example of (finite) NPA is depicted in Figure 6.1. The initial state of the automaton

is q0. Transitions are represented by arrows. In particular, the only transition from q0 goes

into both q1 and q2, that is, q0 −→ (q1, q2). Instead, all the other transitions are simply from

one state to another (or itself in the case of q4 −→ (q4)).

Possible runs of an NPA are based on its structure, that is, its transition relation. The

acceptance of a run depends on the priorities assigned by the acceptance condition to the

states the run goes through.

Definition 6.2 (accepting runs). Let A = ⟨Q,−→, q0,F⟩ be an NPA where F = (F0, . . . , Fh).

Given a k-tree T , a run of A on T is a labelling of T over the states r : T → Q consistent

with the transition relation, i.e., such that r(ϵ) = q0 and for all u ∈ T , with m children,

67

q0start

q1

q2

q3

q4

Figure 6.1: Example of a finite 2-bounded NPA.

there is a transition r(u) −→ (r(u1), . . . , r(um)) in A. A path in the run r is an infinite

sequence of states p = (q0, q1, . . .) labelling a complete path from the root in the tree. It is

called accepting if there exists an even number l ∈ [0, h] such that the set {j | qj ∈ Fl} is

infinite and the set {j | qj ∈
⋃︁
l<i≤h Fi} is finite. In this case we denote such l by F(p).

The run r is accepting if all paths in r are accepting.

In words, given a run r, a path p in r is accepting if there are priorities i such that states

having priority i occur infinitely often in the path p and the greatest of such priorities is

even. The run is accepting if all paths in it are.

For instance, consider the NPA in Figure 6.1. Based on its transition relation, the only

possible runs are labellings of the 2-tree T made of two infinite paths completely separated

except for their initial node, which is the root of T . An example of such a run is the one

including the sequences (q0, q1, q3, q1, q
∞
4) and (q0, q2, q

∞
4), both looping indefinitely over q4

once they reach it. Assume that the acceptance condition of the automaton is F = (F0, F1),

with F0 = {q4} and F1 = {q3}. This means that q4 has priority 0 and q3 has priority 1,

while all the other states q0, q1, q2 have no priority. Then, the run proposed before would

be accepting, since in both its paths there is a state occurring infinitely often with even

priority, that is q4, and no higher priority appears infinitely many times. Indeed, although

q3, which has priority 1, occurs in one of the paths, it does so finitely many times (only

once).

In the sequel we will also refer to a path in an NPA, meaning a possibly infinite sequence

p = (q1, q2, . . .) such that for all i < |p| there is a transition qi −→ (. . . , qi+1, . . .). Note that,

given a run r of an automaton A, each path in r is also a path in A.

Definition 6.3 (language of an NPA). Let A be an NPA. The language of A, denoted by

L(A), consists of the trees T that admit an accepting run.

Observe that for a k-bounded NPA, the language L(A) consists of a set of k-trees.

The possibility of having an infinite number of states in an NPA and the associated

acceptance condition are somehow non-standard. However, it is easy to see that whenever

an NPA is finite, the acceptance condition coincides with the standard one requiring a single

state with maximal even priority to occur infinitely often in each path. In fact, for finite

NPAs, all sets in the acceptance condition F are finite and thus asking that for a path

68

p = (q0, q1, . . .) the set {j | qj ∈ Fi} is infinite amounts to asking that some state in Fi

repeats infinitely often in the path p.

The NPA naturally associated with a formula and an event structure will be infinite. In

order to have an effective procedure for checking the satisfaction of a formula we will build

a suitable quotient of the NPA, with respect to an equivalence which preserves emptiness

of the language.

For this reason we next introduce a notion of bisimulation over NPAs and observe that

bisimulation equivalences preserve the language of NPAs (and thus in particular language

emptiness). An analogous notion is studied in [AKH06] in the setting of nondeterministic

tree automata over finite trees.

Definition 6.4 (automaton bisimulation). Given an NPA A = ⟨Q,−→, q0,F⟩ where F =

(F0, . . . , Fh), a symmetric relation R over the set of states Q is an automaton bisimulation,

or simply a bisimulation, whenever for all (q, q′) ∈ R it holds

1. for all i ∈ [0, h], q ∈ Fi iff q′ ∈ Fi

2. if q −→ (q1, . . . , qm) then q′ −→ (q′1, . . . , q
′
m) with (qi, q

′
i) ∈ R for all i ∈ [1,m].

Given an NPA A and an equivalence ≡ on the set of states which is a bisimulation,

we define the quotient as A/≡ = ⟨Q/≡,−→/≡, [q0]≡,F/≡⟩ where [q]≡−→/≡([q1]≡, . . . , [qm]≡) if

q −→ (q1, . . . , qm) and F/≡ = (F0/≡, . . . , Fh/≡). Note that by condition (1) in Definition 6.4

above, the acceptance condition is well-defined, i.e., all Fi/≡ are pairwise disjoint. We can

show that an NPA and its quotient accept exactly the same language.

Theorem 6.1 (language preservation). Let A be an NPA and let ≡ be an equivalence on

the set of states which is a bisimulation. Then L(A/≡) = L(A).

Proof. Let A = ⟨Q,−→, q0,F⟩ be an NPA where F = (F0, . . . , Fh), and let ≡ be an equiva-

lence on Q which is a bisimulation. We prove the two inclusions separately.

Let us first show that L(A) ⊆ L(A/≡). Let T ∈ L(A) be a tree. Then there exists an

accepting run r : T → Q. It is easy to show that r′ : T → Q/≡ defined by r′(u) = [r(u)]≡

for all u ∈ T is an accepting run for T in A/≡.

In fact, it is a run on T since r′(ϵ) = [q0]≡, which is the initial state of A/≡. Moreover,

for all u ∈ T , if u1, . . . , un are its children, then r(u) → (r(u1), . . . , r(un)) in A, hence

r′(u) = [r(u)]≡→/≡([r(u1)]≡, . . . , [r(un)]≡) = (r′(u1), . . . , r′(un)), as desired.

Finally, r′ is accepting since any path ([q0]≡, [q1]≡, [q2]≡, . . .) in r′ arises from a path

(q0, q1, q2, . . .) in r, which is accepting, and by construction [q]≡ ∈ Fi/≡ iff q ∈ Fi for all

q ∈ Q and i ∈ [0, h].

For the converse inclusion L(A/≡) ⊆ L(A), let T ∈ L(A/≡) be a tree. Then there exists

an accepting run r′ : T → Q/≡. We can define a corresponding run r : T → Q in A as

follows. For any node u ∈ T we inductively define r(u) ∈ Q in a way that r′(u) = [r(u)]≡.

69

For the root r(ϵ) = q0. For any each node u ∈ T with children u1, . . . , un, we know

that there is a transition in the quotient r′(u)→/≡(r′(u1), . . . , r′(un)). By construction

this means that there is a transition q → (q1, . . . , qn) in A such that r′(u) = [q]≡ and

r′(ui) = [qi]≡ for i ∈ [1, n]. By induction we have r(u) ∈ Q such that r′(u) = [r(u)]≡, hence

r(u) ≡ q. Since ≡ is a bisimulation, there are q′1, . . . , q
′
n ∈ Q such that r′(u) → (q′1, . . . , q

′
n)

and qi ≡ q′i for i ∈ [1, n]. Therefore, for i ∈ [1, n], we can define r(ui) = q′i and obtain

[r(ui)]≡ = [qi]≡ = r′(ui), as desired.

The fact that r is accepting immediately follows from the fact that r′ is so and from the

way F/≡ is defined from F .

Since NPAs are nondeterministic, different runs (possibly infinitely many) can exist for

the same input tree. Still, the non-emptiness problem is decidable when the number of

states is finite. In fact, although not discussed explicitly here, the problem can be solved by

resorting to a corresponding parity game (see [Kla02]) based on the graph structure of the

automaton, in particular of its loops. This holds also for the k-bounded variant of NPAs

in this thesis, where the standard procedure for the automata on binary trees can be easily

adapted.

6.2 NPAs for model checking

We show how, given a PES and a closed formula of Lhp, we can build an NPA in a way

that, for strongly regular PESs, the satisfaction of φ in E reduces to the non-emptiness

of the language of the NPA. The construction is inspired by that in [EJS01] for the mu-

calculus. The automaton is typically infinite, but we discuss how an effective model-checking

procedure can be obtained by quotienting the infinite NPA to a finite one.

We first illustrate the construction of the NPA for a formula and a PES.

Definition 6.5 (NPA for a formula). Let E be a (boundedly branching) PES and let φ be

a closed formula of Lhp. The NPA for E and φ is AE,φ = ⟨Q,−→, q0,F⟩ defined as follows.

The set of states Q ⊆ C(E)×EnvE×sf(φ) is defined as Q = {(C, ρ, ψ) | ρ(fv(ψ)) ⊆ C}. The
initial state q0 = (∅, ρ, φ), for some chosen environment ρ ∈ EnvE . The transition relation

is defined, for any state q = (C, ρ, ψ) ∈ Q, by:

• if ψ = T or ψ = F, then q −→ (q)

• if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (C, ρ, ψi), i ∈ {1, 2}

• if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (C, ρ, ψi), i ∈ {1, 2}

• if ψ = [[x,y < a z]]ψ′ and Succx,y<az
E (C, ρ) = {(C1, ρ1), . . . , (Cn, ρn)} ≠ ∅ then q −→

(q1, . . . , qn) where qi = (Ci, ρi, ψ
′) for i ∈ [1, n], otherwise q −→ (q)

• if ψ = ⟨|x,y < a z|⟩ψ′ and Succx,y<az
E (C, ρ) = {(C1, ρ1), . . . , (Cn, ρn)} ≠ ∅ then q −→

(qi) where qi = (Ci, ρi, ψ
′) for i ∈ [1, n], otherwise q −→ (q)

70

• if ψ = (ηX(x).ψ′)(y), then q −→ (q′) where q′ = (C, ρ,X(y))

• if ψ = X(z) and ψ′ ∈ sf(φ) is the unique subformula such that ψ′ = (ηX(x).ψ′′)(y)

then q −→ (q′) where q′ = (C, ρ[x ↦→ ρ(z)], ψ′′).

The acceptance condition is F = (F0, . . . , Fh) where h = ad(φ) + 1 and the sets Fi are as

follows. Consider A0, . . . , Ah ⊆ sf(φ) such that for i ∈ [0, h], if i is even (odd) then Ai con-

tains exactly all propositions quantified in ν-subformulae (µ-subformulae) with alternation

depth i or i − 1. Then F0 = (C(E) × EnvE × (A0 ∪ {T})) ∪ B where B = {(C, ρ, [[x,y <

a z]]ψ) | Succx,y<az
E (C, ρ) = ∅} is the set of all subformulae of φ in a context where they are

trivially true, and Fi = C(E) × EnvE ×Ai, for i ∈ [1, h].

States of AE,φ are triples (C, ρ, φ) consisting of a configuration C, an environment ρ

and a subformula ψ of the original formula φ. The environment ρ fixed for the initial state

is irrelevant, since the formula φ is closed. The intuition is that a transition reduces the

truth of a formula in a state to that of subformulae in possibly updated states. In this

sense the automaton transitions are similar to the tableau rules of the previous chapter.

Furthermore, we will see later that they also share similar properties. A transition can just

decompose the formula, as it happens for ∧ or ∨, check the satisfaction of a modal operator,

thus changing the state consequently, or unfold a fixpoint. Whenever q = (C, ρ, ψ) with

ψ = (ηX(x).ψ′)(y) and thus q −→ (q′) with q′ = (C, ρ,X(y)) we say that q introduces X.

If ψ = X(z) and thus q −→ (q′) where q′ = (C, ρ[x ↦→ ρ(z)], ψ′′), with ψ′ the body of the

fixpoint subformula quantifying X in φ, we say that q unfolds X. The automaton AE,φ is

bounded (by the branching bound of the PES) but normally infinite (whenever the PES E
is infinite and the formula φ includes some non-trivial fixpoint).

We next show that for a strongly regular PES the truth of the formula φ on the PES E
reduces to the non-emptiness of the language of AE,φ. A basic ingredient is an equivalence

over the states of the NPA that can be defined relying on the notion of isomorphism of

residuals of pointed configurations (Definition 5.4).

Definition 6.6 (future equivalence). Let E be a PES, φ be a formula and let qi = (Ci, ρi, ψi),

i ∈ {1, 2} be two states of the NPA AE,φ. We say that q1 and q2 are future equivalent,

written q1 ≈f q2, if there exists a formula ψ and substitutions σi : fv(ψ) → fv(ψi) such that

ψσi = ψi, for i ∈ {1, 2}, and the fv(ψ)-pointed configurations ⟨Ci, ρi ◦ σi⟩ have isomorphic

pointed residuals.

Intuitively, two states are equivalent if they involve the same subformula (up to renaming

of the event variables) and the configurations, pointed by the free variables in the formulae,

have isomorphic residuals. Future equivalence can be shown to be a bisimulation on the

NPA AE,φ in the sense of Definition 6.4 and, whenever E is strongly regular, it is of finite

index.

71

Proposition 6.1 (≈f is a bisimulation). Let E be a strongly regular PES and let φ be a

closed formula of Lhp. Then the future equivalence ≈f on AE,φ is a bisimulation and it is

of finite index.

Proof. Let q1 = (C1, ρ1, ψ1), q2 = (C2, ρ2, ψ2) ∈ Q be states of AE,φ such that q1 ≈f q2.

This means that

i. there exists a formula ψ and substitutions σi : fv(ψ) → fv(ψi), i ∈ {1, 2}, such that

ψσ = ψi and

ii. the fv(ψ)-pointed configurations ⟨C1, ρ1 ◦ σ1⟩, ⟨C2, ρ2 ◦ σ2⟩ have isomorphic pointed

residuals via some isomorphism ι : E [C1] → E [C2].

The first observation is that (i) and (ii) above, imply that q1 ∈ Fi iff q2 ∈ Fi, for i ∈ [0, h],

i.e., condition (1) of the definition of bisimulation (Definition 6.4).

In fact, by item (i), ψ1 and ψ2 differ at most for the name of the event variables, hence

they have the same outer most operator and the same alternation depth. Moreover, if ψ1

and hence ψ2 are modal formulae, e.g., ψ1 = ⟨|x1,y1 < a z1|⟩ψ′
1 and ψ2 = ⟨|x2,y2 < a z2|⟩ψ′

2,

then Succ
x1,y1<az1
E (C1, ρ1) = ∅ iff Succ

x2,y2<az2
E (C2, ρ2) = ∅. This follows from the more

general observation that

C1,
ρ(x1),ρ(y1)<e1−−−−−−−−−−→a C

′
1 iff C2,

ρ(x2),ρ(y2)<ι(e1)−−−−−−−−−−−→a C
′
2 (6.1)

In fact, let C1,
ρ(x1),ρ(y1)<e1−−−−−−−−−−→a C

′
1 for some event e1. Since e1 is enabled in E [C1] and ι is an

isomorphism of the PESs E [C1] and E [C2], the image ι(e1) is enabled in E [C2]. Moreover,

for all x1 ∈ x1, ρ1(x1) < e1 and for all y1 ∈ y1, ¬(ρ1(y1) < e1). Since ψσ1 = ψ1, we

deduce that for all x ∈ x, ρ1 ◦ σ1(x) < e1 and for all y ∈ y, ¬(ρ1 ◦ σ1(y) < e1). Using the

fact that ι is an isomorphism of residuals of pointed configurations, we deduce that for all

x ∈ x, ρ2 ◦ σ2(x) < ι(e1) and for all y ∈ y, ¬(ρ2 ◦ σ2(y) < ι(e1)). From this we finally get

that for all x2 ∈ x2, ρ2(x2) < ι(e1) and for all y2 ∈ y2, ¬(ρ2(y2) < ι(e1)), which means

C2,
ρ(x2),ρ(y2)<ι(e1)−−−−−−−−−−−→a C

′
2, as desired. The converse implication is immediate by symmetry.

From the above, recalling that the priority of a formula depends on the shape, the

alternation depth, and for modal formulae, on the successor configurations, we conclude

that condition (1) holds.

Now, let us focus on the condition (2). We proceed by cases, on the shape of the formula

ψ1 (which, as observed, is of the same shape of ψ2) and we show only that all transitions

of q1 are simulated by q2, since the other direction follows by symmetry.

• ψ1 = T or ψ1 = F

Trivial, since the only transitions of q1 and q2 are q1 −→ (q1) and q2 −→ (q2), and

q1 ≈f q2

• ψ1 = ψ′
1 ∧ ψ′′

1

The only transition of q1 is q1 −→ (q′1, q
′′
1) where q′1 = (C, ρ, ψ′

1) and q′′1 = (C, ρ, ψ′′
1).

72

By item (i) we immediately get that ψ = ψ′ ∧ ψ′′ and ψ2 = ψ′
2 ∧ ψ′′

2 , with ψ′σi = ψ′
i

and ψ′′σi = ψ′′
i for i ∈ {1, 2}.

We can thus consider the only transition of q2, that is, q2 −→ (q′2, q
′′
2) where q′2 =

(C2, ρ2, ψ
′
2) and q′′2 = (C2, ρ2, ψ

′′
2). Since we already knew that ⟨C1, (ρ1 ◦ σ1)|fv(ψ)⟩ ≈r

⟨C2, (ρ2 ◦ σ2)|fv(ψ)⟩, just observing that fv(ψ′), fv(ψ′′) ⊆ fv(ψ), we deduce ⟨C1, (ρ1 ◦
σ1)|fv(ψ′)⟩ ≈r ⟨C2, (ρ2 ◦ σ2)|fv(ψ′)⟩ and ⟨C1, (ρ1 ◦ σ1)|fv(ψ′′)⟩ ≈r ⟨C2, (ρ2 ◦ σ2)|fv(ψ′′)⟩.
Therefore we conclude that q′1 ≈f q

′
2 and q′′1 ≈f q

′′
2 , as desired.

• ψ1 = ψ′
1 ∨ ψ′′

1 , ψ1 = (ηX1(x1).ψ
′
1)(y), and ψ1 = X1(x1).

Analogous to the previous case.

• ψ1 = ⟨|x1,y1 < a z1|⟩ψ′
1

There are two possibilities. If Succ
x1,y1<az1
E (C1, ρ1) = ∅ then the only transition of q1

is q1 −→ (q1). We already observed that in this case also Succ
x2,y2<az2
E (C2, ρ2) = ∅, and

thus we can take the only transition of q2 i.e., q2 −→ (q2) and conclude since q1 ≈f q2.

If instead Succ
x1,y1<az1
E (C1, ρ1) = ∅, the transitions of q1 are q1 −→ (q′1) with q′1 =

(C ′
1, ρ[z1 ↦→ e1], ψ

′
1) for C1

ρ(x1),ρ(y1)<e1−−−−−−−−−−→a C ′
1. We observed that, in this case

C2
ρ2(x),ρ2(y)<ι(e1)−−−−−−−−−−−→a C

′
2 and thus for q2 we can take the transition q2 −→ (q′2) with

q′2 = (C ′
2, ρ2[z2 ↦→ ι(e1)], ψ

′
2). Since e1 ∈ E [C1], ι(e1) ∈ E [C2], and ι is an iso-

morphism, for all e′1 ∈ E [C1], e1 < e′1 iff ι(e1) < ι(e′1). Moreover, by (i) we get that

ψ = ⟨|x,y < a z|⟩ψ′ and observing that fv(ψ′
i) ⊆ fv(ψi)∪{zi}, and fv(ψ′) ⊆ fv(ψ)∪{z},

we have that ψ′σi[z ↦→ zi] = ψ′
i for i ∈ {1, 2}. Putting together the previous facts

we obtain also that the pointed configurations ⟨C ′
1, (ρ[z1 ↦→ e1] ◦ σ1[z ↦→ z1])|fv(ψ′)⟩

and ⟨C ′
2, (ρ2[z2 ↦→ ι(e′1)] ◦ σ2[z ↦→ z2])|fv(ψ′)⟩ have isomorphic pointed residuals, with

an isomorphism which is the restriction of ι to E [C ′
1]. Hence, we can conclude that

q′1 ≈f q
′
2.

• ψ = [[x,y < a z]]ψ1

Analogous to the previous case.

In order to show that ≈f is of finite index, observe that for a fixed subformula ψ ∈
sf(φ), by Lemma 5.4 there is a finite number of ≈r-equivalence classes of fv(ψ)-pointed

configurations. Since the number of subformulae in sf(φ) is itself finite, we conclude.

As an example, consider the formula ⟨|bx|⟩φ from Subsection 4.3.3, where φ = νX(x).ψ

and ψ = µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)). The automaton AE3,⟨|bx|⟩φ built for model-

checking such formula in the PES E3 of Figure 3.1c would be infinite. The automaton

resulting as the quotient of AE3,⟨|bx|⟩φ with respect to the future equivalence ≈f is finite. A

fragment of such automaton is reported in Figure 6.2. The acceptance condition of AE3,⟨|bx|⟩φ

is F = (F0, F1, F2), since the formula ⟨|bx|⟩φ has alternation depth 1 and so the maximum

priority is ad(⟨|bx|⟩φ) + 1 = 2. Among the states in Figure 6.2 only two have a priority,

which are q2 ∈ F2 having priority 2 and q4 ∈ F1 having priority 1. The two curly lines

73

represent transitions that “appear” as an effect of the quotient operation. For instance,

in the infinite NPA, state q6 would have had a single transition to state ({b0, b1}, ρ[x ↦→
b0, y ↦→ b1], X(y)). Since the latter is future equivalent to q2, in the quotient it is merged

with q2 and the transition from q6 instead loops back to the corresponding equivalence class

(represented by q2). From q7 there is also a transition, represented by a dashed line, to state

({b0, c}, ρ[x ↦→ b0, z ↦→ c], Y (x)). This state is not future equivalent to any of the previous

ones, and it would lead to the rest of the reachable states of the automaton, not shown in

the figure. However, the states displayed are already sufficient to prove that the language of

the NPA is non-empty. Indeed, the sequence of states (q0, q1, (q2, q3, q4, q5, q6)
∞), where the

loop q2, q3, q4, q5, q6, q2 repeats indefinitely, represents an accepting run. In fact the state

with maximal priority repeating infinitely often is q2 and its priority is even.

∅, ρ, ⟨|bx|⟩φstart

q0

{b0}, ρ[x ↦→ b0], φ q1

{b0}, ρ[x ↦→ b0], X(x) q2

{b0}, ρ[x ↦→ b0], ψ q3

{b0}, ρ[x ↦→ b0], Y (x) q4

{b0}, ρ[x ↦→ b0], ⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)q5

{b0}, ρ[x ↦→ b0], ⟨|x < b y|⟩X(y)q6

{b0}, ρ[x ↦→ b0], ⟨| z|⟩Y (x)

q7

Figure 6.2: Quotient automaton obtained from the infinite automaton AE3,⟨|bx|⟩φ via future

equivalence.

We already hinted at the similarity between tableau rules and transitions in the auto-

maton associated with a PES and a formula. We next formalise this relation by showing

that future equivalence can be used to prune runs of the automaton AE,φ in a way that a

suitably chosen accepting run, after pruning, will correspond to a successful tableau.

Definition 6.7 (pruned k-tree). Let E be a PES, let φ be a closed formula of Lhp, and let

r be a run of the NPA AE,φ on a k-tree T . Given a path p = (u0, u1, . . .) in T we call a

node uj a repetition if one of the following conditions holds:

1. the formula in r(uj) is of the kind T, F, or [[x,y < a z]]ψ′, ⟨|x,y < a z|⟩ψ′ with

Succx,y<az
E (C, ρ) = ∅ (hence starting from uj the path consists of the repetition of the

state r(uj));

2. the formula in r(uj) is a proposition X(x) and there is i < j such that r(ui) ≈f r(uj)

and X is not introduced between ui and uj.

74

In case (1) we let Ω(uj) = uj while in case (2) we let Ω(uj) = ui where i < j is the minimal

index such that ui satisfies the condition and we call Ω(uj) the repetition witness for uj. If

r(uj) ∈ Fl for some l, we say that uj is a repetition of priority l. The pruned run T (r) is

the largest subtree of r where repetitions have no successor.

The pruned run is obtained by cutting each path at the first repetition, hence in the

pruned run each leaf has a repetition witness.

An adaptation of the results developed for tableaux in Subsection 5.3.1 allows us to

prove that the pruning of a run is always finite.

We first observe some properties of paths in automata in relation to fixpoint formulae.

Lemma 6.1 (fixpoint introduction). Let E be a PES, let φ be a closed formula in Lhp and

let AE,φ be the corresponding automaton. For any path p in AE,φ and state q with formula

X(x)

1. if there exists a state q′ after q, with formula Y (y) and Y is not introduced between q

and q′, then X ⊏∗
d Y ;

2. if there exists a state q′ after q that introduces X, then there is a state between q and

q′ with formula Y (x) with X ⊏∗
d Y ;

Proof. Straightforward adaptation of the proof of Lemma 5.5.

It is easy to see that every infinite path in an NPA AE,φ, after a certain point, either

loops over just one trivial state, or goes through infinitely many unfoldings and thus contains

infinitely many occurrences of some propositions. In the latter case, using the lemma above,

we are able to prove that among those propositions there must be one which is never

introduced along the path and it has maximum alternation depth.

Lemma 6.2 (properties of infinite paths). Let E be a PES, let φ be a closed formula

in Lhp and let AE,φ be the corresponding NPA. Each infinite path in AE,φ has a suffix

p = (q0, q1, . . .) such that one the following properties holds:

1. for all j, qj = (C, ρ, ψ), with ψ of the kind T, F, or [[x,y < a z]]ψ′, ⟨|x,y < a z|⟩ψ′

with Succx,y<az
E (C, ρ) = ∅;

2. the set of abstract propositions that occur infinitely often has a ⊏∗
d-greatest element X

(which thus has the greatest alternation depth) and X is never introduced in p.

Proof. Consider an infinite path in the automaton AE,φ. If from some point on qj =

(C, ρ, ψ), where ψ of the kind T, F [[x,y < a z]]ψ′ or ⟨|x,y < a z|⟩ψ′ with Succx,y<az
E (C, ρ) = ∅,

we are done.

Otherwise, inspecting Definition 6.5, we see that the remaining transitions reduce the

size of the formula associated with the state, the only exceptions being the unfolding tran-

sition. Therefore infinitely many transitions must be unfoldings, meaning that there are

infinitely many states with a proposition as formula.

75

Consider a suffix p = (q0, q1, . . .) of the path such that all propositions occur infi-

nitely often and let X one of these proposition that is ⊏∗
d-maximal. Consider a suffix

p′ = (qℓ, qℓ+1, . . .) starting with a state qℓ having an occurrence of X as formula. Reasoning

exactly as in Lemma 5.5 we can deduce that X is never introduced in p′.

Moreover, X is a ⊏∗
d-maximum. In fact, let Y be another maximal abstract proposition

occurring infinitely often in p′. Then we can consider states qi = (Ci, ρi, X(xi)), qj =

(Cj , ρj , Y (yj)) and qi = (Ck, ρk, X(xk)). If Y is not introduced between qi and qj then, by

Lemma 6.1(1), X ⊏∗
d Y , hence, by maximality, X = Y . Similarly, if X is not introduced

between qj and qk then Y ⊏∗
d X, hence, by maximality, X = Y . Otherwise, it is easy to see

that if ψX and ψY are the fixpoint formulae binding X and Y , respectively, ψY should be

a strict subformula of ψX that, in turn, should be a strict subformula of ψY , leading to a

contradiction.

Now we show that every run becomes finite after being pruned. The proof is similar

to that of the finiteness of tableaux for strongly regular PESs (Theorem 5.1). Indeed,

we exploit again strong regularity, which, accompanied by the result above, implies that,

even in the non-trivial cases, every infinite path must contain a repetition (in the sense of

Definition 6.7).

Lemma 6.3 (pruned runs are finite). Let E be a strongly regular PES, let φ be a closed

formula of Lhp, and let AE,φ be the corresponding NPA. For any run r of AE,φ on a k-tree

T , the corresponding pruned run T (r) is finite.

Proof. We proceed by contradiction. We assume that T (r) is infinite and we prove that it

includes a repetition, in contrast with its definition. Since T (r) is boundedly branching, by

Lemma 5.6, there is an infinite path p = (u0, u1, . . .) in T (r). Hence, by Lemma 6.2, there

is a suffix p′ = (uh, uh+1, . . .) such that one of the following properties holds and in both

cases we conclude.

1. r(ui) = q = (C, ρ, ψ) for all i ≥ h, with ψ is of the kind T, F, or ⟨|x,y < a z|⟩ψ′,

[[x,y < a z]]ψ′ with Succx,y<az
E (C, ρ) = ∅. Hence ui is a repetition.

2. There is an abstract proposition X that occurs infinitely often and X is never introdu-

ced in p′. Since X occurs infinitely often in p′ and, by Proposition 6.1, the equivalence

≈f is of finite index, there are two nodes ui, uj in p′ with formulae X(xi) and X(xj),

respectively, such that r(ui) ≈f r(uj). Therefore uj is a repetition.

The results we have are already enough to show that any pruned run corresponds to

a tableau. The next step would be to prove that accepting runs correspond to successful

tableaux. However, this does not work directly: by pruning an accepting run, we could

still get something that does not correspond to a successful tableau. The crux is that,

76

even though a path is accepting, and thus it includes repetitions over states of maximum

priority which is even, it could also include, at the beginning, some repetitions over least

fixpoints. In this case, the pruned run will have the corresponding states, with odd priority,

at some leaves. For instance, consider the NPA in Figure 6.2. The run corresponding to the

sequence of states (q0, q1, q2, q3, q4, q5, q7, q4, q5, q6, (q2, q3, q4, q5, q6)
∞) is accepting, since the

state q2 occurs infinitely often. However, the first repetition along this run is q4. Thus the

pruned run would be the subsequence (q0, q1, q2, q3, q4, q5, q7, q4), and so it would terminate

in q4 which has odd priority.

In order to prove that whenever there is an accepting run, there is one without “use-

less” repetitions, we formalise the intuition that some repetitions, like the one above, are

avoidable.

Definition 6.8 (noisy repetition). Let E be a PES, let φ be a closed formula of Lhp and

let AE,φ be the corresponding NPA. Let r be an accepting run on a k-tree T . A repetition

u in r is called noisy if it has odd or no priority and no ancestor u′ of u is a repetition of

even priority.

We show that noisy repetitions can be removed still getting a valid run. We first observe

that in an accepting run, each infinite path p includes a repetition over a state whose priority

is F(p) (hence even, see Definition 6.2).

Lemma 6.4 (maximal priority repetitions). Let E be a PES, let φ be a closed formula of

Lhp and let r be an accepting run of the NPA AE,φ on a k-tree T . For each infinite accepting

path p = (u0, u1, . . .) in r there exists a repetition ui of priority F(p).

Proof. Let p = (u0, u1, . . .) be an infinite accepting path in r. By Lemma 6.2, there is a

suffix p′ = (uh, uh+1, . . .) of p such that one of the following properties hold.

1. r(ui) = q = (C, ρ, ψ) for all i ≥ h, with ψ the kind T, F, or ⟨|x,y < a z|⟩ψ′,

[[x,y < a z]]ψ′ with Succx,y<az
E (C, ρ) = ∅. The fact that the run and thus the

path are accepting, reduces the possible shapes of ψ to T and [[x,y < a z]]ψ′ with

Succx,y<az
E (C, ρ) = ∅. Hence ui is a repetition. Moreover, F(q) = 0 and since,

r(uh) = r(ui) = q ∈ F0 for h ≥ i, this is the only priority repeating infinitely often,

hence the largest.

2. The set of abstract proposition that occurs infinitely often in p′ has a ⊏∗
d-largest

element X (which thus has the largest alternation depth) and X is never introduced

in p′. Since X occurs infinitely often in p′ and, by Proposition 6.1, the equivalence

≈f is of finite index, there are two nodes ui, uj in p′ with formulae X(xi) and X(xj),

respectively, such that r(ui) ≈f r(uj). We next observe that r(ui), r(uj) ∈ Fl with

l = F(p). In fact, recall that ad(X) is maximal among the propositions occurring

infinitely often. Thus if there were l′ > l such that r(ui) ∈ Fl′ infinitely often, there

should be some Y such that either

77

• Y is quantified in a ν-subformula and ad(Y) > ad(X), contradicting the maxi-

mality of ad(X);

• Y is quantified in a µ-subformula and ad(Y) ≥ ad(X), contradicting the fact

that the run r is accepting.

Summing up, r(ui) ≈f r(uj), state r(ui) has a proposition X(xi) as a formula and X

is not introduced between ui and uj , hence uj is the desired repetition.

The above lemma implies that an accepting run r over a k-tree T has a finite number

of noisy repetitions. In fact, it is immediate to see that each path in the run has a finite

number of noisy repetitions, since they must precede the first repetition of priority F(p).

We conclude by the fact that T has branching bounded by k.

We can now show that if an automaton has an accepting run, then it has an accepting

run without noisy repetitions.

Lemma 6.5 (avoiding noisy repetitions). Let E be a PES and let φ be a closed formula of

Lhp. If L(AE,φ) ̸= ∅ then AE,φ has an accepting run r without noisy repetitions.

Proof. Assume by contradiction that L(AE,φ) ̸= ∅ but all accepting runs contain noisy

repetitions. Let r be an accepting run on a k-tree T that has a minimal number of repetitions

(by Lemma 6.4 this is finite, as already observed).

Let u be a noisy repetition in r. Since the run is accepting, the only possibility is that

the formula of r(u) is a proposition, say X(x) quantified in a least fixpoint. Let u′ = Ω(u),

i.e., u′ is the closest ancestor of u such that r(u) ≈f r(u
′) and X is not introduced between

u′ and u, and let Tu and Tu′ be the subtrees of T rooted in u and u′, respectively.

Since r(u) ≈f r(u
′) and ≈f is an NPA bisimulation (see Proposition 6.1) we can replace

Tu′ by Tu and get a new valid run r′. It is accepting since all paths in r′ are obtained from

paths in r by removing finitely many nodes.

We argue r′ has strictly fewer repetitions than r, contradicting its minimality. In fact, u

is no longer a repetition. Moreover, no new noisy repetitions are crated. In fact, in general,

nodes that were not repetitions cannot become repetitions afterwards, still we could doubt

that repetitions that were not noisy become so. For repetitions that were not in Tu′ , the

ancestors are unchanged, hence they are noisy after the transformation if and only if they

were before. Repetitions in Tu′ but not in Tu are removed. Let us thus focus on repetitions

in Tu. Let v be one of such repetitions. Assume that u has odd priority and it is not noisy

due to the presence of an ancestor w that is a repetition of even priority. Clearly, w cannot

be an ancestor of u, otherwise u would not be noisy. Hence it must be between u and v.

Still, we could think that after the transformation u could become noisy because w′ = Ω(w)

is between u′ and u, hence it is removed and w ceases to be a repetition. However, if this

were the case let Y (y) and Y (y′) be the formulae associated with w and w′, respectively.

78

Since X is not introduced between u′ and u, hence between w′ and u, by Lemma 5.5(1),

Y ⊏∗
d X. Since Y is not introduced between w′ = Ω(w) and w, hence between u and w,

again by Lemma 5.5(1), X ⊏∗
d Y . Therefore X = Y , but this is absurd since X is quantified

in a least fixpoint and Y is quantified in a greatest fixpoint.

We thus reach the desired conclusion, i.e., when an automaton has a non-empty language

it has an accepting run that, once pruned, has all leaves with even priority.

Lemma 6.6 (pruned run with even leaves). Let E be a PES and let φ be a closed formula

of Lhp. If L(AE,φ) ̸= ∅ then AE,φ has an accepting run r on a k-tree T such that in T (r)

all leaves have even priority.

Proof. By Lemma 6.5 we know that AE,φ has an accepting run r on a k-tree T without

noisy repetitions. Since by Definition 6.7 all leaves in T (r) are repetitions and there are

no repetitions among their ancestors, if a leaf had no or odd priority it would be noisy by

Definition 6.8, contradicting the previous fact. Therefore, all leaves in T (r) must have even

priority.

Using the above lemma, it is easy to prove that if AE,φ has a non-empty language, then

E satisfies φ. The proof relies on the fact that an accepting run for AE,φ whose pruning has

all leaves with even priority, can be easily transformed into a successful tableau for φ, so

that Lemma 5.2 allows us to conclude.

Lemma 6.7 (non-emptiness implies satisfaction). Let E be a strongly regular PES and let

φ̌ be a closed formula. If L(AE,φ̌) ̸= ∅ then E satisfies φ̌.

Proof. Let E be a strongly regular PES, let φ̌ in Lhp be a closed formula and and let AE,φ̌

be the corresponding automaton. Assume that L(AE,φ̌) ̸= ∅. By Lemma 6.6, for AE,φ̌ there

exists an accepting run r on a k-tree T , such that all leaves of T (r) have even priority. We

show that T (r) can be easily transformed into a successful tableau for the sequent ∅, ρ̌, ∅ |= φ̌.

First, all nodes of T (r) can be labelled with sequents as follows. Recall that r maps

each to node u to a state r(u) = (C, ρ, ψ). This is transformed into a sequent C, ρ,∆u |= ψ,

with the definition list ∆u defined inductively as follows. For the root ϵ, we let ∆u = ∅.

For non-root nodes ui, if r(u) = (C, ρ, ψ) with ψ = (ηX(x).ψ′)(y), i.e., r(u) introduces X,

then ∆ui = ∆u[X(x) ↦→ ηX(x).ψ′]. In all other cases, ∆ui = ∆u.

Since the leaves l of T (r) have even priority, the corresponding formulae are either

1. T or [[x,y < a z]]ψ′ with Succx,y<az
E (C, ρ) = ∅ or

2. X(x) with X bound in a ν-subformula.

In the first case, by the definition of the transition relation and of pruned k-tree, the

predecessor u of the leaf l is such that r(u) = r(l) and l = u1 is its only successor. Call τ

the tree obtained by removing such leaves.

79

Inspecting the automaton transitions and the tableau rules, it is immediate to realise

that the sequents labelling each internal node of τ and its successors are the premise and

the conclusions, respectively, of a tableau rule. The stop condition condition γ (see Defi-

nition 5.6) is not satisfied by internal nodes since they are not repetitions. Moreover, no

tableau rule applies to the sequents labelling the leaves of τ . This is clearly the case for

leaves in item (1) above. For the leaves in item (2), the rule (Unfν) cannot be applied since

the stop condition γ is guaranteed to hold by Definition 6.7.

Therefore τ is a tableau, and it is clearly successful since, as already observed, every

leaf is as required in Definition 5.9.

Conversely, given a run r whose pruning has all leaves with even priority, it could still

be the case that r is not accepting, because it does not take advantage of the possibi-

lity of cycling over the leaves. For instance, consider again the NPA in Figure 6.2. The

run corresponding to the sequence of states (q0, q1, q2, q3, q4, q5, q6, q2, q3, (q4, q5, q7)
∞) is not

accepting, since the only state with a priority that occurs infinitely often is q4 and, as already

observed, q4 has odd priority. However, the first repetition along this run is q2 and thus the

pruned run would be the subsequence (q0, q1, q2, q3, q4, q5, q6, q2), terminating in the state

q2 which has even priority. Indeed, recognising the presence of the loop q2, q3, q4, q5, q6, q2,

one can construct the run (q0, q1, (q2, q3, q4, q5, q6)
∞) which is accepting.

In general, we can prove that if there exists a run whose pruning has all leaves with

even priority then there exists an accepting run.

Lemma 6.8 (accepting run for pruned runs). Let E be a PES and let φ be a closed formula

of Lhp. If there exists a run r of the NPA AE,φ on a k-tree T such that in T (r) all leaves

have even priority then there exists also an accepting run of AE,φ.

Proof. Let r be a run such that all leaves in T (r) have even priority. Consider the directed

graph obtained by adding to every leaf w of T (r) a “back arc” in the following way. If

r(w) = (C, ρ, ψ) where ψ is T or [[x,y < a z]]ψ′, then add a self-loop. Otherwise, ψ must

be a proposition Z(z) quantified in a ν-subformula, since all leaves have even priority. In

this case the arc goes from l to the successor of its repetition witness Ω(l).

Unfold such a directed graph, starting from the root ϵ of T (r), thus obtaining a k-tree

T ′ (different from T , in general). More formally, T ′ is the tree whose nodes are finite

paths v = (u0, u1, . . . , un) in the graph and where each node v = (u0, u1, . . . , un) has

v′ = (u0, u1, . . . , un−1) as parent. Clearly, all complete paths in T ′ are infinite, since every

node of the graph has a successor. Moreover, paths in T ′ will be sometimes confused with

the corresponding paths in the graph.

We next show that r can be used to build an accepting run r′ of the quotient automaton

AE,φ/≈f
over T ′. For each node v = (u0, u1, . . . , un), define r′(v) = [r(un)]≈f

. Since for

each node u of the original run, r(u) ≈f r(Ω(u)), it is not difficult to realise that r′ is a

well-defined run of AE,φ/≈f
on T ′.

80

We argue that the run r′ is accepting, that is, for any complete path p = (v0, v1, . . .) in

r′, if we consider the set of priorities that repeat infinitely often

I(p) = {l ∈ [0, h] | {i | r′(vi) ∈ Fl} is infinite},

then I(P) is non-empty and its maximum is even.

Since p is infinite, T (r) is finite (by Lemma 6.3), and the back arcs have been added

only to the leaves, by construction some leaf w of T (r) must repeat infinitely many times in

p (or, more precisely, vi = vi−1w infinitely often). Since w has even priority, there are two

possibilities

• r(w) is T or [[x,y < a z]]ψ′ with Succx,y<az
E (C, ρ) = ∅, or

• r(w) is a proposition quantified in a ν-subformula.

In the first case, from some point on, vi = vi−1w and r(w), hence r′(vi), have priority 0

and this is the only priority repeating infinitely often. Hence we are done.

In the second case, we know that I(p) ̸= ∅. In order to conclude that the maximum

is even we proceed as follows. We show that for any proposition X quantified in a µ-

subformula such that X appears infinitely many times along p, there is a proposition Y

quantified in a ν-subformula such that ad(Y) > ad(X) and Y appears infinitely many times

along p. Recalling how the priority is defined based on the alternation depth, it is easy to

see that this implies that for any node of odd priority there is descendant node of larger

even priority, whence the desired property.

Thus assume that the formula X(x), with X quantified in a µ-subformula, occurs infini-

tely often in p. Since T (r) is finite, this implies that there is a node u of T (r) such that the

formula of r(u) is X(x) and u is traversed infinitely often in p. Moreover, since all leaves

of T (r) have even priority, u must be an inner node.

Now, let vi, vj be two consecutive occurrences of u in p, i.e., vi = vi−1u and vj = vj−1u

with i < j. Note that since u is an inner node of T (r) and there is a path from vi to vj , i.e.,

from u to u in the graph, there must be an index k with i < k < j such that uk corresponds

to a leaf w of T (r), and its repetition witness Ω(w) is above u in T (r). Assume that k is

the smallest such index. Then w is a descendant of u in T (r) (otherwise there should be an

“earlier” leaf of index uk′ , with i < k′ < k whose witness is a common ancestor of u and w,

contradicting the minimality of k). Therefore u is between Ω(w) and w in T (r). Let Y (y)

be the formula in r(w). Note that Y is quantified in a ν-subformula since v is a leaf. By

definition of repetition witness, Y is not introduced Ω(w) and w. Thus, by Lemma 6.1(1)

we have that X ⊏∗
d Y . Moreover X ̸= Y since X is quantified in a µ-subformula and Y in

a ν-subformula. Hence, by definition of alternation depth, ad(X) < ad(Y).

We proved that between any two consecutive occurrences of u there is a node with a

formula Y (y), quantified in a ν-subformula, such that ad(X) < ad(Y). Since u occurs

infinitely often in p, the variable Y will be the same in infinitely many cases. This is what

we aimed at.

81

Summing up, every complete path of r′ is accepting and thus the run r′ on the k-tree

T ′ is an accepting run for AE,φ/≈f
on T ′, thus L(AE,φ/≈f

) ̸= ∅. Since ≈f is a bisimulation

on AE,φ, by Theorem 6.1, L(AE,φ/≈f
) = L(AE,φ), hence we conclude.

The above result allows us to conclude that if E satisfies φ, then AE,φ has a non-empty

language. Again we rely on the results proven for tableaux. By Lemma 5.13, whenever

E satisfies φ there is a successful tableau for φ. The proof then shows that a successful

tableau for φ can be viewed as the pruning of a run where all leaves have even priority. By

Lemma 6.8 this can be transformed into an accepting run for AE,φ.

Lemma 6.9 (satisfaction implies non-emptiness). Let E be a strongly regular PES and let

φ̌ be a closed formula. If E satisfies φ̌ then L(AE,φ̌) ̸= ∅.

Proof. Let q0 = (∅, ρ̌, φ̌) be the initial state of AE,φ̌. Let τ be a successful tableau for the

formula φ̌, which is guaranteed to exist by Lemma 5.13.

The tableau τ can be transformed into a run r of AE,φ̌ in the following way. A prefix

of r corresponds exactly to the tableau τ : each sequent C, ρ,∆ |= φ is transformed into a

state (C, ρ, φ). In particular, the root of τ , labelled by the sequent ∅, ρ̌, ∅ |= φ̌, corresponds

to the initial state q0 = (∅, ρ̌, φ̌). By an inspection of the tableau rules and the automaton

transitions it is immediate to realise that this is indeed an incomplete run of AE,φ̌ starting

from the initial state q0.

Now, since by definition of AE,φ̌, every state has a successor, clearly r can be extended

to a full correct run r of AE,φ̌ on some k-tree T .

Note that r might not be accepting. Still, the prefix of r, corresponding to τ does

not contain repetitions except for those associated with the leaves of τ (in particular the

stop condition γ never holds in the inner nodes of τ). Since τ is successful (Definition 5.9)

leaves w are labelled by proposition quantified in a ν-subformula, T, or [[x,y < a z]]ψ

with Succx,y<az
E (C, ρ) = ∅. In the last two cases, a path in the run r reaching w will

cycle on indefinitely on the same formula. In the first case, a path in r through w could

possibly include repetitions after w, but these will not appear in the pruned run T (r)

by Definition 6.7 thanks to the presence of w being the first repetition. Therefore, by

definition of the acceptance condition of AE,φ̌, all leaves in the pruned run T (r) have even

priority and thus, by Lemma 6.8, there exists a run r′ of AE,φ̌ which is accepting. And so

L(AE,φ̌) ̸= ∅.

Joining Lemmata 6.7 and 6.9, we have that the model-checking problem of a formula φ

over a strongly regular PES E reduces to the non-emptiness of the language of the automaton

AE,φ.

Theorem 6.2 (model-checking via non-emptiness). Let E be a strongly regular PES and

let φ be a closed formula of Lhp. Then L(AE,φ) ̸= ∅ if and only if E satisfies φ.

Proof. Corollary of Lemmata 6.7 and 6.9.

82

The above result, combined with a suitable bisimulation equivalence ≡ of finite index,

can be exploited to obtain an effective procedure for checking the satisfaction of a formula.

In fact, given a bisimulation ≡ over AE,φ of finite index, the quotient automaton AE,φ/≡

is finite and, exploiting Theorems 6.2 and 6.1, we can verify whether E |= φ by checking

the emptiness of the language accepted by AE,φ/≡. Clearly a concrete algorithm will not

first generate the infinite state NPA and then take the quotient, but it rather performs the

quotient on the fly: whenever a new state would be equivalent to one already generated,

the transition loops back to the already existing state.

When E is strongly regular, a reference bisimulation equivalence of finite index on AE,φ is

future equivalence. An obstacle towards the use of the quotiented NPA for model checking

purposes is the fact that the future equivalence could be hard to compute (or even un-

decidable). In order to make the construction effective we need a decidable bisimulation

equivalence on the NPA and the effectiveness of the set of successors of a state. This is

further discussed in the next section.

6.3 NPA for Petri nets

We show how the abstract automata-based model-checking approach outlined in the pre-

vious section can be instantiated on finite safe Petri nets by identifying a suitable effective

bisimulation equivalence on the NPA.

We already saw that the PES associated with a finite safe Petri net is regular (Theo-

rem 3.2). We next prove that it is also strongly regular and thus we can apply the theory

developed so far for model-checking Lhp over finite safe Petri nets.

Let N be a safe Petri net. In Proposition 3.2 we observed that the residual of the PES

E(N) after a configuration C ∈ C(E(N)) is uniquely determined by the marking produced

by C. This correspondence can be further extended to pointed configurations by considering

markings which additionally record, for the events of interest in the past, the places in the

marking which are caused by such events. This motivates the definition below.

Definition 6.9 (pointed marking). Let N be a safe Petri net. Given a set V , a V -pointed

marking is a pair ⟨M, r⟩ where M ⊆ P is a safe marking and r : V → 2M .

A V -pointed configuration ⟨C, ζ⟩ of E(N) naturally induces a V -pointed marking deno-

ted by M(⟨C, ζ⟩) = ⟨M(C), r⟩ where r(x) = {π1(b) | b ∈ C◦ ∧ ζ(x) < b}. We next observe

that pointed configurations producing the same pointed marking have isomorphic pointed

residuals.

Proposition 6.2 (pointed markings vs configurations). Let N be a safe Petri net. Gi-

ven a set V and two V -pointed configurations ⟨C1, ζ1⟩, ⟨C2, ζ2⟩ in E(N), if M(⟨C1, ζ1⟩) =

M(⟨C2, ζ2⟩) then ⟨C1, ζ1⟩ ≈r ⟨C2, ζ2⟩.

Proof. Let N be a safe Petri net, consider its unfolding U(N) and two V -pointed configu-

rations ⟨C1, ζ1⟩, ⟨C2, ζ2⟩ such that M(⟨C1, ζ1⟩) = M(⟨C2, ζ2⟩).

83

First note that since, in particular, M(C1) = M(C2), the residuals U(N)[C1] and

U(N)[C2] are isomorphic. Let ι : U(N)[C1] → U(N)[C2] be the corresponding net iso-

morphism. Its restriction to the underlying PESs, abusing the notation, is still denoted

by ι and it establishes an isomorphism of the residuals E(N)[C1] and E(N)[C2]. We next

prove that ι is also an isomorphism of residuals of the pointed configurations ⟨C1, g1⟩ and

⟨C2, g2⟩, i.e., that for all x ∈ V and let e1 ∈ E(N)[C1] we have g1(x) ≤ e1 iff g2(x) ≤ ι(e1).

Let x ∈ V and let e1 ∈ E(N)[C1]. If g1(x) ≤ e1 then there is b1 ∈ C◦
1 such that

g1(x) ≤ b1 ≤ e1. Thus π1(b1) ∈∈ r1(x) = r2(x). Therefore, there is b2 ∈ C◦
2 such that

π1(b2) = π1(b1) and g2(x) ≤ b2.

Now, since the net is safe the isomorphism ι must map b1 to b2. Therefore g2(x) ≤ b2 =

ι(b1) ≤ ι(e1), where the last step is motivated by the fact that the isomorphism preserves

causality. Hence g2(x) ≤ ι(e1), as desired.

Conversely, if g2(x) ≤ ι(e1) we can deduce that g1(x) ≤ e1 in an analogous way.

By the above result the PES associated with a finite safe Petri net is strongly regu-

lar. In fact, the number of residuals of V -pointed configurations, up to isomorphism, by

Proposition 6.2, is smaller than the number of V -pointed markings, which is clearly finite

since the net is finite and safe. Furthermore, the PES is regular by Theorem 3.2, hence it

is boundedly branching. And so one can conclude by using Lemma 5.4.

Corollary 6.1 (strong regularity). Let N be a finite safe Petri net. Then the corresponding

PES E(N) is strongly regular.

In order to instantiate the model-checking framework to finite safe Petri nets, the idea

is to take an equivalence over the infinite NPA that equates states whose (pointed) confi-

gurations induce the same pointed marking.

Definition 6.10 (pointed-marking equivalence on NPA). Let N be a finite safe Petri net

and let φ be a closed formula of Lhp. Two states q1, q2 in the NPA AE(N),φ are pointed-

marking equivalent, written q1 ≈m q2, if qi = (Ci, ρi, ψ), i ∈ {1, 2}, for some ψ ∈ sf(φ) and

M(⟨C1, ρ1|fv(ψ)⟩) = M(⟨C2, ρ2|fv(ψ)⟩).

Using Proposition 6.2 we can immediately prove that ≈m refines ≈f . Moreover we can

show that ≈m is a bisimulation in the sense of Definition 6.4.

Proposition 6.3 (≈m is a bisimulation). Let N be a finite safe Petri net and let φ be a

closed formula of Lhp. The equivalence ≈m on the automaton AE(N),φ is a bisimulation and

it is of finite index.

Proof. Let q = (C, ρ, ψ), q′ = (C ′, ρ′, ψ′) ∈ Q be states of AE(N),φ such that q ≈m q′. This

means that M(⟨C1, ρ1|fv(ψ)⟩) = M(⟨C2, ρ2|fv(ψ)⟩) = ⟨M, r⟩.

Concerning condition (1) of Definition 6.4, the fact that for all i ∈ [0, h], q ∈ Fi iff q′ ∈ Fi

immediately follows from Proposition 6.1, recalling that ≈m refines future equivalence ≈f .

84

Let us focus on condition (2). Assume that q −→ (q1, . . . , qn). In order to prove that

q′ −→ (q′1, . . . , q
′
n) with qi ≈m q′i for i ∈ [1, n] we distinguish various cases according to the

shape of ψ.

• ψ = T or ψ = F

Trivial, since the only transitions of q and q′ are q −→ (q) and q′ −→ (q′).

• ψ = ψ1 ∧ ψ2

The only transition of q is q −→ (q1, q2) where qi = (C, ρ, ψi), i ∈ {1, 2}. By con-

struction also q′ −→ (q′1, q
′
2) where q′i = (C ′, ρ′, ψi), i ∈ {1, 2}. In order to conclude

that qi ≈m q1i, for i ∈ {1, 2}, just observe that fv(ψi) ⊆ fv(ψ) and thus such states

are associated with the same pointed marking ⟨M, r|fv(ψi)⟩.

• ψ = ψ1 ∨ ψ2, ψ = (ηX(x).ψ′)(y), or ψ = X(y)

These cases are analogous to the previous one.

• ψ = ⟨|x,y < a z|⟩ψ1

in this case, if Succx,y<az
E (C, ρ) ̸= ∅ then q −→ (q1) where q1 = (C1, ρ1, ψ1) with

(C1, ρ1) ∈ Succx,y<az
E (C, ρ), which means that C

ρ(x),ρ(y)<e−−−−−−−→a C1 and ρ1 = ρ[z ↦→ e].

Let t = π1(e) be the transition in N corresponding to the event e of U(N). For each

x in x, since ρ(x) < e, there must be a condition bx ∈ •e such that ρ(x) < bx and

thus, in the associated pointed marking ⟨M, r⟩, we have •t ∩ r(x) ̸= ∅. Dually, for

each y in y, since it is not the case that ρ(y) < e, for all conditions b ∈ •e we have

¬(ρ(y) < b) and thus •t ∩ r(y) = ∅.

Since, by hypothesis, q′ is associated with the same pointed marking ⟨M, r⟩ as q,

there is an event e′ such that π1(e
′) = t and e′ ∈ en(C ′). Moreover, for all variables

w ∈ fv(ψ) we have ρ′(w) < e′ iff ρ′(w) ∩ •e′ ̸= ∅ iff r(w) ∩ •t ̸= ∅. Therefore, by the

considerations above, for each x in x, ρ′(x) < e′ and for no y in y, ρ′(y) < e′. This

means that if we let ρ′1 = ρ′[z ↦→ e′], then there exists (C ′
1, ρ

′
1) ∈ Succx,y<az

E (C ′, ρ′)

and thus q′ −→ (q′1) where q′1 = (C ′
1, ρ

′
1, ψ1). Finally, q1 ≈m q′1, i.e., they are associated

with the same fv(ψ1)-pointed marking ⟨M ′, r′⟩ where M ′ = (M ∖ •t)∪ t•. Moreover,

fv(ψ1) ⊆ fv(ψ) ∪ {z} and for each variable w ∈ fv(ψ1) ∖ {z} we have r′(w) = (r(w) ∩
M ′) ∪ {s | s ∈ t• ∧ r(w) ∩ •t ̸= ∅} and r′(z) = t•.

If instead Succx,y<az
E (C, ρ) = ∅ then q −→ (q). From the fact that q and q′ are associated

with the same pointed marking, reasoning as in the previous case, we deduce that also

Succx,y<az
E (C ′, ρ′) = ∅ and thus q′ −→ (q′). Hence we conclude

• ψ = [[x,y < a z]]ψ1

Analogous to the previous case.

The fact that ≈m is of finite index immediately follows from the observation that the

number of fv(ψ)-pointed markings of N , where ψ ∈ sf(φ), is finite. In fact both sf(φ) and

85

R(N) are finite. Moreover, for each fixed subformula ψ ∈ sf(φ) and marking M ∈ R(N),

the number of fv(ψ)-pointed markings ⟨M, r⟩, with r : fv(ψ) → 2M is clearly finite.

Relying on Propositions 6.2 and 6.3 we can provide an explicit construction of the quo-

tient automaton AE(N),φ/≈m
. We introduce a convenient notation for transitions between

pointed markings. Given the tuples of variables x, y, a set V such that x ∪ y ⊆ V and

a V -pointed marking ⟨M, r⟩, we write ⟨M, r⟩ x,y<t−−−−→a,z ⟨M ′, r′⟩ if M [t⟩M ′, λN (t) = a, for

all x ∈ x we have r(x) ∩ •t ̸= ∅, for all y ∈ y it holds r(y) ∩ •t = ∅, and r′ is defined by

r′(z) = t• and r′(w) = (r(w)∩M ′)∪{s | r(w)∩ •t ̸= ∅ ∧ s ∈ t•}, for w ̸= z. In words, from

the pointed marking ⟨M, r⟩, the transition t is fired and “pointed” by variable z. Transition

t is required to consume tokens caused by x and not to consume tokens caused by y, in

order to be itself caused by x and independent from y. After the firing, clearly, z causes t•

and variables which were causes of some p ∈ •t become causes of the places in t•.

Construction 6.1 (quotient NPA). Let N be a finite safe Petri net and let φ be a closed

formula of Lhp. The quotient NPA AE(N),φ/≈m
is defined as follows. The set of states

Q = {(M, r, ψ) | M ∈ R(N) ∧ r : fv(ψ) → 2M ∧ ψ ∈ sf(φ)}. The initial state

q0 = (M0, ∅, φ). The transition relation is defined, for any state q = (M, r, ψ) ∈ Q, by:

• if ψ = T or ψ = F, then q −→ (q)

• if ψ = ψ1 ∧ ψ2, then q −→ (q1, q2) where qi = (M, r, ψi), i ∈ {1, 2}

• if ψ = ψ1 ∨ ψ2, then q −→ (q1) and q −→ (q2) where qi = (M, r, ψi), i ∈ {1, 2}

• if ψ = [[x,y < a z]]ψ′, let S = {(M ′, r′|fv(ψ′)) | ⟨M, r⟩ x,y<t−−−−→a,z ⟨M ′, r′⟩};

– if S = {(M1, r1), . . . , (Mn, rn)} ̸= ∅ then q −→ (q1, . . . , qn) where qi = (Mi, ri, ψ
′)

for i ∈ [1, n],

– otherwise q −→ (q)

• if ψ = ⟨|x,y < a z|⟩ψ′, let S = {(M ′, r′|fv(ψ′)) | ⟨M, r⟩ x,y<t−−−−→a,z ⟨M ′, r′⟩};

– if S = {(M1, r1), . . . , (Mn, rn)} ̸= ∅ then q −→ (qi) where qi = (Mi, ri, ψ
′) for

i ∈ [1, n],

– otherwise q −→ (q)

• if ψ = (ηX(x).ψ′)(y), then q −→ (q′) where q′ = (M, r,X(y))

• if ψ = X(z) and ψ′ ∈ sf(φ) is the unique subformula such that ψ′ = (ηX(x).ψ′′)(y)

then q −→ (q′) where q′ = (M, r[x ↦→ r(z)], ψ′′).

The acceptance condition is analogous to that in Definition 6.1.

The automaton AE(N),φ/≈m
is finite for all finite safe Petri nets N . Thus, it can be used

for model-checking a formula φ of Lhp over a finite safe Petri net by means of a language

emptiness check. A prototypical implementation of the procedure is discussed in the next

section.

86

6.4 A prototype tool

The algorithm for model-checking Petri nets outlined before is implemented in a prototype

tool called TCWB (True Concurrency Workbench) [Pad], written in Haskell. The tool

inputs a safe Petri net N and a closed formula φ of Lhp and outputs the truth value of

the formula on the initial marking of N . The truth of the formula is reduced to the non-

emptiness of the language of the automaton AE(N),φ/≈m
(Theorem 6.2). The algorithm

builds the quotient NPA AE(N),φ/≈m
“on demand”, i.e., the states of the automaton are

generated when they are explored in the search for an accepting run. A path is recognised

as accepting when it includes a loop where a ⊏∗
d-maximal subformula (see Definition 4.12)

is T, a [[]]-subformula or a proposition quantified in a ν-subformula. In this way only a

fragment of AE(N),φ/≈m
relevant to decide the satisfaction of φ is actually built.

A loop is identified when a state is encountered that is pointed-marking equivalent to

an ancestor state. According to Definition 6.10, in order to be pointed-marking equivalent

two states must contain the very same subformula. It is easy to see that this requirement

could be relaxed, e.g., by allowing different names for the free event variables (as it happens

in Definition 6.6). In principle, a coarser pointed-marking equivalence could reduce the size

of the quotient automaton and thus increase efficiency. However, in practice, the cost of

checking whether formulae are the same up to variable renaming beats the advantages deri-

ving from the reduction of the automaton size. The implementation adopts an intermediate

approach, which tries to rename event variables only in the case of propositions. Moreover,

states are kept in an ordered structure which allows for a binary search. Again, maintaining

such structure has some cost, but since the queries vastly outnumber the updates this turns

out to be convenient.

As a side remark, we tried a direct implementation of the tableau-based procedure. As

anticipated, it resulted to have very poor performances mainly because of the repeated

exploration of “equivalent” paths during the construction of a proof tree, which is avoided

in the automata-theoretic procedure.

Given a net N = ⟨P, T, F,M0⟩ and a formula φ, the number of states in the quotient

automaton AE(N),φ/≈m
can be bounded as follows. Recall that a state consists of a triple

(M, r, ψ) where ψ ∈ sf(φ), M is a reachable marking and r : fv(ψ) → 2M is a function. This

leads to an upper bound O(|sf(φ)| · |R(N)| · 2|P |·v), where v = max{|fv(ψ)| : ψ ∈ sf(φ)} is

the largest number of event variables appearing free in a subformula of φ. In turn, since

|R(N)| ≤ 2|P |, this is bounded by O(|sf(φ)| · 2|P |·(v+1)). The size of the automaton is thus

exponential in the size of the net and linear in the size of the formula. Moving from the

interleaving fragment of the logic (where v = 0) to formulae capable of expressing true

concurrency properties thus causes an exponential blow up. However, note that the worst

case scenario requires all transitions to be related by causality and concurrency to all places

in all possible ways, something that should be quite unlikely in practice. Indeed, despite

the fact that the tool is very preliminary and more tweaks and optimisations could improve

87

its efficiency, for the practical tests we performed the execution time seems to be typically

well below than the theoretical worst case upper bound.

We performed some simple tests. Despite the absence of another tool with the same

purpose to compare with, they were useful to grasp some information. All tests were

performed using Petri nets representing processes made of a number, indicated in the process

name, of parallel copies of a cycler, which is a sequential loop always repeating the same

four states.

• Absence of deadlock. This is a property that can be expressed in the interleaving

fragment of Lhp, i.e., the formula Live = νX.(⟨| x|⟩T ∧ [[y]]X). Hence we can compare

with a classical tool for model-checking formulae of the mu-calculus, i.e., Edinburgh

Concurrency Workbench (CWB). The technique implemented in the CWB falls under

a third approach, based on model-checking games. The algorithm generates a winning

strategy for one of two players. The results are reported in Table 6.1. For each tool the

CPU time is given in seconds, the symbol “-” indicates an execution time exceeding

1800 seconds. The CWB is faster, as expected since it is a well optimised tool and

the greater expressiveness of Lhp requires the maintenance of more complex data

structures. Still, the fact that the efficiency is comparable suggests that the overhead

deriving by the need of setting up the data structures needed to deal with pointed

markings is acceptably small.

• Causal atomicity [FM06] for a block labelled by a. We assume that every action of a

process is either labelled by a or b. Hence the process has only one block, required

to be atomic, labelled by a, everything else is outside the block and is labelled by

b. Then, as mentioned in Subsection 4.3.3, causal atomicity can be expressed by the

formula Atom = νX.([[w]]X ∧ [[ax]]νY (x).([[x < b y]][[y < a z]]F ∧ [[w]]Y (x))). Note

that all transitions in the cyclers are labelled by a. While this might seem strange for

the task of interest, it has been chosen since it produces the worst case scenario. In

fact, every pair of transitions must be checked for the absence of an atomicity violation

since all transitions are in the same atomic block. In this case the “true concurrent”

operators of Lhp are needed in order to express the property. Thus it cannot be tested

on CWB. The same holds for all the properties reported next. The results of the tests

of true concurrency properties on TCWB are displayed in Table 6.2.

• Non-interference [GM82]. Assume that every action is either a high level or a low

level one. In general, to verify that activity at high level is not visible at low level,

we should check for both causal dependencies and direct conflicts between high and

low level actions. However, since there are no conflicts between the transitions in the

cyclers, as we mentioned in Subsection 4.3.3, it is enough to check causal dependencies

from high to low level transitions, therefore non-interference can be expressed by the

formula NonInterf = νX.([[Hx]][[x < L y]]F ∧ [[z]]X). Since, as in the previous case,

88

we want to reproduce a worst case scenario, every transition in the cyclers is at high

level, thus labelled by H, so that it must be checked.

• Data race freedom [AHMN91] with n memory locations. Assume that reading and

writing operations on a memory location i ∈ [1, n] are labelled by ri and wi, re-

spectively. As explained in Subsection 4.3.3, a data race is identified by the presence

of two concurrent operations on the same memory location, of which at least one

is a write. To assess the absence of such race conditions we can use the formula

RaceFree = νX.(
⋀︁

i∈[1,n][[wi x]]([[x < ri y]]F ∧ [[x < wi y]]F) ∧ [[z]]X), which has variable

size depending on the size of the memory. To reproduce the worst case scenario, we

tested the property on processes made of n cyclers, each one continuously writing on

a different memory location. More precisely, in each cycler i every transition is a write

wi on the memory location i assigned to that cycler. This means that the processes

are, in fact, data race free, but every transition must be checked as it could possibly

induce a data race.

Process name Process states Formula Subformulae TCWB (s) CWB (s)

5 cyclers 1024 Live 6 < 1 < 1

6 cyclers 4096 Live 6 < 1 1

7 cyclers 16384 Live 6 8 5

8 cyclers 65536 Live 6 247 28

9 cyclers 262144 Live 6 - 570

Table 6.1: Results of tests performed on TCWB, compared with those of CWB.

Process name Process states Formula Subformulae TCWB (s)

5 cyclers 1024 Atom 12 < 1

6 cyclers 4096 Atom 12 5

7 cyclers 16384 Atom 12 97

8 cyclers 65536 Atom 12 -

5 cyclers 1024 NonInterf 7 < 1

6 cyclers 4096 NonInterf 7 1

7 cyclers 16384 NonInterf 7 11

8 cyclers 65536 NonInterf 7 251

5 cyclers 1024 RaceFree 38 < 1

6 cyclers 4096 RaceFree 45 2

7 cyclers 16384 RaceFree 52 17

8 cyclers 65536 RaceFree 59 280

Table 6.2: Results of tests performed on TCWB using true concurrency properties.

89

It is interesting to notice that in the tests above, moving from the interleaving fragment

of the logic to true concurrency properties, the size of the automata does not grow expo-

nentially, as the theoretical bound would suggest. Indeed, as mentioned before, the worst

case would require all transitions to be related to all places in all possible ways, which is

very unlikely in practice and surely not happening in the processes used for the tests. More

precisely, in this particular case, the size of the automaton grows by a factor n equal to the

number of cyclers in the system. This is because every reachable marking consists of n pla-

ces and every transition causes exactly one of those places. Then, since the largest number

of event variables appearing free in subformulae of the true concurrency properties is 1, the

number of states of the automaton up to pointed-marking equivalence grows by the factor

n, with respect to the interleaving case. So the upper bound to the size of the automaton

for one of the true concurrency properties φ results to be just O(|sf(φ)| · |R(N)| ·n), where

N is the Petri net representing the n cyclers process, while in the interleaving case the size

coincides with the theoretical bound, i.e., O(|sf(Live)| · |R(N)|).

90

Chapter 7

Games

Parity games [EJ91, Zie98] are two-player games of perfect information and, possibly, in-

finite duration played on directed graphs. Vertices of the game graph, called positions,

are partitioned into two sets, one for each player, representing their own positions. The

game starts from an initial position and consists in moving from a vertex to another along

one of the outgoing edges. The player, whose positions include the current one, chooses

along which outgoing edge to move. As in parity tree automata (hence the similar name),

positions are labelled with priorities. An infinite play in the game, corresponding to a path

in the graph, is won by a player or the other depending on the maximal priority appearing

infinitely many times along the play, similarly to the acceptance condition of NPAs.

Consider, for example, the parity game shown in Figure 7.1. The positions of the two

players, referred to as the existential player ∃ and the universal player ∀, are distinguished

by the shape of the nodes: diamond nodes correspond to positions of player ∃, while box

nodes correspond to positions of player ∀. Therefore, in this case, the existential player is

allowed to move from positions b and e, while the universal player will move from positions

a, c, d. The numbers in the nodes represent their priority. So, positions a and b have priority

0, position c has priority 1, and so on. Suppose that the game starts from position a. From

there player ∀ can choose between moving to b or c. If ∀ chooses b, then player ∃ can move

to either d or e. Since from every position the corresponding player is always able to move,

every play of the game will be infinite. For instance, if the existential player always chooses

to move to d from b, the resulting play would be the sequence of positions (a, (b, d)∞) where

positions b and d alternate indefinitely. Assuming the standard winning condition based

on parity, similar to the one adopted for NPAs, such a play would be won by the universal

player, because the maximal priority occurring infinitely often is 3 of position d, which is

odd. If, instead, player ∃ from position b chooses to move to e, the resulting play would be

(a, b, e∞), which is won by ∃ since position e has priority 2, and thus the maximal priority

occurring infinitely often along the play would be even. The choices of moves by a player can

be defined as a strategy for the player, which fixes and specifies the move choice from each

position of the player. For instance, a strategy for player ∃ is the one prescribing to always

91

move to position e from both positions b and e itself. A strategy is winning from a position

if it allows the player to win every play starting from that position, independently from

the moves of the opponent. Then, the aforementioned strategy for the existential player

is winning from the starting position a, since player ∃ wins all possible plays following the

strategy, which are, depending on the move of player ∀ from a, either (a, b, e∞) or (a, c, e∞),

both won by ∃.

0a

0

b

1
c

3

d

2

e

Figure 7.1: Example of a parity game.

In this chapter we present a general game-theoretic approach to the solution of systems

of fixpoint equations over lattices. As we mentioned in the first part of the thesis, the

verification and analysis of software systems often involve the computation of fixpoints over

various kinds of lattices. For example, the semantics of fixpoint logics, as those we saw

so far, are defined, at least when fixpoint operators are involved, by fixpoints over the

powerset lattice of states of the system possibly paired with environments. In such cases

the denotation of a least or greatest fixpoint formula can be seen as the least or greatest

solution, respectively, of a suitably defined fixpoint equation. Moreover, formulae containing

nested fixpoints, possibly with alternation, correspond to systems of such equations, where

for each equation either the least or greatest solution is taken (see also [CKS92, Sei96]).

We devise an approach based on a suitably defined parity game working over a vast class of

lattices, namely continuous lattices, capturing most structures adopted in the analysis and

verification of systems. Indeed, the method can be naturally applied in model-checking of a

number of logics, also multi- or real-valued ones as quantitative mu-calculi (see, e.g., [Fit91,

GLLS05, KL07]) and probabilistic mu-calculi (e.g., [MS17]), and many other verification

tasks, such as bisimulation checking and computation of pseudo-metrics and behavioural

distances [vBW05].

We first introduce continuous lattices and other notions on ordered structures which will

be extensively used in what comes after. Then we define systems of fixpoint equations and

their solutions, and propose a parity game for characterising the solution of such systems

over continuous lattices. We discuss how such a game can be solved in terms of so-called

progress measures [Jur00] and how to compute them. Finally, we see how the method can

be applied for model-checking formulae of the logic Lhp over event structures.

92

7.1 Preliminaries on ordered structures

We focus on special lattices where elements are generated by suitably defined approxima-

tions. Given a lattice L, a subset X ⊆ L is directed if X ̸= ∅ and every pair of elements in

X has an upper bound in X.

Definition 7.1 (way-below relation). Let ⟨L,⊑⟩ be a complete lattice. Given two elements

l, l′ ∈ L we say that l is way-below l′, written l ≪ l′, when for every directed set D ⊆ L,

if l′ ⊑
⨆︁
D then there exists d ∈ D such that l ⊑ d. We denote by

↠

l the set of elements

way-below l, i.e.,

↠

l = {l′ ∈ L | l′ ≪ l}.

Intuitively, the way-below relation captures a form of finitary approximation: if one

imagines that ⊑ is an order on the information content of the elements, then x≪ y means

that whenever y can be “covered” by joining (possibly small) pieces of information, then x

is covered by one of those pieces. Then a lattice is continuous if any element can be built

by joining its finitary approximations.

Definition 7.2 (continuous lattices). A complete lattice ⟨L,⊑⟩ is called continuous if for

every element l ∈ L, it holds l =
⨆︁ ↠

l.

Concerning the origin of the name “continuous lattice”, we can quote [Sco72] that says

that “One of the justifications (by euphony at least) of the term continuous lattice is the

fact that such spaces allow for so many continuous functions.” For instance, one indication

is the fact that suprema and infima are both continuous in such lattices (while normally

only suprema are).

When L is a continuous lattice and BL is a basis for it (Definition 2.3), for all l ∈ L, it

holds that l =
⨆︁

(BL ∩

↠

l).

Various lattices that are commonly used in the theory of computation enjoy a property

stronger than continuity, defined below.

Definition 7.3 (compact element, algebraic lattice). Let ⟨L,⊑⟩ be a complete lattice. An

element l ∈ L is called compact whenever l ≪ l. The lattice L is algebraic if the set of

compact elements {l ∈ L | l ≪ l} is a basis for L.

Some examples are as follows:

• All finite lattices are continuous (since every finite directed set has a maximum). More

generally, all algebraic lattices (which include all finite lattices) are continuous. The

way-below relation is x≪ y if x compact and x ⊑ y.

• Given a set X, the powerset lattice 2X , ordered by subset inclusion, is an algebraic

lattice. The compact elements are the finite subsets. In fact, any set Y is the union of

its finite subsets, i.e., Y =
⋃︁
{F | F ⊆ Y ∧ F finite}. Since {F | F ⊆ Y ∧ F finite} is

a directed set, compactness requires that Y ⊆ F for some finite F ⊆ Y , hence Y = F .

Therefore Y ≪ Z holds when Y is finite and Y ⊆ Z.

93

• The interval of real numbers [0, 1]R with the usual order ≤ is a continuous lattice. For

x, y ∈ [0, 1]R, we have x ≪ y when x < y or x = 0. In fact, since the order is total,

every non-empty subset Y ⊆ [0, 1]R is directed. Suppose that y ≤
⨆︁
Y for such a Y .

Then by standard properties of the reals there always exists a y′ ∈ Y such that x ≤ y′

if and only if x < y or x = 0. Note that this lattice is not algebraic since the only

compact element is 0.

• The lattice W in Figure 7.2, obtained by adding to N a top element ω and an element

a incomparable with all natural numbers except 0 < a < ω, is not continuous. In fact,

a ̸≪ a since a ⊑
⨆︁
N but a ̸⊑ n for all n ∈ N. Therefore
↠

a = {0}, but a ̸=
⨆︁ ↠

a.

0

1

2

ω

a

Figure 7.2: A complete lattice W which is not continuous.

A complete lattice L is distributive when suprema distribute over infima, i.e., if for all

x, y, z ∈ L it holds

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z).

Moreover, an infinitary version of the property can also be defined in a similar way, namely,

L is completely distributive if

l

j∈J

⨆︂
Kj =

⨆︂
c:J→L

l

j∈J
c(j)

where J is a set of indices, (Kj)j∈J is a family of subsets of L indexed by J , and c : J → L

is a so-called choice function such that c(j) ∈ Kj for all j ∈ J .

In the following we will often utilise tuples and subtuples of elements of the same type.

Given a set X, an n-tuple x ∈ Xn and indices i, j ∈ [1, n], we write xi,j for the subtuple

(xi, xi+1, . . . , xj).

Definition 7.4 (pointwise order). Let ⟨P,⊑⟩ be a poset. We denote by ⟨Pn,⊑⟩ the set of

n-tuples endowed with the pointwise order defined, for x,y ∈ Pn, by x ⊑ y if and only if

xi ⊑ yi for all i ∈ [1, n].

The structure ⟨Ln,⊑⟩ is a complete lattice whenever L is a complete lattice, and it is

continuous if L is continuous, with the way-below relation given by l ≪ l′ if and only if

li ≪ l′i for all i ∈ [1, n] [GHK+03, Proposition I-2.1]. More generally, for any set X, the set

94

of functions LX = {f | f : X → L}, endowed with pointwise order, is a lattice (complete

and continuous when L is).

Definition 7.5 (lexicographic order). Let ⟨P,⊑⟩ be a poset. We denote by ⟨Pn,⪯⟩ the

set of n-tuples endowed with the lexicographic order (where the last component is the most

relevant), i.e., inductively, for x,y ∈ Pn, we let x ⪯ y if either xn ⊏ yn or xn = yn and

x1,n−1 ⪯ y1,n−1.

When ⟨L,⊑⟩ is a complete lattice also ⟨Ln,⪯⟩ is a complete lattice. Given a set X ⊆ Ln,

the infimum of X with respect to ⪯ can be obtained by taking the infimum of the single

components, from the last to the first, i.e., it is defined inductively as
d
X = l where

li =
d
{l′i | l

′ ∈ X ∧ l′i+1,n = li+1,n}. The supremum can be defined analogously. Similarly,

one can show that ⪯ is a well-order whenever ⊑ is.

As in [Jur00, HSC16], we will also need to consider tuples with a preorder arising from

the lexicographic order, when some components are considered irrelevant.

Definition 7.6 (truncated lexicographic order). Let ⟨P,⊑⟩ be a poset and let n ∈ N. For

i ∈ [1, n] we define a preorder ⪯i on P
n by letting, for x,y ∈ Pn, x ⪯i y if xi,n ⪯ yi,n. We

write =i for the equivalence induced by ⪯i and x ≺i y for x ⪯i y and x ̸=i y. Whenever ⊑
is a well-order, given X ⊆ Pn with X ̸= ∅ and i ∈ [1, n], we write min⪯i X for the vector

x = (⊥, . . . ,⊥, xi, . . . , xn) where xi,n = min⪯{li,n | l ∈ X}.

In words, ⪯i is the lexicographic order restricted to the components i, i+ 1, . . . , n. For

instance, if P = N with the usual order, then (6, 1, 4, 7) ≺2 (5, 2, 4, 7), while (6, 1, 4, 7) =3

(5, 2, 4, 7). More generally, since ⪯ is a lexicographic order, if x ≺i y for some i ∈ [1, n],

then also x ≺j y for all j ∈ [1, i], but we can only assert that x ⪯k y for all k ∈ [i+ 1, n].

The collection of all ordinals ordered by ≤ is well-ordered. Given any ordinal α, the

collection of ordinals dominated by α is a set [α] = {λ | λ ≤ α}, which, seen as an

ordered structure, is a complete lattice. Infimum and supremum of a set X of ordinals

will be denoted by inf X (which equals minX if X ̸= ∅) and supX, respectively. From

classical results (see [Ran52, Theorems 1 and 2]) it follows that the lattice [α] is completely

distributive. Furthermore, from the properties discussed above, for a fixed n ∈ N and an

ordinal α, the n-tuples of ordinals below α, referred to as ordinal vectors, endowed with the

lexicographic order ⟨[α]n,⪯⟩ is also a completely distributive lattice.

Given a complete lattice L, its height is the ordinal λL defined as the supremum of the

lengths of all strictly ascending, possibly transfinite, chains.

7.2 Systems of fixpoint equations

We are interested in systems of fixpoint equations over some complete lattice, where, for

each equation, one can choose either the least or the greatest solution.

95

Definition 7.7 (system of equations). Let L be a complete lattice. A system of equations

E over L is a list of equations of the following form

x1 =η1 f1(x1, . . . , xm)

. . .

xm =ηm fm(x1, . . . , xm)

where fi : Lm → L are monotone functions and ηi ∈ {µ, ν}. The system will often be

denoted as x =η f(x), where x, η and f are the obvious tuples. We denote by ∅ the system

with no equations.

Systems of equations of this kind have been considered by various authors, e.g., [CKS92,

Sei96, HSC16]. In particular, [HSC16] works on general lattices.

We next define the pre-solutions of a system as tuples of lattice elements that, replacing

the variables, satisfy all the equations of the system. The solution will be a suitably chosen

pre-solution, taking into account also the ηi annotations that specify for each equation

whether the least or greatest solution is required.

Definition 7.8 (pre-solution). Let L be a complete lattice and let E be a system of m

equations over L of the kind x =η f(x). A pre-solution of E is any tuple u ∈ Lm such that

u = f(u).

Note that f can be seen as a function f : Lm → Lm. In this view, pre-solutions are

the fixpoints of f . Since all components fi are monotone, also f is monotone over (Lm,⊑).

Then, the set of fixpoints of f , i.e., the pre-solutions of the system, are a non-empty complete

sublattice of Lm (Theorem 2.1). In order to define the solution of a system we need some

further notation.

Definition 7.9 (substitution). Let L be a complete lattice and let E be a system of m

equations over L of the kind x =η f(x). Given an index i ∈ [1,m] and an element l ∈ L

we write E[xi := l] for the system of m− 1 equations obtained from E by removing the i-th

equation and replacing xi by l in the other equations, i.e., if x = x′xix
′′, η = η′ηiη

′′ and

f = f ′fif
′′ then E[xi := l] is x′x′′ =η′η′′ f ′f ′′(x′, l,x′′).

Let f [xi := l] : Lm−1 → L be defined by f [xi := l](x′,x′′) = f(x′, l,x′′). Then, explicitly,

the system E[xi := l] has m− 1 equations:

xj =ηj fj [xi := l](x′,x′′) j ∈ {1, . . . , i− 1, i+ 1, . . . , n}

We can now recursively define the solution of a system of equations. The notion is the

same as in [HSC16], although we find it convenient to adopt a more succinct formulation.

Definition 7.10 (solution). Let L be a complete lattice and let E be a system of m equations

over L of the kind x =η f(x). The solution of E, denoted sol (E) ∈ Lm, is defined

inductively as follows:

96

sol (∅) = ϵ

sol (E) = (sol (E[xm := um]), um) where um = ηm(λx. fm(sol (E[xm := x]), x))

The i-th component of the solution will be denoted sol i(E).

In words, for solving a system of m equations, the last variable is considered as a

fixed parameter x and the system of m − 1 equations that arises from dropping the last

equation is recursively solved. This produces an (m− 1)-tuple parametric on x, i.e., we get

u1,m−1(x) = sol (E[xm := x]). Inserting this parametric solution into the last equation, we

get an equation in a single variable

x =ηm fm(u1,m−1(x), x)

that can be solved by taking for the function λx. fm(u1,m−1(x), x), the least or greatest fix-

point, depending on whether the last equation is a µ- or ν-equation. This provides the m-th

component of the solution um = ηm(λx. fm(u1,m−1(x), x)). The remaining components of

the solution are obtained inserting um in the parametric solution u1,m−1(x) previously

computed, i.e., the (m− 1)-tuple u1,m−1(um).

The next lemma will be helpful in several circumstances. In particular, it shows that the

definition above is well-given, since we are taking (least or greatest) fixpoints of monotone

functions.

Lemma 7.1 (solution is monotone). Let L be a complete lattice and let E be a system of

m > 0 equations over L of the kind x =η f(x). For i ∈ [1,m] the function g : L → Lm−1

defined by g(x) = sol (E[xi := x]) is monotone.

Proof. The proof proceeds by induction on m. The base case m = 1 holds trivially since

necessarily i = 1 and for any x ∈ L, the system E[xi := x] is empty, with empty solution.

Let us assume m > 1. We distinguish two subcases according to whether i = m or

i < m. If i = m then by definition of solution

g(x) = sol (E[xm := x]) = (sol (E[xm := x][xm−1 := um−1(x)]), um−1(x)) (7.1)

where um−1(x) = ηm−1(λy. fm−1(sol (E[xm := x][xm−1 := y]), y, x).

Next observe that the function h : L2 → Lm−2 defined by

h(x, y) = sol (E[xm := x][xm−1 := y])

is monotone. In fact, it is monotone in y by inductive hypothesis, and also in x, again by

inductive hypothesis, since E[xm := x][xm−1 := y] = E[xm−1 := y][xm := x]. Observe that

um−1 can be written as

um−1(x) = ηm−1(λy. fm−1(h(x, y), y, x))

Recalling that also fm−1 is monotone, we deduce that um−1 is monotone.

Finally, using the definition of g and um−1, from (7.1) we can derive

97

g(x) = (h(x, um−1(x)), um−1(x))

which allows us to conclude that g is monotone.

If instead, i < m, just note that

g(x) = sol (E[xi := x]) = (sol (E[xi := x][xm := um(x)]), um(x)) (7.2)

where um(x) = ηm(λy.fm (sol (E[xi := x][xm := y]), y, x). Then the proof proceeds as in

the previous case.

It can be easily proved that the solution of a system is, as anticipated, a special pre-

solution.

Lemma 7.2 (solution is pre-solution). Let E be a system of m equations over a lattice L

of the kind x =η f(x) and let u be its solution. Then u is a pre-solution, i.e., u = f(u).

Proof. The proof proceeds by induction on m. The base case m = 0 trivially holds. For any

m > 0, let u = u′um, f = f ′fm and x = x′xm. Since u′ = sol (E[xm := um]), by inductive

hypothesis, we have that

u′ = f ′[xm := um](u′) = f ′(u). (7.3)

Moreover, by definition of solution, we have that um = ηm(λx. fm(sol (E[xm := x]), x)).

Hence um = fm(sol (E[xm := um]), um)). Recalling that sol (E[xm := um]) = u′ we deduce

um = fm(u′, um) = fm(u), that together with (7.3) gives u = f(u) as desired.

As a prototypical example, we discuss how mu-calculus formulae can be equivalently

seen as systems of fixpoint equations. Later we will show how this can be done for Lhp as

well, but for now, as an illustration of the technique, we deal with this simpler example.

First note that any mu-calculus formula can be expressed in equational form, by inserting

an equation for each propositional variable (see [CKS92, Sei96]). The reverse translation is

also possible, hence these specification languages are equally expressive. Here, we will only

depict the relation via an example, the formal treatment will be presented later for Lhp (of

which mu-calculus is a fragment).

Let φ = νX2.([]X2 ∧ µX1.(⟨b⟩T ∨ ⟨ ⟩X1)) be a formula requiring that from all reachable

states there exists a path that eventually reaches a state where it is possible to execute a

b action. The equational form is quite straightforward and is reported in Figure 7.3a.

Consider the Petri net N in Figure 7.3b whose reachable markings are R(N) = {M1,M2},

where the initial marking is M1 = {p1}, while M2 = {p2}. The resulting system of equations

on the lattice 2R(N) is given in Figure 7.3c, where ♢,♢b,□ : 2R(N) → 2R(N) are defined as

♢(S) = {M ∈ R(N) | ∃M ′ ∈ R(N).M [t⟩M ′ ∧M ′ ∈ S}, ♢b is as ♢ but requiring that the

transition is labelled by b, and □(S) = {M ∈ R(N) | ∀M ′ ∈ R(N).M [t⟩M ′ ⇒ M ′ ∈ S}
for all S ⊆ R(N).

98

X1 =µ ⟨b⟩T ∨ ⟨ ⟩X1

X2 =ν []X2 ∧ X1

(a) Equational form of φ p1

p2

a0

a1

b

(b) N

x1 =µ ♢bR(N) ∪ ♢x1
x2 =ν □x2 ∩ x1

(c) System of equations over 2R(N)

Figure 7.3: Equations for νX2.([]X2 ∧ µX1.(⟨b⟩T ∨ ⟨ ⟩X1)) over states of N .

The solution is x1 = x2 = R(N). In particular, x2 = R(N) corresponds to the fact that

the formula φ holds in every state of N .

Now, consider the formula φ′ = νY2.([]Y2 ∧ µY1.((⟨b⟩T ∧ ⟨ ⟩Y2) ∨ ⟨ ⟩Y1)) requiring that

from all reachable states there is a path along which infinitely often a b-labelled transition

is enabled. The equational form of φ′ is

Y1 =µ (⟨b⟩T ∧ ⟨ ⟩Y2) ∨ ⟨ ⟩Y1
Y2 =ν []Y2 ∧ Y1

On the net N , the corresponding system of equations over the lattice 2R(N) is

y1 =µ (♢bR(N) ∩ ♢y2) ∪ ♢y1
y2 =ν □y2 ∩ y1

The solution of the system is again y1 = y2 = R(N). However, notice that this time the

order of the equations is relevant, while in the previous example it was not. Indeed, if we

swap the two equations in the system, the solution becomes y1 = y2 = ∅. In fact, the system

would now correspond to the formula µY1.((⟨b⟩T ∧ ⟨ ⟩νY2.([]Y2 ∧ Y1)) ∨ ⟨ ⟩Y1) which never

holds in any state of N . In general, the order of the equations is important whenever there

is an alternation of fixpoints, as it happens in φ′.

7.2.1 Approximating the solution

The game-theoretic characterisation of the solution of a system of fixpoint equations dis-

cussed in the next section will rely on a notion of approximation of the solution that is

reminiscent of the lattice progress measure in [HSC16].

Definition 7.11 (approximants). Let L be a complete lattice and let E be a system of m

equations over L of the kind x =η f(x). Given any tuple l ∈ Lm, let fi,l : L → L be the

function defined as

fi,l(x) = fi(sol (E[xi+1,m := li+1,m][xi := x]), x, li+1,m).

We say that a tuple l ∈ Lm is a µ-approximant when for all i ∈ [1,m]

• if ηi = µ then li = fαi,l(⊥) for some ordinal α, else

99

• if ηi = ν then li = ν(fi,l).

Dually, l ∈ Lm is a ν-approximant when for all i ∈ [1,m]

• if ηi = µ then li = µ(fi,l), else

• if ηi = ν then li = fαi,l(⊤) for some ordinal α.

Whenever l is a µ-approximant we write ord(l) to denote the least m-tuple of ordinals α

such that for all i ∈ [1,m], if ηi = µ then li = fαi
i,l (⊥) else, if ηi = ν, li = fαi

i,l (⊤) = ν(fi,l).

Observe that, spelling out the definition of the solution of a system of equations, it can

be easily seen that sol i(E[xi+1,m := li+1,m]) = ηi(fi,l). Then a µ-approximant is obtained

by taking under-approximations for the least fixpoints and the exact value for greatest

fixpoints. In fact, in the case of µ-approximants, for each i ∈ [1,m], if ηi = ν, the i-th

component is set to ν(fi,l) which is the i-th component sol i(E[xi+1,m := li+1,m]) of the

solution. Instead, if ηi = µ the component li is set to fαi,l(⊥) for some ordinal α, which is an

under-approximation of µ(fi,l) = sol i(E[xi+1,m := li+1,m]), obtained by iterating fi,l over

⊥ up to ordinal α. For ν-approximants the situation is dual.

We remark that the function fi,l depends only on the subtuple li+1,m. In particular fm,l

does not depend on l at all. In fact, fm,l = λx. fm(sol (E[xm := x]), x). Using l as subscript

instead of the corresponding subtuple is a slight abuse of the notation that makes it lighter

and more readable.

Approximants can be given an inductive characterisation. Besides shedding some light

on the notion of approximant, the following easy result will be useful at a technical level.

Lemma 7.3 (inductive characterisation of approximants). Let L be a complete lattice, let

E be a system of m > 0 equations over L of the kind x =η f(x), and let gm : L→ L be the

function gm(x) = fm(sol (E[xm := x]), x). A tuple l ∈ Lm is a µ-approximant if and only if

the following conditions hold

1. either ηm = µ and lm = gαm(⊥) for some ordinal α, or ηm = ν and lm = νgm

2. l1,m−1 is a µ-approximant of E[xm := lm].

Proof. It follows immediately from Definition 7.11.

We next observe that the name approximant is appropriate, i.e., µ-approximants pro-

vide an approximation of the solution from below, while ν-approximants from above. The

solution is thus the only pre-solution which is both a µ- and a ν-approximant.

Lemma 7.4 (solution and approximants). Let L be a complete lattice and let E be a

system of m equations over L of the kind x =η f(x). The solution of E is the greatest

µ-approximant and the least ν-approximant.

100

Proof. The solution u is clearly a µ-approximant by definitions of solution and approximant

and Theorem 2.2. We prove that it is the greatest one by induction on m. If m = 0 the

thesis is vacuously true. If m > 0, consider another µ-approximant l. We distinguish two

subcases according to whether ηm = µ or ηm = ν. If ηm = µ, we know that lm = fαm,l(⊥) for

some ordinal α. Observe that fm,l = λx. fm(sol (E[xm := x]), x)) is the function for which

um is the least fixpoint, hence

lm ⊑ um. (7.4)

Moreover, by Lemma 7.3, l1,m−1 is a µ-approximant for the system E[xm := lm]. Hence,

by inductive hypothesis

l1,m−1 ⊑ sol (E[xm := lm]) (7.5)

Moreover, by Lemma 7.1, since lm ⊑ um, we get sol (E[xm := lm]) ⊑ sol (E[xm := um]) =

u1,m−1. Therefore, combined with (7.4) and (7.5), we conclude l ⊑ u.

The proof for ν-approximants is dual.

We conclude with a technical lemma that will be used to locally modify approximations

in the game.

Lemma 7.5 (updating approximants). Let L be a complete lattice, let E be a system of m

equations over L of the kind x =η f(x), and let l be a µ-approximant with ord(l) = α. For

an index i ∈ [1,m] and an ordinal α ≤ αi

1. if ηi = µ, then l′ = (sol (E[xi+1,m := li+1,m][xi := l′i]), l
′
i, li+1,m), with l′i = fαi,l(⊥) for

some ordinal α, is a µ-approximant

2. if ηi = ν, then l′ = (sol (E[xi+1,m := li+1,m]), li+1,m) is a µ-approximant

and in both cases ord(l′) ⪯i ord(l). A dual result holds for ν-approximants.

Proof. Let us focus on (1). To show that l′ = (sol (E[xi+1,m := li+1,m][xi := l′i]), l
′
i, li+1,m) is

a µ-approximant, first observe that the components li+1, . . . , lm do not change. Component

l′i is of the desired shape by definition. Finally, for j < i the component l′j is defined as

sol j(E[xi+1,m := li+1,m][xi := l′i]) and thus, by definition of solution of a system, if ηj = ν

then l′j = ν(fj,l′) and if ηj = µ then l′j = µ(fj,l′) = fβ
j,l′

(⊥) for some ordinal β, as desired.

Finally observe that since l and l′ coincide on components i + 1, . . . ,m, and li = fαi
i,l (⊥),

while l′i = fαi,l(⊥), with α ≤ αi, clearly ord(l′) ⪯i ord(l).

The proof of (2) is analogous. In fact, also in this case the components i+ 1, . . . ,m are

unchanged and finally, for j ≤ i the component l′j is defined as sol j(E[xi+1,m := li+1,m]),

thus the same reasoning as above applies here.

Both cases can be easily dualised for ν-approximants.

101

7.3 Fixpoint game

In this section we present a game-theoretic approach to the solution of a system of fixpoint

equations over a continuous lattice. More precisely, given a lattice with a fixed basis, the

game allows us to check whether an element of the basis is smaller (with respect to ⊑) than

the solution of a selected equation. This corresponds to solving the associated verification

problem. For instance, when model-checking, one is interested in establishing whether a

system satisfies a formula φ, which amounts to check whether {s0} ⊆ uφ where s0 is the

initial state and uφ is the solution of the system of equations associated with φ.

The fixpoint game that we introduce has been inspired by the unfolding game described

in [Ven08], that works for a single fixpoint equation over the powerset lattice. We adopted

the name fixpoint game, analogously to [HKMV17].

Definition 7.12 (fixpoint game). Let L be a continuous lattice and let BL be a basis for

L such that ⊥ ̸∈ BL. Given a system E of m equations over L of the kind x =η f(x), the

corresponding fixpoint game is a parity game, with an existential player ∃ and a universal

player ∀, defined as follows:

• the positions of ∃ are pairs (b, i) where b ∈ BL and i ∈ [1,m] and those of ∀ are tuples

l ∈ Lm

• from (b, i) the possible moves of ∃ are E(b, i) = {l ∈ Lm | b ⊑ fi(l)}

• from l ∈ Lm the possible moves of ∀ are A(l) = {(b, i) ∈ BL × [1,m] | b≪ li}.

The game is schematised in Table 7.1. For a finite play, the winner is the player whose

opponent is unable to move. For an infinite play, let h be the highest index that occurs

infinitely often in a pair (b, i). If ηh = ν then ∃ wins, otherwise ∀ wins.

Position Player Moves

(b, i) ∃ (l1, . . . , lm) such that b ⊑ fi(l1, . . . , lm)

(l1, . . . , lm) ∀ (b′, j) such that b′ ≪ lj

Table 7.1: The fixpoint game.

The fixpoint game is a parity game on a possibly infinite graph. Observe that the

winning condition, while not exactly based on parity, is the natural formulation of the

standard winning condition in this setting. Instead of saying that an index (or priority) is

“even” or “odd”, here the two roles are assigned depending on the kind of fixpoint associated

with the index. Moreover, every play, either infinite or finite because a player cannot move

any more, is won by a unique player.

Hereafter, whenever we consider a lattice L, we assume that a basis BL is fixed such

that ⊥ ̸∈ BL. Elements of the basis will be denoted by letters b with super or subscripts.

102

We will prove soundness and completeness of the game, i.e., we will show that if u is the

solution of the system, given a basis element b ∈ BL and i ∈ [1,m], if b ⊑ ui, then starting

from (b, i) the existential player has a winning strategy, otherwise the universal player has

a winning strategy. Since every play is won by a unique player, the existence of a winning

strategy for a player implies the non-existence of one for the other.

As an example, consider the system of equations in Figure 7.3c, corresponding to the

mu-calculus formula φ = νX2.([]X2 ∧ µX1.(⟨b⟩T ∨ ⟨ ⟩X1)). Recall that the lattice is

⟨2R(N),⊆⟩, which is continuous since it is a powerset lattice, and let us fix as a basis the

set of singletons B = {{M1}, {M2}}.

A portion of the fixpoint game is graphically represented as a parity game in Figure 7.4.

Recall that diamond nodes correspond to positions of player ∃ and box nodes to positions of

player ∀. Only a subset of the possible positions for ∀ are represented. The positions which

are missing, such as ({a, b}, {a, b}), can be shown to be redundant, in a sense formalised

later in Subsection 7.4.1, so that the subgame is equivalent to the full game. Numbers in

the diamond nodes correspond to priorities. Box nodes do not have priorities (or we can

assume priority 0). Since indices 1 and 2 corresponds to a µ- and a ν-equation, respectively,

in this specific case the winning condition for player ∃ is: either the play is finite and ∃
plays last or the play is infinite and the highest priority that occurs infinitely often is 2.

({M1}, 2) ({M1}, {M1,M2})

({M1}, 1)

({M2}, 2)

({M1}, ∅) ({M2}, ∅)

({M2}, {M2})

({M2}, 1) (∅, ∅)

Figure 7.4: Graphical representation of a fixpoint game.

Let (u1, u2) be the solution of the system. We can check if M1 ∈ u2, i.e., if M1 satisfies φ,

by playing the game from the position ({M1}, 2). In fact, {M1} ⊆ u2 amounts to M1 ∈ u2.

Player ∃ has a winning strategy that we can represent as a function ς from the positions

of the game (for any play) to the corresponding moves of player ∃, i.e., ς : B × {1, 2} →
2R(N) × 2R(N). A winning strategy for ∃ is given by

ς({M1}, 1) = ({M2}, ∅)

ς({M1}, 2) = ({M1}, {M1,M2})

ς({M2}, 1) = (∅, ∅)

ς({M2}, 2) = ({M2}, {M2}).

In Figure 7.4 we depict by bold arrows the choices prescribed by such strategy. Observe

that in this simple example the only relevant choice made by the strategy is on ({M1}, 1).

103

Since that is the only position where ∃ could pick an “erroneous” move and then lose.

A possible play of the game could be the following, where
p
⇝ denotes a move of player

p ∈ {∃,∀}:

({M1}, 2)
∃
⇝ ({M1}, {M1,M2})

∀
⇝ ({M1}, 1)

∃
⇝ ({M2}, ∅)

∀
⇝ ({M2}, 1)

∃
⇝ (∅, ∅)

∀
̸⇝

hence ∃ wins. Another (infinite) play is the following. It is also won by ∃ since the highest

index that occurs infinitely often is 2, which is a ν-index:

({M1}, 2)
∃
⇝ ({M1}, {M1,M2})

∀
⇝ ({M1}, 2)

∃
⇝ ({M1}, {M1,M2})

∀
⇝ . . .

Note that if ∃ always plays as specified by ς, she will always win.

7.3.1 Soundness and completeness

Before proving soundness and completeness of the game in the general case, as a warm up,

we give some intuition and outline the proof for the case of a single equation. Let f : L→ L

be a monotone function on a continuous lattice L and consider the equation x =η f(x),

where η ∈ {ν, µ}, with solution u = ηf . In this case the positions for ∃ are simply basis

elements b ∈ BL and ∃ must choose l ∈ L such that b ⊑ f(l). Positions of ∀ are lattice

elements l ∈ L and moves are elements of the basis b ∈ BL, with b ≪ l. In the case of

η = µ, player ∀ wins infinite plays, and in the case of η = ν, player ∃ wins infinite plays.

When η = µ, if b ⊑ u, then b ⊑ fα(⊥) for some ordinal α (Theorem 2.2). The idea is

that ∃ can win by descending the chain fβ(⊥). E.g., if β = γ+1 is a successor ordinal, then

∃ can play fγ(⊥). If instead, η = ν, then the existential player can win just by identifying

some post-fixpoint l such that b ⊑ l. In fact, if l is a post-fixpoint, i.e., l ⊑ f(l) we know

that l ⊑ u. Moreover, if b ⊑ l then b ⊑ f(l) and thus ∃ can cycle on l and win. More

formally:

(Case η = µ)

In this case u = fα(⊥) for some ordinal α by Theorem 2.2.

• Completeness: We show that whenever b ⊑ fβ(⊥), for some ordinal β (i.e., b is below

some µ-approximant), then ∃ has a winning strategy, by transfinite induction on β.

First observe that β > 0. In fact, otherwise b ⊑ f0(⊥) = ⊥, hence b = ⊥, while

⊥ ̸∈ BL by hypothesis. Hence we have two possibilities:

– If β is a limit ordinal, player ∃ plays l = fβ(⊥), which is a post-fixpoint and

hence b ⊑ fβ(⊥) ⊑ f(fβ(⊥)). Then ∀ chooses b′ ≪ fβ(⊥) =
⨆︁
γ<β f

γ(⊥). Since

this is a directed supremum, by definition of the way-below relation there exists

γ < β with b′ ⊑ fγ(⊥).

– If β = γ + 1, ∃ plays l = fγ(⊥) and ∀ chooses b′ ≪ fγ(⊥), hence b′ ⊑ fγ(⊥).

104

Note that ∃ always has a move and the answer of ∀ is some b′ ⊑ fγ(⊥), with γ < β,

from which there exists a winning strategy for ∃ by the inductive hypothesis.

• Soundness: We show that whenever b ̸⊑ u, player ∀ has a winning strategy.

Observe that a move of ∃ will be some l such that b ⊑ f(l). Note that there must

be a b′ ≪ l with b′ ̸⊑ u. In fact, otherwise, if for all b′ ≪ l it holds that b′ ⊑ u,

since L is a continuous lattice, we would have l =
⨆︁
{b′ | b′ ≪ l} ⊑ u and furthermore

b ⊑ f(l) ⊑ f(u) = u, which is a contradiction.

Hence ∀ can choose such a b′ ≪ l with b′ ̸⊑ u and the game can continue. Then either

∃ runs out of moves at some point or we end up in an infinite play. In both cases ∀
wins.

(Case η = ν)

In this case u = fα(⊤) for some ordinal α by Theorem 2.2.

• Completeness: We show that when b ⊑ u, then ∃ has a winning strategy. In fact, in

this case ∃ simply plays l = u, which satisfies b ⊑ u = f(u) and ∀ answers with some

b ≪ u, hence b ⊑ u. The game can thus continue forever, leading to an infinite play

which is won by ∃.

• Soundness: We show that whenever b ̸⊑ fβ(⊤), for some ordinal β (i.e., b is not below

some ν-approximant), then ∀ has a winning strategy, by transfinite induction on β.

First observe that β > 0. In fact, otherwise b ̸⊑ f0(⊤) = ⊤ would be a contradiction.

Hence we distinguish two cases:

– If β is a limit ordinal b ̸⊑ fβ(⊤) =
d
γ<β f

γ(⊤), which means that there exists

γ < β such that b ̸⊑ fγ(⊤).

Now any move of ∃ is some l with b ⊑ f(l). Therefore l ̸⊑ fγ(⊤), since otherwise

b ⊑ f(l) ⊑ f(fγ(⊤)) = fγ+1(⊤) ⊑ fβ(⊤) (since γ+1 < β). Hence there must be

b′ ≪ l with b′ ̸⊑ fγ(⊤). Otherwise, as above, if for all b′ ≪ l we had b′ ⊑ fγ(⊤),

then by continuity of the lattice, we would conclude l =
⨆︁
{b′ | b′ ≪ l} ⊑ fγ(⊤).

Such a b′ can be chosen by ∀, and the game continues.

– If β = γ + 1 we know that b ̸⊑ fβ(⊤) = f(fγ(⊤)).

Any move of ∃ is l with b ⊑ f(l), which as above implies that l ̸⊑ fγ(⊤) and

thus the existence of b′ ≪ l with b′ ̸⊑ fγ(⊤). The basis element b′ is chosen by

∀ and the game continues.

Hence ∀ always has a move, ending up in b′ ̸⊑ fγ(⊤), from which there exists a

winning strategy for ∀ by the induction hypothesis.

105

Observe that cases of a µ- and a ν-equation are not completely symmetric. In the

completeness part, for showing that l ⊑ νf we use the fact that νf is the greatest post-

fixpoint. Instead, for showing that l ⊑ µf we use the fact that l ⊑ fα(⊥) for some α and

provide a proof that we can descend to ⊥, similarly to what happens for ranking functions

in termination analysis. Note that in order to guarantee that we truly descend, also below

limit ordinals, we require that ∀ plays b with b≪ l. Then we can use the fact that whenever

b is way-below a directed supremum, then it is smaller than one of the elements over which

the supremum is taken. We remark that choosing b with b ⊑ l instead would not be sufficient

(see Proposition 7.2). In the soundness part, despite the asymmetry, both proofs use the

fact that each element is the supremum of all elements way-below it, for which it is essential

to be in a continuous lattice (see Proposition 7.1). Instead, for completeness, the continuity

hypothesis does not play a role.

For the general case, soundness and completeness of the game are proved by relying on

the notions of µ- and ν-approximant. We prove the two properties separately. Completeness

exploits a result that shows how ∃ can play descending along a chain of µ-approximants and,

as in the case of a single equation, it can be proved for general lattices, without assuming

the continuity hypothesis.

Lemma 7.6 (descending on µ-approximants). Let E be a system of m equations over a

complete lattice L of the kind x =η f(x). For each µ-approximant l ∈ Lm and (b, i) ∈ A(l)

there exists a µ-approximant l′ ∈ E(b, i) such that ord(l) ⪰i ord(l′). Moreover, if ηi = µ,

the i-th component strictly decreases and thus the inequality is strict.

Proof. Let l ∈ Lm be a µ-approximant and let (b, i) in A(l), i.e., b ∈ BL and i ∈ [1,m] with

b≪ li. We distinguish various cases:

1. (ηi = µ) This means that li = fαi,l(⊥) for some ordinal α. Since f0i,l(⊥) = ⊥ and b≪ ⊥
would imply b = ⊥, while ⊥ ̸∈ BL, necessarily α ̸= 0. We distinguish two subcases:

(a) α = β + 1 is a successor ordinal

Let l′i = fβi,l(⊥) and (l′1, . . . , l
′
i−1) = sol (E[xi+1,m := li+1,m][xi := l′i]). Then de-

fine

l′ = (l′1, . . . , l
′
i−1, l

′
i, li+1,m)

Observe that l′ is a µ-approximant by Lemma 7.5. Moreover l′ ∈ E(b, i). In fact

b ⊑ li = fβ+1
i,l (⊥)

= fi,l(f
β
i,l(⊥))

= fi,l(l
′
i)

= fi(sol (E[xi+1,m := li+1,m][xi := l′i]), l
′
i, li+1,m)

= fi(l
′
1, . . . , l

′
i−1, l

′
i, li+1,m)

= fi(l
′)

106

Finally, note that ord(l′) ≺i ord(l) since vectors l and l′ coincide on the compo-

nents i+ 1, . . . ,m, and li = fβ+1
i,l (⊥) while l′i = fβi,l(⊥).

(b) α is a limit ordinal

Since b ≪ li = fαh,l(⊥) =
⨆︁
β<α f

β
i,l(⊥), which is a directed supremum, by defi-

nition of the way-below relation, there is β < α such that b ⊑ fβi,l(⊥). We set

l′i = fβi,l(⊥) and (l′1, . . . , l
′
i−1) = sol (E[xi+1,m := li+1,m][xi := l′i]). Then we define

l′ = (l′1, . . . , l
′
i−1, l

′
i, li+1,m)

The vector l′ is a µ-approximant by Lemma 7.5. Moreover l′ ∈ E(b, i) since

b ⊑ l′i

⊑ fi,l(l
′
i) [since l′i = fβi,l(⊥) is a post-fixpoint]

= fi(sol (E[xi+1,m := li+1,m][xi := l′i]), l
′
i, li+1,m)

= fi(l
′
1, . . . , l

′
i−1, l

′
i, li+1,m)

= fi(l
′)

Finally, note that ord(l′) ≺i ord(l) since vectors l and l′ coincide on the compo-

nents i+ 1, . . . ,m, and li = fαi,l(⊥) while l′i = fβi,l(⊥), with β < α.

2. (ηi = ν)

In this case li = ν(fi,l). Let (l′1, . . . , l
′
i−1) = sol (E[xi,m := li,m]). Then define

l′ = (l′1, . . . , l
′
i−1, li,m)

The vector l′ is a µ-approximant by Lemma 7.5. Moreover, observe that l′ ∈ E(b, i),

since

b ⊑ li

= fi,l(li) [since li is a fixpoint]

= fi(sol (E[xi,m := li+1,m]), li,m)

= fi(l
′
1, . . . , l

′
i−1, li,m)

= fi(l
′)

Finally, note that ord(l′) ⪯i ord(l) since vectors l and l′ coincide on the components

i, . . . ,m.

The previous result allows us to prove that player ∃ can always win starting from a

µ-approximant. Roughly, relying on Lemma 7.6, we can prove that player ∃ can play on

107

µ-approximants in a way that each time the i-th equation is chosen, the ordinal vector

associated with the approximant decreases with respect to ⪯i, and it strictly decreases

when the i-th equation is a µ-equation. This, together with the fact that the order on

ordinals is well-founded, allows one to conclude that either the play is finite and ∃ plays

last or the highest index on which one can cycle is necessarily the index of a ν-equation. In

both cases player ∃ wins.

Lemma 7.7 (∃ wins on µ-approximants). Let E be a system of m equations over a complete

lattice L of the kind x =η f(x) and let l ∈ Lm be a µ-approximant. Then in a game starting

from l (which is a position of ∀) player ∃ has a winning strategy.

Proof. We first describe the strategy for player ∃ and then prove that it is a winning strategy.

The key observation is that ∃ can always play a µ-approximant, where she plays the

solution in the first step. In fact, let l′ ∈ Lm be the current µ-approximant. For any possible

move (b′, i′) ∈ A(l′) of ∀, by Lemma 7.6 there always exists a move l′′ ∈ E(b′, i′) of ∃ which

is a µ-approximant such that ord(l′) ⪰i ord(l′′). Additionally, if ηi = µ the inequality is

strict.

Since ∃ player has always a move, either the play finishes because ∀ has no moves, hence

∃ wins or the play continues forever.

In this last case, note that, if h is the largest index occurring infinitely often, then

necessarily ηh = ν, hence ∃ wins. In fact, assume by contradiction that ηh = µ. Consider

the sequence of turns of the play starting from the point where all indices repeat infinitely

often.

Let l′, (b′, j), l′′ be consecutive turns. By the choice of h, necessarily j ≤ h. Moreover,

by construction, if

ord(l′) ⪰j ord(l′′)

Observing that for j ≤ j′ it holds α ⪰j α
′ implies α ⪰j′ α

′, we deduce that

ord(l′) ⪰h ord(l′′)

i.e., the sequence is decreasing. Moreover, since ηh = µ, whenever j = h, ord(l′) ≻h ord(l′′),

i.e., the sequence strictly decreases. This contradicts the well-foundedness of ≻h.

Since the solution of a system of equation is a µ-approximant (the greatest one), com-

pleteness is an easy corollary of Lemma 7.7.

Corollary 7.1 (completeness). Let E be a system of m equations over a complete lattice

L of the kind x =η f(x). Given any µ-approximant l ∈ Lm, b ∈ BL and i ∈ [1,m], if b ⊑ li

then ∃ has a winning strategy from position (b, i).

Proof. Just observe that at the first turn ∃ can play the µ-approximant l that is in E(b, i)

by hypotheses. Then using Lemma 7.7 we conclude that ∃ wins.

108

For soundness we rely on a result, dual to Lemma 7.6, that allows to ascend along ν-

approximants. However, in this case, the fact of working in a continuous lattice is crucial

(see Proposition 7.1).

Lemma 7.8 (ascending on ν-approximants). Let E be a system of m equations over a

continuous lattice L of the kind x =η f(x). Given a ν-approximant l ∈ Lm, an element b ∈
BL and an index i ∈ [1,m] with b ̸⊑ li, for all tuples l′ ∈ E(b, i) there are a ν-approximant

l′′ and (b′′, j) ∈ A(l′) such that (1) b′′ ̸⊑ l′′j and (2) ord(l) ⪰i ord(l′′). Moreover, if ηi = ν,

the i-th component strictly decreases and thus the inequality in item 2 above is strict.

Proof. Let l ∈ Lm be a ν-approximant, let b ∈ BL and let i ∈ [1,m] with b ̸⊑ li. Take

l′ ∈ E(b, i), i.e., such that b ⊑ fi(l
′). We prove that there are a ν-approximant l′′ and

(b′′, j) ∈ A(l′) satisfying (1) and (2) above, by distinguishing various cases:

i. (ηi = µ) Define l′′ = (sol (E[xi,m := li,m]), li, li+1,m), which is a ν-approximant by

Lemma 7.5. Note that, since li = µ(fi,l),

li = fi,l(li) = fi(sol (E[xi,m := li,m]), li, li+1,m) = fi(l
′′)

We first prove (1), i.e., that there exists (b′′, j) ∈ A(l′), i.e., j ∈ [1,m] and b′′ ∈ BL,

b′′ ≪ l′j with b′′ ̸⊑ l′′j . In fact, otherwise, if for any j and b′′ ≪ l′j we had b′′ ⊑ l′′j , then

for any j, since BL is a basis and L a continuous lattice:

l′j =
⨆︁
{b′′ | b′′ ∈ BL ∧ b′′ ≪ l′j} ⊑ l′′j .

However, by monotonicity of fi, this would imply fi(l
′) ⊑ fi(l

′′) = li, that together

with the hypothesis b ⊑ fi(l
′), would contradict b ̸⊑ li.

For point (2), note that ord(l′) ⪯i ord(l) since vectors l and l′ coincide on all compo-

nents i, . . . ,m, and li = fαi,l(⊥).

ii. (ηi = ν) This means that li = fαi,l(⊤) for some ordinal α, necessarily α ̸= 0 (since

otherwise li = ⊤ and b ̸⊑ li could not hold). We distinguish two subcases

(a) α = β + 1 is a successor ordinal

Define l′′ = (sol (E[xi+1,m := li+1,m][xi := fβi,l(⊤)]), fβi,l(⊤), li+1,m). Then we

have

b ̸⊑ li

= fβ+1
i,l (⊤)

= fi,l(f
β
i,l(⊤))

= fi(sol (E[xi+1,m := li+1,m][xi := fβi,l(⊤)]), fβi,l(⊤), li+1,m)

= fi(l
′′)

109

Recalling that b ⊑ fi(l
′), as in case (i) we deduce point (1), i.e., that there exists

(b′′, j) ∈ A(l′) such that b′′ ̸⊑ l′′j .

Concerning point (2), note that ord(l′) ≺i ord(l) since vectors l and l′ coincide

on the components i+ 1, . . . ,m, and li = fβ+1
i,l (⊥) while l′i = fβi,l(⊥).

(b) α is a limit ordinal

In this case

b ̸⊑ li = fαi,l(⊤) =
d
β<α f

β
i,l(⊤) =

d
β<α f

β+1
i,l (⊤)

Therefore there exists β < α such that b ̸⊑ fβ+1
i,l (⊤). Hence, we can define

l′′i = fβi,l(⊤) and take the ν-approximant

l′′ = (sol (E[xi+1,m := li+1,m][xi := l′′i]), l′′i , li+1,m)

Then we have

b ̸⊑ fβ+1
i,l (⊤)

= fi,l(f
β
i,l(⊤))

= fi(sol (E[xi+1,m := li+1,m][xi := fβi,l(⊤)]), fβi,l(⊤), li+1,m)

= fi(l
′′)

and thus, again, recalling that b ⊑ fi(l
′), as in case (i) we deduce point (1), i.e.,

that there exists (b′′, j) ∈ A(l′) such that b′′ ̸⊑ l′′j .

Concerning point (2), note that ord(l′′) ≺i ord(l) since vectors l and l′′ coincide

on the components i+ 1, . . . ,m, and li = fαi,l(⊥) while l′′i = fβi,l(⊥), with β < α.

As in the dual case, soundness is an easy corollary of the above lemma, recalling that

the solution is the least ν-approximant.

Lemma 7.9 (soundness). Let E be a system of m equations over a continuous lattice L of

the kind x =η f(x). For a ν-approximant l ∈ Lm, b ∈ BL and i ∈ [1,m], if b ̸⊑ li then ∀
has a winning strategy from position (b, i).

Proof. We first describe the strategy for the universal player and then prove that it is a

winning strategy.

Let l ∈ Lm be a ν-approximant, b ∈ L and i ∈ [1,m] such that b ̸⊑ li. Starting from

(b, i), for any possible move l′ ∈ E(b, i) of ∃. Then ∀ can play a pair (b′, j) ∈ A(l′), whose

existence is ensured by Lemma 7.8, such that there is a ν-approximant l′′ satisfying b′′ ̸⊑ l′′j
and ord(l′′) ≺i ord(l). Additionally, if ηi = ν the inequality is strict.

According to the strategy defined above ∀ player has always a move. Thus either the

play finishes because ∃ has no moves, hence ∀ wins or the play continues forever.

110

In this last case, with an argument dual with respect to that in Lemma 7.7, we can

show that if h is the largest index occurring infinitely often, then necessarily ηh = µ, hence

∀ win.

Combining Corollary 7.1 and Lemma 7.9 we reach the desired result.

Theorem 7.1 (soundness and completeness). Given a system of m equations E over a

continuous lattice L of the kind x =η f(x) with solution u, then for all b ∈ BL and

i ∈ [1,m], it holds b ⊑ ui iff ∃ has a winning strategy from position (b, i).

Proof. Immediate corollary of Lemma 7.4, Corollary 7.1 and Lemma 7.9.

Note that even when the fixpoint is reached in more than ω steps, thanks to the fact that

the order on the ordinals is well-founded and players “descend” over the order, ordinals do

not play an explicit role in the game. In particular plays are not transfinite and whenever

∀ or ∃ wins due to the fact that the other player cannot make a move, this happens after a

finite number of steps. This can be a bit surprising at first since the game works for general

continuous lattices, including, for instance, intervals over the reals.

We close this section by proving two results that, in a sense, show that the choice of

continuous lattices and the way-below relation are “the right ones” for the game. We first

observe that the restriction to continuous lattices is not only sufficient but also necessary

for soundness of the game.

Proposition 7.1 (soundness holds exactly in continuous lattices). Let L be a complete lat-

tice. The game is sound for every system of equations over L if and only if L is continuous.

Proof. We already know from Lemma 7.9 that when L is continuous the game is sound.

Conversely, let L be a non-continuous lattice. This means that there is an element l ∈ L

such that l ̸=
⨆︁ ↠

l. Note that since

↠

l ⊆ ↓ l, we have
⨆︁ ↠

l ⊏
⨆︁

↓ l = l. We prove that, for

any basis BL for L such that ⊥ ̸∈ BL, there are a monotone function f : L → L and an

element b ∈ BL such that b ̸⊑ µf , for which there is a winning strategy for the existential

player for the corresponding fixpoint game starting from position b, while such a strategy

should not exists. The function f is defined by:

f(x) =

{︄ ⨆︁ ↠

l if x ⊑
⨆︁ ↠

l

⊤ otherwise.

Notice that necessarily
⨆︁ ↠

l ̸= ⊤, since
⨆︁ ↠

l ⊏ l ⊑ ⊤. Then, clearly f is monotone and its

least fixpoint is µf =
⨆︁ ↠

l. Moreover, since BL is a basis, we know that
⨆︁

(BL ∩ ↓ l) = l.

Then there must be b ∈ BL such that b ⊑ l but b ̸⊑
⨆︁ ↠

l. Otherwise, if for all b ∈ BL such

that b ⊑ l, b ⊑
⨆︁ ↠

l, then we would have
⨆︁

(BL ∩ ↓ l) ⊑
⨆︁ ↠

l, contradicting the hypothesis⨆︁ ↠

l ⊏ l =
⨆︁

(BL ∩ ↓ l). Now we show that player ∃ is able to win any play of the game,

with a single equation x =µ f(x), for checking whether such a b ⊑ µf . The strategy is

111

actually quite simple and can be described by just one family of plays. We use the fact that

f(l) = ⊤.

b
∃
⇝ l

∀
⇝ b′

∃
⇝ ⊥

∀
̸⇝

for any b′ ≪ l, since b′ ⊑
⨆︁ ↠

l = f(⊥). Thus player ∃ can always win, despite the fact that

b ̸⊑ µf .

As a counterexample, consider the lattice W in Figure 7.2, which is not continuous and

let BW be any basis such that 0 ̸∈ BW . First note that necessarily a ∈ BW , otherwise

a ̸=
⨆︁

(BW ∩ ↓a) =
⨆︁
∅ = 0. Secondly,

↠

a = {0} since a ̸≪ a. Then, consider the equation

x =µ f(x), where the function f : W →W is defined by f(0) = 0, and f(x) = ω for x ̸= 0.

Clearly f is monotone and its least fixpoint is µf = 0. However, the player ∃ can win any

play of the game from position a, despite the fact that a ̸⊑ µf = 0. In fact, the first move

of ∃ can be a, since a ⊑ f(a) = ω. But then player ∀ has no moves since BW ∩

↠

a = ∅.

And so player ∃ always wins while she should not.

The second observation is that using the lattice order instead of the way-below relation

may break completeness. More precisely, consider the natural variant of the game where

the way-below relation is replaced by the lattice order. Let us call it weak game. Since the

set of possible moves of player ∀ is enlarged, soundness clearly continues to hold. Instead,

as we hinted before, completeness could fail. We show that it is exactly on algebraic lattices

that completeness still holds for the weak game.

Proposition 7.2 (way-below is needed in non-algebraic lattices). Let L be a complete

lattice. The weak game is complete on every system of equations over L if and only if BL

consists of compact elements (which in turn means that L is algebraic).

Proof. Let KL be the set of compact elements of L. If BL ⊆ KL, then for any b ∈ BL and

l ∈ L, we have that b≪ l if and only if b ⊑ l. Therefore the weak game coincides with the

original one and hence completeness clearly holds.

Conversely, assume that BL ̸⊆ KL. We show that we can identify a system consisting

of a single equation x =µ f(x) for which the weak game is not complete. Let b ∈ BL ∖KL

be a non-compact element in the basis. Therefore b ̸≪ b which means that there exists a

directed set D such that b ⊑
⨆︁
D and b ̸⊑ d for all d ∈ D. Without loss of generality we

can assume that D is a transfinite chain D = (dα)α (see, e.g., [Mar76, Theorem 1]).

Consider the function f : L→ L defined as

f(x) =

{︄
⊤ if b ⊑ x

dα otherwise, where α = min{β | dβ ̸⊑ x}

Observe that the function f is well-defined. In fact, when b ̸⊑ x there exists β such that

dβ ̸⊑ x and hence the set {β | dβ ̸⊑ x} is not empty. In fact, if we had dβ ⊑ x for all

elements of the chain, we would deduce
⨆︁
D ⊑ x and thus, recalling b ⊑

⨆︁
D, we would

conclude b ⊑ x.

112

Observe that f is monotone. In fact, let x, y ∈ L with x ⊑ y. If b ⊑ y and thus f(y) = ⊤,

we trivially conclude f(x) ⊑ ⊤ = f(y). Let us then consider the case in which b ̸⊑ y and

thus f(y) = dα where α = min{β | dβ ̸⊑ y}. Obviously b ̸⊑ x and thus f(x) = dα′ , where

α′ = min{β | dβ ̸⊑ x}. Since x ⊑ y, we have {β | dβ ̸⊑ x} ⊇ {β | dβ ̸⊑ y}, hence α′ ≤ α and

thus f(x) = dα′ ⊑ dα = f(y), as desired.

By construction ⊤ is the only fixpoint of f , hence ⊤ = µf . Thus b ⊑ µf = ⊤. Now, if

we play the weak game, since b ̸⊑ dα for all α, the possible moves for ∃ are initially only

those x ∈ L such that b ⊑ x and thus b ⊑ f(x) = ⊤. However, if ∃ play such an x, in the

weak game ∀ can answer b, getting back to the initial situation. Hence ∀ wins, providing

the desired counterexample to completeness.

Note that when the elements of the basis are compact, the way-below relation with

respect to elements of the basis is the lattice order. Hence the result above essentially

states that the weak game is complete exactly when it coincides with the original game,

thus further supporting the appropriateness of our formulation of the game.

As a counterexample, consider the continuous lattice corresponding to the interval of

real numbers [0, 1]R with the usual order and basis B = Q∩ [0, 1]R∖{0}. Recall that [0, 1]R

is not algebraic (the only compact element is 0) and way-below relation is the strict order

<. Let g : [0, 1]R → [0, 1]R be the function defined by g(x) = x+1
2 . The fixpoint equation

x =µ g(x) has solution µg = 1.

In the weak game, from position l ∈ [0, 1]R, player ∀ can play any b ≤ l (instead, of b < l).

Then player ∃ loses any play starting from position 1, despite the fact that 1 ≤ µg = 1.

In fact, the only possible move of player ∃ is 1, and ∀ can play any x ≤ 1. In particular,

playing 1 the game will continue forever and will thus be won by ∀.

Notice that, instead, in the original game, from position 1, player ∀ has to play an

element 1 − ϵ for some ϵ > 0. Then, it is easy to see that at each step i player ∃ will be

able to play some zi ≤ 1 − 2iϵ. This means that after finitely many steps ∃ will be allowed

to play 0, thus leaving no possible answer to ∀ and winning the game.

7.4 Progress measures

Along the lines of [Jur00], influenced by [HSC16], in this section we introduce a general

notion of progress measure for fixpoint games over continuous lattices. We will show how

a complete progress measure characterises the winning positions for the two players. The

existence of a so-called small progress measure will allow us to express a complete progress

measure as a least fixpoint, thus providing a technique for computing the progress measure

and solving the corresponding system of equations.

Given an ordinal α we denote by [α]m⋆ = {β | β ≤ α}m ∪ {⋆}, the set of ordinal vectors

with entries smaller or equal than α, with an added bound ⋆ being the top element.

113

Definition 7.13 (progress measure). Let L be a continuous lattice and let E be a system

of m equations over L of the kind x =η f(x). Given an ordinal λ, a λ-progress measure

for E is a function R : BL → [1,m] → [λ]m⋆ such that for all b ∈ BL, i ∈ [1,m], either

R(b)(i) = ⋆ or there exists l ∈ E(b, i) such that for all (b′, j) ∈ A(l) it holds

• if ηi = µ then R(b)(i) ≻i R(b′)(j)

• if ηi = ν then R(b)(i) ⪰i R(b′)(j).

A progress measure maps any basis element of the lattice and index i ∈ [1,m] to an

m-tuple of ordinals, with one component for each equation. Components relative to µ-

equations roughly measure how many unfolding steps for the equation would be needed to

reach an under-approximation li above b, and thus, for ∃, to win the game. Components

relative to ν-equations, as in the original work of [Jur00], are less relevant, as we will see.

Intuitively, whenever R(b)(i) ̸= ⋆, the progress measure R provides an evidence of the

existence of a winning strategy for ∃ in a play starting from (b, i). The tuple l, whose

existence is required by the definition, is a move of player ∃ such that for any possible

answer of ∀, the progress measure will not increase with respect to ⪯i, and it will strictly

decrease in the case of µ-equations. Since ≺i is well-founded, this ensures that we cannot

cycle on a µ-equation. Also note that whenever the current index is i, all indices lower than

i are irrelevant (expressed by the orders ⪰i resp. ≻i), which is related to the fact that the

highest index which is visited infinitely often is the only relevant index for determining the

winner of the game. This idea is formalised in the following lemma.

Lemma 7.10 (progress measures are strategies). Let L be a continuous lattice and let

E be a system of m equations over L of the kind x =η f(x) with solution u. For any

b ∈ BL and i ∈ [1,m], if there exists some ordinal λ and a λ-progress measure R such that

R(b)(i) ⪯i (λ, . . . , λ), then b ⊑ ui.

Proof. We show that ∃ has a winning strategy from (b, i). The strategy consists in choosing

a move l ∈ E(b, i) such that for all (b′, j) ∈ A(l), it holds

• R(b)(i) ≻i R(b′)(j), if ηi = µ

• R(b)(i) ⪰i R(b′)(j), if ηi = ν

which exists by definition of progress measure.

Now, observe that player ∃ can always take its turn. Therefore either the play stops

because ∀ runs out of moves, hence ∃ win. Otherwise, the play is infinite, and, if we denote

by h the largest index occurring infinitely often, then ηh = ν, hence ∃ wins. In fact, assume

by contradiction that ηh = µ. Consider the sequence of turns of the play starting from the

point where all indices repeat infinitely often and take the m-tuples of ordinals R(b′)(h)

corresponding to the positions (b′, i) where ∃ plays. For any two successive elements, say

(b′, i) and (b′′, j), by construction

114

R(b′)(i) ⪰i R(b′′)(j)

Observing that for i ≤ j it holds α ⪰i α
′ implies α ⪰j α

′, we deduce that

R(b′)(i) ⪰h R(b′′)(j)

i.e., the sequence is decreasing. Moreover, since ηh = µ, whenever i = h, R(b′)(i) ≻h

R(b′′)(j), i.e., the sequence strictly decreases. This contradicts well-foundedness of ≺h.

The above lemma, in a sense, says that progress measures provide sound characterisati-

ons of the solution. However, in general, they are not complete, since whenever R(b)(i) = ⋆

we cannot derive any information on (b, i), i.e., if u is the solution of the system, we cannot

conclude that b ̸⊑ ui. This motivates the following definition.

Definition 7.14 (complete progress measures). Let L be a continuous lattice and let E be

a system of equations over L of the kind x =η f(x) with solution u. A λ-progress measure

R : BL → [1,m] → [λ]m⋆ is called complete if for all b ∈ BL and i ∈ [1,m], if b ⊑ ui then

R(b)(i) ⪯i (λ, . . . , λ).

Observe that in search of a complete progress measure, in principle, we would have to

try all ordinals as a bound. We next show that we can take as bound the height λL of the

lattice L. This provides a generalisation of the small progress measure in [Jur00].

Definition 7.15 (small progress measure). Let L be a continuous lattice and let E be a

system of m equations over L of the kind x =η f(x). Given an m-tuple of ordinals α, let us

denote by zE(α) the m-tuple of ordinals where ν-components are set to 0, i.e., zE(α) = β

with βi = αi if ηi = µ, and βi = 0 otherwise. We define the small progress measure

RE : BL → [1,m] → [λL]m⋆ by

RE(b)(i) = min⪯i{zE(ord(l)) | l is a µ-approximant ∧ l ∈ E(b, i)}

where min⪯i is the minimum on ⪯i as given in Definition 7.6, with the convention that

min⪯i ∅ = ⋆.

Observe that RE is well-defined, i.e., it actually takes values in [λL]m⋆ . In fact, the

components of zE(ord(l)) corresponding to µ-indices are ordinals expressing the number of

Kleene’s iterations needed to reach under-approximations of the least fixpoint. These are

clearly bounded by λL, since for a monotone function f : L → L, the sequence fα(⊥) is

strictly increasing until it reaches the least fixpoint of f . For ν-indices, instead, zE(ord(l))

is always 0.

Observe that while formally RE(b)(i) takes values in [λL]m⋆ , whenever j < i or ηj = ν,

due to the effect of the min⪯i and of the zE operations, the only possible value for the

j-th component is 0. Despite being irrelevant, we keep such components for notational

convenience.

The fact that RE is indeed a progress measure follows from Lemma 7.6. Moreover, we

can easily show that it is complete.

115

Lemma 7.11 (small progress measure). Let L be a continuous lattice and let E be a system

of m equations over L of the kind x =η f(x). Then RE : BL → [1,m] → [λL]m⋆ is a progress

measure and it is complete.

Proof. For the first part, let RE(b)(i) = α ̸= ⋆. Hence RE(b)(i) =i zE(ord(l)) for some

µ-approximant l such that l ∈ E(b, i). By Lemma 7.6, for all (b′, j) ∈ A(l) there exists

l′ ∈ E(b′, j) such that ord(l) ⪰i ord(l′) and, if ηi = µ, the inequality is strict since the i-th

component strictly decreases. Clearly, this implies zE(ord(l)) ⪰i zE(ord(l′)). Additionally,

if ηi = µ, the inequality remains strict since the i-th component is left unchanged by the

zE operation.

Therefore, by definition of RE , for all (b′, j) ∈ A(l) we have

RE(b′)(j) ⪯i zE(ord(l′)) ⪯i zE(ord(l)) =i RE(b)(i). (7.6)

where, if ηi = µ, the inequality is strict, as desired.

Let us now show that RE is complete. Let b ∈ BL be such that b ⊑ ui. We know that

the solution u is a µ-approximant. Moreover, since b ⊑ ui = fi(u), we have that u ∈ E(b, i).

Hence RE(b)(i) ⪯i zE(ord(u)) and thus RE(b)(i) ̸= ⋆.

Here we show that a complete progress measure can be characterised as the least solution

of a system of equations over tuples of ordinals, naturally induced by Definition 7.13.

Definition 7.16 (progress measure equations). Let L be a continuous lattice and let E be a

system of m equations over L of the kind x =η f(x). Let δηi , with i ∈ [1,m], be, for η = ν,

the null vector and, for η = µ, the vector where all components are 0 except the i-th which

is 1. The progress measure equations for E over the lattice [λL]m⋆ , are defined, for b ∈ BL,

i ∈ [1,m], as:

R(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ E(b, i)}

We will denote by ΦE the corresponding endofunction on L → [1,m] → [λL]m⋆ which is

defined, for R : BL → [1,m] → [λL]m⋆ , by

ΦE(R)(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ E(b, i)}

Observe that, since [λL]m⋆ is a complete lattice, also the corresponding set of progress

measures, endowed with pointwise ⪯-order, is a complete lattice. It is immediate to see that

ΦE is monotone with respect to such order, i.e., if R ⪯ R′ pointwise then ΦE(R) ⪯ ΦE(R′)

pointwise. This allows us to obtain a complete progress measure as a (least) fixpoint of ΦE .

Lemma 7.12 (complete progress measure as a fixpoint). Let L be a continuous lattice and

let E be a system of m equations over L of the kind x =η f(x). Then the least solution

RM of the progress measure equations (least fixpoint of ΦE with respect to ⪯) is the least

λL-progress measure, hence it is smaller than RE and it is complete.

116

Proof. We first observe that λL-progress measures R are all and only pre-fixpoints of ΦE .

This implies that RM , which is the least pre-fixpoint, is the least progress measure.

In fact, if R is a pre-fixpoint, i.e., for all b ∈ BL, i ∈ [1,m], ΦE(R)(b)(i) ⪯ R(b)(i), which

implies ΦE(R)(b)(i) ⪯i R(b)(i). Then, for b ∈ BL and i ∈ [1,m], if R(b)(i) ̸= ⋆, necessarily

ΦE(R)(b)(i) ̸= ⋆. Hence we can take l ∈ E(b, i) that realises the minimum in the definition

of ΦE(R)(b)(i), namely such that ΦE(R)(b)(i) = sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} and we

have that for all (b′, j) ∈ A(l)

R(b)(i) ⪰i ΦE(R)(b)(i) ⪰ R(b′)(j) + δηii

which amounts to the validity of the progress measure property (it gives strict inequality

for ηi = µ and general inequality for ηi = ν).

Conversely, let R be a progress measure. We have to show that for all b ∈ BL, i ∈ [1,m]

R(b)(i) ⪰i min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ E(b, i)} (7.7)

Given b ∈ L, i ∈ [1,m], by definition of progress measure, there is l ∈ E(b, i) such that for

all (b′, j) ∈ A(l), it holds R(b)(i) ⪰i R(b′)(j), with strict inequality if ηi = µ. This can be

equivalently stated R(b)(i) ⪰i R(b′)(j) + δηi . Hence R(b)(i) ⪰i sup{R(b′)(j) + δηii | (b′, j) ∈
A(l)}. Namely, R(b)(i) is larger than an element of the set of which we take the minimum,

hence (7.7) immediately follows. Since in the right-hand side all entries with an index below

i are 0, we even have ⪰ (instead of ⪰i in (7.7), which implies that R is a pre-fixpoint of ΦE .

For completeness, recall that by Lemma 7.11, RE is a λL-progress measure and it is

complete. Therefore for all b ∈ BL and i ∈ [1,m], we have RM (b)(i) ⪯ RE(b)(i), from

which completeness of RM immediately follows.

Observe that, since RM ⪯ RE , in particular, for all b ∈ BL and i ∈ [1,m], if RM (b)(i) ̸=
⋆, then all components of RM (b)(i) corresponding to ν-indices are 0.

If we consider the system of equations in Figure 7.3c we obtain as least fixpoint the

progress measure

RM ({M1})(1) = (1, 0)

RM ({M1})(2) = RM ({M2})(1) = RM ({M2})(2) = (0, 0).

Note that RM never assumes the top value ⋆, consistently with the fact that the solution is

(u1, u2) = (R(N),R(N)). We will discuss how such RM is obtained later when providing

a more “efficient” way for computing it.

We next observe that the operator ΦE creates monotone functions and, applied to

functions that respect suprema, it produces functions enjoying the same property. To avoid

confusion, note that the notion of monotonicity for a function R : BL → [1,m] → [λL]m⋆
is the standard one, with respect to the pointwise order on [1,m] → [λL]m⋆ . Explicitly, R

is monotone if for all b, b′ ∈ BL and i ∈ [1,m], if b ⊑ b′ then R(b)(i) ⪯ R(b′)(i). First we

formalise when we say that such a function respects suprema.

117

Definition 7.17 (sup-respecting function). Let L be a complete lattice. A function R :

BL → [1,m] → [λL]m⋆ is sup-respecting if for all b ∈ BL and X ⊆ BL, if b ⊑
⨆︁
X then

R(b)(i) ⪯ sup{R(b′)(i) | b′ ∈ X}.

Observe that R is defined only on the basis elements, which are possibly (and typically)

not closed under suprema. The requirement of being sup-respecting ensures that R extends

to a function on L which preserves suprema. Also note that a sup-respecting function R is

always monotone.

Lemma 7.13 (ΦE(R) is monotone). Let L be a complete lattice and let E be a system of m

equations over L of the kind x =η f(x). For every function and R : BL → [1,m] → [λL]m⋆ ,

the function ΦE(R) is monotone.

Proof. Given b ⊑ b′ we have to show that ΦE(R)(b)(i) ⪯ ΦE(R)(b′)(i). Note that E(b, i) =

{l | b ⊑ fi(l)} ⊇ {l | b′ ⊑ fi(l)} = E(b′, i), hence in order to determine ΦE(R)(b)(i) we take

the min⪯i over a larger set, resulting in a smaller vector of ordinals than for ΦE(R)(b′)(i).

In order to show that ΦE preserves sup-respecting functions R we first need a technical

lemma that will also prove useful in the next subsection.

Lemma 7.14. Let L be a continuous lattice and let (Uk)k∈K with Uk ⊆ Lm be a collection

of upper sets. Assume that R : BL → [1,m] → [λL]m⋆ is sup-respecting. Then it holds that:

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈
⋂︂
k∈K

Uk}

= sup
k∈K

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ Uk}

Proof. Since all Uk are upper sets, their intersection can be written as
⋂︁
k∈K Uk = {

⨆︁
k∈K lk |

∀ k ∈ K. lk ∈ Uk} (where suprema of Lm are taken pointwise). Hence the left-hand side of

the equation can be rewritten to

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪
⨆︂
k∈K

lkj } | ∀ k ∈ K. lk ∈ Uk}

We first show that for j ∈ [1,m]

sup{R(b′)(j) + δηii | b′ ≪
⨆︂
k∈K

lkj } = sup
k∈K

sup{R(b′)(j) + δηii | b′ ≪ lkj }

• (⊒) This direction is obvious since b′ ≪ lkj implies b′ ≪
⨆︁
k∈K l

k
j . Hence every ordinal

vector of the form R(b′)(j) + δηii which is contained in the right-hand side set is

automatically a member of the left-hand side set.

• (⊑) Let b′ ≪
⨆︁
k∈K l

k
j . This implies that b′ ≪

⨆︁
k∈K l

k
j =

⨆︁
Y where Y =

⋃︁
k∈K(BL ∩

↠

lkj), since we are in a continuous lattice. Then there exists a finite subset Y ′ ⊆ Y

such that b′ ⊑
⨆︁
Y ′ (see [GHK+03, Remark on p. 50]).

118

Since R is sup-respecting we have

R(b′)(j) + δηii ⪯
(︁

sup
y∈Y ′

R(y)(j)
)︁

+ δηii

= sup
y∈Y ′

(︁
R(y)(j) + δηii

)︁
⪯ sup

y∈Y

(︁
R(y)(j) + δηii

)︁
= sup

k∈K
sup{R(y)(j) + δηii | y ∈ Y ∩

↠

lkj }

= sup
k∈K

sup{R(b′)(j) + δηii | b′ ≪ lkj }

Note that the first equality is due to the fact that Y ′ is finite and non-empty.

Since the left-hand side of the equation is the supremum of all such R(b′)(j) and we

have shown that the right-hand side is an upper bound, the result follows.

Now we can conclude by showing that

min⪯i{ sup
j∈[1,m]

sup{R(b′)(j) + δηii | b′ ≪
⨆︂
k∈K

lkj } | ∀ k ∈ K. lk ∈ Uk}

= min⪯i{ sup
j∈[1,m]

sup
k∈K

sup{R(b′)(j) + δηii | b′ ≪ lkj } | ∀ k ∈ K. lk ∈ Uk}

= min⪯i{sup
k∈K

sup
j∈[1,m]

sup{R(b′)(j) + δηii | b′ ≪ lkj } | ∀ k ∈ K. lk ∈ Uk}

= sup
k∈K

min⪯i{ sup
j∈[1,m]

sup{R(b′)(j) + δηii | b′ ≪ lj} | l ∈ Uk}

= sup
k∈K

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ Uk}

where the second-last equality is due to complete distributivity.

Now we can show that, as anticipated, ΦE preserves sup-respecting functions.

Lemma 7.15 (ΦE preserves sup-respecting functions). Let L be a continuous lattice and

let E be a system of equations over L of the kind x =η f(x). If R : BL → [1,m] → [λL]m⋆
is sup-respecting, then ΦE(R) is sup-respecting as well.

Proof. We assume that R is sup-respecting and R′ = ΦE(R) is as follows:

R′(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ E(b, i)}

The aim is to show that R′ is sup-respecting as well. Let X ⊆ BL be a set of basis elements

such that b ⊑
⨆︁
X. Note furthermore that E(b, i) is upwards-closed. We first show that⋂︂

b′∈X
E(b′, i) ⊆ E(b, i)

Let l ∈ E(b′, i) for all b′ ∈ X, which means that b′ ⊑ fi(l). So if we take the supremum over

all b′ ∈ X we obtain b ⊑
⨆︁
X ⊑ fi(l). Hence l ∈ E(b, i), as required.

119

Now we can apply Lemma 7.14 where K = X, Ub′ = E(b′, i) and we obtain:

R′(b)(i) = min⪯i{sup{R(b′′)(j) + δηii | (b′′, j) ∈ A(l)} | l ∈ E(b, i)}

⪯ min⪯i{sup{R(b′′)(j) + δηii | (b′′, j) ∈ A(l)} | l ∈
⋂︂
b′∈X

E(b′, i)}

= sup
b′∈X

min⪯i{sup{R(b′′)(j) + δηii | (b′′, j) ∈ A(l)} | l ∈ E(b′, i)}

= sup
b′∈X

R′(b′)(i)

7.4.1 Computing progress measures

Selections

In principle, at least on finite lattices, the previous results allow one to compute the progress

measure and thus to prove properties of the solutions of systems of equations. However,

the computation can be quite inefficient due to the fact that the existential player has a

(uselessly) large number of possible moves. In fact, given a system x =η f(x) on a lattice

L, from a position (b, i), given any move l ∈ E(b, i) for player ∃, i.e., any tuple such that

b ⊑ fi(l), it is immediate to see that all l′ such that l ⊑ l′ are valid moves for ∃, since

by monotonicity of fi we have b ⊑ fi(l) ⊑ fi(l
′). In other words, E(b, i) is an upper set.

However, player ∃, in order to win, has to try to descend as much as possible, hence playing

large elements is inconvenient.

We next introduce some machinery that formalises the above intuition and allows us to

make the calculation more efficient. The idea is discussed for a single function first, and

then for a system of equations. For this we need to extend a bit our notation. Given a

monotone function f : Lm → L and b ∈ BL, we write E(b, f) = {l ∈ Lm | b ⊑ f(l)}.

Definition 7.18 (selection). Let L be a complete lattice. Given a monotone function f :

Lm → L, a selection for f is a function σ : BL → 2L
m

such that for all b ∈ BL it holds

E(b, f) = ↑σ(b). Given a system E of m equations over L of the kind x =η f(x), a

selection for E is an m-tuple of functions σ such that, for each i ∈ [1,m], the function σi

is a selection for fi.

Intuitively, a selection provides for each element of the basis and function fi, a subset

of the moves E(b, i) that are sufficient to “cover” b in all possible ways. Indeed, we can

show that when computing the complete progress measure RM according to the equations

in Lemma 7.12, we can restrict the moves of the existential player to a selection. Dually,

since the moves of the universal player A(l) are a lower set and the progress measures of

interest are monotone (see Lemma 7.13), we can restrict also such moves to a subset whose

lower closure is A(l).

120

Lemma 7.16 (progress measure on a selection). Let L be a continuous lattice, let E be a

system of m equations over L of the kind x =η f(x) and let σ be a selection for E. For all

l ∈ Lm let Ar(l) ⊆ BL × [1,m] be such that A(l) = {(b′, i) | (b, i) ∈ Ar(l) ∧ b′ ⊑ b}. The

system of equations over [λL]m⋆ defined, for b ∈ BL, i ∈ [1,m], as:

R(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ Ar(l)} | l ∈ σi(b)}

has the same least solution as that in Lemma 7.12.

Proof. Let Φ′
E be the operator associated with the equations in the statement of the lemma.

We prove that ΦE and Φ′
E have the same fixpoint by showing that they coincide on every

monotone function R.

Let b ∈ BL and i ∈ [1,m]. Let us write

βb = Φ′
E(R)(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ Ar(l)} | l ∈ σi(b)}

γb = ΦE(R)(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ E(b, i)}

and we show βb =i γb. First observe that

sup{R(b′)(j) + δηii | (b′, j) ∈ Ar(l)} = sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)}

since A(l) is the lower closure of Ar(l) and R is monotone. Then, the fact that γb ⪯i

βb follows from the observation that, by Definition 7.18, σi(b) ⊆ E(b, i), i.e., the first is

a minimum over a smaller set. The converse inequality follows from the fact that, by

Definition 7.18, for each b ∈ BL, i ∈ [1,m] if l ∈ E(b, i) then there exists l′ ∈ σi(b)

such that l′ ⊑ l, hence A(l′) ⊆ A(l) and thus sup{R(b′)(j) + δηii | (b′, j) ∈ A(l′)} ⪯i

sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)}.

Since the complete progress measure RM witnesses the existence of a winning strategy

for ∃, the above result implies that whenever ∃ has a winning strategy, it has one also in

the game where the moves of ∃ are restricted to the selection. A similar property holds for

∀ and Ar(l).

Clearly, for computational purposes, we are interested in having the selections as small

as possible. Given a monotone function f : Lm → L, and two selections σ, σ′ : BL → 2L
m

for f , we write σ ⊆ σ′ if for all b ∈ BL it holds σ(b) ⊆ σ′(b). We will use the same notation

for the pointwise order on selections for systems of equations.

For instance, given a Petri net N , consider the powerset lattice of its states 2R(N)

ordered by subset inclusion, with basis B = {{M} | M ∈ R(N)}. Then, the basic mu-

calculus operators that we used in the system in Figure 7.3c admit a least selection, as

detailed below.

• Given f : (2R(N))2 → 2R(N) defined by f(X1, X2) = X1 ∪X2, then σ : B → 2(2
R(N))2

is σ({M}) = {(∅, {M}), ({M}, ∅)}

121

• Given f : (2R(N))2 → 2R(N) defined by f(X1, X2) = X1 ∩X2, then σ : B → 2(2
R(N))2

is σ({M}) = {({M}, {M})}

• Given f : 2R(N) → 2R(N) defined by f(X) = ♢X, then σ : B → 22
R(N)

is σ({M}) =

{{M ′} |M [t⟩M ′}

• Given f : 2R(N) → 2R(N) defined by f(X) = □X, then σ : B → 22
R(N)

is σ({M}) =

{{M ′ |M [t⟩M ′}}.

We next provide sufficient conditions for a function to admit a least selection.

Lemma 7.17 (existence of least selections). Let L be a complete lattice and let f : Lm → L

be a monotone function. If f preserves the infimum of descending chains, then it admits a

least selection σm that maps each b ∈ BL to the set of minimal elements of E(b, f).

Proof. Assume that f preserves the infimum of descending chains. First observe that given

a descending chain (lα)α in E(b, f) we have that
d
α lα ∈ E(b, f). In fact, for each α we

have b ⊑ f(lα) and thus b ⊑
d
α f(lα) = f(

d
α lα).

The above implies that for each l ∈ E(b, f) there exists l′ ∈ E(b, f), minimal, such that

l′ ⊑ l. In fact, consider the (possibly transfinite) chain of tuples lα in E(b, f) defined as

follows. Start from l0 = l. For any ordinal α, if there is l′ ∈ E(b, f), such that l′ ̸= lα and

l′ ⊑ lα, let lα+1 = l′. If α is a limit ordinal lα =
d
β<α lβ.

This is a strictly descending chain, that thus necessarily stops at some ordinal λ bounded

by the length of the longest descending chain in L. By construction lλ ⊑ l, lλ ∈ E(b, f)

and it is minimal in E(b, f).

Define σm(b) as the set of minimal elements of E(b, f) for each b ∈ BL. It is immediate

to see that this is a selection. Moreover, it is the least selection. In fact, let σ′ be another

selection for f . Let l ∈ σm(b). Since b ⊑ f(l) and σ′ is a selection, there is l′ ∈ σ′(b)

such that l′ ⊑ l. Now, b ⊑ f(l′) and thus there must be l′′ ∈ σm(b) such that l′′ ⊑ l′.

Therefore by transitivity l′′ ⊑ l, but l is minimal and thus l = l′ = l′′ ∈ σ′(b). This shows

σm(b) ⊆ σ′(b) for all b ∈ BL. Thus σm ⊆ σ′, as desired.

For example, consider the system of equations in Figure 7.3c. Least selections for the

functions f1 and f2 associated with the first and second equation, respectively, are given by

• σ1({M1}) = {({M1}, ∅), ({M2}, ∅)} and σ1({M2}) = {(∅, ∅)}

• σ2({M1}) = {({M1}, {M1,M2})} and σ2({M2}) = {({M2}, {M2})}.

Observe that the winning strategy for ∃ that we gave for the fixpoint game depicted in

Figure 7.4 is a subset of the selection above. As we already proved for progress measures,

this is a general fact: if a winning strategy exists, we can find one that is a subset of any

given selection.

122

Selections can be constructed “compositionally”, i.e., if a function f arises as the com-

position of some component functions then we can derive a selection for f from selections

for the components.

In order to define selections compositionally we first need a technical lemma that extends

selections to generic elements of the lattice, possibly not part of the basis.

Lemma 7.18 (extending selections). Let L be a continuous lattice, let f : Lm → L be a

monotone function and let σ : BL → 2L
m

be a selection for f . Define σ̄ : L → 2L
m

by

σ̄(b) = σ(b) for b ∈ BL and σ̄(l) = {
⨆︁
b≪l l

b | ∀ b ∈ BL ∩

↠

l . lb ∈ σ(b)} for l ∈ L ∖ BL.

Then for every l ∈ L

1. for all l ∈ σ̄(l) it holds l ⊑ f(l);

2. for all l′ ∈ Lm, if l ⊑ f(l′) then there exists l ∈ σ̄(l) such that l ⊑ l′.

Proof. For l ∈ BL, there is nothing to prove since the properties hold by definition of

selection.

Let l ∈ L∖BL. We start with point (1). Let l ∈ σ̄(l), hence l =
⨆︁
b≪l l

b with lb ∈ σ(b)

for each b ≪ l. By the properties of selections, for all b ≪ l, since lb ∈ σ(b) it holds

b ⊑ f(lb), hence

b ⊑
⨆︂
b′≪l

f(lb
′
) ⊑ f(

⨆︂
b′≪l

lb
′
) = f(l)

the last inequality following by monotonicity of f . Therefore l =
⨆︁
b≪l b ⊑ f(l), as desired.

Concerning point (2), let l′ ∈ Lm be such that l ⊑ f(l′). For all b ≪ l, since b ⊑ f(l′)

there is lb ∈ σ(b) such that lb ⊑ l′. Then we can consider l =
⨆︁
b≪l l

b ⊑ l′ which is in σ̄(l)

by definition.

We can now define the selection for a composition of functions.

Lemma 7.19 (selection for composition). Let L be a continuous lattice, let g : Ln → L and

fi : Lm → L, for i ∈ [1, n], be monotone functions and let σ : BL → 2L
n
and σi : BL → 2L

m
,

for i ∈ [1, n], be selections for g, f1, . . . , fn. Consider the function h : Lm → L obtained as

the composition h(l) = g(f1(l), . . . , fn(l)). Then the function σ′ : BL → 2L
m

defined by

σ′(b) = {
⨆︁n
i=1 l

i | ∃ l ∈ σ(b). ∀ i ∈ [1, n]. li ∈ σ̄i(li)}

is a selection for h.

Proof. We need to show that for all b ∈ BL it holds ↑σ′(b) = E(b, h) = {l ∈ Lm | b ⊑ h(l)}.

We prove the two inclusions separately. Since E(b, h) is an upper set, in order to prove the

inclusion ↑σ′(b) ⊆ E(b, h) it is enough to show that for all l′ ∈ σ′(b) it holds b ⊑ h(l′). By

definition above l′ =
⨆︁n
i=1 l

i such that, for some l ∈ σ(b), for all i ∈ [1, n] we have li ∈ σ̄i(li).

Since li ∈ σ̄(li), by Lemma 7.18 and monotonicity of fi we have li ⊑ fi(l
i) ⊑ fi(

⨆︁n
i=1 l

i) =

fi(l
′). Hence l ⊑ (f1(l

′), . . . , fn(l′)) and thus, by monotonicity of g,

g(l) ⊑ g(f1(l
′), . . . , fn(l′)) = h(l′)

123

Recalling that l ∈ σ(b) and thus b ⊑ g(l) we conclude, by transitivity, b ⊑ h(l′), as desired.

To prove the other inclusion, i.e., ↑σ′(b) ⊇ E(b, h), we need to show that for all l ∈ Lm

such that b ⊑ h(l) = g(f1(l), . . . , fn(l)) there exists l′ ∈ σ′(b) such that l′ ⊑ l. Since σ is a

selection for g, there exists l′′ ∈ σ(b) such that l′′ ⊑ (f1(l), . . . , fn(l)). Now, for all i ∈ [1, n],

since l′′i ⊑ fi(l), by Lemma 7.18, there is li ∈ σ̄i(l
′′
i) such that li ⊑ l. If we let l′ =

⨆︁n
i=1 l

i,

by definition above l′ ∈ σ′(b) and clearly l′ ⊑ l, as desired.

Consider again the selection discussed above for the system of equations in Figure 7.3c.

It can be computed composing the least selections for the basic mu-calculus operators via

Lemma 7.19.

It should be noted, however, that even though in this case the selections σ1 and σ2

arising from the construction in Lemma 7.19 are the least ones, this is not a general fact.

For this reason we favour, instead, the approach presented in the next subsection. As a

counterexample take L = {⊥, a, b,⊤} with a, b incomparable, BL = {a, b} and f : L → L

defined by f(a) = f(b) = f(⊤) = ⊤ and f(⊥) = ⊥. Then σ(a) = σ(b) = σ(⊤) = {a, b} and

σ(⊥) = {⊥} is the least selection for f . However, if we compute σ̄ according to Lemma 7.18

we obtain σ̄(⊤) = {a, b,⊤} which is not minimal. As a consequence, the selection σ′,

constructed as in Lemma 7.19 by taking f defined as above and g the identity, is not a least

selection for the composition.

A logic for characterising the moves of the existential player

The sets of possible moves of the existential player are upper sets in the lattice. Such sets can

be conveniently represented and manipulated in logical form (see, e.g., [DR00]). Intuitively,

(least) selections describe a disjunctive normal form, but more compact representations can

be obtained using arbitrary nesting of conjunctions and disjunctions. For instance, the least

selection for the monotone function f(X1, . . . , X2n) = (X1∪X2)∩(X3∪X4)∩· · ·∩(X2n−1∪
X2n) would be of exponential size (think of the corresponding disjunctive normal form),

but we can easily give a formula of linear size.

This motivates the introduction of a propositional logic for expressing the sets of mo-

ves of the existential player along with a technique for deriving the fixpoint equations for

computing the progress measure, avoiding the potential exponential explosion.

Definition 7.19 (logic for upper sets). Let L be a continuous lattice. Given m ∈ N, the
logic Lm(BL) has formulae defined as follows, where b ∈ BL and j ∈ [1,m]:

φ ::= [b, j] |
⋁︂
k∈K

φk |
⋀︂
k∈K

φk

We will write true for the empty conjunction. The semantics of a formula φ is an upper

124

set JφK ⊆ Lm, defined as follows:

J[b, j]K = {l ∈ Lm | b ⊑ lj}

J
⋁︂
k∈K

φkK =
⋃︂
k∈K

JφkK

J
⋀︂
k∈K

φkK =
⋂︂
k∈K

JφkK

It is easy to see that indeed each upper set is denoted by a formula, showing that the

logic is sufficiently expressive.

Lemma 7.20 (formulae for upper sets). Let L be a continuous lattice with basis BL and

let X ⊆ Lm be an upper set. Then X = JφK where φ is the formula in Lm(BL) defined as

follows:

φ =
⋁︂
l∈X

⋀︂{︁
[b, j] | j ∈ [1,m] ∧ b ⊑ lj

}︁
.

Proof. We have to show that JφK = X:

• (⊆) Let l′ ∈ JφK, hence

l′ ∈
⋃︂
l∈X

⋂︂
{{l′′ ∈ Lm | b ⊑ l′′j } | j ∈ [1,m] ∧ b ⊑ lj}.

Hence there exists l ∈ X such that for all j ∈ [1,m] and b ⊑ lj it holds that b ⊑ l′j .

Then

lj =
⨆︂

{b | b ⊑ lj} ⊑
⨆︂

{b | b ⊑ l′j} = l′j .

Hence l ⊑ l′ and, since X is an upper set, l′ ∈ X.

• (⊇) Let l ∈ X. We show that l ∈ JψlK where ψl =
⋀︁{︁

[b, j] | j ∈ [1,m] ∧ b ⊑ lj
}︁

. In

fact

JψlK =
⋂︂

{{l′ ∈ Lm | b ⊑ l′j} | j ∈ [1,m] ∧ b ⊑ lj}.

Now, if j ∈ [1,m] and b ⊑ lj then clearly l ∈ {l′ | b ⊑ l′j} and hence l is contained in

the intersection.

For practical purposes we should restrict to finite formulae. This can surely be done in

the case of finite lattices, but also for well-preorders (see, e.g., [DR00]).

Definition 7.20 (symbolic ∃-moves). Let L be a continuous lattice and let f : Lm → L be

a monotone function. A symbolic ∃-move for f is a family (φb)b∈BL
of formulae in Lm(BL)

such that JφbK = E(b, f) for all b ∈ BL. If E is a system of m equations over L of the kind

x =η f(x), a symbolic ∃-move for E is a family of formulae (φib)b∈BL,i∈[1,m] such that for

all i ∈ [1,m], the family (φib)b∈BL
is a symbolic ∃-move for fi.

125

Interestingly, symbolic ∃-moves can be obtained compositionally, namely, the formulae

corresponding to a functions arising as a composition can be obtained from those of the

components.

Lemma 7.21 (symbolic ∃-moves, compositionally). Let L be a continuous lattice, let g :

Ln → L and fj : Lm → L, for j ∈ [1, n] be monotone functions and let (φb)b∈BL
and

(φjb)b∈BL
, for j ∈ [1, n], be symbolic ∃-moves for g, f1, . . . , fn. Consider the function h :

Lm → L obtained as the composition h(l) = g(f1(l), . . . , fn(l)). Define (φ′
b)b∈BL

as follows.

For all b ∈ BL, the formula φ′
b is obtained from φb by replacing each occurrence of [b′, j] by

φjb′. Then (φ′
b)b∈BL

is a symbolic ∃-move for h.

Proof. We first show that given a formula φ ∈ Ln(BL), if φ′ is the formula in Lm(BL)

obtained from φ by replacing each occurrence of an atom [b, j] by φjb, then

Jφ′K = {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ JφK}

We proceed by induction on the shape of φb.

• (φ = [b, j]): in this case φ′ = φjb. Therefore we have

Jφ′K = JφjbK

= {l ∈ Lm | b ⊑ fj(l)}

= {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ J[b, j]K}

= {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ JφK}

• (φ =
⋁︁
k∈K φk): in this case φ′ =

⋁︁
k∈K φ

′
k, where each φ′

k is obtained from φk by by

replacing each occurrence of an atom [b, j] by φjb. Then

Jφ′K = J
⋁︂
k∈K

φ′
kK

=
⋃︂
k∈K

Jφ′
kK

=
⋃︂
k∈K

{l ∈ Lm | (f1(l), . . . , fn(l)) ∈ JφkK} [by inductive hyp.]

= {l ∈ Lm | (f1(l), . . . , fn(l)) ∈
⋃︂
k∈K

JφkK}

= {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ J
⋁︂
k∈K

φkK}

= {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ JφK}

as desired.

• (φ =
⋀︁
k∈K φk): analogous.

126

Now, given b ∈ BL, we have to show that

Jφ′
bK = E(b, h) = {l | l ∈ Lm ∧ b ⊑ h(l)} = {l | l ∈ Lm ∧ b ⊑ g(f1(l), . . . , fn(l))}.

This is almost immediate. In fact

Jφ′
bK = {l ∈ Lm | (f1(l), . . . , fn(l)) ∈ JφbK} [by the property proved above]

= {l ∈ Lm | b ⊑ g(f1(l), . . . , fn(l))} [by def. of symbolic ∃-move]

A symbolic ∃-move for a system can be directly converted into a recipe for evaluating

the fixpoint expressions for progress measures. Essentially, every disjunction simply has

to be replaced by a minimum and every conjunction by a supremum (although the proof,

which relies on complete distributivity of the lattice [λL]m⋆ is not trivial). Furthermore, in

the case of an algebraic lattice, where we can ensure that the elements of the basis are

compact, an atom translates to a straightforward lookup of the progress measure without

additional computation.

Proposition 7.3 (progress measure from symbolic ∃-moves). Let L be a continuous lattice,

let E be a system of m equations over L of the kind x =η f(x) and let (φib)b∈BL,i∈[1,m] be a

symbolic ∃-move for E. Then the system of equations over [λL]m⋆ for computing the progress

measure can be written, for all b ∈ BL and i ∈ [1,m], as R(b)(i) = Ri
φi
b
where Riψ is defined

inductively as follows:

Ri[b,j] = min⪯i{sup{R(b′)(j) + δηii | b′ ≪ b}}

Ri⋁︁
k∈K φk

= min
k∈K

Riφk

Ri⋀︁
k∈K φk

= sup
k∈K

Riφk

Whenever the basis element b is compact it holds that Ri[b,j] = min⪯i{R(b)(j) + δηii }. (Note

that the operator min⪯i in the definition of Ri[b,j] above is just there to ensure that all entries

in positions smaller than i are set to 0.)

Proof. Since (φib)b∈BL,i∈[1,m] is a symbolic ∃-move for E, the equations of Definition 7.16

can be written as

R(b)(i) = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ JφibK}.

We conclude by proving that, when R is monotone

Riψ = min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ JψK}.

We proceed by induction on the shape of ψ.

127

• (ψ = [b, k]): by definition

min⪯i{sup{R(b′)(j) + δηii | (b′, j) ∈ A(l)} | l ∈ J[b, k]K} =

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ Lm ∧ b ⊑ lk}

A vector l ∈ Lm satisfying b ≪ lk has the form (l1, . . . , lm) where lj is arbitrary

if j ̸= k and b ≪ lk. Since we can assume that R is monotone and hence the inner

supremum is monotone in l, we can conclude that the minimum is reached for a vector

ℓ where lj = ⊥ if j ̸= k and b ⊑ lk. Hence we obtain

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ Lm, b ⊑ lk, lj = ⊥ if j ̸= k}.

Since there is no basis element b′ with b′ ≪ ⊥, it is sufficient if one takes the inner

suprema only for elements with j = k and b′ ⊑ lk. And so we obtain

min⪯i{sup{R(b′)(k) + δηii | b′ ≪ l} | l ∈ L ∧ b ⊑ l}

We can now infer that b is the least value l ∈ L such that b ⊑ l and hence – again by

monotonicity – the above can be rewritten as

min⪯i{sup{R(b′)(k) + δηii | b′ ≪ b}}

which is exactly Ri[b,k], as desired.

If b is compact, we know that b itself is the least element of all l such that b≪ l and

we can write the above as

Ri[b,k] = min⪯i{R(b)(k) + δηii }.

• (ψ =
⋁︁
k∈K φk):

Ri⋁︁
k∈K φk

= min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈
⋃︂
k∈K

JφkK}

= min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | ∃ k ∈ K. l ∈ JφkK}

= min
k∈K

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ JφkK}

= min
k∈K

Riφk

• (ψ =
⋀︁
k∈K φk): since every set JφkK is an upper set we can immediately apply

Lemma 7.14 and obtain

Ri⋀︁
k∈K φk

= min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈
⋂︂
k∈K

JφkK}

= sup
k∈K

min⪯i{sup{R(b′)(j) + δηii | j ∈ [1,m] ∧ b′ ≪ lj} | l ∈ JφkK}

= sup
k∈K

Riφk

128

Consider again our running example in Figure 7.3. The selections specified in the pre-

vious subsection can be expressed in the logic as follows:

φ1
{M1} = [{M1}, 1] ∨ [{M2}, 1] φ1

{M2} = true

φ2
{M1} = [{M1}, 1] ∧ [{M1}, 2] ∧ [{M2}, 2] φ2

{M2} = [{M2}, 1] ∧ [{M2}, 2].

These formulae can be obtained compositionally. For instance the formula φ2
{M1} for the

equation x2 =ν □x2 ∩ x1 is obtained by combining a logical formula for x1 (namely

[{M1}, 1]) via conjunction with a logical formula for □x2 (namely [{M1}, 2] ∧ [{M2}, 2]).

Using the logical formulae above, we obtain the following equations for the progress

measure (where max⪯i works analogously to min⪯i : it sets all vector entries in positions

smaller than i to 0):

R({M1})(1) = min⪯1{R({M1})(1) + (1, 0), R({M2})(1) + (1, 0)}

R({M1})(2) = max⪯2{R({M1})(1), R({M1})(2), R({M2})(2)}

R({M2})(1) = (0, 0)

R({M2})(2) = max⪯2{R({M2})(1), R({M2})(2)}.

Observe that this coincides with the solution for the corresponding progress measure equa-

tions given in Section 7.4.

Complexity analysis

The benefit of the progress measures introduced in [Jur00] is to ensure that model-checking

is polynomial in the number of states and exponential in (half of) the alternation depth.

We will now perform a corresponding complexity analysis for our setting, based on symbolic

∃-moves and by assuming that we are working on a finite lattice.

Let E be a fixed system of m equations over a finite complete lattice L, let k be the

number of µ-equations and let BL be a basis for L. Let (φib)b∈BL,i∈[1,m] be a symbolic

∃-move for E and assume that the size of every such formula is bounded by s. Note that

the formulae are typically of moderate size. For instance, mu-calculus model-checking,

the branching of a transition system (i.e., the number of successors of a single state) is a

determining factor. In fact, as it can be grasped from our running example (see Figure 7.3),

the size of the symbolic ∃-move φib will be linear in the number of propositional operators

and, in the presence of modal operators, linear in the branching degree of the transition

system. For arbitrary monotone functions it is more difficult to give a general rule.

The shape of the formulae in the symbolic ∃-move determines how the values of the pro-

gress measure at various positions (b, i) of the games are interrelated. These dependencies

clearly play a role in the computation and thus are made explicit by following definition.

129

Definition 7.21 (dependency graph). Given two game positions (b, i), (b′, j) ∈ BL× [1,m]

of ∃ we say that (b, i) is a predecessor of (b′, j) if [b′, j] occurs in φib. We will write pred(b′, j)

for the set of predecessors of (b′, j). In this situation we will also call the pair ((b, i), (b′, j))

an edge and refer to corresponding graph as the dependency graph for E.

As a first step we provide a bound to the number of edges in the dependency graph.

Proposition 7.4 (edges in the dependency graph). The number e of edges in the depen-

dency graph for system E is such that e ≤ min{|BL| ·m · s, (|BL| ·m)2}, where m is the

number of equations and s is the bound on the size of symbolic ∃-moves.

Proof. There are at most |BL|·m game positions and hence the number of edges is obviously

bounded by (|BL| ·m)2. Moreover, for each game position, the number of outgoing edges is

bounded by the size of the formula (symbolic ∃-move) associate to the position. Hence the

thesis.

In order to bound the complexity of the overall computation of the progress measure, first

note that the lattice [λL]m⋆ contains (λL+1)m+1 elements. However only h = (λL+1)k+1

are relevant, since the entries of ν-indices are always set to 0. As an example, when model-

checking a mu-calculus formula over a finite state system, λL is the size of the state space

of the corresponding model. In fact, if the lattice is (2S,⊆) where S = {s0, . . . , sn} is the

state space, then (one of) the longest ascending chain is ∅ ⊆ {s0} ⊆ {s0, s1} ⊆ . . . ⊆ S.

This fact and the observation that we can perform the fixpoint iteration for the progress

measure using a worklist algorithm (like those used in data flow analysis, see, e.g., [NNH99])

on the dependency graph, lead to the following result.

Theorem 7.2 (computing progress measures). The time complexity for computing the least

fixpoint progress measure for a system E over a finite complete lattice L is O(s · k · e · h),

where s is the bound on the size of symbolic ∃-moves, k is the number of µ-equations, e the

number of edges in the dependecy graph, and h = (λL + 1)k + 1.

Proof. We use a worklist algorithm, and the worklist initially contains all edges.

Processing an edge ((b, i), (b′, j)) means to update the value R(b)(i) by evaluating the

formula φib. Afterwards all edges originating from (b, i) can be removed from the worklist.

Whenever a value R(b′)(j) increases, all edges ((b, i), (b′, j)) with (b, i) ∈ pred(b′, j) will be

again inserted into the worklist. Hence, at most
∑︁

(b′,j)∈BL×[1,m] h · pred(b′, j) = e · h edges

will be inserted into the worklist and processed later.

In turn, processing an edge has complexity at most O(s · k), since we inductively eva-

luate a formula of size s on ordinal vectors of length k. (Since the lattice is finite, it is

automatically algebraic and the simpler case for compact elements of Theorem 7.3 applies.)

Everything combined, we obtain a runtime of O(s · k · e · h).

130

We compare the above with the runtime in [Jur00], which is O(dg
(︁
n
d

)︁⌈ d
2
⌉
), where d is

the alternation depth of the formula, g the number of edges and n the number of nodes of

the parity game.

The correspondence is as follows: g corresponds to our number e and n to λL (where

we cannot exploit the optimisation by Jurdziński which uses the fact that every node in the

parity game is associated with a single parity, leading to the division by d). Furthermore

s is a new factor, which is due to the fact that we are working with arbitrary functions.

But this is mitigated by the fact that we often obtain smaller parity games than in the

standard mu-calculus case (see for instance Figure 7.4). The number d
2 corresponds to our

k. However d
2 could potentially be strictly lower than k, since we did not take into account

the fact that some equations might not be dependent on other equations.

To incorporate this and possibly further optimisations into the complexity analysis we

need a notion of alternation depth for equation systems. This can be easily obtained by

extending the one introduced in [CKS92, Sch04]. A system of equations can be split into

closed subsystems corresponding to the strongly connected components of the dependency

graph for the system. Then the alternation depth of the system is defined as the length of

the longest chain of mutually dependent µ- and ν-equations within a closed subsystem. By

solving every component separately we obtain a more efficient algorithm.

In particular, systems of fixpoint equations that consist only of µ-equations or ν-

equations can be solved by a single fixpoint iteration on Lm, where m is the number of

equations [Ven08]. Similarly, equations with indices i, i+ 1 where ηi = ηi+1 can be merged.

This results in an equation system where subsequent equations alternate between µ and ν.

(Notice that this transformation means that each equation is over Lj instead of L, but this

can be easily adapted.)

Note also that the runtime might be substantially improved by finding a good strategy

for computing the progress measure, as spelled out in [Jur00], in the same way as efficient

ways can be found for implementing the worklist algorithm in program analysis.

7.5 Model checking Lhp

In this section we discuss the application of the fixpoint game and the methods developed

in the previous sections to the model-checking of Lhp. First of all, we formally explain how

formulae of the logic can be translated into systems of equations (and vice versa). Then we

show how the fixpoint game instantiates on such systems and study the relation between

strategies in the game and other model-checking methods.

7.5.1 Systems of fixpoint equations for logical formulae

Recall that formulae are assumed to be such that different bound propositions have different

names, a requirement that can always be fulfilled by alpha-renaming. Hereafter, for every

131

proposition Z appearing in a closed formula φ we denote by φZ the fixpoint subformula

quantifying Z (hence φZ will be of the kind (ηZ(x).ψ)(y) for some ψ).

A (closed) formula of Lhp can be easily translated into a system of fixpoint equations.

Each fixpoint subformula (ηZ(x).ψ)(y) becomes an equation of the system Z(x) = θ, where

θ is obtained from ψ by replacing each fixpoint subformula by the corresponding proposition.

In order to simplify the translation we assume that the original formula is a fixpoint formula.

This is not a restriction since any closed formula φ is equivalent to a fixpoint formula µZ.φ,

where Z is a proposition not occurring in φ. Then the system will have as many equations as

many different propositions appear in the initial formula. As we already observed, the order

of the equations is relevant in certain cases. Luckily, there is a simple order which is always

correct: the reverse reading order in which the fixpoint operators (and their corresponding

propositions) appear from right to left in the formula. Actually, any order compatible with

the order ⊏∗
d over fixpoint subformulae would be correct. But since it is easier to just read

the formula than computing such partial order, we favour the more naive and direct way.

To see that the reverse reading order is compatible with ⊏∗
d, just observe that, over fixpoint

subformulae, the reverse reading order is refined by the subformula relation, which in turn

is refined by ⊏∗
d.

Definition 7.22 (equation system for a formula). Given a closed fixpoint formula φ of

Lhp, let (X1, . . . , Xm) be the tuple of abstract propositions in φ, ordered by the reverse

reading order in which their quantifications appear, and let each fixpoint subformula of φ be

φXi = (ηiXi(xi).ψi)(yi) for i ∈ [1,m]. The equational form of φ is {Xi(xi) =ηi θi}i∈[1,m],

where each θi is the (open) formula obtained from ψi by replacing every fixpoint subformula

φXj with the corresponding proposition whose event variables are named yj.

Once a PES model E is fixed, the formula in equational form can be interpreted as a

system of equations over the powerset lattice ⟨2C(E)×EnvE ,⊆⟩, by replacing formulae with

their semantics, i.e., for all i ∈ [1,m], the equation Xi(xi) =ηi θi becomes

vi =ηi {|θi|}π[Xj(xj)↦→vj]∀j∈[1,m]

where vi is a variable of the system, hence it assume values over the lattice. Note that π can

be any proposition environment: it is irrelevant because the evaluation of every proposition

in the formula is given by the corresponding update.

It is not difficult to see that also a converse transformation is possible. A system of

fixpoint equations of the kind {Xi(xi) =ηi θi}i∈[1,m] where each θi is an open formula of

Lhp with free propositions in X and without fixpoint subformulae, can be translated into

a tuple of formulae of Lhp, equivalent to the system in a sense formalised later.

Definition 7.23 (formulae for an equation system). Let E be a system of m equations

with equational form {Xi(xi) =ηi ψi}i∈[1,m] where each ψi is an open formula of Lhp with

fp(ψi) ⊆ X and without fixpoint subformulae. The corresponding m-tuple of formulae of

132

Lhp, denoted by φE, is defined inductively as follows, where Ei denotes the system consisting

of the first i equations of E, for all i ∈ [1,m], and E0 = ∅.

φ∅ = ϵ

φEi = (φEi−1 [Xi(xi) := φEi
i], φEi

i) where φEi
i = ηiXi(xi).ψi[Xj(xj) := φ

Ei−1

j]∀j∈[1,i−1]

Then φE = φEm.

Note that formulae in the tuple φE have no free propositions. However, they may have

free event variables.

Similar procedures have been considered in [CKS92], for the characterisation of mu-

calculus formulae in terms of equation systems, to allow an efficient model-checking algo-

rithm, and also in [Mad97].

As an example, consider the formula µX2.(⟨| x|⟩X2 ∨ ⟨|c y|⟩νX1(y).⟨|y < b z|⟩X1(y))

stating that eventually a state is reached by executing a c-labelled event from where an

infinite chain of b-labelled events can be executed, all concurrent with the c-labelled one.

The equational form of such formula is

X1(y) =ν ⟨|y < b z|⟩X1(y)

X2 =µ ⟨| x|⟩X2 ∨ ⟨|c y|⟩X1(y)

Then, after fixing a model E , we can interpret the equations above as a system over the

lattice ⟨2C(E)×EnvE ,⊆⟩, which can be rewritten as

v1 =ν {|⟨|y < b z|⟩X1(y)|}Eπ[X1(y)↦→v1][X2 ↦→v2]

v2 =µ {|⟨| x|⟩X2 ∨ ⟨|c y|⟩X1(y)|}Eπ[X1(y)↦→v1][X2 ↦→v2]

If now we apply the converse procedure we obtain the pair of formulae:

φ1 = νX1(y).⟨|y < b z|⟩X1(y)

φ2 = µX2.(⟨| x|⟩X2 ∨ ⟨|c y|⟩νX1(y)⟨|y < b z|⟩X1(y))

Note that φ2 is the formula we started with. In this specific case φ1 coincides with the

inner fixpoint subformula quantifying the proposition X1. This happens only because X2

does not occur free in φ1. In general, if proposition X2 occurred in the fixpoint subformula

quantifying X1, each occurrence of X2 in φ1 would have been replaced by φ2.

The following result shows that, indeed, the proposed translations are correct, as they

preserve the semantics of formulae.

Proposition 7.5 (correspondence between formulae and equation systems). Let E be a

PES. Given a closed fixpoint formula φ of Lhp, let E be the system of m equations ari-

sing from its equational form. For any proposition environment π ∈ PEnvE , it holds

{|φ|}Eπ = solm(E). Conversely, given a system E of m equations with the equational form

{Xj(xj) =ηj ψj}j∈[1,m] where each ψj has no fixpoint subformula and fp(ψj) ⊆ X, it holds

sol i(E) = {|φEi |}Eπ for all i ∈ [1,m] and π ∈ PEnvE .

133

Proof. We prove the two statements separately.

For the first part, observe that since φ is closed the proposition environment π used

for its denotation is irrelevant. Recall that for every i ∈ [1,m], the i-th equation of

the system is Xi(xi) =ηi θi, where θi is obtained from the subformula ψi of the fix-

point formula φXi = (ηiXi(xi).ψi)(yi), as described in Definition 7.22. In particular,

φ = φXm = ηmXm.ψm, corresponds to the last equation of the equational form Xm =ηm θm,

which has no event variables since φ is closed. Then, we actually prove that for all i ∈ [1,m],

{|ηiXi(xi).ψi|}Eπ′ = sol i(E
′) where π′ = π[Xi+1(xi+1) ↦→ Si+1] . . . [Xm(xm) ↦→ Sm] and

E′ = E[vm := Sm] . . .[vi+1 := Si+1], and every Sj ⊆ C(E) × EnvE . Clearly this implies the

desired result. The proof proceeds by induction on the index i with base case i = 1 because

there must be at least one equation since φ is a fixpoint formula.

(i = 1): by definition of substitution we know that the system E′ consists of a sin-

gle equation, i.e., v1 =η1 {|θ1|}Eπ′. By definition of solution of a system, we have that

sol1(E
′) = η1(λS.{|θ1|}Eπ′[X1(x1)↦→S]). Similarly, by definition of the semantics of Lhp we

know that {|η1X1(x1).ψ1|}Eπ′ = η1(λS.{|ψ1|}Eπ′[X1(x1)↦→S]). By the ordering of the variables

given in Definition 7.22, we must have that ψ1 does not contain any fixpoint subformula,

otherwise its index could not be 1. Hence θ1 = ψ1, and so, combining the previous facts,

{|η1X1(x1).ψ1|}Eπ′ = sol1(E
′).

(i > 1): in this case, by definition of solution, we have sol i(E
′) = ηi(λS.{|θi|}Eπ′′) where

π′′ = π′[Xi(xi) ↦→ S][Xj(xj) ↦→ sol j(E
′[vi := S])]∀j∈[1,i−1]. While, by definition of the

semantics we have {|ηiXi(xi).ψi|}Eπ′ = ηi(λS.{|ψi|}Eπ′[Xi(xi)↦→S]). By an inspection of the

definition of θ and the ordering of the variables, one can notice that for all j ∈ [1,m]

ψj = θj [Xj−1(xj−1) := ηj−1Xj−1(xj−1).ψj−1] . . .[X1(x1) := η1X1(x1).ψ1].

Thus, for all S ⊆ C(E) × EnvE , we have that {|ψi|}Eπ′[Xi(xi)↦→S] =

{|θi[Xi−1(xi−1) := ηi−1Xi−1(xi−1).ψi−1] . . .[X1(x1) := η1X1(x1).ψ1]|}Eπ′[Xi(xi)↦→S].

Furthermore, by repeatedly applying Lemma 4.1(2) we obtain that {|ψi|}Eπ′[Xi(xi)↦→S] =

{|θi|}Eπi where π1 = π′[Xi(xi) ↦→ S] and for all j ∈ [1, i− 1],

πj+1 = πj [Xi−j(xi−j) ↦→ {|ηi−jXi−j(xi−j).ψi−j |}Eπj].

Note that actually πi =

π′[Xi(xi) ↦→ S][Xi−1(xi−1) ↦→ {|ηi−1Xi−1(xi−1).ψi−1|}Eπ1] . . . [X1(x1) ↦→ {|η1X1(x1).ψ1|}Eπi−1
]

Now we just need to prove that πi = π′′. To show this we can use the inductive hypothesis i−
1 times, recalling the recursive structure of the solutions of systems. Eventually we conclude

that {|ψi|}Eπ′[Xi(xi)↦→S] = {|θi|}Eπi = {|θi|}Eπ′′ for all S ⊆ C(E)×EnvE , and so {|ηiXi(xi).ψi|}Eπ′ =

sol i(E
′).

Let us now focus on the second part. We prove that for all i ∈ [0,m], if the proposition

environment π coincides with the one in the system Ei on the free propositions of every

134

formula φEi
k , then sol j(Ei) = {|φEi

j |}Eπ for all j ∈ [1, i]. This implies that sol i(E) = {|φEi |}Eπ
for all i ∈ [1,m] since E = Em and, as we already mentioned, every formula in φE has no

free propositions, hence the condition on the proposition environment π vacuously holds for

any one. The proof proceeds by induction on i.

(i = 0) The property vacuously holds.

(i > 0) We assume that π coincides with the proposition environment in the system Ei

on the free propositions of every formula φEi
k . Actually, for convenience we assume that the

two proposition environments are exactly the same π. This is not a restriction because the

evaluations of propositions appearing free in the formulae are already guaranteed to be the

same and all the other are irrelevant. Then, we need to show that sol j(Ei) = {|φEi
j |}Eπ for

all j ∈ [1, i].

First we show the property for the last index j = i. By definition of solution we have

sol i(Ei) = ηi(λS.{|ψi|}Eπ′) where π′ = π[Xi(xi) ↦→ S][Xk(xk) ↦→ solk(E
′)]∀k∈[1,i−1] and E′ =

Ei[vi := S]. By Definition 7.23 we know that φEi
i = ηiXi(xi).ψi[Xk(xk) := φ

Ei−1

k]∀k∈[1,i−1].

Then, the denotation of the formula is

{|φEi
i |}Eπ = ηi(λS.{|ψi[Xk(xk) := φ

Ei−1

k]∀k∈[1,i−1]|}Eπ[Xi(xi) ↦→S]).

By repeatedly applying Lemma 4.1(2) we obtain that, for all S ⊆ C(E) × EnvE

{|ψi[Xk(xk) := φ
Ei−1

k]∀k∈[1,i−1]|}Eπ[Xi(xi)↦→S] = {|ψi|}Eπ′′

where π′′ = π[Xi(xi) ↦→ S][Xk(xk) ↦→ {|φEi−1

k |}Eπ[Xi(xi)↦→S]]∀k∈[1,i−1]. Now we just need

to show that π′′ = π′, that is, {|φEi−1

k |}Eπ[Xi(xi)↦→S] = solk(E
′) for all k ∈ [1, i− 1] and

S ⊆ C(E)×EnvE . Observe that by definition of substitution and Definition 7.23 necessarily

the systems E′ is Ei−1 with the proposition environment π[Xi(xi) ↦→ S]. Then, since

Ei−1 has i− 1 equations, by inductive hypothesis we immediately conclude that solk(E
′) =

{|φEi−1

k |}Eπ[Xi(xi) ↦→S] for all S ⊆ C(E) × EnvE and k ∈ [1, i− 1], hence π′′ = π′, and so

sol i(Ei) = {|φEi
i |}Eπ.

Now, it is easy to extend the result to the other j ∈ [1, i− 1]. Indeed, since we just proved

that solk(Ei[vi := S]) = {|φEi−1

k |}Eπ[Xi(xi)↦→S] for all S ⊆ C(E) × EnvE and k ∈ [1, i− 1], it is

enough to observe that, if we take S = sol i(Ei) = {|φEi
i |}Eπ, we obtain that for all j ∈ [1, i− 1]

sol j(Ei[vi := sol i(Ei)]) = sol j(Ei) = {|φEi−1

j |}E
π[Xi(xi)↦→{|φEi

i |}Eπ]
= {|φEi−1

j [Xi(xi) := φEi
i]|}Eπ

where the last equality holds by Lemma 4.1(2). Then, noticing that by Definition 7.23 we

have φEi
j = φ

Ei−1

j [Xi(xi) := φEi
i], we can conclude that sol j(Ei) = {|φEi

j |}Eπ.

7.5.2 Fixpoint game for model checking

We first discuss the model-checking of Lhp over event structures using the fixpoint game.

Since the game may in general be infinite, we will need some countermeasure similar to

those adopted in the other procedures. We close the section with a(n informal) comparison

135

between the model-checking techniques presented in the previous chapters and the one

proposed here.

Given a closed fixpoint formula φ of Lhp, using the procedure presented in the previous

subsection, we get the system of m equations associated with φ, and by Proposition 7.5 we

are guaranteed that the denotation of φ is exactly the solution of the m-th equation of the

system. Furthermore, the lattice over which the system is defined is clearly continuous since

it is a powerset lattice. Taking the (possibly infinite) set of all singletons as a basis, we can

build the fixpoint game corresponding to the system. Then, if ∃ has a winning strategy from

a position (b,m), we know that the initial formula holds in b. This means that searching

for a winning strategy from such a position corresponds, in some sense, to solving a local

model-checking problem. Moreover, computing the progress measure associated with the

fixpoint game would allow us to perform the global model-checking of the formula over the

model.

In principle everything works fine, however, notice that, without any countermeasure,

also in this case we encounter the usual problem with infiniteness that we already had with

the other methods: for every infinite PES and fixpoint formula the game graph is infinite.

Let E be a PES, let φ be a closed fixpoint formula of Lhp and let E be the corresponding

system of m equations as in Definition 7.22 with equational form {Xi(xi) =ηi θi}i∈[1,m].

Then, equations of the system are over the powerset lattice L = ⟨2C(E)×EnvE ,⊆⟩, with basis

B = {{(C, ρ)} | C ∈ C(E) ∧ ρ ∈ EnvE}. Clearly, when the PES is infinite, the lattice and

the basis are also infinite, and so are the positions of the fixpoint game. While the game

is still sound and complete by continuity of the lattice, practical attempts to search for

winning strategies from some positions may lead to non-termination.

As we did for the other methods we can avoid this problem by considering positions

up to some equivalence preserving, in this case, winning strategies. We already know

that configurations, with isomorphic residuals pointed by the free variables of a formula,

either both satisfy the formula or none of them does (see Lemma 5.3). Since each position

({(C, ρ)}, i) of player ∃ is associated with the formula θi in the i-th equation Xi(xi) =ηi θi

of the system, and we know that the game is sound and complete, then for two positions

({(C1, ρ1)}, i) and ({(C2, ρ2)}, i), such that the corresponding xi-pointed configurations are

≈r-equivalent ⟨C1, ρ1|xi⟩ ≈r ⟨C2, ρ2|xi⟩, either player ∃ has a winning strategy from both or

none of them. Thus we can safely quotient the positions of player ∃ by considering, for each

i ∈ [1,m], only the ≈r-equivalence classes of the corresponding xi-pointed configurations.

Positions of ∀ can also be quotiented by deeming equivalent positions from which the possible

moves of ∀ are the same up to the equivalence above. Then, the formal definition of the

equivalence over positions of the game is given below.

Definition 7.24 (strategy equivalence). Let E be a PES, let φ be a closed fixpoint formula of

Lhp and let E be the corresponding system of m equations with equational form {Xi(xi) =ηi

θi}i∈[1,m]. We say that two positions p, p′ of the same player in the fixpoint game are strategy

136

equivalent, written p ≈g p
′, when either

• p, p′ are positions of player ∃ with the same index i, then p = ({(C, ρ)}, i) and p′ =

({(C ′, ρ′)}, i), and ⟨C, ρ|xi⟩ ≈r ⟨C ′, ρ′|xi⟩

• p, p′ are positions of player ∀ and the sets of possible moves of ∀ from p and p′ are the

same up to ≈g-equivalence, i.e., A(p)
/≈g

= A(p′)
/≈g

.

Note that the definition above is well-given because moves of player ∀ are always posi-

tions of player ∃.

Let G be the fixpoint game for a system of equations like the one given before. The

positions of the quotient game G/≈g are the equivalence classes of the positions of G with

respect to ≈g. In G/≈g the moves of ∀ from a position [p]≈g are simply the quotient A(p)
/≈g

of the moves in G from any position in that equivalence class (since by definition they

are all the same up to ≈g). Instead, the moves of ∃ from a position [p]≈g are defined by

E([p]≈g) = {[q]≈g | p′ ≈g p ∧ q ∈ E(p′)}. We can show that winning strategies for player ∃
are preserved in the quotient game (and vice versa).

Proposition 7.6 (strategy preservation). Let E be a PES, let φ be a closed fixpoint for-

mula of Lhp and let E be the corresponding system of m equations with equational form

{Xi(xi) =ηi θi}i∈[1,m]. There is a winning strategy for ∃ from a position ({(C, ρ)}, i) in

the fixpoint game associated with E if and only if there is one from [({(C, ρ)}, i)]≈g in the

quotient game.

Proof. The proof is similar to that of Theorem 6.1 combined with that of Proposition 6.1.

The reasoning is roughly as follows. Assume that there is a winning strategy for ∃ from

position ({(C, ρ)}, i), then there is one, say ς, such that for all p, p′ ∈ B × [1,m], if p ≈g p
′

then ς(p) ≈g ς(p
′). Then, the function ς ′ defined by ς ′([p]≈g) = [ς(p)]≈r is well-defined and it

is a winning strategy for ∃ from [({(C, ρ)}, i)]≈g in the quotient game, since ς was a winning

strategy for ∃ from ({(C, ρ)}, i).
Assume that there is a winning strategy ς for ∃ from [({(C, ρ)}, i)]≈g in the quotient

game, then we can define a strategy ς ′ : B × [1,m] → Lm as follows. For every (b, i) ∈
B × [1,m], if ς([(b, i)]≈g) = [S]≈g , where S ∈ Lm, then there must exists (b′, i) ∈ B × [1,m]

such that (b′, i) ≈g (b, i) and S ∈ E(b′, i). For all j ∈ [1,m] let S′
j = {(C ′, ρ′) | ∃ (C ′′, ρ′′) ∈

Sj . ⟨C ′′, ρ′′|xj ⟩ ≈r ⟨C ′, ρ′|xj ⟩}, then clearly S ⊆ S′ ∈ E(b′, i), which means that b′ ∈ {|θi|}Eπ′

where π′ = π[Xj(xj) ↦→ S′
j]∀j∈[1,m] for any π. Since π′ is saturated, by Lemma 5.3 we

have that also b ∈ {|θi|}Eπ′ , and thus S′ ∈ E(b, i). And so we may define the strategy as

ς ′(b, i) = S′. Observing that by definition of S′ it holds also A(ς ′(b, i))
/≈g

= A(S)
/≈g

=

A(ς([(b, i)]≈g)) for all (b, i) ∈ B × [1,m], we can deduce that the strategy ς ′ is winning for

∃ from ({(C, ρ)}, i), since ς was a winning strategy for ∃ from [({(C, ρ)}, i)]≈g .

Moreover, when the PES is strongly regular, it is easy to see that the quotient game is

finite.

137

Proposition 7.7 (quotient game finiteness). Let E be a strongly regular PES, let φ be a

closed fixpoint formula of Lhp and let E be the corresponding system of m equations. The

equivalence ≈g on the fixpoint game associated with E is of finite index.

Proof. Observe that, for a fixed bounded set of event variables x, by Lemma 5.4 there

is a finite number of ≈r-equivalence classes of x-pointed configurations. Since the event

variables xi associated with each equation are bounded, we immediately deduce that there

is a finite number of ≈g-equivalence classes of positions ({(C, ρ)}, i) ∈ B × [1,m] of player

∃. In turn, since for every position S of ∀ we know that A(S) ⊆ B × [1,m], this implies

that also there is a finite number of ≈g-equivalence classes of positions of ∀.

Together these results allow us to verify whether a strongly regular PES E satisfies a

closed formula φ of Lhp, by searching for a winning strategy for player ∃ from position

[({(∅, ρ)},m)]≈g in the quotient game, where the environment ρ is irrelevant since φ is

closed.

To get a better understanding, we show how this works with an example. Consider the

formula ⟨|bx|⟩φ from Subsection 4.3.3, where φ = νX(x).ψ and ψ = µY (x).(⟨|x < b y|⟩X(y)∨
⟨| z|⟩Y (x)), and the PES E3 in Figure 3.1c. Note that the formula can be rewritten, without

changing its denotation, as µZ.⟨|bx|⟩φ, in order to have a fixpoint formula. Then, the

corresponding equational form would be

Y (x) =µ ⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)

X(x) =ν Y (x)

Z =µ ⟨|bx|⟩X(x)

We call the right-hand side of the three equations θY , θX and θZ , respectively. Fixing the

model E3, this can be interpreted as the system E, over the powerset lattice L = 2C(E3)×EnvE3

with the set of all singletons as basis B, given as

v1 =µ {|⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)|}Eπ[X(x)↦→v2][Y (x)↦→v1]

v2 =ν {|Y (x)|}Eπ[Y (x)↦→v1]

v3 =µ {|⟨|bx|⟩X(x)|}Eπ[X(x)↦→v2]

where π is irrelevant and for each equation we specified only the evaluations for propositions

appearing in the corresponding subformula. For instance, there is no evaluation for Z in

any proposition environment since the proposition Z does not appear in any subformula.

Supposing that we want to verify that E3 satisfies (µZ.) ⟨|bx|⟩φ, in Figure 7.5 we depict

a relevant part of the corresponding fixpoint game for plays starting from the position

({(∅, ρ)}, 3).

In the figure, the two curly lines represent moves obtained via the quotient, that is, moves

that would actually go into another position that, however, is equivalent to the one where the

arc actually goes. For instance, from position ({({b0}, ρ[x ↦→ b0])}, 1) player ∃ can move to

(∅, {({b0, b1}, ρ[x ↦→ b1])}, ∅), which is ≈g-equivalent to (∅, {({b0}, ρ[x ↦→ b0])}, ∅) because

138

({(∅, ρ)}, 3) (∅, {({b0}, ρ[x ↦→ b0])}, ∅) ({({b0}, ρ[x ↦→ b0])}, 2)

({({b0}, ρ[x ↦→ b0])}, ∅, ∅)({({b0}, ρ[x ↦→ b0])}, 1)

Figure 7.5: Quotient game obtained from the infinite fixpoint game for µZ.⟨|bx|⟩φ in E3 via

strategy equivalence.

from there the only possible move of ∀ is ({({b0, b1}, ρ[x ↦→ b1])}, 2), whose corresponding

x-pointed configuration ⟨{b0, b1}, ρ[x ↦→ b1]|x⟩ is ≈r-equivalent to the one associated with

the position ({({b0}, ρ[x ↦→ b0])}, 2). Therefore, the two positions of ∀ are merged and the

arc from position ({({b0}, ρ[x ↦→ b0])}, 1) actually loops back to (∅, {({b0}, ρ[x ↦→ b0])}, ∅)

(taken as representative of their equivalence class). From ({({b0}, ρ[x ↦→ b0])}, 1) there is

also another possible move for ∃, represented by the dashed line, which would go to position

({({b0, c}, ρ[x ↦→ b0, z ↦→ c])}, ∅, ∅) and then ({({b0, c}, ρ[x ↦→ b0, z ↦→ c])}, 1) after the only

possible move of ∀. This position is not equivalent to any other in the figure, and it would

lead to other reachable positions of the game, but they are not shown since they are not

relevant in this case. Indeed, with just the displayed positions, we can already establish

that ∃ has a winning strategy from ({(∅, ρ)}, 3). Such strategy, highlighted by the bold

arrows in the figure, is given by the function ς : B × [1, 3] → L3 defined by

ς({(∅, ρ)}, 3) = (∅, {({b0}, ρ[x ↦→ b0])}, ∅)

ς({({b0}, ρ[x ↦→ b0])}, 2) = ({({b0}, ρ[x ↦→ b0])}, ∅, ∅)

ς({({b0}, ρ[x ↦→ b0])}, 1) = (∅, {({b0, b1}, ρ[x ↦→ b1])}, ∅) ≈g (∅, {({b0}, ρ[x ↦→ b0])}, ∅).

On all other positions ς can have any value since they are irrelevant. If ∃ follows the

strategy ς, starting from ({(∅, ρ)}, 3), we would obtain an infinite play where the highest

index occurring infinitely often is 2, which is the index of a ν-equation, thus ∃ wins.

Comparing Figure 7.5 with Figure 6.2, showing the (quotiented) automaton built for

the same formula and model, it should be recognisable that the underlying structure is the

same. Roughly, positions of player ∃ here correspond to nodes of the automaton whose

formula is a proposition. Moreover, the quotient we obtained in the case of the automaton

is clearly very similar to the one for this game. It can be seen that accepting runs in the

automaton correspond, in some sense, to trees of plays won by ∃, where ∀ plays all possible

moves each time. Indeed, both the language of the automaton in Figure 6.2 is non-empty,

139

and player ∃ has a winning strategy from ({(∅, ρ)}, 3) in the game above. This should not

be surprising since the acceptance conditions of NPAs is similar to the win condition for

player ∃ in the fixpoint game.

We conclude by informally discussing also the relation between the fixpoint game and

tableaux for Lhp. We do this by using again the example above. Recall that the task was

to verify that the PES E3 in Figure 3.1c satisfies the formula ⟨|bx|⟩φ, where φ = νX(x).ψ

and ψ = µY (x).(⟨|x < b y|⟩X(y) ∨ ⟨| z|⟩Y (x)). A successful tableau for such formula and

model is given in Figure 5.2. It is not difficult to see that such tableau corresponds to

the winning strategy ς for ∃ given above. In fact, consider the reduced tree in Figure 7.6,

which is obtained from the tableau in Figure 5.2 by keeping only the sequents whose for-

mula is a proposition, and adding a sequent for the dummy proposition Z at the root.

Each sequent C, ρ,∆ |= P (p), where P is one of the three propositions, can be seen

in the fixpoint game as a position ({(C, ρ)}, i) of player ∃, where i ∈ [1, 3] is the in-

dex of the equation corresponding to proposition P . The successor sequents correspond

to the move from ({(C, ρ)}, i) prescribed by the strategy ς. In this specific case all se-

quents have just one successor, so the strategy is very simple. For instance, the sequent

{b0}, ρ[x ↦→ b0],∆′′ |= Y (x) corresponds to the position ({({b0}, ρ[x ↦→ b0])}, 1). The

successor {b0, b1}, ρ[x ↦→ b0, y ↦→ b1],∆′′ |= X(y) determines the move prescribed by the

strategy, that is, ς({({b0}, ρ[x ↦→ b0])}, 1) = (∅, {({b0, b1}, ρ[x ↦→ b1])}, ∅), where, techni-

cally, variable y in the environment has been renamed to x due to the difference between

the propositions X(y) in the sequent and X(x) of the second equation of the system. In

general, up to the due renamings of event variables, positions of the game and sequents

of tableaux share the same intimate relationship observed before with automata. Indeed,

it can also be seen that plays in the fixpoint game correspond, in some sense, to paths in

reduced tableaux (not necessarily successful, e.g., plays won by player ∀). In this case, for

example, the only path in the reduced tableau in Figure 7.6 corresponds to the play where

player ∃ follows the strategy ς.

∅, ρ,∆ |= Z

{b0}, ρ[x ↦→ b0],∆′ |= X(x)

{b0}, ρ[x ↦→ b0],∆′′ |= Y (x)

{b0, b1}, ρ[x ↦→ b0, y ↦→ b1],∆′′ |= X(y)

Figure 7.6: Reduced tree obtained from a successful tableau for µZ.⟨|bx|⟩φ in E3.

140

Chapter 8

Related logics

In this final chapter of the thesis we study some related work on logics for true concurrency.

We review some other expressive logics for true concurrency from the literature, comparing

their expressive power with that of Lhp. All the logics that will be presented are event-based,

naturally interpreted over event structures, so that we can easily compare them with Lhp.
Furthermore, they are all modal logics, therefore the main differences between them and Lhp
lie in the modalities. Then, we show how Lhp can be extended with operators taken from

the other logics inexpressible in Lhp, obtaining in this way a more powerful logic for true

concurrency. We conclude proving that the model-checking problem in the extended logic

is still decidable over strongly regular event structures, by providing a decision procedure

based on an adaptation of one of those presented in the previous chapters.

8.1 Event identifier logic

In [PU14] the authors propose an extension of HML called event identifier logic (EIL),

originally introduced in [PU11]. The most relevant difference with respect to Lhp is that

EIL allows for forward as well as backward modalities. The first are alike those of HML,

the second instead allow to reverse steps already executed, under suitable conditions. These

operators make the logic sufficiently expressive to provide a logical characterisation of hhp-

bisimilarity, intuitively because the possibility of performing backward steps can be a mean

of exploring alternative different futures.

Similarly to Lhp, modal operators of EIL include event variables, taken from a set Var ,

which can be bound to events in computations. The diamond forward modality ⟨x : a⟩⟩φ
declares the executability of an a-labelled event, which is bound to variable x, and then φ

must hold in the resulting configuration. The diamond backward modality ⟨⟨x⟩φ requires

that the event bound to x can be undone from the current configuration, reaching a state

where φ holds. There is also a third operator (x : a)φ which states that there is an a-labelled

event executed in the past, such that, binding it to x, the formula φ holds. Originally in

[PU11, PU14] the logic was introduced with negation. In accordance with the rest of the

141

thesis, here we give the syntax of EIL in positive form, without negation, with all due dual

operators.

Definition 8.1 (syntax of EIL). The syntax of EIL over the sets of event variables Var

and labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨x : a⟩⟩φ | (x : a)φ | ⟨⟨x⟩φ |

F | φ ∨ φ | [x : a]]φ | |x : a|φ | [[x]φ

The free variables of a formula can be defined in the obvious way, similarly to Lhp
(Definition 4.7). Just observe that fv(⟨x : a⟩⟩φ) = fv((x : a)φ) = fv(φ) ∖ {x}, while

fv(⟨⟨x⟩φ) = fv(φ)∪{x}, and the same for the dual operators. Substitutions of variables are

also allowed analogously to Lhp.
The satisfaction is again defined with respect to a configuration and an environment.

Therefore, the semantics of formulae of EIL over a PES E are sets of pairs in C(E) ×EnvE .

Definition 8.2 (semantics of EIL). Let E be a PES. The denotation of a formula in EIL

is given by the function {|·|}E : EIL → 2C(E)×EnvE defined inductively as follows:

{|T|}E = C(E) × EnvE

{|F|}E = ∅

{|φ1 ∧ φ2|}E = {|φ1|}E ∩ {|φ2|}E

{|φ1 ∨ φ2|}E = {|φ1|}E ∪ {|φ2|}E

{|⟨x : a⟩⟩φ|}E = {(C, ρ) | ∃ e ∈ E. C
e−→a C

′ ∧ (C ′, ρ[x ↦→ e]) ∈ {|φ|}E}

{|[x : a]]φ|}E = {(C, ρ) | ∀ e ∈ E. C
e−→a C

′ ⇒ (C ′, ρ[x ↦→ e]) ∈ {|φ|}E}

{|(x : a)φ|}E = {(C, ρ) | ∃ e ∈ C. λ(e) = a ∧ (C, ρ[x ↦→ e]) ∈ {|φ|}E}

{||x : a|φ|}E = {(C, ρ) | ∀ e ∈ C. λ(e) = a ⇒ (C, ρ[x ↦→ e]) ∈ {|φ|}E}

{|⟨⟨x⟩φ|}E = {(C, ρ) | ∃C ′ ∈ C(E). C ′ ρ(x)−−→ C ∧ ρ(fv(φ)) ⊆ C ′ ∧ (C ′, ρ) ∈ {|φ|}E}

{|[[x]φ|}E = {(C, ρ) | ∀C ′ ∈ C(E). (C ′ ρ(x)−−→ C ∧ ρ(fv(φ)) ⊆ C ′) ⇒ (C ′, ρ) ∈ {|φ|}E}

When (C, ρ) ∈ {|φ|}E we say that the PES E satisfies the formula φ in the configuration C

and environment ρ. When φ is closed, hence the environment ρ is irrelevant, and E satisfies

the formula φ in the empty configuration, we simply say that E satisfies φ.

The formula ⟨x : a⟩⟩φ holds in (C, ρ) when from configuration C an a-labelled event e

can be executed producing a configuration C ′ = C ∪ {e} which, paired with the updated

environment ρ[x ↦→ e], satisfies the rest of the formula φ. Dually, [x : a]]φ requires that all

a-labelled events executable from C lead to a configuration where φ holds.

The operator (x : a)φ is satisfied by (C, ρ) if there exists an a-labelled event e in the

configuration C such that the environment produced from ρ by binding e to the variable x,

i.e., ρ[x ↦→ e], paired with the configuration C, satisfies φ. Dually, |x : a|φ requires that φ

142

holds on the environments obtained by all the possible different bindings of the variable x

to an a-labelled event in C.

The backward modality ⟨⟨x⟩φ holds in (C, ρ) if there is a configuration C ′ from where

the event ρ(x) could have been executed in order to produce the configuration C (i.e.,

C ′ = C ∖ {ρ(x)} ∈ C(E)), and then the pair (C ′, ρ) satisfies the formula φ, with the

additional requirement that the reversed event e is not bound to variables appearing free

in φ. The latter is required because free variables must always be bound to events in

the configuration, and this is not guaranteed any more since the backward modalities can

remove events from the configurations by reversing them. The dual [[x]φ requires that φ

holds on all the configurations from where it is possible to execute the event ρ(x), reaching

the configuration C, and the aforementioned constrain on free variables still holds. Note

that if such a configuration exists, it must be C ∖ {ρ(x)}, otherwise the formula vacuously

holds.

Notice that the forward and backward modalities are not capable to assert explicitly the

dependency relations between the computational steps. However, causality and concurrency

between actions can be captured by properly combining such operators. For example, the

formula ⟨x : a⟩⟩⟨y : a⟩⟩⟨⟨x⟩T expresses the possibility to execute two a-labelled events and

then reverse the first one. This necessarily requires that the two events are concurrent,

otherwise the first could not be reversed after executing the second one.

As already mentioned, the logical equivalence induced by EIL is hhp-bisimilarity. In

[PU11, PU14] fragments of the logic are identified which correspond to other true concurrent

behavioural equivalences. In particular, here we report the fragment, referred to as EILh,

characterising hp-bisimilarity. The operators of EILh are the same of EIL, however forward

modalities are no longer allowed after backward modalities. Therefore, the syntax of EILh

can be formulated as follows.

Definition 8.3 (syntax of EILh). The syntax of EILh over the sets of event variables Var

and labels Λ is defined as follows:

φ ::= T | F | φ ∧ φ | φ ∨ φ | ⟨x : a⟩⟩φ | [x : a]]φ | (x : a)φ | |x : a|φ | φr

where φr , the reverse-only formulae, are defined by

φr ::= T | F | φr ∧ φr | φr ∨ φr | (x : a)φr | |x : a|φr | ⟨⟨x⟩φr | [[x]φr

Since only reverse-only formulae can contain backward modalities, and their syntax does

not include forward modalities, it follows that forward modalities cannot occur after any

backward modalities. Variable bindings are still permitted in reverse-only formulae via the

operator (x : a) and its dual version.

The expressive power of full EIL is clearly greater than that of Lhp, since the induced

logical equivalence is hhp-bisimilarity, while Lhp induces the coarser hp-bisimilarity. An

interesting problem would be to study the relation between EIL and the whole logic in

143

[BC14] whose induced logical equivalence is hhp-bisimilarity as well. Although hinted in

[BC14], the formal relationship between such logics is still to be understood and represents

a direction of future research. Here, instead, in the spirit of the work, we focus on the

fragment EILh inducing hp-bisimilarity for the comparison with Lhp. In the following we

compare the two logics, showing that EILh can be fully encoded in Lhp. Moreover, the

model-checking problem in EIL (and EILh) has not yet been investigated. As a secondary

result, in the next subsection we also show that the model-checking in EILh is decidable

over strongly regular PESs.

8.1.1 Encoding EILh

Here we show that EILh can be encoded in Lhp. Therefore, we know that every property

expressible in EILh is also captured by some formula of Lhp, i.e., Lhp is at least as expressive

as EILh. It also implies that the model-checking in EILh is decidable over strongly regular

PESs, by reduction to Lhp.
The encoding uses functions to remember the variables bound by forward modalities,

their causal dependencies with past variables, and their labels. Function γ : Var → 2Var

associates variables with the set of past variables asserted to cause them. Function l :

Var → Λ associates variables with their labels. Note that γ and l are partial functions

updated at every forward or backward step so that they are defined only on the subset of

variables which, at that point, would be bound to events in the configuration, represented

by their domain. We assume that in every formula of EILh different bound variables have

different names. This requirement can always be fulfilled by alpha-renaming. Then, the

encoding procedure is as follows:

[T](γ, l) = T [F](γ, l) = F

[φ ∧ ψ](γ, l) = [φ](γ, l) ∧ [ψ](γ, l) [φ ∨ ψ](γ, l) = [φ](γ, l) ∨ [ψ](γ, l)

[⟨x : a⟩⟩φ](γ, l) =
⋁︂

y⊆dom(γ)

⟨|y,yc < ax|⟩ [φ](γ[x ↦→ y], l[x ↦→ a])

[[x : a]]φ](γ, l) =
⋀︂

y⊆dom(γ)

[[y,yc < ax]] [φ](γ[x ↦→ y], l[x ↦→ a])

[(x : a)φ](γ, l) =
⋁︂

z∈dom(γ). l(z)=a

[φ[z⧸x]](γ, l)

[|x : a|φ](γ, l) =
⋀︂

z∈dom(γ). l(z)=a

[φ[z⧸x]](γ, l)

[⟨⟨x⟩φ](γ, l) =

⎧⎨⎩[φ](γ|{x}c , l|{x}c) if ∀ z ∈ dom(γ). x /∈ γ(z) and fv(φ) ⊆ {x}c

F otherwise

[[[x]φ](γ, l) =

⎧⎨⎩[φ](γ|{x}c , l|{x}c) if ∀ z ∈ dom(γ). x /∈ γ(z) and fv(φ) ⊆ {x}c

T otherwise

144

where V c = dom(γ) ∖ V for a set of variables V , empty conjunctions are always true and

empty disjunctions are always false.

The procedure allows for the encoding of every closed formula φ of EILh by computing

the formula [φ](∅, ∅) of Lhp.
In order to prove the correctness of the encoding procedure, we need some technical

lemmata. First, we show that the encodings of reverse-only formulae actually are either

always satisfied or never, depending on the formula and the functions γ and l.

Lemma 8.1 (encoding of a reverse-only formula is T or F). Let E be a PES and let φ be

a reverse-only formula. Given γ and l s.t. fv(φ) ⊆ dom(γ) = dom(l), either {|[φ](γ, l)|}E =

C(E) × EnvE or {|[φ](γ, l)|}E = ∅.

Proof. The proof proceeds by induction on the formula φ, we show only some significant

cases:

• φ = ψ1 ∧ ψ2 and [φ](γ, l) = [ψ1](γ, l) ∧ [ψ2](γ, l)

By definition of the semantics {|[ψ1](γ, l) ∧ [ψ2](γ, l)|}E = {|[ψ1](γ, l)|}E ∩{|[ψ2](γ, l)|}E .

Since by inductive hypothesis {|[ψi](γ, l)|}E = C(E) × EnvE or ∅ for all i ∈ {1, 2}, if at

least one is ∅, then also {|[φ](γ, l)|}E = ∅, otherwise {|[φ](γ, l)|}E = C(E) × EnvE . So,

we can only have {|[φ](γ, l)|}E = C(E) × EnvE or ∅.

• φ = (x : a)ψ and [φ](γ, l) =
⋁︁

z∈dom(γ).l(z)=a

[ψ[z⧸x]](γ, l)

By definition of the semantics

{|
⋁︁

z∈dom(γ).l(z)=a

[ψ[z⧸x]](γ, l)|}E =
⋃︁

z∈dom(γ).l(z)=a

{|[ψ[z⧸x]](γ, l)|}E .

Let V = {z ∈ dom(γ) | l(z) = a}, then we have two cases depending on V . If V = ∅,

then clearly {|[φ](γ, l)|}E = ∅. Otherwise, by inductive hypothesis {|[ψ[z⧸x]](γ, l)|}E =

C(E) ×EnvE or ∅ for all z ∈ V . Hence, if there is z ∈ V such that {|[ψ[z⧸x]](γ, l)|}E =

C(E)×EnvE , then {|[φ](γ, l)|}E = C(E)×EnvE , otherwise {|[φ](γ, l)|}E = ∅. So, in any

case, we have {|[φ](γ, l)|}E = C(E) × EnvE or ∅.

• φ = ⟨⟨x⟩ψ and we have two cases for [φ](γ, l)

If fv(ψ) ⊆ {x}c and for all z ∈ dom(γ), x /∈ γ(z), then [φ](γ, l) = [ψ](γ|{x}c , l|{x}c).
Otherwise, [φ](γ, l) = F. Since, in the first case, by inductive hypothesis we have

{|[ψ](γ|{x}c , l|{x}c)|}E = C(E)×EnvE or ∅, and, in the second case, by definition of the

semantics {|F|}E = ∅, then we can immediately conclude that in any case {|[φ](γ, l)|}E =

C(E) × EnvE or ∅.

Using the above result for reverse-only formulae, when the functions γ and l satisfy

some suitable properties, we can prove that the semantics of an open formula of EILh and

145

its encoding are the same by induction on the shape of the formula. Thus, we obtain the

following.

Lemma 8.2 (encoding open EILh). Let E be a PES, let φ be a formula of EILh, let (C, ρ) ∈
C(E) × EnvE , and let γ, l be s.t. fv(φ) ⊆ dom(γ) = dom(l), ρ(dom(γ)) = C, and for all

x ∈ dom(γ), ρ(γ(x)) = ⌈ρ(x)⌉ ∖ {ρ(x)} and l(x) = λ(ρ(x)). Then, (C, ρ) satisfies φ iff it

satisfies [φ](γ, l).

Proof. The proof proceeds by induction on the formula φ, we show only some significant

cases:

• φ = ψ1 ∧ ψ2 and [φ](γ, l) = [ψ1](γ, l) ∧ [ψ2](γ, l)

By definition of the semantics (C, ρ) satisfies ψ1 ∧ ψ2 iff it satisfies both ψ1 and ψ2,

which by inductive hypothesis happens iff (C, ρ) satisfies both [ψ1](γ, l) and [ψ2](γ, l),

which in turn by definition of the semantics holds iff it satisfies [ψ1](γ, l) ∧ [ψ2](γ, l).

So we conclude that (C, ρ) satisfies ψ1 ∧ ψ2 iff it satisfies [ψ1](γ, l) ∧ [ψ2](γ, l).

• φ = ⟨x : a⟩⟩ψ and [φ](γ, l) =
⋁︁

y⊆dom(γ)

⟨|y,yc < ax|⟩ [ψ](γ[x ↦→ y], l[x ↦→ a])

We show this one direction at a time. Assume that (C, ρ) satisfies ⟨x : a⟩⟩ψ. Then,

by definition of the semantics there exists an event e such that C
e−→ C ′, λ(e) = a, and

(C ′, ρ[x ↦→ e]) satisfies ψ. Since C
e−→ C ′, then we must have that (⌈e⌉ ∖ {e}) ⊆ C.

Furthermore, since by hypothesis ρ(dom(γ)) = C, then there exists y ⊆ dom(γ) such

that ρ(y) = ⌈e⌉∖ {e}, hence C
ρ(y),ρ(yc)<e−−−−−−−−→a C

′.

Observe that C ′ = C ∪ {e}, fv(ψ) ⊆ fv(φ) ∪ {x} ⊆ dom(γ) ∪ {x} = dom(γ[x ↦→ y]) =

dom(l[x ↦→ a]), ρ[x ↦→ e](x) = e, ρ(y) = ⌈e⌉∖{e}, and λ(e) = a, so all the conditions of

the hypothesis still hold on ψ, (C ′, ρ[x ↦→ e]), γ[x ↦→ y], and l[x ↦→ a]. Thus we can use

the inductive hypothesis to obtain that (C ′, ρ[x ↦→ e]) satisfies [ψ](γ[x ↦→ y], l[x ↦→ a]).

Then, since C
ρ(y),ρ(yc)<e−−−−−−−−→a C

′, by definition of the semantics we have that (C, ρ) sa-

tisfies ⟨|y,yc < ax|⟩ [ψ](γ[x ↦→ y], l[x ↦→ a]). From this and the fact that y ⊆ dom(γ),

by definition of the semantics of the disjunction we can conclude that (C, ρ) satisfies⋁︁
y⊆dom(γ)

⟨|y,yc < ax|⟩ [ψ](γ[x ↦→ y], l[x ↦→ a]).

The other direction can be proved by reversing all the implications.

• φ = (x : a)ψ and [φ](γ, l) =
⋁︁

z∈dom(γ).l(z)=a

[ψ[z⧸x]](γ, l)

We show this one direction at a time. Assume that (C, ρ) satisfies (x : a)ψ. Then,

by definition of the semantics there exists e ∈ C such that λ(e) = a and (C, ρ[x ↦→ e])

satisfies ψ. Since by hypothesis ρ(dom(γ)) = C and for all x ∈ dom(γ), l(x) = λ(ρ(x)),

then there exists z ∈ dom(γ) such that ρ(z) = e, l(z) = a. Since (C, ρ[x ↦→ e])

satisfies ψ and ρ[x ↦→ e](x) = ρ(z) = e, we may substitute z to x and have that

(C, ρ) satisfies ψ[z⧸x]. Since fv(ψ[z⧸x]) ⊆ fv(φ) ∪ {z} and z ∈ dom(γ), then the

conditions of the hypothesis still hold, and so we can use the inductive hypothesis

146

to obtain that (C, ρ) satisfies [ψ[z⧸x]](γ, l). From this and the fact that l(z) = a,

by definition of the semantics of the disjunction we can conclude that (C, ρ) satisfies⋁︁
z∈dom(γ).l(z)=a

[ψ[z⧸x]](γ, l).

The other direction can be proved by reversing all the implications.

• φ = ⟨⟨x⟩ψ and we have two cases for [φ](γ, l)

1. If fv(ψ) ⊆ {x}c and for all z ∈ dom(γ) it holds x /∈ γ(z), then [φ](γ, l) =

[ψ](γ|{x}c , l|{x}c). Since by hypothesis ρ(dom(γ)) = C and for all z ∈ dom(γ),

ρ(γ(z)) = ⌈ρ(z)⌉∖ {ρ(z)}, and we know that x /∈ γ(z), then ρ(x) is maximal in

C w.r.t. to causality. Hence ∃ C ′ = C ∖ {ρ(x)} ∈ C(E) such that C ′ ρ(x)−−→ C.

Furthermore, we know that ρ(fv(ψ)) ⊆ C ′, since fv(ψ) ⊆ {x}c and C ′ = C ∖
{ρ(x)} = ρ({x}c). Thus, by definition of the semantics we have that (C, ρ)

satisfies ⟨⟨x⟩ψ iff (C ′, ρ) satisfies ψ.

Observing also that dom(γ|{x}c) = dom(l|{x}c) = {x}c, clearly all the conditions

of the hypothesis still hold on ψ, (C ′, ρ), γ|{x}c , and l|{x}c . Then by inductive

hypothesis we have that (C ′, ρ) satisfies ψ iff it satisfies [ψ](γ|{x}c , l|{x}c). From

this and the previous fact we obtain that (C, ρ) satisfies φ iff (C ′, ρ) satisfies

[φ](γ, l). Now, recalling that by definition of the syntax φ is guaranteed to

be a reverse-only formula, by Lemma 8.1 we know that either {|[φ](γ, l)|}E =

C(E)×EnvE or ∅. This implies that (C ′, ρ) satisfies [φ](γ, l) iff (C, ρ) satisfies it.

And so we can conclude that (C, ρ) satisfies φ iff it satisfies [φ](γ, l).

2. Otherwise, [φ](γ, l) = F. Clearly (C, ρ) never satisfies F. Then we need to prove

that (C, ρ) also never satisfies ⟨⟨x⟩ψ. We split this case in three more cases:

(a) if fv(ψ) ⊈ {x}c, since fv(ψ) ⊆ fv(φ) and by hypothesis fv(φ) ⊆ dom(γ),

then we must have that x ∈ fv(ψ). Then we have two cases, either ρ(x)

is maximal in C w.r.t. to causality or not. In the first case, we have that

∃ C ′ = C ∖ {ρ(x)} ∈ C(E) such that C ′ ρ(x)−−→ C but ρ(fv(ψ)) ⊈ C ′ since

ρ(x) /∈ C ′. In the second, such a C ′ does not exists. So, in both cases, by

definition of the semantics (C, ρ) does not satisfy ⟨⟨x⟩ψ
(b) if fv(ψ) ⊆ {x}c but there exists z ∈ dom(γ) such that x ∈ γ(z), since by

hypothesis ρ(γ(z)) = ⌈ρ(z)⌉ ∖ {ρ(z)} and ρ(x), ρ(z) ∈ C, then ρ(x) causes

ρ(z), hence ρ(x) is not maximal in C w.r.t. to causality. Thus, ∄ C ′ ∈ C(E)

such that C ′ ρ(x)−−→ C. So, by definition of the semantics (C, ρ) does not

satisfy ⟨⟨x⟩ψ.

Now we can easily deduce the correctness of the encoding for closed formulae of EILh,

observing that the conditions in the lemma above vacuously hold when C = γ = l = ∅.

147

Proposition 8.1 (encoding EILh). Let E be a PES and let φ be a closed formula of EILh.

Then, E satisfies φ if and only if it satisfies [φ](∅, ∅).

Proof. Corollary of Lemma 8.2.

Since we can encode any closed formula of EILh into a (closed) formula of Lhp, we can

also apply any of the model-checking techniques discussed in the previous chapters to such

a formula. For instance, we have the following.

Theorem 8.1 (model-checking EILh). Given a strongly regular PES E and a closed formula

φ of EILh, the formula [φ](∅, ∅) has a successful tableau (defined as in Chapter 5) if and

only if E satisfies φ.

Proof. Corollary of Theorem 5.2 and Proposition 8.1.

We conclude this section by showing that also formulae of Lhp, without fixpoints, can be

encoded in EILh. Since, additionally, the encoding of EILh into Lhp does not use fixpoints,

this means that EILh is actually “equivalent” to the fragment of Lhp without fixpoints.

As we did in the other encoding, we use a function γ : Var → 2Var to associate variables

with the set of past variables asserted to cause them. Moreover, variables encountered

bound in modalities are recorded, in the order in which they appear, in a sequence υ.

Intuitively, υ = (v1, v2, . . . , vn) can be thought of as a totally ordered configuration, such

that if vi causes vj then i < j. Actually, υ is not needed for the encoding, but it makes the

procedure much easier. As before, γ and υ are updated after every step forward, that is,

after encountering a modality, and we assume that in every formula of Lhp different bound

variables have different names. Then, the encoding is defined as follows:

[T](γ, υ) = T [F](γ, υ) = F

[φ ∧ ψ](γ, υ) = [φ](γ, υ) ∧ [ψ](γ, υ) [φ ∨ ψ](γ, υ) = [φ](γ, υ) ∨ [ψ](γ, υ)

[⟨|x,y < a z|⟩φ](γ, υ) =⋁︂
x⊆u⊆yc

⟨z : a⟩⟩
(︁⋀︂
x∈u

[[vxn] . . . [[vx1] [[x]F ∧
⋀︂
y∈uc

⟨⟨vym⟩ . . . ⟨⟨v
y
1⟩ ⟨⟨y⟩T ∧ [φ](γ[z ↦→ u], υz)

)︁
[[[x,y < a z]]φ](γ, υ) =⋀︂

x⊆u⊆yc

[z : a]]
(︁⋁︂
x∈u

⟨⟨vxn⟩ . . . ⟨⟨vx1 ⟩ ⟨⟨x⟩T ∨
⋁︂
y∈uc

[[vym] . . . [[vy1] [[y]F ∨ [φ](γ[z ↦→ u], υz)
)︁

where V c = υ ∖ V for a set of variables V , empty conjunctions are always true and empty

disjunctions are always false, and for a variable x, the sequence (vx1 , . . . , v
x
n) is the largest

subsequence of υ such that x ∈ γ(vxi) for all i ∈ [1, n].

Then, the encoding of a closed formula φ of Lhp without fixpoints is obtained by compu-

ting the formula [φ](∅, ϵ). Observe that the encoding of such a formula φ is always a formula

148

of EILh. In fact, since backward modalities are only used properly separated from forward

modalities, it is immediate to see that the resulting formulae comply with the syntax of

EILh.

In order to prove the correctness of the encoding, first, we show that the semantics of

an open formula without fixpoints of Lhp and its encoding are the same by induction on

the shape of the formula. Thus, we obtain the following.

Lemma 8.3 (encoding open Lhp). Let E be a PES, let φ be a formula of Lhp without

fixpoints or propositions, let (C, ρ) ∈ C(E)×EnvE , and let γ, υ be s.t. |υ| = |dom(γ)| = |C|,
fv(φ) ⊆ υ = dom(γ), ρ(υ) = C, and for all x, y ∈ υ, ρ(γ(x)) = ⌈ρ(x)⌉ ∖ {ρ(x)} and if

x ∈ γ(y) then x comes before y in υ. Then, (C, ρ) satisfies φ iff it satisfies [φ](γ, υ).

Proof. The proof proceeds by induction on the formula φ, we show only some significant

cases:

• φ = ψ1 ∧ ψ2 and [φ](γ, υ) = [ψ1](γ, υ) ∧ [ψ2](γ, υ)

By definition of the semantics (C, ρ) satisfies ψ1 ∧ ψ2 iff it satisfies both ψ1 and

ψ2. Since γ and υ are unchanged, all conditions on them are still preserved, thus

by inductive hypothesis we have that (C, ρ) satisfies ψ1 and ψ2 iff it satisfies both

[ψ1](γ, υ) and [ψ2](γ, υ), which in turn by definition of the semantics holds iff it sa-

tisfies [ψ1](γ, υ)∧ [ψ2](γ, υ). So we conclude that (C, ρ) satisfies ψ1 ∧ψ2 iff it satisfies

[ψ1](γ, υ) ∧ [ψ2](γ, υ).

• φ = ⟨|x,y < a z|⟩ψ and [φ](γ, υ) =⋁︂
x⊆u⊆yc

⟨z : a⟩⟩
(︁⋀︂
x∈u

[[vxn] . . . [[vx1] [[x]F ∧
⋀︂
y∈uc

⟨⟨vym⟩ . . . ⟨⟨v
y
1⟩ ⟨⟨y⟩T ∧ [ψ](γ[z ↦→ u], υz)

)︁
We show one direction at a time. Assume that (C, ρ) satisfies ⟨|x,y < a z|⟩ψ. Then, by

definition of the semantics there exists an event e ∈ E [C] such that C
ρ(x),ρ(y)<e−−−−−−−−→a C

′

and (C ′, ρ[z ↦→ e]) satisfies ψ. Since C
ρ(x),ρ(y)<e−−−−−−−−→a C ′, then we must have that

ρ(x) ⊆ (⌈e⌉ ∖ {e}) ⊆ (C ∖ ρ(y)). Furthermore, since by hypothesis fv(φ) ⊆ υ and

ρ(υ) = C, then there exists u such that x ⊆ u ⊆ yc and ρ(u) = ⌈e⌉ ∖ {e}, hence

C
ρ(u),ρ(uc)<e−−−−−−−−−→a C

′.

Let θ1 =
⋀︁
x∈u[[vxn] . . . [[vx1] [[x]F and θ2 =

⋀︁
y∈uc⟨⟨vym⟩ . . . ⟨⟨vy1⟩ ⟨⟨y⟩T. We proceed by

separately proving that (C ′, ρ[z ↦→ e]) satisfies θ1, θ2 and [ψ](γ[z ↦→ u], υz).

– We show that for all x ∈ u, (C ′, ρ[z ↦→ e]) satisfies [[vxn] . . . [[vx1] [[x]F. Assume

that there exists a sequence of transitions C0
ρ(vx1)−−−→ C1

ρ(vx2)−−−→ . . .
ρ(vxn)−−−→ Cn such

that Cn = C ′. Note that if such a sequence of transitions would not exist,

then by definition of the semantics of the backward box modality we would

immediately have that (C ′, ρ[z ↦→ e]) vacuously satisfies [[vxn] . . . [[vx1] [[x]F. Recall

that (vx1 , . . . , v
x
n) is a subsequence of υ. Since z /∈ υ, we must have that ρ[z ↦→

149

e](z) = e ∈ C0 = C ′ ∖ {vx1 , . . . , vxn}. Recalling also that ρ(x) < e because x ∈ u,

then the formula [[x]F must be vacuously satisfied by (C0, ρ[z ↦→ e]). And so, by

definition of the semantics we have that (C ′, ρ[z ↦→ e]) satisfies [[vxn] . . . [[vx1] [[x]F.

– We show that for all y ∈ uc, (C ′, ρ[z ↦→ e]) satisfies ⟨⟨vym⟩ . . . ⟨⟨vy1⟩ ⟨⟨y⟩T, where

(vy1 , . . . , v
y
m) is the largest subsequence of υ such that y ∈ γ(vyi) for all i ∈ [1,m],

which means that ρ(y) < ρ(vyi). It also means that all variables caused by y are

in the subsequence, while y itself is not. Then, for all i ∈ [1,m], for all w ∈ υ such

that vyi ∈ γ(w), that is, ρ(vyi) < ρ(w), by transitivity of the causality relation

we have that ρ(y) < ρ(w), and thus w = vyj for some j ∈ [1,m]. Furthermore,

by hypothesis we must have that such an index j comes after i. So, for all

i ∈ [1,m], every variable caused by vyi is another element vyj of the sequence

such that i < j. In particular, vym is not the cause of any other variable in υ.

Since ρ(y) is concurrent with e = ρ[z ↦→ e](z) because y ∈ uc, we must have

that also ρ(vyi) is concurrent with e for all i ∈ [1,m], otherwise by transitivity

it would contradict the fact that ρ(y) < ρ(vyi). Since by hypothesis ρ(υ) = C

and |υ| = |C|, from the previous facts it follows that there must be a sequence

of transitions C0
ρ(vx1)−−−→ C1

ρ(vx2)−−−→ . . .
ρ(vxn)−−−→ Cn such that Cn = C ′ = C ∪ {e}

and ρ(y) ∈ C0 = C ′ ∖ {vy1 , . . . , v
y
m}. Since ρ(y) is concurrent with e, and all

the other events caused by ρ(y) where associated with variables vyi , then by

definition of the semantics we know that (C0, ρ[z ↦→ e]) satisfies the formula

⟨⟨y⟩T. And so, again by the semantics, we can deduce that also (C ′, ρ[z ↦→ e])

satisfies ⟨⟨vym⟩ . . . ⟨⟨vy1⟩ ⟨⟨y⟩T.

– Observe that C ′ = C ∪ {e}, |υz| = |dom(γ[z ↦→ u])|, fv(ψ) ⊆ fv(φ) ∪ {z} ⊆
υz = dom(γ[z ↦→ u]), ρ[z ↦→ e](z) = e, ρ(u) = ⌈e⌉ ∖ {e}, and all variables in

u ⊆ υ come before z in υz, so all the conditions of the hypothesis still hold on

ψ, (C ′, ρ[z ↦→ e]), γ[z ↦→ u] and υz. Thus we can use the inductive hypothe-

sis to obtain that (C ′, ρ[z ↦→ e]) satisfies [ψ](γ[z ↦→ u], υz) since we know that

(C ′, ρ[z ↦→ e]) satisfies ψ.

So, by definition of the semantics, we know that (C ′, ρ[z ↦→ e]) satisfies θ1 ∧ θ2 ∧
[ψ](γ[z ↦→ u], υz). Then, since C

e−→ C ′, by definition of the semantics we have that

(C, ρ) satisfies ⟨z : a⟩⟩ (θ1 ∧ θ2 ∧ [ψ](γ[z ↦→ u], υz)). From this and the fact that

x ⊆ u ⊆ yc, by definition of the semantics of the disjunction we can conclude that

(C, ρ) satisfies
⋁︁

x⊆u⊆yc⟨z : a⟩⟩
(︁⋀︁

x∈u[[vxn] . . . [[vx1] [[x]F ∧
⋀︁
y∈uc⟨⟨vym⟩ . . . ⟨⟨vy1⟩ ⟨⟨y⟩T ∧

[ψ](γ[z ↦→ u], υz)
)︁
.

The other direction can be proved in a similar way, reversing the implications.

150

Now we can easily deduce the correctness of the encoding for closed formulae of Lhp
without fixpoints, observing that the conditions in the lemma above vacuously hold when

C = γ = ∅ and υ = ϵ.

Proposition 8.2 (encoding Lhp). Let E be a PES and let φ be a closed formula of Lhp
without fixpoints. Then, E satisfies φ if and only if it satisfies [φ](∅, ϵ).

Proof. Corollary of Lemma 8.3.

8.2 Separation and trace fixpoint logics

In [Gut11] two true concurrent logics have been proposed, namely separation fixpoint logic

(SFL) and trace fixpoint logic (denoted Lµ). SFL was first introduced in [Gut09] and

further explored in [GB09, GB11], while Lµ was also studied more recently in [Gut15].

Both logics are based on a core logic in mu-calculus style with modalities that allow to

express properties about causality and concurrency of actions. The main difference, with

respect to the modalities of Lhp, is that those of SFL and Lµ can only express causality and

concurrency between consecutive steps of computations. For this reason the logic does not

need to resort to event variables. Moreover, for each kind of modality two operators are

offered, one for concurrent steps and one for causally dependent steps (w.r.t. the previous

step). For instance, the diamond modality ⟨a⟩nc φ declares the possibility to execute an

a-labelled event, which is concurrent with (not caused by) the one executed before.

The logics also provide two kinds of operators, very different from those we saw so far,

which capture the duality between concurrency and conflict. Both work on conflict-free

sets of events, called support sets. SFL offers a separating operator ∗ (and its dual ▷◁)

that behaves as a structural conjunction, allowing for local reasoning on conflict-free sets

of executable events. The formula φ ∗ ψ requires the existence of two concurrent disjunct

subsets of the enabled events, such that the subformula φ holds on the first subset and ψ on

the second. Lµ instead has a second-order modality ⟨⊗⟩ (and its dual [⊗]) that recognises

maximal concurrent subsets of the executable events. The formula ⟨⊗⟩φ requires that the

subformula φ holds when restricting, locally, the computation of the system to a set of

events that can actually execute all concurrently.

As mentioned, both logics include fixpoint operators in mu-calculus style. Therefore,

they resort to propositions, taken from a denumerable set X , exactly like the mu-calculus.

We first introduce the syntax of SFL.

Definition 8.4 (syntax of SFL). The syntax of SFL over the sets of proposition X and

labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨a⟩c φ | ⟨a⟩nc φ | φ ∗ φ | µZ.φ | Z |

F | φ ∨ φ | [a]c φ | [a]nc φ | φ ▷◁ φ | νZ.φ

Then, the syntax of Lµ is almost identical, except for the second-order modalities.

151

Definition 8.5 (syntax of Lµ). The syntax of Lµ over the sets of proposition X and labels

Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨a⟩c φ | ⟨a⟩nc φ | ⟨⊗⟩φ | µZ.φ | Z |

F | φ ∨ φ | [a]c φ | [a]nc φ | [⊗]φ | νZ.φ

In order to define the semantics of logics SFL and Lµ we need some notions, taken from

[Gut11], about conflict-free sets of enabled events, providing specific kinds of second-order

quantification over them. The most general is the concept of support set.

Definition 8.6 (support set). Let E be a PES. Given a configuration C ∈ C(E), a support

set R for C is either the set of all enabled events en(C) or a non-empty consistent subset

of enabled events, either way R ⊆ en(C). We call R(C) the set of all support sets for C,

and RE =
⋃︁
C∈C(E)R(C) the set of all support sets for all possible configurations of E.

Support sets are the basic element that the logics use for local reasoning on executable

events. According to the definition they can be (non-empty) consistent sets (Definition 3.3),

where local reasoning becomes possible since they can be decomposed into smaller ones with

the same property. Alternatively a support set can contain conflicts (or be empty) when it

is the whole set of enabled events. In the latter case proper maximal conflict-free subsets

can be isolated using so-called complete supsets.

Definition 8.7 (complete supset). Let E be a PES and C ∈ C(E) be a configuration. Given

a support set R ∈ R(C), a complete supset M of R is a consistent support set M ∈ R(C)

such that M ⊆ R and for all e ∈ R ∖M there exists e′ ∈ M s.t. e#e′. We call M(R) the

set of all complete supsets of R.

Observe that by definition of complete supset there is always at least one complete supset

for every support set R. More precisely, if R is consistent, then the only complete supset

is R itself. Otherwise, there are many complete supset, one for each maximal consistent

subset of R. Even when R = ∅, hence it is consistent, we have M(R) = {∅}.

Intuitively, to decompose conflict-free sets into smaller ones means to separate different

parallel components of the system, to allow local reasoning on them. This decomposition

is captured by the notion of separation.

Definition 8.8 (separation). Let E be a PES and C ∈ C(E) be a configuration. Given a

support set R ∈ R(C), a separation (R1, R2) of R is a pair of support sets R1, R2 ∈ R(C)

such that R1 ∩ R2 = ∅ and R1 ∪ R2 ∈ M(R). We call Sep(R) the set of all possible

separations of R.

For instance, consider E3 in Figure 3.1c. For the initial configuration ∅ we have three

possible support sets R1 = {b0, c}, R2 = {b0} and R3 = {c}. Since support sets can-

not be empty unless the set of enabled events is itself empty, then among those only

R1 admits a separation (two when considering both possible ordering), i.e., Sep(R1) =

152

{(R2, R3), (R3, R2)}. Moreover, the set of enabled events at configuration {c} of the same

PES, i.e., en({c}) = {a0, b0}, does not admit a separation, because the two events are in

conflict and separations can only split (maximal) consistent sets of enabled events.

Both logics operate over support sets in general, and, in particular, the separating

operators of SFL reason on separations of support sets, while the second-order modalities of

Lµ work over complete supsets of executable events. Therefore, the satisfaction of a formula

is defined with respect to a configuration C, representing the state of the computation, and

a support set R for C, constraining the next step of the execution. Furthermore, since the

standard modalities predicate over the causality and concurrency between the last and the

next step in computations, the satisfaction of a formula depends also on the last executed

event e in C. When the state is the initial empty configuration we use a placeholder event,

which is assumed to cause every other event.

As for the other fixpoint logics, the denotation of an open formula depends on the

evaluation of its free propositions. The semantic interpretation of propositions is given by

a proposition environment π : X → 2C(E)×RE×E from the set PEnvE .

Definition 8.9 (semantics of SFL). Let E be a PES. The denotation of a formula in SFL

is given by the function {|·|}E : SFL → PEnvE → 2C(E)×RE×E defined inductively as follows,

where we write {|φ|}Eπ instead of {|φ|}E(π):

{|T|}Eπ = C(E) ×RE × E

{|F|}Eπ = ∅

{|Z|}Eπ = π(Z)

{|φ1 ∧ φ2|}Eπ = {|φ1|}Eπ ∩ {|φ2|}Eπ
{|φ1 ∨ φ2|}Eπ = {|φ1|}Eπ ∪ {|φ2|}Eπ

{|⟨a⟩c φ|}Eπ = {(C,R, e) | ∃ e′ ∈ R. C
e< e′−−−→a C

′ ∧ (C ′, en(C ′), e′) ∈ {|φ|}Eπ}

{|⟨a⟩nc φ|}Eπ = {(C,R, e) | ∃ e′ ∈ R. C
e< e′−−−→a C

′ ∧ (C ′, en(C ′), e′) ∈ {|φ|}Eπ}

{|[a]c φ|}Eπ = {(C,R, e) | ∀ e′ ∈ R. C
e< e′−−−→a C

′ ⇒ (C ′, en(C ′), e′) ∈ {|φ|}Eπ}

{|[a]nc φ|}Eπ = {(C,R, e) | ∀ e′ ∈ R. C
e< e′−−−→a C

′ ⇒ (C ′, en(C ′), e′) ∈ {|φ|}Eπ}

{|φ1 ∗ φ2|}Eπ = {(C,R, e) | ∃ (R1, R2) ∈ Sep(R).
⋀︂

i∈{1,2}
(C,Ri, e) ∈ {|φi|}Eπ}

{|φ1 ▷◁ φ2|}Eπ = {(C,R, e) | ∀ (R1, R2) ∈ Sep(R).
⋁︂

i∈{1,2}
(C,Ri, e) ∈ {|φi|}Eπ}

{|ηZ.φ|}Eπ = η(fφ,Z,π)

where fφ,Z,π : 2C(E)×RE×E → 2C(E)×RE×E is the semantic function of φ, Z, π defined by

fφ,Z,π(S) = {|φ|}Eπ[Z ↦→S]. When (C,R, e) ∈ {|φ|}Eπ we say that the PES E satisfies the formula

φ in the configuration C, support set R, last executed event e, and environment π. When φ

is closed, hence the environment π is irrelevant, and E satisfies the formula φ in the empty

configuration, with the initial support set en(∅) and the initial placeholder event, we simply

153

say that E satisfies φ.

The diamond modality ⟨a⟩c φ holds in (C,R, e) when there is an a-labelled event e′ in

the support set R, hence enabled, which is caused by the last executed event e, and, once

executed obtaining the configuration C ′ = C ∪ {e′}, the triple (C ′, en(C ′), e′) satisfies the

formula φ. Similarly, the other diamond modality ⟨a⟩nc φ holds in (C,R, e) when the same

happens with an event e′ which is concurrent with e. Note that after such a step the support

set always becomes the whole set of (newly) enabled events. This means that the reasoning

on executable events is always local, relevant only in the next step of the computation.

The separating operator φ1 ∗ φ2 holds in (C,R, e) if there exists a separation (R1, R2)

of R such that the two formulae φ1 and φ2 still hold after restricting the support set to

R1 and R2, respectively, i.e., (C,Ri, e) satisfies φi for i ∈ {1, 2}. Dually, φ1 ▷◁ φ2 holds in

(C,R, e) when for every separation (R1, R2) of R at least one formula φi, for i ∈ {1, 2},

holds after restricting the next step to the support set Ri.

The semantics of Lµ is defined in the same way. Thus, we just need to specify that of

its own second-order operators.

Definition 8.10 (semantics of Lµ). Let E be a PES. The denotation of a formula in Lµ
is given by the function {|·|}E : Lµ → PEnvE → 2C(E)×RE×E defined inductively as in

Definition 8.9 (ignoring the separating operators) with the addition of:

{|⟨⊗⟩φ|}Eπ = {(C,R, e) | ∃M ∈ M(R). (C,M, e) ∈ {|φ|}Eπ}

{|[⊗]φ|}Eπ = {(C,R, e) | ∀M ∈ M(R). (C,M, e) ∈ {|φ|}Eπ}

The diamond second-order modality ⟨⊗⟩φ holds in (C,R, e) when there is a complete

supset M of R that, along with C and e, satisfies the rest of the formula φ. Dually, [⊗]φ

holds in (C,R, e) if every complete supset M of R, along with C and e, satisfies φ.

As we observed for Lhp, the mu-calculus is a strict fragment of both logics SFL and Lµ.

Indeed, ignoring the second-order modalities, the mu-calculus fragment can be obtain by

requiring that the standard modalities occur always in pairs, caused and not caused by, that

is, the diamond modality of mu-calculus ⟨a⟩φ corresponds to the formula ⟨a⟩cφ ∨ ⟨a⟩ncφ,

while the box modality [a]φ corresponds to [a]cφ ∧ [a]ncφ.

Interestingly, the two logics have incomparable expressive power, as they characterise

incomparable behavioural equivalences [Gut11], in turn incomparable with hp-bisimilarity.

Obviously this arise from the (incomparable) expressiveness of the different operators offered

by the logics and the fact that they cannot express causality and concurrency between (mul-

tiple) actions in computations arbitrarily distant from each other. For example, consider two

event structures consisting of two and three, respectively, parallel infinite causal chains of

a-labelled events. They can be easily told apart by SFL via the formula ⟨a⟩cT∗⟨a⟩cT∗⟨a⟩cT.

Instead, the two PESs are indistinguishable by Lµ, because, intuitively, the logic cannot

recognise the size of equally labelled support sets.

154

To see that the two logical equivalences induced by SFL and Lµ are incomparable with

hp-bisimilarity, first consider the PESs in Figure 8.1. Taken from [JNW96], the example

displays two PESs which are hp-bisimilar but not hhp-bisimilar. Since they are hp-bisimilar,

there is no formula of Lhp telling them apart. However, they can be distinguished by both

logics SFL and Lµ. The formula ⟨a⟩c⟨c⟩cT ∗ ⟨b⟩c⟨d⟩cT of SFL is satisfied only by the PES

E10 on the right. Similarly, the formula ⟨⊗⟩(⟨a⟩c⟨c⟩cT ∧ ⟨b⟩c⟨d⟩cT) of Lµ also holds only on

E10. Roughly, both formulae require the existence of a maximal conflict-free set of enabled

events from where it is possible to execute the two sequences of actions a c and b d. This

can never be satisfied by E9 since the events b0 and a1 are in conflict.

a0 a1b0 b1

d c

(a) E9

a0 a1b0 b1

dc

(b) E10

Figure 8.1: Hp-bisimilar PESs which can be distinguished by SFL and Lµ.

Now, examine the PESs in Figure 8.2. This time the two PESs are not hp-bisimilar.

This is proved by the formula ⟨|ax|⟩⟨|b y|⟩⟨|x, y < c z|⟩T of Lhp requiring the executability of a

c-labelled event caused by both an a and a b-labelled event. Clearly the formula is satisfied

only by the PES E12 on the right since in the other there is no such a c-labelled event. On

the other hand, the two PESs are logically equivalent for both SFL and Lµ. Intuitively,

because neither logic is able to express multiple causal dependencies for the same event

unless such event is uniquely identified by its label. Indeed, any formula of SFL or Lµ will

confuse the event c2 in E12 with either c0 or c1, depending on the required causal relation

with the one executed before.

a b

c0 c1

(a) E11

a b

c0 c1c2

(b) E12

Figure 8.2: Two PESs which are equivalent in SFL and Lµ but not hp-bisimilar.

Moreover, both logics SFL and Lµ are strictly less expressive than the whole logic

in [BC14] characterising hhp-bisimilarity. This immediately arises from the fact that the

corresponding logical equivalences are strictly coarser than hhp-bisimilarity [Gut11].

The model-checking problem has been proved decidable in both logics [GB09, GB11,

Gut11] over regular trace event structures, which is the class of PESs corresponding exactly

155

to finite safe Petri nets [Thi02], hence a (possibly equivalent) subclass of strongly regular

PESs.

8.3 A more powerful logic

In this section we show that the logic Lhp can be extended with the operators from SFL

and Lµ not expressible in Lhp, thus obtaining a more powerful and general true concurrent

logic, for which most results and verification techniques provided for Lhp still work.

We will first introduce the syntax and the semantics of the logic L∗⊗
hp which arises

as a join of the logics for true concurrency Lhp, SFL and Lµ. The logic has formulae

that predicate over executability of events in computations and their dependency relations

(causality, concurrency), and provide second-order power on conflict-free sets of events in

the two different flavours described in the previous section.

Then we study the model-checking problem in the new logic L∗⊗
hp . We prove that it

is decidable over strongly regular PESs, providing a decision procedure based on the one

presented in Chapter 5. These results can be seen as a witness of the fact that the framework

developed in the thesis is flexible and easy to extend.

8.3.1 Syntax

As already mentioned, formulae of Lhp include event variables, and so do formulae of L∗⊗
hp .

They belong to a fixed denumerable set Var . The logic, in positive form, includes the

diamond and box modalities from Lhp, the separating operators from SFL and the second-

order modalities from Lµ, described before.

Like the three logics we combine, L∗⊗
hp is also a fixpoint logic in mu-calculus style.

Fixpoint operators resort to propositional variables, expressed by abstract propositions to

let them interact correctly with event variables. Their definitions follow directly those for

Lhp given in Section 4.3. Abstract propositions belong to a fixed denumerable set X a,

ranged over by X,Y, Each abstract proposition X has an arity ar(X) and represents

a formula with ar(X) (unnamed) free event variables. For y such that |y| = ar(X), X(y)

indicates the abstract proposition X whose free event variables are named y. We call X(y)

a proposition and X the set of all propositions.

Definition 8.11 (syntax of L∗⊗
hp). The syntax of L∗⊗

hp over the sets of event variables Var,

abstract propositions X a and labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨|x,y < a z|⟩φ | φ ∗ φ | ⟨⊗⟩φ | (µZ(x).φ)(y) | Z(x) |

F | φ ∨ φ | [[x,y < a z]]φ | φ ▷◁ φ | [⊗]φ | (νZ(x).φ)(y)

The free event variables of a formula φ are denoted fv(φ) and defined in the usual way

(Definition 4.7). The free propositions in φ are again denoted by fp(φ) (Definition 4.8).

156

We recall that for formulae (ηZ(x).φ)(y) it is required that fv(φ) = x. Substitutions of

variables are also defined analogously to Lhp.
The possibility to mix operators from the three different logics Lhp, SFL and Lµ allows

to express quite interesting and profound properties. For example, the formula ⟨⊗⟩(F ▷◁ F)

requires the existence of a maximal conflict-free set of enabled events which cannot be

further separated. The meaning of the property can also be formulated as the existence of

an enabled event which is in conflict with all the other (enabled) events, if any. This is false

in the initial state of the PES E3 in Figure 3.1c since two concurrent events are initially

enabled. As an example of property of infinite computations, consider [[bx]] νZ(x).(⟨|c y|⟩T∗
(⟨|x < b z|⟩T ∧ [[x < bw]]Z(w))), expressing that all non-empty causal chains of b-labelled

events reach a state where the system can be separated into two parallel components, one

continuing the chain of b events, while the other can execute a c-labelled event. Such a

formula is satisfied by E3.

8.3.2 Semantics

The satisfaction of a formula of L∗⊗
hp is defined with respect to a configuration C, a support

set R for C and an environment ρ : Var → E for its free variables. Namely, the semantics of

a formula will be a set of triples in C(E)×RE×EnvE , where EnvE is the set of environments.

Given S ⊆ C(E) × RE × EnvE and two tuples of variables x and y, with |x| = |y|, we

define S[y⧸x] = {(C,R, ρ′) | ∃ (C,R, ρ) ∈ S ∧ ρ(x) = ρ′(y)}. The semantics of L∗⊗
hp also

depends on a proposition environment π : X → 2C(E)×RE×EnvE providing an interpretation

for propositions. As we required for Lhp, to ensure that the semantics of a formula depends

only on the events associated with its free variables and is independent on the naming of

the variables, it is required that for all tuples of variables x, y with |x| = |y| = ar(X) it

holds π(X(y)) = π(X(x))[y⧸x]. The set of proposition environments is PEnvE . Updates

to proposition environments are defined as in Subsection 4.3.2.

We extend the notation Succx,y<az
E introduced for Lhp in order to accommodate support

sets. So, for a triple (C,R, ρ) ∈ C(E) × RE × EnvE and variables x, y, z, we define the

(x,y < az)-successors of (C,R, ρ), as

Succx,y<az
E (C,R, ρ) = {(C ′, en(C ′), ρ[z ↦→ e]) | e ∈ R ∧ C

ρ(x),ρ(y)<e−−−−−−−−→a C
′}.

Observe that only events in the support set R are considered executable, and, after executing

an event, the support set always becomes to the whole set of enabled events.

Then, the definition of the semantics of formulae in L∗⊗
hp is as below.

Definition 8.12 (semantics of L∗⊗
hp). Let E be a PES. The denotation of a formula φ in

L∗⊗
hp is given by the function {|·|}E : L∗⊗

hp → PEnvE → 2C(E)×RE×EnvE defined inductively as

157

follows, where we write {|φ|}Eπ instead of {|φ|}E(π):

{|T|}Eπ = C(E) ×RE × EnvE

{|F|}Eπ = ∅

{|Z(y)|}Eπ = π(Z(y))

{|φ1 ∧ φ2|}Eπ = {|φ1|}Eπ ∩ {|φ2|}Eπ
{|φ1 ∨ φ2|}Eπ = {|φ1|}Eπ ∪ {|φ2|}Eπ
{|⟨|x,y < a z|⟩φ|}Eπ = {(C,R, ρ) | Succx,y<az

E (C,R, ρ) ∩ {|φ|}Eπ ̸= ∅}

{|[[x,y < a z]]φ|}Eπ = {(C,R, ρ) | Succx,y<az
E (C,R, ρ) ⊆ {|φ|}Eπ}

{|φ1 ∗ φ2|}Eπ = {(C,R, ρ) | ∃ (R1, R2) ∈ Sep(R).
⋀︂

i∈{1,2}
(C,Ri, ρ) ∈ {|φi|}Eπ}

{|φ1 ▷◁ φ2|}Eπ = {(C,R, ρ) | ∀ (R1, R2) ∈ Sep(R).
⋁︂

i∈{1,2}
(C,Ri, ρ) ∈ {|φi|}Eπ}

{|⟨⊗⟩φ|}Eπ = {(C,R, ρ) | ∃M ∈ M(R). (C,M, ρ) ∈ {|φ|}Eπ}

{|[⊗]φ|}Eπ = {(C,R, ρ) | ∀M ∈ M(R). (C,M, ρ) ∈ {|φ|}Eπ}

{|(ηZ(x).φ)(y)|}Eπ = η(fφ,Z(x),π)[y⧸x]

where fφ,Z(x),π : 2C(E)×RE×EnvE → 2C(E)×RE×EnvE is the semantic function of φ, Z(x), π

defined by fφ,Z(x),π(S) = {|φ|}Eπ[Z(x) ↦→S]. When (C,R, ρ) ∈ {|φ|}Eπ we say that the PES E
satisfies the formula φ in the configuration C, support set R, and environments ρ, π. When

φ is closed, hence the environments ρ, π are irrelevant, and E satisfies the formula φ in the

empty configuration, with the initial support set en(∅), we simply say that E satisfies φ.

The semantics of boolean connectives is as usual. The formula ⟨|x,y < a z|⟩φ holds

in (C,R, ρ) when an a-labelled event e included in the support set R (hence enabled in

configuration C), that causally depends on (at least) the events bound to the variables in

x and is concurrent with (at least) those bound to the variables in y, can be executed

producing a new configuration C ′ = C ∪{e} which, along with the events enabled in C ′ and

the environment ρ′ = ρ[z ↦→ e], satisfies the formula φ. Dually, [[x,y < a z]]φ holds when all

a-labelled events in R, caused by ρ(x) and concurrent with ρ(y), bring to a configuration

where φ is satisfied.

The semantics of the second-order operators are the same of those of SFL and Lµ. The

formula φ1 ∗φ2 is satisfied by (C,R, ρ) if there is a separation (R1, R2) of R such that each

formula φi holds in the corresponding Ri with the same configuration C and environment ρ.

Dually, φ1 ▷◁ φ2 holds if in all the possible separations of R at least one component satisfies

the corresponding subformula. The operator ⟨⊗⟩φ is satisfied by (C,R, ρ) when the formula

φ holds after restricting R to one of its complete supsets M . Dually, [⊗]φ requires that φ

holds for all possible restrictions of R to complete supsets.

The fixpoints corresponding to the formulae (ηZ(x).φ)(y) are guaranteed to exist by

Theorem 2.1, since the set 2C(E)×RE×EnvE ordered by subset inclusion is a complete lattice

and the functions fφ,Z(x),π are monotone.

158

As we did for Lhp, we assume that in every formula different bound propositions have

different names, so that we can refer to the fixpoint subformula quantifying an abstract

proposition. This requirement can always be fulfilled by alpha-renaming. All the definitions

about alternation depth and active subformulae given in Subsection 4.3.4 transfer naturally

to the logic L∗⊗
hp . Moreover, observe that the results on substitutions in Lemma 4.1 hold in

the new logic as well, and they will be later used as if they were defined over L∗⊗
hp .

Notably, fragments of L∗⊗
hp can be easily identified which correspond to the three original

logics Lhp, SFL and Lµ. Hence L∗⊗
hp is indeed more powerful than all of them. In fact, all

the PESs in the examples presented in Section 8.2 are distinguishable by formulae of L∗⊗
hp ,

making its induced logical equivalence strictly finer then those induced by the three source

logics. Still, the logical equivalence induced by L∗⊗
hp is strictly coarser than hhp-bisimilarity.

This is motivated by the fact that no formula of L∗⊗
hp can tell apart the two PESs in Figure 3.6

which, as mentioned, are not hhp-bisimilar.

8.3.3 Model checking L∗⊗
hp

In this subsection we provide a model-checking procedure for L∗⊗
hp , showing that it is sound

and complete over strongly regular PESs. The procedure is given in the form of a tableau

system that follows closely that of Chapter 5. Adapting automata and game-theoretic

methods would work analogously.

The tableau system works on sequents C,R, ρ,∆ |=E φ, where φ is a formula of L∗⊗
hp ,

C ∈ C(E) is a configuration, R is a support set for C, ρ is an environment, and ∆ is a

finite set of definitions defined as in Chapter 5 with all the properties already mentioned

there. Again, the tuple ⟨C,R, ρ,∆⟩ is the context of the sequent and the formula φ is the

consequent.

Most definitions are the same of those in Chapter 5, like the definition of the instantiation

(φ)∆ of a formula φ with respect to a set of definitions ∆, or that of well-formed sequent,

which again sequents will be tacitly assumed to comply with. Furthermore, the results on the

interactions between instantiations, substitutions and fixpoint approximants (Lemmata 5.1

and 5.9) can be easily proved to hold also in L∗⊗
hp . Below we recall the formal meaning of

true sequent adapted to L∗⊗
hp .

Definition 8.13 (truth). A well-formed sequent C,R, ρ,∆ |=E φ is true if (C,R, ρ) ∈
{|(φ)∆|}Eπ, where π is any proposition environment.

The tableau rules for the operators already appearing in Lhp are obtained by adapting

those in Table 5.1, by adding support sets R in every sequent and applying some changes

where necessary. We introduce new rules for the operators originating from SFL and Lµ.

Then, the new tableau rules are reported in Table 8.1.

The rules for propositional connectives and fixpoint introduction and unfolding are ex-

actly the same of before, with the addition of support sets in the contexts. Just note that

the stop condition γ is not the same, although very similar, and will be defined later. The

159

(∧)
C,R, ρ,∆ |= φ ∧ ψ

C,R, ρ,∆ |= φ C,R, ρ,∆ |= ψ

(∨L)
C,R, ρ,∆ |= φ ∨ ψ

C,R, ρ,∆ |= φ
(∨R)

C,R, ρ,∆ |= φ ∨ ψ

C,R, ρ,∆ |= ψ

(♢)
C,R, ρ,∆ |= ⟨|x,y < a z|⟩φ
C ′, en(C ′), ρ[z ↦→ e],∆ |= φ

e ∈ R and C
ρ(x),ρ(y)<e−−−−−−−−→a C

′

(□)
C,R, ρ,∆ |= [[x,y < a z]]φ

C1, en(C1), ρ1,∆ |= φ . . . Cn, en(Cn), ρn,∆ |= φ

where {(C1, en(C1), ρ1), . . . , (Cn, en(Cn), ρn)} = Succx,y<az
E (C,R, ρ)

(∗)
C,R, ρ,∆ |=E φ ∗ ψ

C,R′, ρ,∆ |=E φ C,R′′, ρ,∆ |=E ψ
(R′, R′′) ∈ Sep(R)

(▷◁)
C,R, ρ,∆ |=E φ1 ▷◁ φ2

C,Rp11 , ρ,∆ |=E φp1 . . . C,Rpnn , ρ,∆ |=E φpn

where {(R1
1, R

2
1), . . . , (R1

n, R
2
n)} = Sep(R) and ∀ i ∈ [1, n]. pi ∈ {1, 2}

(⟨⊗⟩) C,R, ρ,∆ |=E ⟨⊗⟩φ
C,M, ρ,∆ |=E φ

M ∈ M(R)

([⊗])
C,R, ρ,∆ |=E [⊗]φ

C,M1, ρ,∆ |=E φ . . . C,Mn, ρ,∆ |=E φ
where {M1, . . . ,Mn} = M(R)

(Int)
C,R, ρ,∆ |= (ηZ(x).φ)(y)

C,R, ρ,∆′ |= Z(y)
∆′ = ∆[Z(x) ↦→ ηZ(x).φ]

(Unfη)
C,R, ρ,∆ |= Z(z)

C,R, ρ[x ↦→ ρ(z)],∆ |= φ
¬γ and ∆(Z(x)) = ηZ(x).φ

Table 8.1: The tableau rules for the logic L∗⊗
hp .

rules (♢) and (□) for the standard modalities are obtained from those for Lhp by adding

the requirement that the executed event must be in the support set R, which then becomes

the set of enabled events in the reached configuration.

Rule (∗) reduces the truth of a separating formula to the truth of the two subformulae

160

with their respective support sets restricted to a pair forming a separation of the one in

the premise. Dually, rule (▷◁) reduces the truth of the premise to that of a list of sequents

produced by pairing one of the components of each possible separation of the initial support

set with the corresponding subformula, as required by the semantics of the separating

operator.

Rule (⟨⊗⟩) reduces the truth of the second-order modal formula ⟨⊗⟩φ to the truth of

the subformula φ after restricting the support set to one of its complete supset. Dually, rule

([⊗]) for the formula [⊗]φ requires that the subformula φ holds in all the possible complete

supsets of the initial support set.

Observe that, working with boundedly branching PESs, like strongly regular PESs, not

only rule (□) has always a finite number of sequents in the conclusion, but the same holds

for rules ([⊗]) and (▷◁), since every support set is a subset of the enabled events, which are

bounded, therefore the sets of possible separations and complete supsets are also finite and

bounded. Furthermore, even though rule (▷◁) allows to choose which support set to take

from each separation and the corresponding subformula, the number of possible different

choices is clearly limited to 2n where n is the number of possible separations, which, as we

just said, is finite and bounded. Moreover, rules (♢), (∗) and (⟨⊗⟩) will also have a finite

number of possible different applications at every sequent.

It is easy to see that all the rules derived from those for Lhp are still backwards sound

(Lemma 5.2). Here we just show that also the new ones are so.

Lemma 8.4 (backwards soundness). Every rule of the tableau system for L∗⊗
hp is backwards

sound.

Proof. For each new (or substantially changed) rule we show that if the sequents in the

conclusion are true then also the sequent in the premise is true. The proof follows almost

directly from the definition of the semantics of the logic. We only inspect some cases:

• Consider the rule:

(♢)
C,R, ρ,∆ |=E ⟨|x,y < a z|⟩φ
C ′, en(C ′), ρ[z ↦→ e],∆ |=E φ

where e ∈ R and C
ρ(x),ρ(y)<e−−−−−−−−→a C

′.

Assume that the sequent in the conclusion is true, i.e., (C ′, en(C ′), ρ[z ↦→ e]) ∈
{|(φ)∆|}Eπ, for π ∈ PEnvE . By definition of the semantics, we immediately deduce

that (C,R, ρ) ∈ {|⟨|x,y < a z|⟩ (φ)∆|}Eπ. Since (⟨|x,y < a z|⟩φ)∆ = ⟨|x,y < a z|⟩ (φ)∆,

this proves that the sequent C,R, ρ,∆ |=E ⟨|x,y < a z|⟩φ in the premise is true.

• Consider the rule:

(∗)
C,R, ρ,∆ |=E φ ∗ ψ

C,R′, ρ,∆ |=E φ C,R′′, ρ,∆ |=E ψ

where (R′, R′′) ∈ Sep(R).

161

Assume that the sequents in the conclusion are true, i.e., that (C,R′, ρ) ∈ {|(φ)∆|}Eπ
and (C,R′′, ρ) ∈ {|(ψ)∆|}Eπ, for π ∈ PEnvE . By definition of the semantics, we imme-

diately deduce that (C,R, ρ) ∈ {|(φ)∆ ∗ (ψ)∆|}Eπ. Since (φ ∗ ψ)∆ = (φ)∆ ∗ (ψ)∆, this

proves that the sequent C,R, ρ,∆ |=E φ ∗ ψ in the premise is true.

• Consider the rule:

(⟨⊗⟩) C,R, ρ,∆ |=E ⟨⊗⟩φ
C,M, ρ,∆ |=E φ

where M ∈ M(R).

Assume that the sequent in the conclusion is true, i.e., (C,M, ρ) ∈ {|(φ)∆|}Eπ, for

π ∈ PEnvE . By definition of the semantics, we immediately deduce that (C,R, ρ) ∈
{|⟨⊗⟩ (φ)∆|}Eπ. Since (⟨⊗⟩φ)∆ = ⟨⊗⟩ (φ)∆, this proves that the sequent C,R, ρ,∆ |=E

⟨⊗⟩φ in the premise is true.

A finer stop condition

In order to ensure termination of the construction procedure, we resort again to a stop

condition in rule (Unfη). Such side condition will work similarly to that for Lhp, but, clearly,

will be characterised by a different equivalence. Due to the greater expressive power of L∗⊗
hp

we will need an equivalence refining ≈r, taking into account the state of the computation,

the causal dependencies between past and future events, as well as the current support set.

The aim is still the same: deem two contexts equivalent for a formula if they share the

satisfaction of the formula. Recall that properties of L∗⊗
hp allow to impose some second-

order constraints on the executable events using support sets, while predicating over their

dependency relations. Therefore, first we shall extend the notion of pointed configuration

(Definition 5.3) as follows.

Definition 8.14 (pointed supported configuration). Let E be a PES and let V be a set.

A V -pointed supported configuration is a triple ⟨C,R, ζ⟩ where C ∈ C(E), R ∈ R(C), and

ζ : V → C is a function.

As we did in Section 5.2, the notion will be used instantiating the set V with the

free variables of a formula and the function ζ with the restriction of the environment in a

context. Then, we can define the new equivalence over contexts seen as pointed supported

configurations. Two V -pointed supported configurations have isomorphic residuals when

they are ≈r-equivalent, i.e., when their residuals are related by an isomorphism ensuring

that events pointed by the same x ∈ V have the same causal relations with the future, and

such isomorphism couples the corresponding support sets.

Definition 8.15 (isomorphism of pointed supported residuals). Let E be a PES, let V be

a set, and let ⟨C,R, ζ⟩ and ⟨C ′, R′, ζ ′⟩ be two V -pointed supported configurations of E. We

162

say that ⟨C,R, ζ⟩, ⟨C ′, R′, ζ ′⟩ have isomorphic residuals, written ⟨C,R, ζ⟩ ≈sr ⟨C ′, R′, ζ ′⟩, if
there is an isomorphism of the residuals ι : E [C] → E [C ′] such that R′ = ι(R) and for all

x ∈ V , e ∈ E [C] we have ζ(x) ≤ e iff ζ ′(x) ≤ ι(e).

Observe that, in general, if there is an isomorphism ι between the residuals of two

configurations C,C ′, then it must hold that R(C ′) = {ι(R) | R ∈ R(C)}, because the

isomorphism of PESs preserves conflicts and enabled events. Furthermore, we must also

have that for all R ∈ R(C) and R′ ∈ R(C ′), if R′ = ι(R), then M(R′) = {ι(M) | M ∈
M(R)} and Sep(R′) = {(ι(R1), ι(R2)) | (R1, R2) ∈ Sep(R)}. Clearly this is crucial if

we want that equivalent pointed supported configurations satisfy the same separating and

second-order modal formulae of L∗⊗
hp .

As we mentioned in the tableau system for Lhp, since we are dealing with formulae con-

taining free propositional variables, we need proposition environments satisfying a suitable

property, that we called saturated proposition environments (Definition 5.5). Such notion

is needed here as well, extended in the obvious way for L∗⊗
hp (therefore we just point to

the previous definition). In words, in order to be saturated for a formula φ, a proposition

environment must assign to each free proposition in φ an evaluation that respects the equi-

valence ≈sr over fv(φ)-pointed supported configurations. Then we can show that pointed

supported configurations with isomorphic residuals satisfy exactly the same formulae of L∗⊗
hp

when free event variables correspond to the pointed events.

Lemma 8.5 (equisatisfaction in equivalent pointed supported configurations). Let E be

a PES, let φ be a formula of L∗⊗
hp , let π ∈ PEnvE be a proposition environment satura-

ted for φ, and let (C1, R1, ρ1), (C2, R2, ρ2) ∈ C(E) × RE × EnvE . If ⟨C1, R1, ρ1|fv(φ)⟩ ≈sr

⟨C2, R2, ρ2|fv(φ)⟩ then (C1, R1, ρ1) ∈ {|φ|}Eπ iff (C2, R2, ρ2) ∈ {|φ|}Eπ.

Proof. Assume that ⟨C1, R1, ρ1|fv(φ)⟩ ≈sr ⟨C2, R2, ρ2|fv(φ)⟩, via an isomorphism ι. We prove

that if (C1, R1, ρ1) ∈ {|φ|}Eπ then (C2, R2, ρ2) ∈ {|φ|}Eπ. Since the isomorphism ι is bijective,

the other implication follows by symmetry. The proof proceeds by induction on the formula

φ. Being similar to the proof of Lemma 5.3, we just examine some significant cases among

those for the new operators (originating from logics SFL and Lµ) and those with substantial

changes in the semantics:

• φ = ⟨|x,y < a z|⟩ψ
Assume that (C1, R1, ρ1) ∈ {|⟨|x,y < a z|⟩ψ|}π. By definition of the semantics there

exists an event e ∈ R1 such that C1
ρ1(x),ρ1(y)<e−−−−−−−−−→a C ′

1, ρ
′
1 = ρ1[z ↦→ e], and

(C ′
1, en(C ′

1), ρ
′
1) ∈ {|ψ|}π. Since ι is an isomorphism of pointed supported residuals,

we immediately deduce that ι(e) is enabled at C2, ι(e) ∈ R2 and

C2
ρ2(x),ρ2(y)<ι(e)−−−−−−−−−−−→a C

′
2 (8.1)

Clearly, the restriction of ι to E [C ′
1] is an isomorphism ι′ : E [C ′

1] → E [C ′
2]. Let

ρ′2 = ρ2[z ↦→ ι(e)]. It is easy to see that for all x ∈ fv(ψ), e1 ∈ E [C ′
1], it holds

ρ′1(x) ≤ e1 iff ρ′2(x) ≤ ι′(e1). In fact, let x ∈ fv(ψ) ⊆ fv(φ) ∪ {z}:

163

(i) if x ̸= z we can observe that e1 ∈ E [C ′
1] ⊆ E [C1] and ρi(x) = ρ′i(x) for i ∈ {1, 2}.

Then we conclude using the fact that ι is an isomorphism of pointed supported

residuals

(ii) if x = z then ρ′1(z) = e ∈ E [C1] and ρ′2(z) = ι(e) ∈ E [C2]. Since ι is in particular

an isomorphism of PESs, we know that ρ′1(x) = e ≤ e1 iff ρ′2(x) = ι(e) ≤ ι(e1) =

ι′(e1).

Furthermore, since ι′ is in particular an isomorphism of PESs between E [C ′
1] and

E [C ′
2], we have also that en(C ′

2) = ι′(en(C ′
1)).

The facts above show that ⟨C ′
1, en(C ′

1), ρ
′
1|fv(ψ)⟩ ≈sr ⟨C ′

2, en(C ′
2), ρ

′
2|fv(ψ)⟩. Then, by

inductive hypothesis, (C ′
2, en(C ′

2), ρ
′
2) ∈ {|ψ|}π. Recalling (8.1), we conclude that

(C2, R2, ρ2) ∈ {|⟨|x,y < a z|⟩ψ|}π as desired.

• φ = ψ1 ∗ ψ2

Assume that (C1, R1, ρ1) ∈ {|ψ1 ∗ ψ2|}π. By definition of the semantics there exists

a separation (R′
1, R

′′
1) ∈ Sep(R1) such that (C1, R

′
1, ρ1) ∈ {|ψ1|}π and (C1, R

′′
1 , ρ1) ∈

{|ψ2|}π. Since ι is an isomorphism of pointed supported residuals, we know that

R2 = ι(R1). Then, as observed before, we have that Sep(R2) = {(ι(R′), ι(R′′)) |
(R′, R′′) ∈ Sep(R1)}. Hence, there exists (R′

2, R
′′
2) ∈ Sep(R2) such that R′

2 = ι(R′
1)

and R′′
2 = ι(R′′

1). So we know that ι is also a valid isomorphism between the re-

siduals of the corresponding pointed supported configurations ⟨C1, R
′
1, ρ1|fv(ψ1)⟩ ≈sr

⟨C2, R
′
2, ρ2|fv(ψ1)⟩ and ⟨C1, R

′′
1 , ρ1|fv(ψ2)⟩ ≈sr ⟨C2, R

′′
2 , ρ2|fv(ψ2)⟩, since fv(ψi) ⊆ fv(φ)

for i ∈ {1, 2}. Now we can use the inductive hypothesis to obtain (C2, R
′
2, ρ2) ∈ {|ψ1|}π

and (C2, R
′′
2 , ρ2) ∈ {|ψ2|}π and conclude (C2, R2, ρ2) ∈ {|ψ1 ∗ ψ2|}π.

• φ = ⟨⊗⟩ψ
Assume that (C1, R1, ρ1) ∈ {|⟨⊗⟩ψ|}π. By definition of the semantics there exists a

complete supset M1 ∈ M(R1) such that (C1,M1, ρ1) ∈ {|ψ|}π. Since ι is an isomor-

phism of pointed supported residuals, we know that R2 = ι(R1). Then, we also have

that M(R2) = {ι(M) | M ∈ M(R1)}. Hence, there exists M2 ∈ M(R2) such that

M2 = ι(M1). So we know that ι is also a valid isomorphism between the residuals

of the pointed supported configurations ⟨C1,M1, ρ1|fv(ψ)⟩ ≈sr ⟨C2,M2, ρ2|fv(ψ)⟩, since

fv(ψ) = fv(φ). Now we can use the inductive hypothesis to obtain (C2,M2, ρ2) ∈
{|ψ|}π and conclude (C2, R2, ρ2) ∈ {|⟨⊗⟩ψ|}π.

Recall that the proposition environment is irrelevant for establishing when a well-formed

sequent is true because the instantiation of the formula in the sequent is always closed.

Furthermore, every proposition environment is vacuously saturated for a closed formula.

Therefore, when two contexts C,R, ρ,∆ and C ′, R′, ρ′,∆′ for a formula φ seen as pointed

supported configurations have isomorphic residuals ⟨C,R, ρ|fv(φ)⟩ ≈r ⟨C ′, R′, ρ′|fv(φ)⟩, the

164

lemma above ensures that the corresponding sequents share the truth value, as long as the

two instantiations of the formula (φ)∆ and (φ)∆′ are the same. The latter is guaranteed to

happen if the sequents come from the same tableau built starting from a closed formula.

We can now proceed with the definition of the new stop condition. Given a tableau for

a closed formula and a node labelled by C,R, ρ,∆ |= Z(y), with Z(x) = ψ in ∆, necessarily

ψ = ηZ(x).φ and the node has some ancestor introducing Z. Then, recall that we denote

by ∆↑(Z) the closest ancestor introducing Z.

Definition 8.16 (stop condition). The stop condition γ for rule (Unfη) in Table 8.1 is as

follows:

there is an ancestor of the premise C,R, ρ,∆ |= Z(z) labelled C ′, R′, ρ′,∆′ |= Z(y), such

that ∆↑(Z) = ∆′↑(Z) and ⟨C,R, ρ[x ↦→ ρ(z)]|x⟩ ≈sr ⟨C ′, R′, ρ′[x ↦→ ρ′(y)]|x⟩.

Informally, the stop condition holds when in a previous step of the construction of the

tableau an instance of the same abstract proposition has been unfolded in an equivalent

context, without being reintroduced. Then we can safely avoid to continue along this path

because, intuitively, it would not add new information. Instead, when the stop condition

fails, it makes sense to further unfold the fixpoint since the current context is still “different

enough” from those previously encountered. As it happened in the other tableau system,

the equivalence of contexts is checked after renaming the variables to those associated with

Z in the fixpoint formula quantifying the proposition.

In the example below we show how the tableau system behaves on some of the new

operators introduced. Consider the formula φ = µX.(⟨⊗⟩(F ▷◁ F) ∨ ⟨| x|⟩X), obtained by

inserting that in Subsection 8.3.1 in an “eventually construct”. Indeed, the property requires

that eventually a state is reached from where an event can be executed which is in conflict

with all the other enabled events, if any. We previously claimed that the proper subformula

⟨⊗⟩(F ▷◁ F) was not satisfied by E3 in Figure 3.1c. Here we show that eventually the property

holds anyway. A tableau for the sequent ∅, en(∅), ρ, ∅ |= φ is given in Figure 8.3. Observe

that the stop condition does not hold in the second application of the unfolding rule (hence

its application) since ⟨∅, en(∅), ρ|∅⟩ ̸≈sr ⟨{c}, en({c}), ρ[x ↦→ c]|∅⟩. No rule can be applied

to the bottom sequent {c}, {a0}, ρ[x ↦→ c], {X = φ} |= F ▷◁ F because there is no possible

separation of the support set {a0}, i.e., Sep({a0}) = ∅.

Correctness of the tableau system

We conclude by showing that, in fact, the truth of a closed formula of L∗⊗
hp over a strongly

regular PES reduces to the existence of a successful tableau. Given a PES E , a tableau for

a formula φ of L∗⊗
hp is a tableau built applying the rules given in Table 8.1 starting from a

sequent ∅, en(∅), ρ, ∅ |=E φ, where ρ is any environment (it is irrelevant since φ is closed). A

maximal tableau, where no rule applies to any leaf, is considered successful when it satisfies

the following conditions.

165

∅, en(∅), ρ, ∅ |= φ
(Int)

∅, en(∅), ρ, {X = φ} |= X
(Unfµ)

∅, en(∅), ρ, {X = φ} |= ⟨⊗⟩(F ▷◁ F) ∨ ⟨| x|⟩X
(∨R)

∅, en(∅), ρ, {X = φ} |= ⟨| x|⟩X
(♢)

{c}, en({c}), ρ[x ↦→ c], {X = φ} |= X
(Unfµ)

{c}, en({c}), ρ[x ↦→ c], {X = φ} |= ⟨⊗⟩(F ▷◁ F) ∨ ⟨| x|⟩X
(∨L)

{c}, en({c}), ρ[x ↦→ c], {X = φ} |= ⟨⊗⟩(F ▷◁ F)
(⟨⊗⟩)

{c}, {a0}, ρ[x ↦→ c], {X = φ} |= F ▷◁ F

Figure 8.3: A successful tableau for µX.(⟨⊗⟩(F ▷◁ F) ∨ ⟨| x|⟩X) in E3.

Definition 8.17 (successful tableau). A successful tableau for L∗⊗
hp is a finite maximal

tableau where every leaf is labelled by a sequent C,R, ρ,∆ |=E φ such that one of the following

holds:

1. φ = T

2. φ = [[x,y < a z]]ψ

3. φ = ψ1 ▷◁ ψ2

4. φ = Z(y) and ∆(Z(x)) = νZ(x).ψ.

Notice the absence of the case φ = [⊗]ψ motivated by the fact that every support set

R has at least one complete supset (see Definition 8.7), i.e., M(R) ̸= ∅, hence the sequent

could not label a leaf. For instance, the tableau in Figure 8.3 is successful.

As in the case of tableaux for Lhp, the construction of a tableau can be nondeterministic.

However, as we already observed, when the PES is boundedly branching, at each step of

the procedure the number of possible different applications of rules is finite and bounded.

This will guarantee that the number of maximal tableaux for a sequent is finite as long as

all tableaux are finite. So, we first aim at proving that all tableaux for a sequent are finite.

As we described in depth in Subsection 5.3.1, a basic observation is that an infinite

tableau would necessarily include a path where the same proposition is unfolded infinitely

many times without being reintroduced. This can be proved relying on the same Lem-

mata 5.5 and 5.7, which can be easily seen to hold also in the case of L∗⊗
hp . Now, in order to

conclude, we observe that in strongly regular PESs the number of pointed supported resi-

duals is finite up to isomorphism. Again also the converse holds when the PES is boundedly

branching.

166

Lemma 8.6 (strong regularity and pointed supported configurations). A PES E is strongly

regular if and only if it is boundedly branching and for any fixed finite set V , the equivalence

≈sr is of finite index over V -pointed supported configurations of E.

Proof. Let V be a finite set and let CV = {⟨C,R, ζ⟩ | C ∈ C(E) ∧ R ∈ R(C) ∧ ζ : V → C}
be the set of V -pointed supported configurations.

Since clearly ≈sr refines ≈r, if CV is finite up to ≈sr, then the set of pointed confi-

gurations of E is finite up to ≈r. Thus, if E is boundedly branching, by Lemma 5.4 we

immediately obtain that E is strongly regular.

Now we prove the other direction. By strong regularity E is boundedly branching, and

by Lemma 5.4 the set {⟨C, ζ⟩ | C ∈ C(E) ∧ ζ : V → C} is finite up to ≈r. This does

not immediately imply that CV is finite up to ≈sr. In fact, given two V -pointed supported

configurations ⟨C,R, ζ⟩, ⟨C ′, R′ζ ′⟩, an isomorphism of pointed residuals ι : E [C] → E [C ′] is

not necessarily an isomorphism of the corresponding pointed supported residuals since we

additionally need that ι(R) = R′.

Assume, by contradiction, that CV is not finite up to ≈sr. Then we can find an infinite

sequence of V -pointed supported configurations ⟨Ci, Ri, ζi⟩, i ∈ N such that the correspon-

ding V -pointed configurations ⟨Ci, ζi⟩ are all ≈r-equivalent, while ⟨Ci, Ri, ζi⟩ are pairwise

non-equivalent with respect to ≈sr. Let ιi : E [Ci] → E [Ci+1] be isomorphisms of pointed

residuals for all i ∈ N and denote by ιi,j : E [Ci] → E [Cj] the isomorphism resulting as the

composition ιj−1 ◦ . . . ◦ ιi+1 ◦ ιi.
Since the pointed supported configurations in the sequence are pairwise non-equivalent,

for all i, j ∈ N, i < j, we must have Rj ̸= ιi,j(Ri). Then the key observations are the

following. For all i ∈ N

1. each set of support sets R(Ci) is finite, since E is boundedly branching

2. R(Ci) = {ι1,i(R) | R ∈ R(C1)}, since ι1,i : E [C1] → E [Ci] is a PES isomorphism

between the residuals of the configurations C1, Ci.

So, for all j ∈ N, there exists R ∈ R(C1) such that Rj = ι1,j(R), and for all i < j, there

must exist R′ ∈ R(C1) such that Ri = ι1,i(R
′) and Rj = ι1,j(R) ̸= ιi,j(Ri) = ι1,j(R

′), hence

R ̸= R′. This would imply the existence of infinitely many different support sets in R(C1),

contradicting its finiteness. Therefore CV must be finite up to ≈sr.

From the existence of an infinite path where the same proposition is unfolded infinitely

many times without being reintroduced, and the fact that strongly regular PESs have only

finitely many equivalence classes of pointed supported residuals, it is easy to deduce that

actually there cannot be an infinite tableau, since at some point the stop condition would

have held preventing the continuation of the path. Therefore, all tableaux for strongly

regular PESs are finite and the number of possible tableaux for a sequent is also finite.

167

Theorem 8.2 (tableaux finiteness). Given a strongly regular PES E and a closed formula φ

in L∗⊗
hp , every tableau for a sequent C,R, ρ,∆ |=E φ is finite. Hence the number of tableaux

for C,R, ρ,∆ |=E φ is finite.

Proof. The proof proceeds by contradiction. Suppose that there is an infinite tableau τ

for the sequent C,R, ρ,∆ |=E φ. By Lemma 5.7, in τ there is an infinite path p where a

proposition Z occurs infinitely many times without being introduced. Let Z(x) = ηZ(x). ψ

be the definition of Z in the tableau.

By Lemma 8.6 the set of x-pointed supported configurations of E is finite up to ≈sr.

Since the proposition Z is unfolded infinitely many times along p without being introduced,

there are infinitely many sequents C ′, R′, ρ′,∆′ |=E Z(x′) for which ∆′↑(Z) is the same node.

Hence the stop condition γ is necessarily satisfied at some point of the path, contradicting

its infiniteness.

We next prove that also the number of tableaux is finite. Consider a tree where nodes

are tableaux rooted C,R, ρ,∆ |=E φ and where the successors of each tableau τ are the

tableaux obtained by extending τ with the application of a rule. Since E is strongly regular,

the tree is finitely branching. If it was infinite, by Lemma 5.6 there would be an infinite

path meaning that there would be an infinite sequence of tableaux (τi)i∈ω, such that τi+1

extends τi. This in turn implies the existence of an infinite tableau, that contradicts the

first part.

Soundness and completeness of the tableau system can be proved in the same way

as for Lhp, relying on the reduction of the semantics of fixpoint formulae to that of finite

approximants and the backwards soundness of the rules. Here we do not report all the proof

passages, described in depth in Subsection 5.3.2. We just mention that approximants for

fixpoint formulae of L∗⊗
hp can be defined in the same way of those for Lhp (Definition 5.10).

Then, they satisfy the properties in Lemma 5.8, as a result of Lemma 8.6.

The notions of ν- and µ-pseudo-tableaux for L∗⊗
hp can be given as in Definitions 5.11

and 5.12, adapting the rules defined there in the obvious way, adding support sets. Then,

the crucial result about ν-pseudo-tableaux (Lemma 5.10) can be easily extended to L∗⊗
hp ,

noticing that any leaf labelled by a sequent of the kind C,R, ρ,∆ |= φ1 ▷◁ φ2 is clearly

true. The fact that it is a leaf implies that the support set R has no possible separations,

i.e., Sep(R) = ∅, hence the formula is always satisfied by definition of the semantics. Then,

we immediately obtain the same corresponding soundness result by virtue of backwards

soundness of the tableau rules for L∗⊗
hp .

Lemma 8.7 (soundness). Let E be a strongly regular PES and let φ be a closed formula

of L∗⊗
hp . If φ has a successful ν-pseudo-tableau (hence in particular, if it has a successful

tableau) then E satisfies φ.

Proof. Assume that the sequent C,R, ρ, ∅ |=E φ has a successful tableau τ . Then τ is a

successful ν-pseudo-tableau. For all leaves (and thus for all false leaves) C,R, ρ,∆ |= X(z),

168

∆↑(X) is in τ . Therefore, if it had a false leaf, by Lemma 5.10 we could continue building

strictly smaller ν-pseudo-tableau with the same properties, contradicting the finiteness of

τ . Hence all the sequents labelling the leaves of τ must be true, a fact that, by Lemma 8.4

implies that all the nodes of τ are true and thus, in particular, the sequent C,R, ρ, ∅ |=E φ

labelling the root is true, as desired.

We can prove completeness of the tableau system by extending the proof of Lemma 5.13

with the cases for the new operators and reviewing those for the diamond and box modalities.

Lemma 8.8 (completeness). Let E be a strongly regular PES and let φ be a closed formula

of L∗⊗
hp . If E satisfies φ then φ has a successful µ-pseudo-tableau and thus a successful

tableau.

Proof. Recall that the proof proceeds by constructing a successful tableau inductively, based

on the shape of the consequent of the current sequent C,R, ρ,∆ |= φ, showing which rule

to apply and arguing that the conclusion of the rule is again a true sequent. Here we show

only the cases which are new or different from before.

• φ = ⟨|x,y < a z|⟩ψ
Since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = ⟨|x,y < a z|⟩ (ψ)∆, by definition of the se-

mantics there exists an event e ∈ R such that C
ρ(x),ρ(y)<e−−−−−−−−→a C

′, ρ′ = ρ[z ↦→ e]

and (C ′, en(C ′), ρ′) ∈ {|(ψ)∆|}π. Then we can apply rule (♢) producing a single true

successor labelled C ′, en(C ′), ρ′,∆ |= ψ.

• φ = [[x,y < a z]]ψ

Note that the successors Succx,y<az
E (C,R, ρ) are finite since the PES E is strongly

regular and thus finitely branching. Let the set of successor be Succx,y<az
E (C,R, ρ) =

{(C1, en(C1), ρ1), . . . , (Cn, en(Cn), ρn)}.

If Succx,y<az
E (C,R, ρ) is not empty, since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = [[x,y <

a z]] (ψ)∆, by definition of the semantics we have that (Ci, en(Ci), ρi) ∈ {|(ψ)∆|}π for

all i ∈ [1, n]. Then rule (□) can be applied producing n true successors labelled

Ci, en(Ci), ρi,∆ |= ψ, for i ∈ [1, n].

Otherwise, if Succx,y<az
E (C,R, ρ) is empty, the node has no successor.

• φ = ψ1 ∗ ψ2

Since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = (ψ1)∆ ∗ (ψ2)∆, by definition of the semantics

there exists a separation (R1, R2) ∈ Sep(R) such that (C,R1, ρ) ∈ {|(ψ1)∆|}π and

(C,R2, ρ) ∈ {|(ψ2)∆|}π. Then we can apply rule (∗) producing two true successors

labelled C,R1, ρ,∆ |= ψ1 and C,R2, ρ,∆ |= ψ2, respectively.

• φ = ψ1 ▷◁ ψ2

Let the set of separations of R be Sep(R) = {(R1
1, R

2
1), . . . , (R1

n, R
2
n)}. Note that the

set Sep(R) is finite since the PES E is strongly regular and thus finitely branching.

169

If Sep(R) is not empty, since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = (ψ1)∆ ▷◁ (ψ2)∆, by

definition of the semantics we have that for each separation (R1
i , R

2
i) ∈ Sep(R), for all

i ∈ [1, n], there exists pi ∈ {1, 2} such that (C,Rpii , ρ) ∈ {|(ψpi)∆|}π. Then rule (▷◁)

can be applied producing n true successors labelled C,Rpii , ρ,∆ |= ψpi , for i ∈ [1, n].

Otherwise, if Sep(R) is empty, the node has no successor.

• φ = ⟨⊗⟩ψ
Since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = ⟨⊗⟩ (ψ)∆, by definition of the semantics there

exists a complete supset M ∈ M(R) such that (C,M, ρ) ∈ {|(ψ)∆|}π. Then we can

apply rule (⟨⊗⟩) producing a single true successor labelled C,M, ρ,∆ |= ψ.

• φ = [⊗]ψ

Let the set of complete supsets of R be M(R) = {M1, . . . ,Mn}. Note that the

set M(R) is finite since the PES E is strongly regular and thus finitely branching.

Furthermore M(R) cannot be empty by definition of complete supset.

Since (C,R, ρ) ∈ {|(φ)∆|}π and (φ)∆ = [⊗] (ψ)∆, by definition of the semantics we

have that (C,Mi, ρ) ∈ {|(ψ)∆|}π for all i ∈ [1, n]. Then rule ([⊗]) can be applied

producing n true successors labelled C,Mi, ρ,∆ |= ψ, for i ∈ [1, n].

Then the rest of the proof, showing that the constructed tableau is successful, is as in

Lemma 5.13.

Combining the lemmata for soundness and completeness we obtain the desired result.

Theorem 8.3 (soundness and completeness of the tableau system). Given a strongly regular

PES E and a closed formula φ of L∗⊗
hp , the formula φ has a successful tableau if and only if

E satisfies φ.

Proof. Corollary of Lemmata 8.7 and 8.8.

170

Chapter 9

Conclusions

We studied the model-checking problem in the logic for true concurrency Lhp, represen-

ting the logical counterpart of a classical true concurrent behavioural equivalence, i.e.,

history-preserving bisimilarity. We explored three different approaches to the problem.

First, resorting to a tableau-based technique we showed that the problem is decidable for

the class of strongly regular PESs, that include regular trace PESs. We then devised an

automata-theoretic model-checking procedure relying on parity tree automata, amenable of

a more efficient implementation. As an example of instantiation on a concrete formalism,

we showed how the technique can be implemented on finite safe Petri nets, also producing

a proof-of-concept tool. Lastly, we took a broader approach to the problem and to formal

verification in general. We developed a theoretical framework for the characterisation of

the solution of systems of fixpoint equations over lattices which intervene as an essential

ingredient in a number of verification problems, showing how it instantiates to the model-

checking of Lhp. We characterised the solution of such systems by means of a parity game,

identifying continuous lattices as a general and appropriate setting for the theory. We pro-

vided techniques for the computation of winning strategies in the game, based on progress

measures à la Jurdziński, selections and a logic for the symbolic representation of players’

moves.

We proved that the class of regular trace PESs, corresponding exactly to finite safe

Petri nets, is included in that of strongly regular PESs which, in turn, is included in the

class of regular PESs. The precise relation of strongly regular PESs with the other two

classes is still unclear and interesting in view of [CC17] that recently showed that regular

trace PESs are strictly included in regular PESs, disproving Thiagarajan’s conjecture. We

remark that any example of regular but not strongly regular PES would be a counterexample

to the conjecture. Indeed, especially since the proof in [CC17] is quite involved, we hope

that a formal study of the relation between these classes of PESs will lead to a simpler

counterargument to Thiagarajan’s conjecture.

In the literature there are several other works dealing with model-checking for logics on

event structures. In [Pen97] a technique is proposed for model-checking a CTL-style logic

171

with modalities for immediate causality and conflict on a subclass of PESs. The logic is

quite different from Lhp as formulae are satisfied by single events, the idea being that an

event, with its causes, represents the local state of a component. The procedure involves

the construction of a finite representation of the PES associated with a program which has

some conceptual relation with our quotienting phase for automata and games. In [Mad03]

the author shows that first-order logic and monadic trace logic (Mtl), a restricted form of

monadic second-order logic (Msol), are decidable on regular trace event structures. The

possibility of directly observing conflicts in Mtl and thus of distinguishing behaviourally

equivalent PESs (e.g., the PESs consisting of a single or two conflicting copies of an event),

and the presence in Lhp of propositions which are non-monadic with respect to event varia-

bles, make the logics not immediate to compare. Still, a deeper investigation is definitively

worth to pursue, especially in view of the fact that, in the propositional case, the mu-

calculus corresponds to the bisimulation invariant fragment of Msol [JW96]. Moreover,

understanding which are the bisimulation invariant fragments of Msol over event structu-

res, with respect to the various concurrent bisimulations, represents an interesting program

in itself.

The true concurrent approach sees also recent applications in the design and development

of tools for the specification and verification of consistency models and properties (see

[AMT14]) for concurrent and distributed systems, both software and hardware, particularly

in the setting of weak memory consistency [DSB86]. Among these tools, the cat language

[ACM16] provides means to succinctly describe consistency models and properties in terms

of relations over instructions, seen as events, and constraints on such relations, such as

acyclicity or irreflexiveness, or even more complex ones. Properly defined relations over

events provide partial order semantics, allowing to identify and verify truly concurrent

behaviours, such as race conditions, for example, in an automatic way. Not surprisingly,

these features are, in a sense, similar to those offered by a logic for true concurrency, indeed,

the modelled properties could possibly be seen as logical properties about the dependency

relations over the events in the computations.

The automata-based tool, for the model-checking of Lhp over finite safe Petri nets, is still

very preliminary. As suggested by its (wishful) name (inspired to the classical Edinburgh

Concurrency Workbench [SS98]) we would like to bring the TCWB to a more mature

stage, working on optimisations and adding an interface that gives access to a richer set

of commands. In particular, the tool is missing two main optimizations: a strategy for an

efficient exploration of the automaton, and efficient data structures and ways to maintain

and update them. Both have been carefully considered in [SS98] for CWB and shown to lead

to great improvements in performances. For instance, CWB uses so-called assumptions and

decisions for choice-points during the exploration in order to efficiently build the winning

strategy for a player. Despite the fact that our procedure is based on automata instead of

games, we believe that similar techniques could be exploited also in the TCWB. Moreover,

we would like to investigate the applicability of the tool to the verification of properties

172

that can naturally take advantage from true concurrent models and specification languages.

For instance, we already mentioned that the data race freedom [AHMN91], non-interference

[GM82] and causal atomicity [FM06] properties can be expressed in Lhp. We would like

to extend the scope to other properties benefiting from the true concurrent approach, and

possibly compare our tool with others from the literature developed specifically for the

verification of those properties. From a more theoretical standpoint, in Section 6.4 we

provided some upper bounds to the size of the automaton built for model-checking a formula

on a safe net, however more work is required towards an adequate study of the complexity

of the model-checking problem at hand. In particular, the question remains open about

the lower bounds on the time or space. An interesting research direction would be to study

the problem in the setting of alternating Turing machines [CKS81], especially suited for

decision problems involving alternating quantifiers such as this one.

The logic L∗⊗
hp , proposed as an extension of Lhp with incomparable operators from the

logics in [Gut11], is clearly one of the most expressive true concurrent logics for which

model-checking has been proved decidable. The automata-based tool could be adapted

for accepting also formulae of L∗⊗
hp , though the practical interest in such an expressive logic

might be limited. Moreover, it remains open which behavioural equivalence L∗⊗
hp corresponds

to and whether it is decidable on some class of models. Still, as we mentioned, such a

behavioural equivalence would surely be strictly coarser than hereditary history-preserving

bisimilarity. Some ideas in this regard can be already derived from [Gut11], at least for a

class of systems, called fc-structured systems, corresponding to a subclass of safe Petri nets.

Another open issue concerns the possibility of generalising the results in the thesis to

the full logic L in [BC14]. This is quite challenging: the full logic L induces hereditary

history-preserving bisimilarity, which is known to be undecidable already for finite state

Petri nets [JNS03]. This does not imply undecidability of the corresponding model-checking

problem. However, even if it were decidable, such problem would probably lie on the very

border of decidability. On the semantic side, also relaxing the restriction to strongly regular

PESs appears to be quite problematic, unless one is willing to deal with transfinite objects

(tableaux, automata runs, or strategies depending on the approach) which, however, would

be of very limited practical interest.

As we mentioned, the game-theoretic method, devised for the solution of systems of

fixpoint equations over continuous lattices, actually provides a very general framework which

finds many other applications in formal verification.

On the model-checking side, besides the model-checking of standard mu-calculi, the

framework applies also to cases where the mu-calculus is not a classical logic but lattice-

valued as in [KL07] or real-valued as in [HK97], which presents an algorithm based on

the simplex method for the non-nested case. Solving equation systems over the reals was

considered in [GS11] and in [MS17]. In particular, [MS17] presents an algorithm for solving

nested fixpoint equation systems over the real interval [0, 1]R by a direct algorithm which

represents and manipulates piecewise linear functions as conditioned linear expressions. The

173

method presented in this thesis can offer an alternative way to solve such equation systems.

Games for quantitative or probabilistic mu-calculi have been studied in [MM07, Mio12]. As

opposed to our game, such games closely follow the structure of the mu-calculus formula

on which the game is based (e.g., ∃ makes a choice at an ∨-node, ∀ at an ∧-node). It

is an interesting question whether the conceptual simplicity of our game could lead to a

new perspective on existing games. It would also be compelling to determine whether the

framework can handle quantitative logics whose modalities interact with (lattice) truth

values in a non-trivial way, such as logics with discounted modalities as studied in [ABK14].

Expressing such logics as systems of fixpoint equations over suitable continuous lattices

and thus obtaining a game-theoretic characterisation of the corresponding model-checking

problem seems reasonably easy. However, turning such characterisation into an effective

technique requires some non-trivial symbolic approach due to the fact that the lattice is of

infinite height.

Other interesting areas of application are fixpoint equations on the (non-distributive,

but continuous) lattices of equivalence relations and pseudo-metrics. The computation of

fixpoints for equivalence relations is essential for behavioural equivalences, and the same

holds for pseudo-metrics and behavioural distances [vBW05].

Depending on the approach to the solution of the fixpoint game associated with a system

of fixpoint equations, one can obtain a global or local decision procedure for the correspon-

ding problem. We would like to study (efficient) algorithms for the solution of the game,

especially in the local case to check whether a specific lattice element is below the solution.

Examples of such local algorithms are backtracking methods studied in [SS98, Hir98]. Furt-

hermore, we are interested in the integration of local methods with up-to techniques for

general lattices, see for instance [BGGP18, PS11, Pou07]. Up-to techniques also relate in

an interesting way to the method for quotienting the game described in Subsection 7.5.2. In

fact, the quotienting of the game might seem an ad hoc procedure for the model-checking

of Lhp, but, actually, preliminary investigations reveal that it can be seen as an instance of

a more general approach based on the abstraction of the domain on which the system of

equations is defined, in the style of abstract interpretation, of which up-to techniques could

also be seen as an instance.

174

Bibliography

[ABK14] Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL.

In Proceedings of TACAS ’14, volume 8413 of Lecture Notes in Computer

Science, pages 424–439. Springer, 2014.

[ACM16] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the

weak consistency model specification language cat. arXiv:1608.07531. URL

http://arxiv.org/abs/1608.07531, 2016.

[AHMN91] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Netzer.

Detecting data races on weak memory systems. In Proceedings of the 18th

Annual International Symposium on Computer Architecture, pages 234–243.

ACM, 1991.

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In Samson Abramsky,

Dov Gabbay, and Thomas Stephen Edward Maibaum, editors, Handbook of

Logic in Computer Science, pages 1–168. Oxford University Press, 1994.

[AKH06] Parosh Aziz Abdulla, Lisa Kaati, and Johanna Högberg. Bisimulation mini-

mization of tree automata. In Oscar H. Ibarra and Hsu-Chun Yen, editors,

Proceedings of CIAA ’06, volume 4094, pages 173–185. Springer, 2006.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Model-

ling, simulation, testing, and data mining for weak memory. ACM Trans.

Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[BC10] P. Baldan and S. Crafa. A logic for true concurrency. In P. Gastin and

F. Laroussinie, editors, Proceedings of CONCUR ’10, volume 6269 of Lecture

Notes in Computer Science, pages 147–161. Springer, 2010.

[BC14] P. Baldan and S. Crafa. A logic for true concurrency. Journal of the ACM,

61(4):24:1–24:36, 2014.

[BC15] P. Baldan and A. Carraro. A causal view on non-intereference. Fundamenta

Informaticae, 140(1):1–38, 2015.

175

http://arxiv.org/abs/1608.07531

[BDKP91] Eike Best, Raymond Devillers, Astrid Kiehn, and Lucia Pomello. Fully con-

current bisimulation. Acta Informatica, 28:231–261, 1991.

[Bed87] Marek A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis,

University of Sussex, 1987.

[Bed91] Marek A. Bednarczyk. Hereditary history preserving bisimulations or what

is the power of the future perfect in program logics. Technical report, Polish

Academy of Sciences, 1991.

[Bet55] Evert W. Beth. Semantic entailment and formal derivability. Mededelingen

der Koninklijke Nederlandse Akademie van Wetenschappen, Nieuwe Reeks,

18(13):309–342, 1955.

[BF02] J. Bradfield and S. Fröschle. Independence-friendly modal logic and true

concurrency. Nordic Journal of Computing, 9(1):102–117, 2002.

[BG09] Nadia Busi and Roberto Gorrieri. Structural non-interference in elementary

and trace nets. Mathematical Structures in Computer Science, 19(6):1065—-

1090, 2009.

[BGGP18] Filippo Bonchi, Pierre Ganty, Roberto Giacobazzi, and Dusko Pavlovic.

Sound up-to techniques and complete abstract domains. In Proceedings of

LICS ’18, pages 175–184. ACM, 2018.

[BGV17] Eike Best, Nataliya Gribovskaya, and Irina Virbitskaite. Configuration- and

residual-based transition systems for event structures with asymmetric con-

flict. In Bernhard Steffen, Christel Baier, Mark van den Brand, Johann Eder,

Mike Hinchey, and Tiziana Margaria, editors, Proceedings of SOFSEM ’17,

volume 10139 of Lecture Notes in Computer Science, pages 132–146. Springer,

2017.

[BKMMP19] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso Pa-

doan. Fixpoint games in continuous lattices. In Stephanie Weirich, editor,

Proceedings of POPL ’19, volume 3, pages 26:1–26:29. ACM, 2019.

[BP17] Paolo Baldan and Tommaso Padoan. Local model checking in a logic for true

concurrency. In Javier Esparza and Andrzej S. Murawski, editors, Proceedings

of FoSSaCS ’17, volume 10203 of Lecture Notes in Computer Science, pages

407–423. Springer, 2017.

[BP18] Paolo Baldan and Tommaso Padoan. Automata for true concurrency proper-

ties. In Christel Baier and Ugo Del Lago, editors, Proceedings of FoSSaCS

’18, volume 10803, pages 165–182. Springer, 2018.

176

[Bra98] J.C. Bradfield. The modal mu-calculus alternation hierarchy is strict. TCS,

195(2):133–153, 1998.

[BS06] Julian Bradfield and Colin Stirling. Modal mu-calculi. In P. Blackburn, J. van

Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages 721–756.

Elsevier, 2006.

[CC79] Radhia Cousot and Patrick Cousot. Constructive versions of tarski’s fixed

point theorems. Pacific Journal of Mathematics, 82(1):43–57, 1979.

[CC17] Jérémie Chalopin and Victor Chepoi. A counterexample to Thiagarajan’s

conjecture on regular event structures. In Ioannis Chatzigiannakis, Piotr

Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of ICALP ’17,

volume 80 of LIPIcs, pages 101:1–101:14. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2017.

[CFVZ14] F. Carreiro, A. Facchini, Y. Venema, and F. Zanasi. Weak MSO: automata

and expressiveness modulo bisimilarity. In T. A. Henzinger and D. Miller,

editors, Proceedings of CSL-LICS ’14, pages 27:1–27:27. ACM press, 2014.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.

Journal of the ACM, 28(1):114–133, 1981.

[CKS92] Rance Cleaveland, Marion Klein, and Bernhard Steffen. Faster model checking

for the modal mu-calculus. In Proceedings of CAV ’92, volume 663 of Lecture

Notes in Computer Science, pages 410–422. Springer, 1992.

[CKV13] I. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the

reversible p-calculus. In Proceedings of LICS ’13, pages 388–397. IEEE Com-

puter Society, 2013.

[Cle90] Rance Cleaveland. Tableau-based model checking in the propositional mu-

calculus. Acta Informatica, 27(8):725–747, 1990.

[CS01] E. M. Clarke and B.-H. Schlingloff. Model checking. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, chapter 21. Elsevier,

2001.

[dBS69] Jaco W. de Bakker and Dana S. Scott. A theory of programs. Unpublished

manuscript, 1969.

[DDNM88] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. Partial orderings

descriptions and observations of nondeterministic concurrent processes. In

Jaco W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors,

REX Workshop, volume 354 of Lecture Notes in Computer Science, pages

438–466, Heidelberg, DE, 1988. Springer.

177

[DNF90] R. De Nicola and G. Ferrari. Observational logics and concurrency models.

In K. V. Nori and C. E. V. Madhavan, editors, Proceedings of FST-TCS ’90,

volume 472 of Lecture Notes in Computer Science, pages 301–315. Springer,

1990.

[DR00] Giorgio Delzanno and Jean-François Raskin. Symbolic representation of

upward-closed sets. In Susanne Graf and Michael I. Schwartzbach, edi-

tors, Proceedings of TACAS ’00, volume 1785 of Lecture Notes in Computer

Science, pages 426–440. Springer, 2000.

[DSB86] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multi-

processors. In Proceedings of the 13th Annual International Symposium on

Computer Architecture, pages 434–442. IEEE Computer Society, 1986.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and

determinacy. In Proceedings of SFCS ’91, pages 368–377. IEEE, 1991.

[EJS01] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-

calculus and its fragments. Theoretical Computer Science, 258(1-2):491–522,

2001.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments

of the propositional mu-calculus. In Proceedings of LICS ’86, pages 267–278.

IEEE Computer Society, 1986.

[Fit91] Melvin Fitting. Many-valued modal logics. Fundamenta Informaticae, 15:235–

254, 1991.

[FM06] A. Farzan and P. Madhusudan. Causal atomicity. In Proceedings of CAV ’06,

volume 4144 of Lecture Notes in Computer Science, pages 315–328, 2006.

[Fon08] G. Fontaine. Continuous fragment of the mu-calculus. In M. Kaminski and

S. Martini, editors, Proceedings of CSL ’08, volume 5213 of Lecture Notes in

Computer Science, pages 139–153. Springer, 2008.

[Frö04] S. Fröschle. Decidability and Coincidence of Equivalences for Concurrency.

PhD thesis, Univeristy of Edinburgh, 2004.

[GB09] J. Gutierrez and J. C. Bradfield. Model-checking games for fixpoint logics with

partial order models. In M. Bravetti and G. Zavattaro, editors, Proceedings

of CONCUR ’09, volume 5710 of Lecture Notes in Computer Science, pages

354–368. Springer, 2009.

[GB11] J. Gutierrez and J. C. Bradfield. Model-checking games for fixpoint logics

with partial order models. Information and Computation, 209(5):354–368,

2011.

178

[GHK+03] Gerhard Gierz, Karl H. Hofmann, Klaus Keimel, Jimmie D. Lawson, Mi-

chael W. Mislove, and Dana S. Scott. Continuous Lattices and Domains.

Cambridge University Press, 2003.

[GLLS05] Orna Grumberg, Martin Lange, Martin Leucker, and Sharon Shoham. Don’t

know in the µ-calculus. In Radhia Cousot, editor, Proceedings of VMCAI ’05,

volume 3385 of Lecture Notes in Computer Science, pages 233–249. Springer,

2005.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In

Proceedings of the 1982 IEEE Symposium on Security and Privacy, pages

11–20, 1982.

[GS11] Thomas Martin Gawlitza and Helmut Seidl. Solving systems of rational

equations through strategy iteration. ACM Trans. Program. Lang. Syst.,

33(3):11:1–11:48, 2011.

[Gut09] J. Gutierrez. Logics and bisimulation games for concurrency, causality and

conflict. In L. de Alfaro, editor, Proceedings of FoSSaCS ’09, volume 5504 of

Lecture Notes in Computer Science, pages 48–62. Springer, 2009.

[Gut11] J. Gutierrez. On bisimulation and model-checking for concurrent systems with

partial order semantics. PhD thesis, University of Edinburgh, 2011.

[Gut15] J. Gutierrez. On fixpoint logics and equivalences for processes with restricted

nondeterminism. Journal of Logic and Computation, 28(4):779–807, 2015.

[Hin55] Jaakko Hintikka. Form and content in quantification theory. Acta Philoso-

phica Fennica, 8:7–55, 1955.

[Hir98] Daniel Hirschkoff. Automatically proving up to bisimulation. In Proceedings

of MFCS ’98 Workshop on Concurrency, number 18 in Electronic Notes in

Theoretical Computer Science, pages 75–89. Elsevier, 1998.

[HK97] Michael Huth and Marta Kwiatkowska. Quantitative analysis and model

checking. In Proceedings of LICS ’97, pages 111–122. IEEE, 1997.

[HKMV17] Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema. Parity

games and automata for game logic. In Proceedings of DALI ’17, volume 10669

of Lecture Notes in Computer Science, pages 115–132. Springer, 2017.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the ACM, 32(1):137–161, 1985.

179

[HSC16] Ichiro Hasuo, Shunsuke Shimizu, and Corina Ĉırstea. Lattice-theoretic pro-

gress measures and coalgebraic model checking. In Proceedings of POPL ’16,

pages 718–732. ACM, 2016.

[JM96] Lalita Jategaonkar and Albert R. Meyer. Deciding true concurrency equi-

valences on safe, finite nets. Theoretical Computer Science, 154(1):107–143,

1996.

[JN00] Marcin Jurdziński and Mogens Nielsen. Hereditary history preserving bisimi-

larity is undecidable. In Horst Reichel and Sophie Tison, editors, Proceedings

of STACS ’00, pages 358–369. Springer, 2000.

[JNS03] M. Jurdzinski, M. Nielsen, and J. Srba. Undecidability of domino games and

hhp-bisimilarity. Information and Computation, 184(2):343–368, 2003.

[JNW96] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Infor-

mation and Computation, 127(2):164–185, 1996.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity games. In

Proceedings of STACS ’00, volume 1770 of Lecture Notes in Computer Science,

pages 290–301. Springer, 2000.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propositi-

onal mu-calculus with respect to monadic second order logic. In U. Montanari

and V. Sassone, editors, Proceedings of CONCUR ’96, pages 263–277. Sprin-

ger, 1996.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Communications

of the ACM, 19(7):371–384, 1976.

[KL07] Orna Kupfermann and Yoad Lustig. Latticed simulation relations and ga-

mes. In Proceedings of ATVA ’07, volume 4672 of Lecture Notes in Computer

Science, pages 316–330. Springer, 2007.

[Kla02] Hartmut Klauck. Algorithms for parity games. In Erich Grädel, Wolfgang

Thomas, and Thomas Wilke, editors, Automata, Logics, and Infinite Games:

A Guide to Current Research, volume 2500, pages 107–129. Springer, 2002.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North Holland Pub.

Co., 1952.

[Kön27] Dénes König. Über eine schlussweise aus dem endlichen ins unendliche. Acta

Scientiarum Mathematicarum, 3(2-3):121–130, 1927.

[Koz83] Dexter C. Kozen. Results on the propositional µ-calculus. Theoretical Com-

puter Science, 27(3):333–354, 1983.

180

[Kri63] Saul Kripke. Semantical considerations on modal logic. Acta Philosophica

Fennica, 16:83–94, 1963.

[Mad97] Angelika Mader. Verification of Modal Properties Using Boolean Equation

Systems. PhD thesis, TU München, 1997.

[Mad03] P. Madhusudan. Model-checking trace event structures. In Proceedings of

LICS ’13, pages 371–380. IEEE Computer Society, 2003.

[Mar76] George Markowsky. Chain-complete posets and directed sets with applicati-

ons. Algebra Universalis, 6:53–68, 1976.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980.

[Mio12] Matteo Mio. On the equivalence of game and denotational semantics for the

probabilistic µ-calculus. Logical Methods in Computer Science, 8(2:07):1–21,

2012.

[MM07] Annabelle McIver and Carroll Morgan. Results on the quantitative µ-calculus

qmµ. ACM Trans. Comp. Log., 8(1:3), 2007.

[Mos85] A. W. Mostowski. Regular expressions for infinite trees and a standard form of

automata. In Andrzej Skowron, editor, Proceedings of Computation Theory:

Fifth Symposium ’84, volume 208 of Lecture Notes in Computer Science, pages

157–168. Springer, 1985.

[MP97] U. Montanari and M. Pistore. Minimal transition systems for history-

preserving bisimulation. In R. Reischuk and M. Morvan, editors, Proceedings

of STACS ’97, volume 1200 of Lecture Notes in Computer Science, pages

413–425. Springer, 1997.

[MS17] Matteo Mio and Alex Simpson. Lukasiewicz µ-calculus. Fundamenta Infor-

maticae, 150(3-4):317–346, 2017.

[Mul63] David E. Muller. Infinite sequences and finite machines. In Proceedings of

the 4th Annual Symposium on Switching Circuit Theory and Logical Design,

pages 3–16. IEEE Computer Society, 1963.

[NC95] M. Nielsen and C. Clausen. Games and logics for a noninterleaving bisimula-

tion. Nordic Journal of Computing, 2(2):221–249, 1995.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-

gram Analysis. Springer, 1999.

181

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and

Domains, Part 1. Theoretical Computer Science, 13:85–108, 1981.

[Pad] Tommaso Padoan. True concurrency workbench. Available at http://

github.com/tpadoan/TCWB.

[Pad18] Tommaso Padoan. Relating some logics for true concurrency. In Alessandro

Aldini and Marco Bernardo, editors, Proceedings of ICTCS ’18, volume 2243

of CEUR Workshop Proceedings, pages 242–253. CEUR-WS.org, 2018.

[Par69] David Park. Fixpoint induction and proofs of program properties. In Bernard

Meltzer and Donald Michie, editors, Machine Intelligence, volume 5, pages

59–78. Edinburgh Univeristy Press, 1969.

[Par81] David Park. Concurrency and automata on infinite sequences. In Peter Deus-

sen, editor, Theoretical Computer Science, volume 104 of Lecture Notes in

Computer Science, pages 167–183. Springer, 1981.

[Pen95] W. Penczek. Branching time and partial order in temporal logics. In Time

and Logic: A Computational Approach, pages 179–228. UCL Press, 1995.

[Pen97] W. Penczek. Model-checking for a subclass of event structures. In

E. Brinksma, editor, Proceedings of TACAS ’97, volume 1217 of Lecture Notes

in Computer Science, pages 145–164. Springer, 1997.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Universität Ham-

burg, 1962.

[Pou07] Damien Pous. Complete lattices and up-to techniques. In Proceedings of

APLAS ’07, pages 351–366. Springer, 2007. LNCS 4807.

[PS11] Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof

method. In Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in

Bisimulation and Coinduction. Cambridge University Press, 2011.

[PU07] I. Phillips and I. Ulidowski. Reversing algebraic process calculi. Journal of

Logic and Algebraic Programming, 73(1-2):70–96, 2007.

[PU11] Iain Phillips and Irek Ulidowski. A logic with reverse modalities for history-

preserving bisimulations. In B. Luttik and F. Valencia, editors, Proceedings

of EXPRESS ’11, volume 64 of EPTCS, pages 104–118, 2011.

[PU12] I. Phillips and I. Ulidowski. A hierarchy of reverse bisimulations on sta-

ble configuration structures. Mathematical Structures in Computer Science,

22(2):333–372, 2012.

182

http://github.com/tpadoan/TCWB
http://github.com/tpadoan/TCWB

[PU14] Iain Phillips and Irek Ulidowski. Event identifier logic. Mathematical Struc-

tures in Computer Science, 24(2):1–51, 2014.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on

infinite trees. Transactions of the American Mathematical Society, 141:1–35,

1969.

[Ran52] George. N. Raney. Completely distributive complete lattices. Proceedings of

the AMS, 3(5):677–680, 1952.

[RT88] Alexander M. Rabinovich and Boris A. Trakhtenbrot. Behaviour structures

and nets. Fundamenta Informaticae, 11:357–404, 1988.

[Sch04] Klaus Schneider. Verification of Reactive Systems: Formal Methods and Al-

gorithms. Springer, 2004.

[Sco70] Dana S. Scott. Outline of a mathematical theory of computation. In Procee-

dings of the 4th Annual Princeton Conference on Information Sciences and

Systems, pages 169–176, 1970.

[Sco71] Dana S. Scott. The lattice of flow diagrams. In E. Engeler, editor, Sympo-

sium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in

Mathematics, pages 311–366. Springer, 1971.

[Sco72] Dana S. Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes,

Algebraic Geometry and Logic, volume 274 of Lecture Notes in Mathematics,

pages 97–136. Springer, 1972.

[Sei96] Helmut Seidl. Fast and simple nested fixpoints. Information Processing Let-

ters, 59(6):303–308, 1996.

[Shi85] M W. Shields. Concurrent machines. The Computer Journal, 28(5):449–465,

1985.

[SS98] Perdita Stevens and Colin Stirling. Practical model-checking using games. In

Bernhard Steffen, editor, Proceedings of TACAS ’98, volume 1384 of Lecture

Notes in Computer Science, pages 85–101. Springer, 1998.

[Sti95] Colin Stirling. Local model checking games. In Proceedings of CONCUR ’95,

volume 962 of Lecture Notes in Computer Science, pages 1–11. Springer, 1995.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is

elementarily decidable. Information and Control, 54(1):121–141, 1982.

[SW91] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.

Theoretical Computer Science, 89(1):161–177, 1991.

183

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5:285–309, 1955.

[Thi02] P. S. Thiagarajan. Regular event structures and finite Petri nets: A conjec-

ture. In W. Brauer, H. Ehrig, J. Karhumäki, and A. Salomaa, editors, Formal

and Natural Computing - Essays Dedicated to Grzegorz Rozenberg [on occa-

sion of his 60th birthday], volume 2300 of Lecture Notes in Computer Science,

pages 244–256. Springer, 2002.

[Val98] Antti Valmari. The state explosion problem, volume 1491 of Lecture Notes in

Computer Science, pages 429–528. Springer, Berlin, Heidelberg, 1998.

[vBW05] Franck van Breugel and James Worrell. A behavioural pseudometric for proba-

bilistic transition systems. Theoretical Computer Science, 331:115–142, 2005.

[Ven08] Yde Venema. Lectures on the modal µ-calculus. Lecture notes, Institute for

Logic, Language and Computation, University of Amsterdam, 2008.

[vGG01] R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence

notions for concurrent systems. Acta Informatica, 37(4/5):229–327, 2001.

[Vog91] W. Vogler. Deciding history preserving bisimilarity. In J. Albert, B. Monien,

and M. Artalejo, editors, Proceedings of ICALP ’91, volume 510 of Lecture

Notes in Computer Science, pages 495–505. Springer, 1991.

[Win87] G. Winskel. Event Structures. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Petri Nets: Applications and Relationships to Other Models of Con-

currency, volume 255 of Lecture Notes in Computer Science, pages 325–392.

Springer, 1987.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of logic in Computer

Science, volume 4, pages 1–148. Oxford University Press, 1995.

[Wol90] Thomas Wolfgang. Automata on infinite objects. In Jan Van Leeuwen, editor,

Formal Models and Semantics, volume B of Handbook of Theoretical Computer

Science, pages 133–191. Elsevier, 1990.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications

to automata on infinite trees. Theoretical Computer Science, 200(1-2):135–

183, 1998.

184

	Abstract
	Acknowledgements
	Introduction
	Contributions and structure of the thesis
	Origin of the chapters

	I Background
	Preliminaries
	Basic notation
	Partial orders, lattices and domains

	Models for concurrent systems
	Event structures
	Petri nets
	Unfolding

	Behavioural equivalences

	Logics for concurrency
	Hennessy–Milner logic
	Modal mu-calculus
	History preserving logic
	Syntax
	Semantics
	Examples
	Alternation

	II Model Checking
	Tableau system
	Tableau rules
	The stop condition
	Soundness and completeness of the tableau system
	Finiteness
	Soundness and completeness

	Automata
	Infinite parity tree automata and their quotient
	NPAs for model checking
	NPA for Petri nets
	A prototype tool

	Games
	Preliminaries on ordered structures
	Systems of fixpoint equations
	Approximating the solution

	Fixpoint game
	Soundness and completeness

	Progress measures
	Computing progress measures

	Model checking Lhp
	Systems of fixpoint equations for logical formulae
	Fixpoint game for model checking

	Related logics
	Event identifier logic
	Encoding EILh

	Separation and trace fixpoint logics
	A more powerful logic
	Syntax
	Semantics
	Model checking Lhp*⊗

	Conclusions
	Bibliography

