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Abstract

The thesis has been developed focusing on the use of multivariate statistical methods

in the High Energy Physics framework. Stemming from the framework described by the

current dominant physical theory, known as the Standard Model, the thesis has been

developed by following two directions, associated with two different physical research

questions.

The first route takes the steps from the need of improving the knowledge within the

Standard Model. From a statistical point of view, such improvement refers to the aim

of obtaining more accurate estimates of the parameters describing the Standard Model

in order to gain a better knowledge of the probability distribution of the underlying

physical process, known as the background. In practice, estimation of such probability

distribution builds on the use of Monte Carlo simulated data, which, in turn, can be

costly and imprecise. To prevent these problems, the physical community has developed

a novel procedure to generate artificial background data from the experimental ones.

Within the thesis, a formal validation of the physical procedure is performed by means

of introducing a statistical permutation-based two-sample test for density equality. The

test relies on kernel density estimation and is suitably adjusted to be applied to high

dimensional data.

The second direction of research derives from the incompleteness of the Standard

Model, known to be unable to fully describe the Universe and the interactions among

its characterising forces. The goal of going beyond the Standard Model is reached

through model-independent searches of new physics which aim at looking for new pos-

sible particles not predicted by the Standard Model. Such particles, referred to as a

signal, are expected to behave as a deviation from the known background. From a sta-

tistical perspective, the problem is recasted to a peculiar classification one where only



partial information is available. Therefore a semi-supervised approach shall be adopted,

either by strengthening or by relaxing assumptions underlying clustering or classification

methods respectively. Within this context, the thesis follows two distinct approaches.

The first approach consists of developing a parametric semi-supervised method which

originates from the framework of model-based clustering. A dimensionality reduction

technique is proposed by resorting to penalised methods to circumvent issues related to

parameters estimation and the curse of dimensionality. The proposed variable selection

approach is extended from the unsupervised to the semi-supervised context with atten-

tion to features exhibiting anomalous properties. The second approach followed with

the aim of new physics searches consists of suitably adjusting and statistically validating

an existing procedure, developed within the physical community. Some improvements

to the algorithm are also proposed regarding, among others, cases of high dimensional

and correlated data.



Sommario

Questa tesi si concentra sull’uso di metodi statistici multivariati in un contesto della

fisica per le alte energie. Partendo dall’ipotesi dominante nella teoria fisica, conosciuto

come Modello Standard, questa tesi si muove in due direzioni, associate a due diverse

domande di ricerca provenienti dalla fisica.

Il primo contributo parte dalla necessità di comprendere meglio i dettagli del Mod-

ello Standard. Da un punto di vista statistico, il miglioramento della conoscenza del

Modello Standard può essere tradotto nell’obiettivo di ottenere stime più accurate dei

parametri che lo descrivono, al fine di avere una migliore conoscenza della distribuzione

di probabilità dei processi fisici sottostanti, noti come background. Nella pratica tali

stime partono da simulazioni Monte Carlo che a loro volta possono essere computazional-

mente onerose e imprecise. Per ovviare a questo problema la comunità scientifica ha

elaborato nuove procedure per generare il background dai dati sperimentali. All’interno

della tesi si propone un metodo per validare in maniera formale queste procedure fisiche,

basato su un test di permutazione a due campioni per l’uguaglianza in distribuzione.

Il test proposto si basa sull’uso stime kernel della densità, ed è stato opportunamente

aggiustato in modo da poter essere applicato a dati elevata dimensionalità.

Il secondo contributo parte dalla considerazione che il Modello Standard è incom-

pleto, essendo incapace di descrivere l’universo che ci circonda e l’interazione tra le forze

che lo caratterizzano. L’obiettivo di superare il Modello Standard è attuato ricercando

nuove possibili particelle non predette dalla teoria. Queste particelle definite segnale,

si assume si manifestino come deviazione rispetto al comportamento del background.

Da un punto di vista statistico questa ricerca può essere interpretata come un prob-

lema di classificazione dove solo una parte dell’informazione è disponibile. L’approccio,

che assume dunque caratteristiche semi-supervisionate, può essere affrontato o rilas-

sando le ipotesi proprie dei metodi di classificazione, o rafforzando quelle dei metodi



di raggruppamento. In questo contesto, la tesi segue due approcci. Il primo consiste

nello sviluppare un metodo parametrico basato su modelli di raggruppamento, in cui si

propone una tecnica per la riduzione della dimensionalità basata su metodi penalizzati,

in modo da prevenire problemi relativi alla stima dei parametri e alla maledizione della

dimensionalità. Il metodo proposto per selezione delle variabili è esteso dal caso non

supervisionato a quello semi supervisionato, con particolare attenzione per le variabili

con caratteristiche anomale. Il secondo approccio, consiste nel tarare e validare da un

punto di vista statistico, procedure già esistenti, e sviluppate in contesti fisici. Alcune

migliorie sono state proposte, riguardando, tra le altre, casi ad alta dimensionalità e

dati correlati.
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Introduction

Overview

Since the early Seventies, the Standard Model has represented the state of the art in

Particle Physics. It describes the structure of the Universe - the elementary particles,

and the inherent interactions - the fundamental forces. Despite its apparent empirical

confirmations, it is evident that the Standard Model is not a complete theory, as it fails

to explain several phenomena like, for instance, the gravity, the nature of dark matter,

and the dark energy. For this reason, there are persistent attempts to either extend the

Standard Model or to build an entirely new theory (Grossman and Rakshit, 2004). To

this aim, physical experiments are conducted within large accelerators, as e.g., the LHC

at CERN. The experiments involve propelling charged particles, making them collide

and detecting the created products. Collected data are then used to validate and delve

into physical theories or to find evidence of possible new physics, not predicted by the

Standard Model.

In broad terms, two physical processes are of interest within the considered frame-

work: the background process refers to the known physics described by the Standard

Model. Although well rooted by definition, and with the due specifications which will

be clarified in the rest of the thesis, the knowledge of such process is required to be

deepened for specific purposes. The latter process, referred to as signal, represents, in

turn, the unknown physics, which is required to complete our knowledge of the Universe.

While the physical theory allows for conjecturing possible expressions for such process,

its existence is itself brought into question and, whenever acknowledged, it is required

to expect its extreme rarity.

In this framework, statistics plays a pivotal role, aiming at providing tools to analyse

the data and thus answer the physical research questions. In this perspective, and

consistently with the aforementioned problems, this thesis addresses the following goals:

1. Improving the accuracy in estimating the probability density function underlying

the background process.

1



2 Main contributions of the thesis

2. Providing the tools to identify a possible, unknown, signal and to discriminate it

from the background process.

Main contributions of the thesis

Stemming from a characterization of the aforementioned research goals, in the fol-

lowing, the investigation path which has been pursued to attain them, as well as the

main results of the thesis are summarised.

• Despite that the background process represents, by definition, the known physics,

its probabilistic generating mechanism is not explicitly defined or numerically

computable, and requires to be estimated. However, the background data needed

to estimate the underlying probability density function are not always accurate

or available. To circumvent the problem, Dall’Osso et al. (2017) have designed

an algorithm aimed at generating background-like data. A statistical validation is

then necessary to test whether the method performs according to its goals.

The problem can been framed in a hypothesis testing framework, with the null hy-

pothesis establishing the equality of two distributions. While this problem admits,

in principle, a number of standard solutions, the available approaches are based

on specific assumptions that do not hold in the considered application, where data

at hand are multivariate and exhibit non-Gaussian properties, such as skewness

and multimodality.

Duong and Schauer (2012) have proposed a kernel density-based global two-sample

test, which appears suitable for the application. However, nonparametric methods

are particularly affected by the curse of dimensionality which prohibits their use

for high dimensional data.

As a first contribution of the thesis, it is proposed to perform the mentioned

test multiple times in low-dimensional subspaces, and apply a proper combination

function to the obtained results for verifying the previously stated hypothesis.

Due to correlations between the multiple test results, statistical inference from

their combination is not straightforward. For this reason, it is proposed to embed

the test in a permutation framework, which allows for obtaining the empirical

distribution of the combination function values under the null hypothesis. The

obtained permutation-based two-sample test is validated concerning its first type

error rate and its power. Finally, it is applied to the physical data to answer the

primary question of interest.
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• The main assumption underlying empirical searches of new physics is that any

possible signal would behave as a deviation from the background process. From

a statistical perspective, the problem can be then expressed in the framework

of anomaly detection, where observations not consistent with the assumed back-

ground model are searched in the experimental data (Pimentel et al., 2014). Unlike

above, in this setting the background process is entirely known and a sample of

virtually infinite size can be drawn from it. Two different sources of data are then

available: a first sample generated from the background process - in the following

referred to as labelled since the generating process of the observations is known,

and a second, unlabelled experimental sample, whose generating mechanism is

unknown, as it surely include observations from the background but might also

include observations from the signal. The anomaly detection problem can be then

faced according to a semi-supervised approach, due to the partial labelling of the

available data.

Among several alternatives, in the thesis two different approaches to the semi-

supervised anomaly detection problem are followed:

– The first approach stems from the idea of semi-supervising the signal de-

tection by strengthening unsupervised (clustering) methods via the inclusion

of the additional information available on the background. The proposed

method originates from the family of model-based clustering approaches,

and assume Gaussian mixtures densities to model the background and sig-

nal distributions. Due to the curse of dimensionality, the approach can be

sub-optimal or even not feasible to be performed on high-dimensional data.

Pan and Shen (2007)) and Xie et al. (2008) introduce penalised methods

for variable selection in the context of model-based clustering, but rely on

restrictive assumptions on the covariance matrices of the clusters. In the the-

sis, the penalised approach is extended to allow for a more flexible modelling

without constraining the mixture component covariance matrices. Addition-

ally, a variant of the Expectation-Maximization algorithm (Dempster et al.,

1977) is derived and implemented, to estimate the parameters of the mixture

model via the numerical maximization of the penalized likelihood function.

Subsequently, the idea of variable selection within model-based clustering

is extended for anomaly detection purposes in the semi-supervised setting,

starting from the works of Vatanen et al. (2012) and Kuusela et al. (2012).

– The second approach for semi-supervised anomaly detection phrases the prob-

lem in terms of hypothesis testing. In summary, a signal is identified in the
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experimental data if there is evidence that such data are not compatible

with the background probability distribution. This natural idea has been

developed by Vischia and Dorigo (2017) which make use of sampling and

multiple hypothesis testing to study anomalous properties of data at hand.

The proposed procedure depends on many parameters, but their influence

on the method performance has been yet unclear. In the thesis, an optimal

selection of such parameters is studied both theoretically and based on sim-

ulations. The performance of the procedure is validated and compared with

competing methods given artificial data and within applications to real ones.

Some improvements of the method are proposed concerning its performance

for high dimensional data.

The rest of the thesis is organized as follows. In Chapter 1 an overview of the phys-

ical framework is provided. Chapter 2 introduces the problem of background density

estimation, illustrates the physical procedure for generating background data, discusses

and validates the proposed permutation test. Chapter 3 and 4 focus on the signal de-

tection problem, and illustrate the clustering-based and, respectively, the hypothesis

testing-based procedures.



Chapter 1

The physical framework

1.1 The Standard Model

Since the dawn of time, men have been trying to make sense to the surrounding word.

Over the years, incredible progresses have been done in understanding the physics of the

Universe, ranging from the microscopic scale of atom building quarks, to giant stars and

quasars. One question of interest concerns understanding the structure of the Universe

- the elementary particles - and the inherent interactions - the forces. Physical theories

provide an effective mathematical formulation describing physical systems, subsequently

validated and possibly confirmed based on physical experiments specifically designed.

Once a theory is confirmed it becomes a starting point for further extensions which, in

turn, allow for a more accurate description of the world.

Over time, particle discoveries, as for example, the ones of electron (1896), proton

(1919) or neutron (1932), have allowed for a rough understanding of matter building

blocs. With the increasing knowledge of the universe structure, an advance in under-

standing the physical forces has been made. Four fundamental particle interactions have

been classified - namely the electromagnetic, weak interaction, strong interaction and

the gravitational forces. Around 1970 a complex theoretical framework was established

to comprehensively describe the elementary particles known at that time, and three of

the four fundamental forces (gravity not included). The theory, referred to as the Stan-

dard Model, postulates the existence of matter constituents - the fermions (see Figure

1.1) - and the mediators of interactions - the bosons (see Figure 1.2). Fermions and

bosons are characterised by the electrical charge, spin and a life-span, which establish

their properties, possible interactions or bounding configurations.

At the time of the first Standard Model formulation, many of the model-assumed

elementary particles were not empirically discovered yet. Only recently the last missing

5
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Figure 1.1: The twelve postulated fundamental constituents of matter in the Stan-
dard Model - fermions (Thomson, 2013).

Figure 1.2: The four known forces of nature. The relative strengths are approxi-
mate indicative values for two fundamental particles at a distance of 1fm = 10−15m
(Thomson, 2013).

elements of the Standard Model have been proved - the top quark (CDF Collaboration,

1995), the tau neutrino (DONUT Collaboration, 2001) and the Higgs boson (ATLAS

Collaboration, 2012; CMS Collaboration, 2012). The modern discoveries deeply rooted

the Standard Model (with some later adaptations) to be the current widely-acceptable

state of the art of the physical theory.

Although the Standard Model is sometimes claimed to be a uniform theory of ev-

erything, the physical community is far to consent with such statement. The Standard

Model is not a self-contained theory, as for example, it does not account for the gravi-

tational force; it is not able to explain the mechanism of the dark matter creation, the

neutrinos non-zero mass and many other phenomena (Fuks, 2012). For these reasons,

there are persistent attempts to either complete the Standard Model or to build an en-

tirely new theory (Grossman and Rakshit, 2004). In general, any further development

of the current state of art needs to address the two following questions of interest:

1. Is it possible to improve our knowledge within the Standard Model framework?

2. Is it possible to go beyond the Standard Model, by completing it or defining an

alternative theory?

With some due specifications, these are the general problems on which the thesis

focuses. The aim is pursued via an investigation of suitable statistical methods aimed
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at providing an answer to these questions.

1.2 The experimental settings

A natural way to answer the central research questions is to design and perform suit-

able experiments to find a required justification. Nowadays, such physical experiments

and the experimental infrastructures to make them possible are incredibly complex,

costly and require years of careful planning before any answer could be found. The

complicated process of an experiment design is only sketched underneath, as our fo-

cus is instead put on statistical analyses of collected experimental data to find possible

evidence for backing up any theoretical claims.

In general, experiments with elementary particle physics often require the use of

very high energy to allow for an insight into processes that are rare or do not occur

at low energy. For this aim, specific infrastructures are built - namely particle acceler-

ators, that use an electromagnetic field to propel charged particles to nearly the light

speed. There are many accelerators types with different topological structure (linear,

circular) or mechanical design (electrostatic, electrodynamic) but have the common aim

of increasing particle kinematic energy to a given high value. The currently most fa-

mous accelerators from their impact on discoveries are the LHC (CERN, Switzerland),

Tevatron (Fermilab, the USA) and KEKB (KEK, Japan).

For the high energy physic purposes, recent accelerators are often built in a circular

shape - the so called synchrotrons. Such design allows for a continuous acceleration of

groups of charged particle - beams - to reach an exceptional energy of the propelled

particles. The LHC is a record holder for reaching the energy equal to 6.5TeV, in

which particles are accelerated in an underground ring of circumference equal to 27 km.

Usually, in synchrotrons, two beams are accelerated in opposite directions and cross in

specific locations where the propelled particles collide.

Each particle collision, referred to as an event, produces complex individual inter-

actions, i.e. state transitions, hadronisation, bosons and quarks production, particles

decay, and others. Large particle detector systems are placed around the collision points,

to enable reconstruction of the primary particles produced for each event. Such detec-

tors are highly-advanced sensors which use a wide range of technologies to identify

and measure properties of the produced particles. In general, detectors are cylindrically

shaped barrels stretched along the beam path. They consist of specific zones for particle

tracking (an inner region) and calorimeters for their energy measurements. See Figure
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Figure 1.3: Typical layout of a particle detector equipped with a tracking system
(here shown with cylindrical layers of a silicon detector), an electromagnetic calorime-
ter (ECAL), a hadron calorimeter (HCAL) and muon detectors. Usually, around the
detector a solenoid is wrapped (not shown in Figure) to produce the magnetic field
which bends the charged particles trajectories (Thomson, 2013).

1.3 for a schematic detector cross-section. Outside of the colourimeters, additional lay-

ers of muon detectors are often placed. Ideally, all the produced particles (apart from

neutrinos) should be absorbed by the respective sensors and their existence evidenced.

In the LHC at CERN, there are two main particle detectors: ATLAS, which has around

25 meters of diameter, and the more compacted CMS detector.

For each high-energy collision event, many particles can be produced. For each

particle, its energy and a 3-dimensional momentum are measured, respectively by the

calorimeters and the tracking elements of the particle detector. The four variables - the

so called 4-vector - are necessary to identify each collision product distinctly. In the

LHC a Cartesian coordinate system is defined as follows: the origin is located at the

collision point, the x-axis points to the centre of the ring, the y-axis vertically upwards

and the z-axis is tangent to the beam. Alternatively, an equivalent system of polar

coordinates is used which is invariant under certain transformations. The azimuthal

angle φ is measured in the xy plane from the x-axis and the radial coordinate in the

plane is denoted by r. The polar angle θ is defined in the rz plane but preferably it is

expressed in terms of the pseudorapidity η = ln
(
tan
(
θ
2

))
. The transverse momentum

- pT - is computed as the momentum component perpendicular to the beam direction.

Similarly, the transverse energy is defined as ET = E sin θ where E is the total energy.

Due to a very high frequency of collisions, the amount of the possibly produced data

is so large that only a small percentage can be filed. Specifically designed hardware

and software solutions, the so called triggers, allow for filtering out only observations
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of potential interest, i.e. the part of the data to be discarded is redundant as it is

associated with already well-known processes (CMS Collaboration, 2016b). Later, for

events admitted by the triggers, a particle identification needs to be accomplished by

specific software solutions based on the recorded tracks, energy deposits and the known

physical theory (CMS Collaboration, 2009). Unfortunately, the identification is not

straightforward as some particles quickly decay before they reach calorimeters. An

example is an energetic quark which decays by radiating gluons along its way so that

its initial energy cannot be directly measured. However, the quark generates bunch

of gluons which travel in approximately the same direction so that a cone is formed

- a phenomenon referred to as the jet formation. Jet measurements allow for later

reconstruction of energy and momenta for the decayed quark. The summary of all the

identified particles of a given event (for example one electron and two jets identified for

an event) are referred as the event final state. After all these steps, the preprocessed

experimental data are finally prepared for the analysis purpose. In conclusion, the data

consist of automatically selected events where each of them is composed of a list of

identified particles with their respective measurements - the 4-vector.

1.3 Motivation

1.3.1 Improvement of the knowledge within the Standard Model

framework

The Standard Model framework describes possible outputs and interactions of phys-

ical phenomena in probabilistic terms but, in general, a probability distribution of col-

lision kinematic or angular variables is unknown. In principle, such distribution could

be computed by solving multivariate integrals of partition functions and nonlinear La-

grangians. However, for computational and numerical reasons this is not feasible to be

performed. Hence, the probability distribution of the physical process described by the

Standard Model, in the following referred to as the background, is required to be esti-

mated. In fact, the problem is not trivial, due to the lack of reliable background data.

Experimental data are not directly usable, as they are realizations of some, more compre-

hensive, possibly unknown process, whose the background represents only a (dominant)

fraction.

Conversely, background estimation is often based on Monte Carlo simulations, per-

formed under the assumption that the Standard Model is correct. Unlike statistical

simulations, aimed at generating data given their distribution, physical Monte Carlo
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simulations are based on a different concept, i.e. a probability density function of vari-

ables is not necessary to produce a related sample. Such simulated data consist of

realisations of possible collisions which are produced by a complex system of adequate

generation steps. Without going into the physical details, based on theoretical parton

distribution functions, possible collision effects are simulated in an appropriate propor-

tion and with respect to the physical rules, i.e. via the creation of elementary particles,

coupling, their interactions and others. The simulations also cover other processes that

the produced particles undergo immediately after the collision, as for example their de-

celeration, scatterings or jet creation. For such simulated events, a detector response

is computed based on its measurement efficiency. Later, a specific trigger is applied,

to reflect circumstances in which the experimental data are collected. Finally, a parti-

cle identification is performed leading to the collision reconstruction. To facilitate the

complex computation, many specific software packages have been implemented for this

aim, as for example “MadGraph” (Alwall et al., 2014), “Pythia” (Sjőstrand et al., 2006,

2015), or “Delphes” (de Favereau et al., 2014).

Hence, simulating data from the background process is possible, and frequently per-

formed, so that for many final states of particle collisions the generated data are tolerably

accurate. Nevertheless, given the degree of complication, some simplifications need to

be applied for facilitating the simulation procedure. For example, to avoid computations

of multivariate integrals describing complex particle states, approximation methods are

used (Frixione and Webber, 2002). Also, not every physical phenomenon is predictable,

for instance, whenever the strong force plays a relevant role. In all these circumstances,

simulations get imprecise or biased. Additionally, for some rare processes, it can be

impossible to produce large data quantity as they are computationally too expensive to

be generated.

To respond to the scarcity or the inadequacy deficiencies of Monte Carlo data for

complex final states, Dall’Osso et al. (2017) have designed a novel approach that ad-

dresses the issue of generating background-like data, referred to as the Hemisphere

Mixing. They propose to use the experimental data themselves which might include

non-background observations, and apply a specific permutation scheme, referred to as a

mixing procedure. The mixing is driven jointly by the knowledge of the physical process

and information from the experimental data. It aims at transforming all the input data

into observations distributed according to the dominant background process - to be used

for estimating the background density.

In experimental particle physics, the mixing approach is not novel, but uncommon.

The method has turned out to be successful for some specific applications, as for example
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electron-positron collisions (CMS Collaboration, 2010, 2011b). However, for complex

final states of the proton-proton collisions occurring at the LHC, the idea has never

been used. In specific, Dall’Osso et al. (2017) have adjusted the mixing definition to

make it suitable for the multijet collisions.

Although there is a physical and logical reasoning behind the Hemisphere Mixing

approach, it needs to be formally verified if the method performs appropriately to its

goals. These are:

1. From input data generated dominantly by the background, the Hemisphere Mixing

produces data entirely distributed according to the background.

2. Distributions of input data and the related hemisphere mixed output data are

equal, if and only if the input data are the background.

The aforementioned questions are addressed in Chapter 2, via an introduction of a

suitable statistical test.

1.3.2 Going beyond the Standard Model

Another fundamental research direction within the physical community follows the

need of developing the current theory. This can be achieved either by extending the

Standard Model or by constructing an entirely new physical framework (Fuks, 2012).

Research is often performed based on a data-driven evidence of new physics which can

appear, for instance, as a sign of a new particle unpredicted by the Standard Model.

There have been several efforts in new physics searches within the community. Such

searches are often driven in a model-dependent guise where supervised classifiers are

trained to find particular phenomena expected to be seen under hypothetical theory ex-

tensions (ATLAS Collaboration, 2014b; CMS Collaboration, 2016a). As a result, only a

narrow subspace of possible alternative extensions is tested. Without being constrained

to any physical hypothesis, a more general approach - called model-independent - has

also been applied in this context (CMS Collaboration, 2011a, 2017; ATLAS Collabora-

tion, 2014a, 2017; Popov, 2011). Such approach allows the data to speak for themselves

and searches within a broader range of alternative signal processes. It aims at new signal

detection rather than confirmation of any physical theory.

The main assumption underlying model-independent searches is that new possible

physics - referred to as a signal process - would show an anomalous behaviour with

respect to the background. In the considered setting, Monte Carlo simulations are

usually trusted to provide accurate data from the background and feasibly produced
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with an arbitrary size. Hence, the problem of detecting a possible signal can be ad-

dressed according to a semi-supervised approach, by comparing the the Monte Carlo

data generated from the background, with the experimental ones, which might include

observations from the signal.

This problem is addressed in Chapters 3 and 4, by considering two alternative logics,

based on the semi-supervision of clustering methods and the employment of hypothesis

testing respectively.



Chapter 2

Validation of a physical algorithm

to improve background estimation

2.1 Motivation and goals

The background process is defined by the Standard Model established on the known

physical theory, however, its underlying probability density function is generally un-

known and requires a precise estimation. Such goal has been usually attained relying

on Monte Carlo simulated data. Nevertheless, simulations are suitable only for some

scenarios for which the artificially generated data can be trusted and are available in

large quantity. Otherwise, the density estimate is unobtainable or inaccurate. The issue

of the Monte Carlo data imperfectness is present for instance in multi-jet final states

analysis, which is especially useful for a more in-depth understanding of the Standard

Model. In specific, non-resonant pair production of Higgs bosons decaying into a bb̄bb̄-

quark final state provides an excellent measure to determine the self-coupling λ - a

crucial Standard Model parameter. However, as the multi-jet final states have a high

potential for a more exhaustive understanding of the Standard Model, it calls for inves-

tigating of novel methods that can replace the insufficient Monte Carlo simulations and

improve the required background estimation.

An ideal solution to overpass the aforementioned issue would be to generate back-

ground data completely (or at worst approximately) independent on the underlying

physical theory. Within this logic, the Hemisphere Mixing algorithm has been recently

proposed by Dall’Osso et al. (2017). It takes as an input the experimental collision data

Y , and applies on them a specific permutation transformation driven by the knowledge of

the physical context so that new synthetic data Z are produced. Under the assumption

that the input data are generated entirely (or at least dominantly) by the background

13
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process, it is aimed that the generated data Z have the background distribution. Pro-

vided that the method works according to its goal, it could be successively used for the

production of background samples from the experimental data Y without resourcing to

either Monte Carlo simulations or being heavily based on the physical theory.

From the statistical point of view, an extended analysis needs to be performed to

verify if the Hemisphere Mixing algorithm produces data with adequate properties, i.e.

distributed according to the background density. Ideally, a two-sample statistical com-

parison test should be applied to the background data and the hemisphere mixed output

data to verify if the algorithm application can retain the data background properties

and smear out the signal evidence if present. A permutation-based hypothesis test is

introduced for this aim, its type-1 error and power are evaluated. The test is applied

to physical data in several scenarios so that the algorithm performances for specific

conditions are verified.

2.2 Description of the Hemisphere Mixing algorithm

The Hemisphere Mixing algorithm is based on the so-called observation mixing ap-

proach. In a shorthand, each input event is adequately replaced with components orig-

inating from other events. For each event, the algorithm groups collision jets into two

disjoint sets and reconstitutes them using different sets with similar properties. The

selected sets are jointed so that a new event is composed, and if applied to all the

events, the algorithm output is produced. The mixing idea per se is not utterly new

in physical applications (CMS Collaboration, 2010, 2011b) but it had required in-depth

adjustments for the peculiar application setting, and to our knowledge, it has never been

applied to the multi-jet studies.

Let us consider proton-proton collisions resulting in the production of multiple jets

originating from collision points. As it has been explained in Section 1.2, each particle

and jet can be distinctly defined by specifying their measured 4-vectors. However, to

compare events, it is required to use more general event summary statistics as collisions

can differ in the number of produced jets, and, in principle, the jets are not ordered. In

practice, various event-based statistics are computed from the corresponding 4-vectors

which give rise to data variables. The variables are chosen so that they have a meaningful

physical interpretation, they are invariant under certain transformations or powerful for

the background and a possible signal discrimination.

The first step of the algorithm is to bi-partition the event jets so that the two resulting

sets have possibly null or negligibly small between-group physical interactions. This is
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performed within the data framework defined in Section 1.2 using a “thrust” axis TTT . The

axis TTT is determined in the Euclidean coordinate system separately for each event based

on its jet momenta. It passes through the collision point and its direction is specified in

the way that event jet momenta projections along it are maximised, i.e.

argmax

(
Nj∑
h=1

||ppph|| | cos ∆ (ppph,TTT ) |
)
, (2.1)

where Nj is a number of the event jets, ∆ (ppph,TTT ) is the angle between the hth jet

momentum vector ppp and the thrust axis TTT .

A perpendicular plane to the thrust axis TTT , which passes through the collision point,

divides the event topological space into two sub-spaces. Each subspace and jets enclosed

in it are referred to as the hemisphere. A graphical visualisation of a collision, its

resulting jets, the respective thrust vector and the hemisphere division is presented on

the left-hand side of Figure 2.2.

A fundamental assumption of the Hemisphere Mixing algorithm is that interactions

between event hemispheres are negligible. The independence assumption should be ex-

plained based on the known physical principles at least to the so-called “first order”

effects. In fact, for the considered proton-proton collisions at the LHC, the produced

hemispheres are dependent as, in general, the event centre of mass is not at rest. How-

ever, if the phase space is reduced to the transverse plane in which the thrust axis is

bounded to be determined, the independence assumption holds, and the hemispheres

are only related by the QCD radiations, pile-up effects or multiple parton scatterings

(the detailed explanation is given in AMVA4NewPhysics ITN, 2017). Thus, without loss

of generality, we consider only a 2-dimensional space of the transverse plane in which

the thrust axis is determined.

The experimental data Y of size m are supplied to be the Hemisphere Mixing algo-

rithm input. For l = 1, ...,m, the algorithm takes subsequent observations for which the

respective thrust axis are determined and two corresponding hemispheres are obtained.

Note that the hemispheres are ordering invariant, and, without loss of generality, let us

denote them as h2l−1 and h2l. After all the iterations, a total of 2m hemispheres are col-

lected to compose the so-called hemisphere library. In general, using the independence

assumption of the hemispheres, one could pick at random two hemispheres from the

library, merge them up and obtain a possible valid event of the multi-jet proton-proton

collision. The following variables describe the hemispheres: the number of jets they in-

clude Nj, the number of b-tagged jets Nt (a specific type of jets), the sum of projected

jets transverse momenta along the thrust axis T , the combined mass of jets M , the sum
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Figure 2.1: Graphical representation of an example hemisphere containing two jest
(Nj = 2) with respective masses m1 and m2 and transverse momenta p1 and p2. One
jet is b-tagged Nt = 1; the combined mass M = m1 + m2; T and Tp are chosen
according to Equation 2.1.

of momenta projections perpendicular to the thrust Tp, and the sum of jets momenta

components along the z-axis Pz. An example graphical representation of a hemisphere

is presented in Figure 2.1. From one perspective each hemisphere can be seen as a point

in a 6-dimensional space with the associated variables Nj,Nt, T,M, Tp and Pz.

After construction of the hemisphere library, the mixing procedure can be performed.

For j = 1, ..., 2m, an iterative search within the Hemisphere library is performed to find

the most similar hemisphere to the current one hj. The similarity between the jth and

kth hemispheres, for k ∈ {1, ..., 2m} \ {j}, is defined by a distance measure D(l, k)

expressed in the hemisphere feature space as

D(j, k)2 =
(T (hj)−T (hk))

2

V ar(T ) +
(M(hj)−M(hk))2

V ar(M)

+
(Tp(hj)−Tp(hk))2

V ar(Tp) +
(|Pz(hj)|−|Pz(hk)|)2

V ar(Pz) ,

namely the Euclidean distance scaled by the variable variances. Additionally, if the

hemispheres hj and hk differ for any values Nj or Nt the distance is set to +∞. Finally,

a hemisphere hk with the smallest distance D(j, k) to hj is selected as the most similar.

Let us denoted such hemisphere hk by hlibj as the closest to hj from all the ones in

the library. Such search can be performed using a kind of a multi-dimensional nearest-

neighbor approach (Bentley, 1975). New events – the algorithm output – are constructed
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Figure 2.2: Graphical visualization of an original collision event (the left-hand side)
and a corresponding created artificial event (on the right-hand side) from two closest
hemispheres selected from the hemisphere library (central diagram). Figure originates
form AMVA4NewPhysics ITN (2017).

Algorithm 1 Pseudo-code of the Hemisphere Mixing

Input: experimental data Y
Parameters: distance measure function D(j, k)

1: m ← size of the data Y
2: allocate HemLibrary - an empty set
3: for l = 1, ...,m do
4: determine a thrust axis for the observation yyyl
5: bi-partition yyyl and produce hemispheres h2l−1 and h2l
6: store h2l−1 and h2l in HemLibrary
7: end for
8: compute a distance matrix based on the function D(j, k) between all the hemispheres

from HemLibrary
9: for j = 1, ..., 2m do

10: hlibj ← the closest hemisphere from hj within the HemLibrary (excluding hj)
11: end for
12: for l = 1, ...,m do
13: zzzl ← merged hemispheres hlib2l−1 and hlib2l
14: rotate zl according the the lth thrust axis to closely correspond to yyyl
15: end for
16: return Data Z consisting of events zzzl for l = 1, ...,m.

from the selected hemispheres, specifically, for l = 1, ..,m, the two found hemispheres

hlib2l−1 and hlib2l corresponding to the lth observation are merged up. Each constituted new

artificial event is also appropriately rotated so that it matches the thrust axis and closely

corresponds to the original one. Figure 2.2 gives a graphical overview of the presented

idea and for a exhaustive explanation of the Hemisphere Mixing see Algorithm 1.
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The outlined Hemisphere Mixing algorithm produces entirely new data Z, referred to

as the hemisphere mixed data. The mixing is designed to possibly preserve the dominant

properties of the input data, for example, the marginal distribution of their kinematic

variables. Hence, it is expected that the hemisphere mixed data produced from the

background sample keep their inherent background distribution.

On the other hand, if the experimental input data include observations from the sig-

nal process, then the mixing procedure is expected to smear out the signal features, i.e.

purify the mixture data to produce fully background-like distributed observations. It is

presumed that due to the small number of signal observations, the hemisphere library

is going to be poorly represented by the signal-originated hemispheres; consequently, it

is likely to model the signal observations using the background originating hemispheres.

Such modelling is expected to yield the dominant process properties. However, if the

hemisphere similarities are determined by variables greatly discriminating the back-

ground and signal processes, then the signal events are likely to be reproduced using the

signal originating hemispheres, and the expected smearing does not occur. In any case,

whether the signal is present, some background observations can be wrongly modelled

using at least partially the signal originating hemispheres, which can severely degrade

the algorithm performance.

2.3 Statistical question of interest

2.3.1 Description of the problem

Let us introduce a notation for the datasets at hand. Denote the experimental

data Y = (yyy1, ..., yyym)′, where yyyl = (yl1, ..., ylp, ..., ylP )′, l = 1, ...,m, are supposed to

be i.i.d. realizations from an unknown probability density function fBS : RP → R.
Consider also a background density fB : RP → R which refers to the known processes

predicted by the Standard Model. If the process generating the experimental data Y
does not contain any signal component then naturally the distributions fB and fBS are

equal. The hemisphere mixed data Z = (zzz1, ..., zzzm)′, where zzzl = (zl1, ..., zlp, ..., zlP )′,

l = 1, ...,m, are realizations from an unknown probability density function fOut : RP →
R. Note that all the mentioned densities (fBS, fB and fOut) are in practice unknown.

For the general case for which the algorithm is designed, the background data are not

available due to the described issue of the Monte Carlo simulations. However, for the

algorithm verification purpose, such collision scenario is chosen that the background

and signal data are feasible to be produced in a large quantity. In specific, two datasets

are generated: the background data X = (xxx1, ...,xxxn)′, where xxxi = (xi1, ..., xip, ..., xiP )′,
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i = 1, ..., n i.i.d. realizations from the background density fB and the respective signal

data from the density fS which are used to generate the experimental data Y .
In order to verify the performance of the Hemisphere Mixing algorithm, a formal

statistical test has to be applied, to provide evidence that the density fOut of the hemi-

sphere mixed data Z is equivalent to the background one fB, whether the input data Y
include signal or not. The null hypothesis is

H0 : fB(·) = fOut(·)

against the alternative

H1 : fB(·) 6= fOut(·).

The issue of testing two samples for a common distribution is quite common for

statistical application. The literature well describes many potential solutions (Tinsley

and Brown, 2000). The most well-known is the Kolmogorov-Smirnov test (Sheskin,

2003) whose test statistic is computed based on a distance between empirical cumula-

tive distribution functions of the two compared samples. The test can be used only for

unidimensional data, but it has several other attractive features; among them it is the

robustness to outliers, as the statistic is just sensitive to the bulk of density function.

On the other hand, the test usually has small power in comparison to others (Razali

et al., 2011). Multivariate extensions of the Kolmogorov-Smirnov test have been pro-

posed. However, they are computationally complex and do not scale well with the data

dimensionality (Friedman and Rafsky, 1979; Justel et al., 1997).

A more powerful substitute is the Wilcoxon rank sum test (Sheskin, 2003). This is a

common nonparametric univariate two-sample test, for which the alternative hypothesis

is that the two distributions differ by some location shift µ 6= 0 (for the two-sided case).

For the considered data this test is not suitable as it is not multivariate and tests

a different hypothesis (the same location, in general, does not mean the equality of

distributions).

Next, the Multivariate Analysis of Variance (MANOVA) (Sheskin, 2003) seems to

be a better alternative as it is oriented at multidimensional cases. However, the test is

designed to spot the difference in means, and therefore it also does not satisfy the meant

hypothesis. Additionally, the assumption for the test is that the variables have Gaussian

marginal distributions which is not the case for the data at hand (Figure 2.5). However,

for a large number of observations the distribution of the sample mean is approximately

normal (as it follows from the Central Limit Theorem) and for this reason, its use to

some extent can be judged (Khan and Rayner, 2003).
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As described above, these standard statistical tests are not proper for our purpose.

For this reason, we have to identify a more sophisticated method, that is multivariate

and designed for the described hypothesis. Duong and Schauer (2012) have proposed a

kernel density-based global two-sample comparison test – for short the KDE test. The

test makes no assumptions on the data distributions, it is multivariate and tests the

required hypothesis. The used test statistic is the integrated square error

Z =

∫
[fB(x)− fOut(x)]2 dx,

where for fB and fOut kernel density estimates are plugged-in

f̂B(xxx) =
1

n

n∑
i=1

KH(xxx− xxxi) (2.2)

and

f̂Out(xxx) =
1

m

m∑
l=1

KH(xxx− zzzl),

KH is a multivariate kernel with a bandwidth matrix H and the integration is taken

over an appropriate Euclidean space. Duong and Schauer (2012) prove that the con-

sidered Z statistic has asymptotically Gaussian distribution. Such property has a great

computational advantage in comparison to other multivariate tests which often resort

to bootstrap procedures to compute its critical values (Aslan and Zech, 2005). However,

the relevant drawback of the KDE test is that the kernel density estimation is highly

affected by the curse of dimensionality (Azzalini and Scarpa, 2012; Scott, 2015) and by

the need of an optimal selection of the bandwidth matrix H (Wand and Jones, 1995).

Hence, in principle, the test is applicable, but not recommended for samples with higher

dimensionality than 6 (Chacón and Duong, 2010).

2.3.2 Permutation-based statistical test

Within the problem under consideration, the initial number of variables one may

observe is much higher than any dimension which could guarantee accurate nonpara-

metric density estimation (typical collision data have about 20 variables). Therefore,

the idea is to perform multiple tests on small subsets of data variables and infer from

a combination of the test results. Let T be a set of all the data variables. We take at

random S sets of variables from T so that each set Ts, for s = 1, ..., S, contains precisely

U < P distinct variables Subsequently, the statistical tests are performed on data with

variables given by Ts. In this manner, a vector of S p-values is obtained. Consequently,
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a solution for combining multiple test results is required to infer the initially stated

hypothesis.

Inference methods for multiple test results have been well described in the statistical

literature (Bibby et al., 1979). The so-called combination functions – for short com-

binants – are proposed to reasonably put together the test p-values. A combinant is

designed so that its value distribution is known, provided that particular assumptions

are met (frequently assumed independence of the corresponding test statistics). Based

on the theoretical distribution under the null hypothesis and the obtained combination

function value, a single combined p-value is computed, which allows us to decide whether

the null hypothesis should be rejected. However, selection of the combination function

is relevant for the further inference (Pesarin and Salmaso, 2010, p. 128-134). The most

frequently used is the Fisher combinant based on the test statistic

pF = −
S∑
s=1

log(ps)

which has the χ2
2S distribution if partial test statistics are independent. The other

well-studied combinant is the Liptak combination function based on the statistic

pL =
S∑
s=1

G−1(ps)

where G is the cumulative distribution function of the partial test statistic. The third

popular combination function is the one of Tippett given by

pT = max
s=1,...,S

(1− ps)

or equivalently formulated as pM = −mins=1,2,...,S ps and for this reason it is often

referred to as the min-p. For statistical tests with statistics increasing with observed

evidence against the null (case of the KDE test) the Fisher and min-p combination

functions are recommended (Heard and Rubin-Delanchy, 2018). The Liptak combinant

requires to know a test statistic distribution, hence for our case, the approach is not

suitable as the distribution G is only known asymptotically. From the aforementioned

reasons, in this report, we consider the Fisher and min-p combination functions.

One important point to make is that the distributions for the combinants are only

known if the p-values obtained in the multiple tests are independent. Unfortunately,

for the studied case the tests are not independent as the subsets Ts have non-null inter-

sections; besides, the mutual dependence among the variables might cause the sets Ts
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Table 2.1: Test statistics for performed tests on the B + 1 permuted datasets re-
garding the S subsets of variables.

Subsets of variables
T1 . . . Ts . . . TS

1st permuted datasets Z1,1 . . . Z1,s . . . Z1,S
...

. . .
...

. . .
...

bth permuted datasets Zb,1 . . . Zb,s . . . Zb,S
...

. . .
...

. . .
...

Bth permuted datasets ZB,1 . . . ZB,s . . . ZB,S
Original datasets Z(B+1),1 . . . Z(B+1),s . . . Z(B+1),S

Table 2.2: Overview of p-values computation given the corresponding test statistic
values from Table 2.1.

Subsets of variables
T1 . . . Ts . . . TS Combinant

1st permuted datasets p1,1 . . . p1,s . . . p1,S → pC1
...

. . .
...

. . .
...

...
bth permuted datasets pb,1 . . . pb,s . . . pb,S → pCb

...
. . .

...
. . .

...
...

Bth permuted datasets pB,1 . . . pB,s . . . pB,S → pCB
Original datasets p(B+1),1 . . . p(B+1),s . . . p(B+1),S → pCB+1

to be dependent. Hence, distributions of the two combinants under the null hypothesis

are unknown. One way to overcome this problem and turn out with the distributions

is to resort to a permutation framework (Pesarin and Salmaso, 2010). Given the two

datasets X and Z, new data are obtained by randomly swapping observations between

the original sets. This guarantees that the distribution of the permuted samples are

identical, i.e. that we are under the null hypothesis H0. Based on the permuted data,

the S tests are applied with respect to the sampled variable sets. The procedure is

performed B times, and the obtained results can be collected in a table such as Table

2.1.

The results of multiple tests are specifically combined. Firstly for each test statistic

value Zbs the p-value is computed by columns of Table 2.1 as

pb,s =

∑B+1
k=1 1{Zb,s ≤ Zk,s}

B + 1
,

where 1{·} is the identity function. In this way the analogous table of p-values is

constructed (Table 2.2). Afterwards, the chosen combinants are computed by rows.

Note that we obtain B + 1 combined p-values (denoted as pCb ).
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Given B + 1 combined p-values pCb , we can derive the empirical distribution of the

combinant values under the null hypothesis. Subsequently, the distribution is used

to obtain the final p-value for the considered permutation framework for the original

datasets. It is given as a rank percentile of the original value pCB+1 across all the obtained.

In other words, the final permutation-based p-value of a combinant is expressed as

pC =

∑B+1
k=1 1{pCB+1 ≥ pCk }

B + 1

where pCb are computed based either on the Fisher pF or min-p pM combination function.

2.4 Performance of the statistical test

2.4.1 Simulation settings

In order to evaluate the proposed KDE permutation test, its I-type error rate and

power have been evaluated. For this specific purpose, physical Monte Carlo data have

been generated, according to the scheme illustrated in Section 1.3.1. The data cor-

respond to proton-proton collisions in the LHC with multijet final states. The signal

conforms with the Higgs bosons pair decay into 4 b-quarks (hh→ b b̄ b b̄ channel) and the

background represent Standard Model QCD events resulting in a production of at least

two jets. A detailed description of the simulation process, driven by physical arguments,

is beyond the scope of the thesis, and interested readers may refer to AMVA4NewPhysics

ITN (2017). The generated background data have the size equal to 172150 and the sig-

nal ones to 1538. The small size of the signal set is due to Monte Carlo simulation issues

of producing events from the rare process. Given the data, generated from signal and

background processes, a surrogate of the experimental data can be obtained by suitable

sampling from the two datasets with adequate proportions. Since a 4-vector distinctly

describes a jet, each event is fully expressed using 4Nj measurements. The number of

jets Nj might vary between the events and can be even higher than 7. In the following

application, we consider 20 variables which contain adequate knowledge for the process

of merit because jets with the smallest pT are of little relevance. In this way, each event

is described by the same features, independetely from the possibly varying number of

jets. The chosen data variables are expressed in Table 2.3.

Verification of the test accuracy and its power are estimated through simulations by

performing the test multiple times on subsampled datasets X 1 and X 2. The sets, each

of size n, are sampled without replacement from the initially generated signal and back-

ground data. The consider test itself has been adjusted to strike a compromise between
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Variable
name

Short description Remarks

HT Sum of all the jets trans-
verse momenta pT

M All jets invariant mass
Mjjlead Leading dijet invariant mass Dijet is a pair of jets selected based

on a specific pairing method (ATLAS
Collaboration, 2016).

Mjjtrail Trailing dijet invariant mass See above.
pT i Transverse momentum of

the ith largest jet pT
We consider momenta for 4 jets, i.e.
pT1, pT2 pT3 and pT4.

∆φij Azimuthal angle in the
transverse plane between
the ith and jth jets ordered
by pT

In specific we consider ∆φ12, ∆φ13,
∆φ14, ∆φ23, ∆φ24 and ∆φ34.

∆ηij Pseudorapidity difference
between the ith and jth jets,
ordered in pT

We consider ∆η12, ∆η13, ∆η14,
∆η23, ∆η24 and ∆η34.

Table 2.3: Description of the 20 considered data variables for the multijet final state
analysis.

the power and computation time, given that for the simulations purpose it is required

to perform it many times. It has been chosen to set the samples size n to 2000. As well,

we settled on taking S = 40 sets of data variables Ts, each consisting of three distinct

features. We observed that for more extensive sets Ts, the density estimation could be

not accurate enough regarding the moderately small sampled datasets; additionally, the

samples dimension is limited with the computation time, which is related quadratically

to their dimension. The selection of feature sets Ts is taken at random from all the

possible choices of picking 3 out of 20 considered variables. The number of performed

data permutations B within the framework is 400. For such parameters, the single test

takes about ten hours on a 20-core computing machine.

While datasets X 1 and X 2 are both, at least partially, repeatedly subsampled from

the original background data, the performed statistical test p-values might be correlated.

However, as the original background data size is much larger than the subsample size

(almost 100 times larger), the possibly appearing correlation is negligible. If one aims

at removing this unwanted effect entirely, the initial datasets should be divided into

two sets before sampling within the simulations. However, in that case, the resulting

p-values might depend on the former division, leading to an incorrect inference.
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Figure 2.3: On the left-hand side, the empirical cumulative distribution function of
p-values for the considered KDE permutation tests under H0 hypothesis. The number
of sampling R is equal to 120. Two combination functions are used: the Fisher (green
dashed) and the min-p (black dotted). The blue line is the uniform CDF. On the right-
hand side, the table of some selected percentiles of the p-values presented graphically
in the adjacent figure.

2.4.2 Type-I error

The accuracy of a statistical test can be defined as the test ability to incorrectly

reject the null hypothesis at the nominal level α – the significance level – more precisely

the type-I error rate. For a continuous test statistic, when the null hypothesis is true

the p-value is uniformly distributed, by definition of α as the probability of the type-

I error – the only way to commit the error with an arbitrarily selected probability α

when the associated p-value is smaller than α, occurs only when the p-value is uniformly

distributed.

We are interested in verifying the type-I error of the KDE permutation test, in

particular, if it does not reject the null too often regarding the significance level. For

this purpose, we sample without replacement sets X 1 and X 2 from the background data

X . For this simulation scenario, both sampled sets have the same distribution, i.e. the

datasets conform to the null hypothesis. Given the samples X 1 and X 2, we perform

the test and obtain its respective p-value for the tested hypothesis. The procedure

is repeated R = 120 times to compute the empirical cumulative distribution function

(CDF) of the p-values. While to guarantee reliability of the results, the number of

simulations should be as large as possible, a single simulation step takes about ten

hours on a multi-core computing machine. Hence, due to the computation time burden,

only 120 simulations have been performed.

Results are presented in Figure 2.3. The empirical CDF for an accurate test should



26 Section 2.4 - Performance of the statistical test

be close to the uniform CDF. As the significance level α is usually selected to be a small

value, both CDFs should overlap particularly well for the lowest argument values. In

the studied case, the Fisher combinant can correctly keep the type-I error while the

min-p combinant for the KDE permutation test is much more conservative.

2.4.3 Test power

To analyse the performance of the Hemisphere Mixing, we need to employ a statistical

test that not only controls the first-type error but also offers a small second-type error

probability, i.e. one that with high probability correctly rejects the null hypothesis

when it is indeed false. The rate of type-II error β is equivalently determined by the

power of the statistical test – denoted by 1 − β. We need to evaluate how often the

test is capable of rejecting the null hypothesis when the tested samples are drawn from

different distributions. This is, in general, an ill-posed question, as we are not specifying

the alternative hypothesis; however, a simplified procedure can be undertaken.

In the considered framework, the more “separated” are the tested distributions, the

easier is to reject the null. Hence the test power can be measured as a function of the

signal contamination in the samples. We compute it for a sequence of signal proportions

contaminating the datasets.

To be more specific, in analogy to the previous section, from the original data we

subsample two sets X 1 and X 2. The set X 1 is sampled entirely from the background data

X , while the set X 1 consists in λ% of signal and (100−λ)% of background observations

sampled from the respective original datasets (to closely resemble the experimental

data Y). In contrast to the previously described type-I error analysis performed under

the null, the two samples X 1 and X 2 are indeed taken from different distributions.

The difference between them increases with the signal fraction λ. The proposed KDE

permutation test is performed R = 80 times for the different generated datasets, and

the summarised results are presented in Table 2.4. In specific, the test power results for

the Fisher combination function are presented because the ones of the min-p are much

lower due to its conservativeness. In similarity to the previous simulation scenario, the

number of simulations R is low due to the long time of performing each simulation step.

In order to be satisfactory, results should ehibit a power at least greater than the

II-type error as, in fact, does not occur. It should be noted, however, that to keep

simulations realistic, since a possible signal is expected to be poorly represented in the

data, the considered alternative hypothesis are, in fact, almost indistinguishable from

the null. Additionally, with respect to a standard hypothesis testing framework, in

the current case we would rather aim at not rejecting H0 - as this would mean that
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Signal fraction
Significance level α λ = 0.01 λ = 0.05 λ = 0.10

0.01 0.013 0.018 0.038
0.05 0.050 0.118 0.175
0.10 0.138 0.200 0.275

Table 2.4: Fraction of cases for which the null hypothesis was correctly rejected by
the KDE permutation test with the Fisher combinant for significance levels α equal
to 0.01, 0.05 and 0.10. 80 pairs of samples were generated under the alternative
hypothesis for each background contaminated data with values of signal fraction s
equal, in turn, to 1%, 5% and 10%.

the Hemisphere Mixing algorithm could be applied for a large-scale experiment. In

this perspective, the first-type error is more important despite the seemingly low test

power. Also, to keep acceptable the computation burden and get simulation results

in reasonable times, the sample size has been set to be rather small with respect to a

standard physical framework where the Hemisphere algorithm would be applied. While

such analysis is object of future research, the expectation is that a larger sample size

would influence the power growth. Finally, the proposed method is the only one working

for the given criteria and answers the question of interest by accounting for the data

specificities.

2.5 Physical application

2.5.1 Exploratory analysis

As the first step, we perform an exploratory analysis of the simulated data at hand

to inspect the algorithm performance visually. Later the introduced statistical test is

applied to evaluate a potential significant difference between the considered distribu-

tions.

For the exploratory step, we compare graphically the empirical distribution of the

background data with the hemisphere mixed one. We consider univariate representa-

tions of four kinematic variables which are frequently used as background/signal dis-

criminators in experimental physics; these are HT, pT1, Mjjlead and Mjjtrail (see Table

2.3).

In the physical community, it is particularly common to visualise data by drawing

their univariate histograms constructed from variables binning (Kramer and Spiesberger,

2018). However, the histogram comparison of two samples with similar distributions is

problematic due to the large per-bin variance. In the context, kernel densities are
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more suitable for visualisation of univariate overlapping densities (Sheskin, 2003). It

mimics histograms while allowing for greater flexibility and smoothness. With respect

to Expression (2.2), kernel density estimation is used here in a simplified univariate

form. Given a set of one-dimensional observations x1, . . . , xi, . . . , xn, a kernel density

estimate at x is defined as

f̂(x;h) =
1

n

n∑
i=1

Kh(x− xi) (2.3)

where K is the kernel and h is a smoothing parameter selected manually or according to

an optimality criterion. Herein, the Gaussian kernel is used and the bandwidth param-

eter h is chosen according to Silverman’s “rule of thumb” so that the mean integrated

squared error of the estimated density is minimised under specific conditions (Silverman,

1986, p.48–55).

For the sake of comparison, it is illustrated the difference between background and

signal distributions of the data at hand. The plots of marginal distributions of the two

different samples are presented in the left column of Figure 2.4. In the right-hand side

column of Figure 2.4, the 10% contamination effect by the signal on the background is

presented from which it is evident that a 10% contamination is very well distinguishable,

especially for the invariant mass.

To check the algorithm performance regarding its ability to retain background prop-

erties of the input data, the univariate kernel density estimates for the background and

hemisphere mixed background samples are displayed (Figure 2.5). While not exactly

identical, the distributions exhibit very similar behaviour, thus indicating first descrip-

tive evidence of the Hemisphere Mixing algorithm effectiveness. Figure 2.5 also includes

normalised stacked plots of the respective densities to ease the comparison (Bolker,

2008). If the two distributions were equal, their percentage in the composition should

oscillate about 0.5 without exhibiting any significant peaks. This is what we roughly

observe apart from relevant disproportions for the variable extremes, which is likely to

be caused by the well-known inconsistency of kernel estimates at support boundaries

(Karunamuni and Alberts, 2005).

The second important point to verify is to check the signal smearing property (Sec-

tion 2.2), the Hemisphere Mixing is used to produce the output data Z from the mixed

data Y of the background with 10% of signal observations. The hemisphere mixed data

are compared with the pure background sample X (devoid of any signal contamination).

The impact of the mixing is presented against the background data in Figure 2.6 which

visually indicate that the algorithm works according to its expectations, although some
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of the distributions do show slight differences. Especially noteworthy is accurate mod-

elling of the dijet mass distributions as it is often the relevant variable for the signal

discrimination. Additionally, in practice, we deal with possible signal contaminations

well below one per cent, here the signal fraction is voluntarily increased in order to be

able to see by eye the effect of the mixing procedure. A 10% signal contamination would

be clearly detectable as a peak for the dijet mass distribution (Figure 2.4), while Figure

2.6 displays that this is not the case for the hemisphere mixed data.

The qualitative comparisons discussed above indicate preliminarily that the Hemi-

sphere Mixing algorithm can enjoy the expected properties. However, before making any

early claims, a corresponding multivariate statistical analysis and sensitive hypothesis

tests are applied for that aim.

2.5.2 Application of the framework

Since the accuracy and, to some extent, the power of the KDE permutation test

with the Fisher combination function have been verified, the test can be applied to

the hemisphere mixed data. In contrast to the previous approaches, we do not have

to perform many tests on different samples to analyse the distribution of its p-values.

Instead, preferably a single test applied to the whole data should be performed. However

such computation is infeasible. Hence again, due to the long computation time, the

tests are applied given subsamples from the respective data. Although in contrast to

the former simulations, the size of subsamples is increased from n = 2000 to 15000,

which would as well allow drawing inference on the stated hypothesis, and the test itself

would have a larger power.

The Hemisphere Mixing is expected to produce output data distributed according to

its input data dominant process. For first, the hemisphere mixed data Z are produced

from the background data. Such output is compared against the other background

sample using the KDE permutation test. The resulting p-value for the test is presented

in the first row of Table 2.5 showing that there is no evidence against the null hypothesis

at any reasonable significance level α.

A further desirable feature of the Hemisphere Mixing algorithm is that its output

data are smeared out from the signal evidence contained in the input data. A hemisphere

mixed sample from a mixture of background with 5% of signal observations is produced,

to validate such expectation. A 5% contamination is absolutely off-scale in the case of

the search for the tiny hh → bb̄bb̄ signal predicted by the Standard Model in the LHC

data. This test is meant to try and see where the background modelling “breaks down”.

The hypothesis is tested given the output data and the pure background sample. The
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Sample tested against a pure background p-value
Hemisphere mixed background events 0.224
Hemisphere mixed data from mixture of
95% background and 5% signal observations

0.284

Hemisphere mixed data from mixture of
90% background and 10% signal observations

0.005

Table 2.5: Obtained p-values for the KDE tests in the permutation framework to
verify if the Hemisphere Mixing approach performs according to its purpose. The
tests are performed on samples of size n = 15000.

resulting p-value of the test is given in the second row of Table 2.5. This also shows

no evidence against the null hypothesis at any reasonable significance level α. We then

test a 10% signal contamination of the algorithm input data and verify if in that case,

the test does reject the null hypothesis also at the significance level α = 0.01 – results

displayed in the last row of Table 2.5. We have thus verified that a breaking point of

the method is reached for signal contamination not larger (but possibly lower) than

10%. For the 5% signal contamination the null hypothesis cannot be rejected, and it is

unclear whether it is influenced by the lack of power or the actual assumed performance

of the algorithm. The object of future research is to determine the test power for larger

subsamples, and until that time, the sensible problem of determining the Hemisphere

Mixing algorithm performance is left as an open research question.
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Figure 2.4: On the left side are displayed the kernel density estimates of four kine-
matic variables for background (red) and signal (blue). On the right panel a mixture
of 90% background and 10% signal (blue) is compared to the background alone (red).
A Gaussian kernel and Silverman’s “rule of thumb” for bandwidth selection are used
(Silverman, 1986, p.48).
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Figure 2.5: On the left hand side, it is shown the kernel density estimate of marginal
distributions for the chosen kinematic variables (Section 2.4.1) of pure background
(red) and their respective hemisphere mixed background data (blue). On the right
hand side, the normalised stacked plots of the kernel density estimates.
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Figure 2.6: Left: comparison of the distributions of the four kinematical variables
for background alone and the hemisphere mixed data of a sample constituted by 10%
signal and 90% background. Right: stacked plots of the estimated densities.





Chapter 3

A penalized likelihood-based

approach for new physics searches

3.1 Introduction

Due to the incompleteness of the Standard Model, a relevant strand of research ad-

dresses the aim of searching for new possible physics, not accounted for by the current

dominant theory. The model-independent approach, followed in this work, is not con-

strained to any specific physical conjecture. It pursues the aim of new physics searches

by exploring the experimental data and looking for any possible signal which behaves

as a deviation from the background process, representing, in turn, the known physics.

This assumption clarifies why, from a statistical point of view, the considered problem

can be described within the anomaly detection framework. Specifically, the aim of

discriminating the background process from a possible signal, requires a classification

task, although of a very special nature. While the background process is known and a

Monte Carlo sample of virtually infinite size can be generated from it, the signal process

is unknown, possibly even missing.

Available data have, consequently, two different sources: a first, labelled, sample

from the background class only, and a second, unlabelled sample which might include

observations from the signal. A semi-supervised perspective shall be then adopted,

either by relaxing assumptions of supervised methods, or by strengthening unsupervised

formulations via the inclusion of additional information available from the labelled data.

In the present Chapter we stem from a semi-supervised approach to the problem of

signal detection, based on a suitable adjustment of the parametric clustering framework

(Vatanen et al., 2012; Kuusela et al., 2012). Due to the high dimensionality of the avail-

able data, issues related to computation and accurate parameter estimation emerge.

35
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The formulation is then extended to include a dimension reduction step, via the in-

clusion of an appropriate penalization of the likelihood associated to the model. The

proposed approach is inspired by the contribution of Pan and Shen (2007) introduced

in the context of model-based clustering. In that manner, the parameter estimation is

performed jointly with the dimensionality reduction.

3.2 Literature overview

Anomaly detection is a relevant topic in Statistics, gathering many methods for a

large variety of possible applications (Chandola et al., 2009; Pimentel et al., 2014). The

field intersects with other statistical issues as novelty detection (Markou and Singh,

2003) or noise removal (Dotto et al., 2018). They respectively aim at incorporating a

discovered pattern into a normal model, and removal of observations that unnecessarily

influence modelling of a prevalent data part.

Depending on the available information, anomaly detection methods are designed

within three scenarios. The supervised approach falls into the predictive modelling

task, however can require careful adjustments for an imbalanced class effect (Zhai et al.,

2017). If observation labels are completely not accessible, unsupervised techniques are

widely applied, as for example the one-class Support Vector Machines (Schölkopf et al.,

2001; Xu et al., 2017). The considered application to High Energy Physics is framed

in a third semi-supervised schema, i.e. only non-anomalous observations are collected

(the background data), but anomalies, whenever present, are not labelled - i.e. they are

mixed with the background observations forming the experimental dataset. Regarding

the unsupervised approach, semi-supervised techniques make use of the available data

labels to strengthen the classification power of the considered approach. Similar issues

have been found in applications related to spacecraft fault or fraud detections for which

no fault is observed, and frauds might be too specific for learning (Dasgupta and Nino,

2000; Hundman et al., 2018).

Specific anomaly detection applications use different definitions of expected anoma-

lies. In general, the approaches are divided into the three intercepting groups: point,

contextual and collective anomaly detection. The majority of the research focuses on

the point anomaly detection which individually classifies each observation with respect

to the rest of the data (Dickerson and Dickerson, 2000). This is the simplest approach

which allows for a coarse detection without assuming any specific relationship between

the observations. The contextual one is applied usually for time-series and spatial data
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where detection aims at defining for a given time or space locally unexpected observa-

tions which could be normal if occurred at the different time or site (Benkabou et al.,

2018). In the thesis, we consider the collective anomaly detection approach for which

separate observations do not need to have anomalous properties, but their common

occurrence in a particular region of the data domain is unexpected (Noble and Cook,

2003). In other words, the possible anomalous observations do not necessarily need to

appear in regions of low background probability.

Most of the existing literature within the physical community for anomaly detection

(new physics searches) exploits naive, typically univariate statistical methods. They

rely on comparisons of experimental data histograms with respective ones based on the

Monte Carlo background data. The comparison is often performed via some statistical

test related to the χ2 Goodness of Fit, adjusted for multiple testing reasons. By con-

struction, such approaches are not sensitive to potential anomalies that become manifest

in multi-dimensional settings. Machine learning approaches based on Neural Networks

or Boosting procedures have been applied as well to the context but they suffer from a

lack of results interpretation (Baldi et al., 2014).

Another common issue for anomaly detection approaches is a proper signal-oriented

variable selection, i.e. possible anomalies can appear only for some of the variables or in

a space manifold. The use of a full space statistical model can lead to degraded results

or even would not to be feasible to be computed. For example, application arising from

genomic studies (but not only), which are characterised by a high dimensional and a

low sample size data setting, require variable selection (Tibshirani, 1996; Pierson and

Yau, 2015). In case of the anomaly detection, the dimensionality reduction is often

employed in a two-step strategy: firstly, an ad hoc method is applied variable-wise for

the selection aim, and secondly, modelling is conducted for the preliminarily selected

subspace (Alexandridis et al., 2004; Tan et al., 2005). However, such approach suffers

from possible error propagation, i.e. the two completely independent steps of model

learning do not guarantee that the selected variables are relevant to the subsequent

learning task. In fact, they have a tremendous impact on the inference and classification

(Fan and Li, 2001; Kabaila, 2005). For this reason, a possible hybrid methods with

embedded variable selection techniques are more suitable for such aim (Pan et al., 2006).
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3.3 The reference model

In the following we assume that the (Monte Carlo) background data X = (xxx1, ...,xxxn)′,

xxxi = (xi1, ..., xip, ..., xiP )′, i = 1, ..., n are i.i.d. realizations from a probability den-

sity function fB : RP → R. Similarly, experimental data Y = (yyy1, ..., yyym)′, yyyl =

(yl1, ..., ylp, ..., ylP )′, l = 1, ...,m, are supposed to be i.i.d. realizations from a proba-

bility density function fBS : RP → R. Since the majority of the experimental data Y
is known to be generated by the background process, and the remaining part may be

possibly generated by an unknown signal process with density fS : RP → R, it seems

natural to specify the density fBS(·) as a mixture model

fBS(yyy) = (1− λ)fB(yyy) + λfS(yyy), λ ∈ [0, 1). (3.1)

The specification of model (3.1) complies with the parametric formulation of a clus-

tering problem (Fraley and Raftery, 2002), where groups are associated with the com-

ponents of a finite mixture of distributions. In the considered setting, each cluster

represents a process of interest, namely the background and the signal.

The mixing distributions fB and fS are modeled to account for the flexibility required

to describe complex collision processes. For this reason, we assume that both fS and

fB are themselves mixtures of densities, thus somehow departing from the usual model

specification in parametric clustering, where the mixture components are assumed to

belong to some more elementary family of distributions. In particular, we consider finite

mixture of Gaussian distributions, as they have been proven to serve well for density

estimation and classification purpose (McNicholas, 2016):

fB(yyy) =
K∑
k=1

πkφ(yyy|µµµk,Σk) (3.2)

fS(yyy) =

K+Q∑
q=K+1

πqφ(yyy|µµµq,Σq). (3.3)

In the Equations above, K and Q denote number of Gaussian components in the mix-

tures, for k = 1, ..., K and q = K + 1, ..., K + Q; πk and πq are the mixing proportions

(constrained to
∑K

k=1 πk =
∑K+Q

q=K+1 πq = 1) and φ(yyy|µµµ,Σ) is the P -variate Gaussian

density function with mean vector µµµ and covariance matrix Σ.

Mixture model parameters can be estimated via maximum likelihood. Consider,

for the sake of simplicity, estimation of the ones involved in the fB (Equation 3.2).
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Conditionally to the background data X , the log-likelihood is formulated as:

logL(θθθ;X ) =
n∑
i=1

log

[
K∑
k=1

πkφk(xxxi|µµµk,Σk)

]
, (3.4)

where θθθ = (π1, ..., πK ,µµµ1, ...,µµµK ,Σ1, ...,ΣK) are the model parameters. To find a maxi-

mum of the likelihood function, a numeric method has to be used as no explicit solution

exists. A common choice is to employ a specifically adjusted Expectation-Maximization

(EM) algorithm (Dempster et al., 1977). The EM algorithm iteratively alternates be-

tween two steps: computation of the likelihood expectation given current parameter

estimates and their following estimation that maximises the former expectation. The

local maximum likelihood is found when the algorithm converges. By initialising the

EM algorithm from varying starting point, possibly many local likelihood maxima are

explored, in the hope that one of them is the global solution to the problem.

Once that the model parameters θθθ has been estimated, a posterior probability for an

observation xxxi for being generated by each component can be determined as:

τil =
π̂lφ
(
xxxi|µ̂µµl, Σ̂l

)
∑K

k=1 π̂kφ
(
xxxi|µ̂µµk, Σ̂k

) . (3.5)

Posterior probabilities τil are used for proceeding classification in the model-based clus-

tering context. Herein, to some extent the idea is adopted for anomaly detection, how-

ever, special care is taken to an identifiability issue since both fB and fS are themselves

mixtures. In practice, given all the model parameter estimates (Equation 3.1), the

posterior probability of being generated by the signal process is determined in analogy

as:

τiS =
λ̂
∑K+Q

q=K+1 π̂qφ
(
xxxi|µ̂µµq, Σ̂q

)
(

1− λ̂
)∑K

k=1 π̂kφ
(
xxxi|µ̂µµk, Σ̂k

)
+ λ̂

∑K+Q
q=K+1 π̂qφ

(
xxxi|µ̂µµq, Σ̂q

) . (3.6)

With respect to a standard problem of clustering, in the considered framework esti-

mation can be carried on by taking advantage of the additional information available,

i.e. by semi-supervising the procedure with the aid of the labelled data X generated

from the background process. To this aim, Vatanen et al. (2012) and Kuusela et al.

(2012) propose the fixed-background model, where parameter estimation is conducted

in two steps. First, unsupervised parametric density estimation is performed based on

the background data X and the background model f̂B is obtained. Afterward, kept fixed

the mean and the covariance parameters of f̂B, the weight λ in (1.1) and the parameters
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of the new possible component fS (3.2), are iteratively estimated on the basis of the un-

labelled data Y , by maximizing the corresponding likelihood via a suitable adjustment

of the EM algorithm.

In order to obtain a solution for the semi-supervised anomaly detection problem

given the specific datasets, we stem from the fixed-background model introduced in

Vatanen et al. (2012) and Kuusela et al. (2012). The fixed-background model estima-

tion is conducted in two steps. Firstly, unsupervised parametric density estimation is

performed based on the background data X and the background model fB is obtained.

Subsequently, the fixed-background model is produced by extending the mixture with

possible signal components not significant for the background data X (Equation 3.1).

This is obtained using the unlabelled data Y and the previously estimated background

parameters via maximisation of the corresponding likelihood.

3.4 Dimensionality reduction methods in mixture

models

The fixed-background model is intuitive and makes a sensible use of the two datasets

at hand. However, for data of dimension P , a K-component fixed-background model

requires the estimation of K(P + 1)(P + 2)/2 − 1 parameters. Therefore, in high-

dimensional spaces an accurate estimation of the parameters is compromised, due to

the curse of dimensionality, as well as the aim of finding a global maximum of the

likelihood and the subsequent ability to detect a possible signal.

Vatanen et al. (2012) propose to perform principal component analysis of the back-

ground data X to circumvent the curse of dimensionality problem. The fixed-background

model is fitted in a subspace span by the first two principal components. However,

there is absolutely no guarantee that the selected subspace would still exhibit any sig-

nal. Alternatively, a subset of the variables could be selected based on criteria related

to a divergence between the marginal distributions of the datasets (Alexandridis et al.,

2004). However, it is unknown how the prior selection influences the subsequent model

parameter estimation.

In the unsupervised context of model-based clustering, the problem of high dimen-

sionality has been frequently addressed. Banfield and Raftery (1993) have proposed

parsimonious mixtures to reduce the number of needed parameters. Data modelling

depends on the selection of an “optimal” model as a trade-off between the model com-

plexity and its accuracy (Celeux and Govaert, 1995). Bouveyron et al. (2007) propose a

broader and a more flexible family of Gaussian mixture models where the regularisation
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is obtained by constraining some component-specific parameters to be equal across the

components.

An alternative approach is to jointly perform parameter estimation and variable

selection. In the field of statistical regression such approach is common (Hoerl and Ken-

nard, 1970; Efron et al., 2004). Most methods make use of penalty functions that cause

a shrinkage of parameters to fixed values (classical example is the LASSO, Tibshirani,

1996). For example, parameters are then estimated via the maximization of a penalized

log-likelihood function

logLp(θθθ) = logL(θθθ)− γp(θθθ).

were γ is a regularization parameter (strength of the shrinkage) and p(θθθ) is a penalty

function of the model parameters θθθ.

In the unsupervised context, a similar approach has been introduced by Pan and Shen

(2007) within the Gaussian mixture model framework. Assumed the (3.2) to model the

underlying standardized data, and constrained the covariance matrices Σk = IP to be

equal to the identity matrix, the authors propose a penalty of the component mean

vectors µµµk which shrinks their estimates towards 000.

logLp(θθθ) =
n∑
i=1

log

[
K∑
k=1

πkφk(xxxi|µµµk, IP )

]
− γ

K∑
k=1

P∑
p=1

|µkp|. (3.7)

Maximum Penalized Log-likelihood Estimation (MPLE) is then performed jointly with

variable selection using a modified EM algorithm.

The rational behind the approach, illustrated in Figure 3.1, is the following: since,

from the clustering perspective, a variable is considered informative if it can be mod-

elled as a multi-component mixture, variables with mean components far from zero are

selected, while the ones with mean close to zero are discarded. A detailed explanation

is given in Section 3.5.2.

A similar approach, again based on the use of standardized data, has been introduced

by Xie et al. (2008). They propose an l2 penalty of the mean parameters. The penalized

log-likelihood is then

logLp(θθθ) =
n∑
i=1

log

[
K∑
k=1

πkφk(xxxi|µµµk, IP )

]
− γ

P∑
p=1

||µ·p||, (3.8)

where ||µ·p|| =
√∑K

k=1 µ
2
kp for p = 1, ..., P. The penalty simultaneously shrinks a whole

vector of parameters and results in a better dimensionality reduction performance (in

analogy to the grouped LASSO - Yuan and Lin, 2006). Subsequently, Xie (2008) has
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Figure 3.1: Example of informative and uninformative variables for density estima-
tion. The first one has a more complex density (in blue) and is modelled by the two
separated mixture components (in black), while the second one has component means
shrunk to 0 and hence is modelled by a single Gaussian.
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generalized constraints on the covariance matrices to be diagonal component-specific.

This is achieved by proposing a second penalty term which shrinks component variances

to 1.

In the semi-supervised context, a penalised algorithm for anomaly detection is intro-

duced by Pan et al. (2006). However, the authors consider a slightly different problem

and their approach is not capable of detecting novel classes. Hence it cannot be applied

in the given context of new physics searches.

3.5 A penalized approach in mixture models

3.5.1 Penalization of the background

Stemming from Xie (2008) and Xie et al. (2008), we propose a penalized parametric

approach for collective anomaly detection by extending the fixed-background model.

With respect to the mentioned methods, our approach relaxes the constraints on com-

ponent covariance matrices to be arbitrary positive definite. For the sake of simplicity,

and since our semi-supervised approach to estimate fSB first requires estimation of fB

in the sense of a standard model-based clustering problem, the proposed penalisation is

first illustrated in the unsupervised setting.

The proposed procedure makes use of two penalty functions: one for the component

mean parameters and one for the component covariance matrix eigenvalues. Hereafter,

the method is referred to as Mean and Eigenvalue Shrinkage Penalization (MESP).
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The first considered penalty of the MESP is then

p1(θθθ) =
P∑
p=1

√√√√ K∑
k=1

πkµ2
kp. (3.9)

It borrows the idea of the grouped shrinkage proposed by Xie et al. (2008) and takes

advantage of the simultaneous shrinkage of component parameters (as illustrated in

Equation 3.8). However, for the problem at hand, the approach should be sensitive

to a precise estimation of infrequent component parameters. According to Bühlmann

and Van De Geer (2011), if true proportions of components differ substantially, penalty

function should be appropriately weighted to balance an influence of unequal propor-

tions. For this reason, the proposed penalty (3.9) is also a function of the component

proportions πk which serve as weights. As a consequence, the penalised parameters are

appropriately encouraged to the shrinkage, not mostly the one corresponding to the rare

components.

In Xie (2008) the covariance matrices are constrained to be component-specific diag-

onal, and the proposed penalty is a function of the matrix diagonal terms. The second

penalty of the MESP depends on the component covariance matrix eigenvalues so that

the covariance matrices are not specifically constrained, but they are just component-

specific positive definite. Another direction would explore the idea of matrix low-rank

approximations by shrinkage of their smallest eigenvalues to 0. However, a matrix with

null eigenvalues is not positive definite and would force to use generalised Gaussian dis-

tribution and pseudo-determinants in order to write the likelihood of the mixture model.

However, optimization of such objective function tends to be unstable and burdensome

to perform. In order to circumvent this problem, we propose to shrink the eigenvalues

to a component-specific small positive value εk > 0. In this way, the expected regular-

isation is performed, the likelihood can be written explicitly, and the EM algorithm is

prevented from running into the likelihood singularities. For this approach, if the Lk

smallest eigenvalues for the kth component are shrunk to εk, then the number of model

parameters is decreased by
∑K

k=1(Lk − 1)(Lk + 2)/2.

Let us consider the eigenvalue decomposition for the kth component covariance matrix

Σk = QkDkQ
′
k where Dk is a diagonal matrix of eigenvalues and Qk is composed of

orthonormal eigenvectors. Let us denote by δkp the pth largest value of Dk. The second

penalty of the MESP is formulated as:

p2(θθθ) =
K∑
k=1

P∑
p=1

max(δkp, εk). (3.10)



44 Section 3.5 - A penalized approach in mixture models

Selection of εk is performed based on an asymptotic distribution of the eigenvalues

(Eaton, 2007). Assuming that the L smallest eigenvalues of the population covariance

matrix Σk is equal to δconst, the asymptotic distribution of the L smallest unsorted

eigenvalues δkl of the sample covariance matrix is normal with a mean δconst and a

variance
2δ2const
nL

. Mean of the L smallest eigenvalues of the respective sample covariance

matrix ε̂k = 1
n

∑P
p=P−L+1 δkp is then an unbiased estimator of δconst.

The parameter Lk is selected based on sequential tests. The tests partially use the

same data between iterations, hence a Bonferroni-like correction is applied to control

the type I error (Bonferroni, 1936). Denote by δ̄k,h an average of Lk = P − h smallest

eigenvalues of the kth component sample covariance matrix. Starting from h = 0, it is

tested in sequence if the Lk = P − h smallest eigenvalues are equal to δ̄k,h against a

general alternative (at least one eigenvalue is different). Rejection regions for the tested

hypothesis are determined as

δkh
δ̄k

> 1−
√

2

n
∗ z α

2(h+1)
∨ δkP

δ̄k
< 1 +

√
2

n
∗ z α

2(h+1)

where z α
2(h+1)

is the α
2(h+1)

quantile of the Gaussian random variable. In shorthand, the

null hypothesis is rejected if a ratio of the largest eigenvalue and the mean of eigenvalues

is too large or a ratio of the smallest eigenvalue and the mean is to low. If there is no

reason to reject the null, then we assign the parameter Lk to P −h. Otherwise, we take

the alternative hypothesis that the eigenvalues are different. Then, in a next iteration, it

is assumed that the largest eigenvalue is too large, and the test is performed again with

the parameter h increased by 1. With iterations the rejection regions get larger according

to the type-I error correction of the sequential test. The iterations are repeated until

there is no reason to reject the null.

In summary, the MESP appraoch makes use of two penalties expressed in Equation

3.9 and 3.10. The parameters estimation is performed via optimization of the following

penalized likelihood with the specific adjustments for parameter selection

logLp(θθθ) =

n∑
i=1

log

[
K∑
k=1

πkφk(xxxi|µµµk,Σk)

]
− γ1

P∑
p=1

√√√√ K∑
k=1

πkµ
2
kp − γ2

K∑
k=1

P∑
p=1

max(δkp, εk).

(3.11)

The solution of Equation 3.11 is obtained via a suitable modification of the EM al-

gorithm. With respect to the unpenalized approach, the maximisation step for the

penalised parameters is changed. Due to the shrinkage, these estimates are shifted with

respect to the MLE toward the fixed values (0 in case of the means and εk for the

eigenvalues). For readability, the pseudo-code for the adjusted EM algorithm is placed



Chapter 3 - Penalized anomaly detection 45

in Appendix A.

3.5.2 Variable selection for the background

Under the assumption of component covariance matrices equal to identity considered

by Pan and Shen (2007), the penalty of the mean parameters leads to an automatic

variable selection. If for a given pth variable, all the component mean parameters are

equal to 0, then the pth variable is uninformative for the cluster classification and the

posterior probabilities (3.5) get the following expression:

τil =
πlφ(xxxi|µµµl, IP )∑K
k=1 πkφ(xxxi|µµµk, IP )

=
πlφ(xxxip|0, 1)φ(xxxi,−p|µµµl,−p, IP−1)∑K
k=1 πkφ(xxxip|0, 1)φ(xxxi,−p|µµµk,−p, IP−1)

(3.12)

where IP is a P -dimensional diagonal matrix and index i,−p denotes removal of the pth

variable from the ith vector. After simplification of the equation it is clear that the data

from the pth variable do not contribute to the classification.

For a more general case of the component-specific diagonal covariance matrix (Xie,

2008), in order to remove the pth variable two conditions have to be met. The first

one corresponds to mean estimates equal 0 (as previously), while the second relies on

the marginal component variances, i.e. for the pth variable all the component variances

have to be equal to 1. In such circumstances, the analogue of Equation 3.12 posterior

probability can be written and the pth variable does not contribute to the classification.

In a general case of unconstrained covariance matrices (also correlations are modeled),

such simple factorization cannot be performed and the conditions for removing variables

within the MESP approach need to be derived. Without loss of generality let us divide

the variables into two sets -A and B - so that the set A contains the first R variables, B

the rest, for anyR ∈ [1, P−1].Denote with X = (XA,XB) the consequent partition of the

data, with µµµk = (µµµk,A,µµµk,B) the component mean vectors, with Σk =

(
Σk,AA Σk,AB

Σk,BA Σk,BB

)
the component covariance matrices where Σk,AB is a block matrix built from rows in A

and columns in B of Σk matrix.

Herein we aim at formulating the joint distribution of f(XA,XB) as a marginal prob-

ability of XB and a conditional probability of XA given XB. For the previous cases, it is

automatic because uncorrelated Gaussian variables are conditionally independent. We

generalize Equation 3.12 by the conditional factorization f(XA,XB) = f(XA|XB)f(XB)
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and obtain the following formula:

τil =
πlφ(xxxiB|µµµl,B,Σl,BB)φ(xxxi,A|µl,A + Σl,AB(xxxi,B − µµµl,B),Σl,AA − Σk,ABΣl,BA)∑K

k=1 πkφ(xxxiB|µµµk,B,Σk,BB)φ(xxxi,A|µµµk,A + Σk,AB(xxxi,B − µµµk,B),Σk,AA − Σk,ABΣk,BA)
.

where to ease the notation Σk,AB = Σk,ABΣ−1k,BB.

The first necessary condition for removing variables belonging to B as uninformative

is to have null mean estimates µ̂kp = 0 for all k = 1, . . . , K and p ∈ B. In that case, the

posterior probability of observation membership is

τil =
πlφ(xxxiB|000,Σl,BB)φ(xxxi,A|µµµl,A + Σl,ABxxxi,B,Σl,AA − Σl,ABΣl,BA)∑K

k=1 πkφ(xxxiB|000,Σk,BB)φ(xxxi,A|µµµk,A + Σk,ABxxxi,B,Σk,AA − Σk,ABΣk,BA)
.

which implicitly is a function of parameters from the presumably uninformative variables

from set B. Naturally, like in the approach of Xie (2008), Hence, a second necessary

condition is necessary. That is to have component-wise equal correlation matrix blocks,

i.e. for all k = 1, . . . , K Σk,BB = ΣBB and Σk,AB = ΣAB, for the fixed ΣBB and ΣAB,

where ΣBB is expressed as a weighted average of component specific blocks

ΣBB =
K∑
k=1

πkΣk,BB

and ΣAB is a matrix of zeros 0AB. If the two conditions are met then the cluster mem-

bership probability is:

τil =
πlφ(xxxiB|000B,ΣBB)φ(xxxi,A|µµµl,A + 0ABxxxi,B,Σl,AA − 0ABΣBA)∑K

k=1 πkφ(xxxiB|000B,ΣBB)φ (xxxi,A|µµµk,A + 0ABxxxi,B,Σk,AA − 0ABΣBA)

=
πlφ(xxxi,A|µµµl,A,Σl,AA)∑K

k=1 πkφ (xxxi,A|µµµk,A,Σk,AA)
.

(3.13)

As a result, the variables from set B do not influence the membership probabilities.

Hence if the two listed conditions are met, the variables from set B should be removed as

the uninformative. While the first condition is obtained automatically by the component

mean shrinkage, for the second condition a model selection has to be performed. Let the

set A consist of all the features that do not meet the first condition and subsequently

the set B consists of potentially uninformative variables. Let us denote by C a set of

all the possible subsets of set B (C = {C1, ..., CNB} for an appropriate NB value) and

Di = CC
i is a Ci complement. The Bayesian Information Criterion is then used to select

an optimal set Ci of the uninformative variables. Based on the selected model, for all
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k in 1, ..., K the penalized likelihood estimates Σ̂k,CiCi , Σ̂k,DiCi and Σ̂k,CiDi are replaced

with the fixed ΣCiCi , ΣDiCi and ΣCiDi respectively. The described method might seem

computationally expensive, however, there is no need to scan all the P ! models. The

first necessary condition already filters out most of the true informative variables.

3.5.3 Penalization of the background + signal model

The proposed MESP approach for parameters estimation and simultaneous reduction

of dimensionality is designed in the unsupervised context. The specificity of the physical

problem of signal detection requires then its embedding in a semi-supervised framework,

by suitable extension of the fixed background model proposed by Vatanen et al. (2012)

and Kuusela et al. (2012). Results are enclosed in the proposed Penalized Anomaly

Detection method (PAD), discussed in the following.

In the presence of a signal, special care is taken for variable selection because uninfor-

mative variables for the background model might be powerful for signal discrimination.

Hence, a proper penalty requires to be a function of both the background and signal

parameters. This, in turn, causes a dependence between the background and signal es-

timation. Given the background model f̂B, the penalised log-likelihood of the penalised

fixed-background model has the following form:

logLp(θθθ|θ̂θθ(X ),Y) =

m∑
l=1

log

(1− λ)

K∑
k=1

π̂k(X )φk(yyyl|µ̂µµk(X ), Σ̂k(X )) + λ

K+Q∑
q=K+1

πqφq(yyyl|µµµq,Σq)


−γ1

P∑
p=1

√√√√ K∑
k=1

π̂k(X )µ̂kp(X )2 +

K+Q∑
q=K+1

πqµ2qp − γ2
P∑
p=1

K+Q∑
q=K+1

max(δqp, εq),

(3.14)

where θ̂θθ(X ) denotes the background model parameter estimates given the data X .
Optimization of Equation 3.14 results in obtaining the signal parameter esitmates.

However, as the background parameters influence the signal ones through the penalty

function, similarly the signal parameters influence the background ones. In turn, given

the signal parameters estimates, we consider the following penalised log-likelihood for

the background model:

logLp(θθθ|θθθ(Y),X ) =
n∑
i=1

log

[
K∑
k=1

πkφk(xxxi|µµµk,Σk)

]

−γ1
P∑
p=1

√√√√ K∑
k=1

πkµ
2
kp +

K+Q∑
q=K+1

πq(Y)µqp(Y)2 − γ2
P∑
p=1

(
K∑
k=1

max(δkp, εk)

)
,

(3.15)
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where θθθ(Y) denotes the fixed signal parameters.

Parameter estimation of the PAD parameters is performed by an adequately modified

EM algorithm used to find the maxima of the two Equations (3.14 and 3.15) and an

external loop alternating between optimisation of the Equations until convergence. The

pseudo-code of the PAD based EM adjustments is reported in Appendix B.

3.6 Experimental analysis on simulated data

3.6.1 Goals of the analysis

To understand the performance of the proposed methodology in terms of classification

in the unsupervised setting (i.e. to estimate the background distribution) and in the

semi-supervised anomaly detection setting (to estimate the whole process density) the

methods are applied to collections of artificially generated data. The simulations are

designed to validate different aspects of the approach performance with respect to:

• Different implementations for handling variable selection. Within the penalised

model-based clustering approach we consider and test two scenarios. The first

(M1) is a result of the MESP fitted to the data of the full dimension P where

the penalties serve for the regularisation. The second method (M2), also relies on

the MESP but it is constructed in two steps. Firstly, based on M1, informative

variables are selected. In the second step, the MESP is fitted again to the reduced-

size data. The M2 model should result in a smaller estimate bias because in the

reduced space slighter penalty can be applied, as in the reduced space the further

model regularisation is not needed. On the other hand, it might suffer from a

possible error propagation or a poorer classification performance if the informative

variables are incorrectly removed in the first step.

One might expect a substantial amount of over-fitting for such approach leading

to overoptimistic performance measures. However, in this context we work in an

unsupervised logic, thus the mentioned risk is not that high with respect to a

supervised logic for which information about the signal is used for training the

model.

• Performance of competing models, i.e. the parsimonious family of models intro-

duced in Fraley and Raftery (2002) and Bouveyron et al. (2007), application of

the PCA prior to the parameter estimation according to Kuusela et al. (2012) and

the penalized approach of Pan and Shen (2007).
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• Varying configurations of the background and possible signal. For this reason,

evaluation has considered different degrees of separation between the mixture com-

ponents and their mixing proportions.

3.6.2 Simulation settings

Simulated data are generated from a mixture of Gaussian distributions. The true

model parameters are chosen in such way that only particular features of the method

performance are explored. The true background density is the following:

fB(xxx) =
K∑
k=1

πkφ(xxx|µµµk,Σk),

where

• K is chosen in {2, 3}.

• Mean vectors are set as µµµk = (1, ..., 1, 0, ..., 0)′ ∗mult with

mult =

(m,−m) for the K = 2 setting

(m,−m, 0) for the K = 3 setting

for m in {0.1, ..., 0.8} and
∑P

p=1µµµkp = P
2
∗mult.

• Covariance matrices are block diagonal

Σk =


Σk1 0 0

0 Σk1 0

0 0 I8


where Σk1 = PkDkP

′
k with

P1 =


1 0 −1 1

1
√

2 1 0

1 −
√

2 1 0

−1 0 1 2

 , P2 =


−1 0 1 1

1 −
√

2 1 0

1
√

2 1 0

1 0 −1 2

 , P3 = IP
4

D1 =


1 0 0 0

0 0.5 0 0

0 0 0.15 0

0 0 0 0.12

 , D2 =


1 0 0 0

0 0.1 0 0

0 0 0.4 0

0 0 0 0.1

 , D3 = IP
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• Component proportion are set to

π =

(0.5, 0.5) for the K = 2 setting

(0.5, 0.3, 0.2) for the K = 3 setting

• The data size is n in {250, 500} with a dimension P = 16.

Given such data generating models, the variables 9 − 16 are uninformative (according

to Equation 3.13).

For simulations with the anomaly detection purpose, the background data are gen-

erated using two Gaussian components with the parameters specified above. The signal

process is simulated by a single Gaussian component with parameters specified as for

the third background component. The experimental data are generated with differ-

ent proportions of signal events (λ in {0.2, 0.1, 0.05}). The generated background and

experimental data sizes are n = m = 500. Additionally, it is tested if background un-

informative variables are kept if a signal is present for them. When it is specified, the

true signal mean for an arbitrary 14th variable (background uninformative) is non-zero to

verify if the algorithm is able to use such additional information for better classification.

3.6.3 Details

1. The simulations were performed in R environment for statistical computations (R

Core Team, 2017). The code is available at

https://github.com/Grzes91/PenalizedAD.

2. Software implementations used for model-based clustering

• The mclust R package (Scrucca et al., 2016) used for the Fraley and Raftery

(2002) approach and for the fixed background model after suitable dimen-

sionality reduction using the Principal Component Analysis.

• The HDclassif R package (Bergé et al., 2012) for the Bouveyron et al. (2007)

approach.

3. An important aspect of the MESP is to determine an optimal number of Gaus-

sian components K and regularisation parameters γ1 and γ2. A commonly used

approach for the unpenalized mixture models is to use the Bayesian Information

Criteria (BIC) defined by Schwarz (1978) as

BIC1 = −2logL(θ̂) + log(n) ∗ d,
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where d is a number of the model parameters, L is the model likelihood and θ̂ are

their MLE. According to the criterion, an optimal model minimises BIC value and

trades off between the goodness of fit and model complexity. Motivated by Efron

et al. (2004), Pan and Shen (2007) and Bühlmann and Van De Geer (2011) discuss

that the shrunk parameters should not be counted for the model complexity (they

are fixed not estimated) and use a modified BIC criterion formulated as

BIC2 = −2logL(θ̂) + log(n) ∗ deff ,

where deff is an effective number of model parameters (parameters not shrunk

to the fixed value) and θ̂ are MPLE. Despite the lack of a rigorous theoretical

foundation for the modified BIC, in practice, the criterion serves well for the

problem of model selection (Bouveyron and Brunet-Saumard, 2014). A minimum

BIC value is found based on an extensive grid search over the parameter space. For

the considered simulations, we assume that the number of Gaussian components

is known a priori so that the results are not dependent on a possible incorrect

specification of K.

4. Performance evaluation of the tested methods is based on the classification error

and the Adjusted Rand Index (Hubert and Arabie, 1985) as these are the standard

evaluation measures in unsupervised problems. The latter index, is a suitable

modification of the Rand index, which compare two partitions of n objects by the

proportions of pairs of observations which have been allocated either in the same

cluster in both the partitions, either in different clusters in both the partitions.

The Adjusted Rand Index is the Rand Index accommodated to have 0 mean for

random allocation of the observations between the two partitions.

However, it has been frequently emphasised (He and Garcia, 2008; Menardi and

Torelli, 2014) that the use of the aforementioned common performance measures

may yield to misleading results as they strongly depend on the class distribution.

For instance, in a problem with heavily imbalanced classes, a naive strategy of

allocating each example to the prevalent class would achieve a good level of ac-

curacy. However, it is clear that such classification rule is entirely useless. For

this reason, the area under the Receiver Operating Characteristics curve (AUC)

is also exploited (Egan, 1975) as it is immune to the class imbalanced and can

better help in comparing trade-offs arising from the use of distinct classifiers.

5. The EM algorithm for likelihood optimisation is known to suffer from finding

local maxima of the objective function instead of the global one. It strongly
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Figure 3.2: Performance comparison for the 5 model-based clustering methods given
the datasets of size n = 250 and n = 500 generated from the two Gaussian components
for the varying separation (mult).

depends on the algorithm initialisation values. Additionally, maximisation of the

Gaussian mixture model log-likelihood function is not a well-posed problem, i.e.

the likelihood tends to infinity if one of the components becomes a singularity. The

modified EM algorithm employed in MESP and PAD share the same problems.

However, the singularity problem is surpassed thanks to the use of the covariance

matrix based penalty p2(θθθ). The EM algorithm is run multiple times from different

starting points, to assure that the objective function global maximum is found.

In particular, for the model selection and the related grid search, the so-called

warm-starts are used as initialisation values, i.e. estimates of models with smaller

regularisation parameter γ become the initial values for iterations with the larger

γ. Given the warm-starts, the algorithm converges much faster and is more likely

to spot the global maximum.

3.6.4 Results and comments

3.6.4.1 Model-based clustering

Let us consider the scenario where data are generated from a Gaussian mixture of

two equally weighted components with its parameters previously specified.

For the simple balanced data scenario, the introduced MESP approach has supe-

rior performance in comparison to the other methods (Figure 3.2), especially for the

most challenging cases (n = 250 and the smallest true component separation). With an
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Figure 3.3: Performance comparison for the two types of variable selection methods
(M1 and M2) for the MESP and the datasets of size n = 250 and n = 500 with
varying separation (mult). The results are based on an average model performance
on 50 simulated datasets generated from the two Gaussian components.

increase of the separation between the components, the classification is more straight-

forward, and all but the fixed background model has comparable performance (the first

two principal components for the case explain only a small fraction of the data total

variability).

Comparison of variable selection methods (Figure 3.3) for MESP suggests that the

M2 model performs better in terms of the adjusted Rand index. However, for the

small component separation, the variable selection approach incorrectly removes the

informative variables which severely decreases the M2 performance.

In the setting with three Gaussian components and unequal weights, the classification

difficulty is increased which naturally results in much lower adjusted Rand index values.

The hierarchy of model performances changes slightly between the previous balanced

and the current unbalanced scenarios, but the MESP, Pan and Shen and Bouveyron et

al. are still the best-performing ones (Figure 3.4). For the smaller data size and the

smallest separations, the MEAS has far better performance than the competitors. The

performance of M1 and M2 variable selection approaches (presented in Figure 3.5) again

supports the M2 one.

3.6.4.2 Anomaly detection

For anomaly detection simulations the background and experimental (background

+ signal) datasets are generated accordingly to the described parametrisation. The
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Figure 3.4: Performance comparison for the 5 model-based clustering methods given
the datasets of size n = 250 and n = 500 generated from the three Gaussian compo-
nents for the varying separation.

Figure 3.5: Performance comparison for the two types of variable selection methods
(M1 and M2) for the MESP and the datasets of size n = 250 and n = 500 with
varying separation (mult). The results are based on an average model performance
on 50 simulated datasets generated from the three Gaussian components.

datasets are standardised with respect to the background data sample mean and vari-

ance. For the considered scenario, a simulated signal component lies between the two

background components (the background high-density region), which causes difficulties

for the signal detection.

The simulations are performed given the following datasets. First, for the signal

proportion λ = 5%, the competing methods are tested given varying separation of the

background components (the first three rows in Table 3.1). By fixing the separation, an
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increase of the signal proportion slightly raises the classification performance (rows 4 and

5). An overlap of the true densities disables good classification performance despite the

accurate signal component parameter estimation. The next three following scenarios

test if for the signal exhibiting as well for a background uninformative variable, the

method performance is increased, i.e. if the applied dimensionality reduction method

would not falsely remove such variable. For this purpose the true signal mean for the

14th variable is set to 3. The results show that the PAD approach correctly keeps the

variable and a much better signal classification is achieved in comparison to the previous

scenarios. Consequently, the M2 approach is used as well for the described data scenarios

to compare with the M1 (the following 8 rows in Table 3.1). The M2 approach relies

on informative variables selected based on the PAD of the M1 type. Almost in all the

cases, the adjusted Rand index values for the M2 are higher than for the M1.

For the tested scenarios the PAD was also compared with the Fixed Background

model. However, the first two principal components represent only about 20a% of the

total data variability that often leads to poor a classification performance. In the last

rows of Table 3.1 we see that for the cases with the signal isolated from the background

high density regions, the fixed background model has a good performance. For other

cases for which the signal is more difficult to be detected, it is more effective to use the

PAD approach in terms of the AUC error measure.

3.7 Application to new physics searches

3.7.1 Data description

The proposed approach for anomaly detection has been applied to the Monte Carlo

simulated data of high energy physics. The data simulation process has been described

in Sections 1.3.1 but specifically for this application, an interest is put on collisions

with a two jets final state. The background data were generated according to the

Standard Model processes and the signal data according to the RPV-MSSM model with

the hypothesised existence of a stop quark with a mass equal to 1000 GeV (Fuks, 2012;

Barbier et al., 2005).

As the proposed PAD approach is based on the Gaussian mixtures, it is particularly

powerful for modelling elliptically distributed data. The mixtures could be used for the

other cases as well, but then a prohibitively large number of components might need to

be used. The considered physical data are heavily skewed, hence the Tukey’s Ladder of

Powers transformation is applied variable-wise (Tukey, 1977; Abdallah et al., 2016), so
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Table 3.1: Anomaly detection results for the different data generating scenarios
and the M1 and M2 dimensionality reduction approaches compared with the fixed
background model (FBM). Given 50 simulations for each scenario, the average ARI
and AUC measurements are computed based on the training datasets and the AUC
based on the independent testing set.

µs,14 mult λ
model
type

ARI
training

AUC
training

AUC
testing

0 2.0 0.05 PAD M1 0.885 0.994 0.948
0 1.5 0.05 PAD M1 0.665 0.906 0.872
0 1.0 0.05 PAD M1 0.392 0.791 0.779
0 1.0 0.10 PAD M1 0.512 0.814 0.788
0 1.0 0.20 PAD M1 0.598 0.850 0.795
3 1.0 0.05 PAD M1 0.567 0.885 0.863
3 1.0 0.10 PAD M1 0.886 0.961 0.958
3 1.0 0.20 PAD M1 0.916 0.973 0.956

0 2.0 0.05 PAD M2 0.964 0.998 0.932
0 1.5 0.05 PAD M2 0.785 0.950 0.926
0 1.0 0.05 PAD M2 0.331 0.715 0.745
0 1.0 0.10 PAD M2 0.602 0.818 0.827
0 1.0 0.20 PAD M2 0.693 0.876 0.822
3 1.0 0.05 PAD M2 0.864 0.943 0.956
3 1.0 0.10 PAD M2 0.912 0.972 0.971
3 1.0 0.20 PAD M2 0.943 0.981 0.956

0 2.0 0.05 FBM 0.906 0.989 0.994
0 1.5 0.05 FBM 0.746 0.918 0.887
0 1.0 0.05 FBM 0.176 0.613 0.592
0 1.0 0.10 FBM 0.373 0.720 0.637
0 1.0 0.20 FBM 0.465 0.842 0.782
3 1.0 0.05 FBM 0.361 0.702 0.664
3 1.0 0.10 FBM 0.502 0.773 0.739
3 1.0 0.20 FBM 0.615 0.844 0.858

that the background date univariate distributions are more Gaussian-like. The datasets

are also scaled according to the background sample mean and variance. Despite the

transformations, a strong dependency between the variables is still present. A few of

the 2-dimensional data scatter plots clearly show complex, not elliptical patterns of the

distributions. For this reason, 8 of the 19 variables are removed, and only the other 11

are further considered (listed in Table 3.2).

3.7.2 Method performance

For the different proportion λ of the signal observations in the experimental data,

the PAD method of the M2 type is performed for the variable selection. For each λ,
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Table 3.2: Description of variables used for the application to anomaly detection in
context of the high energy physics. The detailed definition of the used variables can
be found in (Chen, 2012).

Variable Description
E1 and E2 jet energies
φ1 and φ2 azimuthal angles of jets
pT1 and pT2 transversal momentum of the jets

∆R angular measure of the dijet system ∆R =
√

(∆φ)2 + (∆η)2

Mjj invariant mass of the dijet
MET missing transverse energy
S1,2 sphericity of the dijet system
Cjj centrality of the dijet system

50 experimental datasets of size n = 4000 are sampled from the datasets at hand. In

following, we search only for a single signal component as it is already a challenging task

but also sufficient to provide insight into a possible presence of an anomalous process in

the data.

For the data at hand, the true distribution of the simulated signal observations lies

within a region of the high background density. Additionally, the background density

surpasses the signal one by a large factor (depending on the λ parameter). For this

reason, posterior anomaly probabilities obtained based on Equation 3.6 are much lower

than the background ones. Unless the threshold level used for the classification is some-

how adjusted, the PAD method performance in terms of the correct classification is

poor. The threshold level adjustments require to use some ad-hoc method which can

additionally influence the performance comparison. For this reason, a different compari-

son method has to be employed. The area under the Receiver Operating Characteristics

curve (AUC) is exploited (Egan, 1975). The results are presented in Table 3.3. As far as

shrinkage is concerned, for most the cases, 4−5 variables are chosen to be uninformative

performing the effective dimensionality reduction. The fixed background model suffers

from an inability of locating the signal. It is possibly due to the usage of only the first

2 principal components while the signal significantly exhibits for the other components.
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Table 3.3: Summary of the anomaly detection results performed by the PAD M2
and the fixed background model (FBM) for datasets with different signal proportions
λ. For each scenario, 50 datasets are generated to obtain a mean result with the
respective standard deviations presented in brackets.

Method λ
Average

estimate λ̂

Average
adjusted
Rand ind.

Average AUC

PAD 0.05 0.040(0.012) 0.097(0.133) 0.725(0.109)
PAD 0.10 0.057(0.013) 0.397(0.123) 0.818(0.078)
PAD 0.15 0.086(0.006) 0.507(0.029) 0.876(0.017)
PAD 0.20 0.112(0.006) 0.513(0.022) 0.882(0.012)
FBM 0.05 0.025(0.009) 0.143(0.045) 0.708(0.118)
FBM 0.10 0.046(0.008) 0.174(0.029) 0.764(0.078)
FBM 0.15 0.070(0.006) 0.185(0.018) 0.771(0.073)
FBM 0.20 0.096(0.012) 0.188(0.017) 0.780(0.054)



Chapter 4

On hypothesis testing-based

approach for new physics search

4.1 Introduction

The aim to complete the Standard Model calls for advanced new physics search

methods. It is not clear how the possible signal exhibits over the background distribution

and providing that it does exist, its occurrence among the experimental data will be

extremely rare. Hence, many approaches for signal detection have been proposed, in

the hope that at least some might be preferable for a signal discovery (Popov, 2011;

Baldi et al., 2014). The proposed methods differ in their assumptions, methodology,

sensitivity to possible signal appearance and discrimination power.

While the semi-supervised setting induced by the availability of the two data sources

and the assumption that the possible signal behaves as a deviation from the background

are kept unaltered with respect to the previous Chapter, in following, we consider an

alternative formulation to face the model-independent new physics searches. The ra-

tionale behind the current approach is to formulate the problem in terms of hypothesis

testing, i.e. to test how likely experimental data have been generated by the back-

ground distribution, under the null hypothesis that the background and the observed

data process (which possibly include a signal) have the same distribution. With differ-

ent specificities, the hypothesis testing approach has been frequently employed for new

physics searches (CMS Collaboration, 2017; ATLAS Collaboration, 2017).

Within this framework, the Inverse Bagging algorithm has been recently proposed

by Vischia and Dorigo (2017). As it will be highlighted in the following, some of its

aspects require to be investigated to validate and possibly improve the general idea of the

algorithm, as for example, the influence of the algorithm parameters on its performance

59
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and their optimal selection. We put an effort to explain the algorithm capability based

on a probabilistic work and simulation studies. Additionally, as the Inverse Bagging

is not immune to issues related to the high dimensionality or correlations of the data

at hand, some specific improvements are also discussed, consistently with the previous

Chapter.

4.2 Description of the Inverse Bagging

In the following, we adopt notation and definitions introduced in Section 3.3. Recall

the reference distribution assumed for the experimental data Y (3.1):

fBS(yyy) = (1− λ)fB(yyy) + λfS(yyy), λ ∈ [0, 1).

In contrast with the previous approach, the Inverse Bagging does not rely on the

explicit estimation of densities fB and fS, and the classification of the observations into

the background or signal processes is performed according to a different logic. It is

based on the idea of repeatedly testing the following hypothesis

H0 : fBS(·) = fB(·) ⇐= λ = 0

against the alternative

H1 : fBS(·) 6= fB(·) ⇐= λ > 0

based on bootstrap samples Y∗ and X ∗, of size Q, drawn respectively from Y and X .
The classical testing approach can, at most, answer to the tested hypothesis but

does not explicitly provide a classification of the observations into the two processes of

interest. Here we take a more complex perspective to perform multiple tests on differ-

ent datasets and turn in with observation scores providing information about individual

anomalous properties of the observations. In specific, by performing Nb bootstrap iter-

ations, each observation yyyl from the experimental data, for l = 1, ...,m, is provided with

a vector TTT l = (Tl;1, ..., Tl;Triedl)
′ reporting the test statistics obtained for the bootstrap

samples Y∗ including yyyl. Then based on the collected vector TTT l, a score for yyyl is com-

puted to reflect how likely the observation has been generated from the signal process.

The scores can be used for the further classification purpose. For a precise pseudo-code

of the Inverse Bagging see Algorithm 2.
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Algorithm 2 Pseudo-code of the Inverse Bagging

Input: background data X , experimental data Y
Parameters: number of bootstrap iterations Nb , Size of bootstrap samples Q

1: m ← size of the data Y
2: allocate a list Results of size m consisting of empty lists
3: allocate a Score vector of size m
4: for b = 1, ..., Nb do
5: sample sets X ∗b and Y∗b both of size Q respectively from X and Y
6: Tb ← obtained test statistic for the hypothesis test given samples X ∗b and Y∗b
7: for q = 1, ..., Q do
8: yyy∗q ← the qth observation from Y∗b
9: to the yyy∗q element of the list Results append Tb

10: end for
11: end for
12: for l = 1, ...,m do
13: TTT l ← (Tl;1, ..., Tl;Triedl) Assign a list from the lth element of the Results
14: use any method to combine values from the list TTT l and assign results to the lth

element of the Score vector.
15: end for
16: return Score

4.3 Research questions

The Inverse Bagging algorithm is constructed based on a simple idea of multiple

hypothesis testing, however, several research questions concerning its performance raise.

While it seems natural to face the considered problem via hypothesis testing, since the

signal fraction λ - if not equal to 0 - is expected to be small, any statistical test will

suffer from little power to correctly reject the null hypothesis. Additionally, the resulting

test statistics can highly vary due to data sampling, which can further result in a high

variance of the produced scores and an incorrect classification. For these and other

reasons discussed in the following, the algorithm needs a comprehensive investigation,

aimed at validating and, possibly, improving it with respect to the following highlighted

aspects.

1. Choices related to the test hypothesis

Recall that data sampling and the iterative hypothesis testing produce for each

observation yyyl a respective vector of test statistics TTT l. A combination of its val-

ues is required to obtain an observation score summarising its signal properties.

The score computation is crucial for the following classification task because ob-

servations with the most extreme scores are classified as the signal. In practice,



62 Section 4.3 - Research questions

there are countless possible methods for the score computation, but for the sake

of simplicity, herein we consider the ones which follow.

(a) Test statistic score - mean of the obtained test statistics for a given obser-

vation

RTest;l =
1

Triedl

T riedl∑
k=1

Tl,k

where Triedl is the number of times the observation yyyl is sampled.

(b) P-value score - based on the test statistic distribution under H0, the cor-

responding p-values are obtained PPP l = (Pl;1, ..., Pl;Triedi)
′ from the vector TTT l

and their mean is used as a score value

RPvsl;l =
1

Triedl

T riedl∑
k=1

Pl;k

(c) Ok score - proportion of times that for the given lth observation the null

hypothesis is rejected with respect to the total number that the observation

was sampled

ROk;l =
Okl
Triedl

where Okl =
∑Triedl

k=1 1{Pl,k < α} is the number of times the obtained p-values

are smaller than an arbitrarily chosen significance level α.

Note that the score computation method has a significant impact on the resulting

classification. Changing the method influences the observation ranking. Addition-

ally, the last one depends on the additional parameter α which can also have an

important influence.

A statistical test used to test the hypothesis has as well its broad relevance.

One should select a suitable two-sample test for density equality (some possible

choices are briefly summarised in Section 2.3.1). In the following, the two-sample

Hotelling’s T 2 test is employed (Hotelling, 1931), which simplifies to the Student’s

T -test for univariate data. It is the simple, multivariate and computationally quick

test, which is a great advantage regarding the Inverse Bagging multiple testings

procedure. The Hotelling’s T 2 test statistic is expressed as

T 2 =
Q

2
(X̄ ∗ − Ȳ∗)′Σ̂−1(X̄ ∗ − Ȳ∗),

Σ̂ =
1

2

(
Σ̂X ∗ + Σ̂Y∗

)
,
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where, respectively for datasets X ∗ and Y∗ of size Q, Σ̂X ∗ and Σ̂Y∗ are the sample

covariance matrices, and X̄ ∗ and Ȳ∗ are the sample mean vectors. Under the null

and assuming that the data are generated from the multivariate normal density,

the test statistic has the T 2
P,2Q−2 distribution. In principle, the physical data are

not normally distributed, but the test has been proved for being robust to face

the issue (Khan and Rayner, 2003). The other problem is that for the Hotelling’s

T 2 a different hypothesis is tested, namely the equality of sample means, which,

in general, does not mean the equality of their distributions. This might result in

poorer performance in respect to another proper test, but despite this, the simple

test is sufficient to provide insight into the algorithm performance regarding its

other important aspects which might have been more difficult for other complex

tests. Advanced statistical tests, as for example the Energy test (Aslan and Zech,

2005) or the kernel density based global two-sample comparison test (Duong and

Schauer, 2012), can be certainly used within the algorithm, but their influence

and performance are left for future research.

2. Selection of parameters Q and Nb

The output of the Inverse Bagging algorithm not only depends on the used sta-

tistical test or the method to compute observation scores but also on the inherent

parameters that drive the algorithm functionality. First, let us consider the pa-

rameter Q – the size of the sampled sets. For applications employing bootstrap

sampling, it is usually chosen that the sample size Q is equal to the original data

size m as it would be some rule of thumb. In contrast, Buja and Stuetzle (2006)

show that bootstrap sample size has a direct influence on an error of bootstrap es-

timators. In this logic, Vischia and Dorigo (2017) suggest choosing the parameter

Q to be much smaller than m. By this mean, the proportion of signal observations

in some of the sets Y∗b can be much higher than λ which can effectively increase the

test power and enable the signal detection. This aspect is particularly thoroughly

studied in the thesis. The concerns are that a small background sample X ∗b may

contain insufficient information of the background. Consequently, one can ease

the sampling procedure, so that for b = 1, ..., Nb only sets Y∗b are sampled, and

the associated statistic is computed regarding the whole background data X .

Another fundamental parameter of the Inverse Bagging algorithm is the number

of performed bootstrap samplings – the Nb parameter. Naturally, to obtain the

best possible performance, it should be infinite, which is prohibited by the limited

computational supplies. Hence, the parameter Nb is selected to be reasonably high
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in respect to the resources. However, when it comes to comparing the algorithm

performance as a function of the parameters Q, the parameter Nb cannot remain

fixed across simulations. The expected number of times that each observation is

sampled E(Triedl) changes with Q because

E(Triedl) =
NbQ

m
.

For a fair comparison, observation scores should be computed based on the same

number of tests, hence E(Triedl) is fixed by appropriately adjusting for the pa-

rameters Q and Nb.

3. General performance with respect to competitors

The Inverse Bagging is expected to detect anomalous property locally given un-

expected collective behaviour of observations. To verify this property, the algo-

rithm performance is compared with a similar method oriented on the global data

properties. A suitable competitor is the well-known Linear Discriminant analysis

(Izenman, 2008) – for short the LDA. The LDA is formulated similarly to the

Hotelling’s T 2 test statistic. On the other hand, it is a supervised method that

cannot be directly applied within the context of interest. As mentioned in Section

3.1, a semi-supervised problem can be faced either by strengthening unsupervised

formulations via the inclusion of additional information (the idea highlighted for

the Penalised Anomaly Detection in Chapter 3) or by relaxing assumptions of

supervised methods. Here the LDA is adapted to the semi-supervised setting and

is considered herein as a benchmark method.

The classical LDA approach serves for a two-class classification under the assump-

tion that the two classes are generated according to Gaussian distributions with

different mean vectors and common covariance matrix Σ. For classification pur-

pose, a discriminant vector www is computed as

w = Σ̂−1(X̄ ∗ − Ȳ∗).

The classification of new unlabelled observations is performed according to a hy-

perplane perpendicular to the vector www. In the supervised setting, the hyperplane

location is determined by a threshold computed based on the labelled training

data. In the absence of the signal labelled data, the LDA classification cannot

be performed. However, if the observations are projected along the discriminant



Chapter 4 - Testing-based anomaly detection 65

vector www, their position can be used as the observation scores, equivalently to the

Inverse Bagging scores. This approach is referred to as the LDA score.

4. Algorithm improvements

In Section 3.4, we proposed improvements for the PAD approach handling the

critical issue of the curse of dimensionality which appears in the multivariate

setting. That approach employs variable selection for the more accurate parameter

estimation, for avoiding problems with optimisation of the objective function, and

for removal of not relevant variables for further signal discrimination. Within the

Inverse Bagging algorithm, highly dimensional data can be an issue depending

on the used statistical test, i.e. the Hotelling’s T 2 is quite robust to deal with

high dimensional data but, for instance, the KDE test is not. Hence, we include

some variable selection technique for the Inverse Bagging algorithm, extending it

to be a more general-purpose method. However, any variable selection must be

carefully performed because a possible signal which does not necessarily exhibit

in the univariate distributions of the variables, might present in their multivariate

structure.

Secondly, if the tests are performed given the same variables for all the boot-

strap samples, the obtained test statistics are correlated, especially highly for

bootstrap samples containing many common observations. Consequently, the pro-

duced scores have a high variance which cannot be reduced even by increasing

the number of bootstrap iterations Nb. On the other hand, if the tests are per-

formed given different subsets of variables, the between tests correlation is reduced

which can produce scores with a smaller variance. Hence, it appears that possible

improvements of the Inverse Bagging algorithm can be made if the observations

sampling is subsequent with a specific feature sampling approach exhibiting signal

informative variables.

Lately, we propose some algorithm extensions regarding highly correlated data.

For such cases, the previously proposed improvements might fail. We consider

a specific data transformation that de-correlates the data prior to the algorithm

application.

Given the above discussion, we can more specifically describe how the research ques-

tions have been faced. Firstly, the focus is put on finding an optimal method to select

the parameter Q and a best-performing method for the scores computation. The goals

are attained by a probabilistic work and suitably designed simulations. The Inverse

Bagging algorithm is compared with another anomaly scoring method– the LDA score
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– to find its strong and weak points. Subsequently, some extensions are proposed aiming

at the algorithm performance improvement to circumvent the issues related to the curse

of dimensionality and high correlations of the test results.

4.4 Optimal parameter selection, choices related to

the test hypothesis, comparison with competi-

tors

4.4.1 Optimal parameter selection

In this section, we perform a probabilistic work to validate if the use of parameter

Q < m has any reasonable foundation. Let us consider, for the sake of simplicity, the

first method of the score computation, i.e. the test statistic score. Denote by ψ(Q|s)
an expected value of the used test statistics for bootstrap samples of size Q given that

accurately s anomalous observations are included in Y∗b . Without loss of generality,

assume that the test statistic is higher when more evidence against the null is observed.

Naturally, the function ψ(Q|s) is then monotonically increasing with s as potentially

more evidence against the null hypothesis rises the expected test power.

Denote by φb and φs an expected Inverse Bagging score for respectively for an ob-

servation generated by the background and signal process. By using the law of total

probability we express the expectations of the scores as

φb(Q) =

Q−1∑
s=0

ψ(Q|s)fBin(s,Q− 1, λ)

φs(Q) =

Q−1∑
s=0

ψ(Q|s+ 1)fBin(s,Q− 1, λ)

where fBin(s,Q − 1, λ) is the Binomial probability mass function of getting exactly s

anomalous observations in Q − 1 trials with the probability of selecting an anomalous

observation equals to λ (the signal fraction).

Note that φb ≤ φs because from the monotonicity ψ(Q|s) ≤ ψ(Q|s+ 1) hence
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φb(Q) =

Q−1∑
s=0

ψ(Q|s)fBin(s,Q− 1, λ)

≤
Q−1∑
s=0

ψ(Q|s+ 1)fBin(s,Q− 1, λ) = φs(Q).

(4.1)

From the above, the expectation of the Inverse Bagging score for the anomalous obser-

vation is higher than for the background one. On the other hand, for fixed Q > 2 there

exists an ε > 0 that for all s = 1, ..., Q− 1

ψ(Q|s+ 1) < ψ(Q|s) + ε

because the expectation of the test statistic is monotone and bounded given the data

Y . Hence from equation 4.1 we have

φb(Q) =

Q−1∑
s=0

ψ(Q|s)fBin(s,Q− 1, λ)

>

Q−1∑
s=0

(ψ(Q|s+ 1)− ε) fBin(s,Q− 1, λ)

=

Q−1∑
s=0

ψ(Q|s+ 1)fBin(s,Q− 1, λ)− ε
Q−1∑
s=0

fBin(s,Q− 1, λ) = φs(Q)− ε

Consequently φb(Q) ∈ (φs(Q) − ε, phis(Q)] where ε is a fixed value given the data Y ,
parameter Q and the statistical test. It is expected that for the larger sample sizes Q,

the smaller ε value can be found because influence of a single anomalous observation

gets smaller as the sample size increases. Hence the selection of the smaller Q parameter

might, in principle, allow better discrimination. However, it is not certain if usage of

different values for the parameter Q does that cause a bias or an increase of the scores

variance influencing the classification performance. For this reason the above reasoning

does not give as a final solution.

4.4.2 Numerical work scenarios

The Inverse Bagging algorithm is applied to collections of artificially generated datasets

to answer the stated research questions. The simulations are designed to address the

indicated algorithm aspects individually. The data are generated from the known dis-

tributions to ease the results interpretation. The computed Inverse Bagging and LDA
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scores are not directly comparable, i.e. at most, they can be used for the classification

but for this aim an additional method is required to choose a suitable threshold for the

score-based classifications. The methods comparison is then based on the more conve-

nient Receiver Operating Characteristics (ROC) curve or the related Area Under the

ROC Curve (AUC) (Egan, 1975).

In specific, the simulated background and experimental data have size n = m = 2000.

To verify the impact of sampling small bootstrap samples, we check several values of the

parameter Q ∈ {25, 50, 100, 250, 500, 1000, 2000}. For each case, we adjust the number of

bootstrap iterations Nb so that on average each observation is sampled E(Triedl) = 104

times. Furthermore, we consider the Hotelling’s T 2-test to test the hypothesis (simplified

to the Student’s T -test for the univariate cases). Within each simulation scenario, the

datasets are generated 50 times, and the averaged results are shown.

For first, the background and signal distributions are specified to be the Gaussian

ones (either uni or multivariate) with a common variance parameter (or respectively

covariance matrix). Such settings are then optimal for the LDA scores which are put

as a challenge for the Inverse Bagging performance. Later the signal distribution is

specified to be non-Gaussian to compare the Inverse Bagging performance in settings not

optimal for the LDA. For the last cases, the test statistic method for scores computation

is used. The experimental data distribution is specified to be a mixture according to

the reference mixture model (3.1) with the signal fraction λ = 0.05. In specific, for

simulation scenarios the parameters of the underlying distributions are:

• For a univariate case

fB(x) = N (0, σ2), and fS(x) = N (µ, σ2)

where µ = 1 and σ2 = 1.

• For a multivariate normal case

fB(xxx) = N (000,Σ1), and fS(xxx) = N (µµµ,Σ1)

where µµµ = (1, 1, 1, 1)′ and Σ1 = I4.

• For a spherical signal case

fB(xxx) = N (000,Σ2)

where Σ2 = I5, and signal observations are uniformly distributed on the 5-dimensional

sphere centered at 000 and with a radius equal to 3.
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• For a hemispherical signal case

fB(xxx) = N (000,Σ2)

and signal observations are uniformly distributed on the 5-dimensional sphere

centered at 000 with a radius 3 and for the first variable absolute value is taken, so

that form the hypersphere a hyper-hemisphere is created.

4.4.3 Simulation results

4.4.3.1 Univariate Data

The simulation results for the univariate scenario, are presented in Table 4.1. In

is displayed a comparison of the algorithm performance for different score computation

methods are the varying parameter Q. It is apparent that the test statistic score method

leads to the best performance. For the selection of the parameter Q, the optimal results

are achieved for Q = 100 across all the methods. An interesting observation is that for

Q = 100 the ratio Q/m = λ – the true signal proportion. Performance of the algorithm

for the most optimal parameter selection is equivalent to the LDA scores.

In Figure 4.1 the Inverse Bagging scores are presented for one of the generated

datasets and for Q ∈ {100, 1000, 2000}. Note that they align in parallel lines with a

significant slope and enjoy small variance around the lines. Additionally, the higher is

the sample set size Q, the higher is the variance of the scores around the lines.

For the specified data scenario, we test the influence of the algorithm performance on

the number of used bootstrap samples Nb as a function of the parameter E(Triedl). The

results are present in Figure 4.2. We observe that for the large number of sampling the

classification performance is equal across various values of the parameter Q, however,

for the smallest Q a decent performance is reached sooner. We presume that such

behavior is caused by the higher variance of scores computed for the larger parameter Q

(see Figure 4.1) but while increasing the Nb the variance converges to a common value

across all values of the parameter Q.

4.4.3.2 Multivariate data

In table 4.2 the mean AUC values for the Inverse Bagging performance are presented

for the considered score computation methods and the varying parameter Q. In analogy

to the univariate case, the test statistics score serves as the best method for the classi-

fication. Selection of the parameter Q = 100 is also the most preferable. In both cases,
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Table 4.1: The mean performance of the Inverse Bagging regarding the AUC for the
different methods of scores computations and diverse sample size Q shows a superior
performance for the method based on the test statistics. The mean AUC for the LDA
score is 0.760.

Parameter Q Test statistic P.value Ok
25 0.760 0.750 0.743
50 0.760 0.751 0.749

100 0.760 0.753 0.752
250 0.758 0.750 0.748
500 0.756 0.749 0.744

1000 0.750 0.741 0.739
2000 0.738 0.720 0.714
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Figure 4.1: The Inverse Bagging scores computed based on the test statistics for
the varying sample size Q plotted against the simulated univariate data. In legend
the respective AUC values are shown.

the mean LDA score has equal performance to the Inverse Bagging algorithm employing

the most suitable combination of the parameters.

4.4.3.3 Multivariate spherical signal

From the previous simulations, it is apparent that the Inverse Bagging based on the

Hotelling’s T 2-test has similar performance to the LDA score for the data generated

from the Gaussian distributions with common covariance matrices which is an optimal

case for the LDA performance. This time, it is validated that the Inverse Bagging is a

more general method which works well for cases where the LDA score does not.

In Figure 4.4 performance of both methods is shown for the spherically distributed

signal defined in Section 4.4.2. The LDA score approach has the mean AUC just slightly

above 0.5, not being able to detect any anomalies. The Inverse Bagging approach has a

much better result for the small parameter Q but quickly decrease to 0.5 for the larger

Q. It seems that the parameter Q is not only related to a number of bootstrap iterations
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Figure 4.2: The ROCs and their corresponding AUC values in the legend for the
Inverse Bagging scores computed based on the Ok scores computation method for the
varying sample size Q and a number of the performed sampling (expressed by the
parameter E(Triedl)) for one of the simulated datasets.

Table 4.2: The mean performance of the Inverse Bagging regarding the AUC for
the different methods of scores computations and varying samples size Q. The mean
AUC of the LDA score is 0.904.

Score type Test statistic P.value Ok
25 0.895 0.892 0.898
50 0.902 0.899 0.902

100 0.904 0.901 0.902
250 0.899 0.896 0.897
500 0.895 0.889 0.890

1000 0.891 0.870 0.871
2000 0.881 0.775 0.747

at which the optimal solution is obtained but also to a flexibility of the approach, that

is to reflect respectively local and global data properties.

4.4.3.4 Multivariate hemispherical signal

The sample mean of the spherically distributed signal observation is close to 000 hence

naturally the LDA scores based on the location difference of signal and background

samples is going to have poor performance. Herein, we compare the two approaches for

the signal with the hemisphere distribution (see Section 4.4.2). Such scenario is meant

to validate if the Inverse Bagging can use both global and local properties of the data.
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comparison with competitors

Figure 4.3: The AUC performance of the Inverse Bagging for the different parameter
Q and the simulated multivariate datasets. In blue it is denoted the mean Inverse
Bagging performance which in its maximum reaches the performance of the mean
LDA score (in red).

Figure 4.4: The AUC performance of the Inverse Bagging for the varying parameter
Q and the simulated datasets with a spherically distributed signal. In blue it is
denoted the mean Inverse Bagging performance and in red the average performance
of the LDA score.

The performance is presented in Figure 4.5. There exists an analogy between the

current results and the one of the spherical signal, i.e. the Inverse Bagging has bet-

ter performance for the small values of the parameter Q while for the larger ones the

performance converges to the LDA score approach.
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Figure 4.5: The AUC performance of the Inverse Bagging for the different parameter
Q and the simulated datasets with signal uniformly distributed on a hemisphere. In
blue it is denoted the mean Inverse Bagging performance and in red the one of the
LDA score.

4.4.4 Comments

The Inverse Bagging algorithm performance has been computed based on specific

simulation scenarios. It is clear that the test statistic method for scores computation

is optimal from the three considered methods. Furthermore, it has an advantage, that

does not depend on selection of additional parameters (like the parameter α for the Ok

score) and on distribution of test statistic, which can be known only asymptotically (like

for the KDE test of Duong and Schauer, 2012) or requires bootstrapping to obtain it

(the Energy test of Aslan and Zech, 2005).

Selection of the optimal parameter Q is not as obvious as the selection of the score

computation method. We observe that for the Gaussian data the best value of Q is about

mλ - but in practical application parameter λ is unknown - more precisely we test if

λ > 0. Simulations for the spherical and hemispherical signal confirm that selection of

small Q allows for discovering local data properties.

For the optimal selection of the Inverse Bagging parameters, the algorithm has com-

parable results to the LDA score for scenarios preferable to the LDA, and much better

performance for situations not preferred to the LDA. This is an important finding, as the

Hotteling’s T 2-test on which the algorithm is based is very similar to the LDA, but the

multiple hypothesis testing framework enables the proposed algorithm to outperform

the LDA.
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4.5 Algorithm improvements

4.5.1 Different score computation methods

The described methods for the scores computation are based on the averaging of

various forms of test results. Although the methods - especially the test statistic one

- have been proven to perform well, it is worth exploring if other methods can lead to

improvements. In specific, we want to use a quantile score, based on the idea that many

of the tests are performed on bootstrap samples containing a small fraction of signal

observations, and hence it might be more suitable to use quantiles of high orders. In

specific, the score for the observation yyyl, l = 1, ..,m is computed as a quantile of the

qth order from the respective test statistics vector TTT l. Here q is an additional parameter

which needs to be arbitrarily selected.

4.5.2 Dimensionality reduction-like approach

Herein we search for possible improvements of the Inverse Bagging algorithm given

the above findings considering the parameters selection. Let us refer to the original

algorithm proposed by Vischia and Dorigo (2017) as the standard Inverse Bagging.

The first attempts focus on the curse of dimensionality which can emerge for some

tests. Secondly, an effort is put on multivariate problems for which only a few variables

are discriminative, and the others are redundant (uninformative) for the signal detection.

Such cases are often encountered in applications for High Energy Physics or genomic

analysis.

We propose a variable selection-like approach embedded within the Inverse Bagging.

Its idea stems from the random forest approach for which variable sampling takes place

when searching for optimal variables for splitting. As an Inverse Bagging extension,

we propose for each bootstrap sample Y ∗j to simultaneously draw a set of L variables

and perform the following statistical test in the reduced sub-space spanned by the L

sampled variables. This method is referred to as the variable sub-sampling. In this

manner, we allow to use tests sensitive to the curse of dimensionality; secondly, if

the tests are performed on a subspace with many informative variables, the obtained

information can be more reliable than from the test performed based on all the variables.

Finally, correlations between the test results are decreased if the tests are performed in

different subspaces which leads to the smaller variance of the scores, hence to a better

classification.
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The second more advanced idea of the variable sub-sampling is that for a given set of

the sampled observation Y ∗j , G tests are performed on G sampled variable sets each of

size L. From the G test results the maximum is taken and is used as a single step result

for a sample Y ∗j . In this manner, only the highest test statistic values are saved, likely

obtained based on a feature set rich in informative variables. Let us refer the method

as a variable max-G-sampling (where G is the used parameter). Note that the variable

sub-sampling is equivalent in notation to the variable max-1-sampling.

Further improvements refer to sampling method itself, i.e. so far in all the considered

scenarios, the sampling of both observations and variables has been carried out using

equal probabilities (weights). Our idea is to use specifically adjusted weights so that it

is more likely to obtain signal reacher samples and perform tests on variables more likely

to be informative. The idea is that in this manner, less bootstrap iteration is needed to

obtain equivalent results. Two types of sampling weights are proposed:

• Feature weights - At the beginning of the algorithm employment, the weights are

set to be equal as a priori is not known which variables are informative. As with

each bootstrap iteration, the highest scoring variables are selected due to taking

the maximum of theG tests, knowledge about the variables discrimination power is

gathered. After a certain number of steps (we take 50% of Nb) this information is

used to adjust the weights for the feature sampling, so that sets rich in informative

variables are more likely to be sampled.

• Observation weights - As no prior information about experimental data labels is

given, at the beginning the observations need to be sampled with equal probabil-

ities. However, after a decent number of iteration, we can come up with weights

based on the inverse bagging score themselves to be updated with the subsequent

iterations. The higher sampling probabilities are assigned to observations with

high scores, so that bootstrap samples consist of sets with a higher proportion

of anomalous observations. Additionally, more tests are performed for the high

scoring observations to decrease their variance by the costs of the lowest scoring

observations, for which accurate computation is not the priority.

4.5.3 Highly correlated data

Until this point, for all the analysed scenarios the generated data are uncorrelated.

It needs to be verified if and how the correlations might influence the Inverse Bagging

performance and all the proposed extensions as correlations are present in many real

datasets.
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The data correlations can decrease the performance of the proposed dimensionality

reduction-like technique. We suggest performing a specific transformation of the data

to uncorrelated it. Let us denote by H a lower triangular matrix obtained from the

Cholesky decomposition of the sample covariance matrix Σ̂X based on the background

data X . If we multiply the original data by the inverse of the H, then it has a diagonal

covariance matrix. Such transformation does not influence the LDA score performance,

however, enables to use the adopted dimensionality reduction technique.

4.5.4 Numerical work scenarios

The simple multivariate Gaussian scenario described in Section 4.4.2 are used for

validation of the quantile method for the scores computation performance.

For the improvements aiming at dimensionality reduction, specific datasets are gen-

erated. In similarity to the previous case, the generated samples are of size m = 2000.

The test statistic is used for the scores computation and parameter Q = 100 as they ap-

pear to be the optimal selection based on the previous simulations. For each method, 50

simulations are performed. The experimental data are drawn from the mixture density

(3.1) where

fB(xxx) = N (000,Σ3), and fS(xxx) = N (µµµ,Σ3)

where µµµ = (00020,1115) and Σ3 = I25. Such distribution generated anomalies which exhibit

only for the last 5 variables. In turn, the first 20 uninformative variables should be

removed as they do not increase the classification power and their presence is burden-

some.

In order to verify the algorithm performance for correlated data, we specify different

distribution. Let the background and signal density be expressed respectively as

fB(xxx) = N (000,Σ4), and fS(xxx) = N (µµµ,Σ4)
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Table 4.3: Results of the Inverse Bagging using specific quantiles of test statistics
for the scores computation. The 4 different quantiles are considered and compared
with the averaging method.

Used method for the scores computation
Test Quantile score of orders

Sample size statistic 0.50 0.75 0.90 0.95
Q=100 0.904 0.901 0.907 0.899 0.896
Q=1000 0.891 0.872 0.867 0.850 0.799
Q=2000 0.881 0.856 0.825 0.806 0.784

where µµµ = (0007,1113)
T and Σ4 =



1.0 0.0 0.0 0.0 −0.3 0.0 0.0 0.0 0.3 0.0

0.0 1.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.4 0.1 1.0 0.0 0.0 0.0 0.1 0.0 0.1

−0.3 0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.5 0.1

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.1

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1

0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.0 0.0 0.1

0.3 0.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.1

0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 1.0



.

The covariance matrix Σ4 cause the generated data to be correlated. The correlation,

in turn, can negatively influence the proposed dimensionality reduction-like technique,

because at this point it is not clear which variables are informative.

4.5.5 Simulation results

4.5.5.1 Quantile score method

The results for application of the quantile score method are presented in Table 4.3.

With no doubts, the test statistic method performs better than any of the proposed

quantile methods for all the sample sizes Q and the consider quantiles q. Additionally,

the higher parameter q is selected, the worse performance is obtained. It is presumably

due to the fact that the scores based on the quantiles have a higher variance in respect

to the scores based on the averaging leading to a more accurate classification of the

second method.

4.5.5.2 Extensions for sampling

The results of the described in Section 4.5.2 algorithm extensions, namely the variable

max-G-sampling approaches, are presented in table 4.4. For the parameter G ≤ 5 the
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Table 4.4: Mean performance of the different variable sampling approaches regarding
the AUC. The parameter L controls the number of selected variables for testing. The
mean AUC of the LDA scores is equal to 0.865 and of the standard Inverse Bagging
with Q = 50 is 0.862.

Method L=5 L=10 L=15 L=20
Variable max-1-sampling 0.843 0.855 0.859 0.861
Variable max-5-sampling 0.859 0.862 0.863 0.862

Variable max-10-sampling 0.862 0.863 0.863 0.863
Variable max-20-sampling 0.864 0.864 0.863 0.862

Table 4.5: Mean AUC of the weighted sampling approaches for the varying pa-
rameter L given different combinations of using weights withing sampling approaches
denoted by T -True - and F - False. The mean AUC of the LDA scores for the
generated datasets is equal to 0.865.

Method
Var.

weights
Obs.

weights
L=5 L=10 L=15 L=20 L=25

Var. max-1-sampling F F 0.843 0.855 0.859 0.861 0.862
Var. max-10-sampling F F 0.864 0.864 0.863 0.862 0.862
Var. max-10-sampling T F 0.892 0.882 0.875 0.869 0.862
Var. max-10-sampling F T 0.864 0.866 0.866 0.865 0.865
Var. max-10-sampling T T 0.889 0.886 0.880 0.874 0.870

standard approach has better performance than variable sampling methods for any

parameter L. However, when higher values of G are used, then the performance for

small parameter L is increased to be slightly higher than for the standard approach.

Hence, variable max-G-sampling has a potential of improving the standard approach

performance using small sets of features with moderately high parameter G (number of

tests from which the maximum is taken).

Given the same simulation scenario, the Inverse Bagging scores for the different

weighted sampling approaches are computed, and the comparison is presented in Table

4.5. We conclude that using weights for the variable sampling could effectively increase

the Inverse Bagging performance for the cases where anomalies exhibit only for some

of the variables. Especially, usage of weights for variable sampling highly increase the

algorithm performance, while the use of the observation weights is of a questionable

profit.

4.5.5.3 Correlated data results

In Table 4.6 the mean performance for the simulations for correlated data is shown.

If no data transformation is applied (parameter Rotation is F - False) then the weighted

variable sampling approach does not increase the performance of the standard Inverse
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Table 4.6: Mean AUC of the Inverse Bagging approaches on the correlated data for
the varying parameter L. The mean AUC of the LDA scores is 0.907.

Method Rotation L=3 L=5 L=8 L=10
Variable max-10-sampling F 0.807 0.848 0.887 0.913
Variable max-10-sampling T 0.920 0.917 0.914 0.913
Variable max-10-sampling

with var. weights
F 0.803 0.819 0.838 0.913

Variable max-10-sampling
with var. weights

T 0.924 0.921 0.916 0.913

Variable max-10-sampling
with obs. and var. weights

F 0.764 0.801 0.849 0.921

Variable max-10-sampling
with obs. and var. weights

T 0.921 0.924 0.921 0.921

Bagging as it was the case for the uncorrelated data. In essence, the correlations prevent

the weighted sampling from performing the essential variable selection. In Table 4.6 we

see that the proposed transformation is beneficial to the weighted sampling performance

(parameter Rotation T - True).

4.5.6 Comments

Concerning the new method for the scores computation (the quantile score), no

improvements regarding the algorithm performance have been made. It seems that the

score computation based on averaging has a lower variance in respect to the quantiles.

Hence it serves better for the following signal discrimination.

In respect to the dimensionality reduction approaches, the improvements have been

made. Firstly, we allowed to perform the tests in lower dimensional spaces and combine

their results in the way that boost the algorithm performance. It is especially useful for

cases that the signal exhibits only for some of the variables. Next, we investigated obser-

vation and variable sampling using unequal probabilities, which even further improved

the algorithm performance. However, it was shown that for the correlated data the

proposed extension could decrease the algorithm performance regarding the standard

version. To circumvent the problem, the specific data transformation was proposed so

that the introduces extension again can be used as the improvements.
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4.6 Applications

4.6.1 Spam data

In this section, the performance of the Inverse Bagging algorithm is validated on

the well-known spam data (Friedman et al., 2001). The spam data became a baseline

dataset to compare supervised classifiers. They consist of 57-dimensional observations

labelled either as ”spam” or ”non-spam” messages.

For the anomaly detection purpose, the data are transformed to fit the semi-supervised

context of this Chapter. From the original spam data, by sampling two sets are obtained:

a background set with pure non-spam labelled observations, and a mixed set containing

a mixture of non-spam and of λ = 4% spam observations. Both datasets are normalised

according to the sample mean and variance of the background set. The resulting back-

ground set has 2761 observations and the mixed one 1174. The parameter Q is set

to be equal 100. Additionally, we test the algorithm on the produced datasets and as

well after performing the proposed Cholesky transformation. For variable sampling we

consider the parameter L ∈ {7, 12, 22, 32, 42, 52}.
In Table 4.7 the performance of the Inverse Bagging algorithm is shown. As the

data variables are highly correlated, it appears that the proposed data transformation

is beneficial, which is in line with the previous simulation studies. The LDA score per-

formance is also worse than the Inverse Bagging with the prior data transformation.

However, in contrast to the simulation studies, for the application feature sampling

method results in the most miserable performance. In general, the proposed algorithm

improvements have the comparable performance with the standard algorithm setting.

In absence on prior knowledge of the number of possible informative variables, selection

of the parameter L is unclear, but it has relevant consequences on the algorithm perfor-

mance. The unsatisfactory performance of the proposed extensions for the application

is presumably due to the fact that the data variables were explicitly selected to be good

discriminants for the following spam classification, i.e. all the data features are infor-

mative. This property is in contradiction to the feature sampling idea proposed as the

Inverse Bagging improvement, but despite it turns out that the algorithm performance

remains comparable to the standard approach even if the parameter L is misspecified

(the lowest values of L).
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Table 4.7: The Inverse Bagging classification performance using the AUC for the
4% mixed data with and without the prior Cholesky data transformation (column
”Rotation”). The AUC for the LDA score is 0.839 and the one of the standard
Inverse Bagging is 0.851.

Method Rot. L=7 L=12 L=22 L=32 L=42 L=52
Variable sub-sampling F 0.721 0.785 0.841 0.834 0.819 0.820
Var. max-10-sampling F 0.751 0.799 0.819 0.829 0.827 0.822
Feature weights F 0.703 0.747 0.826 0.839 0.833 0.825
Variable sub-sampling T 0.865 0.863 0.852 0.856 0.848 0.853
Var. max-10-sampling T 0.847 0.859 0.852 0.850 0.850 0.851
Feature weights T 0.846 0.851 0.844 0.841 0.849 0.850

4.6.2 Application to the high energy physics

The Inverse Bagging algorithm has been initially formulated in the context of high

energy physics and consistently with the thesis framework, its application to collision

data is herein performed. In following, the same data as described in Section 3.7 are

used, to additionally allow for comparison of the two proposed methods, which indeed

have the same purpose and settings but are designed according to entirely different

ideas.

Let us shortly recall a description of the data at hand. They are simulated to mimic

detector measurements for proton-proton collisions with a two jets final state at the

LHC. Naturally, the background reflects the Standard Model process and the signal

refers to the exotic concept beyond the current theory. To allow a fair comparison

between the proposed methods, the same 11 variables used for the former approach are

adopted herein. Recall that the PAD application in Chapter 3 determines (depending

on scenarios) 7 or 8 informative variables out of the 11 used; hence the usage of the

proposed improvement within the Inverse Bagging can be beneficial.

For the application of the Inverses Bagging, the parameter Q is set to 200 which is 5%

of the experimental data size. We apply the standard Inverse Bagging and the proposed

variable max-10-sampling improvement with the parameter L ∈ {5, 8}. Before the algo-

rithm application, the introduced de-correlating transformation is performed. To verify

the performance, the AUC measure is used (Egan, 1975) because it has not been yet un-

derstood how a suitable threshold should be chosen for scores on which the classification

is performed. Four simulation scenarios are considered, namely four scenarios of gen-

erating the experimental data Y with the signal proportion λ ∈ {0.05, 0.10, 0.15, 0.20}.
Application results are based on 50 generated datasets within each simulation scenario.

The results are displayed in Table 4.8.

In line with the previous results for the artificially simulated data, in this physical
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Table 4.8: Performance of the Inverse Bagging regarding the AUC on the physical
data for several considered anomaly detection approaches; from left-hand side for the
standard Inverse Bagging, the improved version of the Inverse Bagging – the max-10-
sampling with the parameter L ∈ {5, 8}, the LDA score and the PAD from Chapter 3.
Results are obtained for varying signal proportion λ based on 50 generated datasets.

Performance of the different methods
Variable max-10-sampling Standard

Inv. Bag.
LDA
score

PAD
λ L = 5 L = 8

0.05 0.815 0.815 0.811 0.814 0.725
0.10 0.851 0.848 0.845 0.845 0.818
0.15 0.840 0.847 0.846 0.847 0.876
0.20 0.856 0.852 0.851 0.850 0.882

application, the Inverse Bagging algorithm performance is similar to the LDA score. For

this case, the proposed variable max-10-sampling improvement is comparable with the

standard approach – for some scenarios presents a slight improvement. The penalised

approach compares differently for various scenarios, i.e. for small signal contamination

λ the performance is worse presumably due to issues with finding the global maximum

of the penalised likelihood; however, for the higher signal proportion, the penalised

approach has a better performance by taking advantage from the collective-anomaly de-

tection idea. In conclusion, the two proposed approaches are based on entirely different

concepts and their performance is respectively diverse.



Conclusions

Particle Physics is an appealing field for statistical science. The research at the

physical experiments embraces several disciplines, ranging from engineers who build

and maintain the infrastructure, through IT specialist to theorists. Their collaborative

effort provides an insight into the development of the science and understanding of the

universe. Especially for large experiments as for the LHC, statistics play a pivotal role

and significantly contributes to the research.

This thesis has been inspired and conducted by facing real problems encountered

in physical analysis, i.e. on finding answers for two general questions of the Particle

Physics. With the due specifications, the focus has been put on the knowledge improve-

ment within the Standard Model framework, and on empirical searches of unknown

phenomena beyond the current theory. In following, we shortly discuss the thesis con-

tribution, its possible impact and future work directions both within the Statistics and

applications to Physics.

The effort to complete the knowledge within the current theory refers to a more accu-

rate estimation of the Standard Model parameters. The Hemisphere Mixing algorithm

is designed to facilitate such research for multi-jet events, which had not been possible

using a more classical approach based on Monte Carlo simulations. In Chapter 2, the

algorithm has been validated to perform according to its design purpose, provided that

the input data contain at most a small proportion of signal observations. From the

physical perspective, the future direction is to apply the algorithm to the real physical

data within the suitable framework and to find estimates of the wanted Standard Model

parameters. However, it should also be tested if the algorithm performance extends to

data with different final states, presumably containing a signal with another distribution

and enjoying distinct properties. From the statistical side, the introduced KDE permu-

tation test per se contributes to the family of two-sample comparison tests and can be

applied for complex non-Gaussian multivariate data. However, a more thorough study

of the test performance is preferable, especially to optimally strike the trade-off between

its power, bootstrap samples and the computation time. It is advisable to compare the

test with other competitors, possibly even in less restricted settings in which also other
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tests are feasible to be applied.

The second considered physical goal refers to searches of unknown physics beyond

the Standard Model. They are specified within the anomaly detection framework, and

two approaches are proposed. The Penalised Anomaly Detection approach (Chapter

3) originates from the family of model-based clustering. It contributes to the field by

incorporating the penalised methodology that circumvents the curse of dimensionality

issue and allows flexible data modelling. The approach has few weak points, for example,

Gaussian mixtures are insufficient to model complex multivariate data. Future research

can focus on finding a solution for it by the usage of other distribution mixtures or,

for instance, factor analysers. Secondly, the selection of the number of components

or regularisation parameters is performed by an extensive grid search and regarding

the modified BIC information criterion. There is no theoretical explanation that such

criterion is optimal for the parameters selection or additionally if it is more suitable than

other criteria. Finding a solution for these drawbacks would definitely bring a break-out,

not only for this application but to the whole family of the penalised methods. Finally,

possible research directions can focus on a broader study of the approach performance

given various penalties, on finding a more stable solution to optimise the objective

function or on adopting an additional method selecting a threshold for the further

classification given the signal probabilities.

In line with the new physics search framework, the second proposed anomaly detec-

tion method – the Inverse Bagging introduced in Chapter 4 – requires a more in-depth

study, especially considering its performance provided that a more sophisticated mul-

tivariate test is chosen instead of the used Hotteling’s T 2-test. It is not clear if the

discussed optimal parameter selection holds as well for the usage of different tests.

In such setting, it would also be interesting to check the algorithm performance, also

regarding for the proposed improvements. We find it also important, to introduce a

method for statistical inference on the possibly found signal, i.e. the algorithm pro-

duces observation scores describing the data likelihood to be generated by an unknown

signal process, but so far no methodology has been proposed to statistically infer about

the scores significance, or more generally, about the signal existence.
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Appendix A

Pseudo-code for the MESP

approach

Function input:

• Background data - x

• Number of fitted components - K

• Maximal number of iteration allowed - n iter

• Regularization parameters - γ1 and γ2

• Warm start initialization values for µk, πk, Qk and Dk for k = 1; ..., K (the default

is NA)

• Stopping parameter ν

Algorithm

1. P = dimension of x

2. n = size of x

3. IF (any of π
(0)
k , µ

(0)
k· , Q

(0)
k or D

(0)
k for k = 1, ..., K is NA)

Initialize π
(0)
k = 1

K
Q

(0)
k = IP , D

(0)
k = IP and let µ

(0)
k· be the centers of k-mean

algorithm

ELSE Check if initialization parameters are of right dimension,
∑K

k=1 πk = 1

4. LikeLast = −∞

5. LikeNew = the likelihood for the 0th step
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6. Iterator r = 0

7. While(|LikeLast-LikeNew| > ν AND r <n iter )

(a) Covariance matrices

For (k in 1:K)

Σ̂
(r)
k = Q̂

(r)
k D̂

(r)
k

(
Q̂

(r)
k

)′
. (A.1)

(b) Posterior probability

For (i in 1:n, l in 1:K)

τ
(r)
il =

π
(r)
l φ

(
xxxi; µ̂µµ

(r)
l , Σ̂

(r)
l

)
∑K

k=1 π
(r)
k φ

(
xxxi; µ̂µµ

(r)
k , Σ̂

(r)
k

) (A.2)

(c) Components proportions

For (k in 1:K)

π̂
(r+1)
k =

1

n

n∑
i=1

τ
(r)
ik . (A.3)

(d) MLE estimates

For (k in 1:K)

µ̃
(r+1)
kp =

∑n
i=1 τ

(r)
ik xip∑n

i=1 τ
(r)
ik

(A.4)

Σ̃
(r+1)
k =

∑n
i=1 τ

(r)
ik ∗ (xxxi − µ̂µµ(r)

k )(xxxi − µ̂µµ(r)
k )′∑n

i=1 τ
(r)
ik

(A.5)

(e) For (p in 1:P)

M (r)
p = max

k=1,...,K
Σ̂

(r)
k,pp

(f) For (k in 1:K) perform eigenvalue decomposition

Σ̃
(r+1)
k = Q̂

(r+1)
k D̃

(r+1)
k

(
Q̂

(r+1)
k

)′
. (A.6)

(g) FOR (k in 1:K,p in 1:P)

• IF

(∑K
k=1

(∑n
i=1 τ

(r)
ik xip

)2) 1
2

≤ γ1M
(r)
p

µ̂
(r+1)
kp = 0
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• ELSE

µ̂
(r+1)
kp = µ̃

(r+1)
kp − γ1

µ̂
(r)
kp Σ

(r)
k,pp

||µ̂(r)
·p ||

∑n
i=1 τ

(r)
ik

(h) FOR (k in 1:K)

•

D̄
(r+1)
k,pp =

−nπ̂(r+1)
k +

√(
nπ̂

(r+1)
k

)2
+ 8γ2nπ̂

(r+1)
k D̃

(r)
k,pp

4γ2
. (A.7)

• To surpass numerical instability it is used

For(p in 1:P)

IF D̄
(r+1)
k,pp < 0.0005 then D̄

(r+1)
k,pp = 0.0005.

(i) FOR (k in 1:K,p in 1:P)

i. εk = mean (P − p+ 1 smallest eigenvalues of D̄
(r+1)
k ).

ii. For arbitrarily α = 0.05

Logical =
D̄

(r+1)
k,pp

εk
< 1−

√
2

n
∗ z α

2p
∨
D̄

(r+1)
k,PP

εk
> 1 +

√
2

n
∗ z α

2p

where z α
2p

is a normal distribution quantile.

iii. If (Logical = true) then the smallest P −p+1 eigenvalues D̂
(r+1)
k,pp = ... =

D̂
(r+1)
k,PP = εk

BREAK the inner loop over 1:P.

iv. else D̂
(r+1)
k,pp = D̄

(r+1)
k,pp .

(j) LikeLast = LikeNew

(k) LikeNew = likelihood for the (r + 1)th step.

8. Return all the parameters value for the last step and an error code if n iter was

reached (issues with convergence in n iter steps)

The algorithm should be run for different values of γ1, γ2 and K to perform the

optimal selection, that is the one that minimizes the modified BIC criteria

−2logL(Θ̂) + log(n)deff

where deff is effective number of degrees of freedom.

89





Appendix B

Pseudo-code for the PAD approach

Function of:

• Mixed data - y

• Number of signal components - L

• Maximal number of iteration allowed - n iter

• Regularization parameters - γ1 and γ2

• Warm start initialization values for λ, µk, πk, Qk and Dk for k = 1; ..., K +L (the

default is NA)

• Stopping parameter ν

Algorithm

1. P = dimension of y

2. n = size of y

3. IF (any of π
(0)
k , µ

(0)
k· , Q

(0)
k or D

(0)
k for k = K + 1, ..., K + L is NA)

Initialize π
(0)
k = 1

L
∗ λ Q(0)

k = IP , D
(0)
k = IP and let µ

(0)
k· be random

ELSE Check if initialization parameters are of right dimension,
∑K

k=1 πk = 1

4. For (k in 1:K) π
(0)
k = (1− λ)π

(0)
k

5. LikeLast = −∞

6. LikeNew = the likelihood for the 0th step computed based on y

7. Iterator r = 0
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8. While(|LikeLast-LikeNew| > ν AND r <n iter )

(a) Covariance matrices

For (k in K+1:K+L)

Σ̂
(r)
k = Q̂

(r)
k D̂

(r)
k

(
Q̂

(r)
k

)′
. (B.1)

(b) Posterior probability

For (i in 1:n, l in 1:K+L)

τ
(r)
il =

π
(r)
l φ

(
xxxi; µ̂µµ

(r)
l , Σ̂

(r)
l

)
∑K

k=1 π
(r)
k φ

(
xxxi; µ̂µµ

(r)
k , Σ̂

(r)
k

) (B.2)

(c) Components proportions

For (k in K+1:K+L)

π̂
(r+1)
k =

1

n

n∑
i=1

τ
(r)
ik . (B.3)

(d) λ̂(r+1) =
∑K+L

k=K+1 π̂
(r+1)
k

(e) Reweighing of the background proportions

For (k in 1:K)

π̂
(r+1)
k = π̂

(r)
k ∗ (1− λ(r+1))/

(
K∑
k=1

π̂
(r)
k

)

(f) MLE esitmates

For (k in K+1:K+L)

µ̃
(r+1)
kp =

∑n
i=1 τ

(r)
ik xip∑n

i=1 τ
(r)
ik

(B.4)

Σ̃
(r+1)
k =

∑n
i=1 τ

(r)
ik ∗ (xxxi − µ̂µµ(r)

k )(xxxi − µ̂µµ(r)
k )′∑n

i=1 τ
(r)
ik

(B.5)

(g) For (p in 1:P)

M (r)
p = max

k=1,...,K+L
Σ̂

(r)
k,pp

(h) For (k in K+1:K+L) perform eigenvalue decomposition

Σ̃
(r+1)
k = Q̂

(r+1)
k D̃

(r+1)
k

(
Q̂

(r+1)
k

)′
. (B.6)

(i) FOR (k in K+1:K+L,p in 1:P)
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• IF

(∑K
k=1

(∑n
i=1 τ

(r)
ik xip

)2) 1
2

≤ γ1M
(r)
p

µ̂
(r+1)
kp = 0

• ELSE

µ̂
(r+1)
kp = µ̃

(r+1)
kp − γ1

µ̂
(r)
kp Σ

(r)
k,pp

||µ̂(r)
·p ||

∑n
i=1 τ

(r)
ik

where the L2 norm is computed based on background and signal mean

parameters.

(j) FOR (k in K+1:K+L)

•

D̄
(r+1)
k,pp =

−nπ̂(r+1)
k +

√(
nπ̂

(r+1)
k

)2
+ 8γ2nπ̂

(r+1)
k D̃

(r)
k,pp

4γ2
. (B.7)

• To achieve numerical stability

For(p in 1:P)

IF D̄
(r+1)
k,pp < 0.0005 then D̄

(r+1)
k,pp = 0.0005.

(k) FOR (k in K+1:K+L,p in 1:P)

i. εk = mean (P − p+ 1 smallest eigenvalues of D̄
(r+1)
k ).

ii. For α = 0.05

Logical =
D̄

(r+1)
k,pp

εk
< 1−

√
2

n
∗ z α

2p
∨
D̄

(r+1)
k,PP

εk
> 1 +

√
2

n
∗ z α

2p

where z α
2p

is the normal distribution quantile.

iii. If (Logical = true) then the smallest P −p+1 eigenvalues D̂
(r+1)
k,pp = ... =

D̂
(r+1)
k,PP = εk

BREAK the inner loop over 1:P.

iv. else D̂
(r+1)
k,pp = D̄

(r+1)
k,pp .

(l) Perform the ”Background fit” on x with slightly changed formulas

• in 7e

M (r)
p = max

k=1,...,K+L
Σ̂

(r)
k,pp

• in 7g mind the signal components

||µ̂(r)
·p || =

√√√√K+L∑
k=1

µ̂
(r)2

kp
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insted of used previously

||µ̂(r)
·p || =

√√√√ K∑
k=1

µ̂
(r)2

kp

(m) LikeLast = LikeNew

(n) LikeNew = likelihood for the (r + 1)th step.

9. Return all the parameters value for the last step and an error code if n iter was

reached (issues with convergence in n iter steps)
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Kotkowski, G. and Jiménez, F. (2017). Anomaly detection for generic searches. ATLAS Machine
Learning Workshop, CERN, Geneva, Switzerland, 08-09.06.2017.

Kotkowski, G. (2018). Model independent searches for new physics via parametric anomaly de-
tection. XIIIth Quark Confinement and the Hadron Spectrum Conference, Maynooth University,
Dublin, Ireland, 01-03.08.2018.

References

Available on request


	List of Figures
	List of Tables
	Introduction
	Overview
	Main contributions of the thesis

	1 The physical framework
	1.1 The Standard Model
	1.2 The experimental settings
	1.3 Motivation
	1.3.1 Improvement of the knowledge within the Standard Model framework
	1.3.2 Going beyond the Standard Model


	2 Validation of a physical algorithm to improve background estimation
	2.1 Motivation and goals
	2.2 Description of the Hemisphere Mixing algorithm
	2.3 Statistical question of interest
	2.3.1 Description of the problem
	2.3.2 Permutation-based statistical test

	2.4 Performance of the statistical test
	2.4.1 Simulation settings
	2.4.2 Type-I error
	2.4.3 Test power

	2.5 Physical application
	2.5.1 Exploratory analysis
	2.5.2 Application of the framework


	3 A penalized likelihood-based approach for new physics searches
	3.1 Introduction
	3.2 Literature overview
	3.3 The reference model
	3.4 Dimensionality reduction methods in mixture models
	3.5 A penalized approach in mixture models
	3.5.1 Penalization of the background
	3.5.2 Variable selection for the background
	3.5.3 Penalization of the background + signal model

	3.6 Experimental analysis on simulated data
	3.6.1 Goals of the analysis
	3.6.2 Simulation settings
	3.6.3 Details
	3.6.4 Results and comments
	3.6.4.1 Model-based clustering
	3.6.4.2 Anomaly detection


	3.7 Application to new physics searches
	3.7.1 Data description
	3.7.2 Method performance


	4 On hypothesis testing-based approach for new physics search
	4.1 Introduction
	4.2 Description of the Inverse Bagging
	4.3 Research questions
	4.4 Optimal parameter selection, choices related to the test hypothesis, comparison with competitors
	4.4.1 Optimal parameter selection
	4.4.2 Numerical work scenarios
	4.4.3 Simulation results
	4.4.3.1 Univariate Data
	4.4.3.2 Multivariate data
	4.4.3.3 Multivariate spherical signal
	4.4.3.4 Multivariate hemispherical signal

	4.4.4 Comments

	4.5 Algorithm improvements
	4.5.1 Different score computation methods
	4.5.2 Dimensionality reduction-like approach
	4.5.3 Highly correlated data
	4.5.4 Numerical work scenarios
	4.5.5 Simulation results
	4.5.5.1 Quantile score method
	4.5.5.2 Extensions for sampling
	4.5.5.3 Correlated data results

	4.5.6 Comments

	4.6 Applications
	4.6.1 Spam data
	4.6.2 Application to the high energy physics


	Conclusions
	Appendix A Pseudo-code for the MESP approach
	Appendix B Pseudo-code for the PAD approach
	Bibliography

