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Thesis Abstract

In this thesis we present a detailed investigation of the role played by quantum and thermal

fluctuations in ultracold Bose gases.

We begin with a review of several important concepts and analytical tools within a functional

integration formalism. We first focus on the so-called zero-range approximation for the interaction

potential, by recovering the Bogoliubov results and the Landau two-fluid model from a field-theory

perspective. In deriving the beyond-mean-field equation of state, we are going to show that a crucial

point concerns the proper regularization of the divergent zero-point energy. Among the alternative

approaches to investigate finite-temperatures Bose gases, we apply the kinetic theory to explain some

recent results on the sound propagation in two-dimensional Bose gases.

We then move to consider the eventual corrections to the thermodynamics of Bose gases due

to the finite-range character of the interaction potential. The coupling constants of the finite-range

model are related to measurable scattering parameters through an effective-field-theory approach.

The role of finite-range corrections is considered not only in three spatial dimensions but also in

systems with lower dimensionalities. Our analytical predictions are in good agreement with available

Monte Carlo simulations and consistent with other theoretical frames, as the Lieb-Lininger theory

for one-dimensional systems.

In the third chapter, the relevance of fluctuations is investigated from an alternative point of

view. Indeed, for a single-component Bose gas we have actually considered their effect as deviations

of thermodynamic quantities from the mean-field and zero-range picture. In the case of collapsing

Bose mixtures, we are going to show that zero-temperature fluctuations play a crucial stabilizing role

against the collapse instability. Because of this peculiar mechanism, ultracold mixtures can display

finite-density configurations also in free space. Inspired by recent experiments, we characterize this

novel self-bound state by comparison with bright solitons, following a variational scheme. We also

consider the case of binary mixtures where a coherent internal coupling is turned on.

In the last chapter, we move to deal with dipolar condensates. In particular, we are interested

in beyond-mean-field effects leading to the formation of inhomogeneous ground states. In order to

provide a reliable answer to the open issue of superfluid properties of these structures, we present our

recent numerical investigation on the phase diagram of dipolar bosons.
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0

INTRODUCTION AND THESIS OUTLINE

Since the first realization of a Bose-Einstein condensate (BEC) in 1995, ultracold quan-

tum gases have been subject of an intense research effort, both theoretical and experimental.

Fascinating technical advances in magneto-optical trapping provided a wide variety of dif-

ferent quantum fluids. From the first alkali-atoms BEC, a lot of experiments have been

performed with optical lattices, multicomponent quantum fluids, strongly magnetic atoms,

up to recent setups with reduced dimensionality or the implementation of synthetic dimen-

sions; obviously, this is not even a fully comprehensive list.

Many successful theoretical studies have been based on the Bogoliubov (i.e. mean-field)

framework, where the dynamics of the macroscopic wavefunction is described by the Gross-

Pitaevskii equation (GPE). The GPE provides reliable results when the system is so dilute

and ultracold that the true inter-atomic interaction can be replaced by a contact pseudopo-

tential, whose strength depends on the s-wave scattering length as. The resulting thermo-

dynamics description is defined universal, since only a single parameter is required to take

into account the role of two-body interactions. Despite its success, recent experiments with

higher densities, reduced dimensionalities or richer interactions (compared to a δ-like pseu-

dopotential) highlight the necessity to extend the theoretical scheme based on the GPE.

In other words, we need to include in our description beyond-mean-field corrections due to

more complicated inter-atomic interactions. Our research activity stems from this theoreti-

cal necessity to develop an analysis of quantum gases in setups where the mean-field theory

and the zero-range approximation are no more reliable.

The thesis is structured as follows: in Chap. 1 we review some important concepts con-

cerning bosonic gases within a functional integration formalism. We address the issue of

taking into account quantum and thermal fluctuations in the thermodynamic description of
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condensed Bose gases. We begin by considering the simplest case of an ideal gas, where all

interactions are turned off. Despite being an unrealistic situation, it provides a way to inter-

pret Bose-Einstein condensation in terms of symmetry breaking. Moreover, we will almost

immediately encounter the problem of divergences, which are accompaning us throughtout

the whole thesis. Basically, infinite quantities arise because over-simplifying assumption re-

sults in unphysical situations. The absence of inter-atomic interactions surely makes the

case, but also the assumption of a zero-range interaction leads to ultraviolet divergences in

the theory. The problem is that a zero-range approximation for the interaction does not

decay for high momenta in the Fourier space, as one should expect from a realistic two-body

potential.

A relevant part of this first chapter will then be devoted in reviewing some regularization

techniques to heal this unphysical divergences. First, we mention the so-called convergence-

factor regularization, which is strongly linked to technical details in the construction of

the many-body path integral. Thus we manage to generate the same regularizing terms

appearing in second-quantization, after diagonalizing the quadratic hamiltonian through

canonical Bogoliubov transformations.

We proceed by presenting the momentum cutoff and dimensional regulazation techniques,

the latter being widely exploited in the following chapters. These theoretical tools are funda-

mental in deriving meaningful contributions for quantum and thermal Gaussian fluctuations

in the equation of state. Clearly, since the physics has to be independent from the regu-

larization mechanism, convergence-factor, momentum cut-off and dimensional regularization

all leads to the same beyond-mean-field corrections.

A review of the two-fluid model from a field-theory perspective is then presented, ac-

counting for the superfluid properties of ultracold dilute Bose gases. We introduce the

phase-amplitude representation for the bosonic fields and recover the famous Landau’s for-

mula for the superfluid fraction. The condensate fraction for an interacting Bose gas is also

considered, with a particular attention for the case of two spatial dimensions. We recover

the important statement of Mermin-Wagner-Hohenberg theorem, preventing the occuring

of true long-range order, and consequently Bose-Einstein condensation, in two-dimensional

systems.

At the end of the chapter we mention an alternative approach for the investigation of
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finite-temperature properties of bosonic quantum gases. In place of functional integration,

dilute Bose gases can be described within the boundaries of kinetic theory. Actually, we apply

this formalism in a practical case, in order to substantiate the claim about its effectiveness.

Indeed, we manage to explain a recent puzzling result concerning the sound propagation

in two-dimensional Bose gases by simply considering a Landau-Vlasov equation, the main

equation for a collisionless theory of finite-temperature atomic gases.

In Chap. 2, we start by considering the 3d Bose gas, where the true inter-atomic in-

teraction is replaced by a finite-range pseudopotential. It has been shown that finite-range

corrections crucially modify the GPE, leading to a better agreement with Quantum Monte-

Carlo (QMC) outcomes. In particular, the inclusion of finite-range effects has been proved to

be relevant at higher values of the gas parameter na3s, where the zero-range approximation

fails. Indeed, within the zero-range case, a uniform configuration does not exist above a crit-

ical value of na3s, since there is no control on fluctuations growth, which destroys the ordered

phase. We derived the non-universal equation of state taking into account corrections up to

the Gaussian level, both at zero and finite temperature. The quantum fluctuations contribu-

tion results to be strongly modified by the finite-range character of the interaction: now, the

uniform configuration is not destroyed by fluctuations and the thermodynamic instability is

removed as expected, since it was an artifact due to the choice of a constant potential in

the momentum space. The importance of finite-range effects is confirmed by the comparison

of our non-universal Gaussian theory with QMC datas concerning a 3D Bose gas made of

hard-spheres, which display a good agreement with our prediction. We also underline that

we have been able to connect the coupling constants of our finite-range pseudopotential to

measurable parameters as the s-wave scattering length and the s-wave effective range, thanks

to well-known effective-field-theory procedures.

This tools allow us to extend our theory in lower dimensions, where deviations from

universality are expected to be more relevant than in the 3d case because of the fluctuations

enhancement, as stated by the Mermin-Wagner-Hohenberg theorem. As in 3d, for the 1d

Bose gas we were able to establish a connection between the coupling constants of the

finite-range pseudopotential and the scattering parameters. The non-universal equation of

state was then derived both at zero and finite temperature. At T = 0 K, we compare

our Gaussian theory in the zero-range limit to the Lieb-Lininger model, which provides
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a detailed description of the system for a whole crossover of the (zero-range) interaction

strength. Compared to the mean-field, the zero-range Gaussian theory can be safely applied

up to intermediate strength, while it fails in the strong-coupling limit, where one expects

a Tonks-Girardeau gas. We analyze then how finite-range corrections modify measurable

quantities as the sound velocity and the pressure.

For the sake of completeness, we also analyzed the 2d case, despite not being directly

involved in this thesis work. Here, one has to face two main complications; first, since

d = 2 is the lower critical dimensions, logarithmic divergences appears: they have to be

explicitly renormalized. In this case, the connection between the coupling constants and

the scattering theory parameters is highly non-trivial. However, with a slightly different

definition of effective range, not based on the scattering theory, it is still possible to derive a

non-universal equation of state. From an experimental point of view, we recall that regimes

where finite-range corrections are relevant can be achieved by fixing the scattering length

and increasing the density.

In Chap. 3, we begin the study of binary Bose mixture. By binary we mean a system

made of atoms belonging to the same atomic species but in two different hyperfine states.

Thanks to the modern experimental techniques it is even possible to switch on an internal

coupling between the components, enabling the flipping of atoms from one states to the

other. In this chapter, we derive the beyond mean-field equation of state for both cases. We

will pay peculiar attention to the situation of a strong enough inter-component attraction.

Standard mean-field calculation predicts a threshold between a stable uniform configuration

and a collapsing region in the parameters space. Within this unstable phase, the system

evolves towards state with increasingly higher density, up to the point where three-body

recombinations kick all atoms out of the condensate and everything basically evaporates.

This picture has been recently challenged by theoretical proposal describing the stabilizing

action of beyond-mean-field corrections. In this framework, the mean-field attraction is

counterbalanced by a fluctuation-driven repulsion and the collapse can be halted if we are

not too deeply beyond the mean-field stability threshold. We review this ground-breaking

proposal by showing that it is possible to obtain finite-density configuration also in absence

of external trapping. It is crucial to remark that we are then in presence of a self-bound state

whose existence is made possible only through the role played by quantum fluctuations.
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This is not a pure theoretical proposal: during the last year, experiments in Barcelona

and Florenc e confirmed the stabilization of collapsing mixtures into the self-bound droplets.

Moreover, a similar theoretical explanation has been crucial to understand the formation of

inhomogeneous structures in dipolar condensates, not accounted by the standard mean-field

theory. Inspired by these experimental advances, in this chapter we propose a practical

characterization of the quantum droplet state by comparing it to another renowned self-

bound configuration in ultracold Bose gases, the bright solitons. Differently from droplets,

solitons do not require beyond-mean-field corrections to be stable, but their shape is strongly

dependent on the external confining potential.

Later in Chap. 3, we address the question of droplet formation in binary mixtures

where an internal coupling is turned on. We compute the Gaussian correction to the zero-

temperature equation of state, proving that the scenario for the droplet nucleation still holds,

since a collapsing mean-field attraction can be contrasted by an effective repulsion led by

fluctuations. The coupling frequency acts an additional knob to tune the stability of the

self-bound configuration.

In Chap. 4 we move towards the interesting field of dipolar condensates. During the

last ten years, since the Bose-Einstein condensation of Chromium in 2005, strongly mag-

netic atoms like Dysprosium and Erbium have played a relevant role in the atomic physics

community. The interest in these system is due to the peculiar nature of dipole-dipole

interaction, which is long-range and anisotropic. Within the broader context of quantum

simulation, thanks to the exquisite parameters control achieved in actual experiments, they

provide a reliable platform to study and probe a plethora of condensed matter theoretical

model.

First, as in the previous chapters, we derive the beyond-mean-field correction due to

quantum fluctuations: dipole-dipole interaction enhances this Gaussian contribution, com-

pared to the pure zero-range case. As previously mentioned, stimulated by recent experi-

mental results with Erbium and Dysprosium setups, in dipolar condensates it is possible to

recover a picture for droplets formation similar to collapsing mixtures. Indeed, when the

partial attractive character of dipole-dipole interaction dominates over short-range repulsion

collapse should occur, according to mean-field calculations. However, repulsion stemming

from quantum fluctuations can again stabilize the system against this instability, leading to
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inhomogeneous ground-state. We focus our attention on the superfluid properties of these

structures which can be elongated filaments or small disordered clusters, according to the

interaction strength and densities at play. Here, we report the results of our numerical inves-

tigation performed in collaboration with F. Cinti (Johannesburg University South Africa),

a leading expert on Path-Integral Monte Carlo simulations, and T. Macŕı (UFRN, Brazil)

whose research deals with long-range interactions in ultracold atoms and the corresponding

phases.







1

BOSONIC SUPERFLUIDS AND FUNCTIONAL

INTEGRATION

In this introductory chapter we are going to characterize the thermodynamic properties

of the dilute Bose gas in presence of a broken-symmetry phase within a functional integration

framework. According to this theoretical scheme, we initially consider an ideal Bose gas,

which is exactly described by a Gaussian theory, and then move to the weakly interacting

case. We calculate the one-loop thermodynamic corrections to the equation of state by

assuming a zero-range interaction. A careful analysis is devoted in deriving the zero-point

energy of the system, which requires a proper regularization scheme. Then, key quantities as

the quantum depletion and the superfluid fraction are computed within the two-fluid model,

providing a deeper insight to the coherence properties of the Bose gas in its broken-symmetry

phase. At the end of the chapter, we approach the issue of sound propagation in the peculiar

situation of two spatial dimensions. Differently from the rest of the chapter we apply a

different theoretical framework based on kinetic theory.

The relevance of this preliminary review will be evident in the following chapters, where

theoretical schemes and computational recipes are going to be generalized for bosonic gases

with more complex interactions and a richer phenomenology.
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1.1 The ideal Bose gas: a functional integration approach

Let us begin by considering a set of non-interacting identical bosonic particles of mass m

and chemical potential µ in d-dimensions (d = 1, 2, 3). Within the path integral formulation

of quantum statistical mechanics, atoms are described by a complex field ψ(r, τ), whose

non-relativistic free-theory is build upon the Euclidean action [1, 2, 3]

SE
[
ψ∗, ψ

]
=

∫ β~

0
dτ

∫

Ld

ddr ψ∗(r, τ)

(
~
∂

∂τ
− ~2∇2

2m
− µ

)
ψ(r, τ) (1.1)

where β ≡ (kBT )−1, kB being the Boltzmann constant and T the temperature, while Ld

is the volume enclosing the system. The chemical potential is required to implement the

normalization constraint
∫
dx
∣∣ψ(x)

∣∣2 = N with x a d + 1 vector defined as x ≡ (τ, r). By

performing the integral over the whole space one rightfully recover the term µN , as expected

in the grand-canonical ensemble.

The Bose statistics is implemented by imposing periodic boundary conditions [4], i.e.

ψ(r, 0) = ψ(r, β~). By moving to the momentum space, this implies that, along the time

axis, the Fourier transform becomes a series, namely

ψ(r, τ) =
1

β~

∑

n

e−i(ωnτ+q·r)ψq,ωn

ψ∗(r, τ) =
1

β~

∑

n

ei(ωnτ+q·r)ψ∗
q,ωn

.

(1.2)

Because of the symmetry constraint, the so-called Matsubara frequencies {ωn}n∈N are defined

as

ωn =
2πn

β~
. (1.3)

In the path integral approach, quantum-field-theories are naturally quantized by letting ψ

assume every possible value, not just the one determined by the equation of motion. For a

many-body theory aiming to derive the thermodynamic picture of the system, this translates

in counting all the possible atomic configurations. All the relevant thermodynamic quantities
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can then be computed by means of the partition function defined as

Z =

∫
D
[
ψ,ψ∗]e−SE [ψ,ψ∗]/~ , (1.4)

where SE [ψ, ψ∗] is Euclidean action of the theory. The thermodynamic potential Ω(µ, T )

can be easily derived by taking the logarithm of Eq. (1.4), i.e.

Ω(µ, T ) = −β−1 logZ . (1.5)

It is evident that the free theory described by Eq. (1.1) leads to a Gaussian integral which

can be computed analytically. Indeed, in the Fourier space, the Euclidean action reads

SE [ψ,ψ∗] = −µψ2
0 β~L

d +
1

2

∑

q

′
∑

n

′(
ψ∗
q,n;ψ−q,−n

)
G−1
0 (ωn,q)


 ψq,n

ψ∗
−q,−n ,


 (1.6)

The subscript n obviously signals a sum over the Matsubara frequencies ωn, while the prime

means that the sum runs for every value of momentum and frequency except q = 0 and

n = 0. From the inverse kernel of Eq. (1.1) we can obtain G−1
0 , namely

G−1
0 (ωn,q) = β


−i~ωn + ~2q2

2m − µ 0

0 i~ωn + ~2q2

2m − µ


 . (1.7)

In the equation above, we explicity pulled out the mode ψ0 corresponding to q = 0 and

n = 0, which represents a uniform and static configuration. The occurring of Bose-Einstein

condensation (BEC) is related to spontaneous breaking of a U(1) global gauge symmetry

[5, 6]. From a theoretical point of view, one can capture the symmetry breaking physics

by splitting the field as ψ(r, τ) = v + η(r, τ), with v the uniform and static ground-state

perturbed by the complex fluctuation field η(r, τ). By reinterpreting v as ψ0 and replacing

this splitting in Eq. (1.1) we obviously recover Eq. (1.7). Within the usual framework of

phase transition theory, we can interpret v (or ψ0) as the order parameter characterising the

onset of the condensation transition [6, 7].

At this point, we can perform the integral specified by Eq. (1.4) and Eq. (1.6). Gaussian
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functional integration for complex fields is based on the generalized formula [3]

∫
D[v, v∗] exp

{
−
∫
dx dx′ v∗(x)A(x, x′)v(x′) +

∫
dx
[
j∗(x)v(x) + j(x)v∗(x)

]}

∝
(

detA)−1 exp
[ ∫

dx dx′ j∗(x)A−1j(x)
] (1.8)

leading, in our case, to the following equation for the thermodynamic potential in Eq. (1.5):

Ω(µ, T, ψ0) = −µψ2
0 L

d +
1

2β

∑

q,n

′

log detG−1
0 (ωn,q)

= −µψ2
0 L

d + +
1

2β

∑

q,n

′

log
[
β2(~2ω2

n + ε2q)
]
,

(1.9)

with the shifted free-particle spectrum εq defined by

εq =
~2q2

2m
− µ . (1.10)

Strictly speaking, Eq. (1.8) also involves a term proportional to πN which is divergent in

the limit N → +∞ required by the extension of Gaussian integration to functional spaces.

This further term is though independent from thermodynamic variables and can then be

neglected while computing Ω(µ, T ). The summation over the Matsubara frequencies can be

performed analytically by means of contour integration techniques as detailed in Appendix

A, reading
1

2β

∑

n

log
[
β2(~2ω2

n + ε2q)
]

=
εq
2

+
1

β
log
(
1− e−βεq

)
. (1.11)

Thus, the structure of the thermodynamic potential is built upon three different contributions

[8]:

Ω(µ, T ) = Ωmf + Ω(0)
g + Ω(T )

g . (1.12)

In Eq. (1.12), Ωmf(µ) is given by the first term of Eq. (1.9), while Ω
(g)
g is a purely quantum-

mechanical term describing the zero-point energy of single-particle excitations; on the other
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hand, the role played by temperature is encoded in Ω
(T )
g . These contributions are respectively

Ω(0)
g =

1

2

∑

q

εq (1.13)

Ω(T )
g =

1

β

∑

q

log
(
1− e−βεq

)
. (1.14)

In the following section we will come back to this splitting of the thermodynamic potential

and analyze how interactions affect each of the above contribution. By moving to the con-

tinuum of states where we can replace series with integrals, i.e.
∑

q → Ld
∫
ddq/(2π)d, Eq.

(1.13) appears to be ultraviolet (UV) divergent. This zero-point energy divergence is not

an accident confined to the ideal case, but it is instead ubiquitous within this framework.

Thus, in order to obtain finite, and then reasonable, thermodynamic results, an effective

regularization method is required to solve this unphysical impasse.

In the next section we are going to outline various strategy to look after this issue with

particular consideration for the so-called dimensional regularization first developed by ’t-

Hooft and Veltmann [9]. Within this framework, it can be proved that the zero-point energy

of single particle excitation in Eq. (1.13) completely vanishes.

The same conclusion can be achieved through a different argument borrowed from Stoof

[2]. Here, we made use of a technical subtlety concerning the quantum mechanical definition

of path integral. In particular, let us consider again the Euclidean free action in Eq. (1.1)

with the further assumptions of dealing with bosons in a single-state labelled by its energy

ε. Thus, the partition function simply results in

Z =

∫
D
[
ψ,ψ∗] exp

{
− 1

~

∫
~β

0
dτ ψ∗(τ)

(
~∂τ + ε− µ

)
ψ(τ)

}
. (1.15)

Actually, this notation introduces an ambiguity in the integral over time (i.e. the tempera-

ture). Indeed, within the functional integration framework we are developing, the time axis

has to be intended as discretized. As a consequence, one has to specify the correct time

ordering of the fields. In Eq. (1.15) and the other ones related to it, we are not pointing out

on which time slice the field ψ∗(τ) (corresponding to the operator ψ̂†) acts. If ψ(τ) acts on

the time slice τi, then we can choose that ψ(τ+δ) acts on the τi+1 one. In order to implement
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this prescription, a δ → 0+ is needed, translating into a factor eiωn0+ in the Fourier space.

On the other hand, the backwards time ordering δ → 0− is likewise possible, leading to a

factor eiωn0− . By performing the countour integral to remove the Matsubara sum, one can

however realize that the partition functions corresponding to these different orderings differ

in a factor e−β(ε−µ). In Eq. (1.6) we can introduce a Nambu spinorial structure, where the

vector elements are taken at equal times. For the extremely simplified case of single-state

bosons this implies that [2] (with the choice δ → 0+)

Z =

∫
D[ψ, ψ∗] exp

{
− 1

~

∫ β~

0
dτdτ ′ ψ∗(τ + δ)

[
~∂τ + ε− µ

]
δ(τ − τ ′) ψ(τ ′)

}

=

∫
D[ψ, ψ∗] exp

{
− 1

~

∫ β~

0
dτdτ ′

[
ψ∗(τ + δ), ψ(τ ′)

]G−1(τ, τ ′)
2


 ψ(τ ′)

ψ∗(τ ′ + δ)



}

= eβ(ε−µ)/2
∫
D[ψ, ψ∗] exp

{
− 1

~

∫ β~

0
dτdτ ′

[
ψ∗(τ), ψ(τ)

]G−1(τ, τ ′)
2


 ψ(τ ′ + δ)

ψ∗(τ ′ + δ)



}

(1.16)

where the matrix structure of the propagator reads

G−1(τ, τ ′) = −1

~


~∂τ + ε− µ 0

0 ~∂τ + ε− µ


 δ(τ − τ ′) . (1.17)

The factor appearing in the last line of Eq. (1.16) takes into account the change of limit and

the proper time ordering. Moving to many-states systems, its logarithm generates the proper

counterterm to regularize the divergence arising from Eq. (1.13). It is worth to underline

that this argument can be generalized without any difficulties to an interacting system [8].

In that case, however, the choice of the interaction potential could determine an additional

divergence which requires a specific treatment involving the T -matrix [2, 10].

Therefore, the thermodynamic potential of non-interacting Bose systems is given by

Ω(µ, T, ψ0) = −µψ2
0 L

d +
1

β

∑

q

log
(
1− e−βεq

)
. (1.18)

The q = 0 contribution ψ0 is not a free parameter of the theory. Indeed, if interpreted as the

order parameter of the condensation transition, its value can be drawn from the saddle-point
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equation. In other words, we have to search for its classical value by stationarizing the action

in Eq. (1.1), i.e. δS[ψ0]. This implies

(
∂Ωmf

∂ψ0

)

µ,T

= 0 , (1.19)

where the derivative is intendend by keeping the other quantities as constants. We remind

that, for non-interacting Bose gases, Ωmf/L
d = −µψ2

0, i.e. the first term of Eq. (1.9). Within

the unbroken symmetry phase, the spectrum in Eq. (1.10) must be gapped, meaning µ < 0,

so the only possible solution to Eq. (1.19) is ψ0 = 0. On the other hand, the spontaneous

breaking of a continuous symmetry is intimately connected to the occuring of a gapless mode

[11]. Thus, µ = 0 and the saddle-point equation is satisfied for every value of ψ0. In order

to fix a precise value, we need the equation of state connecting the chemical potential to the

total number density. By deriving the thermodynamic potential with respect to the chemical

potential, we get

n =
N

Ld
= − 1

Ld

(
∂Ω

∂µ

)

T

= ψ2
0 +

∫
ddq

(2π)d
1

eβεq − 1
. (1.20)

From Eq. (1.19) we deduced that the critical point is characterised by µc = 0 so, by setting

µ = ψ0 = 0 in Eq. (1.20), one can easily recover the critical temperature equation for the

condensation in a free Bose gas [6]:

n =

∫
dq

(2π)d
1

exp
(

~2q2

2mkBTc

)
− 1

=⇒ kBTc =





impossible Eq. for d = 1

0 for d = 2

~2

2πζ(3/2)2/3
n2/3 for d = 3

, (1.21)

where ζ(t) denotes the Riemann zeta function.

At the end of this section we mention that the result for d < 3 are expected because of

the Mermin-Wagner-Hohenberg theorem [12, 13]: while a true long-range order is possible

in d = 3, there is no condensate for lower dimensions since fluctuations are strong enough to

destroy the ordered phase. It is important to underline that one can still have the so-called

quasi-condensate in d = 2, meaning that phase correlation (or equivalently the two-body
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density matrix) decays algebraically [2, 6].

1.2 Weakly-interacting Bose gases: the Bogoliubov theory

We now move to consider an interacting bosonic field theory. As in the previous section,

within the functional integration framework, all the relevant thermodynamic quantities can

be derived from the partition function. The latter is defined in Eq. (1.4) as exponential of

the Euclidean action integrated over the whole set of possible system configurations, i.e. the

fields describing the atoms. In the previous section we presented the extremely simplified

case of a non-interacting theory. Despite its simplicity, that treatment outlined a set of

different issues which are going to play an increasingly relevant role within an interacting

theory, such as the necessity of proper regularization recipes for the zero-point energy.

So, the starting point is, as usual, the Euclidean action expressed in terms of its corre-

sponding lagrangian density:

SE
[
ψ, ψ∗] =

∫ β~

0
dτ

∫

Ld

ddr L
[
ψ, ψ∗] (1.22)

with

L
[
ψ, ψ∗] = ψ∗(r, τ)

(
~
∂

∂τ
−~2∇2

2m
−µ
)
ψ(r, τ)+

1

2

∫
ddr′|ψ(r′, τ)|2V (|r−r′|)|ψ(r, τ)|2 . (1.23)

In the equation above we assume that atoms interact via the two-body spherical-symmetric

potential V (|r − r′|). In the proceeding of this thesis we will consider Bose-Einstein con-

densates made of dipolar atoms where the isotropy assumption does not hold, with relevant

consequences for transport quantities as the superfluid fraction.

1.2.1 The zero-range effective potential

The choice of the inter-atomic potential is crucial, since the physical description depends

on the parameters we choose to model V (r). First of all, one has to acknowledge that using

a sort of true interaction potential is not a viable strategy, for a number of reasons [14, 15].

Indeed, the real interaction potential between atoms is extremely complicated to determine

and, moreover, any possible error, no matter how much small, can significantly affect the
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scattering properties.

However, this picture can be greatly simplified by reminding that we usually deal with di-

lute and ultracold atoms and, consequently, we are only interested in the low-energy physics.

In this limit, for short-range potentials, universality holds: the scattering properties depends

on a single parameter, the scattering length, with the potential shape playing no role in the

thermodynamic picture. Moving from this observation, since the birth of many-body quan-

tum mechanics several authors underlines the convenience of replacing the real inter-atomic

potential with a pseudopotential which has the only (but crucial) constraint of reproducing

the low-energy scattering properties of the system [16, 17, 18, 19].

We deal with ultracold and dilute atoms, so the usual and simplest approach consists in

replacing V (r) with the zero-range Fermi pseudopotential

Vp,0(r) = g0 δ
(3)(r) . (1.24)

Because of this choice, the Lagrangian density in Eq. (1.23) becomes local, i.e.

L
[
ψ, ψ∗] = ψ∗(r, τ)

(
~
∂

∂τ
− ~2∇2

2m
− µ

)
ψ(r, τ) +

1

2
g0
∣∣ψ(r, τ)

∣∣4 , (1.25)

and falls in the set of ψ4-theories which are ubiquitous in physics, with a wide range of appli-

cations [3]. The connection between this effective field theory approach and the measurable

quantities has to be provided by a proper choice of the coupling constants in terms of the

scattering parameters.

In d = 3, within the zero-range approaximation specified by Eq. (1.24), the usual

parametrization is obviously in terms of the scattering length

g0 =
4π~2

m
as . (1.26)

The reason behind Eq. (1.26) can be presented in terms of the two-body transition matrix,

defined as [2]

f(q,q′) = − m

4π~2
〈q′|T̂ (2B)|q〉 (1.27)

with f(q,q′) being the scattering amplitude. On the other hand, in the low-energy limit
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the dominant contribution to the scattering amplitude comes from partial waves with zero

orbital momentum (l = 0), i.e. only s-waves play a relevant role in the two-body scattering

processes. This implies that the scattering amplitude can be greatly simplified by taking

into account the contribution of only one set of partial waves, i.e.

f(q,q′) ' f0(q) =
1

q cot δ0(q)− iq
(1.28)

where δ0(q) is the s-wave phase shift [20]. It can be evaluated in terms of the s-wave scattering

length as and effective range rs by means of

q cot δ0(q) = − 1

as
+

1

2
rsq

2 +O(q3) . (1.29)

According to the equation above, the t-matrix is then given by

T0(q) '
[
m

4π~2

( 1

as
− 1

2
rsq

2
)

+ i
m q

4π~2

]−1

(1.30)

On the other hand, from an operatorial point of view, the transition matrix obeys to the

following equation [2],

T̂ (2B) = V̂ + V̂
1

E − Ĥ0 + iκ
T̂ (2B) . (1.31)

The operator (E − Ĥ0 + iε)−1 corresponds to the free propagator, as in Eq. (1.7) or Eq.

(1.17), V̂ is the interaction operator and κ has to be intended as κ → 0+. By considering

only the s-wave contribution, Eq. (1.31) admits the following solution in the momentum

space

T0(q) =

[
1

Ṽ (q)
− m

4π~2

∫
dp

p2 − q2 + iκ

]−1

, (1.32)

with Ṽ being the Fourier transform of the interaction potential, namely Ṽ (q) =
∫
d3q exp(iq·

r)V (r). For a zero-range interaction as in Eq. (1.24) the Fourier transform is simply given

by Ṽ (q) = g0, being independent from momentum. Through standard contour techniques,

the integral in Eq. (1.32) can be analytically solved, reading

T0(q) =

[
1

g0
+ i

m q

4π~2

]−1

. (1.33)
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Now, by noticing that a zero-range approximation implies rs = 0, we can easily match Eq.

(1.33) and Eq. (1.30) term by terms. This leads to the well known result for d = 3 reported

in Eq. (1.26). Apart from a different numerical factor, the calculation recipe is similar in

d = 1, while for d = 2 we have to face a complication due to the existence of a scattering

bound state [21].

We do not report here the details for the calculation of the transition matrix in the

low-energy limit for systems with reduced dimensionality. However, since the zero-range

approximation has a great relevance as a starting platform for the study of dilute quantum

gases, it is worth to at least mention the final results [21, 22, 23, 8]. In terms of the (small)

positive energy scale εq = ~2q2/(2m), one gets

T (εq + iκ) =





−2π~2

m

1

log
(
aseγ

2

√
mεq
~2

)
+ iπ2

for d = 2 ,

2~2

m
1

−as+i
√

~2

mεq

for d = 1

(1.34)

with γ = 0.577 the Euler-Mascheroni constant.

As we noted above, we remark that the choice of a contact pseudo-potential as in Eq.

(1.24) implies that its Fourier transform does not vanish at high momenta. This is the origin

of the ultraviolet divergences that one has to face while developing a perturbative theory. In

the next chapter we are going to consider the first correction to the zero-range framework,

where the pseudopoential depends on the momentum and consequently rs 6= 0.

1.2.2 Thermodynamic properties: mean-field and Gaussian fluctuations

A dilute gas made of bosonic atoms interacting via a contact interaction can be modelled

via the langrangian density in Eq. (1.25), which we report here for clarity

L
[
ψ, ψ∗] = ψ∗(r, τ)

[
∂τ −

~2∇2

2m
− µ

]
ψ(r, τ) +

1

2
g0
∣∣ψ(r, τ)

∣∣4 , (1.35)

where the field ψ = ψ(r, τ) obeys the usual bosonic periodicity conditions. Also with the

simplest choice for V (r), the resulting theory has to be approached from a perturbative point

of view, because of the quartic term in Eq. (1.25) encoding the presence of the interaction
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potential. Within the functional integration framework, excellent reviews of the perturbation

theory in dilute Bose gases can be found in [24, 25, 26]. It is worth mentioning that, in this

subsection, we are going to consider the case g0 > 0, corresponding to a repulsive atom-atom

interaction. The picture arising from an attractive two-body interaction is surely interesting

and it will be briefly mentioned later in the thesis.

As remarked earlier, Eq. (1.25) falls in the ψ4-theories set, meaning a global U(1) gauge

symmetry can be spontaneously broken and a superfluid phase then occurs. In order to take

into account this possibility, the bosonic quantum field can be decomposed in two different

contributions, namely

ψ(r, τ) = v + η(r, τ) (1.36)

where the field η(r, τ) represents the space-time dependent fluctuations around the order

parameter v. The physical interpretation of the latter is evident in d = 3, where the superfluid

transition can be characterized in terms of the condensate density, while it is more subtle

for lower dimensions. Indeed, no true long-range order can be achieved for d ≤ 2 [12, 13]

and v then describes, at maximum, the so-called quasi-condensate.

The mean-field picture can be derived by neglecting the fluctuations and assuming that

the ordered phase is uniform and stationary, i.e. v is taken as a real constant. By following the

saddle-point scheme, we have to look for the maximum contribution governing the partition

function integral in Eq. (1.4). In order to identify this configuration, one has to find the

stationary points of the Euclidean action, i.e. the ones solving δS[v] = 0, where S[v] is given

by Eq. (1.25) with gradient and time-derivative terms set to zero.

Thus, by replacing the full bosonic field ψ(r, τ) in Eq. (1.25) with v, representing a

uniform and stationary configuration, one gets the saddle-point action

S[v] = β~Ld
(
− µv2 +

1

2
g0 v

4
)
. (1.37)

Through the relation Zmf = e−Smf[v]/~ = e−βΩmf , it is immediate to derive the mean-field

grand potential density
Ωmf

Ld
(µ, v) = −µv2 +

1

2
g0v

4 . (1.38)

In Fig. 1.1 we report the behaviour of Ωmf(v, µ) by remarking the role played by the chemical





22 1.2. Weakly-interacting Bose gases: the Bogoliubov theory

the fluctuation fields. Since we are considering fluctuations above the uniform ground state

determined by solving the saddle-point equation, linear terms in η(r, τ) and η∗(r, τ) equate to

zero. Moreover, we move to the Fourier space via Eq. (1.2) in order to transform differential

operators into algebraic terms. The resulting partition function factorised into the mean-

field contribution (see Eq. (1.37)) and the one describing the fluctuations dynamics. The

corresponding Gaussian action is given by

Sg
[
η, η∗

]
=

1

2

∑

q, n


 η̃∗(ωn,q)

η̃(−ωn,−q)



T

M(ωn,q)


 η̃(ωn,q)

η̃∗(−ωn,−q)


 , (1.41)

where the sum is obviously intended over the bosonic Matsubar frequencies ωn = 2πn/(β~)

and the 2 × 2 matrix M(ωn,q) is the inverse fluctuation propagator. While the formal

structure of Eq. (1.41) is similar to the non-interacting case in Eq. (1.6), interactions

crucially affect the fluctuations propagator. Indeed, while the free propagator G0 in Eq. (1.7)

is diagonal, even within the simplest two-body interaction modelling, the matrix M(ωn,q)

reads [1, 8, 26]

M(ωn,q) = β


−i~ωn + ~2q2

2m − µ+ 2g0v
2 g0v

2

g0v
2 i~ωn + ~2q2

2m − µ+ 2g0v
2


 . (1.42)

The first beyond-mean-field correction can then be computed via Ωg = −β−1 logZg, where

the fluctuating partition function is defined by Eq. (1.41) and Eq. (1.42). With the aid of

the matrix identity Tr logA = log detA, the Gaussian functional integration leads to

Ωg(µ, v) =
1

2β

∑

q, n

log
[

detM(ωn,q)
]

=
1

2β

∑

q, n

log
[
β2(~2ω2

n + E2
q)
] (1.43)

where Eq is given by

Eq(µ, v) =

√(
~2q2

2m
− µ+ 2g0v2

)2

− g20v4 . (1.44)

The physical meaning of Eq can be understood by recalling that the (Gaussian) fluctua-
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tion propagator is M−1(ωn,q). A crucial information encoded in the propagator concerns

the frequencies of collective excitations above the uniform ground state. These frequencies

correspond to the poles of the propagator [10], i.e. solution of an equation like ~2ω2+E2
q = 0.

By referring to Appendix A for the details, the Matsubara sum in Eq. (1.43) can be

analytically computed by standard countour technique, reading

1

2β

∑

n

log
[
β2(~2ω2

n + E2
q)
]

=
1

2
Eq +

1

β
log
(
1− e−βEq

)
. (1.45)

Within the Gaussian approximation, the grand potential counts three different terms

Ω(µ, T, v) = Ωmf(µ, v) + Ω(0)
g (µ, v) + Ω(T )

g (µ, T, v) , (1.46)

where Ωmf is given by Eq. (1.38), while Ω
(0)
g and Ω

(T )
g represent the fluctuation contribution.

They are respectively given by

Ω(0)
g (µ, v) =

1

2

∑

q

Eq(µ, v) (1.47)

Ω(T )
g (µ, v, T ) =

1

β

∑

q

log
(
1− e−βEq

)
, (1.48)

with Eq as in Eq. (1.44). More precisely, Ω
(0)
g is a purely quantum-mechanical term arising

from the imaginary-time axis integration1, then it contains the information about quantum

statistics. In other words, it is the zero-point energy of bosonic excitations above the uniform

ground state described by the saddle-point equation. On the other hand, the role of thermal

fluctuations is encoded in Ω
(T )
g . By following a perturbative approach, we now replace v

in the equations above with its saddle-point value specified by Eq. (1.39) in the broken-

symmetry phase (µ > 0). It is crucial to observe now that the excitation spectrum in Eq.

(1.44) is made gapless by this substitution. This is mandatory, since we are dealing with

a system where a continuous symmetry is broken and the Goldstone theorem consequently

states that low-momenta excitations with no energy cost have to arise [11]. Indeed, with

1 By moving to the Fourier space, the integration along the imaginary-time axis becomes the Matsubara

sum.
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v2 = µ/g0 we recover the well-known Bogoliubov spectrum [1]

Eq =

√
~2q2

2m

(
~2q2

2m
+ 2µ

)
. (1.49)

In the continuum limit
∑

q −→ Ld
∫ ddq

(2π)d
, one immediately gets from Eq. (1.47)

Ω
(0)
g

Ld
=

1

2
Kd

∫ +∞

0
dq qd−1

√
~2q2

2m

(
~2q2

2m
+ 2µ

)
(1.50)

where Kd ≡ Sd/(2π)d, Sd = 2πd/2/Γ(d/2) being the d-dimensional solid angle. Here we

encounter an important obstacle: the zero-point energy given by Eq. (1.50) has an ultraviolet

(UV) divergence for any integer dimension d. Before outlining a strategy to tackle down this

unphysical divergence, we remark that our functional integration recipe is closely related

to the Bogoliubov approximation within the second-quantization picture [10]. The original

Bogoliubov formulation relied on the fact that, given the grand canonical Hamiltonian

K̂ =
∑

q

(εq − µ)ψ̂†
qψ̂q +

g0
2Ld

∑

q1,q2,q3,q4

ψ̂†
q1
ψ̂†
q2
ψ̂q3ψ̂q4δq1+q2,q3+q4 , (1.51)

in presence of condensation the state q = 0 can be modelled by a simple constant. Indeed,

being macroscopically occupied, the operators ψ̂0 and ψ̂†
0 almost commute. Concerning the

fluctuating part (i.e. q 6= 0 terms), the Bogoliubov approach retains only quadratic correc-

tions. The resulting Hamiltonian can then be safely diagonalized by means of a canonical

transformation. In the end, one obtains a quasiparticles spectrum equal to Eq. (1.49).

1.3 Regularization strategies

Starting from the local Lagrangian density in Eq. (1.25), we have derived the Gaus-

sian contribution to the grand potential coming from quantum (i.e. zero temperature) and

thermal fluctuations. Unfortunately, the zero-range field theory we are developing unavoid-

ably leads to a UV divergence in the zero-point energy. Indeed, the contact pseudopotential

V (r − r′) = g0 δ(r − r′) has a constant Fourier transform. This is in contrast with the

vanishing at large momenta required from a reasonable two-body interaction potential [26].
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1.3.1 Momentum cut-off regularization

At first, one can try to make sense of a divergent theory by simply introducing a UV

cutoff Λ. Related to the non-physical choice of the interaction potential, one should notice

that a momentum cutoff implies a length one, below which atoms can no longer be considered

elementary particles and modelled through the field ψ(r, τ). In this unknown region, our

model completely breaks down because new physics arises: for example, the internal structure

of atoms, or molecules, has to be taken into account.

By following this recipe [1, 8], the UV cutoff marks the excluded region whose residual

effect can be absorbed by redefining the coupling parameters of our theory. Thus, Eq. (1.50)

has to be integrated not on the whole Rd space, but only on an internal shell described by

|q| < Λ, i.e.

Ω
(0)
g

Ld
=

1

2
Kd

∫ Λ

0
dq qd−1

√
~2q2

2m

(
~2q2

2m
+ 2µ

)
. (1.52)

For a gapless excitation spectrum, Eq. (1.52) can be computed analytically. For the case

d = 3, a large-Λ expansion retaining all the divergent contributions reads

Ω
(0)
g

L3
(µ,Λ) =

8

15π2

(
m

~2

)3/2

µ5/2 − mµ2

4π2~2
Λ +

µ

12π2
Λ3 + CΛ5 +O

(
Λ−1

)
(1.53)

where C is a constant independent from thermodynamic variables. This implies that we

can safely neglect the contribution proportional to Λ5. Thus, we have two terms in Eq.

(1.53) diverging for Λ→ +∞. As we already stated, these power divergences are artifacts of

the particular choice we have made for the interaction potential. We also observe that the

theory preserves its local character since large momentum correspond to infinitesimally small

length scale. This is a crucial point because, otherwise, these terms could not be absorbed by

redefining the coupling constants of the theory. Indeed, by recalling the saddle-point result

µ = g0v
2, we can check that the terms proportional to Λ and Λ3 have the same form of the

ones present in Eq. (1.38), i.e.

Ω
(Λ)
mf

L3
(µ, v,Λ) = −µv2 +

1

2
g0v

4 − mg20Λ

4π2~2
v4 +

g0Λ
3

12π2
v2 . (1.54)

It is immediate to notice that, up to this order, the proper definitions of the dressed coupling
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constants in terms of the bare ones are given by

µΛ = µ− g0
12π2

Λ3

g0,Λ = g0 −
mg20

2π2~2
Λ ,

(1.55)

which, in turn, lead to the renormalized 3-dimensional zero-temperature Gaussian grand

potential

Ω
(0)
eff

L3
= −µΛv2 +

1

2
g0,Λv

4 +
8

15π2

(
m

~2

)3/2

µ
5/2
Λ . (1.56)

One can perform exactly the same steps for the d = 1 case, where Eq. (1.52) reads

Ω
(0)
g

L
= − 2

3π

(
m

~2

)1/2

µ3/2 +
~2

12πm
Λ3 +

µ

2π
Λ +O(Λ−1) . (1.57)

As usual, all terms independent from the thermodynamic variables can be neglected (the

one ∝ Λ3 in this case). In a similar way to the d = 3 case, a comparison between the power

divergences in Eq. (1.57) and the mean-field grand potential in Eq. (1.38) makes clear that

only the chemical potential needs to be renormalized. The remaining divergence can be

absorbed by defining a dressed chemical potential in terms of the bare one, as in Eq. (1.55),

namely

µΛ = µ− gΛ

2π
. (1.58)

This, at T = 0, the one-dimensional grand potential is given by

Ω
(0)
eff

L
= − µ

2
Λ

2g0
− 2

3π

(
m

~2

)1/2

µ
3/2
Λ . (1.59)

In other words, by redefining the chemical potential in Eq. (1.58) we include in the mean-

field contribution exactly the proper counterterm to erase the UV divergence in Eq. (1.57).

We are then left with the d = 2 case, which is highly non-trivial, since this is exactly the

lower critical dimension for a ψ4-theory. By approaching the regularization of the zero-point

energy in Eq. (1.52) with a cutoff strategy, we find not only power divergences as in the

d = 3 and d = 1 case, but also a logarithmic one. While the former are artifacts of the theory

(more precisely, of our zero-range approximation), the latter are physical [26] and need to
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be handled carefully.

While a UV-cutoff regularization can be performed also in d = 2 case [8], we proceed

now to outline a different approach based on dimensional regularization.

1.3.2 Dimensional regularization

As anticipated in the previous sections, Eq. (1.56) and Eq. (1.59) can be derived without

imposing a high momentum cutoff by means of the so-called dimensional regularization

[1, 8, 26]. This technique was first developed by ’t-Hooft and Veltman [9] and relies upon

the integral dependence on a complex parameter which has to be analytically continued to

real values corresponding to physical cases. Concerning the calculation of the zero-point

energy of a d-dimensional Bose gas, the complex parameter to consider in Eq. (1.52) is the

spatial dimension d.

From a formal point of view, one has to perform the integral in a complex dimension

D = d−2ε, where the result can be analytically continued to the proper real value by taking

the limit ε → 0. The main advantage of dimensional regularization is the possibility to set

power divergences to zero. This crucial feature is enabled by the following conjecture [9]

proved in [27]:

I0 =

∫ +∞

0
dq qd−1q2n−2 = 0 for n ∈ N and d ∈ C. (1.60)

It is immediate to check that this (somewhat) astonishing property readily solves the diver-

gence arising in the free case without the necessity to add a convergence factor (compare

Eq. (1.13) and the final result in Eq. (1.18)).

We now move to regularize the UV-divergent zero-point energy in Eq. (1.52) by following

this strategy. The momentum integral of the Bogoliubov spectrum Eq can be simplified

thanks to the Euler beta function, defined as

B(x, y) =

∫ +∞

0
dv

vx−1

(1 + v)x+y
(1.61)

for positive Re(x) and Re(y). Indeed, after a little bit of algebra, Eq. (1.52) reads

Ω
(0)
g

Ld
=

1

4
Kd

(
2m

~2

)d/2
(2µ)d/2+1B

(
d+ 1

2
,−d+ 2

2

)
. (1.62)
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Since d is complex, the beta function can be expressed in terms of Euler Gamma functions

as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.63)

The function Γ(x) is defined only in the right half of the complex plane, i.e. for Re(x) > 0

and it is then necessary to continue it to the left half, for negative real parts. It is possible to

check that this continuation is analytic everywhere except for zero negative integers. Thanks

to Eq. (1.63), one finally gets the following equation for the zero-point energy:

Ω
(0)
g

Ld
=

1

4
Kd

(
2m

~2

)d/2
(2µ)d/2+1Γ

(
d+1
2

)
Γ
(
− d+2

2

)

Γ
(
− 1

2

) . (1.64)

By replacing in the equation above d = 3 or d = 1 we immediately recover the results in Eq.

(1.56) and Eq. (1.59). This example highlights the relevance of dimensional regularization

among all the other procedures employed to remove UV divergences and simplify calculations.

Indeed, power divergences do not need to be explicitly renormalized and they are treated for

what they are: unphysical relics due to the choice of an over-simplified model.

Obviously, this is not the whole story: there are divergences that dimensional regulariza-

tion does not manage to suppress by default. As we anticipated in the previous subsection,

this is case for d = 2, where also the analytical continuation of Γ(x) diverges. A simple com-

parison with the cutoff procedure makes us realize that this surviving divergence appears a

a logarithm of the high-momentum threshold Λ. Within this framework, its arising can be

understood by considering the following expansion for the Gamma function, which reads,

for d ∈ N,

Γ(−d+ ε) '
ε→0

(−1)d

n!

[
1

ε
+ ψ(d+ 1)

]
. (1.65)

The ψ(x) is the digamma function, defined as

ψ(x) ≡ d log Γ(x)

dx
. (1.66)

From Eq. (1.65), it is evident [1, 26] that logarithmic divergences, i.e. ∝ log(Λ/κ) with κ

being a proper length scale, arise as poles 1/ε within this procedure. The case of the lower

critical dimension d = 2 hence needs an explicit renormalization. In order to reach a finite
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effective contribution to the zero-temperature grand potential Ω
(0)
eff /L

2, we begin from the

formal result in Eq. (1.64). By taking the limit d→ 2 and letting the ε-dependence explicit,

we get

Ω
(0)
g

L2
= − m

4π~2κε
µ2 Γ

(
− 2 +

ε

2

)
'ε→0+ −

m µ2

4π~2 ε κε
, (1.67)

where the factor κε appears because of dimensional reasons. Now, the equation above has

been put in a form which can be easily compared to the mean-field result Ωmf
L2 = − µ2

2 g0
. As

noted in [1], there is a certain freedom (or ambiguity) in defining the proper length scale

κ−1. This is due to the gapless nature of the excitation specturm in Eq. (1.49). On the

contrary, in absence of a Goldstone mode, the spectrum gap would appear in place of κ.

The comparison between Eq. (1.67) and Eq. (1.40) leads us to identify the renormalized

coupling constant as
1

ge
=
κε

g0

(
1 +

m

2π~2
g0
εκε

)
. (1.68)

Within the renormalization group theory it is useful to define the flow equation, describing

the motion of the running coupling constant in the parameter space [2, 11], namely

β
(
ge
)
≡ dge

dκ
= κ−1

(
− ε ge +

m

2π~2
g2e

)
. (1.69)

In order to recover the Gaussian critical value of the coupling for d = 2 (while there is no

required renormalization for µ up to the order O(ε)), one has simply to equate β
(
ge
)

in Eq.

(1.69) to zero. Moreover, by solving Eq. (1.69) we get

1

ge(κ0)
− 1

ge(κ)
= − m

2π~2
log

(
κ0
κ

)
. (1.70)

The high energy scale can be pointed out by setting 1/ge(κ0) = 0, resulting in ~2κ0/(2m) =

εh. Then, κ can be interpreted as the actual energy of the system [8, 28], i.e. ~2κ2/(2m) = µ

and, as a consequence, the renormalized coupling constant depends now on the chemical

potential and on the high-energy cutoff in the following way:

ge =
m

4π~2
log

(
εh
µ

)
(1.71)

The last step then consists simply in replacing ge given by Eq. (1.71) in Eq. (1.40), reading
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the final non-divergent zero-temperature grand potential, namely

Ω
(0)
eff

L2
= −m µ2

8π~2
log

(
εh
µ

)
. (1.72)

1.4 Fluctuations, Correlations and the Superfluid Density

In the previous two sections, within the framework of functional integration, we have

reported some major achievements of the Bogoliubov theory, whose original formulation [29]

dates back to 1947. Despite the following intense theoretical effort [16, 17, 30], its experi-

mental confirmation had to wait until 1995, when Bose-Einstein condensation was achieved

for the first time [31, 32]. The Bogoliubov approach has proved to be extremely reliable in

modelling weakly interacting Bose gases, together with the mean-field dynamical descrip-

tion provided by the Gross-Pitaevskii equation [33]. Back in time when these theoretical

tools were originally formulated, liquid Helium experiments were the only way to probe the

non-classical behaviour of fluids at low temperatures. Unfortunately, 4He typical experi-

mental values for densities and interactions are well beyond the range of applicability of the

Bogoliubov theory.

Despite this experimental distance, cold atoms and liquid Helium are both wonderful

platforms to investigate the superfluid properties of matter. Therefore, it appeared rather

natural to attempt the theoretical investigation of superfluid Helium by means of the tools

provided by the Bogoliubov theory. Obviously, describing 4He as a weakly interacting gas

leads, at maximum, to a qualitative picture of its superfluid features.

The microscopic theory of superfluid Helium proves to be a formidable task [34], where

the only reliable approach is the numerical one, due to the implementation of powerful Path

Integral Monte Carlo algorithms [34]. On the other hand, one can follow the phenomeno-

logical approach by Landau [35, 36], which, in its original formulation, does not require an

atomic perspective or the onset of Bose-Einstein condensation. The crucial point in Landau

theory is that, beyond a certain critical temperature, the system is actually a mixture of a

superfluid part and a normal one, i.e. ntot = ns + nn. The other fundamental assumption is

that also the mass current density has to be decomposed as g = m
[
nsvs + nnvn

]
.

Here we are interested in the reverse path: we want to analyze the superfluid features of
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weakly interacting Bose gases by applying the core ideas of the two-fluid model. We mainly

focus on the calculation of the superfluid density, but a great and complete review about

two-fluid model and its relation to a bosonic order parameter can be found in [37].

We begin by considering again the Euclidean action of a d-dimensional Bose gas. As

usual, our starting point is the Lagrangian density given in Eq. (1.23), which takes into

account a generic (for now) two-body central interaction. Similarly to the Ginzburg-Landau

approach, a mean-field theory can be derived by means of the saddle-point method. Here,

we have to set the field ψ(r, τ) at its classical value, i.e. the one solving ∂S
∂ψ∗ [ψ,ψ∗] = 0. Up

to the saddle-point contribution, one immediately derive the Hartree equation

[
~∂τψ −

~2∇2ψ

2m
+

∫
ddr′|ψ(r′, τ)|2V (|r− r′|)

]
ψ(r, τ) = µψ(r, τ) (1.73)

while for a uniform and static configuration ψ(r, τ) = v ∈ R one gets Eq. (1.38) and Eq.

(1.39), i.e. −µv2 + Ṽ0 v
3 = 0 with its correspondent solutions.

For a generic two-body interaction, we replace the constant g0 with Ṽ0 = Ṽ (q = 0), Ṽ (q)

being the Fourier transform of the two-body interaction Ṽ =
∫
ddr e−iq·r V (r). As outlined

in Sec. 1.2.2, from the equivalent of Eq. (1.39), namely −µv2 + Ṽ0v
3 = 0, it is evident that

a phase transition occurs, depending on the sign of µ. Indeed, for µ < 0 we have v2 = 0

while, for positive value of the chemical potential, one gets v̄2 = µ/Ṽ0.

The saddle-point approximation only considers the contribution of the classical trajectory

on the system thermodynamics, while classical and quantum fluctuations are completely

neglected. Therefore, all particles enter the condensate in the ordered phase µ > 0. When

classical and quantum fluctuations are taken into account, this causes a depletion of both

the condensate and superfluid density: atoms are kicked out from the ground state, entering

in the thermal cloud. There, they can contribute to dissipation processes and are involved

in collisions with condensed atoms [38, 39, 40, 41].

Moreover, we have also to remind that v2 plays the role of the order parameter describing

the phase transition occuring because of the spontaneous breaking of a U(1) gauge symmetry;

on the other hand, the superfluid density ns is a transport quantity. It is then crucial

to discern these two different quantities, since there is no clear one-to-one correspondence

between condensation and superfluidity. For example, in a strongly interacting system like
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liquid 4He, only the 8% of the atoms populates the ground-state |q = 0〉 at T = 0, while all

of them partecipate to the superfluid dynamics.

Differently from Sec. 1.2, we now describe the fluctuations by moving to the phase-density

formalism, where the bosonic field is represented by

ψ(r, τ) =
√
v̄2 + δn(r, τ) eiϕ(r,τ) . (1.74)

Density fluctuations have to be considered small in the sense that the bosonic field can be

expanded as ψ ' v̄(1 + δn/2v̄2)eiϕ. This implies that n(r, τ) = |ψ(r, τ)|2 = v̄2 + δn(r, τ)

and, concerning the condensate density, n0 = 〈|ψ(r, τ)|〉2. Note that, in general, n0 6= n =

〈|ψ(r, τ)2〉 but, within the Gaussian level where 〈δn〉 ≈ 0, one can approximate n0 ≈ n. Now,

by replacing Eq. (1.74) in Eq. (1.23), the change of coordinates {ψ, ψ∗} → {δn, ϕ} requires

the calculation of the corresponding Jacobian. This can be easily computed by recalling

that in the many-body path integral formulation D[ψ, ψ∗] is intended as ∝ dReψ dImψ

where [3, 4]

Reψ =
√
v̄2 + δn cosϕ ;

Imψ =
√
v̄2 + δn sinϕ .

(1.75)

It is immediate to check that det J(δn, ϕ) = 1/2 and, being independent from thermodynamic

variables, can be absorbed into the measure, leading to

Z =

∫
D[ψ, ψ∗]e−S[ψ,ψ

∗]/~ =

∫
D[δn, ϕ]e−S[δn,ϕ]/~ (1.76)

where the Bose statistics is encoded in the periodic boundary conditions δn(β~) = δn(0)

and ϕ(β~) = ϕ(0).

By defining n = v̄2 + δn, we replace ψ =
√
neiϕ in Eq. (1.23), resulting in the following

Euclidean action [2]

S[n, ϕ] =

∫ β~

0
dτ

∫

Ld

ddr

[
i~n

∂ϕ

∂τ
+

~2(∇n)2

8mn
+

~2 n(∇ϕ)2

2m
− µn+

+
1

2

∫
ddr′V (|r− r′|)n(r, τ)n(r′, τ)

]
,

(1.77)

where terms like ~ ∂τ n can be eliminated via integration by parts.
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Concerning Eq. (1.77), it is possible to perform an expansion for small density fluctuation

by making the dependence on δn explicit again. Hence, one finally gets a structure like

S[δn, ϕ] = Sg[δn, ϕ] + Sint[δn, ϕ] (1.78)

where Sg[δn, ϕ] gathers all terms up to the quadratic (i.e. Gaussian) order in the fluctuations

field, while Sint[δn, ϕ] represents the first beyond-Gaussian correction. Explicitly [2],

Sg[δn, ϕ] = −1

2
β~Ld Ṽ0 v̄

4 +

∫ β~

0
dτ

∫

Ld

ddr

[
i~δn

∂ϕ

∂τ
+

~2v̄2(∇ϕ)2

2m
+

~2(∇δn)2

8mv̄2

+
1

2

∫
ddr′V (|r− r′|)δn(r, τ) δn(r′, τ)

] (1.79)

where we used the saddle-point results µ = Ṽ0v̄
2 and

Sint[δn, ϕ] =

∫ β~

0
dτ

∫

Ld

ddr

[
~2δn(∇ϕ)2

2m
− ~2δn(∇δn)2

8mv̄2

]
. (1.80)

In the following, we neglect the contribution of Sint[δn, ϕ] and focus on the Gaussian theory

specified by Sg[δn, ϕ]. In Fourier space one has

Sg[δn, ϕ] = −1

2
β~ Ṽ0 v̄

4 +
1

2β~Ld

∑

q,ωl

(
ϕ(−q,−ωl), δn(−q,−ωl)

)
M(q, ωl)


 ϕ(q, ωl)

δn(q, ωl)




(1.81)

where ωl are the usual bosonic Matsubara frequencies. In Eq. (1.81), the matrix M is the

inverse propagator of Gaussian fluctuations. Again, within a perturbative approach, the

propagator dependence on the order parameter can be eliminated by making use of the

saddle-point relation between v̄ and µ reported in Eq. (1.39). This scheme leads us to

M(q, ωl) =


v̄

2 ~2q2

m −~ωl
~ωl

~2q2

4mv̄2
+ Ṽ (q)


 . (1.82)

In order to derive the phase and density correlation up to the Gaussian level one simply has
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to invert M(q, ωl). This results in [2, 42]

~M
−1(q, ωl) = G(q, ωl) =

~

~2ω2
l + E2

q




m
v̄2~2q2

E2
q ~ωl

−~ωl v̄2 ~
2q2

m


 (1.83)

with

Eq =

√
~2q2

2m

[
~2q2

2m
+ 2Ṽ (q) v̄2

]
. (1.84)

Eq. (1.83) implies that the two-field correlations can be immediately computed through

〈mi(q, ωl)mj(q
′, ωl′)〉 = (2π)d δ(q + q′)δm,−m′(β~)Gij(q, ωl) (1.85)

where i, j = 1, 2 with m1(q, ωl) = ϕ(q, ωl) and m2(q, ωl) = δn(q, ωl).

The beyond-Gaussian correction in Eq. (1.80) can be neglected only when |V (q)| is

small enough (weakly-interacting systems) or when the pair-potential is strong but it holds

as � n−1/d, as being the s-wave scattering length. It can be shown [43] that, within the

Bogoliubov theory, the expansion parameter is given by g2 ∝ n(d−2)/dṼ0, with g = 4π~2

m as.

This signals that the case d = 2 has to be handled very carefully, since the perturbative

parameter cancels.

In the gaussian framework, we can then finally consider the current-current correlator

γij(r, τ ; r′, τ ′) = 〈gi(r, τ)gj(r
′, τ ′)〉 − 〈gi(r, τ)〉 〈gj(r′, τ ′)〉 (1.86)

with g ≡ mj = mnvs. According to the phase-amplitude representation, one gets

g = ~ n(r, τ)∇ϕ(r, τ) = ~
[
v̄2 + δn(r, τ)

]
∇ϕ(r, τ) . (1.87)

Therefore, correlators in Eq. (1.86) read

〈gi(r, τ)gj(r
′, τ ′)〉 = ~

2v̄4
〈
∇ϕ(r, τ)i∇ϕ(r′, τ ′)j

〉
+

+ ~
2
〈
δn(r, τ)δn(r′, τ ′)∇ϕ(r, τ)i∇ϕ(r′, τ ′)j

〉 (1.88)

where all odd terms vanish in the Gaussian framework due to parity argument.
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The second part of Eq. (1.86) reads

〈gi(r, τ)〉 〈gj(r′, τ ′)〉 = ~
2 〈δn(r, τ)∇ϕ(r, τ)i〉

〈
δn(r′, τ ′)∇ϕ(r′, τ ′)j

〉
(1.89)

The four-field correlator in Eq. (1.88) can be decomposed by means of the Wick theorem,

since we are considering Gaussian distributed variables [3, 10]. The decomposition follows

the pattern 〈ABCD〉 = 〈AB〉 〈CD〉 + 〈AC〉 〈BD〉 + 〈AD〉 〈BC〉. One can easily check that

one of these contraction is equal to Eq. (1.89). Thus, Eq. (1.86) becomes

γij(r, τ ; r′, τ ′) = ~
2v̄4
〈
∇ϕ(r, τ)i∇ϕ(r′, τ ′)j

〉
+

+ ~
2
〈
δn(r, τ)δn(r′, τ ′)

〉 〈
∇ϕ(r, τ)i∇ϕ(r′, τ ′)j

〉
+

+ ~
2
〈
δn(r, τ)∇(r′, τ ′)j

〉 〈
δn(r′, τ ′)∇ϕ(r, τ)i

〉
.

(1.90)

In the Fourier space, the equation above corresponds to

γij(q, ωl;q
′, ωl′) = −v̄4qiqj

〈
ϕ(q, ωl)ϕ(q′, ωl′)

〉
+

− 1

(βLd)2

∑

k,ωm

k′,ωm′

[ 〈
δn(q− k, ωl−m)δn(q′ − k′, ωl′−m′)

〉 〈
ϕ(k, ωm)ϕ(k′, ωm′)

〉
+

+
〈
δn(k− q, ωm−l)ϕ(k′, ωm′)

〉 〈
δn(k′ − q′, ωm′−l′)ϕ(k, ωm)

〉 ]
.

(1.91)

The two-field correlation functions are given by the matrix elements of ~G(q, ωl) in Eq.

(1.83). According to the recipe outlined in [44, 45], we are interested in the transverse

component of the current-current correlation function. Within this formalism, it corresponds

to

γT (q, ωl) =
1

~(d− 1)

∑

ij

PTij γij(q, ωl) (1.92)

where PTij ≡ δij − qiqj/q2 is the transverse projector. With the aid of Eq. (1.83), one can

compute term by term the transverse component of γij(q, ωl) in Eq. (1.91), reading

γT (q, ωl) =
1

(d− 1)βLd

∑

k,ωm

q2k2 − (qk)2

q2k2
~2(q− k)2E2

k + ~4k2ωl−mωm
(~2ω2

l−m + E2
q−k)(~2ω2

m + E2
k)
. (1.93)
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The normal density can be derived now from Eq. (1.93) via a limit procedure, namely

ρn = lim
q→0

lim
ωl→0

γT (q, ωl) =
1

dβLd

∑

k,ωm

k2
E2

k − ~4ω2
m

(~2ωm + E2
k)2

. (1.94)

The limit procedure has carried out a factor 1/d due to isotropy assumption and another

factor (d − 1) because of the longitudinal component removal. The Matsubara sum can be

performed analytically (cfr. [10, 42]), resulting in

lim
δ→0+

~

β

∑

m

(E2
k − ~2ω2

m)eiωmδ

(~2ω2
m + E2

k)2
=
β~

4

1

sinh2
(
βEq/2

) (1.95)

such that Eq. (1.94) reads, for a generic two-body interaction Ṽ (q):

ρn =
β~2

4d

∫
ddq

(2π)d
q2

sinh2
(
βEq / 2

) . (1.96)

Concerning the long-wavelength limit q → 0, in presence of a U(1)-Goldstone mode, the

elementary excitations display a linear dispersion relation

Eq −→
q∼0

~cBq where cB =

√
µ

m
(1.97)

In this regime, Eq. (1.96) reads the following analytical result in a generic dimension d

ρn =
Γ(d+ 2)ζ(d+ 1)

2d−1πd/2 d Γ(d/2)

(kBT )d+1

~dcd+2
B

. (1.98)

Focusing on the d = 3 and d = 2 case we get

ρn(d = 3) =
2π2

45~3
(kBT )4

c5B
(1.99)

ρn(d = 2) =
3ζ(3)

2π~2
(kBT )3

c4B
(1.100)

which are consistent with what one can derive by following slightly different approaches

[45, 46] and with the phenomenological theory by Landau [36]. At the end, we underline

a crucial point in our calculation. By recalling Eq. (1.88) and Eq. (1.90), we realize that

the current-current correlation (and consequently the normal density) cannot be simply
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proportional to the Gaussian phase correlator

〈
ϕ(q, ωl)ϕ(q′, ωm′)

〉
= (2π)dβ~δm,−m′δ(q− q′)G11(q, ωm) (1.101)

with G11(q, ωm) given by the proper matrix element of Eq. (1.83). If one had only considered

this phase-phase term, there would be no contribution to the normal density ρn, since only a

purely longitudinal term qiqj would be present. This means that, in order to at least derive

the Landau formulation one has to take into account both phase and density fluctuation.

For systems falling into the XY universality class [11, 47] the leading term arises from

phase fluctuations, so it seems natural to work with a simple only-phase action. However,

in Eq. (1.93) is evident that the crucial non-zero contribution to the transverse response

function is due to the next-to-leading corrections involving density (amplitude) fluctuations.

In the language of the functional integration [42], this means that we have to take into

account the correction above the Gaussian framework by including the four-field correlator

〈δn(x)∇ϕ(x)δn(x′)∇ϕ(x′)〉 in Eq. (1.90).

1.5 Condensate Depletion and Green’s Functions

Here we aim to derive the equation for the condensate fraction up to the Gaussian order

in the fluctuations. As outlined in [10], a perturbative treatment of an interacting Bose

system can be developed around the normal and anomalous Green’s function, which are

defined as

G(r, τ ; r′, τ ′) = 〈ψ(r, τ)ψ∗(r′, τ ′)〉 − n0 (1.102)

G12((r, τ ; r′, τ ′) = 〈ψ(r, τ)ψ(r′, τ ′)〉 − n0 , (1.103)

where n0 is the condensate density. According to the Dyson equation [10], the general

structure of the Green’s functions within the Fourier space is given by

G(q, ωl) =
1

~D(q, ωl)

[
i~ωl +

~2q2

2m
− µ+ ~Σ11(−q,−ωl)

]
(1.104)

G12(q, ωl) = −Σ12(q, ωl)

D(q, ωl)
(1.105)
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with Σ11 and Σ12 defining the self-energies. The denominator D(q, ωl) reads [10]

D(q, ωl) = −
[
iωl +

1

2

(
Σ11(q, ωl)− Σ11(−q,−ωl)

)]2
+

+
1

~

[
~2q2

2m
− µ+

1

2

(
Σ11(q, ωl) + Σ11(−q,−ωl)

)]2
−
∣∣Σ12(q, ωl)

∣∣2 .
(1.106)

For a system of non-interacting bosons, one simply has Σ11 = Σ12 = 0 and only the free

propagator survives, i.e.

G0(q, ωl) =
~

−i~ωl + ~2q2

2m − µ
(1.107)

Here, we aim to compute Eq. (1.102) and (1.103) from which it is possible to extract relevant

informations about the system, such as the condensate depletion. We start by expanding

Eq. (1.74) up to the first order in the fluctuations field where

ψ(r, τ) ' v̄
(

1 +
δn

2v̄2
+ iϕ

)
. (1.108)

Up to the quadratic order, Eq. (1.102) and Eq. (1.103) become [42]

G(q, ωl;q
′, ωl′) =

1

4v̄2
〈δn(q, ωl)δn(q′, ωl′)〉 −

i

2
〈δn(q, ωl)ϕ(q′, ωl′)〉

+
i

2
〈ϕ(q, ωl)δn(q′, ωl′)〉 − v̄2 〈ϕ(q, ωlϕ(q′, ωl′)〉

(1.109)

and

G12(q, ωl;q
′, ωl′) =

1

4v̄2
〈δn(q, ωl)δn(q′, ωl′)〉+

i

2
〈δn(q, ωl)ϕ(q′, ωl′)〉

+
i

2
〈ϕ(q, ωl)δn(q′, ωl′)〉 − v̄2 〈ϕ(q, ωlϕ(q′, ωl′)〉 .

(1.110)

In the same way of section 1.4, two-field correlation functions are given by matrix elements

of the Gaussian fluctuations propagator G(q, ωl) in Eq. (1.83) with the excitation spec-

trum given by Eq. (1.84). Replacing in Eq. (1.109) and Eq. (1.110) the proper two-field
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correlations given by Eq. (1.85), we get

G(q, ωl) =
~

~2ω2
l + E2

q

[
i~ωn +

~2q2

2m
+ v̄2Ṽ (q)

]
(1.111)

G12(q, ωl) = − ~ v̄2Ṽ (q)

~2ω2
l + E2

q

. (1.112)

By making use again of Eq. (1.39), the self-energies read

Σ11(q, ωl) =
v̄2

~

[
Ṽ0 + Ṽ (q)

]

Σ12 =
v̄2Ṽ (q)

~

D(q, ωl) =
1

~2

(
~
2ω2

l + E2
q

)
.

(1.113)

We underline one more time that the results obtained up to the Gaussian order are exactly

the same obtained through a Bogoliubov transformation [10]. Thus, in analogy with the

second-quantization recipe, we define the auxiliary functions

u2q =
1

2

[
v̄2Ṽ (q) + ~2q2

2m

Eq

+ 1

]

v2q =
1

2

[
v̄2Ṽ (q) + ~2q2

2m

Eq

− 1

] (1.114)

where u2q − v2q = 1 and uqvq = v̄2Ṽ (q)/(2Eq) hold. At this point we are finally ready to

compute the condensate depletion up to quadratic (i.e. Gaussian) order in the fluctuations

fields.

The condensate depletion is given by [10]

n− n0 =

∫
ddr
[
〈ψ(r, τ − 0+)ψ∗(r, τ + 0+)〉 − n0

]

=
1

(β~)2

∫
ddq

(2π)d

∑

ωl,ωl′

e−i(ωl−ωl′ )τei(ωl+ωl′ )0
+
G(q, ωl;−q,−ωl)

=
1

β~

∫
ddq

(2π)d

∑

ωl

eiωl0
+
G(q, ωl)

(1.115)

where in the last line we assumed translational invariance in time. The factor eiωl0
+

arises

naturally within the path-integral formalism [2], encoding the proper time ordering of in-
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finitely small time slices and it is crucial to ensure the convergence of Matsubara summation

[48]. By expressing Eq. (1.111) in terms of Bogoliubov functions defined in Eq. (1.114), Eq.

(1.115) becomes

n− n0 =

∫
ddq

(2π)d
1

β

∑

ωl

eiωl0
+

[
u2q

−i~ωl + Eq

+
v2q

i~ωl + Eq

]
. (1.116)

Again, Matsubara sums can be solved by means of contour integration, reading the following

useful results
1

β

∑

ωl

eiωl0
+

i~ωl − Eq

= − 1

eβEq − 1

1

β

∑

ωl

eiωn0+

i~ωn + Eq

=
eβEq

eβEq − 1
.

(1.117)

Thus, Eq. (1.115) can be expressed as

n− n0 =

∫
ddq

(2π)d

[
u2q

eβEq − 1
+

eβEqv2q
eβEq − 1

]
=

∫
ddq

(2π)d

[
v2q +

u2q + v2q
eβEq − 1

.

]
(1.118)

It is clear that we have now separated two different contribution: the first one is ∝ v2q,

describing the zero-temperature depletion occurring because of the interaction between par-

ticles. On the other hand, the second one models the effect of thermal fluctuations in draining

the condensate.

At zero-temperature and within the zero-range approximation detailed in the previous

sections, where Ṽ (q) = Ṽ0, the integral
∫
ddq v2q can be computed analytically for a generic

dimension d. Hence, one finds

∆n(T = 0) = n(T = 0)− n0 =
2d−3 πd/2 (d− 2)Γ

(
d−1
2

)
Γ(−d

2)

(2π)d
√
π Γ(d/2)

(mn0 Ṽ0)
1/2 (1.119)

where we identified v̄2 ≈ n0 in Eq and Eq. (1.114). In d = 3 we have Ṽ0 = 4π~2as/m and

consequently

∆n(T = 0, d = 3) =
8

3
√
π

(
n0as

)3/2
, (1.120)

while in d = 2, since limd→2(d− 2)Γ(−d/2) = 2

∆n(T = 0, d = 2) =
mṼ0n0
4π~2

. (1.121)



1.6. The case of sound propagation in the 2d Bose gas 41

The contribution to the depletion from thermal fluctuations can be analytically computed

in the long-wavelength limit q → 0 where Eq ≈ ~cBq. In a generic dimension we get

∆n(T 6= 0) =
Γ(d− 1)ζ(d− 1)

2d−1πd/2Γ(d/2)

m(kBT )d−1

~d cd−2
B

(1.122)

while, for d = 3 and d = 2 one finds

d = 3 =⇒ ∆n(T 6= 0) =
m(kBT )2

12~3cB
(1.123)

d = 2 =⇒ ∆n(T 6= 0)→∞ . (1.124)

The divergence for d = 2 at finite temperature should not be surprising since, as stated by

the Mermin-Wagner theorem [12, 13], this is lower critical dimension of a ψ4-theory and a

true long-range order is not possible at finite temperature due to the unbalanced growth of

fluctuations.

1.6 The case of sound propagation in the 2d Bose gas

Up to this point, we have presented a set of theoretical tools to describe an ultracold

and weakly interacting Bose gas. In Sec. 1.4 we have briefly outlined the two-fluid model

within a functional formalism. Besides the derivation of the famous Landau formula for the

superfluid density in Eq. (1.96), it would be possible to derive a self-consistent hydrodynamic

theory based on the two crucial assumptions ntot = ns + nn and g = m
[
nsvs + nnvn

]
[36].

As previously mentioned, the original formulation by Landau did not rely upon an atomic

perspective and, actually, did not imply at all the concept of Bose-Einstein condensation [37].

The resulting two-fluid hydrodynamic equations provide a reliable description of superfluid

Helium and have been extensively employed also in the field of ultracold quantum gases.

However, this does not imply that the connection between these equations and the Gross-

Pitaevskii one, modelling the condensed gas, has always been clear. Since the first experi-

mental realization of Bose-Einstein condensates, it appeared evident that atomic physicists

would have to deal with regimes of temperatures and density really far away from the one

of superfluid Helium.
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First of all, one should find a way to include thermal fluctuations within the Gross-

Pitaevskii framework, in order to take into account a non-negligible condensate depletion.

A wide range of theoretical strategies has been developed during the years in order to tackle

down this non-trivial issue. One of the most relevant is surely the kinetic approach proposed

by Zaremba, Nikuni and Griffin (ZNG) [38, 39, 41]. Moving from a pioneering work by

Kirkpatrick and Dorfman [49], they model the partially condensed Bose gas at finite tem-

perature through a modified Gross-Pitaevskii coupled to a Boltzmann-like equation. The

equation for the condensate part includes a dissipative term, accounting for the losses due to

collisions between thermal and condensed atoms. On the other hand, the kinetic equation

for the thermal cloud is derived by a BBGKY hierarchy [6] with the zero-range coupling g as

expansion parameter. The mean-field term recovers the Hartree interaction term, while the

collisional integral can be built upon two different collision processes: the 2 
 2 scattering

within the thermal cloud and the 2 
 1 one between a two thermal atoms and a condensed

one.

Clearly this is not the only possible approach: for a detailed review of analytical and

numerical tools to effectively describe a partially condensed Bose gas at finite temperature we

point the reader to [50, 51]. Among the most successful strategies, we surely have to mention

the stochastic Gross-Pitaevskii equation [52, 53]. In this framework, the dissipative coupling

of the condensed part with the thermal atoms is basically modelled through a stochastic

noise term.

In this section, we aim to apply the kinetic strategy to the problem of sound propagation

in a two-dimensional Bose gas. We work in the collisionless regime where the ZNG Boltzmann

equation reduces to a Landau-Vlasov one. Despite the label, by collisionless we actually

mean that we neglect the collisional integral, while the mean-field interaction is still present,

supporting also the presence of collective modes [54, 55]. Sound propagation is then possible,

as known from previous study on collisionless Fermi gases [56, 57].

On the other hand, we are already aware that the case of two-spatial dimensions is a pecu-

liar situation. Mermin-Wagner theorem prevents the occuring of Bose-Einstein condensation

at finite temperature, while superfluidity and quasi-condensates can be observed below the

Berezinskii-Kosterlitz-Thouless critical temperature Tc [58, 59]. Very recently, the group of

J. Dalibard performed a measurement of the sound velocity in a uniform 2d Bose gas made
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of 87Rb atoms [60]. The results were puzzling, since they agree with theoretical predictions

[61, 62] based on the Landau-Khalatnikov framework only well below Tc. The authors of [60]

correctly noticed that such discrepancy is due to the fact that they are effectively working

in a collisionless regime. Indeed, a hydrodynamic approach can be safely adopted when the

time between two consecutive collisions τcol is much smaller than the time scale of small

perturbation with frequency ω, i.e. τcolω � 1. In this regimes collisions are an efficient

mechanism to restore the local thermodynamic equilibrium required by hydrodynamics. Ac-

cording to the experimental values, this was not the case in [60], where τcolω ' 1.6 ÷ 3.4.

Thus, we should not expect that the gas dynamics will follow the two-fluid model predic-

tions. Here, we are going to assume that the dynamics of normal component is collisionless,

above and below the critical temperature. Therefore, in our case, we do not need the full

complexity of ZNG equations, since condensation does not occur and the collisional integral

can be neglected.

Let us then begin by considering a dilute and ultracold three-dimensional (3D) gas made

of N identical bosonic atoms of mass m. Atom-atom interactions are modelled through

the usual zero-range pseudo-potential with a coupling constant given by g = 4π~2as/m.

The system is under an external confinement whose shape is given by the sum of a generic

potential U(r) throughtout the xy-plane and a harmonic confinement along the longitudinal

axis. Thus, we have

Uext(r, z) = U(r) +
1

2
mω2

zz
2 , (1.125)

where r = (x, y) is the radial position of one atom. If the harmonic confinement is strong

enough, one can engineer an effective two-dimensional (2d) configuration. In order to con-

strain the atoms on the transverse plane, we have to require that the characteristic energy

of the longitudinal confinement is much larger than the average kinetic contribution, namely

~ωz � (p2x + p2y)/(2m) . (1.126)

In the actual experiments, this condition can be fulfilled quite easily. When Eq. (1.126) is

satisfied, the three-dimensional system is forced to occupy the longitudinal ground state. At

the same time, the planar distribution function f(r,p) in the 4d single-particle phase space
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((r,p) = (x, y, px, py)) obeys to the effective 2d Landau-Vlasov equation [63]

[
∂

∂t
+

p

m
· ∇r −∇r

(
U + Umf

)
· ∇p

]
f(r,p, t) = 0 , (1.127)

where

Umf(r, t) = g2D

∫
d2p

(2π~)2
f(r,p, t) (1.128)

is the self-consistent Hartree mean-field term [41]. The only memory of the original three-

dimensional character of the system is encoded within the effective 2d coupling constant

g2D =

√
8π~2

m

(
as
az

)
(1.129)

with az =
√

~/(mωz) the characteristic length of the axial harmonic confinement. In the

following of this section, we are going to prove that a dynamical description based on Eq.

(1.127) manages to recover the experimental results obtained in a homogeneous configuration

[60]. If we assume a box potential, we can set U(r) = 0, thus

f(r,p, t) = f0(p) + δf(r,p, t) (1.130)

where f0(p) is a stationary and isotropic distribution and δf(r,p, t) a very small perturbation

around it. We can perform a stability analysis against a small perturbation like δf by

considering the linearized Landau-Vlasov equation

[
∂

∂t
+

p

m
· ∇r

]
δf(r,p, t) = g2D

∫
d2p′

(2π~)2
∇rδf(r,p′, t) · ∇pf0(p) . (1.131)

Moving to the Fourier space, according to δ̂f(k,p, ω) =
∫
dt
∫
d2r δf(r,p, t) exp (i(k · r− ωt)),

Eq. (1.131) leads us to an implicit formula for the dispersion relation, i.e.

1− g2D
∫

d2p

(2π~)2
k · ∇pf0(p)

p · k/m− ω = 0 . (1.132)

In the equation above k is a 2d wavevector and ω an angular frequency. As in [64], Eq. (1.132)

can be derived within the random-phase approximation (RPA). In that framework, solutions

of Eq. (1.132) identify the poles of the dynamic response function. In [64], this equation
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has been solved by setting initially the system at equilibrium in presence of a stationary

sinusoidal potential. With the removal of the external potential, density modulations begin

to oscillates with a damped amplitude. From this damped oscillatory motion one extracts

the sound velocity by means of a fitting procedure.

Here, we address the solution of Eq. (1.132) by a fully analytical point of view. The

key point in our strategy is the proper treatment of the singularity on the integration path

for ω = p · k/m. Hence, the integral is Eq. (1.132) is meaningful only with the caveat of

interpreting ω as a complex quantity, i.e. ω = ωR + iωI . Moreover, we impose ωI > 0 to

avoid an unphysical exponential growth of the perturbation [56].

It is possible to further simplify the solution procedure, without any loss of generality,

by taking k ‖ êx, i.e. k = (k, 0). Thus, one easily finds that

1− g2D
∫

dpx
(2π~)

∂f̃0(px)

∂px

1
px
m − c

= 0 . (1.133)

In the equation above we have defined c = ω/k and f̃0(px) =
∫
f0(px, py)dpy/(2π~). We are

now ready to extract the sound velocity from Eq. (1.133). Because of our hypothesis about

ω ∈ C, it descends that c will be a complex number, too. We then introduce its real and

imaginary part, respectively given by cR = ωR/k and cI = ωI/k.

Elegant coupled equations for cR and cI can be obtained within the limit of weak damping

[63]. Concerning the real part of the sound velocity, from Eq. (1.133) we have

1− g2DP
∫

dpx
(2π~)

[∂f̃0(px)/∂px
px/m− cR

]
− πcI

∂φ(c)

∂c

∣∣∣∣
cR

= 0 , (1.134)

where φ(c) = mg2D
(2π~)

∂f̃0
∂px

∣∣∣
px=mc

and P denotes the Cauchy principal value. On the other hand,

the equation for the imaginary part cI reads

cI =
π ∂f̃0(px)∂px

∣∣∣
px=mcR

∂
∂cR

{
P
∫ dpx

(2π~)

[∂f̃0(px)/∂px
px/m− cR

]} . (1.135)

In order to investigate the dynamical behaviour of a quasi-uniform Bose gas in two spatial
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dimension, we choose the Bose-Einstein distibution as initial condition, namely

f0(p) =
1

L2

1

eβ(
p2

2m
+g2Dn−µ) − 1

, (1.136)

where L2 is the area enclosing the system. The function f0(p) given in the equation above

describes the thermal equilibrium distribution for gaseous system made of weakly-interacting

bosons with uniform density n. The Hartree interaction term g2Dn can be absorbed by a

simple shifting of the chemical potential µ̃ = µ− g2Dn. The equation of state establishes the

connection between the modified chemical potential µ̃ and the number density n. It can be

derived immediately from the normalization N =
∫ d2rd2p

(2π~)2
f0(p), reading

µ̃ = kBT ln
(

1− e−TB/T
)

(1.137)

where kBTB = 2π~2n/m is the temperature of Bose degeneracy. From Eq. (1.137) it is also

clear that µ̃ < 0. Analytical results can be obtained within the regime of temperatures T �
TB with c2R � kBT/m holding at the same time. In this window of parameters, we can safely

approximate f0(p)L2 ' kBT/(p2/(2m)− µ̃) from which L2f̃0(px) = kBT/(~
√

(p2x/m)− 2µ̃).

Hence, Eq. (1.134) and Eq. (1.135) respectively read

1 +
g̃2DkBT

2π

[
2

mc2R − 2µ̃
+

√
mc2R

(mc2R − 2µ̃)3/2
ln

(√mc2R − 2µ̃−
√
mc2R√

mc2R − 2µ̃+
√
mc2R

)]
+

+ g̃2DkBTcI
mc2R + µ̃√

m(mc2R − 2µ̃)5/2
= 0

(1.138)

and

cI = −
[

cR√
m(mc2R − 2µ̃)3/2

]
·
[

6 cR
(mc2R − 2µ̃)2

+
2(mc2R + µ̃)√
m(mc2R − 2µ̃)5/2

log
(
√
mc2R − 2µ̃−

√
mc2R√

mc2R − 2µ̃+
√
mc2R

)]−1

,

(1.139)

where g̃2D = mg2D/~
2 is the adimensional interaction strength. By inserting Eq. (1.139) in

Eq. (1.138) we get an equation for cR. At this point, Eq. (1.138) can be solved numerically

and, by taking into account Eq. (1.137) we can express the zero-sound velocity as a function

of T at fixed values of g̃2D. The results of our calculations are reported in Fig. 1.2, where they
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Figure 1.2: Sound velocity cR in units of cB =
√
g2Dn/m as a function of the scaled tempera-

ture T/Tc for g̃2D ' 0.16. The solid black line represents our prediction based on Eqs. (1.138)
and (1.139) while the blue dots are the experimental data of Ref. [60]. The red dashed line is
obtained by using Eq. (1.138) with cI = 0. On the basis of universal relations [47], for g̃2D the
Berezinskii-Kosterlitz-Thouless critical temperature is Tc = 0.13 TB .

are compared to experimental data obtained in [60]. We remark the very good agreement

between our semi-analytic results and the data points, both in the low-temperature limit

and close to the critical temperature. Differently from the prediction based on the two-fluid

model [61, 36, 62], our cR does not exhibit any discontinuity at the Berezinskii-Kosterlitz-

Thouless temperature. This fact highlights how the collisionless sound velocity in Eq. (1.138)

is not related to any superfluid features of the system.

The red dashed line in Fig. 1.2 has been obtained by neglecting the ∝ cI correction in

Eq. (1.138). It is then evident that the perturbation damping (i.e. cI 6= 0) is crucial in

determining the exact sound velocity across a wide range of temperatures. In Fig. 1.3 we

report the absolute value of cI as predicted by Eq. (1.139), with cR given by solution of Eq.

(1.138). We remark that Eq. (1.134) and (1.135) are derived by assuming a weakly-damped
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Figure 1.3: Main panel : Imaginary part cI of the sound velocity in units of cB =
√
g2Dn/m as

a function of the scaled temperature T/Tc for g̃2D ' 0.16. The solid black line is obtained from
Eq. (1.139) where cR has derived by solving Eq. (1.138). Inset : Ratio between the imaginary
and the real part of c as a function of the temperature.

perturbation, i.e. cI � cR. From Fig. 1.3 it is evident that our approximation is reliable in

the low-temperatures regime, where Landau damping plays a negligible role, but also in the

proximity of the transition temperature Tc. The rapid growth of cI/cR with the temperature

T above Tc is in agreement with the large damping of sound oscillations found in Ref. [60].

A large value of cI/cR also signals the breaking of our theoretical scheme.







2

FINITE-RANGE THERMODYNAMICS OF

ULTRACOLD BOSONIC GASES

In this chapter we begin to move beyond the zero-range approximation for the atom-atom

interaction potential. So far, we have considered a Dirac δ-like pseudopotential and explored

some consequences related to this choice, such as the beyond-mean-field equation of state in a

generic dimension, the condensate depletion and the superfluid density computed within the

Landau two-fluid model. Now, we aim to study a dilute and ultracold Bose gas by considering

an effective field theory taking into account a finite-range pseudopotential. Within the

formalism of functional integration, we derive beyond-mean-field analytical results depending

on the scattering length and the effective range of the interaction. In particular, we calculate

the equation of state of the bosonic system as a function of these interaction parameters

both at zero and finite temperature including one-loop Gaussian fluctuations. As in the first

chapter of this thesis, we do not only focus on the case of d = 3 spatial dimensions, but we

also analyze the role played by finite-range effects in lower dimensionalities.
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2.1 Finite-range thermodynamics for d = 3

2.1.1 Zero-range approximation: the thermodynamical instability

Throughout the whole previous chapter, we have reported a detailed description of how

one can derive the first beyond-mean-field correction to the equation of state (EoS) of an

ultracold and weakly-interacting Bose gas. However, all these results have to be placed inside

the context of the zero-range approximation for the atom-atom interaction potential. A first

improvement can be made by following the pseudopotential approach. As for the Fermi

pseudopotential, we replace the true inter-atomic potential with a pseudo one which at least

reproduces the low energy scattering properties of the system.

Within the zero-range approximation, in Sec. 1.2 the two-body interaction in Eq. (1.23)

is replaced by the δ-like pseudopotential Vp,0(r) = g0δ
(3)(r). In order to highlight the physical

meaning of the coupling constant g0 and to clearly set a characteristic length (or energy)

scale, the key-point consists in relating it to scattering parameters that can be measured in

cold-atoms experiments with great precision. As mentioned before, one can then follow the

procedure detailed in [25, 65], resulting in Eq. (1.26), i.e. g0 =
(
4π~2/m

)
as, as being the

s-wave scattering length. This recipe can be quite naturally extended to systems with lower

dimensionalities [8, 66], leading to Eq. (1.34).

The choice of a contact pseudopotential brings us to a local lagrangian as the one in Eq.

(1.25), namely

L = ψ∗(r, τ)

[
~
∂

∂τ
− ~2∇2

2m
− µ

]
ψ(r, τ) +

1

2
g0|ψ(r, τ)|4 ,

where all terms have the same physical meaning of Chap. 1. Below the critical temperature,

the starting point to describe the thermodynamics consists in splitting the field ψ(r, τ) =

v + η(r, τ), as in Eq. (1.36). Hence, the mean-field (saddle-point) plus Gaussian (one-loop)

approximation is derived by inserting it in Eq. (1.25) and expanding above the saddle-point

classical field v up to the quadratic terms in the fluctuations fields η and η∗. This procedure

leads us to identify three different contribution to the mean-field grand potential, as detailed

in Eq. (1.46). Quantum fluctuations are encoded in the zero-point energy, the integral of the

Bogoliubov excitation spectrum over the whole momentum space (cfr. Eq. (1.50)). Through
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one of the regularization recipes outlined in Sec. 1.3, a finite contribution can be extracted,

reading the beyond-mean-field correction first computed by Lee, Huang and Yang [16]:

Ω
(0)
g

L3
=

8

15π2

(
m

~2

)3/2

µ3/2 . (2.1)

It can be worth to interpret this result within a slightly different frame, by remembering

that the pressure is nothing else than the opposite of the grand potential density, i.e.

P (µ, T ) = −Ω(µ, T )

L3
. (2.2)

At zero-temperature, by taking into account the quantum (Gaussian) fluctuations, we have

P (0)(µ) =
µ2

2 g0
− 8

15π2

(
m

~2

)3/2

µ3/2 . (2.3)

In the previous chapter, we have begun to point out unphysical consequences of the zero-

range approximantion in modelling the atom-atom interacting. In particular, we mentioned

the occuring of UV-divergences in the zero-point energy, related to the fact that Fourier

transform Ṽp,0(q) = F
[
Vp,0(r)

]
= g0 does not vanish at high momenta.

Here, we have to remember another crucial point, namely that we are following a pertur-

bative scheme which, by definition, is reliable only within a precise window of the parameters

space. In this case, the breakdown point can be identified exactly by searching for values

of µ making the pressure in Eq. (2.3) negative. Actually, the uniform configuration is

thermodynamically stable if and only if [67]

∂2P (µ)

∂µ2
> 0 . (2.4)

Eq. (2.3) implies thermodynamical instability for µ > µc = π(~2/(2m))3/4/
√

2g0. The

zero-temperature number density n(0) can be related to µ thanks to the following equation

n(0)(µ) = −∂Ω(0)(µ)

∂µ
=

µ

g0
− 4

3π2

(m
~2

)3/2
µ3/2 . (2.5)

Therefore, we can numerically determine the chemical potential corresponding to given val-
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ues of the gas parameter na3s. This frame is summarized in Fig. 2.1 where we plot the

chemical potential vs. the gas parameter as specified by Eq. (2.5). In absence of finite-range

0 0.002 0.004

na
3

0

0.1

0.2

0.3

 µ
/ε

B

Figure 2.1: Chemical potential as a function of the gas parameter na3s within the zero-range
approximation by taking into account quantum fluctuations up to the Gaussian level, according
to our Eq. (2.5). Energies are expressed in units of εB = ~2/(ma2s) and as is the s-wave scattering
length. It is evident that the systems undergoes a thermodynamical instability signalling the
breakdown of the zero-temperature perturbative theory.

corrections, it appears clear from Fig. 2.1 that, besides the prediction of two branches for

the chemical potential, close to na3s ' 0.004 a thermodynamic instability occurs since Eq.

(2.5) has no more solutions above this critical value. Therefore, the uniform configuration

does not exist anymore for na3s > 0.004.

A grand canonical formulation clarifies the range of applicability of one simple analytical

result that appears naturally in second-quantization many-body theory [10, 67]. Indeed,

from Eq. (2.5) by using a perturbative expansion where g0n� µ, one gets

µ(n) = g0n+
4g0
3π2

(m
~2

)3/2
(g0n)3/2 . (2.6)
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The first term of this chemical potential was derived by Bogoliubov [29] while the second term

is the one first computed by Lee, Huang and Yang [16, 17]. Keeping in mind the discussion

about Eq. (2.5) and Fig. 2.1, it is extremely important to remind that Eq. (2.5) is obtained

assuming a very small gas parameter na3s. Thus, it cannot give back reliable predictions

when the system is thermodynamically unstable. Close to the instability, the contribution

of Gaussian fluctuations in Eq. (2.1) becomes of the same order of the mean-field term; this

signals that quantum fluctuations are strong enough to destabilize the uniform configuration.

Consequently the critical value (na3s)c ' 0.004 specifies the upper threshold of applicability

of the zero-range Gaussian theory and, consequently, of Eq. (2.5).

2.1.2 The finite-range effective potential and thermodynamic results

An improvement of the contact (zero-range) approximation can be achieved by replacing

the interaction potential Ṽ (q) with the finite-range pseudo-potential

Ṽp,2(q) = g0 + g2 q
2 . (2.7)

The relation with the true inter-atomic potential appearing in Eq. (1.23) is given by the

following equations

g0 = Ṽ (0) =

∫
d3r V (r) (2.8)

g2 =
1

2
Ṽ ′′(0) = −1

6

∫
d3r r2 V (r) (2.9)

where, as usual, we define the Fourier transform of the atom-atom potential as Ṽ (q) =
∫
d3r exp(iq · r)V (r). It has been shown [18, 68] that, in real space, the pseudo-potential in

Eq. (2.7) is given by

Vp(r) = g0 δ(r)−
g2
2

[←−∇2
δ(r) + δ(r)

−→∇
2
]
. (2.10)

Within the framework of the effective-field theory (EFT), the connection with experimental

quantities such as the s-wave scattering length as and the s-wave effective range rs can

be established by requiring that the expansion parameters of Eq. (2.7) matches the ones
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obtained with a pseudo-potential Vp(q) depending on the s-wave phase shift. In sec. 1.2.1

we detailed the application of this principle to the zero-range approximation by means of

the T-matrix.

As is [18, 19, 65] we adopt

Ṽp(q) =
4π~2

m

tan (δ0(q))

q
. (2.11)

The phase shift δ0(q) is related to the s-wave scattering parameters by the equation

δ0(q) = arctan

(
1

− 1
as

+ 1
2rsq

2 +O(q4)

)
, (2.12)

where rs is the s-wave effective range of the interaction. One can thus expand Ṽp(q) and

δ0(q), respectively Eq. (2.11) and Eq. (2.12), up to the second order for small q. In this

way, one finds that the coupling constants g0 and g2 are related to the physical parameters

as and rs according to following equations

g0 =
4π~2

m
as , (2.13)

g2 =
2π~2

m
a2srs . (2.14)

At this point, we can keep track of the finite-range character of interaction by simply per-

forming the steps we have detailed for the zero-range approximation. We then begin by

replacing the modified potential given by Eq. (2.7) in the general non-local langrangian

reported in Eq. (1.23). One then easily gets

L = ψ∗(r, τ)

[
~
∂

∂τ
− ~2∇2

2m
− µ

]
ψ(r, τ) +

g0
2
|ψ(r, τ)|4 − g2

2
|ψ(r, τ)|2∇2|ψ(r, τ)|2 . (2.15)

The relation between the coupling of the above lagrangian density and the measurable scat-

tering parameters is the key result of an EFT-based approach. The remaining part of this

section is then based on this simple generalization of the usual local lagrangian density in

Eq. (1.25). A Gaussian (one-loop) analysis relying upon Eq. (2.15) has been performed in

Refs. [65, 26], but limited to the perturbative regime at zero temperature. Here we explic-

itly prove that the inclusion of the effective-range term can remove the artificial instability
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occuring in the zero-range theory. Therefore, it is possible to extend the applicability range

of a Bogoliubov-like theory beyond the critical value pointed out in sec. 2.1.1. Moreover, we

compare our EFT calculatons with Monte Carlo data and analyze finite-temperature effects.

As a first and immediate application of the lagrangian density in Eq. (2.15), we can derive

a generalized Gross-Pitaevskii equation for the stationary but space-dependent field ψ0(r).

Indeed, we can apply the saddle-point approximation to the action S[ψ,ψ∗] =
∫
dτ
∫
d3rL,

with L[ψ,ψ∗] given by Eq. (2.15), i.e. δS
[
ψ∗
0(r), ψ0(r)

]
= 0 Stationary configurations are

described by the following equation

[
− ~2∇2

2m
+ g0

∣∣ψ0(r)
∣∣− g2∇2

∣∣ψ0(r)
∣∣2
]
ψ0(r) = µψ0(r) , (2.16)

which was derived for the first time in [68] for a Bose gas trapped under an external con-

finement. In this case, numerical results based on Eq.(2.16) lead to a better agreement with

Quantum Monte Carlo simulations concerning, for instance, the ground state energy. More-

over, by using Eq.(2.16) it is possible to study how space-dependent topological solutions,

such as vortex and solitons, are affected by the effective-range expansion [69].

As usual thoroughout this thesis, we split the field as ψ(r, τ) = v + η(r, τ) and then

expand the action S[ψ,ψ∗] around a uniform and stationary v up to quadratic (Gaussian)

order in η(r, τ) and η∗(r, τ). The mean-field (saddle-point) can be derived from Eq. (2.16)

and Eq. (2.15) by considering a real uniform scalar field, i.e ψ0(r) → v. Indeed, from Eq.

(2.16) we get the crucial relation between the chemical potential potential and the order

parameter. Even by taking into account the finite-range interaction potential in L, up to the

saddle-point level it is easy to check that µ = g0v
2 as in Eq. (1.39). Similarly, the mean-field

grand potential exactly corresponds to Eq. (1.38), i.e. Ωmf(µ, v) = L3
(
− µv2 + 1

2g0 v
4
)
. So,

finite-range corrections due to g2 6= 0 do not affect the uniform mean-field configuration.

We then move to analyze the Gaussian action describing the dynamics of fluctuations.

From a formal point of view, moving to the Fourier space we get the analogous of Eq. (1.41)

Sg
[
η, η∗

]
=

1

2

∑

Q

(
η̃∗(Q) η̃(−Q)

)
M(Q)


 η̃(Q)

η̃∗(−Q)


 , (2.17)

where, for the sake of clarity, we have defined here the 4-vector Q ≡ (q, iωn). The bosonic
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frequencies ωn are given, as usual, by Eq. (1.3). The crucial difference between the finite-

range case and the zero-range approximation is encoded in the inverse fluctuation propagator

M appearing in Eq. (2.17). Indeed, one has

M(ωn,q) = β


−i~ωn + ~2q2

2m − µ+
[
g0 + Ṽp(q)

]
v2 v2 Ṽp(q)

v2 Ṽp(q) i~ωn + ~2q2

2m − µ+
[
g0 + Ṽp(q)

]
v2


 .

(2.18)

The dispersion relation of excitations above the uniform ground state can be derived by

computing the poles of the propagator or, in equivalent terms, the zeros of detM(q, iωn). It

results in the following equation

Eq(µ, ψ0) =

√[
~2q2

2m
− µ+ v2(g0 + Ṽp(q))

]2
+ v4Ṽ 2

p (q) , (2.19)

where the dependence on the effective-range rs is contained in the Fourier transform of the

pseudopotential. By using Eq. (1.39) to remove the dependence on v in Eq, our theory is

consistent with the Goldstone theorem also in presence of a finite-range interaction. Indeed,

from Eq. (2.19) we obtain a gapless spectrum

Eq(µ) =

√
~2q2

2m

[
~2q2

2m
+

2µṼp(q)

g0

]
=

√
~2q2

2m

[
(1 + χµ)

~2q2

2m
+ 2µ

]
, (2.20)

where the relevance of finite-range effects is controlled by the parameter χ,

χ ≡ 4m

~2

g2
g0
. (2.21)

By referring to sec. 1.3.1, up to the Gaussian level we have three different contributions to

the thermodynamics potential Ω(µ): first, the mean-field one Ωmf/L
3 given by Eq. (1.40),

which is not modified by the inclusion of the effective range in Ṽp(q). Then, we have to

consider the contribution coming from quantum and thermal fluctuations, respectively Ω
(0)
g

and Ω
(T )
g in Eqs. (1.47) and (1.48).

The zero-temperature Gaussian grand potential is still UV-divergent also for finite values

of χ. This divergence can be healed by making use of dimensional regularization as in Sec.

1.3.2. In this way, it is easy to check that the zero-temperature Gaussian grand potential is
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given by

Ω
(0)
g

L3
=

8

15π2

(m
~2

)3/2 µ5/2

(1 + χµ)2
. (2.22)

At this point, it is worth to point out an immediate (and maybe trivial) consistency check

for our theory: by setting χ = 0 we manage to recover all the results obtained with a contact

pseudopotential, namely Eqs. (1.49) and (2.3).

The zero-temperature number density n is obtained by using the number equation n(µ) =

−∂Ω
∂µ with Ω(µ) = Ωmf(µ) + Ω

(0)
g (µ) + Ω

(T )
g (µ, T ). At zero temperature we get

n(0)(µ) =
µ

g0
− 4

3π2

(m
~2

)3/2 µ3/2

(1 + χµ)2
+

64

15π2

(m
~2

)5/2 g2
g0

µ5/2

(1 + χµ)3
. (2.23)

From Eq. (2.23) we are able determine µ as a function of na3s for different values of χ at

fixed density n, in a similar way to what we did for Eq. (2.5). The results are shown in Fig.

2.2, where α is proportional to the ratio g2/g0 in adimensional units, namely

α =
~2

ma2s
χ = 4

g2
g0a2s

= 2
rs
as

. (2.24)

As previously discussed, Fig. (2.1) clearly shows that in absence of finite-range corrections

(α = 0) the chemical potential µ versus n has no solutions above the critical value for the gas

parameter (na3s)c ' 0.004. This problem is indeed solved by using a positive value of α larger

than about 0.25, while for α < 0 the problem gets worse. The different behaviour of numerical

solutions of Eq. (2.23) for α 6= 0 compared to Eq. (2.5) can be understood thanks to the

modified dependence on µ of Eq. (2.22): for α & 0.25 the finite-range Gaussian correction

never becomes of the same order, or bigger, than the mean field term. Differently from the

zero-range case, the finite-range correction manages to control the growth of fluctuations

and it stabilizes the system, as highlighted by the dashed and dashed-dotted lines in Fig.

(2.2): for these values of α there is no critical value of the gas parameter.

It is then interesting to compare our theory with Quantum Monte Carlo (QMC) simu-

lations performed for a system made of hard-spheres bosons [70] based on the path-integral

ground state algorithm. The case of hard spheres is particularly interesting because the

s-wave scattering length as and effective range rs are related in a very simple way by

rs/as = 2/3 [68, 65, 71]. As a consequence, the adimensional parameter α in Eq. (2.24)
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Figure 2.2: Chemical potential µ in units of εB = ~2/(ma2s) as a function of the gas parameter
na3s (cfr Fig.2.1) obtained from Eq. (2.23) for different values of α = 2rs/as, where as is the
s-wave scattering length and rs the corresponding effective range. The solid black line for α = 0
represents the zero-range equation of state as in Eq. (2.5) and Fig. 2.1.

must be set to α = 4/3. Fig. 2.3 highlights that the Monte Carlo data (filled circles) are

reproduced reasonably well by our EFT results with α = 4/3 (solid line) also for values of

the gas parameter na3s larger than 0.004. So, we do not only recover the zero-range curve,

reliable up to na3s ' 0.004, but also QMC points for a more dense system. QMC simulations

are performed with a hard-core potential while our Gaussian theory introduces an effective

range rs which is related to as by rs = (2/3)as. In the case of the hard-core potential, at

fixed scattering length as (and consequently at fixed effective range rs), by increasing the

gas parameter na3s, the number density n increases while the average distance δ ' n−1/3

between atoms reduces. In this way, by tuning the number density n, it is possible to reduce

δ such that it becomes comparable to the effective range rs. Therefore, deviations from the

zero-range framework become sizable and can be revealed while measuring thermodynamic

quantities as, for instance, the pressure.

We have to mentioned the relevant fact [72] that beyond the Gaussian level, the ther-

modynamic potential displays a correction arising from two-loops diagrams proportional to
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Figure 2.3: Monte Carlo (MC) data (filled circles) of the chemical potential µ vs gas parameter
na3s for a Bose gas of hard spheres [70]. Dot-dashed line is the mean-field theory, µ = 4π~2asn/m.
Solid and dashed lines are the results of our zero-temperature Gaussian EFT, Eq. (2.23), for
two different values of the effective-range adimensional parameter α = 2rs/as. The case α = 0
corresponds to usual scheme with a zero-range interaction while α = 4/3 correspond to the case
of a hard-core interaction potential. Also here εB = ~2/(ma2s) is the characteristic energy of the
interacting Bose gas, as is the s-wave scattering length, rs is the effective range, and n is the
number density.

na3s whose coefficient is unknown within the zero-range approximation. Braaten and Nieto

[72, 25] showed that, in general, a meaningful expression for this coefficient requires at least

the knowledge of the three-body interaction strength, i.e. the coupling constant of a term

∝ |ψ|6 in the Lagrangian density. Anyway, if one restricts to the case of alkali atoms, the

second-order quantum corrections are proportional to the logarithm of an additional length

scale fixed by the van der Waals interaction.

In order to complete our analysis concerning the finite-range corrections to the beyond-

mean-field equation of state, we have to briefly consider the T 6= 0 case. The finite-

temperature Gaussian contribution to the equation of state is given by Ω
(T )
g (µ) in Eq. (1.48).
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Through an integration by parts, we can express it in the alternative form

Ω
(T )
g (µ)

L3
= − 1

6π

∫ ∞

0
dq q3

dEq
dq

1

eβEq(µ) − 1
. (2.25)

It is useful to introduce now the variable x = βEq(µ) which leads us to the following equation

Ω
(T )
g (µ)

L3
= − 1

6π2β

∫ ∞

0
dx q(x, µ)3

1

ex − 1
, (2.26)

where q(x, µ) is given by

q(x, µ) =

√
2mµ

~2(1 + χµ)

√√√√−1 +

√
1 +

(1 + χµ)x2

µ2β2
. (2.27)

By means of a low temperatures expansion, the integral in the equation above can be com-

puted analytically up to the order (kBT )6, reading

Ω
(T )
g (µ)

L3
= −π

2

90

(
m

~2

)3/2 (kBT )4

µ3/2

[
1− 5π2

7
(kBT )2

1 + χµ

µ2

]
. (2.28)

Thus, thanks to a simple derivative, the finite-temperature contribution n
(g)
g to the total

number density n consists in

n(T )g (µ) = −π
2

60
(
m

~2
)3/2

(kBT )4

µ5/2

(
1− 5π2

21
(kBT )2

7 + 5χµ

µ2

)
. (2.29)

Within the perturbative expansion approach (|µ − g0n| � 1) previously discussed, we can

extract the behavior of the chemical potential in terms of the number density

µ(n) = µ0(n) + µ(0)g (n) + µ(T )g (n) , (2.30)

where µ0(n) + µ
(0)
g (n) can be derived by inverting Eq. (2.23). The finite-temperature con-

tribution behaves as

µ(T )g (n) = −π
2

60

(
m

~2

)3/2 g0 (kBT )4

(g0n)5/2

[
1−

(
5π2

21

)
7 + 5χ(g0n)

(g0n)2
(kBT )2

]
. (2.31)
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Our results, namely Eqs. (2.23) and (2.29) generalize the old familiar one obtained in 1958

by Lee and Yang [16, 17].

2.2 Finite-range thermodynamics for d = 1

2.2.1 The one-dimensional Bose gas: not a simple toy-model

For almost eighty years one-dimensional (1d) quantum systems have been subject of an

intense fascination, albeit mostly theoretical. Indeed, from the seminal work of Bethe in 1931

concerning the Heisenberg model [73], 1d physics was then explored in great detail, providing

exact and approximate solutions to a wide variety of systems [74]. These 1d physical systems

were considered toy models, until recent advances in experimental setups, like Josephson

nano-junctions [75, 76] and magneto-optical trapping of cold atoms [77, 78, 79, 80], have

achieved the realization of 1d quantum fluids.

Cold atoms experiments proves to be extremely fruitful because of the possibility to

realize these systems in an extremely well-monitored environment [81, 82] where the most

relevant parameters can be tuned with a precision never seen before. Together with these

recent groundbreaking experimental advances, theoretical studies over the years have shown

that 1d quantum fluids display a significantly rich phenomenology. At the same time, the

analytical effort to adequately model and describe them is not too burdensome, thanks to

the presence of only one spatial dimension. A similar point can be obviously made about

numerical simulations. Keeping in mind all these peculiar features, 1d quantum fluids are

extraordinary candidates to answer a lot of textbook questions about, for instance, non-

equiibrium statistical mechanics and quantum transport [83, 84, 85].

The basic theoretical tools for 1d bosonic systems consists in the Lieb-Lininger equa-

tions (LL), providing an exact description of T = 0 K thermodynamic quantities [86, 87],

while approximated analytical expressions and numerical results at finite temperature can

be extracted from the Yang-Yang theory [88, 89], which obviously recovers the LL one at

zero temperature. As for 3d weakly interacting Bose gases, the first step in modelling the

interaction potential passes through a Fermi δ-like potential. Therefore, it is not surprising

that the resulting thermodynamics is universal, since the only dependence from the inter-



64 2.2. Finite-range thermodynamics for d = 1

atomic potential is via a properly defined scattering length. However, as mentioned in sec.

2.1.2, deviations from universality due to the finite-range potential have been shown to be

quite relevant for a better understanding of static and dynamical properties of 3d Bose gases

[90, 65, 18, 68, 91, 26, 19, 92, 93, 94, 69, 67]. Finite-range effects naturally arise by modelling

the two-body interactions beyond the unphysical zero-range approximation. In systems with

lower dimensionalities, their role can be become much more interesting, since they naturally

affect the beyond-mean-field terms in the equation of state. Within a perturbative field-

theory framework, they enter in the loops corrections to the saddle-point classical solution.

The most interesting situation is surely the d = 2 case, briefly described in the next

section. As recently shown in [28], since finite-range corrections affect the behavior of quan-

tum and thermal fluctuations, they have to be taken into account also in lower dimensional

system, where fluctuations are naturally strongly enhanced (Mermin-Wagner-Hohenberg the-

orem [12, 13]).

A detailed analysis, both analytical and numerical, about the role of fluctuations is

mandatory, since improvements in cold-atoms experiments are providing a precision bench-

mark which makes possible to explore in great details beyond-mean-field effects [77, 78, 95,

96]. Concerning the relevance of fluctuations in ultracold quantum fluids, the most im-

mediate consequence consists in deviations from mean-field predictions for thermodynamic

quantities like, for instance, pressure [67], chemical potential or the condensate fraction.

Since we work actually in a perturbative scheme, it seems also natural to guess that these

deviations are present but not so crucial. Fortunately, this is not the whole story; indeed, it

was recently shown, both theoretically and experimentally, that quantum fluctuations pro-

vides a stabilization mechanism against collapse, as predicted by the mean-field theory, both

in dipolar condensate and binary Bose mixture [97, 98, 99, 100, 101].

Moreover, we have to add the possibility offered by Feshbach resonances: in actual ex-

periments one can reach and explore regimes where the effective range of interaction is

comparable the scattering length. In these situations, a universal GPE-based description is

no more reliable, and one has to consider finite-range corrections. These peculiar situations,

which aroused a lot of interest in the last ten years, will be deeply analyzed in the proceeding

of the thesis, with particular focus on the dipole-dipole interaction (for a preliminar review

about this issue we refer to [102]).
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In this section, mainly based on our work in [103], we investigate the role of non-universal

corrections to the thermodynamics of the 1d Bose gas, both at zero and finite temperature.

By following the effective-field-theory scheme [65, 18, 67, 28, 25], we derive a novel equation of

state, taking into account the finite-range character of the atom-atom interaction potential.

Similarly to sec.2.1.1, these corrections are computed at Gaussian (one-loop) level, where

non-physical divergences are removed by using dimensional regularization. However, differ-

ently from the d = 3 case, one-dimensional quantum systems are endowed with the exact

theory developed by Lieb and Lininger, providing a strong benchmark to evaluate our results.

Our Gaussian theory reproduces extremely well the LL equation of state from weak

up to intermediate couplings [103]. Finite-range effects are then analyzed by considering

measurable quantities such as the grand potential, the pressure and the sound velocity.

2.2.2 Effective field theory for the one-dimensional Bose gases

The Euclidean Lagrangian density of identical bosonic particles of mass m and chemical

potential µ in a 1D configuration is our starting point. Similarly to the d = 3 case, it is

given by [1, 2, 3]

L = ψ∗(x, τ)

[
~∂τ −

~2

2m

∂2

∂x2
− µ

]
ψ(x, τ) +

1

2

∫
dx′|ψ(x′, τ)|2V (|x− x′|)|ψ(x, τ)|2 , (2.32)

where the complex field ψ(x, τ) describes the bosons, whose two-body interaction potential

is represented by V (|x− x′|).

In Chap. 1, within a functional formalism, we have derived the Bogoliubov theory for an

ultracold and dilute Bose gas by approximating the atom-atom interaction with a zero-range

pseudopotential as in Eq. (1.24). In the first part of this chapter we have extended our analy-

sis by including finite-range corrections solving the emergences of a spurious thermodynamic

instability. So, we aim to proceed in a similar way for the d = 1 case. In order to analyze

the role played by the finite-range corrections, let us begin by considering a low-momentum

expansion for interaction potential, namely

Ṽp(q) = g0 + g2q
2 +O(q4) , (2.33)
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where Ṽp(q) has the obvious meaning of the Fourier transform of the interaction potential.

As in Eq. (2.7), we aim to generalize the constant behaviour (in the Fourier space) of

the Fermi pseudopotential [26]. Following the spirit of the effective-field-theory, the crucial

point in this analysis consists in connecting the coupling constants g0 and g2 to physical and

measurable parameters like the 1d scattering length and the corresponding effective range.

In this section we use a slightly different technique respect to sec. 2.1.2, by explicitly

making use of the t-matrix technique [2] instead of relying upon a proper pseudopotential

(cfr. Eq. (2.11)). In order to fulfill these premises, we begin by recalling some notions from

the scattering theory [104]. In particular, for d = 1 we do not have to deal with additional

complications due to the expansion in partial waves, but we simply consider the scattering

amplitude for the even scattered wavefunction. This amplitude can be expressed in terms of

a phase shift

f0(q) = qeiδ0(q) sin δ0(q) . (2.34)

Similarly to the three-dimensional case, it holds a relation between the phase shift, the

scattering length and the effective range, namely [104]

q tan δ0(q) =
1

as
+

1

2
req

2 +O(q4) . (2.35)

We have to underline that the equation above has not to be confused with its 3d correspond-

ing in Eq. (2.12). By assuming that the most relevant scattering processes in the systems

are the ones described by f0(q) as in Eq. (2.34), the t-matrix defined in Eq. (1.27) is then

approximated by

T0(q) ' −
2~2

m
f0(q) . (2.36)

At the same time, the Lippmann-Schwinger equation for t-matrix reads the formal solution

in terms of operators

T̂ =

[
1

V̂
− 1

E − Ĥ0

]−1

, (2.37)

where V̂ is the interaction operator and Ĥ0 the free Hamiltonian. Moving to a basis in which
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Ĥ0 is diagonal, in the limit of low momenta, Eq. (2.37) reads [2, 65, 103]

T0(q) =

[
1

Ṽ (q)
− m

2π~2

∫
dp

p2 − q2 + iκ

]−1

. (2.38)

In the equation above κ has to be intended as a limit procedure κ → 0+ which has to be

taken after the calculation of the integral. It is easy to check that its inclusion is crucial to

remove the singularities along the integration path, consenting the application of the residue

theorem. More precisely, we have to compute an integral of the following kind

I =

∫ +∞

−∞

dp

p2 − q2 + iκ
(2.39)

whose poles are given by p2 = q2 − iκ ≡ z. In order to apply the residue theorem, we

are required to identify the position of the isolated poles in the complex plane. The square

root of the complex number z is provided by the De Moivre formula, such that in polar

coordinates we get
√
z = |z|1/2 exp(iθ/2). The modulus of z is easy to compute, i.e. |z| =

q2
√

1 + κ2/q4 ' q2 + κ2/(2q2). On the other hand, the phase can be expressed as θ =

−arctan(κ/q2) ' −κ/q2. Thus, the poles of I are found to be

p1,2 ' ±
√
q2 +

κ2

2q2

[
cos
(
θ/2) + i sin

(
θ/2
)]
' ±q

(
1− i iδ

2q2

)
, (2.40)

one in the upper half-plane, the other in the lower one. Since the integrand function falls

off as 1/|p|2, the contour can be closed indifferently upper or down. The residue theorem is

then applied, leading to the final result

m

2π~2

∫ +∞

−∞

dp

p2 − q2 + iκ
= − im

2~2q
. (2.41)

By replacing Eq. (2.41) in Eq. (2.38) and taking Ṽ (q) as in Eq. (2.33), we get

T0(q) =

[
1

g0
− g2q

2

g20
+O(q3) +

im

2~2q

]−1

. (2.42)

On the other hand, we have an explicit equation for T0(q) involving the phase shift and

consequently, thanks to Eq. (2.35) and the identity eiδ sin δ = 1/(cot δ− i), Eq. (2.36) leads
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us to the following alternative expression

T0(q) = −2~2

m

[
as −

1

2
rea

2
sq

2 +O(q3)− i

q

]−1

. (2.43)

By matching Eq. (2.42) and Eq. (2.43), it is then possible to derive an equation for the

coupling constants in the 1d Lagrangian density, i.e.

g0 = − 2~2

mas
,

g2 = −~2

m
re .

(2.44)

We remark that our EFT procedure recovers the familiar result for the 1D coupling constant

g0 [105, 106] and a remarkably simple formula relating g2 to re. A similar procedure to get

a relationship between g2 and re has been used for the 3D Bose gas [67, 65], while in 2D the

connection between g2 and re is much more complicated due to a logarithmic dependence

on momentum in the t-matrix.

2.2.3 Thermodynamic properties

After having clarified the relation between the EFT coupling constants and the scattering

parameters, the derivation of the finite-range thermodynamics can proceed as in the previous

parts of the thesis. We aim to compute, as usual, the thermodynamic potential as the

logarithm of the partition function, Ω = β−1 logZ, with Z defined as the functional integral

over the whole set of possible configuration for the bosonic field ψ(x, τ). The perturbative

framework is developed around the splitting ψ(x, τ) = v + η(x, τ), where one has to expand

the action around the saddle-point trajectory up to the Gaussian order in η and η∗.

Since we have already detailed all the technical steps involved in the calculation, we now

simply report the final result. For d = 1 the Gaussian grand potential is still given by Eq.

(1.46), namely

Ω(µ, v) = Ωmf(µ, v) + Ω(0)
g (µ, v) + Ω(T )

g (µ, v, T ) .

The saddle-point equation relating µ and v2 remains µ = gv2 as stated by Eq. (1.39) so we

still get, at the mean-field level, Ωmf = −µ2/(2g0). Since Ω(µ) is defined as the opposite of
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the pressure, we then have the basic result

Pmf =
µ2

2g0
, (2.45)

which is not affected by any finite-range corrections, as we already know from the previous

section. This extremely simple results perfectly reproduces the LL outcome for weak cou-

pling. The double contribution to Ω(µ) arising from Gaussian fluctuations counts zero-point

energy in Eq. (1.47) and its finite temperature counterpart in Eq. (1.48). They both contain

the spectrum of excitations above the uniform mean-field configuration which is, in general,

given by Eq. (2.20), made gapless by inserting Eq. (1.39) in it.

As usual, by means of the dimensional regularization, we can heal the UV divergence in

the zero-point energy. This leads us to the zero-temperature Gaussian contribution for the

pressure P (µ), i.e.

P (0)
g (µ) =

2

3π

√
m

~2

µ3/2

1 + χµ
, (2.46)

with the definition χ = (4m/~2)g2/g0 like in Eq. (2.21). It is interesting to note that the

contribution of quantum fluctuations has an opposite sign compared to its 3-d counterpart

in Eq. (2.22). This is not a secondary fact, since it has been recently shown that it changes

significantly the scenario of droplet formation at the mean-field stability threshold for bi-

nary Bose mixture [98]. This beyond-mean-field Gaussian contribution depends explicitly

on the parameter χ in Eq. (2.21), then finite-range effects are acting up to this level of

approximation.

The zero-temperature number density n of the system is immediately derived from

n =
∂

∂µ

[
P0(µ) + P (0)

g (µ)
]

(2.47)

and the corresponding speed of sound reads

cs =

√
n

m

∂µ

∂n
. (2.48)

Again, the consistency of our theory can be effectively checked by comparing it to the exact

picture derived from the LL formalism [86, 87]. The latter is universal since no other length
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scale plays a role in the thermodynamic pictures besides the scattering length. In order to

match the original zero-range assumption for the interaction, in the upper panel of Fig. 2.4

we report the sound velocity as predicted by our Gaussian theory (solid black line) by setting

χ = 0 in Eq. (2.46) and comparing it to the solution of LL equations (dashed red line). The

zero-range interaction strength can be characterized by the parameter γ ≡ (mg0)/(~
2n)

[106, 107]. As evident from Fig. 2.4, our Gaussian theory considerably refines the mean-

field result derived from Eq. (2.46), namely c
(mf)
s (γ) = ~n

√
γ/m, which is reliable only in

the weak-coupling limit (dotted line in the upper panel). Quite remarkably, the range of

applicability of our Gaussian theory is up to γ ' 10. Only the very strong coupling (Tonks-

Girardeau) regime of impenetrable bosons is not captured by the Gaussian theory, despite

an interesting (but merely qualitative) trend agreement.

In the lower panel of Fig. 2.4 we plot the behavior of our Gaussian sound velocity

for different values of the finite-range adimensional parameter α = (~2χ)/(ma2s) = 4re/as.

The figure clearly shows that the inclusion of finite range effects deeply affects the zero-

temperature sound velocity: at fixed zero-range strength the sound velocity becomes larger

with a positive effective range, while the opposite happens for a negative effective range.

As previously stated, enhanced quantum fluctuations play a crucial role in low-

dimensional atomic quantum gases [12, 13], since they cannot be effectively controlled by

lowering the temperature. Thus, the usual mean-field scheme is particularly inadequate for

systems with low dimensionalities: it is mandatory to include at least Gaussian fluctuations

in the thermodynamic and dynamical description provided, respectively, by the grand

potential Ω(µ) and the Gross-Pitaevskii equation (GPE).

It has been shown that these corrections deeply affects the stability of 2D and 1D Bose-

Bose mixtures, enabling a transition from the homogeneous ground state to liquid-like self-

bound states [97, 98]. Despite the fact that in the proceeding of the thesis we are going to

deeply focus only on three-dimensional binary Bose mixtures, it is worth to underline that

Gaussian fluctuations are not only responsible for deviations from the mean-field scheme,

but they can drive the nucleation of new quantum phases. The recent observation of a new

peculiar quantum phase at the mean-field collapse threshold is the most striking evidence of

the existence of these, in a certain sense mystical, fluctuations. We are going to deepen this

point in the next chapters.
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Figure 2.4: Upper panel: Zero-temperature sound velocity in units of the Fermi velocity vF =
~πn/m as a function of the adimensional zero-range interaction parameter γ = (mg0)/(~2n)

[108, 107]. We compare our Gaussian sound velocity c
(g)
s (solid line), with the exact solution of LL

equation [107] (dashed line), and the mean-field result c
(mf)
s (dotted line). Lower panel: Gaussian

sound velocity for different values of the adimensional parameter α = ~2χ/(ma2s) = 4re/as, which
encodes the role played by the finite range of the inter-atomic potential.

Moreover, Fano-Feshbach resonances now enable a precise fine tuning of the interaction

parameters, the effective range re being among them. Finite-range effects can then be

greatly enhanced and this pushes experiments towards regime where a universal picture is

not sufficient [91, 19, 94]. Indeed, dynamical analysis based upon a GPE-like framework are

reliable only under a precise separation among the length scales characterizing the system,
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namely re � as � δ, with δ being the average distance between atoms.

In regimes where rs ≈ as, deviations from universality are relevant, and every dynamical

picture of the system has to take into account Gaussian finite-range corrections modelled

according to our Eq. (1.47). In present experiments one can tune the scattering length

as and in turn the adimensional parameter α = 4re/as. Meanwhile, the effective range re

remains practically fixed at ∼ 10−10 m, generally smaller than as. Then, there is nothing

that prevents us from the experimental observation of the nontrivial behavior of the sound

velocity cs given by Eq. (2.48), reported in the lower panel of Fig. 2.4. Indeed, by fixing

a value of the magnetic field for the Feshbach resonances, and consequently as and re, one

can use the number density as a knob to tune the adimensional interaction parameter γ.

It is likewise possible to regard our thermodynamic description of 1d bosonic quantum

gases as complementary to the one in [109]. There, collective excitations of a one-dimensional

Bose gas were analyzed by following a hydrodynamic framework based on a GP-like equation.

However, their theory is not a pure mean-field scheme, since the chemical potential was

phenomenologically modelled around the LL exact solution.
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Figure 2.5: We plot the pressure P (µ, T ) in Eq. (2.53), with kBT in units, and µ in units of
EB = ~2/(ma2s), at the fixed value µ/EB = 0.3. We consider three different values of the adi-
mensional parameter α = 4re/as. The case α = 0 corresponds to the zero-range approximation
of the inter-atomic potential.

Similarly to sec. 2.1.2, we conclude by deriving the thermal fluctuations contribution.
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In the continuum limit, by taking the opposite of Eq. (1.48) for d = 1, the correction to the

pressure is given by

P (T )
g (µ, T ) =

1

π

∫ +∞

0
dq q

dEq
dq

(
1

eβEq − 1

)
. (2.49)

Thanks to usual change of integration variable, i.e. x = βEq(µ), one gets

P (T )
g (µ, T ) =

1

πβ

∫ +∞

0
dx q(x)

1

ex − 1
(2.50)

where

q(x) =

√
2mµ

~2(1 + χµ)

√√√√−1 +

√
1 +

(1 + χµ)x2

µ2
(kBT )2 . (2.51)

By inserting Eq. (2.51) in Eq. (2.50), a low-temperatures expansion leads us to the following

final result

P (T )
g (µ, T ) =

π

6

√
m

~2µ
(kBT )2

[
1− π2

20

1 + χµ

µ2
(kBT )2

]
. (2.52)

So, by recalling Eq. (2.45) and Eq. (2.46), the grand canonical ensemble pressure is given

by

P (µ, T ) = P0(µ) + P (0)
g (µ) + P (T )

g (µ, T ) . (2.53)

In Fig. 2.5 we report the pressure P as a function of temperature T at fixed chemical potential

µ for three values of the finite-range adimensional parameter α = 4re/as, obtained from Eq.

(2.52). At finite temperature non-universal effects slightly increase as ratio (kBT/µ)4 grows.

This is explained by recalling that the details of the inter-atomic potential become more

relevant when atoms scatter at higher energy.

2.3 Finite-range thermodynamics for d = 2

In this concluding section, we are left with the two-dimensional case. We have already

pointed out that, from a technical point of view, this is the most difficult situation: the

usual ψ4-model foresees exactly d = 2 as its critical dimension, where fluctuations growth

undergoes an outbreak. This obviously prevents the formation of an ordered phase and

consequently the true long-range order characterising the Bose-Einstein condensation [6, 37].
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This peculiar situation affects the possibility to describe the two-dimensional Bose gases

within a perturbative framework. As highlighted by Fisher and Hohenberg [43], the usual

perturbative parameter for dilute gases is given by n(d−2)/das which is identically null for

d = 2. In [110] Schick derived for the first time a reliable equation of state, which displays

a peculiar non-polynomial behaviour. These preliminar results were significantly improved

by Popov, who was the first to propose a generalized diagrammatic theory, tackling down

the divergences occuring in the Bogoliubov approach. While these relevant technical topics

are not discussed in this thesis, one has to keep in mind that a field-theory description of

two dimensional superfluid is still an ongoing research topic, also in the weakly interacting

regime [111, 112, 113, 28]. In particular, finite-range effects on the equation of state of a 2d

Bose gases has been investigated for the first time in [28] within a functional formalism. Let

us then consider a Lagrangian density L with a generic two-body interaction V (r), whose

Fourier transform is defined as Ṽ (q). At low momenta, it is possible to consider the expansion

in Eq. (2.7), namely Ṽ (q) ' g0 + g2q
2. The resulting theory is defined by

L = ψ∗(r, τ)

(
~∂τ −

~2∇2

2m
− µ

)
ψ(r, τ) +

g0
2
|ψ(r, τ)|4 − g2

2
|ψ(r, τ)|2∇2|ψ(r, τ)|2 . (2.54)

It is immediate to check that the coupling constant of L(ψ, ψ∗) are defined, in terms of the

the original potential V (r) as

g0 = Ṽ (0) =

∫
d2rV (r) (2.55)

and

g2 =
1

2
Ṽ ′′(0) = −1

4

∫
d2r r2 V (r) . (2.56)

At this point, one should try to give an expression of the constants defined above in terms of

the scattering parameters. This is certainly one of the possible way to proceed, but in d = 2

these relations are highly non-linear, with a non-polynomial dependence on the momentum

q [21, 114]. In order to provide a more limpid analysis and a length scale for the interaction

range, we follow an alternative path, by defining the characteristic range as in [28]:

R2 = 4

∣∣∣∣
g2
g0

∣∣∣∣ =

∣∣∣∣
∫
d2r r2V (r)∫
d2rV (r)

∣∣∣∣ . (2.57)
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Depeding on the potential we choose, we get a certain dependence of R on the length scale

entering in V (r). For instance, by assuming V (r) = V0e
−r2/σ2

, the characteristic range in

Eq. (2.57) reads R = σ, which depends only on the gaussian width and not on the strength

V0. In [28] Eq. (2.57) is computed also the for the square-well potential and the Yukawa

one, finding that the independence from the strength V0 holds for all these three choices.

Defining the finite range of the interaction potential as in Eq. (2.57) marks a relevant

difference between this section and the previous two. After having clarified this issue, we are

then ready to start the usual machinery. By expanding Eq. (2.54) above the saddle-point

configuration µ = g0v
2, up to the Gaussian order in the fluctuations fields, we can derive the

well-known equations for the grand potential. For the sake of clarity, we report them in the

following,
Ωmf

L2
= − µ2

2g0

Ω
(0)
g

L2
=

1

2

∫
d2q

(2π)2
Eq

Ω
(T )
g

L2
= − 1

4π

∫ +∞

0
dq q2

dEq
dq

(
1

eβEq − 1

)

where the gapless Bogoliubov spectrum is given by Eq. (2.20)

Eq(µ) =

√
~2q2

2m

[
(1 + χµ)

~2q2

2m
+ 2µ

]
.

Differently from the previous section let us now mention first the finite-temperature Gaussian

grand potential. The reason is that the calculation proceeds exactly in the same way of the

d = 3 and d = 1 case. By changing variable to x = βEq, one has to solve the following

integral

Ω
(T )
g

L2
=

1

4πβ

∫ +∞

0
dx q(x)2

1

ex − 1
, (2.58)

with q(x) given by Eq. (2.27). At low temperatures, we get the analytical expression

Ω
(T )
g

L2
= − m

4π~2
(kBT )3

[
Γ(3)ζ(3)− Γ(5)ζ(5)

1 + χµ

4µ2
(kBT )2

]
, (2.59)

where ζ(x) is the Riemann zeta function.

On the contrary, the zero-temperature contribution Ω
(0)
g has to be treated with much
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more attention than in the previous section. As in sec. 1.3.2, we can note that dimensional

regularization does not succeed in healing the UV divergence in the zero-point energy since

the outcome is proportional to Γ(−2) → +∞. Therefore, in order to properly extend the

integral to a generic complex dimension, we consider a sort of ε-expansion: we take d →
D = 2− ε, with the displacement from the desired dimensionality ε has to be intended as a

limit procedure to take at the end of the computation, i.e. ε→ 0+. Thus, this dimensional

generalization leads us to the following, still divergent, contribution

Ω
(0)
g

LD
= − m

4π~2(1 + χµ)3/2 κε
Γ

(
− 2 +

ε

2

)
. (2.60)

In the equation above, κ is an arbitrary inverse length scale appearing for dimensional

reasons. We notice that if the spectrum Eq had been gapped, the gap would have appeared

in place of κ [1]. The parameter χ defined in Eq. (2.21) depends only on the ratio g2/g0,

then its dimension is not affected by the shifting to D = 2− ε [28]. Up to the leading order

1/ε, Γ(−2 + ε/2) = 1/ε+O(1), so

Ω
(0)
g

LD
= − mµ2

4π~2 (1 + χµ)3/2 εκε
. (2.61)

We then have isolated the divergence as a single pole in ε. Notice now that, in D = 2 − ε,
the whole zero-temperature grand potential can be expressed as

Ω(0)

LD
=

Ωmf

LD
+

Ω
(0)
g

LD
= − µ2

2ξr(µ, κ, ε)
, (2.62)

where the running coupling constant is given by

1

ξr(µ, κ, ε)
=

1

g0κε
+

m

2π~2(1 + χµ)3/2 εκε
. (2.63)

By following the renormalization recipe, the flow equation for the running constant reads

1

ξ2r (µ, κ, ε)

dξr(µ, κ, ε)

dκ
=

ε

g0κε+1
+

m

2π~2(1 + χµ)3/2 κε+1
(2.64)
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which becomes, in the limit ε→ 0+,

1

ξ2r (µ, κ, 0)

dξr(µ, κ, 0)

dκ
=

m

2π~2(1 + χµ)3/2 κ
. (2.65)

The equation above is immediate to solve, leading us to

1

ξr(µ,Λ, 0)
− 1

ξr(µ, κ, 0)
= − m

2π~2(1 + χµ)3/2
log

(
Λ

κ

)
. (2.66)

The parameter Λ can be regarded as a high-energy cutoff, namely ~2Λ2/(2m) = εΛ, so

1/ξr(µ,Λ, 0) = 0. This choice implies the crucial fact that now the regulator κ corresponds

to the actual energy of the system, in the sense that ~2κ2/(2m) = µ. Thus, by collecting all

the pieces, for D → 2 (i.e. ε → 0+) the zero-temperature grand potential has the following

structure
Ω(0)

L2
= − mµ2

8π~2(1 + χµ)3/2
log

(
εΛ
µ

)
. (2.67)

The high-energy cutoff was computed for the first time in [115], so we set it at the value

εΛ =
4~2

ma2s e
2γ+1/2

(2.68)

with γ ' 0.5772 being the Euler-Mascheroni constant. In [28], it has been also underlined

that, given a two-body interaction potential, the s-wave scattering length can be extracted

from the corresponding phase shift δ0(q), which in two dimensions obeys to

cot[δ0(q)] '
2

π
log

(
q

2
ase

γ

)
(2.69)

up to O(q2) contributions. As a consistency check, we underline that by switching off finite-

range corrections, i.e. χ = 0 in (2.67), one recovers the Popov result [116, 117].

As evident from its definition in Eq. (2.21), the parameter χ weights the deviations from

universality due to the finite-range character of the interaction potential. It is interesting

then to give at least a rough estimation of the finite-range relevance, by comparing Eq. (2.67)

to its zero-range counterpart. By recalling the definition of R in Eq. (2.57), one has

∣∣∣∣
Ω(0)(µ, χ)− Ω(0)(µ, χ = 0)

Ω(0)(µ, χ = 0)

∣∣∣∣ '
∣∣∣∣

1

(1 + χµ)3/2
− 1

∣∣∣∣ '
12π2 nR2

| log(na2s)|
. (2.70)
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Besides Eq. (2.57), in the equation above we have considered the leading contribution to the

chemical potential µ, namely

µ = − 8π~2 n

m| log(na2s)|
(2.71)

arising from the inversion of the number equation n(µ) = −L−2∂µΩ(0)(µ). When R is

comparable to the scattering length, finite-range effects become sizable. Indeed [28], for

87Rb atoms one has R ' 10−8 m, while as can be be widely tuned via Feshbach resonances

[118] to, for instance, as = 1, 4 · 10−10 m. As a consequence, nR2 ' 5 · 10−2 against the two-

dimensional gas parameter na2s ' 10−5. In this regime, Eq. (2.70) gives back a correction

to the pressure of ∼ 20%.







3

GROUND-STATE PROPERTIES AND QUANTUM

DROPLETS IN BOSE MIXTURES

In this third chapter, we are going to present the effects of quantum fluctuations in the

equation of state of ultracold and dilute mixtures made by two different bosonic species.

In particular, we are going to focus on Bose gases where atoms of the same species are in

two different hyperfine states. This also offers the possibility to turn on a Rabi coupling

between them, driving the flipping of atoms from one state to the other. We analyze both

the cases and underline the eventual differences. Moreover, in the case of attractive inter-

species interaction, a striking novel phenomenon can occur. Indeed, it has been recently

observed that quantum fluctuations can drive the stabilization of a collapsing mixture into

a self-bound state with finite equilibrium density also in free space. Through an effective

variational formalism, we will be able to characterize the droplet in terms of its static and

dynamical properties.
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3.1 A first approach to multicomponent quantum fluids

Throughout the preceding two chapters, we have dealt with bosonic superfluids made

of only one atomic species. However, immediately after the groundbreaking results with

alkali atoms [31, 32], an intense experimental effort was devoted in reaching the quantum

degeneracy limit also with multicomponent bosonic gases [119, 120, 121]. A bosonic mixtures

can be made of different atomic species or atoms of the same element in different hyperfine

states.

The great interest in multicomponent quantum fluids steams from their rich phenomenol-

ogy which is basically due to the spinorial nature of the order parameter. The first theoret-

ical analysis [122] was developed between the boundaries of Landau hydrodynamic picture

[35, 123, 124, 125]. Among the following theoretical development for coupled superfluids, it

is surely worth to mention the result by Andreev and Bashkin [126]: by correcting a mis-

take in the Khalatnikov equations [122], they predicted that a mutual drag force has to act

between the two superfluid species. Unfortunately, until the advent of ultracold and dilute

atomic gases, the research on multicomponent superfluid systems were confined mostly on

the theoretical side. The reason lies on the diluteness criterion of 3He, which does not allow

the revealing of fermionic superfluidity [36].

Mixtures made of atomic gases provide much more flexibility for the same reasons listed

on the previous chapter. We have exquisite control on the experimental parameters, screening

on noise coming from the external environment and temperatures down to the nanokelvin

scale. Within the quantum degeneracy regime, multicomponent condensates can be used to

explore the dynamics of quantum spinors and the related physical effects. All around the

world, a wide range of spinorial quantum fluids can now be engineered to probe an interesting

and exotic phenomenology. Indeed, besides the above mentioned Andreev-Bashkin effect,

one can explore the arising of persistent supercurrents, internal Josephson dynamics [127,

128, 129] and itinerant ferromagnetism in fermionic mixtures [130, 131]. Moreover, ultracold

atomic mixtures have been proved to be an effective platform for quantum simulations of

cosmological topics, from analog of the Hawking radiation [132, 133, 134] to the inflaton

tunneling from a false vacuum [135, 136, 137].

As clear from the vast literature we have mentioned, the intense scientific interest in
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multicomponent atomic fluids is in part due to the possibility of working with the same

atomic species, but in different hyperfine states. In these setups, one can turn on a coherent

coupling between the internal states. Moreover, at least for alkali atoms, experimentalists

have been able to classify the properties of scattering processes between different internal

states. Thus, for binary mixtures, it is possible to tune the strength of three different

interactions: two intra-components processes and the inter-component one. In this way, one

can explore a more complex picture than the one displayed by single-component systems.

Indeed, in the latter we have a black-or-white situation, since, according to the sign of the

scattering length, the effective interaction is repulsive or attractive. A condensed cloud has

stable configurations for a repulsive two-body potential (i.e. as > 0). On the contrary an

atom-atom effective attraction (as < 0) produces an instability moving the system towards

states with increasingly higher density [33], until three-body recombinations kick all atoms

out the confining potential.

On the contrary, the interplay between interactions in binary mixtures requires much

more attention in drawing the stability threshold for the mean-field ground states. In order

to understand this important point we begin by considering a simple theoretical analysis.

3.1.1 The miscibility criterion for binary mixtures

Since we are still dealing with weakly interacting and dilute systems, it is natural to

move from a simple generalization of the Gross-Pitaevskii description. For now, we consider

a fixed number N of atoms and no internal coupling between the condensates. We then start

by writing down the following zero-temperature energy functional [36]

E
[
ψ1, ψ2

]
=

∫
d3r

∑

i=1,2

[
ψ∗
i

(
− ~2∇2

2mi
+ Vi,ext +

1

2
gii
∣∣ψ1

∣∣2
)
ψi + gi,3−i

∣∣ψi
∣∣2∣∣ψ3−i

∣∣2
]
. (3.1)

In the equation above, ψ1 and ψ2 are the order parameters of the two condensates composing

the mixture, m1 and m2 specify the atomic masses and we acknoledge the fact that, generally,

the confining potentials V1,ext and V2,ext can differ from each other. Concerning the atom-

atom interaction, for the intra-component coupling we have the usual gii = 4π~2aii/mi

for i = 1, 2, while the inter-component one is defined as g12 = 2π~2a12/mre, with mre =

m1m2/(m1 +m2) being the reduced mass. In order to ensure the intra-component stability,
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thoughtout the chapter we assume a repulsive interaction between atoms of the same species

[138, 139]. Based on detailed analysis on Feshbach resonances, this proves to be a reliable

and practical assumption, since we can use a12 as a single knob to change the character of

the effective global interaction.

In Eq. (3.1) we made another simplifying assumption by neglecting the coupling be-

tween the velocity fields defined as vi = ~∇θi/m in sec. 1.4. This hypothesis prevents

us from describing phenomena based on the relative motion between the components, such

as the Andreev-Bashkin effect. For those interested in the understanding of this elusive

phenomenon in dilute atomic gases, we refer to the recent analysis in [140].

It is easy to derive the set of coupled Gross-Pitaevskii equations by minimizing the

functional E[ψ1, ψ2] in Eq. (3.1). From

i~ψ̇j =
δE[ψj , ψ3−j ]

δψj
for j = 1, 2 , (3.2)

one can easily arrive to

i~ψ̇j =

[
− ~2∇2

2mj
+ Vj,ext(r) + gjj

∣∣ψj
∣∣2 + gj,3−j

∣∣ψ3−j
∣∣2
]
ψj . (3.3)

Obviously, within a quantum field theory perspective, the equation above can be derived

from an Euclidean action as defined in Eq. (1.23), where the order parameter has a spinorial

nature instead of being a scalar quantity. Then, by applying the saddle-point recipe, we

can recover Eq. (3.3) as the equation describing the dynamics of the classical trajectory

contributing to the partition function Z =
∫
D[Ψ, Ψ̄] exp(−S[Ψ, Ψ̄]/~). We will soon deepen

the path integral approach in the proceeding of the chapter, but for now we focus on Eq.

(3.1). In order to further simplify this functional, one can assume the fields as constant

and homogenous or, equivalently, that the confining potentials are simply a box. Despite

appearing as a textbook approximation, box potentials are now experimentally available to

probe uniform configuration properties [127].

From simple energetic considerations, one can inferred that two uniform condensates can

arrange themselves in two different ground states. We can have a miscible configuration,
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where the energy density is given by

Emix

L3
=

1

2L6

∑

i=1,2

[
giiN

2
i + gi,3−iNiN3−i

]
(3.4)

and L is the side of the box enclosing the system. On the other hand, a ground-state where

the two components are separated in space is likewise possible. In this case, the energy

density reads
Esep

L3
=

1

2L3

∑

i=1,2

gii
N2
i

V 3
i

(3.5)

with Vi the volume occupied by the i-component, so L3 = V1 + V2. Mechanical stability

requires that ∂Esep/∂V1 = ∂Esep/∂V2, resulting in [36]

g11

(
N1

V1

)2

= g22

(
N2

V2

)2

. (3.6)

Thanks to the equation above, Eq. (3.5) can then be expressed in terms of L3, namely

Esep

L3
=

1

2L6

∑

i=1,2

[
giiN

2
i +
√
giigi,3−i NiN3−i

]
. (3.7)

Miscibility occurs where Emix < Esep, therefore a comparison between Eq. (3.4) and Eq.

(3.7) leads us to the criterion g12 <
√
g11g22. However, this is not enough, since we have

to also impose that the system is robust against density fluctuations. Technically, this

corresponds to require that the Hessian matrix ∂2Emix/∂N1∂N2 is defined positive. Being a

2×2 matrix, it is sufficient to check that its determinant is positive. At the end, the criterion

for a stable miscible configuration is given by

|g12| <
√
g11g22 . (3.8)

When g12 >
√
g11g22 the mixture is unstable towards a phase separated configuration. On

the other hand, for a strong enough inter-component attraction, i.e. g12 < −
√
g11g22 the

intra-component repulsion does not manage to counterbalance it and the mixtures is unstable

towards higher density configuration. We then recover the condensate collapse for single-

component systems.
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It is evident that the physics of multicomponent atomic quantum gases is inherently

richer also under the most simplifying hypothesis. Thanks to a similar approach, we can

also derive the ground states configurations in presence of an internal coupling.

3.1.2 Ground states for coherently-coupled mixtures:

a functional approach

In this section, we consider a Bose gas with two relevant hyperfine states in a volume

L3 with chemical potential µ. In addition to the usual intra- and inter-component contact

interactions, transitions between the two states are induced by an an external coherent Rabi

coupling of frequency ωR. As in the previous section, we aim to identify the possible ground-

state configurations and to point out their stability criterion. Despite being mainly interested

in zero-temperature properties we choose to adopt the path integral formalism in imaginary

time which provides, in principle, both zero and finite-temperature informations.

Each bosonic component is described by a complex field ψi (i = 1, 2). Given the spinor

Ψ = (ψ1, ψ2)
T [1, 2, 141], the partition function of the system reads:

Z =

∫
D[Ψ, Ψ̄] exp

{
− 1

~
S[Ψ, Ψ̄]

}
. (3.9)

The Euclidean action S[Ψ, Ψ̄], in terms of spinor components, is given by

S
[
Ψ, Ψ̄

]
=

∫ β~

0
dτ

∫

L3

d3r
∑

i=1,2

[
ψ∗
i

(
~∂τ −

~2∇2

2m
− µ+

1

2
gii|ψi|2 +

1

2
gi,3−i|ψ3−i|2

)
ψi

− ~ωR ψ
∗
i ψ3−j

]

(3.10)

with β ≡ 1/(kBT ) and gij = 4π~2aij/m being aij the scattering length for collisions between

the component i and the j one (specifically a11, a22, and a12). We remark that here we are

considering a mixtures of two hyperfine states of the same atomic species, so m1 = m2.

All relevant thermodynamical quantities can be derived from the grand potential Ω =

− 1
β ln
(
Z
)

. We work in the superfluid phase, where a U(1) gauge symmetry is spontaneously

broken. The presence of the Rabi coupling in the Euclidean action in equation (3.10) implies

that both components do not have a fixed particle number. By generalizing the usual splitting
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of the field in Eq. (1.36), we define

Ψi(r, τ) = v + H(r, τ) , (3.11)

where v = (v1, v2)
T is the uniform order parameters spinor, whose entries control the onset of

Bose-Einstein condensation within each component. On the other hand, the spinor H(r, τ) =

(η1(r, τ), η2(r, τ))T gathers the fluctuations fields above v.

The mean-field plus Gaussian approximation is obtained by expanding equation (3.10) up

to the second order in ηi(r, τ) and η∗i (r, τ). In this way, one recovers the following structure

S ' Smf[µ,v] + Sg[µ,v,H] + Sint[µ, T,v,H] (3.12)

where Sg groups the Gaussian (i.e. quadratic) terms in the fluctuations, while Sint the linear

ones. In our searching for the ground states we are now interested in Smf, the contribution

independent from fluctuations.

If we aim to describe the excitations above the ground state configuration in a pertur-

bative framework, the mean-field equation of state can be derived through the well-known

saddle-point approximation. Indeed, the major contribution to thermodynamic quantities

comes from the solution of the classical equation of motion δSmf/δv = 0. Let us recall that,

in principle, the order parameter of the superfluid transition is a complex number. As a

consequence, it admits a density-phase representation (cfr. sec. 1.4)

vi =
√
ni e

iϕi for i = 1, 2, (3.13)

with ni being the density. By replacing Eq. (3.13) in Smf appearing in Eq. (3.12), the

mean-field thermodynamic potential is given by [142]

Ωmf[µ, v1, v2]

L3
=
∑

i=1,2

[
1

2

(
giiv

4
i + gi,3−i v

2
i v

2
3−i
)
− ~ωR cos(Φ)

√
v2i v

2
3−i − µv2i

]
(3.14)

where we made use of Ωmf = L3(~β)−1Smf[µ, v1, v2] and Φ ≡ ϕ1 − ϕ2 + ϕωR . We assume

that ωR ∈ R+, so ϕωR = 0. From Eq. (3.14) it is immediate to check that the minimum

energy configuration corresponds to cos Φ = +1, where ϕ1 − ϕ2 = 0. The configuration
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corresponding to cos Φ = −1 is still a stationary point of the action, but it obviously cannot

be a global minimum. Remarkably, coherently-coupled mixtures are a good platform for

quantum simulations of the early universe [135, 136, 137] precisely because of this energy

landscape. Indeed, the coexistence of a global minimum with other stationary points can be

used to simulate the inflaton tunneling from a false vacuum, as described by the renowned

Coleman equation [143, 144].

In the global minimum characterized by cos Φ = +1, it is possible to simplify Eq. (3.14)

to
Ωmf

L3
=

[ ∑

i=1,2

(
− µv2i +

1

2
giiv

4
i

)
+ g12v

2
1v

2
2 − 2~ωRv1v2

]
. (3.15)

The saddle-point equation of state can now be easily computed, leading us to the following

set of coupled algebraic equations for i = 1, 2:

(giiv
2
i + gi,3−iv

2
3−i)vi − ~ωRv3−i = µvi . (3.16)

The character of the possible ground states of a Rabi-coupled binary mixture can be better

understood in terms of the canonical energy density. Up to the mean-field level, v21 = n1

and v22 = n2 with n = n1 + n2 the total density. For the sake of simplicity we also assume

that g11 = g22. Through a Legendre transform E/L3 = Ωmf/L
3 + µn, we get then

Emf

L3
=

1

2
g(n2a + n2b) + gabnanb − 2~ωR

√
nanb . (3.17)

The equilibrium configuration is a stationary point of Emf/L
3, corresponding to the solution

of the equation [
g − gab +

~ωR√
nanb

](
na − nb

)
= 0 . (3.18)

By means of the population imbalance between the species ∆ = na − nb, it is possible to

characterize the equilibrium configurations in a very transparent way. In terms of ∆, the

solutions of equation (3.18) are given by [142]

Symmetric Ground State : ∆ = 0

Polarized Ground State : ∆ = ±n

√
1−

[
2~ωR

n(g − gab)

]2
.

(3.19)
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equals

∆

n
= ±

√
1−

[
2gωR

µ
(
g − gab

)
]2
, (3.23)

leading to the stability condition

gab >
2~ωR
µ

g . (3.24)

The results of stability analysis of the stationary points of mean-field free energy are reported

in Fig. 3.1. In order to summarize our results, the mean-field picture of coherently-coupled

binary Bose-mixtures provides us two stable ground-state configuration, distinguished by

the population imbalance ∆. In the symmetric ground state we have ∆ = 0, while a finite

imbalance characterized the polarized one. We remark that [142] the switching on of a

Rabi coupling prevents the system from displaying a separated phase, replaced by a finite

polarization. By assuming equal intra-component repulsion g11 = g22 = g > 0 as for Fig.

3.1, for g12 < −g the attractive component of the interaction processes dominates, driving

the system towards a collapse instability.

3.2 Quantum fluctuations and droplets

In this section, we derive the zero-temperature beyond-mean-field equation of state for a

binary Bose mixture. We take into account quantum fluctuations above the ground state up

to the Gaussian (i.e. quadratic) order. The lowest-energy configurations have been identified

in the previous section.

3.2.1 Quantum fluctuations and droplets: the case ωR = 0

We consider here a binary mixtures made of bosonic atoms in two different hyperfine

states, in absence of internal coupling (ωR = 0). We also assume that the miscibility condi-

tion in Eq. (3.8) holds. The Euclidean action describing the mixtures is then given by

S
[
Ψ, Ψ̄

]
=

∫ β~

0
dτ

∫

L3

d3r
∑

i=1,2

ψ∗
i

(
~∂τ −

~2∇2

2m
− µi +

1

2
gii|ψi|2 +

1

2
gi,3−i|ψ3−i|2

)
ψi

(3.25)

where Ψ = (ψ1, ψ2)
T . We underline that the equation above is similar to Eq. (3.10) with

ωR = 0 and another relevant difference. Indeed, since no states flipping is allowed, it is
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possible to define a chemical potential µ for each component. The mean-field plus Gaussian

approximation is obtained by replacing the spinor Ψ with Eq. (3.11), resulting in a structure

like the one in Eq. (3.12). In absence of internal coupling, the mean-field contribution,

independent from the fluctuations fields, is given by

Smf = ~βL3
∑

i=1,2

[
− µiv2i +

1

2
giiv

2
i +

1

2
gi,3−i v

2
i v

2
3−i .

]
(3.26)

The corresponding thermodynamic contribution is derived by noticing that, at this level,

Ωmf/L
3 = (~β)−1Smf. Therefore, by assuming that v2i ' ni, Eq. (3.26) leads to Eq. (3.4),

which was derived in sec. 3.1.1 by generalizing the Gross-Pitaevskii energy functional [36].

Let us also notice that in Eq. (3.26) we assume uniform condensates. The corresponding

equation of state can be found by solving δSmf/δvi = 0, resulting in

µi = giiv
2
i + gi,3−iv

2
3−i . (3.27)

We then proceed by consider the role played by fluctuations above the ground-state specified

by the saddle-point result in Eq. (3.27). By definition, this erases terms linear in ηi and η∗,

i.e. Sint = 0 in Eq. (3.12). Moving to Gaussian terms, in real space we find

Sg =

∫ β~

0
dτ

∫
d3r

∑

i=1,2

[
η∗i

(
~
∂

∂τ
− ~2∇2

2m
+ 2giiv

2
i + gi,3−iv

2
3−i − µi

)
ηi+

+
giiv

2
i

2

(
η∗i η

∗
i + ηiηi

)]
+

∫ β~

0
dτ

∫
d3r

[
g12v1v2

(
η1η2 + η∗1η2 + η1η

∗
2 + η∗1η

∗
2

)]
.

(3.28)

In the Fourier space, we can cast the quadratic action in Eq. (3.28) as

Sg
[
Ψ(q, ωn),Ψ(q, ωn)

]
= −~

2

∑

q,ωn

ΨM(q, ωn)Ψ (3.29)

where Ψ and Ψ are the spinors, {ωn}n is the set of bosonic Matsubara frequencies and the

4× 4 matrix M is the inverse of the propagator [2]. We can rename 2× 2 blocks composing
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this matrix as [141]:

− ~M(q, ωn) =


−~G

−1
1 (q, ωn) ~Σ12

~Σ12 −~G−1
2 (q, ωn)


 . (3.30)

The diagonal blocks corresponds to the (inverse) propagator for a species taken singularly,

whose structure [1, 2] has been analyzed in Chap. 1. Then, it is immediate to write down

− ~G−1
i =


−i~ωn + hi givi

givi +i~ωn + hi


 , (3.31)

where

hi =
~2q2

2m
+ 2giiv

2
i + gi,3−iv

2
3−i − µi . (3.32)

On the other hand, the off-diagonal blocks of Eq. (3.30), coupling two different hyperfine

states, are given by

~Σ12 = g12 v1 v2


1 1

1 1


 . (3.33)

In order to compute the zero-point energy, we can define the matrix E(q) = −~M(q, 0)

whose eigenvalues give us back the collective excitation spectra [145, 146]. As underlined in

[2, 10, 141] the matrix E(q) has to be diagonalized by keeping in mind the bosonic nature of

excitations, which means that the eigenvectors entries have to satisfy a bosonic commutation

relation; this can be achieved by diagonalizing not E(q), but instead I · E(q), where

I =


σz O2

O2 σz




with σz being the third Pauli matrices and O the 2× 2 null matrix. The resulting algebraic

system is
[
I · E(q)

]
v±(q) = E±(q)v±(q) . (3.34)

The matrices product in the equation above can be write down by recalling Eq. (3.32)

and the saddle-point result in Eq. (3.27). In presence of internal coupling between the

component, i.e. ωR 6= 0 in Eq. (3.10), we are going to obtain a similar structure for the
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propagator. It is then worthwhile to write down the matrix of the eigensystem in Eq. (3.34),

namely

I · E(q) =




h1 g11 v
2
1 g12 v1v2 g12 v1v2

−g11 v21 −h1 −g12 v1v2 −g12 v1v2
g12 v1v2 g12 v1v2 h2 g22v

2
2

−g12 v1v2 −g12 v1v2 −g22v22 −h2




. (3.35)

Instead of solving Eq. (3.34), the eigenenergies of I ·E(q) can be derived in a less demanding

way from the corresponding secular equation det
[
I ·E(q)−λ12

]
= 0. Within the Bogoliubov

regime, where the condensate depletion is small, one can approximate v2i ' ni. Thus, the

resulting excitation spectrum has two branches, namely

E±(q) =

√
1

2

(
E2
sc,1 + E2

sc,2

)
±
√

1

4

(
E2
sc,1 − E2

sc,2

)2
+
g12n1n2
m2

~4q4 . (3.36)

In the equation above, Esc,i is the Bogoliubov spectrum for the ith-component

Esc,i =

√
~2q2

2m

(
~2q2

2m
+ 2giini

)
. (3.37)

Despite the fact that Eq. (3.36) was derived for the first time in 1963 by Larsen [147],

we underline our alternative approach based on functional integration. In addition, both

branches of the Bogoliubov spectrum are gapless, since the original Hamiltonian (or the

Euclidean action in Eq. (3.25)) has a U(1)×U(1) symmetry. This means that two Goldstone

modes arise within the broken-symmetry phase. On the contrary, when the internal coupling

is turned on, a U(1) gauge symmetry holds, so we will expect only one gapless branch.

Our scheme aims include quantum fluctuations within the thermodynamic description of

the system. Up to the Gaussian level, the zero-temperature grand potential corresponds to

the zero-point energy of collective excitations. By extending Eq. (1.47) to our two-branches

spectrum in Eq. (3.36), one finds that

E
(0)
g

L3
=

1

2

∫
d3q

(2π)3
[
E+(q) + E−(q)

]
. (3.38)

As expected, the zero-point energy is UV-divergent. Anyway, since the branches of the
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Bogoliubov spectrum are both gapless, nothing prevents us from applying the dimensional

regularization scheme to Eq. (3.38). The calculation proceed exactly in the same fashion as

in sec. 1.3.2, leading us to

E
(0)
g

L3
=

8

15π2

(
m

~2

)3/2 (g11n1)
5/2

4
√

2

∑

±

[
1 +

g22n2
g11n1

±
√(

1− g22n2
g11n1

)2

+
4g212n2
g211n1

]5/2
. (3.39)

The equation above is the binary-mixtures generalization of the Lee-Huang-Yang correction

in single-component condensed Bose gases [16, 17]. The same result can be derived within a

second-quantization framework by making use of the Bogoliubov canonical transformation.

We also remark that dimensional regularization is not the only strategy to heal the

divergent behavior of the integral in Eq. (3.38). By following [2], regularizing counterterms

can appear for two reasons. First, as explained in 1.2.1, it is possible to add a convergence

factor eiωn0+ to the Gaussian action in the Fourier space (cfr. Eq. (3.29) and the following

ones). The remaining divergent terms are removed by renormalizing the scattering length

[8]. Indeed, from second-quantized scattering theory [10], one easily derived that

gii ' gii,0 +
mgii,0
~2

∫
d3q

(2π)3
1

q2
(3.40)

with gii,0 = 4π~2as/m. Following this path, Eq. (3.38) is modified into [97]

E
(0)
g

L3
=

1

2

∫
d3q

(2π)3

[
E+(q)+E−(q)−

∑

i=1,2

(
~2q2

2m
+giini−

mg2iin
2
i +mgi,3−ini n3−i

~2q2

)]
, (3.41)

which correctly gives back Eq. (3.39) obtained with dimensional regularization.

Differently from the single-component case, we are going to detail in the following that the

quantum fluctuations contribution in Eq. (3.39) is not confined to perturbative deviations

of thermodynamic quantities from the mean-field picture. On the contrary, in a recent and

ground-breaking paper [97], Petrov argued they can crucially influence the system stability

against the collapse.

By following his argument, we have to remember the mean-field stability criterion for a

miscible mixture in Eq. (3.8), namely g212 < g11g22 with g11 > 0 and g22 > 0. The Gaussian

correction E
(0)
g /L3 is computed in the miscible uniform ground state where Eq. (3.8) holds.
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We now consider our system to be on the mean-field instability threshold (g212 = g11g22)

or slightly beyond it. We characterize its position in the space of coupling constants by

defining

∆g = g12 +
√
g11g22 , (3.42)

a definition basically involving the scattering lengths. In the following we consider slightly

unstable configuration, in the sense that ∆g is negative but small compared to g11 and g22.

This instability can be easily understood by diagonalizing Eq. (3.4) expressed in terms of

density. It results that

Emix

L3
=
(
n1 n2

)

g11 g12

g12 g22




n1
n2


 =

∑

α=↑,↓
εαn

2
α (3.43)

where

ε↑ '
1

2

(
g11 + g22

)
and n↑ =

n1
√
g11 − n2

√
g22√

g11 + g22

ε↓ '
∆g
√
g11g22

g11 + g22
and n↓ =

n1
√
g11 + n2

√
g22√

g11 + g22
.

(3.44)

The eigensystem highlights that, from an energetic point of view, n↓ has to be increased

while, on the contrary, one must lower n↑. Remarkably, up to the mean-field level, the

ratio between the components densities remains constant, namely n2/n1 =
√
g11/g22. Thus,

when ∆g < 0 the system evolves towards the collapse. Within the Bogoliubov scheme, this

instability is signalled by the branch E−(q) in Eq. (3.36) becoming imaginary for small

momenta (or long wavelength in the real space). However, Petrov noticed [97] that the

major contribution to the Gaussian correction E
(0)
g comes from high momenta (i.e. short

wavelengths) where the dependence on ∆g is weak. The resulting density growth ∝ n5/2

dominates the collapsing mean-field contribution ∝ n2: the mean-field instability at long

wavelengths is consequently inhibited by quantum fluctuations at shorter wavelength.

Petrov showed that, in order to model the system slighty beyond the mean-field stability

threshold ∆g = 0, an effective action can be derived by considering only E+(q) in comput-

ing E
(0)
g . This means that one has first to integrate out the high-momentum modes. As

second step, the collapsing branch E−(q) can be computed at g212 = g11g22 by considering

(imaginary) corrections ∝ ∆g as negligible. Under this assumption, Eq. (3.39) is simplified
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to [148]

E
(0)
g,eff

L3
=

8

15π2

(
m

~2

)3/2(
g11n1 + g22n2

)5/2
. (3.45)

Let us note that the quantum fluctuations correction is positive, counterbalancing the attrac-

tion of the negative mean-field term. Because of this interplay, it is possible for the mixture to

survive at finite density also in absence of an external trapping. If E
(0)
eff /L

3 = [Emix+E
(0)
g ]/L3,

the lowest-energy configuration reads

n
(0)
i =

25π

1024

(a12 +
√
a11a22)

2

a11a22aii(
√
a11 +

√
a22)5

. (3.46)

Omitting the numerical prefactors, the structure of the energy functional at zero temperature

also reads an interesting asymptotic behaviour for the equilibrium density n(0). Indeed,

it can be checked that n(0) in Eq. (3.46) is ∝ a−3(∆g/g)2. This is interesting because,

provided (∆g/g)2 �, it implies that the stabilized configuration is still diluted, i.e. na3 � 1.

Obviously, this analysis holds at the thermodynamic limit. For a finite number of atoms,

the finite-density configuration of Eq. (3.46) is replaced by the so-called droplet state [97,

98, 101, 148]. In analogy with the Gross-Pitaevskii energy functional (cfr. Eq. (3.1)),

each component can be represented by a complex field Ψi whose dynamics results from the

following real-time low-energy effective action

S =

∫
dt d3r

[ ∑

j=1,2

i~

2

(
Ψ∗
j ∂tψj − Ψj∂tΨ∗

j

)
− Etot

(
Ψ1, Ψ2

)]
, (3.47)

under the normalization nj = |Ψj |2. The total energy density Etot reads

Etot =
∑

j=1,2

[
~2

2m
|∇Ψj |2 + Vext(r)|Ψj |2 +

1

2
gjj |Ψj |4

]

+ g12|Ψ1|2|Ψ2|2 + Eg(Ψ1, Ψ2) ,
(3.48)

where we have included also the possibility to turn on an external potential Vext(r). The

beyond-mean-field term Eg arises from the zero-point energy of Bogoliubov collective exci-
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tations [147, 97]. It is then modelled around Eq. (3.39), reading

Eg =
8

15π2

(m
~2

)3/2
(g11n1)

5/2f

(
g212
g11g22

,
g22n2
g11n1

)
(3.49)

with f(x, y) =
∑

±[1+y±
√

(1− y)2 + 4xy]5/2/(4
√

2). By applying the saddle-point method

to Eq. (3.47), it is immediate to derive the set of generalized Gross-Pitaevskii equation

i~
∂Ψj
∂t

=

[
− ~2∇2

2m
+ Vext + µj(Ψ1, Ψ2)

]
ψi (3.50)

with

µj = gjjΨ1 + g12Ψ2 +
δEg
∂nj

. (3.51)

Under Petrov assumption, by computing the beyond-mean-field term at g212 = g11g22, the

correction to Eq. (3.50) can be considered in the following simplified form

δEg
∂nj

=
32

3
√
π
gjj

(
a11|Ψ1|2 + a22|Ψ2|2

)3/2

. (3.52)

The set of Eq. (3.50) with the correction Eq. (3.52) was first solved in [148], both in real and

imaginary times. Remarkably, the real-time dynamics confirmed that the condensate collapse

can be prevented by including the δEg/δnj given by Eq. (3.52). Moreover, simulations based

on Eq. (3.50) are in good agreement with experimental observation [101, 148] for mixtures

of 39K atoms in the hyperfine states |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 1,mF = 0〉.
While in [101, 148] we have the first direct confirmation of Petrov’s theoretical proposal for

collapsing binary mixtures, the stabilizing role of quantum fluctuations has been investigated

also in dipolar condensates. In [149, 150, 151] it was shown that self-bound structures

can appear by including the Gaussian contribution of quantum fluctuations in the Gross-

Pitaevskii equation.

3.2.2 Self-bound states classification for ωR = 0:

The case of the soliton-droplet crossover

In this section, we aim to achieve a deeper insight in the peculiar features of this novel

droplet state predicted in [97, 98]. From a theoretical point of view, the appearance of this
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unexpected phase has an intrisically quantum nature, since quantum fluctuations control its

formation. Their inclusion in the thermodynamic picture provides a sort of quantum pressure

preventing the instability towards the collapse. Within a mean-field frame, the collapse

occurs when inter-component attraction is dominant, i.e. ∆g < 0. Experiments confirming

Petrov’s guess [101, 148] are, actually, the most effective way to probe the existence and the

properties of quantum fluctuations. It is then clear why this proposal has resonated so much

within the atomic physics community.

At the same time, another self-bound state, the bright soliton, has been observed and

studied in Bose-Einstein condensates for a much longer time. A soliton, or groups of solitons,

can appear because of sudden quenches in the interaction strength or, more generally, as

excitations in confined geometries with reduced dimensionalities. In principle, only pure

one-dimensional systems can sustain stable solitons. When the atom-atom interaction is

repulsive (self-defocusing non-linearity) one recovers localized dark solitons, while attractive

condensates (self-focusing non-linearity) can display bright solitons. For an exhaustive and

detailed review, we point the reader to [152]. We only mention that solitons can be studied

also in three-dimensional setups by means of optical waveguides or cigar-shaped trapping

potential which are able to stabilize them.

Here, inspired by the recent Tarruell’s group experiment [153] in Barcelona, we proceed

to characterize the droplet state by comparing it to the solitonic one. In [153], the formation

of dilute self-bound states in a two-component BEC was studied in a tight optical waveguide.

Interestingly, above a critical value of the magnetic field a smooth crossover interpolating

between droplets and bright soliton states was observed. Below such critical magnetic field

and for small particle numbers a bistable region is detected, corresponding to different min-

ima of the energy functional. As underlined above, droplets and solitons appear because

of different mechanisms: for the droplets, an interplay between mean-field attraction and

fluctuations repulsion, while solitons are genuine system excitations.

In the following we are going to analyze the structural properties and the collective modes

of droplets and soliton confined in an optical waveguide. In order to properly distinguish

these two types of self-bound states, we have to recall that collective modes acts as a tool to

characterize the behavior of an ultracold atomic gas. In presence of non-local interactions,

such as soft-core [154, 155, 156] or dipolar potentials [149, 151], collective modes are cru-
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cial in detecting quantum phase transitions from uniform ground states to more structured

configurations.

Binary systems naturally support modes where the two components move in phase, such

as monopole and quadrupole oscillations. They are expected to be the lowest energy exci-

tations and their analysis can be greatly simplified by assuming that, over the oscillation

period, the components occupy the same spatial mode. More interestingly, the spinorial na-

ture of the order parameter allows nontrivial collective modes where the internal components

move out of phase around the equilibrium configuration. The simplest case is represented by

the so-called spin-dipole excitation. For a repulsive two-component Bose gas the spin-dipole

oscillation frequency depends crucially on the presence of an external confining potential as

well as on the reciprocal interaction strength. They were recently characterized in an exper-

iment in Trento [157]. On the contrary, for attractive binary mixtures, we observe [158] that

spin-dipole oscillations may take place even in the absence of an external potential. In this

case, the inter-component attraction plays the role of the restoring force, without the need

to superimpose an external trapping.

For a binary Bose mixtures made of atoms in two different hyperfine states in a volume

L3, the starting point of our analysis is the real-time low-energy effetive action in Eq. (3.47).

For the sake of clarity, we report it below

S =

∫
dt d3r

[ ∑

j=1,2

i~

2

(
Ψ∗
j ∂tΨj − Ψj∂tΨ∗

j

)
− Etot

(
Ψ1, Ψ2

)]
,

where Etot is given by Eq. (3.48). We recall that Vext(r) is the confining potential, while

gjk = 4π~2ajk/m. The fields are normalized to the species density, i.e. |Ψj |2 = nj . The total

energy density Etot includes the Gaussian contribution of quantum fluctuations Eg, given

by Eq. (3.49). As anticipated, an analysis of in-phase collective excitations can be greatly

simplified by assuming that the fields share the same spatial configuration. This means that

we can redefine

Ψj =
√
nj φ(r, t) for j = 1, 2. (3.53)

This assumption neglects the inter-component dynamics, resulting inadequate to probe, for

example, spin-dipole oscillations. The minima of mean-field energy density Eq. (3.4) fix the
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ratio between the components of the population at which the spatial overlap is maximized,

i.e. N1/N2 =
√
a22/a11 [97, 153], which we assume from now on. Moreover, we slightly

modify our notation by defining

∆a = a12 +
√
a11a22 , (3.54)

instead of ∆g in Eq. (3.42). By replacing Eq. (3.53) in Eq. (3.48), in terms of the scattering

lengths we get

Etot =
~2ntot

2m

∣∣∇φ
∣∣2 + ntotVext(r)

∣∣φ
∣∣2 +

4π~2

m

∆a
√
a22/a11(

1 +
√
a22/a11

)2ntot
∣∣φ
∣∣4

+
256
√
π~2

15m

(
ntot
√
a11a22

1 +
√
a22/a11

)5/2

f

(
a212

a11a22
,

√
a22
a11

)∣∣φ
∣∣5 ,

(3.55)

with ntot = n1+n2 the total density. In order to properly model the experiment performed in

[153] we assume a harmonic confinement on the transverse plane, namely Vext = 1
2mω

2
⊥(x2 +

y2). In the following, all lengths are in units of a⊥ and energies in units of ~ω⊥. Scattering

lengths will be rescaled in units of the Bohr radius a0 for convenience. The beyond-mean-

field phase diagram and the static properties of the ground-state configurations have been

studied in [101, 148].

The variational framework provides a possibility to analytically explore the properties of

the system. Here, we take a Gaussian ansatz

φ(r) =

√
L3

π3/2σxσyσz
exp

(
−

∑

ri=x,y,z

r2i
2σ2ri

)
(3.56)

whose variational parameters are σx, σy and σz. The original condition ||ψ||2 = N is pre-

served by the prefactors in Eq. (3.56). By replacing it in Eq. (3.55) and taking the infinite

volume limit, the variational energy per particle is given by [153]

E

N~ω⊥
=

1

4

( 1

σ̃2x
+

1

σ̃2y
+

1

σ̃2z

)
+
σ̃2x + σ̃2y

4
+

2N∆ã√
2πσ̃xσ̃yσ̃z

√
ã22/ã11(

1 +
√
ã22/ã11

)2

+
512
√

2

75
√

5π7/4
N3/2

(σ̃xσ̃xσ̃z)3/2

( √
ã11ã22

1 +
√
ã22/ã11

)5/2

f

(
ã212

ã11ã22
,

√
ã22
ã11

)
.

(3.57)
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In the equation above the tilde signals a length in units of a⊥. By considering 39K atoms

[138], the condition ∆a < 0 can be achieved via Feshbach resonances by tuning only one of

the three scattering lengths while leaving the others fixed. At the end of this section, we

will provide a little more details on the experimental numbers. Both droplets and solitons

can be observed because of the simultaneous presence of quantum fluctuations and external

confinement.

For low particles number or, equivalently small values of |∆a|, the system is in the

so-called solitonic state, whose shape crucially depends on the trapping profile. Indeed,

σx = σy ∼ a⊥, while σz is much greater. Beyond-mean-field corrections are not necessary

for the stability of this state. This is confirmed by the good agreement between mean-field

simulations [159] and quantities like energy and density profiles.

The situation changes by increasing the particle number or lowering ∆a. Within these

regimes, the ground state is isotropic, i.e. (σx = σy = σz < a⊥) and, more importantly, it is

not affected by the aspect ratios of the external confinement. This self-bound state can be

predicted only by taking into account the contribution of Gaussian quantum fluctuations in

the variational energy, see Eq. (3.49).

The results of our variational analysis based on Eq. (3.56) are reported in Fig.3.2 where

we plot the width as a function of N at fixed values of ∆a (panels Fig. 3.2(a)-(c)) and, in

turn, as a function of ∆a for fixed values of N (panels Fig. 3.2(d)-(f)). At fixed ∆a, the

system approaches the droplet state by increasing the particle number. In order to reach a

pure isotropic state, the effective mean-field attraction, i.e. ∆a, has to be strong enough.

For example, at ∆a = −5.1 a0, σz remains two times larger than the radial width even at

N = 10000, while for ∆a = −10.6 a0 the system approaches a spherical configuration already

atN ' 5000 particles. For weak attractive interactions (small negative ∆a) the shift from one

bound state to the other occurs via a smooth crossover (see Fig. 3.2 for ∆a = −8.7 a0). At

stronger interactions (large negative ∆a) the system undergoes a bistability where competing

minima are present in the energy functional leading to a sharp structural change of the

condensate as in Fig. 3.2 at ∆a = −10.6 a0 [153]. A similar picture emerges by considering a

fixed particles number and tuning the effective mean-field attraction as in the panels (d)-(f)

of Fig. 3.2.

Beyond the structural properties of the ground state summarized in Fig. (3.2), a deeper
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(3.57) with the Gaussian ansatz given by Eq. (3.56). Concerning the excitation frequencies,

the Gaussian approach provides a effective and semi-analytical tool to extract reliable results

throughout a wide range of quantum fluids. For instance, concerning purely one-dimensional

Bose mixtures, a recent and detailed study has been carried out in [160]. There, numerical

solutions of a Gross-Pitaevskii equation were compared to variational Gaussian outcomes.

Moreover, this theoretical recipe was applied to model droplet-like structures and surface

effects in trapped Fermi gases. In [161], density functional simulations well reproduced

variational results.

Three different oscillation modes (ωI , ωII , ωIII) are expected by solving the eigenvalue

problem for the Hessian matrix Hess(E) = ∂2E
∂σi∂σj

computed at the energy minimum. The

outcomes of our variational calculation are then reported in Fig. 3.3 and 3.4.

The frequency ωI (black solid line in Fig. 3.3) can be easily excited along the solitonic

side of the crossover. This feature reflects the absence of confinement along one direction.

The other two modes ωII and ωIII (red and green solid line) are degenerate and converge to

' 2 (in units of ~ω⊥) as in a weakly interacting BEC [159]. The degeneracy is an obvious

consequence of the cylindrical symmetry of the radial confinement. This structure is clearly

represented in panel (d) of Fig. 3.3, where mode frequencies are depicted for the N = 2000

case: ωII = ωIII ' 2, two order of magnitude higher than ωI . This property survives in

the solitonic side of the crossover also for higher particle numbers or lower values of ∆a (cfr.

Fig. 3.3, panels (b), (c), (e) and (f)).

In the droplet side of the crossover, Fig. 3.3 also shows the particle-emission-threshold

−µ. The chemical potential µ is obtained by differentiating the total energy in Eq. (3.55)

with respect to N within the Gaussian ansatz in Eq. (3.56). Throughout the droplet

regime, in place of small amplitude oscillations around the ground state configuration, the

system damps the energy excess by simply expelling particles from the droplet. This peculiar

self-evaporation process has been predicted by Petrov [97] and seems confirmed by the first

experimental check on his proposal [148]. We want to remark the peculiarity of this situation:

for instance, also in the BCS-BEC crossover we are in presence of a negative chemical

potential, but collective modes can be anyway detected. The reason is that Fermi gases

are trapped, while droplets do not effectively sense the presence of the waveguide.

In the solitonic state, µ > 0 for every value of ∆a, thus ωI can be excited and experimen-
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assume it occurs along the z-axis, resulting in the following generalized ansatz

Ψj =

√
Nj

π3/2σ2rσz
e
−x2+y2

2σ2
r exp

[
− (z − zj)2

2σ2z
+ iαjz

]
, (3.58)

where the fields Ψ1 and Ψ2 obey the normalization condition
∫
d3r|Ψj |2 = Nj . In the equation

above we have assumed cylindrical symmetry σx = σy = σr, while {αi}i=1,2 describe the

corresponding slopes of {zi}i=1,2. The set of variational parameters [162, 163] is then given

by {z1, z2, α1, α2}. Replacing (3.58) into the action in Eq. (3.47), we derive the Lagrangian

L =
∑

j

{
− ~Njzjα̇j −

~2Nj

2m
α2
j −

~2Nj

2m

( 1

σ2r
+

1

2σ2z

)
− Nj

4
mω2

0

(
2σ2r + λ2zσ

2
z + 2λ2zz

2
j

)

− 1

2

gjjN
2
j

2
√

2π3/2σ2rσz

}
−
g12N1N2 exp

[
− (zj−zk)2

2σ2
z

]

2
√

2π3/2σ2rσz
+ Eg .

(3.59)

The quantum fluctuations contribution in Eq. (3.49) is simplified by assuming g212 = g11g22

[148]. This implies the system is close to the mean-field instability threshold [36]. The

Gaussian correction Eg to energy density then reads

Eg =
(m
~2

)3/2 ∫
d3r
(
g11|Ψ1|2 + g22|Ψ2|2

)5/2
. (3.60)

Analytical results can be derived by considering a symmetric mixture, where g11 = g22

and consequently N1 = N2. The Euler-Lagrange equation are computed from Eq. (3.59)

via d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0, with q being the vector of variational parameters. Accordingly, the

equation for the slope αi = mżi/~ is elementary, so its dynamics it is completely determined

by the one of zi. The resulting (linearized) system of differential equations is then given by

z̈1 + ω2
0λ

2
zz1 =

√
2

π

(
a12~

2N1

m2σ2rσ
3
z

)
(z1 − z2)−

1024

25π1/4

(
a
5/2
11 ~2N

3/2
1

m2σ3rσ
7/2
z

)
(z1 − z2)

(z1 
 z2) .

(3.61)

The equation for z2 is exactly equal to the one for z1 except for a global minus sign on the

right hand side. From Eqs. (3.61), we can immediately infer the equations of motion for the

center of mass and the relative coordinate z̃ = z1 − z2. The former corresponds to the sum





108 3.2. Quantum fluctuations and droplets

strengths and three different particle numbers.

Similarly to our study of in-phase excitations, in the droplet side of the crossover we

have to compare the spin-dipole excitation energy to the particle-emission threshold. We

observe that only in the soliton regime spin oscillations become observable (N = 1000). In

the droplet phase self-evaporation is the dominant mechanism.

In Eq. (3.63), we can identify two different contribution to spin-dipole oscillation. First,

we have the mean-field attraction between the components, which is ∝ a12. Then, we have

the Gaussian quantum fluctuations contribution encoded in Eg given by Eq. (3.60). From

its structure, it is evident that it cannot be split into two terms, one for each component.

Self-bound states in binary Bose mixtures are peculiar also for another reason highlighted

by Eq. (3.63): spin-dipole oscillations are not inhibited by turning off the longitudinal

confining. Indeed, a restoring force driving the oscillatory motion is established by the

interplay between mean-field attraction and quantum fluctuations repulsion. This then an

extension from the scenario depicted in [157].

Let us now conclude this section by pointing out the relevant experimental parameters

in the self-bound states classification. Following the original proposal in [97], experiments to

probe quantum droplets in binary Bose mixtures are performed by now with 39K atoms in

two different internal states, |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 1,mF = 0〉. By tuning

the magnetic field between B = 54 ÷ 57.5 G, where a11 = 33.5 a0 and a12 = −53.6 a0, the

corresponding Feshbach resonance [138] for a22 provides a wide range of values for ∆a, from

−15 a0 to +10 a0. In-phase collective excitations (such as monopole and quadrupole modes)

can be studied in a setup similar to the one develop by the group of L. Tarruell in Barcelona

[153]. Within a variational framework, our results confirm the dominant role played by self-

evaporation along the droplet side of the crossover. Indeed, monopole and quadrupole are

observable, in principle only in a restricted window in the parameters space, as reported in

Fig. (3.4). Moreover, we developed zero-temperature analysis, leaving unanswered every

question about what happens for small, but finite temperatures.

A tighter range of experimental values is required to probe our analytical prediction about

out-of-phase excitations. This is due to the symmetry requirement g11 = g22. As in [67], we

consider the symmetric mean-field ground state given by the condition a11 ' a22 ' 33.5 a0

at B = 54.5G, where a12 = −54 a0. The experimental protocol is then similar to the one
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proposed in [157], where a supplementary effort has to be devoted to the fine tuning of

the magnetic fields and scattering lengths. The displacement from a state with complete

spatial overlap can be achieved through a magnetic field gradient δB along the longitudinal

axis, generated by two coils in anti-Helmoltz configuration. A longitudinal trapping is not

mandatory to experimentally probe spin-dipole oscillations, because of the peculiar structure

of Gaussian fluctuations contribution to the energy density. From an experimental perspec-

tive, our study may provide a complementary insight to that of [157]. Finally, we mention

that the effect of three-body losses could be included into a full description of the excitation

dynamics. This can done with the inclusion of a term −i~L3
2 |ψ|4 in the right side of the

Gross-Pitaevskii equation [164].

3.2.3 Quantum fluctuations and droplets: the case ωR 6= 0

In this section we consider again the case of Rabi-coupled binary Bose mixture as in

sec. 3.1.2. The coherent-coupling between the two hyperfine states enables the flipping of

atoms from one component to the other, as specified by the ωR-term in Eq. (3.10). Our

analysis of the possible ground-states of the system leads us to the mean-field phase diagram

in Fig. 3.1. There are two stable lowest-energy configuration according to the minima of

Eq. (3.15): a symmetric ground state, with no population imbalance, and a polarized one,

where n1 − n2 6= 0.

In the proceeding of the section, we focus on the symmetric ground state (SGS) existing

in presence of Rabi coupling, where v1 = v2 ≡ v/
√

2 and equal intra-component interaction.

Over this configuration, Eq. (3.15) becomes

Ω0(µ, v)

L3
= −µv2 +

1

4
(g + g12)v

4 − ~ωRv
2 . (3.64)

The important relation between the chemical potential µ and the order parameter can now

be derived from Eq. (3.16). Above the (SGS) we have a single equation, reading v2 =

2(µ+ ~ωR)/(g + g12). In this case, Eq. (3.64) reduces to

Ω0(µ)

L3
= −(µ+ ~ωR)2

g + g12
. (3.65)
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We have to remark that we are considering the coherently-coupled mixture within a regime

where polarization due to ωR does not occur. The absence of polarization holds also when

Gaussian fluctuations are taken into account. However, this does not mean that the Rabi

coupling is not relevant. Indeed, we are going to show that it still affects the stability of the

balanced configuration on the mean-field threshold separating the SGS from the collapsing

phase.

The zero-temperature Gaussian contribution Ω
(0)
g can be computed by means of the usual

machinery outlined in Chap. 1. Because of Rabi-coupling, the Gaussian action Sg in Eq.

(3.28) has an additional term, namely
∫
dτ
∫
d3r ~ωR

∑
η∗i η3−1. Moving to the Fourier space,

this implies a slight modification in the 2 × 2 off-diagonal blocks of M(q, ωn) given by Eq.

(3.30). Specifically, we find

~Σ12 =


g12v

2/2− ~ωR g12v
2/2

g12v
2/2 g12v

2/2− ~ωR


 . (3.66)

Keeping in mind the modified ~Σ12 in the equation above, the spectrum of elementary

excitations above the SGS can be obtained by diagonalizing the matrix −~I · M(q, 0), as

in Eqs. (3.34) and (3.35). The dependence on the order parameter can be removed by

making use of the saddle-point equation of state. The resulting Bogoliubov spectrum has

two branches:

E(+)(q) =

√
~2q2

2m

[
~2q2

2m
+ 2
(
µ+ ~ωR

)]
(3.67)

E(−)(q) =

√
~2q2

2m

[
~2q2

2m
+ 2A(µ, ωR)

]
+B(µ, ωR) . (3.68)

By defining

ε =
a12
a

(3.69)

as the ratio between the inter-component scattering length and the intra-component one,
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the functions A(µ, ωR) and B(µ, ωR) are given by

A(µ, ωR) =
1− ε
1 + ε

(µ+ ~ωR) + 2~ωR (3.70)

B(µ, ωR) = 4~ΩR

[
1− ε
1 + ε

(µ+ ~ωR) + ~ωR

]
. (3.71)

At T = 0 K, the Gaussian grand potential corresponds to the zero-point energy of bosonic

excitations, given by

Ωg(µ, v) =
1

2

∑

q

[
E

(+)
q (µ, v) + E

(−)
q (µ, v)

]
. (3.72)

By taking the continuum limit, we stumble upon the usual UV divergence. In order to re-

move it and exctract a finite contribution, in this case we do not make use of dimensional

regularization. Instead, we prefer to add a convergence factor in the Matsubara summation,

i.e. in Eq. (3.29), which generates the proper counterterms balancing the polynomial diver-

gences [2, 48, 165]. These counterterms can also be computed by expanding the branches at

high momenta. The zero-temperature beyond-mean-field grand potential is then given by

equation (3.65) plus the regularized zero-point energy, namely

Ω(0)(µ)

L3
= −(µ+ ~ωR)2

g + g12
+

8

15π2

(
m

~2

)3/2(
µ+~ωR

)5/2
+

A5/2

2
√

2π2

(
m

~2

)3/2

I(µ, ωR, ε) , (3.73)

where

I
(
µ, ωR, ε) =

∫ +∞

0
dy

[√
y

√
y2 + 2y +

B

A2
− y3/2 −√y −

(
B
A2 − 1

)

2
√
y

]
. (3.74)

The energy density E = E(0)/L3 is given by E = Ω(0)/L3+µn with Ω(0) as in Eq. (3.73), while

n = − 1
L3

∂Ω
∂µ . In the experimentally relevant limit of small coupling frequencies [134], the

energy density E has an analytical expression. By rescaling energies in units EB = ~2/ma2

(then ~ωR = ω̄REB), we get

E
EB/a3

= π
(
1+ε

)
n̄2−ω̄Rn̄+

8

15π2
[
2πn̄(1+ε)

]5/2
+

8

15π2
[
2πn̄(1−ε)

]5/2
+

14

3π2
ω̄R
[
2πn̄(1−ε)

]3/2
,

(3.75)

where n̄ = na3 is the gas parameter. As a consistency check, notice that for ω̄R = 0 one
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recover the Larsen’s zero-temperature equation of state [147]. Concerning the stability of

this symmetric configuration, it is immediate to realize that for |ε| > 1 the uniform, balanced,

ground state is not stable. For a strong inter-component repulsion, i.e. ε > 1, we expect

a polarizing instability. On the contrary, for ε < −1 the term proportional to [(1 + ε)n̄]5/2

becomes imaginary. This imaginary term acts as a dissipative mechanism [97, 150]. However,

as for other sources of losses (for instance three-body losses), in order to study the short-time

dynamics, this dissipative term can be neglected if n̄ is not too large. In [97], it was shown,

for instance, that the dissipation induced by the imaginary branch acts on much larger time

scale than three-body losses. The latter remains, in any case, the main source of instability

for condensed mixtures. As in sec. 3.2.1, the energy density in Eq. (3.75) displays the

Lee-Huang-Yang n5/2 dependence, competing with mean-field attraction proportional to n2.

This is exactly the scenario depicted by Petrov in [97, 98] for the case ωR = 0 and recently

applied also in dipolar systems [149, 150, 151]. Therefore, for ε < −1, the system sustains a

finite equilibrium density also in free space, as opposed to the mean-field collapsing scenario.

By minimizing Eq. (3.75) with respect to n̄ and neglecting the small imaginary term, we

arrive at the following result

n̄± =

(
5
√
π
∣∣1 + ε

∣∣
32
√

2(1 + |ε|)5/2

[
1±

√
1− 1792 ω̄R

15π2
(1 + |ε|)4
|1 + ε|2

])2

. (3.76)

The solution n̄− is a local maximum. The equilibrium value is given by the minimum n̄+.

Rabi frequency is limited by ω̄R <
15π2

1792
|1+ε|2
(1+|ε|)4 in order to make n̄ ∈ R. For larger ω̄R there

is only the absolute minimum with zero energy at n̄ = 0, corresponding to an evaporating

mixture, since there is no confining potential.

In sec. 3.2.2 we propose a theoretical approach to model the self-bound droplet state

with a finite number of particles. By assuming that the components share the same spatial

modes, as in Eq. (3.53) we define a space-time dependent complex field φ(r, t) such that

n(r, t) =
∣∣φ(r, t)

∣∣2 is the space-time dependent local number density and N =
∫
d3r n(r, t).

The dynamics of φ(r, t) is controlled by the real-time effective action

Seff[φ∗, φ] =

∫
dt d3r

[
i~

2

(
φ∗∂tφ− φ∂tφ∗

)
− Etot

(
|φ|2

)]
, (3.77)



3.2. Quantum fluctuations and droplets 113

where Etot = ~2|φ|2
2m + E(0)(|φ|2). The term E(0)(|φ|2) is modelled around the real part of the

energy density in Eq. (3.75). In the upper panel of Fig. 3.6 we plot the droplet density

profile obtained by solving the Gross-Pitaevskii equation associated to Eq. (3.77). The

numerical evolution is performed in imaginary time by varying the number of particles at

ωR/2π = 1 kHz. The solution indeed corresponds to a self-bound spherical droplet whose

radial width increases with the number of atoms. For large atoms numbers, the density

profile displays a plateau approaching the corresponding value in the thermodynamic limit,

specified by equation (3.76). On the contrary, the droplet does not exist for N . 977, and

the mixture evaporates. Further insight into the droplet features is provided by a variational

analysis. Therefore, we impose an Gaussian ansatz for the in-phase field φ, similar to Eq.

(3.56), namely

φ̃(r̃, t̃) =

√
Ñ

π3/4
√
σ̃1σ̃2σ̃3

3∏

i=1

exp

[
− x̃2i

2σ̃2i
+ iβ̃ix̃

2
i

]
. (3.78)

The Gaussian width σ̃i(t) and the curvature β̃i(t) are in units of the intra-component

scattering length a. Here, by setting r = a r̃ and
∣∣φ
∣∣ =
√
n
∣∣φ̃
∣∣, the normalization condition is

modified in
∫
d3r̃
∣∣φ̃
∣∣2 = Ñ . The real particle number is recovered by N = Ñ n̄. By inserting

equation (3.78) in Eq. (3.77), the Euler-Lagrange equations for the variational parameters

{σ̃i, β̃i}i are [162, 163]:

β̃i =
˙̃σi

2σ̃i
and ¨̃σi = −∂Ū

(
σ̃1, σ̃2, σ̃3

)
/∂σ̃i . (3.79)

The functional Ū
(
σ̃1, σ̃2, σ̃3

)
is given by

Ū
(
σ̃
)

=
1

2

3∑

i=1

1

2σ̃2i
−

∣∣1 + ε
∣∣ N

2
√

2π
(
σ̃1σ̃2σ̃3

) + α
(1 + |ε|)5/2 N3/2

(
σ̃1σ̃2σ̃3

)3/2 + γ
(1 + |ε|)3/2 ω̄R N1/2

(
σ̃1σ̃2σ̃3

)1/2 (3.80)

where α = 128
75

√
5π7/4 and γ = 112

9
√
3π5/4 . The energy per particle of the ground state is simply

Ēgs/N = Ū(σ̃m) where σ̃m is the minimum of the effective potential energy. In absence of

an external trapping, the system preserves its spherical symmetry, i.e. stationary points of

the effective potential in equation (3.80) are reached for σ̃m1 = σ̃m2 = σ̃m3. In the lower

panel of Fig. 3.6 we report the stability diagram of the droplet phase. Upon increasing

the number of atoms droplets appear to be more stable. On the other side, for small N ,
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a metastable region occurs: Ū
(
σ̃1, σ̃2, σ̃3

)
has a local minimum with positive energy. The

lowest-energy configuration corresponds instead to a dispersed gas with vanishing density.

It is interesting to observe that Rabi coupling acts as additional knob tuning the droplet

stability. As underlined by the red dashed line N ' 1200 atoms in the lower panel of Fig.

3.6, by increasing ωR one can cross the boundary between the droplet and the unstable

phase.

Fig. 3.7 shows the energy per particle of the self-bound droplet: the numerical approach

relying on imaginary-time evolution is in reasonable agreement with the variational one

based on Eq. (3.78). Remarkably, above a critical Rabi frequency the internal energy of the

droplet becomes positive, signaling that the droplet enters in a metastable configuration. At

a a slightly larger critical Rabi frequency the droplet evaporates. The low-energy collective

ωR/ωc

E/
N

[

E
B
a
3
]

×10−5
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Figure 3.7: Energy per particle of a system of N = 1200 particles as a function of the Rabi
coupling along the vertical line of Fig. 3.6. Red dashed line: Variational energy from equation
(3.80). Squared dots: Energy per particle from the numerical solution of the Gross-Pitaevskii
equation. Increasing the Rabi coupling to values larger than ω ' 0.16ωc the metastable droplet
evaporates.

excitations of the self-bound droplet are investigated by solving the eigenvalues problem for

the Hessian matrix of effective potential energy in equation (3.80). Our Gaussian ansatz in

Eq. (3.78) naturally enables two different excitation modes, a monopole (breathing) and a

quadrupole with frequencies given by ωM and ωQ, respectively.

In Fig. 3.8 monopole and quadrupole frequencies are reported as a function of the
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Figure 3.8: Monopole (breathing) mode frequency !M (solid) and quadrupole mode frequency
!Q (dashed) with

∣∣1 + ε
∣∣ = 0.5. Upper panel: frequencies as a function of particle number

and !R/2π = 1 kHz. Below N ' 977 the droplet becomes unstable. These modes have to be
compared with the particle-emission threshold −µ (dashed-dotted red line).

number N of atoms in the droplet, at fixed coupling frequency and scattering lengths. Since

the droplet is in free space, one has to compare these excitation frequencies with the single-

particle emission threshold (dashed-dotted red line). We immediately notice that, differently

from the soliton-droplet crossover in Fig. 3.3, collective modes can in principle be detected

for rather well extended range of atoms numbers.

The experimental observation of a droplet phase with Rabi coupled internal states is

within experimental reach. A promising candidate is a gas of 39K atoms loaded in hyperfine

states |F = 1,mF = 0〉 and |F = 1,mF = −1〉. The narrow Feshbach resonance at B ' 54.5

G for collisions between atoms in |1, 0〉, allows to tune intra-component scattering length

to a1 = a2 ' 33.5 a0, where a0 is the Bohr radius [138, 139]. The corresponding inter-

component scattering length is a12 ' −54.5 a0, which gives ε ' −1.6 . For Rabi coupling

frequencies of the order of !R/2π = 1 kHz [166] and N = 105 particles, we predict a droplet

with a FWHM ' 1.45 µm.







4

QUANTUM FLUCTUATIONS IN SUPERFLUID

DIPOLAR BOSONS

In this chapter we investigate the structural and superfluid properties of a single-

component Bose-Einstein condensate made of dipolar atoms. Atomic species such as

Chromium, Dysprosium and Erbium have a strong magnetic dipole moment and, conse-

quently, the two-body interaction is anisotropic and long-ranged. These peculiar features

crucially affect the thermodynamic picture and the ground state configurations, leading to

a richer phenomenology than the one displayed by alkali atoms.

We are especially interested in the superfluid character of dipolar condensates, in relation

to the occurring of structured ground states driven by the interplay of quantum fluctuations

and complex interactions.

Besides our analytical approach based on functional integration, we will present the

outcomes of numerical simulations based on the Path-Integral Monte Carlo algorithm.
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4.1 Introduction: magnetic atoms in play

4.1.1 Atoms and molecules: new playgrounds for physicists

The first experimental realization of Bose-Einstein condensation [31, 32] was achieved in

atomic clouds made of alkali atoms. In these extremely diluted setups, the Bogoliubov theory

has provided a reliable, and relatively simple, theoretical frame to interpret the experiments

and suggest new research directions. The Bogoliubov theory is often formulated in relation

to the zero-range approximation for the atom-atom interaction. This results in a universal

theory, meaning that all thermodynamic quantities are independent from the potential shape.

The presence of the two-body interaction survives only through the dependence on the s-wave

scattering length.

In Chap. 2 we have shown that it is sufficient to increase the density to enter in regimes

where the zero-range approximation is not reliable. We provided a possible solution, under-

lining how finite-range corrections can heal certain spurious instabilities due to the unphysical

assumption of a zero-range contact pseudopotential. At the same time, Chap. 3 pointed

out that the relevance of quantum fluctuations is not limited to deviations of thermody-

namic functions from the mean-field picture, universal or not. Strikingly, by taking them

into account, we opened the door to the observation of a new quantum phase in collapsing

mixtures. As a matter of fact, the stability of self-bound droplets is driven exclusively by

quantum fluctuations. We have to remark here that binary mixtures are an excellent plat-

form to test this idea: there, the mean-field attraction leading to the collapsing instability

is counterbalanced by the quantum pressure arising from Gaussian corrections. As already

mentioned, from a historical point of view, it is interesting to notice that Petrov theoretical

proposal [97, 98] did not find its first experimental confirmation in binary mixtures, but

instead in dipolar condensates [99, 100].

Moving from this observation, a quick look on the related literature [102, 167, 168] should

make us immediately aware of the uniquely rich phenomenology arising thanks dipole-dipole

interaction in atomic clouds. It has to be acknowledged that the atomic physics community

realized the oustanding opportunities provided by dipolar quantum gases soon after the

alkali condensation. In order to engineer this kind of quantum fluids, the most promising
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platforms rely upon polar molecules and strongly magnetic atoms. Polar molecules as KRb,

ND3 and HCN are the most natural candidates because of their extremely strong electric

dipole moment. As a matter of fact, electric dipolar coupling is much higher than the

magnetic one. These feature can be understood by considering the interaction potential of

two particles with dipole moments orientend along d̂1 and d̂2, with ‖d̂i‖= 1 for i = 1, 2. At

a distance r, one has that

Vddi(r) =
Cdd

4π

r2(d̂1 · d̂2)− 3(d̂1 · r)(d̂2 · r)

r5
(4.1)

where the coupling constant is given by

Cdd =





= µ20d
2
m for magnetic dipoles

= d2e/ε0 for electric dipoles

. (4.2)

In the equation above µ0 is vacuum magnetic permeability, dm the magnetic moment, de

the electric one and ε0 the vacuum electric permeability. Typical values of parameters in

the equations above provide a first evaluation of the relative strength between electric and

magnetic coupling. Concerning electric dipoles, we have that d ∼ ea0, e being the electron

charge and a0 the Bohr radius. The characteristic scale of magnetic dipoles is instead given

by the Bohr magneton µB = e~/(2me), where me is the electron mass. Thus, one has [102]

µ0d
2
m

d2e/ε0
∼ α2 ∼ 10−4 (4.3)

with α ' 1/137 the fine-structure constant. In order to quantify the strength of dipole-dipole

interaction between atoms or molecules, it is useful to define a characteristic length, namely

add ≡
mCdd

12π~2
. (4.4)

It is common to evaluate the relevance of dipolar interaction in an ultracold quantum gas

by considering the ratio [102]

εdd ≡
add
as

. (4.5)

For alkali atoms, magnetic dipole moment is ' 1.0µB, leading to add ' 0.7 a0. For typical
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values of the scattering length, one gets ε ∼ 10−3. For chromium atoms, condensed in

2005 by Pfau’s group in Stuttgart [169], we have dm ' 6µB, meaning that add ' 16 a0 and

ε ∼ 10−1. Nowadays, the current research on dipolar atomic gases is focused on Erbium

[170] and Dysprosium [171]. By means of Feshbach resonances, one can engineer systems

with ε & 1, a regime where beyond-mean-field effects and strong correlations arise [99, 172].

Despite the achievements in the atomic setups, the final goal in this research line is fo-

cused on realizing degenerate gases of polar molecules. This is actually due to their strong

electric dipole moment leading to add ∼ 103 a0 and εdd ∼ 102. Degenerate gases of ul-

tracold molecules have remained for years only a dream within the community, until the

groundbreaking results of Yun Je’s group at JILA [173]. They report the first experimental

realization of a Fermi degenerate gas of KRb molecules, paving the way for a bright future

research.

4.1.2 Peculiar features of the dipole-dipole interaction

By following [102], in this section we briefly outline the peculiar features of the dipole-

dipole interaction. This is the most immediate way to highlight that Bose-Einstein conden-

sates made of magnetic atoms require a theoretical analysis beyond the usual zero-range

Bogoliubov framework.

We begin by considering again Eq. (4.1), where the dipole-dipole interaction (DDI) is

defined in the most general way. In order to simplify the analysis, it is possible to consider a

set of polarized dipoles. For instance, atoms like Dysprosium and Erbium are oriented along

the z-axis by turning on a field B(r) = (0, 0, Bz). Eq. (4.1) is then modified in

Vddi(r) =
Cdd

4π

1− 3 cos2 θ

r3
(4.6)

where θ is the angle between the polarization axis and the relative position of atoms. From

Eq. (4.6), it is also evident another relevant property of DDI. In the zero-range approximation

the energy of the system is in fact an extensive quantity in the thermodynamic limit. On

the other hand, when the interaction is truly long-range, also the total number of particles

affects the energy density. So, a necessary condition for the interaction to be short-range is

that the integral
∫ +∞
r0

ddrVint(r) converges, with r0 being a cutoff. Looking at Vddi(r) in Eq.
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causes the rotation of dipoles with frequency Ω around the longitudinal axis. Since dipoles

follow the trajectory given by êB(t), Eq. (4.6) acquires an explicit time dependence, namely

Vddi(r, t) =
Cdd

4π

1− 3
[
êB(t) · êr

]2

r3
(4.8)

with êr = r/r. This experimental protocol is schematically reported in Fig. 4.1.

The precession frequency has to be much smaller than the Larmor one µLar = dmB/~

and, at the same time, we need to tune it such that atoms do not significantly move over

a period. For a confined system, this implies that Ω is much greater than the trapping

frequencies. If these conditions are matched, the effective interaction is obtained from the

time average of Eq. (4.8) over a period 2π/Ω. This average procedure results in [174]

V
(eff)
ddi (r, θ, φ) =

Cdd

4π

1− 3 cos2 θ

r3

(
3 cos2 φ− 1

2

)
. (4.9)

The equation above is equal to Eq. (4.6) except for an additional factor depending on the

tilt angle φ. By varying it from 0 to π/2 we can change the sign of the DDI, moving from

repulsion to an effective attraction, or viceversa.

In order to describe dipolar condensates within a second-quantization or a functional

framework, it is convenient to develop our analysis in the Fourier space. Therefore, we have

to consider the Fourier transform of the dipole-dipole interaction which is defined, as usual,

by the integral

Ṽddi(q) =

∫
d3re−iq·r Vddi(r) , (4.10)

with Vddi(r) given by Eq. (4.6). The Fourier transform can be computed by moving to

spherical coordinates (x, y, z) 7→ (r, θ, ϕ). In order to simplify the notation without losing

generality, one can choose the polar axis parallel to the wavevector q, with the dipole moment

lying on the xz-plane. Thus, with θq representing the angle between the dipole moment and

q, one finds that

Ṽ
(r0)
ddi (q) =

Cdd

4π

∫ +∞

r0

dr

∫ π

0
dθ

∫ 2π

0
dϕ sin θ

1− 3
(

sin θq sin θ + cos θq cos θ
)2

r
. (4.11)

The integration over the radial variable requires a cutoff r0 to ensure convergence. The
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integration over ϕ is immediate and together with the change of variable x = cos θ reads

Ṽ
(r0)
ddi (q) = Cdd(1− 3 cos2 θq)

∫ +∞

qr0

d(qr)

[
sin(qr)

(qr)2
+

3 cos(qr)

(qr)3
− 3 sin(qr)

(qr)4

]

= Cdd(1− 3 cos2 θq)

[
qr0 cos(qr0)− sin(qr0)

(qr0)3

]
.

(4.12)

The limit r0 → 0 provides the final result

Ṽddi(q) = Cdd

(
cos2 θq −

1

3

)
, (4.13)

which has the peculiar feature of being independent from the modulus of q.

4.2 The Bogoliubov theory for dipolar condensates

4.2.1 Mean-field theory and excitations

In order to theoretically investigate the thermodynamic properties of dipolar conden-

sates, we follow the procedure outlined in Chap. 1, by reproducing the Bogoliubov theory

within a functional framework [1, 2]. We then begin by considering the non-local Euclidean

Langrangian density as in Eq. (1.23), namely

L[ψ,ψ∗] = ψ∗(r, τ)

(
~
∂

∂τ
−~2∇2

2m
−µ
)
ψ(r, τ)+

1

2

∫
d3r′

∣∣ψ(r′, τ)
∣∣2V (r−r′)

∣∣ψ(r, τ)
∣∣2 . (4.14)

Differently from the usual zero-range approximation, we have to take into account the dipole-

dipole interaction between the atoms. Following [175, 176], we choose to effectively described

the interaction processes between atoms by means of

Veff(r) =
4π~2as(add)

m
δ(r) +

Cdd
4π

1− 3 cos2 θ

r3
. (4.15)

We have two different contributions to the atom-atom interaction. The first one represents

the zero-range binary collision between atoms. On the other hand, the second term accounts

for the DDI, as discussed in Eqs. (4.6) and (4.13).

Remarkably, the two interaction processes are not independent. An intense effort, both

theoretical and numerical, was devoted to build a proper pseudopotential. In two pioneering
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papers [175, 176], Yi and Yu showed that this task can be rigorously fulfilled, at least in a

perturbative way. Their calculation exactly results in an interaction potential like the one

in Eq. (4.15). As we said, these analytical results have to be intended as perturbative, since

they are derived within the first Born approximation [20]. The functional relation between

as and add can be quantitatively understood through a numerical approach. In [177, 178]

Monte Carlo simulations have been used to test the reliability of mean-field calculations.

The latter are essentially numerical solution of a modified Gross-Pitaevskii equation derived

by minimizing the following energy functional [102]

E[Ψ ] =

∫
d3r

[
~2|∇Ψ |2

2m
+ Vext(r)

∣∣Ψ |2 +
1

2

∫
d3r′

∣∣Ψ(r)|2Veff(r− r′)
∣∣Ψ(r′)

∣∣2
]

(4.16)

where Veff(r) is given by Eq. (4.15). A good agreement was found between Monte Carlo

outcomes and the solutions of the modified Gross-Pitaevskii equation. The crucial point

consists in modelling the functional relation as = as(add) in a proper way. This can be

achieved by comparing the low-energy scattering amplitude in the Born approximation [175,

176] and the full one obtained by solving the Schroedinger’s equation for the scattered

wavefunction. The final result is reported in Fig. 4.2. We underline that, within this

0 1 2 3 4 5 6 7
-40

-30

-20

-10

0

10

20

30

40

S
ca

tt
er

in
g

le
n

gt
h
a
s
/r

0

Dipolar length ad/r0

Figure 4.2: Relation between the s-wave scattering length as and the dipolar one add derived in
[177, 178] by comparing the analytical, but perturbative result obtained with Eq. (4.15) and the
full numerical solution of the scattering equations. Lengths are both in units of the short-range
cutoff r0.
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picture [175, 176, 177, 178], the only relevant parameters are as and add, while r0 plays no

physical role. The resulting theory is then universal, in the sense that it is independent from

the short-range details of the interaction process. In the following, the zero-range coupling

constant g0 = 4π~2m/as has to be intended as implicitly dependent on add.

It is worth mentioning that it is certainly possible to consider more realistic potentials

(by including a sort of Van der Waals short-range contribution) in order to describe binary

collisions of strongly magnetic atoms [179]. These potentials eventually lead to the same

effective potential. In Eq. (4.15), with add depending on the short range scattering length.

Coming back to the thermodynamic description of dipolar condensates, we begin, as

usual, by deriving the mean-field picture. Within the broken symmetry phase, the field

ψ(r, τ) is taken as in Eq. (1.36): the condensate is described by a stationary field v(r),

while η(r, τ) and η∗(r, τ) are the fluctuation fields. By neglecting, for now, quantum and

thermal fluctuations, the saddle-point method leads us to identify the contribution due to

the classical field trajectory. Keeping in mind Eq. (1.4), the mean-field thermodynamic

potential is then given by (1.5), namely

Ωmf(µ, v) = − 1

β
logZmf(µ, v) , (4.17)

where Zmf = exp
(
− Smf[v]/~

)
. In absence of a confining potential, the order parameter v

can be assumed as a real constant. Its value is fixed by the solutions of δSmf[v] = 0. The

chemical potential and the order parameter are related by the following familiar equation

(cfr. Eq. (1.39)), i.e.

µ = Ṽeff(0) v2 (4.18)

where Ṽeff(0) is the limit for q → 0 of the Fourier transform of the effective potential in

Eq. (4.15). The dipole-dipole contribution to Ṽeff(0) is reported in Eq. (4.13). By simply

applying the definition of Fourier transform, it is easy to realize that, in real space, one finds

Ṽeff(0) =

∫

V
d3rVeff(r) . (4.19)

In the equation above, we denote by V the large, but finite spherical domain enclosing the

system. Due to this assumption, up to the mean-field level, the dipole-dipole interaction does



128 4.2. The Bogoliubov theory for dipolar condensates

not explictly contribute to Ωmf/V. Indeed, by looking at Eq. (4.13), the whole dependence

on the wavevector is encoded in cos2 θq. Since the dipole moment is along the z-axis, in

terms of wavevector q components we have

cos θq =
qz√

q2x + q2y + q2z

. (4.20)

At the same time, a spherical domain with finite radius R =
[
3V/(4π)

]1/3
implies the

existence of a minimal wavenumber
∣∣qmin

∣∣ = 2π/R. By letting V going to infinity, clearly
∣∣qmin

∣∣ approaches zero in the same way along all the direction. At this point, Eq. (4.13) can

be arranged in terms of εdd. With the addition of the zero-range contribution, we get

Ṽeff(q) = g0
[
1− εdd + 3εdd cos2 θq

]
. (4.21)

At the limit q→ 0, we then obtain

Ṽeff(0) = g0 . (4.22)

This is a crucial point: thermodynamic quantities computed above the unform configuration

have to be scalars [180]. Indeed, the mean-field grand potential is given by Ωmf(µ, v)/V =

(β~)−1Smf[v]. In terms of the order parameter and the chemical potential, it reads the usual

bottleneck shape Ωmf(µ, v)/V = µv2 + 1
2 Ṽeff(0)v4. Through Eqs. (4.18) and (4.22), we arrive

again to the well-known result
Ωmf(µ)

V = − µ2

2g0
. (4.23)

The equation above is equal to Eq. (1.40), reported for the first time in Chap. 1, within the

pure zero-range approximation.

In order to compute the first beyond-mean-field correction we need to take into account

the fluctuations field up to the quadratic (i.e. Gaussian) order. In the Fourier space the

Gaussian action describing the fluctuations is formally equal to Eq. (1.41). The presence of

dipole-dipole interaction in encoded in the inverse of the propagator M(q, ωn), appearing in
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Eq. (1.41), i.e.

M(q, ωn) = β


−i~ωn + ~2q2

2m + µ
Ṽeff(q)

Ṽeff(0)
µ
Ṽeff(q)

Ṽeff(0)

µ
Ṽeff(q)

Ṽeff(0)
i~ωn + ~2q2

2m + µ
Ṽeff(q)

Ṽeff(0)


 , (4.24)

with Ṽeff(q) as in Eq. (4.21). As stated by Eq. (1.43), the Gaussian correction to Ωmf(µ)/V
requires the determinant of M(q, ωn), also describing the excitations spectrum. By means

of the saddle-point relation in Eq. (4.18), we get to the Bogoliubov spectrum for dipolar

condensates

Eq =

√
~2q2

2m

[
~2q2

2m
+ 2µ

(
1− εdd + 3εdd cos2 θq

)]
. (4.25)

For εdd > 1, the system displays unstable low-energy modes as phonons (q → 0) frequencies

acquire an imaginary part. This threshold signals a collapsing instability, where the con-

densed atomic cloud evolves towards states with increasingly higher density until three-body

recombinations expel all particles out of the condensates [181]. The collapse of the uniform

configuration is due to the partially attractive nature of DDI which dominates over the short-

range repulsion. It is interesting to note that the most unstable situation corresponds to a

perturbation with wavevector orthogonal to the dipole orientation (i.e. θq = π/2). Indeed,

for a sample polarized along the z-axis, phonons with q ⊥ êz create planes with higher

densities of dipoles in a head-to-tail configuration. Thus, the attractive character of DDI

prevails and the collapse occurs easier.

Thanks to Eq. (4.25), the Gaussian correction counts two contributions, one at zero

temperature, i.e.

Ω
(0)
g

V =
1

2

∑

q

Eq (4.26)

and the second taking into account thermal fluctuations, namely

Ω
(T )
g

V =
1

β

∑

q

log
(
1− e−βEq

)
. (4.27)

Focusing on zero-temperature fluctuations, in the continuum limit we have

Ω
(0)
g

V =
1

4π2

∫ 1

0
dχ

∫ +∞

0
dq q2Eq (4.28)
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with q =
∣∣q
∣∣ and χ = cos θq. The zero-point energy in Eq. (4.28) is ultraviolet divergent.

Since the Bogoliubov spectrum is gapless, dimensional regularization can be applied in a

similar way to sec. 1.3.2. In a generic dimension d we then have

Ω
(0)
g

V =
Sd−1

(2π)d

∫ 1

0
dχ

∫ +∞

0
dq qd−1

√
~2q2

2m

[
~2q2

2m
+ 2µ(1− εdd + 3εddχ2)

]
. (4.29)

By assuming d ∈ C, the integral on momentum can be carried out as

Ω
(0)
g

V =
Sd−1

2(2π)d

(
2m

~2

) d
2

B

(
d+ 1

2
,−d+ 2

2

)
µ

d+2
2

∫ 1

0
dχ

[
2(1− εdd + 3εddχ

2)

] d+2
2

(4.30)

where the Euler’s Beta function is then analytically continued to B(x, y) = Γ(x)Γ(y)/Γ(x+

y). By taking the limit d→ 3, we get the final equation for Ω
(0)
g ,

Ω
(0)
g

V =
8

15π2

(
m

~2

)3/2

Q5/2(εdd)µ5/2 . (4.31)

The function Q5/2(εdd) is the only factor arising due to the presence of dipole-dipole inter-

action. It is defined as

Qn(x) ≡
∫ 1

0
dt(1− x+ 3xt2)n . (4.32)

In Fig. 4.3 we report the shape of Qn(x) as defined in the equation above for n = 3/2 and

n = 5/2. It is crucial to note that these functions are real for εdd ≤ 1 while, beyond this

threshold, they acquire a small imaginary part. This is not surprising because Eq. (4.31) is

the zero-temperature Gaussian correction above the uniform ground-state, which is unstable

exactly for εdd > 1. Proceeding with the derivation of thermodynamic quantities for dipolar

condensates, from Eq. (4.31) it is natural to compute number density by means of a simple

differentiation. It is easy to check that

n = − 1

V
∂

∂µ

[
Ωmf + Ω(0)

g

]
=

µ

g0
− 4

3π2

(
m

~2

) 3
2

Q5/2(εdd)µ
3/2 . (4.33)

Moreover, within a perturbative approach, where g0n� µ, from Eq. (4.33) one can extract
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with the function Q3/2(εdd) plotted in Fig. 4.3. Moreover, they noticed the interesting fact

that, since Q5/2(1) ' 2.6, quantum fluctuations are strongly enhanced compared to the pure

zero-range approximation (where εdd = 0). Thanks to recent possibility of engineering a box

trap, this fact can pave the way to a direct measurement of the first beyond-mean-correction

in the equation of state.

4.3 Fluctuations and filaments in dipolar condensates

4.3.1 Dipolar droplets and the modified Gross-Pitaevskii equation

In the last section, we have just observed that the partial attractive character of the

dipole-dipole interaction may lead to a collapsing instability. The eventual occuring of col-

lapse is clear when one considers the spectrum of excitations above the uniform configuration

in Eq. (4.25). There, we observed that imaginary frequencies appears when εdd > 1. In

other words, unstable phononic modes occur when dipole-dipole interaction prevails on the

short-range repulsion.

Therefore, the usual picture is that uniform condensates collapse for εdd > 1, similarly

to attractive condensates when as < 0. The main difference consists in an anisotropic post-

collapse dynamics [181].

The recent results obtained by the group of T. Pfau in Stuttgart radically challenged this

understanding [99, 172, 183, 184]. Indeed, in their Dysprosium setup they observed that, by

quenching the s-wave scattering length to very low values and then driving the system into

the unstable regime, collapse does not occur. On the contrary Dysprosium atoms prefer to

form dense bosonic droplets both in trapped configuration [172, 183, 184] and in free space

[99]. The formation of dipolar droplets has been confirmed in experiments with Erbium

atoms by the F. Ferlaino’s group in Innsbruck [100].

These experimental results cannot be interpreted within a mean-field framework. At

first, conservative three-body forces were indicted for the droplets nucleation. However, as

noticed by many authors [149, 150, 185], their strength should be orders of magnitude larger

than three-body losses and there is no convincing way to justify this fact. Moreover, it is not

clear if these forces should be related (or not) to the presence of a dipole-dipole interaction.
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The other possible candidates are the quantum fluctuations whose thermodynamic weigth

we have just analyzed in the previous section. This idea relies upon Petrov’s seminal proposal

for collapsing Bose mixture [97, 98]: the structures observed by Pfau’s group have been

indeed the first experimental confirmation of the stabilizing action driven by fluctuations.

Saito was the first to suggest that quantum fluctuations can halt the collapsing process in

dipolar condensates, providing convincing Monte Carlo simulations [186] in support of his

guess. The stabilizing mechanism driven by fluctuations has been explained in Chap. 3: in

the collapsing region, the increasing of the local density ruled by the dipole-dipole partially

attractive nature can be halted by the repulsion due to fluctuations. Indeed, the collapsing

mean-field scales as n2 in the energy density, while the Gaussian correction as n5/2, producing

a similar scenario to the one depicted by Petrov.

Almost at the same time, large scale simulations based on a modified Gross-Pitaevskii

equations [149, 187, 150, 151] have shown a good agreeement with the density profile and

excitation spectra observed in laboratory. The use of a Gross-Pitaevskii equation is strength-

ened by the experimental study of droplets coherence properties. In [183], it was shown that

a single droplet is coherent and thus superfluid, leaving yet unanswered the question of a

global phase coherence of the system [188]. In order to model the dipolar droplets arising

in collapsing configurations, it is useful to introduce a generalized Gross-Pitaevskii energy

functional. By following [149, 150], we add to the mean-field functional in Eq. (4.16) the

zero-temperature Gaussian correction in Eq. (4.35). We then have

E[Ψ, Ψ∗] =

∫
d3rΨ∗

[
− ~2∇2

2m
+ Vext(r) +

1

2

∫
d3r′Veff(r− r′)

∣∣Ψ(r′)
∣∣2 + γ(0)g

∣∣Ψ
∣∣3
]
Ψ (4.37)

where Veff(r) is taken as in Eq. (4.15) and

γ(0)g =
128

15
√
π

2π~2

m
Q5/2(εdd)a5/2s . (4.38)

is the coupling constant of the fluctuation term ∝
∣∣Ψ
∣∣5. Beyond the mean-field stability

threshold (i.e εdd > 1), the function Q5/2(εdd) becomes complex. Anyway, its imaginary

part is typically 102 or 103 smaller than the real one, provided we are not deeply within the

collapsing region (1 < εdd < 2). Thus, the corresponding dissipation process acts on time
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scale much longer than the three body losses, as confirmed by the dynamical analysis in

[185, 187]. Then we can safely approximate Q5/2(εdd) as

Q5/2(εdd) = 1 +
3

2
εdd +O(ε4dd) . (4.39)

The equation of motion corresponding to the functional in Eq. (4.37) can be obtained by

stationarizing the following action

S =

∫
dt d3r

[
i~

2

(
Ψ∗∂tΨ − Ψ∂tΨ∗)− Etot

]

As in [149, 150], the equation for Ψ(r, t) is given by

i~
∂Ψ

∂t
=

[
− ~2∇2

2m
+ Vext(r) +

∫
d3r′Veff(r− r′)

∣∣Ψ(r′)
∣∣2 +

5

2
γ(0)g

∣∣Ψ |3
]
Ψ . (4.40)

The dynamics of dipolar droplets is then investigated by solving Eq. (4.40) or, otherwise, an

analytical insight can be gained by approaching the energy functional in Eq. (4.37) within

a variational framework. In the theoretical papers by the groups of L. Santos [149, 187]

and B. Blakie [150, 185, 151] both way are exploited, resulting in a very detailed picture of

droplet formation and stability. We refer the reader to the above-mentioned papers since

the remaining part of this chapter will be devoted to study the (eventual) superfluid nature

of dipolar droplets. However, we aim to give here a brief justification of the stabilizing

mechanism driven by fluctuations in dipolar condensates. More precisely, we are going to

show, in a variational framework, that the energy of a single dipolar filament has a minimum

also in free space, signalling its stability.

We begin by considering a single Gaussian filament oriented along the z-axis. In order

to model this configuration, the following ansatz can be applied

Ψ(r) = Aφi(r⊥) = A exp

{
− x2 + y2

2σ2

}
. (4.41)

We underline that, for simplicity, the filament has a constant profile along the z-axis. A

similar, but more realistic, choice for Ψ(r) can be found in [149, 150, 185]. The normalization
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condition N =
∫
d3r|Ψ |2 leads to the following definition of A, namely

A =
ρz
πσ2

(4.42)

with ρz = N/Lz the linear density along the êz direction and Lz the large, but finite, spatial

extension along this axis. At the end of the calculation, we will consider the thermodynamic

limit by taking Lz → +∞. By applying the rules of Gaussian integration, the kinetic and the

contact contribution to the total energy read Ekin = ~2/(mσ2) and Econ = (~2/m)asρz/σ
2.

On the other hand, the dipolar self-interaction contribution is much more complicated. With

the dipole-dipole interaction defined as in Eq. (4.6), one has to solve the following integral

Eddi =
1

2

∫
d3rd3r′φ2(r)Vddi(r− r′)φ2(r′) . (4.43)

In order to simplify the calculation, we can move now into the Fourier space, where the

convolution theorem transforms the integral over double spatial coordinates in

Eddi =
1

2(2π)3

∫
d3q ñ(−q)Ṽddi(q)ñ(q) . (4.44)

In the equation above ñ(q) is the Fourier transform of n(r) = A2φ2(r). The product

ñ(q)ñ(−q) can be computed analytically, reading

ñ(−q)ñ(q) =
4A4

q2z
sin2

(
qzLz

2

)
π2σ4e−σ

2(q2x+q
2
y)/2 . (4.45)

The Fourier transform of dipole-dipole interaction is reported in Eq. (4.13) so Eq. (4.44)

becomes, in cylindrical coordinates,

Eddi = −A
4σ4

4π
g0εdd

∫ +∞

0
dq⊥

∫ +∞

−∞
dqz

(
1− 3q2z

q2⊥ + q2z

)
q⊥
q2z

sin2

(
qzLz

2

)
e−σ

2q2
⊥
/2 . (4.46)

By performing the last two integral, we finally get that

Eddi

N
= −

(
~2

mσ2

)
addρz

2
fse(σ, Lz) (4.47)
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where the auxiliary function fse(σ, Lz) reads

fse(σ, Lz) = 2 + 3
√

2π

(
σ

Lz

)[
e

L2
z

2σ2 Erfc

(
Lz√
2σ

)
− 1

]
. (4.48)

At this point, let us notice that fse(σ) = 2 for Lz → +∞. The beyond-mean-field contribu-

tion to Eq. (4.37) is given by

E(0)
g = γ(0)g

∫
d3r|Ψ |5 , (4.49)

resulting in

E
(0)
g

N
=

512

75π

(
~2

mσ2

)(
1 +

3

2
ε2dd

)
a5/2s

ρ
3/2
z

σ
. (4.50)

Putting all the pieces together, the variational energy of a single dipolar filament is repre-

sented by the equation

E

N
=

~2

mσ2

[
1 + asρz − addρz +

512

75π

(
1 +

3

2
ε2dd

)
a5/2s

ρ3/2

σ

]
. (4.51)

The crucial point of this simple, and somewhat sketchy, calculation is the role of the fluctua-

tions correction in Eq. (4.51). Indeed, it can be easily check that for εdd > 1, E/N displays a

single minimum at negative energies. This signals that the filament is stable, also compared

to an evaporating configuration with vanishing density. On the contrary, by turning off the

gaussian term, the system rolls down towards increasingly thinner filaments, since there is

no minimum. At a certain point, densities are so high that a complete collapse destroys the

filament.

4.3.2 Superfluid dipolar filaments: a numerical approach

During the last year, several valiant papers approached the issue of the structural and

dynamical properties of dipolar droplets, both analytically and numerically.

Concerning the numerical analysis, we have shown that a generalized Gross-Pitaevski

equation can be derived by taking into account both dipole-dipole interaction and quantum

fluctuations. Actually, because of its relative simplicity, the first rigorous quantitative results

were produced by solving Eq. (4.40). These large scale simulations provide a confirmation

of variational results about the structural and stability properties of droplets. Variational
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results are based on Eq. (4.37) where a Gaussian ansatz is assumed for the field Ψ [149,

150]. At the same time, in [151] a rigorous linear stability analysis has been carried on

by numerically solving the Bogoliubov-de Gennes equations corresponding to Eq. (4.40).

Moreover, in [150], the droplet metastable dynamics has been studied by including a three-

body dissipative term in Eq. (4.40). However, the Gross-Pitaevskii equation is essentially

only the first step beyond the mean-field scenario. It surely provides a first interpretation to

the ground-breaking experimental findings, but it is not the only viable strategy.

Moving from the work of Saito [186], more recent investigations rely upon Quantum

Monte Carlo methods. Monte Carlo approaches are more burdensome from a computional

point of view than Gross-Pitaevskii simulations. However, their strength consists in the fact

that they do not require a set of preliminary hypothesis restraining the regime of applicabil-

ity. They are ab initio methods and, by definition, no perturbative framework is assumed.

Concerning dipolar atoms, path-integral Monte Carlo (PIMC) techniques have proved the

existence of a window in the parameter space leading to the formation of stable self-bound

structures both in free space [186, 188] and in trapped configuration [189, 190]. In presence

of an external confinement, it was recover the regular arrangement observed in [172]. How-

ever, the above-mentioned works focus on the search for a non-uniform ground state, leaving

unanswered a series of question about the superfluid nature of these configurations. This

relevant topic was first addressed in [188], on which part of this chapter is based. There, the

issue of superfluidity was analyzed for a wide range of dipolar interaction strength. In ad-

dition, we probed the superfluidity persistence against thermal fluctuations. In [188], PIMC

simulations have been carried on by means of the so-called worm algorithm [191, 192]. This

method provides a reliable technique to extract the superfluid density, since it enables the

access to the off-diagonal sector of the Green’s functions.

The starting point of our numerical simulations is the Hamiltonian for a set of N dipolar

bosonic atoms, namely

Ĥ = −
N∑

i=1

~2

2m
∇2
i +

N∑

i<j

V (ri − rj) . (4.52)

The binary interaction between atoms V (r) is modelled by imposing a short-range cutoff r0,
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ensuring the stability of the system, and an anisotropic dipolar tail. We then have

V (r) =





Cdd
4π

1−3 cos2 θ
r3

for r ≥ r0

∞ for r < r0 ,

(4.53)

where the dipolar coupling Cdd/4π is given in Eq. (4.2), θ is angle between the vector r

and the z-axis. The hard-core well is required to remove the unphysical r−3 attraction at

small distances for dipoles in a head-to-tail configuration. By taking r0 and ~2/(mr20) as

units of length and energy, the zero-temperature physics can be completely characterized

by the (dimensionless) density nr30 and interaction strength U = mCdd/(4π~
2r0). For a

vanishing dipole-dipole interaction, i.e. Cdd → 0, nr30 reduces to the usual definition of

the gas parameter na3s [177, 178]. This obviously implies that the short-range cutoff also

corresponds to the s-wave scattering length as when we turn the interaction off.

As stated by Eq. (4.15), the presence of a dipole-dipole interaction also affects the s-wave

scattering length. In Fig. 4.2 we report the precise dependence of as on the dipolar length

add. By considering N atoms in a cubic box of volume L3, a wide range of scaled densi-

ties and interaction strengths has been explored with the assumption of periodic boundary

conditions. The strongy decay of the dipole-dipole potential prevents the occuring of rele-

vant self-interaction effects, so one has to take into account only the eventual contribution

from neighbor images. Typically, at fixed density n = N/L3, N varies between 100 and 400

and it has been checked that the resulting phase diagram does not change according to size

variations. So, despite having a finite-size character, it is reasonable to assume that in the

thermodynamics limit the picture does not radically change. The phases of the system are

probed in the zero-temperature limit, obtained by lowering the temperature until observables

do not change anymore. This numerical analysis is summarized in the phase diagram of Fig.

4.4.

For small U we find that the system is in the superfluid phase (SF) (the blue region of Fig.

4.4), characterized by a unitary superfluid fraction. For densities lower than nr30 . 10−3,

the SF extends up to U ' 2.1. This threshold corresponds to εdd = 1, in agreement with the

Bogoliubov theory developed in sec. 4.2. For increasing interaction strength, we encounter a

cluster phase (CP) (yellow region in the diagram of Fig. 4.4) where superfluidity vanishes and
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for high values of U . The distinction between the two radial distribution functions, g‖(r)

and g⊥(r), further specifies the different nature of the inhomogeneous phases. Starting from

g‖(r) (the red line in the lower panel of Fig. 4.6), we observe a liquid-like behavior in

the FP. The peak at r ' r0 is a consequence of the partial attractive character of dipole-

dipole interaction. On the contrary, within the CP, g‖(r) has an oscillatory behavior before

vanishing for large distances as a consequence of the finite size of the sample. Moving to

g⊥(r) (blue line in Fig. 4.6), we observe a strong suppression in the region between the

filaments of the FP. Concerning CP, g⊥(r) reaches a plateau at intermediate distances. This

signals the irregular arrangement of cluster along the plane orthogonal to dipoles orientation.

A full description of the three phases has to include an estimation of the superfluid fraction

f
(i)
s as a function of the interaction strength and the temperature. The spatial directions are

labelled by i = x.y, z. Following [34], an estimator for the superfluidity is provided by the

winding number wi, via the equation

f (i)s =

(
m

β~2 n

)
〈w2

i 〉 , (4.55)

where 〈. . .〉 has to be intended as a thermal average. In Fig. 4.7 the superfluid fraction

along the three principal directions is analyzed as a function of the dipolar length add for

nr30 = 10−2. As mentioned above, f
(i)
s is uniform and unitary within the SF, while a strong

anisotropy occurs by crossing the SF-FP boundary. In FP, the superfluid fraction is still

unitary along the vertical direction, while it vanishes on the transverse plane. This result

seems to suggest that the single filament is phase coherent [183], but the whole system is not.

Within the CP, f
(i)
s = 0 everywhere, providing a further confirmation of filaments fragmen-

tation process. In the end, we aim to investigate the stability of superluid dipolar filaments

against thermal fluctuations. The results of PIMC simulations at finite temperatures can be

found in Fig. 4.8, for a system with N = 100 particles and nr−2
0 = 10−2. The temperature

is in units of the critical temperature of an ideal Bose gas, i.e. T0 =
[
2π/ζ(3/2)2/3

]
(nr30)2/3.

In the FP, we compare the numerical outcomes with analytical results derived within the

Landau-Khalatnikov two-fluid model outlined in Sec. 1.4. In order to take into account the
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Figure 4.7: Superfluid fraction fs as a function of the dipolar length, across the transition
from superfluid to filament transition at high densities for nr30 = 10−2. Dipoles and filaments
are aligned along the z-axis. In the SF the superfluid fraction converges to fs = 1 isotropically.
Within FP we observe fs = 1 along the vertical axis and vanishing on the orthogonal plane.
Error bars are statistical uncertainties.

anisotropic character of DDI, Eq. (1.96) has to be modified as in [197], namely

f (z)
s = 1− β~2

4π2m

∫ ∞

0
dq

∫ π

0
dθqq

4 sin θq cos2 θqe
βEq

(eβEq − 1)2
. (4.56)

In the equation above Eq is given by Eq. (4.25), with the chemical potential as in Eq. (4.34),

taking into account at least the contribution from quantum fluctuations. In Fig. 4.8 the

superfluid fraction along the z-axis is considered in the pure zero-range caso add = 0 (solid

black line) and at add = 0.6 r0 (red dashed line). In the low-temperatures regime, where

our framework effectively holds, it is reasonable to linearize the Bogoliubov spectrum Eq in

order to determine a fully analytical equation for f
(i)
s . We get

f̃ (z)
s = 1− 2π2

45

1

(1− εdd)(1 + 2εdd)3/2

(m
~2

)3/2 (kBT )4

nµ5/2
(4.57)

appearing to work quite well for T . 0.3T0. In the inset of Fig. 4.8 we report the difference
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Figure 4.8: Superfluid fraction f
(z)
s as a function of the scaled temperature T/T0 at nr30 = 10−2

for three values of the dipolar lengths: a) SF with ad = 0 (hard-core bosons), b) SF with
ad = 0.6r0, c) FP with ad = 2.6 r0. Lines refer to the analytical prediction of the temperature
dependence of the superfluid fraction at nr30 = 10−2 from Eq.(4.56) at ad = 0 (black solid line)

and ad = 0.6 r0 (red dashed line). Inset. Low temperature limit of f
(z)
s from Eq. (4.56) and

Eq.(4.57) in the SF at ad = 0 and ad = 0.6 r0. Temperatures are in units of T0, the critical value
for a non-interacting Bose gas.

between Eq. (4.56) and Eq. (4.57) for the same value of add in the main plot. For add = 2.6

within the FP, we observe that superfluidity persists along the dipole orientation for a wide

range of temperatures. Then, we can surely conclude that filaments exist non only at zero

temperature but that their anisotropic superfluidity is finite up to 0.8T0. At the same

time, the orthogonal contribution remains extremely small within the same window in the

parameters space.
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CONCLUSIONS AND FUTURE PERSPECTIVES

Throughtout all the previous chapters, we aim to convince the reader of the relevant

role played by quantum fluctuations in dilute and ultracold systems made of bosonic atoms.

First, we take into account corrections due to the finite-range character of a reasonable atom-

atom interaction potential. Thereafter, we move to consider the case of binary Bose-mixture

and dipolar condensates.

Concerning finite-range corrections, we highlight deviations of thermodynamic quanti-

ties from the zero-range predictions. We consider the contribution of quantum and thermal

fluctuations; the former requires a regularization procedure to produce finite and meaning-

ful contribution. We have also explored how this picture changes in systems with lower

dimensionalities. As explained in the text, due to the Mermin-Wagner-Hohenberg theorem,

fluctuations play a crucial role in systems with reduced dimensions.

One- and two-dimensional Bose gases are still the focus of an intense experimental re-

search, requiring analytical and numerical tools beyond our perturbative approach. For

instance, important experimental group in Zurich and Wien, led respectively by T. Esslinger

and J. Schmiedmayer, have adopted one-dimensional gases as an effective platform to probe

thermodynamics at the quantum scale. Thanks the outstanding isolation from the external

environment, it is possible to understand how a quantum system relaxes (or not) to equi-

librium [82, 84]. Recent results appear in [85], where phase-coherence properties of coupled

condensates have been investigated in a one-dimensional Josephson junction. The authors

report that they have observed a phase locking which escapes a convincing theoretical expla-

nation, despite several attempts with increasingly refined tools. Moreover, textbook situa-

tions can be reproduced with cold atoms setups as in [198], where two vessels are connected

by an effectively one-dimensional wire. Within the experimental regime of temperatures and
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densities, a violation of the Weidemann-Franz relation for heat transport has been observed.

This important results make us understand the importance of ultracold quantum gases is not

confined in the atomic physics community. On the contrary, ultracold atoms can spark a new

technological advancement, by providing useful hints for a future development of quantum

devices [199].

Despite many advanced theoretical analysis [111, 112, 113, 28], actual experiments with

two-dimensional gases continue to shine lights on new puzzling effects [60]. We have to men-

tion the occuring of Berezinskii-Kosterlitz-Thouless (BKT) transition [58, 59], which has

been observed in thin liquid Helium films three decades ago [200]. At the same time, physi-

cists have realized this topological transition still escapes an exhausting comprehension in

ultracold Bose gases. In [60], the authors originally aimed to excite a sound mode depending

on the superfluid density, but no discontinuity has been revealed at the transition. For now,

we have extremely refined Monte Carlo simulations [47] and some experimental results on

the proliferation of vortices [201]. A further analytical insight on this topic was provided

in [202]. By means of functional renormalization group, the authors have investigated the

BKT transition proposing a more rigorous amplitude-phase parametrization. The resulting

modified perturbative theory seems to better agree with Monte Carlo simulation.

A clear understanding of the most recent theoretical and experimental advances helps to

understand the boundaries of this thesis and the future outlooks in a clearer way. Finite-

temperature low-dimensional systems require more refined theoretical approaches: we made

this point clear in Fig. 2.4, where Gaussian corrections proved to be not enough to recover

the exact Lieb-Lininger solutions. The estimation of the superfluid fraction for dipolar

condensates in Fig. 4.8 leads us to a similar point for our finite-temperature results. If

we are not too close to the critical temperature, they are certainly reliable, but we do not

manage to reproduce the proper scaling at the transition.

A first step in this direction has been made in Sec. 1.6, where we abandoned the func-

tional integration for a moment, in order to show the effectiveness of possible alternative

approaches. In that case, we have derived informations about non-equibrium dynamics and

sound propagation by following a kinetic approach leading to Eq. (1.127). Obviously, the

problem is not functional integration itself but rather the choice of the most suitable frame-

work according to experimental regimes.
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Moving to Chap. 3 and Chap. 4, we have investigasted the stabilizing role played

by fluctuations in collapsing system. While the first theoretical proposal was formulated

in binary mixtures [97, 98], it has been shown to apply as well to dipolar condensates

[149, 187, 150, 185]. Concerning multicomponent quantum gases, we have managed to point

out a practical characterization of the self-bound droplets besides their peculiar nucleation

mechanism. Moreover, by studying Rabi-coupled mixtures, we have identified in the coupling

frequency an additional knob to tune the droplet stability. Despite our analysis and the

recent experimental developments [101, 153, 148], many questions remain unanswered. The

first one concerns the role of thermal fluctuations, since our analytical results only apply

at zero-temperature. At first, the occurring of self-evaporation seems to suggest that self-

bound quantum droplets immediately dissolve at finite temperature. However, this picture

is not reproduced in dipolar condensates, where our Monte Carlo simulations [188] proved

the stability of self-bound filaments against temperature fluctuations. It is then natural to

ask if finite-temperature corrections would destabilize (or not) the droplet.

In Chap. 3 we also devoted our attention to collective excitations occuring in self-bound

states. According to our prediction, self-evaporation prevents the observation of monopole

and quadrupole oscillations in two-component droplets. However, recent proposals have

paved the way to the engineering of more exotic situation like droplets with non-zero vorticity.

Such non-trivial excitations have been studied in binary mixtures [203] but also in dipolar

condensates [204]. Another interesting path surely concerns the investigation of Bose-Fermi

mixtures for three and lower dimensions [205, 206].

Indeed, the role of dimensionality is fundamental also for droplet nucleation. In our 3d

analysis the attraction leading to collapse instability comes from the mean-field contribution

to the equation of state. On the contrary, the quantum pressure halting the process is due

to quantum fluctuations. For one-dimensional systems the situation is exactly the opposite

[98]. Another peculiarity of the 1d quantum droplets is that the modified Gross-Pitaevskii

equation arising from the analog of our Eq. (3.48) can be solved analytically [160]. In

[98] Petrov and Astrakharchik also underline that the most interesting case remains the

one provided by two-spatial dimensions, where the occurring of self-bound configurations

only requires an inter-component attraction, no matter how small. In [207] and [208] two-

dimensional droplets are investigate at finite temperature by means of the time-dependent
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Hartree-Fock-Bogoliubov theory. Both in binary mixtures and dipolar atoms, droplets are

predicted to be stable, at least below a certain critical temperature.

In order to achieve a further understanding on the mechanism leading to the droplet for-

mation, a possible outlook of this thesis concerns the investigation of eventual modulational

instabilities. In analogy to the solitons trains formation in single-component condensed Bose

gases [209, 210, 211], a quench of the inter-component scattering length could lead to the

droplet fragmentation. It would be then interesting to probe the survival of Bose-Einstein

condensation and superfluidity in this situation. The possibility to engineer and control

multiple droplets could also open the way to the investigation of droplets dynamics and

collisions. Some preliminary steps in this direction have already been made by reviewing the

non-dissipative drag (i.e. the Andreev-Bashkin effect) occuring in multicomponent atomic

superfluids [140].

Approaching the actual conclusion of this thesis, it is important to remark that, in gen-

eral, the sparkling interest in dipolar condensates and binary mixtures is not, and it should

not be, confined within the boundaries of the atomic and molecular physics community.

Dipolar systems are probably the most reliable platform to effectively perform analog quan-

tum simulations of condensed matter models without losing too much complexity. This is

even more pressing these days, when degenerate regimes have been achieved for the first

time with gases made of polar molecules [173].

On the other hand, the research on multicomponent quantum fluids surely received a

great incentive thanks to quantum droplets and their possible applications as cooling com-

ponents in quantum circuits or in interference apparatuses. The interest in these systems

touches also fundamental applications in statistical physics [212] and quantum simulations

of exotic symmetry appearing in particle physics [213], models of the early universe and

inflationary expansion [135, 136].

In the end, this will continue to be a long and enternaing travel, waiting for passionate

scientists to reveal novel features and ground-breaking applications.
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APPENDIX: BOSONIC MATSUBARA FREQUENCIES SUMS

Here we aim to prove the following useful formula, appearing throughtout this whole

thesis:
∑

n

log
[
β2(~2ω2

n + E2
q)
]

= βEq + 2
(
1− e−βEq

)
+ (C) (A.1)

where C is here a infinite constant which can be safely discarded because of its independence

from all the thermodynamic variables. Throughtout the derivation we refer to the classical

thermal field theory monography by J. Kapusta and the equally excellent lectures notes by

A. Schmitt [214, 215].

The first step consists in tackling down the logarithm which otherwise forces us to deal

with an uneasy-to-handle branch cut. Thus, let us begin by splitting the sum into two

contributions with the change of variable Eq ≡ x
β , namely

∑

n

log
[
β2(~2ω2

n + E2
q)
]

=

∫ (βEq)

1
d(x2)

∑

n

1

(2πn)2 + x2
+
∑

n

log[1 + (2πn)2] . (A.2)

The second term in the right-hand-side (RHS) of the equation above is clearly divergent,

but independent from any thermodynamic variable so it can be considered harmless. The

crucial point is the summation contained in the first term of Eq. (A.2). As underlined in

[215], the proper way to solve it relies on contour integration technique. By making use of

the residue theorem, it can be expressed as

1

β

∑

n

1

~2ω2
n + E2

q

=
i

2π~

∮

Γ
dz

1

2(z2 + E2
q)

coth

(
β
z

2

)
(A.3)

where the contour Γ has to chosen to enclose only the poles of the coth(z) function. As
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noted in [215], this contour can be deformed in order to reach the simpler integral

1

β

∑

n

1

~2ω2
n + E2

q

=
i

2π~

[ ∫ +i∞+δ

−i∞+δ
dz

1

2(z2 − E2
q)

coth

(
β
z

2

)
+

∫ −i∞−δ

i∞−δ
dz

1

2(z2 − E2
q)

coth

(
β
z

2

)]

=
i

2π~

∫ +i∞+δ

−i∞+δ

1

2(z2 − E2
q)

coth

(
β
z

2

)
.

.

(A.4)

Now, the residue theorem can be applied again, this time closing the contour on the half-

plane Re z > 0 (or Re z < 0), leading to

1

β

∑

n

1

~2ω2
n + E2

q

=
1

2Eq

coth

(
β
Eq

2

)
=

1

2Eq

(
1 +

2

eβEq − 1

)
. (A.5)

Finally, we can replace the result above in Eq. (A.2), finding that

∑

n

log
[
β2(~2ω2

n + E2
q)
]

=

∫ (βEq)2

1
dx2

1

2x

(
1 +

2

ex − 1

)
+ C

= βEq + 2 log
(
1− e−βEq

)
+ C

(A.6)
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laino, Quantum-fluctuation-driven crossover from a dilute bose-einstein condensate to

a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6, 041039 (2016).

[101] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell,

Quantum liquid droplets in a mixture of Bose-Einstein condensates, Science 359, 301

(2018).

[102] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar

bosonic quantum gases, Reports on Progress in Physics 72, 126401 (2009).

[103] A. Cappellaro and L. Salasnich, Finite-range corrections to the thermodynamics of the

one-dimensional bose gas, Phys. Rev. A 96, 063610 (2017).

[104] V. E. Barlette, M. M. Leite, and S. K. Adhikari, Quantum scattering in one dimension,

European Journal of Physics 21, 435 (2000).



xxvi BIBLIOGRAPHY

[105] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas

of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998).

[106] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional

bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405

(2011).

[107] G. De Rosi, G. E. Astrakharchik, and S. Stringari, Thermodynamic behavior of a

one-dimensional bose gas at low temperature, Phys. Rev. A 96, 013613 (2017).

[108] T. Kaminaka and M. Wadati, Higher order solutions of lieb-liniger integral equation,

Physics Letters A 375, 2460 .

[109] S. Choi, V. Dunjko, Z. D. Zhang, and M. Olshanii, Monopole excitations of a har-

monically trapped one-dimensional bose gas from the ideal gas to the tonks-girardeau

regime, Phys. Rev. Lett. 115, 115302 (2015).

[110] M. Schick, Two-dimensional system of hard-core bosons, Phys. Rev. A 3, 1067 (1971).

[111] S. Floerchinger and C. Wetterich, Superfluid bose gas in two dimensions, Phys. Rev.

A 79, 013601 (2009).

[112] N. Dupuis, Unified picture of superfluidity: From bogoliubov’s approximation to

popov’s hydrodynamic theory, Phys. Rev. Lett. 102, 190401 (2009).
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[207] A. Boudjemâa, Quantum and thermal fluctuations in two-component bose gases, Phys.

Rev. A 97, 033627 (2018).

[208] A. Boudjemaa, Two-dimensional quantum droplets in dipolar Bose gases,

ArXiv:1709.07088 (2017).

[209] L. Salasnich, A. Parola, and L. Reatto, Modulational instability and complex dynamics

of confined matter-wave solitons, Phys. Rev. Lett. 91, 080405 (2003).

[210] J. H. V. Nguyen, P. Dyke, D. Luo, B. A. Malomed, and R. G. Hulet, Collisions of

matter-wave solitons, Nature Physics 10, 918 (2014).



BIBLIOGRAPHY xxxv

[211] J. H. V. Nguyen, D. Luo, and R. G. Hulet, Formation of matter-wave soliton trains by

modulational instability, Science 356, 422 (2017).
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