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Abstract

Throughout the years, the cosmic microwave background (CMB) has given a crucial
contribution to build the standard cosmological model as we know today, becoming a
privileged observational tool of modern cosmology. In particular, in the so-called era of
high-precision cosmology, CMB data can put stringent constraints about the physics of
the primordial Universe, when, according to the standard paradigm, the first cosmological
perturbations formed.

The measurements of anisotropies in the temperature of CMB and of CMB polar-
ization are perfectly compatible with a Universe that in the past has experienced an in-
flationary phase of accelerated expansion (simply known as inflation), which is assumed
to be driven by a scalar field, the so-called inflaton field. During inflation quantum per-
turbations of the inflaton field were stretched on very large (super-horizon) cosmological
scales, where they got frozen. These are thought to be the seeds which later on evolved
into the large scale structures that we observe today. In particular, from the precise
analysis of the CMB maps, we can constrain a large variety of theoretical models aiming
to describe the inflationary epoch. In fact, the CMB is for cosmologists what the col-
liders are for particle-physicists, allowing to test modified gravity theories, symmetries
breaking, and the particle content during inflation. The CMB observations currently
seem to favor the simplest inflationary models, the so-called slow-roll models, where a
single slowly-rolling scalar field drives the expansion of the Universe under the effects of
Einstein gravity, sourcing both scalar and tensor perturbations, which are the so-called
primordial curvature perturbation and primordial gravitational waves.

However, our understanding of inflation is far away to be complete both for theoretical
and observational aspects. For instance, we still do not know the precise mechanism
realizing inflation. In fact, primordial gravitational waves as predicted by slow-roll models
have not been detected yet. Therefore, we do not have detailed information on their
(power spectrum) statistics, which would be crucial to determine the exact inflationary
model. Another example is the recent confirmation from the Planck satellite of the
presence of some anomalies in the CMB map, suggesting a possible violation of some
symmetries (e.g. the parity symmetry) at some point in the evolution of the Universe.
Moreover, we are still facing the so-called trans-Planckian problem, i.e. the fact that
the CMB physical observational scales could have been inside the Planck scale at the
beginning of inflationary epoch, thus requiring an ultra-violet completion of the theory.
All these aspects force us to push our research efforts further on about the physics of
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inflation.
The physics of the CMB can be used to provide an insight into all these different issues

related to the inflationary epoch. On the other hand, it also provides an observational
tool to test other aspects of fundamental physics. For example, in this Thesis, we will
show how modifications of the photon-fermion interactions as we know from the Stan-
dard Model of particle physics may lead to alternative theoretical predictions about the
expected level of CMB polarization anisotropies generated during and after the recom-
bination epoch. For example, they can generate non-zero circular polarization which is
not allowed in the standard lore, but not completely excluded by the CMB experiments.

Motivated by all these considerations, in this Thesis we will review some fundamen-
tal aspects of the standard cosmological model (regarding in particular the inflationary
epoch) and investigate new scenarios that go beyond the standard paradigm, leading to
predictions that could be tested with current and future CMB experiments which will
focus on CMB polarization. The Thesis is organized as follows:

• In part I, we will review different aspects of the standard cosmological model, focus-
ing on the inflationary epoch and the connection between primordial perturbations
and CMB anisotropies.

• In part II, we will study parity breaking signatures in the gravity sector during
the primordial Universe. In particular, we will consider the modifications to the
statistics of primordial perturbations in presence of Chern-Simons gravity, which is
the first order parity breaking modified gravity theory arising from an effective field
theory modification of Einstein gravity. We will show that the expected amount of
chirality in the power spectrum statistics of gravitational waves is expected to be
very small, in a way that is difficult to have a detection with current and futuristic
CMB experiments.

Thus, we will make an analysis of the parity breaking signatures induced to the
higher order (bispectra) statistics of primordial perturbations, showing interesting
prospects for the 2 gravitons-1 scalar bispectrum. We will perform a Fisher-matrix
forecast on the possibility to detect primordial signatures of Chern-Simons gravity
from this bispectrum, with next decade CMB experiments focusing on CMB B
modes.

In particular, we will show that, in general, an improvement in the angular res-
olution of CMB experiments, together with lensing subtraction, can significantly
enhance the sensitivity of CMB bispectra to parity breaking signatures in the pri-
mordial Universe. On the contrary, we will show that no significant improvements
in constraining primordial parity breaking signatures are expected from the power
spectra statistics of futuristic CMB experiments, even with very high angular res-
olution and perfect lensing subtraction. This result suggests that CMB bispectra
statistics could be, in the future, a crucial observable to constrain parity breaking
signatures from inflation.

• In part III, we will consider how CMB can be possibly exploited to probe new
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physics beyond Standard Model of particle physics. We will study the generation
of CMB circular polarization from the forward scattering between CMB photons
and other particles. This is the same physical mechanism that also generates the
neutrino flavor mixings in the Standard Model of fundamental interactions, causing
the oscillation of neutrino flavors.

In particular, firstly we will study the forward scattering between CMB photons
and gravitons, showing a non-zero generation of V modes in case of anisotropies
in the statistics of primordial gravitons. However, we will show that the final
amount of V modes expected today is too low to be detected by both current and
futuristic CMB experiments. Nevertheless, we will derive general equations that
can be applied to a general photon-graviton interaction in contexts different from
the CMB, e.g. for searching of gravitational wave events of astrophysical origin.

We will then study the polarization mixing due to the forward scattering of CMB
photons and generic fermions. In particular, we will provide a general parametriza-
tion of the photon-fermion forward-scattering amplitude (assuming only gauge in-
variance and CPT symmetry) and compute the corresponding mixing terms be-
tween the different CMB polarization states. We will consider different general
extensions of Standard Model interactions which violate discrete symmetries, while
preserving the combination of charge conjugation, parity and time reversal. We
will show that it is possible to source CMB circular polarization by violating par-
ity and charge conjugation symmetries. Instead, a B-mode generation (in absence
of primordial gravitational waves) is associated to the violation of symmetry for
time-reversal. Our final results will be expressed in terms of some free parame-
ters characterizing different kinds of forward scattering interactions, thus offering
in the future a viable and general tool to put constraints on fundamental physics
properties beyond the standard paradigms using CMB data.

• In part IV, we will provide our conclusions and final considerations about the
research developed in this Thesis.

• Finally, in part V, we will provide an Appendix, where some formulas and for-
malisms employed in this work are reviewed.
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Part I
Introduction

In this first part, we will review the basic elements of the standard cosmological model,
introducing the inflationary epoch (Chap. 1), and showing the slow-roll models predic-
tions both about the power spectrum and bispectrum statistics of primordial (scalar and
tensor) perturbations (Chaps. 2 and 3). Moreover, we will qualitatively review how
we can link the early-time statistics of these perturbations to the CMB anisotropies we
observe now, showing the experimental constraints on inflationary models from the last
Planck data (Chap. 4). Finally, we will review the effective field theory formulation of
inflation, allowing to study in a model independent way all the possible deviations from
slow-roll models of inflation (Chap. 5).

The main aim of this part is to clarify the formalism and conventions adopted in this
work, in order to help the reader in understanding the original scientific results presented
in parts II and III. Throughout this Thesis, if not alternatively specified, we will use
natural units, thus c = ~ = 1, together with the reduced mass Planck MPl = (8πG)−1/2,
and the metric signature (−,+,+,+).
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Chapter 1

Standard cosmological model

1.1 General description

The current cosmological model relies on a fundamental feature of the Universe, i.e. its
large scale homogeneity and isotropy. To date, there have been surprisingly only few
tests of these two symmetries. Most of these have looked for a redshift dependence of
cosmological parameters or have used galaxy density projections on the sky (see e.g. [1–
4]). The most reliable test is the isotropy of the cosmic microwave background (CMB)
made by the Planck mission (see the Planck paper [5]). All these observations naturally
support the hypothesis that we do not occupy a peculiar space in the Universe, and this
is the basics of the well known cosmological principle, defining the role of the so-called
comoving observer. In just one sentence, we can resume this principle as follows:

"Each comoving observer sees the Universe around him, at a fixed time, as homoge-
neous and isotropic, on sufficiently large scales". When we say "large scales", we refer
to distances bigger than about 100 Mpc (Megaparsec) or, better to say, distances that
are much bigger than the characteristic dimension of a galaxy.

With the mathematical instruments of general relativity, we can reformulate this
fundamental principle in the following way: the Universe is a four dimensional manifold
with three space-like coordinates (xi, i = 1, 2, 3) and one time-like coordinate (t) where
the three dimensional submanifolds at fixed time Σt are maximally symmetric manifolds.
This automatically implies that the metric of the Universe, apart for diffeomorphisms,
has to take the following form1

ds2 = −dt2 + a(t)2

[
dx2 + k

(x · dx)2

1− kx2

]
, (1.2)

where (t, x) are a set of coordinates of the comoving observer, in particular t being the
1Or an equivalent form

ds2 = a(t)2
[
−dη2 + dx2 + k

(x · dx)2

1− kx2

]
(1.1)

in terms of the conformal time η defined as dt = adη. In this work, we will use both η or τ to denote the
conformal time depending by the context in order to avoid conflicts of notation with other parameters.
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so-called cosmological time. In polar coordinates the metric (1.2) reads

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.3)

The quantity a(t) is the so-called scale factor and is a positive parameter which charac-
terizes the time evolution of the physical dimensions of space-like hypersurfaces. Usually,
it is normalized to be equal to 1 today, thus ao = 1.2 The parameter k, called spatial cur-
vature, represents the curvature of these space-like hypersurfaces. We have three different
spatial geometries of the Universe depending on the value of k:

• k < 0, the hyper-surfaces Σt have negative curvature, it follows an open Universe.

• k = 0, the hyper-surfaces Σt are euclidean, it follows a flat Universe.

• k > 0, the hyper-surfaces Σt have positive curvature, it follows a closed Universe.

What we have just described is the so-called Friedmann-Robertson-Walker (FRW) metric.
Normally, one has to find the metric of a given space solving the so-called Einstein
equations

Rµν −
1

2
gµνR = 8πGTµν , (1.4)

where Rµν is the Ricci tensor built on the metric gµν , R is the scalar curvature, G is
the gravitational constant and Tµν in the energy-momentum tensor of the matter field.
However, this procedure would require a precise knowledge of the energy-momentum
tensor of the Universe. Since it is not realistically possible to precisely map all the
matter contained in any point of the Universe, then cosmologists can only assume the
metric to be FRW (according to the symmetries imposed by the cosmological principle),
and investigate about the time evolution of the energy-momentum tensor of the Universe.

In particular, it can be shown (see e.g. [6]) that the energy-momentum tensor of the
Universe necessarily takes the same form as for a perfect fluid

Tµν = (ρ(t) + p(t))uµuν + p(t)gµν , (1.5)

where uµ is the 4-velocity of the cosmic fluid, ρ and p the energy density and the isotropic
pressure respectively. Inserting expression (1.5) into Einstein’s field equations we find
the well-known Friedmann equations

H2 =
8πG

3
ρ− k

a2
, (1.6)

ä

a
= Ḣ +H2 =− 4πG

3
(ρ+ 3p) , (1.7)

where H = ȧ/a is the so-called Hubble parameter labeling the expansion rate of the
Universe. The latest experimental value of H today is provided by the Planck mission
as [7]

Ho = (67.4± 0.5) kmMpc−1s−1. (1.8)
2In the following, we will use the suffix "o" to indicate quantities evaluated today.
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However, this is not the only experimental value of Ho available in literature.3

Returning to our general description, after specifying an equation of state, i.e. p =
p(ρ), Eqs. (1.6) and (1.7) form a complete set which can be used to determine the two
unknown functions a(t) and ρ(t). Typically, the Universe is well-approximated by a
baryotropic fluid which follows an equation of state like [6]

p = ωρ , (1.10)

where ω take different values depending on which kind of fluid well describes the Universe
composition at any stage. In the following, we list all the different types of fluids that
may compose the Universe.

• Matter fluid (M): it can consist of non relativistic matter and/or dark matter (DM).
Non-relativistic matter is typically baryonic matter with an energy mass Em = m
greater than the thermal energy ET ∼ T of the Universe at a certain time (i.e. in
natural units m > T ). The DM component represents matter that interacts only
gravitationally in the Universe and does not have any electromagnetic interaction
and for this reason we cannot observe it directly through fotons emission. Moreover,
we know from observations that in order to be a dominant component today in the
matter fluid the DM component must be non-relativistic today (also known as cold
dark matter). For such fluid, we can take p ' 0, w ' 0.

• Radiation fluid (R): it consists of relativistic matter and radiation. The relativistic
matter is baryonic matter with an energy mass much smaller than the thermal
energy of the Universe (m � T ). Radiation is associated to cosmological photons
(like the CMB). For such fluid, w = 1/3.

• Vacuum energy fluid (Λ): this kind of fluid is currently associated to regions of
vacuum in the Universe. For this fluid, w = −1, i.e. it has negative pressure.
Physically, this means that it makes an opposition towards the gravitational pres-
sure, like the radiation pressure when we try to indefinitely compress a fluid. In
this last case, the energy momentum tensor becomes of the kind Tµν = Λgµν , with
Λ a constant. In literature, this fluid is also called cosmological constant, because
it originally appeared in the left-hand side of the Einstein equations (1.4) as the
cosmological constant firstly introduced by Einstein to find a solution for a static
Universe [10]. It is also known as dark energy (DE), because it consists of an
unknown form of energy that seems to contrast the attractive gravitational force.

3For instance, it is worth to mention a recent local measurement through infrared observations of 70
long-period Cepheids in the Large Magellanic Cloud, which gave the value [8]

H local
o = (74.03± 1.42) kmMpc−1s−1. (1.9)

This measurement results in a 4.4σ tension with respect to the latest result from Planck satellite. This
is the so-called Hubble tension. For more details on this aspect and how to relax the tension, see e.g. [9]
and references therein. In the rest of this work we will not go trough this point since it is not related to
the PhD research project.
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Our Universe is composed by all of these three fluids at the same time. Therefore, the
dynamics of the Universe is driven by the fluid which is dominant in term of the energy
density at a given epoch. In particular, we can define the density parameter Ωi of the
i-th species as

Ωi =
ρi
ρc
, (1.11)

where ρc = 3H2/8πG is the so-called critical energy density, being the density of a
spatially flat Universe. The total density parameter is obtained by the sum over all the
three species

Ω = ΩM + Ωr + ΩΛ , ΩM = Ωb + Ωc , (1.12)

where b and c stand for baryons and cold dark matter respectively. The last experimental
values of the parameters Ωo

i measured by the Planck space mission are tabulated in
[7].4 These confirm that today the predominant component of the Universe is an energy
vacuum like fluid with a relative abundance Ωo

Λ ' 0.69. The cold dark matter component
have a relative abundance of Ωo

c ' 0.26, while non relativistic baryons and radiation
represent only a minor part of the cosmic fluid (Ωo

b ' 0.05 and Ωo
r ' 10−5). The current

observations indicate also that today the Universe is fully consistent with a spatially flat
Universe (k = 0). If we assume k ' 0 during all the Universe history (this assumption
works well because in the past the spatially flat solution is an attractive solution of Eq.
(1.7)), then we can solve exactly Eqs. (1.6) and (1.7), finding

ρ(t) =

{
ρ(t0) t−3(1+w), if w 6= −1 ,

ρ(t0), if w = −1 ,
(1.13)

a(t) =

{
a(t0) t

2
3(1+w) , if w 6= −1 ,

a(t0)eHt, if w = −1 ,
(1.14)

where t0 denotes some initial time. In Tab. (1.1) these results are summarized for each
of the three fluids.

From our solutions it follows that, independently by which fluid composes the Uni-
verse, the curve a(t) versus t must be concave downward and must have reached a(t) = 0
at some finite time in the past. This is the initial singularity universally known as Big
Bang.

In particular, according to the current Lambda-Cold Dark Matter (ΛCDM) model,5

the Universe was initially an high energy plasma composed merely of radiation fluid in
thermodynamic equilibrium. This is the so-called radiation dominated epoch. Then,

4It is important to underline that the constraints on cosmological parameters derived by the experi-
ments are typically sensitive to the details of the underlying cosmological model, i.e. a modification of
the standard paradigm may give different experimental outcomes. In this work, we will not give all the
details of the standard cosmological model, but we will introduce only those elements which may help
the reader to understand the research goals fulfilled. For more details about the full ΛCDM cosmological
model, we refer the reader to [7].

5It is called in this way because it predicts that the cosmological constant and cold dark matter
dominate the composition of the Universe today.
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Fluid w ρ(a) a(t)

M 0 a−3 t2/3

R 1/3 a−4 t1/2

Λ -1 a0 eHt

Table 1.1. The time dependence of density and scale factor for a spatially flat Universe with a
dominant component of matter (M), radiation (R) and cosmological constant (Λ) fluid.

the Universe expanded according to the FRW solution, becoming colder and colder, and
favouring the formation of hydrogen atoms from free electrons and protons. When the
fraction of hydrogen atoms became higher than the relative abundance of free electrons
and protons, we had the so-called recombination epoch. The consequent reduction in the
number of free electrons determined soon after also the decoupling of photons from the
baryonic matter. In this moment, radiation and matter ceased to be part of the same
plasma, starting to evolve in time with a separate thermodynamical equilibrium. Since
the energy density of the matter fluid decreased slower in time than the radiation fluid
(see Tab. 1.1), then at a certain time the energy density of the radiation fluid became
the same as the matter fluid in an epoch denominated equivalence epoch. Then, a new
epoch started, the so-called matter dominated epoch. During this epoch, all the large
scale structures that we observe in the Universe, such as galaxies and cluster of galaxies,
started to form through gravitational instability guided by the dark matter. It is during
this epoch that we had the so-called reionization of hydrogen atoms, when the Universe
reverted from being neutral to once again being an ionized plasma. After this epoch,
at very recent times, the cosmological constant fluid became dominant with respect to
both matter and radiation, because of the growing of vacuum regions in the Universe,
leading to the today acceleration in the Universe expansion. In particular, as showed
above, nowadays radiation represents only a negligible component of the Universe, while
(cold) dark matter and cosmological constant are the main components. This is a very
brief description of the standard cosmological model just to give a general idea to the
reader. We refer to e.g. Ref. [6] for more details.

An important quantity to date a particular event or source of gamma rays in the
Universe history is the so-called cosmological redshift z. This redshift is the result of the
cosmological expansion of the Universe. It is defined as [6]

z =
λobs − λemis

λobs
, (1.15)

where λemis is the wavelength emitted by an electromagnetic source at a certain time
temis and λobs is instead the wavelength observed today, which results stretched by the
cosmological expansion. We can link this observable to the scale factor at the emission
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time a(temis) as
1 + z(temis) =

ao

a(temis)
. (1.16)

Using Eq. (1.16), one can adopt the variable z(t) instead of a(t) to refer to a particular
cosmological epoch in the Universe history.

A fundamental prediction of the standard cosmological model is the existence of a
background blackbody radiation emitted at the recombination epoch and with the tem-
perature of T ' 2.7K today, which has been observed and is the well known CMB
mentioned above. One further outstanding success is the prediction of light-element
abundances produced during cosmological nucleosynthesis, which agree with current ob-
servations (see Ref. [11] for a recent review).

However, this picture suffers from at least one major unresolved problem (related
to the cosmological constant) and some other fine-tuning problems (related to initial
conditions). Moreover, it lacks the answer to the fundamental question about the origin
of the first primordial inhomogeneities that gave rise to the cosmic structures that we
observe today. In the next sections, we will see these problems in detail and how we can
solve the initial conditions problems and explain the rising of primordial inhomogeneities
by introducing an inflationary period.

1.2 The cosmological constant problem

There are several issues regarding the vacuum energy density fluid (or the so-called
cosmological constant) that we now observe in the Universe. In this section, we will
briefly summarize the main ones.

First of all, there is an anthropological problem: from the last Planck satellite mea-
surements we got that today the Universe is dominated by the matter and the cosmologi-
cal constant fluids with relative abundances Ωo

M ' 0.31 and Ωo
Λ ' 0.69. We immediately

see that, apart for a factor of 2, the two fluids are now present in the Universe with the
same order of magnitude in abundance. The problem relies in the following question:
why this happens just in our epoch? In particular, this fact was most likely crucial for
our galaxy and our solar system to be as we now observe, thus for us to exist. This is a
sort of coincidence problem. This question is still nowadays without a convincing answer.

The other important issue is the famous disagreement between the theoretical and
experimental value of the cosmological constant energy density. This problem was firstly
pointed out by Weinberg [12] as follows. In natural units, the observed energy density of
Λ is given by

ρobs
Λ = Ωo

Λ ρc ≈ 10−46 GeV4 . (1.17)

In quantum mechanics to each normal mode k of frequency ωk we can attribute a zero
point energy of }ωk/2. Thus, the computation of the total vacuum energy density de-
pends on the frequency interval of the normal modes and is given by the following sum-
mation

ρΛ =

∑
k

1
2}ωk
V

' }
2π2c3

∫ ωmax

0
ω3 dω =

}
8π2c3

ω4
max , (1.18)
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where ωmax is associated to a cut-off scale, i.e. the energy at which we believe that our
current understanding of the physics fails in describing the laws of nature. For instance,
if we take the electroweak scale as the cut-off scale, then we find ρEW

vac ∼ 108 GeV4

which is already ∼ 1055 times larger than the observed value. If we consider the Planck
scale as the cut-off scale, then we find ρEW

vac ∼ 1076 GeV4 with a disagreement respect to
the experimental value of 123 orders of magnitude. When this problem was originally
pointed out, it was labeled as one of the greatest disagreements between the theory and
the observation.

However, nowadays this problem has been reformulated under a different perspective
which helps to alleviate it. The modern grown up way to calculate the vacuum energy
density is to compute the vacuum loop diagrams for each particle species in the Standard
Model of the particle physics. For example, the one loop self-energy diagram for a free
canonical scalar field, φ, of mass m, can be computed using the techniques of dimensional
regularization, yielding [13]

= − m4

(8π)2

[
−2

ε
+ log

(
m2

4πµ2

)
+ γ − 3

2

] ∫
ddx

= −ρvac

∫
ddx , (1.19)

where γ is the Euler-Mascheroni constant, µ is an arbitrary mass scale, and the 1/ε term
is a divergent term (ε→ 0 corresponds to the d→ 4 limit). From this result, we have that
the 1 loop contribution to the vacuum energy from the scalar field under consideration
yields

ρvac =
m4

(8π)2

[
−2

ε
+ log

(
m2

4πµ2

)
+ γ − 3

2

]
. (1.20)

The divergence requires us to add the following counterterm which depends on an arbi-
trary subtraction scale, M,

ρcount ∼
m4

(8π)2

[
2

ε
+ log

(
4πµ2

M2

)]
. (1.21)

So, the renormalised vacuum energy (at one loop) is given by

ρvac,ren =
m4

(8π)2

[
log

(
m2

M2

)
+ finite terms

]
. (1.22)

Because this depends explicitly on the arbitrary scale M, we do not have a concrete
theoretical prediction for the renormalised vacuum energy. If we extend the same 1 loop
computation for all the fields of the Standard Model and we sum up all the contributions,
then the problem would have been solved since the final value of the energy density is
not predicted by the theory, but can be given only by the observations. It seems that,
using the experiment, we can determine the exact value of M so that the theoretical
and experimental values coincide, treating M like a sort of new fundamental constant of
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the physics. Unfortunately, the problem arises again when we consider an higher loops
computation. In such a case, the finite terms in Eq. (1.22) slightly change since, after re-
absorbing the new divergences with other counterterms, we have additional subdominant
contributions to ρvac,ren. As a result, we have that the 2 loops value of M which solves
the cosmological constant problem is slightly different from the 1 loop value. But then
the same thing happens when we go to three loops, then four, and so on. At each suc-
cessive order in perturbation theory we are required to retune the value of M to extreme
accuracy. This leads to a radiative instability. The only way to avoid it is to require the
higher loop corrections to be very highly suppressed, which would require a fine-tuning
of the parameters of the underlying quantum field theory (and this is not the case of
Standard Model of particle physics). This new way to express the cosmological constant
problem suggests that it is probably related to our ignorance about a complete theory
of gravity at high energies. You can find out more about this point in [13]. Moreover,
in literature many other ways to explain the nature of the cosmological constant fluid
have been proposed, with the common purpose to outflank the vacuum energy problem.
These usually rely on modified gravity scenarios whose purpose is to "mimic" the role of
this fluid (see e.g. [14–17]), without requiring a contribution from the vacuum energy.

1.3 The horizon problem

We start enunciating the problem by defining the comoving particle horizon χp as the
maximum distance a light ray can travel from time 0 to time t. In a FRW Universe it
can be written as

χp =

∫ t

0

dt′

a(t′)
=

∫ a(t)

a(0)
d ln a

(
1

aH

)
, (1.23)

where the quantity (aH)−1 is instead the so-called comoving Hubble radius (rH), which
quantifies the comoving distance covered by a light ray during the characteristic Universe
time τ = H−1. The comoving Hubble radius represents an extimation of the distance
under which two points in the comoving Universe are causally connected at a fixed time
t.

The physical size of the particle horizon is simply

d(t) = a(t)χp . (1.24)

Using solutions (1.14), it can be shown (see Refs. [6, 18, 19]) that the comoving Hubble
radius increases in time like

rH ∝ a(1+3w)/2 , (1.25)

where for a matter fluid w = 0 and for a radiation fluid w = 1/3. This means that the
fraction of the Universe in causal contact grows in time, or, in other words, that the
causally connected Universe was much smaller in the past. In particular, going backward
until the time of recombination, one concludes that the last scattering surface is made of
several independent patches that had never causally connected in the past, but incredibly
have the same degree of isotropy nowadays. Since particles belonging to different patches
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could not interact in the past, the currently situation with the CMB being a bath of
photons with the same properties everywhere in the sky is extremely improbable. The
lack of a microphysical explanation to this unlikely fine tuning is known as the horizon
problem.

1.4 The flatness problem

We can rewrite the Friedmann equation (1.6) as

Ω(t)− 1 =
k

(aH)2
, (1.26)

where
Ω(t) =

ρ(t)

ρc
=

ρ(t)

3M2
PlH

2
, (1.27)

where MPl is the reduced Planck mass. As we have seen in the previous section, the
comoving Hubble radius is growing in time, thus the quantity Ω − 1 decreases going
backward in time. The measured value of Ωo − 1 is very close to zero, |Ωo − 1| =
0.001± 0.002 (68 % CL) [7], implying that in the past it should have been even smaller.
Doing a precise computation, we can show that at the Planck scale |ΩPl− 1| < O(10−64)
[20]. Nedless to say, this points again to an extreme fine tuning of the initial conditions,
which is known as the flatness problem.

1.5 The cosmological relics problem

According to several extensions of the Standard Model of particles (e.g. Grand Uni-
fication Theories (GUT) or string theories), if the primordial Universe had very high
energies, in the early Universe at very high energies various cosmological defects, such
as magnetic monopoles, could have been produced, which would still be present in the
Universe, with an energy density that would overclose the critical density by many orders
of magnitudes. These are called cosmological relicts. The magnetic monopoles are an
example of these cosmological relics. See Refs. [21, 22] for more details about other types
of cosmological relics.

1.6 The inflationary solution to initial conditions problem

Horizon, flatness and cosmological relics problems are known to be initial conditions
problems. In the previous section, we saw how crucial is the role of the comoving Hubble
radius in the formulation of the horizon and flatness problems: both of them appear
since (aH)−1 is strictly increasing. However, this also suggests that the horizon and
flatness problems can be solved by the same mechanism: making the comoving Hubble
radius to decrease in time in the very early Universe. In this way, the flatness problem
is trivially solved as Ω − 1 would naturally converge to zero at early times (from Eq.
(1.26)), before the standard FRW evolution begins. The horizon problem is also solved,
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as the region that will become the observable Universe today actually becomes smaller
during this period, so that what appear now as causally disconnected regions in the sky
were in causal contact in the past. Thus, this mechanism requires a period of accelerated
expansion since by definition

d

dt

(
1

aH

)
< 0 ⇔ ä > 0 . (1.28)

This period is called inflation. The search for the solution to the problems of horizon
and flatness was the historical motivation for inflation. Its ability to motivate one or
more of the initial conditions of the standard cosmological model was noticed by several
authors (see e.g. Refs. [23–26]) and acquired universal appreciation with the papers
[27–29]. However, nowadays inflation has become a fundamental part of the modern
cosmology for another reason. In fact, inflation provides us with a powerful mechanism
to generate the energy density perturbations of the Universe, necessary for the formation
of large scale structures. Before the advent of inflationary solution, the initial fluctuations
were only postulated and taken as initial conditions designed to explain observational
data. Today, inflation explains the origin of the first primordial inhomogeneities as small
quantum fluctuations of the inflaton field that are stretched on very large scales by the
Universe expansion. Nedless to say, this offers a concrete way to make predictions for
the spectrum of these primordial perturbations, that are confirmed by the analysis of the
CMB anisotropies (see Chap. 4).

Since the evolution of the Universe obeys Friedmann equations (1.6) and (1.7), it is
clear that in order to have a period of accelerated expansion (i.e. ä > 0) we need to
satisfy the condition

ρ+ 3p < 0. (1.29)

From this last equation, we get that for an accelerated expansion it is necessary that
the pressure of the Universe is negative, i.e. p < −ρ/3. Neither a radiation-dominated
or a matter-dominated phase (for which respectively p = ρ/3 and p = 0) satisfies this
condition. In the following, we will see a simple field-theoretical model realizing inflation
which is also the current standard paradigm of the inflationary epoch. Later on, we will
also discuss its theoretical implications.

We start by writing down the well-known action of one scalar field φ, which we call
the inflaton, auto-interacting through a generic potential V (φ):

S =

∫
d4x
√
g

[
1

2
∂µφ∂νφ g

µν + V (φ)

]
, (1.30)

where gµν is the FRW metric (1.2) and g = −det[gµν ] = a6. Writing the energy-
momentum tensor of the scalar field,

Tµν = ∂µφ∂νφ− gµνL , (1.31)
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we can find out the corresponding energy and pressure densities as

ρ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
, (1.32)

p =
1

2
φ̇2 − V (φ)− (∇φ)2

2a2
. (1.33)

Now, we shift the inflaton field into an homogeneous and isotropic background and a
quantum perturbation around the background as

φ = φ0(t) + δφ(t, x) . (1.34)

For this moment, we consider only the dynamical evolution of the vacuum expectation
value of the field, i.e. φ0. The background part behaves like a perfect fluid with

ρ0 =
1

2
φ̇2

0 + V (φ0) , (1.35)

p0 =
1

2
φ̇2

0 − V (φ0) . (1.36)

Under the hypothesis that the potential energy is larger than the kinetic energy, i.e.
φ̇2

0 � V (φ0), we obtain

w =
p0

ρ0
' −1 < −1

3
, (1.37)

that gives an accelerated expansion of the Universe.
In order to express better this condition, let us write down the equation of motion

for the inflaton φ0 derived from action (1.30):

φ̈0 + 3Hφ̇0 + V ′(φ0) = 0 . (1.38)

Physically, if φ̇2
0 � V (φ0), the field is slowly rolling down its potential, hence the name

of slow-roll inflation. If we want that this condition is maintained in time, then we
should also expect φ̈0 to be very small, i.e. φ̈0 � 3Hφ̇0. Under these assumptions the
Friedmann equation (1.6) becomes

3M2
PlH

2 ' V (φ0) , (1.39)

while Eq. (1.38) becomes
3Hφ̇0 + V ′(φ0) ' 0 . (1.40)

Differentiating with respect to the time Eq. (1.39) and using Eq. (1.40), we find

Ḣ ' −1

2

φ̇2
0

M2
Pl

' −1

6

V ′(φ0)2

3M2
PlH

2
. (1.41)

This last equation tell us that, for the potential energy to dominate the energy density
of the Universe, the potential of the inflaton should be very flat:

φ̇2
0 � V (φ0) =⇒ V ′(φ0)2

V (φ0)
� H2 . (1.42)
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This is the first slow-roll condition. Now, differentiating with respect to the time Eq.
(1.40) we get

φ̈0 '
V ′′(φ0) φ̇0

3H
. (1.43)

Thus, it follows
φ̈0 � 3Hφ̇0 =⇒ V ′′(φ0)� H2 , (1.44)

which is the second slow-roll condition.
Both conditions (1.42) and (1.44) can be expressed in more generality using only the

Hubble parameter H. In fact, since in the current model w ' −1 (Eq. (1.37)), slow-roll
inflation is a quasi-de Sitter stage, with H almost constant. To achieve this, it is enough
to require that the fractional change of the Hubble parameter during one Hubble time
H−1 is much less than unity, i.e.

ε = − Ḣ

H2
� 1 . (1.45)

This is the definition of the first slow-roll parameter and corresponds to condition (1.42)
if inflation is driven by a scalar field with action (1.30). At the same time, also the time
variation of Ḣ must be small during inflation, i.e.

Ḧ

ḢH
� 1 . (1.46)

This leads to the definition of a second slow-roll parameter, η, which corresponds to the
condition (1.44) and is defined in terms of ε through

η = 2ε− 1

2

ε̇

εH
. (1.47)

Slow roll parameters can be expressed in terms of the first and second order derivatives
of the slow-roll potential V (φ) as

ε =
1

2

(
MPlV

′(φ0)

V (φ0)

)2

' 1

2

φ̇2
0

H2M2
Pl

, (1.48)

η =
M2

PlV
′′(φ0)

V (φ0)
' − φ̈0

Hφ̇0

+
1

2

φ̇2
0

H2M2
Pl

. (1.49)

Notice that we can write
ä

a
= Ḣ +H2 = (1− ε)H2 . (1.50)

Therefore, the condition ε < 1 is fundamental to achieve ä > 0: as soon as it is violated,
inflation comes to an end.

The total amount of inflation is measured by the number of e-folds of accelerated
expansion as

N e−f =

∫ af

ai

d ln a =

∫ tf

ti

H(t)dt , (1.51)
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where the subscripts i and f denotes respectively the beginning and the end of inflation.
In the case of slow-roll inflation driven by a scalar field, we have

Hdt =
H

φ̇
dφ ' 1√

2εMPl

dφ , (1.52)

so that Eq. (1.51) can be rewritten as an integral in the field space

N e−f =

∫ φf

φi

1√
2εMPl

dφ ' 1√
2εMPl

∆φ . (1.53)

Inflation can successfully solve the horizon and flatness problems if N e−f > 50− 60 (see
e.g. Ref. [20]).

Notice that, since any physical process occurring in the Universe is irreversible (time-
translation is not an isometry of the FRW metric (1.2)), then inflation, at its inset,
erases any information regarding both the geometry and the composition of the Universe,
giving "new" initial conditions that are in accordance with the today observations and
the subsequent FRW evolution. For this reason, we automatically solve also the problem
regarding the initial singularity that was given by the FRW solutions (1.14) (it is enough
to assume that these solutions are valid only after the time tf when inflation ends).
Notice also that, if the theory of inflation is correct, then we are no more interested on
what happened at the times t < ti before the beginning of inflation. In fact, for what we
said, we can not access any physical information about the Universe before this time.

To conclude this section, we very briefly mention the inflationary solution to the
problem of the cosmological relics. The basic idea is very simple: the density of the
cosmological relics can be strongly diluted by the accelerated expansion taking place
during inflation, to such low levels that justify the fact that they are not observed today.
This is just the description of the qualitative solution to the problem. For more details
see e.g. Refs. [21, 22].
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Chapter 2

Quantum perturbations during
inflation

If during inflationary epoch we do not consider the presence of any primordial perturba-
tion, none of the cosmic structures we see today would have never formed. Our current
understanding of the large scale structures of the Universe is that they had their origin
from tiny perturbations in the energy density at a very early epoch. In absence of a phys-
ical mechanism able to produce them, they must be put by hand as initial conditions.
Fortunately, an explanation is offered by the same mechanism that solves the horizon and
flatness problems: during inflation, small quantum fluctuations are generated and, while
the Hubble radius remains almost constant, their wavelength soon exceeds the Hubble
radius itself. At this point, microscopic physics does not affect their evolution anymore,
and their amplitude "gets frozen" at a non-zero value, which remains almost unchanged
until the end of inflation. Then, since in the subsequent radiation and matter dominated
epochs the Hubble radius increases faster than the scale factor, wavelengths that have
gone outside the horizon during inflation eventually re-enter. The fluctuations that went
outside the Hubble horizon around 60 e-foldings before the end of inflation re-enter with
physical wavelength in the range accessible to cosmological observations like the CMB,
and provide us with distinctive signatures of the high-energy physics of the early Universe
(see Chap. 4). In this chapter, we will review the slow-roll models prediction about the
power spectrum statistics of primordial perturbations and see which are the fundamental
parameters that we use to characterize it.

2.1 Perturbation theory

Let us recall Eq. (1.34) where we considered a fluctuation of the inflaton field around
the background

φ = φ0(t) + δφ(t, x) . (2.1)

It is evident that, when we perturb the inflaton filed, we are automatically perturbing
its energy momentum tensor Tµν (1.31), which, in turn, will perturb the metric tensor
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though the Einstein equations (1.4) in the following way

gµν = g0
µν(t) + δgµν(t, x) . (2.2)

where the background metric is the FRW metric (1.2) with k = 0. The metric pertur-
bations are usually decompose into objects with definite transformation properties with
respect to the underlying three-dimensional manifold, since they appear to be uncoupled
at first order [30, 31]. Following this reasoning, the metric tensor can be decomposed as
(see e.g. [32])

g00 = −
(

1 + 2
∞∑
s=1

1

s!
Ψ(s)

)
(2.3)

g0i = a(t)2
∞∑
s=1

1

s!
ω

(s)
i (2.4)

gij = a(t)2

[(
1 + 2

∞∑
s=1

1

s!
Φ(s)

)
δij +

∞∑
s=1

1

s!
h

(s)
ij

]
(2.5)

where the functions Ψ(s), Φ(s), ω(s)
i and h

(s)
ij represent the s-th order perturbations of

the metric. We can decompose these in a way that we have objects with a well-defined
transformation under spatial rotations. We can split ωi into a transverse and longitudinal
part (that will be called respectively transverse vector and scalar) as

ωi = ∂iω
|| + ω⊥i . (2.6)

Moreover, we can decompose hij into a scalar function, a transverse vector field, and a
transverse and trace-less (TT) tensor as

hij = Dijh
|| + ∂ih

⊥
j + ∂jh

⊥
i + hTTij , (2.7)

where Dij = ∂i∂j − δij∇2/3 is a traceless operator and we omitted the suffix (s) in the
perturbations for simplicity of notation.

Because of the invariance of general relativity under general coordinate transforma-
tions

xµ → xµ + ξµ(t,x) , (2.8)

not all the perturbations introduced are physical, but there will be some gauge modes
that can be reabsorbed performing appropriate coordinate transformations. Once we
have removed all the gauge modes, we have completely fixed one of many possible gauges.
In particular, the perturbations can be different among the various gauges. Thus, gauge
invariance implies that there are many different ways in which we can choose a map
between the FRW background space and its associated perturbed Universe. Each of these
descriptions is physically equivalent. Thus, in order to remove the gauge redundancy,
we need to fix one of these maps before making a perturbative expansion of our physical
objects. This procedure takes the name of gauge fixing. The issue of gauge invariance
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in cosmological perturbations is well-known in literature (see e.g. Refs. [30, 31, 33–36])
and we will not discuss it further in this section. Usually, the most clever way to deal
with the gauge invariance is to define gauge invariant perturbations, i.e. perturbations
which are independent by the choice of the gauge, giving an uniform description. In the
following, two particular convenient gauge choices will be presented.

Moreover, in literature, we can find out an alternative formal way to express the per-
turbed metric tensor when dealing with cosmological perturbations. This is made trough
the so-called ADM (Arnowitt-Deser-Misner) formalism of the metric, firstly introduced
in [37, 38]. This is an Hamiltonian reformulation of the theory of gravity in which we
foliate the total 4-dimensional space-time into 3-dimensional space-like hypersufaces at
fixed time. The 3-metric hij = gij on these hyper-surfaces can be splitted in the same
way as in Eq. (2.5). The remaining components of the 4-metric can be rewritten in terms
of the so-called lapse function N = (−g00)−1/2 and the shift vector Ni = g0i in a way in
which the metric in the ADM form reads

g00 = −(N2 −N iNi) ,

g0i = Ni ,

gij = hij , (2.9)

and the inverse metric components read

g00 = − 1

N2
,

g0i = −Ni

N2
,

gij = hij − N iN j

N2
. (2.10)

We can rewrite in an "ADM form" all the fundamental tensors of general relativity, in
a way in which all the contractions are done only with the 3-metric hij (see Appendix
A). This formalism is useful since N and Ni will play the role of Lagrange multipliers
in the action (1.30) (at least in standard gravity and in effective field theory extensions
of Einstein gravity) and their algebraic equations of motion can be solved in terms of
dynamical perturbations and substituted back in the action. Another interesting feature
of working in this formalism is the following: if we are interested in an expansion of the
action (1.30) until cubic order in the dynamical fields, we need to know only the first
order expressions of N and Ni. The demonstration of this fact is quite simple. Imagine
to have in the Lagrangian of the theory a term that depends on N

L = L(N) . (2.11)

We can expand this Lagrangian around the first order value N = N (1) as

L(N) = L(N (1))+
∂L
∂N

∣∣∣
N(1)
·
( ∞∑
n=2

N (n)

)
+
∂2L
∂2N

∣∣∣
N(1)
·

 ∞∑
n,n′=2

N (n)N (n′)

+ ... . (2.12)
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The second term in this expansion vanishes because it multiplies ∂L/∂N |N(1) , that is
zero if we evaluate the Euler-Lagrange equation for N at first order. Then, only the first
and the third terms remain. But the third term contains a summation which starts with
a quartic order term. All the other terms in the expansion are of higher order. Then, if
we are interested in the contributions until the cubic order, we can take only L(N (1)).
An analogous result can be found introducing the dependence over Ni.

We conclude this section remarking that in an inflationary context transverse vector
perturbations are usually not considered and put to zero. In fact, they are found to
decay during inflation and then to be substantially irrelevant in this context (see e.g.
[32]). Thus, in the following only scalar and TT tensor perturbations will be considered.

2.2 Useful gauges

In this section, we introduce two convenient gauge fixings at first order in the perturba-
tions admitting simple non-linear generalizations.

The first one is the so-called spatially flat gauge. In this gauge, the scalar pertur-
bations Φ(1) and h||(1) are removed in the 3-metric. Then, one is free to remove also
the vector perturbation h

(1)
i . We leave only with h

TT (1)
ij and the first order inflaton

perturbation δφ(1). So, the 3-metric takes the form

hflat
ij = a2(δij + γij) (2.13)

where for convenience of notation we have fixed γij = h
TT (1)
ij .

On the other hand, another very convenient gauge is the so-called comoving gauge.
Here, the inflaton perturbation is reabsorbed together with h||(1) and h

(1)
i , and the 3-

metric reads
hcom
ij = a2

[
(1 + 2Φ(1))δij + γij

]
. (2.14)

Since we want a final description in terms of quantities that do not depend by the gauge
fixing, we need to define gauge invariant variables. It is possible to show that, at linear
order, γij variable defined here is gauge invariant [30, 36]. Moreover, we can define the
following scalar gauge invariant variable [30, 36]

ζ(1) = Φ(1) − H

φ̇
δφ(1) . (2.15)

This quantity is the so-called curvature perturbation on slices of uniform energy density.
By construction, the meaning of ζ is that it represents the gravitational potential on
slices of uniform energy density. In the inflationary context, ζ and γij are the two gauge
invariant variables that are used to link theoretical predictions with the observations.

The gauge fixings (2.13) and (2.14) admit non-linear generalizations which allows for
a computation of the higher order statistics of the perturbations. At non-linear level, we
can generalize the 3-metric of the spatially flat gauge as [39]

hflat
ij = a2 exp[γ]ij (2.16)

20



where
exp[γ]ij = δij + γij + γilγlj + ... . (2.17)

Instead, we can generalize the comoving gauge as [39]1

hcom
ij = a2e2ζ exp[γ]ij (2.18)

where
e2ζ = 1 + 2ζ + 4ζ2 + ... . (2.19)

Notice that in these last cases the quantities ζ, γij and δφ are no longer first order fields,
but they include all their perturbative expansion. In addition, we see that the gauge
invariant variable ζ explicitly appears in the 3-metric tensor of the comoving gauge.
This makes the latter a good gauge to do the computations, specially in standard gravity
and at linear level, since we can directly find the quadratic action for ζ. However, as
we will see later on in this work, the spatially flat gauge may help in simplifying some
computations when dealing with non-linearities.

We end this section providing the non-linear (second order) relation between the
variable ζ and the inflaton perturbation δφ in spatially flat gauge [39].2

ζ = −H
φ̇
δφ+

1

2

φ̈

φ̇H

(
H

φ̇
δφ

)2

+
1

4

φ̇2

H2

(
H

φ̇
δφ

)2

. (2.20)

Identifying ζ1 = −H/φ̇ δφ as the first order value of ζ, we can rewrite Eq. (2.20) in
terms of slow-roll parameters as

ζ = ζ1 −
η

2
ζ2

1 . (2.21)

As we can see, the non-linear part of this relation is slow-roll suppressed, letting us to
consider ζ ' ζ1 if we are interested in slow-roll dominant physics only. This is useful
when one wants to work in spatially flat gauge and express the final results in terms of
the gauge invariant variable ζ.

2.3 Scalar perturbations

We start by reviewing the dynamical evolution of the scalar gauge invariant quantity ζ
in the context of slow-roll models of inflation. The starting point is to rewrite action
(1.30) with the metric in the ADM form (2.9) in a way that only Latin contractions with
the 3-metric hij remain. We find (see e.g. [39])

S =
1

2

∫
d4x
√
h
[
N(R(3) − hij∂iφ∂jφ− 2V ) +N−1(φ̇−N i∂iφ)2 +N(KijK

ij −K2)
]
,

(2.22)
1The quantity γij in this gauge in principle differs from the one in the spatially flat gauge. But, it

can be shown that the two ones can be considered the same for perturbations that exceed the Hubble
horizon during inflation. Thus, we can still consider γij as a gauge invariant quantity. See the Appendix
of Ref. [39] for more details.

2Also in this case one should consider more terms in the relation (2.20), but it is possible to show
that they are irrelevant for perturbation modes that go outside the Hubble horizon during inflation. For
the complete relation, go to the Appendix of Ref. [39].
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where hij denotes the 3-metric,
√
h = −det[hij ], R(3) is the scalar curvature associ-

ated to the 3-metric, and Kij is the extrinsic curvature tensor of constant time spatial
hypersurfaces given by

Kij =
1

2N
(ḣij −DiNj −DjNi) , K = Kijh

ij , (2.23)

where the quantity Di is the three-dimensional covariant derivative.
The algebraic equations of motion for the fields N and Ni are given by the functional

derivatives δS/δNi and δS/δN . They read

Dj(K
j
i −Kδ

j
i )−N−1∂iφ (φ̇−N j∂jφ) = 0 , (2.24)

R(3) − 2V − (KijK
ij −K2)−N−2(φ̇−N i∂iφ)2 − hij∂iφ∂jφ = 0 . (2.25)

These equations can be solved perturbatively once fixing a gauge and setting

N = 1 +N (1) + ... , N i = ∂iψ(1) +N
i(1)
T + ... , (∂iN

i(1)
T = 0) . (2.26)

Here, we have stopped our expansion at first order in the perturbations ζ and γij . In fact,
we have previously showed that for a computation until cubic order in the Lagrangian,
first order solutions for N and N i are enough. These first order solutions in comoving
gauge (2.18) are given by [39]

N (1)
com =

ζ̇

H
, (2.27)

ψ(1)
com = − ζ

H
+
a2

H
∂−2ζ , (2.28)

N
i(1)
T,com = 0 . (2.29)

Substituting them into action (2.22) (and fixing γij = 0), after performing some integra-
tions by parts, one can finally obtain the following second order action for ζ

S = M2
Pl

∫
d4x ε a3

(
ζ̇2 − (∂iζ)2

a2

)
. (2.30)

Now, it is useful to go to conformal time τ ,

dτ =
dt

a
, (2.31)

where the action take the form

S = M2
Pl

∫
d4x εa2

(
ζ ′

2 − (∂iζ)2
)
, (2.32)

the primes denoting derivatives with respect to conformal time. After performing the
field redefinition

ζ =
Φ

a
√

2εMPl

, (2.33)
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the action for the auxiliary field Φ becomes

S =
1

2

∫
d4x

(
Φ′

2 − (∂iΦ)2 +
(a
√
ε)′′

a
√
ε

Φ2

)
, (2.34)

which is the action for a Klein-Gordon scalar field with an effective mass term

mΦ =
(a
√
ε)′′

a
√
ε

. (2.35)

Thus, we can Fourier expand and canonically quantize the field Φ as3

Φ =

∫
d3k

(2π)3
eik·xφk (2.36)

φk = akuk + a†−ku
∗
−k , (2.37)

where ak and a†k are the so-called annihilation and creation operators satisfying the
common relations

[ak, ak′ ] = 0 , [ak, a
†
k′ ] = (2π)3δ(3)(k− k′) . (2.38)

The equation of motion for the mode function uk is simply the Klein-Gordon equation
with time dependent effective mass

u′′k +
(
k2 −mΦ

)
uk = 0 . (2.39)

During a quasi-de Sitter stage of inflationary expansion, the scale factor can be rewritten
as

a(τ) = − 1

Hτ(1− ε) ' −
1

Hτ
+O(ε) . (2.40)

Thus, neglecting sub-leading terms proportional to slow-roll parameters ε and η, the
previous equation of motion simply becomes

u′′k +

(
k2 − 2

τ2

)
uk = 0 . (2.41)

To get physical insight on the behaviour of uk, let us analyze the two different regimes
of Eq. (2.41):

• On sub-horizon scales, i.e. −kτ � 1, we recover a free massless scalar field in
conformal time, whose solution is

usub
k (τ) =

e−ikτ√
2k

. (2.42)

Thus, fluctuations with wavelength well within the horizon oscillates as they behave
like they are in a Minkowski spacetime.

3Here and in the following, the momentum k in the Fourier expansions will indicate a comoving
momentum.
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• On super-horizon scales, i.e. −kτ � 1, the effective mass term dominates and the
equation of motion becomes

u′′k −
2

τ2
uk = 0 . (2.43)

This equation is solved by
uk = aB(k) , (2.44)

where the constant of integration B(k) can be obtained making a rough matching
with the sub-horizon solution at the horizon crossing aH = k, so that

usuper
k =

H√
2k3

. (2.45)

Thus, fluctuations with wavelengths much larger than the horizon freeze-out and
their amplitude becomes constant.

Now, we can go into the exact solution of Eq. (2.39). If we consider the full expression
of the scale factor a(τ) including slow-roll corrections, the mass term (2.35) at leading
order in slow-roll parameters reads

(a
√
ε)′′

a
√
ε

=
d

dτ

(
a

2

∂t(a
2ε)

a2ε

)
+

(
a

2

∂t(a
2ε)

a2ε

)2

(2.46)

=
d

dτ
[aH(1 + 2ε− η)] + [aH(1 + 2ε− η)]2 (2.47)

' d

dτ

[
1 + 3ε− η
−τ

]
+

[
1 + 3ε− η
−τ

]2

(2.48)

' 2 + 9ε− 3η

τ2
. (2.49)

Thus, the exact equation of motion at leading order in slow-roll parameters reads

u′′k +

[
k2 − 1

τ2

(
ν2
s −

1

4

)]
uk = 0 . (2.50)

where
ν2
s =

9

4
+ 9ε− 3η . (2.51)

Since slow-roll parameters are approximately constant during inflation, Eq. (2.50) is a
Bessel equation and its solution can be written in terms of Hankel functions of first and
second kind

uk(τ) =
√
−τ
[
c1(k)H(1)

νs (−kτ) + c2(k)H(2)
νs (−kτ)

]
. (2.52)

The final particular solution can be determined by specifying a certain initial condition
for the mode function uk(τ) when the mode k is well within the horizon. This choice
automatically fixes also the initial quantum vacuum state. Above we saw that, asymp-
totically in the sub-horizon limit, the mode function uk(τ) takes the form (2.42), which
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we will take as initial condition. The vacuum associated to this initial condition is the
so-called Bunch Davies vacuum state.4

In the end, the exact solution reads (see e.g. [32])

uk(τ) =

√
π

2
ei
π
2

(νs+1/2)
√
−τ H(1)

νs (−kτ) . (2.53)

We are interested to the super-horizon expression of the perturbations. So, using the
asymptotic behaviour of the Hankel function, we find out the following super-horizon
limit

uk(τ) = 2νs−3/2ei
π
2

(νs+1/2) Γ(νs)

Γ(3/2)

(
(−kτ)1/2−νs
√

2k

)
(−kτ � 1) , (2.54)

where Γ is the Euler Gamma function. Since slow-roll parameters are very small during
inflation, we can expand νs = (9

4 +9ε−3η)1/2 and take only the leading order contribution

νs =
3

2
+ 3ε− η . (2.55)

In the following, using the same approach, we will analyze the dynamics of TT tensor
perturbations.

2.4 Tensor perturbations

The other gauge invariant dynamical perturbation during inflation is the so-called TT
tensor perturbation γij , also called primordial gravitational waves (PGW). This variable
encodes two degrees of freedom, that are the two helictites of the gravitational waves.
More precisely, we can expand γij in Fourier space as

γij =

∫
d3k

(2π)3

∑
s

γsij k e
ik·x =

∫
d3k

(2π)2

∑
s

esij(
~k)γske

ik·x , (2.56)

where esij(~k) is the polarization tensor, s is the polarization index and γsk is the so-called
graviton mode. For our later purposes it is convenient to use the so-called circular left
(L) and right (R) polarization states of PGW, which are defined as

eRij =
1√
2

(e+
ij + ie×ij) , (2.57)

eLij =
1√
2

(e+
ij − ie×ij) , (2.58)

4This is the common vacuum choice used to study inflationary models. However, in literature we
can find many physical mechanisms that lead to deviations from Bunch Davies vacuum at the inset of
inflation (see e.g. [40–44] for some examples). We will not go through this point in the rest of the Thesis.
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where e×ij and ε+ij are the usual two linear independent polarizations. It is possible to
show the validity of the following relations (see, e.g., Ref. [45])

kiesij = 0 = eii ,

eLij(
~k)eijL (~k) = eRij(

~k)eijR(~k) = 0 ,

eLij(
~k)eijR(~k) = 2 ,

eR∗ij (~k) = eLij(
~k) ,

esij(−~k) = esij(
~k) ,

klε
mlj e(s)j

i(~k) = −i λsk eim(s)(~k) ,

γR∗k = γL−k , (2.59)

where ki is the i-th component of the momentum k, λR = +1 and λL = −1. Here εijk
is the Levi-Civita pseudo-tensor with three Latin indices. Also we recall that s is the
polarization index and not a tensor index. In Eqs. (2.59) Latin contractions are made
with the δij .

In computing the quadratic level contribution to tensor perturbations, we can fix
Ni = 0 and N = 1 in the action (2.22) since at first order they do not depend on tensor
modes (together with ζ = 0). In the end, the action for tensor perturbations reads (see
e.g. [39])

S =
M2

Pl

8

∫
d4x a3

(
γ̇ij γ̇

ij − ∂kγij∂
kγij

a2

)
. (2.60)

Using the expansion (2.56) and Eqs. (2.59), we can derive the corresponding action in
Fourier space for the graviton modes γsk. This reads

S =
M2

Pl

4

∑
s

∫
dt d3k

(2π)3
a3

(
|γ̇sk|2 −

k2|γsk|2
a2

)
. (2.61)

This has the same form of the scalar perturbation case apart for some coefficients. In
particular, we can proceed in the same way, i.e. by passing to conformal time τ and
making the following field redefinition for the graviton mode

γsk =
√

2
µsk
aMPl

, (2.62)

which gives the following Klein-Gordon action in Fourier space for both the two polar-
izations of the field µ

S =
1

2

∫
dτ d3k

(2π)3

(
µ′

2 − (∂iµ)2 +mµ µ
2
)
, (2.63)

where now the time dependent effective mass reads

mµ =
a′′

a
. (2.64)
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Also in this case the field µk is canonically quantized as

µk = akuk + a†−ku
∗
−k . (2.65)

The mode function uk still obeys an analogous equation as (2.50) but with a slightly
different mass term given by

a′′

a
=

d

dτ

(
a

2

∂t(a
2)

a2

)
+

(
a

2

∂t(a
2)

a2

)2

(2.66)

=
d

dτ
[aH] + [aH]2 (2.67)

' d

dτ

[
1 + ε

−τ

]
+

[
1 + ε

−τ

]2

(2.68)

' 2 + 3ε

τ2
. (2.69)

Thus, the equation of motion turns out to be

u′′k +

[
k2 − 1

τ2

(
ν2
T −

1

4

)]
uk = 0 , (2.70)

where this time the coefficient νT reads

ν2
T =

9

4
+ 3ε . (2.71)

The final solution for uk is the same as (2.53), after replacing νs with the following
leading order expression of νT

νT =
3

2
+ ε . (2.72)

In the next section, we will use the results derived so far to find out the expected spectra
statistics of primordial perturbations within slow-roll models of inflation.

2.5 Power spectra

Primordial perturbations, viewed as function of the position at fixed time, have a random
distribution, whose statistical properties are exactly what we would like to constrain with
the observations. In general, we can compute all the n-th order correlators associated to
a certain random variable. In this section, we will show the results for the power spectra
case, which is the Fourier transform of the two-point function. In fact, as we will see
better later on, when we are within single-field slow-roll models of inflation we can stop
our analysis to the power spectrum, since the primordial perturbations turn out to be
almost Gaussian. As a consequence, all the odd-n correlators almost vanish and the even-
n correlators are well described as sums of products of two-point functions. However, we
will discuss later on about the importance to evaluate non-Gaussianities, in particular
for those models which go beyond single field slow-roll inflation. We want to remark that
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we are interested only to the super-horizon statistics of primordial perturbations, which
is what we can link to the current observations. In fact, those scales that do not exceed
the Hubble horizon during inflation can not give observational imprints in the late time
Universe, as we will better see in Chap. 4.

Using the definition of ζ in terms of Φ (2.33) and the super-horizon limit of the linear
solution for the mode function uk (2.54), the super-horizon two point function in the
Fourier space for the scalar quantity ζ is given by

〈ζk1ζ
∗
k2
〉(−kτ�1) = (2π)3δ(3)(k1 + k2)

|uk1 (−kτ�1)|2
a2 2εM2

Pl

, (2.73)

where

Pζ(k1) =
|uk1 (−kτ�1)|2
a2 2εM2

Pl

(2.74)

is the super-horizon power spectrum of the curvature perturbation. Usually, we refer to
its dimensionless version

∆ζ(k) =
k3

2π2
Pζ(k) . (2.75)

By a straightforward computation, we find

∆ζ(k) =
H2
∗

8π2M2
Plε∗

(
k

k∗

)ns−1

(2.76)

where
H2
∗

8π2M2
Plε∗

= As (2.77)

is the amplitude of curvature perturbation at some pivot scale k∗. Expression (2.76) is
found taking in consideration only leading order contribution in slow-roll parameters.
The quantity ns denotes the so-called scalar spectral index ans is given in terms of slow-
roll parameters as

ns − 1 = −6ε+ 2η . (2.78)

What we learn from this last equation is that the power spectrum of curvature per-
turbations generated during inflation is almost scale-invariant, i.e. the amplitude of a
fluctuation at a scale k is almost independent on the scale itself.

In exactly the same way we derive the power spectrum of PGW γij as

〈γijk1
γ∗ij k2

〉(−kτ�1) =
∑
s

esij(
~k)eij∗s (~k)〈γsk1

γs∗k2
〉 = (2π)3δ(3)(k1 + k2)

4 |uk1 (−kτ�1)|2
a2M2

Pl

× 2 ,

(2.79)
where an additional factor of 2 comes from the fact that we are summing over the 2
polarization states which turns out to have the same power spectrum statistics. In the
end, the dimensionless tensor power spectrum reads

∆T (k) =
k3

2π2
PT (k) =

2H2
∗

π2M2
Pl

(
k

k∗

)nT−1

(2.80)
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where
2H2
∗

π2M2
Pl

= AT (2.81)

is the amplitude of tensor perturbations at some pivot scale k∗. nT is the so-called tensor
spectral index and reads

nT = −2ε . (2.82)

Also the tensor power spectrum turns out to be almost scale invariant. Notice that
the amplitude of tensor modes depend only on the value of the Hubble parameter during
inflation, which, if measured would provide important information about the energy scale
of inflation. In fact, from Eq. (1.39) we have

H ∝ V 1/2 . (2.83)

Moreover, it is very interesting to compare the amplitudes of the tensor and scalar per-
turbations, which is done defining the so-called tensor-to-scalar ratio as

r =
AT
As

= 16ε . (2.84)

As we can see from Eqs. (2.78) and (2.84) constraints on r and ns are also constraints on
slow-roll parameters ε and η. Moreover, slow-roll parameters are by definition directly
related to the first two derivatives of the inflaton potential, so that a measurement of r
and ns can put bounds on the shape of the scalar potential given by a particular slow-roll
inflationary model (see Fig. 4.2 in the next chapter). Notice also that

r = −8nT , (2.85)

which is known as the "consistency relation" of slow roll models of inflation [46–48]. In
fact, a probe of the violation of this relation would immediately falsify any of the possible
slow-roll models of inflation [49, 50]. If futuristic measurements will falsify this relation,
this would mean that inflation is not driven by the simple one scalar field model we have
analyzed so far, but we would have to look to alternative more complicated scenarios.
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Chapter 3

Primordial non-Gaussianity

As we anticipated in the previous chapter, in the framework of the single field slow-roll
models of inflation, non-linear analyses (see e.g. [39, 51–53]) have shown that primordial
non-Gaussianities are negligible.

In particular, we can formulate a sort of "no-go theorem" [52], which states that
every model of slow-roll single field inflation in Bunch-Davies vacuum and in presence of
Einstein gravity deviates from Gaussianity in a negligible way, as the amount of produced
non-Gaussianity is suppressed by slow-roll parameters. It would seem that this argument
discourages the search for primordial non-Gaussianity. On the contrary, this is exactly the
reason why it is very interesting to develop the topic. If, for instance, non-Gaussianity was
revealed by observations, it would make us to discard slow-roll models. In addition, these
data may help in disentangle the degeneracies between different theoretical models that
have similar predictions in the power spectrum statistics. On the other hand, as there can
be large differences in size and shape of non-Gaussianities between different models, the
detection of such features may reveal the underlying exact physics and particle content of
inflation (see e.g. [32, 54–61]). Finally, even if we eventually do not discover important
signals of non-Gaussianities, we still can use constraints on non-Gaussianities to constrain
the parameters of those models of inflation for which the power spectrum statistics alone
does not provide any useful information (in this work, we will see a specific example of
this situation).

3.1 Primordial bispectra

The lowest order correlator beyond the two-point function is the three point function,
which in Fourier space we write as

〈Xk1Xk2Xk3〉 = (2π)3δ(3)(k1 + k2 + k3)BX1X2X3(k1, k2, k3) , (3.1)

where each Xi can be either the curvature perturbation ζ or a graviton mode γs. Under
the assumption of statistical homogeneity and isotropy, the bispectrum B(ki) is a function
of the magnitude of the momenta ki’s that form a closed triangle configuration (as it
is shown in Fig. 3.1). Usually, in order to put constraints on a the strength of a given
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Figure 3.1. Triangle configuration of the bispectrum momenta ki.

bispectrum, it is defined a dimensionless non-Gaussianity coefficient, denoted by fNL,
associated to each specific parametrization of the underlying bispectrum in terms of the
momenta ki’s. This parameter roughly is given by [62]

fNL ∼
B(k, k, k)

P (k)2
, (3.2)

where P (k) denotes the power spectrum of a given primordial perturbation and the bis-
pectrum is evaluated in the so-called equilateral configuration, i.e. when all the momenta
have equal magnitude. Thus, fNL quantifies the strength of the bispectrum with respect
to a given power spectrum statistics. Usually, the convention is to choose the power
spectrum of the curvature perturbation Pζ(k). Moreover, for a given bispectrum we can
define the so-called shape function [62–64]

S(k1, k2, k3) =
1

N
(k1k2k3)2B(k1, k2, k3) , (3.3)

where N is a normalization factor which is defined such that S(k, k, k) = 1. The shape
function contains the information regarding the explicit dependence over the momenta
ki for a given bispectrum. This is particulary important to distinguish among different
models, as distinct scenarios for inflation can predict completely different shapes. Notice
that, due to the fact that the momenta form a closed triangle, once we specify two of
the three momenta, the last one is automatically fixed. As a consequence, the shape
function depends only on the ratios between two of the three momenta and the third
one, i.e. x2 = k2/k1 and x3 = k3/k1.

The standard technique employed to compute these higher-order correlators is the
so-called In-In formalism which is based on the interaction picture (see App. B for
a brief review of this formalism and relative references). The full exact computation of
primordial bispectra within the single field slow-roll model scenario has been made for the
first time in Ref. [39]. It gave the following results for the cross-bispectra of primordial
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perturbations

Bζζζ(k1, k2, k3) =
H4

M4
Pl

1

2ε2
1∏

i(2k
3
i )

×

(ε− η)
∑
i

k3
i + ε

1

2

∑
i

k3
i +

1

2

∑
i 6=j

kik
2
j + 4

∑
i>j k

2
i k

2
j

kT

 ,
(3.4)

Bγsζζ(k1, k2, k3) =
H4

M4
Pl

2

ε

1∏
i(2k

3
i )
esij(k1)ki2k

j
3

[
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

]
,

(3.5)

Bγs1γs2ζ(k1, k2, k3) =
H4

M4
Pl

1∏
i(2k

3
i )
es1ij (k1)eijs2(k2)

[
−1

4
k3

3 +
1

2
k3(k2

1 + k2
2) + 4

k2
1k

3
2

kT

]
,

(3.6)

Bγs1γs2γs3 (k1, k2, k3) = −4
H4

M4
Pl

1∏
i(2k

3
i )
es1ij (k1)es2mn(k2)es3kl (k3) timktjnl

×
[
−kT +

∑
i>j kikj

kT
+
k1k2k3

k2
T

]
, (3.7)

where kT = k1 + k2 + k3, ε and η are slow-roll parameters and

tijl = ki2δ
jl + kj3δ

il + kl1δ
ij . (3.8)

From the above expressions, it is clear that the slow-roll dominant bispectra in the
fundamental scenario are Bζζζ and Bγsζζ which have the same order of magnitude and
scale like 1/ε. Let us focus on Bζζζ . It turns out that it can be rewritten as the sum
between two different bispectra shapes

Bζζζ(k1, k2, k3) = Bloc(k1, k2, k3) +Bequil(k1, k2, k3) . (3.9)

where Bloc(k1, k2, k3) refers to the local shape (see Eq. (3.11)), while Bequil(k1, k2, k3)
has an equilateral shape (see Eq. (3.13)). The final prediction for non-Gaussianity
coefficients associated to these two shapes turn out to be [64]

f loc
NL = 6ε− 2η , f equil

NL = 5ε . (3.10)

We immediately see that they are proportional to slow-roll parameters. Non-Gaussianity
coefficients associated to the other primordial bispectra are of the same order of magni-
tude or smaller. Thus, if slow-roll models represent the correct description of inflation,
then primordial bispectra are expected to be negligible.

3.2 Shapes of bispectra

In this section, we present the most studied forms of shape functions we can find in
literature.
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• Local Shape: the bispectrum of this shape reads [62]

Bloc(k1, k2, k3) = 2f loc
NLA2

S

(
1

k4−ns
1 k4−ns

2

+
1

k4−ns
1 k4−ns

3

+
1

k4−ns
2 k4−ns

3

)
, (3.11)

where AS (2.77) is the scalar power spectrum amplitude and ns the scalar tensor
tilt (2.78). This bispectrum is larger in the so-called squeezed configuration, i.e.
when one of the momenta is much smaller than the others. Usually, this kind of
shape is generated in those models in which the quantity ζ takes the following
non-linear correction in real space

ζ(x) = ζg(x)− 3

5
f loc

NL(ζg(x)2 − 〈ζg(x)〉2) . (3.12)

Examples of these models are e.g. [65–68]. In particular, it turns out that these non-
linearities become relevant when they take place on super-horizon scales, like for
those models of multi-field inflation where additional light scalar fields contribute
to the curvature perturbation, namely the so-called curvaton scenarios (see e.g.
[69] for a recent review).

Figure 3.2. 3D-Plot of the local shape (3.11) in terms of x2 = k2/k1 and x3 = k3/k1.

• Equilateral Shape: the bispectrum of this shape reads [62, 70]

Bequil(k1, k2, k3) = 6f equil
NL A2

S

[
− 1

k4−ns
1 k4−ns

2

− 1

k4−ns
1 k4−ns

3

− 1

k4−ns
2 k4−ns

3

− 2

(k1k2k3)2(4−ns)/3
+

(
1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ (5 perm.)

)]
.

(3.13)

This bispectrum is larger in the so-called equilateral configuration, i.e. when all
the momenta have equal magnitude. Usually, this kind of shape is generated in
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those models with non-canonical kinetic terms described by an effective Lagrangian
Lkin = P (X,φ) where X = ∂µφ∂

µφ (see e.g. [71]). Other examples in literature
are models with general higher-derivative interactions, as ghost inflation (see e.g.
[72]), effective field theories of inflation (see e.g. [73]), and Galileon-like models
(see e.g. [74]).

Figure 3.3. 3D-Plot of the equilateral shape (3.13) in terms of x2 = k2/k1 and x3 = k3/k1.

• Orthogonal Shape: the bispectrum of this shape reads [62, 75]

Bortho(k1, k2, k3) = 6fortho
NL A2

S

[
− 3

k4−ns
1 k4−ns

2

− 3

k4−ns
1 k4−ns

3

− 3

k4−ns
2 k4−ns

3

− 8

(k1k2k3)2(4−ns)/3
+

(
3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ (5 perm.)

)]
.

(3.14)

This kind of shape arises in the same models of the equilateral shape, in particular
in effective field theories of inflation (se e.g. [75, 76]).
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Figure 3.4. 3D-Plot of the orthogonal shape (3.14) in terms of x2 = k2/k1 and x3 = k3/k1.
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3.3 Squeezed limit of bispectra

In this section, we very briefly review the so-called "squeezed issue" related to primordial
bispectra, leaving all the technical details to the literature (see Refs. [77–86]). In fact,
it is well known that primordial bispectra are not completely physical in the squeezed
limit where we take one of the three momenta much smaller than the others. In the
real space this corresponds to taking the cross-correlation between two fields evaluated
at close points x1 and x2, and a third field evaluated at a point x3 that is far away to
the infinite. It is possible to show that the physical signal of this cross-correlation is
the one computed in the so-called Conformal Fermi Coordinate (CFC) frame centered
in the point x0 which stays in the middle of x1 and x2 (see e.g. [81]). This local frame
is constructed by imposing that the metric becomes unperturbed FRW along the time-
like geodesic passing through x0 (the so-called central geodesic), with corrections that
go as the spatial distance from the central geodesic squared and involve second order
derivatives of metric perturbations, as we would expect by the virtue of the equivalence
principle.

Here we consider a generic isotropic bispectrum BXXY (k1, k2, k3) evaluated on super-
horizon scales in global coordinates, where X,Y can be either ζ or γs variables, and we
take the mathematical limit in which the momentum of the Y variable, k3, is much
smaller than the momenta k1 and k2 of X variables: in this limit, k3 = kL ' 0 and
k1 ' k2 ' kS . It is possible to show that, expanding the given bispectrum in powers
of (kL/kS) � 1, the leading order effects of the long-wavelength perturbation kL on
the short modes can be removed by transforming to the CFC local frame, leaving only
contributions starting from the order (kL/kS)2. In particular, in co-moving gauge and
in single field inflation the formula giving the physical squeezed bispectra up to order
(kL/kS)2 reads [81]

BXXY (kS , kS , kL)squeezed,ph =

[
1

2
PY h(kL)PXX(kS)

d log(k3
SPXX(kS))

d log kS

+
1

2
PY hTij

(kL)
kiSk

j
S

k2
S

d log(PXX(kS))

d log kS

]

+BXXY (k1, k2, k3)
~k1=~kS− 1

2
~kL, ~k2=−~kS− 1

2
~kL, ~k3=~kL

squeezed

+O
(
kL
kS

)2

, (3.15)

where BXXY (k1, k2, kL)squeezed is the bispectrum in global coordinates, PAB(k) gives the
cross-power spectrum of A and B variables, all the power spectra are evaluated at the
time of horizon crossing of the short momenta kS , h = hi

i/3 is the trace of the spatial
metric perturbation, while hTij is its trace-less part.

The terms in the square bracket of (3.15) are such that they exactly cancel out the
leading order value of bispectrum BXXY (k1, k2, k3)squeezed, leaving terms of the order
(kL/kS)2. For this reason, Eq. (3.15) is also known in literature as consistency relation,
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as it gives an instrument to compute the expected leading order value of the squeezed
bispectra, starting from the power spectra.
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Chapter 4

Constraints from CMB anisotropies

The CMB is a back body radiation with an average temperature of T = 2.7255±0.0006 K
[87, 88] which, according to the standard paradigm, was released at the time of recom-
bination epoch, when the matter became transparent to photons. It was discovered
casually about 50 years ago [89], and from that moment it has been one of the main
probes of the standard cosmological model. Initially, it was found to be an extremely
uniform radiation, whose nature is one of the main probes of the cosmological principle.
Only later on, some tiny temperature fluctuations were discovered [90]. These are one of
the main reasons why we need to set quantum perturbations during inflation. The CMB
data remain currently the most precise and accurate way we have to test our knowledge
of the primordial Universe [7, 62, 91].

In this chapter, we will briefly review the physics of the CMB according to the
standard radiation transport models. In particular, we will focus into the connection
between early time perturbations and the late time CMB temperature anisotropies we
observe now. Finally, we will show the current constraints on the physics of inflation
and on the six fundamental parameters describing the full ΛCDM cosmological model.
For more details about the physics of the CMB we refer the reader to many reviews and
books in the literature, like e.g. [92–101].

4.1 Decomposition in Stokes parameters

In general, a sea of photons like the CMB can have four different polarization states
which are encoded into a 2× 2 density matrix1

ρij =
1

2

(
∆T + ∆Q ∆U − i∆V

∆U + i∆V ∆T −∆Q

)
, (4.1)

where ∆T , ∆Q, ∆U , and ∆V are the so-called Stokes parameters (see e.g. [93]).
Unpolarized CMB radiation is characterized by ∆Q = ∆U = ∆V = 0, and the

parameter ∆T describes the overall radiation intensity. In literature, the quantity ∆T

1When we refer to the Stokes parameters, we take only the relative fluctuations over the respective
mean value, e.g. ∆T = (∆T − T0)/T0 and so on.
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is usually called "temperature fluctuation" or "temperature modes". The ∆Q and ∆U

Stokes parameters describe the linear polarization of the CMB. In particular, taking
two orthogonal (x, y) axes on the polarization plane, the Q-mode gives the difference
in intensity between CMB photons with polarization vectors along the x and y axes
respectively, while the U -mode gives the difference in intensity between CMB photons
with a polarization vector along axes rotated by 45 degrees with respect to the x and
y axes. Finally, the ∆V Stokes parameter describes the CMB circular polarization or,
better to say, it gives the difference in intensity between the two circular polarization
modes of the CMB radiation.

CMB fluctuations (both temperature and polarization) are functions of the position
and direction on the sky n̂, and they can be expanded on the sphere in terms of a
spin-weighted basis as [94]

∆T (n̂) =
∑
`,m

aI`mY`m(n̂) , (4.2)

∆V (n̂) =
∑
`,m

aV`mY`m(n̂) , (4.3)

∆±P (n̂) = (∆Q ± i∆U )(n̂) =
∑
`,m

a±2
`m ±2Y`m(n̂) , (4.4)

where sY`m denotes the weighted spin-s harmonic sphere (see App. C). This decomposi-
tion is possible since the ∆T and ∆V polarization fields turn out to be spin-0 fields on the
sphere, while the (∆Q ± i∆U ) combination is a spin±2 field [94]. In particular, this last
feature implies that ∆Q and ∆U polarization modes are not invariant under a rotation
on the polarization plane (while ∆T and ∆V modes are). In general, we would prefer a
description of the CMB polarization in terms of spin-0 quantities that are invariant under
rotations. In order to define these quantities, we need to act on ∆±P the spin raising and
lowering operators ð and ð̄ (see again App. C) as

∆E(n̂) = −1

2

[
ð̄2∆+

P (n̂) + ð2∆−P (n̂)
]
, (4.5)

∆B(n̂) =
i

2

[
ð̄2∆+

P (n̂)− ð2∆−P (n̂)
]
. (4.6)

Here, we have introduced the so-called E and B polarization modes. These modes offer
an alternative description of CMB linear polarization which, differently from Q and U
modes, is invariant under a rotation on the polarization plane. In the following, we will
use a description of the radiation transfer both in terms of Q/U and E/B modes.

4.2 Boltzmann equations

The connection between primordial perturbations and CMB anisotropies is made through
the so-called Boltzmann equations, which describe the time dependent evolution of CMB
polarization modes at linear level and predict the expected amount of each polarization
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mode today. These equations take care of two main contributions: the Compton scatter-
ing between CMB photons and electrons and gravitational redshift which relates CMB
anisotropies to primordial perturbations. The explicit full expressions of Boltzmann
equations in Fourier space and in presence of only scalar perturbations of the metric
tensor turn out to be [99]

d

dη
∆

(s)
T + iKµ∆

(s)
T = −Φ′ − iKµΨ− τ ′

[
∆

0(s)
T −∆

(s)
T + µvB −

1

2
P2(µ) Π

]
,(4.7)

d

dη
∆P
±(s) + iKµ∆P

±(s) = −τ ′
[
−∆P

±(s) +
1

2
[1− P2(µ)] Π

]
, (4.8)

d

dη
∆V

(s) + iKµ∆V
(s) = −τ ′

[
−∆V

(s) +
3

2
µ∆V

1(s)

]
, (4.9)

Π = ∆I
2(s) + ∆P

2(s) + ∆P
0(s) , (4.10)

where K denotes the Fourier conjugate of x and we have fixed a coordinate system where
K ‖ ẑ axis. Here, η denotes the conformal time, the prime denotes differentiation with
respect to conformal time, Ψ and Φ are scalar cosmological perturbations of the metric
tensor (produced during inflation), vB is the electrons average velocity, µ = n̂ · K̂ = cos θ
is the cosine of the angle between the line of sight and the Fourier mode and P`(µ) is the
Legendre polynomial of rank `. The quantities ∆

`(s)
T , ∆

`(s)
P and ∆

`(s)
V represent the `-th

order terms in the Legendre polynomial expansion of the corresponding modes.2 Finally,
the quantity τ(η) is the so-called optical depth defined as

τ(η) =

∫ η0

η
dη′ a(η′)nBxeσT , τ ′(η) = −a(η)nBxeσT , (4.12)

where nB is the electron density, xe is the ionization fraction and σT is the so-called
Thomson cross-section. τ ′(η) has the physical meaning of collision rate in conformal
time.

On the other hand, transverse and traceless tensor perturbations γij alter only the
unpolarized mode T through the following linear equation [99]

d

dη
∆

(t)
T,i + iKµ∆

(t)
T,i = −1

2
γ′i + τ ′

[
− 1

10
∆

0(t)
T,i + ∆

(t)
T,i −

1

7
∆

2(t)
T,i −

3

70
∆

4(t)
T,i

]
, (4.13)

where i = +,× denotes the two independent linear polarizations of tensor perturbations
and ∆

(t)
T,+ and ∆

(t)
T,× are the components of ∆

(t)
T in the following azimuthal decomposition

∆
(t)
T = ∆

(t)
T,+(1− µ2) cos(2φ) + ∆

(t)
T,×(1− µ2) sin(2φ) , (4.14)

2Here, we adopt the convention

∆`
T =

1

(−i)`
∫ 1

−1

dµ′

2
∆T (k, µ′)P`(µ

′) (4.11)

and an analogous expression for ∆`
V and ∆`

P .
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where φ is the azimuthal angle of n̂ in polar coordinates and µ is as stated above. For more
details about the derivation of Eqs. (4.7)-(4.9) and (4.13), see e.g. Refs. [93, 94, 99].3

In particular, once we define the harmonic coefficients of each CMB mode as

aX`m =

∫
d2n̂Y`m(n̂) ∆X(n̂) , (4.15)

where X = T,E,B, V , we can form a huge set of coupled differential equations for each
aX`m, where each ` multipole is coupled to the ` − 1 and ` + 1 by the so-called free
streaming term, which is the second term on the left-hand side of Boltzmann equations
(i.e. iKµ∆X) and describes the projection of the CMB inhomogeneities produced during
and after the recombination epoch onto anisotropies in the sky. Solving this coupled
system of differential equations, we can find the today expected strength of the CMB
inhomogeneities for each multipole scale ` which has been left imprinted during and after
the recombination epoch. Here, we are not going to enter into the details of the exact
numerical solutions, but in the following we will limit to give the qualitative description
of the expected amplitude of aX`m’s coefficients referring the reader to the literature for
more computational details.

First of all, a particular angular scale ∆θ on the CMB sphere is linked to the multipole
scale ` through [99]

` =
2π

∆θ
. (4.16)

Thus, small multipole moments correspond to large angular scales. In particular, the
largest scales are the ones that were outside the Hubble horizon at the time of recom-
bination, when the CMB fluctuations formed. As no physics could have affected them
until they eventually re-enter the horizon, these modes carry almost unaltered informa-
tion about the amplitude of primordial perturbations at the end of inflation. Instead,
smaller scales evolve in a more complicated way.

Before neutral hydrogen formed (much before the recombination epoch), the Comp-
ton scattering between electrons and photons was very efficient, and photons and baryons
were tightly coupled in a cosmological plasma forming a photon-baryon fluid. During this
phase, cosmological perturbations of the metric tensor led to the formation of "potential
wells" (i.e. regions of the space with slightly less gravitational potential than others)
where the cosmological fluid got attracted creating local compression zones. But, since
this fluid had its own radiation pressure, the latter acted as a restoring force, leading
also to decompression in these zones. Physically, we had the formation of acoustic waves
propagating at the speed of sound in the cosmic medium, where the energy density lo-
cally oscillated in time passing from overdensity to underdensity moments. This process
predicts the presence of oscillations in CMB temperature (and polarization) fluctuations
due to the compression and rarefaction of a standing acoustic wave. Therefore, the peaks
we observe in the CMB temperature power spectrum (see Fig. 4.1) correspond to those

3Boltzmann equations, usually, do not exactly coincide between the different references. This is due
to the fact that each reference uses his own formal conventions. Here, we have followed the conventions
of Ref. [99].
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modes that have undergone these acoustic oscillations and are caught at both their min-
ima or maxima (the power spectrum statistics is sensitive to the modulus square of a
given amplitude) depending by their phase at the time of recombination. Moreover, no-
tice that we do not see this peak structure before a certain multipole scale, i.e. above a
certain angular scale. This scale corresponds to the so-called comoving sound horizon r∗
quantifying the maximum distance the acoustic waves could cover before the recombina-
tion. On the other side, on very small scales, photons have less and less distance where
they can travel before making a second scattering, and we start to see the effects of shear
viscosity and heat conduction in the fluid. This causes the damping at high multipoles
of the aX`m amplitudes, causing a damping in the CMB power spectra that we can see in
Fig. 4.1 (this is the so-called diffusion damping).

In addition, in the standard scenario only unpolarized and some level of linear polar-
ized anisotropies are produced. In fact, circular polarization does not have any source
term on the right-hand side of Eq. (4.9) and, with an initial condition of zero V modes,
no V modes are produced as well. The final harmonic coefficients of the unpolarized
(X = T ) and E/B-mode polarization (X = E/B) anisotropies given by the scalar (ζ)
and the tensor perturbations (γR/L), are expressed, respectively, as [102, 103]

a
(s)X
`m = 4π(−i)`

∫
d3~k

(2π)3
T X`(s)(k)Y ∗`m(k̂) ζ~k ,

a
(t)X
`m = 4π(−i)`

∫
d3~k

(2π)3
T X`(t)(k)

∑
λ=R/L

[
−2Y

∗
`m(k̂) γR~k + (−1)x +2Y

∗
`m(k̂) γL~k

]
, (4.17)

where T X`(s)(k) and T X`(t)(k) are the scalar and tensor transfer functions, respectively, and x
takes 0 (1) for X = T,E (X = B). It is clear from these equations that CMB fluctuations
are tightly bound to initial primordial perturbations, which are set by the inflationary
epoch, and thus they are a direct probe of the physics of the early Universe. We will
not give here the detailed expressions of the transfer functions which can be found in the
literature above, but just qualitatively describe them.

In particular, we have that scalar perturbations left their main imprints on CMB
modes only during the recombination epoch and the respective transfer function is mainly
sensitive, together with projection effects, to the time evolution of the curvature pertur-
bation ζ after inflation. This instantaneous imprint is commonly called Sachs-Wolfe
effect. On the contrary, tensor perturbations gave to the mode T also an integrated im-
print ∝ γ′ from recombination epoch until nowadays. This is the so-called Sachs-Wolfe
integrated effect. This is possible because tensor perturbations at a given scale remain
constant in time until they re-enter the Hubble horizon. At this point, they start to
oscillate around the 0 value with a maximum amplitude decreasing rapidly in time, until
they finally decay. In general, also scalar perturbations have a similar integrated effect
∝ ζ ′, but after recombination epoch they remain generally constant if they re-enter the
Hubble horizon during the matter dominated epoch. A very small integrated contribu-
tion may arise only from the recombination to the equivalence epoch or during the late
time dark energy dominated Universe, when scalar perturbations re-entering the Hubble
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horizon take some time evolution (see [19] for more details).
Moreover, it is interesting to mention that, for very large scales that were outside the

Hubble horizon at the recombination epoch, the transfer function is given only by the
projection of inhomogeneities onto the spherical sky, since no other physics could affect
it. In particular, for the case of T modes, the projection is given by

T T`(s)(k) ∝ j`[k(η0 − η∗)] , (4.18)

where j` denotes the spherical Bessel function and η∗ is the conformal time at the recom-
bination epoch, so that (η0 − η∗) gives the conformal distance to recombination. Once
performing the integral (4.25) in this limit, we can find that the power spectrum almost
goes like

CTT` ' c

`(`+ 1)
, (4.19)

where c is a certain constant. This explains why CMB power spectra are plotted in
literature together with the additional factor `(` + 1)/2π. In fact, according to our
theoretical argument, the quantity `(`+ 1)CTT` /2π is expected to be almost flat on the
largest scales, exactly as we can see in Fig. 4.1.

To conclude this section, we explicitly show that scalar perturbations at linear order
are not able to source B modes, contrary to tensor perturbations. In fact, it is possible
to show that Eq. (4.8) admits the general integral solution [19]

∆P
±(s)(η0,K, µ) =

3

4
(1− µ2)

∫ η0

0
dη eiK(η−η0)µ−τ τ ′Π(η,K) . (4.20)

Since scalar perturbations are invariant under rotations and so axially-symmetric around
ẑ (so they excite only the CMB multipoles with m = 0), we get ∆+

P = ∆−P . Thus, from
Eq. (4.4) ,we have ∆

(s)
U = 0, and scalar perturbations source only Q modes. Moreover,

in this case (i.e. for scalar perturbations) the spin raising and lowering operators act like
(see App. C, Eq. (C.2) for m=0)

ð̄2 ∆P
±(s) = ð2∆

±(s)
P = ∂2

µ[(1− µ2) ∆P
±(s)(η0,K, µ)] . (4.21)

Therefore, using the definitions (4.5) and (4.6), we easily get

∆E
(s)(η0,K, µ) = −3

4

∫ η0

0
dη e−ττ ′Π(η,K)∂2

µ

[
(1− µ2)2eiK(η−η0)µ

]
, (4.22)

and
∆B

(s)(η0,K, µ) = 0 , (4.23)

concluding that linear scalar perturbations cannot source B-mode polarization, but only
the E-mode.4 In fact, it is well known that the B-mode polarization in the CMB is

4Notice also that the quantity g(η) = e−τ(η)τ ′(η), called visibility function, has a narrow peak at the
period of the recombination and is zero elsewhere (see e.g. [19]). Thus, the main contributions to E
modes from scalar perturbations in Eq. (4.22) come from the recombination, as we stated above.
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generated mainly by weak gravitational lensing and by tensor perturbations [99, 104]. In
particular, the weak lensing contribution becomes dominant on high multipoles (` & 100),
while the tensor perturbation signal is dominant on low multipoles (larger CMB angular
scales). Alternatively, a very small amount of B modes can be generated also by second-
order vector and tensor modes sourced by scalar perturbations (see e.g. Refs. [105, 106]),
but it is expected to be a subdominant higher-order effect. Moreover, since the T -
and E-mode signal from scalar perturbations is theoretically expected to give the most
important contribution, covering the tensor modes signal, the CMB B modes represent
the only clean channel to search for primordial gravitational waves. For this reason,
they are considered a sort of "smoking-gun" in the detection of primordial tensor modes.
In particular, a significant signal following the predicted large-scale shape in the CMB
B-mode spectrum would reveal us the complete physics of inflation.

4.3 Constraints on primordial power spectra

The cosmological observable most directly related to the primordial power spectra is the
angular power spectra of the CMB fluctuations. In Eq. (4.15), we have shown that
CMB anisotropies (both temperature and polarization) are described with the spherical
harmonics coefficients (4.17). The CMB 2-point functions are written in terms of these
coefficients as 〈

a
(p)X1

`1m1
a

(p)X2∗
`2m2

〉
= δ`1,`2δm1,m2C

X1X2
`1,p

, (4.24)

where the angular power spectra CX1X2
`,p read

CX1X2
`,p =

2

π

∫
dk k2Pp(K)T X1

`(p)(k)T X2∗
`(p) (k)×

{
1 : X1X2 = TT,EE,BB, TE

χ : X1X2 = TB,EB ; p = t ,

(4.25)
where p = s, t depending if we are evaluating the scalar or tensor contribution and χ is
the so-called chirality of primordial gravitational waves, defined as

χ =
PR − PL
PR + PL

, (4.26)

where R and L refer to the respective chiral gravitational waves. As we have seen above,
in the standard single field slow-roll scenario, the two chiralities have equal amplitude,
thus χ = 0 and we would expect TB and EB cross-correlators to be vanishing.

In Fig. 4.1, the last TT , EE and TE CMB power spectra measured by the Planck
mission are shown. Instead, the power spectra concerning the B modes are still missing
as it has not been found yet a significant signal consistent with a primordial origin from
inflation; nedless to say, this is the main aim of the proposed polarization satellite projects
to follow up on the Planck mission, as the LiteBIRD experiment (see e.g. [107, 108]).

The most recent experimental results concerning the power spectrum statistics of
primordial perturbations during inflation are given by the Planck 2018 publications5 [7,

5Constraint on r has been obtained combining the Planck data with the BICEP2/Keck Array BK15
data.
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Figure 4.1. CMB TT , ET and EE power spectra (from [7]). On the vertical axis a `(`+ 1)/2π
factor is understood. We observe that low multipoles have larger errors than high multipoles.
In fact, the predicted power spectrum is the average power in the multipole ` an observer would
see in an ensemble of Universes. So, in principle we could even not extract a statistics, because a
real observer can see only one Universe with its own set of a`m’s. However, assuming statistical
isotropy, we can collect 2`+ 1 m-samples of power for each multipole, leading to the unavoidable
error ∆C` =

√
2/(2`+ 1)C` , which is the so-called Cosmic Variance Limit (CVL) error. This

decreases with the square root of ` and puts a lower bound on the uncertainty that an hypothetical
CMB experiment would commit in measuring CMB power spectra.
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91, 109, 110]. In Tab. 4.1, we summarize the constraints for the primordial cosmological
parametersAs, r and ns that we have introduced in the previous chapter. One of the most

Parameter Planck 2018 results

ln(1010As) 3.04± 0.01 (68% CL)

r < 0.056 (95% CL, pivot scale k∗ = 0.002 Mpc−1)

ns 0.965± 0.004 (68% CL)

Table 4.1. Constraints on primordial cosmological parameters obtained combining Planck TT ,
TE, EE +lowE+lensing data [91].

important results is a small departure from exact scale invariance of scalar perturbations
(i.e. ns = 1) at more than 5σ. This represents a strong confirmation of the slow-roll
models expectation of small deviations from scale invariance, proportional to the slow
roll parameters ε and η. Another very important result is the constraint on the tensor-
to-scalar ratio r. As we have showed in the previous chapter, the amplitude of tensor
perturbations can be uniquely related to the Hubble parameter which labels the energy
scale of inflation. Thus, the current upper bound on r gives us the following upper bound
of the Hubble parameter

H

MPl
< 2.5× 10−5 (95% CL) , (4.27)

which translates in the following bound on the energy density during inflation

V < (1.6× 1016 GeV)4 (95% CL) . (4.28)

The couple of parameters (ns, r) can be used to put constraints on inflationary models,
comparing observational results with theoretical predictions. In Fig. 4.2, it is shown
the allowed region in the (ns, r) space together with the predictions of certain single field
inflationary models.6 In the following, we very briefly summarize the basics of the models
considered, referring the reader to the original Planck papers for additional details.

• Natural inflation: in this model, the expansion is driven by a pseudo-scalar field
with a typical axion potential

V (φ) = Λ4

[
1 + cos

(
φ

f

)]
, (4.29)

f being the decay constant of φ. The flatness of the potential is protected by the
(nearly exact) axionic shift symmetry. This model agrees with Planck observations

6The predictions of models are different depending by the number of e-folds to the end of inflation.
This is related to the uncertainty about the reheating process which connects inflation to radiation
dominated epoch (see e.g. [111, 112]). The details of this mechanism go beyond the scope of this Thesis.
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Figure 4.2. Marginalized joint 68% CL and 95% CL regions for ns and r from Planck in
combination with other data sets. It is included a comparison to the theoretical predictions of
selected inflationary models [91]. These are different depending by the number of e-folds to the
end of inflation. This is related to the uncertainty about details of the reheating process which
connects inflation to radiation dominated epoch (see e.g. [111, 112]).
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for f/MPl & O(1), which for various reasons is an undesirable constraint on the
theory, if we want to identify this axion with the QCD axion (see e.g. [113, 114]
for more details).

• Hilltop inflation: in this model, the slow-roll potential takes the form [115]

V (φ) = Λ4

(
1− φp

µp
+ ...

)
, (4.30)

where the dots stand for higher order terms that are negligible during inflation,
but are important at the end of inflationary epoch to ensure positiveness of the
potential. In Fig. 4.2, it is shown the p = 2 case, which is currently compatible
with data.

• α-attractors models: This is a class of models with a potential of the form
[116–119]

V (φ) = Λ4 tanh2m

(
φ√

6αMPl

)
. (4.31)

• Power law inflation: In these models, the scale factor grows in time as a power-
law, a ∼ t2. In order to realize this exact analytic power-law solution, the slow-roll
potential has to take the form

V (φ) = Λ4e−λφ/MPl . (4.32)

As we can see from Fig. 4.2, this model now is highly discouraged, as it lies outside
the joint 99% CL contour.

• Spontaneously broken SUSY: this is an example of the so-called Hybrid models
(see e.g. [120, 121]). Usually, these kind of models are highly disfavoured by the
observations predicting ns > 1. But, spontaneously broken SUSY model given by
the potential [122]

V (φ) = Λ4

[
1 + αh log

(
φ

MPl

)]
(4.33)

predicts ns < 1. From Fig. 4.2, we see that this model is currently almost dis-
favoured by the recent tighter constraints on ns. Notice that for αh � 1 this
coincides with power-law potential with p� 1.

• R2 inflation: this is the first inflationary model proposed [123, 124] . The action
of this model reads

S =
M2

Pl

2

∫
d4x
√−g

[
R+

R2

6M

]
. (4.34)

However, it is possible to show that this modified gravity scenario corresponds to
a single field slow-roll model with potential given by

V (φ) = Λ4

[
1− exp

(√
2

3

φ

MPl

)]2

. (4.35)
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Notice, from Fig. 4.2, that this model is at the center of the area favored by Planck
data.

• Chaotic Inflation: This is a class of models with monomial potential

V (φ) = Λ4

(
φ

MPl

)n
, (4.36)

where inflation happens when φ > MPl. They are also called "large field models"
because the field excursion ∆φ is typically large. It can be shown that cubic and
quartic potentials, which are not shown in Fig. 4.2, are well outside the 95% CL
region and are strongly disfavoured. Even the quadratic potentials lies just outside
the 95% CL region. On the contrary, linear and fractional values like n = 4/3 or
2/3 (see e.g. [125, 126]) are still compatible.

4.4 Constraints on primordial non-Gaussianities

The cosmological observable most directly related to the primordial bispectra is the
angular bispectra of the CMB fluctuations, i.e. the three-point cross correlator of all the
possible aX`m’s in Eq. (4.17). This reads in formula

〈
a

(p1)X1

`1m1
a

(p2)X2

`2m2
a

(p3)X3

`3m3

〉
=

(
2

π

)3 ∫
dxx2

∫
dk1dk2dk3 (k1k2k3)2Bp1p2p3(k1, k2, k3)

× T p1`1 (k1)T p2`2 (k2)T p3`3 (k3) j`1(k1x)j`2(k2x)j`3(k3x)Gm1m2m3
`1`2`3

= b`1`2`3 Gm1m2m3
`1`2`3

, (4.37)

where the quantity Gm1m2m3
`1`2`3

is known as Gaunt integral and it represents the integral
over the angular part of x. This can be written in terms of Wigner 3-j symbols as (see
e.g. [127, 128])

Gm1m2m3
`1`2`3

=

∫
d2ΩxY`1m1(x)Y`2m2(x)Y`3m3(x) (4.38)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
. (4.39)

The function b`1`2`3 , which multiplies the Gaunt integral in Eq. (4.37), is the so-called
reduced bispectrum. The estimation of the fNL non-Gaussian parameter associated to a
given primordial shape is achieved through a fit of a theoretical ansatz for the reduced
bispectrum to the observed CMB angular bispectrum. The final optimal statistical esti-
mator of fNL is found with an efficient numerical implementation.7 In the latest Planck
analysis (see [62]), three different techniques have been employed to estimate fNL be-
cause comparing different methods improves the robustness of the results. The final

7The details of it go beyond the aim of the Thesis, see e.g. [54] for more details.
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constraints on local, equilateral and orthogonal non-Gaussianity coefficients associated
to the bispectrum of the curvature perturbation ζ read [62]

f loc
NL = −0.9± 5.1 (68% CL) , (4.40)

f equil
NL = −26± 47 (68% CL) , (4.41)

fortho
NL = −38± 24 (68% CL) . (4.42)

These results are compatible with a weak non-Gaussianity, telling us that at least the
primordial perturbation ζ has a Gaussian statistics to a very high level of accuracy
and suggest that initial fluctuations were linear and weakly interacting, in accordance
with the prediction of slow-roll models of inflation. Of course, there is still space for
alternative physically-motivated models that go beyond a simple Gaussian statistics.
On the other hand, constraints on non-Gaussianities can put stringent bounds on the
allowed parameter space for theories predicting important levels of non-Gaussianities in
the curvature perturbation. Moreover, we currently lack of significant constraints on
primordial bispectra concerning the tensor perturbations, which makes the analysis of
CMB non-Gaussianities involving tensor modes (in particular involving the B modes,
see e.g. the recent papers [129, 130]) particularly interesting in view of the next decade
experiments involving the searching for the B-mode polarization of the CMB (like e.g.
LiteBIRD [107, 108]).

4.5 Constraints on ΛCDM parameters

For completeness regarding the physics of the CMB, we end this chapter by presenting,
in Tab. 4.2, the Planck constraints on the six fundamental parameters (which we already
encountered thorough the chapter) that are used to fit the CMB data with the current
ΛCDM model of cosmology. These are the baryon density parameter Ωb, the (cold) dark
matter density parameter Ωc, the amplitude of primordial scalar perturbations As, the
scalar spectral index ns, the optical depth τ (Eq. (4.12)) and the acoustic angular scale
on the sky, given by θ∗ = r∗/DM , where r∗ is the comoving sound horizon, and DM is the
comoving angular diameter distance that maps this distance into an angle on the sky. We
will not go into the details on how the constraints on these parameters are derived since
it is not the purpose of this work. See the Planck paper [7] for more details. Needless
to say, this is a clear example on the power of the CMB in inferring a large quantity of
cosmological parameters, labelling it as one of the most important probe of the modern
cosmology.
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Cosmological parameter 68 % interval

Ωbh
2 0.0224± 0.0001

Ωch
2 0.1193± 0.0009

ln(1010As) 3.05± 0.01

ns 0.967± 0.004

τ 0.056± 0.007

100θ∗ 1.0410± 0.0003

Table 4.2. Planck 2018 constraints for the base-ΛCDM model from CMB TT , TE, EE +lowE
power spectra, in combination with CMB lensing reconstruction and baryonic acoustic oscillations
(BAO) [7]. The quantity h = Ho/(100 kmMpc−1s−1) is the so-called reduced Hubble constant.
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Chapter 5

Effective field theory of inflation

Until now we have worked within the framework of the standard slow-roll inflationary
scenario. However, as discussed above, we must be open-minded about alternative more
complicated scenarios. In general, there are many ways in which we can modify the
standard lore. For example, we can either modify Einstein gravity, add additional field
content, or introduce non-canonical kinetic terms for fields. All these possibilities must
rely on a well-formulated high-energy quantum field theory which does not face with any
instability or inconsistency (like e.g. Ostrogradsky ghosts [131]). In particular, we must
ensure that the background evolution of the metric is consistent with an inflationary
epoch (which is crucial to solve the fine tuning on the initial conditions). Once we find a
well-defined model, we have to perturb around the background and study the dynamics
of fluctuations in the same way as we do within the slow-roll scenario. The endpoint of
this approach gives a late time statistics of primordial perturbations that can be linked
to the CMB fluctuations. Then, observations test the physics of these perturbations
and hopefully are able to put constraints on the model. Nevertheless, we need also
a physical motivation to study a certain model, which explains why that framework is
more interested than others. Following this path, we would like to find a general approach
which explains the standard slow-roll scenario operators and allows for a huge number of
new terms in the action of the theory at the same time. Inside an unified model, we could
put constraints on each of the new terms, resulting as less model-dependent as possible.
This approach, which directly studies primordial perturbations with as less assumptions
as possible about the model-dependent microphysics of the background, is the so-called
Effective Field Theory of Inflation (EFTI) (see e.g. [76, 132]). In this chapter, we will
briefly review the basic concepts of this method following the original paper [76], and
show how we can find the single field slow-roll models action within this frame.

5.1 EFT action for inflation

In general, an effective field theory approach consists in the description of a system
in terms of light degrees of freedom with the systematic construction of all the lowest
dimension operators compatible with the underlying symmetries. This method can be
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very powerful when applied to the perturbation theory during inflation, specially because
we lack of a fundamental theory of high-energy physics and gravity, and we do not need
any specific assumption on the fields driving inflation.

In constructing our effective field theory, the fundamental step is to identify the
relevant degrees of freedom and symmetries of interest. When studying the early Universe
perturbations, independently of what is driving the inflationary expansion, we introduced
a scalar perturbation δφ which can be seen as a common local time shift of the "inflaton
field" φ

δφ(x, t) = φ(t+ π(x))− φ0(t) , (5.1)

where the time-dependent background value φ0 correspond to a FRW quasi-de Sitter
solution for the background metric. This background solution spontaneously breaks time-
translation invariance, and the scalar field π(x) giving the local time shift is the Goldstone
boson associated with the spontaneous breakdown of this symmetry. Moreover, we know
that general relativity has invariance under a generic diffeomorphism

x′µ = xµ + ξµ(t,x) . (5.2)

This invariance leads to the gauge invariance of the perturbations of the metric. In
particular, it is easy to notice that under a generic time diffeomorphism of the form

t′ = t+ ξ0(t,x) (5.3)

the scalar perturbation δφ transforms as

δφ′ = δφ+ φ̇0(t)ξ0 . (5.4)

We notice that, if we choose ξ0 = −δφ/φ̇0, we set δφ′ = 0, fixing the so-called unitary
gauge.1 In this gauge, the scalar perturbation formally disappears from the action and
is "eaten" by the metric, in exact analogy with the Higgs mechanism of the Standard
Model of particle physics. Since with this choice we have broken time diffeomorphisms,
our theory will be invariant only under the remaining spatial diffeomorphisms of the form

(xi)′ = xi + ξi(t,x) . (5.5)

We can now define a perturbation theory which breaks time-diffeomorphism invariance
(reflecting the time-translation breaking of the background). The action of such a theory
allows many more terms than the full-diffeomorphism invariant theory, where the only
2 derivatives operator built out of the metric that we could have written in the action
would have been the Ricci scalar. In the following, we discuss in details all the terms
that we can now admit in the action.

• First of all, we admit all those terms which are invariant under the full diffeomor-
phisms: this includes scalars given by the contraction of the Riemann tensor Rµνρσ
and its covariant derivative.

1This gauge is characterized only by the condition δφ = 0, and has a residual gauge invariance, not
coinciding with the comoving gauge (2.18), where the gauge is completely fixed.
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• Under a generic spatial diffeomorphism from a set of coordinates (t,x) to (t,x′),
the quantity ∂µt′ is equal to δ0

µ. As a consequence, every free upper 0 index does
not transform. Therefore, we can use the 00 component of the full metric, i.e. g00,
and functions of it.

• We can define the so-called unit vector to surfaces of constant time

nµ =
∂µt
′√

−gµν∂µt′∂νt′
. (5.6)

With this quantity, we can construct the induced 3D spatial metric on surfaces
of constant time, hµν = gµν + nµnν . This metric is used to derive the tensor
components projected on the 3D surfaces (like e.g. the 3D Riemann tensor R(3)

µνρσ).
Thus, covariant derivatives of nµ are invariant under space-diffeomorphisms and
they can be used in the action. In particular, we can decompose these into a part
projected on the surface of constant time and a part perpendicular to it. The first
one is the so-called extrinsic curvature of spatial surfaces

Kµν = hµ
σ∇σnν , (5.7)

and the other one does not give rise to new terms because it can be rewritten as

nσ∇σnν = −1

2
(−g00)−1hµν∂µ(−g00) . (5.8)

• Using at the same time the Riemann tensor of the induced 3D spatial metric and
the extrinsic curvature is redundant because one can be rewritten with the other
and the 3D metric as

R
(3)
αβγδ = hµαh

ν
βh

ρ
γh

σ
δRµνρσ −KαγKβδ +KβγKαδ . (5.9)

We can also avoid to use the 3-metric hµν explicitly, writing it in terms of gµν and
nµ.

• In front of any operator we can allow a generic function of time f(t).

Now, we can conclude that the most generic action in unitary gauge and invariant under
spatial diffeomorphisms is given by [76]

S =

∫
d4x
√−gF (g00, Rαβγδ,∇µ,Kµν , t) , (5.10)

where all the free indexes inside the generic function F are upper 0’s. We can can now
start to write explicitly all the quantities that we can form with the specified terms,
obtaining at the higher order in the perturbative expansion

S =

∫
d4x
√−g

[
M2

Pl

2
R− c(t)g00 − Λ(t) + ...

]
, (5.11)

55



where the dots stand for terms from quadratic order in the perturbations and depend by
the perturbed quantities

δg00 = g00 + 1 , δRαβγδ = Rαβγδ −R(0)
αβγδ , δKµν = Kµν −K(0)

µν , (5.12)

which start at first order in the perturbations. The functions c(t) and Λ(t) in the action
can be uniquely determined by imposing that they correspond to a FRW solution of the
background Einstein equations

G(0)
µν = 8πGT (0)

µν , (5.13)

where the zero-th order energy momentum tensor is given by

T (0)
µν = −

(
2√−g

δSmatter
δgµν

)(0)

= 2c(t)uµuν + (c(t)− Λ(t))gµν . (5.14)

This is the energy momentum tensor of a fluid with energy density ρ = c(t) + Λ(t) and
pressure density p = c(t)− Λ(t). Thus, we finally get the following Einstein equations

H2 =
1

3M2
Pl

(c(t) + Λ(t)) (5.15)

Ḣ +H2 = − 1

3M2
Pl

(c(t)− Λ(t)) . (5.16)

We can solve algebraically these equations in terms of c(t) and Λ(t) and substitute the
solutions back into Eq. (5.11), obtaining the following most generic action in unitary
gauge with broken time diffeomorphisms describing perturbations around a flat FRW
background with a Hubble parameter H(t) [76]

S =

∫
d4x
√−g

[
M2

Pl

2
R+M2

PlḢg
00 −M2

Pl(3H
2(t) + Ḣ(t))

+
M2(t)4

2!
(g00 + 1)2 +

M3(t)4

3!
(g00 + 1)3

−M̄2(t)3

2
(g00 + 1)δKµ

µ −
M̄2(t)2

2
δKµ2

µ −
M̄3(t)2

2
δKµ

νδK
ν
µ + ...

]
, (5.17)

where the dots stand for terms which are of higher order in the perturbed tensors (5.12),
i.e. at higher order in the perturbations and with an increasing number of derivatives.
Here, all the time dependent coefficients Ma(t) and M̄b(t) are free parameters charac-
terizing all the possible different effects on perturbations of any single-field model of
inflation.

5.2 Stuekelberg trick

In this section, we show how we can formally restore the full diffeomorphism invariance
in the action (5.17), employing the so-called Stuekelberg trick. We start by considering
the following terms in the action

S =

∫
d4x
√−g

[
A(t) +B(t)g00

]
, (5.18)
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which formally corresponds to the first line of Eq. (5.17). Under a broken time diffeo-
morphism

t′ = t+ ξ0(x) , (5.19)

the components of the metric transform as

g′ρσ(x′(x)) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gµν(x) . (5.20)

The "old" components of the metric can be rewritten in terms of the new ones as

gρσ(x) =
∂xρ

∂x′µ
∂xσ

∂x′ν
g′µν(x(x′)) . (5.21)

If we insert this last equation inside action (5.18), the latter becomes

S =

∫
d4x
√
−g′(x′(x))

∣∣∣∣∂x′∂x

∣∣∣∣ [A(t) +B(t)
∂x0

∂x′µ
∂x0

∂x′ν
g′µν(x(x′))

]
. (5.22)

Then, if we make a change of variable passing to the transformed coordinates x′, we get

S =

∫
d4x′

√
−g′(x′)

[
A(t′ − ξ0(x(x′))) +B(t′ − ξ0(x(x′)))

×∂(t′ − ξ0(x(x′)))

∂x′µ
∂(t′ − ξ0(x(x′)))

∂x′ν
g′µν(x′)

]
. (5.23)

Now, we promote the parameter ξ0(x) to a field through the definition

π(x) = −ξ0(x) . (5.24)

Moreover, we change the name of variable from x′ to x. Thus, action (5.23) finally
becomes

S =

∫
d4x
√
−g(x)

[
A(t+ π(x)) +B(t+ π(x)))

∂(t+ π(x))

∂xµ
∂(t+ π(x))

∂xν
gµν(x)

]
.

(5.25)

This action differs from (5.18). This is not surprising, since the starting action was
not invariant under time diffeomorphism. However, if we assign to the field π(x) the
additional transformation rule

π′(x′(x)) = π(x)− ξ0(x) (5.26)

under a generic time diffeomorphism (5.19), then action (5.25) is now invariant under a
generic time diffeomorphism, thus acquiring invariance under a full spacetime diffeomor-
phism. In the Standard Model of particle physics this is called Stuekelberg trick, and in
this context the field π(x) is the Goldstone boson associated with the breakdown of time
diffeomorphisms. This mode becomes explicit in the action after one formally "restore"
full diffeomorphism invariance through the additional transformation rule (5.26) for π(x).
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This is the same procedure that is done in the context of non-Abelian SU(2) gauge the-
ories, where adding mass terms for the vector gauge fields break the gauge invariance of
the theory. However, this invariance can be restored by including an extra field into the
action (see e.g. [133]).

Returning to our case, we can apply this prescription to the full unitary gauge action
(5.17). In this case, under time reparametrization (5.19) with ξ0 = −π(x), the metric
components transform as

g′ij = gij (5.27)

g′0i = (1 + π̇)g0i + ∂jπ g
ij (5.28)

g′00 = (1 + π̇)2g00 + 2(1 + π̇)∂iπ g
0i + ∂iπ∂jπ g

ij . (5.29)

Applying these transformation rules into action (5.17), we get the following action

S =

∫
d4x
√−g

[
M2

Pl

2
R+M2

PlḢg
00 −M2

Pl

(
3H2(t+ π) + Ḣ(t+ π)

)
+M2

PlḢ(t+ π)
(
(1 + π̇)2g00 + 2(1 + π̇)∂iπ g

0i + ∂iπ∂jπ g
ij
)

+
M2(t+ π)4

2!

(
(1 + π̇)2g00 + 2(1 + π̇)∂iπ g

0i + ∂iπ∂jπ g
ij + 1

)2
+
M3(t+ π)4

3!

(
(1 + π̇)2g00 + 2(1 + π̇)∂iπ g

0i + ∂iπ∂jπ g
ij + 1

)3
+ ...

]
.

(5.30)

This action now describes the same physics of (5.17) but, assuming π to obey the trans-
formation rule as in Eq. (5.26), it is invariant under a full diffeomorphism.

5.3 Slow-roll models

In this section we show how standard slow-roll models of inflation arise from the EFT
action (5.30). We start by defining a decoupling limit, where π(x) is decoupled by the
metric perturbations δgµν , and all the dynamics is described by the Goldstone boson
only. This decoupling limit is given by the formal limits

MPl →∞ , Ḣ → 0 . (5.31)

keeping the combination M2
PlḢ = const. Let us give an explicit example to convince

ourself of this fact. Assuming all the Ma = M̄b = 0, the kinetic term for π(x) is given
only by

Lπkin = M2
PlḢπ̇

2 . (5.32)

Thus, the canonically normalized Goldstone boson reads

πc = MPlḢ
1
2π . (5.33)
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The 00 metric perturbation is canonically normalized by

δg00
c = MPl δg

00 . (5.34)

For instance, at quadratic order in the perturbations, in action (5.30), we get the following
coupling between the metric and the Goldstone boson:

2M2
PlḢπ̇

2δg00 = 2Ḣ
1
2 π̇cδg

00
c . (5.35)

Once we rewrite the term in terms of canonically normalized fields, we immediately see
that in the limit Ḣ = 0 this term disappears. Similarly, in action (5.30) we can take the
following cubic term

M2
PlḢπ̇

2δg00 = M−1
Pl π̇c δg

00
c . (5.36)

In this case, the term disappears in the formal limit MPl = ∞. Iterating this reasoning
for all the coupling terms in (5.30) at any perturbative order, we get the only 2 conditions
(5.31).

Physically, in the context of inflation, the limits in (5.31) must be interpreted in
the following way: as we have seen in Chap. 2, during inflation we can always define
2 variables (ζ and γij) which are constant, at any order in perturbation theory, when
the corresponding physical mode λphs is outside the horizon. For this reason, we are
interested to compute correlation functions just after horizon crossing, thus in making
predictions for physical wave-numbers of order H during inflation. Therefore, the formal
limit MPl =∞ corresponds to the assumption that the energy scale of inflation, i.e. H,
is much smaller than MPl. On the other hand, the condition Ḣ = 0 is equivalent to
impose a quasi-De Sitter background dynamics during inflation. Later on, we will better
convince of these facts.

Now, we make a further assumption on the time dependence of the coefficients of any
operator in action (5.30). In fact, although they can depend generically on time, we are
interested in a background solution where they do not vary significantly in one Hubble
time. If it was the case, the rapid time dependence of this coefficients could win against
the friction created by the exponential expansion, so that inflation may cease to be a
dynamical attractor. Thus, we assume that

f(t+ π) ' f(t) . (5.37)

This assumption allows us to neglect in (5.30) all the terms in π without a derivative,
i.e. we are assuming an approximate continuous shift symmetry for π. Now, putting
together conditions (5.31) and (5.37), action (5.30) simplifies into [76]

S =

∫
d4x
√−g

[
M2

Pl

2
R−M2

PlḢ

(
π̇2 − (∂iπ)2

a2

)
+2M4

2

(
π̇2 + π̇3 − π̇ (∂iπ)2

a2

)
− 4

3
M4

3 π̇
3 + ...

]
. (5.38)
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Now, we take the limit in which Ma = M̄b = 0. In this limit, our action simply becomes

S =

∫
d4x
√−g

[
M2

Pl

2
R−M2

PlḢ

(
π̇2 − (∂iπ)2

a2

)]
. (5.39)

Thus, in the limits we considered (decoupling limit+shift symmetry for π) the Gold-
stone boson turns out to be a Gaussian random field described by the simple quadratic
Lagrangian

Sπ =

∫
d4x
√−g

[
−M2

PlḢ

(
π̇2 − (∂iπ)2

a2

)]
. (5.40)

Of course, this would be the correct action for π only in the exact decoupling limit (5.31).
In particular, reminding the definition of the slow-roll parameter ε

ε = − Ḣ

H2
(5.41)

and expressing the ratio betweenH andMPl in the context of slow-roll models of inflation
as2

H

MPl
' 4× 10−4√ε , (5.43)

we realize that the decoupling limit is equivalent to the limits

ε→ 0 η → 0 (5.44)

in terms of slow-roll parameters. Therefore, the decoupling limit is equivalent to the slow-
roll condition for the inflaton field. But, physically speaking, slow-roll parameters can
not be exactly equal to 0 (otherwise inflation would never end), thus in our effective field
theory the reduced Planck mass can never be infinite and Ḣ 6= 0. For this reason, action
(5.40) is not complete, but it must contain other terms which are slow-roll suppressed
(but effectively not equal to 0). These will be a small mass term for the Goldstone
boson (proportional to slow-roll parameters), and slow-roll suppressed interaction terms
leading to negligible non-Gaussianity [76]. After we have convinced of these facts, it is
straightforward to get that π took the role of the inflaton perturbation (apart for the
field redefinition π = δφ/φ̇) and, matching the kinetic terms of actions (2.32) and (5.40),
we get the following slow-roll leading relation between π and the curvature perturbation
ζ3

ζ = −Hπ +O(ε, η) . (5.45)
2This can be derived putting together Eqs. (2.81) and (2.84), finding

H

MPl
=
√

8π2εAs ' 4× 10−4√ε , (5.42)

where we have used the latest value of As as measured by the Planck satellite (see Tab. 4.1).
3Notice that this relation is equivalent to the first order limit of Eq. (2.21) once we identify π = δφ/φ̇.

This is a confirmation that π corresponds to the inflaton perturbation. Higher order terms in (2.21) are
slow-roll suppressed with respect to first order one, as predicted also by Eq. (5.45).
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On other hand, the action for the TT tensor perturbations γij is simply obtained by the
Ricci scalar term in (5.39), apart for slow-roll suppressed terms. In the end, we were able
to find out the standard single field slow-roll model action for primordial perturbations
ζ and γij starting from an EFT approach.

Notice that in our derivation we have assumed all the "extra" parametersMa = M̄b =
0, corresponding to the so-called vanilla scenario. In fact, these coefficients parametrize
all the possible EFT single field models of inflation that depart from standard slow-roll
models.

5.4 Validity of EFT

In this section, we briefly comment on the regimes of validity of EFT approach when we
search for alternative models of inflation. In fact, the main reason why one introduces
this formalism is to modify single field slow-roll models of inflation by admitting some
of the Ma and M̄b parameters to be different by 0 in action (5.38). However, as we
are going to see, these additional terms may introduce in the theory pathologies and
inconsistencies which usually theoretically constrain the new space of parameters even
before the matching with the experiment.

We start by expanding action (5.38) in terms of π until cubic order. The most generic
action for the Goldstone boson in the decoupling limit (thus neglecting higher order terms
in slow-roll) up to cubic order in π turns out to be [76]

S =

∫
d4x
√−g

[
−M

2
PlḢ

c2
s

(
π̇2 − c2

s

(∂iπ)2

a2

)

−M
2
PlḢ

c2
s

π̇
(∂iπ)2

a2
− 2

3
M2

PlḢ
c̃3

c4
s

π̇3

]
, (5.46)

where we have defined the new speed of sound of π as

c2
s =

(
1− 2M4

2

M2
PlḢ

)−1

(5.47)

and

c̃3 = c2
s

M4
3

M4
2

. (5.48)

We immediately see from action (5.46) that, in order to prevent the Goldstone boson to
become an unstable field, the coefficient of the ∝ π̇2 kinetic term must be positive, i.e.
we need c2

s > 0. From Eq. (5.47) this translates into the following condition on M4
2

M4
2 >

M2
PlḢ

2
. (5.49)
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Moreover, we can still have superluminal propagation when c2
s > 1. If we want to avoid

this scenario we must assume the stronger condition

− 2M4
2

M2
PlḢ

> 0 , (5.50)

which, since Ḣ < 0, gives the condition M4
2 > 0. However, notice that superluminal

propagation in effective field theories may not be a problem per se (see e.g. [134]), but
simply implies that the theory can not have a Lorentz invariant UV completion [135].

Furthermore, the two cubic operators in Eq. (5.46) give rise to two different 3 scalars
bispectra that are given by a linear combination of equilateral and orthogonal shapes of
the same type we have seen in Chap. 3. The corresponding non-Gaussian coefficients
associated to these amplitudes are given by (see e.g. [71, 136] for the full computation)

f π̇
3

NL =
10

243

(
1− 1

c2
s

)(
c̃3 +

3

2
c2
s

)
, f

π̇(∂iπ)2

NL =
85

324

(
1− 1

c2
s

)
. (5.51)

As we can see, we generate non-Gaussianity of the order

fNL ∼
1

c2
s

. (5.52)

This means that in the limit c2
s → 0 we can have in principle huge non-Gaussianities.

However, even before looking to the constraints on fNL given by the experiments, it is
possible to show that theoretically speaking c2

s can not be indefinite small. In fact, in
the limit c2

s → 0, interaction terms in action (5.46) become large, leading to a strong
coupling regime that would spoil the perturbativity of the theory. However, since these
interactions are non-renormalizable (the corresponding coupling constants have the phys-
ical dimensions ofM−2), there must exist an UV cut-off energy scale Λ setting the energy
limit at which the π’s self interactions enter in the strong coupling regime. To identify
this cut-off, we have to rewrite the action in terms of canonically normalized fields

πc = (−2M2
PlḢcs)

1/2π , (5.53)

and rescale spatial coordinates as
xi →

xi
cs
. (5.54)

If we do so, action (5.46) becomes

S =

∫
d4x
√−g

[
1

2

(
π̇2
c −

(∂iπc)
2

a2

)

− 1√
8M2

Pl|Ḣ|c5
s

(
π̇c

(∂iπc)
2

a2
+

2

3
c̃3 π̇

3
c

) . (5.55)
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Now, the strong coupling scale can be read in the denominator of the cubic interactions
as

Λ2 =

√
8M2

Pl|Ḣ|c5
s . (5.56)

As we can see, when cs = 1, the strong coupling scale becomes higher as in this limit
the theory loses their possibly dangerous interaction. On the contrary, when cs becomes
smaller, approaching 0, the cut-off scale decreases and the theory can become strongly
coupled even at the characteristic energy scale of inflation. Since we are interested in
making predictions for cosmological perturbations at energies of the order of the Hubble
scale H, we must impose that Λ is bigger than H, which implies

H2 <

√
8M2

Pl|Ḣ|c5
s . (5.57)

If we solve this constraint in terms of cs, we get the theoretical constraint4

cs >

(
H2

8π2csM2
Plε

π2

)1/4

=
(
Asπ2

)1/4 ' 0.012 , (5.58)

where in the current effective field theory formalism

As ≡
H2

8π2csM2
Plε

. (5.59)

Of course, a better estimate of the scale Λ can be found by computing the exact energy
scale where the scattering of π loses perturbative unitarity, i.e. when higher order terms
in the loop perturbative expansion become more important than the lower ones, signalling
the breakdown of the loop expansion. This leads to the following estimate for the cut-off
scale (see e.g. [76, 137])

Λ2 =

√
16π2M2

Pl|Ḣ|
c5
s

1− c2
s

, (5.60)

which, for the pathological limit cs → 0, gives the following constraint on cs:

cs >

(
1

2

H2

8π2csM2
Plε

)1/4

= (As/2)1/4 ' 0.006 , (5.61)

which differs from (5.58) only for a factor 2.

5.5 Constraints from observations

We can use the latest experimental constraints on fNL from the Planck mission (see Eq.
(4.40)) to make constraints in the parameter space of this effective field theory, as it can
be shown in Fig. 5.1. In particular, after marginalizing over the parameter c̃3, we can

4Here, we use As as tabulated in Tab. 4.1.

63



Figure 5.1. 68%, 95%, and 99.7% confidence regions in EFT single field inflation parameter
space (cs, c̃3) [62].

find the following bound on the speed of sound of scalar fluctuations

cs > 0.021 , 95%CL (T+E) . (5.62)

Since the EFTI action (5.38) describes the leading interaction terms of all single-field
models of inflation, with the constraints in Fig. 5.1 we are able to put bounds on
different specific models of inflation at the same time. For example, in the so-called DBI
scenario (see e.g. [138, 139]) corresponding to c̃3 = 3(1 − c2

s)/2, we get the following
constraints for cs [62]

cDBI
s > 0.086 , 95%CL (T+E) . (5.63)

The same happens for many other models (that we will not review here). The most
recent observational constraints, where the EFTI methods have been used, can be found
in the recent Planck paper on non-Gaussianites [62].

5.6 Considerations and extensions

What we have seen in this chapter is a powerful method to generalize the single field
slow-roll model of inflation in the most possible model independent way. In fact, in the
action (5.38), we can "switch on or off" some particular operators in order to recover
various single field models of inflation. This is probably the most important point,
because it allows us to generically study very different models with a unifying formalism.
Experiments will put bounds on the size of the various operators (for example with

64



measurements of non-Gaussianities of primordial perturbations), that generically describe
deviations from the standard scenario. In some sense, this is similar to what one does
in particle physics, where we put constraints on the size of the operators describing
deviations from the Standard Model, constraining in this way the effects of new physics.
Moreover, it is possible to clearly determine the regime of validity of any new term and
where an UV completion of the theory is required. As we have seen in Sec. 5.4, this
typically leads to theoretical constraints over the new parameters of a specified theory.
Another interesting aspect is that in evaluating the new EFT operators in terms of the
perturbations, we can both work in gauge (2.16) and (2.18). In fact, even if the EFT
expansion is defined in unitary gauge (where the inflaton field is "eaten" by the metric),
in Sec. 5.2 we have seen that we can perform the "Stuekelberg trick", going back to
the gauge where a scalar field π (which turns out to be the inflaton field, apart for field
redefinition) explicitly reappears in the action (and disappears from the metric).

Here, in introducing this method, we have focused only on the scalar perturbation
case, but analogous arguments arise when one is interested in computing the EFTI mod-
ifications on the statistics involving tensor perturbations. In particular, in this last case,
we can allow for parity breaking terms in the action (while, considering scalar perturba-
tions only, we could not build parity breaking operators). Thus, we can add the following
rule, generalizing the list of allowed terms in Sec. 5.1, in order to allow for parity breaking
terms:

• We can include odd powers of the Levi-Civita covariant pseudo-tensor εµνρσ/
√−g

and the projected Levi Civita pseudo-tensor nµεµνρσ/
√−g = ε0νρσ/

√
−h which is

invariant under space diffeomorphisms.

If we implement this additional condition, then the most general parity breaking action
we can build (stopping at quadratic level in the perturbations) reads

S�P =

∫
d4x [α(t) εµνρσ nµ (∇νδKρα) δKα

σ

+β(t) εµνρσδRµν
λα δRρσλα + γ(t) εµνρσ nµ (∇αδKλ

ν ) δRρσλα + δ(t) εµνρσ nµ δK
λ
ν (∇αδRρσλα)

+...] , (5.64)

where the dots stand for higher order terms in derivatives and perturbations.
In the first line, there is the only cubic derivative term one can build, while starting

from the second line there are four derivatives terms. Contrary to the parity preserving
case, we can not build any term with less than 3 derivatives. However, notice that the
term in the second line given by the contractions of the 2 Riemann tensors and the Levi
Civita pseudo-tensor is a topological term that can be rewritten as

εµνρσδRµν
λα δRρσλα = ∂µA

µ , (5.65)

where we introduced the current

Aµ = 2εµαβγ
(

1

2
δΓξαν ∂βδΓ

ν
γξ +

1

3
δΓξαν δΓ

ν
βη δΓ

η
γξ

)
. (5.66)

65



Therefore, the derivative ∂µ can be integrated by parts and moved to the coupling func-
tion β(t), yielding to an effective cubic derivative term on cosmological perturbations.
Moreover, notice that the quantity A0 alone is invariant under a spatial diffeomorphism,
thus we can include it separately in the action as an additional three derivatives term.
So, it is more appropriate to rewrite action (5.64) as

S�P =

∫
d4x

[
α(t) εµνρσnµ (∇ν δKρα) δKα

σ − (∂µβ1(t))Aµ + β2(t)A0

+γ(t) εµνρσ nµ (∇αδKλ
ν ) δRρσλα + δ(t) εµνρσ nµ δK

λ
ν (∇αδRρσλα)

+...] . (5.67)

This is the most general EFT action we can build to describe parity breaking physics
in the primordial perturbations during inflation.5 Starting from the following chapter,
we will focus mainly in the Chern-Simons operator (5.65), which is the only term being
explicitly invariant under a full diffeomorphism of the metric, and arises from a slightly
different effective field theories approach describing modifications in the gravity sector
during inflation (like e.g. [6, 143]).

5In literature, in the context of quantum Horava-Lifschitz gravity, it is usually considered as a 3
derivatives parity breaking term also the following 3D Chern-Simons operator [140, 141]

− 4

∫
d4x εijk

(
1

2
(3)Γpiq∂

(3)
j Γqkp +

1

3
(3)Γpiq

(3)Γqjr
(3)Γrkp

)
, (5.68)

where (3)Γkij is the Christoffel symbol computed with the 3D metric. However, it is possible to show that
this term does not add new physics in our EFT context, because it can be rewritten in terms of the 3
derivatives operators in (5.67) (see Ref. [142]).
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Part II
Parity breaking in the gravity sector from

the primordial Universe

In the first part of this work, we have seen that slow-roll models of inflation, the ac-
tual inflationary paradigm, describe successfully many observed features of the Universe,
its homogeneity, flatness, and in particular the origin of the first curvature (density)
perturbations. In most of such models, Einstein gravity is usually assumed to describe
the theory of gravity. However, because of the possibly very high energies underlying
the inflationary dynamics, it might be that remnant signatures of modification to Ein-
stein gravity are left imprinted in the inflationary quantum fluctuations. In literature,
the examples are different, from the first model of inflation [123], based on R2-higher
order gravitational terms, to more recent scenarios, such as, e.g., [6, 45, 59, 74, 143–
167].6 In such modified gravity models of inflation, we can have modifications in both
the background dynamics and the evolution of primordial perturbations. In particular,
production of primordial non-Gaussianities is an interesting feature of these models. In
fact, we have seen that in the simplest models of inflation with standard gravity, the non-
linearity parameter fNL, which measures the level of non-Gaussianity in the primordial
curvature perturbations, is proportional to slow-roll parameters (ε, η). Thus, in the stan-
dard scenario, primordial non-Gaussianity is highly suppressed. Instead, in a modified
gravity model we can have enhancement of non-Gaussianities (see e.g. [150] and Refs.
therein). This is due to the fact that a modification of Einstein gravity can bring new
degrees of freedom as well as new interactions among fundamental fields of the theory.

In this second part, we will focus on modifications in slow-roll models of inflation
provided by Chern-Simons gravity, which is the highest order parity breaking operator
in the gravity sector that arises from EFT modifications of Einstein gravity. In the
literature, effects of this kind of gravity on gravitational waves in an inflationary context
have been studied for the first time in Ref. [177], and in Ref. [178] more details have
been elaborated on more general aspects of the theory, while more recent works include
Refs. [45, 158–161, 179–182]. In particular, Chern-Simons gravity is obtained adding the
so-called Chern-Simons gravitational term coupled to the inflaton field in the action of
the slow-roll inflationary models. This term can be written in terms of the Riemann

6For more general inflationary frameworks, see also [142, 168–175]. For a review on inflationary
gravitational waves containing other examples, see Ref. [176].
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tensor as
S�P =

∫
d4x

[
f(φ) εµνρσRµν

κλRρσκλ

]
, (5.69)

where f(φ) is a generic function of the scalar inflaton field φ only, εµνρσ is the total an-
tisymmetric Levi-Civita pseudo-tensor (with ε1230 = 1), Rµνρσ is the Riemann curvature
tensor. As we have seen in Sec. 5.6, this operator naturally arises from an effective field
theory generalization of inflation. In Eq. (5.69) one can replace the Riemann tensor with
the Weyl tensor, Eq. (6.3), without introducing any modification to the action (see, e.g.
[6, 183]). For this reason, the Chern-Simons gravitational term belongs to the so-called
Weyl-square terms, typically abbreviated with the symbol C̃C. The form of the coupling
function f(φ) could be determined a priori by a quantum theory of gravity, which is
still incomplete for the moment. For this reason, the coupling can be taken totally gen-
eral. A fundamental result is the polarization of primordial gravitational waves (PGW)
into chiral-eigenstates, the so-called left (L) and right (R) polarization states and the
possibility to detect such parity breaking signatures looking at CMB polarization. The
reason is that a parity transformation changes the chirality of PGW, and so, in a theory
in which parity is broken, we expect a difference in the dynamical evolution of these
chiral-eigenstates.

There are several observational studies on parity breaking signatures of PGW (and on
cosmological birefringence) using CMB data [184–202]. At present, CMB power spectra
are not able to efficiently constrain the level of parity breaking. Moreover, it has been
shown recently, on very general ground, that even from future CMB data it will be almost
hopeless to constrain the chirality of PGW exploiting only the two-point correlation
statistics, specifically the cross-correlation of B polarization modes with temperature T
anisotropies and E polarization modes [203]. Only in the most optimistic cases some weak
constraints might be placed. Therefore, it has become even more interesting and crucial
to ask whether relevant parity breaking signatures can arise in higher-order correlators.

Thus, motivated by this possibility, we will investigate parity breaking signatures
in primordial bispectra that come from the term (5.69). We will analyze the tensor
fluctuations (gravitational waves) bispectra 〈γγγ〉 and their mixed correlators with the
scalar curvature perturbation ζ, 〈γζζ〉 and 〈γγζ〉. Analyzing the scalar bispectrum 〈ζζζ〉
is not interesting for our goals, because it is insensitive to parity breaking signatures,
being sourced only by scalar fields. In particular, we will focus on the bispectrum 〈γγζ〉.
In fact, we will show that contributions to other bispectra are highly suppressed. The
first part of this investigation is the topic of Ref. [204] (Chaps. 6-7). In addition, we
will present a forecast on the possibility to observe such a signal with CMB bispectra
statistics. This forecast is the subject of Ref. [205] (Chap. 8).7

7The scientific results presented in this part contain some differences and original considerations with
respect to the content of the corresponding published papers [204, 205]. These are the results of scientific
discussions having during a research period of 4 months at the University of Amsterdam.
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Chapter 6

Chiral gravitational waves
production

In this chapter, we see the origin of Chern-Simons modified gravity from EFT of gravity,
we specify the computational conventions adopted to derive our results, and describe in
which sense, at linear level, gravitational waves acquire chirality.

6.1 Chern-Simons gravity from EFT of gravity

The Hilbert-Einstein (H-E) action describing standard gravity is built by admitting co-
variant terms with a maximum number of two derivatives of the metric tensor. The only
covariant term which obeys to this constraint is the scalar curvature R and the result is
the well-known density Lagrangian

LHE =
√
g

(
M2

Pl

2
R

)
. (6.1)

A standard way to modify Einstein gravity is to relax this condition and consider a
more general theory of gravity in which the action is built with an expansion in series
of covariant terms that contains an increasing number of derivatives of the metric ten-
sor. The first correction to the Lagrangian (6.1) is obtained by considering the most
general covariant terms with four derivatives of the metric tensor. We build these terms
doing tensor contractions between two tensors with two derivatives of the metric tensor.
Such tensors are the fundamental curvature tensors of general relativity: the Riemann
tensor Rµνρσ, the Ricci tensor Rµν and the scalar curvature R. Then, the most general
expression for the additional Lagrangian we want to focus on is

∆L =
√
g
(
f1R

2 + f2RµνR
µν + f3RµνρσR

µνρσ
)

+ f4ε
µνρσRµν

κλRρσκλ + ... . (6.2)

where the dots stand for terms with more than 4 derivatives and fn are some arbitrary
dimensionless coefficients. From Lagrangian (6.2) we see that the Chern-Simons term (the
one which multiplies f4) is appearing naturally by this (effective field theory) expansion.
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It is convenient to rewrite the Lagrangian (6.2) in terms of the Weyl tensor Cµνρσ
which is the traceless part of the Riemann tensor. This because we can understand
better some properties of the Chern-Simons term that will be useful to perform the
computations later on. The Weyl tensor is defined by

Cµνρσ = Rµνρσ−
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ)+

R

6
(gµρgνσ − gνρgµσ) . (6.3)

Thus, by doing a simple redefinition of the coefficients fn, Lagrangian (6.2) becomes

∆L =
√
g
(
f1R

2 + f2RµνR
µν + f3CµνρσC

µνρσ
)

+ f4ε
µνρσCµν

κλCρσκλ . (6.4)

This if we consider only the metric tensor gµν . If we also introduce a scalar field φ which
plays the role of the inflaton field we should include also covariant terms up to four
derivatives of the inflaton field itself. The result is the full Lagrangian (see e.g. Ref. [6])

L =
√
g

[
1

2
M2

PlR−
1

2
gµν∂µφ∂

µφ− V (φ)+

+ f3(φ)
(
gµν∂µφ∂νφ

)2
+ f4(φ)gρσ∂ρφ∂σφ2φ+ f5(φ)

(
2φ
)2

+ f7(φ)Rµν∂µφ∂νφ+

+ f8(φ)Rgµν∂µφ∂νφ+ f9(φ)R2φ+ f10(φ)R2 + f11(φ)RµνRµν + f12(φ)CµνρσCµνρσ

]
+

+ f13(φ)εµνρσCµν
κλCρσκλ , (6.5)

where we allow the various dimensionless coefficients fn to depend on the inflaton field.
In the first line, we recognize the standard action of slow-roll models of inflation. The
Chern-Simons term coupled to the inflaton field stays in the last line. Since we are
interested only in signatures of parity breaking modifications of Einstein gravity during
the inflationary epoch, we restrict to the following Lagrangian

L =
√
g

[
1

2
M2

PlR−
1

2
gµν∂µφ∂

µφ− V (φ)

]
+ f(φ)εµνρσCµν

κλCρσκλ . (6.6)

The Chern-Simons term, in addition to introducing parity breaking signatures in the
gravity sector, has other interesting peculiarities. First of all, this term is zero if computed
on the background metric (the background metric is the Friedmann-Robertson-Walker
(FRW) metric, which is conformally invariant and thus the Weyl tensor is zero in FRW).
As a consequence, the Chern-Simons term does not modify the background dynamics
of inflation, but modifies only the statistics of primordial perturbations. In addition, it
is invariant under a Weyl transformation of the metric. This fact will also be useful in
performing the computations. As a final consideration, we want to emphasize that the
Chern-Simons term is a total derivative term (as we have shown in Eq. (5.65)); for this
reason the coupling with the inflaton f(φ) is necessary to achieve a non trivial signature in
the theory. Therefore, Chern-Simons gravity could have left signatures only on primordial
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perturbations, since at the end of the inflationary epoch the inflaton decays and the
Chern-Simons term becomes a surface term, restoring standard gravity. We end this
chapter by remarking that this term is expected to be the highest order parity breaking
correction to Einstein gravity, or, better to say, it is the covariant parity breaking term
with the lowest number of derivatives. In fact, as explained in [6], within an effective field
theory approach more derivatives has a certain operator, less is expected to be important
in the EFT expansion. In literature, also parity breaking operators with more than 4
derivatives have been studied. For instance, in Refs. [164–166] possible parity violating
signatures in graviton non-Gaussianities due to a Weyl-cubic parity breaking term C̃C2

(which contains 6 derivatives) have been considered, however reveling in this particular
case a negligible contribution.

6.2 Gauge fixing

The gauge in which we will work is the spatially flat gauge (2.16) and with the metric
in the ADM form (2.9). We remind that in this gauge, besides the fields N and Ni, we
remain with only the scalar perturbation of the inflaton field δφ, and the transverse and
traceless modes γij inside the spatial part of the metric tensor

hij = a2[δij + γij + γilγlj + ...] , γi
i = 0 , ∂iγij = 0 . (6.7)

As said in Chap. 2, N and Ni are auxiliary fields in standard gravity, which means that
they can be removed by solving the corresponding equations of motion and substituting
the solutions back into the action. However, when we introduce a modified gravity term
in the action, we have to take care of possible modifications of the equations of motion
of such fields. In our case, we are interested to perform an analysis of the bispectrum
of primordial perturbations. In order to do this, it is necessary to expand the action
of the theory until third order in cosmological perturbations. As discussed in Chap. 2,
in this case we need to know only the first order values of N and Ni. In gauge (2.16),
the standard gravity solutions for auxiliary fields until first order in the perturbations
read [39]

N
(1)
flat =

φ̇0

2H
δφ , ψ

(1)
flat = −a2

˙φ0
2

2H2
∂−2

[
d

dt

(
Hδφ

φ̇0

)]
, N

i(1)
T,flat = 0 . (6.8)

Now, let us discuss briefly if, in the case gravity is described by action (6.6), modifications
w.r.t. standard gravity are introduced by the Chern-Simons term to the first order values
of the fields N and Ni. We notice immediately that N is a scalar field and at first order
it does not take any contribution from parity breaking terms. In addition, Ni can be
splitted in a scalar perturbation mode ψ and a transverse vector perturbation N i(1)

T . The
Chern-Simons term can not modify at linear level the scalar perturbation mode ψ for the
same reason as for the fieldN ; instead, a priori, it can give a contribution to the transverse
vector perturbation. In particular, there are two possibilities: the first possibility is that
N
i(1)
T remains an auxiliary field. However, at first order in the perturbations δφ and γij ,
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there is no way to build any non-trivial transverse vector. So, in this case, at first order
we can take as usual N i(1)

T = 0 during inflation (as it happens in standard gravity, see
Eq. (6.8)). The second possibility is that the Chern-Simons term turns the field N

i(1)
T

into a dynamical field: however, as we said at the end of Sec. 2.1, vector perturbations
in an inflationary context can be safety put to zero. Thus, for what we have stated, we
can take for the fields N and ψ the same values as in Eq. (6.8) and put N i(1)

T = 0.
Now, we have all the tools we need to study the dynamical evolution of primordial

perturbations.

6.3 Signatures in primordial power-spectra

In this section, we review the results about parity breaking signatures at linear level in
the primordial power-spectra, providing also some original considerations. This is also
useful to clarify the conventions and the assumptions we adopted.

In the quadratic part of the Lagrangian, the Chern-Simons term does not provide
any contribution to the inflaton perturbation. In fact, as we have stated in the previous
section, there is no way to build parity breaking operators with only scalar perturbations.
Instead, it is interesting to analyze the parity breaking effects on the power spectra of
the transverse and traceless tensor perturbations γij (i.e. PGW). Let us remember the
following Fourier decomposition (2.56)

γij =

∫
d3k

(2π)2

∑
s=R/L

esij(
~k)γske

ik·x , (6.9)

where we adopt circular left (L) and right (R) polarization states of PGW as made in
Sec. 2.4. In addition, it is convenient to pass to the conformal time dτ = a−1dt instead
of adopting cosmological time t. In this way, the metric reduces in the form gµν = a2γµν ,
where γµν is the perturbed Minkowski metric tensor. Since the Chern-Simons term is
invariant in form under a Weyl transformation of the metric g′ = e−2w(x,t)g, it is sufficient
to choose w = ln a, to understand that we can compute the Chern-Simons term using the
metric γµν . We achieve this metric simply setting a = 1 and substituting cosmological
time t with conformal time τ .

Now, using the gauge (6.7), we compute the density Lagrangian (6.6) at second
order in tensor perturbations. Because of the fact that the Weyl tensor is zero on the
background, the correction to the quadratic action from the Chern-Simons term comes
from the computation of the tensor contraction f(φ0)εµνρσCµν

κλ|(1)

T Cρσκλ|(1)
T , where φ0

denotes the background value of the inflaton field. The indices (1) and T indicate that
we need to compute the corresponding tensors at first order in tensor perturbations. For
simplicity of notation, in the following we will use φ to refer to the background value
of the inflaton instead of φ0. In performing this computation, we can set N = 1 and
Ni = 0 because we are not interested in scalar perturbations. The first order values of
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the components of the Weyl tensor read (computed taking the scale factor a = 1)

C0i0j |(1)
T = −1

4
[γ′′ij + ∂2γij ] , (6.10)

C0ijk|(1)
T = −1

2
[∂jγ

′
ik + ∂kγ

′
ij ] , (6.11)

Cijkl|(1)
T =

1

2
[−∂i∂kγil + ∂i∂lγjk + ∂j∂kγil − ∂j∂lγik]−

1

4
[−δik2γil + δil2γjk + δjk2γil − δjl2γik] ,

(6.12)

where 2 = ∂2
τ + ∂2 and the prime denotes derivative with respect to the conformal time.

Thus, the quadratic modification to the tensor action reads

∆S|γγ =

∫
d4x εijk f(φ)

∂

∂τ

[
(γ′il)(∂jγ

′
k
l
)− (∂rγil)(∂j∂

rγk
l)
]
, (6.13)

where the Latin contractions are made with the Dirac delta. We can integrate the
conformal time derivative by parts, obtaining

∆S|γγ = −
∫
d4x εijk f ′(φ)

[
(γ′il)(∂jγ

′
k
l
)− (∂rγil)(∂j∂

rγk
l)
]
. (6.14)

Thus, using the relations (2.59), we get the following new total action for the graviton
modes

S|γγ =
∑
s=L,R

∫
dτ

d3k

(2π)3
A2
T,s

[
|γ′s(τ, k)|2 − k2|γs(τ, k)|2

]
, (6.15)

where

A2
T,s =

M2
Pl

2
a2

(
1− 8λs

k

a

ḟ(φ)

M2
Pl

)
= a2

(
1− λs

kphys

MCS

)
(6.16)

and

MCS =
M2

Pl

8ḟ(φ)
(6.17)

is the so called Chern-Simons mass (the dot represents derivative with respect to cosmo-
logical time). Let us recall that the coefficient λs is +1 for R polarization modes and −1
for L modes. Thus, there are some values of the physical wave number kphys = k/a for
which the factor A2

T,R becomes negative. In particular, from Eq. (6.16), this happens for
kphys > MCS. The R modes with physical wave-numbers larger than the MCS acquire a
negative kinetic energy becoming unstable. Similar instabilities at quantum level and at
high energies can be very problematic (see e.g. [206]). In order to avoid this problem, we
set an ultra-violet cut-off Λ < MCS to the theory. This cut-off is well motivated within
an effective field theory approach (Λ can be taught as a scale of new physics). Since we
want to study the statistics of perturbations that go outside the Hubble horizon during
inflation, we have to assume Λ > H (this forces MCS > H).
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Now, instead of deriving the equations of motion for the fields γs, it is more convenient
to make before the field redefinition

µs = AT,sγs . (6.18)

Following the same steps of Sec. 2.4, we compute the new effective potential term for
the fields µs which, at leading order in slow-roll, turns out to be

A′′T,s
AT,s

=
2

τ2

(
1− λs

2
kτ

H

MCS
A
)

=
2

τ2

(
1 +

λs
2

kphys

H

H

MCS
A
)
. (6.19)

In eq. (6.19) we have defined the following quantity

A =
1

(1− λskphys/MCS)2

{[
1− ξ +

ω

2
− ξ

2Hτ

](
1− λs

kpyhs

MCS

)
− λs

kphys

2MCS

[
1

2
+ ξ +

ξ2

2

]}
,

(6.20)
where [204]

kphys =
k

a
, (6.21)

ξ =
ṀCS

MCSH
, (6.22)

and

ω =
M̈CS

MCSH2
, (6.23)

where the dots stand for derivatives with respect to cosmological time t. The new equa-
tions of motion read

µ′′s(τ, k) +

(
k2 −

A′′T,s
AT,s

)
µs(τ, k) = 0 . (6.24)

Now, we assume for simplicity that the Chern-Simons mass is approximately constant in
time during inflation, i.e. ξ = ω ' 0. In this case, the effective potential simplifies into

µ′′s +

(
k2 − ν2

T − 1
4

τ2
+ λs

k

τ

H

MCS

)
µs = 0 , (6.25)

where we recall that νT = 3
2 + ε, and ε is the slow-roll parameter (1.48).

Eq. (6.25) differs by the one of standard slow-roll models of inflation (2.70) by an
additional term in the effective mass (proportional to τ−1) which gives a correction to
the sound of speed of the µs fields. In particular, we get the following new sound of
speed:

c2
R/L = 1± 1

kτ

H

MCS
. (6.26)
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We can notice that the L-handed graviton field acquires a superluminar velocity (τ < 0),
signaling the breaking of Lorentz invariance in this theory. Now, as usual, we canonically
quantize the fields µR,L in creation and annihilation operators as

µ̂s(k, τ) = us(k, τ)âs(~k) + u∗s(k, τ)â†s(−~k) . (6.27)

Thus, the equations of motion for the mode functions us(k, τ) are

u′′s +

(
k2 − ν2

T − 1
4

τ2
+ λs

k

τ

H

MCS

)
us = 0 . (6.28)

Eq. (6.28) is the so-called Whittaker equation whose exact solution with the Bunch
Davies initial condition reads (see e.g. [160])

us(k, τ) = 2

√
(−kτ)3

k
e−i(

π
4
−πνT /2) e−ikτ U

(
1

2
+ νT − λs

H

MCS
, 1 + 2νT , 2ikτ

)
e+π

4
λsH/MCS ,

(6.29)
where U is the confluent hypergeometric function [207]. On super-horizon scales (i.e.
z = −kτ � 1) the solution (6.29) simplifies, becoming

us(k, τ)z�1 =

√
1

2k2τ2k
ei(−

π
4

+π
2
νT ) Γ(νT )

Γ(3/2)

(−kτ
2

)3−2νT

e+π
4
λsH/MCS . (6.30)

Now, we can compute the expected super-horizon power spectra of each polarization
mode. We have

PLT = 〈0|γ̂Lij(~k)γ̂ijL (~k′)|0〉 = 2
|uL(z)z�1|2

A2
T,L

, (6.31)

PRT = 〈0|γ̂Rij(~k)γ̂ijR (~k′)|0〉 = 2
|uR(z)z�1|2

A2
T,R

. (6.32)

At leading order in the slow-roll parameters we find

PLT = PT
2 e
−π

4
H/MCS , (6.33)

PRT = PT
2 e

+π
4
H/MCS , (6.34)

where

PT =
4

k3

H2

M2
Pl

(z
2

)3−2νT
(6.35)

is the standard gravity total tensor power spectrum in the standard slow-roll models
without the Chern-Simons correction. As we explained above, the dimensionless coeffi-
cient H/MCS has to be smaller than 1 due to the energy cut-off. However, a scenario
in which H . Λ . MCS is highly unnatural. It is more natural to assume an energy
cut-off Λ � H, thus forcing H/MCS � 1. For this reason, we can expand in series
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the exponentials in (6.33) and take only the first order value. At the end, the relative
difference between the power spectrum of right (R) and left (L) helicity states reads

χ =
PRT − PLT
PRT + PLT

=
π

2

(
H

MCS

)
. (6.36)

This observable (that usually is called chirality of gravitational waves) quantifies the
expected differences between the power spectrum of the R and L polarizations of the
primordial gravitational waves at the end of inflation. We expect that its value is small
(i.e. � 1) for the considerations made in developing the theory. Moreover, we expect
that it is almost scale independent in a scenario where MCS is almost constant in time
during inflation. This scale independence drops when we consider a scenario where MCS

is time varying during inflation. In this case, instead of solving the exact equation of
motion (6.24), it is more convenient to adopt an alternative method to compute the
chirality of primordial gravitational waves.

This alternative approach relies in the In-In formalism method (see App. B), which
allows to perturbatively estimate the corrections to primordial correlators induced by
new small interaction terms in the Lagrangian. In particular, using the first order limit
of Eq. (B.18) in Fourier space, we find the following correction to the tensor 2-point
function:

δ〈γR/L(0,~k)γR/L(0,~k′)〉 = −i
∫ 0

−∞
dτ ′ 〈γR/L(0,~k)γR/L(0,~k′)HR/L(p, τ ′)〉 (6.37)

where

HR/L(p, τ) = ∓
∫

d3p

(2π)3
a

p

MCS

[
|γ′R/L(τ, p)|2 − p2|γR/L(τ, p)|2

]
. (6.38)

The choice of evaluation time τ = 0 in (6.37) corresponds to the late-time limit on super-
horizon scales. In the evaluation of integral (6.37), we can use in first approximation
the de Sitter solutions for the mode-functions γR/L(0, k) (Eq. (7.7)), a = −1/(Hτ), and
evaluate the parameters inside the integral at the time of horizon-crossing of the mode
k.1 The final result reads (see e.g. [142])

δ〈γR/L(0,~k)γR/L(0,~k′)〉 ' ±(2π)3δ(3)(~k + ~k′)PT
π

4

(
H

MCS

)∗
, (6.39)

where the star ∗ denotes the value of the parameters at the horizon crossing of the mode
k. The chirality in this case approximately reads

χ(k∗) '
π

2

(
H

MCS

)∗
(6.40)

and acquires scale dependence, still remaining � 1 as it is proportional to the ratio
H/MCS (Notice that this result is a confirmation of (6.36) for the scale invariant case).

1see Ref. [39] for more details. These approximations are discussed in Chap. 7.
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As we already mentioned, even in the most optimistic cases, only weak constraints
on the parameter χ could be achieved from CMB power spectra (see e.g. Refs. [201,
203]). In particular, in Ref. [203], it is shown that ideally the 1σ detection of χ 6= 0 is
possible only if χ & 0.4 (which would require the unnatural condition H . MCS). The
possibility to put constraints on the value of χ with experiments involving the direct
detection of polarized primordial gravitational waves through interferometers regards
only futuristic experiments (see e.g. Refs. [208, 209]). In fact, current interferometers are
very far from being sensitive to the primordial gravitational waves amplitude as predicted
by slow-roll models of inflation.2 Moreover, in Refs. [211, 212], it was shown that
three-dimensional informations, like the tidal imprints of primordial gravitational waves
fossilized into the large-scale structure of the Universe, could be critical in the future to
discerning the effects of parity violation in the primordial gravitational-wave background.
In particular, in Ref. [212], it is claimed that, with futuristic galaxy surveys, constraints
on primordial chirality at the percentage level could be derived. Unfortunately, the
use of both interferometers or galaxy surveys to constrain the chirality of primordial
gravitational waves is expected to be very futuristic.

Briefly speaking, in the model we have considered, the formation of a very small
parity violation in the PGW power spectrum is expected. This might be very difficult
to observe even with the next experiments involving the polarization of the CMB. Any
other alternative experiment sensitive to the chirality of primordial gravitational waves
is still futuristic. For this reason it is interesting to investigate if a significant parity
breaking signature can arise from a higher order statistics of primordial perturbations,
i.e. looking to the cubic interaction terms among fields. Thus, in the following chapter,
we will study how the Chern-Simons term coupled to the inflaton affects the bispectra
of primordial perturbations.

2This can be possible only in particular models of inflation where a significant blue tensor tilt is
achieved (see the review [210]). On the contrary, Chern-Simons gravity only induces opposite corrections
to the power spectrum of gravitons with opposite helicities. No significant modifications w.r.t. standard
slow-roll scenario are provided to both the tensor tilt nT and tensor-to-scalar-ratio r (from the prediction
of Eq. (2.82), in the current model the amplitude of primordial gravitational waves is almost scale
invariant). In Ref. [204], it was claimed that modifications of order χ2 could have provided to both r
and nT . However, due to the smallness of χ, these modifications can be safely neglected.
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Chapter 7

Signatures in primordial bispectra

In this chapter, we are interested to understand whether the effects of the new interaction
terms coming from the Chern-Simons term can bring to a relevant parity breaking effect
in the bispectra of the primordial perturbations. In the subsequent three sections, we will
estimate the primordial three-point functions 〈γγγ〉 and 〈γζζ〉 and compute explicitly
〈γγζ〉. In fact, as we have anticipated in the introduction of this part, we will show
that the parity breaking contribution to the correlator 〈γγζ〉 is the only one that is
not suppressed as the power spectrum case. The readers who are not interested in the
technical details of the computation of such three-point functions can go directly to Sec.
7.4 where we will provide our main results, including the explicit expression of 〈γγζ〉,
and a discussion on its parity breaking signatures.

For parity invariance reasons, the only primordial bispectra that can arise from the
Chern-Simons term are the ones associated to the three-point functions 〈γγγ〉, 〈γγδφ〉
and 〈γδφδφ〉.

The master formula used to compute this kind of correlators at first perturbative
order, in the quantum field theory ensamble, is provided by the In-In formalism formula
switched in Fourier space (see App. B, Eq. (B.19))

〈δa( ~k1)δb(~k2)δc(~k3)〉 = −i
∫ t

t0

dt′〈0|
[
δa( ~k1, t)δb( ~k2, t)δc( ~k3, t) , Hint(t

′)
]
|0〉 , (7.1)

where Hint = −Lint is the cubic interaction Hamiltonian between fields δa, δb and δc, t0
is the time at which this interaction is switched on and t is the time at which we evaluate
the correlator. In the formula just introduced t is a totally arbitrary time coordinate;
it will be very convenient for the computations to adopt the conformal time τ instead
of the cosmological time. The interactions are switched on on sub-horizon scales, that
correspond to the limit τ0 = −∞; on the other hand we evaluate the correlator on super-
horizon scales, thus in the limit τ = 0. Now, we will start to evaluate the interaction
Lagrangians for the bispectra in which we are interested in.

– 79 –



7.1 Three gravitons non-Gaussianities

This interaction comes from the following contribution to the Lagrangian

Lγγγint = f(φ)εµνρσ
[
Cµν

κλ|(2)
T Cρσκλ|(1)

T + Cµν
κλ|(1)

T Cρσκλ|(2)
T

]
, (7.2)

where the suffix T indicates that we have to evaluate the contribution of the tensor
perturbations only and the index (n) means that we have to consider the n-th order
of the perturbations contributing to the corresponding Weyl tensor. We will use an
identical notation also for the other interaction vertices. As we can see, the explicit
computation of this term requires to compute the Weyl tensor up to second order in the
tensor perturbations. Instead of performing a direct computation, we can have an idea
of the strength of this interaction vertex using only the tensorial properties of the Chern-
Simons term. In fact, as we said above, the Chern-Simons term is a total derivative term
for a constant f , so that we can write

Lγγγint = f(φ)∂µA
µ , (7.3)

where Aµ is the four-vector (5.66).1 As we said in Sec. 6.3, we can compute the Weyl
tensor adopting the conformal time instead of cosmological time and setting the scale
factor a = 1. The result is that Aµ has to depend only by γij and derivatives of γij and by
no additional factors a orH. Thus, Aµ will be a cubic combination of tensor perturbations
and their derivatives only. In particular, integrating by parts the Lagrangian (7.3), it
follows

Lγγγint = −f ′(φ)A0 , (7.4)

where, for our purposes, we can just evaluate the coupling f(φ) on the background. Here
the prime ′ refers to the derivative w.r.t. conformal time. If we put this interaction into
formula (7.1), we find

〈γs1( ~k1)γs2(~k2)γs3(~k3)〉 = i

∫ 0

−∞
dτ ′aḟ(φ)〈0|

[
γs1( ~k1, 0)γs2( ~k2, 0)γs3( ~k3, 0) , A0

]
|0〉 ,
(7.5)

where we have used the fact that f ′(φ) = aḟ(φ).
The bra-ket contractions into Eq. (7.5) produces products of three Green functions

of the type

〈γs1(~p1, 0)γs2(~p2, τ
′)〉 = (2π)3δ(3)(~p1 + ~p2)us1(p1, 0)us2(p2, τ

′) , (7.6)

with us(k, τ) given as in Eq. (6.29), apart for the contribution of field redefinition (6.18).
As a first approximation, we can use the expression of us setting the slow-roll parameters
and H/MCS to be vanishing. This is justified by the fact that, under our assumptions,

1With the notation used in (7.3), we indicate that we will take the part of the Chern-Simons interaction
that gives rise to a graviton cubic interaction only.

80



such parameters are much smaller than 1 during inflation, and thus we can expand in
series the solution (6.29), taking the zero-th order value only. The solution becomes

us(k, τ) =
iH

MPl

√
k3

(1 + ikτ)e−ikτ , (7.7)

which is the solution for the mode function of a scalar field in a de Sitter space.
Then, substituting (7.7) into Eq. (7.5), we will arrive to an integral of the type

〈γs1( ~k1)γs2(~k2)γs3(~k3)〉 = i

∫ 0

−∞
dτ ′
(
− 1

Hτ

)
ḟ(φ)

(∏
i

H2

M2
Plk

3
i

)
f(ki, τ

′)e−ikT τ
′
, (7.8)

where kT = k1 + k2 + k3, and f(ki, τ
′) is a function polynomial in the arguments. We

have used a = −1/(Hτ), a relation which holds apart for small slow-roll corrections. In
particular, we can minimize the errors committed in evaluating the integral taking the
value of parametersH and ḟ(φ) during the horizon crossing of the momentumK = kT . It
is possible to show that, after and much before horizon crossing, the integral in Eq. (7.8)
vanishes (see Ref. [39] and also, e.g., [53] for more details). In fact, we know that much
before horizon crossing the integrand function has a high oscillatory behaviour because
of the imaginary exponential e−ikT τ ′ , which mediates the integral to zero; moreover, after
horizon crossing the tensor perturbations γij become constant and then the commutator
operator with the interaction Lagrangian in Eq. (7.5) becomes zero. Thus, we have

〈γs1( ~k1)γs2(~k2)γs3(~k3)〉 ' iḟ∗(φ)

(∏
i

H2
∗

M2
Plk

3
i

)
1

H∗

∫ 0

−∞
dτ ′
(
−1

τ

)
f(ki, τ

′)e−ikT τ
′
,

(7.9)
where the ∗ refers to the time of horizon crossing of the momentum kT . In the following,
we will omit the ∗ for simplicity of notation. Integrals of the type in Eq. (7.9) can
be computed by parts after passing to complex plane and performing a Wick rotation
(see e.g. Refs. [39, 53, 71]). The result is an imaginary function which depends on the
momenta ki and has the physical dimensions of a M3. In addition, from Eq. (6.17) , it
follows

ḟ(φ) =
M2

Pl

8MCS
. (7.10)

Thus, if we multiply and divide Eq. (7.9) by
∑

i k
3
i , we find out the following estimation

〈γs1( ~k1)γs2(~k2)γs3(~k3)〉 ∼ H

MCS

∑
i 6=j

PT (ki)PT (kj)

M(ki) , (7.11)

whereM(ki) is a dimensionless function of the momenta ki and PT (k) the power spectrum
of tensor perturbations, Eq. (6.35). Due to momentum conservation, the functionM(ki)
has to be of order 1 and gives only the momentum shape of the bispectrum. As we can
see from this final result, parity breaking in graviton non-Gaussianities are suppressed
by the ratio H/MCS which is � 1, exactly as the power spectrum case.
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7.2 Two scalars and a graviton non-Gaussianities

Here, we are interested in the following interaction Lagrangian

Lδφδφγint = εµνρσ
[∂f(φ)

∂φ
δφ Cµν

κλ|(1)
S Cρσκλ|(1)

T +
∂f(φ)

∂φ
δφ Cµν

κλ|(1)
T Cρσκλ|(1)

S

+ f(φ)Cµν
κλ|(2)

S Cρσκλ|(1)
T + f(φ)Cµν

κλ|(1)
T Cρσκλ|(2)

S

+ f(φ)Cµν
κλ|(2)

STCρσκλ|
(1)
S + f(φ)Cµν

κλ|(1)
S Cρσκλ|(2)

ST

]
, (7.12)

where the suffix S means that we have to evaluate the contribution only of the scalar
perturbations to the corresponding Weyl tensor, and the double suffix ST means that we
have to evaluate the quadratic contribution in which both scalar and tensor perturbations
appear.

In Eq. (7.12) the first two terms come from the expansion in series of the function
f(φ) around the background value of the inflaton multiplied by the contraction of two
Weyl tensors at first order in tensor perturbations. The other terms instead come from
the contraction between the Weyl tensor at second order in scalar perturbations and the
Weyl tensor at first order in tensor perturbations. Finally, there are also contributions
coming from the contraction between the Weyl tensor at second order sourced by mixed
scalar and tensor perturbations and the Weyl tensor at first order in scalar perturbations.
In particular, in the spatially flat gauge, scalar perturbations appear only through first
order expressions of the fields N and Ni. If we take these explicit expressions (Eq. (6.8))
and we use the definition of slow-roll parameter ε (1.48), it follows

N (1) ∼ √ε δφ, N
(1)
i ∼ √ε δφ . (7.13)

Thus, N and Ni are sub-dominant in the slow-roll hypothesis in comparison with the
inflaton perturbation δφ. For this reason in the slow-roll limit the terms dominant in Eq.
(7.12) are the first two. These terms depend only by the Weyl tensor at first order and
can be easily computed using (6.10) and the following first order scalar contribution to
the Weyl tensor components (computed taking the scale factor a = 1):

C0i0j |(1)
S =

1

2
[∂i∂jN

(1) − 1

3
δij ∂

2N (1)] ,

C0ijk|(1)
S = 0 ,

Cijkl|(1)
S =

1

2
[δjl∂i∂k − δjk∂i∂l − δil∂j∂k + δik∂j∂l]N

(1) − 1

3
[δikδjl − δilδjk](∂2N (1)) ,

(7.14)

where N (1) is as in (6.8). In the end, we obtain

Lδφδφγint = −8
∂f(φ)

∂φ

√
ε (∂lδφ)εijk

[
(∂kδφ)∂iγ

′
lj

]
. (7.15)
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Using again (6.17), we can express

∂f(φ)

∂φ
=

M2
Pl

8MCSφ̇
, (7.16)

and, inserting this last equation into Eq. (7.15), we find

Lδφδφγint = − M2
Pl

MCSφ̇

√
ε (∂lδφ)εijk

[
(∂kδφ)∂iγ

′
lj

]
. (7.17)

If we use (7.1), we can perform an estimation similar for what we have done for the
three-graviton non-Gaussianities. The result is

〈δφ(~k1)δφ(~k2)γs(~k3)〉 ∼ H

MCS

∑
i 6=j

∆T (ki)∆T (kj)

F (ki) , (7.18)

where F (ki) is another dimensionless function of order 1. The result is that parity
breaking signature in such a bipectrum is still suppressed by the ratio H/MCS.

7.3 One scalar and two graviton non-Gaussianities

The interaction Lagrangian which gives contributions to this bispectrum is

Lδφγγint = εµνρσ
[( ∂

∂φ
f(φ)

)
δφ C(1)

µν

κλ|TC(1)
ρσκλ|T + f(φ)C(1)

µν

κλ|SC(2)
ρσκλ|T + f(φ)C(2)

µν

κλ|TC(1)
ρσκλ|S

+ f(φ)C(1)
µν

κλ|TC(2)
ρσκλ|ST + f(φ)C(2)

µν

κλ|STC(1)
ρσκλ|T

]
,

(7.19)

where the notations are the same of Eqs. (7.2), (7.12).
Here, the first term comes from the expansion in series of the function f(φ) around

the background value of the inflaton multiplied by the contraction of two Weyl tensors
at first order in tensor perturbations. Moreover, there are terms coming from the con-
traction between the Weyl tensor at second order in tensor perturbations and the Weyl
tensor at first order in scalar perturbations. Finally there are some "mixed’" terms. In
this case, contributions coming from the contraction between the Weyl tensor at sec-
ond order sourced by mixed scalar and tensor perturbations and the Weyl tensor at
first order in tensor perturbations appear. In analogy with the previous case, in the
slow-roll hypothesis, the term dominant in Eq. (7.19) is the first one. Thus, making a
straightforward computation, we obtain the following cubic Lagrangian in Fourier space:

Lδφγγint (τ) = −λs ×
∫
d3K

δ(3)(~k + ~p+ ~q)

(2π)6

{(
∂f(φ)

∂φ

)
p δφ′(~k)

[
γ′
s
ij(~p)γ

′ij
s (~q) + (~p · ~q) γsij(~p)γijs (~q)

]
+a

(
φ̇
∂2f(φ)

∂2φ

)
p δφ(~k)

[
γ′
s
ij(~p)γ

′ij
s (~q) + (~p · ~q) γsij(~p)γijs (~q)

]}
,

(7.20)
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where we have used the notation
∫
d3k d3p d3q =

∫
d3K and a sum over the polarization

index s is understood for simplicity of notation.
In this Lagrangian, we see that there are some interaction vertices that depend on

the second derivative of the coupling f(φ) w.r.t. the inflaton field. These interactions
might give a contribution which is not suppressed directly by the ratio H/MCS, as we
have seen in the previous cases. In fact, in those cases, we have dealt with the first
derivative of the coupling function f(φ) w.r.t. the inflaton. For this reason, we perform
now a detailed computation, using the In-In formalism, in order to show that these
new interaction vertices can bring a potentially relevant parity breaking signature to the
bispectra statistics we are analysing. At the end, we will quantify if this signature is still
highly suppressed or not. In the next steps we will omit the time argument τ = 0 again
for simplicity of notation.

First of all, we notice that, due to the form of the interaction Lagrangian (7.20), the
only non-vanishing 2 gravitons-1 scalar correlators are

〈γR( ~k1)γR( ~k2)δφ( ~k3)〉 , 〈γL( ~k1)γL( ~k2)δφ( ~k3)〉 . (7.21)

In fact, it is straightforward to verify that

〈γR( ~k1)γL( ~k2)δφ( ~k3)〉 = 0 . (7.22)

We start from the computation of the correlator 〈γR( ~k1)γR( ~k2)δφ( ~k3)〉. The computation
of the other correlator will be analogous.

Using Eq. (7.1), we have

〈γR(~k1)γR(~k2)δφ(~k3)〉 = − i

(2π)6

∫
d3K δ(3)(~k + ~p+ ~q)

∫ 0

−∞
dτ ′
[
∂f(φ)

∂φ

(
B1(τ ′) + B2(τ ′)

)
+a φ̇

∂2f(φ)

∂2φ

(
B3(τ ′) + B4(τ ′)

)]
,

(7.23)

where

B1 =p 〈0|
[
δφ( ~k1, 0)γR( ~k2, 0)γR( ~k3, 0) , δφ′(~k, τ ′)γ′

R
ij(~p, τ

′)γ′
ij
R(~q, τ ′)

]
|0〉 , (7.24)

B2 =p (~p · ~q) 〈0|
[
δφ( ~k1, 0)γR( ~k2, 0)γR( ~k3, 0) , δφ′(~k, τ ′)γRij(~p, τ

′)γijR (~q, τ ′)
]
|0〉 , (7.25)

B3 =p〈0|
[
δφ( ~k1, 0)γR( ~k2, 0)γR( ~k3, 0) , δφ(~k, τ ′)γ′

R
ij(~p, τ

′)γ′
ij
R(~q, τ ′)

]
|0〉 , (7.26)

B4 =p (~p · ~q) 〈0|
[
δφ( ~k1, 0)γR( ~k2, 0)γR( ~k3, 0) , δφ(~k, τ ′)γRij(~p, τ

′)γijR (~q, τ ′)
]
|0〉 . (7.27)

Here the symbol
[
· , ·

]
denotes the commutator operator. We can compute these

expressions using the Wick theorem. We need to compute preliminary the following
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contractions between fields:

〈0|δφ(~k, τ)δφ(~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)u(k, τ)u∗(k, τ ′) , (7.28)

〈0|δφ(~k, τ)δφ′(~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)u(k, τ)
d

dτ
u∗(k, τ ′) , (7.29)

〈0|γRij(~k, τ)γR(~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)uR(k, τ)u∗R(k, τ ′)εRij(
~k) , (7.30)

〈0|γR(~k, τ)γRij(
~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)uR(k, τ)u∗R(k, τ ′)εRij

∗
(~k) , (7.31)

〈0|γRij(~k, τ)γ′R(~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)uR(k, τ)

(
du∗R(k, τ ′)

dτ

)
εRij(

~k) , (7.32)

〈0|γ′R(~k, τ)γRij(
~k′, τ ′)|0〉 = (2π)3δ(3)(~k + ~k′)

(
duR(k, τ)

dτ

)
u∗R(k, τ ′)εRij

∗
(~k) , (7.33)

where u(k, τ) is the mode function of the inflaton perturbation and us(k, τ) is the one of
the tensor perturbations. Thus, performing all the contractions, Eq. (7.23) becomes

〈γR(~k1)γR(~k2)δφ(~k3)〉 =− i(2π)3δ3(k1 + k2 + k3) Im{[k1(I1 + I2) + k1(~k1 · ~k2)(I3 + I4)]

× eRij
∗
(~k1)eijR

∗
(~k2)− c.c.}+ (~k1 ←→ ~k2) ,

(7.34)

where the In are the integrals

I1 = u(k1, 0)uR(k1, 0)uR(k2, 0)

∫ 0

−∞
dτ ′
(
∂

∂φ
f(φ)

)[
d

dτ
u∗(k1, τ

′)
d

dτ
u∗R(k1, τ

′)
d

dτ
u∗R(k2, τ

′)

]
,

(7.35)

I2 = u(k1, 0)uR(k2, 0)uR(k3, 0)

∫ 0

−∞
dτ ′a

(
∂

∂φ
ḟ(φ)

)[
u∗(k1, τ

′)
d

dτ
u∗R(k2, τ

′)
d

dτ
u∗R(k3, τ

′)

]
,

(7.36)

I3 = u(k1, 0)uR(k2, 0)uR(k3, 0)

∫ 0

−∞
dτ ′
(
∂

∂φ
f(φ)

)[
d

dτ
u∗(k1, τ

′)u∗R(k2, τ
′)u∗R(k3, τ

′)

]
,

(7.37)

I4 = u(k1, 0)uR(k2, 0)uR(k3, 0)

∫ 0

−∞
dτ ′a

(
∂

∂φ
ḟ(φ)

)[
u∗(k1, τ

′)u∗R(k2, τ
′)u∗R(k3, τ

′)
]
.

(7.38)

We can compute analytically these integrals with the same approximations we have
already discussed above. In particular, the Hubble parameter H and the function f(φ)
and its derivatives can be evaluated at the time of horizon crossing of momentum kT =∑

i ki and put outside the integral. The second approximation is about the cosmological
evolution of the scale factor a. At leading order in slow-roll, we have a ' −1/(Hτ).
Finally, we take the value of the functions u and us setting the slow-roll parameters and
the ratio H/MCS equal to zero. This approximation is justified by the fact that these
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parameters are very small during inflation. Thus, as a result of the last approximation,
we can use the mode function of a scalar field in a de Sitter space (7.7)

us(k, τ) =
iH

MPl

√
k3

(1 + ikτ)e−ikτ , (7.39)

u(k, τ) =
iH√
2k3

(1 + ikτ)e−ikτ , (7.40)

where the different normalizations of the variables γ and δφ come out from the study of
the action of standard slow-roll inflationary models (see e.g. [39]).

With the prescriptions just explained, we start now the explicit computation of the
first integral I1. It reads

I1 = −4M2
Pl

 ∏
i=1,2,3

H2

M2
Pl2k

3

( ∂

∂φ
f(φ)

)
k2

1k
2
2k

2
3

∫ 0

−∞
dτ ′τ ′3e−iKT τ

′
, (7.41)

where KT = k1 + k2 + k3.
This integral can be performed by parts, after passing to the complex plane and

performing a Wick rotation of the integration contour. We obtain

I1 = −4M2
Pl

 ∏
i=1,2,3

H2

M2
Pl2k

3

( ∂

∂φ
f(φ)

)
k2

1k
2
2k

2
3

(
− 3!

K4
T

)
. (7.42)

We see that the final result is real. Thus, it does not give any contributions to the
correlator (7.34). For the same reason, also the integrals I2 and I3 do not give any
contribution. The only integral which is not trivial is I4. Let us see its computation in
details

I4 = 4
M2

Pl

H

 ∏
i=1,2,3

H2

M2
Pl2k

3

(φ̇ ∂2

∂2φ
f(φ)

)∫ 0

−∞

dτ ′

τ ′
(1+ik1τ

′)(1+ik2τ
′)(1+ik3τ

′)e−iKT τ
′
.

(7.43)
We write down the integral which appears in (7.43) as∫ 0

−∞

dτ ′

τ ′
(1 + ik1τ

′)(1 + ik2τ
′)(1 + ik3τ

′)e−iKT τ
′
, (7.44)

which can be splitted into the sum of four integrals

(∫ 0

−∞

dτ ′

τ ′
e−iKT τ

′
)

+

(
iKT

∫ 0

−∞
dτ ′e−iKT τ

′
)
−

∏
i 6=j

kikj

∫ 0

−∞
dτ ′τ ′e−iKT τ

′


−
(
ik1k2k3

∫ 0

−∞
dτ ′τ ′2e−iKT τ

′
)
.

(7.45)
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All the integrals, apart the first one, can be computed by parts and give a real con-
tribution. For this reason, they do not give any contribution to the correlator (7.34).
Instead, the first integral can be written in terms of the exponential integral Ei(z) by
promoting the real variable τ ′ to a complex variable and performing a Wick rotation of
the integration contour (i.e. a change of variable τ ′ = −iτ ′′). It becomes:

lim
τ−→0−

∫ iτ

−i∞

dτ ′′

τ ′′
e−KT τ

′′
. (7.46)

The complex exponential integral is defined as [207]

Ei(z) =

∫ z

∞

dz′

z′
e−z

′ |Arg(z)| < π . (7.47)

It is well defined for all complex numbers z that are off the real negative axis. A good
characteristic of this integral is that it is independent by the integration contour and
depends only by z. In particular, it can be expressed in terms of the following series
representation [207]

Ei(z) = −γ − ln z −
∞∑
k=1

(−z)k
k k!

, (7.48)

where γ is the Euler-Mascheroni constant and ln z is the principal complex logarithm
of the complex number z. This series converges for all z that are not in the real axis.
Applying formula (7.48), the integral (7.46) becomes

lim
KT τ−→0−

[
−γ − ln (iKT τ)−

∞∑
k=1

(−iKT τ)k

kk!

]
= −γ+

(
lim

KT τ−→0
ln |KT τ |

)
+i
π

2
, (7.49)

where the ln |KT τ | in this case represents a real logarithm. Thus, at the end, we get

Im(I4) = 4
M2

Pl

H

 ∏
i=1,2,3

H2

M2
Pl2k

3
i

(φ̇ ∂2

∂2φ
f(φ)

)
×
(
i
π

2

)
. (7.50)

If we substitute this result into Eq. (7.34) and we consider also the contributions of the
permutations, we find the final result

〈γR(~k1)γR(~k2)δφ(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4π
M2

Pl

H

 ∏
i=1,2,3

H2

M2
Pl2k

3
i

(φ̇ ∂2

∂2φ
f(φ)

)
× (k1 + k2)(~k1 · ~k2) eRij(

~k1)eijR(~k2) .

(7.51)

Following the same steps, we are able to compute the correlator 〈γL(~k1)γL(~k2)δφ(~k3)〉
as well. It is sufficient to substitute in the previous steps R with L and take a relative

87



factor −1 due to the λL = −λR relation in the interaction Lagrangian (7.20). Thus, we
have:

〈γL(~k1)γL(~k2)δφ(~k3)〉 =− (2π)3δ(3)(~k1 + ~k2 + ~k3)4π
M2

Pl

H

 ∏
i=1,2,3

H2

M2
Pl2k

3
i

(φ̇ ∂2

∂2φ
f(φ)

)
× (k1 + k2)(~k1 · ~k2) eLij(

~k1)eijL (~k2) .

(7.52)

We can try to express the final result in a way in which we write explicitly the dependence
over the wave numbers ki. As we have seen in Sec. 3.1, because of momentum conserva-
tion, δ(3)

(
~k1 + ~k2 + ~k3

)
= 0, the three momenta inside the bispectrum form a triangle

in the momentum space. For invariance under rotations, we can put this triangle in the
(x, y)-plane without losing any generality. It follows that a triangle can be constructed
by

~k1 = k1(1, 0, 0) , ~k2 = k2(cos θ, sin θ, 0), ~k3 = k3(cos Φ, sin Φ, 0) , (7.53)

where θ and Φ are the angles that the momenta ~k2 and ~k3 form respectively with the
momentum ~k1. With these choices of the momenta, we can write down the explicit
expressions of L and R polarization tensors. They read (see e.g. [165])

esij(
~k1) =

1√
2

0 0 0
0 1 iλs
0 iλs −1

 , (7.54)

esij(
~k2) =

1√
2

 sin2 θ − sin θ cos θ −iλs sin θ
− sin θ cos θ cos2 θ iλs cos θ
−iλs sin θ iλs cos θ −1

 . (7.55)

Thus, through an explicit calculation, we find

~k1 · ~k2 = k1k2 cos θ, esij(
~k1)eijs (~k2) =

1

2
(1− cos θ)2 , (7.56)

where θ is the angle between the two momenta ~k1 and ~k2. By the cosine theorem, we
can express this angle as a function of the three wave numbers ki

cos θ =
k2

3 − k2
2 − k2

1

2k1k2
. (7.57)

In the end, the correlator (7.51) becomes

〈γR(~k1)γR(~k2)δφ(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4π
φ̇

H

 ∏
i=1,2,3

H2

M2
Pl2k

3
i

(M2
Pl

∂2

∂2φ
f(φ)

)

× (k1 + k2)k1k2
cos θ(1− cos θ)2

2
.

(7.58)
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We can rewrite this correlator in a more convenient way in which the product of two
power spectrum of PGW (6.35) appears. It is sufficient to multiply and divide for

∑
i k

3
i

to obtain the final result

〈γR(~k1)γR(~k2)δφ(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)
π

64

φ̇

H

∑
i 6=j

PT (ki)PT (kj)

(H2 ∂
2

∂2φ
f(φ)

)

× (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2 .

(7.59)

7.4 Main results

As we have understood in the previous sections, the two gravitons-one scalar bispectrum
(7.59) is the most relevant for parity breaking signatures. Before starting to analyze such
signatures, we switch to the gauge invariant variable ζ, using the local relation (2.21).
Thus, in the coordinate space we have

〈γR(~x1)γR(~x2)ζ(~x3)〉 ' −H
φ̇
〈γR(~x1)γR(~x2)δφ(~x3)〉 . (7.60)

The symbol ' means that we are evaluating the correlator at first order in the slow-roll
parameters.

Thus, passing in Fourier space and substituting Eq. (7.59) into Eq. (7.60), we have

〈γR(~k1)γR(~k2)ζ(~k3)〉 ' −H
φ̇
〈γR(~k1)γR(~k2)δφ(~k3)〉

= −(2π)3δ3(~k1 + ~k2 + ~k3)
π

64

∑
i 6=j

PT (ki)PT (kj)

(H2∂
2f(φ)

∂2φ

)

× (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2 ,

(7.61)

where we recall that θ is the angle between the two momenta ~k1 and ~k2. Proceeding with
the same reasoning for computing the vertex 〈γL(~k1)γL(~k2)ζ(~k3)〉, we find

〈γL(~k1)γL(~k2)ζ(~k3)〉 = −〈γR(~k1)γR(~k2)ζ(~k3)〉 . (7.62)

Notice that we have obtained a result which differs for a sign in the passage from left to
right gravitons. This result is not inconsistent and can be explained with a symmetry
argument: if parity was a symmetry of the theory, there would be not difference between
the statistics of L and R gravitons. And thus the correlators 〈γRγRζ〉 and 〈γLγLζ〉 would
be equal. But the Chern-Simons term breaks parity symmetry and, as a consequence, we
have a difference between the two bispectra. This is achievable e.g. by a sign difference,
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Figure 7.1. 3D-plot of the shape function of the correlator 〈γR(~k1)γR(~k2)ζ(~k3)〉. The quantity
F (1, x2, x3)x22x

2
3 in terms of x2 = k2/k1 and x3 = k3/k1 is shown. The figure is normalized to

have value 1 for equilateral configurations x2 = x3 = 1.

as it happens specifically in our case.2 If we take the dependence of the bispectrum (7.61)
over the momenta ki’s, we obtain the shape function

F (k1, k2, k3) =

∑
i 6=j

1

k3
i k

3
j

 (k1 + k2)k1k2∑
i k

3
i

cos θ(1− cos θ)2, (7.63)

where cos θ is defined in Eq. (7.57). As it is customary for scale-independent bispectra,
the shape function is plotted as the quantity F (1, x1, x2)x2

2x
2
3 in terms of the variables

x2 = k2/k1 and x3 = k3/k1. From Fig. 7.1, we see that the shape function peaks when
x2 = 1 and x3 = 0. This corresponds to the so-called squeezed limit, in which the
momenta of the gravitons, k1 and k2, are much larger than the momentum k3 of the
scalar perturbation.

At this point, we can start to analyze the parity breaking signatures induced by our
result (7.61) in the bispectra we are analysing. For this purpose, we can define a parity

2Notice that this is what happens similarly in the analysis of [166].
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breaking coefficient3

Π =
〈γR(~k)γR(~k)ζ(~k)〉TOT − 〈γL(−~k)γL(−~k)ζ(−~k)〉TOT

〈γR(~k)γR(~k)ζ(~k)〉TOT + 〈γL(−~k)γL(−~k)ζ(−~k)〉TOT

, (7.67)

where the suffix “TOT" stands for the total bispectra, when we include also the contribu-
tion of standard gravity (see Eq. (3.6)). Notice that Π has been defined so that it is equal
to zero when the R- and L-handed bispectra coincide, thus when parity is a symmetry
of the theory. In Eq. (7.67), the numerator represents the difference between R and L
contributions to the bispectrum 〈γγζ〉 which ultimately will determine the amplitude
of observable quantities, such as, e.g., CMB bispectra involving (mixed) temperature
fluctuations (T) and polarization (E and B) correlators, like, e.g., 3-point correlations of
the type 〈TBB〉 or 〈EBB〉 (see Chap. 8). Moreover, in defining the amplitude Π, we
have evaluated the bispectra in the equilateral configuration of the three momenta. This
is a standard convention which is adopted in literature (see e.g. [62]). To evaluate the
quantity Π notice that in the model considered4

〈γR(~k1)γR(~k2)ζ(~k3)〉 = −〈γL(−~k1)γL(−~k2)ζ(−~k3)〉 . (7.68)

Thus, using Eq. (3.6) and our results, Eq. (7.61) and (7.62), we find:

Π =
96π

25
H2∂

2f(φ)

∂2φ
. (7.69)

Now, let us comment about the result we have obtained in Eq. (7.69). The parity-
breaking amplitude Π depends on the strength of the second derivative of the coupling

3This coefficient is not properly an amplitude of primordial non-Gaussianity fNL, but an estimate
of how large parity breaking is in our bispectra. Nevertheless, one can define separately for L and R
polarizations a coefficient of non-Gaussianity fR,LNL as

fR,LNL =
〈γR,L(k)γR,L(k)ζ(k)〉

P 2
T (k)

, (7.64)

finding

fRNL =
π

256
H2 ∂

2f(φ)

∂2φ
, (7.65)

and the same result for fLNL apart a sign difference. From this definition, it is clear that we have
normalized the L and R bispectra using the tensor power-spectrum (6.35). An alternative definition can
be adopted by normalizing with the scalar power-spectrum, which would simply give the same result as
above, rescaled by the inverse of the tensor-to-scalar perturbation ratio. In this context, we do prefer the
definition (7.64) because the parity breaking signatures arise in the tensor sector. Using the result (7.64)
and Eq. (7.69), we can link such coefficient of non-Gaussianity to the coefficient Π finding

fRNL =
25

24576
Π ' 10−3Π . (7.66)

4In Eq. (7.62), we have showed that 〈γR(~k1)γR(~k2)ζ(~k3)〉 = −〈γL(~k1)γL(~k2)ζ(~k3)〉. Eq. (7.68) follows
after noticing that the bispectrum (7.61) depends only on the modulus of the momenta ~ki’s and not by
their direction (In fact, cos θ can be expressed in terms of the ki’s as showed in Eq. (7.57)).
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f(φ) w.r.t. the inflaton which is something new with respect to the power-spectrum
case.5

In fact, in the latter case only the first derivative of the coupling f(φ) appeared (see
Eqs. (6.36) and (7.16)). Thus, apparently we can say that our result is independent of the
parity breaking in the power-spectrum case which is labelled by the parameter χ in Eq.
(6.36). However, a theoretical constraint occurs when we look to the radiative stability
of the theory. Following the same reasoning of Sec. 5.4, we switch to the following
canonically normalized gravitons in de Sitter space

γsc (
~k) =

(
M2

Pl

2

)1/2

γs(~k) , (7.70)

and we rewrite the last term of interaction Lagrangian (7.20) (which gives the strength
of our bispectrum). We obtain

L =− λs
∫
d3K

δ3(~k + ~p+ ~q)

(2π)6
a

2

M2
Pl

(
φ̇
∂2f(φ)

∂2φ

)
p (~p · ~q) γsc (~p)γsc (~q)δφc(~k) esij(~p)e

ij
s (~q)

=− λs
∫
d3K

δ3(~k + ~p+ ~q)

(2π)6
a

1

Λ2
S

p (~p · ~q) γsc (~p)γsc (~q)δφc(~k) esij(~p)e
ij
s (~q) , (7.71)

where

Λ2
S =

M2
Pl

2

(
φ̇
∂2f(φ)

∂2φ

)−1

. (7.72)

To avoid a strong coupling regime (which would spoil the perturbativity of the theory),
we must impose

H2 < Λ2
S , (7.73)

which gives the following constraint on the strength of the second order derivative:

H2∂
2f(φ)

∂2φ
<
MPl

H

1

2
√

2ε
' 2√

2

(
0.01

r

)
× 106 . (7.74)

Thus, recalling the definition of Π, Eq. (7.69), we get the theoretical constraint

Π .

(
0.01

r

)
× 107 . (7.75)

From Eq. (7.75), it would seem that, by decreasing r, one would get less stringent bounds
on Π. In fact, one should keep in mind that the bispectrum of Eq. (7.61) is proportional
to r2 coming from the 2 tensor power spectra, attenuating the power of the bispectrum

5Arrived at this point, one might ask whether the appearance of the second derivative is something
of inevitable. In fact, it is interesting to notice that if the first derivative of the coupling f(φ) w.r.t. the
inflaton would be exactly a constant in the first term of Eq. (7.19), then one would obtain a vanishing
result for the correlators of interest. This confirms the result that we find in Eq. (7.61), namely that
these correlators are actually sensitive to the second derivative f(φ) w.r.t. the inflaton field.
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in the r → 0 limit independently by the value of Π (which is determined by the strength
of the second order derivative of the coupling function f(φ)).

In the next section, we will make a brief comment about the physical meaning of the
squeezed limit in the current bispectrum statistics and, after that, in Chap. 8, we will
perform a numerical evaluation of the minimum 1σ error committed in measuring the
parameter Π with an ideal CMB experiment. The aim of this investigation is to assess
the usage of CMB bispectra for constraining parity breaking signatures of Chern-Simons
gravity during inflation.

7.5 Comments about the squeezed limit

A useful cross-check of our results, (7.61) and (7.62), comes from considering its squeezed
limit, in which we take the momentum of the scalar fluctuation ~k3 = ~kL ' 0 and the
other two momenta of the tensor fields such that ~k1 = ~kS ' −~k2.

If we use the squeezed consistency relation (3.15), we get that the expected leading
order value of the R-handed squeezed bispectrum reads (in our conventions h = 2ζ and
hTij = γij)

〈γR(~kS)γR(−~kS)ζ(~kL)〉|squeezed = −d log(k3
SP

R
T (kS))

d log kS
Pζ(kL)PRT (kS) , (7.76)

where

Pζ(k) =
H2

4εM2
Plk

3
(7.77)

is the scalar power spectrum of slow-roll models of inflation and PRT (k) is the right-
handed tensor power-spectrum as in Eq. (6.33). On super-horizon scales, we can rewrite
Eq. (7.76) in terms of the derivative with respect to the cosmological time as

〈γR(~kS)γR(−~kS)ζ(~kL)〉|squeezed = −Pζ(kL)

(
3PRT (k(t)) +

1

H

d

dt
PRT (k(t))

) ∣∣∣
t=tS

, (7.78)

where we used the fact that

d log(k3
SP

R
T (kS)) = 3(d log kS) +

dPRT (k(tS))

PRT (k(tS)
, (7.79)

and that each short mode kS is related to the time tS of horizon crossing by the relation

kS = k(tS) = a(tS)H(tS) . (7.80)

In fact, since a ∼ eHt, then we have (apart for slow-roll corrections)

d log kS = HdtS . (7.81)

Computing the time derivative term in Eq. (7.78), we find

1

H

d

dtS
PRT (kS) '

[
−3− 2ε+

π

4

(
ṀCS

M2
CS

)]
× PT (kS)

2
. (7.82)
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Here, ' refers to the dominant contributions in slow-roll parameters and in (H/MCS),
and PT (k) is the tensor power spectrum as in Eq. (6.35). Since we are interested only
in contributions of the parity breaking part of the bispectrum, we consider in Eq. (7.82)
only the term that depends on the Chern-Simons mass. Using the definition (6.17), we
find

ṀCS

M2
CS

' −16H2f ′′(φ)ε , (7.83)

where the prime ′ denotes derivative w.r.t. the inflaton field. Here, similarly as above,
we have neglected another term that is proportional to the ratio H/MCS which is much
smaller than 1 in our theory. This term, in fact, has not been considered in our compu-
tation of the bispectrum performed in the previous section.

Thus, gathering all together in Eq. (7.78), bispectrum (7.61) in the squeezed limit
becomes

〈γR(~kS)γR(−~kS)ζ(~kL)〉|squeezed =
π

8
H2f ′′(φ)PT (kL)PT (kS) . (7.84)

Now, it is easy to verify that, if we take our complete result (7.61) and expand it around
the squeezed configuration, then at leading order in (kL/kS) we obtain exactly Eq. (7.84),
as we would expect.

However, as we have seen in Sec. 3.3, the strict squeezed limit result corresponds to
a gauge artifact. In fact, after passing to CFC frame, we expect our physical squeezed
bispectrum to be (see e.g. Refs. [84, 85, 213])

〈γR(~kS)γR(−~kS)ζ(~kL)〉|squeezed,ph = O
(
k2
L

k2
S

)
×H2f ′′(φ)PT (kL)PT (kS) . (7.85)

The quantity O
(
k2
L/k

2
S

)6 is the first physical correction term to our squeezed bispec-
trum. An analogous argument is valid (apart for a sign difference) also for the L-handed
squeezed bispectrum 〈γL(~kS)γL(−~kS)ζ(~kL)〉.

A problematic consequence of this fact appears when one tries to compute the signal-
to-noise ratio for the bispectrum B(k1, k2, k3). This in formula reads

S

N
=

 ∑
l1≤l2≤l3

B2
l1,l2,l3

Cl1Cl2Cl3

 1
2

≈
(∫

dx2dx3B
2(1, x2, x3)x4

2x
4
3

) 1
2

. (7.86)

Here, the integration over x3 goes from xmin = lmin/lmax to 1, while the integration
over x2 goes from 1 − x3 to 1. Since for Planck we can take lmin = 2 and lmax ≈ 2000
(see Ref. [62]), xmin = 10−3. In the squeezed limit, our physical bispectrum goes as in
Eq. (7.85). But this is valid only when x3 is sufficiently small. For example, when x3

is greater than 10−1, we are already too far from the squeezed configuration to use the
6We have not computed explicitly the coefficient which multiplies the factor k2L/k2S , because it is

not the purpose of this research (for such a computation in the case of the scalar bispectrum, see e.g.
[85]). Our aim, in fact, is to show that one has to pay attention when constraining with observations a
bispectrum from single-clock inflation that peaks in the squeezed configuration.
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expression (7.85). On the contrary, in this case we have to use the result (7.61). For this
reason, it is interesting to compare the signal-to-noise ratio calculated in two different
cases: in a first case, we substitute the bispectrum (7.61) into Eq. (7.86) without taking
into consideration spurious signatures that come from the squeezed configurations; in a
second case, instead, we split the integration over x3 into two parts: when x3 < 10−1 we
use the squeezed expression (7.85) for the bispectrum,7 instead when x3 ≥ 10−1 we use
expression (7.61). If we compare the two S/N ratios we obtain that in the second case,
we lose approximately 50% of the signal that we would have if we take into considerations
also spurious signatures. This implies that to produce the same S/N ratio, the primordial
parity breaking amplitude Π should increase by a factor two w.r.t to the case where we do
consider spurious effects in the squeezed limit, something which however is not difficult
to obtain within the parameter space of the model. Of course, this is just an estimate,
because one should define better the value of x3 at which the very squeezed limit ends.

7We have verified that our conclusions are not sensitive to the precise value of the term O(k2L/k
2
S).

In fact, in the squeezed limit (x3 ≈ 0) the integrand of Eq. (7.86) is suppressed as x23 and thus it gives
a negligible contribution over squeezed configurations.
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Chapter 8

Measuring parity breaking
signatures with CMB bispectra

8.1 Notations

To begin with, we recall the bottom-line expression of the tensor-tensor-scalar bispectrum
〈γγζ〉 we found in the previous chapter

〈
γR/L(~k1)γR/L(~k2)ζ(~k3)

〉
= (2π)3δ(3)

(
3∑

n=1

~kn

)
× (+/−)Fk1k2k3 (k̂1 · k̂2)

[
e
R/L
ij (~k1)e

R/L
ij (~k2)

]∗
,〈

γR(~k1)γL(~k2)ζ(~k3)
〉

= 0 , (8.1)

where eR/Lij (~k) is the polarization tensor of R(L)-handed gravitational waves,

Fk1k2k3 = − πH
6

2M4
Pl

∂2f(φ)

∂φ2

(k1 + k2)

k2
1k

2
2k

3
3

= −25π4

768
P2
ζ

(
r2Π

) (k1 + k2)

k2
1k

2
2k

3
3

, (8.2)

where we have used the definition of Π in our model, Eq. (7.69), and(
H

MPl

)2

=
π2

2
rPζ , (8.3)

r being the tensor-to-scalar ratio. Equation (8.3) holds since the standard relation r = 16ε
is still valid in the current model apart for a very small correction in the total tensor power
spectrum which is negligible in the χ� 1 regime in which we are working. According to
our results, the bispectrum (8.1) peaks in the squeezed configurations k1 ∼ k2 � k3. As
we will show in the next section, this fact will lead to a signal-to-noise ratio enhancement
when using BBT or BBE CMB bispectra to make a measurement of the parameter Π.

For CMB bispectrum computations, we will follow the procedure already developed in
Refs. [102, 103]. In order to do so, we have to express the tensor-tensor-scalar bispectrum

– 97 –



with the polarization tensors used in Ref. [103], satisfying e(+2/−2)
ij (k̂) = −eR/Lij (~k). Since

we now consider the tensor-mode decomposition using [103]

γij(~x) =

∫
d3~k

(2π)3
ei
~k·~x

∑
λ=±2

γ
(λ)
~k
e

(λ)
ij (k̂) , (8.4)

we have γ(+2/−2)
~k

= −γR/L(~k). Also, changing the notation of ζ(~k3) to ζ~k3 for simplicity
of notation, Eq. (8.1) can be rewritten as〈
γ

(λ1)
~k1

γ
(λ2)
~k2

ζ~k3

〉
= (2π)3δ(3)

(
3∑

n=1

~kn

)
Fk1k2k3

(
λ1

2

)
δλ1,λ2(k̂1 · k̂2)e

(−λ1)
ij (k̂1)e

(−λ2)
ij (k̂2) .

(8.5)
The spherical harmonic coefficients of the temperature (X = T ) and E/B-mode polar-
ization (X = E/B) anisotropies from the scalar (ζ) and the tensor (γ(±2)) perturbations
are expressed respectively as [102, 103]

a
(s)X
`m = 4π(−i)`

∫
d3~k

(2π)3
T X`(s)(k)ζ~kY

∗
`m(k̂) , (8.6)

a
(t)X
`m = 4π(−i)`

∫
d3~k

(2π)3
T X`(t)(k)

∑
λ=±2

(
λ

2

)x
γ

(λ)
~k
−λY

∗
`m(k̂) , (8.7)

where λY`m(k̂) is the spin-weighted spherical harmonic function, T X`(s)(k) and T X`(t)(k) are
respectively the scalar and tensor transfer functions, and x takes 0 (1) for X = T,E
(X = B). Using these conventions, the CMB bispectra sourced by the primordial tensor-
tensor-scalar correlators can be written as〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(s)X3

`3m3

〉
=

 2∏
n=1

4π(−i)`n
∫

d3~kn
(2π)3

T Xn`n(t)(kn)
∑

λn=±2

(
λn
2

)xn
−λnY

∗
`nmn(k̂n)


× 4π(−i)`3

∫
d3~k3

(2π)3
T X3

`3(s)(k3)Y ∗`3m3
(k̂3)

〈
γ

(λ1)
~k1

γ
(λ2)
~k2

ζ~k3

〉
. (8.8)

8.2 Allowed harmonic-space configurations

First of all, we check the `-space configurations where a nonvanishing signal of the am-
plitude Π (Eq. (7.67)) lies in by following the procedure discussed in Ref. [214].

Using the fact that −λY`m(−k̂) = (−1)`λY`m(k̂), we can rewrite Eq. (8.8) as

〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(s)X3

`3m3

〉
=

 2∏
n=1

4π(−i)`n
∫

d3~kn
(2π)3

T Xn`n(t)(kn)
∑

λn=±2

(
λn
2

)xn
−λnY

∗
`nmn(k̂n)


× 4π(−i)`3

∫
d3~k3

(2π)3
T X3

`3(s)(k3)Y ∗`3m3
(k̂3)

× (−1)x1+x2+`1+`2+`3
〈
γ

(−λ1)

−~k1
γ

(−λ2)

−~k2
ζ−~k3

〉
. (8.9)
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In our model the parity breaking tensor-tensor-scalar bispectrum under consideration
(8.5) has odd parity. Namely, it obeys〈

γ
(λ1)
~k1

γ
(λ2)
~k2

ζ~k3

〉
= −

〈
γ

(−λ1)

−~k1
γ

(−λ2)

−~k2
ζ−~k3

〉
. (8.10)

Due to this peculiarity, Π turns out to be proportional to the amplitude of this bispectrum
(see e.g. Eq. (8.2)).

Now, comparing Eq. (8.8) with Eq. (8.9) under the parity-odd condition (8.10), we
find that 〈

a
(t)X1

`1m1
a

(t)X2

`2m2
a

(s)X3

`3m3

〉
[1 + (−1)x1+x2+`1+`2+`3 ] = 0 (8.11)

always holds. Thus, nonvanishing signal is confined to

x1 + x2 + `1 + `2 + `3 = odd . (8.12)

This means that in our case a nonvanishing signal for Π in X1X2X3 and BBX3 (BX2X3

and X1BX3), where X1, X2, X3 = T,E, arises from odd (even) `1 + `2 + `3 compo-
nents. It is worth stressing that these combinations are not realized under the usual
parity-conserving theories like Einstein gravity and, therefore, they can become distinc-
tive indicators of Chern-Simons gravity if they are detected. The restriction given by
Eq. (8.12) is, of course, confirmed also in the following CMB bispectrum formulation.

8.3 CMB bispectrum formulation

Plugging Eq. (8.5) into Eq. (8.8) yields〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(s)X3

`3m3

〉
=

[
3∏

n=1

(−i)`n
π

∫ ∞
0

k2
ndkn

∫
d2k̂n

]
T X1

`1(t)(k1)T X2

`2(t)(k2)T X3

`3(s)(k3)

×
∑
λ1=±2

(
λ1

2

)x1+x2+1

−λ1Y
∗
`1m1

(k̂1)−λ1Y
∗
`2m2

(k̂2)Y ∗`3m3
(k̂3)

× δ(3)

(
3∑

n=1

~kn

)
Fk1k2k3 (k̂1 · k̂2) e

(−λ1)
ij (k̂1)e

(−λ1)
ij (k̂2) . (8.13)

Here, the angular-dependent parts are decomposed using the spin-weighted spherical
harmonics as

(k̂1 · k̂2)e
(−λ1)
ij (k̂1)e

(−λ1)
ij (k̂2) =

25π2

15

∑
jµ

λ1Y
∗
jµ(k̂1)λ1Y

∗
j−µ(k̂2)(−1)µ+1+j

(
h0λ1−λ1

1 2 j

)2

2j + 1
,

(8.14)

δ(3)

(
3∑

n=1

~kn

)
= 8

∫ ∞
0

y2dy

[
3∏

n=1

∑
LnMn

(−1)
Ln
2 jLn(kny)Y ∗LnMn

(k̂n)

]

×
(
L1 L2 L3

M1 M2 M3

)
h0 0 0
L1L2L3

, (8.15)
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where

hs1s2s3l1l2l3
≡
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
s1 s2 s3

)
(8.16)

with
(
a b c
d e f

)
the Wigner 3j symbol. The products of the resulting (spin-weighted)

spherical harmonics are integrated with respect to k̂n according to the identities:∫
d2k̂

2∏
n=1

Y ∗lnmn(k̂) = (−1)m1δl1,l2δm1,−m2 , (8.17)

∫
d2k̂

3∏
n=1

snY
∗
lnmn(k̂) = h−s1−s2−s3l1 l2 l3

(
l1 l2 l3
m1 m2 m3

)
. (8.18)

Adding the angular momenta in the induced Wigner symbols by use of, e.g.,∑
m4m5m6

(−1)
∑6
n=4(ln−mn)

(
l5 l1 l6
m5 −m1 −m6

)(
l6 l2 l4
m6 −m2 −m4

)(
l4 l3 l5
m4 −m3 −m5

)
=

(
l1 l2 l3
m1 m2 m3

){
l1 l2 l3
l4 l5 l6

}
, (8.19)

where
{
a b c
d e f

}
is the Wigner 6j symbol, and performing the summations with respect to

λ1, we obtain the bottom-line expression
〈
a

(t)X1

`1m1
a

(t)X2

`2m2
a

(s)X3

`3m3

〉
= BX1X2X3

(tts)`1`2`3

(
`1 `2 `3
m1 m2 m3

)
where the angle-averaged bispectrum turns out to be

BX1X2X3

(tts)`1`2`3
= δodd

x1+x2+`1+`2+`3(−i)`1+`2+`3
∑
L1L2

(−1)
L1+L2+`3

2 hL1L2`3

× 26π2

15

∑
j

(−1)1+j+L2+`1

2j + 1
h02−2
L1`1j

h02−2
L2`2j

(
h02−2

1 2 j

)2
{
`1 `2 `3
L2 L1 j

}

×
∫ ∞

0
y2dy

[
2∏

n=1

2

π

∫ ∞
0

k2
ndknT Xn`n(t)(kn)jLn(kny)

]

× 2

π

∫ ∞
0

k2
3dk3T X3

`3(s)(k3)j`3(k3y)Fk1k2k3 , (8.20)

with

δodd
` =

{
1 (` = odd)

0 (` = even)
. (8.21)

In fact, the ranges of the summations with respect to L1, L2 and j are limited to a few
modes by the selection rules of the Wigner symbols.
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8.4 Fisher matrix forecasts

From Eq. (8.2), one can see that Fk1k2k3 depends linearly on the chirality parameter Π,
given by Eq. (7.69), and quadratically on the tensor-to-scalar ratio r. Thus, BX1X2X3

(tts)`1`2`3
∝

r2Π.
We now evaluate the detectability of Π by computing the Fisher matrix from XXX

(FXXX) or BBX (FBBX), with X = T,E, according to

FXXX =

`max∑
`1,`2,`3=2

(
B̂XXX
`1`2`3

)2

6CXX`1
CXX`2

CXX`3

(−1)`1+`2+`3 , (8.22)

FBBX =

`max∑
`1,`2,`3=2

(
B̂BBX
`1`2`3

)2

2CBB`1 CBB`2 CXX`3

(−1)`1+`2+`3 , (8.23)

where

B̂`1`2`3 ≡ ∂B`1`2`3/∂Π = B`1`2`3/Π ,

BXXX
`1`2`3 ≡ BXXX

(tts)`1`2`3
+BXXX

(tst)`1`2`3
+BXXX

(stt)`1`2`3
= BXXX

(tts)`1`2`3
+BXXX

(tts)`3`1`2
+BXXX

(tts)`2`3`1
,

BBBX
`1`2`3 ≡ BBBX

(tts)`1`2`3
. (8.24)

We focus on these cases, since they represent the best representative combinations to be
compared. Here we have assumed a weak non-Gaussian signal (we will comment later on
this assumption), so that the variance can be expressed with the products of the angular
power spectra CXX` and CBB` . Furthermore, in order to derive FBBX , we have used
the fact that the expected signal of the cross-correlation XB is undetectably small, i.e.,
CXX` CBB` � (CXB` )2, which is a consequence of the χ � 1 condition. In the following,
we consider a full-sky noiseless cosmic-variance-limited-level (CVL-level) experiment. In
this case, CXX` and CBB` are determined by the signal computed from theory (and when
specified it includes the contribution from lensing, see later). The expected 1σ errors on
Π for r = 10−2 and 10−3, computed according to ∆ΠX1X2X3 = 1/

√
FX1X2X3 , are shown

in Fig. 8.1.
From the TTT results, we find that the usual scaling relation for the squeezed-type

non-Gaussianity case, ∆ΠTTT ∝ `−1
max [68, 103, 215], stops at `max ∼ 100 corresponding to

the end of the large-scale amplification due to the integrated Sachs-Wolfe effect induced
by gravitational waves [216]. The same suppression was confirmed in the tensor-tensor-
tensor bispectrum case [166, 217–220]. At very low `’s, T T`(t) is comparable in size to T T`(s),
so, e.g.,

BTTT
(tts)`1`2`3

/BTTT
(sss)`1`2`3

∼ 〈γγζ〉 / 〈ζζζ〉 (8.25)

becomes a good approximation. Considering the comparison with the usual scalar-mode
local-type non-Gaussianity case [68], we therefore have

BTTT
(tts)`1`2`3

/BTTT
(sss)`1`2`3

∼ 10−3 × (r2Π)/fNL (8.26)
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Figure 8.1. Expected 1σ errors on the nonlinear chirality parameter Π from TTT , EEE, BBT
and BBE for r = 10−2 and 10−3 as a function of `max. Here, we assume a full-sky measurement
without any instrumental uncertainties. Solid (dashed) lines for BBT and BBE are computed
assuming a perfectly delensed (undelensed) B-mode polarization data.
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(see, e.g., Eq. (5.62) of Ref. [204]). From this, we find the following transforming formula

∆ΠTTT ∼ 103r−2∆fTTTNL . (8.27)

Substituting the expected 1σ error on fNL obtained in the literature, ∆fTTTNL (`max =
10) ∼ 103 [68] into this last equation, we can derive

∆ΠTTT (`max = 10) ∼ 106r−2 . (8.28)

As expected, this fully agrees with the results in Fig. 8.1. Notice that ∆ΠTTT ∝ r−2

exactly holds because of B̂TTT
`1`2`3

∝ r2. The similar features are also seen in the EEE
case.

The Fisher matrix from BBT or BBE is computed assuming two kinds of cases
where the B-mode polarization data is fully-delensed or undelensed. In the former case,
the errors are expected to scale like

∆ΠBBX ∝ r−1 , (8.29)

because of CBB` ∝ r and B̂BBX
`1`2`3

∝ r2.
Moreover, at very low `’s,

B̂BBX
`1`2`3/B̂

XXX
`1`2`3 ∼ 1 (8.30)

and
CBB` /CXX` ∼ r (8.31)

hold because of the small shape difference between the transfer functions T T`(t), T E`(t), T B`(t),
T T`(s) and T E`(s). Thus,

∆ΠBBX/∆ΠXXX ∼ r (8.32)

is expected to hold. All these scaling are actually confirmed from the solid lines in
Fig. 8.1, justifying our numerical results for BBT and BBE.

The former analysis tells us that if delensing perfectly works, the squeezed-type scaling

∆ΠBBX ∝ `−1
max (8.33)

is still maintained beyond `max ∼ 100.1 From the above estimates and our numerical
results, we can therefore expect that

∆ΠBBT ∼ ∆ΠBBE ∼ 106

(
0.01

r

)(
500

`max

)
. (8.34)

Even in the perfectly-delensed situation, such a rapid sensitivity improvement by increas-
ing `max is not expected when estimating the usual power spectrum chirality parameter,

χ ≡
〈
γ(+2)γ(+2)

〉
−
〈
γ(−2)γ(−2)

〉〈
γ(+2)γ(+2)

〉
+
〈
γ(−2)γ(−2)

〉 , (8.35)

1 Very roughly, the effects of the transfer functions in B̂BBX`1`2`3
and

√
CBB`1 CBB`2 CXX`3 of Eq. (8.23)

cancel each other out. Thus, one can obtain this result following closely the estimate for local bispectra
given in Refs. [68, 221].
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from CTB` and CEB` [203, 219, 222]. The Fisher matrix in this case is expressed as

FXB =

`max∑
`=2

(2`+ 1)

(
ĈXB`

)2

CXX` CBB`
, (8.36)

where
ĈXB` ≡ ∂CXB` /∂χ = CXB` /χ . (8.37)

Especially for high `, ĈXB` and CBB` (that are sourced by the tensor modes alone)
are subdominant compared with CXX` (that is also generated from the scalar mode).
Hence, (ĈXB` )2/(CXX` CBB` ) is highly suppressed causing a saturation at high ` (see Fig.
8.2). This actually prevents FXB from growing. In contrast, in Eq. (8.23), both B̂BBX

`1`2`3

and
√
CBB`1 CBB`2 CXX`3

come from two tensors and one scalar, and therefore the ratio

(B̂BBX
`1`2`3

)2/(CBB`1 CBB`2 CXX`3
) does not decay for high `, enhancing FBBX . This indicates

that CMB bispectra represent a promising observable to test and measure the chirality
of gravitational waves arising from parity-violation effects. In contrast, the presence of
the lensing B-mode can degrade the sensitivity, as expected and as shown in Fig. 8.1.
Thus, a delensing of the CMB map is required.

There is a further aspect to point out. In real data analysis, one may be concerned
about the contaminations due to late-time secondary contributions such as the so-called
ISW-lensing and polarization-lensing bispectra [223, 224]. These effects completely van-
ish in the multipole domain under consideration (8.12) (because these late-time effects
are not parity-violating sources). Hence, the extra process of subtracting such secondary
contributions in the CMB bispectra is indeed not required. However, additional con-
tributions to the covariance of CMB bispectra may arise when we Wick expand it and
include the CMB higher order correlators (i.e. the connected 4- and 6-points functions)
coming from the late-time physics. Also in this case, a delensing of the CMB map is the
only alternative to remove this extra contribution from the covariance.
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Figure 8.2. Expected 1σ ideal errors on the chirality parameter χ from TB and EB power
spectra for r = 10−1 as a function of `max. A perfectly delensed CMB map is assumed. We can
see that, after a certain maximum multipole scale (`max ≈ 10), we get a saturation of ∆χ at
the value ≈ 0.2 (combining the TB and EB channels). Thus, there is no hope of improvement
in the measure of χ even in futuristic CMB experiments with very high angular resolution and
complete lensing subtraction.
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8.5 Comments on the weak non-Gaussian signal assumption

In this section, we comment on the assumption of weak non-Gaussian signals. In perform-
ing our Fisher matrix forecasts, we implicitly assumed that the CMB non-Gaussianities
due to primordial perturbations are weak and the Gaussian statistics is predominant.
In fact, this is what we would expect by the constraints on CMB non-Gaussianities al-
ready made in literature (see Sec. 4.4), even tough no constraints on primordial tensor
non-Gaussianities have currently been made.

The request that non-linear effects from the 2 gravitons-1 scalar correlator do not
overcome in strength the linear ones translate into the following condition

〈γγζ〉 < A2
TAζ , (8.38)

where A here refers to the linear amplitude of the respective tensor/scalar perturbations
(which is the square root of the power spectrum). Since from Eq. (7.64) we have

〈γγζ〉 = fR,LNL A4
T , (8.39)

this means that the upper value of fNL denoting the passage to a high non-linear regime
reads

fR,LNL <
Aζ
A2
T

=
1

rAζ
. (8.40)

Thus, using the experimental value Aζ ' 10−5 (see [91]), we get

fR,LNL .

(
0.01

r

)
× 107 , (8.41)

or in terms of Π ' 103fR,LNL (see (7.66))

Π .

(
0.01

r

)
× 1010 . (8.42)

The upper bound on Π just derived is 3 orders of magnitude weaker than the one that
we imposed in order to preserve the perturbativity of the theory (see Eq. (7.75)). For
this reason, in the allowed region of the parameter space for Π, we are in the weak
non-Gaussianities regime where the forecasts made are legit.

8.6 Conclusions

If we match the allowed values in the parameter space, Eq. (7.75), with our final Fisher
matrix forecasts, Eq. (8.34) and Fig. 8.1, we get that there is a window of 1 order
of magnitude in the parameter Π where we can hope to detect parity breaking effects
with the measurement of BBT or BBE CMB angular bispectra. On the contrary, CMB
angular bispectra not involvingB modes show much worse sensitivity to Π, resulting quite
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useless in making a constraint on Π in the weak non-Gaussianity regime.2 Moreover,
we showed that an improvement in the angular resolution of the experiment could in
principle enhance the minimum testable value of Π. In fact, the 1σ ideal error on Π scales
as `−1

max (contrary to what happens when estimating chirality from power spectra CTB`
and CEB` ). However, realistically speaking, the B modes coming from the gravitational
lensing degrade the small scale contribution to the S/N ratio in a way that a saturation
is achieved for ` > 102 (see Fig. 8.1). For this reason, the CMB delensing is a necessary
condition to improve the sensitivity of the experiment. Nevertheless, we showed that
BBT and BBE CMB angular bispectra could become in the future essential observables
for testing Chern-Simons gravity during inflation, as well as other parity breaking theories
of inflation with bispectra satisfying the parity-odd condition (8.10).

2What we found is in accordance with e.g. Refs. [129, 225], where it is claimed the importance of
cross-correlation with CMB B modes to significantly improve constraints on non-Gaussianities involving
tensor modes.
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Part III
CMB V modes from physics beyond

standard scenario

CMB radiation represents a crucial observational tool of modern cosmology. As we have
seen in Sec. 4.2, the standard Boltzmann equations describing the radiation transfer of
the CMB from the recombination epoch until today predict the presence of some level
of linear polarization, the so-called E and B modes, which has been widely studied and
reviewed in the literature (see e.g. Refs. [93, 94, 99, 104, 226–229]). This is the result of
the Compton scattering between CMB photons and electrons and gravitational redshift,
induced by cosmological perturbations of the metric. Instead, the generation of CMB
circular polarization is usually not considered, because the electron-photon Compton
scattering cannot generate it at the classical level.

However, some models have been proposed that can lead to the generation of CMB
circular polarization. One possible way is via Faraday conversion of the linear polarization
generated at the surface of last scattering by various sources of cosmic birefringence (see
e.g. Refs. [230, 231] for a recent review). For instance, in Refs. [232–241], V -mode
formation due to magnetic fields is discussed. In Refs. [242–245], V -mode formation due
to photon-photon interactions via Heisenberg-Euler interaction is considered. V -mode
generation due to interactions coming from extensions of QED is studied, in particular,
in Refs. [238, 246, 247], where Lorentz-violating operators are considered. In Ref. [248],
it is shown that a cosmological pseudoscalar field may generate circular polarization in
the CMB, while, in Ref. [249], it is shown that V -mode generation can be obtained in
axion inflation. Moreover, in Refs. [250, 251], it is shown that forward scattering between
CMB photons and neutrinos can source V modes through Standard Model interactions.
In Ref. [252], circular polarization of CMB photons via their Compton scattering with
polarized cosmic electrons is considered. In Ref. [253], it is shown that V modes in the
CMB may arise from primordial vector and tensor perturbations. In particular, in Refs.
[254, 255], the case of chiral gravitational waves is considered.

Despite the fact that CMB circular polarization has not been observationally explored
so much up to now, these many examples show how its detection might reveal interesting
phenomena occurring in the evolution of the Universe. In particular, from the obser-
vational point of view, CMB circular polarization is not excluded. As an example, the
SPIDER collaboration has recently provided new constraints on the Stokes parameter V
at 95 and 150 GHz, by observing angular scales corresponding to 33 < ` < 307 [202]. The
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constraints on the circular polarization power-spectrum `(` + 1)C`V V /(2π) are reported
in a range from 141 µK2 to 255 µK2 at 150 GHz for a thermal CMB spectrum. Also, in
Ref. [256], some interesting detection prospects are discussed.

Motivated by all these theoretical and observational reasons, in this third part of the
Thesis we will investigate about innovative physics which may lead to the production of
CMB V modes, working with the formalism of the so-called quantum Boltzmann equation
(see App. D for a brief review). In this formalism, the master equation governing the
time evolution of the CMB photon polarization matrix (4.1) reads (D.15)

(2π)3δ(3)(~0)2k0 d

dt
ρij(k) = i

〈
[HI(t),DIij(k)]

〉
−
∫ t

t0

dt′
〈
[HI(t), [HI(t

′),DIij(k)]]
〉
, (8.43)

where HI(t) denotes a certain interaction Hamiltonian (in perturbative regime) involving
photons and other fields, and DI

ij(k) = ai(k)a†j(k) is the photon number operator. In
particular, we will focus on the effects of the forward scattering term (the first term in
the right-hand side of (8.43)) which is able to generate couplings between different CMB
polarization states.3 In fact, Eq. (8.43) is derived adopting a perturbative approach
so that increasing powers of the interaction Hamiltonian HI(t) reduce the strength of
the corresponding term. For this reason, in any fundamental interaction in perturbative
regime in which the forward scattering term is non-zero, a-priori it is expected to give
the relevant physical effects on the CMB polarizations. Of course, this is not the case
of the standard QED interaction between photons and electrons, where such a forward
scattering term vanishes (see e.g. [93]), and all the relevant effects arise from the damping
term only (the second term in the right-hand side of (8.43)).

First of all, in Chap. 9, we will analyze the effects on CMB polarization from the
polarization mixing induced by the forward scattering with primordial gravitons [259].
Then, in Chap. 10, we will consider the forward scattering mixing in the case of photon-
fermion interactions that go beyond the Standard Model of particle physics [260].

3This is the same physical mechanism that generates neutrino flavor mixings, see e.g. Ref. [257].
Such mixing in the CMB polarization states has been previously considered e.g. in Refs. [238, 243, 245,
247, 250, 258].
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Chapter 9

Effects of photon-graviton forward
scattering on CMB polarization

9.1 Introduction

From an effective field theory (EFT) point of view, general relativity can be considered
as the low energy limit of a well-defined renormalizable theory of gravity. In this low en-
ergy theory, gravitational waves are (transverse-traceless) fluctuations around a suitable
background space-time; expanding the Einstein-Hilbert Lagrangian in a power series of
these fluctuations, we are able to extract a positive-definite kinetic term describing the
free propagation of gravitational waves. Thus, we are able to canonically quantize grav-
itational waves, introducing creation and annihilation operators, as it is done with the
particle content and gauge bosons of the standard model of fundamental interactions. In
such a formalism, field operators describing gravitational waves are called gravitons. In
particular, expanding the full covariant Lagrangian of a generic theory in power series of
all the field content, we can derive interaction terms between gravitons and other fields.

In this chapter, using this quantum field theory (QFT) approach (as well as the quan-
tum Boltzmann equation (8.43)), we will study the forward scattering mixing induced to
a CMB photon due to the so-called "gravitational Compton scattering" with gravitons.
In this case, the full Lagrangian we have to consider is the sum of the Einstein-Hilbert
Lagrangian and the covariant electromagnetic Lagrangian. Feynman amplitudes describ-
ing gravitational Compton scattering have already been computed in the literature (see
e.g. Refs. [261–263]). Thus, after a brief review, we use these results to analyze the
CMB polarization mixing induced.

9.2 Computation of the forward scattering term

The effects of photon-graviton forward scattering are described by the following Boltz-
mann equation:

(2π)3δ(3)(0)(2k0)
dρ

(γ)
ij (k)

dt
= i
〈[
Hγg(t),D(γ)

ij (k)
]〉

, (9.1)
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where ρ(γ)
ij is the polarization matrix of the photon [see Eq. (9.31)], D(γ)

ij = a†iaj is the
photon number operator and Hγg(t) is the quantum interaction Hamiltonian between
photons and gravitons, defined in terms of the second order S-matrix as

S(2) = −i
∫ ∞
−∞

dtHγg(t) . (9.2)

In order to derive the photon-graviton interaction Hamiltonian, we follow the same con-
vention of Refs. [261, 264]. The gravitational dynamics is given by the Einstein-Hilbert
Lagrangian

Lg =

√−g
κ2

gαλ
(

ΓβαλΓµβµ − ΓµαβΓβλµ

)
, (9.3)

where κ2 = 16πG and we have dropped irrelevant surface terms. We consider the weak-
field limit and expand the metric around Minkowski space-time in powers of κ, as

gµν(x) = ηµν + κhµν(x) , (9.4)

where hµν(x) is the graviton field. Now, we have to expand the Lagrangian (9.3) around
the background in powers of κ and hµν(x). The terms linear in hµν(x) vanish by virtue
of Einstein’s equations. We keep only the nonlinear terms in hµν(x), up to first order
in κ. In fact, it is possible to show that terms with higher powers of κ give a gradually
suppressed contribution, when inserted into Eq. (9.1). Thus, we have

Lg = L(0)
g + L(1)

g +O(κ2) , (9.5)

where L(0)
g is the Lagrangian describing the free propagation of gravitons and reads

L(0)
g =

1

4

{
hα,βα

(
2h,λβλ − hαα,β

)
+ hσλ,α (−2hαλ,σ + hσλ,α)

}
, (9.6)

L(1)
g is the three-gravitons interaction Lagrangian and is given by

L(1)
g = κ

{
1

2
hααL(0)

g −
1

4
hλρ

[
2hαα,σ

(
hσλ,ρ − h,σλρ

)
+
(
−2hαλ,σh

σ,α
ρ + 2hσλ,αh

σ,α
ρ + hασ,λh

σα
,ρ

)
+hαα,λ

(
2hνρ,ν − hαα,ρ

)
+ 2hσν,ν hλρ,σ − 4hσ,αρ hασ,λ

]}
. (9.7)

Here and in the following, Greek indices are raised and lowered using the Minkowski
metric ηµν . Now, we make the following spatial Fourier expansion for the graviton field:

hµν(x) =

∫
d3q

(2π)3

1

2q0

∑
r=+,×

[
br(q)h(r)

µν e
iqx + b†r′(q)h(r) ∗

µν e−iqx
]
, (9.8)

where b(r)q and b(r) †q are graviton annihilation and creation operators, respectively, obeying
the canonical commutation relations[

br(q), b†r′(q
′)
]

= (2π)32q0δ(3)(q− q′)δrr′ , (9.9)
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and h(r)
µν are the polarization tensors with the well-known properties

h(r)
µν (q)qµ = 0 , hµµ(q) = 0 , h(r)

µν (q)
(
h(r′)µν(q)

)∗
= δrr

′
. (9.10)

It is also convenient to represent the polarization tensor h(r)µν in terms of a direct product
of unit spin polarization vectors

h(r)
µν = e(r)

µ e(r)
ν , e(r)

µ qµ = 0 ,
[
e(r)
µ (q)

(
e(r′)µ(q)

)∗]2
= δrr

′
. (9.11)

The explicit expression for the graviton propagator in the harmonic (de Donder) gauge
is given by [261, 264]

D
(g)
µναβ(q) =

i

q2
(ηµαηνβ + ηµβηνα − ηµνηαβ) . (9.12)

To compute the S-matrix (9.2), we need to consider also the covariant electromagnetic
Lagrangian density [261, 264]

Lγ = L(0)
γ + L(1)

γ + L(2)
γ +O(κ3) , (9.13)

where L(0)
γ is the part of the Lagrangian that describes the free photon propagation and

is given by

L(0)
γ = − 1

16π
FµνF

µν , (9.14)

where, as usual, Fµν = ∂µAν − ∂νAµ is the gauge-field strength and Aµ is the photon
field. The remaining terms on the right-hand side of Eq. (9.13) give the photon-graviton
couplings

L(1)
γ = − κ

16π

(
1

2
hαα FµνF

µν − 2hµνFαµ Fαν

)
, (9.15)

and

L(2)
γ = − κ2

16π

{
−hααhµνFαµ Fαν +

[
1

8
(hαα)2 − 1

4
hµνh

µν

]
FαβF

αβ + hµνhαβFµαFνβ

+2hµαhναFµβF
β
ν

}
. (9.16)

In particular, L(1)
γ gives the two photons-one graviton interaction vertex, while L(2)

γ gives
the two photons-two gravitons vertex. Notice that in Eq. (9.13) we considered also a
coupling term which is quadratic in κ. This should not create any confusion, since the
important fact is that, when we will apply the formula (9.1), the term (9.16) will give a
contribution of the same order in powers of κ.

As we made for the graviton field, we expand also the photon field in Fourier space
as

Aµ(x) =

∫
d3p

(2π)3

1

2p0

∑
s=1,2

[
as(p) ε(s)µ eipx + a†s′(p) ε(s) ∗µ e−ipx

]
, (9.17)
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where ε(s)µ are the real photon polarization four-vectors, s labels the two physical trans-
verse photon polarizations, as and a†s′ are photon annihilation and creation operators,
respectively, satisfying the canonical commutation relation[

as(p), a†s′(p
′)
]

= (2π)32p0δ(3)(p− p′)δss′ . (9.18)

We fix the Feynman gauge for the photon field, thus the photon propagator is given by
[261, 264]

D(γ)
µν (p) = −4π

i

p2
ηµν . (9.19)

Now, we have all the elements to evaluate the right-hand side of Eq. (9.1). In fact,
the expression of the second order S-matrix contribution describing the photon-graviton
scattering is

S(2) = −1

2

∫
d4x1d

4x2 T
{
L(1)
γ (x1)L(1)

γ (x2)
}
− 1

2

∫
d4x1d

4x2 T
{
L(1)
γ (x1)L(1)

g (x2)
}

+i

∫
d4xL(2)

γ (x) , (9.20)

where T denotes the time-ordering operator.
Now, calling p and p′ the incoming and outgoing momenta of the photon, q and q′

the incoming and outgoing momenta of the graviton, we can evaluate the second-order
S-matrix (9.20) using Feynman’s rules (see Refs. [261, 262]). In particular, Feynman
diagrams for the photon-graviton scattering are shown in Fig. 9.1. The result is such
that the photon-graviton interaction Hamiltonian defined in (9.2) turns out to be

Hγg(t) =

∫
dqdq′dpdp′(2π)3δ(3)(q′ + p′ − q− p) exp

[
it(q′0 + p′0 − q0 − p0)

]
×
[
b†r′(q

′)a†s′(p
′)(M1 +M2 +M3)as(p)br(q)

]
, (9.21)

where for simplicity of notation

dq =
d3q

(2π)32q0
, dp =

d3p

(2π)32p0
, (9.22)

and the three different Feynman amplitudes appearing in Eq. (9.21) are given by [261]

M1 =
κ2

p · q [pµ(e · ε)− εµ(p · e)]
[
p′ν(ε′∗ · e′∗)− ε′∗ν(p′ · e′∗)

]
×
[
g(0)
µν (e · p)(e′∗ · p′) + qµq

′
ν(e · e′∗)− e′∗µ q′ν(e · p)− qµeν(e′∗ · p′)

]
+ (ε, p↔ ε′∗,−p′) ,

(9.23)

M2 =
κ2

2q · q′
{[

(p · p′)(ε · ε′∗)− (ε′∗ · p)(ε · p′)
]

[2(e · q′)(e′∗q)− (e · e′∗)(q · q′)](e · e′∗)

−
[
(p · p′)εµε′∗ν + (ε · ε′∗)pµp′ν − (p · ε′∗)εµp′ν − (ε · p′)pµε′∗ν + (ε, p↔ ε′∗,−p′)

]
×
[
(e · e′∗)2qµq

′
ν − 2(e · e′∗)(q · q′)eµe′∗ν + 2(e · q′)(e′∗ · q)eµe′∗ν + (e · q′)2e′∗µ e

′∗
ν

+(e′∗ · q)2eµeν − 2(e · e′∗)(e · q′)e′∗ν q′µ − 2(e · e′∗)(e′∗ · q)eνqµ
]}

, (9.24)
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M3 =κ2
{

(e · e′∗)2[(p · p′)(ε · ε′∗)− (p · ε′∗)(p′ · ε)]− 2[(p · e)(ε · e′∗)− (p · e′∗)(ε · e)]
× [(p′ · e)(ε′∗ · e′∗)− (p′ · e′∗)(ε′∗ · e)]− 2(e · e′∗)[(p · e)(p′ · e′∗)(ε · ε′∗)
+ (ε · e)(ε′∗ · e′∗)(p · p′)− (p · e)(ε′∗ · e′∗)(ε · p′)− (e · ε)(p′ · e′∗)(p · ε′∗)
+ (ε, p↔ ε′∗,−p′)]

}
, (9.25)

where e ≡ e(r)(q), e′ ≡ e(r′)(q′), ε ≡ ε(s)(p) and ε′ ≡ ε(s′)(p′). At the end, we will see that
the contribution of M1 + M3 amplitudes in the forward scattering vanishes. Hence, we
focus only on M2. After expanding M2 and doing some algebra we obtain

M2 =− κ2

2(q · q′)
{

(e · e′∗)2
[
(q · ε′∗)

(
(p · p′)(ε · q′)− (p · q′)(ε · p′)

)
+ (ε · ε′∗)

(
(p · q′)(q · p′)

+(p · p′)(q · q′) + (p · q)(p′ · q′)
)
− (p · ε′∗)

(
(q · q′)(ε · p′) + (q · p′)(ε · q′) + (q · ε)(p′ · q′)

)
+(q′ · ε′∗)

(
(p · p′)(q · ε)− (p · q)(ε · p′)

)]
− 2(e · e′∗)

{
−(e · p′)(p · ε′∗)(q · ε)(q · e′∗)

−(e · ε)(p · ε′∗)(q · p′)(q · e′∗) + (e · ε)(p · p′)(q · ε′∗)(q · e′∗)− (e · q′)(p · ε′∗)(ε · p′)(q · e′∗)
−(e · p)(q · ε′∗)(ε · p′)(q · e′∗)− (e · p′)(p · ε′∗)(q · q′)(ε · e′∗) + (e · ε′∗)

[
(p · p′)

(
(q · ε)(q · e′∗)

+(q · q′)(ε · e′∗)
)
− (ε · p′)

(
(p · q)(q · e′∗) + (p · e′∗)(q · q′)

)]
− (e · ε)(p · ε′∗)(q · q′)(p′ · e′∗)

−(e · q′)(p · ε′∗)(ε · q′)(p′ · e′∗) + (e · ε)(p · p′)(q · q′)(e′∗ · ε′∗)− (e · q′)(p · q′)(ε · p′)(e′∗ · ε′∗)
−(e · p)(q · q′)(ε · p′)(e′∗ · ε′∗) + (e · q′)(p · p′)(ε · q′)(e′∗ · ε′∗)− (e · q′)(p · ε′∗)(ε · e′∗)(p′ · q′)
+(ε · ε′∗)

[
(e · p′)

(
(p · q)(q · e′∗) + (p · e′∗)(q · q′)

)
+ (e · p)

(
(q · e′∗)(q · p′) + (q · q′)(e′∗ · p′)

)
+(e · q′)

(
(p · p′)(q · e′∗) + (p · q′)(e′∗ · p′) + (p · e′∗)(p′ · q′)

)]
+ (e · q′)(p · p′)(ε · e′∗)(q′ · ε′∗)

−(e · q′)(p · e′∗)(ε · p′)(q′ · ε′∗)
}

+ 2
{

(e · q′)2
[
(p′ · e′∗)

(
(ε · ε′∗)(p · e′∗)− (p · ε′∗)(ε · e′∗)

)
+(e′∗ · ε′∗)

(
(p · p′)(ε · e′∗)− (p · e′∗)(ε · p′)

)]
+ (q · e′∗)(e · q′)

[
(e · p′)

(
(ε · ε′∗)(p · e′∗)

−(p · ε′∗)(ε · e′∗)
)

+ (e · ε′∗)
(
(p · p′)(ε · e′∗)− (p · e′∗)(ε · p′)

)
+ (e · p)

(
(ε · ε′∗)(e′∗ · p′)

−(ε · p′)(e′∗ · ε′∗)
)]

+ (e · p)(q · e′∗)2
(
(ε · ε′∗)(e · p′)− (e · ε′∗)(ε · p′)

)
+(e · ε)(q · e′∗)

[
(e · ε′∗)(p · p′)(q · e′∗)− (p · ε′∗)

(
(e · p′)(q · e′∗) + (e · q′)(e′∗ · p′)

)
+(e · q′)(p · p′)(e′∗ · ε′∗)

]}}
. (9.26)
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Now, using the four-momentum conservation q · q′ = p · p′, we can rewrite M2 as

M2 =− κ2

2

{
(e · e′∗)2

(
(q · ε′∗)(ε · q′) + (ε · ε′∗)(p · p′)− (p · ε′∗)(ε · p′) + (q′ · ε′∗)(q · ε)

)
−2(e · e′∗)

[
(e · ε)(q · ε′∗)(q · e′∗)− (e · p′)(p · ε′∗)(ε · e′∗) + (e · ε′∗)

(
(q · ε)(q · e′∗)

+(p · p′)(ε · e′∗)− (ε · p′)(p · e′∗)
)
− (e · ε)(p · ε′∗)(p′ · e′∗) + (e · ε)(p · p′)(e′∗ · ε′∗)

−(e · p)(ε · p′)(e′∗ · ε′∗) + (e · q′)(ε · q′)(e′∗ · ε′∗) + (ε · ε′∗)
(
(e · p′)(p · e′∗)

+(e · p)(e′∗ · p′) + (e · q′)(q · e′∗)
)

+ (e · q′)(ε · e′∗)(q′ · ε′∗)
]

+ 2
[
(e · q′)2(e′∗ · ε′∗)(ε · e′∗)

+(q · e′∗)(e · q′)(e · ε′∗)(ε · e′∗) + (e · ε)(q · e′∗)
(
(e · ε′∗)(q · e′∗) + (e · q′)(e′∗ · ε′∗)

)]}
− κ2

2(q · q′)
{

(e · e′∗)2
[
−(q · ε′∗)(p · q′)(ε · p′) + (ε · ε′∗)

(
(p · q′)(q · p′) + (p · q)(p′ · q′)

)
−(p · ε′∗)

(
(q · p′)(ε · q′) + (q · ε)(p′ · q′)

)
− (q′ · ε′∗)(p · q)(ε · p′)

]
− 2(e · e′∗)

×
{
−(e · p′)(p · ε′∗)(q · ε)(q · e′∗)− (e · ε)(p · ε′∗)(q · p′)(q · e′∗)− (e · q′)(p · ε′∗)(ε · p′)(q · e′∗)

−(e · p)(q · ε′∗)(ε · p′)(q · e′∗)− (e · ε′∗)(ε · p′)(p · q)(q · e′∗)− (e · q′)(p · ε′∗)(ε · q′)(p′ · e′∗)
−(e · q′)(p · q′)(ε · p′)(e′∗ · ε′∗)− (e · q′)(p · ε′∗)(ε · e′∗)(p′ · q′) + (ε · ε′∗)

[
(e · p′)(p · q)(q · e′∗)

+(e · p)(q · e′∗)(q · p′) + (e · q′)
(
(p · q′)(e′∗ · p′) + (p · e′∗)(p′ · q′)

)]
−(e · q′)(p · e′∗)(ε · p′)(q′ · ε′∗)

}
+ 2

{
(e · q′)2

[
(p′ · e′∗)

(
(ε · ε′∗)(p · e′∗)− (p · ε′∗)(ε · e′∗)

)
−(e′∗ · ε′∗)(p · e′∗)(ε · p′)

]
+ (q · e′∗)(e · q′)

[
(e · p′)

(
(ε · ε′∗)(p · e′∗)− (p · ε′∗)(ε · e′∗)

)
−(e · ε′∗)(p · e′∗)(ε · p′) + (e · p)

(
(ε · ε′∗)(e′∗ · p′)− (ε · p′)(e′∗ · ε′∗)

)]
+(e · p)(q · e′∗)2

(
(ε · ε′∗)(e · p′)− (e · ε′∗)(ε · p′)

)
− (p · ε′∗)(e · ε)(q · e′∗)

(
(e · p′)(q · e′∗)

+(e · q′)(e′∗ · p′)
)}}

. (9.27)

Now, in order to compute the forward scattering term in (9.1), we need to take the
expectation value of the following expression:

i
[
Hγg(t),D(γ)

ij (k)
]

= i

∫
dqdq′dpdp′(2π)3δ(3)(q′ + p′ − q− p)M2

[
b†r′(q

′)br(q)a
†
s′(p
′)aj(k)

×2p0(2π)3δisδ
(3)(p− k)− b†r′(q′)br(q)a

†
i (k)as(p)2p

′0(2π)3δjs′δ
(3)(p′ − k)

]
.

(9.28)

The expectation value of a generic operator A is defined as

〈A〉 = tr(ρ̂(i)A) , (9.29)

ρ̂(i) being the density operator of a system of particles. Applying this definition to the
case of photons, one can find the following expression for the expectation value of the
product between photon creation and annihilation operators [93]〈

a†m(p′)an(p)
〉

= 2p0(2π)3δ(3)(p− p′)ρ(γ)
mn(p) , (9.30)
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Figure 9.1. Feynman diagrams for the photon-graviton scattering, dashed lines represent gravi-
tons, wavy lines represent photons. Diagrams (a) and (b) give the amplitude M1, Eq. (9.23);
diagram (c) gives the amplitudeM2, Eq. (9.24); diagram (d) gives the amplitudeM3, Eq. (9.25).
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where ρ(γ)
ij is the polarization density matrix of the electromagnetic radiation (4.1)1

ρ
(γ)
ij =

1

2

(
∆

(γ)
I + ∆

(γ)
Q ∆

(γ)
U − i∆

(γ)
V

∆
(γ)
U + i∆

(γ)
V ∆

(γ)
I −∆

(γ)
Q

)
, (9.31)

∆
(γ)
I , ∆

(γ)
Q , ∆

(γ)
U , and ∆

(γ)
V being the photon Stokes parameters (I ≡ T of Eq. (4.1)).

By the same reasoning, one can find an analogous relation for gravitons〈
b†m(q′)bn(q)

〉
= 2q0(2π)3δ(3)(q− q′)ρ(g)

mn(q) , (9.32)

where ρ(g)
mn is the polarization density matrix of gravitons [265, 266]

ρ(g)
mn =

1

2

(
∆

(g)
I + ∆

(g)
Q ∆

(g)
U − i∆

(g)
V

∆
(g)
U + i∆

(g)
V ∆

(g)
I −∆

(g)
Q

)
, (9.33)

in which ∆
(g)
I ,∆

(g)
Q ,∆

(g)
U and ∆

(g)
V are the Stokes parameters associated to gravitons; in

general, these are given in terms of the power-spectrum statistics of the gravitons. As
an example, let us consider ∆

(g)
I . The total tensor power-spectrum Ph of gravitons is

defined as

〈hrµν(x)hµνr (x + r)〉 =

∫
d3q

(2π)3
Ph(q)e−iq·r . (9.34)

If we insert Eq. (9.8) into the left-hand side of the previous equation and we use Eqs.
(9.9) and (9.10) we find

∆
(g)
I (q) = 2q0Ph(q) . (9.35)

Now, using the expectation values (9.30) and (9.32) and performing the integration over
p, p′ and q′, we find that the forward scattering term is given by

i
〈[
Hf (t),D(γ)

ij (k)
]〉

= i (2π)3δ(3)(0)

∫
dq
(
δisρ

(γ)
s′j (k)− δjs′ρ(γ)

is (k)
)
ρ

(g)
rr′(q)

×M r,r′,s,s′

2 (q′ = q,p = p′ = k) , (9.36)

where the contraction between Latin indices is made with Kronecker delta. Thus, recall-
ing the expression of M2, Eq. (9.27), and inserting Eq. (9.36) back into Eq. (9.1), after
some straightforward algebra we finally get the forward scattering mixings between the

1Here, we use the index γ to distinguish it from the polarization matrix of gravitons (9.33) (with
index g).
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photon Stokes parameters in the following form

∆̇
(γ)
I = 0 , (9.37)

∆̇
(γ)
Q =

κ2

k0

∫
dq∆

(g)
I (q) (q · ε1(k)) (q · ε2(k))∆

(γ)
V , (9.38)

∆̇
(γ)
U = − κ2

2k0

∫
dq∆

(g)
I (q)

[
(q · ε1(k))2 − (q · ε2(k))2

]
∆

(γ)
V , (9.39)

∆̇
(γ)
V =

κ2

2k0

∫
dq∆

(g)
I (q)

[(
(q · ε1(k))2 − (q · ε2(k))2

)
∆

(γ)
U − 2 (q · ε1(k)) (q · ε2(k))∆

(γ)
Q

]
,

(9.40)

where dots stand for time derivatives.

Then, in order to take the integral over dq, we fix a coordinate system where the z-axis
is aligned with the three-momentum of the scattered photon k and photon polarization
vectors ε1 and ε2 stay along x and y axes. In such a case, we can write the photon and
graviton kinematic variables in the following form:

k = k0 (0, 0, 1) , (9.41)

q = q0(sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) , (9.42)
ε1 = (1, 0, 0) , (9.43)
ε2 = (0, 1, 0) , (9.44)

where θ′ and φ′ are the polar angles defining the direction of the three-momentum of the
graviton in space. Thus, we can rewrite the previous set of equations as

∆̇
(γ)
I = 0 , (9.45)

∆̇
(γ)
Q =

∆
(γ)
V

4k0

∫
d3q

(2π)3
q0 sin2 θ′ sin 2φ′κ2∆

(g)
I (q) , (9.46)

∆̇
(γ)
U = −V

(γ)

4k0

∫
d3q

(2π)3
q0 sin2 θ′ cos 2φ′κ2∆

(g)
I (q) , (9.47)

∆̇
(γ)
V =

1

4k0

∫
d3q

(2π)3
q0 sin2 θ′[cos 2φ′∆U

(γ) − sin 2φ′∆Q
(γ)]κ2∆

(g)
I (q) . (9.48)
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Finally, using the results of Appendix E, we can write

∆̇
(γ)
I = 0 , (9.49)

∆̇
(γ)
Q =

∆
(γ)
V

2πk0
κ2ρ̄gw

∑
l,m

∫
d2q̂ cIlm sin2 θ′ sin 2φ′ Y m

l (θ′, φ′) , (9.50)

∆̇U
(γ)

= −∆
(γ)
V

2πk0
κ2ρ̄gw

∑
l,m

∫
d2q̂ cIlm sin2 θ′ cos 2φ′ Y m

l (θ′, φ′) , (9.51)

∆̇
(γ)
V =

1

2πk0
κ2ρ̄gw

∑
l,m

∫
d2q̂ cIlm sin2 θ′[cos 2φ′∆U

(γ) − sin 2φ′∆Q
(γ)]Y m

l (θ′, φ′) ,

(9.52)

where ρ̄gw is the energy density of gravitons averaged over all directions, Eq. (E.9) and
cIlm are the harmonic coefficients in the decomposition of ∆

(g)
I (q) in terms of spherical

harmonics, Eq. (E.6).
Let us briefly comment on this final set of equations: it is straightforward to ver-

ify that the source terms appearing in the right-hand sides all identically vanish when
photons interact with gravitons that are characterised by a statistically isotropic power-
spectrum. Thus, to achieve a nontrivial result, we need the photon to interact with
an anisotropic background of gravitons. In the latter case, Q and U photon polariza-
tion states couple with the V polarization state, while the I unpolarized state remains
unchanged. Notice that this result can be applied in full generality to the interactions
involving gravitons and photons of whatever origin. In the next section, we will give
some examples applying our results to study the effect on the photon polarization due
to the forward scattering with primordial gravitons generated during inflation.

9.3 Forward scattering with inflationary gravitons

As we have seen in Chap. 2, standard slow-roll models of inflation predict an isotropic
power-spectrum of primordial gravitons. Therefore, in this case inflationary gravitons
have no effect in Eqs. (9.50)-(9.52). In this section, we will briefly review some alternative
models of inflation where a certain level of anisotropy in the tensor power-spectrum is
generated and, using Eq. (9.35), we will link the power-spectrum predicted by these
models to the results found at the end of Sec. 9.2. In the next section, we will provide
also a general estimate of the effects on CMB polarization.

Anisotropic solid inflation

Anisotropic solid inflation is a novel inflationary model studied in Refs. [267–269], based
on the original model of solid inflation [270]. According to this model, the inflationary
period is driven by a configuration which behaves like a solid: the space is fragmented
into cells whose location is defined by a triplet of scalar fields φI(t,x), where I = 1, 2
or 3. The three scalars can be viewed as the three coordinates that give the position,
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at time t, of the cell element that, at the time t = 0, was in the position x. At the
background level one has

〈φI〉 = xI , I = 1, 2, 3. (9.53)

From the previous equation, we understand that the scalar fields φI are time-independent
at the background level and give a sort of "average position" of each cell. In order to
require isotropy and homogeneity of the background, in the Lagrangian of the theory the
following internal symmetries are imposed

φI → φI + CI (9.54)

and
φI → OIJφ

J , OIJ ∈ SO(3) . (9.55)

The most general action consistent with the previous symmetries and minimally coupled
to gravity is given by [270]

S =

∫
d4x
√−g

{
M2
P

2
R+ F [X,Y, Z] ,

}
, (9.56)

where

X ≡ TrB = Bii , Y ≡ Tr
(
B2
)

(TrB)2 , Z ≡ Tr
(
B3
)

(TrB)3 , BIJ ≡ gµν∂µφI∂νφJ . (9.57)

Writing down the background cosmological equations, the slow-roll parameters turn out
to be [268, 270]

ε =
XFX
F

, η = 2

(
ε− 1− X2FXX

XFX

)
, (9.58)

where FX = ∂F/∂X and the same for Y and Z.
The scalar field perturbations are given by

φI = xI + πI(t,x) . (9.59)

In particular, it is possible to decompose the perturbations πI(t,x) into a transverse and
a longitudinal part, as

πI(t,x) = ∂IπL(t,x) + πIT (t,x) , ∂Iπ
I
T = 0 . (9.60)

The field πL(t,x) labels the “phonons” for the longitudinal fluctuations of the solid. The
sound speeds of longitudinal and transverse excitations are given by [268, 270]

c2
L ≡ 1 +

2FXXX
2

3FXX
+

8(FY + FZ)

9FXX
, (9.61)

and
c2
T = 1 +

2(FY + FZ)

3XFX
=

3

4

(
1 + c2

L −
2ε

3
+
η

3

)
. (9.62)

121



The anisotropic version of this model is achieved introducing a preferred direction in the
background metric; for example, we can consider a Bianchi type-I background geometry
with residual 2d isotropy

ds2 = −dt2 + a2 (t) dx2 + b2 (t)
[
dy2 + dz2

]
,

a ≡ eα−2σ , b ≡ eα+σ , (9.63)

where the field σ labels the anisotropy. Here, the x-axis is labeled as the preferred
direction. Einstein’s equations for this kind of background applied to solid inflation are
given by [268]

H2 − σ̇2 =− F

3M2
P

, (9.64)

Ḣ + 3σ̇2 =
e4σ + 2e−2σ

3M2
P

e−2αFX , (9.65)

σ̈ + 3Hσ̇ =
2(e4σ − e−2σ)

3M2
P

e−2αFX −
4e6σ(1− e6σ)FY

(2 + e6σ)3M2
P

− 6e6σ(1− e12σ)FZ
(2 + e6σ)4M2

P

. (9.66)

If we rewrite Eq. (9.66) in the small anisotropy limit (i.e. σ � 1), it becomes

σ̈ + 3Hσ̇ + 4εH2c2
Tσ = 0 . (9.67)

Assuming nearly constant values of ε and cT , one can solve Eq. (9.67) finding [268]

σ(t) ' σ1e
−

∫
dt [(3−(2+c2L)ε)]H + σ2e

−
∫
dt 4

3
c2T εH , (9.68)

where σ1 and σ2 are two constants.
From Eq. (9.68), we understand that the general solution is a superposition of two

kinds of solutions: the solution proportional to σ1 is fast-decaying, while the solution
proportional to σ2 is slowly decaying. The result is that, immediately after the begin-
ning of inflation, only the second solution survives. Moreover, if inflation does not last
longer than a time 1/

√
εcT , a residual anisotropic deformation of the background is pre-

served [268]; thus, solid inflation is not efficient in diluting the initial anisotropy, contrary
to what happens in the standard slow-roll inflationary scenario.2 This is due to the fact
that to produce inflation, the solid must be insensitive to the spatial expansion, but, at
the same time, this makes it rather inefficient in erasing anisotropic deformations of the

2In fact, in slow-roll models of inflation with a Bianchi type-I background Eq. (9.67) simplifies,
becoming

σ̈ + 3Hσ̇ = 0 .

The solution of this equation reads
σ(t) ' σ0e

−
∫
dt 3H .

Thus, a rapid dilution of all the initial small anisotropy follows. This result is also known as cosmic no
hair theorem, and states that slow-roll inflation rapidly erases all kinds of anisotropies. For this reason,
a Bianchi type-I slow-roll model of inflation is not sufficient to lead to anisotropies in the primordial
perturbations.
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geometry. In fact, Ref. [268] shows that it is rather general to expect anisotropic evo-
lution in these scenarios. For this reason, during a solid inflationary period, signatures
of primordial anisotropies can be left imprinted into primordial perturbations [268, 270].
In particular, in Ref. [269] the anisotropy in the power-spectrum statistics of primordial
gravitons has been computed. The final result is

P solid
h (q) = P

(0)
h (q)

[
1 +

16NσFY
9εc5

LF

[
εc5
L(1− 3 cos2 α)+2σN

FY
F

sin4 α

]]
, (9.69)

where P (0)
h (q) = 4H2/q3M2

Pl is the total power-spectrum of gravitons in the standard
slow-roll inflationary models as computed in Sec. 2.5, N = − ln(−qηe) is the number of
e-folds when the mode q leaves the horizon until the end of inflation, and α is the angle
between the preferred direction and the momentum q of the graviton.

Now, let us assume that the preferred direction is completely general in the (x, y)
plane,3 so that n̂ = (cosφ, sinφ, 0). The angle α between the preferred direction n̂ and
the generic graviton momentum q̂ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) is given by

cosα = n̂ · q̂ = cosφ′ sin θ′ cosφ+ sinφ′ sin θ′ sinφ , (9.70)

sin2 α = 1−cos2 α = 1−cos2 φ′ sin2 θ′ cos2 φ−sin2 φ′ sin2 θ′ sin2 φ−2 cosφ′ sin2 θ′ cosφ sinφ′ sinφ .
(9.71)

Thus, apart from some coefficients, the integrals we have to compute turn out to be

I1 =
1

4

∫
d3q

(2π)3
q0 sin2 θ′ sin 2φ′κ2∆

(g)
Isolid

(q) = −B sin(2φ) , (9.72)

and

I2 =
1

4

∫
d3q

(2π)3
q0 sin2 θ′ cos 2φ′κ2∆

(g)
Isolid

(q) = −B cos(2φ) , (9.73)

where

B = κ2ρ̄gw
4NσFY
9εc5

LF

[
8

5
εc5
L+

128

105
σN

FY
F

]
, (9.74)

ρ̄gw being the energy density of primordial gravitons averaged over all directions, as
defined in Eq. (E.9).

At the end, inserting Eqs. (9.72) and (9.73) into Eqs. (9.46)-(9.48), we obtain

∆̇
(γ)
Q =

I1

k0
∆

(γ)
V , (9.75)

∆̇U
(γ)

= − I2

k0
∆

(γ)
V , (9.76)

∆̇
(γ)
V =

1

k0

[
I2∆U

(γ) − I1∆Q
(γ)
]
. (9.77)

3Notice that, in principle, we could choose completely general n̂. However, from angular integrals in
Eqs. (9.46)-(9.48) it follows that it is sufficient to introduce in ∆

(g)
I a dependence on the polar angle φ′

to achieve a non-trivial result.
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Squeezed non-Gaussianity anisotropic imprint

Squeezed tensor bispectra can lead to anisotropic modulations of the tensor power-
spectrum in some inflationary scenarios, similarly to the effect induced in the curvature
power-spectrum by the so-called "tensor fossils’" (see [78, 84, 211, 271–274]). This can
happen, e.g., in models of inflation where space-time diffeomorphisms are spontaneously
broken (see, e.g., [84, 274]). Here, spontaneous breaking means that one or more scalar
fields driving inflation admit a background value which is not invariant under a generic
space-time reparametrization.

In general, the squeezed limit of the three-gravitons bispectrum is given by (see, e.g.,
[274])

〈hs1(q1)hs2(q2)hs(Q)〉 Q→0−−−→
q1'q2

(2π)3δ(3)(q1 + q2 + Q)Ph(Q)Ph(q)

(
3

2
+ fNL

)
εsij(Q) q̂i

1q̂
j
2 δs1s2 ,

(9.78)
where Q and q are the momenta of the long and short modes, respectively. The param-
eter fNL characterizes how much we are violating the so-called Maldacena’s consistency
relation (see Ref. [39]), due to the spontaneously breaking of space-time reparametriza-
tions.

It is possible to show that a single soft graviton h̃s(Q) is able to modulate the tensor
power-spectrum as follows [274]

Ph(q)|h = Ph(q)(0) + h̃s(Q)
〈hs1(q1)hs2(q2)hs(Q)〉′

Ph(Q)
, (9.79)

where P (0)
h is the unmodulated total tensor power-spectrum and the prime ′ means that

we have to drop the Dirac-delta in the corresponding expression. Moreover, if we want
to look for this modulation at a given position x in a cube of volume V of physical
space, we should consider the cumulative effect of all soft graviton modes with minimum
wavelength λL = V 1/3. This leads to a local quadrupolar anisotropy in the total tensor
power-spectrum which can be parametrized as

P squeezed
h (q,x) = P

(0)
h (q)

(
1 + γij(x)q̂iq̂j

)
, (9.80)

where
γij(x) =

fNL

VL

∫
|Q|<QL

d3Q eiQ·x hs(Q)εsij(Q) . (9.81)

From its definition γij(x) depends on the position in space and is a stochastic Gaussian
tensor field, with variance given by

〈γij(x)γij(x)〉 =
f2

NL

V 2
L

∫
|Q|<QL

d3QPh(Q) . (9.82)

From Eq. (9.80) we understand that γij(x) labels the local preferred directions of the
tensor power-spectrum, due to the modulation provided by long modes. For simplicity,
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we can assume that γij(x) is a constant, thus γij(x) = γij . In this case, γij is a three-
dimensional symmetric constant matrix whose entries are proportional to fNL and fix the
form of the quadrupolar angular dependence. Notice that, a priori, γij takes a random
value extracted from a Gaussian distribution with variance given by Eq. (9.82). So, the
precise angular dependence of the quadrupolar anisotropy is not completely fixed by the
theory, but depend on which particular realization γij is fixed during inflation.

Now, we take the modulated power-spectrum

P squeezed
h (q) = P

(0)
h (q)

(
1 + γ̄ij q̂

iq̂j
)
, (9.83)

with a fixed value γ̄ij , and we substitute Eq. (9.83) into Eqs. (9.46)-(9.48). Recalling
Eq. (9.35) and performing some simple integrals, we finally get

∆̇
(γ)
Q = γ̄12

4

15

κ2ρ̄gw
k0

∆
(γ)
V , (9.84)

∆̇U
(γ)

= − (γ̄11 − γ̄22)
2

15

κ2ρ̄gw
k0

∆
(γ)
V , (9.85)

∆̇
(γ)
V =

2

15

κ2ρ̄gw
k0

[
(γ̄11 − γ̄22) ∆

(γ)
U − 2γ̄12∆

(γ)
Q

]
. (9.86)

9.4 Effects on CMB polarization

In this section, we evaluate the effect of the (quantum) Boltzmann equations we derived
on the CMB photon polarization.

As we have seen in Sec. 4.2, before the recombination epoch CMB photons were
basically unpolarized, thus ∆Q = ∆U = ∆V = 0. In this case, it is straightforward to
show that no new physics is provided by the forward scattering mixing we derived. At
the time of recombination, a small amount of ∆Q polarization modes due to the Compton
scattering of photons with baryons is formed [19]. Thus, after the recombination epoch,
we start with initial conditions where only the ∆Q polarization mode is nonzero, i.e.
∆Q(0) = ∆Qinit and ∆U (0) = ∆V (0) = 0. In such a case, according to our mixing, CMB
V modes are initially coupled only with Q modes, through a set of differential equations
like

∆̇V =

(
κ2ρ̄gw
k0

A

)
∆Q , (9.87)

∆̇Q = −
(
κ2ρ̄gw
k0

A

)
∆V , (9.88)

where
A =

1

2π

∑
l,m

∫
d2q̂ cIlm sin2 θ′ sin 2φ′Y m

l (θ′, φ′) (9.89)

is a dimensionless parameter depending on the underlying theory. In Eqs. (9.87) and
(9.88) we have dropped the U modes. In fact, in our Boltzmann equation U modes
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vanish at the beginning of the time evolution and they are coupled only with V modes,
hence they cannot be produced until a reasonable amount of V modes is produced in
turn. If we neglect the time dependence of k0 and ρ̄gw due to the CMB gravitational
redshift, this kind of coupled set of differential equations can be easily solved leading to
the oscillatory behavior

∆V = ∆Qinit sin(ωt) , (9.90)
∆Q = ∆Qinit cos(ωt) , (9.91)

where

ω =
κ2ρ̄gw
k0

A (9.92)

is the frequency of the oscillation.
The result is that the value of ∆Q starts to decrease like a cosine, while the value of

∆V grows like a sine. At a certain time, when the value of ∆V becomes important, the
coupling between V and U modes should be taken into consideration and can potentially
lead also to the generation of U modes, modifying our general solution. However, let us
neglect for simplicity the U modes in all the discussion. This is equivalent to make a
fine-tuning in the parameters of the models we considered, in order to decouple U and
V modes in the Boltzmann equations.4

From Eqs. (9.87) and (9.88), we understand that the effect on CMB polarization is
greater for photons with smaller wave number k0, thus we consider CMB photons with
comoving frequency of 1 GHz (k0 = 2πf), which is the order of magnitude of the smallest
CMB frequency that has been measured.5 From the constraint on the total energy density
of gravitational waves today, provided by nucleosynthesis (ρ̄gw . 10−5ρocrit, where ρ

o
crit is

the critical energy density of the Universe today, see Ref. [276]) and from the definition
of κ2 = 16πG, it follows that, at the time of recombination epoch (at redshift z ≈ 1100),
we have

ωrec(f = 1GHz) . 5× 10−41A s−1 . (9.93)

From this constraint it follows that, if we take A ∼ 1, neglect the gravitational red-shift,
and evaluate Eq. (9.90) after 109 years (the time interval from the recombination epoch
until today), we get

∆Vtoday . 10−25∆Qinit . (9.94)

In this last case, neglecting in 109 years the effect of gravitational redshift on the fre-
quency k0 and on the energy density ρ̄gw is indeed not a good approximation. However, if
we account for it, we would expect that the upper bound on ∆V is even smaller than the

4In the case of anisotropic solid inflation it is enough to choose φ = π/4 in Eqs. (9.72) and (9.73); in
the case of squeezed non-Gaussianity theories we need (γ̄11 − γ̄22) = 0 in Eqs. (9.85) and (9.86).

5More precisely, the lowest measured CMB frequency corresponds to 0.6 GHz as measured by the
TRIS instrument (see e.g. Ref. [275]).
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one shown in Eq. (9.94).6 Therefore, these estimations show that the forward scattering
between CMB photons and (primordial) anisotropic gravitons leads to the production
of circular polarization in the CMB, but this in general is very inefficient. This brief
analysis suggests that unfortunately the CMB does not seem to be the best source of
photons to be used in searching for a signature of anisotropic (primordial) gravitons, and
one should look for other kinds of sources.

9.5 Conclusions

In this chapter, we studied the forward scattering of photons with gravitons, focusing on
the effect that this scattering has on photon polarization. We derived fully general equa-
tions which display a coupling among the ∆Q, ∆U linear polarization states and the ∆V

circular polarization state of photons. These couplings are not vanishing only if photons
interact with gravitons that have anisotropies in their power-spectrum statistics. As an
application of our general results, we have considered some models of inflation where
primordial anisotropic gravitons are generated and we linked our Boltzmann equations
to these models. Finally, we evaluated the effect of a primordial anisotropic background
of gravitons on the CMB polarization. We saw that the effect on the CMB is expected
to be very small (leading to a very inefficient conversion of linear polarization in circular
polarization) in a way that it is probably impossible to measure it via CMB polarization
measurements. However, we have to be open-minded and think about alternative scenar-
ios where "artificial" polarized photons can be employed: in this case, playing with the
initial values of the Stokes parameters and with the frequency of the photons we could
enhance the effects on the photons polarization. Thus, we could use controlled photons
to probe statistical anisotropies in (primordial) backgrounds of gravitational waves, e.g.
constraining free parameters of alternative models of inflation. More in general, we could
use our result to search for any source of anisotropic gravitons in the Universe (in par-
ticular, in Ref. [277], our general results have been used to show that significant circular
polarization on photons from a binary merger can be generated due to the forward scat-
tering with the gravitational waves counterpart). In the future, we could use this new
tool to get insight into the physics of gravitational waves and provide an innovative way
to look for gravitational-wave events.

6In fact, the energy density of gravitons and the physical wave number of CMB photons in terms of
gravitational redshift z are given respectively by

ρcrit(z) = (1 + z)4ρocrit

and
k0(z) = (1 + z) k0com .

Thus, the parameter ω(z) in Eq. (9.92) scales as

ω(z) = (1 + z)3ωo .

Inserting the latter equation into Eqs. (9.87) and (9.88), we understand that the strength of the coupling
between Q and V modes in the past was larger than the one today. Thus, if we neglect the effect of
gravitational redshift, we overestimate the final amount of V modes today.

127



128



Chapter 10

CMB circular and B-mode
polarization from photon-fermion
forward scattering

10.1 Introduction

In this chapter, we will study V -mode polarization generation in the CMB radiation from
its direct coupling with linear polarization states induced by the forward scattering of
photons with generic fermions at or after the recombination epoch. In particular, we
will assume a completely general photon-fermion interaction which may also go beyond
QED, but still preserving the combination of charge conjugation, parity and time reversal
(CPT), which up to now is observed to be an exact symmetry of nature at a fundamental
level. In order to do so, we will use a generic parametrization of the photon-fermion
scattering amplitude which follows only by the imposition of gauge-invariance (see e.g.
Refs. [278–280]).

We will show that V modes can be produced by forward scattering for a generic
interaction preserving all the C (charge conjugation), P (parity), and T (time-reversal)
discrete symmetries, if the stress tensor of the fermion contains anisotropies. In addition,
we will show that V modes can be sourced also from an interaction violating C and P sym-
metries, but preserving the CP combination. In this case, together with the anisotropies
in the fermionic stress tensor, we need the fermion to interact with the photon only in
the L- or R-handed helicity state, like the L-handed neutrino in the Standard Model
interactions. In particular, this last case confirms and generalizes the results found in
Ref. [250]. We will also analyze the cases in which C, T and P, T symmetries are violated
individually, while preserving, respectively, the combinations CT and PT. We will show
that, in these cases, it is impossible to generate V modes by forward scattering, but we
can have formation of CMB B modes. In particular, in the case of a generic interaction
which violates P, T symmetries, it is possible to generate B modes with no conditions
on the fermions the photons interact with, while in the case in which C, T are violated
we need the fermion to be in the L- or R-handed helicity state. All these conclusions are
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summarized in Tab. 10.1.

10.2 General parametrization of photon-fermion scattering amplitude

Figure 10.1. Figurative representation of photon-fermion interaction.

We are interested in the Compton scattering of a photon by a fermion (Fig. 10.1)

γ(p) + f(q)→ γ(p′) + f(q′) , (10.1)

where p (p′) is the initial (final) momentum of the photon and q (q′) is the initial (final)
momentum of the fermion. It is possible to construct the invariant amplitude of this
process using a general method. The amplitude of such a process can be written in the
form [278–280])

Mfi = F λµεs
′∗
λ εsµ . (10.2)

where εsµ and εs′ν are the polarization vectors of incoming and outgoing photons and s, s′ =
1, 2 label the physical transverse polarization of the photons. Gauge-invariance requires
εs · p = εs

′ · p′ = 0. Moreover, the rank-2 tensor Fµν , which is called “Compton tensor",
must satisfy the conserved current condition pµFµν = p′νF

µν = 0, as a consequence of
gauge-invariance. It is possible to provide a general parametrization of Fµν satisfying
the previous condition from the linear combination of basis vectors defined below.

We first construct a general form for the Compton tensor Fµν and then study its
parity conserving and parity violating aspects. Using the procedure of Refs. [278–280]),
we can write

Fµν =G0

(
ê(1)µê(1)ν + ê(2)µê(2)ν

)
+G1

(
ê(1)µê(2)ν + ê(2)µê(1)ν

)
+G2

(
ê(1)µê(2)ν − ê(2)µê(1)ν

)
+G3

(
ê(1)µê(1)ν − ê(2)µê(2)ν

)
, (10.3)

where Gi are invariant functions and e(1) and e(2) are two four-vectors satisfying the
orthogonality condition ê(1) · ê(2) = 0. In order to construct these two vectors, we have to
use only the kinematic variables p, p′, q, and q′ and define a system of orthogonal vector
basis of the form

Qλ = (qλ + q′λ)− P λ

P 2
(q + q′) · P , (10.4)
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P λ = pλ + p′λ , (10.5)

Nλ = ελµνρQµtνPρ , (10.6)

where tλ, for the tree-level contribution to the scattering amplitude, is given by

tλ = qλ − q′λ = p′λ − pλ . (10.7)

A possible choice of the normalized ê(1) and ê(2) four-vectors is given by (see e.g. [278])

ê(1)λ =
Nλ

√
−N2

, (10.8)

and

ê(2)λ =
Qλ√
−Q2

. (10.9)

From these definitions it is easy to verify the conserved current condition as

(Pν + tν)Fµν = (Pµ − tµ)Fµν = 0 . (10.10)

Here, we are interested in the forward scattering limit in which tλ = 0 and P 2 = 4p2 =
0. Under this condition, Nλ vanishes and the second term in Qλ becomes singular.
Therefore, ê(1)λ and ê(2)λ are not well-defined. In order to overcome these problems, we
firstly change the normalization in ê(2)λ as

ê(2)λ =
Qλ√
−4q2

=
Qλ√
−4m2

f

, (10.11)

by noting that the second term in Qλ does not contribute to the amplitude. Second, we
introduce a new general quantity ∆λ replacing tλ in Eq. (1.51). This quantity ∆λ has to
be expressed in terms of kinematic variables and invariants of the interaction. However,
in the forward scattering limit, any linear combination of the photon and electron four-
momenta pµ and qµ leads to a vanishing value of ê(1)λ when doing the contractions with
the Levi-Civita pseudotensor in Eq. (1.51). Hence, ∆λ has to be given only in terms of
scalar invariant quantities. Thus, the only possibility to define ∆λ reads

∆λ = (∆0, 0) , (10.12)

where ∆0 is a generic function of scalar invariants in the interaction. Therefore, in the
forward scattering limit, the four-vector Nλ becomes

Nλ = ελµ0ρQµ∆0Pρ

= 4ελµ0ρqµ∆0pρ , (10.13)

and ê(1) is now defined as

ê(1)i =
N i

√
−N2

ê(1)0 = 0 , (10.14)
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where N2 will stand for the modulus square of the three-vector

N i = 4εij0kqj∆
0pk , (10.15)

which gives
N2 = 16(∆0)2|p× q|2 . (10.16)

It is easy to verify that Fµν , with the new definitions of ê(1)λ and ê(2)λ in Eqs. (10.14)
and (10.11), satisfies the conserved current condition.

Before proceeding, it is worth to rewrite the factor of G2 in Eq. (10.3) in a new form
for the case of forward scattering. Using the following identity regarding the Levi-Civita
pseudotensor [281]

gλµεναβγ − gλνεµαβγ + gλαεµνβγ − gλβεµναγ + gλγεµναβ = 0 , (10.17)

we obtain

ê(1)µê(2)ν − ê(2)µê(1)ν =
4√
m2
fN

2
qλ∆βqαpγ

(
gνλεµαβγ − gµλεναβγ

)
=

4√
m2
fN

2
qλ∆βqαpγ

(
gλαεµνβγ − gλβεµναγ + gλγεµναβ

)
=

4√
m2
fN

2

(
q2∆βpγε

µνβγ − q ·∆ qαpγε
µναγ + q · p qα∆βε

µναβ
)
.

(10.18)

Thus, in the end we have

ê(1)µê(2)ν − ê(2)µê(1)ν =
4√
m2
fN

2

(
q2∆αpβ − q ·∆ qαpβ + q · p qα∆β

)
εµναβ . (10.19)

Notice that the second term on the right-hand side of Eq. (10.19) is equal in form to
the one that appears at quantum level in the interaction of a photon with the magnetic
moment of a neutrino (see e.g. Refs. [282, 283]). Using the definition of ∆λ in Eq.
(10.12), we can further simplify Eq. (10.19) into1

ê(1)µê(2)ν − ê(2)µê(1)ν =
4√
m2
fN

2

[
(q2

0 − q2)∆0 pk + (q · p− q0 p0)∆0 qk
]
εµνk0

=
4∆0√
m2
fN

2

[
|q|2 pk − (q · p) qk

]
εµνk0 . (10.20)

1Here we are implicitly assuming that Greek indices take only Latin values. In fact, as we will see
later on, only the Latin components of the Compton tensor will be important.
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Moreover, it is worth noticing that ê(1) is an axial vector and ê(2) is a vector. Using
this property, it is straightforward to verify that the second and third brackets in Eq.
(10.3) change sign under parity transformation, while the first and fourth brackets remain
unchanged. Both these two combinations of the Compton tensor satisfy the crossing
symmetry and gauge-invariance. However, Fµν can be even or odd under parity.

In order to discuss these cases, we first provide the general expression for the coeffi-
cients Gi, and then we start from the parity-invariant case by deriving all nonvanishing
terms of each Gi under the parity-invariance condition of the scattering amplitude. The
coefficients can be represented in terms of the following bilinear covariant terms [278–
280])

G0 = ūr′
[
f1 + f2 /P + f3γ

5 + f4γ
5 /P
]
ur , (10.21)

G1 = ūr′
[
f5 + f6 /P + f7γ

5 + f8γ
5 /P
]
ur , (10.22)

G2 = ūr′
[
f9 + f10 /P + f11γ

5 + f12γ
5 /P
]
ur , (10.23)

G3 = ūr′
[
f13 + f14 /P + f15γ

5 + f16γ
5 /P
]
ur , (10.24)

where ur and ūr′ are Dirac spinors associated to the fermion; r, r′ label fermion spin,
/P = Pµγ

µ, γµ, and γ5 are Dirac matrices and fi are constant coefficients.
The invariant functions Gi involve four possibilities. One can show that the /Q and /t

terms are nothing else than numbers due to the Dirac equation and hence they do not
appear in the Gi invariants. Similarly, all higher powers of the γµ matrices are reduced to
the above four possibilities. With the above representation, the time-reversal and parity
transformations of each bilinear term are evident.

Even-parity amplitude

In this subsection, we determine the form of the fermion-photon scattering amplitude
with the condition that the amplitude is even under parity transformation. As we have
seen, the photon scattering amplitude is represented by (10.2). Since under parity trans-
formation, the polarization vectors change as

(ε0, ε)↔ (ε0,−ε) , (10.25)

the condition of parity invariance of scattering amplitude Mfi implies

(F 00, F i0, F ik)→ (F 00,−F i0, F ik) . (10.26)

Using the fact that ê(1) and ê(2) are a pseudovector and a vector, respectively, G0 and
G3 must be scalars and G1 and G2 must be pseudoscalars. Consequently, we can obtain
the following constraints, as a result of the even-parity condition

f3 = f4 = f5 = f6 = f9 = f10 = f15 = f16 = 0 . (10.27)
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Then, we impose the condition of time-reversal invariance. Under time-reversal we have

(q0,q)↔ (q′0,−q′) , (p0,p)↔ (p′0,−p′) , (10.28)

and
(ε0, ε)↔ (ε′∗0 ,−ε′∗) . (10.29)

Hence, invariance of the scattering amplitude Mfi under time-reversal yields

(F 00, F i0, F ik)→ (F 00,−F 0i, F ki) . (10.30)

Similarly, the relations in Eq. (10.28) imply

(Q0,Q)→ (Q0,−Q) , (t0, t)→ (−t0, t) ,
(P0,P)→ (P0,−P) , (N0,N)→ (N0,−N) , (10.31)

so that (
ê

(1,2)
0 , ê(1,2)

)
→
(
ê

(1,2)
0 ,−ê(1,2)

)
. (10.32)

Thus, invariance under time-reversal implies

G0,1,3 → G0,1,3 , G2 → −G2 , (10.33)

and based on the following properties of spinor bilinear terms under a time-reversal
transformation

ū′γ5u→ −ū′γ5u , ū′γ5 /Pu→ ū′γ5 /Pu , (10.34)

one can verify the following additional conditions

f7 = f12 = 0 . (10.35)

Consequently, under parity and time reversal invariance the number of free coefficients
is reduced to

G0 = ūr′
[
f1 + f2 /P

]
ur , G1 = ūr′f8γ

5 /Pur ,

G2 = ūr′f11γ
5ur , G3 = ūr′

[
f13 + f14 /P

]
ur . (10.36)

For further investigation, we analyze the transformation under charge conjugation and
crossing. The charge conjugation leads to

(ε0, ε)↔ −(ε∗0, ε
∗) . (10.37)

As a result, invariance of the scattering amplitude Mfi under C transformation leads to

(F 00, F i0, F ik)→ (F 00, F 0i, F ki) . (10.38)

On the other hand, the crossing leads to

p↔ −p′ and µ↔ ν , (10.39)
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and
ê(1)λ ↔ ê(1)λ ê(2)λ ↔ −ê(2)λ , (10.40)

and we find that under charge conjugation and crossing

G0,2,3 → G0,2,3 G1 → −G1 , (10.41)

that is satisfied by the results presented in (10.36). Therefore, we can claim that the
amplitude is invariant under CPT and crossing symmetry.

In particular, let us discuss the standard Compton scattering amplitude, which is
based on QED. Using the standard Feynman rules, the amplitude of Compton scattering
is given by

Mfi = −e2εsµ(p) εs
′∗
ν (p′)[ū(q′)Qµνu(q)] , (10.42)

where
Qµν =

1

s−m2
γν(/p+ /q +m)γµ +

1

u−m2
γµ(/q − /p′ +m)γν , (10.43)

and the kinematic invariants are

s = (p+ q)2 = (p′ + q′)2 = m2 + 2p · q = m2 + 2p′ · q′ ,
u = (p− q′)2 = (p′ − q)2 = m2 − 2p · q′ = m2 − 2p′ · q . (10.44)

After some straightforward algebra we can find the following values of the coefficients
fi’s [280]

f1 = −ma+ , f2 = 0 , f8 =
1

2
ia+ , f11 = −ma+ , f13 = ma+ , f14 =

1

2
a− ,

(10.45)
where

a± =
1

s−m2
± 1

u−m2
. (10.46)

Odd-parity amplitude

In this subsection, we impose the odd-parity condition. In this case Fµν is a pseudotensor
that under parity operation must transform as

(F 00, F i0, F ij)→ −(F 00,−F i0, F ij) . (10.47)

Imposing the odd-parity condition and using the properties of bilinear terms under parity
transformation we get

f1 = f2 = f7 = f8 = f11 = f12 = f13 = f14 = 0 . (10.48)

Therefore, those terms that remain after imposing the above condition are

G0 = ūr′
[
f3γ

5 + f4γ
5 /P
]
ur , G1 = ūr′

[
f5 + f6 /P

]
ur ,

G2 = ūr′
[
f9 + f10 /P

]
ur , G3 = ūr′

[
f15γ

5 + f16γ
5 /P
]
ur . (10.49)
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Afterward, imposing the even-time-reversal condition, we find

f3 = f9 = f10 = f15 = 0 . (10.50)

Thus, we remain with

G0 = ūr′f4γ
5 /Pur , G1 = ūr′

[
f5 + f6 /P

]
ur , G2 = 0 , G3 = ūr′f16γ

5 /Pur .
(10.51)

One can show that the resulting amplitude is odd under charge conjugation. Therefore,
the final form of the amplitude is even under CPT combination. In this case, the Fµν

tensor is determined in terms of four free parameters.

10.3 Computation of the forward scattering term

In this section, we will provide a general expression to compute the forward scattering
term on the right-hand side of the Boltzmann equation (8.43) for the photon-fermion
scattering case. We will specialize in particular interactions in the next sections.

Similarly to Eq. (9.21) for the photon-graviton scattering case, it is possible to show
that the general form of the photon-fermion interaction Hamiltonian we have to insert
in Eq. (8.43) reads [93]

HI(t) =

∫
dqdq′dpdp′(2π)3δ(3)(q′ + p′ − q− p) exp

[
it
(
q′0 + p′0 − q0 − p0

)]
×
[
b†r′(q

′)a†s′(p
′)ūr′(q

′)Fµν(qr, q′r′, ps, p′s′)ur(q)ε
s
µ(p)εs

′
ν (p′)as(p)br(q)

]
,

(10.52)

where

dq =
d3q

(2π)3

mf

q0
, dp =

d3p

(2π)32p0
. (10.53)

as and a
†
s′ are photon annihilation and creation operators respectively, which satisfy the

canonical commutation relations[
as(p), a†s′(p

′)
]

= (2π)32p0δ(3)(p− p′)δss′ , (10.54)

and b(r) and b(r) † are fermion annihilation and creation operators, respectively, obeying
the canonical anti-commutation relations{

br(q), b†r′(q
′)
}

= (2π)3 q
0

mf
δ(3)(q− q′)δrr′ , (10.55)

where mf is the fermion mass.
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Using Eq. (10.52), the commutation relation in the forward scattering term of Eq.
(8.43) becomes

[HI(0),Dij(k)] =

∫
dqdq′dpdp′(2π)3δ(3)(q′ + p′ − q− p)ūr′(q

′)Fµν(qr, q′r′, ps, p′s′)

× ur(q)εsµ(p)εs
′
ν (p′)

[
b†r′(q

′)br(q)a
†
s′(p
′)aj(k)2p0(2π)3δisδ

(3)(p− k)

−b†r′(q′)br(q)a
†
i (k)as(p)2p

′0(2π)3δjs′δ
(3)(p′ − k)

]
. (10.56)

After this step, in order to evaluate the forward scattering term, we will need to take the
expectation value of Eq. (10.56). For this purpose, we provide the following expectation
values [93]: 〈

a†m(p′)an(p)
〉

= 2p0(2π)3δ(3)(p− p′)ρmn(p) , (10.57)

and 〈
b†m(q′)bn(q)

〉
=

q0

mf
(2π)3δ(3)(q− q′)δmn

1

2
nf (q) , (10.58)

where ρmn is the photon beam polarization matrix (4.1) and nf is the number density
of fermions of momentum q per unit volume. After using the Dirac delta functions, one
can easily perform the integrations over p, p′, and q′ and obtain the limit p = p′ and
q = q′ of the integrand, in agreement with the forward scattering condition.

At this point, we can fix the Coulomb gauge for the photon polarization vectors,
where we have εµ = (0, ε). As a consequence of this gauge-fixing, we are interested in
only "Latin" components of the Compton tensor Fµν (thus, Latin components of the
vector bases ê(1) and ê(2)) to do the contractions in Eq. (10.56). In particular, using the
definitions (10.14) and (10.11) and the result (10.19), the F ij components in the forward
scattering limit can be represented as

ūr′(q
′)F ijur(q) = (G0 +G3) ê(1)iê(1)j + (G0 −G3) ê(2)iê(2)j +G1

(
ê(1)iê(2)j + ê(2)iê(1)j

)
+G2

(
ê(1)iê(2)j − ê(2)iê(1)j

)
= (G0 +G3)

(4∆0)2

N2
(q× p)i(q× p)j + (G0 −G3)

qi

mf

qj

mf

+G1
4∆0√
m2
fN

2

[
(q× p)iqj + qi(q× p)j

]
+ G2

4∆0√
m2
fN

2

[
|q|2 pk − (q · p) qk

]
εijk0 .

(10.59)

In the next sections, using Eq. (10.59), we will study the phenomenological consequences
of the forward scattering term for CMB polarization in specific cases.

10.4 General conditions for generating circular polarization

In this section, we will give the most general conditions for generating circular polariza-
tion from photon-fermion forward scattering. Thus, we will consider specific expressions
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of the Compton tensor (10.59), evaluate Eq. (10.56), and study the effects of new inter-
actions on the Stokes parameters.

Even-parity amplitude

We start by considering the even-parity terms. The general forms of the Gi coefficients
invariant under time-reversal have been derived in the previous section. We have also
determined the coefficients for the QED case.

The coefficients Gi read

G0 +G3 = ūr′(f̃1 + f̃2 /P )ur , G1 = ūr′(f̃3γ
5 /P )ur ,

G2 = ūr′(f̃4γ
5)ur , G0 −G3 = ūr′(f̃5 + f̃6 /P )ur . (10.60)

where f̃1 = f1 + f13, f̃2 = f2 + f14, f̃3 = f8, f̃4 = f11, f̃5 = f1 − f13 and f̃6 = f2 − f14.
Using the well-known spinorial relations

ūr′(q)γ
5ur(q) = 0 , (10.61)

and
ūr′(q)γ

µur(q) = δrr′
qµ

mf
, (10.62)

we find

G0 +G3 =

(
f̃1 + f̃2

P · q
mf

)
δrr′ , G1 = f̃3ūr′γ

5 /Pur , (10.63)

G2 = 0 , G0 −G3 =

(
f̃5 + f̃6

P · q
mf

)
δrr′ . (10.64)

Using these results, the scattering amplitude (10.2) becomes

Mfi =

(
f̃1 + f̃2

P · q
mf

)
(4∆0)2

N2
(q× p) · εs(q× p) · εs′δrr′ +

(
f̃5 + f̃6

P · q
mf

)
(q · εs)
mf

(q · εs′)
mf

δrr′

+f̃3ūr′γ
5 /Pur

4∆0√
m2
fN

2

[
(q× p) · εs (q · εs′) + (q · εs)(q× p) · εs′

]
. (10.65)

In this equation, the main effects are expected to come from the term multiplying the
f̃5 and f̃6 coefficients. In fact, other terms, containing at least one factor of ∆0, will
appear only when considering loop quantum effects. For this reason, in the next steps
we will ignore them, since in a perturbation quantum field theory framework they are
supposed to be an higher-order effect. Thus, the time evolution of polarization matrix
elements is given by (from now on we will explicitly account for spatial dependence in
the Boltzmann equations)

d

dt
ρij(x,k) =

i

2k0m2
f

∫
dqnf (x,q)

(
f̃5 + 2f̃6

q · k
mf

) (
δisρs′j(x,k)− δjs′ρis(x,k)

)
(q · εs) (q · εs′)

+standard Compton scattering terms (s.C.s.t.) . (10.66)
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Now, expressing Eq. (10.66) in terms of the different components, we have

d

dt
ρ

(1)
11 (x,k) =

i

2k0m2
f

∫
dqnf (x,q)

(
f̃5 + 2f̃6

q · k
mf

)
(q · ε2) (q · ε1)

[
ρ

(1)
21 (x,k)− ρ(1)

12 (x,k)
]

+ s.C.s.t. , (10.67)

d

dt
ρ

(1)
22 (x,k) = − d

dt
ρ

(1)
11 (x,k) , (10.68)

d

dt
ρ

(1)
12 (x,k) =

i

2k0m2
f

∫
dqnf (x,q)

(
f̃5 + 2f̃6

q · k
mf

) [
(q · ε2) (q · ε1)(ρ

(1)
22 (x,k)− ρ(1)

11 (x,k))

+[(q · ε1)2 − (q · ε2)2]ρ
(1)
12 (x,k)

]
+ s.C.s.t. , (10.69)

d

dt
ρ

(1)
21 (x,k) = − i

2k0m2
f

∫
dqnf (x,q)

(
f̃5 + 2f̃6

q · k
mf

) [
(q · ε2) (q · ε1)(ρ

(1)
22 (x,k)− ρ(1)

11 (x,k))

+[(q · ε1)2 − (q · ε2)2]ρ
(1)
21 (x,k)

]
+ s.C.s.t. . (10.70)

We can also convert the density matrix elements to the normalized Stokes brightness
perturbations after changing momentum to the comoving one, kc = ak, and going to the
Fourier space. We find

d

dη
∆I

(γ)(K,kc) = s.C.s.t. , (10.71)

d

dη
∆Q

(γ)(K,kc) = −a
2(η)

k0
cm

2
f

∫
dqnf (K,q)

(
f̃5 + 2f̃6

q · kc
a(η)mf

)
(q · ε2) (q · ε1)∆V

(γ)(K,kc)

+s.C.s.t. , (10.72)

d

dη
∆U

(γ)(K,kc) =
a2(η)

2k0
cm

2
f

∫
dqnf (K,q)

(
f̃5 + 2f̃6

q · kc
a(η)mf

)
[(q · ε1)2 − (q · ε2)2]∆V

(γ)(K,kc)

+s.C.s.t. , (10.73)

d

dη
∆V

(γ)(K,kc) = − a2(η)

2k0
cm

2
f

∫
dqnf (K,q)

(
f̃5 + 2f̃6

q · kc
a(η)mf

) [
−2(q · ε2)(q · ε1)∆Q

(γ)(K,kc)

+[(q · ε1)2 − (q · ε2)2]∆U
(γ)(K,kc)

]
+ s.C.s.t. , (10.74)

where η denotes conformal time. From the last set of equations we see that the V modes
in the CMB can be generated even with a parity preserving interaction. In particular,
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it is straightforward to verify that the fermionic number density nf (K,q) has to contain
anisotropies in order to achieve a nontrivial coupling. In fact, under the assumption
that nf (K,q) does not contain anisotropies, using the generic parametrizations (10.89),
the angular integrals over the fermionic momentum q are vanishing as we show in the
following:∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′

(
f̃5 + 2f̃6

q · kc
a(η)mf

)
(q · ε2)(q · ε1) ∝

∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′

×
(
f̃5 + 2f̃6

cos θ cos θ′ + cos(ϕ− ϕ′) sin θ sin θ′

a(η)mf

)
sin(ϕ− ϕ′) sin θ′

×
[
cos θ′ sin θ − cos(ϕ− ϕ′) cos θ sin θ′

]
= 0 , (10.75)

and∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′

(
f̃5 + 2f̃6

q · kc
a(η)mf

)
[(q · ε1)2 − (q · ε2)2] ∝

∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′

×
(
f̃5 + 2f̃6

cos θ cos θ′ + cos(ϕ− ϕ′) sin θ sin θ′

a(η)mf

)
×
[

(cos θ′ sin θ − cos(ϕ− ϕ′) cos θ sin θ′)2 − sin2(ϕ− ϕ′) sin2 θ′
]

= 0 . (10.76)

Moreover, from the current model of particle physics, we know that a fermion can have
a parity preserving interaction with a photon only through QED vertices. If we take the
values of f̃5 and f̃6 for the case of QED, Eq. (10.45), and we evaluate them in the forward
scattering limit, we find that f̃5 = f̃6 = 0. Thus, QED does not provide mixing terms
among different polarizations, and only a parity preserving theory which goes beyond
the standard paradigm could provide some kind of conversion from linear to circular
polarization in the CMB.

Odd-parity amplitude

The general form of scattering amplitude for odd-parity was derived in Sec. 10.2. In that
section, we found the general form of coefficients Gi for the odd-parity case

G0 = ūr′(f4γ
5 /P )ur , G1 = ūr′(f5 +f6 /P )ur , G2 = 0 , G3 = ūr′(f16γ

5 /P )ur . (10.77)

The amplitude can be constructed using the tensor (10.59) and replacing the values of
the coefficients (10.77). As in the previous subsection, we focus only on the terms which
are expected to give the dominant contributions. Thus, our amplitude reads

Mfi = (f4 − f16)ūr′(q)γ
5 /P ur(q)

(q · εs)
mf

(q · εs′)
mf

. (10.78)

Using this result, we can find the time evolution of polarization matrix elements as

d

dt
ρij(x,k) = i

fp

4k0m2
f

∫
dqnf (x,q)

(
δisρs′j(x,k)− δjs′ρis(x,k)

)
ūr(q)γ

5/k ur(q) (q · εs) (q · εs′)

+s.C.s.t. , (10.79)
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where fp ≡ 2(f4 − f16). Therefore, we have

d

dt
ρ

(1)
11 (x,k) = − ifp

4k0m2
f

∫
dqnf (x,q)ūrk/γ

5ur (q · ε2) (q · ε1)
[
ρ

(1)
21 (x,k)− ρ(1)

12 (x,k)
]

+s.C.s.t. , (10.80)

d

dt
ρ

(1)
22 (x,k) = − d

dt
ρ

(1)
11 (x,k) , (10.81)

d

dt
ρ

(1)
12 (x,k) =− ifp

4k0m2
f

∫
dqnf (x,q)ūrk/γ

5ur

[
(q · ε2) (q · ε1)(ρ

(1)
22 (x,k)− ρ(1)

11 (x,k))

+[(q · ε1)2 − (q · ε2)2]ρ
(1)
12 (x,k)

]
+ s.C.s.t. , (10.82)

d

dt
ρ

(1)
21 (x,k) =

ifp

4k0m2
f

∫
dqnf (x,q)ūrk/γ

5ur

[
(q · ε2) (q · ε1)(ρ

(1)
22 (x,k)− ρ(1)

11 (x,k))

+[(q · ε1)2 − (q · ε2)2]ρ
(1)
21 (x,k)

]
+ s.C.s.t. . (10.83)

Here, we convert the density matrix elements to the normalized Stokes brightness per-
turbations and go to the Fourier space to obtain

d

dη
∆I

(γ)(K,kc) = s.C.s.t. , (10.84)

d

dη
∆Q

(γ)(K,kc) =
a(η) fp

2k0
cm

2
f

∫
dqnf (K,q) ūr/kcγ

5ur (q · ε2) (q · ε1)∆V
(γ)(K,kc)

+s.C.s.t. , (10.85)

d

dη
∆U

(γ)(K,kc) = −a(η) fp

4k0
cm

2
f

∫
dqnf (K,q) ūr/kcγ

5ur [(q · ε1)2 − (q · ε2)2]∆V
(γ)(K,kc)

+s.C.s.t. , (10.86)

d

dη
∆V

(γ)(K,kc) =
a(η) fp

4k0
cm

2
f

∫
dqnf (K,q) ūr/kcγ

5ur

[
−2(q · ε2) (q · ε1)∆Q

(γ)(K,kc)

+[(q · ε1)2 − (q · ε2)2]∆U
(γ)(K,kc)

]
+ s.C.s.t. . (10.87)

The quantity
∑

r ūrγ
µγ5ur vanishes when we sum over spins if the interacting fermion

exists in both left- or right-handed helicity states. Thus, looking to this final set of
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equations, circular polarization in the CMB photons can be generated from a parity
violating interaction only if the following condition is satisfied:∑

r

ūrγ
µγ5ur 6= 0 , (10.88)

implying that the fermion particle must interact only in left- or right-handed helicity
state.

Now, in order to perform the integral over q, we choose the momentum and photon
polarization vectors in the following form (see Fig. 10.2):

K̂ = (0, 0, 1) ,

k̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

q̂ = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) ,

ε1(k) = (cos θ cosϕ, cos θ sinϕ, − sin θ) ,

ε2(k) = (− sinϕ, cosϕ, 0) . (10.89)

Moreover, we can expand nf (K,q) in harmonic spheres as [6, 284]

Figure 10.2. Pictorial representation of the polarizations and momentum direction of the
photon.

nf (K,q) = nf (K, |q|)
∑
`,m

c`mY
m
` (q̂) . (10.90)
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In the Dirac representation, the helicity spinors are given by (see e.g. [285])

uR(q) =

√
q0 +mf

2mf



cos( θ
′

2 )

sin( θ
′

2 )eiϕ
′

|q|
q0+mf

cos( θ
′

2 )

|q|
q0+mf

sin( θ
′

2 )eiϕ
′


, uL(q) =

√
q0 +mf

2mf



− sin( θ
′

2 )

cos( θ
′

2 )eiϕ
′

|q|
q0+mf

sin( θ
′

2 )

− |q|
q0+mf

cos( θ
′

2 )eiϕ
′


.

(10.91)
Hence, assuming i.e. a left-handed fermion, the bilinear term ūγµγ5u reads

ūγµγ5u = − 1

m

(
|q|, q0 sin θ′ cosϕ′, q0 sin θ′ sinϕ′, q0 cos θ′

)
. (10.92)

Now, using Eqs. (10.90), (10.92), and integrating over the fermion spherical angles ϕ′

and θ′, Eqs. (10.85)-(10.87) become

d

dη
∆Q

(γ)(K,kc) = i

√
π

420

a(η) fp

16π3m2
f

∫
d|q| |q|

4

q0
nf (K, |q|)

{
−28
√

30|q|
[(
c22e

2iϕ − c2−2e
−2iϕ

)
cos θ

+
(
c21e

iϕ + c2−1e
−iϕ) sin θ

]
+ 10
√

21q0 sin(2θ)
(
c31e

iϕ + c3−1e
−iϕ)

+4
√

210q0 cos(2θ)
(
c32e

2iϕ − c3−2e
−2iϕ

)
−6
√

35q0 sin(2θ)
(
c33e

3iϕ + c3−3e
−3iϕ

)}
∆V

(γ)(K,kc) + s.C.s.t. ,

(10.93)

d

dη
∆U

(γ)(K,kc) = −
√
π

420

a(η) fp

32π3m2
f

∫
d|q| |q|

4

q0
nf (K, |q|)

{
−168

√
5|q| sin2 θ c20 − 14

√
30|q|[

2
(
c21e

iϕ − c2−1e
−iϕ) sin 2θ +

(
c22e

2iϕ + c2−2e
−2iϕ

)
(cos 2θ + 3)

]
+120

√
7q0 cos θ sin2 θ c30 + 10

√
21q0

(
c31e

iϕ − c3−1e
−iϕ) sin θ(3 cos 2θ + 1)

+
√

210q0
(
c32e

2iϕ + c3−2e
−2iϕ

)
(5 cos θ + 3 cos 3θ)

−6
√

35q0
(
c33e

3iϕ − c3−3e
−3iϕ

)
sin θ(cos 2θ + 3)

}
∆V

(γ)(K,kc) + s.C.s.t. ,

(10.94)
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d

dη
∆V

(γ)(K,kc) =

√
π

420

a(η) fp

32π3m2
f

∫
d|q| |q|

4

q0
nf (K, |q|)

[
−2i

{
−28
√

30|q|
[(
c22e

2iϕ

−c2−2e
−2iϕ

)
cos θ +

(
c21e

iϕ + c2−1e
−iϕ) sin θ

]
+ 10
√

21q0 sin(2θ)

×
(
c31e

iϕ + c3−1e
−iϕ)+ 4

√
210q0 cos(2θ)

(
c32e

2iϕ − c3−2e
−2iϕ

)
−6
√

35q0 sin(2θ)
(
c33e

3iϕ + c3−3e
−3iϕ

)}
∆Q

(γ)(K,kc)

−
{

168
√

5|q| sin2 θ c20 + 14
√

30|q|
[
2
(
c21e

iϕ − c2−1e
−iϕ) sin 2θ

+
(
c22e

2iϕ + c2−2e
−2iϕ

)
(cos 2θ + 3)

]
− 120

√
7q0 cos θ sin2 θ c30

−10
√

21q0
(
c31e

iϕ − c3−1e
−iϕ) sin θ(3 cos 2θ + 1)−

√
210q0

×
(
c32e

2iϕ + c3−2e
−2iϕ

)
(5 cos θ + 3 cos 3θ)

+6
√

35q0
(
c33e

3iϕ − c3−3e
−3iϕ

)
sin θ(cos 2θ + 3)

}
∆U

(γ)(K,kc)
]

+ s.C.s.t. . (10.95)

From this set of equations, we find that quadrupolar or octupolar anisotropies in the
quantity nf (K,q) have to appear (i.e. at least one of the c2m, c3m 6= 0) to have a
coupling between Q and V modes. The same results hold considering a right-handed
fermion apart for a negative overall sign in the Boltzmann equations.

10.5 General conditions for generating B-mode polarization

As we have seen in the previous section, new interactions which are even or odd under
party and even under time-reversal can generate V modes, but are unable to generate
B-mode polarization through the forward scattering term. This is due to the fact that,
in Eq. (10.59), the term multiplying the G2 coefficient vanishes being the amplitude
even under time-reversal. Let us briefly explain this fact. After doing the expectation
value of Eq. (10.56), the forward scattering contribution to the Boltzmann equations
schematically reads as

dρ
(γ)
ij (K,kc)

dt
∝ i

∫
dq
(
δisρ

(γ)
s′j (kc)− δjs′ρ(γ)

is (kc)
)
δrr′ nf (q)M r,r′,s,s′(q′ = q,p = p′ = k) ,

(10.96)

where M is the scattering amplitude of the process taken in the forward scattering limit.
Now, we can express the Q-mode taking the difference between the ij = 11 and ij = 22
components of the polarization matrix. So, we have

d

dt
∆Q

(γ)(K,kc) ∝ i
∫
dq
[(
ρ

(γ)
s′1(kc)M r,r,1,s′ − ρ(γ)

1s (kc)M r,r,s,1
)

−
(
ρ

(γ)
s′2(kc)M r,r,2,s′ − ρ(γ)

2s (kc)M r,r,s,2
)]

nf (q) . (10.97)

144



Now, summing over the remaining s and s′ indices, the coupling with the U modes is
given by the following term:

d

dt
∆Q

(γ)(K,kc) ∝ i
∫
dqU (γ)(K,kc)

(
M r,r,1,2 −M r,r,2,1

)
nf (q) . (10.98)

From this last equation, we get that only scattering amplitudes that are antisymmetric
in the final s, s′ photon polarization indices can give a direct coupling between Q and U
modes. This coupling converts E modes directly into B modes and vice versa. The only
term in the amplitude of the process to have this property is the one proportional to the
G2 coefficient due to the Levi-Civita tensor contracting the photon polarization vectors
in Eq. (10.59). All the other terms turn out to be symmetric in the s and s′ indices,
thus not providing any direct coupling between the Q and U modes.

Now, in this section we will investigate the case in which the fermion-photon scattering
amplitude is odd under time-reversal, leading for a non-negligible value of the G2 term,
thus providing a direct source term for B-mode polarization.

Even-parity and odd-time-reversal amplitude

As we discussed in Sec. 10.2, after imposing the even-parity condition, the G2 coefficient
is restricted to be [see Eqs. (10.23) and (10.27)]

G2 = ūr′(f11γ
5 + f12γ

5 /P )ur . (10.99)

After imposing the odd-time-reversal condition, the only nonzero coefficients are

G1 = ūr′(f7γ
5)ur and G2 = ūr′(f12γ

5 /P )ur . (10.100)

Moreover, we impose the odd charge conjugation condition, so that the amplitude is even
under CPT. As a result we get f7 = 0. Finally, the scattering amplitude is reduced to

Mfi = −4f12 ūr′ /Pγ
5ur

∆0

mf

√
N2

[
|q|2 p · (εs × εs′)− (q · p)

[
q · (εs × εs′)

]]
. (10.101)

The only term which survives multiplies a factor of ∆0. Hence, the corresponding effect
will be a loop quantum effect. The time evolution of the brightness Stokes parameters is
given by

d

dη
∆Q

(γ)(K,kc) =− a(η)f12

k0
cmf

∫
dqnf (K,q) ūr/kcγ

5ur
1

sinψ

[(
|q| k̂c − (q̂ · k̂c)q

)
· (ε1 × ε2)

]
×∆

(γ)
U (K,kc) + s.C.s.t. , (10.102)

and

d

dη
∆U

(γ)(K,kc) =
a(η)f12

k0
cmf

∫
dqnf (K,q) ūr/kcγ

5ur
1

sinψ

[(
|q| k̂c − (q̂ · k̂c)q

)
· (ε1 × ε2)

]
×∆Q

(γ)(K,kc) + s.C.s.t. , (10.103)
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and hence in terms of the ∆
±(γ)
P fields (see Eq. (4.4)) we have

d

dη
∆
±(γ)
P + iKµ∆

±(γ)
P = ∓iα′∆±(γ)

P + s.C.s.t. , (10.104)

where µ = k̂c · K̂ = cos θ, and α′ is defined as

α′(η) = −a(η)f12

k0
cmf

∫
dqnf (K,q) ūr/kcγ

5ur
1

sinψ

[(
|q| k̂c − (q̂ · k̂c)q

)
· (ε1 × ε2)

]
,

(10.105)
with

α(η) = −
∫ η0

η
α′(η′) dη′ (10.106)

and

sinψ =[(sin θ sin θ′ sin(ϕ− ϕ′))2 + (cosϕ cos θ′ sin θ − cos θ cosϕ′ sin θ′)2

+ (cos θ′ sin θ sinϕ− cos θ sin θ′ sinϕ′)2]1/2 . (10.107)

As a result, Eq. (10.104) can be rewritten as

d

dη

[
∆P
±(γ) eiKµη± iα(η)−τ(η)

]
= eiKµη± iα(η)−τ(η)

(
1

2
τ ′ [1− P2(µ)] Π

)
, (10.108)

where again Π = I2(S) + P 2(S) − P 0(S). Integrating the last equation gives the general
solution

∆P
±(γ)(η0,K, µ) =

3

4
(1− µ2)

∫ η0

0
dη eiK(η−η0)µ±iα(η)−τ(η) τ ′(η) Π(η,K) . (10.109)

Then, using Eqs. (4.5), (4.6), and (4.21), we get the following expressions for the E and
B modes

∆E
(γ)(η0,K, µ) = −3

4

∫ η0

0
dη g(η) Π(η,K)∂2

µ

[
(1− µ2)2eiK(η−η0)µ cosα(η)

]
, (10.110)

∆B
(γ)(η0,K, µ) = −3

4

∫ η0

0
dη g(η) Π(η,K)∂2

µ

[
(1− µ2)2eiK(η−η0)µ sinα(η)

]
. (10.111)

Also in this case, we need the fermion to be left- or right-handed, otherwise α = 0 since∑
r ūrγ

µγ5ur = 0. However, in this case, the angular integral inside the definition of α,
Eq. (10.105), is not equal to 0 if nf (K,q) is isotropic. Thus, we do not have to impose
any particular condition to the fermionic stress tensor.
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Odd-parity and odd-time-reversal amplitude

The expressions of the coefficients Gi’s under odd-parity condition have been presented
in Eq. (10.49). Hence, G2 is restricted to

G2 = ūr′(f9 + f10 /P )ur . (10.112)

Then applying the odd-time-reversal condition on Gi, we get

f4 = f5 = f6 = f16 = 0 . (10.113)

Therefore,

G0 = ūr′(f3γ
5)ur , G1 = 0 , G2 = ūr′(f9 + f10 /P )ur , G3 = ūr′(f15γ

5)ur , (10.114)

which are all even under charge conjugation. Hence, the final form of amplitude will be
even under CPT. Using these results, the final form of the amplitude is simplified to

Mfi = 4
∆0

mf

√
N2

(
f9 + f10

P · q
mf

)[
|q|2 p · (εs × εs′)− (q · p)

[
q · (εs × εs′)

]]
δrr′ .

(10.115)
The corresponding E-mode and B-mode polarizations are derived using the same method
that we used to derive Eqs. (10.110) and (10.111). The only difference is that the pa-
rameter α′(η) changes into the following form:

α′(η) =
a2(η)

k0
cmf

∫
dqnf (K,q)

(
f9 + 2f10

q · kc
a(η)mf

)
1

sinψ

[(
|q| k̂c − (q̂ · k̂c)q

)
· (ε1 × ε2)

]
.

(10.116)
As a result, in this case there is no restriction on the handedness of the fermion. In fact,
α′ can be different from zero if the fermion interacts both in the left- and right-handed
states. Moreover, also in this case, we do not have to impose any particular condition in
the fermion stress tensor, since we do not need anisotropies for providing a value different
from zero to the angular integral contained in the α′ expression.

10.6 Majorana fermions

In the previous sections, we assumed the fermion to be a Dirac spinor. In this section,
we will analyze what changes when the interacting fermion is a Majorana spinor, instead
of a Dirac spinor. Analogous considerations have already been made in Ref. [251] for
the case in which the fermion is a neutrino.

A Majorana fermion is a particle which coincides with its own antiparticle and hence
it has no electric charge [286–288]. We remind that a Majorana spinor is defined as

ψM = γ0Cψ∗M , (10.117)
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Symmetries broken V -mode formation B-mode formation

All preserved Anisotropies in nf (K, q) /

C and P
Anisotropies in nf (K, q)

Only R- or L-handed fermion
/

C and T / Only R- or L-handed fermion

P and T / No conditions

Table 10.1. The conditions one needs to impose on the fermion to directly convert CMB E
modes into V and B modes through fermion-photon forward scattering in the different cases
analyzed.

where C is the charge conjugation operator. The properties of Majorana bilinear terms
under parity, charge conjugation, and time-reversal transformations have been summa-
rized in Refs. [286–288]. The Majorana condition implies ψM = ψcM . As a result, a
Majorana spinor transforms under charge conjugation as

C−1ψM C = ψM . (10.118)

Thus, in general we can write

C−1
(
ψ̄MAψM

)
C = ψ̄MAψM , (10.119)

that for A = γµ becomes
ψ̄Mγ

µ ψM = 0 . (10.120)

However, one can show that the transformations of the Majorana bilinear terms under
P , T , and C are the same as Dirac bilinear terms. It was discussed in Ref. [289] that
the Compton scattering amplitude for Majorana fermions is given by

Mfi = ūr′(q
′)εsµ

[
Fµν(q, q′, p, p′) + C

(
F νµ(−q′,−q, p, p′)

)T
C−1

]
εs
′
ν ur(q) , (10.121)

Fµν being as in Eq. (10.3). Now, if in general

C
(
F νµ(−q′,−q, p, p′)

)T
C−1 = −Fµν(q, q′, p, p′) , (10.122)

we find that MM
fi = 0 identically. However, if

C
(
F νµ(−q′,−q, p, p′)

)T
C−1 = Fµν(q, q′, p, p′) , (10.123)

then the scattering amplitude becomes

MM
fi = 2MD

fi . (10.124)

Thus, when the Compton tensor Fµν transforms like a pseudotensor under C, we get no
fermion-photon forward scattering mixing. On the contrary, when Fµν is invariant under
C, we get the same coupling as discussed in the previous sections, but with an additional
factor of 2 with respect to the Dirac fermion case.
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10.7 Conclusions

In the standard lore, circular and B-mode polarization of CMB photons cannot be gen-
erated via Compton scattering with electrons from linear scalar perturbations. In this
chapter, we studied the conversion of CMB E modes into V and B modes due to the
forward scattering with a generic fermion. We assumed interactions which may also go
beyond the Standard Model of particle physics, keeping only gauge-invariance and the
preservation of CPT symmetry. We derived various sets of Boltzmann equations de-
scribing the radiation transfer of CMB polarization. Our final results are qualitatively
summarized in Tab. 10.1. We can have conversion in V modes both preserving all the
discrete symmetries and breaking the C and P symmetries. Instead, conversion into
B modes may arise only from the breaking of the T symmetry. Since our results are
expressed in terms of free parameters, they offer a viable tool to put constraints on
fundamental physics properties beyond the standard paradigms.
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Part IV
Overview and conclusion

In this work, first of all we have reviewed fundamental aspects and open questions of the
standard model of cosmology, focusing on the description of slow-roll models of inflation
and model independent generalizations of them.

Then, we investigated the signatures in the primordial bispectra induced by a Chern-
Simons gravitational term coupled to the inflaton field through a generic coupling func-
tion f(φ). This is a modified gravity scenario of inflation that naturally arises from an
effective field theory approach (Eqs. (5.67) and (6.2)). In particular, we showed that
this term introduces parity breaking in the theory, polarizing PGW into left and right
chiral eigenstates and leaving scalar modes unchanged at linear level. Our analysis of
the bispectra statistics was motivated by the fact that, in such a scenario, the chirality
of primordial gravitons in the 〈γγ〉 power spectrum is suppressed by the ratio H/MCS

(whereMCS is the so called Chern-Simons mass, Eq. (6.17)), which is expected to be very
small, thus making impossible to probe the theory with the CMB angular TB and EB
power spectra only. We have shown that an asymmetry among the bispectra 〈γRγRζ〉 and
〈γLγLζ〉 (caused by the breaking of parity symmetry) arises as the only parity breaking
signature that is not a-priori suppressed. Hence, we defined a dimensionless parameter,
Π, labelling the relative difference between these two chiral bispectra (Eq. (7.67)). This
parameter turned out to be proportional to the strength of the second order derivative
of the coupling function f(φ) (Eq. (7.69)). For this reason, only a non-minimal cou-
pling function (i.e. f(φ) which is not just proportional to φ) is able to produce such
a signature. Therefore, if experimental observations will indicate such a signature, we
would have a clear evidence during inflation of Chern-Simons gravity with a non-minimal
coupling with the inflaton field. Within an effective field theory treatment, the value of
Π is theoretically constrained (Eq. (7.75)). This constraint is alleviated when the tensor-
to-scalar-ratio r is small. In this case, we can realize a relatively large parity breaking in
the 〈γγζ〉 bispectra even if the parity breaking in the tensor power spectrum is very low.
However, in the same limit we also reduce the amplitude of the bispectra (Eq. (7.61)),
suggesting that at the same time we lose sensitivity on a possible detection of this parity
breaking signal.

In the subsequent forecast about the detectability of this signature with an ideal
CMB experiment, we showed that BBX (where X = E, T ) CMB angular bispectra
could become essential observables in probing this parity breaking signature. In partic-
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ular, important future improvements regarding the sensitivity of the experiments on the
measure of Π are expected with both lensing subtraction and increasing of the angular
resolution (Eq. (8.34) and Fig. 8.1). On the contrary, we showed that the CMB power
spectra statistics does not get any futuristic improvement in the sensitivity to parity
breaking signatures (Fig. 8.2).

In the future, it would be interesting to study modifications induced in this theory
when we couple the Chern-Simons term with an external scalar field χ not participating
to the slow-roll dynamics. In fact, the insertion of this new degree of freedom could in
principle lead to a modification in the strength of the parity breaking signatures during
inflation. Another interesting alternative is to study the effects, during inflation, of the
other parity breaking terms included in the effective field theory action (5.67). In this
regards, it is worth to mention Ref. [290], where different chiral scalar-tensor theories
(thought to be generalizations of the Chern-Simons modified gravity theory) are consid-
ered. In fact, while the effects of these operators on the power spectrum statistics are
expected to be very similar to our scenario (see e.g. [291]), they could affect the bispectra
statistics of primordial perturbations in a completely different way (in particular, pro-
viding different shape functions and strength of primordial non-Gaussianities). Finally,
we notice that in our study we have completely neglected the effects of Chern-Simons
gravity during the re-heating epoch, assuming an immediate transition between infla-
tion and standard FRW evolution. However, during the re-heating epoch the inflaton
field coupled to the Chern-Simons term has no more a slow-roll dynamics, suggesting
important modifications of the effects of this modified gravity on primordial perturba-
tions. Nevertheless, a detailed analysis should be done, as the dynamics of primordial
perturbations could become very complicated in this regime.

Moreover, we studied how we can possibly exploit the CMB to probe new physics
beyond the Standard Model of particle physics.

In this regards, first of all we considered the generation of CMB V modes induced
by the forward scattering between CMB photons and gravitons. We showed that only
gravitons with anisotropies in their statistics can couple the linear and circular CMB
polarizations (Eqs. (9.50)-(9.52)). However, even assuming primordial gravitons with
large anisotropies (generated in specific models of inflation), we have estimated that
the final effect on CMB circular polarization is negligible. However, the formalism we
developed is very general and can therefore be applied in other contexts, e.g. to measure
gravitational waves of astrophysical origin.

Then, we studied the forward scattering mixing on CMB polarizations induced by
photon-fermion interactions which may also go beyond the Standard Model of particle
physics, keeping only gauge-invariance and the preservation of CPT symmetry. Our final
results are qualitatively summarized in Tab. 10.1. We can have conversion of linear
polarization in V modes both preserving all the discrete symmetries and breaking the C
and P symmetries. Instead, the conversion of CMB E modes into B modes may arise
only from the breaking of the T symmetry.

Since our results are expressed in terms of free parameters, it would be interesting in
the future to use CMB data to directly put constraints on the alternative physics studied.
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A natural extension of this study would be deriving the effects on CMB polarizations of
the damping term in Eq. (8.43) for the different interactions we have considered.

All the intriguing and interesting extensions of our work mentioned here are left for
future research.
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Part V
Appendix
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Appendix A

ADM expressions of general
relativity curvature tensors

In this Appendix, we give the expressions in the ADM formalism of the fundamental
tensors of general relativity. For more details regarding the derivations of these formulas,
see e.g. Ref. [292].

Riemann tensor components

Rijkl = R
(3)
ijkl +KikKjl −KilKjk , (A.1)

R0ijk = N [DjKik −DkKij ] +N l[R
(3)
lijk +KljKik −KlkKij ] , (A.2)

R0i0j = N [K̇ij +DiDjN +NKk
i Kkj − (DjKik)N

k − (DiN
k)Kkj − (DiKkj)N

k

+ (DkKij)N
k] +N lNk[−R(3)

ljik −KilKjk +KlkKij ] . (A.3)

Ricci tensor components

Rij =R
(3)
ij +KlkKijh

lk − 2KikKjlh
lk − 1

N
[K̇ij +DiDjN −N l∂lKij −Kil∂jN

l −Kjl∂iN
l] ,

(A.4)

R0i =− N j

N
K̇ij −

N j

N
(DiDjN)−N jKk

i Kkj +
N j

N
[(DjKik)N

k + (DiN
k)Kkj

+ (DiKkj)N
k − (DkKij)N

k] +N lhjkR
(3)
ljik +N lhjkKilKjk −N lhjkKlkKij ,

(A.5)

R00 =R0i0j

(
hij − N iN j

N2

)
. (A.6)
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Scalar curvature

R = R(3) +KijK
ij + (Ki

i )
2 − 2

N
(K̇i

i ) +
2N j

N
(DjK

i
i )−

2

N
4N , (A.7)

where 4 = hij∂i∂j denotes the covariant laplacian built with the 3-metric hij .
In particular, from this last equation it follows

R = R(3) +KijK
ij + (Ki

i )
2 + (surface terms) . (A.8)

This last equation explains the appearance of terms proportional to K2 in the ADM
expression of slow-roll models action (2.22).
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Appendix B

In-In formalism

In this Appendix, we will briefly review the so-called In-In formalism [52, 293–295]. This
technique allows to compute perturbatively the cosmological correlation functions. The
method is quite different by what is used in standard quantum field theory. In fact, here
we are not interested in the calculation of S-matrix elements, but rather in evaluating
expectation values in a certain vacuum state of products of fields at a fixed time. In
particular, we do not need to impose conditions on the fields at both very early and very
late times (as in the calculation of S-matrix elements), but only on very early times:
for instance, during the inflationary epoch, the early-time limit corresponds to the limit
when the wavelength of the fields in Fourier space is deep inside the Hubble horizon.
In this case, according to the equivalence principle, the interaction picture fields should
have the same form as in Minkowski space-time (apart for diffeomorphisms), leading to
the imposition of the Bunch-Davies vacuum state as initial vacuum state.1

Now, we start our derivation by considering a general Hamiltonian system, with
canonical variable φ(x, t)2 and conjugate momentum π(x, t) satisfying the commutations
relations

[φ(x, t), π(y, t)] = iδ(3)(x− y) , [φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0 , (B.1)

and the Heisenberg equations

φ̇(x, t) = i [H[φ(t), π(t)], φ(x, t)] , π̇(x, t) = i [H[φ(t), π(t)], π(x, t)] . (B.2)

The Hamiltonian H does not depend explicitly on time, but it depends on time through
the fields φ(t) and π(t). Now, we expand the fields as:

φ(x, t) = φ0(t) + δφ(x, t) , π(x, t) = π0(t) + δπ(x, t) (B.3)

where φ0 and π0 denotes background classical values satisfying Hamilton equations

φ̇0(t) =
δH[φ0(t), π0(t)]

δπ0(t)
, π̇0(t) = −δH[φ0(t), π0(t)]

δφ0(t)
(B.4)

1Notice that this is perfectly in agreement with what explicitly found in Sec. 2.3.
2In our inflationary context, φ(x, t) can correspond to both the inflaton and the metric fields.
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and δφ and δπ denotes quantum perturbations w.r.t. the background. Substituting Eq.
(B.3) into Eq. (B.1), it is straightforward to show that perturbations satisfy the same
commutation relations as the total fields

[δφ(x, t), δπ(y, t)] = iδ(3)(x− y) , [δφ(x, t), δφ(y, t)] = [δπ(x, t), δπ(y, t)] = 0 . (B.5)

Expanding the total Hamiltonian H in powers of the fluctuations

H[φ(t), π(t)] = H[φ0(t), π0(t)]+

+

[
δH[φ0(t), π0(t)]

δφ0(x, t)
δφ(x, t) +

δH[φ0(t), π0(t)]

δπ0(x, t)
δπ(x, t)

]
+

+ H̃[δφ(t), δπ(t), t]

(B.6)

we find terms of zero-th and first order in the perturbations, plus an additional term H̃
which stands for all higher-order contributions. Using Eqs. (B.4)-(B.6), we can show that
the time evolution of the perturbations is generated by the time dependent Hamiltonian
H̃:

δ̇φ(x, t) = i [H̃[δφ(t), δπ(t), t], δφ(x, t)] , δ̇π(x, t) = i [H̃[δφ(t), δπ(t), t], δπ(x, t)] .
(B.7)

The quantum evolution of the perturbations can be expressed as

δφ(t) = U−1(t, t0)δφ(t0)U(t, t0) , δπ(t) = U−1(t, t0)δπ(t0)U(t, t0) , (B.8)

where t0 is some early time and U is a unitary operator. Substituting Eq. (B.8) into Eq.
(B.7), we find out that U must obey the equation of motion

d

dt
U(t, t0) = −i H̃[δφ(t), δπ(t), t]U(t, t0) (B.9)

with initial condition U(t0, t0) = 1. Notice that in cosmology the classical background
solution would describe the FRW background and we can take t0 = −∞, by which
we mean any time early enough so that the wavelengths of interest are deep inside the
horizon. Now, we decompose H̃ into a kinematic term H0 that is quadratic in the
fluctuations, and an interaction part HI as

H̃[δφ(t), δπ(t), t] = H0[δφ(t), δπ(t), t] +HI [δφ(t), δπ(t), t] . (B.10)

As in standard quantum field theory, the interaction picture is introduced defining fluc-
tuations operators whose time dependence is generated by the quadratic part of the
Hamiltonian as

δ̇φI(x, t) = i [H0[δφI(t), δπI(t), t], δφI(x, t)] , δ̇πI(x, t) = i [H0[δφI(t), δπI(t), t], δπI(x, t)] ,
(B.11)

with the initial conditions

δφI(t0) = δφ(t0) δπI(t0) = δπ(t0) . (B.12)
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The time evolution of fluctuations in interaction picture can again be expressed as unitary
transformations

δφ(t) = U−1
0 (t, t0)δφ(t0)U0(t, t0) , δπ(t) = U−1

0 (t, t0)δπ(t0)U0(t, t0) , (B.13)

where this time U0(t, t0) follows the differential equation

d

dt
U0(t, t0) = −iH0[δφ(t0), δπ(t0), t]U0(t, t0) , (B.14)

with initial condition U0(t0, t0) = 1. Combining together Eqs. (B.9) and (B.14), it can be
shown that if we define F = U−1

0 (t, t0)U(t, t0), the operator F (t, t0) satisfies the equation

d

dt
F (t, t0) = −iHI(t)U0(t, t0) , (B.15)

where HI(t) is the interaction Hamiltonian in the interaction picture

HI(t) = U−1
0 (t, t0)HI [δφI(t), δπI(t), t]U0(t, t0) . (B.16)

The solution of Eq. (B.15) reads

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t
′)dt′

)
, (B.17)

where, as usual, "T exp(·)" means the time-ordered product of the operators once we do
the expansion in series of the exponential. Now, we can express the expectation value of
a products of any fluctuation field Q(t) (in Heisenberg picture) as

〈Q(t)〉 = 〈0|U−1(t, t0)Q(t0)U(t, t0) |0〉
= 〈0|U−1(t, t0)U0(t, t0)QI(t)U

−1
0 (t, t0)U(t, t0) |0〉

= 〈0|F−1(t, t0)QI(t)F (t, t0) |0〉

= 〈0|
[
T̄ exp

(
i

∫ t

t0

HI(t
′)dt′

)]
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t
′)dt′

)]
|0〉 ,

(B.18)

where T̄ denotes anti-time ordering and |0〉 denotes the vacuum state at the initial time
t0. Applying formula (B.18), one can stop the expansion at the desired order in the
interaction Hamiltonian HI . Moreover, notice that, in order to compute (B.18), we
firstly need to apply the Wick’s theorem to evaluate the expectation value of products
of fields in interaction picture, and then perform the remnant integrals.

Just as an example, the tree-level expectation value for the product of three fields
δφ(t) is given by

〈δφx1δφx2δφx3〉(t) = −i
∫ t

t0

dt′〈0|
[
δφIx1

(t)δφIx2
(t)δφIx3

(t), HI(t
′)
]
|0〉 . (B.19)

Typically, assuming to work with interaction Hamiltonians in perturbative regime, tree
level computations are sufficient to give a good estimation of the statistics of cosmological
perturbations.
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Appendix C

Spin-raising and lowering operators

Here, we briefly review the definitions of the spin-raising and lowering operators, giving
an example on how we can use them to define the weighted spherical harmonics. We
refer to e.g. [227] for more details. The spin raising ( ′∂ ) and lowering ( ′∂ ) operators
acting on a generic spin s function sf(θ, φ) defined on the 2D sphere are given by

′∂ sf(θ, φ) = − sins θ [∂θ + i csc θ∂φ] sin−s θsf(θ, φ) ,

′∂ sf(θ, φ) = − sin−s θ [∂θ − i csc θ∂φ] sins θsf(θ, φ) . (C.1)

In particular, the new functions ′∂ sf(θ, φ) and ′∂ sf(θ, φ) have spin s + 1 and s − 1,
respectively. For example, the spin raising and lowering operators acting twice on a
generic spin-±2 function ±2f(µ, φ) which is factorized as ±2f(θ, φ) = ±2f̃(µ)eimφ (i.e.
the CMB polarization fields) can be expressed as

′∂ 2
2f(θ, φ) =

(
−∂µ +

m

1− µ2

)2 [
(1− µ2)2f(µ, φ)

]
,

′∂ 2
−2f(θ, φ) =

(
−∂µ −

m

1− µ2

)2 [
(1− µ2)−2f(µ, φ)

]
, (C.2)

where µ ≡ cos θ. In this way, just acting with a differential operator, we can easily define
spin-0 quantities starting from spin-2 ones. This procedure is used in the case of CMB
to pass from the P± spin-±2 linear polarization fields to the E and B modes, which are
spin-0 fields.

Using Eqs. (C.1), we can even express the spin-weighted spherical harmonic functions
on 2D sphere, sYlm(θ, φ), in terms of the common harmonic spheres 0Ylm(θ, φ) = Ylm(θ, φ)
just acting with the spin raising/lowering operator as

sYlm(θ, φ) =

[
(l − s)!
(l + s)!

] 1
2 ′∂ sYlm(θ, φ) (0 ≤ s ≤ l) ,

sYlm(θ, φ) =

[
(l + s)!

(l − s)!

] 1
2

(−1)s ′∂ −sYlm(θ, φ) (−l ≤ s ≤ 0) . (C.3)
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Then, it is possible to show the validity of the following relations

′∂ sYlm(θ, φ) = [(l − s)(l + s+ 1)]
1
2 s+1Ylm(θ, φ) ,

′∂ sYlm(θ, φ) = − [(l + s)(l − s+ 1)]
1
2 s−1Ylm(θ, φ) ,

′∂ ′∂ sYlm(θ, φ) = −(l − s)(l + s+ 1)sYlm(θ, φ) m, (C.4)

which can be used to derive the following explicit expression of the weighted spherical
harmonics

sYlm(θ, φ) = eimφ
[

(l +m)!(l −m)!

(l + s)!(l − s)!
(2l + 1)

4π

]1/2

sin2l(θ/2)

×
∑
r

(
l − s
r

)(
l + s

r + s−m

)
(−1)l−r−s+mcot2r+s−m(θ/2) . (C.5)

It is straightforward to verify the orthogonality and completeness conditions for the
sYlm(θ, φ) as∫ 2π

0
dφ

∫ 1

−1
d cos θsY

∗
l′m′(θ, φ)sYlm(θ, φ) = δl′,lδm′,m ,∑

lm

sY
∗
lm(θ, φ)sYlm(θ′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′) , (C.6)

as well as the following properties regarding the transformation under conjugate and
parity

sY
∗
lm(θ, φ) = (−1)s+m−sYl−m(θ, φ) ,

sYlm(π − θ, φ+ π) = (−1)l−sYlm(θ, φ) . (C.7)
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Appendix D

Quantum Boltzmann equation

In this Appendix, we will briefly review the derivation of the so-called quantum Boltzmann
equation partially following Ref. [93]. This equation provides a quantum framework to
study the effects of the collisions between CMB photons and other particles, and can be
used to derive the standard Boltzmann equations (4.7)-(4.9).

The starting point is to adopt the second-quantized formalism, introducing creation
and annihilation operators for CMB photons obeying the usual canonical commutation
relations

[as(p), a
†
s′(p
′)] = (2π)32p0δ(3)(p− p′)δss′ , (D.1)

where s, s′ label the photon polarizations. Now, we introduce the so-called photon num-
ber operator

Dij(k) = a†i (k)aj(k) . (D.2)

The time evolution of this operator, in Heisenberg picture, is given by

d

dt
Dij = i[H,Dij ] , (D.3)

where H is the full Hamiltonian of the theory which we can decompose in the free and
interaction terms as

H = H0 +HI . (D.4)

Here, the interaction term is a functional of the photon field and all the fields interacting
with the photon. Now, we want to express the right-hand side of Eq. (D.3) in terms of
fields in interaction picture. For this purpose, we remind that a generic operator ξH(t)
in Heisenberg picture can be expressed in terms of the same operator ξI(t) in interaction
picture through

ξH(t) = F−1(t, t0) ξI(t)F (t, t0) , (D.5)

where

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t
′)dt′

)
. (D.6)
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Expanding Eq. (D.5) in series of the interaction Hamiltonian, we find the first order
relation

ξH(t) ' ξI(t) + i

∫ t

t0

dt′[HI(t
′), ξI(t

′)] (D.7)

which is valid under the condition that the interaction Hamiltonian is a small correction
in the total Hamiltonian (i.e. in perturbative regime). Writing this relation for the
operator Dij , we get

DHij (t) ' DIij(t) + i

∫ t

t0

dt′[HI(t
′),DIij(t′)] . (D.8)

Inserting this last equation in the right-hand side of (D.3), we find

d

dt
Dij(t) = i[HI(t),DIij(t)]−

∫ t

t0

dt′[HI(t), [HI(t
′),DIij(t′)]] . (D.9)

Now, we have to take the expectation value of both the members of the previous equa-
tion. In particular, the expectation value of the number operator on the left-side can be
computed after introducing the density operator describing a system of photons as

ρ̂ =

∫
d3p

(2π)3
ρij(p)a†i (p)aj(p) , (D.10)

where ρij is the density matrix (4.1). With this operator the expectation value of a
generic operator O associated to CMB photons can be expressed as

〈O〉 = tr[ρ̂O] . (D.11)

Thus, the expectation value of the number operator is given by

〈Dij(k)〉 = tr[ρ̂ Dij(k)] =

∫
d3p

(2π)3
〈p| ρ̂ Dij(k) |p〉 , (D.12)

where
|p〉 = a†(p)|0〉 (D.13)

denotes the quantum state of a single photon of momentum p. Using repetitively Eq.
(D.1) into (D.12), then the expectation value (D.12) reads

〈Dij(k)〉 = (2π)3δ(3)(~0)2k0ρij(k) . (D.14)

Thus, taking the expectation value of Eq. (D.9), we finally get

(2π)3δ(3)(~0)2k0 d

dt
ρij(k) = i

〈
[HI(t),DIij(k)]

〉
−
∫ t

t0

dt′
〈
[HI(t), [HI(t

′),DIij(k)]]
〉
.

(D.15)
This equation for the photon density matrix can be expressed in terms of Stokes pa-
rameters using the definition (4.1). The first term on the right hand side of (D.15) is
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the so-called forward scattering term and describes possible mixing between the different
CMB polarizations due to the forward scattering of CMB photons with other particles.
It is possible to show that in the standard scenario (i.e. Standard Model interactions be-
tween photons and electrons) this term is equal to 0 [93], thus no mixing is induced. The
second term on the right hand side of (D.15) is the usual scattering term which describes
how Stokes parameters vary in time when CMB photons get deflected after a collision
with another sea of particles. If we compute the latter taking only the usual QED in-
teractions between photons and electrons, then we can derive the full set of Boltzmann
equations (4.7)-(4.9) (see [93] for the full computation).
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Appendix E

The energy density of gravitational
waves

In this Appendix, we derive the energy density of gravitons (i.e. gravitational waves) in
terms of gravitational Stokes parameter ∆

(g)
I . Starting from the Lagrangian (9.6), we

can find the energy density of gravitational waves as1

ρgw =
1

2
〈ḣµν ḣµν〉 . (E.1)

By inserting

ḣµν(x) =
i

2

∫
d3q

(2π)3

∑
r=+,×

[
b
(r)
q h(r)

µν e
iqx − b(r) †q h(r) ∗

µν e−iqx
]

(E.2)

into (E.1), we get

ρgw = −1

8

〈∫
d3q

(2π)3

∫
d3q′

(2π)3

∑
r,r′

[
b
(r)
q h(r)

µν e
iqx − b(r) †q h(r) ∗

µν e−iqx
]

×
[
b
(r′)
q′ h

µν(r′) eiq
′x − b(r

′) †
q′ hµν(r′)∗ e−iq

′x
]〉

, (E.3)

1Normally, it is impossible to define a full non-linear local energy-momentum tensor for the gravi-
tational field gµν . The definition (E.1) can be used in our context because we work in the weak field
approximation, as stated in Eq. (9.4) (see Ref. [296] for more details).
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which can be further simplified as

ρgw = −1

8

∫
d3q

(2π)3

∫
d3q′

(2π)3

∑
r=+,×

∑
r′=+,×

{
h(r)
µν h

µν(r′) ei(q+q
′)(x) 〈b(r)q b

(r′)
q′ 〉

−h(r)
µν h

µν(r′)∗ ei(q−q
′)(x) 〈b(r)q b

(r′) †
q′ 〉 − h(r) ∗

µν hµν(r′) ei(q
′−q)(x) 〈b(r)†q b

(r′)
q′ 〉

+h(r) ∗
µν hµν(r′)∗ e−i(q

′+q)(x) 〈b(r)†q b
(r′) †
q′ 〉

}
=

1

8

∫
d3q

(2π)3

∫
d3q′

(2π)3

∑
r=+,×

∑
r′=+,×

h(r) ∗
µν hµν(r′) ei(q

′−q)(x) 〈b(r)†q b
(r′)
q′ 〉

=
1

8

∫
d3q

(2π)3

∫
d3q′

(2π)3

∑
r=+,×

∑
r′=+,×

h(r) ∗
µν hµν(r′) ei(q

′−q)(x)
(

2q′0(2π)3δ(3)(q′ − q)ρrr′(q
′)
)
.

(E.4)

Now, using Eqs. (9.32) and (9.10), we get

ρgw =
1

4

∫
d3q

(2π)3

∑
r=+,×

∑
r′=+,×

q0ρrr′(q)δr,r′ =
1

4

∫
d3q

(2π)3
q0 [ρ++(q) + ρ××(q)]

=
1

4

∫
d3q

(2π)3
q0∆

(g)
I (q) . (E.5)

We can expand ∆
(g)
I (q) in terms of spherical harmonics as [297]

∆
(g)
I (q) = ∆

(g)
I (q0)

∑
l,m

cIlmY
m
l (θ′, φ′) . (E.6)

Therefore, we can write

ρgw =
π

2

∫
dff3∆

(g)
I (f)

∑
l,m

∫
d2q̂ cIlmY

m
l (θ′, φ′) , (E.7)

where q0 = 2πf . The isotropic part of gravitational waves energy density, ρ̄gw, is given
by

ρ̄gw =
π

2

cI00√
4π

∫
dff3∆

(g)
I (f)

∫
d2q̂ , (E.8)

and, after normalizing the monopole moment as cI00 =
√

4π and performing the angular
integral, we finally get

ρ̄gw = 2π2

∫
dff3∆

(g)
I (f) . (E.9)
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