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Abstract

The scene depth is an important information that can be used to retrieve the scene
geometry, a missing element in standard color images. For this reason, the depth
information is usually employed in many applications such as 3D reconstruction,
autonomous driving and robotics.

The last decade has seen the spread of different commercial devices able to sense
the scene depth. Among these, Time-of-Flight (ToF) cameras are becoming popular
because they are relatively cheap and they can be miniaturized and implemented
on portable devices. Stereo vision systems are the most widespread 3D sensors and
they are simply composed by two standard color cameras. However, they are not
free from flaws, in particular they fail when the scene has no texture. Active stereo
and structured light systems have been developed to overcome this issue by using
external light projectors.

This thesis collects the findings of my Ph.D. research, which are mainly devoted
to the denoising of depth data. First, some of the most widespread commercial 3D
sensors are introduced with their strengths and limitations. Then, some techniques
for the quality enhancement of ToF depth acquisition are presented and compared
with other state-of-the-art methods. A first proposed method is based on a hardware
modification of the standard ToF projector. A second approach instead uses multi-
frequency ToF recordings as input of a deep learning network to improve the depth
estimation. A particular focus will be given to how the denoising performance
degrades, when the network is trained on synthetic data and tested on real data.
Thus, a method to reduce the gap in performance will be proposed. Since ToF and
stereo vision systems have complementary characteristics, the possibility to fuse
the information coming from these sensors is analysed and a method based on a
locally consistent fusion, guided by a learning based reliability measure for the two
sensors, is proposed. A part of this thesis is dedicated to the description of the data
acquisition procedures and the related labeling required to collect the datasets we
used for the training and evaluation of the proposed methods.
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Sommario

La profondità della scena è un importante informazione che può essere usata per
recuperare la geometria della scena stessa, un elemento mancante nelle semplici
immagini a colori. Per questo motivo, questi dati sono spesso usati in molte appli-
cazioni come ricostruzione 3D, guida autonoma e robotica.

L’ultima decade ha visto il diffondersi di diversi dispositivi capaci di stimare
la profondità di una scena. Tra questi, le telecamere Time-of-Flight (ToF) stanno
diventando sempre più popolari poiché sono relativamente poco costose e possono
essere miniaturizzate e implementate su dispositivi portatili. I sistemi a visione
stereoscopica sono i sensori 3D più diffusi e sono composti da due semplici tele-
camere a colori. Questi sensori non sono però privi di difetti, in particolare non
riescono a stimare in maniera corretta la profondità di scene prive di texture. I
sistemi stereoscopici attivi e i sistemi a luce strutturata sono stati sviluppati per
risolvere questo problema usando un proiettore esterno.

Questa tesi presenta i risultati che ho ottenuto durante il mio Dottorato di
Ricerca presso l’Università degli Studi di Padova. Lo scopo principale del mio la-
voro è stato quello di presentare metodi per il miglioramento dei dati 3D acquisiti
con sensori commerciali. Nella prima parte della tesi i sensori 3D più diffusi ver-
ranno presentati introducendo i loro punti di forza e debolezza. In seguito verranno
descritti dei metodi per il miglioramento della qualità dei dati di profondità acquisiti
con telecamere ToF. Un primo metodo sfrutta una modifica hardware del proiet-
tore ToF. Il secondo utilizza una rete neurale convoluzionale (CNN) che sfrutta
dati acquisiti da una telecamera ToF per stimare un’accurata mappa di profon-
dità della scena. Nel mio lavoro è stata data attenzione a come le prestazioni di
questo metodo peggiorano quando la CNN è allenata su dati sintetici e testata
su dati reali. Di conseguenza, un metodo per ridurre tale perdita di prestazioni
verrà presentato. Poiché le mappe di profondità acquisite con sensori ToF e sistemi
stereoscopici hanno proprietà complementari, la possibilità di fondere queste due
sorgenti di informazioni è stata investigata. In particolare, è stato presentato un
metodo di fusione che rinforza la consistenza locale dei dati e che sfrutta una stima
dell’accuratezza dei due sensori, calcolata con una CNN, per guidare il processo di
fusione. Una parte della tesi è dedita alla descrizione delle procedure di acquisizione
dei dati utilizzati per l’allenamento e la valutazione dei metodi presentati.
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Chapter 1

Introduction

Traditional color cameras are able to record the photometric appearance of the sur-

rounding environment by projecting the color information on the image plane. This

acquisition process does not capture the scene depth information, that is strictly

related to the scene 3D structure. This missing information can have an important

role in many computer vision applications such as autonomous driving, gesture

recognition and robotics, where the scene geometry can be used to have a better

understanding of the problem and its solution. For this reason, the last decade has

seen a wide spread of depth sensing devices.

The first considered commercial depth sensors, also the simplest from a hardware

point of view, are the stereo vision systems. These are composed by a couple of

color cameras and employ the triangulation principle to estimate the depth of a

scene. Regardless of their hardware simplicity, they use advanced techniques to

locate where the target scene point is projected on the two color views. These

systems are prone to errors in regions where no visual features are possible to be

uniquely recognized, as in case of textureless flat walls or repeating patterns. Active

stereo and structured light systems exploit the triangulation principle as well, but

they use an external light projector to solve the issue related to the scene texture

affecting the passive stereo vision systems.

Time-of-Flight (ToF) cameras are depth devices implementing a completely dif-

ferent working principle. They are equipped with a light projector, that lights the

scene with an amplitude modulated light signal, and a special type of pixels, able
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CHAPTER 1. INTRODUCTION

to correlate the received modulated light with a reference signal. In this way, they

can estimate the time delay between the transmitted and the received light signal.

This information can be used to estimate the scene depth, by assuming that the

speed of light is constant in the air. These sensors can record depth maps at video

frame rates, but due to the complexity of their pixels they have a limited spatial

resolution, if compared to standard cameras.

Each of these types of commercial and portable depth sensors has its own

strengths and weaknesses and they are somehow complementary on these. This the-

sis will introduce the flaws of these devices and, moreover, possible solutions will be

proposed and tested. A particular attention will be given to ToF data denosing and

the fusion of ToF and stereo vision systems data to improve the depth estimation

accuracy.

The results collected in this thesis are the outcome of the work I have carried

out during the three years of my Ph.D. program. My scholarship has been funded

by Sony Europe and I have spent one year of my Ph.D. working in the Sony Eutec

research center located in Stuttgart, Germany. There, I had the opportunity to be

mentored by experts of ToF sensors and to use new ToF prototypes.

In the first chapter of this thesis, the aforementioned 3D sensors will be described

in detail. Their working principles will be introduced and their main flaws will be

analysed. Depth refinement techniques have to be validated and for this reason

depth datasets have been collected. Chapter 3 will describe the procedure used

to collect these depth data with the related ground truth depth. The developed

ToF depth refinement techniques are introduced in Chapter 4. In particular, two

approaches will be presented. The first [1] is based on a hardware modification

of the commercial ToF projector and on a traditional signal processing approach.

The second [2] can be applied on off-the-shelf ToF cameras and it is based on a

deep learning strategy. Since the second approach is trained on synthetic data, its

performance worsen when it is tested on real data. This is the domain shift issue

and it will be analysed on Chapter 5. In this chapter, this issue will be considered in

the case of deep learning approaches used to refine ToF data [3] and when the task

is semantic segmentation [4]. Chapter 6 will focus on the complementarity of ToF

and stereo vision systems. A method for the fusion of the two depth sources [5, 6]

will be presented and compared with other existing fusion methods.
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Chapter 2

3D Sensing Devices

Nowadays, commercial depth sensing devices generally exploit the reflective proper-

ties of the scene. This family of sensors estimates the scene depth by evaluating the

electromagnetic radiation in the target environment. Each specific depth sensing

approach uses a different band of the spectrum and a specific way to interpret it.

Indeed, it is possible to have optical devices working in the visible or in the infra-

red spectrum. Differently, other sensors as radars use radio waves to determine the

position and the velocity of the target. Fig. 2.1, derived from [7], introduces a

representation of this family of range devices.

Reflective non-contact 
measurements methods

Non-optical Optical

Radar Passive

Structure 
from Motion

Shape from X
Stereo vision

systems

Active

Active stereo
Structured 

light
Time of Flight

Fig. 2.1: Representation of the different families of reflective depth sensing devices.
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CHAPTER 2. 3D SENSING DEVICES

This thesis mainly focuses on optical sensors and how to improve the level of

accuracy in depth estimation. There exist two families of optical depth sensors:

passive and active sensors. The passive sensors estimate the depth by exploiting

the optical radiation already present in the scene. Stereo vision systems are the

most widely used technology belonging to this family of devices. The active sensors

instead employ and external projector to radiate the scene with a specific light

signal, usually in the infra-red spectrum. This light signal can be modulate in

space, as for active stereo and structured light sensors, or in time, as for Time-of-

Flight (ToF) cameras.

The next of this chapter introduces the basic working mechanism together with

their strengths and flaws of the aforementioned devices, since they will be the focus

of this thesis.

2.1 Stereo Vision Systems

Stereo vision systems are passive depth sensors. These are composed by a couple of

standard color cameras employing the triangulation principle to estimate the scene

depth in the region framed by the two cameras. By looking at the same point from

two slightly different view points it is possible to infer the depth, similarly to what

we do with our eyes. Fig. 2.2 depicts a ZED stereo vision system [8], one of the

most employed commercial stereo vision systems. It is possible notice the two color

cameras on the sides of the devices able to acquire a scene depth map till 2K spatial

resolution.

Fig. 2.2: ZED stereo system, an example of commercial stereo vision system [8].

Before estimating the depth, the standard cameras have to be geometrically
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2.1. STEREO VISION SYSTEMS

calibrated [9] and then rectified [10]. After these processes, the images recorded by

the two cameras are projected on the same image plane and so the epipolar lines

are made parallel and coincided to the same pixel row on the two pixel grids.

𝐶𝐿

𝑢𝐿 𝑢𝑅

𝑃

𝐶𝑅

𝑧

𝑝𝐿 𝑝𝑅
𝑓

𝑧𝐿

𝑥𝑙

𝑏

Fig. 2.3: Depth estimation by triangulation on two calibrated and rectified cameras
composing a stereo vision system.

After the calibration and rectification procedures, a given scene point P =

(x, y, z) is observed on the two cameras by pixels belonging to the same row, but

different column position. If we are able to locate the pixel positions, e.g., pL =

(uL, vL) and pR = (uR, vR) respectively in the left and in the right camera, with

vL = vR because the vertical coordinate is correspondent after rectification [11,12],

then the depth along the Cartesian axis z perpendicular to the image planes can

be estimated as

z =
b f

uL − uR
=

b f

disp
(2.1)

where, b is the baseline of the stereo vision system, that is the distance between

the optical center of the cameras CL and CR, and f is their focal length, identical

after rectification. disp is the disparity, that is equal to uL − uR. Eq. 2.1 can be

extrapolated by exploiting the properties of the similar triangles in Fig. 2.3.

To estimate the depth with Eq. 2.1, it is required to estimate the pixel positions

uR and uL. The search of these conjugated points is named correspondence problem

and it can be solved with a stereo matching method. The next section introduces

various techniques to implement it.

5



CHAPTER 2. 3D SENSING DEVICES

2.1.1 Stereo Matching Methods

Stereo matching methods have the task to find the conjugated points in a couple

of rectified camera views. This is the most critical problem in stereo vision depth

estimation, since it is strictly related to the disparity and the depth estimation.

These methods can be classified as local or global. The first look just for local

similarity in the neighbourhood of the target pixel, by enforcing the fronto-parallel

hypothesis, that is by assuming that pixels near to each other share the same

disparity value. This can be built be computing a cost function that compares a

window centred on the target pixel on the left image with a window on the right

whose position is given by a disparity hypothesis. The disparity can be selected by

minimizing the cost function and the disparity value is selected in a winner-take-all

fashion. Different cost functions can be used, the most common are Sum of Absolute

Difference (SAD), Sum of Squared Difference (SSD), census or Normalized Cross-

Correlation (NCC) [13]. Local methods can be implemented very efficiently but

they have poor performance in particular in flat regions or with repeating patterns.

Differently, global approaches estimate the disparity by minimizing a cost that

is function of the whole images. A possibility is to use a Markov Random Field

(MRF) in combination with some smoothness criterion taking in account the even-

tual presence of depth discontinuities [14]. In general, global methods are more

accurate than local ones, but they are computationally more expensive.

A trade off is given by semi-global approaches as Hirshmuller’s SGM [15]. It

uses a point-wise cost function as local methods and a smoothness term that tries to

enforce the consistency among pixels belonging to paths in the images. Since it can

be implemented efficiently, it is one of the most diffuse stereo matching methods.

Recently, deep learning techniques for stereo depth estimation have been pro-

posed [16–18]. They proved to be more accurate than traditional approaches. The

strength of these methods relies on learning based features which exploit semantic

information about the scene.

2.1.2 Limitations of Stereo Vision Approaches

When the stereo matching does not fail and it is able to locate the position of

the conjugate points, stereo vision systems are accurate depth sensors. An error

6



2.1. STEREO VISION SYSTEMS

propagation analysis on Eq. 2.1 can be applied to evaluate what are the elements

influencing the overall depth estimation. More details about error propagation can

be found in Appendix A. From this analysis, the noise standard deviation can be

formulated as

σz =
z2

b f
σdisp (2.2)

where it comes out that it is directly proportional to the squared depth. This

means that the depth estimation is very accurate in the near range and the accuracy

dramatically decreases in the far range. Eq. 2.2 shows that it is possible to improve

the depth estimation performance by increasing the baseline b, so the distance

between the two cameras. These are related to the system dimension and a trade

off between the device size and the maximum range of applicability has to be found.

The above mentioned analysis is valid in case the stereo matching algorithm

doesn’t fail. In the next of this section the most critical flaws of stereo matching

are listed.

Occlusions

Stereo matching algorithms have to find conjugate points on the two images. A

first issue can arise if a scene point is visible only from a single camera. This is the

case of occlusions, which can arise near to depth discontinuity. This issue can be

detected by applying a left-right check, that is by computing the disparity map in

both directions, from the left to the right image and vice versa, and checking their

consistency.

Depth Edges

In the matching cost, problems can arise on the recovery of depth edges. The

neighbourhood of the target point can be different in the two views, since they are

composed by pixels at different depths, which appear differently on the cameras

placed in different positions. This issue can be mitigated by decreasing the window

size, used in the block matching methods, to increase the level of details in the

depth map at the cost of a reduced resilience to noise. Another possible solution

is to use matching methods which are not based on square blocks but using more

7



CHAPTER 2. 3D SENSING DEVICES

elaborate techniques, e.g., segmentation based matching methods, which are aware

of the image structure.

Non-Lambertian Surfaces

For a correct matching, the same object needs to have the same photometric appear-

ance on the two images. This assumption is not valid on non-Lambertian objects as

in case of mirrors or elements composed by glass or metal producing a high amount

of specular reflections.

Texture Dependency

Stereo matching algorithms try to find the projection of the same scene point on

the two cameras. These elements can be located if they are characterized by well

recognizable visual features. However, this is not the case for points belonging to

textureless surfaces, e.g., a white wall in a room. In this situation, the matching

algorithm can not find local features to estimate the correct couple of conjugate

points, since the cost function becomes flat and multiple minima exist. A similar

issue is given by repeating patterns, since also in this case the cost function can

have multiple minima making the recovery of the correct couple of conjugate points

ill-posed. Local matching approaches are particularly sensible to these scenarios.

Differently, global matching functions or learning based methods try to mitigate

these issues by enforcing consistency in a wide region of the scene. Active stereo

systems and structured light systems try to solve in a more robust way the texture

dependent issues. They use an external light projector to label each scene point

with a code that can be used as a texture in the matching process. The next section

introduces these devices.

2.2 Active Triangulation Systems

As mentioned in the previous section, the performance of stereo vision systems are

very sensible to the texture contained in the scene, since this is used in the stereo

matching process to locate conjugate points. Active triangulation systems try to

solve this issue by employing a light projector to label each scene point with a

8



2.2. ACTIVE TRIANGULATION SYSTEMS

unique light code that can be used to locate it in the two color views. This kind of

devices can be:

� active stereo systems, if the projected pattern is used by the cameras as an

artificial texture that simplifies the stereo matching;

� structured light systems, if the triangulation is applied between the projector

pixels and the standard cameras (see [19]). In general, structured light sys-

tems can be composed also by a single camera and a projector, but a careful

calibration of the two is required.

Fig. 2.4: Intel RealSense DS435, an example of commercial active stereo system. [20]

Fig 2.4 depicts an Intel RealSense DS435 [20], an example of commercial active

stereo system. It is composed by two standard cameras, placed on the sides of

the device, and an infra-red light projector, placed in the middle. In general, in

active triangulation systems the light projector illuminates the scene with a pattern

that labels each scene point with unique well defined codeword. The way to create

the codebook differentiate the typology of patterns. Different techniques to create

the code exist and the most employed and robust are based on spatial or temporal

modulation.

In case of spatial modulation, the codewords are given by the pattern projected

on a certain neighbourhood of the target point. Some solutions use bi-level on-off

illumination in which the codewords are based on the De Bruijn pseudo-random

code [23]. Fig. 2.5 (a) shows an example of such patterns. This typology of

patterns can be used for one shot depth acquisition, since the code is contained in

each single image recorded by the cameras. However, the depth recovery near to

depth discontinuities can be problematic if the window containing the spatial code

is distorted.

9



CHAPTER 2. 3D SENSING DEVICES

(a) (b)

Fig. 2.5: Example of coded patterns. On the left a spatially modulated pattern
based on a De Bruijn pattern [21]. On the right an example of a sequential binary-
coded pattern [22].

In case of temporal modulation, the codewords are given by a sequence of illu-

mination intensities projected on the same point. The use of a sequential binary-

code [22] is a possible implementation of this concept. In this approach, illumina-

tion patterns, characterized by vertical white and black stripes, are projected on

the scene. Fig. 2.5 (b) shows a sequence of this typology of patterns. The cam-

eras associate the value 0 to the dark regions and the value 1 to the white ones.

Concatenating the sequence of recorded 0-1 values, it is possible to label, with a

well distinguishable binary number, each scene point belonging to a certain row on

the image captured by the cameras. However, the discrete nature of these patterns

reduces the depth resolution. Phase shifting methods, based on sinusoidal patterns,

exploit higher depth resolution [22]. The phase shifted approach will be described

more in detail in Chapter 3, since it will be used in the ground truth acquisition

setup we built for our ToF datasets. Temporal modulated patterns are more ro-

bust than spatially modulated patterns on depth discontinuities. However, they

assume that the scene is static during the sequence projection. If this assumption

is violated, the codeword recovery and consequently the stereo matching fails.

In general, active triangulation systems are very accurate and solve the issues

of passive systems related to the scene texture dependency. The same discussion

10



2.3. TIME-OF-FLIGHT CAMERAS

about the relationship between noise and depth, made in the previous section, still

holds since it is related to triangulation nature of such devices. Consequently, the

performance worsen when the depth going to be estimated increases.

2.3 Time-of-Flight Cameras

A completely different depth estimation approach is used by Time-of-Flight (ToF)

depth sensors. They are equipped with an infra-red light projector which illuminates

the scene with a predefined temporal modulated signal. The idea is to estimate the

time required by the light to go from the projector to the scene and then come

back on the camera. Since the speed of light in the air is approximately constant,

it is possible to estimate the observed scene point depth from the light round trip

time. Two different families of ToF devices exist, these can be classified as direct

or undirect ToF cameras. The direct ToF cameras estimate the arrival time of

each photon received by the sensor. Single-photon avalanche diodes (SPAD) ToF

cameras belong to this family [24]. The sensors belonging to the second family

indirectly estimate the light round trip time by modulating the projected light with

a given signal. The recorded light is correlated with an internal reference signal,

synchronized with the emitted signal, in order to estimate the phase displacement

of the two signals. This type of ToF sensors are also known as continuous wave

ToF (CW-ToF) sensors. The following of this chapter will focus on this typology

of devices.

Fig. 2.6: Scheme representing the CW-ToF depth acquisition principle.
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CHAPTER 2. 3D SENSING DEVICES

2.3.1 Continuous Wave ToF

This section presents the mathematical analysis of the depth estimation of a generic

CW-ToF camera employing a sinusoidal wave as light modulation function and a

rectangular wave as internal reference signal. This is the most widespread choice

among commercial ToF devices. Recall that CW-ToF cameras using rectangular

waves as light modulation function exist, but the mathematics used to estimate the

depth is slightly different [10].

CW-ToF cameras use an infra-red projector to illuminate the scene with a pe-

riodic amplitude modulated light signal, e.g., a sinusoidal wave, and evaluate the

depth from the phase displacement between the transmitted and received signal.

This process is represented in Fig. 2.6. The projected light signal can be formulated

as

st(t) =
1

2
at
(︁
1 + sin(ωrt)

)︁
(2.3)

where t is the time, ωr is the signal angular frequency equal to ωr = 2πfmod

and at is the maximum power emitted by the projector. The temporal modulation

frequency fmod is in nowadays sensors in the range [10MHz; 200MHz]. The received

light signal can be modeled as:

sr(t) = br +
1

2
ar
(︁
1 + sin(ωrt− ϕ)

)︁
(2.4)

where br is the light offset due to the ambient light, ar = αat with α equal to

the channel attenuation and ϕ is the phase displacement between the transmitted

and received signal. The task of CW-ToF cameras is to compute ϕ since the scene

depth d can be computed from ϕ through the well known equation

d =
clϕ

4πfmod
(2.5)

where cl is the speed of light. Please note that the maximum depth that a ToF

camera can capture is related to fmod. Indeed, ϕ ∈ [0; 2π) and so d ∈ [0; cl
2fmod

). For

this reason, cl
2fmod

is the unambiguous range of the ToF acquisition.

The electronics inside ToF pixels are able to compute the correlation function

between the received signal and a reference one, e.g., a rectangular wave at the same

12



2.3. TIME-OF-FLIGHT CAMERAS

modulation frequency rectωr(t) = H
(︁
sin(ωrt)

)︁
, where H(·) represents the Heaviside

function. The correlation function sampled in ωrτi ∈ [0; 2π) can be modeled as

c(ωrτi) =

∫︂ 1
fmod

0

sr(t)rectωr(t+ τi)dt =

=
1

fmod

[︂br
2
+

ar
4

+
ar
2π

cos(ωrτi + ϕ)
]︂
.

(2.6)

c(ωrτi) represents a measure of the number of photons accumulated by a pixel

during half the integration time. By defining B = 1
fmod

(︂
br
2
+ ar

4

)︂
, collecting the

additive constant term in the received light, and A = ar
2πfmod

the amplitude of

the received sinusoidal light signal, that is proportional to the power of the direct

component of the received light, Eq. 2.6 can be reformulated as

c(ωrτi) = B + A cos(ωrτi + ϕ). (2.7)

Nowadays ToF cameras usually acquire 4 samples of the correlation function

c(ωrτi) at ωrτi ∈ {0; π2 ; π;
3π
2
} and for this reason we will consider this case in the

next of this chapter. In this setting, we have:

ϕ = atan2
(︂
c
(︁3π
2

)︁
− c
(︁π
2

)︁
, c(0)− c(π)

)︂
. (2.8)

where atan2(y, x) is the function returning the phase of the complex number x+ iy.

Finally, it is possible to use Eq. 2.5 to estimate the depth d from ϕ. The depth

estimation with CW-ToF cameras is computationally simple, when compared with

stereo matching, and it is possible to record depth at video frame rates with an

accuracy in the range of centimetres or even millimetres in favourable conditions.

Moreover, the CW-ToF devices can be miniaturised and implemented in portable

devices.

In the next chapters of this thesis, we will use the term ToF to refer to CW-ToF

in order to simplify the notation.

13
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2.3.2 Error Sources in ToF Recordings

The previous section introduced the basic concepts behind CW-ToF depth acqui-

sitions in ideal conditions. Here, some of the main issues related to their depth

acquisitions will be listed and analysed.

Photon Shot Noise

ToF cameras are active depth devices and the depth estimation accuracy is strictly

related to the strength of the reflected modulated light. In case a high amount

of light is reflected, the depth estimation is very accurate, otherwise the accuracy

decreases. This is due to the random nature of the light. The amount of received

photons can be modelled as a Poisson random variable whose mean (µl) and vari-

ance (σ2
l ) are equal to the number of received photons. σ2

l is the variance of the so

called photon shot noise. The signal to noise ratio (SNR = µl
σl
) of the number of

received photons increases when this number increases.

By applying an error propagation analysis (introduced in Appendix A) on the

depth acquisition with Eq. 2.5 and by assuming the above mentioned Poisson

nature of the light, it comes out that the variance of the noise due to photon shot

noise on the depth evaluation is

σ2
ps =

(︂ cl
4πfmod

)︂2 B

2A2
(2.9)

where A and B are respectively the amplitude of the received modulated light

and the light offset as defined in Eq. 2.7. A and B are assumed to be measured in

number of received photons. The derivation of this result can be found in Appendix

B.

Thermal Noise

Apart from photon shot noise, also the thermal excitation of the electron produced

by the photo-diode composing the ToF pixels influence the final depth estimation.

The depth perturbation due to this phenomenon can be modelled as Gaussian

random variable with zero mean and variance σ2
t . This variance is related to the

type of camera used and increases when the temperature increases.

14



2.3. TIME-OF-FLIGHT CAMERAS

The zero-mean noise variances σ2
t and σ2

ps can be summed up together for a

more general evaluation of the depth distortion.

Multi-path Interference

The ToF depth estimation is correct if the light received by the sensor is reflected

only once inside the scene, the direct component of the light labelled as 1 in Fig.

2.7 (a). However, in real scenarios a part of the light emitted and received by

the ToF system can also experience multiple reflections, this part of the received

light is named global component of the light. The global component can be caused

by multiple phenomena and some of them are depicted in Fig. 2.7 (a) as diffuse

reflection (ray 2), specular reflection (ray 3), and sub-surface scattering (ray 4).

Each of these reflections carries a sinusoidal signal with a different phase offset

proportional to the length of the path followed by the light ray.

Projector

ToF sensor

Specular
reflecting object  wall

2

1

3

4

(a)

50 100 150 200
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1.1
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1.2

de
pt

h 
[m

]

True Radial Depth
ToF 60 MHz

(b)

Fig. 2.7: Example of multi-path interference on a corner. On the left, representation
of different types of reflections on a corner. On the right, comparison between the
true radial depth of a corner and the ToF estimation on a cross-section of a corner.
It is possible to appreciate the depth over estimation due to MPI.

In this scenario, the correlation function presented in Eq. 2.6 can be modelled

as
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c(ωrτi) =
1

fmod

[︂br
2
+

ar
4

+
ar
2π

cos(ωrτi + ϕd) +
br,g
2

+
ar,g
π

cos(ωrτi + ϕg)
]︂

= BFF + AFF cos(ωrτi + ϕFF )

(2.10)

where the first sinusoidal term is related to the direct component of the light and

the second to the global one. ar,g and br,g are respectively proportional to the ampli-

tude and intensity of the global light waveform due to MPI. The superimposition of

the direct and global components originates the multi-path interference(MPI) phe-

nomenon. In the next of this thesis, the signal resulting from the superimposition of

the direct and global components will be named full field component. By sampling

the ToF correlation function, only the full field phase ϕFF can be recovered. It is

a corrupted version of corrected phase ϕd. The resulting ToF depth acquisition is

generally overestimated due to the mixing of direct and global component of the

light. Fig. 2.7 (b) depicts the overestimation of the depth due to MPI in a corner

scene. Please note the gap between the true radial depth (blue line) and the ToF

estimation (red line) due to the diffuse reflections on the side of the corner.

Another important aspect of MPI phenomenon is its frequency diversity. Since

the phase displacement of the received sine waves ϕ is equal to 2πfmod
cld

, where d is

the distance travelled by the considered wave, the interference between the direct

and the global components of the light (modelled by the first row of Eq. 2.10)

is dependent by the modulation frequency fmod. Thus, ϕFF and by consequence

also the final depth estimation change by changing fmod. This aspect is used by

some MPI correction methods which try to estimate the corruption due to this

phenomenon by sensing the scene using different modulation frequencies, as also

discussed in Chapter 4.

Mixed Pixels

Each pixel of the ToF camera observes a patch of the scene and not an ideal point.

When the observed patch contains a depth discontinuity, the ToF estimation is a

linear combination of the different depths contained in it. This is function of the

reflectivity and the depth of the different observed points.
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2.3. TIME-OF-FLIGHT CAMERAS

Fig. 2.8: Example of mixed pixels. The face of the foreground fades with the wall
on the background on the boarders.

Fig. 2.8 shows an example of mixed pixels on the boarders of a face in front of

a wall. Please note how the points near to the depth discontinuities are in between

the two depths, but no real point is exactly at those positions.

The mixed pixels effect is enhanced by the small spatial resolution of nowadays

ToF cameras, since each camera pixel is associated to a wide region of the scene.

Currently, the most employed commercial ToF sensors have about VGA resolution.

However, in the near future the spatial resolution of this sensors will increase,

and for example the newest Microsoft kinect Azure [25] has megapixel resolution.

The reduced spatial resolution, compared to standard color cameras, is due to the

complexity of ToF pixels. In the future, it will be possible to reduce the effect of

mixed pixels by increasing the spatial resolution of the ToF cameras.

Harmonic Distortion

The theory for depth estimation with ToF cameras introduced in Section 2.3.1 is

valid if the transmitted sinusoidal light signal and the rectangular reference signal

are ideal. However, this is not the case on real ToF cameras. Usually, the trans-

mitted signal is something in between a rectangular wave and a sinusoidal one,

so neither purely sinusoidal nor rectangular. This introduces a systematic distor-

tion in the depth estimation, using Eq. 2.5, due to additional spurious sinusoidal
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components in the emitted wave.
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Fig. 2.9: Correlation function on a real ToF camera. On the left, its representation
in the temporal domain. On the right, its representation in the frequency domain.
It is more similar to a triangular function than a sinusoidal one.

In this scenario, the resulting correlation function appears to be something in

between a sinusoidal and a triangular wave (correlation between two rectangular

waves). Fig 2.9 shows an example of ToF correlation function obtained using a

Sony ToF camera [26] with modulation frequency set to 10 MHz. Here, 60 samples

of the correlation function are used, but in standard acquisitions usually only 4 are

captured for frame rate constraints. Sampling the correlation function on only 4

points causes aliasing and it is impossible to disambiguate between the fundamental

sinusoidal component (the one useful for the depth estimation) and the spurious

ones.

Fig. 2.10 shows how this non ideality of the employed signals affects the ToF

depth (a) and amplitude (b) retrieval when the standard ToF sinusoidal model of

Eq. 2.7 is used. This is the so called harmonic distorion. The distortion is periodic

and in case of depth estimation the error can reach a value of 30 cm. In Fig. 2.10

(b) the effect on the amplitude estimation is depicted showing the ratio between

the actual recorded amplitude and the amplitude in case of absence of aliasing.

The harmonic distortion is an issue with a strong impact on the ToF depth ac-

quisitions and different methods for its correction have been proposed in literature.

The proposal of Lindner et al. [27] is based on a look-up table strategy and it is one
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(a) (b)

Fig. 2.10: Effect of the harmonic distortion on the depth (a) and amplitude (b)
estimation in a ToF acquisition by assuming an ideal system using 4 samples of the
correlation function (Eq. 2.7).

of the most employed.

The correction of the amplitude distortion is not common since it is not directly

used in the depth estimation process. However, as it will be shown in Chapter 4 the

correction of the harmonic distortion on ToF amplitude has an important role in

the correction of MPI. For this reason, we adapted the approach presented in [27]

for the additional calibration of ToF amplitude.

Pixels Non-Uniformity

It is worth mentioning that the photo response of each pixel of the camera is not

uniform, due to small differences in the doping of the silica originated in the pro-

duction of the sensors. This causes a slightly different number of collected electrons

in the different pixels given the same number of received photons. The different

response of each pixels can be mitigated by implementing a pixel level calibration

step in the harmonic undistortion method introduced in [27].
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Chapter 3

Stereo and ToF Dataset Collection

This chapter introduces the depth datasets, collecting stereo vision system and

ToF camera recordings, used during my Ph.D. work. These datasets have been

employed to evaluate the performance of raw depth acquisitions and to test the

real effectiveness of the newly introduced methods for ToF data denoising and ToF-

stereo data fusion. In particular, some datasets as the LTTM5 [28] and REAL3 [6]

datasets are taken from the literature, instead I have collected other datasets ad

hoc for my work. Most of previous publicly available depth datasets, provided with

depth ground truth, contained depth recordings from stereo vision systems only,

without ToF sensors acquisitions as in [19,29]. Some recent works have introduced

ToF datasets with the related depth ground truth as in [30–32], but they contain

just simulated data. This is due to the fact that the recording of depth ground truth

from the ToF camera viewpoint involves complex and time consuming procedures.

The usage of simulators can simplify the ToF data collection task, giving an initial

evaluation of the denoising methods. However, not all the acquisition phenomena

can be faithfully simulated and various differences between simulated and real data

can be encountered as it was shown in our paper [2] and as it will be discussed in

Chapter 4.
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3.1 Introduction to the Depth Datasets

This chapter introduces the depth datasets which have been used to train and

evaluate the depth refinement methods described in the next of this thesis. Table

3.1 collects some of the characteristics of the datasets, in order to make it simpler

to compare and distinguish them. In the next of this chapter: first, the ToF-stereo

datasets LTTM5 [28] and REAL3 [6] will be introduced; then, the novel datasets,

collected ad hoc for my Ph.D. work, will be described together with the procedures

used for their collection.

Dataset Type Devices GT # scenes Used for
LTTM5 Real 2 Basler + MESA SR4000 Yes 5 Testing
REAL3 Real ZED + Kinect v2 Yes 8 Testing

SYNTH3train Synth ZED + Kinect v2 Yes 40 Training
SYNTH3test Synth ZED + Kinect v2 Yes 15 Testing

S1,train Synth DS541 Yes 40 Training
S1,test Synth DS541 Yes 14 Testing
S2 Real DS541 No 97 Training
S3 Real DS541 Yes 8 Validation
S4 Real DS541 Yes 8 Testing
S5 Real DS541 Yes 8 Testing

Table 3.1: Collection of some key characteristics of the depth datasets introduced
in this chapter.

3.2 Real Datasets

Few real datasets containing calibrated depth data collected jointly with a stereo

vision system and a ToF camera exist and the LTTM5 and the REAL3 are among

these.

LTTM5 dataset was introduced in [28] and it collects data acquired by two

Basler scA1000 RGB cameras and a MESA SR4000 ToF camera. The acquisition

set-up is depicted in Fig. 3.1. The ToF camera is placed in the middle of the two

color cameras. These have a baseline of 17 cm and they acquire two 1032 × 778

pxl RGB images. The ToF camera can acquire 176× 144 pxl depth and amplitude

images in the range [0; 5] m using 30 MHz as modulation frequency.
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Fig. 3.1: Stereo-ToF acquisition system used to collect the LTTM5 dataset.

The ground truth has been estimated by using an external light projector to-

gether with the stereo system. 600 different patterns have been emitted on the

target scene, following the approach presented in [33]. The patterns have been used

to label each scene point with a unique code, obtained by combining all the pro-

jected patterns observed from the color cameras. The disparity maps have been

computed with a block matching algorithm, looking for the same code word in the

2 images. Finally, a subpixel refinement and a left-right check were also applied.

The accuracy of the obtained depth ground truth is of about 2 mm. The 5 static

scenes contained in the LTTM5 dataset are depicted in Fig. 3.2. These have been

captured in a lab environment.

Fig. 3.2: Color views of the scenes contained in the LTTM5 dataset.

REAL3 dataset was introduced in [6], a paper I wrote in collaboration with

other members of the LTTM laboratory at University of Padova. Specifically, this

dataset was collected by Giulio Marin. It is a real world dataset acquired with a

Microsoft Kinect v2 ToF camera and a ZED stereo vision system from Stereolabs [8].

The ZED is based on a passive stereo technology and it is equipped with two 4 MP

cameras that provide images up to 2208× 1242 pxl at 15 fps. The sensor is able to

provide images up to 100 fps at a lower resolution. The baseline is of 12 cm and

the diagonal field of view is 110◦. Kinect v2 is one of the best and most diffuse

consumer ToF depth cameras. Compared to other ToF cameras it provides a cleaner
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and denser depth map. The Kinect v2 is able to acquire a 512× 424 pxl depth and

amplitude map at 30 fps with a depth estimation error typically smaller than 1%

of the measured distances and a diagonal field of view of 92◦.

4 
cm

12 cm

ToF Camera
(Kinect v2)

Stereo System (ZED)

Kinect v2 IR Sensor

Fig. 3.3: Representation of the real Stereo-ToF acquisition system used for the
REAL3 dataset. The figure shows the relative position of the ZED camera and of
the Kinect v2.

The algorithm developed to compute the ground truth map uses the stereo

cameras to match corresponding pixels and estimate the disparity between them.

A line laser, with a regular red beamer visible to humans, is used to label the

conjugate points in the two views. The goal is to “paint” the scene with the line

laser and for each acquisition match corresponding lit points in the two images.

Ideally, only one point for each row of the image for each acquisition is lit. Due to

noise in the images, the estimated disparity is updated for a given pixel every time

there is a new measurement and by accumulating all the values. The median value

is kept as ground truth. A servomotor is employed to control the laser movement

making the system fully automatic.

The dataset contains 8 scenes, all including static scenarios in an indoor envi-

ronment. The scenes have different complexity, ranging from flat surfaces to more

complex shapes like the leaves of a plant. These contain objects with and without

texture to check the behaviour of the algorithms with disparate conditions. Mate-

rials with challenging reflection properties compose the scenes, including reflective

and glossy surfaces as well as rough material that usually cause problems to active

cameras. Fig. 3.3 shows the relative position of the two sensors. The color view of

the 8 scenes containd in REAL3 are depicted in Fig. 3.4.
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Fig. 3.4: Color views of the scenes contained in the REAL3 dataset.

3.2.1 Proposed Multi-Frequency ToF Datasets

Both LTTM5 and REAL3 datasets contain ToF data, but no raw multi-frequency

acquisitions are contained. Indeed the ToF depth and amplitude images are ac-

quired at 30 MHz for LTTM5. In the REAL3 dataset, just the output of a propri-

etary algorithm that combines the ToF data acquired by the kinect v2 at 16, 80 and

120 MHz is available. These two datasets can not be used to test ToF depth refine-

ment methods exploiting multi-frequency ToF data, as the SRA [34] MPI correction

method. For this reason, we have set-up an acquisition system composed by a Sony

DS541 ToF camera and two Basler acA2500-14gm RGB cameras together with a

light projector, going to illuminate the scene with a known sequence of patterns.

Fig. 3.5 depicts the employed trinocular system.

Fig. 3.5: Trinocular system used for the acquisitions of the multi-frequency ToF
datasets. The standard cameras are placed on the sides with a baseline of 10 cm.
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The three cameras are mounted on a tripod and they have the optical axis

approximately parallel to each other. The ToF camera is placed in the middle of

the two standard cameras, which form a stereo vision system with a baseline equal

to 10 cm. They are labelled as s0 and s1 in Fig. 3.5. s0 is used as reference camera

of the stereo vision system. The external light projector is placed in a position

suitable to illuminate the part of the scene observed by the cameras. This will

compose an active stereo system with s0 and s1, that will be used to estimate the

depth ground truth.

Table 3.2 collects some hardware parameters of the employed cameras. The two

typologies of cameras share similar horizontal and vertical Field-of-View (FoV), but

the one related to the standard cameras (Basler) is slightly smaller.

Basler ToF camera
Resolution 2592× 1944 320× 239

Horizontal FOV 55◦ 60◦

Vertical FOV 40◦ 45◦

Focal length 6 mm 2.8 mm
Pixel size 2.2 µm 10 µm

Table 3.2: Hardware parameters of the Basler gray-scale camera and DS541 ToF
camera.

System Calibration

Before starting to record data with the composed trinocular system, the system

has been calibrated. The calibration involved the geometric calibration of the three

cameras and the harmonic undistortion of the ToF camera. Regarding the geometric

calibration of the system, the intrinsic and extrinsic parameters of the cameras have

been estimated. We exploited the technique proposed by Zhang in [35] using a dot

pattern as calibration pattern. Fig. 3.6 shows the acquisition of the dot pattern

from the trinocular system, where the amplitude image is used for the calibration

of the ToF camera. We selected to use the dot pattern since we evaluated that

it is more robust for calibration when a low resolution ToF camera is involved in

the process. The low resolution affects less the localization of a dot center with

respect to a feature in a standard checkerboard pattern, that is usually employed

26



3.2. REAL DATASETS

for geometric calibration.

Fig. 3.6: Acquistion of the dot geometrical calibration pattern from s0 (left), s1
(center) and the amplitude image of the ToF camera (right).

In a second step, the harmonic distortion related to the ToF camera recording

has been corrected. As discussed in Section 2.3.2, this issue affects both the depth

and the amplitude recordings. For the depth undistortion we used a method based

on the approach proposed by Lindner et al. [27]. A flat wall is placed orthogonal to

the optical axis of the ToF camera. Then, the camera records the wall by changing

the initial phase shift of the reference signal. In this way, a virtual shift of the wall is

emulated and by knowing the original position of the wall and comparing it with the

raw ToF outcome is possible to set-up a look-up-table to correct this distortion. A

similar approach is implemented for the amplitude undistortion. Since the virtual

displacement of the wall corresponds to an oversampling of the ToF correlation,

it was possible to estimate the correct amplitude by investigating with a Fourier

analysis the amplitude of the fundamental harmonic. This calibration procedure is

repeated for each ToF modulation frequencies used in the dataset.

Depth Ground Truth Acquisition

In this section, it is described how we used the active stereo system, composed by

the two Basler cameras and the light projector, to estimate a depth ground truth

of the scenes. In a second phase, this accurate depth map is projected on the ToF

sensor.

We used the external light projector to illuminate the scene with a known se-

quence of patterns. The projected patterns have to uniquely label each scene point

when looked on horizontal lines on the pixel grids of the stereo cameras. We used
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a phase shifting approach to generate the patterns, as introduced in Section 2.2. A

sequence of vertical sinusoidal patterns are emitted by the light projector on the

scenes. Examples of the employed patterns can be found in Fig. 3.7. The intensity

of the light emitted by the projector for the pixel in position (x; y) is described by

the equation:

Li(x; y) =
1

2

(︂
1 + cos

(︁
ϕi +

2πx

hres
f
)︁)︂

(3.1)

where hres is the horizontal resolution of the projector, f is the frequency (num-

ber of sinusoidal periods per image) of the projected pattern and ϕi is the ini-

tial phase. In our acquisitions we used 5 pattern frequencies, f ∈ {1; 2; 4; 8; 16}
[#periods/image], and N = 16 phase displacements of the sinusoidal patterns with

initial phases ϕi =
2πi
N
, where i = 0; 1; ...;N − 1. So, we projected 80 patterns for

each depth ground truth acquisition. Please note that also the phase shifting ap-

proach for active stereo is sensible to diffuse reflections as mentioned by Gupta et al.

in [36], this is in some way related to multi-path interference in ToF devices. This

issue can be mitigated by using high frequency sinusoidal patterns [36]. From our

investigation, it came out that using the maximum frequency f = 16 was enough

to have a ground truth accurate enough for our ToF dataset.

Fig. 3.7: Example of projected sinusoidal patterns for different spatial frequencies
f and initial phase ϕ.

Each time a pattern is projected, the two standard cameras, s0 and s1, record

a grayscale image of the scene. This brings to have a stereo acquisition of each
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pattern. For each pixel (i; j) of the two stereo views we estimate the observed pat-

tern offset θ(i;j);f = 2πx
hres

f . The pattern phase offset for each frequency f can be

estimated by modelling a sine wave, e.g., with Fourier analysis, among the acqui-

sitions with different initial phases. Once the complete pattern phase offsets have

been computed for each stereo view and for the different pattern frequencies, we are

going to phase unwrap the pattern phase offsets at the highest frequency, by using

the lower frequencies, bringing the phase from the range [0; 2π) to [0; 16 · 2π). The
couple of unwrapped phase images are rectified by using the intrinsic and extrin-

sic parameters estimated with the geometrical calibration of the trinocular system.

This allows us to obtain two coded images, one for each stereo view, which have a

unique codeword (related to a scene point) in each horizontal line in the sensors.

We ran a simple matching block stereo algorithm with a Sum of Absolute Dif-

ference (SAD) metric on the two coded images in order to compute an accurate

disparity map of the scene from the s0 viewpoint. The computed disparity map

is used to estimate the scene depth map using the calibration parameters of the

cameras.

The computed depth map is projected on the ToF sensor by using intrinsic and

extrinsic camera parameters. Since the ToF camera has a spatial resolution that is

much smaller than the standard cameras (see Table 3.2), it results that usually a

ToF pixel corresponds to multiple pixels, with the related depth information, on s0.

The smallest depth value is selected in order to avoid problems related to occlusion,

when projecting the points from the stereo reference camera to the ToF sensor.

This operation brought the active stereo depth on the ToF prospective and we used

this as depth ground truth for the ToF sensor. Fig. 3.8 contains an example with

the ToF depth acquisition and the acquired depth ground truth. The ToF error

map is computed as ToF depth map minus the ground truth.

Fig. 3.8: ToF data and related depth ground truth on a sample scene. Please note
the depth overestimation (ToF error map) due to MPI.
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We tested the accuracy of the ground truth estimation on a corner scene as the

one depicted in Fig. 3.9. We compared the estimated ground truth model with a

synthetic model created in Blender. The estimated and the syntehtic meshes have

been first aligned and then compared with the CC software [37]. It comes out that

the estimated corner geometry has a MAE (mean absolute error) of 0.9 mm when

compared with its synthetic model, about 100 times more accurate than the ToF

acquisition corrupted by MPI.

Fig. 3.9: On the left, the ToF amplitude image of the corner used for the evaluation
of the ground truth accuracy. The mesh of the ideal 3D model is on the right.

Description of the Datasets

The system introduced in the previous section has been used to collect four datasets.

Following the nomenclature used in [3], these are respectively named S2, S3, S4 and

S5. The data contained in them will be described in the next of this section.

These datasets contain ToF data acquired using six different modulation fre-

quencies, from 10 MHz to 60 MHz with steps of 10 MHz, but for our work we used

just the data acquired at 20, 50 and 60 MHz. The depth data have been phase

unwrapped by using these multi-frequency information, in order to have the maxi-

mum unambiguous rage equal to 15 m. Note that all the datasets contain structures

originating MPI. In the following of this section we are going to explain the specific

characteristics of each of the four datasets.

S2 The unlabeled real dataset S2 is composed by scenes captured in a office

environment in uncontrolled light conditions (ambient light was present). The ac-

quisitions frame static scenes containing tables, chairs, lockers and many other

different objects that can be found in a office. The dataset contains 97 recorded
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scenes, and for each of them the calibrated depth and amplitude images have been

stored. The depth values are in the range from 0.5 to about 10 m. For this dataset

no ground truth has been acquired and it has been used for unsupervised train-

ing in our works. Fig. 3.10 shows some examples of depth and amplitude images

contained in S2.
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Fig. 3.10: Representation of some of the ToF recordings contained in the S2 dataset.
Here we show the depth in meters and the amplitude images captured at 60 MHz.

S3 The subjects of the recordings in the real dataset S3 are static scenes contain-

ing puppets, small boxes, wooden corners and polystyrene cones and spheres. The

recorded depth images are in the range between 0.5 and 2 m. The depth ground

truth of the ToF acquisitions has been generated with the active stereo system reg-

istered with the ToF camera. This dataset contains 8 scenes and it has been used

as validation dataset for the proposed deep learning methods. Fig. 3.11 shows some

examples of depth and amplitude images contained in S3.
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Fig. 3.11: Representation of some of the ToF recordings contained in the S3 dataset.
Here we show the depth in meters and the amplitude images captured at 60 MHz.

S4 This dataset contains 8 real world scenes whose subjects are wooden corners

and object of different materials, as plastic and ceramic, placed in a wooden box,
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where a lot of MPI is present. The ToF recordings are provided with depth ground

truth. This dataset is used for testing the proposed denoising methods. Fig. 3.12

shows some examples of depth and amplitude images contained in the dataset S4.
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Fig. 3.12: Representation of some of the ToF recordings contained in the S4 dataset.
Here we show the depth in meters and the amplitude images captured at 60 MHz.

S5 The subjects of the recordings from the real dataset S5 are 8 static scenes

containing boxes of various shapes and dimensions. We decided to create this box

dataset since ToF sensors can be used in logistics and manufacturing for inspection,

handling and dimensioning of box-shaped objects and we would like to evaluate

which are the performance of our methods in this scenario. The dataset also contains

the ground truth depth maps related to the ToF acquisitions. This dataset is used

for testing the proposed denoising methods. Fig. 3.13 shows some of the depth and

amplitude images contained in S5.
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Fig. 3.13: Representation of some of the ToF recordings contained in the S5 dataset.
Here we show the depth in meters and the amplitude images captured at 60 MHz.
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3.3 Synthetic Datasets

All the datasets introduced in the previous sections are composed by a small num-

ber of scenes, which are not sufficient for a reliable training of complex neural

networks. The collection of bigger and more various datasets is impracticable in

a lab environment, but a possible compromise is to create a synthetic dataset,

where a simulator can emulate the recordings of standard color and ToF cameras

on pre-built 3D models of scenes. Here, we introduce the synthetic datasets S1 and

SYNTH3 we developed to train the proposed fusion and denoising methods based

on deep learning techniques.

3.3.1 S1: The Synthetic DS541 Dataset

This section introduces the synthetic dataset collecting the acquisitions from a

simulated ToF camera. The dataset is named S1 and was originally introduced in

our paper [2] trying to mimic the acquisitions of the Sony DS541 ToF camera used

for the recordings of the datasets S2, S3, S4 and S5. The scenes contained in the

dataset are generated using the 3D creation suite Blender [38]. These have been

downloaded from Blend Swap [39], a website collecting the artwork of 3D grafic

designers, and they have been appropriately modified and rendered from virtual

viewpoints in order to generate the ToF dataset.

The data captured by the ToF camera have been computed by using the Sony

ToF Explorer simulator developed by Sony Eutec. The Sony ToF Explorer simula-

tor is an extended version of the simulator from Heidelberg University [40] that is

able to accurately simulate the data acquired by a real ToF camera including differ-

ent sources of error as shot noise, thermal noise, read-out noise, lens effect, mixed

pixels and the interference due to the global illumination (multi-path interference).

The ToF simulator takes in input the scene information generated by Blender ex-

ploiting the rendering engine LuxRender [41]. We acquired with the simulator the

320 × 240 pxl depth and amplitude maps (the resolution and the other simulator

parameters have been set in order to emulate the DS541 camera used in the real

world setup).

Moreover, the dataset contains also the scene depth ground truth relative to the
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point of view of the ToF camera.

The dataset is split in a training and a test set. The training set, S1,train,

contains 20 unique scenes each rendered from two different viewpoints, leading to

a total of 40 scenes split into a training and a validation set. Even if the number of

scenes is low if compared with datasets used for the training of deep networks for

other tasks, it is still one of the largest datasets for ToF data denoising currently

available. Furthermore, the scenes are very different one from the other representing

different conditions. The test set, S1,test, instead contains 14 unique scenes.

The various scenes from S1,train and S1,test contain walls, furniture and objects

of various shapes and color in different environments, e.g., living rooms, kitchen

rooms or offices but also outdoor locations with non-regular structures. The depth

range is also very different across the various scenes ranging from about 50 cm to

10 m thus providing a large range of measurements.

3.3.2 SYNTH3

Starting from the same 3D models of the scenes used to simulate the S1 dataset,

we created a stereo-ToF dataset we named SYNTH3. This dataset tries to mimic

the recordings contained in the real dataset REAL3. It contains ToF depth and

amplitude images using the hardware parameters of a Microsoft kinect v2 [10, 42]

and the color images acquired by a simulated ZED stereo vision system [8]. The

complete virtual system is depicted in Fig. 3.14, while Table 3.3 summarizes the

parameters of the cameras.

Stereo setup ToF camera
Resolution 1920× 1080 512× 424

Horizontal FOV 69◦ 70◦

Focal length 3.2 mm 3.66 mm
Pixel size 2.2 µm 10 µm

Table 3.3: Parameters of the stereo and ToF sensors.

The color images have been generated using the 3D renderer engine LuxRender

inside Blender. The stereo setup is made of two Full-HD (1920×1080) color cameras

with a baseline of 12 cm and the optical axes and image planes parallel to each other.
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Stereo Setup

4 
cm

12 cm

ToF 
Sensor

Fig. 3.14: Representation of the synthetic Stereo-ToF acquisition system. The ToF
sensor is placed below the color camera.

Since the cameras are ideal and their optical axes are already aligned, there is no

need to rectify the two color views, as instead is done for the real world data.

As described in the previous section, the Sony ToF Explorer has been used on

the synthetic 3D models to estimate the depth and amplitude images acquired by

the synthetic Kinect v2 ToF camera.

The image plane and optical axis of the ToF camera are parallel to those of the

stereo camera and the ToF viewpoint is placed under the right camera of the stereo

system at a distance of 4 cm.

Fig. 3.15: Test set used for the evaluation of the denoising methods. The figure
shows the color image from the reference camera of ZED system for each scene in
the SYNTH3test dataset.

Also the SYNTH3 dataset is divided in a training set, SYNTHtrain and a test

set, SYNTHtest. The same split used for the S1 dataset has been used. However,
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SYNTHtest contains a new scene, that contains low reflective objects, with respect

to S1. Fig. 3.15 shows the color view of the test scenes. In particular, the newly

introduced scene is the one in the bottom right. It contains a very low reflective

table in the middle of the scene that stresses the depth acquisition of the ToF

camera and it is useful to evaluate the capabilities of a stereo-ToF fusion method.

The following of this thesis will describe the various methods for depth data

denoising introduced during my three year Ph.D. program and all the datasets

presented in this chapter have been used to train and test them.
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Chapter 4

ToF Depth Data Refinement

This chapter presents some techniques to improve the overall depth accuracy of

stand alone ToF cameras. As mentioned in Chapter 2, ToF cameras are gain-

ing popularity for the simplicity of their processing operations, the possibility to

generate a dense depth map, the absence of artifacts due to occlusions and the

independence from scene texture. Apart from these good aspects, they have also

some flaws for which they need to be further analyzed and improved. In particular,

the main task of the methods presented in this chapter, initially introduced in our

papers [1,2], is to reduce the noise due to thermal and photon shot noise, which are

zero-mean error, and correct the depth overestimation due to the multi-path inter-

ference (MPI) phenomenon. Before starting with the description and evaluation of

the proposed methods, the next section will review the existing literature about the

topic.

4.1 Literature about ToF Data Refinement

Regarding the reduction of thermal and photon shot noise, different approaches can

be found. Usually, these are inspired by image denoising techniques and adapted to

the particular nature of ToF data. Among them, in [43] a denoising method based on

a wavelet analysis of the data and guided by the noise statistic is proposed. Bilateral

filtering or total variation techniques could be used as well as suggested by Lenzen

et al. in [44]. Recently, a denosing method using non-local means has been proposed
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by Georgiev et al. in [45] to refine ToF depth in case of very limited reflected light,

usually the case for portable ToF cameras using a low power projector. All these

methods are very performing and able to effectively reduce the thermal noise and

photon shot noise.

Differently, many methods for MPI correction have been proposed [46], but it

remains an open problem. MPI correction methods can be classified in consideration

to what kind of ToF data they exploit, if single frequency or multi-frequency ToF

data, if the standard ToF hardware is customized and if the methods are analytical

or data driven.

The methods which use single frequency ToF data exploit some reflection models

in order to estimate the geometry of the scene and correct MPI as done by Fuchs

in [47], where reflections with a maximum of two bounces are considered. This

method is further extended in [48] where multiple albedo and reflection bounces

are taken in account. Jimenez et Al. proposed a radiometric model to simulate

ToF acquisitions and the reflection phenomenon and then to correct MPI through

a non linear optimization problem [49]. These methods are slow and computational

expensive. Moreover, they are not able to manage the MPI phenomenon related to

interfering rays coming from outside the field of view of the ToF camera.

The methods based on customization of the ToF device, usually modify the

ToF projector and the light signal emitted by it. Kadambi et al. [50] proposed

to temporally modulate the emitted sine wave with a random on-off code. The

reflected light signal is demodulated using the same random on-off code in order to

estimate the scene impulse response and so estimate the return time of the first ray.

Other methods spatially modulate the ToF light signal, e.g., in [51–53] a modified

ToF light source is used to project a sequence of patterns to separate the direct

light, reflecting only once inside the scene, from the interfering rays, the so called

global light, in case of diffuse reflections.

The analytical methods using multi-frequency ToF data usually exploit the fre-

quency diversity of the MPI phenomenon (see Section 2.3.2) to solve it. The light

is described as the summation of few distinct sinusoidal waves which are interfering

one another in case of MPI. They try to recover the interfering rays and the one

with the shortest path is assumed to be the one carrying the correct depth infor-

mation (direct light). Among the methods belonging to this family, it is possible to
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find the methods proposed by Bhandari et al. [54] and the SRA method proposed

by Freedman et al. [34]. In [54] a closed form solution for MPI removal is proposed

and moreover the authors introduced a theoretical lower bound for the number of

modulation frequencies required to solve the interference on a fixed number of rays.

The issue with this method is that it is required to use data collected using a high

number of modulation frequencies in order to have an accurate MPI correction.

However, this is infeasible on in-the-wild recordings for frame rate constrains. Dif-

ferently, the method proposed by Freedman in [34] uses ToF data acquired using just

three modulation frequencies. The idea is to set-up a linear optimization problem

modelling the MPI phenomenon as the interference of few and distinct interfering

rays, whose amplitude and phase are estimated exploiting the frequency diversity of

MPI. The authors implemented a look-up-table approach for a real-time implemen-

tation of the method. The limitation of these two approaches is that the hypothesis

of few interfering rays is related to just the specular reflections and does not take

in account diffuse reflections. For this reason, they have a reduced accuracy when

tested on real scenes.

In order to avoid the use of explicit reflection models, data driven approaches

correcting MPI have been presented recently. Son et al. in [55] use a deep neural

network, trained on labelled single frequency real data, captured from a robotic

arm on short range scenes. Since the acquisition of a dataset composed by ToF

depth with a registered ground truth is challenging and expensive, Marco et al.

in [30] proposed an auto-encoder Convolutional Neural Network (CNN) to refine

ToF data acquired at 20 MHz. This is trained in two phases: in the first phase,

real depth data without ground truth are used for the unsupervised training of the

auto-encoder in order to reconstruct the input at the output of the CNN; then, the

encoder part is kept fixed and the decoder part is trained with a synthetic dataset

in order to learn how to correct MPI.

Recently, deep learning techniques using end-to-end CNNs, taking raw ToF

correlation samples as input and outputting the refined scene depth map, have

been presented for general purpose ToF denoising [31, 32]. In these methods, the

CNNs have been trained on synthetic data, but the performance on real data has

been investigated only from a qualitative point of view in [32] and on a single corner

scene in [31].
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The next of this chapter introduces the approaches for ToF data denoising which

I worked on during my Ph.D.:

� the first is based on a customization of the ToF projector. A spatial modula-

tion of the standard ToF light signal is implemented by means of sinusoidal

patterns, using the technique introduced by Whyte et al. [51]. A structured

light (SL) approach is implemented on the ToF device to estimate a SL depth

map of the scene. This is fused with the ToF depth estimation to obtain a

more accurate depth.

� The second approach uses multi-frequency ToF data as input of a CNN to

refine the depth data. Two methods based on this approach are presented.

The first uses the CNN to estimate the MPI depth corruption, that is directly

subtracted on the noisy depth map. Finally an adaptive bilateral filter is used

to filter out the zero-mean error. The second proposed method uses a CNN

to directly refine the ToF data.

4.2 Spatio-Temporal Modulated ToF

The first method for ToF denoising and MPI correction introduced in this thesis

is based on the separation of the direct and global component of the light through

the projection of multiple sinusoidal patterns as proposed by Whyte and Dorrington

[51,56]. The method presented in [51], here named Spatio-Temporal modulated ToF

(STM-ToF), allows to correct a wide range of MPI phenomena as inter-reflection and

sub-surface scattering, but the obtained depth estimations are noisier if compared

with standard ToF systems. The proposed extension of this method starts from

this rationale but goes further by implementing a SL depth estimation approach on

a ToF system based on this idea. It is specifically designed for short range scenes.

Fig. 4.1 depicts the complete scheme of the proposed method trying to summarize

all the main components of the depth estimation process. This starts from the

data acquisition on the target scene and on a reference scene, composed by a wall

at a known distance, and continues with the depth estimation with the ToF and

SL principle. Finally, it ends with the proposed Maximum Likelihood fusion of the

two depth fields. In order to evaluate the performance of the proposed method, we
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Fig. 4.1: Proposed method flow chart.

tested it on a synthetic dataset simulated with the Sony ToF Explorer simulator

realized by Sony Eutec (See Section 3.3.2). The evaluation scenes are the subset of

scenes contained in S1,train and S1,test which have a maximum depth of 4 m, since

the proposed method is designed for short range scenes.

Before going on the implementation details of our method, the STM-ToF depth

acquisition process is analysed together with its MPI removal approach. Then the

proposed method is discussed and its evaluation will follow.

4.2.1 Introduction to STM-ToF

In order to obtain a depth estimation free from MPI distortion, it is required to

separate the direct component of the light from the global one. The approach we

exploited is inspired by the method described by Whyte in [51], but extends it

taking into account the fact that most real world ToF cameras work with square

wave reference signals. The system presented in [51] is composed by a standard ToF

sensor and a modified ToF projector that emits a periodic light signal (Fig. 4.2): the

standard temporally modulated ToF signal of Eq. 2.3 is also spatially modulated

by a predefined intensity pattern. In the developed method we are going to consider

the sinusoidal intensity pattern

Lx,y(ωrτi) =
1

2

(︂
1 + cos

(︁
lωrτi − θx,y

)︁)︂
(4.1)

41



CHAPTER 4. TOF DEPTH DATA REFINEMENT

Fig. 4.2: ToF acquisition system for direct and global light separation.

Fig. 4.3: Synchronization between phase shift of the projected pattern and phase
sample of the ToF correlation function.

where (x, y) denotes a pixel position on the projected image, θx,y=
2πx
p
+sin

(︁
2πy
q

)︁
is the pattern phase offset at the projector pixel (x, y), p and q are respectively

the periodicity of the pattern in the horizontal and in the vertical direction, l is a

positive integer number and ωrτi ∈ [0; 2π) is a sampling point of the ToF correlation

function as defined in Eq. 2.6. The projector and the camera are assumed to have

parallel image planes. Notice that for each computed sample of the ToF correlation

function a specific pattern is used to modulate the standard ToF signal of Eq. 2.3.

Denoting the angular modulation frequency of the ToF camera as ωr = 2πfmod,

the projected pattern L(ωrτi) is phase shifted with angular frequency lωr. Fig. 4.3

shows the pattern projection sequence for the case in which l = 3 and the ToF

camera evaluates 9 samples of the correlation function.

Here on, we assume that the ToF signal is modulated by the phase shifted
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patterns depicted in Fig. 4.3 considering the proposed synchronization between

the pattern phase offsets and the ToF correlation sampling points. If the spatial

frequency of the projected patterns is high enough to separate the direct and global

component of the light [57] (this holds in case of absence of specular reflections), it

results that only the direct component of the light is modulated by the patterns.

In this case, the ToF correlation function Eq. 2.10 computed by the ToF camera

on a generic pixel can be modelled as:

c(ωrτi) = B + A cos(ωrτi + ϕd) + Ag cos(ωrτi + ϕg) +
πA

2
cos(lωrτi − θ)+

+
A

2

[︂
cos
(︁
(l − 1)ωrτi − ϕd − θ

)︁
+ cos

(︁
(l + 1)ωrτi + ϕd − θx,y

)︁]︂
.

(4.2)

As in Eq. 2.10, we define br as the ambient light offset, ar as the amplitude

of the direct component of the received ToF signal, br,g as the offset of the global

component of the light and ar,g as the amplitude of the received global component.

By using this nomenclature, it comes out that B = 1
fmod

(︂
br
2
+ ar

8
+ br,g

2

)︂
is an additive

constant that represents the received light offset, A = ar
4πfmod

is proportional to the

power of the direct component of the received light, Ag =
ar,g
πfmod

is proportional to

the power of the global component of the received light. ϕd is the phase offset related

to the direct component of the light (not affected by MPI), ϕg is the phase offset

related to the MPI phenomenon and θx,y is the phase offset of the projected pattern

on the specific scene point observed by the considered ToF pixel. Notice that both

ϕd (through the ToF model of Section 2.3) and θx,y (through the SL approach of

Section 4.2.3) can be used to estimate the depth at the considered location. In

the following of this section, it is considered l = 3 since it avoids aliasing with

just 9 samples of the correlation function. No other value of l brings to a smaller

number of acquired samples. By using this setting and opportunely arranging the

acquisition process, the projector has to update the emitted sinusoidal patterns at

30 fps in order to produce depth images at 10 fps. A complete derivation of Eq. 4.2

can be found in Appendix C.

A first difference with the analysis carried out in [51,56] is that in these works the

reference signal used for correlation by the ToF camera is a sine wave without offset,

instead in our model we use a rectangular wave since this is the waveform used by
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most real world ToF sensors. This choice in the model brings to an harmonic at

frequency l = 3 that was not considered in [51,56], and this harmonic is informative

about the pattern phase offset θ. In the next section and more in detail in Appendix

C, it is shown that by estimating θ from this harmonic allows a more accurate

estimation than computing it from the (l − 1)− th and (l + 1)− th harmonics. In

order to estimate a depth map of the scene free from MPI we are going to apply

Fourier analysis on the retrieved ToF correlation signal of Eq. 4.2 as also suggested

in [51, 56]. By labelling with φk the phase of the k − th harmonic retrieved from

the Fourier analysis we have that:

ϕd =
(︁
φ4 − φ2

)︁
/2, θ = −φ3 (4.3)

By estimating ϕd as mentioned above we can retrieve a depth map of the scene

that is not affected by MPI but the result appears to be noisier than standard ToF

acquisitions as discussed in the next section. We are going to name this approach for

MPI correction as STM-ToF, that is the acquisition based on the method proposed

by Whyte [51]. In Section 4.2.3, θ will be used for SL depth estimation.

4.2.2 Error Propagation Analysis

In order to evaluate the level of noise of the depth estimation with STM-ToF ac-

quisition, we used an error propagation analysis to predict the effects of the noise

acting on ToF correlation samples on the phase estimation. In particular, we con-

sider the effects of the photon shot noise. The noise variance in standard ToF depth

acquisitions can be computed with the classical model described in Section 2.3.2:

σ2
dstd

=
(︂ c

4πfmod

)︂2 Bstd

2A2
std

. (4.4)

where Astd =
ar

2πfmod
and Bstd =

1
fmod

(︁
br
2
+ ar

4

)︁
. In a similar way we can estimate

the level of noise in the proposed system.

If we assume to use nine ToF correlation samples c(ωrτi) with ωrτi =
2π
9
i for

i = 0, ..., 8 affected by photon shot noise, it is possible to demonstrate (the complete

derivation of the model through error propagation is in Appendix C) that the mean

value of the noise variance in the STM-ToF depth estimation is
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σ̄2
dnoMPI

=
(︂ c

4πfmod

)︂2 4B
9A2

(4.5)

where A and B are defined as in the previous section. Here we are considering

only the mean value of the noise variance for the estimated depth map, since the

complete formulation contains also sinusoidal terms which depend on the scene

depth and the pattern phase offset.

By comparing Eq. 4.4 and 4.5 and opportunely considering the scaling effects

due to the modulating projected pattern, if br >> ar (that is when the ambient

light component is much bigger than the received ToF signal amplitude, usually the

case) we have that σ̄2
dnoMPI

/σ2
dstd

= 3.56, i.e., the noise variance obtained by using

the approach in [51] is around four times nosier if compared with a standard ToF

camera that uses the same peak illumination power.

4.2.3 Applying Structured Light on ToF Sensors

In this section, we propose to use the pattern phase offset θ observed by the ToF

sensor in order to estimate a second depth map of the scene with a structured light

(SL) approach. The phase image θ can be estimated with the approach of Section

4.2.1, i.e., from Eq. 4.3. Notice that our model considers a rectangular wave as

reference signal (that is typically the case in commercial ToF cameras) and we

could exploit the harmonic at frequency l = 3 of Eq. 4.2, allowing to obtain a

higher accuracy than using the second and the fourth harmonics as in [51]. More in

detail, if we compare the level of noise in estimating θ from the second and fourth

harmonics (i.e., as done in [51]) with the noise in the estimation from the third

harmonic (as we propose), we have that:

σ̄2
φ2,φ4

=
4B

9A2
, σ̄2

φ3
=

8B

9π2A2
. (4.6)

Thus θ estimated from the third harmonic has a noise variance about four times

smaller if compared with the estimation from the second and fourth harmonics.

The estimated pattern phase offset can be used to compute the second depth

map of the scene with a SL approach. If the pattern phase image θref is captured

on a reference scene for which the distance dref from the camera is known, e.g.,
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Fig. 4.4: Geometry of the SL acquisition on target and reference scenes.

a straight wall orthogonal to the optical axis of the camera, then it is possible to

estimate the depth of any target scene by comparing pixel by pixel the estimated

phase image θtarget with the reference one (see Fig. 4.4).

A similar approach has been exploited by Xu et Al. in [58] for standard color

cameras in a structured light system. In that case a phase unwrapping of the phase

images has to be applied before being able to estimate the depth. This can be

obtained by projecting multiple lower frequency patterns on the scene. Assuming

that θref and θtarget have been phase unwrapped in θPUref and θPUtarget, the depth of the

target scene can be estimated as:

dSL = dref

(︂
1 +

Q

b

(︁
θPUref − θPUtarget

)︁)︂−1

(4.7)

where dref is the distance between the reference scene and the ToF camera, Q

is a parameter related to the acquisition system setup that can be estimated by

calibration and b is the baseline between the camera and the projector, 3 cm in the

proposed setup. In standard SL systems a bigger baseline (e.g., 10 cm) is required

to reliably estimate depth in the far range. Here, we can afford a smaller baseline

since we can exploit the ToF depth (more reliable in the far range) in the fusion

process described in Section 4.2.4 to obtain a more reliable depth map. Moreover,

a smaller baseline reduces the problem of occlusions in standard SL estimation.

We avoid the use of additional patterns for phase unwrap θ by employing the
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ToF depth map computed with the method of Section 4.2.1. The idea is to use the

phase image θToF , the one that would have produced the ToF depth map in case

of a SL acquisition, to apply an implicit phase unwrapping. We can compute the

depth with the SL approach assisted by the ToF estimation as:

dSL = dref

(︂
1 +

dref − dToF
dToF

+
Q

b

(︁
θToF − θtarget

)︁
[−π;π]

)︂−1

(4.8)

where:

θToF = θref −
b

Q
· dref − dToF

dToF
(4.9)

In this approach we are using θToF as a new reference phase offset to be used

to estimate the SL depth map related to θtarget. The complete derivation of the SL

implicit phase unwrapping is reported in Appendix C.2.

In this case the variance of the noise corrupting dSL can be computed from error

propagation analysis (see the Appendix C.3 for more details):

σ2
dSL

=
(︂
Q
d2target
drefb

)︂2
σ2
θ . (4.10)

From Eq. 4.10 it is possible to notice that the depth estimation accuracy im-

proves if we increase the baseline between the sensor and the projector and it

degrades with the increase of the depth that we are going to estimate. This is a

common behavior for SL systems. The reference scene distance dref has no effect

in the accuracy since Q is directly proportional to dref .

4.2.4 Fusion of ToF and SL Depth Maps

The approaches of Sections 4.2.1 and 4.2.3 allow to compute two different depth

maps, one based on the Time-of-Flight estimation with MPI correction (the STM-

ToF acquisition) and one based on a SL approach. In the final step, the two depth

maps have to be fused into a single accurate depth image of the scene. The exploited

fusion algorithm is based on the Maximum Likelihood (ML) principle [59]. The idea

is to compute two functions representing the likelihoods of the possible depth values

given the data computed by the two approaches and then look for the depth value Z

that maximizes at each location the joint likelihood that is assumed to be composed
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by the independent contributions of the two depth sources [59,60]:

dfus(i, j) = argmaxZP
(︁
IToF (i, j)|Z

)︁
P
(︁
ISL(i, j)|Z

)︁
(4.11)

where P
(︁
IToF (i, j)|Z

)︁
and P

(︁
ISL(i, j)|Z

)︁
are respectively the likelihoods for the

STM-ToF and SL acquisitions for the pixel (i, j) while IToF (i, j) and ISL(i, j) are

the computed data (in our case the depth maps and their error variance maps).

The variance maps are computed using the error propagation analysis made in

Sections 4.2.2 and 4.2.3 starting from the data extracted from the Fourier analysis

of the ToF correlation function. They allow to estimate the depth reliability in

the two computed depth maps and they are fundamental in order to guide the

depth fusion method towards obtaining an accurate depth estimation. Different

likelihood structures can be used, in this work we used a Mixture of Gaussians

model that is more robust against the flying pixel issue [61]. For each pixel and

for each estimated depth map (from SL or STM-ToF approach), the likelihood is

computed as a weighted sum of Gaussian distributions estimated on a patch of

size (2wh + 1) × (2wh + 1) centred on the considered sample. For each pixel of

the patch we model the acquisition as a Gaussian random variable centred at the

estimated depth value with variance equal to the estimated error variance. The

likelihood is given by a weighted sum of the Gaussian distributions of the samples

in the patch with weights depending on the Euclidean distance from the central

pixel. The employed model in the case of the ToF measure is given by the following

equation:

P (IToF (i, j)|Z(i, j)) ∝
wh∑︂

o,u=−wh

e
− ||(o,u)||2

2σ2s

σToF (i+ o, j + u)
e
−

(︁
dToF (i+o,j+u)−Z(i,j)

)︁2
2σ2
ToF

(i+o,j+u) (4.12)

where σToF (i, j) is the standard deviation of the depth estimation noise for

pixel (i, j) as computed in Section 4.2.2, σs manages the decay of the distribution

weights with the spatial distance in the considered neighbourhood of (i, j). In our

experiments we fixed σs = 1.167 and wh = 3, i.e., we considered data in a 7 × 7

neighbourhood of each pixel. The likelihood P (ISL(i, j)|Z(i, j)) for the SL depth is

evaluated in the same way just by replacing ToF data with SL data.
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In order to speed up the fusion of the two depth maps, we restricted the candi-

dates for dfus(i, j) in a range of 3 times the standard deviation from the computed

depth values for both the ToF and SL estimations.

4.2.5 Results of the Fusion Method on the STM-ToF

In this section, the performance of the proposed fusion method is analysed and

compared with standard ToF acquisitions, with the spatio-temporal modulation

implemented on the ToF system (STM-ToF) introduced in [51] and described in

Section 4.2.1 and finally with the multi-frequency method of Freedman et al. (SRA)

[34]. For the comparison with [34] we performed the experiments using 3 modulation

frequencies, i.e., 4.4, 13.3 and 20 MHz in order to have the maximum frequency

equal to the one we used for a fair comparison and the others selected with scaling

factors similar to those used in [34]. We have used a synthetic dataset for which the

ground truth geometry of the scenes can be accurately extracted to test the different

approaches. In this way a reference depth ground truth for the ToF acquisitions

is available and can be used for the numerical evaluation. This synthetic dataset

is simulated with the Sony ToF Explorer simulator realized by Sony Eutec (see

Section 3.3.2). The evaluation scenes are a subset of 21 scenes contained in S1,train

and S1,test which have a maximum depth of 4 m, since the proposed method is

designed for short range scenes. The camera parameters used in the simulations

are the same of the Sony DS541 camera. The 21 ToF acquisitions have as subject

scenes with complex textures and objects with different shape and size, in order to

test the methods on various illumination and MPI conditions.

The performance of the proposed method are first discussed from a qualitative

and then from a quantitative point of view. Fig. 4.5 shows the depth maps and

the corresponding error maps for the different components of our approach on four

synthetic scenes. In particular, the first row contains the ground truth depth maps.

The second and the third rows show respectively the depth maps and the error maps

(equal to the acquired depth minus the true depth) for a standard ToF camera using

four samples of the correlation function. The fourth and the fifth rows show the

results for the STM-ToF approach based on [51] and implemented as discussed in

Section 4.2.1. In the sixth and seventh rows instead we collected the depth and
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Fig. 4.5: Qualitative comparison for STM-ToF, SL and their fusion on some sample
scenes. All the values are measured in meters. In the error maps, dark red is
equivalent to 0.5 m, dark blue to −0.5 m and green to no error.
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Fig. 4.6: Qualitative comparison for STM-ToF and SL regarding their true error
and the estimate of their standard deviation, σToF and σSL, on some sample scenes.
All the values are measured in meters. In the error maps, dark red is equivalent to
0.5 m, dark blue to −0.5 m and green to no error.

the error maps obtained with the SL approach on ToF acquisitions as described in

Section 4.2.3. The output of the proposed fusion approach given by the combination

of the MPI correction method based on [51] with the SL depth maps by exploiting

the estimated standard deviation of their error, σToF and σSL used in Equation 4.11

and 4.12 and computed as discussed in Section 4.2.2 and 4.2.3, is represented in the

eighth and ninth rows of Fig. 4.5. Notice that the two depth fields going to be fused

are captured together with a single ToF acquisition as described in Section 4.2.1.

Fig. 4.6 shows a comparison between the error for the STM-ToF and SL and the

estimation of their standard deviations, σToF and σSL, used in the fusion process.

The σToF and σSL are a good metric to evaluate the error corruption distribution

and so they can reliably guide the fusion of the two depth fields.

As it is possible to observe from Fig. 4.5, the standard ToF acquisitions are

characterized by a dramatic overestimation of the depth near to the corners caused

by the MPI phenomenon. Differently, by using the STM-ToF approach the depth

overestimation due to MPI is reduced (no more uniform red regions in the error

maps) as it can be seen in column 2 and 3 from the corners composed by the floor

and walls. On the other hand, the data appears to be much more noisy, in particular

in regions where only a small amount of light is reflected back (e.g., distant corners

and the borders of the tiles on the floor in column 2). This problem of the STM-ToF

approach was already pointed out in Section 4.2.2, indeed the depth generated with
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MAE (all) MAE (valid* )
[mm] [mm]

ToF 20MHz 73.9 56.8
STM-ToF [51] 93.4 65.2

SL 80.8 49.7
SRA [34] - 50.8
Proposed 21.8 14.2

Table 4.1: Mean Absolute Error (MAE) for the compared approaches on the syn-
thetic dataset averaged on the 21 scenes (measured in millimeters).
*: The minimization used by SRA does not give an outcome for all points, for a
fair comparison we also show the results on the subset of points computed by SRA.

this approach has an error variance that is about four times higher than a standard

ToF acquisition with the same settings. Concerning the depth maps estimated with

the SL approach, also in this case the overestimation due to MPI is absent, but there

are artifacts not present in standard ToF acquisitions. The overestimation close to

corners is almost completely removed and the amount of noise on flat surfaces is

less than in the ToF approach. On the other hand, there are artifacts in heavily

textured regions (e.g., on the back in column 1) and sometimes the color patterns

can propagate to the depth estimation (the following section discusses this issue).

By observing the depth and error maps obtained with the proposed fusion approach,

it is possible to see that both the MPI corruption and the zero-mean error have been

reduced obtaining a much higher level of precision and accuracy when compared

with the other approaches. In particular, notice how there is much less zero-mean

noise, the MPI corruption is limited to the points extremely close to the corners

and artifacts of both methods like the ones on the border of the tiles have been

removed, without losing the small details in the scenes.

The qualitative discussion is confirmed by the quantitative comparison. We

used the Mean Absolute Error (MAE) as metric for the comparison. Table 4.1

collects the results averaged on the 21 scenes that compose the dataset while Fig.

4.7 contains a pictorial representation of the error histogram.

The MAE values and the histogram show that standard ToF acquisition has a

bias due to the overestimation caused by MPI. This bias is much reduced by the

STM-ToF, SL, SRA and proposed methods. The STM-ToF [51] strongly reduces

52



4.2. SPATIO-TEMPORAL MODULATED TOF

Fig. 4.7: Histogram of the error distribution for the considered methods.

ToF 20MHz STM-ToF SL Fusion Ground
Depth Error Depth Error Depth Error Depth Error Truth

Fig. 4.8: Critical cases in which the method reduces the overall level of error but
adds small distortions. All the values are measured in meters. In the error map
dark red is equivalent to 0.5 m, dark blue to −0.5 m and green to no error.

MPI but it has a high MAE due to the increased noise level. Concerning SRA,

it reduces the positive bias in the error due to MPI but not so effectively as the

proposed method. The main reasons for this not optimal behavior of SRA are

that it is susceptible to noise and that the sparseness assumption for the global

component is not completely fulfilled in a diffuse reflection scenario. Finally, it is

possible to notice that the proposed method outperforms all the other approaches

achieving a lower MAE and removing MPI. Furthermore, the histogram in Fig. 4.7

shows that the initial biased error of the standard ToF estimation is moved close

to 0 by the proposed method and that the overall variance is much smaller for our

approach compared to all the others.

In Fig. 4.8 instead we depicted a couple of critical cases in which the proposed

method is able to reduce the overall level of error, but it adds some small undesired

distortions. In the first case (row 1), the SL estimation is corrupted in the regions

53



CHAPTER 4. TOF DEPTH DATA REFINEMENT

that present a strong local variation of the color (see the vertical stripe in the color

view), a well-known problem of Structured Light systems. In the fusion process the

effect of this issue are reduced but not completely removed. The second line of Fig.

4.8 shows that the SL estimation adds a distortion near to the center of the corner

due to the refection of the patterns. This is a second well-known issue related to

the systems which employ SL approach [36]. This could be solved by increasing the

spatial frequency of the projected patterns but the small resolution of current ToF

camera makes this solution challenging to apply. The aforementioned distortions

are reduced but not completely corrected by the proposed fusion approach.

We have not presented an evaluation of this method implemented on a real device

yet. However, we are considering to build a prototype camera using a modified ToF

device in combination with a DMD projector as also done by O’Toole et al. in [62].

4.3 Data Driven ToF Data Refinement

The second approach introduced in this chapter is a data driven ToF data refine-

ment approach. It does not require any hardware modifications on the standard

commercial ToF cameras, and in principle it can be implemented on any commercial

multi-frequency ToF (MF-ToF) cameras able to record depth and amplitude using

the modulation frequency set to 20, 50 and 60 MHz. The task is to obtain accurate

ToF depth data by removing MPI corruption and reducing zero-mean error related

to shot noise and thermal noise. Here, two different implementations are presented

and their performance will be evaluated.

In the first method, here named R-CNN+B, the MPI is estimated by exploiting a

Convolutional Neural Network (CNN) whose input are data extracted from a MF-

ToF camera, while the zero-mean error is reduced by an adaptive bilateral filter,

guided by the noise statistic estimated on the input data.

In the second method, here named TD-CNN, a CNN has to correct both the

MPI and the zero-mean error using as input the same data used by the previous

method and to output the ToF depth (TD).

In the next of this section, the basic principles of CNNs will presented and then

their use in R-CNN+B and TD-CNN will be introduced. The performance of the

proposed ToF depth refinement methods will be evaluated and compared with other
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state-of-the-art methods on both a synthetic and real datasets.

4.3.1 Introduction to Covolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialization of Artificial Neural

Networks (ANNs), which are computing systems which “learn” to perform tasks

by observing examples of data and inferring some knowledge from these. In par-

ticular, the tasks considered in this thesis are ToF data refinement and semantic

segmentation. ANNs try to emulate the learning and recognition process in human

brain. The basic building element of an ANN is the artificial neuron, that is its

basic computing unit. As depicted in Fig. 4.9, the neuron takes as input different

scalar values and it computes their weighted sum, possibly adding a bias b, and

sequentially applies a non linear activation function f on it.

Σ 𝑓

𝑤1𝑥1

×

𝑤𝑛−1

𝑤𝑛𝑥𝑛

×

×
𝑥𝑛−1

𝑏

…

Fig. 4.9: Working scheme of the artificial neuron.

One of the most popular non linear activation functions is the Rectified Linear

Unit (ReLU) that applies the following operation to its input

ReLU(x) = max(0; x). (4.13)

In the next of this thesis, ReLU activation will be employed in ANNs if not differ-

ently mentioned. However, other activation functions as the sigmoid and the leaky

ReLU exist and a comprehensive analysis and discussion about them can be found

in [63].

In ANNs, the neurons can be organized in layers and different layers are typically

applied in cascade. In this way, each layer produces some output that will be used
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as input features for the next layer. This enables to create complex functions and so

to extract high level information from the input data. Fig. 4.10 shows an example

of fully connected neural network in which there are three layers with six, five and

five neurons. The peculiarity of fully connected neural networks is that each node

of the i − th layer is connected to all the neurons of the (i + 1) − th layer. This

kind of structure is very powerful since each element of the output is function of

the whole input. However, the number of parameters is huge since each layer has a

number of parameters that can be computed as

nparams, layer i = nneurons, layer i−1 · (1 + nneurons, layer i) (4.14)

and it linearly increases if the number of neurons in the layer before, the size of the

input, increases.

𝑖𝑛𝑝𝑢𝑡

𝑙𝑎𝑦𝑒𝑟 1

𝑙𝑎𝑦𝑒𝑟 2 𝑙𝑎𝑦𝑒𝑟 3 𝑜𝑢𝑡𝑝𝑢𝑡

Fig. 4.10: Example of fully connected ANN, with layers organized in cascade. This
network has three layers respectively with six, five and five neurons. The third layer
produces the output of the network.

Convolution Neural Networks (CNNs) are neural networks which require a smaller

number of parameters. To do so, it is assumed that an output of the neural network

is only influenced by a neighborhood of data in the input and so the spatial corre-

lation of the data is exploited to estimate the output. In case of ordered data as

audio signals (1D), gray scale images (2D) or color images (3D, tensor), the neurons

in a layer are not connected to the whole input but they are organized as a kernel

of a filter that is then convoluted with the input to produce the output. In case of

tensors, the convolutional kernel contains H ×W ×D weights, where H, W and D
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are respectively the height, width and depth of the kernel representing the neuron.

The depth of the kernel is usually equal to the depth of the input feature (it can be

different for 3D convolutional kernels, but this case will not be considered in this

thesis). In each layer, it is possible to have multiple kernels and each of them con-

tributes to an entry in the third dimension of the produced feature. For example, if

the input feature of a layer has dimension h×w×D and there are K kernels with

dimension H ×W ×D, then the output feature will have dimension h′ × w′ ×K.

The application of padding on the input or eventual stride operations influence the

actual value of h′ and w′.

𝐶𝑂𝑁𝑉
𝑙𝑎𝑦𝑒𝑟

𝐶𝑂𝑁𝑉
𝑙𝑎𝑦𝑒𝑟

𝑃𝑂𝑂𝐿
𝑙𝑎𝑦𝑒𝑟

𝐶𝑂𝑁𝑉
𝑙𝑎𝑦𝑒𝑟

𝐶𝑂𝑁𝑉
𝑙𝑎𝑦𝑒𝑟

𝑃𝑂𝑂𝐿
𝑙𝑎𝑦𝑒𝑟

𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
𝑙𝑎𝑦𝑒𝑟

𝐶𝑙𝑎𝑠𝑠
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

Fig. 4.11: Example of CNN classifier.

Fig. 4.11 shows an example of a CNN classifier, in which the input is a color

image and a series of convolutional layers are applied in cascade. In the image,

the black box highlights where the convolutional kernel is applied. The kernel is

used to filter the whole input feature map. In CNNs, pooling layers are usually

applied. These layers sub-sample the internal features in order to reduce their size

and consequently increase the receptive field of the network. Pooling operators

could be implemented as max or mean pooling, which respectively extract a patch

from the input feature and for it just one value, the output of the aforementioned

operations on the patch, is stored. Usually, CNN classifiers have as last stage a fully

connected layer in which the probability that the input image belongs to a specific

class is associated to to the output of a neuron.

Neural Network Training

After defining the architecture of a neural network, it is required to train it to make

it able to accomplish a task, that can be a classification or a regression task. To

train a network means to optimize all the network weights and biases, θ ∈ Rd, to

minimize a loss function L that indicates how good is the network at the target
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task. Here, the supervised training case is considered. This is the case when there

exists a training set of data with the related ground truth, the desired network

output for the considered input. However, unsupervised training is possible as it is

discussed in the next chapter.

Given a set of input, the loss L has to measure the error between the output of

the network and the true value that is desired. In case of a regression task as depth

data denoising, the l1 norm is a suitable loss function. In this case, the loss can be

formulated as

L1 = E[|net(input)− gt|1]. (4.15)

Unfortunately, it is not possible to compute the expectation of the error and then

to optimize the network weights and biases to minimize the loss L1. A possible

alternative solution is to take a batch of examples from the dataset, the training

set, and to compute the gradient of the error, ∇θiL, between the network output

and the ground truth on this data with respect to each network parameter θi. After

computing the gradient, it is possible to update each network parameter in order

to reduce the error on this batch as

θi = θi − λ · ∇θiL (4.16)

where λ is the learning rate and it manages the magnitude of the update at every

training step. This is the so called Stochastic Gradient Descent (SGD). Different,

more elaborated techniques to update the network parameters are proposed in lit-

erature, and among these the ADAM algorithm [64] is one of the best performing.

ADAM will be the technique used for the optimization of the CNNs in the next of

this chapter. The optimization process is repeated for all the batches in the training

set. The term epoch is used to refer to one complete usage of the dataset. Usually,

a neural network is trained for several epochs before reaching a stabilization of the

error.

To define the architecture and the required number of layers of the ANN, a

second dataset, different from the training set, is used to evaluate if the trained

network is able to generalize to unseen data. This dataset is named validation

set and the validation error can be used to interpret if the network has sufficient

capacity or if it is too complex and so it over-fits on the training set.
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After this short introduction to ANNs and CNNs, the next of this chapter will

focus on how CNNs can be used to refine ToF data.

4.3.2 R-CNN+B: MPI Estimation and Noise Filtering

In the method R-CNN+B, but also in TD-CNN, the idea is to use a CNN, whose

input is composed by features extracted from a MF-ToF camera, in order to exploit

the frequency diversity of the MPI phenomenon to evaluate if the MPI is acting and

in case what is the amount of depth distortion due to it. Indeed, by recalling Eq.

2.10, where the ToF correlation function in case of MPI is formulated, the values

of the corrupted ToF phase ϕFF and amplitude AFF change when the modulation

frequency changes unless no MPI is acting. Unfortunately, no close-form solution

exists to estimate the correct phase (ϕd) given the ToF acquisition at different

frequencies. For this reason, we proposed to use a CNN as a predictor to try to

recover ϕd.

Here, we used data from a ToF camera that captures the scene using the mod-

ulation frequencies set to 20, 50 and 60 MHz. We extracted some features that

are meaningful for MPI analysis directly exploiting the frequency diversity on the

acquired depth and amplitude images. Moreover, we designed the proposed CNNs

to exploit also the information about the geometry of the scene to estimate the

MPI, as done in some approaches using single frequency data as [30,47,48].

Regarding R-CNN+B, the general architecture of the depth refinement method

is shown in Fig. 4.12.

The data acquired by the MF-ToF system are first pre-processed in order to

extract a representation that contains relevant information about the MPI presence

and strength. As detailed in the next section, where also the motivation for the

selection of each input source is presented, the deep network has five different input

channels containing the ToF depth extracted from the phase at 60 MHz, the differ-

ence between the depth maps at different frequencies and the ratio of the amplitudes

also at different frequencies.

The employed CNN architecture, R-CNN, is made of two main blocks, a coarse

network that takes in input the five representations and estimates the MPI at low

resolution and a fine network that takes in input the five representations and the
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Fig. 4.12: Architecture of the R-CNN+B depth refinement method.

output of the coarse network in order to estimate the MPI interference at full

resolution. The estimated multi-path error is then directly subtracted from the

ToF depth map (at 60 MHz), thus obtaining a depth map free from MPI distortion

(but still affected by other zero-mean error sources).

The resulting depth map is first filtered with a 3 × 3 median filter in order to

remove depth outliers, then the final output of the proposed method is obtained

by further filtering it with an adaptive version of the bilateral filter [65] because of

its capability of reducing noise while preserving edges. Bilateral filters have been

already used on ToF data [66, 67], specially to denoise and upsample the depth

map using information from a standard video camera. In our implementation the

bilateral filter is guided by the noise information estimated from the received signal

amplitude and intensity from which the error variance related to shot noise can be

estimated. As suggested in [68], we fixed the spatial smoothing parameter σd to

a constant value, while the range parameter σr is taken proportional to the level

of noise. We made the bilateral filter adaptive by using a per pixel noise model

for σr. In particular we took σr = cr · σn, where σn is an estimate of the depth

noise standard deviation due to shot noise by means of Eq. 2.9. We optimized the

values of σd and cr on a subset of the synthetic training dataset. Then, we used the

selected values (σd = 3 and cr = 3.5) in the evaluation phase.
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ToF Data Representation

As mentioned before, we used a CNN to estimate the MPI corruption on the ToF

depth map at 60 MHz that is phase unwrapped by using the 20 MHz and 50 MHz

ToF data. Notice that these frequency values have been selected since they resemble

the ones used in real world ToF cameras. We also investigated the possibility of

performing the phase unwrapping using the proposed CNN (introduced in the next

section), but the disambiguation using the MF data proved to be reliable and the

deep network optimization is more stable if already phase unwrapped data is fed to

it. A critical aspect is the selection of input data that should be informative about

the MPI phenomenon. We decided to use as input the following elements:

� The first input C1 = d60 is the ToF depth map at 60 MHz. It is required

not only because it is the corrupted input that needs to be denoised but

also because the geometry of the scene influences the MPI error and the ToF

depth represents the best estimate of the geometry available before the MPI

removal process. We selected the depth captured at 60 MHz since the higher

the modulation frequency, the more accurate the depth estimation.

� The difference between the depth maps estimated at the different modulation

frequencies, used since the MPI corruption changes with the frequency (gen-

erally the higher the modulation frequency, the smaller is MPI [69]). We used

the differences between the depths at 20Mhz and 60Mhz, and between the

ones at 50Mhz and 60Mhz, i.e., C2 = d20 − d60 and C3 = d50 − d60.

� The ratio of the amplitudes of the received light signal at different modulation

frequencies. In presence of MPI the light waves experiences destructive inter-

ferences and in ToF data acquired in presence of MPI the higher the modula-

tion frequency, the lower the resulting amplitude. For this reason, comparing

the amplitudes at different frequencies gives us a hint about the MPI pres-

ence and strength. We used the ratios between the amplitudes at 20Mhz and

60Mhz, and between the ones at 50Mhz and 60Mhz, i.e., C4 = (A20/A60)−1

and C5 = (A50/A60)− 1. We decided to use the ratio between the amplitudes

since in this way it is possible to cancel out the gain of the sensor, that can be

different for different sensors, making the method more robust to hardware
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changes. The “−1”term has been introduced to center the data around 0 in

case of MPI absence.

The proposed CNN, R-CNN, aims at estimating the MPI corruption on the 60

MHz depth map: the targets for the training procedure have been computed by

taking a filtered version of the difference between d60 and the ground truth depth

dGT (the filtering is used to remove the zero mean error, notice that MPI is a low

frequency noise). We decided to use this set of inputs for the proposed Coarse-

Fine CNN since depth and amplitude are data which are generally accessible from

commercial ToF cameras. We have tried to use subsets of the input data, but this

reduced the performance in MPI estimation. Notice that other techniques based on

multi-frequency approaches as [34, 54] use a per pixel model based on the sparsity

of the backscattering vector, that is the vector containing the arrival time of each

modulated light ray, while in our proposal we are implementing a data driven model

that will suit the diffuse reflection case and thanks to the CNN receptive fields we

are capturing the geometrical structure of the scene in addition to the frequency

diversity. We decided to pre-filter the CNN inputs with a 5 × 5 median filter to

obtain a more stable input and reduce their zero-mean variation.

Proposed Deep Learning Architecture

The architecture of the proposed Coarse-Fine CNN is shown in Fig. 4.13: the

network is made of two main parts, a coarse sub-network and a fine one.

Since the MPI phenomenon depends on reflections happening in different loca-

tions, a proper estimation of its presence needs a relatively wide receptive field of

the CNN in order to understand the geometrical structure of the scene. Follow-

ing this rationale, the coarse network performs an analysis of the input data by

applying downsampling with pooling layers increasing the receptive field as a con-

sequence. The coarse network takes in input the five data channels described in the

previous section and it is made of a stack of five convolutional layers each followed

by a ReLU with the exception of the last one. The first two convolutional layers

are also followed by a max-pooling stage reducing the resolution of a factor of 2.

All the layers perform 3× 3 pixels convolutions and have 32 filters, except the last

one that has a single filter, producing as output a low resolution estimate of the
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Fig. 4.13: Architecture of the Coarse-Fine CNN used for MPI estimation in the
R-CNN+B method.

MPI. The estimated MPI error is finally upsampled of a factor of 4 using a bilinear

interpolation in order to bring it back to the original input resolution. This network

allows us to obtain a reliable estimate of the regions affected by MPI but, mostly

due to the pooling operations, the localization of the interference is not precise and

directly subtracting the output of this network to the acquired data would lead

to artifacts specially in proximity of the edges. For this reason, we used a second

network working at full resolution to obtain a more precise localization of the error.

This second network also has five convolutional layers with 3× 3 convolutions and

ReLU activation functions (except the last as before). It has instead 64 filters for

each layer and no pooling blocks. The input of the first layer is the same of the

previous network but the fourth layer takes as input not only the output of the

third layer but also the upsampled output of the coarse network. This allows us to

combine the low resolution estimation with a wide receptive field of the previous

network with the more detailed but local estimation done by the fine network and

to obtain an MPI estimation that captures both the scene global structure and the

fine details.

The network has been trained using the synthetic dataset S1,train of Section 3.3.

Even if it is one of the largest ToF dataset with multi-frequency data and ground

truth information, its size is still quite small if compared to datasets typically used

for CNNs training. In order to deal with this issue and avoid over-fitting we applied

data augmentation techniques on the training data as random sampling of patches,
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rotation and flipping operations. We extracted 10 random patches of size 128×128

pxl from each of the 40 scenes, then we applied to each of them a rotation of ±5
degrees and horizontal and vertical flipping.

This leads to a total of about 40× 10× 5 = 2000 patches (invalid patches with

non complete covering on rotated images have been excluded), that represents a

good amount of data for the training of the proposed deep network. The number

of patches could be increased by using smaller patches, but this would weaken the

ability of the network to understand the geometrical structures of the scenes and

to retrieve the MPI corruption.

Due to the small amount of data we have used K-fold cross-validation with K=5

on the training set to validate the hyper-parameters of the CNN and of the training

procedure as the architecture of the network, the number and depth of the layers,

the learning rate and the regularization constant. We have divided the 40 scenes

of the training set into 5 folds of 8 scenes each, then we have selected one fold as

validation set and used the remaining for the training and repeated this procedure

for each of the folds. We have selected the CNN hyper-parameters in order to avoid

overfitting and obtain the minimum mean validation MAE among the 5 folds. Once

the hyper-parameters have been selected, the CNN has been trained on the whole

training set.

For the training we minimized a combined loss made by the sum of two loss

functions, one computed on the interpolated output of the coarse network and the

other computed on the output of the fine network. This approach allowed to obtain

better performance than the separate training of the two sub-networks. Each of the

two loss functions is the l1 norm of the difference between the MPI error estimated

by the corresponding network and the MPI error computed by comparing the ToF

depth at 60 MHz with true depth as described in Section 4.3.2. The l1 norm is more

robust to outliers in the training process if compared with the l2 norm and had more

stable results in the validation of the network hyper-parameters. Furthermore the

use of l1 norm proved to be more efficient for image denoising [70]. During the

training, we exploited the ADAM optimizer [64] and a batch size of 16. We started

the training with an initial set of weight values derived with Xavier’s procedure [71],

a learning rate of 10−4 and a l2 regularization with a weighting factor of 10−4 for

the norm of the CNN weights. Fig. 4.14 shows the mean training and validation
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Fig. 4.14: Mean training (blue) and validation (red) error at each epoch of the
R-CNN.

error across all the epochs of the K-fold cross-validation: we trained the network

for 150 epochs, that in our case proved to be enough for the validation error to

stabilize. As mentioned above, we used K-fold cross-validation in order to have

a more informative metric to evaluate the real performance of the network and

to exclude over-fitting. The network has been implemented using the TensorFlow

framework and the training took about 30 minutes on a desktop PC with an Intel

i7-4790 CPU and an NVIDIA Titan X (Pascal) GPU. The evaluation of a single

frame with the proposed network takes instead just 9.5ms.

4.3.3 TD-CNN: Depth Denoiser CNN

This section introduces the TD-CNN method able to reduce the noise and the MPI

distortion. Differently from R-CNN+B, the denoiser CNN used in this method tries

to combine the two refinement steps together, without requiring the application of

the adaptive bilateral filter. Many aspects of the used CNN are similar to the one

presented in the previous sections.

First of all, the CNN input features are extracted from the same multi-frequency

ToF data captured at 20, 50 and 60 MHz. These are C1 = d60, C2 = d20 − d60,

C3 = d50− d60, C4 = (A20/A60)− 1 and C4 = (A20/A60)− 1. But in this case, these

features are not pre-filtered and they have been used to feed the CNN as they are.

Indeed, here the task is not to estimate the low-frequency MPI depth corruption,
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Fig. 4.15: Architecture of the Coarse-Fine CNN used in the TD-CNN method.

for which small local variation are not important, but to directly recover to refined

depth map. The same considerations about the meaningfulness of these features

w.r.t. the MPI phenomenon hold.

Regarding the CNN architecture used in TD-CNN, it has the same Coarse-Fine

structure used in the previous method. It uses the aforementioned not-filtered input

in order to output the refined scene depth map. Fig. 4.15 shows the employed CNN

architecture.

However, in TD-CNN the input ToF depth map acquired at 60 MHz (d60) the

depth we want to denoise, is directly summed to the output of the CNN branches.

In this way, the CNN layers have to internally estimate the error map, as in the

previous method, which is summed to the noisy depth map in order to correct it.

Apart from this, the two Coarse-Fine CNN layer structures are identical.

Also in this case, the CNN is trained on the S1,train dataset and the mentioned

data augmentation techniques have been used during the training. For the training,

we minimized a combined loss composed by the sum of two loss functions, one

computed on the interpolated output of the coarse network and the other computed

on the output of the fine network. Each of the two loss functions is the l1 norm of

the difference between the depth map estimated by the corresponding network and

the true scene depth. We started the training with an initial set of weight values

derived with Xavier’s procedure [71], a learning rate of 10−4 and a l2 regularization

with a weighting factor of 10−4 for the norm of the CNN weights. These network

hyper-parameters have been validated by means of 5-fold cross-validation and the
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Fig. 4.16: Mean training (blue) and validation (red) error at each epoch of the
TD-CNN.

mean validation and training error, related to this validation, are shown in Fig. 4.16.

We trained the network for 150 epochs. The network has been implemented using

the TensorFlow framework and the training took about 30 minutes on a desktop

PC with an Intel i7-4790 CPU and an NVIDIA Titan X (Pascal) GPU.

Both the training and validation error are higher that the ones reported for

the R-CNN. This happens because in this case also the zero-mean error related to

thermal and photon shot noise are taken in account and no pre-denoising of the

input and of the output is applied.

4.3.4 Training and Test Datasets

This section describes the training and test datasets used for the methods evalua-

tion. It is complex and time consuming to collect a real world dataset big enough for

CNN training with ToF data and the related depth ground truth. For this reason,

we decided to exploit a dataset composed by synthetic scenes, for which the true

depth is known. In particular, we used the S1 dataset introduced in Section 3.3.

The ToF acquisitions have been performed with the Sony ToF Explorer simulator

realized by Sony Eutec able to faithfully reproduce ToF acquisition issues like the

shot and thermal noise, the read-out noise, artifacts due to lens effects, mixed pixels

and specially the multi-path interference. The S1 dataset is split in the training set

S1,train, composed by 40 scenes, and the test set S1,test, composed by 14 different

scenes. Each scene has been rendered from a virtual viewpoint with the ToF simu-
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lator in order to acquire the ToF raw data (amplitude, intensity and depth image)

at the modulation frequencies of 20, 50 and 60 MHz. The scene depth ground truth

is available for each scene ToF simulation.

The ToF denoising methods have been also tested on the ToF real dataset S4.

As mentioned in Section 3.2.1, this dataset is composed by 8 scenes and is provided

with the ToF acquisitions at 20, 50 and 60 MHz and the related depth ground truth.

The S4 dataset has been used for testing purposes only, since they are to small to

be used for training.

More details about the employed datasets have been presented in Chapter 3.

4.3.5 Results of the Proposed Data Driven Methods

In order to evaluate the R-CNN+B and the TD-CNN methods, we used the two

different test sets presented in Section 4.3.4. The evaluation results related to the

synthetic dataset S1,test are presented in the next section. Then, the results on the

employed real world dataset S4 will be discussed. Due to the size of this dataset, it

has been used for evaluation purposes only.

Results on Synthetic Data

Fig. 4.17 shows the results of the application of the proposed methods on a subset

of the scenes extracted from S1,test and used for testing. It shows the input depth

map from the ToF camera at 60 MHz (with phase unwrapping), the depth map

after the application of the adaptive bilateral filter (ABF) and the final results

of the R-CNN+B and the TD-CNN methods with their related errors maps and

the depth ground truth information. By looking at the fourth and fifth rows it is

possible to notice how the adaptive bilateral filter is able to reduce the zero-mean

error by preserving the fine details in the scenes, e.g., the small moon in the castle

is preserved by the filtering process, but the depth overestimation due to MPI is

still present. From the sixth and seventh rows, it is possible to see how both the

multi-path error and the zero-mean noise have been widely reduced by the complete

version of R-CNN+B. For example in the first three scenes there is a very strong

multi-path distortion on the walls in the back that has been almost completely

removed by the proposed approach for MPI correction. The multi-path estimation
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is very accurate on all the main surfaces of the scenes, even if the task proved to

be more challenging on some small details like the top of the pots in columns 1 or

the stairs in column 2. However, notice that thanks to the usage of the Coarse-Fine

network the small details of the various scenes are preserved and there is no blurring

of the edges. This can be seen for example another time from the details of the castle

(e.g., the moon shape) in column 3. The box scene (column 4) is another example of

the MPI removal capabilities. Notice how the multi-path on the edges between the

floor and the walls is correctly removed. Also the error on the slope in the middle

of the box (that is more challenging due to bounces from locations farther away) is

greatly reduced even if not completely removed. The eighth and ninth rows show

the output of TD-CNN and the related error map. The MPI correction performance

is very similar to R-CNN+B. The main differences are in the managing of the noise

level. Since TD-CNN is trained having in input not filtered data and it is trained

to directly estimate the depth ground truth, it seems to slightly better recover the

very noisy regions as the floor in the scene contained in column 2. This evaluation

is confirmed also by numerical results, the Mean Absolute Error (MAE) is reduced

from 156 mm on the input data to 74.9 mm using R-CNN+B and to 62.1 mm using

TD-CNN.

Fig. 4.18 shows the impact of the various components of the Coarse-Fine CNN

architecture, used in R-CNN+B, on the castle and stairs scenes. The first column

shows ToF error at 60 MHz. The second column shows the estimation taken from

the interpolated output of the coarse network: notice how the general distribution

of the MPI is correctly estimated but the edges and details (e.g., the moon over

the castle) are lost in this estimation due to the pooling operations that reduce the

resolution. The last column shows instead the output of the Coarse-Fine architec-

ture and it is possible to notice how the general MPI distribution is maintained but

there is a much higher precision on boundaries and small details. The second row

shows the same data for the stairs scene, also in this case notice how the general

structure is the same but the estimation follows more accurately the shape of the

stairs in the Coarse-Fine output.

We compared the proposed methods with some competing approaches from

the literature. In particular, we considered the MF-ToF MPI correction scheme

proposed by Freedman [34] and the method based on deep learning presented by
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Fig. 4.17: Input depth map at 60 MHz, output of the adaptive bilateral filter
(BF) and output of the proposed approach (with MPI correction) on same sample
synthetic scenes with the corresponding error maps.All the values are measured in
meters.
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Error map Coarse CNN Coarse-Fine CNN

Fig. 4.18: Estimation of the MPI performed by the proposed approach using only
the coarse network or the complete Coarse-Fine architecture.

Marco in [30] that takes in input the depth map at 20 MHz to remove MPI. The

method proposed by Freedman was adapted to use the same triple of frequencies

used by the proposed approaches. The first column of Table 4.2 shows the MAE

obtained by comparing the output of the four methods with the ground truth data

on the synthetic dataset. R-CNN+B is able to reduce the error from 156 to 74.9

mm, reducing it to less than half of the original error. The TD-CNN is able to do

even better reducing the error to 62.1 mm. It also outperforms with a wide margin

the Freedman’s and Marco’s methods. The Freedman method [34] is able to remove

only about 10% of the error in the source data obtaining an accuracy of 140 mm.

The method of [34] works under the hypothesis that the light backscattering vector

is sparse and this is not true in scenes where diffuse reflections are predominant

as the considered ones. For this reason, its effectiveness is limited. The method

of [30] works under the assumption that the reflections are diffuse and it achieves

better results removing about 20% of the original error, but it is still far from the

performance of the proposed approaches. This is due to the fact that the CNN

proposed in [30] uses single frequency ToF data, instead we showed that a multi-

frequency approach can achieve much higher performance using a less complex

CNN.
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Synthetic data Real World data
MAE Relative Err. MAE Relative Err.
[mm] [%] [mm] [%]

ToF input (60 Mhz) 167.3 - 54.3 -
ToF input (20 Mhz) 327.8 - 72.8 -
Freedman et Al. [34] 149.8 89.5% 51.1 94.1%
Marco et Al. [30] 260.9* 79.6% 51.3* 70.5%
R-CNN+B 74.9 44.8% 31.9 58.7%
TD-CNN 62.1 37.1% 31.3 57.6%

Table 4.2: Mean MAE for competing schemes from the literature and for the pro-
posed approach on synthetic and real world data. The table shows the MAE in
millimeters and the relative error between the output of the various methods and
the error on input data. Our approach and [34] are multi-frequency methods and
are compared with the highest employed frequency (60 MHz) for the relative error,
instead [30] (*) is compared with the only frequency it uses (20 MHz).

Results on Real World Data

After evaluating the proposed approach on synthetic data, we preformed also some

experiments on real world data. For this evaluation we used the real test set in-

troduced in Section 4.3.4, S4, that is composed by 8 scenes. It has a more limited

variety of settings with respect to the synthetic data but still the scenes contain

objects of different sizes, types of material and surfaces with different orientations

where the MPI can arise. The Coarse-Fine CNNs were trained on the synthetic

dataset that is composed by scenes with ideal properties, e.g., the reflections are

perfectly diffuse, and due to some limitations of the simulator, the synthetic data,

even if quite accurate, does not exactly model all the issues of real data.

Fig. 4.19 shows the results of the application of the proposed approaches to the

set of real world scenes. As before, it shows the input depth map from the ToF

camera at 60 MHz and the depth map resulting after the application of the consid-

ered methods with their corresponding error maps and ground truth information.

By looking at the images, R-CNN+B and TD-CNN share similar performance in

reducing MPI. However, a noticeable amount of MPI error remains in the scenes.

It is possible to notice how the MPI is almost completely removed on the vertical

walls, in particular in proximity of edges between facing surfaces. The reduction is
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strong also on the small objects like the sphere, the cone or the deer even if some

multi-path in proximity of boundaries remains on these objects. On the other hand

the MPI error is under-estimated on surfaces with a strong inclination, in particular

the floor in the various scenes, where the approach is able to reduce only part of the

multi-path. By comparing Fig. 4.17 and Fig. 4.19 it is possible to notice how the

strong MPI on these surfaces (e.g., the floors) is not present in the synthetic scenes.

This is probably due to the fact that reflections happening on the considered real

materials are not ideally diffuse when the light rays are strongly inclined and the

ToF simulator does not model this phenomenon. More in general, this is a problem

of domain shift, that is happening when a network is trained on a domain, the syn-

thetic dataset, and tested on a different domain, the real dataset. Our approach, as

any other machine learning scheme, learns from the training data and is not able

to correct issues not present in the training examples. R-CNN+B and TD-CNN

have a different outcome related to the zero-mean error, with the first method that

is able to better smooth the flat surfaces.

We compared R-CNN+B and TD-CNN with [34] and [30] also on the real world

data. The results are in the third and fourth column of Table 4.2. On real data,

R-CNN+B is able to reduce the error from 54.3 to 31.9 mm, i.e., to 58.7% of the

original error, ad TD-CNN is able to reduce it to 31.3 mm. These are very good

performance outperforming both the compared approaches from literature even if

with a smaller gap than the one achieved on synthetic data. In particular, the

proposed methods were able to improve the accuracy of the depth estimation on all

the considered scenes: in the worst case scene the error was reduced to about the

70% of the initial error. Recall that the training is done on synthetic information

only, as pointed out in the visual evaluation the issues on the floor reduce the

performance. This is the quantification of the effect of the domain shift. The error

removal capability of [34] is limited also in this case, it removes about 5.9% of the

error. The method of [30] removes about 30% of the error and gets a bit closer to

ours in this experiment, but there is still a gap of more than 10%.

The next chapter will focus on the domain shit issue arising when a network

is trained on a domain and tested on a different one. In particular, the first part

will present an unsupervised domain adaptation method to reduce this issue for

TD-CNN on real data, even is no real ground truth is exploited.
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Fig. 4.19: Input depth map at 60 MHz and output of the proposed approach on
same sample real world scenes with the corresponding error maps.
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Chapter 5

Domain Adaptation

This chapter deals with the domain shift issue. This is a problem arising in machine

learning when a predictor is trained on a source domain and tested on a target

domain that is different from the source one. In a scenario like this, the performance

of the trained predictor decays in the target domain due to the intrinsic differences

between the two domain statistics. This problem is present regardless what is the

task of the predictor. A common case in which domain shift can be experienced

is when a simulator is used to generate the training set because it is complex to

collect couples of real input data and the related ground truth. In this situation a

synthetic dataset is the source domain and a real dataset is the target domain. In

the previous chapter, we already encountered this setting in case of ToF depth data

refinement.

The effects of domain shift can be fought by domain adaptation methods which

try to improve the performance of the predictor on the target domain. The next sec-

tion will present an overview about domain adaptation methods. Then, a domain

adaptation method for ToF depth data refinement will be introduced and its perfor-

mance evaluated. Another domain adaptation method for semantic segmentation

will be analysed in the last part of this chapter.
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5.1 Domain Adaptation for Neural Networks

Domain adaptation is a growing research area and this chapter will focus on the case

when it is applied in unsupervised way. A widely explored field for unsupervised

domain adaptation is the classification task. Domain adaptation is usually applied

by trying to reduce the differences between the statistic of the neural network

internal features on the source data and on the target data. Different approaches

have been proposed to implement this idea. Some focus on reducing the first order

[72, 73] and the second order [74, 75] statistic discrepancy of the network internal

features. Also variants of the batch normalization layers have been used to align

the features in the two domains [76–78]. Another interesting approach involves

the use of a domain classifier in order to understand if the intermediate network

features are coming from the source or the target domain [79, 80]. This domain

classifier is then used to implement an adversarial loss, similar to the one used in

generative adversarial networks (GANs) [81], to align the two data statistics. A

different approach involves the use of GANs to create new samples from the target

domain, with related label, and to train the task classifier exploiting these new

“fake” images to apply the unsupervised domain adaptation [82–84].

The ideas exploited in case of unsupervised domain adaptation for classifiers

have been reformulated and opportunely adapted to be applied in different learning

fields as semantic segmentation of color images and regression tasks. In particular,

unsupervised domain adaptation for semantic segmentation is acquiring attention

from the research community. Many semantic segmentation networks have been

proposed (see [85] for a recent review of the field). These show impressive perfor-

mance but they all share the fundamental issue that a large amount of labeled data

is needed for their training. They are typically trained on huge datasets with pixel-

wise annotations, e.g., the Cityscapes [86], CamVid [87] or Mapillary [88], whose

acquisition is highly expensive and time consuming. Recent research focuses on how

to deal with this issue by adapting the training done on a different set of data with

slightly different statistics to the problem of interest. A common setting for this task

is domain adaptation from synthetic data to real world scenes. The development of

advanced computer graphics techniques enabled to collect huge synthetic datasets

for semantic segmentation purposes. Examples of synthetic semantic segmentation
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datasets for the autonomous driving scenario are the GTA5 [89] and SYNTHIA [90]

datasets, which have been employed in part of our work presented in Section 5.4.1.

One of the first works to deal with cross-domain semantic segmentation is [91],

where the adaptation is performed by aligning the network internal features from

the different domains during the proposed adversarial training procedure. A similar

idea is exploited in [92], where the feature alignment is obtained using a generative

model built on GANs. A curriculum-style learning approach is proposed in [93],

where firstly the easier task of estimating global label distributions is learned and

then the segmentation network is trained forcing that the target label distribution

is aligned to the previously computed properties. Other approaches try to solve

the domain shift by translating the input synthetic data, whose pixel level seman-

tic map is known, in real data. An example is CyCADA [94] that uses a cycle

consistency to ensure that the semantic map of the scene is not corrupted in the

translation process. CrDoCo [95] is a recent improvement of the aforementioned

domain translation method. A different strategy is to align the output space of

the network [96,97]. Other approaches apply unsupervised adaptation for semantic

segmentation exploiting distillation loss [98] and entropy minimization [99].

Unsupervised domain adaptation for regression tasks is a less investigated field.

However, recent works have focused the attention to apply domain adaptation for

monocular depth estimation as in [100], where multi-task learning is exploited to

align the internal features of the network in the source and target domain. In [101],

feature alignment is implemented by means of an adversarial loss to adapt a network

trained for multi-task regression (normal, edge and depth from color image) from

synthetic to real data. An application of domain adaptation for stereo vision depth

estimation is presented in [102], where a self training guided by traditional stereo

vision algorithms is employed.

5.2 Introduction to Generative Adversarial Net-

works

Before introducing the domain adaptation techniques developed during my Ph.D.

work, it is worth to introduce the fundamental working principles of Generative
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Adversarial Networks (GANs). These systems exploit an adversarial loss to imple-

ment an unsupervised training, and this typology of loss will be exploited by the

domain adaptation techniques discussed in the next of this chapter.

GANs were initially introduced by Goodfellow et al. [81]. They are generative

models in which a neural network, called generator and here referred to as G, is

trained to generate images starting from random noise. The produced images have

to follow a predefined statistic, as the example shown in Fig. 5.1. The issue with

this task is that a mapping between random noise and target distribution does

not exist and so the idea from [81] was to implement a loss using a discriminator

network D, this is the so called adversarial loss.

Fig. 5.1: GAN training scheme. [103]

The idea is to train iteratively the generator and the discriminator in an adver-

sarial way. The discriminator is trained to try to understand if the input data is

coming from the target statistic (pdata) or from the generator statistic (pG(z), where

z ∼ pnoise is the random noise given as input to G). Differently, G is trained to

fool D by creating data belonging to the target statistic pdata. This means that G

and D are playing a two-player minimax game in which they want to overcome the

other one. From a mathematical point of view, the loss functions for the training

of D and G are complementary and the optimization problem can be represented

as

min
G

max
D

Ex∼pdata [log
(︁
D(x)

)︁
] + Ez∼pnoise [log

(︁
1−D(G(z))

)︁
]. (5.1)

In the equation above, the parameters of D are optimized to let it recognize the

data coming from the target distribution as belonging to the class 1 (Real) and the

data produced by G as belonging to the class 0 (Fake). Differently, G is trained
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Fig. 5.2: Architecture of the proposed approach.

to create data that are recognized by D as belonging to the class 1 (the target

distribution). As showed in [81], this optimization process reaches the stability in

a saddle point, when the data produced by the generator are not distinguishable

by the data sampled by the target distribution and so reaching the final goal of the

generator G.

The adversarial losses are very versatile, and they can be used when it is not

possible to access to the ground truth data and so the supervised training is not

possible. For this reason, the adversarial loss can be exploited in the domain

adaptation tasks which are presented in the next of this chapter.

5.3 Domain Adaptation for ToF Data Refinement

The previous chapter has shown how CNNs can be used to refine ToF depth data

in a really efficient way. However, due to the limited availability of real ToF data

with related depth ground truth, synthetic data have been used for the network

training. This choice showed the intrinsic limitation of training a network on a

domain, a synthetic dataset, and testing it on a different domain, a real dataset.

Here, a method for unsupervised domain adaptation for the ToF data refinement

task is presented. Our goal is to improve the performance of the denoiser network

on real data even if no real ground truth is accessible during the training.
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5.3.1 Proposed Method

For our work, we started from TD-CNN, that is the ToF depth data denoiser CNN

introduced in Section 4.3.3. In order to improve the performance of TD-CNN on

real data, without using real depth ground truth, we fitted it into a novel adver-

sarial learning framework, used to perform unsupervised domain adaptation from

synthetic to real data.

The general architecture of the proposed adversarial learning strategy is shown

in Fig. 5.2. The generator (G) of the adversarial learning framework is implemented

by means of the Coarse-Fine CNN TD-CNN. It takes different features extracted

from the sensor raw data as input and produces an estimate of the noise-free depth

map of the scene. The discriminator network (D), introduced in Section 5.3.3,

is used to captured the statistic of ground depth data and to guide the training

of the generator on real ToF data for which the ground truth is not available.

The adversarial learning procedure, implemented with the discriminator, will be

presented in Section 5.3.4.

The next sections introduce the networks used in the proposed framework and

how they are trained to implement an unsupervised domain adaptation.

5.3.2 Generator Network

The generator G is implement with the TD-CNN described in Section 4.3.3. How-

ever, other different denoising networks can be used, but we decided to keep this

CNN structure since it has very good performance. As explained in Section 4.3.3,

TD-CNN takes in input features extracted from the data acquired by the ToF cam-

eras using the modulation frequencies 20, 50 and 60 MHz. The idea is to exploit

the frequency diversity of the MPI phenomenon in order to correct it. The acquired

information is pre-processed in order to extract a representation IG that contains

relevant information about the MPI presence and strength: five different feature

channels have been extracted from the ToF data (see Section 4.3.3), thus obtaining

the following input representation:

IG=

(︃
d60; d20 − d60; d50 − d60;

A20

A60

− 1;
A50

A60

− 1

)︃
(5.2)
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where dx and Ax are the ToF depth and amplitude maps, captured at x MHz.

The input data IG is fed to the generator network in the proposed adversarial

learning framework. In the next of this chapter, the output of the of the coarse

branch will be referred to with dG,C = Gc(Ig) and the output of the final output of

the generator as dG = G(IG).

5.3.3 Discriminator Network

In order to perform unsupervised domain adaptation, we use a discriminator Con-

volutional Neural Network, denoted with D. We want the discriminator to capture

the relationships between the noisy depth data and the related noise image, in order

to realize a discrimination of denoised depth maps produced from G from ground

truth data. This will be used to drive the adversarial learning process in Section

5.3.4, that will force G to produce depth maps from synthetic and real data, that

are correctly denoised and resemble the properties of ground truth data. As intro-

duced in Section 5.3.1, the discriminator takes as input the noisy depth map dn and

the error map E. E can be the difference between the noisy depth map and the

ground truth depth Egt = dn − dgt or between the noisy depth map and the gener-

ator output EG = dn − dG). The discriminator aims to capture the joint statistics

of the couple ID;gt = (dn;Egt), that is (dgt +Egt;Egt) or equivalently (dn; dn − dgt),

giving as output 1 if the input follows this distribution. Instead, we want the dis-

criminator to discard all the data that does not follow the ground truth statistics

and are generated by G. To clarify, the output of D should be 0, if the input is

ID;G = (dn, dn−dG) = (dn, EG) and 1 if the input is ID;gt = (dn, dn−dgt) = (dn, Egt).

In an early version of the proposed work, we tried to use the standard approach of

feeding D with dgt as positive example, or the output of G, dG, as negative example.

After the domain adaptation, the generated data was not very close to the depth

ground truth, since this approach left too much freedom to the generator. Thus,

we employed the proposed two channel features. This choice forces D to focus on

the raw ToF depth map and on how the estimated error is related to it, preventing

the output of G to deviate from its input.

The architecture of the proposed discriminator network is shown in Fig. 5.3:

it is made of a stack of 5 convolutional layers. The first 4 have 4 × 4 convolution
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kernel windows with a stride of 2 and 16, 32, 64 and 128 filters respectively. Each

layer is followed by a batch normalization layer and a ReLU activation. The output

layer has 1 filter and no ReLU and batch normalization. The discriminator can be

trained by minimizing the following loss function:

LD = −E
(︂
log
(︁
D(ID;gt)

)︁
+ log

(︁
1−D(ID;G)

)︁)︂
(5.3)

Please note that we are using for the training of the whole system a synthetic

dataset provided with the ground truth depth of the scenes (dsgt) and an unlabeled

real dataset. In the rest of this discussion, we will use the “s” and “r” apexes to

distinguish between synthetic and real data.

In the true case ID;gt requires the ground truth dgt and so it can be constructed

only on the synthetic dataset. On the other hand, the fake data ID;G does not

require ground truth information and can be constructed for both real and synthetic

datasets.

In order to obtain better performance, we chose to train D on synthetic data

only (note that real data will instead be used in the adversarial training procedure

for G in Section 5.3.4). Otherwise, D would always recognize real data as fake,

since they were always used as negative examples. This allows to avoid training the

discriminator to distinguish between real and synthetic data instead of learning the

statistics of (dn;E) in the correct way.

On the other hand, the choice of using only synthetic data limits the capability

of D to generalize to real data. One of the main causes for this is that the amount

of noise on real data depends on several factors and can be slightly different from

synthetic simulations. In order to better generalize and train a network that is able

to adapt to different levels of noise, we apply a novel data augmentation strategy on

IsD;gt. Using ground truth data we can separate data and noise on the training set

and then produce different versions of the scene with slightly increased or decreased

amounts of noise. The idea is to use as true input for D the couple

IsD;gt = (dsgt + E ′
gt;E

′
gt) (5.4)
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Fig. 5.3: Architecture of the discriminator network D.

with E ′
gt given by

E ′
gt = k · (ds60 − dsgt) = k · Es

gt, (5.5)

where k represents a uniform random variable in the range [1 − ϵ; 1 + ϵ] that acts

as a scaling factor for the noise on simulated data. The parameter ϵ has been set

to 0.5 for optimal domain adaptation performance using k-fold validation. This

data augmentation strategy leads to a wider and more general data distribution of

which the synthetic statistics is a subset. It forces D to learn more generic pairs of

(noisy depth; error image), preventing it from focusing too much on synthetic ToF

statistics. Doing so, D learns to judge how well the error map from G fits to the

noisy ToF depth.

5.3.4 Adversarial Learning Strategy

The denoiser network G is trained both with synthetic data in a supervised way

and with unlabeled real data in an unsupervised way. The discriminator D is used

to implement an adversarial loss to perform an unsupervised domain adaptation to

real world scenes on G. More in detail, the supervised training is performed with

the patches extracted from the synthetic dataset S1 (see Section 5.3.5) and allows

to obtain good performance on synthetic scenes, but the photometric differences

between simulated and real world data makes this training not very effective on

real data. For this reason, the unlabeled real dataset is used to train G by using the

adversarial loss from the discriminator. G is trained by minimizing a loss function

composed of 2 parts:

LG = Lsup + w · Ladv, (5.6)
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where

Lsup = E[|dsG − dsgt|] + E[|dsG,C − dsgt|] (5.7)

Ladv = E[−log
(︁
D(IrD;G)

)︁
]. (5.8)

The first term is optimized in a supervised way on synthetic data only (dataset

S1, Section 5.3.5). It is modeled as the sum of the l1 distances between the outputs

of G (i.e., the output dsG = G(IsG) of the fine network and the output dsG,C = GC(I
s
G)

of the coarse one) and the ground truth depth. Note that considering also the output

of the coarse network allows to properly train also this module, that is fundamental

to understand the general scene structure and consequently the behavior of MPI.

The second part is trained in an unsupervised way on real data (dataset S2, Section

5.3.5) without using ground truth information. By minimizing the loss of Eq. 5.8 we

aim at fooling the discriminator by modifying the output of G in order to generate

depth maps similar to the ground truth ones. This allows to obtain samples of

IrD;G = (drn; d
r
n − drG) (i.e., couples of noisy depth maps and related error images)

similar to the ground truth data ID;gt. With the proposed training approach, we can

train G to adapt to and denoise real world data without capturing depth ground

truth for real scenes.

The implementation of the loss functions given by Eq. 5.3 and Eq. 5.8 follows

the LS-GAN structure proposed in [104], where the negative log likelihoods are

replaced by least squared loss in order to stabilize the learning process.

At each step of the training phase, a batch of real data and a batch of synthetic

data are sampled from the two training datasets S1 and S2 (see Section 3.2.1).

At first, the synthetic data are used to train the discriminator as mentioned in

Section 5.3.3. By following the idea introduced in [83, 105], we exploited a buffer

to collect examples of fake data IsD;G, produced by G when processing synthetic

data in past training steps. Two different strategies can be selected with a 50%

probability each. In the first, D is trained using data produced by G in the current

training step. In the second, data collected in the buffer is extracted at random and

used as fake examples for training while the buffer is filled with the data produced

by G. This approach allows to avoid that D overfits on the current status of G.

Thus, it stabilizes the training process and lets D focus also on fake data related

to previous training steps, since these always have to be classified as fake. In this
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way, D captures the statistics of ID;gt better.

Simultaneously, G is trained on the unlabeled real data by minimizing the loss

function of Eq. 5.8 and on the synthetic data by minimizing the loss in Eq. 5.7.

The complete learning procedure is summarized in Algorithm 5.1 and Fig. 5.4.

Algorithm 5.1 Domain Adaption Procedure

1: procedure Training step
2: (IsG; dsgt)← S1 ▷ Get synthetic data
3: IrG ← S2 ▷ Get real world data
4: ds60 ← IsG and dr60 ← IrG
5: Es

gt = ds60 − dsgt
6: k = rand.unif([1− ϵ; 1 + ϵ]) ▷ For noise augmentation
7: IsD;gt = (dsgt + k · Es

gt; k · Es
gt)

8: IsD;G = (ds60; d
s
60 −G(IsG))

9: IrD;G = (dr60; d
r
60 −G(IrG))

10: if rand.uniform([0; 1]) > 0.5 then
11: Is, curr

D;G = IsD;G

12: else
13: Is curr

D;G = queue.get sample()

14: queue.push
(︁
IsD;G

)︁
15: end if

▷ Optimize the discriminator (D)
16: minimize LD (Eq. 5.3) on IsD;gt and Is curr

D;G

▷ Optimize the generator (G)
17: minimize Lsup (Eq. 5.7) on (IsG; dsgt)
18: minimize Ladv (Eq. 5.8) on IrD;G
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Fig. 5.4: Schematic representation of a training step.

Since the exploited synthetic dataset is not too large, we have used K-fold cross

validation with K=5 on the synthetic training set to control and avoid over-fitting.

Instead, the real dataset used for the adversarial training is completely unlabelled.
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For this reason, we used an additional real dataset provided with depth ground

truth as validation set during the domain adaptation process. We have optimized

the hyper-parameters of the CNN and of the training procedure, i.e., the learning

rate, the weight of the adversarial loss Ladv and the structure of the discriminator

network in order to reduce the most the average mean absolute error (MAE) on

the real validation set S3 (see Section 3.2.1) after the k-fold cross validation on the

synthetic dataset.

We optimized the two neural networks using the TensorFlow framework [106]

with the ADAM optimizer. The learning rate has been set to 5 · 10−6, while the

weight of the adversarial part has been set to w = 5 · 10−3. Each batch contains

4 samples and we trained the network for 105 training steps. Fig. 5.5 shows the

mean behavior of the validation error (MAE) on the real world validation dataset S3

(this dataset has depth ground truth, see Section 5.3.5) of the proposed architecture

after k-fold cross validation. The figure compares the presented approach with the

training curves obtained without using some of its components in order to allow for

some ablation considerations.

The blue curve corresponds to the supervised training on synthetic data of the

generator (i.e. without using the adversarial domain adaptation). It can be clearly

seen that the validation error is higher than the proposed method, in particular the

error initially decreases but after a certain point the accuracy does not improve,

since the deep network is basically overfitting on the synthetic data.

The green curve corresponds to the baseline adversarial learning method with-

out the history buffer and the data augmentation. The achieved minimum error is

smaller than the supervised training, even if not as good as the complete version

of our approach. On the other hand, the training looks unstable and after a cer-

tain point, the discriminator dominates on the generator and the validation error

increases.

The purple plot corresponds to the use of data augmentation but no history

buffer: the minimum error is similar to the previous case, but the curve is more

stable and the problem of the discriminator saturation is more limited. The opposite

case (history but no data augmentation) has a similar behavior with slightly better

performance (in the final part the yellow curve has lower and more stable values).

Finally, by putting together all the components we can obtain very good per-
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Fig. 5.5: Validation error during the training procedure for different versions of the
proposed approach.

formance with a small and stable validation error (red curve). In particular, note

that even if the gap in terms of minimum error, obtained by adding data augmen-

tation and history is not so large, the two techniques allow to obtain more stable

training behavior and to avoid the unbalancing of the generator and discriminator

after a certain point. This suggests that the full version of the approach has better

generalization properties and can be applied on a wider set of different scenes and

settings.

5.3.5 Synthetic and Real World Datasets

We exploited five different datasets, introduced in Chapter 3, for the training and

evaluation of this work. See Table 5.1 for a summary about their composition and

role in the training process.

For the supervised training with synthetic data we used the dataset, S1,train,

introduced in Section 3.3. This dataset is composed by 40 synthetic scenes with

multi-frequency data and ground truth depth. We performed data augmentation by

extracting 10 random patches of size 128×128 [pxl] from each scene and by applying

rotation and flipping of the patches, as originally done for TD-CNN (Section 4.3.3).

In order to perform the adversarial training procedure, we used the unlabeled

real world dataset (S2), acquired with a Sony DS541 ToF camera.

We used a smaller set of real world scenes for validation purposes. This smaller

dataset, S3, has only 8 scenes acquired with the DS541 ToF camera, but contains
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Dataset Type gt # scenes Used for
S1,train Synth Yes 40 Supervised training

S2 Real No 97 Adversarial training
S3 Real Yes 8 Validation
S4 Real Yes 8 Testing
S5 Real Yes 8 Testing

Table 5.1: Datasets exploited for the training of the proposed domain adaptation
framework.

also ground truth information, acquired with an active stereo matching system as

described in Section 3.2.1.

In order to evaluate the performance of the proposed approach, we used the real

world datasets S4 and S5 (box dataset). These datasets contain 8 real world scenes

each with ground truth data.

Section 3.2.1 describes the datasets in more details and presents some visual

examples of the data.

5.3.6 Experimental Results

The proposed method has been evaluated using the real datasets S4 and S5 . Both

the datasets contain 8 different scenes with the corresponding ground truth depth.

The scenes contain objects of various sizes and materials and situation in which

MPI can arise.

In order to evaluate the performance of the proposed approach we start by

analyzing the impact of the proposed adversarial learning strategy and then we

compared our method with some state-of-the-art approaches.

Denoising Properties of the Adversarial Scheme

First of all, we analyze how the adversarial learning strategy allows to perform

denoising and MPI removal on real world data. Fig. 5.6 shows the output of the

proposed unsupervised domain adaptation approach on some sample scenes in the

S4 dataset and compares it with that obtained by the proposed generator network

trained in a supervised way on synthetic data. The difference of the latter method

with respect to TD-CNN, introduced in Section 4.3.3, is that the training hyper-

parameters have been set looking at the real validation set. Column 3 shows the
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error map for input data at 60 MHz. Note the large amount of MPI corruption on

slanted surfaces and the issues close to the edges of the objects. Column 4 shows

the error map corresponding to the usage of the proposed Coarse-Fine network in a

supervised fashion. Note how it is possible to reduce the MPI corruption, but only

by a small margin. A strong effect remains on the slanted surfaces, especially on the

floor. Furthermore, there is a large amount of error in the proximity of the edges,

probably due to the fact that edges are very sharp and well defined on synthetic

data, while the mixed-pixel effect produces many artifacts in these regions in real

world data. By applying the proposed adversarial learning strategy (last column),

it is possible to obtain a noticeable improvement: the amount of MPI on the floor

is further reduced, even if not completely removed and the accuracy in proximity

of edges is much better than in the supervised case. The visual evaluation is also

confirmed by numerical results: on the S4 dataset, the average MAE on the input

data (i.e., the ToF depth map at 60 Mhz) is 5.43 cm. By refining the data with the

network trained in a supervised way, the MAE can be reduced to 2.74 cm, i.e. about

half of the original error. By applying the proposed domain adaptation approach,

the average error is reduced to 2.36 cm, i.e. a further reduction of about 14% w.r.t.

the error of the synthetic supervised approach.

Comparison with State-of-the-Art Approaches

The performance of the proposed method was compared with three state-of-the-art

approaches for ToF data denoising, i.e. the multi-frequency scheme of Freedman et

al. (SRA) [34] and the deep learning based approaches of Marco et al. (DeepToF)

[30].

Additionally, we also considered a combination of TD-CNN, used in our domain

adaptation model, with the domain adaptation scheme of [79, 101] (we denote this

idea as DA-F ). In these approaches, the discriminator is trained to recognize if the

features produced internally by the generator (we selected the output of the 4-th

convolutional layer in the fine network) are originated from synthetic or real data,

thus forcing G to produce similar features in the two domains and reducing the

domain shift.

From the quantitative evaluation on the S4 dataset in Table 5.2, the analytical
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Depth Map Error Maps
Input Our method Input Supervised Our Method

Fig. 5.6: Output of the synthetic supervised and of the proposed domain adaptation
approach on some sample scenes from the S4 dataset. The values are measured in
meters.

method of [34] is able to remove only a small part of about 6% of the noise and MPI

in the scene. Deep learning based approaches have better performance: DeepToF

[30] is able to remove about 30% of the error (w.r.t. the 20 Mhz data used by this

approach), while the best competing approach is TD-CNN, which removes more

than 40% of the corruption. Our approach outperforms all compared approaches

with a large margin, removing more than 56% of the error and reducing it to just

2.36 cm. Also the variant with feature-based domain adaptation (DA-F) has good

performance (even if lower than the proposed method) and removes about 52% of

the error. Note that TD-CNN, sharing the same denoiser CNN but without domain

adaptation, obtains lower performance.

The evaluation on the box dataset leads to very similar results. On this dataset,

the initial amount of error is smaller (3.62 cm), mostly due to the simpler geometry

of the objects and to the reduced amount of MPI. The SRA method [34] has roughly

the same performance obtained on the other dataset, removing only 7% of the error.
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Fig. 5.7: Comparison between the input depth at 60 MHz, the proposed method
and the denoised depth maps obtained with some state-of-the-art methods. The
figure shows the computed depths with the corresponding error maps, in meters,
for some sample scenes from S4 (first and second columns) and S5 (third and fourth
columns).
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S4 Dataset S5 Dataset (box )
Method MAE Relative MAE Relative

(cm) error (cm) error
Input (60 Mhz) 5.43 - 3.62 -
Input (20 Mhz) 7.28 - 5.06 -

SRA [34] 5.11 94.1% 3.37 93.1%
DeepToF [30] 5.13 70.5%* 6.68 132%*
[30]+calibration 5.46 75%* 3.36 66.4%*

TD-CNN 3.13 57.6% 1.98 54.7%
Proposed DA on TD-CNN 2.36 43.5% 1.66 46.1%
DA-F (TD-CNN+ [79,101]) 2.6 47.9% 1.71 47.2%

Table 5.2: MAE and relative error on the S4 and S5 datasets. The relative error
is the ratio between the MAE of each method and the MAE on input at 60 MHz,
the highest employed frequency for all approaches, except [30] (*) that is compared
with 20 MHz since it uses only this frequency.

DeepToF [30] is affected by a systematic bias in the estimations on this dataset.

For a fair comparison, we removed the bias by calibrating on a white wall scene,

achieving an error reduction of 33%, confirming the results on S4 also in this case.

TD-CNN is better performing and removes about 45% of the corruption. The

proposed method reduces the MAE to 1.67 cm, removing 54% of the error, roughly

confirming the results obtained on S4. Again it clearly outperforms the compared

approaches. Finally, the DA-F method outperforms TD-CNN and it gets close to

our approach, removing about 53% of the error.

Some visual results are shown in Fig. 5.7 for both datasets. It is possible to

note how the proposed approach is able to remove most of the MPI corruption

on the boxes and objects and a large part of the error on the floor (even if some

MPI remains in this area). Also its variant with feature-based domain adapta-

tion DA-F (TD-CNN+ [79, 101]) looks visually good. The compared methods are

able to remove a smaller amount of MPI. The best of the compared ones is the

synthetic trained TD-CNN (Section 4.3.3), [34] have limited performance and [30]

stays midway. Furthermore, edges are more accurately represented than the com-

pared approaches and the zero mean noise is widely reduced. Complex or round

shapes like the deer or the sphere are better preserved by the proposed approach

while the competing ones introduce relevant artifacts on these objects.

Fig. 5.8 shows the correction obtained with the different methods on a cross-
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Fig. 5.8: Comparison of different MPI correction methods on a cross-section of a
corner scene.

section of a corner scene. Please note how the proposed method is able to recon-

struct the corner shape more accurately reducing the distortion due to MPI.

5.4 Domain Adaptation on Semantic Segmenta-

tion

A different field in which unsupervised domain adaptation is worth to be investi-

gated is semantic segmentation. Many different approaches for semantic segmenta-

tion of images have been proposed [85]. There are many different strategies for this

task, but most current state-of-the-art approaches are based on encoder-decoder

schemes and on approaches based on variations of the Fully Convolutional Network

(FCN) model [107]. Some recent well-known and highly performing methods are

DilatedNet [108], PSPNet [109] and DeepLab v2 [110]. In particular, the latter is

the model employed for the generator network in this work. All these networks are

very efficient in their task, but in order to be trained they require a huge number of

couples of color images and related segmented map. For this reason, usually syn-

thetic datasets as GTA5 [89] and SYNTHIA [90] are exploited during the training.

However, when the synthetic trained network are tested on real data, a degradation

in performance can be observed.

The method presented in the next sections aims at applying unsupervised do-

main adaptation from synthetic data to real data. We focused on semantic seg-

mentation of road scenes, since this is one of the main components of autonomous

driving systems, that is one of the most growing area in computer vision. For this
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reason, we focused on adapting a segmentation network trained on the synthetic

datasets GTA and SYNTHIA to work on the Cityscapes real dataset [86]. All of

these three datasets contain images acquired in road environments.

The proposed method exploits an adversarial learning framework, where a seg-

mentation network based on the DeepLab v2 framework is trained using both la-

beled and unlabeled data thanks to the combination of three different losses. The

first is a standard supervised cross-entropy loss exploiting ground truth annotations

allowing to perform an initial supervised training phase on synthetic data. The sec-

ond is an adversarial loss derived from previous methods [94,111] developed in the

context of semi-supervised semantic segmentation (i.e., for dealing with datasets

only partially annotated). Finally, the third term is based on a self-teaching frame-

work inspired from [111], where the predicted segmentation is passed through the

discriminator to obtain a confidence map and then high confidence regions are con-

sidered reliable and used as ground truth for self-teaching the network over the

unlabeled real data. We trained the network on both synthetic labeled data (using

the first and second component of the loss) and on unlabeled real world data (using

the second and third component) thus being able to obtain accurate results on real

world datasets even without using labeled real world data.

5.4.1 Architecture of the Proposed Approach

The proposed approach is based on two main modules, i.e., two different Con-

volutional Neural Networks (CNNs). The first network is the generator (G) of

the adversarial learning framework. It performs the semantic segmentation of the

given color image. For this module, we exploited the Deeplab v2 network [110]

based on the ResNet-101 model whose weights were pre-trained1 on the MSCOCO

dataset [112]. Although we considered the Deeplab v2, notice that our approach

does not rely on specific properties of this network and any network for semantic

segmentation can be fit inside the proposed learning framework. Fig.5.9 shows a

general overview of the procedure used to train G exploiting three different losses.

Starting from the first, the network produces a class probability map represent-

ing for each pixel the probability that it belongs to each class c inside the set of

1We used the weights computed by V. Nekrasov available at: https://github.com/DrSleep/

tensorflow-deeplab-resnet
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Generator 
(segmentation 

network) 

Discriminator 

Synth. conf. map

Real conf. map

Synth. segmentation
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Fig. 5.9: Architecture of the proposed framework for the training of the generator
network. A first stage of supervised learning with synthetic data is followed by
a second stage using also unlabeled real data to boost the performance of the
segmentation network (i.e., the generator) through the combination of 3 losses. LG,1
is a standard cross-entropy loss computed on synthetic data, Ls,tG,2 is an adversarial
loss referring to a fully-convolutional discriminator network, and LG,3 is a self-
teaching loss for unlabeled real data.

possible classes C. This map can be directly used to train the network in a supervised

way exploiting the semantic ground truth data: we used a standard cross-entropy

loss (LG,1) for this task. More in detail, given the n-th input image Xs
n from the

source (synthetic) domain, its one-hot encoded ground truth segmentation Ys
n and

the output of the segmentation network G(Xs
n), the loss LG,1 on the image Xs

n can

be computed as:

LG,1 = −
∑︂
p∈Xs

n

∑︂
c∈C

Ys
n
(p)[c] · log

(︁
G(Xs

n)
(p)[c]

)︁
(5.9)

where p is a generic pixel in the considered image Xs
n, c is a particular class

contained in the set C of possible classes andYs
n
(p)[c] andG(Xs

n)
(p)[c] are respectively

the value in the one-hot encoded ground truth and in the generator network estimate

related to the pixel p and the class c.

Notice that this loss can be computed only on the source domain (i.e., on syn-

thetic data) where the pixel-level semantic ground truth is available. However, the

target is to adapt the supervised synthetic training to the real world target domain

in a unsupervised way. We exploited an adversarial learning framework: a second
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CNN is introduced, i.e., a discriminator network (D) that aims at distinguishing

segmentation maps produced by the generator from the ground truth ones. Dif-

ferently from other adversarial learning models, this network produces a per-pixel

prediction instead of a single binary value for the whole input image. The discrim-

inator D is made of a stack of 5 convolutional layers each with 4 × 4 kernels with

a stride of 2 and Leaky ReLU activation function. The number of filters (from the

first layer to the last one) is 64, 64, 128, 128, 1 and the cascade is followed by a

bilinear upsampling to match the original input image resolution. The loss of the

discriminator LD is a standard cross-entropy loss between the produced map and

the one-hot encoding related to the fake domain (class 0) or ground truth domain

(class 1) depending on the fact that the input has been respectively drawn from the

generator or from ground truth data. Mathematically, LD is defined as:

LD = −
∑︂
p∈Xs,t

n

log(1−D(G(Xs,t
n ))(p)) + log(D(Ys

n)
(p)) (5.10)

Notice that the discriminator has to label with 0 the segmentation maps pro-

duced by the generator using both synthetic data from the source domain s (denoted

with Xs
n) or real world data from the target domain t (i.e., Xt

n). Thus, it allows to

exploit also the real world data without ground truth in an unsupervised way, and

it tries to distinguish the segmentations produced by the generator G from ground

truth segmentation data (that can be only synthetic in our framework). The usage

of both types of data is made possible by the similar classes’ statistics of source

and target datasets. Notice also that, in principle, the task of the discriminator

appears to be trivially solvable by distinguishing a Dirac distributed input (i.e.,

the one-hot encoded annotations) from other prediction distributions. However, we

have empirically observed that the generator network produces (and is forced to

produce even more by the adversarial training process) segmentation maps which

are very close to a Dirac distribution. The second loss term for the training of G is

Ls,tG,2, that is computed on the generic image Xs,t
n from the discriminator output as:

Ls,tG,2 = −
∑︂
p∈Xs,t

n

log(D(G(Xs,t
n ))(p)) (5.11)
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This term forces the training of the generator network in the direction of fooling

the discriminator producing data that resembles the ground truth statistics. Notice

that in this computation the image can be taken from both the source or the target

dataset (i.e., it can be both a synthetic or a real world image): in the following of

this section, we are going to use LsG,2 to refer to the loss function computed only

on data extracted from the source dataset, while LtG,2 refers to the loss computed

on data from the target dataset. In particular, in the second case, LtG,2 tries to

force the generator to adapt to the target domain and to improve the performance

by encouraging cleaner segmentations and global consistency with respect to the

segment shapes.

Finally, starting from the idea in [111] we exploited the output of the discrim-

inator D as a confidence measure representing the reliability of the estimations

performed by G. This allows to perform a sort of self-training following the idea

that the predictions of G are more reliable where D marks them as ground truth

with an higher accuracy. This is represented by the third loss component of the

generator, defined as:

LG,3 = −
∑︂
p∈Xt

n

∑︂
c∈C

I
(p)
Tu
·W t

c · Ŷ
(p)

n [c] · log
(︁
G(Xt

n)
(p)[c]

)︁
(5.12)

where Ŷn is the estimated one-hot encoded ground truth computed by taking the

per-class argmax of the generated probability map G(Xn). W t
c , instead, is the

weighting function on the source domain defined as:

W t
c = 1−

∑︁
n|p ∈ Xs

n ∧ p ∈ c|∑︁
n|p ∈ Xs

n|
, (5.13)

where | · | represents the cardinality of the considered set.

This set of weights serves as a balancing factor when unlabeled data of the target

set are used. Without this weighting factor, unlabeled data would lead the model

to mislead rare and tiny objects (such as traffic lights or pole) as frequent and large

ones (such as road, building). Notice that the term comes into play when using

unlabeled data of the target domain but the class frequencies have to be computed

on the labeled data of the source domain since we need the ground truth labels to

evaluate it. This calculation has only to be performed a priori and it is not changed
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as the learning progresses.

Finally, I
(p)
Tu

is an indicator function defined as:

I
(p)
Tu

=

⎧⎨⎩1, if D(G(Xt
n))

(p) > Tu

0, otherwise
(5.14)

with Tu being a threshold for the pixel-wise confidence maps generated by the

discriminator in response to the data produced by the generator. We empirically

set Tu = 0.2 being a reasonable value. This term is intended to enhance the learning

process in a self-taught manner using unlabeled data of the target domain.

To conclude, a weighted average of the three losses is used to train the generator

exploiting the proposed adversarial learning framework, i.e.:

Lfull = LG,1 + ws,tLs,tG,2 + w′LG,3 (5.15)

We set the weighting parameters empirically to balance between the three com-

ponents as ws = 0.01, wt = 0.001 to give less weight in case of unlabeled data and

w′ = 0.1.

The discriminator is fed both with ground truth labels and with the generator

output computed on a mixed batch containing both labeled and unlabeled data and

is trained aiming at minimizing LD. Concerning the generator, instead, during the

first 5000 steps LG,3 is disabled (i.e., w′ is set to 0) thus allowing the discriminator

to enhance its capabilities to produce higher quality confidence maps before using

them. After this, the training process continues up to 20000 steps with all the three

components of the loss enabled.

5.4.2 Datasets

In this section, we introduce the datasets used to evaluate the performance of the

proposed unsupervised domain adaptation framework. The target is to show how

it is possible to train a semantic segmentation network in a supervised way on

synthetic datasets and then apply unsupervised domain adaptation to real data

in autonomous driving scenarios. Thus, we used two publicly available synthetic

datasets, namely GTA5 [89] and SYNTHIA [90] for the supervised part of the
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training, while the unsupervised adaptation and the result evaluation have been

performed on the real world Cityscapes [86] dataset. In general we followed the

same evaluation scenarios of the competing approaches for fair comparison [91–93].

GTA5 [89] is a huge dataset composed by 24966 photo-realistic synthetic images

with pixel level semantic annotation. The images have been recorded from the

prospective of a car in the streets of virtual cities (resembling the ones in California)

in the open-world video game Grand Theft Auto 5. Being taken from a high budget

commercial production they have an impressive visual quality and are very realistic.

In our experiments, we used 23966 images for the supervised training and 1000

images for validation purposes. There are 19 semantic classes which are compatible

with the ones of the Cityscapes dataset. The original resolution of the images is

1914× 1052 pxl but we rescaled and cropped them to the size of 375× 750 pxl for

memory constraints before being fed to the architecture.

SYNTHIA [90] is a very large dataset of photo-realistic images. It has been

produced with an ad-hoc rendering engine, allowing to obtain a large variability of

the images. On the other hand, the visual quality is not the same of the commercial

video game GTA5. We used the SYNTHIA-RAND-CITYSCAPES version of the

dataset, which contains 9400 images with annotations compatible with 16 of the

19 classes of Cityscapes. These images have been captured on the streets of a vir-

tual European-style town in different environments under various light and weather

conditions. As done in previous approaches, we randomly extracted 100 images for

validation purposes from the original training set, while the remaining part, com-

posed by 9300 images, is used for the supervised training of our networks. Again,

the images have been rescaled and cropped from the original size of 760×1280 pxl to
375× 750 pxl. For the evaluation of the proposed unsupervised domain adaptation

on the Cityscapes dataset, only the 16 classes contained in both datasets are taken

into consideration.

Cityscapes [86] is the target dataset for our domain adaptation framework.

It is composed by 2975 high resolution color images captured on the streets of 50

different European cities. They have pixel level semantic annotation with 34 classes

overall. Since the labels of the original test set are not available, we exploited the

original training set (without the labels) for unsupervised training and used the

500 images in the original validation set as a test set, as done also by other recent

99



CHAPTER 5. DOMAIN ADAPTATION

approaches.

More in detail, the semantic labels have been used just for testing purposes,

while the labels of training data have not been used since we aim at proposing a

fully unsupervised adaptation strategy. As for the other datasets, the original high

resolution images have been resized to 375× 750 pxl for memory constraints. The

testing was instead carried out on the original resolution of 2048× 1024 pxl.
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Ours (LG,1) 45.3 20.6 50.1 9.3 12.7 19.5 4.3 0.7 81.9 21.1 63.3 52.0 1.7 77.9 26.0 39.8 0.1 4.7 0.0 27.9
Ours (LG,1, LsG,2) 61.0 18.5 51.6 15.4 12.3 20.5 1.4 0.0 82.6 24.7 61.0 52.1 2.2 78.5 25.9 41.5 0.4 8.0 0.1 29.3

Ours (Lfull) 54.9 23.8 50.9 16.2 11.2 20.0 3.2 0.0 79.7 31.6 64.9 52.5 7.9 79.5 27.2 41.8 0.5 10.7 1.3 30.4
Hoffman [91] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1
Hung [111] 81.7 0.3 68.4 4.5 2.7 8.5 0.6 0.0 82.7 21.5 67.9 40.0 3.3 80.7 34.2 45.9 0.2 8.7 0.0 29.0

Table 5.3: Mean intersection over union (mIoU) on the different classes of the
original Cityscapes validation set. The approaches have been trained in a supervised
way on the GTA5 dataset and then the unsupervised domain adaptation has been
performed using the Cityscapes training set.
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Ours (LG,1) 10.3 20.5 35.5 1.5 0.0 28.9 0.0 1.2 83.1 74.8 53.5 7.5 65.8 18.1 4.7 1.0 25.4
Ours (LG,1, LsG,2) 9.3 19.3 33.5 0.9 0.0 32.5 0.0 0.5 82.3 76.9 54.7 5.5 64.9 17.0 5.7 3.9 25.4

Ours (Lfull) 78.4 0.1 73.2 0.0 0.0 16.9 0.0 0.2 84.3 78.8 46.0 0.3 74.9 30.8 0.0 0.1 30.2
Hoffman [91] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1
Hung [111] 72.5 0.0 63.8 0.0 0.0 16.3 0.0 0.5 84.7 76.9 45.3 1.5 77.6 31.3 0.0 0.1 29.4

Table 5.4: Mean intersection over union (mIoU) on the different classes of the
original Cityscapes validation set. The approaches have been trained in a supervised
way on the SYNTHIA dataset and then the unsupervised domain adaptation has
been performed using the Cityscapes training set.

5.4.3 Experimental Results

The target of the proposed approach is to adapt a deep network trained on synthetic

data to real world scenes. To evaluate the performance on this task we performed

two different sets of experiments. In the first experiment we trained the network

using the scenes from the GTA5 dataset to compute the supervised loss LG,1 and the

adversarial loss LsG,2. Then we used the training scenes of the Cityscapes dataset
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for the unsupervised domain adaptation: no labels from Cityscapes have been used

and when dealing with this dataset we only computed the losses LtG,2 and LG,3.
Finally we evaluated the performance on the validation set of Cityscapes. In the

second experiment we performed the same procedure but we replaced the GTA5

dataset with the SYNTHIA one.

The generator network G (that is a Deeplab v2 network) has been trained as

proposed in [110] using the Stochastic Gradient Descent (SGD) optimizer with

momentum set to 0.9 and weight decay to 10−4. The discriminator D has been

trained using the Adam optimizer. The learning rate employed for both G and D

started from 10−4 and was decreased up to 10−6 by means of a polynomial decay

with power 0.9. We trained the two networks for 20000 iterations on a NVIDIA

Titan X GPU. The longest training inside this work, i.e., the one with all the losses

enabled, took about 10 hours to complete.

To measure the performance, we compared the predictions on the Cityscapes

validation set with the ground truth labels and computed the mean Intersection

over Union (mIoU) as done by most competing approaches [91,96,98].

Table 5.3 refers to the first experiment (i.e., using GTA5 for the supervised

training). It shows the accuracy of the proposed approach when exploiting differ-

ent domain adaptation strategies and compares it with some state-of-the-art ap-

proaches. By simply training the network in a supervised way on the GTA5 dataset

and then performing inference on real world data from the Cityscapes dataset we

obtained a mIoU of 27.9%. The adversarial learning framework on synthetic data

(i.e., the contribution of LsG,2) allows to improve the mIoU to 29.3%. By looking

more in detail to the various class accuracies it is possible to see that the accuracy

has increased on some of the most common classes corresponding to large struc-

tures, while the behaviour on low frequency classes corresponding to small objects

is more unstable (some improve but others have a lower accuracy). For this reason

in the third loss component related to the self-teaching, the class weights have been

taken into account. Thanks to this when using the full framework with all the losses

the mIoU increases to 30.4% and in particular it is possible to appreciate a large

performance boost on many uncommon classes corresponding to small objects and

structures.

By comparing with state-of-the-art approaches, it is possible to see how the
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method of Hung et al. [111], based on a similar framework, achieves an accuracy

of 29%, lower than our approach mostly because it struggles with small structures

and uncommon classes. The method of [91] has even lower performance, however it

is also based on a different generator network with lower accuracy (i.e, the method

of [108]).

Fig. 5.10 shows the output of the different versions of our approach and of the

method of [111] on some sample scenes. The supervised training leads to reasonable

results but some small objects get lost or have a wrong shape (e.g., the riders in

row 1). Furthermore, some regions of the street and of structures like the walls are

corrupted by noise (see the street in the last two rows or the fence on the right in

row 3). The adversarial loss LsG,2 reduces these artifacts but there are still issues on
the small objects (e.g., the rider in the fifth row) and the boundaries are not always

very accurate (see the fence in the third row). The complete model leads to better

performance, for example in the images of Fig. 5.10 the people are better preserved

and the structures have better defined edges. Finally the approach of [111] seems

to lose some structures (e.g., the fence in the third row) and has issues with the

small objects (the riders in row 5 get completely lost) as pointed out before.

By using the SYNTHIA dataset as source dataset, the domain adaptation task is

even more challenging if compared with the GTA5 case since the computer generated

graphics are less realistic. Table 5.4 shows that by training the network G in a

supervised way on the SYNTHIA dataset and then performing inference on the real

world Cityscapes dataset, a mIoU of 25.4% can be obtained. This value is smaller

than the mIoU of 27.9% obtained by training G on the GTA5 dataset. This result

confirms that the GTA5 dataset has a smaller domain shift with respect to real

world data, when compared with the SYNTHIA dataset (GTA5 data, indeed, have

been produced by a more advanced rendering engine with more realistic graphics).

Under this training scenario, the proposed adversarial loss LsG,2 does not bring to

noteworthy improvements indeed the mIoU is equal to the baseline. On the other

hand, by adding the self-taught loss LG,3 , a noticeable improvement to a mIoU of

30.2% can be obtained.

Our domain adaptation framework is able to outperform the compared state-

of-the-art approaches. The method of Hung et al. [111], that exploits the same

generator architecture of our approach, obtains a mIoU equal to 29.4%, lower than
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road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

image annotation baseline (LG,1) +Ls
G,2 Hung [111] Lfull

Fig. 5.10: Semantic segmentation of some sample scenes extracted from the
Cityscapes validation dataset. The network has been trained using GTA5 with
annotations and Cityscapes for the unsupervised part (best viewed in colors).

image annotation baseline (LG,1) +Ls
G,2 Hung [111] Lfull

Fig. 5.11: Semantic segmentation of some sample scenes extracted from the
Cityscapes validation dataset. The network has been trained using SYNTHIA with
annotations and Cityscapes for the unsupervised part (best viewed in colors).
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our method. The method of [91] appears to be again the less performing approach.

In this comparison, it is even less accurate than our baseline, but it employs a

different segmentation network.

Fig. 5.11 shows the output of the different versions of our approach and of

the method of [111] on some sample scenes. The first thing that can be noticed

by looking at the qualitative results of the baseline supervised version is that by

training on the SYNTHIA dataset some classes as sidewalk and road are highly

corrupted. It is evident that a simple synthetic supervised training starting from this

dataset would bring to a network which can not be used in an autonomous vehicle

scenario. This is probably caused by the not completely realistic representation of

streets and sidewalks in the SYNTHIA dataset, where their textures are often very

unrealistic. Additionally, while the positioning of the camera in the Cityscapes

dataset is always fixed and mounted on-board inside the car, in SYNTHIA the

camera is placed in different positions. For example, the pictures can be captured

from inside the car, from cameras looking from the top or from the side of the road.

Similarly to the baseline approach, the adversarial loss LsG,2 is unable to adapt

the network to the real domain, indeed the class road remains very badly detected

also after its usage. Differently, Fig. 5.11 shows how unlabelled data and the

self-teaching component of the third loss allows to avoid all the artifacts on the

road surface by reinforcing the segmentation network to capture the real nature of

this class in the Cityscapes dataset. Also Hung’s method [111] is able to correctly

reconstruct the class road, avoiding the noise present in the baseline, but it suffers

on small classes where it is outperformed by the proposed method. This is clearly

visible on rows 4 and 5 of Fig. 5.11, where our method is able to locate more

precisely small classes as person.

5.4.4 Ablation Study

In this section, we are going to analyze the contributions of the various terms

controlling the optimization in the proposed framework. Table 5.5 collects the

results of this analysis on the Cityscapes validation split when using GTA5 as

source dataset for the supervised part.

As it is possible to notice from Table 5.5, the generator network trained in a
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LG,1 LsG,2 LtG,2 LG,3 mIoU

✓ 27.9
✓ ✓ 29.3
✓ ✓ 27.9
✓ ✓ ✓ 29.4
✓ ✓ 28.7
✓ ✓ ✓ ✓ 30.4

Table 5.5: Mean intersection over union (mIoU) of some configurations of our frame-
work on the Cityscapes validation set using GTA5 as source dataset.

supervised way with the standard cross entropy loss (i.e., using only LG,1) is the

less performing strategy achieving a mIoU of 27.9%. Some improvements can be

obtained by adding the adversarial term LsG,2 in the loss function, that is by exploit-

ing also adversarial learning on the source dataset. In this case, the segmentation

network is more accurate achieving a mIoU of 29.3%. The domain adaptation using

adversarial learning on the target dataset only, i.e., LtG,2 in combination with LG,1
obtains results very similar to the baseline approach. However, when LtG,2 is used

in combination with LsG,2 a slight improvement is noticeable. The exploitation of

the self-teaching module LG,3, without adversarial learning, allows to perform some

adaptation to the segmentation network obtaining a mIoU of 28.7% (the main issue

is the low performance on the road class since it is not able to remove the noise

of the baseline method on it). The last row contains the results of the complete

version of our approach, where all the aforementioned components are taken in con-

sideration. We can appreciate that the full combination is able to outperform the

exploitation of each of the single components and achieves a mIoU of 30.4%.

105





Chapter 6

Fusion of ToF and Stereo Data

Previous chapters considered the case in which the depth data acquired by a ToF

camera are refined without using any form of side information from other sensors.

Differently, this chapter considers the joint exploitation of a ToF sensor and a

passive stereo vision system. The data coming from these two data sources have

complementary strengths and flaws as discussed in Chapter 2. Indeed, the first is

able to robustly estimate the 3D geometry independently of the scene content but

they have a limited spatial resolution, a high level of noise and a reduced accuracy

on low reflective surfaces. The second can acquire a high resolution scene depth but

their accuracy strongly depends on the scene content and the acquisition is not very

reliable on uniform or repetitive regions. For this reason, it is worth investigating

fusion techniques to estimate a more reliable scene depth map exploiting the two

depth data sources.

In the next of this chapter, first a review of the literature about stereo-ToF

fusion will be reported. Then a novel method, designed during my Ph.D. with other

members of the LTTM laboratory at the University of Padova, will be introduced

and its performance will be evaluated.

6.1 Literature about Stereo-ToF Fusion

Depth estimation using stereo vision cameras is a long term research field and a

large number of different approaches have been proposed and tested on public data
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like the Middlebury [113] and KITTI [114] benchmarks. A good review on this topic

is [115]. Despite the large amount of research and the continuous improvement of

the performance of these methods, the depth estimation accuracy of stereo systems

depends on many factors, and in particular on the photometric content of the scene.

The estimation is less accurate in regions with fewer details, i.e., when the scene

contains a limited amount of texture, or on repetitive patterns. Since the accuracy

can vary considerably between different scenes or even different regions of the same

scene, it is important to estimate the confidence of the computed data. Until a few

years ago, the confidence information for stereo systems used to be computed mostly

by analyzing some key properties of the stereo matching cost function. A compre-

hensive review of this family of approaches is [116]. Recently, machine learning

techniques started to be used for this task, first with traditional approaches (e.g.,

Random Forests), then by using deep learning techniques. A very recent review of

machine learning approaches for stereo confidence computation is [117]. An exam-

ple of approach of this family is [118], that uses a CNN to estimate the confidence

information from image patches. A two channel image patch representation is used

also by [119], while [120] improves standard confidence metrics by enforcing the

local consistency of the confidence maps with a deep network.

On the other hand, ToF cameras represent a quite robust solution for depth

acquisition [10, 121–123]. The various low cost depth cameras available on the

market can acquire depth information in real-time and are more robust to the scene

content with respect to stereo systems, in particular they can estimate the depth also

in regions without texture or with repetitive patterns. Nevertheless, ToF cameras

have their own limitations, e.g., the resolution is typically lower than standard

cameras and they are noisy. These cameras are also affected by other sources of

errors like the multi-path interference and the mixed pixel effect. As discussed

in the previous chapters, only small real ToF depth datasets with related ground

truth exist. For this reason, the confidence of ToF data is typically computed with

analytical methods.

ToF cameras and stereo vision systems rely on completely different depth es-

timation principles. For this reason, they have complementary characteristics and

the fusion of the data acquired from the two sources should produce more accu-

rate measures. Several different approaches for the combination of stereo and ToF
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data have been proposed. Comprehensive reviews of the topic can be found in [10]

and [124].

A possible approach is to model the problem with a MAP-MRF Bayesian formu-

lation and optimize a global energy function with belief propagation. This technique

has been used by various works of Zhu et al. [125–127]. A probabilistic formulation

has been used in [59] that computes the depth map with a ML local optimization.

The approach has been extended in [61] that adds a global MAP-MRF optimization

scheme. A second possibility is to use a a variational fusion framework. Examples

of this family are the methods of [128], that also uses confidence measures for the

ToF and stereo vision systems to drive the process, and the works of Chen et

al. [129,130], that combines the variational approach with edge-preserving filtering.

A different approach is proposed in [131], that computes the depth data by

solving a set of local energy minimization problems. Another solution is to use

a locally consistent framework [132] to fuse the two data sources. The idea has

been firstly introduced in [133], then improved in [67] by adding the confidence

information for the two data sources.

6.2 Stereo-ToF Fusion Guided by Learned Con-

fidences

In the next of this chapter, a stereo-ToF depth fusion method is presented. It starts

from [67] exploiting the locally consistent framework but improves the sensors con-

fidence estimation using a deep learning approach trained on the synthetic dataset

SYNHT3 introduced in Section 3.3.2.

The target of the proposed work is to combine the data from a ToF camera with

a stereo vision system in order to extract an accurate depth representation. Both

devices are able to produce an estimation of depth data from the corresponding

viewpoint and the proposed method combines these two representations to provide

a dense and more accurate depth map from the point of view of one of the color

cameras of the stereo setup.

In this work the experimental evaluation is performed on the synthetic dataset

SYNTH3 and the real datasets REAL3 and LTTM5. In these datasets, the stereo
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and ToF acquisitions are recorded using geometrically calibrated cameras. By using

the calibration data it is possible to project the ToF data on the pixel grid of the

reference camera of the stereo vision system in order to use them in the fusion

process that assumes that all the data are aligned.

ToF Data

Interpolation

SGM

Stereo

Confidence

Estimation

LC

Fusion
Stereo

Right

Stereo

Left

ToF Amplitude

Interpolated

Right / left

Difference

ToF Disparity

Interpolated

Stereo Disparity

Interpolated

Fusion

Disparity

ToF

Amplitude

ToF 

Depth

Segmentation

1

43

2

Fig. 6.1: Flowchart of the proposed approach.

The proposed algorithm is divided into four main steps (see Fig. 6.1):

1. The depth information acquired from the ToF sensor is reprojected to the

reference color camera viewpoint and interpolated to the same resolution of

the color cameras. The interpolation is necessary since ToF sensors have

typically a low resolution, specially if compared with modern color cameras.

The approach used for this task has been derived from [133]: we used an

extended version of the cross bilateral filter where the filter is driven by three

terms, the standard spatial Gaussian weighting, the range term computed on

the color image and an additional segmentation-based term that depends on

a segmented version of the color image computed with Mean-Shift clustering

[134]. This procedure allows us to produce a high resolution depth map aligned

with the color camera lattice that will be used by the fusion algorithm. Finally,

the depth map is converted to a disparity map, since the fusion algorithm

works in disparity space. More details on this step can be found in [67,133].

2. In parallel, the Semi-Global Matching (SGM) stereo vision algorithm [135] is

used to compute a high resolution disparity map from the stereo pair. We
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selected this algorithm since it provides a good compromise between compu-

tation time and performance, however the proposed approach is independent

of the selected stereo vision algorithm.

3. After obtaining the two disparity fields, confidence information is jointly es-

timated for the stereo and ToF disparity maps using the CNN architecture

presented in Section 6.2.1.

4. Finally the reprojected and interpolated ToF disparity and the stereo disparity

are fused using an extended version of the Locally Consistent (LC) algorithm

[67,132]. This step is described in Section 6.2.3.

6.2.1 Confidence Estimation with Deep Learning

A fundamental step in order to reliably fuse the two disparity maps is their per-

pixel confidence estimation. To this purpose, we designed and trained a 6-layer

CNN that takes in input different clues from ToF and stereo data and jointly uses

the information from both devices to infer the two confidence maps. In particular,

the proposed CNN takes in input four channels associated to the following clues:

� A difference map ∆ encoding for mismatches between corresponding visual

cues in the stereo image pair. This is computed by warping on the reference

camera the other color image, using the stereo disparity, and subtracting it

from the reference image.

� The stereo disparity map DS.

� The ToF disparity map DT obtained from the ToF depth map after reprojec-

tion on the reference camera and conversion to the disparity space.

� The ToF amplitude image reprojected on the reference camera of the stereo

vision system AT .

Since raw input data correspond to different sources of information coming from

heterogeneous sensors, a lightweight pre-processing stage is needed to convert such

data into the desired form.
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The first clue ∆ aims providing a rough measure of the accuracy of the dis-

parities computed by the stereo algorithm. The idea is that accurate disparity

estimates are likely to result in pairs of corresponding pixels with similar values in

the reference and target stereo images respectively. On the contrary, corresponding

pixels computed using inaccurate disparities are likely to hold different values since

they correspond to different parts of the scene. In order to compute ∆, both the

reference and target stereo images are first converted to grayscale images giving

IR and IT respectively. The target grayscale image IT is then reprojected on the

reference camera using the stereo disparity, thus obtaining the image I ′T . Finally,

the absolute difference between IR and I ′T is taken, leading to

∆ =
⃓⃓⃓
IR − I ′T

⃓⃓⃓
(6.1)

The stereo disparity clue DS is directly obtained from the stereo disparity map

while the ToF disparity clue DT is derived from the ToF depth map first by repro-

jecting it on the reference viewpoint, then it is interpolated with a bilateral filter

approach and finally it is converted to the disparity space. Similarly, the last clue

A is derived by reprojecting the ToF amplitude image onto the reference frame.

Finally, the four clues ∆, DT , DS and AT are packed together in a four-channel

input tensor where each channel is independently normalized to the unit interval

by applying an appropriate scaling factor. Such tensor can be fed to the CNN to

produce as output two confidence maps PT and PS for the ToF and stereo disparity

respectively.
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Fig. 6.2: Architecture of the proposed deep learning framework. A 4-channel train-
ing patch of size 128 × 128 [pxl] is fed to a CNN with 6 convolutional layers: the
figure shows the number of filters, their spatial kernel sizes and the size of the
outputs for each layer.
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The proposed CNN architecture is shown in Fig. 6.2. The network is made of a

stack of six convolutional layers (CONV) each followed by a Parametric Rectified

Linear Unit (PReLU) activation layer, except for the last convolutional layer. The

PReLU activation function [136] has been chosen over the standard Rectified Linear

Unit (ReLU) activation to prevent the dead-neuron effect caused by negative inputs

entering the ReLU zero-slope region. In our experiments, we set the slope of the

negative part of the PReLU activation function to 0.02.

The first five layers are assigned an increasing number of filters, namely 64,

128, 128, 128 and 256 respectively. Filter kernels in the first convolutional layer

have a spatial size of 5 × 5, while kernels in all subsequent layers are 3 × 3 wide.

The last convolutional layer has only two filters in order to produce, as output,

a 2-channel tensor, the two channels encoding for the estimated ToF and stereo

confidence respectively. To produce an output with the same resolution of the

input, no pooling layers are used. At the same time, to cope with the size reduction

at the boundaries due to the convolution operation, each convolutional layer applies

a suitable padding to its input along each spatial dimension, where padded values

are set to be equal to the values at the boundary.

6.2.2 Training of the Convolutional Neural Network

The proposed architecture has been trained on the synthetic dataset SYNTHtrain

described in Section 3.3.2. Although this dataset is smaller if compared with other

machine learning datasets, it is the largest dataset for ToF and stereo data fusion

containing depth ground truth depth information. We decided to train the network

on patches randomly selected from the various scenes instead of using whole images

in order to increase the number of training examples. In particular, we generated a

large set of training examples by randomly extracting 30 patches of size 128× 128

[pxl] from each of the 40 scenes contained in the training set. Moreover, to increase

the robustness and variability of the training data, we also augmented the dataset

by applying random rotations of ±5◦ as well as horizontal and vertical flipping.

Following the augmentation process, a set of about 6000 patches has been generated

starting from the 1200 patches initially extracted from the original dataset, thus

forming the actual input data used for the training. The training data has been
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further split into a training set and a validation set. Validation data has been

used to select the network layout and hyper-parameters. Some ablation studies and

results obtained with different network architectures are presented in Section 6.2.4,

in general deeper and more complex architectures led to a smaller training error

but there is no improvement in the validation error and in the fusion results due to

overfitting on the not too large training dataset.

The two target confidence maps needed for training have been derived by taking

the negative exponential of the absolute error between the ground truth depth

information converted to disparity values DGT and the ToF and stereo disparities

DT and DS respectively, according to the following formulation:

P ∗
T = e−|DT−DGT |

P ∗
S = e−|DS−DGT |

(6.2)

The network has been trained to minimize a quadratic loss function computed

as the Mean Squared Error (MSE) between the predicted ToF and stereo confidence

maps PT and PS and their corresponding target confidences from Eq. 6.2

Loss =
∑︂

(PT − P ∗
T )

2 +
∑︂

(PS − P ∗
S)

2 (6.3)

where the two summations are taken over the spatial dimensions. Using a single

network minimizing a loss function that combines both ToF and stereo error pro-

vided better results than training two separate networks to infer ToF and stereo

confidences separately.

The optimization has been performed with the AdaDelta algorithm [137]. The

process has been carried out using a batch size of 32 and an initial learning rate

equal to 0.01. In each convolutional layer, the kernel weights have been initialized

following the procedure proposed by He et al. in [136], while all bias values have

been initially set to zero.

Both the CNN model as well as the whole optimization and evaluation frame-

work have been implemented using the TensorFlow library [138]. The training stage

runs for 500 epochs and takes about 8 hours on a desktop PC with an Intel i7-4790

CPU and an NVIDIA Titan X (Pascal) GPU.
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6.2.3 Fusion of Stereo and ToF Disparity

The confidence estimated by the deep learning framework of Section 6.2.1 can be

used to combine the two depth fields coming from the two sensors. The fusion of

the upsampled ToF data with the stereo disparity is performed using an extended

version of the Locally Consistent (LC) approach.

This method was firstly introduced in [132] for the refinement of stereo disparity

data. It refines the disparity estimation by propagating, within an active support

centered on the considered point f , the plausibility Pf,g(d) of the disparity assign-

ment coming from other points g inside the active support. The plausibility of a

disparity hypothesis d depends on the color and spatial consistency of the considered

pixels:

Pf,g(d) = e−
∆f,g
γs · e−

∆
ψ
f,g
γc · e−

∆
ψ
f ′,g′
γc · e−

∆ω
g,g′
γt

(6.4)

where f, g and f ′, g′ refer to the coordinates in the left and right image respectively,

∆ accounts for spatial proximity, ∆ψ and ∆ω encode color similarity, and the pa-

rameters γs, γc and γt control the relative relevance of the various terms (a detailed

description can be found in [132]). The overall plausibility Ωf (d) of a disparity hy-

pothesis d is computed by aggregating the plausibility for the same disparity value

propagated from neighboring points, i.e.:

Ωf (d) =
∑︂
g∈A

Pf,g(d). (6.5)

Finally, a winner-takes-all strategy is used to compute the optimal disparity value.

A first extension of the approach has been presented in [133] to account for

multiple disparity hypotheses as in the case of our setup. The approach of [133]

allows to obtain quite good results in the fusion of the two disparity fields but has

the key limitation that assigns the same weight to the two data sources without

accounting for their reliability.

For this reason the method has been further extended in [67] by assigning dif-

ferent weights to the plausibilities according to the estimated confidence value for
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each depth acquisition system computed at each pixel location g:

Ω′
f (d) =

∑︂
g∈A

(︂
PT (g)Pf,g,T (d) + PS(g)Pf,g,S(d)

)︂
(6.6)

where Ω′
f (d) is the plausibility at point f for disparity hypothesis d, Pf,g,T (d) is

the plausibility propagated by neighbouring points g according to ToF data and

Pf,g,S(d) is the one according to stereo data. Finally, PT (g) and PS(g) are the ToF

and stereo confidence values at location g respectively. Another improvement to

the LC method introduced in [67] is the depth estimation at subpixel precision that

allows to obtain a better accuracy. In [67] the confidence information is computed

with a deterministic algorithm based on the noise model for the ToF sensor and on

the cost function analysis for the stereo system, while in the proposed approach the

confidence is estimated with the deep learning architecture of Section 6.2.1, that

ensures that the estimated confidences maps are coherent with respect to each other

and to the true error. For the experimental results of this work the parameters have

been set to γs = 8, γc = 6 and γt = 4. Finally notice how the proposed framework

can easily be extended to setups with more than two input channels in order to

perform the fusion of multiple sensors based on different technologies.

6.2.4 Experimental Results

The proposed approach has been evaluated on three different datasets. We started

by evaluating its performance on the SYNTH3 synthetic dataset and then moved

to the experiments using data collected with real cameras. For the real world

experiments we used both the REAL3 dataset and the LTTM5 dataset from [61].

Evaluation on the SYNTH3 Dataset

For this set of experiments, the proposed fusion algorithm has been trained and

evaluated on synthetic data from the SYNTH3 dataset described in Section 3.3.2.

The SYNTH3 test set, SYNTH3test, contains 15 different scenes with very different

properties including different acquisition ranges, textured and un-textured surfaces,

complex geometries and strong reflections. The algorithm takes in input the 512×
424 [pxl] depth and amplitude maps from the ToF sensor and the two 960×540 [pxl]
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color images from the cameras (the color cameras resolution has been halved with

respect to the original input data). The output is computed from the point of view

of the right camera at the color data resolution of 960× 540 [pxl]. For performance

evaluation, it has been cropped to consider only on the region that is framed by all

the three cameras and compared with ground truth data. Ground truth information

has been computed by extracting the depth data from the Blender rendering engine

and converting it to the disparity space.

a) Color view b) ToF confidence c) Stereo confidence

Fig. 6.3: Confidence information estimated by the proposed method for some sample
scenes: a) color view; b) estimated ToF confidence; c) estimated stereo confidence.
Brighter areas correspond to higher confidence values, while darker pixels to lower
ones.
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Before evaluating the performance of the fusion scheme we analyze the confi-

dence information computed with the deep learning approach of Section 6.2.1 that

will be used to control the fusion process. Fig. 6.3 shows the color image and

the confidence maps for a few sample scenes. The second column shows the ToF

confidence, the proposed approach is able to assign a low confidence (darker pixels

in the figure) to the areas with a larger error. A first observation is that in most of

the confidence maps the error is larger in proximity of the edges. It is a well-known

issue of ToF sensors due to the limited resolution and to the mixed pixels effect.

Furthermore the CNN is also able to detect that the ToF error is higher on dark

surfaces due to the lower reflection (e.g., on the dark furniture in row 3). The MPI

distortion is more challenging to be detected however, by looking at the fruits in

row 4, it is possible to see that the confidence is lower in their bottom part touching

the table, similarly in the angle between the wall and the sink in row 5, where the

multi-path is generated by rays bouncing from one surface to the other.

Concerning the stereo confidence, results are also good. As in the previous case,

the limited accuracy on edges is correctly recognized. Furthermore, surfaces with

uniform patterns (e.g., the flat panel on the right in row 4) or reflective ones (e.g.,

the pots in row 1) have lower confidence as expected.

The confidence information is then used to drive the fusion algorithm. The

output disparity for some sample scenes is shown in Fig. 6.4. Column 1 shows a

color view of the scene while column 2 contains the ground truth disparity data. The

up-sampled, filtered and reprojected ToF data are shown in column 3 while column

4 contains the corresponding error map. The error is computed as the ground truth

disparity minus the estimated disparity. Notice how ToF data are in general more

accurate than the stereo one although some limitations of ToF sensors are visible.

In particular, the data in proximity of edges are not too accurate. Furthermore the

acquisition on low-reflective surfaces is more noisy and the multi-path error affects

some regions close to boundaries between touching surfaces.

Columns 5 and 6 show the disparity and the error map for the SGM stereo vision

algorithm. For this work we used the OpenCV implementation of the SGM stereo

algorithm with pointwise Birchfield-Tomasi metric, 8 paths for the optimization and

a window size of 7× 7 [pxl]. Edge regions are challenging also for stereo vision even

if they are more accurate than the ToF acquisitions due to the higher resolution.
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On the other hand, some regions proved to be critical for the stereo algorithm, e.g.,

regions with a limited amount of texture (like the flat panel on the right in row 4)

or strongly reflective regions (e.g., the pots in row 1).

Finally, the fused disparity maps and their relative error are shown in columns

7 and 8. The fusion algorithm tries to extract the most accurate information from

both sources and generally it provides depth maps with less artifacts on edges but

at the same time free from the various artifacts of the stereo acquisition.

Input Scene ToF Stereo Fusion
Color Ground

Disparity Error Disparity Error Disparity Error
view truth

Fig. 6.4: Results of the proposed fusion framework on 5 sample scenes (one for each
row). The disparity images are depicted in the range between 0 (dark blue) to 200
[pxl] (dark red). The error images are depicted in the range between -10 (dark blue)
to 10 [pxl] (dark red), the absence of error is represented in green (best viewed in
color).

The numerical evaluation of the performance is shown in Table 6.1 and confirms

the visual evaluation. The table shows both the Mean Absolute Error (MAE) and

the Mean Squared Error (MSE) in disparity space averaged on all the 15 scenes.

For a fair comparison, we considered as valid pixels for the results only the ones

having a valid disparity value in all the compared disparity maps (stereo, ToF and

fused disparities). By looking at the averaged MSE values, the ToF sensor has a
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Method MAE [pxl] MSE [pxl2]
Interpolated ToF 0.66 4.75
SGM Stereo 0.79 13.54
Marin et al. [67] 0.64 4.20
Proposed Method 0.53 3.92

Table 6.1: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in disparity
units with respect to the ground truth for the ToF and stereo data, the proposed
method and [67] on the SYNTH3 dataset. The error has been computed only on
non-occluded pixels for which a disparity value is available in all the methods.

high accuracy with a MSE of 4.75 [pxl2], much smaller than the MSE of 13.54 [pxl2]

of the stereo system. The MAE is 0.66 and 0.79 [pxl] respectively, with a more

limited gap due to the fact that the stereo system has some large errors that have

a larger impact with the squared measure.

However, confidence data allow to select at most pixel locations the best source

and thus to exploit the strengths of both stereo and ToF acquisitions. The proposed

approach is able to obtain a MSE of 3.92 [pxl2] and a MAE of 0.53 [pxl], a very good

result with a noticeable improvement with respect to both sensors. Comparison

with state-of-the-art approaches on this dataset is limited by the lack of available

implementations of the competing approaches. However, we compared our approach

with the highly performing method of Marin et al. [67]. This approach uses the same

LC fusion framework used in the proposed method, but it uses different analytical

confidence measures for the ToF and stereo data. It has a MSE of 4.20 [pxl2],

higher than the one of the proposed method. The method of [67] outperforms most

state-of-the-art approaches, so also the performance of the proposed method are

expected to be competitive with the better performing schemes, as demonstrated

by the comparison on the LTTM5 dataset in Section 6.2.4.

Evaluation on the REAL3 Dataset

The testing on synthetic data does not take into account all the potential issues

that can arise when working with real world data and sensors. For this reason,

we tested the proposed approach also on real world data using the REAL3 dataset

presented in Section 3.2. Notice that, due to the limited size of the real world
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dataset, in this experiment we used the network trained on the synthetic dataset to

compute the confidence maps used to drive the fusion process. As pointed out in

Section 3.2, the real world dataset contains 8 different scenes (see Fig. 3.4 for their

thumbnails). The scenes are simpler than the synthetic ones due to the challenges

in practical data acquisition (specially for what concerns the acquisition of ground

truth information), however they contain regions with different amount of texture

information, repeating patterns critical for stereo approaches, different materials,

bright and dark objects and some complex geometries (e.g., in the plant scene).

Similarly to the synthetic data case, the algorithm takes in input the 512×424 [pxl]

depth and amplitude maps from the Kinect v2 sensor and the two 960 × 540 [pxl]

color images obtained by subsampling by a factor of 2 and rectifying the two color

views from the ZED camera (see sections 6.2 and 3.2). In this case the output is

computed on the point of view of the left camera at the 960× 540 [pxl] resolution

of color data and compared with the ground truth from the same viewpoint. The

estimated disparities have also been cropped to highlight only the region that is

framed by all the three cameras.

We start the evaluation from the confidence information: in this case, the task

is more challenging since the CNN is trained on synthetic data and then evaluated

on the real data, which have slightly different properties. However, the proposed

deep network proved to have quite good generalization properties and the estimated

confidence, although not as precise as in the synthetic case due to the domain shift

issue, is able to underline the key sources of error as can be seen from the examples

in Fig. 6.5. Confidence information for ToF data is shown in the second column, it

is possible to note that the CNN properly predicts a higher ToF error in proximity

of edges. Also other critical aspects are properly identified, for example in row 2

it is possible to see how black areas in the pattern have a weaker reflection and

lead to a less accurate acquisition while in row 3 the CNN properly detects that the

acquisition of the plant is very critical for the ToF sensor. The third column contains

the confidence maps for stereo data, notice how the CNN is able to recognize that

highly textured regions are properly acquired while uniform surfaces like the white

walls are critical for the stereo algorithm. However, the confidence estimation on

real data appears to be nosier than in the synthetic case, and this is due to the

slightly different nature between simulated and real sensor data. These results
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could be improved by using domain adaptation methods as the one proposed in

Section 5.3.

a) Color view b) ToF confidence c) Stereo confidence

Fig. 6.5: Confidence information computed by the proposed deep learning archi-
tecture for some sample scenes: a) Color view; b) Estimated ToF confidence; c)
Estimated stereo confidence. Brighter areas correspond to higher confidence val-
ues, while darker pixels to low confidence ones.

The numerical results of the fusion algorithm are reported in Table 6.2 while

Fig. 6.6 shows the output depth maps and the error maps for some sample scenes.

The figure is organized as in the previous experiment. Column 1 and 2 show a color

view of the scene and the ground truth disparity data. The up-sampled, filtered

and reprojected ToF data are shown in column 3, while column 4 contains the

corresponding error map. It is possible to notice that also in this case ToF data are

not very precise in proximity of edges, but there is a small amount of error also on

flat surfaces due to the noise of the sensor and to inaccuracies in the reprojection

operation (in this case it is based on calibration information while previously the

cameras were ideally placed).
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Columns 5 and 6 show the disparity estimated by the stereo vision algorithm and

the corresponding error map. Stereo data have sharper edges and a good accuracy

on the objects in the foreground but there are artifacts on low-textured regions,

specially on the white walls on the background.

The fused disparity map and its relative error are shown in columns 7 and 8.

The fusion algorithm reliably fuses the information coming from the two sensors

being able to properly reconstruct the edges using the stereo data but also correctly

estimating the background that instead is better acquired by the ToF sensor.

Input Scene ToF Stereo Fusion
Color Ground

Disparity Error Disparity Error Disparity Error
view truth

Fig. 6.6: Results of the proposed fusion framework on some sample scenes from the
REAL3 dataset. The disparity images are depicted in the range between 0 (dark
blue) to 100 [pxl] (dark red). In the ground truth disparity maps, the unlabeled
pixels are highlighted in dark blue. The error images are depicted in the range
between -10 (dark blue) to 10 [pxl] (dark red), the absence of error is represented
in green (best viewed in color).

The numerical evaluation of the performance is shown in Table 6.2 and confirms

the visual analysis. The table shows the MAE and the MSE in disparity space

averaged on all the 8 scenes. For a fair comparison, we considered as valid pixels for

the results only the ones having a valid disparity value in all the compared disparity

maps (stereo, ToF and fused disparities). By looking at the MAE values, the ToF

sensor has a high accuracy with an error of 2.55 [pxl], much smaller than the MAE

of 7.98 [pxl] of the stereo system (and the MSE difference is even larger). This is
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a challenging situation for fusion algorithms since it is difficult to improve the data

from the best sensor without affecting it with errors from the other one. However,

the use of confidence data helps to properly combine both sources of information

obtaining a MAE of 1.65 [pxl] with a noticeable improvement with respect to both

sensors. The method of Marin et al. [67] on this dataset has a MAE of 2.19 [pxl],

again higher than the one obtained with the proposed method.

Method MAE [pxl] MSE [pxl2]
Interpolated ToF 2.55 10.76
SGM Stereo 7.98 201.64
Marin et al. [67] 2.19 8.82
Proposed Fusion 1.65 8.35

Table 6.2: MAE and MSE in disparity units with respect to the ground truth for
the ToF and stereo data, the proposed method and [67] on the REAL3 dataset. The
error has been computed only on non-occluded pixels for which a disparity value is
available in all the methods.

Evaluation on the LTTM5 Dataset

Finally, we tested the proposed approach on the LTTM5 dataset. This dataset

has been introduced in [61] and contains 5 different scenes acquired with a MESA

SR4000 ToF sensor and two Basler color cameras (the scene thumbnails are in the

first column of Fig. 6.7). Even if it is smaller than the other two datasets and the

ToF data has been acquired with a camera with lower performance (the resolution

is just 176 × 144 [pxl]), this dataset represents an interesting benchmark since

it has been used for the evaluation of several works and allows to to perform the

comparison with different state-of-the-art methods from the literature. Furthermore

it contains object with various shapes and characteristics that allow to evaluate the

method in various situations including depth discontinuities, materials with different

reflectivity and both textured and un-textured surfaces. In order to process this

dataset the algorithm takes in input the 176× 144 [pxl] depth and amplitude maps

from the MESA sensor and the two 1032 × 778 [pxl] color images from the Basler

cameras and computes the output from the point of view of the left camera at the

same resolution of color data. For the confidence estimation, we used the CNN
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trained on synthetic data from the SYNTH3 training set as for the other datasets.

Fig. 6.7 shows the confidence information for the ToF and stereo sensors on

this dataset. This situation is even more challenging since the ToF camera used

for this dataset has very different properties from the simulated one used in the

training. The accuracy of confidence information is lower, however the proposed

approach is able to detect some key issues. Concerning ToF data it is possible to

notice the lower confidence in proximity of edges and that the depth information

is less reliable on the complex geometries of the objects if compared with the walls

and table. Stereo data are also less reliable on edges and on regions with a lower

amount of texture.

Concerning the results of the fusion of the two sensors, Fig. 6.8 shows the output

depth maps and the error maps for the 5 scenes of the dataset. It is possible to

notice the good accuracy of fused data on edges and how the algorithm is able to

properly choose the best data source in many situations avoiding the artifacts of

the two acquisition devices. For example, the repeating pattern on the green box

causes errors in the stereo reconstruction that are not present in the fused data.

On the other hand, the upper part of the table is very critical for the ToF sensor

due to the multi-path and to the surface orientation. In the fused disparity, even if

not perfect, it is better reconstructed thanks to the information coming from stereo

vision.

Table 6.3 reports the numerical values for the error and the comparison with

some state-of-the-art methods from the literature.

The compared state-of-the-art methods are based on different strategies: the

method of [139] uses an iterative approach and bilateral filtering. Then we consid-

ered two approaches based on probabilistic MAP-MRF schemes, i.e., [125] and [61].

Finally, there are the two previous approaches based on the LC framework, i.e. [133]

and [67]. For a fair comparison, we considered as valid pixels for the results only

the ones having a valid disparity value in all the compared disparity maps (stereo,

ToF and fused disparities from the various methods). By looking at the average

values, on this dataset the ToF and stereo sensors have a similar MAE of 1.53 and

1.45 while the MSE is much lower for the ToF sensor (this is due to the fact that the

stereo data has some large errors while ToF error is more uniformly distributed).

The proposed approach achieves a MAE of 0.89 [pxl], that is better than all
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a) Color view b) ToF conf. c) Stereo conf.

Fig. 6.7: Confidence information computed by the proposed deep learning archi-
tecture for the scenes in the LTTM5 dataset: a) Color view; b) Estimated ToF
confidence; c) Estimated stereo confidence. Brighter areas correspond to higher
confidence values, while darker pixels to low confidence ones.
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Input Scene ToF Stereo Fusion
Color Ground

Disparity Error Disparity Error Disparity Error
view truth

Fig. 6.8: Results of the proposed fusion framework on the 5 scenes of the LTTM5
dataset. The disparity images are depicted in the range between 0 (dark blue) to
100 [pxl] (dark red). The error images are depicted in the range between -10 (dark
blue) to 10 [pxl] (dark red), the absence of error is represented in green (best viewed
in color).

Method MAE [pxl] MSE [pxl2]
Interpolated ToF 1.53 11.68
SGM Stereo 1.45 20.42
Dal Mutto et al. (LC) [133] 1.36 10.06
Marin et al. [67] 1.15 7.67
Yang et al. [139] 1.59 10.98
Zhu et al. [125] 1.59 11.13
Dal Mutto et al. (MRF) [61] 1.43 12.21
Proposed Fusion 0.89 7.40

Table 6.3: MAE and MSE averaged on the 5 scenes of the LTTM5 dataset (in
disparity units) with respect to the ground truth, computed only on non-occluded
pixels for which a disparity value is available in all the methods.

127



CHAPTER 6. FUSION OF TOF AND STEREO DATA

the proposed approaches with a large margin. The best among the compared ap-

proaches is [67], that has a MAE about 25% higher, while all the other compared

approaches have a larger error. If using the MSE as error metric the gap with [67] is

smaller while it remains large with respect to all the other approaches. This is due

to the fact that [67] relies strongly on ToF data that has a better MSE while the

proposed approach makes a more balanced use of the two sources of information. In

any case, the proposed approach has the best performance among all the compared

ones according to both measures.

Ablation Studies

Finally, we performed some further tests in order to evaluate the impact on the fu-

sion accuracy of the information coming from the various input sources. Specifically,

we made an additional set of experiments where, in turn, we selectively removed one

of the four input sources of Section 6.2.1 in order to better evaluate its contribution

to the final output. The results are shown in Table 6.4 and indicate how, on aver-

age, the combination of all inputs offers the best performance. More in detail, the

first two rows show how each of the two disparities contains relevant information

for the corresponding sensor. Both the removal of the ToF or stereo disparity leads

to a quite large decrease in terms of fusion accuracy (around 20%). The impact of

the ToF amplitude is smaller, but it has a noticeable effect on the SYNTH3 and

LTTM5 datasets. The main issue with ToF amplitude is that it depends a lot on

the employed sensor while the ToF simulator is not able to model in a completely

accurate way the amplitude data acquired by real world sensors. Finally, the dif-

ference map ∆ between the reference image and the target one reprojected over it

proved to be very useful specially in real world datasets where the stereo matching

is less reliable. Concluding, even if not all information types are fundamental for

all datasets, the combination of all the four sources is the best solution in order to

have an approach with very good performance on both real and synthetic data.

Another idea we exploited is to jointly estimate the confidence of the two sen-

sors instead of independently computing the two confidence maps. We evaluated

the impact of this approach by trying to estimate the ToF and stereo confidence

separately with two different CNNs with a single output (keeping fixed the other

128



6.2. STEREO-TOF FUSION GUIDED BY LEARNED CONFIDENCES

Ablation Study SYNTH3 REAL3 LTTM5
All inputs (proposed method) 0.53 1.65 0.89
Without ToF disparity (no DT ) 0.64 2.04 1.179
Without Stereo disparity (no DS) 0.66 2.11 1.19
Without ToF amplitude (no AT ) 0.55 1.6 0.915
Without LR difference (no ∆) 0.52 2.84 1.19
Separate estimation ToF/stereo conf. 0.61 1.93 1.156
Select highest confidence (HC) 0.43 1.90 1.11
Weighted average (WA) 0.46 2.44 1.07

Table 6.4: Mean Absolute Error (MAE) [pxl] on the fused depth maps (in dispar-
ity units) when removing different input channels, with separate stereo and ToF
confidence estimation and with different fusion strategies.

parameters). As shown by the last row of the table, this approach leads to worse

performance on all the three datasets, demonstrating that the joint estimation al-

lows to obtain more coherent confidence maps and thus a better accuracy of the

fused data.

Finally, in order to evaluate the impact of the Locally Consistent (LC) fusion

algorithm we tried also to exploit the confidence data estimated with the proposed

deep learning architecture into simpler fusion strategies. We tried two simple so-

lutions, the first is the selection at each location of the source with the highest

confidence (HC) and the second is the usage of a weighted average (WA) of the

ToF and stereo disparities with the weights given by the estimated confidences at

each pixel location. The obtained results are in the last two rows of Table 6.4. On

synthetic data, where the confidence information is very reliable and the noise on

the data is limited, even by just selecting at each pixel location the source with the

highest estimated confidence it is possible to obtain very good results with a MAE

of 0.43, even better than the one achieved by the LC algorithm. Also the weighted

average driven by confidence allows to obtain a very good result with a MAE of

0.46. This proves the reliability of the proposed confidence estimation algorithm.

While on synthetic data the LC refinement is not really necessary, the discussion

is quite different on real world data. On the REAL3 dataset the selection of the

source with the highest confidence and the weighted average achieve a MAE of 1.9

and 2.44 respectively, quite higher than the result of the full version of the proposed
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approach with LC (which achieves a MAE of 1.6 [pxl]). A similar discussion holds

for the LTTM5 dataset (the absolute errors are 1.11 [pxl] for HC and 1.07 [pxl] for

WA against 0.89 [pxl] for LC). This proves how the smoothing and regularization

of the choices performed by LC is very useful when data are more noisy and less

reliable as it happens in real world acquisitions. On the other hand, simpler fusion

strategies might be preferable when a fast computation is needed or data are very

reliable.
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Conclusions

This thesis collects the results of the research that I have carried out during my

three years of Ph.D. at University of Padova from October 2016 to September

2019. In particular, my work has been focused on the development of methods for

the denoising of depth data acquired ToF cameras eventually supported by stereo

vision systems.

An initial step of my work was to collect depth datasets acquired with commer-

cial depth sensors with the related true depth maps. Thanks to these we were able

to train data driven denoising methods and to test their performance.

A part of my research was devoted to the reduction of the distortion due to

multi-path interference and the zero-mean noise on stand alone ToF cameras. Two

methods for this task have been proposed. The first is based on a hardware cus-

tomization of the ToF projector, that is modified to spatially modulate the ToF

light signal. This customization allows to estimate a depth map of the scene using

a structured light principle on the ToF device. This depth map is then fused, using

a maximum likelihood criterion, with a second depth map, estimated with the time-

of-flight principle, to have a more accurate depth estimation. A second approach

exploits a convolutional neural network that takes as input data acquired by a multi-

frequency ToF sensor to correct MPI and reduce the noise of the depth recordings.

Due to the complexity of gathering enough data for the training of such network,

a synthetic dataset has been used for this task. However, this showed the domain

shift issue in training a network on synthetic data and testing it on real data. For
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this reason, we have started to investigate how to improve the performance of the

denoiser network on real data without using real ground truth. We designed a novel

unsupervised domain adaptation technique for this task. This approach showed well

established performance at adapting the denoiser to work on real data. Moreover,

we developed another method for unsupervised domain adaptation in the task of

semantic segmentation, another field where it is expensive to collect real data with

ground truth information, which in this case is the semantic annotation of the given

color images.

Another approach to improve the accuracy of the scene depth estimation is to

fuse the data collected by multiple depth sensors simultaneously. In particular,

we focused on the case in which a ToF camera and a stereo vision system are

used together. We made this choice since these two typologies of sensors share

complementary strengths and flaws. In this field, we proposed a method to combine

the two data sources using a fusion method that enforces the local consistency of

the data and which is guided by the reliability measures of the two depth data

estimated by a convolutional neural network. This method proved to have state-of-

the-art performance on both synthetic and real datasets.

Future work will be focused on domain adaptation methods, as the one we

presented for ToF depth data refinement, in the case of stereo-ToF fusion. Other

techniques for domain adaptation could be implemented for example by translating

depth data from the synthetic to the real domain or working directly in the network

feature space to reduce the domain shift issue. Regarding the proposed STM-ToF

method, the future work will involve a possible implementation of a real device able

to reproduce the analysed model for MPI correction. Furthermore, more advanced

fusion techniques for the structured light and ToF depth maps could be investigated

in order to solve the current limitations. New methods for MPI correction could

exploit neural networks for the estimation of the light back-scattering vector. This

will allow to get the scene impulse response as done by the SRA method, that is

instead implemented with an analytical approach. Regarding the stereo-ToF fusion

research, a novel end-to-end network could be implemented and tested in order to

avoid the use of the complex LC fusion algorithm.
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Appendix A

Error Propagation Analysis

Here, the error propagation analysis used for the evaluation of the error acting

on the stereo and ToF depth acquisition is introduced. The error propagation

analysis links the amount of uncertainty of the output of a given function f(·)
with the amount of uncertainty of its arguments. Given a function f(·) that is

continuous and has continuous first and second order derivatives with respect to

the random arguments
{︁
Vi
}︁N−1

i=0
on some of their neighbourhoods, then the random

variable w = f(
{︁
Vi
}︁N−1

i=0
) is asymptotically Normal. If these arguments of f(·)

are random variables respectively with mean µVi and variance σ2
Vi
, whose deviation

from the mean is symmetric and bell-shaped, and assuming that they are each other

independent, then the variance of the function f(·) can be approximated as [140]:

σ2
f =

n∑︂
i=0

(︂ ∂f

∂Vi

)︂2
σ2
Vi
. (A.1)
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Appendix B

Noise Variance due to Photon

Shot Noise on ToF Recordings

By using the error propagation introduced in Appendix A, an evaluation of the

noise acting on ToF depth estimation can be retrieved. In the following of this

analysis, each sample of the ToF correlation function, measuring the amount of

received photons in the integration time and described by Eq. 2.7, will be labeled

as Ni = c(ωrτi) with ωrτi =
2π
4
i for i = 0, ..., 3. Due to the random nature of the

light that is assumed to be affected by photon shot noise, it is possible to assume

that the ToF correlation samples have a Poisson distribution with mean µVi and

variance σ2
Vi

equal to Ni [141], i.e., the number of photons accumulated during the

correlation sample acquisition.

From Eq. A.1, the noise variance of ϕ due to the noise acting on the correlation

function recording is

σ2
ϕ =

3∑︂
i=0

(︂ ∂ϕ

∂Ni

)︂2
σ2
Ni
. (B.1)

Since ϕ can be computed from Eq. 2.8, where the function atan2 is just an

arctangent (atan) function with periodicity extended from a maximum range of

π to a maximum range of 2π (just a constant π term is added if required), the

following analysis will carried out in the case of atan for simplicity, but it is still

valid for the atan2 case.
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By computing ϕ as

ϕ = atan

(︄
N3 −N1

N0 −N2

)︄
, (B.2)

defining X = N3−N1

N0−N2
, we can express it as ϕ = atan(X) and so Eq. B.1 can be

reformulated as

σ2
ϕ =

3∑︂
i=0

(︂∂atan(X)

∂Ni

)︂2
σ2
Ni

=
(︂∂atan(X)

∂X

)︂2 3∑︂
i=0

(︂ ∂X
∂Ni

)︂2
σ2
Ni

=
(︂ 1

1 +X2

)︂2 3∑︂
i=0

(︂ ∂X
∂Ni

)︂2
σ2
Ni
.

(B.3)

Since X = tanϕ and 1
1+tan2 ϕ

= cos2 ϕ, we can rewrite (B.3) as:

σ2
ϕ = cos4 ϕ

3∑︂
i=0

(︂ ∂X
∂Ni

)︂2
σ2
Ni

= cos4 ϕ
[︂(N3 −N1)

2

(N0 −N2)4
N0 +

1

(N0 −N2)2
N1 + ...

...+
(N3 −N1)

2

(N0 −N2)4
N2 +

1

(N0 −N2)2
N3

]︂
=

= cos4 ϕ
[︂(N3 −N1)

2

(N0 −N2)4
N0 +

1

(N0 −N2)2
N1 + ...

...+
(N3 −N1)

2

(N0 −N2)4
N2 +

1

(N0 −N2)2
N3

]︂
=

= cos4 ϕ
[︂(N3 −N1)

2(N0 +N2)

(N0 −N2)4
+

N1 +N3

(N0 −N2)2

]︂

(B.4)
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By using Eq. 2.7 in Eq. B.4, it comes out that

σ2
ϕ = cos4 ϕ

[︂(︁2A cos(ϕ+ 3π
2
)
)︁2
(2B)

(2A cosϕ)4
+

2B

(2Acosϕ)2

]︂
=

= cos4 ϕ
[︂4A2(1− cos2 ϕ)(2B)

(2A cosϕ)4
+

2B

(2A cosϕ)2

]︂
=

= cos4 ϕ
4A2(1− cos2 ϕ)(2B) + 4A2 cos2 ϕ(2B)

(2A cosϕ)4
=

=
B

2A2
.

(B.5)

Given the effect of the photon shot noise on the ϕ evaluation and that the final

depth can be computed by means of Eq. 2.5, the noise variance on ToF depth is

σ2
ps =

(︂ cl
4πfmod

)︂2 B

2A2
(B.6)
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Appendix C

STM-ToF Correlation Function

Evaluation and Error Propagation

Analysis

In this appendix, the correlation function for the STM-ToF system introduced in

Section 4.2.1, i.e., Eq. 4.2, will be derived.

Referring to the acquisition model of Section 4.2.1, the signal emitted by pixel

(x, y) of the projector when the sample ωrτi of the correlation function has to be

computed is given by the combination of the standard ToF modulation of Eq. 2.3

with the modulating pattern, Lx,y(ωrτi), of Eq. 4.1:

st(t, ωrτi) = Lx,y(ωrτi) · sstdToF,t(t)

=
1

4
at

(︂
1 + cos

(︁
lωrτi − θx,y

)︁)︂(︂
1 + sin(ωrt)

)︂
.

(C.1)

Each pixel of the ToF camera receives a light signal that can be modeled as:

sr(t, ωrτi) = br +
1

4
ar

(︂
1 + cos

(︁
lωrτi − θx,y

)︁)︂(︂
1 + sin(ωrt− ϕd)

)︂
+ ...

...+ br,g + ar,g · cos(ωrτi − ϕg)
(C.2)

where br is the light offset due to the ambient light, ar = αat, with α equal to

the channel attenuation, br,g and ar,g are respectively the light offset and amplitude
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of the global component of the light, and ϕd is the phase displacement between

the transmitted and received direct part of the signal. The scene depth d can be

computed from ϕd through the well known relation d = ϕdcl
2ωr

where cl is the speed

of light. The second line of Eq. C.2 contains the global component of the received

light signal, the one related to MPI and it is assumed to be not influenced by the

projected pattern in case of diffuse reflections [57].

The ToF pixels are able to compute the correlation function between the re-

ceived signal and a reference one, e.g., a rectangular wave at the same modulation

frequency rectωr(t) = H
(︁
sin(ωrt)

)︁
, where H(·) represents the Heaviside function.

The correlation function sampled in ωrτi ∈ [0; 2π) can be modeled in this acquisition

scenario as

c(ωrτi) =

∫︂ 1
fmod

0

sr(t, ωrτi)H
(︁
sin(ωrt+ ωrτi)

)︁
dt (C.3)

and by substituting Eq. C.2 inside C.3, we obtain Eq. 4.2:

c(ωrτi) = B + A cos(ωrτi + ϕd) + Ag cos(ωrτi + ϕg) +
πA

2
cos(lωrτi − θ) + ...

+
A

2

[︂
cos
(︁
(l − 1)ωrτi − ϕd − θ

)︁
+ cos

(︁
(l + 1)ωrτi + ϕd − θx,y

)︁]︂
(C.4)

where B = 1
fmod

(︂
br
2
+ ar

8
+ br,g

2

)︂
is an additive constant that represents the received

light offset, A = ar
4πfmod

is proportional to the power of the direct component of the

received light, Ag = ar,g
πfmod

is proportional to the power of the global component

of the received light. The correlation function values c(ωrτi) are a measure of the

number of photons received by the pixel during the considered integration time.

C.1 Error Propagation Analysis on STM-ToF

In Section 4.2.2, we have presented a model for the estimation of the impact of

the photon shot noise on ToF correlation samples on the depth estimation. In this

section, we present the mathematical derivation based on error propagation analysis
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(Appendix A) that we used to compute Eq. 4.5.

In the following of this analysis, each sample of the correlation function described

by Eq. 4.2 will be labeled as Ni = c(ωrτi) with ωrτi =
2π
9
i for i = 0, ..., 8. Due

to the random nature of the light that is assumed to be affected by photon shot

noise, it is possible to assume that the ToF correlation samples have a Poisson

distribution with mean µNi and variance σ2
Ni

equal to Ni [141], i.e., the number of

photons accumulated during the correlation sample acquisition.

Since ϕd =
φ4−φ2

2
, as a first step we are going to estimate the noise variance for

φk with k = 1, ..., 8, using the error porpagation analysis given by Eq. A.1, that is

σ2
φk

=
8∑︂
i=0

(︂∂φk
∂Ni

)︂2
σ2
Ni
. (C.5)

Since from Fourier analysis

φk = arctan

(︄
−
∑︁8

i=0 Ni sin
2π
9
ki∑︁8

i=0Ni cos
2π
9
ki

)︄
, (C.6)

by taking Xk = −
∑︁8
i=0Ni sin

2π
9
ki∑︁8

i=0Ni cos
2π
9
ki
, we can express it as φk = arctan(Xk) and so

Eq. C.5 can be reformulated as

σ2
φk

=
8∑︂
i=0

(︂∂arctan(Xk)

∂Ni

)︂2
σ2
Ni

=
(︂∂arctan(Xk)

∂Xk

)︂2 8∑︂
i=0

(︂∂Xk

∂Ni

)︂2
σ2
Ni

=
(︂ 1

1 +X2
k

)︂2 8∑︂
i=0

(︂∂Xk

∂Ni

)︂2
σ2
Ni
.

(C.7)

Since Xk = tanφk and 1
1+tan2φk

= cos2 φk, we can rewrite (C.7) as:

σ2
φk

= cos4 φk

8∑︂
i=0

(︂∂Xk

∂Ni

)︂2
σ2
Ni
. (C.8)

After evaluating the partial derivatives ∂Xk
∂Ni

and computing the summation in
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(C.8), it results that the error variance for the estimation of the phase φk is equal

to:

σ2
φk

=
2

9I2k

[︂
B − 1

2
I2k cos(2φk) cos(φ2k)−

1

2
I2k sin(2φk) sin(φ2k)

]︂
, (C.9)

where we labeled with Ii the amplitude of the sinusoidal wave at frequency i

in the correlation function given by Eq. 4.2. Moreover, the variances of the phase

estimation error for phases φ2, φ3 and φ4 are respectively

σ2
φ2

=
8

9A2

[︂
B − A

4
cos(−3ϕd − θ)

]︂
, (C.10)

σ2
φ3

=
8

9π2A2

[︂
B − πA

4
cos(3θ)

]︂
, (C.11)

σ2
φ4

=
8

9A2

[︂
B − D

2
cos(2ϕd − 2θ + ϕFF )

]︂
. (C.12)

where

D =
√︂

A+ Ag + 2A · Ag cos(ϕd − ϕg) (C.13)

ϕFF = atan2
(︁
A cosϕd + Ag cosϕg, A sinϕd + Agsinϕg

)︁
. (C.14)

At this point it is possible to evaluate also the variance of the error for ϕd and

θ, since ϕd = (φ4 − φ2)/2 and θ′ = −(φ2 + φ4)/2 and since ϕ2 and ϕ4 are not

independent, because they are computed from the same samples of the correlation

function, we have

σ2
ϕd

=
n∑︂
i=1

(︂∂ϕd
∂Ni

)︂2
σ2
Ni

=
1

4

n∑︂
i=1

(︂∂[φ4 − φ2]

∂Ni

)︂2
σ2
Ni

=
1

4

[︂ n∑︂
i=1

(︂∂φ4

∂Ni

)︂2
σ2
Ni

+
n∑︂
i=1

(︂∂φ2

∂Ni

)︂2
σ2
Ni
− 2

n∑︂
i=1

∂[φ4 · φ2]

∂Ni

σ2
Ni

]︄
=

1

4

[︂
σ2
φ4

+ σ2
φ2
− 2σφ2φ4

]︂
(C.15)

In the same way it arises that
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σ2
θ′ =

1

4

[︂
σ2
φ4

+ σ2
φ2

+ 2σφ2φ4

]︂
(C.16)

For the evaluation of σφ2φ4 =
∑︁n

i=1
∂[φ4·φ2]
∂Ni

σ2
Ni

operations similar to the retrieval

of σ2
φk

can be applied and it follows that:

σφ2φ4 =
4

9A2

[︂
cosφ4 cosφ2

(︂A
2
cosφ2 −

πA

2
cosφ3

)︂
+ · · ·

· · ·+ sinφ4 cosφ2

(︂A
2
sinφ2 +

πA

2
sinφ3

)︂
+ · · ·

· · ·+ cosφ4 sinφ2

(︂
− A

2
sinφ2 +

πA

2
sinφ3

)︂
+ · · ·

· · ·+ sinφ4 sinφ2

(︂A
2
cosφ2 +

πA

2
cosφ3

)︂]︂
.

(C.17)

Putting together the solutions for σ2
φ2
, σ2

φ4
and σφ4+φ2 through Eq. C.15 and

C.16 it is possible to compute the variances of the direct phase and pattern phase

offset estimation error. In particular, it is worth noticing that the mean value of

these error variances (without considering the sinusoidal terms) are:

σ2
ϕd

= σ2
θ′ =

4

9A2
B. (C.18)

If we compare the estimation noise variances for the pattern phase offset retrieval

from the second and fourth harmonics or using only the third harmonic it comes

out that:

θ′ = −(φ2 + φ4)/2 =⇒ σ2
θ′ =

4

9A2
B

θ = −φ3 =⇒ σ2
θ = σ2

φ3
=

8

9π2A2
B,

(C.19)

from which arises that the second formula gives an estimation of the phase offset

that is about four times less noisy then the first one and for this reason we used the

third harmonic to compute this parameter.

For the evaluation of the variance of the noise acting on the depth estimate

employing the STM-ToF acquistion (the standard Whyte approach [51]), we have
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to consider the linear relation that links the direct phase and the depth, indeed

dnoMPI =
c

4πfmod
ϕd and it results that

σ2
dnoMPI

=
(︂ c

4πfmod

)︂2
σ2
ϕd
. (C.20)

and by considering the mean variance of the noise we have

σ2
dnoMPI

=
(︂ c

4πfmod

)︂2 4

9A2
B. (C.21)

that is Eq. 4.5.

C.2 Structured Light Depth Estimation with Im-

plicit Phase Unwrapping

In this section we are going to present the derivation for the implicit phase un-

wrapping in the structured light (SL) depth estimation that we used in Section

4.2.3.

As mentioned in Section 4.2.3, in case the phase offset θref and θtarget are already

phase unwrapped in θPUref and θPUtarget, then the depth map with the SL approach can

be estimated as

dSL = dref

(︂
1 +

Q

b

(︁
θPUref − θPUtarget

)︁)︂−1

= dref

(︂
1 +

Q

b

(︁
θref + 2πkref − θtarget − 2πktarget

)︁)︂−1
(C.22)

where θtarget, θref ∈ [−π; π) are the phase offsets directly accessible and 2πktarget

and 2πkref are the offsets which correct the phase wrapping.

In order to unwrap the phase offsets, and so estimate 2πktarget and 2πkref , it is

usually required to project multiple patterns with lower frequencies on the scene.

We avoid this by exploiting the depth map computed with the ToF sensor, dToF .

First of all, we consider the pattern phase offset θPUToF that originates the depth map

dToF in case of a SL acquisition:

θPUToF = θPUref −
b

Q
· dref − dToF

dToF
. (C.23)
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If we consider

θToF = θref −
b

Q
· dref − dToF

dToF
. (C.24)

we have that

θPUToF = θToF + 2πkref . (C.25)

Since the only differences between θPUToF and θPUtarget are the fluctuations due to noise,

by assuming that the noise is smaller than half of the phase wrapping distance, we

obtain that

|θPUToF − θPUtarget| < π. (C.26)

By using together Eq. C.22 and C.23, we have that

dSL = dref

(︂
1 +

dref − dToF
dToF

+
Q

b

(︁
θPUToF − θPUtarget

)︁)︂−1

(C.27)

Since we have assumed that |θPUToF − θPUtarget| < π, recalling that θPUtarget = θtarget +

2πktarget and θPUToF = θToF + 2πkref , it comes out that

θPUToF − θPUtarget =
(︁
θPUToF − θPUtarget

)︁
[−π;π)

=
(︁
θToF + 2πkref − θtarget − 2πktarget

)︁
[−π;π)

=
(︁
θToF − θtarget)[−π;π)

(C.28)

From Eq. C.27 and C.28 it turns out that:

dSL = dref

(︂
1 +

dref − dToF
dToF

+
Q

b

(︁
θToF − θtarget)[−π;π)

)︂−1

(C.29)

that is Eq. 4.8 presented in Section 4.2.3 and it doesn’t require any explicit phase

unwrapping operations.

C.3 Error Estimation of the Structured Light Ap-

proach

For the estimation of the error in the structured light (SL) approach we consider the

model of Eq. 4.8 and we assume that θref is noiseless since it has to be captured

145



APPENDIX C. STM-TOF CORRELATION FUNCTION EVALUATION AND
ERROR PROPAGATION ANALYSIS

only once and multiple acquisitions can be repeated in order to remove the noise.

The only remaining source of randomness is θtarget and by error propagation we can

obtain:

σ2
dSL

=
(︂ ∂dSL
∂θtarget

)︂2
σ2
θtarget

=
(︂
Q
d2target
drefb

)︂2
σ2
θtarget

(C.30)

from Eq. C.30 it is possible to notice that the depth estimation accuracy improves

if we increase the baseline between the sensor and the projector and it degrades

with the increase of dtarget, that is depth that we are going to estimate. This is

a common behavior for SL systems. The reference distance dref has no effect in

the accuracy since Q is directly proportional to dref itself. The phase estimation

variance σ2
θtarget

can be retrieved from the second line of Eq. C.19. It comes out

that the mean error variance for the SL depth estimation is

σ̄2
dSL

=
(︂
Q
d2target
drefb

)︂2 8B

9π2A2
(C.31)

146



Bibliography

[1] G. Agresti and P. Zanuttigh, “Combination of spatially-modulated tof and structured light
for mpi-free depth estimation,” in Proceedings of European Conference on Computer Vision
Workshops (ECCVW), 2018.

[2] G. Agresti and P. Zanuttigh, “Deep learning for multi-path error removal in tof sensors,” in
Proceedings of European Conference on Computer Vision Workshops (ECCVW), 2018.

[3] G. Agresti, H. Schaefer, P. Sartor, and P. Zanuttigh, “Unsupervised domain adaptation
for tof data denoising with adversarial learning,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5584–5593, 2019.

[4] M. Biasetton, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised domain adaptation
for semantic segmentation of urban scenes,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), June 2019.

[5] G. Agresti, L. Minto, G. Marin, and P. Zanuttigh, “Deep learning for confidence information
in stereo and tof data fusion,” in Proceedings of International Conference on Computer
Vision Workshops (ICCVW), Oct 2017.

[6] G. Agresti, L. Minto, G. Marin, and P. Zanuttigh, “Stereo and tof data fusion by learning
from synthetic data,” Information Fusion, vol. 49, pp. 161–173, 2019.

[7] B. Curless, “Overview of active vision techniques,” in Proceedings of ACM International
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 99, 2000.

[8] Stereolabs, “Zed stereo system website.” https://www.stereolabs.com, Accessed July 29th,
2019.

[9] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, 2000.

[10] P. Zanuttigh, G. Marin, C. Dal Mutto, F. Dominio, L. Minto, and G. M. Cortelazzo, Time-
of-Flight and Structured Light Depth Cameras. Springer, 2016.

[11] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge uni-
versity press, 2003.

[12] A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,”
Machine Vision and Applications, vol. 12, no. 1, pp. 16–22, 2000.

[13] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with
radiometric differences,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 9, pp. 1582–1599, 2008.

147



BIBLIOGRAPHY

[14] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

[15] H. Hirschmüller, “Accurate and efficient stereo processing by semi-global matching and
mutual information,” in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 807–814, IEEE, 2005.

[16] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo matching,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[17] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, and A. Bry,
“End-to-end learning of geometry and context for deep stereo regression,” in Proceedings of
International Conference on Computer Vision (ICCV), pp. 66–75, 2017.

[18] M. Poggi, D. Pallotti, F. Tosi, and S. Mattoccia, “Guided stereo matching,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 979–988,
2019.

[19] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. West-
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[45] M. Georgiev, R. Bregović, and A. Gotchev, “Time-of-flight range measurement in low-
sensing environment: Noise analysis and complex-domain non-local denoising,” IEEE Trans-
actions on Image Processing, vol. 27, no. 6, pp. 2911–2926, 2018.

[46] R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Review of methods for resolving
multi-path interference in time-of-flight range cameras,” in IEEE Sensors, pp. 629–632,
IEEE, 2014.

149

https://www.danielgm.net/cc/
https://www.danielgm.net/cc/


BIBLIOGRAPHY

[47] S. Fuchs, “Multipath interference compensation in time-of-flight camera images,” in Pro-
ceedings of International Conference on Pattern Recognition (ICPR), pp. 3583–3586, IEEE,
2010.

[48] S. Fuchs, M. Suppa, and O. Hellwich, “Compensation for multipath in tof camera measure-
ments supported by photometric calibration and environment integration,” in Proceedings
of International Conference on Computer Vision Systems, pp. 31–41, Springer, 2013.
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