
Preference reasoning and aggregation over
combinatorial domains in uncertain and

multi-agent scenarios

PhD student: Cristina Cornelio Supervisor: Francesca Rossi

Doctoral School in Mathematical Sciences
Computer Science area, XXVIII course

University of Padua, Italy

February 2016

Contents

Riassunto . 9

Abstract . 11

I Introduction & Background

1 Introduction . 15

1.1 Context 15

1.2 Problem Statement and Research Goals 17

1.2.1 Probabilistic and Dynamic scenarios . 17

1.2.2 Multi-agent scenarios . 17

1.2.3 Logic scenarios . 19

1.3 Summary of Contributions 19

1.3.1 Probabilistic and Dynamic framework . 19

1.3.2 Multi-agent context . 20

1.3.3 Logic framework . 21

1.3.4 Application to a real-life problem: The kidney exchange protocol 21

1.4 Thesis statement 22

1.5 Publications 22

1.6 Structure of the thesis 23

2 Background and State of the art . 25

2.1 Bayesian Networks 27

2.1.1 Independence and Conditional Independence 27

2.1.2 Representation of Bayesian networks . 28

2.1.3 The joint probability . 30

2.1.4 Inference . 31

2.2 CP-nets 34

2.2.1 Preferences and orderings . 34

2.2.2 Representation of CP-nets . 36

2.2.3 Optimal outcomes of CP-nets . 38

2.2.4 Outcome comparison . 38

2.2.5 Random generation of CP-nets . 39

2.3 Variants and Extensions of CP-nets 40

2.3.1 TCP-nets . 40

2.3.2 CP-trees . 41

2.3.3 CI-net . 42

2.3.4 UCP-nets . 44

2.3.5 mCP-nets . 45

2.3.6 GCP-nets . 46

2.3.7 CP-nets with constraints . 47

2.3.8 CP-theories . 48

2.3.9 Comparative preference theories . 49

2.4 Soft Constraints 50

2.4.1 Optimality . 51

2.5 Voting theory 52

2.5.1 Voting rules . 52

2.5.2 Voting rules on combinatorial domains 53

2.5.3 Properties of the voting rules . 53

II Original contributions

3 PCP-nets . 59

3.1 Probabilistic CP-nets (PCP-nets) 62

3.2 The set of induced CP-nets 63

3.3 Probability of the edges 65

3.4 Optimality 68

3.4.1 The Most Probable Induced CP-net . 69

3.4.2 The Most Probable Optimal Outcome . 71

3.5 Dominance 75
3.5.1 Separable PCP-nets . 76

3.5.2 A lower bound for the dominance value 78

3.5.3 An upper bound for the dominance value 87

3.5.4 The interval . 88

3.5.5 Lower bound as approximation of the dominance exact value 89

3.5.6 Dominance as a decision problem . 90

3.6 Learning of separable PCP-nets 93
3.6.1 The method . 95

3.7 Dynamic Probabilistic CP-nets 97
3.7.1 Main dynamic modifications . 97

3.7.2 Effects of the modifications on the G-net 99

3.7.3 Effects of the modifications on the Opt-net 99

3.8 A PCP-net generalization by using the Dempster Shafer theory 100
3.8.1 Dempster-Shafer theory of probability 100

3.8.2 Our model . 101

3.8.3 A language equivalently expressive as L 104

3.9 Summary and Discussion 105

4 Preference aggregation . 109

4.1 Aggregation of CP-nets into a PCP-net 111
4.1.1 Aggregation methods . 114

4.1.2 Computing Optimality in a multi-agent context 115

4.1.3 Axiomatic Properties . 117

4.1.4 Experimental Evaluation of Optimality 120

4.1.5 Computing Dominance in a multi-agent context using PR . . . 122

4.1.6 From a profile of O-legal CP-nets to a polytree-structured PCP-net
123

4.2 Aggregation of soft constraint problems 126
4.2.1 The sequential procedure . 127

4.2.2 Properties of sequential vs. local voting rules 129

4.2.3 Experimental results . 138

4.3 Summary and Discussion 151

5 A logical model for conditional preferences 153

5.1 Datalog and logic programming 155

5.2 Flat LCP-Theories (FLCP-Theories) 155
5.2.1 Algorithmic properties . 159

5.3 Recursive LCP-theories 163
5.3.1 Algorithmic properties . 164

5.4 Reasoning with LCP-theories 165
5.4.1 Completeness of LCP-theories . 165

5.4.2 Experimental evaluation . 166

5.5 Semantics for the dominance 167
5.5.1 Alternative dominance semantics . 168

5.5.2 Properties of the semantics . 169

5.5.3 Properties of the semantics comparing to the classical dominance
172

5.6 Summary and Discussion 173

6 A real-life scenario: kidney transplant protocol 175

6.1 Background and Related works 176
6.1.1 Allocation algorithms detecting cycles 176

6.1.2 Allocation algorithms detecting chains with an altruistic donor 177

6.1.3 Other approaches . 177

6.2 Our algorithm: detection of cycles and chains starting from deceased
donors 178
6.2.1 Our exchange procedure . 178

6.3 Experiments 181
6.3.1 First experiment . 182

6.3.2 Second experiment . 182

6.3.3 Third experiment . 183

6.3.4 Results analysis . 183

6.4 Introduction of Preferences 184
6.4.1 Future work . 185

6.5 Summary and Discussion 186

III Conclusions and Future work

7 Summary and Conclusions . 189

7.1 PCP-net framework 189

7.2 Multi-agent context 189

7.3 Logical formulation 190

7.4 Kidney exchange 190

8 Future directions . 193

8.1 Breaking the independence assumption in PCP-nets 193

8.2 Generalizations and extensions of LCP-theories 194
8.2.1 A probabilistic logical framework for conditional preferences 194

8.2.2 A dynamic logical framework for conditional preferences . . . 194

8.3 Kidney exchange 195

Bibliography . 197

Riassunto

Le preferenze, intese come opinioni di utenti su un insieme di oggetti, sono ampiamente presenti
nelle nostre vite e recentemente sono diventate molto studiate in Intelligenza Artificiale. In molti
contesti della nostra vita, non consideriamo gli oggetti come entità atomiche, ma consideriamo
un insieme di caratteristiche/attributi che le caratterizzano e che interagiscono tra di loro. Siamo
dunque particolarmente interessati in questi tipi di scenario: preferenze condizionali su domini
combinatori e multi-attributo.

L’abilità di rappresentare le preferenze in maniera compatta è essenziale, in particolare nel
contesto di modellazione e ragionamento con preferenze multi-attributo, in presente un esplosione
combinatoria di informazione che causa un alto costo computazionale. A questo scopo sono state
sviluppate in letteratura una serie di linguaggi di rappresentazione compatta. In questa tesi ci
focalizziamo inizialmente su un modello grafico di rappresentazione delle preferenze condizionali:
le conditional preference networks (CP-nets). Analizziamo quindi i vantaggi e gli svantaggi delle
CP-net concentrandoci su scenari incerti e multi-agente.

Gli scenari reali sono spesso dinamici e incerti: un utente può cambiare le sue idee nel tempo e
le sue preferenze potrebbero essere affette da errori o rumore. In questa tesi proponiamo una nuova
strutture chiamata PCP-net (probabilistic conditional preference networks), generalizzazione delle
CP-net, capace di rispondere ai cambiamenti attraverso aggiornamenti e di supportare informazione
probabilistica. Le PCP-net possono essere usate anche per rappresentare i contesti multi-agente
dove ogni agente è rappresentato da una CP-net e le probabilità vengono usate per riconciliare i
conflitti tra gli utenti.

In questa tesi analizziamo anche un altro linguaggio di rappresentazione compatta, simile alle
CP-net: i vincoli soft. I vincoli soft sono meno restrittivi rispetto alle CP-net, ma le complessità
computazionali rimangono le stesse per i task principali. Per questo motivo, ripensiamo lo scenario

10

multi-agente usando un profilo di agenti che esprimono le loro preferenze attraverso vincoli soft,
invece che tramite una collezione di CP-net poi aggregate in una PCP-net.

La letteratura riguardante le CP-net presenta anche molte altre generalizzazioni, poichè le
CP-net sono per certi versi restrittive e limitate nell’espressività. Ad esempio, le CP-net sono state
estese con vincoli, con inconsistenza locale e incompletezza (GCP-net), con funzioni di utilità
(UCP-net), etc. Sono dunque stati sviluppati molti formalismi differenti per descrivere le preferenze
condizionali e ognuno di essi ha una sintassi e una semantica ah hoc e algoritmi specifici. In questa
tesi specifichiamo un nuovo framework con lo scopo di unificare tutti questi modelli. La forza della
nostra formulazione è la diretta espressione del modello in logica standard al primo ordine, come
una teoria Datalog vincolata. Questa formulazione è ricca abbastanza da esprimere le CP-nets e
tutte le sue estensioni.

Concludiamo la tesi, studiando un applicazione delle preferenze in un scenario reale. Anal-
izziamo come migliorare gli algoritmi di scambi di reni aumentando il numero di trapianti e di
durata di vita aspettata, fornendo alcuni risultati incoraggianti. Quindi forniamo anche alcune idee
preliminari riguardo a come incorporare le preferenze nelle procedure di matching attualmente
utilizzate.

Abstract

Preferences, intended as user opinions over items, are conspicuously present in our lives and
recently became widely studied in Artificial Intelligence. In many contexts of our life, we do not
consider items only as entire entities, but we consider a set of features/attributes that characterize
them and that interact to each other. Therefore, we are particularly interested in this kind of
scenarios representing conditional preferences over combinatorial and multi attribute domains.

The ability of representing preferences in a compact way is essential, especially in the context
of multi-attribute preference modelling and reasoning since it causes combinatorial explosion of
information and a high computational cost. For this purpose, a number of compact representation
languages have been developed in the literature. We initially focus on a recently developed frame-
work for representing conditional preferences over a graphical structure: conditional preference
networks (CP-nets). We analyse the advantages and the drawbacks of CP-nets focusing on uncertain
and multi-agent scenarios.

Real life scenarios are often dynamic and uncertain: a user can change her mind over time
and her preferences could be affected by errors or noise. We propose the new PCP-net structure
(probabilistic conditional preference networks), as a generalisation of the CP-nets framework, able
to respond to change through updates and to support probabilistic informations. PCP-nets can be
used also to represent a multi-agent scenario where each agent is represented by a CP-net and
probabilities are used to reconcile conflicts between users.

We analyse another compact representation language, similar to CP-nets, namely soft con-
straints. Soft constraints are less restrictive, with respect to CP-nets, but the computational com-
plexity remains almost the same for the main tasks. For this reason, we rethink the multi-agent
context by using a profile of agents expressing their preferences via soft constraints, instead of via
a collection of CP-nets aggregated into a PCP-net.

12

The CP-nets literature presents also many other generalisations, since CP-nets are restrictive
and limited in expressiveness. For example, CP-nets have been extended with constraints, with local
inconsistency and incompleteness (GCP-nets), with utility functions (UCP-nets), etc. Therefore,
several different frameworks were developed to describe conditional preferences. Each of these
formalisms have ad hoc syntax, semantics and specialised algorithms. In this thesis, we specify a
new framework with an unification purpose of all these models. The strength of our formulation is
the direct expression of the model in the standard first order logic, as constrained Datalog theories.
This formulation is rich enough to express CP-nets and all its extensions.

We conclude this work, studying an application of preferences in a real-life scenario. We
analyse how to improve kidney exchanging algorithms increasing the number of transplantations
and the expected life duration, providing some encouraging results. Then we provide also some
preliminary ideas about how to incorporate preferences in the matching procedure currently used.

I
1 Introduction . 15
1.1 Context
1.2 Problem Statement and Research Goals
1.3 Summary of Contributions
1.4 Thesis statement
1.5 Publications
1.6 Structure of the thesis

2 Background and State of the art 25
2.1 Bayesian Networks
2.2 CP-nets
2.3 Variants and Extensions of CP-nets
2.4 Soft Constraints
2.5 Voting theory

Introduction & Background

1. Introduction

1.1 Context

Preferences play an important role in artificial intelligence, in automated decision making and multi-
agent systems [17, 21, 49, 51, 91]. The ability to express preferences in a faithful way, which can be
handled efficiently, is essential in many reasoning tasks. In settings such as e-commerce, on demand
video, and other scenarios where supply outstrips an individuals ability to view all the available
choices, we require an efficient formalism to model and reason with complex, interdependent
preferences. We may also use these preferences to make decisions about joint plans, actions,
or items in multi-agent environments. Agents express their preferences over a set of candidate
decisions and these preferences are aggregated into one decision which satisfies as many agents as
possible.

Often multi-attribute preference modeling and reasoning causes a combinatorial explosion
leading to high computational cost [39, 41, 52]. The set of candidates is often described as a product
of multiple features. Consider for example a car: usually it is not seen as a single item, but as a
combination of features, such as its engine, its shape, its color, and its cost. Each of these features
has some possible values, and a car is the combination of such feature values. This is often because
each decision has a combinatorial structure, that is, can be seen as the combination of certain
features, where each feature has a set of possible values. This occurs in several AI applications,
such as combinatorial auctions, web recommender systems, and configuration systems [79]. When
the set of decisions is small, a user may just present an order over them to express their preferences.
However, when the set of objects is very large, this is infeasible. Usually the values for each feature
are not many, but, because of the combinatorial structure, the set of decisions can still be very
large. Consider an example where we need to choose a menu for a meal, composed of a first course,
a main course, a dessert, and a wine. Assuming 5 choices for each of these, we should choose

16 Chapter 1. Introduction

among 54 = 625 different meals. In this thesis we assume that the decision set has a combinatorial
structure.

A number of compact representation languages have been developed in the literature to tackle
the computational challenges arising from these problems. The main ones are conditional preference
structures (CP-nets) [11], soft constraints [10, 78, 91], GAI-nets [53] and graphical utility models [7].
In this work we firstly assume individual agents express their preferences as CP-nets, a qualitative
preference modeling framework that allows for conditional preference statements, and then as soft
constraints, a quantitative preference model that allows undirected conditional preferences.

A structure such as a CP-net or a soft constraint problem automatically induces a partial or a
total order over the set of decisions. For such formalisms, the literature tells us how computationally
expensive it is to find the most preferred decision, or to test if a decision is the most preferred, or
also to test whether one decision is more preferred to another one [52, 78]. For example, for both
types of structures, it is NP-hard to find the most preferred decision, although it becomes linear in
the number of features when some topological restrictions hold [52, 78].

There is some experimental evidence suggesting qualitative preferences are more accurate than
quantitative preferences elicited from individuals in uncertain information settings, [92]. CP-nets
are a qualitative preference modeling framework that allow for conditional preference statements
[11]. They are compact, arguably quite natural, intuitive in many circumstances, and widely used
in many applications in computer science such as recommendation engines [49]. There exist
many generalizations of CP-net, such as General CP-nets [52] that define CP-nets that can be
incomplete or locally inconsistent. CP-theories [111] are a specialized formalism, with its own
ad hoc syntax and semantics, in which preferences may be conditioned on indifference to certain
features. Comparative preference theories [112] permit preferences to be defined on a set of features
simultaneously. Along another direction, [12] and [42] introduce the idea of adding (hard and soft)
constraints to CP-nets.

Often, we must make a joint decision and we need to compromise our preferences with those of
other people. To come back to the meal example above, we may think of a set of friends who want
to organize a dinner and need to agree on a common menu. This is a kind of scenario we consider
in this thesis: we consider a set of agents, each expressing their preferences via soft constraints or
via CP-nets over a common set of decisions with a combinatorial structure. The goal is to aggregate
such preferences and to select a joint decision. While compact preference formalisms mentioned
above are suitable for expressing the preferences of a single agent, they may lead to undesirable
results if used for multi-agent preference aggregation. For example, in soft constraints, the negative
opinion of an agent over a specific value of a feature would impact negatively on any decision
containing such a value, even if all other agents like it. An alternative could be to search for a
decision belonging to the Pareto frontier of the multi-agent preferences, as it is done in [54] for
preferences expressed via General Additive Independence (GAI) utility functions. Another option,
that we propose in this thesis, is to aggregate the agents’ preferences via voting rules.

1.2 Problem Statement and Research Goals 17

1.2 Problem Statement and Research Goals

1.2.1 Probabilistic and Dynamic scenarios

Real life scenarios are often dynamic. A user can change her mind over time or the system under
consideration can change its laws: preferences may change over time. Thus, we need a structure
that can respond to change through updates, without the need to completely rebuild the structure.
Additionally, we often meet situations characterized by some form of uncertainty. We may be
unsure about our preference ordering over certain items, or there could be noise in our preference
structure due to lack of precision in elicitation or sensor collection (e.g., measurement error from
remote sensors). In order to model this, we need a structure for handling uncertainty and change,
for example via probabilistic information. The need for encoding uncertain, qualitative information
has seen some work in the recommendation engine area [46, 85] and is a motivating example.

Consider a household of two people and their Netflix account. The recommendation engine
only observes what movies are actually watched, at what time they are watched, and their final
rating. There are two people in the house and let us say that one prefers drama movies to action
movies while the other one has the opposite preference. When making a recommendation about
what type of movie to watch, the engine may consider several facts. Comedies may always be
watched in the evening, so we can put a deterministic, causal link between time of day and type of
movie. However, we cannot observe which user is sitting in front of the television at a given time.
There is strong evidence from the behavioral social sciences showing that adding uncertainty to
preference frameworks may be a way to reconcile transitivity when eliciting input from users [88],
among other nice properties [73]. Using this idea, we propose to add a probabilistic dependency
between our belief about who is in front of the television and what we should recommend. We
may want to update the probability associated with this belief based on the browsing or other
real-time observable habits of the user. Users could change their preferences over time or there
could be different users with different preferences. To do this we need an updatable and changeable
structure that allows us to encode uncertainty. This is the main proposal of this thesis, that we
call PCP-net. While keeping the preferential dependency structure of a CP-net, in a PCP-net a
preference ordering over a variable domain is replaced by a probability distribution over all possible
preference orderings over that domain.

Once we have this new dynamic and probabilistic structure (PCP-net), we want to perform two
main tasks: optimality and dominance. Optimality corresponds to understand how to compute the
most probable alternative or the most probable user representation. Dominance corresponds to
understanding, given two alternatives, which one has the higher probability of being preferred.

1.2.2 Multi-agent scenarios

Firstly we consider multi-agent scenarios where individual agents express their preferences as
CP-nets, then we consider another model to represent an profile of agents: soft constraints. Agents,
in this scenario, may use these preferences frameworks to make decisions about joint plans, actions,
or items in multi-agent environments: agents express their preferences over a set of alternative
decisions, and such preferences are aggregated into a collective decision. Often in these settings

18 Chapter 1. Introduction

we need to handle partial preferences of agents [90] or reconcile preferences that directly conflict.
Voting has been used extensively to resolve these conflicts [68, 72, 74, 75, 114].

PCP-net aggregation

We investigate the use of PCP-nets (Probabilistic CP-nets) as a new structure to represent the
preferences of a group of agents, since a PCP-net defines a probability distribution over a collection
of CP-nets: all those CP-nets that can be obtained from the PCP-net by choosing one variable
ordering out of the whole probability distribution over them.

Given a PCP-net, we focus on three collective reasoning tasks that agents may want to perform:
finding the candidate which represents best the group of agents, finding the outcome that is most
preferred by the agents, or decide whether an outcome is collectively preferred to another (a
dominance query).

Previous efforts to tackle these collective reasoning problems over CP-nets have primarily
focused on the question of optimality [68] or dominance [96] and have not dealt with uncertainty.
Generally, a voting method is defined in order to determine the most preferred alternative. These
methods are usually sequential (multi-issue voting) and work at the level of the individual variables
[65, 67, 68, 114, 116]. In contrast, we propose to aggregate the collection of CP-nets into a single
structure, a PCP-net, on which we directly perform collective reasoning tasks, including but not
limited to testing optimality. This provides a formalism to perform other preference reasoning tasks
such as answering dominance queries. Moreover, we can store or communicate between agents a
single, compact structure instead of a possibly large collection of CP-nets.

We analyse different methods for aggregating a collection of CP-nets into a single PCP-net and
compare them theoretically and experimentally.

We also study how our methods to compute the main reasoning tasks (optimality and dominance)
perform on our resulting PCP-net in comparison to the given collection of CP-nets, both from an
accuracy point of view and also from a computational complexity point of view, also in comparison
with state of the art results and methods.

Soft-constraints aggregation

With respect to CP-nets, soft constraints allow one to avoid imposing many restrictions on the
agents’ preferences, since they are not directional, and thus information can flow from one variable
of a constraint to another one without a predefined ordering between them, in a multi-agent setting
where preferences are aggregated. This allows one to not tie the variable ordering used by the
sequential procedure (multi-issue voting) to the topology of the constraint graph of each agent.
Moreover, soft constraints can model also strict requirements, which are often necessary in multi-
issue settings where one needs to rule out some combinations of feature values. Not only are
CP-nets different from soft constraints syntactically, but also they induce different ordering over
the solutions. In fact, CP-nets never induce orderings with ties which is typical in soft constraint
problems but usually present many incomparable outcomes. Moreover, while it is computationally
difficult to compare two solutions in CP-nets, in soft constraint problems it is easy. In terms of
reasoning complexity, computing the optimal solution in an acyclic CP-net is easy, while it is
computationally difficult for general CP-nets; it is in general difficult to find an optimal solution

1.3 Summary of Contributions 19

in a soft constraint problem, while it is polynomial if the constraint graph of the problem has no
cycles or a bounded treewidth. We are interested to undergo a study similar to the one performed in
[65] for CP-nets in scenarios where the agents express their preferences via soft constraints.

1.2.3 Logic scenarios

CP-nets represent one end of the expressiveness/tractability spectrum. While useful in practice,
CP-nets are limited in expressiveness: a rule may specify a preference for exactly one value over
another (in the same feature domain). The literature presents many extension and variants (General
CP-nets, CP-theories, Comparative preference theories, hard and soft constrained CP-nets, etc.)
each one with ad hoc syntax, semantics and algorithms. We want to specify a new framework that
unifies all the models above and that does not need different syntax, semantics and algorithms. We
analyze the idea that conditional preferences can be directly expressed in standard first order logic,
as constrained Datalog theories [19, 59, 105].

We propose a semantics, described in first-order logic, rich enough to express CP-nets and each
of its extensions discussed above, including algorithms for consistency, dominance and optimality.
We plan to analyze the properties and computational complexity of these main tasks.

Introducing constraints in first order logic is natural, thus we do not have to introduce them
in an ad hoc fashion as in [12, 42, 84]. For example in [84] authors use an ad hoc semantic for
flipping sequences: consistent flipping worsening sequence, flipping sequence that allow worsening
flips only between consistent outcomes.

We want also to exploit the advantage of the introduction of conditional preference theories as
Datalog programs [20]: thus we make Datalog’s rich semantic, algorithmic and implementation
framework available in service of conditional preferences.

1.3 Summary of Contributions

1.3.1 Probabilistic and Dynamic framework

We propose a new framework: PCP-net (Probabilistic CP-nets). This is a generalisation of
CP-nets which allows for uncertainty and online modification of the dependency structure and
preferences of CP-nets. PCP-nets provide a way to express probabilities over dependency links
and over preference orderings in conditional preference statements. Given a PCP-net we study
the computational complexity of the main reasoning tasks concerning preferences: outcome
optimization and dominance queries.

Concerning optimality in a PCP-net there are two interpretations: the first one considers that a
PCP-net defines a probability distribution over a set of CP-nets; the second one considers the set of
outcomes. Thus we show how to find the most probable induced CP-net, that is, the CP-net in the
distribution that has the highest probability to appear in reality. We define the notion of optimal
outcome in two natural ways: the most probable optimal outcome and the optimal outcome of the
most probable CP-net induced by the PCP-net. If the dependency structure of the PCP-net has
bounded in-degree, both kinds of optimal outcomes can be found in time polynomial in the size of
the PCP-net.

20 Chapter 1. Introduction

We then study dominance which is in general computationally a difficult task. For PCP-nets
whose dependency graph is a polytree, for which dominance is still difficult, we give a polynomial
time approximation in the form of a lower and an upper bound to the correct probability value for
dominance. We show, experimentally, that often the range between the lower and upper bound is
small, and in particular that the lower bound is very close to the correct value.

1.3.2 Multi-agent context

We consider scenarios where several agents must aggregate their preferences over a large set
of candidates with a combinatorial structure and we assume agents to compactly express their
preferences over the candidates via firstly CP-nets and then soft constraints.

PCP-nets in a multi-agent context

While keeping the preferential dependency structure of a CP-net, in a PCP-net a preference ordering
over a variable domain is replaced by a probability distribution over all possible preference orderings
over that domain. Thus, a PCP-net defines a probability distribution over a collection of CP-nets:
all those CP-nets that can be obtained from the PCP-net by choosing one variable ordering out of
the whole probability distribution over them.

We then adapt, to the multi-agent context, the two collective reasoning tasks that agents may
want to perform, optimality and dominance, applying the existing notions and algorithms developed
for PCP-nets. Given a set of agents each expressing their preferences as a CP-net, we may want
to find the outcome that is most preferred by the agents (optimality over outcomes) or to find the
candidate which is most preferred by the agents (the most probable induced CP-net), or decide
whether one candidate is collectively preferred to another(dominance query). We propose to
aggregate the collection of CP-nets into a single structure, a PCP-net, on which we directly perform
collective reasoning tasks. This provides a formalism to perform other preference reasoning tasks
such as answering dominance queries, in addition to finding the most preferred outcome. Moreover,
we can store or communicate between agents a single, compact structure instead of a possibly large
collection of CP-nets.

We consider two methods for aggregating a collection of CP-nets into a single PCP-net: by
extracting the probability distribution directly from the CP-nets (proportional method, PR) or by
minimizing a notion of error between the aggregated structure and the original set of CP-nets (least-
squares method, LS). We then analyze the methods experimentally, showing that when aggregating
the agents’ CP-nets, the proportion method yields a PCP-net which more accurately captures the
preferences of the agents than the least-square method.

When the PCP-net is obtained by aggregating a collection of CP-nets via the proportion method,
we show experimentally that our approximation of dominance closely models dominance computed
on the collection of given CP-nets. The same result holds for a deterministic form of dominance we
call MP-dominance.

Aggregation of Soft Constraint Profiles

To aggregate the preferences of the agents, represented via soft constraints, we consider a sequential
procedure that asks the agents to vote on one variable at a time. At each step, all agents express their

1.3 Summary of Contributions 21

preferences over the domain of a variable; based on such preferences, a voting rule is used to select
one value for that variable. When all variables have been considered, the selected values constitute
the returned variable assignment, that is, the elected candidate. We study several properties of
this procedure (such as Condorcet consistency, anonymity, neutrality, monotonicity, consistency,
efficiency, participation, independence of irrelevant alternatives, non dictatorship, and strategy-
proofness), by relating them to corresponding properties of the adopted voting rules used for each
variable. Moreover, we perform an experimental study that shows that the proposed sequential
procedure yields a considerable saving in time with respect to a non-sequential approach, while
the winners satisfy the agents just as well, independently of the variables ordering. We provide
also results on real preferences obtained from the PrefLib database and describing the TripAdvisor
users preferences over features describing hotels.

1.3.3 Logic framework

We observe that constrained conditional preferences systems can be expressed as particular kinds
of constrained Datalog programs which we call (constrained) LCP theories. These programs can be
run using tabling in several Prolog systems, such as XSB Prolog. We show that existing conditional
preference frameworks (CP-nets [11], CP-theories [111], GCP [52], comparative preferences [112]
are all particular cases of flat LCP theories. We also introduce a new, powerful form of conditional
preferences, recursive conditional preferences, that can be formulated as LCP theories (i.e. within
Datalog). We establish complexity results for flat and recursive LCP for the canonical conditional
preference algorithms (consistency, dominance, optimality), extending prior results. We provide
new polynomial results on special forms of conditional preference theories, namely acyclic and tree-
structured theories, extended to Flat LCP. We introduce a new complexity measure for conditional
preferences, data-complexity, leveraging data-complexity notions from Datalog. We implement a
compiler for our system into XSB Prolog. The compiler recognizes special cases of LCP theories
(e.g. acyclic) and generates efficient (poynomial-time) code; otherwise the general tabling-based
mechanism is used to answer basic queries. We analyze several new notion of dominance for
CP-nets that are more efficient from a computational point of view, taking advantage of the Datalog
formulation of the theory. We analyze the properties of these new semantics and we provide also a
comparison between them and the classical formulation of dominance.

1.3.4 Application to a real-life problem: The kidney exchange protocol

We study a particular application of preferences in a real-life scenario: the kidney exchange protocol.
Kidney exchange is widely used in many countries, and the success of this procedure depends
on how many patients (with the corresponding donor) partecipate to the program. In Italy, and
in particular in our context of Padua, only very few patients join the kidney exchange program.
We study how to encourage the donor/patient pairs to participate and we analyze how to improve
the existing algorithms to increase the number of transplantations and the expected life span. We
provide a procedure that improves the number of transplantations in the dataset of Padua, and we
provide encouraging results. We also the provide some preliminary ideas about how to incorporate
preferences in the matching procedures currently used, to minimize transplantation failures: the

22 Chapter 1. Introduction

number of rejected proposed matchings.

1.4 Thesis statement

The thesis analyzes preferences over combinatorial domains, providing two generalizations of
conditional preference frameworks. The first one, located also in a multi-agent scenario, follows a
probabilistic point of view allowing uncertain and dynamic reasoning. The second stream instead,
with a unification purpose of the main models for representing preferences over combinatorial
domains, consists into a logic generalization that expands the notion of preferences through the
new concept of recursive preferences. These generalizations are useful to have a comprehensive
and complete formulation of conditional preferences over combinatorial domains, preserving the
state-of-the-art computational complexities.

1.5 Publications

The scientific findings contained in this thesis have been presented at international conferences and
workshops. The most relevant ones are:

• Conferences:
? “Dynamic and Probabilistic CP-nets”, C. Cornelio, Proceedings of the Doctoral Pro-

gram of International Conference on Principles and Practice of Constraint Programming
2013, CP-13.

? “Updates and Uncertainty in CP-net”, C. Cornelio, U. Grandi, J. Goldsmith, N.
Mattei, F. Rossi and K.B. Venable, Proceedings of AUAI 2013: Advances in Artificial
Intelligence, 26th Australasian Joint Conference, 2013.

? “Reasoning with PCP-nets in a Multi-Agent Context”, C. Cornelio, U. Grandi, J.
Goldsmith, N. Mattei, F. Rossi and K.B. Venable, Proceedings of the International
Conference on Autonomous Agents & Multiagent Systems 2015, AAMAS-15.

? “Models for Conditional Preferences as extensions of CP-nets”, C. Cornelio, Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
(extended abstract), Doctoral Consortium, IJCAI-15.

• Workshops:
? “Dynamic Probabilistic CP-nets”, C. Cornelio, U. Grandi, J. Goldsmith, N. Mattei,

F. Rossi and K.B. Venable, Proceedings of the 7th Multidisciplinary Workshop on
Advances in Preference Handling of the International Joint Conference on Artificial
Intelligence 2013, MPREF-13.

? “Voting with CP-nets using a Probabilistic Preference Structure”, C. Cornelio, U.
Grandi, J. Goldsmith, N. Mattei, F. Rossi and K.B. Venable, Proceedings of the 5th
International Workshop on Computational Social Choice, ComSoC-14.

? “Logical conditional preference theories”, C. Cornelio, A. Loreggia, and V. Saraswat,
Proceedings of the MPREF workshop of the International Joint Conference on Artificial
Intelligence 2015, MPREF-15.

• Submitted:

1.6 Structure of the thesis 23

? “Multi-agent soft constraint aggregation via sequential voting: theoretical and
experimental results”, C. Cornelio, G. Dalla Pozza, M.S. Pini, F. Rossi, K.B.Venable.

? “Reasoning with PCP-nets”, C. Cornelio, U. Grandi, J. Goldsmith, N. Mattei, F. Rossi
and K.B. Venable.

1.6 Structure of the thesis

The thesis is structured in three main parts: the first part is about background notions and the state of
the art of the context analysed in this thesis; the second part describes the theoretical contributions
of the thesis and the use of preference formalisms in an application scenario; the third part is the
concluding section with a summary and some future directions.

In details the thesis is organized in the following chapters:

• Chapter 1: Introduction. In this chapter we introduce an overview of the thesis focusing on
the context in which we allocate our work, the problems that have been addressed, and the
solutions/original contributions provided.

• Chapter 2: Background. In this chapter we deal the background notions needed in the thesis
regarding preference representations: Bayesian Networks, CP-nets, variants and extensions
of CP-nets, soft constraints and voting theory.

• Chapter 3: PCP-net. In this chapter we introduce PCP-nets and we analyse the algorithmic
properties of the associated main tasks. We also provide a dynamic interpretation of PCP-nets
that allows changes and modifications of the preferences during the time. We also provide an
alternative formulation of preferences in a probabilistic context, using a different notion of
probability: the Dempster-Shafer theory of probability. Moreover, we propose an algorithm
for learning a PCP-net in the preliminary case of separable dependency structure.

• Chapter 4: Aggregation of preferences. In this chapter we analyse two different kinds of
aggregation of preferences in a multi-agents context: the first one aggregating CP-nets into a
PCP-net and the second one aggregating the preferences of a group of agents expressed via
(fuzzy) soft constraints. In both the two sections we provide theoretical and experimental
analysis. In Section 4.1.6 we provide a method to build a polytree dependency graph for a
PCP-net aggregated from a O-legal profile of CP-nets.

• Chapter 5: A logic framework for conditional preferences. In this chapter we introduce the
new unifying and logic framework for conditional preferences: LCP-theories. We analyse
the algorithmic properties and computational complexity of the associated main tasks. We
provide also the definition and analysis of three alternative semantics for the dominance task
that are particularly useful in this context.

• Chapter 6: Preferences in a real-life scenario. In this chapter we study the kidney exchange
protocols and we propose a way to improve the currently existing exchange algorithms. We
provide also some preliminary ideas of introducing patients preferences in the computation
of the matching to obtain a further improvement.

• Chapter 7: Summary and Conclusions. In this chapter we present a summary of the main
contributions of the thesis and we provide a concluding discussion about the obtained results.

24 Chapter 1. Introduction

• Chapter 8: Future directions. We conclude the thesis introducing some future work directions
presenting also some preliminary considerations.

2. Background and State of the art

Preferences play a key role in artificial intelligence therefore it is essential to provide frameworks to
represent them in an effective way. In the following sections we introduce the background notions,
frameworks and methodologies used in the preferences context.

There exists many interpretation of what a “preference” is, but all these definitions can be
classified in two main classes. The first point of view is “quantitative”: this interpretation is based
on utility functions that represent how much the users like or dislike an item or an alternative. The
second point of view instead is “qualitative”: this interpretation is based on the comparison between
two or more alternatives; the user provide her preference between two items but not specifying how
much more she likes the preferred one.

Preferences can be expressed over several kinds of items: candidates of an election, films, music,
etc. In many contexts of our life in which we have to make a decision over a set of alternatives, we
do not express our preferences over the alternatives considered as entire entities but we consider
the set of features that characterize them. In these kind of contexts we are talking about alternatives
with multi-attribute domains. When the number of features describing the items increase, for
humans, it becomes difficult to compare outcomes, since it is difficult to evaluate alternatives
over multiple dimensions. Also for machines is difficult to handle multi-attribute domains since it
requires to save in memory an exponential amount of information. For these reasons, the relations
between the different features have an important role and are widely studied in the literature. In the
quantitative context the preferences are represented by utility functions defined as a combination of
sub-functions each one corresponding to a different feature. In the qualitative scenario preferences
are divided focusing on subset of features with particular properties. Thus become obvious that the
features (properties that characterize an alternative) can be either interconnected to each other or
independent to each other, and this idea permits to simplify the computational complexity of the

26 Chapter 2. Background and State of the art

frameworks. A popular way to represent the interaction between the features corresponds to the
use of graphical models, taking advantage on the independence between the features. A significant
number of such a models have been developed, starting from Bayesian networks that are a compact
way to represent a probability distribution over a set of events defined in a combinatorial domain.
Afterwards other graphical models have been defined to represent qualitative and quantitative
preferences. The main graphical model concerning qualitative preferences are CP-nets, defined in
2004 by Boutilier et al. [11].

This framework (CP-nets) represents in a compact way the conditional preferences of a user
over a set of features. For example the statement “Given a Ferrari I prefer the red color to the
yellow; but I prefer the opposite for a Lamborghini.” means that the feature color depends on the
feature model of the car. In this chapter firstly we introduce CP-nets, analyzing the strengths and
the drawbacks of this formulation.

In the literature many generalizations and variants of CP-nets have been developed. In the
following sections we analyse these main generalizations:

• TCP-nets [15]: an extension of CP-nets that permits to represent also the notion of relative
importance and conditional relative importance between the features;

• CP-trees [112]: a formulation of preferences more restrictive than a CP-net but useful in
practice since in allows polynomial computation for the main reasoning tasks;

• CI-net [14]: a framework that depends on the notion of conditional importance statement;
• UCP-nets [13]: an extension of CP-nets in which the preferences are expressed in a quantita-

tive way, exploiting a utility function defined on the single features;
• mCP-nets [90]: an extension of CP-net formalism to model and handle the preferences of

multiple agents;
• GCP-nets [41, 52]: a general form of conditional and qualitative preferences that allow local

inconsistency and incompleteness;
• CP-nets with constraints [12, 84]: a model to reason with CP-net and hard constraints jointly;
• CP-theories [111]: a formulation that allows a more general form of cp-statements, with

respect to CP-nets;
• Comparative preference theories [112]: a framework that allows to express preferences on

several features simultaneously.

Soft-constraints [78] are another way, analysed in this chapter, to represent preferences exploit-
ing graphical structures, but in a quantitative way. Then we introduce the voting theory environment:
a voting system is a method by which a set of voters choose one among a set of options/candidates.
Voters opinions can be expressed by a submission of a vote or by their preference ordering over the
set of candidates (or part of it). Voting theory is widely used in the preferences analysis context.

Chapter structure

The chapter is organized as follows.

• In Section 2.1 we introduce the Bayesian networks framework, providing the state-of-the-art
procedures for the main tasks and their related computational complexity.

• In Section 2.2 we present the CP-nets model. We provide the formal definition and we also

2.1 Bayesian Networks 27

introduce the notions of optimal outcome and outcome comparison, providing algorithms
and associated computational complexities.

• In Section 2.3 we study the variants and generalizations of the CP-nets framework: TCP-nets,
CP-trees, CI-net, UCP-nets, mCP-nets, GCP-nets, CP-nets with constraints, CP-theories and
Comparative preference theories.

• In Section 2.4 we present a preferences representation model alternative to CP-nets, “quanti-
tative” oriented: Soft constraints. We analyse also optimality in this scenario.

• In Section 2.5 we introduce the voting theory environment. We provide the definition of the
main voting rules and we define the axiomatic properties that are usually considered.

2.1 Bayesian Networks

The Bayesian networks formalism was invented to allow an efficient representation of uncertain
knowledge and to reason rigorously with it ([29], [31] and [93]). This approach is now one of main
research topics on uncertain reasoning and expert systems.

The concept of a Bayesian network encompasses the importance of independence and con-
ditional independence relationships in simplifying probabilistic representations of the world. In
this section we introduce a systematic way to represent such relationships explicitly in the form
of Bayesian networks. We then show how probabilistic inference, although computationally
exponential in the worst case, can be done efficiently in many practical situations.

2.1.1 Independence and Conditional Independence

Before explaining what a Bayesian network is, we have to introduce the notions of independence
and conditional independence.

Definition 2.1.1 Let X and Y be two discrete random variables. X is independent of Y if

P(X ,Y) = P(X)P(Y).

We have also that, if X is independent of Y , the following equalities hold:

P(X |Y) = P(X), P(Y |X) = P(Y).

The definition of independence can be extended to sets of variables, as follows.
Definition 2.1.2 The set of variables X1, · · · ,Xl is independent of the set of variables Y1, · · · ,Ym

if
P(X1, · · · ,Xl,Y1, · · · ,Ym) = P(X1, · · · ,Xl)P(Y1, · · · ,Ym).

Definition 2.1.3 Let X , Y and Z be three discrete random variables. X is conditionally indepen-
dent of Y given Z if

P(X |Y,Z) = P(X |Z).

28 Chapter 2. Background and State of the art

We have also that if X is conditionally independent of Y given Z then:

P(X ,Y |Z) = P(X |Z)P(Y |Z), P(X |Y,Z) = P(X |Z).

The definition of conditional independence, as the definition of independence, can be extended
to sets of variables.

Definition 2.1.4 The set of variables X1, · · · ,Xl is conditionally independent of the set of
variables Y1, · · · ,Ym, given the set of variables Z1, · · · ,Zn, if

P(X1, · · · ,Xl|Y1, · · · ,Ym,Z1, · · · ,Zn) = P(X1, · · · ,Xl|Z1, · · · ,Zn).

These notion combined with Bayes’s rule are the basis of the Bayesian networks.
Definition 2.1.5 — Bayes’s rule. Given two discrete random variables X and Y , Bayes rule is
as follows:

P(X |Y) = P(Y |X)
P(X)

P(Y) .

2.1.2 Representation of Bayesian networks

The full joint probability distribution of a set of variables can answer all the questions about
the domain, however, such a domain, can become very large as the number of variables grows.
Independence and conditional independence among variables can greatly reduce the number of
probabilities that need to be specified in order to define the full joint distribution. Bayesian networks
(BN) are data structures defined to represent the dependencies among variables. A BN can represent
also any full joint probability distribution and in many cases can do so very concisely.

Definition 2.1.6 A Bayesian network is a directed graph in which:
• each node corresponds to a random variable (discrete or continuous);
• a set of directed edges connects pairs of nodes (if there is an edge from node X to node Y ,

X is said to be a parent of Y);
• the graph has no directed cycles and hence is a directed acyclic graph (DAG);
• each node Xi has a family of conditional probability distribution P(Xi|Parents(Xi)) that

quantifies the effect of the parents on the node.

Definition 2.1.7 If the nodes are discrete variables, each of them Xi has a conditional probability
table (CPT), in which each row contains a family of conditional probability distributions, each
one associated with a possible combination of values for the parent nodes P(Xi|Parents(Xi)).

Observation 2.1 Consider a BN in which the variables have domains of cardinality equal to
d. In general, a table for a variable with k parents contains dk+1 independently specifiable
probabilities. A node with no parents has only one row representing the prior probabilities of
each possible value of that variable.

A Bayesian network can often be far more compact than the full joint distribution, since the
full joint distribution needs dn values while BN needs ndk+1 values (that could be less then dn if

2.1 Bayesian Networks 29

max{k} is small). ⌅

Observation 2.2 Considering Boolean variables, once you know that the probability of a true
value is p, the probability of false must be 1� p, so we often omit the second number. In general,
a table for a Boolean variable with k Boolean parents contains 2k independently specifiable
probabilities. ⌅

We now show a Bayesian network.

⌅ Example 2.1 Consider a Bayesian network with four variables A, B, C and D with domains
DA = {a1,a2,a3}, DB = {b1,b2}, DC = {c1,c2,c3} and DD = {d1,d2}. Assume there are two
edges: from B to C and from B to D (as depicted in Figure 2.1).

C

B

D

A

Figure 2.1: Bayesian network (Example 2.1)

The variables have the following CPTs:
• Variable A:

a1 a2 a3

0.4 0.5 0.1

• Variable B:

b1 b2

0.7 0.3

• Variable C:

B values c1 c2 c3

b1 0.2 0.3 0.5
b2 0.6 0.2 0.2

• Variable D:

B values d1 d2

b1 0.4 0.6
b2 0.8 0.2

We note that there are 9 degrees of freedom in the CPTs, but if we take all the joint probabilities
we would have 35 values. ⌅

30 Chapter 2. Background and State of the art

We will see, in the following section, that the combination of the topology of the network and
the conditional distributions of the variables suffices to specify the full joint distribution for all the
variables.

2.1.3 The joint probability

The previous section described what a network is, but not what it means.
One way to define what the network means is to define the way in which it represents a specific

joint distribution over all the variables.
The parameters associated with each node correspond to conditional probabilities P(Xi|Pa(Xi)).

A generic entry in the joint distribution is the probability of a conjunction of particular assignments
to each variable, such as P(X1 = x1 · · ·Xn = xn). The value of this entry is given by the formula:

P(X1 = x1, · · · ,Xn = xn) =
n

’
i=1

P(Xi = xi|Pa(Xi) = Pa(xi)). (2.1)

where Pa(xi) is the assignment of the parents of Xi according to the assignment (X1 = x1 · · ·Xn = xn).
Thus, each entry in the joint distribution is represented by the product of the appropriate elements
of the conditional probability tables (CPTs) in the Bayesian network.

Equation 2.1 is given by the applying of the chain rule to the joint probability P(X1 = x1 · · ·Xn =

xn).

Definition 2.1.8 (Chain rule) The chain rule is a repeated application of the definition of
conditional probability to the joint probability of a set of variables. Consider an indexed set
of variables A1, ...,An. We can apply, to the joint probability, the definition of conditional
probability to obtain:

P(An, · · · ,A1) = P(An|A1, · · · ,An�1)

Repeating this process with each final term creates the product:

P(An, · · · ,A1) =
n

’
i=1

P(Ai|
i�1\
j=1

(A j))

that is the chain rule.

We can obtain equation:

P(X1, · · · ,Xn) =
n

’
i=1

P(Xi|Pa(Xi))

by applying the chain rule to the joint probability of X1, · · · ,Xn where the Xi are ordered in such a
way that the variables representing the causes precede the variables representing the consequences.
We then remove, in the factors P(Ai|

Ti�1
j=1(A j)) of the product, the variableA j̄ that are conditional

independent of Ai given the other A j.

2.1 Bayesian Networks 31

Observation 2.3 Each variable is conditionally independent of its non-descendants, given its
parents. For example, in Example 2.1, C is independent of D given the value of B.

Another important independence property is that a node is conditionally independent of all
other nodes in the network, given its parents, children, and children’s parents (this subset of
nodes is called Markov blanket). ⌅

2.1.4 Inference

We now introduce inference in a Bayesian networks, given information E, called evidence.

Inference tasks

The main tasks of inference in Bayesian network are:

• Belief updating (Bel):
This task look for the probability v⇤, define as follows.
⇧ Single marginal, given a variable X :

v⇤ = P(X = x|E = e).
⇧ Subjoint, given a subset of variables S:

v⇤ = P(S = s|E = e).
• MPE:

Finding most probable explanation (MPE) is finding the most probable assignment for all
the variables, according to the evidence:

(x⇤1, · · · ,x⇤n) = arg max(x1,··· ,xn)P(X1 = x1, · · · ,Xn = xn|E = e).

• MAP:
Finding the maximum a-posteriori hypothesis (MAP) is used when we are interested on a
subset of variables. We suppose to have the set of n variables Var and we are interested on a
subset of m variables A1, · · · ,Am of Var. The set Var\{A1, · · · ,Am} is equal to {B1, · · · ,Bl}.
So, MAP finds the most probable assignment for A1, · · · ,Am summing over all possible values
of the set {B1, · · · ,Bl}, according to the evidence.

(a⇤1, · · · ,a⇤m) = arg max(a1,··· ,am) Â
8(b1,··· ,bl)

P(A1 = a1, · · · ,Am = am,B1 = b1, · · ·Bl = bl|E = e).

Inference algorithms

The inference method that we will use in this thesis is Variable Elimination, also called Bucket
Elimination [95] [29] [31].

The idea, like that of direct application of factoring, is simple. First, establish an elimination
ordering for the variables not in the result. Then, for each variable in the elimination ordering in
turn:

1. remove and gather all distributions indexed by the parameter;
2. combine them, marginalizing over the parameter;
3. and place the result in the distribution set.

32 Chapter 2. Background and State of the art

We consider the following Dechter’s algorithms [31]: algorithms obtained by combining the
procedure of bucket elimination with the query of Belief updating, MPE and MAP.

• Dechter’s algorithm for Bel:

Algorithm elim-bel

Input: A belief network BN = {P1, · · · ,Pn}; an ordering of the variables d =
X1, · · · ,Xn; evidence e.
Output: The belief in X1 = x1.
1. Initalize: Generate an ordered partition of the conditional probability matrices,
bucket1, · · · ,bucketn where bucketi contains all matrices whose highest variable is Xi.
Put each observed variable in its bucket. Let S1, · · · ,S j be the subset of variables in the
processed bucket on which matrices (new or old) are defined.
2. Backward: For p n downto 1, do
for all the matrices l1, · · · ,l j in bucketp, do
⇧ if Xp = xp appears in bucketp (bucket with observed variable), assign Xp = xp to each
li and then put each resulting function in appropriate bucket.
⇧ else Up

S j
i=1(Si \{Xp}). Generate lp = ÂXp ’ j

i=1 li and add lp to the bucket of
largest-index variable in Up.
3. Return: Bel(x1) = aP(x1) ·’i li(x1) (where the li are in bucket1, a is a normaliz-
ing constant).

• Dechter’s algorithm for MPE:

Algorithm elim-mpe

Input: A belief network BN = {P1, · · · ,Pn}; an ordering of the variables d =
X1, · · · ,Xn; evidence e.
Output: The most probable assignment.
1. Initalize: Generate an ordered partition of the conditional probability matrices,
bucket1, · · · ,bucketn where bucketi contains all matrices whose highest variable is Xi.
Put each observed variable in its bucket. Let S1, · · · ,S j be the subset of variables in the
processed bucket on which matrices (new or old) are defined.
2. Backward: For p n downto 1, do
for all the matrices l1, · · · ,l j in bucketp, do
⇧ if Xp = xp appears in bucketp (bucket with observed variable), assign Xp = xp to each
li and then put each in appropriate bucket.
⇧ else Up

S j
i=1(Si \ {Xp}). Generate lp = maxXp ’ j

i=1 li and xo
p = arg maxXp lp.

Add lp to the bucket of largest-index variable in Up.
3. Return: Assign values in the ordering d using the recorded functions xo in each
bucket.

• Dechter’s algorithm for MAP:

2.1 Bayesian Networks 33

Algorithm elim-map

Input: A belief network BN = {P1, · · · ,Pn}; a subset of variables A = {A1, · · · ,Ak};
an ordering of the variables d in which the A’s are first in the ordering; evidence e.
Output: The most probable assignment A = a.
1. Initalize: Generate an ordered partition of the conditional probability matrices,
bucket1, · · · ,bucketn where bucketi contains all matrices whose highest variable is Xi.
2. Backward: For p n downto 1, do
for all the matrices l1, · · · ,l j in bucketp, do
⇧ if Xp = xp appears in bucketp (bucket with observed variable), assign Xp = xp to each
li and then put each in appropriate bucket.
⇧ else Up

S j
i=1(Si \{Xp}). If Xp not in A and if bucketp contains new functions, then

lp = ÂXp ’ j
i=1 li; else, Xp 2 A and lp = maxXp ’ j

i=1 li and ao = arg maxXp lp. Add
lp to the bucket of largest-index variable in Up.
3. Return: Assign values, in the ordering d = A1, · · · ,Ak using the information ao

recorded in each bucket.

We now introduce some definitions that we will need in what follows.
Definition 2.1.9 The moral graph GM of a directed graph G is formed by connecting nodes (in
G) that have a common child, and then making all edges in the graph undirected.

Definition 2.1.10 The width wo(X) of a variable X in graph G along the ordering o is the
number of nodes preceding X in the ordering and connected to X (earlier neighbors).

The width wo of a graph is the maximum width wo(X) among all nodes.

Definition 2.1.11 The induced graph G0 along the ordering o is obtained by recursively con-
necting earlier neighbors of each node, from last to the first in the ordering.

Definition 2.1.12 Given an ordering o for the variables, the width of the induced graph G0 is
called the induced width of the graph G and it is denoted as w⇤o.

Theorem 2.1.1 Complexity of VE-inference is O(nexp(w⇤o +1)) in time and O(nexp(w⇤o)) in
space, when w⇤o is the induced-width of the moral graph along the ordering o for the variables of
the graph G.

The hard problem of this computation is identifying an order in which to marginalize the
variables not in the query. Once that has been determined, it is simple (polynomial time) to
VE-inference. Finding the order o⇤ such that:

o⇤ = argmin
o

w⇤o,

is NP-hard [31]. There are some greedy algorithms to compute it, as min-fill ([32]) that works well.

Inference is also NP-hard in general case ([29] and [31]).

34 Chapter 2. Background and State of the art

2.2 CP-nets

CP-nets [11] are a graphical model for compactly representing conditional and qualitative preference
relations. CP-nets are sets of ceteris paribus preference statements. For instance, the statement “I
prefer red wine to white wine if meat is served." asserts that, given two meals that differ only in the
kind of wine served and both containing meat, the meal with red wine is preferable to the meal
with white wine.

2.2.1 Preferences and orderings

Before introducing the CP-net formalism, we introduce the notion of ordering and preference.

Orderings

Let us consider the concepts of total order, preorder and partial order.
Definition 2.2.1 Suppose that P is a set and that ⌫ is a binary relation on P.

Then ⌫ is a total order if it is:
• total;
• antisymmetric;
• transitive.

Thus, 8a,b and c 2 P, we have that:
• a⌫ b or b⌫ a (totality);
• if a⌫ b and b⌫ a then a = b (antisymmetry);
• if a⌫ b and b⌫ c then a⌫ c (transitivity).

Definition 2.2.2 Suppose that P is a set and that ⌫ is a binary relation on P.
Then ⌫ is a preorder if it is:
• reflexive;
• transitive.

Thus, 8a,b and c 2 P, we have that:
• a⌫ a (reflexivity);
• if a⌫ b and b⌫ c then a⌫ c (transitivity).

Definition 2.2.3 Suppose that P is a set and that ⌫ is a binary relation on P.
Then ⌫ is a total preorder if it is:
• total;
• reflexive;
• transitive.

Definition 2.2.4 Suppose that P is a set and that ⌫ is a binary relation on P.
Then ⌫ is a partial order if it is:
• reflexive;
• antisymmetric;
• transitive.

Thus, 8a,b and c 2 P, we have that:

2.2 CP-nets 35

• a⌫ a (reflexivity);
• if a⌫ b and b⌫ a then a = b (antisymmetry);
• if a⌫ b and b⌫ c then a⌫ c (transitivity).

All partial orders are preorders, but preorders are more general.
Definition 2.2.5 Suppose that P is a set and that ⌫ is a binary relation on P.

Then ⌫ is a strict weak order if it is:
• irreflexive;
• antisymmetric;
• transitive;
• transitive of incomparability.

Thus, 8a,b and c 2 P, we have that:
• a 6� a (irreflexive);
• if a⌫ b and b⌫ a then a = b (antisymmetry);
• if a⌫ b and b⌫ c then a⌫ c (transitivity);
• if a ./ b and b ./ c then a ./ c (transitivity of incomparability).

Qualitative Preferences

We introduce in what follows the notion of qualitative preferences.
Definition 2.2.6 A preference ranking is a total preorder (⌫) over a set of values: v1 ⌫ v2 means
that outcome v1 is equally or more preferred to the decision maker than v2. We use v1 � v2 to
denote the fact that outcome v1 is strictly more preferred by the decision maker than v2.

We will use the terms preference ordering and relation interchangeably with ranking.

We assume a set of features (or variables) Var= {X1, · · · ,Xn} over which the decision maker
has preferences. Each variable Xi is associated with a domain D(Xi) = {xi1 , · · · ,xini

} of values it
can take.

Definition 2.2.7 An assignment x of values to a set X ✓ Var of variables is a function that
maps each variable in X to an element of its domain. If X = Var, x is a complete assignment,
otherwise x is called a partial assignment.

Given a problem defined over n variables with domains D(X1), · · · ,D(Xn), there are |D(X1)| ·
|D(X2)| · · · · · |D(Xn)| assignments (exponential number).

We denote the set of all assignments to X ✓ Var by Asst(X). If x and y are assignments to
disjoint sets X and Y , respectively (X \Y = /0), we denote the combination of x and y by xy.
If X [Y = Var, we call xy a completion of assignment x. We denote by Comp(x) the set of
completions of x. Complete assignments correspond directly to the outcomes over which a user
have to make a decision. For any outcome o, we denote by o �X the value x 2D(X) assigned to
variable X by that outcome.

Definition 2.2.8 A set of variables X is preferentially independent of its complement Y =

Var\X iff , 8x1,x2 2 Asst(X) and 8y1,y2 2 Asst(Y), we have:

x1y1 ⌫ x2y1 iff x1y2 ⌫ x2y2.

36 Chapter 2. Background and State of the art

If the relation above holds, we say x1 is preferred to x2 ceteris paribus.

We define conditional preferential independence analogously:
Definition 2.2.9 Let X , Y , and Z be nonempty sets that partition Var. X is conditionally
preferentially independent of Y given an assignment z to Z iff, 8x1,x2 2 Asst(X) and 8y1,y2 2
Asst(Y), we have:

x1y1z⌫ x2y1z iff x1y2z⌫ x2y2z.

In other words, X is preferentially independent of Y when Z is assigned z. If X is conditionally
preferentially independent of Y 8z 2 Asst(Z), then X is conditionally preferentially independent of
Y given the set of variables Z.

2.2.2 Representation of CP-nets

The model of CP-nets [11] is similar to a Bayesian network on the surface; however, the nature
of the relation between nodes within a network is generally quite weak. CP-nets representation is
used to capture statements of qualitative conditional preferential independence.

Definition 2.2.10 A CP-net (conditional preference networks) over variables (features) Var=
{X1, · · · ,Xn} (with finite domains D(X1), · · · ,D(Xn)), is a direct graph G (dependency graph)
over X1, · · · ,Xn in which:

• each node corresponds to a variable Xi 2 Var;
• a set of direct edges connects pairs of nodes (if there is an edge from node Xi to node Xj,

Xi is said to be a parent of Xj, Xi 2 Pa(Xj));
• each node Xi has a conditional preference table (CP-table) that associates a total order �i

u

with each instantiation u 2 Asst(U) of Xi’s parents Pa(Xi) =U .
An acyclic CP-net is one in which the dependency graph is acyclic.

Given Pa(Xi) we have that Xi is conditionally preferentially independent of Var \ (Pa(Xi)[
{Xi}).

Observation 2.4 Suppose we have CP-nets in which the features have domains of cardinality
d. So, in general, a CP-table for a variable with k parents will contain dk orderings. A feature
with no parents has only one row representing the ordering over its domain. ⌅

We now show an example of CP-net.

⌅ Example 2.2 Consider a CP-net whose features are A, B, C, and D, with binary domains
D(F) = { f , f̄} if F is the name of the feature (as shown in Figure 2.2).

The preference statements are as follows:

• Feature A:

ordering for A
a� ā

• Feature B:

2.2 CP-nets 37

A

C

B

D

Figure 2.2: CP-net (Example 2.2)

ordering for B
b� b̄

• Feature C:

A & B ordering for C
a b c� c̄
ā b c̄� c
ā b̄ c� c̄
a b̄ c̄� c

• Feature D:

C values ordering for D
c d � d̄
c̄ d̄ � d

Here, statement a � a represents the unconditional preference for A = a over A = a, while
statement c : d � d states that D = d is preferred to D=d, given that C = c. ⌅

The semantics of CP-nets depends on the notion of worsening flip.
Definition 2.2.11 A worsening flip is a change in the value of a variable to a less preferred value
according to the cp-statement for that variable.

For example, in the CP-net in the Example 2.2, passing from the complete assignment abcd to
abc̄d is a worsening flip since c is better than c given a and b.

Definition 2.2.12 One outcome a is better than another outcome b (written a � b) iff there is
a chain of worsening flips from a to b .

This definition induces a preorder over the outcomes, which is a partial order if the CP-net is
acyclic.

38 Chapter 2. Background and State of the art

The two main reasoning task concerning CP-nets are outcome optimization and outcome
comparison. We analyse in detail this two tasks in the two following sections.

2.2.3 Optimal outcomes of CP-nets

Given a set of outcomes, an outcome o is optimal if and only if does not exists any other outcome
o0 such that o0 � o.

Definition 2.2.13 Given a CP-net inducing a preorder � over the set of outcomes, an optimal
outcome is an outcome that is maximal for � in the set of outcomes.

There could exists more then one optimal outcome for the same CP-net, but if the CP-net has
an acyclic dependency graph there exists a unique optimal outcome.

Goldsmith et al. [52] prove that finding an optimal outcome of a general CP-net is PSPACE-
complete. However, in acyclic CP-nets, there is only one optimal outcome and this can be found
in linear time by sweeping through the CP-net [11], assigning the most preferred values in the
preference tables.

More rigorously:
Definition 2.2.14 The sweep forward procedure, in acyclic CP-nets, to achieve the optimal
value is as follows:

• Step 0: We choose for the CP-net’s independent features (feature that do not have parents
in the dependency graph) the value that it is ranked first in the ordering of the domain’s
values.

• Step i: For each feature that it is not yet assigned and that has the value’s assignments
of all the parents, we choose the value that it is most preferred (so ranked first) in the
ordering of the domain’s values (in the rows corresponding to that particular assignments
for the parents’s values).

⌅ Example 2.3 We will show the sweep forward procedure applied to the CP-net (in Figure 2.2)
of Example 2.2. First we have to choose the value for A and B because are independent features.
Thus we have A = a and B = b.

Then we can process C, assign C = c, and finally D = d. ⌅

In the general case the optimal outcome coincides with the solutions of a constraint problem
obtained replacing each cp-statement with a constraint. For example, the following cp-statement
(derived from the statements ab : c � c̄ and āb̄ : c � c̄ in Example 2.2) (a^ b)_ (a^ b) : c � c
would be replaced by the constraint (a^b)_ (a^b)) c.

2.2.4 Outcome comparison

Two outcomes o and o0 can stand in one of three possible relations with respect to a CP-net C :
• o dominates o0: C |= o� o0

• o0 dominates o: C |= o� o0

• o and o0 are incomparable: C |= o 6� o0 ^C |= o0 6� o written also as C |= o ./ o0

There are two different ways in which we can compare two outcomes using a CP-net: dominance
queries and ordering queries

2.2 CP-nets 39

Dominance queries

A dominance query represents preferential comparison between outcomes.

Definition 2.2.15 Given a CP-net C and a pair of outcomes o and o0, a dominance query returns
True if C |= o� o0, False otherwise.

C |= o� o0 means that there exists a worsening path (chain of worsening flips) from o0 to o.

Proposition 2.2.1 If there is an improving flipping sequence for CP-net C from o to o0 then
C |= o � o0 and if C is an acyclic CP-net and there is no improving flipping from o to o0 then
C 6|= o0 � o.

Boutilier et al. [11] prove that evaluating a dominance query for binary-valued tree structured
CP-nets has complexity O(n2), where n is the number of features. This complexity result is
improved by Bigot et al. [9] that prove that dominance for tree-shaped CP-nets takes O(n) time.
Boutilier et al. [11] prove that dominance is polynomial also for polytrees but NP-complete for
acyclic CP-nets that are directed path singly connected, and NP-complete for CP-nets with a
bounded number of paths between two nodes. Goldsmith et al. [52] prove that dominance for a
general structure is PSPACE-complete using the fact that finding a flipping sequence between two
comparable outcome can be also seen as a planning problem.

Ordering queries

An ordering query represents preferential comparison between outcomes in a weaker form with
respect to dominance.

Definition 2.2.16 Given a CP-net C and a pair of outcomes o and o0, a ordering query returns
True if C 6|= o0 � o, False otherwise. If C 6|= o0 � o, this means that there exists an preference
ordering consistent with C that satisfies o� o0.

Ordering queries with respect to acyclic CP-nets can be answered in time linear in the number
of variables [11], with a computational complexity of O(n) where n is the number of features.

2.2.5 Random generation of CP-nets

The problem of an automatic generation of CP-nets is very important because it is fundamental to
perform fair experiments that require simulated datasets.

Randomly generating CP-nets in a uniform way is a difficult problem [2]. A CP-net can model
a subset of partial orders, and the set of all the possible partial orders could be exponentially
large since we are considering combinatorial domains. Also counting the number of partial orders
induced by a CP-net is a well-known difficult problem [2].

Allen et al. [2] propose a method to generate CP-nets of a given number of nodes, uniformly
at random. The method consists into an heuristic that follow the idea of counting (therefore also
ranking) and generating CP-nets given their ranks, considering the binary case, and with exponential
complexity.

40 Chapter 2. Background and State of the art

2.3 Variants and Extensions of CP-nets

CP-nets are deeply studied and widely used, thus many variants and generalizations have been
developed. The main variants are described in the following sections.

2.3.1 TCP-nets

TCP-nets (Tradeoffs-enhanced CP-nets) [15] are an extension of CP-nets that permit the represen-
tation of the notion of relative importance and conditional relative importance. A variable X is
relatively more important with respect to a variable Y (X B Y) if it is more important that the value
of X be high than that the value of Y be high. For instance “The length of the journey is more
important to me than the choice of airline”. A variable X is relatively more important with respect
to a variable Y given an assignment of a variable Z (Z = z0 : X B Y,Z = z1 : Y B X) if, given that
particular assignment of Z = z0, it is more important that the value of X be high than that the value
of Y be high. For instance “The length of the journey is more important to me than the choice
of airline provided that I am lecturing the following day. Otherwise the choice of airline is more
important”. This formulation introduces a dependency graph in which we have one node for each
variable and three type of edges. The first type represents preferential dependencies, the second
type represents relative importance relations and the third one, undirected, represents conditional
importance relations. Each node is associated with a conditional preference table (CPT) as in
CP-nets and the conditional importance edges to a CI-table (conditional importance table) that
express the conditional importance statements.

Formally the definition of a TCP-net is:

Definition 2.3.1 A TCP-net is a tuple (Var,cp, i,ci,cpt,cit) such that:
• Var is a set of n nodes (Var= {X1, · · · ,Xn});
• cp is a set of directed edges: conditional preference edges;
• i is a set of directed edges: importance edges;
• ci is a set of undirected edges: conditional importance edges;
• cpt are the conditional preference tables (defined as in CP-nets);
• cit are the conditional importance tables associated with the ci edges.

⌅ Example 2.4 Given five features A, B, C and D a possible TCP-net is described in Figure 2.3. In
this TCP-net we have three cp-edges: (A,C) and (A,D); one i-edge: (A,B) and one ci-edge: (C,D).
The relative importance of C and D depends on the assignments of the variables A and B, unless
when A and B are assigned āb̄, when it is not specified the relative importance between C and D.

The resulting induced preference order is described by the following statements, given the
variables R, R1 and R2 2 Dom(B), S, S1 and S2 2 Dom(C) and T , T1 and T2 2 Dom(D):

• {aR1ST � āR2ST};
• {abcT1 � acb̄T2} and {abSd � acSd̄};
• {ab̄cT � ab̄c̄T} and {ab̄S1d̄ � ab̄S2d};
• {ābc̄T � ābcT} and {ābS1d̄ � ābS2d};
• {āb̄c̄T � āb̄cT} and {āb̄Sd̄ � āb̄Sd}.

⌅

2.3 Variants and Extensions of CP-nets 41

A

C D

B b > b̄a > ā

a c > c̄
ā c̄ > c

a d > d̄
ā d̄ > d

ab C B D
āb D BC
ab̄ D BC

⌅
A,B

Figure 2.3: A TCP-net (Example 2.4)

2.3.2 CP-trees

A CP-tree [112] is a particular form to represent users preferences. A CP-tree is made by CP-
nodes.

Definition 2.3.2 Given a set of variables Var= {X1, · · · ,Xn} a CP-node r is a tuple

hAr,ar,Yr,�ri

where Ar ✓ Var A is a set of variables, ar is an assignment to the variables in Ar, Yr ✓ Var\Ar

is a non-empty set of variables and �r is a weak order on the assignments of the variables in Yr.

Definition 2.3.3 A CP-tree corresponds to a directed tree in which each node is a CP-node and
the ancestors of a node r (the nodes on the path from root to the parent) are the set Ar. Given an
edge r! r0, this edge is associated with an assignment y to variables Yr, and this assignment
is different from all the assignment to Yr associated with any other edges from node r. Then
Ar0 = Ar [Yr and and ar0 is ar extended with the assignment Yr = y. Aroot = /0.

⌅ Example 2.5 In Figure 2.4 we show an example of a CP-tree over five variables X1, · · · ,X5 with
binary domains Dom(F) = { f , f̄}

The resulting induced preference order is described by the following statements, given the
variables R1 and R2 2 Dom(B), S1 and S2 2 Dom(C) and T1 and T2 2 Dom(D):

• {x1R1S1T1 � x̄1R2S2T2};
• {x1x̄2x3T1 � x1x2x̄3T2};
• {x̄1R1x3T1 � x̄1R2x̄3T2};
• {x1x̄2x3x4 � x1x̄2x3x̄4};
• {x1x2x̄3x̄4 � x1x2x̄3x4}.

⌅

Optimality and Dominance

CP-trees define a weak order and thus a notion of dominance:

42 Chapter 2. Background and State of the art

X1

X2, X3 X3

X4 X4

x1 x̄1

x̄2x3 x2x̄3

x1 > x̄1

x̄2x3 > x2x̄3

x4 > x̄4 x̄4 > x4

x3 > x̄3

Figure 2.4: A CP-tree (Example 2.5)

Definition 2.3.4 Given a CP-tree C , the relation ⌫C is defined as: given two outcomes o and
o0, then o⌫C o0 if and only if

• o �Yr�r o0 �Yr ;
• o and o0 are represented by two nodes of the tree l and l0;
• r is the deepest node that is in common between the two paths: from root to l and from

the root to l0. r represents the set of variables Yr;
• o and o0 both extend ar, that is defined by the labels of the path from the root to the node r

Both dominance and optimality can be computed in polynomial time in the number of nodes of
the tree [112].

⌅ Example 2.6 2.5 The optimal outcome of Example 2.5 is x1x̄2x3x4. Given two outcomes
o = x̄1x̄2x3x4 and o0 = x̄1x2x̄3x̄4, the answer to the dominance query o� o0? is True because o and
o0 have the same path: X1!x̄1 X3 and x3 > x̄3. ⌅

2.3.3 CI-net

CI-nets (Conditional Importance networks) [14] represent ordinal preferences over the set of
alternatives. The definition of CI-nets depends on the notion of conditional importance state-
ment:

Definition 2.3.5 A conditional important statement (CI-statement) on a set of variables Var is a
quadruple g = (S+,S�,S1,S2) (where S⇤ are subset of the set of variables Var that are pairwise
disjoint), written as:

S+,S� : S1 B S2

and S+ are called positive preconditions, S� are called negative preconditions and S1,S2 are
called compared sets.

CI-net consider a set Var of binary variables, with domain in {0,1}. Each variable correspond to
an item and if the variable is assigned to 1 this means that the user obtained that item, otherwise is
equal to 0.

2.3 Variants and Extensions of CP-nets 43

Informally a CI-statement can be read as: “ Given all the items in S+ (all the variables in S+

are assigned to 1) and any items in S� (all the variables in S� are assigned to 0), I prefer obtaining
all the items in S1 (to assign to 1 to all the variables in S1) to obtaining all those in S2 (to assign to 1
to all the variables in S1)”.

Definition 2.3.6 A CI-net on a set of variables Var is a set of conditional importance statements.

⌅ Example 2.7 Given four variables A, B, C and D, with binary domains Dom(F) = { f , f̄} 8F 2
{A,B,C,D}, a possible CI-net is defined by the following set of CI-statements:

{a : d B bc,ad̄ : b B c,d : b B c}

⌅

A CI-net induces a preference relation �: a strict partial order (irreflexive, asymmetric and
transitive binary relation) over the set 2Var where Var is the set of variables. CI-nets can express
all strict monotonic preference relations.

The semantics of a CI-net is based on the notion of worsening flip.
Definition 2.3.7 Given a CI-net C on a set of variables Var and given two subsets V1 and V2 ✓
Var there is a worsening flip from V1 to V2 if V2 (V1 and there is a CI-statement S+,S� : S1 B S2

such that if S̄ = Var \ (S+[S�[S1[S2) then:
• S1[S+ ✓V1 and S2[S+ ✓V2

• V1\S� =V2\S� =V1\S2 =V2\S1 = /0
• S̄\V1 = S̄\V2

Worsening flips define a preference graph on 2Var.

Satisfiability

Given a preference relation � over 2Var, it satisfies a CI-statement S+,S� : S1 B S2 if for every
S0 ✓ Var \ (S+[S�[S1[S2), we have S0 [S+[S1 � S0 [S+[S2. A preference relation � over
2Var satisfies a CI-net if � satisfies each CI-statements in the CI-net and � is monotonic.

Definition 2.3.8 A CI-net C is called satisfiable if there exists a preference relation satisfying
C.

Proposition 2.3.1 Any CI-net with an acyclic dependency graph is satisfiable.

Testing satisfiability for CI-nets is PSPACE-complete.

Dominance

Definition 2.3.9 Given a CI-net C and its preference relation�, a dominance query corresponds
to aswer to the question:

V1 �Var V2? with V1,V2 ✓ Var.

Dominance in satisfiable CI-nets is PSPACE-complete, but if we restrict to satisfiable SCI-nets
(CI-nets precondition-free and singleton-comparing CI-statements) dominance is in P.

44 Chapter 2. Background and State of the art

2.3.4 UCP-nets

UCP-nets (Utility Conditional Preference networks) [13] are an extension of CP-nets in which the
preferences are expressed in a quantitative formulation, and not only qualitative as in CP-nets. The
idea of this extension is to combine generalized additive models (GAI-networks) and qualitative
preferences described with CP-nets, using the notion of dependency graph to represent the relation
between the variables.

The preferences of the user over each variables are expressed in a table that contains the
user utility values of the values in the variable domain. A CP-statement of the form x : y > y is
represented in UCP-nets by fY (y|x) = u1, fY (y|x) = u2 and u1 > u2 where fY is the utility function
of the variable Y . Thus each feature X is associated with a function fX(v,u) where v is a value
in the domain of X and u is an assignment of the X parents nodes Pa(X), that corresponds to the
utility function of the feature X . The utility function u(o) of a complete outcome o defined over the
variables X1, · · · ,Xn corresponds to:

u(o) =
n

Â
i=1

fXi(o �Xi ,o �Pa(Xi))

Definition 2.3.10 Given a utility function u(X1, · · · ,Xn) defined over a set of variables X1, · · · ,Xn,
a UCP-network is a directed acyclic graph (DAG) G over X1, · · · ,Xn and a set of factors
fXi(Xi,Pa(Xi)), such that

u(X1, · · · ,Xn) =
n

Â
i=1

fXi(Xi,Pa(Xi))

and G is a valid CP-net for the the preference relation ⌫ induced by u(X1, · · · ,Xn). This means
that ⌫ can be written as a valid set of CP-statement for each feature Xi.

⌅ Example 2.8 In Figure 2.5 we show an example of a UCP-net defined on 4 features X1, · · · ,X4.
Considering the outcome x1x2x̄3x̄4 we can compute the following utility function:

u(x1x2x̄3x̄4) = fX1(x1)+ fX2(x2)+ fX3(x̄3,x1,x2)+ fX4(x̄4, x̄3) = 5+6+0.1+0.3 = 11.4

⌅

Also for UCP-nets we can consider the two main tasks: outcome optimization and dominance
queries.

Optimality

Definition 2.3.11 Given a UCP-net, an outcome optimization query corresponds to find the
outcome that has the maximum utility given some partial assignment x, i.e. solve this problem:

argmax{u(v) : v 2Comp(x)}

where Comp(x) correspond to the set of completion of the partial assignment x.

In a general UCP-net the computational complexity of this task is a hard problem, but if we

2.3 Variants and Extensions of CP-nets 45

X1

X3

X2

X4

x1 5
x̄1 2

x2 6
x̄2 1

Pa(X3) x3 x̄3
x1x2 0.6 0.1
x̄1x2 0.2 0.8
x1x̄2 0.1 0.8
x̄1x̄2 0.9 0.3

X3 x4 x̄4
x3 0.9 0.8
x̄3 0.2 0.3

Figure 2.5: A UCP-net (Example 2.8)

use tradeoff weights (for details see [13]) and we can use the sweep forward procedure, and the
complexity become polynomial in the number of variables.

Dominance
Definition 2.3.12 Given a UCP-net, an dominance query corresponds to understand which
outcome has the higher utility , i.e. solve this problem:

u(v1)> u(v2)?

Computing dominance is easy for UCP-nets, since it correspond to sum n elements.

2.3.5 mCP-nets

mCP-nets (multi-agent Conditional Preference networks) [90] are an extension of CP-nets formalism
to model and handle the preferences of multiple agents. A mCP-net is a set of m partial CP-nets (CP-
nets with partial or missing information) which can share some features. A mCP-net dependency
graph is obtained by combining the graphs of the partial CP-nets having one occurrence of each
shared feature. A feature of an agent a can be

• shared between the agents: these features are ranked in the CP-net of a and also in at least
one other of the partial CP nets;

• visible for the agent a: these features can be used as precondition in the cp-statements, but
not ranked in a;

• private if is ranked only in the CP-net of a and is not visible to the other agents CP-nets.

⌅ Example 2.9 Given two agents that define their preferences over three features A, B and C, in
Figure 2.6 we show a possible mCP-net of the two agents. The features A1, B1,B2, C1, C2 are
private, the feature D is shared between the two agents and the feature A2 is visible for agent 1 and

46 Chapter 2. Background and State of the art

used as precondition in the cp-statements of the feature D.

A1 B1

C1

D

A2 B2

C2

Agent 1 Agent 2

a1 > ā1

a2 > ā2b1 > b̄1

b̄2 > b2

a1b1 c1 > c̄1
ā1b1 c̄1 > c1
a1b̄1 c̄1 > c1
ā1b̄1 c1 > c̄1

b2 c2 > c̄2
b̄2 c̄2 > c2Agent 1 Agent 2

a2 d̄ > d d > d̄
ā2 d > d̄ d̄ > d

Figure 2.6: A mCP-net (Example 2.9)

⌅

Optimality and Dominance

Optimality and dominance tasks are seen as voting procedures over the CP-nets that composing the
mCP-net, by querying each CP-net in turn and collecting together the results.

Using different voting rules we can obtain different semantics. Have been considered five main
voting rules: Pareto, majority, max, lex and rank. An optimal outcome can be derived using each of
them but in exponential time. Also the dominance task is hard: the computational complexity is
exponential in the input description.

2.3.6 GCP-nets

GCP-nets ([52] and [41]) allow a general form of conditional and qualitative preferences to be
modeled compactly.

Definition 2.3.13 A Generalized CP-net (GCP-net) C over a set of variables with binary
domains Var is a set of conditional preference rules. A conditional preference rule is an ex-
pression p : l > l̄, where l is a literal of some atom X 2 Var and p is a propositional formula over
Var that does not involve variable X . A GCP-net corresponds to a directed graph (dependency
graph) where each node is associated with a feature and the edges are pairs (Y,X) where Y
appears in p in some rule p : x > x̄ or p : x̄ > x. Each node X is associated with a CP-table
which expresses the user preference over the values of X . Each row of the CP-table corresponds
to a conditional preference rule.

2.3 Variants and Extensions of CP-nets 47

The CP-tables of a GCP-net can be incomplete (i.e. for some values of some variables’ parents,
the preferred value of X may not be specified) and/or locally inconsistent (i.e. for some values of
some variables’ parents, the table may both contain the information x > x̄ and x̄ > x). CP-nets [11]
are a special case of GCP-nets in which the preferences are locally consistent and locally complete.

Consistency and Optimality

Given any GCP-net the problems of consistency checking and finding optimal outcomes are
PSPACE-complete [52]. Moreover, there could be several different maximal elements. The optimal
outcomes for acyclic nets are unique and can be found in polynomial time in N. The procedure
used to this purpose is usually called a sweep forward and takes N steps [11].

Dominance

The problem of dominance testing (i.e. determining if one outcome is preferred to another) is
PSPACE-complete for GCP-nets. It is polynomial if the GCP-net is tree structured or poly-tree
structured [39, 52].

2.3.7 CP-nets with constraints

Preferences and constraints are strongly related. We often have the simultaneous presence of
preferences such as “I prefer pizza to pasta” and hard constraints such as “I can’t eat peanuts
because I’m allergic”.

With the purpose of handle this union of qualitative preferences and hard constraints, there are
two main approaches ([12] and [84]). Both of them provide algorithmic results to the problem.

Boutilier et al. method

In this work Boutilier et al. method [12] consider the case of acyclic CP-nets. They defined a new
notion of optimal outcome: the optimal outcome is a feasible outcome (i.e., consistent with the
hard constraints) that is not dominated by any other feasible outcome.

Thus, given a set of feasible outcomes S and a CP-net C an outcome o 2 S is said to be Pareto
optimal with respect to the preference order induced by the CP-net C if and only if there is no
o0 2 S such that o0 � o. In this context we are looking for a Pareto optimal outcome in the set S,
that corresponds to the set of feasible outcomes. But determining the set of Pareto-optimal feasible
outcomes for general sets of constraints is NP-hard.

The idea of this work is to use a branch-and-bound algorithm to determine the set of feasible
outcomes using the structure of user preferences. If we stop the algorithm in any time, it always
provide a solutions set of outcomes that contain only Pareto-optimal solutions.

Prestwich et al. method

In this work Prestwich et al. [84] define a new structure that consists of the union of a CP-net and a
set of hard constraints.

Definition 2.3.14 A constrained CP-net is a CP-net plus a set of constraints defined on subsets
of variables of the CP-net. Formally is a pair hC ,V i where C is a CP-net and V is a set of hard
constraints.

48 Chapter 2. Background and State of the art

We have also a different notion of worsening flips, in which now are allowed only feasible out-
comes:

Definition 2.3.15 Given a constrained CP-net hC ,V i, and two outcomes o and o0, we have that
o� o0 iff there is a chain of flips from o to o0 such that each flip is a worsening flip for C and
each outcome in the chain is feasible for V .

This is the main difference with the method described in [12]: in [12] they allow also worsening
chains with unfeasible outcomes.

Considering only binary variables we can consider the constraints as Boolean clauses (in normal
form) and we have the following translation of the CP-statements u : a� ā:

(u^
^

j2V^āinj
j �a=True)! a

where j �a=True is the clause where we have deleted ā.
An outcome is optimal for hC ,V i iff satisfies the Boolean satisfaction problem of the set of all

these kind of constraints and the translation of the constraints in V . The same results apply also in
the non-binary case.

2.3.8 CP-theories

CP-theories (CP-th) are introduced in [111] as a logic of conditional preference which generalizes
CP-nets.

Definition 2.3.16 Given a set of variables Var = {X1, · · · ,XN} with domains Dom(Xi), i =
1, . . . ,n, the language LVar is defined by all the statements of the form: u : xi � x0i[W] where
u is an assignment of a set of variables U ✓ Var \ {Xi}, xi 6= x0i 2 Dom(Xi) and W is a set of
variables such that W ✓ (Var\U \{Xi}).

Definition 2.3.17 Given a language LVar as defined above, a conditional preference theory
(CP-theory) G on Var is a subset of LVar. G generates a set of preferences that corresponds to
the set G⇤ =

S
j2G j⇤ where, given j = u : xi � x0i[W], j⇤ is defined as j⇤ = {(tuxw, tux0w0) :

t 2 Var\ ({Xi[U [W}), w,w0 2W}.

A CP-net is a particular case of a CP-theory where W = /0 for all j 2 G.
Two graphs are associated to a CP-theory: H(G)= {(Xj,Xi)|9j 2G s.t. j = u : xi� x0i[W] and Xj 2

U} and G(G) = H [{(Xi,Xj)|9j 2 G s.t. j = u : xi � x0i[W] and Xj 2W}.

⌅ Example 2.10 A CP-th defined on three features C = cake, D = drink and W = weather de-
scribed by the sentences: “ I?d prefer to eat a carrot cake rather then a chocolate cake irrespective
of the choices of the drink.” and “If it is a cold day I prefer to drink a tea, otherwise a lemonade”
and “I prefer cold days” can be seen in Figure 2.7.

The CP-th in Figure 2.7 induce the order described by the following sets:
• { carrot d1 w > chocolate d2 w | d1,d2 2 Dom(D), w 2 Dom(W)}
• { c tea cold > c lemonade cold | c 2 Dom(C)}
• { c lemonade warm > c tea warm | c 2 Dom(C)}

2.3 Variants and Extensions of CP-nets 49

C

D

W

carrot > chocolate

cold > warm

cold tea > lemonade
warm lemonade > tea

Graph G(G)Graph H(G)

C

D

W

carrot > chocolate [D] cold > warm

cold tea > lemonade
warm lemonade > tea

Figure 2.7: A CP-theory G: the two graphs G(G) and H(G) of Example2.10

• { c d cold > c d warm | d 2 Dom(D), c 2 Dom(C)}
⌅

The semantics of CP-theories depends on the notion of a worsening swap, which is a change in
the assignment of a set of variables to an assignment which is less preferred by a rule j 2 G. We
say that one outcome o is better than another outcome o0 (o� o0) if and only if there is a chain of
worsening swaps (a worsening swapping sequence) from o to o0. Thus are well defined the notions
of optimality and dominance. Outcome optimization can be computed in polynomial time for
tree structured CP-theories but is PSPACE-complete for general CP-theories. Dominance queries
instead are PSPACE-complete also for acyclic structures.

Definition 2.3.18 A CP-theory G is locally consistent if and only if for all Xi 2 Var and
u 2 Pa(Xi) in the graph H(G), �Xi

u is irreflexive.

Local consistency can be determined in time proportional to |G|2N. Given a CP-theory G, if the
graph G(G) is acyclic, G is consistent if and only if G is locally consistent, thus global consistency
has the same complexity as local consistency given an acyclic graph G(G).

2.3.9 Comparative preference theories

Comparative preference theories [112] are an extension of CP-theories.
Definition 2.3.19 The comparative preference language C L Var is defined by all statements of
the form: p> q||T where P, Q and T are subsets of Var and p and q are assignments respectively

50 Chapter 2. Background and State of the art

of the variables in P and in Q.

Definition 2.3.20 Given a language C L Var as defined above, a comparative preference theory
L on Var is a subset of C L Var. L generates a set of preferences that corresponds to the set
L⇤ =

S
j2L j⇤ where if j = p > q||T , j⇤ is defined as a pair (a,b) of outcomes such that a

extends p and b extends q and a and b agree on T : a �T= b �T .

2.4 Soft Constraints

A soft constraint [78] involves a set of variables and associates a value from a (totally or partially
ordered) set to each instantiation of its variables. Such a value is taken from a preference structure
hA,+,⇥,0,1i, where A is the set of preference values, + induces an ordering over A (where a b
iff a+b = b), ⇥ is used to combine preference values, and 0 and 1 are respectively the worst and
best element.

Definition 2.4.1 A Soft Constraint Satisfaction Problem (SCSP) is a tuple hVar,D,C,Ai where
Var is a set of variables, D is the domain of the variables, and C is a set of soft constraints (each
one involving a subset of Var) associating values from A.

An instance of the SCSP framework is obtained by choosing a specific preference structure. For
instance, choosing SFCSP = h[0,1], max,min, 0, 1i means that preference values are in [0,1] and we
want to maximize the minimum preference value. This is the setting of fuzzy CSPs (FCSPs) [78,
97]. Figure 2.8 shows the constraint graph of an FCSP where Var= {X ,Y,Z}, D = { f , f̄}8FinVar
and C = {cX ,cY ,cZ,cXY ,cY Z}. Each node models a variable and each arc models a binary constraint,
while unary constraints define variables’ domains. For example, cY associates preference value 0.4
to Y = y and 0.7 to Y = ȳ. Default constraints such as cX and cZ , where all variable assignments
get value 1.

X Y Z

X = x 1
X = x̄ 1

Y = y 0.4
Y = ȳ 0.7

Z = z 1
Z = z̄ 1

X = x, Y = y 0.9
X = x, Y = ȳ 0.8
X = x̄, Y = y 0.7
X = x̄, Y = ȳ 0.6

Y = y, Z = z 0.9
Y = y, Z = z̄ 0.2
Y = ȳ, Z = z 0.2
Y = ȳ, Z = z̄ 0.5

Figure 2.8: An FCSP.

Given an assignment o to all the variables of an SCSP, the preference value of o is obtained
by combining (via the operator ⇥ of the preference structure) the preference values associated by

2.4 Soft Constraints 51

each constraint to the sub-tuples of o. For example, in FCSPs, the preference value of a complete
assignment is the minimum preference value given by the constraints. Considering the example in
Figure 2.8, the assignment xyz has preference value equal to min{1,0.9,0.4,0.9,1}= 0.4

2.4.1 Optimality

Solving an SCSP means finding the top element in the ordering induced by the constraints over
the set of all the solutions, i.e., over the set of all complete variable assignments. In the case of
FCSPs, such an ordering is a total order with ties. In the example above, the induced ordering
has (X = x,Y = ȳ,Z = z̄) and (X = x̄,Y = ȳ,Z = z̄) at the top with a preference value 0.5, (X =

x,Y = y,Z = z) and (X = x̄,Y = y,Z = z) just below with 0.4, and all others tied at the bottom with
preference value 0.2. An optimal solution, say o, of an SCSP is then a complete assignment with an
undominated preference value (thus (X = x,Y = ȳ,Z = z̄) or (X = x̄,Y = ȳ,Z = z̄) in this example).
Given a variable X , we write s#x to denote the value of X in o. Finding an optimal solution is
in general an NP-hard problem, unless certain restrictions are imposed, such as a tree-shaped
constraint graph [33]. The FCSP shown in Figure 2.8 has a tree-shape constraint graph.

Constraint propagation [8] may improve the computational efficiency of the search for an
optimal solution.

We will consider a specific form of constraint propagation called directional arc consistency
(DAC). Given a variable ordering o, a FCSP is DAC if all its constraints are so. Assuming all
constraints are binary, that is, involve two variables, a fuzzy constraint over variables X and Y such
that X precedes Y in the ordering o, is DAC iff, for each a in the domain of X ,

fX(x) = maxv2Dom(Y)(min(fX(x), fXY (x,v), fY (v)))

, where fX , fY , and fXY are the preference functions of cX , cY and cXY . This definition can be
generalized to any instance of the SCSP approach by replacing max and min with the two operations
+ and ⇥ of the preference structure.

If a FCSP is not DAC, we can make it so in polynomial time with an algorithm that follows
backward the ordering o. In our running example, if we choose the variable ordering hX ,Y,Zi,
achieving DAC means first enforcing the property over the constraint on Y and Z and then over the
constraint on X and Y . The first step modifies the preference value of Y = ȳ to 0.5, while the second
step sets the preference values of both X = x and X = x̄ to 0.5. We note that, by achieving DAC w.r.t.
ordering o, we obtain a total order with ties over the values of the first variable in o, where each
value is associated to the preference value of the best solution having such a variable instantiated
to such a value. Given an SCSP P and one of its variables V , we will denote as top(V,P) the set
of values of V that are assigned the highest preference value in such an ordering. In our running
example, achieving DAC brings both values of X in a tie and in top(X ,P), with preference value
0.5, that is the preference value of an optimal solution.

DAC is enough to find the preference value of an optimal solution when the constraint graph
of the problem (i.e., the graph where the nodes represent the variables and the arcs represent the
constraints) has no cycles (and thus it has a tree shape) [78]. In fact, if we have DAC in a tree

52 Chapter 2. Background and State of the art

problem, such an optimum preference value is the best preference value in the domain of the root
variable. In this situation, to find an optimal solution, it is then enough to perform a backtrack-free
search which instantiates variables in the order o (thus, from the root of the tree to its leaves).

In our running example, if we choose the variable ordering hX ,Y,Zi, achieving DAC means
first enforcing the property over the constraint on Y and Z and then over the constraint on X and Y .
The first phase modifies the preference value of Y = ȳ to

max(min(fY (ȳ), fY,Z(ȳ,z), fZ(z)),min(fY (ȳ), fY,Z(ȳ, z̄), fZ(z̄)))

= max(min(0.7,0.2,0.1),min(0.7,0.5,1)) = max(0.2,0.5) = 0.5 .

Similarly, the second phase sets the preference values of both X = x and X = x̄ to 0.5. We note that,
by achieving DAC w.r.t. ordering o, we obtain a total order with ties over the values of the first
variable in o, where each value is associated to the preference value of the best solution having
such a variable instantiated to such a value. Given an SCSP P and one of its variables V , we will
denote as top(V,P) the set of values of V that are assigned the highest preference value in such an
ordering. In our running example, achieving DAC brings both values of X in a tie and in top(X ,P),
with preference value 0.5, that is the preference value of an optimal solution.

2.5 Voting theory

A voting rule allows a set of voters to choose one among a set of candidates. Voters need to submit
their vote, that is, their preference ordering over the set of candidates (or part of it), and the voting
rule aggregates such votes to yield a result, usually called the winner. In the classical setting [6],
given a set of n candidates C, a profile P is a collection of total orderings over the set of candidates,
one for each voter Ci i 2 {1, . . . ,n}. Given a profile, a voting rule also known as a social choice
function, maps it onto a single winning candidate (if necessary, ties are broken appropriately).

2.5.1 Voting rules

The formal definition of a voting rule is:
Definition 2.5.1 Let P a profile of m voters over a set of alternatives X , a voting rule r : P! X
is a function that maps each profile P into an alternative r(P) 2 X .

Some examples of widely used voting rules are (we assume a tie-breaking mechanism to assure a
single winner):

• Plurality, where each voter states whom the most preferred candidate is, and the candidate
who is preferred by the largest number of voters wins;

• Majority: like plurality, but with only two candidates; (with just 2 candidates, it’s equivalent
to Majority voting).

• Borda, where, given m candidates, each voter gives a ranking of all candidates, the ith ranked
candidate scores m� i, and the candidate with the greatest sum of scores wins;

• Approval, where each voter approves between 1 and m�1 candidates of m total candidates,
and the candidate with most votes of approval wins;

2.5 Voting theory 53

• Copeland, where the winner is the candidate who wins the most pairwise competitions
against all the other candidates.

2.5.2 Voting rules on combinatorial domains

Voting rules can be defined also on multi-issue domains.

Definition 2.5.2 Let Var=X1, ·,Xn denote a set of n features (variables), with domains Dom(Xi).
Combinatorial voting refers to the voting setting where the set of alternatives corresponds to
C = Dom(X1)⇥ · · ·⇥Dom(Xn). C is called a multi-issue domain or combinatorial domain.

Considering the general setting we encounter a problem: suppose that all the variables Xi are
binary-valued, then we obtain a set of alternative of cardinality 2n. As soon as the number of
alternative is large, the voters are likely to be unhappy about expressing a their preferences and
moreover, the result of voting could be completely insignificant. For instance, with 5 voters and 6
binary issues, it is probable that all the 5 voters vote for a different alternatives (since there are 64
alternatives). In this case the winner, under the plurality rule, might be disliked by all but one voter.
This phenomenon is a type of multiple-election paradox [26].

Sequential Voting

One natural approach to combinatorial voting is sequential voting. Given O = X1,X2 · · ·Xn an
ordering over the issues, sequential voting selects the winner in n steps. In each step i, the voters
vote on the i-th issue in O following their preferences on that particular variable. The agents votes
over the i-th feature are collected by applying a local voting rule, and the winning value is then
announced to all the voters. More rigorously:

Definition 2.5.3 Given a vector of local rules r1, · · · ,rn, where each ri is a voting rule on
Dom(Xi), the sequential composition of r1, · · · ,rn following O, denoted by SeqO(r1, · · · ,rn) [65],
is defined as follows: SeqO(r1, · · · ,rn)[P] = (c1, · · · ,cn)2C , so that for any ci = ri[P �Xi:c1···ci�1].

This approach can be used to avoid multiple-election paradoxes [62].

2.5.3 Properties of the voting rules

Research on voting theory has mainly been concerned with the definition of properties of voting
systems that are desirable. The main are the following ones [6, 104]:

• Condorcet-consistency: A voting rule is Condorcet-consistent if, when a candidate who
beats every other in pairwise elections (namely, a Condorcet winner) exists, that candidate is
always elected; The Condorcet winner is unique and may not exist.

• Anonymity: A voting rule is anonymous when the results of an election are the same even
if a permutation on the voters’ preferences is applied. This means that the result does not
depend on the names of the voters, or in which order they are considered, but it depends only
on their set.

• Neutrality: A voting rule is neutral when, for any permutation on the set of candidates, the
permuted results of an election are identical to the results of the same election where the
permutation on the set of candidates occurs before applying the voting rule. This is the

54 Chapter 2. Background and State of the art

analogous of anonymity for the candidates: the result does not depend on the names of the
candidates.

• Monotonicity: A voting rule is monotonic if, when a candidate wins, and a voter improves
his vote in favor of this candidate, then the same candidate still wins. Formally: given an
issue x and a set of voters E, a voting rule r is monotonic if, for any profile P = hV1, ...,V|E|i
over x and for any P0 = hV 01, ...,V 0|E|i over x such that each V 0i is obtained from Vi by raising
only r(P), then r(P0) = r(P).

• Strong Monotonicity: A voting rule is strongly monotonic if, given a profile P and a subset of
the candidates Y , and any profile P0 obtained by P by increasing the preference values of the
candidates in Y , without changing their relative position, the winner in P0 is either the winner
in P or is in Y .
Formally: given an issue x, a voting rule r is strongly monotonic if, for any profile P over x,
any Y (x)✓ D(x), and any P0 obtained from P only by raising the candidates in Y (x) while
keeping their relative positions unchanged, we have r(P0) 2 r(P)[Y (x).

• Consistency: A voting rule is consistent if, when considering preferences of two disjoint
sets of voters - who decide over the same candidates and have identical final results - the
result obtained by the profile of the joint set of voters is the same as the ones obtained by the
disjoint set of voters.

• Participation: A voting rule is participative if, given any profile, and given a new vote over a
set of candidates by a new voter, the result obtained from the new profile is equally or more
preferred by the new voter. This means that a voter has an incentive to participate in the
voting process, since by doing so he can get a better result.

• Efficiency: A voting rule is efficient if, given the winner in an election, there’s no candidate
who is preferred to it by all voters. This means that, when all voters agree that a certain
candidate should win, he will be declared the winner.

• Independence of Irrelevant Alternatives (IIA): A voting rule is IIA if, whenever a candidate y
looses to some winner x, and the relative rankings of x and y do not change in the profile,
then y cannot win (independently of any possible change w.r.t. other irrelevant alternatives).

• Non-dictatorship: A voting rule is non-dictatorial if there is no voter such that the winner is
always a top-ranked alternative of this voter (the dictator).

• Strategy-proof: A voting rule is strategy-proof if it is not manipulable, that is, no voter can
get better off by lying on its preference ordering.

Table 2.1 summarizes the properties of the voting rules viewed so far [6]. All such rules are
anonymous and neutral. Moreover, only Copeland is Condorcet consistent, and all but Copeland
are consistent and participative. All the above rules are non-dictatorial and manipulable in general,
while only Approval is IIA. All these rules satisfy efficiency and monotonicity but not strong
monotonicity.

2.5 Voting theory 55

Rule C.C. Anon. Neutr. Mon. S. M. Cons. E f f . Part. IIA Non-dict. St-pr.
Plurality No Yes Yes Yes No Yes Yes Yes No Yes No

Borda No Yes Yes Yes No Yes Yes Yes No Yes No
Approval No Yes Yes Yes No Yes Yes Yes Yes Yes No
Copeland Yes Yes Yes Yes No No Yes No No Yes No

Table 2.1: Properties of the voting rules.

II
3 PCP-nets . 59
3.1 Probabilistic CP-nets (PCP-nets)
3.2 The set of induced CP-nets
3.3 Probability of the edges
3.4 Optimality
3.5 Dominance
3.6 Learning of separable PCP-nets
3.7 Dynamic Probabilistic CP-nets
3.8 A PCP-net generalization by using the Dempster

Shafer theory
3.9 Summary and Discussion

4 Preference aggregation 109
4.1 Aggregation of CP-nets into a PCP-net
4.2 Aggregation of soft constraint problems
4.3 Summary and Discussion

5 A logical model for conditional prefer-
ences . 153

5.1 Datalog and logic programming
5.2 Flat LCP-Theories (FLCP-Theories)
5.3 Recursive LCP-theories
5.4 Reasoning with LCP-theories
5.5 Semantics for the dominance
5.6 Summary and Discussion

6 A real-life scenario: kidney transplant pro-
tocol . 175

6.1 Background and Related works
6.2 Our algorithm: detection of cycles and chains start-

ing from deceased donors
6.3 Experiments
6.4 Introduction of Preferences
6.5 Summary and Discussion

Original contributions

3. PCP-nets

We often meet situations characterized by uncertainty and probabilistic information. A user could be
unsure about her preferences or we could have error and noise in the learning/elicitation procedures
or during the data collection. Another scenario in which we have to handle uncertainty is the
multi-agent scenario: a group of agents have to make a decision but the preferences of the different
users could be in conflict.

With the purpose to model this kind of uncertain preferences we define a new formalism
introducing probabilities in the CP-nets framework. While keeping the preferential dependency
structure of a CP-net, in a PCP-net a preference ordering over a feature domain is replaced by a
probability distribution over all possible preference orderings over that domain. We define thus
a generalization of traditional CP-nets with probabilities on individual cp-statements, making
the assumption that these probabilities are independent. In this way we can use algorithms and
techniques from Bayesian networks to efficiently compute outputs for restricted dependency
structures.

A PCP-net defines a probability distribution over a collection of CP-nets: all those CP-nets that
can be obtained from the PCP-net by choosing one feature ordering out of the whole probability
distribution over them.

Given a PCP-net, we focus on the two main reasoning tasks: optimality and dominance. We
define different notions of optimality. Concerning outcome optimization, one can define the optimal
feature assignment in two natural ways. The first definition of optimal outcome corresponds to the
most probable optimal outcome, the second to the optimal outcome of the most probable CP-net
induced by the PCP-net. If the PCP-net has a bounded dependency structure, both top outcomes can
be found in polynomial time in the size of the PCP-net. Concerning instead user optimization, we
can define the notion of most probable induced CP-net, that is the most probable description of a

60 Chapter 3. PCP-nets

“standard” user. Also this task can be computed in polynomial time in the size of the PCP-net, if the
PCP-net has a bounded dependency structure. We then study dominance. Given two outcomes, it is
in general computationally difficult to compute the probability that one dominates the other one,
since this is the sum of all probabilities of the CP-nets, induced by the PCP-net, where dominance
holds. For PCP-nets whose dependency graph is a polytree, for which dominance is still difficult,
we give a polynomial time approximation in the form of a lower and an upper bound to the correct
probability value for dominance. We show, experimentally, that often the range between the lower
and upper bound is small, and in particular that the lower bound is very close to the correct value.

We analyse also how to learn a PCP-net from a set of dominance examples, in a preliminary
case of separable structure. We assume also that the set of example is consistent and thus our
algorithm returns always at least one solution.

Many generalization of PCP-nets are still possible. We analyse two of them: a dynamic
generalization and a generalization using a different notion of probability. In the dynamic context
we give attention to the possible dynamic modifications to the structure of a PCP-net and how
to implements their effects in an efficient way. We also analyse the effects of these dynamic
modification on computing the most probable optimal outcome and the most probable induced
CP-net. In the second scenario instead we focus on the Dempster-Shafer theory of probability as a
generalization of the classical definition of uncertainty, allowing the representation of ignorance
and using a rule to combine the effect of different sources of evidence in a more general context.
We provide a description of this new formalism to describe probabilistic conditional preferences.

Related work

There has been a lot of work in the study and modeling of probabilistic preferences in a variety
of areas such as philosophy, logic, and economics. Probabilistic analysis in social choice has
often focused on the impartial culture model: a model in which all preference orders (for a set of
candidates) are equally likely. The plausibility of this particular model has been called into question
by behavioral social choice theorists [89]. Thus were developed frameworks that reflect a more
realistic probabilistic scenarios: probabilistic models of preferences or parameterized families of
distributions over rankings.

A different stream of research has been developed around a logic description for probabilistic
preferences: the incorporation of preferences into information systems, such as databases, has
recently seen a surge in interest, with a special interest on modeling uncertainty in these domains.
In a work of [71] they combine probabilistic reasoning with logical representations. The authors
provide probabilistic ontologies used to rank answers to a user?s queries, since the preference
model may be in conflict with the preferences induced by the probabilistic model. Other works
instead apply the concept of probabilistic preferences into the recommender systems context: [106]
propose a framework, namely Preference Network (PN), a probabilistic model that systematically
combines both content-based filtering and collaborative filtering into a single conditional Markov
random field; [58] presents a preference model using mutual information in a statistical framework,
combing information of joint features and alleviates problems arising from sparse data. These
approaches are located in the specific area of recommender systems, thus they can not be applied

61

to a more general scenario. A next step can be seen in [70], where they focus on the point of
view of the intersection of databases and knowledge representation, where preferences are usually
represented as strict partial orders over the set of tuples in a database or the consequences of a
knowledge base. They introduce the probabilistic preference logic networks (PPLNs), combining
such preferences with probabilistic uncertainty.

A similar approach to PCP-net can be seen in the work of de Amo et al. [3] in which they
propose CPrefMiner for learning a Bayesian Preference Network (BPN) from a given set of
user preferences between two alternatives. In a scenario of preference elicitation, they focus on
preferences (expressed by a BPN) that can change according to the context in which they are
located.

Chapter structure and related publications

The work presented in this chapter has appeared in the proceedings of the following conferences
and international workshops.

? “Dynamic and Probabilistic CP-nets”, C. Cornelio, Proceedings of the Doctoral Program
of International Conference on Principles and Practice of Constraint Programming 2013,
CP-13.

? “Updates and Uncertainty in CP-net”, C. Cornelio, U. Grandi, J. Goldsmith, N. Mattei,
F. Rossi and K.B. Venable, Proceedings of AUAI 2013: Advances in Artificial Intelligence,
26th Australasian Joint Conference, 2013.

? “Dynamic Probabilistic CP-nets”, C. Cornelio, U. Grandi, J. Goldsmith, N. Mattei, F.
Rossi and K.B. Venable, Proceedings of the 7th Multidisciplinary Workshop on Advances in
Preference Handling of the International Joint Conference on Artificial Intelligence 2013,
MPREF-13.

The chapter is organized as follows.

• In Section 3.1 we define the new PCP-nets framework, a generalization of the CP-nets model
allowing uncertainty. We formally define the model and provide some examples.

• In Section 3.2 we introduce the set of CP-nets that are induced by a PCP-net. A PCP-net
defines a probability distribution over this set.

• In Section 3.3 we provide a formula to compute the probability of existence of an edge in the
PCP-nets dependency graph. We provide two formulation of the formula in the two cases of
binary domains features and of general features.

• In Section 3.4 we study the optimality task in PCP-nets. We consider different notion of
optimality: about induced CP-nets and about outcomes. We provide algorithms to compute
these different tasks.

• In Section 3.5 we analyse the dominance task. We provide an exact procedure in the case of
separable PCP-nets, and an approximate procedure for the general scenario. We also provide
an experimental analysis to understand the accuracy of the approximation.

• In Section 3.6 we investigate the problem of exact learning of separable PCP-nets, given a
set of consistent dominance examples.

• In Section 3.7 we consider the case of PCP-nets with dynamic modification of the structure

62 Chapter 3. PCP-nets

or of the PCP-tables.
• In Section 3.8 we introduce a generalization of PCP-nets considering an alternative probability

theory: the Dempster-Shafer theory of probability.
• In Section 3.9 we provide a summary of the chapter and a discussion of the results.

3.1 Probabilistic CP-nets (PCP-nets)

In the following section we will consider features with general domains, but in some parts, for
instance in the examples, we restrict for simplicity to binary domains and bounded (by a constant)
induced width k (see Definition 2.1.12) of the dependency graph. Where not specified the extension
to non-binary domains is a trivial exercise.

Definition 3.1.1 A PCP-net (Probabilistic CP-net) [28] [9] is a directed graph where each
node represents a variable (often called feature) Var= {X1, . . . ,Xn} each with binary domains
Dom(X1), . . . ,Dom(Xn). For each feature Xi, there is a set of parent features Pa(Xi) that can
affect the preferences over the values of Xi. This defines a dependency graph in which each
node Xi has edges from all features in Pa(Xi). Given this structural information, for each feature
Xi, instead of giving a preference ordering over the domain of Xi (as in the CP-nets), we give a
probability distribution over the set of all preference orderings (total orderings over Dom(Xi))
for each complete assignment on Pa(Xi).

Definition 3.1.2 Given a feature X in a PCP-net, its PCP-table is a table associating each
combination of the values of the parent features of X with a probability distribution over the set
of total orderings over the domain of X .

Note that we are assuming that the probabilities of different orderings for different parents
instantiations are independent to each other, considering each rule as a random variable. This may
look as a strong simplification but it make sense considering the typical kind of data that we are
managing: a huge amount of information from a lot of individuals, each one gives only a few
preferences thus generally providing sparse data. Let think about recommender systems: usually
each user give information on a small set of features or items and any other information on the
others. For this reason, when we aggregate all of the user preferences we obtain that it clearly
makes sense to maintain these rules independent from each other, since each rule is obtained from
a different user.

We discuss in Section 8.1 as future direction, how to extended this representations of the
probability distributions over the statements, to a richer one, breaking the independence assumption.

⌅ Example 3.1 This example shows the difference between a CP-net C shown in Figure 3.1 and a
PCP-net Q shown in Figure 3.2 with two features, X1 and X2, with domains Dom(X1) = {x1, x̄1}
and Dom(X2) = {x2, x̄2,x2}.

⌅

Note that PCP-nets are a strict generalization of CP-nets. When a PCP-net is restricted to
probability distributions in {0,1} we recover the definition of CP-nets [11].

3.2 The set of induced CP-nets 63

X1 X2

x̄1 > x1 x1 x2 > x̄2 > x2
x̄1 x2 > x̄2 > x2

Figure 3.1: A CP-net C (Example 3.1)

X1 X2

x1 > x̄1 0.2
x̄1 > x1 0.8

x1

x2 > x̄2 > x2 0.1
x2 > x̄2 > x2 0.3
x̄2 > x2 > x2 0.6

x̄1
x2 > x̄2 > x2 0.7
x̄2 > x2 > x2 0.3

Figure 3.2: A PCP-net Q (Example 3.1)

3.2 The set of induced CP-nets

We note that a PCP-net is a compact representation of a probability distribution over a set of CP-nets
(for example, representing the preferences of a certain population in a multi-agent context). In
fact, given a PCP-net, we can generate many different CP-nets, one for each choice that can be
performed on the PCP-net.

Definition 3.2.1 Given a PCP-net Q, a CP-net induced by Q has the same features, with the
same domains, as Q. The CP-table of each feature Xi is generated choosing specific rows of
the PCP-table of Xi: an ordering is selected for each combination of the values of the parent
features Pa(Xi).

It is important to notice that in the generation process of the induced CP-tables we can obtain also
redundant information, if we select rows that are equal for each parents assignment. Considering
two variables X1 and X2 such that {X1} = Pa(X2), if we we choose the same ordering oX2 of the
domain values of the variable X2 for each assignment of the parent node X1, we obtain that X2 is
independent from X1 and thus we can contract the CP-table using oX2 and we can remove the edge
between X1 and X2. In this way we are reducing induced CP-nets in their normal form, removing
redundant information.

Definition 3.2.2 A CP-net is in normal form if for each node X does not exists any node
Y 2 Pa(X) such that the rows of the CP-table of X , in correspondence to the parents assignments
uiy1,uiy2, · · · ,uiyl , have the same ordering for the values of the variable X , for each ui in

64 Chapter 3. PCP-nets

the set {u1, · · · ,um} = Dom(Y1)⇥ · · ·⇥Dom(Yk) where Dom(Y) = {y1, · · · ,yl} and Pa(X) =

{Y,Y1, · · · ,Yk}.

It is important to notice that a CP-net induces the same preorder over the set outcomes that is
induced by its normal form.

⌅ Example 3.2 This example show the diffirence between a CP-net not in normal form and its
normal form. In Figure 3.4 is shown the normal form of the CP-net in Figure 3.3

X1 X2

X3

x2 > x̄2 x1 > x̄1

x1x2 x3 > x̄3 > x3
x1x̄2 x3 > x̄3 > x3
x̄1x2 x3 > x3 > x̄3
x̄1x̄2 x3 > x3 > x̄3

Figure 3.3: A CP-net not in normal form (Example 3.2)

X1 X2

X3

x2 > x̄2 x1 > x̄1

x1 x3 > x̄3 > x3
x̄1 x3 > x3 > x̄3

Figure 3.4: The normal form of CP-net in Figure 3.3 (Example 3.2)

⌅

Considering the normal form of the induced CP-nets, we observe that the edges are a subset
of the edges in the PCP-net. Thus, CP-nets induced by the same PCP-net may have different
dependency graphs, if considered in their normal form.

Definition 3.2.3 Given a PCP-net Q, the set of the induced CP-nets by Q is the set that contains
all the induced CP-net by Q.

Each induced CP-net has an associated probability, obtained from the PCP-net by taking the
product of the probabilities of the orderings chosen in the CP-net.

3.3 Probability of the edges 65

Notice that it is correct to do so because the choice of the ordering of a feature is independent
to the choice of the ordering of the other features.

Definition 3.2.4 Given a PCP-net Q and an induced CP-net C, we can define C by its CPTs
(Conditional Preference Tables). Let q̄ be the vector containing the probabilities of all rows of
the P-CPTs of Q, and XC a function that associates to each row i the value 1 if the row i defines
C (it appears in the CPTs of C) 0 otherwise. We define the probability of C, fpC(q̄), to be the
product of the probabilities of the qi with XC(i) = 1

P(C) = fpC(q̄) = ’
i:XC(i)=1

qi

Hence, a PCP-net induces a probability distribution over the set of all induced CP-nets.

⌅ Example 3.3 Consider the PCP-net in Figure 3.5 with two features, X1 and X2, with domains
Dom(Xi) = {xi, x̄i}. Figure 3.6 describes a CP-net that has been induced from the PCP-net of
Figure 3.5. The probability associated to this CP-net is defined by the following formula: fpC(q̄) =
[q2 ·q4 ·q5], given XC = (0,1,0,1,1).

X1 X2

x1 > x̄1 q1
x̄1 > x1 q2

x1
x2 > x̄2 q3
x̄2 > x2 q4

x̄1
x2 > x̄2 q5
x̄2 > x2 q6

Figure 3.5: A PCP-net.

X1 X2

x̄1 > x1 x1 x̄2 > x2
x̄1 x2 > x̄2

Figure 3.6: A CP-net induced by the PCP-net in Figure 3.5.

⌅

3.3 Probability of the edges

In this section we consider all the CP-nets in normal form. A PCP-net induces a profile of CP-nets,
each one with a possibly different dependency graph. Each edge of the CP-net dependency graph
can appear or not in a particular induced CP-net. Thus each dependency is associated with a
probability of existing.

66 Chapter 3. PCP-nets

Definition 3.3.1 Given a PCP-net Q and an edge e in the dependency graph of Q, we define the
probability of the existence of the edge e as the sum of the probability of the induced CP-nets in
normal form that have e in their dependency graph:

P(e) = Â
i2I s.t. e2Ci

P(Ci)

where I is the index set of induced CP-nets Ci in normal form.

This definition implies that the probability of non-existence of an edge e, thus the probability
of having an induced CP-net without the edge e, is equal to 1�P(e).

This probability can can be derived using the PCP-table of the child node. We consider an edge
e, from a feature X to a feature Y . The set of Y ’s parent nodes are the features in the set Pa(Y) with
cardinality k = |Pa(Y)|. Let’s take

E =
O

F2(Pa(Y)\X)

Dom(F)

where Dom(F) = { f , f̄} is the domain for a feature F .

Theorem 3.3.1 Given a PCP-net Q with features with binary domains, the probability of an
edge e = (X ,Y) can be computed as follows:

P(e) = 1� Â
s2°

’
v2E

P[s(v)|vx] P[s(v)|vx̄]

!

where ° = {s : E ! {y > ȳ, ȳ > y}} is the set of all possible functions s that associate to each
element v 2 E an element of the set {y > ȳ, ȳ > y} (the set of all the possible total orders of the
domain of Y).

Proof. We equivalently prove that the probability of the edge e = (X ,Y) not existing is:

Â
s2°

’
v2E

P[s(v)|vx] P[s(v)|vx̄]

!
.

To prove the formula we have to reason about the particular configurations of the PCP-table of
Y that induce CP-nets that not have the edge e.

A general PCP-table for a feature Y corresponds to:

3.3 Probability of the edges 67

v1x
y > ȳ p1x

ȳ > y 1� p1x

v1x̄
y > ȳ p1x̄

ȳ > y 1� p1x̄

· · · · · · · · ·

vix
y > ȳ pix

ȳ > y 1� pix

vix̄
y > ȳ pix̄

ȳ > y 1� pix̄

· · · · · · · · ·

v2k�1x
y > ȳ p2k�1x

ȳ > y 1� p2k�1x

v2k�1 x̄
y > ȳ p2k�1x̄

ȳ > y 1� p2k�1x̄

where v1, · · · ,v2k�1 are the assignments of the parent nodes in Pa(Y)\X .

We define an i-configuration (with i 2 {1, · · · ,2k�1}) as a particular combination of the rows
in which, given a particular assignment vi for the parents of Y different from X , the ordering
for the values of the feature Y is the same for both x and x̄. This corresponds to the definition
of independence of Y to X given vi: the ordering over the domain of Y is independent to the
assignment of X given the assignment vi for the features in Pa(Y) \X , if the two rows of the
CP-tables corresponding to vix and vix̄ have the same ordering over the domain of Y .

We have two possible i-configurations for each vi:

vix y > ȳ pix

vix̄ y > ȳ pix̄
or

vix ȳ > y 1� pix

vix̄ ȳ > y 1� pix̄

The first i-configuration has probability pix · pix̄ and the second one (1� pix) · (1� pix̄).

A general configuration correspond to a combination of i-configurations, each one defined on a
particular assignment of the features in Pa(Y)\X , and its probability corresponds to the product of
the probability of the single i-configurations.

A feature Y is independent to another feature X if it is independent for each combination
of assignment of Pa(Y) \X . Thus a general configuration corresponds to a combination of i-
configurations for all the assignment of Pa(Y)\X . It is well defined a correspondence between the
set of all the possible combinations of i-configurations and the set of function s : E ! {y> ȳ, ȳ> y}
that maps each element v 2 E to a total order over the domain of Y .

We partition the set of induced CP-nets that not have the edge e in equivalence classes: each
class correspond to the set of induced CP-nets corresponding to a general configuration, as described
above. Thus in each class we are fixing the rows of the CP-table of Y and we let free to change
the other CP-tables. Each class contains the same number of CP-nets: each CP-net has fixed the
the rows of the CP-table of Y and the number of CP-nets in the equivalence class corresponds

68 Chapter 3. PCP-nets

to the number of all the possible values combination of the remaining CP-tables (the number of
combination is the same, independently to the assignment of the Y CP-table).

The probability of a general configuration (the product of the probability of the chosen rows)
correspond to the probability of the corresponding equivalence class. This because inside of a class
we are considering all the possible combination for the free rows, that sum up to one.

The probability of a general configuration is defined by the formula:

’
v2E

P[s(v)|vx]P[s(v)|vx̄]

where the function s associates to each v an element of the set {y > ȳ, ȳ > y}:

s : E !Q(Y) .

Now we have to consider all the possible general configuration and to sum their probabilities. In
this way we are summing the probability of the equivalence classes and so we obtain the probability
of the whole partitioned set: the set of induced CP-net that not have the edge e in their dependency
graph. We simply sum over all the possible functions s , obtaining the initial formula:

Â
s2°

’
v2E

P[s(v)|vx] P[s(v)|vx̄]

!
.

⌅

The previous theorem can be generalized to PCP-net with features with non-binary domains as
follow:

Theorem 3.3.2 The probability of the edge e = (X ,Y) can be computed as follows:

P(e) = 1� Â
s2°

"
’
v2E

’

x j2Dom(X)

P[s(v)|vx j]

!#

where Q(Y) is the set of all the possible total orders of the domain of Y and ° = {s : E !Q(Y)}
is the set of all possible functions s that associate to each elementv 2 E a total order over the
domain of Y (an element of the set Q(Y)).

The proof follows step by step the proof of the binary case.

3.4 Optimality

Given a PCP-net we study mainly two optimality tasks: finding the most probable induced CP-net
and finding the most probable optimal outcome. These two reasoning tasks have slightly different
semantics and may be of use to different groups in the preference reasoning community. The
most probable induced CP-net is analogous, in our Netflix example from earlier, to the CP-net
that most likely represent a generic viewer in the household. The most probable optimal outcome
would be what a recommendation engine should suggest to maximize the probability of a correct

3.4 Optimality 69

recommendation. One can be seen as an aggregated model, that still retains usefulness for prediction
and sampling, while the other is an aggregated outcome, that maximizes the probability of being
correct.

3.4.1 The Most Probable Induced CP-net

We reduce the problem of finding the most probable induced CP-net to that of finding an assignment
with maximal joint probability of an appropriately defined BN.

Given a PCP-net C , we define the BN called the general network, or G-net(C), associated
with C , as follows. We create a variable for each independent feature A (without parents in the
dependency graph) of the PCP-net, with domain equal to the set of all possible total orderings over
the domain of A. The probability distribution over the orderings is given by the PCP-table of A. For
each dependent feature B of the PCP-net, we add as many variables to the G-net as the possible
assignments of the parents. Each of these variables, say X , will have the same domain, the set of
total orderings over the domain of B.

Definition 3.4.1 Given a PCP-net C , its G-net is a separable Bayesian network N such that:
• for each independent node XC in C N has a node XN ; its domain Dom(XN) consists into

all the orderings over the values in Dom(XC); the probability distribution over Dom(XN)

correspond to the probability distribution over the orderings in the PCPTs of node XC in
C .

• for each node dependent node Y C in C N has nodes Y N
1 , · · · ,Y N

m , where m = |Dom(ZC
1)⇥

· · ·⇥Dom(ZC
l)| and {ZC

1 , · · · ,ZC
l } = Pa(Y C); all the nodes Y N

1 , · · · ,Y N
m have the same

domain Dom(Y N
1) = · · · = Dom(Y N

m) and consists into all the orderings over the values
in Dom(Y C); the probability distribution over Dom(Y N

i) corresponds to the probability
distribution over the orderings in the PCPTs of node XC in C corresponding to the i-th
assignment of the parent nodes Pa(Y C).

Observation 3.1 All the variables in the G-net are independent, this follows from the fact that
we consider all the cp-statements as independent. The definition of the G-net could seem trivial
in the context in which the the cp-statements are independent, but it make sense considering
the typical kind of data that we are managing: a huge amount of information from a lot of
individuals, each one giving only a few preferences, thus generally providing sparse data. Let
think about recommender systems: usually each user gives informations on a small set of
features or items and any other information on the others. For this reason, when we aggregate
user preferences, we obtain that it clearly makes sense to maintain these rules independent from
each other, since each rule is obtained from a different user. We plan to extend this scenario to a
more rich framework. In this generalization the G-net assumes a relevant importance, since it
expresses the relation between the cp-statements. The structure of the G-et now admits edges
between the nodes, and these edges represents the connections between the cp-statements. For
example we can observe that there are strong relations between the probability distributions of a
variable considering the assignment of its parents, or the probability distributions associated to
different variables. ⌅

70 Chapter 3. PCP-nets

X Y

x > x̄ 0.2
x̄ > x 0.8

x
y > ȳ > y 0.1
y > ȳ > y 0.3
ȳ > y > y 0.6

x̄ y > ȳ > y 0.7
ȳ > y > y 0.3

Figure 3.7: A PCP-net Q

⌅ Example 3.4 Considering the PCP-net with two features X and Y with domains Dom(X) = {x, x̄}
and Dom(Y) = {y, ȳ,y} in Figure 3.7, the corresponding G-net is shown in Figure 3.8. The variables
have the following domains: Dom(X) = {x > x̄, x̄ > x}, Dom(Yx) = Dom(Yx̄) = {y > ȳ > y,y >

ȳ > y, ȳ > y > y, ȳ > y > y}.

X Yx Yx̄

x > x̄ 0.2
x̄ > x 0.8

y > ȳ > y 0.1
y > ȳ > y 0.3
ȳ > y > y 0.6
ȳ > y > y 0

y > ȳ > y 0.7
y > ȳ > y 0
ȳ > y > y 0
ȳ > y > y 0.3

Figure 3.8: The G-net associated with C .

⌅

We define a correspondence between each probability distribution in the PCP-net to a random
variable (a node) in the G-net. In this way, a complete assignment of the G-net corresponds to a
induced CP-net, since we are fixing a particular ordering for each variable in the dependency graph
for all the assignment of the parents nodes.

Observation 3.2 Given a PCP-net C and the corresponding G-net N, there is a one-to-one
correspondence between the assignments of N and the induced CP-nets of C . ⌅

Observation 3.3 Given a PCP-net C , the probability of realizing one of its induced CP-nets,
say Ci, is the joint probability of the corresponding assignment in the G-net for C . We take
exactly the product of the chosen rows in the PCP-tables. ⌅

Proposition 3.4.1 The probabilities over the induced CP-nets of a certain PCP-net form a probabil-
ity distribution.

Proof. The probability defined in Observation 3.3 is computed as a product of non-negative factors,
thus it is non-negative. Moreover, the sum of the probabilities of all the CP-nets in the set of the

3.4 Optimality 71

induced CP-nets is equal to 1, because there’s a 1-1 correspondence between the assignments of the
G-net with positive (not zero) probability and the induced CP-nets, and the sum of the probabilities
of all the assignments of a BN is equal to 1. ⌅

Observation 3.4 Given a PCP-net C and its induced CP-nets, the most probable of such
induced CP-nets can be computed by computing the assignment with maximal joint probability
of the G-net for C . ⌅

Because the G-net has a separable dependency graph (there are no edges and all the node are
independent), to compute the assignment with maximal joint probability takes O(N) time, where
N is the number of the node of the G-net.Given k the maximal number of parents nodes for each
node and d the maximal cardinality of the domain of the nodes of the PCP-net, then N = n ·dk (n
is the number of nodes in the PCP-net). We obtain the computational complexity O(ndk) that is
polynomial in the size of the description of the PCP-net.

Once we have computed the most probable induced CP-net, we can compute its optimal
outcome using a classical procedure of outcome optimization for CP-nets. In this way we find the
optimal outcome of the most probable induced CP-net. This notion of outcome optimization is an
alternative to the most probable optimal outcome that we define in the following section.

3.4.2 The Most Probable Optimal Outcome

The most probable optimal outcome is the outcome that occurs with the greatest probability as the
optimal one in the set of induced CP-nets. The probability that an outcome is optimal corresponds
to the sum of the probabilities of the CP-nets that have that outcome as optimal.

To reason about this task, first observe that the most probable optimal outcome may not be the
optimal outcome of the most probable CP-net.

⌅ Example 3.5 Let us consider a PCP-net with only one feature X with domain DX = {x1,x2,x3}
and the following PCP-table:

• x1 > x2 > x3 with probability 0.3
• x1 > x3 > x2 with probability 0.3
• x3 > x2 > x1 with probability 0.4

The most probable CP-net is the one corresponding to the third ordering and it has the optimal
outcome x3. The other CP-nets have x1 as optimal, so P(x1) = 0.6 and P(x3) = 0.4. The most
probable optimal outcome is therefore x1 but the optimal outcome of the most probable CP-net is
x3. ⌅

To find the most probable optimal outcome, we cannot use the most probable induced CP-net
(by the G-net procedure described above) and then find its optimal outcome; we must make use of
another BN. In order to find the most probable optimal outcome, we make use of another Bayesian
network we call the Opt-net.

In general, given a PCP-net C the optimals’ network (Opt-net) for C is a BN with the same
dependencies graph as C . Thus, the Opt-net has a variable for each of the PCP-net’s features.
The domains of the variables in the Opt-net are the values of the corresponding features that are

72 Chapter 3. PCP-nets

ranked first in at least one ordering with non-zero probability. The conditional probability tables of
the Opt-net are obtained from the corresponding PCP-tables as follows: for each assignment of
the parent variables, we consider the corresponding probability distribution over the values of the
dependent variable defined in the PCP-table. The probability of a value for the dependent variable
is the sum of the probabilities of the orderings that have that particular value as most preferred
according to that distribution.

Definition 3.4.2 Given a PCP-net C , its G-net is a separable Bayesian network N such that:
• for each node XC in C N has a node XN ;
• the domain Dom(XN)✓ Dom(XC) and consists into the union
• for each edge (XC ,Y C) in C N has a an edge (XN ,Y N);
• the probability distribution over Dom(XN) are defined as:

P(w|ui) =
m

Â
j=1 and o j[1]=w

pi
j 8w 2 Dom(XN)

where:
– Pa(XN) = {ZN

1 , · · · ,ZN
k };

– l = |Dom(ZC
1)⇥ · · ·⇥Dom(ZC

l)|;
– u1, · · · ,ul are all the possible assignment of Pa(XN);
– m is the number of possible total ordering of the values in Dom(XN): o1, · · · ,om;
– if o = v1 > v2 > · · ·> vd then o[1] = v1 is the first element in the ordering o;
– pi

j is the probability in C of the ordering o j given the assignment of the parents
nodes ui.

⌅ Example 3.6 Consider the PCP-net C with three features A, B and C with domains DA = {a1,a2},
DB = {b1,b2} and DC = {c1,c2,c3} shown in Figure 3.9a.

The Opt-net has the same dependency graph as C , with three variables A, B and C with
domains: DA = {a1,a2}, DB = {b1,b2} and DC = {c1,c2}, and two edges AC and BC. The domain
of variable C in the Opt-net does not contain value c3 because it never appears as most preferred in
any ordering. Therefore, the Opt-net has a table for entry a1b2 where c1 appears with probability
0.2 and c2 appears with probability 0.8. The Opt-net is shown in Figure 3.9b.

⌅

Observation 3.5 Given a PCP-net C and the Opt-net, there is a one-to-one correspondence
between the assignments (with non-zero probability) of the Opt-net and the outcomes that are
optimal in at least one induced CP-net of C . ⌅

From here we consider only the assignments of the Opt-net with positive probability.

Proposition 3.4.2 Given a PCP-net C , the probability that an outcome is optimal is the joint
probability of the corresponding assignment in the Opt-net. If no such corresponding assignment
exists, then the probability of being optimal is 0.

Proof. By construction, the set of assignments of the Opt-net is a subset of those of C . By the

3.4 Optimality 73

A

C

B

a1 > a2 0.8
a2 > a1 0.2

b1 > b2 0.7
b2 > b1 0.3

a1 b1
c1 > c2 > c3 0.3
c2 > c1 > c3 0.7

a1 b2

c1 > c2 > c3 0.2
c2 > c1 > c3 0.4
c2 > c3 > c1 0.4

a2 b1
c1 > c3 > c2 0.4
c2 > c3 > c1 0.6

a2 b2
c1 > c2 > c3 0.1
c2 > c1 > c3 0.9

(a) A PCP-net C .

A

C

B

a1 0.8
a2 0.2

b1 0.7
b2 0.3

c1 c2
a1 b1 0.3 0.7
a1 b2 0.2 0.8
a2 b1 0.4 0.6
a2 b2 0.1 0.9

(b) The Opt-net associated with C .

Figure 3.9: A PCP-net and its associated Opt-net

definition of the Opt-net, if an assignment of C is not an assignment of the Opt-net then it cannot
be optimal in any induced CP-net.

Let us now focus on the assignments of C that have a corresponding assignment in the Opt-net.
Let x = (x1,x2, ...,xn) be one of these assignments. We denote by Popt(x) the joint probability of x,
P(X1 = x1, ...,Xn = xn) in the Opt-net. We recall that the probability that x is optimal in the PCP-net
is the sum of the probabilities of the induced CP-nets that have assignment x as optimal. We call
this probability Pcp(x). We must prove that Popt(x) = Pcp(x).

Let us consider Ax, the set of induced CP-nets that have x as their optimal assignment. We have
Pcp(x) = ÂC2Ax P(C).

When we compute the optimal value for a CP-net, we sweep forward, starting from the
independent features, assigning features their most preferred value. This means that only one
subset of the rows of the CP-tables is considered when computing the optimal outcome. We can
thus split a CP-net C into two parts, one affecting the choice of the optimal outcome (denoted
with C⇤) and one not involved in it (denoted with C�⇤). If we consider the probability that that
CP-net is induced by the PCP-net, we see that these two parts are independent. Thus we have
Pcp(x) = ÂC2Ax P(C) = ÂC2Ax P(C⇤)P(C�⇤).

Regarding C⇤, observe that the optimal outcome x can be produced in many different ways, as
there can be many different orderings that produce the same result. For example, the orderings
a1 > a2 > a3 and a1 > a3 > a4 produce both the optimal value a1 for variable X1. So we can do a
disjoint partition of the set Ax into k subsets Ax1 , ...,Axk for some k.

Two CP-nets C and D that belong to the same Axi are equal in the part that actively affects the
choice of the optimal value and different in the other parts: C⇤ = D⇤ and C�⇤ 6= D�⇤.

Let C i
⇤ be the part that is equal for all the members of Axi . The probability becomes: Pcp(x) =

Âk
i=1P(C i

⇤)ÂC2Axi
P(C�⇤). We note that ÂC2Axi

P(C�⇤) = 1 8i= 1, ...,k, since we are summing the
probability of all possible cases regarding C�⇤. Thus, the probability becomes Pcp(x) = Âk

i=1P(C i
⇤).

74 Chapter 3. PCP-nets

However, we have P(X1 = x1, ...,Xn = xn) = Âk
i=1P(C i

⇤) and, thus, Pcp(x) = Popt(x). since we built
the rows of the probability tables for the variables X1, ...,Xn by summing the probability of the
orderings that have the same head. This is the same as summing the probabilities over the subset
Axi . ⌅

To find the most probable optimal outcome for a PCP-net C , it is sufficient to compute the
assignment with the maximal joint probability on the Opt-net.

If we have evidence on the variables, for instance an assignment for a subset of features, we
do not have to re-build the entire structure of the Opt net. We need only to re-build the connected
components of the features affected (all the nodes that can be reached by a direct path that starts
from a node with evidence), applying evidence.

⌅ Example 3.7 We consider the PCP-net over two features X and Y with domains Dom(X) =

{x1,x2,x3} and Dom(Y) = {y1,y2,y3} and the associated Opt-net over two features X and Y
with domains Dom(X) = {x1,x2} and Dom(Y) = {y1,y2} described in Figure 3.10. Consider-
ing the given evidence of X = x3, we obtain the PCP-net with domains Dom(X) = {x1,x2,x3}
and Dom(Y) = {y1,y2,y3} and the associated Opt-net over two features X and Y with domains
Dom(X) = {x1,x2,x3} and Dom(Y) = {y1,y2,y3} described in Figure 3.10.

X Y

x1 > x2 > x3 0.4
x2 > x1 > x3 0.6

x1 y1 > y3 > y2 1

x2
y1 > y2 > y3 0.3
y2 > y3 > y1 0.7

x3 y3 > y1 > y2 1

(a) PCP-net.

X Y

x1 x2
0.4 0.6

X y1 y2
x1 1 0
x2 0.3 0.7

(b) Opt-net.

X Y

x1 > x2 > x3 0.4
x2 > x1 > x3 0.6

X = x3

x1 y1 > y3 > y2 1

x2
y1 > y2 > y3 0.3
y2 > y3 > y1 0.7

x3 y3 > y1 > y2 1

(c) PCP-net with evidence X = x3.

X Y

x1 x2 x3
0 0 1

X = x3

X y1 y2 y3
x1 1 0 0
x2 0.3 0.7 0
x3 0 0 1

(d) Opt-net with evidence X = x3.

Figure 3.10: A PCP-net and its associated Opt-net, with and without evidence X = x3.

⌅

3.5 Dominance 75

Observation 3.6 We focus on the most probable optimal outcome and the optimal outcome
of the most probable induced CP-net since both of them can be computed in polynomial time.
Other notions of optimality, concerning outcome optimization, could be defined, such as the
most preferred outcome. The most preferred outcome can be computed giving a score to each
outcome, based on the position of its ranking in an induced CP-net, and then taking the outcome
with the highest score among the profile of induced CP-nets. This procedure is similar to the
Borda voting rule and requires the explicit computation of the whole preference order over the set
of possible outcomes, for each agent. Since the number of possible outcomes is exponential in
the number of features (in the case of n binary variables, the number of possible outcomes is 2n),
and the cardinality of the induced profile of CP-nets is exponential in the PCP-net description,
then also this procedure becomes exponential. Thus we focus on the most probable optimal
outcome and the optimal outcome of the most probable induced CP-net, notions of outcome
optimization that can be computed in a tractable amount of time. ⌅

3.5 Dominance

We investigate the problem of dominance queries for binary-valued acyclic PCP-nets. Given a
binary-valued and acyclic PCP-net Q and two outcomes o and o0, the goal is to compute the
probability of:

P(o > o0)

First we consider the rigorous definition of dominance for PCP-nets, recalling the definition for
CP-nets.

Definition 3.5.1 — Dominance for CP-nets. Given a CP-net C and a pair of outcomes o and
o0, a dominance query asks whether C |= o > o0. If this relation holds, o is preferred o0, and we
say that o dominates o0 with respect to C.

Definition 3.5.2 — Dominance for PCP-nets. Given a PCP-net Q and a pair of outcomes o
and o0, a dominance query asks for the probability that Q |= o > o0. That, we compute:

PQ(o > o0) = Â
C induced by Q

C|=o>o0

P(C)

If we consider a CP-net C as a particular PCP-net with all probabilities in the PCP-table
belonging to the set {0,1} then the result of the dominance query is a probability that belongs to
the set {0,1} too, thus 0 correspond to C 6|= o > o0 and 1 corresponds to C |= o > o0

Computational complexity of dominance queries

Bigot et al. [9] prove that dominance for PCP-nets is #P-hard, even if the structure is acyclic, the
longest path has length 3 and each node has at most one outgoing edge and at most 4 parents. They
also give an algorithm to obtain dominance for a binary-valued tree structured PCP-net that takes
O(22k2

n) where n is the number of features and k is the number of variables which have a different
value in o and o0.

76 Chapter 3. PCP-nets

A CP-net is a particular PCP-net with all probabilities in the PCP-table set to 0 or 1. Thus a
CP-net can be seen as a special case of PCP-net.

Dominance testing for binary-valued CP-nets is:

• O(n) for tree-structured CP-nets [9, 11]
• polynomial for polytree-structured CP-nets [11]
• NP-complete for directed-path singly connected acyclic CP-nets [11]
• NP-complete for CP-nets with a bounded number of pathsbetween two nodes [11]
• PSPACE-complete for general CP-nets [52]

To compute the probability of dominance for separable PCP-nets (that have no edges in their
dependency graph) is polynomial, and there is an exact formula to compute it. Because to compute
the exact value of the dominance for a more structured PCP-net is hard, we compute an interval in
which the exact value belongs. Thus we compute a lower bound and an upper bound in polynomial
time.

3.5.1 Separable PCP-nets

We analyze now how to compute the dominance in the case of separable PCP-nets. We provide
results for a binary-domains setting. The generalization to non-binary domains is an easy extension.

Given two outcomes o and o0 we generate two sets Di f f+(o,o0) and Di f f�(o,o0) such that:

• Di f f+ = {i 2 {1, · · · ,n}|xi 2 o and x̄i 2 o0}
• Di f f� = {i 2 {1, · · · ,n}|x̄i 2 o and xi 2 o0}

The probability of the dominance can be computed analytically by the following formula:

P(o� o0) =

’

i2Di f f+(o,o0)
pi

!
·

’
j2Di f f�(o,o0)

(1� p j)

!

with the convention that for a feature Xi with domain Di = {xi, x̄i} we have pi = P(xi � x̄i) in the
PCP-net (and thus (1� pi) = P(x̄i � xi)).

Observation 3.7 The formula is a product of at most n factors. The computation of each factor
is O(1), hence the formula takes O(n) computation time. ⌅

Proposition 3.5.1 Given a PCP-net Q over n feature X1, · · · ,Xn with binary domains Di =

{xi, x̄i}8i 2 {1, · · · ,n} and given two outcome o and o0 then

P(o� o0) =

’

i2Di f f+(o,o0)
pi

!
·

’
j2Di f f�(o,o0)

(1� p j)

!

with the convention that for a feature Xi with domain Di = {xi, x̄i} we have pi = P(xi � x̄i) in the
PCP-net (and thus (1� pi) = P(x̄i � xi)).

Proof. We call I (Q) the set of CP-nets induced by Q, and O(C) the partial order defined by a

3.5 Dominance 77

CP-net C. We know that
P(o� o0) = Â

C2I (Q) s.t.
(o�o0)2O(C)

P(C)

Now we show that:

1. if i2Di f f+(o,o0) then the induced CP-nets that have x̄i � xi don’t have o� o0 in their partial
order among the features (o 6� o0).

2. if i2Di f f�(o,o0) then the induced CP-nets that have xi � x̄i don’t have o� o0 in their partial
order among the features (o 6� o0).

We prove only the first assertion because the second is symmetric.

We suppose that i 2 Di f f+(o,o0). We must have a chain of worsening flip from o to o0, in such
a way that o� o0.

We consider o = (yxiz) and o0 = (y0x̄iz0) where y and y0 are the assignments of the variables
x1, · · · ,xi�1 and z and z0 are the assignments of the variables xi+1, · · · ,xn respectively of o and o0.

Because of the features are all indipendent, to have a chain of worsening flip from o to o0 we
must have a chain of worsening flip from y to y0, from z to z0 and for xi to x̄i. But, in some induced
CP-nets that have x̄i � xi, the first two may be possible, the third one is an improvement. So there
not exist a chain of worsening flip from o to o0 in the induced CP-nets that have x̄i � xi.

Thus we have to consider only the induced CP-net that for all the features i 2Di f f+(o,o0) have
xi � x̄i, and for all the features i 2 Di f f�(o,o0) have x̄i � xi.

P(o� o0) = Â
C2I (Q) s.t.

(xi�x̄i)8i2Di f f+(o,o0)
(x̄i�xi)8i2Di f f�(o,o0)

P(C)

We now observe that all of these induced CP-nets have (o� o0) 2 O(C). That is because the
variables x j 62 (Di f f+(o,o0)[Di f f�(o,o0)) have se same values in o and o0, and so we can build
always a chain of worsening flip for the variables x j 2 (Di f f+(o,o0)[Di f f�(o,o0)) by definition,
and the others are equal.

78 Chapter 3. PCP-nets

So we can compute the probability P(o� o0):

P(o� o0) = Â
C2I (Q) s.t.

(xi�x̄i)
8i2Di f f+(o,o0)

(x̄i�xi)
8i2Di f f�(o,o0)

P(C)

= Â
C2I (Q) s.t.

(xi�x̄i)
8i2Di f f+(o,o0)

(x̄i�xi)
8i2Di f f�(o,o0)

’

j s.t. x j�x̄ j

p j ’
j s.t. x̄ j�x j

(1� p j)

!

= ’
i2Di f f+(o,o0)

pi ’
i2Di f f�(o,o0)

(1� pi) Â
C2I (Q) s.t.

(xi�x̄i)
8i2Di f f+(o,o0)

(x̄i�xi)
8i2Di f f�(o,o0)

0BB@ ’
j s.t. x j�x̄ j

j 62Di f f+(o,o0)

p j ’
j s.t. x̄ j�x j

j 62Di f f�(o,o0)

(1� p j)

1CCA

(3.1)

But we know that:

Â
C2I (Q) s.t.

(xi�x̄i)
8i2Di f f+(o,o0)

(x̄i�xi)
8i2Di f f�(o,o0)

0BB@ ’
j s.t. x j�x̄ j

j 62Di f f+(o,o0)

p j ’
j s.t. x̄ j�x j

j 62Di f f�(o,o0)

(1� p j)

1CCA= 1

Then we have that:

P(o� o0) =

’

i2Di f f+(o,o0)
pi

!
’

i2Di f f�(o,o0)
(1� pi)

!

⌅

⌅ Example 3.8 Now we show an example of how to compute the dominance for separable PCP-
nets. Let’s take a separable PCP-net Q with five nodes: X1, · · · ,X5. The PCP-table are described in
Figure 3.11.

We consider two different outcomes: o = x1x2x̄3x4x5 and o0 = x1x̄2x3x4x̄5. We obtain that
P(o> o0) =P(x2 > x̄2) ·P(x̄3 > x3) ·P(x5 > x̄5) = 0.4 ·0.9 ·0.7= 0.252 given Di f f+(o,o0) = {2,5}
and Di f f�(o,o0) = {3}. ⌅

3.5.2 A lower bound for the dominance value

We consider only binary-valued polytree PCP-nets, that are directed-path singly connected in which
each node has at most one parent in common with another node. This category includes directed
trees.

3.5 Dominance 79

X1 X2

X3 X4

X5

x1 > x̄1, 0.3 x2 > x̄2, 0.4

x4 > x̄4, 0.8x3 > x̄3, 0.1

x5 > x̄5, 0.7

Figure 3.11: PCP-net Q of Example 3.8

We suppose also to have an order O for the nodes X1, · · · ,Xn such that each node Xi has only
parents with a lower index: Pa(Xi)✓ {X1, · · · ,Xi�1}.

Notation: Given an outcome o = o1o2 · · ·on we use the notation o �Xi to denote oi and o �S=

o �S1,··· ,Sm , where S = {S1, · · · ,Sm} ✓ {X1, · · · ,Xn} and if Si 2 S also Pa(Si) 2 S, to denote o �s1

· · ·o �sm . Given a CP-net C and two outcomes o and o0, when we use the notation o �S> o �S we
mean that the comparison is considered in the sub-CP-net C0 that have the nodes in S and the arcs
in C that connect them, with the corresponding CP-tables.

Definition 3.5.3 Given a PCP-net Q with n variables X1, · · · ,Xn and given two outcomes o and
o0, we define the set Io,o0 (just I i what follow to simplify notation) of the indices of nodes that
have different value on o and o0. The dominance lower bound for o > o0 in Q is:

PL
Q(o > o0) = ’

i2I
(1� pi)

where pi 8i 2 I is defined as:

pi =

8<:P(o0 �Xi> o �Xi 8u 2Uo,o0
i) if Pa(Xi) 6= /0

P(o0 �Xi> o �Xi) if Pa(Xi) = /0

where u is an assignment of the parents of Xi that belongs to Uo,o0
i that is the set of all u

assignments of Pa(Xi) such that: given Y 2 Pa(Xi), if o �Y= o0 �Y then u �Y= o �Y= o0 �Y

otherwise, if o �Y 6= o0 �Y then u �Y2 {y, ȳ}.

We observe that the formulation of the pi coefficients is equivalent to:

pi =

8<:’u2Uo,o0
i

P(o0 �Xi> o �Xi |u) if Pa(Xi) 6= /0

P(o0 �Xi> o �Xi) if Pa(Xi) = /0

80 Chapter 3. PCP-nets

Theorem 3.5.2 Given a PCP-net Q, the formula defined in Definition 3.5.3:

PL
Q(o > o0) = ’

i2I
(1� pi)

returns a lower bound for the probability of the dominance as defined in Definition 3.5.2:

PQ(o > o0) = Â
C induced by Q

C|=o>o0

P(C)

To prove this theorem we need the following propositions.

Proposition 3.5.3 Given an acyclic CP-net C with n nodes and two outcomes o = o1o2 · · ·on and
o0= o01o02 · · ·o0n such that o> o0 and given i an index in {1, · · · ,n} such that oi 6= o0i and o j = o0j8 j < i
then

o �X1···Xj> o0 �X1···Xj 8 j � i

Proof. Because of o > o0 there exists a worsening path from o to o0: P = o,o1, · · · ,o0. We prove that
P �X1,··· ,Xj= o �X1,··· ,Xj ,o1 �X1,··· ,Xj , · · · ,o0 �X1,··· ,Xj is a worsening path from o �X1,··· ,Xj to o0 �X1,··· ,Xj .
We have to prove that each step is a worsening flip. Considering a flip of the value of the variable Xl .
It is independent from the values of the children or from the values of the nodes that are independent
to Xl . All the nodes Xj+1, · · · ,Xn are either children or nodes independent to Xl , thus, removing that
variables it is irrelevant for the variables X1, · · · ,Xj. Thus if a step is a worsening flip in the path P,
it is also a worsening flip in the path P �X1,··· ,Xj . ⌅

We observe that the same proposition holds also for ’<’ simply renaming the outcomes.

Proposition 3.5.4 Given an acyclic CP-net C with n nodes and two outcomes o and o0 such that
exists index i 2 {1, · · · ,n} such that o �X1···Xi./ o0 �X1···Xi then given each index j such that i j n
then o �X1···Xj./ o0 �X1···Xj

Proof. We prove the proposition by contradiction. Suppose that o �X1···Xj 6./ o0 �X1···Xj , then either
o �X1···Xj> o0 �X1···Xj or o �X1···Xj< o0 �X1···Xj . We suppose to have o �X1···Xj> o0 �X1···Xj (the other
case is analogous). Since o �X1···Xj> o0 �X1···Xj there exists a worsening path P from o �X1···Xj

to o0 �X1···Xj and P = o �X1···Xj ,o1 �X1···Xj , · · · ,o0 �X1···Xj . For Proposition 3.5.3 we have that 8k 2
{1, · · · , j} o �X1,··· ,Xk� o �X1,··· ,Xk because the path P �X1,··· ,Xk= o �X1,··· ,Xk ,o1 �X1,··· ,Xk , · · · ,o0 �X1,··· ,Xk

is a worsening path from o �X1,··· ,Xk to o0 �X1,··· ,Xk in the sub-CP-net of the nodes X1, · · · ,Xk. In
particular for k = i, thus o �X1···Xi> o0 �X1···Xi that is a contradiction. ⌅

Corollary 3.5.5 Given an acyclic CP-net C with n nodes and two outcomes o and o0 such that
exists index i 2 {1, · · · ,n} such that o �X1···Xi./ o0 �X1···Xi then o ./ o0.

Proposition 3.5.6 Given an acyclic CP-net C with n nodes and two outcomes o and o0 then o ./ o0

if and only if exists index i 2 {1, · · · ,n} such that

o �X1···Xj 6./ o0 �X1···Xj 8 j < i and o �X1···Xl./ o0 �X1···Xl 8l � i

3.5 Dominance 81

Proof. (It is obvious for Proposition 3.5.4.
)We suppose to have o ./ o0 and we prove that exists index i such that

o �X1···Xj 6./ o0 �X1···Xj 8 j < i and o �X1···Xl./ o0 �X1···Xl 8l � i

by induction on the number of variables.
Base case: The base case for the induction consider a number of variables equals to two. That
because in the case with only one variable there not exist two incomparable outcomes.

We suppose to have two variables A and B. In the case in which there is an edge between them,
there are not incomparable outcomes. Thus we consider only the cases in which there is no edge
between the two variables. We have four cases for the CP-tables:

• a > ā and b > b̄ that implies that ab̄ ./ āb
• a > ā and b̄ > b that implies that āb̄ ./ ab
• ā > a and b > b̄ that implies that āb̄ ./ ab
• ā > a and b̄ > b that implies that ab̄ ./ āb

In each of them we obtain i = 1.
Induction step: We suppose true for n and we prove for n+1.

We consider a CP-net with n+1 variables in which o ./ o0. We consider o �X1,··· ,Xn and o0 �X1,··· ,Xn .
We can have three cases:

1. o �X1,··· ,Xn> o0 �X1,··· ,Xn

2. o �X1,··· ,Xn< o0 �X1,··· ,Xn

3. o �X1,··· ,Xn./ o0 �X1,··· ,Xn

In the case 3 we can apply the induction hypothesis. The cases 1 and 2 are symmetric so we
can prove only the case 1. We observe that o �X1,··· ,Xn 6= o0 �X1,··· ,Xn , because, in that case, the two
outcome o and o0 are a flipping couple, that is never incomparable.

So we consider the case in which o ./ o0 and o �X1,··· ,Xn> o0 �X1,··· ,Xn . We have to prove that
8 j < n o �X1,··· ,Xj> o0 �X1,··· ,Xj . We prove it by contradiction.

• We suppose that 9 j < n such that o �X1,··· ,Xj./ o0 �X1,··· ,Xj . We apply Proposition 3.5.4 and we
obtain that also o �X1,··· ,Xn./ o0 �X1,··· ,Xn that is a contradiction.

• We suppose that 9 j < n such that o �X1,··· ,Xj< o0 �X1,··· ,Xj . Thus there is a worsening path P
from o �X1,··· ,Xn to o0 �X1,··· ,Xn . Considering P restricted to the variables X1, · · · ,Xj we obtain
P̄ that is a worsening path from o �X1,··· ,Xj to o0 �X1,··· ,Xj that is a contradiction.

⌅

Proposition 3.5.7 Given an acyclic CP-net C with n nodes and suppose that C is formed by two
connected components C1 and C2 and given two different outcomes o and o0 such that

(o �C1> o0 �C1 and o �C2< o0 �C2) or (o �C1< o0 �C1 and o �C2> o0 �C2)

then o ./ o0.

Proof. We prove only the case in which o �C1> o0 �C1 and o �C2< o0 �C2 , because the other one is
symmetric.

82 Chapter 3. PCP-nets

We suppose by contradiction that o 6./ o0. Then we can have either o > o0 or o < o0. We suppose
to have o > o0 (the other case is analogous). Since o > o0 there exists a worsening path P from o to
o0, P = o,o1,o2, · · · ,o0. Each step oi of the path correspond to a worsening flip of a variable Xj that
belongs either to C1 or to C2.Thus the two sub-path P1 and P2 such that:

P1 = P �C1= o �C1 ,o1 �C1 ,o2 �C1 , · · · ,o0 �C1 and P2 = P �C2= o �C2 ,o1 �C2 ,o2 �C2 , · · · ,o0 �C2

are path (with repetition) such that P1 is a worsening path from o �C1 to o0 �C1 in the CP-net C1

and P2 is a worsening path from o �C2 to o0 �C2 in the CP-net C2. We obtain that o �C1> o0 �C1 and
o �C2> o0 �C2 that is a contradiction. ⌅

We can generalize Proposition 3.5.7 in the following proposition.

Proposition 3.5.8 Given an acyclic CP-net C with n nodes and suppose that C is formed by m
connected components C1,C2, · · · ,Cm and given two different outcomes o and o0 such that exists
two indexes i 6= j 2 {1, · · · ,n} such that

(o �Ci> o0 �Ci and o �Cj< o0 �Cj) or (o �Ci< o0 �Ci and o �Cj> o0 �Cj)

then o ./ o0.

Definition 3.5.4 Given two outcome o and o0 such that o ./ o0 in a CP-net C then we say that
the index i is the discriminator for the incomparability (or that o and o0 are incomparable for
index i) if i is the minimum index such that

o �X1···Xj./ o0 �X1···Xj 8 j � i and o �X1···Xj 6./ o0 �X1···Xj 8 j < i

Now we can prove the Theorem 3.5.2.

Proof. (Theorem 3.5.2) Given o and o0 such that o = (x1x2 · · ·xn) and o0 = y1y2 · · ·yn the formula
can be written as:

(1� pi0)(1� pi1) · · ·(1� pim)

where i j are the ordered index that belongs to the set I of the index if the variables that change
value from o to o0. Computing some products we obtain the following equivalent formulation:

[(1� pi0)]� [(1� pi0)(pi1)]� [(1� pi0)(1� pi1)(pi2)]� · · ·� [(1� pi0)(1� pi1) · · ·(1� pim�1)(pim)]

Considering the first term: 1� pi0 If the variable Xi0 is independent then pi0 =P(o0 �Xi0
> o �Xi0

) then
(1� pi0) = P(o �Xi0

> o0 �Xi0
). Otherwise the set Uo,o0

i0 has only an element u. Thus pi0 = P(o0 �Xi0
>

o �Xi0
|u) then (1� pi0) = P(o �Xi0

> o0 �Xi0
|u) So, we call qi0 the probability P(o �Xi0

> o0 �Xi0
) (or

P(o �Xi0
> o0 �Xi0

|u)). Then the formula is equivalent to:

[qi0]� [(qi0)(pi1)]� [(qi0)(1� pi1)(pi2)]� · · ·� [(qi0)(1� pi1) · · ·(1� pim�1)(pim)]

We note that each term of the sum contains qi0 . In terms of induced CP-net by Q, the probability

3.5 Dominance 83

qi0 is the probability of the induced CP-nets that have xi0 > yi0 (or xi0 > yi0 |u). Thus we are restrict
the set of induced CP-nets that have that particular row in their CP-tables. That because the set of
these CP-net contains all the CP-nets that allow o > o0 and not contain no one CP-net that allows
o0 > o. Thus we call this set S0 and it contains only CP-nets in which o > o0 or o ./ o0. The idea is
to remove from S0 all the induced CP-net in which o ./ o0. To each step of the sum we remove a
subset of S0. Analyzing a generic j-term of the sum:

[(qi0)(1� pi1) · · ·(1� pi j�1)(pi j)]

we observe that we are removing from S0 a subset S̄ j:the set of the induced CP-nets defined by
[(qi0)(1� pi1) · · ·(1� pi j�1)(pi j)]. We consider also the set S j of the induced CP-nets defined by
[(qi0)(1� pi1) · · ·(1� pi j�1)(1� pi j)] and we observe that S j and S̄ j are a partition of the set S j�1.
That implies that we do not remove the same CP-net two or more time, because we are moving in
partitions. In particular when we remove the probability of the j-term of the sum, we remove the
probability of the set S̄ j. The final probability that we obtain is the probability of the set Sm (as we
can see from the first formulation of the formula).

We prove that each set S̄ j contains all the induced CP-net that have o ./ o0 for index i j (see
Definition 3.5.4), and thus set S j contains only CP-nets such that:

(x1x2 · · ·xi j z > y1y2 · · ·yi j z 8z) and (x1x2 · · ·xi j z1 >
./

y1y2 · · ·yi j z2 8z1 6= z2)

where z,z1,z2 are a completion for a complete outcome over all the variables X1, · · · ,Xn.
Thus we prove that, given an induced CP-net C from Q and two outcome o and o0, if for C they

are incomparable for index i j then C 2 S̄ j.
We suppose that the two outcome o and o0 are incomparable for index i j for the induced CP-net

C and we have to prove that C 2 S̄ j.
We prove this by contradiction. If C 62 S̄ j then either (1) C 2 S̄k with k < j or (2) C 2 S j.
(1) C 2 S̄k with k < j

This implies that o and o0 are incomparable for ik < i j and it is a contradiction because i j is the
minimum index for the incomparability.

(2) C 2 S j

Because of o and o0 are incomparable for index i j we have that o �X1,··· ,Xi j�1 6./ o0 �X1,··· ,Xi j�1 . We
suppose that o �X1,··· ,Xi j�1> o0 �X1,··· ,Xi j�1 (the case with ’<’ is symmetric). Then we prove that also
o �X1,··· ,Xi j

> o0 �X1,··· ,Xi j
, and it is a contradiction.

If Xi j is an independent node it is easy to show that o �X1,··· ,Xi j
> o0 �X1,··· ,Xi j

. We take a worsening
path P from o �X1,··· ,Xi j�1 to o0 �X1,··· ,Xi j�1 ,

P = o �X1,··· ,Xi j�1! O1! O2! · · ·! o0 �X1,··· ,Xi j�1

The path

P̄ = o �X1,··· ,Xi j�1 oi j ! O1oi j ! O2oi j ! · · ·! o0 �X1,··· ,Xi j�1 oi j ! o0 �X1,··· ,Xi j�1 o0i j

84 Chapter 3. PCP-nets

is a worsening path from o �X1,··· ,Xi j
(= o �X1,··· ,Xi j�1 oi j) to o0 �X1,··· ,Xi j

(= o0 �X1,··· ,Xi j�1 o0i j
).

Now we consider the case in which Xi j is not an independent node. Because of C is singly
connected, the sub-CP-net C̃ of the nodes X1, · · · ,Xi j�1 is formed by |Pa(Xi j)| connected components,
each one containing exactly one parent of Xi j . Thus there aren’t conflicts with the needs of the
ancients. So, we have two cases:

• Xi j has no shared parents.

In this case, for each u 2 Uo,o0
i j

we can have a worsening path P from o|X1, · · · ,Xi j�1 to
o0|X1, · · · ,Xi j�1 that contains u because the parents belongs to difference connected compo-
nents and we can permutate the changing of the single connected component . Than suppose
to have

P = o �X1,··· ,Xi j�1! o1! o2! · · ·! ol ! · · ·! o0 �X1,··· ,Xi j�1

where ol contains u (ol �Pa(Xi j)
= u). Because of, if a CP-net belongs to S j means that exists

al least one u 2Uo,o0
i j

such that in the CP-table of Xi j there is the row u : xi j > yi j , then a
worsening path from o �X1,··· ,Xi j

to o0 �X1,··· ,Xi j
is

P̃ = o �X1,··· ,Xi j�1 xi j ! o1xi j ! o2xi j ! · · ·! olxi j ! olyi j ! · · ·! o0 �X1,··· ,Xi j�1 yi j

• Xi j has shared parents.
Also in this case, there exists a path P from o|X1, · · · ,Xi j�1 to o0|X1, · · · ,Xi j�1 that contains
u, for each u 2Uo,o0

i j
, that we build a path P̃ as in the previous point, but we have to consider

the interaction of the other nodes that have shared parents with Xi j . Suppose to share a parent
Xp with another node Xc there are two cases:

– Xc needs the same value for Xp as Xi j . In this case we can change the value of Xi j and
Xc in an arbitrary order

– Xc needs a different value for Xp as Xi j . In this case in the path the value of Xp change,
for example, from a value xp to x̄p. If Xc needs xp then first we change its value then we
change Xp and finally Xi j . If Xc needs x̄p then first we change the value of Xi j then we
change Xp and finally Xc. It is possible because Xi j and Xc have only a shared parent. If
the two nodes have more than one shared parent maybe they need two incomparable
assignments of the shared parent and in that case not exists a path between them.

Thus C 2 S̄ j. ⌅

⌅ Example 3.9 Now we show an example of computing the lower bound using the formula defined
in Definition 3.5.3.

We consider a PCP-net Q as defined in Figure 3.12 with five nodes X1, · · · ,X5 and four edges:
X1X3, X1X4, X2X4 and X4X5.

We consider two different outcomes: o = x1x2x̄3x4x5 and o0 = x1x̄2x3x4x̄5.
Thus the lower bound is:

PL
Q(o > o0) = [1�P(x̄2 > x2)] · [1�P(x3 > x̄3|x1)] · [1�P(x̄5 > x5|x4)]

3.5 Dominance 85

X1 X2

X3 X4

X5

x1 > x̄1, 0.3 x2 > x̄2, 0.4

x1x2 : x4 > x̄4, 0.4
x1x̄2 : x4 > x̄4, 0.8
x̄1x2 : x4 > x̄4, 0.3
x̄1x̄2 : x4 > x̄4, 0.5

x1 : x3 > x̄3, 0.7
x̄1 : x3 > x̄3, 0.1

x4 : x5 > x̄5, 0.9
x̄4 : x5 > x̄5, 0.2

Figure 3.12: PCP-net Q of Example 3.9

= P(x2 > x̄2) ·P(x̄3 > x3|x1) ·P(x5 > x̄5|x4) = 0.4 ·0.3 ·0.9 = 0.108

⌅

Computational complexity

The formula defined in Definition 3.5.3 is a product of at most n factors. The computation time of
each factor is, in the worst case, equal to O(2k) where k is the maximal number of parents. Thus
the computation complexity of the formula takes O(n2k) time. If we consider the case of trees (in
which all nodes have at most one parent) we obtain O(n).

Restriction to separable PCP-nets

We observe that if we apply the formula for the lower bound to separable PCP-nets, the probability
resulting is the same as the exact value of the dominance probability.

Theorem 3.5.9 Given a PCP-net Q with a separable dependency graph and two outcomes o and
o0, then:

PQ(o > o0) = PL
Q(o > o0)

Proof. We observe that each formulation is a product of factor and each factor corresponds to a
variable that has a different value in o and o0. And each variable that has a different value in o and
o0 has a unique factor in each formulation. We prove that the factors that correspond of the same
variable coincide in the two formulations.

We suppose to have a PCP-net that have the following PCP-tables: Xi : xi > x̄i,qi where qi is
the probability P(xi > x̄i)

We consider two cases: the first one is the case of a variable Xi such that o �Xi= xi and o0 �Xi= x̄i.

• in the formulation of dominance for separable PCP-net, we have a factor that correspond to
qi because the variable Xi belongs to the set Di f f+(o,o0)

86 Chapter 3. PCP-nets

• in the lower bound formulation we have a factor that correspond to:

(1�P(o0 �Xi> o �Xi)) = (1�P(x̄i > xi)) = P(xi > x̄i) = qi

The second case is the case of a variable Xi such that o �Xi= x̄i and o0 �Xi= xi.

• in the formulation of dominance for separable PCP-net, we have a factor that correspond to
(1�qi) because the variable Xi belongs to the set Di f f�(o,o0)

• in the lower bound formulation we have a factor that correspond to:

(1�P(o0 �Xi> o �Xi)) = (1�P(xi > x̄i)) = 1�qi

Thus the two formulations coincide. ⌅

⌅ Example 3.10 We show now an example of computing the lower bound and the exact value of
the dominance using the formula for a separable PCP-nets in Figure 3.13.

X1 X2

X3 X4

X5

x1 > x̄1, 0.3 x2 > x̄2, 0.4

x4 > x̄4, 0.8x3 > x̄3, 0.1

x5 > x̄5, 0.7

Figure 3.13: PCP-net Q of Example 3.10

We consider two different outcomes: o= x1x2x̄3x4x5 and o0= x1x̄2x3x4x̄5. The sets Di f f+(o,o0)
and Di f f�(o,o0) are the following:

Di f f+(o,o0) = {2,5} Di f f�(o,o0) = {3}

Thus we have:

P(o > o0) = P(x2 > x̄2) ·P(x̄3 > x3) ·P(x5 > x̄5) = 0.4 ·0.9 ·0.7 = 0.252

The lower bound is computed as follows:

PL(o > o0) = [P(x̄2 > x2)] · [P(x3 > x̄3)] · [P(x̄5 > x5)]

= P(x2 > x̄2) ·P(x̄3 > x3) ·P(x5 > x̄5) = 0.4 ·0.9 ·0.7 = 0.252

3.5 Dominance 87

The two values coincide. ⌅

3.5.3 An upper bound for the dominance value

We recall the notion of ancestor nodes in graph theory: given a node X in a graph G, the set Anc(X)

is the set of nodes in G such that exists a direct path from each node in Anc(X) to X .

Definition 3.5.5 Given a PCP-net Q with n variables Xi and given two outcomes o and o0, we
define the set Di f f to be the indices of nodes that have different value in o and o0 and that have
fixed ancestor (that have the same value in o and o0 for all the ancestor nodes) in o and o0. The
upper bound for P(o > o0) in Q is:

PU
Q(o > o0) = min

j2Di f f
P(o �Xj> o0 �Xj |u)

where u is the fixed assignment of the parents.

Theorem 3.5.10 Given a PCP-net Q and two outcomes o and o0, PU
Q(o > o0) is an upper bound

for PQ(o > o0).

Proof. It is equivalent to prove that all CP-nets induced by Q that support o > o0 have the row
u : o �Xj> o0 �Xj for all the variables Xj 2 (Diff \FA). We prove this sentence by contradiction:
we consider an induced CP-net C that contains the row u : o0 �X> o �X for a X 2 (Diff \FA) and
we prove that C |= (o0 > o)_ (o ./ o0).We have two cases: (1) X is an independent node. Then
the flip o �X! o0 �X can’t be a worsening flip. That implies that all the worsening paths starting
from o do not contain a flip for variable X , so o0 can’t be reached. (2) X is a dependent node.
Thus, the set Anc(X) = {Xi1 , · · · ,Xik} with k � 1 and all of them have fixed value on o and o0. We
call u the assignment of Pa(X) in o and o0. Thus, each worsening path from o has the value u
for Pa(X) in each step of the path, because all the ancestors of X are fixed. This implies that no
worsening path from o contains other assignments for the parents of X . Thus, no worsening path
starting from o contains a flip for variable X , so o0 can’t be reached. Thus C 6|= (o > o0) and so
C |= (o0 > o)_ (o ./ o0). ⌅

⌅ Example 3.11 Now we show an example of computing the upper bound.
We consider a PCP-net Q as defined in Example 3.9 (see Figure 3.12) with five nodes X1, · · · ,X5

and four edges: X1X3, X1X4, X2X4 and X4X5.
We consider two different outcomes: o = x1x2x̄3x4x5 and o0 = x1x̄2x3x4x̄5.
The set Di f f is equal to Di f f = {2,3} because they have different values on o and o0 and also

fixed ancestors. The variable X5 has different values on o and o0 but its ancestor X2 has not a fixed
value in o and o0.

Thus the upper bound is:

PU
Q(o > o0) = min{P(x2 > x̄2),P(x̄3 > x3|x1)}= min{0.4,0.3}= 0.3

⌅

88 Chapter 3. PCP-nets

X1 X2

X3 X4

X5

x1 > x̄1, 0.3 x2 > x̄2, 0.4

x1x2 : x4 > x̄4, 0.4
x1x̄2 : x4 > x̄4, 0.8
x̄1x2 : x4 > x̄4, 0.3
x̄1x̄2 : x4 > x̄4, 0.5

x1 : x3 > x̄3, 0.7
x̄1 : x3 > x̄3, 0.1

x4 : x5 > x̄5, 0.9
x̄4 : x5 > x̄5, 0.2

Figure 3.14: PCP-net Q of Example 3.11

Computational complexity

The formula defined in Definition 3.5.5 is a minimum between at most n factors. The computation
time of each factor is O(1), then computation complexity of the formula is O(n) time.

3.5.4 The interval

Computing the lower bound and the upper bound allows to have a interval in which the exact value
of the dominance probability belongs.

We test experimentally the size of the interval varying the number of nodes and, fixing the
number of nodes, varying the maximal number of parents that a node can have.

For all our experiments we randomly generate CP-nets, and PCP-nets. Generating PCP-nets
i.i.d. is non-trivial [2] and therefore we use an approximation method for random generation of
CP-nets and probabilities. We generate polytree structured CP-nets and PCP-nets, considering a
fixed ordering X1, · · · ,Xn for the variables. We also take as input the maximum in-degree for each
feature, k. For each CP-net in the profile we first generate its acyclic dependency graph. For each
feature Xi, we randomly choose its in-degree d, 0 d min{k, i�1}. Next, for each node Xi we
add parents, one by one randomly, using rejection sampling on X1, · · · ,Xi�1 (to ensure acyclicity),
rejecting those that add cycles in the underlying undirected graph, until we reach the in-degree d
or exhaust the set of possible parents. When the graph is built, we fill in the CP tables choosing
randomly one element of the domain (since the domain is binary). For a PCP-net, we generate the
dependency graph and CP tables as for a CP-net, and then we randomly assign probabilities to CPT
rows.

Figure 3.15 shows the size of the interval as a function of the number of features, n, and of k.
In this experiment we vary n 2 [0,30] and fix the maximum k to n�1, n/2 and n/4. We compute
the mean of the dominance interval over 100 PCP-nets for each value of n and for each PCP-net we
take the mean over 100 randomly generated outcome pairs.

We observe that the size of the interval grows with the number of parents. Thus if we consider

3.5 Dominance 89

5 10 15 20 25 30
0

5 ·10�2

0,1

0,15

0,2

0,25

number of features

In
te

rv
al

si
ze

max parents= n�1 max parents= n/2 max parents= n/4

Figure 3.15: Interval size vs. number of features.

a bound over the maximal number of parents, we can reduce the size of the interval.
We observe that the maximal interval size is 0.23 and the mean interval size is 0.2 with n�1

maximal parents (the worst case). If we have a number of parents boundend by a constant, the
size of the interval is much smaller. Thus the results shows that the interval is small in such cases:
with n/4 maximal parents we have an interval size less then 10% of the whole interval [0,1]. This
results suggest that in a real-world datasets the error will be very small since in real-world data the
number of maximal parent usually is bounded by a small constant (because people usually take
decisions dependently to a small set of attributes).

3.5.5 Lower bound as approximation of the dominance exact value

Then we test where is located the exact value of the dominance probability value in the interval and
the following experiment show that the exact value is very close to the lower bound. We conclude
that the lower bound is a good estimation for the exact value of the dominance.

Table 3.1 shows the distance between our lower bound and the true value of the dominance
probability as we vary the number of features. In this experiment we vary the number of features
n 2 [0,7] and we fix the maximum k to n�1, n/2 and n/4. We compute the mean over 20 PCP-nets
for each value of n and for each PCP-net we take the mean over 25 outcome pairs (total mean over
500 cases).

We limit our experimental setting considering only a maximum of 7 nodes because the computa-
tional complexity for computing the exact value of the dominance is exponential: in the worst case
we have to test a dominance query for each different induced CP-net, and the number of induced
CP-net are exponential in the PCP-net description. Considering the a PCP-net with 7 nodes and

90 Chapter 3. PCP-nets

the maximum number of parents less then n�1, usually the computation on 20 PCP-nets with 25
compared pairs takes about one month.

n : 1 2 3 4 5 6 7
Pa : n�1 0.0 0.0 0.002 0.002 0.002 0.008 0.004
Pa : n/2 0.0 0.0 0.008 0.006 0.0 0.004 0.004
Pa : n/4 0.0 0.0 0.0 0.0 0.0034 0.002 0.006

Table 3.1: Distance between our lower bound and the true probability of dominance.

We observe that the true value is very close to the lower bound and the maximal distance is
0.006.

We observe that also the percentage of the distance from the dominance exact value to lower
bound respect to the whole interval is very small. The percentage grows augmenting the number of
the nodes and of the parents, but in our experiments the maximal distance is about the 1.2% of the
interval.

In our experiments, the distance between the lower bound to the true dominance probability
is generally very small. It seems to grow as a function of the number of nodes and parents. Thus,
the lower bound can be considered a good approximation of the true dominance probability with a
maximal error equal to the size of the interval.

3.5.6 Dominance as a decision problem

In some settings it could be enough to get a yes/no answer from a dominance query, rather than the
exact probability value.

For example, if a PCP-net encodes the preferences of a community, we can ask if the users
prefer one outcome or another. For this reason we introduce others concept of dominance seen as
decision problem:

Definition 3.5.6 — DDP for PCP-nets. Given a PCP-net Q and a pair of outcomes o and o0,
the Dominance Decision Problem over o and o0 for Q correspond to ask True or False to the
question if the PCP-net prefer o or o0.

• if P(o > o0)� 0.5 then DDPQ(o,o0) = True
• if P(o > o0)< 0.5 then DDPQ(o,o0) = False

The threshold is fixed to 0.5 because we are considering majority as voting rule when we ask if
the users prefer one outcome or another, since we consider only two options True and False.

Definition 3.5.7 — MP-Dominance for PCP-nets. Given a PCP-net Q and a pair of outcomes
o and o0, a Most Probable dominance query (MP-dominance) is to ask a dominance query to the
most probable induced CP-net.

We performed some experiments to compare the two methods that approximate the dominance
decision problem:

• the lower bound;
• MP-dominance.

3.5 Dominance 91

The two following experiment analyze the number of times in which the MP-dominance
correspond to the value of DDP in a scale of [0,1] where 1 correspond to a perfect match.

Figure 3.16 shows the frequency of right answer of the most probable induced CP-net (in [0,1]),
varying the number of nodes. In this experiment we vary the number of nodes n 2 [0,5] and we
fix the parents n/2. We compute the mean over 50 PCP-nets for each value of n and for each
PCP-net we take the mean over 20 outcomes pairs.

Figure 3.16: Frequency of right answer of the most probable induced CP-net, varying the number
of nodes

The percentage of correct answer is very high: up to 90%.

Figure 3.17 shows the frequency of right answer of the most probable induced CP-net (in [0,1]),
varying the maximal number of parents. In this experiment we fix the number of nodes to n = 5
and we vary the maximal number of parents m 2 [0,4] . We compute the mean over 30 PCP-net for
each value of n and for each PCP-net we take the mean over 20 outcomes pairs.

The percentage of correct answer results very high: up to 90%.

Concluding, these two experiments show that MP-dominance is an accurate method. We want to
compare now MP-dominance with the lower bound based decision dominance. In the following two
experiments we provide this comparison varying first the number of nodes and than the maximal
number of parents.

Figure 3.18 shows the frequency of right answer of the Mp-dominance and the lower bound
based decision dominance (in [0,1]), varying the number of nodes. In this experiment we vary the
number of nodes n 2 [0,5] and we fix the parents n/2. We compute the mean over 50 PCP-net
for each value of n and for each PCP-net we take the mean over 20 outcomes couple.

The Lower bound based dominance is more correct than MP-dominance.

Figure 3.19 shows the frequency of right answer of the Mp-dominance and the Lower bound

92 Chapter 3. PCP-nets

Figure 3.17: Frequency of right answer of the most probable induced CP-net, varying the maximal
number of parents

Figure 3.18: Frequency of right answer of the Mp-dominance and the Lower bound based domi-
nance, varying the number of nodes

based dominance (in [0,1]), varying the maximal number of parents. In this experiment we fix the
number of nodes to n = 5 and we vary the maximal number of parents m 2 [0,4] . We compute the
mean over 30 PCP-net for each value of n and for each PCP-net we take the mean over 20 outcomes
couple.

In conclusion the more accurate method for approximate the DDP is the lower bound based

3.6 Learning of separable PCP-nets 93

Figure 3.19: Frequency of right answer of the Mp-dominance and the Lower bound based domi-
nance, varying the maximal number of parents

decision dominance.

3.6 Learning of separable PCP-nets

We investigate the problem of exact learning of PCP-nets in the initial case of separable structure.
We consider this case since we have a polynomial method to compute optimality tasks and the
exact value of dominance. Moreover separable preferences are a very important class of preference
relations on multi-attribute domains, as we can see in the economics or social choice literature (see
for example [57]). Focusing first on separable preferences is nontrivial and it is necessary as first
step towards learning more complex preferences. Furthermore in literature is well-known that a
simple structure generalize concepts in a better way than more structured framework despite the
fact that more complex structures may fit the examples better.

There is an active stream of research on preference learning, both for passive and active learning.
Passive learning considers systems that have a set of preferences between alternatives (domi-

nance pairs) given by a user. The goal is to be able to reason about her preferences so as to predict
choices she will make on new pairs of alternatives.

This approach is completely different from the active learning of preferences (also called
preference elicitation) in which the system interacts with the user, making queries and asking to her
to express a preference on the value of some attributes, until she has found her target object or left
the system (see [18, 61, 110]).

The literature research initially focused mainly on preferences on simple, non-combinatorial
domains and multi-issues domains are considered mainly associated with an active learning of
utility functions [40, 53, 108]. Regarding instead qualitative preferences we must cite the works on

94 Chapter 3. PCP-nets

learning lexicographic preferences on multi-attribute domains ([38, 98, 117]).
Active learning on combinatorial domains has been studied in the work of Koriche and Zanuttini

in [60], Dimopoulos et al. in [37], Eckhardt and Vojtáš in [43, 44], Liu et al. in [69], and the most
recent work of Guerin et al. in [56] that guarantee to produce a CP-net in polynomial time given a
constant bound on the number of parents.

Passive learning has been analyzed on multi-issues domains by Chevaleyre in [22] and by Lang
and Mengin in [66]. This last work considers our same context: the special case of separable
CP-nets. They proved that finding a separable CP-net from a consistent set of examples can be
solved in time polynomial, since the VC-dimension (a measure of the the expressive power of a
learning algorithm) of separable CP-nets is polynomial in the input dimension and thus separable
CP-nets are PAC-learnable. We will compare our procedure with this particular work in the end of
this section.

In this section we focus on passive learning: given a set of consistent dominance examples, we
exact learn a PCP-net consistent with the set of examples. The goal is to identify a probabilistic
distribution over the possible preference orderings generated by a binary-valued PCP-net. The
learning is performed using a set of consistent examples turned to a system of non-linear equations,
that, once solved, returns the solution/solutions: a PCP-net or a set of PCP-net that are consistent
with the set of examples.

Suppose to have n independent features X1, · · · ,Xn with binary domains (the non-binary case is
a trivial extension): Di = {xi, x̄i}, we want to learn a PCP-net Q as described in Figure 3.20.

X1 X2 Xn. . .

x1 > x̄1 p1
x̄1 > x1 1� p1

x2 > x̄2 p2
x̄2 > x2 1� p2

xn > x̄n pn
x̄n > xn 1� pn

Figure 3.20: PCP-net Q

Since we consider a bias on the structure of the PCP-net (i.e. without edges), our unknown
are only the n parameters p1, · · · , pn that represent the probability distribution over the possible
ordering among the variables values.

The set of examples

We learn the parameters from a set of examples of the form:

e = (o,o0, p)

where o and o0 are two outcome and p is the probability (or normalized frequency) of the example.

3.6 Learning of separable PCP-nets 95

If we consider only positive examples, p is the following probability: P(o� o0) = p. But we
can consider also negative or neutral examples. Thus we have three possible types of examples:

• Positive examples: e = (o,o0, p)+ where p = P(o� o0)
• Incomparable examples: e = (o,o0, p)./ where p = P(o ./ o0) = 1� (P(o� o0)+P(o0 � o))
• Negative examples: e = (o,o0, p)� where p = P(o 6� o0) = P(o0 � o)+P(o ./ o0)

We immediately observe that a negative example could been turned into a positive one. If we
have e = (o,o0, p)� where p = P(o0 � o)+P(o ./ o0) we can consider

p0 = 1� p = 1� (P(o0 � o)+P(o ./ o0)).

But we know that:
1 = P(o� o0)+P(o0 � o)+P(o ./ o0)

thus
p0 = 1� p = P(o0 � o),

and we can consider the example e0 = (o0,o, p0)+

So, in our model, we can have two choices of set of examples:
• a set of only positive examples;
• a set of positive and incomparable examples.

Observation 3.8 We will consider only the first case (set of only positive examples), since the
second is an easy generalization:

p = P(o ./ o0) = 1�P(o > o0)�P(o0 > o)

We have a formula to compute the probability of a dominance query over two outcomes in
function of the parameter of the PCP-net description. To have a formula is the only requirement
that the following method needs. ⌅

The second assumption that we make is that the set of examples is consistent. This means that
given a set of examples, there exists at least one PCP-net that entails them, and thus there is always
at least one solution of the problem.

3.6.1 The method

The method goal is to find a consistent PCP-net with the set of input examples (or a set of consistent
PCP-nets). This means that if we compute dominance testing over a PCP-net in the solution set it
returns exactly the probability associated with the example.

The method consists into generate an equation from each example in the set of examples, and
then to solve the system of generated equations.

The system of equations

Given a positive example e = (o,o0, p) we generate two sets Di f f+(o,o0) and Di f f�(o,o0) such
that:

96 Chapter 3. PCP-nets

• Di f f+(e) = {i 2 {1, · · · ,n}|xi 2 o and x̄i 2 o0}
• Di f f�(e) = {i 2 {1, · · · ,n}|x̄i 2 o and xi 2 o0}

Thus the equation, over the pi variables, associated with the example e= (o,o0, p) is eqe(p1, · · · , pn):
’

i2Di f f+(e)
pi

!
·

’
j2Di f f�(e)

(1� p j)

!
= p

These equations are non-linear and over at most n variables. We have a number of equations
equal to the cardinality of the set of examples. We have also n additional constraints about the
feasible domains for the pi (pi are probabilities):

pi 2 [0,1] 8i 2 {1, · · · ,n}

Since the set of examples is consistent, there is always at least one solution, but we could also
have an infinity number of solutions (in this case we can use a tie breaking rule such as the solution
with minimum entropy etc.).

Observation 3.9 — Consistency. The PCP-net Q obtained solving the system of non-linear
equations built associating to each example e = (o,o0, p) the equation

’
i2Di f f+(e)

pi

!
·

’
j2Di f f�(e)

(1� p j)

!
= p

is consistent with the set of examples. That means that computing the probability P(o� o0) over
Q it returns p.

The equation fro the dominance in a separable PCP-net corresponds to the formula of the
method. ⌅

⌅ Example 3.12 We provide an example of how the method runs. Given a set of examples T over
three variables X1, X2 and X3 with binary domains D1 = {x1, x̄1}, D2 = {x2, x̄2} and D3 = {x3, x̄3},
we have the separable PCP-net Q (Figure 3.21), in which we have to learn the three parameters:
p1, p2 and p3.

X1 X2 X3

x1 > x̄1 p1
x̄1 > x1 1� p1

x2 > x̄2 p2
x̄2 > x2 1� p2

x3 > x̄3 p3
x̄3 > x3 1� p3

Figure 3.21: PCP-net Q

We also have the following set of examples T with cardinality 3:

3.7 Dynamic Probabilistic CP-nets 97

• e1 = (x1x2x3, x̄1x2x̄3,0.6);
• e2 = (x1x̄2x3,x1x2x3,0.3);
• e3 = (x1x2x̄3, x̄1x2x3,0.2).

Thus we have:
• Di f f (e1)+ = {1,3}, Di f f (e1)� = /0;
• Di f f (e2)+ = /0, Di f f (e2)� = {2};
• Di f f (e3)+ = {1}, Di f f (e3)� = {3};

and we generate the following equations:
• eqe1(p1, p2, p3) : p1 p3 = 0.6;
• eqe2(p1, p2, p3) : 1� p2 = 0.3;
• eqe3(p1, p2, p3) : p1(1� p3) = 0.2;
Solving them we find the solution:

p1 = 0.8 p2 = 0.7 p3 = 0.75

⌅

Observation 3.10 This approach can be applied to the deterministic case of CP-nets learning,
considering the probability of the examples equal to 1: examples of the form: e = (o,o0,1).

We observe that our approach, restricted to CP-nets, results equivalent to the method
proposed by Chevaleyre et al. in[22] and studied in [66]. To see this equivalence it is sufficient
to apply the relation between logic operators and numerical operator: AND is the numerical
product, OR is the numerical sum.

Lang and Mengin in [66] proved that finding a separable CP-net from a consistent set of
examples can be solved in time polynomial, since the VC-dimension (a measure of the the
expressive power of a learning algorithm) of separable CP-nets is polynomial in the input
dimension and thus separable CP-nets are PAC-learnable. This result is consistent with our
result since also our procedure is computable in a time polynomial in the number of features. ⌅

3.7 Dynamic Probabilistic CP-nets

We now turn our attention to dynamic modifications to the structure of a PCP-net. These changes
can be implemented in an efficient way and their effects on computing the most probable optimal
outcome and the most probable induced CP-net are minimal, in terms of complexity. One can think
of modifying the structure of the PCP-net as entering evidence in a BN framework. By adding or
removing an arc or setting an ordering for a variable we can fix parts of the probability distribution
and compute the outcomes of the resulting structure.

3.7.1 Main dynamic modifications

There are many possible dynamic modifications of the structure of a PCP-net, but the ones that we
will consider are the following:

• adding a dependency;

98 Chapter 3. PCP-nets

• deleting a dependency;
• adding a feature;
• deleting a feature.

Any other modification can be represented as a combination of the ones listed above.

To add a dependency e = (X ,Y) we just add the edge to the dependency graph and update the
respective probability table (of the Y node), adding the new informations.

The delete a dependency e = (X ,Y) we focus on the subspace of the events in which the two
nodes X and Y are independent to each other. We recompute the probabilities in the PCP-table
of the node Y conditioning to the fact that X and Y , this means that, given an assignment ui of
the parents nodes Pa(Y) \X , the probability of a total order o j on the domain Dom(Y) given ui

corresponds to the probability of the case in which we have o j for each assignment for the variable
X given ui. Given the PCP-table described in Table 3.2 for the node Y focusing on a particular
assignment ui of the parents nodes Pa(Y)\X and where o1, · · · ,om are the possible total orders on
the domain Dom(Y) of Y , {x1, · · · ,xl}= Dom(X), we recompute the probability of an order o j as:

P(o j|ui, independence from X) =
1
K

l

’
k=1

P(o j|xk) =
1
K

l

’
k=1

po j
i,k

where K is the proper normalizing constant.

Pa(Y) ordering P

uix1

o1 po1
i,1

· · · · · ·
om pom

i,1

ui · · ·
o1 · · ·
· · · · · ·
om · · ·

uixl

o1 po1
i,l

· · · · · ·
om pom

i,l

Table 3.2: A PCP-net table

⌅ Example 3.13 Let’s consider the PCP-net in Figure 3.22 with binary domains features X1, X2

and X3. Removing the edge from X2 to X3 we obtain the PCP-net in Figure 3.23

⌅

To add a feature we just add a new node with the respective probability table. To remove a
feature we first remove each of its outgoing edges, following the procedure described above, and
then we simply remove the node and the corresponding PCP-table.

Additionally, due to the independence assumptions, we can modify probabilities over ordering
and features at a local level, with no need to recompute the entire structure when new information
is added.

3.7 Dynamic Probabilistic CP-nets 99

X1 X2

X3

x1 > x̄1 p1 x2 > x̄2 p2

x1x2 x3 > x̄3 0.7
x1x̄2 x3 > x̄3 0.8
x̄1x2 x3 > x̄3 0.4
x̄1x̄2 x3 > x̄3 0.8

Figure 3.22: A PCP-net (Example 3.13)

X1 X2

X3

x1 > x̄1 p1 x2 > x̄2 p2

x1 x3 > x̄3 0.91
x̄1 x3 > x̄3 0.73

Figure 3.23: A PCP-net (Example 3.13)

3.7.2 Effects of the modifications on the G-net

When we modify a PCP-net C we also need to modify the associated G-net and this can have an
effect on computing the most probable induced CP-net. To add or delete a dependency or feature,
independent or dependent, we need to recompute the probabilities for the connected component
of the children of the feature affected, which can be done quickly if this component is small, and
recompute the maximal joint probability for the G-net. This same procedure works for updating a
probability table with either evidence or changing the distribution. All these steps take constant
time in the size of the connected component of the change.

3.7.3 Effects of the modifications on the Opt-net

When we modify a PCP-net C , the changes affect the associated Opt-net. Consider the dependency
of feature B on feature A. When we add or delete this dependency, or when we change its probability,
we only need to recompute the probability table of B in the Opt-net. When computing the most
probable optimal outcome, we note that, in the worst case, we must recompute the whole maximal
joint probability of the Opt-net. The same can be said when we delete a feature, as this amounts

100 Chapter 3. PCP-nets

to the deletion of a set of dependencies, or when we modify the probability distribution over the
orderings on B for a specific assignment to all of its parents. When we add a feature A to C , we
must add the corresponding node in the Opt-net and generate the corresponding probability table.
This new node is independent. Thus, revising the current most probable optimal outcome is easy:
the new optimal is the current one extended with the optimal value of the new feature.

3.8 A PCP-net generalization by using the Dempster Shafer theory

In this section we provide a generalization of PCP-nets. We extend CP-net, and its generalization
CP-theories, using a different theory of probability to describe the uncertainty over the events/al-
ternatives. We will use the Dempster-Shafer theory of probability [99]. This theory has many
advantage: it allows the representation of ignorance and provide a rule to combine the effect of
different sources of evidence.

3.8.1 Dempster-Shafer theory of probability

The Dempster-Shafer theory [99] (known also as evidence theory or theory of belief functions) is a
mathematical theory of evidence and plausible reasoning. We will define in what follows the basic
definition and notions of this theory.

Let Q be a finite set with mutually exclusive elements. A source triple over Q corresponds
to (W,P,G) where W is the finite abstraction set, P is a probability distribution over W such that
8w 2W : P(w) 6= 0 and G is a function such that G : W! 2Q \ /0. Given a statement j 2Q, we use
the notation [j] to indicate the set of all the models that satisfy the statement j .

A mass function m is defined over the source triple:

m(j) = Â
w2W:G(w)=j

P(w) .

The mass function has the following properties: m(/0) = 0 and Âw✓W m(w) = 1. The quantity m(w)

is a measure of the belief that is assigned to exactly the set w and not to any proper subset of w . A
measure of the total belief in w is associated to the belief function Bel defined as

Bel(j) = Â
w2W:G(w)✓j

P(w) .

If we suppose to have that the information associated to the source triple (W,P,G) is a com-
bination of the information of a finite set of source triples: (Wi,Pi,Gi), we can combine these
informations using the Dempster’s rule of combination. The Dempster’s rule of combination
combine these rules using independence assumptions between the mass functions defined on the
source triples (Wi,Pi,Gi). This combination can be seen as a mapping from the set of source triples
(Wi,Pi,Gi) to the source triple (W,P,G), defined as follow. Suppose to have:

• m source triples (Wi,Pi,Gi);
• the set W0 =

Nm
i=1 Wi. If w 2W0 that w = (w1, · · · ,wm) where wi 2Wi;

• the function G0 : W0 ! 2Q such that G0(w) =
Tm

i=1 Gi(wi);

3.8 A PCP-net generalization by using the Dempster Shafer theory 101

• the probability function P0 such that P0(w) = ’m
i=1Pi(wi) (independence assumptions)

then we can define the source triple (W,P,G) as:

• W = {w 2W0|G0(w) 6= /0};
• G = G0 �W the restriction of G0 to W;
• P(w) = P0(w)

P0(W) where 1
P0(W) is the measure of the conflict between evidences;

Thus he have defined a mass function m and a belief function Bel on Q as follow:

m(j) = Â
w2W:G(w)=j

m

’
i=1

Pi(wi)

KW

!
= Â

w2W:Tm
i=1 G0i(wi)=j

m

’
i=1

Pi(wi)

KW

!
,

Bel(j) = Â
w2W:G(w)✓j

m

’
i=1

Pi(wi)

KW

!
= Â

w2W:Tm
i=1 G0i(wi)✓j

m

’
i=1

Pi(wi)

KW

!
,

where KW = 1
P0(W) .

3.8.2 Our model

Given a set of n features V = {X1, · · · ,Xn} with binary domains D(Xi) = {xi, x̄i} we call V the set
of all complete assignments of the variables in V (outcomes): V =

Nn
i=1 D(Xi) where given o 2V

then o �Xi corresponds to the assignment of the variable Xi in o. We define the language L as the set
of all the rule/statements over V such that:

L = {u : xi > x̄i[W]}[{u : x̄i > xi[W]}

where i 2 {1, · · · ,n}, u is an assignment of a subset S ✓ V \ {Xi} with cardinality in {0, · · · ,n�
1} (partial outcome u 2 S =

N
Xi2S D(Xi)) and W is a subset of V \ {Xi} \ S with cardinality in

{0, · · · ,n�1� |S|}.

L is the general language, but making some restriction to L we can recover for example CP-
theories and CP-nets that are subset of L. We will consider the natural assumption that for each
variable Xi the set U is a subset of {X1, · · · ,Xi�1} and the set W is a subset of {Xi+1, · · · ,Xn}.

Following the Dempster-Shafer approach we define Q as the set of all total orderings over V .
This set is finite and with mutually exclusive elements. In the following two section we propose
two different but equivalent ways to define the set of source triples (Wi,Pi,Gi): the first one uses
binary sets Wi and the second one uses general sets Wi.

Formulation 1: binary sets

For each statement ji 2 L we define a binary set Wi such that:

• Wi = {wi,¬wi}
• Gi(wi) = [ji]

• Gi(¬wi) = Q
• Pi(wi) = pi and Pi(¬wi) = 1� pi

⌅ Example 3.14 Given a language L defined on two variables V = {X1,X2} with the restriction

102 Chapter 3. PCP-nets

that for each variable Xi then the set U must be a subset of {X1, · · · ,Xi�1}, we define L as follows:

L = {j1,j2, · · · ,j12}

where:
j1 = (x1 > x̄1)

j2 = (x̄1 > x1)

j3 = (x1 > x̄1[X2])

j4 = (x̄1 > x1[X2])

j5 = (x2 > x̄2)

j6 = (x̄2 > x2)

j7 = (x2 > x̄2[X1])

j8 = (x̄2 > x2[X1])

j9 = (x1 : x2 > x̄2)

j10 = (x1 : x̄2 > x2)

j11 = (x̄1 : x2 > x̄2)

j12 = (x̄1 : x̄2 > x2)
Let Q the set of all the total orderings over V , then we have 12 source triples (Wi,Gi,Pi) defined

on L, one for each statement ji 2 L. For example W2 is defined as:

• W2 = {w2,¬w2}
• G2(w2) = [x̄1 > x1]

• G2(¬w2) = Q
• P2(w2) = p2 and P2(¬w2) = 1� p2

The mass function of j2 = (x̄1 > x1) is:

m(j2) =
p2

KW

The belief function of j2 = (x̄1 > x1) is:

Bel(j2) =
p2 + p4

KW

⌅

It is important to notice that in this formulation the constant 1
P0(W) , the measure of the conflict

between evidences, is high. This because there are many elements of W that have G0(w) = /0. For
example the element (w1,w2) in the Example 3.14 has:

G0(w1,w2) = [j1]\ [j2] = [x1 > x̄1]\ [x̄1 > x1] = /0 .

Formulation 2: general sets

For each feature X 2 V and u assignment of the parents of X , we have a set of statements
{ji1 , · · · ,jik ,jik+1}✓ L such that 8 j 2 {1, · · · ,k} ji j = (u : x > x̄[W]) and jik+1 = Q, we define a
set Wi such that:

• Wi = {wi1 , · · · ,wik}
• Gi(wi j) = {ji j}
• Pi(wi j) = pi j and Âk

j=1 pi j = 1

⌅ Example 3.15 In the same scenario of Example 3.14, we have only 4 source triples, defined as:
W1 = {w11 ,w12 ,w13 ,w14 ,w15}

• G1(w11) = [j1], G1(w12) = [j2], G1(w13) = [j3], G1(w14) = [j4], G1(w15) = Q;
• P1(w1 j) = p1 j and Â5

j=1 p1 j = 1

W2 = {w21 ,w22 ,w23 ,w24 ,w25}
• G2(w21) = [j5], G2(w22) = [j6], G2(w23) = [j7], G2(w24) = [j8], G2(w25) = Q;

3.8 A PCP-net generalization by using the Dempster Shafer theory 103

• P2(w2 j) = p2 j and Â5
j=1 p2 j = 1

W3 = {w31 ,w32 ,w33}
• G3(w31) = [j9], G3(w32) = [j10], G2(w33) = Q,
• P3(w3 j) = p3 j and Â3

j=1 p3 j = 1
W4 = {w41 ,w42 ,w43}

• G4(w41) = [j11], G4(w42) = [j12], G4(w43) = Q,
• P4(w4 j) = p4 j and Â3

j=1 p4 j = 1
⌅

It is important to notice that in this formulation the constant 1
P0(W) , the measure of the conflict

between evidences, is lower that in the first formulation. But there are elements of W that have
G0(w) = /0. For example the element (w1,w2) in the Example 3.14 has:

G0(w21 ,w32) = [j5]\ [j10] = [x2 > x̄2]\ [x1 : x̄2 > x2] = /0 .

Proposition 3.8.1 Formulation 1 and Formulation 2 are equivalent.

Proof. We can obtain Formulation 2 from Formulation 1: given k source triples (W0i,G0i,P0i) from the
Formulation 1, we take (in the variables order) a set of the source triples (W0i,G0i,P0i), where each one
corresponds to a statements in the the set {8 j 2 {1, · · · ,k} ji j = (u : x > x̄[W])} for a particular u
and X . Then we combine, using the Dempster-Shafer rule, this set of source triples to obtain a source
triple in Formulation 2. If we iterate this process to all the sets {8 j2 {1, · · · ,k} ji j =(u : x> x̄[W])}
for each assignments u we obtain the second formulation. ⌅

Observation 3.11 The PCP-nets are a particular case of this Dempster-Shafer generalization
model, considering the following language (with W = /0):

LP = {u : xi > x̄i}[{u : x̄i > xi}

⌅

Using a Bayesian Network to describe the relation between the sets Wi

When we define the source triple using the Dempster-Shafer theory we make an independence
assumptions in the relation between the sets Wi. We want now to relax this condition to obtain a
more general and sometimes natural formulation.

Given the source triples (Wi,Pi,Gi), we defined the probability function P as:

P(w) = k ·
m

’
i=1

Pi(wi)

where k = 1
P0(W) . Now we define a new probability function P as:

P(w) = k ·PBN(w)

where k = 1
P0(W) and PBN(w) is the joint probability of the Bayesian Network over w .

104 Chapter 3. PCP-nets

We replaced the simple product of the probability implied by the independence assumption
with a more complex probability distribution over the spaces Wi.

We can make two main assumptions on the structure of the Bayesian:
• Independence assumption. This assumption is the most common, and it is used in the classical

Dempster-Shafer theory. It consists to consider the source triple independent to each other
and thus to learn a Bayesian-net with a separable graph (without edges).

• Non-Independence assumption. It consists to consider the source triple dependents to each
other and thus to learn a Bayesian-net with a general acyclic graph. The acyclicity is a
common assumption. For a cyclic dependency graph we can use instead a Markov model to
represents the function PBN(w).

Dominance

Once we have this probabilistic structure, we may want to make a comparisons between outcomes.
To compute the dominance between two outcomes is hard also in this case, but for poly-tree and
tree structures we can use an efficient procedure to find a good approximation of the value. We can
apply the method described in [95] to the source triples, to compute the an approximation of the
dominance value using Monte-Carlo. We can use this method to compute also an approximation
of the dominance value for a PCP-net. The basic algorithm [95] is to generate randomly an
induces CP-net, following the probabilities in the G-net, and test the dominance. This is a good
approximation and can be done in polynomial time if the PCP-net is poly-tree or tree structured,
because dominance in these cases is polynomial for CP-nets.

3.8.3 A language equivalently expressive as L

In this section we propose a new language that is equivalently expressive as the language L.
The language L is defined as L = {u : xi > x̄i[W]}[{u : x̄i > xi[W]}. The formulation of

L follows the definition of CP-theory statements. We study what happen if we follow instead
the definition of CP-net statements and we add a new kind of statements that corresponds to the
generalization from CP-net to CP-theories. Following this idea we define a new language L̃:

L̃ = {u : xi > x̄i}[{u : x̄i > xi}[{u : Xi > Xj}

where i 6= j and the statements u : Xi > Xj means that the variable Xi is more important then the
variable Xj given the assignments u of the parents variables.

The obtained language L̃ is equivalently expressive to the language L, but it has a richer
semantics.

Proposition 3.8.2 The two languages L and L̃, defined above, are equivalent.

Proof. First we prove that all the statement of L can be obtained from L̃.
• The statements u : xi > x̄i[W] in L can be expressed as the following conjunction of the

statements of L̃:

(u : xi > x̄i)^
" ^

Y2W
(u : Xi > Y)

#
.

3.9 Summary and Discussion 105

Now we prove that all the statement of L can be obtained from L̃
• The statements u : xi > x̄i in L̃ are coincident with the statements in L with W = /0
• The statements u : Xi > Xj in L̃ can be defined with a combination of the statements of L:

8w(uw : xi > x̄i[Xj]) _ (uw : x̄i > xi[Xj]) .

where w is an assignments of the variables in V \ ({Xi,Xj}[U)

⌅

We can use equivalently the language L̃ or the language L in the two different formulation
described in Section 3.8.2.

3.9 Summary and Discussion

In this chapter we analyzed a way to introduce probability in the CP-nets framework with the
purpose of managing situations characterized by some form of uncertainty. A PCP-net could
represent a situations in which we are unsure about our preference ordering over certain items, or
there could be noise in our preference structure due to lack of precision in elicitation or sensor
collection (e.g., measurement error from remote sensors). In order to model this, we need a
structure for handling uncertainty and changes, for example via probabilistic information. Thus
we generalized the CP-nets framework introducing preferences at the statements level. This
introduction reflects a probability distribution also over the structure of the dependency graph. We
then analyzed the set of CP-nets that are induced by a PCP-net, the set of all the deterministic
realizations generated from a PCP-net. A PCP-net defines a probability distribution over this set.

Once defined this new structure, we studied how to reason with this new framework in terms of
optimality and dominance, the two main reasoning tasks regarding conditional preferences.

First we studied the optimality task in PCP-nets. We defined and compared different notions of
optimality: the most probable induced CP-net, the most probable optimal outcome and the optimal
outcome of the most probable induced CP-net. The first notion concerns optimality about induced
CP-nets and the last two about outcomes. We provide algorithms to compute these different tasks,
that use a transposition two properly defined BNs: the Opt-net and the G-net.

The G-net defines the probability distribution over the set of induced CP-nets. For this reason
the G-net is defined as a separable BN, since we are assuming that the probabilities of different
orderings for different parents instantiations are independent to each other, considering each rule
as a random variable. This may look as a strong simplification but it makes sense considering the
typical kind of data that we are managing: a huge amount of information from a lot of individuals,
each one giving only a few preferences thus generally providing sparse data. Lets think about
recommender systems: usually each user gives information on a small set of features or items and
any other information on the others. For this reason, when we aggregate user preferences, we obtain
that it clearly makes sense to maintain these rules independent from each other, since each rule is
obtained from a different user.

Obviously this independence assumption could be considered as a limit of our model, indeed

106 Chapter 3. PCP-nets

we propose a way to follow in Section 8.1 as future direction, for extending this representations of
probability distributions over the statements, to a richer one, considering more structured G-nets.

Concearning outcome optimization, we focused on the most probable optimal outcome (com-
puted using the Opt-net) and the optimal outcome of the most probable induced CP-net since both
of them can be computed in polynomial time. Other notions of optimality could be defined, but,
since the number of possible outcomes is exponential in the number of features, also the procedure
to compute them is exponential. Thus we focused on the most probable optimal outcome and the
optimal outcome of the most probable induced CP-net, notions of outcome optimization that can be
computed in a tractable amount of time.

We then studied the dominance task, analyzing its computational cost. We showed that
dominance for an acyclic PCP-net is a “hard” problem. Thus we studied the cases in which the
dominance values are polynomially computable. In the case in which a PCP-net has a separable
dependency graph we provided an exact procedure that has a polynomial computational complexity.
The separable case is a very important class of preference relations on multi-attribute domains, as
we can see in the economics or social choice literature (see for example [57]), and it is a first step
towards analyzing dominance on more complex preferences.

We are also able to perform exact dominance for a general scenario, but, since this task is
computationally hard we defined also an algorithm that compute an approximate value for the
dominance. This procedure is computable in polynomial time and we proved experimentally that
the result is really close to the exact value.

PCP-nets can be seen as a way to bring together BNs and CP-nets, thus allowing to model
preference and probability information in one unified structure. We are interested in the use of a
unique structure for example to represent a population of user in a multi agent context: to manage
a unique structure instead of an entire population of users, is an advantage in several tasks, with
respect to the standard voting procedures. For instance with a PCP-net we are able to compute
a dominance query, task that is not allowed using the main standard voting procedures. Given a
PCP-net representing a set of users we can compute the characteristics of the standard user, the user
(described by a CP-net) that best represent the population preferences. Moreover, with a PCP-net it
is not required to take in memory the profile of users, and it is not required, for the computation of
a task, to query the whole profile.

We then investigated the problem of learning of PCP-nets, considering the case in which the
PCP-nets have a separable dependency graph. We focus on passive learning: given a consistent
set of dominance examples, we exact learn a PCP-net that is consistent with the set of examples.
Focusing first on separable preferences is nontrivial and it is necessary as first step towards learning
more complex preferences. Moreover in literature is well-known that a simple structure generalize
concepts in a better way than more structured framework despite the fact that more complex
structures may fit the examples better.

We compared our approach with the state of the art procedures about preference learning and
we observed that restricting to the deterministic case, we obtain exactly the procedure proposed
by Chevaleyre et al. in [22] also studied in [66]. Lang and Mengin in [66] proved that finding a
separable CP-net from a consistent set of examples can be solved in polynomial time, since the

3.9 Summary and Discussion 107

VC-dimension (a measure of the the expressive power of a learning algorithm) of separable CP-nets
is polynomial in the input dimension and thus separable CP-nets are PAC-learnable. This result is
consistent with our result since both methods are computable in a time that is polynomial in the
number of features.

Many generalization of PCP-nets are still possible. We analysed two of them: a dynamic
generalization and a generalization using a different notion of probability.

We considered the case of PCP-nets with dynamic modification of the structure or of the
PCP-tables. We defined and showed how to reason with this new dynamic PCP-nets framework that
can be updated without recomputing their entire structure, analysing the effects of these dynamic
modification on computing the most probable optimal outcome and the most probable induced
CP-net.

Finally we introduced a generalization of PCP-nets considering an alternative probability theory:
the Dempster-Shafer theory of probability, allowing the representation of ignorance and using a
rule to combine the effect of different sources of evidence in a more general context. We provided
a description of this new formalism to describe probabilistic conditional preferences.

In the following chapter we will specifically study the interpretation of PCP-nets as multi-agent
scenario, using preferences to reconcile possible conflicts between the users opinions.

4. Preference aggregation

Probabilistic conditional preference networks (PCP-nets) provide a compact representation of a
probability distribution on a collection of CP-nets. In the first section of this chapter we view
a PCP-net as the result of aggregating a collection of CP-nets into a single structure. We use
the resulting PCP-net to perform collective reasoning tasks, e.g., determining the most preferred
alternative, when a group of agents expresses their preferences via CP-nets or determining the
most probable “standard user”, the user that best represents the population of users, that could
also not belong to the set of users in input. We propose two PCP-net based methods to perform
CP-net aggregation: by extracting the probability distribution directly from the CP-nets (proportion
method) or by minimizing the error between the aggregated structure and the set of CP-nets (least
square method). We combine these two methods with the two ways of extracting an optimal
outcome from a PCP-net, obtaining four approaches which can be seen as voting rules that take as
input a profile of individual CP-nets and output a winning candidate. We show that the output of
the sequential voting method with majority coincides with one of the four methods we define. This
is not surprising, since this method has been defined to obtain the outcome which best satisfies the
collection of agents. However, we can obtain this outcome by generating a PCP-net representing
the collection of given CP-nets. This allows us to do more than just finding a collectively optimal
outcome, since the PCP-net can be used also to respond to dominance queries or to find the next
best outcome in a linearisation of the induced preference ordering. We analyze the four methods
according to several axiomatic properties usually considered to be desirable in voting rules. We
also perform an experimental comparison of the four methods, by taking their output and asking
the individual CP-nets for a dominance query between pairs of such outcomes, with the aim of
determining which candidate is the one that most satisfies the individual agents’ preferences. The
experimental results show that the proportional method strictly dominate the least-squares method.

110 Chapter 4. Preference aggregation

Moreover, the optimal outcome of the most probable induced CP-net is empirically always better
than the most probable optimal outcome.

With respect to CP-nets, soft constraints are less restrictive since they are not directional, and
thus require no predefined ordering between the variables. This allows one to not tie the variable
ordering used by the sequential procedure to the topology of the constraint graph of each agent.
CP-nets and soft constraints profiles are really different to each other. The orderings induced by
CP-net are different from the ones induced by soft constraints, since CP-nets do not support ties.
Ties are typical in the soft constraints formulation. Another important difference is that outcome
comparison, which is computationally difficult in CP-nets, easy in soft constrains, but computing
the optimal solution in an a CP-net has similar computational complexity to that in a soft constraint
problem.

We now conduct a study to undergo a study similar to the one performed in [65] for CP-nets in
scenarios where the agents express their preferences via soft constraints. It shows that a sequential
single-feature voting protocol can find a winner in polynomial time, and has several other desirable
properties, when the CP-nets satisfy certain conditions on their dependencies. In [65], the CP-nets
must be acyclic, and their dependency graphs must all be compatible with a given graph ordered
according to the feature ordering in the voting procedure.

In the second section of this chapter we study a sequential preference aggregation procedure
based on voting rules for settings where several agents express their preferences over a common set
of variable assignments via soft constraints. We analyse this approach by providing both theoretical
and experimental results. In particular, we show several theoretical properties of the approach also
compared to the non-sequential one. We evaluate the performance of our approach experimentally
by considering several widely used voting rules, i.e., Plurality, Borda, Copeland, and Approval,
and we show that in these cases the sequential approach is convenient in terms of computation
time, while satisfying the agents preferences just as much as the non-sequential approach. Also,
the quality of the returned solution is not affected by the ordering of the features. We conclude by
providing results on real preferences obtained from the PrefLib database.

Chapter structure and related publications

The work presented in this chapter has appeared in the proceedings of the following conferences
and international workshops.

? “Voting with CP-nets using a Probabilistic Preference Structure”, C. Cornelio, U. Grandi,
J. Goldsmith, N. Mattei, F. Rossi and K.B. Venable, Proceedings of the 5th International
Workshop on Computational Social Choice, ComSoC-14.

? “Reasoning with PCP-nets in a Multi-Agent Context”, C. Cornelio, U. Grandi, J. Gold-
smith, N. Mattei, F. Rossi and K.B. Venable, Proceedings of the International Conference on
Autonomous Agents & Multiagent Systems 2015, AAMAS-15.

The chapter is organized as follows.

• In Section 4.1 we consider the multi-agent scenario in which agents represent their preferences
by CP-nets. We introduce two different aggregation methods: PR and LS. We compare
them using four voting rules, two defined on PR and two on LS. We provide both theoretical

4.1 Aggregation of CP-nets into a PCP-net 111

and experimental analysis to perform this comparison. We also introduce a procedure to
aggregate a profile of O-legal CP-nets into a poly-tree structured PCP-net, since, on this
particular structure, the dominance task is polynomially computable.

• In Section 4.2 we consider the multi-agent scenario in which agents represent their preferences
by soft constraints. We present a sequential voting procedure to aggregate preferences and
we apply it to the main used voting rule: Plurality, Approval, Borda and Copeland. We
compare these obtained sequential procedures to the non-sequential ones. We also provide
an experimental analysis using both randomly generated profiles and real-world profiles.

• In Section 4.3 we provide a summary of the chapter and a discussion of the results.

4.1 Aggregation of CP-nets into a PCP-net

The aim of this section is the aggregation of the preferences of a set of users, represented using
CP-nets, into the unique structure: a PCP-net. We are interested in this purpose because to manage
a unique structure instead of an entire population of users, is an advantage in several tasks, with
respect to the standard voting procedures. For instance with a PCP-net we are able to compute
a dominance query, task that is not allowed using the main standard voting procedures. Given a
PCP-net representing a set of users we can compute the characteristics of the standard user, the
user (described by a CP-net) that best represent the population preferences. To compute this tasks
we calculate the most probable induced CP-net and the user in output could also not belong to the
initial profile since it represents common preferences. Moreover, with a PCP-net it is not required
to take in memory the profile of users, that could be very large (for example in the case of elections
we manage profiles with a very large number of voters). Also considering the computational time
required for a tasks, such as computing the most probable optimal outcome, we note that using the
standard voting procedure this computational time depends on how many users are in the profile.
Using instead a unique structure we are avoiding this additional cost. Thus we have a computational
complexity that is significantly lower since we are not querying to each agent the same task but
only to one agent (the PCP-net) representing the profile distribution of preferences. Furthermore if
we have evidence on some variables, or if we have to recompute a task under different conditions,
we do not have to consider again the whole profile but only the aggregated PCP-net.

We consider collections of CP-nets [11], also called profiles in voting theory terminology. A
profile of CP-nets is a set of CP-nets on the same set of variables: P = (C1, · · · ,Cm). We focus on
O-legal profiles [65] of acyclic CP-nets where each variable has a binary domain.

Definition 4.1.1 (O-legality) A profile of m CP-nets over n variables is said to be O-legal if all
the dependency graphs of the CP-nets share the same topological ordering of the variables.

Note that this assumption does not mean that all the CP-nets in the profile have the same dependency
graph, but all the dependency graphs can be linearized with the same linear order (there exists at
least one linear order but there could exist also more then one). This assumption is widely used in
computational social choice and preference reasoning, and it is often sufficient to obtain tractable
results.

Given a multi-attribute domain, the fundamental idea, developed in the research area of voting

112 Chapter 4. Preference aggregation

theory, of decompose the instance into smaller, local sub-instances is based on the notion of
O-legality: [63] defined sequentially decomposable voting rules: voting rules defined over all
profiles that are compatible with a given order O. In this way the main reasoning tasks became
tractable also in multi-issues contexts; thus O-legal profiles are fundamental and largely adopted in
literature. In our scenario we require this condition for two main reasons: we need O-legality to
compare our methods to sequential voting rule procedures; and we need O-legality to obtain an
acyclic dependency graph of the aggregated PCP-net. We consider only acyclic-structured PCP-net
since acyclic graphs have particular properties and tractable computational complexity for the main
reasoning tasks.

Moreover, in many real-life domains it is reasonable to assume O-legality, for instance in the
cases in which preferential dependencies between variables coincide for all agents, or considering
on line elicitation of preferences: usually the users fill a fixed order sequence of questions each one
regarding a single variable, and this order is equal for all the users.

We start from an O-legal profile of m CP-nets over variables X1, · · · ,Xn each with a binary
domain. We define the relative frequency of a CP-net Ci, written as freqi as the percentage of times
Ci appears in P. In the following, a profile will be written as:

P = ((C1, freq1), · · · ,(Ck, freqk)) , with
k

Â
i=1

freqi = 1 .

The use of relative frequencies is relevant in domains with a high number of voters variables
and a low number of variables as in some cases (e.g. political parties) many agents may express the
same preferences. We use the same formulation in the case where CP-net is unique, we can “count”
all these as 1’s and we merely introduce the counts in this way to ease discussion.

Given a profile P of CP-nets, there may be no PCP-net which induces exactly the same
distribution over the CP-nets in P. However, the function that maps a PCP-net to its set of induced
CP-nets is injective. Thus, we can make the following statements.

Observation 4.1 Given a empirical probability distribution over a set of CP-nets (that what we
call a profile P

P = ((C1, freq1), · · · ,(Ck, freqk)) , with
k

Â
i=1

freqi = 1

where freq define the empirical distribution), there may exist no PCP-net inducing it, even if
they have the same dependency graph.

To show this we consider a profile of CP-nets over two binary variables X1 and X2:
• (C1,0.5) : (x1 > x̄1),(x1 : x2 > x̄2) and (x̄1 : x̄2 > x2)

• (C2,0.4) : (x1 > x̄1),(x1 : x̄2 > x2) and (x̄1 : x2 > x̄2)

• (C3,0.1) : (x1 > x̄1) and (x2 > x̄2).
The PCP-net representing such a profile must satisfy the following system of equations, where
q̄ = (q1

1,q
2
1,q

2
2), q1

1 is the probability of x1 > x̄1, q2
1 is the probability of x1 : x2 > x̄2, and q2

2 is
the probability of x̄1 : x2 > x̄2:

4.1 Aggregation of CP-nets into a PCP-net 1138>>><>>>:
fpC1

(q̄) = q1
1q2

1(1�q2
2)

fpC2
(q̄) = q1

1(1�q2
1)q

2
2

fpC3
(q̄) = q1

1q2
1q2

2

)

8>>><>>>:
fpC1

(q̄) = 0.5

fpC2
(q̄) = 0.4

fpC3
(q̄) = 0.1

This system has no solution for q̄ 2 [0,1]3. ⌅

Observation 4.2 Given a probability distribution over a set of CP-nets, we can compute a
PCP-net to fit this distribution, if it exists.

To prove that f , the function mapping a PCP-net to its set of induced CP-nets, is injective
we have to show that two different PCP-nets cannot generate the same set of induced CP-nets
with the same probability distribution.

This is the same as proving that, if the system generated by a probability distribution over a
set of CP-nets has a solution, it is unique.

We consider a PCP-net and then, to compute the probabilities, we consider the G-net
associated. We suppose that the G-net has n variable X1,X2, ...,Xn with domains D1 = {a1

j : for
j = 1 to k1}, ... , Dn = {an

j : for j = 1 to kn} (the values ai
j can be an ordering, 0 or 1). We define

pi
j as the probability P(Xi = ai

j).
Our system of equations (by definition) contains the numerical values of all the joint

probabilities of every assignment to the n variables.
We suppose now that there are two distinct solution pi

j
⇤ and pi

j
⇧ (8i = 1, ...,n and 8 j =

1, ...,ki).
We know that pi

j is equal to:

k1

Â
t1=1

..
ki�1

Â
ti�1=1

ki+1

Â
ti+1=1

..
kn

Â
tn=1

P(X1 = a1
t1 , ..,Xi�1 = ai�1

ti�1
,Xi = ai

j,Xi+1 = ai+1
ti+1

, ..,Xn = an
tn)

But all the numerical values of the joint probabilities are known (for all assignments of the n
variables), so all the probabilities:

P(X1 = a1
t1 , ..,Xi�1 = ai�1

ti�1
,Xi = ai

j,Xi+1 = ai+1
ti+1

, ..,Xn = an
tn)

are known as well.
Let us consider the value of pi

j, which we call it bi
j. Now since both pi

j
⇤ and pi

j
⇧ are equal

to bi
j, then they coincide.
This allows us to conclude that there is a unique solution. ⌅

Observation 4.1 and 4.2 give us interesting clues about the practicality of eliciting and aggre-
gating CP-nets. It indicates that we, in some instances, can derive a PCP-net from a profile of
CP-nets. We may be able to use PCP-nets as a compact encoding of distributions over CP-nets as a
reasonable model underlying recommendation systems for large databases of highly configurable
products [46, 85].

Note that assuming that the probabilities of different orderings for different parents instantiations

114 Chapter 4. Preference aggregation

are independent to each other (considering each rule as a random variable), may look as a strong
simplification and approximation of a preference distribution over a population. Usually we expect
that population preferences are highly correlated (discussed in Section 8.1 as future direction), but
our approach focus on the typical kind of data that we are managing nowadays: a huge amount
of information from a lot of individuals, each one gives only a few preferences thus generally
providing sparse data. Lets think about recommender systems: usually each user give information
on a small set of features or items and any other information on the others. For this reason, when
we aggregate all of the user preferences we obtain that it clearly makes sense to maintain these
rules independent from each other, since each rule is obtained from a different user.

In general, the system is over-constrained and will rarely admit a solution. Therefore, we need
to define aggregation methods that work even when there is no PCP-net that exactly recovers the
input profile of CP-nets.

4.1.1 Aggregation methods

We now define two methods to represent a profile of CP-nets using a PCP-net. As we are not
guaranteed to find a PCP-net representing the exact distribution of induced CP-nets in the profile we
must resort to methods approximating this input distribution. The first method we propose generates
a PCP-net by taking the union of the dependency graphs of the given CP-nets and determining the
probabilities in the PCP-tables from the frequencies of the CP-nets in the profile.

Definition 4.1.2 Given a profile of CP-nets P = (Ci, freqi), the Proportion (PR) aggregation
method defines a PCP-net whose dependency graph is the union of the graphs of the CP-nets
in the profile. Given a variable X and an assignment u to its parents, the probabilities in the
PCP-tables are defined as follows:

P(x > x̄|u) = Â
Ci:x>x̄|u

freqi

(and P(x̄ > x|u) = 1�P(x > x̄|u))), i.e., the probability of the ordering x > x̄ for variable X ,
given assignment u of Pa(X), is the sum of probabilities of the CP-nets that have that particular
ordering over the domain of X , given u.

Observation 4.3 Note that the PCP-tables, built following Definition 4.1.2, are well defined.
For each CP-net Ci we are able to say if Ci : x > x̄|u for each variable X and set of parents nodes
U . Each parent of X in Ci is also parent of X in the aggregated PCP-net. This is true because
the dependency graph of the PCP-net is the union of the graphs of the CP-nets in the profile,
thus the dependency graph of Ci is a sub-graph of the dependency graph of the PCP-net. Thus
U , the set of parent of X in the PCP-net are a super-set of the set of parents of X in Ci. Lets
call the set of parents of X in Ci as the set V . Thus we obtain that Ci |= x > x̄|u if and only if
Ci |= x > x̄|u �V . ⌅

The second method minimizes the mean squared error between the probability distribution induced
by the PCP-net over the CP-nets given in the input and the relative frequency observed in the input.

4.1 Aggregation of CP-nets into a PCP-net 115

Definition 4.1.3 Let P = (Ci, freqi) be a profile of CP-nets. The Least Square (LS) aggregating
method defines a PCP-net whose underlying graph is the union of the graphs of the CP-nets and
the probabilities qi

j in the PCP-tables that solve the following problem:

argmin
q̄2[0,1]r

k

Â
i=1

[fpCi
(q̄)� freqi]

2

where q̄ is the vector of qi
j ordered lexicographically with i as the first variable, qi

j is the
probability variable of the j-th row of the PCP-table of the variable Xi in the PCP-net, r is the
number of PCP-table-rows in the whole PCP-net, Ci are the k CP-nets observed in the profile P
and fpCi

(q̄) is the function of probability of the CP-net Ci introduced in Definition 3.2.4.

Observation 4.4 The LP formulation of LS is the following:

argmin
q̄

k

Â
i=1

[fpCi
(q̄)� freqi]

2

qi � 0 8i

qi 1 8i

The LS method objecting function is a sum of a linear number of components (one for each
CP-net in the initial profile), however, to evaluate fpCi

may require exponential time as the
PCP-net resulting from a generic profile may have an exponential number of cp-statements.
We can ensure that the union graph of an O-legal profile has bounded width – making LS a
polynomial method – by assuming the following O-boundedness condition:

Definition 4.1.4 A profile satisfy the O-boundedness condition if for each feature Xj there
are sets PP(Xj)✓ {X1, . . . ,Xn} of possible parents such that

• |PP(Xj)|< K for all j and a given constant K
• for all individuals i, Pai(Xj)✓ PP(Xj).

⌅

Computing the PCP-net using method PR may also require exponential time, as for LS, because
the PCP-net resulting from a generic profile may have an exponential number of cp-statements.
However, PR also becomes a polynomial method if we have the O-boundedness condition.

As LS formalized a notion of “distance to the best” we thought it was a fitting complement to
PR’s “item by item majority best” method. We wanted two slightly different methods to compare
and contrast.

4.1.2 Computing Optimality in a multi-agent context

Let P be the set of all CP-net profiles P of m voters over a set of alternatives X , a CP-voting rule
r : P ! X is a function that maps each profile P into an alternative r(P) 2 X .1

We define four voting rules by combining the two aggregation methods PR and LS presented

1In what follows we assume that CP-voting rules use lexicographic tie-breaking to return a unique winner.

116 Chapter 4. Preference aggregation

X1 X2

x1 > x̄1
x1 x2 > x̄2
x̄1 x̄2 > x2

(a) CP-net C1.

X1 X2

x1 > x̄1
x1 x̄2 > x2
x̄1 x2 > x̄2

(b) CP-net C2.

X1 X2

x̄1 > x1 x2 > x̄2

(c) CP-net C3.

X1 X2

x̄1 > x1 x̄2 > x2

(d) CP-net C4.

Figure 4.1: A CP-net profile P of the proof of Proposition 4.1.1

in Definition 4.1.2 and 4.1.3 with the two possible ways of extracting an optimal outcome from a
PCP-net:
• PRO: PR and most probable optimal outcome;
• PRI: PR and optimal outcome of most probable induced CP-net;
• LSO: LS and most probable optimal outcome;
• LSI: LS and optimal outcome of most probable induced CP-net.
Computing the optimal outcome for PRO and PRI is polynomial if the graph of the resulting
PCP-net has bounded width. This property can be obtained via the O-boundedness condition.

The four methods may produce different outcomes:

Proposition 4.1.1 There exists a profile of CP-nets P such that

{PRO(P),PRI(P)}\{LSO(P),LSI(P)}= /0

and there exists P such that
PRO(P) 6= PRI(P)

and such that
(or LSO(P) 6= LSI(P)).

Proof. • First we prove that there exists a profile of CP-nets P such that {PRO(P),PRI(P)}\
{LSO(P),LSI(P)}= /0. Let us take the following profile P in Figure 4.1 of four CP-nets over
two variables X1 and X2:

– C1 with probability 0.095. C1 has the edge from X1 to X2 and CP-tables: x1 > x̄1 and
x1 : x2 > x̄2, x̄1 : x̄2 > x2.

– C2 with probability 0.505. C2 has the edge from X1 to X2 and CP-tables: x1 > x̄1 and ,
x1 : x̄2 > x2, x̄1 : x2 > x̄2.

– C3 with probability 0.005. C3 does not have the edge from X1 to X2 and has CP-tables:
x̄1 > x1 and x2 > x̄2.

– C4 with probability 0.395. C4 does not have the edge from X1 to X2 and has CP-tables:
x̄1 > x1 and x̄2 > x2.

PR gives us the PCP-net (x1 > x̄1,0.6) and (x1 : x2 > x̄2,0.51), (x̄1 : x2 > x̄2,0.1), while
LS outputs (x1 > x̄1,0.59) and (x1 : x2 > x̄2,0.29), (x̄1 : x2 > x̄2,0). Thus we obtain that
PRO(P) = x̄1x̄2, PRI(P) = x1x2, LSO(P) = x1x̄2 and LSI(P) = x1x̄2.

4.1 Aggregation of CP-nets into a PCP-net 117

• The fact that there exists P such that PRO(P) 6= PRI(P) (or LSO(P) 6= LSI(P)) is a immediate
consequence of the fact that the most probable optimal outcome and the outcome of the most
probable CP-net can be different. For example, consider a PCP-net Q on two variables X1

and X2 with the PCP-tables (x1 > x̄1,0.6), (x1 : x2 > x̄2,0.6) and (x̄1 : x2 > x̄2,0). P is the
profile generated by the set of induced CP-net by the PCP-net Q. The most probable induced
CP-net has x1 > x̄1, x1 : x2 > x̄2 and x̄1 : x̄2 > x2, thus x1x2 is the optimal outcome. However,
the most probable optimal outcome of the PCP-net is x̄1x̄2. Therefore, PRO (respectively,
LSO) will differ from PRI (resp. LSI) on a profile P that produce this PCP-net.

⌅

It is interesting to observe that PRI returns the same result as the sequential voting rule with
majority [65] (see Section 2.5.2), that consists of applying the majority rule “locally” on each
feature in the order given by O.

Theorem 4.1.2 Given any profile of CP-nets, PRI produces the same result as sequential voting
with majority.

Proof. Consider a variable Xi with domain {xi, x̄i}, and an assignment u for the parents of Xi. With
sequential voting we choose the value of the domain that corresponds to the first value of the
ordering that maximizes the following:

max
j2{1,··· ,m}

{[Â
Cj:xi>x̄i|u

P(Cj)], [1� Â
Cj:xi>x̄i|u

P(Cj)]}.

With PRI , we create a PCP-net that has, for the row in the PCP-table of Xi corresponding to
assignment u for its parents, the probability ÂCj:xi>x̄i|uP(Cj) for xi > x̄i and 1�ÂCj:xi>x̄i|uP(Cj) for
x̄i > xi. To compute the CP-tables of the most probable induced CP-net, we choose the orderings
with maximal probability: for each variable Xi, given u, we choose the ordering that maximizes the
following probability:

max
j2{1,··· ,m}

{[Â
Cj:xi>x̄i|u

P(Cj)], [1� Â
Cj:xi>x̄i|u

P(Cj)]}.

To compute the optimal outcome of the most probable induced CP-net, we choose the greater
literal in the ordering that appears in the CP-table, given u. This is for a generic variable Xi and
assignment u, thus is true for all the variables and assignment of their parents. ⌅

Other notions of optimal outcome may be defined. For example, the outcome that maximizes
the average number of outcomes worse than it in the induced CP-nets. But this kind of optimality is
computationally hard and thus we focus on optimal outcomes that can be computed in polynomial
time.

4.1.3 Axiomatic Properties

A first way to compare the four voting rules is by checking if they satisfy a set of desirable
axiomatic properties [80]. We analyse a selection of properties corresponding to the classical

118 Chapter 4. Preference aggregation

Property PRO PRI LSO LSI
Anonymity

p p p p

Neutrality
p p p p

Homogeneity
p p p p

Opt-Monotonicity
p p

Consistency
p

[65]
Participation

p p

Consensus
p

*
p

Table 4.1: Axiomatic Properties of PRO, PRI , LSO and LSI . *= true only over a single feature

axiomatic properties, usually considered in literature ([80], [65], etc.).
We recall the definitions of these properties (see Section 2.5.3), adapting them to the context of

CP-nets profiles.
• Anonymity holds when the result is not sensitive to any permutation of the voters (that is,

given a permutation s on voters and the set of alternatives X , r(s(P),X) = r(P,X)).
• Neutrality holds if, for any profile P and any permutation s on alternatives X , then r(P,X) =

r(P,s(X)).
• Homogeneity holds when, for any profile P and any s 2 N, we have r(P) = r(sP), where sP

is a profile in which there are s copies of each voter in P.
• Opt-Monotonicity holds if, given two profiles P=(C1, · · · ,Cm) and P0=(C01, · · · ,C0m) where

C0i is obtained by Ci by changing the CP-tables so that r(P) is the optimal outcome for C0i , we
have r(P) = r(P0)

• Consistency holds if, given two disjoint profiles P1 and P2 such that r(P1) = r(P2), we have
r(P1[P2) = r(P1) = r(P2).

• Participation holds if, for any profile P and any CP-net C, we have r(P[{C})>C r(P).
• Consensus holds if, for any profile P = (C1, · · · ,Cm), there is no alternative o such that

o >Ci r(P), for all i 2 {1, · · · ,m}.
Anonymity and neutrality both hold for all four voting rules. We know PRI satisfies a stronger
version of monotonicity and consistency (hence homogeneity) as it coincides with the sequential
voting on O-legal profiles studied by Lang and Xia [65].

Our results in this section are summarized in the table below.

Theorem 4.1.3 PRO and and PRI satisfy homogeneity.

Proof. Consider a profile P = (C1, f1), · · · ,(Ck, fk) from which we can get the normalised fre-
quencies (C1,

f1
m), · · · ,(Ck,

fk
m). Considering N times each CP-net, we obtain the following distri-

bution over Nm CP-nets P0 = (C1,N f1), · · · ,(Ck,N fk) with the following normalised frequencies
(C1,

N f1
Nm), · · · ,(Ck,

N fk
Nm). The probability of a generic CP-net Ci in P0 is N fi

Nm = fi
m which is the same

as the probability generated by P. ⌅

4.1 Aggregation of CP-nets into a PCP-net 119

Theorem 4.1.4 LSO and LSI satisfy homogeneity.

Proof. In the proof of Theorem 4.1.3 we add N copies of each CP-net to the original profile
resulting in the same probability distribution over the CP-nets. This fact is true for any collection of
CP-nets, therefore, we generate the same set of equations to minimize, and thus the same solution
(PCP-net). ⌅

Theorem 4.1.5 PRO and PRI satisfy opt-monotonicity.

Proof. Let us consider two profiles P = (C1, · · · ,Cm) and P0 = (C01, · · · ,C0m) where C0i is obtained
by Ci by changing the CP-tables so that r(P) is the optimal outcome for C0i . Let Q and Q0 represent,
respectively, the PCP-nets obtained using the PR aggregation method on P and P0. Let S be the set
of rows of the PCP-tables in Q relevant to r(P). By definition of PR, the only difference between
Q and Q0 is in the probabilities of the rows in S. More specifically, the changes required to obtain
C0i from Ci are such that the probability of the orderings favoring the values assigned in r(P) will
be higher in Q0, while those favoring the values opposite to those in r(P) will be lower. Thus, we
have that r(P) = r(P0).

The result for PRI can be directly obtained from Theorem 4.1.2, that is, by using the equivalence
of PRI with sequential majority. Let us denote with o the optimal outcome of Ci. By replacing Ci

with C0i we increase by one the number of votes for the values that are in r(P) and not in o, we
decrease by one those votes for values that are in o and not in r(P) and we leave the vote count the
same for the other values (that is, the common ones) unchanged. Thus, since r(P) was the winner
for sequential majority given P it will still be the winner given P0. Given Theorem 4.1.2 we can
conclude that the same holds for PRI . ⌅

Theorem 4.1.6 PRI and PRO satisfy participation.

Proof. We first consider the case r = PRI . Consider a profile P = (C1, · · · ,Cm) and an additional
CP-net C. We have to prove that r(P[{C}) >C r(P). PR gives us a PCP-net Q for P and a
PCP-net Q0 for P[{C}. Since P and P[{C} are O-legal, let X be the first variable according to
O such that r(P[{C})|X 6= r(P)|X and let u = r(P)|PA(X). This means that in the most probable
induced CP-net of Q there is a preference statement u : r(P)|X > r(P[{C})|X and in Q0 there
is u : r(P[{C})|X > r(P)|X . Thus the probability P[u : r(P)|X > r(P[{C})|X] � 0.5 in Q, but
 0.5 in Q0. This means that C has the row u : r(P[{C})|X > r(P)|X in X’s CP-table. Thus the
outcome r(P[{C})�C r(P).

A similar reasoning applies to the case r = PRO. In the PCP-tables of Q0, the probabilities of
the rows corresponding to the CP-tables of C increase with respect to Q. Thus, for each feature X
and each assignment u of its parents, the probability to obtain the first ranked value in the u rows of
C CP-tables, increases. This means that it improves the result for C.

⌅

120 Chapter 4. Preference aggregation

Theorem 4.1.7 PRI satisfies consensus and PRO satisfies consensus over a single feature.

Proof. We first consider the case r = PRI . Consider profile P = (C1, · · · ,Cm) and assume there
is an alternative o s.t. o >Ci r(P)8i 2 {1, · · · ,m}. Since P is O-legal, let X be the first variable
according to O such that o|X 6= r(P)|X . Let u be the assignment to X’s parents in o and r(P)
(o|PA(X) = r(P)PA(X) since X is the first variable according to O in which they differ). Since
o >Ci r(P)8i 2 {1, · · · ,m}, it must be that u : o|X > r(P)|X8Ci. Let us now consider the PCP-net Q

obtained from P by PR. It is easy to see that in the PCP-table of X the probability of u : o|X > r(P)|X
will be strictly higher than the probability of u : o|X < r(P)|X , which implies that the most probable
induced CP-net must have the row ui : o|X > r(P)|X . The optimal outcome of the most probable
induced CP-net must have the assignment o|X for the variable X because is ranked first in the table
in the u row. But r(P)|X 6= o|X and we have a contradiction.

A similar reasoning applies to the case r = PRO, but in a weaker version. We will prove that,
for any profile P, there is no alternative o such that o differs from r(P) on only a single variable and
o >Ci r(P)8Ci. Assume that there were an alternative o such that o >Ci r(P), 8Ci and o differs from
r(P) only on the variable X . The probability of u : o|X > r(P)|X in the PCP-table of X is equal to 1
because all the CP-nets in the profile prefer o to r(P). Thus the probability of r(P) is equal to 0,
and we have a contradiction. ⌅

In conclusion, the aggregation method PR, generating the voting rules PRO and PRI , satisfies a
good number of desirable axiomatic properties. Obtaining results for the LS method is rather hard,
given that it is based on numerical optimization. In the next section we will compare the two
methods experimentally.

4.1.4 Experimental Evaluation of Optimality

In this section we describe our experiments to evaluate the quality of the outcomes returned by the
four voting rules. We compare the results of these four voting rules with a baseline named PLUR,
which outputs the result of the plurality voting rule applied to the initial profile of CP-nets. PLUR
takes the optimal outcome of each CP-net and returns the outcome which is optimal for the largest
number of CP-nets. We then compare these five voting rules using two different scoring functions,
each of which is computed using dominance queries on the input profile of CP-nets.

Let F and G be two CP-voting rules, and let T be a set of O-legal CP-profiles. Given a profile P,
we first define three metrics: d>

P (F,G) = |{C 2 P : F(P)>C G(P)}|, d<
P (F,G) = |{C 2 P : G(P)>C

F(P)}| and d./
P (F,G) = |{C 2 P : F(P) ./C G(P)}|. Note that d>

P +d<
P +d./

P = |P|. We then define
the function DomP(F,G) as:

DomP(F,G) =

8>>><>>>:
1 if d>

P (F,G)> max{d<
P (F,G),d./

P (F,G)}

�1 if d<
P (F,G)> max{d>

P (F,G),d./
P (F,G)}

0 otherwise.

4.1 Aggregation of CP-nets into a PCP-net 121

We use the following notion of pairwise score:

PairScoreT (F,G) =
ÂP2T DomP(F,G)

|T |

Note that this score belongs to the interval [�1,1]. Our second scoring function is inspired by
Copeland scoring:

CopelandScoreT (F) = Â
G2V\{F}

PairScoreT (F,G)

where V = {PRO,PRI,LSO,LSI,PLUR}. Observe that this score belongs to the interval [�4,4].
For all our experiments we randomly generate profiles of CP-nets, and PCP-nets. Generating

PCP-nets i.i.d. is non-trivial [2] and therefore we use an approximation method for random
generation of CP-nets and probabilities.

To generate O-legal profiles of CP-nets, we consider a fixed ordering X1, · · · ,Xn of features. We
also take as input the maximum in-degree for each feature, k. For each CP-net in the profile we first
generate its acyclic dependency graph. For each feature Xi, we randomly choose its in-degree d,
0 d min{k, i�1}. Next, we randomly (using a uniform distribution) choose d parents from the
features {X1, · · · ,Xi�1}. When the graph is built, we fill in the CP tables choosing uniformly one
element of the domain (since the domain is binary). For a PCP-net, we generate the dependency
graph and CP tables as for a CP-net, and then we randomly assign probabilities to CPT rows. In all
our experiments ties are broken lexicographically.

We show results for some specific parameter values, similar results were observed also for other
values of n and k.

In both the experiments in Figure 4.2 and Figure 4.3, we compute the mean CopelandScore
over 100 O-legal profiles of CP-nets and we consider two parameters: the number of features and
the number of individuals in the profile. In the experiment in Figure 4.2 we investigate the quality
of all the voting rules, varying the number of features and fixing the number of individuals in the
profile. In Figure 4.3 we analyze the quality of the voting rules, varying the number of individuals
in the profile and fixing the number of features.

In the first set of experiments (Figure 4.2) the profiles have 20 individual CP-nets and the
number of features varies from 1 to 10, and each has at most 2 parents. We limit our experimental
setting considering only a maximum of 10 nodes each one with at most 2 parents, since the
computational complexity for computing dominance is exponential: for each pair of rule we have
to test a dominance query for each different CP-net.

According to the CopelandScore score, the best voting rule is PRI , and we observe that PR
is consistently better than LS using either the O or I method. PRI is consistently better than PRO

and LSI is also better than LSO. Hence, the most probable optimal outcome (O) is worse than the
optimal outcome of the most probable induced CP-net (I) in both the PR and the LS method. The
variance in Figure 4.2 could be explained by the fact that, with more features, the number of pairs
of outcomes that are incomparable increases. There is also a noticeable difference of behavior
between even and odd numbers of features (and even and odd numbers of individuals in Figure 4.3).
Our conjecture is that an odd number of features (resp. individuals) leads to more decisiveness in

122 Chapter 4. Preference aggregation

2 4 6 8 10
�1

�0,5

0

0,5

1

1,5

number of features

C
op

el
an

dS
co

re

LSI LSO PRI PRO PLUR

Figure 4.2: CopelandScore vs. the number of features.

the plurality voting rules.

In the second set of experiments (Figure 4.3) the profiles have n = 3 and at most k = 1 parent
per feature, and the number of individual CP-nets varies in [1,30]. We observed that the number of
CP-nets in the profile does not significantly influence the CopelandScore of the voting rule.

4.1.5 Computing Dominance in a multi-agent context using PR

In this section we analyse how PR performs on dominance testing. We show experimentally that the
aggregation method PR is also efficient in terms of dominance. To show this we compare the result
of dominance test on random pairs of outcomes in a CP-net profile with the result of dominance
tests on the aggregated PCP-net corresponding to the CP-nets profile. Given two outcomes o and o0,
the dominance value Dom(o,o0) defined on an initial profile of CP-nets corresponds to the relative
frequency of CP-nets that entail o > o0.

In the following experiment we generate randomly profiles of CP-nets and PCP-nets as we did
in the previous section. The experiments, in Table 4.2, are performed on 50 iteration on profiles
with 50 individual CP-nets and with a number of features that varies from 1 to 6, and each has at
most 2 parents. For each profile we take 50 pairs of outcomes, and we consider the mean over these
of the absolute value of the difference between the two dominance values. Also here we limit our
experimental setting because of the computational costs of dominance.

In our experiments, in Table 4.2, the two values of dominance had maximum difference
0.047 when varying the number of features and the number of CP-nets in the profile. Thus the
approximation induced by a PCP-net generated with the PR method, given a profile of CP-nets, is
accurate both for optimality and for dominance.

4.1 Aggregation of CP-nets into a PCP-net 123

5 10 15 20 25 30

�1

0

1

number of individuals

C
op

el
an

dS
co

re

LSI LSO PRI PRO PLUR

Figure 4.3: CopelandScore vs. the number of CP-nets.

n features 1 2 3 4 5 6
difference 0.0 0.023 0.028 0.037 0.045 0.047

Table 4.2: Difference between the value of dominance in the initial profile of CP-nets and in the
PCP-net aggregated with PR.

Dominance as a Decision Problem

In some settings it could be enough to get a yes/no answer from a dominance query, rather than the
exact probability value.

Given a profile of CP-nets and two outcomes, we compare MP-dominance queries on the
PCP-net aggregated with PR with the answers to the true/false dominance queries on both (1) the
initial profile of CP-nets and (2) the profile of CP-nets induced by the PCP-net. A profile of CP-nets
returns True if the frequency of CP-nets that entail dominance is greater then the frequency of those
that do not, and False otherwise. Our experiments show that the percentage of times these different
methods give the same yes/no result is above 90% for both of the comparisons. This supports the
fact that aggregating CP-nets with the PR method to get a PCP-net is also reasonable for dominance
seen as a decision-making problem.

4.1.6 From a profile of O-legal CP-nets to a polytree-structured PCP-net

In section 4.1, when we consider a profile of agents described by CP-nets, we consider O-legal
profile with bounded width by assuming the O-boundedness condition. If the aggregated PCP-net
has a poly-tree structure for the dependency graph then we have many desirable properties, such as
a good approximation of the dominance value computable in polynomial time. Thus we study how
to aggregate an O-legal profile of CP-net (with the O-boundedness condition)into a PCP-net with a

124 Chapter 4. Preference aggregation

poly-tree dependency graph.
We provide the following procedure:
• step 0: we aggregate the profile of CP-net in a PCP-net Q using the PR aggregating method,

in the usual way;
• step 1: we find the minimum spanning polytree pT of the Q dependency graph;
• step 2: we build a new PCP-net R with pT as dependency graph.
We explain in details how to perform step 1 and step 2 in the following two sections. step 0, the

PR aggregating method, is presented in Section 4.1 and it generates a PCP-net by taking the union
of the dependency graphs of the given CP-nets and determining the probabilities in the PCP-tables
from the frequency of the CP-nets in the profile.

In what follows we consider binary variables to simplify the notation; the non-binary case is an
easy generalization.

Step 1: minimum spanning polytree

In this section we analyze the problem of find the minimum spanning polytree in a directed acyclic
graph(DAG).

We recall the definition of polytree:
Definition 4.1.5 A polytree is a directed acyclic graph whose underlying undirected graph is a
tree.

We note that find the minimum spanning polytree in a directed acyclic graph correspond to find
the minimum spanning tree in another graph obtained from the DAG in input but undirected.

We can consider two different notions of minimality for the procedure, one that considers
the problem without weights on the edges and one that considers weights that corresponds to the
probability pot existence of the edges. Thus we can consider two different problems:

1. remove the minimal number of edges from the DAG to obtain the tree;
2. remove a set of edges that have a minimal weight from the DAG to obtain the tree.

For both of the notions of minimality we can use one of the classical algorithms for finding the
minimum spanning tree in a DAG [27]:

• Kruskal algorithm with computational complexity equal to O(m logn);
• Prim algorithm with computational complexity equal toO(n logn+m logn);
• Boruvka algorithm with computational complexity equal toO(m logn);

where m is the number of edges in the DAG and n is the number of nodes.
Once obtained the minimum undirected spanning tree we insert the directions on the edges

corresponding to the initial directions in the original DAG.

Step 2: build the new PCP-net

The new PCP-net R has the pT dependency graph, where pT is the minimum spanning polytree
computed on the initial PCP-net Q (step 1). In this section we explain how to build the PCP-tables
of R from the PCP-tables of Q.

Contraction procedure
For each node we make a transformation from its PCP-table in Q to its PCP-table in R. We

4.1 Aggregation of CP-nets into a PCP-net 125

have a number of step equals to the number of nodes, where at each step we are marginalize the
probability of the entries of the PCP-table, using the assumption of a uniform distribution of each
parent value.

We consider a node X with k+ l parents Pa(X) = {Pa1Pa2, · · · ,Pal,Y1, · · · ,Yk} and we have to
remove the parents Y1, · · · ,Yk.

X has the the following PCP-table:

Pa(X) X P

u1y1y2 · · ·yk x > x̄ p1,1

u1ȳ1y2 · · ·yk x > x̄ p1,2

· · · · · · · · ·
u1ȳ1ȳ2 · · · ȳk x > x̄ p1,2k

· · · · · · · · ·

uiy1y2 · · ·yk x > x̄ pi,1

uiȳ1y2 · · ·yk x > x̄ pi,2

· · · · · · · · ·
uiȳ1ȳ2 · · · ȳk x > x̄ pi,2k

· · · · · · · · ·

u2k y1y2 · · ·yk x > x̄ p2k,1

u2k ȳ1y2 · · ·yk x > x̄ p2k,2

· · · · · · · · ·
u2k ȳ1ȳ2 · · · ȳk x > x̄ p2k,2k

where ui with i 2 {1, · · · ,2l} are all the possible assignments of the parents Pa1Pa2, · · · ,Pal and the
orderings x̄ > x have implicitly the probability 1�P(x > x̄).

The new PCP-table for X is:

Pa(X) X P

u1 x > x̄ [Âk
j=1 p1, j]/2k

· · · · · · · · ·
ui x > x̄ [Âk

j=1 pi, j]/2k

· · · · · · · · ·
u2l x > x̄ [Âk

j=1 p2l , j]/2k

where the orderings x̄ > x have implicitly the probability 1�P(x > x̄).
Thus for an assignment ui of the parents Pa1Pa2, · · · ,Pal the probability of the ordering x > x̄

in the new PCP-table is:

P(x > x̄|ui) = [
k

Â
j=1

P(x > x̄|uiv j)]/2k

where v j with j 2 {1, · · · ,2k} are all the possible assignments of the parents Y1,Y2, · · · ,Yk.
The total computational complexity is O(n2|Pa(X)). But the number of parents is bounded and

we obtain O(n2k) that is O(n).

126 Chapter 4. Preference aggregation

Theorem 4.1.8 The contraction procedure minimize the mean quadratic error between the initial
and final probability of outcomes.

Proof. We suppose to have an initial PCP-net Q and a final PCP-net R with a polytree dependency
graph. The probability of an outcome o is computed using the bayesian network associated Opt-net.
We build Opt-net(Q) and Opt-net(R). Opt-net(R) is the Bayesian network that minimize the
quadratic error between the probability distribution over outcomes from Opt-net(Q).

The Opt-net is bayesian network associated to a given the PCP-net. Given the following
PCP-table of a node X of the PCP-net:

Pa(X) X P

u1 x > x̄ p1

u1 x̄ > x 1� p1

· · · · · · · · ·
ui x > x̄ pi

ui x̄ > x 1� pi

· · · · · · · · ·
uk x > x̄ pk

uk x̄ > x 1� pk

the table for node X in the associated Opt-net is:

Pa(X) X P

u1 x p1

u1 x̄ 1� p1

· · · · · · · · ·
ui x pi

ui x̄ 1� pi

· · · · · · · · ·
uk x pk

uk x̄ 1� pk

How remove dependencies in a Bayesian network minimizing the quadratic error between
the initial and final probability of outcomes is a well known problem [23] and it is solved as
described in the contraction procedure but applied to the bayesian tables (using the analogies
between PCP-tables and Opt-net tables). Opt-net(R) is the Bayesian network that minimize the
mean quadratic error between the probability distribution over outcomes from Opt-net(Q). This
implies that PCP-net R is the PCP-net that minimize the quadratic error between the probability
distribution over outcomes from the PCP-net Q. ⌅

4.2 Aggregation of soft constraint problems

Instead of considering profiles of agents in which preferences are represented via CP-nets, as
described in the previous section, we can explore other formulations. For example in this section

4.2 Aggregation of soft constraint problems 127

we consider a soft constraints formulation of profiles.
In this section we present a sequential preference aggregation procedure based on voting

rules for settings where several agents express their preferences over a common set of variable
assignments via soft constraints. A similar approach has been considered when agents express their
preferences via CP-nets in [65]. It shows that a sequential single-feature voting protocol can find a
winner in polynomial time, and has several other desirable properties, only under certain conditions.
In [65], the CP-nets must be acyclic, and their dependency graphs must all be compatible with
a given graph ordered according to the feature ordering in the voting procedure. In [114] both
such restrictions are relaxed via a procedure that exploits a graph defined on complete assignments.
Other more specific approaches to sequential composition of voting rules with CP-nets that have
been proposed are based on maximum likelihood estimators [115] and the maximin criterion [87].
Variants of CP-nets, such as LP trees or lexicographic trees have been considered in [26, 64].

In this section we perform a theoretical study similar to [65] for soft constraints. Moreover, we
provide also an experimental study of our sequential voting procedure for some widely used voting
rules (i.e., Plurality, Borda, Copeland, and Approval).

The theoretical results that we will show for soft constraints are similar to those obtained in [65]
for CP-nets. With respect to CP-nets, soft constraints allow one to avoid imposing many restrictions
on the agents’ preferences. In fact, contrarily to CP-nets, constraints are not directional, and thus
information can flow from one variable of a constraint to another one without a predefined ordering
between them. This allows one to not tie the variable ordering used by the sequential procedure to
the topology of the constraint graph of each agent. Moreover, soft constraints can model also strict
requirements, which are often necessary in multi-issue settings where one needs to rule out some
combinations of feature values. Notice that the tractability assumption over the constraint graphs
(that they should be tree-shaped) is similar to the assumptions that CP-nets are acyclic. However,
contrarily to what is needed for CP-nets, with soft constraints one does not need to impose that
the constraint graphs are compatible among them and with a graph structure based on the variable
ordering.

The sequential procedure with soft constraints of this section has also been studied in terms of
its resistance to bribery in [82, 83]. The bribery problem is defined by an external agent (the briber)
who wants to influence the result of the voting process by convincing some voters to change their
vote, in order to get a collective result which is more preferred to him; there is usually a limited
budget to be spent by the briber to convince the voters [45]. Bribery issues in a sequential procedure
have been considered also in [72, 74, 75, 77]. However, in these approaches agents express their
preferences via CP-nets. In [72, 77] agents may also interact and influence each other.

4.2.1 The sequential procedure

Assume a set of agents, each one expressing its preferences over a common set of objects via an
SCSP (see the background Section 2.4) whose variable assignments correspond to the objects.
Since the objects are common to all agents, this means that all the SCSPs have the same set of
variables and the same variable domains but they may have different constraints, as well as different
preferences over the variable domains. This is the notion of soft profile, which is formally defined

128 Chapter 4. Preference aggregation

X Y

X = a, Y = a 1
X = b, Y = b 0.9
X = a, Y = b 0.7
X = b, Y = a 0.5

all other tuples 0

(a) P1 and P2.

X Y

X = a, Y = b 1
X = c, Y = c 1
X = b, Y = a 0.9

all other tuples 0

(b) P3.

X Y

X = a, Y = b 1
X = d, Y = d 1
X = b, Y = a 0.9

all other tuples 0

(c) P4.

X Y

X = a, Y = b 1
X = e, Y = e 1
X = b, Y = a 0.9

all other tuples 0

(d) P5.

X Y

X = a, Y = b 0.9
X = f , Y = f 1
X = b, Y = a 1

all other tuples 0

(e) P6.

X Y

X = a, Y = g 0.9
X = g, Y = b 1
X = b, Y = a 1

all other tuples 0

(f) CP-net P7.

Figure 4.4: A fuzzy profile.

as a triple (Var ,D,P) where Var is a set of variables (also called issues), D is a sequence of |Var|
ordered finite domains, and P a sequence of m SCSPs over variables in Var with domains in D. 2

A fuzzy profile is a soft profile with fuzzy soft constraints. An example of a fuzzy profile where
Var = {X ,Y}, Dom(X) = Dom(Y) = {a,b,c,d,e, f ,g}), and P is a sequence of seven FCSPs
(Fuzzy Soft Constraints Profiles), is shown in Figure 4.4.

We consider fuzzy profiles where each voter has a tree-shaped set of fuzzy constraints.

The idea is to sequentially vote on each variable via a voting rule, possibly using a different
voting rule for each variable. Given a soft profile (Var ,D,P), assume |Var| = n, and consider
an ordering of such variables O = hv1, . . . ,vni, and a corresponding sequence of voting rules
R = hr1, . . . ,rni (that will be “local"). The sequential procedure is a sequence of n steps, where at
each STEP i we process the variable Xi performing the following three points in order:

1. All agents are first asked for their preferences over the domain of variable Xi, yielding profile
pi over such a domain. To do this, the agents will achieve DAC on their SCSP, considering
the ordering O. Ties are broken lexicographically if needed. For example, if we use Plurality
we only need to break ties at the top level, while if we use Approval we don’t need to break
ties, since we give to the rule the set of optimal solutions. Using Borda we need to break all
the ties in the whole agents’ preference ordering.

2. Then, the voting rule ri is applied to profile pi, returning a winning assignment for variable
Xi, say di. If there are ties, the first one following the given lexicographical order will be
taken.

3. Finally, the constraint Xi = di is added to the preferences of each agent and DAC is applied

2Notice that a soft profile consists of a collection of SCSPs over the same set of variables, while a profile (as in the
classical social choice setting) is a collection of total orderings over a set of candidates.

4.2 Aggregation of soft constraint problems 129

to propagate its effect considering the reverse order of O.

After all n steps have been executed, the winning assignments are collected in the tuple
hd1, . . . ,dni, i.e., the winner of the election. This is denoted by SeqO,R(Var ,D,P).

In the soft profile above, assume the variable ordering is hX ,Y i and ri = Approval for all
i = 1, ...,n. In step 1, agents achieve DAC. This changes the preferences of the agents over X . For
example, in P1 and P2, X = a maintains preference value 1, X = b gets preference value 0.9, and
all other domain values get preference value 0, while in P3, X = a and X = c maintain preference
value 1, X = b gets preference value 0.9, while all others get preference value 0. Then, Approval is
applied over the domain of X where the sets of approved values are: {a} for the first two voters
and respectively {c,a}, {d,a}, {e,a}, { f ,b}, and {g,b} for the others. Thus, X = a is chosen and
the constraint X = a added to all SCSPs, and its effect is propagated via DAC on the domain of Y .
In step 2, DAC does not modify any preference value (since Y is the last variable) and the sets of
approved values for Y are all equal and contain only b. Thus the elected solution with the sequential
procedure is s = (X = a,Y = b), which has preference value 0.7 for P1 and P2, 1 for P3, P4, and P5,
and 0.9 for P6 and P7.

An alternative to this sequential procedure would be to generate the preference orderings
for each voter from their FCSPs, and then to aggregate them in one step via Approval. In our
example, (X = a,Y = b) gets 3 votes, (X = b,Y = a) gets 2 votes, (X = a,Y = a),(X = f ,Y = f),
(X = d,Y = d), (X = c,Y = c), (X = e,Y = e), and (X = g,Y = g) each gets 1 vote, while all other
solutions get no vote. Thus the winner (breaking ties lexicographically) is (X = a,Y = b).

The variable ordering which is used in the sequential procedure, is assumed to be given in
this section. In practice, the variable ordering is chosen by the chair of the preference aggregation
process, for example by using priority arguments (one may vote first on the most important features),
or by aggregating the agents’s preferences on such orderings (if the number of features is small,
this voting process is feasible).

4.2.2 Properties of sequential vs. local voting rules

We will now prove several properties of this sequential preference aggregation procedure.
We will start by providing a general result which shows that if the sequential voting procedure

satisfies a given property, so do all the local voting rules. We then show that that the opposite holds
for anonymity, consistency, efficiency, (strong) monotonicity, and non-dictatorship.

The results are summarized in Table 4.3. In particular, we consider a sequential voting procedure
where at each step we apply the local voting rule ri to variable Xi, that is, SeqhX1,...,Xni,hr1,...,rni. The
second column describes results regarding whether a property satisfied by all ri is also satisfied
by SeqhX1,...,Xni,hr1,...,rni, while the third column does the opposite. Notice that one of the results of
efficiency holds only in the restricted case occurring when all the ordering induced by the SCSPs
have a single top element.

From properties of the sequential procedure to properties of the local voting rules

In what follows, we prove that if one of the local rules does not satisfy a property, neither does
the sequential rule. This is obviously equivalent to proving that if the sequential rule satisfies a

130 Chapter 4. Preference aggregation

Local. ! Seq. Seq. ! Local
Condorcet Consist. No Yes
Anonimity Yes Yes
Neutrality No Yes
Consistency Yes Yes
Participation No Yes
Efficiency Yes (unique top) Yes
Monotonicity Yes Yes
Strong Monot. Yes Yes
IIA No Yes
Non-dictatorship Yes Yes
Strategy-proofness No Yes

Table 4.3: Property preservation.

given property so do all the local rules. To do so, we introduce a mechanism that lifts a profile on a
single variable to a profiles defined on profile of SCSPs. We are in the context of a set of variables
Var with domain D, and a set of m voters, given a profile pi over a variable vi. In this context
we define a soft profile Ext(pi) = (Var ,D,P) over Var , such that for any sequential procedure
SeqO,R SeqO,R(Ext(pi)) # vi = ri(pi) (ri is the i-th component of R), and, in each SCSP in P, the
preference value of any solution coincides with the preference value of its projection on vi. To
achieve this, P consists of SCSPs with only unary constraints: the constraint over vi respects the
ordering in pi, all other unary constraints are the same for all voters and associate preference value
1 to exactly one value per variable and 0 to all other values. Also, all voting rules are assumed to be
unanimous. Intuitively, Ext(pi) extends the orderings over variable vi given by pi to a soft profile
over all variables where the only significant preferences are those on variable vi.

Theorem 4.2.1 If the sequential procedure satisfies property h, so do all the local rules.

Proof. As mentioned above, we will prove this in the opposite direction. Let us assume that one of
the voting rules, say ri does not satisfy h. Let us consider the set of soft profiles which can defined
as extensions of profiles of variable vi as described above. The correspondence between a profile pi

over vi and soft profile Ext(pi) is such that the behavior of the sequential rule over extended profile
Ext(pi) coincides exactly with the behavior of ri on pi. This in particular means that any set of
profiles on vi which constitute an example of how ri violates h can be lifted to a set of soft profiles
on which the sequential rule violates h. ⌅

From properties of the local voting rules to properties of the sequential procedure

Order independence. We may wonder how much the choice of the ordering O influences the
result of our procedure. Of course, in general, different orderings will lead to different results.
However, some orderings will produce the same result. Intuitively, these are orderings that differ
just for the relative position of variables that are independent on each other, according to all agents.

More precisely, given an ordering O over Var , this can be used to direct all edges in the
constraint graph of each agent, by setting the direction from v1 to v2 if v1 is earlier than v2 in O.

4.2 Aggregation of soft constraint problems 131

Let us call Gi(O) this directed graph relative to agent i. If two variables v and v0 are not connected
in the transitive closure of this graph, then they are said to be independent.

Observation 4.5 Consider any two orderings O1 and O2 over Var , that differ for the relative
position of two variables v1 and v2, and assume these two variables are independent in Gi(O),
for all i. Then SeqO1,R(Var ,D,P) = SeqO2,R(Var ,D,P).

To show this statement, we just need to prove that, if two variables vi and v j are independent
for an agent, its preference ordering over vi, given that v j has already been instantiated, is the
same as the one when vi has still its whole domain. This is certainly so, since the fact that they
are independent means that there is no constraint, nor path of constraints, involving them and
thus assigning a value to v j does not produce any change in the preferences assigned to values
of vi through propagation. ⌅

Given a soft profile, we may wonder if there exists a best variable ordering to use for the
sequential voting procedure, where by best we mean that the resulting variable assignment reflects
the preferences of the agents as much as possible. In Section 4.2.3 we show experimentally that
while the variable ordering may lead to different winners, the voters are, on average, equally
satisfied with any of such winners.

Condorcet consistency. It is natural to ask ourselves if the result returned by the sequential
voting procedure has some relation with what is considered to be most preferred by the agents. In
this respect, it is natural to consider the notion of Condorcet winner, which is classical in voting
theory.

As defined above, a Condorcet winner (CW) is a candidate which is preferred to any other
candidate by a majority of agents. Given a totally ordered profile, as in classical voting theory,
there can be zero or one Condorcet winner. In our context, however, since we may have ties in the
preference orderings of the agents, there could be more than one Condorcet winner, since several
variable instantiations could be considered optimal for a majority of agents. We are thus considering
weak Condorcet consistency, but for simplicity we refer to it here as Condorcet consistency. For
any voting rule, it is desirable that it is Condorcet-consistent, that is, that it returns a Condorcet
winner if there is one.

First, we define the notion of sequential Condorcet winner (SCW).

Definition 4.2.1 — SCW. Given a soft profile (Var ,D,P) with m agents and n variables, and an
ordering O over Var , hd1, . . . ,dni is a SCW iff, for all j = 1, . . . ,n, |{i|d j 2 top(v j,Pi|v1=d1,...,v j�1=d j�1)}|>
m/2. Where given an SCSP Q, we will denote as Q|v1=d1,··· ,vh=dh the problem obtained from Q
by fixing variables v1, · · · ,vh to the corresponding values, and Pi denote the fuzzy constraint
problem of agent i.

In words, a sequential Condorcet winner is the combination of local Condorcet winners.

If all the local rules are Condorcet consistent, the sequential voting procedure returns a SCW
by definition, if it exists. However, to conclude that Seq is Condorcet consistent, we need to prove
that SCW = CW.

132 Chapter 4. Preference aggregation

Theorem 4.2.2 Given a soft profile (Var ,D,P) and an ordering O over Var , if d is a CW for
(Var ,D,P), then it is a SCW for (Var ,D,P).

Proof. If d = (d1, . . . ,dn) is a CW, then a majority of voters prefer it to all other candidates. Thus,
at each step i of the sequential voting procedure, after DAC is enforced, each value in the domain
of vi will be associated with the highest preference associated to a solution containing it. This
implies that (at least) the same majority will prefer di to all other values in the domain of vi, given
the values already chosen for the previous variables. ⌅

From Theorems 4.2.1 and 4.2.2 we know that if the sequential voting procedure is Condorcet
consistent, all local voting rules are so. Unfortunately, the opposite does not hold in general, even if
all voting rules are Condorcet consistent.

Theorem 4.2.3 If all local voting rules are Condorcet consistent, the sequential voting procedure
may be not Condorcet consistent.

Proof. Consider a fuzzy profile (Var ,D,P) where: Var = {X ,Y}, Dom(X) = Dom(Y) = {a,b}
and there are 5 agents. The fuzzy SCSPs of all agents have a single constraint over {X ,Y}. For
two agents we have: (X = a,Y = b) = 0.9, (X = b,Y = b) = 0.8, (X = a,Y = a) = 0.7, (X =

b,Y = a) = 0.6; for one agent: (X = a,Y = a) = 0.9, (X = a,Y = b) = 0.8, (X = b,Y = a) = 0.7,
(X = b,Y = b) = 0.6; for the other two agents: (X = b,Y = a) = 0.9, (X = b,Y = b) = 0.8,
(X = a,Y = a) = 0.7, (X = a,Y = b) = 0.6. When each agent solves the problem and projects on
variable X , for the first two agents we have pre fX(a) = 0.9 and pre fX(b) = 0.8; for the third agent
pre fX(a) = 0.9 and pre fX(b) = 0.7; and for the last two agents pre fX(a) = 0.7 and pre fX(b) = 0.9.
Thus, 3 over 5 agents agree that X = a is optimal. Since the voting rule rX is Condorcet-consistent,
this value will be chosen for X . Given X = a, the preferences of the agents for Y are: for the first two
agents pre fY (a) = 0.7 and pre fY (b) = 0.9; for the third agent pre fY (a) = 0.9 and pre fY (b) = 0.7;
for the last two agents pre fY (a) = 0.7 and pre fY (b) = 0.6. Thus Y = a will be chosen, since rY is
Condorcet consistent, and (X = a,Y = a) will be the SCW. However, (X = a,Y = a) is not a CW,
since the majority of the agents prefers (X = b,Y = b). This means that there could be results of
the sequential voting procedure that are not CWs. ⌅

To make sure that the procedure is Condorcet consistent, we need to impose some restrictions
on the profile, similarly to what is done in [65]. One such restriction is, for example, imposing that
each voter associates with each candidate (complete assignment) a different preference value. This
ensures, that when considering the preference values associated to a single variable, after DAC, the
values corresponding to the SCW will have a preference value strictly higher than all other values.

Anonymity. It is important to make sure that a preference aggregation system does not depend
on the names or the order of the agents. This corresponds to saying that the rule is anonymous.

In our setting, a permutation of voter set corresponds, basically, to a permutation of the soft
constraint problems. It is easy to see that anonymity at the local level implies global anonymity.

Proposition 4.2.4 If all the local rules are anonymous, so is the resulting sequential procedure.

4.2 Aggregation of soft constraint problems 133

Neutrality. Neutrality is a property that requires a rule to be insensitive to permutations of the
candidates. This means that the result does not depend on the names of the candidates, but only on
their position in the preference orderings. It is thus very important that a voting system is neutral.

We note that the candidates of the local voting rules are the values in the variable domains,
while the candidates of the sequential voting rule are the complete assignments to all variables.

Theorem 4.2.5 Neutrality of the local rules does not imply neutrality of the sequential procedure.

Proof. While a permutation of the values in the domains always corresponds to a permutation of
the variable assignments, not all of the permutations of variable assignments can be obtained via
permutations of domain values. For example, if we have assignments: s1 = (X = a,Y = a),s2 =

(X = a,Y = b),s3 = (X = b,Y = a), and s4 = (X = b,Y = b), the permutation that swaps s1 and
s2, leaving s3 and s4 fixed, cannot be modelled by a permutation of domain values. In fact, a
permutation that swaps s1 and s2 implies, at a local level swapping values a and b in the domain of
variable Y . Now consider a soft profile of variables X and Y where all voters have the same SCSP
assigning preference value 1 to X = b and 0 to X = a, and preference value 1 to Y = b and 0.5 to
Y = a. The winner of the sequential procedure before swapping s1 and s2 is s3. However if we
run the sequential procedure after swapping s1 and s2, ans thus Y = a with Y = b, assuming the
local rules for X and Y are neutral, will return s4. This implies that the sequential procedure is not
neutral since s3 was fixed in the permutation defined over complete outcomes. ⌅

Consistency. As defined above, a voting rule r is consistent if, when considering two profiles
p1 and p2 with disjoint sets of voters, who vote over the same candidates, such that r(p1) = r(p2),
we have r(p1[p2) = r(p1).

Theorem 4.2.6 If all the local voting rules are consistent, then the sequential voting procedure
is consistent as well.

Proof. If all the local rules are consistent, at every step i of the sequential procedure, applied to
profile p1[p2, the result for variable vi is the same as the result in profile p1 (and also in profile p2),
so the overall result (d1, . . . ,dn) will be the same as the result obtained by the sequential procedure
in profile p1 and in profile p2. ⌅

Participation. Participation assures that voters have an incentive to vote.
Unfortunately, it is possible for all local voting rules to be participative, while the sequential

voting procedure is not.

Theorem 4.2.7 If all the local voting rules are participative, the sequential voting procedure
may not be participative.

Proof. Consider the profile where Var = {X ,Y}, D = ({a,b,c},{a,b}), and P is a sequence of
two fuzzy SCSPs which coincide and contain a unary constraint on X (associating preference value
1 to a, 0.8 to b, and 0.6 to c), a binary constraint on X and Y (associating preference value 1 to
(a,b), 0.9 to (a,a), 0.8 to (b,a), 0.7 to (b,b), 0.6 to (c,a), and 0.5 to (c,b)), and a unary constraint
over Y (associating preference value 1 to both a and b). It is easy to see that the SCSPs of this soft

134 Chapter 4. Preference aggregation

profile are DAC. Assume also that variables are ordered X �O Y and that r1 is the scoring rule with
score vector (3,2,0) and r2 is the majority rule. In this profile, SeqO,R(Var ,D,P) = (X = a,Y = b).
We now consider a third voter, with a fuzzy SCSP with a unary constraint on X (associating
preference value 0.8 to a, 1 to b, and 0.9 to c), a binary constraint on X and Y (associating
preference value 0.8 to (a,b), 0.5 to (a,a), 0.7 to (b,a), 1 to (b,b), 0.6 to (c,a), and 0.5 to (c,b)),
and a unary constraint over Y (associating preference value 1 to both a and b). In this new profile
P0, SeqO,R(Var ,D,P0) = (X = b,Y = a). However, the third voter prefers (X = a,Y = b) to
(X = b,Y = a). Thus the third voter would be better off not participating to the sequential voting
process. ⌅

Efficiency. It is possible that all local voting rules are efficient, but the sequential voting
procedure is not so. However, if we add the condition that there is a single candidate which is
optimal for all agents, then the sequential voting procedure is efficient as well.

Theorem 4.2.8 If all the local voting rules are efficient, and there is a single candidate which is
strictly preferred to all other candidates for all voters, then the sequential voting procedure is
efficient.

Proof. If there is a single candidate, say d = (d1, . . . ,dn) that is optimal for all agents, then we have
that, after DAC, for each agent i and for each variable j, top(v j,Pi|v1=d1,...,v j�1=d j�1) = d j. Thus since
each rule is efficient it will elect the value of d assigned to its variable. Thus SeqO,R(Var ,D,P) =
d. ⌅

We note that for profiles where there is a unique candidate that is optimal for all agents, efficiency
coincides with Condorcet consistency. Thus, given such profiles, the Condorcet consistency of the
local rules implies the Condorcet consistency of the sequential rule.

Monotonicity and strong monotonicity. As defined above, a voting rule is monotonic if,
when a candidate wins, and one or more voters improve their vote in favor of this candidate, then
the same candidate still wins.

Theorem 4.2.9 If each local voting rule is monotonic, so is the sequential rule.

Proof. Let us assume that the sequential rule is not monotonic. This means that there is at least one
soft profile (Var ,D,P) such that SeqO,R(Var ,D,P)= d and another soft profile (Var ,D,P0), where
d has been moved up in the preference orderings of some agents, but SeqO,R(Var ,D,P0) = d0 6= d.
Let us denote with di, resp. d0i , the value assigned to variable vi in d, resp. d0. We note that there
must be at least one value on which they differ. For each SCSP in P0 and for each variable vi, di has
either improved w.r.t. d0i or remained as in P. Let v j be any of the variables such that d j 6= d0j. Then
r j is not monotonic since d j has either improved or remained the same as d0j but applying r j to the
profile over variable v j has elected d0j as a winner. ⌅

We note that, in contrast to the corresponding result proven for CP-nets in Proposition 6 of [65],
in the case of soft constraints monotonicity is not determined only by the last voting rule but by any

4.2 Aggregation of soft constraint problems 135

of the voting rules. The same results can be proven for strong monotonicity with similar proofs: all
local voting rules are strongly monotonic iff the sequential procedure is so.

Independence of Irrelevant Alternatives. The sequential procedure may be not IIA, even
starting from IIA local rules.

Theorem 4.2.10 If all the local rules are IIA, the sequential procedure may be non-IIA.

Proof. Consider the fuzzy profile (Var ,D,P) in Figure 4.4, with the variable ordering hX ,Y i
and where ri = Approval (which is IIA) for each i. In such a scenario the elected solution is
s = (X = a,Y = b).

Consider now a different profile, where the winner is s0 = (X = b,Y = a). This new soft
profile is defined as (Var ,D,P0) where P0 is obtained from P by swapping the preference values of
(X = a,Y = a) and (X = b,Y = b) in P1 and P2. If we run the sequential election on P0, the sets
of approved values for X are: {b} for the first two voters and as in P for the other voters. Thus,
b is chosen for variable X and, given this, the sets of approved values for Y are: {b} for the first
two voters and {a} for the remaining five voters. Thus the winning solution is s0 = (X = b,Y = a).
Thus, despite the fact of using IIA local rules on all variables, the sequential procedure is not
IIA. ⌅

Non-dictatorship. If all the local rules are non-dictatorial the sequential approach is non-
dictatorial as well.

Theorem 4.2.11 If all local rules are non-dictatorial, then the sequential procedure is non-
dictatorial.

Proof. Take any rule ri which, by assumption, is non-dictatorial. Thus, for each voter j there exists
a profile over variable vi, say pi j, such that ri(pi j) is not a top element for j. Let us now consider
the soft profile Ext(pi j). Since SeqO,R(Ext(pi j)) # vi = ri(pi j), it is not one of j’s top candidates.
Therefore SeqO,R(Ext(pi j)) is not the top candidate of any voter. ⌅

By Theorem 4.2.1 we also know that if the sequential procedure is dictatorial then at least one
of the local rules is dictatorial and we note that the dictator is the same for the sequential and local
rule.

Strategy-proofness. From Theorem 4.2.1 we know that, the presence of a local rule that is
manipulable jeopardizes the strategy-proofness of the sequential approach. We now prove that
the strategy-proofness of all local rules is not sufficient for ensuring the strategy-proofness of the
sequential procedure.

Theorem 4.2.12 If all the local rules are strategy-proof, the sequential procedure may be non-
strategy-proof.

Proof. Consider the fuzzy profile with Var = {X ,Y}, D = {a,b}, and P = {P1,P2,P3}, as shown
in Figure 4.5.

Consider the sequential procedure where O = hX ,Y i and ri=Plurality for i = 1,2 (Plurality over
two candidates is strategy-proof [6]). The sequential winner is (X = a,Y = b). However, if the first

136 Chapter 4. Preference aggregation

X Y

X = a, Y = a 1
X = b, Y = a 0.9
X = a, Y = b 0.8
X = b, Y = b 0.7

(a) P1.

X Y

X = a, Y = b 1
X = b, Y = a 0.9
X = a, Y = a 0.8
X = b, Y = b 0.7

(b) P2.

X Y

X = b, Y = a 1
X = b, Y = b 0.9
X = a, Y = b 0.8
X = a, Y = a 0.7

(c) P3.

Figure 4.5: A fuzzy profile.

voter lies by swapping the preference values of (X = a,Y = a) and (X = b,Y = a) in P1, then in
the first step x = b wins, and the final winner is (X = b,Y = a), which is better for him. Thus, the
sequential procedure is not strategy-proof. ⌅

A similar result has been shown for acyclic CP-nets with a common order over issues in [113].
We turn our attention to the complexity of a special kind of manipulation, called coalitional

constructive manipulation. Coalitional constructive manipulation, denoted by CCM(d,C,r, p), is
the problem of deciding if a set (called coalition) of voters C can make candidate d win in profile p
via voting rule r [6, 25].

We can prove that, if CCM (coalitional constructive manipulation) is easy for all the local rules,
it remains so for the sequential approach. Actually, when obtaining the desired manipulation is
easy at the local level, our result gives also a polynomial algorithm to set the preference values of
the coalition in order to manipulate at the sequential level. Conversely, if CCM is difficult for at
least one of the local rules, then it is so for the sequential procedure.

Theorem 4.2.13 If CCM is in P for all the local rules, then it is in P also for the sequential
procedure.

Proof. Consider a DAC soft profile (Var , ,P) with n variables and m voters such that all the
SCSPs, except thoDse of agents in the coalition, have been specified. The goal of the coalition C
is to make candidate d = (d1,d2, . . . ,dn) win. The sequential procedure SeqO,R used is such that
CCM(di,C,ri,P) is in P for every ri in R.

We consider the rules one at a time, following O. It is possible to determine in polynomial
time if d1 can win the election on the domain of v1 and, if so, how the coalition should vote on the
domain values of v1 to achieve this. If d1 cannot win the local election, then candidate d cannot
win the sequential election. If instead d1 can win on v1, then we add for each agent in the coalition
a unary constraint on v1 to his SCSP simulating the ordering that that agent in the coalition must
give in order to manipulate successfully. In order to so, the best elements in the ordering are given
preference 1 and the following values are given any preference that respects the ordering. Then,
v1 = d1 is fixed in the SCSPs of all the agents not in the coalition, the result is propagated, and
DAC is restored.

Next, in polynomial time the possibility of a constructive manipulation for d2 given r2 is

4.2 Aggregation of soft constraint problems 137

checked, and we proceed as above, until all the variables have been considered. After (at most) n
polynomial steps, we will either have determined that d cannot win, or we will have defined the
SCSPs of the agents in the coalition so that d does win. We notice that such SCSPs have only unary
constraints and thus can be solved in polynomial time. ⌅

Conversely, if coalitional constructive manipulation is difficult for at least one of the local rules,
then it is so for the sequential procedure. This result is a consequence of Theorem 4.2.1. Since,
unlike the other properties, the complexity is involved in the formulation of this property, and for
the sake of clarity we write the explicit proof below.

Theorem 4.2.14 If all the local rules are polynomially computable and CCM is NP-complete
for one of the local rules, then it is so also for the sequential procedure.

Proof. We reduce polynomially an instance of CCM for a voting rule r to an instance of CCM for
the sequential procedure where one of the local rules is r. An instance of CCM for r consists of a
candidate d, a coalition C, and a profile p, written as CCM(d,C,r, p). From such an instance, we
construct an instance of CCM for the sequential procedure SeqO,R where R is any finite sequence
of voting rules (r1, . . . ,rn) including r, say in the i-th position, and O is any ordering of variables
v1, . . . ,vn, all having the same domain, containing all the candidates appearing in p. Also, the soft
profile considered for such an instance is Ext(p), the coalition remains C, and the candidate is
E(d) = (d1, . . . ,dn) where di = d and d j for j 6= i has preference value 1 in the SCSPs of Ext(p).
We will write it CCM(E(d),C,SeqO,R,Ext(p)).

If CCM(d,C,r, p) = true, then, in the sequential instance, coalition C can set its preference
values in profile Ext(p) to make E(d) win. In fact, such agents can modify their preference
values over the domain of vi in the same way as needed to make d win in the non-sequential
instance. Conversely, if CCM(E(d),C,SeqO,R,Ext(p)) = true, then we compute the orderings over
the domain of vi when v1 = d1, . . .vi�1 = di�1 (via DAC). By using such orderings, the coalition
can make d win in the non-sequential instance. ⌅

Computational analysis

In this section we provide a theoretical analysis of the computational costs of the voting rules we
considered, both in their sequential and in their non-sequential version.

All the sequential voting rules have the same upper bound on the time complexity: O(m ·n2 ·d2),
where m is the number of agents in the profile, n is the number of features and d is the cardinality
of the features domains. The part n · d2 corresponds to the cost of constraints propagation for a
tree-shaped agent, but during the sequential procedure we need to propagate the constraints every
time that we assign a feature, so n times for each agent, obtaining O(m ·n2 ·d2).

For the non-sequential voting rules we have the following computational costs:
• Plurality: O(m ·n ·d2). It needs to find the optimal solution for all the agents. The computa-

tional cost for finding the optimal solution for one tree-shaped agent is n ·d2.
• Approval: O(m ·dn). For each possible outcome (there are dn possible outcomes), it needs to

check if is approved by an agent, and then it need to repeat for all the agents.
• Borda: O(m ·dn). Each agent gives a score for each possible outcomes.

138 Chapter 4. Preference aggregation

• Copeland: O(m · d2n). Each agent gives a dominance answer for each possible pair of
outcomes.

Therefore, all the sequential voting rules can be computed in polynomial time in the input
size, while the non-sequential ones, except Plurality, have an exponential computational cost. The
sequential voting rule seq(Plurality), is slightly worse than the non-sequential Plurality, but still
polynomial.

4.2.3 Experimental results

The theoretical results of Section 4.2.2 seem to suggest that the impact of the information loss
caused by using a sequential approach may be non-negligible, since many properties are not
transferred from the local to the sequential level. We now evaluate this from the experimental point
of view.

If r is a voting rule, we denote by seq(r) the sequential procedure where r is applied at each step.
We will compare r and seq(r) for several voting rules r in terms of computational cost, satisfaction
of voters, sensitivity to the change of the order used for the sequential vote, and how they perform
on real profiles.

Our experimental results, performed with both synthetic and real data, show that the winners
provided by r and seq(r) are very close in terms of voters’ satisfaction, and that the time saving
achieved by the sequential rule is substantial.

Experimental setting for synthetic preference profiles

We have randomly generated profiles with tree-shaped FCSPs based on the following parameters:
• the number of voters m,
• the number of variables n,
• the number of domain elements d, and
• the tightness t (the percentage of tuples with preference 0 in each fuzzy constraint).

These are common parameters when generating random fuzzy CSPS.
Given values to such parameters, we generate a profile with m tree-shaped FCSPs defined

over n variables, with d elements in the domain of each variable, and where each fuzzy constraint
involves two variables and has a number of tuples with preference 0 which is t% of the maximum
number of tuples (that is, d2). For the other tuples, we uniformly generate preference values in
(0,1]. For each rule r that is considered, the soft profile generated in this way is given in input to
seq(r). Also, the profile obtained by computing the agents’ induced preference orderings over the
solutions is given in input to the rule r.

In each set of tests, we fix all parameters except one, and let this last parameter vary. When a
parameter is fixed, we use the following values: m = 25, n = 5, d = 5, and t = 20%. Also, each
result is the average over 100 fuzzy profiles with the same parameters’ values. All the results show
also the average error, but, since we are averaging over 100, most of the time these errors are
marginal.

The experiments were conducted on a machine with an Eight-Core Intel(R) Xeon(R) 2.40GHz
with 256GB of RAM. We show detailed results for Borda, Plurality, Approval, Copeland and their

4.2 Aggregation of soft constraint problems 139

corresponding sequential versions.

Computation time

We compare r and seq(r) in terms of their computation time.
In Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 we provide the results for Plurality, Approval,

seq(Plurality), seq(Approval), seq(Borda) and seq(Copeland). In Figure 4.10, Figure 4.11, Figure
4.12 and Figure 4.13 we show separately the results for Borda since the computational time for
Borda has a different order of magnitude. For the same reason we provide the results for Copeland
in Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17.

As it can be seen in the figures Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10, Figure
4.11, Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 the sequential
procedure substantially outperforms the non-sequential rule in terms of the time needed to find
the winner for Borda and Copeland. For Approval and Plurality the performance is approximately
equal, but the non-sequential voting rules performs slightly better, as predicted by the theoretical
analysis of the computational cost (Section 4.2.2).

However, the time for the non-sequential approach varies depending on the rule that is con-
sidered. The time for Approval and Plurality is similar since the task is that of computing all or
one optimal solution. One may wonder why computing all optimal solutions is not much more
expensive than computing just one. We recall that we are considering tree-shaped fuzzy SCSPs,
where the first optimal solution in lex order can be computed in polynomial time. Once such a
solution is found, all the other optimal solutions can be computed efficiently by exploiting the
tree-structure [16]. Borda and Copeland instead require the computation of the entire solution
ordering. Borda needs to extract the complete ordering between all the outcomes, and Copeland
needs also the overhead of considering all possible pairwise competitions among all the solutions.
The computational time for the sequential voting rules has a similar trend and order of magnitude
to Approval and Plurality (Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11,
Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17).

An increase in the values of all the parameters, except tightness, causes a non-trivial growth in
the computation time of all the approaches (sequential and non-sequential). However, an increase
in the values of the domain size and in the number of features induces an exponential growth of
the computational time, but increasing the number of agents we obtain a linear increasing of the
computational time. On the other hand, by varying the tightness the computational time does not
change. This is not surprising since the amount of computational steps remains the same.

Solution quality

To assess the quality of a solution, we have measured:
1. the preference: the value of the preference of the winner outcome for each voter, averaged

over all voters;
2. the error: the distance, for each voter, between his preference value for the winner and the

preference value of his optimal solutions, averaged over all voters, computed as the difference
between the two values of preference.

We call the second measure the “error" of the winner outcome.

140 Chapter 4. Preference aggregation

1 2 3 4 5 6
0

0,5

1

1,5

2

2,5
·10�2

domain size

tim
e

(s
ec

on
ds

)

Plurality Approval seq(Plurality)
seq(Approval) seq(Borda) seq(Copeland)

Figure 4.6: Computational time for Approval, Plurality, seq(Plurality), seq(Approval), seq(Borda),
seq(Copeland), varying the domain size.

1 2 3 4 5
0

0,5

1

1,5
·10�2

number of features

tim
e

(s
ec

on
ds

)

Plurality Approval seq(Plurality)
seq(Approval) seq(Borda) seq(Copeland)

Figure 4.7: Computational time for Approval, Plurality, seq(Plurality), seq(Approval), seq(Borda),
seq(Copeland), varying the number of features.

4.2 Aggregation of soft constraint problems 141

10 20 30 40 50 60 70 80
0

0,5

1

1,5

2
·10�2

tightness %

tim
e

(s
ec

on
ds

)

Plurality Approval seq(Plurality)
seq(Approval) seq(Borda) seq(Copeland)

Figure 4.8: Computational time for Approval, Plurality, seq(Plurality), seq(Approval), seq(Borda),
seq(Copeland), varying the tightness.

5 10 15
0

0,5

1

1,5
·10�2

number of agents

tim
e

(s
ec

on
ds

)

Plurality Approval seq(Plurality)
seq(Approval) seq(Borda) seq(Copeland)

Figure 4.9: Computational time for Approval, Plurality, seq(Plurality), seq(Approval), seq(Borda),
seq(Copeland), varying the number of agents.

142 Chapter 4. Preference aggregation

1 2 3 4 5 6
0

20

40

60

domain size

tim
e

(s
ec

on
ds

)

Borda

Figure 4.10: Computational time for Borda, varying the domain size.

1 2 3 4 5
0

5

10

15

20

number of features

tim
e

(s
ec

on
ds

)

Borda

Figure 4.11: Computational time for Borda, varying the number of features.

4.2 Aggregation of soft constraint problems 143

10 20 30 40 50 60 70 80
0

10

20

30

tightness %

tim
e

(s
ec

on
ds

)

Borda

Figure 4.12: Computational time for Borda, varying the tightness.

5 10 15
0

5

10

15

number of agents

tim
e

(s
ec

on
ds

)

Borda

Figure 4.13: Computational time for Borda, varying the number of agents.

144 Chapter 4. Preference aggregation

1 2 3 4 5 6
0

1.000

2.000

3.000

4.000

5.000

domain size

tim
e

(s
ec

on
ds

)

Copeland

Figure 4.14: Computational time for Copeland, varying the domain size.

1 2 3 4 5
0

200

400

600

800

number of features

tim
e

(s
ec

on
ds

)

Copeland

Figure 4.15: Computational time for Copeland, varying the number of features.

4.2 Aggregation of soft constraint problems 145

10 20 30 40 50 60 70 80
0

500

1.000

1.500

tightness %

tim
e

(s
ec

on
ds

)

Copeland

Figure 4.16: Computational time for Copeland, varying the tightness.

5 10 15
0

200

400

600

number of agents

er
ro

r

Copeland

Figure 4.17: Computational time for Copeland, varying the number of agents.

146 Chapter 4. Preference aggregation

2 4 6 8 10
0

0,2

0,4

0,6

domain size

er
ro

r/p
re

fe
re

nc
e

Error Plurality Error Seq(Plurality)
Preference Plurality Preference seq(Plurality)

Figure 4.18: Error and Preference for Plurality and seq(Plurality), varying the domain size.

In Figure 4.18, Figure 4.19, Figure 4.20 and Figure 4.21 we show the preference and the
error for Plurality and seq(Plurality). The results for Borda, seq(Borda), Approval, seq(Approval),
Copeland and seq(Copeland) are very similar: the winner of the sequential version of each voting
rule has error and preference slightly worse than the winner of the non-sequential voting rule, but
exactly the same trend. Moreover, all the four voting rules have the same trend, as shown in Figure
4.18, Figure 4.19, Figure 4.20 and Figure 4.21. Quite surprisingly, for all rules, the error is small,
meaning that the agents are on average almost equally satisfied with the winner elected by the two
approaches.

When the number of values in the domains, or the number of variables, grows, the error grows
as well. The reason for this is that an increase in the number of solutions makes it less likely for the
winner to have a high preference in each FCSP.

The same trend can be observed when the number of voters grows. In this case, however, the
higher error is due to an increased amount of disagreement among the larger number of voters. This
is supported also by the fact that the preference decreases. Moreover, we observe that, when the
number of voters increases, with more than 10 voters, the values of preference and error become
stable.

When tightness grows, instead, the error decreases. This is to be expected, since, the less
solutions with a non-zero preference each FCSP has, the more likely it is that the winner has a
preference close to the optimal one for each voter.

4.2 Aggregation of soft constraint problems 147

2 4 6 8 10
0

0,2

0,4

0,6

number of features

er
ro

r/p
re

fe
re

nc
e

Error Plurality Error Seq(Plurality)
Preference Plurality Preference seq(Plurality)

Figure 4.19: Error and Preference for Plurality and seq(Plurality), varying the number of features.

20 40 60 80
0

0,2

0,4

0,6

tightness %

er
ro

r/p
re

fe
re

nc
e

Error Plurality Error Seq(Plurality)
Preference Plurality Preference seq(Plurality)

Figure 4.20: Error and Preference for Plurality and seq(Plurality), varying the tightness.

148 Chapter 4. Preference aggregation

5 10 15 20 25
0

0,2

0,4

0,6

number of agents

er
ro

r/p
re

fe
re

nc
e

Error Plurality Error Seq(Plurality)
Preference Plurality Preference seq(Plurality)

Figure 4.21: Error and Preference for Plurality and seq(Plurality), varying the number of agents.

Rules Comparison

To compare the four considered voting rules, we look at their preference, error, and computation
time on the following parameters values (Table 4.4): 25 voters, 5 issues, 5 domain element per
issue, and 20% tightness. We show this in Table 4.4.

Rule Pre f erence Error Computation Time
Seq. Plurality 0.046 0.43 0.012
Seq. Approval 0.072 0.40 0.013

Seq. Borda 0.053 0.42 0.013
Seq. Copeland 0.047 0.43 0.014

Plurality 0.058 0.41 0.004
Approval 0.068 0.40 0.005

Borda 0.082 0.39 17.139
Copeland 0.096 0.38 796.107

Table 4.4: Rules Comparison.

We can see that:
• Plurality, as expected, is the worst voting rule in terms of preference and error, but it is the

best in terms of execution time, due to its naive scoring system.
• Approval is a good voting rule in terms of preference, error, and execution time. It has better

preference and error results than Plurality, probably because for each vote the Approval’s
scoring system considers the best top candidates, contrarily to Plurality, which considers only

4.2 Aggregation of soft constraint problems 149

the first top candidate according to lexicographic ordering.
• Borda and Copeland are good voting rules in terms of preference and error, but they are very

bad in terms of execution time, due to their complex scoring system.
Moreover, our results show that the sequential approach performs similarly to the non-sequential

approach in terms of preference and error. This is good news, since it suggests that the loss of
information in using the sequential approach does not push outliers further apart. However, the
performance of seq(Borda) and seq(Copeland) are considerably better than the corresponding
non-sequential voting rules.

Variable orderings and worst/best cases

The experimental results shown so far assume a fixed variable ordering, neglecting the fact that
different orders may give different results for the sequential approach.

We prove experimentally that changing the variable order in the sequential voting rule does not
alter the mean preference of the winning solution over the agents in the profile. We computes the
difference of the mean (over the agent) preference of the sequential approaches on 100 different
pairs of variable orderings (randomly generated) on a profile, averaged on 100 different profiles.
We provide the results about the difference in the preference value, changing the variable order, in
Table 4.5.

Rule Difference in preference value (%) Variance(%)
Seq. Plurality 1.6 % 1.3 %
Seq. Approval 1.4 % 0.8 %

Seq. Borda 1.5 % 1.1 %
Seq. Copeland 1.5 % 1.2 %

Table 4.5: Rules Comparison.

The sequential approach is basically not influenced by the change in the variable ordering since
there is a difference in the preference value of about 1.5% with a variance of about 1%. Thus, a
change in the variable ordering may imply a change in the elected candidate, but not in the average
satisfaction of the agents.

TripAdvisor profiles

In our synthetic profiles, described in the previous sections, each agent’s FCSP is generated
randomly. Thus the probability that two voters vote equally is very small and this implies a large
amount of disagreement among the agents. This is often not the case in real life situations, where
profiles may show some form of correlation among voters’ preferences. To consider also more
realistic profiles , we have taken real data from profiles extracted from TripAdvisor.

More precisely, we used a dataset from PrefLib [76], a reference library of preference data
about computational social choice, recommender systems, data mining, machine learning, and
combinatorial optimization. The dataset used contains 675,069 reviews of 1,851 hotels across the
world scraped from Trip Advisor. The reviews consists of numerical ratings (integers between 1
and 5) provided by the users about several characteristics of the hotel.

150 Chapter 4. Preference aggregation

0,9 1 1,1 1,2 1,3 1,4

Plurality

Approval

Borda

Copeland

SeqPlurality

SeqApproval

SeqBorda

SeqCopeland

error

Figure 4.22: Error comparison on TripAdvisor data.

From the dataset we extracted the ratings of 30 agents over 5 characteristics of 6 hotels. The
characteristics are: overall, rooms, location, cleanliness, and front desk. This are the variables in
our setting. If a user has some missing value but the overall rating is specified, we completed the
missing values with the overall rating. If a user has no rating for a hotel we completed the missing
values with the mean rating between 1 and 5 (3). In the dataset considered we were not able to
select a dense subset of 30 agents that rated a common subset of hotels. This is not surprising also
for large dataset. In this way, we obtain profiles in which each agent has a preference structure
with 5 independent nodes (thus, with no constraints between them), each one corresponding to a
characteristic of the hotels. The domain of the features has 6 elements corresponding to the 6 hotels
and the preferences are the rating extracted from the dataset.

Figure 4.22 and Figure 4.23 shows the preference and the error of the elected candidate for
the sequential and non-sequential approaches. The results about the computation time of the eight
voting rules are shown in Table 4.6.

Plurality Approval Borda Copeland SeqPlurality SeqApproval SeqBorda SeqCopeland
0.018 0.26 21.5 502.63 0.00017 0.00069 0.0009 0.0022

Table 4.6: Computation time (seconds) comparison on TripAdvisor data.

The results presented in Figure 4.22, Figure 4.23 and Table 4.6 are in line with the results of
the experiments on synthetic data of Section 4.2.3. Thus our experimental setting, with a random
generation of profiles and preferences, corresponds to the results of a real-life dataset. We can
observe that the sequential voting rules are the best in terms of execution time. Copeland is a good
voting rule in terms of preference and error, but it is very bad in terms of execution time, due to

4.3 Summary and Discussion 151

3 3,1 3,2 3,3 3,4 3,5

Plurality

Approval

Borda

Copeland

SeqPlurality

SeqApproval

SeqBorda

SeqCopeland

preference

Figure 4.23: Preference comparison on TripAdvisor data.

their complex scoring system. Approval instead is a good voting rule in terms of preference, error,
and also execution time.

4.3 Summary and Discussion

In this chapter we analyzed the use of PCP-nets as a compact representation language for the
preferences of a set of agents. We showed that, given an empirical probability distribution over a set
of CP-nets, there may exist no PCP-net inducing it, even if they have the same dependency graph.
Thus we defined and compared two polynomial aggregation methods. The first one (proportion
method, PR) extracts the probability distribution directly from the CP-nets and the second one
(least square method, LS) minimizes the error between the aggregated structure and the initial set
of CP-nets. We compared them in a theoretical and experimental evaluation, and the results suggest
that using the PR method in the input profile to construct a PCP-net is accurate with respect to
answering both optimality and dominance queries.

We then combined these two methods with the two ways of extracting an optimal outcome from
a PCP-net, obtaining four approaches: four voting rules that take as input a profile of individual
CP-nets and output a winning candidate. We then compared these voting rules with plurality and
sequential voting with majority, since our experimental setting is based on binary features. We
showed theoretically that the output of one of the four methods we defines coincides with the output
of the sequential voting method with majority, thus our proposed aggregation method is a direct
generalisation of this setting. We then showed experimentally that our voting rules performs better
than the plurality voting method.

By generating a compact representation of the full preference profile using PCP-nets, we are
also able to perform either exact or approximate dominance reasoning on a profile of individual

152 Chapter 4. Preference aggregation

CP-nets. Moreover, for the case of polytree PCP-nets, we showed that our proposed approximation
technique for dominance, applied with PR, yields results that are very close to the probability of
dominance in the initial profile of individual CP-nets.

We then considered an alternative way to represents preferences in a multi-agent contexts:
profiles of users described by fuzzy profiles of soft constraints. Soft constraints profile are a
framework that is less restrictive with respect to CP-nets and allows a more general formalization:
with soft constraints we are not forced to use a particular topological order when we consider
sequential procedures since soft constraints have an undirected preference graph. Moreover, the
dominance task is easy in soft constraints profiles contra CP-nets profiles.

We studied a sequential preference aggregation procedure based on voting rules for settings
where several agents express their preferences over a common set of variable assignments via
soft constraints. We analyzed this approach from a theoretical point of view providing a general
result which shows that if the sequential voting procedure satisfies a given property, so do all the
local voting rules. But the opposite holds only for anonymity, consistency, efficiency, (strong)
monotonicity, and non-dictatorship.

We then studied this approach by providing experimental results, evaluating the performance of
our approach considering several widely used voting rules such as Plurality, Approval, Borda and
Copeland. We proved that both from a theoretical point of view and an experimental point of view,
the sequential approach is convenient in terms of computation time, while satisfying the agents
preferences just as much as the non-sequential approach. We performed another set of experiments
to prove that the quality of the returned solution is not affected by the ordering of the features. We
provided also results on real preferences obtained from the PrefLib database. The results of the real
data application are in line with the results of the experiments on synthetic data.

We compared our method to the one performed in [65] for CP-nets, in which they shows that
a sequential single-feature voting protocol can find a winner in polynomial time, and has several
other desirable properties, but only if the CP-nets satisfy certain conditions: the CP-nets must have
an acyclic dependency graph and all the dependency graphs in the profile must all be compatible
with a given graph ordered according to the feature ordering in the voting procedure. Also other
more specific approaches to sequential composition of voting rules with CP-nets that have been
proposed: in [114] acyclicity and O-legality are relaxed via a procedure that exploits a graph defined
on complete assignments, in [115] they based the procedure on maximum likelihood estimators, on
maximum criterion in [87], or considering variants of CP-nets in [26, 64].

5. A logical model for conditional preferences

Until now we have focused mainly on CP-nets, but this framework is limited in expressiveness
since cp-rules may specify a preference for exactly one value over another. A lot of extension and
variants of CP-net have been developed such as GCP-nets [52], CP-theories [111], Comparative
preference theories [112] and CP-nets with constraints [12] [42], each one with ad hoc syntax,
semantics and algorithms. We develop in this chapter a unification model for all these different
frameworks for conditional preferences following the idea that conditional preferences can be
directly expressed in standard first order logic, as constrained Datalog theories [19, 59, 105].

The fundamental advantage of introducing conditional preference theories as Datalog programs
is that Datalog’s rich semantic, algorithmic and implementation framework is now available in
service of conditional preferences. The semantics of our model is that of (constrained) first-order
logic theories. The framework is rich enough to express CP-nets and each of its extensions discussed
above, including algorithms for the main tasks: consistency, dominance and optimality. Using
outcomes rather than assertions of preference over individual features permits the formalization
of the semantics (e.g. ceteris paribus or indifference) internally, as just a certain pattern of
quantification over variables.

Constraints fit in naturally in our theory and do not have to be introduced after the fact in an
ad hoc fashion as in [12, 42, 84]. In our formulation the constraints are already built into basic
definitions (constraints are additional goals in the body of preference clauses, and in the body of
the clause defining outcomes) and no changes are necessary.

Additionally, recursive LCP-rules offer a powerful new form of dependent conditional prefer-
ence statements, particularly useful in multi-agent contexts [72, 90]. They support rules such as “If
Alice prefers to drive to Oxford today, Bob will prefer to fly to Manchester tomorrow”.

The rich complexity theory developed for Datalog [30, 47, 55, 109] applies inter alia to

154 Chapter 5. A logical model for conditional preferences

conditional preference theories – in particular we discuss the notion of data-complexity. General
results about (linear) Datalog programs lead to complexity bounds for consistency, dominance
and optimization extending current known bounds. Further, tabled Prolog systems such as XSB
Prolog[101, 102] implement constrained Datalog with sophisticated features such as partial order
answer subsumption that are directly usable in an implementation of LCP.

One of the reasons that CP-nets are popular in practice is that useful special cases have been
identified (acyclic nets, tree-structured nets) which can be implemented efficiently. We show how
some of these special cases can be extended to the richer language we consider. Further, we provide
a compiler for LCP theories that can recognize these special cases and generate custom code for
consistency, dominance and optimization.

We study also different semantics for the dominance task that are computationally easier and
we compare them with the classical notion of dominance.

Our formalization of extensions of CP-nets permits an integrated treatment of preferences in
constraint (logic) programming, leading to more powerful reasoning systems which can deal with
both preferences and hard constraints.

Chapter structure and related publications

The work presented in this chapter has appeared in the proceedings of the following conferences
and international workshops.

? “Logical conditional preference theories”, C. Cornelio, A. Loreggia, and V. Saraswat,
Proceedings of the MPREF workshop of the International Joint Conference on Artificial
Intelligence 2015, MPREF-15.

? “Models for Conditional Preferences as extensions of CP-nets”, C. Cornelio, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence (extended
abstract), Doctoral Consortium, IJCAI-15.

The chapter is organized as follows.

• In Section 5.1 we introduce some background notions regarding logic programming and in
particular Datalog. We also define several techniques used in this context such as tabling and
answer subsumption.

• In Section 5.2 we introduce Flat LCP-Theories, a logical formulation for conditional pref-
erences, defined as a linear Datalog theory. We show that the frameworks for conditional
preferences studied in the background chapter (Section 2.2 and Section 2.3) can be expressed
using this theory. We provide algorithms for the main tasks: consistency checking, outcome
optimization and dominance testing, with also a computational complexity analysis.

• In Section 5.3 we introduce a generalization of Flat LCP-Theories using Datalog recursive
clauses. We define Recursive LCP-Theories and we provide some application examples. We
then introduce procedures for the main tasks: consistency checking, outcome optimization
and dominance testing, with also a computational complexity analysis.

• In Section 5.4 we study the notion of completeness for LCP-theories and we perform an
experimental evaluation of the outcome optimization task.

• In Section 5.5 we present three alternative definitions for the dominance task. We provide a

5.1 Datalog and logic programming 155

theoretical comparison of these three new semantics between them and in comparison to the
classical dominance semantics.

• In Section 5.6 we provide a summary of the chapter and a discussion of the results.

5.1 Datalog and logic programming

A Datalog program consists of a collection of definite clauses in a language with no function
symbols, hence a finite Herbrand domain. Datalog programs can be implemented using tabled
Logic Programming (TLP). Tabling maintains a memo table of subgoals produced in a query
evaluation and their answers. If a subgoal is reached again then the information in the table can
be reused, without recomputing the subgoal. This method ensures termination and improves the
computational complexity for a large class of problems [102] (at the expense of additional space
consumption). Answer subsumption extends the functionality of tabling. Answer variance adds a
new answer to a table only if the new answer is not a variant of any other answer already in the
table. Partial order answer subsumption adds a new answer to a table only if the new answer is
maximal with respect to the answers in the table, given a partial order po/2:

:� t a b l e p r e d i c a t e (_ , _ , p a r t i a l O r d e r (po / 2)) .

Traditionally, predicates are divided into extensional and intensional predicates. The extensional
predicates define a database, and intensional predicates define (possibly recursively defined) queries
over the database. In our context, d/2 and outcome/1 will be considered extensional predicates
(in Flat LCP) and other predicates such as dom/2, inconsistent and user-defined predicates are
considered intensional. Given an intensional program P, database D and query q, data-complexity
[109] is the complexity of answering P,D` q as a function of the size of D and q (thus the program is
considered fixed). Combined complexity is the complexity of answering P,D ` q as a function of the
size of P, D and q (thus nothing is taken to be fixed). The basic results are that for data-complexity,
general Datalog programs are PTIME-complete, and linear programs are NLOGSPACE-complete
[55]. For combined complexity, general Datalog programs are EXPTIME-complete, and linear
programs are PSPACE-complete.

5.2 Flat LCP-Theories (FLCP-Theories)

We assume given a set of N features, and a logical vocabulary V with unary predicates d1, . . . ,
dN (corresponding to the domains of the features), constants for every value in the domains di, a
single function symbol o/N that corresponds to the description of an outcome, and a single binary
predicate d/2 that indicates that the first argument is preferred to the second one. The user specifies
preferences between two outcomes S,T (expressed as o/N terms) by supplying clauses for the atom
d(S,T):

d (S , T) :� c .

where c is a constraint (possibly involving equality). This clause is a Flat Logical Conditional
Preference (FLCP) rule. The user can specify hard constraints on features by providing clauses for
the outcome/1 predicate, of the form:

156 Chapter 5. A logical model for conditional preferences

outcome (o (X1 , . . . , Xn)) :� C ,
d1 (X1) , . . . , dn (Xn) .

where C is a constraint and the di are domain predicates.
The LCP runtime supplies the following definition for the dom/2 predicate, expressing (tabled)

transitive closure over d/2, and for consistency and optimal outcomes:

:� t a b l e (dom (_ , _)) .
dom (X,Y):� d (X,Y) , outcome (X) , outcome (Y) .
dom (X,Y):� d (X, Z) , dom (Z ,Y) .
c o n s i s t e n t :� \+ dom (X,X) .
:� t a b l e (o p t i m a l (po (dom / 2))) .
o p t i m a l (X):� outcome (X) .

Observation 5.1 Note that the clauses above are linear. Below, given an LCP theory (Datalog
program) P, by L (P) we will mean P together with the LCP runtime clauses specified above. ⌅

Given these definitions, the problem solver may use consistent to determine whether the
supplied preference clauses are consistent, dom(S,T) to determine whether outcome S is preferred
to T, and optimal(S) (where S may be a partially instantiated o/N structure) to determine an
optimal completion of S.

⌅ Example 5.1 — Dinner, modified from [11]. Two components of a meal are the soup (fish or
veg) and wine (white or red). I prefer fish to veg all else being equal. If I am having fish, I
prefer white wine to red. I simply do not want to consider veg with red. This may be formulated
as the LCP theory:

soup (f i s h) . soup (veg) . wine (w h i t e) . wine (r e d) .
outcome (o (X,Y)) :� soup (X) , wine (Y) , (X\== veg ; Y\== r e d) .
d (o (f i s h , X) , o (veg , X)) .
d (o (f i s h , w h i t e) , o (f i s h , r e d)) .

On this theory, the query ?-consistent. returns yes. The dom/2 predicates order outcomes as:

o (f i s h , w h i t e) > o (f i s h , r e d) o (f i s h , w h i t e) > o (veg , w h i t e)

Note because of hard constraints the outcomes are not totally ordered. The query optimal(X)

returns the instantiation of O that is highest in the dom/2 order, in this case it returns the single
answer X=o(fish,white). ⌅

⌅ Example 5.2 — Holiday Planning, [111]. There are three features: time, with values later l
and now n; place, with values Manchester m and Oxford o, and mode with values fly f and drive
d. The rule “I would prefer to fly rather than drive, unless I go later in the year to Manchester.”
translates to clauses 1-2. The CP-theory rule “I would prefer to go next week, regardless of other
choices.” corresponds translated to clause 3, and the comparative preference rule “All other things
being equal, I would prefer to fly now, rather than to drive later.” to clause 4:

5.2 Flat LCP-Theories (FLCP-Theories) 157

t ime (n) . t ime (l) . p l a c e (o) .
p l a c e (m) . mode (f) . mode (d) .
outcome (o (T , P ,M)) :� t ime (T) , p l a c e (P) , mode (M) .
(1) d (o (T , P , f) , o (T , P , d)) :� T=n ; P=o .
(2) d (o (l ,m, d) , o (l ,m, f)) .
(3) d (o (n , _ , _) , o (l , _ , _)) .
(4) d (o (n , X, f) , o (l , X, d)) .

⌅

Proposition 5.2.1 — Normal form for FLCP rules. Let R be a FLCP-rule. For appropriate choices
of disjoint index sets J, K, M and Z s.t. {1, . . . ,n} = J [K [M[Z, and given L and U disjoint
subsets of M and given constants v j(j 2 J), am,a0m(m 2 M,am 6= a0m), al(l 2 L) and au(u 2U),
R is logically equivalent to the clause d(o(S1, . . . ,Sn), o(T1, . . . ,Tn)). where Si,Ti are defined
by: S j = Tj = v j(j 2 J), Sk = Tk,k 2 K, Sm = am,Tm = a0m(m 2 M), Sz = Xz,Tz = Yz(z 2 Z),
Sl = Xl,Tl = al(l 2 L), Su = au,Tu = Yu(u 2U). The set J corresponds to the parent variables, K
to the ceteris paribus variables, M to the variables that change the value from S to T and Z to the
variables that are less important than the variables in M. We call L the lower-bound set, and U the
upper-bound set.

A GCP-net rule is simply a FLCP-rule such that Z = /0, |M| = 1, L[U = /0. A CP-theory
rule is a FLCP-rule with |M|= 1, L[U = /0. A comparative preference rule is a FLCP-rule with
L[U = /0.

The following theorems establish that LCP-theories conservatively extend these sub-languages.
Proofs are straightforward, we have essentially just used standard logical notions to formalize the
sub-languages:

Theorem 5.2.2 — Logical characterization of ceteris paribus and general ceteris paribus.

Given a CP-net R, consider the set P of FLCP-rules which represent all rows of its CP-tables.
Then, for any two outcomes s and t, s� t in R iff L (P) ` dom(s,t).

Theorem 5.2.3 — Logical characterization of CP-theories and comparative preference

languages. Given a CP-theory R, consider the set P of FLCP rules modeling all the rules of
the CP-theory. Given two outcomes s and t, R ` s� t iff L (P) ` dom(s,t).

We now show that the conditional preference rules discussed in the literature can be expressed as
special cases of FLCP rules. First we prove that CP-nets, GCP-nets, and CP-theories are particular
cases of comparative preference theories, then we reformulate a Comparative preference rule using
a FLCP rule.

Suppose we have a CP-net or GCP-net rule u : x > x̄ where x and x̄ are distinct literals for some
variable X 2 Var where Var is the set of variables, u is the assignment of a set U 2 Var \ {X}.
This rule can be seen as a comparative preference rule p>q||T where P = Q = {X}[U and
p = ux, q = ux̄ and T = Var\ (U [{X}). Given a CP-theory rule u : x > x̄[W] where x and x̄ are
elements in the domain of a variable X 2 Var, u is the assignment of a set U 2 Var \ {X} and

158 Chapter 5. A logical model for conditional preferences

W is a set of features from Var s.t. the sets U,{X},W are mutually disjoint. This rule can be
seen as a comparative preference rule p>q||T such that P = Q = {X}[U and p = ux, q = ux̄ and
T = Var\ (U [{X}[W).

Comparative preference theories. Let R ⌘ p > q||T be a rule in a comparative preference
theory. Recall that this means that p is an assignment to a set of features P ✓ Var, and q is an
assignment to a set of features Q✓ Var, and T is a set of features from Var. Let [p] represent the
constraint obtained from p by conjoining Xi = wi for every feature i 2 P (where p assigns the value
wi to feature i). Similarly [q] for the set Q. Let t stand for the conjunction of constraints Xi = Yi for
every feature i in T . Then R can be represented by the LCP rule: d(o(X1, . . . ,Xn), o(Y1, . . . ,Yn))

:- [p], [q], t. The following two translations can be derived from the translation above because its
special cases.

CP-net and GCP-net. Let R ⌘ u : l > l0 be a conditional preference rule where l, l0 are
distinct literals for some variable Xi. Let [u] represent the constraint obtained from u by conjoining
Xj = Yj,Xj = w j for every feature j 2U (where u assigns the value w j to feature j). This rule can
be represented by the LCP rule: d(o(X1, . . . ,Xn), o(Y1, . . . ,Yn)) :- Xi = l,Yi = l0, [u].

CP-theories. Similarly, let R⌘ u : l � l0[W] be a rule in a conditional preference theory . Recall
that this means that u is an assignment to a set of features U ✓ Var, l, l0 are values for a feature i,
and W is a set of features from Var s.t. the sets U,{i},W are mutually disjoint. As before let [u]
stand for the constraint obtained from u by conjoining Xj = Yj,Xj = w j for every feature j 2U
(where u assigns the value w j to feature j). Let c stand for the conjunction of constraints Xi =Yi for
every feature i not in U [{i}[W . Then R can be represented by the LCP rule: d(o(X1, . . . ,Xn),

o(Y1, . . . ,Yn)) :- [u],Xi = l,Yi = l0,c.

Thus we have the following theorem and corollaries, that establish that LCP-theories conser-
vatively extend these sub-languages. Proofs are straightforward, we have essentially just used
standard logical notions to formalize the sub-languages:

Theorem 5.2.4 — Logical characterization of comparative preference theories. Given a
comparative preference theory G, consider the set P of FLCP rules representing the rules of G as
described above. Given two outcomes s and t, G ` s� t iff L (P) ` dom(s,t).

Corollary 5.2.5 — Logical characterization for GCP-nets. Given a GCP-net R, consider
the set P of FLCP rules representing the rules of R as described above. Given two outcomes s
and t, R ` s� t iff L (P) ` dom(s,t).

Corollary 5.2.6 — Logical characterization of CP-theories. Given a CP-theory G, consider
the set P of FLCP rules representing the rules of G as described above. Given two outcomes s
and t, G ` s� t iff L (P) ` dom(s,t).

Summarizing FLCP rules can translate all the language described in background section.
LCP-rules are also a generalization since they can handle hard constraints.

5.2 Flat LCP-Theories (FLCP-Theories) 159

General structure Acyclic Tree
Dominance

CP-nets: PSPACE-complete NP or harder Polynomial
[52] [11] [9, 11]

CP-theories: PSPACE-complete PSPACE-complete Polynomial
[111] [111]

FLCP-theories: PSPACE-complete PSPACE-complete Polynomial*
Consistency / Optimality

CP-nets: PSPACE-complete Polynomial Polynomial
[52] [11] [11]

CP-theories: PSPACE-complete Polynomial Polynomial
[111] [111] [111]

FLCP-theories: PSPACE-complete / ? ? / Polynomial* ? / Polynomial *

Table 5.1: Computational complexity of Dominance, Consistency and Optimality. Bold: our results,
*: with some constraint on the form of the rule, ?: open problem, —: dependency graph not defined.

5.2.1 Algorithmic properties

The main algorithmic tasks regarding a preference theory are dominance queries, consistency
checking, and outcome optimization. Below we fix a set of features Var with cardinality N and an
LCP-theory P over Var.

Checking the dominance over a pair of outcomes corresponds to finding a swapping sequence
in CP-theories or a flipping sequence in CP-nets. For LCP-theories this is determined by first-order
derivability: the dominance query (s,t) succeeds iff L (P) ` dom(s,t). Consistency checking
verifies whether there is any outcome s such that L (P) ` dom(s,s). Outcome optimization
corresponds to find the most preferred outcome given an assignment to a (possibly empty) subset
of features. Formally, an optimal outcome is an outcome s such that there is no other outcome t
such that L (P) ` dom(s,t). (i.e.s is an undominated outcome). Given a (possibly non-ground)
term s (partial outcome) an optimal completion of s is a ground term t instantiating s s.t. for no
other ground term t1 instantiating s is it the case that L (P) ` dom(t1,t). Note that an acyclic
CP-net or CP-theory (consistent and complete) has a unique optimal outcome, but an LCP-theory
may have several optimal outcomes.

Our algorithmic approach is based on analyzing whether the input LCP-theory corresponds to
a special case (e.g. acyclic or tree-structured nets). If so, optimal algorithms for the special case
are used. Otherwise general Datalog procedures are used. We define the dependency graph for
FLCP-theories as the generalized dependency graph G described in [111].

In the following sections we analyze the algorithms for dominance, consistency and optimality
from a general point of view, and then consider the special cases in which the algorithms are faster.
We take the viewpoint of combined complexity, i.e. assuming N, the clauses of the LPC theory, and
the given query are supplied at runtime. The results for Flat LCP-theories are summarized in Table
5.1.

Dominance

160 Chapter 5. A logical model for conditional preferences

Theorem 5.2.7 Given a FLCP theory P over N features, deciding dom(s,t) is PSPACE-
complete in N.

Proof. Since FLCP theories can encode GCP-nets, the dominance problem is at least PSPACE-hard.
That the problem is in PSPACE can be established in a form similar to the proof of Theorem
4.4 in [55]. Since P has but a single rule, and the rule is linear, we can build up the proof non-
deterministically using a polynomial amount of space. In fact, we need to keep space only for two
ground facts of the form dom(s, t) where the s,t are constants. We start by using the base clause
for dom/2 to non-deterministically establish a dom/2 fact, using some fact for d/2, and scratch
space linear in N. Then we use the recursive clause for dom/2 to non-deterministically generate
a new dom/2 fact. From this new fact, we can generate another, and delete the old fact. We stop
when dom(s,t) is established. ⌅

Dominance for acyclic and tree dependency graphs. We note that the computational com-
plexity for dominance for acyclic FLCP-theories is PSPACE-complete. This because dominance
for an acyclic FLCP-theory is easier than a general FLCP-theory but harder than an acyclic CP-
theory. Both of them are PSPACE-complete thus also dominance for acyclic FLCP-theories is
PSPACE-complete.

A dominance query in tree structured CP-nets can be computed in time linear in N [9, 11]. We
observe that a procedure similar to [9] can be used for tree structured CP-theories. We generalized
this procedure [9] also for tree structured FLCP theories. We follow the same algorithmic structure
with some modifications. (1) We partition the set of nodes in subsets: each subset contains nodes
that change their value simultaneously in a LCP-rule and the nodes that belongs to the direct paths
between them, if it exists. Suppose we have 4 nodes Xi and two edges (X1,X2), (X2,X3). The nodes
X1 and X4 change their values simultaneously in a LCP-rule and X3 and X4 change their values
simultaneously in another rule. Thus all the nodes are in the same subset. (2) We start the procedure
from the leafs to the root, and when we process a node we have to process simultaneously the
whole subset of nodes to which it belongs in the partition. (3) The change function is replaced by
the function C(SX)[v1, · · · ,vm] where X is a node, SX is the subset of nodes to which X belongs
and vi are assignments or partial assignments of the nodes in SX . Given a dominance query over
two outcomes o and o0, this function returns True if and only if there exists a worsening path from
o �X to o0 �X equal to o �X= o1 �X , · · · ,ol �X= o0 �X such that 8i9 j|vi = o j �X . Each value v could
appear several time and in that case must exists a path such that there exist j1, · · · , jlsuch that
v = o j1 �X and v = o jl �X and ji 6= jk8i,k. The function C(X)[v1, · · · ,vm] follow the following rule
with respect to the conjunction operator ^: C(X)[v1, · · · ,vm]^C(X)[v01, · · · ,v0m0] = C(X)[where
[v001, · · ·v00m00] = [v1, · · · ,vm,v01, · · · ,v0m0] and when a v00 = v0i = v j the multiplicity of v00 is equal to the
maximum between the multiplicities of v0i and of v j . It is important to notice that the function
C in the case of subset of cardinality more then 1, corresponds to a dominance query on partial
outcomes.

5.2 Flat LCP-Theories (FLCP-Theories) 161

Observation 5.2 It is not important the order v1...vm, every permutation of these values is ok,
since we are conditioning on the parent nodes, but we are considering only trees so the parent is
only one. ⌅

The computational complexity of this procedure depends on the maximum size of the subsets
of nodes, since on the subsets we use the general procedure for dominance, that is exponential in
the cardinality of the subsets. If we consider fixed the maximum cardinality of the subsets, that is a
reasonable assumption (in the case of CP-net or CP-theory the cardinality is fixed to 1), then the
procedure become polynomial. The correctness proof of the procedure follow directly from the
proof of Theorem 2 in [9].

Consistency

Consistency is determined by invoking the query ?-consistent. This takes advantage of the
tabling of the dom/2 predicate.

The following theorem affirms that consistency remains in PSPACE even when the language
for preferences is extended beyond CP-nets to FLCP rules, and it is a generalization of Theorem 3
in [52].

Theorem 5.2.8 Given a FLCP theory P over N features, deciding consistency is PSPACE-
complete in N.

The proof follows directly from the proof of Theorem 5.2.7 since consistency is reduced to checking
entailment.

Outcome optimization

For optimality, the user invokes the query ?- optimal(s). Note that optimal/1 uses partial
order answer subsumption . In theory this may result in an exponential number of calls to dom/2

atoms; each check takes exponential time. For now we leave as open the corresponding problem
for FLCP theories (note that this problem is PSPACE-complete for CP-nets).

Optimization for acyclic and tree dependency graphs.
In acyclic CP-nets the sweep-forward procedure [11] finds the unique optimal outcome (or

completion) in polynomial time. A similar result holds for [111]. Under the assumptions of
consistency and acyclicity, an optimal outcome (and completion) can also be found for FLCP
theories in polynomial time, using the following algorithm (Acyclic-LCP-Opt) generalizing sweep-
forward : (1) We compute a linearization of the topological order defined by G(the dependency
graph) over Var: O = {X1, . . . ,XN}. (2) For each variable Xi, chosen following O , we consider a
set Wi ✓ Var such that it contains all the variables that change the value jointly with Xi in at least
one rule (Wi could contain only Xi). Using the rules in the LCP-theory that involve the variables
in Wi, and given the assignments for the variables X1, . . . ,Xi�1, we generate an ordering over the
partial outcomes defined on the variables in Wi. We assign to Xi the Xi value of a top element
(following a certain tie breaking rule) of the ordering that satisfies outcome/1 for at least one
completion (the completion has the given assignment to X1, . . . ,Xi�1 and an arbitrary assignment to
{Xi+1, . . . ,XN}\Wi). (3) We repeat the previous step for all the features in Var (following O).

162 Chapter 5. A logical model for conditional preferences

Theorem 5.2.9 The outcome obtained with the Acyclic-LCP-Opt procedure is an optimal out-
come for acyclic LCP-theories.

Proof. We prove it by contradiction, supposing that exists an outcome o0 such that o0 � o. We
suppose by contradiction that exists an outcome o0 such that o0 � o. This implies that exists a
chain of outcomes o0 = o1, · · · ,om = o such that 8i 2 {1, · · · ,m� 1} exists a rule R that implies
oi � oi+1. Considering a linearization X1, · · · ,XN of the graph G associated to our set of rules C ,
we take the first variable X in this order such that o0 �X 6= o �X . Thus there exist a rule R and an
index i 2 {1, · · · ,m� 1} such that o0 �X= o1 �X= · · · = oi �X 6= oi+1 �X= · · · = om �X= o �X and
oi � oi+1. This implies that o �X is not the maximal element in the set of rules that involve X , that
is a contradiction. ⌅

LCP-theories may have multiple optimal outcomes: we can obtain the whole set of optimal
outcomes using the Acyclic-LCP-Opt procedure. If there is more than one optimal outcome then
there exists some variable X that in the second step of the algorithm has more than one top element.
Running in parallel all these possible assignments we obtain the whole set of optimal outcomes.

The complexity of the procedure is O(dw ⇤N) where w = maxi |Wi|: the second step of the
procedure could involve all the partial outcomes defined on Wi. If the program bounds w, the
procedure becomes linear in N. Note that if the LCP-theory corresponds to a CP-net or a CP-theory
then |Wi|= 1 8i and the algorithm coincides with the sweep-forward procedure for CP-nets, and
the procedure introduced in [111] for CP-theories.

⌅ Example 5.3 — Holiday planning. Following the usual holiday planning example, we consider
the following three rules: “All else being equal, I would prefer to fly now then drive later”, “ If I
have to go now, I prefer to fly, all else being equal”, “ If I have to go later, I prefer to drive, all else
being equal” and “If I have to go now I prefer to go to Oxford”. These rules correspond to:

d (o (n , X, f) , o (l , X, d)) . d (o (n , X, f) , o (n , X, d)) .
d (o (l , X, d) , o (l , X, f)) . d (o (n , o ,X) , o (n ,m,X)) .

The graph G has two edges: from time to mode and from time to place, so, a possible lin-
earization of G is: (time, place, mode). Following this order we compute sequentially the optimal
outcome as: o(n,_,_) (considering time), o(n,o,_) (considering place), o(n,o,f) (considering
mode). Thus the optimal outcome is o(n, o, f). ⌅

We can use this procedure also to compute the optimal completion, considering the input partial
outcome as pre-assigned values for a subset of features. Recursive LCP-theories may require m
dominance queries, where m is the number of dominance goals in the body of the input preference
rules. Since we use tabling, the time cost is amortized over all calls from the problem-solver
(in lie of space). With this change, the procedure described above can be used. Because of the
dominance queries, the optimality procedure is PSPACE-complete. We note that if evidence for
some variables is given, the resulting simplified LCP theory may have the structure of one of the
special cases discussed above, and hence we can use specialized, polynomial procedures. To this

5.3 Recursive LCP-theories 163

end, our implementation maintains a dynamic dependency graph that ignores features for which
values have been provided.

5.3 Recursive LCP-theories

Once we have defined a unification theory of preferences written directly in Datalog, we explored
the potentials of this translation. Using this model a user can specify also recursive or dependent
preferences between two outcomes S,T by supplying clauses for the atom d(S,T):

d (S , T) :� c , g1 , . . . , gk .

where c is a constraint and g1, . . . , gk are possibly recursively defined predicates involving d/2.
If k > 0, this clause is called Recursive LCP rule. The user can also specify hard constraints on
features in a similar way as for FLCP-rules. Recursive or dependent rules are particularly useful in
multi-agent contexts, where different agents may influence each other by stating their preferences
depending on the preferences of some other agent [72].

⌅ Example 5.4 Let us consider two agents ranking features “main dish” (pasta or fish) and dessert
(tiramisu or muffin). We can formulate “If Alice doesn’t prefer pasta, I would like to take pasta” as:

d (o (AM, AD, p a s t a , ID) ,
o (AM, AD, f i s h , ID)) :�

dom (o (f i s h , _ , _ , _) ,
o (p a s t a , _ , _ , _)) .

⌅

We do not assume acyclicity in variable ordering. Recursive LCP theories have the full power
of Datalog (any Datalog program can be expressed as a recursive LCP theory).

The recursive rules need to be self consistent to not introduce contradictions.
Definition 5.3.1 A rule R is self-consistent if given any fact F all conclusions generated by the
rule R jointly the fact F are consistent with F .

⌅ Example 5.5 Given two features, with domains {A1,A2} and {B1,B2} respectively, the follow-
ing rule R is self-inconsistent: d(o(A2,X),o(A1,X)):- d(o(A1,Y),o(A2,Y)). Considering the
fact F =d(o(A1,B1),o(A2,B1)). jointly to R we obtain the facts F1 =d(o(A2,B1),o(A1,B1)).

and F2 =d(o(A2,B2),o(A1,B2)).. F1 is inconsistent with F . ⌅

We might also want to represent a more general set of rules, in which we universally quantify
the variable that are present in the body of the rule.

⌅ Example 5.6 — Quantification in the body of the rule.. Given two agents M mother and C
the child, we translate the sentence “The child has the same opinions as his mother” as:
d(o(M, C1), o(M, C2)) :-

8 C dom(o(M1,C), o(M2,C)). ⌅

To represent this kind of rules we need an extension of Datalog that allows universal quantifica-
tions also in the body of the rules and not only in the head.

164 Chapter 5. A logical model for conditional preferences

General structure Acyclic Tree
Dominance

CP-nets: PSPACE-complete NP or harder Polynomial
[52] [11] [9, 11]

CP-theories: PSPACE-complete PSPACE-complete Polynomial
[111] [111]

FLCP-theories: PSPACE-complete PSPACE-complete Polynomial*
Recursive LCP-theories: EXPTIME-complete — —

Consistency / Optimality

CP-nets: PSPACE-complete Polynomial Polynomial
[52] [11] [11]

CP-theories: PSPACE-complete Polynomial Polynomial
[111] [111] [111]

FLCP-theories: PSPACE-complete / ? ? / Polynomial* ? / Polynomial *
Recursive LCP-theories: EXPTIME-complete — —

Table 5.2: Computational complexity of Dominance, Consistency and Optimality. Bold: our results,
*: with some constraint on the form of the rule, ?: open problem, —: dependency graph not defined.

5.3.1 Algorithmic properties

The main algorithmic tasks regarding a preference theory are dominance queries, consistency
checking, and outcome optimization.

The results for Recursive LCP-theories are summarized in Table 5.2.
It is important to notice that for Recursive LCP-theories optimality and consistency procedures

never have a lower computational complexity than the dominance procedure, since a recursive
LCP rule also contains a dominance query. We note in passing that for FLCP theories, data-
complexity is also of interest. Recall that data-complexity for a Datalog programs is the complexity
of determining, for a fixed program P, and input database D and query q, whether P,D ` q (as
a function of the size of D and q). What is the distinction between P and D for LCP theories?
For FLCP theories, P is simply the clauses for dom/2, and consistent/0. Once N, the number
of features is fixed, this program is fixed. Thus data complexity for consistency of LCP theories
corresponds to the complexity of determining for fixed N, whether P,D ` inconsistent, as a
function of the number of rules in the program. For FLCP (=linear Datalog) the data-complexity is
NLogSpace-complete (see e.g. [55]).

Dominance

Theorem 5.3.1 Given a recursive LCP theory P over N features, deciding dom(s,t) is EXPTIME-
complete in N.

Proof. The proof is as above, except that the d/2 clauses may no longer be linear, hence the
combined complexity for full Datalog comes into play. ⌅

We note in passing that the connection with Datalog allows for a simple and direct proof of the
PSPACE-hardness of dominance for CP-nets. We show that the PSPACE-HARD problem of
determining whether a deterministic Turing Machine can accept the empty string without ever
moving out of the first k tape cells can be reduced to checking dominance queries for CP-nets by

5.4 Reasoning with LCP-theories 165

modifying slightly the proof for Datalog in [55, Theorem 4.5]. In practice, the solutions of the
dominance problem can be found using tabling on the dom/2 predicate.

Ordering

Given a logical conditional preference program P and a pair of outcomes (S1, ..., Sn) and (T1,

..., Tn), this query succeeds iff the first is not preferred to the second by P.
Since all queries for Datalog programs terminate, this query can be implemented simply by

running the query ?- (S1, ..., Sn) > (T1, ..., Tn). If this query succeeds return false,
else return true.

Consistency

Consistency is determined by invoking the query ?-consistent. This takes advantage of the
tabling of the dom/2 predicate.

The following theorem affirms that consistency remains in PSPACE even when the language
for preferences is extended beyond CP-nets to FLCP rules, and it is a generalization of Theorem 3
in [52].

Theorem 5.3.2 Given a recursive LCP theory P over N features, deciding consistency is
EXPTIME-complete in N.

As above, noting that the combined complexity for full Datalog is EXPTIME.

Outcome optimization

For optimality, the user invokes the query ?- optimal(s). Note that optimal/1 uses partial
order answer subsumption. In theory this may result in an exponential number of calls to dom/2

atoms; each check takes exponential time. This leads to:

Theorem 5.3.3 Given a recursive LCP theory P over N features, deciding optimality is in
EXPTIME over N.

The proof follows directly from the proof of Theorem 5.3.1 since the computational complexity
for the optimality for recursive rule is greater then the complexity of dominance, and the fact that
enumerate the whole set of outcomes pair is exponential.

5.4 Reasoning with LCP-theories

5.4.1 Completeness of LCP-theories

In this section we analyze the relation between the LCP-theories and two notion of completeness.
First we considered the classical notion of completeness: a preference theory is complete if

and only if given an order, it can be represented with this theory. FLCP-theories trivially satisfies
this condition. Given a partial order we can express each relation between two outcome o and o’

with the following FLCP-rule: d(o,o’). Thus we enumerate all the relations between pairs
of outcomes (that are facts in our theory) and we add the corresponding rule in the database. The
theory that we obtain corresponds to the order given in input.

166 Chapter 5. A logical model for conditional preferences

We considered also other notion of completeness: a theory is complete if and only if we can de-
scribe using this theory all the possible transformations from a database to other one.

Definition 5.4.1 A theory is complete if given two databases D and D’ exists a set of rules R,
described in this theory, such that we can obtain D’ applying the rules R to D.

In our case, since we are describing the theory using a logic formulation, in particular Datalog,
we have that the database D’ is always a superset of D: a logic rule can only add information and
not delete information. With this restriction, we observe that LCP-theories satisfies also this notion
of completeness. Thus, given two databases D and D’ in input, we can construct the set of rules R as
follow: the body of the rules is a tautology and the head correspond to a fact in the set D’ \ D. In
this way we can obtain every extension D’ of the initial database D.

5.4.2 Experimental evaluation

We have developed a compiler for LCP theories, also called LCP. The compiler and associated
tooling will be made available on Github as an open source project under the Eclipse Public Licence.
The compiler reads a LCP-theory, builds the dependency graph and checks whether it represents
an acyclic CP-net. If so, it performs a linearization of the dependency graph, and produces a pre-
digested representation of the theory. Otherwise it emits the clauses unchanged so that the standard
default (tabled) algorithms optimality, consistency and dominance can be used. In more detail, the
compiler captures (a linearization of) the dependency order in a clause dependency([a1,a2, . . . ,aN]).

where ai 2 1 . . .N (features are implemented as Prolog integers), and if a j depends on ai, then
i < j. Suppose ap depends on ai1 , . . . ,aik . If the input LCP program specifies that if each of
the features ai1 , . . . ,aik had values xi1 , . . . ,xik respectively, then the known order of values of ap

is given by (best) w1, . . . ,wr (worst), then the compiler emits the fact preference([xp�1, . . . ,x1],

[w1, . . . ,wr]). with xi1 , . . . ,xik as constant, and the remaining xi as unique variables (occur only
once in the clause). Thus we use Prolog unification to select the correct preference clause to use,
given the current partial outcome [v_p, ..., v_1] specifying values for the first p attributes (in
reverse dependency order). To improve the performance, our implementation exploits some specific
input known structures such as tree or acyclic graph. In such a way the compiler can reach high
performances when the input falls into one of the considered special cases. On the other hand, if the
input is not a special case than the algorithm uses the state-of-the-art approaches to find a solution
for the given instance. For the best of our knowledge this is the first implementation which have
this property.

The following code for optimize/1 uses these clauses and implements Acyclic-LCP-Opt:

o p t i m i z e (O) :� O=o (_ , _) , dependency (D) ,
r e o r d e r (D, O, ALis t) ,
o p t i m i z e _ a ([] , ALis t) .

r e o r d e r ([] , _ , []) .
r e o r d e r ([X | Xs] , O, [V | Vs]) :�

a r g (X, O, V) ,
r e o r d e r (Xs , O, Vs) .

5.5 Semantics for the dominance 167

o p t i m i z e _ a (_ , []) .
o p t i m i z e _ a (Upargs , [Xs | R]) :�

s e l e c t (Upargs , Xs) ,
append (Xs , Upargs , Upargs1) ,
o p t i m i z e _ a (Upargs1 , R) .

s e l e c t (Us , []) .
s e l e c t (Us , [X | R]) :�

nonvar (X) ,
s e l e c t (Us , R) .

s e l e c t (Us , [X | R]) :� v a r (X) ,
p r e f e r e n c e (Upargs , [X | _]) ,
s e l e c t (Us ,R) .

We would test the developed LCP-theories compiler against a dataset of CP-nets, to check per-
formances and also to check whether the tool can give the right answer in a reasonable amount
of time. Due to the fact that these dataset type are not available we have also implemented a
CP-net generator. Generating CP-nets i.i.d. is non-trivial [2] and therefore we use an approximation
method that randomly generates acyclic CP-nets with N features, given a maximum in-degree k
for each feature. We consider a fixed ordering X1, . . . ,XN of features. We first generate the acyclic
dependency graph: for each feature Xi, we randomly choose its in-degree d 2 0..min{k, i�1}.
Next, we randomly choose d parents from the features {X1, . . . ,Xi�1}. When the graph is built, we
fill in the CP-tables choosing randomly one element of the domain (since the domain is binary).
The resulting CP-net is written out as an LCP theory, using XSB Version 3.5.0 syntax [103]. We
have run two different kinds of experiment. In the first we varied the number of features from 5 to
200 fixing the maximal number of dependencies for each feature and measure the running time for
optimality queries, In the second experiment, fixing the number of features, we varied the upper
bound of dependencies from 1 to 10. In both experiments we used the CP-net generator that we
implemented to generate the CP-nets and we asked for the optimal outcome of the CP-nets 100
times and then we computed the average elapsed time to output the result.

Figure 5.1 shows the results for the experiment of the first type where the upper bound for the
number of dependencies is fixed to 6. The elapsed time to compute the optimal outcome grows
quadratically in the number of features. This is in line with our computational results, notice that the
runtime is not linear because each step involves checking for the value of parents using unification
on O(N) terms. Different tests of the second type gave similar results even varying the upper bound
of dependencies, for a fixed number of features.

5.5 Semantics for the dominance

In this section we introduce three new semantics for the dominance. The computational complexity
of these new tasks is polynomial (in time) in the CP-net description size contra the exponential time
of the classical notion of dominance (also for acyclic structures). This is the main advantage of
these new semantics respect to the usual definition of dominance.

168 Chapter 5. A logical model for conditional preferences

0 50 100 150 200
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

of features

el
ap

se
d

tim
e

in
 se

c.

Average time Power

Figure 5.1: Optimal outcome performances.

First we provide some notions that we need for the definition of the three semantics.
Definition 5.5.1 Given a program P that defines a CP-net C and given a complete or partial so-
lution (outcome) S we define as P(S) the set of constraints generated by C given the assignment
of the variables S.

⌅ Example 5.7 Given a CP-net C with 3 variables A, B and C and the edges A! B, A!C and
B!C and the following CP-tables:

• A= a� ā
• B= a : b� b̄, ā : b̄� b
• C= ab : c� c̄, ab̄ : c̄� c, āb : c̄� c, āb̄ : c� c̄

and an outcome S = ābc̄ then the program P defined by C produces the set:

P(S) = {a� ā, b̄� b, c̄� c}

Given a partial outcome T = ac, the program produces the set:

P(T) = {a� ā,b� b̄}

⌅

5.5.1 Alternative dominance semantics

Given two solutions (outcomes) S and T defined over a set of feature Var and a program P
corresponding to a CP-net, we propose the following three different semantics for the dominance.

Definition 5.5.2 — S1. The semantics S1 associates a score Score(S) to each solution S. Given
two outcomes S and T , if Score(S)< Score(T) then S� T .

Given an outcome S, to compute Score(S), first we have to compute P(S). Then, with the
resulting preferences, we calculate for each dimension i (associated to the feature Xi) the distance
between the position of S �Xi and the max in the ordering defined by P(S) over the domain Di of

5.5 Semantics for the dominance 169

the feature Xi. Then we aggregate the scores of each component with an aggregation function
f . Many choices for the function f are possible, for example lexicographic, point wise, sum,
maximum, etc.

Definition 5.5.3 — S2. Given two outcomes S and T , if the preference order � generated by
P(S) equals that generated by P(T) (P(S) and P(T) generate the same sets of constraints), then
S� T if in each dimension i (associated to the feature Xi), S �Xi� T �Xi .

Intuition: We will compare S and T only if they agree on the generated preference order. Two
ways in which S and T can be different and still generate the same preference order:

• They differ on variables which are not decision variables (i.e. variables that influence
preferences on other variables)

• They differ on the values of decision variables, but that does not affect the generated prefer-
ence order.

Definition 5.5.4 — S3. The semantic S3 is parametric in the choice of variables in V that is a
subset of Var . If the preference order � generated by P(S �V) equals that generated by P(T �V)

then S� T if in each dimension i 2V , S �Xi� T �Xi .

⌅ Example 5.8 Given a CP-net with 3 variables A, B and C and the edges A! B, A! C and
B!C and the following CP-tables:

• A= a� ā
• B= a : b� b̄, ā : b̄� b
• C= ab : c� c̄, ab̄ : c̄� c, āb : c̄� c, āb̄ : c� c̄

and given two outcomes S and T such that S = ab̄c and T = ābc we obtain that:

P(S) = {a� ā,b� b̄, c̄� c}

P(T) = {a� ā, b̄� b, c̄� c}

We obtain the following results for the three semantics:

• S1 (using f = sum): Score(S) = 0+1+1 = 2, and Score(T) = 1+1+1 = 3. Score(S)>
Score(T) thus S� T .

• S2: P(S) 6= P(T) thus S ./ T
• S3:

– if V = {A,C}, then P(S �V) = P(T �V). S �A� T �A and S �C= T �C thus S� T ;
– if V = {C}, then P(S �V) = P(T �V). S �C= T �C thus S� T ;
– if V = {B}, then P(S �V) 6= P(T �V) thus S ./ T .

⌅

5.5.2 Properties of the semantics

We observe that the three semantics satisfy the following intuitive properties:

• S1 is transitive
• S2 is transitive

170 Chapter 5. A logical model for conditional preferences

• S3 is transitive i.e. S�V T and T �V U implies S�V U .
• S2 is obtained from S3 by taking V to be Var .

Observation 5.3 It is important to notice that the assumption to have an aggregation function
for the scores (for S1) that is monotonic not decrescent with the notion of weakly Pareto
dominance between the outcomes, is a restriction, but it is very common and all the most
common aggregation functions (i.e. sum, max, etc.) have this property. ⌅

Definition 5.5.5 Given a CP-net described by a program P and two outcomes S and T , we
can generate the sets P(S) and P(T). We define as Ṽ the maximal subset of Var such that
P(S �Ṽ) = P(T �Ṽ). This set could be empty.

The set Ṽ has the following properties:
• if S� T in Ṽ , for all V subset of Ṽ then S� T in V ;
• for all subset Y of Var that contain at least one element of Var \Ṽ we obtain S ./ T on Y .
We prove now three propositions (Proposition 5.5.1, Proposition 5.5.2 and Proposition 5.5.3

)that describe the relations between the three semantics.

Proposition 5.5.1 If S� T in S1 then:
1. in S2 it could be S� T or S ./ T but never S� T
2. in S3 it could be S� T , S� T or S ./ T

Proof. 1. • [�] : S� T in S1 and we assume by contradiction that S� T in S2. This means
that P(S) = P(T) and that 8X 2 Var S �X� T �X . This implies that Score(S �X) >

Score(T �X), and than f (Score(S))> f (Score(T)) (with the assumption of monotonic
function f). Thus S� T in S1 that is a contradiction.

• [�] : Given a CP-net with only a feature A such that a� ā and given S = a and T = ā
then we obtain that S� T in S1 and also in S2.

• [./] : Given a CP-net with two features A and B such that a� ā, a : b� b̄ and ā : b̄� b,
and given S = ab and T = āb then we obtain that S� T in S1 but S ./ T in S2.

2. Given a CP-net with three features A, B and C such that a� ā, b� b̄, b : c� c̄ and b̄ : c̄� c,
given S = ābc and T = ab̄c we obtain that S� T in S1 and:

• [�] : if V = {A} then S� T
• [�] : if V = {B} then S� T
• [./] : if V = {A,C} then S ./ T

⌅

Proposition 5.5.2 Given two outcomes S and T , if S� T in S2 then:
1. in S1 it could be S � T or S ./ T if we use an aggregation function f for the scores that is

monotonic not decrescent with the notion of weakly Pareto dominance between the outcomes.
If we use a monotonic crescent function S� T .

2. in S3 it could be only S� T .

Proof. 1. If S � T in S2 then the two sets P(S) and P(T) contains the same constraints and

5.5 Semantics for the dominance 171

S �Xi� T �Xi 8i. This implies that Score(S �Xi)< Score(T �Xi) 8i. If we use an aggregation
function f for the scores that is monotonic crescent with the notion of Pareto dominance
between the outcomes, this means that given two outcomes o and o0, if

8i Score(o �Xi)> Score(o0 �Xi) then f (Score(o))> f (Score(o0)) .

In our case this implies that f (Score(S))< f (Score(T)) and then we obtain that S� T also
in S1.

2. We suppose by contradiction that S � T in S2 and S � T in S3. This implies that exists a
subset V of Var such that 8X 2V we have S �X� T �X . This is a contradiction because if
S� T we have that 8X 2 Var S �X� T �X .
We suppose by contradiction that S� T in S2 and S ./ T in S3. We have two cases:

• S ./ T in S3 because P(S �V) 6= P(T �V). But this implies that also P(S) 6= P(T) and
thus that S ./ T also in S2, that is a contradiction.

• P(S �V) = P(T �V) and S ./ T in S3 because exists X1,X2 2V such that S �X1� T �X1

and S �X2� T �X2 or viceversa. But this implies also that S ./ T in S2 and this is a
contradiction.

⌅

Proposition 5.5.3 If S� T in S3 then:

1. in S1 it could be S� T or S ./ T
2. in S2 it could be S� T , S� T or S ./ T

Proof. 1. Given a CP-net with three independent features A, B and C such that a� ā, b� b̄ and
c� c̄:

• [�] : given S = ābc and T = ab̄c̄ we obtain that S� T in S1 and if V = {B} then S� T
in S3

• [�] : given S = ab̄c̄ and T = ābc we obtain that S� T in S1 and if V = {A} then S� T
in S3

Given a CP-net with two independent features Aand B such that a� ā and b� b̄:
• [./] : given S = ab̄ and T = āb we obtain that S ./ T in S1 and if V = {A} then S� T

in S3
2. Given a CP-net with two independent features Aand B such that a� ā and b� b̄:

• [�] : given S = ab̄ and T = āb if V = {A} then S� T in S3 but S ./ T in S2
• [./] : given S = ab and T = āb̄ then S� T in S3 and also S ./ T in S2

We prove by contradiction the remaining case:
• [�] : We suppose by contradiction that S � T in S3 and S � T in S2. If S � T in S2,

this implies that P(S) = P(T) and also that 8X 2 Var S �X� T �X . Considering the set
V used by S3, because S� T in S3 we have that 8X 2V S �X� T �X . But V is a subset
of Var so it is a contradiction.

⌅

172 Chapter 5. A logical model for conditional preferences

5.5.3 Properties of the semantics comparing to the classical dominance

We compare now the three semantics with the classical dominance semantic.

Theorem 5.5.4 If S� T in S2 then S� T also using the classical notion of dominance.

Proof. Given S and T such that S� T in S2, we want to prove that exist a worsening flip sequence
from S to T . If S � T in S2, then we have that P(S) = P(T) and S �X� T �X 8X 2 Var . Thus
if we consider the variables from the leafs of the structure, we obtain an order over the variables
that have a different value on S and on T : X1,X2, · · · ,Xk. Thus considering the sequence P =

S,P1,P2, · · · ,Pk = T , P is a worsening sequence because for each step i we make a worsening flip
for the feature Xi given the assignment of the parents in S. ⌅

Corollary 5.5.5 Given a PCP-net and two outcomes S and T then the value of the dominance
using S2 is a lower bound for the the value of the classical dominance.

Proposition 5.5.6 If S� T in S3 and in S1, in the classical dominance we could have S� T , S ./ T
or also S� T .

Proof. • If S� T in S1 we may have the same in the classical dominance:
– [�] : Given a CP-net with a independent feature A such that a � ā and given the

outcomes S = a and T = ā then in both S1 and real dominance we have S� T .
– [./] : Given a CP-net with three independent features A and B and C such that a� ā,

b� b̄ and c� c̄ and two outcome S = xȳz and T = x̄yz̄. We obtain that Score(S) = 1 <

Score(T) = 2 and thus S� T in S1 but S ./ T in the classical dominance.
– [�] : Given a CP-net with five feature A, B, C, D, E and the dependencies A!B, B!C,

C! D and C! E such that: a� ā, a : b� b̄, ā : b̄� b, b : c� c̄, b̄ : c̄� c, c : d � d̄,
c̄ : d̄ � d, c : e� ē, c̄ : ē� e, and given two outcomes S = āb̄c̄de and T = abcd̄ē. We
suppose to aggregate the scores with the sum and thus we obtain: Score(S) = 1 and
Score(T) = 2 thus S� T in S1. But S� T in the classical dominance because exist a
worsening flip sequence from T to S:

T = abcd̄ē� abc̄d̄ē� ab̄c̄d̄ē� āb̄c̄d̄ē� ab̄c̄d̄e� āb̄c̄de = S.

• If S� T in S3 we may have the same in the classical dominance:
– [�] : Given a CP-net with two independent feature A and B such that a� ā and b� b̄

and given the outcomes S = ab and T = āb then in both S3 with V = {A} and real
dominance we have S� T .

– [./] : Given a CP-net with two independent features A and B such that a� ā and b� b̄
and two outcome S = ab̄ and T = āb and we take V = A, we obtain that S � T in S3
but S ./ T in the classical dominance.

– [�] : Given a CP-net with three features A, B and C such that a� ā, b� b̄ and ab : c� c̄,
ab̄ : c̄� c, āb : c̄� c, āb̄ : c� c̄ and two outcome S = āb̄c and T = abc̄. Then S� T in
S3 if we take V =C but T � S in the classical dominance because exists a sequence of

5.6 Summary and Discussion 173

worsening flips from T to S:

T = abc̄� ab̄c̄� ab̄c� āb̄c = S.

⌅

Proposition 5.5.7 If S � T in the classical dominance, in S2 could be S � T or S ./ T but not
S� T .

Proof. If S� T in the classical dominance, in S2 it can’t be S� T otherwise, using Theorem 5.5.6,
we must have that also S� T in the classical dominance. ⌅

Theorem 5.5.8 The optimal outcome using S1 is the same as using the classical notion of
dominance, in an acyclic CP-net.

Proof. The optimal outcome in S1, given the sum or the maximum as score aggregation function, is
the outcome that has the minimum score, this score is 0. This means that 8X 2 Var Score(Var) = 0.
This condition holds only if for each feature of the outcome, its assignment it is in the top position
in the statements of the corresponding line in the CP-net, given the assignment of the parents of
the outcome. But this correspond to the outcome resulting from the sweep forward procedure that
determines the optimal outcome for the classical dominance. ⌅

5.6 Summary and Discussion

Since CP-nets framework and its generalizations/variants are limited in expressiveness and are
specialized formalisms with their own ad hoc syntax and semantics, in this chapter we presented a
new unification theory for qualitative conditional preferences, namely LCP-theories. We defined
this new theory directly in standard first order logic, as constrained Datalog theories. This is an
important advantage since we now make Datalog’s rich semantic, algorithmic and implementation
framework available in service of conditional preferences.

First we introduced Flat LCP-theories, conditional preferences defined as linear Datalog
theories. We compared Flat LCP-theories with a set of models representing conditional preferences
such as CP-nets, CP-theories, GCP-nets and comparative preferences and we showed that Flat
LCP-theories can express each of them: are all particular cases of LCP theories. We then provided
algorithms for the main tasks: consistency checking, outcome optimization and dominance testing,
with also a computational complexity analysis. We compared our complexity results with the results
concerning other models as CP-nets and CP-theories, considering three different structure types
for the dependency graph: general structures, acyclic structures and tree-shaped structures. The
results show that considering Flat LCP-theories does not increase, in the most of the cases, the
computational time.

We then generalized Flat LCP-Theories allowing also Datalog recursive clauses into the
formulation. This defines a new notion of preferences: recursive conditional preferences. Thus,
based on this idea, we defined Recursive LCP-Theories. We introduced procedures for the main

174 Chapter 5. A logical model for conditional preferences

reasoning tasks: consistency checking, outcome optimization and dominance testing, with also a
computational complexity analysis. Obviously, increasing the power of the model expression, we
observed an increase of the computational complexity of the tasks procedures. We also implemented
in modern tabled Prolog systems such as XSB Prolog, the main tasks, providing an experimental
analysis that confirmed the theoretical study.

Focusing on the direct expression of our formalism in Datalog we reinterpretated the notion
of dominance, presenting three more efficient alternative definitions for the dominance task. We
provided a theoretical comparison of these three new semantics between them and in comparison to
the classical dominance semantics.

In conclusion the power of LCP-theories, in addiction to unify the state-of-the-art formalisms for
conditional preferences, is that LCP-theories extend them (introducing the new notion of recursive
conditional preferences), preserving the state-of-the-art computational complexities.

6. A real-life scenario: kidney transplant protocol

The role of kidneys is to filter waste from blood. Kidney failure leads to death in months. One option
is dialysis, but it is a invasive procedure and it leads to a fast worsening of the quality of the patients
life. The best treatment for the kidney disease is transplantation. Kidneys for transplantation may
be obtained from deceased donors or from living donors. This second option allows a patient to
receive the kidney of a friend or a relative, or in same cases, an altruistic donor. But in many
cases the patient is not compatible with the relative or friend, for a blood incompatibility or tissue
incompatibility. Thus there is also another possibility for a living transplantation: kidney exchange
[107]. Kidney exchange is a powerful lifesaving alternative for patients that are waiting in the
deceased-donor waiting list, since it permits to swap the living donors of a patient with another
donor-patient pair. The pairs that join this program are not necessary only the incompatible ones,
but it is encouraged the participation of all the pairs that could have an improvement in the quality
of the transplantation or in the expected life.

Kidney exchange is widely used in many countries, such as UK, US, Spain, etc. The success
of this procedure depends on the amount of pairs that participate to the program. In Italy, and in
particular in our context of Padua, the patients do not take a lot of advantage from this program
since only a very small subset of the patients join the kidney exchange program. The results is that
there are few pairs and thus few compatible matchings. Our purpose is to encourage people and
also the medical structures to participate. The principal way to obtain our scope is to guarantee
a sure advantage in the participation. For example we force the system to produce matching that
increase considerably the quality of the transplantation of all the pairs. In the case of incompatible
pairs the advantage is to obtain a compatible matching and for the compatible pairs the advantage
corresponds to a considerable increasing of the expected life, the decrease of the age delta between
the pairs or the increase of the compatibility.

176 Chapter 6. A real-life scenario: kidney transplant protocol

The procedures used to compute these matching, find cycles of exchange or chains that starts
from an altruistic donor. Our idea consists into combine these two options with also chains that
starts from a deceased donor kidney. In this way, given a kidney from a deceased donor, we can
obtain more than one transplantation. We implemented the algorithm and we tested it in the context
of the Padua medical center, obtaining encouraging results.

In the medical literature it is a well known problem that a large percentage of the matches
computed by the exchange algorithms are not performed [35], for many reason: varying levels of
sensitization between candidates and donors in the pool, illness, uncertainty in medical knowledge,
logistical problems or a donor in a chain reneging. We provide some preliminary ideas to minimize
this percentage to increase the quality of the transplantations, introducing also patients preferences
in the computation of the matching. Adding the preferences obviously reduces the number of the
feasible matchings, but minimizing the number of the failure we obtain an increase of the global
number of the transplantations effectively performed.

Chapter structure

The chapter is organized as follows.

• In Section 6.1 we introduce several approaches present in the literature.
• In Section 6.2 we present our procedure for kidney exchange. This procedure consider

both cycles and chains starting from a deceased donor kidney. We provide the algorithm
description as a system of constraints, then formulated in ILP (integer linear programming).
We show examples of the procedure running interface.

• In Section 6.3 we perform an experimental analysis of our procedure applied to the Padua
hospital dataset. We provide a results discussion.

• In Section 6.4 we introduce the future direction of introducing preferences in our algorithm,
with the purpose of improving the results.

6.1 Background and Related works

6.1.1 Allocation algorithms detecting cycles

In a recent work Abraham et al. [1], provide an algorithm to solve the clearing problem maximizing
cycle kidney exchanges. A cycle consists in a swapping between agents, where each agent is
represented by a pair donor/patient and each agent receives a kidney from the next agent in the
cycle and donates a kidney to the previous agent. In this work they fix a value as the maximum
length of a cycle, since all transplants in a cycle must be performed simultaneously and thus long
cycles are forbidden. Shorter cycles are preferred also because in long cycles if one agent drops out
of the cycle more agents are involved not receiving the kidney. They also proved that detecting
cycles with this cycle-length constraint is NP-hard. In this paper they use a basic formulation of the
problem as a integer linear programming problem (ILP) and then they use techniques to improve
both runtime and memory usage.

6.1 Background and Related works 177

6.1.2 Allocation algorithms detecting chains with an altruistic donor

An alternative to the detection of cycles of kidney exchange, are the chains of exchanges: sequences
of transplants initiated by an altruistic kidney donor. In practice this alternative is a highly successful
practice, and widely used in United States. Dickerson et al. [34] provide an analysis the efficacy of
chains proving the optimal length of a chain is of 3 exchanges, in very large dataset. This results is
in contradiction with real-world results (in United States) since they show in [34] that in United
States instead the solution quality improves by increasing the chain length exceeds 13 exchanges.
This gap is explained by the fact that in reality the number of altruistic donor is smaller.

6.1.3 Other approaches

In another work of Dickerson et al. [35] they analyze the following problem concerning the
combined formulation of kidney exchange with cycles and kidney exchange with chains: the
number of transplantations failures. With failures we mean failure before that the transplant
procedure takes place (not during or after it). The show that most of the planned matches fail:
in the case of the UNOS exchange, 93% of matches fail (in 2012). They propose, to ensure
this condition, to consider not the maximum cardinality matching but the transplant plan with
maximum expected value. They move away from the deterministic clearing model (currently
used) into a probabilistic model where we have to consider the failure probabilities on possible
plans. They proved, running simulations first on theoretical data (on random graph models and
on simulation generated via a model of dynamic kidney exchange) and then on real data (from
kidney exchange match runs between 2010 and 2012), that their algorithm increases the number of
expected transplants dramatically.

Gentry et al. in [94] proved that adding also compatible pairs and not only incompatible pairs
doubles the number of matching (from 28.2% to 64.5% for single-center program and from 37.4%
to 75.4% for national program). But in this study the compatible pairs play an altruistic role in
the pool. Thus only pairs with altruistic intentions would be interested in participating in such a
program. In the work of Nicolo’ et al. [81] incentives the compatible pairs to participate to the
program ensuring that also their matching is an advantage: they provide to a compatible pair a
younger donor. Thus the advantage for compatible pairs is that they receive a kidney with a better
quality that is reflecting in a higher expected graft survival.

Dickerson et. al in [36] focus their attention to a particular class of patient: the sensitized
patient, that are highly-sensitized with a very low probability that their blood will pass a crossmatch
test with a random organ. For these patients, finding a kidney is quite difficult. These kind of
patients are about the 17% of the adult patients on the waiting list for deceased donor kidneys. They
propose different notion of fairness to increase the number of sensitized patient that are allocated
by the matching algorithm.

178 Chapter 6. A real-life scenario: kidney transplant protocol

6.2 Our algorithm: detection of cycles and chains starting from deceased
donors

The idea behind the algorithm is to maximize the number of transplantations given a kidney from
a deceased donor, and additionally to look for cycles between the pairs patient/donor in the pool.
Thus our idea is to consider a deceased donor kidney as an altruistic donors and thus to start a
chain of exchanges from a deceased donor kidney. Usually a living donor is always preferred to
a deceased donor, but in this way we maximize the number of transplantation for each received
kidney and thus we increase the probability for a highly-sensitized patient to receive a graft.

Given a kidney from deceased donor, the procedure find all the chains that can starts from a
deceased donor kidney and that continue in the pool of the pairs that participates to the exchange
program. A chain always finish with a patient in the deceased-donor waiting list, where the
sensitized patients have the priority. We add the constraint that if we are processing a kidney that we
would have allocated to an sensitized patient, then the chain have to finish with another sensitized
patient. In this way the total number of allocated sensitized patients is never lower to the number
of sensitized patients allocated without using our procedure. We add in our pool also a subset of
compatible pairs: pairs that become compatible through desensitization. This means that these pairs
are not completely compatible but need desensitization to become fully compatible, a procedure
that has some risks especially in the case of critical patient. Thus we propose, to this kind of pairs,
a sure advantage in the participation, because they can find a match in which they do not need
desensitization. In this way we are encouraging them to participate into the program. This idea is
similar to the approach explored in the work of Nicolo’ et al. in [81].

We provide a formal description of the procedure in the following sections.

6.2.1 Our exchange procedure

Our procedure take as input a pool composed by:

• living donor/patient pairs;
• highly-sensitized patients;
• kidneys;

and returns a matching composed by cycles between pairs, and chains, that start from a kidney and
end or in a pair or in a sensitized patient.

We represent each element of the pool as a node of a graph, namely the compatibility graph.
We have three different types of nodes, the pair nodes, the kidney nodes and the sensitized patient
nodes. The edges in this graph represent the compatibility between the nodes. We add an edge
(X ,Y) from a node X to another node Y only if the donor/kidney of the first node X is compatible
with the patient of the second node Y . The nodes that represent a kidney will have only outgoing
edges and the sensitized patients nodes will have only ingoing edges. The pair nodes could have
both outgoing and ingoing edges.

Furthermore each node has a set of constraints, that are different for the three types of nodes:

• Kidney nodes. This type of node can have either only an outgoing edge activated, or all the
edges inactive, because each kidney can be grafted only to one patient or to no one.

6.2 Our algorithm: detection of cycles and chains starting from deceased donors179

• Pair nodes. This type of node can have either only an ingoing edge activated, or one ingoing
and one outgoing edge activated or all the edges inactive. This because a pair can not donate
a kidney without receive a kidney, but can receive and not donate because in this case we
consider that the kidney of the donor will be donated to the patients in the deceased-donor
waiting list.

• sensitized patient nodes. This type of node can have either only an ingoing edge activated, or
all the edges inactive. This because each patient can either receive only one kidney or no one.

Formally, we partition the set of nodes in three sets: P the set of the pair nodes, IM the set
of sensitized patient and K the set of kidney. Given a node X , we call EX the set of its edges,
partitioned in two subsets E�X of the ingoing edges and E+

X of the outgoing edges. An edge e 2 E,
where E is the set of all the edges, has value in {0,1}: 1 if active and 0 if inactive.

We translate the constraints described above in a formal way as:8>>>>>>>>><>>>>>>>>>:

e 2 {0,1} 8e 2 E active/inactive

Âe2EX e 2 {0,1} 8X 2 K kidney nodes

Âe2E�X
e�Âe2E+

X
e 2 {0,1} 8X 2 P pair nodes

Âe2EX e 2 {0,1,2} 8X 2 P pair nodes

Âe2EX e 2 {0,1} 8X 2 IM sensitized patient nodes

If we are processing kidneys that we would have allocated to a sensitized patient (set IM), then we
add also this constraint:

Â
X2IM

(Â
e2E�X

e)� Â
X2K

(Â
e2E�X

e)� 0

Our algorithm is divided into two main parts: cycle detection and kidneys processing. First
we look for cycles between the pairs and then we process one by one the kidneys, following the
inter-arrival sequence in the deceased-donor program, considering only optimal kidneys.

• Cycle detection. We build the compatibility graph using only pair nodes. Here we look for
the maximum subset of active edges. In this step we can create only solution that are cycles
between the pairs.

• Kidneys processing. We build the compatibility graph using all the kind of nodes, but adding
only one kidney at iteration, following the inter-arrival sequence in the deceased-donor
program. Here we look for the maximum subset of active edges. In this step we can create
only solution that are chains between the nodes and each chain start with the processed
kidney and can finish or with a pair node or with a sensitized patient node.

At each iteration of the algorithm we obtain a solution, the maximum subset of active edges. Thus
we are maximizing the following objective function:

Â
e2E

e

Once obtained a solution, we compute the nodes that corresponds to the patients involved in the
solution matching, so the nodes that are touched by the active edges in the solution and we remove

180 Chapter 6. A real-life scenario: kidney transplant protocol

this nodes/patients for the next iteration.

To solve this problem we use a integer linear programming (ILP) implementation. We maximize
the sum of the variables e with the following constraints:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

Âe2EX e >�1 8X 2 K kidney nodes

Âe2EX e < 2 8X 2 K kidney nodes

Âe2E�X
e�Âe2E+

X
e >�1 8X 2 P pair nodes

Âe2E�X
e�Âe2E+

X
e < 2 8X 2 P pair nodes

Âe2EX e >�1 8X 2 P pair nodes

Âe2EX e < 3 8X 2 P pair nodes

Âe2EX e >�1 8X 2 IM sensitized patient nodes

Âe2EX e < 2 8X 2 IM sensitized patient nodes

ÂX2IM(Âe2E�X
e)�ÂX2K(Âe2E�X

e)>�1 kidneys allocated to sensitized patients

We add also the integer constraints for all the edges e (the active/inactive constraint).

We implemented the algorithm in python using the opensource library lp_solve. To solve a ILP
problem using this package we have to provide a constraint matrix M, a sign vector s, a known
values vector v and a vector for the objecting function f . In our algorithm we provide the following
structures M, s, v and f :

M =

266666666666666666664

K+ IM� P+ P�

1 0 0 0
1 0 0 0
0 0 �1 1
0 0 �1 1
0 0 1 1
0 0 1 1
0 1 0 0
0 1 0 0
�1 1 0 0

377777777777777777775

v =

266666666666666664

�1
2
�1
2
�1
3
�1
2
�1

377777777777777775
s =

266666666666666664

1
�1
1
�1
1
�1
1
�1
1

377777777777777775
f =

266666666666666664

1
1
1
1
1
1
1
1
1

377777777777777775

The procedure returns the set of transplantation in each iteration and plots each solution into a
graphical representation of the nodes:

• the green node are the nodes that represent not sensitized patient or kidney that we would not
have allocated to an sensitized patient in the deceased donor list;

• the blue nodes are the nodes that represent sensitized patient or kidney that we would have
allocated to an sensitized patient in the deceased donor list;

• the nodes are identified by a number that is the id of the node and by a label that is D for
kidneys, D/R for the pairs and R for the sensitized patients;

• the active edges are red and the non active edges are black.

6.3 Experiments 181

Figure 6.1: Cycle detection.

⌅ Example 6.1 We show an example of the cycle detection step of the procedure in Figure 6.1 and
an example of the kidneys processing step in Figure 6.2.

In the cycle detection example (Figure 6.1) we have four pairs 0D/R, 1D/R, 2D/R and 3D/R.
The pair 0D/R is compatible with the pairs 1D/R and 2D/R, the pair 1D/R is compatible with the
pairs 0D/R and 2D/R, the pair 2D/R is compatible with the pairs 1D/R and 3D/R and the pair
3D/R is not compatible with any pair. We can see that the algorithm detects the cycle with the
maximal number of trasplantations that is between nodes 0D/R, 1D/R and 2D/R.

In the kidneys processing example(Figure 6.2) we have four nodes: two pairs 0D/R and 1D/R,
uno kidney 4D and two patients, one sensitized 2R and one not sensitized 3R . The pair 0D/R is
compatible with the pair 1D/R, the pair 1D/R is compatible with the receivers 3R and 2R and the
donor 4D is compatible with the pairs 0D/R and 1D/R. We can see that the algorithm detects the
longest chain that maximize the number of transplantations that starts from 4D then reach in order
0D/R, 1D/R and 2R. We can observe that since the processed kidney is a “blue” node, a kidney
that we would have allocated to an sensitized patient in the deceased donor list, the chain ends with
another “blue” node, an sensitized patient. The constraint about the conservation of the number of
sensitized patients/donors is satisfied.

⌅

6.3 Experiments

We performed experiments to test our procedure on a dataset extracted and anonymized from the
Padua hospital database. We consider three years (from January 2012 until December 2014) of:

• living donor/patient pairs (or incompatible pairs or compatible with desensitization);
• sensitized patients;

182 Chapter 6. A real-life scenario: kidney transplant protocol

Figure 6.2: Kidneys processing.

• optimal kidney from deceased donors (optimal means that the age of the donor is less than
60, the kidney is suitable for a single transplantation thus not a double-kidney transplantation,
the kidney has an immunological low risk).

The living donor/patient pairs are divided in two types: transplanted pairs with desensitization and
not transplanted pairs since incompatible. Our purpose is to maximize the number of transplants of
the not transplanted pairs and minimize the number of desensitizations because this procedure has
some risks especially in the case of critical patient.

The Padua hospital dataset, that we have considered, has 51 pairs donor/patient (22 desensitiza-
tion pairs and 29 incompatible pairs), 68 optimal kidneys and 21 sensitized patients.

We performed three type of experiments, in which we vary the composition of the pool.

6.3.1 First experiment

The pool is composed by:
• transplanted pairs with desensitization
• not transplanted pairs
• sensitized patients
• all the optimal kidney from cadaver

The results are described in Table 6.1.

6.3.2 Second experiment

The pool is composed by:
• transplanted pairs with desensitization
• not transplanted pairs
• sensitized patients

6.3 Experiments 183

Number of: Result
transplantation in the algorithm 40

transplantation in cycles 4
(2 cycles of length 2)

sensitized patient allocated by the algorithm 9
pairs previously with desensitization and now without 16
incompatible pairs now transplanted 9
allocated kidneys 23
kidney from deceased donors that we would not have

1allocated to an sensitized patient in the deceased
donor list, that are allocated by the algorithm

Table 6.1: First experiment results.

• optimal kidney from deceased donors that we would not have allocated to an sensitized
patient in the deceased donor list

The results are described in Table 6.2.

Number of: Result
transplantation in the algorithm 39

transplantation in cycles 4
(2 cycles of length 2)

sensitized patient allocated by the algorithm 9
pairs previously with desensitization and now without 15
incompatible pairs now transplanted 9
allocated kidneys 22

Table 6.2: Second experiment results.

6.3.3 Third experiment

The pool is composed by:
• not transplanted pairs
• sensitized patients
• optimal kidney from deceased donors that we would not have allocated to an sensitized

patient in the deceased donor list
The results are described in Table 6.3.

6.3.4 Results analysis

As we can see in Table 6.1, Table 6.2 and Table 6.3 the effective number of additional trans-
plantations corresponds to the number of incompatible pairs now transplanted. This number is
9 for the first two experiments and 8 for the third. Considering that the initial pool contains 29
incompatible pairs, we are transplanting now around the 31% and the 27% of the incompatible
pairs. Furthermore we are transplanting without desensitization 16 patients in the first experiment

184 Chapter 6. A real-life scenario: kidney transplant protocol

Number of: Result
transplantation in the algorithm 14
transplantation in cycles 0
sensitized patient allocated by the algorithm 6
incompatible pairs now transplanted 8
allocated kidneys 7

Table 6.3: Third experiment results.

(76% of the pairs with desensitization) and 15 patients in the second experiment (68% of the pairs
with desensitization). We are also transplanting 9 sensitized patient in the first two experiments and
6 in the third.

We expected results with less impact. The percentages of incompatible pairs now transplanted
and of the pairs that do not need desensitization anymore, are strongly encouraging. These results
are even more interesting considering the dimension of the considered pool. If we move to a
national scenario, and thus not only local as the Padua context, the number of matchings surely
increase since for each patient the probability of finding a compatible kidney increases.

Another unexpected fact is the high percentage of the highly-sensitized patients that are now
allocated. This percentage is highly significant: the 42% of sensitized patient receive a kidney, that
is near to the half of the sensitized pool. Since for this kind of patients have a very low probability
to receive a compatible kidney waiting in the deceased-donor waiting list, this result will have a
strong impact.

The use of kidney from deceased donors that we would have allocated to an sensitized patient
in the deceased donor list, seems not affect the results. Only one kidney of this typology is used and
the other results remains almost unchanged. Also the introduction of pairs that need desensitization
seems not influence the other results, but this fact probably depends on the limited dimension of
the dataset. Extending the analysis to a national context, the behavior of the system could change
significantly.

6.4 Introduction of Preferences

The preferences of the patients are important in kidney transplantation. For example patients favor
calculating waiting time from the initiation of dialysis therapy, rather than from time of listing;
patients favor giving more weight to waiting time than to HLA matching; and patients do not favor
giving preference to younger versus older recipients. Geddes et al. in [24] proved that patients do
not agree with the current allocation criteria in the UK Transplant (UKT). Only 6.0% of the patients
agreed with the current protocol in which the allocation to a patient not yet on dialysis therapy who
had been on the transplant waiting list longer than a patient already on dialysis therapy. Only 24.6%
of participants agreed with the usage of HLA matching discriminant with respect to the waiting
time: a patient with a good HLA match that is waiting from 2 years in the list is advantaged respect
to a patient with a bad match but waiting from 7 years. Patients also were opposed to the use of
recipient age. The majority agreed that recipient sex should not be used to allocate kidneys and

6.4 Introduction of Preferences 185

allocation should favor recipients who have waited longer. In conclusion of this study they discover
that patients disagreed with several aspects of current allocation systems.

Another problem that could be solved with the using of patient preferences are the discarding
of a large amount of kidneys (more than 10% of cadaveric kidneys) because considered of marginal
quality. Su et al. in [100] show that allowing to the patients to accept also this kind of kidney
(following their preferences) cause an increase of 6% in QALY (quality-adjusted life expectancy
that is an index of survival times estimated) , a 12% decrease in median waiting time, a 39%
increase in the likelihood of transplantation, and a 56% reduction in the number of discarded
kidneys.

Using the patients’ preferences also can help to avoid the number of matching failure as
described by Dickerson et al. [35] (they show that in the UNOS exchange program the 93% of
matches fail in 2012). For instance, in the case of logistical problems, we can include the patients
preferences about the location of the hospitals. Many chains are broken because a donor in a
chain reneging (i.e., backing out after his patient received a kidney) [35]. We can estimate the risk
aversion of each patient and the corresponding donor, to minimize these kind of situations. To this
purpose we need to use effective frameworks to represent preferences and to be able to elicit the
patients preferences.

In conclusion adding patients preferences could reduce the number of the feasible matchings,
but minimizing the number of the failure we obtain an increase of the global number of the
transplantations effectively performed. Considering instead the introduction of preferences about
marginal kidneys we instead are increase the number of organs in the pool, allowing to use also
kidneys that otherwise would have been discarded.

6.4.1 Future work

We plan to follow the models described above, adding preferences to the patients description in the
algorithms. It is really important to understand which kind of preferences must taken into account.
We decided to consider the risk aversion of the patients to estimate the typology of kidney that a
patient could accept or not. To learn this parameter we are administering a questionnaire to a set of
patients, asking questions related to the risk aversion (following the studies in [4, 5, 50]).

Moreover we plan to follow the approach introduced by Dickerson et al. in [35], using a
probabilistic model to find the transplant plan with maximum expected value.

In the kidney exchange protocol we want also to add preferences regarding the minimum
threshold for a patient for the received advantage in a matching. For example a compatible pair
could become interested in the participation to the program if the program will provide a matching
with a younger donor with also a better match HLA. We can also consider a set of different
possible advantages and the patient provide a ranking of them. In this way we encourage a massive
participation into the program and also we are minimizing the number of transplantation failure,
with the meaning of number of rejected proposed matchings.

186 Chapter 6. A real-life scenario: kidney transplant protocol

6.5 Summary and Discussion

In this chapter we analysed the kidney transplant protocol and how to improve it. There exists many
possible improvements of the currently used algorithm proposed in the literature: incentivizing
people to partecipate, maximizing the number of effective done transplantation, minimizing the
failure of an exchange, or increasing the pool of possible kidneys allowing also marginal organs.

We proposed a first improvement method that is based on the idea of considering both cycles of
exchanges and chains of exchanges which start from a deceased donor kidney. Usually chains start
only from altruistic donors. We instead maximize the number of transplantations for each received
deceased donor kidney, allowing to the chains to start from a deceased donor kidney.

We implemented the procedure using a simple ILP (integer linear programming) description of
the matching algorithm, and we tested the procedure in the Padua pool of patients and patient/donor
pairs. The results provided, show that we increase the number of incompatible pairs that are trans-
planted of around the 30%. Moreover we avoided desensitization to the 76% of the patient/donor
pairs and we allocated the 42% of the highly-sensitized patients currently present in the Padua pool,
patients having a very low probability to receive a compatible kidney.

We then introduced a second possible strategy to improve the currently used procedures, but
only as a future direction. The basic idea is to consider the patient preferences in order to minimize
the number of matching failure. For instance, in the case of logistical problems, we can include
the patients preferences about the location of the hospitals. Moreover, many chains are broken
because a donor in a chain reneges, thus we plan to estimate the risk aversion of each patient and the
corresponding donor, to minimize these kind of situations. To this purpose we need to use effective
frameworks to represent and manage preferences and to be able to elicit the patients preferences.

III

7 Summary and Conclusions 189
7.1 PCP-net framework
7.2 Multi-agent context
7.3 Logical formulation
7.4 Kidney exchange

8 Future directions . 193
8.1 Breaking the independence assumption in PCP-

nets
8.2 Generalizations and extensions of LCP-theories
8.3 Kidney exchange

Bibliography . 197

Conclusions and Future work

7. Summary and Conclusions

7.1 PCP-net framework

We have defined and shown how to reason with a generalized version of CP-nets, called PCP-
nets, which can model probabilistic uncertainty and be updated without recomputing their entire
structure. PCP-nets can be seen as a way to bring together BNs and CP-nets, thus allowing to
model preference and probability information in one unified structure. We have studied how to
reason with these new structures in terms of optimality and dominance, the two main task regarding
conditional preferences. We have defined and compared different notions of optimality: the most
probable induced CP-net, the most probable optimal outcome and the optimal outcome of the most
probable induced CP-net. We are also able to perform exact dominance, but, since this task is
computationally hard we have defined also an algorithm that compute an approximate value for the
dominance. This procedure is computable in polynomial time and we have proved experimentally
that the result is really close to the exact value.

We have defined a procedure for learning a PCP-net in the preliminary case of separable
dependency structure.

We have studied also a generalization of PCP-nets, using a different notion of probability: the
Dempster-Shafer theory of probability.

7.2 Multi-agent context

We have also evaluated the use of PCP-nets as a compact representation language for the preferences
of a set of agents. Starting from a profile of individual CP-nets, we introduced and evaluated two
aggregation methods for the definition of a PCP-net, a first one based on relative frequencies
of pairwise preferences (PR) and a second one based on the exact distribution of CP-nets (LS).
Our theoretical and experimental results suggest that using the PR method in the input profile to

190 Chapter 7. Summary and Conclusions

construct a PCP-net is accurate with respect to answering both optimality and dominance queries.
Since optimality queries under this method can be shown to be equivalent to performing sequential
voting, our proposed aggregation method is a direct generalisation of this setting. By generating a
compact representation of the full preference profile using PCP-nets, we are also able to perform
either exact or approximate dominance reasoning on a profile of individual CP-nets. Moreover,
for the case of polytree PCP-nets, we showed that our proposed approximation technique for
dominance yield results that are very close to the probability of dominance in the initial profile of
individual CP-nets.

We have considered also an alternative way to represents preferences in a multi-agent contexts:
profiles of users described by fuzzy profiles of soft constraints. We have studied a sequential
preference aggregation procedure based on voting rules for settings where several agents express
their preferences over a common set of variable assignments via soft constraints. We have studied
this approach by providing both theoretical and experimental results. In particular, we have shown
several theoretical properties of the approach and we have evaluated its performance experimentally
by considering several widely used voting rules.

7.3 Logical formulation

Since CP-nets and its generalizations/variants are limited in expressiveness and are specialized
formalisms with their own ad hoc syntax and semantics, we have presented a new unification
theory for qualitative conditional preferences, namely LCP-theories. The idea behind the LCP-
theories new framework is based on expressing preferences using Datalog. We have proved that
existing conditional preference model as CP-nets, CP-theories, GCP, comparative preferences, are
all particular cases of LCP theories. We also have shown that LCP-theory is a powerful framework
since, in addiction to unify the state-of-the art formalisms for conditional preferences, it also extend
them: LCP-theories introduce the new notion of recursive conditional preferences. We have shown
how dominance, consistency and optimality queries (that are the main tasks regarding conditional
preferences) can be formulated directly in Datalog and implemented in modern tabled Prolog
systems such as XSB Prolog. We have also analyzed the complexity of the different algorithms,
developed efficient procedures for some common use cases, and implemented a translator that
exploits these algorithms.

We have studied three new notion of dominance for CP-nets computationally more efficient.
We have analyzed the properties of these new semantics and we have compared them with the
classical formulation of dominance.

7.4 Kidney exchange

We have studied the real-life scenario of kidney exchanges.

We have proposed an innovative procedure that starts the chains of exchanges from a deceased
donor kidney contra the existing procedures that use only altruistic donors for the chains. Our
procedure also encourage compatible pairs, that need desensitization, to participate into the program,

7.4 Kidney exchange 191

ensuring a sure improvement: a matching that not needs desensitization. We have provided some
encouraging results performed in the context of the Padua pool.

Then we have analysed how to improve the existing algorithms to increase the number of
transplantations and the expected life duration. We have studied related works on how to incorporate
preferences in the matching procedures currently used and we have proposed a plan to minimize
the transplantation failure (the number of rejected proposed matchings).

8. Future directions

In this chapter we discuss some future directions of research, both from a theoretical and an
application point of view.

8.1 Breaking the independence assumption in PCP-nets

Conventionally, in the context of conditional preferences, authors usually consider the dependencies
only in the preference graph (i.e. we consider dependencies between the features), they instead
consider the cp-statements independent to each other [9, 28]. This means, in our scenario of
PCP-nets, that the preferences of an user over a feature, given an assignment to the parents nodes,
are independent to her preferences over another feature or over the same feature with another
assignment of the parent nodes. We plan to study the case in which the cp-statements are not
independent.

In our definition of PCP-net, this independence assumption appears prominent in the structure of
the G-net (see Section 3.4.1). The G-net structure expresses the relation between the cp-statements
and, in our formulation, has a separable graph, without edges (contra the graph of the PCP-net
that have edges between the features). Thus, in PCP-nets, we are considering all the cp-statements
independent. Also the probability of an induced CP-net is computed using this independence
assumption, computing the joint probability of an assignment of the separable structured G-net. For
this reason, an exact aggregation of a profile of CP-nets the most of the times is not possible (see
Theorem 4.1).

Therefore a possible generalization of PCP-nets follows from the idea of removing this inde-
pendence assumption, converting the structure of the G-net to a not necessarily separable graph.

194 Chapter 8. Future directions

8.2 Generalizations and extensions of LCP-theories

We have developed LCP-theories as an unification framework for conditional preferences based on
a logical description written directly in Datalog. However our model still has some drawbacks: it
does not support uncertainty, probabilistic information, and the changing of the preferences over
time.

8.2.1 A probabilistic logical framework for conditional preferences

LCP-theories model has the drawback of not supporting uncertainty and probabilistic information.
Our idea is to introduce probabilities in this framework in a union between PCP-net and LCP-
theories. We plan to define a new framework, PLCP-theories, using an extension of Datalog that
supports probabilities. We focus on ProbLog [86], that similar to Datalog with the difference that
some of the facts are annotated with probabilities. ProbLog is based on a conversion of programs,
queries and evidence to weighted Boolean formulas [48].

In our context the idea is to associate with each d/2 fact a probability. Considering the Example
5.1 in Section 5.2, we will have for example the following probabilistic formulation:

soup (f i s h) . soup (veg) . wine (w h i t e) . wine (r e d) .
outcome (o (X,Y)) :� soup (X) , wine (Y) , (X\== veg ; Y\== r e d) .
0 . 5 : : d (o (f i s h , X) , o (veg , X)) .
0 . 6 : : d (o (f i s h , w h i t e) , o (f i s h , r e d)) .

In this way we produce a semantics defined in terms of a probability distribution of the facts
over possible worlds.

We plan to analyse this direction and to study the computational complexity of the main tasks
in this scenario: optimization (about outcome or about users description) and dominance.

We hope also to use the implemented LCP system in real-life applications to determine the
adequacy of the system, and consequently to implement PLCP-theories framework and test it in
real-life scenarios.

8.2.2 A dynamic logical framework for conditional preferences

Real life scenarios are often dynamic, users may change their preferences over time. LCP-theories
can not handle this kind of informations, thus we need a structure that can updates information in a
computationally tractable costs.

LCP-theories are not dynamic because the number of features is fixed. Since we specify
preferences as a clauses set, we can only add preferences to our model and we can not replace or
delete informations.

We have a dynamic component in our model, but it is produced only by the effects of evidence
(on the theory dependency graph). When we are computing a task (optimality, dominance or
consistency) and we receive some evidence (assignment of a subset of features) we compute a new
dependency graph (that changes dynamically) taking in account the provided information. In this
way the computational complexity of the tasks could decrease, since we could move from a general
dependency structure to a particular case, such as trees or acyclic graphs.

8.3 Kidney exchange 195

8.3 Kidney exchange

Considering the kidney exchange scenario, we plan to follow two main research directions:
1. we plan to provide an alternative algorithm to NITK3 (currently used in the Padua) to improve

the quality of the kidney allocation from cadavers, maximizing the number of transplants and
increasing the average expected life, by considering patients’ preferences;

2. we also plan to show with a simulation, that the insertion of the patients in the kidney
exchange program, produce not only an increase of transplants but also an increase of the
expectation of life and quality of the transplant. We also plan to implement the patient
preferences in the kidney exchange protocol to prove that in a scenario simulated following
the Padua context we effectively minimize the number of rejection.

Bibliography

[1] David J. Abraham, Avrim Blum, and Tuomas Sandholm. “Clearing Algorithms for Barter
Exchange Markets: Enabling Nationwide Kidney Exchanges”. In: Proceedings of the 8th
ACM Conference on Electronic Commerce. 2007 (cited on page 176).

[2] T.E. Allen, J. Goldsmith, and N. Mattei. “Counting, Ranking, and Randomly Generating
CP-nets”. In: Proc. of the 8th Multidisciplinary Workshop on Advances in Preference
Handling (MPREF). 2014 (cited on pages 39, 88, 121, 167).

[3] S. de Amo, M.L.P. Bueno, G. Alves, and N.F. Silva. “CPrefMiner: An Algorithm for Mining
User Contextual Preferences Based on Bayesian Networks.” In: Proceedings of IEEE 24th
International Conference on Tools with Artificial Intelligence, ICTAI 2012. 2012 (cited on
page 61).

[4] Steffen Andersen, Glenn W. Harrison, Morten I. Lau, and E. Elisabet Rutstrom. “Eliciting
Risk and Time Preferences”. In: Econometrica (2008) (cited on page 185).

[5] James Andreoni and Charles Sprenger. “Risk Preferences Are Not Time Preferences”. In:
American Economic Review (2012) (cited on page 185).

[6] K. J. Arrow, A. K. Sen, and K. Suzumura. Handbook of Social Choice and Welfare. North-
Holland, 2002 (cited on pages 52–54, 135, 136).

[7] F. Bacchus and A.J. Grove. “Graphical models for preference and utility”. In: Proceedings
of UAI 1995. 1995, pages 3–10 (cited on page 16).

[8] C. Bessiere. “Constraint Propagation”. In: Handbook of Constraint Programming. Edited
by P. Van Beek F. Rossi and T. Walsh. Elsevier, 2005 (cited on page 51).

198 Chapter 8. Future directions

[9] D. Bigot, H. Fargier, J. Mengin, and B. Zanuttini. “Probabilistic Conditional Preference
Networks”. In: Proc. of the 29th International Conference on Uncertainty in Artificial
Intelligence (UAI). 2013 (cited on pages 39, 62, 75, 76, 159–161, 164, 193).

[10] S. Bistarelli, U. Montanari, and F. Rossi. “Semiring-based constraint satisfaction and
optimization”. In: Journal of the ACM (JACM) (1997) (cited on page 16).

[11] C. Boutilier, R.I. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. “CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements”. In:
Journal of Artificial Intelligence Research 21 (2004), pages 135–191 (cited on pages 16,
21, 26, 34, 36, 38, 39, 47, 62, 76, 111, 156, 159–161, 164).

[12] C. Boutilier, I. Brafman, C. Domshlak, H. Hoos, and D Poole. “Preference-Based Con-
strained Optimization with CP-Nets”. In: Computational Intelligence 20.2 (2004), pages 137–
157 (cited on pages 16, 19, 26, 47, 48, 153).

[13] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. “UCP-Networks: A Directed
Graphical Representation of Conditional Utilities”. In: UAI ’01: Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence, University of Washington, Seattle,
Washington, USA, August 2-5, 2001. 2001, pages 56–64 (cited on pages 26, 44, 45).

[14] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. “Conditional Importance Networks:
A Graphical Language for Representing Ordinal, Monotonic Preferences over Sets of
Goods”. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence.
IJCAI’09. 2009, pages 67–72 (cited on pages 26, 42).

[15] R. Brafman and C. Domshlak. “Introducing Variable Importance Tradeoffs into CP-Nets”.
In: Proceedings of UAI ’02. 2002, pages 69–76 (cited on pages 26, 40).

[16] R. I. Brafman, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. “Finding the Next
Solution in Constraint- and Preference-Based Knowledge Representation Formalisms”. In:
Proceedings of KR 2010. 2010 (cited on page 139).

[17] R.I. Brafman and C. Domshlak. “Preference handling-an introductory tutorial”. In: AI
Magazine 30.1 (2009), page 58 (cited on page 15).

[18] D. Braziunas and Craig Boutilier. “Elicitation of factored utilities.” In: AI Magazine (2008)
(cited on page 93).

[19] S. Ceri, G. Gottlob, and L. Tanca. “What You Always Wanted to Know About Datalog (And
Never Dared to Ask)”. In: IEEE Trans. on Knowl. and Data Eng. 1 (1989), pages 146–166
(cited on pages 19, 153).

[20] S. Ceri, G. Gottlob, and L. Tanca. “What You Always Wanted to Know About Datalog
(And Never Dared to Ask)”. In: IEEE Transactions on Knowledge and Data Engineering
1.1 (1989), pages 146–166. ISSN: 1041-4347. DOI: http://doi.ieeecomputersociety.
org/10.1109/69.43410 (cited on page 19).

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/69.43410
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/69.43410

8.3 Kidney exchange 199

[21] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. “Preference handling in combinatorial
domains: From AI to social choice”. In: AI Magazine 29.4 (2008), page 37 (cited on
page 15).

[22] Yann Chevaleyre, Frédéric Koriche, Jérôme Lang, Jérôme Mengin, and Bruno Zanuttini.
“Preference Learning”. In: Springer Berlin Heidelberg, 2011. Chapter Learning Ordinal
Preferences on Multiattribute Domains: The Case of CP-nets (cited on pages 94, 97, 106).

[23] Arthur Choi, Hei Chan, and Adnan Darwiche. “On Bayesian network approximation
by edge deletion”. In: Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence. 2005 (cited on page 126).

[24] Christopher Smith Colin C. Geddes R. Stuart C. Rodger and Anita Ganai. “Allocation
of Deceased Donor Kidneys for Transplantation: Opinions of Patients With CKD”. In:
American Journal of Kidney Diseases (2005) (cited on page 184).

[25] V. Conitzer, T. Sandholm, and J. Lang. “When are elections with few candidates hard to
manipulate”. In: JACM 54.3 (2007), pages 1–33 (cited on page 136).

[26] V. Conitzer and L. Xia. “Paradoxes of Multiple Elections: An Approximation Approach”.
In: Proceedings of KR 2012. 2012 (cited on pages 53, 127, 152).

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. Edited by 3rd. The MIT Press, 2009 (cited on page 124).

[28] C. Cornelio, J. Goldsmith, N. Mattei, F. Rossi, and K.B. Venable. “Updates and Uncertainty
in CP-nets”. In: Proc. of the 26th Australasian Joint Conference on Artificial Intelligence
(AUSAI). 2013 (cited on pages 62, 193).

[29] B. D’Ambrosio. “Inference in Bayesian Networks”. In: AI Magazine 20.2 (1999), page 21
(cited on pages 27, 31, 33).

[30] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. “Complexity and Expressive Power of
Logic Programming”. In: ACM Comput. Surv. 33.3 (Sept. 2001), pages 374–425. ISSN:
0360-0300. DOI: 10.1145/502807.502810. URL: http://doi.acm.org/10.1145/
502807.502810 (cited on page 153).

[31] R. Dechter. “Bucket elimination: A unifying framework for reasoning”. In: Artificial
Intelligence 113.1-2 (1999), pages 41–85 (cited on pages 27, 31–33).

[32] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003 (cited on page 33).

[33] R. Dechter. “Tractable Structures for CSPs”. In: Handbook of Constraint Programming.
Edited by P. Van Beek F. Rossi and T. Walsh. Elsevier, 2005 (cited on page 51).

[34] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. “Optimizing kidney ex-
change with transplant chains: theory and reality.” In: Proceedings of AAMAS-12. 2012
(cited on page 177).

[35] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. “Failure-aware kidney
exchange”. In: Proceedings of ACM Conference on Electronic Commerce, EC ’13, Philadel-
phia, PA, USA, 2013 (cited on pages 176, 177, 185).

http://dx.doi.org/10.1145/502807.502810
http://doi.acm.org/10.1145/502807.502810
http://doi.acm.org/10.1145/502807.502810

200 Chapter 8. Future directions

[36] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. “Price of Fairness in Kidney
Exchange”. In: Proceedings of the 13th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2014). 2014 (cited on page 177).

[37] Y. Dimopoulos, L. Michael, and F. Athienitou. “Ceteris paribus preference elicitation with
predictive guarantees.” In: Proceedings of IJCAI-09. 2009 (cited on page 94).

[38] J. Dombi, Imreh C., and Vincze N. “Learning lexicographic orders.” In: Eur. J. of Opera-
tional Research (2007) (cited on page 94).

[39] C. Domshlak and R.I. Brafman. “CP-nets: Reasoning and consistency testing”. In: Proc.
8th International Conference on Principles of Knowledge Representation and Reasoning
(KR). 2002 (cited on pages 15, 47).

[40] C. Domshlak and T. Joachims. “Efficient and non-parametric reasoning over user prefer-
ences.” In: Proceedings of User Modeling and User Adapted Interaction (UMUAI). 2007
(cited on page 93).

[41] C. Domshlak, F. Rossi, K.B. Venable, and T. Walsh. “Reasoning about soft constraints and
conditional preferences: complexity results and approximation techniques”. In: Proc. of
the 18th International Joint Conference on Artificial Intelligence (IJCAI). 2003 (cited on
pages 15, 26, 46).

[42] C. Domshlak, S. Prestwich, F. Rossi, K. Venable, and T. Walsh. “Hard and soft constraints
for reasoning about qualitative conditional preferences”. In: J. Heuristics 12.4-5 (2006),
pages 263–285 (cited on pages 16, 19, 153).

[43] Alan Eckhardt and Peter Vojtáš. “How to learn fuzzy user preferences with variable objec-
tives.” In: Proceedings of IFSA/EUSFLAT. 2009 (cited on page 94).

[44] Alan Eckhardt and Peter Vojtáš. “Learning user preferences for 2CP-regression for a
recommender system.” In: Proceedings of SOFSEM. 2010 (cited on page 94).

[45] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. “How Hard Is Bribery in
Elections?” In: JAIR 35 (2009), pages 485–532 (cited on page 127).

[46] Boi Faltings, Marc Torrens, and Pearl Pu. “Solution generation with qualitative models
of preferences”. In: Computational Intelligence 20.2 (2004), pages 246–263 (cited on
pages 17, 113).

[47] T. Feder and M. Vardi. “The Computational Structure of Monotone Monadic SNP and
Constraint Satisfaction: A Study Through Datalog and Group Theory”. In: SIAM J. Comput.
28.1 (1999), pages 57–104 (cited on page 153).

[48] Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and Luc De Raedt. “Infer-
ence in Probabilistic Logic Programs using Weighted CNF’s”. In: UAI 2011, Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence. 2011 (cited on
page 194).

[49] J. Fürnkranz and E. Hüllermeier. Preference Learning: An Introduction. Springer, 2010
(cited on pages 15, 16).

8.3 Kidney exchange 201

[50] Alex Imas Gary Charness Uri Gneezy. “Experimental methods: Eliciting risk preferences”.
In: Journal of Economic Behavior & Organization (2013) (cited on page 185).

[51] J. Goldsmith and U. Junker. “Preference handling for artificial intelligence”. In: AI Maga-
zine 29.4 (2009) (cited on page 15).

[52] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. “The Computational Complexity
of Dominance and Consistency in CP-nets”. In: Journal of Artificial Intelligence Research
33.1 (2008), pages 403–432 (cited on pages 15, 16, 21, 26, 38, 39, 46, 47, 76, 153, 159,
161, 164, 165).

[53] C. Gonzales and P. Perny. “GAI Networks for Utility Elicitation.” In: Proc. of the 10th
International Conference on Principles of Knowledge Representation and Reasoning (KR).
2004 (cited on pages 16, 93).

[54] C. Gonzales, P. Perny, and S. Queiroz. “Preference Aggregation with Graphical Utility
Models”. In: Proceedings of AAAI 2008. 2008, pages 1037–1042 (cited on page 16).

[55] G. Gottlob and C. Papadimitriou. “On the Complexity of Single-rule Datalog Queries”. In:
Inf. Comput. 183.1 (May 2003), pages 104–122. ISSN: 0890-5401. DOI: 10.1016/S0890-
5401(03)00012-9. URL: http://dx.doi.org/10.1016/S0890-5401(03)00012-9
(cited on pages 153, 155, 160, 164, 165).

[56] Joshua T. Guerin, Thomas E. Allen, and Judy Goldsmith. “Learning CP-net Preferences
Online from User Queries”. In: Proceedings of AAAI-13, Twenty-Seventh AAAI Conference
on Artificial Intelligence. 2013 (cited on page 94).

[57] Bradley W. J., Hodge J. K., and Kilgour D.M. “Separable discrete preferences.” In: Mathe-
matical Social Sciences (2005) (cited on pages 93, 106).

[58] S. Jung, J. Hong, and T. Kim. “A statistical model for user preference”. In: Proceedings of
TKDE. 2005 (cited on page 60).

[59] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. “Constraint Query Languages”. In: Journal
of Computer and System Sciences 51.1 (1995), pages 26 –52 (cited on pages 19, 153).

[60] Frédéric Koriche and Bruno Zanuttini. “Learning Conditional Preference Networks with
Queries”. In: Proceedings of IJCAI-09, 21st International Joint Conference on Artificial
Intelligence. 2009 (cited on page 94).

[61] Chen L. and Pu P. Survey of preference elicitation methods. Technical report. 2004 (cited
on page 93).

[62] Emerson M. S. Niou Lacy Dean. “A Problem with Referendums”. In: Journal of Theoreti-
calPolitics (2000) (cited on page 53).

[63] J. Lang. “Vote and aggregation in combinatorial domains with structured preferences.” In:
Proc. of the Twentieth International Joint Conference on Artificial Intelligence. 2007 (cited
on page 112).

http://dx.doi.org/10.1016/S0890-5401(03)00012-9
http://dx.doi.org/10.1016/S0890-5401(03)00012-9
http://dx.doi.org/10.1016/S0890-5401(03)00012-9

202 Chapter 8. Future directions

[64] J. Lang, J. Mengin, and L. Xia. “Aggregating Conditionally Lexicographic Preferences
on Multi-issue Domains”. In: Proceedings of CP 2012. 2012, pages 973–987 (cited on
pages 127, 152).

[65] J. Lang and L. Xia. “Sequential composition of voting rules in multi-issue domains”. In:
Mathematical Social Sciences 57.3 (2009), pages 304–324 (cited on pages 18, 19, 53, 110,
111, 117, 118, 127, 132, 134, 152).

[66] Jérôme Lang and Jérôme Mengin. “The Complexity of Learning Separable ceteris paribus
Preferences”. In: Proceedings of IJCAI-09, 21st International Joint Conference on Artificial
Intelligence. 2009 (cited on pages 94, 97, 106).

[67] M. Li, Q.B. Vo, and R. Kowalczyk. “An Efficient Procedure for Collective Decision-making
with CP-nets”. In: Proc. of the 19th European Conference on Artificial Intelligence (ECAI).
2010 (cited on page 18).

[68] M. Li, Q.B. Vo, and R. Kowalczyk. “Majority-rule-based preference aggregation on multi-
attribute domains with CP-nets”. In: Proc. of the 10th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). 2011 (cited on page 18).

[69] J. Liu, Y. Xiong, C. Wu, Z. Yao, and W. Liu. “Learning conditional preference networks
from inconsistent examples.” In: Proceedings of TKDE. 2012 (cited on page 94).

[70] Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo I. Simari. “Probabilistic Pref-
erence Logic Networks”. In: Proceedings of the 21st European Conference on Artificial
Intelligence‚ ECAI-14. 2014 (cited on page 61).

[71] Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari, and Oana Tifrea-Marciuska.
“Preference-Based Query Answering in Probabilistic Datalog+/–Â Ontologies.” In: Journal
on Data Semantics (2014) (cited on page 60).

[72] A. Maran, N. Maudet, M. S. Pini, F. Rossi, and K. B. Venable. “A Framework for Aggregat-
ing Influenced CP-Nets and Its Resistance to Bribery”. In: Proceedings of AAAI-27. 2013,
pages 668–674 (cited on pages 18, 127, 153, 163).

[73] John I Marden. Analyzing and Modeling Rank Data. CRC Press, 1995 (cited on page 17).

[74] N. Mattei, M. S. Pini, F. Rossi, and K. B. Venable. “Bribery in Voting Over Combinatorial
Domains Is Easy”. In: Proc. 11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 2012 (cited on pages 18, 127).

[75] N. Mattei, M.S. Pini, F. Rossi, and K.B. Venable. “Bribery in voting with CP-nets”. In:
Annals of Mathematics and Artificial Intelligence 68.1-3 (2013), pages 135–160 (cited on
pages 18, 127).

[76] Nicholas Mattei and Toby Walsh. “PrefLib: A Library of Preference Data”. In: Proceedings
of ADT 2013. Springer, 2013 (cited on page 149).

[77] N. Maudet, M. S. Pini, K. B. Venable, and F. Rossi. “Influence and aggregation of prefer-
ences over combinatorial domains”. In: Proceedings of AAMAS 2012. 2012, pages 1313–
1314 (cited on page 127).

8.3 Kidney exchange 203

[78] P. Meseguer, F. Rossi, and T. Schiex. “Soft constraints”. In: Handbook of Constraint
Programming. Edited by P. Van Beek F. Rossi and T. Walsh. Elsevier, 2005 (cited on
pages 16, 26, 50, 51).

[79] S. Mittal and F. Frayman. “Toward a generic model of configuration tasks”. In: Proceedings
of IJCAI 1989. 1989 (cited on page 15).

[80] H. Moulin. Axioms of Cooperative Decision Making. Cambridge University Press, 1991
(cited on pages 117, 118).

[81] Antonio Nicolò and Carmelo Rodríguez Álvarez. “Age-Based Preferences: Incorporating
Compatible Pairs into Paired Kidney Exchange”. In: Journal of Economic Theory (2011)
(cited on pages 177, 178).

[82] M. S. Pini, F. Rossi, and K. B. Venable. “Bribery in Voting With Soft Constraints”. In:
Proceedings of AAAI 2013. 2013 (cited on page 127).

[83] M. S. Pini, F. Rossi, and K. B. Venable. “Resistance to bribery when aggregating soft
constraints”. In: Proceedings of AAMAS 2013. 2013, pages 1301–1302 (cited on page 127).

[84] S. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. “Constrained CP-nets”. In: Proceedings
of CSCLP‚Äô04. 2004 (cited on pages 19, 26, 47, 153).

[85] Robert Price and Paul R Messinger. “Optimal recommendation sets: Covering uncertainty
over user preferences”. In: Proc. 20th AAAI Conference on Artificial Intelligence. 2005,
pages 541–548 (cited on pages 17, 113).

[86] ProbLog. URL: https://dtai.cs.kuleuven.be/problog/ (cited on page 194).

[87] K. Purrington and E. H. Durfee. “Making social choices from individuals’ CP-nets”. In:
Proceedings of AAMAS 2007. 2007, pages 1122–1124 (cited on pages 127, 152).

[88] M. Regenwetter, J. Dana, and C.P. Davis-Stober. “Transitivity of preferences.” In: Psycho-
logical Review 118.1 (2011) (cited on page 17).

[89] Michel Regenwetter, Bernard Grofman, A. A. J. Marley, and Ilia Tsetlin. “Behavioral
Social Choice: Probabilistic Models, Statistical Inference, and Applications.” In: Cambridge
University Press., 2006 (cited on page 60).

[90] F. Rossi, K.B. Venable, and T. Walsh. “mCP nets: representing and reasoning with prefer-
ences of multiple agents”. In: Proc. of the 19th AAAI Conference on Artificial Intelligence
(AAAI). 2004 (cited on pages 18, 26, 45, 153).

[91] F. Rossi, K.B. Venable, and T. Walsh. A Short Introduction to Preferences: Between
Artificial Intelligence and Social Choice. Morgan & Claypool Publishers, 2011 (cited on
pages 15, 16).

[92] A.E. Roth and J.H. Kagel. The handbook of experimental economics. Volume 1. Princeton
University Press Princeton, 1995 (cited on page 16).

[93] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall, 1994
(cited on page 27).

https://dtai.cs.kuleuven.be/problog/

204 Chapter 8. Future directions

[94] M. Simmerling S. E. Gentry D. L. Segeva and R. A. Montgomery. “Expanding Kidney
Paired Donation Through Participation by Compatible Pairs”. In: American Journal of
Transplantation (2007) (cited on page 177).

[95] N. Wilson S. Moral. “Markov Chain Monte-Carlo Algorithms for the Calculation of
Dempster-Shafer Belief”. In: Proceedings of the Twelfth National Conference on Artificial
Intelligence. 1994 (cited on pages 31, 104).

[96] G. R. Santhanam, S. Basu, and V. Honavar. “Dominance Testing via Model Checking.”
In: Proc. of the 24th AAAI Conference on Artificial Intelligence (AAAI). 2010 (cited on
page 18).

[97] T. Schiex. “Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Con-
straints?"”. In: Proceedings of UAI 1992. 1992, pages 268–275 (cited on page 50).

[98] M. Schmitt and L. Martignon. “On the complexity of learning lexicographic strategies.” In:
J. Mach. Learn. Res. (2006) (cited on page 94).

[99] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976 (cited
on page 100).

[100] Xuanming Su, Stefanos A. Zenios, and Glenn M. Chertow. “Incorporating Recipient Choice
in Kidney Transplantation”. In: Journal of the American Society of Nephrology (2004)
(cited on page 185).

[101] T. Swift and D. S. Warren. “Tabling with Answer Subsumption: Implementation, Applica-
tions and Performance”. In: Proceedings of the 12th European Conference on Logics in
Artificial Intelligence. 2010, pages 300–312 (cited on page 154).

[102] T. Swift and D. S. Warren. “XSB: Extending Prolog with Tabled Logic Programming”. In:
Theory Pract. Log. Program. 12.1-2 (2012) (cited on pages 154, 155).

[103] T. Swift and D. S. Warren. XSB Home page. http://http://xsb.sourceforge.net/.
2012 (cited on page 167).

[104] A.D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University
Press, 2005 (cited on page 53).

[105] D. Toman. “Memoing Evaluation for Constraint Extensions of Datalog”. In: Constraints 2
(1998) (cited on pages 19, 153).

[106] T.T. Truyen, D.Q. Phung, and S. Venkatesh. “Preference networks: Probabilistic models for
recommendation systems”. In: Proceedings of AusDM. 2007 (cited on page 60).

[107] UNOS. United Network for Organ Sharing (UNOS). http://www.unos.org/ (cited on page 175).

[108] Ha V. and Haddawy P. “Problem-focused incremental elicitation of multi-attribute utility
models.” In: Proceedings of UAI-97. 1997 (cited on page 93).

[109] M. Vardi. “The complexity of relational query languages (extended abstract”. In: Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing. 1982, pages 137–
146 (cited on pages 153, 155).

http://http://xsb.sourceforge.net/

8.3 Kidney exchange 205

[110] P. Viappiani, B. Faltings, and P. Pu. “Preference-based search using example-critiquing
with suggestions.” In: JAIR (2006) (cited on page 93).

[111] N. Wilson. “Extending CP-Nets with Stronger Conditional Preference Statements”. In:
Proceedings of AAAI-04. 2004, pages 735–741 (cited on pages 16, 21, 26, 48, 153, 156,
159, 161, 162, 164).

[112] N. Wilson. “Efficient Inference for Expressive Comparative Preference Languages”. In:
Proceedings of IJCAI-09. 2009 (cited on pages 16, 21, 26, 41, 42, 49, 153).

[113] L. Xia and V. Conitzer. “Strategy-Proof Voting Rules over Multi-issue Domains with
Restricted Preferences”. In: Proceedings of WINE 2010. 2010, pages 402–414 (cited on
page 136).

[114] L. Xia, V. Conitzer, and J. Lang. “Voting on Multiattribute Domains with Cyclic Preferential
Dependencies.” In: Proc. of the 23rd AAAI Conference on Artificial Intelligence (AAAI).
2008 (cited on pages 18, 127, 152).

[115] L. Xia, V. Conitzer, and J. Lang. “Aggregating Preferences in Multi-Issue Domains by
Using Maximum Likelihood Estimators”. In: Proc. of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 2010 (cited on pages 127, 152).

[116] L. Xia, V. Conitzer, and J. Lang. “Hypercubewise Preference Aggregation in Multi-issue
Domains”. In: Proc. of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI). 2011 (cited on page 18).

[117] F. Yaman, T. Walsh, M. Littman, and M. desJardins. “Democratic approximation of lexico-
graphic preference models.” In: Proceedings of ICML-08. 2008 (cited on page 94).

	Riassunto
	Abstract
	Part I — Introduction & Background
	1 Introduction
	1.1 Context
	1.2 Problem Statement and Research Goals
	1.3 Summary of Contributions
	1.4 Thesis statement
	1.5 Publications
	1.6 Structure of the thesis

	2 Background and State of the art
	2.1 Bayesian Networks
	2.2 CP-nets
	2.3 Variants and Extensions of CP-nets
	2.4 Soft Constraints
	2.5 Voting theory

	Part II — Original contributions
	3 PCP-nets
	3.1 Probabilistic CP-nets (PCP-nets)
	3.2 The set of induced CP-nets
	3.3 Probability of the edges
	3.4 Optimality
	3.5 Dominance
	3.6 Learning of separable PCP-nets
	3.7 Dynamic Probabilistic CP-nets
	3.8 A PCP-net generalization by using the Dempster Shafer theory
	3.9 Summary and Discussion

	4 Preference aggregation
	4.1 Aggregation of CP-nets into a PCP-net
	4.2 Aggregation of soft constraint problems
	4.3 Summary and Discussion

	5 A logical model for conditional preferences
	5.1 Datalog and logic programming
	5.2 Flat LCP-Theories (FLCP-Theories)
	5.3 Recursive LCP-theories
	5.4 Reasoning with LCP-theories
	5.5 Semantics for the dominance
	5.6 Summary and Discussion

	6 A real-life scenario: kidney transplant protocol
	6.1 Background and Related works
	6.2 Our algorithm: detection of cycles and chains starting from deceased donors
	6.3 Experiments
	6.4 Introduction of Preferences
	6.5 Summary and Discussion

	Part III — Conclusions and Future work
	7 Summary and Conclusions
	7.1 PCP-net framework
	7.2 Multi-agent context
	7.3 Logical formulation
	7.4 Kidney exchange

	8 Future directions
	8.1 Breaking the independence assumption in PCP-nets
	8.2 Generalizations and extensions of LCP-theories
	8.3 Kidney exchange

	Bibliography

